prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import os import numpy as np import pandas as pd from sklearn import linear_model def allign_alleles(df): """Look for reversed alleles and inverts the z-score for one of them. Here, we take advantage of numpy's vectorized functions for performance. """ d = {'A': 0, 'C': 1, 'G': 2, 'T': 3} a = [] # array of alleles for colname in ['A1_ref', 'A2_ref', 'A1_gen', 'A2_gen', 'A1_y', 'A2_y']: tmp = np.empty(len(df[colname]), dtype=int) for k, v in d.items(): tmp[np.array(df[colname]) == k] = v a.append(tmp) matched_alleles_gen = (((a[0] == a[2]) & (a[1] == a[3])) | ((a[0] == 3 - a[2]) & (a[1] == 3 - a[3]))) reversed_alleles_gen = (((a[0] == a[3]) & (a[1] == a[2])) | ((a[0] == 3 - a[3]) & (a[1] == 3 - a[2]))) matched_alleles_y = (((a[0] == a[4]) & (a[1] == a[5])) | ((a[0] == 3 - a[4]) & (a[1] == 3 - a[5]))) reversed_alleles_y = (((a[0] == a[5]) & (a[1] == a[4])) | ((a[0] == 3 - a[5]) & (a[1] == 3 - a[4]))) df['Z_y'] *= -2 * reversed_alleles_y + 1 df['reversed'] = reversed_alleles_gen df = df[((matched_alleles_y|reversed_alleles_y)&(matched_alleles_gen|reversed_alleles_gen))] def get_files(file_name, chr): if '@' in file_name: valid_files = [] if chr is None: for i in range(1, 23): cur_file = file_name.replace('@', str(i)) if os.path.isfile(cur_file): valid_files.append(cur_file) else: raise ValueError('No file matching {} for chr {}'.format( file_name, i)) else: cur_file = file_name.replace('@', chr) if os.path.isfile(cur_file): valid_files.append(cur_file) else: raise ValueError('No file matching {} for chr {}'.format( file_name, chr)) return valid_files else: if os.path.isfile(file_name): return [file_name] else: ValueError('No files matching {}'.format(file_name)) def prep(bfile, genotype, sumstats2, N2, phenotype, covariates, chr, start, end): bim_files = get_files(bfile + '.bim', chr) genotype_files = get_files(genotype + '.bim', chr) # read in bim files bims = [pd.read_csv(f, header=None, names=['CHR', 'SNP', 'CM', 'BP', 'A1', 'A2'], delim_whitespace=True) for f in bim_files] bim = pd.concat(bims, ignore_index=True) genotype_bims = [pd.read_csv(f, header=None, names=['CHR', 'SNP', 'CM', 'BP', 'A1', 'A2'], delim_whitespace=True) for f in genotype_files] genotype_bim = pd.concat(genotype_bims, ignore_index=True) if chr is not None: if start is None: start = 0 if end is None: end = float('inf') genotype_bim = genotype_bim[np.logical_and(np.logical_and(genotype_bim['CHR']==chr, genotype_bim['BP']<=end), genotype_bim['BP']>=start)].reset_index(drop=True) bim = bim[np.logical_and(np.logical_and(bim['CHR']==chr, bim['BP']<=end), bim['BP']>=start)].reset_index(drop=True) summary_stats = pd.read_csv(sumstats2, delim_whitespace=True) # rename cols bim.rename(columns={'CHR': 'CHR_ref', 'CM': 'CM_ref', 'BP':'BP_ref', 'A1': 'A1_ref', 'A2': 'A2_ref'}, inplace=True) genotype_bim.rename(columns={'CHR': 'CHR_gen', 'CM': 'CM_gen', 'BP':'BP_gen', 'A1': 'A1_gen', 'A2': 'A2_gen'}, inplace=True) summary_stats.rename(columns={'A1': 'A1_y', 'A2': 'A2_y', 'N': 'N_y', 'Z': 'Z_y'}, inplace=True) # take overlap between output and ref genotype files df =
pd.merge(bim, genotype_bim, on=['SNP'])
pandas.merge
import pandas as pd import numpy as np import math import matplotlib.pyplot as plt import assetallocation_arp.models.ARP as arp # Parameters TIMES_LAG=3 settings=arp.dataimport_settings("Settings") # Change the universe of markets that is being used markets="Leverage_MATR" # All "Leverage_all_markets" / Minimalist "Leverage_min" # Leverage/scaling of individual markets sleverage ="v" #Equal(e) / Normative(n) / Volatility(v) / Standalone(s) def signal (index): sig=
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd from numba import njit, typeof from numba.typed import List from datetime import datetime, timedelta import pytest from copy import deepcopy import vectorbt as vbt from vectorbt.portfolio.enums import * from vectorbt.generic.enums import drawdown_dt from vectorbt.utils.random_ import set_seed from vectorbt.portfolio import nb from tests.utils import record_arrays_close seed = 42 day_dt = np.timedelta64(86400000000000) price = pd.Series([1., 2., 3., 4., 5.], index=pd.Index([ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5) ])) price_wide = price.vbt.tile(3, keys=['a', 'b', 'c']) big_price = pd.DataFrame(np.random.uniform(size=(1000,))) big_price.index = [datetime(2018, 1, 1) + timedelta(days=i) for i in range(1000)] big_price_wide = big_price.vbt.tile(1000) # ############# Global ############# # def setup_module(): vbt.settings.numba['check_func_suffix'] = True vbt.settings.portfolio['attach_call_seq'] = True vbt.settings.caching.enabled = False vbt.settings.caching.whitelist = [] vbt.settings.caching.blacklist = [] def teardown_module(): vbt.settings.reset() # ############# nb ############# # def assert_same_tuple(tup1, tup2): for i in range(len(tup1)): assert tup1[i] == tup2[i] or np.isnan(tup1[i]) and np.isnan(tup2[i]) def test_execute_order_nb(): # Errors, ignored and rejected orders with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(-100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.nan, 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., np.inf, 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., np.nan, 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., np.nan, 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., -10., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., np.nan, 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, size_type=-2)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, size_type=20)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=-2)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=20)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., -100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.LongOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.ShortOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, -10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fees=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fees=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fixed_fees=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fixed_fees=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, slippage=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, slippage=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, min_size=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, min_size=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, max_size=0)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, max_size=-10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=np.nan)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=2)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., np.nan, 0, 0), nb.order_nb(1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=3)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., -10., 0, 0), nb.order_nb(1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=4)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.inf, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.Value)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., -10., 1100, 0, 0), nb.order_nb(10, 10, size_type=SizeType.Value)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.nan, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.Value)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.inf, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetValue)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., -10., 1100, 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetValue)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.nan, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetValue)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=2)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -10., 0., 100., 10., 1100., 0, 0), nb.order_nb(np.inf, 10, direction=Direction.ShortOnly)) assert exec_state == ExecuteOrderState(cash=200.0, position=-20.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -10., 0., 100., 10., 1100., 0, 0), nb.order_nb(-np.inf, 10, direction=Direction.Both)) assert exec_state == ExecuteOrderState(cash=200.0, position=-20.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 10., 0., 100., 10., 1100., 0, 0), nb.order_nb(0, 10)) assert exec_state == ExecuteOrderState(cash=100.0, position=10.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=5)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(15, 10, max_size=10, allow_partial=False)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=9)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=1.)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=10)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 100., 0., 0., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.LongOnly)) assert exec_state == ExecuteOrderState(cash=0.0, position=100.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=7)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 100., 0., 0., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.Both)) assert exec_state == ExecuteOrderState(cash=0.0, position=100.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=7)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100, 0., np.inf, np.nan, 1100., 0, 0), nb.order_nb(np.inf, 10, direction=Direction.LongOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100., 0., np.inf, 10., 1100., 0, 0), nb.order_nb(np.inf, 10, direction=Direction.Both)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, direction=Direction.ShortOnly)) assert exec_state == ExecuteOrderState(cash=100.0, position=0.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=8)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100., 0., np.inf, 10., 1100., 0, 0), nb.order_nb(-np.inf, 10, direction=Direction.ShortOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100., 0., np.inf, 10., 1100., 0, 0), nb.order_nb(-np.inf, 10, direction=Direction.Both)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, direction=Direction.LongOnly)) assert exec_state == ExecuteOrderState(cash=100.0, position=0.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=8)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fixed_fees=100)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=11)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, min_size=100)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=12)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(100, 10, allow_partial=False)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=13)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, min_size=100)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=12)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(-200, 10, direction=Direction.LongOnly, allow_partial=False)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=13)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, fixed_fees=1000)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=11)) # Calculations exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(10, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=0.0, position=8.18181818181818, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=8.18181818181818, price=11.0, fees=10.000000000000014, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(100, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=0.0, position=8.18181818181818, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=8.18181818181818, price=11.0, fees=10.000000000000014, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-10, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=180.0, position=-10.0, debt=90.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=9.0, fees=10.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-100, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=909.0, position=-100.0, debt=900.0, free_cash=-891.0) assert_same_tuple(order_result, OrderResult( size=100.0, price=9.0, fees=91.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetAmount)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-10, 10, size_type=SizeType.TargetAmount)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(100, 10, size_type=SizeType.Value)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-100, 10, size_type=SizeType.Value)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(100, 10, size_type=SizeType.TargetValue)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-100, 10, size_type=SizeType.TargetValue)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=25.0, position=7.5, debt=0.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(-0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=125.0, position=-2.5, debt=25.0, free_cash=75.0) assert_same_tuple(order_result, OrderResult( size=7.5, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=15.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=0.0, position=5.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=25.0, position=2.5, debt=0.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(-0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=75.0, position=-2.5, debt=25.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=100.0, position=-5.0, debt=50.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=0.0, position=0.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=25.0, position=-2.5, debt=0.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(-0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=75.0, position=-7.5, debt=25.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=100.0, position=-10.0, debt=50.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(np.inf, 10)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -5., 0., 100., 10., 100., 0, 0), nb.order_nb(np.inf, 10)) assert exec_state == ExecuteOrderState(cash=0.0, position=5.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-np.inf, 10)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(150., -5., 0., 150., 10., 100., 0, 0), nb.order_nb(-np.inf, 10)) assert exec_state == ExecuteOrderState(cash=300.0, position=-20.0, debt=150.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=15.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(10, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=50.0, position=5.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(1000., -5., 50., 50., 10., 100., 0, 0), nb.order_nb(10, 17.5, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=850.0, position=3.571428571428571, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=8.571428571428571, price=17.5, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -5., 50., 50., 10., 100., 0, 0), nb.order_nb(10, 100, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=37.5, position=-4.375, debt=43.75, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=0.625, price=100.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 10., 0., -50., 10., 100., 0, 0), nb.order_nb(-20, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=150.0, position=-5.0, debt=50.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=15.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 1., 0., -50., 10., 100., 0, 0), nb.order_nb(-10, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=10.0, position=0.0, debt=0.0, free_cash=-40.0) assert_same_tuple(order_result, OrderResult( size=1.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 0., 0., -100., 10., 100., 0, 0), nb.order_nb(-10, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=0.0, position=0.0, debt=0.0, free_cash=-100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=6)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-20, 10, fees=0.1, slippage=0.1, fixed_fees=1., lock_cash=True)) assert exec_state == ExecuteOrderState(cash=80.0, position=-10.0, debt=90.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=9.0, fees=10.0, side=1, status=0, status_info=-1)) def test_build_call_seq_nb(): group_lens = np.array([1, 2, 3, 4]) np.testing.assert_array_equal( nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Default), nb.build_call_seq((10, 10), group_lens, CallSeqType.Default) ) np.testing.assert_array_equal( nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Reversed), nb.build_call_seq((10, 10), group_lens, CallSeqType.Reversed) ) set_seed(seed) out1 = nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Random) set_seed(seed) out2 = nb.build_call_seq((10, 10), group_lens, CallSeqType.Random) np.testing.assert_array_equal(out1, out2) # ############# from_orders ############# # order_size = pd.Series([np.inf, -np.inf, np.nan, np.inf, -np.inf], index=price.index) order_size_wide = order_size.vbt.tile(3, keys=['a', 'b', 'c']) order_size_one = pd.Series([1, -1, np.nan, 1, -1], index=price.index) def from_orders_both(close=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(close, size, direction='both', **kwargs) def from_orders_longonly(close=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(close, size, direction='longonly', **kwargs) def from_orders_shortonly(close=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(close, size, direction='shortonly', **kwargs) class TestFromOrders: def test_one_column(self): record_arrays_close( from_orders_both().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) pf = from_orders_both() pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert pf.wrapper.ndim == 1 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None def test_multiple_columns(self): record_arrays_close( from_orders_both(close=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0), (3, 1, 0, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 3, 100.0, 4.0, 0.0, 0), (6, 2, 0, 100.0, 1.0, 0.0, 0), (7, 2, 1, 200.0, 2.0, 0.0, 1), (8, 2, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1), (4, 1, 0, 100.0, 1.0, 0.0, 0), (5, 1, 1, 100.0, 2.0, 0.0, 1), (6, 1, 3, 50.0, 4.0, 0.0, 0), (7, 1, 4, 50.0, 5.0, 0.0, 1), (8, 2, 0, 100.0, 1.0, 0.0, 0), (9, 2, 1, 100.0, 2.0, 0.0, 1), (10, 2, 3, 50.0, 4.0, 0.0, 0), (11, 2, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0), (2, 1, 0, 100.0, 1.0, 0.0, 1), (3, 1, 1, 100.0, 2.0, 0.0, 0), (4, 2, 0, 100.0, 1.0, 0.0, 1), (5, 2, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) pf = from_orders_both(close=price_wide) pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert pf.wrapper.ndim == 2 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None def test_size_inf(self): record_arrays_close( from_orders_both(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_price(self): record_arrays_close( from_orders_both(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 0, 1, 198.01980198019803, 2.02, 0.0, 1), (2, 0, 3, 99.00990099009901, 4.04, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 0, 1, 99.00990099009901, 2.02, 0.0, 1), (2, 0, 3, 49.504950495049506, 4.04, 0.0, 0), (3, 0, 4, 49.504950495049506, 5.05, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 1), (1, 0, 1, 99.00990099009901, 2.02, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 1), (1, 0, 3, 66.66666666666667, 3.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=-np.inf).order_records, np.array([ (0, 0, 3, 33.333333333333336, 3.0, 0.0, 0), (1, 0, 4, 33.333333333333336, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=-np.inf).order_records, np.array([ (0, 0, 3, 33.333333333333336, 3.0, 0.0, 1), (1, 0, 4, 33.333333333333336, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_val_price(self): price_nan = pd.Series([1, 2, np.nan, 4, 5], index=price.index) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value').order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=price, size_type='value').order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value').order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=price, size_type='value').order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value').order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=price, size_type='value').order_records ) shift_price = price_nan.ffill().shift(1) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value').order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value').order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value').order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) shift_price_nan = price_nan.shift(1) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) def test_fees(self): record_arrays_close( from_orders_both(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.2, 1), (6, 1, 3, 1.0, 4.0, 0.4, 0), (7, 1, 4, 1.0, 5.0, 0.5, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 2.0, 1), (10, 2, 3, 1.0, 4.0, 4.0, 0), (11, 2, 4, 1.0, 5.0, 5.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.2, 1), (6, 1, 3, 1.0, 4.0, 0.4, 0), (7, 1, 4, 1.0, 5.0, 0.5, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 2.0, 1), (10, 2, 3, 1.0, 4.0, 4.0, 0), (11, 2, 4, 1.0, 5.0, 5.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.1, 1), (5, 1, 1, 1.0, 2.0, 0.2, 0), (6, 1, 3, 1.0, 4.0, 0.4, 1), (7, 1, 4, 1.0, 5.0, 0.5, 0), (8, 2, 0, 1.0, 1.0, 1.0, 1), (9, 2, 1, 1.0, 2.0, 2.0, 0), (10, 2, 3, 1.0, 4.0, 4.0, 1), (11, 2, 4, 1.0, 5.0, 5.0, 0) ], dtype=order_dt) ) def test_fixed_fees(self): record_arrays_close( from_orders_both(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.1, 1), (6, 1, 3, 1.0, 4.0, 0.1, 0), (7, 1, 4, 1.0, 5.0, 0.1, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 1.0, 1), (10, 2, 3, 1.0, 4.0, 1.0, 0), (11, 2, 4, 1.0, 5.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.1, 1), (6, 1, 3, 1.0, 4.0, 0.1, 0), (7, 1, 4, 1.0, 5.0, 0.1, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 1.0, 1), (10, 2, 3, 1.0, 4.0, 1.0, 0), (11, 2, 4, 1.0, 5.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.1, 1), (5, 1, 1, 1.0, 2.0, 0.1, 0), (6, 1, 3, 1.0, 4.0, 0.1, 1), (7, 1, 4, 1.0, 5.0, 0.1, 0), (8, 2, 0, 1.0, 1.0, 1.0, 1), (9, 2, 1, 1.0, 2.0, 1.0, 0), (10, 2, 3, 1.0, 4.0, 1.0, 1), (11, 2, 4, 1.0, 5.0, 1.0, 0) ], dtype=order_dt) ) def test_slippage(self): record_arrays_close( from_orders_both(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.1, 0.0, 0), (5, 1, 1, 1.0, 1.8, 0.0, 1), (6, 1, 3, 1.0, 4.4, 0.0, 0), (7, 1, 4, 1.0, 4.5, 0.0, 1), (8, 2, 0, 1.0, 2.0, 0.0, 0), (9, 2, 1, 1.0, 0.0, 0.0, 1), (10, 2, 3, 1.0, 8.0, 0.0, 0), (11, 2, 4, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.1, 0.0, 0), (5, 1, 1, 1.0, 1.8, 0.0, 1), (6, 1, 3, 1.0, 4.4, 0.0, 0), (7, 1, 4, 1.0, 4.5, 0.0, 1), (8, 2, 0, 1.0, 2.0, 0.0, 0), (9, 2, 1, 1.0, 0.0, 0.0, 1), (10, 2, 3, 1.0, 8.0, 0.0, 0), (11, 2, 4, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 0.9, 0.0, 1), (5, 1, 1, 1.0, 2.2, 0.0, 0), (6, 1, 3, 1.0, 3.6, 0.0, 1), (7, 1, 4, 1.0, 5.5, 0.0, 0), (8, 2, 0, 1.0, 0.0, 0.0, 1), (9, 2, 1, 1.0, 4.0, 0.0, 0), (10, 2, 3, 1.0, 0.0, 0.0, 1), (11, 2, 4, 1.0, 10.0, 0.0, 0) ], dtype=order_dt) ) def test_min_size(self): record_arrays_close( from_orders_both(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.0, 1), (5, 1, 1, 1.0, 2.0, 0.0, 0), (6, 1, 3, 1.0, 4.0, 0.0, 1), (7, 1, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_max_size(self): record_arrays_close( from_orders_both(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.5, 4.0, 0.0, 0), (3, 0, 4, 0.5, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1), (8, 2, 0, 1.0, 1.0, 0.0, 0), (9, 2, 1, 1.0, 2.0, 0.0, 1), (10, 2, 3, 1.0, 4.0, 0.0, 0), (11, 2, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.5, 4.0, 0.0, 0), (3, 0, 4, 0.5, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1), (8, 2, 0, 1.0, 1.0, 0.0, 0), (9, 2, 1, 1.0, 2.0, 0.0, 1), (10, 2, 3, 1.0, 4.0, 0.0, 0), (11, 2, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 1), (1, 0, 1, 0.5, 2.0, 0.0, 0), (2, 0, 3, 0.5, 4.0, 0.0, 1), (3, 0, 4, 0.5, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.0, 1), (5, 1, 1, 1.0, 2.0, 0.0, 0), (6, 1, 3, 1.0, 4.0, 0.0, 1), (7, 1, 4, 1.0, 5.0, 0.0, 0), (8, 2, 0, 1.0, 1.0, 0.0, 1), (9, 2, 1, 1.0, 2.0, 0.0, 0), (10, 2, 3, 1.0, 4.0, 0.0, 1), (11, 2, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_reject_prob(self): record_arrays_close( from_orders_both(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 1, 1.0, 2.0, 0.0, 1), (5, 1, 3, 1.0, 4.0, 0.0, 0), (6, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 3, 1.0, 4.0, 0.0, 0), (5, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 3, 1.0, 4.0, 0.0, 1), (5, 1, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_lock_cash(self): pf = vbt.Portfolio.from_orders( pd.Series([1, 1]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=False, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [143.12812469365747, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [0.0, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [-49.5, -49.5] ]) ) pf = vbt.Portfolio.from_orders( pd.Series([1, 1]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=True, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [94.6034702480149, 47.54435839623566] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [49.5, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [0.0, 0.0] ]) ) pf = vbt.Portfolio.from_orders( pd.Series([1, 100]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=False, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [1.4312812469365748, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [0.0, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [-96.16606313106556, -96.16606313106556] ]) ) pf = vbt.Portfolio.from_orders( pd.Series([1, 100]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=True, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [0.4699090272918124, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [98.06958012596222, 98.06958012596222] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [0.0, 0.0] ]) ) pf = from_orders_both(size=order_size_one * 1000, lock_cash=[[False, True]]) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 1000., 2., 0., 1), (2, 0, 3, 500., 4., 0., 0), (3, 0, 4, 1000., 5., 0., 1), (4, 1, 0, 100., 1., 0., 0), (5, 1, 1, 200., 2., 0., 1), (6, 1, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.cash(free=True).values, np.array([ [0.0, 0.0], [-1600.0, 0.0], [-1600.0, 0.0], [-1600.0, 0.0], [-6600.0, 0.0] ]) ) pf = from_orders_longonly(size=order_size_one * 1000, lock_cash=[[False, True]]) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 100., 2., 0., 1), (2, 0, 3, 50., 4., 0., 0), (3, 0, 4, 50., 5., 0., 1), (4, 1, 0, 100., 1., 0., 0), (5, 1, 1, 100., 2., 0., 1), (6, 1, 3, 50., 4., 0., 0), (7, 1, 4, 50., 5., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.cash(free=True).values, np.array([ [0.0, 0.0], [200.0, 200.0], [200.0, 200.0], [0.0, 0.0], [250.0, 250.0] ]) ) pf = from_orders_shortonly(size=order_size_one * 1000, lock_cash=[[False, True]]) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 1000., 1., 0., 1), (1, 0, 1, 550., 2., 0., 0), (2, 0, 3, 1000., 4., 0., 1), (3, 0, 4, 800., 5., 0., 0), (4, 1, 0, 100., 1., 0., 1), (5, 1, 1, 100., 2., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.cash(free=True).values, np.array([ [-900.0, 0.0], [-900.0, 0.0], [-900.0, 0.0], [-4900.0, 0.0], [-3989.6551724137926, 0.0] ]) ) def test_allow_partial(self): record_arrays_close( from_orders_both(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 1000.0, 2.0, 0.0, 1), (2, 0, 3, 500.0, 4.0, 0.0, 0), (3, 0, 4, 1000.0, 5.0, 0.0, 1), (4, 1, 1, 1000.0, 2.0, 0.0, 1), (5, 1, 4, 1000.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 0, 1, 550.0, 2.0, 0.0, 0), (2, 0, 3, 1000.0, 4.0, 0.0, 1), (3, 0, 4, 800.0, 5.0, 0.0, 0), (4, 1, 0, 1000.0, 1.0, 0.0, 1), (5, 1, 3, 1000.0, 4.0, 0.0, 1), (6, 1, 4, 1000.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0), (3, 1, 0, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1), (4, 1, 0, 100.0, 1.0, 0.0, 0), (5, 1, 1, 100.0, 2.0, 0.0, 1), (6, 1, 3, 50.0, 4.0, 0.0, 0), (7, 1, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0), (2, 1, 0, 100.0, 1.0, 0.0, 1), (3, 1, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) def test_raise_reject(self): record_arrays_close( from_orders_both(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 1000.0, 2.0, 0.0, 1), (2, 0, 3, 500.0, 4.0, 0.0, 0), (3, 0, 4, 1000.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 0, 1, 550.0, 2.0, 0.0, 0), (2, 0, 3, 1000.0, 4.0, 0.0, 1), (3, 0, 4, 800.0, 5.0, 0.0, 0) ], dtype=order_dt) ) with pytest.raises(Exception): _ = from_orders_both(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_orders_longonly(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_orders_shortonly(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records def test_log(self): record_arrays_close( from_orders_both(log=True).log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, 1.0, 100.0, np.inf, 1.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 100.0, 0.0, 0.0, 1.0, 100.0, 100.0, 1.0, 0.0, 0, 0, -1, 0), (1, 0, 0, 1, 0.0, 100.0, 0.0, 0.0, 2.0, 200.0, -np.inf, 2.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 400.0, -100.0, 200.0, 0.0, 2.0, 200.0, 200.0, 2.0, 0.0, 1, 0, -1, 1), (2, 0, 0, 2, 400.0, -100.0, 200.0, 0.0, 3.0, 100.0, np.nan, 3.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 400.0, -100.0, 200.0, 0.0, 3.0, 100.0, np.nan, np.nan, np.nan, -1, 1, 0, -1), (3, 0, 0, 3, 400.0, -100.0, 200.0, 0.0, 4.0, 0.0, np.inf, 4.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 100.0, 4.0, 0.0, 0, 0, -1, 2), (4, 0, 0, 4, 0.0, 0.0, 0.0, 0.0, 5.0, 0.0, -np.inf, 5.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 0.0, 0.0, 0.0, 5.0, 0.0, np.nan, np.nan, np.nan, -1, 2, 6, -1) ], dtype=log_dt) ) def test_group_by(self): pf = from_orders_both(close=price_wide, group_by=np.array([0, 0, 1])) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0), (3, 1, 0, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 3, 100.0, 4.0, 0.0, 0), (6, 2, 0, 100.0, 1.0, 0.0, 0), (7, 2, 1, 200.0, 2.0, 0.0, 1), (8, 2, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not pf.cash_sharing def test_cash_sharing(self): pf = from_orders_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 200., 2., 0., 1), (2, 0, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert pf.cash_sharing with pytest.raises(Exception): _ = pf.regroup(group_by=False) def test_call_seq(self): pf = from_orders_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 200., 2., 0., 1), (2, 0, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) pf = from_orders_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed') record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 1, 200., 2., 0., 1), (2, 1, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) pf = from_orders_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed) record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 1, 200., 2., 0., 1), (2, 1, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) kwargs = dict( close=1., size=pd.DataFrame([ [0., 0., np.inf], [0., np.inf, -np.inf], [np.inf, -np.inf, 0.], [-np.inf, 0., np.inf], [0., np.inf, -np.inf], ]), group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto' ) pf = from_orders_both(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 200., 1., 0., 1), (2, 1, 1, 200., 1., 0., 0), (3, 1, 2, 200., 1., 0., 1), (4, 0, 2, 200., 1., 0., 0), (5, 0, 3, 200., 1., 0., 1), (6, 2, 3, 200., 1., 0., 0), (7, 2, 4, 200., 1., 0., 1), (8, 1, 4, 200., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_orders_longonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 100., 1., 0., 1), (2, 1, 1, 100., 1., 0., 0), (3, 1, 2, 100., 1., 0., 1), (4, 0, 2, 100., 1., 0., 0), (5, 0, 3, 100., 1., 0., 1), (6, 2, 3, 100., 1., 0., 0), (7, 2, 4, 100., 1., 0., 1), (8, 1, 4, 100., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_orders_shortonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 1), (1, 2, 1, 100., 1., 0., 0), (2, 0, 2, 100., 1., 0., 1), (3, 0, 3, 100., 1., 0., 0), (4, 1, 4, 100., 1., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [2, 0, 1], [1, 0, 2], [0, 2, 1], [2, 1, 0], [1, 0, 2] ]) ) def test_value(self): record_arrays_close( from_orders_both(size=order_size_one, size_type='value').order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.25, 4.0, 0.0, 0), (3, 0, 4, 0.2, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, size_type='value').order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.25, 4.0, 0.0, 0), (3, 0, 4, 0.2, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, size_type='value').order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 0.5, 2.0, 0.0, 0), (2, 0, 3, 0.25, 4.0, 0.0, 1), (3, 0, 4, 0.2, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_target_amount(self): record_arrays_close( from_orders_both(size=[[75., -75.]], size_type='targetamount').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0), (1, 1, 0, 75.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[75., -75.]], size_type='targetamount').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[75., -75.]], size_type='targetamount').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=75., size_type='targetamount', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0), (1, 1, 0, 25.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_target_value(self): record_arrays_close( from_orders_both(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 25.0, 2.0, 0.0, 1), (2, 0, 2, 8.333333333333332, 3.0, 0.0, 1), (3, 0, 3, 4.166666666666668, 4.0, 0.0, 1), (4, 0, 4, 2.5, 5.0, 0.0, 1), (5, 1, 0, 50.0, 1.0, 0.0, 1), (6, 1, 1, 25.0, 2.0, 0.0, 0), (7, 1, 2, 8.333333333333332, 3.0, 0.0, 0), (8, 1, 3, 4.166666666666668, 4.0, 0.0, 0), (9, 1, 4, 2.5, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 25.0, 2.0, 0.0, 1), (2, 0, 2, 8.333333333333332, 3.0, 0.0, 1), (3, 0, 3, 4.166666666666668, 4.0, 0.0, 1), (4, 0, 4, 2.5, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 1), (1, 0, 1, 25.0, 2.0, 0.0, 0), (2, 0, 2, 8.333333333333332, 3.0, 0.0, 0), (3, 0, 3, 4.166666666666668, 4.0, 0.0, 0), (4, 0, 4, 2.5, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=50., size_type='targetvalue', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 50.0, 1.0, 0.0, 0), (2, 0, 1, 25.0, 2.0, 0.0, 1), (3, 1, 1, 25.0, 2.0, 0.0, 1), (4, 2, 1, 25.0, 2.0, 0.0, 0), (5, 0, 2, 8.333333333333332, 3.0, 0.0, 1), (6, 1, 2, 8.333333333333332, 3.0, 0.0, 1), (7, 2, 2, 8.333333333333332, 3.0, 0.0, 1), (8, 0, 3, 4.166666666666668, 4.0, 0.0, 1), (9, 1, 3, 4.166666666666668, 4.0, 0.0, 1), (10, 2, 3, 4.166666666666668, 4.0, 0.0, 1), (11, 0, 4, 2.5, 5.0, 0.0, 1), (12, 1, 4, 2.5, 5.0, 0.0, 1), (13, 2, 4, 2.5, 5.0, 0.0, 1) ], dtype=order_dt) ) def test_target_percent(self): record_arrays_close( from_orders_both(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 12.5, 2.0, 0.0, 1), (2, 0, 2, 6.25, 3.0, 0.0, 1), (3, 0, 3, 3.90625, 4.0, 0.0, 1), (4, 0, 4, 2.734375, 5.0, 0.0, 1), (5, 1, 0, 50.0, 1.0, 0.0, 1), (6, 1, 1, 37.5, 2.0, 0.0, 0), (7, 1, 2, 6.25, 3.0, 0.0, 0), (8, 1, 3, 2.34375, 4.0, 0.0, 0), (9, 1, 4, 1.171875, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 12.5, 2.0, 0.0, 1), (2, 0, 2, 6.25, 3.0, 0.0, 1), (3, 0, 3, 3.90625, 4.0, 0.0, 1), (4, 0, 4, 2.734375, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 1), (1, 0, 1, 37.5, 2.0, 0.0, 0), (2, 0, 2, 6.25, 3.0, 0.0, 0), (3, 0, 3, 2.34375, 4.0, 0.0, 0), (4, 0, 4, 1.171875, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='targetpercent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 50.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_update_value(self): record_arrays_close( from_orders_both(size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, update_value=False).order_records, from_orders_both(size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, update_value=True).order_records ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, group_by=np.array([0, 0, 0]), cash_sharing=True, update_value=False).order_records, np.array([ (0, 0, 0, 50.0, 1.01, 0.505, 0), (1, 1, 0, 48.02960494069208, 1.01, 0.485099009900992, 0), (2, 0, 1, 0.9851975296539592, 1.98, 0.019506911087148394, 1), (3, 1, 1, 0.9465661198057499, 2.02, 0.019120635620076154, 0), (4, 0, 2, 0.019315704924103727, 2.9699999999999998, 0.0005736764362458806, 1), (5, 1, 2, 0.018558300554959377, 3.0300000000000002, 0.0005623165068152705, 0), (6, 0, 3, 0.00037870218456959037, 3.96, 1.4996606508955778e-05, 1), (7, 1, 3, 0.0003638525743521767, 4.04, 1.4699644003827875e-05, 0), (8, 0, 4, 7.424805112066224e-06, 4.95, 3.675278530472781e-07, 1), (9, 1, 4, 7.133664827307231e-06, 5.05, 3.6025007377901643e-07, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, group_by=np.array([0, 0, 0]), cash_sharing=True, update_value=True).order_records, np.array([ (0, 0, 0, 50.0, 1.01, 0.505, 0), (1, 1, 0, 48.02960494069208, 1.01, 0.485099009900992, 0), (2, 0, 1, 0.9851975296539592, 1.98, 0.019506911087148394, 1), (3, 1, 1, 0.7303208018821721, 2.02, 0.014752480198019875, 0), (4, 2, 1, 0.21624531792357785, 2.02, 0.0043681554220562635, 0), (5, 0, 2, 0.019315704924103727, 2.9699999999999998, 0.0005736764362458806, 1), (6, 1, 2, 0.009608602243410758, 2.9699999999999998, 0.00028537548662929945, 1), (7, 2, 2, 0.02779013180558861, 3.0300000000000002, 0.0008420409937093393, 0), (8, 0, 3, 0.0005670876809631409, 3.96, 2.2456672166140378e-05, 1), (9, 1, 3, 0.00037770350099464167, 3.96, 1.4957058639387809e-05, 1), (10, 2, 3, 0.0009077441794302741, 4.04, 3.6672864848982974e-05, 0), (11, 0, 4, 1.8523501267964093e-05, 4.95, 9.169133127642227e-07, 1), (12, 1, 4, 1.2972670177191503e-05, 4.95, 6.421471737709794e-07, 1), (13, 2, 4, 3.0261148547590434e-05, 5.05, 1.5281880016533242e-06, 0) ], dtype=order_dt) ) def test_percent(self): record_arrays_close( from_orders_both(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 1, 12.5, 2., 0., 0), (2, 0, 2, 4.16666667, 3., 0., 0), (3, 0, 3, 1.5625, 4., 0., 0), (4, 0, 4, 0.625, 5., 0., 0), (5, 1, 0, 50., 1., 0., 1), (6, 1, 1, 12.5, 2., 0., 1), (7, 1, 2, 4.16666667, 3., 0., 1), (8, 1, 3, 1.5625, 4., 0., 1), (9, 1, 4, 0.625, 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 1, 12.5, 2., 0., 0), (2, 0, 2, 4.16666667, 3., 0., 0), (3, 0, 3, 1.5625, 4., 0., 0), (4, 0, 4, 0.625, 5., 0., 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 1), (1, 0, 1, 12.5, 2., 0., 1), (2, 0, 2, 4.16666667, 3., 0., 1), (3, 0, 3, 1.5625, 4., 0., 1), (4, 0, 4, 0.625, 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='percent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 5.00000000e+01, 1., 0., 0), (1, 1, 0, 2.50000000e+01, 1., 0., 0), (2, 2, 0, 1.25000000e+01, 1., 0., 0), (3, 0, 1, 3.12500000e+00, 2., 0., 0), (4, 1, 1, 1.56250000e+00, 2., 0., 0), (5, 2, 1, 7.81250000e-01, 2., 0., 0), (6, 0, 2, 2.60416667e-01, 3., 0., 0), (7, 1, 2, 1.30208333e-01, 3., 0., 0), (8, 2, 2, 6.51041667e-02, 3., 0., 0), (9, 0, 3, 2.44140625e-02, 4., 0., 0), (10, 1, 3, 1.22070312e-02, 4., 0., 0), (11, 2, 3, 6.10351562e-03, 4., 0., 0), (12, 0, 4, 2.44140625e-03, 5., 0., 0), (13, 1, 4, 1.22070312e-03, 5., 0., 0), (14, 2, 4, 6.10351562e-04, 5., 0., 0) ], dtype=order_dt) ) def test_auto_seq(self): target_hold_value = pd.DataFrame({ 'a': [0., 70., 30., 0., 70.], 'b': [30., 0., 70., 30., 30.], 'c': [70., 30., 0., 70., 0.] }, index=price.index) pd.testing.assert_frame_equal( from_orders_both( close=1., size=target_hold_value, size_type='targetvalue', group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto').asset_value(group_by=False), target_hold_value ) pd.testing.assert_frame_equal( from_orders_both( close=1., size=target_hold_value / 100, size_type='targetpercent', group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto').asset_value(group_by=False), target_hold_value ) def test_max_orders(self): _ = from_orders_both(close=price_wide) _ = from_orders_both(close=price_wide, max_orders=9) with pytest.raises(Exception): _ = from_orders_both(close=price_wide, max_orders=8) def test_max_logs(self): _ = from_orders_both(close=price_wide, log=True) _ = from_orders_both(close=price_wide, log=True, max_logs=15) with pytest.raises(Exception): _ = from_orders_both(close=price_wide, log=True, max_logs=14) # ############# from_signals ############# # entries = pd.Series([True, True, True, False, False], index=price.index) entries_wide = entries.vbt.tile(3, keys=['a', 'b', 'c']) exits = pd.Series([False, False, True, True, True], index=price.index) exits_wide = exits.vbt.tile(3, keys=['a', 'b', 'c']) def from_signals_both(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, direction='both', **kwargs) def from_signals_longonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, direction='longonly', **kwargs) def from_signals_shortonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, direction='shortonly', **kwargs) def from_ls_signals_both(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, False, exits, False, **kwargs) def from_ls_signals_longonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, False, False, **kwargs) def from_ls_signals_shortonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, False, False, entries, exits, **kwargs) class TestFromSignals: @pytest.mark.parametrize( "test_ls", [False, True], ) def test_one_column(self, test_ls): _from_signals_both = from_ls_signals_both if test_ls else from_signals_both _from_signals_longonly = from_ls_signals_longonly if test_ls else from_signals_longonly _from_signals_shortonly = from_ls_signals_shortonly if test_ls else from_signals_shortonly record_arrays_close( _from_signals_both().order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_longonly().order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 100., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_shortonly().order_records, np.array([ (0, 0, 0, 100., 1., 0., 1), (1, 0, 3, 50., 4., 0., 0) ], dtype=order_dt) ) pf = _from_signals_both() pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert pf.wrapper.ndim == 1 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None @pytest.mark.parametrize( "test_ls", [False, True], ) def test_multiple_columns(self, test_ls): _from_signals_both = from_ls_signals_both if test_ls else from_signals_both _from_signals_longonly = from_ls_signals_longonly if test_ls else from_signals_longonly _from_signals_shortonly = from_ls_signals_shortonly if test_ls else from_signals_shortonly record_arrays_close( _from_signals_both(close=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1), (2, 1, 0, 100., 1., 0., 0), (3, 1, 3, 200., 4., 0., 1), (4, 2, 0, 100., 1., 0., 0), (5, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_longonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 100., 4., 0., 1), (2, 1, 0, 100., 1., 0., 0), (3, 1, 3, 100., 4., 0., 1), (4, 2, 0, 100., 1., 0., 0), (5, 2, 3, 100., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_shortonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 1), (1, 0, 3, 50., 4., 0., 0), (2, 1, 0, 100., 1., 0., 1), (3, 1, 3, 50., 4., 0., 0), (4, 2, 0, 100., 1., 0., 1), (5, 2, 3, 50., 4., 0., 0) ], dtype=order_dt) ) pf = _from_signals_both(close=price_wide) pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert pf.wrapper.ndim == 2 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None def test_custom_signal_func(self): @njit def signal_func_nb(c, long_num_arr, short_num_arr): long_num = nb.get_elem_nb(c, long_num_arr) short_num = nb.get_elem_nb(c, short_num_arr) is_long_entry = long_num > 0 is_long_exit = long_num < 0 is_short_entry = short_num > 0 is_short_exit = short_num < 0 return is_long_entry, is_long_exit, is_short_entry, is_short_exit pf_base = vbt.Portfolio.from_signals( pd.Series([1, 2, 3, 4, 5]), entries=pd.Series([True, False, False, False, False]), exits=pd.Series([False, False, True, False, False]), short_entries=pd.Series([False, True, False, True, False]), short_exits=pd.Series([False, False, False, False, True]), size=1, upon_opposite_entry='ignore' ) pf = vbt.Portfolio.from_signals( pd.Series([1, 2, 3, 4, 5]), signal_func_nb=signal_func_nb, signal_args=(vbt.Rep('long_num_arr'), vbt.Rep('short_num_arr')), broadcast_named_args=dict( long_num_arr=pd.Series([1, 0, -1, 0, 0]), short_num_arr=pd.Series([0, 1, 0, 1, -1]) ), size=1, upon_opposite_entry='ignore' ) record_arrays_close( pf_base.order_records, pf.order_records ) def test_amount(self): record_arrays_close( from_signals_both(size=[[0, 1, np.inf]], size_type='amount').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 2.0, 4.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 2, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=[[0, 1, np.inf]], size_type='amount').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 1.0, 4.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 2, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=[[0, 1, np.inf]], size_type='amount').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 1), (1, 1, 3, 1.0, 4.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 2, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_value(self): record_arrays_close( from_signals_both(size=[[0, 1, np.inf]], size_type='value').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 0.3125, 4.0, 0.0, 1), (2, 1, 4, 0.1775, 5.0, 0.0, 1), (3, 2, 0, 100.0, 1.0, 0.0, 0), (4, 2, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=[[0, 1, np.inf]], size_type='value').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 1.0, 4.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 2, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=[[0, 1, np.inf]], size_type='value').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 1), (1, 1, 3, 1.0, 4.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 2, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_percent(self): with pytest.raises(Exception): _ = from_signals_both(size=0.5, size_type='percent') record_arrays_close( from_signals_both(size=0.5, size_type='percent', upon_opposite_entry='close').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 3, 50., 4., 0., 1), (2, 0, 4, 25., 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both(size=0.5, size_type='percent', upon_opposite_entry='close', accumulate=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 12.5, 2.0, 0.0, 0), (2, 0, 3, 62.5, 4.0, 0.0, 1), (3, 0, 4, 27.5, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=0.5, size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 3, 50., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=0.5, size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 1), (1, 0, 3, 37.5, 4., 0., 0) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=price_wide, size=0.5, size_type='percent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 1, 0, 25., 1., 0., 0), (2, 2, 0, 12.5, 1., 0., 0), (3, 0, 3, 50., 4., 0., 1), (4, 1, 3, 25., 4., 0., 1), (5, 2, 3, 12.5, 4., 0., 1) ], dtype=order_dt) ) def test_price(self): record_arrays_close( from_signals_both(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 0, 3, 198.01980198019803, 4.04, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099, 1.01, 0., 0), (1, 0, 3, 99.00990099, 4.04, 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 1), (1, 0, 3, 49.504950495049506, 4.04, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_both(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_both(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 1), (1, 0, 3, 66.66666666666667, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_val_price(self): price_nan = pd.Series([1, 2, np.nan, 4, 5], index=price.index) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=np.inf, size_type='value').order_records, from_signals_both(close=price_nan, size=1, val_price=price, size_type='value').order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=np.inf, size_type='value').order_records, from_signals_longonly(close=price_nan, size=1, val_price=price, size_type='value').order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=np.inf, size_type='value').order_records, from_signals_shortonly(close=price_nan, size=1, val_price=price, size_type='value').order_records ) shift_price = price_nan.ffill().shift(1) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=-np.inf, size_type='value').order_records, from_signals_both(close=price_nan, size=1, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=-np.inf, size_type='value').order_records, from_signals_longonly(close=price_nan, size=1, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=-np.inf, size_type='value').order_records, from_signals_shortonly(close=price_nan, size=1, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_both(close=price_nan, size=1, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_longonly(close=price_nan, size=1, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_shortonly(close=price_nan, size=1, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) shift_price_nan = price_nan.shift(1) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_both(close=price_nan, size=1, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_longonly(close=price_nan, size=1, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_shortonly(close=price_nan, size=1, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) def test_fees(self): record_arrays_close( from_signals_both(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 2.0, 4.0, 0.8, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 2.0, 4.0, 8.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 1.0, 4.0, 0.4, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 1.0, 4.0, 4.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.1, 1), (3, 1, 3, 1.0, 4.0, 0.4, 0), (4, 2, 0, 1.0, 1.0, 1.0, 1), (5, 2, 3, 1.0, 4.0, 4.0, 0) ], dtype=order_dt) ) def test_fixed_fees(self): record_arrays_close( from_signals_both(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 2.0, 4.0, 0.1, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 2.0, 4.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 1.0, 4.0, 0.1, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 1.0, 4.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.1, 1), (3, 1, 3, 1.0, 4.0, 0.1, 0), (4, 2, 0, 1.0, 1.0, 1.0, 1), (5, 2, 3, 1.0, 4.0, 1.0, 0) ], dtype=order_dt) ) def test_slippage(self): record_arrays_close( from_signals_both(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.1, 0.0, 0), (3, 1, 3, 2.0, 3.6, 0.0, 1), (4, 2, 0, 1.0, 2.0, 0.0, 0), (5, 2, 3, 2.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.1, 0.0, 0), (3, 1, 3, 1.0, 3.6, 0.0, 1), (4, 2, 0, 1.0, 2.0, 0.0, 0), (5, 2, 3, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 0.9, 0.0, 1), (3, 1, 3, 1.0, 4.4, 0.0, 0), (4, 2, 0, 1.0, 0.0, 0.0, 1), (5, 2, 3, 1.0, 8.0, 0.0, 0) ], dtype=order_dt) ) def test_min_size(self): record_arrays_close( from_signals_both(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_max_size(self): record_arrays_close( from_signals_both(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 3, 0.5, 4.0, 0.0, 1), (2, 0, 4, 0.5, 5.0, 0.0, 1), (3, 1, 0, 1.0, 1.0, 0.0, 0), (4, 1, 3, 1.0, 4.0, 0.0, 1), (5, 1, 4, 1.0, 5.0, 0.0, 1), (6, 2, 0, 1.0, 1.0, 0.0, 0), (7, 2, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 3, 0.5, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1), (4, 2, 0, 1.0, 1.0, 0.0, 0), (5, 2, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 1), (1, 0, 3, 0.5, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 3, 1.0, 4.0, 0.0, 0), (4, 2, 0, 1.0, 1.0, 0.0, 1), (5, 2, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_reject_prob(self): record_arrays_close( from_signals_both(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 1), (3, 1, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_allow_partial(self): record_arrays_close( from_signals_both(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 1100.0, 4.0, 0.0, 1), (2, 1, 3, 1000.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 0, 3, 275.0, 4.0, 0.0, 0), (2, 1, 0, 1000.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 4.0, 0.0, 1), (2, 1, 0, 100.0, 1.0, 0.0, 0), (3, 1, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1), (2, 1, 0, 100.0, 1.0, 0.0, 0), (3, 1, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 3, 50.0, 4.0, 0.0, 0), (2, 1, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_raise_reject(self): record_arrays_close( from_signals_both(size=1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 1100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) with pytest.raises(Exception): _ = from_signals_shortonly(size=1000, allow_partial=True, raise_reject=True).order_records with pytest.raises(Exception): _ = from_signals_both(size=1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_signals_longonly(size=1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_signals_shortonly(size=1000, allow_partial=False, raise_reject=True).order_records def test_log(self): record_arrays_close( from_signals_both(log=True).log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, 1.0, 100.0, np.inf, 1.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 100.0, 0.0, 0.0, 1.0, 100.0, 100.0, 1.0, 0.0, 0, 0, -1, 0), (1, 0, 0, 3, 0.0, 100.0, 0.0, 0.0, 4.0, 400.0, -np.inf, 4.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 800.0, -100.0, 400.0, 0.0, 4.0, 400.0, 200.0, 4.0, 0.0, 1, 0, -1, 1) ], dtype=log_dt) ) def test_accumulate(self): record_arrays_close( from_signals_both(size=1, accumulate=[['disabled', 'addonly', 'removeonly', 'both']]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 1, 1.0, 2.0, 0.0, 0), (4, 1, 3, 3.0, 4.0, 0.0, 1), (5, 1, 4, 1.0, 5.0, 0.0, 1), (6, 2, 0, 1.0, 1.0, 0.0, 0), (7, 2, 3, 1.0, 4.0, 0.0, 1), (8, 2, 4, 1.0, 5.0, 0.0, 1), (9, 3, 0, 1.0, 1.0, 0.0, 0), (10, 3, 1, 1.0, 2.0, 0.0, 0), (11, 3, 3, 1.0, 4.0, 0.0, 1), (12, 3, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, accumulate=[['disabled', 'addonly', 'removeonly', 'both']]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 1, 1.0, 2.0, 0.0, 0), (4, 1, 3, 2.0, 4.0, 0.0, 1), (5, 2, 0, 1.0, 1.0, 0.0, 0), (6, 2, 3, 1.0, 4.0, 0.0, 1), (7, 3, 0, 1.0, 1.0, 0.0, 0), (8, 3, 1, 1.0, 2.0, 0.0, 0), (9, 3, 3, 1.0, 4.0, 0.0, 1), (10, 3, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, accumulate=[['disabled', 'addonly', 'removeonly', 'both']]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 1, 1.0, 2.0, 0.0, 1), (4, 1, 3, 2.0, 4.0, 0.0, 0), (5, 2, 0, 1.0, 1.0, 0.0, 1), (6, 2, 3, 1.0, 4.0, 0.0, 0), (7, 3, 0, 1.0, 1.0, 0.0, 1), (8, 3, 1, 1.0, 2.0, 0.0, 1), (9, 3, 3, 1.0, 4.0, 0.0, 0), (10, 3, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_upon_long_conflict(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, True, True, True, True, True, True], [True, True, True, True, False, True, False], [True, True, True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True, True, True], [False, False, False, False, True, False, True], [True, True, True, True, True, True, True] ]), size=1., accumulate=True, upon_long_conflict=[[ 'ignore', 'entry', 'exit', 'adjacent', 'adjacent', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_longonly(**kwargs).order_records, np.array([ (0, 0, 1, 1.0, 2.0, 0.0, 0), (1, 1, 0, 1.0, 1.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 2, 1.0, 3.0, 0.0, 0), (4, 2, 1, 1.0, 2.0, 0.0, 0), (5, 2, 2, 1.0, 3.0, 0.0, 1), (6, 3, 1, 1.0, 2.0, 0.0, 0), (7, 3, 2, 1.0, 3.0, 0.0, 0), (8, 5, 1, 1.0, 2.0, 0.0, 0), (9, 5, 2, 1.0, 3.0, 0.0, 1) ], dtype=order_dt) ) def test_upon_short_conflict(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, True, True, True, True, True, True], [True, True, True, True, False, True, False], [True, True, True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True, True, True], [False, False, False, False, True, False, True], [True, True, True, True, True, True, True] ]), size=1., accumulate=True, upon_short_conflict=[[ 'ignore', 'entry', 'exit', 'adjacent', 'adjacent', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_shortonly(**kwargs).order_records, np.array([ (0, 0, 1, 1.0, 2.0, 0.0, 1), (1, 1, 0, 1.0, 1.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 1), (3, 1, 2, 1.0, 3.0, 0.0, 1), (4, 2, 1, 1.0, 2.0, 0.0, 1), (5, 2, 2, 1.0, 3.0, 0.0, 0), (6, 3, 1, 1.0, 2.0, 0.0, 1), (7, 3, 2, 1.0, 3.0, 0.0, 1), (8, 5, 1, 1.0, 2.0, 0.0, 1), (9, 5, 2, 1.0, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_upon_dir_conflict(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, True, True, True, True, True, True], [True, True, True, True, False, True, False], [True, True, True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True, True, True], [False, False, False, False, True, False, True], [True, True, True, True, True, True, True] ]), size=1., accumulate=True, upon_dir_conflict=[[ 'ignore', 'long', 'short', 'adjacent', 'adjacent', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_both(**kwargs).order_records, np.array([ (0, 0, 1, 1.0, 2.0, 0.0, 0), (1, 1, 0, 1.0, 1.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 2, 1.0, 3.0, 0.0, 0), (4, 2, 0, 1.0, 1.0, 0.0, 1), (5, 2, 1, 1.0, 2.0, 0.0, 0), (6, 2, 2, 1.0, 3.0, 0.0, 1), (7, 3, 1, 1.0, 2.0, 0.0, 0), (8, 3, 2, 1.0, 3.0, 0.0, 0), (9, 4, 1, 1.0, 2.0, 0.0, 1), (10, 4, 2, 1.0, 3.0, 0.0, 1), (11, 5, 1, 1.0, 2.0, 0.0, 0), (12, 5, 2, 1.0, 3.0, 0.0, 1), (13, 6, 1, 1.0, 2.0, 0.0, 1), (14, 6, 2, 1.0, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_upon_opposite_entry(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, False, True, False, True, False, True, False, True, False], [False, True, False, True, False, True, False, True, False, True], [True, False, True, False, True, False, True, False, True, False] ]), exits=pd.DataFrame([ [False, True, False, True, False, True, False, True, False, True], [True, False, True, False, True, False, True, False, True, False], [False, True, False, True, False, True, False, True, False, True] ]), size=1., upon_opposite_entry=[[ 'ignore', 'ignore', 'close', 'close', 'closereduce', 'closereduce', 'reverse', 'reverse', 'reversereduce', 'reversereduce' ]] ) record_arrays_close( from_signals_both(**kwargs).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 1.0, 0.0, 1), (2, 2, 0, 1.0, 1.0, 0.0, 0), (3, 2, 1, 1.0, 2.0, 0.0, 1), (4, 2, 2, 1.0, 3.0, 0.0, 0), (5, 3, 0, 1.0, 1.0, 0.0, 1), (6, 3, 1, 1.0, 2.0, 0.0, 0), (7, 3, 2, 1.0, 3.0, 0.0, 1), (8, 4, 0, 1.0, 1.0, 0.0, 0), (9, 4, 1, 1.0, 2.0, 0.0, 1), (10, 4, 2, 1.0, 3.0, 0.0, 0), (11, 5, 0, 1.0, 1.0, 0.0, 1), (12, 5, 1, 1.0, 2.0, 0.0, 0), (13, 5, 2, 1.0, 3.0, 0.0, 1), (14, 6, 0, 1.0, 1.0, 0.0, 0), (15, 6, 1, 2.0, 2.0, 0.0, 1), (16, 6, 2, 2.0, 3.0, 0.0, 0), (17, 7, 0, 1.0, 1.0, 0.0, 1), (18, 7, 1, 2.0, 2.0, 0.0, 0), (19, 7, 2, 2.0, 3.0, 0.0, 1), (20, 8, 0, 1.0, 1.0, 0.0, 0), (21, 8, 1, 2.0, 2.0, 0.0, 1), (22, 8, 2, 2.0, 3.0, 0.0, 0), (23, 9, 0, 1.0, 1.0, 0.0, 1), (24, 9, 1, 2.0, 2.0, 0.0, 0), (25, 9, 2, 2.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both(**kwargs, accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 2, 1.0, 3.