prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import sys import pandas as pd import spacy import numpy as np import math import argparse from argparse import ArgumentParser nlp = spacy.load('en_core_web_lg') parser = ArgumentParser() parser.add_argument("--irecf", type=str, default='IREC Result of LDA model') parser.add_argument("--walmidf", type=str, required=True, help='WALMID Result of LDA model') args = parser.parse_args() irecf = args.irecf walmidf = args.walmidf # irec # learn embeddings of keywords irec = pd.read_csv(irecf) irecid_keywords_dict = {} for cid, keywords in zip(irec['cluster_id'], irec['keyword'].tolist()): if cid not in irecid_keywords_dict.keys(): cid = int('1'+str(cid)) irecid_keywords_dict[cid] = keywords irec_id_vec = {} for cid, cluster in irecid_keywords_dict.items(): clusters_vecs = [] cluster = ' '.join(cluster.split(', ')) for word in nlp(cluster): clusters_vecs.append(word.vector) cluster_vec = np.mean(np.array(clusters_vecs), axis=0) irec_id_vec[cid] = cluster_vec # count the number of companies irec_rids_dict = {} ireccid_rids_dict = {} for cid, rid in zip(irec['cluster_id'], irec['rid']): cid = int('1'+str(cid)) if cid not in ireccid_rids_dict.keys(): ireccid_rids_dict[cid] = [rid] else: if rid not in ireccid_rids_dict[cid]: ireccid_rids_dict[cid].append(rid) if rid not in irec_rids_dict.keys(): irec_rids_dict[rid] = '' ireccid_rids_sorted = {k: v for k, v in sorted(ireccid_rids_dict.items(), key=lambda item: item[0])} ireccid_ridnum_dict = {} for cid, rids in ireccid_rids_sorted.items(): ireccid_ridnum_dict[cid] = len(rids) # compute regional quotient print('Number of rid in irec:', len(irec_rids_dict)) ireccid_rq_dict = {} cid_rq_dict = {} for cid, ridnum in ireccid_ridnum_dict.items(): ireccid_rq_dict[cid] = ridnum/len(irec_rids_dict) cid_rq_dict[cid] = ridnum/len(irec_rids_dict) # walmid # learn embeddings of keywords walmid =
pd.read_csv(walmidf)
pandas.read_csv
import shutil, os, re import pandas as pd import numpy as np from pandas import DataFrame, Series def getdata1(rawdata): '''提取Id vs. Vg@Vd=5V的测试数据,此数据暂不需要插值''' start = (rawdata['c'] == ' Id vs. Vg@Vd=5V').idxmax() end = (rawdata['b'] == ' Initial Id vs. Vg@Vd=0.1V').idxmax() # rawdata.iloc[start:end] selected = rawdata.iloc[start:end] selected1 = selected.drop('a',axis=1) selected2 =
DataFrame(selected1.values)
pandas.DataFrame
# %% import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.decomposition import PCA from sklearn.tree import DecisionTreeClassifier, export_graphviz from sklearn.pipeline import Pipeline from sklearn.model_selection import train_test_split from lightgbm import LGBMClassifier from sklearn.metrics import roc_auc_score, recall_score, confusion_matrix, classification_report import subprocess import joblib # Get multiple outputs in the same cell from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" # Ignore all warnings import warnings warnings.filterwarnings('ignore') warnings.filterwarnings(action='ignore', category=DeprecationWarning) pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) # %% # Reading the dataset dc =
pd.read_csv("Churn_Modelling.csv")
pandas.read_csv
import pandas as pd from io import StringIO from sklearn.impute import SimpleImputer import numpy as np from sklearn.preprocessing import LabelEncoder, OneHotEncoder, MinMaxScaler, StandardScaler from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import matplotlib.pyplot as plt from sequential_feature_selection import SBS from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import SelectFromModel pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)
pandas.set_option
# Data : https://archive.ics.uci.edu/ml/datasets/Online+News+Popularity import json import lightgbm as lgb import numpy as np import pandas as pd from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split if __name__ == "__main__": n = 10 cols = [ "url", "timedelta", "n_tokens_title", "n_tokens_content", "n_unique_tokens", "n_non_stop_words", "n_non_stop_unique_tokens", "num_hrefs", "num_self_hrefs", "num_imgs", "num_videos", "average_token_length", "num_keywords", "data_channel_is_lifestyle", "data_channel_is_entertainment", "data_channel_is_bus", "data_channel_is_socmed", "data_channel_is_tech", "data_channel_is_world", "kw_min_min", "kw_max_min", "kw_avg_min", "kw_min_max", "kw_max_max", "kw_avg_max", "kw_min_avg", "kw_max_avg", "kw_avg_avg", "self_reference_min_shares", "self_reference_max_shares", "self_reference_avg_sharess", "weekday_is_monday", "weekday_is_tuesday", "weekday_is_wednesday", "weekday_is_thursday", "weekday_is_friday", "weekday_is_saturday", "weekday_is_sunday", "is_weekend", "LDA_00", "LDA_01", "LDA_02", "LDA_03", "LDA_04", "global_subjectivity", "global_sentiment_polarity", "global_rate_positive_words", "global_rate_negative_words", "rate_positive_words", "rate_negative_words", "avg_positive_polarity", "min_positive_polarity", "max_positive_polarity", "avg_negative_polarity", "min_negative_polarity", "max_negative_polarity", "title_subjectivity", "title_sentiment_polarity", "abs_title_subjectivity", "abs_title_sentiment_polarity", "shares", ] data = pd.read_csv("../data/news/OnlineNewsPopularity.csv", names=cols, skiprows=1) data["shares"] = np.log(data["shares"] + 1) train, test = train_test_split(data, test_size=0.2, random_state=1337) targets = ["shares"] num_cols = [ "n_tokens_title", "n_tokens_content", "n_unique_tokens", "n_non_stop_words", "n_non_stop_unique_tokens", "num_hrefs", "num_self_hrefs", "num_imgs", "num_videos", "average_token_length", "num_keywords", "data_channel_is_lifestyle", "data_channel_is_entertainment", "data_channel_is_bus", "data_channel_is_socmed", "data_channel_is_tech", "data_channel_is_world", "kw_min_min", "kw_max_min", "kw_avg_min", "kw_min_max", "kw_max_max", "kw_avg_max", "kw_min_avg", "kw_max_avg", "kw_avg_avg", "self_reference_min_shares", "self_reference_max_shares", "self_reference_avg_sharess", "weekday_is_monday", "weekday_is_tuesday", "weekday_is_wednesday", "weekday_is_thursday", "weekday_is_friday", "weekday_is_saturday", "weekday_is_sunday", "is_weekend", "LDA_00", "LDA_01", "LDA_02", "LDA_03", "LDA_04", "global_subjectivity", "global_sentiment_polarity", "global_rate_positive_words", "global_rate_negative_words", "rate_positive_words", "rate_negative_words", "avg_positive_polarity", "min_positive_polarity", "max_positive_polarity", "avg_negative_polarity", "min_negative_polarity", "max_negative_polarity", "title_subjectivity", "title_sentiment_polarity", "abs_title_subjectivity", "abs_title_sentiment_polarity", ] cat_cols = [] for k in num_cols: mean = train[k].mean() std = train[k].std() train[k] = (train[k] - mean) / std test[k] = (test[k] - mean) / std train = train.sample(frac=1) for feature in cat_cols: train[feature] =
pd.Series(train[feature], dtype="category")
pandas.Series
''' Module : make_supertranscript_ref Description : Make reference supertranscript for cryptic variants Copyright : (c) <NAME>, Sep 2018 License : MIT Maintainer : github.com/mcmero Portability : POSIX Take VCF, contig_info and reference files, and make a supertranscript for each contig including any novel bits inserted into the ref sequence ''' import numpy as np import pandas as pd import re import sys import logging import os import tempfile import pickle import st_helper as sh import bedtool_helper from pybedtools import BedTool from Bio import SeqIO from argparse import ArgumentParser from utils import cached, init_logging, exit_with_error pd.set_option("mode.chained_assignment", None) EXIT_FILE_IO_ERROR = 1 # headers for GTF file GTF_COLS = ['chr', 'source', 'feature', 'start', 'end', 'score', 'strand', 'frame', 'attribute'] BED_EXT_COLS = ['chr', 'start', 'end', 'name', 'score', 'strand', 'thickStart', 'thickEnd', 'itemRgb'] # only these variant types require modification to reference supertranscripts VARS_TO_ANNOTATE = ['EE','NE','INS','RI','UN','FUS','DEL'] # regex masks STRAND = r'\(([+-])\)' # keep track of canonical genes written to avoid duplicate entries canonical_genes_written = [] def parse_args(): ''' Parse command line arguments. Returns Options object with command line argument values as attributes. Will exit the program on a command line error. ''' description = 'Make supertranscript reference' parser = ArgumentParser(description=description) parser.add_argument('--log', metavar='LOG_FILE', type=str, help='record program progress in LOG_FILE') parser.add_argument(dest='contig_info', metavar='CONTIG_INFO', type=str, help='''Contig information for novel contigs.''') parser.add_argument(dest='contig_vcf', metavar='CONTIG_VCF', type=str, help='''Novel variants in VCF format.''') parser.add_argument(dest='gtf_file', metavar='GTF_FILE', type=str, help='''GTF annotation file containing transcript annotations.''') parser.add_argument(dest='fasta', metavar='FASTA', type=str, help='''Genome reference in fasta format.''') parser.add_argument(dest='outdir', metavar='OUTDIR', type=str, help='''Output directory.''') parser.add_argument(dest='sample', metavar='SAMPLE', type=str, help='''Sample name. Used to name bed and supertranscript output files.''') return parser.parse_args() #===================================================================================================== # Utility functions #===================================================================================================== def reverse_complement(seq): lookup = {'A': 'T', 'T': 'A', 'G': 'C', 'C': 'G', 'N': 'N'} if seq == '': return '' if type(seq) == float and math.isnan(seq): return '' seq = seq[::-1] seq = ''.join([lookup[base.upper()] for base in list(seq)]) return(seq) def get_gene(attribute): ''' extract gene name from a single GTF attribute string ''' try: return attribute['gene_name'] except KeyError: return '' def get_contig_genes(con_info): ''' return gene1 and gene2 (in case of fusion), indicating genes overlapping the given contig ''' fus_genes = con_info[con_info.overlapping_genes.str.contains(':')] if len(fus_genes) > 0: fus_genes = np.unique(fus_genes.overlapping_genes) fus_genes = [fg.split(':') for fg in fus_genes][0] assert len(fus_genes) <= 2 return fus_genes[0], fus_genes[1] else: genes = np.unique(con_info.overlapping_genes.values) if len(genes) > 1: logging.info('WARNING: multiple overlapping genes found for contig %s' % con_info.contig_id.values[0]) return genes[0], '' def get_contig_strand(con_info, variant): ''' return contig alignment strand given the variant ID ''' strand = '.' if variant in con_info.variant_id.values: var_info = con_info[con_info.variant_id == variant] strand = re.search(STRAND, var_info.pos1.values[0]).group(1) if variant in con_info.partner_id.values: var_info = con_info[con_info.partner_id == variant] strand = re.search(STRAND, var_info.pos2.values[0]).group(1) return strand def get_gene_strands(gtf, genes): strands = [] for gene in genes: gene = gene.split('|')[0] # take first gene as representative in case of overlaps strand = gtf[gtf.gene == gene].strand.values strand = strand[0] if gene != '' and len(strand) > 0 else '' strands.append(strand) return strands def get_strand_info(con_info, gstrands): if 'FUS' in con_info.variant_type.values: con_fus = con_info[con_info.variant_type == 'FUS'] cs1 = get_contig_strand(con_fus, con_fus.variant_id.values[0]) cs2 = get_contig_strand(con_fus, con_fus.partner_id.values[0]) # if one fragment aligns on a strand counter to gene orientation # while the other aligns matching gene orientation, return strands # corresponding to contig alignment gs1, gs2 = gstrands if (cs1 != gs1 and cs2 == gs2) or (cs1 == gs1 and cs2 != gs2): return [cs1, cs2] else: return gstrands else: return gstrands #===================================================================================================== # Read/write functions #===================================================================================================== def get_output_files(sample, outdir): genome_bed = '%s/%s_genome.bed' % (outdir, sample) st_block_bed = '%s/%s_blocks_supertranscript.bed' % (outdir, sample) st_gene_bed = '%s/%s_genes_supertranscript.bed' % (outdir, sample) st_fasta = '%s/%s_supertranscript.fasta' % (outdir, sample) return genome_bed, st_block_bed, st_gene_bed, st_fasta @cached('gene_gtf.pickle') def load_gtf_file(gtf_file): ''' load in reference GTF file containing gene/exon info remove 'chr' prefix if present and extract gene names ''' logging.info('Processing GTF reference file...') gtf = BedTool(gtf_file).remove_invalid().saveas() gene_names = [get_gene(row.attrs) for row in gtf] with tempfile.NamedTemporaryFile(mode='r+') as temp_gtf: gtf.saveas(temp_gtf.name) gtf_pd = pd.read_csv(temp_gtf, header=None, sep='\t', names=GTF_COLS, comment='#', low_memory=False) gtf_pd['gene'] = gene_names # no non-standard chroms will be handled # TODO: is there some way to properly handle alt contigs? alt_chrs = gtf_pd['chr'].str.contains('Un|alt|unknown|random|K') gtf_pd = gtf_pd[np.invert(alt_chrs.values)] # extract gene name from gtf_pd and remove 'chr' prefix if present gtf_pd_chrs = gtf_pd['chr'].str.contains('chr') if any(gtf_pd_chrs.values): gtf_pd['chr'] = gtf_pd['chr'].apply(lambda a: a.split('chr')[1]) gtf_pd.loc[gtf_pd['chr'] == 'M', 'chr'] = 'MT' # create gene features if none exist if len(gtf_pd[gtf_pd.feature == 'gene']) == 0: aggregator = {'start': lambda x: min(x), 'end': lambda x: max(x)} gene_gtf_pd = gtf_pd.groupby(['chr', 'score', 'strand', 'frame', 'gene'], as_index=False, sort=False).agg(aggregator) gene_gtf_pd['source'] = 'ALL' gene_gtf_pd['attribute'] = '' gene_gtf_pd['feature'] = 'gene' gene_gtf_pd = gene_gtf_pd[GTF_COLS + ['gene']] gtf_pd = gtf_pd.append(gene_gtf_pd) return gtf_pd def load_vcf_file(contig_vcf): ''' load in VCF file containing novel contig variants remove 'chr' prefix from chroms if present ''' cvcf =
pd.read_csv(contig_vcf, sep='\t', header=None, comment='#', low_memory=False)
pandas.read_csv
import numpy as np import pandas as pd from unittest import TestCase from dataverk.exceptions.dataverk_exceptions import EnvironmentVariableNotSet from dataverk.utils import anonymization df_in = pd.DataFrame(data={'col1': [1, 2, 3, 4, 5, 6], 'col2': [33, 44, 55, 67, 765, 1111]}) df_values = pd.DataFrame(data={'values': ['one', 'two', 'three', 'four', 'five'], 'ints': [1, 2, 3, 4, 5], 'floats': [1.0, 2.0, 3.0, 4.0, 5.0]}) class MethodsReturnValues(TestCase): def test_replace_w_defaults(self): df_in_anonymizable_cols = pd.DataFrame(data={'col1': [1, 2, 3, 4, 5, 6], 'col2': [3, 4, 5, 6, 7, 8]}) expected_df_out = pd.DataFrame(data={'col1': ["*", "*", "*", 4, 5, 6], 'col2': [3, 4, 5, 6, 7, 8]}) df_out_all_defaults = anonymization.anonymize_replace(df_in_anonymizable_cols, eval_column='col1') self.assertTrue(df_out_all_defaults.equals(expected_df_out)) def test_replace_based_on_lower_limit(self): expected_df_out = pd.DataFrame(data={'col1': ["*", "*", "*", "*", 5, 6], 'col2': ["*", "*", "*", "*", 765, 1111]}) df_out = anonymization.anonymize_replace(df_in, eval_column='col1', anonymize_columns=['col2'], evaluator=lambda x: x < 5) self.assertTrue(df_out.equals(expected_df_out)) def test_replace_based_on_single_label(self): exp_df_out_str = pd.DataFrame(data={'values': ['one', '*', 'three', 'four', 'five'], 'ints': [1, 2, 3, 4, 5], 'floats': [1.0, 2.0, 3.0, 4.0, 5.0]}) df_out_str = anonymization.anonymize_replace(df_values, eval_column='values', evaluator=lambda x: x == 'two') self.assertTrue(df_out_str.equals(exp_df_out_str)) exp_df_out_int = pd.DataFrame(data={'values': ['one', 'two', 'three', 'four', 'five'], 'ints': [1, "*", 3, 4, 5], 'floats': [1.0, 2.0, 3.0, 4.0, 5.0]}) df_out_int = anonymization.anonymize_replace(df_values, eval_column='ints', evaluator=lambda x: x == 2) self.assertTrue(df_out_int.equals(exp_df_out_int)) def test_replace_based_on_label_NoneType(self): df_none = pd.DataFrame({'floats': [None, 1.0], 'ints': [1, 1]}) expected_df_out = pd.DataFrame({'floats': [0.0, 1.0], 'ints': [1, 1]}) df_out_none = anonymization.anonymize_replace(df_none, eval_column='floats', evaluator=lambda x: np.isnan(x), replace_by=0) self.assertTrue(df_out_none.equals(expected_df_out)) def test_replace_based_on_label_list(self): exp_df_out_str = pd.DataFrame(data={'values': ['one', '*', 'three', 'four', 'five'], 'ints': [1, 2, 3, 4, 5], 'floats': [1.0, 2.0, 3.0, 4.0, 5.0]}) df_out_str = anonymization.anonymize_replace(df_values, eval_column='values', evaluator=lambda x: x in ['two']) self.assertTrue(df_out_str.equals(exp_df_out_str)) exp_df_out_str = pd.DataFrame(data={'values': ['one', '*', 'three', '*', 'five'], 'ints': [1, 2, 3, 4, 5], 'floats': [1.0, 2.0, 3.0, 4.0, 5.0]}) df_out_str = anonymization.anonymize_replace(df_values, eval_column='values', evaluator=lambda x: x in ['two', 'four']) self.assertTrue(df_out_str.equals(exp_df_out_str)) exp_df_out_num = pd.DataFrame(data={'values': ['one', 'two', 'three', 'four', 'five'], 'ints': [1, "*", 3, "*", 5], 'floats': [1.0, 2.0, 3.0, 4.0, 5.0]}) df_out_num = anonymization.anonymize_replace(df_values, eval_column='ints', evaluator=lambda x: x in [2, 4]) self.assertTrue(df_out_num.equals(exp_df_out_num)) exp_df_out_num = pd.DataFrame(data={'values': ['one', 'two', 'three', 'four', 'five'], 'ints': [1, 2, 3, 4, 5], 'floats': [1.0, "*", 3.0, "*", 5.0]}) df_out_num = anonymization.anonymize_replace(df_values, eval_column='floats', evaluator=lambda x: x in [2, 4]) self.assertTrue(df_out_num.equals(exp_df_out_num)) df_obj = pd.DataFrame({'labels': ['one', 1, 1.0, 33], 'ints': [1, 2, 3, 4]}) df_expected_out = pd.DataFrame({'labels': ['*', '*', '*', 33], 'ints': ['*', '*', '*', 4]}) df_out = anonymization.anonymize_replace(df_obj, eval_column='labels', anonymize_columns=['ints'], evaluator=lambda x: x in ['one', 1]) self.assertTrue(df_out.equals(df_expected_out)) def test_not_anonymize_eval_col(self): expected_df_out = pd.DataFrame(data={'values': ['one', 'two', 'three', 'four', 'five'], 'ints': ['*', 2, '*', 4, '*'], 'floats': [1.0, 2.0, 3.0, 4.0, 5.0]}) df_out = anonymization.anonymize_replace(df_values, eval_column='values', anonymize_columns=['ints'], evaluator=lambda x: x in ['one', 'three', 'five'], anonymize_eval=False) self.assertTrue(df_out.equals(expected_df_out)) df_out = anonymization.anonymize_replace(df_values, eval_column='values', anonymize_columns=['values', 'ints'], evaluator=lambda x: x in ['one', 'three', 'five'], anonymize_eval=False) self.assertTrue(df_out.equals(expected_df_out)) def test_no_change_in_df_in(self): df_in_ = df_in.copy() anonymization.anonymize_replace(df_in, eval_column='col1') self.assertTrue(df_in.equals(df_in_)) anonymization.anonymize_replace(df_in, eval_column='col1', evaluator=lambda x: x in [1, 3]) self.assertTrue(df_in.equals(df_in_)) def test_anonymize_column_str_name(self): exp_df_out = pd.DataFrame(data={'values': ['one', 'two', 'three', 'four', 'five'], 'ints': ["*", "*", "*", 4, 5], 'floats': ["*", "*", "*", 4.0, 5.0]}) df_out = anonymization.anonymize_replace(df_values, eval_column='ints', anonymize_columns='floats') self.assertTrue(df_out.equals(exp_df_out)) df_out = anonymization.anonymize_replace(df_values, eval_column='ints', anonymize_columns='floats', evaluator=lambda x: x in [1, 2, 3]) self.assertTrue(df_out.equals(exp_df_out)) def test_anonymize_column_num_name(self): df_ = pd.DataFrame(data={0: [1, 2, 4], 1: [2, 3, 5]}) exp_df_out_ = pd.DataFrame(data={0: [1, 2, 4], 1: ['*', '*', 5]}) df_out_ = anonymization.anonymize_replace(df_, eval_column=1) self.assertTrue(df_out_.equals(exp_df_out_)) def test_replace_by_single_value(self): for r_val in [None, 1.5, 5, 'n/a']: expected_df_out = pd.DataFrame(data={'col1': [r_val, r_val, r_val, 4, 5, 6], 'col2': [r_val, r_val, r_val, 67, 765, 1111]}) df_out = anonymization.anonymize_replace(df_in, eval_column='col1', anonymize_columns=['col2'], replace_by=r_val) self.assertTrue(df_out.equals(expected_df_out)) def test_replace_by_list(self): exp_df_out =
pd.DataFrame(data={'col1': [0, 0, 0, 4, 5, 6], 'col2': [None, None, None, 67, 765, 1111]})
pandas.DataFrame
import re import numpy as np import pytest from pandas import Categorical, CategoricalIndex, DataFrame, Index, Series import pandas._testing as tm from pandas.core.arrays.categorical import recode_for_categories from pandas.tests.arrays.categorical.common import TestCategorical class TestCategoricalAPI: def test_ordered_api(self): # GH 9347 cat1 = Categorical(list("acb"), ordered=False) tm.assert_index_equal(cat1.categories, Index(["a", "b", "c"])) assert not cat1.ordered cat2 = Categorical(list("acb"), categories=list("bca"), ordered=False) tm.assert_index_equal(cat2.categories, Index(["b", "c", "a"])) assert not cat2.ordered cat3 = Categorical(list("acb"), ordered=True) tm.assert_index_equal(cat3.categories, Index(["a", "b", "c"])) assert cat3.ordered cat4 = Categorical(list("acb"), categories=list("bca"), ordered=True) tm.assert_index_equal(cat4.categories, Index(["b", "c", "a"])) assert cat4.ordered def test_set_ordered(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) cat2 = cat.as_unordered() assert not cat2.ordered cat2 = cat.as_ordered() assert cat2.ordered cat2.as_unordered(inplace=True) assert not cat2.ordered cat2.as_ordered(inplace=True) assert cat2.ordered assert cat2.set_ordered(True).ordered assert not cat2.set_ordered(False).ordered cat2.set_ordered(True, inplace=True) assert cat2.ordered cat2.set_ordered(False, inplace=True) assert not cat2.ordered # removed in 0.19.0 msg = "can't set attribute" with pytest.raises(AttributeError, match=msg): cat.ordered = True with pytest.raises(AttributeError, match=msg): cat.ordered = False def test_rename_categories(self): cat = Categorical(["a", "b", "c", "a"]) # inplace=False: the old one must not be changed res = cat.rename_categories([1, 2, 3]) tm.assert_numpy_array_equal( res.__array__(), np.array([1, 2, 3, 1], dtype=np.int64) ) tm.assert_index_equal(res.categories, Index([1, 2, 3])) exp_cat = np.array(["a", "b", "c", "a"], dtype=np.object_) tm.assert_numpy_array_equal(cat.__array__(), exp_cat) exp_cat = Index(["a", "b", "c"]) tm.assert_index_equal(cat.categories, exp_cat) # GH18862 (let rename_categories take callables) result = cat.rename_categories(lambda x: x.upper()) expected = Categorical(["A", "B", "C", "A"]) tm.assert_categorical_equal(result, expected) # and now inplace res = cat.rename_categories([1, 2, 3], inplace=True) assert res is None tm.assert_numpy_array_equal( cat.__array__(), np.array([1, 2, 3, 1], dtype=np.int64) ) tm.assert_index_equal(cat.categories, Index([1, 2, 3])) @pytest.mark.parametrize("new_categories", [[1, 2, 3, 4], [1, 2]]) def test_rename_categories_wrong_length_raises(self, new_categories): cat = Categorical(["a", "b", "c", "a"]) msg = ( "new categories need to have the same number of items as the " "old categories!" ) with pytest.raises(ValueError, match=msg): cat.rename_categories(new_categories) def test_rename_categories_series(self): # https://github.com/pandas-dev/pandas/issues/17981 c = Categorical(["a", "b"]) result = c.rename_categories(Series([0, 1], index=["a", "b"])) expected = Categorical([0, 1]) tm.assert_categorical_equal(result, expected) def test_rename_categories_dict(self): # GH 17336 cat = Categorical(["a", "b", "c", "d"]) res = cat.rename_categories({"a": 4, "b": 3, "c": 2, "d": 1}) expected = Index([4, 3, 2, 1]) tm.assert_index_equal(res.categories, expected) # Test for inplace res = cat.rename_categories({"a": 4, "b": 3, "c": 2, "d": 1}, inplace=True) assert res is None tm.assert_index_equal(cat.categories, expected) # Test for dicts of smaller length cat = Categorical(["a", "b", "c", "d"]) res = cat.rename_categories({"a": 1, "c": 3}) expected = Index([1, "b", 3, "d"]) tm.assert_index_equal(res.categories, expected) # Test for dicts with bigger length cat = Categorical(["a", "b", "c", "d"]) res = cat.rename_categories({"a": 1, "b": 2, "c": 3, "d": 4, "e": 5, "f": 6}) expected = Index([1, 2, 3, 4]) tm.assert_index_equal(res.categories, expected) # Test for dicts with no items from old categories cat = Categorical(["a", "b", "c", "d"]) res = cat.rename_categories({"f": 1, "g": 3}) expected = Index(["a", "b", "c", "d"]) tm.assert_index_equal(res.categories, expected) def test_reorder_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical( ["a", "b", "c", "a"], categories=["c", "b", "a"], ordered=True ) # first inplace == False res = cat.reorder_categories(["c", "b", "a"]) # cat must be the same as before tm.assert_categorical_equal(cat, old) # only res is changed tm.assert_categorical_equal(res, new) # inplace == True res = cat.reorder_categories(["c", "b", "a"], inplace=True) assert res is None tm.assert_categorical_equal(cat, new) @pytest.mark.parametrize( "new_categories", [ ["a"], # not all "old" included in "new" ["a", "b", "d"], # still not all "old" in "new" ["a", "b", "c", "d"], # all "old" included in "new", but too long ], ) def test_reorder_categories_raises(self, new_categories): cat = Categorical(["a", "b", "c", "a"], ordered=True) msg = "items in new_categories are not the same as in old categories" with pytest.raises(ValueError, match=msg): cat.reorder_categories(new_categories) def test_add_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical( ["a", "b", "c", "a"], categories=["a", "b", "c", "d"], ordered=True ) # first inplace == False res = cat.add_categories("d") tm.assert_categorical_equal(cat, old) tm.assert_categorical_equal(res, new) res = cat.add_categories(["d"]) tm.assert_categorical_equal(cat, old) tm.assert_categorical_equal(res, new) # inplace == True res = cat.add_categories("d", inplace=True) tm.assert_categorical_equal(cat, new) assert res is None # GH 9927 cat = Categorical(list("abc"), ordered=True) expected = Categorical(list("abc"), categories=list("abcde"), ordered=True) # test with Series, np.array, index, list res = cat.add_categories(Series(["d", "e"])) tm.assert_categorical_equal(res, expected) res = cat.add_categories(np.array(["d", "e"])) tm.assert_categorical_equal(res, expected) res = cat.add_categories(Index(["d", "e"])) tm.assert_categorical_equal(res, expected) res = cat.add_categories(["d", "e"]) tm.assert_categorical_equal(res, expected) def test_add_categories_existing_raises(self): # new is in old categories cat = Categorical(["a", "b", "c", "d"], ordered=True) msg = re.escape("new categories must not include old categories: {'d'}") with pytest.raises(ValueError, match=msg): cat.add_categories(["d"]) def test_set_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) exp_categories = Index(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"], dtype=np.object_) res = cat.set_categories(["c", "b", "a"], inplace=True) tm.assert_index_equal(cat.categories, exp_categories) tm.assert_numpy_array_equal(cat.__array__(), exp_values) assert res is None res = cat.set_categories(["a", "b", "c"]) # cat must be the same as before tm.assert_index_equal(cat.categories, exp_categories) tm.assert_numpy_array_equal(cat.__array__(), exp_values) # only res is changed exp_categories_back = Index(["a", "b", "c"]) tm.assert_index_equal(res.categories, exp_categories_back) tm.assert_numpy_array_equal(res.__array__(), exp_values) # not all "old" included in "new" -> all not included ones are now # np.nan cat = Categorical(["a", "b", "c", "a"], ordered=True) res = cat.set_categories(["a"]) tm.assert_numpy_array_equal(res.codes, np.array([0, -1, -1, 0], dtype=np.int8)) # still not all "old" in "new" res = cat.set_categories(["a", "b", "d"]) tm.assert_numpy_array_equal(res.codes, np.array([0, 1, -1, 0], dtype=np.int8)) tm.assert_index_equal(res.categories, Index(["a", "b", "d"])) # all "old" included in "new" cat = cat.set_categories(["a", "b", "c", "d"]) exp_categories = Index(["a", "b", "c", "d"]) tm.assert_index_equal(cat.categories, exp_categories) # internals... c = Categorical([1, 2, 3, 4, 1], categories=[1, 2, 3, 4], ordered=True) tm.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 3, 0], dtype=np.int8)) tm.assert_index_equal(c.categories, Index([1, 2, 3, 4])) exp = np.array([1, 2, 3, 4, 1], dtype=np.int64) tm.assert_numpy_array_equal(np.asarray(c), exp) # all "pointers" to '4' must be changed from 3 to 0,... c = c.set_categories([4, 3, 2, 1]) # positions are changed tm.assert_numpy_array_equal(c._codes, np.array([3, 2, 1, 0, 3], dtype=np.int8)) # categories are now in new order tm.assert_index_equal(c.categories, Index([4, 3, 2, 1])) # output is the same exp = np.array([1, 2, 3, 4, 1], dtype=np.int64) tm.assert_numpy_array_equal(np.asarray(c), exp) assert c.min() == 4 assert c.max() == 1 # set_categories should set the ordering if specified c2 = c.set_categories([4, 3, 2, 1], ordered=False) assert not c2.ordered tm.assert_numpy_array_equal(np.asarray(c), np.asarray(c2)) # set_categories should pass thru the ordering c2 = c.set_ordered(False).set_categories([4, 3, 2, 1]) assert not c2.ordered tm.assert_numpy_array_equal(np.asarray(c), np.asarray(c2)) def test_to_dense_deprecated(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) with tm.assert_produces_warning(FutureWarning): cat.to_dense() @pytest.mark.parametrize( "values, categories, new_categories", [ # No NaNs, same cats, same order (["a", "b", "a"], ["a", "b"], ["a", "b"]), # No NaNs, same cats, different order (["a", "b", "a"], ["a", "b"], ["b", "a"]), # Same, unsorted (["b", "a", "a"], ["a", "b"], ["a", "b"]), # No NaNs, same cats, different order (["b", "a", "a"], ["a", "b"], ["b", "a"]), # NaNs (["a", "b", "c"], ["a", "b"], ["a", "b"]), (["a", "b", "c"], ["a", "b"], ["b", "a"]), (["b", "a", "c"], ["a", "b"], ["a", "b"]), (["b", "a", "c"], ["a", "b"], ["a", "b"]), # Introduce NaNs (["a", "b", "c"], ["a", "b"], ["a"]), (["a", "b", "c"], ["a", "b"], ["b"]), (["b", "a", "c"], ["a", "b"], ["a"]), (["b", "a", "c"], ["a", "b"], ["a"]), # No overlap (["a", "b", "c"], ["a", "b"], ["d", "e"]), ], ) @pytest.mark.parametrize("ordered", [True, False]) def test_set_categories_many(self, values, categories, new_categories, ordered): c = Categorical(values, categories) expected = Categorical(values, new_categories, ordered) result = c.set_categories(new_categories, ordered=ordered) tm.assert_categorical_equal(result, expected) def test_set_categories_rename_less(self): # GH 24675 cat = Categorical(["A", "B"]) result = cat.set_categories(["A"], rename=True) expected = Categorical(["A", np.nan]) tm.assert_categorical_equal(result, expected) def test_set_categories_private(self): cat = Categorical(["a", "b", "c"], categories=["a", "b", "c", "d"]) cat._set_categories(["a", "c", "d", "e"]) expected = Categorical(["a", "c", "d"], categories=list("acde")) tm.assert_categorical_equal(cat, expected) # fastpath cat = Categorical(["a", "b", "c"], categories=["a", "b", "c", "d"]) cat._set_categories(["a", "c", "d", "e"], fastpath=True) expected = Categorical(["a", "c", "d"], categories=list("acde")) tm.assert_categorical_equal(cat, expected) def test_remove_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", np.nan, "a"], categories=["a", "b"], ordered=True) # first inplace == False res = cat.remove_categories("c") tm.assert_categorical_equal(cat, old) tm.assert_categorical_equal(res, new) res = cat.remove_categories(["c"]) tm.assert_categorical_equal(cat, old) tm.assert_categorical_equal(res, new) # inplace == True res = cat.remove_categories("c", inplace=True) tm.assert_categorical_equal(cat, new) assert res is None @pytest.mark.parametrize("removals", [["c"], ["c", np.nan], "c", ["c", "c"]]) def test_remove_categories_raises(self, removals): cat = Categorical(["a", "b", "a"]) message = re.escape("removals must all be in old categories: {'c'}") with pytest.raises(ValueError, match=message): cat.remove_categories(removals) def test_remove_unused_categories(self): c = Categorical(["a", "b", "c", "d", "a"], categories=["a", "b", "c", "d", "e"]) exp_categories_all = Index(["a", "b", "c", "d", "e"]) exp_categories_dropped = Index(["a", "b", "c", "d"]) tm.assert_index_equal(c.categories, exp_categories_all) res = c.remove_unused_categories() tm.assert_index_equal(res.categories, exp_categories_dropped) tm.assert_index_equal(c.categories, exp_categories_all) res = c.remove_unused_categories(inplace=True) tm.assert_index_equal(c.categories, exp_categories_dropped) assert res is None # with NaN values (GH11599) c = Categorical(["a", "b", "c", np.nan], categories=["a", "b", "c", "d", "e"]) res = c.remove_unused_categories() tm.assert_index_equal(res.categories, Index(np.array(["a", "b", "c"]))) exp_codes = np.array([0, 1, 2, -1], dtype=np.int8) tm.assert_numpy_array_equal(res.codes, exp_codes) tm.assert_index_equal(c.categories, exp_categories_all) val = ["F", np.nan, "D", "B", "D", "F", np.nan] cat = Categorical(values=val, categories=list("ABCDEFG")) out = cat.remove_unused_categories() tm.assert_index_equal(out.categories, Index(["B", "D", "F"])) exp_codes = np.array([2, -1, 1, 0, 1, 2, -1], dtype=np.int8) tm.assert_numpy_array_equal(out.codes, exp_codes) assert out.tolist() == val alpha = list("abcdefghijklmnopqrstuvwxyz") val = np.random.choice(alpha[::2], 10000).astype("object") val[np.random.choice(len(val), 100)] = np.nan cat = Categorical(values=val, categories=alpha) out = cat.remove_unused_categories() assert out.tolist() == val.tolist() class TestCategoricalAPIWithFactor(TestCategorical): def test_describe(self): # string type desc = self.factor.describe() assert self.factor.ordered exp_index = CategoricalIndex( ["a", "b", "c"], name="categories", ordered=self.factor.ordered ) expected = DataFrame( {"counts": [3, 2, 3], "freqs": [3 / 8.0, 2 / 8.0, 3 / 8.0]}, index=exp_index ) tm.assert_frame_equal(desc, expected) # check unused categories cat = self.factor.copy() cat.set_categories(["a", "b", "c", "d"], inplace=True) desc = cat.describe() exp_index = CategoricalIndex( list("abcd"), ordered=self.factor.ordered, name="categories" ) expected = DataFrame( {"counts": [3, 2, 3, 0], "freqs": [3 / 8.0, 2 / 8.0, 3 / 8.0, 0]}, index=exp_index, ) tm.assert_frame_equal(desc, expected) # check an integer one cat = Categorical([1, 2, 3, 1, 2, 3, 3, 2, 1, 1, 1]) desc = cat.describe() exp_index = CategoricalIndex([1, 2, 3], ordered=cat.ordered, name="categories") expected = DataFrame( {"counts": [5, 3, 3], "freqs": [5 / 11.0, 3 / 11.0, 3 / 11.0]}, index=exp_index, ) tm.assert_frame_equal(desc, expected) # https://github.com/pandas-dev/pandas/issues/3678 # describe should work with NaN cat = Categorical([np.nan, 1, 2, 2]) desc = cat.describe() expected = DataFrame( {"counts": [1, 2, 1], "freqs": [1 / 4.0, 2 / 4.0, 1 / 4.0]}, index=CategoricalIndex( [1, 2, np.nan], categories=[1, 2], name="categories" ), ) tm.assert_frame_equal(desc, expected) def test_set_categories_inplace(self): cat = self.factor.copy() cat.set_categories(["a", "b", "c", "d"], inplace=True) tm.assert_index_equal(cat.categories, Index(["a", "b", "c", "d"])) class TestPrivateCategoricalAPI: def test_codes_immutable(self): # Codes should be read only c = Categorical(["a", "b", "c", "a", np.nan]) exp = np.array([0, 1, 2, 0, -1], dtype="int8") tm.assert_numpy_array_equal(c.codes, exp) # Assignments to codes should raise with pytest.raises(AttributeError, match="can't set attribute"): c.codes = np.array([0, 1, 2, 0, 1], dtype="int8") # changes in the codes array should raise codes = c.codes with pytest.raises(ValueError, match="assignment destination is read-only"): codes[4] = 1 # But even after getting the codes, the original array should still be # writeable! c[4] = "a" exp = np.array([0, 1, 2, 0, 0], dtype="int8")
tm.assert_numpy_array_equal(c.codes, exp)
pandas._testing.assert_numpy_array_equal
import rpy2.robjects as ro from rpy2.robjects import pandas2ri from rpy2.robjects.conversion import localconverter from rpy2.robjects.vectors import StrVector from rpy2.robjects.packages import importr, isinstalled import pandas as pd import numpy as np from scipy.cluster.hierarchy import dendrogram import matplotlib.pyplot as plt import joblib def install_r_package(name): if not isinstalled(name): utils = importr('utils') utils.chooseCRANmirror(ind=1) utils.install_packages(StrVector([name])) def _hclust_to_scipy_linkage(result, plot=True): """Turn R hclust result obj into scipy linkage matrix format""" # in hclust merge matrix, negative value is for singleton raw_linkage = pd.DataFrame(np.array(result[0])) nobs = raw_linkage.shape[0] + 1 raw_linkage[2] = np.array(result[1]) raw_linkage.index = raw_linkage.index + nobs # in hclust merge matrix, positive value is for non-singleton scipy_linkage = raw_linkage.copy() scipy_linkage[raw_linkage.iloc[:, :2] < 0] += nobs scipy_linkage[raw_linkage.iloc[:, :2] > 0] += (nobs - 1) total_obs = nobs # add the 4th col: number of singleton cluster_dict = {} labels = list(range(total_obs)) for cur_cluster_id, (left, right, distance) in scipy_linkage.iterrows(): left = int(left) right = int(right) cluster_dict[cur_cluster_id] = {'left': set(), 'right': set()} if (left < total_obs) and (right < total_obs): left = labels[left] right = labels[right] # merge of 2 original observations cluster_dict[cur_cluster_id]['left'].add(left) cluster_dict[cur_cluster_id]['right'].add(right) else: # left and/or right are cluster if left < total_obs: left = labels[left] cluster_dict[cur_cluster_id]['left'].add(left) else: # node are cluster cluster_dict[cur_cluster_id]['left'].update( cluster_dict[left]['left']) cluster_dict[cur_cluster_id]['left'].update( cluster_dict[left]['right']) if right < total_obs: right = labels[right] cluster_dict[cur_cluster_id]['right'].add(right) else: # node are cluster cluster_dict[cur_cluster_id]['right'].update( cluster_dict[right]['left']) cluster_dict[cur_cluster_id]['right'].update( cluster_dict[right]['right']) cur_cluster_id += 1 cluster_records = {} for cluster, _sub_dict in cluster_dict.items(): total_n = len(_sub_dict['left']) + len(_sub_dict['right']) cluster_records[cluster] = total_n scipy_linkage[3] = pd.Series(cluster_records) # dendrogram orders = list(result[2]) labels = list(result[3]) # correct order of the final dendrogram r_order = [labels[i - 1] for i in orders] dendro = dendrogram(scipy_linkage.values, no_plot=True) python_order = pd.Series({a: b for a, b in zip(dendro['leaves'], r_order)}).sort_index().tolist() # python_order = [i[1:] for i in python_order] if plot: fig, ax = plt.subplots(dpi=300) dendro = dendrogram(scipy_linkage.values, labels=tuple(python_order), no_plot=False, ax=ax) ax.xaxis.set_tick_params(rotation=90) else: dendro = dendrogram(scipy_linkage.values, labels=tuple(python_order), no_plot=True) return scipy_linkage, python_order, dendro class Dendrogram: def __init__(self, nboot=1000, method_dist='correlation', method_hclust='average', n_jobs=-1): self.nboot = nboot self.method_dist = method_dist self.method_hclust = method_hclust self.n_jobs = n_jobs self.linkage = None self.label_order = None self.dendrogram = None self.edge_stats = None def fit(self, data): """ Parameters ---------- data The data is in obs-by-var form, row is obs. Returns ------- """ importr("base") pvclust = importr("pvclust") with localconverter(ro.default_converter + pandas2ri.converter): # The data is in obs-by-var form, row is obs. Transpose for R. r_df = ro.conversion.py2rpy(data.T) if self.n_jobs == -1: self.n_jobs = True result = pvclust.pvclust(r_df, nboot=self.nboot, method_dist=self.method_dist, method_hclust=self.method_hclust, parallel=self.n_jobs) # dendrogram info hclust = result[0] linkage, label_order, dendro = _hclust_to_scipy_linkage(hclust, plot=False) self.linkage = linkage self.label_order = label_order self.dendrogram = dendro # scores of edges by pvclust bootstrap edge_stats =
pd.DataFrame(result[1], index=result[1].colnames)
pandas.DataFrame
import numpy as np import pandas as pd import gpflow from gpflow.utilities import print_summary def make_subset_simplified(cmip6, start, end, column_name, mean_center=False): Xmake_all = [] Ymake_all = [] dataset_names = cmip6.name.unique() for n in dataset_names: p = cmip6[cmip6.name == n] X = np.expand_dims(p.x,1) if mean_center: # mean center based on 1850-2020 data temp_mean_centered = p[column_name] - np.mean(p[column_name][0:2061]) Y = np.expand_dims(temp_mean_centered,1) else: Y = np.expand_dims(p[column_name],1) keep_tf = np.logical_and(X[:,0] >= start, X[:,0] < end) Xmake_all.append(X[keep_tf,:]) Ymake_all.append(Y[keep_tf,:]) return Xmake_all, Ymake_all, dataset_names def make_subset(cmip6, start, end, column_name): Xmake_all = [] Ymake_all = [] dataset_names = cmip6.name.unique() for n in dataset_names: p = cmip6[cmip6.name == n] X = np.expand_dims(p.time_hrs_since01,1) # globally mean centered, but maybe not for w/e subset we have here. This bias might accidentally help gp? temp_mean_centered = p[column_name] - np.mean(p[column_name]) Y = np.expand_dims(temp_mean_centered,1) keep_tf = np.logical_and(X[:,0] >= start, X[:,0] < end) Xmake_all.append(X[keep_tf,:]) Ymake_all.append(Y[keep_tf,:]) return Xmake_all, Ymake_all, dataset_names def fit_ml_single(Y,X,kern_maker): opt = gpflow.optimizers.Scipy() max_iter = 1000 kern = kern_maker() m = gpflow.models.GPR(data=(X, Y), kernel=kern, mean_function=None) opt_logs = opt.minimize(m.training_loss, m.trainable_variables, options=dict(maxiter=max_iter)) return {'model':m, 'converged':opt_logs['success']} def fit_ml(Y_all, X_all, dataset_names, kern_maker, param_colnames, param_extractor, filename): eb_results = pd.DataFrame([], columns=['dataset','convergence','lik_var'] + param_colnames) opt = gpflow.optimizers.Scipy() max_iter = 1000 if len(Y_all) != len(dataset_names): print('Size mismatch. Y:', len(Y_all), '. Names:', len(dataset_names)) return 0 for i in range(len(Y_all)): kern = kern_maker() X = X_all[i] Y = Y_all[i] m = gpflow.models.GPR(data=(X, Y), kernel=kern, mean_function=None) opt_logs = opt.minimize(m.training_loss, m.trainable_variables, options=dict(maxiter=max_iter)) #print_summary(m) results = {'dataset': dataset_names[i], 'convergence': opt_logs['success'], 'lik_var': np.array(m.likelihood.variance)} param_values = param_extractor(m) for j in range(len(param_values)): results[param_colnames[j]] = param_values[j] eb_results = eb_results.append(results, ignore_index=True) eb_results.to_csv(filename, index=False) return eb_results def compare_loo_gp(param_results, kernel_maker, Xtr_all, Ytr_all, Xte_all, Yte_all, pred_dir=None): M = param_results.shape[0] mse_group = np.zeros((M)) mse_single = np.zeros((M)) single_set = [] # b/c we dropped observed if M != len(Xtr_all): print('Size mismatch: M', M, ', data', len(Xtr_all)) return 0 for m in range(M): dataset = param_results.dataset[m] X_tr = Xtr_all[m] Y_tr = Ytr_all[m] X_te = Xte_all[m] Y_te = Yte_all[m] group_ests = param_results.drop(m).mean(numeric_only=True) kern_group = kernel_maker(group_ests) kern_single = kernel_maker(param_results.loc[m]) m_group = gpflow.models.GPR(data=(X_tr, Y_tr), kernel=kern_group, mean_function=None) m_group.likelihood.variance = np.double(group_ests.lik_var) mod = gpflow.models.GPR(data=(X_tr, Y_tr), kernel=kern_single, mean_function=None) mod.likelihood.variance = np.double(param_results.lik_var[m]) pred_m_group, pred_var_group = m_group.predict_f(X_te) pred_m, pred_var = mod.predict_f(X_te) mse_group[m] = np.mean((Y_te[:,0] - pred_m_group[:,0])**2) mse_single[m] = np.mean((Y_te[:,0]- pred_m[:,0])**2) single_set.append(dataset) if pred_dir is not None: fn = pred_dir + 'test_group_' + param_results.dataset[m] + '.csv' d = np.array([pred_m_group[:,0], pred_var_group[:,0], Y_te[:,0]]).T dat =
pd.DataFrame(d, columns=['mean', 'var', 'obs'])
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- # ''' bentoo-calltree-analyser.py - Bottleneck analysis based on calltree This tool computes relative/absolute percentage for selected events based on calltree structure. ''' from __future__ import division from builtins import map from past.utils import old_div import sqlite3 import argparse import pandas import fnmatch import re import json import sys def glob_strings(source, patterns): if not source or not patterns: return [] return [x for x in source for y in patterns if fnmatch.fnmatch(x, y)] def quote(string): return "\"%s\"" % string def find_first_of(contents, candidates): for c in candidates: try: i = contents.index(c) except ValueError: i = -1 if i >= 0: return (c, i) return (None, -1) def split_columns(columns): '''split 'columns' into (index_columns, data_columns)''' timer_column_index = columns.index("TimerName") return (columns[:timer_column_index+1], columns[timer_column_index+1:]) def extract_column_names(conn, table="result"): orig_row_factory = conn.row_factory conn.row_factory = sqlite3.Row r = conn.execute("SELECT * FROM %s LIMIT 1" % table).fetchone() names = list(r.keys()) conn.row_factory = orig_row_factory return names def extract_timer_names(calltree): timers = set() def visit_tree(node): timers.add(node["id"]) for x in node["children"]: visit_tree(x) visit_tree(calltree) return list(timers) def build_parent_map(calltree): parents = {} def visit_tree(tree, top_level=False): if top_level: parents[tree["id"]] = None for x in tree["children"]: parents[x["id"]] = tree["id"] visit_tree(x) visit_tree(calltree, top_level=True) return parents def build_abs_seq_map(calltree): result = {} level = {} seq_obj = {"seq": 0} def visit_tree(tree, curr_level=0): level[tree["id"]] = curr_level result[tree["id"]] = seq_obj["seq"] seq_obj["seq"] += 1 for i, x in enumerate(tree["children"]): visit_tree(x, curr_level+1) visit_tree(calltree) return (result, level) def compute_percentage(ref_db, calltree_file, out_db, columns=None, append=None, treelize_timer_name=False): conn0 = sqlite3.connect(ref_db) ref_columns = extract_column_names(conn0) index_columns, data_columns = split_columns(ref_columns) if columns: for x in columns: assert(x in data_columns) data_columns = list(columns) append_columns = [] if append: append_columns.extend(append) timer_column = find_first_of(ref_columns, ["TimerName", "Name"])[0] if not timer_column: raise ValueError("Can not find timer column") index_columns.remove(timer_column) data_columns.insert(0, timer_column) calltree = json.load(file(calltree_file)) timer_names = extract_timer_names(calltree) sql = list(map(quote, index_columns + data_columns + append_columns)) sql = "SELECT %s FROM result WHERE " % ", ".join(sql) sql += " OR ".join("%s = \"%s\"" % (timer_column, x) for x in timer_names) sql += " ORDER BY %s" % ", ".join(map(quote, index_columns)) data = pandas.read_sql_query(sql, conn0) parents = build_parent_map(calltree) abs_seq, level = build_abs_seq_map(calltree) top_timer = calltree["id"] def compute_group_percent(group): result = pandas.DataFrame(group) for c in data_columns: if c == timer_column: continue values = {} for k, v in parents.items(): if k == top_timer: values[k] = group[group[timer_column] == k][c].max() else: values[k] = group[group[timer_column] == v][c].max() top_value = values[top_timer] abs_c = "%s_abs_percent" % c rel_c = "%s_rel_percent" % c result[abs_c] = old_div(result[c], top_value) result[rel_c] = [values[x] for x in result[timer_column]] result[rel_c] = old_div(result[c], result[rel_c]) def treelize(x): return "|" + "--" * level[x] + " " + x result["abs_seq"] = [abs_seq[x] for x in result[timer_column]] if treelize_timer_name: result[timer_column] = list(map(treelize, result[timer_column])) else: result["level"] = [level[x] for x in result[timer_column]] result["parent"] = [parents[x] for x in result[timer_column]] return result final = [] for k, v in data.groupby(index_columns): transformed = compute_group_percent(v) final.append(transformed) final =
pandas.concat(final, ignore_index=True)
pandas.concat
from models import TokenDailyStats from models import Token import pydash from pycoingecko import CoinGeckoAPI from config import project_config import os from joblib import Parallel, delayed from tqdm import tqdm import numpy as np import math from datetime import datetime from utils.date_util import DateUtil from utils.upload_csv_to_gsc import upload_csv_to_gsc from utils.import_gsc_to_bigquery import import_gsc_to_bigquery import pandas import re valid_date = DateUtil.utc_start_of_date(datetime.strptime('2021-01-01 00:00:00', '%Y-%m-%d %H:%M:%S')) cg = CoinGeckoAPI() columns = [ 'symbol', 'address', 'coin_gecko_id', 'day', 'trading_vol_24h', 'high_price_24h', 'low_price_24h', 'circulating_supply', 'facebook_likes', 'fdv_to_tvl_ratio', 'fully_diluted_valuation', 'market_cap', 'market_cap_rank', 'max_supply', 'mcap_to_tvl_ratio', 'price', 'reddit_accounts_active_48h', 'reddit_average_comments_48h', 'reddit_average_posts_48h', 'reddit_subscribers', 'telegram_channel_user_count', 'total_supply', 'total_value_locked', 'twitter_followers', 'created_at', 'updated_at' ] def transform_data_time(): regex_day = re.compile(r'2021') query = { '$or': [ { 'day': re.compile(r'2020') }, { 'day': re.compile(r'2021') } ] } total = TokenDailyStats.count(query) limit = 100 round_times = math.ceil(total / limit) print(range(0, round_times)) items = np.array_split(range(0, round_times), 64) Parallel(n_jobs=64)(delayed(handle_transform)(item) for item in tqdm(items)) def handle_transform(round_times): regex_day = re.compile(r'2021') query = { '$or': [ { 'day': re.compile(r'2020') }, { 'day': re.compile(r'2021') } ] } limit = 100 for round_time in round_times: round_time = int(round_time) token_daily_stats_arr = list(TokenDailyStats.find(query).skip(round_time * limit).limit(limit)) for token_daily_stats in token_daily_stats_arr: print(token_daily_stats) id = pydash.get(token_daily_stats, '_id') day = pydash.get(token_daily_stats, 'day') if not type(day) is datetime: day = datetime.strptime(day, '%Y-%m-%d %H:%M:%S') if len(day) == 19 else datetime.fromisoformat(day) created_at = pydash.get(token_daily_stats, 'created_at') if not type(created_at) is datetime: created_at = datetime.fromisoformat(created_at) updated_at = pydash.get(token_daily_stats, 'updated_at') if not type(updated_at) is datetime: updated_at = datetime.fromisoformat(updated_at) trading_vol_24h = pydash.get(token_daily_stats, 'trading_vol_24h') high_price_24h = pydash.get(token_daily_stats, 'high_price_24h') low_price_24h = pydash.get(token_daily_stats, 'low_price_24h') circulating_supply = pydash.get(token_daily_stats, 'circulating_supply') facebook_likes = pydash.get(token_daily_stats, 'facebook_likes') fdv_to_tvl_ratio = pydash.get(token_daily_stats, 'fdv_to_tvl_ratio') fully_diluted_valuation = pydash.get(token_daily_stats, 'fully_diluted_valuation') market_cap = pydash.get(token_daily_stats, 'market_cap') market_cap_rank = pydash.get(token_daily_stats, 'market_cap_rank') max_supply = pydash.get(token_daily_stats, 'max_supply') mcap_to_tvl_ratio = pydash.get(token_daily_stats, 'mcap_to_tvl_ratio') price = pydash.get(token_daily_stats, 'price') reddit_accounts_active_48h = pydash.get(token_daily_stats, 'reddit_accounts_active_48h') reddit_average_comments_48h = pydash.get(token_daily_stats, 'reddit_average_comments_48h') reddit_average_posts_48h = pydash.get(token_daily_stats, 'reddit_average_posts_48h') reddit_subscribers = pydash.get(token_daily_stats, 'reddit_subscribers') telegram_channel_user_count = pydash.get(token_daily_stats, 'telegram_channel_user_count') total_supply = pydash.get(token_daily_stats, 'total_supply') total_value_locked = pydash.get(token_daily_stats, 'total_value_locked') twitter_followers = pydash.get(token_daily_stats, 'twitter_followers') update = { "day": day, "trading_vol_24h": None if len(str(trading_vol_24h)) == 0 else trading_vol_24h, "high_price_24h": None if len(str(high_price_24h)) == 0 else high_price_24h, "low_price_24h": None if len(str(low_price_24h)) == 0 else low_price_24h, "circulating_supply": None if len(str(circulating_supply)) == 0 else circulating_supply, "facebook_likes": None if len(str(facebook_likes)) == 0 else facebook_likes, "fdv_to_tvl_ratio": None if len(str(fdv_to_tvl_ratio)) == 0 else fdv_to_tvl_ratio, "fully_diluted_valuation": None if len(str(fully_diluted_valuation)) == 0 else fully_diluted_valuation, "market_cap": None if len(str(market_cap)) == 0 else market_cap, "market_cap_rank": None if len(str(market_cap_rank)) == 0 else market_cap_rank, "max_supply": None if len(str(max_supply)) == 0 else max_supply, "mcap_to_tvl_ratio": None if len(str(mcap_to_tvl_ratio)) == 0 else mcap_to_tvl_ratio, "price": None if len(str(price)) == 0 else price, "reddit_accounts_active_48h": None if len( str(reddit_accounts_active_48h)) == 0 else reddit_accounts_active_48h, "reddit_average_comments_48h": None if len( str(reddit_average_comments_48h)) == 0 else reddit_average_comments_48h, "reddit_average_posts_48h": None if len( str(reddit_average_posts_48h)) == 0 else reddit_average_posts_48h, "reddit_subscribers": None if len(str(reddit_subscribers)) == 0 else reddit_subscribers, "telegram_channel_user_count": None if len( str(telegram_channel_user_count)) == 0 else telegram_channel_user_count, "total_supply": None if len(str(total_supply)) == 0 else total_supply, "total_value_locked": None if len(str(total_value_locked)) == 0 else total_value_locked, "twitter_followers": None if len(str(twitter_followers)) == 0 else twitter_followers, "created_at": created_at, "updated_at": updated_at } TokenDailyStats.update_one(query={"_id": id}, set_dict=update, upsert=True) def fix_token_daily_stats(): fix_null_valid_token_daily_stats() fix_duplicate_token_daily_stats() fix_missing_token_daily_stats_coin_gecko_ids() def fix_null_valid_token_daily_stats(): query = { "trading_vol_24h": None, "market_cap": None, "price": None } update = { "row_status": "disable" } result = TokenDailyStats.update_many(query=query, set_dict=update) def fix_duplicate_token_daily_stats(): result = TokenDailyStats.aggregate([ { "$match": { "row_status": {"$ne": "disable"} } }, { "$group": { "_id": { "coin_gecko_id": "$coin_gecko_id", "day": "$day" }, "count": {"$sum": 1} } }, { "$match": { "count": {"$gt": 1} } } ]) daily_check_stats = list(result) print(len(daily_check_stats)) for daily_check_stats in daily_check_stats: coin_gecko_id = pydash.get(daily_check_stats, '_id.coin_gecko_id') if not coin_gecko_id: continue day = pydash.get(daily_check_stats, '_id.day') daily_query = { "coin_gecko_id": coin_gecko_id, "day": day, "row_status": {"$ne": "disable"} } first_result = TokenDailyStats.find_one(query=daily_query) first_result_id = pydash.get(first_result, '_id') fix_query = { "_id": {"$ne": first_result_id}, "coin_gecko_id": coin_gecko_id, "day": day } fix_update = { "row_status": "disable" } print(fix_query, fix_update) TokenDailyStats.update_many(query=fix_query, set_dict=fix_update) def fix_missing_token_daily_stats(coin_gecko_id, fix_key): coin_gecko_id = str(coin_gecko_id) start_check_time = get_start_check_time(coin_gecko_id, fix_key) token_daily_stats_repair_data(coin_gecko_id, fix_key, start_check_time) def token_daily_stats_repair_data(coin_gecko_id, fix_key, start_check_time): start_query = { "row_status": {"$ne": "disable"}, "coin_gecko_id": coin_gecko_id, "day": {"$gte": start_check_time}, fix_key: {"$ne": None} } print(start_query) end_query = { "row_status": {"$ne": "disable"}, "coin_gecko_id": coin_gecko_id, "day": {"$gte": start_check_time} } earliest_token_daily_statss = list( TokenDailyStats.find(start_query, {'day': 1, fix_key: 1}).sort('day', 1).limit(1)) earliest_token_daily_stats_day = pydash.get(earliest_token_daily_statss, '0.day') if not earliest_token_daily_stats_day: return exists_latest_daily_statss = list(TokenDailyStats.find(end_query, {'day': 1, fix_key: 1}).sort('day', -1).limit(1)) exists_latest_token_daily_stats_day = pydash.get(exists_latest_daily_statss, '0.day') latest_token_daily_stats_day = DateUtil.utc_start_of_date() diff_days = DateUtil.days_diff(earliest_token_daily_stats_day, latest_token_daily_stats_day) for i in range(0, diff_days): print("day =====>>", i) execution_date = DateUtil.utc_x_hours_after(24 * i, earliest_token_daily_stats_day) handle_token_daily_stats_repair_data(coin_gecko_id, execution_date, fix_key) def handle_token_daily_stats_repair_data(coin_gecko_id, execution_date, fix_key): token_info = Token.find_one(query={"coin_gecko_id": coin_gecko_id}) symbol = pydash.get(token_info, 'symbol') address = pydash.get(token_info, 'token') query = { "row_status": {"$ne": "disable"}, "coin_gecko_id": coin_gecko_id, "day": execution_date, fix_key: {"$ne": None} } execution_date_token_stats = TokenDailyStats.find_one(query=query) if not execution_date_token_stats: first_date = DateUtil.utc_x_hours_ago(24 * 1, execution_date) second_date = DateUtil.utc_x_hours_ago(24 * 2, execution_date) arr_dates = [first_date, second_date] date_query = { "row_status": {"$ne": "disable"}, 'day': {'$in': arr_dates}, 'coin_gecko_id': coin_gecko_id, fix_key: {"$ne": None} } dates_results = TokenDailyStats.find_list(query=date_query) value_arr_result = [] for dates_result in dates_results: fix_value = pydash.get(dates_result, fix_key) value_arr_result.append(fix_value) if len(value_arr_result) == 0: print('************************** not find data', coin_gecko_id) return avg_fix_value = pydash.sum_(value_arr_result) / len(value_arr_result) if pydash.includes(['circulating_supply', 'total_supply', 'max_supply'], fix_key): fix_value = avg_fix_value else: fix_value = avg_fix_value + avg_fix_value * 0.01 forge_key = 'forge_{key}'.format(key=fix_key) new_data_query = { "row_status": {"$ne": "disable"}, "coin_gecko_id": coin_gecko_id, "day": execution_date } update = { forge_key: True, 'coin_gecko_id': coin_gecko_id, 'day': execution_date, 'symbol': symbol, 'address': address, fix_key: fix_value, 'updated_at': DateUtil.utc_current(), 'created_at': DateUtil.utc_current() } print(update) TokenDailyStats.update_one(query=new_data_query, set_dict=update, upsert=True) def get_coin_gecko_ids(): coin_gecko_ids = TokenDailyStats.distinct('coin_gecko_id') return coin_gecko_ids def get_start_check_time(coin_gecko_id, fix_key): token_info_query = { "coin_gecko_id": coin_gecko_id } token_info = Token.find_one(query=token_info_query) check_time = pydash.get(token_info, 'check_time') if not check_time: query = { "row_status": {"$ne": "disable"}, "coin_gecko_id": coin_gecko_id, fix_key: {"$ne": None}, "day": {"$gte": valid_date} } print(query) token_daily_stats = list(TokenDailyStats.find(query, {'day': 1}).sort('day', 1).limit(1)) check_time = pydash.get(token_daily_stats, '0.day') return check_time def fix_missing_token_daily_stats_coin_gecko_ids(): coin_gecko_ids = get_coin_gecko_ids() group_coin_gecko_id_items = np.array_split(coin_gecko_ids, 64) Parallel(n_jobs=64)(delayed(fix_missing_token_daily_stats_all_keys_by_group_coin_gecko_id_item)(item) for item in tqdm(group_coin_gecko_id_items)) def fix_missing_token_daily_stats_all_keys_by_group_coin_gecko_id_item(items): for item in items: keys = [ "price", "total_supply", "max_supply", "circulating_supply", "high_price_24h", "low_price_24h", "fully_diluted_valuation", "market_cap", "trading_vol_24h", "fdv_to_tvl_ratio" ] for key in keys: fix_missing_token_daily_stats(item, key) Token.update_one(query={'coin_gecko_id': item}, set_dict={'restore_status': 'done'}) def token_info_add_mark_check_time(coin_gecko_id, check_time): query = { "coin_gecko_id": coin_gecko_id } TokenDailyStats.update_one(query=query, set_dict={"check_time": check_time}) def token_daily_stats_upload_and_import(): query = { 'day': {'$gte': DateUtil.utc_start_of_date(datetime.strptime('2021-01-01 00:00:00', '%Y-%m-%d %H:%M:%S'))}, 'row_status': {'$ne': 'disable'} } dates = TokenDailyStats.distinct('day', query) for date in dates: handle_write_data_to_csv(date) handle_upload_csv_to_gsc(date) print(date) handle_import_gsc_csv_to_bigquery() def handle_write_data_to_csv(execution_date): values = [] token_daily_datas = TokenDailyStats.find({'day': execution_date, 'row_status': {'$ne': 'disable'}}) for token_daily in token_daily_datas: symbol = pydash.get(token_daily, 'symbol') address = pydash.get(token_daily, 'address') coin_gecko_id = pydash.get(token_daily, 'coin_gecko_id') day = pydash.get(token_daily, 'day') trading_vol_24h = pydash.get(token_daily, 'trading_vol_24h') high_price_24h = pydash.get(token_daily, 'high_price_24h') low_price_24h = pydash.get(token_daily, 'low_price_24h') circulating_supply = pydash.get(token_daily, 'circulating_supply') facebook_likes = pydash.get(token_daily, 'facebook_likes') fdv_to_tvl_ratio = pydash.get(token_daily, 'fdv_to_tvl_ratio') fully_diluted_valuation = pydash.get(token_daily, 'fully_diluted_valuation') market_cap = pydash.get(token_daily, 'market_cap') market_cap_rank = pydash.get(token_daily, 'market_cap_rank') max_supply = pydash.get(token_daily, 'max_supply') mcap_to_tvl_ratio = pydash.get(token_daily, 'mcap_to_tvl_ratio') price = pydash.get(token_daily, 'price') reddit_accounts_active_48h = pydash.get(token_daily, 'reddit_accounts_active_48h') reddit_average_comments_48h = pydash.get(token_daily, 'reddit_average_comments_48h') reddit_average_posts_48h = pydash.get(token_daily, 'reddit_average_posts_48h') reddit_subscribers = pydash.get(token_daily, 'reddit_subscribers') telegram_channel_user_count = pydash.get(token_daily, 'telegram_channel_user_count') total_supply = pydash.get(token_daily, 'total_supply') total_value_locked = pydash.get(token_daily, 'total_value_locked') twitter_followers = pydash.get(token_daily, 'twitter_followers') created_at = pydash.get(token_daily, 'created_at') updated_at = pydash.get(token_daily, 'updated_at') values.append({ 'symbol': symbol, 'address': address, 'coin_gecko_id': coin_gecko_id, 'day': day, 'trading_vol_24h': trading_vol_24h, 'high_price_24h': high_price_24h, 'low_price_24h': low_price_24h, 'circulating_supply': circulating_supply, 'facebook_likes': facebook_likes, 'fdv_to_tvl_ratio': fdv_to_tvl_ratio, 'fully_diluted_valuation': fully_diluted_valuation, 'market_cap': market_cap, 'market_cap_rank': market_cap_rank, 'max_supply': max_supply, 'mcap_to_tvl_ratio': mcap_to_tvl_ratio, 'price': price, 'reddit_accounts_active_48h': reddit_accounts_active_48h, 'reddit_average_comments_48h': reddit_average_comments_48h, 'reddit_average_posts_48h': reddit_average_posts_48h, 'reddit_subscribers': reddit_subscribers, 'telegram_channel_user_count': telegram_channel_user_count, 'total_supply': total_supply, 'total_value_locked': total_value_locked, 'twitter_followers': twitter_followers, 'updated_at': updated_at, 'created_at': created_at }) df =
pandas.DataFrame(values, columns=columns)
pandas.DataFrame
# -*- coding: utf-8 -*- """ we test .agg behavior / note that .apply is tested generally in test_groupby.py """ from __future__ import print_function import pytest from datetime import datetime, timedelta from functools import partial import numpy as np from numpy import nan import pandas as pd from pandas import (date_range, MultiIndex, DataFrame, Series, Index, bdate_range, concat) from pandas.util.testing import assert_frame_equal, assert_series_equal from pandas.core.groupby import SpecificationError, DataError from pandas.compat import OrderedDict from pandas.io.formats.printing import pprint_thing import pandas.util.testing as tm class TestGroupByAggregate(object): def setup_method(self, method): self.ts = tm.makeTimeSeries() self.seriesd = tm.getSeriesData() self.tsd = tm.getTimeSeriesData() self.frame = DataFrame(self.seriesd) self.tsframe = DataFrame(self.tsd) self.df = DataFrame( {'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C': np.random.randn(8), 'D': np.random.randn(8)}) self.df_mixed_floats = DataFrame( {'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C': np.random.randn(8), 'D': np.array( np.random.randn(8), dtype='float32')}) index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) self.mframe = DataFrame(np.random.randn(10, 3), index=index, columns=['A', 'B', 'C']) self.three_group = DataFrame( {'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) def test_agg_api(self): # GH 6337 # http://stackoverflow.com/questions/21706030/pandas-groupby-agg-function-column-dtype-error # different api for agg when passed custom function with mixed frame df = DataFrame({'data1': np.random.randn(5), 'data2': np.random.randn(5), 'key1': ['a', 'a', 'b', 'b', 'a'], 'key2': ['one', 'two', 'one', 'two', 'one']}) grouped = df.groupby('key1') def peak_to_peak(arr): return arr.max() - arr.min() expected = grouped.agg([peak_to_peak]) expected.columns = ['data1', 'data2'] result = grouped.agg(peak_to_peak) assert_frame_equal(result, expected) def test_agg_regression1(self): grouped = self.tsframe.groupby([lambda x: x.year, lambda x: x.month]) result = grouped.agg(np.mean) expected = grouped.mean() assert_frame_equal(result, expected) def test_agg_datetimes_mixed(self): data = [[1, '2012-01-01', 1.0], [2, '2012-01-02', 2.0], [3, None, 3.0]] df1 = DataFrame({'key': [x[0] for x in data], 'date': [x[1] for x in data], 'value': [x[2] for x in data]}) data = [[row[0], datetime.strptime(row[1], '%Y-%m-%d').date() if row[1] else None, row[2]] for row in data] df2 = DataFrame({'key': [x[0] for x in data], 'date': [x[1] for x in data], 'value': [x[2] for x in data]}) df1['weights'] = df1['value'] / df1['value'].sum() gb1 = df1.groupby('date').aggregate(np.sum) df2['weights'] = df1['value'] / df1['value'].sum() gb2 = df2.groupby('date').aggregate(np.sum) assert (len(gb1) == len(gb2)) def test_agg_period_index(self): from pandas import period_range, PeriodIndex prng = period_range('2012-1-1', freq='M', periods=3) df = DataFrame(np.random.randn(3, 2), index=prng) rs = df.groupby(level=0).sum() assert isinstance(rs.index, PeriodIndex) # GH 3579 index = period_range(start='1999-01', periods=5, freq='M') s1 = Series(np.random.rand(len(index)), index=index) s2 = Series(np.random.rand(len(index)), index=index) series = [('s1', s1), ('s2', s2)] df = DataFrame.from_items(series) grouped = df.groupby(df.index.month) list(grouped) def test_agg_dict_parameter_cast_result_dtypes(self): # GH 12821 df = DataFrame( {'class': ['A', 'A', 'B', 'B', 'C', 'C', 'D', 'D'], 'time': date_range('1/1/2011', periods=8, freq='H')}) df.loc[[0, 1, 2, 5], 'time'] = None # test for `first` function exp = df.loc[[0, 3, 4, 6]].set_index('class') grouped = df.groupby('class') assert_frame_equal(grouped.first(), exp) assert_frame_equal(grouped.agg('first'), exp) assert_frame_equal(grouped.agg({'time': 'first'}), exp) assert_series_equal(grouped.time.first(), exp['time']) assert_series_equal(grouped.time.agg('first'), exp['time']) # test for `last` function exp = df.loc[[0, 3, 4, 7]].set_index('class') grouped = df.groupby('class') assert_frame_equal(grouped.last(), exp) assert_frame_equal(grouped.agg('last'), exp) assert_frame_equal(grouped.agg({'time': 'last'}), exp) assert_series_equal(grouped.time.last(), exp['time']) assert_series_equal(grouped.time.agg('last'), exp['time']) # count exp = pd.Series([2, 2, 2, 2], index=Index(list('ABCD'), name='class'), name='time') assert_series_equal(grouped.time.agg(len), exp) assert_series_equal(grouped.time.size(), exp) exp = pd.Series([0, 1, 1, 2], index=Index(list('ABCD'), name='class'), name='time') assert_series_equal(grouped.time.count(), exp) def test_agg_cast_results_dtypes(self): # similar to GH12821 # xref #11444 u = [datetime(2015, x + 1, 1) for x in range(12)] v = list('aaabbbbbbccd') df = pd.DataFrame({'X': v, 'Y': u}) result = df.groupby('X')['Y'].agg(len) expected = df.groupby('X')['Y'].count() assert_series_equal(result, expected) def test_agg_must_agg(self): grouped = self.df.groupby('A')['C'] pytest.raises(Exception, grouped.agg, lambda x: x.describe()) pytest.raises(Exception, grouped.agg, lambda x: x.index[:2]) def test_agg_ser_multi_key(self): # TODO(wesm): unused ser = self.df.C # noqa f = lambda x: x.sum() results = self.df.C.groupby([self.df.A, self.df.B]).aggregate(f) expected = self.df.groupby(['A', 'B']).sum()['C'] assert_series_equal(results, expected) def test_agg_apply_corner(self): # nothing to group, all NA grouped = self.ts.groupby(self.ts * np.nan) assert self.ts.dtype == np.float64 # groupby float64 values results in Float64Index exp = Series([], dtype=np.float64, index=pd.Index( [], dtype=np.float64)) assert_series_equal(grouped.sum(), exp) assert_series_equal(grouped.agg(np.sum), exp) assert_series_equal(grouped.apply(np.sum), exp, check_index_type=False) # DataFrame grouped = self.tsframe.groupby(self.tsframe['A'] * np.nan) exp_df = DataFrame(columns=self.tsframe.columns, dtype=float, index=pd.Index([], dtype=np.float64)) assert_frame_equal(grouped.sum(), exp_df, check_names=False) assert_frame_equal(grouped.agg(np.sum), exp_df, check_names=False) assert_frame_equal(grouped.apply(np.sum), exp_df.iloc[:, :0], check_names=False) def test_agg_grouping_is_list_tuple(self): from pandas.core.groupby import Grouping df = tm.makeTimeDataFrame() grouped = df.groupby(lambda x: x.year) grouper = grouped.grouper.groupings[0].grouper grouped.grouper.groupings[0] = Grouping(self.ts.index, list(grouper)) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) grouped.grouper.groupings[0] = Grouping(self.ts.index, tuple(grouper)) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) def test_aggregate_float64_no_int64(self): # see gh-11199 df = DataFrame({"a": [1, 2, 3, 4, 5], "b": [1, 2, 2, 4, 5], "c": [1, 2, 3, 4, 5]}) expected = DataFrame({"a": [1, 2.5, 4, 5]}, index=[1, 2, 4, 5]) expected.index.name = "b" result = df.groupby("b")[["a"]].mean() tm.assert_frame_equal(result, expected) expected = DataFrame({"a": [1, 2.5, 4, 5], "c": [1, 2.5, 4, 5]}, index=[1, 2, 4, 5]) expected.index.name = "b" result = df.groupby("b")[["a", "c"]].mean() tm.assert_frame_equal(result, expected) def test_aggregate_api_consistency(self): # GH 9052 # make sure that the aggregates via dict # are consistent df = DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'two', 'two', 'two', 'one', 'two'], 'C': np.random.randn(8) + 1.0, 'D': np.arange(8)}) grouped = df.groupby(['A', 'B']) c_mean = grouped['C'].mean() c_sum = grouped['C'].sum() d_mean = grouped['D'].mean() d_sum = grouped['D'].sum() result = grouped['D'].agg(['sum', 'mean']) expected = pd.concat([d_sum, d_mean], axis=1) expected.columns = ['sum', 'mean'] assert_frame_equal(result, expected, check_like=True) result = grouped.agg([np.sum, np.mean]) expected = pd.concat([c_sum, c_mean, d_sum, d_mean], axis=1) expected.columns = MultiIndex.from_product([['C', 'D'], ['sum', 'mean']]) assert_frame_equal(result, expected, check_like=True) result = grouped[['D', 'C']].agg([np.sum, np.mean]) expected = pd.concat([d_sum, d_mean, c_sum, c_mean], axis=1) expected.columns = MultiIndex.from_product([['D', 'C'], ['sum', 'mean']]) assert_frame_equal(result, expected, check_like=True) result = grouped.agg({'C': 'mean', 'D': 'sum'}) expected = pd.concat([d_sum, c_mean], axis=1) assert_frame_equal(result, expected, check_like=True) result = grouped.agg({'C': ['mean', 'sum'], 'D': ['mean', 'sum']}) expected = pd.concat([c_mean, c_sum, d_mean, d_sum], axis=1) expected.columns = MultiIndex.from_product([['C', 'D'], ['mean', 'sum']]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = grouped[['D', 'C']].agg({'r': np.sum, 'r2': np.mean}) expected = pd.concat([d_sum, c_sum, d_mean, c_mean], axis=1) expected.columns = MultiIndex.from_product([['r', 'r2'], ['D', 'C']])
assert_frame_equal(result, expected, check_like=True)
pandas.util.testing.assert_frame_equal
import os import pandas as pd path = os.getcwd() files = os.listdir('./files') df_total = pd.DataFrame() for file in files: # loop through Excel files if file.endswith('.xlsx'): excel_file =
pd.ExcelFile('./files/'+file)
pandas.ExcelFile
# -*- coding: utf-8 -*- """Proiect.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1TR1Frf0EX4PtFZkLlVdGtMTINqhoQwRw """ # Importarea librariilor import numpy as np import pandas as pd # pandas pentru citirea fisierelor from sklearn import preprocessing from sklearn import svm # importarea modelului from sklearn.feature_extraction.text import TfidfVectorizer # modelarea datelor pentru a obtine valori numerice din text from sklearn.metrics import classification_report, confusion_matrix # Incarcarea datelor train_labels = pd.read_csv('train_labels.txt', sep='\t', header=None, engine='python') train_labels = train_labels.to_numpy() # convertim data frame-ul intr-un vector train_labels = train_labels[:,1] # pastram doar etichetele train_samples = pd.read_csv('train_samples.txt', sep='\t', header=None, engine='python') train_samples = train_samples.to_numpy() train_samples = train_samples[:,1] # pastram doar cuvintele validation_samples = pd.read_csv('validation_samples.txt', sep='\t', header=None, engine='python') validation_samples = validation_samples.to_numpy() validation_samples = validation_samples[:,1] # salvam cuvintele validation_labels =
pd.read_csv('validation_labels.txt', sep='\t', header=None, engine='python')
pandas.read_csv
# --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.3' # jupytext_version: 0.8.6 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Process Data # ## Load Libraries import sys import pandas as pd from sqlalchemy import create_engine # ## Load Data def load_data(messages_filepath, categories_filepath): """ Input: 1. messages_filepath: path of messages datasets 2. categories_filepath: path of categories datasets Output: 1. df: merged dataframe, which contains data from messages, categories files Process: 1. Load the required datasets, messages, categories 2. Merge the two datasets """ # Load messages dataset messages = pd.read_csv(messages_filepath) # Load categories dataset categories =
pd.read_csv(categories_filepath)
pandas.read_csv
import pandas as pd import statsmodels.api as sm from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import numpy as np # Reading the cleaned data df = pd.read_csv('model_dataset.csv') # Dummy variables creation bed_room_dummies = pd.get_dummies(df['number_of_bedrooms'], prefix='bed_rm', drop_first=True) bath_room_dummies = pd.get_dummies(df['numberofbathrooms_per_house'], prefix='bath_rm', drop_first=True) floor_dummies = pd.get_dummies(df['floors'], prefix='flr', drop_first=True) house_condition_dummies =
pd.get_dummies(df['house_condition'], prefix='cond', drop_first=True)
pandas.get_dummies
# -*- coding: utf-8 -*- """ Created on Sat Aug 11 10:17:13 2018 @author: David """ # Built-in libraries #import argparse #import collections #import multiprocessing import os #import pickle #import time # External libraries #import rasterio #import gdal import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy.optimize import curve_fit #from scipy.stats import linregress from scipy.stats import median_absolute_deviation import xarray as xr # Local libraries import debrisglobal.globaldebris_input as debris_prms from meltcurves import melt_fromdebris_func from meltcurves import debris_frommelt_func #%%% ===== SCRIPT OPTIONS ===== option_hd_melt_uncertainty = False hd_uncertainty_schematic_fig = False option_melt_diagram_template = False hd_methods_diagram_ngoz = False #hd_obs_fp = debris_prms.main_directory + '/../hd_obs/' #%% ===== FUNCTIONS ===== def hd_melt_uncertainty(measured_hd_list, yearfracs_list, melt_fp, melt_fn, z_value = 1.645): """ Calculate hd-melt relationship for uncertainty """ # Dataset of melt data ds_ostrem = xr.open_dataset(melt_fp + melt_fn) ds_ostrem = ds_ostrem.sortby('hd_cm') time_year = pd.to_datetime(ds_ostrem.time.values).year time_daysperyear = np.array([366 if x%4 == 0 else 365 for x in time_year]) time_yearfrac = time_year + (pd.to_datetime(ds_ostrem.time.values).dayofyear-1) / time_daysperyear hd_wbnds_array_list = [] for n in np.arange(0,len(measured_hd_list)): yearfracs = yearfracs_list[n] start_yearfrac = yearfracs[0] end_yearfrac = yearfracs[1] # # Hack to just have one curve per glacier from 2000 - 2015 # for n in [0]: # start_yearfrac = 2000.6 # end_yearfrac = 2018.6 start_idx = np.where(abs(time_yearfrac - start_yearfrac) == abs(time_yearfrac - start_yearfrac).min())[0][0] end_idx = np.where(abs(time_yearfrac - end_yearfrac) == abs(time_yearfrac - end_yearfrac).min())[0][0] # Ostrem Curve debris_thicknesses = ds_ostrem.hd_cm.values debris_melt_df = pd.DataFrame(np.zeros((len(debris_thicknesses),3)), columns=['debris_thickness', 'melt_mmwed', 'melt_std_mmwed']) nelev = 0 for ndebris, debris_thickness in enumerate(debris_thicknesses): # Units: mm w.e. per day melt_mmwed = (ds_ostrem['melt'][ndebris,start_idx:end_idx,nelev].values.sum() * 1000 / len(time_yearfrac[start_idx:end_idx])) melt_std_mmwed = (ds_ostrem['melt_std'][ndebris,start_idx:end_idx,nelev].values.sum() * 1000 / len(time_yearfrac[start_idx:end_idx])) debris_melt_df.loc[ndebris] = debris_thickness / 100, melt_mmwed, melt_std_mmwed debris_melt_df['melt_bndlow_mmwed'] = debris_melt_df['melt_mmwed'] - z_value * debris_melt_df['melt_std_mmwed'] debris_melt_df['melt_bndhigh_mmwed'] = debris_melt_df['melt_mmwed'] + z_value * debris_melt_df['melt_std_mmwed'] # MEAN CURVE fit_idx = list(np.where(debris_thicknesses >= 5)[0]) func_coeff, pcov = curve_fit(melt_fromdebris_func, debris_melt_df.debris_thickness.values[fit_idx], debris_melt_df.melt_mmwed.values[fit_idx]) # melt_cleanice = debris_melt_df.loc[0,'melt_mmwed'] # LOWER BOUND CURVE func_coeff_bndlow, pcov = curve_fit(melt_fromdebris_func, debris_melt_df.debris_thickness.values[fit_idx], debris_melt_df.melt_bndlow_mmwed.values[fit_idx]) # melt_cleanice_bndlow = debris_melt_df.loc[0,'melt_bndlow_mmwed'] # UPPER BOUND CURVE func_coeff_bndhigh, pcov = curve_fit(melt_fromdebris_func, debris_melt_df.debris_thickness.values[fit_idx], debris_melt_df.melt_bndhigh_mmwed.values[fit_idx]) # melt_cleanice_bndhigh = debris_melt_df.loc[0,'melt_bndhigh_mmwed'] debris_4curve = np.arange(0.02,3.01,0.01) # column 0 = hd # column 1 = melt # column 2 = melt bndlow # column 3 = melt bndhigh # column 4 = hd bndlow debris properties # column 5 = hd bndhigh debris properties # column 6 = hd bndlow elevchg # column 7 = hd bndhigh elevchg # column 8 = hd bndlow combined # column 9 = hd bndhigh combined hd_wbnds_array = np.zeros((len(debris_4curve), 10)) for ndebris, hd in enumerate(debris_4curve): # Invert melt against bounded curves to get the uncertainty melt_mean = melt_fromdebris_func(hd, func_coeff[0], func_coeff[1]) hd_low = debris_frommelt_func(melt_mean, func_coeff_bndlow[0], func_coeff_bndlow[1]) if hd_low < 0: hd_low = 0 hd_high = debris_frommelt_func(melt_mean, func_coeff_bndhigh[0], func_coeff_bndhigh[1]) # Increase/decrease melt based on elevation change uncertainty and get change in debris thickness melt_bndlow = melt_mean + elevchg_mwea_zadj melt_bndhigh = melt_mean - elevchg_mwea_zadj hd_bndlow_elevchg = debris_frommelt_func(melt_bndlow, func_coeff[0], func_coeff[1]) if hd_bndlow_elevchg < 0: hd_bndlow_elevchg = 0 hd_bndhigh_elevchg = debris_frommelt_func(melt_bndhigh, func_coeff[0], func_coeff[1]) # Combined root sum of squares of deviations hd_bndlow_both = hd - ((hd - hd_low)**2 + (hd - hd_bndlow_elevchg)**2)**0.5 hd_bndhigh_both = hd + ((hd - hd_high)**2 + (hd - hd_bndhigh_elevchg)**2)**0.5 # Max combined # hd_bndlow_max = debris_frommelt_func(melt_bndlow, func_coeff_bndlow[0], func_coeff_bndlow[1]) # if hd_bndlow_max < 0: # hd_bndlow_max = 0 # hd_bndhigh_max = debris_frommelt_func(melt_bndhigh, func_coeff_bndhigh[0], func_coeff_bndhigh[1]) # Record data hd_wbnds_array[ndebris,:] = [hd, melt_mean, melt_bndlow, melt_bndhigh, hd_low, hd_high, hd_bndlow_elevchg, hd_bndhigh_elevchg, hd_bndlow_both, hd_bndhigh_both] # print(np.round(hd,2), ' melt:', np.round(melt_mean,2), # 'bnds:', str(np.round(hd_low,2)) + '-' + str(np.round(hd_high,2)), # ' bndelev:', str(np.round(hd_bndlow_elevchg,2)) + '-' + str(np.round(hd_bndhigh_elevchg,2)), # ' bndboth:', str(np.round(hd_bndlow_both,2)) + '-' + str(np.round(hd_bndhigh_both,2)), ## ' bndmax:', str(np.round(hd_bndlow_max,2)) + '-' + str(np.round(hd_bndhigh_max,2)) # ) hd_wbnds_array_list.append(hd_wbnds_array) return hd_wbnds_array_list #%% if option_hd_melt_uncertainty: # glaciers = ['1.15645', '2.14297', '6.00474', '7.01044', '10.01732', '11.00719', '11.02472', '11.02810', '11.02858', # '11.03005', '12.01012', '12.01132', '13.05000', '13.43232', '14.06794', '14.16042', '15.03733', # '15.03743', '15.04045', '15.07886', '15.11758', '18.02397'] glaciers = ['1.15645', '2.14297', '6.00474', '7.01044', '11.00719', '11.02472', '11.02810', '11.02858', '11.03005', '12.01012', '12.01132', '13.05000', '13.43232', '14.06794', '14.16042', '15.03733', '15.03743', '15.04045', '15.07886', '15.11758', '18.02397'] # glaciers = ['10.01732'] # z_value = 1.645 # 5-95% z_value = 1 # 16-84% # z_value = 0.675 # 25-75% elevchg_mwea_std = 0.72 elevchg_mwea_zadj = z_value * elevchg_mwea_std hd_wbnds_array_all = None # ===== KENNICOTT (1.15645) ==== if '1.15645' in glaciers: # Data: debris thickness (m) and melt rate (mm w.e. d-1) mb_df = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/1.15645_kennicott_anderson_2019-melt.csv') measured_hd_list = [mb_df.hd_m.values] measured_melt_list = [mb_df.melt_mmwed.values] melt_fp = debris_prms.output_fp + 'ostrem_curves/exp4/' melt_fn = '6150N-21700E-debris_melt_curve.nc' yearfracs_list = [[2011 + 169/365, 2011 + 228/365]] for n in np.arange(0,len(measured_hd_list)): assert len(measured_hd_list[n]) == len(measured_melt_list[n]), 'length of hd differs from melt' hd_wbnds_array_list = hd_melt_uncertainty(measured_hd_list, yearfracs_list, melt_fp, melt_fn, z_value=z_value) for hd_wbnds_array in hd_wbnds_array_list: if hd_wbnds_array_all is None: hd_wbnds_array_all = hd_wbnds_array[:,:,np.newaxis] else: hd_wbnds_array_all = np.concatenate((hd_wbnds_array_all, hd_wbnds_array[:,:,np.newaxis]), axis=2) # ===== Emmons (2.14297) ==== if '2.14297' in glaciers: # Data: debris thickness (m) and melt rate (mm w.e. d-1) mb_df = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/2.14297_moore2019-melt.csv') measured_hd_list = [mb_df.hd_m.values] measured_melt_list = [mb_df.melt_mmwed.values] melt_fp = debris_prms.output_fp + 'ostrem_curves/exp4/' melt_fn = '4700N-23825E-debris_melt_curve.nc' yearfracs_list = [[2014 + 212/365, 2014 + 222/365]] for n in np.arange(0,len(measured_hd_list)): assert len(measured_hd_list[n]) == len(measured_melt_list[n]), 'length of hd differs from melt' hd_wbnds_array_list = hd_melt_uncertainty(measured_hd_list, yearfracs_list, melt_fp, melt_fn, z_value=z_value) for hd_wbnds_array in hd_wbnds_array_list: if hd_wbnds_array_all is None: hd_wbnds_array_all = hd_wbnds_array[:,:,np.newaxis] else: hd_wbnds_array_all = np.concatenate((hd_wbnds_array_all, hd_wbnds_array[:,:,np.newaxis]), axis=2) # ===== Svinafellsjokull (06.00474) ==== # if '6.00474' in glaciers: # # Data: debris thickness (m) and melt rate (mm w.e. d-1) # mb_df = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/6.00474_moller2016-melt.csv') # measured_hd_list = [mb_df.hd_m.values] # measured_melt_list = [mb_df['melt_mf'].values] # melt_fp = debris_prms.output_fp + 'ostrem_curves/exp4/' # melt_fn = '6400N-34325E-debris_melt_curve.nc' # yearfracs_list = [[2013 + 137/365, 2013 + 150/365]] # # for n in np.arange(0,len(measured_hd_list)): # assert len(measured_hd_list[n]) == len(measured_melt_list[n]), 'length of hd differs from melt' # # hd_wbnds_array_list = hd_melt_uncertainty(measured_hd_list, yearfracs_list, melt_fp, melt_fn, z_value=z_value) # # for hd_wbnds_array in hd_wbnds_array_list: # if hd_wbnds_array_all is None: # hd_wbnds_array_all = hd_wbnds_array[:,:,np.newaxis] # else: # hd_wbnds_array_all = np.concatenate((hd_wbnds_array_all, hd_wbnds_array[:,:,np.newaxis]), axis=2) # ===== Larsbreen (7.01044) ==== if '7.01044' in glaciers: # Data: debris thickness (m) and melt rate (mm w.e. d-1) mb_df = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/7.01044_larsbreen_NB2006-melt.csv') measured_hd_list = [mb_df.hd_m.values] measured_melt_list = [mb_df.melt_mmwed.values] melt_fp = debris_prms.output_fp + 'ostrem_curves/exp4/' melt_fn = '7825N-1600E-debris_melt_curve.nc' yearfracs_list = [[2002 + 191/366, 2002 + 202/366]] for n in np.arange(0,len(measured_hd_list)): assert len(measured_hd_list[n]) == len(measured_melt_list[n]), 'length of hd differs from melt' hd_wbnds_array_list = hd_melt_uncertainty(measured_hd_list, yearfracs_list, melt_fp, melt_fn, z_value=z_value) for hd_wbnds_array in hd_wbnds_array_list: if hd_wbnds_array_all is None: hd_wbnds_array_all = hd_wbnds_array[:,:,np.newaxis] else: hd_wbnds_array_all = np.concatenate((hd_wbnds_array_all, hd_wbnds_array[:,:,np.newaxis]), axis=2) # ===== <NAME> (10.01732) ==== # if '10.01732' in glaciers: ## print('\nmelt comparison with Mayer et al (2011)') # assert True == False, '10.01732 NEEDS TO DO THE MODELING FIRST!' # # Data: debris thickness (m) and melt rate (mm w.e. d-1) # mb_df = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/10.01732_mayer2011-melt.csv') # measured_hd_list = [mb_df.hd_m.values] # measured_melt_list = [mb_df['melt_mf'].values] # melt_fp = debris_prms.output_fp + 'ostrem_curves/exp4/' # melt_fn = '5000N-8775E-debris_melt_curve.nc' # yearfracs_list = [[2007 + 192/365, 2007 + 211/365]] # # for n in np.arange(0,len(measured_hd_list)): # assert len(measured_hd_list[n]) == len(measured_melt_list[n]), 'length of hd differs from melt' # # hd_wbnds_array_list = hd_melt_uncertainty(measured_hd_list, yearfracs_list, melt_fp, melt_fn, z_value=z_value) # # for hd_wbnds_array in hd_wbnds_array_list: # if hd_wbnds_array_all is None: # hd_wbnds_array_all = hd_wbnds_array[:,:,np.newaxis] # else: # hd_wbnds_array_all = np.concatenate((hd_wbnds_array_all, hd_wbnds_array[:,:,np.newaxis]), axis=2) # ===== Vernagtferner (11.00719) ==== if '11.00719' in glaciers: # Data: debris thickness (m) and melt rate (mm w.e. d-1) mb_df = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/11.00719_vernagtferner_juen2013-melt.csv') measured_hd_list = [mb_df.hd_m.values] measured_melt_list = [mb_df.melt_mmwed.values] melt_fp = debris_prms.output_fp + 'ostrem_curves/exp4/' melt_fn = '4700N-1075E-debris_melt_curve.nc' yearfracs_list = [[2010 + 176/365, 2010 + 191/365]] for n in np.arange(0,len(measured_hd_list)): assert len(measured_hd_list[n]) == len(measured_melt_list[n]), 'length of hd differs from melt' hd_wbnds_array_list = hd_melt_uncertainty(measured_hd_list, yearfracs_list, melt_fp, melt_fn, z_value=z_value) for hd_wbnds_array in hd_wbnds_array_list: if hd_wbnds_array_all is None: hd_wbnds_array_all = hd_wbnds_array[:,:,np.newaxis] else: hd_wbnds_array_all = np.concatenate((hd_wbnds_array_all, hd_wbnds_array[:,:,np.newaxis]), axis=2) # ===== Vernocolo (11.02472) ===== if '11.02472' in glaciers: # Data: debris thickness (m) and melt rate (mm w.e. d-1) mb_df = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/11.02472_bocchiola2015-melt.csv') measured_hd_list = [mb_df.hd_m.values] measured_melt_list = [mb_df.melt_mmwed.values] melt_fp = debris_prms.output_fp + 'ostrem_curves/exp4/' melt_fn = '4625N-1050E-debris_melt_curve.nc' yearfracs_list = [[2007 + 222/365, 2007 + 256/365]] for n in np.arange(0,len(measured_hd_list)): assert len(measured_hd_list[n]) == len(measured_melt_list[n]), 'length of hd differs from melt' hd_wbnds_array_list = hd_melt_uncertainty(measured_hd_list, yearfracs_list, melt_fp, melt_fn, z_value=z_value) for hd_wbnds_array in hd_wbnds_array_list: if hd_wbnds_array_all is None: hd_wbnds_array_all = hd_wbnds_array[:,:,np.newaxis] else: hd_wbnds_array_all = np.concatenate((hd_wbnds_array_all, hd_wbnds_array[:,:,np.newaxis]), axis=2) # ===== Arolla (11.02810) ==== if '11.02810' in glaciers: # Data: debris thickness (m) and melt rate (mm w.e. d-1) mb_df = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/11.02810_arolla_reid2012-melt.csv') measured_hd_list = [mb_df.hd_m.values] measured_melt_list = [mb_df.melt_mmwed.values] melt_fp = debris_prms.output_fp + 'ostrem_curves/exp4/' melt_fn = '4600N-750E-debris_melt_curve.nc' yearfracs_list = [[2010 + 209/365, 2010 + 252/365]] for n in np.arange(0,len(measured_hd_list)): assert len(measured_hd_list[n]) == len(measured_melt_list[n]), 'length of hd differs from melt' hd_wbnds_array_list = hd_melt_uncertainty(measured_hd_list, yearfracs_list, melt_fp, melt_fn, z_value=z_value) for hd_wbnds_array in hd_wbnds_array_list: if hd_wbnds_array_all is None: hd_wbnds_array_all = hd_wbnds_array[:,:,np.newaxis] else: hd_wbnds_array_all = np.concatenate((hd_wbnds_array_all, hd_wbnds_array[:,:,np.newaxis]), axis=2) # ===== Belvedere (11.02858) ==== if '11.02858' in glaciers: # Data: debris thickness (m) and melt rate (mm w.e. d-1) mb_df = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/11.02858_belvedere_nb2006-melt.csv') measured_hd_list = [mb_df.hd_m.values] measured_melt_list = [mb_df.melt_mmwed.values] melt_fp = debris_prms.output_fp + 'ostrem_curves/exp4/' melt_fn = '4600N-800E-debris_melt_curve.nc' yearfracs_list = [[2003 + 218/365, 2003 + 222/365]] for n in np.arange(0,len(measured_hd_list)): assert len(measured_hd_list[n]) == len(measured_melt_list[n]), 'length of hd differs from melt' hd_wbnds_array_list = hd_melt_uncertainty(measured_hd_list, yearfracs_list, melt_fp, melt_fn, z_value=z_value) for hd_wbnds_array in hd_wbnds_array_list: if hd_wbnds_array_all is None: hd_wbnds_array_all = hd_wbnds_array[:,:,np.newaxis] else: hd_wbnds_array_all = np.concatenate((hd_wbnds_array_all, hd_wbnds_array[:,:,np.newaxis]), axis=2) # ===== MIAGE (11.03005) ==== if '11.03005' in glaciers: # Data: debris thickness (m) and melt rate (mm w.e. d-1) mb_df = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/11.03005_reid2010-melt.csv') measured_hd_list = [mb_df.hd_m.values] measured_melt_list = [mb_df.melt_mmwed.values] melt_fp = debris_prms.output_fp + 'ostrem_curves/exp4/' melt_fn = '4650N-1050E-debris_melt_curve.nc' yearfracs_list = [[2005 + 172/365, 2005 + 247/365]] for n in np.arange(0,len(measured_hd_list)): assert len(measured_hd_list[n]) == len(measured_melt_list[n]), 'length of hd differs from melt' hd_wbnds_array_list = hd_melt_uncertainty(measured_hd_list, yearfracs_list, melt_fp, melt_fn, z_value=z_value) for hd_wbnds_array in hd_wbnds_array_list: if hd_wbnds_array_all is None: hd_wbnds_array_all = hd_wbnds_array[:,:,np.newaxis] else: hd_wbnds_array_all = np.concatenate((hd_wbnds_array_all, hd_wbnds_array[:,:,np.newaxis]), axis=2) # ===== Zopkhito (12.01012) ==== # if '12.01012' in glaciers: # # Data: debris thickness (m) and melt rate (mm w.e. d-1) # mb_df = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/12.01012_lambrecht2011-melt2008.csv') # mb_df2 = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/12.01012_lambrecht2011-melt2009.csv') # measured_hd_list = [mb_df.hd_m.values, mb_df2.hd_m.values] # measured_melt_list = [mb_df.melt_mmwed.values, mb_df2.melt_mmwed.values] ## measured_melt_list = [mb_df['melt_mf'].values, mb_df2['melt_mf'].values] # melt_fp = debris_prms.output_fp + 'ostrem_curves/exp4/' # melt_fn = '4300N-4350E-debris_melt_curve.nc' # yearfracs_list = [[2008 + 172/366, 2008 + 179/366], [2009 + 182/365, 2009 + 189/365]] # # for n in np.arange(0,len(measured_hd_list)): # assert len(measured_hd_list[n]) == len(measured_melt_list[n]), 'length of hd differs from melt' # # hd_wbnds_array_list = hd_melt_uncertainty(measured_hd_list, yearfracs_list, melt_fp, melt_fn, z_value=z_value) # # for hd_wbnds_array in hd_wbnds_array_list: # if hd_wbnds_array_all is None: # hd_wbnds_array_all = hd_wbnds_array[:,:,np.newaxis] # else: # hd_wbnds_array_all = np.concatenate((hd_wbnds_array_all, hd_wbnds_array[:,:,np.newaxis]), axis=2) # ===== Djankuat (12.01132) ==== # if '12.01132' in glaciers: # # Data: debris thickness (m) and melt rate (mm w.e. d-1) # mb_df = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/12.01132_lambrecht2011-melt.csv') # measured_hd_list = [mb_df.hd_m.values] # measured_melt_list = [mb_df['melt_mf'].values] # melt_fp = debris_prms.output_fp + 'ostrem_curves/exp4/' # melt_fn = '4325N-4275E-debris_melt_curve.nc' # yearfracs_list = [[2008 + 172/366, 2008 + 246/366]] # # for n in np.arange(0,len(measured_hd_list)): # assert len(measured_hd_list[n]) == len(measured_melt_list[n]), 'length of hd differs from melt' # # hd_wbnds_array_list = hd_melt_uncertainty(measured_hd_list, yearfracs_list, melt_fp, melt_fn, z_value=z_value) # # for hd_wbnds_array in hd_wbnds_array_list: # if hd_wbnds_array_all is None: # hd_wbnds_array_all = hd_wbnds_array[:,:,np.newaxis] # else: # hd_wbnds_array_all = np.concatenate((hd_wbnds_array_all, hd_wbnds_array[:,:,np.newaxis]), axis=2) # ===== S Inylchek (13.05000) ==== if '13.05000' in glaciers: # Data: debris thickness (m) and melt rate (mm w.e. d-1) mb_df = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/13.05000_hagg2008-melt.csv') measured_hd_list = [mb_df.hd_m.values] measured_melt_list = [mb_df.melt_mmwed.values] melt_fp = debris_prms.output_fp + 'ostrem_curves/exp4/' melt_fn = '4200N-8025E-debris_melt_curve.nc' yearfracs_list = [[2005 + 211/365, 2005 + 222/365]] for n in np.arange(0,len(measured_hd_list)): assert len(measured_hd_list[n]) == len(measured_melt_list[n]), 'length of hd differs from melt' hd_wbnds_array_list = hd_melt_uncertainty(measured_hd_list, yearfracs_list, melt_fp, melt_fn, z_value=z_value) for hd_wbnds_array in hd_wbnds_array_list: if hd_wbnds_array_all is None: hd_wbnds_array_all = hd_wbnds_array[:,:,np.newaxis] else: hd_wbnds_array_all = np.concatenate((hd_wbnds_array_all, hd_wbnds_array[:,:,np.newaxis]), axis=2) # # ===== No 72 ===== # if '13.43165' in glaciers: # print('\nmelt comparison with Wang et al (2011)') # # Data: debris thickness (m) and melt rate (mm w.e. d-1) # mb_df = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/13.43165_wang2011-melt.csv') # measured_hd_list = [mb_df.hd_m.values] # measured_melt_list = [mb_df['melt_mmwed'].values] # glac_name = "No 72 (13.43165)" # fig_fn = '13.43165_hd_melt_wang2011.png' # ds_names = ['8/10/10$\u2009$-$\u2009$8/29/10'] # melt_fp = debris_prms.output_fp + 'ostrem_curves/exp4/' # melt_fn = '4175N-8000E-debris_melt_curve.nc' # yearfracs_list = [[2010 + 222/365, 2010 + 241/365]] # # hd_min, hd_max = 0, np.ceil(np.max([x.max() for x in measured_hd_list])/0.1)*0.1 + 0.05 # hd_tick_major, hd_tick_minor = 0.1, 0.02 ## melt_min, melt_max = 0, np.round(np.ceil(np.max([x.max() for x in measured_melt_list]) / 10) * 10,0) + 5 ## melt_tick_major, melt_tick_minor = 10, 5 # melt_min, melt_max = 0, np.round(np.ceil(np.max([x.max() for x in measured_melt_list]) / 0.1) * 0.1,1) + 0.1 # melt_tick_major, melt_tick_minor = 0.5, 0.1 # # print('NEED THE DATES!') # for n in np.arange(0,len(measured_hd_list)): # assert len(measured_hd_list[n]) == len(measured_melt_list[n]), 'length of hd differs from melt' # # plot_hd_vs_melt_comparison(measured_hd_list, measured_melt_list, yearfracs_list, glac_name, fig_fn, # melt_fp, melt_fn, # ds_names=ds_names, hd_min=hd_min, hd_max=hd_max, # hd_tick_major=hd_tick_major, hd_tick_minor=hd_tick_minor, # melt_min=melt_min, melt_max=melt_max, # melt_tick_major=melt_tick_major, melt_tick_minor=melt_tick_minor) # ===== Koxkar (13.43232) ==== # if '13.43232' in glaciers: # # Data: debris thickness (m) and melt rate (mm w.e. d-1) # mb_df = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/13.43232_juen2014-melt.csv') # measured_hd_list = [mb_df.hd_m.values] # measured_melt_list = [mb_df['melt_mf'].values] # melt_fp = debris_prms.output_fp + 'ostrem_curves/exp4/' # melt_fn = '4175N-8000E-debris_melt_curve.nc' # yearfracs_list = [[2010 + 222/365, 2010 + 241/365]] # # for n in np.arange(0,len(measured_hd_list)): # assert len(measured_hd_list[n]) == len(measured_melt_list[n]), 'length of hd differs from melt' # # hd_wbnds_array_list = hd_melt_uncertaintsy(measured_hd_list, yearfracs_list, melt_fp, melt_fn, z_value=z_value) # # for hd_wbnds_array in hd_wbnds_array_list: # if hd_wbnds_array_all is None: # hd_wbnds_array_all = hd_wbnds_array[:,:,np.newaxis] # else: # hd_wbnds_array_all = np.concatenate((hd_wbnds_array_all, hd_wbnds_array[:,:,np.newaxis]), axis=2) # ===== Baltoro (14.06794) ==== if '14.06794' in glaciers: # Data: debris thickness (m) and melt rate (mm w.e. d-1) mb_df = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/14.06794_mihalcea2006-melt.csv') mb_df2 = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/14.06794_groos2017-melt.csv') measured_hd_list = [mb_df.hd_m.values, mb_df2.hd_m.values] measured_melt_list = [mb_df.melt_mmwed.values, mb_df2.melt_mmwed.values] melt_fp = debris_prms.output_fp + 'ostrem_curves/exp4/' melt_fn = '3575N-7650E-debris_melt_curve.nc' yearfracs_list = [[2004 + 186/366, 2004 + 196/366], [2011 + 203/365, 2011 + 222/365]] for n in np.arange(0,len(measured_hd_list)): assert len(measured_hd_list[n]) == len(measured_melt_list[n]), 'length of hd differs from melt' hd_wbnds_array_list = hd_melt_uncertainty(measured_hd_list, yearfracs_list, melt_fp, melt_fn, z_value=z_value) for hd_wbnds_array in hd_wbnds_array_list: if hd_wbnds_array_all is None: hd_wbnds_array_all = hd_wbnds_array[:,:,np.newaxis] else: hd_wbnds_array_all = np.concatenate((hd_wbnds_array_all, hd_wbnds_array[:,:,np.newaxis]), axis=2) # ===== Batal (14.16042) ==== if '14.16042' in glaciers: # Data: debris thickness (m) and melt rate (mm w.e. d-1) mb_df = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/14.16042_patel2016-melt.csv') measured_hd_list = [mb_df.hd_m.values] measured_melt_list = [mb_df.melt_mmwed.values] melt_fp = debris_prms.output_fp + 'ostrem_curves/exp4/' melt_fn = '3225N-7750E-debris_melt_curve.nc' yearfracs_list = [[2014 + 213/365, 2014 + 288/365]] for n in np.arange(0,len(measured_hd_list)): assert len(measured_hd_list[n]) == len(measured_melt_list[n]), 'length of hd differs from melt' hd_wbnds_array_list = hd_melt_uncertainty(measured_hd_list, yearfracs_list, melt_fp, melt_fn, z_value=z_value) for hd_wbnds_array in hd_wbnds_array_list: if hd_wbnds_array_all is None: hd_wbnds_array_all = hd_wbnds_array[:,:,np.newaxis] else: hd_wbnds_array_all = np.concatenate((hd_wbnds_array_all, hd_wbnds_array[:,:,np.newaxis]), axis=2) # ===== Khumbu (15.03733) ==== if '15.03733' in glaciers: # Data: debris thickness (m) and melt rate (mm w.e. d-1) mb_df = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/15.03733_kayastha2000-melt.csv') measured_hd_list = [mb_df.hd_m.values] measured_melt_list = [mb_df.melt_mmwed.values] melt_fp = debris_prms.output_fp + 'ostrem_curves/exp4/' melt_fn = '2800N-8700E-debris_melt_curve.nc' yearfracs_list = [[2000 + 143/366, 2000 + 153/366]] for n in np.arange(0,len(measured_hd_list)): assert len(measured_hd_list[n]) == len(measured_melt_list[n]), 'length of hd differs from melt' hd_wbnds_array_list = hd_melt_uncertainty(measured_hd_list, yearfracs_list, melt_fp, melt_fn, z_value=z_value) for hd_wbnds_array in hd_wbnds_array_list: if hd_wbnds_array_all is None: hd_wbnds_array_all = hd_wbnds_array[:,:,np.newaxis] else: hd_wbnds_array_all = np.concatenate((hd_wbnds_array_all, hd_wbnds_array[:,:,np.newaxis]), axis=2) # ===== <NAME> (15.03743) ==== if '15.03743' in glaciers: # Data: debris thickness (m) and melt rate (mm w.e. d-1) mb_df = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/15.03743_rounce2015-melt.csv') measured_hd_list = [mb_df.hd_m.values] measured_melt_list = [mb_df.melt_mmwed.values] melt_fp = debris_prms.output_fp + 'ostrem_curves/exp4/' melt_fn = '2800N-8700E-debris_melt_curve.nc' yearfracs_list = [[2014 + 138/365, 2014 + 315/365]] for n in np.arange(0,len(measured_hd_list)): assert len(measured_hd_list[n]) == len(measured_melt_list[n]), 'length of hd differs from melt' hd_wbnds_array_list = hd_melt_uncertainty(measured_hd_list, yearfracs_list, melt_fp, melt_fn, z_value=z_value) for hd_wbnds_array in hd_wbnds_array_list: if hd_wbnds_array_all is None: hd_wbnds_array_all = hd_wbnds_array[:,:,np.newaxis] else: hd_wbnds_array_all = np.concatenate((hd_wbnds_array_all, hd_wbnds_array[:,:,np.newaxis]), axis=2) # ===== Lirung (15.04045) ==== if '15.04045' in glaciers: # Data: debris thickness (m) and melt rate (mm w.e. d-1) mb_df1 = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/15.04045_chand2015_fall-melt.csv') mb_df2 = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/15.04045_chand2015_winter-melt.csv') mb_df3 = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/15.04045_chand2015_spring-melt.csv') measured_hd_list = [mb_df1.hd_m.values, mb_df2.hd_m.values, mb_df3.hd_m.values] measured_melt_list = [mb_df1.melt_mmwed.values, mb_df2.melt_mmwed.values, mb_df3.melt_mmwed.values] melt_fp = debris_prms.output_fp + 'ostrem_curves/exp4/' melt_fn = '2825N-8550E-debris_melt_curve.nc' yearfracs_list = [[2013 + 265/365, 2013 + 276/365], [2013 + 333/365, 2013 + 346/365], [2014 + 97/365, 2014 + 109/365]] hd_min, hd_max = 0, np.ceil(np.max([x.max() for x in measured_hd_list])/0.1)*0.1 + 0.05 hd_tick_major, hd_tick_minor = 0.1, 0.02 melt_min, melt_max = 0, np.round(np.ceil(np.max([x.max() for x in measured_melt_list]) / 10) * 10,0) + 5 melt_tick_major, melt_tick_minor = 10, 5 for n in np.arange(0,len(measured_hd_list)): assert len(measured_hd_list[n]) == len(measured_melt_list[n]), 'length of hd differs from melt' hd_wbnds_array_list = hd_melt_uncertainty(measured_hd_list, yearfracs_list, melt_fp, melt_fn, z_value=z_value) for hd_wbnds_array in hd_wbnds_array_list: if hd_wbnds_array_all is None: hd_wbnds_array_all = hd_wbnds_array[:,:,np.newaxis] else: hd_wbnds_array_all = np.concatenate((hd_wbnds_array_all, hd_wbnds_array[:,:,np.newaxis]), axis=2) # ===== Hailuogou (15.07886) ==== if '15.07886' in glaciers: # Data: debris thickness (m) and melt rate (mm w.e. d-1) measured_hd_list = [np.array([2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 5, 5, 6, 7, 7, 10, 10, 11, 13]) / 100] measured_melt_list = [np.array([65.2, 55.4, 52.8, 51.6, 47.0, 53.4, 44.4, 50.3, 58, 48.9, 58.4, 54.4, 44.8, 52.6, 43.7, 52.5, 38.5, 36.5, 34.2, 28.4])] melt_fp = debris_prms.output_fp + 'ostrem_curves/exp4/' melt_fn = '2950N-10200E-debris_melt_curve.nc' yearfracs_list = [[2008 + 184/366, 2008 + 274/366]] for n in np.arange(0,len(measured_hd_list)): assert len(measured_hd_list[n]) == len(measured_melt_list[n]), 'length of hd differs from melt' hd_wbnds_array_list = hd_melt_uncertainty(measured_hd_list, yearfracs_list, melt_fp, melt_fn, z_value=z_value) for hd_wbnds_array in hd_wbnds_array_list: if hd_wbnds_array_all is None: hd_wbnds_array_all = hd_wbnds_array[:,:,np.newaxis] else: hd_wbnds_array_all = np.concatenate((hd_wbnds_array_all, hd_wbnds_array[:,:,np.newaxis]), axis=2) # ===== 24K (15.11758) ==== if '15.11758' in glaciers: # Data: debris thickness (m) and melt rate (mm w.e. d-1) mb_df = pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/15.11758_yang2017-melt.csv') mb_df2 =
pd.read_csv(debris_prms.main_directory + '/../hd_obs/datasets/15.11758_wei2010-melt.csv')