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 2, 1.0, 3.0, 0.0, 1), (4, 2, 0, 1.0, 1.0, 0.0, 0), (5, 2, 1, 1.0, 2.0, 0.0, 1), (6, 2, 2, 1.0, 3.0, 0.0, 0), (7, 3, 0, 1.0, 1.0, 0.0, 1), (8, 3, 1, 1.0, 2.0, 0.0, 0), (9, 3, 2, 1.0, 3.0, 0.0, 1), (10, 4, 0, 1.0, 1.0, 0.0, 0), (11, 4, 1, 1.0, 2.0, 0.0, 1), (12, 4, 2, 1.0, 3.0, 0.0, 0), (13, 5, 0, 1.0, 1.0, 0.0, 1), (14, 5, 1, 1.0, 2.0, 0.0, 0), (15, 5, 2, 1.0, 3.0, 0.0, 1), (16, 6, 0, 1.0, 1.0, 0.0, 0), (17, 6, 1, 2.0, 2.0, 0.0, 1), (18, 6, 2, 2.0, 3.0, 0.0, 0), (19, 7, 0, 1.0, 1.0, 0.0, 1), (20, 7, 1, 2.0, 2.0, 0.0, 0), (21, 7, 2, 2.0, 3.0, 0.0, 1), (22, 8, 0, 1.0, 1.0, 0.0, 0), (23, 8, 1, 1.0, 2.0, 0.0, 1), (24, 8, 2, 1.0, 3.0, 0.0, 0), (25, 9, 0, 1.0, 1.0, 0.0, 1), (26, 9, 1, 1.0, 2.0, 0.0, 0), (27, 9, 2, 1.0, 3.0, 0.0, 1) ], dtype=order_dt) ) def test_init_cash(self): record_arrays_close( from_signals_both(close=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 0, 3, 1.0, 4.0, 0.0, 1), (1, 1, 0, 1.0, 1.0, 0.0, 0), (2, 1, 3, 2.0, 4.0, 0.0, 1), (3, 2, 0, 1.0, 1.0, 0.0, 0), (4, 2, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(close=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 1.0, 4.0, 0.0, 1), (2, 2, 0, 1.0, 1.0, 0.0, 0), (3, 2, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(close=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 0.25, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 3, 0.5, 4.0, 0.0, 0), (4, 2, 0, 1.0, 1.0, 0.0, 1), (5, 2, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) with pytest.raises(Exception): _ = from_signals_both(init_cash=np.inf).order_records with pytest.raises(Exception): _ = from_signals_longonly(init_cash=np.inf).order_records with pytest.raises(Exception): _ = from_signals_shortonly(init_cash=np.inf).order_records def test_group_by(self): pf = from_signals_both(close=price_wide, group_by=np.array([0, 0, 1])) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 4.0, 0.0, 1), (2, 1, 0, 100.0, 1.0, 0.0, 0), (3, 1, 3, 200.0, 4.0, 0.0, 1), (4, 2, 0, 100.0, 1.0, 0.0, 0), (5, 2, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not pf.cash_sharing def test_cash_sharing(self): pf = from_signals_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert pf.cash_sharing with pytest.raises(Exception): _ = pf.regroup(group_by=False) def test_call_seq(self): pf = from_signals_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) pf = from_signals_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed') record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) pf = from_signals_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed) record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) kwargs = dict( close=1., entries=pd.DataFrame([ [False, False, True], [False, True, False], [True, False, False], [False, False, True], [False, True, False], ]), exits=pd.DataFrame([ [False, False, False], [False, False, True], [False, True, False], [True, False, False], [False, False, True], ]), group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto' ) pf = from_signals_both(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 200., 1., 0., 1), (2, 1, 1, 200., 1., 0., 0), (3, 1, 2, 200., 1., 0., 1), (4, 0, 2, 200., 1., 0., 0), (5, 0, 3, 200., 1., 0., 1), (6, 2, 3, 200., 1., 0., 0), (7, 2, 4, 200., 1., 0., 1), (8, 1, 4, 200., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_signals_longonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 100., 1., 0., 1), (2, 1, 1, 100., 1., 0., 0), (3, 1, 2, 100., 1., 0., 1), (4, 0, 2, 100., 1., 0., 0), (5, 0, 3, 100., 1., 0., 1), (6, 2, 3, 100., 1., 0., 0), (7, 2, 4, 100., 1., 0., 1), (8, 1, 4, 100., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_signals_shortonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 1), (1, 2, 1, 100., 1., 0., 0), (2, 0, 2, 100., 1., 0., 1), (3, 0, 3, 100., 1., 0., 0), (4, 1, 4, 100., 1., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [2, 0, 1], [1, 0, 2], [0, 1, 2], [2, 1, 0], [1, 0, 2] ]) ) pf = from_signals_longonly(**kwargs, size=1., size_type='percent') record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100.0, 1.0, 0.0, 0), (1, 2, 1, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.0, 0.0, 0), (3, 1, 2, 100.0, 1.0, 0.0, 1), (4, 0, 2, 100.0, 1.0, 0.0, 0), (5, 0, 3, 100.0, 1.0, 0.0, 1), (6, 2, 3, 100.0, 1.0, 0.0, 0), (7, 2, 4, 100.0, 1.0, 0.0, 1), (8, 1, 4, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 0, 2], [0, 1, 2], [2, 0, 1] ]) ) def test_sl_stop(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) with pytest.raises(Exception): _ = from_signals_both(sl_stop=-0.1) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 1, 1, 20.0, 4.0, 0.0, 1), (3, 2, 0, 20.0, 5.0, 0.0, 0), (4, 2, 3, 20.0, 2.0, 0.0, 1), (5, 3, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 2, 0, 20.0, 5.0, 0.0, 1), (3, 3, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 1, 1, 20.0, 4.25, 0.0, 1), (3, 2, 0, 20.0, 5.0, 0.0, 0), (4, 2, 1, 20.0, 4.25, 0.0, 1), (5, 3, 0, 20.0, 5.0, 0.0, 0), (6, 3, 1, 20.0, 4.0, 0.0, 1), (7, 4, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 2, 0, 20.0, 5.0, 0.0, 1), (3, 3, 0, 20.0, 5.0, 0.0, 1), (4, 4, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) close = pd.Series([1., 2., 3., 4., 5.], index=price.index) open = close - 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 3, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 2.0, 0.0, 0), (3, 2, 0, 100.0, 1.0, 0.0, 1), (4, 2, 3, 50.0, 4.0, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 3, 0, 100.0, 1.0, 0.0, 0), (4, 4, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.75, 0.0, 0), (3, 2, 0, 100.0, 1.0, 0.0, 1), (4, 2, 1, 100.0, 1.75, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1), (6, 3, 1, 100.0, 2.0, 0.0, 0), (7, 4, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_ts_stop(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) with pytest.raises(Exception): _ = from_signals_both(ts_stop=-0.1) close = pd.Series([4., 5., 4., 3., 2.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 0), (1, 1, 0, 25.0, 4.0, 0.0, 0), (2, 1, 2, 25.0, 4.0, 0.0, 1), (3, 2, 0, 25.0, 4.0, 0.0, 0), (4, 2, 4, 25.0, 2.0, 0.0, 1), (5, 3, 0, 25.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 1), (1, 1, 0, 25.0, 4.0, 0.0, 1), (2, 1, 1, 25.0, 5.0, 0.0, 0), (3, 2, 0, 25.0, 4.0, 0.0, 1), (4, 3, 0, 25.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records ) print('here') record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.15, 0.2, 0.25, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 0), (1, 1, 0, 25.0, 4.0, 0.0, 0), (2, 1, 2, 25.0, 4.25, 0.0, 1), (3, 2, 0, 25.0, 4.0, 0.0, 0), (4, 2, 2, 25.0, 4.25, 0.0, 1), (5, 3, 0, 25.0, 4.0, 0.0, 0), (6, 3, 2, 25.0, 4.125, 0.0, 1), (7, 4, 0, 25.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.15, 0.2, 0.25, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 1), (1, 1, 0, 25.0, 4.0, 0.0, 1), (2, 1, 1, 25.0, 5.25, 0.0, 0), (3, 2, 0, 25.0, 4.0, 0.0, 1), (4, 2, 1, 25.0, 5.25, 0.0, 0), (5, 3, 0, 25.0, 4.0, 0.0, 1), (6, 3, 1, 25.0, 5.25, 0.0, 0), (7, 4, 0, 25.0, 4.0, 0.0, 1) ], dtype=order_dt) ) close = pd.Series([2., 1., 2., 3., 4.], index=price.index) open = close - 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 50.0, 2.0, 0.0, 0), (2, 1, 1, 50.0, 1.0, 0.0, 1), (3, 2, 0, 50.0, 2.0, 0.0, 0), (4, 3, 0, 50.0, 2.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 1), (1, 1, 0, 50.0, 2.0, 0.0, 1), (2, 1, 2, 50.0, 2.0, 0.0, 0), (3, 2, 0, 50.0, 2.0, 0.0, 1), (4, 2, 4, 50.0, 4.0, 0.0, 0), (5, 3, 0, 50.0, 2.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 50.0, 2.0, 0.0, 0), (2, 1, 1, 50.0, 0.75, 0.0, 1), (3, 2, 0, 50.0, 2.0, 0.0, 0), (4, 2, 1, 50.0, 0.5, 0.0, 1), (5, 3, 0, 50.0, 2.0, 0.0, 0), (6, 4, 0, 50.0, 2.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 1), (1, 1, 0, 50.0, 2.0, 0.0, 1), (2, 1, 2, 50.0, 1.75, 0.0, 0), (3, 2, 0, 50.0, 2.0, 0.0, 1), (4, 2, 2, 50.0, 1.75, 0.0, 0), (5, 3, 0, 50.0, 2.0, 0.0, 1), (6, 3, 2, 50.0, 1.75, 0.0, 0), (7, 4, 0, 50.0, 2.0, 0.0, 1) ], dtype=order_dt) ) def test_tp_stop(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) with pytest.raises(Exception): _ = from_signals_both(sl_stop=-0.1) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 2, 0, 20.0, 5.0, 0.0, 0), (3, 3, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 1, 1, 20.0, 4.0, 0.0, 0), (3, 2, 0, 20.0, 5.0, 0.0, 1), (4, 2, 3, 20.0, 2.0, 0.0, 0), (5, 3, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 2, 0, 20.0, 5.0, 0.0, 0), (3, 3, 0, 20.0, 5.0, 0.0, 0), (4, 4, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 1, 1, 20.0, 4.25, 0.0, 0), (3, 2, 0, 20.0, 5.0, 0.0, 1), (4, 2, 1, 20.0, 4.25, 0.0, 0), (5, 3, 0, 20.0, 5.0, 0.0, 1), (6, 3, 1, 20.0, 4.0, 0.0, 0), (7, 4, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) close = pd.Series([1., 2., 3., 4., 5.], index=price.index) open = close - 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 1, 1, 100.0, 2.0, 0.0, 1), (3, 2, 0, 100.0, 1.0, 0.0, 0), (4, 2, 3, 100.0, 4.0, 0.0, 1), (5, 3, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 3, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 1, 1, 100.0, 1.75, 0.0, 1), (3, 2, 0, 100.0, 1.0, 0.0, 0), (4, 2, 1, 100.0, 1.75, 0.0, 1), (5, 3, 0, 100.0, 1.0, 0.0, 0), (6, 3, 1, 100.0, 2.0, 0.0, 1), (7, 4, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 3, 0, 100.0, 1.0, 0.0, 1), (4, 4, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_stop_entry_price(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='val_price', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 2.625, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 4, 16.52892561983471, 1.25, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='price', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 2.75, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 4, 16.52892561983471, 1.25, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='fillprice', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 3.0250000000000004, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 3, 16.52892561983471, 1.5125000000000002, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='close', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 2.5, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 4, 16.52892561983471, 1.25, 0.0, 1) ], dtype=order_dt) ) def test_stop_exit_price(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 4.25, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.5, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 1.25, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='stopmarket', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 3.825, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.25, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 1.125, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='close', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 3.6, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.7, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 0.9, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='price', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 3.9600000000000004, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.97, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 0.9900000000000001, 0.0, 1) ], dtype=order_dt) ) def test_upon_stop_exit(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, size=1, sl_stop=0.1, upon_stop_exit=[['close', 'closereduce', 'reverse', 'reversereduce']], accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 5.0, 0.0, 0), (1, 0, 1, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 5.0, 0.0, 0), (3, 1, 1, 1.0, 4.0, 0.0, 1), (4, 2, 0, 1.0, 5.0, 0.0, 0), (5, 2, 1, 2.0, 4.0, 0.0, 1), (6, 3, 0, 1.0, 5.0, 0.0, 0), (7, 3, 1, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, size=1, sl_stop=0.1, upon_stop_exit=[['close', 'closereduce', 'reverse', 'reversereduce']]).order_records, np.array([ (0, 0, 0, 1.0, 5.0, 0.0, 0), (1, 0, 1, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 5.0, 0.0, 0), (3, 1, 1, 1.0, 4.0, 0.0, 1), (4, 2, 0, 1.0, 5.0, 0.0, 0), (5, 2, 1, 2.0, 4.0, 0.0, 1), (6, 3, 0, 1.0, 5.0, 0.0, 0), (7, 3, 1, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) def test_upon_stop_update(self): entries = pd.Series([True, True, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close =
pd.Series([5., 4., 3., 2., 1.], index=price.index)
pandas.Series
""" This is the main script of main GUI of the OXCART Atom Probe. @author: <NAME> <<EMAIL>> """ import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import RectangleSelector, EllipseSelector from matplotlib.patches import Circle, Rectangle import pandas as pd from pyccapt.calibration import selectors_data, variables, data_tools def fetch_dataset_from_dld_grp(filename:"type: string - Path to hdf5(.h5) file")->"type:list - list of dataframes": try: hdf5Data = data_tools.read_hdf5(filename) dld_highVoltage = hdf5Data['dld/high_voltage'] dld_pulseVoltage = hdf5Data['dld/pulse_voltage'] dld_startCounter = hdf5Data['dld/start_counter'] dld_t = hdf5Data['dld/t'] dld_x = hdf5Data['dld/x'] dld_y = hdf5Data['dld/y'] dldGroupStorage = [dld_highVoltage, dld_pulseVoltage, dld_startCounter, dld_t, dld_x, dld_y] return dldGroupStorage except KeyError as error: print("[*]Keys missing in the dataset -> ", error) def concatenate_dataframes_of_dld_grp(dataframeList:"type:list - list of dataframes")->"type:list - list of dataframes": dld_masterDataframeList = dataframeList dld_masterDataframe =
pd.concat(dld_masterDataframeList, axis=1)
pandas.concat
import numpy as np import pandas as pd from astropy.modeling import models,fitting from astropy.io import fits from astropy.table import Table class OptimalExtraction: """ OptimalExtraction is a python class to perform optimal extraction of a spectrum from an image. Originally, the algorithm was proposed by [1]. In this adaptation, we followed [2]. ##### + Inputs: - image = an image in 2D array. Assumptions: i) image was processed, cleaned, and calibrated in a standard CCD processing steps (i.e., bias subtraction, flatfield, cosmic-ray removal/repair, and background subtracted). ii) image was resampling from the original image so that a) dispersion is along x-axis and cross-dirspersion along y-axis. (See hstgrism.aperturedirection and hstgrism.resampling if you are working with HST images). b) Each x column is assumed to be one wavelength bin with line spreading along y-axis. c) Peak of each wavelength bin is aligned at the center row in the image. (See hstgrism.extractcompoundmodel1d for fitting the trace centers). - var = 2D array of variance corresponding to the image - bin_number = 1D array parallel to dispersion axis (i.e., x-axis) specifying bin numbers. Number 0 = skip the extraction on that column. - bin_kernel_initial = initial extraction kernel. Only astropy.modeling.models.Gaussian1D is supported for this version. - fitter = astropy.modeling.fitting.LevMarLSQFitter() recommended. - do_fit_bin = True to re-fit using the bin_initial_kernel, and new parameters will be used in the final step of extraction. If False, bin_initial_kernel would be used for extracting in the final step. - kernel_mode = 'Gaussian1D' only in this version. ##### + Compute: - self.compute() to start the optimal extraction after properly instantiate. i) self.bin_image = 2D array of binned image, i.e., columns with the same bin_number are added. x-axis of bin_image corresponds to bin_number. ii) self.bin_var = 2D array of binned variance. Simply add columns of variance with the same bin_number. iii) self.bin_kernel_fit = dict of key:bin_number, value:extraction kernel. If do_fit_bin = False, bin_kernel_fit = bin_kernel_initial. iv) self.bin_image_kernel = 2D array of binned image using bin_kernel_fit for estimation. v) self.kernel_fit = 1D array of extraction kernel runs parallel to dispersion axis (unbinned), and re-normalized. This is simply prepared from bin_kernel_fit and bin_numer. Re-normalization is done for each dispersion column given bin_kernel_fit, but fixed the shape profile. For example, in Gaussian1D kernel, the re-normalization fixes mean and stddev of each column, and re-fit for the amplitude. vi) self.image_kernel = 2D array of unbinned image using kernel_fit for estimation. vii) self.optimal1d = 1D array of optimally extracted profile ##### + Save: - container = optimalextraction.container.Container - wavelength = 1D array of wavelengths parallel to dispersion columns. (Use trace.csv if working with HSTGRISM environment). - optimalextraction.fits = multiextension fits file (See more in astropy.io.fits) EXT0: PrimaryHDU EXT1: ImageHDU as self.image_kernel EXT2: BinTableHDU with columns as bin_number (i.e., 1D array parallel to dispersion columns specifying bin numbers), and self.kernel_fit parameters (i.e., amplitude, mean, stddev for Gaussian1D kernel_mode). - optimalextraction.csv = csv table with columns as column_index, wavelength (if specified), spectrum. Spectrum is optimally extracted. ##### + References: [1] Horne 1986, 'An optimal extraction algorithm for CCD spectroscopy': https://ui.adsabs.harvard.edu/abs/1986PASP...98..609H/abstract [2] Space Telescope Science Institute, 'NIRSpec MOS Optimal Spectral Extraction': https://github.com/spacetelescope/dat_pyinthesky/blob/master/jdat_notebooks/optimal_extraction/Spectral%20Extraction.ipynb [3] Astropy, 'Models and Fitting': https://docs.astropy.org/en/stable/modeling/index.html """ def __init__(self,image,var,bin_number,bin_kernel_initial,fitter,do_fit_bin=True,kernel_mode='Gaussian1D'): self.image = image self.var = var self.bin_number = bin_number self.bin_kernel_initial = bin_kernel_initial self.fitter = fitter self.do_fit_bin = do_fit_bin self.kernel_mode = kernel_mode def compute(self): self.bin_image = self._make_bin_image(mode='image') self.bin_var = self._make_bin_image(mode='var') self.bin_kernel_fit = self.bin_kernel_initial if self.do_fit_bin: self.bin_kernel_fit = self._fit_bin() self.bin_image_kernel = self._compute_bin_image_kernel() self.kernel_fit,self.image_kernel = self._compute_kernel_fit() self.optimal1d = self._compute_optimal() def save(self,container=None,wavelength=None): if container is None: raise ValueError('container must be specified. See optimalextraction.container.Container.') ##### # bin_number,kernel_fit,image_kernel >>> optimalextraction.fits string = './{0}/{1}_optimalextraction.fits'.format(container.data['savefolder'],container.data['saveprefix']) if self.kernel_mode=='Gaussian1D': amplitude,mean,stddev = [],[],[] for ii,i in enumerate(self.kernel_fit): amplitude.append(self.kernel_fit[ii].amplitude[0]) mean.append(self.kernel_fit[ii].mean[0]) stddev.append(self.kernel_fit[ii].stddev[0]) t = {'bin_number':self.bin_number,'amplitude':amplitude,'mean':mean,'stddev':stddev} phdu = fits.PrimaryHDU() ihdu = fits.ImageHDU(self.image_kernel) bhdu = fits.BinTableHDU(Table(t)) hdul = fits.HDUList([phdu,ihdu,bhdu]) hdul.writeto(string,overwrite=True) print('Save {0}'.format(string)) ##### # optimal1d >>> optimalextraction.csv string = './{0}/{1}_optimalextraction.csv'.format(container.data['savefolder'],container.data['saveprefix']) ty,ty_name = self.optimal1d,'spectrum' tx,tx_name = np.arange(len(ty)),'column_index' t = {tx_name:tx, ty_name:ty} if wavelength is not None: tw,tw_name = wavelength,'wavelength' t = {tx_name:tx, tw_name:tw, ty_name:ty}
pd.DataFrame(t)
pandas.DataFrame
import requests import pandas as pd import world_bank_data as wb import lxml def wb_corr(data, col, indicator, change=False): pd.options.mode.chained_assignment = None # Change option within function to avoid warning of value being placed on a copy of a slice. """ Returns the relationship that an input variable has with a chosen variable or chosen variables from the World Bank data, sorted by the strength of relationship Relationship can be either the correlation between the input variable and the chosen indicator(s) or the correlation in the annual percent changes Parameters ---------- data: A pandas dataframe that contains a column of countries called "Country," a column of years called "Year," and a column of data for a variable col: The integer index of the column in which the data of your variable exists in your dataframe indicator: The indicator or list of indicators to check the relationship with the input variable. Can be a character string of the indicator ID or a list of character strings. Indicator IDs can be found through use of the World Bank APIs change: A Boolean value. When set to True, the correlation between the annual percent change of the input variable and the annual percent change of chosen indicator(s) will be found and used to order the strength of relationships Returns ---------- Pandas DataFrame A Pandas DataFrame containing the indicator names as the index and the correlation between the indicator and the input variable. If change set to True, another column including the correlation between the annual percent changes of the variables will be included. The DataFrame is ordered on the correlation if change is set to False and on the correlation of percent changes if change is set to True. The number of rows in the DataFrame will correspond to the number of indicators that were requested. The number of columns will be 1 if change is set to False and 2 if change is True. Examples ---------- >>> import ____ >>> wb_corr(my_df, 2, '3.0.Gini') #where my_df has columns Country, Year, Data |Indicator | Correlation | n -------------------------------------- |Gini Coefficient| -0.955466 | 172 >>> wb_corr(wb.get_series('SP.POP.TOTL',mrv=50).reset_index,3,['3.0.Gini','1.0.HCount.1.90usd'],True) # To compare one WB indicator with others | Indicator | Correlation | n | Correlation_change | n_change ---------------------------------------------------------------------------------------- | Poverty Headcount ($1.90 a day)| -0.001202 |172 | 0.065375 | 134 | Gini Coefficient | 0.252892 |172 | 0.000300 | 134 """ assert type(indicator)==str or type(indicator)==list, "indicator must be either a string or a list of strings" assert type(col)==int, "col must be the integer index of the column containing data on the variable of interest" assert 'Country' in data.columns, "data must have a column containing countries called 'Country'" assert 'Year' in data.columns, "Data must have a column containing years called 'Year'" assert col<data.shape[1], "col must be a column index belonging to data" assert type(change)==bool, "change must be a Boolean value (True or False)" cors=[] indicators=[] n=[] if type(indicator)==str: assert indicator in list(pd.read_xml(requests.get('http://api.worldbank.org/v2/indicator?per_page=21000').content)['id']), "indicator must be the id of an indicator in the World Bank Data. Indicators can be found using the World Bank APIs. http://api.worldbank.org/v2/indicator?per_page=21000 to see all indicators or http://api.worldbank.org/v2/topic/_/indicator? to see indicators under a chosen topic (replace _ with integer 1-21)" thing=pd.DataFrame(wb.get_series(indicator,mrv=50)) # Create a Pandas DataFrame with the data on the chosen indicator using the world_bank_data package merged=pd.merge(data,thing,how='inner',on=['Country','Year']) cors.append(merged.iloc[:,col].corr(merged.iloc[:,(merged.shape[1]-1)])) indicators.append(pd.DataFrame(wb.get_series(indicator,mrv=1)).reset_index()['Series'][0]) n.append(len(merged[merged.iloc[:,col].notnull() & merged.iloc[:,(merged.shape[1]-1)].notnull()])) if change==False: return pd.DataFrame(list(zip(indicators,cors,n)),columns=['Indicator','Correlation','n']).sort_values(by='Correlation',key=abs,ascending=False).set_index('Indicator') if change==True: mumbo=pd.DataFrame() #Create an empty dataframe to include the annual percent change data for the input variable cors_change=[] n_change=[] for country in data['Country'].unique(): s=data[data['Country']==country] s.loc[:,'lag_dat']=s.iloc[:,col].shift(-1) # Generates warning message if option is not changed above s.loc[:,'pct_chg_dat']=(((s.iloc[:,col]-s['lag_dat'])/s['lag_dat'])*100) mumbo=pd.concat([mumbo,s]) t=thing.reset_index() jumbo=pd.DataFrame() #Empty dataframe to contain the percent change data for World Bank data for country in t['Country'].unique(): y=t[t['Country']==country] y.loc[:,'lag_ind']=y.iloc[:,3].shift(-1) # Generates warning message if pandas option is not changed above y.loc[:,'pct_chg_ind']=(((y.iloc[:,3]-y['lag_ind'])/y['lag_ind'])*100) jumbo=pd.concat([jumbo,y]) merged_pct=pd.merge(mumbo,jumbo,how='left',on=['Country','Year']) #inner? cors_change.append(merged_pct.loc[:,'pct_chg_dat'].corr(merged_pct.loc[:,'pct_chg_ind'])) n_change.append(len(merged_pct[merged_pct.loc[:,'pct_chg_dat'].notnull() & merged_pct.loc[:,'pct_chg_ind'].notnull()])) return pd.DataFrame(list(zip(indicators,cors,n,cors_change,n_change)),columns=['Indicator','Correlation','n','Correlation_change','n_change']).sort_values(by='Correlation',key=abs,ascending=False).set_index('Indicator') if type(indicator)==list: for indic in indicator: assert type(indic)==str, "Elements of indicator must be strings" assert indic in list(pd.read_xml(requests.get('http://api.worldbank.org/v2/indicator?per_page=21000').content)['id']), "indicator must be the id of an indicator in the World Bank Data. Indicators can be found using the World Bank APIs. http://api.worldbank.org/v2/indicator?per_page=21000 to see all indicators or http://api.worldbank.org/v2/topic/_/indicator? to see indicators under a chosen topic (replace _ with integer 1-21)" for i in range(0,len(indicator)): thing=pd.DataFrame(wb.get_series(indicator[i],mrv=50)).reset_index() # Create a Pandas DataFrame with the data on the chosen indicator using the world_bank_data package merged=pd.merge(data,thing,how='inner',on=['Country','Year']) cors.append(merged.iloc[:,col].corr(merged.iloc[:,(merged.shape[1]-1)])) indicators.append(pd.DataFrame(wb.get_series(indicator[i],mrv=1)).reset_index()['Series'][0]) n.append(len(merged[merged.iloc[:,col].notnull() & merged.iloc[:,(merged.shape[1]-1)].notnull()])) if change==False: return pd.DataFrame(list(zip(indicators,cors,n)),columns=['Indicator','Correlation','n']).sort_values(by='Correlation',key=abs,ascending=False).set_index('Indicator') if change==True: cors_change=[] n_change=[] for i in range(0,len(indicator)): mumbo=pd.DataFrame() # Create an empty dataframe to include the annual percent change data for the input variable jumbo=pd.DataFrame() # Empty dataframe to contain the percent change data for World Bank data thing=pd.DataFrame(wb.get_series(indicator[i],mrv=50)).reset_index() for country in data['Country'].unique(): s=data[data['Country']==country] s.loc[:,'lag_dat']=s.iloc[:,col].shift(-1) # Generates warning message if pandas option is not changed above s.loc[:,'pct_chg_dat']=(((s.iloc[:,col]-s['lag_dat'])/s['lag_dat'])*100) mumbo=pd.concat([mumbo,s]) for country in thing['Country'].unique(): y=thing[thing['Country']==country] y.loc[:,'lag_ind']=y.iloc[:,3].shift(-1) # Generates warning message if pandas option is not changed above y.loc[:,'pct_chg_ind']=(((y.iloc[:,3]-y['lag_ind'])/y['lag_ind'])*100) jumbo=pd.concat([jumbo,y]) merged_pct=pd.merge(mumbo,jumbo,how='left',on=['Country','Year']) cors_change.append(merged_pct.loc[:,'pct_chg_dat'].corr(merged_pct.loc[:,'pct_chg_ind'])) n_change.append(len(merged_pct[merged_pct.loc[:,'pct_chg_dat'].notnull() & merged_pct.loc[:,'pct_chg_ind'].notnull()])) return pd.DataFrame(list(zip(indicators,cors,n,cors_change,n_change)),columns=['Indicator','Correlation','n','Correlation_change','n_change']).sort_values(by='Correlation_change',key=abs,ascending=False).set_index('Indicator') pd.options.mode.chained_assignment = orig_value def wb_topic_corrs(data,col,topic,k=5,change=False,nlim=1,cor_lim=0,t_lim=0): from math import sqrt pd.options.mode.chained_assignment = None # Change option within function to avoid warning of value being placed on a copy of a slice. """ Returns the relationship that an input variable has with the indicators in a chosen topic from the World Bank data, sorted by the strength of relationship. Relationship can be either the correlation between the input variable and the chosen indicator(s) or the correlation in the annual percent changes Parameters ---------- data: A pandas dataframe that contains a column of countries called "Country," a column of years called "Year," and a column of data for a variable col: The integer index of the column in which the data of your variable exists in your dataframe topic: A character string of the topic name or the integer corresponding to the topic. Topics can be found through the World Bank APIs k: An integer indicating the number of variables to return. The k variables with the strongest relationships to the input variable will be returned. change: A Boolean value. When set to True, the correlation between the annual percent change of the input variable and the annual percent change of chosen indicator(s) will be found and used to order the strength of relationships nlim: An integer indicating the minimum n of indicators to be reported. cor_lim: A real number indicating the minimum absolute value of the correlation between the input variable and World Bank indicators to be reported t_lim: A real number indicating the minimum t score of the correlation between the input variable and World Bank indicators to be reported. Returns ---------- Pandas DataFrame A Pandas DataFrame containing the indicator names as the index and the correlation between the indicator and the input variable. If change set to True, another column including the correlation between the annual percent changes of the variables will be included. The DataFrame is ordered on the correlation if change is set to False and on the correlation of percent changes if change is set to True. The number of rows in the DataFrame will be, at most, k. The number of columns will depend on the settings of change, nlim, and t_lim. Examples ---------- >>> import ____ >>> wb_topic_corrs(my_df,2,1) #Where my_df has columns Country, Year, Data | Indicator | Correlation | n ------------------------------------------------------------------------------ |Access to non-solid fuel, rural (% of rural population) |0.457662 |1519 |Access to electricity, rural (% of rural population) |0.457662 |1519 |Average precipitation in depth (mm per year) |-0.442344 |353 |Annual freshwater withdrawals, agriculture (% of total f|-0.429246 |313 |Livestock production index (2014-2016 = 100) |0.393510 |1696 >>> wb_topic_corrs(wb.get_series('3.0.Gini',mrv=50).reset_index(),3,'Energy & Mining',change=True,cor_lim=.2) #To check a WB variable against its own or another topic | Indicator | Correlation | n | Correlation_change | n_change ---------------------------------------------------------------------------------------------------------------- |Access to electricity (% of population) |-0.434674 |172 | -0.232096 | 134 |Access to electricity, urban (% of urban population) |-0.276086 |172 | -0.225105 | 134 |Electricity production from coal sources (% of total) |0.066986 |172 | 0.200032 | 62 """ assert type(topic)==int or type(topic)==str, "indicator must be either a string or an integer corresponding to the topic. A list of topics can be found through the World Bank API: http://api.worldbank.org/v2/topic?" assert type(col)==int, "col must be the integer index of the column containing data on the variable of interest" assert 'Country' in data.columns, "data must have a column containing countries called 'Country'" assert 'Year' in data.columns, "data must have a column containing years called 'Year'" assert col<data.shape[1], "col must be a column index belonging to data" assert type(change)==bool, "change must be a Boolean value (True or False)" assert type(k)==int, "k must be an integer" assert type(nlim)==int, "n must be an integer" assert (type(cor_lim)==float or type(cor_lim)==int), "cor_lim must be a real number" assert (type(t_lim)==float or type(t_lim)==int), "n_lim must be a real number" if topic=='Agriculture & Rural Development' or topic==1: top_df=pd.read_xml(requests.get('http://api.worldbank.org/v2/topic/1/indicator?per_page=50').content) if topic=='Aid Effectiveness'or topic==2: top_df=pd.read_xml(requests.get('http://api.worldbank.org/v2/topic/2/indicator?per_page=80').content) if topic=='Economy & Growth'or topic==3: top_df=pd.read_xml(requests.get('http://api.worldbank.org/v2/topic/3/indicator?per_page=310').content) if topic=='Education'or topic==4: top_df=pd.read_xml(requests.get('http://api.worldbank.org/v2/topic/4/indicator?per_page=1015').content) if topic=='Energy & Mining'or topic==5: top_df=pd.read_xml(requests.get('http://api.worldbank.org/v2/topic/5/indicator?per_page=55').content) if topic=='Environment'or topic==6: top_df=pd.read_xml(requests.get('http://api.worldbank.org/v2/topic/6/indicator?per_page=145').content) if topic=='Financial Sector'or topic==7: top_df=pd.read_xml(requests.get('http://api.worldbank.org/v2/topic/7/indicator?per_page=210').content) if topic=='Health'or topic==8: top_df=pd.read_xml(requests.get('http://api.worldbank.org/v2/topic/8/indicator?per_page=651').content) if topic=='Infrastructure'or topic==9: top_df=pd.read_xml(requests.get('http://api.worldbank.org/v2/topic/9/indicator?per_page=80').content) if topic=='Social Protection & Labor'or topic==10: top_df=pd.read_xml(requests.get('http://api.worldbank.org/v2/topic/10/indicator?per_page=2150').content) if topic=='Poverty'or topic==11: top_df=pd.read_xml(requests.get('http://api.worldbank.org/v2/topic/11/indicator?per_page=150').content) if topic=='Private Sector'or topic==12: top_df=pd.read_xml(requests.get('http://api.worldbank.org/v2/topic/12/indicator?per_page=200').content) if topic=='Public Sector'or topic==13: top_df=pd.read_xml(requests.get('http://api.worldbank.org/v2/topic/13/indicator?per_page=120').content) if topic=='Science & Technology'or topic==14: top_df=pd.read_xml(requests.get('http://api.worldbank.org/v2/topic/14/indicator?per_page=15').content) if topic=='Social Development'or topic==15: top_df=pd.read_xml(requests.get('http://api.worldbank.org/v2/topic/15/indicator?per_page=35').content) if topic=='Urban Development'or topic==16: top_df=pd.read_xml(requests.get('http://api.worldbank.org/v2/topic/16/indicator?per_page=35').content) if topic=='Gender'or topic==17: top_df=pd.read_xml(requests.get('http://api.worldbank.org/v2/topic/17/indicator?per_page=315').content) if topic=='Millenium Development Goals'or topic==18: top_df=pd.read_xml(requests.get('http://api.worldbank.org/v2/topic/18/indicator?per_page=30').content) if topic=='Climate Change'or topic==19: top_df=pd.read_xml(requests.get('http://api.worldbank.org/v2/topic/19/indicator?per_page=85').content) if topic=='External Debt'or topic==20: top_df=pd.read_xml(requests.get('http://api.worldbank.org/v2/topic/20/indicator?per_page=520').content) if topic=='Trade'or topic==21: top_df=pd.read_xml(requests.get('http://api.worldbank.org/v2/topic/21/indicator?per_page=160').content) cors=[] indicators=[] n=[] t=[] if change==False: for i in range(0,(len(top_df['id']))): try: indicator=top_df.loc[i,'id'] thing=pd.DataFrame(wb.get_series(indicator,mrv=50)) except: pass merged=pd.merge(data,thing,how='inner',on=['Country','Year']) cor_i=(merged.iloc[:,col].corr(merged.iloc[:,(merged.shape[1]-1)])) cors.append(cor_i) indicators.append(top_df['{http://www.worldbank.org}name'][i]) n_i=(len(merged[merged.iloc[:,col].notnull() & merged.iloc[:,(merged.shape[1]-1)].notnull()])) n.append(n_i) if cor_i==1 or cor_i==-1: # Avoid division by 0 t.append(None) else: t.append((cor_i*(sqrt((n_i-2)/(1-(cor_i*cor_i)))))) if t_lim==0: almost_there = pd.DataFrame(list(zip(indicators,cors,n)),columns=['Indicator','Correlation','n']).sort_values(by='Correlation',key=abs,ascending=False).set_index('Indicator') return almost_there.loc[(almost_there.n>nlim) & ((almost_there.Correlation>cor_lim) | (almost_there.Correlation<-cor_lim))].head(k) if t_lim != 0: almost_there = pd.DataFrame(list(zip(indicators,cors,n,t)),columns=['Indicator','Correlation','n','t']).sort_values(by='Correlation',key=abs,ascending=False).set_index('Indicator') return almost_there.loc[(almost_there.n>nlim) & ((almost_there.Correlation>cor_lim) | (almost_there.Correlation<-cor_lim)) & ((almost_there.t>t_lim) | (almost_there.t<-t_lim))].head(k) if change==True: cors_change=[] n_change=[] t_change=[] mumbo=pd.DataFrame() # Create a Pandas DataFrame with the data on the chosen indicator using the world_bank_data package for country in data['Country'].unique(): s=data[data['Country']==country] s.loc[:,'lag_dat']=s.iloc[:,col].shift(-1) # Generates warning message if pandas option is not changed above s.loc[:,'pct_chg_dat']=(((s.iloc[:,col]-s['lag_dat'])/s['lag_dat'])*100) mumbo=pd.concat([mumbo,s]) for i in range(0,(len(top_df['id']))): try: indicator=top_df.loc[i,'id'] thing=pd.DataFrame(wb.get_series(indicator,mrv=50)) except: pass # Some variables listed in the World Bank API have since been removed and will therefore be skipped merged=pd.merge(data,thing,how='inner',on=['Country','Year']) cor_i=(merged.iloc[:,col].corr(merged.iloc[:,(merged.shape[1]-1)])) cors.append(cor_i) n_i=len(merged[merged.iloc[:,col].notnull() & merged.iloc[:,(merged.shape[1]-1)].notnull()]) n.append(n_i) t.append((cor_i*(sqrt((n_i-2)/(1-(cor_i*cor_i)))))) indicators.append(top_df.loc[i,'{http://www.worldbank.org}name']) jumbo=pd.DataFrame() #Empty dataframe to contain the percent change data for World Bank data thing_df=thing.reset_index() for country in thing_df['Country'].unique(): y=thing_df[thing_df['Country']==country] y.loc[:,'lag_ind']=y.iloc[:,3].shift(-1) # Generates warning message if pandas option is not changed above y.loc[:,'pct_chg_ind']=(((y.iloc[:,3]-y['lag_ind'])/y['lag_ind'])*100) jumbo=pd.concat([jumbo,y]) merged_pct=pd.merge(mumbo,jumbo,how='left',on=['Country','Year']) cor_chg_i=merged_pct.loc[:,'pct_chg_dat'].corr(merged_pct.loc[:,'pct_chg_ind']) cors_change.append(cor_chg_i) n_chg_i=len(merged_pct[merged_pct.loc[:,'pct_chg_dat'].notnull() & merged_pct.loc[:,'pct_chg_ind'].notnull()]) n_change.append(n_chg_i) if (cor_chg_i==1 or cor_chg_i==-1): t_change.append(None) else: t_change.append(cor_chg_i*sqrt(((n_chg_i-2)/(1-(cor_chg_i*cor_chg_i))))) if t_lim==0: almost_there = pd.DataFrame(list(zip(indicators,cors,n,cors_change,n_change)),columns=['Indicator','Correlation','n','Correlation_change','n_change']).sort_values(by='Correlation_change',key=abs,ascending=False).set_index('Indicator') return almost_there.loc[(almost_there.n_change>nlim) & ((almost_there.Correlation_change>cor_lim) | (almost_there.Correlation_change<-cor_lim))].head(k) if t_lim!=0: almost_there = pd.DataFrame(list(zip(indicators,cors,n,t,cors_change,n_change,t_change)),columns=['Indicator','Correlation','n','t','Correlation_change','n_change','t_change']).sort_values(by='Correlation_change',key=abs,ascending=False).set_index('Indicator') return almost_there.loc[(almost_there.n_change>nlim) & ((almost_there.Correlation_change>cor_lim) | (almost_there.Correlation_change<-cor_lim)) & ((almost_there.t_change>t_lim) | (almost_there.t_change<(-t_lim)))].head(k) pd.options.mode.chained_assignment = orig_value def wb_corrs_search(data,col,search,k=5,change=False,nlim=1,cor_lim=0,t_lim=0): from math import sqrt pd.options.mode.chained_assignment = None # Change option within function to avoid warning of value being placed on a copy of a slice. """ Returns the relationship that an input variable has with the variables from the World Bank data that match a search, sorted by the strength of relationship Relationship can be either the correlation between the input variable and the chosen indicator(s) or the correlation in the annual percent changes Parameters ---------- data: A pandas dataframe that contains a column of countries called "Country," a column of years called "Year," and a column of data for a variable col: The integer index of the column in which the data of your variable exists in your dataframe search: The search to conduct. Variables that match the given search will be identified and their relationships with the input variable found. k: An integer indicating the number of variables to return. The k variables with the strongest relationship with the input variable will be returned. change: A Boolean value. When set to True, the correlation between the annual percent change of the input variable and the annual percent change of chosen indicator(s) will be found and used to order the strength of relationships nlim: An integer indicating the minimum n of indicators to be reported. cor_lim: A real number indicating the minimum absolute value of the correlation between the input variable and World Bank indicators to be reported t_lim: A real number indicating the minimum t score of the correlation between the input variable and World Bank indicators to be reported. Returns ---------- Pandas DataFrame A Pandas DataFrame containing the indicator names as the index and the correlation between the indicator and the input variable. If change set to True, additional columns including the correlation between the annual percent changes of the variables and the number of observations used in this calculation will be included. The DataFrame is ordered on the correlation if change is set to False and on the correlation of percent changes if change is set to True. The number of rows in the dataframe will be, at most, k. The number of columns will depend on the settings of change, nlim, and t_lim. Examples ---------- >>> import ____ >>> wb_corrs_search(my_df,2,"income share") #Where my_df has columns Country, Year, Data |Indicator | Correlation | n --------------------------------------------------------- |Income share held by highest 10% | -0.994108 | 1741 |Income share held by highest 20% | -0.993918 | 1741 |Income share held by third 20% | 0.977071 | 1741 |Income share held by second 20% | 0.973005 | 1741 |Income Share of Fifth Quintile | -0.962370 | 160 >>> wb_corrs_search(wb.get_series('3.0.Gini',mrv=50).reset_index(),3,"income share",change=True,t_lim=.5) |Indicator | Correlation | n | t | Correlation_change | n_change | t_change ------------------------------------------------------------------------------------------------------------- |Income Share of Fifth Quintile | 0.991789 |160 |97.479993 |0.983675 |125 |60.623743 |Income Share of Second Quintile | -0.985993 |160 |-74.309907 |-0.925918 |125 |-27.186186 |Income Share of Third Quintile | -0.964258 |160 |-45.744148 |-0.918473 |125 |-25.756680 |Income share held by highest 20%| 0.970095 |172 |52.110510 |0.872767 |134 |20.542079 |Income share held by highest 10%| 0.952781 |172 |40.910321 |0.857376 |134 |19.138677 """ assert type(search)==str, "search must be a character string." assert 'Country' in data.columns, "data must have a column containing countries called 'Country'" assert 'Year' in data.columns, "data must have a column containing years called 'Year'" assert type(col)==int, "col must be an integer of a column index that exists in data" assert col<data.shape[1], "col must be a column index belonging to data" assert type(change)==bool, "change must be a Boolean value (True or False)" assert type(k)==int, "k must be an integer" assert type(nlim)==int, "n must be an integer" assert (type(cor_lim)==float or type(cor_lim)==int), "cor_lim must be a real number" assert (type(t_lim)==float or type(t_lim)==int), "n_lim must be a real number" inds=wb.search_indicators(search).reset_index() cors=[] indicators=[] n=[] t=[] for indic in inds['id']: try: thing=pd.DataFrame(wb.get_series(indic,mrv=50)) except: pass merged=pd.merge(data,thing,how='left',on=['Country','Year']) cor_i=merged.iloc[:,col].corr(merged.iloc[:,(merged.shape[1]-1)]) cors.append(cor_i) indicators.append(pd.DataFrame(wb.get_series(indic,mrv=1)).reset_index()['Series'][0]) n_i=len(merged[merged.iloc[:,col].notnull() & merged.iloc[:,(merged.shape[1]-1)].notnull()]) n.append(n_i) if cor_i==-1 or cor_i==1: # Avoid division by 0. t.append(None) else: t.append((cor_i*(sqrt((n_i-2)/(1-(cor_i*cor_i)))))) if change==False: if t_lim==0: almost_there = pd.DataFrame(list(zip(indicators,cors,n)),columns=['Indicator','Correlation','n']).sort_values(by='Correlation',key=abs,ascending=False).set_index('Indicator') return almost_there.loc[(almost_there.n>nlim) & ((almost_there.Correlation>cor_lim) | (almost_there.Correlation<-cor_lim))].head(k) if t_lim!=0: almost_there = pd.DataFrame(list(zip(indicators,cors,n,t)),columns=['Indicator','Correlation','n','t']).sort_values(by='Correlation',key=abs,ascending=False).set_index('Indicator') return almost_there.loc[(almost_there.n>nlim) & ((almost_there.Correlation>cor_lim) | (almost_there.Correlation<-cor_lim)) & ((almost_there.t>t_lim) | (almost_there.t<-t_lim))].head(k) if change==True: cors_chg=[] n_change=[] t_change=[] mumbo=pd.DataFrame() # Create a Pandas DataFrame with the data on the chosen indicator using the world_bank_data package for country in data['Country'].unique(): m=data[data['Country']==country] m.loc[:,'lag_dat']=m.iloc[:,col].shift(-1) # Generates warning message if pandas option is not changed above m.loc[:,'pct_chg_dat']=(((m.iloc[:,col]-m['lag_dat'])/m['lag_dat'])*100) mumbo=pd.concat([mumbo,m]) for indic in inds['id']: jumbo=pd.DataFrame() thing2=pd.DataFrame(wb.get_series(indic,mrv=50)).reset_index() for country in thing2['Country'].unique(): j=thing2[thing2['Country']==country] j.loc[:,'lag_ind']=j.iloc[:,3].shift(-1) # Generates warning message if pandas option is not changed above j.loc[:,'pct_chg_ind']=(((j.iloc[:,3]-j['lag_ind'])/j['lag_ind'])*100) jumbo=pd.concat([jumbo,j]) #Empty dataframe to contain the percent change data for World Bank data merged_pct=pd.merge(mumbo,jumbo,how='inner',on=['Country','Year']) cor_chg_i=merged_pct.loc[:,'pct_chg_dat'].corr(merged_pct.loc[:,'pct_chg_ind']) cors_chg.append(cor_chg_i) n_chg_i=len(merged_pct[merged_pct.loc[:,'pct_chg_dat'].notnull() & merged_pct.loc[:,'pct_chg_ind'].notnull()]) n_change.append(n_chg_i) if (cor_chg_i==1 or cor_chg_i==-1): t_change.append(None) else: t_change.append(cor_chg_i*sqrt(((n_chg_i-2)/(1-(cor_chg_i*cor_chg_i))))) if t_lim==0: almost_there = pd.DataFrame(list(zip(indicators,cors,n,cors_chg,n_change)),columns=['Indicator','Correlation','n','Correlation_change','n_change']).sort_values(by='Correlation_change',key=abs,ascending=False).set_index('Indicator') return almost_there.loc[(almost_there.n_change>nlim) & ((almost_there.Correlation_change>cor_lim) | (almost_there.Correlation_change<-cor_lim))].head(k) if t_lim!=0: almost_there = pd.DataFrame(list(zip(indicators,cors,n,t,cors_chg,n_change,t_change)),columns=['Indicator','Correlation','n','t','Correlation_change','n_change','t_change']).sort_values(by='Correlation_change',key=abs,ascending=False).set_index('Indicator') return almost_there.loc[(almost_there.n_change>nlim) & ((almost_there.Correlation_change>cor_lim) | (almost_there.Correlation_change<-cor_lim)) & ((almost_there.t_change>t_lim) | (almost_there.t_change<-t_lim))].head(k) pd.options.mode.chained_assignment = orig_value def wb_every(data,col,k=5,change=False,nlim=1,cor_lim=0,t_lim=0): pd.options.mode.chained_assignment = None # Change option within function to avoid warning of value being placed on a copy of a slice. """ Returns the k variables from the World Bank Dataset with the strongest relationship with an input variable, sorted by the strength of the relationship. Relationship can be either the correlation that the input variable has with the variables from the World Bank Data or the correlation in the annual percent change of the variables. Parameters ---------- data: A pandas dataframe that contains a column of countries called "Country," a column of years called "Year," and a column of data for a variable col: The integer index of the column in which the data of your variable exists in your dataframe search: The search to conduct. Variables that match the given search will be identified and their relationships with the input variable found. k: An integer indicating the number of variables to return. The k variables with the strongest relationship with the input variable will be returned. change: A Boolean value. When set to True, the correlation between the annual percent change of the input variable and the annual percent change of chosen indicator(s) will be found and used to order the strength of relationships nlim: An integer indicating the minimum n of indicators to be reported. cor_lim: A real number indicating the minimum absolute value of the correlation between the input variable and World Bank indicators to be reported t_lim: A real number indicating the minimum t score of the correlation between the input variable and World Bank indicators to be reported. Returns ---------- Pandas DataFrame A Pandas DataFrame containing the indicator names as the index and the correlation between the indicator and the input variable. If change set to True, additional columns including the correlation between the annual percent changes of the variables and the number of observations included in this calculation will be included. The DataFrame is ordered on the correlation if change is set to False and on the correlation of percent changes if change is set to True. The number of rows in the dataframe will be, at most, k. The number of columns will depend on the settings of change, nlim, and t_lim. """ from math import sqrt assert 'Country' in data.columns, "data must have a column containing countries called 'Country'" assert 'Year' in data.columns, "data must have a column containing years called 'Year'" assert type(col)==int, "col must be an integer of a column index that exists in data" assert col<data.shape[1], "col must be a column index belonging to data" assert type(change)==bool, "change must be a Boolean value (True or False)" assert type(k)==int, "k must be an integer" assert type(nlim)==int, "n must be an integer" assert (type(cor_lim)==float or type(cor_lim)==int), "cor_lim must be a real number" assert (type(t_lim)==float or type(t_lim)==int), "n_lim must be a real number" pd.options.mode.chained_assignment = None here_we_go=pd.read_xml(requests.get('http://api.worldbank.org/v2/indicator?per_page=20100').content) cors=[] indicators=[] n=[] t=[] for indic in here_we_go['id']: try: thing=pd.DataFrame(wb.get_series(indic,mrv=50)).reset_index() except: pass merged=pd.merge(data,thing,how='left',on=['Country','Year']) n_i=(len(merged[merged.iloc[:,col].notnull() & merged.iloc[:,(merged.shape[1]-1)].notnull()])) n.append(n_i) cor_i=merged.iloc[:,col].corr(merged.iloc[:,(merged.shape[1]-1)]) cors.append(cor_i) if cor_i==1 or cor_i==-1: # Avoid division by 0 t.append(None) else: t.append((cor_i*(sqrt((n_i-2)/(1-(cor_i*cor_i)))))) indicators.append(thing.loc[0,'Series']) if change==False: if t_lim==0: almost_there = pd.DataFrame(list(zip(indicators,cors,n)),columns=['Indicator','Correlation','n']).sort_values(by='Correlation',key=abs,ascending=False).set_index('Indicator') return almost_there.loc[(almost_there.n>nlim) & ((almost_there.Correlation>cor_lim) | (almost_there.Correlation<-cor_lim))].head(k) if t_lim != 0: almost_there = pd.DataFrame(list(zip(indicators,cors,n,t)),columns=['Indicator','Correlation','n','t']).sort_values(by='Correlation',key=abs,ascending=False).set_index('Indicator') return almost_there.loc[(almost_there.n>nlim) & ((almost_there.Correlation>cor_lim) | (almost_there.Correlation<-cor_lim)) & ((almost_there.t>t_lim) | (almost_there.t<-t_lim))].head(k) if change==True: cors_change=[] n_change=[] t_change=[] mumbo=pd.DataFrame() # Create a Pandas DataFrame with the data on the chosen indicator using the world_bank_data package for country in data['Country'].unique(): s=data[data['Country']==country] s.loc[:,'lag_dat']=s.iloc[:,col].shift(-1) # Generates warning message if pandas option is not changed above s.loc[:,'pct_chg_dat']=(((s.iloc[:,col]-s['lag_dat'])/s['lag_dat'])*100) mumbo=pd.concat([mumbo,s]) for indic in here_we_go['id']: jumbo=pd.DataFrame() #Empty dataframe to contain the percent change data for World Bank data try: thing=pd.DataFrame(wb.get_series(indic,mrv=50)).reset_index() except: pass for country in thing['Country'].unique(): t=thing[thing['Country']==country] t.loc[:,'lag_ind']=t.iloc[:,3].shift(-1) # Generates warning message if pandas option is not changed above t.loc[:,'pct_chg_ind']=(((t.iloc[:,3]-t['lag_ind'])/t['lag_ind'])*100) jumbo=
pd.concat([jumbo,t])
pandas.concat
import os import sys import pandas as pd from libs.ModelFactory import ModelFactory from measure.ModelWordMeter import ModelWordMeter from reports.AbstractReport import AbstractReport # Add modules to system path, needed when starting the script from the shell # Furter details see: https://stackoverflow.com/questions/16981921/relative-imports-in-python-3 PACKAGE_PARENT = '../' SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__)))) sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, PACKAGE_PARENT))) class ReportScorePerWord(AbstractReport): """Report the score of each model per number of words from 1 to 20. Sample Output ------------- ReportScorePerWord 1 2 3 4 ... 17 18 19 20 LangDetect 0.339 0.525 0.664 0.757 ... 0.983 0.986 0.984 0.985 LangDetectSpacy 0.344 0.531 0.665 0.748 ... 0.984 0.984 0.985 0.984 LangFromStopwords 0.308 0.505 0.625 0.704 ... 0.973 0.981 0.981 0.981 LangFromChars 0.391 0.538 0.692 0.768 ... 0.945 0.949 0.947 0.948 AzureTextAnalytics 0.566 0.754 0.847 0.888 ... 0.987 0.987 0.988 0.990 [5 rows x 20 columns] Time elapsed: 3887.51 sec Report saved to: outcome/ReportScorePerWord.csv """ def __init__(self): AbstractReport.__init__(self, "ReportScorePerWord") self.meter = ModelWordMeter() self.csv_file = "articles_all_1k.csv" def eval(self, all): # init models = ModelFactory().create(all_models=all); col_names = list(range(1, self.meter.max_nr_of_words+1)) row_names = [] rows = [] # read test data data = pd.read_csv(self.csv_path + self.csv_file, sep=',') # predict scores per number of words for each model for i, model in enumerate(models): print("> start evaluate", model.library_name, "...") row = self.meter.score_df(model, data) row_names.append(model.library_name) rows.append(row) # create and return result df =
pd.DataFrame(rows, row_names, col_names)
pandas.DataFrame
""" Bout utility methods Methods for extracting bouts from DataFrames and annotating other DataFrames with this bout information. A bout is a time range within a larger set of data that shares a particular feature. """ import pandas as pd def extract_bouts( df, valid, range_column="t", valid_column="valid", keep_invalid=True, by=[] ): """ Extract from a Pandas DataFrame a list of bouts, where each bout is indicated by a minimum and maximum timestamp range and determined by valid ranges. Parameters ---------- df : pandas.Dataframe The data to extract the bouts from valid : pandas.Series A series of bool values indicating what rows are considered valid and invalid range_column : str Optional string indicating the column in df for the timestamp valid_column : str Optional string indicating the name in the output DataFrame indicating the validness of the bout keep_invalid : bool Optional value indicating whether to keep invalid bouts in the returned DataFrame by : list Optional list of columns to group the data by, before extracting the bouts, meaning that bout boundaries are both determined by the valid column and the group boundaries. Returns ------- pandas.DataFrame Index: RangeIndex Columns: Name: count, dtype: int64 Number of rows in df belonging to the bout Name: t_start, dtype: datetime64[ns] Starting timestamp of the bout (t_ prefix depends on range_column) Name: t_end, dtype: datetime64[ns] End timestamp of the bout (t_ prefix depends on range_column) Name: valid, dtype: bool Whether the bout is valid according to given criterium """ df["_filter"] = valid.loc[df.index] dfBool = valid != valid.shift() dfCumsum = dfBool.cumsum() by_list = [dfCumsum] for b in by: by_list.append(b) groups = df.groupby(by=by_list, sort=False) bouts = groups.agg({range_column: ["count", "min", "max"], "_filter": ["first"]}) bouts.columns = [ "count", range_column + "_start", range_column + "_end", valid_column, ] df.drop(columns=["_filter"], inplace=True) if not keep_invalid: bouts = bouts[bouts[valid_column]] bouts.reset_index(drop=True, inplace=True) return bouts def with_padded_bout_window(bouts, window=[0, 0], range_column="t"): """ Pad the values in a Pandas DataFrame created with `extract_bouts` with a time window. Parameters ---------- bouts : pandas.Dataframe The DataFrame containing the bouts window : list The number of seconds to add to the starting and end time of the bout. range_column : str Optional string indicating the column in original for the timestamp. This results in a prefix in the bouts DataFrame, timestamp column 't' leads to bout columns 't_min' and 't_max'. Returns ------- pandas.DataFrame A copy of the bouts DataFrame with padded min and max timestamp values """ bouts = bouts.copy() bouts[range_column + "_start"] = bouts[range_column + "_start"] + pd.to_timedelta( window[0], unit="s" ) bouts[range_column + "_end"] = bouts[range_column + "_end"] + pd.to_timedelta( window[1], unit="s" ) return bouts def add_bouts_as_column( df, bouts, new_column="bout", range_column="t", valid_column="valid", value="column", reset_value=pd.Series(dtype="float64"), ): """ Applies the time ranges in a bouts DataFrame created with `extract_bouts` to the rows in another DataFrame, by adding bout data to a new column. Parameters ---------- df : pandas.DataFrame The DataFrame containing the data that has to be annotated by bout information bouts : pandas.Dataframe The DataFrame containing the bouts new_column : str The optional column name to add with bout information range_column : str Optional string indicating the column in original for the timestamp. This results in a prefix in the bouts DataFrame, timestamp column 't' leads to bout columns 't_start' and 't_end'. valid_column : str Optional string indicating the name in the output DataFrame indicating the validness of the bout value : object Optional value to insert for a valid bout. If 'index' it takes the bout index as bout identifier, 'column' fills in the valid column else sets the constant value given. reset_value : object Optional default value set to the new bouts column if it does not yet exist Returns ------- pandas.DataFrame A reference to the updated df DataFrame. The original DataFrame is updated in place. """ if new_column not in df: df[new_column] = reset_value for idx, bout in bouts.iterrows(): df.loc[ (df[range_column] >= bout[range_column + "_start"]) & (df[range_column] < bout[range_column + "_end"]), new_column, ] = ( bout[valid_column] if value == "column" else idx if value == "index" else value ) return df def interpolate_bouts_as_column( df, df_values, bouts, new_column="bout", range_column="t", valid_column="valid", value_column="position", reset_value=
pd.Series(dtype="float64")
pandas.Series
#%% import pandas as pd import numpy as np from datetime import datetime import os import pickle # List down file paths #dir_data = "../smoking-lvm-cleaned-data/final" exec(open('../env_vars.py').read()) dir_data = os.environ['dir_data'] dir_picklejar = os.environ['dir_picklejar'] # Read in data data_dates = pd.read_csv(os.path.join(os.path.realpath(dir_data), 'participant-dates.csv')) data_selfreport = pd.read_csv(os.path.join(os.path.realpath(dir_data), 'self-report-smoking-final.csv')) data_hq_episodes = pd.read_csv(os.path.join(os.path.realpath(dir_data), 'hq-episodes-final.csv')) #%% ############################################################################### # Data preparation: data_dates data frame ############################################################################### # Create unix timestamps corresponding to 12AM of a given human-readable date data_dates["start_date_unixts"] = ( data_dates["start_date"] .apply(lambda x: datetime.strptime(x, "%m/%d/%Y")) .apply(lambda x: datetime.timestamp(x)) ) data_dates["quit_date_unixts"] = ( data_dates["quit_date"] .apply(lambda x: datetime.strptime(x, "%m/%d/%Y")) .apply(lambda x: datetime.timestamp(x)) ) data_dates["expected_end_date_unixts"] = ( data_dates["expected_end_date"] .apply(lambda x: datetime.strptime(x, "%m/%d/%Y")) .apply(lambda x: datetime.timestamp(x)) ) data_dates["actual_end_date_unixts"] = ( data_dates["actual_end_date"] .apply(lambda x: datetime.strptime(x, "%m/%d/%Y")) .apply(lambda x: datetime.timestamp(x)) ) # More tidying up data_dates = ( data_dates .rename(columns={"participant": "participant_id", "quit_date": "quit_date_hrts", "start_date": "start_date_hrts", "actual_end_date": "actual_end_date_hrts", "expected_end_date": "expected_end_date_hrts"}) .loc[:, ["participant_id", "start_date_hrts","quit_date_hrts", "expected_end_date_hrts", "actual_end_date_hrts", "start_date_unixts", "quit_date_unixts", "expected_end_date_unixts","actual_end_date_unixts"]] ) #%% ############################################################################### # Merge data_selfreport with data_dates ############################################################################### data_selfreport = data_dates.merge(data_selfreport, how = 'left', on = 'participant_id') #%% ############################################################################### # Data preparation: data_selfreport data frame ############################################################################### # Drop the participants labelled 10X as they are pilot individuals data_selfreport = data_selfreport.dropna(how = 'any', subset=['hour']) def calculate_delta(message): sr_accptresponse = ['Smoking Event(less than 5 minutes ago)', 'Smoking Event(5 - 15 minutes ago)', 'Smoking Event(15 - 30 minutes ago)', 'Smoking Event(more than 30 minutes ago)'] sr_dictionary = {'Smoking Event(less than 5 minutes ago)': 1, 'Smoking Event(5 - 15 minutes ago)': 2, 'Smoking Event(15 - 30 minutes ago)': 3, 'Smoking Event(more than 30 minutes ago)': 4} if message in sr_accptresponse: # Convert time from minutes to seconds use_delta = sr_dictionary[message] else: # If participant reported smoking more than 30 minutes ago, # then we consider time s/he smoked as missing use_delta = pd.NA return use_delta def round_day(raw_day): if pd.isna(raw_day): # Missing values for raw_day can occur # if participant reported smoking more than 30 minutes ago out_day = pd.NA else: # This takes care of the instances when participant reported to smoke # less than 30 minutes ago if raw_day >= 0: # If on or after Quit Date, round down to the nearest integer # e.g., floor(2.7)=2 out_day = np.floor(raw_day) else: # If before Quit Date, round up to the nearest integer # e.g., ceil(-2.7)=-2 out_day = np.ceil(raw_day) return out_day #%% data_selfreport['date'] =