pandas.read_csv
import os import numpy as np import pandas as pd import xgboost as xgb import lightgbm as lgb import catboost as ctb from tqdm import tqdm from sklearn import preprocessing from sklearn.model_selection import KFold, StratifiedKFold,train_test_split from sklearn.metrics import mean_squared_error def eval_Features(df,feature_nan= {'nan': -1}): feature_tmp = [] for index,feature in tqdm(enumerate(df['Features'].values)): feature_tmp.append(eval(feature,feature_nan)) feature_tmp = pd.DataFrame(feature_tmp) feature_tmp.columns = ['feature_'+str(i) for i in range(feature_tmp.shape[1])] return feature_tmp def get_dataset(path = './Molecule_prediction_20200312'): #读入数据 df_train = pd.read_csv(f'{path}/train_0312.csv') df_test =
pd.read_csv(f'{path}/test_noLabel_0312.csv')
pandas.read_csv
# -*- coding: utf-8 -*- """ Authors: <NAME>, <NAME>, <NAME>, and <NAME> IHE Delft 2017 Contact: <EMAIL> Repository: https://github.com/gespinoza/hants Module: hants """ from __future__ import division import netCDF4 import pandas as pd import numpy as np import datetime import math import os import osr import glob from copy import deepcopy import matplotlib.pyplot as plt import warnings import gdal from joblib import Parallel, delayed def run_HANTS(rasters_path_inp, name_format, start_date, end_date, latlim, lonlim, cellsize, nc_path, nb, nf, HiLo, low, high, fet, dod, delta, Scaling_factor = 0.001, epsg=4326, cores=1): ''' This function runs the python implementation of the HANTS algorithm. It takes a folder with geotiffs raster data as an input, creates a netcdf file, and optionally export the data back to geotiffs. ''' nc_paths = create_netcdf(rasters_path_inp, name_format, start_date, end_date, latlim, lonlim, cellsize, nc_path, Scaling_factor, epsg) args = [nb, nf, HiLo, low, high, fet, dod, delta, Scaling_factor] print('\tApply HANTS on tiles...') results = Parallel(n_jobs=cores)(delayed(HANTS_netcdf)(nc_path, args) for nc_path in nc_paths) if len(nc_paths) > 1: Merge_NC_Tiles(nc_paths, nc_path, start_date, end_date, latlim, lonlim, cellsize, epsg, Scaling_factor) return nc_path def create_netcdf(rasters_path, name_format, start_date, end_date, latlim, lonlim, cellsize, nc_path, Scaling_factor, epsg=4326): ''' This function creates a netcdf file from a folder with geotiffs rasters to be used to run HANTS. ''' # Latitude and longitude lat_ls = pd.np.arange(latlim[0] + 0.5*cellsize, latlim[1], cellsize) lat_ls = lat_ls[::-1] # ArcGIS numpy lon_ls = pd.np.arange(lonlim[0] + 0.5*cellsize, lonlim[1], cellsize) lat_n = len(lat_ls) lon_n = len(lon_ls) spa_ref = Spatial_Reference(epsg) # ll_corner = [lonlim[0], latlim[0]] # Rasters dates_dt = pd.date_range(start_date, end_date, freq='D') dates_ls = [d.toordinal() for d in dates_dt] os.chdir(rasters_path) ras_ls = glob.glob('*.tif') # Create tile parts if (lat_n > 200 or lon_n > 200): lat_n_amount = np.maximum(1,int(np.floor(lat_n/100))) lon_n_amount = np.maximum(1,int(np.floor(lon_n/100))) nc_path_part_names = nc_path.split('.') nc_path_tiles = [] for lat_n_one in range(0, lat_n_amount): for lon_n_one in range(0, lon_n_amount): nc_path_tile = ''.join(nc_path_part_names[0] + "_h%03d_v%03d.nc" %(lon_n_one, lat_n_one)) nc_path_tiles = np.append(nc_path_tiles, nc_path_tile) else: nc_path_tiles = nc_path i = 0 # Loop over the nc_paths for nc_path_tile in nc_path_tiles: i += 1 if lat_n_amount > 1: lat_part = int(nc_path_tile[-6:-3]) lat_start = lat_part * 100 if int(lat_part) is not int(lat_n_amount-1): lat_end = int((lat_part + 1) * 100) else: lat_end = int(lat_n) else: lat_start = int(0) lat_end = int(lat_n) if lon_n_amount > 1: lon_part = int(nc_path_tile[-11:-8]) lon_start = int(lon_part * 100) if int(lon_part) is not int(lon_n_amount-1): lon_end = int((lon_part + 1) * 100) else: lon_end = int(lon_n) else: lon_start = int(0) lon_end = int(lon_n) # Define space dimention lat_range = lat_ls[lat_start:lat_end] lon_range = lon_ls[lon_start:lon_end] geo_ex = tuple([lon_range[0] - 0.5*cellsize, cellsize, 0, lat_range[0] + cellsize * 0.5, 0, -cellsize]) # Create netcdf file print('Creating netCDF file tile %s out of %s...' %(i,len(nc_path_tiles))) nc_file = netCDF4.Dataset(nc_path_tile, 'w', format="NETCDF4_CLASSIC") # Create Dimensions lat_dim = nc_file.createDimension('latitude', lat_end - lat_start) lon_dim = nc_file.createDimension('longitude', lon_end - lon_start) time_dim = nc_file.createDimension('time', len(dates_ls)) # Create Variables crso = nc_file.createVariable('crs', 'i4') crso.long_name = 'Lon/Lat Coords in WGS84' crso.standard_name = 'crs' crso.grid_mapping_name = 'latitude_longitude' crso.projection = spa_ref crso.longitude_of_prime_meridian = 0.0 crso.semi_major_axis = 6378137.0 crso.inverse_flattening = 298.257223563 crso.geo_reference = geo_ex lat_var = nc_file.createVariable('latitude', 'f8', ('latitude',)) lat_var.units = 'degrees_north' lat_var.standard_name = 'latitude' lon_var = nc_file.createVariable('longitude', 'f8', ('longitude',)) lon_var.units = 'degrees_east' lon_var.standard_name = 'longitude' time_var = nc_file.createVariable('time', 'l', ('time',)) time_var.standard_name = 'time' time_var.calendar = 'gregorian' original_var = nc_file.createVariable('original_values', 'i', ('time', 'latitude', 'longitude'), fill_value=-9999, zlib=True, least_significant_digit=0) original_var.long_name = 'original_values' original_var.grid_mapping = 'crs' original_var.add_offset = 0.00 original_var.scale_factor = Scaling_factor original_var.set_auto_maskandscale(False) print('\tVariables created') # Fill in time and space dimention lat_var[:] = lat_range lon_var[:] = lon_range time_var[:] = dates_ls # Create memory example file # empty array empty_vec = pd.np.empty((lat_end - lat_start, lon_end - lon_start)) empty_vec[:] = -9999 * np.float(Scaling_factor) dest_ex = Save_as_MEM(empty_vec, geo_ex, str(epsg)) # Raster loop print('\tExtracting data from rasters...') for tt in range(len(dates_ls)): Date_now = datetime.datetime.fromordinal(dates_ls[tt]) yyyy = str(Date_now.year) mm = '%02d' %int(Date_now.month) dd = '%02d' %int(Date_now.day) # Raster ras = name_format.format(yyyy=yyyy,mm=mm,dd=dd) if ras in ras_ls: data_in = os.path.join(rasters_path, ras) dest = reproject_dataset_example(data_in, dest_ex) array_tt = dest.GetRasterBand(1).ReadAsArray() array_tt[array_tt<-9999] = -9999 * np.float(Scaling_factor) original_var[tt, :, :] = np.int_(array_tt * 1./np.float(Scaling_factor)) else: # Store values original_var[tt, :, :] = np.int_(empty_vec * 1./np.float(Scaling_factor)) # Close file nc_file.close() print('NetCDF %s file created' %i) # Return return nc_path_tiles def HANTS_netcdf(nc_path, args): ''' This function runs the python implementation of the HANTS algorithm. It takes the input netcdf file and fills the 'hants_values', 'combined_values', and 'outliers' variables. ''' nb, nf, HiLo, low, high, fet, dod, delta, Scaling_factor = args # Read netcdfs nc_file = netCDF4.Dataset(nc_path, 'r+', format="NETCDF4_CLASSIC") nc_file.set_fill_on() time_var = nc_file.variables['time'][:] original_values = nc_file.variables['original_values'][:] [ztime, rows, cols] = original_values.shape size_st = cols*rows values_hants = pd.np.empty((ztime, rows, cols)) outliers_hants = pd.np.empty((ztime, rows, cols)) values_hants[:] = pd.np.nan outliers_hants[:] = pd.np.nan # Additional parameters ni = len(time_var) ts = range(ni) # Loop counter = 1 #print('Running HANTS...') for m in range(rows): for n in range(cols): #print('\t{0}/{1}'.format(counter, size_st)) y = pd.np.array(original_values[:, m, n]) y[pd.np.isnan(y)] = -9999 [yr, outliers] = HANTS(ni, nb, nf, y, ts, HiLo, low, high, fet, dod, delta) values_hants[:, m, n] = yr outliers_hants[:, m, n] = outliers counter = counter + 1 values_hants[values_hants<-9999] = -9999 * np.float(Scaling_factor) hants_var = nc_file.createVariable('hants_values', 'i', ('time', 'latitude', 'longitude'), fill_value=-9999, zlib=True, least_significant_digit=0) hants_var.long_name = 'hants_values' hants_var.grid_mapping = 'crs' hants_var.add_offset = 0.00 hants_var.scale_factor = Scaling_factor hants_var.set_auto_maskandscale(False) combined_var = nc_file.createVariable('combined_values', 'i', ('time', 'latitude', 'longitude'), fill_value=-9999, zlib=True, least_significant_digit=0) combined_var.long_name = 'combined_values' combined_var.grid_mapping = 'crs' combined_var.add_offset = 0.00 combined_var.scale_factor = Scaling_factor combined_var.set_auto_maskandscale(False) outliers_var = nc_file.createVariable('outliers', 'i4', ('time', 'latitude', 'longitude'), fill_value=-9999) outliers_var.long_name = 'outliers' outliers_var.grid_mapping = 'crs' hants_var[:,:,:]= np.int_(values_hants * 1./np.float(Scaling_factor)) outliers_var[:,:,:] = outliers_hants combined_var[:,:,:] = pd.np.where(outliers_hants, np.int_(values_hants * 1./np.float(Scaling_factor)), np.int_(original_values * 1./np.float(Scaling_factor))) # Close netcdf file nc_file.close() def HANTS_singlepoint(nc_path, point, nb, nf, HiLo, low, high, fet, dod, delta): ''' This function runs the python implementation of the HANTS algorithm for a single point (lat, lon). It plots the fit and returns a data frame with the 'original' and the 'hants' time series. ''' # Location lonx = point[0] latx = point[1] nc_file = netCDF4.Dataset(nc_path, 'r', format="NETCDF4_CLASSIC") time = [pd.to_datetime(i, format='%Y%m%d') for i in nc_file.variables['time'][:]] lat = nc_file.variables['latitude'][:] lon = nc_file.variables['longitude'][:] # Check that the point falls within the extent of the netcdf file lon_max = max(lon) lon_min = min(lon) lat_max = max(lat) lat_min = min(lat) if not (lon_min < lonx < lon_max) or not (lat_min < latx < lat_max): warnings.warn('The point lies outside the extent of the netcd file. ' 'The closest cell is plotted.') if lonx > lon_max: lonx = lon_max elif lonx < lon_min: lonx = lon_min if latx > lat_max: latx = lat_max elif latx < lat_min: latx = lat_min # Get lat-lon index in the netcdf file lat_closest = lat.flat[pd.np.abs(lat - latx).argmin()] lon_closest = lon.flat[pd.np.abs(lon - lonx).argmin()] lat_i = pd.np.where(lat == lat_closest)[0][0] lon_i = pd.np.where(lon == lon_closest)[0][0] # Read values original_values = nc_file.variables['original_values'][:, lat_i, lon_i] # Additional parameters ni = len(time) ts = range(ni) # HANTS y = pd.np.array(original_values) y[pd.np.isnan(y)] = -9999 [hants_values, outliers] = HANTS(ni, nb, nf, y, ts, HiLo, low, high, fet, dod, delta) # Plot top = 1.15*max(pd.np.nanmax(original_values), pd.np.nanmax(hants_values)) bottom = 1.15*min(pd.np.nanmin(original_values), pd.np.nanmin(hants_values)) ylim = [bottom, top] plt.plot(time, hants_values, 'r-', label='HANTS') plt.plot(time, original_values, 'b.', label='Original data') plt.ylim(ylim[0], ylim[1]) plt.legend(loc=4) plt.xlabel('time') plt.ylabel('values') plt.gcf().autofmt_xdate() plt.axes().set_title('Point: lon {0:.2f}, lat {1:.2f}'.format(lon_closest, lat_closest)) plt.axes().set_aspect(0.5*(time[-1] - time[0]).days/(ylim[1] - ylim[0])) plt.show() # Close netcdf file nc_file.close() # Data frame df = pd.DataFrame({'time': time, 'original': original_values, 'hants': hants_values}) # Return return df def HANTS(ni, nb, nf, y, ts, HiLo, low, high, fet, dod, delta): ''' This function applies the Harmonic ANalysis of Time Series (HANTS) algorithm originally developed by the Netherlands Aerospace Centre (NLR) (http://www.nlr.org/space/earth-observation/). This python implementation was based on two previous implementations available at the following links: https://codereview.stackexchange.com/questions/71489/harmonic-analysis-of-time-series-applied-to-arrays http://nl.mathworks.com/matlabcentral/fileexchange/38841-matlab-implementation-of-harmonic-analysis-of-time-series--hants- ''' # Arrays mat = pd.np.zeros((min(2*nf+1, ni), ni)) # amp = np.zeros((nf + 1, 1)) # phi = np.zeros((nf+1, 1)) yr = pd.np.zeros((ni, 1)) outliers = pd.np.zeros((1, len(y))) # Filter sHiLo = 0 if HiLo == 'Hi': sHiLo = -1 elif HiLo == 'Lo': sHiLo = 1 nr = min(2*nf+1, ni) noutmax = ni - nr - dod # dg = 180.0/math.pi mat[0, :] = 1.0 ang = 2*math.pi*pd.np.arange(nb)/nb cs = pd.np.cos(ang) sn = pd.np.sin(ang) i = pd.np.arange(1, nf+1) for j in pd.np.arange(ni): index = pd.np.mod(i*ts[j], nb) mat[2 * i-1, j] = cs.take(index) mat[2 * i, j] = sn.take(index) p = pd.np.ones_like(y) bool_out = (y < low) | (y > high) p[bool_out] = 0 outliers[bool_out.reshape(1, y.shape[0])] = 1 nout = pd.np.sum(p == 0) if nout > noutmax: if pd.np.isclose(y, -9999).any(): ready = pd.np.array([True]) yr = y outliers = pd.np.zeros((y.shape[0]), dtype=int) outliers[:] = -9999 else: raise Exception('Not enough data points.') else: ready = pd.np.zeros((y.shape[0]), dtype=bool) nloop = 0 nloopmax = ni while ((not ready.all()) & (nloop < nloopmax)): nloop += 1 za = pd.np.matmul(mat, p*y) A = pd.np.matmul(pd.np.matmul(mat, pd.np.diag(p)), pd.np.transpose(mat)) A = A + pd.np.identity(nr)*delta A[0, 0] = A[0, 0] - delta zr = pd.np.linalg.solve(A, za) yr = pd.np.matmul(pd.np.transpose(mat), zr) diffVec = sHiLo*(yr-y) err = p*diffVec err_ls = list(err) err_sort = deepcopy(err) err_sort.sort() rankVec = [err_ls.index(f) for f in err_sort] maxerr = diffVec[rankVec[-1]] ready = (maxerr <= fet) | (nout == noutmax) if (not ready): i = ni - 1 j = rankVec[i] while ((p[j]*diffVec[j] > 0.5*maxerr) & (nout < noutmax)): p[j] = 0 outliers[0, j] = 1 nout += 1 i -= 1 if i == 0: j = 0 else: j = 1 return [yr, outliers] def plot_point(nc_path, point, ylim=None): ''' This function plots the original time series and the HANTS time series. It can be used to assess the fit. ''' # Location lonx = point[0] latx = point[1] nc_file = netCDF4.Dataset(nc_path, 'r', format="NETCDF4_CLASSIC") time = [pd.to_datetime(i, format='%Y%m%d') for i in nc_file.variables['time'][:]] lat = nc_file.variables['latitude'][:] lon = nc_file.variables['longitude'][:] # Check that the point falls within the extent of the netcdf file lon_max = max(lon) lon_min = min(lon) lat_max = max(lat) lat_min = min(lat) if not (lon_min < lonx < lon_max) or not (lat_min < latx < lat_max): warnings.warn('The point lies outside the extent of the netcd file. ' 'The closest cell is plotted.') if lonx > lon_max: lonx = lon_max elif lonx < lon_min: lonx = lon_min if latx > lat_max: latx = lat_max elif latx < lat_min: latx = lat_min # Get lat-lon index in the netcdf file lat_closest = lat.flat[pd.np.abs(lat - latx).argmin()] lon_closest = lon.flat[pd.np.abs(lon - lonx).argmin()] lat_i = pd.np.where(lat == lat_closest)[0][0] lon_i = pd.np.where(lon == lon_closest)[0][0] # Read values values_o = nc_file.variables['original_values'][lat_i, lon_i, :] values_h = nc_file.variables['hants_values'][lat_i, lon_i, :] if not ylim: top = 1.15*max(pd.np.nanmax(values_o), pd.np.nanmax(values_h)) bottom = 1.15*min(pd.np.nanmin(values_o), pd.np.nanmin(values_h)) ylim = [bottom, top] # Plot plt.plot(time, values_h, 'r-', label='HANTS') plt.plot(time, values_o, 'b.', label='Original data') plt.ylim(ylim[0], ylim[1]) plt.legend(loc=4) plt.xlabel('time') plt.ylabel('values') plt.gcf().autofmt_xdate() plt.axes().set_title('Point: lon {0:.2f}, lat {1:.2f}'.format(lon_closest, lat_closest)) plt.axes().set_aspect(0.5*(time[-1] - time[0]).days/(ylim[1] - ylim[0])) plt.show() # Close netcdf file nc_file.close() # Return return True def Merge_NC_Tiles(nc_paths, nc_path, start_date, end_date, latlim, lonlim, cellsize, epsg, Scaling_factor): # Latitude and longitude lat_ls = pd.np.arange(latlim[0] + 0.5*cellsize, latlim[1], cellsize) lat_ls = lat_ls[::-1] # ArcGIS numpy lon_ls = pd.np.arange(lonlim[0] + 0.5*cellsize, lonlim[1], cellsize) lat_n = len(lat_ls) lon_n = len(lon_ls) spa_ref = Spatial_Reference(epsg) geo_ex = tuple([lon_ls[0] - 0.5*cellsize, cellsize, 0, lat_ls[0] - cellsize * 0.5, 0, -cellsize]) dates_dt =
pd.date_range(start_date, end_date, freq='D')
pandas.date_range
import numpy as np from numpy import nan import pandas as pd import pytest from pandas.util.testing import assert_frame_equal from numpy.testing import assert_allclose from pvlib.location import Location from pvlib import tracking SINGLEAXIS_COL_ORDER = ['tracker_theta', 'aoi', 'surface_azimuth', 'surface_tilt'] def test_solar_noon(): index = pd.date_range(start='20180701T1200', freq='1s', periods=1) apparent_zenith = pd.Series([10], index=index) apparent_azimuth = pd.Series([180], index=index) tracker_data = tracking.singleaxis(apparent_zenith, apparent_azimuth, axis_tilt=0, axis_azimuth=0, max_angle=90, backtrack=True, gcr=2.0/7.0) expect = pd.DataFrame({'tracker_theta': 0, 'aoi': 10, 'surface_azimuth': 90, 'surface_tilt': 0}, index=index, dtype=np.float64) expect = expect[SINGLEAXIS_COL_ORDER]
assert_frame_equal(expect, tracker_data)
pandas.util.testing.assert_frame_equal
# -*- coding: utf-8 -*- """ @author: <NAME> - https://www.linkedin.com/in/adamrvfisher/ """ #Developed in Python 3.5 #This is a trading strategy model with a brute force optimizer - under construction #also see DonchianTrendEfficiencyFilterSingleStockSingleFrequency.py #R Multiple Finder; Trade Data Tracking; Graphs #Import modules import numpy as np #import random as rand import pandas as pd #import time as t #from DatabaseGrabber import DatabaseGrabber from YahooGrabber import YahooGrabber #import matplotlib.pyplot as plt import warnings import math import matplotlib.pyplot as plt from matplotlib.finance import candlestick_ohlc import matplotlib.dates as mdates import random as rand import time #Start timer starttime = time.time() #Assign ticker Ticker1 = 'UVXY' #Request data Asset1 = YahooGrabber(Ticker1) #Don't display warnings warnings.filterwarnings("ignore", category = RuntimeWarning) pd.options.mode.chained_assignment = None #Declaration/Assignments #Empty list Empty = [] ParamsAndResultsList = [] #Empty dataframe Trades = pd.DataFrame() ParamsAndResults = pd.DataFrame() #Number of iterations for optimizer iterations = range(0,15) #Constraints in percentages; both unimplemented Commission = .005 Slippage = .004 #Iteration tracking Counter = 0 #SubIndex column is a secondary index, it exists to help identify exits Asset1['SubIndex'] = range(0,len(Asset1)) #Calculate log Returns Asset1['LogRet'] = np.log(Asset1['Adj Close']/Asset1['Adj Close'].shift(1)) Asset1['LogRet'] = Asset1['LogRet'].fillna(0) #ATR calculation using ATRwindow Asset1['Method1'] = Asset1['High'] - Asset1['Low'] Asset1['Method2'] = abs((Asset1['High'] - Asset1['Close'].shift(1))) Asset1['Method3'] = abs((Asset1['Low'] - Asset1['Close'].shift(1))) Asset1['Method1'] = Asset1['Method1'].fillna(0) Asset1['Method2'] = Asset1['Method2'].fillna(0) Asset1['Method3'] = Asset1['Method3'].fillna(0) Asset1['TrueRange'] = Asset1[['Method1','Method2','Method3']].max(axis = 1) #Time series trimmer for in/out sample data Asset1 = Asset1[-1250:] #In #For number of iterations for n in iterations: #Variable windows #Donchianwidow is used to find the min/max of the price range to make the long/short signal #Smaller donchain window = more likely double days donchianwindow = rand.randint(2,125) #ATRwindow is used for volatility position sizing ATRwindow = rand.randint(2,50) if ATRwindow >= donchianwindow: continue #Stopwindow is used for trailing high/low used for long/short exits stopwindow = rand.randint(2,100) #Number of ATR distance between stop numATR = rand.random() * 4 #Define starting equity Equity = 100000000000 #Risk for first trade RiskPerTrade = .005 DollarRisk = Equity * RiskPerTrade #ATR in points; not % Asset1['ATR'] = Asset1['TrueRange'].rolling(window = ATRwindow, center=False).mean() #Market top and bottom calculation Asset1['RollingMax'] = Asset1['High'].rolling(window=donchianwindow, center=False).max() Asset1['RollingMin'] = Asset1['Low'].rolling(window=donchianwindow, center=False).min() #Rolling stops Asset1['RollingLongStop'] = Asset1['Low'].rolling(window = stopwindow, center = False).min() Asset1['RollingShortStop'] = Asset1['High'].rolling(window = stopwindow, center = False).max() #Signal = Price </> min/max #If price is greater than the max go long Asset1['LongSignal'] = np.where(Asset1['High'] > Asset1['RollingMax'].shift(1), 1, 0) #If price is less than the min go short Asset1['ShortSignal'] = np.where(Asset1['Low'] < Asset1['RollingMin'].shift(1), 1, 0) #If double signal days exist, then entry and P/L on those days will not be reflected correctly, spurious return stream Asset1['DoubleDay'] = np.where(Asset1['LongSignal'] + Asset1['ShortSignal'] == 2, 1, 0) if sum(Asset1['DoubleDay']) > 0: continue #Next two lines combines long signal and short signal columns into a single column #If there is a double day then a short entry is recorded Asset1['Signal'] = np.where(Asset1['LongSignal'] == 1, 1, 0) Asset1['Signal'] = np.where(Asset1['ShortSignal'] == 1, -1, Asset1['Signal']) #If Rolling Min/Max is still being computed, stay out of market Asset1['Signal'] = np.where(Asset1['RollingMax'] == np.nan, 0, Asset1['Signal']) #Index values for segmenting data for trade analysis SignalDates = list(Asset1['Signal'].loc[(Asset1['Signal'] != 0)].index) #Trade ATR on signal day Asset1['TradeATR'] = np.where(Asset1['Signal'] != 0, Asset1['ATR'].shift(1), np.nan) #Declare columns to record entry price and stop; assignment inside of while loop on per trade basis Asset1['EntryPriceUnitOne'] = np.nan Asset1['StopPriceUnitOne'] = np.nan #On the first signal we record entry, create stop regime, record exit, record #trade details, and then trim the time series to the next signal after exit. This process repeats. #TradeSubset is a copy of Asset1 from the date of the first signal to the end of the time series TradeSubset = Asset1.loc[(Asset1.index >= SignalDates[0])] #Every trade is in the while loop. If a position exists that is still open #at the end of the testing period, it is taken care of outside the while loop #while Counter < 1: #Use this instead of the while loop to go a certain number of trades into the iteration #While there is still a signal in the time series while sum(abs(TradeSubset['Signal'])) != 0: #Reset gap indicators GapEntry = 0 GapExit = 0 #Reset Entry and Exit Price EntryPrice = np.nan ExitPrice = np.nan #Signal dates IndexOfEntry = TradeSubset.index[0] #This is the ATR on the period before signal period TradeATR = Asset1['ATR'].shift(1).loc[Asset1.index == TradeSubset.index[0]][0] #Volatility position sizing based on nominal risk and market volatility; round down shares!!! #Does not account for slippage / market impact.. numshares = (DollarRisk)/((TradeATR * numATR))//1 #1 = long; -1 = short TradeDirection = TradeSubset['Signal'][0] #For long trades if TradeDirection == 1: #Establish non-gap entry price based on previous period rolling max EntryPrice = Asset1['RollingMax'].shift(1).loc[Asset1.index == TradeSubset.index[0]][0] #Check for entry gap; Open higher than previous period rolling max #If gap then buy on open if TradeSubset['Open'][0] > EntryPrice: #Enter on open EntryPrice = TradeSubset['Open'][0] #Record gap entry GapEntry = 1 #Add slippage or market impact EntryPrice = EntryPrice # + .01 #Assign to TradeSubset TradeSubset['EntryPriceUnitOne'][0] = EntryPrice #Calculate initial stop based on Direction and ATR TradeSubset['StopPriceUnitOne'][0] = EntryPrice - (numATR * TradeATR) #Forward fill stop TradeSubset['StopPriceUnitOne'] = TradeSubset['StopPriceUnitOne'].ffill( limit = (stopwindow - 1)) #Add the trailing highest lows TradeSubset['StopPriceUnitOne'] = TradeSubset['StopPriceUnitOne'].fillna(TradeSubset['RollingLongStop']) #We want the cumulative maximum; thus preventing the stop from moving down. TradeSubset['StopPriceUnitOne'] = TradeSubset['StopPriceUnitOne'].cummax() #For every day the trade is open for r in range(len(TradeSubset['StopPriceUnitOne'])): #If low is lower than stop price if TradeSubset['Low'].iloc[r] < TradeSubset['StopPriceUnitOne'].shift(1).iloc[r]: #Record index of exit and get back to it IndexOfExit = TradeSubset.index[r] break #Establish non-gap exit price based on previous period stop try: ExitPrice = TradeSubset['StopPriceUnitOne'].shift(1).loc[TradeSubset.index == IndexOfExit][0] #Except if there is an open trade then no IndexOfExit exists except IndexError: break #Check Open for exit gap through stop if TradeSubset['Open'].loc[IndexOfExit] < ExitPrice: #Record open price instead of stop price ExitPrice = TradeSubset['Open'].loc[IndexOfExit] #Record exit gap GapExit = 1 #Calculate returns - slippage and commission go here. TradePercentReturn = (ExitPrice - EntryPrice) / ((RiskPerTrade ** -1) * DollarRisk) TradeDollarReturn = (ExitPrice - EntryPrice) * numshares #For short trades if TradeDirection == -1: #Establish non-gap entry price based on previous period rolling max EntryPrice = Asset1['RollingMin'].shift(1).loc[Asset1.index == TradeSubset.index[0]][0] #Check for entry gap; Open higher than previous period rolling max #If gap then buy on open if TradeSubset['Open'][0] < EntryPrice: #Record open price instead of stop price EntryPrice = TradeSubset['Open'][0] #Record gap entry GapEntry = 1 #Add slippage or market impact EntryPrice = EntryPrice # - .01 #Assign to TradeSubset TradeSubset['EntryPriceUnitOne'][0] = EntryPrice #Calculate initial stop based on Direction and ATR TradeSubset['StopPriceUnitOne'][0] = EntryPrice + (numATR * TradeATR) #Forward fill stop TradeSubset['StopPriceUnitOne'] = TradeSubset['StopPriceUnitOne'].ffill( limit = (stopwindow - 1)) #Add the trailing lowest highs TradeSubset['StopPriceUnitOne'] = TradeSubset['StopPriceUnitOne'].fillna(TradeSubset['RollingShortStop']) #We want the cumulative maximum; thus preventing the stop from moving down. TradeSubset['StopPriceUnitOne'] = TradeSubset['StopPriceUnitOne'].cummin() #For every day the trade is open for r in range(len(TradeSubset['StopPriceUnitOne'])): #If high is higher than stop price if TradeSubset['High'].iloc[r] > TradeSubset['StopPriceUnitOne'].shift(1).iloc[r]: #Record index of exit and get back to it IndexOfExit = TradeSubset.index[r] break #Establish non-gap exit price based on previous period stop try: ExitPrice = TradeSubset['StopPriceUnitOne'].shift(1).loc[TradeSubset.index == IndexOfExit][0] except IndexError: break #Check Open for gap through stop if TradeSubset['Open'].loc[IndexOfExit] > ExitPrice: #Record open price instead of stop price ExitPrice = TradeSubset['Open'].loc[IndexOfExit] #Record gap exit GapExit = 1 TradePercentReturn = (EntryPrice - ExitPrice) / ((RiskPerTrade ** -1) * DollarRisk) TradeDollarReturn = (EntryPrice - ExitPrice) * numshares #If there is no exit signal, the trade is still open.. if math.isnan(ExitPrice) == True: break LengthOfTrade = TradeSubset['SubIndex'].loc[IndexOfExit] - TradeSubset['SubIndex'].loc[IndexOfEntry] #The SubIndex of the exit date is for continuing looking for rentry in new trade subset SubIndexOfExit = TradeSubset['SubIndex'].loc[IndexOfExit] #R Multiple calculation, return based on initial risk RMultiple = TradeDollarReturn / DollarRisk #Log individual trade details in the Trade dataframe Empty.append(TradeDirection) Empty.append(IndexOfEntry) Empty.append(IndexOfExit) Empty.append(SubIndexOfExit) Empty.append(LengthOfTrade) Empty.append(GapEntry) Empty.append(GapExit) Empty.append(EntryPrice) Empty.append(ExitPrice) Empty.append(numshares) Empty.append(TradeATR) Empty.append(round(TradePercentReturn, 2)) Empty.append(TradeDollarReturn) Empty.append(DollarRisk) Empty.append(RMultiple) #List to series Emptyseries =
pd.Series(Empty)
pandas.Series
import itertools import numpy as np import pandas as pd import pytest from pandas.testing import assert_frame_equal # from https://tidyr.tidyverse.org/reference/complete.html df = pd.DataFrame( { "group": [1, 2, 1], "item_id": [1, 2, 2], "item_name": ["a", "b", "b"], "value1": [1, 2, 3], "value2": [4, 5, 6], } ) columns = [ ["group", "item_id", "item_name"], ["group", ("item_id", "item_name")], ] expected_output = [ pd.DataFrame( { "group": [1, 1, 1, 1, 2, 2, 2, 2], "item_id": [1, 1, 2, 2, 1, 1, 2, 2], "item_name": ["a", "b", "a", "b", "a", "b", "a", "b"], "value1": [1.0, np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 2.0], "value2": [4.0, np.nan, np.nan, 6.0, np.nan, np.nan, np.nan, 5.0], } ), pd.DataFrame( { "group": [1, 1, 2, 2], "item_id": [1, 2, 1, 2], "item_name": ["a", "b", "a", "b"], "value1": [1.0, 3.0, np.nan, 2.0], "value2": [4.0, 6.0, np.nan, 5.0], } ), ] complete_parameters = [ (dataframe, columns, output) for dataframe, (columns, output) in itertools.product( [df], zip(columns, expected_output) ) ] @pytest.mark.parametrize("df,columns,output", complete_parameters) def test_complete(df, columns, output): """Test the complete function, with and without groupings.""" assert_frame_equal(df.complete(columns), output) # from http://imachordata.com/2016/02/05/you-complete-me/ @pytest.fixture def df1(): return pd.DataFrame( { "Year": [1999, 2000, 2004, 1999, 2004], "Taxon": [ "Saccharina", "Saccharina", "Saccharina", "Agarum", "Agarum", ], "Abundance": [4, 5, 2, 1, 8], } ) def test_fill_value(df1): """Test fill_value argument.""" output1 = pd.DataFrame( { "Year": [1999, 1999, 2000, 2000, 2004, 2004], "Taxon": [ "Agarum", "Saccharina", "Agarum", "Saccharina", "Agarum", "Saccharina", ], "Abundance": [1, 4.0, 0, 5, 8, 2], } ) result = df1.complete( columns=["Year", "Taxon"], fill_value={"Abundance": 0} ) assert_frame_equal(result, output1) def test_fill_value_all_years(df1): """ Test the complete function accurately replicates for all the years from 1999 to 2004. """ output1 = pd.DataFrame( { "Year": [ 1999, 1999, 2000, 2000, 2001, 2001, 2002, 2002, 2003, 2003, 2004, 2004, ], "Taxon": [ "Agarum", "Saccharina", "Agarum", "Saccharina", "Agarum", "Saccharina", "Agarum", "Saccharina", "Agarum", "Saccharina", "Agarum", "Saccharina", ], "Abundance": [1.0, 4, 0, 5, 0, 0, 0, 0, 0, 0, 8, 2], } ) result = df1.complete( columns=[ {"Year": range(df1.Year.min(), df1.Year.max() + 1)}, "Taxon", ], fill_value={"Abundance": 0}, ) assert_frame_equal(result, output1) def test_type_columns(df1): """Raise error if columns is not a list object.""" with pytest.raises(TypeError): df1.complete(columns="Year") def test_empty_columns(df1): """Raise error if columns is empty""" with pytest.raises(ValueError): df1.complete(columns=[]) def test_fill_value_is_a_dict(df1): """Raise error if fill_value is not a dictionary""" with pytest.raises(TypeError): df1.complete(columns=["Year", "Taxon"], fill_value=0) frame = pd.DataFrame( { "Year": [1999, 2000, 2004, 1999, 2004], "Taxon": [ "Saccharina", "Saccharina", "Saccharina", "Agarum", "Agarum", ], "Abundance": [4, 5, 2, 1, 8], } ) wrong_columns = ( (frame, ["b", "Year"]), (frame, [{"Yayay": range(7)}]), (frame, ["Year", ["Abundant", "Taxon"]]), (frame, ["Year", ("Abundant", "Taxon")]), ) empty_sub_columns = [ (frame, ["Year", []]), (frame, ["Year", {}]), (frame, ["Year", ()]), (frame, ["Year", set()]), ] @pytest.mark.parametrize("frame,wrong_columns", wrong_columns) def test_wrong_columns(frame, wrong_columns): """Test that KeyError is raised if wrong column is supplied.""" with pytest.raises(KeyError): frame.complete(columns=wrong_columns) @pytest.mark.parametrize("frame,empty_sub_cols", empty_sub_columns) def test_empty_subcols(frame, empty_sub_cols): """Raise ValueError for an empty container in columns'""" with pytest.raises(ValueError): frame.complete(columns=empty_sub_cols) # https://stackoverflow.com/questions/32874239/ # how-do-i-use-tidyr-to-fill-in-completed-rows-within-each-value-of-a-grouping-var def test_grouping_first_columns(): """Test complete function when the first entry in columns is a grouping.""" df2 = pd.DataFrame( { "id": [1, 2, 3], "choice": [5, 6, 7], "c": [9.0, np.nan, 11.0], "d": [ pd.NaT, pd.Timestamp("2015-09-30 00:00:00"), pd.Timestamp("2015-09-29 00:00:00"), ], } ) output2 = pd.DataFrame( { "id": [1, 1, 1, 2, 2, 2, 3, 3, 3], "c": [9.0, 9.0, 9.0, np.nan, np.nan, np.nan, 11.0, 11.0, 11.0], "d": [ pd.NaT, pd.NaT, pd.NaT, pd.Timestamp("2015-09-30 00:00:00"), pd.Timestamp("2015-09-30 00:00:00"), pd.Timestamp("2015-09-30 00:00:00"), pd.Timestamp("2015-09-29 00:00:00"),
pd.Timestamp("2015-09-29 00:00:00")
pandas.Timestamp
from flask import Flask, render_template, request, redirect, url_for, session import pandas as pd import pymysql import os import io #from werkzeug.utils import secure_filename from pulp import * import numpy as np import pymysql import pymysql.cursors from pandas.io import sql #from sqlalchemy import create_engine import pandas as pd import numpy as np #import io import statsmodels.formula.api as smf import statsmodels.api as sm import scipy.optimize as optimize import matplotlib.mlab as mlab import matplotlib.pyplot as plt #from flask import Flask, render_template, request, redirect, url_for, session, g from sklearn.linear_model import LogisticRegression from math import sin, cos, sqrt, atan2, radians from statsmodels.tsa.arima_model import ARIMA #from sqlalchemy import create_engine from collections import defaultdict from sklearn import linear_model import statsmodels.api as sm import scipy.stats as st import pandas as pd import numpy as np from pulp import * import pymysql import math app = Flask(__name__) app.secret_key = os.urandom(24) localaddress="D:\\home\\site\\wwwroot" localpath=localaddress os.chdir(localaddress) @app.route('/') def index(): return redirect(url_for('home')) @app.route('/home') def home(): return render_template('home.html') @app.route('/demandplanning') def demandplanning(): return render_template("Demand_Planning.html") @app.route("/elasticopt",methods = ['GET','POST']) def elasticopt(): if request.method== 'POST': start_date =request.form['from'] end_date=request.form['to'] prdct_name=request.form['typedf'] # connection = pymysql.connect(host='localhost', # user='user', # password='', # db='test', # charset='utf8mb4', # cursorclass=pymysql.cursors.DictCursor) # # x=connection.cursor() # x.execute("select * from `transcdata`") # connection.commit() # datass=pd.DataFrame(x.fetchall()) datass = pd.read_csv("C:\\Users\\1026819\\Downloads\\optimizdata.csv") # datas = datass[(datass['Week']>=start_date) & (datass['Week']<=end_date )] datas=datass df = datas[datas['Product'] == prdct_name] df=datass changeData=pd.concat([df['Product_Price'],df['Product_Qty']],axis=1) changep=[] changed=[] for i in range(0,len(changeData)-1): changep.append(changeData['Product_Price'].iloc[i]-changeData['Product_Price'].iloc[i+1]) changed.append(changeData['Product_Qty'].iloc[1]-changeData['Product_Qty'].iloc[i+1]) cpd=pd.concat([pd.DataFrame(changep),pd.DataFrame(changed)],axis=1) cpd.columns=['Product_Price','Product_Qty'] sortedpricedata=df.sort_values(['Product_Price'], ascending=[True]) spq=pd.concat([sortedpricedata['Product_Price'],sortedpricedata['Product_Qty']],axis=1).reset_index(drop=True) pint=[] dint=[] x = spq['Product_Price'] num_bins = 5 # n, pint, patches = plt.hist(x, num_bins, facecolor='blue', alpha=0.5) y = spq['Product_Qty'] num_bins = 5 # n, dint, patches = plt.hist(y, num_bins, facecolor='blue', alpha=0.5) arr= np.zeros(shape=(len(pint),len(dint))) count=0 for i in range(0, len(pint)): lbp=pint[i] if i==len(pint)-1: ubp=pint[i]+1 else: ubp=pint[i+1] for j in range(0, len(dint)): lbd=dint[j] if j==len(dint)-1: ubd=dint[j]+1 else: ubd=dint[j+1] print(lbd,ubd) for k in range(0, len(spq)): if (spq['Product_Price'].iloc[k]>=lbp\ and spq['Product_Price'].iloc[k]<ubp): if(spq['Product_Qty'].iloc[k]>=lbd\ and spq['Product_Qty'].iloc[k]<ubd): count+=1 arr[i][j]+=1 price_range=np.zeros(shape=(len(pint),2)) for j in range(0,len(pint)): lbp=pint[j] price_range[j][0]=lbp if j==len(pint)-1: ubp=pint[j]+1 price_range[j][1]=ubp else: ubp=pint[j+1] price_range[j][1]=ubp demand_range=np.zeros(shape=(len(dint),2)) for j in range(0,len(dint)): lbd=dint[j] demand_range[j][0]=lbd if j==len(dint)-1: ubd=dint[j]+1 demand_range[j][1]=ubd else: ubd=dint[j+1] demand_range[j][1]=ubd pr=pd.DataFrame(price_range) pr.columns=['Price','Demand'] dr=pd.DataFrame(demand_range) dr.columns=['Price','Demand'] priceranges=pr.Price.astype(str).str.cat(pr.Demand.astype(str), sep='-') demandranges=dr.Price.astype(str).str.cat(dr.Demand.astype(str), sep='-') price=pd.DataFrame(arr) price.columns=demandranges price.index=priceranges pp=price.reset_index() global data data=pd.concat([df['Week'],df['Product_Qty'],df['Product_Price'],df['Comp_Prod_Price'],df['Promo1'],df['Promo2'],df['overallsale']],axis=1) return render_template('dataview.html',cpd=cpd.values,pp=pp.to_html(index=False),data=data.to_html(index=False),graphdata=data.values,ss=1) return render_template('dataview.html') @app.route('/priceelasticity',methods = ['GET','POST']) def priceelasticity(): return render_template('Optimisation_heatmap_revenue.html') @app.route("/elasticity",methods = ['GET','POST']) def elasticity(): if request.method== 'POST': Price=0 Average_Price=0 Promotions=0 Promotionss=0 if request.form.get('Price'): Price=1 if request.form.get('Average_Price'): Average_Price=1 if request.form.get('Promotion_1'): Promotions=1 if request.form.get('Promotion_2'): Promotionss=1 Modeldata=pd.DataFrame() Modeldata['Product_Qty']=data.Product_Qty lst=[] for row in data.index: lst.append(row+1) Modeldata['Week']=np.log(lst) if Price == 1: Modeldata['Product_Price']=data['Product_Price'] if Price == 0: Modeldata['Product_Price']=0 if Average_Price==1: Modeldata['Comp_Prod_Price']=data['Comp_Prod_Price'] if Average_Price==0: Modeldata['Comp_Prod_Price']=0 if Promotions==1: Modeldata['Promo1']=data['Promo1'] if Promotions==0: Modeldata['Promo1']=0 if Promotionss==1: Modeldata['Promo2']=data['Promo2'] if Promotionss==0: Modeldata['Promo2']=0 diffpriceprodvscomp= (Modeldata['Product_Price']-Modeldata['Comp_Prod_Price']) promo1=Modeldata.Promo1 promo2=Modeldata.Promo2 week=Modeldata.Week quantityproduct=Modeldata.Product_Qty df=pd.concat([quantityproduct,diffpriceprodvscomp,promo1,promo2,week],axis=1) df.columns=['quantityproduct','diffpriceprodvscomp','promo1','promo2','week'] Model = smf.ols(formula='df.quantityproduct ~ df.diffpriceprodvscomp + df.promo1 + df.promo2 + df.week', data=df) res = Model.fit() global intercept,diffpriceprodvscomp_param,promo1_param,promo2_param,week_param intercept=res.params[0] diffpriceprodvscomp_param=res.params[1] promo1_param=res.params[2] promo2_param=res.params[3] week_param=res.params[4] Product_Price_min=0 maxvalue_of_price=int(Modeldata['Product_Price'].max()) Product_Price_max=int(Modeldata['Product_Price'].max()) if maxvalue_of_price==0: Product_Price_max=1 maxfunction=[] pricev=[] weeks=[] dd=[] ddl=[] for vatr in range(0,len(Modeldata)): weeks.append(lst[vatr]) for Product_Price in range(Product_Price_min,Product_Price_max+1): function=0 function=(intercept+(Modeldata['Promo1'].iloc[vatr]*promo1_param)+(Modeldata['Promo2'].iloc[vatr]*promo2_param) + (diffpriceprodvscomp_param*(Product_Price-Modeldata['Comp_Prod_Price'].iloc[vatr]))+(Modeldata['Week'].iloc[vatr]*lst[vatr])) maxfunction.append(function) dd.append(Product_Price) ddl.append(vatr) for Product_Price in range(Product_Price_min,Product_Price_max+1): pricev.append(Product_Price) df1=pd.DataFrame(maxfunction) df2=pd.DataFrame(dd) df3=pd.DataFrame(ddl) dfo=pd.concat([df3,df2,df1],axis=1) dfo.columns=['weeks','prices','Demandfunctions'] demand=[] for rows in dfo.values: w=int(rows[0]) p=int(rows[1]) d=int(rows[2]) demand.append([w,p,d]) Co_eff=pd.DataFrame(res.params.values)#intercept standard_error=pd.DataFrame(res.bse.values)#standard error p_values=pd.DataFrame(res.pvalues.values) conf_lower =pd.DataFrame(res.conf_int()[0].values) conf_higher =pd.DataFrame(res.conf_int()[1].values) R_square=res.rsquared atr=['Intercept','DeltaPrice','Promo1','Promo2','Week'] atribute=pd.DataFrame(atr) SummaryTable=pd.concat([atribute,Co_eff,standard_error,p_values,conf_lower,conf_higher],axis=1) SummaryTable.columns=['Atributes','Co_eff','Standard_error','P_values','conf_lower','conf_higher'] reshapedf=df1.values.reshape(len(Modeldata),(-Product_Price_min+(Product_Price_max+1))) dataofmas=pd.DataFrame(reshapedf) maxv=dataofmas.apply( max, axis=1 ) minv=dataofmas.apply(min,axis=1) avgv=dataofmas.sum(axis=1)/(-Product_Price_min+(Product_Price_max+1)) wks=pd.DataFrame(weeks) ddofs=pd.concat([wks,minv,avgv,maxv],axis=1) dataofmas=pd.DataFrame(reshapedf) kk=pd.DataFrame() sums=0 for i in range(0,len(dataofmas.columns)): sums=sums+i vv=i*dataofmas[[i]] kk=pd.concat([kk,vv],axis=1) dfr=pd.DataFrame(kk) mrevenue=dfr.apply( max, axis=1 ) prices=dfr.idxmax(axis=1) wks=pd.DataFrame(weeks) revenuedf=pd.concat([wks,mrevenue,prices],axis=1) return render_template('Optimisation_heatmap_revenue.html',revenuedf=revenuedf.values,ddofs=ddofs.values,SummaryTable=SummaryTable.to_html(index=False),ss=1,weeks=weeks,demand=demand,pricev=pricev,R_square=R_square) @app.route('/inputtomaxm',methods=["GET","POST"]) def inputtomaxm(): return render_template("Optimize.html") @app.route("/maxm",methods=["GET","POST"]) def maxm(): if request.method=="POST": week=request.form['TimePeriod'] price_low=request.form['Price_Lower'] price_max=request.form['Price_Upper'] promofirst=request.form['Promotion_1'] promosecond=request.form['Promotion_2'] # week=24 # price_low=6 # price_max=20 # promofirst=1 # promosecond=0 # # time_period=24 # # global a # a=243.226225 # global b # b=-9.699634 # global d # d=1.671505 # global pr1 # pr1=21.866260 # global pr2 # pr2=-0.511606 # global cm # cm=-14.559594 # global s_0 # s_0= 2000 # promo1=1 # promo2=0 time_period=int(week) global a a=intercept global b b=diffpriceprodvscomp_param global d d=week_param global pr1 pr1=promo1_param global pr2 pr2=promo2_param global s_0 s_0= 2000 promo1=int(promofirst) promo2=int(promosecond) global comp comp=np.random.randint(7,15,time_period) def demand(p, a=a, b=b, d=d, promo1=promo1,promo2_param=promo2,comp=comp, t=np.linspace(1,time_period,time_period)): """ Return demand given an array of prices p for times t (see equation 5 above)""" return a+(b*(p-comp))+(d*t)+(promo1*pr1)+(promo2*pr2) def objective(p_t, a, b, d,promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): return -1.0 * np.sum( p_t * demand(p_t, a, b, d,promo1,promo2, comp, t) ) def constraint_1(p_t, s_0, a, b, d, promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): """ Inventory constraint. s_0 - np.sum(x_t) >= 0. This is an inequality constraint. See more below. """ return s_0 - np.sum(demand(p_t, a, b, d,promo1,promo2, comp, t)) def constraint_2(p_t): #""" Positive demand. Another inequality constraint x_t >= 0 """ return p_t t = np.linspace(1,time_period,time_period) # Starting values : b_min=int(price_low) p_start = b_min * np.ones(len(t)) # bounds on the values : bmax=int(price_max) bounds = tuple((0,bmax) for x in p_start) import scipy.optimize as optimize # Constraints : constraints = ({'type': 'ineq', 'fun': lambda x, s_0=s_0: constraint_1(x,s_0, a, b, d,promo1,promo2, comp, t=t)}, {'type': 'ineq', 'fun': lambda x: constraint_2(x)} ) opt_results = optimize.minimize(objective, p_start, args=(a, b, d,promo1,promo2, comp, t), method='SLSQP', bounds=bounds, constraints=constraints) np.sum(opt_results['x']) opt_price=opt_results['x'] opt_demand=demand(opt_results['x'], a, b, d, promo1,promo2_param, comp, t=t) weeks=[] for row in range(1,len(opt_price)+1): weeks.append(row) d=pd.DataFrame(weeks).astype(int) dd=pd.DataFrame(opt_price) optimumumprice_perweek=pd.concat([d,dd,pd.DataFrame(opt_demand).astype(int)],axis=1) optimumumprice_perweek.columns=['Week','Price','Demand'] dataval=optimumumprice_perweek diff=[] diffs=[] for i in range(0,len(opt_demand)-1): valss=opt_demand[i]-opt_demand[i+1] diff.append(valss) diffs.append(i+1) differenceofdemand_df=pd.concat([pd.DataFrame(diffs),pd.DataFrame(diff)],axis=1) MP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmin()],1) minimumprice=pd.DataFrame(MP).T MaxP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmax()],1) maximumprice=pd.DataFrame(MaxP).T averageprice=round((optimumumprice_perweek['Price'].sum()/len(optimumumprice_perweek)),2) MD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmin()],0) minimumDemand=pd.DataFrame(MD).T MaxD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmax()],0) maximumDemand=pd.DataFrame(MaxD).T averageDemand=round((optimumumprice_perweek['Demand'].sum()/len(optimumumprice_perweek)),0) totaldemand=round(optimumumprice_perweek['Demand'].sum(),0) return render_template("Optimize.html",totaldemand=totaldemand,averageDemand=averageDemand,maximumDemand=maximumDemand.values,minimumDemand=minimumDemand.values,averageprice=averageprice,maximumprice=maximumprice.values,minimumprice=minimumprice.values,dataval=dataval.values,differenceofdemand_df=differenceofdemand_df.values,optimumumprice_perweek=optimumumprice_perweek.to_html(index=False),ll=1) @app.route("/Inventorymanagment",methods=["GET","POST"]) def Inventorymanagment(): return render_template("Inventory_Management.html") @app.route("/DISTRIBUTION_NETWORK_OPT",methods=["GET","POST"]) def DISTRIBUTION_NETWORK_OPT(): return render_template("DISTRIBUTION_NETWORK_OPTIMIZATION.html") @app.route("/Procurement_Plan",methods=["GET","POST"]) def Procurement_Plan(): return render_template("Procurement_Planning.html") #<NAME> @app.route("/fleetallocation") def fleetallocation(): return render_template('fleetallocation.html') @app.route("/reset") def reset(): conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM `input`") cur.execute("DELETE FROM `output`") cur.execute("DELETE FROM `Scenario`") conn.commit() conn.close() open(localaddress+'\\static\\demodata.txt', 'w').close() return render_template('fleetallocation.html') @app.route("/dalink",methods = ['GET','POST']) def dalink(): sql = "INSERT INTO `input` (`Route`,`SLoc`,`Ship-to Abb`,`Primary Equipment`,`Batch`,`Prod Dt`,`SW`,`Met Held`,`Heat No`,`Delivery Qty`,`Width`,`Length`,`Test Cut`,`Customer Priority`) VALUES( %s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() if request.method == 'POST': typ = request.form.get('type') frm = request.form.get('from') to = request.form.get('to') if typ and frm and to: conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("SELECT * FROM `inventory_data` WHERE `Primary Equipment` = '" + typ + "' AND `Prod Dt` BETWEEN '" + frm + "' AND '" + to + "'") res = cur.fetchall() if len(res)==0: conn.close() return render_template('fleetallocation.html',alert='No data available') sfile = pd.DataFrame(res) df1 = pd.DataFrame(sfile) df1['Prod Dt'] =df1['Prod Dt'].astype(object) for index, i in df1.iterrows(): data = (i['Route'],i['SLoc'],i['Ship-to Abb'],i['Primary Equipment'],i['Batch'],i['Prod Dt'],i['SW'],i['Met Held'],i['Heat No'],i['Delivery Qty'],i['Width'],i['Length'],i['Test Cut'],i['Customer Priority']) curr.execute(sql,data) conn.commit() conn.close() return render_template('fleetallocation.html',typ=" Equipment type: "+typ,frm="From: "+frm,to=" To:"+to,data = sfile.to_html(index=False)) else: return render_template('fleetallocation.html',alert ='All input fields are required') return render_template('fleetallocation.html') @app.route('/optimise', methods=['GET', 'POST']) def optimise(): open(localaddress+'\\static\\demodata.txt', 'w').close() conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("DELETE FROM `output`") conn.commit() os.system('python optimising.py') sa=1 cur.execute("SELECT * FROM `output`") result = cur.fetchall() if len(result)==0: say=0 else: say=1 curr.execute("SELECT * FROM `input`") sfile = curr.fetchall() if len(sfile)==0: conn.close() return render_template('fleetallocation.html',say=say,sa=sa,alert='No data available') sfile = pd.DataFrame(sfile) conn.close() with open(localaddress+"\\static\\demodata.txt", "r") as f: content = f.read() return render_template('fleetallocation.html',say=say,sa=sa,data = sfile.to_html(index=False),content=content) @app.route("/scenario") def scenario(): return render_template('scenario.html') @app.route("/scenario_insert", methods=['GET','POST']) def scenario_insert(): if request.method == 'POST': scenario = request.form.getlist("scenario[]") customer_priority = request.form.getlist("customer_priority[]") oldest_sw = request.form.getlist("oldest_sw[]") production_date = request.form.getlist("production_date[]") met_held_group = request.form.getlist("met_held_group[]") test_cut_group = request.form.getlist("test_cut_group[]") sub_grouping_rules = request.form.getlist("sub_grouping_rules[]") load_lower_bounds = request.form.getlist("load_lower_bounds[]") load_upper_bounds = request.form.getlist("load_upper_bounds[]") width_bounds = request.form.getlist("width_bounds[]") length_bounds = request.form.getlist("length_bounds[]") description = request.form.getlist("description[]") conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() lngth = len(scenario) curr.execute("DELETE FROM `scenario`") if scenario and customer_priority and oldest_sw and production_date and met_held_group and test_cut_group and sub_grouping_rules and load_lower_bounds and load_upper_bounds and width_bounds and length_bounds and description: say=0 for i in range(lngth): scenario_clean = scenario[i] customer_priority_clean = customer_priority[i] oldest_sw_clean = oldest_sw[i] production_date_clean = production_date[i] met_held_group_clean = met_held_group[i] test_cut_group_clean = test_cut_group[i] sub_grouping_rules_clean = sub_grouping_rules[i] load_lower_bounds_clean = load_lower_bounds[i] load_upper_bounds_clean = load_upper_bounds[i] width_bounds_clean = width_bounds[i] length_bounds_clean = length_bounds[i] description_clean = description[i] if scenario_clean and customer_priority_clean and oldest_sw_clean and production_date_clean and met_held_group_clean and test_cut_group_clean and sub_grouping_rules_clean and load_lower_bounds_clean and load_upper_bounds_clean and width_bounds_clean and length_bounds_clean: cur.execute("INSERT INTO `scenario`(scenario, customer_priority, oldest_sw, production_date, met_held_group, test_cut_group, sub_grouping_rules, load_lower_bounds, load_upper_bounds, width_bounds, length_bounds, description) VALUES('"+scenario_clean+"' ,'"+customer_priority_clean+"','"+oldest_sw_clean+"','"+production_date_clean+"','"+met_held_group_clean+"','"+test_cut_group_clean+"', '"+sub_grouping_rules_clean+"','"+load_lower_bounds_clean+"', '"+load_upper_bounds_clean+"','"+width_bounds_clean+"','"+length_bounds_clean+"','"+description_clean+"')") else: say = 1 conn.commit() if(say==0): alert='All Scenarios inserted' else: alert='Some scenarios were not inserted' return (alert) conn.close() return ('All fields are required!') return ('Failed!!!') @app.route("/fetch", methods=['GET','POST']) def fetch(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("SELECT * FROM scenario") result = cur.fetchall() if len(result)==0: conn.close() return render_template('scenario.html',alert1='No scenarios Available') result1 = pd.DataFrame(result) result1 = result1.drop('Sub-grouping rules', axis=1) conn.close() return render_template('scenario.html',sdata = result1.to_html(index=False)) return ("Error") @app.route("/delete", methods=['GET','POST']) def delete(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM scenario") conn.commit() conn.close() return render_template('scenario.html',alert1="All the scenerios were dropped!") return ("Error") @app.route('/papadashboard', methods=['GET', 'POST']) def papadashboard(): sql1 = "SELECT `Scenario`, MAX(`Wagon-No`) AS 'Wagon Used', COUNT(`Batch`) AS 'Products Allocated', SUM(`Delivery Qty`) AS 'Total Product Allocated', SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', SUM(`Width`)/(MAX(`Wagon-No`)) AS 'Average Width Used' FROM `output` WHERE `Wagon-No`>0 GROUP BY `Scenario`" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curs = conn.cursor() curs.execute("SELECT `scenario` FROM `scenario`") sdata = curs.fetchall() if len(sdata)==0: conn.close() return render_template('warning.html',alert='No data available') cur1 = conn.cursor() cur1.execute(sql1) data1 = cur1.fetchall() if len(data1)==0: conn.close() return render_template('warning.html',alert='Infeasible to due Insufficient Load') cu = conn.cursor() cu.execute("SELECT `length_bounds`,`width_bounds`,`load_lower_bounds`,`load_upper_bounds` FROM `scenario`") sdaa = cu.fetchall() sdaa = pd.DataFrame(sdaa) asa=list() for index, i in sdaa.iterrows(): hover = "Length Bound:"+str(i['length_bounds'])+", Width Bound:"+str(i['width_bounds'])+", Load Upper Bound:"+str(i['load_upper_bounds'])+", Load Lower Bound:"+str(i['load_lower_bounds']) asa.append(hover) asa=pd.DataFrame(asa) asa.columns=['Details'] data1 = pd.DataFrame(data1) data1['Average Width Used'] = data1['Average Width Used'].astype(int) data1['Total Product Allocated'] = data1['Total Product Allocated'].astype(int) data1['Average Load Carried'] = data1['Average Load Carried'].astype(float) data1['Average Load Carried'] = round(data1['Average Load Carried'],2) data1['Average Load Carried'] = data1['Average Load Carried'].astype(str) fdata = pd.DataFrame(columns=['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used','Details']) fdata[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] = data1[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] fdata['Details'] = asa['Details'] fdata = fdata.values sql11 = "SELECT `Scenario`, SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', COUNT(`Batch`) AS 'Allocated', SUM(`Delivery Qty`) AS 'Load Allocated' FROM `output`WHERE `Wagon-No`>0 GROUP BY `Scenario`" sql21 = "SELECT COUNT(`Batch`) AS 'Total Allocated' FROM `output` GROUP BY `Scenario`" sql31 = "SELECT `load_upper_bounds` FROM `scenario`" conn1 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur11 = conn1.cursor() cur21 = conn1.cursor() cur31 = conn1.cursor() cur11.execute(sql11) data11 = cur11.fetchall() data11 = pd.DataFrame(data11) cur21.execute(sql21) data21 = cur21.fetchall() data21 = pd.DataFrame(data21) cur31.execute(sql31) data31 = cur31.fetchall() data31 = pd.DataFrame(data31) data11['Average Load Carried']=data11['Average Load Carried'].astype(float) fdata1 = pd.DataFrame(columns=['Scenario','Utilisation Percent','Allocation Percent','Total Load Allocated']) fdata1['Utilisation Percent'] = round(100*(data11['Average Load Carried']/data31['load_upper_bounds']),2) data11['Load Allocated']=data11['Load Allocated'].astype(int) fdata1[['Scenario','Total Load Allocated']]=data11[['Scenario','Load Allocated']] data11['Allocated']=data11['Allocated'].astype(float) data21['Total Allocated']=data21['Total Allocated'].astype(float) fdata1['Allocation Percent'] = round(100*(data11['Allocated']/data21['Total Allocated']),2) fdata1['Allocation Percent'] = fdata1['Allocation Percent'].astype(str) fdat1 = fdata1.values conn1.close() if request.method == 'POST': conn2 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn2.cursor() ata = request.form['name'] cur.execute("SELECT * FROM `output` WHERE `Scenario` = '"+ata+"' ") ssdata = cur.fetchall() datasss = pd.DataFrame(ssdata) data=datasss.replace("Not Allocated", 0) df=data[['Delivery Qty','Wagon-No','Width','Group-Number']] df['Wagon-No']=df['Wagon-No'].astype(int) a=df['Wagon-No'].max() ##bar1 result_array = np.array([]) for i in range (a): data_i = df[df['Wagon-No'] == i+1] del_sum_i = data_i['Delivery Qty'].sum() per_i=[((del_sum_i)/(205000)*100)] result_array = np.append(result_array, per_i) result_array1 = np.array([]) for j in range (a): data_j = df[df['Wagon-No'] == j+1] del_sum_j = data_j['Width'].sum() per_util_j=[((del_sum_j)/(370)*100)] result_array1 = np.append(result_array1, per_util_j) ##pie1 df112 = df[df['Wagon-No'] == 0] pie1 = df112 ['Width'].sum() df221 = df[df['Wagon-No'] > 0] pie11 = df221['Width'].sum() df1=data[['SW','Group-Number']] dff1 = df1[data['Wagon-No'] == 0] da1 =dff1.groupby(['SW']).count() re11 = np.array([]) res12 = np.append(re11,da1) da1['SW'] = da1.index r1 = np.array([]) r12 = np.append(r1, da1['SW']) df0=data[['Group-Number','Route','SLoc','Ship-to Abb','Wagon-No','Primary Equipment']] df1=df0.replace("Not Allocated", 0) f2 = pd.DataFrame(df1) f2['Wagon-No']=f2['Wagon-No'].astype(int) ####Not-Allocated f2['Group']=data['Group-Number'] df=f2[['Group','Wagon-No']] dee = df[df['Wagon-No'] == 0] deer =dee.groupby(['Group']).count()##Not Allocated deer['Group'] = deer.index ##Total-Data f2['Group1']=data['Group-Number'] dfc=f2[['Group1','Wagon-No']] dfa=pd.DataFrame(dfc) der = dfa[dfa['Wagon-No'] >= 0] dear =der.groupby(['Group1']).count()##Wagons >1 dear['Group1'] = dear.index dear.rename(columns={'Wagon-No': 'Allocated'}, inplace=True) result = pd.concat([deer, dear], axis=1, join_axes=[dear.index]) resu=result[['Group1','Wagon-No','Allocated']] result1=resu.fillna(00) r5 = np.array([]) r6 = np.append(r5, result1['Wagon-No']) r66=r6[0:73]###Not Allocated r7 = np.append(r5, result1['Allocated']) r77=r7[0:73]####total r8 = np.append(r5, result1['Group1']) r88=r8[0:73]###group conn2.close() return render_template('papadashboard.html',say=1,data=fdata,data1=fdat1,ata=ata,bar1=result_array,bar11=result_array1,pie11=pie1,pie111=pie11,x=r12,y=res12,xname=r88, bar7=r77,bar8=r66) conn.close() return render_template('papadashboard.html',data=fdata,data1=fdat1) @app.route('/facilityallocation') def facilityallocation(): return render_template('facilityhome.html') @app.route('/dataimport') def dataimport(): return render_template('facilityimport.html') @app.route('/dataimport1') def dataimport1(): return redirect(url_for('dataimport')) @app.route('/facility_location') def facility_location(): return render_template('facility_location.html') @app.route('/facility') def facility(): return redirect(url_for('facilityallocation')) @app.route("/imprt", methods=['GET','POST']) def imprt(): global customerdata global factorydata global Facyy global Custo customerfile = request.files['CustomerData'].read() factoryfile = request.files['FactoryData'].read() if len(customerfile)==0 or len(factoryfile)==0: return render_template('facilityhome.html',warning='Data Invalid') cdat=pd.read_csv(io.StringIO(customerfile.decode('utf-8'))) customerdata=pd.DataFrame(cdat) fdat=pd.read_csv(io.StringIO(factoryfile.decode('utf-8'))) factorydata=pd.DataFrame(fdat) Custo=customerdata.drop(['Lat','Long'],axis=1) Facyy=factorydata.drop(['Lat','Long'],axis=1) return render_template('facilityimport1.html',loc1=factorydata.values,loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False)) @app.route("/gmap") def gmap(): custdata=customerdata Factorydata=factorydata price=1 #to get distance beetween customer and factory #first get the Dimension #get no of factories Numberoffact=len(Factorydata) #get Number of Customer Numberofcust=len(custdata) #Get The dist/unit cost cost=price #def function for distance calculation # approximate radius of earth in km def dist(lati1,long1,lati2,long2,cost): R = 6373.0 lat1 = radians(lati1) lon1 = radians(long1) lat2 = radians(lati2) lon2 = radians(long2) dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2 c = 2 * atan2(sqrt(a), sqrt(1 - a)) distance =round(R * c,2) return distance*cost #Create a list for customer and factory def costtable(custdata,Factorydata): distance=list() for lat1,long1 in zip(custdata.Lat, custdata.Long): for lat2,long2 in zip(Factorydata.Lat, Factorydata.Long): distance.append(dist(lat1,long1,lat2,long2,cost)) distable=np.reshape(distance, (Numberofcust,Numberoffact)).T tab=pd.DataFrame(distable,index=[Factorydata.Factory],columns=[custdata.Customer]) return tab DelCost=costtable(custdata,Factorydata)#return cost table of the customer and factoery #creating Demand Table demand=np.array(custdata.Demand) col1=np.array(custdata.Customer) Demand=pd.DataFrame(demand,col1).T cols=sorted(col1) #Creating capacity table fact=np.array(Factorydata.Capacity) col2=np.array(Factorydata.Factory) Capacity=pd.DataFrame(fact,index=col2).T colo=sorted(col2) #creating Fixed cost table fixed_c=np.array(Factorydata.FixedCost) col3=np.array(Factorydata.Factory) FixedCost= pd.DataFrame(fixed_c,index=col3) # Create the 'prob' variable to contain the problem data model = LpProblem("Min Cost Facility Location problem",LpMinimize) production = pulp.LpVariable.dicts("Production", ((factory, cust) for factory in Capacity for cust in Demand), lowBound=0, cat='Integer') factory_status =pulp.LpVariable.dicts("factory_status", (factory for factory in Capacity), cat='Binary') cap_slack =pulp.LpVariable.dicts("capslack", (cust for cust in Demand), lowBound=0, cat='Integer') model += pulp.lpSum( [DelCost.loc[factory, cust] * production[factory, cust] for factory in Capacity for cust in Demand] + [FixedCost.loc[factory] * factory_status[factory] for factory in Capacity] + 5000000*cap_slack[cust] for cust in Demand) for cust in Demand: model += pulp.lpSum(production[factory, cust] for factory in Capacity)+cap_slack[cust] == Demand[cust] for factory in Capacity: model += pulp.lpSum(production[factory, cust] for cust in Demand) <= Capacity[factory]*factory_status[factory] model.solve() print("Status:", LpStatus[model.status]) for v in model.variables(): print(v.name, "=", v.varValue) print("Total Cost of Ingredients per can = ", value(model.objective)) # Getting the table for the Factorywise Allocation def factoryalloc(model,Numberoffact,Numberofcust,listoffac,listofcus): listj=list() listk=list() listcaps=list() for v in model.variables(): listj.append(v.varValue) customer=listj[(len(listj)-Numberofcust-Numberoffact):(len(listj)-Numberoffact)] del listj[(len(listj)-Numberoffact-Numberofcust):len(listj)] for row in listj: if row==0: listk.append(0) else: listk.append(1) x=np.reshape(listj,(Numberoffact,Numberofcust)) y=np.reshape(listk,(Numberoffact,Numberofcust)) FactoryAlloc_table=pd.DataFrame(x,index=listoffac,columns=listofcus) Factorystatus=pd.DataFrame(y,index=listoffac,columns=listofcus) return FactoryAlloc_table,Factorystatus,customer Alltable,FactorystatusTable,ded=factoryalloc(model,Numberoffact,Numberofcust,colo,cols) Allstatus=list() dede=pd.DataFrame(ded,columns=['UnSatisfied']) finaldede=dede[dede.UnSatisfied != 0] colss=pd.DataFrame(cols,columns=['CustomerLocation']) fina=pd.concat([colss,finaldede],axis=1, join='inner') print(fina) for i in range(len(Alltable)): for j in range(len(Alltable.columns)): if (Alltable.loc[Alltable.index[i], Alltable.columns[j]]>0): all=[Alltable.index[i], Alltable.columns[j], Alltable.loc[Alltable.index[i], Alltable.columns[j]]] Allstatus.append(all) Status=pd.DataFrame(Allstatus,columns=['Factory','Customer','Allocation']).astype(str) #To get the Factory Data con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) #Making Connection to the Database cur = con.cursor() engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Status.to_sql(con=engine, name='facilityallocation',index=False, if_exists='replace') cur = con.cursor() cur1 = con.cursor() cur.execute("SELECT * FROM `facilityallocation`") file=cur.fetchall() dat=pd.DataFrame(file) lst=dat[['Factory','Customer']] mlst=[] names=lst['Factory'].unique().tolist() for name in names: lsty=lst.loc[lst.Factory==name] mlst.append(lsty.values) data=dat[['Factory','Customer','Allocation']] sql="SELECT SUM(`Allocation`) AS 'UseCapacity', `Factory` FROM `facilityallocation` GROUP BY `Factory`" cur1.execute(sql) file2=cur1.fetchall() udata=pd.DataFrame(file2) bdata=factorydata.sort_values(by=['Factory']) adata=bdata['Capacity'] con.close() infdata=dat[['Customer','Factory','Allocation']] infodata=infdata.sort_values(by=['Customer']) namess=infodata.Customer.unique() lstyy=[] for nam in namess: bb=infodata[infodata.Customer==nam] comment=bb['Factory']+":"+bb['Allocation'] prin=[nam,str(comment.values).strip('[]')] lstyy.append(prin) return render_template('facilityoptimise.html',say=1,lstyy=lstyy,x1=adata.values,x2=udata.values,dat=mlst,loc1=factorydata.values, loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False),summary=data.to_html(index=False)) #Demand Forecast @app.route('/demandforecast') def demandforecast(): return render_template('demandforecast.html') @app.route("/demandforecastdataimport",methods = ['GET','POST']) def demandforecastdataimport(): if request.method== 'POST': global actualforecastdata flat=request.files['flat'].read() if len(flat)==0: return('No Data Selected') cdat=pd.read_csv(io.StringIO(flat.decode('utf-8'))) actualforecastdata=pd.DataFrame(cdat) return render_template('demandforecast.html',data=actualforecastdata.to_html(index=False)) @app.route('/demandforecastinput', methods = ['GET', 'POST']) def demandforecastinput(): if request.method=='POST': global demandforecastfrm global demandforecasttoo global demandforecastinputdata demandforecastfrm=request.form['from'] demandforecasttoo=request.form['to'] value=request.form['typedf'] demandforecastinputdata=actualforecastdata[(actualforecastdata['Date'] >= demandforecastfrm) & (actualforecastdata['Date'] <= demandforecasttoo)] if value=='monthly': ##monthly engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) demandforecastinputdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('monthlyforecast')) if value=='quarterly': ##quarterly global Quaterdata dated2 = demandforecastinputdata['Date'] nlst=[] for var in dated2: var1 = int(var[5:7]) if var1 >=1 and var1 <4: varr=var[:4]+'-01-01' elif var1 >=4 and var1 <7: varr=var[:4]+'-04-01' elif var1 >=7 and var1 <10: varr=var[:4]+'-07-01' else: varr=var[:4]+'-10-01' nlst.append(varr) nwlst=pd.DataFrame(nlst,columns=['Newyear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=nwlst['Newyear'] Quaterdata=demandforecastinputdata.groupby(['Date']).sum() Quaterdata=Quaterdata.reset_index() Quaterdata=Quaterdata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Quaterdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('quarterlyforecast')) if value=='yearly': ##yearly global Yeardata #copydata=demandforecastinputdata dated1 = demandforecastinputdata['Date'] lst=[] for var in dated1: var1 = var[:4]+'-01-01' lst.append(var1) newlst=pd.DataFrame(lst,columns=['NewYear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=newlst['NewYear'] Yeardata=demandforecastinputdata.groupby(['Date']).sum() Yeardata=Yeardata.reset_index() Yeardata=Yeardata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Yeardata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('yearlyforecast')) #if value=='weakly': ##weakly # return redirect(url_for('output4')) return render_template('demandforecast.html') @app.route("/monthlyforecast",methods = ['GET','POST']) def monthlyforecast(): data = pd.DataFrame(demandforecastinputdata) # container1 a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True]) # container2 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True]) # container3 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True]) # container4 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True]) # container1 df=a1[['GDP']] re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']] vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutput`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutput`") con.commit() sql = "INSERT INTO `forecastoutput` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutput',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutput`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('monthly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Monthly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('monthly.html',sayy=1,smt='Monthly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) ##quarterly @app.route("/quarterlyforecast",methods = ['GET','POST']) def quarterlyforecast(): data = pd.DataFrame(Quaterdata) a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True])# container1 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True])# container2 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True])# container3 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True])# container4 # container1 df=a1[['GDP']]/3 re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']]/3 vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutputq`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutputq`") con.commit() sql = "INSERT INTO `forecastoutputq` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='3M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='3M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='3M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='3M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='3M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='3M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutputq',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutputq`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('quarterly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Quarterly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('quarterly.html',sayy=1,smt='Quarterly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) ##yearly @app.route("/yearlyforecast",methods = ['GET','POST']) def yearlyforecast(): data = pd.DataFrame(Yeardata) a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True])# container1 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True])# container2 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True])# container3 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True])# container4 # container1 df=a1[['GDP']]/12 re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'] vari=[] for var in tdf: vari.append(var[:4]) tres11 = vari tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']]/12 vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutputy`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutputy`") con.commit() sql = "INSERT INTO `forecastoutputy` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma dindex=(tdfs.index).strftime("20%y") tdfs['Date']=(dindex) tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='A') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='A', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='A') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='A', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='A') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='A', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=
pd.DataFrame(Xredata)
pandas.DataFrame
import os import sys sys.path.append('../') import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf from absl import flags, app from tensorflow_probability.python.internal.samplers import split_seed from tqdm import tqdm from filterflow.base import State from filterflow.models.optimal_proposal_linear_gaussian import make_filter, make_optimal_filter from filterflow.resampling import MultinomialResampler, SystematicResampler, StratifiedResampler, RegularisedTransform from filterflow.resampling.criterion import NeverResample, AlwaysResample, NeffCriterion from filterflow.resampling.differentiable import PartiallyCorrectedRegularizedTransform from filterflow.resampling.differentiable.loss import SinkhornLoss from filterflow.resampling.differentiable.optimized import OptimizedPointCloud from filterflow.resampling.differentiable.optimizer.sgd import SGD import pickle from scripts.optimal_proposal_common import get_data, ResamplingMethodsEnum, get_observation_matrix, \ get_observation_covariance, get_transition_covariance, get_transition_matrix def pickle_obj(obj, file_path): with open(file_path, 'wb') as handle: pickle.dump(obj, handle, protocol=pickle.HIGHEST_PROTOCOL) @tf.function def routine(pf, initial_state, observations_dataset, T, log_phi_x, phi_y, seed): with tf.GradientTape() as tape: tape.watch([log_phi_x, phi_y]) final_state = pf(initial_state, observations_dataset, T, seed=seed, return_final=True) res = -tf.reduce_mean(final_state.log_likelihoods) return res, tape.gradient(res, [log_phi_x, phi_y]), tf.reduce_mean(final_state.ess) def get_gradient_descent_function(): # This is a trick because tensorflow doesn't allow you to create variables inside a decorated function @tf.function def gradient_descent(pf, initial_state, observations_dataset, T, n_iter, optimizer, log_phi_x, phi_y, initial_values, change_seed, seed): variables = [log_phi_x, phi_y] reset_operations = [k.assign(v) for k, v in zip(variables, initial_values)] loss = tf.TensorArray(dtype=tf.float32, size=n_iter, dynamic_size=False) ess = tf.TensorArray(dtype=tf.float32, size=n_iter, dynamic_size=False) filter_seed, seed = split_seed(seed, n=2, salt='gradient_descent') with tf.control_dependencies(reset_operations): for i in tf.range(n_iter): loss_value, grads, average_ess = routine(pf, initial_state, observations_dataset, T, log_phi_x, phi_y, seed) if change_seed: filter_seed, seed = split_seed(filter_seed, n=2) loss = loss.write(tf.cast(i, tf.int32), loss_value) ess = ess.write(tf.cast(i, tf.int32), average_ess) grads = [tf.clip_by_value(grad, -100., 100.) for grad in grads] optimizer.apply_gradients(zip(grads, variables)) tf.print('\rStep', i, '/', n_iter, end='') return [tf.convert_to_tensor(var) for var in variables], loss.stack(), ess.stack() return gradient_descent def compare_learning_rates(pf, initial_state, observations_dataset, T, log_phi_x, phi_y, initial_values, n_iter, optimizer_maker, learning_rates, filter_seed, use_xla, change_seed): loss_profiles = [] ess_profiles = [] for learning_rate in tqdm(learning_rates): optimizer = optimizer_maker(learning_rate=learning_rate) gradient_descent_function = get_gradient_descent_function() final_variables, loss_profile, ess_profile = gradient_descent_function(pf, initial_state, observations_dataset, T, n_iter, optimizer, log_phi_x, phi_y, initial_values, change_seed, filter_seed) loss_profiles.append(-loss_profile.numpy() / T) ess_profiles.append(ess_profile.numpy()) return loss_profiles, ess_profiles def plot_losses_vs_ess(loss_profiles_df, ess_profiles_df, filename, savefig, dx, dy, dense, T, n_particles, change_seed, batch_size, optimal_filter_val, kalman_val, n_iter, mse_table, n_data): fig, ax = plt.subplots(figsize=(5, 3)) loss_profiles_df.style.float_format = '${:,.1f}'.format loss_profiles_df.plot(ax=ax, legend=False) ax.axhline(y=optimal_filter_val, color="k", linestyle=':') ax.axhline(y=kalman_val, color="k") ax.set_xlim(0, n_iter) ax1 = ax.twinx() ess_profiles_df.plot.area(ax=ax1, legend=False, linestyle='--', alpha=0.33, stacked=False) # ax.set_ylim(-2.5, -1.7) ax1.set_ylim(1, n_particles) csv_fp = os.path.join('./charts/', f'global_variational_different_loss_df_lr_loss_{filename}_dx_{dx}_dy_{dy}_dense_{dense}_T_{T}_change_seed_{change_seed}.csv') loss_profiles_df.to_csv(csv_fp) csv_fp = os.path.join('./charts/', f'global_variational_different_ess_df_lr_loss_{filename}_dx_{dx}_dy_{dy}_dense_{dense}_T_{T}_change_seed_{change_seed}.csv') ess_profiles_df.to_csv(csv_fp) # ax.legend() fig.tight_layout() filename = f'global_variational_different_lr_loss_ess_{filename}_N_{n_particles}_dx_{dx}_dy_{dy}_dense_{dense}_T_{T}_change_seed_{change_seed}_batch_size_{batch_size}_ndata_{n_data}' if savefig: fig.savefig(os.path.join('./charts/', filename + '.png')) mse_table.to_csv(os.path.join('./tables/', filename + '.csv'), float_format='%.5f') else: print(mse_table) fig.suptitle(f'variational_different_loss_ess_{filename}_dx_{dx}_dy_{dy}_dense_{dense}_T_{T}') plt.show() def plot_variables(variables_df, filename, savefig): fig, ax = plt.subplots(figsize=(5, 5)) variables_df.plot(ax=ax) fig.tight_layout() if savefig: fig.savefig(os.path.join('./charts/', f'global_variational_different_lr_variables_{filename}.png')) else: fig.suptitle(f'variational_different_lr_variables_{filename}') plt.show() def resampling_method_factory(resampling_method_enum, resampling_kwargs): if resampling_method_enum == ResamplingMethodsEnum.MULTINOMIAL: resampling_method = MultinomialResampler() elif resampling_method_enum == ResamplingMethodsEnum.SYSTEMATIC: resampling_method = SystematicResampler() elif resampling_method_enum == ResamplingMethodsEnum.STRATIFIED: resampling_method = StratifiedResampler() elif resampling_method_enum == ResamplingMethodsEnum.REGULARIZED: resampling_method = RegularisedTransform(**resampling_kwargs) elif resampling_method_enum == ResamplingMethodsEnum.VARIANCE_CORRECTED: regularized_resampler = RegularisedTransform(**resampling_kwargs) resampling_method = PartiallyCorrectedRegularizedTransform(regularized_resampler) elif resampling_method_enum == ResamplingMethodsEnum.OPTIMIZED: lr = resampling_kwargs.pop('lr', resampling_kwargs.pop('learning_rate', 0.1)) loss = SinkhornLoss(**resampling_kwargs, symmetric=True) optimizer = SGD(loss, lr=lr, decay=0.95) regularized_resampler = RegularisedTransform(**resampling_kwargs) resampling_method = OptimizedPointCloud(optimizer, intermediate_resampler=regularized_resampler) else: raise ValueError(f'resampling_method_name {resampling_method_enum} is not a valid ResamplingMethodsEnum') return resampling_method def main(resampling_method_value, resampling_neff, learning_rates=(1e-4, 1e-3), resampling_kwargs=None, alpha=0.42, dx=10, dy=3, observation_covariance=1., dense=False, T=20, batch_size=1, n_particles=25, data_seed=0, n_data=50, n_iter=50, savefig=False, filter_seed=0, use_xla=False, change_seed=True): transition_matrix = get_transition_matrix(alpha, dx) transition_covariance = get_transition_covariance(dx) observation_matrix = get_observation_matrix(dx, dy, dense) observation_covariance = get_observation_covariance(observation_covariance, dy) resampling_method_enum = ResamplingMethodsEnum(resampling_method_value) np_random_state = np.random.RandomState(seed=data_seed) observation_matrix = tf.convert_to_tensor(observation_matrix) transition_covariance_chol = tf.linalg.cholesky(transition_covariance) observation_covariance_chol = tf.linalg.cholesky(observation_covariance) initial_particles = np_random_state.normal(0., 1., [batch_size, n_particles, dx]).astype(np.float32) initial_state = State(initial_particles) if resampling_neff == 0.: resampling_criterion = NeverResample() elif resampling_neff == 1.: resampling_criterion = AlwaysResample() else: resampling_criterion = NeffCriterion(resampling_neff, True) optimal_smc = make_optimal_filter(observation_matrix, transition_matrix, observation_covariance_chol, transition_covariance_chol, MultinomialResampler(), resampling_criterion) if resampling_kwargs is None: resampling_kwargs = {} resampling_method = resampling_method_factory(resampling_method_enum, resampling_kwargs) datas = [] lls = [] observation_datasets = [] optimal_lls = [] log_phi_x_0 = tf.ones(dx) phi_y_0 = tf.zeros(dy) for _ in range(n_data): data, ll = get_data(transition_matrix, observation_matrix, transition_covariance, observation_covariance, T, np_random_state) datas.append(data) lls.append(ll / T) observation_dataset = tf.data.Dataset.from_tensor_slices(data) observation_datasets.append(observation_dataset) final_state = optimal_smc(initial_state, observation_dataset, T, None, True, filter_seed) optimal_lls.append(final_state.log_likelihoods.numpy().mean() / T) log_phi_x = tf.Variable(log_phi_x_0, trainable=True) phi_y = tf.Variable(phi_y_0, trainable=True) smc = make_filter(observation_matrix, transition_matrix, observation_covariance_chol, transition_covariance_chol, resampling_method, resampling_criterion, log_phi_x, phi_y) def optimizer_maker(learning_rate): # tf.function doesn't like creating variables. This is a way to create them outside the graph # We can't reuse the same optimizer because it would be giving a warmed-up momentum to the ones run later optimizer = tf.optimizers.Adam(learning_rate=learning_rate) return optimizer initial_values = [log_phi_x_0, phi_y_0] losses_list = [] ess_profiles_list = [] mean_errors = [] for observation_dataset in observation_datasets: try: losses, ess_profiles = compare_learning_rates(smc, initial_state, observation_dataset, T, log_phi_x, phi_y, initial_values, n_iter, optimizer_maker, learning_rates, filter_seed, use_xla, change_seed) except: print('one dataset failed, ignoring') continue losses_df = pd.DataFrame(np.stack(losses).T, columns=np.log10(learning_rates)) ess_df = pd.DataFrame(np.stack(ess_profiles).T, columns=np.log10(learning_rates)) losses_df.columns.name = 'log learning rate' losses_df.columns.epoch = 'epoch' ess_df.columns.name = 'log learning rate' ess_df.columns.epoch = 'epoch' losses_list.append(losses_df) ess_profiles_list.append(ess_df) delta_phi_m_1 = tf.linalg.diag(tf.exp(-log_phi_x)) diff_cov = optimal_smc._proposal_model._sigma - delta_phi_m_1 @ transition_covariance approx_error = tf.linalg.diag_part(diff_cov).numpy() mean_error = np.sqrt(np.nanmean(approx_error ** 2)) mean_errors.append(mean_error) losses_data = pd.concat(losses_list, axis=1) ess_data = pd.concat(ess_profiles_list, axis=1) mean_data = pd.DataFrame([[np.mean(mean_errors)]], index=
pd.MultiIndex.from_tuples([(batch_size, n_particles)])
pandas.MultiIndex.from_tuples