pd.to_datetime(data_selfreport.date)
pandas.to_datetime
from simulationClasses import DCChargingStations, Taxi, Bus, BatterySwappingStation import numpy as np import pandas as pd from scipy import stats, integrate import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter from matplotlib.dates import DateFormatter, HourLocator, MinuteLocator, AutoDateLocator import seaborn as sns import csv import sys from datetime import datetime,date,timedelta import random from math import ceil import math sns.set_context("paper") sns.set(font_scale=2) sns.set_style("whitegrid", { "font.family": "serif", "font.serif": ["Times", "Palatino", "serif"], 'grid.color': '.9', 'grid.linestyle': '--', }) taxiChargingStation = DCChargingStations(5) taxiFleet =[] for i in range(100): newTaxi = Taxi() newTaxi.useSwapping = 0 taxiFleet.append(newTaxi) busChargingStation = DCChargingStations(5) busFleet = [] for i in range(20): newBus = Bus() newBus.useSwapping = 0 busFleet.append(newBus) time = 0 taxiIncome = [] busIncome = [] taxiChargerIncome = [] busChargerIncome = [] while time < 24*60*7: tempTaxiFleet = [] todayTaxiIncome = 0 todayBusIncome = 0 for runningTaxi in taxiFleet: runningTaxi.decideChargeMode(time) if runningTaxi.chargingMode == 1: taxiChargingStation.addCharge(runningTaxi) else: runningTaxi.getTravelSpeed(time) tempTaxiFleet.append(runningTaxi) taxiFleet = tempTaxiFleet tempChargingVehicles = [] for chargingTaxi in taxiChargingStation.chargingVehicles: chargingTaxi.decideChargeMode(time) if chargingTaxi.chargingMode == 0: chargingTaxi.getTravelSpeed(time) taxiFleet.append(chargingTaxi) else: chargingTaxi.charge(time,0,taxiChargingStation.chargeSpeed) tempChargingVehicles.append(chargingTaxi) taxiChargingStation.chargingVehicles = tempChargingVehicles while taxiChargingStation.numberOfStations - len(taxiChargingStation.chargingVehicles) > 0: if len(taxiChargingStation.pendingVehicles) > 0: newChargeTaxi = taxiChargingStation.pendingVehicles.pop(0) newChargeTaxi.charge(time,0,taxiChargingStation.chargeSpeed) taxiChargingStation.chargingVehicles.append(newChargeTaxi) else: break taxiChargingStation.charge() tempBusFleet = [] for runningBus in busFleet: runningBus.decideChargeMode(time) if runningBus.chargingMode == 1: busChargingStation.addCharge(runningBus) else: runningBus.getTravelSpeed(time) tempBusFleet.append(runningBus) busFleet = tempBusFleet tempChargingVehicles = [] for chargingBus in busChargingStation.chargingVehicles: chargingBus.decideChargeMode(time) if chargingBus.chargingMode == 0: chargingBus.getTravelSpeed(time) busFleet.append(chargingBus) else: chargingBus.charge(time, 0, busChargingStation.chargeSpeed) tempChargingVehicles.append(chargingBus) busChargingStation.chargingVehicles = tempChargingVehicles while busChargingStation.numberOfStations - len(busChargingStation.chargingVehicles) > 0: if len(busChargingStation.pendingVehicles) > 0: newChargeBus = busChargingStation.pendingVehicles.pop(0) newChargeBus.charge(time, 0, busChargingStation.chargeSpeed) busChargingStation.chargingVehicles.append(newChargeBus) else: break busChargingStation.charge() for taxi in taxiFleet + taxiChargingStation.chargingVehicles + taxiChargingStation.pendingVehicles: todayTaxiIncome += taxi.income for bus in busFleet + busChargingStation.chargingVehicles + busChargingStation.pendingVehicles: todayBusIncome += bus.income taxiIncome.append([time,todayTaxiIncome,len(taxiFleet),len(taxiChargingStation.chargingVehicles),len(taxiChargingStation.pendingVehicles)]) busIncome.append([time,todayBusIncome,len(busFleet),len(busChargingStation.chargingVehicles),len(busChargingStation.pendingVehicles)]) taxiChargerIncome.append([time,taxiChargingStation.income]) busChargerIncome.append([time, busChargingStation.income]) time += 1 taxiIncomeDataFrame = pd.DataFrame(taxiIncome,columns=["time","income","running","charging","waiting"]) busIncomeDataFrame = pd.DataFrame(busIncome,columns=["time","income","running","charging","waiting"]) taxiChargerIncomeDataFrame = pd.DataFrame(taxiChargerIncome,columns=["time","income"]) busChargerIncomeDataFrame = pd.DataFrame(busChargerIncome,columns=["time","income"]) plt.figure(figsize=(9, 16), dpi=1600) ax = plt.subplot(4,1,1) for day in range(7): plt.axvspan(2*60 + day*60*24, 5*60 + day*60*24, facecolor='g', alpha=0.1) plt.axvspan(18*60 + day*60*24, 21*60 + day*60*24, facecolor='r', alpha=0.1) ax2 = plt.subplot(4,1,2) ax3 = plt.subplot(4,1,3) for day in range(7): plt.axvspan(2*60 + day*60*24, 5*60 + day*60*24, facecolor='g', alpha=0.1) plt.axvspan(18*60 + day*60*24, 21*60 + day*60*24, facecolor='r', alpha=0.1) ax4 = plt.subplot(4,1,4) taxiIncomeDataFrame.plot(x="time",y="income",ax=ax,label="") taxiIncomeDataFrame.plot(x="time",y="running",ax=ax2,label="Running",style="-") taxiIncomeDataFrame.plot(x="time",y="charging",ax=ax2,label="Charging", style=":") taxiIncomeDataFrame.plot(x="time",y="waiting",ax=ax2,label="Waiting",style="-.") busIncomeDataFrame.plot(x="time",y="income",ax=ax3,label="") busIncomeDataFrame.plot(x="time",y="running",ax=ax4,label="Running",style="-") busIncomeDataFrame.plot(x="time",y="charging",ax=ax4,label="Charging",style=":") busIncomeDataFrame.plot(x="time",y="waiting",ax=ax4,label="Waiting",style="-.") ax.set(ylabel= "Income ($)", xlabel='Time (min)') ax.legend_.remove() ax2.set(ylabel= "Number", xlabel='Time (min)') ax3.set(ylabel= "Income ($)", xlabel='Time (min)') ax3.legend_.remove() ax4.set(ylabel= "Number", xlabel='Time (min)') plt.tight_layout() box = ax2.get_position() ax2.set_position([box.x0, box.y0, box.width * 0.8, box.height]) box = ax4.get_position() ax4.set_position([box.x0, box.y0, box.width * 0.8, box.height]) ax2.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax4.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.savefig('busTaxiSimulationResult.pdf', bbox_inches='tight') # print(taxiIncomeDataFrame) print(busIncomeDataFrame) # # print(taxiIncomeDataFrame.sum()) # print(taxiIncomeDataFrame.sum()/24/7/60/100) # print("tc1:") # print(taxiIncomeDataFrame[(taxiIncomeDataFrame["time"]%(24*60) > 18*60) & (taxiIncomeDataFrame["time"]%(24*60) < 21*60)].sum()/60/3/7/100) # print("tc2:") # print(taxiIncomeDataFrame[(taxiIncomeDataFrame["time"]%(24*60) > 2*60) & (taxiIncomeDataFrame["time"]%(24*60) < 5*60)].sum()/60/3/7/100) # print("tc3:") # print(taxiIncomeDataFrame[(taxiIncomeDataFrame["time"]%(24*60) > 5*60) & (taxiIncomeDataFrame["time"]%(24*60) < 18*60)].sum()/60/13/7/100) # print("tc4:") # print(taxiIncomeDataFrame[(taxiIncomeDataFrame["time"]%(24*60) > 21*60) | (taxiIncomeDataFrame["time"]%(24*60) < 2*60)].sum()/60/5/7/100) print(busIncomeDataFrame.sum()) print(busIncomeDataFrame.sum()/24/7/60/100) print("tc1:") print(busIncomeDataFrame[(busIncomeDataFrame["time"]%(24*60) > 18*60) & (busIncomeDataFrame["time"]%(24*60) < 21*60)].sum()/60/7/20) print("tc2:") print(busIncomeDataFrame[(busIncomeDataFrame["time"]%(24*60) > 2*60) & (busIncomeDataFrame["time"]%(24*60) < 5*60)].sum()/60/7/20) print("tc3:") print(busIncomeDataFrame[(busIncomeDataFrame["time"]%(24*60) > 5*60) & (busIncomeDataFrame["time"]%(24*60) < 18*60)].sum()/60/7/20) print("tc4:") print(busIncomeDataFrame[(busIncomeDataFrame["time"]%(24*60) > 21*60) | (busIncomeDataFrame["time"]%(24*60) < 2*60)].sum()/60/7/20) taxiSwappingStation = BatterySwappingStation(5, 30) taxiFleet =[] for i in range(100): newTaxi = Taxi() newTaxi.useSwapping = 1 taxiFleet.append(newTaxi) busSwappingStation = BatterySwappingStation(5, 324) busFleet = [] for i in range(20): newBus = Bus() newBus.useSwapping = 1 busFleet.append(newBus) time = 0 taxiIncome = [] busIncome = [] taxiSwapperIncome = [] busSwapperIncome = [] swapRecord = [] while time < 24*60*7: tempTaxiFleet = [] todayTaxiIncome = 0 todayBusIncome = 0 taxiMileage = 0 for runningTaxi in taxiFleet: runningTaxi.decideChargeMode(time) if runningTaxi.chargingMode == 1: result = taxiSwappingStation.addVehicle(runningTaxi) swapRecord.append([time, runningTaxi.remainingBatterykWh]) if result > 0: runningTaxi.charge(time,result,0) # print("get into queue:" + str(time)) taxiSwappingStation.swappingVehicles.append(runningTaxi) else: runningTaxi.getTravelSpeed(time) tempTaxiFleet.append(runningTaxi) taxiFleet = tempTaxiFleet tempSwappingVehicles = [] for swappingTaxi in taxiSwappingStation.swappingVehicles: swappingTaxi.charge(time,0,0) if swappingTaxi.chargingMode == 0: swappingTaxi.getTravelSpeed(time) taxiFleet.append(swappingTaxi) else: tempSwappingVehicles.append(swappingTaxi) taxiSwappingStation.swappingVehicles = tempSwappingVehicles while len(taxiSwappingStation.pendingVehicles): if len(taxiSwappingStation.swappingVehicles) < taxiSwappingStation.numberOfSlot: newTaxi = taxiSwappingStation.pendingVehicles.pop(0) result = taxiSwappingStation.swap(newTaxi.remainingBatterykWh) newTaxi.charge(time,result,0) # print("bump from pending to swap:" + str(time)) taxiSwappingStation.swappingVehicles.append(newTaxi) else: break tempBusFleet = [] for runningBus in busFleet: runningBus.decideChargeMode(time) if runningBus.chargingMode == 1: result = busSwappingStation.addVehicle(runningBus) if result > 0: runningBus.charge(time, result, 0) busSwappingStation.swappingVehicles.append(runningBus) else: runningBus.getTravelSpeed(time) tempBusFleet.append(runningBus) busFleet = tempBusFleet tempSwappingVehicles = [] for swappingBus in busSwappingStation.swappingVehicles: swappingBus.charge(time, 0, 0) if swappingBus.chargingMode == 0: swappingBus.getTravelSpeed(time) busFleet.append(swappingBus) else: tempSwappingVehicles.append(swappingBus) busSwappingStation.swappingVehicles = tempSwappingVehicles while len(busSwappingStation.pendingVehicles) > 0: if len(busSwappingStation.swappingVehicles) < busSwappingStation.numberOfSlot: newBus = busSwappingStation.pendingVehicles.pop(0) result = busSwappingStation.swap(newBus.remainingBatterykWh) newBus.charge(time, result, 0) busSwappingStation.swappingVehicles.append(newBus) else: break for taxi in taxiFleet + taxiSwappingStation.swappingVehicles + taxiSwappingStation.pendingVehicles: todayTaxiIncome += taxi.income for bus in busFleet + busSwappingStation.swappingVehicles + busSwappingStation.pendingVehicles: todayBusIncome += bus.income taxiIncome.append([time,todayTaxiIncome,len(taxiFleet),len(taxiSwappingStation.swappingVehicles),len(taxiSwappingStation.pendingVehicles),\ len(taxiFleet)+len(taxiSwappingStation.swappingVehicles)+len(taxiSwappingStation.pendingVehicles)]) busIncome.append([time,todayBusIncome,len(busFleet),len(busSwappingStation.swappingVehicles),len(busSwappingStation.pendingVehicles), \ len(busFleet) + len(busSwappingStation.swappingVehicles) + len(busSwappingStation.pendingVehicles)]) taxiSwapperIncome.append([time, taxiSwappingStation.income]) busSwapperIncome.append([time, busSwappingStation.income]) time += 1 taxiIncomeDataFrame = pd.DataFrame(taxiIncome,columns=["time","income","running","swapping","waiting","total"]) busIncomeDataFrame =
pd.DataFrame(busIncome,columns=["time","income","running","swapping","waiting","total"])
pandas.DataFrame
import numpy as np, pandas as pd pd.set_option("display.precision", 4) from sklearn.metrics import log_loss import matplotlib.pyplot as plt import argparse from pathlib import Path SUB_PATH = Path("submissions") INPUT_PATH = Path("input") IMG_PATH = Path("") def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-test', '--test_file_name', type=str, default='gap-test.tsv', help='Filename to read true labels from') parser.add_argument('-result', '--result_file_name', type=str, default='result.csv', help='Filename to write results to') return parser.parse_args() def read_predictions(): # BERT fine-tuning predictions ft1 = pd.read_csv(SUB_PATH/"gap_paper_out_12802_kenkrige_results.csv").drop(columns = "ID") ft2 = pd.read_csv(SUB_PATH/"gap_paper_out_12803_kenkrige_results.csv").drop(columns = "ID") ft3 = pd.read_csv(SUB_PATH/"gap_paper_out_12804_kenkrige_results.csv").drop(columns = "ID") ft4 = pd.read_csv( SUB_PATH/"gap_paper_out_6400_kenkrige_results.csv").drop(columns = "ID") ft5 = pd.read_csv( SUB_PATH/"gap_paper_out_6402_kenkrige_results.csv").drop(columns = "ID") ft6 =
pd.read_csv( SUB_PATH/"gap_paper_out_6404_kenkrige_results.csv")
pandas.read_csv
# Copyright 2019 The Johns Hopkins University Applied Physics Laboratory # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import time import numpy as np import json import argparse import pandas as pd np.random.seed(9999) import boto3 import botocore class Namespace: def __init__(self, **kwargs): self.__dict__.update(kwargs) def parse_args(json_file=None): args = defaults if json_file: with open(json_file, 'r') as f: json_args = json.load(f) args.update(json_args) return Namespace(**args) def get_aws_data(args): session = boto3.Session( aws_access_key_id=args.access_id, aws_secret_access_key=args.token, region_name='us-east-1' ) s3 = session.resource('s3') try: s3.Bucket(args.bucket).download_file(args.seg_file, '/data/seg.npy') s3.Bucket(args.bucket).download_file(args.lbl_file, '/data/syn.npy') except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == "404": print("The object does not exist.") else: raise seg_data = np.load('/data/seg.npy') syn_data = np.load('/data/syn.npy') return seg_data, syn_data def edge_list_cv(neurons, synapses, dilation=5, syn_thres=0.8, blob_thres=4000): from scipy.stats import mode import numpy as np from skimage.measure import label import skimage.morphology as morpho from skimage.measure import regionprops synapses_dil = np.zeros_like(synapses) for z in range(0,synapses.shape[2]): synapses_dil[:,:,z] = morpho.dilation(synapses[:,:,z], selem=morpho.disk(dilation)) # find synapse objects synapses_dil = synapses_dil/255 print(np.max(synapses_dil)) print(np.min(synapses_dil)) threshold = 0.8 synapses_dil,num = label((synapses_dil>threshold).astype(int),connectivity=1,background=0,return_num=True) syn_regions = regionprops(synapses_dil) for region in syn_regions: if(region['area']<blob_thres): inds = region['bbox'] synapses_dil[inds[0]:inds[3],inds[1]:inds[4],inds[2]:inds[5]] = 0 synid = np.unique(synapses_dil) synid = synid[synid > 0] print(len(synid)) syn_ids = [] x = [] y = [] z = [] post = [] pre = [] postNan = [] preNan = [] neusynlist = {} synlist = {} for s in synid: postval = 0 preval = 0 temp = (synapses_dil == s).astype(int) regions = regionprops(temp) for props in regions: x0, y0, z0 = props.centroid #poss pull should put in x,y,z break #only get first, in case there is some weird badness #print str(s).zfill(4), try: val = np.ravel(neurons[synapses_dil == s]) val = val[val > 0] postval = mode(val)[0][0] val = val[val != postval] preval = mode(val)[0][0] syn_ids.append(s) x.append(x0) y.append(y0) z.append(z0) post.append(postval) pre.append(preval) postNan.append(np.nan) preNan.append(np.nan) except: print('skipping this id') print('complete') neusynlist['syn_ids'] = syn_ids neusynlist['xs'] = x neusynlist['ys'] = y neusynlist['zs'] = z neusynlist['pres'] = pre neusynlist['posts'] = post synlist['syn_ids'] = syn_ids synlist['xs'] = x synlist['ys'] = y synlist['zs'] = z synlist['pres'] = preNan synlist['posts'] = postNan return (neusynlist,synlist) if __name__ == '__main__': # ------------------------------------------------------------------------- parser = argparse.ArgumentParser(description='Seg syn association') parser.set_defaults(func=lambda _: parser.print_help()) parser.add_argument( '--bucket', required=False, help='s3 bucket' ) parser.add_argument( '--token', required=False, help='s3 bucket token' ) parser.add_argument( '--access_id', required=False, help='s3 bucket access_id' ) parser.add_argument( '--seg_file', required=False, help='Local segmentation file' ) parser.add_argument( '--lbl_file', required=False, help='Local synapse file' ) parser.add_argument( '-d', '--dilation', default=5, required=False, help='Dilation of synapses') parser.add_argument( '-t', '--threshold', default=0.8, required=False, help='Synapse threshold') parser.add_argument( '-b', '--blob', default=4000, required=False, help='Blob size threshold') parser.add_argument( '--output', required=True, help='Synapse frame' ) parser.add_argument( '--output_noneu', required=True, help='No neuron frame' ) args = parser.parse_args() seg, syn = get_aws_data(args) threshold = 0.8 if args.threshold: threshold = args.threshold blob_thres = 4000 if args.blob: blob_thres = args.blob dilation = 5 if args.dilation: dilation = args.dilation neu_syn_list,syn_list = edge_list_cv(seg, syn, dilation=dilation, syn_thres=threshold, blob_thres=blob) neu_syn_list = pd.DataFrame.from_dict(neu_syn_list) syn_list =
pd.DataFrame.from_dict(syn_list)
pandas.DataFrame.from_dict
#mcandrew import sys import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sys.path.append("../") from mods.datahelp import grabData, grabJHUData, grabDHSdata class reportBuilder(object): def __init__(self,gd): self.predictions = gd.predictions() self.qData = gd.questions() self.quantiles = gd.quantiles() self.metaData = gd.metaData() def buildConsensusAndMedianPredictionText(self): fromSurveyNumQidTXT2data = {} for (surveyNum,qid),subset in self.quantiles.groupby(["surveynum","qid"]): subset = subset.set_index(["quantile"]) median = subset.loc["0.5","value"] _10thPct = subset.loc["0.1","value"] _90thPct = subset.loc["0.9","value"] if _10thPct > 10: form="comma" elif _10thPct >1: form="1" else: form="2" fromSurveyNumQidTXT2data[surveyNum,qid,"median",form] = median fromSurveyNumQidTXT2data[surveyNum,qid,"_10",form] = _10thPct fromSurveyNumQidTXT2data[surveyNum,qid,"_90",form] = _90thPct self.reportDict = fromSurveyNumQidTXT2data def addJHUdata(self,jhudata): jhudata = jhudata.set_index(pd.to_datetime(jhudata.index)) mostRecentJhudata = jhudata.sort_index().iloc[-1,:] dataDate =
pd.to_datetime(mostRecentJhudata.name)
pandas.to_datetime
#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import pandas as pd import os from os import listdir from os.path import isfile, join, getsize, dirname from collections import Counter, OrderedDict import shutil import warnings import h5py import pickle import gc import random import time import matplotlib.pyplot as plt warnings.filterwarnings('ignore') path = "../../../../../../zion/OpenSNP/people" meta = "../../../../../../zion/OpenSNP/meta" beacons = "../../../../../zion/OpenSNP/beacon" main_path = join(beacons, "Main2") # In[2]: def findUserIndex(fileName): fileName = fileName[4:] return int(fileName.split("_")[0]) def findFileIndex(fileName): return int(fileName.split("_")[1][4:]) def findSkipCount(fileName): filePath = join(path, fileName) with open(filePath, "r") as f: i = 0 for line in f: if line[0] == "#" or line[0] == " ": i += 1 else: if line[0:6] == "rs-id": i += 1 break return i def readClean(data): # Remove X,Y,MT chromosomes no_x_y = np.logical_and(data["chromosome"] != "X", data["chromosome"] != "Y") data = data[np.logical_and(no_x_y, data["chromosome"] != "MT")] data = data.fillna("NN") data[data == "II"] = "NN" data[data == "--"] = "NN" data[data == "DD"] = "NN" data[data == "DI"] = "NN" return data.iloc[np.where(data.iloc[:, [1]] != "NN")[0]] def readDf(file, rowSkip): data = pd.read_csv(join(path, file), sep="\t", header=None, skiprows=rowSkip) data.columns = ['rs_id', 'chromosome', 'position', 'allele'] del data['position'] data = data.set_index('rs_id') data = data.rename(columns={"allele": findUserIndex(file)}) return data def readFileComplete(fileName): rowSkip = findSkipCount(fileName) beacon = readDf(fileName, rowSkip) beacon = readClean(beacon) return beacon def mergeClean(beacon): beacon = beacon.loc[~beacon.index.duplicated(keep='first')] beacon = beacon[
pd.to_numeric(beacon['chr'], errors='coerce')
pandas.to_numeric
import pandas as pd import numpy as np class DataParser: @staticmethod def _parse_companies(cmp_list): """ Создает DataFrame компаний по списку словарей из запроса :param cmp_list: list of dicts :return: pandas.DataFrame """ ret_df = pd.DataFrame(columns=['ID', 'TITLE', 'CMP_TYPE_CUSTOMER', 'CMP_TYPE_PARTNER']) if cmp_list: cmp_df = pd.DataFrame(cmp_list) cmp_df['CMP_TYPE_CUSTOMER'] = cmp_df['COMPANY_TYPE'].apply(lambda x: 1 if (x == 'CUSTOMER') else 0) cmp_df['CMP_TYPE_PARTNER'] = cmp_df['COMPANY_TYPE'].apply(lambda x: 1 if (x == 'PARTNER') else 0) cmp_df = cmp_df.drop(columns=['COMPANY_TYPE'], axis=1) ret_df = pd.concat([ret_df, cmp_df]) return ret_df @staticmethod def _parse_deals(deal_list): """ Создает DataFrame сделок по списку словарей из запроса :param deal_list: list of dicts :return: pandas.DataFrame """ ret_df = pd.DataFrame(columns=[ 'OPPORTUNITY_DEAL_Q01', 'PROBABILITY_DEAL_Q01', 'TIME_DIFF_BEGIN_CLOSE_DEAL_Q01', 'OPPORTUNITY_DEAL_Q09', 'PROBABILITY_DEAL_Q09', 'TIME_DIFF_BEGIN_CLOSE_DEAL_Q09', 'OPPORTUNITY_DEAL_MEAN', 'PROBABILITY', 'TIME_DIFF_BEGIN_CLOSE_DEAL_MEAN', 'CLOSED', 'OPPORTUNITY_DEAL_MEDIAN', 'TIME_DIFF_BEGIN_CLOSE_DEAL_MEDIAN', 'DEAL_BY_YEAR']) ret_df.index.name = 'COMPANY_ID' if deal_list: deal_df = pd.DataFrame(deal_list) deal_df['CLOSED'] = deal_df['CLOSED'].apply(lambda x: 1 if (x == 'Y') else 0) deal_df['OPPORTUNITY'] = pd.to_numeric(deal_df['OPPORTUNITY']) deal_df['PROBABILITY'] = pd.to_numeric(deal_df['PROBABILITY']) deal_df['BEGINDATE'] = pd.to_datetime(deal_df['BEGINDATE']) deal_df['CLOSEDATE'] = pd.to_datetime(deal_df['CLOSEDATE']) deal_df['TIME_DIFF_BEGIN_CLOSE'] = (deal_df['CLOSEDATE'] - deal_df['BEGINDATE']).astype( 'timedelta64[h]') / 24 deal_group = deal_df.groupby(by='COMPANY_ID') deal_count = pd.DataFrame(deal_group['CLOSED'].count()) deal_date_max = deal_group['CLOSEDATE'].max() deal_date_min = deal_group['BEGINDATE'].min() d = {'YEAR': (deal_date_max - deal_date_min).astype('timedelta64[h]') / (24 * 365)} deal_date_max_min_diff = pd.DataFrame(data=d) deal_by_year = pd.DataFrame() deal_by_year['DEAL_BY_YEAR'] = (deal_count['CLOSED'] / deal_date_max_min_diff['YEAR']).astype(np.float32) deal_quantile01 = deal_group['OPPORTUNITY', 'PROBABILITY', 'TIME_DIFF_BEGIN_CLOSE'].quantile(0.1) deal_quantile09 = deal_group['OPPORTUNITY', 'PROBABILITY', 'TIME_DIFF_BEGIN_CLOSE'].quantile(0.9) deal_mean = deal_group['OPPORTUNITY', 'PROBABILITY', 'TIME_DIFF_BEGIN_CLOSE', 'CLOSED'].mean() deal_median = deal_group['OPPORTUNITY', 'TIME_DIFF_BEGIN_CLOSE'].median() deal_result = pd.merge(deal_quantile01, deal_quantile09, on='COMPANY_ID', suffixes=['_DEAL_Q01', '_DEAL_Q09']) deal_result1 = pd.merge(deal_mean, deal_median, on='COMPANY_ID', suffixes=['_DEAL_MEAN', '_DEAL_MEDIAN']) deal_result = pd.merge(deal_result, deal_result1, on='COMPANY_ID') deal_result = pd.merge(deal_result, deal_by_year, on='COMPANY_ID') deal_result = deal_result.mask(np.isinf(deal_result)) ret_df = pd.concat([ret_df, deal_result]) return ret_df @staticmethod def _parse_invoices(inv_list): """ Создает DataFrame счетов по списку словарей из запроса :param inv_list: list of dicts :return: pandas.DataFrame """ ret_df = pd.DataFrame(columns=[ 'PRICE_INV_Q01', 'TIME_DIFF_PAYED_BILL_INV_Q01', 'TIME_DIFF_PAYBEF_PAYED_INV_Q01', 'PRICE_INV_Q09', 'TIME_DIFF_PAYED_BILL_INV_Q09', 'TIME_DIFF_PAYBEF_PAYED_INV_Q09', 'PRICE_INV_MEAN', 'TIME_DIFF_PAYED_BILL_INV_MEAN', 'TIME_DIFF_PAYBEF_PAYED_INV_MEAN', 'PAYED', 'STATUS_ID_P', 'STATUS_ID_D', 'STATUS_ID_N', 'STATUS_ID_T', 'PRICE_INV_MEDIAN', 'TIME_DIFF_PAYED_BILL_INV_MEDIAN', 'TIME_DIFF_PAYBEF_PAYED_INV_MEDIAN', 'MONTH_TOGETHER_INV', 'DEAL_BY_YEAR']) ret_df.index.name = 'UF_COMPANY_ID' if inv_list: inv_df = pd.DataFrame(inv_list) inv_df['PRICE'] = pd.to_numeric(inv_df['PRICE']) inv_df['DATE_BILL'] = pd.to_datetime(inv_df['DATE_BILL']) inv_df['DATE_PAYED'] = pd.to_datetime(inv_df['DATE_PAYED']) inv_df['DATE_PAY_BEFORE'] = pd.to_datetime(inv_df['DATE_PAY_BEFORE']) inv_df['TIME_DIFF_PAYED_BILL'] = (inv_df['DATE_PAYED'] - inv_df['DATE_BILL']).astype('timedelta64[h]') / 24 inv_df['TIME_DIFF_PAYBEF_PAYED'] = (inv_df['DATE_PAY_BEFORE'] - inv_df['DATE_PAYED']).astype('timedelta64[h]') / 24 inv_df['PAYED'] = inv_df['PAYED'].apply(lambda x: 1 if (x == 'Y') else 0) inv_df['STATUS_ID_P'] = inv_df['STATUS_ID'].apply(lambda x: 1 if (x == 'P') else 0) inv_df['STATUS_ID_D'] = inv_df['STATUS_ID'].apply(lambda x: 1 if (x == 'D') else 0) inv_df['STATUS_ID_N'] = inv_df['STATUS_ID'].apply(lambda x: 1 if (x == 'N') else 0) inv_df['STATUS_ID_T'] = inv_df['STATUS_ID'].apply(lambda x: 1 if (x == 'T') else 0) inv_group = inv_df.groupby(by='UF_COMPANY_ID') inv_date_max = inv_group['DATE_PAYED'].max() inv_date_min = inv_group['DATE_PAYED'].min() inv_month_together = pd.DataFrame() inv_month_together['MONTH_TOGETHER_INV'] = (inv_date_max - inv_date_min).astype('timedelta64[h]') / ( 24 * 30) inv_count = pd.DataFrame(inv_group['PAYED'].count()) inv_by_year = pd.DataFrame( data={'DEAL_BY_YEAR': (inv_count['PAYED'] / inv_month_together['MONTH_TOGETHER_INV']) * 12}) inv_quantile01 = inv_group['PRICE', 'TIME_DIFF_PAYED_BILL', 'TIME_DIFF_PAYBEF_PAYED'].quantile(0.1) inv_quantile09 = inv_group['PRICE', 'TIME_DIFF_PAYED_BILL', 'TIME_DIFF_PAYBEF_PAYED'].quantile(0.9) inv_mean = inv_group['PRICE', 'TIME_DIFF_PAYED_BILL', 'TIME_DIFF_PAYBEF_PAYED', 'PAYED', 'STATUS_ID_P', 'STATUS_ID_D', 'STATUS_ID_N', 'STATUS_ID_T'].mean() inv_median = inv_group['PRICE', 'TIME_DIFF_PAYED_BILL', 'TIME_DIFF_PAYBEF_PAYED'].median() inv_result = pd.merge(inv_quantile01, inv_quantile09, on='UF_COMPANY_ID', suffixes=['_INV_Q01', '_INV_Q09']) inv_result1 = pd.merge(inv_mean, inv_median, on='UF_COMPANY_ID', suffixes=['_INV_MEAN', '_INV_MEDIAN']) inv_result = pd.merge(inv_result, inv_result1, on='UF_COMPANY_ID') inv_result = pd.merge(inv_result, inv_month_together, on='UF_COMPANY_ID') inv_result = pd.merge(inv_result, inv_by_year, on='UF_COMPANY_ID') inv_result = inv_result.mask(np.isinf(inv_result)) ret_df = pd.concat([ret_df, inv_result]) return ret_df @staticmethod def _parse_quote(quote_list): """ Создает DataFrame коммерческих предложений по списку словарей из запроса :param quote_list: list of dicts :return: pandas.DataFrame """ ret_df = pd.DataFrame(columns=[ 'OPPORTUNITY_QUO_Q01', 'TIME_DIFF_CREATE_CLOSE_QUO_Q01', 'OPPORTUNITY_QUO_Q09', 'TIME_DIFF_CREATE_CLOSE_QUO_Q09', 'CLOSED', 'OPPORTUNITY_QUO_MEAN', 'TIME_DIFF_CREATE_CLOSE_QUO_MEAN', 'STATUS_ID_DEC', 'STATUS_ID_APP', 'STATUS_ID_DRA', 'STATUS_ID_UNA', 'STATUS_ID_REC', 'OPPORTUNITY_QUO_MEDIAN', 'TIME_DIFF_CREATE_CLOSE_QUO_MEDIAN']) ret_df.index.name = 'COMPANY_ID' if quote_list: quote_df = pd.DataFrame(quote_list) quote_df['OPPORTUNITY'] = pd.to_numeric(quote_df['OPPORTUNITY']) quote_df['CLOSEDATE'] =
pd.to_datetime(quote_df['CLOSEDATE'])
pandas.to_datetime
""" Base stock class Based on https://github.com/ranaroussi/yfinance/blob/master/yfinance/base.py Copyright 2020- <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import pandas as pd import time import datetime import json import requests from . import helpers from warnings import warn VALID_PERIOD = ['1d', '5d', '1mo', '3mo', '6mo', '1y', '2y', '5y', '10y', 'ytd', 'max'] VALID_INTERVAL = ['1m', '2m', '5m', '15m', '30m', '60m', '90m', '1h', '1d', '5d', '1wk', '1mo', '3mo'] class Ticker(): """Base class of stockmanager, here it holds all basic infomation of a particular ticker. The information is requested from Yahoo Finance. Attributes ---------- symbol : str ticker symbol, updating the symbol will update the fundamental, e.g. Microsoft is MSFT. _base_url : str https://query1.finance.yahoo.com _scrape_url : str https://finance.yahoo.com/quote _price_request_content : dict Raw content of the web request. _fundamentals : bool Flag to check if get_fundamentals() is already successfully called. major_holders : pandas.DataFrame Major holders institutional_holders : pandas.DataFrame Top institutional holders mutual_fund_holder : pandas.DataFrame Top mutual fund holder company_information : dict General information of the company, e.g. sector, fullTimeEmployees, website, etc. """ # TODO add proxy # TODO dont run summary to save time. def __init__(self, symbol, proxy=None): """ticker is a string name of the stock""" self._ticker_symbol = symbol.upper() self._base_url = 'https://query1.finance.yahoo.com' self._scrape_url = 'https://finance.yahoo.com/quote' self._fundamentals = False self._recommendations = None # TODO to be decided whether this necessary self._institutional_holders = None self._major_holders = None self._mutual_fund_holders = None self._sustainability = None self._calendar = None self._expirations = {} self._info = None self._proxy = proxy self._name = None self._current_price = None self._currency = None self._earnings = { "yearly": helpers.empty_df(), "quarterly": helpers.empty_df()} self._financials = { "yearly": helpers.empty_df(), "quarterly": helpers.empty_df()} self._balancesheet = { "yearly": helpers.empty_df(), "quarterly": helpers.empty_df()} self._cashflow = { "yearly": helpers.empty_df(), "quarterly": helpers.empty_df()} self.meta = [] self.timestamp = [] self.indicators = [] @property def symbol(self): """ticker symbol.""" return self._ticker_symbol @symbol.setter def symbol(self, symbol): self._ticker_symbol = symbol @property def institutional_holders(self): return self._institutional_holders @property def major_holders(self): return self._major_holders @property def mutual_fund_holders(self): return self._mutual_fund_holders @property def sustainability(self): return self._sustainability @property def company_information(self): return self._info @property def name(self): return self._name @property def current_price(self): try: url = '%s/%s' % (self._scrape_url, self._ticker_symbol) data = helpers.get_json(url, self._proxy) self._current_price = data['price']['regularMarketPrice'] return self._current_price except: return self._current_price @property def currency(self): return self._currency def get_price(self, period="1mo", interval="1d", start=None, end=None, timezone=None, format='df'): """Return a DataFrame of the ticker based on certain period and interval Examples -------- Two ways of choosing the time range, 1) using period 2) start/end:: from stockmanager import Ticker msft = StockBase('MSFT') df1 = msft.get_price(period='3mo', interval='1d') # or to use start and end df2 = msft.get_price(start='2020-01-01', end='2020-02-01') Parameters ---------- period : str Time period to retrive, it can only be one of the following: 1d,5d,1mo,3mo,6mo,1y,2y,5y,10y,ytd,max interval : str Interval of the desired period, it can only be one of the following: 1m,2m,5m,15m,30m,60m,90m,1h,1d,5d,1wk,1mo,3mo start : None or str Use either period or start/end. If start/end is used, use yy-mm-dd format. start date will be included if possible end : None or str End date, yy-mm-dd, end date will be included if possible. timezone : None or str timezone for timestamp conversion. format : str Indicate the return variable type. By default it is a pandas DataFrame. Other options are dict (returns the raw dictionary file). Or json (returns in json format) """ # First get the time period right if start or period is None or period.lower() == "max": if start is None: start = -2208988800 elif isinstance(start, str): start = np.datetime64(start) start = pd.to_datetime(start) start = int(start.timestamp()) elif isinstance(start, datetime.datetime): start = int(time.mktime(start.timetuple())) else: raise(TypeError("start must be None, str, or datetime.dateime")) if end is None: end = int(time.time()) elif isinstance(end, str): end = np.datetime64(end) end = pd.to_datetime(end) + datetime.timedelta(days=1) # This is to include end date end = int(end.timestamp()) elif isinstance(end, datetime.datetime): end = int(time.mktime(end.timetuple())) else: raise(TypeError("end must be None, str, or datetime.dateime")) params = {"period1": start, "period2": end} else: period = period.lower() if period not in VALID_PERIOD: raise(AttributeError("valid period: 1d, 5d, 1mo, 3mo, 6mo, 1y, 2y, 5y, 10y, ytd, max. ")) params = {"range": period} if interval not in VALID_INTERVAL: raise(AttributeError("valid interval: 1m, 2m, 5m, 15m, 30m, 60m, 90m, 1h, 1d, 5d, 1wk, 1mo, 3mo")) params["interval"] = interval.lower() url = "{}/v8/finance/chart/{}".format(self._base_url, self._ticker_symbol) self._price_request_content = requests.get(url=url, params=params) # What if other language? Question, how to test it. if "Will be right back" in self._price_request_content.text: raise RuntimeError("*** YAHOO! FINANCE IS CURRENTLY DOWN! ***\n") self._price_request_content = self._price_request_content.json() self._price_request_content = self._price_request_content["chart"]["result"][0] # Raw information from the request response. self.meta = self._price_request_content['meta'] self.timestamp = self._price_request_content['timestamp'] self.indicators = self._price_request_content['indicators'] self.prices = self.indicators["quote"][0] if format.lower() == "df": try: df = helpers.create_df(self._price_request_content, timezone) df.dropna(inplace=True) except Exception: raise RuntimeError("Error parsing content.") self.prices = df.copy() elif format.lower() == "json": # Dumping into a JSon formatted string. self.prices = json.dumps(self.prices, sort_keys=True) # self.prices = json.loads(s) elif format.lower() == "dict": pass else: warn("unrecognised format, return as dict") return self.prices def get_fundamentals(self, kind=None, proxy=None): """"This part scrap information from the Yahoo Finance: https://finance.yahoo.com/quote/YOUR_TICKER It will try to get all fundamental information for more info than just prices. Attributes ---------- * major_holders * institutional_holders * mutual_fund_holders * info * recommendations """ def cleanup(data): df =
pd.DataFrame(data)
pandas.DataFrame
import json import math import os from collections import OrderedDict import matplotlib.pyplot as plt import numpy as np import pandas as pd class Visualize(object): def __init__(self): self.method = 'Method' self.direction = 'Direction' self.accurate = 'Accurate' self.filename_template = 'compare_of_method_{method}_dataset_{dataset}.csv' self.methods_color_map = OrderedDict({ 'TCA': 'xkcd:purple', 'JDA': 'xkcd:blue', 'BDA': 'xkcd:light blue', 'GFK': 'xkcd:green', 'SA': 'xkcd:pink', 'TJM': 'xkcd:brown', 'CORAL': 'xkcd:red', 'MEDA': 'xkcd:teal', 'EasyTL': 'xkcd:orange', }) self.datasets = ['Amazon_Review', 'COIL_20', 'Cross_Dataset', 'Image_CLEF', 'Mnist-USPS', 'Office_31', 'Office_Caltech', 'Office_home', 'PIE', 'VisDA', 'VLSC', 'DomainNet'] self.dataset_name = '' self.xticks_rotation = 0 self.legend_loc = 'upper left' self.title = '' self.stat_file = 'stat_file.json' def read_csv(self, filename): df = pd.read_csv(filename, engine='python') # formalize if any(df[self.accurate] > 1): df[self.accurate] = df[self.accurate] / 100.0 return df def _filter_by_method(self, df, method): return df[df[self.method] == method] def old(self, df): df = self._filter_by_method(df, 'Old') return df[[self.direction, self.accurate]] def new(self, df): df = self._filter_by_method(df, 'New') return df[[self.direction, self.accurate]] def show_csv(self, filename): df = self.read_csv(filename) # old old = self.old(df) new = self.new(df) # rename direction old = self._rename_direction(old) new = self._rename_direction(new) fig = plt.figure(figsize=(10, 6)) ax = fig.add_subplot(1, 1, 1) ax.plot(old[self.direction], old[self.accurate], label='Old', linestyle="--") # 虚线 ax.plot(new[self.direction], new[self.accurate], label='New', linestyle="-") # 实线 ax.legend(loc=self.legend_loc) plt.xticks(rotation=self.xticks_rotation) plt.tight_layout() plt.show() def cal_stat(self): stat = { 'total': '', 'win_count': '', 'win_rate': '', 'min_increase': '', 'max_increase': '', 'avg_increase': '' } df = None for idx, method in enumerate(self.methods_color_map.keys()): filename = self.filename_template.format(method=method, dataset=self.dataset_name) data = self.read_csv(filename) old, new = self.old(data), self.new(data) diff =
pd.merge(old, new, on=self.direction)
pandas.merge
# -*- coding: utf-8 -*- """ Created on Thu Jun 10 00:05:49 2021 @author: <NAME> """ import requests import json import time from datetime import date, timedelta import itertools from ftfy import fix_encoding import unidecode import pandas as pd class admetricks_api: """ A class to generate requests to the Admetricks REST API and get a report. The operation of the methods is subject to the correct input of the variables and to the admetricks user you are using having access to the admetricks REST API. To learn more about the API documentation, go to https://dev.admetricks.com/#introduccion ... Attributes ---------- username : str user used to login in Admetricks password : str <PASSWORD> to login in Admetricks Methods ------- reports_generator(country = None, ad_type = None, device = None, since_date = None): Returns a dataframe with a full report with the information of the API screenshots_data(country = None, site = None, since_date = None, until_date = None): Returns a dataframe with the raw information of captured screenshots """ dictionary_countrys = {1:'chile', 2:'colombia', 3:'argentina', 4:'brasil', 5:'españa', 6:'peru', 7:'mexico', 8:'honduras', 9:'puerto rico', 10:'panama', 11:'uruguay', 12:'costa rica', 13:'guatemala', 14:'ecuador', 15:'venezuela', 16:'nicaragua', 17:'salvador', 18:'republica dominicana', 19:'paraguay'} device = {1:'desktop', 2:'mobile'} ad_type = {1:'display', 2:'video', 3:'text'} current_date = date.today().isoformat() days_before = (date.today()-timedelta(days=30)).isoformat() combinations = list(itertools.product(list(device.values()),list(ad_type.values()))) def __init__(self, username = None, password = None): """ You provide the necessary data to authenticate within Admetricks. Parameters ---------- username : str username used to login in Admetricks password : str password used to login in Admetricks """ self.username = username self.password = password url = """https://clientela.admetricks.com/o/token/?username={username}&password={password}&client_id=IW8M80h7qgCaSz4hPm3gr3wJP89NiJTPyhkwPurT&client_secret=KnBW84uyHlxwlNrKOXyym6Ro1IT6IlYdhScdop63hHddCzJIxUwDG7VItNgEONb1U2ebEH6fBmkYgX9LrZD4uqFJlYscHYn9MLxOm2qVccNE2WGEuePpKA7t3jQ2CvMu&grant_type=password""" response = requests.post(url.format(username = self.username, password = self.password)) res = json.loads(response.text) self.token = res.get('access_token') print('Your active token is {}'.format(self.token)) print(response) def reports_generator(self, country = None, ad_type = None, device = None, since_date = None): """ A function that returns a dataframe with a full report with the information of the API. Parameters ---------- country : str name of your country. ad_type : str Type of ad you want to study. The options are: [all, display, video, text] device : str Type of device you want to study. The options are: [all, desktop, mobile] since_date : str From what date do you want to export data. Returns ------- DataFrame """ if isinstance(country, type(None)): country_error = 'Define your country' raise country_error if isinstance(ad_type, type(None)): ad_type = 'all' if isinstance(device, type(None)): device = 'all' if isinstance(since_date, type(None)): since_date = str(self.days_before) country = country.lower() country = unidecode.unidecode(country) my_dataframe = pd.DataFrame() header = { 'Authorization': 'Bearer '+ self.token, 'content-type': 'application/json'} country_value = list(self.dictionary_countrys.keys())[list(self.dictionary_countrys.values()).index(country)] if ad_type == 'all': if device == 'all': for devices, ad_types in self.combinations: device_value = list(self.device.keys())[list(self.device.values()).index(devices)] ad_type_value = list(self.ad_type.keys())[list(self.ad_type.values()).index(ad_types)] params = (('day', since_date), ('country', str(country_value)), ('device', str(device_value)), ('ad_type', str(ad_type_value)),) requested = requests.post(url = 'https://clientela.admetricks.com/market-report/data/v3/', headers = header, params = params) data = json.loads(requested.text) my_dataframe = pd.concat([my_dataframe, pd.DataFrame.from_dict(data['data'])]) time.sleep(0.5) else: device_value = list(self.device.keys())[list(self.device.values()).index(device)] for value, names in self.ad_type.items(): params = (('day', since_date), ('country', str(country_value)), ('device', str(device_value)), ('ad_type', str(value)),) requested = requests.post(url = 'https://clientela.admetricks.com/market-report/data/v3/', headers = header, params = params) data = json.loads(requested.text) my_dataframe = pd.concat([my_dataframe, pd.DataFrame.from_dict(data['data'])]) time.sleep(0.5) else: if device == 'all': ad_type_value = list(self.ad_type.keys())[list(self.ad_type.values()).index(ad_type)] for value, names in self.device.items(): params = (('day', since_date), ('country', str(country_value)), ('device', str(value)), ('ad_type', str(ad_type_value)),) requested = requests.post(url = 'https://clientela.admetricks.com/market-report/data/v3/', headers = header, params = params) data = json.loads(requested.text) my_dataframe = pd.concat([my_dataframe,
pd.DataFrame.from_dict(data['data'])
pandas.DataFrame.from_dict
import argparse import json import logging import time from pathlib import Path from typing import List, Dict, Optional import numpy as np import pandas as pd from timeeval import Algorithm, Status, Datasets, Metric from timeeval.adapters.docker import SCORES_FILE_NAME as DOCKER_SCORES_FILE_NAME from timeeval.constants import RESULTS_CSV, HYPER_PARAMETERS, METRICS_CSV, ANOMALY_SCORES_TS from timeeval.data_types import ExecutionType from timeeval.experiments import Experiment as TimeEvalExperiment from timeeval.utils.datasets import load_labels_only # required to build a lookup-table for algorithm implementations import timeeval_experiments.algorithms as algorithms # noinspection PyUnresolvedReferences from timeeval_experiments.algorithms import * from timeeval_experiments.baselines import Baselines INITIAL_WAITING_SECONDS = 5 def path_is_empty(path: Path) -> bool: return not any(path.iterdir()) class Evaluator: def __init__(self, results_path: Path, data_path: Path, metrics: List[Metric]): self._logger = logging.getLogger(self.__class__.__name__) self.results_path = results_path self.data_path = data_path self.metrics = metrics self.algos = self._build_algorithm_dict() self.dmgr = Datasets(data_path, create_if_missing=False) self.df: pd.DataFrame =
pd.read_csv(results_path / RESULTS_CSV)
pandas.read_csv
import numpy as np import pandas as pd from sklearn.metrics import roc_auc_score, roc_curve, precision_recall_curve, auc from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.model_selection import GridSearchCV from imblearn.under_sampling import TomekLinks from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier from sklearn.tree import DecisionTreeClassifier def get_attribute(excel_filepath='DIAS Attributes - Values 2017'): '''Processes attribute description data Args: excel - attribute information Returns: dict - dictionary contains attribute names and Values ''' att_values = pd.read_excel(excel_filepath, header=1) att_values = att_values.fillna('') att_values.drop('Unnamed: 0', axis=1, inplace=True) # find unique values of each attributes idx = [] for i in range(att_values.shape[0]): if len(att_values.Attribute[i]) > 0: idx.append(i) attr_dict = {} for i in range(len(idx)-1): key_name = att_values.Attribute[idx[i]] attr_dict[key_name] = att_values.Value[idx[i]:idx[i+1]].tolist() last_key = att_values.Attribute[idx[-1]] attr_dict[last_key] = att_values.Value[idx[i]:].tolist() return attr_dict def check_value(x): '''check the values for missing value''' if type(x) == float: return x elif x == 'X' or (x == 'XX'): return np.nan else: return float(x) def clean_data(df, attr_dict): '''Processes data - Converts missing values to np.nan using loaded features table - Drops unwanted columns and rows - Convert mixed datatype to float - Perfroms feature enginerring Args: df (pd.Dataframe): data to be cleaned feat_info (to_dict): feature information Returns: cleaned_df (pd.Dataframe): cleaned rows ''' clean_df = df.copy() cols = clean_df.columns[18:20] for col in cols: clean_df[col] = clean_df[col].apply(lambda x: check_value(x)) col_nulls = clean_df.isnull().sum()/clean_df.shape[0] row_nulls = clean_df.isnull().sum(axis=1)/clean_df.shape[1] # remove columns with more than 20% nulls in azdias dataframe cols = col_nulls[col_nulls<=0.22].index.tolist() clean_df = clean_df.loc[:, cols] # remove columns with kba kba_cols = clean_df.columns[clean_df.columns.str.startswith('KBA')] clean_df.drop(list(kba_cols), axis=1, inplace=True) # get the dummy for region dummy = pd.get_dummies(clean_df['OST_WEST_KZ']) clean_df.drop('OST_WEST_KZ', axis=1, inplace=True) clean_df = pd.concat([clean_df, dummy], axis=1) # re-engineer PRAEGENDE_JUGENDJAHRE to_replace = {1:4, 2:4, 3:5, 4:5, 5:6, 6:6, 7:6, 8:7, 9:7, 10:8, 11:8, 12:8, 13:8, 14:9, 15:9} clean_df['decade'] = clean_df['PRAEGENDE_JUGENDJAHRE'].replace(to_replace) clean_df.drop(['CAMEO_DEU_2015', 'PRAEGENDE_JUGENDJAHRE', 'D19_LETZTER_KAUF_BRANCHE', 'EINGEFUEGT_AM'] , axis=1, inplace=True) return clean_df def fill_null(clean_df): '''This function takes the cleaned df, fill numerical columns with mean, and categorical columns with median. Args: clean df Return: df without missing values ''' # select columns with numerical values num_col = [] for key, item in attr_dict.items(): if item[0] == '…': num_col.append(key) # fill mean for numerical columns for col in num_col: try: az_mean = clean_df[col].mean() clean_df[col] = clean_df[col].fillna(az_mean) except KeyError: continue # fill median for categorical columns # fill all other columns with mode for col in clean_df.columns: try: az_median = clean_df[col].median() clean_df[col] = clean_df[col].fillna(az_median) except KeyError: continue return clean_df def build_model(model): ''' Creates pipeline with two steps: column transformer (ct) introduced in preprocessing step and classifier (model). Input: scaler: scale the features model: object type that implements the “fit” and “predict” methods Output: pipeline: object type with "fit" and "predict" methods ''' pipeline = Pipeline([ ('scaler', StandardScaler()), ('clf', model) ]) parameters = { 'clf__n_estimators': [50, 100, 200], 'clf__learning_rate': [0.001, 0.01, 0.1], 'clf__boosting_type': ['gbdt','dart'], 'clf__num_leaves': [31, 62] #'clf__base_estimator__min_samples_split': [2, 5, 10], #'clf__base_estimator__max_depth': [1, 3, 5] } cv = GridSearchCV(pipeline, param_grid=parameters) return cv def clean_test(df_cus): '''Processes data - Converts missing values to np.nan using loaded features table - Drops unwanted columns and rows - Convert mixed datatype to float - Perfroms feature enginerring Args: df (pd.Dataframe): data to be cleaned Returns: cleaned_df (pd.Dataframe): cleaned rows ''' cols = df_cus.columns[18:20] for col in cols: df_cus[col] = df_cus[col].apply(lambda x: ml.check_value(x)) # get dummy regions dummy =
pd.get_dummies(df_cus['OST_WEST_KZ'])
pandas.get_dummies
""" Module for legacy LEAP dataset. """ import json import os import numpy as np import pandas as pd from typing import List from sleap.util import json_loads from sleap.io.video import Video from sleap.instance import ( LabeledFrame, PredictedPoint, PredictedInstance, Track, Point, Instance, ) from sleap.skeleton import Skeleton def load_predicted_labels_json_old( data_path: str, parsed_json: dict = None, adjust_matlab_indexing: bool = True, fix_rel_paths: bool = True, ) -> List[LabeledFrame]: """ Load predicted instances from Talmo's old JSON format. Args: data_path: The path to the JSON file. parsed_json: The parsed json if already loaded, so we can save some time if already parsed. adjust_matlab_indexing: Whether to adjust indexing from MATLAB. fix_rel_paths: Whether to fix paths to videos to absolute paths. Returns: List of :class:`LabeledFrame` objects. """ if parsed_json is None: data = json.loads(open(data_path).read()) else: data = parsed_json videos =
pd.DataFrame(data["videos"])
pandas.DataFrame
"""High-level functions to help perform complex tasks """ from __future__ import print_function, division import os import multiprocessing as mp import warnings from datetime import datetime import platform import struct import shutil import copy import numpy as np import pandas as pd import time pd.options.display.max_colwidth = 100 from ..pyemu_warnings import PyemuWarning try: import flopy except: pass import pyemu from pyemu.utils.os_utils import run, start_workers def geostatistical_draws(pst, struct_dict,num_reals=100,sigma_range=4,verbose=True): """construct a parameter ensemble from a prior covariance matrix implied by geostatistical structure(s) and parameter bounds. Args: pst (`pyemu.Pst`): a control file (or the name of control file). The parameter bounds in `pst` are used to define the variance of each parameter group. struct_dict (`dict`): a dict of GeoStruct (or structure file), and list of pilot point template files pairs. If the values in the dict are `pd.DataFrames`, then they must have an 'x','y', and 'parnme' column. If the filename ends in '.csv', then a pd.DataFrame is loaded, otherwise a pilot points file is loaded. num_reals (`int`, optional): number of realizations to draw. Default is 100 sigma_range (`float`): a float representing the number of standard deviations implied by parameter bounds. Default is 4.0, which implies 95% confidence parameter bounds. verbose (`bool`, optional): flag to control output to stdout. Default is True. flag for stdout. Returns `pyemu.ParameterEnsemble`: the realized parameter ensemble. Note: parameters are realized by parameter group. The variance of each parameter group is used to scale the resulting geostatistical covariance matrix Therefore, the sill of the geostatistical structures in `struct_dict` should be 1.0 Example:: pst = pyemu.Pst("my.pst") sd = {"struct.dat":["hkpp.dat.tpl","vka.dat.tpl"]} pe = pyemu.helpers.geostatistical_draws(pst,struct_dict=sd} pe.to_csv("my_pe.csv") """ if isinstance(pst,str): pst = pyemu.Pst(pst) assert isinstance(pst,pyemu.Pst),"pst arg must be a Pst instance, not {0}".\ format(type(pst)) if verbose: print("building diagonal cov") full_cov = pyemu.Cov.from_parameter_data(pst, sigma_range=sigma_range) full_cov_dict = {n: float(v) for n, v in zip(full_cov.col_names, full_cov.x)} # par_org = pst.parameter_data.copy # not sure about the need or function of this line? (BH) par = pst.parameter_data par_ens = [] pars_in_cov = set() keys = list(struct_dict.keys()) keys.sort() for gs in keys: items = struct_dict[gs] if verbose: print("processing ",gs) if isinstance(gs,str): gss = pyemu.geostats.read_struct_file(gs) if isinstance(gss,list): warnings.warn("using first geostat structure in file {0}".\ format(gs),PyemuWarning) gs = gss[0] else: gs = gss if gs.sill != 1.0: warnings.warn("GeoStruct {0} sill != 1.0 - this is bad!".format(gs.name)) if not isinstance(items,list): items = [items] #items.sort() for item in items: if isinstance(item,str): assert os.path.exists(item),"file {0} not found".\ format(item) if item.lower().endswith(".tpl"): df = pyemu.pp_utils.pp_tpl_to_dataframe(item) elif item.lower.endswith(".csv"): df = pd.read_csv(item) else: df = item if "pargp" in df.columns: if verbose: print("working on pargroups {0}".format(df.pargp.unique().tolist())) for req in ['x','y','parnme']: if req not in df.columns: raise Exception("{0} is not in the columns".format(req)) missing = df.loc[df.parnme.apply( lambda x : x not in par.parnme),"parnme"] if len(missing) > 0: warnings.warn("the following parameters are not " + \ "in the control file: {0}".\ format(','.join(missing)),PyemuWarning) df = df.loc[df.parnme.apply(lambda x: x not in missing)] if "zone" not in df.columns: df.loc[:,"zone"] = 1 zones = df.zone.unique() aset = set(pst.adj_par_names) for zone in zones: df_zone = df.loc[df.zone==zone,:].copy() df_zone = df_zone.loc[df_zone.parnme.apply(lambda x: x in aset),:] if df_zone.shape[0] == 0: warnings.warn("all parameters in zone {0} tied and/or fixed, skipping...".format(zone),PyemuWarning) continue #df_zone.sort_values(by="parnme",inplace=True) df_zone.sort_index(inplace=True) if verbose: print("build cov matrix") cov = gs.covariance_matrix(df_zone.x,df_zone.y,df_zone.parnme) if verbose: print("done") if verbose: print("getting diag var cov",df_zone.shape[0]) #tpl_var = np.diag(full_cov.get(list(df_zone.parnme)).x).max() tpl_var = max([full_cov_dict[pn] for pn in df_zone.parnme]) if verbose: print("scaling full cov by diag var cov") #cov.x *= tpl_var for i in range(cov.shape[0]): cov.x[i,:] *= tpl_var # no fixed values here pe = pyemu.ParameterEnsemble.from_gaussian_draw(pst=pst,cov=cov,num_reals=num_reals, by_groups=False,fill=False) #df = pe.iloc[:,:] par_ens.append(pe._df) pars_in_cov.update(set(pe.columns)) if verbose: print("adding remaining parameters to diagonal") fset = set(full_cov.row_names) diff = list(fset.difference(pars_in_cov)) if (len(diff) > 0): name_dict = {name:i for i,name in enumerate(full_cov.row_names)} vec = np.atleast_2d(np.array([full_cov.x[name_dict[d]] for d in diff])) cov = pyemu.Cov(x=vec,names=diff,isdiagonal=True) #cov = full_cov.get(diff,diff) # here we fill in the fixed values pe = pyemu.ParameterEnsemble.from_gaussian_draw(pst,cov,num_reals=num_reals, fill=False) par_ens.append(pe._df) par_ens =
pd.concat(par_ens,axis=1)
pandas.concat
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Metrics that allow to retrieve curves of partial results. Typically used to retrieve partial learning curves of ML training jobs. """ from __future__ import annotations from abc import ABC, abstractmethod from typing import Any, Dict, Iterable, Optional, Union import numpy as np import pandas as pd from ax.core.base_trial import BaseTrial from ax.core.data import Data from ax.core.experiment import Experiment from ax.core.map_data import MapData, MapKeyInfo from ax.core.map_metric import MapMetric from ax.core.metric import Metric from ax.core.trial import Trial from ax.early_stopping.utils import align_partial_results from ax.utils.common.logger import get_logger from ax.utils.common.typeutils import checked_cast logger = get_logger(__name__) class AbstractCurveMetric(MapMetric, ABC): """Metric representing (partial) learning curves of ML model training jobs.""" MAP_KEY = MapKeyInfo(key="training_rows", default_value=0.0) def __init__( self, name: str, curve_name: str, lower_is_better: bool = True, ) -> None: """Inits Metric. Args: name: The name of the metric. curve_name: The name of the learning curve in the training output (there may be multiple outputs e.g. for MTML models). lower_is_better: If True, lower curve values are considered better. """ super().__init__(name=name, lower_is_better=lower_is_better) self.curve_name = curve_name @classmethod def is_available_while_running(cls) -> bool: return True def fetch_trial_data(self, trial: BaseTrial, **kwargs: Any) -> Data: """Fetch data for one trial.""" return self.fetch_trial_data_multi(trial=trial, metrics=[self], **kwargs) @classmethod def fetch_trial_data_multi( cls, trial: BaseTrial, metrics: Iterable[Metric], **kwargs: Any ) -> Data: """Fetch multiple metrics data for one trial.""" return cls.fetch_experiment_data_multi( experiment=trial.experiment, metrics=metrics, trials=[trial], **kwargs ) @classmethod def fetch_experiment_data_multi( cls, experiment: Experiment, metrics: Iterable[Metric], trials: Optional[Iterable[BaseTrial]] = None, **kwargs: Any, ) -> Data: """Fetch multiple metrics data for an experiment.""" if trials is None: trials = list(experiment.trials.values()) trials = [trial for trial in trials if trial.status.expecting_data] if any(not isinstance(trial, Trial) for trial in trials): raise RuntimeError( f"Only (non-batch) Trials are supported by {cls.__name__}" ) trial_idx_to_id = cls.get_ids_from_trials(trials=trials) if len(trial_idx_to_id) == 0: logger.debug("Could not get ids from trials. Returning empty data.") return MapData(map_key_infos=[cls.MAP_KEY]) all_curve_series = cls.get_curves_from_ids(ids=trial_idx_to_id.values()) if all(id_ not in all_curve_series for id_ in trial_idx_to_id.values()): logger.debug("Could not get curves from ids. Returning empty data.") return MapData(map_key_infos=[cls.MAP_KEY]) df = cls.get_df_from_curve_series( experiment=experiment, all_curve_series=all_curve_series, metrics=metrics, trial_idx_to_id=trial_idx_to_id, ) return MapData(df=df, map_key_infos=[cls.MAP_KEY]) @classmethod def get_df_from_curve_series( cls, experiment: Experiment, all_curve_series: Dict[Union[int, str], Dict[str, pd.Series]], metrics: Iterable[Metric], trial_idx_to_id: Dict[int, Union[int, str]], ) -> Optional[pd.DataFrame]: """Convert a `all_curve_series` dict (from `get_curves_from_ids`) into a dataframe. For each metric, we get one curve (of name `curve_name`). Args: experiment: The experiment. all_curve_series: A dict containing curve data, as output from `get_curves_from_ids`. metrics: The metrics from which data is being fetched. trial_idx_to_id: A dict mapping trial index to ids. Returns: A dataframe containing curve data or None if no curve data could be found. """ dfs = [] for trial_idx, id_ in trial_idx_to_id.items(): if id_ not in all_curve_series: logger.debug(f"Could not get curve data for id {id_}. Ignoring.") continue curve_series = all_curve_series[id_] for m in metrics: if m.curve_name in curve_series: # pyre-ignore [16] dfi = _get_single_curve( curve_series=curve_series, curve_name=m.curve_name, metric_name=m.name, map_key=cls.MAP_KEY.key, trial=experiment.trials[trial_idx], ) dfs.append(dfi) else: logger.debug( f"{m.curve_name} not yet present in curves from {id_}. " "Returning without this metric." ) if len(dfs) == 0: return None return pd.concat(dfs, axis=0, ignore_index=True) @classmethod @abstractmethod def get_ids_from_trials( cls, trials: Iterable[BaseTrial] ) -> Dict[int, Union[int, str]]: """Get backend run ids associated with trials. Args: trials: The trials for which to retrieve the associated ids that can be used to to identify the corresponding runs on the backend. Returns: A dictionary mapping the trial indices to the identifiers (ints or strings) corresponding to the backend runs associated with the trials. Trials whose corresponding ids could not be found should be omitted. """ ... # pragma: nocover @classmethod @abstractmethod def get_curves_from_ids( cls, ids: Iterable[Union[int, str]] ) -> Dict[Union[int, str], Dict[str, pd.Series]]: """Get partial result curves from backend ids. Args: ids: The ids of the backend runs for which to fetch the partial result curves. Returns: A dictionary mapping the backend id to the partial result curves, each of which is represented as a mapping from the metric name to a pandas Series indexed by the progression (which will be mapped to the `MAP_KEY` of the metric class). E.g. if `curve_name=loss` and `MAP_KEY=training_rows`, then a Series should look like: training_rows (index) | loss -----------------------|------ 100 | 0.5 200 | 0.2 """ ... # pragma: nocover class AbstractScalarizedCurveMetric(AbstractCurveMetric): """A linear scalarization of (partial) learning curves of ML model training jobs: scalarized_curve = offset + sum_i(coefficients[i] * curve[i]). It is assumed that the output of `get_curves_from_ids` contains all of the curves necessary for performing the scalarization. """ def __init__( self, name: str, coefficients: Dict[str, float], offset: float = 0.0, lower_is_better: bool = True, ) -> None: """Construct a AbstractScalarizedCurveMetric. Args: name: Name of metric. coefficients: A mapping from learning curve names to their scalarization coefficients. offset: The offset of the affine scalarization. lower_is_better: If True, lower values (of the scalarized metric) are considered better. """ MapMetric.__init__(self, name=name, lower_is_better=lower_is_better) self.coefficients = coefficients self.offset = offset @classmethod def get_df_from_curve_series( cls, experiment: Experiment, all_curve_series: Dict[Union[int, str], Dict[str, pd.Series]], metrics: Iterable[Metric], trial_idx_to_id: Dict[int, Union[int, str]], ) -> Optional[pd.DataFrame]: """Convert a `all_curve_series` dict (from `get_curves_from_ids`) into a dataframe. For each metric, we first get all curves represented in `coefficients` and then perform scalarization. Args: experiment: The experiment. all_curve_series: A dict containing curve data, as output from `get_curves_from_ids`. metrics: The metrics from which data is being fetched. trial_idx_to_id: A dict mapping trial index to ids. Returns: A dataframe containing curve data or None if no curve data could be found. """ dfs = [] complete_metrics_by_trial = { trial_idx: [] for trial_idx in trial_idx_to_id.keys() } for trial_idx, id_ in trial_idx_to_id.items(): if id_ not in all_curve_series: logger.debug(f"Could not get curve data for id {id_}. Ignoring.") continue curve_series = all_curve_series[id_] for m in metrics: curve_dfs = [] for curve_name in m.coefficients.keys(): # pyre-ignore[16] if curve_name in curve_series: curve_df = _get_single_curve( curve_series=curve_series, curve_name=curve_name, map_key=cls.MAP_KEY.key, trial=experiment.trials[trial_idx], ) curve_dfs.append(curve_df) else: logger.debug( f"{curve_name} not present in curves from {id_}, so the " f"scalarization for {m.name} cannot be computed. Returning " "without this metric." ) break if len(curve_dfs) == len(m.coefficients): # only keep if all curves needed by the metric are available dfs.extend(curve_dfs) # mark metrics who have all underlying curves complete_metrics_by_trial[trial_idx].append(m) if len(dfs) == 0: return None all_data_df = pd.concat(dfs, axis=0, ignore_index=True) sub_dfs = [] # Do not create a common index across trials, only across the curves # involved in the scalarized metric. for trial_idx, dfi in all_data_df.groupby("trial_index"): # the `do_forward_fill = True` pads with the latest # observation to handle situations where learning curves # report different amounts of data. trial_curves = dfi["metric_name"].unique().tolist() dfs_mean, dfs_sem = align_partial_results( dfi, progr_key=cls.MAP_KEY.key, metrics=trial_curves, do_forward_fill=True, ) for metric in complete_metrics_by_trial[trial_idx]: sub_df = _get_scalarized_curve_metric_sub_df( dfs_mean=dfs_mean, dfs_sem=dfs_sem, metric=metric, trial=checked_cast(Trial, experiment.trials[trial_idx]), ) sub_dfs.append(sub_df) return