import os import glob import pathlib import re import base64 import pandas as pd from datetime import datetime, timedelta # https://www.pythonanywhere.com/forums/topic/29390/ for measuring the RAM usage on pythonanywhere class defichainAnalyticsModelClass: def __init__(self): workDir = os.path.abspath(os.getcwd()) self.dataPath = workDir[:-9] + '/data/' # data for controller/views self.dailyData = pd.DataFrame() self.hourlyData = pd.DataFrame() self.minutelyData = pd.DataFrame() self.lastRichlist = None self.snapshotData = None self.changelogData = None # last update of csv-files self.updated_nodehubIO = None self.updated_allnodes = None self.updated_extractedRichlist = None self.updated_tradingData = None self.updated_blocktime = None self.updated_dexHourly = None self.update_dexMinutely = None self.updated_daa = None self.updated_LastRichlist = None self.updated_dexVolume = None self.updated_tokenCryptos = None self.updated_twitterData = None self.updated_twitterFollower = None self.update_snapshotData = None self.update_changelogData = None self.update_incomeVisits = None self.update_portfolioDownloads = None self.update_promoDatabase = None self.update_analyticsVisits = None self.updated_hourlyDEXTrades = None self.update_MNmonitor = None self.updated_dfx = None self.update_DFIsignal = None # background image for figures with open(workDir + "/assets/analyticsLandscapeGrey2.png", "rb") as image_file: encoded_string = base64.b64encode(image_file.read()).decode() self.figBackgroundImage = "data:image/png;base64," + encoded_string # Add the prefix that plotly will want when using the string as source #### DAILY DATA ##### def loadDailyData(self): self.loadHourlyDEXdata() self.loadDEXVolume() self.loadDailyTradingData() self.loadExtractedRichlistData() self.calcOverallTVLdata() self.loadDailyBlocktimeData() self.loadDAAData() self.loadTwitterData() self.loadTwitterFollowerData() self.loadIncomeVisitsData() self.loadPortfolioDownloads() self.loadPromoDatabase() self.loadMNMonitorDatabase() self.loadAnalyticsVisitsData() self.loadDFIsignalDatabase() def loadMNnodehub(self): print('>>>> Start update nodehub.IO data ... <<<<') filePath = self.dataPath + 'mnNodehub.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.updated_nodehubIO: nodehubData = pd.read_csv(filePath, index_col=0) nodehubData.rename(columns={"amount": "nbMNNodehub"}, inplace=True) ind2Delete = self.dailyData.columns.intersection(nodehubData.columns) self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(nodehubData['nbMNNodehub'], how='outer', left_index=True, right_index=True) self.updated_nodehubIO = fileInfo.stat() print('>>>> nodehub data loaded from csv-file <<<<') def loadMNAllnodes(self): print('>>>> Start update allnodes data ... <<<<') filePath = self.dataPath + 'mnAllnodes.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.updated_allnodes: allnodesData = pd.read_csv(filePath, index_col=0) allnodesData.set_index('date', inplace=True) ind2Delete = self.dailyData.columns.intersection(allnodesData.columns) self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(allnodesData['nbMNAllnode'], how='outer', left_index=True, right_index=True) self.updated_allnodes = fileInfo.stat() print('>>>> allnodes data loaded from csv-file <<<<') def loadExtractedRichlistData(self): self.loadMNnodehub() # number masternode hosted by nodehub must be load here to ensure correct values for other and relative representation self.loadMNAllnodes() # number masternode hosted by Allnodes must be load here to ensure correct values for other and relative representation print('>>>> Start update extracted richlist data ... <<<<') filePath = self.dataPath + 'extractedDFIdata.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.updated_extractedRichlist: extractedRichlist = pd.read_csv(filePath, index_col=0) ind2Delete = self.dailyData.columns.intersection(extractedRichlist.columns) # check if columns exist self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(extractedRichlist, how='outer', left_index=True, right_index=True) # add new columns to daily table self.dailyData['nbMNOther'] = self.dailyData['nbMnId']-self.dailyData['nbMnCakeId']-self.dailyData['nbMydefichainId']-self.dailyData['nbMNNodehub'].fillna(0)-self.dailyData['nbMNAllnode'].fillna(0) self.dailyData['nbMNnonCake'] = self.dailyData['nbMnId']-self.dailyData['nbMnCakeId'] self.dailyData['nbMnCakeIdRelative'] = self.dailyData['nbMnCakeId']/self.dailyData['nbMnId']*100 self.dailyData['nbMNOtherRelative'] = self.dailyData['nbMNOther'] / self.dailyData['nbMnId'] * 100 self.dailyData['nbMydefichainRelative'] = self.dailyData['nbMydefichainId'] / self.dailyData['nbMnId'] * 100 self.dailyData['nbMNNodehubRelative'] = self.dailyData['nbMNNodehub'] / self.dailyData['nbMnId'] * 100 self.dailyData['nbMNAllnodeRelative'] = self.dailyData['nbMNAllnode'] / self.dailyData['nbMnId'] * 100 self.dailyData['nbMNlocked10Relative'] = self.dailyData['nbMNlocked10'] / self.dailyData['nbMnId'] * 100 self.dailyData['nbMNlocked5Relative'] = self.dailyData['nbMNlocked5'] / self.dailyData['nbMnId'] * 100 # extracting DFI in Liquidity-Mining lmCoins = pd.DataFrame(index=self.dailyData.index) lmCoins['BTC_pool'] = self.hourlyData.groupby('Date')['BTC-DFI_reserveB'].first() lmCoins['ETH_pool'] = self.hourlyData.groupby('Date')['ETH-DFI_reserveB'].first() lmCoins['USDT_pool'] = self.hourlyData.groupby('Date')['USDT-DFI_reserveB'].first() lmCoins['DOGE_pool'] = self.hourlyData.groupby('Date')['DOGE-DFI_reserveB'].first() lmCoins['LTC_pool'] = self.hourlyData.groupby('Date')['LTC-DFI_reserveB'].first() lmCoins['USDC_pool'] = self.hourlyData.groupby('Date')['USDC-DFI_reserveB'].first() lmCoins['overall'] = lmCoins['BTC_pool'] + lmCoins['ETH_pool'] + lmCoins['USDT_pool'] + lmCoins['DOGE_pool'].fillna(0) + lmCoins['LTC_pool'].fillna(0) + lmCoins['USDC_pool'] .fillna(0) self.dailyData['lmDFI'] = lmCoins['overall'] # sum of addresses and DFI self.dailyData['nbOverall'] = self.dailyData['nbMnId'] + self.dailyData['nbOtherId'] self.dailyData['circDFI'] = self.dailyData['mnDFI'] + self.dailyData['otherDFI'] \ + self.dailyData['tokenDFI'].fillna(0) + self.dailyData['lmDFI'].fillna(0) + self.dailyData['erc20DFI'].fillna(0) \ - (self.dailyData['nbMNlocked10']+self.dailyData['nbMNlocked5']).fillna(0)*20000 self.dailyData['totalDFI'] = self.dailyData['circDFI'] + self.dailyData['fundDFI'] + self.dailyData['foundationDFI'].fillna(0) \ + self.dailyData['burnedDFI'].fillna(method="ffill") + (self.dailyData['nbMNlocked10']+self.dailyData['nbMNlocked5']).fillna(0)*20000 # calc market cap data in USD and BTC print('>>>>>>>> Update market cap in loadExtractedRichlistData... <<<<<<<<') self.dailyData['marketCapUSD'] = self.dailyData['circDFI']*self.dailyData['DFIPriceUSD'] self.dailyData['marketCapBTC'] = self.dailyData['marketCapUSD'] / self.dailyData['BTCPriceUSD'] # calculate daily change in addresses and DFI amount self.dailyData['diffDate'] = pd.to_datetime(self.dailyData.index).to_series().diff().values self.dailyData['diffDate'] = self.dailyData['diffDate'].fillna(pd.Timedelta(seconds=0)) # set nan-entry to timedelta 0 self.dailyData['diffDate'] = self.dailyData['diffDate'].apply(lambda x: float(x.days)) self.dailyData['diffNbOther'] = self.dailyData['nbOtherId'].diff() / self.dailyData['diffDate'] self.dailyData['diffNbMN'] = self.dailyData['nbMnId'].diff() / self.dailyData['diffDate'] self.dailyData['diffNbNone'] = None self.dailyData['diffotherDFI'] = self.dailyData['otherDFI'].diff() / self.dailyData['diffDate'] self.dailyData['diffmnDFI'] = self.dailyData['mnDFI'].diff() / self.dailyData['diffDate'] self.dailyData['difffundDFI'] = self.dailyData['fundDFI'].diff() / self.dailyData['diffDate'] self.dailyData['difffoundationDFI'] = self.dailyData['foundationDFI'].diff() / self.dailyData['diffDate'] self.dailyData['diffLMDFI'] = self.dailyData['lmDFI'].diff() / self.dailyData['diffDate'] self.updated_extractedRichlist = fileInfo.stat() print('>>>> Richlist data loaded from csv-file <<<<') def calcOverallTVLdata(self): self.dailyData['tvlMNDFI'] = self.dailyData['nbMnId'] * ((pd.to_datetime(self.dailyData.index)<pd.Timestamp('2021-03-02')) * 1 * 1000000 + \ (pd.to_datetime(self.dailyData.index)>=pd.Timestamp('2021-03-02')) * 1 * 20000) dexLockedDFI = (self.hourlyData['BTC-DFI_lockedDFI']+self.hourlyData['ETH-DFI_lockedDFI']+self.hourlyData['USDT-DFI_lockedDFI'] + self.hourlyData['DOGE-DFI_lockedDFI'].fillna(0)+self.hourlyData['LTC-DFI_lockedDFI'].fillna(0) + self.hourlyData['BCH-DFI_lockedDFI'].fillna(0) + self.hourlyData['USDC-DFI_lockedDFI'].fillna(0)) dexLockedDFI.index = dexLockedDFI.index.floor('D').astype(str) # remove time information, only date is needed self.dailyData['tvlDEXDFI'] = dexLockedDFI.groupby(level=0).first() def loadDailyTradingData(self): print('>>>> Start update trading data ... <<<<') filePath = self.dataPath + 'dailyTradingResultsDEX.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.updated_tradingData: dailyTradingResults = pd.read_csv(self.dataPath+'dailyTradingResultsDEX.csv',index_col=0) ind2Delete = self.dailyData.columns.intersection(dailyTradingResults.columns) # check if columns exist self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(dailyTradingResults, how='outer', left_index=True, right_index=True) # add new columns to daily table # calc market cap data in USD and BTC (same as in loadExtractedRichlistData to get updated price information if 'circDFI' in self.dailyData.columns: print('>>>>>>>> Update market cap in loadDailyTradingData... <<<<<<<<') self.dailyData['marketCapUSD'] = self.dailyData['circDFI']*self.dailyData['DFIPriceUSD'] self.dailyData['marketCapBTC'] = self.dailyData['marketCapUSD'] / self.dailyData['BTCPriceUSD'] self.updated_tradingData = fileInfo.stat() print('>>>> Trading data loaded from csv-file <<<<') def loadDailyBlocktimeData(self): print('>>>> Start update blocktime data ... <<<<') filePath = self.dataPath + 'BlockListStatistics.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.updated_blocktime: dailyBlocktimeData = pd.read_csv(filePath, index_col=0) dailyBlocktimeData['tps'] = dailyBlocktimeData['txCount'] / (24 * 60 * 60) ind2Delete = self.dailyData.columns.intersection(dailyBlocktimeData.columns) # check if columns exist self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(dailyBlocktimeData, how='outer', left_index=True,right_index=True) # add new columns to daily table self.updated_blocktime = fileInfo.stat() print('>>>> Blocktime data loaded from csv-file <<<<') def loadDAAData(self): print('>>>> Start update DAA data ... <<<<') filePath = self.dataPath + 'analyzedDataDAA.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.updated_daa: dailyDAAData = pd.read_csv(filePath, index_col=0) ind2Delete = self.dailyData.columns.intersection(dailyDAAData.columns) # check if columns exist self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(dailyDAAData, how='outer', left_index=True, right_on='Date') # add new columns to daily table self.dailyData.set_index('Date', inplace=True) self.dailyData.sort_index(inplace=True) self.updated_daa = fileInfo.stat() print('>>>> DAA data loaded from csv-file <<<<') def loadTwitterData(self): print('>>>> Start update twitter data ... <<<<') filePath = self.dataPath + 'analyzedTwitterData.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.updated_twitterData: twitterData = pd.read_csv(filePath, index_col=0) columns2update = ['overall_Activity', 'defichain_Activity', 'dfi_Activity', 'overall_Likes', 'overall_UniqueUserOverall', 'overall_UniqueUserTweet', 'overall_UniqueUserReply', 'overall_UniqueUserRetweet'] # delete existing information and add new one ind2Delete = self.dailyData.columns.intersection(columns2update) # check if columns exist self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(twitterData[columns2update], how='outer', left_index=True, right_index=True) # add new columns to daily table self.updated_twitterData = fileInfo.stat() print('>>>> Twitter data loaded from csv-file <<<<') def loadTwitterFollowerData(self): print('>>>> Start update twitter follower data ... <<<<') filePath = self.dataPath + 'TwitterData_follower.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.updated_twitterFollower: twitterFollowData = pd.read_csv(filePath, index_col=0) twitterFollowData.set_index('Date',inplace=True) columns2update = ['Follower', 'followedToday', 'unfollowedToday'] # delete existing information and add new one ind2Delete = self.dailyData.columns.intersection(columns2update) # check if columns exist self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(twitterFollowData[columns2update], how='outer', left_index=True, right_index=True) # add new columns to daily table self.updated_twitterFollower = fileInfo.stat() print('>>>> Twitter data loaded from csv-file <<<<') def loadIncomeVisitsData(self): print('>>>> Start update income visits data ... <<<<') filePath = self.dataPath + 'dataVisitsIncome.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.update_incomeVisits: incomeVisitsData = pd.read_csv(filePath, index_col=0) incomeVisitsData.rename(columns={'0': 'incomeVisits'}, inplace=True) incomeVisitsData.set_index(incomeVisitsData.index.str[:10], inplace=True) # just use date information without hh:mm columns2update = ['incomeVisits'] # delete existing information and add new one ind2Delete = self.dailyData.columns.intersection(columns2update) # check if columns exist self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(incomeVisitsData[columns2update], how='outer', left_index=True, right_index=True) # add new columns to daily table self.update_incomeVisits = fileInfo.stat() print('>>>> Income visits data loaded from csv-file <<<<') def loadPortfolioDownloads(self): print('>>>> Start update portfolio downloads data ... <<<<') filePath = self.dataPath + 'dataPortfolioDownloads.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.update_portfolioDownloads: portfolioRawData = pd.read_csv(filePath) columns2update = ['PortfolioWindows', 'PortfolioMac', 'PortfolioLinux'] dfPortfolioData = pd.DataFrame(index=portfolioRawData['DateCaptured'].unique(), columns=columns2update) dfPortfolioData['PortfolioWindows'] = portfolioRawData.groupby(portfolioRawData.DateCaptured).Windows.sum() dfPortfolioData['PortfolioMac'] = portfolioRawData.groupby(portfolioRawData.DateCaptured).Mac.sum() dfPortfolioData['PortfolioLinux'] = portfolioRawData.groupby(portfolioRawData.DateCaptured).Linux.sum() # delete existing information and add new one ind2Delete = self.dailyData.columns.intersection(columns2update) # check if columns exist self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(dfPortfolioData[columns2update], how='outer', left_index=True, right_index=True) # add new columns to daily table self.update_portfolioDownloads = fileInfo.stat() print('>>>> Portfolio downloads data loaded from csv-file <<<<') def loadPromoDatabase(self): print('>>>> Start update DefiChain promo database ... <<<<') filePath = self.dataPath + 'defichainPromoData.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.update_promoDatabase: promoRawData = pd.read_csv(filePath, index_col=0) columns2update = ['postActive', 'mediaActive', 'incentivePointsToday', 'incentiveUsers'] # delete existing information and add new one ind2Delete = self.dailyData.columns.intersection(columns2update) # check if columns exist self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(promoRawData[columns2update], how='outer', left_index=True, right_index=True) # add new columns to daily table self.update_promoDatabase = fileInfo.stat() print('>>>> DefiChain promo database loaded from csv-file <<<<') def loadMNMonitorDatabase(self): print('>>>> Start update masternode monitor database ... <<<<') filePath = self.dataPath + 'masternodeMonitorData.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.update_MNmonitor: monitorRawData = pd.read_csv(filePath, index_col=0) columns2update = ['nbMasternodes', 'nbAccounts'] # delete existing information and add new one ind2Delete = self.dailyData.columns.intersection(columns2update) # check if columns exist self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(monitorRawData[columns2update], how='outer', left_index=True, right_index=True) # add new columns to daily table self.update_MNmonitor = fileInfo.stat() print('>>>> MN Monitor database loaded from csv-file <<<<') def loadAnalyticsVisitsData(self): print('>>>> Start update raw data analytics visits ... <<<<') filePath = self.dataPath + 'rawDataUserVisit.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.update_analyticsVisits: analyticsRawVisitsData = pd.read_csv(filePath, index_col=0) analyticsRawVisitsData['visitDate'] = pd.to_datetime(analyticsRawVisitsData.visitTimestamp).dt.date analyticsVisitData = analyticsRawVisitsData.groupby('visitDate').count() analyticsVisitData.rename(columns={'visitTimestamp': 'analyticsVisits'}, inplace=True) columns2update = ['analyticsVisits'] analyticsVisitData.index = analyticsVisitData.index.map(str) # change index from dt to str format # delete existing information and add new one ind2Delete = self.dailyData.columns.intersection(columns2update) # check if columns exist self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(analyticsVisitData[columns2update], how='outer', left_index=True, right_index=True) # add new columns to daily table self.update_analyticsVisits = fileInfo.stat() print('>>>> Analytics visits data loaded from csv-file <<<<') def loadDFIsignalDatabase(self): print('>>>> Start update DFI-signal database ... <<<<') filePath = self.dataPath + 'dfiSignalData.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.update_DFIsignal: dfiSignalRawData = pd.read_csv(filePath, index_col=0) columns2update = ['user_count','masternode_count','messages_sent','commands_received','minted_blocks'] # delete existing information and add new one ind2Delete = self.dailyData.columns.intersection(columns2update) # check if columns exist self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(dfiSignalRawData[columns2update], how='outer', left_index=True, right_index=True) # add new columns to daily table self.update_DFIsignal = fileInfo.stat() print('>>>> DFI-Signal database loaded from csv-file <<<<') #### HOURLY DATA #### def loadHourlyData(self): self.loadHourlyDEXdata() self.loadDEXVolume() self.loadTokenCrypto() self.loadHourlyDEXTrades() self.loadDFXdata() def loadHourlyDEXdata(self): print('>>>> Start update hourly DEX data ... <<<<') filePath = self.dataPath + 'LMPoolData.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.updated_dexHourly: hourlyDEXData = pd.read_csv(filePath, index_col=0) hourlyDEXData['timeRounded'] = pd.to_datetime(hourlyDEXData.Time).dt.floor('H') hourlyDEXData.set_index(['timeRounded'], inplace=True) hourlyDEXData['reserveA_DFI'] = hourlyDEXData['reserveA'] / hourlyDEXData['DFIPrices'] for poolSymbol in hourlyDEXData.symbol.dropna().unique(): df2Add = hourlyDEXData[hourlyDEXData.symbol == poolSymbol] df2Add = df2Add.drop(columns=['Time', 'symbol']) # calculate locked DFI and corresponding values df2Add = df2Add.assign(lockedDFI=df2Add['reserveB'] + df2Add['reserveA_DFI']) df2Add = df2Add.assign(lockedUSD=df2Add['lockedDFI']*hourlyDEXData[hourlyDEXData.symbol == 'USDT-DFI'].DFIPrices) df2Add = df2Add.assign(lockedBTC=df2Add['lockedDFI'] * hourlyDEXData[hourlyDEXData.symbol == 'BTC-DFI'].DFIPrices) # calculate relative price deviations df2Add = df2Add.assign(relPriceDevCoingecko=((df2Add['DFIPrices'] - df2Add['reserveA/reserveB'])/df2Add['DFIPrices'])) df2Add = df2Add.assign(relPriceDevBittrex=((df2Add['DFIPricesBittrex'] - df2Add['reserveA/reserveB']) / df2Add['DFIPricesBittrex'])) # add prefix to column names for pool identification colNamesOrig = df2Add.columns.astype(str) colNamesNew = poolSymbol+'_' + colNamesOrig df2Add = df2Add.rename(columns=dict(zip(colNamesOrig, colNamesNew))) # delete existing information and add new one ind2Delete = self.hourlyData.columns.intersection(colNamesNew) # check if columns exist self.hourlyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.hourlyData = self.hourlyData.merge(df2Add, how='outer', left_index=True, right_index=True) # add new columns to daily table self.hourlyData['Date'] = pd.to_datetime(self.hourlyData.index).strftime('%Y-%m-%d') self.updated_dexHourly = fileInfo.stat() print('>>>> Hourly DEX data loaded from csv-file <<<<') def loadDEXVolume(self): print('>>>> Start update DEX volume data ... <<<<') filePath = self.dataPath + 'DEXVolumeData.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.updated_dexVolume: volumeData = pd.read_csv(filePath, index_col=0) volumeData['timeRounded'] = pd.to_datetime(volumeData.Time).dt.floor('H') volumeData.set_index(['timeRounded'], inplace=True) for poolSymbol in volumeData['base_name'].unique(): df2Add = volumeData[volumeData['base_name']==poolSymbol][['base_volume', 'quote_volume']] df2Add['VolTotal'] = df2Add[['base_volume', 'quote_volume']].sum(axis=1) # add prefix to column names for pool identification colNamesOrig = df2Add.columns.astype(str) colNamesNew = poolSymbol + '_' + colNamesOrig df2Add = df2Add.rename(columns=dict(zip(colNamesOrig, colNamesNew))) # delete existing information and add new one ind2Delete = self.hourlyData.columns.intersection(colNamesNew) # check if columns exist self.hourlyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.hourlyData = self.hourlyData.merge(df2Add, how='outer', left_index=True, right_index=True) # add new columns to daily table # calculate total volume after merge of data self.hourlyData['VolTotal'] = self.hourlyData['BTC_VolTotal']*0 # only use rows with data; BTC was the first pool and have to most data (beside ETH, USDT) for poolSymbol in volumeData['base_name'].unique(): self.hourlyData['VolTotal'] = self.hourlyData['VolTotal'] + self.hourlyData[poolSymbol+'_'+'VolTotal'].fillna(0) self.hourlyData['VolTotalCoingecko'] = volumeData[volumeData['base_name']=='BTC']['coingeckoVolume'] self.updated_dexVolume = fileInfo.stat() print('>>>> DEX volume data loaded from csv-file <<<<') def loadHourlyDEXTrades(self): print('>>>> Start update hourly DEX trade data ... <<<<') filePath = self.dataPath + 'hourlyDEXTrades.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.updated_hourlyDEXTrades: hourlyTrades = pd.read_csv(filePath, index_col=0) hourlyTrades.fillna(0, inplace=True) hourlyTrades.index = pd.to_datetime(hourlyTrades.index).tz_localize(None) columns2update = [] currName = ['BTC', 'ETH', 'USDT', 'DOGE', 'LTC', 'BCH', 'USDC', 'DFI'] for ind in range(7): hourlyTrades['volume'+currName[ind]+'buyDFI'] = hourlyTrades[currName[ind]+'pool_base'+currName[ind]] * hourlyTrades[currName[ind]+'-USD'] hourlyTrades['volume'+currName[ind]+'sellDFI'] = hourlyTrades[currName[ind]+'pool_quote'+currName[ind]] * hourlyTrades[currName[ind]+'-USD'] columns2update.extend(['volume'+currName[ind]+'buyDFI', 'volume'+currName[ind]+'sellDFI']) hourlyTrades['volumeOverallbuyDFI'] = hourlyTrades['volumeBTCbuyDFI']+hourlyTrades['volumeETHbuyDFI']+hourlyTrades['volumeUSDTbuyDFI'] + \ hourlyTrades['volumeDOGEbuyDFI']+hourlyTrades['volumeLTCbuyDFI']+hourlyTrades['volumeBCHbuyDFI'] + \ hourlyTrades['volumeUSDCbuyDFI'] hourlyTrades['volumeOverallsellDFI'] = hourlyTrades['volumeBTCsellDFI']+hourlyTrades['volumeETHsellDFI']+hourlyTrades['volumeUSDTsellDFI'] + \ hourlyTrades['volumeDOGEsellDFI']+hourlyTrades['volumeLTCsellDFI']+hourlyTrades['volumeBCHsellDFI'] + \ hourlyTrades['volumeUSDCsellDFI'] columns2update.extend(['volumeOverallbuyDFI', 'volumeOverallsellDFI']) ind2Delete = self.hourlyData.columns.intersection(columns2update) # check if columns exist self.hourlyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.hourlyData = self.hourlyData.merge(hourlyTrades[columns2update], how='outer', left_index=True, right_index=True) # delete existing columns to add new ones self.updated_hourlyDEXTrades = fileInfo.stat() print('>>>> DEX volume data loaded from csv-file <<<<') def loadTokenCrypto(self): print('>>>> Start update token data ... <<<<') filePath = self.dataPath + 'TokenData.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.updated_tokenCryptos: tokenData =
pd.read_csv(filePath, index_col=0)
pandas.read_csv
import string import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd import pandas._testing as tm class TestSeriesAccessor: # TODO: collect other Series accessor tests def test_to_dense(self): s = pd.Series([0, 1, 0, 10], dtype="Sparse[int64]") result = s.sparse.to_dense() expected = pd.Series([0, 1, 0, 10]) tm.assert_series_equal(result, expected) class TestFrameAccessor: def test_accessor_raises(self): df = pd.DataFrame({"A": [0, 1]}) with pytest.raises(AttributeError, match="sparse"): df.sparse @pytest.mark.parametrize("format", ["csc", "csr", "coo"]) @pytest.mark.parametrize("labels", [None, list(string.ascii_letters[:10])]) @pytest.mark.parametrize("dtype", ["float64", "int64"]) @td.skip_if_no_scipy def test_from_spmatrix(self, format, labels, dtype): import scipy.sparse sp_dtype = pd.SparseDtype(dtype, np.array(0, dtype=dtype).item()) mat = scipy.sparse.eye(10, format=format, dtype=dtype) result = pd.DataFrame.sparse.from_spmatrix(mat, index=labels, columns=labels) expected = pd.DataFrame( np.eye(10, dtype=dtype), index=labels, columns=labels ).astype(sp_dtype) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "columns", [["a", "b"], pd.MultiIndex.from_product([["A"], ["a", "b"]]), ["a", "a"]], ) @td.skip_if_no_scipy def test_from_spmatrix_columns(self, columns): import scipy.sparse dtype = pd.SparseDtype("float64", 0.0) mat = scipy.sparse.random(10, 2, density=0.5) result = pd.DataFrame.sparse.from_spmatrix(mat, columns=columns) expected = pd.DataFrame(mat.toarray(), columns=columns).astype(dtype) tm.assert_frame_equal(result, expected) @td.skip_if_no_scipy def test_to_coo(self): import scipy.sparse df = pd.DataFrame({"A": [0, 1, 0], "B": [1, 0, 0]}, dtype="Sparse[int64, 0]") result = df.sparse.to_coo() expected = scipy.sparse.coo_matrix(np.asarray(df)) assert (result != expected).nnz == 0 def test_to_dense(self): df = pd.DataFrame( { "A": pd.SparseArray([1, 0], dtype=pd.SparseDtype("int64", 0)), "B": pd.SparseArray([1, 0], dtype=pd.SparseDtype("int64", 1)), "C": pd.SparseArray([1.0, 0.0], dtype=pd.SparseDtype("float64", 0.0)), }, index=["b", "a"], ) result = df.sparse.to_dense() expected = pd.DataFrame( {"A": [1, 0], "B": [1, 0], "C": [1.0, 0.0]}, index=["b", "a"] ) tm.assert_frame_equal(result, expected) def test_density(self): df = pd.DataFrame( { "A": pd.SparseArray([1, 0, 2, 1], fill_value=0), "B": pd.SparseArray([0, 1, 1, 1], fill_value=0), } ) res = df.sparse.density expected = 0.75 assert res == expected @pytest.mark.parametrize("dtype", ["int64", "float64"]) @pytest.mark.parametrize("dense_index", [True, False]) @td.skip_if_no_scipy def test_series_from_coo(self, dtype, dense_index): import scipy.sparse A = scipy.sparse.eye(3, format="coo", dtype=dtype) result =
pd.Series.sparse.from_coo(A, dense_index=dense_index)
pandas.Series.sparse.from_coo
import requests import time import pandas as pd class StationsFeed(object): """Client that pulls data from Divvy JSON feed: https://feeds.divvybikes.com/stations/stations.json Attributes: data: event_history: """ def __init__(self): self.data = pd.DataFrame() self.event_history =
pd.DataFrame()
pandas.DataFrame
import numpy as np from numpy.testing import assert_equal import pandas as pd from pandas.testing import assert_frame_equal, assert_series_equal import pytest from linearmodels.iv.data import IVData try: import xarray as xr MISSING_XARRAY = False except ImportError: MISSING_XARRAY = True def test_numpy_2d() -> None: x = np.empty((10, 2)) xdh = IVData(x) assert xdh.ndim == x.ndim assert xdh.cols == ["x.0", "x.1"] assert xdh.rows == list(np.arange(10)) assert_equal(xdh.ndarray, x) df = pd.DataFrame(x, columns=xdh.cols, index=xdh.rows) assert_frame_equal(xdh.pandas, df) assert xdh.shape == (10, 2) assert xdh.labels == {0: xdh.rows, 1: xdh.cols} def test_numpy_1d() -> None: x = np.empty(10) xdh = IVData(x) assert xdh.ndim == 2 assert xdh.cols == ["x"] assert xdh.rows == list(np.arange(10)) assert_equal(xdh.ndarray, x[:, None]) df = pd.DataFrame(x[:, None], columns=xdh.cols, index=xdh.rows) assert_frame_equal(xdh.pandas, df) assert xdh.shape == (10, 1) def test_pandas_df_numeric() -> None: x = np.empty((10, 2)) index = pd.date_range("2017-01-01", periods=10) xdf = pd.DataFrame(x, columns=["a", "b"], index=index) xdh = IVData(xdf) assert xdh.ndim == 2 assert xdh.cols == list(xdf.columns) assert xdh.rows == list(xdf.index) assert_equal(xdh.ndarray, x) df = pd.DataFrame(x, columns=xdh.cols, index=xdh.rows).asfreq("D") assert_frame_equal(xdh.pandas, df) assert xdh.shape == (10, 2) def test_pandas_series_numeric() -> None: x = np.empty(10) index = pd.date_range("2017-01-01", periods=10) xs = pd.Series(x, name="charlie", index=index) xdh = IVData(xs) assert xdh.ndim == 2 assert xdh.cols == [xs.name] assert xdh.rows == list(xs.index) assert_equal(xdh.ndarray, x[:, None]) df = pd.DataFrame(x[:, None], columns=xdh.cols, index=xdh.rows).asfreq("D") assert_frame_equal(xdh.pandas, df) assert xdh.shape == (10, 1) @pytest.mark.skipif(MISSING_XARRAY, reason="xarray not installed") def test_xarray_1d() -> None: x_np = np.random.randn(10) x = xr.DataArray(x_np) dh = IVData(x, "some_variable") assert_equal(dh.ndarray, x_np[:, None]) assert dh.rows == list(np.arange(10)) assert dh.cols == ["some_variable.0"] expected = pd.DataFrame(x_np, columns=dh.cols, index=dh.rows) assert_frame_equal(expected, dh.pandas) index = pd.date_range("2017-01-01", periods=10) x = xr.DataArray(x_np, [("time", index)]) dh = IVData(x, "some_variable") assert_equal(dh.ndarray, x_np[:, None]) assert_series_equal(pd.Series(dh.rows), pd.Series(list(index))) assert dh.cols == ["some_variable.0"] expected = pd.DataFrame(x_np[:, None], columns=dh.cols, index=dh.rows) assert_frame_equal(expected, dh.pandas) @pytest.mark.skipif(MISSING_XARRAY, reason="xarray not installed") def test_xarray_2d() -> None: x_np = np.random.randn(10, 2) x = xr.DataArray(x_np) dh = IVData(x) assert_equal(dh.ndarray, x_np) assert dh.rows == list(np.arange(10)) assert dh.cols == ["x.0", "x.1"] expected =
pd.DataFrame(x_np, columns=dh.cols, index=dh.rows)
pandas.DataFrame
from abc import ABC, abstractmethod,ABCMeta import sys import os import math import pandas as pd from sklearn.preprocessing import MinMaxScaler from data_fetcher import downloader from datetime import datetime from collections import OrderedDict,Set import numpy as np import matplotlib.pyplot as plt def companies(): dataset = pd.read_csv(os.path.join("data","dow30.csv")) return dataset def symbol_list(): dataset = pd.read_csv(os.path.join("data","dow30.csv")) return dataset['Symbol'].values.tolist() class BaseData(object): def __init__(self,symbol:str): self.__symbol = symbol @property def symbol(self): return self.__symbol def save(self,file_dir:str,file_name:str,data:pd.DataFrame): try: if data is None: return full_path = os.path.join(file_dir,file_name) include_index = False if data.index.name == None else True if os.path.isdir(file_dir): data.to_csv(full_path,index=include_index) else: os.makedirs(file_dir) data.to_csv(full_path,index=include_index) except OSError as err: print("OS error for symbol {} : {}".format(self.symbol,err)) except: print("Unexpected error for symbol {} : {}".format(self.symbol, sys.exc_info()[0])) class Downloader(BaseData): def __init__(self,symbol:str,start_date:str, end_date:str): try: BaseData.__init__(self,symbol) self.__start_date = datetime.strptime(start_date,'%Y%m%d') self.__end_date = datetime.strptime(end_date,'%Y%m%d') self.__data = None #Download data from Yahoo. yah = downloader.load_yahoo_quote(symbol,start_date,end_date) header = yah[0].split(',') table = [] for i in yah[1:]: quote = i.split(',') if len(quote)>1: d = dict() d[header[0]] = quote[0] d[header[1]] = quote[1] d[header[2]] = quote[2] d[header[3]] = quote[3] d[header[4]] = quote[4] d[header[5]] = quote[5] d[header[6]] = quote[6] table.append(d) self.__data = pd.DataFrame(table) self.__size = len(self.__data) except OSError as err: print("OS error for symbol {} : {}".format(symbol,err)) def save(self): file_dir = os.path.join("./data",self.symbol) BaseData.save(self,file_dir,"quotes.csv",self.__data) @property def start_date(self): return self.__start_date @property def end_date(self): return self.__end_date @property def data(self): return self.__data @property def size(self): return self.__size class Feature_Selection(BaseData): def __init__(self,symbol:str,data:pd.DataFrame,mfi_days=14): BaseData.__init__(self,symbol) self.__days = mfi_days self.__data = None self.__data_normal = None cols = data.columns.values cols_check = "Date,Open,High,Low,Close,Adj Close,Volume".split(',') missing = False for col in cols: found = False for name in cols_check: if col == name: found = True break if not found: print("The column {} is missing.".format(col)) missing = True break if not missing: self.__data = data self.__data['Date'] = pd.to_datetime(self.__data['Date']) self.__data.sort_values('Date',inplace=True) self.__data.reset_index(drop=True,inplace=True) self.__data.index.name = 'index' @classmethod def read_csv(cls,symbol:str,file_loc:str): try: data = pd.read_csv(file_loc) return cls(symbol,data) except OSError as err: print("OS error {}".format(err)) return None @property def data(self): return self.__data @property def data_normal(self): return self.__data_normal def calculate_features(self): self.__cal_log_return("Adj Close") self.__cal_mfi() def __scale_data(self,col_Name:str): values = self.__data[col_Name].iloc[self.__days:].values.reshape(-1,1) scaler = MinMaxScaler(feature_range=(-1,1)) return scaler.fit_transform(values).flatten() def __flatten_data(self,col_Name:str): return self.__data[col_Name].iloc[self.__days:].values.flatten() def normalize_data(self): index = self.__data.index.values[self.__days:] table = OrderedDict() table['close'] = self.__flatten_data('Adj Close') table['returns'] = self.__flatten_data('Adj Close_log_returns') table['mfi'] = self.__flatten_data('mfi_index') table['normal_close'] = self.__scale_data('Adj Close') table['normal_returns'] = self.__scale_data('Adj Close_log_returns') table['normal_mfi'] = self.__scale_data('mfi_index') self.__data_normal = pd.DataFrame(table,index=index) self.__data_normal.index.name = 'index' def __cal_log_return(self,col_name:str): values = self.__data[col_name].values log_returns = np.zeros_like(values) for idx in range(1,len(values)): log_returns[idx] = math.log(values[idx]/values[idx-1]) self.__data[col_name+"_log_returns"] = pd.Series(log_returns, index = self.__data.index) def save_stock_data(self): file_dir = os.path.join("./data",self.symbol) BaseData.save(self,file_dir,"quote_processed.csv",self.__data_normal) def save_normalized_data(self): file_dir = os.path.join("./data",self.symbol) BaseData.save(self,file_dir,"normalized.csv",self.__data_normal) def __cal_mfi(self): typ_price =
pd.DataFrame((self.__data["High"] + self.__data["Low"] + self.__data["Adj Close"])/3, columns =["price"] )
pandas.DataFrame
""" data generation module contains a **Generator** class for generating either **domain specific** (i.e. names, jobs, addresses, currencies & profiles) or **random** data. for domain specific data **Generator** supports *name*, *job*, *address*, *currency*, *profile*. For random data Generator supports generating data using 1. number of rows 2. number of columns 3. number of rows & columns 4. all the above with a predefined metadata the **Generator** class also supports constraining the generated data to a specific type such as *integers*, *floats* or *strings*. for all generation operations Generator relies the **Engine** class to generate both domain-specific and random data. The **Engine** class in turn relies on faker + pandas to generate data """ import string import random import logging from typing import List, Dict, Optional import numpy as np import pandas as pd from faker import Faker from mok.common import SUPPORTED_DATA_TYPES, SUPPORTED_DATA_DOMAINS logger = logging.getLogger(__name__) # init. faker to generate domain specific data faker = Faker() class Engine: """data generation engine/helper used by **Generate** to generate lists of various data types. these lists will then be combined to create a dataframe and then exported to various file formats. *** **methods** *** *specific* *random* *** """ @staticmethod def specific(num_rows, domain): """ generate a dataframe of domain specific yet random data using faker *** **parameters** *** *num_rows*: number of rows to generate *domain*: domain of generated data (can be *name*, *job*, *address*, *currency*, *profile*) *** """ generated = [] for _ in range(num_rows): # use faker to generate fake dicts & save them in a list if domain == "name": generated.append(faker.name()) elif domain == "job": generated.append(faker.job()) elif domain == "address": generated.append(faker.address()) elif domain == "currency": currency = faker.currency() generated.append({"symbol": currency[0], "name": currency[1]}) elif domain == "profile": generated.append(faker.simple_profile()) # convert list of dicts to a pandas dataframe # list of strings if isinstance(generated[0], str): data = pd.DataFrame( # pylint: disable=invalid-name generated, columns=[domain], ) # list of dicts elif isinstance(generated[0], dict): data = pd.DataFrame.from_dict(generated) # pylint: disable=invalid-name return data @staticmethod def _integer(min_val, max_val, num_rows): """ generate a list of random integers parameters min_val: lower bound of numbers generated max_val: upper bound of numbers generated num_rows: num items to generate """ return list(np.random.randint(min_val, max_val, size=(1, num_rows)))[0] @staticmethod def _str(min_len, max_len, num_rows): """ generate a list of random strings parameters min_len: min. length of string max_val: max. length of string num_rows: num items to generate """ # random lengths array str_lens = np.random.randint(min_len, max_len, size=(1, num_rows)) # use above lengths to generate random strings random_str_fn = np.vectorize( lambda length: "".join(random.choices(string.ascii_lowercase, k=length)) ) return list(random_str_fn(str_lens).tolist())[0] @staticmethod def _float(min_val, max_val, num_rows): """ generate a list of random floats parameters min_val: lower bound of numbers generated max_val: upper bound of numbers generated num_rows: num items to generate """ return list(np.random.uniform(min_val, max_val, [1, num_rows]).tolist())[0] @staticmethod def random( # pylint: disable=dangerous-default-value,too-many-arguments,too-many-locals num_rows, num_columns=10, metadata=None, min_val=0, max_val=1000, min_len=3, max_len=20, col_types=[int, str, float], ): """ generate a dataframe of psuedo-random data *** **parameters** *** *num_rows*: number of rows to generate *num_columns*: number of columns to generate *metadata*: description of data to generate (python dict of the form {col_name: col_val})) for e.g. metdata = {"id": int, "product": str, "price": float} *min_val*: minimum value for integer/float values generated *max_val*: maximum value for integer/float values generated *min_len*: minimum length for string values generated *max_len*: maximum length for string values generated *col_types*: data types to generate (by default is `[float, str, int]`) *** """ generated = {} column_names = [] column_types = [] if metadata is not None: # iterate through metadata and generate columns for column_name, column_type in metadata.items(): column_names.append(column_name) column_types.append(column_type) if column_type == int: generated[column_name] = Engine._integer( min_val=min_val, max_val=max_val, num_rows=num_rows ) elif column_type == str: generated[column_name] = Engine._str( min_len=min_len, max_len=max_len, num_rows=num_rows ) elif column_type == float: generated[column_name] = Engine._float( min_val=min_val, max_val=max_val, num_rows=num_rows ) data =
pd.DataFrame.from_dict(generated, orient="index")
pandas.DataFrame.from_dict
""" This script contains functions for easily getting into SQLlite databases """ import sqlite3 from sqlite3 import Error import pandas as pd import math def create_connection(db_file): """ Connect to sqlite database, return an error if it cannot :param db_file: database path location """ try: conn = sqlite3.connect(db_file) print('SQL Connection Created') return conn except Error as e: print(e) return None def get_data(conn, startdate, enddate, cpd): """ gather data between start and end dates :param conn: SQLlite3 connection :param startdate: starting date string , format ex. '2019-07-23 00:00:00' :param enddate: end date string, format ex. 2019-07-24 23:59:59 :param cpd: the SQLlite database header of the data column :return: """ cur = conn.cursor() # get data between start and end date cur.execute(f"SELECT * FROM {cpd} WHERE date BETWEEN '{startdate}' AND '{enddate}'") rows = cur.fetchall() # convert to clean dataframe if len(rows) > 100000: iterations = math.ceil(len(rows) / 100000) n = int(len(rows) / (iterations * 2)) chunked_rows = [rows[i * n:(i + 1) * n] for i in range((len(rows) + n - 1) // n)] data = pd.DataFrame() for i in range(len(chunked_rows)): frame = pd.DataFrame(chunked_rows[i]) data = data.append(frame, ignore_index=True) del frame print(f'Data Chunk {i} Appended') data.columns = ['id', 'date', '1', 'status', '2', '3', '4', '5', '6', 'pos', '7', '8', '9', '10', '11', 'ch4', '12', '13', '14'] badcols = list(pd.Series(range(1, 15)).astype(str)) data.drop(badcols, axis=1, inplace=True) # create proper datetimes data['datetime'] =
pd.to_datetime(data['date'])
pandas.to_datetime
''' Aggregate dataframes collected from separate sources ''' import pandas as pd import numpy as np import json import pickle from utils import doubleheaders, get_momentum_model_inputs, calculate_distance_model_inputs, id_converter, assemble_metrics from gauss_rank_scaler import GaussRankScaler print("Reading in statistics...") try: today_games = pd.read_csv("./all_data/today_games.csv") season_totals = pd.read_csv("./all_data/season_totals.csv") starter_career = pd.read_csv("./all_data/starter_career.csv") starter_season = pd.read_csv("./all_data/starter_season.csv") all_starters = pd.read_csv("./all_data/past_raw.csv.gz", compression = "gzip") except Exception as e: print("Could not read in statistics: {}".format(e)) raise s_map = id_converter(today_games, all_starters) del all_starters today_games["road_starter_"] = today_games.road_starter.map(s_map) today_games["home_starter_"] = today_games.home_starter.map(s_map) today_games = today_games.drop(columns = ["home_starter", "road_starter"]).rename(columns = { "road_starter_" : "road_starter", "home_starter_" : "home_starter" }) working = pd.DataFrame(assemble_metrics(today_games, season_totals, starter_season, starter_career)) working = doubleheaders(working) try: working_elo = pd.read_csv("./all_data/daily_elo.csv.gz", compression = "gzip") except Exception as e: print("Could not read in elo: {}".format(e)) raise working_elo["date"] = pd.to_datetime(working_elo.date, format = "%Y-%m-%d") working_elo = doubleheaders(working_elo, home = "team1") working_elo = working_elo.drop(columns = ["playoff", "neutral"]).rename(columns = {"team1" : "home_team", "team2" : "road_team"}) working_elo = working_elo.sort_index(ascending = False).reset_index(drop = True) working_elo = working_elo[working_elo.date <= working.date.max()] merge_cols1 = ["date", "home_team", "road_team", "is_doubleheader", "is_tripleheader"] working = working.merge(working_elo, how = "left", left_on = merge_cols1, right_on = merge_cols1) drop_cols = ["elo1_pre", "elo2_pre", "elo_prob1", "elo_prob2", "elo1_post", "elo2_post", "pitcher1", "pitcher2", "rating_prob2", "rating1_post", "rating2_post", "year_x", "year_y"] working = working.drop(drop_cols, axis = 1) for_momentum = working_elo[working_elo.date < working.date.max()].reset_index(drop = True) all_momentum = pd.DataFrame(get_momentum_model_inputs(working, for_momentum)) del for_momentum merge_cols2 = ["date", "is_doubleheader", "is_tripleheader", "home_team", "road_team"] working = working.merge(all_momentum, how = "left", left_on = merge_cols2, right_on = merge_cols2) try: stadiums =
pd.read_csv("./adv_metric_constants/all_stadiums_w_park_ids.csv", index_col = [0])
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # # Introduction # # Previously I built XG Boost models to predict the main and sub-types of Pokemon from all 7 generations (https://www.kaggle.com/xagor1/pokemon-type-predictions-using-xgb). This was relatively successful, but often stalled at around 70% accuracy per generation, with some much worse. To gain more experience with parameter tuning and feature engineering, I decided to revisit just the 1st Generation, and see if I could improve my results. # In[2]: #Load various packages import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os import gc import time import numpy as np import pandas as pd from sklearn.cross_validation import train_test_split import xgboost as xgb from xgboost import plot_importance import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score from sklearn import metrics import seaborn as sns print(os.listdir("../../../input/rounakbanik_pokemon")) from sklearn.feature_selection import SelectFromModel from collections import Counter import warnings warnings.filterwarnings("ignore") # # Loading and Modifying Data # # To start with, I loaded and modified the data as in the previous kernel. # # In contrast to last time, I separated out the numerical and categorical data, and applied one-hot encoding to the latter. This caused the number of features to explode from 24 to 500. # # The original plan was to do feature engineering to improve my overall accuracy. However, thus far all my attempts have actually made the predictions worse, so I have left this aside for now. # In[3]: #Read data path = "../../../input/rounakbanik_pokemon/" egg_df=pd.read_csv(path+"pokemon.csv") species_df=pd.read_csv(path+"pokemon.csv") abilities_df=pd.read_csv(path+"pokemon.csv") #Split duplicates off & combine back egg2_df=pd.DataFrame.copy(egg_df) egg2_df=egg_df.loc[egg_df['species_id'].duplicated(), :] egg_df.drop_duplicates('species_id',inplace=True) merged = egg_df.merge(egg2_df,on="species_id",how='outer') merged.fillna(0,inplace=True) #Rename columns to simpler form. merged.rename(index=str,columns={"egg_group_id_x":"egg_group_1"},inplace=True) merged.rename(index=str,columns={"egg_group_id_y":"egg_group_2"},inplace=True) #Drop last 6 columns merged.drop(merged.tail(6).index,inplace=True) #Rename merged.rename(index=str,columns={"species_id":"pokedex_number"},inplace=True) #Make a new smaller dataframe species_trim_df=pd.DataFrame() species_trim_df["pokedex_number"]=species_df['id'] species_trim_df["color_id"]=species_df['color_id'] species_trim_df["shape_id"]=species_df['shape_id'] species_trim_df["habitat_id"]=species_df['habitat_id'] species_trim_df.drop(species_trim_df.tail(6).index,inplace=True) #Trim all below Magearna off abilities_df = abilities_df[abilities_df.pokemon_id < 802] #Make 3 new columns abilities_df["Ability1"]=0 abilities_df["Ability2"]=0 abilities_df["Ability3"]=0 #Assign values to the 3 columns based on the ability slot (1-3) abilities_df["Ability1"] = abilities_df.ability_id.where(abilities_df.slot == 1,0) abilities_df["Ability2"] = abilities_df.ability_id.where(abilities_df.slot == 2,0) abilities_df["Ability3"] = abilities_df.ability_id.where(abilities_df.slot == 3,0) #Split duplicates off into new dataframes #3 abilities on some means it needs to be split twice #I'm sure there's an easier way to do this abilities_df2=pd.DataFrame.copy(abilities_df) abilities_df2=abilities_df.loc[abilities_df['pokemon_id'].duplicated(), :] abilities_df.drop_duplicates('pokemon_id',inplace=True) abilities_df3=pd.DataFrame.copy(abilities_df2) abilities_df3=abilities_df2.loc[abilities_df2['pokemon_id'].duplicated(), :] abilities_df2.drop_duplicates('pokemon_id',inplace=True) #Drop extra columns abilities_df.drop(['ability_id','is_hidden','slot'],axis=1,inplace=True) abilities_df2.drop(['ability_id','is_hidden','slot'],axis=1,inplace=True) abilities_df3.drop(['ability_id','is_hidden','slot'],axis=1,inplace=True) #Combine everything back abilities_df=abilities_df.set_index('pokemon_id').add(abilities_df2.set_index('pokemon_id'),fill_value=0).reset_index() abilities_df=abilities_df.set_index('pokemon_id').add(abilities_df3.set_index('pokemon_id'),fill_value=0).reset_index() #Rename pokemon_id to pokedex number to allow for merging. abilities_df.rename(index=str,columns={"pokemon_id":"pokedex_number"},inplace=True) #Read Kaggle data path = "../../../input/rounakbanik_pokemon/" pokemon_df=pd.read_csv(path+"pokemon.csv") Name_df=pd.DataFrame() Name_df["name"]=pokemon_df["name"].copy() #Fix Minior's capture rate pokemon_df.capture_rate.iloc[773]=30 #Change the type pokemon_df['capture_rate']=pokemon_df['capture_rate'].astype(str).astype(int) #Merge all my data. pokemon_df=pokemon_df.merge(merged,on="pokedex_number",how='outer') pokemon_df=pokemon_df.merge(species_trim_df,on="pokedex_number",how='outer') pokemon_df=pokemon_df.merge(abilities_df,on="pokedex_number",how='outer') #Remove against columns pokemon_df.drop(list(pokemon_df.filter(regex = 'against')), axis = 1, inplace = True) #Correct the spelling error pokemon_df.rename(index=str,columns={"classfication":"classification"},inplace=True) #Change nan to 'none' pokemon_df.type2.replace(np.NaN, 'none', inplace=True) #Drop Pokedex number for now pokemon_df.drop("pokedex_number",axis=1,inplace=True) pokemon_df.drop("generation",axis=1,inplace=True) #First find the NAs. index_height = pokemon_df['height_m'].index[pokemon_df['height_m'].apply(np.isnan)] index_weight = pokemon_df['weight_kg'].index[pokemon_df['weight_kg'].apply(np.isnan)] index_male = pokemon_df['percentage_male'].index[pokemon_df['percentage_male'].apply(np.isnan)] #Manually replace the missing heights & weights using the Kanto version etc pokemon_df.height_m.iloc[18]=0.3 pokemon_df.height_m.iloc[19]=0.7 pokemon_df.height_m.iloc[25]=0.8 pokemon_df.height_m.iloc[26]=0.6 pokemon_df.height_m.iloc[27]=1.0 pokemon_df.height_m.iloc[36]=0.6 pokemon_df.height_m.iloc[37]=1.1 pokemon_df.height_m.iloc[49]=0.2 pokemon_df.height_m.iloc[50]=0.7 pokemon_df.height_m.iloc[51]=0.4 pokemon_df.height_m.iloc[52]=1.0 pokemon_df.height_m.iloc[73]=0.4 pokemon_df.height_m.iloc[74]=1.0 pokemon_df.height_m.iloc[75]=1.4 pokemon_df.height_m.iloc[87]=0.9 pokemon_df.height_m.iloc[88]=1.2 pokemon_df.height_m.iloc[102]=2.0 pokemon_df.height_m.iloc[104]=1.0 pokemon_df.height_m.iloc[719]=0.5 pokemon_df.height_m.iloc[744]=0.8 pokemon_df.weight_kg.iloc[18]=3.5 pokemon_df.weight_kg.iloc[19]=18.5 pokemon_df.weight_kg.iloc[25]=30.0 pokemon_df.weight_kg.iloc[26]=12.0 pokemon_df.weight_kg.iloc[27]=29.5 pokemon_df.weight_kg.iloc[36]=9.9 pokemon_df.weight_kg.iloc[37]=19.9 pokemon_df.weight_kg.iloc[49]=0.8 pokemon_df.weight_kg.iloc[50]=33.3 pokemon_df.weight_kg.iloc[51]=4.2 pokemon_df.weight_kg.iloc[52]=32.0 pokemon_df.weight_kg.iloc[73]=20.0 pokemon_df.weight_kg.iloc[74]=105.0 pokemon_df.weight_kg.iloc[75]=300.0 pokemon_df.weight_kg.iloc[87]=30.0 pokemon_df.weight_kg.iloc[88]=30.0 pokemon_df.weight_kg.iloc[102]=120.0 pokemon_df.weight_kg.iloc[104]=45.0 pokemon_df.weight_kg.iloc[719]=9.0 pokemon_df.weight_kg.iloc[744]=25.0 #Create a Genderless column to separate them from the all-female cases. pokemon_df["Genderless"]=0 pokemon_df["Genderless"].loc[list(index_male)]=1 #Replace all the NANs with zeros in the % male pokemon_df.percentage_male.replace(np.NaN, 0, inplace=True) #Check the typings of the pokemon with Alolan forms & fix #I'm sure this can be done much more elegantly pokemon_df.type2.iloc[18]='none' pokemon_df.type2.iloc[19]='none' pokemon_df.type2.iloc[25]='none' pokemon_df.type2.iloc[26]='none' pokemon_df.type2.iloc[27]='none' pokemon_df.type2.iloc[36]='none' pokemon_df.type2.iloc[37]='none' pokemon_df.type2.iloc[49]='none' pokemon_df.type2.iloc[50]='none' pokemon_df.type2.iloc[51]='none' pokemon_df.type2.iloc[52]='none' pokemon_df.type2.iloc[87]='none' pokemon_df.type2.iloc[88]='none' pokemon_df.type2.iloc[104]='none' #Lets start with just the numerical data for now. num_features=pokemon_df.select_dtypes(include=np.number) num_features=num_features.columns #print("The Type models will be built using the following features") #print(list(num_features)) # In[4]: numerical_df=pd.DataFrame.copy(pokemon_df[['attack', 'base_egg_steps', 'base_happiness', 'base_total','capture_rate', 'defense', 'experience_growth','height_m', 'hp', 'percentage_male', 'sp_attack', 'sp_defense', 'speed','weight_kg']]) numerical_df.to_csv('numerical_features.csv',index=False) one_hot_df=pd.DataFrame.copy(pokemon_df[["Ability1","Ability2","Ability3","egg_group_1","egg_group_2","is_legendary","color_id","shape_id","habitat_id","Genderless"]]) one_hot_df=pd.get_dummies(one_hot_df,prefix=["Ability1","Ability2","Ability3","egg_group_1","egg_group_2","is_legendary","color_id","shape_id","habitat_id","Genderless"],columns=["Ability1","Ability2","Ability3","egg_group_1","egg_group_2","is_legendary","color_id","shape_id","habitat_id","Genderless"]) one_hot_df.to_csv('one_hot_features.csv',index=False) features=pd.concat([numerical_df,one_hot_df],axis=1) # In[ ]: #Do some feature engineering #features["Total_Offense"]=features["attack"]+features["sp_attack"] #features["Total_Defense"]=features["defense"]+features["sp_defense"] #features["Total_Physical"]=features["attack"]+features["defense"] #features["Total_Special"]=features["sp_attack"]+features["sp_defense"] #features["Attack_Difference"]=abs(features["attack"]-features["sp_attack"]) #features["Defense_Difference"]=abs(features["defense"]-features["sp_defense"]) #features["Physical_Difference"]=abs(features["attack"]-features["defense"]) #features["Special_Difference"]=abs(features["sp_attack"]-features["sp_defense"]) #features["HeightXWeight"]=features["height_m"]*features["weight_kg"] #features["BMI"]=features["weight_kg"]/(features["weight_kg"]**2) #features["Speed_X_Weight"]=features["speed"]*features["weight_kg"] #features=features.drop(columns=["attack","sp_attack"]) # In[5]: targets=pd.DataFrame() targets2=pd.DataFrame() targets["type1"]=pokemon_df["type1"] targets=np.ravel(targets) targets2["type2"]=pokemon_df["type2"] targets2=np.ravel(targets2) #Split features & targets into each generation. Gen1_features=features[0:151] Gen2_features=features[151:251] Gen3_features=features[251:386] Gen4_features=features[386:493] Gen5_features=features[493:649] Gen6_features=features[649:721] Gen7_features=features[721:801] Gen1_targets=targets[0:151] Gen2_targets=targets[151:251] Gen3_targets=targets[251:386] Gen4_targets=targets[386:493] Gen5_targets=targets[493:649] Gen6_targets=targets[649:721] Gen7_targets=targets[721:801] Gen1_targets=np.ravel(Gen1_targets) Gen2_targets=np.ravel(Gen2_targets) Gen3_targets=np.ravel(Gen3_targets) Gen4_targets=np.ravel(Gen4_targets) Gen5_targets=np.ravel(Gen5_targets) Gen6_targets=np.ravel(Gen6_targets) Gen7_targets=np.ravel(Gen7_targets) #Recombine 6 of them, in 7 different ways, to make my different training sets #Ordering of the features & targets should be the same! #But doesn't have to be necessarily in numerical order Gens_not1_features=pd.concat([Gen2_features,Gen3_features,Gen4_features,Gen5_features,Gen6_features,Gen7_features],axis=0) Gens_not2_features=
pd.concat([Gen1_features,Gen3_features,Gen4_features,Gen5_features,Gen6_features,Gen7_features],axis=0)
pandas.concat
import os import logging import pandas as pd from collections import defaultdict def get_sample_files(path,outfile='samples.tsv'): samples = defaultdict(dict) seen = set() for dir_name, sub_dirs, files in os.walk(os.path.abspath(path)): for fname in files: if ".fastq" in fname or ".fq" in fname: sample_id = fname.split(".fastq")[0].split(".fq")[0] sample_id = sample_id.replace("_R1", "").replace("_r1", "").replace("_R2", "").replace("_r2", "") sample_id = sample_id.replace("_", "-").replace(" ", "-") fq_path = os.path.join(dir_name, fname) if fq_path in seen: continue if "_R2" in fname or "_r2" in fname: if 'R2' in samples[sample_id]: logging.error(f"Duplicate sample {sample_id} was found after renaming; skipping... \n Samples: \n{samples}") samples[sample_id]['R2'] = fq_path else: if 'R1' in samples[sample_id]: logging.error(f"Duplicate sample {sample_id} was found after renaming; skipping... \n Samples: \n{samples}") samples[sample_id]['R1'] = fq_path samples=
pd.DataFrame(samples)
pandas.DataFrame
import pandas as pd import numpy as np from scipy import stats import requests from io import StringIO import datetime from myutils.utils import getConnection, load_bmrs_data, cronlog, email_script import traceback cronlog() numdays = 14 errstr = '' try: t = datetime.datetime.today() - pd.offsets.Day(0) # Get day ahead prices r = requests.get('https://www.nordpoolgroup.com/globalassets/marketdata-excel-files/n2ex-day-ahead-auction-prices_2020_hourly_gbp.xls') a = pd.read_html(StringIO(r.text))[0] a.columns=['date','time1','time2','price'] a = a[a.price.notna()].copy() a.price = a.price/100 a['date'] = a['date'].str[-4:] + a['date'].str[3:5] + a['date'].str[:2] a['time1'] = a['time1'].str[:2] a.drop(columns=['time2'], inplace=True) dates = a.date.unique() dates2 = {k: v for k, v in zip(dates[1:], dates[:-1])} a['date2'] = np.where(a.time1=='23', a.date.map(dates2), a.date) lastdate = datetime.datetime.strptime(a['date'].iloc[-1], '%Y%m%d') dates = [(lastdate-pd.offsets.Day(d)).strftime('%Y%m%d') for d in range(numdays)] a = a[a.date2.isin(dates)].copy() a['date'] = a['date2'].astype(int) a['time'] = a['time1'].astype(int) prices = a[['date','time','price']].groupby(['date','time']).mean() # Get Historic demand (net of solar) datalist = [] for d in range(numdays): date = (lastdate-
pd.offsets.Day(d)
pandas.offsets.Day
"""Unittests for the functions in raw, using example datasets.""" import unittest import pandas.testing as pt import pandas as pd from io import StringIO from gnssmapper import log import gnssmapper.common.time as tm import gnssmapper.common.constants as cn class TestReadCSV(unittest.TestCase): def setUp(self): self.filedir = "./tests/data/" self.filepath = self.filedir+"log_20200211.txt" def test_read_csv_(self) -> None: raw_var,fix = log.read_csv_(self.filepath) raw_expected = pd.DataFrame({ 'TimeNanos': [34554000000], 'FullBiasNanos':[-1265446151445559028], 'Svid': [2], 'ConstellationType': [1], 'State': [16431], 'Cn0DbHz': [22.340620040893555]}).convert_dtypes(convert_floating=False,convert_boolean=False,convert_string=False) fix_expected = pd.DataFrame({ 'Latitude': [51.524707], 'Longitude': [-0.134140], 'Altitude': [114.858938], '(UTC)TimeInMs': [1581410967999] }).convert_dtypes(convert_floating=False,convert_boolean=False,convert_string=False) pt.assert_frame_equal( raw_var.loc[0:0, ['TimeNanos','FullBiasNanos','Svid', 'ConstellationType','State','Cn0DbHz']], raw_expected) pt.assert_frame_equal( fix.loc[0:0, ['Latitude', 'Longitude', 'Altitude', '(UTC)TimeInMs']], fix_expected ) def test_platform(self) -> None: #copy of log.txt with platform replaced by 6 wrong_platform = self.filedir+"wrong_platform.txt" self.assertWarnsRegex(UserWarning,"Platform 6 found in log file",log.read_csv_,wrong_platform) def test_version(self) -> None: #copy of log.txt with version replaced by 1.3.9.9 wrong_version = self.filedir+"wrong_version.txt" self.assertRaisesRegex(ValueError,"Version 1.3.9.9 found in log file",log.read_csv_,wrong_version) def test_compare_version(self) -> None: low = "1.3" high = "1.4" expected = "1.4.0.0" self.assertTrue(log._compare_version(high, expected)) self.assertFalse(log._compare_version(low, expected)) def test_compare_platform(self) -> None: low = set(["6","M",6]) high = set(["7","N",7,"O",10,"10"]) expected = "7" self.assertTrue(all([log._compare_platform(x, expected) for x in high])) self.assertFalse(any([log._compare_platform(x, expected) for x in low])) class TestProcessRaw(unittest.TestCase): def setUp(self): # received 0.1 second after start of week rx_ = pd.DataFrame( {'week': [2000], 'day': [0], 'time': [1 * 10 ** 8]}) # transmitted at 0.01 second after start of week tx_ = pd.DataFrame( {'week': [2000], 'day': [0], 'time': [1 * 10 ** 7]}) d = {'ConstellationType': [1], 'Svid': [1], 'TimeNanos': tm.gpsweek_to_gps(rx_.week, rx_.day, rx_.time), 'FullBiasNanos': [0], 'ReceivedSvTimeNanos': tm.gpsweek_to_gps(0, tx_.day, tx_.time), 'State': [9]} self.input = pd.DataFrame(d) self.tx_gps = tm.gpsweek_to_gps(tx_.week, tx_.day, tx_.time).convert_dtypes() self.rx = rx_ def test_galileo_ambiguity(self) -> None: import numpy as np expected = np.array([6, 7, 8, 9, 10])*cn.nanos_in_period['E'] testdata = np.array([1, 2, 3, 4, 5])+expected np.testing.assert_array_equal( log.galileo_ambiguity(testdata), expected) def test_period_start_time(self) -> None: import numpy as np rx = self.input.TimeNanos[0] state = 9 constellation = 'G' expected = tm.gpsweek_to_gps(self.rx.week, pd.Series([0]), pd.Series([0])) pt.assert_series_equal( log.period_start_time(pd.Series([rx]),
pd.Series([state])
pandas.Series
import pandas as pd import logging import sys import os import numpy as np from itertools import chain from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import NMF, LatentDirichletAllocation formatter = logging.Formatter(fmt='%(asctime)s %(levelname)-8s %(message)s', datefmt='%Y-%m-%d %H:%M:%S') np.random.seed(42) class Streamgraph(object): def __init__(self, loglevel="INFO"): self.logger = logging.getLogger(__name__) self.logger.setLevel(loglevel) handler = logging.StreamHandler(sys.stdout) handler.setFormatter(formatter) handler.setLevel(loglevel) self.logger.addHandler(handler) def get_streamgraph_data(self, metadata, query, n=12, method="tfidf"): df = pd.DataFrame.from_records(metadata) df.year = pd.to_datetime(df.year) df.year = df.year.map(lambda x: x.year) df.year = df.year.map(lambda x: pd.to_datetime(x, format="%Y")) df = df[df.subject.map(lambda x: x is not None)] df.subject = df.subject.map(lambda x: [s for s in x.split("; ") if s]) df = df[df.subject.map(lambda x: x != [])] df["boundary_label"] = df.year df = df.explode('subject') df = df[df.subject != ""] counts = self.get_counts(df) boundaries = self.get_boundaries(df) daterange = self.get_daterange(boundaries) data = pd.merge(counts, boundaries, on='year') top_n = self.get_top_n(metadata, query, n, method) data = (data[data.subject.map(lambda x: x in top_n)] .sort_values("year") .reset_index(drop=True)) x = self.get_x_axis(daterange) sg_data = {} sg_data["x"] = x sg_data["subject"] = self.postprocess(daterange, data) return sg_data @staticmethod def get_x_axis(daterange): return [str(x.year) for x in daterange] @staticmethod def get_daterange(boundaries): daterange = pd.date_range(start=min(boundaries.year).to_datetime64(), end=max(boundaries.year).to_datetime64(), freq='AS') if len(daterange) > 0: return sorted(daterange) else: return sorted(pd.unique(boundaries.year)) @staticmethod def get_stream_range(df): stream_range = { "min": min(df.year), "max": max(df.year), "range": max(df.year) - min(df.year) } return stream_range @staticmethod def get_counts(df): counts = (df.groupby(["year", "subject"]) .agg({'subject': 'count', 'id': lambda x: ", ".join(x)})) counts.rename({"subject": "counts"}, axis=1, inplace=True) counts.reset_index(inplace=True) return counts @staticmethod def get_boundaries(df): boundaries = df[["boundary_label", "year"]].drop_duplicates() return boundaries def get_top_n(self, metadata, query, n, method): df = pd.DataFrame.from_records(metadata) df = df[df.subject.map(lambda x: len(x) > 2)] corpus = df.subject.tolist() # set stopwords , stop_words='english' tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2, tokenizer=lambda x: x.split("; "), lowercase=False, stop_words=[query] ) tfidf_vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, tokenizer=lambda x: x.split("; "), lowercase=False, stop_words=[query] ) if method == "count": tf = tf_vectorizer.fit_transform(corpus) counts = pd.DataFrame(tf.toarray(), columns=tf_vectorizer.get_feature_names()) candidates = counts.sum().sort_values(ascending=False).index.tolist() candidates = [c for c in candidates if len(c) > 0] top_n = candidates[:n] if method == "tfidf": tfidf = tfidf_vectorizer.fit_transform(corpus) weights = pd.DataFrame(tfidf.toarray(), columns=tfidf_vectorizer.get_feature_names()) candidates = weights.sum().sort_values(ascending=False).index.tolist() candidates = [c for c in candidates if len(c) > 0] top_n = candidates[:n] if method == "nmf": tfidf = tfidf_vectorizer.fit_transform(corpus) nmf = NMF(n_components=n, alpha=.1, l1_ratio=.5, init='nndsvd', random_state=42).fit(tfidf) top_n = list(chain.from_iterable( [self.get_top_words(t, tfidf_vectorizer.get_feature_names(), 1) for t in nmf.components_])) if method == "lda": tf = tf_vectorizer.fit_transform(corpus) lda = LatentDirichletAllocation(n_components=n, max_iter=20, learning_method='batch', learning_offset=50., random_state=42).fit(tf) top_n = list(chain.from_iterable( [self.get_top_words(t, tf_vectorizer.get_feature_names(), 1) for t in lda.components_])) return top_n @staticmethod def get_top_words(topic, feature_names, n): indices = topic.argsort()[::-1] words = [feature_names[i] for i in indices] words = [w for w in words if len(w) > 2] return words[:n] @staticmethod def postprocess(daterange, data): x = pd.DataFrame(daterange, columns=["year"]) temp = [] for item in pd.unique(data.subject): tmp = (pd.merge(data[data.subject == item], x, left_on="year", right_on="year", how="right") .fillna({"counts": 0, "subject": item, "id": "NA"}) .sort_values("year")) y = tmp.counts.astype(int).to_list() ids_overall = (pd.unique(tmp[tmp.id != "NA"] .id.map(lambda x: x.split(", ")) .explode()).tolist()) ids_timestep = tmp.id.map(lambda x: x.split(", ")).tolist() temp.append({"name": item, "y": y, "ids_overall": ids_overall, "ids_timestep": ids_timestep}) df =
pd.DataFrame.from_records(temp)
pandas.DataFrame.from_records
import os import json import datetime import altair as alt import numpy as np import pandas as pd from enums import PATH, BAR, DATA_NAME_LIST, UNIQUE_VALUE_FILE, LINE, SCATTER class ScatterBot(): """ Vega JSON Scatter Chart Bot Class. Develop a script and usevega to generate as many visualzation as possible, data cleaning the null value, classify the catgorical and numercial type, Output as JSON format for different type of Bar Charts. """ def __init__(self, file_name: str, chart_type: None ) -> None : """Creates a new instance of the Bar Bot Object. Adding data path, plot output path, log output path Arguments: ---- chart_type {str} -- 'chart Type' data_path {str} -- data path of chart """ # Define chart type and read csv file self.file_name = file_name self.chart_type = chart_type self.df = pd.read_csv(os.path.join(PATH['data'], self.file_name )) # Categorical and numbercial type self.cat_col = [] self.num_col = [] # Unique Value self.uniques = [] def null_count(self, null_percentage: int, dummy_data: bool = False) -> any: """Calculating null values. . We are dropping Columns which have more than 30% of null value . Replacing null value with mean in case of int and float .If null value persist for other cases we are dropping those rows Arguments: ---- null_percentage: pertcentage of dummy want to cut off dummy_data: Should replace with dummy or not """ nulls_count = {col: self.df[col].isnull().sum() for col in self.df.columns} # print(nulls_count) is_null_count_out_of_range = \ {col: self.df[col].isnull().sum() / self.df.shape[0] * 100 > null_percentage for col in self.df.columns} if ( dummy_data ) : #self._generate_dummy_data() pass else : for k, v in is_null_count_out_of_range.items(): if v: self.df.drop(k, axis=1, inplace=True) else: if isinstance(self.df[k][0], (np.int64, np.float64)): self.df[k].fillna(self.df[k].mean(), inplace=True) else: drop_list = self.df[self.df[k].isnull()].index.tolist() self.df.drop(drop_list, axis=0, inplace=True) nulls_count = {col: self.df[col].isnull().sum() for col in self.df.columns} # print(nulls_count) def _generate_dummy_data(self) -> any: """Generate dummmy data for null column. """ pass def unique_value_list(self) -> any: """Finding all the unique values to in each column. """ self.uniques = {col: self.df[col].unique().tolist() for col in self.df.columns} def write_unique_value_list(self) -> any: """Writing the above created dictionary to a text file. """ file_name = "{fname}_Unique_values.txt".format(fname=self.file_name[:-4]) unique_list_file_path = os.path.join(PATH['data'], file_name ) if os.path.exists(unique_list_file_path): print( "{fname} already existed".format( fname = file_name ) ) else: with open(unique_list_file_path, 'w') as json_file: json.dump(self.uniques, json_file) print( "Generate {fname} Successfully".format( fname = file_name ) ) def new_folder_for_log_and_plot(self, charts) -> any: """Generate new folder for log file and Json plot. Arguments: ---- charts: Enum Type import from enums.py """ log_folder = PATH["log"][self.chart_type] plot_folder = PATH["plot"][self.chart_type] if os.path.exists(log_folder): pass else: os.mkdir(log_folder) if os.path.exists(plot_folder): pass else: os.mkdir(plot_folder) # Generate Log folder for chart in (charts): print(self._generate_new_folder( log_folder, chart.value )) # Generate plot folder for chart in (charts): print(self._generate_new_folder( plot_folder, chart.value )) def _generate_new_folder( self, folder_path: str, folder_name: str ) -> str: """Generate new folder return generate result. Arguments: ---- folder_path: parent path folder_name: name of folder """ folder_path = os.path.join(folder_path, folder_name) if os.path.exists(folder_path): return "{fname} folder already existed".format( fname = folder_path ) else: os.mkdir(folder_path) return "Generate {fname} folder Successfully".format( fname = folder_path ) def dtypes_conversion(self) -> any: """ . Converting columns to categorical having less than or equal to 10. . Integer and Float dataype will classify as numberical type . Check """ #unique values in a column for k,v in self.uniques.items(): if len(pd.Index(v)) <=10: self.df[k]= self.df[k].astype('category') self.cat_col = self.df.select_dtypes(include=['category']).columns.tolist() self.num_col = self.df.select_dtypes(include=['int64','float64']).columns.tolist() self._dtypes_conversion_datetime() #self._dtypes_conversion_geograph() [!FIX] print("Numerical Column : '\n' {num_col}".format( num_col = str(self.num_col) ) ) print("Categorical Column : '\n'{cat_col}".format( cat_col = str(self.cat_col) )) def _dtypes_conversion_datetime(self) -> any: """Check object columns is datetime or not. . Check the object columns is datetime datatype . Add new Column according to datetime datatype """ types = self.df.dtypes[self.df.dtypes == 'object'] for i, j in types.items(): try: self.df[i] = pd.to_datetime(df[i]) self.df[i + '_year'] = pd.DatetimeIndex(self.df[i]).year self.df[i + '_month'] = pd.DatetimeIndex(self.df[i]).month self.cat_col.append(i + '_year') self.cat_col.append(i + '_month') self.df[i + '_month'] = self.df[i + '_month'].apply( lambda x: datetime.date(1900, x, 1).strftime('%B') ) except: pass def _dtypes_conversion_geograph(self) -> any: """Identify Numercial type as longtitude or lantitude. """ pass def _generate_plot_path(self, cat_name: str, num_name: str, chart_name: str ) -> str: """Generate Plot path according to catgorical and numercial column. Arguments: ---- cat_name: catgorical column name num_name: numercial column name chart_name: Specific name of chart. """ print( self.file_name[:-4] ) plot_file_name = "{} Vs {}_plot_{}.json".format( cat_name, num_name, self.file_name[:-4] ) if chart_name=="histogram": plot_file_name = "{}_plot_{}.json".format(num_name, self.file_name[:-4] ) plot_path = os.path.join(PATH['plot'][self.chart_type], chart_name, plot_file_name) if os.path.exists(plot_path): print( "{fname} file already existed".format( fname = plot_path ) ) return "" else: print( "Generate {fname} folder Successfully".format( fname = plot_path ) ) return plot_path def get_monotonic_cols(self, df): return df.loc[:, df.apply(lambda x: x.is_monotonic)].columns def get_unique_cols(self, df, numerical_cols): ucols=[] for i in numerical_cols: if len(set(df[i]))==len(df[i]): ucols.append(i) return ucols def scatter_JSON_generator(self) -> any: # Generating JSON using altair methods tupls= [] for i in range(len(self.num_col)): for j in range(i+1, len(self.num_col)): tupls.append((self.num_col[i], self.num_col[j])) # print(tupls) for i in tupls: filtered_column_name0= ''.join(x for x in i[0] if x.isalpha() or x.isnumeric()) filtered_column_name1= ''.join(x for x in i[1] if x.isalpha() or x.isnumeric()) file_path = self._generate_plot_path( filtered_column_name0, filtered_column_name1, SCATTER.SCATTER.value) if file_path == "" : pass else: temp =
pd.DataFrame.from_dict({filtered_column_name0: self.df[i[0]], filtered_column_name1: self.df[i[1]]})
pandas.DataFrame.from_dict
__all__ = [ 'get_summary_mapping', 'generate_summaryxref_files', 'merge_oed_to_mapping', 'write_exposure_summary', 'write_summary_levels', 'write_mapping_file', ] import io import json import os import warnings import pandas as pd from ..utils.coverages import SUPPORTED_COVERAGE_TYPES from ..utils.data import ( factorize_dataframe, factorize_ndarray, get_dataframe, get_json, merge_dataframes, set_dataframe_column_dtypes, get_dtypes_and_required_cols, ) from ..utils.defaults import ( find_exposure_fp, SOURCE_IDX, SUMMARY_MAPPING, SUMMARY_OUTPUT, get_loc_dtypes, get_acc_dtypes, ) from ..utils.exceptions import OasisException from ..utils.log import oasis_log from ..utils.path import as_path from ..utils.peril import PERILS, PERIL_GROUPS from ..utils.status import OASIS_KEYS_STATUS from .gul_inputs import get_gul_input_items @oasis_log def get_summary_mapping(inputs_df, oed_hierarchy, is_fm_summary=False): """ Create a DataFrame with linking information between Ktools `OasisFiles` And the Exposure data :param inputs_df: datafame from gul_inputs.get_gul_input_items(..) / il_inputs.get_il_input_items(..) :type inputs_df: pandas.DataFrame :param is_fm_summary: Indicates whether an FM summary mapping is required :type is_fm_summary: bool :return: Subset of columns from gul_inputs_df / il_inputs_df :rtype: pandas.DataFrame """ acc_num = oed_hierarchy['accnum']['ProfileElementName'].lower() loc_num = oed_hierarchy['locnum']['ProfileElementName'].lower() policy_num = oed_hierarchy['polnum']['ProfileElementName'].lower() portfolio_num = oed_hierarchy['portnum']['ProfileElementName'].lower() # Case GUL+FM (based on il_inputs_df) if is_fm_summary: summary_mapping = inputs_df[inputs_df['level_id'] == inputs_df['level_id'].max()].drop_duplicates(subset=['gul_input_id', 'layer_id'], keep='first') summary_mapping['agg_id'] = summary_mapping['gul_input_id'] summary_mapping['output_id'] = factorize_ndarray( summary_mapping.loc[:, ['gul_input_id', 'layer_id']].values, col_idxs=range(2) )[0] summary_mapping.drop('item_id', axis=1, inplace=True) # GUL Only else: summary_mapping = inputs_df.copy(deep=True) usecols = [ acc_num, loc_num, 'loc_id', policy_num, portfolio_num, SOURCE_IDX['loc'], SOURCE_IDX['acc'], 'item_id', 'layer_id', 'coverage_id', 'peril_id', 'agg_id', 'output_id', 'coverage_type_id', 'tiv' ] summary_mapping.drop( [c for c in summary_mapping.columns if c not in usecols], axis=1, inplace=True ) dtypes = { **{t: 'str' for t in [portfolio_num, policy_num, acc_num, loc_num, 'peril_id']}, **{t: 'uint8' for t in ['coverage_type_id']}, **{t: 'uint32' for t in [SOURCE_IDX['loc'], SOURCE_IDX['acc'], 'loc_id', 'item_id', 'layer_id', 'coverage_id', 'agg_id', 'output_id']}, **{t: 'float64' for t in ['tiv']} } summary_mapping = set_dataframe_column_dtypes(summary_mapping, dtypes) return summary_mapping def merge_oed_to_mapping(summary_map_df, exposure_df, oed_column_set, defaults=None): """ Create a factorized col (summary ids) based on a list of oed column names :param :summary_map_df dataframe return from get_summary_mapping :type summary_map_df: pandas.DataFrame :param exposure_df: Summary map file path :type exposure_df: pandas.DataFrame :param defaults: Dictionary of vaules to fill NaN columns with :type defaults: dict {'Col_A': 0, 'Col_B': 1, 'Col_C': 2} :return: New DataFrame of summary_map_df + exposure_df merged on exposure index :rtype: pandas.DataFrame """ column_set = [c.lower() for c in oed_column_set] columns_found = [c for c in column_set if c in exposure_df.columns.to_list()] columns_missing = list(set(column_set) - set(columns_found)) # Select DF with matching cols exposure_col_df = exposure_df.loc[:, columns_found] # Add default value if optional column is missing for col in columns_missing: if col in defaults: exposure_col_df[col] = defaults[col] else: raise OasisException('Column to merge "{}" not in locations dataframe or defined with a default value'.format(col)) exposure_col_df[SOURCE_IDX['loc']] = exposure_df.index new_summary_map_df = merge_dataframes(summary_map_df, exposure_col_df, join_on=SOURCE_IDX['loc'], how='inner') if defaults: new_summary_map_df.fillna(value=defaults, inplace=True) return new_summary_map_df def group_by_oed(oed_col_group, summary_map_df, exposure_df, sort_by, accounts_df=None): """ Adds list of OED fields from `column_set` to summary map file :param :summary_map_df dataframe return from get_summary_mapping :type summary_map_df: pandas.DataFrame :param exposure_df: DataFrame loaded from location.csv :type exposure_df: pandas.DataFrame :param accounts_df: DataFrame loaded from accounts.csv :type accounts_df: pandas.DataFrame :return: subset of columns from exposure_df to merge :rtype: list summary_ids[0] is an int list 1..n array([1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ... ]) summary_ids[1] is an array of values used to factorize `array(['Layer1', 'Layer2'], dtype=object)` """ oed_cols = [c.lower() for c in oed_col_group] # All requred columns unmapped_cols = [c for c in oed_cols if c not in summary_map_df.columns] # columns which in locations / Accounts file mapped_cols = [c for c in oed_cols + [SOURCE_IDX['loc'], SOURCE_IDX['acc'], sort_by] if c in summary_map_df.columns] # Columns already in summary_map_df # Extract mapped_cols from summary_map_df summary_group_df = summary_map_df.loc[:, mapped_cols] # Search Loc / Acc files and merge in remaing if unmapped_cols is not []: # Location file columns exposure_cols = [c for c in unmapped_cols if c in exposure_df.columns] exposure_col_df = exposure_df.loc[:, exposure_cols + [SOURCE_IDX['loc']]] summary_group_df = merge_dataframes(summary_group_df, exposure_col_df, join_on=SOURCE_IDX['loc'], how='left') # Account file columns if isinstance(accounts_df, pd.DataFrame): accounts_cols = [c for c in unmapped_cols if c in set(accounts_df.columns) - set(exposure_df.columns)] if accounts_cols: accounts_col_df = accounts_df.loc[:, accounts_cols + [SOURCE_IDX['acc']]] summary_group_df = merge_dataframes(summary_group_df, accounts_col_df, join_on=SOURCE_IDX['acc'], how='left') summary_group_df.fillna(0, inplace=True) summary_group_df.sort_values(by=[sort_by], inplace=True) summary_ids = factorize_dataframe(summary_group_df, by_col_labels=oed_cols) return summary_ids[0], summary_ids[1] def write_summary_levels(exposure_df, accounts_fp, target_dir): ''' Json file with list Available / Recommended columns for use in the summary reporting Available: Columns which exists in input files and has at least one non-zero / NaN value Recommended: Columns which are available + also in the list of `useful` groupings SUMMARY_LEVEL_LOC { 'GUL': { 'available': ['accnumber', 'locnumber', 'istenant', 'buildingid', 'countrycode', 'latitude', 'longitude', 'streetaddress', 'postalcode', 'occupancycode', 'constructioncode', 'locperilscovered', 'buildingtiv', 'contentstiv', 'bitiv', 'portnumber'], 'IL': { ... etc ... } } ''' # Manage internal columns, (Non-OED exposure input) int_excluded_cols = ['loc_id', SOURCE_IDX['loc']] desc_non_oed = 'Not an OED field' int_oasis_cols = { 'coverage_type_id': 'Oasis coverage type', 'peril_id': 'OED peril code', 'coverage_id': 'Oasis coverage identifier', } # GUL perspective (loc columns only) l_col_list = exposure_df.loc[:, exposure_df.any()].columns.to_list() l_col_info = get_loc_dtypes() for k in list(l_col_info.keys()): l_col_info[k.lower()] = l_col_info[k] del l_col_info[k] gul_avail = {k: l_col_info[k]['desc'] if k in l_col_info else desc_non_oed for k in set([c.lower() for c in l_col_list]).difference(int_excluded_cols)} gul_summary_lvl = {'GUL': {'available': {**gul_avail, **int_oasis_cols}}} # IL perspective (join of acc + loc col with no dups) il_summary_lvl = {} if accounts_fp: accounts_df = pd.read_csv(accounts_fp) a_col_list = accounts_df.loc[:, accounts_df.any()].columns.to_list() a_col_info = get_acc_dtypes() a_avail = set([c.lower() for c in a_col_list]) il_avail = {k: a_col_info[k]['desc'] if k in a_col_info else desc_non_oed for k in a_avail.difference(gul_avail.keys())} il_summary_lvl = {'IL': {'available': {**gul_avail, **il_avail, **int_oasis_cols}}} with io.open(os.path.join(target_dir, 'exposure_summary_levels.json'), 'w', encoding='utf-8') as f: f.write(json.dumps({**gul_summary_lvl, **il_summary_lvl}, sort_keys=True, ensure_ascii=False, indent=4)) @oasis_log def write_mapping_file(sum_inputs_df, target_dir, is_fm_summary=False): """ Writes a summary map file, used to build summarycalc xref files. :param summary_mapping: dataframe return from get_summary_mapping :type summary_mapping: pandas.DataFrame :param sum_mapping_fp: Summary map file path :type sum_mapping_fp: str :param is_fm_summary: Indicates whether an FM summary mapping is required :type is_fm_summary: bool :return: Summary xref file path :rtype: str """ target_dir = as_path( target_dir, 'Target IL input files directory', is_dir=True, preexists=False ) # Set chunk size for writing the CSV files - default is max 20K, min 1K chunksize = min(2 * 10**5, max(len(sum_inputs_df), 1000)) if is_fm_summary: sum_mapping_fp = os.path.join(target_dir, SUMMARY_MAPPING['fm_map_fn']) else: sum_mapping_fp = os.path.join(target_dir, SUMMARY_MAPPING['gul_map_fn']) try: sum_inputs_df.to_csv( path_or_buf=sum_mapping_fp, encoding='utf-8', mode=('w' if os.path.exists(sum_mapping_fp) else 'a'), chunksize=chunksize, index=False ) except (IOError, OSError) as e: raise OasisException from e return sum_mapping_fp def get_column_selection(summary_set): """ Given a analysis_settings summary definition, return either 1. the set of OED columns requested to group by 2. If no information key 'oed_fields', then group all outputs into a single summary_set :param summary_set: summary group dictionary from the `analysis_settings.json` :type summary_set: dict :return: List of selected OED columns to create summary groups from :rtype: list """ if "oed_fields" not in summary_set: return None if not summary_set["oed_fields"]: return None # Use OED column list set in analysis_settings file elif isinstance(summary_set['oed_fields'], list) and len(summary_set['oed_fields']) > 0: return [c.lower() for c in summary_set['oed_fields']] else: raise OasisException('Unable to process settings file') def get_ri_settings(run_dir): """ Return the contents of ri_layers.json Example: { "1": { "inuring_priority": 1, "risk_level": "LOC", "directory": " ... /runs/ProgOasis-20190501145127/RI_1" } } :param run_dir: The file path of the model run directory :type run_dir: str :return: metadata for the Reinsurance layers :rtype: dict """ return get_json(src_fp=os.path.join(run_dir, 'ri_layers.json')) @oasis_log def write_df_to_file(df, target_dir, filename): """ Write a generated summary xref dataframe to disk :param df: The dataframe output of get_df( .. ) :type df: pandas.DataFrame :param target_dir: Abs directory to write a summary_xref file to :type target_dir: str :param filename: Name of file to store as :type filename: str """ target_dir = as_path(target_dir, 'Input files directory', is_dir=True, preexists=False) chunksize = min(2 * 10**5, max(len(df), 1000)) csv_fp = os.path.join(target_dir, filename) try: df.to_csv( path_or_buf=csv_fp, encoding='utf-8', mode=('w'), chunksize=chunksize, index=False ) except (IOError, OSError) as e: raise OasisException from e return csv_fp @oasis_log def get_summary_xref_df(map_df, exposure_df, accounts_df, summaries_info_dict, summaries_type, gul_items=False): """ Create a Dataframe for either gul / il / ri based on a section from the analysis settings :param map_df: Summary Map dataframe (GUL / IL) :type map_df: pandas.DataFrame :param exposure_df: Location OED data :type exposure_df: pandas.DataFrame :param accounts_df: Accounts OED data :type accounts_df: pandas.DataFrame :param summaries_info_dict: list of dictionary definitionfor a summary group from the analysis_settings file :type summaries_info_dict: list [{ "summarycalc": true, "eltcalc": true, "aalcalc": true, "pltcalc": true, "id": 1, "oed_fields": "prog", "lec_output": true, "leccalc": { "return_period_file": true, "outputs": { "full_uncertainty_aep": true, "full_uncertainty_oep": true, "wheatsheaf_aep": true, "wheatsheaf_oep": true } } }, ... ] :param summaries_type: Text label to use as key in summary description either ['gul', 'il', 'ri'] :type summaries_type: String :return summaryxref_df: Dataframe containing abstracted summary data for ktools :rtypwrite_xref_filee: pandas.DataFrame :return summary_desc: dictionary of dataFrames listing what summary_ids map to :rtype: dictionary """ summaryxref_df = pd.DataFrame() summary_desc = {} # Extract the summary id index column dedpending on summary grouping type if 'output_id' in map_df: id_set_index = 'output_id' ids_set_df = map_df.loc[:, [id_set_index]].rename(columns={id_set_index: "output"}) elif gul_items: id_set_index = 'item_id' ids_set_df = map_df.loc[:, [id_set_index]] else: id_set_index = 'coverage_id' ids_set_df = map_df.loc[:, [id_set_index]] # For each granularity build a set grouping for summary_set in summaries_info_dict: summary_set_df = ids_set_df cols_group_by = get_column_selection(summary_set) desc_key = '{}_S{}_summary-info.csv'.format(summaries_type, summary_set['id']) if isinstance(cols_group_by, list): ( summary_set_df['summary_id'], set_values ) = group_by_oed(cols_group_by, map_df, exposure_df, id_set_index, accounts_df) # Build description file summary_desc[desc_key] = pd.DataFrame(data=list(set_values), columns=cols_group_by) summary_desc[desc_key].insert(loc=0, column='summary_id', value=range(1, len(set_values) + 1)) else: # Fall back to setting all in single group summary_set_df['summary_id'] = 1 summary_desc[desc_key] = pd.DataFrame(data=['All-Risks'], columns=['_not_set_']) summary_desc[desc_key].insert(loc=0, column='summary_id', value=1) # Appends summary set to '__summaryxref.csv' summary_set_df['summaryset_id'] = summary_set['id'] summaryxref_df = pd.concat([summaryxref_df, summary_set_df], sort=True, ignore_index=True) dtypes = { t: 'uint32' for t in ['coverage_id', 'summary_id', 'summaryset_id'] } summaryxref_df = set_dataframe_column_dtypes(summaryxref_df, dtypes) return summaryxref_df, summary_desc @oasis_log def generate_summaryxref_files(model_run_fp, analysis_settings, il=False, ri=False, gul_item_stream=False): """ Top level function for creating the summaryxref files from the manager.py :param model_run_fp: Model run directory file path :type model_run_fp: str :param analysis_settings: Model analysis settings file :type analysis_settings: dict :param il: Boolean to indicate the insured loss level mode - false if the source accounts file path not provided to Oasis files gen. :type il: bool :param ri: Boolean to indicate the RI loss level mode - false if the source accounts file path not provided to Oasis files gen. :type il: bool :param gul_items: Boolean to gul to use item_id instead of coverage_id :type gul_items: bool """ # Boolean checks for summary generation types (gul / il / ri) gul_summaries = all([ analysis_settings['gul_output'] if 'gul_output' in analysis_settings else False, analysis_settings['gul_summaries'] if 'gul_summaries' in analysis_settings else False, ]) il_summaries = all([ analysis_settings['il_output'] if 'il_output' in analysis_settings else False, analysis_settings['il_summaries'] if 'il_summaries' in analysis_settings else False, il, ]) ri_summaries = all([ analysis_settings['ri_output'] if 'ri_output' in analysis_settings else False, analysis_settings['ri_summaries'] if 'ri_summaries' in analysis_settings else False, ri, ]) # Load locations file for GUL OED fields input_dir = os.path.join(model_run_fp, 'input') exposure_fp = find_exposure_fp(input_dir, 'loc') loc_dtypes, loc_required_cols = get_dtypes_and_required_cols(get_loc_dtypes) exposure_df = get_dataframe( src_fp=exposure_fp, empty_data_error_msg='No source exposure file found.', col_dtypes=loc_dtypes, required_cols=loc_required_cols) exposure_df[SOURCE_IDX['loc']] = exposure_df.index # Load accounts file for IL OED fields if (il_summaries or ri_summaries): accounts_fp = find_exposure_fp(input_dir, 'acc') acc_dtypes, acc_required_cols = get_dtypes_and_required_cols(get_acc_dtypes) accounts_df = get_dataframe( src_fp=accounts_fp, empty_data_error_msg='No source accounts file found.', col_dtypes=acc_dtypes, required_cols=acc_required_cols) accounts_df[SOURCE_IDX['acc']] = accounts_df.index if gul_summaries: # Load GUL summary map gul_map_fp = os.path.join(model_run_fp, 'input', SUMMARY_MAPPING['gul_map_fn']) gul_map_df = get_dataframe( src_fp=gul_map_fp, empty_data_error_msg='No summary map file found.') gul_summaryxref_df, gul_summary_desc = get_summary_xref_df( gul_map_df, exposure_df, None, analysis_settings['gul_summaries'], 'gul', gul_item_stream ) # Write Xref file write_df_to_file(gul_summaryxref_df, os.path.join(model_run_fp, 'input'), SUMMARY_OUTPUT['gul']) # Write summary_id description files for desc_key in gul_summary_desc: write_df_to_file(gul_summary_desc[desc_key], os.path.join(model_run_fp, 'output'), desc_key) if il_summaries: # Load FM summary map il_map_fp = os.path.join(model_run_fp, 'input', SUMMARY_MAPPING['fm_map_fn']) il_map_df = get_dataframe( src_fp=il_map_fp, empty_data_error_msg='No summary map file found.' ) il_summaryxref_df, il_summary_desc = get_summary_xref_df( il_map_df, exposure_df, accounts_df, analysis_settings['il_summaries'], 'il' ) # Write Xref file write_df_to_file(il_summaryxref_df, os.path.join(model_run_fp, 'input'), SUMMARY_OUTPUT['il']) # Write summary_id description files for desc_key in il_summary_desc: write_df_to_file(il_summary_desc[desc_key], os.path.join(model_run_fp, 'output'), desc_key) if ri_summaries: ri_layers = get_ri_settings(model_run_fp) max_layer = max(ri_layers) summary_ri_fp = os.path.join( model_run_fp, os.path.basename(ri_layers[max_layer]['directory'])) ri_summaryxref_df =
pd.DataFrame()
pandas.DataFrame
import datetime from datetime import datetime as dt from datetime import timedelta as td import os import re as reg from math import sqrt import matplotlib.pyplot as plt import matplotlib.pylab as plb import numpy as np from sklearn.ensemble import VotingRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score from plotly.subplots import make_subplots import plotly.graph_objs as go from plotly.offline import plot from fbprophet import Prophet from fbprophet.plot import plot_plotly import pandas as pd #Constant EPOCH_TIME = datetime.datetime.utcfromtimestamp(0) #Functions def access_csv_url(url): """This python module downloads the csv from a url passed and return the dataframe else raises a FileNotFoundError exception""" df = pd.read_csv(url) if df.empty is False: return df else: raise FileNotFoundError def get_company_name(company_df): """lvl1 @2 : Following line loads the initial data of list of companies""" company_symbol = '' while (company_df.empty is False and company_symbol == ''): surety_value = input("Are you sure of company symbol you want to search? (Y/N/E(Exit)) : ") if surety_value.upper() == 'Y' or surety_value.upper() == 'N': if surety_value.upper() == 'N': search_dict = company_search('', company_df) if len(search_dict) == 0: print("\n No related results found, Give it another Try!!") continue elif len(search_dict) > 0: if len(search_dict) > 10: print("Showing Top 10 results for your search which gave ", len(search_dict), " results") else: print("found ", str(len(search_dict)), "results") print(" \t Symbol \t Name") print("\t _________", "\t", "_________") for index, key in enumerate(search_dict.keys()): if index+1 == 11: break else: print("\t", key, "\t\t", search_dict[key]) surety_value = input("Have you found your symbol yet ? Y/N : ") if surety_value.upper() == 'N' or surety_value.upper() == 'Y': if surety_value.upper() == 'Y': company_symbol = input("Enter the final symbol : ") search_dict = company_search(company_symbol, company_df) if len(search_dict) > 1: print("Your search resulted into multiple results, please reselect your company!") company_symbol = '' #resetting the value so that value can be input again elif len(search_dict) == 0: print("Your search yielded no results") company_symbol = '' else: continue else: print("please choose only Y or N or y or n or E or e") continue elif surety_value.upper() == 'Y': company_symbol = input("Enter the final symbol : ") search_dict = company_search(company_symbol, company_df) if len(search_dict) > 1: print("Your search resulted into multiple results, please reselect your company!") company_symbol = '' #resetting the value so that value can be input again elif len(search_dict) == 0: print("Your search yielded no results") company_symbol = '' elif surety_value.upper() == 'E': company_symbol = '' break else: print("please choose only Y or N or y or n") continue return company_symbol.upper() def file_exists(filename, filepath): file_tree = [file for file in os.listdir(filepath) if os.path.isfile(file)] if filename not in file_tree: return False else: return True def update_company_data(company_symbol): """If a file does not exit then data will be downloaded from the website and save in the file with that company name""" file_name = (str(company_symbol)+'.csv') existing_file = file_exists(file_name, '.') end_date = dt.date(dt.utcnow() - td(seconds=14400)) if existing_file is False: alpha_url = f"http://quotes.wsj.com/{company_symbol}/historical-prices/download?MOD_VIEW=page%20&num_rows=7500&range_days=7500&startDate=11/01/1970%20&endDate={end_date}" #mm/dd/yyyy company_data = pd.read_csv(alpha_url) company_data.columns = [col_name.lstrip() for col_name in company_data.columns] company_data['Date'] = pd.to_datetime(company_data['Date'], format='%m/%d/%y') company_data['Date'] = company_data['Date'].dt.date company_data = company_data.sort_values(by='Date') if not company_data.empty: company_data.to_csv(f"{company_symbol}.csv") else: """if the file exists, read the last line and update the data until todays date""" company_data = pd.read_csv(file_name, index_col=0) company_data['Date'] = company_data['Date'].apply(lambda x: datetime.datetime.strptime(x, '%Y-%m-%d').date()) row = company_data.sort_values('Date').tail(1) date = row['Date'] date = str(date).split() date = datetime.datetime.strptime(date[1], '%Y-%m-%d').date() + td(days=1) if end_date != date: remaining_df = pd.read_csv('http://quotes.wsj.com/'+company_symbol+'/historical-prices/download?MOD_VIEW=page%20&num_rows=7500&range_days=7500&startDate='+str(date.month)+'/'+str(date.day)+'/'+str(date.year)+'%20&endDate='+str(end_date.month)+'/'+str(end_date.day)+'/'+str(end_date.year)) remaining_df.columns = company_data.columns remaining_df['Date'] = pd.to_datetime(remaining_df['Date'], format='%m/%d/%y') remaining_df['Date'] = remaining_df['Date'].dt.date company_data = company_data.append(remaining_df, sort=False) company_data.columns = [col_name.lstrip() for col_name in company_data.columns] company_data['Date'] = pd.to_datetime(company_data['Date'], format='%Y-%m-%d') company_data['Date'] = company_data['Date'].dt.date company_data = company_data.sort_values(by='Date') company_data.reset_index(inplace=True, drop=True) company_data.to_csv(str(company_symbol)+'.csv') return company_data def print_menu(company_symbol): """This prints the main user menu with dynamic company name""" print("/" + "-" * 56 + "\\") #print(f"\t\t USER MENU: {company_symbol}") print(f"\t Stock Analysis MENU of {company_symbol}\t\t\t\t ") print("|" + "-" * 56 + "|") print("| 1. Current Data\t\t\t\t\t |") print("| 2. Summary Statistic \t\t\t\t |") print("| 3. Raw time-series \t\t\t\t\t |") print("| 4. Linear trend line \t\t\t\t |") print("| 5. Moving Averages \t\t\t\t\t |") print("| 6. Predict close price for a day \t\t\t |") print("| 7. Enhance Prediction \t\t\t\t |") print("| 8. Predict close price for N-future days\t\t |") print("| 9. Compare 2 companies using candlestick chart\t |") print("| 10. Analyse with new start and end date\t\t |") print("| 11. Search New Company \t\t\t\t |") print("| 12. Exit \t\t\t\t\t\t |") print("\\" + "-" * 56 + "/") def date_validation(start_date, end_date): try: #Check for format of start date, It should be in format of YYYY-MM-DD datetime.datetime.strptime(start_date, "%Y-%m-%d") except ValueError: #If any errors, raise an exception print("Incorrect Start Date Format") return '1' try: #Check for format of start date, It should be in format of YYYY-MM-DD datetime.datetime.strptime(end_date, "%Y-%m-%d") except ValueError: #If any errors, raise an exception print("Incorrect End Date Format") return '2' try: #Start Date cannot be later than today if datetime.datetime.strptime(start_date, "%Y-%m-%d") >= dt.today(): raise ValueError except ValueError: #If any errors, raise an exception print("Start Date cannot be greater than today's date") return '3' try: #End date cannot be greater than today if datetime.datetime.strptime(end_date, "%Y-%m-%d") >= dt.today(): raise ValueError except ValueError: #If any errors, raise an exception print("End Date cannot be greater than today's date") return '4' try: #Start date can not greater than end date if datetime.datetime.strptime(start_date, "%Y-%m-%d") >= datetime.datetime.strptime(end_date, "%Y-%m-%d"): raise ValueError except ValueError: print("Start Date should be less than End date") return '5' def period_validation(start_date, end_date, period): try: #Period should be greater than 0 and less than days between start date and end date if period < (end_date - start_date).days and period > 0: return False else: raise ValueError except ValueError: print('Incorrect value of Window') return '1' def current_data(company_symbol): """This API gives statistical data of the last working business day""" last_stats_url = "https://www.alphavantage.co/query?function=GLOBAL_QUOTE&symbol=" + company_symbol + "&apikey=T11CBFXU1UTRD2KG&datatype=csv" last_stats =
pd.read_csv(last_stats_url)
pandas.read_csv
from __future__ import division from datetime import timedelta from functools import partial import itertools from nose.tools import assert_true from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain import platform if platform.system() != 'Windows': from zipline.pipeline.loaders.blaze.estimates import ( BlazeNextEstimatesLoader, BlazeNextSplitAdjustedEstimatesLoader, BlazePreviousEstimatesLoader, BlazePreviousSplitAdjustedEstimatesLoader, ) from zipline.pipeline.loaders.earnings_estimates import ( INVALID_NUM_QTRS_MESSAGE, NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal, assert_raises_regex from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import platform import unittest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, 'estimate', 'knowledge_date']) df = df.pivot_table(columns=SID_FIELD_NAME, values='estimate', index='knowledge_date') df = df.reindex( pd.date_range(start_date, end_date) ) # Index name is lost during reindex. df.index = df.index.rename('knowledge_date') df['at_date'] = end_date.tz_localize('utc') df = df.set_index(['at_date', df.index.tz_localize('utc')]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp('2014-12-28') END_DATE = pd.Timestamp('2015-02-04') @classmethod def make_loader(cls, events, columns): raise NotImplementedError('make_loader') @classmethod def make_events(cls): raise NotImplementedError('make_events') @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: 'event_date', Estimates.fiscal_quarter: 'fiscal_quarter', Estimates.fiscal_year: 'fiscal_year', Estimates.estimate: 'estimate' } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ 's' + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader(cls.events, {column.name: val for column, val in cls.columns.items()}) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: 'event_date', MultipleColumnsEstimates.fiscal_quarter: 'fiscal_quarter', MultipleColumnsEstimates.fiscal_year: 'fiscal_year', MultipleColumnsEstimates.estimate1: 'estimate1', MultipleColumnsEstimates.estimate2: 'estimate2' } @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-06')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-10'), pd.Timestamp('2015-01-20')], 'estimate1': [1., 2.], 'estimate2': [3., 4.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015] }) @classmethod def make_expected_out(cls): raise NotImplementedError('make_expected_out') @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp('2015-01-15', tz='utc'), end_date=pd.Timestamp('2015-01-15', tz='utc'), ) assert_frame_equal(results, self.expected_out) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp('2015-01-10'), 'estimate1': 1., 'estimate2': 3., FISCAL_QUARTER_FIELD_NAME: 1., FISCAL_YEAR_FIELD_NAME: 2015., }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp('2015-01-15', tz='utc'), cls.sid0),) ) ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp('2015-01-20'), 'estimate1': 2., 'estimate2': 4., FISCAL_QUARTER_FIELD_NAME: 2., FISCAL_YEAR_FIELD_NAME: 2015., }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp('2015-01-15', tz='utc'), cls.sid0),) ) ) dummy_df = pd.DataFrame({SID_FIELD_NAME: 0}, columns=[SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, 'estimate'], index=[0]) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = {c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns} p = Pipeline(columns) with self.assertRaises(ValueError) as e: engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) assert_raises_regex(e, INVALID_NUM_QTRS_MESSAGE % "-1,-2") def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with self.assertRaises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = ["split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof"] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand(itertools.product( (NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader), )) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: 'event_date', Estimates.fiscal_quarter: 'fiscal_quarter', Estimates.fiscal_year: 'fiscal_year', Estimates.estimate: 'estimate' } with self.assertRaises(ValueError): loader(dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01")) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp('2015-01-28') q1_knowledge_dates = [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-04'), pd.Timestamp('2015-01-07'), pd.Timestamp('2015-01-11')] q2_knowledge_dates = [pd.Timestamp('2015-01-14'), pd.Timestamp('2015-01-17'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-23')] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-14')] # One day late q2_release_dates = [pd.Timestamp('2015-01-25'), # One day early pd.Timestamp('2015-01-26')] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if (q1e1 < q1e2 and q2e1 < q2e2 and # All estimates are < Q2's event, so just constrain Q1 # estimates. q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0]): sid_estimates.append(cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid)) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-26')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-26')], 'estimate': [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid }) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame({ EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, 'estimate': [.1, .2, .3, .4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, }) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert_true(sid_estimates.isnull().all().all()) else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [self.get_expected_estimate( q1_knowledge[q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None)], q2_knowledge[q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None)], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index], axis=0) assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if (not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif (not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateLoaderTestCase(NextEstimate): """ Run the same tests as EventsLoaderTestCase, but using a BlazeEventsLoader. """ @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if (not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date): return q2_knowledge.iloc[-1:] elif (not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateLoaderTestCase(PreviousEstimate): """ Run the same tests as EventsLoaderTestCase, but using a BlazeEventsLoader. """ @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-06')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-10'), pd.Timestamp('2015-01-20')], 'estimate': [1., 2.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015] }) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame(columns=[cls.columns[col] + '1' for col in cls.columns] + [cls.columns[col] + '2' for col in cls.columns], index=cls.trading_days) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ('1', '2') ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime( expected[expected_name] ) else: expected[expected_name] = expected[ expected_name ].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge([{c.name + '1': c.latest for c in dataset1.columns}, {c.name + '2': c.latest for c in dataset2.columns}]) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + '1' for col in self.columns] q2_columns = [col.name + '2' for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal(sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values)) assert_equal(self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1)) class NextEstimateMultipleQuarters( WithEstimateMultipleQuarters, ZiplineTestCase ): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-11'), raw_name + '1' ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp('2015-01-11'):pd.Timestamp('2015-01-20'), raw_name + '1' ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ['estimate', 'event_date']: expected.loc[ pd.Timestamp('2015-01-06'):pd.Timestamp('2015-01-10'), col_name + '2' ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-09'), FISCAL_QUARTER_FIELD_NAME + '2' ] = 2 expected.loc[ pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20'), FISCAL_QUARTER_FIELD_NAME + '2' ] = 3 expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-20'), FISCAL_YEAR_FIELD_NAME + '2' ] = 2015 return expected @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateMultipleQuarters(NextEstimateMultipleQuarters): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) class PreviousEstimateMultipleQuarters( WithEstimateMultipleQuarters, ZiplineTestCase ): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected[raw_name + '1'].loc[ pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-19') ] = cls.events[raw_name].iloc[0] expected[raw_name + '1'].loc[ pd.Timestamp('2015-01-20'): ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out for col_name in ['estimate', 'event_date']: expected[col_name + '2'].loc[ pd.Timestamp('2015-01-20'): ] = cls.events[col_name].iloc[0] expected[ FISCAL_QUARTER_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20')] = 4 expected[ FISCAL_YEAR_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20')] = 2014 expected[ FISCAL_QUARTER_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-20'):] = 1 expected[ FISCAL_YEAR_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-20'):] = 2015 return expected @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateMultipleQuarters(PreviousEstimateMultipleQuarters): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) class WithVaryingNumEstimates(WithEstimates): """ ZiplineTestCase mixin providing fixtures and a test to ensure that we have the correct overwrites when the event date changes. We want to make sure that if we have a quarter with an event date that gets pushed back, we don't start overwriting for the next quarter early. Likewise, if we have a quarter with an event date that gets pushed forward, we want to make sure that we start applying adjustments at the appropriate, earlier date, rather than the later date. Methods ------- assert_compute() Defines how to determine that results computed for the `SomeFactor` factor are correct. Tests ----- test_windows_with_varying_num_estimates() Tests that we create the correct overwrites from 2015-01-13 to 2015-01-14 regardless of how event dates were updated for each quarter for each sid. """ @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 3 + [1] * 3, TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-13')] * 2, EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-20')], 'estimate': [11., 12., 21.] * 2, FISCAL_QUARTER_FIELD_NAME: [1, 1, 2] * 2, FISCAL_YEAR_FIELD_NAME: [2015] * 6 }) @classmethod def assert_compute(cls, estimate, today): raise NotImplementedError('assert_compute') def test_windows_with_varying_num_estimates(self): dataset = QuartersEstimates(1) assert_compute = self.assert_compute class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = 3 def compute(self, today, assets, out, estimate): assert_compute(estimate, today) engine = self.make_engine() engine.run_pipeline( Pipeline({'est': SomeFactor()}), start_date=pd.Timestamp('2015-01-13', tz='utc'), # last event date we have end_date=pd.Timestamp('2015-01-14', tz='utc'), ) class PreviousVaryingNumEstimates( WithVaryingNumEstimates, ZiplineTestCase ): def assert_compute(self, estimate, today): if today == pd.Timestamp('2015-01-13', tz='utc'): assert_array_equal(estimate[:, 0], np.array([np.NaN, np.NaN, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 12, 12])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 12, 12])) assert_array_equal(estimate[:, 1], np.array([12, 12, 12])) @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousVaryingNumEstimates(PreviousVaryingNumEstimates): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) class NextVaryingNumEstimates( WithVaryingNumEstimates, ZiplineTestCase ): def assert_compute(self, estimate, today): if today == pd.Timestamp('2015-01-13', tz='utc'): assert_array_equal(estimate[:, 0], np.array([11, 12, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, np.NaN, 21])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 21, 21])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 21, 21])) @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextVaryingNumEstimates(NextVaryingNumEstimates): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) class WithEstimateWindows(WithEstimates): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows. Attributes ---------- events : pd.DataFrame DataFrame with estimates for 2 quarters for 2 sids. window_test_start_date : pd.Timestamp The date from which the window should start. timelines : dict[int -> pd.DataFrame] A dictionary mapping to the number of quarters out to snapshots of how the data should look on each date in the date range. Methods ------- make_expected_timelines() -> dict[int -> pd.DataFrame] Creates a dictionary of expected data. See `timelines`, above. Tests ----- test_estimate_windows_at_quarter_boundaries() Tests that we overwrite values with the correct quarter's estimate at the correct dates when we have a factor that asks for a window of data. """ END_DATE = pd.Timestamp('2015-02-10') window_test_start_date = pd.Timestamp('2015-01-05') critical_dates = [pd.Timestamp('2015-01-09', tz='utc'), pd.Timestamp('2015-01-15', tz='utc'), pd.Timestamp('2015-01-20', tz='utc'), pd.Timestamp('2015-01-26', tz='utc'), pd.Timestamp('2015-02-05', tz='utc'), pd.Timestamp('2015-02-10', tz='utc')] # Starting date, number of announcements out. window_test_cases = list(itertools.product(critical_dates, (1, 2))) @classmethod def make_events(cls): # Typical case: 2 consecutive quarters. sid_0_timeline = pd.DataFrame({ TS_FIELD_NAME: [cls.window_test_start_date, pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-02-10'), # We want a case where we get info for a later # quarter before the current quarter is over but # after the split_asof_date to make sure that # we choose the correct date to overwrite until. pd.Timestamp('2015-01-18')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-04-01')], 'estimate': [100., 101.] + [200., 201.] + [400], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2 + [4], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, }) # We want a case where we skip a quarter. We never find out about Q2. sid_10_timeline = pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-15')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-22'), pd.Timestamp('2015-01-22'), pd.Timestamp('2015-02-05'), pd.Timestamp('2015-02-05')], 'estimate': [110., 111.] + [310., 311.], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [3] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 10 }) # We want to make sure we have correct overwrites when sid quarter # boundaries collide. This sid's quarter boundaries collide with sid 0. sid_20_timeline = pd.DataFrame({ TS_FIELD_NAME: [cls.window_test_start_date, pd.Timestamp('2015-01-07'), cls.window_test_start_date, pd.Timestamp('2015-01-17')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-02-10')], 'estimate': [120., 121.] + [220., 221.], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 20 }) concatted = pd.concat([sid_0_timeline, sid_10_timeline, sid_20_timeline]).reset_index() np.random.seed(0) return concatted.reindex(np.random.permutation(concatted.index)) @classmethod def get_sids(cls): sids = sorted(cls.events[SID_FIELD_NAME].unique()) # Add extra sids between sids in our data. We want to test that we # apply adjustments to the correct sids. return [sid for i in range(len(sids) - 1) for sid in range(sids[i], sids[i+1])] + [sids[-1]] @classmethod def make_expected_timelines(cls): return {} @classmethod def init_class_fixtures(cls): super(WithEstimateWindows, cls).init_class_fixtures() cls.create_expected_df_for_factor_compute = partial( create_expected_df_for_factor_compute, cls.window_test_start_date, cls.get_sids() ) cls.timelines = cls.make_expected_timelines() @parameterized.expand(window_test_cases) def test_estimate_windows_at_quarter_boundaries(self, start_date, num_announcements_out): dataset = QuartersEstimates(num_announcements_out) trading_days = self.trading_days timelines = self.timelines # The window length should be from the starting index back to the first # date on which we got data. The goal is to ensure that as we # progress through the timeline, all data we got, starting from that # first date, is correctly overwritten. window_len = ( self.trading_days.get_loc(start_date) - self.trading_days.get_loc(self.window_test_start_date) + 1 ) class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = window_len def compute(self, today, assets, out, estimate): today_idx = trading_days.get_loc(today) today_timeline = timelines[ num_announcements_out ].loc[today].reindex( trading_days[:today_idx + 1] ).values timeline_start_idx = (len(today_timeline) - window_len) assert_almost_equal(estimate, today_timeline[timeline_start_idx:]) engine = self.make_engine() engine.run_pipeline( Pipeline({'est': SomeFactor()}), start_date=start_date, # last event date we have end_date=pd.Timestamp('2015-02-10', tz='utc'), ) class PreviousEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat([ pd.concat([ cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date) ], end_date) for end_date in pd.date_range('2015-01-09', '2015-01-19') ]), cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-20'))], pd.Timestamp('2015-01-20') ), cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-20'))],