pd.concat(sub_dfs, axis=0, ignore_index=True)
pandas.concat
from typing import Optional import math import enum import json from os.path import join as _join from copy import deepcopy import pandas as pd from wepppy.all_your_base.dateutils import YearlessDate from wepppy.all_your_base.stats import weibull_series, probability_of_occurrence from wepppy.wepp.out import HillWat from .wind_transport_thresholds import * _thisdir = os.path.dirname(__file__) _data_dir = _join(_thisdir, 'data') class AshType(enum.IntEnum): BLACK = 0 WHITE = 1 class AshNoDbLockedException(Exception): pass WHITE_ASH_BD = 0.31 BLACK_ASH_BD = 0.22 class AshModel(object): """ Base class for the hillslope ash models. This class is inherited by the WhiteAshModel and BlackAshModel classes """ def __init__(self, ash_type: AshType, proportion, decomposition_rate, bulk_density, density_at_fc, fraction_water_retention_capacity_at_sat, runoff_threshold, water_transport_rate, water_transport_rate_k, wind_threshold, porosity): self.ash_type = ash_type self.proportion = proportion self.ini_ash_depth_mm = None self.ini_ash_load_tonneha = None self.decomposition_rate = decomposition_rate self.bulk_density = bulk_density self.density_at_fc = density_at_fc self.fraction_water_retention_capacity_at_sat = fraction_water_retention_capacity_at_sat self.runoff_threshold = runoff_threshold self.water_transport_rate = water_transport_rate self.water_transport_rate_k = water_transport_rate_k self.wind_threshold = wind_threshold self.porosity = porosity @property def ini_material_available_mm(self): print('proportion', self.proportion, type(self.proportion)) print('ini_ash_depth_mm', self.ini_ash_depth_mm, type(self.ini_ash_depth_mm)) return self.proportion * self.ini_ash_depth_mm @property def ini_material_available_tonneperha(self): if self.ini_ash_load_tonneha is not None: return self.ini_ash_load_tonneha else: return 10.0 * self.ini_material_available_mm * self.bulk_density @property def water_retention_capacity_at_sat(self): return self.fraction_water_retention_capacity_at_sat * self.ini_ash_depth_mm def lookup_wind_threshold_proportion(self, w): if w == 0.0: return 0.0 if self.ash_type == AshType.BLACK: return lookup_wind_threshold_black_ash_proportion(w) elif self.ash_type == AshType.WHITE: return lookup_wind_threshold_white_ash_proportion(w) def run_model(self, fire_date: YearlessDate, element_d, cli_df: pd.DataFrame, hill_wat: HillWat, out_dir, prefix, recurrence=[100, 50, 25, 20, 10, 5, 2], area_ha: Optional[float]=None, ini_ash_depth: Optional[float]=None, ini_ash_load: Optional[float]=None, run_wind_transport=True, model='neris'): """ Runs the ash model for a hillslope :param fire_date: month, day of fire as a YearlessDate instance :param element_d: dictionary runoff events from the element WEPP output. The keys are (year, mo, da) and the values contain the row data as dictionaries with header keys :param cli_df: the climate file produced by CLIGEN as a pandas.Dataframe :param out_dir: the directory save the model output :param prefix: prefix for the model output file :param recurrence: list of recurrence intervals :return: returns the output file name, return period results dictionary """ if model == 'anu': return self._anu_run_model(self, fire_date=fire_date, element_d=element_d, cli_df=cli_df, hill_wat=hill_wat, out_dir=out_dir, prefix=prefix, recurrence=recurrence, area_ha=area_ha, ini_ash_depth=ini_ash_depth, ini_ash_load=ini_ash_load, run_wind_transport=run_wind_transport) else: return self._neris_run_model(self, fire_date=fire_date, element_d=element_d, cli_df=cli_df, hill_wat=hill_wat, out_dir=out_dir, prefix=prefix, recurrence=recurrence, area_ha=area_ha, ini_ash_depth=ini_ash_depth, ini_ash_load=ini_ash_load, run_wind_transport=run_wind_transport) def _neris_run_model(self, fire_date: YearlessDate, element_d, cli_df: pd.DataFrame, hill_wat: HillWat, out_dir, prefix, recurrence=[100, 50, 25, 20, 10, 5, 2], area_ha: Optional[float]=None, ini_ash_depth: Optional[float]=None, ini_ash_load: Optional[float]=None, run_wind_transport=True): self.ini_ash_depth_mm = ini_ash_depth self.ini_ash_load_tonneha = ini_ash_load # copy the DataFrame df = deepcopy(cli_df) hill_wat_d = hill_wat.as_dict() # number of days in the file s_len = len(df.da) # # Initialize np.arrays to store model values # # current fire year starting at 1 fire_years = np.zeros((s_len,), dtype=np.int32) # days from fire for wach fire year days_from_fire = np.zeros((s_len,), dtype=np.int32) # fraction of ash lost from decay for a day daily_relative_ash_decay = np.zeros((s_len,)) cum_relative_ash_decay = np.zeros((s_len,)) # daily total available ash in tonne/ha available_ash = np.zeros((s_len,)) # wind transport variables w_vl_ifgt = np.zeros((s_len,)) proportion_ash_transport = np.zeros((s_len,)) cum_proportion_ash_transport = np.zeros((s_len,)) wind_transport = np.zeros((s_len,)) cum_wind_transport = np.zeros((s_len,)) # peak runoff from the element (PeakRunoffRAW) WEPP output peak_ro = np.zeros((s_len,)) # effective duration from the element (PeakRunoffRAW) WEPP output eff_dur = np.zeros((s_len,)) # effective duration from the element (Precip) WEPP output precip = np.zeros((s_len,)) # water transport modeling variables water_excess = np.zeros((s_len,)) real_runoff = np.zeros((s_len,)) effective_runoff = np.zeros((s_len,)) cum_runoff = np.zeros((s_len,)) soil_evap = np.zeros((s_len,)) ash_wat_cap = np.zeros((s_len,)) water_transport = np.zeros((s_len,)) cum_water_transport = np.zeros((s_len,)) # # Loop through each day in the climate file # breaks = [] # list of indices of new fire years fire_year = 0 # current fire year w_vl_if = 0.0 # maximum wind speed event for current fire year dff = -1 # days from fire for current year for i, _row in df.iterrows(): # # is today the fire day? # if _row.mo == fire_date.month and _row.da == fire_date.day: breaks.append(i) # record the index for the new year fire_year += 1 # increment the fire year w_vl_if = 0.0 # reset the wind threshold for the fire year dff = 0 # reset the days from fire # store the fire year and days from fire fire_years[i] = fire_year days_from_fire[i] = dff # if we are in the first year of the climate file and haven't encountered the fire date # we can just continue to the next day if dff == -1: continue # # on the first day of the fire reset the available ash # if dff == 0: available_ash[i] = self.ini_material_available_tonneperha # # model ash decay # # this was determine as the derivative of 1 * exp(decomposition_rate * time_from_fire(days)) else: daily_relative_ash_decay[i] = self.decomposition_rate * math.exp(-self.decomposition_rate * dff) if i > 0: cum_relative_ash_decay[i] = cum_relative_ash_decay[i-1] + daily_relative_ash_decay[i] available_ash[i] = available_ash[i-1] * (1.0 - daily_relative_ash_decay[i]) # # model runoff # # the element file contains event data we need to look up if the current day has data # from the element_d dictionary # unpack the key yr_mo_da = _row.year, _row.mo, _row.da if yr_mo_da in element_d: peak_ro[i] = element_d[yr_mo_da]['PeakRO'] eff_dur[i] = element_d[yr_mo_da]['EffDur'] precip[i] = element_d[yr_mo_da]['Precip'] else: peak_ro[i] = 0.0 eff_dur[i] = 0.0 precip[i] = 0.0 if yr_mo_da in hill_wat_d: soil_evap[i] = hill_wat_d[yr_mo_da]['Es (mm)'] else: soil_evap[i] = 0.0 assert not math.isnan(peak_ro[i]) assert not math.isnan(eff_dur[i]) # calculate excess water water_excess[i] = peak_ro[i] * eff_dur[i] assert not math.isnan(water_excess[i]) # calculate real runoff accounting for available ash real_runoff[i] = water_excess[i] - (available_ash[i] / (10 * self.bulk_density)) * self.porosity if real_runoff[i] < 0: real_runoff[i] = 0.0 assert not math.isnan(real_runoff[i]), (i, available_ash[i], self.bulk_density) # calculate runoff over the runoff_threshold specified by the model parameters effective_runoff[i] = real_runoff[i] - self.runoff_threshold # clamp to 0 if effective_runoff[i] < 0.0: effective_runoff[i] = 0.0 if dff == 0: ash_wat_cap[i] = effective_runoff[i] - soil_evap[i] else: ash_wat_cap[i] = ash_wat_cap[i - 1] + effective_runoff[i] - soil_evap[i] if ash_wat_cap[i] < 0.0: ash_wat_cap[i] = 0.0 # calculate cumulative runoff if dff > 0: cum_runoff[i] = cum_runoff[i-1] + effective_runoff[i-1] # water transport is empirically modeled # black and white ash have their own models if self.ash_type == AshType.BLACK: water_transport[i] = effective_runoff[i] * self.water_transport_rate elif self.ash_type == AshType.WHITE: # runoff_threshold == 0, so real_runoff == effective_runoff water_transport[i] = effective_runoff[i] * self.water_transport_rate * \ math.exp(self.water_transport_rate_k * cum_runoff[i]) if water_transport[i] > 0: if water_transport[i] > available_ash[i]: water_transport[i] = available_ash[i] available_ash[i] -= water_transport[i] elif run_wind_transport: # only apply wind transport if there is no water # # model wind transport # # identify peak wind values within the fire year if _row['w-vl'] > w_vl_if: w_vl_if = _row['w-vl'] # store daily wind threshold w_vl_ifgt[i] = w_vl_if # track max for comparison else: w_vl_ifgt[i] = 0.0 # if day is not a max for the year store 0.0 # identify the fraction removed by wind from the wind_transport_thresholds.csv proportion_ash_transport[i] = self.lookup_wind_threshold_proportion(w_vl_ifgt[i]) assert proportion_ash_transport[i] >= 0.0 # if not the day of the fire adjust by the cumulative proportion of ash transport if dff > 0: proportion_ash_transport[i] -= cum_proportion_ash_transport[i-1] # clamp to 0 if proportion_ash_transport[i] < 0.0: proportion_ash_transport[i] = 0.0 # calculate cumulative ash transport if dff == 0: # on the day of the fire it is the value from the wind thresholds table cum_proportion_ash_transport[i] = proportion_ash_transport[i] else: # on subsequent days sum up the values cum_proportion_ash_transport[i] = cum_proportion_ash_transport[i-1] + proportion_ash_transport[i] # lookup yesterdays water transport relative_ash_decay = 1.0 - cum_relative_ash_decay[i] # calculate wind transport wind_transport[i] = (self.ini_material_available_tonneperha - relative_ash_decay) * \ (1.0 - daily_relative_ash_decay[i]) * proportion_ash_transport[i] if wind_transport[i] < 0.0: wind_transport[i] = 0.0 if wind_transport[i] > available_ash[i]: wind_transport[i] = available_ash[i] # remove wind and water transported ash from the available ash available_ash[i] -= wind_transport[i] # clamp to 0 if available_ash[i] < 0.0: available_ash[i] = 0.0 cum_wind_transport[i] = wind_transport[i] cum_water_transport[i] = water_transport[i] if dff > 0: cum_wind_transport[i] += cum_wind_transport[i-1] cum_water_transport[i] += cum_water_transport[i-1] # increment the days from fire variable dff += 1 # calculate cumulative wind and water transport ash_transport = water_transport + wind_transport cum_ash_transport = cum_water_transport + cum_wind_transport # store in the dataframe df['fire_year (yr)'] = pd.Series(fire_years, index=df.index) df['w_vl_ifgt (m/s)'] = pd.Series(w_vl_ifgt, index=df.index) df['days_from_fire (days)'] = pd.Series(days_from_fire, index=df.index) df['daily_relative_ash_decay (fraction)'] = pd.Series(daily_relative_ash_decay, index=df.index) df['available_ash (tonne/ha)'] = pd.Series(available_ash, index=df.index) df['_proportion_ash_transport (fraction)'] = pd.Series(proportion_ash_transport, index=df.index) df['_cum_proportion_ash_transport (fraction)'] = pd.Series(cum_proportion_ash_transport, index=df.index) df['wind_transport (tonne/ha)'] = pd.Series(wind_transport, index=df.index) df['cum_wind_transport (tonne/ha)'] = pd.Series(cum_wind_transport, index=df.index) df['peak_ro (mm/hr)'] = pd.Series(peak_ro, index=df.index) df['eff_dur (hr)'] = pd.Series(eff_dur, index=df.index) df['precip (mm)'] = pd.Series(precip, index=df.index) df['water_excess (mm)'] = pd.Series(water_excess, index=df.index) df['real_runoff (mm)'] = pd.Series(real_runoff, index=df.index) df['effective_runoff (mm)'] = pd.Series(effective_runoff, index=df.index) df['cum_runoff (mm)'] = pd.Series(cum_runoff, index=df.index) df['water_transport (tonne/ha)'] = pd.Series(water_transport, index=df.index) df['cum_water_transport (tonne/ha)'] = pd.Series(cum_water_transport, index=df.index) df['ash_transport (tonne/ha)'] = pd.Series(ash_transport, index=df.index) df['cum_ash_transport (tonne/ha)'] = pd.Series(cum_ash_transport, index=df.index) if area_ha is not None: df['ash_delivery (tonne)'] = pd.Series(ash_transport * area_ha, index=df.index) df['ash_delivery_by_wind (tonne)'] = pd.Series(wind_transport * area_ha, index=df.index) df['ash_delivery_by_water (tonne)'] = pd.Series(water_transport * area_ha, index=df.index) df['cum_ash_delivery (tonne)'] = pd.Series(cum_ash_transport * area_ha, index=df.index) df['cum_ash_delivery_by_wind (tonne)'] =
pd.Series(cum_wind_transport * area_ha, index=df.index)
pandas.Series
import numpy as np import pandas as pd def generateBvc(minL,maxL,nov): bvcArray = [[]] csvTable=
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_preprocessing ---------------------------------- Tests for `preprocessing` module. """ import pytest from sktutor.preprocessing import (GroupByImputer, MissingValueFiller, OverMissingThresholdDropper, ValueReplacer, FactorLimiter, SingleValueAboveThresholdDropper, SingleValueDropper, ColumnExtractor, ColumnDropper, DummyCreator, ColumnValidator, TextContainsDummyExtractor, BitwiseOperator, BoxCoxTransformer, InteractionCreator, StandardScaler, PolynomialFeatures, ContinuousFeatureBinner, TypeExtractor, GenericTransformer, MissingColumnsReplacer) from sktutor.pipeline import make_union import numpy as np import pandas as pd import pandas.util.testing as tm from random import shuffle from sklearn.pipeline import make_pipeline @pytest.mark.usefixtures("missing_data") @pytest.mark.usefixtures("missing_data2") class TestGroupByImputer(object): def test_groups_most_frequent(self, missing_data): # Test imputing most frequent value per group. prep = GroupByImputer('most_frequent', 'b') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 2, None, 4, 4, 7, 8, 8, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1.0, 2.0, 1.0, 4.0, 4.0, 4.0, 7.0, 9.0, 9.0, 9.0], 'd': ['a', 'a', 'a', None, 'e', 'f', 'j', 'h', 'j', 'j'], 'e': [1, 2, 1, None, None, None, None, None, None, None], 'f': ['a', 'b', 'a', None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'a'], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a'] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_groups_mean(self, missing_data): # Test imputing mean by group. prep = GroupByImputer('mean', 'b') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 2, None, 4, 4, 7, 8, 7 + 2/3, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1.0, 2.0, 1.5, 4.0, 4.0, 4.0, 7.0, 9.0, 8+1/3, 9.0], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, 1.5, None, None, None, None, None, None, None], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_groups_median(self, missing_data): # Test imputing median by group. prep = GroupByImputer('median', 'b') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 2, None, 4, 4, 7, 8, 8, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, 1.5, 4, 4, 4, 7, 9, 9, 9], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, 1.5, None, None, None, None, None, None, None], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_all_most_frequent(self, missing_data): # Test imputing most frequent with no group by. prep = GroupByImputer('most_frequent') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 2, 2, 4, 4, 7, 8, 2, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1.0, 2.0, 4.0, 4.0, 4.0, 4.0, 7.0, 9.0, 4.0, 9.0], 'd': ['a', 'a', 'a', 'a', 'e', 'f', 'a', 'h', 'j', 'j'], 'e': [1, 2, 1, 1, 1, 1, 1, 1, 1, 1], 'f': ['a', 'b', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a'], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'a'], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a'] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_all_mean(self, missing_data): # Test imputing mean with no group by. prep = GroupByImputer('mean') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 5, 5, 4, 4, 7, 8, 5, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, 5, 4, 4, 4, 7, 9, 5, 9], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_all_median(self, missing_data): # Test imputing median with no group by. prep = GroupByImputer('median') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 4, 4, 4, 4, 7, 8, 4, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, 4, 4, 4, 4, 7, 9, 4, 9], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_value_error(self, missing_data): # Test limiting options without a group by. prep = GroupByImputer('stdev') with pytest.raises(ValueError): prep.fit(missing_data) def test_key_error(self, missing_data): # Test imputing with np.nan when a new group level is introduced in # Transform. prep = GroupByImputer('mean', 'b') prep.fit(missing_data) new_dict = {'a': [2, 2, None, None, 4, 4, 7, 8, None, 8], 'b': ['123', '123', '123', '987', '987', '456', '789', '789', '789', '789'], 'c': [1, 2, None, 4, 4, 4, 7, 9, None, 9], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, None, None, None, None, None, None, None, None], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } new_data = pd.DataFrame(new_dict) # set equal to the expected for test means group exp_dict = {'a': [2, 2, 2, None, 4, 4, 7, 8, 7+2/3, 8], 'b': ['123', '123', '123', '987', '987', '456', '789', '789', '789', '789'], 'c': [1.0, 2.0, 1.5, 4.0, 4.0, 4.0, 7.0, 9.0, 8+1/3, 9.0], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, 1.5, None, None, None, None, None, None, None], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict) result = prep.transform(new_data)
tm.assert_frame_equal(result, expected, check_dtype=False)
pandas.util.testing.assert_frame_equal
#! /usr/bin/env python """ Contains classes and functions to compute stats for Navigator Solr servers and compare across deployments Since this is focused on Navigator analysis as of 2.6.0, it assumes Solr 4.10 and may break against Solr 5+ """ from solr_client import SolrServer, SolrCore, frange import pandas as pd import re USAGE = """ Usage: solr_stats.py <config_file_path> <output_xlsx_path>" The config file should contain the details of all the Navigator deployments you wish to compare. Each deployment's config should be one a separate line in the format: name,host,port,user,password e.g., customer1,foo.cloudera.com,1234,user,password customer2,bar.cloudera.com,1234,user,password """ PATH_PATTEN = re.compile('(?:hdfs://[^/]*)(.*)') class NavSolrServer(SolrServer): """ Navigator Solr server is a SolrServer with convenience properties for 'nav_elements' and 'nav_relations', Navigator's 2 Solr cores. """ @property def nav_elements(self): return self.get_core('nav_elements') @property def nav_relations(self): return NavRelations(self, 'nav_relations') def get_core(self, core): if core == 'nav_relations': return NavRelations(self, core) elif core == 'nav_elements': return NavCore(self, core) return super(NavSolrServer, self).get_core(core) class NavCore(SolrCore): def get_docs(self, q='*:*', fq='', sort=None, wt='json', rows=None, indent='true', batch_size=100000, params=None): if rows is None and sort is None: sort = 'identity asc' return super(NavCore, self).get_docs(q, fq, sort, wt, rows, indent, batch_size, params) def find_by_id(self, ids, fl=None): for part in partition(ids): for r in self.get_docs(fq=terms(part, self.schema.identity), params={'fl': fl}): yield r def partition(lst, size=50*1024): for i in range(0, len(lst), size): yield lst[i:i+size] def terms(ids, field): return '{{!terms f={}}}{}'.format(field, ','.join(ids)) class NavRelations(NavCore): def __init__(self, server, core): super(NavRelations, self).__init__(server, core) assert isinstance(server, NavSolrServer) def get_ep1_ids(self, relation_query): return self.get_endpoint_ids(relation_query, 'endpoint1Ids') def get_ep2_ids(self, relation_query, limit=None): return self.get_endpoint_ids(relation_query, 'endpoint2Ids') def get_endpoint_ids(self, relation_query, endpoint): ids = [] for d in self.get_docs(relation_query, params={'fl': ['identity', endpoint]}): ids.extend(d[endpoint]) return ids class NavSolrAnalyzer(object): """ Class to get server level summary stats across cores, HDFS stats, and a breakdown of entity counts """ def __init__(self, name, host, port, user, pwd, use_tls=False, verify=None): self.name = name self.server = NavSolrServer(host, port, user, pwd, use_tls=use_tls, verify=verify) self.nav_elements = self.server.nav_elements def summary_stats(self): """ # docs and size for each core in the given SolrServer """ resp = self.server.core_admin_status() core_names = [] stats = ['indexHeapUsageBytes', 'numDocs', 'size'] data = [] for core, status in resp['status'].items(): core_names.append(core) data.append([status['index'][field] for field in stats]) return pd.DataFrame(data, index=pd.Index(core_names, name='core'), columns=pd.Index(stats, name='stats')).T def hdfs_stats(self): """ Get HDFS file size summary statistics (non-deleted only) """ return self.nav_elements.stats( 'size', fq='sourceType:HDFS AND type:FILE AND -deleted:true', stats=['max', 'sum', 'mean', 'stddev']) def count_breakdown(self): """ Get entity counts by source type (HDFS, Yarn, etc) and entity type (File, Operation, etc) for non-deleted entities only """ return self.nav_elements.pivot(fields=['sourceType', 'type'], fq='-deleted:true') def deleted_stats(self, fq='sourceType:HDFS'): fq += ('' if fq is None or fq == '' else ' AND ') + 'deleted:true' delete_time = self.nav_elements.stats( 'deleteTime', fq=fq + 'AND {!frange l=0 incl=false}deleteTime', stats=['max', 'min']) min_date = int(delete_time.ix['min', 0]) max_date = int(delete_time.ix['max', 0]) day_in_millis = 1000 * 60 * 60 * 24 break_points = [0, 1, 7, 30, 90, 365, 730] labels = ['1 day', '1 week', '1 month', '3 months', '1 year', '2 years', 'invalid deleteTime'] queries = [] for i in range(len(break_points)): u = max_date - break_points[i] * day_in_millis if i < len(break_points) - 1: l = max(min_date, max_date - break_points[i+1] * day_in_millis) else: l = min_date queries.append(self._make_deleteTime_query(l, u, label=labels[i])) if l == min_date: break queries.append(self._make_deleteTime_query(None, min_date, incl=True, label='invalid deleteTime')) rs = self.nav_elements.facet_query(queries, fq=fq) rs = rs.reindex(labels).dropna().astype('int64') rs.name = 'Deleted' rs.index.name = 'Date Range' return rs.to_frame() def create_stats(self, start='NOW-1YEAR', end='NOW', gap='+1MONTH', fq='sourceType:HDFS'): fq += (('' if fq is None or fq == '' else ' AND ') + 'created:[* TO *] AND -deleted:true') ser = self.nav_elements.facet_range('created', start, end, gap, fq=fq) ser.index.name = 'Date' ser.name = 'Created' return ser.to_frame() def top_partitions(self, n=10): fq = 'type:PARTITION AND sourceType:HIVE AND -deleted:true' df = self.nav_elements.facet_field('parentPath', fq=fq, limit=n) df = df.rename(columns={'parentPath':'partition_count'}) if n > 0: df = df[:n] self._add_hdfs_subdir_counts(df) return df def _add_hdfs_subdir_counts(self, df): dbs = [] tables = [] for parent_path in df.index: db, table = tuple([x for x in parent_path.split('/') if len(x) > 0]) dbs.append(db) tables.append(table) df['Database'] = dbs df['Table'] = tables df['hdfs_subdir_count'] = self._get_hdfs_subdir_count(dbs, tables) return df.reset_index() def _get_hdfs_subdir_count(self, db_names, table_names): counts = [] for i in range(0, len(db_names), 30): counts.extend(self._subdir_helper(db_names[i:i+30], table_names[i:i+30])) return counts def _subdir_helper(self, db_names, table_names): clause_base = '(parentPath:\/{} AND originalName:{})' lst = [] for db_name, table_name in zip(db_names, table_names): lst.append(clause_base.format(db_name, table_name)) table_query = ('sourceType:HIVE AND type:TABLE AND (' + ' OR '.join(lst) + ')') tables = self.nav_elements.get_docs( fq=table_query, rows=len(db_names)) count_map = {} # (db, tbl) -> count for t in tables: key = (t['parentPath'][1:], t['originalName']) path = _get_file_system_path(t['fileSystemPath']) query = ('sourceType:HDFS AND type:DIRECTORY AND ' '-fileSystemPath:\{0}/*.hive-staging* AND ' 'fileSystemPath:\{0}/*').format(path) count_map[key] = self.nav_elements.get_count(query) counts = [] for db_name, table_name in zip(db_names, table_names): counts.append(count_map[(db_name, table_name)]) return counts def _make_deleteTime_query(self, l, u, incl=False, incu=True, label=None): return frange('deleteTime', l, u, incl, incu, label) def _get_file_system_path(full_path): """ hdfs://Enchilada/path -> path """ matches = PATH_PATTEN.match(full_path) return matches.group(1) class NavSolrComparator(object): def __init__(self, analyzers): self.analyzers = analyzers def summary_stats(self): return self._compare('summary_stats') def hdfs_stats(self): return self._compare('hdfs_stats').reorder_levels([1,0], 1) def count_breakdown(self): return self._compare('count_breakdown').reorder_levels([1,0], 1) def deleted_stats(self, fq=None): return self._compare('deleted_stats', fq=fq) def create_stats(self, fq=None): return self._compare('create_stats', fq=fq) def _compare(self, meth, *args, **kwds): args = list(zip(*[(getattr(a, meth)(*args, **kwds), a.name) for a in self.analyzers])) return self._concat(args[0], args[1]) def _concat(self, lst, names): return pd.concat(lst, axis=1, keys=names) def to_excel(comparator, path): writer =
pd.ExcelWriter(path)
pandas.ExcelWriter
import os import pandas as pd dir_datos_abiertos = os.path.join(os.pardir, 'datos_abiertos', '') dir_series = os.path.join(dir_datos_abiertos, 'series_de_tiempo', 'nuevos', '') dir_formato = os.path.join(dir_datos_abiertos, 'formato_especial', '') pos = (
pd.read_csv(dir_series + 'covid19_mex_confirmados.csv')
pandas.read_csv
import re import hashlib import numpy as np import pdb import pprint import uuid import os from pathlib import Path import pytest import pandas as pd from .config import TEST_DIR, TEST_H5, IRB_DIR, GET_IRB_MKDIG, irb_data, mkpy from mkpy import mkh5 @pytest.mark.parametrize("path_type", [str, Path]) @irb_data def test_irb_load_code_map_files(path_type): # h5f = IRB_DIR / "mkh5" / (uuid.uuid4().hex + ".h5") h5group = "test2" h5f = IRB_DIR / "mkh5" / (h5group + "_test_load_codemap.h5") mydat = mkh5.mkh5(h5f) mydat.reset_all() # start fresh mydat.create_mkdata(h5group, *GET_IRB_MKDIG(h5group)) # load code mappers in different formats as Path and str cm_ytbl = mkh5.CodeTagger(path_type(TEST_DIR("data/design2.ytbl"))) cm_txt = mkh5.CodeTagger(path_type(TEST_DIR("data/design2.txt"))) cm_xlsx = mkh5.CodeTagger(path_type(TEST_DIR("data/design2.xlsx"))) cm_xlsx_named_sheet = mkh5.CodeTagger( path_type(TEST_DIR("data/design2.xlsx!code_map")) ) # check for identity ... NB: nan == nan evaluates to False cms = [cm_ytbl, cm_txt, cm_xlsx, cm_xlsx_named_sheet] ncms = len(cms) for i, cm1 in enumerate(cms): for cm2 in cms[i + 1 :]: print("-" * 40) print("# ", cm1.cmf) print(cm1.code_map) for c in cm1.code_map.columns: print(c, cm1.code_map[c].dtype) print("# ", cm2.cmf) print(cm2.code_map) for c in cm1.code_map.columns: print(c, cm1.code_map[c].dtype) same = cm1.code_map == cm2.code_map # print(same) diffs = np.where(same == False) for r in range(len(diffs[0])): idx = diffs[0][r] jdx = diffs[1][r] print( "{0}[{1},{2}] --> {3}".format( cm1.cmf, idx, jdx, repr(cm1.code_map.iat[idx, jdx]) ) ) print( "{0}[{1},{2}] <-- {3}".format( cm2.cmf, idx, jdx, repr(cm2.code_map.iat[idx, jdx]) ) ) print() os.remove(h5f) @irb_data def test_irb_event_table(): subid = "test2" h5f = IRB_DIR / "mkh5" / (subid + "_event_table.h5") mydat = mkh5.mkh5(h5f) mydat.reset_all() # start fresh mydat.create_mkdata(subid, *GET_IRB_MKDIG(subid)) # mydat.create_mkdata('sub02', eeg_f, log_f, yhdr_f) # mydat.create_mkdata('sub03', eeg_f, log_f, yhdr_f) # sample code sequence pattern matches code_map_f = TEST_DIR("data/test2_items.xlsx!code_table") # Excel header slicers DEPRECATED # header_chooser_f = 'data/test2_items.xlsx!header_chooser' header_chooser_f = TEST_DIR("data/test2.yhdx") print("get_event_table() *WITHOUT* header extraction") event_table = mydat.get_event_table(code_map_f) print("get_event_table() *WITH* header extraction") event_table = mydat.get_event_table(code_map_f, header_chooser_f) # pprint.pprint(event_table) # test export event print("exporting event table") mydat.export_event_table( event_table, TEST_DIR("data/test_event_table.fthr"), format="feather" ) mydat.export_event_table( event_table, TEST_DIR("data/test_event_table.txt"), format="txt" ) # clean up os.remove(h5f) @irb_data def test_irb_event_table_b(): subid = "test2" h5f = IRB_DIR / "mkh5" / (subid + "_event_table.h5") mydat = mkh5.mkh5(h5f) mydat.reset_all() # start fresh mydat.create_mkdata(subid, *GET_IRB_MKDIG(subid)) # sample code sequence pattern matches code_map_f = TEST_DIR("data/test2b.ytbl") # Excel header slicers DEPRECATED # header_chooser_f = 'data/test2_items.xlsx!header_chooser' header_chooser_f = TEST_DIR("data/test2.yhdx") print("get_event_table() *WITHOUT* header extraction") event_table = mydat.get_event_table(code_map_f) print("get_event_table() *WITH* header extraction") event_table = mydat.get_event_table(code_map_f, header_chooser_f) # pprint.pprint(event_table) # test export event print("exporting event table") mydat.export_event_table(event_table, TEST_DIR("data/test_event_table_b.fthr")) mydat.export_event_table( event_table, TEST_DIR("data/test_event_table_b.txt"), format="txt" ) # clean up os.remove(h5f) @irb_data def test_irb_event_table_fails(): subid = "test2" h5f = IRB_DIR / "mkh5" / (subid + "_event_table.h5") mydat = mkh5.mkh5(h5f) mydat.reset_all() # start fresh mydat.create_mkdata(subid, *GET_IRB_MKDIG(subid)) # design4.ytbl is a well-formed code mapper file but no code # matches in test2.h5 try: event_table = mydat.get_event_table(TEST_DIR("data/design4.ytbl")) except Exception as err: # hard coded error message in mkh5.get_event_table if isinstance(err, RuntimeError) and "no events found" in str(err): print("Caught the no matching codes RuntimeError") else: msg = ( "\nNo codes match the pattern so the event table is empty, " "expected a RuntimeError instead of this:\n" ) raise RuntimeError(msg + str(err)) os.remove(h5f) @pytest.mark.parametrize("sheet", ["Sheet1", "Sheet2"]) def test_non_unique_event_table_index(sheet): """test xlsx codemap with non-unique index values, with and without ccode""" # name and reset the .h5 file sid = "sub000" eeg_f = TEST_DIR("data/sub000wr.crw") log_f = TEST_DIR("data/sub000wr.log") yhdr_f = TEST_DIR("data/sub000wr.yhdr") yhdx_f = TEST_DIR("data/wr.yhdx") cal_eeg_f = TEST_DIR("data/sub000c.crw") cal_log_f = TEST_DIR("data/sub000c.log") cal_yhdr_f = TEST_DIR("data/sub000c.yhdr") myh5 = mkh5.mkh5(TEST_H5) myh5.reset_all() # load in subject and cals myh5.create_mkdata(sid, eeg_f, log_f, yhdr_f) myh5.append_mkdata(sid, cal_eeg_f, cal_log_f, cal_yhdr_f) # calibrate data pts, pulse, lo, hi, ccode = 5, 10, -40, 40, 0 myh5.calibrate_mkdata( sid, # specific data group n_points=pts, # pts to average cal_size=pulse, # uV lo_cursor=lo, # lo_cursor ms hi_cursor=hi, # hi_cursor ms cal_ccode=ccode, ) # condition code # ----------------------------------------------------- # check the event code table specs # ----------------------------------------------------- code_map_f = TEST_DIR(f"data/wr_code_map.xlsx!{sheet}") event_table = myh5.get_event_table(code_map_f, yhdx_f) # use column Index to index the frame for these tests event_table.set_index("Index", inplace=True) # events: 209 cals, 144 block 1 words, 144 block 2 words events = { "Sheet1": { "shape": (288, 34), # no ccode column "idx_n": 144, # no cals, 144 unique words "word_lags_1": ["unique", "none"], "word_lags_2_3": ["short", "long"], }, # Sheet2 has ccode column for bdf compatibility test "Sheet2": { "shape": (497, 35), # 34 + ccode column "idx_n": 145, "ccodes_n": (209, 0, 144, 144), # ccode 0, 1, 2, 3 "word_lags_1": ["cal", "unique", "none"], "word_lags_2_3": ["cal", "short", "long"], }, } idxs = event_table.index.unique() assert event_table.shape == events[sheet]["shape"] assert len(idxs) == events[sheet]["idx_n"] # count the ccodes, if any if "ccodes_n" in events[sheet].keys(): for code, n_codes in enumerate(events[sheet]["ccodes_n"]): assert len(event_table.query("ccode == @code")) == n_codes for idx in idxs: row_slice = event_table.loc[idx] # widen long format series to 1-row dataframe if isinstance(row_slice, pd.Series): row_slice = pd.DataFrame(row_slice).T # check the anchor for idx, row in row_slice.iterrows(): assert row["anchor_code"] == row["log_evcodes"] # spot check the word_lag rows if len(row_slice) == 1: assert row_slice["word_lag"].unique() in events[sheet]["word_lags_1"] elif len(row_slice) in [2, 3]: # duplicate indices, multiple rows match, make sure the # the right values come back assert row_slice["word_lag"].unique() in events[sheet]["word_lags_2_3"] elif len(row_slice) == 209: assert row_slice["word_lag"].unique()[0] == "cal" else: print("{0}".format(row_slice)) raise ValueError("something wrong with word rep event table") os.remove(TEST_H5) @pytest.mark.parametrize("codemap", ["no_ccode", "with_ccode"]) def test_p3_yaml_codemap_ccode(codemap): """test YAML codemaps with and without ccode""" # name and reset the .h5 file sid = "sub000" eeg_f = TEST_DIR("data/sub000p3.crw") log_f = TEST_DIR("data/sub000p3.x.log") yhdr_f = TEST_DIR("data/sub000p3.yhdr") # yhdx_f = TEST_DIR("data/wr.yhdx") cal_eeg_f = TEST_DIR("data/sub000c.crw") cal_log_f = TEST_DIR("data/sub000c.log") cal_yhdr_f = TEST_DIR("data/sub000c.yhdr") myh5 = mkh5.mkh5(TEST_H5) myh5.reset_all() # load in subject and cals myh5.create_mkdata(sid, eeg_f, log_f, yhdr_f) myh5.append_mkdata(sid, cal_eeg_f, cal_log_f, cal_yhdr_f) # calibrate data pts, pulse, lo, hi, ccode = 5, 10, -40, 40, 0 myh5.calibrate_mkdata( sid, # specific data group n_points=pts, # pts to average cal_size=pulse, # uV lo_cursor=lo, # lo_cursor ms hi_cursor=hi, # hi_cursor ms cal_ccode=ccode, ) # condition code # ------------------------------------------------------------ # Fetch and check events for codemaps with and without ccode # ------------------------------------------------------------ events = { "no_ccode": { "event_shape": (492, 30), "ytbl": TEST_DIR("data/sub000p3_codemap.ytbl"), "bindesc_f": TEST_DIR("data/sub000p3_bindesc.txt"), "sha256": "8a8a156ccc532a5b8b9a3b606ba628fab2f3fc9f04bbb2e115c9206c42def9ba", }, "with_ccode": { "event_shape": (701, 30), "ytbl": TEST_DIR("data/sub000p3_codemap_ccode.ytbl"), "bindesc_f": TEST_DIR("data/sub000p3_ccode_bindesc.txt"), "sha256": "fddb3e8d02f90fc3ab68383cfa8996d55fc342d2151e17d62e80bf10874ea4b7", }, } ytbl = events[codemap]["ytbl"] event_table = myh5.get_event_table(ytbl).query("is_anchor == True") assert event_table.shape == events[codemap]["event_shape"] print(f"{ytbl} event_table {event_table.shape}") counts = pd.crosstab(event_table.bin, [event_table.log_flags > 0], margins=True) counts.columns = [str(col) for col in counts.columns] coi = ["regexp", "bin", "tone", "stim", "accuracy", "acc_type"] bin_desc = ( event_table[coi] .drop_duplicates() .sort_values("bin") .join(counts, on="bin") .reset_index() ) bindesc_f = events[codemap]["bindesc_f"] # use this to rebuild the gold standard file in event of a change # bin_desc.to_csv(events[codemap]["bindesc_f"], sep="\t", index=False) with open(bindesc_f, "rb") as bd: sha256 = hashlib.sha256(bd.read()).hexdigest() assert sha256 == events[codemap]["sha256"] assert all(bin_desc ==
pd.read_csv(bindesc_f, sep="\t")
pandas.read_csv
import datetime import string from collections import namedtuple from distutils.version import LooseVersion from random import choices from typing import Optional, Type import numpy as np import pandas as pd import pyarrow as pa import pytest from pandas.tests.extension.base import ( BaseArithmeticOpsTests, BaseBooleanReduceTests, BaseCastingTests, BaseComparisonOpsTests, BaseConstructorsTests, BaseDtypeTests, BaseGetitemTests, BaseGroupbyTests, BaseInterfaceTests, BaseMethodsTests, BaseMissingTests, BaseNoReduceTests, BaseNumericReduceTests, BaseParsingTests, BasePrintingTests, BaseReshapingTests, BaseSetitemTests, ) from fletcher import FletcherBaseDtype if LooseVersion(pd.__version__) >= "0.25.0": # imports of pytest fixtures needed for derived unittest classes from pandas.tests.extension.conftest import ( # noqa: F401 as_array, # noqa: F401 use_numpy, # noqa: F401 groupby_apply_op, # noqa: F401 as_frame, # noqa: F401 as_series, # noqa: F401 ) PANDAS_GE_1_1_0 = LooseVersion(pd.__version__) >= "1.1.0" FletcherTestType = namedtuple( "FletcherTestType", [ "dtype", "data", "data_missing", "data_for_grouping", "data_for_sorting", "data_missing_for_sorting", "data_repeated", ], ) def is_arithmetic_type(arrow_dtype: pa.DataType) -> bool: """Check whether this is a type that support arithmetics.""" return ( pa.types.is_integer(arrow_dtype) or pa.types.is_floating(arrow_dtype) or pa.types.is_decimal(arrow_dtype) ) skip_non_artithmetic_type = pytest.mark.skip_by_type_filter( [lambda x: not is_arithmetic_type(x)] ) xfail_list_scalar_constuctor_not_implemented = pytest.mark.xfail_by_type_filter( [pa.types.is_list], "constructor from scalars is not implemented for lists" ) xfail_list_equals_not_implemented = pytest.mark.xfail_by_type_filter( [pa.types.is_list], "== is not implemented for lists" ) xfail_list_setitem_not_implemented = pytest.mark.xfail_by_type_filter( [pa.types.is_list], "__setitem__ is not implemented for lists" ) xfail_missing_list_dict_encode = pytest.mark.xfail_by_type_filter( [pa.types.is_list], "ArrowNotImplementedError: dictionary-encode not implemented for list<item: string>", ) xfail_bool_too_few_uniques = pytest.mark.xfail_by_type_filter( [pa.types.is_boolean], "Test requires at least 3 unique values" ) test_types = [ FletcherTestType( pa.string(), ["🙈", "Ö", "Č", "a", "B"] * 20, [None, "A"], ["B", "B", None, None, "A", "A", "B", "C"], ["B", "C", "A"], ["B", None, "A"], lambda: choices(list(string.ascii_letters), k=10), ), FletcherTestType( pa.bool_(), [True, False, True, True, False] * 20, [None, False], [True, True, None, None, False, False, True, False], [True, False, False], [True, None, False], lambda: choices([True, False], k=10), ), FletcherTestType( pa.int8(), # Use small values here so that np.prod stays in int32 [2, 1, 1, 2, 1] * 20, [None, 1], [2, 2, None, None, -100, -100, 2, 100], [2, 100, -10], [2, None, -10], lambda: choices(list(range(100)), k=10), ), FletcherTestType( pa.int16(), # Use small values here so that np.prod stays in int32 [2, 1, 3, 2, 1] * 20, [None, 1], [2, 2, None, None, -100, -100, 2, 100], [2, 100, -10], [2, None, -10], lambda: choices(list(range(100)), k=10), ), FletcherTestType( pa.int32(), # Use small values here so that np.prod stays in int32 [2, 1, 3, 2, 1] * 20, [None, 1], [2, 2, None, None, -100, -100, 2, 100], [2, 100, -10], [2, None, -10], lambda: choices(list(range(100)), k=10), ), FletcherTestType( pa.int64(), # Use small values here so that np.prod stays in int64 [2, 1, 3, 2, 1] * 20, [None, 1], [2, 2, None, None, -100, -100, 2, 100], [2, 100, -10], [2, None, -10], lambda: choices(list(range(100)), k=10), ), FletcherTestType( pa.float64(), [2, 1.0, 1.0, 5.5, 6.6] * 20, [None, 1.1], [2.5, 2.5, None, None, -100.1, -100.1, 2.5, 100.1], [2.5, 100.99, -10.1], [2.5, None, -10.1], lambda: choices([2.5, 1.0, -1.0, 0, 66.6], k=10), ), # Most of the tests fail as assert_extension_array_equal casts to numpy object # arrays and on them equality is not defined. pytest.param( FletcherTestType( pa.list_(pa.string()), [["B", "C"], ["A"], [None], ["A", "A"], []] * 20, [None, ["A"]], [["B"], ["B"], None, None, ["A"], ["A"], ["B"], ["C"]], [["B"], ["C"], ["A"]], [["B"], None, ["A"]], lambda: choices([["B", "C"], ["A"], [None], ["A", "A"]], k=10), ) ), FletcherTestType( pa.date64(), [ datetime.date(2015, 1, 1), datetime.date(2010, 12, 31), datetime.date(1970, 1, 1), datetime.date(1900, 3, 31), datetime.date(1999, 12, 31), ] * 20, [None, datetime.date(2015, 1, 1)], [ datetime.date(2015, 2, 2), datetime.date(2015, 2, 2), None, None, datetime.date(2015, 1, 1), datetime.date(2015, 1, 1), datetime.date(2015, 2, 2), datetime.date(2015, 3, 3), ], [ datetime.date(2015, 2, 2), datetime.date(2015, 3, 3), datetime.date(2015, 1, 1), ], [datetime.date(2015, 2, 2), None, datetime.date(2015, 1, 1)], lambda: choices(list(pd.date_range("2010-1-1", "2011-1-1").date), k=10), ), ] @pytest.fixture(params=[True, False]) def box_in_series(request): """Whether to box the data in a Series.""" return request.param @pytest.fixture(params=test_types) def fletcher_type(request): return request.param @pytest.fixture(autouse=True) def skip_by_type_filter(request, fletcher_type): if request.node.get_closest_marker("skip_by_type_filter"): for marker in request.node.iter_markers("skip_by_type_filter"): for func in marker.args[0]: if func(fletcher_type.dtype): pytest.skip(f"skipped for type: {fletcher_type}") @pytest.fixture(autouse=True) def xfail_by_type_filter(request, fletcher_type): if request.node.get_closest_marker("xfail_by_type_filter"): for marker in request.node.iter_markers("xfail_by_type_filter"): for func in marker.args[0]: if func(fletcher_type.dtype): pytest.xfail(f"XFAIL for type: {fletcher_type}") @pytest.fixture def dtype(fletcher_type, fletcher_dtype): return fletcher_dtype(fletcher_type.dtype) @pytest.fixture def data(fletcher_type, fletcher_array): return fletcher_array(fletcher_type.data, dtype=fletcher_type.dtype) @pytest.fixture def data_for_twos(dtype, fletcher_type, fletcher_array): if dtype._is_numeric: return fletcher_array([2] * 100, dtype=fletcher_type.dtype) else: return None @pytest.fixture def data_missing(fletcher_type, fletcher_array): return fletcher_array(fletcher_type.data_missing, dtype=fletcher_type.dtype) @pytest.fixture def data_repeated(fletcher_type, fletcher_array): """Return different versions of data for count times.""" pass # noqa def gen(count): for _ in range(count): yield fletcher_array( fletcher_type.data_repeated(), dtype=fletcher_type.dtype ) yield gen @pytest.fixture def data_for_grouping(fletcher_type, fletcher_array): """Fixture with data for factorization, grouping, and unique tests. Expected to be like [B, B, NA, NA, A, A, B, C] Where A < B < C and NA is missing """ return fletcher_array(fletcher_type.data_for_grouping, dtype=fletcher_type.dtype) @pytest.fixture def data_for_sorting(fletcher_type, fletcher_array): """Length-3 array with a known sort order. This should be three items [B, C, A] with A < B < C """ return fletcher_array(fletcher_type.data_for_sorting, dtype=fletcher_type.dtype) @pytest.fixture def data_missing_for_sorting(fletcher_type, fletcher_array): """Length-3 array with a known sort order. This should be three items [B, NA, A] with A < B and NA missing. """ return fletcher_array( fletcher_type.data_missing_for_sorting, dtype=fletcher_type.dtype ) @pytest.fixture(params=[None, lambda x: x]) def sort_by_key(request): """ Return a simple fixture for festing keys in sorting methods. Tests None (no key) and the identity key. """ return request.param class TestBaseCasting(BaseCastingTests): pass class TestBaseConstructors(BaseConstructorsTests): def test_from_dtype(self, data): if pa.types.is_string(data.dtype.arrow_dtype): pytest.xfail( "String construction is failing as Pandas wants to pass the FletcherChunkedDtype to NumPy" ) BaseConstructorsTests.test_from_dtype(self, data) @xfail_list_scalar_constuctor_not_implemented def test_series_constructor_scalar_with_index(self, data, dtype): if PANDAS_GE_1_1_0: BaseConstructorsTests.test_series_constructor_scalar_with_index( self, data, dtype ) class TestBaseDtype(BaseDtypeTests): pass class TestBaseGetitemTests(BaseGetitemTests): def test_loc_iloc_frame_single_dtype(self, data): if pa.types.is_string(data.dtype.arrow_dtype): pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/27673" ) else: BaseGetitemTests.test_loc_iloc_frame_single_dtype(self, data) class TestBaseGroupbyTests(BaseGroupbyTests): @xfail_bool_too_few_uniques @xfail_missing_list_dict_encode @pytest.mark.parametrize("as_index", [True, False]) def test_groupby_extension_agg(self, as_index, data_for_grouping): BaseGroupbyTests.test_groupby_extension_agg(self, as_index, data_for_grouping) @xfail_bool_too_few_uniques @xfail_missing_list_dict_encode def test_groupby_extension_no_sort(self, data_for_grouping): BaseGroupbyTests.test_groupby_extension_no_sort(self, data_for_grouping) @xfail_missing_list_dict_encode def test_groupby_extension_transform(self, data_for_grouping): if pa.types.is_boolean(data_for_grouping.dtype.arrow_dtype): valid = data_for_grouping[~data_for_grouping.isna()] df = pd.DataFrame({"A": [1, 1, 3, 3, 1, 4], "B": valid}) result = df.groupby("B").A.transform(len) # Expected grouping is different as we only have two non-null values expected = pd.Series([3, 3, 3, 3, 3, 3], name="A") self.assert_series_equal(result, expected) else: BaseGroupbyTests.test_groupby_extension_transform(self, data_for_grouping) @xfail_missing_list_dict_encode def test_groupby_extension_apply( self, data_for_grouping, groupby_apply_op # noqa: F811 ): BaseGroupbyTests.test_groupby_extension_apply( self, data_for_grouping, groupby_apply_op ) class TestBaseInterfaceTests(BaseInterfaceTests): @pytest.mark.xfail( reason="view or self[:] returns a shallow copy in-place edits are not backpropagated" ) def test_view(self, data): BaseInterfaceTests.test_view(self, data) def test_array_interface(self, data): if pa.types.is_list(data.dtype.arrow_dtype): pytest.xfail("Not sure whether this test really holds for list") else: BaseInterfaceTests.test_array_interface(self, data) @xfail_list_setitem_not_implemented def test_copy(self, data): BaseInterfaceTests.test_array_interface(self, data) class TestBaseMethodsTests(BaseMethodsTests): # https://github.com/pandas-dev/pandas/issues/22843 @pytest.mark.skip(reason="Incorrect expected") @pytest.mark.parametrize("dropna", [True, False]) def test_value_counts(self, all_data, dropna, dtype): pass @xfail_list_equals_not_implemented @pytest.mark.parametrize("box", [pd.array, pd.Series, pd.DataFrame]) def test_equals(self, data, na_value, as_series, box): # noqa: F811 if PANDAS_GE_1_1_0: BaseMethodsTests.test_equals(self, data, na_value, as_series, box) @xfail_missing_list_dict_encode def test_value_counts_with_normalize(self, data): if PANDAS_GE_1_1_0: BaseMethodsTests.test_value_counts_with_normalize(self, data) def test_combine_le(self, data_repeated): # GH 20825 # Test that combine works when doing a <= (le) comparison # Fletcher returns 'fletcher_chunked[bool]' instead of np.bool as dtype orig_data1, orig_data2 = data_repeated(2) if pa.types.is_list(orig_data1.dtype.arrow_dtype): return pytest.skip("__le__ not implemented for list scalars with None") s1 = pd.Series(orig_data1) s2 = pd.Series(orig_data2) result = s1.combine(s2, lambda x1, x2: x1 <= x2) expected = pd.Series( orig_data1._from_sequence( [a <= b for (a, b) in zip(list(orig_data1), list(orig_data2))] ) ) self.assert_series_equal(result, expected) val = s1.iloc[0] result = s1.combine(val, lambda x1, x2: x1 <= x2) expected = pd.Series( orig_data1._from_sequence([a <= val for a in list(orig_data1)]) ) self.assert_series_equal(result, expected) def test_combine_add(self, data_repeated, dtype): if dtype.name in [ "fletcher_chunked[date64[ms]]", "fletcher_continuous[date64[ms]]", ]: pytest.skip( "unsupported operand type(s) for +: 'datetime.date' and 'datetime.date" ) else: BaseMethodsTests.test_combine_add(self, data_repeated) @xfail_bool_too_few_uniques def test_argsort(self, data_for_sorting): BaseMethodsTests.test_argsort(self, data_for_sorting) @xfail_bool_too_few_uniques def test_argmin_argmax(self, data_for_sorting, data_missing_for_sorting, na_value): if PANDAS_GE_1_1_0: BaseMethodsTests.test_argmin_argmax( self, data_for_sorting, data_missing_for_sorting, na_value ) else: pass @pytest.mark.parametrize("ascending", [True, False]) @xfail_bool_too_few_uniques def test_sort_values(self, data_for_sorting, ascending, sort_by_key): if PANDAS_GE_1_1_0: BaseMethodsTests.test_sort_values( self, data_for_sorting, ascending, sort_by_key ) else: BaseMethodsTests.test_sort_values(self, data_for_sorting, ascending) @pytest.mark.parametrize("na_sentinel", [-1, -2]) @xfail_bool_too_few_uniques @xfail_missing_list_dict_encode def test_factorize(self, data_for_grouping, na_sentinel): BaseMethodsTests.test_factorize(self, data_for_grouping, na_sentinel) @pytest.mark.parametrize("na_sentinel", [-1, -2]) @xfail_bool_too_few_uniques @xfail_missing_list_dict_encode def test_factorize_equivalence(self, data_for_grouping, na_sentinel): BaseMethodsTests.test_factorize_equivalence( self, data_for_grouping, na_sentinel ) @pytest.mark.parametrize("ascending", [True, False]) @xfail_missing_list_dict_encode def test_sort_values_frame(self, data_for_sorting, ascending): BaseMethodsTests.test_sort_values_frame(self, data_for_sorting, ascending) @xfail_bool_too_few_uniques def test_searchsorted(self, data_for_sorting, as_series): # noqa: F811 BaseMethodsTests.test_searchsorted(self, data_for_sorting, as_series) @pytest.mark.parametrize("box", [pd.Series, lambda x: x]) @pytest.mark.parametrize("method", [lambda x: x.unique(), pd.unique]) @xfail_missing_list_dict_encode def test_unique(self, data, box, method): BaseMethodsTests.test_unique(self, data, box, method) @xfail_missing_list_dict_encode def test_factorize_empty(self, data): BaseMethodsTests.test_factorize_empty(self, data) def test_fillna_copy_frame(self, data_missing): if pa.types.is_list(data_missing.dtype.arrow_dtype): pytest.xfail("pandas' fillna cannot cope with lists as a scalar") else: BaseMethodsTests.test_fillna_copy_frame(self, data_missing) def test_fillna_copy_series(self, data_missing): if pa.types.is_list(data_missing.dtype.arrow_dtype): pytest.xfail("pandas' fillna cannot cope with lists as a scalar") else: BaseMethodsTests.test_fillna_copy_series(self, data_missing) @xfail_list_setitem_not_implemented def test_combine_first(self, data): BaseMethodsTests.test_combine_first(self, data) @xfail_list_setitem_not_implemented def test_shift_0_periods(self, data): if PANDAS_GE_1_1_0: BaseMethodsTests.test_shift_0_periods(self, data) def test_shift_fill_value(self, data): if pa.types.is_list(data.dtype.arrow_dtype): pytest.xfail("pandas' isna cannot cope with lists") else: BaseMethodsTests.test_shift_fill_value(self, data) def test_hash_pandas_object_works(self, data, as_frame): # noqa: F811 if pa.types.is_list(data.dtype.arrow_dtype): pytest.xfail("Fails on hashing ndarrays") else: BaseMethodsTests.test_hash_pandas_object_works(self, data, as_frame) @xfail_list_setitem_not_implemented def test_where_series(self, data, na_value, as_frame): # noqa: F811 BaseMethodsTests.test_where_series(self, data, na_value, as_frame) class TestBaseMissingTests(BaseMissingTests): @pytest.mark.parametrize("method", ["ffill", "bfill"]) def test_fillna_series_method(self, data_missing, method): BaseMissingTests.test_fillna_series_method(self, data_missing, method) def test_fillna_frame(self, data_missing): if pa.types.is_list(data_missing.dtype.arrow_dtype): pytest.xfail("pandas' fillna cannot cope with lists as a scalar") else: BaseMissingTests.test_fillna_frame(self, data_missing) def test_fillna_scalar(self, data_missing): if pa.types.is_list(data_missing.dtype.arrow_dtype): pytest.xfail("pandas' fillna cannot cope with lists as a scalar") else: BaseMissingTests.test_fillna_scalar(self, data_missing) def test_fillna_series(self, data_missing): if pa.types.is_list(data_missing.dtype.arrow_dtype): pytest.xfail("pandas' fillna cannot cope with lists as a scalar") else: BaseMissingTests.test_fillna_series(self, data_missing) class TestBaseReshapingTests(BaseReshapingTests): def test_concat_mixed_dtypes(self, data, dtype): arrow_dtype = data.dtype.arrow_dtype if ( pa.types.is_integer(arrow_dtype) or pa.types.is_floating(arrow_dtype) or pa.types.is_boolean(arrow_dtype) ): # https://github.com/pandas-dev/pandas/issues/21792 pytest.skip("pd.concat(int64, fletcher_chunked[int64] yields int64") elif pa.types.is_temporal(arrow_dtype): # https://github.com/pandas-dev/pandas/issues/33331 pytest.xfail("pd.concat(temporal, categorical) mangles dates") else: BaseReshapingTests.test_concat_mixed_dtypes(self, data) def test_merge_on_extension_array(self, data): if pa.types.is_list(data.dtype.arrow_dtype): pytest.xfail("pandas tries to hash scalar lists") else: BaseReshapingTests.test_merge_on_extension_array(self, data) def test_merge_on_extension_array_duplicates(self, data): if pa.types.is_list(data.dtype.arrow_dtype): pytest.xfail("pandas tries to hash scalar lists") else: BaseReshapingTests.test_merge_on_extension_array_duplicates(self, data) @xfail_list_setitem_not_implemented def test_ravel(self, data): BaseReshapingTests.test_ravel(self, data) class TestBaseSetitemTests(BaseSetitemTests): @xfail_list_setitem_not_implemented def test_setitem_scalar_series(self, data, box_in_series): BaseSetitemTests.test_setitem_scalar_series(self, data, box_in_series) @xfail_list_setitem_not_implemented def test_setitem_sequence(self, data, box_in_series): BaseSetitemTests.test_setitem_sequence(self, data, box_in_series) @xfail_list_setitem_not_implemented def test_setitem_empty_indxer(self, data, box_in_series): BaseSetitemTests.test_setitem_empty_indxer(self, data, box_in_series) @xfail_list_setitem_not_implemented def test_setitem_sequence_broadcasts(self, data, box_in_series): BaseSetitemTests.test_setitem_sequence_broadcasts(self, data, box_in_series) @pytest.mark.parametrize("setter", ["loc", "iloc"]) @xfail_list_setitem_not_implemented def test_setitem_scalar(self, data, setter): BaseSetitemTests.test_setitem_scalar(self, data, setter) @xfail_list_setitem_not_implemented def test_setitem_loc_scalar_mixed(self, data):
BaseSetitemTests.test_setitem_loc_scalar_mixed(self, data)
pandas.tests.extension.base.BaseSetitemTests.test_setitem_loc_scalar_mixed
import numpy as np import pytest import pandas as pd from pandas import ( CategoricalIndex, Index, Series, ) import pandas._testing as tm class TestMap: @pytest.mark.parametrize( "data, categories", [ (list("abcbca"), list("cab")), (pd.interval_range(0, 3).repeat(3), pd.interval_range(0, 3)), ], ids=["string", "interval"], ) def test_map_str(self, data, categories, ordered): # GH 31202 - override base class since we want to maintain categorical/ordered index = CategoricalIndex(data, categories=categories, ordered=ordered) result = index.map(str) expected = CategoricalIndex( map(str, data), categories=map(str, categories), ordered=ordered ) tm.assert_index_equal(result, expected) def test_map(self): ci = CategoricalIndex(list("ABABC"), categories=list("CBA"), ordered=True) result = ci.map(lambda x: x.lower()) exp = CategoricalIndex(list("ababc"), categories=list("cba"), ordered=True) tm.assert_index_equal(result, exp) ci = CategoricalIndex( list("ABABC"), categories=list("BAC"), ordered=False, name="XXX" ) result = ci.map(lambda x: x.lower()) exp = CategoricalIndex( list("ababc"), categories=list("bac"), ordered=False, name="XXX" ) tm.assert_index_equal(result, exp) # GH 12766: Return an index not an array tm.assert_index_equal( ci.map(lambda x: 1), Index(np.array([1] * 5, dtype=np.int64), name="XXX") ) # change categories dtype ci = CategoricalIndex(list("ABABC"), categories=list("BAC"), ordered=False) def f(x): return {"A": 10, "B": 20, "C": 30}.get(x) result = ci.map(f) exp = CategoricalIndex( [10, 20, 10, 20, 30], categories=[20, 10, 30], ordered=False ) tm.assert_index_equal(result, exp) result = ci.map(Series([10, 20, 30], index=["A", "B", "C"])) tm.assert_index_equal(result, exp) result = ci.map({"A": 10, "B": 20, "C": 30})
tm.assert_index_equal(result, exp)
pandas._testing.assert_index_equal
import os import sys import gpflow import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn from sklearn import svm from sklearn import metrics from fffit.utils import ( shuffle_and_split, values_scaled_to_real, values_real_to_scaled, ) from fffit.models import run_gpflow_scipy from fffit.pareto import find_pareto_set, is_pareto_efficient sys.path.append("../") from utils.ap import AP from utils.prepare_samples import prepare_df ############################# QUANTITIES TO EDIT ############################# ############################################################################## iternum = 3 gp_shuffle_seed = 588654 clf_shuffle_seed = 19485 distance_seed = 15 ############################################################################## ############################################################################## temperatures = [10, 78, 298] ucmd_clf_threshold = 0.8 ucmd_next_itr_threshold = 0.2 lattice_mape_next_itr_threshold = 1.5 symm_clf_threshold = 0.001 csv_path = "/scratch365/bbefort/ap-fffit/ap-fffit/analysis/csv/" in_csv_names = [ "uc-lattice-iter" + str(i) + "-results.csv" for i in range(1, iternum+1) ] out_csv_name = "uc-lattice-iter" + str(iternum+1) + "-params.csv" # Read files df_csvs = [ pd.read_csv(csv_path + in_csv_name, index_col=0) for in_csv_name in in_csv_names ] df_csv =
pd.concat(df_csvs)
pandas.concat
# import libraries import pandas as pd from sqlalchemy import create_engine import sys def load_data(messages_filepath, categories_filepath): """ load two datasets from each filepath Input: two filepaths Output: merged dataframe of both datasets """ # load both dfs messages = pd.read_csv(messages_filepath) categories = pd.read_csv(categories_filepath) # merge dfs df = pd.merge(messages, categories, how='inner') return df def clean_data(df): """ cleans dataframe """ # split categories column into separate columns categories = df['categories'].str.split(';', expand=True) # select the first row of the categories dataframe row = categories.iloc[0, :] # use this row to extract a list of new column names for categories category_colnames = row.apply(lambda x: x[:-2]) # rename the columns of `categories` categories.columns = category_colnames # convert dataframe to string type categories.astype(str) # set each value to be the last character of the string and convert it to numeric for column in categories: categories[column] = categories[column].apply(lambda x:
pd.to_numeric(x[-1])
pandas.to_numeric
# Import the needed libraries import sys import numpy as np from tensorflow.python.training.gradient_descent import GradientDescentOptimizer import pandas as pd import tensorflow as tf #print("hello") train = pd.read_csv("../DataSet/trainingWithSolution.csv") train = train.drop("solution", axis=1) lables = train.columns.values alarm = lables[-1] # TRAIN DATASET Xtrain = train.drop(lables[-1], axis=1) # Encode target values into binary ('one-hot' style) representation ytrain =
pd.get_dummies(train.iloc[:,-1])
pandas.get_dummies
# coding=utf-8 import numpy as np from pandas import (DataFrame, date_range, Timestamp, Series, to_datetime) import pandas.util.testing as tm from .common import TestData class TestFrameAsof(TestData): def setup_method(self, method): self.N = N = 50 self.rng = date_range('1/1/1990', periods=N, freq='53s') self.df = DataFrame({'A': np.arange(N), 'B': np.arange(N)}, index=self.rng) def test_basic(self): df = self.df.copy() df.loc[15:30, 'A'] = np.nan dates = date_range('1/1/1990', periods=self.N * 3, freq='25s') result = df.asof(dates) assert result.notnull().all(1).all() lb = df.index[14] ub = df.index[30] dates = list(dates) result = df.asof(dates) assert result.notnull().all(1).all() mask = (result.index >= lb) & (result.index < ub) rs = result[mask] assert (rs == 14).all(1).all() def test_subset(self): N = 10 rng = date_range('1/1/1990', periods=N, freq='53s') df = DataFrame({'A': np.arange(N), 'B': np.arange(N)}, index=rng) df.loc[4:8, 'A'] = np.nan dates = date_range('1/1/1990', periods=N * 3, freq='25s') # with a subset of A should be the same result = df.asof(dates, subset='A') expected = df.asof(dates) tm.assert_frame_equal(result, expected) # same with A/B result = df.asof(dates, subset=['A', 'B']) expected = df.asof(dates) tm.assert_frame_equal(result, expected) # B gives self.df.asof result = df.asof(dates, subset='B') expected = df.resample('25s', closed='right').ffill().reindex(dates) expected.iloc[20:] = 9 tm.assert_frame_equal(result, expected) def test_missing(self): # GH 15118 # no match found - `where` value before earliest date in index N = 10 rng = date_range('1/1/1990', periods=N, freq='53s') df = DataFrame({'A': np.arange(N), 'B': np.arange(N)}, index=rng) result = df.asof('1989-12-31') expected = Series(index=['A', 'B'], name=Timestamp('1989-12-31')) tm.assert_series_equal(result, expected) result = df.asof(to_datetime(['1989-12-31'])) expected = DataFrame(index=to_datetime(['1989-12-31']), columns=['A', 'B'], dtype='float64') tm.assert_frame_equal(result, expected) def test_all_nans(self): # GH 15713 # DataFrame is all nans result = DataFrame([np.nan]).asof([0]) expected = DataFrame([np.nan]) tm.assert_frame_equal(result, expected) # testing non-default indexes, multiple inputs dates = date_range('1/1/1990', periods=self.N * 3, freq='25s') result = DataFrame(np.nan, index=self.rng, columns=['A']).asof(dates) expected = DataFrame(np.nan, index=dates, columns=['A']) tm.assert_frame_equal(result, expected) # testing multiple columns dates = date_range('1/1/1990', periods=self.N * 3, freq='25s') result = DataFrame(np.nan, index=self.rng, columns=['A', 'B', 'C']).asof(dates) expected = DataFrame(np.nan, index=dates, columns=['A', 'B', 'C']) tm.assert_frame_equal(result, expected) # testing scalar input result = DataFrame(np.nan, index=[1, 2], columns=['A', 'B']).asof([3]) expected =
DataFrame(np.nan, index=[3], columns=['A', 'B'])
pandas.DataFrame
""" Module for building a complete daily dataset from ivolatility's raw iv options data. """ from io import BytesIO from zipfile import ZipFile import numpy as np import pandas as pd import requests from click import progressbar from logbook import Logger from six import iteritems from six.moves.urllib.parse import urlencode from zipline.data.bundles.core import most_recent_data from . import core as bundles log = Logger(__name__) ONE_MEGABYTE = 1024 * 1024 # rut eod data 2006-07-28 to 2014-09-04 IVOLATILITY_DATA_URL = "https://www.dropbox.com/s/w59tcq8jc02w0vp/rut-eod-20060728-20140904.zip?" # rut eod data 2000-11-01 to 2020-05-19 # IVOLATILITY_DATA_URL = "https://www.dropbox.com/s/494wx0vum1y0vx1/rut-eod.zip?" # rut 1545 snapshot data 2003-09-18 to 2020-05-19 # IVOLATILITY_DATA_URL = "https://www.dropbox.com/s/e70501splbwsomt/rut-1545.zip?" def format_metadata_url(api_key): """ Build the query URL for Quandl WIKI Prices metadata. """ query_params = [("api_key", api_key), ("dl", 1)] return IVOLATILITY_DATA_URL + urlencode(query_params) def load_data_table(file, index_col, show_progress=False): """ Load data table from CSV file provided by ivolatility. """ with ZipFile(file) as zip_file: data_tables = [] file_names = [x for x in zip_file.namelist() if not x.startswith("__")] assert len(file_names) > 1, "Expected at least one file from iVolatility." for data_file in file_names: with zip_file.open(data_file) as table_file: if show_progress: log.info(f"Parsing raw data from {table_file.name}.") data_table = pd.read_csv( table_file, parse_dates=["date", "option_expiration"], index_col=index_col, usecols=[ "date", "symbol", # -> root_symbol "exchange", "company_name", # -> asset_name "stock_price_close", # -> adjusted_underlying_close "option_symbol", "option_expiration", # -> expiration_date "strike", # -> strike_price "call_put", # -> option_type "style", # "open", # "high", # "low", # "close", "bid", "ask", "mean_price", # -> mid # "settlement", "iv", # -> implied_volatility "volume", "open_interest", "stock_price_for_iv", # -> unadjusted_underlying_close # "forward_price", # "isinterpolated", "delta", "vega", "gamma", "theta", "rho", ], ) data_table.rename( columns={ "symbol": "root_symbol", "company_name": "asset_name", "stock_price_close": "adjusted_underlying_close", "option_symbol": "symbol", "option_expiration": "expiration_date", "strike": "strike_price", "call_put": "option_type", "mean_price": "mid", "iv": "implied_volatility", "stock_price_for_iv": "unadjusted_underlying_close", }, inplace=True, copy=False, ) data_tables.append(data_table) return pd.concat(data_tables) def fetch_data_table(api_key, show_progress, retries): """ Fetch price data table from ivolatility """ for _ in range(retries): try: if show_progress: log.info("Downloading metadata.") table_url = format_metadata_url(api_key) if show_progress: raw_file = download_with_progress( table_url, chunk_size=ONE_MEGABYTE, label="Downloading option price table from ivolatility", ) else: raw_file = download_without_progress(table_url) return load_data_table( file=raw_file, index_col=None, show_progress=show_progress ) except Exception: log.exception("Exception raised reading ivolatility data. Retrying.") else: raise ValueError( "Failed to download ivolatility data after %d attempts." % (retries) ) def gen_root_symbols(data, show_progress): if show_progress: log.info("Generating asset root symbols.") data = data.groupby(by="root_symbol").agg({"exchange": "first"}) data.reset_index(inplace=True) return data def gen_asset_metadata(data, show_progress): if show_progress: log.info("Generating asset metadata.") data = data.groupby(by="occ_symbol").agg( { "symbol": "first", "root_symbol": "first", "asset_name": "first", "date": [np.min, np.max], "exchange": "first", "expiration_date": "first", "strike_price": "first", "option_type": "first", "style": "first", } ) data.reset_index(inplace=True) data["start_date"] = data.date.amin data["end_date"] = data.date.amax del data["date"] data.columns = data.columns.get_level_values(0) data["asset_name"] = data.asset_name data["tick_size"] = 0.01 data["multiplier"] = 100.0 data["first_traded"] = data["start_date"] data["auto_close_date"] = data["expiration_date"].values + pd.Timedelta(days=1) return data def _gen_symbols(data, show_progress): if show_progress: log.info("Generating OCC symbols.") data["symbol"] = [x.replace(" ", "") for x in data.symbol.values] root_symbol_fmt = [ "{:6}".format(x.upper()).replace(" ", "") for x in data.root_symbol.values ] expiration_fmt = [ pd.Timestamp(x).strftime("%y%m%d") for x in data.expiration_date.values.astype("datetime64[D]") ] option_type_fmt = [x.upper() for x in data.option_type.values] strike_fmt = [ "{:09.3f}".format(float(x)).replace(".", "") for x in data.strike_price.values ] occ_format = lambda x: f"{x[0]}{x[1]}{x[2]}{x[3]}" mapped = map( occ_format, zip(root_symbol_fmt, expiration_fmt, option_type_fmt, strike_fmt) ) data["occ_symbol"] = list(mapped) return data def _get_price_metadata(data, show_progress): if show_progress: log.info("Generating mid, spread, moneyness and days to expiration.") data["interest_rate"] = np.nan data["statistical_volatility"] = np.nan data["option_value"] = np.nan bid = data.bid.values ask = data.ask.values bid[np.isnan(bid)] = 0.0 ask[np.isnan(ask)] = 0.0 data["spread"] = ask - bid # create the close price because it's used everywhere data["close"] = data.mid data["moneyness"] = np.nan calls = data[data.option_type == "C"] puts = data[data.option_type == "P"] data.loc[data.option_type == "C", "moneyness"] = ( calls.strike_price.values / calls.unadjusted_underlying_close.values ) data.loc[data.option_type == "P", "moneyness"] = ( puts.unadjusted_underlying_close.values / puts.strike_price.values ) data["days_to_expiration"] = ( data.expiration_date.values - data.date.values ).astype("timedelta64[D]") return data def gen_valuation_metadata(data, show_progress): data = _gen_symbols(data, show_progress) data = _get_price_metadata(data, show_progress) return data def parse_pricing_and_vol(data, sessions, symbol_map): for asset_id, occ_symbol in iteritems(symbol_map): asset_data = ( data.xs(occ_symbol, level=1).reindex(sessions.tz_localize(None)).fillna(0.0) ) yield asset_id, asset_data @bundles.register( "ivolatility-raw-iv", # start and end sessions of the dtr trading examples start_session=pd.Timestamp("2006-07-28", tz="UTC"), end_session=
pd.Timestamp("2014-09-04", tz="UTC")
pandas.Timestamp
import os import typing import hdpc import numpy as np import pandas as pd from d3m import container, utils from d3m.metadata import hyperparams, base as metadata_base from d3m.metadata import params from d3m.primitive_interfaces import base from d3m.primitive_interfaces.unsupervised_learning import UnsupervisedLearnerPrimitiveBase from sklearn.feature_extraction.text import CountVectorizer from fastlvm.utils import get_documents, mk_text_features, tokenize, split_inputs Inputs = container.DataFrame Outputs = container.DataFrame Predicts = container.ndarray # type: np.ndarray class Params(params.Params): topic_matrix: bytes # Byte stream represening topics vectorizer: typing.Any analyze: typing.Any class HyperParams(hyperparams.Hyperparams): k = hyperparams.UniformInt(lower=1, upper=10000, default=10, semantic_types=['https://metadata.datadrivendiscovery.org/types/TuningParameter'], description='The number of clusters to form as well as the number of centroids to ' 'generate.') iters = hyperparams.UniformInt(lower=1, upper=10000, default=100, semantic_types=['https://metadata.datadrivendiscovery.org/types/TuningParameter'], description='The number of iterations of inference.') num_top = hyperparams.UniformInt(lower=1, upper=10000, default=15, semantic_types=['https://metadata.datadrivendiscovery.org/types/TuningParameter'], description='The number of top words requested') frac = hyperparams.Uniform(lower=0, upper=1, default=0.01, upper_inclusive=False, semantic_types=['https://metadata.datadrivendiscovery.org/types/TuningParameter'], description='The fraction of training data set aside as the validation. 0 = use all ' 'training as validation') class HDP(UnsupervisedLearnerPrimitiveBase[Inputs, Outputs, Params, HyperParams]): """ This class provides functionality for Hierarchical Dirichlet Process, which is a nonparametric Bayesian model for topic modelling on corpora of documents which seeks to represent the underlying thematic structure of the document collection. They have emerged as a powerful new technique of finding useful structure in an unstructured collection as it learns distributions over words. The high probability words in each distribution gives us a way of understanding the contents of the corpus at a very high level. In HDP, each document of the corpus is assumed to have a distribution over K topics, where the discrete topic distributions are drawn from a symmetric dirichlet distribution. As it is a nonparametric model, the number of topics K is inferred automatically. The API is similar to its parametric equivalent sklearn.decomposition.LatentDirichletAllocation. The class is pickle-able. """ __author__ = 'CMU' __metadata__ = { "common_name": "Hierarchical Dirichlet Process Topic Modelling", "algorithm_type": ["Bayesian", "Clustering", "Probabilistic Graphical Models"], "handles_classification": False, "handles_regression": False, "handles_multiclass": False, "handles_multilabel": False, "input_type": ["DENSE"], "output_type": ["PREDICTIONS"], "schema_version": 1.0, "compute_resources": { "sample_size": [], "sample_unit": [], "disk_per_node": [], "expected_running_time": [], "gpus_per_node": [], "cores_per_node": [], "mem_per_gpu": [], "mem_per_node": [], "num_nodes": [], }, } metadata = metadata_base.PrimitiveMetadata({ "id": "e582e738-2f7d-4b5d-964f-022d15f19018", "version": "3.1.1", "name": "Hierarchical Dirichlet Process Topic Modelling", "description": "This class provides functionality for Hierarchical Dirichlet Process, which is a " "nonparametric Bayesian model for topic modelling on corpora of documents which seeks to " "represent the underlying thematic structure of the document collection. They have emerged as " "a powerful new technique of finding useful structure in an unstructured collection as it " "learns distributions over words. The high probability words in each distribution gives us a " "way of understanding the contents of the corpus at a very high level. In HDP, each document " "of the corpus is assumed to have a distribution over K topics, where the discrete topic " "distributions are drawn from a symmetric dirichlet distribution. As it is a nonparametric " "model, the number of topics K is inferred automatically. The API is similar to its parametric " "equivalent sklearn.decomposition.LatentDirichletAllocation. The class is pickle-able.", "python_path": "d3m.primitives.natural_language_processing.hdp.Fastlvm", "primitive_family": metadata_base.PrimitiveFamily.NATURAL_LANGUAGE_PROCESSING, "algorithm_types": ["LATENT_DIRICHLET_ALLOCATION"], "keywords": ["large scale HDP", "Bayesian Nonparametrics", "topic modeling", "clustering"], "source": { "name": "CMU", "contact": "mailto:<EMAIL>", "uris": ["https://gitlab.datadrivendiscovery.org/cmu/fastlvm", "https://github.com/autonlab/fastlvm"] }, "installation": [ { "type": "PIP", "package_uri": 'git+https://github.com/autonlab/fastlvm.git@{git_commit}#egg=fastlvm'.format( git_commit=utils.current_git_commit(os.path.dirname(__file__))) } ] }) def __init__(self, *, hyperparams: HyperParams, random_seed: int = 0) -> None: # super(HDP, self).__init__() super().__init__(hyperparams=hyperparams, random_seed=random_seed) self._this = None self._k = hyperparams['k'] self._iters = hyperparams['iters'] self._num_top = hyperparams['num_top'] self._frac = hyperparams['frac'] # the fraction of training data set aside as the validation self._training_inputs = None # type: Inputs self._fitted = False self._ext = None self._vectorizer = None # for tokenization self._analyze = None # to tokenize raw documents self.hyperparams = hyperparams def __del__(self): if self._this is not None: hdpc.delete(self._this, self._ext) def set_training_data(self, *, inputs: Inputs) -> None: """ Sets training data for HDP. Parameters ---------- inputs : Inputs A list of 1d numpy array of dtype uint32. Each numpy array contains a document with each token mapped to its word id. """ self._training_inputs = inputs self._fitted = False def fit(self, *, timeout: float = None, iterations: int = None) -> base.CallResult[None]: """ Inference on the hierarchical Dirichlet process model """ if self._fitted: return if self._training_inputs is None: raise ValueError("Missing training data.") # Create documents from the data-frame raw_documents = get_documents(self._training_inputs) if raw_documents is None: # training data contains no text fields self._fitted = True if self._this is not None: hdpc.delete(self._this, self._ext) self._this = None return base.CallResult(None) # Extract the vocabulary from the inputs data-frame self._vectorizer = CountVectorizer() self._vectorizer.fit(raw_documents) vocab_size = len(self._vectorizer.vocabulary_) # Build analyzer that handles tokenization self._analyze = self._vectorizer.build_analyzer() vocab = ['w' + str(i) for i in range(vocab_size)] if self.random_seed is None: # seed is not set self._this = hdpc.new(self._k, self._iters, vocab, self._num_top, 0, self.random_seed) else: # use the given seed self._this = hdpc.new(self._k, self._iters, vocab, self._num_top, 1, self.random_seed) # Tokenize documents tokenized = tokenize(raw_documents, self._vectorizer.vocabulary_, self._analyze) # Uniformly split the data to training and validation training, validation = split_inputs(tokenized, self._frac, self.random_seed) hdpc.fit(self._this, training.tolist(), validation.tolist()) self._fitted = True return base.CallResult(None) def get_call_metadata(self) -> bool: """ Returns metadata about the last ``fit`` call if it succeeded Returns ------- Status : bool True/false status of fitting. """ return self._fitted def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: """ Finds the token topic assignment (and consequently topic-per-document distribution) for the given set of docs using the learned model. Parameters ---------- inputs : Inputs A list of 1d numpy array of dtype uint32. Each numpy array contains a document with each token mapped to its word id. Returns ------- Outputs A list of 1d numpy array which represents index of the topic each token belongs to. """ if self._this is None: return base.CallResult(inputs) raw_documents, non_text_features = get_documents(inputs, non_text=True) tokenized = tokenize(raw_documents, self._vectorizer.vocabulary_, self._analyze) predicted = hdpc.predict(self._this, tokenized.tolist()) # per word topic assignment # TODO investigate why some index is bigger than self._k text_features = mk_text_features(predicted, self._k) # concatenate the features row-wise features =
pd.concat([non_text_features, text_features], axis=1)
pandas.concat
''' Author: <NAME> File: composite_frame Trello: Goal 1 ''' from typing import List import numpy as np import pandas as pd class Composite_Frame(object): ''' The Composite_Frame class takes a pandas data frame containing network flow information and splits into a list of frames, each representing the telemtry of the network at a given time interval. Dataset used: BoT IoT Dataset (10 best features CSV) ''' def __init__(self, frame: pd.DataFrame, interval: int, max_frames: int = -1): ''' Instance variables: @self.items -> The list of dataframes derived from the parent frame @self._interval -> The time interval to split the parent frame on @self.max_frames -> The maximum number of time frames to include in the composite frame. Default is set to 10,000 ''' if max_frames < 0: self.max_frames = 10000 else: self.max_frames = max_frames self.items: List[pd.DataFrame] = self._split_frame(frame, interval) self._interval = interval def _insert_row(self, row_number: int, df: pd.DataFrame, row_value): ''' Borrowed this function from the following Geeks for Geeks article: https://www.geeksforgeeks.org/insert-row-at-given-position-in-pandas-dataframe/ ''' # Split old dataframe df1 = df[0:row_number] df2 = df[row_number:] # Add new row to first subframe df1.loc[row_number] = row_value # Create new dataframe from two subframes df_result = pd.concat([df1, df2]) df_result.index = [*range(df_result.shape[0])] return df_result def _split_flow(self, df: pd.DataFrame, index: int, interval: int, min_stime: int, max_ltime: int): # Insert a copy of the new row at the appropriate place in the df row = df.iloc[index] try: # Attempt to acquire insert index insert_index = df[df.stime > max_ltime].index[0] except: # Attempt failed, insert index should be end of dataframe insert_index = -1 if insert_index >= 0: df = self._insert_row(int(insert_index), df, row) else: insert_index = df.shape[0] df.loc[insert_index] = row # Calculate percent of the flow which is in the current window percent_in_frame = (max_ltime-row.stime)/(row.ltime-row.stime) # Adjust values for the original flow df.at[index, 'ltime'] = max_ltime df.at[index, 'TnBPSrcIP'] = row.TnBPSrcIP*percent_in_frame # Adjust values for the new flowl df.at[insert_index, 'stime'] = max_ltime df.at[insert_index, 'TnBPSrcIP'] = row.TnBPSrcIP * \ (1.-percent_in_frame) return df def _process_flow(self, current_stime, min_stime, current_ltime, max_ltime, current_frame, traffic, index, interval): if current_stime >= min_stime and current_ltime < max_ltime: current_frame.append(traffic.iloc[index]) elif current_stime >= min_stime and current_stime < max_ltime and \ current_ltime >= max_ltime: traffic = self._split_flow( traffic, index, interval, min_stime, max_ltime) current_frame.append(traffic.iloc[index]) return traffic, current_frame def _split_frame(self, df: pd.DataFrame, interval: int): # Order the data frame by start time traffic = df.sort_values(by=['stime']).reset_index() traffic = traffic.filter(['saddr', 'stime', 'ltime', 'TnBPSrcIP']) # Variables for tracking the progress of the function progress = 0. # Loop Variables index = 0 time_frames = [] # list to hold subframes current_frame = [] # Current data frame being populated # Starting point of current time frame min_stime = traffic.iloc[0].stime max_ltime = min_stime + interval # ending point of current time frame # Main loop while not traffic.empty: # Find start and end time of current flow current_stime, current_ltime = traffic.iloc[index].stime, traffic.iloc[index].ltime if current_stime < max_ltime: traffic, current_frame = self._process_flow(current_stime, min_stime, current_ltime, max_ltime, current_frame, traffic, index, interval) else: # Update loop variables current_frame =
pd.DataFrame(current_frame)
pandas.DataFrame
import numpy as np import pytest from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import Categorical, DataFrame, Index, Series import pandas._testing as tm class TestDataFrameIndexingCategorical: def test_assignment(self): # assignment df = DataFrame( {"value": np.array(np.random.randint(0, 10000, 100), dtype="int32")} ) labels = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)]) df = df.sort_values(by=["value"], ascending=True) s = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels) d = s.values df["D"] = d str(df) result = df.dtypes expected = Series( [np.dtype("int32"), CategoricalDtype(categories=labels, ordered=False)], index=["value", "D"], ) tm.assert_series_equal(result, expected) df["E"] = s str(df) result = df.dtypes expected = Series( [ np.dtype("int32"), CategoricalDtype(categories=labels, ordered=False), CategoricalDtype(categories=labels, ordered=False), ], index=["value", "D", "E"], ) tm.assert_series_equal(result, expected) result1 = df["D"] result2 = df["E"] tm.assert_categorical_equal(result1._mgr._block.values, d) # sorting s.name = "E" tm.assert_series_equal(result2.sort_index(), s.sort_index()) cat = Categorical([1, 2, 3, 10], categories=[1, 2, 3, 4, 10]) df = DataFrame(Series(cat)) def test_assigning_ops(self): # systematically test the assigning operations: # for all slicing ops: # for value in categories and value not in categories: # - assign a single value -> exp_single_cats_value # - assign a complete row (mixed values) -> exp_single_row # assign multiple rows (mixed values) (-> array) -> exp_multi_row # assign a part of a column with dtype == categorical -> # exp_parts_cats_col # assign a part of a column with dtype != categorical -> # exp_parts_cats_col cats = Categorical(["a", "a", "a", "a", "a", "a", "a"], categories=["a", "b"]) idx = Index(["h", "i", "j", "k", "l", "m", "n"]) values = [1, 1, 1, 1, 1, 1, 1] orig = DataFrame({"cats": cats, "values": values}, index=idx) # the expected values # changed single row cats1 = Categorical(["a", "a", "b", "a", "a", "a", "a"], categories=["a", "b"]) idx1 = Index(["h", "i", "j", "k", "l", "m", "n"]) values1 = [1, 1, 2, 1, 1, 1, 1] exp_single_row = DataFrame({"cats": cats1, "values": values1}, index=idx1) # changed multiple rows cats2 = Categorical(["a", "a", "b", "b", "a", "a", "a"], categories=["a", "b"]) idx2 = Index(["h", "i", "j", "k", "l", "m", "n"]) values2 = [1, 1, 2, 2, 1, 1, 1] exp_multi_row = DataFrame({"cats": cats2, "values": values2}, index=idx2) # changed part of the cats column cats3 = Categorical(["a", "a", "b", "b", "a", "a", "a"], categories=["a", "b"]) idx3 = Index(["h", "i", "j", "k", "l", "m", "n"]) values3 = [1, 1, 1, 1, 1, 1, 1] exp_parts_cats_col = DataFrame({"cats": cats3, "values": values3}, index=idx3) # changed single value in cats col cats4 = Categorical(["a", "a", "b", "a", "a", "a", "a"], categories=["a", "b"]) idx4 = Index(["h", "i", "j", "k", "l", "m", "n"]) values4 = [1, 1, 1, 1, 1, 1, 1] exp_single_cats_value = DataFrame( {"cats": cats4, "values": values4}, index=idx4 ) # iloc # ############### # - assign a single value -> exp_single_cats_value df = orig.copy() df.iloc[2, 0] = "b" tm.assert_frame_equal(df, exp_single_cats_value) df = orig.copy() df.iloc[df.index == "j", 0] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set msg1 = ( "Cannot setitem on a Categorical with a new category, " "set the categories first" ) msg2 = "Cannot set a Categorical with another, without identical categories" with pytest.raises(ValueError, match=msg1): df = orig.copy() df.iloc[2, 0] = "c" # - assign a complete row (mixed values) -> exp_single_row df = orig.copy() df.iloc[2, :] = ["b", 2] tm.assert_frame_equal(df, exp_single_row) # - assign a complete row (mixed values) not in categories set with pytest.raises(ValueError, match=msg1): df = orig.copy() df.iloc[2, :] = ["c", 2] # - assign multiple rows (mixed values) -> exp_multi_row df = orig.copy() df.iloc[2:4, :] = [["b", 2], ["b", 2]] tm.assert_frame_equal(df, exp_multi_row) with pytest.raises(ValueError, match=msg1): df = orig.copy() df.iloc[2:4, :] = [["c", 2], ["c", 2]] # assign a part of a column with dtype == categorical -> # exp_parts_cats_col df = orig.copy() df.iloc[2:4, 0] = Categorical(["b", "b"], categories=["a", "b"]) tm.assert_frame_equal(df, exp_parts_cats_col) with pytest.raises(ValueError, match=msg2): # different categories -> not sure if this should fail or pass df = orig.copy() df.iloc[2:4, 0] = Categorical(list("bb"), categories=list("abc")) with pytest.raises(ValueError, match=msg2): # different values df = orig.copy() df.iloc[2:4, 0] = Categorical(list("cc"), categories=list("abc")) # assign a part of a column with dtype != categorical -> # exp_parts_cats_col df = orig.copy() df.iloc[2:4, 0] = ["b", "b"] tm.assert_frame_equal(df, exp_parts_cats_col) with pytest.raises(ValueError, match=msg1): df.iloc[2:4, 0] = ["c", "c"] # loc # ############## # - assign a single value -> exp_single_cats_value df = orig.copy() df.loc["j", "cats"] = "b" tm.assert_frame_equal(df, exp_single_cats_value) df = orig.copy() df.loc[df.index == "j", "cats"] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set with pytest.raises(ValueError, match=msg1): df = orig.copy() df.loc["j", "cats"] = "c" # - assign a complete row (mixed values) -> exp_single_row df = orig.copy() df.loc["j", :] = ["b", 2] tm.assert_frame_equal(df, exp_single_row) # - assign a complete row (mixed values) not in categories set with pytest.raises(ValueError, match=msg1): df = orig.copy() df.loc["j", :] = ["c", 2] # - assign multiple rows (mixed values) -> exp_multi_row df = orig.copy() df.loc["j":"k", :] = [["b", 2], ["b", 2]] tm.assert_frame_equal(df, exp_multi_row) with pytest.raises(ValueError, match=msg1): df = orig.copy() df.loc["j":"k", :] = [["c", 2], ["c", 2]] # assign a part of a column with dtype == categorical -> # exp_parts_cats_col df = orig.copy() df.loc["j":"k", "cats"] = Categorical(["b", "b"], categories=["a", "b"]) tm.assert_frame_equal(df, exp_parts_cats_col) with pytest.raises(ValueError, match=msg2): # different categories -> not sure if this should fail or pass df = orig.copy() df.loc["j":"k", "cats"] = Categorical( ["b", "b"], categories=["a", "b", "c"] ) with pytest.raises(ValueError, match=msg2): # different values df = orig.copy() df.loc["j":"k", "cats"] = Categorical( ["c", "c"], categories=["a", "b", "c"] ) # assign a part of a column with dtype != categorical -> # exp_parts_cats_col df = orig.copy() df.loc["j":"k", "cats"] = ["b", "b"] tm.assert_frame_equal(df, exp_parts_cats_col) with pytest.raises(ValueError, match=msg1): df.loc["j":"k", "cats"] = ["c", "c"] # loc # ############## # - assign a single value -> exp_single_cats_value df = orig.copy() df.loc["j", df.columns[0]] = "b" tm.assert_frame_equal(df, exp_single_cats_value) df = orig.copy() df.loc[df.index == "j", df.columns[0]] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set with pytest.raises(ValueError, match=msg1): df = orig.copy() df.loc["j", df.columns[0]] = "c" # - assign a complete row (mixed values) -> exp_single_row df = orig.copy() df.loc["j", :] = ["b", 2] tm.assert_frame_equal(df, exp_single_row) # - assign a complete row (mixed values) not in categories set with pytest.raises(ValueError, match=msg1): df = orig.copy() df.loc["j", :] = ["c", 2] # - assign multiple rows (mixed values) -> exp_multi_row df = orig.copy() df.loc["j":"k", :] = [["b", 2], ["b", 2]] tm.assert_frame_equal(df, exp_multi_row) with pytest.raises(ValueError, match=msg1): df = orig.copy() df.loc["j":"k", :] = [["c", 2], ["c", 2]] # assign a part of a column with dtype == categorical -> # exp_parts_cats_col df = orig.copy() df.loc["j":"k", df.columns[0]] = Categorical(["b", "b"], categories=["a", "b"]) tm.assert_frame_equal(df, exp_parts_cats_col) with pytest.raises(ValueError, match=msg2): # different categories -> not sure if this should fail or pass df = orig.copy() df.loc["j":"k", df.columns[0]] = Categorical( ["b", "b"], categories=["a", "b", "c"] ) with pytest.raises(ValueError, match=msg2): # different values df = orig.copy() df.loc["j":"k", df.columns[0]] = Categorical( ["c", "c"], categories=["a", "b", "c"] ) # assign a part of a column with dtype != categorical -> # exp_parts_cats_col df = orig.copy() df.loc["j":"k", df.columns[0]] = ["b", "b"] tm.assert_frame_equal(df, exp_parts_cats_col) with pytest.raises(ValueError, match=msg1): df.loc["j":"k", df.columns[0]] = ["c", "c"] # iat df = orig.copy() df.iat[2, 0] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set with pytest.raises(ValueError, match=msg1): df = orig.copy() df.iat[2, 0] = "c" # at # - assign a single value -> exp_single_cats_value df = orig.copy() df.at["j", "cats"] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # - assign a single value not in the current categories set with pytest.raises(ValueError, match=msg1): df = orig.copy() df.at["j", "cats"] = "c" # fancy indexing catsf = Categorical( ["a", "a", "c", "c", "a", "a", "a"], categories=["a", "b", "c"] ) idxf = Index(["h", "i", "j", "k", "l", "m", "n"]) valuesf = [1, 1, 3, 3, 1, 1, 1] df = DataFrame({"cats": catsf, "values": valuesf}, index=idxf) exp_fancy = exp_multi_row.copy() exp_fancy["cats"].cat.set_categories(["a", "b", "c"], inplace=True) df[df["cats"] == "c"] = ["b", 2] # category c is kept in .categories tm.assert_frame_equal(df, exp_fancy) # set_value df = orig.copy() df.at["j", "cats"] = "b" tm.assert_frame_equal(df, exp_single_cats_value) with pytest.raises(ValueError, match=msg1): df = orig.copy() df.at["j", "cats"] = "c" # Assigning a Category to parts of a int/... column uses the values of # the Categorical df = DataFrame({"a": [1, 1, 1, 1, 1], "b": list("aaaaa")}) exp = DataFrame({"a": [1, "b", "b", 1, 1], "b": list("aabba")}) df.loc[1:2, "a"] = Categorical(["b", "b"], categories=["a", "b"]) df.loc[2:3, "b"] =
Categorical(["b", "b"], categories=["a", "b"])
pandas.Categorical
import pandas as pd #API import from matlabs.owlracer import core_pb2 from grpcClient import core_pb2_grpc from serviceClient import service, commands def mainLoop(): env = service.Env(spectator=True) carID = env.getCarIDs() carID = core_pb2.GuidData(guidString = str(carID.guids[0]).split("\"")[1]) #print("On the server is {} car with IDs".format()) env.setCarID(carID=carID) columList = ["MapNr","pX","pY","rotation","maxVelocity","acceleration","velocity","isCrashed","isDone","scoreStep","scoreOverall","ticks","dFront","dFrontL","dFrontR","dLeft","dRight","checkPoint"] #loop variables sampleNr=0 mapNr = 0 dataList = [] lastTick = -1 while(sampleNr<10): step_result: core_pb2_grpc.RaceCarData = env.getCarData() if step_result.ticks > lastTick: dataList.append([mapNr,step_result.position.x, step_result.position.y, step_result.rotation, step_result.maxVelocity, step_result.acceleration, step_result.velocity, step_result.isCrashed, step_result.isDone, step_result.scoreStep, step_result.scoreOverall, step_result.ticks, step_result.distance.front, step_result.distance.frontLeft, step_result.distance.frontRight, step_result.distance.left, step_result.distance.right, step_result.checkPoint]) #print("Car Pos: {} {}, Vel: {} forward distance {}".format(step_result.position.x, step_result.position.y, step_result.velocity, step_result.distance.front)) sampleNr += 1 lastTick = step_result.ticks dataFrame =
pd.DataFrame(dataList, columns=columList)
pandas.DataFrame
from datetime import datetime, time, date from functools import partial from dateutil import relativedelta import calendar from pandas import DateOffset, datetools, DataFrame, Series, Panel from pandas.tseries.index import DatetimeIndex from pandas.tseries.resample import _get_range_edges from pandas.core.groupby import DataFrameGroupBy, PanelGroupBy, BinGrouper from pandas.tseries.resample import TimeGrouper from pandas.tseries.offsets import Tick from pandas.tseries.frequencies import _offset_map, to_offset import pandas.lib as lib import numpy as np from trtools.monkey import patch, patch_prop def _is_tick(offset): return isinstance(offset, Tick) ## TODO See if I still need this. All this stuff was pre resample def first_day(year, month, bday=True): """ Return first day of month. Default to business days """ weekday, days_in_month = calendar.monthrange(year, month) if not bday: return 1 if weekday <= 4: return 1 else: return 7-weekday+1 class MonthStart(DateOffset): """ Really the point of this is for DateRange, creating a range where the month is anchored on day=1 and not the end """ def apply(self, other): first = first_day(other.year, other.month) if other.day == first: result = other + relativedelta.relativedelta(months=1) result = result.replace(day=first_day(result.year, result.month)) else: result = other.replace(day=first) return datetime(result.year, result.month, result.day) def onOffset(self, someDate): return someDate.day == first_day(someDate.year, someDate.month) def daily_group(df): daterange_func = partial(DatetimeIndex, freq=datetools.day) return down_sample(df, daterange_func) def weekly_group(df): daterange_func = partial(DatetimeIndex, freq="W@MON") return down_sample(df, daterange_func) def monthly_group(df): daterange_func = partial(DatetimeIndex, freq=MonthStart()) return down_sample(df, daterange_func) def down_sample(obj, daterange_func): if isinstance(obj, Panel): index = obj.major_axis else: index = obj.index start = datetime.combine(index[0].date(), time(0)) end = datetime.combine(index[-1].date(), time(0)) range = daterange_func(start=start, end=end) grouped = obj.groupby(range.asof) grouped._range = range return grouped # END TODO def cols(self, *args): return self.xs(list(args), axis=1) def dropna_get(x, pos): try: return x.dropna().iget(pos) except: return None def aggregate_picker(grouped, grouped_indices, col=None): """ In [276]: g.agg(np.argmax).high Out[276]: key_0 2007-04-27 281 2007-04-30 0 2007-05-01 5 2007-05-02 294 2007-05-03 3 2007-05-04 53 Should take something in that form and return a DataFrame with the proper date indexes and values... """ index = [] values = [] for key, group in grouped: if col: group = group[col] sub_index = grouped_indices[key] index.append(group.index[sub_index]) values.append(group.iget_value(sub_index)) return {'index':index, 'values':values} # old version def _kv_agg(grouped, func, col=None): """ Works like agg but returns index label and value for each hit """ if col: sub_indices = grouped.agg({col: func})[col] else: sub_indices = grouped.agg(func) data = aggregate_picker(grouped, sub_indices, col=col) return TimeSeries(data['values'], index=data['index']) def kv_agg(grouped, func, col=None): """ Simpler version that is a bit faster. Really, I don't use aggregate_picker, which makes it slightly faster. """ index = [] values = [] for key, group in grouped: if col: group = group[col] sub_index = func(group) val = group.iget_value(sub_index) values.append(val) index.append(group.index[sub_index]) return TimeSeries(values, index=index) def set_time(arr, hour, minute): """ Given a list of datetimes, set the time on all of them """ results = [] t = time(hour, minute) for date in arr: d = datetime.combine(date.date(), t) results.append(d) return results def reset_time(df, hour, minute): if isinstance(df, (DataFrame, Series)): df.index = set_time(df.index, hour, minute) if isinstance(df, Panel): df.major_axis = set_time(df.major_axis, hour, minute) return df def max_groupby(grouped, col=None): df = kv_agg(grouped, np.argmax, col) return df def trading_hours(df): # assuming timestamp marks end of bar inds = df.index.indexer_between_time(time(9,30), time(16), include_start=False) return df.take(inds) times = np.vectorize(lambda x: x.time()) hours = np.vectorize(lambda x: x.time().hour) minutes = np.vectorize(lambda x: x.time().minute) def time_slice(series, hour=None, minute=None): """ Will vectorize a function taht returns a boolean array if value matches the hour and/or minute """ bh = hour is not None bm = minute is not None if bh and bm: t = time(hour, minute) vec = np.vectorize(lambda x: x.time() == t) if bh and not bm: vec = np.vectorize(lambda x: x.time().hour == hour) if not bh and bm: vec = np.vectorize(lambda x: x.time().minute == minute) return vec(series.index) def end_asof(index, label): """ Like index.asof but places the timestamp to the end of the bar """ if label not in index: loc = index.searchsorted(label, side='left') if loc > 0: return index[loc] else: return np.nan return label # TODO Forget where I was using this. I think pandas does this now. class TimeIndex(object): """ Kind of like a DatetimeIndex, except it only cares about the time component of a Datetime object. """ def __init__(self, times): self.times = times def asof(self, date): """ Follows price is right rules. Will return the closest time that is equal or below. If time is after the last date, it will just return the date. """ testtime = date.time() last = None for time in self.times: if testtime == time: return date if testtime < time: # found spot break last = time # TODO should I anchor this to the last time? if last is None: return date new_date = datetime.combine(date.date(), last) return new_date def get_time_index(freq, start=None, end=None): if start is None: start = "1/1/2012 9:30AM" if end is None: end = "1/1/2012 4:00PM" ideal = DatetimeIndex(start=start, end=end, freq=freq) times = [date.time() for date in ideal] return TimeIndex(times) def get_anchor_index(index, freq): ideal = get_time_index(freq) start = index[0] start = ideal.asof(start) end = index[-1] start, end = _get_range_edges(index, offset=freq, closed='right') ind = DatetimeIndex(start=start, end=end, freq=freq) return ind def anchor_downsample(obj, freq, axis=None): """ Point of this is to fix the freq to regular intervals like 9:30, 9:45, 10:00 and not 9:13, 9:28: 9:43 """ if axis is None: axis = 0 if isinstance(obj, Panel): axis = 1 index = obj._get_axis(axis) ind = get_anchor_index(index, freq) bins = lib.generate_bins_dt64(index.asi8, ind.asi8, closed='right') labels = ind[1:] grouper =
BinGrouper(bins, labels)
pandas.core.groupby.BinGrouper
import warnings from pathlib import Path import numpy as np import pandas as pd from pycox.datasets._dataset_loader import _DatasetLoader, _PATH_DATA class _DatasetKKBoxChurn(_DatasetLoader): """KKBox churn data set obtained from Kaggle (WSDM - KKBox's Churn Prediction Challenge 2017). https://www.kaggle.com/c/kkbox-churn-prediction-challenge/data This is the version of the data set presented by Kvamme et al. (2019) [1], but the preferred version is the `kkbox` version which included administrative censoring labels and and extra categorical variable. Requires installation of the Kaggle API (https://github.com/Kaggle/kaggle-api), with credentials (https://github.com/Kaggle/kaggle-api). The data set contains churn information from KKBox, an Asian music streaming service. Churn is defined by a customer failing to obtain a new valid service subscription within 30 days after the current membership expires. This version of the data set only consider part of the information made available in the challenge, as it is intended to compare survival methods, and not compete in the challenge. The data set is split in train, test and validations, based on an individual's id ('msno'). Variables: msno: Identifier for individual. An individual might churn multiple times. event: Churn indicator, 1: churn, 0: censoring. n_prev_churns: Number of previous churns by the individual. (log_)days_between_subs: Number of days between this and the last subscription (log-transformed), if previously churned. duration: Durations until churn or censoring. (log_)days_since_reg_init: Number of days since first registration (log-transformed). (log_)payment_plan_days: Number of days until current subscription expires (log-transformed). (log_)plan_list_price: Listed price of current subscription (log-transformed). (log_)actual_amount_paid: The amount payed for the subscription (log-transformed). is_auto_renew: Not explained in competition https://www.kaggle.com/c/kkbox-churn-prediction-challenge/data is_cancel: If the customer has canceled the subscription. Subscription cancellation does not imply the user has churned. A user may cancel service subscription due to change of service plans or other reasons. city: City of customer. gender: Gender of customer. registered_via: Registration method. age_at_start: Age at beginning of subscription. strange_age: Indicator for strange ages. nan_days_since_reg_init: Indicator that we don't know when the customer first subscribed. no_prev_churns: Indicator if the individual has not previously churned. References: [1] <NAME>, <NAME>, and <NAME>. Time-to-event prediction with neural networks and Cox regression. Journal of Machine Learning Research, 20(129):1–30, 2019. http://jmlr.org/papers/v20/18-424.html """ name = 'kkbox_v1' _checksum = '705ca57c7efd2d916f0da2dd6e3a399b3b279773271d595c2f591fcf7bb7cae6' def __init__(self): self._path_dir = _PATH_DATA / self.name self.path_train = self._path_dir / 'train.feather' self.path_test = self._path_dir / 'test.feather' self.path_val = self._path_dir / 'val.feather' self.path_survival = self._path_dir / 'survival_data.feather' self.log_cols = ['actual_amount_paid', 'days_between_subs', 'days_since_reg_init', 'payment_plan_days', 'plan_list_price'] def read_df(self, subset='train', log_trans=True): """Get train, test, val or general survival data set. The columns: 'duration' and 'event' gives the duration time and event indicator. The survival data set contains no covariates, but can be useful for extending the dataset with more covariates from Kaggle. Keyword Arguments: subset {str} -- Which subset to use ('train', 'val', 'test'). Can also set 'survival' which will give df with survival information without covariates. (default: {'train'}) log_trans {bool} -- If covariates in 'kkbox_v1.log_cols' (from Kvamme paper) should be transformed with 'z = log(x - min(x) + 1)'. (default: {True}) """ if subset == 'train': path = self.path_train elif subset == 'test': path = self.path_test elif subset == 'val': path = self.path_val elif subset == 'survival': path = self.path_survival return pd.read_feather(path) else: raise ValueError(f"Need 'subset' to be 'train', 'val', or 'test'. Got {subset}") if not path.exists(): print(f""" The KKBox dataset not locally available. If you want to download, call 'kkbox_v1.download_kkbox()', but note that this might take around 10 min! NOTE: You need Kaggle credentials! Follow instructions at https://github.com/Kaggle/kaggle-api#api-credentials """) return None def log_min_p(col, df): x = df[col] min_ = -1. if col == 'days_since_reg_init' else 0. return np.log(x - min_ + 1) df = pd.read_feather(path) if log_trans: df = df.assign(**{col: log_min_p(col, df) for col in self.log_cols}) df = df.rename(columns={col: f"log_{col}" for col in self.log_cols}) return df def download_kkbox(self): """Download KKBox data set. This is likely to take around 10 min!!! NOTE: You need Kaggle credentials! Follow instructions at https://github.com/Kaggle/kaggle-api#api-credentials """ self._download() def _download(self): self._setup_download_dir() self._7z_from_kaggle() self._csv_to_feather_with_types() print('Creating survival data...') self._make_survival_data() print('Creating covariates...') self._make_survival_covariates() print('Creating train/test/val subsets...') self._make_train_test_split() print('Cleaning up...') self._clean_up() print("Done! You can now call `df = kkbox.read_df()`.") def _setup_download_dir(self): if self._path_dir.exists(): self._clean_up() else: self._path_dir.mkdir() def _7z_from_kaggle(self): import subprocess import py7zr try: import kaggle except OSError as e: raise OSError( f"""" Need to provide Kaggle credentials to download this data set. See guide at https://github.com/Kaggle/kaggle-api#api-credentials. """ ) files = ['train', 'transactions', 'members_v3'] print('Downloading from Kaggle...') for file in files: kaggle.api.competition_download_file('kkbox-churn-prediction-challenge', file + '.csv.7z', path=self._path_dir, force=True) for file in files: print(f"Extracting '{file}'...") archive = py7zr.SevenZipFile(self._path_dir / f"{file}.csv.7z", mode="r") archive.extractall(path=self._path_dir) archive.close() print(f"Finished extracting '{file}'.") def _csv_to_feather_with_types(self): print("Making feather data frames...") file = 'train' pd.read_csv(self._path_dir / f"{file}.csv").to_feather(self._path_dir / f"{file}_raw.feather") file = 'members' members = pd.read_csv(self._path_dir / f"{file}_v3.csv", parse_dates=['registration_init_time']) (members.assign(**{col: members[col].astype('category') for col in ['city', 'registered_via', 'gender']}) .to_feather(self._path_dir / f"{file}.feather")) file = 'transactions' trans = pd.read_csv(self._path_dir / f"{file}.csv", parse_dates=['transaction_date', 'membership_expire_date']) (trans.assign(**{col: trans[col].astype('category') for col in ['payment_method_id', 'is_auto_renew', 'is_cancel']}) .to_feather(self._path_dir / f"{file}.feather")) def _make_survival_data(self): """Combine the downloaded files and create a survival data sets (more or less without covariates). A customer is considered churned if one of the following is true: - If it has been more than 30 days since the expiration data of a membership subscription until the next transaction. - If the customer has expiration in before 2017-03-01, and no transaction after that. """ train = pd.read_feather(self._path_dir / 'train_raw.feather') members = pd.read_feather(self._path_dir / 'members.feather') trans = (pd.read_feather(self._path_dir / 'transactions.feather') [['msno', 'transaction_date', 'membership_expire_date', 'is_cancel']]) last_churn_date = '2017-01-29' # 30 days before last transactions are made in the dataset. # Churn: More than 30 days before reentering def days_without_membership(df): diff = (df['next_trans_date'] - df['membership_expire_date']).dt.total_seconds() return diff / (60 * 60 * 24) trans = (trans .sort_values(['msno', 'transaction_date']) .assign(next_trans_date=(lambda x: x.groupby('msno')['transaction_date'].shift(-1))) .assign(churn30=lambda x: days_without_membership(x) > 30)) # Remove entries with membership_expire_date < transaction_date trans = trans.loc[lambda x: x['transaction_date'] <= x['membership_expire_date']] assert (trans.loc[lambda x: x['churn30']==True].groupby(['msno', 'transaction_date'])['msno'].count().max() == 1) # Churn: Leaves forever trans = (trans .assign(max_trans_date=lambda x: x.groupby('msno')['transaction_date'].transform('max')) .assign(final_churn=(lambda x: (x['max_trans_date'] <= last_churn_date) & (x['transaction_date'] == x['max_trans_date']) & (x['membership_expire_date'] <= last_churn_date) ))) # Churn: From training set trans = (trans .merge(train, how='left', on='msno') .assign(train_churn=lambda x: x['is_churn'].fillna(0).astype('bool')) .drop('is_churn', axis=1) .assign(train_churn=lambda x: (x['max_trans_date'] == x['transaction_date']) & x['train_churn']) .assign(churn=lambda x: x['train_churn'] | x['churn30'] | x['final_churn'])) # Split individuals on churn trans = (trans .join(trans .sort_values(['msno', 'transaction_date']) .groupby('msno')[['churn30', 'membership_expire_date']].shift(1) .rename(columns={'churn30': 'new_start', 'membership_expire_date': 'prev_mem_exp_date'}))) def number_of_new_starts(df): return (df .assign(new_start=lambda x: x['new_start'].astype('float')) .sort_values(['msno', 'transaction_date']) .groupby('msno') ['new_start'].cumsum().fillna(0.) .astype('int')) def days_between_subs(df): diff = (df['transaction_date'] - df['prev_mem_exp_date']).dt diff = diff.total_seconds() / (60 * 60 * 24) df = df.assign(days_between_subs=diff) df.loc[lambda x: x['new_start'] != True, 'days_between_subs'] = np.nan return df['days_between_subs'] trans = (trans .assign(n_prev_churns=lambda x: number_of_new_starts(x), days_between_subs=lambda x: days_between_subs(x))) # Set start times trans = (trans .assign(start_date=trans.groupby(['msno', 'n_prev_churns'])['transaction_date'].transform('min')) .assign(first_churn=lambda x: (x['n_prev_churns'] == 0) & (x['churn'] == True))) # Get only last transactions (per chrun) indivs = (trans .assign(censored=lambda x: x.groupby('msno')['churn'].transform('sum') == 0) .assign(last_censored=(lambda x: (x['censored'] == True) & (x['transaction_date'] == x['max_trans_date']) )) .loc[lambda x: x['last_censored'] | x['churn']] .merge(members[['msno', 'registration_init_time']], how='left', on='msno')) def time_diff_days(df, last, first): return (df[last] - df[first]).dt.total_seconds() / (60 * 60 * 24) indivs = (indivs .assign(time=lambda x: time_diff_days(x, 'membership_expire_date', 'start_date'), days_since_reg_init=lambda x: time_diff_days(x, 'start_date', 'registration_init_time'))) # When multiple transactions on last day, remove all but the last indivs = indivs.loc[lambda x: x['transaction_date'] != x['next_trans_date']] assert indivs.shape == indivs.drop_duplicates(['msno', 'transaction_date']).shape assert (indivs['churn'] != indivs['censored']).all() # Clean up and remove variables that are not from the first transaction day dropcols = ['transaction_date', 'is_cancel', 'next_trans_date', 'max_trans_date', 'prev_mem_exp_date', 'censored', 'last_censored', 'churn30', 'final_churn', 'train_churn', 'membership_expire_date'] indivs = (indivs .assign(churn_type=lambda x: 1*x['churn30'] + 2*x['final_churn'] + 4*x['train_churn']) .assign(churn_type=lambda x: np.array(['censoring', '30days', 'final', '30days_and_final', 'train', 'train_and_30', 'train_and_final', 'train_30_and_final'])[x['churn_type']]) .drop(dropcols, axis=1)) indivs = indivs.loc[lambda x: x['churn_type'] != 'train_30_and_final'] indivs = indivs.loc[lambda x: x['time'] > 0] def as_category(df, columns): return df.assign(**{col: df[col].astype('category') for col in columns}) def as_int(df, columns): return df.assign(**{col: df[col].astype('int') for col in columns}) indivs = (indivs .pipe(as_int, ['time']) .pipe(as_category, ['new_start', 'churn_type'])) # indivs.reset_index(drop=True).to_feather(self._path_dir / 'survival_data.feather') indivs.reset_index(drop=True).to_feather(self.path_survival) def _make_survival_covariates(self): # individs = pd.read_feather(self._path_dir / 'survival_data.feather') individs = pd.read_feather(self.path_survival) members = pd.read_feather(self._path_dir / 'members.feather') trans = (individs .merge(pd.read_feather(self._path_dir / 'transactions.feather'), how='left', left_on=['msno', 'start_date'], right_on=['msno', 'transaction_date']) .drop('transaction_date', axis=1) # same as start_date .drop_duplicates(['msno', 'start_date'], keep='last') # keep last transaction on start_date (by idx) ) assert trans.shape[0] == individs.shape[0] def get_age_at_start(df): fixed_date =
pd.datetime(2017, 3, 1)
pandas.datetime
# -------------- #Importing header files import pandas as pd import matplotlib.pyplot as plt import seaborn as sns #Code starts here data= pd.read_csv(path) data['Rating'].hist() data=data[data['Rating'] <= 5] data['Rating'].hist() #Code ends here # -------------- # code starts here total_null=data.isnull().sum() percent_null=(total_null/data.isnull().count()) missing_data=
pd.concat([total_null , percent_null], keys=['Total','Percent'], axis=1)
pandas.concat