pd.Timestamp('2015-01-21')
pandas.Timestamp
import os import shutil import sys from time import sleep, time from uuid import uuid4 import numpy as np import pandas as pd from data_manager2 import file_processor from returns_quantization import add_returns_in_place from utils import * np.set_printoptions(threshold=np.nan) pd.set_option('display.height', 1000) pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)
pandas.set_option
import os import sqlite3 import pandas as pd from nempy import markets, historical_spot_market_inputs as hi from time import time # Create a list of the historical dispatch intervals to be used. dispatch_intervals = hi.datetime_dispatch_sequence(start_time='2020/01/02 00:00:00', end_time='2020/01/03 00:00:00') # Build a database of historical inputs if it doesn't already exist. if not os.path.isfile('historical_inputs.db'): con = sqlite3.connect('historical_inputs.db') # Create a data base manager. inputs_manager = hi.DBManager(connection=con) # This is the first time the database has been used so we need to add the tables. inputs_manager.create_tables() # Download the relevant historical data from http://nemweb.com.au/#mms-data-model and into the database. inputs_manager.DUDETAILSUMMARY.set_data(year=2020, month=1) # Unit information inputs_manager.BIDPEROFFER_D.add_data(year=2020, month=1) # historical volume bids inputs_manager.BIDDAYOFFER_D.add_data(year=2020, month=1) # historical price bids inputs_manager.DISPATCHLOAD.add_data(year=2020, month=1) # unit operating limits inputs_manager.DISPATCHREGIONSUM.add_data(year=2020, month=1) # historical demand inputs_manager.INTERCONNECTOR.set_data(year=2020, month=1) # Regions connected by interconnector inputs_manager.DISPATCHINTERCONNECTORRES.add_data(year=2020, month=1) # Interconnectors in each dispatch interval inputs_manager.INTERCONNECTORCONSTRAINT.set_data(year=2020, month=1) # Interconnector data inputs_manager.LOSSFACTORMODEL.set_data(year=2020, month=1) # Regional demand coefficients in loss functions inputs_manager.LOSSMODEL.set_data(year=2020, month=1) # Break points for linear interpolation of loss functions con.close() # Connect to the database of historical inputs con = sqlite3.connect('historical_inputs.db') inputs_manager = hi.DBManager(connection=con) # List for saving inputs to. outputs = [] # Create and dispatch the spot market for each dispatch interval. for interval in dispatch_intervals: # Transform the historical input data into the format accepted by the Spot market class. # Unit info. DUDETAILSUMMARY = inputs_manager.DUDETAILSUMMARY.get_data(interval) DUDETAILSUMMARY = DUDETAILSUMMARY[DUDETAILSUMMARY['DISPATCHTYPE'] == 'GENERATOR'] unit_info = hi.format_unit_info(DUDETAILSUMMARY) # Unit bids. BIDPEROFFER_D = inputs_manager.BIDPEROFFER_D.get_data(interval) BIDPEROFFER_D = BIDPEROFFER_D[BIDPEROFFER_D['BIDTYPE'] == 'ENERGY'] volume_bids = hi.format_volume_bids(BIDPEROFFER_D) BIDDAYOFFER_D = inputs_manager.BIDDAYOFFER_D.get_data(interval) BIDDAYOFFER_D = BIDDAYOFFER_D[BIDDAYOFFER_D['BIDTYPE'] == 'ENERGY'] price_bids = hi.format_price_bids(BIDDAYOFFER_D) # The unit operating conditions at the start of the historical interval. DISPATCHLOAD = inputs_manager.DISPATCHLOAD.get_data(interval) unit_limits = hi.determine_unit_limits(DISPATCHLOAD, BIDPEROFFER_D) # Demand on regional basis. DISPATCHREGIONSUM = inputs_manager.DISPATCHREGIONSUM.get_data(interval) regional_demand = hi.format_regional_demand(DISPATCHREGIONSUM) # Interconnector details. INTERCONNECTOR = inputs_manager.INTERCONNECTOR.get_data() INTERCONNECTORCONSTRAINT = inputs_manager.INTERCONNECTORCONSTRAINT.get_data(interval) interconnectors = hi.format_interconnector_definitions(INTERCONNECTOR, INTERCONNECTORCONSTRAINT) interconnector_loss_coefficients = hi.format_interconnector_loss_coefficients(INTERCONNECTORCONSTRAINT) LOSSFACTORMODEL = inputs_manager.LOSSFACTORMODEL.get_data(interval) interconnector_demand_coefficients = hi.format_interconnector_loss_demand_coefficient(LOSSFACTORMODEL) LOSSMODEL = inputs_manager.LOSSMODEL.get_data(interval) interpolation_break_points = hi.format_interpolation_break_points(LOSSMODEL) loss_functions = hi.create_loss_functions(interconnector_loss_coefficients, interconnector_demand_coefficients, regional_demand.loc[:, ['region', 'loss_function_demand']]) # Create a market instance. market = markets.Spot() # Add generators to the market. market.set_unit_info(unit_info.loc[:, ['unit', 'region']]) # Set volume of each bids. volume_bids = volume_bids[volume_bids['unit'].isin(list(unit_info['unit']))] market.set_unit_volume_bids(volume_bids.loc[:, ['unit', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10']]) # Set prices of each bid. price_bids = price_bids[price_bids['unit'].isin(list(unit_info['unit']))] market.set_unit_price_bids(price_bids.loc[:, ['unit', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10']]) # Set unit operating limits. market.set_unit_capacity_constraints(unit_limits.loc[:, ['unit', 'capacity']]) market.set_unit_ramp_up_constraints(unit_limits.loc[:, ['unit', 'initial_output', 'ramp_up_rate']]) market.set_unit_ramp_down_constraints(unit_limits.loc[:, ['unit', 'initial_output', 'ramp_down_rate']]) # Set regional demand. market.set_demand_constraints(regional_demand.loc[:, ['region', 'demand']]) # Create the interconnectors. market.set_interconnectors(interconnectors) # Create loss functions on per interconnector basis. market.set_interconnector_losses(loss_functions, interpolation_break_points) # Calculate dispatch. market.dispatch() print('Dispatch for interval {} complete.'.format(interval)) # Save prices from this interval prices = market.get_energy_prices() prices['time'] = interval outputs.append(prices) con.close() print(
pd.concat(outputs)
pandas.concat
import pandas as pd from pandas import Period, offsets from pandas.util import testing as tm from pandas.tseries.frequencies import _period_code_map class TestFreqConversion(tm.TestCase): "Test frequency conversion of date objects" def test_asfreq_corner(self): val = Period(freq='A', year=2007) result1 = val.asfreq('5t') result2 = val.asfreq('t') expected = Period('2007-12-31 23:59', freq='t') self.assertEqual(result1.ordinal, expected.ordinal) self.assertEqual(result1.freqstr, '5T') self.assertEqual(result2.ordinal, expected.ordinal) self.assertEqual(result2.freqstr, 'T') def test_conv_annual(self): # frequency conversion tests: from Annual Frequency ival_A = Period(freq='A', year=2007) ival_AJAN = Period(freq="A-JAN", year=2007) ival_AJUN = Period(freq="A-JUN", year=2007) ival_ANOV = Period(freq="A-NOV", year=2007) ival_A_to_Q_start = Period(freq='Q', year=2007, quarter=1) ival_A_to_Q_end = Period(freq='Q', year=2007, quarter=4) ival_A_to_M_start = Period(freq='M', year=2007, month=1) ival_A_to_M_end = Period(freq='M', year=2007, month=12) ival_A_to_W_start = Period(freq='W', year=2007, month=1, day=1) ival_A_to_W_end = Period(freq='W', year=2007, month=12, day=31) ival_A_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_A_to_B_end = Period(freq='B', year=2007, month=12, day=31) ival_A_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_A_to_D_end = Period(freq='D', year=2007, month=12, day=31) ival_A_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_A_to_H_end = Period(freq='H', year=2007, month=12, day=31, hour=23) ival_A_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_A_to_T_end = Period(freq='Min', year=2007, month=12, day=31, hour=23, minute=59) ival_A_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_A_to_S_end = Period(freq='S', year=2007, month=12, day=31, hour=23, minute=59, second=59) ival_AJAN_to_D_end = Period(freq='D', year=2007, month=1, day=31) ival_AJAN_to_D_start = Period(freq='D', year=2006, month=2, day=1) ival_AJUN_to_D_end = Period(freq='D', year=2007, month=6, day=30) ival_AJUN_to_D_start = Period(freq='D', year=2006, month=7, day=1) ival_ANOV_to_D_end = Period(freq='D', year=2007, month=11, day=30) ival_ANOV_to_D_start = Period(freq='D', year=2006, month=12, day=1) self.assertEqual(ival_A.asfreq('Q', 'S'), ival_A_to_Q_start) self.assertEqual(ival_A.asfreq('Q', 'e'), ival_A_to_Q_end) self.assertEqual(ival_A.asfreq('M', 's'), ival_A_to_M_start) self.assertEqual(ival_A.asfreq('M', 'E'), ival_A_to_M_end) self.assertEqual(ival_A.asfreq('W', 'S'), ival_A_to_W_start) self.assertEqual(ival_A.asfreq('W', 'E'), ival_A_to_W_end) self.assertEqual(ival_A.asfreq('B', 'S'), ival_A_to_B_start) self.assertEqual(ival_A.asfreq('B', 'E'), ival_A_to_B_end) self.assertEqual(ival_A.asfreq('D', 'S'), ival_A_to_D_start) self.assertEqual(ival_A.asfreq('D', 'E'), ival_A_to_D_end) self.assertEqual(ival_A.asfreq('H', 'S'), ival_A_to_H_start) self.assertEqual(ival_A.asfreq('H', 'E'), ival_A_to_H_end) self.assertEqual(ival_A.asfreq('min', 'S'), ival_A_to_T_start) self.assertEqual(ival_A.asfreq('min', 'E'), ival_A_to_T_end) self.assertEqual(ival_A.asfreq('T', 'S'), ival_A_to_T_start) self.assertEqual(ival_A.asfreq('T', 'E'), ival_A_to_T_end) self.assertEqual(ival_A.asfreq('S', 'S'), ival_A_to_S_start) self.assertEqual(ival_A.asfreq('S', 'E'), ival_A_to_S_end) self.assertEqual(ival_AJAN.asfreq('D', 'S'), ival_AJAN_to_D_start) self.assertEqual(ival_AJAN.asfreq('D', 'E'), ival_AJAN_to_D_end) self.assertEqual(ival_AJUN.asfreq('D', 'S'), ival_AJUN_to_D_start) self.assertEqual(ival_AJUN.asfreq('D', 'E'), ival_AJUN_to_D_end) self.assertEqual(ival_ANOV.asfreq('D', 'S'), ival_ANOV_to_D_start) self.assertEqual(ival_ANOV.asfreq('D', 'E'), ival_ANOV_to_D_end) self.assertEqual(ival_A.asfreq('A'), ival_A) def test_conv_quarterly(self): # frequency conversion tests: from Quarterly Frequency ival_Q = Period(freq='Q', year=2007, quarter=1) ival_Q_end_of_year = Period(freq='Q', year=2007, quarter=4) ival_QEJAN = Period(freq="Q-JAN", year=2007, quarter=1) ival_QEJUN = Period(freq="Q-JUN", year=2007, quarter=1) ival_Q_to_A = Period(freq='A', year=2007) ival_Q_to_M_start = Period(freq='M', year=2007, month=1) ival_Q_to_M_end = Period(freq='M', year=2007, month=3) ival_Q_to_W_start = Period(freq='W', year=2007, month=1, day=1) ival_Q_to_W_end = Period(freq='W', year=2007, month=3, day=31) ival_Q_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_Q_to_B_end = Period(freq='B', year=2007, month=3, day=30) ival_Q_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_Q_to_D_end =
Period(freq='D', year=2007, month=3, day=31)
pandas.Period
import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg import time as timelib def ShannonEntropy(P,normalize=False): P=np.array(P) if normalize: P=P/P.sum() P=P[P>1e-20] return -np.sum(P*np.weblog2(P)); def proportional_abundance(weblog,field): if weblog.shape[0]==0: raise AssertionError('Empty weblog.') histogram=weblog[field].value_counts() pa_df=histogram/histogram.values.sum() if abs(1.0-pa_df.values.sum())>1e-8: raise AssertionError("ERROR: Proportional abundance distribution does not sum up to one.") return pa_df.values,list(pa_df.index); def session_draw_bis_melty(sessions_id, weblog,weblog_columns_dict): """ Draw the graph of sessions with sessions_id given in entry """ from graph_tool.all import Graph from graph_tool.all import graph_draw session = weblog[weblog.session_id==sessions_id] session = session.rename(index=str,columns = {weblog_columns_dict['requested_page_column']:'requested_page',\ weblog_columns_dict['referrer_page_column']:'referrer_page'}) s_pages = session[['requested_page','requested_external']] s_pages_ref = session[['referrer_page','referrer_external']] s_pages_ref = s_pages_ref.rename(index = str, columns = {'referrer_page':'requested_page','referrer_external':'requested_external'}) s_pages = s_pages.append(s_pages_ref) s_pages.drop_duplicates(subset = 'requested_page',inplace=True) g = Graph() v = {} halo = g.new_vertex_property("bool") for row in s_pages.itertuples(): v[row.requested_page] = g.add_vertex() if row.requested_external: halo[v[row.requested_page]] = True else: halo[v[row.requested_page]] = False session.apply(lambda x: g.add_edge(v[x.referrer_page], v[x.requested_page]), axis=1) graph_draw(g, vertex_halo=halo, output="./_session"+str(sessions_id)+".png") return; def session_draw_bis(sessions_id, weblog,weblog_columns_dict): """ Draw the graph of sessions with sessions_id given in entry """ from graph_tool.all import Graph from graph_tool.all import graph_draw session = weblog[weblog.session_id==sessions_id] session = session.rename(index=str,columns = {weblog_columns_dict['requested_page_column']:'requested_page',\ weblog_columns_dict['referrer_page_column']:'referrer_page'}) s_pages = session['requested_page'] s_pages_ref = session['referrer_page'] #s_pages_ref = s_pages_ref.rename(index = str, columns = {'referrer_page':'requested_page'}) s_pages = s_pages.append(s_pages_ref) s_pages.drop_duplicates(inplace=True) g = Graph() v = {} for page in s_pages.values: v[page] = g.add_vertex() session.apply(lambda x: g.add_edge(v[x.referrer_page], v[x.requested_page]), axis=1) graph_draw(g,output="../graph_dump/_session"+str(sessions_id)+".png") return; def mosaic(session_data, weblog, features, type_cluster, weblog_columns_dict,filename = None, verbose = False): """ Plot cluster mosaic: take the 5 most representatives sessions of each cluster, draw the graph of each of them, show the timespan and when requests are made along timespan axe Parameters ---------- session_data: pandas dataframe of requests weblog: pandas dataframe of requests features: list of string, to calculate centroids of clusters type_cluster: string weblog_columns_dict: dict Returns ------- None """ if verbose== True: start_time = timelib.time() print("\n * Computing and plotting cluster mosaic ...") try: from graph_tool.all import Graph from graph_tool.all import graph_draw num_cluster = session_data[type_cluster].unique() num_cluster.sort() # compute centroids in order to select pertinent sessions centroids = pd.DataFrame(columns=["cluster_id"] + features) centroids["cluster_id"] = num_cluster for dim in features: mean = [] for cluster_id in num_cluster: mean.append(session_data[session_data[type_cluster]==cluster_id][dim].mean()) centroids[dim] = mean # select sessions representative of each cluster start_time = timelib.time() selected_sessions = {} centroids["sum"] = centroids[features].sum(axis=1) session_data["dist"] = session_data[type_cluster].map(pd.Series(data=centroids["sum"], index=centroids.cluster_id.values)) session_data["dist"] = session_data[features].sum(axis=1) - session_data["dist"] session_data["dist"] = np.sqrt((session_data["dist"] * session_data["dist"])) N_max_sessions=5 # Sessions to plot per cluster for cluster_id in num_cluster: selected_sessions[cluster_id] = list(session_data[session_data[type_cluster]==cluster_id].sort_values(["dist"]).session_id.values)[:N_max_sessions] cluster_sessions = session_data[session_data[type_cluster] == cluster_id].session_id.unique() cluster_weblog = weblog[weblog.session_id.isin(cluster_sessions)] # Retrieving data for the N sessions sample session_data_df = pd.DataFrame(columns=['id','start','end','timespan','span_sec']) sessions=selected_sessions[cluster_id] session_data_df['id']=sessions # The number of the sessions to plot for this cluster session_start=cluster_weblog[[weblog_columns_dict['timestamp_column'],'session_id']].groupby('session_id').min() session_end=cluster_weblog[[weblog_columns_dict['timestamp_column'],'session_id']].groupby('session_id').max() session_data_df['start']=session_data_df.id.map(pd.Series(data=session_start\ [weblog_columns_dict['timestamp_column']].values,index=session_start.index)) session_data_df['end']=session_data_df.id.map(pd.Series(data=session_end\ [weblog_columns_dict['timestamp_column']].values,index=session_end.index)) session_data_df['timespan']=session_data_df.apply(lambda row: pd.Timedelta(
pd.Timestamp(row.end)
pandas.Timestamp
from django.shortcuts import render_to_response from django.utils.cache import patch_response_headers from django.http import JsonResponse from core.views import initRequest, login_customrequired from core.utils import is_json_request from core.iDDS.useconstants import SubstitleValue from core.iDDS.rawsqlquery import getRequests, getTransforms, getWorkFlowProgressItemized from core.iDDS.algorithms import generate_requests_summary, parse_request from core.libs.exlib import lower_dicts_in_list from core.libs.DateEncoder import DateEncoder import pandas as pd CACHE_TIMEOUT = 20 OI_DATETIME_FORMAT = "%Y-%m-%dT%H:%M:%S" subtitleValue = SubstitleValue() def prepare_requests_summary(workflows): summary = {'status': {}, 'username': {}} """ completion age """ for workflow in workflows: summary['status'][workflow['r_status']] = summary['status'].get(workflow['r_status'], 0) + 1 if workflow['username'] == '': workflow['username'] = "Not set" summary['username'][workflow['username']] = summary['username'].get(workflow['username'], 0) + 1 return summary def get_workflow_progress_data(request_params, **kwargs): workflows_items = getWorkFlowProgressItemized(request_params, **kwargs) workflows_items = pd.DataFrame(workflows_items) workflows_semi_grouped = [] if not workflows_items.empty: workflows_items.USERNAME.fillna(value='', inplace=True) workflows_pd = workflows_items.astype({"WORKLOAD_ID":str}).astype({"R_CREATED_AT":str}).groupby(['REQUEST_ID', 'R_STATUS', 'P_STATUS', 'R_NAME', 'USERNAME']).agg( PROCESSING_FILES_SUM=pd.NamedAgg(column="PROCESSING_FILES", aggfunc="sum"), PROCESSED_FILES_SUM=pd.NamedAgg(column="PROCESSED_FILES", aggfunc="sum"), TOTAL_FILES=pd.NamedAgg(column="TOTAL_FILES", aggfunc="sum"), P_STATUS_COUNT=
pd.NamedAgg(column="P_STATUS", aggfunc="count")
pandas.NamedAgg
# -*- coding: utf-8 -*- import unittest import platform import pandas as pd import numpy as np import pyarrow.parquet as pq import hpat from hpat.tests.test_utils import ( count_array_REPs, count_parfor_REPs, count_array_OneDs, get_start_end) from hpat.tests.gen_test_data import ParquetGenerator from numba import types from numba.config import IS_32BITS from numba.errors import TypingError _cov_corr_series = [(pd.Series(x), pd.Series(y)) for x, y in [ ( [np.nan, -2., 3., 9.1], [np.nan, -2., 3., 5.0], ), # TODO(quasilyte): more intricate data for complex-typed series. # Some arguments make assert_almost_equal fail. # Functions that yield mismaching results: # _column_corr_impl and _column_cov_impl. ( [complex(-2., 1.0), complex(3.0, 1.0)], [complex(-3., 1.0), complex(2.0, 1.0)], ), ( [complex(-2.0, 1.0), complex(3.0, 1.0)], [1.0, -2.0], ), ( [1.0, -4.5], [complex(-4.5, 1.0), complex(3.0, 1.0)], ), ]] min_float64 = np.finfo('float64').min max_float64 = np.finfo('float64').max test_global_input_data_float64 = [ [1., np.nan, -1., 0., min_float64, max_float64], [np.nan, np.inf, np.NINF, np.NZERO] ] min_int64 = np.iinfo('int64').min max_int64 = np.iinfo('int64').max max_uint64 = np.iinfo('uint64').max test_global_input_data_integer64 = [ [1, -1, 0], [min_int64, max_int64], [max_uint64] ] test_global_input_data_numeric = test_global_input_data_integer64 + test_global_input_data_float64 test_global_input_data_unicode_kind4 = [ 'ascii', '12345', '1234567890', '¡Y tú quién te crees?', '🐍⚡', '大处着眼,小处着手。', ] test_global_input_data_unicode_kind1 = [ 'ascii', '12345', '1234567890', ] def _make_func_from_text(func_text, func_name='test_impl'): loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars[func_name] return test_impl def _make_func_use_binop1(operator): func_text = "def test_impl(A, B):\n" func_text += " return A {} B\n".format(operator) return _make_func_from_text(func_text) def _make_func_use_binop2(operator): func_text = "def test_impl(A, B):\n" func_text += " A {} B\n".format(operator) func_text += " return A\n" return _make_func_from_text(func_text) def _make_func_use_method_arg1(method): func_text = "def test_impl(A, B):\n" func_text += " return A.{}(B)\n".format(method) return _make_func_from_text(func_text) GLOBAL_VAL = 2 class TestSeries(unittest.TestCase): def test_create1(self): def test_impl(): df = pd.DataFrame({'A': [1, 2, 3]}) return (df.A == 1).sum() hpat_func = hpat.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) @unittest.skip('Feature request: implement Series::ctor with list(list(type))') def test_create_list_list_unicode(self): def test_impl(): S = pd.Series([ ['abc', 'defg', 'ijk'], ['lmn', 'opq', 'rstuvwxyz'] ]) return S hpat_func = hpat.jit(test_impl) result_ref = test_impl() result = hpat_func() pd.testing.assert_series_equal(result, result_ref) @unittest.skip('Feature request: implement Series::ctor with list(list(type))') def test_create_list_list_integer(self): def test_impl(): S = pd.Series([ [123, 456, -789], [-112233, 445566, 778899] ]) return S hpat_func = hpat.jit(test_impl) result_ref = test_impl() result = hpat_func() pd.testing.assert_series_equal(result, result_ref) @unittest.skip('Feature request: implement Series::ctor with list(list(type))') def test_create_list_list_float(self): def test_impl(): S = pd.Series([ [1.23, -4.56, 7.89], [11.2233, 44.5566, -778.899] ]) return S hpat_func = hpat.jit(test_impl) result_ref = test_impl() result = hpat_func() pd.testing.assert_series_equal(result, result_ref) def test_create2(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n)}) return (df.A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) def test_create_series1(self): def test_impl(): A = pd.Series([1, 2, 3]) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index1(self): # create and box an indexed Series def test_impl(): A = pd.Series([1, 2, 3], ['A', 'C', 'B']) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index2(self): def test_impl(): A = pd.Series([1, 2, 3], index=['A', 'C', 'B']) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index3(self): def test_impl(): A = pd.Series([1, 2, 3], index=['A', 'C', 'B'], name='A') return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index4(self): def test_impl(name): A = pd.Series([1, 2, 3], index=['A', 'C', 'B'], name=name) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func('A'), test_impl('A')) def test_create_str(self): def test_impl(): df = pd.DataFrame({'A': ['a', 'b', 'c']}) return (df.A == 'a').sum() hpat_func = hpat.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) def test_pass_df1(self): def test_impl(df): return (df.A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df), test_impl(df)) def test_pass_df_str(self): def test_impl(df): return (df.A == 'a').sum() hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['a', 'b', 'c']}) self.assertEqual(hpat_func(df), test_impl(df)) def test_pass_series1(self): # TODO: check to make sure it is series type def test_impl(A): return (A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_pass_series2(self): # test creating dataframe from passed series def test_impl(A): df = pd.DataFrame({'A': A}) return (df.A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_pass_series_str(self): def test_impl(A): return (A == 'a').sum() hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['a', 'b', 'c']}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_pass_series_index1(self): def test_impl(A): return A hpat_func = hpat.jit(test_impl) S = pd.Series([3, 5, 6], ['a', 'b', 'c'], name='A') pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_size(self): def test_impl(S): return S.size hpat_func = hpat.jit(test_impl) n = 11 for S, expected in [ (pd.Series(), 0), (pd.Series([]), 0), (pd.Series(np.arange(n)), n), (pd.Series([np.nan, 1, 2]), 3), (pd.Series(['1', '2', '3']), 3), ]: with self.subTest(S=S, expected=expected): self.assertEqual(hpat_func(S), expected) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_attr2(self): def test_impl(A): return A.copy().values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_attr3(self): def test_impl(A): return A.min() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_series_attr4(self): def test_impl(A): return A.cumsum().values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_argsort1(self): def test_impl(A): return A.argsort() hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.random.ranf(n)) pd.testing.assert_series_equal(hpat_func(A), test_impl(A)) def test_series_attr6(self): def test_impl(A): return A.take([2, 3]).values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_attr7(self): def test_impl(A): return A.astype(np.float64) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_getattr_ndim(self): '''Verifies getting Series attribute ndim is supported''' def test_impl(S): return S.ndim hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_getattr_T(self): '''Verifies getting Series attribute T is supported''' def test_impl(S): return S.T hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) np.testing.assert_array_equal(hpat_func(S), test_impl(S)) def test_series_copy_str1(self): def test_impl(A): return A.copy() hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_copy_int1(self): def test_impl(A): return A.copy() hpat_func = hpat.jit(test_impl) S = pd.Series([1, 2, 3]) np.testing.assert_array_equal(hpat_func(S), test_impl(S)) def test_series_copy_deep(self): def test_impl(A, deep): return A.copy(deep=deep) hpat_func = hpat.jit(test_impl) for S in [ pd.Series([1, 2]), pd.Series([1, 2], index=["a", "b"]), ]: with self.subTest(S=S): for deep in (True, False): with self.subTest(deep=deep): actual = hpat_func(S, deep) expected = test_impl(S, deep) pd.testing.assert_series_equal(actual, expected) self.assertEqual(actual.values is S.values, expected.values is S.values) self.assertEqual(actual.values is S.values, not deep) # Shallow copy of index is not supported yet if deep: self.assertEqual(actual.index is S.index, expected.index is S.index) self.assertEqual(actual.index is S.index, not deep) def test_series_astype_int_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument converts integer series to series of strings ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_int_to_str2(self): '''Verifies Series.astype implementation with a string literal dtype argument converts integer series to series of strings ''' def test_impl(S): return S.astype('str') hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str2(self): '''Verifies Series.astype implementation with a string literal dtype argument handles string series not changing it ''' def test_impl(S): return S.astype('str') hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str_index_str(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=['d', 'e', 'f']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str_index_int(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=[1, 2, 3]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: requires str(datetime64) support in Numba') def test_series_astype_dt_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument converts datetime series to series of strings ''' def test_impl(A): return A.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series([pd.Timestamp('20130101 09:00:00'), pd.Timestamp('20130101 09:00:02'), pd.Timestamp('20130101 09:00:03') ]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('AssertionError: Series are different' '[left]: [0.000000, 1.000000, 2.000000, 3.000000, ...' '[right]: [0.0, 1.0, 2.0, 3.0, ...' 'TODO: needs alignment to NumPy on Numba side') def test_series_astype_float_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument converts float series to series of strings ''' def test_impl(A): return A.astype(str) hpat_func = hpat.jit(test_impl) n = 11.0 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_int32_to_int64(self): '''Verifies Series.astype implementation with NumPy dtype argument converts series with dtype=int32 to series with dtype=int64 ''' def test_impl(A): return A.astype(np.int64) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n), dtype=np.int32) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_int_to_float64(self): '''Verifies Series.astype implementation with NumPy dtype argument converts integer series to series of float ''' def test_impl(A): return A.astype(np.float64) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_float_to_int32(self): '''Verifies Series.astype implementation with NumPy dtype argument converts float series to series of integers ''' def test_impl(A): return A.astype(np.int32) hpat_func = hpat.jit(test_impl) n = 11.0 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: needs Numba astype impl support string literal as dtype arg') def test_series_astype_literal_dtype1(self): '''Verifies Series.astype implementation with a string literal dtype argument converts float series to series of integers ''' def test_impl(A): return A.astype('int32') hpat_func = hpat.jit(test_impl) n = 11.0 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: needs Numba astype impl support converting unicode_type to int') def test_series_astype_str_to_int32(self): '''Verifies Series.astype implementation with NumPy dtype argument converts series of strings to series of integers ''' import numba def test_impl(A): return A.astype(np.int32) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series([str(x) for x in np.arange(n) - n // 2]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: needs Numba astype impl support converting unicode_type to float') def test_series_astype_str_to_float64(self): '''Verifies Series.astype implementation with NumPy dtype argument converts series of strings to series of float ''' def test_impl(A): return A.astype(np.float64) hpat_func = hpat.jit(test_impl) S = pd.Series(['3.24', '1E+05', '-1', '-1.3E-01', 'nan', 'inf']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_index_str(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=['a', 'b', 'c']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_index_int(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=[2, 3, 5]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_np_call_on_series1(self): def test_impl(A): return np.min(A) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_values(self): def test_impl(A): return A.values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_values1(self): def test_impl(A): return (A == 2).values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_shape1(self): def test_impl(A): return A.shape hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_static_setitem_series1(self): def test_impl(A): A[0] = 2 return (A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_setitem_series1(self): def test_impl(A, i): A[i] = 2 return (A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A.copy(), 0), test_impl(df.A.copy(), 0)) def test_setitem_series2(self): def test_impl(A, i): A[i] = 100 hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) A1 = df.A.copy() A2 = df.A hpat_func(A1, 0) test_impl(A2, 0) pd.testing.assert_series_equal(A1, A2) @unittest.skip("enable after remove dead in hiframes is removed") def test_setitem_series3(self): def test_impl(A, i): S = pd.Series(A) S[i] = 100 hpat_func = hpat.jit(test_impl) n = 11 A = np.arange(n) A1 = A.copy() A2 = A hpat_func(A1, 0) test_impl(A2, 0) np.testing.assert_array_equal(A1, A2) def test_setitem_series_bool1(self): def test_impl(A): A[A > 3] = 100 hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) A1 = df.A.copy() A2 = df.A hpat_func(A1) test_impl(A2) pd.testing.assert_series_equal(A1, A2) def test_setitem_series_bool2(self): def test_impl(A, B): A[A > 3] = B[A > 3] hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) A1 = df.A.copy() A2 = df.A hpat_func(A1, df.B) test_impl(A2, df.B) pd.testing.assert_series_equal(A1, A2) def test_static_getitem_series1(self): def test_impl(A): return A[0] hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) self.assertEqual(hpat_func(A), test_impl(A)) def test_getitem_series1(self): def test_impl(A, i): return A[i] hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A, 0), test_impl(df.A, 0)) def test_getitem_series_str1(self): def test_impl(A, i): return A[i] hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['aa', 'bb', 'cc']}) self.assertEqual(hpat_func(df.A, 0), test_impl(df.A, 0)) def test_series_iat1(self): def test_impl(A): return A.iat[3] hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_iat2(self): def test_impl(A): A.iat[3] = 1 return A hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_iloc1(self): def test_impl(A): return A.iloc[3] hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_iloc2(self): def test_impl(A): return A.iloc[3:8] hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal( hpat_func(S), test_impl(S).reset_index(drop=True)) def test_series_op1(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n), 'B': np.ones(n - 1)}) pd.testing.assert_series_equal(hpat_func(df.A, df.B), test_impl(df.A, df.B), check_names=False) def test_series_op2(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: df = pd.DataFrame({'A': np.arange(1, n, dtype=np.int64)}) else: df = pd.DataFrame({'A': np.arange(1, n)}) pd.testing.assert_series_equal(hpat_func(df.A, 1), test_impl(df.A, 1), check_names=False) def test_series_op3(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop2(operator) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n), 'B': np.ones(n - 1)}) pd.testing.assert_series_equal(hpat_func(df.A, df.B), test_impl(df.A, df.B), check_names=False) def test_series_op4(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop2(operator) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n)}) pd.testing.assert_series_equal(hpat_func(df.A, 1), test_impl(df.A, 1), check_names=False) def test_series_op5(self): arithmetic_methods = ('add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'pow') for method in arithmetic_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n), 'B': np.ones(n - 1)}) pd.testing.assert_series_equal(hpat_func(df.A, df.B), test_impl(df.A, df.B), check_names=False) @unittest.skipIf(platform.system() == 'Windows', 'Series values are different (20.0 %)' '[left]: [1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824, 3486784401, 10000000000]' '[right]: [1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824, -808182895, 1410065408]') def test_series_op5_integer_scalar(self): arithmetic_methods = ('add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'pow') for method in arithmetic_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: operand_series = pd.Series(np.arange(1, n, dtype=np.int64)) else: operand_series = pd.Series(np.arange(1, n)) operand_scalar = 10 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_op5_float_scalar(self): arithmetic_methods = ('add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'pow') for method in arithmetic_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 operand_series = pd.Series(np.arange(1, n)) operand_scalar = .5 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_op6(self): def test_impl(A): return -A hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(A), test_impl(A)) def test_series_op7(self): comparison_binops = ('<', '>', '<=', '>=', '!=', '==') for operator in comparison_binops: test_impl = _make_func_use_binop1(operator) hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_names=False) def test_series_op8(self): comparison_methods = ('lt', 'gt', 'le', 'ge', 'ne', 'eq') for method in comparison_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_names=False) @unittest.skipIf(platform.system() == 'Windows', "Attribute dtype are different: int64, int32") def test_series_op8_integer_scalar(self): comparison_methods = ('lt', 'gt', 'le', 'ge', 'eq', 'ne') for method in comparison_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 operand_series = pd.Series(np.arange(1, n)) operand_scalar = 10 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_op8_float_scalar(self): comparison_methods = ('lt', 'gt', 'le', 'ge', 'eq', 'ne') for method in comparison_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 operand_series = pd.Series(np.arange(1, n)) operand_scalar = .5 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_inplace_binop_array(self): def test_impl(A, B): A += B return A hpat_func = hpat.jit(test_impl) n = 11 A = np.arange(n)**2.0 # TODO: use 2 for test int casting B = pd.Series(np.ones(n)) np.testing.assert_array_equal(hpat_func(A.copy(), B), test_impl(A, B)) def test_series_fusion1(self): def test_impl(A, B): return A + B + 1 hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: A = pd.Series(np.arange(n), dtype=np.int64) B = pd.Series(np.arange(n)**2, dtype=np.int64) else: A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B)) self.assertEqual(count_parfor_REPs(), 1) def test_series_fusion2(self): # make sure getting data var avoids incorrect single def assumption def test_impl(A, B): S = B + 2 if A[0] == 0: S = A + 1 return S + B hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: A = pd.Series(np.arange(n), dtype=np.int64) B = pd.Series(np.arange(n)**2, dtype=np.int64) else: A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B)) self.assertEqual(count_parfor_REPs(), 3) def test_series_len(self): def test_impl(A, i): return len(A) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A, 0), test_impl(df.A, 0)) def test_series_box(self): def test_impl(): A = pd.Series([1, 2, 3]) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_series_box2(self): def test_impl(): A = pd.Series(['1', '2', '3']) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_series_list_str_unbox1(self): def test_impl(A): return A.iloc[0] hpat_func = hpat.jit(test_impl) S = pd.Series([['aa', 'b'], ['ccc'], []]) np.testing.assert_array_equal(hpat_func(S), test_impl(S)) # call twice to test potential refcount errors np.testing.assert_array_equal(hpat_func(S), test_impl(S)) def test_np_typ_call_replace(self): # calltype replacement is tricky for np.typ() calls since variable # type can't provide calltype def test_impl(i): return np.int32(i) hpat_func = hpat.jit(test_impl) self.assertEqual(hpat_func(1), test_impl(1)) def test_series_ufunc1(self): def test_impl(A, i): return np.isinf(A).values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A, 1), test_impl(df.A, 1)) def test_list_convert(self): def test_impl(): df = pd.DataFrame({'one': np.array([-1, np.nan, 2.5]), 'two': ['foo', 'bar', 'baz'], 'three': [True, False, True]}) return df.one.values, df.two.values, df.three.values hpat_func = hpat.jit(test_impl) one, two, three = hpat_func() self.assertTrue(isinstance(one, np.ndarray)) self.assertTrue(isinstance(two, np.ndarray)) self.assertTrue(isinstance(three, np.ndarray)) @unittest.skip("needs empty_like typing fix in npydecl.py") def test_series_empty_like(self): def test_impl(A): return np.empty_like(A) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertTrue(isinstance(hpat_func(df.A), np.ndarray)) def test_series_fillna1(self): def test_impl(A): return A.fillna(5.0) hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) pd.testing.assert_series_equal(hpat_func(df.A), test_impl(df.A), check_names=False) # test inplace fillna for named numeric series (obtained from DataFrame) def test_series_fillna_inplace1(self): def test_impl(A): A.fillna(5.0, inplace=True) return A hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) pd.testing.assert_series_equal(hpat_func(df.A), test_impl(df.A), check_names=False) def test_series_fillna_str1(self): def test_impl(A): return A.fillna("dd") hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['aa', 'b', None, 'ccc']}) pd.testing.assert_series_equal(hpat_func(df.A), test_impl(df.A), check_names=False) def test_series_fillna_str_inplace1(self): def test_impl(A): A.fillna("dd", inplace=True) return A hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'ccc']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) # TODO: handle string array reflection # hpat_func(S1) # test_impl(S2) # np.testing.assert_array_equal(S1, S2) def test_series_fillna_str_inplace_empty1(self): def test_impl(A): A.fillna("", inplace=True) return A hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'ccc']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('Unsupported functionality: failed to handle index') def test_series_fillna_index_str(self): def test_impl(S): return S.fillna(5.0) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2.0, np.nan, 1.0], index=['a', 'b', 'c', 'd']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S), check_names=False) @unittest.skip('Unsupported functionality: failed to handle index') def test_series_fillna_index_int(self): def test_impl(S): return S.fillna(5.0) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2.0, np.nan, 1.0], index=[2, 3, 4, 5]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S), check_names=False) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'No support of axis argument in old-style Series.dropna() impl') def test_series_dropna_axis1(self): '''Verifies Series.dropna() implementation handles 'index' as axis argument''' def test_impl(S): return S.dropna(axis='index') hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'No support of axis argument in old-style Series.dropna() impl') def test_series_dropna_axis2(self): '''Verifies Series.dropna() implementation handles 0 as axis argument''' def test_impl(S): return S.dropna(axis=0) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'No support of axis argument in old-style Series.dropna() impl') def test_series_dropna_axis3(self): '''Verifies Series.dropna() implementation handles correct non-literal axis argument''' def test_impl(S, axis): return S.dropna(axis=axis) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() axis_values = [0, 'index'] for value in axis_values: pd.testing.assert_series_equal(hpat_func(S1, value), test_impl(S2, value)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_float_index1(self): '''Verifies Series.dropna() implementation for float series with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) for data in test_global_input_data_float64: S1 = pd.Series(data) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_float_index2(self): '''Verifies Series.dropna() implementation for float series with string index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf], ['a', 'b', 'c', 'd', 'e']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_str_index1(self): '''Verifies Series.dropna() implementation for series of strings with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', '']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_str_index2(self): '''Verifies Series.dropna() implementation for series of strings with string index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', ''], ['a', 'b', 'c', 'd', 'e']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_str_index3(self): def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', ''], index=[1, 2, 5, 7, 10]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('BUG: old-style dropna impl returns series without index, in new-style inplace is unsupported') def test_series_dropna_float_inplace_no_index1(self): '''Verifies Series.dropna() implementation for float series with default index and inplace argument True''' def test_impl(S): S.dropna(inplace=True) return S hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('TODO: add reflection support and check method return value') def test_series_dropna_float_inplace_no_index2(self): '''Verifies Series.dropna(inplace=True) results are reflected back in the original float series''' def test_impl(S): return S.dropna(inplace=True) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() self.assertIsNone(hpat_func(S1)) self.assertIsNone(test_impl(S2)) pd.testing.assert_series_equal(S1, S2) @unittest.skip('BUG: old-style dropna impl returns series without index, in new-style inplace is unsupported') def test_series_dropna_str_inplace_no_index1(self): '''Verifies Series.dropna() implementation for series of strings with default index and inplace argument True ''' def test_impl(S): S.dropna(inplace=True) return S hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', '']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('TODO: add reflection support and check method return value') def test_series_dropna_str_inplace_no_index2(self): '''Verifies Series.dropna(inplace=True) results are reflected back in the original string series''' def test_impl(S): return S.dropna(inplace=True) hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', '']) S2 = S1.copy() self.assertIsNone(hpat_func(S1)) self.assertIsNone(test_impl(S2)) pd.testing.assert_series_equal(S1, S2) def test_series_dropna_str_parallel1(self): '''Verifies Series.dropna() distributed work for series of strings with default index''' def test_impl(A): B = A.dropna() return (B == 'gg').sum() hpat_func = hpat.jit(distributed=['A'])(test_impl) S1 =
pd.Series(['aa', 'b', None, 'ccc', 'dd', 'gg'])
pandas.Series
import pandas from msdss_models_api.models import Model def create_init_method(can_input=True, can_output=True, can_update=True): """ Create model init method for scikit-learn models to be compatible with :class:`msdss_models_api:msdss_models_api.models.Model`. See :class:`msdss_models_api:msdss_models_api.models.Model`. Parameters ---------- can_input : bool Whether the method ``.input`` is defined and available. This is useful for controlling route requests in an API. can_output : bool Whether the method ``.output`` is defined and available. This is useful for controlling route requests in an API. can_update : bool Whether the method ``.update`` is defined and available. This is useful for controlling route requests in an API. Author ------ <NAME> <<EMAIL>> Example ------- .. jupyter-execute:: from msdss_models_sklearn.tools import * from sklearn.linear_model import LinearRegression input = create_input_method(LinearRegression) """ def init(self, can_input=can_input, can_output=can_output, can_update=can_update, *args, **kwargs): Model.__init__(self, can_input=can_input, can_output=can_output, can_update=can_update, *args, **kwargs) return init def create_input_method(model): """ Create model input method for scikit-learn models to be compatible with :class:`msdss_models_api:msdss_models_api.models.Model`. See :meth:`msdss_models_api:msdss_models_api.models.Model.input`. Parameters ---------- model : class Scikit-learn model class to create machine learning models. Author ------ <NAME> <<EMAIL>> Example ------- .. jupyter-execute:: from msdss_models_sklearn.tools import * from sklearn.linear_model import LinearRegression input = create_input_method(LinearRegression) """ def input(self, data, x=None, y=None, _fit={}, *args, **kwargs): # (create_input_method_vars) Set default vars x = x if x else self.settings['x'] if 'x' in self.settings else x y = y if y else self.settings['y'] if 'y' in self.settings else y # (create_input_method_data) Format data for model instance input data =
pandas.DataFrame(data)
pandas.DataFrame
''' # Section 1: Business Understanding For this project, I was interestested in using **Seattle Airbnb Data from 2016** to better understand: 1. What kind of accommodations do may I book? 2. Which period of the year has the highest number of listings? By how much do prices spike? 3. What are the cheapest and most expensive neighborhoods? 4. What are the factors that most impact the price? You can find the full set of files related to anaylises in: https://www.kaggle.com/airbnb/seattle/data. Also, check out my medium post at: https://matsuch.medium.com/can-you-guess-the-best-time-to-visit-seattle-24025ab7da70 ''' ## Opening libraries #import algebra linear and data manipulation import numpy as np import pandas as pd from collections import defaultdict #Plot import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import matplotlib.patches as mpatches #Machine Learning from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score, mean_squared_error #ignore warnings import warnings warnings.filterwarnings('ignore') ## Information gathering #opening dataframes df_review = pd.read_csv('./reviews.csv') df_listings = pd.read_csv('./listings.csv') df_calendar = pd.read_csv('./calendar.csv') # Section 2: Data Undestanding #============================================================================== #Spliting dataframes into categories - Host, Review, quarto, bairro #============================================================================== host = df_listings[['host_id','host_is_superhost', 'host_response_rate', 'host_response_time']] review = df_listings[['id','number_of_reviews', 'review_scores_rating', 'review_scores_accuracy', 'review_scores_cleanliness', 'review_scores_checkin', 'review_scores_communication', 'review_scores_location', 'review_scores_value']] quarto = df_listings[['room_type', 'bathrooms', 'bedrooms', 'beds', 'bed_type', 'accommodates','property_type']] bairro = df_listings[['neighbourhood', 'neighbourhood_cleansed','neighbourhood_group_cleansed']] #============================================================== #Data treatment - NaN Values and change object columns in floats #============================================================== #host print('before % of null values : \n', host.isnull().sum()/len(host)*100, '\n') #% NaN values #transform the host_is_superhost in float host['host_is_superhost'] = host['host_is_superhost'].map({'f':1,'t':0}) #change f and t for 1 and 0 #Transform the responde_rate column in str and flot to find the mean host['host_response_rate_num'] = host['host_response_rate'].astype(str) host['host_response_rate_num'] = host['host_response_rate_num'].str.replace("%", "").astype("float") #Change responde_time into float and fill with the mean host['host_response_time'] = host['host_response_time'].map({'within a few hours':6, 'within an hour':1, 'within a day':24, 'a few days or more':48}) #Below I was trying to fill all nan values in responde_rate and response_time by the host behavior #Since it would be the same person, i assumed that the response would be close for each one. #however the results was not as expected. #fill host activity by its mean host['host_response_rate_num'] = host['host_response_rate_num'].fillna(host.groupby(['host_id']) ['host_response_rate_num'].transform('mean')) host['host_response_time'] = host['host_response_time'].fillna(host.groupby(['host_id']) ['host_response_time'].transform('mean')) print('after % of null values : \n', host.isnull().sum()/len(host)*100, '\n') #% NaN values #Tried to fill the nan with the mean, however since it doesn't I decided to drop all those rows to have a complete dataset host = host.drop(['host_response_rate'], axis = 1) #drop the old response rate column hostnew = host.dropna() #drop the remaining nan values, since the new df has 86% of the original size print('Size comparison between the old and new host df :', len(hostnew)/len(host), '\n') #review #fill all columns with the mean - new approach ''' review['review_scores_value'] = review.groupby('id')['review_scores_value'].transform(lambda x: x.fillna(x.mean())) review['review_scores_rating'] = review.groupby('id')['review_scores_rating'].transform(lambda x: x.fillna(x.mean())) review['review_scores_accuracy'] = review.groupby('id')['review_scores_accuracy'].transform(lambda x: x.fillna(x.mean())) review['review_scores_cleanliness'] = review.groupby('id')['review_scores_cleanliness'].transform(lambda x: x.fillna(x.mean())) review['review_scores_checkin'] = review.groupby('id')['review_scores_checkin'].transform(lambda x: x.fillna(x.mean())) review['review_scores_communication'] = review.groupby('id')['review_scores_communication'].transform(lambda x: x.fillna(x.mean())) review['review_scores_location'] = review.groupby('id')['review_scores_location'].transform(lambda x: x.fillna(x.mean())) #NEED TO FIND A FASTER WAY TO PERFORM THIS ''' print('Sum of nan values per column: \n',review.isnull().sum()) print('number of listings with no reviews: ', (review['number_of_reviews'] == 0).sum()) #quarto print(quarto.isnull().sum()) #count null columns quartonew=quarto.dropna() #drop null values #bairro print(quarto.isnull().sum()) #count null columns bairronew=bairro.dropna() ##drop null values, less than 10% - most of the ananysis here need neighbourhood information # Section 3: Data Preparation #=============== #Data treatment #============== #creat new df df_novo = pd.concat((review, quartonew, hostnew, bairronew), axis=1) #split date information in year and month, drop the original date column df_calendar['date'] = pd.to_datetime(df_calendar['date'], format= '%Y/%m/%d') #set date in datetime df_calendar['ano'] = df_calendar['date'].dt.year #create a year column df_calendar['mês'] = df_calendar['date'].dt.month #create a month column df_calendar.drop(['date'], axis=1, inplace=True) #drop the old date column df_novo.rename(index=str, columns={'id': 'listing_id'}, inplace=True) #change the 'id' column name to be the same as the calendar df =
pd.merge(df_calendar, df_novo, on='listing_id')
pandas.merge
import pandas as pd import numpy as np from scipy import signal from eeg_globals import * def cut_signal(eeg_df, dic_cut_opts): """ Cut signal into small windows with overlapping Return: A new dataframe """ sample_win = int(PSF * dic_cut_opts['window']) sample_over = int(PSF * dic_cut_opts['overlap']) sample_stride = sample_win - sample_over # To data, add a column observation based on phase print('split data into observations') eeg_window = [] for subject in eeg_df.subject.unique(): print(subject) for test in eeg_df.test.unique(): print(' ' + str(test)) for phase in eeg_df.phase.unique(): print(' ' + str(phase)) df = eeg_df.loc[(eeg_df.subject==subject) & (eeg_df.test==test) & (eeg_df.phase==phase)].copy() df = df.reset_index(drop=True) n_intervals = int(np.floor(( df.shape[0] - sample_win ) / sample_stride) + 1) for k in range(n_intervals): data = df.iloc[k * sample_stride : k * sample_stride + sample_win].copy() data = data.reset_index(drop=True) data['observation'] = k + 1 eeg_window.append(data) del data del df eeg_window = pd.concat(eeg_window, axis=0, ignore_index=True) print(eeg_window.shape) return eeg_window def cut_signal_simulator(eeg_df, dic_cut): labels = list(eeg_df.columns) sample_win = int(PSF * dic_cut['window']) sample_over = int(PSF * dic_cut['overlap']) sample_stride = sample_win - sample_over # To data, add a column observation based on phase print('split data into observations') eeg_window = [] for subject in eeg_df.subject.unique(): print(subject) for flight_number in eeg_df.flight_number.unique(): print(' ' + str(flight_number)) for phase in eeg_df.phase.unique(): print(' ' + str(phase)) df = eeg_df.loc[(eeg_df.subject==subject) & (eeg_df.flight_number==flight_number) & (eeg_df.phase==phase)].copy() df = df.reset_index(drop=True) n_intervals = int(np.floor(( df.shape[0] - sample_win ) / sample_stride) + 1) for k in range(n_intervals): data = df.iloc[k * sample_stride : k * sample_stride + sample_win].copy() data = data.reset_index(drop=True) data['observation'] = k + 1 eeg_window.append(data) del data del df eeg_window =
pd.concat(eeg_window, axis=0, ignore_index=True)
pandas.concat
#!/usr/bin/env python # coding: utf-8 # In[79]: ''' https://github.com/bbmusa ''' from pandas_datareader import data as pdr from yahoo_fin import stock_info as si # In[2]: import pandas as pd # In[3]: import numpy as np # In[7]: tickers = si.tickers_nifty50() # In[17]: tickers.remove('MM.NS') # In[72]: start_date = '2021-11-10' end_date = '2022-02-14' # In[73]: ''' <NAME>'RSI, Indicator simply find blue chip gold mines for you. ''' def download_all_stock_data(all_stock_symbols, start_date, end_date): def download_stock_data(single_symbol): print(' Downloading '+single_symbol+' data ') # try: tmp1=pdr.get_data_yahoo(single_symbol,start=start_date,end=end_date) # except KeyError: # pass return(tmp1) downloaded_data=map(download_stock_data,all_stock_symbols) return(pd.concat(downloaded_data,keys=all_stock_symbols, names=['Ticker','Date'])) # In[74]: stock_data=download_all_stock_data(tickers, start_date, end_date) fileName = 'downloadedData.pkl' stock_data.to_pickle(fileName) # In[80]: ''' RSI = 100-{100/(1+RS)} RS= Average gain/Average Loss This rsi is based on 14 periods which means: + first avrage gain = sum of gains over the 14 periods / 14 + first avrage loss = sum of loss over the 14 periods / 14 ''' def compute_RSI(data,period_RSI): differencePrice = data['Close'].diff() differencePriceValues=differencePrice.values positive_differences=0 negative_differences=0 current_average_positive=0 current_average_negative=0 price_index=0 RSI=[] for difference in differencePriceValues[1:]: if difference>0: positive_difference=difference negative_difference=0 if difference<0: negative_difference=np.abs(difference) positive_difference=0 if difference==0: negative_difference=0 positive_difference=0 if (price_index<period_RSI): current_average_positive=current_average_positive+(1/period_RSI)*positive_difference current_average_negative=current_average_negative+(1/period_RSI)*negative_difference if(price_index==(period_RSI-1)): if current_average_negative!=0: RSI.append(100 - 100/(1+(current_average_positive/current_average_negative))) else: RSI.append(100) else: current_average_positive=((period_RSI-1)*current_average_positive+positive_difference)/(period_RSI) current_average_negative=((period_RSI-1)*current_average_negative+negative_difference)/(period_RSI) if current_average_negative!=0: RSI.append(100 - 100/(1+(current_average_positive/current_average_negative))) else: RSI.append(100) price_index=price_index+1 RSI_series=
pd.Series(data=RSI,index=differencePrice.index[period_RSI:])
pandas.Series
from collections import defaultdict from subprocess import Popen, PIPE from multiprocessing import Process from loguru import logger import pandas as pd import signal import os class ProcessInfo: """ class for processes' information """ def __init__(self,uuid,pid,descrition,used_memory): self.pid = int(pid) self.uuid = uuid self.descrition = descrition self.used_memory = int(used_memory) class GPU: """ class for per GPU device's information """ def __init__(self, GPU_type, GPU_index,uuid, utilizationGPU, memoryTotal, memoryUsed, memoryFree, driver): self.GPU_type = GPU_type self.GPU_index = GPU_index self.uuid = uuid self.utilizationGPU = utilizationGPU self.memoryTotal = float(memoryTotal) self.memoryUsed = float(memoryUsed) self.memoryFree = float(memoryFree) self.driver = driver self.task = None def GPU_info(self): return [self.GPU_type,self.GPU_index,self.utilizationGPU,self.memoryTotal,self.memoryUsed,self.memoryFree,self.memoryUsed/self.memoryTotal,len(self.task)] ## get task information from device def tasks_info(self): if len(self.task) == 0: return None else: col = ['device','pid','descrition','used_memory'] df = pd.DataFrame(columns=col) for item in self.task: df.loc[len(df)] = [self.GPU_index,item.pid,item.descrition,item.used_memory] return df ## kill process def kill_process(self): try: pids = self.tasks_info()['pid'].values print(pids) except: print(f"there are no tasks on device {self.GPU_index}!") return for item in pids: os.kill(item, signal.SIGKILL) print("You kill the processes ", item, "successfully!") class GPUgo(): """ class for analysis the device's information """ def __init__(self,): self.GPUs = self.GetGpuInfo() def MyGpuInfo(self): col = ['device_type','device_id','utilizationGPU(%)','memoryTotal(MB)','memoryUsed(MB)','memoryFree(MB)','memoryusedPercent(%)','task_num'] df = pd.DataFrame(columns=col) for gpu in self.GPUs: df.loc[len(df)] = gpu.GPU_info() return df def ShowmyGpuInfo(self): print('====='*25) df = self.MyGpuInfo() print(df.to_string(index=False)) print('\n') print('-----'*25) print(self.GpuProcessInfo()) print('====='*25) def GetGpuInfo(self): GPUs= [] GPU_info = Popen(["nvidia-smi","--query-gpu=name,index,uuid,utilization.gpu,memory.total,memory.used,memory.free,driver_version", "--format=csv,noheader,nounits"], stdout=PIPE) stdout, stderror = GPU_info.communicate() GPU_info = stdout.decode('UTF-8').strip().split('\n') GPU_info = [i.split(', ' ) for i in GPU_info] for i in range(len(GPU_info)): GPUs.append(GPU(*GPU_info[i])) process_info = Popen(["nvidia-smi","--query-compute-apps=gpu_uuid,pid,process_name,used_memory", "--format=csv,noheader,nounits"], stdout=PIPE) stdout, stderror = process_info.communicate() process_info = stdout.decode('UTF-8').strip().split('\n') process_info = [i.split(', ') for i in process_info] for gpu in GPUs: processes = [] for item in process_info: if gpu.uuid == item[0]: processes.append(ProcessInfo(*item)) gpu.task = processes return GPUs def GpuProcessInfo(self): col = ['device','pid','descrition','used_memory'] df =
pd.DataFrame(columns=col)
pandas.DataFrame
from sklearn.cluster import KMeans from scipy.stats import zscore import h5py as h5 import numpy as np import pandas as pd import random from typing import List import sys from prismx.utils import quantile_normalize, normalize np.seterr(divide='ignore', invalid='ignore') def calculateCorrelation(h5file: str, clustering: pd.DataFrame, geneidx: List[int], clusterID: str="global", maxSampleCount: int=2000) -> List: ''' Returns correlation matrix for specified samples Parameters: h5file (string): path to expression h5 file clustering (pandas DataFrame): sample mappings geneidx (array of int): array of gene indices Returns: correlation coefficients (pandas DataFrame) average sample correlation ''' f = h5.File(h5file, 'r') samples = f['meta/samples/geo_accession'] genes = f['meta/genes/genes'] if clusterID == "global": samplesidx = sorted(random.sample(range(len(samples)), min(maxSampleCount, len(samples)))) else: samplesidx = np.where(clustering.loc[:,"clusterID"] == int(clusterID))[0] if maxSampleCount > 2: samplesidx = sorted(random.sample(set(samplesidx), min(len(samplesidx), maxSampleCount))) exp = f['data/expression'][:,samplesidx][geneidx,:] qq = normalize(exp, transpose=False) exp = 0 cc = np.corrcoef(qq) cc = np.nan_to_num(cc) qq = 0 correlation = pd.DataFrame(cc, index=genes[geneidx], columns=genes[geneidx], dtype=np.float16) correlation.index = [x.upper() for x in genes[geneidx]] correlation.columns = [x.upper() for x in genes[geneidx]] f.close() cc = 0 np.fill_diagonal(correlation.to_numpy(), float('nan')) return(correlation) def createClustering(h5file: str, geneidx: List[int], geneCount: int=500, clusterCount: int=50, deterministic: bool=True) -> pd.DataFrame: ''' Returns cluster association for all samples in input expression h5 file Parameters: h5file (string): path to expression h5 file geneIndices (array type int): indices of genes geneCount (int) count of genes used for clustering clusterCount (int): number of clusters Returns: sample cluster mapping (pandas.DataFrame) ''' if deterministic: random.seed(42) f = h5.File(h5file, 'r') expression = f['data/expression'] samples = list(f['meta/samples/geo_accession']) genes = sorted(random.sample(geneidx, geneCount)) exp = expression[genes, :] f.close() qq = normalize(exp, transpose=False) qq = pd.DataFrame(zscore(qq, axis=1)).fillna(0) exp = 0 kmeans = KMeans(n_clusters=clusterCount, random_state=42).fit(qq.transpose()) qq = 0 # keep memory footprint low clustering = kmeans.labels_ kmeans = 0 # keep memory footprint low clusterMapping =
pd.DataFrame({'sampleID': samples, 'clusterID': clustering}, index = samples, columns=["sampleID", "clusterID"])
pandas.DataFrame
import logging import multiprocessing import os from collections import defaultdict from datetime import datetime import numpy as np import pandas as pd from pandas import DataFrame, Series from sklearn.model_selection import KFold, StratifiedKFold, RepeatedKFold, RepeatedStratifiedKFold, train_test_split from .constants import BINARY, REGRESSION, SOFTCLASS logger = logging.getLogger(__name__) def get_pred_from_proba(y_pred_proba, problem_type=BINARY): if problem_type == BINARY: y_pred = [1 if pred >= 0.5 else 0 for pred in y_pred_proba] elif problem_type == REGRESSION: y_pred = y_pred_proba else: y_pred = np.argmax(y_pred_proba, axis=1) return y_pred def generate_kfold(X, y=None, n_splits=5, random_state=0, stratified=False, n_repeats=1): if stratified and (y is not None): if n_repeats > 1: kf = RepeatedStratifiedKFold(n_splits=n_splits, n_repeats=n_repeats, random_state=random_state) else: kf = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=random_state) kf.get_n_splits(X, y) return [[train_index, test_index] for train_index, test_index in kf.split(X, y)] else: if n_repeats > 1: kf = RepeatedKFold(n_splits=n_splits, n_repeats=n_repeats, random_state=random_state) else: kf = KFold(n_splits=n_splits, shuffle=True, random_state=random_state) kf.get_n_splits(X) return [[train_index, test_index] for train_index, test_index in kf.split(X)] def generate_train_test_split(X: DataFrame, y: Series, problem_type: str, test_size: float = 0.1, random_state=42) -> (DataFrame, DataFrame, Series, Series): if (test_size <= 0.0) or (test_size >= 1.0): raise ValueError("fraction of data to hold-out must be specified between 0 and 1") if problem_type in [REGRESSION, SOFTCLASS]: stratify = None else: stratify = y # TODO: Enable stratified split when y class would result in 0 samples in test. # One approach: extract low frequency classes from X/y, add back (1-test_size)% to X_train, y_train, rest to X_test # Essentially stratify the high frequency classes, random the low frequency (While ensuring at least 1 example stays for each low frequency in train!) # Alternatively, don't test low frequency at all, trust it to work in train set. Risky, but highest quality for predictions. X_train, X_test, y_train, y_test = train_test_split(X, y.values, test_size=test_size, shuffle=True, random_state=random_state, stratify=stratify) if problem_type != SOFTCLASS: y_train = pd.Series(y_train, index=X_train.index) y_test =
pd.Series(y_test, index=X_test.index)
pandas.Series
# -*- coding: utf-8 -*- """ These the test the public routines exposed in types/common.py related to inference and not otherwise tested in types/test_common.py """ from warnings import catch_warnings, simplefilter import collections import re from datetime import datetime, date, timedelta, time from decimal import Decimal from numbers import Number from fractions import Fraction import numpy as np import pytz import pytest import pandas as pd from pandas._libs import lib, iNaT, missing as libmissing from pandas import (Series, Index, DataFrame, Timedelta, DatetimeIndex, TimedeltaIndex, Timestamp, Panel, Period, Categorical, isna, Interval, DateOffset) from pandas import compat from pandas.compat import u, PY2, StringIO, lrange from pandas.core.dtypes import inference from pandas.core.dtypes.common import ( is_timedelta64_dtype, is_timedelta64_ns_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_number, is_integer, is_float, is_bool, is_scalar, is_scipy_sparse, ensure_int32, ensure_categorical) from pandas.util import testing as tm import pandas.util._test_decorators as td @pytest.fixture(params=[True, False], ids=str) def coerce(request): return request.param # collect all objects to be tested for list-like-ness; use tuples of objects, # whether they are list-like or not (special casing for sets), and their ID ll_params = [ ([1], True, 'list'), # noqa: E241 ([], True, 'list-empty'), # noqa: E241 ((1, ), True, 'tuple'), # noqa: E241 (tuple(), True, 'tuple-empty'), # noqa: E241 ({'a': 1}, True, 'dict'), # noqa: E241 (dict(), True, 'dict-empty'), # noqa: E241 ({'a', 1}, 'set', 'set'), # noqa: E241 (set(), 'set', 'set-empty'), # noqa: E241 (frozenset({'a', 1}), 'set', 'frozenset'), # noqa: E241 (frozenset(), 'set', 'frozenset-empty'), # noqa: E241 (iter([1, 2]), True, 'iterator'), # noqa: E241 (iter([]), True, 'iterator-empty'), # noqa: E241 ((x for x in [1, 2]), True, 'generator'), # noqa: E241 ((x for x in []), True, 'generator-empty'), # noqa: E241 (Series([1]), True, 'Series'), # noqa: E241 (Series([]), True, 'Series-empty'), # noqa: E241 (Series(['a']).str, True, 'StringMethods'), # noqa: E241 (Series([], dtype='O').str, True, 'StringMethods-empty'), # noqa: E241 (Index([1]), True, 'Index'), # noqa: E241 (Index([]), True, 'Index-empty'), # noqa: E241 (DataFrame([[1]]), True, 'DataFrame'), # noqa: E241 (DataFrame(), True, 'DataFrame-empty'), # noqa: E241 (np.ndarray((2,) * 1), True, 'ndarray-1d'), # noqa: E241 (np.array([]), True, 'ndarray-1d-empty'), # noqa: E241 (np.ndarray((2,) * 2), True, 'ndarray-2d'), # noqa: E241 (np.array([[]]), True, 'ndarray-2d-empty'), # noqa: E241 (np.ndarray((2,) * 3), True, 'ndarray-3d'), # noqa: E241 (np.array([[[]]]), True, 'ndarray-3d-empty'), # noqa: E241 (np.ndarray((2,) * 4), True, 'ndarray-4d'), # noqa: E241 (np.array([[[[]]]]), True, 'ndarray-4d-empty'), # noqa: E241 (np.array(2), False, 'ndarray-0d'), # noqa: E241 (1, False, 'int'), # noqa: E241 (b'123', False, 'bytes'), # noqa: E241 (b'', False, 'bytes-empty'), # noqa: E241 ('123', False, 'string'), # noqa: E241 ('', False, 'string-empty'), # noqa: E241 (str, False, 'string-type'), # noqa: E241 (object(), False, 'object'), # noqa: E241 (np.nan, False, 'NaN'), # noqa: E241 (None, False, 'None') # noqa: E241 ] objs, expected, ids = zip(*ll_params) @pytest.fixture(params=zip(objs, expected), ids=ids) def maybe_list_like(request): return request.param def test_is_list_like(maybe_list_like): obj, expected = maybe_list_like expected = True if expected == 'set' else expected assert inference.is_list_like(obj) == expected def test_is_list_like_disallow_sets(maybe_list_like): obj, expected = maybe_list_like expected = False if expected == 'set' else expected assert inference.is_list_like(obj, allow_sets=False) == expected def test_is_sequence(): is_seq = inference.is_sequence assert (is_seq((1, 2))) assert (is_seq([1, 2])) assert (not is_seq("abcd")) assert (not is_seq(u("abcd"))) assert (not is_seq(np.int64)) class A(object): def __getitem__(self): return 1 assert (not is_seq(A())) def test_is_array_like(): assert inference.is_array_like(Series([])) assert inference.is_array_like(Series([1, 2])) assert inference.is_array_like(np.array(["a", "b"])) assert inference.is_array_like(Index(["2016-01-01"])) class DtypeList(list): dtype = "special" assert inference.is_array_like(DtypeList()) assert not inference.is_array_like([1, 2, 3]) assert not inference.is_array_like(tuple()) assert not inference.is_array_like("foo") assert not inference.is_array_like(123) @pytest.mark.parametrize('inner', [ [], [1], (1, ), (1, 2), {'a': 1}, {1, 'a'}, Series([1]), Series([]), Series(['a']).str, (x for x in range(5)) ]) @pytest.mark.parametrize('outer', [ list, Series, np.array, tuple ]) def test_is_nested_list_like_passes(inner, outer): result = outer([inner for _ in range(5)]) assert inference.is_list_like(result) @pytest.mark.parametrize('obj', [ 'abc', [], [1], (1,), ['a'], 'a', {'a'}, [1, 2, 3], Series([1]), DataFrame({"A": [1]}), ([1, 2] for _ in range(5)), ]) def test_is_nested_list_like_fails(obj): assert not inference.is_nested_list_like(obj) @pytest.mark.parametrize( "ll", [{}, {'A': 1}, Series([1])]) def test_is_dict_like_passes(ll): assert inference.is_dict_like(ll) @pytest.mark.parametrize( "ll", ['1', 1, [1, 2], (1, 2), range(2), Index([1])]) def test_is_dict_like_fails(ll): assert not inference.is_dict_like(ll) @pytest.mark.parametrize("has_keys", [True, False]) @pytest.mark.parametrize("has_getitem", [True, False]) @pytest.mark.parametrize("has_contains", [True, False]) def test_is_dict_like_duck_type(has_keys, has_getitem, has_contains): class DictLike(object): def __init__(self, d): self.d = d if has_keys: def keys(self): return self.d.keys() if has_getitem: def __getitem__(self, key): return self.d.__getitem__(key) if has_contains: def __contains__(self, key): return self.d.__contains__(key) d = DictLike({1: 2}) result = inference.is_dict_like(d) expected = has_keys and has_getitem and has_contains assert result is expected def test_is_file_like(mock): class MockFile(object): pass is_file = inference.is_file_like data = StringIO("data") assert is_file(data) # No read / write attributes # No iterator attributes m = MockFile() assert not is_file(m) MockFile.write = lambda self: 0 # Write attribute but not an iterator m = MockFile() assert not is_file(m) # gh-16530: Valid iterator just means we have the # __iter__ attribute for our purposes. MockFile.__iter__ = lambda self: self # Valid write-only file m = MockFile() assert is_file(m) del MockFile.write MockFile.read = lambda self: 0 # Valid read-only file m = MockFile() assert is_file(m) # Iterator but no read / write attributes data = [1, 2, 3] assert not is_file(data) assert not is_file(mock.Mock()) @pytest.mark.parametrize( "ll", [collections.namedtuple('Test', list('abc'))(1, 2, 3)]) def test_is_names_tuple_passes(ll): assert inference.is_named_tuple(ll) @pytest.mark.parametrize( "ll", [(1, 2, 3), 'a', Series({'pi': 3.14})]) def test_is_names_tuple_fails(ll): assert not inference.is_named_tuple(ll) def test_is_hashable(): # all new-style classes are hashable by default class HashableClass(object): pass class UnhashableClass1(object): __hash__ = None class UnhashableClass2(object): def __hash__(self): raise TypeError("Not hashable") hashable = (1, 3.14, np.float64(3.14), 'a', tuple(), (1, ), HashableClass(), ) not_hashable = ([], UnhashableClass1(), ) abc_hashable_not_really_hashable = (([], ), UnhashableClass2(), ) for i in hashable: assert inference.is_hashable(i) for i in not_hashable: assert not inference.is_hashable(i) for i in abc_hashable_not_really_hashable: assert not inference.is_hashable(i) # numpy.array is no longer collections.Hashable as of # https://github.com/numpy/numpy/pull/5326, just test # is_hashable() assert not inference.is_hashable(np.array([])) # old-style classes in Python 2 don't appear hashable to # collections.Hashable but also seem to support hash() by default if PY2: class OldStyleClass(): pass c = OldStyleClass() assert not isinstance(c, compat.Hashable) assert inference.is_hashable(c) hash(c) # this will not raise @pytest.mark.parametrize( "ll", [re.compile('ad')]) def test_is_re_passes(ll): assert inference.is_re(ll) @pytest.mark.parametrize( "ll", ['x', 2, 3, object()]) def test_is_re_fails(ll): assert not inference.is_re(ll) @pytest.mark.parametrize( "ll", [r'a', u('x'), r'asdf', re.compile('adsf'), u(r'\u2233\s*'), re.compile(r'')]) def test_is_recompilable_passes(ll): assert inference.is_re_compilable(ll) @pytest.mark.parametrize( "ll", [1, [], object()]) def test_is_recompilable_fails(ll): assert not inference.is_re_compilable(ll) class TestInference(object): def test_infer_dtype_bytes(self): compare = 'string' if PY2 else 'bytes' # string array of bytes arr = np.array(list('abc'), dtype='S1') assert lib.infer_dtype(arr) == compare # object array of bytes arr = arr.astype(object) assert lib.infer_dtype(arr) == compare # object array of bytes with missing values assert lib.infer_dtype([b'a', np.nan, b'c'], skipna=True) == compare def test_isinf_scalar(self): # GH 11352 assert libmissing.isposinf_scalar(float('inf')) assert libmissing.isposinf_scalar(np.inf) assert not libmissing.isposinf_scalar(-np.inf) assert not libmissing.isposinf_scalar(1) assert not libmissing.isposinf_scalar('a') assert libmissing.isneginf_scalar(float('-inf')) assert libmissing.isneginf_scalar(-np.inf) assert not libmissing.isneginf_scalar(np.inf) assert not libmissing.isneginf_scalar(1) assert not libmissing.isneginf_scalar('a') def test_maybe_convert_numeric_infinities(self): # see gh-13274 infinities = ['inf', 'inF', 'iNf', 'Inf', 'iNF', 'InF', 'INf', 'INF'] na_values = {'', 'NULL', 'nan'} pos = np.array(['inf'], dtype=np.float64) neg = np.array(['-inf'], dtype=np.float64) msg = "Unable to parse string" for infinity in infinities: for maybe_int in (True, False): out = lib.maybe_convert_numeric( np.array([infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['-' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, neg) out = lib.maybe_convert_numeric( np.array([u(infinity)], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['+' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) # too many characters with pytest.raises(ValueError, match=msg): lib.maybe_convert_numeric( np.array(['foo_' + infinity], dtype=object), na_values, maybe_int) def test_maybe_convert_numeric_post_floatify_nan(self, coerce): # see gh-13314 data = np.array(['1.200', '-999.000', '4.500'], dtype=object) expected = np.array([1.2, np.nan, 4.5], dtype=np.float64) nan_values = {-999, -999.0} out = lib.maybe_convert_numeric(data, nan_values, coerce) tm.assert_numpy_array_equal(out, expected) def test_convert_infs(self): arr = np.array(['inf', 'inf', 'inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) assert result.dtype == np.float64 arr = np.array(['-inf', '-inf', '-inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) assert result.dtype == np.float64 def test_scientific_no_exponent(self): # See PR 12215 arr = np.array(['42E', '2E', '99e', '6e'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False, True) assert np.all(np.isnan(result)) def test_convert_non_hashable(self): # GH13324 # make sure that we are handing non-hashables arr = np.array([[10.0, 2], 1.0, 'apple']) result = lib.maybe_convert_numeric(arr, set(), False, True) tm.assert_numpy_array_equal(result, np.array([np.nan, 1.0, np.nan])) def test_convert_numeric_uint64(self): arr = np.array([2**63], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) arr = np.array([str(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) arr = np.array([np.uint64(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) @pytest.mark.parametrize("arr", [ np.array([2**63, np.nan], dtype=object), np.array([str(2**63), np.nan], dtype=object), np.array([np.nan, 2**63], dtype=object), np.array([np.nan, str(2**63)], dtype=object)]) def test_convert_numeric_uint64_nan(self, coerce, arr): expected = arr.astype(float) if coerce else arr.copy() result = lib.maybe_convert_numeric(arr, set(), coerce_numeric=coerce) tm.assert_almost_equal(result, expected) def test_convert_numeric_uint64_nan_values(self, coerce): arr = np.array([2**63, 2**63 + 1], dtype=object) na_values = {2**63} expected = (np.array([np.nan, 2**63 + 1], dtype=float) if coerce else arr.copy()) result = lib.maybe_convert_numeric(arr, na_values, coerce_numeric=coerce) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("case", [ np.array([2**63, -1], dtype=object), np.array([str(2**63), -1], dtype=object), np.array([str(2**63), str(-1)], dtype=object), np.array([-1, 2**63], dtype=object), np.array([-1, str(2**63)], dtype=object), np.array([str(-1), str(2**63)], dtype=object)]) def test_convert_numeric_int64_uint64(self, case, coerce): expected = case.astype(float) if coerce else case.copy() result = lib.maybe_convert_numeric(case, set(), coerce_numeric=coerce) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("value", [-2**63 - 1, 2**64]) def test_convert_int_overflow(self, value): # see gh-18584 arr = np.array([value], dtype=object) result = lib.maybe_convert_objects(arr) tm.assert_numpy_array_equal(arr, result) def test_maybe_convert_objects_uint64(self): # see gh-4471 arr = np.array([2**63], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) # NumPy bug: can't compare uint64 to int64, as that # results in both casting to float64, so we should # make sure that this function is robust against it arr = np.array([np.uint64(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) arr = np.array([2, -1], dtype=object) exp = np.array([2, -1], dtype=np.int64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) arr = np.array([2**63, -1], dtype=object) exp = np.array([2**63, -1], dtype=object) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) def test_mixed_dtypes_remain_object_array(self): # GH14956 array = np.array([datetime(2015, 1, 1, tzinfo=pytz.utc), 1], dtype=object) result = lib.maybe_convert_objects(array, convert_datetime=1) tm.assert_numpy_array_equal(result, array) class TestTypeInference(object): # Dummy class used for testing with Python objects class Dummy(): pass def test_inferred_dtype_fixture(self, any_skipna_inferred_dtype): # see pandas/conftest.py inferred_dtype, values = any_skipna_inferred_dtype # make sure the inferred dtype of the fixture is as requested assert inferred_dtype == lib.infer_dtype(values, skipna=True) def test_length_zero(self): result = lib.infer_dtype(np.array([], dtype='i4')) assert result == 'integer' result = lib.infer_dtype([]) assert result == 'empty' # GH 18004 arr = np.array([np.array([], dtype=object), np.array([], dtype=object)]) result = lib.infer_dtype(arr) assert result == 'empty' def test_integers(self): arr = np.array([1, 2, 3, np.int64(4), np.int32(5)], dtype='O') result = lib.infer_dtype(arr) assert result == 'integer' arr = np.array([1, 2, 3, np.int64(4), np.int32(5), 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed-integer' arr = np.array([1, 2, 3, 4, 5], dtype='i4') result = lib.infer_dtype(arr) assert result == 'integer' def test_bools(self): arr = np.array([True, False, True, True, True], dtype='O') result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([np.bool_(True), np.bool_(False)], dtype='O') result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([True, False, True, 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed' arr = np.array([True, False, True], dtype=bool) result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([True, np.nan, False], dtype='O') result = lib.infer_dtype(arr, skipna=True) assert result == 'boolean' def test_floats(self): arr = np.array([1., 2., 3., np.float64(4), np.float32(5)], dtype='O') result = lib.infer_dtype(arr) assert result == 'floating' arr = np.array([1, 2, 3, np.float64(4), np.float32(5), 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed-integer' arr = np.array([1, 2, 3, 4, 5], dtype='f4') result = lib.infer_dtype(arr) assert result == 'floating' arr = np.array([1, 2, 3, 4, 5], dtype='f8') result = lib.infer_dtype(arr) assert result == 'floating' def test_decimals(self): # GH15690 arr = np.array([Decimal(1), Decimal(2), Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'decimal' arr = np.array([1.0, 2.0, Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'mixed' arr = np.array([Decimal(1), Decimal('NaN'), Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'decimal' arr = np.array([Decimal(1), np.nan, Decimal(3)], dtype='O') result = lib.infer_dtype(arr) assert result == 'decimal' def test_string(self): pass def test_unicode(self): arr = [u'a', np.nan, u'c'] result = lib.infer_dtype(arr) assert result == 'mixed' arr = [u'a', np.nan, u'c'] result = lib.infer_dtype(arr, skipna=True) expected = 'unicode' if PY2 else 'string' assert result == expected @pytest.mark.parametrize('dtype, missing, skipna, expected', [ (float, np.nan, False, 'floating'), (float, np.nan, True, 'floating'), (object, np.nan, False, 'floating'), (object, np.nan, True, 'empty'), (object, None, False, 'mixed'), (object, None, True, 'empty') ]) @pytest.mark.parametrize('box', [pd.Series, np.array]) def test_object_empty(self, box, missing, dtype, skipna, expected): # GH 23421 arr = box([missing, missing], dtype=dtype) result = lib.infer_dtype(arr, skipna=skipna) assert result == expected def test_datetime(self): dates = [datetime(2012, 1, x) for x in range(1, 20)] index = Index(dates) assert index.inferred_type == 'datetime64' def test_infer_dtype_datetime(self): arr = np.array([Timestamp('2011-01-01'), Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([np.datetime64('2011-01-01'), np.datetime64('2011-01-01')], dtype=object) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([datetime(2011, 1, 1), datetime(2012, 2, 1)]) assert lib.infer_dtype(arr) == 'datetime' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, np.datetime64('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([n, datetime(2011, 1, 1)]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, pd.Timestamp('2011-01-02'), n]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, np.datetime64('2011-01-02'), n]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([n, datetime(2011, 1, 1), n]) assert lib.infer_dtype(arr) == 'datetime' # different type of nat arr = np.array([np.timedelta64('nat'), np.datetime64('2011-01-02')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.datetime64('2011-01-02'), np.timedelta64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' # mixed datetime arr = np.array([datetime(2011, 1, 1), pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' # should be datetime? arr = np.array([np.datetime64('2011-01-01'), pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([pd.Timestamp('2011-01-02'), np.datetime64('2011-01-01')]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.nan, pd.Timestamp('2011-01-02'), 1]) assert lib.infer_dtype(arr) == 'mixed-integer' arr = np.array([np.nan, pd.Timestamp('2011-01-02'), 1.1]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.nan, '2011-01-01', pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'mixed' def test_infer_dtype_timedelta(self): arr = np.array([pd.Timedelta('1 days'), pd.Timedelta('2 days')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([np.timedelta64(1, 'D'), np.timedelta64(2, 'D')], dtype=object) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([timedelta(1), timedelta(2)]) assert lib.infer_dtype(arr) == 'timedelta' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, Timedelta('1 days')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, np.timedelta64(1, 'D')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, timedelta(1)]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, pd.Timedelta('1 days'), n]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, np.timedelta64(1, 'D'), n]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, timedelta(1), n]) assert lib.infer_dtype(arr) == 'timedelta' # different type of nat arr = np.array([np.datetime64('nat'), np.timedelta64(1, 'D')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.timedelta64(1, 'D'), np.datetime64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' def test_infer_dtype_period(self): # GH 13664 arr = np.array([pd.Period('2011-01', freq='D'), pd.Period('2011-02', freq='D')]) assert lib.infer_dtype(arr) == 'period' arr = np.array([pd.Period('2011-01', freq='D'), pd.Period('2011-02', freq='M')]) assert lib.infer_dtype(arr) == 'period' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, pd.Period('2011-01', freq='D')]) assert lib.infer_dtype(arr) == 'period' arr = np.array([n, pd.Period('2011-01', freq='D'), n]) assert lib.infer_dtype(arr) == 'period' # different type of nat arr = np.array([np.datetime64('nat'), pd.Period('2011-01', freq='M')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([pd.Period('2011-01', freq='M'), np.datetime64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' @pytest.mark.parametrize( "data", [ [datetime(2017, 6, 12, 19, 30), datetime(2017, 3, 11, 1, 15)], [Timestamp("20170612"), Timestamp("20170311")], [Timestamp("20170612", tz='US/Eastern'), Timestamp("20170311", tz='US/Eastern')], [date(2017, 6, 12), Timestamp("20170311", tz='US/Eastern')], [np.datetime64("2017-06-12"), np.datetime64("2017-03-11")], [np.datetime64("2017-06-12"), datetime(2017, 3, 11, 1, 15)] ] ) def test_infer_datetimelike_array_datetime(self, data): assert lib.infer_datetimelike_array(data) == "datetime" @pytest.mark.parametrize( "data", [ [timedelta(2017, 6, 12), timedelta(2017, 3, 11)], [timedelta(2017, 6, 12), date(2017, 3, 11)], [np.timedelta64(2017, "D"), np.timedelta64(6, "s")], [np.timedelta64(2017, "D"), timedelta(2017, 3, 11)] ] ) def test_infer_datetimelike_array_timedelta(self, data): assert lib.infer_datetimelike_array(data) == "timedelta" def test_infer_datetimelike_array_date(self): arr = [date(2017, 6, 12), date(2017, 3, 11)] assert lib.infer_datetimelike_array(arr) == "date" @pytest.mark.parametrize( "data", [ ["2017-06-12", "2017-03-11"], [20170612, 20170311], [20170612.5, 20170311.8], [Dummy(), Dummy()], [Timestamp("20170612"), Timestamp("20170311", tz='US/Eastern')], [Timestamp("20170612"), 20170311], [timedelta(2017, 6, 12), Timestamp("20170311", tz='US/Eastern')] ] ) def test_infer_datetimelike_array_mixed(self, data): assert lib.infer_datetimelike_array(data) == "mixed" @pytest.mark.parametrize( "first, expected", [ [[None], "mixed"], [[np.nan], "mixed"], [[pd.NaT], "nat"], [[datetime(2017, 6, 12, 19, 30), pd.NaT], "datetime"], [[np.datetime64("2017-06-12"), pd.NaT], "datetime"], [[date(2017, 6, 12), pd.NaT], "date"], [[timedelta(2017, 6, 12), pd.NaT], "timedelta"], [[np.timedelta64(2017, "D"), pd.NaT], "timedelta"] ] ) @pytest.mark.parametrize("second", [None, np.nan]) def test_infer_datetimelike_array_nan_nat_like(self, first, second, expected): first.append(second) assert lib.infer_datetimelike_array(first) == expected def test_infer_dtype_all_nan_nat_like(self): arr = np.array([np.nan, np.nan]) assert lib.infer_dtype(arr) == 'floating' # nan and None mix are result in mixed arr = np.array([np.nan, np.nan, None]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([None, np.nan, np.nan]) assert lib.infer_dtype(arr) == 'mixed' # pd.NaT arr = np.array([pd.NaT]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([pd.NaT, np.nan]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([np.nan, pd.NaT]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([np.nan, pd.NaT, np.nan]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([None, pd.NaT, None]) assert lib.infer_dtype(arr) == 'datetime' # np.datetime64(nat) arr = np.array([np.datetime64('nat')]) assert lib.infer_dtype(arr) == 'datetime64' for n in [np.nan, pd.NaT, None]: arr = np.array([n, np.datetime64('nat'), n]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([pd.NaT, n, np.datetime64('nat'), n]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([np.timedelta64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'timedelta' for n in [np.nan, pd.NaT, None]: arr = np.array([n, np.timedelta64('nat'), n]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([pd.NaT, n, np.timedelta64('nat'), n]) assert lib.infer_dtype(arr) == 'timedelta' # datetime / timedelta mixed arr = np.array([pd.NaT, np.datetime64('nat'), np.timedelta64('nat'), np.nan]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.timedelta64('nat'), np.datetime64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' def test_is_datetimelike_array_all_nan_nat_like(self): arr = np.array([np.nan, pd.NaT, np.datetime64('nat')]) assert lib.is_datetime_array(arr) assert lib.is_datetime64_array(arr) assert not lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, pd.NaT, np.timedelta64('nat')]) assert not lib.is_datetime_array(arr) assert not lib.is_datetime64_array(arr) assert lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, pd.NaT, np.datetime64('nat'), np.timedelta64('nat')]) assert not lib.is_datetime_array(arr) assert not lib.is_datetime64_array(arr) assert not lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, pd.NaT]) assert lib.is_datetime_array(arr) assert lib.is_datetime64_array(arr) assert lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, np.nan], dtype=object) assert not lib.is_datetime_array(arr) assert not lib.is_datetime64_array(arr) assert not lib.is_timedelta_or_timedelta64_array(arr) assert lib.is_datetime_with_singletz_array( np.array([pd.Timestamp('20130101', tz='US/Eastern'), pd.Timestamp('20130102', tz='US/Eastern')], dtype=object)) assert not lib.is_datetime_with_singletz_array( np.array([pd.Timestamp('20130101', tz='US/Eastern'), pd.Timestamp('20130102', tz='CET')], dtype=object)) @pytest.mark.parametrize( "func", [ 'is_datetime_array', 'is_datetime64_array', 'is_bool_array', 'is_timedelta_or_timedelta64_array', 'is_date_array', 'is_time_array', 'is_interval_array', 'is_period_array']) def test_other_dtypes_for_array(self, func): func = getattr(lib, func) arr = np.array(['foo', 'bar']) assert not func(arr) arr = np.array([1, 2]) assert not func(arr) def test_date(self): dates = [date(2012, 1, day) for day in range(1, 20)] index = Index(dates) assert index.inferred_type == 'date' dates = [date(2012, 1, day) for day in range(1, 20)] + [np.nan] result = lib.infer_dtype(dates) assert result == 'mixed' result = lib.infer_dtype(dates, skipna=True) assert result == 'date' def test_is_numeric_array(self): assert lib.is_float_array(np.array([1, 2.0])) assert lib.is_float_array(np.array([1, 2.0, np.nan])) assert not lib.is_float_array(np.array([1, 2])) assert lib.is_integer_array(np.array([1, 2])) assert not lib.is_integer_array(np.array([1, 2.0])) def test_is_string_array(self): assert lib.is_string_array(np.array(['foo', 'bar'])) assert not lib.is_string_array( np.array(['foo', 'bar', np.nan], dtype=object), skipna=False) assert lib.is_string_array( np.array(['foo', 'bar', np.nan], dtype=object), skipna=True) assert not lib.is_string_array(np.array([1, 2])) def test_to_object_array_tuples(self): r = (5, 6) values = [r] result = lib.to_object_array_tuples(values) try: # make sure record array works from collections import namedtuple record = namedtuple('record', 'x y') r = record(5, 6) values = [r] result = lib.to_object_array_tuples(values) # noqa except ImportError: pass def test_object(self): # GH 7431 # cannot infer more than this as only a single element arr = np.array([None], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed' def test_to_object_array_width(self): # see gh-13320 rows = [[1, 2, 3], [4, 5, 6]] expected = np.array(rows, dtype=object) out = lib.to_object_array(rows) tm.assert_numpy_array_equal(out, expected) expected = np.array(rows, dtype=object) out = lib.to_object_array(rows, min_width=1) tm.assert_numpy_array_equal(out, expected) expected = np.array([[1, 2, 3, None, None], [4, 5, 6, None, None]], dtype=object) out = lib.to_object_array(rows, min_width=5) tm.assert_numpy_array_equal(out, expected) def test_is_period(self): assert lib.is_period(pd.Period('2011-01', freq='M')) assert not lib.is_period(pd.PeriodIndex(['2011-01'], freq='M')) assert not lib.is_period(pd.Timestamp('2011-01')) assert not lib.is_period(1) assert not lib.is_period(np.nan) def test_categorical(self): # GH 8974 from pandas import Categorical, Series arr = Categorical(list('abc')) result = lib.infer_dtype(arr) assert result == 'categorical' result = lib.infer_dtype(Series(arr)) assert result == 'categorical' arr = Categorical(list('abc'), categories=['cegfab'], ordered=True) result = lib.infer_dtype(arr) assert result == 'categorical' result = lib.infer_dtype(Series(arr)) assert result == 'categorical' class TestNumberScalar(object): def test_is_number(self): assert is_number(True) assert is_number(1) assert is_number(1.1) assert is_number(1 + 3j) assert is_number(np.bool(False)) assert is_number(np.int64(1)) assert is_number(np.float64(1.1)) assert is_number(np.complex128(1 + 3j)) assert is_number(np.nan) assert not is_number(None) assert not is_number('x') assert not is_number(datetime(2011, 1, 1)) assert not is_number(np.datetime64('2011-01-01')) assert not is_number(Timestamp('2011-01-01')) assert not is_number(Timestamp('2011-01-01', tz='US/Eastern')) assert not is_number(timedelta(1000)) assert not is_number(Timedelta('1 days')) # questionable assert not is_number(np.bool_(False)) assert is_number(np.timedelta64(1, 'D')) def test_is_bool(self): assert is_bool(True) assert is_bool(np.bool(False)) assert is_bool(np.bool_(False)) assert not is_bool(1) assert not is_bool(1.1) assert not is_bool(1 + 3j) assert not is_bool(np.int64(1)) assert not is_bool(np.float64(1.1)) assert not is_bool(np.complex128(1 + 3j)) assert not is_bool(np.nan) assert not is_bool(None) assert not is_bool('x') assert not is_bool(datetime(2011, 1, 1)) assert not is_bool(np.datetime64('2011-01-01')) assert not is_bool(Timestamp('2011-01-01')) assert not is_bool(Timestamp('2011-01-01', tz='US/Eastern')) assert not is_bool(timedelta(1000)) assert not is_bool(np.timedelta64(1, 'D')) assert not is_bool(Timedelta('1 days')) def test_is_integer(self): assert is_integer(1) assert is_integer(np.int64(1)) assert not is_integer(True) assert not is_integer(1.1) assert not is_integer(1 + 3j) assert not is_integer(np.bool(False)) assert not is_integer(np.bool_(False)) assert not is_integer(np.float64(1.1)) assert not is_integer(np.complex128(1 + 3j)) assert not is_integer(np.nan) assert not is_integer(None) assert not is_integer('x') assert not is_integer(datetime(2011, 1, 1)) assert not is_integer(np.datetime64('2011-01-01')) assert not is_integer(Timestamp('2011-01-01')) assert not is_integer(Timestamp('2011-01-01', tz='US/Eastern')) assert not is_integer(timedelta(1000)) assert not is_integer(Timedelta('1 days')) # questionable assert is_integer(np.timedelta64(1, 'D')) def test_is_float(self): assert is_float(1.1) assert is_float(np.float64(1.1)) assert is_float(np.nan) assert not is_float(True) assert not is_float(1) assert not is_float(1 + 3j) assert not is_float(np.bool(False)) assert not is_float(np.bool_(False)) assert not is_float(np.int64(1)) assert not is_float(np.complex128(1 + 3j)) assert not is_float(None) assert not is_float('x') assert not is_float(datetime(2011, 1, 1)) assert not is_float(np.datetime64('2011-01-01')) assert not is_float(Timestamp('2011-01-01')) assert not is_float(Timestamp('2011-01-01', tz='US/Eastern')) assert not is_float(timedelta(1000)) assert not is_float(np.timedelta64(1, 'D')) assert not is_float(Timedelta('1 days')) def test_is_datetime_dtypes(self): ts = pd.date_range('20130101', periods=3) tsa = pd.date_range('20130101', periods=3, tz='US/Eastern') assert is_datetime64_dtype('datetime64') assert is_datetime64_dtype('datetime64[ns]') assert is_datetime64_dtype(ts) assert not is_datetime64_dtype(tsa) assert not is_datetime64_ns_dtype('datetime64') assert is_datetime64_ns_dtype('datetime64[ns]') assert is_datetime64_ns_dtype(ts) assert is_datetime64_ns_dtype(tsa) assert is_datetime64_any_dtype('datetime64') assert is_datetime64_any_dtype('datetime64[ns]') assert is_datetime64_any_dtype(ts) assert is_datetime64_any_dtype(tsa) assert not is_datetime64tz_dtype('datetime64') assert not is_datetime64tz_dtype('datetime64[ns]') assert not is_datetime64tz_dtype(ts) assert is_datetime64tz_dtype(tsa) for tz in ['US/Eastern', 'UTC']: dtype = 'datetime64[ns, {}]'.format(tz) assert not is_datetime64_dtype(dtype) assert is_datetime64tz_dtype(dtype) assert is_datetime64_ns_dtype(dtype) assert is_datetime64_any_dtype(dtype) def test_is_timedelta(self): assert is_timedelta64_dtype('timedelta64') assert is_timedelta64_dtype('timedelta64[ns]') assert not is_timedelta64_ns_dtype('timedelta64') assert is_timedelta64_ns_dtype('timedelta64[ns]') tdi = TimedeltaIndex([1e14, 2e14], dtype='timedelta64[ns]') assert is_timedelta64_dtype(tdi) assert is_timedelta64_ns_dtype(tdi) assert is_timedelta64_ns_dtype(tdi.astype('timedelta64[ns]')) # Conversion to Int64Index: assert not is_timedelta64_ns_dtype(tdi.astype('timedelta64')) assert not is_timedelta64_ns_dtype(tdi.astype('timedelta64[h]')) class TestIsScalar(object): def test_is_scalar_builtin_scalars(self): assert is_scalar(None) assert is_scalar(True) assert is_scalar(False) assert is_scalar(Number()) assert is_scalar(Fraction()) assert is_scalar(0.) assert is_scalar(np.nan) assert is_scalar('foobar') assert is_scalar(b'foobar') assert is_scalar(u('efoobar')) assert is_scalar(datetime(2014, 1, 1)) assert is_scalar(date(2014, 1, 1)) assert is_scalar(time(12, 0)) assert is_scalar(timedelta(hours=1)) assert is_scalar(pd.NaT) def test_is_scalar_builtin_nonscalars(self): assert not is_scalar({}) assert not is_scalar([]) assert not is_scalar([1]) assert not is_scalar(()) assert not is_scalar((1, )) assert not is_scalar(slice(None)) assert not is_scalar(Ellipsis) def test_is_scalar_numpy_array_scalars(self): assert is_scalar(np.int64(1)) assert is_scalar(np.float64(1.)) assert is_scalar(np.int32(1)) assert is_scalar(np.object_('foobar')) assert is_scalar(np.str_('foobar')) assert is_scalar(np.unicode_(u('foobar'))) assert is_scalar(np.bytes_(b'foobar')) assert is_scalar(np.datetime64('2014-01-01')) assert is_scalar(np.timedelta64(1, 'h')) def test_is_scalar_numpy_zerodim_arrays(self): for zerodim in [np.array(1), np.array('foobar'), np.array(np.datetime64('2014-01-01')), np.array(np.timedelta64(1, 'h')), np.array(np.datetime64('NaT'))]: assert not is_scalar(zerodim) assert is_scalar(lib.item_from_zerodim(zerodim)) @pytest.mark.filterwarnings("ignore::PendingDeprecationWarning") def test_is_scalar_numpy_arrays(self): assert not is_scalar(np.array([])) assert not is_scalar(np.array([[]])) assert not is_scalar(np.matrix('1; 2')) def test_is_scalar_pandas_scalars(self): assert is_scalar(Timestamp('2014-01-01')) assert is_scalar(Timedelta(hours=1)) assert is_scalar(
Period('2014-01-01')