from __future__ import division from __future__ import print_function import numpy as np import pandas as pd import cea.config import cea.globalvar import cea.inputlocator from cea.optimization.constants import SIZING_MARGIN from cea.technologies.solar.photovoltaic import calc_Cinv_pv, calc_Crem_pv __author__ = "<NAME>" __copyright__ = "Copyright 2016, Architecture and Building Systems - ETH Zurich" __credits__ = ["<NAME>"] __license__ = "MIT" __version__ = "0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Production" def supply_system_configuration(generation, individual, locator, output_type_network, config): district_supply_sys_columns = ['Lake_kW', 'VCC_LT_kW', 'VCC_HT_kW', 'single_effect_ACH_LT_kW', 'single_effect_ACH_HT_kW', 'DX_kW', 'CHP_CCGT_thermal_kW', 'SC_FP_m2', 'SC_ET_m2', 'PV_m2', 'Storage_thermal_kW', 'CT_kW', 'Capex_Centralized', 'Opex_Centralized', 'Capex_Decentralized', 'Opex_Decentralized'] district_supply_sys = pd.DataFrame(columns=district_supply_sys_columns) # get supply system configuration of a particular individual all_individuals = pd.read_csv(locator.get_optimization_all_individuals()) individual_system_configuration = all_individuals.loc[ (all_individuals['generation'].isin([generation])) & all_individuals['individual'].isin([individual])] if output_type_network == "DH": raise ValueError('This function is not ready for DH yet.') # TODO: update the results from optimization for DH (not available at the moment) network_name = 'DHN' network_connected_buildings, decentralized_buildings = calc_building_lists(individual_system_configuration, network_name) centralized_cost_detail_heating = pd.read_csv( locator.get_optimization_slave_investment_cost_detailed(individual, generation)) if output_type_network == "DC": network_name = 'DCN' network_connected_buildings, decentralized_buildings = calc_building_lists(individual_system_configuration, network_name) # get centralized system cen_cooling_sys_detail = calc_cen_supply_sys_cooling(generation, individual, district_supply_sys_columns, locator) district_supply_sys = district_supply_sys.append(cen_cooling_sys_detail) # get supply systems at decentralized buildings for building in decentralized_buildings: bui_cooling_sys_config = calc_building_supply_system(individual_system_configuration, network_name) district_supply_sys = district_supply_sys.append( calc_bui_sys_decentralized(building, bui_cooling_sys_config, district_supply_sys_columns, locator, config)) # get supply systems at network connected buildings for building in network_connected_buildings: district_supply_sys = district_supply_sys.append( calc_bui_sys_network_connected(building, district_supply_sys_columns, locator, config)) building_connectivity = pd.DataFrame({"Name": network_connected_buildings + decentralized_buildings, "Type": ["CENTRALIZED" for x in network_connected_buildings] + ["DECENTRALIZED" for x in decentralized_buildings]}) return district_supply_sys, building_connectivity def calc_bui_sys_network_connected(building, district_supply_sys_columns, locator, config): bui_sys_detail = pd.DataFrame(columns=district_supply_sys_columns, index=[building]) bui_sys_detail = bui_sys_detail.fillna(0.0) Capex_a_PV, Opex_a_PV, PV_installed_area_m2 = calc_pv_costs(building, config, locator) bui_sys_detail.loc[building, 'PV_m2'] = PV_installed_area_m2 bui_sys_detail.loc[building, 'Capex_Decentralized'] = Capex_a_PV bui_sys_detail.loc[building, 'Opex_Decentralized'] = Opex_a_PV return bui_sys_detail def calc_cen_costs_cooling(generation, individual, locator): cooling_costs = pd.read_csv( locator.get_optimization_slave_investment_cost_detailed_cooling(individual, generation)) capex_a_columns = [item for item in cooling_costs.columns if 'Capex_a' in item] cen_capex_a = cooling_costs[capex_a_columns].sum(axis=1).values[0] opex_a_columns = [item for item in cooling_costs.columns if 'Opex' in item] cen_opex_a = cooling_costs[opex_a_columns].sum(axis=1).values[0] return cen_capex_a, cen_opex_a def calc_cen_supply_sys_cooling(generation, individual, district_supply_sys_columns, locator): cooling_activation_column = ['Q_from_ACH_W', 'Q_from_Lake_W', 'Q_from_VCC_W', 'Q_from_VCC_backup_W', 'Q_from_storage_tank_W', 'Qc_CT_associated_with_all_chillers_W', 'Qh_CCGT_associated_with_absorption_chillers_W'] cooling_activation_pattern = pd.read_csv( locator.get_optimization_slave_cooling_activation_pattern(individual, generation)) cen_cooling_sys = cooling_activation_pattern[cooling_activation_column].max() cen_cooling_sys_detail = pd.DataFrame(columns=district_supply_sys_columns, index=['Centralized Plant']) cen_cooling_sys_detail = cen_cooling_sys_detail.fillna(0.0) cen_cooling_sys_detail.loc['Centralized Plant', 'Lake_kW'] = cen_cooling_sys['Q_from_Lake_W'] / 1000 # to kW cen_cooling_sys_detail.loc['Centralized Plant', 'VCC_LT_kW'] = (cen_cooling_sys['Q_from_VCC_W'] + cen_cooling_sys[ 'Q_from_VCC_backup_W']) / 1000 # to kW cen_cooling_sys_detail.loc['Centralized Plant', 'single_effect_ACH_HT_kW'] = cen_cooling_sys[ 'Q_from_ACH_W'] / 1000 # to kW cen_cooling_sys_detail.loc['Centralized Plant', 'Storage_thermal_kW'] = cen_cooling_sys[ 'Q_from_storage_tank_W'] / 1000 # to kW cen_cooling_sys_detail.loc['Centralized Plant', 'CT_kW'] = cen_cooling_sys[ 'Qc_CT_associated_with_all_chillers_W'] / 1000 # to kW cen_cooling_sys_detail.loc['Centralized Plant', 'CHP_CCGT_thermal_kW'] = cen_cooling_sys[ 'Qh_CCGT_associated_with_absorption_chillers_W'] / 1000 # to kW cen_capex_a, cen_opex_a = calc_cen_costs_cooling(generation, individual, locator) cen_cooling_sys_detail.loc['Centralized Plant', 'Capex_Centralized'] = cen_capex_a cen_cooling_sys_detail.loc['Centralized Plant', 'Opex_Centralized'] = cen_opex_a return cen_cooling_sys_detail # def calc_cen_supply_sys_electricity(network_name, generation, individual, locator): # if network_name == 'DCN': # el_activation_columns = ['Area_PV_m2', 'E_CHP_to_directload_W', 'E_CHP_to_grid_W', 'E_PV_W', 'E_from_grid_W'] # el_activation_pattern = pd.read_csv( # locator.get_optimization_slave_electricity_activation_pattern_cooling(individual, generation)) # el_sys_activation_pattern = el_activation_pattern[el_activation_columns] # el_sys_activation_pattern['E_CHP_W'] = el_activation_pattern['E_CHP_to_directload_W'] + el_activation_pattern[ # 'E_CHP_to_grid_W'] # el_sys_activation_pattern.drop('E_CHP_to_directload_W', axis=1, inplace=True) # el_sys_activation_pattern.drop('E_CHP_to_grid_W', axis=1, inplace=True) # cen_el_supply_sys = el_sys_activation_pattern.max() # elif network_name == 'DHN': # el_activation_columns = ['Area_PV_m2', 'E_CHP_to_directload_W', 'E_CHP_to_grid_W', 'E_PV_W', 'E_from_grid_W'] # el_activation_pattern = pd.read_csv( # locator.get_optimization_slave_electricity_activation_pattern_heating(individual, generation)) # el_sys_activation_pattern = el_activation_pattern[el_activation_columns] # el_sys_activation_pattern['E_CHP_W'] = el_activation_pattern['E_CHP_to_directload_W'] + el_activation_pattern[ # 'E_CHP_to_grid_W'] # el_sys_activation_pattern.drop('E_CHP_to_directload_W', axis=1, inplace=True) # el_sys_activation_pattern.drop('E_CHP_to_grid_W', axis=1, inplace=True) # cen_el_supply_sys = el_sys_activation_pattern.max() # else: # raise ValueError('Wrong network_name') # # return cen_el_supply_sys def calc_building_lists(individual_system_configuration, network_name): buildings_list = [item for item in individual_system_configuration.columns if network_name in item and 'B' in item] buildings_df = individual_system_configuration[buildings_list] network_connected_buildings = buildings_df[buildings_df[buildings_list] > 0.00000].dropna(axis=1).columns network_connected_buildings = [x.split()[0] for x in network_connected_buildings] decentralized_buildings = buildings_df[buildings_df[buildings_list] < 1.00000].dropna(axis=1).columns decentralized_buildings = [x.split()[0] for x in decentralized_buildings] return network_connected_buildings, decentralized_buildings def calc_building_supply_system(individual_system_configuration, network_name): all_configuration_dict = {1: "ARU_SCU", 2: "AHU_SCU", 3: "AHU_ARU", 4: "SCU", 5: "ARU", 6: "AHU", 7: "AHU_ARU_SCU"} unit_configuration_name = network_name + ' unit configuration' unit_configuration = int(individual_system_configuration[unit_configuration_name].values[0]) if unit_configuration in all_configuration_dict: decentralized_config = all_configuration_dict[unit_configuration] else: raise ValueError('DCN unit configuration does not exist.') return decentralized_config def calc_bui_sys_decentralized(building, bui_sys_config, district_supply_sys_columns, locator, config): # get nominal power and costs from disconnected calculation bui_results = pd.read_csv( locator.get_optimization_decentralized_folder_building_result_cooling(building, bui_sys_config)) bui_results_best = bui_results[bui_results['Best configuration'] > 0.0] technology_columns = [item for item in bui_results_best.columns if 'Nominal Power' in item] cost_columns = [item for item in bui_results_best.columns if 'Costs' in item] technology_columns.extend(cost_columns) bui_results_best = bui_results_best[technology_columns].reset_index(drop=True) # write building system configuration to output bui_sys_detail =
pd.DataFrame(columns=district_supply_sys_columns, index=[building])
pandas.DataFrame
import sys import matplotlib.pyplot as plt import pandas as pd import seaborn def print_as_comment(obj): print("\n".join(f"# {line}" for line in str(obj).splitlines())) if __name__ == "__main__": sys.path.append("../..") seaborn.set_style("whitegrid") # --- import pandas as pd import epymetheus as ep from epymetheus.benchmarks import dumb_strategy # --- my_strategy = ep.create_strategy(dumb_strategy, profit_take=20.0, stop_loss=-10.0) # --- from epymetheus.datasets import fetch_usstocks universe = fetch_usstocks() print(">>> universe.head()") print_as_comment(universe.head()) print(">>> my_strategy.run(universe)") my_strategy.run(universe) # --- df_history = my_strategy.history() df_history.head() print(">>> df_history.head()") print_as_comment(df_history.head()) # --- series_wealth = my_strategy.wealth() print(">>> series_wealth.head()") print_as_comment(series_wealth.head()) plt.figure(figsize=(16, 4)) plt.plot(series_wealth, linewidth=1) plt.xlabel("date") plt.ylabel("wealth [USD]") plt.title("Wealth") plt.savefig("wealth.png", bbox_inches="tight", pad_inches=0.1) # --- print(">>> my_strategy.score('final_wealth')") print_as_comment(my_strategy.score("final_wealth")) print(">>> my_strategy.score('max_drawdown')") print_as_comment(my_strategy.score("max_drawdown")) # my_strategy.score("sharpe_ratio") # --- drawdown = my_strategy.drawdown() exposure = my_strategy.net_exposure() plt.figure(figsize=(16, 4)) plt.plot(pd.Series(drawdown, index=universe.index), linewidth=1) plt.xlabel("date") plt.ylabel("drawdown [USD]") plt.title("Drawdown") plt.savefig("drawdown.png", bbox_inches="tight", pad_inches=0.1) plt.figure(figsize=(16, 4)) plt.plot(
pd.Series(exposure, index=universe.index)
pandas.Series
import logging import os import gc import pandas as pd from src.data_models.tdidf_model import FrequencyModel from src.evaluations.statisticalOverview import StatisticalOverview from src.globalVariable import GlobalVariable from src.kemures.tecnics.content_based import ContentBased from src.preprocessing.preprocessing import Preprocessing def execute_one_time(): Preprocessing.database_evaluate_graph() scenario = GlobalVariable.ONE_SCENARIO_SIZE scenario_class_df = pd.DataFrame() scenario_results_df = pd.DataFrame() for run in range(GlobalVariable.RUN_TIMES): os.system('cls||clear') logger.info("+ Rodada " + str(run + 1)) logger.info("+ Carregando o Cenário com " + str(scenario)) songs_base_df, users_preference_base_df = Preprocessing.load_data_test(scenario) run_class_df, run_results_df = ContentBased.run_recommenders( users_preference_base_df, FrequencyModel.mold(songs_base_df), scenario, run + 1 ) scenario_results_df = pd.concat([scenario_results_df, run_results_df]) scenario_class_df = pd.concat([scenario_class_df, run_class_df]) StatisticalOverview.result_info(scenario_results_df) StatisticalOverview.graphics(scenario_results_df) os.system('cls||clear') StatisticalOverview.comparate(scenario_results_df) def execute_by_scenarios(): Preprocessing.database_evaluate_graph() application_class_df = pd.DataFrame() application_results_df = pd.DataFrame() for scenario in GlobalVariable.SCENARIO_SIZE_LIST: gc.collect() scenario_class_df = pd.DataFrame() scenario_results_df = pd.DataFrame() for run in range(GlobalVariable.RUN_TIMES): os.system('cls||clear') logger.info("+ Rodada " + str(run + 1)) logger.info("+ Carregando o Cenário com " + str(scenario)) songs_base_df, users_preference_base_df = Preprocessing.load_data_test(scenario) run_class_df, run_results_df = ContentBased.run_recommenders( users_preference_base_df, FrequencyModel.mold(songs_base_df), scenario, run + 1 ) scenario_results_df = pd.concat([scenario_results_df, run_results_df]) scenario_class_df = pd.concat([scenario_class_df, run_class_df]) StatisticalOverview.result_info(scenario_results_df) StatisticalOverview.graphics(scenario_results_df) os.system('cls||clear') StatisticalOverview.comparate(scenario_results_df) application_results_df = pd.concat([scenario_results_df, application_results_df]) application_class_df =
pd.concat([scenario_class_df, application_class_df])
pandas.concat
from contextlib import contextmanager from time import time, sleep from .datasets import timeseries from .ops import spatial_mean, temporal_mean, climatology, anomaly from distributed import wait from distributed.utils import format_bytes import datetime from distributed import Client import pandas as pd import logging import os logger = logging.getLogger() logger.setLevel(level=logging.WARNING) here = os.path.dirname(os.path.abspath(os.path.dirname(__file__))) results_dir = os.path.join(here, "results") class DiagnosticTimer: def __init__(self): self.diagnostics = [] @contextmanager def time(self, **kwargs): tic = time() yield toc = time() kwargs["runtime"] = toc - tic self.diagnostics.append(kwargs) def dataframe(self): return
pd.DataFrame(self.diagnostics)
pandas.DataFrame
#!/usr/bin/python3 """ This module is supposed to take care of visualizational concerns especially if it is about plotting data """ from gisme import (figure_path, lon_col, lat_col, de_load, bbox, variable_dictionary, data_path, nuts3_01res_shape, nuts0_shape, isin_path, log, demography_file) from gisme.WeatherReader import WeatherReader from gisme.LoadReader import LoadReader from gisme.Predictions import ARMAXForecast from gisme.Utility import Utility import os import itertools import pandas as pd import numpy as np import shapefile as shp from datetime import datetime,timedelta from descartes import PolygonPatch from statsmodels.graphics.tsaplots import plot_acf, plot_pacf from matplotlib import pyplot as plt, colors, cm, markers, rc, rcParams from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() # rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']}) # ## for Palatino and other serif fonts use: # #rc('font',**{'family':'serif','serif':['Palatino']}) # rc('text',usetex=True) # plt.rc('text',usetex=True) # plt.rc('font',family='serif') class DataPlotter: """ handles plotting for load and weather data Attributes ---------- fmt : string preferred output format of plots such as 'pdf', 'eps', 'jpg' or similar supported by matplotlib save : boolean whether to save plot or not show : boolean whether to display plot or not shape : integer tuple for map multiplot, specify arrangement as tuple of length 2 isin : boolean for map plot, whether to filter by isinDE mask wreader : WeatherReader used to load weather data lreader : LoadReader used to load load data """ def __init__(self, fmt='pdf', save=True, show=False, shape=None, isin=False): """Initializes WeatherPlot instance Parameters ---------- fmt : string format that figure is saved to save : boolean whether to save plots to file or not show : boolean whether to show plots or not shape : tuple if multiplot should be plotted,specify shape isin : boolean whether to filter values from outside germany Returns ------- None """ self.fmt = fmt self.save = save self.show = show self.shape = shape self.isin = isin self.wreader = WeatherReader(self.isin) self.lreader = LoadReader() # #change font size depending on size of plot # if self.shape is not None: # rcParams.update({'font.size': 18./np.round(np.sqrt(self.shape[0]*self.shape[1]))}) # else: # rcParams.update({'font.size': 18.}) def __save_show_fig(self, fig, dir_pth, file_name): """Save and show the passed figure if specified and finally close it Parameters ---------- fig : matplotlib.figure.Figure the created figure dir_pth : string the path to the directory to save to file_name : string the file name to save to Returns ------- None """ if self.save: log.info(f'saving plot in {file_name}') if not os.path.exists(dir_pth): os.makedirs(dir_pth) if type(self.fmt) is list: for f in self.fmt: fig.savefig(f'{file_name}.{f}', bbox_inches='tight', format=f, optimize=True, dpi=150) else: fig.savefig(f'{file_name}.{self.fmt}', bbox_inches='tight', format=self.fmt, optimize=True, dpi=150) if self.show: plt.show() # close figures as they won't be closed automatically by python during runtime plt.close(fig) def __create_ax_map(self, ax, variable, time, norm, xlbl_true=None, ylbl_true=None): """Plot a map of germany on the given axis Parameters ---------- ax : matplotlib.axes.Axes the axis used to plot variable : string the name of the weather variable time : datetime.datetime the time for which to plot the variable norm : matplotlib.colors.BoundaryNorm the norm for color distribution xlbl_true : bool wether to plot a label for the x-axis or not ylbl_true : bool wether to plot a label for the y-axis or not Returns ------- None """ if self.isin: data = self.wreader.vals4time(variable, time, isin=True) data.plot.imshow(ax=ax, cmap='jet', extent=bbox, norm=norm, add_colorbar=False) else: data = self.wreader.vals4time(variable, time) ax.imshow(data.values, cmap='jet', extent=bbox, interpolation='bilinear', norm=norm) # read shapefile eu_shape = shp.Reader(nuts0_shape) de_shape = None for record in eu_shape.shapeRecords(): if 'DE' in record.record: de_shape = record break if de_shape is None: raise Exception('shape for germany could not be found!') # concatenate points so that single lines can be drawn state = de_shape.shape points = np.array(state.points) intervals = list(state.parts) + [len(state.points)] for (x, y) in zip(intervals[:-1], intervals[1:]): ax.plot(*zip(*points[x:y]), color='k', linewidth=2) ax.set_title(pd.to_datetime(time).strftime("%Y/%m/%d %HH")) # print x and y label only if is most left/lowest plot if xlbl_true: ax.set_xlabel(lon_col) else: ax.set_xlabel(None) if ylbl_true: ax.set_ylabel(lat_col) else: ax.set_ylabel(None) # set ticks for x and y in order to display the grid xticks = np.linspace(bbox[0], bbox[1], (bbox[1] - bbox[0]) * 4 + 1) ax.set_xticks(xticks, minor=True) yticks = np.linspace(bbox[2], bbox[3], (bbox[3] - bbox[2]) * 4 + 1) ax.set_yticks(yticks, minor=True) # plot own grid xgrid = np.linspace(bbox[0]+.125, bbox[1] - .125, num=(bbox[1] - bbox[0]) * 4) ygrid = np.linspace(bbox[2]+.125, bbox[3] - .125, num=(bbox[3] - bbox[2]) * 4) for xpoint in xgrid: ax.axvline(xpoint, alpha=.2, color='k', linewidth=.5, linestyle='--') for ypoint in ygrid: ax.axhline(ypoint, alpha=.2, color='k', linewidth=.5, linestyle='--') def __plot_days(self, days, fname): """Plot data for each day in days list and save file with specified format about file name format for single days: the leading number indicates the position in terms of min/max --> for min,0 means it's the smallest value, for max,the highest number corresponds to the highest value Parameters ---------- days : list list of days fname : string to name folder Returns ------- None """ assert (self.shape is None or self.shape[0]*self.shape[1] == len(days)),\ "shape of plot must fit with number of plots" var = days.name cm_jet = cm.get_cmap('jet') vmin, vmax = self.wreader.get_minmax(var) norm = colors.BoundaryNorm(np.linspace(vmin, vmax, 256), ncolors=256) cbox_ticks = np.linspace(vmin, vmax, 8) smap = cm.ScalarMappable(norm=norm, cmap=cm_jet) if self.shape is not None: fig, axs = plt.subplots(*self.shape, constrained_layout=True) day_list = list(days['time'].values) for xcoord in range(0, self.shape[1]): for ycoord in range(0, self.shape[0]): ax = axs[xcoord, ycoord] day = day_list.pop() self.__create_ax_map(ax, var, day, norm, xcoord == (self.shape[1] - 1), ycoord == 0) cbar = fig.colorbar(smap, ticks=cbox_ticks, ax=axs.ravel().tolist()) cbar.set_label(self.wreader.get_long_name(var)) dir_pth = os.path.join(figure_path, var, 'bundles') file_name = os.path.join(dir_pth, f'{fname}{len(days)}_maps{"_isin" if self.isin else ""}') self.__save_show_fig(fig, dir_pth, file_name) else: for day_num, day in enumerate(days["time"].values): fig, ax = plt.subplots() self.__create_ax_map(ax, var, day, norm, xlbl_true=True, ylbl_true=True) cbar = fig.colorbar(smap, ticks=cbox_ticks) cbar.set_label(self.wreader.get_long_name(var)) dir_pth = os.path.join(figure_path, var, fname) file_name = os.path.join(dir_pth, f'{day_num}_map{"_isin" if self.isin else ""}') self.__save_show_fig(fig, dir_pth, file_name) def plot_nmin(self, var, n=4): """Plot/save the n days with the smallest values for the specified variable reduced over longitude and latitude Parameters ---------- var : string name of variable n : integer number of plots Returns ------- None """ assert var in self.wreader.get_vars(), f"variable '{var}' not found" days = self.wreader.nmin_val_days(var, n) self.__plot_days(days, 'min') def plot_nmax(self, var, n=4): """Plot/save the n days with the largest values for the specified variable reduced over longitude and latitude Parameters ---------- var : string name of variable n : integer number of plots Returns ------- None """ assert var in self.wreader.get_vars(), f"variable '{var}' not found" days = self.wreader.nmax_val_days(var, n) self.__plot_days(days, 'max') def plot_nmin_var(self, var, n=4): """Plot/save the n days with the smallest variance for the specified variable reduced over longitude and latitude Parameters ---------- var : string name of variable n : integer number of plots Returns ------- None """ assert var in self.wreader.get_vars(), f"variable '{var}' not found" days = self.wreader.nminvar_val_days(var, n) self.__plot_days(days, 'minvar') def plot_nmax_var(self, var, n=4): """Plot/save the n days with the largest variance for the specified variable reduced over longitude and latitude Parameters ---------- var : string name of variable n : integer number of plots Returns ------- None """ assert var in self.wreader.get_vars(), f"variable '{var}' not found" days = self.wreader.nmaxvar_val_days(var, n) self.__plot_days(days, 'maxvar') def plot_nmin_mean(self, var, n=4): """Plot/save the n days with the smallest mean for the specified variable reduced over longitude and latitude Parameters ---------- var : string name of variable n : integer number of plots Returns ------- None """ assert var in self.wreader.get_vars(), f"variable '{var}' not found" days = self.wreader.nminmean_val_days(var, n) self.__plot_days(days, 'minmean') def plot_nmax_mean(self, var, n=4): """Plot/save the n days with the largest mean for the specified variable reduced over longitude and latitude Parameters ---------- var : string name of variable n : integer number of plots Returns ------- None """ assert var in self.wreader.get_vars(), f"variable '{var}' not found" days = self.wreader.nmaxmean_val_days(var, n) self.__plot_days(days, 'maxmean') def plot_nmin_med(self, var, n=4): """Plot/save the n days with the smallest median for the specified variable reduced over longitude and latitude Parameters ---------- var : string name of variable n : integer number of plots Returns ------- None """ assert var in self.wreader.get_vars(), f"variable '{var}' not found" days = self.wreader.nminmed_val_days(var, n) self.__plot_days(days, 'minmed') def plot_nmax_med(self, var, n=4): """Plot/save the n days with the largest median for the specified variable reduced over longitude and latitude Parameters ---------- var : string name of variable n : integer number of plots Returns ------- None """ assert var in self.wreader.get_vars(), f"variable '{var}' not found" days = self.wreader.nmaxmed_val_days(var, n) self.__plot_days(days, 'maxmed') def plot_nmin_sum(self, var, n=4): """Plot/save the n days with the smallest sum for the specified variable reduced over longitude and latitude Parameters ---------- var : string name of variable n : integer number of plots Returns ------- None """ assert var in self.wreader.get_vars(), f"variable '{var}' not found" days = self.wreader.nminsum_val_days(var, n) self.__plot_days(days, 'minsum') def plot_nmax_sum(self, var, n=4): """Plot/save the n days with the largest sum for the specified variable reduced over longitude and latitude Parameters ---------- var : string name of variable n : integer number of plots Returns ------- None """ assert var in self.wreader.get_vars(), f'variable "{var}" not found' days = self.wreader.nmaxsum_val_days(var, n) self.__plot_days(days, 'maxsum') def plot_isin(self): """Plot map showing which grid points are within germany Returns ------- None """ try: contained = np.load(os.path.join(isin_path, 'isinDE.npy')) except: log.info(f'isin file not found in {data_path}') util = Utility() contained = util.check_isinDE() fig, ax = plt.subplots() ax.imshow(contained, cmap=plt.cm.Greys, extent=bbox) ax.set_ylabel(lat_col) ax.set_xlabel(lon_col) file_name = os.path.join(figure_path, 'isinDE') self.__save_show_fig(fig, figure_path, file_name) def plot_isin_region(self, region_id): """Plot map showing which grid points are within specified region Parameters ---------- region_id : string the id of the region as string Returns ------- None """ util = Utility() try: contained = np.load(os.path.join(isin_path, f'isin{region_id}.npy')) except: log.info(f'isin file not found in {isin_path} for region {region_id}') contained = util.check_isin_region(region_id) fig, ax = plt.subplots() ax.imshow(contained, cmap=plt.cm.Greys, extent=bbox) ax.set_ylabel(lat_col) ax.set_xlabel(lon_col) file_name = os.path.join(figure_path, f'isin{util.get_region_name(region_id)}_{region_id}') self.__save_show_fig(fig, figure_path, file_name) def plot_isin_top_n(self, n, year): """Plot map showing which grid points are within n regions with highest population for specified year Parameters ---------- n : integer number of regions with highest population to plot year : integer specifies for which year population is checked Returns ------- None """ util = Utility() contained = util.demo_top_n_regions_map(n,2018) fig, ax = plt.subplots() ax.imshow(contained, cmap=plt.cm.Greys, extent=bbox) ax.set_ylabel(lat_col) ax.set_xlabel(lon_col) file_name = os.path.join(figure_path, f'isin_top{n}_year{year}') self.__save_show_fig(fig, figure_path, file_name) def plot_demo4year(self, year): """Plot a map of germany showing regional population data on NUTS 3 level Parameters ---------- year : int name of variable Returns ------- None """ assert (year >= 2015 and year <=2018), "demography data only existing from 2015 to 2018" demo_df = pd.read_csv(demography_file, encoding='latin1', index_col='GEO') demo_df['Value'] = demo_df['Value'].map(lambda val: pd.NaT if val == ':' else float(val.replace(',', ''))) df = demo_df[demo_df['TIME'] == year] with shp.Reader(nuts3_01res_shape) as nuts3_sf: regions = [rec for rec in nuts3_sf.shapeRecords() if rec.record['CNTR_CODE'] == 'DE'] values = np.array([df.loc[region.record['NUTS_ID'], :]['Value'] for region in regions]) / 1000 _min = values.min() _max = values.max() fig, ax = plt.subplots() plt.xlim([5.5, 15.5]) plt.ylim([47, 55.5]) ax.set_xlabel(lon_col) ax.set_ylabel(lat_col) # for logarithmic colorbar cbox_bound = np.exp(np.linspace(np.log(_min), np.log(_max), 256)) norm = colors.BoundaryNorm(cbox_bound, ncolors=256) sm = cm.ScalarMappable(norm=norm, cmap=cm.get_cmap('jet')) cbar = plt.colorbar(sm) cbar.set_label('inhabitants (in 1k)') for value, region in zip(values, regions): ax.add_patch(PolygonPatch(region.shape.__geo_interface__, fc=sm.to_rgba(value), ec='none')) dir_pth = os.path.join(figure_path, 'demo') file_name = os.path.join(dir_pth, f'demo{year}_logscale') self.__save_show_fig(fig, dir_pth, file_name) def plot_load_acf(self, lags=48, hour_steps=1, ndiff=0): """Plot autocorrelation plot of load data within given time range and given lags, hour steps and number of differences Parameters ---------- lags : integer specifies number of lags shown on plot hour_steps : integer specifies time steps in data in hours ndiff : integer specifies how often to differentiate before plotting Returns ------- None """ data = self.lreader.vals4step(de_load, step=hour_steps).interpolate_na(dim='utc_timestamp', method='linear')\ .diff(dim='utc_timestamp', n=ndiff).values fig = plot_acf(data, fft=True, use_vlines=True, lags=lags) dir_pth = os.path.join(figure_path, 'ACF') file_name = os.path.join(dir_pth, f'load_{lags}lags_ndiff{ndiff}_hstep{hour_steps}') self.__save_show_fig(fig, dir_pth, file_name) def plot_load_pacf(self, lags=48, hour_steps=1, ndiff=0): """Plot partial autocorrelation plot of load data within given time range and given lags, hour steps and number of differneces Parameters ---------- lags : integer specifies number of lags shown on plot hour_steps : integer specifies time steps in data in hours ndiff : integer specifies how often to differentiate before plotting Returns ------- None """ data = self.lreader.vals4step(de_load, step=hour_steps).interpolate_na(dim='utc_timestamp', method='linear')\ .diff(dim='utc_timestamp', n=ndiff).values fig = plot_pacf(data, use_vlines=True, lags=lags) dir_pth = os.path.join(figure_path, 'PACF') file_name = os.path.join(dir_pth, f'load_{lags}lags_ndiff{ndiff}_hstep{hour_steps}') self.__save_show_fig(fig, dir_pth, file_name) def plot_load_time_func(self, var, start, stop, func, load_col=de_load, freq=24, aspect=(12, 5), skip_bottom_labels=False): """Plot/save function of load and date with variable after applying given function to its data Parameters ---------- var : string name of variable to plot start : pandas.Timestamp starting time (e.g. start = pandas.Timestamp(datetime(2015,1,1,12),tz='utc')) stop : pandas.Timestamp stopping time func : function object function applied to weather data to reduce over longitude and latitude load_col : string specifies column in load file that will be plotted freq : integer (where freq mod 2 == 0, as resolution of data is 2H) specifies in what frequency of hours points will be plotted aspect : tuple of ints defines the aspect ratio of the plot skip_bottom_labels : boolean specifies whether to skip the bottom label or not Returns ------- None """ assert (freq % 2 == 0), "frequency must be dividable by 2 as resolution of data is 2h" fname = func.__name__ rng =
pd.date_range(start, stop, freq=f'{freq}H')
pandas.date_range
# -*- coding: utf-8 -*- """ This module holds Classes and Functions for solving linear optimisation problems based on tabular data. Please use this module with care. It is work in progress and properly tested yet! Contact: <NAME> <<EMAIL>> SPDX-License-Identifier: MIT """ import datetime import logging import os import pickle import warnings from copy import deepcopy import oemof.solph as solph import pandas as pd from .external import Scenario from .postprocessing import analyse_bus from .postprocessing import analyse_costs from .postprocessing import analyse_emissions from .postprocessing import get_all_sequences from .postprocessing import get_boundary_flows from .postprocessing import get_trafo_flow from .setup_model import add_buses from .setup_model import add_links from .setup_model import add_sinks from .setup_model import add_sinks_fix from .setup_model import add_sources from .setup_model import add_sources_fix from .setup_model import add_storages from .setup_model import add_transformer from .setup_model import check_active from .setup_model import check_nonconvex_invest_type from .setup_model import load_csv_data class DistrictScenario(Scenario): """Scenario class for urban energy systems""" def __init__(self, **kwargs): super().__init__(**kwargs) self.input_path = kwargs.get("input_path", None) self.emission_limit = kwargs.get("emission_limit", None) self.location = kwargs.get("location", None) self.number_of_time_steps = \ kwargs.get("number_of_time_steps", 10) self.results = dict() def load_csv(self, path=None): if path is not None: self.location = path self.table_collection = load_csv_data(self.location) return self def check_input(self): self.table_collection = check_active(self.table_collection) self.table_collection = check_nonconvex_invest_type( self.table_collection) return self def initialise_energy_system(self): """Initialises the oemof.solph Energysystem.""" date_time_index = pd.date_range( "1/1/{0}".format(self.year), periods=self.number_of_time_steps, freq="H" ) self.es = solph.EnergySystem(timeindex=date_time_index) def create_nodes(self): nd = self.table_collection nod, busd = add_buses(nd['Bus']) nod.extend( add_sources(nd['Source'], busd, nd['Timeseries']) + add_sources_fix(nd['Source_fix'], busd, nd['Timeseries']) + add_sinks(nd['Sink'], busd, nd['Timeseries']) + add_sinks_fix(nd['Sink_fix'], busd, nd['Timeseries']) + add_storages(nd['Storages'], busd) + add_transformer(nd['Transformer'], busd, nd['Timeseries']) ) if 'Link' in nd.keys(): nod.extend(add_links(nd['Link'], busd)) return nod def table2es(self): if self.es is None: self.initialise_energy_system() self.check_input() nodes = self.create_nodes() self.es.add(*nodes) def add_emission_constr(self): if self.emission_limit is not None: if self.model is not None: solph.constraints.generic_integral_limit( self.model, keyword='emission_factor', limit=self.emission_limit) else: ValueError("The model must be created first.") return self def add_couple_invest_contr(self, couple_invest_flow): """ Adds a solph.contraint for coupling investment flows. syntax of couple_invest_flow: couple_invest_flow={ 'flow1': ("label_from", "label_to"), 'flow2': ("label_from", "label_to"), } Make sure, that these flows are InvestmentFlows. """ flow1_from = self.es.groups[couple_invest_flow['flow1'][0]] flow1_to = self.es.groups[couple_invest_flow['flow1'][1]] investflow_1 = \ self.model.InvestmentFlow.invest[flow1_from, flow1_to] flow2_from = self.es.groups[couple_invest_flow['flow2'][0]] flow2_to = self.es.groups[couple_invest_flow['flow2'][1]] investflow_2 = \ self.model.InvestmentFlow.invest[flow2_from, flow2_to] solph.constraints.equate_variables( self.model, investflow_1, investflow_2, factor1=1, name="couple_investment_flows" ) def solve(self, with_duals=False, tee=True, logfile=None, solver=None, couple_invest_flow=None, **kwargs): if self.es is None: self.table2es() self.create_model() self.add_emission_constr() if couple_invest_flow is not None: self.add_couple_invest_contr(couple_invest_flow) logging.info("Optimising using {0}.".format(solver)) if with_duals: self.model.receive_duals() if self.debug: filename = os.path.join( solph.helpers.extend_basic_path("lp_files"), "q100opt.lp" ) self.model.write( filename, io_options={"symbolic_solver_labels": True} ) logging.info("Store lp-file in {0}.".format(filename)) solver_kwargs = { "solver_cmdline_options": kwargs.get( "solver_cmdline_options", {})} self.model.solve( solver=solver, solve_kwargs={"tee": tee, "logfile": logfile}, **solver_kwargs ) # store directly at district energy system self.results["main"] = solph.processing.results(self.model) self.results["meta"] = solph.processing.meta_results(self.model) self.results["param"] = solph.processing.parameter_as_dict(self.es) self.results["meta"]["scenario"] = self.scenario_info(solver) if self.location is not None: self.results["meta"]["in_location"] = self.location self.results['meta']["datetime"] = datetime.datetime.now() self.results["meta"]["solph_version"] = solph.__version__ self.results['meta']['emission_limit'] = self.emission_limit self.results['meta']['solver']['solver'] = solver self.results['costs'] = self.model.objective() self.results['table_collection'] = self.table_collection if hasattr(self.model, 'integral_limit_emission_factor'): self.results['emissions'] = \ self.model.integral_limit_emission_factor() self.results['timeindex'] = self.es.timeindex def plot(self): pass def tables_to_csv(self, path=None): """Dump scenario into a csv-collection.""" if path is None: bpath = os.path.join(os.path.expanduser("~"), ".q100opt") if not os.path.isdir(bpath): os.mkdir(bpath) dpath = os.path.join(bpath, "dumps") if not os.path.isdir(dpath): os.mkdir(dpath) path = os.path.join(dpath, "csv_export") if not os.path.isdir(path): os.mkdir(path) for name, df in self.table_collection.items(): name = name.replace(" ", "_") + ".csv" filename = os.path.join(path, name) df.to_csv(filename) logging.info("Scenario saved as csv-collection to {0}".format(path)) def tables_to_excel(self, dpath=None, filename=None): """Dump scenario into an excel-file.""" if dpath is None: bpath = os.path.join(os.path.expanduser("~"), ".q100opt") if not os.path.isdir(bpath): os.mkdir(bpath) dpath = os.path.join(bpath, "dumps") if not os.path.isdir(dpath): os.mkdir(dpath) if filename is None: filename = "ds_dump.xlsx" writer = pd.ExcelWriter(os.path.join(dpath, filename)) for name, df in sorted(self.table_collection.items()): df.to_excel(writer, name) writer.save() logging.info("Scenario saved as excel file to {0}".format(filename)) def dump(self, path=None, filename=None): """Dump results of District scenario.""" if path is None: bpath = os.path.join(os.path.expanduser("~"), ".q100opt") if not os.path.isdir(bpath): os.mkdir(bpath) dpath = os.path.join(bpath, "dumps") if not os.path.isdir(dpath): os.mkdir(dpath) path = os.path.join(dpath, "energysystem") if not os.path.isdir(path): os.mkdir(path) if filename is None: filename = "ds_dump.oemof" if not os.path.isdir(path): os.makedirs(path) dump_des = deepcopy(self) if dump_des.model is not None: setattr(dump_des, 'model', None) if dump_des.es is not None: setattr(dump_des, 'es', None) pickle.dump( dump_des.__dict__, open(os.path.join(path, filename), "wb") ) logging.info("DistrictScenario dumped" " to {} as {}".format(path, filename)) def restore(self, path=None, filename=None): """Restores a district energy system from dump.""" self.__dict__ = load_district_scenario(path, filename).__dict__ logging.info("DistrictEnergySystem restored.") def analyse_results(self, heat_bus_label='b_heat', elec_bus_label='b_elec'): """Calls all analysis methods.""" for label in [heat_bus_label, elec_bus_label]: check_label(self.results['main'], label) self.analyse_costs() self.analyse_emissions() self.analyse_kpi() self.analyse_sequences() self.results['sum'] = self.results['sequences'].sum() self.analyse_boundary_flows() self.analyse_heat_generation_flows(heat_bus_label=heat_bus_label) self.analyse_heat_bus(heat_bus_label=heat_bus_label) self.analyse_electricity_bus(elec_bus_label=elec_bus_label) def analyse_costs(self): """Performs a cost analysis.""" if 'cost_analysis' not in self.results.keys(): self.results['cost_analysis'] = analyse_costs( results=self.results ) logging.info("Economic analysis completed.") # check if objective and recalculation match total_costs = self.results['cost_analysis']['all']['costs'].sum() objective_value = self.results['meta']['objective'] if abs(total_costs - objective_value) > 0.01: raise ValueError( "The objective value and the re-calculated costs do not match!" ) else: logging.info( "Check passed: Objective value and recalculated costs match." ) return self.results['cost_analysis'] def analyse_emissions(self): """Performs a summary of emissions of the energy system.""" if 'emission_analysis' not in self.results.keys(): self.results['emission_analysis'] = analyse_emissions( results=self.results ) logging.info("Emission analysis completed.") # check if constraint and recalculation match total_em = self.results[ 'emission_analysis']['sum']['emissions'].sum() emission_value = self.results['emissions'] if abs(total_em - emission_value) > 0.01: raise ValueError( "The constraint emission value and the re-calculated emissions" " do not match!" ) else: logging.info( "Check passed: Constraint emission value and recalculated" " emission match." ) return self.results['emission_analysis'] def analyse_kpi(self, label_end_energy=None): """Description.""" if label_end_energy is None: label_end_energy = ['demand_heat'] if 'kpi' not in self.results.keys(): costs = self.results['meta']['objective'] emissions = self.results['emissions'] end_energy = sum([ solph.views.node( self.results['main'], x)["sequences"].values.sum() for x in label_end_energy]) kpi_dct = { 'absolute costs [€/a]': costs, 'absolute emission [kg/a]': emissions, 'end_energy [kWh/a]': end_energy, 'specific costs [€/kWh]': costs/end_energy, 'specific emission [kg/kWh]': emissions/end_energy, } kpi = pd.Series(kpi_dct) self.results['kpi'] = kpi else: kpi = self.results['kpi'] return kpi def analyse_sequences(self): """...""" if 'sequences' not in self.results.keys(): self.results['sequences'] = \ get_all_sequences(self.results['main']) ind_length = len(self.results['timeindex']) df_param = self.results['table_collection']['Timeseries'].copy() df_param = df_param.iloc[:ind_length] list_of_tuples = [ ('parameter', x.split('.')[0], x.split('.')[1]) for x in df_param.columns ] df_param.columns = pd.MultiIndex.from_tuples(list_of_tuples) df_param.index = self.results['timeindex'] self.results['sequences'] = pd.concat( [self.results['sequences'], df_param], axis=1 ) logging.info("All sequences processed into one DataFrame.") return self.results['sequences'] def analyse_boundary_flows(self): """ Returns the sequences and sums of all sinks and sources. See postprocessing.get_boundary_flows! """ if 'boundary_flows' not in self.results.keys(): self.results['boundary_flows'] = \ get_boundary_flows(self.results['main']) logging.info("Boundary flows analysis completed.") return self.results['boundary_flows'] def analyse_heat_generation_flows(self, heat_bus_label='b_heat'): """Gets all heat generation flows.""" if 'heat_generation' not in self.results.keys(): self.results['heat_generation'] = \ get_trafo_flow(self.results['main'], label_bus=heat_bus_label) logging.info("Heat generation flow analysis completed.") return self.results['heat_generation'] def analyse_heat_bus(self, heat_bus_label='b_heat'): """...""" if 'heat_bus' not in self.results.keys(): self.results['heat_bus'] = \ analyse_bus(self.results['main'], bus_label=heat_bus_label) logging.info("Heat bus analysed.") return self.results['heat_bus'] def analyse_electricity_bus(self, elec_bus_label='b_elec'): """...""" if 'electricity_bus' not in self.results.keys(): self.results['electricity_bus'] = \ analyse_bus(self.results['main'], bus_label=elec_bus_label) logging.info("Electricity bus analysed.") return self.results['electricity_bus'] def load_district_scenario(path, filename): """Load a DistrictScenario class.""" des_restore = DistrictScenario() des_restore.__dict__ = \ pickle.load(open(os.path.join(path, filename), "rb")) return des_restore def check_label(results, label): """...""" pass class ParetoFront(DistrictScenario): """Class for calculation pareto fronts with costs and emission.""" def __init__(self, emission_limits=None, number_of_points=2, dist_type='linear', off_set=1, **kwargs): super().__init__(**kwargs) self.number = number_of_points self.dist_type = dist_type self.off_set = off_set self.table_collection_co2opt = None self.ds_min_co2 = None self.ds_max_co2 = None self.e_min = None self.e_max = None self.emission_limits = emission_limits self.district_scenarios = dict() self.pareto_front = None # ToDo: sort results District Scenarios # self.ordered_scenarios = [ # str(x) for x in sorted([int(x) for x in self.des.keys()], # reverse=True) # ] def _get_min_emission(self, **kwargs): """Calculates the pareto point with minimum emission.""" sc_co2opt = DistrictScenario( emission_limit=1000000000, table_collection=self.table_collection_co2opt, number_of_time_steps=self.number_of_time_steps, year=self.year, ) sc_co2opt.solve(**kwargs) return sc_co2opt def _get_max_emssion(self, **kwargs): sc_costopt = DistrictScenario( emission_limit=1000000000, table_collection=self.table_collection, number_of_time_steps=self.number_of_time_steps, year=self.year, ) sc_costopt.solve(**kwargs) return sc_costopt def _calc_emission_limits(self): """Calculates the emission limits of the pareto front.""" if self.dist_type == 'linear': limits = [] e_start = self.e_min + self.off_set interval = (self.e_max - e_start) / (self.number - 1) for i in range(self.number): limits.append(e_start + i * interval) elif self.dist_type == 'logarithmic': limits = [] e_start = self.e_min + self.off_set lim_last = self.e_max limits.append(lim_last) for i in range(self.number-2): lim_last = lim_last - (lim_last - e_start) * 0.5 limits.append(lim_last) limits.append(e_start) else: raise ValueError( 'No other method than "linear" for calculation the emission' ' limits implemented yet.' ) return limits def _get_pareto_results(self): """Gets all cost an emission values of pareto front.""" index = list(self.district_scenarios.keys()) columns = ['costs', 'emissions'] df_pareto = pd.DataFrame(index=index, columns=columns) for r, _ in df_pareto.iterrows(): df_pareto.at[r, 'costs'] = \ self.district_scenarios[r].results['costs'] df_pareto.at[r, 'emissions'] = \ self.district_scenarios[r].results['emissions'] return df_pareto def calc_pareto_front(self, dump_esys=False, **kwargs): """ Calculates the Pareto front for a given number of points, or for given emission limits. First, the cost-optimal and emission optimal solutions are calculated. Therefore, two optimisation runs are performed. For the emission optimisation, the table_collection is prepared by exchanging the `variable_cost` values and the `emission_factor` values. """ if self.table_collection is not None: self.table_collection_co2opt = \ co2_optimisation(self.table_collection) else: ValueError('Provide a table_collection!') self.ds_min_co2 = self._get_min_emission(**kwargs) self.ds_max_co2 = self._get_max_emssion(**kwargs) self.e_min = self.ds_min_co2.results['meta']['objective'] self.e_max = self.ds_max_co2.results['emissions'] if self.emission_limits is None: self.emission_limits = self._calc_emission_limits() for e in self.emission_limits: # Scenario name relative to emission range e_rel = (e - self.e_min) / (self.e_max - self.e_min) e_str = "{:.2f}".format(e_rel) # e_str = str(int(round(e))) ds_name = self.name + '_' + e_str ds = DistrictScenario( name=ds_name, emission_limit=e, table_collection=self.table_collection, number_of_time_steps=self.number_of_time_steps, year=self.year, ) ds.solve(**kwargs) self.district_scenarios.update( {e_str: ds} ) if dump_esys: esys_path = os.path.join(self.results_fn, self.name, "energy_system") if not os.path.isdir(esys_path): os.mkdir(esys_path) ds.dump(path=esys_path, filename=e_str + '_dump.des') self.results['pareto_front'] = self._get_pareto_results() def store_results(self, path=None): """ Store main results and input table of pareto front in a not python readable way (.xlsx / .csv). """ if path is None: bpath = os.path.join(os.path.expanduser("~"), ".q100opt") if not os.path.isdir(bpath): os.mkdir(bpath) dpath = os.path.join(bpath, "dumps") if not os.path.isdir(dpath): os.mkdir(dpath) path = os.path.join(dpath, "pareto") if not os.path.isdir(path): os.mkdir(path) # store table_collection tables_path = os.path.join(path, "input_tables") if not os.path.isdir(tables_path): os.mkdir(tables_path) for name, df in self.table_collection.items(): name = name.replace(" ", "_") + ".csv" filename = os.path.join(tables_path, name) df.to_csv(filename) logging.info( "Scenario saved as csv-collection to {0}".format(tables_path)) # store pareto results path_pareto = os.path.join(path, 'pareto_results.xlsx') self.results['pareto_front'].to_excel(path_pareto) logging.info( "Pareto front table saved as xlsx to {0}".format(path_pareto)) def dump(self, path=None, filename=None): """ Dumps the results of the pareto front instance. The oemof.solph.EnergySystems and oemof.solph.Models of the q100opt.DistrictScenarios are removed before dumping, only the results are dumped. """ # delete all oemof.solph.EnergySystems and oemof.solph.Models for _, v in self.__dict__.items(): if hasattr(v, 'es') or hasattr(v, 'model'): setattr(v, 'es', None) setattr(v, 'model', None) for _, des in self.district_scenarios.items(): setattr(des, 'es', None) setattr(des, 'model', None) pickle.dump( self.__dict__, open(os.path.join(path, filename), "wb") ) logging.info( "ParetoFront dumped to {} as {}".format(path, filename) ) def restore(self, path=None, filename=None): """Restores a district energy system from dump.""" self.__dict__ = load_pareto_front(path, filename).__dict__ logging.info("DistrictEnergySystem restored.") def analyse_results(self, heat_bus_label='b_heat', elec_bus_label='b_elec'): """ Performs the analyse_results method of the DistrictScenario class for all scenarios of the pareto front. """ for _, des in self.district_scenarios.items(): des.analyse_results(heat_bus_label=heat_bus_label, elec_bus_label=elec_bus_label) self.results['kpi'] = self.analyse_kpi() self.results['heat_generation'] = self.analyse_heat_generation_flows( heat_bus_label=heat_bus_label ) self.results['sequences'] = self.analyse_sequences() self.results['sum'] = self.results['sequences'].sum().unstack(level=0) self.results['costs'] = self.get_all_costs() self.results['emissions'] = self.get_all_emissions() self.results['scalars'] = self.get_all_scalars() def analyse_kpi(self, label_end_energy=None): """ Performs some postprocessing methods for all DistrictEnergySystems. """ if label_end_energy is None: label_end_energy = ['demand_heat'] d_kpi = {} for e_key, des in self.district_scenarios.items(): d_kpi.update( {e_key: des.analyse_kpi(label_end_energy=label_end_energy)} ) df_kpi = pd.concat(d_kpi, axis=1) return df_kpi def get_all_costs(self): """ Puts all cost analysis of the individual DistrictScenarios into one Multi-index DataFrame. """ d_costs = {} for e_key, des in self.district_scenarios.items(): d_costs.update( {e_key: des.results["cost_analysis"]["all"].stack()} ) df_costs = pd.concat(d_costs, names=['emission_limit']) return df_costs.unstack(level=0).T def get_all_emissions(self): """ Puts all emissions analyses of the individual DistrictScenarios into one Multi-index DataFrame. """ d_emissions = {} for e_key, des in self.district_scenarios.items(): d_emissions.update( {e_key: pd.concat( {'emission': des.results["emission_analysis"]["sum"]} ).stack()} ) df_emissions =
pd.concat(d_emissions, names=['emission_limit'])
pandas.concat
from __future__ import division import pytest import numpy as np from datetime import timedelta from pandas import ( Interval, IntervalIndex, Index, isna, notna, interval_range, Timestamp, Timedelta, compat, date_range, timedelta_range, DateOffset) from pandas.compat import lzip from pandas.tseries.offsets import Day from pandas._libs.interval import IntervalTree from pandas.tests.indexes.common import Base import pandas.util.testing as tm import pandas as pd @pytest.fixture(scope='class', params=['left', 'right', 'both', 'neither']) def closed(request): return request.param @pytest.fixture(scope='class', params=[None, 'foo']) def name(request): return request.param class TestIntervalIndex(Base): _holder = IntervalIndex def setup_method(self, method): self.index = IntervalIndex.from_arrays([0, 1], [1, 2]) self.index_with_nan = IntervalIndex.from_tuples( [(0, 1), np.nan, (1, 2)]) self.indices = dict(intervalIndex=tm.makeIntervalIndex(10)) def create_index(self, closed='right'): return IntervalIndex.from_breaks(range(11), closed=closed) def create_index_with_nan(self, closed='right'): mask = [True, False] + [True] * 8 return IntervalIndex.from_arrays( np.where(mask, np.arange(10), np.nan), np.where(mask, np.arange(1, 11), np.nan), closed=closed) def test_constructors(self, closed, name): left, right = Index([0, 1, 2, 3]), Index([1, 2, 3, 4]) ivs = [Interval(l, r, closed=closed) for l, r in lzip(left, right)] expected = IntervalIndex._simple_new( left=left, right=right, closed=closed, name=name) result = IntervalIndex(ivs, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_intervals(ivs, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_breaks( np.arange(5), closed=closed, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_arrays( left.values, right.values, closed=closed, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_tuples( lzip(left, right), closed=closed, name=name) tm.assert_index_equal(result, expected) result = Index(ivs, name=name) assert isinstance(result, IntervalIndex) tm.assert_index_equal(result, expected) # idempotent tm.assert_index_equal(Index(expected), expected) tm.assert_index_equal(IntervalIndex(expected), expected) result = IntervalIndex.from_intervals(expected) tm.assert_index_equal(result, expected) result = IntervalIndex.from_intervals( expected.values, name=expected.name) tm.assert_index_equal(result, expected) left, right = expected.left, expected.right result = IntervalIndex.from_arrays( left, right, closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_tuples( expected.to_tuples(), closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) breaks = expected.left.tolist() + [expected.right[-1]] result = IntervalIndex.from_breaks( breaks, closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('data', [[np.nan], [np.nan] * 2, [np.nan] * 50]) def test_constructors_nan(self, closed, data): # GH 18421 expected_values = np.array(data, dtype=object) expected_idx = IntervalIndex(data, closed=closed) # validate the expected index assert expected_idx.closed == closed tm.assert_numpy_array_equal(expected_idx.values, expected_values) result = IntervalIndex.from_tuples(data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_breaks([np.nan] + data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_arrays(data, data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) if closed == 'right': # Can't specify closed for IntervalIndex.from_intervals result = IntervalIndex.from_intervals(data) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) @pytest.mark.parametrize('data', [ [], np.array([], dtype='int64'), np.array([], dtype='float64'), np.array([], dtype=object)]) def test_constructors_empty(self, data, closed): # GH 18421 expected_dtype = data.dtype if isinstance(data, np.ndarray) else object expected_values = np.array([], dtype=object) expected_index = IntervalIndex(data, closed=closed) # validate the expected index assert expected_index.empty assert expected_index.closed == closed assert expected_index.dtype.subtype == expected_dtype tm.assert_numpy_array_equal(expected_index.values, expected_values) result = IntervalIndex.from_tuples(data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_breaks(data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_arrays(data, data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) if closed == 'right': # Can't specify closed for IntervalIndex.from_intervals result = IntervalIndex.from_intervals(data) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) def test_constructors_errors(self): # scalar msg = ('IntervalIndex\(...