pandas.Period
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import * from keras.models import load_model import matplotlib.pyplot as plt ################################################################# ### Generate Data ############################################### ################################################################# # generate training data x = np.linspace(0.0,2*np.pi,20) y = np.sin(x) # save training data to file data = np.vstack((x,y)).T np.savetxt('train_data.csv',data,header='x,y',comments='',delimiter=',') # generate test data x = np.linspace(0.0,2*np.pi,100) y = np.sin(x) # save test data to file data = np.vstack((x,y)).T np.savetxt('test_data.csv',data,header='x,y',comments='',delimiter=',') ################################################################# ### Scale data ################################################## ################################################################# # load training and test data with pandas train_df = pd.read_csv('train_data.csv') test_df = pd.read_csv('test_data.csv') # scale values to 0 to 1 for the ANN to work well s = MinMaxScaler(feature_range=(0,1)) # scale training and test data sc_train = s.fit_transform(train_df) sc_test = s.transform(test_df) # print scaling adjustments print('Scalar multipliers') print(s.scale_) print('Scalar minimum') print(s.min_) # convert scaled values back to dataframe sc_train_df = pd.DataFrame(sc_train, columns=train_df.columns.values) sc_test_df = pd.DataFrame(sc_test, columns=test_df.columns.values) # save scaled values to CSV files sc_train_df.to_csv('train_scaled.csv', index=False) sc_test_df.to_csv('test_scaled.csv', index=False) ################################################################# ### Train model ################################################# ################################################################# # create neural network model model = Sequential() model.add(Dense(1, input_dim=1, activation='linear')) model.add(Dense(2, activation='linear')) model.add(Dense(2, activation='tanh')) model.add(Dense(2, activation='linear')) model.add(Dense(1, activation='linear')) model.compile(loss="mean_squared_error", optimizer="adam") # load training data train_df = pd.read_csv("train_scaled.csv") X1 = train_df.drop('y', axis=1).values Y1 = train_df[['y']].values # train the model model.fit(X1,Y1,epochs=5000,verbose=0,shuffle=True) # Save the model to hard drive #model.save('model.h5') ################################################################# ### Test model ################################################## ################################################################# # Load the model from hard drive #model = load_model('model.h5') # load test data test_df =
pd.read_csv("test_scaled.csv")
pandas.read_csv
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) xbox = get_upcast_box(dtarr, other, True) result = dtarr <= other expected = np.array([True, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ "foo", -1, 99, 4.0, object(), timedelta(days=2), # GH#19800, GH#19301 datetime.date comparison raises to # match DatetimeIndex/Timestamp. This also matches the behavior # of stdlib datetime.datetime datetime(2001, 1, 1).date(), # GH#19301 None and NaN are *not* cast to NaT for comparisons None, np.nan, ], ) def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array): # GH#22074, GH#15966 tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) dtarr = tm.box_expected(rng, box_with_array) assert_invalid_comparison(dtarr, other, box_with_array) @pytest.mark.parametrize( "other", [ # GH#4968 invalid date/int comparisons list(range(10)), np.arange(10), np.arange(10).astype(np.float32), np.arange(10).astype(object), pd.timedelta_range("1ns", periods=10).array, np.array(pd.timedelta_range("1ns", periods=10)), list(pd.timedelta_range("1ns", periods=10)), pd.timedelta_range("1 Day", periods=10).astype(object), pd.period_range("1971-01-01", freq="D", periods=10).array, pd.period_range("1971-01-01", freq="D", periods=10).astype(object), ], ) def test_dt64arr_cmp_arraylike_invalid( self, other, tz_naive_fixture, box_with_array ): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data obj = tm.box_expected(dta, box_with_array) assert_invalid_comparison(obj, other, box_with_array) def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data other = np.array([0, 1, 2, dta[3], Timedelta(days=1)]) result = dta == other expected = np.array([False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = dta != other tm.assert_numpy_array_equal(result, ~expected) msg = "Invalid comparison between|Cannot compare type|not supported between" with pytest.raises(TypeError, match=msg): dta < other with pytest.raises(TypeError, match=msg): dta > other with pytest.raises(TypeError, match=msg): dta <= other with pytest.raises(TypeError, match=msg): dta >= other def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array): # GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly tz = tz_naive_fixture box = box_with_array ts = Timestamp("2021-01-01", tz=tz) ser = Series([ts, NaT]) obj = tm.box_expected(ser, box) xbox = get_upcast_box(obj, ts, True) expected = Series([True, False], dtype=np.bool_) expected = tm.box_expected(expected, xbox) result = obj == ts tm.assert_equal(result, expected) class TestDatetime64SeriesComparison: # TODO: moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize( "pair", [ ( [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [NaT, NaT, Timestamp("2011-01-03")], ), ( [Timedelta("1 days"), NaT, Timedelta("3 days")], [NaT, NaT, Timedelta("3 days")], ), ( [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], [NaT, NaT, Period("2011-03", freq="M")], ), ], ) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("dtype", [None, object]) @pytest.mark.parametrize( "op, expected", [ (operator.eq, Series([False, False, True])), (operator.ne, Series([True, True, False])), (operator.lt, Series([False, False, False])), (operator.gt, Series([False, False, False])), (operator.ge, Series([False, False, True])), (operator.le, Series([False, False, True])), ], ) def test_nat_comparisons( self, dtype, index_or_series, reverse, pair, op, expected, ): box = index_or_series l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) result = op(left, right) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data", [ [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [Timedelta("1 days"), NaT, Timedelta("3 days")], [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], ], ) @pytest.mark.parametrize("dtype", [None, object]) def test_nat_comparisons_scalar(self, dtype, data, box_with_array): box = box_with_array left = Series(data, dtype=dtype) left = tm.box_expected(left, box) xbox = get_upcast_box(left, NaT, True) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left == NaT, expected) tm.assert_equal(NaT == left, expected) expected = [True, True, True] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left != NaT, expected) tm.assert_equal(NaT != left, expected) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left < NaT, expected) tm.assert_equal(NaT > left, expected) tm.assert_equal(left <= NaT, expected) tm.assert_equal(NaT >= left, expected) tm.assert_equal(left > NaT, expected) tm.assert_equal(NaT < left, expected) tm.assert_equal(left >= NaT, expected) tm.assert_equal(NaT <= left, expected) @pytest.mark.parametrize("val", [datetime(2000, 1, 4), datetime(2000, 1, 5)]) def test_series_comparison_scalars(self, val): series = Series(date_range("1/1/2000", periods=10)) result = series > val expected = Series([x > val for x in series]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "left,right", [("lt", "gt"), ("le", "ge"), ("eq", "eq"), ("ne", "ne")] ) def test_timestamp_compare_series(self, left, right): # see gh-4982 # Make sure we can compare Timestamps on the right AND left hand side. ser = Series(date_range("20010101", periods=10), name="dates") s_nat = ser.copy(deep=True) ser[0] = Timestamp("nat") ser[3] = Timestamp("nat") left_f = getattr(operator, left) right_f = getattr(operator, right) # No NaT expected = left_f(ser, Timestamp("20010109")) result = right_f(Timestamp("20010109"), ser) tm.assert_series_equal(result, expected) # NaT expected = left_f(ser, Timestamp("nat")) result = right_f(Timestamp("nat"), ser) tm.assert_series_equal(result, expected) # Compare to Timestamp with series containing NaT expected = left_f(s_nat, Timestamp("20010109")) result = right_f(Timestamp("20010109"), s_nat) tm.assert_series_equal(result, expected) # Compare to NaT with series containing NaT expected = left_f(s_nat, NaT) result = right_f(NaT, s_nat) tm.assert_series_equal(result, expected) def test_dt64arr_timestamp_equality(self, box_with_array): # GH#11034 ser = Series([Timestamp("2000-01-29 01:59:00"), Timestamp("2000-01-30"), NaT]) ser = tm.box_expected(ser, box_with_array) xbox = get_upcast_box(ser, ser, True) result = ser != ser expected = tm.box_expected([False, False, True], xbox) tm.assert_equal(result, expected) warn = FutureWarning if box_with_array is pd.DataFrame else None with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[0] expected = tm.box_expected([False, True, True], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[2] expected = tm.box_expected([True, True, True], xbox) tm.assert_equal(result, expected) result = ser == ser expected = tm.box_expected([True, True, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[0] expected = tm.box_expected([True, False, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[2] expected = tm.box_expected([False, False, False], xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "datetimelike", [ Timestamp("20130101"), datetime(2013, 1, 1), np.datetime64("2013-01-01T00:00", "ns"), ], ) @pytest.mark.parametrize( "op,expected", [ (operator.lt, [True, False, False, False]), (operator.le, [True, True, False, False]), (operator.eq, [False, True, False, False]), (operator.gt, [False, False, False, True]), ], ) def test_dt64_compare_datetime_scalar(self, datetimelike, op, expected): # GH#17965, test for ability to compare datetime64[ns] columns # to datetimelike ser = Series( [ Timestamp("20120101"), Timestamp("20130101"), np.nan, Timestamp("20130103"), ], name="A", ) result = op(ser, datetimelike) expected = Series(expected, name="A") tm.assert_series_equal(result, expected) class TestDatetimeIndexComparisons: # TODO: moved from tests.indexes.test_base; parametrize and de-duplicate def test_comparators(self, comparison_op): index = tm.makeDateIndex(100) element = index[len(index) // 2] element = Timestamp(element).to_datetime64() arr = np.array(index) arr_result = comparison_op(arr, element) index_result = comparison_op(index, element) assert isinstance(index_result, np.ndarray) tm.assert_numpy_array_equal(arr_result, index_result) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) def test_dti_cmp_datetimelike(self, other, tz_naive_fixture): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=2, tz=tz) if tz is not None: if isinstance(other, np.datetime64): # no tzaware version available return other = localize_pydatetime(other, dti.tzinfo) result = dti == other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = dti > other expected = np.array([False, True]) tm.assert_numpy_array_equal(result, expected) result = dti >= other expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) result = dti < other expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) result = dti <= other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [None, object]) def test_dti_cmp_nat(self, dtype, box_with_array): left = DatetimeIndex([Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")]) right = DatetimeIndex([NaT, NaT, Timestamp("2011-01-03")]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) xbox = get_upcast_box(left, right, True) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = lhs != rhs expected = np.array([True, True, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs == NaT, expected) tm.assert_equal(NaT == rhs, expected) expected = np.array([True, True, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs != NaT, expected) tm.assert_equal(NaT != lhs, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs < NaT, expected) tm.assert_equal(NaT > lhs, expected) def test_dti_cmp_nat_behaves_like_float_cmp_nan(self): fidx1 = pd.Index([1.0, np.nan, 3.0, np.nan, 5.0, 7.0]) fidx2 = pd.Index([2.0, 3.0, np.nan, np.nan, 6.0, 7.0]) didx1 = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) didx2 = DatetimeIndex( ["2014-02-01", "2014-03-01", NaT, NaT, "2014-06-01", "2014-07-01"] ) darr = np.array( [ np.datetime64("2014-02-01 00:00"), np.datetime64("2014-03-01 00:00"), np.datetime64("nat"), np.datetime64("nat"), np.datetime64("2014-06-01 00:00"), np.datetime64("2014-07-01 00:00"), ] ) cases = [(fidx1, fidx2), (didx1, didx2), (didx1, darr)] # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) with tm.assert_produces_warning(None): for idx1, val in [(fidx1, np.nan), (didx1, NaT)]: result = idx1 < val expected = np.array([False, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val tm.assert_numpy_array_equal(result, expected) result = idx1 <= val tm.assert_numpy_array_equal(result, expected) result = idx1 >= val tm.assert_numpy_array_equal(result, expected) result = idx1 == val tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, True, True, True, True]) tm.assert_numpy_array_equal(result, expected) # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, val in [(fidx1, 3), (didx1, datetime(2014, 3, 1))]: result = idx1 < val expected = np.array([True, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val expected = np.array([False, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= val expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 >= val expected = np.array([False, False, True, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == val expected = np.array([False, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, False, True, True, True]) tm.assert_numpy_array_equal(result, expected) def test_comparison_tzawareness_compat(self, comparison_op, box_with_array): # GH#18162 op = comparison_op box = box_with_array dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box) dz = tm.box_expected(dz, box) if box is pd.DataFrame: tolist = lambda x: x.astype(object).values.tolist()[0] else: tolist = list if op not in [operator.eq, operator.ne]: msg = ( r"Invalid comparison between dtype=datetime64\[ns.*\] " "and (Timestamp|DatetimeArray|list|ndarray)" ) with pytest.raises(TypeError, match=msg): op(dr, dz) with pytest.raises(TypeError, match=msg): op(dr, tolist(dz)) with pytest.raises(TypeError, match=msg): op(dr, np.array(tolist(dz), dtype=object)) with pytest.raises(TypeError, match=msg): op(dz, dr) with pytest.raises(TypeError, match=msg): op(dz, tolist(dr)) with pytest.raises(TypeError, match=msg): op(dz, np.array(tolist(dr), dtype=object)) # The aware==aware and naive==naive comparisons should *not* raise assert np.all(dr == dr) assert np.all(dr == tolist(dr)) assert np.all(tolist(dr) == dr) assert np.all(np.array(tolist(dr), dtype=object) == dr) assert np.all(dr == np.array(tolist(dr), dtype=object)) assert np.all(dz == dz) assert np.all(dz == tolist(dz)) assert np.all(tolist(dz) == dz) assert np.all(np.array(tolist(dz), dtype=object) == dz) assert np.all(dz == np.array(tolist(dz), dtype=object)) def test_comparison_tzawareness_compat_scalars(self, comparison_op, box_with_array): # GH#18162 op = comparison_op dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box_with_array) dz = tm.box_expected(dz, box_with_array) # Check comparisons against scalar Timestamps ts = Timestamp("2000-03-14 01:59") ts_tz = Timestamp("2000-03-14 01:59", tz="Europe/Amsterdam") assert np.all(dr > ts) msg = r"Invalid comparison between dtype=datetime64\[ns.*\] and Timestamp" if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dr, ts_tz) assert np.all(dz > ts_tz) if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dz, ts) if op not in [operator.eq, operator.ne]: # GH#12601: Check comparison against Timestamps and DatetimeIndex with pytest.raises(TypeError, match=msg): op(ts, dz) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) # Bug in NumPy? https://github.com/numpy/numpy/issues/13841 # Raising in __eq__ will fallback to NumPy, which warns, fails, # then re-raises the original exception. So we just need to ignore. @pytest.mark.filterwarnings("ignore:elementwise comp:DeprecationWarning") @pytest.mark.filterwarnings("ignore:Converting timezone-aware:FutureWarning") def test_scalar_comparison_tzawareness( self, comparison_op, other, tz_aware_fixture, box_with_array ): op = comparison_op tz = tz_aware_fixture dti = date_range("2016-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) xbox = get_upcast_box(dtarr, other, True) if op in [operator.eq, operator.ne]: exbool = op is operator.ne expected = np.array([exbool, exbool], dtype=bool) expected = tm.box_expected(expected, xbox) result = op(dtarr, other) tm.assert_equal(result, expected) result = op(other, dtarr) tm.assert_equal(result, expected) else: msg = ( r"Invalid comparison between dtype=datetime64\[ns, .*\] " f"and {type(other).__name__}" ) with pytest.raises(TypeError, match=msg): op(dtarr, other) with pytest.raises(TypeError, match=msg): op(other, dtarr) def test_nat_comparison_tzawareness(self, comparison_op): # GH#19276 # tzaware DatetimeIndex should not raise when compared to NaT op = comparison_op dti = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) expected = np.array([op == operator.ne] * len(dti)) result = op(dti, NaT) tm.assert_numpy_array_equal(result, expected) result = op(dti.tz_localize("US/Pacific"), NaT) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_str(self, tz_naive_fixture): # GH#22074 # regardless of tz, we expect these comparisons are valid tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) other = "1/1/2000" result = rng == other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng != other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng < other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = rng <= other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng > other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng >= other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_list(self): rng = date_range("1/1/2000", periods=10) result = rng == list(rng) expected = rng == rng tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "other", [ pd.timedelta_range("1D", periods=10), pd.timedelta_range("1D", periods=10).to_series(), pd.timedelta_range("1D", periods=10).asi8.view("m8[ns]"), ], ids=lambda x: type(x).__name__, ) def test_dti_cmp_tdi_tzawareness(self, other): # GH#22074 # reversion test that we _don't_ call _assert_tzawareness_compat # when comparing against TimedeltaIndex dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") result = dti == other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = dti != other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) msg = "Invalid comparison between" with pytest.raises(TypeError, match=msg): dti < other with pytest.raises(TypeError, match=msg): dti <= other with pytest.raises(TypeError, match=msg): dti > other with pytest.raises(TypeError, match=msg): dti >= other def test_dti_cmp_object_dtype(self): # GH#22074 dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") other = dti.astype("O") result = dti == other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) other = dti.tz_localize(None) result = dti != other tm.assert_numpy_array_equal(result, expected) other = np.array(list(dti[:5]) + [Timedelta(days=1)] * 5) result = dti == other expected = np.array([True] * 5 + [False] * 5) tm.assert_numpy_array_equal(result, expected) msg = ">=' not supported between instances of 'Timestamp' and 'Timedelta'" with pytest.raises(TypeError, match=msg): dti >= other # ------------------------------------------------------------------ # Arithmetic class TestDatetime64Arithmetic: # This class is intended for "finished" tests that are fully parametrized # over DataFrame/Series/Index/DatetimeArray # ------------------------------------------------------------- # Addition/Subtraction of timedelta-like @pytest.mark.arm_slow def test_dt64arr_add_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): # GH#22005, GH#22163 check DataFrame doesn't raise TypeError tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("2000-01-01 02:00", "2000-02-01 02:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng + two_hours tm.assert_equal(result, expected) rng += two_hours tm.assert_equal(rng, expected) def test_dt64arr_sub_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("1999-12-31 22:00", "2000-01-31 22:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng - two_hours tm.assert_equal(result, expected) rng -= two_hours tm.assert_equal(rng, expected) # TODO: redundant with test_dt64arr_add_timedeltalike_scalar def test_dt64arr_add_td64_scalar(self, box_with_array): # scalar timedeltas/np.timedelta64 objects # operate with np.timedelta64 correctly ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:01"), Timestamp("20130101 9:02:01")] ) dtarr = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(1, "s") tm.assert_equal(result, expected) result = np.timedelta64(1, "s") + dtarr tm.assert_equal(result, expected) expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(5, "ms") tm.assert_equal(result, expected) result = np.timedelta64(5, "ms") + dtarr tm.assert_equal(result, expected) def test_dt64arr_add_sub_td64_nat(self, box_with_array, tz_naive_fixture): # GH#23320 special handling for timedelta64("NaT") tz = tz_naive_fixture dti = date_range("1994-04-01", periods=9, tz=tz, freq="QS") other = np.timedelta64("NaT") expected = DatetimeIndex(["NaT"] * 9, tz=tz) obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): other - obj def test_dt64arr_add_sub_td64ndarray(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) tdi = TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = date_range("2015-12-31", "2016-01-02", periods=3, tz=tz) dtarr = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + tdarr tm.assert_equal(result, expected) result = tdarr + dtarr tm.assert_equal(result, expected) expected = date_range("2016-01-02", "2016-01-04", periods=3, tz=tz) expected = tm.box_expected(expected, box_with_array) result = dtarr - tdarr tm.assert_equal(result, expected) msg = "cannot subtract|(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): tdarr - dtarr # ----------------------------------------------------------------- # Subtraction of datetime-like scalars @pytest.mark.parametrize( "ts", [ Timestamp("2013-01-01"), Timestamp("2013-01-01").to_pydatetime(), Timestamp("2013-01-01").to_datetime64(), ], ) def test_dt64arr_sub_dtscalar(self, box_with_array, ts): # GH#8554, GH#22163 DataFrame op should _not_ return dt64 dtype idx = date_range("2013-01-01", periods=3)._with_freq(None) idx = tm.box_expected(idx, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = idx - ts tm.assert_equal(result, expected) def test_dt64arr_sub_datetime64_not_ns(self, box_with_array): # GH#7996, GH#22163 ensure non-nano datetime64 is converted to nano # for DataFrame operation dt64 = np.datetime64("2013-01-01") assert dt64.dtype == "datetime64[D]" dti = date_range("20130101", periods=3)._with_freq(None) dtarr = tm.box_expected(dti, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = dtarr - dt64 tm.assert_equal(result, expected) result = dt64 - dtarr tm.assert_equal(result, -expected) def test_dt64arr_sub_timestamp(self, box_with_array): ser = date_range("2014-03-17", periods=2, freq="D", tz="US/Eastern") ser = ser._with_freq(None) ts = ser[0] ser = tm.box_expected(ser, box_with_array) delta_series = Series([np.timedelta64(0, "D"), np.timedelta64(1, "D")]) expected = tm.box_expected(delta_series, box_with_array) tm.assert_equal(ser - ts, expected) tm.assert_equal(ts - ser, -expected) def test_dt64arr_sub_NaT(self, box_with_array): # GH#18808 dti = DatetimeIndex([NaT, Timestamp("19900315")]) ser = tm.box_expected(dti, box_with_array) result = ser - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) dti_tz = dti.tz_localize("Asia/Tokyo") ser_tz = tm.box_expected(dti_tz, box_with_array) result = ser_tz - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) # ------------------------------------------------------------- # Subtraction of datetime-like array-like def test_dt64arr_sub_dt64object_array(self, box_with_array, tz_naive_fixture): dti = date_range("2016-01-01", periods=3, tz=tz_naive_fixture) expected = dti - dti obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) with tm.assert_produces_warning(PerformanceWarning): result = obj - obj.astype(object) tm.assert_equal(result, expected) def test_dt64arr_naive_sub_dt64ndarray(self, box_with_array): dti = date_range("2016-01-01", periods=3, tz=None) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) expected = dtarr - dtarr result = dtarr - dt64vals tm.assert_equal(result, expected) result = dt64vals - dtarr tm.assert_equal(result, expected) def test_dt64arr_aware_sub_dt64ndarray_raises( self, tz_aware_fixture, box_with_array ): tz = tz_aware_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) msg = "subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dtarr - dt64vals with pytest.raises(TypeError, match=msg): dt64vals - dtarr # ------------------------------------------------------------- # Addition of datetime-like others (invalid) def test_dt64arr_add_dt64ndarray_raises(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) assert_cannot_add(dtarr, dt64vals) def test_dt64arr_add_timestamp_raises(self, box_with_array): # GH#22163 ensure DataFrame doesn't cast Timestamp to i8 idx = DatetimeIndex(["2011-01-01", "2011-01-02"]) ts = idx[0] idx = tm.box_expected(idx, box_with_array) assert_cannot_add(idx, ts) # ------------------------------------------------------------- # Other Invalid Addition/Subtraction @pytest.mark.parametrize( "other", [ 3.14, np.array([2.0, 3.0]), # GH#13078 datetime +/- Period is invalid Period("2011-01-01", freq="D"), # https://github.com/pandas-dev/pandas/issues/10329 time(1, 2, 3), ], ) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_invalid(self, dti_freq, other, box_with_array): dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) dtarr = tm.box_expected(dti, box_with_array) msg = "|".join( [ "unsupported operand type", "cannot (add|subtract)", "cannot use operands with types", "ufunc '?(add|subtract)'? cannot use operands with types", "Concatenation operation is not implemented for NumPy arrays", ] ) assert_invalid_addsub_type(dtarr, other, msg) @pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "H"]) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_parr( self, dti_freq, pi_freq, box_with_array, box_with_array2 ): # GH#20049 subtracting PeriodIndex should raise TypeError dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) pi = dti.to_period(pi_freq) dtarr = tm.box_expected(dti, box_with_array) parr = tm.box_expected(pi, box_with_array2) msg = "|".join( [ "cannot (add|subtract)", "unsupported operand", "descriptor.*requires", "ufunc.*cannot use operands", ] ) assert_invalid_addsub_type(dtarr, parr, msg) def test_dt64arr_addsub_time_objects_raises(self, box_with_array, tz_naive_fixture): # https://github.com/pandas-dev/pandas/issues/10329 tz = tz_naive_fixture obj1 = date_range("2012-01-01", periods=3, tz=tz) obj2 = [time(i, i, i) for i in range(3)] obj1 = tm.box_expected(obj1, box_with_array) obj2 = tm.box_expected(obj2, box_with_array) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) # If `x + y` raises, then `y + x` should raise here as well msg = ( r"unsupported operand type\(s\) for -: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 - obj2 msg = "|".join( [ "cannot subtract DatetimeArray from ndarray", "ufunc (subtract|'subtract') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 - obj1 msg = ( r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 + obj2 msg = "|".join( [ r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'", "ufunc (add|'add') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 + obj1 class TestDatetime64DateOffsetArithmetic: # ------------------------------------------------------------- # Tick DateOffsets # TODO: parametrize over timezone? def test_dt64arr_series_add_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:05"), Timestamp("20130101 9:02:05")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser + pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) def test_dt64arr_series_sub_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:00:55"), Timestamp("20130101 9:01:55")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser - pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = -pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): pd.offsets.Second(5) - ser @pytest.mark.parametrize( "cls_name", ["Day", "Hour", "Minute", "Second", "Milli", "Micro", "Nano"] ) def test_dt64arr_add_sub_tick_DateOffset_smoke(self, cls_name, box_with_array): # GH#4532 # smoke tests for valid DateOffsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) ser = tm.box_expected(ser, box_with_array) offset_cls = getattr(pd.offsets, cls_name) ser + offset_cls(5) offset_cls(5) + ser ser - offset_cls(5) def test_dti_add_tick_tzaware(self, tz_aware_fixture, box_with_array): # GH#21610, GH#22163 ensure DataFrame doesn't return object-dtype tz = tz_aware_fixture if tz == "US/Pacific": dates = date_range("2012-11-01", periods=3, tz=tz) offset = dates + pd.offsets.Hour(5) assert dates[0] + pd.offsets.Hour(5) == offset[0] dates = date_range("2010-11-01 00:00", periods=3, tz=tz, freq="H") expected = DatetimeIndex( ["2010-11-01 05:00", "2010-11-01 06:00", "2010-11-01 07:00"], freq="H", tz=tz, ) dates = tm.box_expected(dates, box_with_array) expected = tm.box_expected(expected, box_with_array) # TODO: sub? for scalar in [pd.offsets.Hour(5), np.timedelta64(5, "h"), timedelta(hours=5)]: offset = dates + scalar tm.assert_equal(offset, expected) offset = scalar + dates tm.assert_equal(offset, expected) # ------------------------------------------------------------- # RelativeDelta DateOffsets def test_dt64arr_add_sub_relativedelta_offsets(self, box_with_array): # GH#10699 vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec # DateOffset relativedelta fastpath relative_kwargs = [ ("years", 2), ("months", 5), ("days", 3), ("hours", 5), ("minutes", 10), ("seconds", 2), ("microseconds", 5), ] for i, (unit, value) in enumerate(relative_kwargs): off = DateOffset(**{unit: value}) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) off = DateOffset(**dict(relative_kwargs[: i + 1])) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): off - vec # ------------------------------------------------------------- # Non-Tick, Non-RelativeDelta DateOffsets # TODO: redundant with test_dt64arr_add_sub_DateOffset? that includes # tz-aware cases which this does not @pytest.mark.parametrize( "cls_and_kwargs", [ "YearBegin", ("YearBegin", {"month": 5}), "YearEnd", ("YearEnd", {"month": 5}), "MonthBegin", "MonthEnd", "SemiMonthEnd", "SemiMonthBegin", "Week", ("Week", {"weekday": 3}), "Week", ("Week", {"weekday": 6}), "BusinessDay", "BDay", "QuarterEnd", "QuarterBegin", "CustomBusinessDay", "CDay", "CBMonthEnd", "CBMonthBegin", "BMonthBegin", "BMonthEnd", "BusinessHour", "BYearBegin", "BYearEnd", "BQuarterBegin", ("LastWeekOfMonth", {"weekday": 2}), ( "FY5253Quarter", { "qtr_with_extra_week": 1, "startingMonth": 1, "weekday": 2, "variation": "nearest", }, ), ("FY5253", {"weekday": 0, "startingMonth": 2, "variation": "nearest"}), ("WeekOfMonth", {"weekday": 2, "week": 2}), "Easter", ("DateOffset", {"day": 4}), ("DateOffset", {"month": 5}), ], ) @pytest.mark.parametrize("normalize", [True, False]) @pytest.mark.parametrize("n", [0, 5]) def test_dt64arr_add_sub_DateOffsets( self, box_with_array, n, normalize, cls_and_kwargs ): # GH#10699 # assert vectorized operation matches pointwise operations if isinstance(cls_and_kwargs, tuple): # If cls_name param is a tuple, then 2nd entry is kwargs for # the offset constructor cls_name, kwargs = cls_and_kwargs else: cls_name = cls_and_kwargs kwargs = {} if n == 0 and cls_name in [ "WeekOfMonth", "LastWeekOfMonth", "FY5253Quarter", "FY5253", ]: # passing n = 0 is invalid for these offset classes return vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec offset_cls = getattr(pd.offsets, cls_name) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) offset = offset_cls(n, normalize=normalize, **kwargs) expected = DatetimeIndex([x + offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + offset) expected = DatetimeIndex([x - offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - offset) expected = DatetimeIndex([offset + x for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, offset + vec) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): offset - vec def test_dt64arr_add_sub_DateOffset(self, box_with_array): # GH#10699 s = date_range("2000-01-01", "2000-01-31", name="a") s = tm.box_expected(s, box_with_array) result = s + DateOffset(years=1) result2 = DateOffset(years=1) + s exp = date_range("2001-01-01", "2001-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) result = s - DateOffset(years=1) exp = date_range("1999-01-01", "1999-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.Day() result2 = pd.offsets.Day() + s exp = DatetimeIndex( [ Timestamp("2000-01-16 00:15:00", tz="US/Central"), Timestamp("2000-02-16", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.MonthEnd() result2 = pd.offsets.MonthEnd() + s exp = DatetimeIndex( [ Timestamp("2000-01-31 00:15:00", tz="US/Central"), Timestamp("2000-02-29", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) @pytest.mark.parametrize( "other", [ np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]), np.array([pd.offsets.DateOffset(years=1), pd.offsets.MonthEnd()]), np.array( # matching offsets [pd.offsets.DateOffset(years=1), pd.offsets.DateOffset(years=1)] ), ], ) @pytest.mark.parametrize("op", [operator.add, roperator.radd, operator.sub]) @pytest.mark.parametrize("box_other", [True, False]) def test_dt64arr_add_sub_offset_array( self, tz_naive_fixture, box_with_array, box_other, op, other ): # GH#18849 # GH#10699 array of offsets tz = tz_naive_fixture dti = date_range("2017-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) other = np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) expected = DatetimeIndex([op(dti[n], other[n]) for n in range(len(dti))]) expected = tm.box_expected(expected, box_with_array) if box_other: other = tm.box_expected(other, box_with_array) with tm.assert_produces_warning(PerformanceWarning): res = op(dtarr, other) tm.assert_equal(res, expected) @pytest.mark.parametrize( "op, offset, exp, exp_freq", [ ( "__add__", DateOffset(months=3, days=10), [ Timestamp("2014-04-11"), Timestamp("2015-04-11"), Timestamp("2016-04-11"), Timestamp("2017-04-11"), ], None, ), ( "__add__", DateOffset(months=3), [ Timestamp("2014-04-01"), Timestamp("2015-04-01"), Timestamp("2016-04-01"), Timestamp("2017-04-01"), ], "AS-APR", ), ( "__sub__", DateOffset(months=3, days=10), [ Timestamp("2013-09-21"), Timestamp("2014-09-21"), Timestamp("2015-09-21"), Timestamp("2016-09-21"), ], None, ), ( "__sub__", DateOffset(months=3), [ Timestamp("2013-10-01"), Timestamp("2014-10-01"), Timestamp("2015-10-01"), Timestamp("2016-10-01"), ], "AS-OCT", ), ], ) def test_dti_add_sub_nonzero_mth_offset( self, op, offset, exp, exp_freq, tz_aware_fixture, box_with_array ): # GH 26258 tz = tz_aware_fixture date = date_range(start="01 Jan 2014", end="01 Jan 2017", freq="AS", tz=tz) date = tm.box_expected(date, box_with_array, False) mth = getattr(date, op) result = mth(offset) expected = DatetimeIndex(exp, tz=tz) expected = tm.box_expected(expected, box_with_array, False) tm.assert_equal(result, expected) class TestDatetime64OverflowHandling: # TODO: box + de-duplicate def test_dt64_overflow_masking(self, box_with_array): # GH#25317 left = Series([Timestamp("1969-12-31")]) right = Series([NaT]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) expected = TimedeltaIndex([NaT]) expected = tm.box_expected(expected, box_with_array) result = left - right tm.assert_equal(result, expected) def test_dt64_series_arith_overflow(self): # GH#12534, fixed by GH#19024 dt = Timestamp("1700-01-31") td = Timedelta("20000 Days") dti = date_range("1949-09-30", freq="100Y", periods=4) ser = Series(dti) msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): ser - dt with pytest.raises(OverflowError, match=msg): dt - ser with pytest.raises(OverflowError, match=msg): ser + td with pytest.raises(OverflowError, match=msg): td + ser ser.iloc[-1] = NaT expected = Series( ["2004-10-03", "2104-10-04", "2204-10-04", "NaT"], dtype="datetime64[ns]" ) res = ser + td tm.assert_series_equal(res, expected) res = td + ser tm.assert_series_equal(res, expected) ser.iloc[1:] = NaT expected = Series(["91279 Days", "NaT", "NaT", "NaT"], dtype="timedelta64[ns]") res = ser - dt tm.assert_series_equal(res, expected) res = dt - ser tm.assert_series_equal(res, -expected) def test_datetimeindex_sub_timestamp_overflow(self): dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) tsneg = Timestamp("1950-01-01") ts_neg_variants = [ tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype("datetime64[ns]"), tsneg.to_datetime64().astype("datetime64[D]"), ] tspos = Timestamp("1980-01-01") ts_pos_variants = [ tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype("datetime64[ns]"), tspos.to_datetime64().astype("datetime64[D]"), ] msg = "Overflow in int64 addition" for variant in ts_neg_variants: with pytest.raises(OverflowError, match=msg): dtimax - variant expected = Timestamp.max.value - tspos.value for variant in ts_pos_variants: res = dtimax - variant assert res[1].value == expected expected = Timestamp.min.value - tsneg.value for variant in ts_neg_variants: res = dtimin - variant assert res[1].value == expected for variant in ts_pos_variants: with pytest.raises(OverflowError, match=msg): dtimin - variant def test_datetimeindex_sub_datetimeindex_overflow(self): # GH#22492, GH#22508 dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) ts_neg = pd.to_datetime(["1950-01-01", "1950-01-01"]) ts_pos = pd.to_datetime(["1980-01-01", "1980-01-01"]) # General tests expected = Timestamp.max.value - ts_pos[1].value result = dtimax - ts_pos assert result[1].value == expected expected = Timestamp.min.value - ts_neg[1].value result = dtimin - ts_neg assert result[1].value == expected msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): dtimax - ts_neg with pytest.raises(OverflowError, match=msg): dtimin - ts_pos # Edge cases tmin = pd.to_datetime([Timestamp.min]) t1 = tmin + Timedelta.max + Timedelta("1us") with pytest.raises(OverflowError, match=msg): t1 - tmin tmax = pd.to_datetime([Timestamp.max]) t2 = tmax + Timedelta.min - Timedelta("1us") with pytest.raises(OverflowError, match=msg): tmax - t2 class TestTimestampSeriesArithmetic: def test_empty_series_add_sub(self): # GH#13844 a = Series(dtype="M8[ns]") b = Series(dtype="m8[ns]") tm.assert_series_equal(a, a + b) tm.assert_series_equal(a, a - b) tm.assert_series_equal(a, b + a) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): b - a def test_operators_datetimelike(self): # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [ Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103"), ] ) dt1.iloc[2] = np.nan dt2 = Series( [ Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104"), ] ) dt1 - dt2 dt2 - dt1 # datetime64 with timetimedelta dt1 + td1 td1 + dt1 dt1 - td1 # timetimedelta with datetime64 td1 + dt1 dt1 + td1 def test_dt64ser_sub_datetime_dtype(self): ts = Timestamp(datetime(1993, 1, 7, 13, 30, 00)) dt = datetime(1993, 6, 22, 13, 30) ser = Series([ts]) result = pd.to_timedelta(np.abs(ser - dt)) assert result.dtype == "timedelta64[ns]" # ------------------------------------------------------------- # TODO: This next block of tests came from tests.series.test_operators, # needs to be de-duplicated and parametrized over `box` classes def test_operators_datetimelike_invalid(self, all_arithmetic_operators): # these are all TypeEror ops op_str = all_arithmetic_operators def check(get_ser, test_ser): # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined op = getattr(get_ser, op_str, None) # Previously, _validate_for_numeric_binop in core/indexes/base.py # did this for us. with pytest.raises( TypeError, match="operate|[cC]annot|unsupported operand" ): op(test_ser) # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103")] ) dt1.iloc[2] = np.nan dt2 = Series( [Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104")] ) if op_str not in ["__sub__", "__rsub__"]: check(dt1, dt2) # ## datetime64 with timetimedelta ### # TODO(jreback) __rsub__ should raise? if op_str not in ["__add__", "__radd__", "__sub__"]: check(dt1, td1) # 8260, 10763 # datetime64 with tz tz = "US/Eastern" dt1 = Series(date_range("2000-01-01 09:00:00", periods=5, tz=tz), name="foo") dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(pd.timedelta_range("1 days 1 min", periods=5, freq="H")) td2 = td1.copy() td2.iloc[1] = np.nan if op_str not in ["__add__", "__radd__", "__sub__", "__rsub__"]: check(dt2, td2) def test_sub_single_tz(self): # GH#12290 s1 = Series([Timestamp("2016-02-10", tz="America/Sao_Paulo")]) s2 = Series([Timestamp("2016-02-08", tz="America/Sao_Paulo")]) result = s1 - s2 expected = Series([Timedelta("2days")]) tm.assert_series_equal(result, expected) result = s2 - s1 expected = Series([Timedelta("-2days")]) tm.assert_series_equal(result, expected) def test_dt64tz_series_sub_dtitz(self): # GH#19071 subtracting tzaware DatetimeIndex from tzaware Series # (with same tz) raises, fixed by #19024 dti = date_range("1999-09-30", periods=10, tz="US/Pacific") ser = Series(dti) expected = Series(TimedeltaIndex(["0days"] * 10)) res = dti - ser tm.assert_series_equal(res, expected) res = ser - dti tm.assert_series_equal(res, expected) def test_sub_datetime_compat(self): # see GH#14088 s = Series([datetime(2016, 8, 23, 12, tzinfo=pytz.utc), NaT]) dt = datetime(2016, 8, 22, 12, tzinfo=pytz.utc) exp = Series([Timedelta("1 days"), NaT]) tm.assert_series_equal(s - dt, exp) tm.assert_series_equal(s - Timestamp(dt), exp) def test_dt64_series_add_mixed_tick_DateOffset(self): # GH#4532 # operate with pd.offsets s = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series( [Timestamp("20130101 9:06:00.005"), Timestamp("20130101 9:07:00.005")] ) tm.assert_series_equal(result, expected) def test_datetime64_ops_nat(self): # GH#11349 datetime_series = Series([NaT, Timestamp("19900315")]) nat_series_dtype_timestamp = Series([NaT, NaT], dtype="datetime64[ns]") single_nat_dtype_datetime = Series([NaT], dtype="datetime64[ns]") # subtraction tm.assert_series_equal(-NaT + datetime_series, nat_series_dtype_timestamp) msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): -single_nat_dtype_datetime + datetime_series tm.assert_series_equal( -NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) with pytest.raises(TypeError, match=msg): -single_nat_dtype_datetime + nat_series_dtype_timestamp # addition tm.assert_series_equal( nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp ) tm.assert_series_equal( NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) tm.assert_series_equal( nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp ) tm.assert_series_equal( NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) # ------------------------------------------------------------- # Invalid Operations # TODO: this block also needs to be de-duplicated and parametrized @pytest.mark.parametrize( "dt64_series", [ Series([Timestamp("19900315"), Timestamp("19900315")]), Series([NaT, Timestamp("19900315")]), Series([NaT, NaT], dtype="datetime64[ns]"), ], ) @pytest.mark.parametrize("one", [1, 1.0, np.array(1)]) def test_dt64_mul_div_numeric_invalid(self, one, dt64_series): # multiplication msg = "cannot perform .* with this index type" with pytest.raises(TypeError, match=msg): dt64_series * one with pytest.raises(TypeError, match=msg): one * dt64_series # division with pytest.raises(TypeError, match=msg): dt64_series / one with pytest.raises(TypeError, match=msg): one / dt64_series # TODO: parametrize over box def test_dt64_series_add_intlike(self, tz_naive_fixture): # GH#19123 tz = tz_naive_fixture dti = DatetimeIndex(["2016-01-02", "2016-02-03", "NaT"], tz=tz) ser = Series(dti) other = Series([20, 30, 40], dtype="uint8") msg = "|".join( [ "Addition/subtraction of integers and integer-arrays", "cannot subtract .* from ndarray", ] ) assert_invalid_addsub_type(ser, 1, msg) assert_invalid_addsub_type(ser, other, msg) assert_invalid_addsub_type(ser, np.array(other), msg) assert_invalid_addsub_type(ser, pd.Index(other), msg) # ------------------------------------------------------------- # Timezone-Centric Tests def test_operators_datetimelike_with_timezones(self): tz = "US/Eastern" dt1 = Series(
date_range("2000-01-01 09:00:00", periods=5, tz=tz)
pandas.date_range
import requests as req import pandas as pd import datetime import matplotlib.pyplot as plt trades_df = pd.read_csv('trades.csv') trades_df['DateOfTrade']= pd.to_datetime(trades_df['DateOfTrade']) trades_df = trades_df.sort_values(by='DateOfTrade') comp_columns = ['StartDate','EndDate','CCY','Amount'] composition = pd.DataFrame(columns=comp_columns) for trade in trades_df.itertuples(): date_of_trade = getattr(trade,'DateOfTrade') ccy = getattr(trade,'CCY') amount = getattr(trade,'Amount') if ccy not in composition['CCY'].to_list(): start_date = date_of_trade end_date = pd.datetime(2050,12,31) new_trade_df = pd.DataFrame({'StartDate':[start_date],'EndDate':[end_date],'CCY':[ccy],'Amount':[amount]}) composition = pd.concat([composition,new_trade_df]) else: current_ccy = (composition['EndDate'] == '2050-12-31') & (composition['CCY'] == ccy) if date_of_trade > composition.loc[current_ccy]['StartDate'][0]: new_amount = composition.loc[current_ccy]['Amount'][0] + amount if new_amount==0: #deletion composition.loc[current_ccy, 'EndDate'] = date_of_trade else: composition.loc[current_ccy,'EndDate'] = date_of_trade new_trade_df = pd.DataFrame({'StartDate': [date_of_trade], 'EndDate': [end_date], 'CCY': [ccy], 'Amount': [new_amount]}) composition =
pd.concat([composition, new_trade_df])
pandas.concat
import pandas as pd import numpy as np # the following dict maps the columns header in the raw LIDAR files to the desired new column names def generateKeys(): """ generates and returns a dictionary containing the original columns names from the LIDAR file as values and the currently used column names as corresponding keys ws_1 : Speed Value.1 dir_1 : Direction Value.1 h_1 : Node RT01 Lidar Height """ keys = {"ws_0" : "Speed Value", "dir_0" : "Direction Value", "h_0" : "Node RT00 Lidar Height"} for i in range(1, 11): keys.update({"ws_{}".format(i) : "Speed Value.{}".format(i), "dir_{}".format(i) : "Direction Value.{}".format(i), "h_{}".format(i) : "Node RT{:02d} Lidar Height".format(i+1), }) return keys # function to generate a new time index def generateDateTime(df): """ combines date and time from the LIDAR file and returns a new datetime index """ tempD = df.date.apply(lambda x: "-".join(reversed(x.split("/")))) return tempD + " " + df.time def correctHeading(x, headingCorrection): """ corrects a given column of directional data with the given headingCorrection """ if x + headingCorrection > 360: return (x + headingCorrection) - 360 else: return x + headingCorrection def processLIDARFile(lidarFile, keys, verbose=False, lidarLevels=(0, 10)): """ reads in a lidar file in csv format, parses out wind speed, wind direction and return point altitude returns a single dict with the datestring as key and the pandas dataframe as value lidarFile: Path to a valid LIDAR file keys: dictionary containing the columns from the lidarFile to be used verbose: switch to activate detailled output lidarLevels: range of lidar return levels to be processed """ if verbose: print("* reading in file...") try: rawData = pd.read_csv(lidarFile, low_memory=False) except Exception as e: print('*! failed to read in file, skipping {} -> {}'.format(lidarFile, e)) return pd.DataFrame() if verbose: print("* done") cleanData = pd.DataFrame() if verbose: print("* iterating over lidar return levels:") for i in range(lidarLevels[0], lidarLevels[1]+1): if verbose: print("* lidar level {}".format(i)) # extract wind speed (ws), direction (dir) and the height of the lidar return point (h) cleanData.insert(column="ws_{}".format(i), value=rawData[keys["ws_{}".format(i)]].copy(), loc=len(cleanData.columns) ) cleanData.insert(column="dir_{}".format(i), value=rawData[keys["dir_{}".format(i)]].copy(), loc=len(cleanData.columns) ) cleanData.insert(column="dir_{}_corr".format(i), value=rawData[keys["dir_{}".format(i)]].copy(), loc=len(cleanData.columns) ) cleanData.insert(column="h_{}".format(i), value=rawData[keys["h_{}".format(i)]].copy(), loc=len(cleanData.columns) ) if verbose: print("* adding heading") cleanData.insert(column="heading", value=rawData["Ships Gyro 1 Value"], loc=len(cleanData.columns) ) if verbose: print("* adding time/date") cleanData.insert(column="time", value=rawData.Time, loc=0 ) cleanData.insert(column="date", value=rawData.Date, loc=0 ) dateString = "-".join(reversed(cleanData.date[2].split("/"))) return {dateString : cleanData} def cleanLIDARData(data, verbose=False, timezone='Europe/Berlin'): """ takes a pandas dataframe as input and performs various numerical operations on it: - dropping non numeric data lines - creating a time zone aware index - setting the time zone to Europe/Berlin - converting to numeric data - cleaning of NaNs """ if verbose: print("* processing: {}".format('-'.join(reversed(data.date[2].split('/'))))) if verbose: print("* dropping non-parsable lines") # mitigate weird error: in some files, the header appears randomly data.drop(data.loc[data.date == "Date"].index, inplace=True) if verbose: print("* creating new UTC time index") # create a new date time index with the format YYYY-MM-DD HH:MM:SS try: data.insert(column="datetime", value=pd.to_datetime(generateDateTime(data), utc=True), loc=0 ) except Exception as e: print('*! failed to generate datetime index, skipping') return
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- from collections import OrderedDict from datetime import date, datetime, timedelta import numpy as np import pytest from pandas.compat import product, range import pandas as pd from pandas import ( Categorical, DataFrame, Grouper, Index, MultiIndex, Series, concat, date_range) from pandas.api.types import CategoricalDtype as CDT from pandas.core.reshape.pivot import crosstab, pivot_table import pandas.util.testing as tm @pytest.fixture(params=[True, False]) def dropna(request): return request.param class TestPivotTable(object): def setup_method(self, method): self.data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) def test_pivot_table(self): index = ['A', 'B'] columns = 'C' table = pivot_table(self.data, values='D', index=index, columns=columns) table2 = self.data.pivot_table( values='D', index=index, columns=columns) tm.assert_frame_equal(table, table2) # this works pivot_table(self.data, values='D', index=index) if len(index) > 1: assert table.index.names == tuple(index) else: assert table.index.name == index[0] if len(columns) > 1: assert table.columns.names == columns else: assert table.columns.name == columns[0] expected = self.data.groupby( index + [columns])['D'].agg(np.mean).unstack() tm.assert_frame_equal(table, expected) def test_pivot_table_nocols(self): df = DataFrame({'rows': ['a', 'b', 'c'], 'cols': ['x', 'y', 'z'], 'values': [1, 2, 3]}) rs = df.pivot_table(columns='cols', aggfunc=np.sum) xp = df.pivot_table(index='cols', aggfunc=np.sum).T tm.assert_frame_equal(rs, xp) rs = df.pivot_table(columns='cols', aggfunc={'values': 'mean'}) xp = df.pivot_table(index='cols', aggfunc={'values': 'mean'}).T tm.assert_frame_equal(rs, xp) def test_pivot_table_dropna(self): df = DataFrame({'amount': {0: 60000, 1: 100000, 2: 50000, 3: 30000}, 'customer': {0: 'A', 1: 'A', 2: 'B', 3: 'C'}, 'month': {0: 201307, 1: 201309, 2: 201308, 3: 201310}, 'product': {0: 'a', 1: 'b', 2: 'c', 3: 'd'}, 'quantity': {0: 2000000, 1: 500000, 2: 1000000, 3: 1000000}}) pv_col = df.pivot_table('quantity', 'month', [ 'customer', 'product'], dropna=False) pv_ind = df.pivot_table( 'quantity', ['customer', 'product'], 'month', dropna=False) m = MultiIndex.from_tuples([('A', 'a'), ('A', 'b'), ('A', 'c'), ('A', 'd'), ('B', 'a'), ('B', 'b'), ('B', 'c'), ('B', 'd'), ('C', 'a'), ('C', 'b'), ('C', 'c'), ('C', 'd')], names=['customer', 'product']) tm.assert_index_equal(pv_col.columns, m) tm.assert_index_equal(pv_ind.index, m) def test_pivot_table_categorical(self): cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]}) result = pd.pivot_table(df, values='values', index=['A', 'B'], dropna=True) exp_index = pd.MultiIndex.from_arrays( [cat1, cat2], names=['A', 'B']) expected = DataFrame( {'values': [1, 2, 3, 4]}, index=exp_index) tm.assert_frame_equal(result, expected) def test_pivot_table_dropna_categoricals(self, dropna): # GH 15193 categories = ['a', 'b', 'c', 'd'] df = DataFrame({'A': ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c'], 'B': [1, 2, 3, 1, 2, 3, 1, 2, 3], 'C': range(0, 9)}) df['A'] = df['A'].astype(CDT(categories, ordered=False)) result = df.pivot_table(index='B', columns='A', values='C', dropna=dropna) expected_columns = Series(['a', 'b', 'c'], name='A') expected_columns = expected_columns.astype( CDT(categories, ordered=False)) expected_index = Series([1, 2, 3], name='B') expected = DataFrame([[0, 3, 6], [1, 4, 7], [2, 5, 8]], index=expected_index, columns=expected_columns,) if not dropna: # add back the non observed to compare expected = expected.reindex( columns=Categorical(categories)).astype('float') tm.assert_frame_equal(result, expected) def test_pivot_with_non_observable_dropna(self, dropna): # gh-21133 df = pd.DataFrame( {'A': pd.Categorical([np.nan, 'low', 'high', 'low', 'high'], categories=['low', 'high'], ordered=True), 'B': range(5)}) result = df.pivot_table(index='A', values='B', dropna=dropna) expected = pd.DataFrame( {'B': [2, 3]}, index=pd.Index( pd.Categorical.from_codes([0, 1], categories=['low', 'high'], ordered=True), name='A')) tm.assert_frame_equal(result, expected) # gh-21378 df = pd.DataFrame( {'A': pd.Categorical(['left', 'low', 'high', 'low', 'high'], categories=['low', 'high', 'left'], ordered=True), 'B': range(5)}) result = df.pivot_table(index='A', values='B', dropna=dropna) expected = pd.DataFrame( {'B': [2, 3, 0]}, index=pd.Index( pd.Categorical.from_codes([0, 1, 2], categories=['low', 'high', 'left'], ordered=True), name='A')) tm.assert_frame_equal(result, expected) def test_pass_array(self): result = self.data.pivot_table( 'D', index=self.data.A, columns=self.data.C) expected = self.data.pivot_table('D', index='A', columns='C') tm.assert_frame_equal(result, expected) def test_pass_function(self): result = self.data.pivot_table('D', index=lambda x: x // 5, columns=self.data.C) expected = self.data.pivot_table('D', index=self.data.index // 5, columns='C') tm.assert_frame_equal(result, expected) def test_pivot_table_multiple(self): index = ['A', 'B'] columns = 'C' table = pivot_table(self.data, index=index, columns=columns) expected = self.data.groupby(index + [columns]).agg(np.mean).unstack() tm.assert_frame_equal(table, expected) def test_pivot_dtypes(self): # can convert dtypes f = DataFrame({'a': ['cat', 'bat', 'cat', 'bat'], 'v': [ 1, 2, 3, 4], 'i': ['a', 'b', 'a', 'b']}) assert f.dtypes['v'] == 'int64' z = pivot_table(f, values='v', index=['a'], columns=[ 'i'], fill_value=0, aggfunc=np.sum) result = z.get_dtype_counts() expected = Series(dict(int64=2)) tm.assert_series_equal(result, expected) # cannot convert dtypes f = DataFrame({'a': ['cat', 'bat', 'cat', 'bat'], 'v': [ 1.5, 2.5, 3.5, 4.5], 'i': ['a', 'b', 'a', 'b']}) assert f.dtypes['v'] == 'float64' z = pivot_table(f, values='v', index=['a'], columns=[ 'i'], fill_value=0, aggfunc=np.mean) result = z.get_dtype_counts() expected = Series(dict(float64=2)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('columns,values', [('bool1', ['float1', 'float2']), ('bool1', ['float1', 'float2', 'bool1']), ('bool2', ['float1', 'float2', 'bool1'])]) def test_pivot_preserve_dtypes(self, columns, values): # GH 7142 regression test v = np.arange(5, dtype=np.float64) df = DataFrame({'float1': v, 'float2': v + 2.0, 'bool1': v <= 2, 'bool2': v <= 3}) df_res = df.reset_index().pivot_table( index='index', columns=columns, values=values) result = dict(df_res.dtypes) expected = {col: np.dtype('O') if col[0].startswith('b') else np.dtype('float64') for col in df_res} assert result == expected def test_pivot_no_values(self): # GH 14380 idx = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-01-02', '2011-01-01', '2011-01-02']) df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}, index=idx) res = df.pivot_table(index=df.index.month, columns=df.index.day) exp_columns = pd.MultiIndex.from_tuples([('A', 1), ('A', 2)]) exp = pd.DataFrame([[2.5, 4.0], [2.0, np.nan]], index=[1, 2], columns=exp_columns) tm.assert_frame_equal(res, exp) df = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'dt': pd.date_range('2011-01-01', freq='D', periods=5)}, index=idx) res = df.pivot_table(index=df.index.month, columns=pd.Grouper(key='dt', freq='M')) exp_columns = pd.MultiIndex.from_tuples([('A', pd.Timestamp('2011-01-31'))]) exp_columns.names = [None, 'dt'] exp = pd.DataFrame([3.25, 2.0], index=[1, 2], columns=exp_columns) tm.assert_frame_equal(res, exp) res = df.pivot_table(index=pd.Grouper(freq='A'), columns=pd.Grouper(key='dt', freq='M')) exp = pd.DataFrame([3], index=pd.DatetimeIndex(['2011-12-31']), columns=exp_columns) tm.assert_frame_equal(res, exp) def test_pivot_multi_values(self): result = pivot_table(self.data, values=['D', 'E'], index='A', columns=['B', 'C'], fill_value=0) expected = pivot_table(self.data.drop(['F'], axis=1), index='A', columns=['B', 'C'], fill_value=0) tm.assert_frame_equal(result, expected) def test_pivot_multi_functions(self): f = lambda func: pivot_table(self.data, values=['D', 'E'], index=['A', 'B'], columns='C', aggfunc=func) result = f([np.mean, np.std]) means = f(np.mean) stds = f(np.std) expected = concat([means, stds], keys=['mean', 'std'], axis=1) tm.assert_frame_equal(result, expected) # margins not supported?? f = lambda func: pivot_table(self.data, values=['D', 'E'], index=['A', 'B'], columns='C', aggfunc=func, margins=True) result = f([np.mean, np.std]) means = f(np.mean) stds = f(np.std) expected = concat([means, stds], keys=['mean', 'std'], axis=1) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_index_with_nan(self, method): # GH 3588 nan = np.nan df = DataFrame({'a': ['R1', 'R2', nan, 'R4'], 'b': ['C1', 'C2', 'C3', 'C4'], 'c': [10, 15, 17, 20]}) if method: result = df.pivot('a', 'b', 'c') else: result = pd.pivot(df, 'a', 'b', 'c') expected = DataFrame([[nan, nan, 17, nan], [10, nan, nan, nan], [nan, 15, nan, nan], [nan, nan, nan, 20]], index=Index([nan, 'R1', 'R2', 'R4'], name='a'), columns=Index(['C1', 'C2', 'C3', 'C4'], name='b')) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(df.pivot('b', 'a', 'c'), expected.T) # GH9491 df = DataFrame({'a': pd.date_range('2014-02-01', periods=6, freq='D'), 'c': 100 + np.arange(6)}) df['b'] = df['a'] - pd.Timestamp('2014-02-02') df.loc[1, 'a'] = df.loc[3, 'a'] = nan df.loc[1, 'b'] = df.loc[4, 'b'] = nan if method: pv = df.pivot('a', 'b', 'c') else: pv = pd.pivot(df, 'a', 'b', 'c') assert pv.notna().values.sum() == len(df) for _, row in df.iterrows(): assert pv.loc[row['a'], row['b']] == row['c'] if method: result = df.pivot('b', 'a', 'c') else: result = pd.pivot(df, 'b', 'a', 'c') tm.assert_frame_equal(result, pv.T) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_tz(self, method): # GH 5878 df = DataFrame({'dt1': [datetime(2013, 1, 1, 9, 0), datetime(2013, 1, 2, 9, 0), datetime(2013, 1, 1, 9, 0), datetime(2013, 1, 2, 9, 0)], 'dt2': [datetime(2014, 1, 1, 9, 0), datetime(2014, 1, 1, 9, 0), datetime(2014, 1, 2, 9, 0), datetime(2014, 1, 2, 9, 0)], 'data1': np.arange(4, dtype='int64'), 'data2': np.arange(4, dtype='int64')}) df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d, tz='US/Pacific')) df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d, tz='Asia/Tokyo')) exp_col1 = Index(['data1', 'data1', 'data2', 'data2']) exp_col2 = pd.DatetimeIndex(['2014/01/01 09:00', '2014/01/02 09:00'] * 2, name='dt2', tz='Asia/Tokyo') exp_col = pd.MultiIndex.from_arrays([exp_col1, exp_col2]) expected = DataFrame([[0, 2, 0, 2], [1, 3, 1, 3]], index=pd.DatetimeIndex(['2013/01/01 09:00', '2013/01/02 09:00'], name='dt1', tz='US/Pacific'), columns=exp_col) if method: pv = df.pivot(index='dt1', columns='dt2') else: pv = pd.pivot(df, index='dt1', columns='dt2') tm.assert_frame_equal(pv, expected) expected = DataFrame([[0, 2], [1, 3]], index=pd.DatetimeIndex(['2013/01/01 09:00', '2013/01/02 09:00'], name='dt1', tz='US/Pacific'), columns=pd.DatetimeIndex(['2014/01/01 09:00', '2014/01/02 09:00'], name='dt2', tz='Asia/Tokyo')) if method: pv = df.pivot(index='dt1', columns='dt2', values='data1') else: pv = pd.pivot(df, index='dt1', columns='dt2', values='data1') tm.assert_frame_equal(pv, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_periods(self, method): df = DataFrame({'p1': [pd.Period('2013-01-01', 'D'), pd.Period('2013-01-02', 'D'), pd.Period('2013-01-01', 'D'), pd.Period('2013-01-02', 'D')], 'p2': [pd.Period('2013-01', 'M'), pd.Period('2013-01', 'M'), pd.Period('2013-02', 'M'), pd.Period('2013-02', 'M')], 'data1': np.arange(4, dtype='int64'), 'data2': np.arange(4, dtype='int64')}) exp_col1 = Index(['data1', 'data1', 'data2', 'data2']) exp_col2 = pd.PeriodIndex(['2013-01', '2013-02'] * 2, name='p2', freq='M') exp_col = pd.MultiIndex.from_arrays([exp_col1, exp_col2]) expected = DataFrame([[0, 2, 0, 2], [1, 3, 1, 3]], index=pd.PeriodIndex(['2013-01-01', '2013-01-02'], name='p1', freq='D'), columns=exp_col) if method: pv = df.pivot(index='p1', columns='p2') else: pv = pd.pivot(df, index='p1', columns='p2') tm.assert_frame_equal(pv, expected) expected = DataFrame([[0, 2], [1, 3]], index=pd.PeriodIndex(['2013-01-01', '2013-01-02'], name='p1', freq='D'), columns=pd.PeriodIndex(['2013-01', '2013-02'], name='p2', freq='M')) if method: pv = df.pivot(index='p1', columns='p2', values='data1') else: pv = pd.pivot(df, index='p1', columns='p2', values='data1') tm.assert_frame_equal(pv, expected) @pytest.mark.parametrize('values', [ ['baz', 'zoo'], np.array(['baz', 'zoo']), pd.Series(['baz', 'zoo']), pd.Index(['baz', 'zoo']) ]) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_list_like_values(self, values, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) if method: result = df.pivot(index='foo', columns='bar', values=values) else: result = pd.pivot(df, index='foo', columns='bar', values=values) data = [[1, 2, 3, 'x', 'y', 'z'], [4, 5, 6, 'q', 'w', 't']] index = Index(data=['one', 'two'], name='foo') columns = MultiIndex(levels=[['baz', 'zoo'], ['A', 'B', 'C']], codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]], names=[None, 'bar']) expected = DataFrame(data=data, index=index, columns=columns, dtype='object') tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('values', [ ['bar', 'baz'], np.array(['bar', 'baz']), pd.Series(['bar', 'baz']), pd.Index(['bar', 'baz']) ]) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_list_like_values_nans(self, values, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) if method: result = df.pivot(index='zoo', columns='foo', values=values) else: result = pd.pivot(df, index='zoo', columns='foo', values=values) data = [[np.nan, 'A', np.nan, 4], [np.nan, 'C', np.nan, 6], [np.nan, 'B', np.nan, 5], ['A', np.nan, 1, np.nan], ['B', np.nan, 2, np.nan], ['C', np.nan, 3, np.nan]] index = Index(data=['q', 't', 'w', 'x', 'y', 'z'], name='zoo') columns = MultiIndex(levels=[['bar', 'baz'], ['one', 'two']], codes=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[None, 'foo']) expected = DataFrame(data=data, index=index, columns=columns, dtype='object') tm.assert_frame_equal(result, expected) @pytest.mark.xfail(reason='MultiIndexed unstack with tuple names fails' 'with KeyError GH#19966') @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_multiindex(self, method): # issue #17160 index = Index(data=[0, 1, 2, 3, 4, 5]) data = [['one', 'A', 1, 'x'], ['one', 'B', 2, 'y'], ['one', 'C', 3, 'z'], ['two', 'A', 4, 'q'], ['two', 'B', 5, 'w'], ['two', 'C', 6, 't']] columns = MultiIndex(levels=[['bar', 'baz'], ['first', 'second']], codes=[[0, 0, 1, 1], [0, 1, 0, 1]]) df = DataFrame(data=data, index=index, columns=columns, dtype='object') if method: result = df.pivot(index=('bar', 'first'), columns=('bar', 'second'), values=('baz', 'first')) else: result = pd.pivot(df, index=('bar', 'first'), columns=('bar', 'second'), values=('baz', 'first')) data = {'A': Series([1, 4], index=['one', 'two']), 'B': Series([2, 5], index=['one', 'two']), 'C': Series([3, 6], index=['one', 'two'])} expected = DataFrame(data) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_tuple_of_values(self, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) with pytest.raises(KeyError): # tuple is seen as a single column name if method: df.pivot(index='zoo', columns='foo', values=('bar', 'baz')) else: pd.pivot(df, index='zoo', columns='foo', values=('bar', 'baz')) def test_margins(self): def _check_output(result, values_col, index=['A', 'B'], columns=['C'], margins_col='All'): col_margins = result.loc[result.index[:-1], margins_col] expected_col_margins = self.data.groupby(index)[values_col].mean() tm.assert_series_equal(col_margins, expected_col_margins, check_names=False) assert col_margins.name == margins_col result = result.sort_index() index_margins = result.loc[(margins_col, '')].iloc[:-1] expected_ix_margins = self.data.groupby(columns)[values_col].mean() tm.assert_series_equal(index_margins, expected_ix_margins, check_names=False) assert index_margins.name == (margins_col, '') grand_total_margins = result.loc[(margins_col, ''), margins_col] expected_total_margins = self.data[values_col].mean() assert grand_total_margins == expected_total_margins # column specified result = self.data.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=np.mean) _check_output(result, 'D') # Set a different margins_name (not 'All') result = self.data.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=np.mean, margins_name='Totals') _check_output(result, 'D', margins_col='Totals') # no column specified table = self.data.pivot_table(index=['A', 'B'], columns='C', margins=True, aggfunc=np.mean) for value_col in table.columns.levels[0]: _check_output(table[value_col], value_col) # no col # to help with a buglet self.data.columns = [k * 2 for k in self.data.columns] table = self.data.pivot_table(index=['AA', 'BB'], margins=True, aggfunc=np.mean) for value_col in table.columns: totals = table.loc[('All', ''), value_col] assert totals == self.data[value_col].mean() # no rows rtable = self.data.pivot_table(columns=['AA', 'BB'], margins=True, aggfunc=np.mean) assert isinstance(rtable, Series) table = self.data.pivot_table(index=['AA', 'BB'], margins=True, aggfunc='mean') for item in ['DD', 'EE', 'FF']: totals = table.loc[('All', ''), item] assert totals == self.data[item].mean() def test_margins_dtype(self): # GH 17013 df = self.data.copy() df[['D', 'E', 'F']] = np.arange(len(df) * 3).reshape(len(df), 3) mi_val = list(product(['bar', 'foo'], ['one', 'two'])) + [('All', '')] mi = MultiIndex.from_tuples(mi_val, names=('A', 'B')) expected = DataFrame({'dull': [12, 21, 3, 9, 45], 'shiny': [33, 0, 36, 51, 120]}, index=mi).rename_axis('C', axis=1) expected['All'] = expected['dull'] + expected['shiny'] result = df.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=np.sum, fill_value=0) tm.assert_frame_equal(expected, result) @pytest.mark.xfail(reason='GH#17035 (len of floats is casted back to ' 'floats)') def test_margins_dtype_len(self): mi_val = list(product(['bar', 'foo'], ['one', 'two'])) + [('All', '')] mi = MultiIndex.from_tuples(mi_val, names=('A', 'B')) expected = DataFrame({'dull': [1, 1, 2, 1, 5], 'shiny': [2, 0, 2, 2, 6]}, index=mi).rename_axis('C', axis=1) expected['All'] = expected['dull'] + expected['shiny'] result = self.data.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=len, fill_value=0) tm.assert_frame_equal(expected, result) def test_pivot_integer_columns(self): # caused by upstream bug in unstack d = date.min data = list(product(['foo', 'bar'], ['A', 'B', 'C'], ['x1', 'x2'], [d + timedelta(i) for i in range(20)], [1.0])) df = DataFrame(data) table = df.pivot_table(values=4, index=[0, 1, 3], columns=[2]) df2 = df.rename(columns=str) table2 = df2.pivot_table( values='4', index=['0', '1', '3'], columns=['2']) tm.assert_frame_equal(table, table2, check_names=False) def test_pivot_no_level_overlap(self): # GH #1181 data = DataFrame({'a': ['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'] * 2, 'b': [0, 0, 0, 0, 1, 1, 1, 1] * 2, 'c': (['foo'] * 4 + ['bar'] * 4) * 2, 'value': np.random.randn(16)}) table = data.pivot_table('value', index='a', columns=['b', 'c']) grouped = data.groupby(['a', 'b', 'c'])['value'].mean() expected = grouped.unstack('b').unstack('c').dropna(axis=1, how='all') tm.assert_frame_equal(table, expected) def test_pivot_columns_lexsorted(self): n = 10000 dtype = np.dtype([ ("Index", object), ("Symbol", object), ("Year", int), ("Month", int), ("Day", int), ("Quantity", int), ("Price", float), ]) products = np.array([ ('SP500', 'ADBE'), ('SP500', 'NVDA'), ('SP500', 'ORCL'), ('NDQ100', 'AAPL'), ('NDQ100', 'MSFT'), ('NDQ100', 'GOOG'), ('FTSE', 'DGE.L'), ('FTSE', 'TSCO.L'), ('FTSE', 'GSK.L'), ], dtype=[('Index', object), ('Symbol', object)]) items = np.empty(n, dtype=dtype) iproduct = np.random.randint(0, len(products), n) items['Index'] = products['Index'][iproduct] items['Symbol'] = products['Symbol'][iproduct] dr = pd.date_range(date(2000, 1, 1), date(2010, 12, 31)) dates = dr[np.random.randint(0, len(dr), n)] items['Year'] = dates.year items['Month'] = dates.month items['Day'] = dates.day items['Price'] = np.random.lognormal(4.0, 2.0, n) df = DataFrame(items) pivoted = df.pivot_table('Price', index=['Month', 'Day'], columns=['Index', 'Symbol', 'Year'], aggfunc='mean') assert pivoted.columns.is_monotonic def test_pivot_complex_aggfunc(self): f = OrderedDict([('D', ['std']), ('E', ['sum'])]) expected = self.data.groupby(['A', 'B']).agg(f).unstack('B') result = self.data.pivot_table(index='A', columns='B', aggfunc=f) tm.assert_frame_equal(result, expected) def test_margins_no_values_no_cols(self): # Regression test on pivot table: no values or cols passed. result = self.data[['A', 'B']].pivot_table( index=['A', 'B'], aggfunc=len, margins=True) result_list = result.tolist() assert sum(result_list[:-1]) == result_list[-1] def test_margins_no_values_two_rows(self): # Regression test on pivot table: no values passed but rows are a # multi-index result = self.data[['A', 'B', 'C']].pivot_table( index=['A', 'B'], columns='C', aggfunc=len, margins=True) assert result.All.tolist() == [3.0, 1.0, 4.0, 3.0, 11.0] def test_margins_no_values_one_row_one_col(self): # Regression test on pivot table: no values passed but row and col # defined result = self.data[['A', 'B']].pivot_table( index='A', columns='B', aggfunc=len, margins=True) assert result.All.tolist() == [4.0, 7.0, 11.0] def test_margins_no_values_two_row_two_cols(self): # Regression test on pivot table: no values passed but rows and cols # are multi-indexed self.data['D'] = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k'] result = self.data[['A', 'B', 'C', 'D']].pivot_table( index=['A', 'B'], columns=['C', 'D'], aggfunc=len, margins=True) assert result.All.tolist() == [3.0, 1.0, 4.0, 3.0, 11.0] def test_pivot_table_with_margins_set_margin_name(self): # see gh-3335 for margin_name in ['foo', 'one', 666, None, ['a', 'b']]: with pytest.raises(ValueError): # multi-index index pivot_table(self.data, values='D', index=['A', 'B'], columns=['C'], margins=True, margins_name=margin_name) with pytest.raises(ValueError): # multi-index column pivot_table(self.data, values='D', index=['C'], columns=['A', 'B'], margins=True, margins_name=margin_name) with pytest.raises(ValueError): # non-multi-index index/column pivot_table(self.data, values='D', index=['A'], columns=['B'], margins=True, margins_name=margin_name) def test_pivot_timegrouper(self): df = DataFrame({ 'Branch': 'A A A A A A A B'.split(), 'Buyer': '<NAME> <NAME>'.split(), 'Quantity': [1, 3, 5, 1, 8, 1, 9, 3], 'Date': [datetime(2013, 1, 1), datetime(2013, 1, 1), datetime(2013, 10, 1), datetime(2013, 10, 2), datetime(2013, 10, 1), datetime(2013, 10, 2), datetime(2013, 12, 2), datetime(2013, 12, 2), ]}).set_index('Date') expected = DataFrame(np.array([10, 18, 3], dtype='int64') .reshape(1, 3), index=[datetime(2013, 12, 31)], columns='<NAME>'.split()) expected.index.name = 'Date' expected.columns.name = 'Buyer' result = pivot_table(df, index=Grouper(freq='A'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='A'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) expected = DataFrame(np.array([1, np.nan, 3, 9, 18, np.nan]) .reshape(2, 3), index=[datetime(2013, 1, 1), datetime(2013, 7, 1)], columns='<NAME>'.split()) expected.index.name = 'Date' expected.columns.name = 'Buyer' result = pivot_table(df, index=Grouper(freq='6MS'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='6MS'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) # passing the name df = df.reset_index() result = pivot_table(df, index=Grouper(freq='6MS', key='Date'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='6MS', key='Date'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) pytest.raises(KeyError, lambda: pivot_table( df, index=Grouper(freq='6MS', key='foo'), columns='Buyer', values='Quantity', aggfunc=np.sum)) pytest.raises(KeyError, lambda: pivot_table( df, index='Buyer', columns=Grouper(freq='6MS', key='foo'), values='Quantity', aggfunc=np.sum)) # passing the level df = df.set_index('Date') result = pivot_table(df, index=Grouper(freq='6MS', level='Date'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='6MS', level='Date'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) pytest.raises(ValueError, lambda: pivot_table( df, index=
Grouper(freq='6MS', level='foo')
pandas.Grouper
import os import numpy as np import matplotlib.pyplot as pp import pandas as pd ######################### ## INTIALISE VARIABLES ## ######################### newDesk=[] selectedList=[] yPlotlabel="" flow=["red", "orange","brown","tan", "lime", "purple", "teal", "black", "blue", "grey", "pink", "violet", "goldenrod","darkkhaki","peru", "saddlebrown"] blues=["blue","turquoise","lime", "darkgreen","midnightblue", "slateblue", "dodgerblue", "mediumblue", "seagreen","yellowgreen","olivedrab","lightseagreen"] greens=["olive","crimson","black", "blue", "maroon", "lightcoral", "chocolate", "lightsalmon", "darkolivegreen", "rosybrown"] reds=flow+blues+greens+flow+blues+greens BODStats=pd.DataFrame() ###################### ## DEFINE FUNCTIONS ## ###################### def importData(directory): os.chdir(directory) folderList=os.listdir() idvgData=pd.DataFrame() # Initialises a blank dataframe to be appended to newDesk=[] # Initialise a blank list for the data to be selected from counter=0 for folderName in folderList:# Loop over the functionalisation folders os.chdir(directory) folderList=os.listdir( )# Now list the FOLDERS inside the top directory os.chdir(directory+"/"+folderName) # Change directory to the ith folderName fileList=os.listdir() # List the FILES in the folderName FOLDER for file in fileList:# Loop over the files in the fileList and import them to the dataframe with a new snazzier name fName = directory+"/"+folderName+"/"+file df=pd.read_csv(fName, usecols=[1,2], skiprows=248) global device newTitle,device = newNameFinal(folderName,file) df.columns=pd.MultiIndex.from_product([[newTitle],df.columns]) # Introduce multiindex naming of columns idvgData=pd.concat([idvgData,df],axis=1) newDesk.append(newTitle) global copied_original copied_original=idvgData.copy() copied_original.name=device return copied_original,device,newDesk def newNameFinal(folderName1, originalName): # Takes a file name and shortens it based on the position of the "_" and then concatenates with the folder name. displayText=originalName[0:originalName.find("_")] outputName=folderName1+"_"+displayText return outputName, displayText[0:2] def importBOD(filename): # Imports data from a .BOD file (a file which has been previosuly exported from SCRAMBLE) BODdf=pd.read_csv(filename, header=[0,1]) global copied_original copied_original=BODdf.copy() # Produce a list of the data niceCoffee=[] for i, x in enumerate(BODdf.columns.get_level_values(0)): if i%2>0: # Select every other name as they are repeated niceCoffee.append(x) return copied_original,niceCoffee def statsTable(selection): bigData=copied_original.copy() # Always work from a copy of the original data statsInput=bigData.loc[:,(selection)] # Filter based on name of data sVg = statsInput.loc[:,[statsInput.columns[0]]] # Select the Vbg sDrain = statsInput.loc[:,[statsInput.columns[1]]] # Select the Ids statsFrame=pd.DataFrame() #Initialise the dataframe for this loop ## FORWARD SWEEP STATS ## #Slice the data and select the forward sweep fVg=sVg.iloc[0:(int(statsInput.shape[0]/2))] fDrain=sDrain.iloc[0:(int(statsInput.shape[0]/2))] #DP Current - fDPI fMinI=fDrain.describe().loc["min"] statsFrame=pd.concat([statsFrame,fMinI],ignore_index=True) #DP Voltage - fDPV fMinVIndex=abs(fDrain-fMinI).idxmin() fMinV1=fVg.iloc[fMinVIndex].values[0][0] fMinV=
pd.Series(fMinV1)
pandas.Series
#!/usr/bin/env python # coding: utf-8 # # Create datasets for G1 # ## Scalling and Feature Selection # The original dataset and/or the ballanced ones will be first splitted into separated files as training and test subsets using a **seed**. All the scalling and feature selection will be apply **only on training set**: # - *Dataset split*: train, test sets; the train set will be divided into train and validation in future Machine Learning hyperparameter search for the best model with a ML method; # - *Scalling* of train set using centering, standardization, etc.; # - *Reduction* of train set dimension (after scalling): decrease the number of features using less dimensions/derived features; # - *Feature selection* using train set (after scalling): decrease the number of features by keeping only the most important for the classification. # # Two CSV files will be create for each type of scalling, reduction or feature selection: *tr* - trainin and *ts* - test. # In[ ]: import numpy as np import pandas as pd import os from sklearn.model_selection import train_test_split # for dataset split from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import QuantileTransformer from sklearn.preprocessing import PowerTransformer # Let's define the name of the original dataset, the folder and the prefix characters for each scalling, dimension reduction or feature selection. Each transformation will add a prefix to the previous name of the file. # # **You can used the original dataset that could be unballanced or the ballanced datasets obtained with previous scripts (one file only)!** # In[ ]: # Create scalled datasets using normalized MA dataset # Two CSV files will be create for each type of scalling, reduction or feature selection WorkingFolder = './datasets/' # change this with ballanced datasets such as upsampl.ds_MA.csv or downsampl.ds_MA.csv # if you want to run all files, you should modify the entire script by looping all # transformation using a list of input files [original, undersampled, upsampled] sOrigDataSet = 'ds_MA.csv' sOrigDataSet_G1 = 'ds.G1_MA.csv' sOrigDataSet_G1_det = 'ds.G1_details.csv' # Split details seed = 44 # for reproductibility test_size = 0.25 # train size = 1 - test_size outVar = 'Lij' # output variable # Scalers: the files as prefix + original name # ================================================= # Original (no scaling!), StandardScaler, MinMaxScaler, RobustScaler, # QuantileTransformer (normal), QuantileTransformer(uniform) # scaler prefix for file name #scalerPrefix = ['o', 's', 'm', 'r', 'pyj', 'qn', 'qu'] # scalerPrefix = ['o', 's', 'm', 'r'] scalerPrefix = ['s'] # sklearn scalers #scalerList = [None, StandardScaler(), MinMaxScaler(), # RobustScaler(quantile_range=(25, 75)), # PowerTransformer(method='yeo-johnson'), # QuantileTransformer(output_distribution='normal'), # QuantileTransformer(output_distribution='uniform')] # sklearn scalers # scalerList = [None, StandardScaler(), MinMaxScaler(), RobustScaler()] scalerList = [StandardScaler()] # Dimension Reductions # =================== # PCA reductionPrefix = 'pca' # Feature selection # ================= # RF feature selection, Univariate feature selection using chi-squared test, # Univariate feature selection with mutual information # prefix to add to the processed files for each FS method #FSprefix = ['fs.rf.', # 'fs.univchi.', # 'fs.univmi.'] FSprefix = ['fs-rf.'] # number of total features for reduction and selection if we are not limited by experiment noSelFeatures = 50 # Start by reading the original dataset: # In[ ]: print('-> Reading source dataset:',sOrigDataSet,'...') df = pd.read_csv(os.path.join(WorkingFolder, sOrigDataSet)) print('Columns:',len(df.columns),'Rows:',len(df)) print('Done') print('-> Reading source dataset G1:',sOrigDataSet_G1,'...') df_G1 = pd.read_csv(os.path.join(WorkingFolder, sOrigDataSet_G1)) print('Columns:',len(df_G1.columns),'Rows:',len(df_G1)) print('Done') print('-> Reading source dataset G1 details:',sOrigDataSet_G1_det,'...') df_G1_det = pd.read_csv(os.path.join(WorkingFolder, sOrigDataSet_G1_det)) print('Columns:',len(df_G1_det.columns),'Rows:',len(df_G1_det)) print('Done') # ## Dataset split # # First, split the dataset using stratification for non-ballanced datasets: the ratio between the classes is the same in training and test sets. # In[ ]: # Get features and ouput as dataframes print('--> Split of dataset in training and test ...') X = df.drop(outVar, axis = 1) # remove output variable from input features y = df[outVar] # get only the output variable # get only the values for features and output (as arrays) Xdata = X.values # get values of features Ydata = y.values # get output values # split data in training and test sets (X = input features, y = output variable) # using a seed, test size (defined above) and stratification for un-ballanced classes X_train, X_test, y_train, y_test = train_test_split(Xdata, Ydata, test_size=test_size, random_state=seed, stratify=Ydata) print('X_train:', X_train.shape) print('y_train:', y_train.shape) print('X_test:', X_test.shape) print('y_test:', y_test.shape) print('Done!') # In[ ]: MAs = [col for col in df_G1.columns if ('MA-' in col)] len(MAs) # In[ ]: # Get features and ouput as dataframes for G1 print('--> Split of dataset in training and test ...') X_G1 = df_G1[MAs] # remove output variable from input features #X_G1 = df_G1.drop(outVar, axis = 1) # remove output variable from input features y_G1 = df_G1[outVar] # get only the output variable # get only the values for features and output (as arrays) Xdata_G1 = X_G1.values # get values of features Ydata_G1 = y_G1.values # get output values print('Xdata_G1:', Xdata_G1.shape) print('Ydata_G1:', Ydata_G1.shape) # ## Dataset scaling # # Two files will be saved for training and test sets for each scaling including non-scalling dataset. # In[ ]: # Scale dataset print('-> Scaling dataset train and test:') for scaler in scalerList: # or scalerPrefix # new file name; we will add tr and ts + csv newFile = scalerPrefix[scalerList.index(scaler)]+'.'+sOrigDataSet[:-4] # decide to scale or not if scaler == None: # if it is the original dataset, do not scale! print('--> Original (no scaler!) ...') X_train_transf = X_train # do not modify train set X_test_transf = X_test # do not modify test set else: # if it is not the original dataset, apply scalers print('--> Scaler:', str(scaler), '...') X_train_transf = scaler.fit_transform(X_train) # use a scaler to modify only train set X_test_transf = scaler.transform(X_test) # use the same transformation for test set X_G1_transf = scaler.transform(Xdata_G1) # use the same transformation for G1 # Save the training scaled dataset df_tr_scaler = pd.DataFrame(X_train_transf, columns=X.columns) df_tr_scaler[outVar]= y_train newFile_tr = newFile +'_tr.csv' print('---> Saving training:', newFile_tr, ' ...') df_tr_scaler.to_csv(os.path.join(WorkingFolder, newFile_tr), index=False) # Save the test scaled dataset df_ts_scaler = pd.DataFrame(X_test_transf, columns=X.columns) df_ts_scaler[outVar]= y_test newFile_ts = newFile +'_ts.csv' print('---> Saving test:', newFile_ts, ' ...') df_ts_scaler.to_csv(os.path.join(WorkingFolder, newFile_ts), index=False) # Save G1 scaled dataset for future predictions df_G1_scaler = pd.DataFrame(X_G1_transf, columns=X.columns) df_G1_scaler[outVar]= Ydata_G1 newFile_tr = newFile +'_G1.csv' print('---> Saving G1 scaled:', newFile_tr, ' ...') df_G1_scaler.to_csv(os.path.join(WorkingFolder, newFile_tr), index=False) print('Done!') # In[ ]: # save scaler as file from sklearn.externals import joblib scaler_filename = os.path.join(WorkingFolder, "scaler.save") joblib.dump(scaler, scaler_filename) # In[ ]: # means of the scaling scaler.mean_ # In[ ]: # means of the scaling scaler.mean_ # In[ ]: # variances of the scaling scaler.var_ # In[ ]: # s of the scaling scaler.scale_ # Save to files means, vars and s for StandarScaller (we need these value for the G1 prediction!): # In[ ]: np.savetxt(os.path.join(WorkingFolder, 'StandardScaler_mean.csv'), scaler.mean_.reshape((-1, 1)).T, delimiter=',') np.savetxt(os.path.join(WorkingFolder, 'StandardScaler_var.csv'), scaler.var_.reshape((-1, 1)).T, delimiter=',') np.savetxt(os.path.join(WorkingFolder, 'StandardScaler_scale.csv'), scaler.scale_.reshape((-1, 1)).T, delimiter=',') # In[ ]: # ### G1 scaling # In[ ]: from sklearn.externals import joblib scaler_filename = os.path.join(WorkingFolder, "scaler.save") # load the scaler scaler = joblib.load(scaler_filename) # In[ ]: WorkingFolder = './datasets/' fG1_MAs = "ds.G1_MA.csv" print('-> Reading source dataset G1:',fG1_MAs,'...') df_G1 = pd.read_csv(os.path.join(WorkingFolder, fG1_MAs)) print('Columns:',len(df_G1.columns),'Rows:',len(df_G1)) print('Done') # In[ ]: X_G1 = df_G1.drop(outVar, axis = 1) # remove output variable from input features y_G1 = df_G1['Lij'] # get only the output variable # get only the values for features and output (as arrays) Xdata_G1 = X_G1.values # get values of features Ydata_G1 = y_G1.values # get output values print('Xdata_G1:', Xdata_G1.shape) print('Ydata_G1:', Ydata_G1.shape) # In[ ]: X_G1_transf = scaler.transform(Xdata_G1) # use the same transformation for G1 # In[ ]: # Save G1 scaled dataset for future predictions df_G1_scaler =