\) must be called with a collection of ' 'some kind, 5 was passed') with tm.assert_raises_regex(TypeError, msg): IntervalIndex(5) # not an interval msg = ("type <(class|type) 'numpy.int64'> with value 0 " "is not an interval") with tm.assert_raises_regex(TypeError, msg): IntervalIndex([0, 1]) with tm.assert_raises_regex(TypeError, msg): IntervalIndex.from_intervals([0, 1]) # invalid closed msg = "invalid options for 'closed': invalid" with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_arrays([0, 1], [1, 2], closed='invalid') # mismatched closed within intervals msg = 'intervals must all be closed on the same side' with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2, closed='left')]) with tm.assert_raises_regex(ValueError, msg): Index([Interval(0, 1), Interval(2, 3, closed='left')]) # mismatched closed inferred from intervals vs constructor. msg = 'conflicting values for closed' with tm.assert_raises_regex(ValueError, msg): iv = [Interval(0, 1, closed='both'), Interval(1, 2, closed='both')] IntervalIndex(iv, closed='neither') # no point in nesting periods in an IntervalIndex msg = 'Period dtypes are not supported, use a PeriodIndex instead' with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_breaks( pd.period_range('2000-01-01', periods=3)) # decreasing breaks/arrays msg = 'left side of interval must be <= right side' with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_breaks(range(10, -1, -1)) with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_arrays(range(10, -1, -1), range(9, -2, -1)) def test_constructors_datetimelike(self, closed): # DTI / TDI for idx in [pd.date_range('20130101', periods=5), pd.timedelta_range('1 day', periods=5)]: result = IntervalIndex.from_breaks(idx, closed=closed) expected = IntervalIndex.from_breaks(idx.values, closed=closed) tm.assert_index_equal(result, expected) expected_scalar_type = type(idx[0]) i = result[0] assert isinstance(i.left, expected_scalar_type) assert isinstance(i.right, expected_scalar_type) def test_constructors_error(self): # non-intervals def f(): IntervalIndex.from_intervals([0.997, 4.0]) pytest.raises(TypeError, f) def test_properties(self, closed): index = self.create_index(closed=closed) assert len(index) == 10 assert index.size == 10 assert index.shape == (10, ) tm.assert_index_equal(index.left, Index(np.arange(10))) tm.assert_index_equal(index.right, Index(np.arange(1, 11))) tm.assert_index_equal(index.mid, Index(np.arange(0.5, 10.5))) assert index.closed == closed ivs = [Interval(l, r, closed) for l, r in zip(range(10), range(1, 11))] expected = np.array(ivs, dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) tm.assert_numpy_array_equal(index.values, expected) # with nans index = self.create_index_with_nan(closed=closed) assert len(index) == 10 assert index.size == 10 assert index.shape == (10, ) expected_left = Index([0, np.nan, 2, 3, 4, 5, 6, 7, 8, 9]) expected_right = expected_left + 1 expected_mid = expected_left + 0.5 tm.assert_index_equal(index.left, expected_left) tm.assert_index_equal(index.right, expected_right) tm.assert_index_equal(index.mid, expected_mid) assert index.closed == closed ivs = [Interval(l, r, closed) if notna(l) else np.nan for l, r in zip(expected_left, expected_right)] expected = np.array(ivs, dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) tm.assert_numpy_array_equal(index.values, expected) def test_with_nans(self, closed): index = self.create_index(closed=closed) assert not index.hasnans result = index.isna() expected = np.repeat(False, len(index)) tm.assert_numpy_array_equal(result, expected) result = index.notna() expected = np.repeat(True, len(index)) tm.assert_numpy_array_equal(result, expected) index = self.create_index_with_nan(closed=closed) assert index.hasnans result = index.isna() expected = np.array([False, True] + [False] * (len(index) - 2)) tm.assert_numpy_array_equal(result, expected) result = index.notna() expected = np.array([True, False] + [True] * (len(index) - 2)) tm.assert_numpy_array_equal(result, expected) def test_copy(self, closed): expected = self.create_index(closed=closed) result = expected.copy() assert result.equals(expected) result = expected.copy(deep=True) assert result.equals(expected) assert result.left is not expected.left def test_ensure_copied_data(self, closed): # exercise the copy flag in the constructor # not copying index = self.create_index(closed=closed) result = IntervalIndex(index, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='same') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='same') # by-definition make a copy result = IntervalIndex.from_intervals(index.values, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='copy') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='copy') def test_equals(self, closed): expected = IntervalIndex.from_breaks(np.arange(5), closed=closed) assert expected.equals(expected) assert expected.equals(expected.copy()) assert not expected.equals(expected.astype(object)) assert not expected.equals(np.array(expected)) assert not expected.equals(list(expected)) assert not expected.equals([1, 2]) assert not expected.equals(np.array([1, 2])) assert not expected.equals(pd.date_range('20130101', periods=2)) expected_name1 = IntervalIndex.from_breaks( np.arange(5), closed=closed, name='foo') expected_name2 = IntervalIndex.from_breaks( np.arange(5), closed=closed, name='bar') assert expected.equals(expected_name1) assert expected_name1.equals(expected_name2) for other_closed in {'left', 'right', 'both', 'neither'} - {closed}: expected_other_closed = IntervalIndex.from_breaks( np.arange(5), closed=other_closed) assert not expected.equals(expected_other_closed) def test_astype(self, closed): idx = self.create_index(closed=closed) for dtype in [np.int64, np.float64, 'datetime64[ns]', 'datetime64[ns, US/Eastern]', 'timedelta64', 'period[M]']: pytest.raises(ValueError, idx.astype, dtype) result = idx.astype(object) tm.assert_index_equal(result, Index(idx.values, dtype='object')) assert not idx.equals(result) assert idx.equals(IntervalIndex.from_intervals(result)) result = idx.astype('interval') tm.assert_index_equal(result, idx) assert result.equals(idx) result = idx.astype('category') expected = pd.Categorical(idx, ordered=True) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize('klass', [list, tuple, np.array, pd.Series]) def test_where(self, closed, klass): idx = self.create_index(closed=closed) cond = [True] * len(idx) expected = idx result = expected.where(klass(cond)) tm.assert_index_equal(result, expected) cond = [False] + [True] * len(idx[1:]) expected = IntervalIndex([np.nan] + idx[1:].tolist()) result = idx.where(klass(cond)) tm.assert_index_equal(result, expected) def test_delete(self, closed): expected = IntervalIndex.from_breaks(np.arange(1, 11), closed=closed) result = self.create_index(closed=closed).delete(0) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('data', [ interval_range(0, periods=10, closed='neither'), interval_range(1.7, periods=8, freq=2.5, closed='both'), interval_range(Timestamp('20170101'), periods=12, closed='left'), interval_range(Timedelta('1 day'), periods=6, closed='right'), IntervalIndex.from_tuples([('a', 'd'), ('e', 'j'), ('w', 'z')]), IntervalIndex.from_tuples([(1, 2), ('a', 'z'), (3.14, 6.28)])]) def test_insert(self, data): item = data[0] idx_item = IntervalIndex([item]) # start expected = idx_item.append(data) result = data.insert(0, item) tm.assert_index_equal(result, expected) # end expected = data.append(idx_item) result = data.insert(len(data), item) tm.assert_index_equal(result, expected) # mid expected = data[:3].append(idx_item).append(data[3:]) result = data.insert(3, item) tm.assert_index_equal(result, expected) # invalid type msg = 'can only insert Interval objects and NA into an IntervalIndex' with tm.assert_raises_regex(ValueError, msg): data.insert(1, 'foo') # invalid closed msg = 'inserted item must be closed on the same side as the index' for closed in {'left', 'right', 'both', 'neither'} - {item.closed}: with tm.assert_raises_regex(ValueError, msg): bad_item = Interval(item.left, item.right, closed=closed) data.insert(1, bad_item) # GH 18295 (test missing) na_idx = IntervalIndex([np.nan], closed=data.closed) for na in (np.nan, pd.NaT, None): expected = data[:1].append(na_idx).append(data[1:]) result = data.insert(1, na) tm.assert_index_equal(result, expected) def test_take(self, closed): index = self.create_index(closed=closed) result = index.take(range(10)) tm.assert_index_equal(result, index) result = index.take([0, 0, 1]) expected = IntervalIndex.from_arrays( [0, 0, 1], [1, 1, 2], closed=closed) tm.assert_index_equal(result, expected) def test_unique(self, closed): # unique non-overlapping idx = IntervalIndex.from_tuples( [(0, 1), (2, 3), (4, 5)], closed=closed) assert idx.is_unique # unique overlapping - distinct endpoints idx = IntervalIndex.from_tuples([(0, 1), (0.5, 1.5)], closed=closed) assert idx.is_unique # unique overlapping - shared endpoints idx = pd.IntervalIndex.from_tuples( [(1, 2), (1, 3), (2, 3)], closed=closed) assert idx.is_unique # unique nested idx = IntervalIndex.from_tuples([(-1, 1), (-2, 2)], closed=closed) assert idx.is_unique # duplicate idx = IntervalIndex.from_tuples( [(0, 1), (0, 1), (2, 3)], closed=closed) assert not idx.is_unique # unique mixed idx = IntervalIndex.from_tuples([(0, 1), ('a', 'b')], closed=closed) assert idx.is_unique # duplicate mixed idx = IntervalIndex.from_tuples( [(0, 1), ('a', 'b'), (0, 1)], closed=closed) assert not idx.is_unique # empty idx = IntervalIndex([], closed=closed) assert idx.is_unique def test_monotonic(self, closed): # increasing non-overlapping idx = IntervalIndex.from_tuples( [(0, 1), (2, 3), (4, 5)], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # decreasing non-overlapping idx = IntervalIndex.from_tuples( [(4, 5), (2, 3), (1, 2)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing # unordered non-overlapping idx = IntervalIndex.from_tuples( [(0, 1), (4, 5), (2, 3)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # increasing overlapping idx = IntervalIndex.from_tuples( [(0, 2), (0.5, 2.5), (1, 3)], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # decreasing overlapping idx = IntervalIndex.from_tuples( [(1, 3), (0.5, 2.5), (0, 2)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing # unordered overlapping idx = IntervalIndex.from_tuples( [(0.5, 2.5), (0, 2), (1, 3)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # increasing overlapping shared endpoints idx = pd.IntervalIndex.from_tuples( [(1, 2), (1, 3), (2, 3)], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # decreasing overlapping shared endpoints idx = pd.IntervalIndex.from_tuples( [(2, 3), (1, 3), (1, 2)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing # stationary idx = IntervalIndex.from_tuples([(0, 1), (0, 1)], closed=closed) assert idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # empty idx = IntervalIndex([], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr(self): i = IntervalIndex.from_tuples([(0, 1), (1, 2)], closed='right') expected = ("IntervalIndex(left=[0, 1]," "\n right=[1, 2]," "\n closed='right'," "\n dtype='interval[int64]')") assert repr(i) == expected i = IntervalIndex.from_tuples((Timestamp('20130101'), Timestamp('20130102')), (Timestamp('20130102'), Timestamp('20130103')), closed='right') expected = ("IntervalIndex(left=['2013-01-01', '2013-01-02']," "\n right=['2013-01-02', '2013-01-03']," "\n closed='right'," "\n dtype='interval[datetime64[ns]]')") assert repr(i) == expected @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr_max_seq_item_setting(self): super(TestIntervalIndex, self).test_repr_max_seq_item_setting() @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr_roundtrip(self): super(TestIntervalIndex, self).test_repr_roundtrip() def test_get_item(self, closed): i = IntervalIndex.from_arrays((0, 1, np.nan), (1, 2, np.nan), closed=closed) assert i[0] == Interval(0.0, 1.0, closed=closed) assert i[1] == Interval(1.0, 2.0, closed=closed) assert isna(i[2]) result = i[0:1] expected = IntervalIndex.from_arrays((0.,), (1.,), closed=closed) tm.assert_index_equal(result, expected) result = i[0:2] expected = IntervalIndex.from_arrays((0., 1), (1., 2.), closed=closed) tm.assert_index_equal(result, expected) result = i[1:3] expected = IntervalIndex.from_arrays((1., np.nan), (2., np.nan), closed=closed) tm.assert_index_equal(result, expected) def test_get_loc_value(self): pytest.raises(KeyError, self.index.get_loc, 0) assert self.index.get_loc(0.5) == 0 assert self.index.get_loc(1) == 0 assert self.index.get_loc(1.5) == 1 assert self.index.get_loc(2) == 1 pytest.raises(KeyError, self.index.get_loc, -1) pytest.raises(KeyError, self.index.get_loc, 3) idx = IntervalIndex.from_tuples([(0, 2), (1, 3)]) assert idx.get_loc(0.5) == 0 assert idx.get_loc(1) == 0 tm.assert_numpy_array_equal(idx.get_loc(1.5), np.array([0, 1], dtype='int64')) tm.assert_numpy_array_equal(np.sort(idx.get_loc(2)), np.array([0, 1], dtype='int64')) assert idx.get_loc(3) == 1 pytest.raises(KeyError, idx.get_loc, 3.5) idx = IntervalIndex.from_arrays([0, 2], [1, 3]) pytest.raises(KeyError, idx.get_loc, 1.5) def slice_locs_cases(self, breaks): # TODO: same tests for more index types index = IntervalIndex.from_breaks([0, 1, 2], closed='right') assert index.slice_locs() == (0, 2) assert index.slice_locs(0, 1) == (0, 1) assert index.slice_locs(1, 1) == (0, 1) assert index.slice_locs(0, 2) == (0, 2) assert index.slice_locs(0.5, 1.5) == (0, 2) assert index.slice_locs(0, 0.5) == (0, 1) assert index.slice_locs(start=1) == (0, 2) assert index.slice_locs(start=1.2) == (1, 2) assert index.slice_locs(end=1) == (0, 1) assert index.slice_locs(end=1.1) == (0, 2) assert index.slice_locs(end=1.0) == (0, 1) assert index.slice_locs(-1, -1) == (0, 0) index = IntervalIndex.from_breaks([0, 1, 2], closed='neither') assert index.slice_locs(0, 1) == (0, 1) assert index.slice_locs(0, 2) == (0, 2) assert index.slice_locs(0.5, 1.5) == (0, 2) assert index.slice_locs(1, 1) == (1, 1) assert index.slice_locs(1, 2) == (1, 2) index = IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)], closed='both') assert index.slice_locs(1, 1) == (0, 1) assert index.slice_locs(1, 2) == (0, 2) def test_slice_locs_int64(self): self.slice_locs_cases([0, 1, 2]) def test_slice_locs_float64(self): self.slice_locs_cases([0.0, 1.0, 2.0]) def slice_locs_decreasing_cases(self, tuples): index = IntervalIndex.from_tuples(tuples) assert index.slice_locs(1.5, 0.5) == (1, 3) assert index.slice_locs(2, 0) == (1, 3) assert index.slice_locs(2, 1) == (1, 3) assert index.slice_locs(3, 1.1) == (0, 3) assert index.slice_locs(3, 3) == (0, 2) assert index.slice_locs(3.5, 3.3) == (0, 1) assert index.slice_locs(1, -3) == (2, 3) slice_locs = index.slice_locs(-1, -1) assert slice_locs[0] == slice_locs[1] def test_slice_locs_decreasing_int64(self): self.slice_locs_cases([(2, 4), (1, 3), (0, 2)]) def test_slice_locs_decreasing_float64(self): self.slice_locs_cases([(2., 4.), (1., 3.), (0., 2.)]) def test_slice_locs_fails(self): index = IntervalIndex.from_tuples([(1, 2), (0, 1), (2, 3)]) with pytest.raises(KeyError): index.slice_locs(1, 2) def test_get_loc_interval(self): assert self.index.get_loc(Interval(0, 1)) == 0 assert self.index.get_loc(Interval(0, 0.5)) == 0 assert self.index.get_loc(Interval(0, 1, 'left')) == 0 pytest.raises(KeyError, self.index.get_loc, Interval(2, 3)) pytest.raises(KeyError, self.index.get_loc, Interval(-1, 0, 'left')) def test_get_indexer(self): actual = self.index.get_indexer([-1, 0, 0.5, 1, 1.5, 2, 3]) expected = np.array([-1, -1, 0, 0, 1, 1, -1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(self.index) expected = np.array([0, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) index = IntervalIndex.from_breaks([0, 1, 2], closed='left') actual = index.get_indexer([-1, 0, 0.5, 1, 1.5, 2, 3]) expected = np.array([-1, 0, 0, 1, 1, -1, -1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(index[:1]) expected = np.array([0], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(index) expected = np.array([-1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) def test_get_indexer_subintervals(self): # TODO: is this right? # return indexers for wholly contained subintervals target = IntervalIndex.from_breaks(np.linspace(0, 2, 5)) actual = self.index.get_indexer(target) expected = np.array([0, 0, 1, 1], dtype='p') tm.assert_numpy_array_equal(actual, expected) target = IntervalIndex.from_breaks([0, 0.67, 1.33, 2]) actual = self.index.get_indexer(target) expected = np.array([0, 0, 1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(target[[0, -1]]) expected = np.array([0, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) target = IntervalIndex.from_breaks([0, 0.33, 0.67, 1], closed='left') actual = self.index.get_indexer(target) expected = np.array([0, 0, 0], dtype='intp') tm.assert_numpy_array_equal(actual, expected) def test_contains(self): # Only endpoints are valid. i = IntervalIndex.from_arrays([0, 1], [1, 2]) # Invalid assert 0 not in i assert 1 not in i assert 2 not in i # Valid assert Interval(0, 1) in i assert Interval(0, 2) in i assert Interval(0, 0.5) in i assert Interval(3, 5) not in i assert Interval(-1, 0, closed='left') not in i def testcontains(self): # can select values that are IN the range of a value i = IntervalIndex.from_arrays([0, 1], [1, 2]) assert i.contains(0.1) assert i.contains(0.5) assert i.contains(1) assert i.contains(Interval(0, 1)) assert i.contains(Interval(0, 2)) # these overlaps completely assert i.contains(Interval(0, 3)) assert i.contains(Interval(1, 3)) assert not i.contains(20) assert not i.contains(-20) def test_dropna(self, closed): expected = IntervalIndex.from_tuples( [(0.0, 1.0), (1.0, 2.0)], closed=closed) ii = IntervalIndex.from_tuples([(0, 1), (1, 2), np.nan], closed=closed) result = ii.dropna() tm.assert_index_equal(result, expected) ii = IntervalIndex.from_arrays( [0, 1, np.nan], [1, 2, np.nan], closed=closed) result = ii.dropna() tm.assert_index_equal(result, expected) def test_non_contiguous(self, closed): index = IntervalIndex.from_tuples([(0, 1), (2, 3)], closed=closed) target = [0.5, 1.5, 2.5] actual = index.get_indexer(target) expected = np.array([0, -1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) assert 1.5 not in index def test_union(self, closed): index = self.create_index(closed=closed) other = IntervalIndex.from_breaks(range(5, 13), closed=closed) expected = IntervalIndex.from_breaks(range(13), closed=closed) result = index.union(other) tm.assert_index_equal(result, expected) result = other.union(index) tm.assert_index_equal(result, expected) tm.assert_index_equal(index.union(index), index) tm.assert_index_equal(index.union(index[:1]), index) def test_intersection(self, closed): index = self.create_index(closed=closed) other = IntervalIndex.from_breaks(range(5, 13), closed=closed) expected = IntervalIndex.from_breaks(range(5, 11), closed=closed) result = index.intersection(other) tm.assert_index_equal(result, expected) result = other.intersection(index) tm.assert_index_equal(result, expected) tm.assert_index_equal(index.intersection(index), index) def test_difference(self, closed): index = self.create_index(closed=closed) tm.assert_index_equal(index.difference(index[:1]), index[1:]) def test_symmetric_difference(self, closed): idx = self.create_index(closed=closed) result = idx[1:].symmetric_difference(idx[:-1]) expected = IntervalIndex([idx[0], idx[-1]]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('op_name', [ 'union', 'intersection', 'difference', 'symmetric_difference']) def test_set_operation_errors(self, closed, op_name): index = self.create_index(closed=closed) set_op = getattr(index, op_name) # test errors msg = ('can only do set operations between two IntervalIndex objects ' 'that are closed on the same side') with tm.assert_raises_regex(ValueError, msg): set_op(Index([1, 2, 3])) for other_closed in {'right', 'left', 'both', 'neither'} - {closed}: other = self.create_index(closed=other_closed) with tm.assert_raises_regex(ValueError, msg): set_op(other) def test_isin(self, closed): index = self.create_index(closed=closed) expected = np.array([True] + [False] * (len(index) - 1)) result = index.isin(index[:1]) tm.assert_numpy_array_equal(result, expected) result = index.isin([index[0]]) tm.assert_numpy_array_equal(result, expected) other = IntervalIndex.from_breaks(np.arange(-2, 10), closed=closed) expected = np.array([True] * (len(index) - 1) + [False]) result = index.isin(other) tm.assert_numpy_array_equal(result, expected) result = index.isin(other.tolist()) tm.assert_numpy_array_equal(result, expected) for other_closed in {'right', 'left', 'both', 'neither'}: other = self.create_index(closed=other_closed) expected = np.repeat(closed == other_closed, len(index)) result = index.isin(other) tm.assert_numpy_array_equal(result, expected) result = index.isin(other.tolist()) tm.assert_numpy_array_equal(result, expected) def test_comparison(self): actual = Interval(0, 1) < self.index expected = np.array([False, True]) tm.assert_numpy_array_equal(actual, expected) actual = Interval(0.5, 1.5) < self.index expected = np.array([False, True]) tm.assert_numpy_array_equal(actual, expected) actual = self.index > Interval(0.5, 1.5) tm.assert_numpy_array_equal(actual, expected) actual = self.index == self.index expected = np.array([True, True]) tm.assert_numpy_array_equal(actual, expected) actual = self.index <= self.index tm.assert_numpy_array_equal(actual, expected) actual = self.index >= self.index tm.assert_numpy_array_equal(actual, expected) actual = self.index < self.index expected = np.array([False, False]) tm.assert_numpy_array_equal(actual, expected) actual = self.index > self.index tm.assert_numpy_array_equal(actual, expected) actual = self.index == IntervalIndex.from_breaks([0, 1, 2], 'left') tm.assert_numpy_array_equal(actual, expected) actual = self.index == self.index.values tm.assert_numpy_array_equal(actual, np.array([True, True])) actual = self.index.values == self.index tm.assert_numpy_array_equal(actual, np.array([True, True])) actual = self.index <= self.index.values tm.assert_numpy_array_equal(actual, np.array([True, True])) actual = self.index != self.index.values tm.assert_numpy_array_equal(actual, np.array([False, False])) actual = self.index > self.index.values tm.assert_numpy_array_equal(actual, np.array([False, False])) actual = self.index.values > self.index tm.assert_numpy_array_equal(actual, np.array([False, False])) # invalid comparisons actual = self.index == 0 tm.assert_numpy_array_equal(actual, np.array([False, False])) actual = self.index == self.index.left tm.assert_numpy_array_equal(actual, np.array([False, False])) with tm.assert_raises_regex(TypeError, 'unorderable types'): self.index > 0 with tm.assert_raises_regex(TypeError, 'unorderable types'): self.index <= 0 with pytest.raises(TypeError): self.index > np.arange(2) with pytest.raises(ValueError): self.index > np.arange(3) def test_missing_values(self, closed): idx = Index([np.nan, Interval(0, 1, closed=closed), Interval(1, 2, closed=closed)]) idx2 = IntervalIndex.from_arrays( [np.nan, 0, 1], [np.nan, 1, 2], closed=closed) assert idx.equals(idx2) with pytest.raises(ValueError): IntervalIndex.from_arrays( [np.nan, 0, 1], np.array([0, 1, 2]), closed=closed) tm.assert_numpy_array_equal(isna(idx), np.array([True, False, False])) def test_sort_values(self, closed): index = self.create_index(closed=closed) result = index.sort_values() tm.assert_index_equal(result, index) result = index.sort_values(ascending=False) tm.assert_index_equal(result, index[::-1]) # with nan index = IntervalIndex([Interval(1, 2), np.nan, Interval(0, 1)]) result = index.sort_values() expected = IntervalIndex([Interval(0, 1), Interval(1, 2), np.nan]) tm.assert_index_equal(result, expected) result = index.sort_values(ascending=False) expected = IntervalIndex([np.nan, Interval(1, 2), Interval(0, 1)]) tm.assert_index_equal(result, expected) def test_datetime(self): dates = date_range('2000', periods=3) idx = IntervalIndex.from_breaks(dates) tm.assert_index_equal(idx.left, dates[:2]) tm.assert_index_equal(idx.right, dates[-2:]) expected = date_range('2000-01-01T12:00', periods=2) tm.assert_index_equal(idx.mid, expected) assert Timestamp('2000-01-01T12') not in idx assert Timestamp('2000-01-01T12') not in idx target = date_range('1999-12-31T12:00', periods=7, freq='12H') actual = idx.get_indexer(target) expected = np.array([-1, -1, 0, 0, 1, 1, -1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) def test_append(self, closed): index1 = IntervalIndex.from_arrays([0, 1], [1, 2], closed=closed) index2 = IntervalIndex.from_arrays([1, 2], [2, 3], closed=closed) result = index1.append(index2) expected = IntervalIndex.from_arrays( [0, 1, 1, 2], [1, 2, 2, 3], closed=closed) tm.assert_index_equal(result, expected) result = index1.append([index1, index2]) expected = IntervalIndex.from_arrays( [0, 1, 0, 1, 1, 2], [1, 2, 1, 2, 2, 3], closed=closed) tm.assert_index_equal(result, expected) msg = ('can only append two IntervalIndex objects that are closed ' 'on the same side') for other_closed in {'left', 'right', 'both', 'neither'} - {closed}: index_other_closed = IntervalIndex.from_arrays( [0, 1], [1, 2], closed=other_closed) with tm.assert_raises_regex(ValueError, msg): index1.append(index_other_closed) def test_is_non_overlapping_monotonic(self, closed): # Should be True in all cases tpls = [(0, 1), (2, 3), (4, 5), (6, 7)] idx = IntervalIndex.from_tuples(tpls, closed=closed) assert idx.is_non_overlapping_monotonic is True idx = IntervalIndex.from_tuples(tpls[::-1], closed=closed) assert idx.is_non_overlapping_monotonic is True # Should be False in all cases (overlapping) tpls = [(0, 2), (1, 3), (4, 5), (6, 7)] idx =
IntervalIndex.from_tuples(tpls, closed=closed)
pandas.IntervalIndex.from_tuples
import sys import numpy as np import pandas as pd from collections import Counter, defaultdict import csv import math import operator import os from sklearn.preprocessing import StandardScaler from sklearn.metrics import roc_auc_score import time import plotly as py import plotly.graph_objs as go abs_path = os.path.abspath(__file__) file_dir = os.path.dirname(abs_path) sys.path.append(file_dir) from feat_eng import * from modeling import * from mlp_bayes_opt_legit import * from create_pred_set import * os.chdir("") # Insert path to dunhumby data sets def group_basket_stats(product_list, df_transactions, df_demographic): print("Grouping Baskets...") df_grouped_basket = get_grouped_basket(df_transactions) print("getting product counts for each basket") df_grouped_basket_count = get_grouped_basket_count(df_grouped_basket) print("getting summed quantities for each basket id...") df_grouped_basket_sum = get_grouped_basket_sum(df_grouped_basket) print("Applying label...") df_grouped_basket = apply_label_grouped_basket(df_grouped_basket) print("merging count, sum and labels...") df_grouped_basket_merge = merging_sum_count_labels(df_grouped_basket, df_grouped_basket_count, df_grouped_basket_sum) print("merging with demmographic data....") df_grouped_basket_merge = df_grouped_basket_merge.merge(df_demographic, on="household_key", how="left").reset_index(drop=True) print("First ten rows of the dataset...") print(df_grouped_basket_merge.head(10)) # Sanity check return df_grouped_basket_merge def get_grouped_basket(df_transactions): return df_transactions.groupby(['household_key', 'BASKET_ID', 'DAY']) def get_grouped_basket_count(df_grouped_basket): df_grouped_basket_count = df_grouped_basket.size().reset_index() df_grouped_basket_count = df_grouped_basket_count.rename(columns={0: 'PROD_PURCHASE_COUNT'}) return df_grouped_basket_count def apply_label_grouped_basket(df_grouped_basket): df_grouped_basket = df_grouped_basket.apply( lambda x : 1 if len(set(x.PRODUCT_ID.tolist()) & set(product_list)) > 0 else 0 ).reset_index().rename(columns={0:"label"}) return df_grouped_basket def get_grouped_basket_sum(df_grouped_basket): df_grouped_basket_sum = df_grouped_basket.sum().reset_index() df_grouped_basket_sum.drop(['RETAIL_DISC', 'TRANS_TIME', 'COUPON_MATCH_DISC', 'START_DAY', 'END_DAY'], axis=1, inplace=True) return df_grouped_basket_sum def merging_sum_count_labels(df_grouped_basket, df_grouped_basket_count, df_grouped_basket_sum): df_grouped_basket_merge = df_grouped_basket_sum.merge(df_grouped_basket, on=["household_key", "BASKET_ID"]).reset_index(drop=True) del df_grouped_basket del df_grouped_basket_sum df_grouped_basket_merge = df_grouped_basket_merge.merge(df_grouped_basket_count, on=["household_key", "BASKET_ID"]).reset_index(drop=True) del df_grouped_basket_count df_grouped_basket_merge = df_grouped_basket_merge.drop(['DAY_x', 'DAY_y'], axis=1) return df_grouped_basket_merge def get_products_for_coupon(coupon_Id, df_coupon): subset = df_coupon[df_coupon['COUPON_UPC'] == coupon_Id] return subset['PRODUCT_ID'].unique() def get_campaigns_for_coupon(coupon_Id, df_coupon): subset = df_coupon[df_coupon['COUPON_UPC'] == coupon_Id] return subset['CAMPAIGN'].unique() def get_households_for_campaigns(campaigns, df_campaign_table, df_campaign_desc): #get subset from campaign table to get the households for the campaign subset = df_campaign_table[df_campaign_table['CAMPAIGN'].isin(campaigns)] hh_start_dates = subset.merge(df_campaign_desc, on='CAMPAIGN', how='left') hh_start_dates = hh_start_dates.sort_values(['household_key', 'START_DAY']) return hh_start_dates.drop_duplicates(['household_key'], keep="first") def get_transactions_for_hh(df_transactions, hh_start_dates): trans_merge = df_transactions.merge(hh_start_dates, on='household_key', how='left') trans_merge['START_DAY'].fillna(10000, inplace=True) return trans_merge[trans_merge['DAY'].astype(float) < trans_merge['START_DAY']] def get_transactions_for_hh_within(df_transactions, hh_start_dates, product_list): trans_merge = df_transactions.merge(hh_start_dates, on='household_key', how='left') trans_merge['START_DAY'].fillna(10000, inplace=True) trans_merge['END_DAY'].fillna(0, inplace=True) trans_filtered = trans_merge[(trans_merge['DAY'].astype(float) >= trans_merge['START_DAY']) & ( trans_merge['DAY'].astype(float) <= trans_merge['END_DAY'])] trans_filtered['label'] = 0 trans_filtered['label'] = trans_filtered.apply(lambda row: 1 if row['PRODUCT_ID'] in product_list else 0, axis=1) trans_filtered = trans_filtered[trans_filtered['label'] == 1] return trans_filtered[['household_key', 'PRODUCT_ID', 'CAMPAIGN']], list(trans_filtered['household_key'].unique()) if __name__ == "__main__": # coupon_id_list = ["10000089073", "57940011075", "10000089061", "51800000050"] coupon_Id = "51800000050" print("Coupon ID: " + coupon_Id) print("Reading coupon data...") df_coupon = pd.read_csv('coupon.csv', dtype={'COUPON_UPC': str, 'CAMPAIGN': str, 'PRODUCT_ID': str}) campaigns = get_campaigns_for_coupon(coupon_Id, df_coupon) print("Campaigns associated with the coupon: " + str(len(campaigns))) product_list = get_products_for_coupon(coupon_Id, df_coupon) del df_coupon print("Products associated with the coupon: "+ str(len(product_list))) print("Reading in campaign_table and campaign_desc...") df_campaign_table =
pd.read_csv('campaign_table.csv', dtype={'household_key': str, 'CAMPAIGN': str})
pandas.read_csv
import numpy as np import pandas as pd import pytest import woodwork as ww from evalml.automl import get_default_primary_search_objective from evalml.data_checks import ( DataCheckAction, DataCheckActionCode, DataCheckError, DataCheckMessageCode, DataChecks, DataCheckWarning, InvalidTargetDataCheck, ) from evalml.exceptions import DataCheckInitError from evalml.objectives import ( MAPE, MeanSquaredLogError, RootMeanSquaredLogError, ) from evalml.problem_types import ( ProblemTypes, is_binary, is_multiclass, is_regression, ) from evalml.utils.woodwork_utils import numeric_and_boolean_ww invalid_targets_data_check_name = InvalidTargetDataCheck.name def test_invalid_target_data_check_invalid_n_unique(): with pytest.raises( ValueError, match="`n_unique` must be a non-negative integer value." ): InvalidTargetDataCheck( "regression", get_default_primary_search_objective("regression"), n_unique=-1, ) def test_invalid_target_data_check_nan_error(): X = pd.DataFrame({"col": [1, 2, 3]}) invalid_targets_check = InvalidTargetDataCheck( "regression", get_default_primary_search_objective("regression") ) assert invalid_targets_check.validate(X, y=pd.Series([1, 2, 3])) == { "warnings": [], "errors": [], "actions": [], } assert invalid_targets_check.validate(X, y=pd.Series([np.nan, np.nan, np.nan])) == { "warnings": [], "errors": [ DataCheckError( message="Target is either empty or fully null.", data_check_name=invalid_targets_data_check_name, message_code=DataCheckMessageCode.TARGET_IS_EMPTY_OR_FULLY_NULL, details={}, ).to_dict(), ], "actions": [], } def test_invalid_target_data_check_numeric_binary_classification_valid_float(): y = pd.Series([0.0, 1.0, 0.0, 1.0]) X = pd.DataFrame({"col": range(len(y))}) invalid_targets_check = InvalidTargetDataCheck( "binary", get_default_primary_search_objective("binary") ) assert invalid_targets_check.validate(X, y) == { "warnings": [], "errors": [], "actions": [], } def test_invalid_target_data_check_multiclass_two_examples_per_class(): y = pd.Series([0] + [1] * 19 + [2] * 80) X = pd.DataFrame({"col": range(len(y))}) invalid_targets_check = InvalidTargetDataCheck( "multiclass", get_default_primary_search_objective("binary") ) expected_message = "Target does not have at least two instances per class which is required for multiclass classification" # with 1 class not having min 2 instances assert invalid_targets_check.validate(X, y) == { "warnings": [], "errors": [ DataCheckError( message=expected_message, data_check_name=invalid_targets_data_check_name, message_code=DataCheckMessageCode.TARGET_MULTICLASS_NOT_TWO_EXAMPLES_PER_CLASS, details={"least_populated_class_labels": [0]}, ).to_dict() ], "actions": [], } y = pd.Series([0] + [1] + [2] * 98) X = pd.DataFrame({"col": range(len(y))}) # with 2 classes not having min 2 instances assert invalid_targets_check.validate(X, y) == { "warnings": [], "errors": [ DataCheckError( message=expected_message, data_check_name=invalid_targets_data_check_name, message_code=DataCheckMessageCode.TARGET_MULTICLASS_NOT_TWO_EXAMPLES_PER_CLASS, details={"least_populated_class_labels": [0, 1]}, ).to_dict() ], "actions": [], } @pytest.mark.parametrize( "pd_type", ["int16", "int32", "int64", "float16", "float32", "float64", "bool"] ) def test_invalid_target_data_check_invalid_pandas_data_types_error(pd_type): y = pd.Series([0, 1, 0, 0, 1, 0, 1, 0]) y = y.astype(pd_type) X = pd.DataFrame({"col": range(len(y))}) invalid_targets_check = InvalidTargetDataCheck( "binary", get_default_primary_search_objective("binary") ) assert invalid_targets_check.validate(X, y) == { "warnings": [], "errors": [], "actions": [], } y = pd.Series(pd.date_range("2000-02-03", periods=5, freq="W")) X = pd.DataFrame({"col": range(len(y))}) unique_values = y.value_counts().index.tolist() assert invalid_targets_check.validate(X, y) == { "warnings": [], "errors": [ DataCheckError( message="Target is unsupported {} type. Valid Woodwork logical types include: {}".format( "Datetime", ", ".join([ltype for ltype in numeric_and_boolean_ww]), ), data_check_name=invalid_targets_data_check_name, message_code=DataCheckMessageCode.TARGET_UNSUPPORTED_TYPE, details={"unsupported_type": "datetime"}, ).to_dict(), DataCheckError( message="Binary class targets require exactly two unique values.", data_check_name=invalid_targets_data_check_name, message_code=DataCheckMessageCode.TARGET_BINARY_NOT_TWO_UNIQUE_VALUES, details={"target_values": unique_values}, ).to_dict(), ], "actions": [], } def test_invalid_target_y_none(): invalid_targets_check = InvalidTargetDataCheck( "binary", get_default_primary_search_objective("binary") ) assert invalid_targets_check.validate(pd.DataFrame(), y=None) == { "warnings": [], "errors": [ DataCheckError( message="Target is None", data_check_name=invalid_targets_data_check_name, message_code=DataCheckMessageCode.TARGET_IS_NONE, details={}, ).to_dict() ], "actions": [], } def test_invalid_target_data_input_formats(): invalid_targets_check = InvalidTargetDataCheck( "binary", get_default_primary_search_objective("binary") ) # test empty pd.Series X = pd.DataFrame() messages = invalid_targets_check.validate(X, pd.Series()) assert messages == { "warnings": [], "errors": [ DataCheckError( message="Target is either empty or fully null.", data_check_name=invalid_targets_data_check_name, message_code=DataCheckMessageCode.TARGET_IS_EMPTY_OR_FULLY_NULL, details={}, ).to_dict() ], "actions": [], } expected = { "warnings": [], "errors": [ DataCheckError( message="3 row(s) (75.0%) of target values are null", data_check_name=invalid_targets_data_check_name, message_code=DataCheckMessageCode.TARGET_HAS_NULL, details={"num_null_rows": 3, "pct_null_rows": 75}, ).to_dict(), DataCheckError( message="Binary class targets require exactly two unique values.", data_check_name=invalid_targets_data_check_name, message_code=DataCheckMessageCode.TARGET_BINARY_NOT_TWO_UNIQUE_VALUES, details={"target_values": [0]}, ).to_dict(), ], "actions": [ DataCheckAction( DataCheckActionCode.IMPUTE_COL, data_check_name=invalid_targets_data_check_name, metadata={ "is_target": True, "impute_strategy": "most_frequent", }, ).to_dict() ], } # test Woodwork y = pd.Series([None, None, None, 0]) X = pd.DataFrame({"col": range(len(y))}) messages = invalid_targets_check.validate(X, y) assert messages == expected # test list y = [np.nan, np.nan, np.nan, 0] X = pd.DataFrame({"col": range(len(y))}) messages = invalid_targets_check.validate(X, y) assert messages == expected # test np.array y = np.array([np.nan, np.nan, np.nan, 0]) X = pd.DataFrame({"col": range(len(y))}) messages = invalid_targets_check.validate(X, y) assert messages == expected @pytest.mark.parametrize( "problem_type", [ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY] ) def test_invalid_target_data_check_n_unique(problem_type): y = pd.Series(list(range(100, 200)) + list(range(200))) unique_values = y.value_counts().index.tolist()[:100] # n_unique defaults to 100 X = pd.DataFrame({"col": range(len(y))}) invalid_targets_check = InvalidTargetDataCheck( problem_type, get_default_primary_search_objective(problem_type) ) # Test default value of n_unique assert invalid_targets_check.validate(X, y) == { "warnings": [], "errors": [ DataCheckError( message="Binary class targets require exactly two unique values.", data_check_name=invalid_targets_data_check_name, message_code=DataCheckMessageCode.TARGET_BINARY_NOT_TWO_UNIQUE_VALUES, details={"target_values": unique_values}, ).to_dict() ], "actions": [], } # Test number of unique values < n_unique y = pd.Series(range(20)) X = pd.DataFrame({"col": range(len(y))}) unique_values = y.value_counts().index.tolist() assert invalid_targets_check.validate(X, y) == { "warnings": [], "errors": [ DataCheckError( message="Binary class targets require exactly two unique values.", data_check_name=invalid_targets_data_check_name, message_code=DataCheckMessageCode.TARGET_BINARY_NOT_TWO_UNIQUE_VALUES, details={"target_values": unique_values}, ).to_dict() ], "actions": [], } # Test n_unique is None invalid_targets_check = InvalidTargetDataCheck( "binary", get_default_primary_search_objective("binary"), n_unique=None ) y = pd.Series(range(150)) X = pd.DataFrame({"col": range(len(y))}) unique_values = y.value_counts().index.tolist() assert invalid_targets_check.validate(X, y) == { "warnings": [], "errors": [ DataCheckError( message="Binary class targets require exactly two unique values.", data_check_name=invalid_targets_data_check_name, message_code=DataCheckMessageCode.TARGET_BINARY_NOT_TWO_UNIQUE_VALUES, details={"target_values": unique_values}, ).to_dict() ], "actions": [], } @pytest.mark.parametrize( "objective", [ "Root Mean Squared Log Error", "Mean Squared Log Error", "Mean Absolute Percentage Error", ], ) def test_invalid_target_data_check_invalid_labels_for_nonnegative_objective_names( objective, ): X = pd.DataFrame({"column_one": [100, 200, 100, 200, 200, 100, 200, 100] * 25}) y = pd.Series([2, 2, 3, 3, -1, -1, 1, 1] * 25) data_checks = DataChecks( [InvalidTargetDataCheck], { "InvalidTargetDataCheck": { "problem_type": "multiclass", "objective": objective, } }, ) assert data_checks.validate(X, y) == { "warnings": [], "errors": [ DataCheckError( message=f"Target has non-positive values which is not supported for {objective}", data_check_name=invalid_targets_data_check_name, message_code=DataCheckMessageCode.TARGET_INCOMPATIBLE_OBJECTIVE, details={ "Count of offending values": sum( val <= 0 for val in y.values.flatten() ) }, ).to_dict() ], "actions": [], } X = pd.DataFrame({"column_one": [100, 200, 100, 200, 100]}) y = pd.Series([2, 3, 0, 1, 1]) invalid_targets_check = InvalidTargetDataCheck( problem_type="regression", objective=objective ) assert invalid_targets_check.validate(X, y) == { "warnings": [], "errors": [ DataCheckError( message=f"Target has non-positive values which is not supported for {objective}", data_check_name=invalid_targets_data_check_name, message_code=DataCheckMessageCode.TARGET_INCOMPATIBLE_OBJECTIVE, details={ "Count of offending values": sum( val <= 0 for val in y.values.flatten() ) }, ).to_dict() ], "actions": [], } @pytest.mark.parametrize( "objective", [RootMeanSquaredLogError(), MeanSquaredLogError(), MAPE()] ) def test_invalid_target_data_check_invalid_labels_for_nonnegative_objective_instances( objective, ): X = pd.DataFrame({"column_one": [100, 200, 100, 200, 200, 100, 200, 100] * 25}) y = pd.Series([2, 2, 3, 3, -1, -1, 1, 1] * 25) data_checks = DataChecks( [InvalidTargetDataCheck], { "InvalidTargetDataCheck": { "problem_type": "multiclass", "objective": objective, } }, ) assert data_checks.validate(X, y) == { "warnings": [], "errors": [ DataCheckError( message=f"Target has non-positive values which is not supported for {objective.name}", data_check_name=invalid_targets_data_check_name, message_code=DataCheckMessageCode.TARGET_INCOMPATIBLE_OBJECTIVE, details={ "Count of offending values": sum( val <= 0 for val in y.values.flatten() ) }, ).to_dict() ], "actions": [], } def test_invalid_target_data_check_invalid_labels_for_objectives( time_series_core_objectives, ): X = pd.DataFrame({"column_one": [100, 200, 100, 200, 200, 100, 200, 100] * 25}) y = pd.Series([2, 2, 3, 3, -1, -1, 1, 1] * 25) for objective in time_series_core_objectives: if not objective.positive_only: data_checks = DataChecks( [InvalidTargetDataCheck], { "InvalidTargetDataCheck": { "problem_type": "multiclass", "objective": objective, } }, ) assert data_checks.validate(X, y) == { "warnings": [], "errors": [], "actions": [], } X = pd.DataFrame({"column_one": [100, 200, 100, 200, 100]}) y = pd.Series([2, 3, 0, 1, 1]) for objective in time_series_core_objectives: if not objective.positive_only: invalid_targets_check = InvalidTargetDataCheck( problem_type="regression", objective=objective ) assert invalid_targets_check.validate(X, y) == { "warnings": [], "errors": [], "actions": [], } @pytest.mark.parametrize( "objective", [ "Root Mean Squared Log Error", "Mean Squared Log Error", "Mean Absolute Percentage Error", ], ) def test_invalid_target_data_check_valid_labels_for_nonnegative_objectives(objective): X = pd.DataFrame({"column_one": [100, 100, 200, 300, 100, 200, 100] * 25}) y = pd.Series([2, 2, 3, 3, 1, 1, 1] * 25) data_checks = DataChecks( [InvalidTargetDataCheck], { "InvalidTargetDataCheck": { "problem_type": "multiclass", "objective": objective, } }, ) assert data_checks.validate(X, y) == {"warnings": [], "errors": [], "actions": []} def test_invalid_target_data_check_initialize_with_none_objective(): with pytest.raises(DataCheckInitError, match="Encountered the following error"): DataChecks( [InvalidTargetDataCheck], { "InvalidTargetDataCheck": { "problem_type": "multiclass", "objective": None, } }, ) def test_invalid_target_data_check_regression_problem_nonnumeric_data(): y_categorical = pd.Series(["Peace", "Is", "A", "Lie"] * 100) y_mixed_cat_numeric = pd.Series(["Peace", 2, "A", 4] * 100) y_integer =
pd.Series([1, 2, 3, 4])
pandas.Series
from processing_functions import misc as msc from processing_functions import general_funcs as gf import os import numpy as np import pandas as pd import time import matplotlib.pyplot as plt import pickle from processing_functions import validation as vd ###### from PIL import Image def add_img_outline(imgpath,print_dimensions=True): # many thx: https://stackoverflow.com/a/11143078/4436950 image = Image.open(imgpath) w,h = image.size new_w = w + int(float(w)/250) new_h = h + int(float(h)/250) if print_dimensions: print(w,h,new_w,new_h) new_size = (new_w,new_h) new_image = Image.new("RGB",new_size) new_image.paste(image,((new_size[0]-image.size[0])//2,(new_size[1]-image.size[1])//2)) new_image.save(imgpath.replace('.png','_outline.png')) ####### # naming for the local folder: outlocalfolder = "phase3_reloaded" pickles_list = msc.orderedFileList(vd.PICKLES_PATH,'*.pickle') t1 = time.time() #print(pickles_list) dataDict = {} for picklepath in pickles_list: fname = msc.filenameFromPathWtithoutExt(picklepath) #print(fname) with open(picklepath,'rb') as picklefile: dataDict[fname] = pickle.load(picklefile) #print(dataDict) ckpts_dict = dict(dataDict['ckpt_rev_dict']) del dataDict['ckpt_rev_dict'] ckpts_dict_2 = {} for key in ckpts_dict: ckpts_dict_2[key] = msc.get_only_parent_dir(ckpts_dict[key]) #print(ckpts_dict_2) #print(dataDict) for key in dataDict: pass #print() idxmin_cityscapes = [] # first of all: defining the epochs that will really be used: for key in dataDict: dataDict[key] = dataDict[key].rename(index=ckpts_dict_2).sort_index().T if key == "iou_with_terrain_veg": mins = dataDict[key].mean().nsmallest(3) idxmin_cityscapes = list(mins.index) lastidx = "0"+str(int(idxmin_cityscapes[-1])) idx_list = list(dataDict[key].columns) #print(idx_list) lastidx = idx_list[idx_list.index(lastidx)-1] #print(lastidx) elif key == "iou_new_validation": mins = dataDict[key].mean().nsmallest(1) idxmin_own= list(mins.index) #print(idxmin_cityscapes,idxmin_own,lastidx) # subdividing the dataframes: for key in dataDict: #print(dataDict[key]) if "only_trees" in key or "with_terrain_veg" in key: dataDict[key].drop(columns=idxmin_cityscapes,inplace=True) idx_list = list(dataDict[key].columns) #print(idx_list) split_index = idx_list.index(lastidx) dataDict[key] = dataDict[key].iloc[:,:split_index] curr_cols = list(dataDict[key].columns) curr_cols = list(map(int,curr_cols)) curr_cols = [val+100 for val in curr_cols] curr_cols = [str(val).zfill(4) for val in curr_cols] dataDict[key].columns = curr_cols elif "new_validation" in key: idx_list = list(dataDict[key].columns) split_index = idx_list.index(idxmin_own[0]) dataDict[key] = dataDict[key].iloc[:,split_index:] curr_cols = list(dataDict[key].columns) curr_cols = list(map(int,curr_cols)) curr_cols = [val-min(curr_cols) for val in curr_cols] curr_cols = [str(val).zfill(4) for val in curr_cols] dataDict[key].columns = curr_cols #print(curr_cols) current_metric = "mean_epochs_stats" c_dpi = 900 #print("took",time.time()-t1,"seconds") # dict for best epochs summary summary_df_dict = {} # list of rows with best error metrics best_epochs_idx = [] for i,key in enumerate(dataDict): print(key) newdf = dataDict[key] print(newdf.head()) mean = newdf.mean() std = newdf.std() stderrmean = newdf.sem() dfmin = newdf.min() dfmax = newdf.max() plstd = mean + std mnstd = mean - std statsdf = pd.concat([dfmax,plstd,mean,mnstd,dfmin],axis=1) # for pt-br: # statsdf.columns = ['máx.','méd.+d.p.','média','méd.-d.p','mín.'] # for en: statsdf.columns = ['max.','mean+s.d.','mean','mean-s.d.','min.'] #print(statsdf) #print(std) # #print(key,key.split("_")[0]) outdir = os.path.join(vd.FIGURES_PATH2,outlocalfolder,current_metric) msc.create_dir_ifnot_exists(outdir) figname = os.path.join(outdir,key+"_"+current_metric+".png") figname_t = os.path.join(outdir,key+"_"+current_metric+"_T.png") statsdf.plot(style=['-g',':c','-b',':c','-r'],markersize = 2) # for pt-br # plt.ylabel('Valor (%)') # plt.xlabel('Número da Época') # for en plt.ylabel('Value') plt.xlabel('Epoch') plt.savefig(figname,dpi=c_dpi) add_img_outline(figname) plt.close('all') #print('\n',newdf.head()) bestepochidx = statsdf['mean'].idxmax() #print(statsdf.T[bestepochidx]) best_epochs_idx.append(bestepochidx) median = newdf.median() kurt = newdf.kurtosis() skewn = newdf.skew() statsdf2 =
pd.concat([dfmax,median,dfmin,mean,std,stderrmean],axis=1)
pandas.concat
# -*- coding: utf-8 -*- __author__ = 'fpajot' import io import logging import pickle from unittest import TestCase import boto3 from botocore.exceptions import ClientError from moto import mock_s3 import pandas import numpy from pandas_aws.s3 import get_keys, put_df, get_df, get_df_from_keys MY_BUCKET = "mymockbucket" MY_PREFIX = "mockfolder" AWS_REGION_NAME = 'eu-west-1' logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) @mock_s3 class BaseAWSTest(TestCase): """Base class for test cases using moto""" def setUp(self): self.data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} self.client = boto3.client("s3", region_name=AWS_REGION_NAME) s3 = boto3.resource("s3", region_name=AWS_REGION_NAME) if MY_BUCKET in [b for b in s3.buckets.all()]: err = "{bucket} should not exist.".format(bucket=MY_BUCKET) logger.error([b['Name'] for b in self.client.list_buckets()['Buckets']]) raise EnvironmentError(err) else: self.client.create_bucket(Bucket=MY_BUCKET, CreateBucketConfiguration={ 'LocationConstraint': AWS_REGION_NAME}) logger.debug("Existing buckets:") logger.debug(self.client.list_buckets()['Buckets']) def tearDown(self): s3 = boto3.resource("s3", region_name=AWS_REGION_NAME) bucket = s3.Bucket(MY_BUCKET) for key in bucket.objects.all(): key.delete() bucket.delete() class GetKeysTests(BaseAWSTest): """Test s3.get_keys""" def setUp(self): super(GetKeysTests, self).setUp() for o in range(2): self.client.put_object(Bucket=MY_BUCKET, Key=MY_PREFIX + '/key' + str(o), Body=str(o)) def tearDown(self): super(GetKeysTests, self).tearDown() def test_get_s3_keys_success_one_key(self): key = next(get_keys(self.client, MY_BUCKET, MaxKeys=1)) self.assertEqual(key, MY_PREFIX + '/key0') def test_get_s3_keys_failure_one_key(self): with self.assertRaises(StopIteration): _ = next(get_keys(self.client, MY_BUCKET, prefix='foo')) def test_get_s3_keys_success_multi_pages(self): keys = get_keys(self.client, MY_BUCKET, MaxKeys=1) self.assertEqual(next(keys), MY_PREFIX + '/key0') self.assertEqual(next(keys), MY_PREFIX + '/key1') def test_get_s3_keys_failure_multi_pages(self): keys = get_keys(self.client, MY_BUCKET) _ = next(keys) _ = next(keys) with self.assertRaises(StopIteration): _ = next(keys) def test_get_s3_keys_success_one_key_with_prefix(self): self.client.put_object(Bucket=MY_BUCKET, Key='key3', Body='awesome body') keys = list(get_keys(self.client, MY_BUCKET, prefix=MY_PREFIX)) self.assertEqual(keys, [MY_PREFIX + '/key0', MY_PREFIX + '/key1']) def test_get_s3_keys_success_one_key_with_suffix(self): self.client.put_object(Bucket=MY_BUCKET, Key='key3.txt', Body='awesome body') key = next(get_keys(self.client, MY_BUCKET, suffix='.txt')) self.assertEqual(key, 'key3.txt') class PutDFTests(BaseAWSTest): """Test for s3.put_df""" def setUp(self): super(PutDFTests, self).setUp() def tearDown(self): super(PutDFTests, self).tearDown() def test_put_df_failure_unknown_type(self): o = 'awesome body' key = MY_PREFIX + '/key1' with self.assertRaises(TypeError): put_df(self.client, o, MY_BUCKET, key) def test_put_df_success_dataframe_to_pickle(self): o = pandas.DataFrame.from_dict(self.data) key = MY_PREFIX + '/key1.pickle' put_df(self.client, o, MY_BUCKET, key, format='pickle') body = pickle.loads(self.client.get_object(Bucket=MY_BUCKET, Key=key)['Body'].read()) self.assertSequenceEqual(list(o.columns), list(body.columns)) self.assertSequenceEqual(o.iloc[0].tolist(), body.iloc[0].tolist()) def test_put_df_success_dataframe_to_csv(self): o = pandas.DataFrame.from_dict(self.data) key = MY_PREFIX + '/<KEY>' put_df(self.client, o, MY_BUCKET, key, format='csv', index=False) body = pandas.read_csv(self.client.get_object(Bucket=MY_BUCKET, Key=key)['Body']) self.assertSequenceEqual(list(o.columns), list(body.columns)) self.assertSequenceEqual(o.iloc[0].tolist(), body.iloc[0].tolist()) def test_put_df_success_dataframe_to_parquet(self): o = pandas.DataFrame.from_dict(self.data) key = MY_PREFIX + '/key1.parquet' put_df(self.client, o, MY_BUCKET, key, format='parquet') body = pandas.read_parquet(io.BytesIO(self.client.get_object(Bucket=MY_BUCKET, Key=key)['Body'].read())) self.assertSequenceEqual(list(o.columns), list(body.columns)) self.assertSequenceEqual(o.iloc[0].tolist(), body.iloc[0].tolist()) def test_put_df_success_dataframe_to_excel(self): o = pandas.DataFrame.from_dict(self.data) key = MY_PREFIX + '/<KEY>' put_df(self.client, o, MY_BUCKET, key, format='xlsx') body = pandas.read_excel(io.BytesIO(self.client.get_object(Bucket=MY_BUCKET, Key=key)['Body'].read())) self.assertSequenceEqual(list(o.columns), list(body.columns)) self.assertSequenceEqual(o.iloc[0].tolist(), body.iloc[0].tolist()) def test_put_df_failure_dataframe_to_unknown_format(self): o = pandas.DataFrame.from_dict(self.data) key = MY_PREFIX + '/key1.txt' with self.assertRaises(AssertionError): put_df(self.client, o, MY_BUCKET, key, format='txt') def test_put_df_success_dataframe_to_csv_with_kwargs(self): o = pandas.DataFrame.from_dict(self.data) key = MY_PREFIX + '/<KEY>' put_df(self.client, o, MY_BUCKET, key, format='csv', sep=';') body = pandas.read_csv(self.client.get_object(Bucket=MY_BUCKET, Key=key)['Body'], sep=';') self.assertSequenceEqual(list(o.columns), list(body.columns)) self.assertSequenceEqual(o.iloc[0].tolist(), body.iloc[0].tolist()) def test_put_df_success_dataframe_to_csv_with_compression(self): o = pandas.DataFrame.from_dict(self.data) key = MY_PREFIX + '/<KEY>' put_df(self.client, o, MY_BUCKET, key, compression='gzip') body = pandas.read_csv(self.client.get_object(Bucket=MY_BUCKET, Key=key)['Body'], compression='gzip') self.assertSequenceEqual(list(o.columns), list(body.columns)) self.assertSequenceEqual(o.iloc[0].tolist(), body.iloc[0].tolist()) def test_put_df_success_dataframe_to_multiple_csv(self): o =
pandas.DataFrame.from_dict(self.data)
pandas.DataFrame.from_dict
from typing import List from datetime import datetime from pandas import DataFrame, Series import pandas as pd from pydantic import BaseModel, Field from .measurements import IntensityForecast from .mixes import GenerationMixDetails, MixComponent class Region(BaseModel): region_id: int = Field(..., alias="regionid") dno_region: str = Field(..., alias="dnoregion") short_name: str = Field(..., alias="shortname") def to_series(self): record = { "region_id": self.region_id, "dno_region": self.dno_region, "short_name": self.short_name, } return
Series(record)
pandas.Series
""" Copyright 2019 hiraokusky Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import pandas as pd import numpy as np import re import json import sys,os # pip install git+https://github.com/hiraokusky/snark from snark import wordnetdb, kanadb class SynNetDb: """ wordnetを簡単に処理するための一時記憶 RDF DBも併せて処理する word in synset . 同義語, 個物化 synset isa synset . 抽象化, 属性 synset hasa synset . 部分/属性/材質/所有(目的語を抱えている状態の主語) synset then synset . 状態遷移(主語から主語へ移る), 条件つきの場合は条件の付いたsynsetができる """ startdict = None v = False def __init__(self, opts=''): self.v = 'v' in opts def load_file(self, path): self.startdict =
pd.read_csv(path)
pandas.read_csv
import pandas as pd import numpy as np from src.configs import * from src.features.transform import categorical_to_ordinal import collections class HousePriceData: ''' Load House Price data for Kaggle competition ''' def __init__(self, train_path, test_path): self.trainset =
pd.read_csv(train_path)
pandas.read_csv
import numpy as np import pytest import pandas as pd from pandas import ( Categorical, DataFrame, Index, Series, ) import pandas._testing as tm dt_data = [ pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02"), pd.Timestamp("2011-01-03"), ] tz_data = [ pd.Timestamp("2011-01-01", tz="US/Eastern"), pd.Timestamp("2011-01-02", tz="US/Eastern"), pd.Timestamp("2011-01-03", tz="US/Eastern"), ] td_data = [ pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Timedelta("3 days"), ] period_data = [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Period("2011-03", freq="M"), ] data_dict = { "bool": [True, False, True], "int64": [1, 2, 3], "float64": [1.1, np.nan, 3.3], "category": Categorical(["X", "Y", "Z"]), "object": ["a", "b", "c"], "datetime64[ns]": dt_data, "datetime64[ns, US/Eastern]": tz_data, "timedelta64[ns]": td_data, "period[M]": period_data, } class TestConcatAppendCommon: """ Test common dtype coercion rules between concat and append. """ @pytest.fixture(params=sorted(data_dict.keys())) def item(self, request): key = request.param return key, data_dict[key] item2 = item def _check_expected_dtype(self, obj, label): """ Check whether obj has expected dtype depending on label considering not-supported dtypes """ if isinstance(obj, Index): assert obj.dtype == label elif isinstance(obj, Series): if label.startswith("period"): assert obj.dtype == "Period[M]" else: assert obj.dtype == label else: raise ValueError def test_dtypes(self, item): # to confirm test case covers intended dtypes typ, vals = item self._check_expected_dtype(Index(vals), typ) self._check_expected_dtype(Series(vals), typ) def test_concatlike_same_dtypes(self, item): # GH 13660 typ1, vals1 = item vals2 = vals1 vals3 = vals1 if typ1 == "category": exp_data = Categorical(list(vals1) + list(vals2)) exp_data3 = Categorical(list(vals1) + list(vals2) + list(vals3)) else: exp_data = vals1 + vals2 exp_data3 = vals1 + vals2 + vals3 # ----- Index ----- # # index.append res = Index(vals1).append(Index(vals2)) exp = Index(exp_data) tm.assert_index_equal(res, exp) # 3 elements res = Index(vals1).append([Index(vals2), Index(vals3)]) exp = Index(exp_data3) tm.assert_index_equal(res, exp) # index.append name mismatch i1 = Index(vals1, name="x") i2 = Index(vals2, name="y") res = i1.append(i2) exp = Index(exp_data) tm.assert_index_equal(res, exp) # index.append name match i1 = Index(vals1, name="x") i2 = Index(vals2, name="x") res = i1.append(i2) exp = Index(exp_data, name="x") tm.assert_index_equal(res, exp) # cannot append non-index with pytest.raises(TypeError, match="all inputs must be Index"): Index(vals1).append(vals2) with pytest.raises(TypeError, match="all inputs must be Index"): Index(vals1).append([Index(vals2), vals3]) # ----- Series ----- # # series.append res = Series(vals1)._append(Series(vals2), ignore_index=True) exp = Series(exp_data) tm.assert_series_equal(res, exp, check_index_type=True) # concat res = pd.concat([Series(vals1), Series(vals2)], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # 3 elements res = Series(vals1)._append([Series(vals2), Series(vals3)], ignore_index=True) exp = Series(exp_data3) tm.assert_series_equal(res, exp) res = pd.concat( [Series(vals1), Series(vals2), Series(vals3)], ignore_index=True, ) tm.assert_series_equal(res, exp) # name mismatch s1 = Series(vals1, name="x") s2 = Series(vals2, name="y") res = s1._append(s2, ignore_index=True) exp = Series(exp_data) tm.assert_series_equal(res, exp, check_index_type=True) res = pd.concat([s1, s2], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # name match s1 = Series(vals1, name="x") s2 = Series(vals2, name="x") res = s1._append(s2, ignore_index=True) exp = Series(exp_data, name="x") tm.assert_series_equal(res, exp, check_index_type=True) res = pd.concat([s1, s2], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # cannot append non-index msg = ( r"cannot concatenate object of type '.+'; " "only Series and DataFrame objs are valid" ) with pytest.raises(TypeError, match=msg): Series(vals1)._append(vals2) with pytest.raises(TypeError, match=msg): Series(vals1)._append([Series(vals2), vals3]) with pytest.raises(TypeError, match=msg): pd.concat([Series(vals1), vals2]) with pytest.raises(TypeError, match=msg): pd.concat([Series(vals1), Series(vals2), vals3]) def test_concatlike_dtypes_coercion(self, item, item2, request): # GH 13660 typ1, vals1 = item typ2, vals2 = item2 vals3 = vals2 # basically infer exp_index_dtype = None exp_series_dtype = None if typ1 == typ2: # same dtype is tested in test_concatlike_same_dtypes return elif typ1 == "category" or typ2 == "category": # The `vals1 + vals2` below fails bc one of these is a Categorical # instead of a list; we have separate dedicated tests for categorical return warn = None # specify expected dtype if typ1 == "bool" and typ2 in ("int64", "float64"): # series coerces to numeric based on numpy rule # index doesn't because bool is object dtype exp_series_dtype = typ2 mark = pytest.mark.xfail(reason="GH#39187 casting to object") request.node.add_marker(mark) warn = FutureWarning elif typ2 == "bool" and typ1 in ("int64", "float64"): exp_series_dtype = typ1 mark = pytest.mark.xfail(reason="GH#39187 casting to object") request.node.add_marker(mark) warn = FutureWarning elif ( typ1 == "datetime64[ns, US/Eastern]" or typ2 == "datetime64[ns, US/Eastern]" or typ1 == "timedelta64[ns]" or typ2 == "timedelta64[ns]" ): exp_index_dtype = object exp_series_dtype = object exp_data = vals1 + vals2 exp_data3 = vals1 + vals2 + vals3 # ----- Index ----- # # index.append with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Index(vals1).append(Index(vals2)) exp = Index(exp_data, dtype=exp_index_dtype) tm.assert_index_equal(res, exp) # 3 elements res = Index(vals1).append([Index(vals2), Index(vals3)]) exp = Index(exp_data3, dtype=exp_index_dtype) tm.assert_index_equal(res, exp) # ----- Series ----- # # series._append with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Series(vals1)._append(Series(vals2), ignore_index=True) exp = Series(exp_data, dtype=exp_series_dtype) tm.assert_series_equal(res, exp, check_index_type=True) # concat with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = pd.concat([Series(vals1), Series(vals2)], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # 3 elements with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Series(vals1)._append( [Series(vals2), Series(vals3)], ignore_index=True ) exp = Series(exp_data3, dtype=exp_series_dtype) tm.assert_series_equal(res, exp) with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = pd.concat( [Series(vals1), Series(vals2), Series(vals3)], ignore_index=True, ) tm.assert_series_equal(res, exp) def test_concatlike_common_coerce_to_pandas_object(self): # GH 13626 # result must be Timestamp/Timedelta, not datetime.datetime/timedelta dti = pd.DatetimeIndex(["2011-01-01", "2011-01-02"]) tdi = pd.TimedeltaIndex(["1 days", "2 days"]) exp = Index( [ pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02"), pd.Timedelta("1 days"), pd.Timedelta("2 days"), ] ) res = dti.append(tdi) tm.assert_index_equal(res, exp) assert isinstance(res[0], pd.Timestamp) assert isinstance(res[-1], pd.Timedelta) dts = Series(dti) tds = Series(tdi) res = dts._append(tds) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) assert isinstance(res.iloc[0], pd.Timestamp) assert isinstance(res.iloc[-1], pd.Timedelta) res = pd.concat([dts, tds]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) assert isinstance(res.iloc[0], pd.Timestamp) assert isinstance(res.iloc[-1], pd.Timedelta) def test_concatlike_datetimetz(self, tz_aware_fixture): tz = tz_aware_fixture # GH 7795 dti1 = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz) dti2 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"], tz=tz) exp = pd.DatetimeIndex( ["2011-01-01", "2011-01-02", "2012-01-01", "2012-01-02"], tz=tz ) res = dti1.append(dti2) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts2 = Series(dti2) res = dts1._append(dts2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) @pytest.mark.parametrize("tz", ["UTC", "US/Eastern", "Asia/Tokyo", "EST5EDT"]) def test_concatlike_datetimetz_short(self, tz): # GH#7795 ix1 = pd.date_range(start="2014-07-15", end="2014-07-17", freq="D", tz=tz) ix2 = pd.DatetimeIndex(["2014-07-11", "2014-07-21"], tz=tz) df1 = DataFrame(0, index=ix1, columns=["A", "B"]) df2 = DataFrame(0, index=ix2, columns=["A", "B"]) exp_idx = pd.DatetimeIndex( ["2014-07-15", "2014-07-16", "2014-07-17", "2014-07-11", "2014-07-21"], tz=tz, ) exp = DataFrame(0, index=exp_idx, columns=["A", "B"]) tm.assert_frame_equal(df1._append(df2), exp) tm.assert_frame_equal(pd.concat([df1, df2]), exp) def test_concatlike_datetimetz_to_object(self, tz_aware_fixture): tz = tz_aware_fixture # GH 13660 # different tz coerces to object dti1 = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz) dti2 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"]) exp = Index( [ pd.Timestamp("2011-01-01", tz=tz), pd.Timestamp("2011-01-02", tz=tz), pd.Timestamp("2012-01-01"), pd.Timestamp("2012-01-02"), ], dtype=object, ) res = dti1.append(dti2) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts2 = Series(dti2) res = dts1._append(dts2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) # different tz dti3 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"], tz="US/Pacific") exp = Index( [ pd.Timestamp("2011-01-01", tz=tz), pd.Timestamp("2011-01-02", tz=tz), pd.Timestamp("2012-01-01", tz="US/Pacific"), pd.Timestamp("2012-01-02", tz="US/Pacific"), ], dtype=object, ) res = dti1.append(dti3) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts3 = Series(dti3) res = dts1._append(dts3) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts3]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period(self): # GH 13660 pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") pi2 = pd.PeriodIndex(["2012-01", "2012-02"], freq="M") exp = pd.PeriodIndex(["2011-01", "2011-02", "2012-01", "2012-02"], freq="M") res = pi1.append(pi2) tm.assert_index_equal(res, exp) ps1 = Series(pi1) ps2 = Series(pi2) res = ps1._append(ps2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([ps1, ps2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period_diff_freq_to_object(self): # GH 13221 pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") pi2 = pd.PeriodIndex(["2012-01-01", "2012-02-01"], freq="D") exp = Index( [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Period("2012-01-01", freq="D"), pd.Period("2012-02-01", freq="D"), ], dtype=object, ) res = pi1.append(pi2) tm.assert_index_equal(res, exp) ps1 = Series(pi1) ps2 = Series(pi2) res = ps1._append(ps2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([ps1, ps2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period_mixed_dt_to_object(self): # GH 13221 # different datetimelike pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") tdi = pd.TimedeltaIndex(["1 days", "2 days"]) exp = Index( [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Timedelta("1 days"), pd.Timedelta("2 days"), ], dtype=object, ) res = pi1.append(tdi) tm.assert_index_equal(res, exp) ps1 = Series(pi1) tds = Series(tdi) res = ps1._append(tds) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([ps1, tds]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) # inverse exp = Index( [ pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), ], dtype=object, ) res = tdi.append(pi1) tm.assert_index_equal(res, exp) ps1 = Series(pi1) tds = Series(tdi) res = tds._append(ps1) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([tds, ps1]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concat_categorical(self): # GH 13524 # same categories -> category s1 = Series([1, 2, np.nan], dtype="category") s2 = Series([2, 1, 2], dtype="category") exp = Series([1, 2, np.nan, 2, 1, 2], dtype="category") tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) # partially different categories => not-category s1 = Series([3, 2], dtype="category") s2 = Series([2, 1], dtype="category") exp = Series([3, 2, 2, 1]) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) # completely different categories (same dtype) => not-category s1 = Series([10, 11, np.nan], dtype="category") s2 = Series([np.nan, 1, 3, 2], dtype="category") exp = Series([10, 11, np.nan, np.nan, 1, 3, 2], dtype=np.float64) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) def test_union_categorical_same_categories_different_order(self): # https://github.com/pandas-dev/pandas/issues/19096 a = Series(Categorical(["a", "b", "c"], categories=["a", "b", "c"])) b = Series(Categorical(["a", "b", "c"], categories=["b", "a", "c"])) result = pd.concat([a, b], ignore_index=True) expected = Series( Categorical(["a", "b", "c", "a", "b", "c"], categories=["a", "b", "c"]) )