pd.DataFrame(X_G1_transf, columns=X_G1.columns)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Dec 6 21:25:44 2021 @author: laukkara """ import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import scipy.cluster.hierarchy as sch from sklearn.cluster import AgglomerativeClustering from sklearn.cluster import KMeans from sklearn.cluster import SpectralClustering from sklearn.cluster import DBSCAN import scipy.stats as ss replacements = {'USP': 'PRP', 'UST': 'PRT', 'BSWE': 'BSW', 'PICB': 'EHR', 'TRC': 'BSR', 'SW': 'PVP', 'USH': 'USH', 'YP1': 'YP', 'YP3': 'YP'} def get_new_names(old_names): new_names = [] for old_name in old_names: items_list = old_name.split('_') first = items_list[0] if 'north' in first: first = first[0:-5] elif 'south' in first: first = first[0:-5] else: print(first) str_dummy = '{}, {}, {}'.format(replacements[first], int(items_list[-2].replace('df','')) + 1, items_list[-1]) new_names.append(str_dummy) return(new_names) ############################################# def create_X(data, case_filters, y_yes_filters, y_not_filters): # This function filters spesific case+mp pairs list_values = [] list_names = [] for idx_case, case in enumerate(data): # loop through cases # Check that location, climate and year columns are identical if idx_case == 0: ids1 = data[case].loc[:, ['location', 'climate', 'year']].copy() else: ids2 = data[case].loc[:, ['location', 'climate', 'year']].copy() if not ids1.equals(ids2): print('NOT EQUAL:', case) for idx_column, column in enumerate(data[case].columns): # loop through columns cond_case_names = all(x in case for x in case_filters) cond_yes_column_names = all(x in column for x in y_yes_filters) cond_not_column_names = all(x not in column for x in y_not_filters) cond_all = cond_case_names and cond_yes_column_names and cond_not_column_names if cond_all: column_str = '{}__{}'.format(case, column) list_values.append(data[case].loc[:, column]) list_names.append(column_str) df_X = pd.concat(list_values, axis=1, keys=list_names) df_X = pd.concat([df_X, ids1], axis=1) print(' df_X.shape', df_X.shape) return(df_X) ############################################ def generate_30year_xlsx(list_df, output_dir, filename_str): # list_df = [df0, df1] from clustering algorithm climates_for_median = ['1989-2018', 'RCP45-2050','RCP45-2080','RCP85-2050','RCP85-2080'] ## Excel files for idx_df, df in enumerate(list_df): idxs_col = ['location', 'climate', 'year'] ids = df[idxs_col].copy() df = df.drop(columns=idxs_col).copy() #print('list_df, df.shape', df.shape) # df.shape == (1200, 2...166), kun USP locations = ids['location'].unique() xlsx_file_path = os.path.join(output_dir, '{}_df{}_n{}_yearClimateMedians.xlsx' \ .format(filename_str, idx_df, df.shape[1])) writer =
pd.ExcelWriter(xlsx_file_path, engine='xlsxwriter')
pandas.ExcelWriter
# coding: utf-8 """tools for analyzing VPs in an individual precipitation event""" from collections import OrderedDict from os import path from datetime import timedelta import numpy as np import pandas as pd import xarray as xr import matplotlib as mpl import matplotlib.pyplot as plt from scipy.io import loadmat from radcomp.vertical import (filtering, classification, plotting, insitu, ml, deriv, NAN_REPLACEMENT) from radcomp import arm, azs from radcomp.tools import strftime_date_range, cloudnet from j24 import home, daterange2str USE_LEGACY_DATA = False if USE_LEGACY_DATA: DATA_DIR = path.join(home(), 'DATA', 'vprhi') DATA_FILE_FMT = '%Y%m%d_IKA_VP_from_RHI.mat' else: DATA_DIR = path.join(home(), 'DATA', 'vprhi2') DATA_FILE_FMT = '%Y%m%d_IKA_vprhi.mat' DEFAULT_PARAMS = ['zh', 'zdr', 'kdp'] def case_id_fmt(t_start, t_end=None, dtformat='{year}{month}{day}{hour}', day_fmt='%d', month_fmt='%m', year_fmt='%y', hour_fmt='T%H'): """daterange2str wrapper for date range based IDs""" return daterange2str(t_start, t_end, dtformat=dtformat, hour_fmt=hour_fmt, day_fmt=day_fmt, month_fmt=month_fmt, year_fmt=year_fmt) def date_us_fmt(t_start, t_end, dtformat='{day} {month} {year}', day_fmt='%d', month_fmt='%b', year_fmt='%Y'): """daterange2str wrapper for US human readable date range format""" return daterange2str(t_start, t_end, dtformat=dtformat, day_fmt=day_fmt, month_fmt=month_fmt, year_fmt=year_fmt) def vprhimat2pn(datapath): """Read vertical profile mat files to Panel.""" # TODO: Panel try: data = loadmat(datapath)['VP_RHI'] except FileNotFoundError as e: print('{}. Skipping.'.format(e)) return pd.Panel() fields = list(data.dtype.fields) fields.remove('ObsTime') fields.remove('height') str2dt = lambda tstr: pd.datetime.strptime(tstr, '%Y-%m-%dT%H:%M:%S') t = list(map(str2dt, data['ObsTime'][0][0])) h = data['height'][0][0][0] data_dict = {} for field in fields: data_dict[field] = data[field][0][0].T try: return pd.Panel(data_dict, major_axis=h, minor_axis=t) # sometimes t does not have all values except ValueError as e: if data_dict['ZH'].shape[1] == 96: # manouver to set correct timestamps when data missing t1 = t[0] + timedelta(hours=23, minutes=45) midnight = t1.replace(hour=0, minute=0) if midnight <= t[0]: midnight += timedelta(hours=24) dt = t1-midnight dt_extra = timedelta(minutes=15-(dt.total_seconds()/60)%15) dt = dt + dt_extra t = pd.date_range(t[0]-dt, t1-dt, freq='15min') print('ObsTime missing values! Replacing with generated timestamps.') return
pd.Panel(data_dict, major_axis=h, minor_axis=t)
pandas.Panel
from __future__ import print_function from __future__ import division # load libraries from builtins import str from builtins import range from past.utils import old_div import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import geopandas as gpd import sys import os from matplotlib.collections import PatchCollection from descartes import PolygonPatch import shapely import geopy import argparse import io import unicodedata import matplotlib.patches as mpatches from matplotlib.lines import Line2D import glob import pickle from os.path import expanduser import pdb import unidecode import importlib importlib.reload(sys) #sys.setdefaultencoding('utf-8') ##################################################### def ensure_dir(f): d = os.path.dirname(f) if not os.path.exists(d): os.makedirs(d) ################################################ def string_2_bool(string): if string in ['true', 'TRUE' , 'True' , '1', 't', 'y', 'yes', 'yeah', 'yup', 'certainly', 'uh-huh']: return True else: return False ################################################ def saveplot(appellations_domain,vin,metropole,bassins): #to set extent appellations_domain = gpd.GeoDataFrame(pd.DataFrame(appellations_domain), crs=appellations.crs) if len(appellations_domain)>0: xmin,ymin, xmax,ymax = appellations_domain.total_bounds elif len(bassins.loc[bassins.nom == vin.Bassin]) == 0: xmin,ymin,xmax,ymax = 0, 0, 0, 0 else: xmin,ymin,xmax,ymax = bassins.loc[bassins.nom == vin.Bassin].total_bounds #vin.geometry.coords.xy[0][0]-1.e5, vin.geometry.coords.xy[0][0]+1.e5,\ #vin.geometry.coords.xy[1][0]-1.e5, vin.geometry.coords.xy[1][0]+1.e5 if vin.Bassin == 'Bourgogne': buffer_lim = 100.e3 elif u'domainedelamordor' in vin.DomaineChateau.replace('&','').replace(' ','').lower() : buffer_lim = 50.e3 else: buffer_lim = 200.e3 ''' for side in ax.spines.keys(): # 'top', 'bottom', 'left', 'right' ax.spines[side].set_linewidth(1) for side in bx.spines.keys(): # 'top', 'bottom', 'left', 'right' bx.spines[side].set_linewidth(1) ''' xx = xmax-xmin; yy = ymax-ymin xc = xmin+.5*xx; yc = ymin+.5*yy dd = max([xx,yy,buffer_lim]) xmin = xc-.5*dd; xmax = xc+.5*dd ymin = yc-.5*dd; ymax = yc+.5*dd bufferZone_map = 10.e3 ax.set_xlim(xmin-bufferZone_map, xmax+bufferZone_map) ax.set_ylim(ymin-bufferZone_map, ymax+bufferZone_map) #ax.legend(handles = LegendElement_domain, loc='upper right', labelspacing=1.1, handlelength=2.5, handleheight=1.9) ax.legend(handles = LegendElement_domain, labelspacing=.7, handlelength=2.5, handleheight=1.9, ncol=int(vin['legend_nbreColumn']), loc=vin['legend_loc'], fancybox=True, framealpha=0.9 ) # for multiple column # probably need to add column in excel file to tell where to put the legend and the number of columns #https://stackoverflow.com/questions/42103144/how-to-align-rows-in-matplotlib-legend-with-2-columns # frame of left plot is not good. try better framing #chateauAmpuis is doing weird stuff on the legend # find a solution for alsace appellations #add igp if vin.Pays == 'France': #add prefecture if vin.DomaineChateau == u'Ch\xe2teau La Borie': selectedCommune = ['Nice', 'Marseille', 'Montpellier', 'Avignon', 'Gap', 'Saint-\xc3\x89tienne', 'Valence', 'Bastia', 'Ajaccio'] else: selectedCommune = prefectures.Commune.to_list() prefectures.loc[prefectures.Commune.isin(selectedCommune)].plot(ax=ax, color='k', markersize=20,) prefectures.loc[prefectures.Commune.isin(selectedCommune)].apply(lambda x: ax.annotate(text=str(x.Commune),\ xy=[x.geometry.centroid.x + x.add_to_name_position.coords.xy[0][0],\ x.geometry.centroid.y + x.add_to_name_position.coords.xy[1][0] ], ha=x.LabelLoc_ha,va=x.LabelLoc_va,zorder=5),axis=1); try: minx, miny, maxx, maxy = metropole.geometry.total_bounds xx = maxx-minx; yy = maxy-miny xc = minx+.5*xx; yc = miny+.5*yy dd = max([xx,yy]) minx = xc-.5*dd; maxx = xc+.5*dd miny = yc-.5*dd; maxy = yc+.5*dd except: minx = 0; maxx = 0 miny = 0; maxy = 0 buffer_lim = 50.e3 bx.set_xlim(minx-buffer_lim,maxx+buffer_lim) bx.set_ylim(miny-buffer_lim,maxy+buffer_lim) # add image location and France map rect = mpatches.Rectangle((xmin-bufferZone_map,ymin-bufferZone_map),(xmax-xmin)+2*bufferZone_map,\ (ymax-ymin)+2*bufferZone_map, linewidth=1, edgecolor='k', facecolor='none') bx.add_patch(rect) fig.savefig(map_domain, dpi=dpi_map, facecolor=fig.get_facecolor()) plt.close(fig) def simple_appelation(appelation): if appelation == 'Alsace Gewurztraminer': return 'Alsace' if appelation == 'Alsace Riesling' : return 'Alsace' if appelation == 'Alsace Pinot Noir' : return 'Alsace' return appelation ########################## if __name__ == '__main__': ########################## parser = argparse.ArgumentParser(description='draw wine map') parser.add_argument('-s','--flag_start', help='False if input files needed to be reloaded',required=False) parser.add_argument('-v','--flag_vin', help='True if only wine list need to be reloaded',required=False) parser.add_argument('-b','--flag_border', help='True if reload border shapefile',required=False) args = parser.parse_args() home = expanduser("~") # where are the input data dir_in = home+'/Dropbox/CarteVin/' # where to generate vin.tex dir_out = './' wkdir = dir_out + 'VinData/' ensure_dir(wkdir) #listDesVins file_listDesVins = home+'/Dropbox/CarteVin/MaCave/ListeDesVins.xlsx' dpi_largePlot = 100 dpi_map = 100 #define Input if args.flag_start is None: flag_restart = True else: flag_restart = string_2_bool(args.flag_start) if args.flag_vin is None: flag_vin = False else: flag_vin = string_2_bool(args.flag_vin) if args.flag_border is None: flag_border = False else: flag_border = string_2_bool(args.flag_border) ###################### # france border contour ###################### if ((flag_border) or (not(os.path.isfile(wkdir+"metropole.shp")))): print('france border contour ...') fp = dir_in+'communes-20150101-5m-shp/communes-20150101-5m.shp' map_dfCommune = gpd.read_file(fp) map_dfCommune = map_dfCommune.rename(columns={'nom':'Commune'}) map_dfCommune['metropole'] = 0 map_dfCommune.loc[ pd.to_numeric(map_dfCommune['insee'], errors='coerce') < 97000, 'metropole'] = 1 map_dfCommune.loc[map_dfCommune['insee'].str.contains('2A'), 'metropole'] = 1 map_dfCommune.loc[map_dfCommune['insee'].str.contains('2B'), 'metropole'] = 1 map_dfCommune.to_file(wkdir+"map_df_communes.shp") metropole_geometry = map_dfCommune[['metropole','geometry']].dissolve(by='metropole') metropole = gpd.GeoDataFrame(pd.DataFrame({'countryMainLand': ['France,']}),geometry=[metropole_geometry.geometry[1]],crs=metropole_geometry.crs) metropole = metropole.to_crs(epsg=3395) metropole.to_file(wkdir+"metropole.shp") else: metropole = gpd.read_file(wkdir+"metropole.shp") map_dfCommune = gpd.read_file(wkdir+"map_df_communes.shp") ###################### #load appelation ###################### listAppellations = pd.read_csv(dir_in+'liste-AOC-vins-wikipedia.csv') listAppellations['Appellation'] = listAppellations['Appellation'].str.strip() listAppellations['Bassin'] = listAppellations['Bassin'].str.strip() ###################### #load bassins color code ###################### listBassinColor = pd.read_csv(dir_in+'bassins-colors.csv') listBassinColor['Bassin'] = [str(xx) for xx in listBassinColor['Bassin']] ###################### #load vines list ###################### if ((flag_vin) or (not(flag_restart)) or (not(os.path.isfile(wkdir+"listVins.gpkg")))): print('list vins de la cave ...') print('le fichier est ici : ', file_listDesVins) vins_ = pd.read_excel(file_listDesVins, sheet_name='france - Liste des vins', header=2) vins_ = vins_.loc[ (vins_['Couleur'].str.strip()=='Blanc') | (vins_['Couleur'].str.strip()==u'Blanc p\xe9tillant') | (vins_['Couleur'].str.strip()=='Rouge') | (vins_['Couleur'].str.strip()==u'Ros\xe9') | (vins_['Couleur'].str.strip()==u'Pommeau') ] vins_2_ = pd.read_excel(file_listDesVins, sheet_name='international - Liste des vins ', header=1) vins_2_ = vins_2_.loc[ (vins_['Couleur'].str.strip()=='Blanc') | (vins_['Couleur'].str.strip()==u'Blanc p\xe9tillant') | (vins_['Couleur'].str.strip()=='Rouge') | (vins_['Couleur'].str.strip()==u'Ros\xe9') | (vins_['Couleur'].str.strip()==u'Pommeau') ] cidres_ = pd.read_excel(file_listDesVins, sheet_name='cidre - Liste des Cidres', header=1) cidres_.index = list(range(len(vins_),len(vins_)+len(cidres_))) listVins = pd.concat([ vins_, cidres_, vins_2_ ], sort=True, ignore_index=True) #listVins = pd.concat([ vins_2_ ], sort=True) #clean data listVins = listVins.loc[ (listVins['Couleur'].str.strip()=='Blanc') | (listVins['Couleur'].str.strip()==u'Blanc p\xe9tillant') | (listVins['Couleur'].str.strip()=='Rouge') | (listVins['Couleur'].str.strip()==u'Ros\xe9') | (listVins['Couleur'].str.strip()==u'Cidre') | (listVins['Couleur'].str.strip()==u'Pommeau') ] geocoder = geopy.geocoders.BANFrance() geocoder_bing = None cave = geocoder.geocode('4 rue Coat Tanguy 29890 Brignogan-Plages') listVins['latlong'] = [cave.point]*listVins.shape[0] for index, row in listVins.iterrows(): address1 = row['Adresse'].split(' ') address2 = [] for address_ in address1: tmp_ = address_.rstrip(',').rstrip(' ') if tmp_ != '': address2.append(tmp_) address3 = '{:s} {:05.0f} {:s} {:s}'.format( ' '.join(address2[:-1]), row['Code postal'], address2[-1], row['Pays']) try: if row['Pays'] == 'France': listVins.at[index,'latlong'] = geocoder.geocode(address3,timeout=3).point else: if geocoder_bing == None: key_bing = '<KEY>' geocoder_bing = geopy.geocoders.Bing(key_bing) listVins.at[index,'latlong'] = geocoder_bing.geocode(address3,timeout=3).point except geopy.exc.GeocoderTimedOut : print('geopy timeout on :', address3) sys.exit() #print address3, ' | ', listVins.at[index,'latlong'] lats = [pt.latitude for pt in listVins['latlong']] lons = [pt.longitude for pt in listVins['latlong']] listVins = gpd.GeoDataFrame( listVins.loc[:,listVins.columns!='latlong'] ,geometry= gpd.points_from_xy(x=lons,y=lats), crs={'init': 'epsg:4326'}) #listVins = gpd.GeoDataFrame( listVins.loc[:,:] ,geometry= gpd.points_from_xy(x=lons,y=lats), crs={'init': 'epsg:4326'}) listVins = listVins.to_crs(epsg=3395) listVins['DomaineChateau'] = [ str(xx) for xx in listVins['DomaineChateau'] ] listVins['Pays_order'] = listVins['Pays'].str.replace('France','AAA') #load local legend info legendParam = pd.read_csv(dir_in+'domaineChateau_legend_location.csv') legendParam['DomaineChateau'] = [ str(xx) for xx in legendParam['DomaineChateau'] ] listVins = pd.merge(listVins, legendParam, how='left', on='DomaineChateau') listVins.loc[listVins['legend_nbreColumn'].isnull(),'legend_nbreColumn'] = np.int64(1) listVins.loc[listVins['legend_loc'].isnull(),'legend_loc'] = 'upper right' print('{:d} vins ont ete charge'.format(listVins.shape[0])) listVins.to_file(wkdir+"listVins.gpkg", driver="GPKG") else: listVins = gpd.read_file(wkdir+"listVins.gpkg", driver="GPKG") #################### # neighbourg borders #################### #data from https://wambachers-osm.website/boundaries/ coasts_borders = gpd.read_file(dir_in+'Borders/neighbourgCountries.shp') coasts_borders = coasts_borders.to_crs(epsg=3395) #################### # river and lake #################### clc12 = gpd.read_file(dir_in+'CLC12/CLC12_FR_RGF_SHP/CLC12_FR_RGF.shp') inlandWater = clc12.loc[\ #(clc12['CODE_12']=='511')|(clc12['CODE_12']=='522')\ #|(clc12['CODE_12']=='411')\ (clc12['CODE_12']=='521')] inlandWater_river = gpd.read_file(dir_in+'Wise_WaterData/EuropeanRiver.shp') # for large plot inlandWater_lake = clc12.loc[(clc12['CODE_12']=='512')] inlandWater_lake = inlandWater_lake.loc[inlandWater_lake.geometry.area>.5e6] seaWater = clc12.loc[(clc12['CODE_12']=='423')|(clc12['CODE_12']=='523')\ |(clc12['CODE_12']=='421')|(clc12['CODE_12']=='331')] inlandWater = inlandWater.to_crs(epsg=3395) seaWater = seaWater.to_crs(epsg=3395) inlandWater_river = inlandWater_river.to_crs(epsg=3395) rivers_hydroFrance = gpd.read_file(dir_in+'ROUTE120_1-1_SHP_LAMB93_000_2012-11-26/ROUTE120/1_DONNEES_LIVRAISON_2012-11-00377/R120_1-1_SHP_LAMB93_FR-ED121/HYDROGRAPHIE/TRONCON_HYDROGRAPHIQUE.SHP') rivers_hydroFrance = rivers_hydroFrance.to_crs(epsg=3395) country_pakage = {} paysCode = {}; paysCode['Hongrie'] = 'HUN' paysCode['France'] = 'FRA' pays = 'France' country_pakage[pays] = {} country_pakage[pays]['inlandWater'] = inlandWater country_pakage[pays]['inlandWater_river'] = rivers_hydroFrance country_pakage[pays]['inlandWater_lake'] = inlandWater_lake country_pakage[pays]['seaWater'] = seaWater country_pakage[pays]['coasts_borders'] = coasts_borders country_pakage[pays]['metropole'] = metropole ###################### # border contour international ###################### for pays in listVins['Pays']: if pays == 'France': continue country_pakage[pays] = {} if pays in [u'Nouvelle Z\xe9lande ', u'Italie']: empty_ = gpd.GeoDataFrame([], crs="EPSG:4326") country_pakage[pays]['inlandWater'] = empty_ country_pakage[pays]['inlandWater_river'] = empty_ country_pakage[pays]['inlandWater_lake'] = empty_ country_pakage[pays]['seaWater'] = empty_ country_pakage[pays]['coasts_borders'] = empty_ country_pakage[pays]['metropole'] = empty_ continue clc12_ = gpd.read_file(dir_in+'CLC12/CLC12_{:s}/CLC12_{:s}.shp'.format(paysCode[pays],paysCode[pays])) inlandWater_ = clc12_.loc[(clc12_['Code_12']=='521')] inlandWater_river_ = gpd.read_file(dir_in+'river/{:s}/{:s}_water_lines_dcw.shp'.format(paysCode[pays],paysCode[pays])) inlandWater_lake_ = gpd.read_file(dir_in+'river/{:s}/{:s}_water_areas_dcw.shp'.format(paysCode[pays],paysCode[pays])) #inlandWater_lake_ = clc12_.loc[(clc12_['Code_12']=='512')] #inlandWater_lake_ = inlandWater_lake_.loc[inlandWater_lake_.geometry.area>.5e6] seaWater_ = clc12_.loc[(clc12_['Code_12']=='423')|(clc12_['Code_12']=='523')\ |(clc12_['Code_12']=='421')|(clc12_['Code_12']=='331')] inlandWater_ = inlandWater_.to_crs(epsg=3395) seaWater_= seaWater_.to_crs(epsg=3395) inlandWater_river_ = inlandWater_river_.to_crs(epsg=3395) inlandWater_lake_ = inlandWater_lake_.to_crs(epsg=3395) coasts_borders_ = gpd.read_file(dir_in+'Borders/International/{:s}/neighbourgCountries.geojson'.format(pays)) coasts_borders_ = coasts_borders_.to_crs(epsg=3395) metropole_ = gpd.read_file(dir_in+'Borders/International/{:s}/metropole.geojson'.format(pays)) metropole_ = metropole_.to_crs(epsg=3395) country_pakage[pays]['inlandWater'] = inlandWater_ country_pakage[pays]['inlandWater_river'] = inlandWater_river_ country_pakage[pays]['inlandWater_lake'] = inlandWater_lake_ country_pakage[pays]['seaWater'] = seaWater_ country_pakage[pays]['coasts_borders'] = coasts_borders_ country_pakage[pays]['metropole'] = metropole_ ###################### #load insee / postal code ###################### #insee_cp_commune = pd.read_csv(dir_in+'laposte_hexasmal.csv') #insee_cp_commune = insee_cp_commune.rename(columns={'Code_postal':'CI'}) ###################### #load insee / postal code ###################### prefectures = pd.read_csv(dir_in+'hotels-de-prefectures-fr.csv') prefectures = gpd.GeoDataFrame( prefectures.loc[:,(prefectures.columns!='LonDD')&(prefectures.columns!='LatDD')] , geometry= gpd.points_from_xy(x=prefectures['LonDD'],y=prefectures['LatDD']), crs={'init': 'epsg:4326'}) prefectures = prefectures.to_crs(epsg=3395) prefectures['add_to_name_position'] = shapely.geometry.Point(0,0) ###################### # Merge geo commune info and appellation ###################### if ((not(flag_restart)) or (not(os.path.isfile(wkdir+"map_df_communes_appellation_bassin.shp")))): #load appelation par communes allAppellation_per_communes = pd.read_csv(dir_in+'2020-02-26-comagri-communes-aires-ao_ronan.csv') allAppellation_per_communes.rename(columns=lambda x: x.replace('Aire geographique','Appellation'), inplace=True) allAppellation_per_communes.Appellation = allAppellation_per_communes.Appellation.str.lower().str.replace(' ','-') allAppellation_per_communes = allAppellation_per_communes.rename(columns={'CI':'insee'}) print('merge commune and appellations ...') #join df appellation_bassin_per_communes = allAppellation_per_communes.set_index('Appellation').join(listAppellations.set_index('Appellation')) #deal with Alsace appellation_bassin_per_communes.loc['alsace':'alsacf','Bassin'] = 'Alsace' #fiefs vendees appellation_bassin_per_communes.loc[['fiefs-vend\xc3\xa9ens' in s for s in appellation_bassin_per_communes.index],'Bassin'] = 'Vall\xc3\xa9e de la Loire' #gaillac appellation_bassin_per_communes.loc[['gaillac' in s for s in appellation_bassin_per_communes.index],'Bassin'] = 'Sud-Ouest' #saumur appellation_bassin_per_communes.loc[['saumur' in s for s in appellation_bassin_per_communes.index],'Bassin'] = 'Vall\xc3\xa9e de la Loire' #vosne-romanee appellation_bassin_per_communes.loc[['vosne-roman\xc3\xa9e' in s for s in appellation_bassin_per_communes.index],'Bassin'] = 'Bourgogne' #vougeot appellation_bassin_per_communes.loc[['vougeot' in s for s in appellation_bassin_per_communes.index],'Bassin'] = 'Bourgogne' appellation_bassin_per_communes = appellation_bassin_per_communes.loc[appellation_bassin_per_communes['Bassin'].notna()] appellation_bassin_per_communes = appellation_bassin_per_communes.reset_index() #convert CI to insee format idx_notCorsica = appellation_bassin_per_communes.loc[pd.to_numeric(appellation_bassin_per_communes['insee'], errors='coerce').notna()].index tmp_ = pd.to_numeric(appellation_bassin_per_communes.loc[idx_notCorsica,'insee'], errors='coerce').map('{:05g}'.format) appellation_bassin_per_communes.loc[idx_notCorsica,'insee'] = tmp_ map_df = map_dfCommune.merge(appellation_bassin_per_communes, on='insee') map_df.Bassin = [ str(xx) for xx in map_df.Bassin] map_df.to_file(wkdir+"map_df_communes_appellation_bassin.shp") else: map_df = gpd.read_file(wkdir+"map_df_communes_appellation_bassin.shp") ###################### # bassins shapefile ###################### if ((not(flag_restart)) or (not(os.path.isfile(wkdir+"bassins.shp")))): print('bassins ...') bassins = map_df[['Bassin','geometry']].dissolve(by='Bassin').reset_index() bassins = bassins.merge(listBassinColor,on='Bassin') #sort by area to help plotting bassins['area']=bassins.geometry.area bassins = bassins.sort_values(by='area', ascending=False) bassins = bassins.to_crs(epsg=3395) bassins = bassins.rename(columns={'Bassin':'nom'}) bassins.to_file(wkdir+"bassins.shp") else: bassins = gpd.read_file(wkdir+"bassins.shp") bassins = bassins.sort_values(by='area', ascending=False) country_pakage['France']['bassins'] = bassins ###################### # appellations shapefile ###################### if ((not(flag_restart)) or (not(os.path.isfile(wkdir+"appellations.shp")))): print('appellations ...') appellations = map_df[['Appellation','geometry','Bassin']].dissolve(by='Appellation').reset_index() appellations = appellations.rename(columns={'Bassin':'bassin'}) #sort by area to help plotting appellations['area']=appellations.geometry.area appellations = appellations.sort_values(by='area', ascending=False) appellations = appellations.rename(columns={'Appellation':'nom'}) appellations = appellations.to_crs(epsg=3395) appellations.to_file(wkdir+"appellations.shp") else: appellations = gpd.read_file(wkdir+"appellations.shp") appellations = appellations.sort_values(by='area', ascending=False) ######################################## #Add IGP stored locally in appellations: ######################################## if ((not(flag_restart)) or (not(os.path.isfile(wkdir+"appellations_igp.shp")))): dir_igp = dir_in+'IGP/' appellations_igp = [] for csvFile in glob.glob(dir_igp+'*.csv'): igp_ = pd.read_csv(csvFile) igp_.rename(columns=lambda x: x.replace('Aire geographique','Appellation'), inplace=True) igp_.Appellation = igp_.Appellation.str.lower().str.replace(' ','-') igp_ = igp_.rename(columns={'CI':'insee'}) igp_.insee = [str(xx) for xx in igp_.insee] igp_.Bassin = [ str(xx) for xx in igp_.Bassin] map_df_ = map_dfCommune.merge(igp_, on='insee') map_df_.Bassin = [ str(xx) for xx in map_df_.Bassin] igp_gpd = map_df_[['Appellation','geometry','Bassin']].dissolve(by='Appellation').reset_index() igp_gpd['area']=igp_gpd.geometry.area igp_gpd = igp_gpd.to_crs(epsg=3395) igp_gpd = igp_gpd.rename(columns={'Appellation':'nom'}) igp_gpd = igp_gpd.rename(columns={'Bassin':'bassin'}) appellations_igp.append(igp_gpd) appellations_igp = pd.concat(appellations_igp, ignore_index=True) appellations_igp.to_file(wkdir+"appellations_igp.shp") else: appellations_igp = gpd.read_file(wkdir+"appellations_igp.shp") appellations_igp = appellations_igp.sort_values(by='area', ascending=False) ######################################## #replace geographic zone for alsace grand cru to production zone stored locally in CarteVin/GrandCruAslace: ######################################## if ((not(flag_restart)) or (not(os.path.isfile(wkdir+"appellations_AlsaceGrandCru.shp")))): dir_agc = dir_in+'GrandCruAlsace/' appellations_agc = [] for csvFile in glob.glob(dir_agc+'*.csv'): try: agc_ = pd.read_csv(csvFile, sep=';', encoding = "ISO-8859-1") except: pdb.set_trace() agc_.rename(columns=lambda x: x.replace('Aire g\xe9ographique','Appellation'), inplace=True) agc_.Appellation = agc_.Appellation.str.lower().str.replace(' ','-') agc_ = agc_.rename(columns={'CI':'insee'}) agc_.insee = [str(xx) for xx in agc_.insee] agc_['Bassin'] = ['Alsace']*len(agc_) agc_ = agc_.loc[agc_['Zone'] == 'Zone de production des raisins'] map_df_ = map_dfCommune.merge(agc_, on='insee') map_df_.Bassin = [ str(xx) for xx in map_df_.Bassin] agc_gpd = map_df_[['Appellation','geometry','Bassin']].dissolve(by='Appellation').reset_index() agc_gpd['area']=agc_gpd.geometry.area agc_gpd = agc_gpd.to_crs(epsg=3395) agc_gpd = agc_gpd.rename(columns={'Appellation':'nom'}) agc_gpd = agc_gpd.rename(columns={'Bassin':'bassin'}) appellations_agc.append(agc_gpd) appellations_agc = pd.concat(appellations_agc, ignore_index=True) appellations_agc.to_file(wkdir+"appellations_AlsaceGrandCru.shp") else: appellations_agc = gpd.read_file(wkdir+"appellations_AlsaceGrandCru.shp") appellations_agc = appellations_agc.sort_values(by='area', ascending=False) ######################################## #Add particular zone stored locally in appellations: (ex: cidre fouesnantais) ######################################## if ((not(flag_restart)) or (not(os.path.isfile(wkdir+"appellations_other.shp")))): dir_other = dir_in+'AutreAppellation/' appellations_other = [] for csvFile in glob.glob(dir_other+'*.csv'): other_ =
pd.read_csv(csvFile)
pandas.read_csv
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.image as mpimg import geopandas as gpd from geopandas import GeoDataFrame from shapely.geometry import Point, Polygon species = pd.read_csv('C:/Users/Kaytie/Desktop/School/Regis University/Summer 2021/MSDS 696/species.csv', low_memory=False) species.head() parks = pd.read_csv('C:/Users/Kaytie/Desktop/School/Regis University/Summer 2021/MSDS 696/parks.csv', low_memory=False) parks.head() species1 = species[(species.Occurrence=='Present') & (species.Record_Status =='Approved')] species2 = species1.drop(['Order', 'Family', 'Scientific_Name', 'Abundance', 'Seasonality', 'Conservation_Status'], axis=1) species2.info() species2["Park Name"].value_counts(sort=True) parkshort = parks.drop(['State', 'Acres', 'Park Code'], axis=1) parkshort.info() species.info() parks.info() crs={'init':'epsg:4326'} base = gpd.read_file("C:/Users/Kaytie/Desktop/shp/us500.shp") type(base) base.head() base.info() base.plot() geometry = [Point(xy) for xy in zip(parks["Longitude"], parks["Latitude"])] geodata = gpd.GeoDataFrame(parkshort, crs=crs, geometry=geometry) geodata.plot() fig, ax = plt.subplots(figsize=(4,4)) base.plot(ax=ax, facecolor='cadetblue', edgecolor='w', alpha=1,linewidth=1) geodata.plot(ax=ax, color='black', markersize=5); fig.suptitle('National Parks of the United States', fontsize=12) plt.xlim([-168,-67]) plt.savefig("parkgeodata") parks_sorted=parks.sort_values('Acres', ascending=False) parks_sorted plt.figure(figsize=(20,20)) plt.barh(parks_sorted['Park Name'], parks_sorted['Acres'], color='#86bf91', height=0.85) plt.ylabel("National Park", fontsize='14', fontweight='bold', rotation=45) plt.xlabel("Thousands of Acres", fontsize='14', fontweight='bold') plt.xticks(fontsize='10') plt.yticks(fontsize='10') plt.margins(y=0.01) plt.title("The Acreage of National Parks in the United States", loc='left', fontsize='20', fontweight='bold') plt.gcf().subplots_adjust(bottom=0.35, top=0.7) plt.tight_layout() plt.savefig("NPAcreagetotal.png", bbox_inches='tight', pad_inches=0.0) plt.show() park5 = parks.drop(['State', 'Park Code', 'Latitude', 'Longitude'], axis=1) park5.info() dfpark5 = park5 dfparkt5=dfpark5.sort_values(by=['Acres'], ascending=False).head(5) dfparkb5=dfpark5.sort_values(by=['Acres'], ascending=False).tail(5) dfmerge1=pd.concat([dfparkt5,dfparkb5]) dfmerge1 dfmerge1.plot.bar(x='Park Name',y='Acres', figsize=(20,20), legend=None, color='#86bf91') plt.title('A Comparison of the 5 Largest and 5 Smallest National Parks by Acreage', loc='left', fontsize=20, fontweight='bold') plt.gcf().subplots_adjust(bottom=0.35, top=0.7) plt.subplots_adjust(bottom=0.5) plt.xticks(rotation=45, fontsize='10', ha='right') plt.yticks(fontsize='10') plt.xlabel('National Park', fontsize='14', fontweight='bold') plt.ylabel('Millions of Acres', labelpad=50, rotation=45, fontsize='14', fontweight='bold') plt.tight_layout() plt.savefig("5acres.png") plt.show() species2.head() totalspecies=species2["Park Name"].value_counts(sort=True) totalspecies totalspecies.plot.barh(y='Park Name', figsize=(20,20), width=0.85, color='#9370db') plt.title('Total Species Report Count from National Parks', loc='left', fontsize=20, fontweight='bold') plt.subplots_adjust(left=0.3) plt.xticks(fontsize='10') plt.yticks(fontsize='10') plt.xlabel('Number of Reports', labelpad=10, fontsize='14', fontweight='bold') plt.ylabel('National Park', labelpad=50, rotation=45, fontsize='14', fontweight='bold') plt.tight_layout() plt.savefig("totalspeciescount.png") plt.show() species3 = species2.drop(['Species_ID','Category','Record_Status'], axis=1) species3.info() dfspeciest5 = species3.value_counts(['Park Name'], ascending=False).head(5) dfspeciesb5 = species3.value_counts(['Park Name'], ascending=False).tail(5) dfmerge2 =
pd.concat([dfspeciest5,dfspeciesb5])
pandas.concat
#coding=utf-8 import pandas as pd import numpy as np import sys import os from sklearn import preprocessing import datetime import scipy as sc from sklearn.preprocessing import MinMaxScaler,StandardScaler from sklearn.externals import joblib #import joblib class FEbase(object): """description of class""" def __init__(self, **kwargs): pass def create(self,*DataSetName): #print (self.__class__.__name__) (filepath, tempfilename) = os.path.split(DataSetName[0]) (filename, extension) = os.path.splitext(tempfilename) #bufferstring='savetest2017.csv' bufferstringoutput=filepath+'/'+filename+'_'+self.__class__.__name__+extension if(os.path.exists(bufferstringoutput)==False): #df_all=pd.read_csv(bufferstring,index_col=0,header=0,nrows=100000) df_all=self.core(DataSetName) df_all.to_csv(bufferstringoutput) return bufferstringoutput def core(self,df_all,Data_adj_name=''): return df_all def real_FE(): return 0 class FEg30eom0110network(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): intflag=True df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 df_all['st_or_otherwrong']=0 df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) ##排除科创版 #print(df_all) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) if(intflag): df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) if(intflag): df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) if(intflag): df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min',True) df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min',True) df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max',True) df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max',True) df_all,_=FEsingle.HighLowRange(df_all,8,True) df_all,_=FEsingle.HighLowRange(df_all,25,True) df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) if(intflag): df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) if(intflag): df_all['pct_chg_abs_rank']=df_all['pct_chg_abs_rank']*10//2 df_all=FEsingle.PctChgAbsSumRank(df_all,6,True) df_all=FEsingle.PctChgSumRank(df_all,3,True) df_all=FEsingle.PctChgSumRank(df_all,6,True) df_all=FEsingle.PctChgSumRank(df_all,12,True) df_all=FEsingle.AmountChgRank(df_all,12,True) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) if(intflag): df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],1) df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],2) df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] #df_all=df_all[df_all['total_mv_rank']>18] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 df_all=df_all[df_all['high_stop']==0] df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop','amount','close','real_price'],axis=1,inplace=True) df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all class FEg30eom0110onlinew6d(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_money_all=pd.read_csv(DataSetName[3],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) print(df_money_all) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='inner', on=['ts_code','trade_date']) df_all['sm_amount_pos']=df_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['lg_amount_pos']=df_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['net_mf_amount_pos']=df_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['sm_amount_pos']=df_all.groupby('ts_code')['sm_amount_pos'].shift(1) df_all['lg_amount_pos']=df_all.groupby('ts_code')['lg_amount_pos'].shift(1) df_all['net_mf_amount_pos']=df_all.groupby('ts_code')['net_mf_amount_pos'].shift(1) df_all['sm_amount']=df_all.groupby('ts_code')['sm_amount'].shift(1) df_all['lg_amount']=df_all.groupby('ts_code')['lg_amount'].shift(1) df_all['net_mf_amount']=df_all.groupby('ts_code')['net_mf_amount'].shift(1) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 df_all['st_or_otherwrong']=0 df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) ##排除科创版 #print(df_all) #df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max') df_all,_=FEsingle.HighLowRange(df_all,8) df_all,_=FEsingle.HighLowRange(df_all,25) df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) #df_all=FEsingle.PctChgAbsSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.AmountChgRank(df_all,12) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12','real_price_pos'],1) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] #df_all=df_all[df_all['total_mv_rank']>18] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 df_all=df_all[df_all['high_stop']==0] df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop','amount','close','real_price'],axis=1,inplace=True) df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all class FE_a23(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_money_all=pd.read_csv(DataSetName[3],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'] #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'] #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'] #df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) #df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) #df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_money_all=FEsingle.InputChgSum(df_money_all,5,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'net_mf_amount') print(df_money_all) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 df_all['st_or_otherwrong']=0 df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) df_all['dayofweek']=pd.to_datetime(df_all['trade_date'],format='%Y%m%d') df_all['dayofweek']=df_all['dayofweek'].dt.dayofweek ##排除科创版 #print(df_all) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'max') df_all,_=FEsingle.HighLowRange(df_all,5) df_all,_=FEsingle.HighLowRange(df_all,12) df_all,_=FEsingle.HighLowRange(df_all,25) df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgAbsSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSumRank(df_all,24) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.PctChgSum(df_all,24) #df_all=FEsingle.AmountChgRank(df_all,12) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','real_price_pos'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>2] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] #df_all=df_all[df_all['total_mv_rank']>18] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 df_all=df_all[df_all['high_stop']==0] df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop','amount','close','real_price'],axis=1,inplace=True) df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all def real_FE(self): #新模型预定版本 df_data=pd.read_csv('real_now.csv',index_col=0,header=0) df_adj_all=pd.read_csv('real_adj_now.csv',index_col=0,header=0) df_money_all=pd.read_csv('real_moneyflow_now.csv',index_col=0,header=0) df_long_all=pd.read_csv('real_long_now.csv',index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'].shift(1) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'].shift(1) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'].shift(1) df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_all=pd.merge(df_data, df_adj_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='left', on=['ts_code','trade_date']) print(df_all) #df_all.drop(['turnover_rate','volume_ratio','pe','pb'],axis=1,inplace=True) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) #这里打一个问号 #df_all=df_all[df_all['ts_code'].str.startswith('688')==False] #df_all=pd.read_csv(bufferstring,index_col=0,header=0,nrows=100000) #df_all.drop(['change','vol'],axis=1,inplace=True) df_all['ts_code'] = df_all['ts_code'].astype('str') #将原本的int数据类型转换为文本 df_all['ts_code'] = df_all['ts_code'].str.zfill(6) #用的时候必须加上.str前缀 print(df_all) ##排除科创版 #print(df_all) df_all[["ts_code"]]=df_all[["ts_code"]].astype(str) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['adj_factor']=df_all['adj_factor'].fillna(0) df_all['real_price']=df_all['close']*df_all['adj_factor'] df_all['real_price']=df_all.groupby('ts_code')['real_price'].shift(1) df_all['real_price']=df_all['real_price']*(1+df_all['pct_chg']/100) #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max') df_all,_=FEsingle.HighLowRange(df_all,8) df_all,_=FEsingle.HighLowRange(df_all,25) #===================================================================================================================================# #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.AmountChgRank(df_all,12) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*10//2 #df_all=FEsingle.PctChgSumRank_Common(df_all,5,'high') df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12','real_price_pos'],1) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],3) #删除市值过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['chg_rank']>0.7] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['total_mv_rank']<12] df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price','amount','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #暂时不用的列 df_all=df_all[df_all['high_stop']==0] #df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop'],axis=1,inplace=True) #df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) month_sec=df_all['trade_date'].max() df_all=df_all[df_all['trade_date']==month_sec] print(df_all) df_all=df_all.reset_index(drop=True) df_all.to_csv('today_train.csv') dwdw=1 class FE_a29(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_money_all=pd.read_csv(DataSetName[3],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'] #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'] #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'] #df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) #df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) #df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_money_all=FEsingle.InputChgSum(df_money_all,5,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'net_mf_amount') #df_money_all['sm_amount_25_diff']=df_money_all['sm_amount_25']-df_money_all['sm_amount_12'] #df_money_all['sm_amount_12_diff']=df_money_all['sm_amount_12']-df_money_all['sm_amount_5'] #df_money_all['lg_amount_25_diff']=df_money_all['lg_amount_25']-df_money_all['lg_amount_12'] #df_money_all['lg_amount_12_diff']=df_money_all['lg_amount_12']-df_money_all['lg_amount_5'] #df_money_all['net_mf_amount_25_diff']=df_money_all['net_mf_amount_25']-df_money_all['net_mf_amount_12'] #df_money_all['net_mf_amount_12_diff']=df_money_all['net_mf_amount_12']-df_money_all['net_mf_amount_5'] print(df_money_all) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 df_all['st_or_otherwrong']=0 df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) df_all['dayofweek']=pd.to_datetime(df_all['trade_date'],format='%Y%m%d') df_all['dayofweek']=df_all['dayofweek'].dt.dayofweek ##排除科创版 #print(df_all) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'max') df_all,_=FEsingle.HighLowRange(df_all,5) df_all,_=FEsingle.HighLowRange(df_all,12) df_all,_=FEsingle.HighLowRange(df_all,25) df_all['25_pct_rank_min_diff']=df_all['25_pct_rank_min']-df_all['12_pct_rank_min'] df_all['12_pct_rank_min_diff']=df_all['12_pct_rank_min']-df_all['5_pct_rank_min'] df_all['25_pct_rank_max_diff']=df_all['25_pct_rank_max']-df_all['12_pct_rank_max'] df_all['12_pct_rank_max_diff']=df_all['12_pct_rank_max']-df_all['5_pct_rank_max'] df_all['25_pct_Rangerank_diff']=df_all['25_pct_Rangerank']-df_all['12_pct_Rangerank'] df_all['12_pct_Rangerank_diff']=df_all['12_pct_Rangerank']-df_all['5_pct_Rangerank'] df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgAbsSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSumRank(df_all,24) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.PctChgSum(df_all,24) df_all['chg_rank_24_diff']=df_all['chg_rank_24']-df_all['chg_rank_12'] df_all['chg_rank_12_diff']=df_all['chg_rank_12']-df_all['chg_rank_6'] df_all['chg_rank_6_diff']=df_all['chg_rank_6']-df_all['chg_rank_3'] df_all['pct_chg_24_diff']=df_all['pct_chg_24']-df_all['pct_chg_12'] df_all['pct_chg_12_diff']=df_all['pct_chg_12']-df_all['pct_chg_6'] df_all['pct_chg_6_diff']=df_all['pct_chg_6']-df_all['pct_chg_3'] #df_all=FEsingle.AmountChgRank(df_all,12) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','real_price_pos'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>2] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] #df_all=df_all[df_all['total_mv_rank']>15] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 df_all=df_all[df_all['high_stop']==0] df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop','amount','close','real_price'],axis=1,inplace=True) df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) #df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all def real_FE(self): #新模型预定版本 df_data=pd.read_csv('real_now.csv',index_col=0,header=0) df_adj_all=pd.read_csv('real_adj_now.csv',index_col=0,header=0) df_money_all=pd.read_csv('real_moneyflow_now.csv',index_col=0,header=0) df_long_all=pd.read_csv('real_long_now.csv',index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'].shift(1) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'].shift(1) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'].shift(1) df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_all=pd.merge(df_data, df_adj_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='left', on=['ts_code','trade_date']) print(df_all) #df_all.drop(['turnover_rate','volume_ratio','pe','pb'],axis=1,inplace=True) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) #这里打一个问号 #df_all=df_all[df_all['ts_code'].str.startswith('688')==False] #df_all=pd.read_csv(bufferstring,index_col=0,header=0,nrows=100000) #df_all.drop(['change','vol'],axis=1,inplace=True) df_all['ts_code'] = df_all['ts_code'].astype('str') #将原本的int数据类型转换为文本 df_all['ts_code'] = df_all['ts_code'].str.zfill(6) #用的时候必须加上.str前缀 print(df_all) ##排除科创版 #print(df_all) df_all[["ts_code"]]=df_all[["ts_code"]].astype(str) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['adj_factor']=df_all['adj_factor'].fillna(0) df_all['real_price']=df_all['close']*df_all['adj_factor'] df_all['real_price']=df_all.groupby('ts_code')['real_price'].shift(1) df_all['real_price']=df_all['real_price']*(1+df_all['pct_chg']/100) #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max') df_all,_=FEsingle.HighLowRange(df_all,8) df_all,_=FEsingle.HighLowRange(df_all,25) #===================================================================================================================================# #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.AmountChgRank(df_all,12) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*10//2 #df_all=FEsingle.PctChgSumRank_Common(df_all,5,'high') df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12','real_price_pos'],1) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],3) #删除市值过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['chg_rank']>0.7] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['total_mv_rank']<12] df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price','amount','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #暂时不用的列 df_all=df_all[df_all['high_stop']==0] #df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop'],axis=1,inplace=True) #df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) month_sec=df_all['trade_date'].max() df_all=df_all[df_all['trade_date']==month_sec] print(df_all) df_all=df_all.reset_index(drop=True) df_all.to_csv('today_train.csv') dwdw=1 class FE_a29_Volatility(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_money_all=pd.read_csv(DataSetName[3],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'] #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'] #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'] #df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) #df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) #df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_money_all=FEsingle.InputChgSum(df_money_all,5,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'net_mf_amount') #df_money_all['sm_amount_25_diff']=df_money_all['sm_amount_25']-df_money_all['sm_amount_12'] #df_money_all['sm_amount_12_diff']=df_money_all['sm_amount_12']-df_money_all['sm_amount_5'] #df_money_all['lg_amount_25_diff']=df_money_all['lg_amount_25']-df_money_all['lg_amount_12'] #df_money_all['lg_amount_12_diff']=df_money_all['lg_amount_12']-df_money_all['lg_amount_5'] #df_money_all['net_mf_amount_25_diff']=df_money_all['net_mf_amount_25']-df_money_all['net_mf_amount_12'] #df_money_all['net_mf_amount_12_diff']=df_money_all['net_mf_amount_12']-df_money_all['net_mf_amount_5'] print(df_money_all) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 df_all['st_or_otherwrong']=0 df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) df_all['dayofweek']=pd.to_datetime(df_all['trade_date'],format='%Y%m%d') df_all['dayofweek']=df_all['dayofweek'].dt.dayofweek ##排除科创版 #print(df_all) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'max') df_all,_=FEsingle.HighLowRange(df_all,5) df_all,_=FEsingle.HighLowRange(df_all,12) df_all,_=FEsingle.HighLowRange(df_all,25) df_all['25_pct_rank_min_diff']=df_all['25_pct_rank_min']-df_all['12_pct_rank_min'] df_all['12_pct_rank_min_diff']=df_all['12_pct_rank_min']-df_all['5_pct_rank_min'] df_all['25_pct_rank_max_diff']=df_all['25_pct_rank_max']-df_all['12_pct_rank_max'] df_all['12_pct_rank_max_diff']=df_all['12_pct_rank_max']-df_all['5_pct_rank_max'] df_all['25_pct_Rangerank_diff']=df_all['25_pct_Rangerank']-df_all['12_pct_Rangerank'] df_all['12_pct_Rangerank_diff']=df_all['12_pct_Rangerank']-df_all['5_pct_Rangerank'] df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgAbsSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSumRank(df_all,24) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.PctChgSum(df_all,24) df_all['chg_rank_24_diff']=df_all['chg_rank_24']-df_all['chg_rank_12'] df_all['chg_rank_12_diff']=df_all['chg_rank_12']-df_all['chg_rank_6'] df_all['chg_rank_6_diff']=df_all['chg_rank_6']-df_all['chg_rank_3'] df_all['pct_chg_24_diff']=df_all['pct_chg_24']-df_all['pct_chg_12'] df_all['pct_chg_12_diff']=df_all['pct_chg_12']-df_all['pct_chg_6'] df_all['pct_chg_6_diff']=df_all['pct_chg_6']-df_all['pct_chg_3'] #df_all=FEsingle.AmountChgRank(df_all,12) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','real_price_pos'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>2] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] #df_all=df_all[df_all['total_mv_rank']>15] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 df_all=df_all[df_all['high_stop']==0] df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop','amount','close','real_price'],axis=1,inplace=True) df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) #df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all def real_FE(self): #新模型预定版本 df_data=pd.read_csv('real_now.csv',index_col=0,header=0) df_adj_all=pd.read_csv('real_adj_now.csv',index_col=0,header=0) df_money_all=pd.read_csv('real_moneyflow_now.csv',index_col=0,header=0) df_long_all=pd.read_csv('real_long_now.csv',index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'].shift(1) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'].shift(1) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'].shift(1) df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_all=pd.merge(df_data, df_adj_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='left', on=['ts_code','trade_date']) print(df_all) #df_all.drop(['turnover_rate','volume_ratio','pe','pb'],axis=1,inplace=True) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) #这里打一个问号 #df_all=df_all[df_all['ts_code'].str.startswith('688')==False] #df_all=pd.read_csv(bufferstring,index_col=0,header=0,nrows=100000) #df_all.drop(['change','vol'],axis=1,inplace=True) df_all['ts_code'] = df_all['ts_code'].astype('str') #将原本的int数据类型转换为文本 df_all['ts_code'] = df_all['ts_code'].str.zfill(6) #用的时候必须加上.str前缀 print(df_all) ##排除科创版 #print(df_all) df_all[["ts_code"]]=df_all[["ts_code"]].astype(str) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['adj_factor']=df_all['adj_factor'].fillna(0) df_all['real_price']=df_all['close']*df_all['adj_factor'] df_all['real_price']=df_all.groupby('ts_code')['real_price'].shift(1) df_all['real_price']=df_all['real_price']*(1+df_all['pct_chg']/100) #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max') df_all,_=FEsingle.HighLowRange(df_all,8) df_all,_=FEsingle.HighLowRange(df_all,25) #===================================================================================================================================# #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.AmountChgRank(df_all,12) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*10//2 #df_all=FEsingle.PctChgSumRank_Common(df_all,5,'high') df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12','real_price_pos'],1) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],3) #删除市值过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['chg_rank']>0.7] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['total_mv_rank']<12] df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price','amount','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #暂时不用的列 df_all=df_all[df_all['high_stop']==0] #df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop'],axis=1,inplace=True) #df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) month_sec=df_all['trade_date'].max() df_all=df_all[df_all['trade_date']==month_sec] print(df_all) df_all=df_all.reset_index(drop=True) df_all.to_csv('today_train.csv') dwdw=1 class FE_a31(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_money_all=pd.read_csv(DataSetName[3],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'] #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'] #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'] #df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) #df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) #df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_money_all=FEsingle.InputChgSum(df_money_all,5,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'net_mf_amount') #df_money_all['sm_amount_25_diff']=df_money_all['sm_amount_25']-df_money_all['sm_amount_12'] #df_money_all['sm_amount_12_diff']=df_money_all['sm_amount_12']-df_money_all['sm_amount_5'] #df_money_all['lg_amount_25_diff']=df_money_all['lg_amount_25']-df_money_all['lg_amount_12'] #df_money_all['lg_amount_12_diff']=df_money_all['lg_amount_12']-df_money_all['lg_amount_5'] #df_money_all['net_mf_amount_25_diff']=df_money_all['net_mf_amount_25']-df_money_all['net_mf_amount_12'] #df_money_all['net_mf_amount_12_diff']=df_money_all['net_mf_amount_12']-df_money_all['net_mf_amount_5'] print(df_money_all) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 df_all['st_or_otherwrong']=0 df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) df_all['dayofweek']=pd.to_datetime(df_all['trade_date'],format='%Y%m%d') df_all['dayofweek']=df_all['dayofweek'].dt.dayofweek ##排除科创版 #print(df_all) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'max') df_all,_=FEsingle.HighLowRange(df_all,5) df_all,_=FEsingle.HighLowRange(df_all,12) df_all,_=FEsingle.HighLowRange(df_all,25) df_all['25_pct_rank_min_diff']=df_all['25_pct_rank_min']-df_all['12_pct_rank_min'] df_all['12_pct_rank_min_diff']=df_all['12_pct_rank_min']-df_all['5_pct_rank_min'] df_all['25_pct_rank_max_diff']=df_all['25_pct_rank_max']-df_all['12_pct_rank_max'] df_all['12_pct_rank_max_diff']=df_all['12_pct_rank_max']-df_all['5_pct_rank_max'] df_all['25_pct_Rangerank_diff']=df_all['25_pct_Rangerank']-df_all['12_pct_Rangerank'] df_all['12_pct_Rangerank_diff']=df_all['12_pct_Rangerank']-df_all['5_pct_Rangerank'] df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgAbsSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSumRank(df_all,24) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.PctChgSum(df_all,24) df_all['chg_rank_24_diff']=df_all['chg_rank_24']-df_all['chg_rank_12'] df_all['chg_rank_12_diff']=df_all['chg_rank_12']-df_all['chg_rank_6'] df_all['chg_rank_6_diff']=df_all['chg_rank_6']-df_all['chg_rank_3'] df_all['pct_chg_24_diff']=df_all['pct_chg_24']-df_all['pct_chg_12'] df_all['pct_chg_12_diff']=df_all['pct_chg_12']-df_all['pct_chg_6'] df_all['pct_chg_6_diff']=df_all['pct_chg_6']-df_all['pct_chg_3'] #df_all=FEsingle.AmountChgRank(df_all,12) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','real_price_pos'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>2] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] df_all=df_all[df_all['total_mv_rank']<6] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 df_all=df_all[df_all['high_stop']==0] df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop','amount','close','real_price'],axis=1,inplace=True) df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) #df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all def real_FE(self): #新模型预定版本 df_data=pd.read_csv('real_now.csv',index_col=0,header=0) df_adj_all=pd.read_csv('real_adj_now.csv',index_col=0,header=0) df_money_all=pd.read_csv('real_moneyflow_now.csv',index_col=0,header=0) df_long_all=pd.read_csv('real_long_now.csv',index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'].shift(1) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'].shift(1) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'].shift(1) df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_all=pd.merge(df_data, df_adj_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='left', on=['ts_code','trade_date']) print(df_all) #df_all.drop(['turnover_rate','volume_ratio','pe','pb'],axis=1,inplace=True) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) #这里打一个问号 #df_all=df_all[df_all['ts_code'].str.startswith('688')==False] #df_all=pd.read_csv(bufferstring,index_col=0,header=0,nrows=100000) #df_all.drop(['change','vol'],axis=1,inplace=True) df_all['ts_code'] = df_all['ts_code'].astype('str') #将原本的int数据类型转换为文本 df_all['ts_code'] = df_all['ts_code'].str.zfill(6) #用的时候必须加上.str前缀 print(df_all) ##排除科创版 #print(df_all) df_all[["ts_code"]]=df_all[["ts_code"]].astype(str) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['adj_factor']=df_all['adj_factor'].fillna(0) df_all['real_price']=df_all['close']*df_all['adj_factor'] df_all['real_price']=df_all.groupby('ts_code')['real_price'].shift(1) df_all['real_price']=df_all['real_price']*(1+df_all['pct_chg']/100) #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max') df_all,_=FEsingle.HighLowRange(df_all,8) df_all,_=FEsingle.HighLowRange(df_all,25) #===================================================================================================================================# #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.AmountChgRank(df_all,12) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*10//2 #df_all=FEsingle.PctChgSumRank_Common(df_all,5,'high') df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12','real_price_pos'],1) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],3) #删除市值过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['chg_rank']>0.7] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['total_mv_rank']<12] df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price','amount','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #暂时不用的列 df_all=df_all[df_all['high_stop']==0] #df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop'],axis=1,inplace=True) #df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) month_sec=df_all['trade_date'].max() df_all=df_all[df_all['trade_date']==month_sec] print(df_all) df_all=df_all.reset_index(drop=True) df_all.to_csv('today_train.csv') dwdw=1 class FE_a31_full(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_money_all=pd.read_csv(DataSetName[3],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'] #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'] #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'] #df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) #df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) #df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_money_all=FEsingle.InputChgSum(df_money_all,5,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'net_mf_amount') #df_money_all['sm_amount_25_diff']=df_money_all['sm_amount_25']-df_money_all['sm_amount_12'] #df_money_all['sm_amount_12_diff']=df_money_all['sm_amount_12']-df_money_all['sm_amount_5'] #df_money_all['lg_amount_25_diff']=df_money_all['lg_amount_25']-df_money_all['lg_amount_12'] #df_money_all['lg_amount_12_diff']=df_money_all['lg_amount_12']-df_money_all['lg_amount_5'] #df_money_all['net_mf_amount_25_diff']=df_money_all['net_mf_amount_25']-df_money_all['net_mf_amount_12'] #df_money_all['net_mf_amount_12_diff']=df_money_all['net_mf_amount_12']-df_money_all['net_mf_amount_5'] print(df_money_all) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 #df_all['st_or_otherwrong']=0 #df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) df_all['dayofweek']=pd.to_datetime(df_all['trade_date'],format='%Y%m%d') df_all['dayofweek']=df_all['dayofweek'].dt.dayofweek ##排除科创版 #print(df_all) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'max') df_all,_=FEsingle.HighLowRange(df_all,5) df_all,_=FEsingle.HighLowRange(df_all,12) df_all,_=FEsingle.HighLowRange(df_all,25) df_all['25_pct_rank_min_diff']=df_all['25_pct_rank_min']-df_all['12_pct_rank_min'] df_all['12_pct_rank_min_diff']=df_all['12_pct_rank_min']-df_all['5_pct_rank_min'] df_all['25_pct_rank_max_diff']=df_all['25_pct_rank_max']-df_all['12_pct_rank_max'] df_all['12_pct_rank_max_diff']=df_all['12_pct_rank_max']-df_all['5_pct_rank_max'] df_all['25_pct_Rangerank_diff']=df_all['25_pct_Rangerank']-df_all['12_pct_Rangerank'] df_all['12_pct_Rangerank_diff']=df_all['12_pct_Rangerank']-df_all['5_pct_Rangerank'] df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 #df_all['high_stop']=0 #df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgAbsSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSumRank(df_all,24) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.PctChgSum(df_all,24) df_all['chg_rank_24_diff']=df_all['chg_rank_24']-df_all['chg_rank_12'] df_all['chg_rank_12_diff']=df_all['chg_rank_12']-df_all['chg_rank_6'] df_all['chg_rank_6_diff']=df_all['chg_rank_6']-df_all['chg_rank_3'] df_all['pct_chg_24_diff']=df_all['pct_chg_24']-df_all['pct_chg_12'] df_all['pct_chg_12_diff']=df_all['pct_chg_12']-df_all['pct_chg_6'] df_all['pct_chg_6_diff']=df_all['pct_chg_6']-df_all['pct_chg_3'] #df_all=FEsingle.AmountChgRank(df_all,12) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','real_price_pos'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>2] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] df_all=df_all[df_all['total_mv_rank']<6] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 #df_all=df_all[df_all['high_stop']==0] #df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['amount','close','real_price'],axis=1,inplace=True) #df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all def real_FE(self): #新模型预定版本 df_data=pd.read_csv('real_now.csv',index_col=0,header=0) df_adj_all=pd.read_csv('real_adj_now.csv',index_col=0,header=0) df_money_all=pd.read_csv('real_moneyflow_now.csv',index_col=0,header=0) df_long_all=pd.read_csv('real_long_now.csv',index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'].shift(1) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'].shift(1) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'].shift(1) df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_all=pd.merge(df_data, df_adj_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='left', on=['ts_code','trade_date']) print(df_all) #df_all.drop(['turnover_rate','volume_ratio','pe','pb'],axis=1,inplace=True) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) #这里打一个问号 #df_all=df_all[df_all['ts_code'].str.startswith('688')==False] #df_all=pd.read_csv(bufferstring,index_col=0,header=0,nrows=100000) #df_all.drop(['change','vol'],axis=1,inplace=True) df_all['ts_code'] = df_all['ts_code'].astype('str') #将原本的int数据类型转换为文本 df_all['ts_code'] = df_all['ts_code'].str.zfill(6) #用的时候必须加上.str前缀 print(df_all) ##排除科创版 #print(df_all) df_all[["ts_code"]]=df_all[["ts_code"]].astype(str) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['adj_factor']=df_all['adj_factor'].fillna(0) df_all['real_price']=df_all['close']*df_all['adj_factor'] df_all['real_price']=df_all.groupby('ts_code')['real_price'].shift(1) df_all['real_price']=df_all['real_price']*(1+df_all['pct_chg']/100) #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max') df_all,_=FEsingle.HighLowRange(df_all,8) df_all,_=FEsingle.HighLowRange(df_all,25) #===================================================================================================================================# #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.AmountChgRank(df_all,12) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*10//2 #df_all=FEsingle.PctChgSumRank_Common(df_all,5,'high') df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12','real_price_pos'],1) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],3) #删除市值过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['chg_rank']>0.7] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['total_mv_rank']<12] df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price','amount','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #暂时不用的列 df_all=df_all[df_all['high_stop']==0] #df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop'],axis=1,inplace=True) #df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) month_sec=df_all['trade_date'].max() df_all=df_all[df_all['trade_date']==month_sec] print(df_all) df_all=df_all.reset_index(drop=True) df_all.to_csv('today_train.csv') dwdw=1 class FE_a29_full(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_money_all=pd.read_csv(DataSetName[3],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'] #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'] #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'] #df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) #df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) #df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_money_all=FEsingle.InputChgSum(df_money_all,5,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'net_mf_amount') #df_money_all['sm_amount_25_diff']=df_money_all['sm_amount_25']-df_money_all['sm_amount_12'] #df_money_all['sm_amount_12_diff']=df_money_all['sm_amount_12']-df_money_all['sm_amount_5'] #df_money_all['lg_amount_25_diff']=df_money_all['lg_amount_25']-df_money_all['lg_amount_12'] #df_money_all['lg_amount_12_diff']=df_money_all['lg_amount_12']-df_money_all['lg_amount_5'] #df_money_all['net_mf_amount_25_diff']=df_money_all['net_mf_amount_25']-df_money_all['net_mf_amount_12'] #df_money_all['net_mf_amount_12_diff']=df_money_all['net_mf_amount_12']-df_money_all['net_mf_amount_5'] print(df_money_all) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 #df_all['st_or_otherwrong']=0 #df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) df_all['dayofweek']=pd.to_datetime(df_all['trade_date'],format='%Y%m%d') df_all['dayofweek']=df_all['dayofweek'].dt.dayofweek ##排除科创版 #print(df_all) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'max') df_all,_=FEsingle.HighLowRange(df_all,5) df_all,_=FEsingle.HighLowRange(df_all,12) df_all,_=FEsingle.HighLowRange(df_all,25) df_all['25_pct_rank_min_diff']=df_all['25_pct_rank_min']-df_all['12_pct_rank_min'] df_all['12_pct_rank_min_diff']=df_all['12_pct_rank_min']-df_all['5_pct_rank_min'] df_all['25_pct_rank_max_diff']=df_all['25_pct_rank_max']-df_all['12_pct_rank_max'] df_all['12_pct_rank_max_diff']=df_all['12_pct_rank_max']-df_all['5_pct_rank_max'] df_all['25_pct_Rangerank_diff']=df_all['25_pct_Rangerank']-df_all['12_pct_Rangerank'] df_all['12_pct_Rangerank_diff']=df_all['12_pct_Rangerank']-df_all['5_pct_Rangerank'] df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 #df_all['high_stop']=0 #df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgAbsSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSumRank(df_all,24) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.PctChgSum(df_all,24) df_all['chg_rank_24_diff']=df_all['chg_rank_24']-df_all['chg_rank_12'] df_all['chg_rank_12_diff']=df_all['chg_rank_12']-df_all['chg_rank_6'] df_all['chg_rank_6_diff']=df_all['chg_rank_6']-df_all['chg_rank_3'] df_all['pct_chg_24_diff']=df_all['pct_chg_24']-df_all['pct_chg_12'] df_all['pct_chg_12_diff']=df_all['pct_chg_12']-df_all['pct_chg_6'] df_all['pct_chg_6_diff']=df_all['pct_chg_6']-df_all['pct_chg_3'] #df_all=FEsingle.AmountChgRank(df_all,12) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','real_price_pos'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>2] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] #df_all=df_all[df_all['total_mv_rank']<6] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 #df_all=df_all[df_all['high_stop']==0] #df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['amount','close','real_price'],axis=1,inplace=True) #df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all def real_FE(self): #新模型预定版本 df_data=pd.read_csv('real_now.csv',index_col=0,header=0) df_adj_all=pd.read_csv('real_adj_now.csv',index_col=0,header=0) df_money_all=pd.read_csv('real_moneyflow_now.csv',index_col=0,header=0) df_long_all=pd.read_csv('real_long_now.csv',index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'].shift(1) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'].shift(1) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'].shift(1) df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_all=pd.merge(df_data, df_adj_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='left', on=['ts_code','trade_date']) print(df_all) #df_all.drop(['turnover_rate','volume_ratio','pe','pb'],axis=1,inplace=True) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) #这里打一个问号 #df_all=df_all[df_all['ts_code'].str.startswith('688')==False] #df_all=pd.read_csv(bufferstring,index_col=0,header=0,nrows=100000) #df_all.drop(['change','vol'],axis=1,inplace=True) df_all['ts_code'] = df_all['ts_code'].astype('str') #将原本的int数据类型转换为文本 df_all['ts_code'] = df_all['ts_code'].str.zfill(6) #用的时候必须加上.str前缀 print(df_all) ##排除科创版 #print(df_all) df_all[["ts_code"]]=df_all[["ts_code"]].astype(str) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['adj_factor']=df_all['adj_factor'].fillna(0) df_all['real_price']=df_all['close']*df_all['adj_factor'] df_all['real_price']=df_all.groupby('ts_code')['real_price'].shift(1) df_all['real_price']=df_all['real_price']*(1+df_all['pct_chg']/100) #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max') df_all,_=FEsingle.HighLowRange(df_all,8) df_all,_=FEsingle.HighLowRange(df_all,25) #===================================================================================================================================# #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.AmountChgRank(df_all,12) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*10//2 #df_all=FEsingle.PctChgSumRank_Common(df_all,5,'high') df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12','real_price_pos'],1) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],3) #删除市值过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['chg_rank']>0.7] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['total_mv_rank']<12] df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price','amount','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #暂时不用的列 df_all=df_all[df_all['high_stop']==0] #df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop'],axis=1,inplace=True) #df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) month_sec=df_all['trade_date'].max() df_all=df_all[df_all['trade_date']==month_sec] print(df_all) df_all=df_all.reset_index(drop=True) df_all.to_csv('today_train.csv') dwdw=1 class FE_qliba2(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] df_all=FEsingle.PredictDaysTrend(df_all,5) print(df_all) df_all=df_all.loc[:,['ts_code','trade_date','tomorrow_chg','tomorrow_chg_rank']] print(df_all.dtypes) print(df_all) #===================================================================================================================================# #获取qlib特征 ###df_qlib_1=pd.read_csv('zzztest.csv',header=0) ###df_qlib_2=pd.read_csv('zzztest2.csv',header=0) ##df_qlib_1=pd.read_csv('2013.csv',header=0) ###df_qlib_1=df_qlib_1.iloc[:,0:70] ##df_qlib_all_l=df_qlib_1.iloc[:,0:2] ##df_qlib_all_r=df_qlib_1.iloc[:,70:] ##df_qlib_1 = pd.concat([df_qlib_all_l,df_qlib_all_r],axis=1) ##print(df_qlib_1.head(10)) ##df_qlib_2=pd.read_csv('2015.csv',header=0) ##df_qlib_all_l=df_qlib_2.iloc[:,0:2] ##df_qlib_all_r=df_qlib_2.iloc[:,70:] ##df_qlib_2 = pd.concat([df_qlib_all_l,df_qlib_all_r],axis=1) ##df_qlib_3=pd.read_csv('2017.csv',header=0) ##df_qlib_all_l=df_qlib_3.iloc[:,0:2] ##df_qlib_all_r=df_qlib_3.iloc[:,70:] ##df_qlib_3 = pd.concat([df_qlib_all_l,df_qlib_all_r],axis=1) ##df_qlib_4=pd.read_csv('2019.csv',header=0) ##df_qlib_all_l=df_qlib_4.iloc[:,0:2] ##df_qlib_all_r=df_qlib_4.iloc[:,70:] ##df_qlib_4 = pd.concat([df_qlib_all_l,df_qlib_all_r],axis=1) ##df_qlib_all=pd.concat([df_qlib_2,df_qlib_1]) ##df_qlib_all=pd.concat([df_qlib_3,df_qlib_all]) ##df_qlib_all=pd.concat([df_qlib_4,df_qlib_all]) ##df_qlib_all.drop_duplicates() ##print(df_qlib_all.head(10)) ##df_qlib_all.drop(['LABEL0'],axis=1,inplace=True) ##df_qlib_all.to_csv("13to21_first70plus.csv") df_qlib_all=pd.read_csv('13to21_first70plus.csv',header=0) #df_qlib_all.drop(['LABEL0'],axis=1,inplace=True) print(df_qlib_all) df_qlib_all.rename(columns={'datetime':'trade_date','instrument':'ts_code','score':'mix'}, inplace = True) print(df_qlib_all.dtypes) print(df_qlib_all) df_qlib_all['trade_date'] = pd.to_datetime(df_qlib_all['trade_date'], format='%Y-%m-%d') df_qlib_all['trade_date']=df_qlib_all['trade_date'].apply(lambda x: x.strftime('%Y%m%d')) df_qlib_all['trade_date'] = df_qlib_all['trade_date'].astype(int) df_qlib_all['ts_codeL'] = df_qlib_all['ts_code'].str[:2] df_qlib_all['ts_codeR'] = df_qlib_all['ts_code'].str[2:] df_qlib_all['ts_codeR'] = df_qlib_all['ts_codeR'].apply(lambda s: s+'.') df_qlib_all['ts_code']=df_qlib_all['ts_codeR'].str.cat(df_qlib_all['ts_codeL']) df_qlib_all.drop(['ts_codeL','ts_codeR'],axis=1,inplace=True) print(df_qlib_all.dtypes) print(df_qlib_all) df_qlib_all=df_qlib_all.fillna(value=0) df_all=pd.merge(df_all, df_qlib_all, how='left', on=['ts_code','trade_date']) print(df_all) df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all def real_FE(self): #新模型预定版本 df_data=pd.read_csv('real_now.csv',index_col=0,header=0) df_adj_all=
pd.read_csv('real_adj_now.csv',index_col=0,header=0)
pandas.read_csv
import data_helpers_neutrals import pandas as pd import numpy as np #from keras.preprocessing import sequence #from gensim.models import word2vec #from os.path import join, exists, split #import os #import h5py from keras.models import load_model """ This module gives a prediction (betwen 0 and 1) for a set of input sentences and calculates accuracy on whole set. INPUT: a keras model, a vocabulary dictionary and a file with tweets to test OUTPUT: accuracy """ # import vocabulary input_data = np.load('C:/AI/eh_CNN_twitter/data/semeval/input_data.npy') #x_train = input_data[0] #y_train = input_data[1] #x_test = input_data[2] #y_test = input_data[3] vocabulary_inv = input_data[4] #neutral_tweets = input_data[5] vocabulary = {y:x for x,y in vocabulary_inv.items()} # import CNN model model = load_model('C:/AI/eh_CNN_twitter/models/mixedTest.h5') def label_tweets(comp_name): """ this function uses the trained model and labels new tweets.""" # import company tweets fpath = 'C:/AI/eh_CNN_twitter/data/comp_tweets/' comp_tweets = pd.read_csv(fpath+comp_name+'.tsv', sep='\t', encoding = 'utf-8', header=None, error_bad_lines=False)#, nrows = 10) comp_tweets_original = comp_tweets.copy(deep= True) comp_tweets = comp_tweets.iloc[:,5] comp_tweets = [str(s).strip() for s in comp_tweets] comp_tweets = [data_helpers_neutrals.clean_str(sent) for sent in comp_tweets] comp_tweets = [s.split(" ") for s in comp_tweets] comp_tweets = pad_tweets(comp_tweets) print(comp_name, ': cleaned and padded') comp_tweets = [[vocabulary[word] for word in tweet] for tweet in comp_tweets] y = model.predict(np.array(comp_tweets), batch_size=1) print(comp_name, ':prediction done!') comp_tweets_labeled =
pd.DataFrame(y)
pandas.DataFrame
import pandas as pd import numpy as np import joblib import os import argparse from sklearn.model_selection import train_test_split from sklearn.impute import SimpleImputer from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import mean_absolute_error from sklearn.metrics import accuracy_score # load the titanic dataset train_data =
pd.read_csv("titanic.csv")
pandas.read_csv
################################################################################# # The Institute for the Design of Advanced Energy Systems Integrated Platform # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES), and is copyright (c) 2018-2021 # by the software owners: The Regents of the University of California, through # Lawrence Berkeley National Laboratory, National Technology & Engineering # Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia University # Research Corporation, et al. All rights reserved. # # Please see the files COPYRIGHT.md and LICENSE.md for full copyright and # license information. ################################################################################# """ Tests for PySMO's family of SurrogateTrainer (PysmoPolyTrainer, PysmoRBFTrainer and PysmoKrigingTrainer) """ import pytest import numpy as np import pandas as pd import io import os from math import sin, cos, log, exp from pathlib import Path from io import StringIO import re import pyomo as pyo from pyomo.environ import ConcreteModel, Var, Constraint from pyomo.common.tempfiles import TempfileManager from idaes.core.surrogate.pysmo import ( polynomial_regression as pr, radial_basis_function as rbf, kriging as krg, ) from idaes.core.surrogate.pysmo_surrogate import ( PysmoTrainer, PysmoPolyTrainer, PysmoRBFTrainer, PysmoKrigingTrainer, PysmoSurrogate, PysmoSurrogateTrainingResult, PysmoTrainedSurrogate, ) from idaes.core.surrogate.surrogate_block import SurrogateBlock from idaes.core.util.exceptions import ConfigurationError from idaes.core.surrogate.metrics import compute_fit_metrics dirpath = Path(__file__).parent.resolve() # String representation of json output for testing jstring_poly_1 = ( '{"model_encoding": ' '{"z1": {"attr": {"regression_data_columns": ["x1", "x2"], ' '"multinomials": 1, "additional_term_expressions": [], ' '"optimal_weights_array": [[-75.26111111111476], [-8.815277777775934], [18.81527777777826], [-2.2556956302821618e-13]], ' '"final_polynomial_order": 1, ' '"errors": {"MAE": 3.772981926886132e-13, "MSE": 1.5772926701095834e-25, "R2": 1.0, "Adjusted R2": 1.0},' ' "extra_terms_feature_vector": ["IndexedParam[x1]", "IndexedParam[x2]"]}, ' '"map": {"regression_data_columns": "list", "multinomials": "str", ' '"additional_term_expressions": "list", "optimal_weights_array": "numpy", ' '"final_polynomial_order": "str", "errors": "str", "extra_terms_feature_vector": "other"}}}, ' '"input_labels": ["x1", "x2"], ' '"output_labels": ["z1"], ' '"input_bounds": {"x1": [0, 5], "x2": [0, 10]}, ' '"surrogate_type": "poly"}' ) jstring_poly_2 = ( '{"model_encoding": ' '{"z1": {"attr": {"regression_data_columns": ["x1", "x2"], ' '"multinomials": 1, "additional_term_expressions": [], ' '"optimal_weights_array": [[-75.26111111111476], [-8.815277777775934], [18.81527777777826], [-2.2556956302821618e-13]], ' '"final_polynomial_order": 1, ' '"errors": {"MAE": 3.772981926886132e-13, "MSE": 1.5772926701095834e-25, "R2": 1.0, "Adjusted R2": 1.0},' ' "extra_terms_feature_vector": ["IndexedParam[x1]", "IndexedParam[x2]"]}, ' '"map": {"regression_data_columns": "list", "multinomials": "str", ' '"additional_term_expressions": "list", "optimal_weights_array": "numpy", ' '"final_polynomial_order": "str", "errors": "str", "extra_terms_feature_vector": "other"}}, ' '"z2": {"attr": {"regression_data_columns": ["x1", "x2"], ' '"multinomials": 1, "additional_term_expressions": [], ' '"optimal_weights_array": [[-3.0033074724377813], [0.2491731318906352], [1.7508268681094337], [-6.786238238021269e-15]], ' '"final_polynomial_order": 1, "errors": {"MAE": 1.1901590823981678e-14, "MSE": 1.5225015470765528e-28, "R2": 1.0, "Adjusted R2": 1.0}, ' '"extra_terms_feature_vector": ["IndexedParam[x1]", "IndexedParam[x2]"]}, ' '"map": {"regression_data_columns": "list", "multinomials": "str", ' '"additional_term_expressions": "list", "optimal_weights_array": "numpy", ' '"final_polynomial_order": "str", "errors": "str", "extra_terms_feature_vector": "other"}}}, ' '"input_labels": ["x1", "x2"], ' '"output_labels": ["z1", "z2"], ' '"input_bounds": null, ' '"surrogate_type": "poly"}' ) jstring_poly_3 = ( '{"model_encoding": ' '{"z1": {"attr": {"regression_data_columns": ["x1", "x2"], ' '"multinomials": 0, "additional_term_expressions": ["log(IndexedParam[x1])", "sin(IndexedParam[x2])"], ' '"optimal_weights_array": [[-14.290243902439855], [6.4274390243899795], [3.572560975609962], [1.9753643165643098e-13], [-4.4048098502003086e-14]], ' '"final_polynomial_order": 1, ' '"errors": {"MAE": 1.4210854715202004e-14, "MSE": 2.8188629679897487e-28, "R2": 1.0},' ' "extra_terms_feature_vector": ["IndexedParam[x1]", "IndexedParam[x2]"]}, ' '"map": {"regression_data_columns": "list", "multinomials": "str", ' '"additional_term_expressions": "list", "optimal_weights_array": "numpy", ' '"final_polynomial_order": "str", "errors": "str", "extra_terms_feature_vector": "other"}}, ' '"z2": {"attr": {"regression_data_columns": ["x1", "x2"], ' '"multinomials": 0, "additional_term_expressions": ["log(IndexedParam[x1])", "sin(IndexedParam[x2])"], ' '"optimal_weights_array": [[5.704971042443143], [2.4262427606248815], [-0.42624276060821653], [-5.968545102597034e-11], [6.481176706429892e-12]], ' '"final_polynomial_order": 1, "errors": {"MAE": 3.869645344896829e-12, "MSE": 7.189162598662876e-23, "R2": 1.0}, ' '"extra_terms_feature_vector": ["IndexedParam[x1]", "IndexedParam[x2]"]}, ' '"map": {"regression_data_columns": "list", "multinomials": "str", ' '"additional_term_expressions": "list", "optimal_weights_array": "numpy", ' '"final_polynomial_order": "str", "errors": "str", "extra_terms_feature_vector": "other"}}}, ' '"input_labels": ["x1", "x2"], ' '"output_labels": ["z1", "z2"], ' '"input_bounds": null, ' '"surrogate_type": "poly"}' ) jstring_poly_4 = ( '{"model_encoding": ' '{"z1": {"attr": {"regression_data_columns": ["x1", "x2"], ' '"multinomials": 0, "additional_term_expressions": ["IndexedParam[x1]/IndexedParam[x2]"], ' '"optimal_weights_array": [[-110.15000000001504], [-17.53750000000189], [27.537500000006148], [-5.3967136315336006e-11]], ' '"final_polynomial_order": 1, ' '"errors": {"MAE": 1.0317080523236656e-12, "MSE": 2.126880072091303e-24, "R2": 1.0},' ' "extra_terms_feature_vector": ["IndexedParam[x1]", "IndexedParam[x2]"]}, ' '"map": {"regression_data_columns": "list", "multinomials": "str", ' '"additional_term_expressions": "other", "optimal_weights_array": "numpy", ' '"final_polynomial_order": "str", "errors": "str", "extra_terms_feature_vector": "other"}}, ' '"z2": {"attr": {"regression_data_columns": ["x1", "x2"], ' '"multinomials": 0, "additional_term_expressions": ["IndexedParam[x1]/IndexedParam[x2]"], ' '"optimal_weights_array": [[-12.523574144487087], [-2.1308935361219556], [4.1308935361216435], [3.6347869158959156e-12]], ' '"final_polynomial_order": 1, "errors": {"MAE": 7.762679388179095e-14, "MSE": 6.506051429719772e-27, "R2": 1.0}, ' '"extra_terms_feature_vector": ["IndexedParam[x1]", "IndexedParam[x2]"]}, ' '"map": {"regression_data_columns": "list", "multinomials": "str", ' '"additional_term_expressions": "other", "optimal_weights_array": "numpy", ' '"final_polynomial_order": "str", "errors": "str", "extra_terms_feature_vector": "other"}}}, ' '"input_labels": ["x1", "x2"], ' '"output_labels": ["z1", "z2"], ' '"input_bounds": null, ' '"surrogate_type": "poly"}' ) jstring_rbf = ( '{"model_encoding": ' '{"z1": {"attr": {"x_data_columns": ["x1", "x2"], ' '"x_data": [[0.0, 0.0], [0.25, 0.25], [0.5, 0.5], [0.75, 0.75], [1.0, 1.0]], ' '"centres": [[0.0, 0.0], [0.25, 0.25], [0.5, 0.5], [0.75, 0.75], [1.0, 1.0]], ' '"basis_function": "gaussian", ' '"weights": [[-69.10791015625], [-319807.1317138672], [959336.2551269531], [-959973.7440185547], [320514.66677856445]], ' '"sigma": 0.05, "regularization_parameter": 0.0, ' '"rmse": 0.0005986693684275349, "R2": 0.9999971327598984, ' '"x_data_min": [[1, 5]], "x_data_max": [[5, 9]], "y_data_min": [10], "y_data_max": [50]}, ' '"map": {"x_data_columns": "list", "x_data": "numpy", "centres": "numpy", ' '"basis_function": "str", "weights": "numpy", "sigma": "str", "regularization_parameter": "str", ' '"rmse": "str", "R2": "str", "x_data_min": "numpy", "x_data_max": "numpy", "y_data_min": "numpy", ' '"y_data_max": "numpy"}}, ' '"z2": {"attr": {"x_data_columns": ["x1", "x2"], ' '"x_data": [[0.0, 0.0], [0.25, 0.25], [0.5, 0.5], [0.75, 0.75], [1.0, 1.0]], ' '"centres": [[0.0, 0.0], [0.25, 0.25], [0.5, 0.5], [0.75, 0.75], [1.0, 1.0]], ' '"basis_function": "gaussian", "weights": [[-69.10791015625], [-319807.1317138672], [959336.2551269531], [-959973.7440185547], [320514.66677856445]], ' '"sigma": 0.05, "regularization_parameter": 0.0, ' '"rmse": 0.0005986693684275349, "R2": 0.9999971327598984, ' '"x_data_min": [[1, 5]], "x_data_max": [[5, 9]], "y_data_min": [6], "y_data_max": [14]}, ' '"map": {"x_data_columns": "list", "x_data": "numpy", "centres": "numpy", ' '"basis_function": "str", "weights": "numpy", "sigma": "str", "regularization_parameter": "str", ' '"rmse": "str", "R2": "str", "x_data_min": "numpy", "x_data_max": "numpy", "y_data_min": "numpy", ' '"y_data_max": "numpy"}}}, ' '"input_labels": ["x1", "x2"], ' '"output_labels": ["z1", "z2"], ' '"input_bounds": {"x1": [0, 5], "x2": [0, 10]}, ' '"surrogate_type": "rbf"}' ) jstring_krg = ( '{"model_encoding": ' '{"z1": {"attr": {"x_data_columns": ["x1", "x2"], ' '"x_data": [[1, 5], [2, 6], [3, 7], [4, 8], [5, 9]], "x_data_min": [[1, 5]], "x_data_max": [[5, 9]], ' '"x_data_scaled": [[0.0, 0.0], [0.25, 0.25], [0.5, 0.5], [0.75, 0.75], [1.0, 1.0]], ' '"optimal_weights": [0.027452451845611077, 0.0010443446337808024], ' '"optimal_p": 2, "optimal_mean": [[30.00000000077694]], "optimal_variance": [[6503.3113222215325]], ' '"regularization_parameter": 1.000000000001e-06, ' '"optimal_covariance_matrix": [[1.000001, 0.9982205353479938, 0.9929011178300284, 0.9840983398813247, 0.971905407660152], ' "[0.9982205353479938, 1.000001, 0.9982205353479938, 0.9929011178300284, 0.9840983398813247], " "[0.9929011178300284, 0.9982205353479938, 1.000001, 0.9982205353479938, 0.9929011178300284], " "[0.9840983398813247, 0.9929011178300284, 0.9982205353479938, 1.000001, 0.9982205353479938], " "[0.971905407660152, 0.9840983398813247, 0.9929011178300284, 0.9982205353479938, 1.000001]], " '"covariance_matrix_inverse": [[108728.9916945844, -240226.85108007095, 82932.18571364644, 121970.72026795016, -73364.51387189297], ' "[-240226.85108202277, 589985.9891969847, -341158.67300272395, -130592.8567227173, 121970.72027126199], " "[82932.18571952915, -341158.67301448685, 516416.75018761755, -341158.6729826693, 82932.18570353556], " "[121970.72026201998, -130592.85670691582, -341158.6729945546, 589985.9891699858, -240226.8510697507], " "[-73364.51386989365, 121970.72026527137, 82932.18570954115, -240226.85107176506, 108728.99169106234]], " '"optimal_y_mu": [[-20.00000000077694], [-10.00000000077694], [-7.769394017032027e-10], [9.99999999922306], [19.99999999922306]], ' '"training_R2": 0.9999962956016578, "training_rmse": 0.02721910484270722}, ' '"map": {"x_data_columns": "list", "x_data": "numpy", "x_data_min": "numpy", "x_data_max": "numpy", ' '"x_data_scaled": "numpy", "optimal_weights": "numpy", "optimal_p": "str", "optimal_mean": "numpy", ' '"optimal_variance": "numpy", "regularization_parameter": "str", "optimal_covariance_matrix": "numpy", ' '"covariance_matrix_inverse": "numpy", "optimal_y_mu": "numpy", "training_R2": "str", "training_rmse": "str"}}, ' '"z2": {"attr": {"x_data_columns": ["x1", "x2"], ' '"x_data": [[1, 5], [2, 6], [3, 7], [4, 8], [5, 9]], "x_data_min": [[1, 5]], "x_data_max": [[5, 9]], ' '"x_data_scaled": [[0.0, 0.0], [0.25, 0.25], [0.5, 0.5], [0.75, 0.75], [1.0, 1.0]], ' '"optimal_weights": [0.02749666901085125, 0.001000000000000049], ' '"optimal_p": 2, "optimal_mean": [[9.999999999902883]], "optimal_variance": [[260.13320726701056]], ' '"regularization_parameter": 1e-06, ' '"optimal_covariance_matrix": [[1.000001, 0.998220543300601, 0.9929011494709431, 0.9840984104422155, 0.9719055315475238], ' "[0.998220543300601, 1.000001, 0.998220543300601, 0.9929011494709431, 0.9840984104422155], " "[0.9929011494709431, 0.998220543300601, 1.000001, 0.998220543300601, 0.9929011494709431], " "[0.9840984104422155, 0.9929011494709431, 0.998220543300601, 1.000001, 0.998220543300601], " "[0.9719055315475238, 0.9840984104422155, 0.9929011494709431, 0.998220543300601, 1.000001]], " '"covariance_matrix_inverse": [[108729.13455237681, -240227.09704128528, 82932.15558036882, 121970.94143487987, -73364.601633614], ' "[-240227.0970392892, 589986.4681472526, -341158.6596781079, -130593.32427863385, 121970.94144222786], " "[82932.15557448889, -341158.6596663887, 516416.7835787105, -341158.659633822, 82932.15555811858], " "[121970.94144067129, -130593.32429416949, -341158.6596220617, 589986.4680877628, -240227.09701875152], " "[-73364.60163552182, 121970.94144804058, 82932.15555219717, -240227.09701673465, 108729.13454474375]], " '"optimal_y_mu": [[-3.999999999902883], [-1.999999999902883], [9.711698112369049e-11], [2.000000000097117], [4.000000000097117]], ' '"training_R2": 0.9999962956250228, "training_rmse": 0.005443803800474329}, ' '"map": {"x_data_columns": "list", "x_data": "numpy", "x_data_min": "numpy", "x_data_max": "numpy", ' '"x_data_scaled": "numpy", "optimal_weights": "numpy", "optimal_p": "str", "optimal_mean": "numpy", ' '"optimal_variance": "numpy", "regularization_parameter": "str", "optimal_covariance_matrix": "numpy", ' '"covariance_matrix_inverse": "numpy", "optimal_y_mu": "numpy", "training_R2": "str", "training_rmse": "str"}}}, ' '"input_labels": ["x1", "x2"], ' '"output_labels": ["z1", "z2"], ' '"input_bounds": {"x1": [0, 5], "x2": [0, 10]}, ' '"surrogate_type": "kriging"}' ) class TestSurrogateTrainingResult: @pytest.fixture def pysmo_output_pr(self): data = { "x1": [1, 2, 3, 4, 5], "x2": [5, 6, 7, 8, 9], "z1": [10, 20, 30, 40, 50], } data = pd.DataFrame(data) init_pr = pr.PolynomialRegression( data, data, maximum_polynomial_order=1, overwrite=True, multinomials=True ) vars = init_pr.get_feature_vector() init_pr.training() return init_pr, vars @pytest.fixture def pysmo_output_rbf(self): data = { "x1": [1, 2, 3, 4, 5], "x2": [5, 6, 7, 8, 9], "z1": [10, 20, 30, 40, 50], } data = pd.DataFrame(data) init_rbf = rbf.RadialBasisFunctions( data, basis_function="linear", overwrite=True ) vars = init_rbf.get_feature_vector() init_rbf.training() return init_rbf, vars @pytest.fixture def pysmo_output_krg(self): data = { "x1": [1, 2, 3, 4, 5], "x2": [5, 6, 7, 8, 9], "z1": [10, 20, 30, 40, 50], } data = pd.DataFrame(data) init_krg = krg.KrigingModel(data, numerical_gradients=True, overwrite=True) vars = init_krg.get_feature_vector() init_krg.training() return init_krg, vars @pytest.mark.unit def test_init(self): init_func = PysmoSurrogateTrainingResult() assert init_func.metrics == {} assert init_func._model == None assert init_func.expression_str == "" @pytest.mark.unit def test_model_poly(self, pysmo_output_pr): out1, vars = pysmo_output_pr init_func_poly = PysmoSurrogateTrainingResult() init_func_poly.model = out1 assert init_func_poly.expression_str == str( out1.generate_expression([vars[i] for i in vars.keys()]) ) assert init_func_poly._model is not None assert isinstance(init_func_poly._model, pr.PolynomialRegression) assert init_func_poly._model == out1 @pytest.mark.unit def test_model_rbf(self, pysmo_output_rbf): out2, vars = pysmo_output_rbf init_func_rbf = PysmoSurrogateTrainingResult() init_func_rbf.model = out2 assert init_func_rbf.expression_str == str( out2.generate_expression([vars[i] for i in vars.keys()]) ) assert init_func_rbf._model is not None assert isinstance(init_func_rbf._model, rbf.RadialBasisFunctions) assert init_func_rbf._model == out2 @pytest.mark.unit def test_model_krg(self, pysmo_output_krg): out3, vars = pysmo_output_krg init_func_krg = PysmoSurrogateTrainingResult() init_func_krg.model = out3 assert init_func_krg.expression_str == str( out3.generate_expression([vars[i] for i in vars.keys()]) ) assert init_func_krg._model is not None assert isinstance(init_func_krg._model, krg.KrigingModel) assert init_func_krg._model == out3 class TestTrainedSurrogate: @pytest.fixture def pysmo_outputs(self): data = { "x1": [1, 2, 3, 4, 5], "x2": [5, 6, 7, 8, 9], "z1": [10, 20, 30, 40, 50], } data = pd.DataFrame(data) init_pr = pr.PolynomialRegression( data, data, maximum_polynomial_order=1, overwrite=True, multinomials=True ) vars = init_pr.get_feature_vector() init_pr.training() init_rbf = rbf.RadialBasisFunctions( data, basis_function="linear", overwrite=True ) init_rbf.get_feature_vector() init_rbf.training() init_krg = krg.KrigingModel(data, numerical_gradients=True, overwrite=True) init_krg.get_feature_vector() init_krg.training() return init_pr, init_rbf, init_krg, vars @pytest.mark.unit def test_init(self): init_func = PysmoTrainedSurrogate() assert init_func._data == {} assert init_func.model_type == "" assert init_func.num_outputs == 0 assert init_func.output_labels == [] assert init_func.input_labels == None assert init_func.input_bounds == None init_func1 = PysmoTrainedSurrogate(model_type="poly") assert init_func1._data == {} assert init_func1.model_type == "poly" assert init_func1.num_outputs == 0 assert init_func1.output_labels == [] assert init_func1.input_labels == None assert init_func1.input_bounds == None @pytest.mark.unit def test_add_result(self, pysmo_outputs): # These need to be tested this way to made sure ``add_result`` builds out model object propoerly. out1, out2, out3, vars = pysmo_outputs init_func = PysmoTrainedSurrogate() outvar = "z1" init_func.add_result(outvar, out1) assert init_func.output_labels == ["z1"] assert init_func._data[outvar] == out1 outvar = "z2" init_func.add_result(outvar, out2) assert init_func.output_labels == ["z1", "z2"] assert init_func._data[outvar] == out2 outvar = "z3" init_func.add_result(outvar, out3) assert init_func.output_labels == ["z1", "z2", "z3"] assert init_func._data[outvar] == out3 @pytest.mark.unit def test_get_result(self, pysmo_outputs): out1, out2, out3, vars = pysmo_outputs init_func = PysmoTrainedSurrogate() outvar = "z1" init_func.add_result(outvar, out1) outvar = "z2" init_func.add_result(outvar, out2) outvar = "z3" init_func.add_result(outvar, out3) for i in range(len(init_func.output_labels)): assert init_func.get_result(init_func.output_labels[i]) == pysmo_outputs[i] class TestPysmoPolyTrainer: @pytest.fixture def pysmo_poly_trainer(self): data = {"x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40]} data = pd.DataFrame(data) input_labels = ["x1", "x2"] output_labels = ["z1"] bnds = {"x1": (0, 5), "x2": (0, 10)} poly_trainer = PysmoPolyTrainer( input_labels=input_labels, output_labels=output_labels, input_bounds=bnds, training_dataframe=data, ) return poly_trainer @pytest.mark.unit def test_defaults(self, pysmo_poly_trainer): # Check all defaults assert pysmo_poly_trainer.model_type == "poly" assert pysmo_poly_trainer.config.maximum_polynomial_order == None assert pysmo_poly_trainer.config.multinomials == False assert pysmo_poly_trainer.config.number_of_crossvalidations == 3 assert pysmo_poly_trainer.config.training_split == 0.8 assert pysmo_poly_trainer.config.solution_method == None assert pysmo_poly_trainer.config.extra_features == None @pytest.mark.unit def test_set_polynomial_order_righttype(self, pysmo_poly_trainer): pysmo_poly_trainer.config.maximum_polynomial_order = 3 assert pysmo_poly_trainer.config.maximum_polynomial_order == 3 @pytest.mark.unit def test_set_polynomial_order_wrongtype(self, pysmo_poly_trainer): with pytest.raises( ValueError, match="invalid value for configuration 'maximum_polynomial_order'", ): pysmo_poly_trainer.config.maximum_polynomial_order = 3.1 @pytest.mark.unit def test_set_polynomial_order_wrongbounds(self, pysmo_poly_trainer): with pytest.raises( ValueError, match="invalid value for configuration 'maximum_polynomial_order'", ): pysmo_poly_trainer.config.maximum_polynomial_order = 0 @pytest.mark.unit def test_set_number_of_crossvalidations_righttype(self, pysmo_poly_trainer): pysmo_poly_trainer.config.number_of_crossvalidations = 5 assert pysmo_poly_trainer.config.number_of_crossvalidations == 5 @pytest.mark.unit def test_set_number_of_crossvalidations_wrongtype(self, pysmo_poly_trainer): with pytest.raises( ValueError, match="invalid value for configuration 'number_of_crossvalidations'", ): pysmo_poly_trainer.config.number_of_crossvalidations = 3.1 @pytest.mark.unit def test_set_number_of_crossvalidations_wrongbounds(self, pysmo_poly_trainer): with pytest.raises( ValueError, match="invalid value for configuration 'number_of_crossvalidations'", ): pysmo_poly_trainer.config.number_of_crossvalidations = 0 @pytest.mark.unit def test_set_training_split_righttype(self, pysmo_poly_trainer): pysmo_poly_trainer.config.training_split = 0.5 assert pysmo_poly_trainer.config.training_split == 0.5 @pytest.mark.unit def test_set_training_split_wrongbounds(self, pysmo_poly_trainer): with pytest.raises( ValueError, match="invalid value for configuration 'training_split'" ): pysmo_poly_trainer.config.training_split = -0.5 @pytest.mark.unit def test_set_solution_method_righttype_1(self, pysmo_poly_trainer): pysmo_poly_trainer.config.solution_method = "mle" assert pysmo_poly_trainer.config.solution_method == "mle" @pytest.mark.unit def test_set_solution_method_righttype_2(self, pysmo_poly_trainer): pysmo_poly_trainer.config.solution_method = "pyomo" assert pysmo_poly_trainer.config.solution_method == "pyomo" @pytest.mark.unit def test_set_solution_method_righttype_3(self, pysmo_poly_trainer): pysmo_poly_trainer.config.solution_method = "bfgs" assert pysmo_poly_trainer.config.solution_method == "bfgs" @pytest.mark.unit def test_set_solution_method_wrongtype(self, pysmo_poly_trainer): with pytest.raises( ValueError, match="invalid value for configuration 'solution_method'" ): pysmo_poly_trainer.config.solution_method = "bfgh" @pytest.mark.unit def test_set_multinomials_righttype_1(self, pysmo_poly_trainer): pysmo_poly_trainer.config.multinomials = True assert pysmo_poly_trainer.config.multinomials == True @pytest.mark.unit def test_set_multinomials_righttype_2(self, pysmo_poly_trainer): pysmo_poly_trainer.config.multinomials = False assert pysmo_poly_trainer.config.multinomials == False @pytest.mark.unit def test_set_multinomials_righttype_3(self, pysmo_poly_trainer): pysmo_poly_trainer.config.multinomials = "False" assert pysmo_poly_trainer.config.multinomials == False @pytest.mark.unit def test_set_multinomials_righttype_4(self, pysmo_poly_trainer): pysmo_poly_trainer.config.multinomials = "True" assert pysmo_poly_trainer.config.multinomials == True @pytest.mark.unit def test_set_multinomials_righttype_5(self, pysmo_poly_trainer): pysmo_poly_trainer.config.multinomials = 1 assert pysmo_poly_trainer.config.multinomials == True @pytest.mark.unit def test_set_multinomials_righttype_6(self, pysmo_poly_trainer): pysmo_poly_trainer.config.multinomials = 0 assert pysmo_poly_trainer.config.multinomials == False @pytest.mark.unit def test_set_multinomials_wrongtype(self, pysmo_poly_trainer): with pytest.raises(ValueError): pysmo_poly_trainer.config.multinomials = 2 @pytest.mark.unit def test_set_extra_features_righttype_2(self, pysmo_poly_trainer): pysmo_poly_trainer.config.extra_features = ["x1 / x2"] assert pysmo_poly_trainer.config.extra_features == ["x1 / x2"] @pytest.mark.unit def test_set_extra_features_righttype_2(self, pysmo_poly_trainer): pysmo_poly_trainer.config.extra_features = ["x1 / x2", "sin(x1)"] assert pysmo_poly_trainer.config.extra_features == ["x1 / x2", "sin(x1)"] @pytest.mark.unit def test_set_extra_features_wrongtype(self, pysmo_poly_trainer): with pytest.raises(NameError): pysmo_poly_trainer.config.extra_features = x1 / x2 @pytest.mark.unit def test_set_extra_features_wrongtype(self, pysmo_poly_trainer): with pytest.raises(ValueError): pysmo_poly_trainer.config.extra_features = 10 @pytest.mark.unit def test_create_model_no_extra_features(self, pysmo_poly_trainer): pysmo_poly_trainer.config.multinomials = 1 pysmo_poly_trainer.config.maximum_polynomial_order = 1 pysmo_poly_trainer.config.solution_method = "mle" pysmo_poly_trainer.config.number_of_crossvalidations = 2 pysmo_poly_trainer.config.training_split = 0.9 output_label = "z5" data = {"x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40]} data = pd.DataFrame(data) model = pysmo_poly_trainer._create_model(data, output_label) assert ( model.max_polynomial_order == pysmo_poly_trainer.config.maximum_polynomial_order ) assert model.overwrite == True assert model.multinomials == pysmo_poly_trainer.config.multinomials assert model.solution_method == "mle" assert ( model.number_of_crossvalidations == pysmo_poly_trainer.config.number_of_crossvalidations ) assert model.fraction_training == 0.9 assert model.filename == "solution.pickle" assert model.number_of_x_vars == data.shape[1] - 1 assert model.additional_term_expressions == [] assert model.extra_terms_feature_vector == None np.testing.assert_array_equal(model.original_data, data.values) np.testing.assert_array_equal(model.regression_data, data.values) assert model.regression_data_columns == data.columns.tolist()[:-1] assert list(model.feature_list._data.keys()) == data.columns.tolist()[:-1] @pytest.mark.unit def test_create_model_with_extra_features(self, pysmo_poly_trainer): pysmo_poly_trainer.config.multinomials = 0 pysmo_poly_trainer.config.maximum_polynomial_order = 2 pysmo_poly_trainer.config.solution_method = "mle" pysmo_poly_trainer.config.number_of_crossvalidations = 2 pysmo_poly_trainer.config.training_split = 0.9 pysmo_poly_trainer.config.extra_features = [ "sin(x1)/cos(x2)", "log(x1)*sin(x2)", "x1/x2", ] output_label = "z1" data = { "x1": [1, 2, 3, 4, 5, 6, 7, 8], "x2": [5, 6, 7, 8, 9, 10, 11, 12], "z1": [10, 20, 30, 40, 50, 60, 70, 80], } data = pd.DataFrame(data) model = pysmo_poly_trainer._create_model(data, output_label) assert model.overwrite == True assert model.multinomials == pysmo_poly_trainer.config.multinomials assert model.solution_method == "mle" assert ( model.number_of_crossvalidations == pysmo_poly_trainer.config.number_of_crossvalidations ) assert ( model.max_polynomial_order == pysmo_poly_trainer.config.maximum_polynomial_order ) assert model.fraction_training == 0.9 assert model.filename == "solution.pickle" assert model.number_of_x_vars == data.shape[1] - 1 np.testing.assert_array_equal(model.original_data, data.values) np.testing.assert_array_equal(model.regression_data, data.values) assert model.regression_data_columns == data.columns.tolist()[:-1] assert list(model.feature_list._data.keys()) == data.columns.tolist()[:-1] assert len(model.additional_term_expressions) == 3 assert isinstance(model.additional_term_expressions, list) assert isinstance( model.additional_term_expressions[0], pyo.core.expr.numeric_expr.NPV_DivisionExpression, ) assert isinstance( model.additional_term_expressions[1], pyo.core.expr.numeric_expr.ProductExpression, ) assert isinstance( model.additional_term_expressions[2], pyo.core.expr.numeric_expr.NPV_DivisionExpression, ) assert ( str(model.additional_term_expressions[0]) == "sin(IndexedParam[x1])/cos(IndexedParam[x2])" ) assert ( str(model.additional_term_expressions[1]) == "log(IndexedParam[x1])*sin(IndexedParam[x2])" ) assert ( str(model.additional_term_expressions[2]) == "IndexedParam[x1]/IndexedParam[x2]" ) assert model.extra_terms_feature_vector == None class TestPysmoRBFTrainer: @pytest.fixture def pysmo_rbf_trainer(self): data = {"x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40]} data = pd.DataFrame(data) input_labels = ["x1", "x2"] output_labels = ["z1"] bnds = {"x1": (0, 5), "x2": (0, 10)} rbf_trainer = PysmoRBFTrainer( input_labels=input_labels, output_labels=output_labels, input_bounds=bnds, training_dataframe=data, ) return rbf_trainer @pytest.mark.unit def test_defaults(self, pysmo_rbf_trainer): # Check all defaults assert pysmo_rbf_trainer.model_type == "None rbf" assert pysmo_rbf_trainer.config.basis_function == None assert pysmo_rbf_trainer.config.regularization == None assert pysmo_rbf_trainer.config.solution_method == None @pytest.mark.unit def test_set_basis_function_righttype_1(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.basis_function = "linear" assert pysmo_rbf_trainer.config.basis_function == "linear" @pytest.mark.unit def test_set_basis_function_righttype_2(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.basis_function = "cubic" assert pysmo_rbf_trainer.config.basis_function == "cubic" @pytest.mark.unit def test_set_basis_function_righttype_3(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.basis_function = "imq" assert pysmo_rbf_trainer.config.basis_function == "imq" @pytest.mark.unit def test_set_basis_function_righttype_4(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.basis_function = "mq" assert pysmo_rbf_trainer.config.basis_function == "mq" @pytest.mark.unit def test_set_basis_function_righttype_5(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.basis_function = "gaussian" assert pysmo_rbf_trainer.config.basis_function == "gaussian" @pytest.mark.unit def test_set_basis_function_righttype_6(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.basis_function = "spline" assert pysmo_rbf_trainer.config.basis_function == "spline" @pytest.mark.unit def test_set_basis_function_outdomain(self, pysmo_rbf_trainer): with pytest.raises( ValueError, match="invalid value for configuration 'basis_function'" ): pysmo_rbf_trainer.config.basis_function = "mqimq" @pytest.mark.unit def test_set_solution_method_righttype_1(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.solution_method = "algebraic" assert pysmo_rbf_trainer.config.solution_method == "algebraic" @pytest.mark.unit def test_set_solution_method_righttype_2(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.solution_method = "pyomo" assert pysmo_rbf_trainer.config.solution_method == "pyomo" @pytest.mark.unit def test_set_solution_method_righttype_3(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.solution_method = "bfgs" assert pysmo_rbf_trainer.config.solution_method == "bfgs" @pytest.mark.unit def test_set_solution_method_wrongtype(self, pysmo_rbf_trainer): with pytest.raises( ValueError, match="invalid value for configuration 'solution_method'" ): pysmo_rbf_trainer.config.solution_method = "mle" @pytest.mark.unit def test_set_regularization_righttype_1(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.regularization = True assert pysmo_rbf_trainer.config.regularization == True @pytest.mark.unit def test_set_regularization_righttype_2(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.regularization = False assert pysmo_rbf_trainer.config.regularization == False @pytest.mark.unit def test_set_regularization_righttype_3(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.regularization = "False" assert pysmo_rbf_trainer.config.regularization == False @pytest.mark.unit def test_set_regularization_righttype_4(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.regularization = "True" assert pysmo_rbf_trainer.config.regularization == True @pytest.mark.unit def test_set_regularization_righttype_5(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.regularization = 1 assert pysmo_rbf_trainer.config.regularization == True @pytest.mark.unit def test_set_regularization_righttype_6(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.regularization = 0 assert pysmo_rbf_trainer.config.regularization == False @pytest.mark.unit def test_set_regularization_wrongtype(self, pysmo_rbf_trainer): with pytest.raises(ValueError): pysmo_rbf_trainer.config.regularization = 2 @pytest.mark.unit def test_create_model_defaults(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.basis_function = None pysmo_rbf_trainer.config.regularization = "True" pysmo_rbf_trainer.config.solution_method = None output_label = "z5" data = {"x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40]} data = pd.DataFrame(data) model = pysmo_rbf_trainer._create_model(data, output_label) assert model.x_data_columns == ["x1", "x2"] np.testing.assert_array_equal(model.x_data_unscaled, data.values[:, :-1]) np.testing.assert_array_equal(model.y_data_unscaled[:, 0], data.values[:, -1]) assert model.overwrite == True assert model.basis_function == "gaussian" assert model.regularization == True assert model.solution_method == "algebraic" # assert model.filename == 'pysmo_Nonerbf_z5.pickle' assert list(model.feature_list._data.keys()) == data.columns.tolist()[:-1] @pytest.mark.unit def test_create_model_cubic(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.basis_function = "cubic" pysmo_rbf_trainer.config.regularization = "False" pysmo_rbf_trainer.config.solution_method = "pyomo" output_label = "z5" data = {"x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40]} data = pd.DataFrame(data) model = pysmo_rbf_trainer._create_model(data, output_label) assert model.x_data_columns == ["x1", "x2"] np.testing.assert_array_equal(model.x_data_unscaled, data.values[:, :-1]) np.testing.assert_array_equal(model.y_data_unscaled[:, 0], data.values[:, -1]) assert model.overwrite == True assert model.basis_function == "cubic" assert model.regularization == False assert model.solution_method == "pyomo" assert model.filename == "solution.pickle" assert list(model.feature_list._data.keys()) == data.columns.tolist()[:-1] @pytest.mark.unit def test_create_model_imq(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.basis_function = "imq" pysmo_rbf_trainer.config.regularization = True pysmo_rbf_trainer.config.solution_method = "bfgs" output_label = "z5" data = {"x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40]} data = pd.DataFrame(data) model = pysmo_rbf_trainer._create_model(data, output_label) assert model.x_data_columns == ["x1", "x2"] np.testing.assert_array_equal(model.x_data_unscaled, data.values[:, :-1]) np.testing.assert_array_equal(model.y_data_unscaled[:, 0], data.values[:, -1]) assert model.overwrite == True assert model.basis_function == "imq" assert model.regularization == True assert model.solution_method == "bfgs" # assert model.filename == 'pysmo_Nonerbf_z5.pickle' assert list(model.feature_list._data.keys()) == data.columns.tolist()[:-1] class TestPysmoKrigingTrainer: @pytest.fixture def pysmo_krg_trainer(self): data = {"x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40]} data = pd.DataFrame(data) input_labels = ["x1", "x2"] output_labels = ["z1"] bnds = {"x1": (0, 5), "x2": (0, 10)} krg_trainer = PysmoKrigingTrainer( input_labels=input_labels, output_labels=output_labels, input_bounds=bnds, training_dataframe=data, ) return krg_trainer @pytest.mark.unit def test_defaults(self, pysmo_krg_trainer): # Check all defaults assert pysmo_krg_trainer.model_type == "kriging" assert pysmo_krg_trainer.config.numerical_gradients == True assert pysmo_krg_trainer.config.regularization == True @pytest.mark.unit def test_set_regularization_righttype_1(self, pysmo_krg_trainer): pysmo_krg_trainer.config.regularization = True assert pysmo_krg_trainer.config.regularization == True @pytest.mark.unit def test_set_regularization_righttype_2(self, pysmo_krg_trainer): pysmo_krg_trainer.config.regularization = False assert pysmo_krg_trainer.config.regularization == False @pytest.mark.unit def test_set_regularization_righttype_3(self, pysmo_krg_trainer): pysmo_krg_trainer.config.regularization = "False" assert pysmo_krg_trainer.config.regularization == False @pytest.mark.unit def test_set_regularization_righttype_4(self, pysmo_krg_trainer): pysmo_krg_trainer.config.regularization = "True" assert pysmo_krg_trainer.config.regularization == True @pytest.mark.unit def test_set_regularization_righttype_5(self, pysmo_krg_trainer): pysmo_krg_trainer.config.regularization = 1 assert pysmo_krg_trainer.config.regularization == True @pytest.mark.unit def test_set_regularization_righttype_6(self, pysmo_krg_trainer): pysmo_krg_trainer.config.regularization = 0 assert pysmo_krg_trainer.config.regularization == False @pytest.mark.unit def test_set_regularization_wrongtype(self, pysmo_krg_trainer): with pytest.raises(ValueError): pysmo_krg_trainer.config.regularization = 2 @pytest.mark.unit def test_set_numerical_gradients_righttype_1(self, pysmo_krg_trainer): pysmo_krg_trainer.config.numerical_gradients = True assert pysmo_krg_trainer.config.numerical_gradients == True @pytest.mark.unit def test_set_numerical_gradients_righttype_2(self, pysmo_krg_trainer): pysmo_krg_trainer.config.numerical_gradients = False assert pysmo_krg_trainer.config.numerical_gradients == False @pytest.mark.unit def test_set_numerical_gradients_righttype_3(self, pysmo_krg_trainer): pysmo_krg_trainer.config.numerical_gradients = "False" assert pysmo_krg_trainer.config.numerical_gradients == False @pytest.mark.unit def test_set_numerical_gradients_righttype_4(self, pysmo_krg_trainer): pysmo_krg_trainer.config.numerical_gradients = "True" assert pysmo_krg_trainer.config.numerical_gradients == True @pytest.mark.unit def test_set_numerical_gradients_righttype_5(self, pysmo_krg_trainer): pysmo_krg_trainer.config.numerical_gradients = 1 assert pysmo_krg_trainer.config.numerical_gradients == True @pytest.mark.unit def test_set_numerical_gradients_righttype_6(self, pysmo_krg_trainer): pysmo_krg_trainer.config.numerical_gradients = 0 assert pysmo_krg_trainer.config.numerical_gradients == False @pytest.mark.unit def test_set_numerical_gradients_wrongtype(self, pysmo_krg_trainer): with pytest.raises(ValueError): pysmo_krg_trainer.config.numerical_gradients = 2 @pytest.mark.unit def test_create_model_defaults(self, pysmo_krg_trainer): output_label = "z5" data = {"x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40]} data = pd.DataFrame(data) model = pysmo_krg_trainer._create_model(data, output_label) assert model.x_data_columns == ["x1", "x2"] np.testing.assert_array_equal(model.x_data, data.values[:, :-1]) np.testing.assert_array_equal(model.y_data[:, 0], data.values[:, -1]) assert model.overwrite == True assert model.regularization == True assert model.num_grads == True assert model.filename == "solution.pickle" assert model.num_vars == data.shape[1] assert list(model.feature_list._data.keys()) == data.columns.tolist()[:-1] @pytest.mark.unit def test_create_model_no_regularization(self, pysmo_krg_trainer): output_label = "z5" data = {"x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40]} data = pd.DataFrame(data) pysmo_krg_trainer.config.regularization = False model = pysmo_krg_trainer._create_model(data, output_label) assert model.x_data_columns == ["x1", "x2"] np.testing.assert_array_equal(model.x_data, data.values[:, :-1]) np.testing.assert_array_equal(model.y_data[:, 0], data.values[:, -1]) assert model.overwrite == True assert model.regularization == False assert model.num_grads == True assert model.filename == "solution.pickle" assert model.num_vars == data.shape[1] assert list(model.feature_list._data.keys()) == data.columns.tolist()[:-1] @pytest.mark.unit def test_create_model_no_numerical_grads(self, pysmo_krg_trainer): output_label = "z5" data = {"x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40]} data = pd.DataFrame(data) pysmo_krg_trainer.config.numerical_gradients = "False" model = pysmo_krg_trainer._create_model(data, output_label) assert model.x_data_columns == ["x1", "x2"] np.testing.assert_array_equal(model.x_data, data.values[:, :-1]) np.testing.assert_array_equal(model.y_data[:, 0], data.values[:, -1]) assert model.overwrite == True assert model.regularization == True assert model.num_grads == False assert model.filename == "solution.pickle" assert model.num_vars == data.shape[1] assert list(model.feature_list._data.keys()) == data.columns.tolist()[:-1] class TestPysmoSurrogate: @pytest.fixture def pysmo_surr1(self): training_data = { "x1": [1, 2, 3, 4, 5], "x2": [5, 6, 7, 8, 9], "z1": [10, 20, 30, 40, 50], } # , 'z2': [6, 8, 10, 12, 14]} training_data = pd.DataFrame(training_data) validation_data = { "x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40], } # , 'z2': [6, 8, 10, 12]}#{'x1': [2.5], 'x2': [6.5], 'z1': [25], 'z2': [9]} validation_data = pd.DataFrame(validation_data) input_labels = ["x1", "x2"] output_labels = ["z1"] bnds = {"x1": (0, 5), "x2": (0, 10)} pysmo_trainer = PysmoPolyTrainer( input_labels=input_labels, output_labels=output_labels, input_bounds=bnds, training_dataframe=training_data, validation_dataframe=validation_data, maximum_polynomial_order=1, multinomials=True, number_of_crossvalidations=3, ) a1 = pysmo_trainer.train_surrogate() pysmo_surr1 = PysmoSurrogate(a1, input_labels, output_labels, bnds) return pysmo_surr1 @pytest.fixture def pysmo_surr2_poly(self): training_data = { "x1": [1, 2, 3, 4, 5], "x2": [5, 6, 7, 8, 9], "z1": [10, 20, 30, 40, 50], "z2": [6, 8, 10, 12, 14], } training_data = pd.DataFrame(training_data) validation_data = { "x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40], "z2": [6, 8, 10, 12], } # {'x1': [2.5], 'x2': [6.5], 'z1': [25], 'z2': [9]} validation_data = pd.DataFrame(validation_data) input_labels = ["x1", "x2"] output_labels = ["z1", "z2"] bnds = {"x1": (0, 5), "x2": (0, 10)} pysmo_trainer = PysmoPolyTrainer( input_labels=input_labels, output_labels=output_labels, input_bounds=bnds, training_dataframe=training_data, validation_dataframe=validation_data, maximum_polynomial_order=1, multinomials=True, number_of_crossvalidations=3, ) a2_poly = pysmo_trainer.train_surrogate() pysmo_surr2_poly = PysmoSurrogate(a2_poly, input_labels, output_labels) return (a2_poly, pysmo_surr2_poly) @pytest.fixture def pysmo_surr2_rbf(self): training_data = { "x1": [1, 2, 3, 4, 5], "x2": [5, 6, 7, 8, 9], "z1": [10, 20, 30, 40, 50], "z2": [6, 8, 10, 12, 14], } training_data = pd.DataFrame(training_data) validation_data = { "x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40], "z2": [6, 8, 10, 12], } # {'x1': [2.5], 'x2': [6.5], 'z1': [25], 'z2': [9]} validation_data = pd.DataFrame(validation_data) input_labels = ["x1", "x2"] output_labels = ["z1", "z2"] bnds = {"x1": (0, 5), "x2": (0, 10)} pysmo_trainer2 = PysmoRBFTrainer( input_labels=input_labels, output_labels=output_labels, input_bounds=bnds, training_dataframe=training_data, validation_dataframe=validation_data, basis_function="gaussian", regularization=False, ) a2_rbf = pysmo_trainer2.train_surrogate() pysmo_surr2_rbf = PysmoSurrogate(a2_rbf, input_labels, output_labels, bnds) return (a2_rbf, pysmo_surr2_rbf) @pytest.fixture def pysmo_surr2_krg(self): training_data = { "x1": [1, 2, 3, 4, 5], "x2": [5, 6, 7, 8, 9], "z1": [10, 20, 30, 40, 50], "z2": [6, 8, 10, 12, 14], } training_data = pd.DataFrame(training_data) validation_data = { "x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40], "z2": [6, 8, 10, 12], } # {'x1': [2.5], 'x2': [6.5], 'z1': [25], 'z2': [9]} validation_data = pd.DataFrame(validation_data) input_labels = ["x1", "x2"] output_labels = ["z1", "z2"] bnds = {"x1": (0, 5), "x2": (0, 10)} np.random.seed(0) pysmo_trainer3 = PysmoKrigingTrainer( input_labels=input_labels, output_labels=output_labels, input_bounds=bnds, training_dataframe=training_data, validation_dataframe=validation_data, regularization=True, numerical_gradients=True, ) a2_krg = pysmo_trainer3.train_surrogate() pysmo_surr2_krg = PysmoSurrogate(a2_krg, input_labels, output_labels, bnds) return (a2_krg, pysmo_surr2_krg) @pytest.fixture def pysmo_surr3(self): x1 = [1, 2, 3, 4, 5, 6] x2 = [5, 6, 7, 8, 9, 10] z1 = [ 3.5 * x1[i] + 2.5 * x2[i] - 1.5 * (sin(x1[i]) + cos(x2[i])) for i in range(len(x1)) ] z2 = [ 3.5 * x1[i] - 2.5 * x2[i] + 0.5 * (sin(x1[i]) + cos(x2[i])) for i in range(len(x1)) ] x = {"x1": x1, "x2": x2, "z1": z1, "z2": z2} training_data = pd.DataFrame(x, columns={"x1", "x2", "z1", "z2"}) # training_data = pd.DataFrame(x, columns={'x1', 'x2', 'z1', 'z2'}) validation_data = { "x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40], "z2": [6, 8, 10, 12], } # {'x1': [2.5], 'x2': [6.5], 'z1': [25], 'z2': [9]} validation_data = pd.DataFrame(validation_data) input_labels = ["x1", "x2"] output_labels = ["z1", "z2"] bnds = {"x1": (0, 10), "x2": (0, 10)} pysmo_trainer = PysmoPolyTrainer( input_labels=input_labels, output_labels=output_labels, input_bounds=bnds, training_dataframe=training_data, validation_dataframe=validation_data, maximum_polynomial_order=1, multinomials=False, extra_features=["sin(x1)", "cos(x2)"], number_of_crossvalidations=10, solution_method="mle", ) a3 = pysmo_trainer.train_surrogate() pysmo_surr3 = PysmoSurrogate(a3, input_labels, output_labels) return a3, pysmo_surr3 @pytest.fixture def pysmo_surr4(self): training_data = { "x1": [1, 2, 3, 4, 5], "x2": [5, 6, 7, 8, 9], "z1": [10, 20, 30, 40, 50], "z2": [6, 8, 10, 12, 14], } training_data = pd.DataFrame(training_data) validation_data = { "x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40], "z2": [6, 8, 10, 12], } # {'x1': [2.5], 'x2': [6.5], 'z1': [25], 'z2': [9]} validation_data = pd.DataFrame(validation_data) input_labels = ["x1", "x2"] output_labels = ["z1", "z2"] bnds = {"x1": (0, 5), "x2": (0, 10)} pysmo_trainer = PysmoPolyTrainer( input_labels=input_labels, output_labels=output_labels, input_bounds=bnds, training_dataframe=training_data, validation_dataframe=validation_data, maximum_polynomial_order=1, multinomials=False, number_of_crossvalidations=3, extra_features=["x1 / x2"], ) a2 = pysmo_trainer.train_surrogate() pysmo_surr2 = PysmoSurrogate(a2, input_labels, output_labels) return pysmo_surr2 @pytest.fixture def pysmo_surr5_rbf(self): training_data = {"x1": [1, 2, 3, 4, 5], "z1": [10, 20, 30, 40, 50]} training_data = pd.DataFrame(training_data) validation_data = {"x1": [1, 2, 3, 4], "z1": [10, 20, 30, 40]} validation_data = pd.DataFrame(validation_data) input_labels = ["x1"] output_labels = ["z1"] bnds = {"x1": (0, 5)} pysmo_trainer = PysmoRBFTrainer( input_labels=input_labels, output_labels=output_labels, input_bounds=bnds, training_dataframe=training_data, validation_dataframe=validation_data, basis_function="cubic", ) a5_rbf = pysmo_trainer.train_surrogate() pysmo_surr5_rbf = PysmoSurrogate(a5_rbf, input_labels, output_labels, bnds) return a5_rbf, pysmo_surr5_rbf @pytest.fixture def pysmo_surr5_krg(self): training_data = {"x1": [1, 2, 3, 4, 5], "z1": [10, 20, 30, 40, 50]} training_data = pd.DataFrame(training_data) validation_data = {"x1": [1, 2, 3, 4], "z1": [10, 20, 30, 40]} validation_data = pd.DataFrame(validation_data) input_labels = ["x1"] output_labels = ["z1"] bnds = {"x1": (0, 5)} pysmo_trainer2 = PysmoKrigingTrainer( input_labels=input_labels, output_labels=output_labels, input_bounds=bnds, training_dataframe=training_data, validation_dataframe=validation_data, ) a5_krg = pysmo_trainer2.train_surrogate() pysmo_surr5_krg = PysmoSurrogate(a5_krg, input_labels, output_labels, bnds) return a5_krg, pysmo_surr5_krg @pytest.fixture def pysmo_surr6(self): x1 = [1, 2, 3, 4, 5, 6] x2 = [5, 6, 7, 8, 9, 10] z1 = [ 3.5 * x1[i] + 2.5 * x2[i] - 1.5 * (exp(x1[i] / x2[i])) for i in range(len(x1)) ] z2 = [ 3.5 * x1[i] - 2.5 * x2[i] + 0.5 * (exp(x1[i] / x2[i])) for i in range(len(x1)) ] x = {"x1": x1, "x2": x2, "z1": z1, "z2": z2} training_data = pd.DataFrame(x, columns={"x1", "x2", "z1", "z2"}) # training_data = pd.DataFrame(x, columns={'x1', 'x2', 'z1', 'z2'}) validation_data = { "x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40], "z2": [6, 8, 10, 12], } # {'x1': [2.5], 'x2': [6.5], 'z1': [25], 'z2': [9]} validation_data =
pd.DataFrame(validation_data)
pandas.DataFrame
import unittest import pandas as pd from evalcat.result_list import ResultList from evalcat.fields.base import Field """Mock functions for testing ResultList.""" # Defines a document (search result item) in our collection. class Result(dict): def __init__(self, value): super().__init__(value=value) # Defines a mock metric 1: the sum of values from a list of results. def metric_sum(results): return sum(item['value'] for item in results if item['value'] is not None) # Defines a mock metric 2: the product of values from a list of results. def metric_product(results): prod = 1 for item in results: if item['value']: prod *= item['value'] return prod # Mock Field class using the metrics `metric_sum` and `metric_product`. class MockField(Field): def __init__(self): super().__init__('mock') def at_k(self, res, k=10): return {metric.__name__: metric(res[:k]) for metric in [metric_sum, metric_product]} # Input for ResultList is in this format. MOCK_RESULTS = { 'system A': { 'query 1': [Result(5), Result(2), Result(1)], 'query 2': [Result(1), Result(3)], 'query 3': [Result(5), Result(2)], }, 'system B': { 'query 1': [Result(8), Result(3)], 'query 2': [Result(4), Result(1)], 'query 3': [Result(4), Result(1), Result(3), Result(None)], } } # Mock result (Output DataFrame will be made from this). TEST_RESULTS = { 'system A': { 'query 1': {'metric_sum': 8, 'metric_product': 10}, 'query 2': {'metric_sum': 4, 'metric_product': 3}, 'query 3': {'metric_sum': 7, 'metric_product': 10} }, 'system B': { 'query 1': {'metric_sum': 11, 'metric_product': 24}, 'query 2': {'metric_sum': 5, 'metric_product': 4}, 'query 3': {'metric_sum': 8, 'metric_product': 12} } } """Test Classes""" class TestResultList(unittest.TestCase): def setUp(self): self.result_list = ResultList(MOCK_RESULTS, [MockField()]) def test_get_field_from_summary(self): pd.testing.assert_frame_equal( self.result_list.summary['mock'], self.result_list._get_field_from_summary('mock') ) with self.assertRaises(ValueError): self.result_list._get_field_from_summary('wrong_field') with self.assertRaises(TypeError): self.result_list._get_field_from_summary(12) def test_get_query_metric_matrix(self): # Testing good queries. for system in ['system A', 'system B']: test_result = pd.DataFrame({ metric: [ val[metric] for val in TEST_RESULTS[system].values() ] for metric in ['metric_sum', 'metric_product'] }, index=TEST_RESULTS[system].keys()) """Example output for system A >>> test_result | |metric_sum|metric_product| |-------|----------|--------------| |query 1| 8| 10| |query 2| 4| 3| |query 3| 7| 10| """ result_df = self.result_list.get_query_metric_df(field_name='mock', system=system)
pd.testing.assert_frame_equal(result_df, test_result)
pandas.testing.assert_frame_equal
# Copyright 2021 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # To see moto-server logs # pytest -s -p no:logging tests/test_aio_s3fs.py import pytest @pytest.mark.asyncio async def test_pandas_s3_io( aio_s3_bucket, aio_s3fs ): import numpy as np import pandas as pd s3_file = f"s3://{aio_s3_bucket}/data.csv" print(s3_file) data = {"1": np.random.rand(5)} df =
pd.DataFrame(data=data)
pandas.DataFrame
import os import numpy as np import pandas as pd import pytest from pandas.testing import assert_frame_equal from .. import read_sql @pytest.fixture(scope="module") # type: ignore def redshift_url() -> str: conn = os.environ["REDSHIFT_URL"] return conn @pytest.mark.skipif(not os.environ.get("REDSHIFT_URL"), reason="Do not test Redshift unless `REDSHIFT_URL` is set") def test_redshift_without_partition(redshift_url: str) -> None: query = "SELECT * FROM test_table" df = read_sql(redshift_url, query, protocol="cursor") # result from redshift might have different order each time df.sort_values(by="test_int", inplace=True, ignore_index=True) expected = pd.DataFrame( index=range(6), data={ "test_int":
pd.Series([0, 1, 2, 3, 4, 1314], dtype="Int64")
pandas.Series
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import datetime, timedelta import numpy as np import pytest from pandas.errors import ( NullFrequencyError, OutOfBoundsDatetime, PerformanceWarning) import pandas as pd from pandas import ( DataFrame, DatetimeIndex, NaT, Series, Timedelta, TimedeltaIndex, Timestamp, timedelta_range) import pandas.util.testing as tm def get_upcast_box(box, vector): """ Given two box-types, find the one that takes priority """ if box is DataFrame or isinstance(vector, DataFrame): return DataFrame if box is Series or isinstance(vector, Series): return Series if box is pd.Index or isinstance(vector, pd.Index): return pd.Index return box # ------------------------------------------------------------------ # Timedelta64[ns] dtype Comparisons class TestTimedelta64ArrayLikeComparisons: # Comparison tests for timedelta64[ns] vectors fully parametrized over # DataFrame/Series/TimedeltaIndex/TimedeltaArray. Ideally all comparison # tests will eventually end up here. def test_compare_timedelta64_zerodim(self, box_with_array): # GH#26689 should unbox when comparing with zerodim array box = box_with_array xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = pd.timedelta_range('2H', periods=4) other = np.array(tdi.to_numpy()[0]) tdi = tm.box_expected(tdi, box) res = tdi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(res, expected) with pytest.raises(TypeError): # zero-dim of wrong dtype should still raise tdi >= np.array(4) class TestTimedelta64ArrayComparisons: # TODO: All of these need to be parametrized over box def test_compare_timedelta_series(self): # regression test for GH#5963 s = pd.Series([timedelta(days=1), timedelta(days=2)]) actual = s > timedelta(days=1) expected = pd.Series([False, True]) tm.assert_series_equal(actual, expected) def test_tdi_cmp_str_invalid(self, box_with_array): # GH#13624 xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = TimedeltaIndex(['1 day', '2 days']) tdarr = tm.box_expected(tdi, box_with_array) for left, right in [(tdarr, 'a'), ('a', tdarr)]: with pytest.raises(TypeError): left > right with pytest.raises(TypeError): left >= right with pytest.raises(TypeError): left < right with pytest.raises(TypeError): left <= right result = left == right expected = np.array([False, False], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = left != right expected = np.array([True, True], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize('dtype', [None, object]) def test_comp_nat(self, dtype): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = rhs != lhs expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == rhs, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(lhs != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != lhs, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > lhs, expected) def test_comparisons_nat(self): tdidx1 = pd.TimedeltaIndex(['1 day', pd.NaT, '1 day 00:00:01', pd.NaT, '1 day 00:00:01', '5 day 00:00:03']) tdidx2 = pd.TimedeltaIndex(['2 day', '2 day', pd.NaT, pd.NaT, '1 day 00:00:02', '5 days 00:00:03']) tdarr = np.array([np.timedelta64(2, 'D'), np.timedelta64(2, 'D'), np.timedelta64('nat'), np.timedelta64('nat'), np.timedelta64(1, 'D') + np.timedelta64(2, 's'), np.timedelta64(5, 'D') + np.timedelta64(3, 's')]) cases = [(tdidx1, tdidx2), (tdidx1, tdarr)] # Check pd.NaT is handles as the same as np.nan for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) # TODO: better name def test_comparisons_coverage(self): rng = timedelta_range('1 days', periods=10) result = rng < rng[3] expected = np.array([True, True, True] + [False] * 7) tm.assert_numpy_array_equal(result, expected) # raise TypeError for now with pytest.raises(TypeError): rng < rng[3].value result = rng == list(rng) exp = rng == rng tm.assert_numpy_array_equal(result, exp) # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedelta64ArithmeticUnsorted: # Tests moved from type-specific test files but not # yet sorted/parametrized/de-duplicated def test_ufunc_coercions(self): # normal ops are also tested in tseries/test_timedeltas.py idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [idx * 2, np.multiply(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['4H', '8H', '12H', '16H', '20H'], freq='4H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '4H' for result in [idx / 2, np.divide(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['1H', '2H', '3H', '4H', '5H'], freq='H', name='x') tm.assert_index_equal(result, exp) assert result.freq == 'H' idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [-idx, np.negative(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['-2H', '-4H', '-6H', '-8H', '-10H'], freq='-2H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '-2H' idx = TimedeltaIndex(['-2H', '-1H', '0H', '1H', '2H'], freq='H', name='x') for result in [abs(idx), np.absolute(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['2H', '1H', '0H', '1H', '2H'], freq=None, name='x') tm.assert_index_equal(result, exp) assert result.freq is None def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi - dt with pytest.raises(TypeError, match=msg): tdi - dti msg = (r"descriptor '__sub__' requires a 'datetime\.datetime' object" " but received a 'Timedelta'") with pytest.raises(TypeError, match=msg): td - dt msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): td - dti result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = pd.date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = pd.date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): assert result == expected assert isinstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt_tz - dt msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts_tz2 msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt - dt_tz msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): ts - dt_tz with pytest.raises(TypeError, match=msg): ts_tz2 - ts with pytest.raises(TypeError, match=msg): ts_tz2 - dt with pytest.raises(TypeError, match=msg): ts_tz - ts_tz2 # with dti with pytest.raises(TypeError, match=msg): dti - ts_tz with pytest.raises(TypeError, match=msg): dti_tz - ts with pytest.raises(TypeError, match=msg): dti_tz - ts_tz2 result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length msg = "cannot add indices of unequal length" with pytest.raises(ValueError, match=msg): tdi + dti[0:1] with pytest.raises(ValueError, match=msg): tdi[0:1] + dti # random indexes with pytest.raises(NullFrequencyError): tdi + pd.Int64Index([1, 2, 3]) # this is a union! # pytest.raises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') assert result == expected result = td + dt expected = Timestamp('20130102') assert result == expected # TODO: Needs more informative name, probably split up into # more targeted tests @pytest.mark.parametrize('freq', ['D', 'B']) def test_timedelta(self, freq): index = pd.date_range('1/1/2000', periods=50, freq=freq) shifted = index + timedelta(1) back = shifted + timedelta(-1) tm.assert_index_equal(index, back) if freq == 'D': expected = pd.tseries.offsets.Day(1) assert index.freq == expected assert shifted.freq == expected assert back.freq == expected else: # freq == 'B' assert index.freq == pd.tseries.offsets.BusinessDay(1) assert shifted.freq is None assert back.freq == pd.tseries.offsets.BusinessDay(1) result = index - timedelta(1) expected = index + timedelta(-1) tm.assert_index_equal(result, expected) # GH#4134, buggy with timedeltas rng = pd.date_range('2013', '2014') s = Series(rng) result1 = rng - pd.offsets.Hour(1) result2 = DatetimeIndex(s - np.timedelta64(100000000)) result3 = rng - np.timedelta64(100000000) result4 = DatetimeIndex(s - pd.offsets.Hour(1)) tm.assert_index_equal(result1, result4) tm.assert_index_equal(result2, result3) class TestAddSubNaTMasking: # TODO: parametrize over boxes def test_tdi_add_timestamp_nat_masking(self): # GH#17991 checking for overflow-masking with NaT tdinat = pd.to_timedelta(['24658 days 11:15:00', 'NaT']) tsneg = Timestamp('1950-01-01') ts_neg_variants = [tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype('datetime64[ns]'), tsneg.to_datetime64().astype('datetime64[D]')] tspos = Timestamp('1980-01-01') ts_pos_variants = [tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype('datetime64[ns]'), tspos.to_datetime64().astype('datetime64[D]')] for variant in ts_neg_variants + ts_pos_variants: res = tdinat + variant assert res[1] is pd.NaT def test_tdi_add_overflow(self): # See GH#14068 # preliminary test scalar analogue of vectorized tests below with pytest.raises(OutOfBoundsDatetime): pd.to_timedelta(106580, 'D') + Timestamp('2000') with pytest.raises(OutOfBoundsDatetime): Timestamp('2000') + pd.to_timedelta(106580, 'D') _NaT = int(pd.NaT) + 1 msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): pd.to_timedelta([106580], 'D') + Timestamp('2000') with pytest.raises(OverflowError, match=msg): Timestamp('2000') + pd.to_timedelta([106580], 'D') with pytest.raises(OverflowError, match=msg): pd.to_timedelta([_NaT]) - Timedelta('1 days') with pytest.raises(OverflowError, match=msg): pd.to_timedelta(['5 days', _NaT]) - Timedelta('1 days') with pytest.raises(OverflowError, match=msg): (pd.to_timedelta([_NaT, '5 days', '1 hours']) - pd.to_timedelta(['7 seconds', _NaT, '4 hours'])) # These should not overflow! exp = TimedeltaIndex([pd.NaT]) result = pd.to_timedelta([pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp = TimedeltaIndex(['4 days', pd.NaT]) result = pd.to_timedelta(['5 days', pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp = TimedeltaIndex([pd.NaT, pd.NaT, '5 hours']) result = (pd.to_timedelta([pd.NaT, '5 days', '1 hours']) + pd.to_timedelta(['7 seconds', pd.NaT, '4 hours'])) tm.assert_index_equal(result, exp) class TestTimedeltaArraylikeAddSubOps: # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # TODO: moved from frame tests; needs parametrization/de-duplication def test_td64_df_add_int_frame(self): # GH#22696 Check that we don't dispatch to numpy implementation, # which treats int64 as m8[ns] tdi = pd.timedelta_range('1', periods=3) df = tdi.to_frame() other = pd.DataFrame([1, 2, 3], index=tdi) # indexed like `df` with pytest.raises(TypeError): df + other with pytest.raises(TypeError): other + df with pytest.raises(TypeError): df - other with pytest.raises(TypeError): other - df # TODO: moved from tests.indexes.timedeltas.test_arithmetic; needs # parametrization+de-duplication def test_timedelta_ops_with_missing_values(self): # setup s1 = pd.to_timedelta(Series(['00:00:01'])) s2 = pd.to_timedelta(Series(['00:00:02'])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Passing datetime64-dtype data to TimedeltaIndex is deprecated sn = pd.to_timedelta(Series([pd.NaT])) df1 = pd.DataFrame(['00:00:01']).apply(pd.to_timedelta) df2 = pd.DataFrame(['00:00:02']).apply(pd.to_timedelta) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Passing datetime64-dtype data to TimedeltaIndex is deprecated dfn = pd.DataFrame([pd.NaT]).apply(pd.to_timedelta) scalar1 = pd.to_timedelta('00:00:01') scalar2 = pd.to_timedelta('00:00:02') timedelta_NaT = pd.to_timedelta('NaT') actual = scalar1 + scalar1 assert actual == scalar2 actual = scalar2 - scalar1 assert actual == scalar1 actual = s1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - s1 tm.assert_series_equal(actual, s1) actual = s1 + scalar1 tm.assert_series_equal(actual, s2) actual = scalar1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - scalar1 tm.assert_series_equal(actual, s1) actual = -scalar1 + s2 tm.assert_series_equal(actual, s1) actual = s1 + timedelta_NaT tm.assert_series_equal(actual, sn) actual = timedelta_NaT + s1 tm.assert_series_equal(actual, sn) actual = s1 - timedelta_NaT tm.assert_series_equal(actual, sn) actual = -timedelta_NaT + s1 tm.assert_series_equal(actual, sn) with pytest.raises(TypeError): s1 + np.nan with pytest.raises(TypeError): np.nan + s1 with pytest.raises(TypeError): s1 - np.nan with pytest.raises(TypeError): -np.nan + s1 actual = s1 + pd.NaT tm.assert_series_equal(actual, sn) actual = s2 - pd.NaT tm.assert_series_equal(actual, sn) actual = s1 + df1 tm.assert_frame_equal(actual, df2) actual = s2 - df1 tm.assert_frame_equal(actual, df1) actual = df1 + s1 tm.assert_frame_equal(actual, df2) actual = df2 - s1 tm.assert_frame_equal(actual, df1) actual = df1 + df1 tm.assert_frame_equal(actual, df2) actual = df2 - df1 tm.assert_frame_equal(actual, df1) actual = df1 + scalar1 tm.assert_frame_equal(actual, df2) actual = df2 - scalar1 tm.assert_frame_equal(actual, df1) actual = df1 + timedelta_NaT tm.assert_frame_equal(actual, dfn) actual = df1 - timedelta_NaT tm.assert_frame_equal(actual, dfn) with pytest.raises(TypeError): df1 + np.nan with pytest.raises(TypeError): df1 - np.nan actual = df1 + pd.NaT # NaT is datetime, not timedelta tm.assert_frame_equal(actual, dfn) actual = df1 - pd.NaT tm.assert_frame_equal(actual, dfn) # TODO: moved from tests.series.test_operators, needs splitting, cleanup, # de-duplication, box-parametrization... def test_operators_timedelta64(self): # series ops v1 = pd.date_range('2012-1-1', periods=3, freq='D') v2 = pd.date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') tm.assert_series_equal(rs, xp) assert rs.dtype == 'timedelta64[ns]' df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) assert td.dtype == 'timedelta64[ns]' # series on the rhs result = df['A'] - df['A'].shift() assert result.dtype == 'timedelta64[ns]' result = df['A'] + td assert result.dtype == 'M8[ns]' # scalar Timestamp on rhs maxa = df['A'].max() assert isinstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() assert resultb.dtype == 'timedelta64[ns]' # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') tm.assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') tm.assert_series_equal(result, expected) assert result.dtype == 'm8[ns]' d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d assert resulta.dtype == 'm8[ns]' # roundtrip resultb = resulta + d tm.assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td tm.assert_series_equal(resultb, df['A']) assert resultb.dtype == 'M8[ns]' # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td tm.assert_series_equal(df['A'], resultb) assert resultb.dtype == 'M8[ns]' # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) assert rs[2] == value def test_timedelta64_ops_nat(self): # GH 11349 timedelta_series = Series([NaT, Timedelta('1s')]) nat_series_dtype_timedelta = Series([NaT, NaT], dtype='timedelta64[ns]') single_nat_dtype_timedelta = Series([NaT], dtype='timedelta64[ns]') # subtraction tm.assert_series_equal(timedelta_series - NaT, nat_series_dtype_timedelta) tm.assert_series_equal(-NaT + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series - single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(-single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) # addition tm.assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) # multiplication tm.assert_series_equal(nat_series_dtype_timedelta * 1.0, nat_series_dtype_timedelta) tm.assert_series_equal(1.0 * nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series * 1, timedelta_series) tm.assert_series_equal(1 * timedelta_series, timedelta_series) tm.assert_series_equal(timedelta_series * 1.5, Series([NaT, Timedelta('1.5s')])) tm.assert_series_equal(1.5 * timedelta_series, Series([NaT, Timedelta('1.5s')])) tm.assert_series_equal(timedelta_series * np.nan, nat_series_dtype_timedelta) tm.assert_series_equal(np.nan * timedelta_series, nat_series_dtype_timedelta) # division tm.assert_series_equal(timedelta_series / 2, Series([NaT, Timedelta('0.5s')])) tm.assert_series_equal(timedelta_series / 2.0, Series([NaT, Timedelta('0.5s')])) tm.assert_series_equal(timedelta_series / np.nan, nat_series_dtype_timedelta) # ------------------------------------------------------------- # Invalid Operations def test_td64arr_add_str_invalid(self, box_with_array): # GH#13624 tdi = TimedeltaIndex(['1 day', '2 days']) tdi = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdi + 'a' with pytest.raises(TypeError): 'a' + tdi @pytest.mark.parametrize('other', [3.14, np.array([2.0, 3.0])]) def test_td64arr_add_sub_float(self, box_with_array, other): tdi = TimedeltaIndex(['-1 days', '-1 days']) tdarr = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdarr + other with pytest.raises(TypeError): other + tdarr with pytest.raises(TypeError): tdarr - other with pytest.raises(TypeError): other - tdarr @pytest.mark.parametrize('freq', [None, 'H']) def test_td64arr_sub_period(self, box_with_array, freq): # GH#13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') idx = TimedeltaIndex(['1 hours', '2 hours'], freq=freq) idx = tm.box_expected(idx, box_with_array) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx @pytest.mark.parametrize('pi_freq', ['D', 'W', 'Q', 'H']) @pytest.mark.parametrize('tdi_freq', [None, 'H']) def test_td64arr_sub_pi(self, box_with_array, tdi_freq, pi_freq): # GH#20049 subtracting PeriodIndex should raise TypeError tdi = TimedeltaIndex(['1 hours', '2 hours'], freq=tdi_freq) dti = Timestamp('2018-03-07 17:16:40') + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? tdi = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdi - pi # ------------------------------------------------------------- # Binary operations td64 arraylike and datetime-like def test_td64arr_sub_timestamp_raises(self, box_with_array): idx = TimedeltaIndex(['1 day', '2 day']) idx = tm.box_expected(idx, box_with_array) msg = ("cannot subtract a datelike from|" "Could not operate|" "cannot perform operation") with pytest.raises(TypeError, match=msg): idx - Timestamp('2011-01-01') def test_td64arr_add_timestamp(self, box_with_array, tz_naive_fixture): # GH#23215 # TODO: parametrize over scalar datetime types? tz = tz_naive_fixture other = Timestamp('2011-01-01', tz=tz) idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03'], tz=tz) idx = tm.box_expected(idx, box_with_array) expected = tm.box_expected(expected, box_with_array) result = idx + other tm.assert_equal(result, expected) result = other + idx tm.assert_equal(result, expected) def test_td64arr_add_sub_timestamp(self, box_with_array): # GH#11925 ts = Timestamp('2012-01-01') # TODO: parametrize over types of datetime scalar? tdi =
timedelta_range('1 day', periods=3)
pandas.timedelta_range
from datetime import datetime, date, time, timedelta from collections import Counter from flaskblog import api import sys import tweepy import numpy as np import pandas as pd import re from textblob import TextBlob import matplotlib.pyplot as plt from wordcloud import WordCloud, STOPWORDS def get_tweets(hashtag): all_tweets = [] for tweet in tweepy.Cursor(api.search, q=hashtag, lang='en', tweet_mode = 'extended').items(100): all_tweets.append(tweet.full_text) return all_tweets def tweet_to_data_frame(tweets): df =
pd.DataFrame(data=[tweet for tweet in tweets], columns=['Tweets'])
pandas.DataFrame
import os import gc import re import json import random import numpy as np import pandas as pd import scipy.io as sio from tqdm import tqdm import matplotlib.pyplot as plt from daisy.utils.data import incorporate_in_ml100k from scipy.sparse import csr_matrix from collections import defaultdict from IPython import embed def convert_unique_idx(df, col): column_dict = {x: i for i, x in enumerate(df[col].unique())} df[col] = df[col].apply(column_dict.get) assert df[col].min() == 0 assert df[col].max() == len(column_dict) - 1 return df def cut_down_data_half(df): cut_df = pd.DataFrame([]) for u in np.unique(df.user): aux = df[df['user'] == u].copy() cut_df = cut_df.append(df.sample(int(len(aux) / 2))) return cut_df def filter_users_and_items(df, num_users=None, freq_items=None, top_items=None, keys=['user', 'item']): ''' Reduces the dataframe to a number of users = num_users and it filters the items by frequency ''' if num_users is not None: # df = df[df['user_id'].isin(np.unique(df.user_id)[:num_users])] df = df[df[keys[0]].isin(np.unique(df[keys[0]])[:num_users])] # Get top5k books if top_items is not None: top5k_books = df[keys[1]].value_counts()[:top_items].index df = df[df[keys[1]].isin(top5k_books)] if freq_items is not None: frequent_items = df['item'].value_counts()[df['item'].value_counts() > freq_items].index df = df[df[keys[1]].isin(frequent_items)] return df def run_statistics(df, src): path = f'histograms/{src}' bins = 30 os.makedirs(path, exist_ok=True) f = open(os.path.join(path, "information.txt"), "w+") f.write("Information:\n") f.write("==========================\n") f.write(f"Interactions: {len(df)}\n") f.write(f"#users = {df['user'].nunique()}\n") f.write(f"#items = {df['item'].nunique()}\n") f.close() for key in ['user', 'item']: # OPCIÓ A: HISTOGRAMA a = pd.DataFrame(df.groupby([key])[key].count()) a.columns = ['value_counts'] a.reset_index(level=[0], inplace=True) dims = (15, 5) fig, ax = plt.subplots(figsize=dims) a["value_counts"].hist(bins=200) # fig.savefig('hist.jpg') fig.savefig(os.path.join(path, f'{src}_histogram_{key}_bins={bins}.png')) fig.clf() # OPCIÓ : BARPLOT # a = pd.DataFrame(df_year.groupby(['user'])['user'].count()) # a.columns = ['value_counts'] # a.reset_index(level=[0], inplace=True) # dims = (15, 5) # fig, ax = plt.subplots(figsize=dims) # sns.set_style("darkgrid") # sns.barplot(ax=ax, x="user", y="value_counts", data=a, palette="Blues_d") # ax.set(xlabel="User", ylabel="Value Counts") # plt.xticks(rotation=45) # plt.show() # fig.savefig('data.jpg') def load_rate(src='ml-100k', prepro='origin', binary=True, pos_threshold=None, level='ui', context=False, gce_flag=False, cut_down_data=False, side_info=False, context_type='', context_as_userfeat=False, flag_run_statistics=False, remove_top_users=0, remove_on='item'): """ Method of loading certain raw data Parameters ---------- src : str, the name of dataset prepro : str, way to pre-process raw data input, expect 'origin', f'{N}core', f'{N}filter', N is integer value binary : boolean, whether to transform rating to binary label as CTR or not as Regression pos_threshold : float, if not None, treat rating larger than this threshold as positive sample level : str, which level to do with f'{N}core' or f'{N}filter' operation (it only works when prepro contains 'core' or 'filter') Returns ------- df : pd.DataFrame, rating information with columns: user, item, rating, (options: timestamp) user_num : int, the number of users item_num : int, the number of items """ df = pd.DataFrame() # import mat73 # a = mat73.loadmat('data/gen-disease/genes_phenes.mat') # which dataset will use if src == 'ml-100k': df = pd.read_csv(f'./data/{src}/u.data', sep='\t', header=None, names=['user', 'item', 'rating', 'timestamp'], engine='python') if cut_down_data: df = cut_down_data_half(df) # from 100k to 49.760 interactions elif src == 'drugs': union = False if union == True: df = pd.read_csv(f'./data/{src}/train_data_contextUNION_sideeffect.csv', engine='python', index_col=0) df.drop(columns=['context'], inplace=True) df.rename(columns={'drug': 'user', 'disease': 'item', 'context_union': 'context', 'proteins': 'item-feat', 'side_effect': 'user-feat'}, inplace=True) else: df = pd.read_csv(f'./data/{src}/train_data_allcontext_sideeffect.csv', engine='python', index_col=0) df.rename(columns={'drug': 'user', 'disease': 'item', # 'proteins_drug': 'user-feat', 'proteins': 'item-feat', 'side_effect': 'user-feat'}, inplace=True) if not context: df = df[['user', 'item']] else: if context_as_userfeat: df = df[['user', 'item', 'user-feat', 'item-feat']] else: df = df[['user', 'item', 'context', 'user-feat']] df['array_context_flag'] = True df['timestamp'] = 1 df['rating'] = 1 elif src == 'ml-1m': df = pd.read_csv(f'./data/{src}/ratings.dat', sep='::', header=None, names=['user', 'item', 'rating', 'timestamp'], engine='python') # only consider rating >=4 for data density # df = df.query('rating >= 4').reset_index(drop=True).copy() elif src == 'ml-10m': df = pd.read_csv(f'./data/{src}/ratings.dat', sep='::', header=None, names=['user', 'item', 'rating', 'timestamp'], engine='python') # df = df.query('rating >= 4').reset_index(drop=True).copy() elif src == 'ml-20m': df = pd.read_csv(f'./data/{src}/ratings.csv') df.rename(columns={'userId': 'user', 'movieId': 'item'}, inplace=True) # df = df.query('rating >= 4').reset_index(drop=True) elif src == 'books': if not os.path.exists(f'./data/{src}/preprocessed_books_complete_timestamp.csv'): df = pd.read_csv(f'./data/{src}/preprocessed_books_complete.csv', sep=',', engine='python') df.rename(columns={'user_id': 'user', 'book_id': 'item', 'date_added': 'timestamp'}, inplace=True) df = convert_unique_idx(df, 'user') df = convert_unique_idx(df, 'item') df['rating'] = 1.0 # if type(df['timestamp'][0]) == 'str': df['date'] = pd.to_datetime(df['timestamp']) df['timestamp'] = pd.to_datetime(df['date'], utc=True) df['timestamp'] = df.timestamp.astype('int64') // 10 ** 9 df.to_csv(f'./data/{src}/preprocessed_books_complete_timestamp.csv', sep=',', index=False) else: df =
pd.read_csv(f'./data/{src}/preprocessed_books_complete_timestamp.csv', sep=',', engine='python')
pandas.read_csv
import pytz import pytest import dateutil import warnings import numpy as np from datetime import timedelta from itertools import product import pandas as pd import pandas._libs.tslib as tslib import pandas.util.testing as tm from pandas.errors import PerformanceWarning from pandas.core.indexes.datetimes import cdate_range from pandas import (DatetimeIndex, PeriodIndex, Series, Timestamp, Timedelta, date_range, TimedeltaIndex, _np_version_under1p10, Index, datetime, Float64Index, offsets, bdate_range) from pandas.tseries.offsets import BMonthEnd, CDay, BDay from pandas.tests.test_base import Ops START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestDatetimeIndexOps(Ops): tz = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific'] def setup_method(self, method): super(TestDatetimeIndexOps, self).setup_method(method) mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): f = lambda x: isinstance(x, DatetimeIndex) self.check_ops_properties(DatetimeIndex._field_ops, f) self.check_ops_properties(DatetimeIndex._object_ops, f) self.check_ops_properties(DatetimeIndex._bool_ops, f) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH7206 for op in ['year', 'day', 'second', 'weekday']: pytest.raises(TypeError, lambda x: getattr(self.dt_series, op)) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) assert s.year == 2000 assert s.month == 1 assert s.day == 10 pytest.raises(AttributeError, lambda: s.weekday) def test_asobject_tolist(self): idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [Timestamp('2013-01-31'), Timestamp('2013-02-28'), Timestamp('2013-03-31'), Timestamp('2013-04-30')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject assert isinstance(result, Index) assert result.dtype == object tm.assert_index_equal(result, expected) assert result.name == expected.name assert idx.tolist() == expected_list idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz='Asia/Tokyo') expected_list = [Timestamp('2013-01-31', tz='Asia/Tokyo'), Timestamp('2013-02-28', tz='Asia/Tokyo'), Timestamp('2013-03-31', tz='Asia/Tokyo'), Timestamp('2013-04-30', tz='Asia/Tokyo')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject assert isinstance(result, Index) assert result.dtype == object tm.assert_index_equal(result, expected) assert result.name == expected.name assert idx.tolist() == expected_list idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), pd.NaT, Timestamp('2013-01-04')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject assert isinstance(result, Index) assert result.dtype == object tm.assert_index_equal(result, expected) assert result.name == expected.name assert idx.tolist() == expected_list def test_minmax(self): for tz in self.tz: # monotonic idx1 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz=tz) assert idx1.is_monotonic # non-monotonic idx2 = pd.DatetimeIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], tz=tz) assert not idx2.is_monotonic for idx in [idx1, idx2]: assert idx.min() == Timestamp('2011-01-01', tz=tz) assert idx.max() == Timestamp('2011-01-03', tz=tz) assert idx.argmin() == 0 assert idx.argmax() == 2 for op in ['min', 'max']: # Return NaT obj = DatetimeIndex([]) assert pd.isna(getattr(obj, op)()) obj = DatetimeIndex([pd.NaT]) assert pd.isna(getattr(obj, op)()) obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT]) assert pd.isna(getattr(obj, op)()) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') assert np.min(dr) == Timestamp('2016-01-15 00:00:00', freq='D') assert np.max(dr) == Timestamp('2016-01-20 00:00:00', freq='D') errmsg = "the 'out' parameter is not supported" tm.assert_raises_regex(ValueError, errmsg, np.min, dr, out=0) tm.assert_raises_regex(ValueError, errmsg, np.max, dr, out=0) assert np.argmin(dr) == 0 assert np.argmax(dr) == 5 if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assert_raises_regex( ValueError, errmsg, np.argmin, dr, out=0) tm.assert_raises_regex( ValueError, errmsg, np.argmax, dr, out=0) def test_round(self): for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=5, freq='30Min', tz=tz) elt = rng[1] expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 01:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(rng.round(freq='H'), expected_rng) assert elt.round(freq='H') == expected_elt msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with tm.assert_raises_regex(ValueError, msg): rng.round(freq='foo') with tm.assert_raises_regex(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assert_raises_regex(ValueError, msg, rng.round, freq='M') tm.assert_raises_regex(ValueError, msg, elt.round, freq='M') # GH 14440 & 15578 index = pd.DatetimeIndex(['2016-10-17 12:00:00.0015'], tz=tz) result = index.round('ms') expected = pd.DatetimeIndex(['2016-10-17 12:00:00.002000'], tz=tz) tm.assert_index_equal(result, expected) for freq in ['us', 'ns']: tm.assert_index_equal(index, index.round(freq)) index = pd.DatetimeIndex(['2016-10-17 12:00:00.00149'], tz=tz) result = index.round('ms') expected = pd.DatetimeIndex(['2016-10-17 12:00:00.001000'], tz=tz) tm.assert_index_equal(result, expected) index = pd.DatetimeIndex(['2016-10-17 12:00:00.001501031']) result = index.round('10ns') expected = pd.DatetimeIndex(['2016-10-17 12:00:00.001501030']) tm.assert_index_equal(result, expected) with tm.assert_produces_warning(): ts = '2016-10-17 12:00:00.001501031' pd.DatetimeIndex([ts]).round('1010ns') def test_repeat_range(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) assert result.freq is None assert len(result) == 5 * len(rng) for tz in self.tz: index = pd.date_range('2001-01-01', periods=2, freq='D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = pd.date_range('2001-01-01', periods=2, freq='2D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = pd.DatetimeIndex(['2001-01-01', 'NaT', '2003-01-01'], tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-01', 'NaT', 'NaT', 'NaT', '2003-01-01', '2003-01-01', '2003-01-01'], tz=tz) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) assert res.freq is None def test_repeat(self): reps = 2 msg = "the 'axis' parameter is not supported" for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=2, freq='30Min', tz=tz) expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), ]) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) assert res.freq is None tm.assert_index_equal(np.repeat(rng, reps), expected_rng) tm.assert_raises_regex(ValueError, msg, np.repeat, rng, reps, axis=1) def test_representation(self): idx = [] idx.append(DatetimeIndex([], freq='D')) idx.append(DatetimeIndex(['2011-01-01'], freq='D')) idx.append(DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00' ], freq='H', tz='Asia/Tokyo')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='UTC')) exp = [] exp.append("""DatetimeIndex([], dtype='datetime64[ns]', freq='D')""") exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', " "freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01 09:00:00+09:00', " "'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']" ", dtype='datetime64[ns, Asia/Tokyo]', freq='H')") exp.append("DatetimeIndex(['2011-01-01 09:00:00-05:00', " "'2011-01-01 10:00:00-05:00', 'NaT'], " "dtype='datetime64[ns, US/Eastern]', freq=None)") exp.append("DatetimeIndex(['2011-01-01 09:00:00+00:00', " "'2011-01-01 10:00:00+00:00', 'NaT'], " "dtype='datetime64[ns, UTC]', freq=None)""") with pd.option_context('display.width', 300): for indx, expected in zip(idx, exp): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(indx, func)() assert result == expected def test_representation_to_series(self): idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') idx7 = DatetimeIndex(['2011-01-01 09:00', '2011-01-02 10:15']) exp1 = """Series([], dtype: datetime64[ns])""" exp2 = """0 2011-01-01 dtype: datetime64[ns]""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: datetime64[ns]""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: datetime64[ns]""" exp5 = """0 2011-01-01 09:00:00+09:00 1 2011-01-01 10:00:00+09:00 2 2011-01-01 11:00:00+09:00 dtype: datetime64[ns, Asia/Tokyo]""" exp6 = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 NaT dtype: datetime64[ns, US/Eastern]""" exp7 = """0 2011-01-01 09:00:00 1 2011-01-02 10:15:00 dtype: datetime64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7], [exp1, exp2, exp3, exp4, exp5, exp6, exp7]): result = repr(Series(idx)) assert result == expected def test_summary(self): # GH9116 idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') exp1 = """DatetimeIndex: 0 entries Freq: D""" exp2 = """DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = ("DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 " "to 2011-01-01 11:00:00+09:00\n" "Freq: H") exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6]): result = idx.summary() assert result == expected def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): for tz in self.tz: idx = pd.date_range(start='2013-04-01', periods=30, freq=freq, tz=tz) assert idx.resolution == expected def test_union(self): for tz in self.tz: # union rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=10, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=8, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + 1 expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add a datelike to a DatetimeIndex" with tm.assert_raises_regex(TypeError, msg): idx + Timestamp('2011-01-01') with tm.assert_raises_regex(TypeError, msg): Timestamp('2011-01-01') + idx def test_add_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now raises # TypeError (GH14164) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') with pytest.raises(TypeError): dti + dti with pytest.raises(TypeError): dti_tz + dti_tz with pytest.raises(TypeError): dti_tz + dti with pytest.raises(TypeError): dti + dti_tz def test_difference(self): for tz in self.tz: # diff rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=3, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_diff = rng.difference(other) tm.assert_index_equal(result_diff, expected) def test_sub_isub(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - 1 expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 = date_range('20130101', periods=3).tz_localize('UTC') expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) with pytest.raises(TypeError): dti_tz - dti with pytest.raises(TypeError): dti - dti_tz with pytest.raises(TypeError): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range('20130101', periods=3) dti2 = date_range('20130101', periods=4) with pytest.raises(ValueError): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(['2012-01-01', np.nan, '2012-01-03']) dti2 = DatetimeIndex(['2012-01-02', '2012-01-03', np.nan]) expected = TimedeltaIndex(['1 days', np.nan, np.nan]) result = dti2 - dti1
tm.assert_index_equal(result, expected)
pandas.util.testing.assert_index_equal
# -*- coding: utf-8 -*- import re import numpy as np import pytest from pandas.core.dtypes.common import ( is_bool_dtype, is_categorical, is_categorical_dtype, is_datetime64_any_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64tz_dtype, is_datetimetz, is_dtype_equal, is_interval_dtype, is_period, is_period_dtype, is_string_dtype) from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, IntervalDtype, PeriodDtype, registry) import pandas as pd from pandas import ( Categorical, CategoricalIndex, IntervalIndex, Series, date_range) from pandas.core.sparse.api import SparseDtype import pandas.util.testing as tm @pytest.fixture(params=[True, False, None]) def ordered(request): return request.param class Base(object): def setup_method(self, method): self.dtype = self.create() def test_hash(self): hash(self.dtype) def test_equality_invalid(self): assert not self.dtype == 'foo' assert not is_dtype_equal(self.dtype, np.int64) def test_numpy_informed(self): pytest.raises(TypeError, np.dtype, self.dtype) assert not self.dtype == np.str_ assert not np.str_ == self.dtype def test_pickle(self): # make sure our cache is NOT pickled # clear the cache type(self.dtype).reset_cache() assert not len(self.dtype._cache) # force back to the cache result = tm.round_trip_pickle(self.dtype) assert not len(self.dtype._cache) assert result == self.dtype class TestCategoricalDtype(Base): def create(self): return CategoricalDtype() def test_pickle(self): # make sure our cache is NOT pickled # clear the cache type(self.dtype).reset_cache() assert not len(self.dtype._cache) # force back to the cache result = tm.round_trip_pickle(self.dtype) assert result == self.dtype def test_hash_vs_equality(self): dtype = self.dtype dtype2 = CategoricalDtype() assert dtype == dtype2 assert dtype2 == dtype assert hash(dtype) == hash(dtype2) def test_equality(self): assert is_dtype_equal(self.dtype, 'category') assert is_dtype_equal(self.dtype, CategoricalDtype()) assert not is_dtype_equal(self.dtype, 'foo') def test_construction_from_string(self): result = CategoricalDtype.construct_from_string('category') assert is_dtype_equal(self.dtype, result) pytest.raises( TypeError, lambda: CategoricalDtype.construct_from_string('foo')) def test_constructor_invalid(self): msg = "Parameter 'categories' must be list-like" with pytest.raises(TypeError, match=msg): CategoricalDtype("category") dtype1 = CategoricalDtype(['a', 'b'], ordered=True) dtype2 = CategoricalDtype(['x', 'y'], ordered=False) c = Categorical([0, 1], dtype=dtype1, fastpath=True) @pytest.mark.parametrize('values, categories, ordered, dtype, expected', [ [None, None, None, None, CategoricalDtype()], [None, ['a', 'b'], True, None, dtype1], [c, None, None, dtype2, dtype2], [c, ['x', 'y'], False, None, dtype2], ]) def test_from_values_or_dtype( self, values, categories, ordered, dtype, expected): result = CategoricalDtype._from_values_or_dtype(values, categories, ordered, dtype) assert result == expected @pytest.mark.parametrize('values, categories, ordered, dtype', [ [None, ['a', 'b'], True, dtype2], [None, ['a', 'b'], None, dtype2], [None, None, True, dtype2], ]) def test_from_values_or_dtype_raises(self, values, categories, ordered, dtype): msg = "Cannot specify `categories` or `ordered` together with `dtype`." with pytest.raises(ValueError, match=msg): CategoricalDtype._from_values_or_dtype(values, categories, ordered, dtype) def test_is_dtype(self): assert CategoricalDtype.is_dtype(self.dtype) assert CategoricalDtype.is_dtype('category') assert CategoricalDtype.is_dtype(CategoricalDtype()) assert not CategoricalDtype.is_dtype('foo') assert not CategoricalDtype.is_dtype(np.float64) def test_basic(self): assert is_categorical_dtype(self.dtype) factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) s = Series(factor, name='A') # dtypes assert is_categorical_dtype(s.dtype) assert is_categorical_dtype(s) assert not is_categorical_dtype(np.dtype('float64')) assert is_categorical(s.dtype) assert is_categorical(s) assert not is_categorical(np.dtype('float64')) assert not is_categorical(1.0) def test_tuple_categories(self): categories = [(1, 'a'), (2, 'b'), (3, 'c')] result = CategoricalDtype(categories) assert all(result.categories == categories) @pytest.mark.parametrize("categories, expected", [ ([True, False], True), ([True, False, None], True), ([True, False, "a", "b'"], False), ([0, 1], False), ]) def test_is_boolean(self, categories, expected): cat = Categorical(categories) assert cat.dtype._is_boolean is expected assert is_bool_dtype(cat) is expected assert is_bool_dtype(cat.dtype) is expected class TestDatetimeTZDtype(Base): def create(self): return DatetimeTZDtype('ns', 'US/Eastern') def test_alias_to_unit_raises(self): # 23990 with tm.assert_produces_warning(FutureWarning): DatetimeTZDtype('datetime64[ns, US/Central]') def test_alias_to_unit_bad_alias_raises(self): # 23990 with pytest.raises(TypeError, match=''): DatetimeTZDtype('this is a bad string') with pytest.raises(TypeError, match=''): DatetimeTZDtype('datetime64[ns, US/NotATZ]') def test_hash_vs_equality(self): # make sure that we satisfy is semantics dtype = self.dtype dtype2 = DatetimeTZDtype('ns', 'US/Eastern') dtype3 = DatetimeTZDtype(dtype2) assert dtype == dtype2 assert dtype2 == dtype assert dtype3 == dtype assert hash(dtype) == hash(dtype2) assert hash(dtype) == hash(dtype3) dtype4 = DatetimeTZDtype("ns", "US/Central") assert dtype2 != dtype4 assert hash(dtype2) != hash(dtype4) def test_construction(self): pytest.raises(ValueError, lambda: DatetimeTZDtype('ms', 'US/Eastern')) def test_subclass(self): a = DatetimeTZDtype.construct_from_string('datetime64[ns, US/Eastern]') b = DatetimeTZDtype.construct_from_string('datetime64[ns, CET]') assert issubclass(type(a), type(a)) assert issubclass(type(a), type(b)) def test_compat(self): assert is_datetime64tz_dtype(self.dtype) assert is_datetime64tz_dtype('datetime64[ns, US/Eastern]') assert is_datetime64_any_dtype(self.dtype) assert is_datetime64_any_dtype('datetime64[ns, US/Eastern]') assert is_datetime64_ns_dtype(self.dtype) assert is_datetime64_ns_dtype('datetime64[ns, US/Eastern]') assert not is_datetime64_dtype(self.dtype) assert not is_datetime64_dtype('datetime64[ns, US/Eastern]') def test_construction_from_string(self): result = DatetimeTZDtype.construct_from_string( 'datetime64[ns, US/Eastern]') assert is_dtype_equal(self.dtype, result) pytest.raises(TypeError, lambda: DatetimeTZDtype.construct_from_string('foo')) def test_construct_from_string_raises(self): with pytest.raises(TypeError, match="notatz"): DatetimeTZDtype.construct_from_string('datetime64[ns, notatz]') with pytest.raises(TypeError, match="^Could not construct DatetimeTZDtype$"): DatetimeTZDtype.construct_from_string(['datetime64[ns, notatz]']) def test_is_dtype(self): assert not DatetimeTZDtype.is_dtype(None) assert DatetimeTZDtype.is_dtype(self.dtype) assert DatetimeTZDtype.is_dtype('datetime64[ns, US/Eastern]') assert not DatetimeTZDtype.is_dtype('foo') assert DatetimeTZDtype.is_dtype(DatetimeTZDtype('ns', 'US/Pacific')) assert not DatetimeTZDtype.is_dtype(np.float64) def test_equality(self): assert is_dtype_equal(self.dtype, 'datetime64[ns, US/Eastern]') assert is_dtype_equal(self.dtype, DatetimeTZDtype('ns', 'US/Eastern')) assert not is_dtype_equal(self.dtype, 'foo') assert not is_dtype_equal(self.dtype, DatetimeTZDtype('ns', 'CET')) assert not is_dtype_equal(DatetimeTZDtype('ns', 'US/Eastern'), DatetimeTZDtype('ns', 'US/Pacific')) # numpy compat assert is_dtype_equal(np.dtype("M8[ns]"), "datetime64[ns]") def test_basic(self): assert is_datetime64tz_dtype(self.dtype) dr = date_range('20130101', periods=3, tz='US/Eastern') s = Series(dr, name='A') # dtypes assert is_datetime64tz_dtype(s.dtype) assert is_datetime64tz_dtype(s) assert not is_datetime64tz_dtype(np.dtype('float64')) assert not is_datetime64tz_dtype(1.0) with tm.assert_produces_warning(FutureWarning): assert is_datetimetz(s) assert is_datetimetz(s.dtype) assert not is_datetimetz(np.dtype('float64')) assert not is_datetimetz(1.0) def test_dst(self): dr1 = date_range('2013-01-01', periods=3, tz='US/Eastern') s1 = Series(dr1, name='A') assert is_datetime64tz_dtype(s1) with tm.assert_produces_warning(FutureWarning): assert is_datetimetz(s1) dr2 = date_range('2013-08-01', periods=3, tz='US/Eastern') s2 = Series(dr2, name='A') assert is_datetime64tz_dtype(s2) with tm.assert_produces_warning(FutureWarning): assert is_datetimetz(s2) assert s1.dtype == s2.dtype @pytest.mark.parametrize('tz', ['UTC', 'US/Eastern']) @pytest.mark.parametrize('constructor', ['M8', 'datetime64']) def test_parser(self, tz, constructor): # pr #11245 dtz_str = '{con}[ns, {tz}]'.format(con=constructor, tz=tz) result = DatetimeTZDtype.construct_from_string(dtz_str) expected = DatetimeTZDtype('ns', tz) assert result == expected def test_empty(self): with pytest.raises(TypeError, match="A 'tz' is required."): DatetimeTZDtype() class TestPeriodDtype(Base): def create(self): return PeriodDtype('D') def test_hash_vs_equality(self): # make sure that we satisfy is semantics dtype = self.dtype dtype2 = PeriodDtype('D') dtype3 = PeriodDtype(dtype2) assert dtype == dtype2 assert dtype2 == dtype assert dtype3 == dtype assert dtype is dtype2 assert dtype2 is dtype assert dtype3 is dtype assert hash(dtype) == hash(dtype2) assert hash(dtype) == hash(dtype3) def test_construction(self): with pytest.raises(ValueError): PeriodDtype('xx') for s in ['period[D]', 'Period[D]', 'D']: dt = PeriodDtype(s) assert dt.freq == pd.tseries.offsets.Day() assert is_period_dtype(dt) for s in ['period[3D]', 'Period[3D]', '3D']: dt = PeriodDtype(s) assert dt.freq == pd.tseries.offsets.Day(3) assert is_period_dtype(dt) for s in ['period[26H]', 'Period[26H]', '26H', 'period[1D2H]', 'Period[1D2H]', '1D2H']: dt = PeriodDtype(s) assert dt.freq == pd.tseries.offsets.Hour(26) assert is_period_dtype(dt) def test_subclass(self): a = PeriodDtype('period[D]') b = PeriodDtype('period[3D]') assert issubclass(type(a), type(a)) assert issubclass(type(a), type(b)) def test_identity(self): assert PeriodDtype('period[D]') == PeriodDtype('period[D]') assert PeriodDtype('period[D]') is PeriodDtype('period[D]') assert PeriodDtype('period[3D]') == PeriodDtype('period[3D]') assert PeriodDtype('period[3D]') is PeriodDtype('period[3D]') assert PeriodDtype('period[1S1U]') == PeriodDtype('period[1000001U]') assert PeriodDtype('period[1S1U]') is PeriodDtype('period[1000001U]') def test_compat(self): assert not is_datetime64_ns_dtype(self.dtype) assert not is_datetime64_ns_dtype('period[D]') assert not is_datetime64_dtype(self.dtype) assert not is_datetime64_dtype('period[D]') def test_construction_from_string(self): result = PeriodDtype('period[D]') assert is_dtype_equal(self.dtype, result) result = PeriodDtype.construct_from_string('period[D]') assert is_dtype_equal(self.dtype, result) with pytest.raises(TypeError): PeriodDtype.construct_from_string('foo') with pytest.raises(TypeError): PeriodDtype.construct_from_string('period[foo]') with pytest.raises(TypeError): PeriodDtype.construct_from_string('foo[D]') with pytest.raises(TypeError): PeriodDtype.construct_from_string('datetime64[ns]') with pytest.raises(TypeError): PeriodDtype.construct_from_string('datetime64[ns, US/Eastern]') def test_is_dtype(self): assert PeriodDtype.is_dtype(self.dtype) assert PeriodDtype.is_dtype('period[D]') assert PeriodDtype.is_dtype('period[3D]') assert PeriodDtype.is_dtype(PeriodDtype('3D')) assert PeriodDtype.is_dtype('period[U]') assert PeriodDtype.is_dtype('period[S]') assert PeriodDtype.is_dtype(PeriodDtype('U')) assert PeriodDtype.is_dtype(PeriodDtype('S')) assert not PeriodDtype.is_dtype('D') assert not PeriodDtype.is_dtype('3D') assert not PeriodDtype.is_dtype('U') assert not PeriodDtype.is_dtype('S') assert not PeriodDtype.is_dtype('foo') assert not PeriodDtype.is_dtype(np.object_) assert not PeriodDtype.is_dtype(np.int64) assert not PeriodDtype.is_dtype(np.float64) def test_equality(self): assert is_dtype_equal(self.dtype, 'period[D]') assert is_dtype_equal(self.dtype, PeriodDtype('D')) assert is_dtype_equal(self.dtype, PeriodDtype('D')) assert is_dtype_equal(PeriodDtype('D'), PeriodDtype('D')) assert not is_dtype_equal(self.dtype, 'D') assert not is_dtype_equal(PeriodDtype('D'), PeriodDtype('2D')) def test_basic(self): assert is_period_dtype(self.dtype) pidx = pd.period_range('2013-01-01 09:00', periods=5, freq='H') assert is_period_dtype(pidx.dtype) assert is_period_dtype(pidx) with tm.assert_produces_warning(FutureWarning): assert is_period(pidx) s = Series(pidx, name='A') assert is_period_dtype(s.dtype) assert is_period_dtype(s) with tm.assert_produces_warning(FutureWarning): assert is_period(s) assert not is_period_dtype(np.dtype('float64')) assert not is_period_dtype(1.0) with tm.assert_produces_warning(FutureWarning): assert not is_period(np.dtype('float64')) with tm.assert_produces_warning(FutureWarning): assert not is_period(1.0) def test_empty(self): dt = PeriodDtype() with pytest.raises(AttributeError): str(dt) def test_not_string(self): # though PeriodDtype has object kind, it cannot be string assert not is_string_dtype(PeriodDtype('D')) class TestIntervalDtype(Base): def create(self): return IntervalDtype('int64') def test_hash_vs_equality(self): # make sure that we satisfy is semantics dtype = self.dtype dtype2 = IntervalDtype('int64') dtype3 = IntervalDtype(dtype2) assert dtype == dtype2 assert dtype2 == dtype assert dtype3 == dtype assert dtype is dtype2 assert dtype2 is dtype3 assert dtype3 is dtype assert hash(dtype) == hash(dtype2) assert hash(dtype) == hash(dtype3) dtype1 = IntervalDtype('interval') dtype2 = IntervalDtype(dtype1) dtype3 = IntervalDtype('interval') assert dtype2 == dtype1 assert dtype2 == dtype2 assert dtype2 == dtype3 assert dtype2 is dtype1 assert dtype2 is dtype2 assert dtype2 is dtype3 assert hash(dtype2) == hash(dtype1) assert hash(dtype2) == hash(dtype2) assert hash(dtype2) == hash(dtype3) @pytest.mark.parametrize('subtype', [ 'interval[int64]', 'Interval[int64]', 'int64', np.dtype('int64')]) def test_construction(self, subtype): i = IntervalDtype(subtype) assert i.subtype == np.dtype('int64') assert is_interval_dtype(i) @pytest.mark.parametrize('subtype', [None, 'interval', 'Interval']) def test_construction_generic(self, subtype): # generic i = IntervalDtype(subtype) assert i.subtype is None assert is_interval_dtype(i) @pytest.mark.parametrize('subtype', [ CategoricalDtype(list('abc'), False), CategoricalDtype(list('wxyz'), True), object, str, '<U10', 'interval[category]', 'interval[object]']) def test_construction_not_supported(self, subtype): # GH 19016 msg = ('category, object, and string subtypes are not supported ' 'for IntervalDtype') with pytest.raises(TypeError, match=msg): IntervalDtype(subtype) @pytest.mark.parametrize('subtype', ['xx', 'IntervalA', 'Interval[foo]']) def test_construction_errors(self, subtype): msg = 'could not construct IntervalDtype' with pytest.raises(TypeError, match=msg): IntervalDtype(subtype) def test_construction_from_string(self): result = IntervalDtype('interval[int64]') assert is_dtype_equal(self.dtype, result) result = IntervalDtype.construct_from_string('interval[int64]') assert is_dtype_equal(self.dtype, result) @pytest.mark.parametrize('string', [ 0, 3.14, ('a', 'b'), None]) def test_construction_from_string_errors(self, string): # these are invalid entirely msg = 'a string needs to be passed, got type' with pytest.raises(TypeError, match=msg): IntervalDtype.construct_from_string(string) @pytest.mark.parametrize('string', [ 'foo', 'foo[int64]', 'IntervalA']) def test_construction_from_string_error_subtype(self, string): # this is an invalid subtype msg = ("Incorrectly formatted string passed to constructor. " r"Valid formats include Interval or Interval\[dtype\] " "where dtype is numeric, datetime, or timedelta") with pytest.raises(TypeError, match=msg): IntervalDtype.construct_from_string(string) def test_subclass(self): a = IntervalDtype('interval[int64]') b = IntervalDtype('interval[int64]') assert issubclass(type(a), type(a)) assert issubclass(type(a), type(b)) def test_is_dtype(self): assert IntervalDtype.is_dtype(self.dtype) assert IntervalDtype.is_dtype('interval') assert IntervalDtype.is_dtype(IntervalDtype('float64')) assert IntervalDtype.is_dtype(IntervalDtype('int64')) assert IntervalDtype.is_dtype(IntervalDtype(np.int64)) assert not
IntervalDtype.is_dtype('D')
pandas.core.dtypes.dtypes.IntervalDtype.is_dtype
__copyright__ = """ Copyright (C) 2020 <NAME> Copyright (C) 2020 <NAME> """ __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import pandas as pd from scipy.interpolate import interp1d # pylint: disable=no-member class SimulationResult: def __init__(self, time, y): self.t = time self.y = y from pydemic.distributions import GammaDistribution default_serial = GammaDistribution(mean=4, std=3.25) class NonMarkovianSEIRSimulationBase: """ Main driver for non-Markovian simulations, used as a base class for SEIR++ variants. .. automethod:: __init__ .. automethod:: get_y0 .. automethod:: __call__ .. automethod:: get_model_data """ increment_keys = ('infected', 'dead') def seasonal_forcing(self, t): phase = 2 * np.pi * (t - self.peak_day) / 365 return (1 + self.seasonal_forcing_amp * np.cos(phase)) def __init__(self, mitigation=None, *, age_distribution=None, r0=3.2, serial_dist=default_serial, seasonal_forcing_amp=.2, peak_day=15): """ The following keyword-only arguments are recognized: :arg mitigation: A function of time specifying a multiplicative factor. Defaults to ``lambda t: 1``. :arg r0: The basic reproduction number. :arg serial_dist: The serial interval distribution, i.e., an instance of (a subclass of) :class:`~pydemic.distributions.DistributionBase`). :arg seasonal_forcing_amp: The amplitude (i.e., maximum fractional change) in the force of infection due to seasonal effects. :arg peak_day: The day of the year at which seasonal forcing is greatest. """ if mitigation is not None: self.mitigation = mitigation else: self.mitigation = lambda t: 1 self.serial_dist = serial_dist self.seasonal_forcing_amp = seasonal_forcing_amp self.peak_day = peak_day self.r0 = r0 def step(self, state, count, dt): Rt = (self.r0 * self.mitigation(state.t[count]) * self.seasonal_forcing(state.t[count])) j_m = np.dot(state.y['infected'][..., count-1::-1], self.serial_pdf[:count]) j_i = j_m.sum() S_i = state.y['susceptible'][..., count-1] new_infected_i = dt * Rt * S_i * j_i / self.total_population state.y['infected'][..., count] = new_infected_i state.y['susceptible'][..., count] = ( state.y['susceptible'][..., count-1] - new_infected_i ) def get_y0(self, total_population, initial_cases, age_distribution): """ Initializes a population with a number ``initial_cases`` of initial infectious individuals distributed in proportion to ``age_distribution``. :arg total_population: The total size of the population. :arg initial_cases: The total numnber of initial cases. :arg age_distribution: A :class:`numpy.ndarray` specifying the relative fraction of the population in various age groups. :returns: A :class:`dict` containing the initial conditions for the ``'infected'`` and ``'susceptible'`` compartments. """ # FIXME: shouldn't be set here self.total_population = total_population self.population = total_population * np.array(age_distribution) n_demographics = len(age_distribution) y0 = {} for key in ('susceptible', 'infected'): y0[key] = np.zeros((n_demographics,)) y0['infected'][...] = initial_cases * np.array(age_distribution) y0['susceptible'][...] = self.population - y0['infected'] return y0 def __call__(self, tspan, y0, dt=.05): """ :arg tspan: A :class:`tuple` specifying the initiala and final times. :arg y0: A :class:`dict` with the initial values (as :class:`numpy.ndarray`'s) for the ``'infected'`` and ``'susceptible'`` compartments, e.g., as returned by :meth:`get_y0`. :arg dt: The timestep. :returns: A :class:`SimulationResult` with attributes ``t``, the array of times of evaluation, and ``y``, a :class:`dict` of results where time proceeds along the first axis. """ start_time, end_time = tspan times = np.arange(start_time, end_time + dt, dt) n_steps = times.shape[0] pdf = self.serial_dist.pdf(times[1:] - start_time, method='diff') self.serial_pdf = pdf / dt y0_all_t = {} for key in y0: y0_all_t[key] = np.zeros(y0[key].shape + (n_steps,)) y0_all_t[key][..., 0] = y0[key] influxes = SimulationResult(times, y0_all_t) for count in range(1, n_steps): self.step(influxes, count, dt) for key, val in influxes.y.items(): influxes.y[key] = val.T return influxes @classmethod def get_model_data(cls, t, **kwargs): """ A wrapper to :meth:`__init__` and :meth:`__call__` for initializing and running a simulation from keyword arguments only (i.e., as used by :class:`~pydemic.LikelihoodEstimator`.) :arg t: A :class:`pandas.DatetimeIndex` (or :class:`numpy.ndarray` of times in days since 2020/1/1) of times at which to evaluate the solution. The following keyword arguments are required: :arg start_day: The day (relative to 2020/1/1) at which to begin the simulation---i.e., the day corresponding to the initial condition generated by :meth:`get_y0`. :arg total_population: The total size of the population. :arg initial_cases: The total numnber of initial cases. :arg age_distribution: A :class:`numpy.ndarray` specifying the relative fraction of the population in various age groups. In addition, a :class:`~pydemic.MitigationModel` is created from passed keyword arguments via :meth:`~pydemic.MitigationModel.init_from_kwargs`. The following optional keyword arguments are also recognized: :arg min_mitigation_spacing: The minimum number of days of separation between mitigation events. Defaults to ``5``. All remaining keyword arguments are passed to :meth:`__init__`. :raises InvalidParametersError: if ``t`` specifies any days of evaluation which are not at least one day after ``start_day``. :raises InvalidParametersError: if mitigation events are not ordered and separated by ``min_mitigation_spacing``. :returns: A :class:`pandas.DataFrame` of simulation results. """ if isinstance(t, pd.DatetimeIndex): t_eval = (t -
pd.to_datetime('2020-01-01')
pandas.to_datetime
from typing import Union, Dict, List, Optional from pathlib import Path from datetime import date import numpy as np from tqdm import tqdm import pandas as pd from .utils import get_basin_list from .datautils import load_forcing, load_discharge def split_basins( camels_root: Union[str, Path], basin_list: Union[str, Path], split: List[float], store_folder: Union[str, Path], timeseries: List[str], dataset: List[str], seed: int, normalize: bool = True, ): if isinstance(basin_list, str): basin_list = Path(basin_list) elif not isinstance(basin_list, Path): raise TypeError(f"basin_list must be Path or str, not {type(basin_list)}") if isinstance(store_folder, str): store_folder = Path(store_folder) elif not isinstance(store_folder, Path): raise TypeError(f"basin_list must be Path or str, not {type(basin_list)}") if sum(split) > 1: raise ValueError(f"sum of splits must be 1, not {sum(split)}") if len(split) not in (2, 3): raise ValueError(f"length of split must be 2 or 3, not {len(split)}") np.random.seed(seed) store_folder = store_folder / f"split_seed_{seed}" store_folder.mkdir(parents=True, exist_ok=True) basins = np.loadtxt(basin_list, dtype="str") np.random.shuffle(basins) if len(split) == 2: basins_test = basins[: int(len(basins) * split[1])] basins_train = basins[int(len(basins) * split[1]) :] else: basins_test = basins[: int(len(basins) * split[2])] basins_validation = basins[ int(len(basins) * split[2]) : int(len(basins) * split[1]) + int(len(basins) * split[2]) ] basins_train = basins[ int(len(basins) * split[1]) + int(len(basins) * split[2]) : ] np.savetxt(store_folder / "basins_test.txt", basins_test, fmt="%s") np.savetxt(store_folder / "basins_train.txt", basins_train, fmt="%s") if len(split) == 3: np.savetxt(store_folder / "basins_validation.txt", basins_validation, fmt="%s") if normalize: create_normalization_file( camels_root, store_folder / "basins_train.txt", dataset=dataset, timeseries=timeseries, ) def cross_validation_split( camels_root: Union[str, Path], basin_list: Union[str, Path], k: int, test_split: float, store_folder: Union[str, Path], seed: int, dataset: List[str], timeseries: List[str], normalize: bool = True, ): if isinstance(basin_list, str): basin_list = Path(basin_list) elif not isinstance(basin_list, Path): raise TypeError(f"basin_list must be Path or str, not {type(basin_list)}") if isinstance(store_folder, str): store_folder = Path(store_folder) elif not isinstance(store_folder, Path): raise TypeError(f"basin_list must be Path or str, not {type(basin_list)}") store_folder = store_folder / f"cross_validation_seed_{seed}" store_folder.mkdir(parents=True, exist_ok=True) np.random.seed(seed) basins = np.loadtxt(basin_list, dtype="str") np.random.shuffle(basins) basins_test = basins[: int(len(basins) * test_split)] basins = basins[int(len(basins) * test_split) :] basins_split = np.array_split(basins, k) np.savetxt(store_folder / "basins_test.txt", basins_test, fmt="%s") for i, basins_val in enumerate(basins_split): split_folder = store_folder / f"{i}" split_folder.mkdir(parents=True, exist_ok=True) basins_train = np.delete(basins_split, i) basins_train_list = [] for sub_split in basins_train: basins_train_list.extend(list(sub_split)) basins_train = np.array(basins_train_list, dtype=object) del basins_train_list np.savetxt(split_folder / "basins_val.txt", basins_val, fmt="%s") np.savetxt(split_folder / "basins_train.txt", basins_train, fmt="%s") create_normalization_file( camels_root, split_folder / "basins_train.txt", dataset=dataset, timeseries=timeseries, ) def combine_cv_datasets( cv_folder_1: Path, cv_folder_2: Path, store_folder: Path, seed: int, k: int = 5, normalize: bool = True, timeseries: Optional[List[str]] = None, dataset: Optional[List[str]] = None, camels_root: Optional[Union[Path, str, List[Union[Path, str]]]] = None, ): store_folder = store_folder / f"cross_validation_seed_{seed}" store_folder.mkdir(exist_ok=True, parents=True) cv1 = cv_folder_1 / f"cross_validation_seed_{seed}" cv2 = cv_folder_2 / f"cross_validation_seed_{seed}" test1 = np.loadtxt(cv1 / "basins_test.txt", dtype="str") test2 = np.loadtxt(cv2 / "basins_test.txt", dtype="str") test = np.append(test1, test2) np.savetxt(store_folder / "basins_test.txt", test, fmt="%s") for i in range(k): train1, train2 = ( np.loadtxt(cv1 / f"{i}" / "basins_train.txt", dtype="str"), np.loadtxt(cv2 / f"{i}" / "basins_train.txt", dtype="str"), ) train = np.append(train1, train2) cv_folder = store_folder / f"{i}" cv_folder.mkdir(exist_ok=True) np.savetxt(cv_folder / "basins_train.txt", train, fmt="%s") if normalize: create_normalization_file( camels_root=camels_root, dataset=dataset, train_basin_list=cv_folder / "basins_train.txt", timeseries=timeseries, ) val1, val2 = ( np.loadtxt(cv1 / f"{i}" / "basins_val.txt", dtype="str"), np.loadtxt(cv2 / f"{i}" / "basins_val.txt", dtype="str"), ) val = np.append(val1, val2) np.savetxt(cv_folder / "basins_val.txt", val, fmt="%s") def create_normalization_file( camels_root: Union[str, Path], train_basin_list: Path, dataset: List[str], timeseries: List[str], ): basin_list = get_basin_list(train_basin_list) mean = np.zeros(len(timeseries)).reshape(1, -1) mean_squared = np.zeros_like(mean) length = 0 for i, basin in enumerate(tqdm(basin_list)): forcing, _ = load_forcing(camels_root, basin, dataset=dataset) forcing = forcing[timeseries] discharge = load_discharge(camels_root, basin, _, dataset=dataset) if i == 0: mean = pd.DataFrame(mean, columns=forcing.columns) mean["discharge"] = np.array([0]) mean_squared =
pd.DataFrame(mean_squared, columns=forcing.columns)
pandas.DataFrame
import pandas as pd import numpy as np import datetime from utils import * import matplotlib.pyplot as plt DATA_PATH = "./data/EVconsumption/" d1 =
pd.read_csv(DATA_PATH + "data_0_joined_data.csv")
pandas.read_csv
import pandas as pd import numpy as np from vivarium import InteractiveContext from vivarium.framework.randomness import choice from vivarium.framework.state_machine import Machine, State, Transition def _population_fixture(column, initial_value): class PopFixture: @property def name(self): return f"test_pop_fixture_{column}_{initial_value}" def setup(self, builder): self.population_view = builder.population.get_view([column]) builder.population.initializes_simulants(self.inner, creates_columns=[column]) def inner(self, pop_data): self.population_view.update(pd.Series(initial_value, index=pop_data.index)) return PopFixture() def _even_population_fixture(column, values): class pop_fixture: @property def name(self): return "test_pop_fixture" def setup(self, builder): self.population_view = builder.population.get_view([column]) builder.population.initializes_simulants(self.inner, creates_columns=[column]) def inner(self, pop_data): self.population_view.update(choice('start', pop_data.index, values)) return pop_fixture() def test_transition(): done_state = State('done') start_state = State('start') start_state.add_transition(done_state) machine = Machine('state', states=[start_state, done_state]) simulation = InteractiveContext(components=[machine, _population_fixture('state', 'start')]) event_time = simulation._clock.time + simulation._clock.step_size machine.transition(simulation.get_population().index, event_time) assert np.all(simulation.get_population().state == 'done') def test_choice(base_config): base_config.update({'population': {'population_size': 10000}}) a_state = State('a') b_state = State('b') start_state = State('start') start_state.add_transition(a_state, probability_func=lambda agents: np.full(len(agents), 0.5)) start_state.add_transition(b_state, probability_func=lambda agents: np.full(len(agents), 0.5)) machine = Machine('state', states=[start_state, a_state, b_state]) simulation = InteractiveContext(components=[machine, _population_fixture('state', 'start')], configuration=base_config) event_time = simulation._clock.time + simulation._clock.step_size machine.transition(simulation.get_population().index, event_time) a_count = (simulation.get_population().state == 'a').sum() assert round(a_count/len(simulation.get_population()), 1) == 0.5 def test_null_transition(base_config): base_config.update({'population': {'population_size': 10000}}) a_state = State('a') start_state = State('start') start_state.add_transition(a_state, probability_func=lambda agents: np.full(len(agents), 0.5)) start_state.allow_self_transitions() machine = Machine('state', states=[start_state, a_state]) simulation = InteractiveContext(components=[machine, _population_fixture('state', 'start')], configuration=base_config) event_time = simulation._clock.time + simulation._clock.step_size machine.transition(simulation.get_population().index, event_time) a_count = (simulation.get_population().state == 'a').sum() assert round(a_count/len(simulation.get_population()), 1) == 0.5 def test_no_null_transition(base_config): base_config.update({'population': {'population_size': 10000}}) a_state = State('a') b_state = State('b') start_state = State('start') a_transition = Transition(start_state, a_state, probability_func=lambda index:
pd.Series(0.5, index=index)
pandas.Series
from __future__ import division from laspy.file import File import numpy as np import pandas as pd import time, math def timing(f): def wrap(*args): time1 = time.time() ret = f(*args) time2 = time.time() print('%s function took %0.3f ms' % (f.func_name, (time2-time1)*1000.0)) return ret return wrap @timing def loadLAS2XYZ(filepath): ''' Function to load in console the pointcloud of a LAS file :param filepath: filepath of the LAS file :return: xyz array containing coordinate of the points ''' print('Start loading...') inFile = File(filepath, mode='r') coords = np.vstack((inFile.x, inFile.y, inFile.z)).transpose() print('Data loaded') return coords @timing def loadLAS2XYZAIR(filepath): ''' Function to load in console the pointcloud of a LAS file with points attributes :param filepath: filepath of the LAS file :return: xyz array containing coordinate of the points ''' print('Start loading...') inFile = File(filepath, mode='r') coords = np.vstack((inFile.x, inFile.y, inFile.z, inFile.amplitude, inFile.Intensity, inFile.reflectance, inFile.num_returns)).transpose() print('Data loaded') return coords def xyz2binarray(xyz, xstart, xend, ystart, yend, nx=1000, ny=1000, method='min'): ''' Function to extract projected grid on the XY-plane of point cloud statistics :param xyz: a 3 column vector containing the point location in cartesian coordinate system :param xstart: x-minimum of the grid :param xend: x-maximum of the grid :param ystart: y-minimm of the grid :param yend: y-maximum of the grid :param nx: number of grid cell in the x directions :param ny: number of grid cell in the y directions :param method: statistics to extract from each gridcell :return: returns a 2D array, xmin, and ymax TO IMPLEMENT: - being able to choose to input dx dy instead of nx ny ''' binned, bins_x, bins_y, bin_xmin, bin_ymin = binData2D(xyz, xstart, xend, ystart, yend, nx, ny) if method == 'min': ret = binned.Z.min().unstack().T # .iloc[::-1] elif method == 'max': ret = binned.Z.max().unstack().T # .iloc[::-1] elif method == 'mean': ret = binned.Z.mean().unstack().T # .iloc[::-1] elif method == 'median': ret = binned.Z.median().unstack().T # .iloc[::-1] elif method == 'count': ret = binned.Z.count().unstack().T # .iloc[::-1] xmin = bins_x[ret.columns.min().astype(int)] ymax = bins_y[ret.index.get_values().max().astype(int)] newIndy = np.arange(ret.index.get_values().min(), ret.index.get_values().max() + 1) newIndx = np.arange(ret.columns.min(), ret.columns.max() + 1) a = ret.reindex(newIndy, newIndx) mat = np.zeros((ny, nx)) * np.nan mat[bin_ymin:bin_ymin + a.shape[0], bin_xmin:bin_xmin + a.shape[1]] = a return mat[::-1], xmin, ymax def LAS2txt(filepath,newfile): ''' Function to convert a pointcloud save in LAS format into a .txt format :param filepath: filepath of the LAS file :param newfile: name of the new file :return: save data into a text file ''' inFile = File(filepath, mode='r') coords = np.vstack((inFile.x, inFile.y, inFile.z)).transpose() if newfile[-4] != '.txt': newfile = newfile + '.txt' np.savetxt(newfile,coords) print('File saved: ' + newfile) def xyz_subsample(xyz, length_out): ''' Function to subsample a 3 columm matrix. :param xyz: 3 column matrix :param length_out: number of sample to output :return: a 3 column matrix ''' ind = np.random.randint(0,xyz.shape[0],length_out) xyz_new = xyz[ind,:] print('xyz subsampled!') return xyz_new def xyz_stat(xyz): print('Shape of array: ' + str(xyz.shape)) print('Min of xyz: ') print(np.min(xyz, axis=0)) print('Max of xyz: ') print(np.max(xyz, axis=0)) print('Mean of xyz: ') print(np.mean(xyz, axis=0)) print('Extent') print(np.max(xyz, axis=0)-np.min(xyz, axis=0)) def trans(xyz,trans_vec): ''' Function to translate an xyz 3 column matrix :param xyz: a 3 column matrix :param trans_vec: a translation vector of length 3 :return: a 3 column matrix translated ''' xyz[:,0] = xyz[:,0] - trans_vec[0] xyz[:,1] = xyz[:,1] - trans_vec[1] xyz[:,2] = xyz[:,2] - trans_vec[2] return xyz def translate_coords(coords, xyz_trans = None ,ask = True): ''' Function to translate a point cloud :param coords: an xyz array :param xyz_trans: vector of translation in [x,y,z] :param ask: if True (default) brings an interactive console for approving the translation :return: translated xyz array ''' if xyz_trans is None: xyz_trans = [coords[:,0].min(), coords[:,1].min(), coords[:,2].min()] if ask is True: print('Default translation:') print(str(xyz_trans) + '\n') res = input('Do you want to translate? 0/1') if res is 0: print('No Translation applied') return None if res is 1: return trans(coords, xyz_trans) if ask is not True: return trans(coords, xyz_trans) def truncate(xyz, Xextent, Yextent): ''' Function to truncate a point cloud with a rectangular shape :param xyz: a 3 column matrix containing the points coordinate :param Xextent: a vector of Xmin and Xmax (e.g. [Xmin,Xmax]) :param Yextent: a vector of Ymin and Ymax (e.g. [Ymin, Ymax]) :return: a 3 colum matrix containing the points coordiante within the specified rectangle ''' xcut = xyz[xyz[:,0]>=Xextent[0]] xcut1 = xcut[xcut[:,0]<Xextent[1]] ycut = xcut1[xcut1[:,1]>=Yextent[0]] ycut1 = ycut[ycut[:,1]<Yextent[1]] return ycut1 def cart2cyl(xyz, xy_axis=None): ''' function to convert cartesian coordinates to cylindrical :param xyz: a 3-column matrix containing the points coordinates expressed in a cartesian system :param xy_axis: an array of x and y coordinate for the center of the new cylindrical coordinate :return: a 3 colum matrix with the point coordinates are expressed in a cylindrical coordinate system ''' if xy_axis is not None: xyz[:,0] = xyz[:,0] - xy_axis[0] xyz[:,1] = xyz[:,1] - xy_axis[1] rho = np.sqrt(xyz[:,0]**2 + xyz[:,1]**2) phi = np.arctan2(xyz[:,1], xyz[:,0]) rpz = np.vstack((rho,phi,xyz[:,2])) return rpz.transpose() def cyl2cart(rpz): ''' convert cylindrical coordinate to cartesian :param rpz: a 3-column matrix containing the points coordinates expressed in a cylindrical system :return: a 3-column matrix containing the points coordinates expressed in a cartesian system ''' x = rpz[:,0] * np.cos(rpz[:,1]) y = rpz[:,0] * np.sin(rpz[:,1]) xyz = np.vstack((x,y,rpz[:,2])) return xyz.transpose() def rotate_cloud(xyz, angle, center_coord=None): ''' Function to rotate a point cloud :param xyz: n*3 array containing point cloud coordinates in a cartesian system :param angle: angle of rotation in degrees :param center_coord: tuple with xy coordiantes of the center of rotation. Default is None :return: the rotated xyz point cloud ''' if center_coord is None: center_coord = [np.mean(xyz[:,0]),np.mean(xyz[:,1])] rpz = cart2cyl(xyz, xy_axis=center_coord) rpz[:,1] = rpz[:,1] + angle xyz = cyl2cart(rpz) return xyz def get_slice(xyz, thick, dir=0, center_coord=None): ''' Function to extract a slice of the point cloud xyz :param xyz: n*3 array containing point cloud coordinates in a cartesian system :param thick: thickness of the slice :param dir: direction of the slice in degrees (default is 0) :param center_coord: tuple with xy coordinates of the center of rotation. Default is None :return: return slice in xyz format. ''' if center_coord is None: center_coord = [np.mean(xyz[:,0]),np.mean(xyz[:,1])] print(center_coord) if dir % 180 != 0: xyz = rotate_cloud(xyz, (dir*math.pi/180), center_coord= center_coord) myslice = xyz[xyz[:,0]>=-(thick/2)] myslice = myslice[myslice[:,0]<=(thick/2)] return myslice def get_slice_df(df_xyz, thick, dir=0, center_coord=None): ''' Function to extract a slice of points from a dataframe :param xyz: n*3 array containing point cloud coordinates in a cartesian system :param thick: thickness of the slice :param dir: direction of the slice in degrees (default is 0) :param center_coord: tuple with xy coordinates of the center of rotation. Default is None :return: return slice in xyz format. ''' df = df_xyz.copy() df_xyz=None if center_coord is None: center_coord = [df['x'].mean(),df['y'].mean()] print(center_coord) if dir % 180 != 0: xyz = rotate_cloud(np.array(df[['x','y','z']]), (dir*math.pi/180), center_coord = center_coord) df[['x','y']] = xyz[:,[0,1]] myslice = df[df.x >= - (thick / 2)] myslice = myslice[df.x <= (thick/2)] else: myslice = df[df.x >= (center_coord[0] - thick / 2)] myslice = myslice[df.x <= (center_coord[0] + thick / 2)] myslice['x'] = myslice['x'] - center_coord[0] myslice['y'] = myslice['y'] - center_coord[1] print('Data Sliced') return myslice def center_pc_coord_df(df_xyz, center_coord=None): if center_coord is None: center_coord = [(df_xyz['x'].max()-df_xyz['x'].min())/2 + df_xyz['x'].min(), (df_xyz['y'].max()-df_xyz['y'].min())/2 +df_xyz['y'].min()] print(center_coord) df_xyz['x'] = df_xyz['x'] - center_coord[0] df_xyz['y'] = df_xyz['y'] - center_coord[1] return df_xyz @timing def binData2D(myXYZ, xstart, xend, ystart, yend, nx, ny): ''' Fucntion to bin a scatter point cloud (xyz) into a 2d array :param myXYZ: xyz array containings the point cloud coordiantes :param xstart: :param xend: :param ystart: :param yend: :param nx: number of cells along the x-axis :param ny: number of cells along hte y-axis :return: a group object (pandas library) with all points classified into bins ''' # note, the division requires: from _future_ import division x = myXYZ[:,0].ravel() y = myXYZ[:,1].ravel() z = myXYZ[:,2].ravel() df = pd.DataFrame({'X' : x , 'Y' : y , 'Z' : z}) bins_x = np.linspace(xstart, xend, nx+1) x_cuts = pd.cut(df.X,bins_x, labels=False) bins_y = np.linspace(ystart,yend, ny+1) y_cuts = pd.cut(df.Y,bins_y, labels=False) bin_xmin, bin_ymin = x_cuts.min(), y_cuts.min() print('Data cut in a ' + str(bins_x.__len__()) + ' by ' + str(bins_y.__len__()) + ' matrix') dx = (xend - xstart)/nx dy = (yend - ystart)/ny print('dx = ' + str(dx) + ' ; dy = ' + str (dy)) grouped = df.groupby([x_cuts,y_cuts]) print('Data grouped, \nReady to go!!') return grouped, bins_x, bins_y, int(bin_xmin), int(bin_ymin) #===================================================================== #===================================================================== # Function in PROGRESS !!! Use at your own risk #=================================================================== @timing def binData3D(xyz,xstart, xend, ystart, yend, zstart, zend,nx,ny,nz): # not ready !!!! x = xyz[:,0].ravel() y = xyz[:,1].ravel() z = xyz[:,2].ravel() df = pd.DataFrame({'X' : x , 'Y' : y , 'Z' : z}) bins_x = np.linspace(xstart,xend,nx) x_cuts = pd.cut(df.X,bins_x, labels=False) bins_y = np.linspace(ystart,yend,ny) y_cuts =
pd.cut(df.Y,bins_y, labels=False)
pandas.cut
###################################################################################### # 1.Perform data preprocessing ###################################################################################### import pandas as pd pd.set_option('display.max_columns', 5) def create_user_movie_df(): movie = pd.read_csv("datasets/movie_lens_dataset/movie.csv") rating = pd.read_csv("datasets/movie_lens_dataset/rating.csv") df = movie.merge(rating, how="left", on="movieId") comment_counts = pd.DataFrame(df["title"].value_counts()) rare_movies = comment_counts[comment_counts["title"] <= 1000].index common_movies = df[~df["title"].isin(rare_movies)] user_movie_df = common_movies.pivot_table(index=["userId"], columns=["title"], values="rating") user_movie_df.head() return user_movie_df user_movie_df = create_user_movie_df() #random_user = int(pd.Series(user_movie_df.index).sample(1, random_state=45).values) random_user = 108170 ###################################################################################### # 2.Determine the movies watched by the user to be suggested ###################################################################################### random_user = 108170 random_user_df = user_movie_df[user_movie_df.index == random_user] movies_watched = random_user_df.columns[random_user_df.notna().any()].tolist() len(movies_watched) user_movie_df.loc[user_movie_df.index == random_user, user_movie_df.columns == "Stargate (1994)"] ###################################################################################### # 3.Access the data and IDs of other users watching the same movies. ###################################################################################### movies_watched_df= user_movie_df[movies_watched] user_movie_count = movies_watched_df.T.notnull().sum() user_movie_count = user_movie_count.reset_index() user_movie_count.columns = ["userId", "movie_count"] # user_movie_count[user_movie_count["movie_count"] > 20].sort_values(by="movie_count", ascending = False) perc = len(movies_watched) * 70 / 100 user_movie_count[user_movie_count["movie_count"] == 33].count() # users_same_movies = user_movie_count[user_movie_count["movie_count"] > 20]["userId"] users_same_movies = user_movie_count[user_movie_count["movie_count"] > perc]["userId"] users_same_movies.head() users_same_movies.count() ###################################################################################### # 4.Identify the users who are most similar to the user for whom the movie will be recommended ###################################################################################### # 1. Combine random user and other users' data # 2. Create correlation df # 3. Find most similar users(top users) final_df = pd.concat([movies_watched_df[movies_watched_df.index.isin(users_same_movies)], random_user_df[movies_watched]]) final_df.head() final_df.T.corr().head() corr_df = final_df.T.corr().unstack().sort_values().drop_duplicates() corr_df = pd.DataFrame(corr_df, columns=["corr"]) corr_df.index.names = ['user_id_1', 'user_id_2'] corr_df = corr_df.reset_index() top_users = corr_df[(corr_df["user_id_1"] == random_user) & (corr_df["corr"] >= 0.70)][["user_id_2", "corr"]].reset_index(drop=True) top_users.sort_values(by='corr', inplace=True, ascending=False) top_users.rename(columns={"user_id_2": "userId"}, inplace=True) rating = pd.read_csv('datasets/movie_lens_dataset/rating.csv') top_users_ratings = top_users.merge(rating[["userId", "movieId", "rating"]], how="inner") top_users_ratings = top_users_ratings[top_users_ratings["userId"] != random_user] ###################################################################################### # 5.Calculate the Weighted Average Recommendation Score and keep the first 5 movies ###################################################################################### top_users_ratings['weighted_rating'] = top_users_ratings['corr'] * top_users_ratings['rating'] top_users_ratings.head() recommendation_df = top_users_ratings.groupby('movieId').agg({"weighted_rating": "mean"}) recommendation_df.reset_index(inplace=True) recommendation_df[["movieId"]].nunique() movies_to_be_recommend = recommendation_df[recommendation_df["weighted_rating"] > 3.6].sort_values("weighted_rating", ascending=False) movie = pd.read_csv('datasets/movie_lens_dataset/movie.csv') movies_to_be_recommend.head(5).merge(movie[["movieId", "title"]]) ###################################################################################### # 6.Make an item-based suggestion based on the name of the movie that the user has watched last and gave the highest score # Make 10 suggesstions # 5 suggestions user-based # 5 suggestions item-based ###################################################################################### movie = pd.read_csv('datasets/movie_lens_dataset/movie.csv') rating =
pd.read_csv('datasets/movie_lens_dataset/rating.csv')
pandas.read_csv
import requests import pandas as pd import math pd.options.display.max_rows = 999 class Schedule: def __init__(self, season="",eventCode="",tournamentLevel="",Exel_File=None): if not Exel_File is None: self.__df = pd.read_csv(Exel_File) else: self.__df = None self._season = season self._eventCode = eventCode headers = {"Authorization":"Basic Z<KEY>",'Accept': 'application/json'} __url__ = "https://frc-api.firstinspires.org/v2.0/" r_url = f"{__url__}{season}/schedule/{eventCode}?tournamentLevel={tournamentLevel}" r = requests.get(r_url,headers=headers) self.data_r = r.json()['Schedule'] def get_red_and_blue_teams_at_match(self,matchNumber): red_teams = [] blue_teams = [] if matchNumber < len(self.data_r): for team in self.data_r[matchNumber]['teams']: if "Red" in team['station']: red_teams.append(team) elif "Blue" in team['station']: blue_teams.append(team) return red_teams,blue_teams def __fix_match(self,matchNumber,red_teams,blue_teams): json_data = {"Match Number": matchNumber} for team in red_teams + blue_teams: json_data[team['station']] = team['teamNumber'] return json_data def fix_match(self,matchNumber,teams): red_teams,blue_teams = teams json_data = {"Match Number": matchNumber} for team in red_teams + blue_teams: json_data[team['station']] = team['teamNumber'] return json_data def get_all_matches_in_datafarme(self): _data = [] for i in range(len(self.data_r)): red,blue = self.get_red_and_blue_teams_at_match(i) _data.append(self.__fix_match(i+1,red,blue)) df =
pd.DataFrame(_data)
pandas.DataFrame
import pandas as pd import numpy as np import os from glob import glob def calc_rocof(data, smooth_window_size, lookup_window_size, method='increment_smoothing'): if data.index[0].minute!=0 or data.index[0].second!=0: print('Data is not starting with full hour!') return None full_hours = data.index[::3600] full_hours = full_hours[1:-1] result = pd.Series(index = full_hours) if method=='frequency_smoothing': for i in np.arange(len(full_hours)): smoothed_snipped = data.iloc[i*3600:(i+2)*3600].rolling(smooth_window_size, center=True).mean() df_dt = smoothed_snipped.diff(periods=5).iloc[3600-lookup_window_size:3600+lookup_window_size] if df_dt.isnull().any(): result.iloc[i]=np.nan else: result.iloc[i] = df_dt[df_dt.abs().idxmax()] / 5. if method=='increment_smoothing': for i in np.arange(len(full_hours)): df_dt = data.iloc[i*3600:(i+2)*3600].diff().rolling(smooth_window_size , center=True).mean() df_dt = df_dt.iloc[3600-lookup_window_size:3600+lookup_window_size] if df_dt.isnull().any(): result.iloc[i]=np.nan else: result.iloc[i] = df_dt[df_dt.abs().idxmax()] return result def make_frequency_data_hdf(path_to_frequency_csv, tso_name, frequency_hdf_folder, start_time, end_time, time_zone, delete_existing_hdf=False): print('\nConverting frequency data to hdf ', tso_name, '...') year_index = pd.date_range(start=start_time, end=end_time, freq='Y') if not os.path.exists(frequency_hdf_folder): os.makedirs(frequency_hdf_folder) hdf_file = glob(frequency_hdf_folder + 'cleansed*.h5') if not hdf_file or delete_existing_hdf: data =
pd.Series(dtype=np.float)
pandas.Series
import os import numpy as np import pandas as pd from pyomo import environ as pe from hatchet.utils.solve.ilp_subset import ILPSubset from hatchet.utils.solve.cd import CoordinateDescent from hatchet.utils.solve.utils import parse_clonal, scale_rdr from hatchet import config def solver_available(solver=None): solver = solver or config.compute_cn.solver if solver == 'cpp': return os.getenv('GRB_LICENSE_FILE') is not None elif solver == 'gurobipy': return pe.SolverFactory('gurobi', solver_io='python').available(exception_flag=False) return pe.SolverFactory(solver).available(exception_flag=False) def solve(clonal, seg_file, n, solver='gurobi', solve_mode='cd', d=-1, cn_max=-1, mu=0.01, diploid_threshold=0.1, ampdel=True, n_seed=400, n_worker=8, random_seed=None, max_iters=None, timelimit=None): assert solve_mode in ('ilp', 'cd', 'both'), 'Unrecognized solve_mode' assert solver_available(solver), f'Solver {solver} not available or not licensed' if max_iters is None: max_iters = 10 df = pd.read_csv(seg_file, sep='\t') df = df.sort_values(['#ID', 'SAMPLE']) # sanity-check sample_ids = np.sort(df['SAMPLE'].unique()) for _cluster_id, _df in df.groupby('#ID'): _sample_ids = _df['SAMPLE'].values if not np.all(_sample_ids == sample_ids): raise ValueError(f'Sample IDs for cluster {_cluster_id} do not match {sample_ids}') rdr = df.pivot(index='#ID', columns='SAMPLE', values='RD') baf = df.pivot(index='#ID', columns='SAMPLE', values='BAF') bins = {} # cluster_id => no. of bins for cluster_id, _df in df.groupby('#ID'): if len(_df['#BINS'].unique()) != 1: raise ValueError(f'Bin sizes for cluster {cluster_id} across tumor samples are not identical!') bins[cluster_id] = _df.iloc[0]['#BINS'] bins =
pd.Series(bins)
pandas.Series
import os,sys import numpy as np import pandas as pd from matplotlib import pyplot as plt from analysis import subset_probas import plotly.graph_objects as go fewlabels = ['Applause', 'Bird vocalization, bird call, bird song', 'Caw', 'Bee, wasp, etc.', 'Wind noise (microphone)','Rain','Vehicle','Silence'] def average_proba_over_freq(Df,freq_str='D',subset_labels=fewlabels): """ Calculates probability density estimates over a configurable frequency arguments : Df : DataFrame, output of tag_silentcities freq_str : Frequency over which to calculate probability density estimate (default : days) subset_labels : Subset of labels from the Audioset Ontology to be used for the estimate. default labels are : 'Applause','Bird vocalization, bird call, bird song','Chirp, tweet','Pigeon, dove', 'Caw','Bee, wasp, etc.','Wind noise (microphone)','Rain','Vehicle','Emergency vehicle','Rail transport', 'Aircraft','Silence' outputs : probas_agg : Probability Density estimates of the subset of labels calculate according to the frequency specified """ #Let's use the datetime (Timestamp) as a new index for the dataframe ts = pd.DatetimeIndex(Df.datetime) Df.index = ts # Let's add the Labels from the shortlist as entries in the Df. Will be easier to manipulate them afterwards prob = subset_probas(Df,subset_labels) for f,curlabel in enumerate(subset_labels): Df[curlabel] = prob[:,f] # Now let's create a period range to easily compute statistics over days (frequency can be changed by changing the freq_str argument) prng =
pd.period_range(start=ts[0],end=ts[-1], freq=freq_str)
pandas.period_range
""" Prepare training and testing datasets as CSV dictionaries 2.0 Created on 04/26/2019; modified on 11/06/2019 @author: RH """ import os import pandas as pd import sklearn.utils as sku import numpy as np import re # get all full paths of images def image_ids_in(root_dir, ignore=['.DS_Store','dict.csv', 'all.csv']): ids = [] for id in os.listdir(root_dir): if id in ignore: print('Skipping ID:', id) else: ids.append(id) return ids # Get intersection of 2 lists def intersection(lst1, lst2): lst3 = [value for value in lst1 if value in lst2] return lst3 # pair tiles of 20x, 10x, 5x of the same area def paired_tile_ids_in_old(slide, label, root_dir): dira = os.path.isdir(root_dir + 'level0') dirb = os.path.isdir(root_dir + 'level1') dirc = os.path.isdir(root_dir + 'level2') if dira and dirb and dirc: if "TCGA" in root_dir: fac = 1000 else: fac = 500 ids = [] for level in range(3): dirr = root_dir + 'level{}'.format(str(level)) for id in os.listdir(dirr): if '.png' in id: x = int(float(id.split('x-', 1)[1].split('-', 1)[0]) / fac) y = int(float(re.split('_', id.split('y-', 1)[1])[0]) / fac) try: dup = re.split('.p', re.split('_', id.split('y-', 1)[1])[1])[0] except IndexError: dup = np.nan ids.append([slide, label, level, dirr + '/' + id, x, y, dup]) else: print('Skipping ID:', id) ids = pd.DataFrame(ids, columns=['slide', 'label', 'level', 'path', 'x', 'y', 'dup']) idsa = ids.loc[ids['level'] == 0] idsa = idsa.drop(columns=['level']) idsa = idsa.rename(index=str, columns={"path": "L0path"}) idsb = ids.loc[ids['level'] == 1] idsb = idsb.drop(columns=['slide', 'label', 'level']) idsb = idsb.rename(index=str, columns={"path": "L1path"}) idsc = ids.loc[ids['level'] == 2] idsc = idsc.drop(columns=['slide', 'label', 'level']) idsc = idsc.rename(index=str, columns={"path": "L2path"}) idsa = pd.merge(idsa, idsb, on=['x', 'y', 'dup'], how='left', validate="many_to_many") idsa['x'] = idsa['x'] - (idsa['x'] % 2) idsa['y'] = idsa['y'] - (idsa['y'] % 2) idsa = pd.merge(idsa, idsc, on=['x', 'y', 'dup'], how='left', validate="many_to_many") idsa = idsa.drop(columns=['x', 'y', 'dup']) idsa = idsa.dropna() idsa = sku.shuffle(idsa) else: idsa = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path']) return idsa def tile_ids_in(inp): ids = [] try: for id in os.listdir(inp['path']): if '_{}.png'.format(str(inp['sldnum'])) in id: ids.append([inp['slide'], inp['level'], inp['path']+'/'+id, inp['BMI'], inp['age'], inp['label']]) except FileNotFoundError: print('Ignore:', inp['path']) return ids # pair tiles of 10x, 5x, 2.5x of the same area def paired_tile_ids_in(slide, label, root_dir, age=None, BMI=None): dira = os.path.isdir(root_dir + 'level1') dirb = os.path.isdir(root_dir + 'level2') dirc = os.path.isdir(root_dir + 'level3') if dira and dirb and dirc: if "TCGA" in root_dir: fac = 2000 else: fac = 1000 ids = [] for level in range(1, 4): dirr = root_dir + 'level{}'.format(str(level)) for id in os.listdir(dirr): if '.png' in id: x = int(float(id.split('x-', 1)[1].split('-', 1)[0]) / fac) y = int(float(re.split('_', id.split('y-', 1)[1])[0]) / fac) try: dup = re.split('.p', re.split('_', id.split('y-', 1)[1])[1])[0] except IndexError: dup = np.nan ids.append([slide, label, level, dirr + '/' + id, x, y, dup]) else: print('Skipping ID:', id) ids = pd.DataFrame(ids, columns=['slide', 'label', 'level', 'path', 'x', 'y', 'dup']) idsa = ids.loc[ids['level'] == 1] idsa = idsa.drop(columns=['level']) idsa = idsa.rename(index=str, columns={"path": "L0path"}) idsb = ids.loc[ids['level'] == 2] idsb = idsb.drop(columns=['slide', 'label', 'level']) idsb = idsb.rename(index=str, columns={"path": "L1path"}) idsc = ids.loc[ids['level'] == 3] idsc = idsc.drop(columns=['slide', 'label', 'level']) idsc = idsc.rename(index=str, columns={"path": "L2path"}) idsa = pd.merge(idsa, idsb, on=['x', 'y', 'dup'], how='left', validate="many_to_many") idsa['x'] = idsa['x'] - (idsa['x'] % 2) idsa['y'] = idsa['y'] - (idsa['y'] % 2) idsa = pd.merge(idsa, idsc, on=['x', 'y', 'dup'], how='left', validate="many_to_many") idsa = idsa.drop(columns=['x', 'y', 'dup']) idsa = idsa.dropna() idsa = sku.shuffle(idsa) idsa['age'] = age idsa['BMI'] = BMI else: idsa = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path', 'age', 'BMI']) return idsa # Balance CPTAC and TCGA tiles in each class def balance(pdls, cls): balanced = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path', 'age', 'BMI']) for i in range(cls): ref = pdls.loc[pdls['label'] == i] CPTAC = ref[~ref['slide'].str.contains("TCGA")] TCGA = ref[ref['slide'].str.contains("TCGA")] if CPTAC.shape[0] != 0 and TCGA.shape[0] != 0: ratio = (CPTAC.shape[0])/(TCGA.shape[0]) if ratio < 0.2: TCGA = TCGA.sample(int(5*CPTAC.shape[0]), replace=False) ref = pd.concat([TCGA, CPTAC], sort=False) elif ratio > 5: CPTAC = CPTAC.sample(int(5*TCGA.shape[0]), replace=False) ref = pd.concat([TCGA, CPTAC], sort=False) balanced = pd.concat([balanced, ref], sort=False) return balanced # Prepare label at per patient level def big_image_sum(pmd, path='../tiles/', ref_file='../Fusion_dummy_His_MUT_joined.csv'): ref = pd.read_csv(ref_file, header=0) big_images = [] if pmd == 'subtype': ref = ref.loc[ref['subtype_0NA'] == 0] for idx, row in ref.iterrows(): if row['subtype_POLE'] == 1: big_images.append([row['name'], 0, path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) elif row['subtype_MSI'] == 1: big_images.append([row['name'], 1, path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) elif row['subtype_Endometrioid'] == 1: big_images.append([row['name'], 2, path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) elif row['subtype_Serous-like'] == 1: big_images.append([row['name'], 3, path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) elif pmd == 'histology': ref = ref.loc[ref['histology_Mixed'] == 0] for idx, row in ref.iterrows(): if row['histology_Endometrioid'] == 1: big_images.append([row['name'], 0, path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) if row['histology_Serous'] == 1: big_images.append([row['name'], 1, path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) elif pmd in ['Endometrioid', 'MSI', 'Serous-like', 'POLE']: # ref = ref.loc[ref['histology_Endometrioid'] == 1] ref = ref.loc[ref['subtype_0NA'] == 0] for idx, row in ref.iterrows(): big_images.append([row['name'], int(row['subtype_{}'.format(pmd)]), path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) elif pmd == 'MSIst': ref = ref.loc[ref['MSIst_0NA'] == 0] for idx, row in ref.iterrows(): big_images.append([row['name'], int(row['MSIst_MSI-H']), path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) else: ref = ref.dropna(subset=[pmd]) for idx, row in ref.iterrows(): big_images.append([row['name'], int(row[pmd]), path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) datapd = pd.DataFrame(big_images, columns=['slide', 'label', 'path', 'age', 'BMI']) return datapd # TO KEEP SPLIT SAME AS BASELINES. seperate into training and testing; each type is the same separation # ratio on big images test and train csv files contain tiles' path. def set_sep_secondary(alll, path, cls, pmd, batchsize=24): if pmd == 'subtype': split = pd.read_csv('../split/ST.csv', header=0) elif pmd == 'histology': split = pd.read_csv('../split/his.csv', header=0) elif pmd == 'Serous-like': split = pd.read_csv('../split/CNVH.csv', header=0) elif pmd == 'Endometrioid': split = pd.read_csv('../split/CNVL.csv', header=0) else: split = pd.read_csv('../split/{}.csv'.format(pmd), header=0) train = split.loc[split['set'] == 'train']['slide'].tolist() validation = split.loc[split['set'] == 'validation']['slide'].tolist() test = split.loc[split['set'] == 'test']['slide'].tolist() trlist = [] telist = [] valist = [] subset = alll valist.append(subset[subset['slide'].isin(validation)]) telist.append(subset[subset['slide'].isin(test)]) trlist.append(subset[subset['slide'].isin(train)]) test = pd.concat(telist) train = pd.concat(trlist) validation = pd.concat(valist) test_tiles = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path', 'age', 'BMI']) train_tiles = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path', 'age', 'BMI']) validation_tiles = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path', 'age', 'BMI']) for idx, row in test.iterrows(): tile_ids = paired_tile_ids_in(row['slide'], row['label'], row['path'], row['age'], row['BMI']) test_tiles = pd.concat([test_tiles, tile_ids]) for idx, row in train.iterrows(): tile_ids = paired_tile_ids_in(row['slide'], row['label'], row['path'], row['age'], row['BMI']) train_tiles = pd.concat([train_tiles, tile_ids]) for idx, row in validation.iterrows(): tile_ids = paired_tile_ids_in(row['slide'], row['label'], row['path'], row['age'], row['BMI']) validation_tiles = pd.concat([validation_tiles, tile_ids]) train_tiles = balance(train_tiles, cls=cls) validation_tiles = balance(validation_tiles, cls=cls) # No shuffle on test set train_tiles = sku.shuffle(train_tiles) validation_tiles = sku.shuffle(validation_tiles) if train_tiles.shape[0] > int(batchsize * 80000 / 3): train_tiles = train_tiles.sample(int(batchsize * 80000 / 3), replace=False) print('Truncate training set!') if validation_tiles.shape[0] > int(batchsize * 80000 / 30): validation_tiles = validation_tiles.sample(int(batchsize * 80000 / 30), replace=False) print('Truncate validation set!') if test_tiles.shape[0] > int(batchsize * 80000 / 3): test_tiles = test_tiles.sample(int(batchsize * 80000 / 3), replace=False) print('Truncate test set!') test_tiles.to_csv(path + '/te_sample.csv', header=True, index=False) train_tiles.to_csv(path + '/tr_sample.csv', header=True, index=False) validation_tiles.to_csv(path + '/va_sample.csv', header=True, index=False) return train_tiles, test_tiles, validation_tiles # Training and validation on TCGA; Testing on CPTAC def set_sep_idp(alll, path, cls, cut=0.1, batchsize=64): trlist = [] telist = [] valist = [] TCGA = alll[alll['slide'].str.contains("TCGA")] CPTAC = alll[~alll['slide'].str.contains("TCGA")] for i in range(cls): subset = TCGA.loc[TCGA['label'] == i] unq = list(subset.slide.unique()) np.random.shuffle(unq) validation = unq[:int(len(unq) * cut)] valist.append(subset[subset['slide'].isin(validation)]) train = unq[int(len(unq) * cut):] trlist.append(subset[subset['slide'].isin(train)]) telist.append(CPTAC) test = pd.concat(telist) train = pd.concat(trlist) validation = pd.concat(valist) test_tiles =
pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path', 'age', 'BMI'])
pandas.DataFrame
import sys import datetime import warnings warnings.simplefilter(action='ignore', category=RuntimeWarning) import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.pylab import rcParams plt.rcParams['figure.figsize'] = 15,7 plt.rcParams['font.size'] = 8 #plt.style.use('ggplot') plt.style.use('default') from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.model_selection import cross_val_score from sklearn import tree import pymongo from pymongo import MongoClient from nowtrade.data_connection import MongoDatabaseConnection #from tesjualbeli import get_orders, order def analisis(): nama_db = 'symbol-data' nama_db_price = 'hasil-analisis' nama_saham = [x.strip() for x in open('saham_list.txt', 'r').read().split('#')] #nama_saham = 'NVDA' client = MongoClient('localhost', 27017) db = client[nama_db] db_price = client[nama_db_price] mdb_hasil_analisis = [] for dfq in nama_saham: df = pd.DataFrame() df = pd.DataFrame(list(db[dfq].find())) mdb_df = df mdb_df['INSERT_TIME'] = datetime.datetime.now() df = df.drop(columns=['INSERT_TIME']) df.rename(columns={'open': 'Open', 'high': 'High', 'low': 'Low', 'close': 'Close', 'volume': 'Volume', 'adj_close': 'Adj Close', '_id': 'Date'}, inplace=True) df['Symbol'] = dfq df['Symbol'] = df['Symbol'].astype('string') df['change_in_price'] = df['Close'].diff() hargas = df['Close'] df_date = df['Date'] df = df.set_index('Date') #df.sort_values(by = ['Symbol','Date'], inplace = True) price_data = df[df['Volume'] != 0] price_data.tail() #trend = 0 print('\nSIMBOL : ',dfq) #price_data = pd.read_csv(df) ### RSI ### n = 8 up_df, down_df = price_data[['change_in_price']].copy(), price_data[['change_in_price']].copy() up_df.loc['change_in_price'] = up_df.loc[(up_df['change_in_price'] < 0), 'change_in_price'] = 0 down_df.loc['change_in_price'] = down_df.loc[(down_df['change_in_price'] > 0), 'change_in_price'] = 0 down_df['change_in_price'] = down_df['change_in_price'].abs() ewma_up = up_df['change_in_price'].transform(lambda x: x.ewm(span = n).mean()) ewma_down = down_df['change_in_price'].transform(lambda x: x.ewm(span = n).mean()) relative_strength = ewma_up / ewma_down relative_strength_index = 100.0 - (100.0 / (1.0 + relative_strength)) price_data['down_days'] = down_df['change_in_price'] price_data['up_days'] = up_df['change_in_price'] price_data['RSI'] = relative_strength_index threshold_up = 80 #REVISI################### threshold_down = 20 ########## ### STOCHASTIC ### n = 8 low_4, high_4 = price_data[['Low']].copy(), price_data[['High']].copy() low_4 = low_4['Low'].transform(lambda x: x.rolling(window = n).min()) high_4 = high_4['High'].transform(lambda x: x.rolling(window = n).max()) k_percent = 100 * ((price_data['Close'] - low_4) / (high_4 - low_4)) price_data['Low_Sto'] = low_4 price_data['High_Sto'] = high_4 price_data['K_percent'] = k_percent ########## ### WILLIAMS %R ### n = 8 low_8, high_8 = price_data[['Low']].copy(), price_data[['High']].copy() low_8 = low_8['Low'].transform(lambda x: x.rolling(window = n).min()) high_8 = high_8['High'].transform(lambda x: x.rolling(window = n).max()) r_percent = ((high_8 - price_data['Close']) / (high_8 - low_8)) * - 100 price_data['R_percent'] = r_percent threshold_up_r = -20 threshold_down_r = -80 ########### ### MACD ### n = 8 ema_26 = price_data['Close'].transform(lambda x: x.ewm(span = 26).mean()) ema_12 = price_data['Close'].transform(lambda x: x.ewm(span = 12).mean()) macd = ema_12 - ema_26 ema_8_macd = macd.ewm(span = n).mean() price_data['MACD'] = macd price_data['MACD_EMA'] = ema_8_macd price_data['MACD_DIFF'] = price_data['MACD'] - price_data['MACD'].shift() threshold_up_macd = 0.07 threshold_down_macd = -0.07 ########## closing = price_data['Close'] #data = closing.drop(closing.tail(1).index) #second_newest = closing.iloc[:2] #newest = closing.iloc[:1] #days_out = 30 #price_data["label"] = [1 if x > newest else -1 if x < newest else 0] closing = closing.transform(lambda x : np.sign(x.diff())) #closing = closing.transform(lambda x : x.shift(1) < x) price_data['Prediction'] = closing price_data['RSI_Trend'] = [ 1 if x >= threshold_up else -1 if x < threshold_down else 0 for x in price_data['RSI']] price_data['STO_Trend'] = [ 1 if x >= threshold_up else -1 if x < threshold_down else 0 for x in price_data['K_percent']] price_data['W%R_Trend'] = [ 1 if x >= threshold_up_r else -1 if x < threshold_down_r else 0 for x in price_data['R_percent']] price_data['MACD_Trend'] = [ 1 if x >= threshold_up_macd else -1 if x < threshold_down_macd else 0 for x in price_data['MACD_DIFF']] price_data['ALL_TRENDS'] = price_data['RSI_Trend'] + price_data['STO_Trend'] + price_data['W%R_Trend'] + price_data['MACD_Trend'] #price_data.dtypes price_data['DECISION'] = [ 1 if x > 1 else -1 if x < -1 else 0 for x in price_data['ALL_TRENDS']] raee = price_data['DECISION'] raeee = raee.iloc[-1] price_data = price_data.dropna() ####################################### RANDOM FOREST ################################## X_Cols = price_data[['RSI', 'MACD', 'K_percent', 'R_percent', 'MACD_DIFF', 'MACD_EMA', 'Open', 'High', 'Low', 'Close', 'Volume']] L = X_Cols print(L.shape) #P = price_data Y_Cols = price_data['Prediction'] #price_data['RF'] = '' #train_size = int(X_Cols.shape[0]*0.7) #X_train = X_Cols[:train_size] #X_test = X_Cols[train_size:] #y_train = Y_Cols[:train_size] #y_test = Y_Cols[train_size:] X_train, X_test, y_train, y_test = train_test_split(X_Cols, Y_Cols, train_size = 0.6) model = RandomForestClassifier(n_estimators = 100, criterion = 'gini', max_depth = 5, bootstrap = True) model.fit(X_train, y_train) x_pred_test = model.predict(X_test) x_pred_train = model.predict(X_train) y_pred_test = y_test y_pred_train = y_train df1 = pd.DataFrame(x_pred_train[:, None], columns = ['RF_Train']) #index=df_date.index) df2 = pd.DataFrame(x_pred_test[:, None], columns = ['RF_Train']) dff =
pd.concat([df1, df2])
pandas.concat
#!/usr/bin/env python # -*- encoding: utf-8 -*- ''' @file:analyse_data.py @author: Honour-Van: <EMAIL> @date:2021/04/27 15:48:18 @description:analyse the data we have gotten, with 3 tasks @version:1.0 ''' import pandas as pd import json def is_prov(line: str) -> bool: """ # is_prov @Description: a level judge function. to see if a line of record is referred to a province --------- @Param: a line of record in StatData.txt ------- @Returns: a bool value if it's a province ------- """ return True if line[0] != '\t' else False def is_base(line: str) -> bool: """ # is_base @Description: a level judge function. to see if a line of record is referred to a childest node --------- @Param: a line of record in StatData.txt ------- @Returns: a bool value if it's a grassroot unit ------- """ return True if (line[-4:-1]).isdigit() else False def place_name(line: str) -> str: """ # place_name @Description: extract the name of place in a line of record in StatData.txt --------- @Param: a line of record in StatData.txt ------- @Returns: a Chinese word str: name of place ------- """ valid_char_beg = line.rfind('\t') + 1 return line[valid_char_beg+12:-4] if is_base(line) else line[valid_char_beg+12:-1] if __name__ == "__main__": # temporary tool-use data structures dt1 = pd.DataFrame(columns=["111", "112", "121", "122", "123", "210", "220"]) task1 = {} task2 = {"河南省": {}, "内蒙古自治区": {}} f = open("assets/family_name.json") # the 100 family names are transferred by familyname2json.py task3 = json.load(f) f.close() # task2 prov_name filter tools prov_name = "" prov_cnt = False # task3 level filter tools: to see if it's the last but one level last_name = "" sub_base_flag = True with open("StatData.txt", encoding='utf-8') as f: for line in f.readlines(): if is_prov(line): # task1 started to count kinds of different id codes if task1: # to see if the dict is empty dt1 = dt1.append(pd.Series(task1, name=prov_name)) task1 = {"111": 0, "112": 0, "121": 0, "122": 0, "123": 0, "210": 0, "220": 0} # task2 started to select the henan and inner mongolia prov_name = place_name(line) if prov_name == "河南省" or prov_name == "内蒙古自治区": prov_cnt = True else: prov_cnt = False elif is_base(line): # task1: in order to get the id codes of grassroot units task1[line[-4:-1]] = task1.get(line[-4:-1], 0) + 1 # task2: if the current units belong to henan or inner mongolia if prov_cnt: base_name = place_name(line) if base_name[-3:] == "村委会": for item in base_name[:-3]: task2[prov_name][item] = task2[prov_name].get( item, 0) + 1 # task3: count the last but one levels if sub_base_flag: sub_base_flag = False if last_name[0] in task3: task3[last_name[0]] = task3[last_name[0]] + 1 # task3: count the grassroot units name3 = place_name(line) if name3[0] in task3: task3[name3[0]] = task3[name3[0]] + 1 else: sub_base_flag = True last_name = place_name(line) # prepare to output # task1 if task1: # to see if the dict is empty dt1 = dt1.append(pd.Series(task1, name=prov_name)) dt1.rename(columns={"111": "主城区(111)", "112": "城乡结合区(112)", "121": "镇中心区(121)", "122": "镇乡结合区(122)", "123": "特殊区域(123)", "210": "乡中心区(210)", "220": "村庄(220)"}, inplace=True)
pd.set_option('display.unicode.ambiguous_as_wide', True)
pandas.set_option
# Copyright(c) Microsoft Corporation. # Licensed under the MIT license. import pyodbc import sys from pandas import DataFrame from .connectioninfo import ConnectionInfo from .sqlbuilder import SQLBuilder from .sqlbuilder import STDOUT_COLUMN_NAME, STDERR_COLUMN_NAME """This module is used to actually execute sql queries. It uses the pyodbc module under the hood. It is mostly setup to work with SQLBuilder objects as defined in sqlbuilder. """ # This function is best used to execute_function_in_sql a one off query # (the SQL connection is closed after the query completes). # If you need to keep the SQL connection open in between queries, you can use the _SQLQueryExecutor class below. def execute_query(builder, connection: ConnectionInfo, out_file:str=None): with SQLQueryExecutor(connection=connection) as executor: return executor.execute(builder, out_file=out_file) def execute_raw_query(conn: ConnectionInfo, query, params=()): with SQLQueryExecutor(connection=conn) as executor: return executor.execute_query(query, params) class SQLQueryExecutor: """_SQLQueryExecutor objects keep a SQL connection open in order to execute_function_in_sql one or more queries. This class implements the basic context manager paradigm. """ def __init__(self, connection: ConnectionInfo): self._connection = connection def execute(self, builder: SQLBuilder, out_file=None): return self.execute_query(builder.base_script, builder.params, out_file=out_file) def execute_query(self, query, params, out_file=None): df =
DataFrame()
pandas.DataFrame
# Predicting Cognitive Impairment by <NAME>. # www.github.com/kkphd/mmse import Step_1_MMSE_Data_Cleaning import pandas as pd import numpy as np from scipy import stats import matplotlib.pyplot as plt import seaborn as sns import pprint analysis_results = Step_1_MMSE_Data_Cleaning.run_analysis() # Perform exploratory data analysis by first filtering for visit 1 cases ("v1") and sub-setting the groups. # Group membership is based on their cognitive test score. v1 = analysis_results['Visit'] == 1 v1_all = analysis_results[v1] has_unique_cases = v1_all.duplicated('ID').sum() == 0 is_null = v1_all.isnull().sum() v1_all_nrow = len(v1_all) v1_all_ncol = len(v1_all.columns) intact = v1_all['MMSE_Group'] == 'Intact' v1_intact = v1_all[intact] impaired = v1_all['MMSE_Group'] == 'Impaired' v1_impaired = v1_all[impaired] # Determine value counts of Intact and Impaired individuals. v1_all['MMSE_Group'].value_counts() # Intact: N = 124 # Impaired: N = 26 # Determine the types of variables we are working with. v1_all.info() # Exploratory data analysis: group_agree = v1_all['Group_Agreement'].mean()*100 def v1(v1_all): v1_desc = v1_all.groupby('MMSE_Group').agg( { 'MF_01': ['count', 'mean', 'std', 'min', 'max', 'median'], 'Age': ['count', 'mean', 'std', 'min', 'max', 'median', 'skew'], 'Edu': ['count', 'mean', 'std', 'min', 'max', 'median', 'skew'], 'MMSE': ['count', 'mean', 'std', 'min', 'max', 'median', 'skew'], 'MMSE_T': ['count', 'mean', 'std', 'min', 'max', 'median', 'skew'], 'MMSE_Percentile': ['count', 'mean', 'std', 'min', 'max', 'median', 'skew'], 'CDR': ['count', 'mean', 'std', 'min', 'max', 'median'], 'eTIV': ['count', 'mean', 'std', 'min', 'max', 'median', 'skew'], 'nWBV': ['count', 'mean', 'std', 'min', 'max', 'median', 'skew'], 'ASF': ['count', 'mean', 'std', 'min', 'max', 'median', 'skew'] } ) return np.transpose(v1_desc) def create_group_plots(): fig1, ax1 = plt.subplots(2, 2, figsize=(16, 10)) ax1[0, 0].set_title('Distribution of Age by Group', size='14') ax1[0, 1].set_title('Distribution of Education by Group', size='14') ax1[1, 0].set_title('Distribution of Cognitive Status', size='14') ax1[1, 1].set_title('Distribution of CDR Stage', size='14') fig1.subplots_adjust(hspace=0.3) sns.set(style='whitegrid', palette='muted') age_order = ['60-64', '65-69', '70-74', '75-79', '80-84', '>=85'] edu_order = ['5-8', '9-12', '>12'] age_fig = sns.countplot(data=v1_all, x='Age_Group', hue='MMSE_Group', ax=ax1[0, 0], order=age_order) edu_fig = sns.countplot(data=v1_all, x='Edu_Group', hue='MMSE_Group', ax=ax1[0, 1], order=edu_order) dem_fig = sns.countplot(data=v1_all, x='MMSE_Label', ax=ax1[1, 0]) cdr_fig = sns.countplot(data=v1_all, x='CDR_Stage', ax=ax1[1, 1]) age_fig.set_xlabel('Age Group') edu_fig.set_xlabel('Years of Education') dem_fig.set_xlabel('Level of Cognitive Impairment') cdr_fig.set_xlabel('CDR Stage') create_group_plots() # The data suggests we have an imbalanced sample favoring normals. def freq_figures(): fig2, ax2 = plt.subplots(1, 2, figsize=(12, 6)) fig2.suptitle('Number of Participants per Group', size='16') sns.set(style='whitegrid', palette='muted') sns.countplot(data=v1_all, x='Group', ax=ax2[0]) sns.countplot(data=v1_all, x='MMSE_Group', ax=ax2[1]) freq_figures() if has_unique_cases: v1_eda = v1(v1_all) v1_eda = v1_eda.rename(columns={'MMSE_Group': 'Group'}, index={'MF_01': 'Sex', 'Edu': 'Education (years)', 'MMSE_T': 'MMSE T Score'}) print(v1_eda) pprint.pprint(v1_eda) # Variables were considered skewed if it was ~ < -1 or ~ > 1. # Intact: MMSE, MMSE_Percentile, and eTIV were moderately skewed. # Impaired: Education was moderately skewed. # Test for normality of continuous variables by performing the Shapiro-Wilk test. def calc_shapiro(): shapiro_all = {} shapiro_intact = {} shapiro_impaired = {} shapiro_columns = ['Age', 'Edu', 'MMSE', 'MMSE_T', 'MMSE_Percentile', 'eTIV', 'nWBV', 'ASF'] for column in shapiro_columns: shapiro_all[column] = stats.shapiro(v1_intact[column]) shapiro_intact[column] = stats.shapiro(v1_intact[column]) shapiro_impaired[column] = stats.shapiro(v1_impaired[column]) return shapiro_all, shapiro_intact, shapiro_impaired shapiro_all, shapiro_intact, shapiro_impaired = calc_shapiro() # Intact group: Edu, MMSE, MMSE_T, MMSE_Percentile, and eTIV were not derived from a normal distribution. # Impaired group: Edu, MMSE_T, and MMSE_Percentile were not derived from a normal distribution. shapiro_all_df = pd.DataFrame.from_dict(shapiro_all) shapiro_all_df = pd.DataFrame(shapiro_all, index=['Intact', 'Impaired']) shapiro_intact_df = pd.DataFrame.from_dict(shapiro_intact) shapiro_impaired_df = pd.DataFrame.from_dict(shapiro_impaired) # Test for kurtosis. def calc_kurt(): kurt_all = {} kurt_intact = {} kurt_impaired = {} kurt_columns = ['MF_01', 'Age', 'Edu', 'MMSE', 'MMSE_T', 'MMSE_Percentile', 'CDR', 'eTIV', 'nWBV', 'ASF'] for column in kurt_columns: kurt_all[column] = stats.kurtosis(v1_all[column]) kurt_intact[column] = stats.kurtosis(v1_intact[column]) kurt_impaired[column] = stats.kurtosis(v1_impaired[column]) return kurt_all, kurt_intact, kurt_impaired kurt_all, kurt_intact, kurt_impaired = calc_kurt() # The distributions are largely platykurtic. kurt_all_df =
pd.DataFrame(kurt_all, index=[0])
pandas.DataFrame
import os from collections import Counter from os import listdir from os.path import isfile, join from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt import numpy as np from matplotlib.pyplot import figure from matplotlib import style style.use('ggplot') import scipy from matplotlib.ticker import MaxNLocator from mpl_toolkits.mplot3d import Axes3D from matplotlib.collections import PolyCollection from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib import cm, ticker import numpy as np from sys import argv import Orange import matplotlib.pyplot as plt import numpy as np import pandas as pd from matplotlib import colors as mcolors, cm from matplotlib.collections import PolyCollection from classifiers import classifiers_list from datasetsDelaunay import dataset_list_bi, dataset_list_mult from folders import output_dir, dir_pca_biclasse, metricas_biclasse, dir_pca_multiclasse, metricas_multiclasse from parameters import order, alphas order_dict = {'area': 1, 'volume': 2, 'area_volume_ratio': 3, 'edge_ratio': 4, 'radius_ratio': 5, 'aspect_ratio': 6, 'max_solid_angle': 7, 'min_solid_angle': 8, 'solid_angle': 9} class Statistics: def __init__(self): pass def compute_CD_customizado(self, avranks, n, alpha="0.05", test="nemenyi"): """ Returns critical difference for Nemenyi or Bonferroni-Dunn test according to given alpha (either alpha="0.05" or alpha="0.1") for average ranks and number of tested datasets N. Test can be either "nemenyi" for for Nemenyi two tailed test or "bonferroni-dunn" for Bonferroni-Dunn test. """ k = len(avranks) d = {("nemenyi", "0.05"): [1.960, 2.344, 2.569, 2.728, 2.850, 2.948, 3.031, 3.102, 3.164, 3.219, 3.268, 3.313, 3.354, 3.391, 3.426, 3.458, 3.489, 3.517, 3.544, 3.569, 3.593, 3.616, 3.637, 3.658, 3.678, 3.696, 3.714, 3.732, 3.749, 3.765, 3.780, 3.795, 3.810, 3.824, 3.837, 3.850, 3.863, 3.876, 3.888, 3.899, 3.911, 3.922, 3.933, 3.943, 3.954, 3.964, 3.973, 3.983, 3.992], ("nemenyi", "0.1"): [0, 0, 1.644854, 2.052293, 2.291341, 2.459516, 2.588521, 2.692732, 2.779884, 2.854606, 2.919889, 2.977768, 3.029694, 3.076733, 3.119693, 3.159199, 3.195743, 3.229723, 3.261461, 3.291224, 3.319233], ("bonferroni-dunn", "0.05"): [0, 0, 1.960, 2.241, 2.394, 2.498, 2.576, 2.638, 2.690, 2.724, 2.773], ("bonferroni-dunn", "0.1"): [0, 0, 1.645, 1.960, 2.128, 2.241, 2.326, 2.394, 2.450, 2.498, 2.539]} q = d[(test, alpha)] cd = q[k] * (k * (k + 1) / (6.0 * n)) ** 0.5 return cd def calcula_media_folds_biclasse(self, df): t = pd.Series(data=np.arange(0, df.shape[0], 1)) dfr = pd.DataFrame( columns=['MODE', 'DATASET', 'PREPROC', 'ALGORITHM', 'ORDER', 'ALPHA', 'PRE', 'REC', 'SPE', 'F1', 'GEO', 'IBA', 'AUC'], index=np.arange(0, int(t.shape[0] / 5))) df_temp = df.groupby(by=['MODE', 'DATASET', 'PREPROC', 'ALGORITHM']) idx = dfr.index.values i = idx[0] for name, group in df_temp: group = group.reset_index() dfr.at[i, 'MODE'] = group.loc[0, 'MODE'] mode = group.loc[0, 'MODE'] dfr.at[i, 'DATASET'] = group.loc[0, 'DATASET'] dfr.at[i, 'PREPROC'] = group.loc[0, 'PREPROC'] dfr.at[i, 'ALGORITHM'] = group.loc[0, 'ALGORITHM'] dfr.at[i, 'ORDER'] = group.loc[0, 'ORDER'] dfr.at[i, 'ALPHA'] = group.loc[0, 'ALPHA'] dfr.at[i, 'PRE'] = group['PRE'].mean() dfr.at[i, 'REC'] = group['REC'].mean() dfr.at[i, 'SPE'] = group['SPE'].mean() dfr.at[i, 'F1'] = group['F1'].mean() dfr.at[i, 'GEO'] = group['GEO'].mean() dfr.at[i, 'IBA'] = group['IBA'].mean() dfr.at[i, 'AUC'] = group['AUC'].mean() i = i + 1 print(i) dfr.to_csv(output_dir + 'resultado_media_biclasse_' + mode + '.csv', index=False) def calcula_media_folds_multiclass(self, df): t = pd.Series(data=np.arange(0, df.shape[0], 1)) dfr = pd.DataFrame( columns=['MODE', 'DATASET', 'PREPROC', 'ALGORITHM', 'ORDER', 'ALPHA', 'PRE', 'REC', 'SPE', 'F1', 'GEO', 'IBA', 'AUC'], index=np.arange(0, int(t.shape[0] / 5))) df_temp = df.groupby(by=['MODE', 'DATASET', 'PREPROC', 'ALGORITHM']) idx = dfr.index.values i = idx[0] for name, group in df_temp: group = group.reset_index() dfr.at[i, 'MODE'] = group.loc[0, 'MODE'] mode = group.loc[0, 'MODE'] dfr.at[i, 'DATASET'] = group.loc[0, 'DATASET'] dfr.at[i, 'PREPROC'] = group.loc[0, 'PREPROC'] dfr.at[i, 'ALGORITHM'] = group.loc[0, 'ALGORITHM'] dfr.at[i, 'ORDER'] = group.loc[0, 'ORDER'] dfr.at[i, 'ALPHA'] = group.loc[0, 'ALPHA'] dfr.at[i, 'PRE'] = group['PRE'].mean() dfr.at[i, 'REC'] = group['REC'].mean() dfr.at[i, 'SPE'] = group['SPE'].mean() dfr.at[i, 'F1'] = group['F1'].mean() dfr.at[i, 'GEO'] = group['GEO'].mean() dfr.at[i, 'IBA'] = group['IBA'].mean() dfr.at[i, 'AUC'] = group['AUC'].mean() i = i + 1 print(i) dfr.to_csv(output_dir + 'resultado_media_multiclass_' + mode + '.csv', index=False) def separa_delaunay_biclass(self, filename): df = pd.read_csv(filename) list_base = [] for p in np.arange(0, len(preproc_type)): list_base.append(df[(df['PREPROC'] == preproc_type[p])]) df_base = list_base.pop(0) for i in np.arange(0, len(list_base)): df_base = pd.concat([df_base, list_base[i]], ignore_index=True) for o in order: for a in alphas: dfr = df[(df['ORDER'] == o)] dfr1 = dfr[(dfr['ALPHA'] == str(a))] df_file = pd.concat([df_base, dfr1], ignore_index=True) df_file.to_csv('./../output_dir/result_biclass' + '_' + o + '_' + str(a) + '.csv', index=False) def read_dir_files(self, dir_name): f = [f for f in listdir(dir_name) if isfile(join(dir_name, f))] return f def find_best_rank(self, results_dir, tipo): results = self.read_dir_files(results_dir) df = pd.DataFrame(columns=[['ARQUIVO', 'WINER']]) i = 0 for f in results: df_temp = pd.read_csv(results_dir + f) df.at[i, 'ARQUIVO'] = f df.at[i, 'WINER'] = df_temp.iloc[0, 0] i += 1 df.to_csv(output_dir + tipo) def find_best_delaunay(self, results_dir, tipo): df = pd.read_csv(results_dir + tipo) i = 0 j = 0 df_best = pd.DataFrame(columns=['ARQUIVO', 'WINER']) win = list(df['WINER']) for w in win: if w == 'DELAUNAY': df_best.at[i, 'ARQUIVO'] = df.iloc[j, 1] df_best.at[i, 'WINER'] = df.iloc[j, 2] i += 1 j += 1 df_best.to_csv(output_dir + 'only_best_delaunay_pca_biclass_media_rank.csv') def rank_by_algorithm(self, df, tipo, wd, reducao, order, alpha): ''' Calcula rank :param df: :param tipo: :param wd: :param delaunay_type: :return: ''' df_tabela = pd.DataFrame( columns=['DATASET', 'ALGORITHM', 'ORIGINAL', 'RANK_ORIGINAL', 'SMOTE', 'RANK_SMOTE', 'SMOTE_SVM', 'RANK_SMOTE_SVM', 'BORDERLINE1', 'RANK_BORDERLINE1', 'BORDERLINE2', 'RANK_BORDERLINE2', 'GEOMETRIC_SMOTE', 'RANK_GEOMETRIC_SMOTE', 'DELAUNAY', 'RANK_DELAUNAY', 'DELAUNAY_TYPE', 'ALPHA', 'unit']) df_temp = df.groupby(by=['ALGORITHM']) for name, group in df_temp: group = group.reset_index() group.drop('index', axis=1, inplace=True) df.to_csv(dir_pca_biclasse + reducao + '_' + tipo + '_' + order + '_' + str(alpha) + '.csv') j = 0 for d in dataset_list_bi: for m in metricas_biclasse: aux = group[group['DATASET'] == d] aux = aux.reset_index() df_tabela.at[j, 'DATASET'] = d df_tabela.at[j, 'ALGORITHM'] = name indice = aux.PREPROC[aux.PREPROC == '_train'].index.tolist()[0] df_tabela.at[j, 'ORIGINAL'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_SMOTE'].index.tolist()[0] df_tabela.at[j, 'SMOTE'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_smoteSVM'].index.tolist()[0] df_tabela.at[j, 'SMOTE_SVM'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_Borderline1'].index.tolist()[0] df_tabela.at[j, 'BORDERLINE1'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_Borderline2'].index.tolist()[0] df_tabela.at[j, 'BORDERLINE2'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_Geometric_SMOTE'].index.tolist()[0] df_tabela.at[j, 'GEOMETRIC_SMOTE'] = aux.at[indice, m] indice = aux.PREPROC[aux.ORDER == order].index.tolist()[0] df_tabela.at[j, 'DELAUNAY'] = aux.at[indice, m] df_tabela.at[j, 'DELAUNAY_TYPE'] = order df_tabela.at[j, 'ALPHA'] = alpha df_tabela.at[j, 'unit'] = m j += 1 df_pre = df_tabela[df_tabela['unit'] == 'PRE'] df_rec = df_tabela[df_tabela['unit'] == 'REC'] df_spe = df_tabela[df_tabela['unit'] == 'SPE'] df_f1 = df_tabela[df_tabela['unit'] == 'F1'] df_geo = df_tabela[df_tabela['unit'] == 'GEO'] df_iba = df_tabela[df_tabela['unit'] == 'IBA'] df_auc = df_tabela[df_tabela['unit'] == 'AUC'] pre = df_pre[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] rec = df_rec[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] spe = df_spe[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] f1 = df_f1[['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] geo = df_geo[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] iba = df_iba[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] auc = df_auc[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] pre = pre.reset_index() pre.drop('index', axis=1, inplace=True) rec = rec.reset_index() rec.drop('index', axis=1, inplace=True) spe = spe.reset_index() spe.drop('index', axis=1, inplace=True) f1 = f1.reset_index() f1.drop('index', axis=1, inplace=True) geo = geo.reset_index() geo.drop('index', axis=1, inplace=True) iba = iba.reset_index() iba.drop('index', axis=1, inplace=True) auc = auc.reset_index() auc.drop('index', axis=1, inplace=True) # calcula rank linha a linha pre_rank = pre.rank(axis=1, ascending=False) rec_rank = rec.rank(axis=1, ascending=False) spe_rank = spe.rank(axis=1, ascending=False) f1_rank = f1.rank(axis=1, ascending=False) geo_rank = geo.rank(axis=1, ascending=False) iba_rank = iba.rank(axis=1, ascending=False) auc_rank = auc.rank(axis=1, ascending=False) df_pre = df_pre.reset_index() df_pre.drop('index', axis=1, inplace=True) df_pre['RANK_ORIGINAL'] = pre_rank['ORIGINAL'] df_pre['RANK_SMOTE'] = pre_rank['SMOTE'] df_pre['RANK_SMOTE_SVM'] = pre_rank['SMOTE_SVM'] df_pre['RANK_BORDERLINE1'] = pre_rank['BORDERLINE1'] df_pre['RANK_BORDERLINE2'] = pre_rank['BORDERLINE2'] df_pre['RANK_GEOMETRIC_SMOTE'] = pre_rank['GEOMETRIC_SMOTE'] df_pre['RANK_DELAUNAY'] = pre_rank['DELAUNAY'] df_rec = df_rec.reset_index() df_rec.drop('index', axis=1, inplace=True) df_rec['RANK_ORIGINAL'] = rec_rank['ORIGINAL'] df_rec['RANK_SMOTE'] = rec_rank['SMOTE'] df_rec['RANK_SMOTE_SVM'] = rec_rank['SMOTE_SVM'] df_rec['RANK_BORDERLINE1'] = rec_rank['BORDERLINE1'] df_rec['RANK_BORDERLINE2'] = rec_rank['BORDERLINE2'] df_rec['RANK_GEOMETRIC_SMOTE'] = rec_rank['GEOMETRIC_SMOTE'] df_rec['RANK_DELAUNAY'] = rec_rank['DELAUNAY'] df_spe = df_spe.reset_index() df_spe.drop('index', axis=1, inplace=True) df_spe['RANK_ORIGINAL'] = spe_rank['ORIGINAL'] df_spe['RANK_SMOTE'] = spe_rank['SMOTE'] df_spe['RANK_SMOTE_SVM'] = spe_rank['SMOTE_SVM'] df_spe['RANK_BORDERLINE1'] = spe_rank['BORDERLINE1'] df_spe['RANK_BORDERLINE2'] = spe_rank['BORDERLINE2'] df_spe['RANK_GEOMETRIC_SMOTE'] = spe_rank['GEOMETRIC_SMOTE'] df_spe['RANK_DELAUNAY'] = spe_rank['DELAUNAY'] df_f1 = df_f1.reset_index() df_f1.drop('index', axis=1, inplace=True) df_f1['RANK_ORIGINAL'] = f1_rank['ORIGINAL'] df_f1['RANK_SMOTE'] = f1_rank['SMOTE'] df_f1['RANK_SMOTE_SVM'] = f1_rank['SMOTE_SVM'] df_f1['RANK_BORDERLINE1'] = f1_rank['BORDERLINE1'] df_f1['RANK_BORDERLINE2'] = f1_rank['BORDERLINE2'] df_f1['RANK_GEOMETRIC_SMOTE'] = f1_rank['GEOMETRIC_SMOTE'] df_f1['RANK_DELAUNAY'] = f1_rank['DELAUNAY'] df_geo = df_geo.reset_index() df_geo.drop('index', axis=1, inplace=True) df_geo['RANK_ORIGINAL'] = geo_rank['ORIGINAL'] df_geo['RANK_SMOTE'] = geo_rank['SMOTE'] df_geo['RANK_SMOTE_SVM'] = geo_rank['SMOTE_SVM'] df_geo['RANK_BORDERLINE1'] = geo_rank['BORDERLINE1'] df_geo['RANK_BORDERLINE2'] = geo_rank['BORDERLINE2'] df_geo['RANK_GEOMETRIC_SMOTE'] = geo_rank['GEOMETRIC_SMOTE'] df_geo['RANK_DELAUNAY'] = geo_rank['DELAUNAY'] df_iba = df_iba.reset_index() df_iba.drop('index', axis=1, inplace=True) df_iba['RANK_ORIGINAL'] = iba_rank['ORIGINAL'] df_iba['RANK_SMOTE'] = iba_rank['SMOTE'] df_iba['RANK_SMOTE_SVM'] = iba_rank['SMOTE_SVM'] df_iba['RANK_BORDERLINE1'] = iba_rank['BORDERLINE1'] df_iba['RANK_BORDERLINE2'] = iba_rank['BORDERLINE2'] df_iba['RANK_GEOMETRIC_SMOTE'] = iba_rank['GEOMETRIC_SMOTE'] df_iba['RANK_DELAUNAY'] = iba_rank['DELAUNAY'] df_auc = df_auc.reset_index() df_auc.drop('index', axis=1, inplace=True) df_auc['RANK_ORIGINAL'] = auc_rank['ORIGINAL'] df_auc['RANK_SMOTE'] = auc_rank['SMOTE'] df_auc['RANK_SMOTE_SVM'] = auc_rank['SMOTE_SVM'] df_auc['RANK_BORDERLINE1'] = auc_rank['BORDERLINE1'] df_auc['RANK_BORDERLINE2'] = auc_rank['BORDERLINE2'] df_auc['RANK_GEOMETRIC_SMOTE'] = auc_rank['GEOMETRIC_SMOTE'] df_auc['RANK_DELAUNAY'] = auc_rank['DELAUNAY'] # avarege rank media_pre_rank = pre_rank.mean(axis=0) media_rec_rank = rec_rank.mean(axis=0) media_spe_rank = spe_rank.mean(axis=0) media_f1_rank = f1_rank.mean(axis=0) media_geo_rank = geo_rank.mean(axis=0) media_iba_rank = iba_rank.mean(axis=0) media_auc_rank = auc_rank.mean(axis=0) media_pre_rank_file = media_pre_rank.reset_index() media_pre_rank_file = media_pre_rank_file.sort_values(by=0) media_rec_rank_file = media_rec_rank.reset_index() media_rec_rank_file = media_rec_rank_file.sort_values(by=0) media_spe_rank_file = media_spe_rank.reset_index() media_spe_rank_file = media_spe_rank_file.sort_values(by=0) media_f1_rank_file = media_f1_rank.reset_index() media_f1_rank_file = media_f1_rank_file.sort_values(by=0) media_geo_rank_file = media_geo_rank.reset_index() media_geo_rank_file = media_geo_rank_file.sort_values(by=0) media_iba_rank_file = media_iba_rank.reset_index() media_iba_rank_file = media_iba_rank_file.sort_values(by=0) media_auc_rank_file = media_auc_rank.reset_index() media_auc_rank_file = media_auc_rank_file.sort_values(by=0) # Grava arquivos importantes df_pre.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_pre.csv', index=False) df_rec.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_rec.csv', index=False) df_spe.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_spe.csv', index=False) df_f1.to_csv(wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_f1.csv', index=False) df_geo.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_geo.csv', index=False) df_iba.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_iba.csv', index=False) df_auc.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_auc.csv', index=False) media_pre_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_pre.csv', index=False) media_rec_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_rec.csv', index=False) media_spe_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_spe.csv', index=False) media_f1_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_f1.csv', index=False) media_geo_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_geo.csv', index=False) media_iba_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_iba.csv', index=False) media_auc_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_auc.csv', index=False) delaunay_type = order + '_' + str(alpha) # grafico CD identificadores = ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', delaunay_type] avranks = list(media_pre_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_pre.pdf') plt.close() avranks = list(media_rec_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_rec.pdf') plt.close() avranks = list(media_spe_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_spe.pdf') plt.close() avranks = list(media_f1_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig(wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_f1.pdf') plt.close() avranks = list(media_geo_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_geo.pdf') plt.close() avranks = list(media_iba_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_iba.pdf') plt.close() '''avranks = list(media_auc_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_auc.pdf') plt.close()''' print('Delaunay Type= ', delaunay_type) print('Algorithm= ', name) def rank_total_by_algorithm(self, tipo, wd, reducao, order, alpha): delaunay_name = 'RANK_DTO_' + str(order) + '_' + str(alpha) cols = ['ALGORITHM', 'RANK_ORIGINAL', 'RANK_SMOTE', 'RANK_SMOTE_SVM', 'RANK_BORDERLINE1', 'RANK_BORDERLINE2', 'RANK_GEOMETRIC_SMOTE', 'RANK_DELAUNAY'] for name in classifiers_list: print(os.path.abspath(os.getcwd())) # Grava arquivos importantes path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_pre.csv' df_pre = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_rec.csv' df_rec = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_spe.csv' df_spe = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_f1.csv' df_f1 = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_geo.csv' df_geo = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_iba.csv' df_iba = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_auc.csv' df_auc = pd.read_csv(path_name) # PRE df_pre_col = df_pre[cols] df_pre_col.loc[:, delaunay_name] = df_pre_col['RANK_DELAUNAY'].values df_pre_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_pre = df_pre_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_pre.csv' ranking_pre['ALGORITHM'] = name ranking_pre.to_csv(path_name, index=False) # REC df_rec_col = df_rec[cols] df_rec_col.loc[:, delaunay_name] = df_rec_col['RANK_DELAUNAY'].values df_rec_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_rec = df_rec_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_rec.csv' ranking_rec['ALGORITHM'] = name ranking_rec.to_csv(path_name, index=False) # SPE df_spe_col = df_spe[cols] df_spe_col.loc[:, delaunay_name] = df_spe_col['RANK_DELAUNAY'].values df_spe_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_spe = df_spe_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_spe.csv' ranking_spe['ALGORITHM'] = name ranking_spe.to_csv(path_name, index=False) # F1 df_f1_col = df_f1[cols] df_f1_col.loc[:, delaunay_name] = df_f1_col['RANK_DELAUNAY'].values df_f1_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_f1 = df_f1_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_f1.csv' ranking_f1['ALGORITHM'] = name ranking_f1.to_csv(path_name, index=False) # GEO df_geo_col = df_geo[cols] df_geo_col.loc[:, delaunay_name] = df_geo_col['RANK_DELAUNAY'].values df_geo_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_geo = df_geo_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_geo.csv' ranking_geo['ALGORITHM'] = name ranking_geo.to_csv(path_name, index=False) # IBA df_iba_col = df_iba[cols] df_iba_col.loc[:, delaunay_name] = df_iba_col['RANK_DELAUNAY'].values df_iba_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_iba = df_iba_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_iba.csv' ranking_iba['ALGORITHM'] = name ranking_iba.to_csv(path_name, index=False) # AUC df_auc_col = df_auc[cols] df_auc_col.loc[:, delaunay_name] = df_auc_col['RANK_DELAUNAY'].values df_auc_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_auc = df_auc_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_auc.csv' ranking_auc['ALGORITHM'] = name ranking_auc.to_csv(path_name, index=False) def rank_by_algorithm_dataset(self, filename): df = pd.read_csv(filename) df_temp = df.groupby(by=['ALGORITHM']) for name, group in df_temp: group = group.reset_index() group.drop('index', axis=1, inplace=True) df_temp1 = group.groupby(by=['DATASET']) for name1, group1 in df_temp1: group1 = group1.reset_index() group1.drop('index', axis=1, inplace=True) group1['rank_f1'] = group1['F1'].rank(ascending=False) group1['rank_geo'] = group1['GEO'].rank(ascending=False) group1['rank_iba'] = group1['IBA'].rank(ascending=False) group1['rank_auc'] = group1['AUC'].rank(ascending=False) group1.to_csv('./../output_dir/rank/rank_algorithm_dataset_' + name + '_' + name1 + '.csv', index=False) def rank_by_algorithm_dataset_only_dto(self, filename): df = pd.read_csv(filename) df = df[df['PREPROC'] != '_SMOTE'] df = df[df['PREPROC'] != '_Geometric_SMOTE'] df = df[df['PREPROC'] != '_Borderline1'] df = df[df['PREPROC'] != '_Borderline2'] df = df[df['PREPROC'] != '_smoteSVM'] df = df[df['PREPROC'] != '_train'] df_temp = df.groupby(by=['ALGORITHM']) for name, group in df_temp: group = group.reset_index() group.drop('index', axis=1, inplace=True) df_temp1 = group.groupby(by=['DATASET']) for name1, group1 in df_temp1: group1 = group1.reset_index() group1.drop('index', axis=1, inplace=True) group1['rank_f1'] = group1['F1'].rank(ascending=False) group1['rank_geo'] = group1['GEO'].rank(ascending=False) group1['rank_iba'] = group1['IBA'].rank(ascending=False) group1['rank_auc'] = group1['AUC'].rank(ascending=False) group1.to_csv( './../output_dir/rank/only_dto/rank_algorithm_dataset_only_dto_' + name + '_' + name1 + '.csv', index=False) df_graph = group1.copy() df_graph = df_graph.replace('area', 1) df_graph = df_graph.replace('volume', 2) df_graph = df_graph.replace('area_volume_ratio', 3) df_graph = df_graph.replace('edge_ratio', 4) df_graph = df_graph.replace('radius_ratio', 5) df_graph = df_graph.replace('aspect_ratio', 6) df_graph = df_graph.replace('max_solid_angle', 7) df_graph = df_graph.replace('min_solid_angle', 8) df_graph = df_graph.replace('solid_angle', 9) legend = ['area', 'volume', 'area_volume_ratio', 'edge_ratio', 'radius_ratio', 'aspect_ratio', 'max_solid_angle', 'min_solid_angle', 'solid_angle'] x = df_graph['ORDER'].values y = df_graph['ALPHA'].values.astype(float) dz = df_graph['AUC'].values N = x.shape[0] z = np.zeros(N) dx = 0.2 * np.ones(N) dy = 0.2 * np.ones(N) fig = plt.figure(figsize=(12, 8)) ax1 = fig.add_subplot(111, projection='3d') cs = ['r', 'g', 'b'] * 9 ax1.bar3d(x, y, z, dx, dy, dz, color=cs) ax1.set_ylabel('Alpha') ax1.set_xlabel('\n\n\n\n\nGeometry') ax1.set_zlabel('AUC') ax1.set_title('Geometry x Alpha \n Algorithm = ' + name + '\n Dataset = ' + name1) ax1.set_xticklabels(legend) ax1.legend() plt.show() fig = plt.figure(figsize=(12, 8)) ax = Axes3D(fig) surf = ax.plot_trisurf(x, y, z, cmap=cm.jet, linewidth=0.5) fig.colorbar(surf, shrink=0.5, aspect=7) ax.set_xlabel('Alpha') ax.set_ylabel('\n\n\n\n\nGeometry') ax.set_zlabel('AUC') ax.set_title('Geometry x Alpha \n Algorithm = ' + name + '\n Dataset = ' + name1) ax.set_yticklabels(legend) ax.legend() plt.savefig('./../output_dir/rank/only_dto/only_dto_geometry_by_alpha_' + name + '_' + name1 + '.pdf') plt.show() def rank_by_measures_only_dto(self, filename): best_geometry = pd.DataFrame(columns=['PREPROC', 'M', 'ALGORITHM', 'MEDIA_RANK']) df = pd.read_csv(filename) df = df[df['PREPROC'] != '_SMOTE'] df = df[df['PREPROC'] != '_Geometric_SMOTE'] df = df[df['PREPROC'] != '_Borderline1'] df = df[df['PREPROC'] != '_Borderline2'] df = df[df['PREPROC'] != '_smoteSVM'] df = df[df['PREPROC'] != '_train'] i = 0 df_temp = df.groupby(by=['ALGORITHM']) for name, group in df_temp: group = group.reset_index() group.drop('index', axis=1, inplace=True) group['rank_f1'] = group['F1'].rank(ascending=False) group['rank_geo'] = group['GEO'].rank(ascending=False) group['rank_iba'] = group['IBA'].rank(ascending=False) group['rank_auc'] = group['AUC'].rank(ascending=False) # AUC group = group.sort_values(by=['rank_auc']) media_rank_auc = group.groupby('PREPROC')['rank_auc'].mean() df_media_rank_auc = pd.DataFrame(columns=['PREPROC', 'MEDIA_RANK_AUC']) df_media_rank_auc['PREPROC'] = media_rank_auc.index df_media_rank_auc['MEDIA_RANK_AUC'] = media_rank_auc.values df_media_rank_auc.sort_values(by=['MEDIA_RANK_AUC'], ascending=True, inplace=True) df_media_rank_auc.reset_index(inplace=True) df_media_rank_auc.drop('index', axis=1, inplace=True) best_auc_geometry = df_media_rank_auc.loc[0] # GEO group = group.sort_values(by=['rank_geo']) media_rank_geo = group.groupby('PREPROC')['rank_geo'].mean() df_media_rank_geo = pd.DataFrame(columns=['PREPROC', 'MEDIA_RANK_GEO']) df_media_rank_geo['PREPROC'] = media_rank_geo.index df_media_rank_geo['MEDIA_RANK_GEO'] = media_rank_geo.values df_media_rank_geo.sort_values(by=['MEDIA_RANK_GEO'], ascending=True, inplace=True) df_media_rank_geo.reset_index(inplace=True) df_media_rank_geo.drop('index', axis=1, inplace=True) best_geo_geometry = df_media_rank_geo.loc[0] # IBA group = group.sort_values(by=['rank_iba']) media_rank_iba = group.groupby('PREPROC')['rank_iba'].mean() df_media_rank_iba = pd.DataFrame(columns=['PREPROC', 'MEDIA_RANK_IBA']) df_media_rank_iba['PREPROC'] = media_rank_iba.index df_media_rank_iba['MEDIA_RANK_IBA'] = media_rank_iba.values df_media_rank_iba.sort_values(by=['MEDIA_RANK_IBA'], ascending=True, inplace=True) df_media_rank_iba.reset_index(inplace=True) df_media_rank_iba.drop('index', axis=1, inplace=True) best_iba_geometry = df_media_rank_iba.loc[0] # F1 group = group.sort_values(by=['rank_f1']) media_rank_f1 = group.groupby('PREPROC')['rank_f1'].mean() df_media_rank_f1 = pd.DataFrame(columns=['PREPROC', 'MEDIA_RANK_F1']) df_media_rank_f1['PREPROC'] = media_rank_f1.index df_media_rank_f1['MEDIA_RANK_F1'] = media_rank_f1.values df_media_rank_f1.sort_values(by=['MEDIA_RANK_F1'], ascending=True, inplace=True) df_media_rank_f1.reset_index(inplace=True) df_media_rank_f1.drop('index', axis=1, inplace=True) best_f1_geometry = df_media_rank_f1.loc[0] best_geometry.loc[i + 0, 'PREPROC'] = best_auc_geometry[0] best_geometry.loc[i + 0, 'MEDIA_RANK'] = best_auc_geometry[1] best_geometry.loc[i + 0, 'ALGORITHM'] = name best_geometry.loc[i + 0, 'M'] = 'AUC' best_geometry.loc[i + 1, 'PREPROC'] = best_geo_geometry[0] best_geometry.loc[i + 1, 'MEDIA_RANK'] = best_geo_geometry[1] best_geometry.loc[i + 1, 'ALGORITHM'] = name best_geometry.loc[i + 1, 'M'] = 'GEO' best_geometry.loc[i + 2, 'PREPROC'] = best_iba_geometry[0] best_geometry.loc[i + 2, 'MEDIA_RANK'] = best_iba_geometry[1] best_geometry.loc[i + 2, 'ALGORITHM'] = name best_geometry.loc[i + 2, 'M'] = 'IBA' best_geometry.loc[i + 3, 'PREPROC'] = best_f1_geometry[0] best_geometry.loc[i + 3, 'MEDIA_RANK'] = best_f1_geometry[1] best_geometry.loc[i + 3, 'ALGORITHM'] = name best_geometry.loc[i + 3, 'M'] = 'F1' i += 4 group.to_csv('./../output_dir/rank/rank_by_measures' + '_' + name + '.csv', index=False) best_geometry.to_csv('./../output_dir/rank/best_dto_geometry_rank.csv', index=False) def find_best_dto(self): ''' Find best DTO geometry and alpha parameter :return: ''' df = pd.read_csv('./../output_dir/rank/rank_by_measures.csv') # AUC best_dto_auc = df.groupby(['ORDER', 'ALPHA', 'ALGORITHM'])['rank_auc'] short = best_dto_auc.min().sort_values() min_auc_rank = short[0] df_min_auc = df[df['rank_auc'] == min_auc_rank] number = Counter(df_min_auc['PREPROC']) auc_choices = number.most_common() # GEO best_dto_geo = df.groupby(['ORDER', 'ALPHA', 'ALGORITHM'])['rank_geo'] short = best_dto_geo.min().sort_values() min_geo_rank = short[0] df_min_geo = df[df['rank_geo'] == min_geo_rank] number = Counter(df_min_geo['PREPROC']) geo_choices = number.most_common() # IBA best_dto_iba = df.groupby(['ORDER', 'ALPHA', 'ALGORITHM'])['rank_iba'] short = best_dto_iba.min().sort_values() min_iba_rank = short[0] df_min_iba = df[df['rank_iba'] == min_iba_rank] number = Counter(df_min_iba['PREPROC']) iba_choices = number.most_common() # F1 best_dto_f1 = df.groupby(['ORDER', 'ALPHA', 'ALGORITHM'])['rank_f1'] short = best_dto_f1.min().sort_values() min_f1_rank = short[0] df_min_f1 = df[df['rank_f1'] == min_f1_rank] number = Counter(df_min_f1['PREPROC']) f1_choices = number.most_common() d1 = {} d2 = {} d3 = {} d4 = {} d1.update(auc_choices) d2.update(geo_choices) d3.update(iba_choices) d4.update(f1_choices) print(auc_choices) print(geo_choices) print(iba_choices) print(f1_choices) x = np.arange(len(auc_choices)) fig = plt.figure(figsize=(12, 12)) fig.autofmt_xdate(rotation=90, ha='center') x1 = np.arange(len(geo_choices)) ax = plt.subplot(111) ax.bar(x1, d1.values(), width=0.2, color='b', align='center') ax.bar(x1 - 0.2, d2.values(), width=0.2, color='g', align='center') ax.bar(x1 - 0.4, d3.values(), width=0.2, color='r', align='center') ax.bar(x1 - 0.6, d4.values(), width=0.2, color='c', align='center') ax.legend(('AUC', 'GEO', 'IBA', 'F1')) plt.xticks(x1, d1.keys(), rotation=90) plt.title("Best DTO", fontsize=17) plt.ylabel('FREQUENCY WON') ax.grid(which='both') plt.savefig('./../output_dir/rank/best_dto_geometry_alpha.pdf', dpi=200) # plt.show() plt.close() def graficos(self): order = ['area', 'volume', 'area_volume_ratio', 'edge_ratio', 'radius_ratio', 'aspect_ratio', 'max_solid_angle', 'min_solid_angle', 'solid_angle'] alpha = [1, 4, 9] algorithm = ['RF', 'KNN', 'DTREE', 'GNB', 'LRG', 'ABC', 'MLP', 'QDA', 'SVM', 'SGD'] pref = 'pca_total_rank_biclasse_' measures = ['auc', 'geo', 'iba', 'f1'] preproc = ["_train", "_SMOTE", "_Borderline1", "_Borderline2", "_smoteSVM", "_Geometric_SMOTE"] dfrank = pd.DataFrame(columns=['ALGORITHM', 'UNIT', 'PREPROC', 'ALPHA', 'MEDIA_RANK_ORIGINAL', 'MEDIA_RANK_DTO', 'MEDIA_RANK_GEO_SMOTE', 'MEDIA_RANK_SMOTE', 'MEDIA_RANK_SMOTE_SVM', 'MEDIA_RANK_B1', 'MEDIA_RANK_B2']) i = 0 for m in measures: for o in order: for a in alpha: for alg in algorithm: df = pd.read_csv( './../rank/pca_biclasse/' + pref + o + '_' + str(a) + '_' + alg + '_' + m + '.csv') dfrank.loc[i, 'ALGORITHM'] = alg dfrank.loc[i, 'UNIT'] = m dfrank.loc[i, 'PREPROC'] = o dfrank.loc[i, 'ALPHA'] = a mro = df.RANK_ORIGINAL.mean() mrdto = df.RANK_DELAUNAY.mean() mrgeosmote = df.RANK_GEOMETRIC_SMOTE.mean() mrs = df.RANK_SMOTE.mean() mrssvm = df.RANK_SMOTE_SVM.mean() mrbl1 = df.RANK_BORDERLINE1.mean() mrbl2 = df.RANK_BORDERLINE2.mean() dfrank.loc[i, 'MEDIA_RANK_ORIGINAL'] = mro dfrank.loc[i, 'MEDIA_RANK_DTO'] = mrdto dfrank.loc[i, 'MEDIA_RANK_GEO_SMOTE'] = mrgeosmote dfrank.loc[i, 'MEDIA_RANK_SMOTE'] = mrs dfrank.loc[i, 'MEDIA_RANK_SMOTE_SVM'] = mrssvm dfrank.loc[i, 'MEDIA_RANK_B1'] = mrbl1 dfrank.loc[i, 'MEDIA_RANK_B2'] = mrbl2 i += 1 dfrank.to_csv('./../output_dir/media_rank_all_alpha_order.csv', index=False) def rank_dto_by(self,geometry): #M = ['_pre.csv', '_rec.csv', '_spe.csv', '_f1.csv', '_geo.csv','_iba.csv', '_auc.csv'] M = ['_pre.csv', '_rec.csv', '_spe.csv', '_f1.csv', '_geo.csv', '_iba.csv'] df_media_rank = pd.DataFrame(columns=['ALGORITHM', 'RANK_ORIGINAL', 'RANK_SMOTE', 'RANK_SMOTE_SVM', 'RANK_BORDERLINE1', 'RANK_BORDERLINE2', 'RANK_GEOMETRIC_SMOTE', 'RANK_DELAUNAY','unit']) name = './../output_dir/biclass/total_rank/pca_total_rank_biclasse_' + geometry + '_' for m in M: i = 0 for c in classifiers_list: df =
pd.read_csv(name + c + m)
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jun 4 10:30:17 2018 @author: avelinojaver """ from tierpsy.features.tierpsy_features.summary_stats import get_summary_stats from tierpsy.summary.helper import augment_data, add_trajectory_info from tierpsy.helper.params import read_fps from tierpsy.helper.misc import WLAB,print_flush from tierpsy.analysis.split_fov.helper import was_fov_split import pandas as pd import pdb #%% def time_to_frame_nb(time_windows,time_units,fps,timestamp,fname): """ Converts the time windows to units of frame numbers (if they were defined in seconds). It also defines the end frame of a window, if the index is set to -1 (end). """ if timestamp.empty: return from copy import deepcopy time_windows_frames = deepcopy(time_windows) if time_units == 'seconds': assert fps!=-1 for iwin in range(len(time_windows_frames)): for ilim in range(2): if time_windows_frames[iwin][ilim]!=-1: time_windows_frames[iwin][ilim] = round(time_windows_frames[iwin][ilim]*fps) last_frame = timestamp.sort_values().iloc[-1] for iwin in range(len(time_windows_frames)): # If a window ends with -1, replace with the frame number of the last frame (or the start frame of the window+1 if window out of bounds) if time_windows_frames[iwin][1]==-1: time_windows_frames[iwin][1] = max(last_frame+1,time_windows_frames[iwin][0]) # If a window is out of bounds, print warning if time_windows_frames[iwin][0]>last_frame: print_flush('Warning: The start time of window {}/{} is out of bounds of file \'{}\'.'.format(iwin+1,len(time_windows_frames),fname)) return time_windows_frames def no_fps(time_units,fps): if time_units=='seconds' and fps==-1: print_flush( """ Warning: The time windows were defined in seconds, but fps for file \'{}\' is unknown. Define time windows in frame numbers instead. """.format(fname) ) return True else: return False #%% def read_data(fname, time_windows, time_units, fps, is_manual_index): """ Reads the timeseries_data and the blob_features for a given file within every time window. return: timeseries_data_list: list of timeseries_data for each time window (length of lists = number of windows) blob_features_list: list of blob_features for each time window (length of lists = number of windows) """ # EM: If time_units=seconds and fps is not defined, then return None with warning of no fps. # Make this check here, to avoid wasting time reading the file if no_fps(time_units,fps): return with
pd.HDFStore(fname, 'r')
pandas.HDFStore
import numpy as np import pandas as pd import matplotlib.pyplot as plt import pprint import config.settings import config.strategy from core.utility import chunk_trades, sharpe, drawdown from multiprocessing_on_dill import Pool #, Process, Manager from contextlib import closing class accountCurve(): """ Account curve object for Portfolio and Instrument. Calculates the positions we want to be in, based on the volatility target. """ def __init__(self, portfolio, capital=500000, positions=None, panama_prices=None, nofx=False, portfolio_weights = 1, **kw): self.portfolio = portfolio self.nofx = nofx self.weights = portfolio_weights self.multiproc = kw.get('multiproc', True) # If working on one instrument, put it in a list if not isinstance(portfolio, list): self.portfolio = [self.portfolio] if isinstance(positions, pd.Series): positions = positions.rename(self.portfolio[0].name) self.capital = capital self.panama = panama_prices if positions is None: self.positions = self.instrument_positions() self.positions = self.positions.multiply(self.weights) else: self.positions = pd.DataFrame(positions) # Reduce all our positions so that they fit inside our target volatility when combined. self.positions = self.positions.multiply(self.vol_norm(),axis=0) # If we run out of data (for example, if the data feed is stopped), hold position for 5 trading days and then close. # chunk_trades() is a function that is designed to reduce the amount of trading (and hence cost) self.positions = chunk_trades(self.positions).ffill(limit=5).fillna(0) def __repr__(self): """ Returns a formatted list of statistics about the account curve. """ return pprint.pformat(self.stats_list()) def inst_calc(self): """Calculate all the things we need on all the instruments and cache it.""" try: return self.memo_inst_calc except: if len(self.portfolio)>1 and self.multiproc: with closing(Pool()) as pool: self.memo_inst_calc = dict(pool.map(lambda x: (x.name, x.calculate()), self.portfolio)) else: self.memo_inst_calc = dict(map(lambda x: (x.name, x.calculate()), self.portfolio)) return self.memo_inst_calc def instrument_positions(self): """Position returned by the instrument objects, not the final position in the portfolio""" try: return self.memo_instrument_positions except: self.memo_instrument_positions = pd.DataFrame({k: v['position'] for k, v in self.inst_calc().items()}) return self.memo_instrument_positions def rates(self): """ Returns a Series or DataFrame of exchange rates. """ if self.nofx==True: return 1 try: return self.memo_rates except: self.memo_rates = pd.DataFrame({k: v['rate'] for k, v in self.inst_calc().items()}) return self.memo_rates def stats_list(self): stats_list = ["sharpe", "gross_sharpe", "annual_vol", "sortino", "cap", "avg_drawdown", "worst_drawdown", "time_in_drawdown", "calmar", "avg_return_to_drawdown"] return {k: getattr(self, k)() for k in stats_list} def returns(self): """ Returns a Series/Frame of net returns after commissions, spreads and estimated slippage. """ return self.position_returns() + self.transaction_returns() + self.commissions() + self.spreads() def position_returns(self): """The returns from holding the portfolio we had yesterday""" # We shift back 2, as self.positions is the frontier - tomorrow's ideal position. return (self.positions.shift(2).multiply((self.panama_prices()).diff(), axis=0).fillna(0) * self.point_values()) * self.rates() def transaction_returns(self): """Estimated returns from transactions including slippage. Uses the average settlement price of the last two days""" # self.positions.diff().shift(1) = today's trades slippage_multiplier = .5 return (self.positions.diff().shift(1).multiply((self.panama_prices()).diff()*slippage_multiplier, axis=0).fillna(0) * self.point_values()) * self.rates() def commissions(self): commissions = pd.Series({v.name: v.commission for v in self.portfolio}) return (self.positions.diff().shift(1).multiply(commissions)).fillna(0).abs()*-1 def spreads(self): spreads = pd.Series({v.name: v.spread for v in self.portfolio}) return (self.positions.diff().shift(1).multiply(spreads * self.point_values() * self.rates())).fillna(0).abs()*-1 def vol_norm(self): return (config.strategy.daily_volatility_target * self.capital / \ (self.returns().sum(axis=1).shift(2).ewm(span=50).std())).clip(0,1.5) def panama_prices(self): if self.panama is not None: return pd.DataFrame(self.panama) else: try: return self.memo_panama_prices except: self.memo_panama_prices = pd.DataFrame({k: v['panama_prices'] for k, v in self.inst_calc().items()}) return self.memo_panama_prices def point_values(self): return
pd.Series({v.name: v.point_value for v in self.portfolio})
pandas.Series
"""Preprocessing data methods.""" import numpy as np import pandas as pd from autots.tools.impute import FillNA def remove_outliers(df, std_threshold: float = 3): """Replace outliers with np.nan. https://stackoverflow.com/questions/23199796/detect-and-exclude-outliers-in-pandas-data-frame Args: df (pandas.DataFrame): DataFrame containing numeric data, DatetimeIndex std_threshold (float): The number of standard deviations away from mean to count as outlier. """ df = df[np.abs(df - df.mean()) <= (std_threshold * df.std())] return df def clip_outliers(df, std_threshold: float = 3): """Replace outliers above threshold with that threshold. Axis = 0. Args: df (pandas.DataFrame): DataFrame containing numeric data std_threshold (float): The number of standard deviations away from mean to count as outlier. """ df_std = df.std(axis=0, skipna=True) df_mean = df.mean(axis=0, skipna=True) lower = df_mean - (df_std * std_threshold) upper = df_mean + (df_std * std_threshold) df2 = df.clip(lower=lower, upper=upper, axis=1) return df2 def simple_context_slicer(df, method: str = 'None', forecast_length: int = 30): """Condensed version of context_slicer with more limited options. Args: df (pandas.DataFrame): training data frame to slice method (str): Option to slice dataframe 'None' - return unaltered dataframe 'HalfMax' - return half of dataframe 'ForecastLength' - return dataframe equal to length of forecast '2ForecastLength' - return dataframe equal to twice length of forecast (also takes 4, 6, 8, 10 in addition to 2) """ if method in [None, "None"]: return df df = df.sort_index(ascending=True) if 'forecastlength' in str(method).lower(): len_int = int([x for x in str(method) if x.isdigit()][0]) return df.tail(len_int * forecast_length) elif method == 'HalfMax': return df.tail(int(len(df.index) / 2)) elif str(method).isdigit(): return df.tail(int(method)) else: print("Context Slicer Method not recognized") return df """ if method == '2ForecastLength': return df.tail(2 * forecast_length) elif method == '6ForecastLength': return df.tail(6 * forecast_length) elif method == '12ForecastLength': return df.tail(12 * forecast_length) elif method == 'ForecastLength': return df.tail(forecast_length) elif method == '4ForecastLength': return df.tail(4 * forecast_length) elif method == '8ForecastLength': return df.tail(8 * forecast_length) elif method == '10ForecastLength': return df.tail(10 * forecast_length) """ class Detrend(object): """Remove a linear trend from the data.""" def __init__(self): self.name = 'Detrend' def fit(self, df): """Fits trend for later detrending. Args: df (pandas.DataFrame): input dataframe """ from statsmodels.regression.linear_model import GLS try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") # formerly df.index.astype( int ).values y = df.values X = pd.to_numeric(df.index, errors='coerce', downcast='integer').values # from statsmodels.tools import add_constant # X = add_constant(X, has_constant='add') self.model = GLS(y, X, missing='drop').fit() self.shape = df.shape return self def fit_transform(self, df): """Fit and Return Detrended DataFrame. Args: df (pandas.DataFrame): input dataframe """ self.fit(df) return self.transform(df) def transform(self, df): """Return detrended data. Args: df (pandas.DataFrame): input dataframe """ try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") # formerly X = df.index.astype( int ).values X = pd.to_numeric(df.index, errors='coerce', downcast='integer').values # from statsmodels.tools import add_constant # X = add_constant(X, has_constant='add') df = df.astype(float) - self.model.predict(X) return df def inverse_transform(self, df): """Return data to original form. Args: df (pandas.DataFrame): input dataframe """ try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") X = pd.to_numeric(df.index, errors='coerce', downcast='integer').values # from statsmodels.tools import add_constant # X = add_constant(X, has_constant='add') df = df.astype(float) + self.model.predict(X) return df class StatsmodelsFilter(object): """Irreversible filters.""" def __init__(self, method: str = 'bkfilter'): self.method = method def fit(self, df): """Fits filter. Args: df (pandas.DataFrame): input dataframe """ return self def fit_transform(self, df): """Fit and Return Detrended DataFrame. Args: df (pandas.DataFrame): input dataframe """ self.fit(df) return self.transform(df) def transform(self, df): """Return detrended data. Args: df (pandas.DataFrame): input dataframe """ try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") if self.method == 'bkfilter': from statsmodels.tsa.filters import bk_filter cycles = bk_filter.bkfilter(df, K=1) cycles.columns = df.columns df = (df - cycles).fillna(method='ffill').fillna(method='bfill') elif self.method == 'cffilter': from statsmodels.tsa.filters import cf_filter cycle, trend = cf_filter.cffilter(df) cycle.columns = df.columns df = df - cycle return df def inverse_transform(self, df): """Return data to original form. Args: df (pandas.DataFrame): input dataframe """ return df class SinTrend(object): """Modelling sin.""" def __init__(self): self.name = 'SinTrend' def fit_sin(self, tt, yy): """Fit sin to the input time sequence, and return fitting parameters "amp", "omega", "phase", "offset", "freq", "period" and "fitfunc" from user unsym @ https://stackoverflow.com/questions/16716302/how-do-i-fit-a-sine-curve-to-my-data-with-pylab-and-numpy """ import scipy.optimize tt = np.array(tt) yy = np.array(yy) ff = np.fft.fftfreq(len(tt), (tt[1] - tt[0])) # assume uniform spacing Fyy = abs(np.fft.fft(yy)) guess_freq = abs( ff[np.argmax(Fyy[1:]) + 1] ) # excluding the zero frequency "peak", which is related to offset guess_amp = np.std(yy) * 2.0 ** 0.5 guess_offset = np.mean(yy) guess = np.array([guess_amp, 2.0 * np.pi * guess_freq, 0.0, guess_offset]) def sinfunc(t, A, w, p, c): return A * np.sin(w * t + p) + c popt, pcov = scipy.optimize.curve_fit(sinfunc, tt, yy, p0=guess, maxfev=10000) A, w, p, c = popt # f = w/(2.*np.pi) # fitfunc = lambda t: A * np.sin(w*t + p) + c return { "amp": A, "omega": w, "phase": p, "offset": c, } # , "freq": f, "period": 1./f, "fitfunc": fitfunc, "maxcov": np.max(pcov), "rawres": (guess,popt,pcov)} def fit(self, df): """Fits trend for later detrending Args: df (pandas.DataFrame): input dataframe """ try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") X =
pd.to_numeric(df.index, errors='coerce', downcast='integer')
pandas.to_numeric
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.2.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # s_yield_change_correlation [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=s_yield_change_correlation&codeLang=Python) # For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=s_yield_change_correlation). # + import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() from arpym.statistics import meancov_sp from arpym.estimation import cov_2_corr, min_corr_toeplitz from arpym.tools import add_logo # - # ## [Input parameters](https://www.arpm.co/lab/redirect.php?permalink=s_yield_change_correlation-parameters) tau = np.arange(2, 10.25, 0.25) # times to maturity # ## [Step 0](https://www.arpm.co/lab/redirect.php?permalink=s_yield_change_correlation-implementation-step00): Import data from database path = '../../../databases/global-databases/fixed-income/db_yields/' df = pd.read_csv(path + 'data.csv', index_col=0) y = np.array(df.loc[:, tau.astype('str')]) y = y[1800:, ] # remove missing data fx_df = pd.read_csv(path + 'data.csv', usecols=['dates'], parse_dates=['dates']) fx_df = fx_df[1801:] # ## [Step 1](https://www.arpm.co/lab/redirect.php?permalink=s_yield_change_correlation-implementation-step01): Compute invariants x = np.diff(y, n=1, axis=0) t_, n_ = x.shape # ## [Step 2](https://www.arpm.co/lab/redirect.php?permalink=s_yield_change_correlation-implementation-step02): Compute HFP mean, covariance, correlation and vector of standard deviations m_hat_HFP_x, s2_hat_HFP_x = meancov_sp(x) c2_HFP_x, s_vec = cov_2_corr(s2_hat_HFP_x) # ## [Step 3](https://www.arpm.co/lab/redirect.php?permalink=s_yield_change_correlation-implementation-step03): Fit and compute the Toeplitz cross-diagonal form c2_star, gamma_star = min_corr_toeplitz(c2_HFP_x, tau) # ## [Step 4](https://www.arpm.co/lab/redirect.php?permalink=s_yield_change_correlation-implementation-step04): Save the data # + output = { 'tau': pd.Series(tau), 'n_': pd.Series(x.shape[1]), 'gamma_star': pd.Series(gamma_star), 'm_hat_HFP_x': pd.Series(m_hat_HFP_x), 's2_hat_HFP_x': pd.Series((s2_hat_HFP_x.reshape(-1))), 's_vec':
pd.Series(s_vec)
pandas.Series
import keras from keras.layers import Input, Conv1D, Activation, MaxPooling1D, UpSampling1D from keras.models import Model from keras import backend as K from keras.utils.generic_utils import get_custom_objects import tensorflow as tf import matplotlib.pyplot as plt import numpy as np import pandas as pd import sys import argparse # Constants batch_size = 16 epochs = 50 # Window Function def window(data, window_size): # With overlay windowed_data = [] i = 0 while(i + window_size-1 < len(data)): windowed_data.append(data[i:(i+window_size)]) i += window_size//2 if((i - (window_size//2) + window_size-1) != len(data)): i = len(data) - window_size windowed_data.append(data[i:len(data)]) # add the rest return windowed_data def parser_args(cmd_args): parser = argparse.ArgumentParser(sys.argv[0], description="", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("-e", "--exp", type=str, action="store", default="pairwise_distances", help="Experiment") parser.add_argument("-d", "--dataset", type=str, action="store", default="PigArtPressure", help="Dataset name") return parser.parse_args(cmd_args) # obtaining arguments from command line args = parser_args(sys.argv[1:]) dataset = args.dataset exp = args.exp if (exp == "pairwise_distances"): data = np.genfromtxt('../data/' + exp + '/' + dataset + '.txt', delimiter=' ',) print("Data shape:", data.shape) elif (exp == "similarity_search"): data = np.genfromtxt('../data/' + exp + '/' + dataset + '/' + 'Data.txt', delimiter=' ',) print("Data shape:", data.shape) else: data = np.genfromtxt('../data/' + exp + '/' + dataset + '/' + dataset + '_train.txt', delimiter=' ',) print("Data shape:", data.shape) # Getting rid of the NaNs and infs with interpolation if (len(data.shape) == 1): data = np.array(
pd.Series(data)
pandas.Series