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
import math import random import re import time import aiohttp import discord from discord.ext import commands import pandas as pd pd.set_option('display.max_rows', 1000) import datetime from fuzzywuzzy import process class WaitTimes(commands.Cog): def __init__(self, client): self._CACHE_TIME = 60 * 3 # minutes self.client = client self.parks = ["WaltDisneyWorldMagicKingdom", "WaltDisneyWorldEpcot", "WaltDisneyWorldHollywoodStudios", "WaltDisneyWorldAnimalKingdom", "UniversalIslandsOfAdventure", "UniversalStudiosFlorida"] self.df_parks_waittime =
pd.DataFrame()
pandas.DataFrame
from pathlib import Path import re import pandas as pd from spectrai.core import get_schmitter_config import brukeropusreader DATA_SPECTRA, DATA_SPECTRA_REP, DATA_MEASUREMENTS = get_schmitter_config() def load_spectra(path=DATA_SPECTRA): """Returns DRIFT/MIRs spectra, Petra's data, Vietnam, 2007-2008""" path = Path(path) df_list = [] for i, f in enumerate(path.glob('*.*')): if f.suffix != '.xls': file = brukeropusreader.read_file(f) spectrum = pd.Series(file['AB']) spectrum_name = _clean_column_name(f.name) if i == 0: wavelength = pd.Series(file.get_range("AB")) data = {'wavenumber': wavelength, spectrum_name: spectrum} else: data = {spectrum_name: spectrum} df_list.append(pd.DataFrame(data)) return pd.concat(df_list, axis=1, ignore_index=False, sort=False).set_index('wavenumber') def load_spectra_rep(path=DATA_SPECTRA_REP): """Returns DRIFT/MIRs spectra and their replicates, Petra's data, Vietnam, 2007-2008""" path = Path(path) df_list = [] _ids = [] for i, f in enumerate(path.glob('*.0')): _id = int(re.search(r'(.*?)_', f.name).group(1)) if (_id in range(3179, 4922)) and (_id not in _ids): file = brukeropusreader.read_file(f) if 'AB' in file: _ids.append(_id) spectrum = pd.Series(file['AB']) spectrum_name = _id if len(df_list) == 0: wavelength = pd.Series(file.get_range('AB')) data = {'wavenumber': wavelength, spectrum_name: spectrum} else: data = {spectrum_name: spectrum} df_list.append(
pd.DataFrame(data)
pandas.DataFrame
# # Procesando varios datasets de diversas fuentes para juntarlos en uno solo # Objetivo de salida: un dataset con en la que cada fila es una entidad federativa de México y cada columna un indicador sobre dicha entidad. import pandas as pd import matplotlib.pyplot as plt # ## Empezando por los que ya estan en formato csv y tienen el mismo formato. # Limpiando los datos inncesarios # Archivos a constantes DS_DIABETES = 'istabla43_2018.csv' # Detección padecimientos Diabetes por delegación, por año hasta el 2015 DS_HIPERTENSION = 'istabla45_2018.csv' # Detección de padecimientos Hipertensión arterial por delegación, por año hasta el 2015 DS_PADECIMIENTOS = 'istabla39_2018.csv' # Número total de detecciones por delegación, por año hasta el 2015 db = pd.read_csv(DS_DIABETES, encoding='latin') # Ignorando la fila de totales y seleccionando solo las filas de estados db = db[1:36] # Seleccionando solo las columnas de interés db = db[[db.columns[0], '2015', '2018']] # Renombrando las columnas a su clave definida en el diccionario del dataset db = db.rename(columns={ db.columns[0] : 'EDO', '2015' : 'DET.DIAB.15', '2018' : 'DET.DIAB.18' }) # Resultado de procesado de DS_DIABETES print('DS_DIABETES', db) # Repitiendo el proceso para DS_HIPERTENSION hp = pd.read_csv(DS_HIPERTENSION, encoding='latin') # Ignorando la fila de totales y seleccionando solo las filas de estados hp = hp[1:36] # Seleccionando solo las columnas de interés hp = hp[[hp.columns[0], '2015', '2018']] # Renombrando las columnas a su clave definida en el diccionario del dataset hp = hp.rename(columns={ hp.columns[0] : 'EDO', '2015' : 'DET.HIPT.15', '2018' : 'DET.HIPT.18' }) # Resultado parcial de DS_HIPERTENSION print('DS_HIPERTENSION', hp) # Repitiendo el proceso para DS_PADECIMIENTOS pad =
pd.read_csv(DS_PADECIMIENTOS, encoding='latin')
pandas.read_csv
# coding: utf-8 from __future__ import division import numpy as np import scipy.spatial.distance as sd from scipy.special import gamma from scipy.linalg import toeplitz from scipy.optimize import minimize from scipy.stats import ttest_1samp as ttest import hypertools as hyp import pandas as pd import warnings from matplotlib import pyplot as plt gaussian_params = {'var': 100} laplace_params = {'scale': 100} eye_params = {} t_params = {'df': 100} mexican_hat_params = {'sigma': 10} uniform_params = {} boxcar_params = {'width': 10} def gaussian_weights(T, params=gaussian_params): if params is None: params = gaussian_params c1 = np.divide(1, np.sqrt(2 * np.math.pi * params['var'])) c2 = np.divide(-1, 2 * params['var']) sqdiffs = toeplitz(np.arange(T) ** 2) return c1 * np.exp(c2 * sqdiffs) def laplace_weights(T, params=laplace_params): if params is None: params = laplace_params absdiffs = toeplitz(np.arange(T)) return np.multiply(np.divide(1, 2 * params['scale']), np.exp(-np.divide(absdiffs, params['scale']))) #scale by a factor of 2.5 to prevent near-zero rounding issues def eye_weights(T, params=eye_params): return np.eye(T) def uniform_weights(T, params=uniform_params): return np.ones([T, T]) def t_weights(T, params=t_params): if params is None: params = t_params c1 = np.divide(gamma((params['df'] + 1) / 2), np.sqrt(params['df'] * np.math.pi) * gamma(params['df'] / 2)) c2 = np.divide(-params['df'] + 1, 2) sqdiffs = toeplitz(np.arange(T) ** 2) return np.multiply(c1, np.power(1 + np.divide(sqdiffs, params['df']), c2)) def mexican_hat_weights(T, params=mexican_hat_params): if params is None: params = mexican_hat_params absdiffs = toeplitz(np.arange(T)) sqdiffs = toeplitz(np.arange(T) ** 2) a = np.divide(2, np.sqrt(3 * params['sigma']) * np.power(np.math.pi, 0.25)) b = 1 - np.power(np.divide(absdiffs, params['sigma']), 2) c = np.exp(-np.divide(sqdiffs, 2 * np.power(params['sigma'], 2))) return np.multiply(a, np.multiply(b, c)) def boxcar_weights(T, params=boxcar_params): if params is None: params = boxcar_params return np.multiply(toeplitz(np.arange(T)) < params['width']/2., 1.) def format_data(data): def zero_nans(x): x[np.isnan(x)] = 0 return x x = hyp.tools.format_data(data, ppca=False, ) return list(map(zero_nans, x)) def _is_empty(dict): if not bool(dict): return True return False def wcorr(a, b, weights): ''' Compute moment-by-moment correlations between sets of observations :param a: a number-of-timepoints by number-of-features observations matrix :param b: a number-of-timepoints by number-of-features observations matrix :param weights: a number-of-timepoints by number-of-timepoints weights matrix specifying the per-timepoint weights to be considered (for each timepoint) :return: a a.shape[1] by b.shape[1] by weights.shape[0] array of per-timepoint correlation matrices. ''' def weighted_var_diffs(x, w): w[np.isnan(w)] = 0 if np.sum(np.abs(w)) == 0: weights_tiled = np.ones(x.shape) else: weights_tiled = np.tile(w[:, np.newaxis], [1, x.shape[1]]) mx = np.sum(np.multiply(weights_tiled, x), axis=0)[:, np.newaxis].T diffs = x - np.tile(mx, [x.shape[0], 1]) varx = np.sum(diffs ** 2, axis=0)[:, np.newaxis].T return varx, diffs autocorrelation = np.isclose(a, b).all() corrs = np.zeros([a.shape[1], b.shape[1], weights.shape[1]]) for t in np.arange(weights.shape[1]): vara, diffs_a = weighted_var_diffs(a, weights[:, t]) if autocorrelation: varb = vara diffs_b = diffs_a else: varb, diffs_b = weighted_var_diffs(b, weights[:, t]) alpha = np.dot(diffs_a.T, diffs_b) beta = np.sqrt(np.dot(vara.T, varb)) corrs[:, :, t] = np.divide(alpha, beta) return corrs def wisfc(data, timepoint_weights, subject_weights=None): ''' Compute moment-by-moment correlations between sets of observations :data: a list of number-of-timepoints by V matrices :timepoint weights: a number-of-timepoints by number-of-timepoints weights matrix specifying the per-timepoint weights to be considered (for each timepoint) :subject weights: number-of-subjects by number-of-subjects weights matrix :return: a list of number-of-timepoints by (V^2 - V)/2 + V correlation matrices ''' if type(data) != list: return wisfc([data], timepoint_weights, subject_weights=subject_weights)[0] if subject_weights is None: K = data[0].shape[1] connectomes = np.zeros([len(data), int((K ** 2 - K) / 2)]) for s in np.arange(len(data)): connectomes[s, :] = 1 - sd.pdist(data[s].T, metric='correlation') subject_weights = 1 - sd.squareform(sd.pdist(connectomes, metric='correlation')) np.fill_diagonal(subject_weights, 0) elif np.isscalar(subject_weights): subject_weights = subject_weights * np.ones([len(data), len(data)]) np.fill_diagonal(subject_weights, 0) corrs = [] for s, a in enumerate(data): b = weighted_mean(np.stack(data, axis=2), axis=2, weights=subject_weights[s, :]) wc = wcorr(a, b, timepoint_weights) wc[np.isnan(wc)] = 0 wc[np.isinf(wc)] = 1 try: corrs.append(mat2vec(wc)) except: print('mystery!') return corrs def isfc(data, timepoint_weights): if type(data) != list: return isfc([data], timepoint_weights)[0] return wisfc(data, timepoint_weights, subject_weights=1 - np.eye(len(data))) def autofc(data, timepoint_weights): if type(data) != list: return autofc([data], timepoint_weights)[0] return wisfc(data, timepoint_weights, subject_weights=np.eye(len(data))) def apply_by_row(corrs, f): ''' apply the function f to the correlation matrix specified in each row, and return a matrix of the concatenated results :param corrs: a matrix of vectorized correlation matrices (output of mat2vec), or a list of such matrices :param f: a function to apply to each vectorized correlation matrix :return: a matrix of function outputs (for each row of the given matrices), or a list of such matrices ''' if type(corrs) is list: return list(map(lambda x: apply_by_row(x, f), corrs)) corrs = vec2mat(corrs) return np.stack(list(map(lambda x: f(np.squeeze(x)), np.split(corrs, corrs.shape[2], axis=2))), axis=0) def corrmean_combine(corrs): ''' Compute the mean element-wise correlation across each matrix in a list. :param corrs: a matrix of vectorized correlation matrices (output of mat2vec), or a list of such matrices :return: a mean vectorized correlation matrix ''' if not (type(corrs) == list): return corrs elif np.shape(corrs)[0] == 1: return corrs else: return z2r(np.mean(r2z(np.stack(corrs, axis=2)), axis=2)) def mean_combine(vals): ''' Compute the element-wise mean across each matrix in a list. :param vals: a matrix, or a list of matrices :return: a mean matrix ''' if not (type(vals) == list): return vals else: return np.mean(np.stack(vals, axis=2), axis=2) def tstat_combine(corrs, return_pvals=False): ''' Compute element-wise t-tests (comparing distribution means to 0) across each correlation matrix in a list. :param corrs: a matrix of vectorized correlation matrices (output of mat2vec), or a list of such matrices :param return_pvals: Boolean (default: False). If True, return a second matrix (or list) of the corresponding t-tests' p-values :return: a matrix of t-statistics of the same shape as a matrix of vectorized correlation matrices ''' if not (type(corrs) == list): ts = corrs ps = np.nan * np.zeros_like(corrs) else: ts, ps = ttest(r2z(np.stack(corrs, axis=2)), popmean=0, axis=2) if return_pvals: return ts, ps else: return ts def null_combine(corrs): ''' Placeholder function that returns the input :param corrs: a matrix of vectorized correlation matrices (output of mat2vec), or a list of such matrices :return: the input ''' return corrs def reduce(corrs, rfun=None): ''' :param corrs: a matrix of vectorized correlation matrices (output of mat2vec), or a list of such matrices :param rfun: function to use for dimensionality reduction. All hypertools and scikit-learn functions are supported: PCA, IncrementalPCA, SparsePCA, MiniBatchSparsePCA, KernelPCA, FastICA, FactorAnalysis, TruncatedSVD, DictionaryLearning, MiniBatchDictionaryLearning, TSNE, Isomap, SpectralEmbedding, LocallyLinearEmbedding, MDS, and UMAP. Can be passed as a string, but for finer control of the model parameters, pass as a dictionary, e.g. reduction={‘model’ : ‘PCA’, ‘params’ : {‘whiten’ : True}}. See scikit-learn specific model docs for details on parameters supported for each model. Another option is to use graph theoretic measures computed for each node. The following measures are supported (via the brainconn toolbox): eigenvector_centrality, pagerank_centrality, and strength. (Each of these must be specified as a string; dictionaries not supported.) Default: None (no dimensionality reduction) :return: dimensionality-reduced (or original) correlation matrices ''' try: import brainconn as bc _has_brainconn = True graph_measures = {'eigenvector_centrality': bc.centrality.eigenvector_centrality_und, 'pagerank_centrality': lambda x: bc.centrality.pagerank_centrality(x, d=0.85), 'strength': bc.degree.strengths_und} except ImportError: _has_brainconn = False graph_measures = {'eigenvector_centrality': None, 'pagerank_centrality': None, 'strength': None} if rfun is None: return corrs get_V = lambda x: int(np.divide(np.sqrt(8 * x + 1) - 1, 2)) if type(corrs) is list: V = get_V(corrs[0].shape[1]) else: V = get_V(corrs.shape[1]) if _has_brainconn and rfun in graph_measures.keys(): return apply_by_row(corrs, graph_measures[rfun]) elif not _has_brainconn and rfun in graph_measures.keys(): raise ImportError('brainconn is not installed. Please install "git+https://github.com/FIU-Neuro/brainconn#egg=brainconn"') else: red_corrs = hyp.reduce(corrs, reduce=rfun, ndims=V) D = np.shape(red_corrs)[-1] if D < V : red_corrs = np.hstack((red_corrs, np.zeros((D, V - D)))) return red_corrs def smooth(w, windowsize=10, kernel_fun=laplace_weights, kernel_params=laplace_params): if type(w) is list: return list(map(lambda x: smooth(x, windowsize=windowsize, kernel_fun=kernel_fun, kernel_params=kernel_params), w)) assert type(windowsize) == int, 'smoothing kernel must have integer width' k = kernel_fun(windowsize, params=kernel_params) if iseven(windowsize): kernel = np.divide(k[int(np.floor(windowsize/2) - 1), :] + k[int(np.ceil(windowsize/2) - 1), :], 2) else: kernel = k[int(np.floor(windowsize/2)), :] kernel /= kernel.sum() x = np.zeros_like(w) for i in range(0, w.shape[1]): x[:, i] = np.convolve(kernel, w[:, i], mode='same') return x def timepoint_decoder(data, mu=None, nfolds=2, level=0, cfun=isfc, weights_fun=laplace_weights, weights_params=laplace_params, combine=mean_combine, rfun=None): """ :param data: a list of number-of-observations by number-of-features matrices :param mu: list of floats sum to one for mixing proportions vector :param nfolds: number of cross-validation folds (train using out-of-fold data; test using in-fold data) :param level: integer or list of integers for levels to be evaluated (default:0) :param cfun: function for transforming the group data (default: isfc) :param weights_fun: used to compute per-timepoint weights for cfun; default: laplace_weights :param weights_params: parameters passed to weights_fun; default: laplace_params :params combine: function for combining data within each group, or a list of such functions (default: mean_combine) :param rfun: function for reducing output (default: None) :return: results dictionary with the following keys: 'rank': mean percentile rank (across all timepoints and folds) in the decoding distribution of the true timepoint 'accuracy': mean percent accuracy (across all timepoints and folds) 'error': mean estimation error (across all timepoints and folds) between the decoded and actual window numbers, expressed as a percentage of the total number of windows """ assert len(np.unique( list(map(lambda x: x.shape[0], data)))) == 1, 'all data matrices must have the same number of timepoints' assert len(np.unique( list(map(lambda x: x.shape[1], data)))) == 1, 'all data matrices must have the same number of features' group_assignments = get_xval_assignments(len(data), nfolds) orig_level = level orig_level = np.ravel(orig_level) if type(level) is int: level = np.arange(level + 1) level = np.ravel(level) assert type(level) is np.ndarray, 'level needs be an integer, list, or np.ndarray' assert not np.any(level < 0), 'level cannot contain negative numbers' if mu: orig_level = level.max() orig_level = np.ravel(orig_level) assert np.sum(mu)==1, 'weights must sum to one' assert np.shape(mu)[0]== level.max()+1, 'weights lengths need to be the same as number of levels' if not np.all(np.arange(level.max()+1)==level): level = np.arange(level.max()+1) if callable(combine): combine = [combine] * np.shape(level)[0] combine = np.ravel(combine) assert type(combine) is np.ndarray and type(combine[0]) is not np.str_, 'combine needs to be a function, list of functions, or np.ndarray of functions' assert len(level)==len(combine), 'combine length need to be the same as level if input is type np.ndarray or list' if callable(cfun): cfun = [cfun] * np.shape(level)[0] cfun = np.ravel(cfun) assert type(cfun) is np.ndarray and type(cfun[0]) is not np.str_, 'combine needs be a function, list of functions, or np.ndarray of functions' assert len(level)==len(cfun), 'cfun length need to be the same as level if input is type np.ndarray or list' if type(rfun) not in [list, np.ndarray]: rfun = [rfun] * np.shape(level)[0] p_rfun = [None] * np.shape(level)[0] assert len(level)==len(rfun), 'parameter lengths need to be the same as level if input is ' \ 'type np.ndarray or list' results_pd = pd.DataFrame() corrs = 0 for i in range(0, nfolds): in_raw = [] out_raw = [] for v in level: if v==0: in_data = [x for x in data[group_assignments == i]] out_data = [x for x in data[group_assignments != i]] in_smooth, out_smooth, in_raw, out_raw = reduce_wrapper(folding_levels(in_data, out_data, level=v, cfun=None,rfun=p_rfun, combine=combine, weights_fun=weights_fun, weights_params=weights_params), level=v, rfun=rfun) else: in_smooth, out_smooth, in_raw, out_raw = reduce_wrapper(folding_levels(in_raw, out_raw, level=v, cfun=cfun, rfun=p_rfun, combine=combine, weights_fun=weights_fun, weights_params=weights_params), level=v, rfun=rfun) if mu: next_corrs = (1 - sd.cdist(in_smooth, out_smooth, 'correlation')) corrs += mu[v] * z2r(next_corrs) else: corrs = (1 - sd.cdist(in_smooth, out_smooth, 'correlation')) if v in orig_level: if mu: corrs = r2z(corrs) next_results_pd = decoder(corrs) next_results_pd['level'] = v next_results_pd['folds'] = i results_pd = pd.concat([results_pd, next_results_pd]) return results_pd def weighted_timepoint_decoder(data, nfolds=2, level=0, optimize_levels=None, cfun=isfc, weights_fun=laplace_weights, weights_params=laplace_params, combine=mean_combine, rfun=None, opt_init=None): """ :param data: a list of number-of-observations by number-of-features matrices :param nfolds: number of cross-validation folds (train using out-of-fold data; test using in-fold data) :param level: integer or list of integers for levels to be evaluated (default:0) :param cfun: function for transforming the group data (default: isfc) :param weights_fun: used to compute per-timepoint weights for cfun; default: laplace_weights :param weights_params: parameters passed to weights_fun; default: laplace_params :params combine: function for combining data within each group, or a list of such functions (default: mean_combine) :param rfun: function for reducing output (default: None) :return: results dictionary with the following keys: 'rank': mean percentile rank (across all timepoints and folds) in the decoding distribution of the true timepoint 'accuracy': mean percent accuracy (across all timepoints and folds) 'error': mean estimation error (across all timepoints and folds) between the decoded and actual window numbers, expressed as a percentage of the total number of windows """ assert len(np.unique( list(map(lambda x: x.shape[0], data)))) == 1, 'all data matrices must have the same number of timepoints' assert len(np.unique( list(map(lambda x: x.shape[1], data)))) == 1, 'all data matrices must have the same number of features' if nfolds == 1: sub_nfolds = 1 nfolds = 2 warnings.warn('When nfolds is set to one, the analysis will be circular.') else: sub_nfolds = 1 group_assignments = get_xval_assignments(len(data), nfolds) orig_level = level orig_level = np.ravel(orig_level) if type(level) is int: level = np.arange(level + 1) level = np.ravel(level) assert type(level) is np.ndarray, 'level needs be an integer, list, or np.ndarray' assert not np.any(level < 0), 'level cannot contain negative numbers' if not np.all(np.arange(level.max()+1)==level): level = np.arange(level.max()+1) if callable(combine): combine = [combine] * np.shape(level)[0] combine = np.ravel(combine) assert type(combine) is np.ndarray and type(combine[0]) is not np.str_, 'combine needs to be a function, list of ' \ 'functions, or np.ndarray of functions' assert len(level)==len(combine), 'combine length need to be the same as level if input is type np.ndarray or list' if callable(cfun): cfun = [cfun] * np.shape(level)[0] cfun = np.ravel(cfun) assert type(cfun) is np.ndarray and type(cfun[0]) is not np.str_, 'combine needs be a function, list of functions, ' \ 'or np.ndarray of functions' assert len(level)==len(cfun), 'cfun length need to be the same as level if input is type np.ndarray or list' if type(rfun) not in [list, np.ndarray]: rfun = [rfun] * np.shape(level)[0] p_rfun = [None] * np.shape(level)[0] assert len(level)==len(rfun), 'parameter lengths need to be the same as level if input is ' \ 'type np.ndarray or list' results_pd = pd.DataFrame() for i in range(0, nfolds): in_raw = [] out_raw = [] sub_in_raw = [] sub_out_raw = [] sub_corrs = [] corrs = [] subgroup_assignments = get_xval_assignments(len(data[group_assignments == i]), nfolds) in_data = [x for x in data[group_assignments == i]] out_data = [x for x in data[group_assignments != i]] for v in level: if v==0: in_smooth, out_smooth, in_raw, out_raw = folding_levels(in_data, out_data, level=v, cfun=None, rfun=p_rfun, combine=combine, weights_fun=weights_fun, weights_params=weights_params) next_corrs = (1 - sd.cdist(mean_combine([x for x in in_raw]), mean_combine([x for x in out_raw]), 'correlation')) # next_corrs = (1 - sd.cdist(mean_combine(in_smooth), mean_combine(out_smooth), # 'correlation')) corrs.append(next_corrs) for s in range(0, 1): sub_in_data = [x for x in data[group_assignments == i][subgroup_assignments==s]] sub_out_data = [x for x in data[group_assignments == i][subgroup_assignments!=s]] sub_in_smooth, sub_out_smooth, sub_in_raw, sub_out_raw = folding_levels(sub_in_data, sub_out_data, level=v, cfun=None, rfun=p_rfun, combine=combine, weights_fun=weights_fun, weights_params=weights_params) next_subcorrs = (1 - sd.cdist(mean_combine([x for x in sub_in_raw]), mean_combine([x for x in sub_out_raw]), 'correlation')) # next_subcorrs = (1 - sd.cdist(mean_combine(sub_in_smooth), # mean_combine(sub_out_smooth), 'correlation')) sub_corrs.append(next_subcorrs) else: in_smooth, out_smooth, in_raw, out_raw = folding_levels(in_raw, out_raw, level=v, cfun=cfun, rfun=rfun, combine=combine, weights_fun=weights_fun, weights_params=weights_params) next_corrs = (1 - sd.cdist(in_smooth, out_smooth, 'correlation')) corrs.append(next_corrs) print('corrs ' + str(v)) for s in range(0, 1): sub_in_smooth, sub_out_smooth, sub_in_raw, sub_out_raw = folding_levels(sub_in_raw, sub_out_raw, level=v, cfun=cfun, rfun=rfun, combine=combine, weights_fun=weights_fun, weights_params=weights_params) print('sub corrs ' + str(v) + str(s)) next_subcorrs = (1 - sd.cdist(sub_in_smooth, sub_out_smooth, 'correlation')) sub_corrs.append(next_subcorrs) sub_corrs = np.array(sub_corrs) corrs = np.array(corrs) if sub_nfolds == 1: sub_corrs = corrs if not optimize_levels: optimize_levels = range(v+1) opt_over = [] for lev in optimize_levels: opt_over.append(lev) sub_out_corrs = sub_corrs[opt_over,:,:] out_corrs = corrs[opt_over, :, :] mu = optimize_weights(sub_out_corrs, opt_init) w_corrs = weight_corrs(out_corrs, mu) next_results_pd = decoder(w_corrs) print(next_results_pd) next_results_pd['level'] = lev next_results_pd['folds'] = i mu_pd = pd.DataFrame() for c in opt_over: mu_pd['level_' + str(c)] = [0] mu_pd += mu next_results_pd = pd.concat([next_results_pd, mu_pd], axis=1, join_axes=[next_results_pd.index]) results_pd = pd.concat([results_pd, next_results_pd]) return results_pd def folding_levels(infold_data, outfold_data, level=0, cfun=None, weights_fun=None, weights_params=None, combine=None, rfun=None): from .timecorr import timecorr if rfun is None: rfun = [None] * np.shape(level)[0] p_cfun = eval('autofc') if level == 0: in_fold_smooth = np.asarray(timecorr([x for x in infold_data], cfun=None, rfun=rfun[level], combine=combine[level], weights_function=weights_fun, weights_params=weights_params)) out_fold_smooth = np.asarray(timecorr([x for x in outfold_data], cfun=None, rfun=rfun[level], combine=combine[level], weights_function=weights_fun, weights_params=weights_params)) in_fold_raw = infold_data out_fold_raw = outfold_data else: in_fold_smooth = np.asarray(timecorr(list(infold_data), cfun=cfun[level], rfun=rfun[level], combine=combine[level], weights_function=weights_fun, weights_params=weights_params)) out_fold_smooth = np.asarray(timecorr(list(outfold_data), cfun=cfun[level], rfun=rfun[level], combine=combine[level], weights_function=weights_fun, weights_params=weights_params)) in_fold_raw = np.asarray(timecorr(list(infold_data), cfun=p_cfun, rfun=rfun[level], combine=null_combine, weights_function=eye_weights, weights_params=eye_params)) out_fold_raw = np.asarray(timecorr(list(outfold_data), cfun=p_cfun, rfun=rfun[level], combine=null_combine, weights_function=eye_weights, weights_params=eye_params)) return in_fold_smooth, out_fold_smooth, in_fold_raw, out_fold_raw def weighted_timepoint_decoder_ec(data, nfolds=2, level=0, optimize_levels=None, cfun=isfc, weights_fun=laplace_weights, weights_params=laplace_params, combine=mean_combine, rfun=None, opt_init=None): """ :param data: a list of number-of-observations by number-of-features matrices :param nfolds: number of cross-validation folds (train using out-of-fold data; test using in-fold data) :param level: integer or list of integers for levels to be evaluated (default:0) :param cfun: function for transforming the group data (default: isfc) :param weights_fun: used to compute per-timepoint weights for cfun; default: laplace_weights :param weights_params: parameters passed to weights_fun; default: laplace_params :params combine: function for combining data within each group, or a list of such functions (default: mean_combine) :param rfun: function for reducing output (default: None) :return: results dictionary with the following keys: 'rank': mean percentile rank (across all timepoints and folds) in the decoding distribution of the true timepoint 'accuracy': mean percent accuracy (across all timepoints and folds) 'error': mean estimation error (across all timepoints and folds) between the decoded and actual window numbers, expressed as a percentage of the total number of windows """ if nfolds == 1: sub_nfolds = 1 nfolds = 2 warnings.warn('When nfolds is set to one, the analysis will be circular.') else: sub_nfolds = 1 group_assignments = get_xval_assignments(data.shape[1], nfolds) orig_level = level orig_level = np.ravel(orig_level) if type(level) is int: level = np.arange(level + 1) level = np.ravel(level) assert type(level) is np.ndarray, 'level needs be an integer, list, or np.ndarray' assert not np.any(level < 0), 'level cannot contain negative numbers' if not np.all(np.arange(level.max()+1)==level): level = np.arange(level.max()+1) if callable(combine): combine = [combine] * np.shape(level)[0] combine = np.ravel(combine) assert type(combine) is np.ndarray and type(combine[0]) is not np.str_, 'combine needs to be a function, list of ' \ 'functions, or np.ndarray of functions' assert len(level)==len(combine), 'combine length need to be the same as level if input is type np.ndarray or list' if callable(cfun): cfun = [cfun] * np.shape(level)[0] cfun = np.ravel(cfun) assert type(cfun) is np.ndarray and type(cfun[0]) is not np.str_, 'combine needs be a function, list of functions, ' \ 'or np.ndarray of functions' assert len(level)==len(cfun), 'cfun length need to be the same as level if input is type np.ndarray or list' if type(rfun) not in [list, np.ndarray]: rfun = [rfun] * np.shape(level)[0] p_rfun = [None] * np.shape(level)[0] assert len(level)==len(rfun), 'parameter lengths need to be the same as level if input is ' \ 'type np.ndarray or list' results_pd =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- import pandas as pd import jellyfish def find_closest_string(list_string, list_candidate, no_perfect_match=True): list_df = [] for k in range(len(list_string)): for c in range(len(list_candidate)): match_name = list_string[k] candidate = list_candidate[c] if not pd.isna(match_name): if not
pd.isna(candidate)
pandas.isna
""" .. module:: repeats :synopsis: Repeats (transposon) related stuffs .. moduleauthor:: <NAME> <<EMAIL>> """ import csv import subprocess import os import gzip import glob import logging logging.basicConfig(level=logging.DEBUG) LOG = logging.getLogger(__name__) import uuid import pandas as PD import numpy as N import matplotlib.pylab as P from jgem import utils as UT from jgem import fasta as FA from jgem import filenames as FN from jgem import bedtools as BT from jgem import gtfgffbed as GGB from jgem import assembler2 as A2 from jgem import assembler3 as A3 RMSKPARAMS = dict( np = 4, th_uexon=4, th_bp_ovl=50, th_ex_ovl=50, datacode='', gname='gname', ) def filter_paths(mdstpre, rdstpre): ex = UT.read_pandas(rdstpre+'.ex.txt.gz') def select_chromwise(paths, ex): npchrs = [] for chrom in paths['chr'].unique(): pchr = paths[paths['chr']==chrom] echr = ex[ex['chr']==chrom] exnames = set(echr['name'].values) #e2gname = UT.df2dict(echr,'name','gname') idx = [all([x in exnames for x in y.split('|')]) for y in pchr['name']] npchrs.append(pchr[idx]) return PD.concat(npchrs, ignore_index=True) paths = GGB.read_bed(mdstpre+'.paths.withse.bed.gz') npaths = select_chromwise(paths, ex) GGB.write_bed(npaths, rdstpre+'.paths.withse.bed.gz', ncols=12) paths = GGB.read_bed(mdstpre+'.paths.txt.gz') npaths = select_chromwise(paths, ex) GGB.write_bed(npaths, rdstpre+'.paths.txt.gz', ncols=12) def filter_sjexdf(mdstpre, rdstpre): exdf = UT.read_pandas(mdstpre+'.exdf.txt.gz', names=A3.EXDFCOLS) sedf = UT.read_pandas(mdstpre+'.sedf.txt.gz', names=A3.EXDFCOLS) exdf = PD.concat([exdf, sedf], ignore_index=True) sjdf = UT.read_pandas(mdstpre+'.sjdf.txt.gz', names=A3.SJDFCOLS) ex = UT.read_pandas(rdstpre+'.ex.txt.gz') sj = UT.read_pandas(rdstpre+'.sj.txt.gz') def select_chromwise_df(exdf, ex): npchrs = [] for chrom in exdf['chr'].unique(): pchr = exdf[exdf['chr']==chrom] echr = ex[ex['chr']==chrom] exnames = set(echr['name'].values) idx = [x in exnames for x in pchr['name']] npchrs.append(pchr[idx]) return PD.concat(npchrs, ignore_index=True) nexdf = select_chromwise_df(exdf, ex) nsjdf = select_chromwise_df(sjdf, sj) UT.write_pandas(nexdf, rdstpre+'.exdf.txt.gz', '') UT.write_pandas(nsjdf, rdstpre+'.sjdf.txt.gz', '') class RmskFilter(object): """Filter genes with by overlap to repeat masker. Args: sjexpre: path prefix to assembled ex.txt.gz, sj.txt.gz files (optionally unionex.txt.gz ) code: identifier chromdir: direcotry which contains chromosomes sequences in FASTA format rmskviz: RepeatMasker viz track (UCSC) converted in BED7 (using jgem.repeats.rmskviz2bed7) outdir: output directory """ def __init__(self, sjexpre, code, chromdir, rmskviz, outdir, **kw): self.sjexpre = sjexpre self.prefix = prefix = os.path.join(outdir, code) self.fnobj = FN.FileNamesBase(prefix) self.chromdir = chromdir self.rmskviz = rmskviz self.gfc = FA.GenomeFASTAChroms(chromdir) self.params = RMSKPARAMS.copy() self.params.update(kw) self.ex = UT.read_pandas(sjexpre+'.ex.txt.gz') self.sj = UT.read_pandas(sjexpre+'.sj.txt.gz') if 'glen' not in self.ex or 'tlen' not in self.ex: if not os.path.exists(sjexpre+'.ci.txt.gz'): ci = UT.chopintervals(ex, sjexpre+'.ci.txt.gz') else: ci = UT.read_ci(sjexpre+'.ci.txt.gz') UT.set_glen_tlen(self.ex,ci,gidx='_gidx') UT.write_pandas(self.ex, sjexpre+'.ex.txt.gz', 'h') uexpath = sjexpre+'.unionex.txt.gz' if os.path.exists(uexpath): self.uex = UT.read_pandas(uexpath) else: LOG.info('making union exons...saving to {0}'.format(uexpath)) self.uex = UT.make_unionex(self.ex, '_gidx') UT.write_pandas(self.uex, uexpath, 'h') def calculate(self): """ Calculate base pair overlap to repeat using UCSC genome mask of repeats to lower case, and exon level overlap to repeat using UCSC RepeatMaskerViz track. ALso make a dataframe containing summary. """ pr = self.params fn = self.fnobj uex = count_repeats_mp(self.uex, self.gfc, np=pr['np'], col='#repbp') uex = count_repeats_viz_mp(uex, self.rmskviz, np=pr['np'], idcol='_id', expand=0, col='repnames') self.ugb = ugb = self._make_gbed(self.ex, self.sj, uex, datacode=pr['datacode'], gname=pr['gname']) UT.write_pandas(ugb, fn.txtname('all.genes.stats', category='output'), 'h') def _make_gbed(self, ex, sj, ugb, datacode='', gname='gname'): # rep% gr = ugb.groupby('_gidx') gb2 = gr[['chr',gname,'tlen','glen']].first() gb2['#repbp'] = gr['#repbp'].sum() gb2['rep%'] = 100.*gb2['#repbp']/gb2['tlen'] # rmskviz, exon% gb2['#uexons'] = gr.size() gbsub = ugb[ugb['repnames']!='.(-1)'] # .(-1) == overlap gb2['#uexons_rmsk'] = gbsub.groupby('_gidx').size() # num exons overlapping rmskviz gb2.loc[gb2['#uexons_rmsk'].isnull(),'#uexons_rmsk'] = 0 gb2['rviz%'] = 100.*gb2['#uexons_rmsk']/gb2['#uexons'] gb2['repnames'] = gbsub.groupby('_gidx')['repnames'].apply(lambda x: ';'.join(list(x))) # locus gb2['st'] = gr['st'].min() gb2['ed'] = gr['ed'].max() gb2['glocus'] = UT.calc_locus(gb2,'chr','st','ed') # rmskviz, class=[Simple_repeats, LINE, SINE, LTR, DNA] rcols = ['Simple_repeat','LINE','SINE','LTR','DNA'] for k in rcols: gb2[k] = gb2['repnames'].str.contains('#'+k) dc = '_'+datacode if datacode else '' egr = ex.groupby('_gidx') gb2['#exons'] = egr.size() gb2['avgecov'] = egr['ecov'+dc].mean() if 'gcov' in egr: gb2['gcov'] = egr['gcov'+dc].first() sgr = sj.groupby('_gidx') if 'ucnt' in sgr and 'mcnt' in sgr: gb2['ucnt'] = sgr['ucnt'+dc].sum() gb2['mcnt'] = sgr['mcnt'+dc].sum() gb2['minjcnt'] = sgr['mcnt'+dc].min() elif 'tcnt' in sgr: gb2['tcnt'] = sgr['tcnt'+dc].sum() gb2['#junc'] = sgr.size() # gb2['lscore'] = N.log10(gb2['tlen']) - N.log10(gb2['glen']) + 2 # gb2['jscore'] = N.log10(gb2['ucnt']) - N.log10(gb2['mcnt']) - 1.5 return gb2 def filter(self, **kw): """ Filter genes. base pair repeat overlap % >= th_bp_ovl (default 50) exon_repeat_overlap % >= th_ex_ovl (default 50) #union exon < th_uexon (default 4) That is, by default, it filters out 2,3 exon genes with both base pair and exon level overlap to repeats are greater or equal to 50%. Does not apply to single exons. """ d = self.ugb pr = self.params fn = self.fnobj pr.update(kw) idx1 = (d['rep%']>=pr['th_bp_ovl'])&(d['rviz%']>pr['th_ex_ovl']) idx2 = (d['#junc'].notnull())&(d['#uexons']<pr['th_uexon']) idx = ~(idx1&idx2) self.ugb2 = ugb2 = d[idx] # filtered self.ugb3 = ugb3 = d[~idx] gids = ugb2.index.values ex0 = self.ex sj0 = self.sj uex = self.uex # filter ex,sj,uex self.ex2 = ex2 = ex0[ex0['_gidx'].isin(gids)].sort_values(['chr','st','ed']) self.sj2 = sj2 = sj0[sj0['_gidx'].isin(gids)].sort_values(['chr','st','ed']) self.uex2 = uex2 = uex[uex['_gidx'].isin(gids)].sort_values(['chr','st','ed']) gcovfld = 'gcov_'+pr['datacode'] if pr['datacode'] else 'gcov' self.gbed2 = gbed2 = GGB.unionex2bed12(uex2,name=pr['gname'],sc2=gcovfld,sc1='tlen') gbed2['sc2'] = gbed2['sc2'].astype(int) # write out filtered ex,sj,ci,unionex,gbed UT.write_pandas(ex2, fn.txtname('ex', category='output'), 'h') UT.write_pandas(sj2, fn.txtname('sj', category='output'), 'h') UT.chopintervals(ex2, fn.txtname('ci', category='output')) GGB.write_bed(ex2, fn.bedname('ex', category='output')) GGB.write_bed(sj2, fn.bedname('sj', category='output')) UT.write_pandas(uex2, fn.txtname('unionex', category='output'), 'h') UT.write_pandas(ugb2, fn.txtname('genes.stats', category='output'), 'h') UT.write_pandas(gbed2, fn.bedname('genes', category='output'), '') # BED12 # also write filtered out genes self.ex3 = ex3 = ex0[~ex0['_gidx'].isin(gids)].sort_values(['chr','st','ed']) self.sj3 = sj3 = sj0[~sj0['_gidx'].isin(gids)].sort_values(['chr','st','ed']) self.uex3 = uex3 = uex[~uex['_gidx'].isin(gids)].sort_values(['chr','st','ed']) gcovfld = 'gcov_'+pr['datacode'] if pr['datacode'] else 'gcov' self.gbed3 = gbed3 = GGB.unionex2bed12(uex3,name=pr['gname'],sc2=gcovfld,sc1='tlen') gbed3['sc2'] = gbed3['sc2'].astype(int) # write out filtered ex,sj,ci,unionex,gbed UT.write_pandas(ex3, fn.txtname('removed.ex', category='output'), 'h') UT.write_pandas(sj3, fn.txtname('removed.sj', category='output'), 'h') UT.chopintervals(ex3, fn.txtname('removed.ci', category='output')) UT.write_pandas(uex3, fn.txtname('removed.unionex', category='output'), 'h') UT.write_pandas(ugb3, fn.txtname('removed.genes.stats', category='output'), 'h') UT.write_pandas(gbed3, fn.bedname('removed.genes', category='output'), '') # BED12 def save_params(self): UT.save_json(self.params, self.fnobj.fname('params.json', category='output')) def __call__(self): self.calculate() self.filter() self.save_params() filter_paths(self.sjexpre, self.prefix) filter_sjexdf(self.sjexpre, self.prefix) def plot_tlen_vs_glen_panels(gbed, fld='rep%', alpha=0.1, ms=0.8): fig,axr = P.subplots(2,5,figsize=(15,6), sharex=True, sharey=True) for i,t in enumerate(range(0,100,10)): ax = axr[int(i/5)][i % 5] _tvl(gbed, t, t+10, ax=ax, fld=fld, alpha=alpha, ms=ms) def plot_tlen_vs_glen(gbed, title='', ax=None, mk='b.', ms=0.5, alpha=0.1): x = N.log10(gbed['glen']) y = N.log10(gbed['tlen']) if ax is None: fig, ax = P.subplots(1,1,figsize=(3,3)) ax.plot(x.values, y.values, mk, ms=ms, alpha=alpha) ax.set_title('{0} (#{1})'.format(title,len(gbed))) ax.set_xlabel('log10(glen)') ax.set_ylabel('log10(tlen)') ax.set_xlim(1,7) ax.set_ylim(1.5,5.5) def _tvl(gbed, t0, t1, alpha=0.1, ax=None, fld='rep%',ms=0.1): idx10 = (gbed[fld]>=t0)&(gbed[fld]<=t1) x = N.log10(gbed['glen']) y = N.log10(gbed['tlen']) if ax is None: fig, ax = P.subplots(1,1,figsize=(3,3)) ax.plot(x[idx10].values, y[idx10].values, 'b.', ms=ms, alpha=alpha) ax.set_title('{0}<={3}<={1} ({2})'.format(t0,t1,N.sum(idx10),fld)) #ax.axhline(3.2) ax.set_xlabel('log10(glen)') ax.set_ylabel('log10(tlen)') ax.set_xlim(1,7) ax.set_ylim(1.5,5.5) def count_repeats(beddf, genomefastaobj, col='#repbp', returnseq=False, seqcol='seq'): """Looks up genome sequence and counts the number of lower characters. (RepeatMaker masked sequence are set to lower characters in UCSC genome) Args: beddf: Pandas DataFrame with chr,st,ed columns, when calculating repeats bp for genes, unioned bed should be used (use utils.make_unionex) genomefastaobj: an object with get(chr,st,ed) method that returns sequence (use fasta.GenomeFASTAChroms). col: column names where counts will be put in returnseq (bool): whether to return sequence or not (default False) seqcol: column where sequences are put in (default seq) Outputs: are put into beddf columns with colname col(default #repbp) """ def _cnt(chrom,st,ed): seq = genomefastaobj.get(chrom,st,ed) return N.sum([x.islower() for x in seq]) if returnseq: beddf[seqcol] = [genomefastaobj.get(*x) for x in beddf[['chr','st','ed']].values] beddf[col] = beddf[seqcol].apply(lambda x: N.sum([y.islower() for y in x])) else: beddf[col] = [_cnt(*x) for x in beddf[['chr','st','ed']].values] return beddf def count_repeats_mp(beddf, genomefastaobj, col='#repbp', returnseq=False, seqcol='seq', idfld='_id', np=4): """ MultiCPU version of counts_repeats """ # only send relevant part i.e. chr,st,ed,id if not idfld in beddf: beddf[idfld] = N.arange(len(beddf)) # number per CPU n = int(N.ceil(len(beddf)/float(np))) # per CPU args = [(beddf.iloc[i*n:(i+1)*n],genomefastaobj,col,returnseq,seqcol) for i in range(np)] rslts = UT.process_mp(count_repeats, args, np=np, doreduce=False) df = PD.concat(rslts, ignore_index=True) i2c = UT.df2dict(df, idfld, col) beddf[col] = [i2c[x] for x in beddf[idfld]] if returnseq: i2s = UT.df2dict(df, idfld, seqcol) beddf[seqcol] = [i2s[x] for x in beddf[idfld]] return beddf def count_repeats_viz_mp(beddf, rmskvizpath, idcol='_id', np=3, prefix=None, expand=0, col='repnames'): """Use rmsk-viz track and check each (unioned) exon overlaps with repeats and report repeat name(s). Uses Bedtools and calculates chromosome-wise. Args: beddf: Pandas DataFrame with chr,st,ed cols, when calculating repeats bp for genes, unioned bed should be used (use utils.make_unionex) idcol: colname for unique row id (default _id) rmskvizpath: path to repeat masker viz BED7 file (created using rmskviz2bed7) np: number of CPU to use prefix: path prefix for temp file, if not None temp files are kept. (default None) expand: how many bases to expand exon region in each side (default 0) col: column name to put in overlapping repeat names (if multiple comma separated) Outputs: are put into beddf columns with colname col(default repnames) """ cleanup = False if prefix is None: cleanup = True prefix = os.path.join(os.path.dirname(rmskvizpath), str(uuid.uuid4())+'_') # chrom-wise chroms = sorted(beddf['chr'].unique()) # check whether rmskviz is already split splitrmsk=False for chrom in chroms: rpath = rmskvizpath+'.{0}.bed.gz'.format(chrom) # reuse if not os.path.exists(rpath): splitrmsk=True break if splitrmsk: rmsk = GGB.read_bed(rmskvizpath) args = [] bfiles = [] ofiles = [] for chrom in chroms: bpath = prefix+'tgt.{0}.bed'.format(chrom) # don't compress rpath = rmskvizpath+'.{0}.bed.gz'.format(chrom) # reuse if expand>0: bchr = beddf[beddf['chr']==chrom].copy() bchr['st'] = bchr['st'] - expand bchr['ed'] = bchr['ed'] + expand bchr.loc[bchr['st']<0,'st'] = 0 else: bchr = beddf[beddf['chr']==chrom] UT.write_pandas(bchr[['chr','st','ed',idcol]], bpath, '') bfiles.append(bpath) if splitrmsk: rchr = rmsk[rmsk['chr']==chrom] UT.write_pandas(rchr[['chr','st','ed','name','strand']], rpath, '') opath = prefix+'out.{0}.bed'.format(chrom) ofiles.append(opath) args.append([bpath, rpath, opath]) rslts = UT.process_mp(count_repeats_viz_chr, args, np=np, doreduce=False) # gather outputs cols = ['name','repnames'] outs = [UT.read_pandas(f, names=cols) for f in ofiles] df = PD.concat(outs, ignore_index=True) df['name'] = df['name'].astype(str) i2rn = UT.df2dict(df, 'name', 'repnames') beddf[col] = [i2rn[str(x)] for x in beddf[idcol]] # cleanup if cleanup: for f in bfiles: os.unlink(f) for f in ofiles: os.unlink(f) return beddf def count_repeats_viz_chr(bedpath, rmskpath, outpath): c = BT.bedtoolintersect(bedpath, rmskpath, outpath, wao=True) cols = ['chr','st','ed','name','b_chr','b_st','b_ed','b_name','strand','ovl'] df = UT.read_pandas(c, names=cols) df['rn'] = df['b_name']+'('+df['strand']+')' # group and concat repname dg = df.groupby('name')['rn'].apply(lambda x: ','.join(list(x))).reset_index() UT.write_pandas(dg, outpath, 'h') def rmskviz2bed7(df): """Convert UCSC repeatmasker viz track download to BED7 format""" cols = ['chrom','chromStart','chromEnd','name','score','strand', 'alignStart','alignEnd','blockSizes','blockRelStarts','id'] # => chr[0],st(*),ed(*),name[3],sc1[4],strand[5],tst(id[-1]) # st,ed: calculate from blocks, only use non -1 starts # st0[1],ed0[2],bsizes[-3],bstarts[-2] cols1 = ['chr','st','ed','name','sc1','strand','tst'] def _gen(): for x in UT.izipcols(df, cols): rec = [x[0],0,0,x[3],x[4],x[5],x[-1]] bsizes = [int(y) for y in x[-3].split(',')] bstarts = [int(y) for y in x[-2].split(',')] for y,z in zip(bstarts,bsizes): if y>=0: rec[1] = x[1]+y rec[2] = x[1]+y+z yield rec.copy() rows = [x for x in _gen()] df =
PD.DataFrame(rows, columns=cols1)
pandas.DataFrame
import pandas as pd import networkx as nx import pytest from kgextension.feature_selection import hill_climbing_filter, hierarchy_based_filter, tree_based_filter from kgextension.generator import specific_relation_generator, direct_type_generator class TestHillCLimbingFilter: def test1_high_beta(self): input_df = pd.read_csv("test/data/feature_selection/hill_climbing_test1_input.csv") input_DG = nx.DiGraph() labels = ['http://chancellor', 'http://president', 'http://European_politician', 'http://head_of_state', 'http://politician', 'http://man', 'http://person', 'http://being'] input_DG.add_nodes_from(labels) input_DG.add_edges_from([('http://chancellor', 'http://politician'), ('http://president', 'http://politician'), ('http://chancellor', 'http://head_of_state'), ('http://president', 'http://head_of_state'), ('http://head_of_state', 'http://person'), ('http://European_politician', 'http://politician'), ('http://politician', 'http://person'), ('http://man', 'http://person'), ('http://person', 'http://being')]) expected_df = pd.read_csv("test/data/feature_selection/hill_climbing_test1_expected.csv") output_df = hill_climbing_filter(input_df, 'uri_bool_http://class', G= input_DG, beta=0.5, k=2) pd.testing.assert_frame_equal(output_df, expected_df, check_like=True) def test2_generator_data_low_beta(self): df = pd.DataFrame({ 'entities': ['Paris', 'Buenos Aires', 'Mannheim', "München"], 'link': ['http://dbpedia.org/resource/Paris', 'http://dbpedia.org/resource/Buenos_Aires', 'http://dbpedia.org/resource/Mannheim', 'http://dbpedia.org/resource/Munich'] }) input_df = specific_relation_generator( df, columns=['link'], hierarchy_relation='http://www.w3.org/2004/02/skos/core#broader') expected_df = pd.read_csv("test/data/feature_selection/hill_climbing_test2_expected.csv") output_df = hill_climbing_filter(input_df, 'link_in_boolean_http://dbpedia.org/resource/Category:Prefectures_in_France', beta=0.05, k=3) pd.testing.assert_frame_equal(output_df, expected_df, check_like=True) def test3_nan(self): input_df = pd.read_csv("test/data/feature_selection/hill_climbing_test3_input.csv") input_DG = nx.DiGraph() labels = ['http://chancellor', 'http://president', 'http://European_politician', 'http://head_of_state', 'http://politician', 'http://man', 'http://person', 'http://being'] input_DG.add_nodes_from(labels) input_DG.add_edges_from([('http://chancellor', 'http://politician'), ('http://president', 'http://politician'), ('http://chancellor', 'http://head_of_state'), ('http://president', 'http://head_of_state'), ('http://head_of_state', 'http://person'), ('http://European_politician', 'http://politician'), ('http://politician', 'http://person'), ('http://man', 'http://person'), ('http://person', 'http://being')]) expected_df =
pd.read_csv("test/data/feature_selection/hill_climbing_test3_expected.csv")
pandas.read_csv
from tcrdist.public import _neighbors_sparse_variable_radius, _neighbors_sparse_fixed_radius import pandas as pd def join_by_dist( csrmat, left_df, right_df, how = "inner", left_cols = ['cdr3_b_aa','v_b_gene','j_b_gene','subject'], right_cols = ['cdr3_b_aa','v_b_gene','j_b_gene','subject'], left_suffix = '_x', right_suffix = '_y', max_n= 5, radius = 1, radius_list = None, sort_by_dist = True): """ Join two sets of TCRs, based on a distance threshold encoded in a sparse matrix `csrmat`. The TCRs in the Left-DataFrame, are joined with TCRs in the Right-Dataframe, for up to `max_n` closest TCRs where the paired distance is less that that specifed in the `radius` or `radius_list` arguments. This is analogous to SQL type joins, except instead of matching common keys, the rows of the Left and Right DataFrames are merged based on finding simimlar TCRs within a specified radius of sequence divergence. Intutively, this permits fuzzy matching between similar TCRs in any two TCR repertoire data sets. Crucially, one must provide a scipy.sparse csr matrix which can be pre-computed using. :py:func:`tcrdist.rep_funcs.compute_pws_sparse` or :py:func:`tcrdist.reperotire.TCRrep.compute_sparse_rect_distances` It is also possible to join using a unique radius for each sequence in Left-DataFrame using the `radius_list` argument instead of the fixed `radius` argument. However, if using a radius list, it must match the number of rows in the csrmat and the number of rows in Left DataFrame (i.e., len(radius_list) == left_df.shape[1] ). Parameters ---------- csrmat : scipy.sparse.matrix rows must correspond to index of left_df columns must correspond to index of right_df left_df: pandas.DataFrame Clone DataFrame right_df: pandas.DataFrame Clone DataFrame how : str Must be one of 'inner','left', or'outer', which determines the type of merge to be performed. * 'inner' use intersection of top max_n neigbors between Left and Right DataFrames, droping rows where there is no match. * 'left' use top max_n rows from Right DataFrame neighboring rows in from Left DataFrame or produce NA where a TCR in Left DataFrame has no neighbor in the Right DataFrame. * 'outer' a FULL OUTER JOIN combines top max_n neighbors of both left and right DataFrame, producing NAs where a TCR in either the Right or Left DataFrame has no neighbor in other DataFrame. * (hint: right joins are not possible, unless you switch input dataframe order and recompute the spase matrix) left_cols : list all columns to include in left_df right_cols : list all columns to include in right_df left_suffix : str appends to left columns right_suffix : str appends to right columns max_neighors : int limit on number of neighbors to join per row. For instance if a TCR has 100 neighbors only the first 10 rows in the right df will be included (this is to avoid massive blowup in cases where knowing about a few neighbors would suffice) radius = int default is 1 Returns ------- left_right_df : pandas DataFrame concatenates rows from left and right dataframe for all sequences within a specified distance """ assert how in ['inner','left','outer'] if how == "inner": add_unmatched_left = False add_unmatched_right= False elif how == "left": add_unmatched_left = True add_unmatched_right= False elif how == "outer": add_unmatched_left = True add_unmatched_right= True if radius_list is None: nn = _neighbors_sparse_fixed_radius(csrmat = csrmat, radius = radius) else: assert len(radius_list) == left_df.shape[0] nn = _neighbors_sparse_variable_radius(csrmat = csrmat, radius_list = radius_list) left_index = list() right_index = list() dists = list() for i,ns in enumerate(nn): l = len(ns) if l > 0: ds = csrmat[i,ns].data if sort_by_dist: # Sort n index by dist smallest to largest # sorted(zip([10,1,0,-1],[100,500,1,10000])) => [(-1, 10000), (0, 1), (1, 500), (10, 100)] # thus [n for d, n in sorted(zip([10,1,0,-1],[100,500,1,10000]))] => [10000, 1, 500, 100] ns_ds = [(n,d) for d, n in sorted(zip(ds, ns))] ns,ds = zip(*ns_ds) if l > max_n: l = max_n left_index.extend([i]*l) right_index.extend(ns[0:l]) dists.extend(ds[0:l]) left_selection = left_df[left_cols].rename(columns ={k:f"{k}{left_suffix}" for k in left_cols}).iloc[left_index,].reset_index(drop = True) right_selection = right_df[right_cols].rename(columns ={k:f"{k}{right_suffix}" for k in right_cols}).iloc[right_index,].reset_index(drop = True) left_right_df = pd.concat([left_selection, right_selection], axis = 1) left_right_df['dist'] = dists if add_unmatched_left: left_index_unmatched = sorted(list(set(left_df.index) - set(left_index))) left_df_unmatched = left_df[left_cols].rename(columns ={k:f"{k}{left_suffix}" for k in left_cols}).iloc[left_index_unmatched,].reset_index(drop = True) left_right_df =
pd.concat([left_right_df,left_df_unmatched],axis= 0)
pandas.concat
# -*- coding: utf-8 -*- """Core logic for computing subtrees.""" # standard library imports import contextlib import os import sys from collections import Counter from collections import OrderedDict from itertools import chain from itertools import combinations from pathlib import Path # third-party imports import networkx as nx import numpy as np import pandas as pd from Bio import SeqIO # first-party imports import sh # module imports from .common import CLUSTER_HIST_FILE from .common import NAME from .common import SEARCH_PATHS from .common import cluster_set_name from .common import fasta_records from .common import get_paths_from_file from .common import homo_degree_dist_filename from .common import logger from .common import protein_properties_filename from .common import write_tsv_or_parquet from .protein import Sanitizer # global constants STATFILE_SUFFIX = f"-{NAME}_stats.tsv" ANYFILE_SUFFIX = f"-{NAME}_ids-any.tsv" ALLFILE_SUFFIX = f"-{NAME}_ids-all.tsv" CLUSTFILE_SUFFIX = f"-{NAME}_clusts.tsv" SEQ_FILE_TYPE = "fasta" UNITS = { "Mb": {"factor": 1, "outunits": "MB"}, "Gb": {"factor": 1024, "outunits": "MB"}, "s": {"factor": 1, "outunits": "s"}, "m": {"factor": 60, "outunits": "s"}, "h": {"factor": 3600, "outunits": "s"}, } SEQ_IN_LINE = 6 IDENT_STATS_LINE = 7 FIRST_LOG_LINE = 14 LAST_LOG_LINE = 23 STAT_SUFFIXES = ["size", "mem", "time", "memory"] RENAME_STATS = { "throughput": "throughput_seq_s", "time": "CPU_time", "max_size": "max_cluster_size", "avg_size": "avg_cluster_size", "min_size": "min_cluster_size", "seqs": "unique_seqs", "singletons": "singleton_clusters", } ID_SEPARATOR = "." IDENT_LOG_MIN = -3 IDENT_LOG_MAX = 0 FASTA_EXT_LIST = [".faa", ".fa", ".fasta"] FAA_EXT = "faa" # helper functions def read_synonyms(filepath): """Read a file of synonymous IDs into a dictionary.""" synonym_dict = {} try: synonym_frame = pd.read_csv(filepath, sep="\t") except FileNotFoundError: logger.error(f'Synonym tsv file "{filepath}" does not exist') sys.exit(1) except pd.errors.EmptyDataError: logger.error(f'Synonym tsv "{filepath}" is empty') sys.exit(1) if len(synonym_frame) > 0: if "#file" in synonym_frame: synonym_frame.drop("#file", axis=1, inplace=True) key = list({("Substr", "Dups")}.intersection({synonym_frame.columns}))[ 0 ] for group in synonym_frame.groupby("id"): synonym_dict[group[0]] = group[1][key] return synonym_dict def parse_usearch_log(filepath, rundict): """Parse the usearch log file into a stats dictionary.""" with filepath.open() as logfile: for lineno, line in enumerate(logfile): if lineno < FIRST_LOG_LINE: if lineno == SEQ_IN_LINE: split = line.split() rundict["seqs_in"] = int(split[0]) rundict["singleton_seqs_in"] = int(split[4]) if lineno == IDENT_STATS_LINE: split = line.split() rundict["max_identical_seqs"] = int(split[6].rstrip(",")) rundict["avg_identical_seqs"] = float(split[8]) continue if lineno > LAST_LOG_LINE: break split = line.split() if split: stat = split[0].lower() if split[1] in STAT_SUFFIXES: stat += "_" + split[1] val = split[2] else: val = split[1].rstrip(",") # rename poorly-named stats stat = RENAME_STATS.get(stat, stat) # strip stats with units at the end conversion_factor = 1 for unit in UNITS: if val.endswith(unit): val = val.rstrip(unit) conversion_factor = UNITS[unit]["factor"] stat += "_" + UNITS[unit]["outunits"] break # convert string values to int or float where possible try: val = int(val) val *= conversion_factor except ValueError: try: val = float(val) val *= conversion_factor except ValueError: pass rundict[stat] = val @contextlib.contextmanager def in_working_directory(path): """Change working directory and return to previous wd on exit.""" original_cwd = Path.cwd() os.chdir(path) try: yield finally: os.chdir(original_cwd) def get_fasta_ids(fasta): """Get the IDS from a FASTA file.""" idset = set() with fasta.open() as fasta_fh: for line in fasta_fh: if line.startswith(">"): idset.add(line.split()[0][1:]) return list(idset) def parse_chromosome(ident): """Parse chromosome identifiers.""" # If ident contains an underscore, work on the # last part only (e.g., MtrunA17_Chr4g0009691) undersplit = ident.split("_") if len(undersplit) > 1: ident = undersplit[-1].upper() if ident.startswith("CHR"): ident = ident[3:] # Chromosome numbers are integers suffixed by 'G' try: chromosome = "Chr" + str(int(ident[: ident.index("G")])) except ValueError: chromosome = None return chromosome def parse_subids(ident): """Parse the subidentifiers from identifiers.""" subids = ident.split(ID_SEPARATOR) subids += [ chromosome for chromosome in [parse_chromosome(ident) for ident in subids] if chromosome is not None ] return subids def parse_clusters(outdir, delete=True, count_clusters=True, synonyms=None): """Parse clusters, counting occurrances.""" if synonyms is None: synonyms = {} cluster_list = [] id_list = [] degree_list = [] size_list = [] degree_counter = Counter() any_counter = Counter() all_counter = Counter() graph = nx.Graph() for fasta in outdir.glob("*"): cluster_id = int(fasta.name) ids = get_fasta_ids(fasta) if len(synonyms) > 0: syn_ids = set(ids).intersection(synonyms.keys()) for i in syn_ids: ids.extend(synonyms[i]) n_ids = len(ids) degree_list.append(n_ids) degree_counter.update({n_ids: 1}) id_list += ids cluster_list += [cluster_id] * n_ids size_list += [n_ids] * n_ids # Do 'any' and 'all' counters id_counter = Counter() id_counter.update( chain.from_iterable( [parse_subids(cluster_id) for cluster_id in ids] ) ) if count_clusters: any_counter.update(id_counter.keys()) all_counter.update( [ cluster_id for cluster_id in id_counter.keys() if id_counter[cluster_id] == n_ids ] ) elif n_ids > 1: any_counter.update({s: n_ids for s in id_counter.keys()}) all_counter.update( { cluster_id: n_ids for cluster_id in id_counter.keys() if id_counter[cluster_id] == n_ids } ) # Do graph components graph.add_nodes_from(ids) if n_ids > 1: edges = combinations(ids, 2) graph.add_edges_from(edges, weight=n_ids) if delete: fasta.unlink() if delete: outdir.rmdir() return ( graph, cluster_list, id_list, size_list, degree_list, degree_counter, any_counter, all_counter, ) def prettyprint_float(val, digits): """Print a floating-point value in a nice way.""" format_string = "%." + f"{digits:d}" + "f" return (format_string % val).rstrip("0").rstrip(".") def homology_cluster( seqfile, identity, delete=True, write_ids=False, do_calc=True, min_id_freq=0, substrs=None, dups=None, cluster_stats=True, outname=None, click_loguru=None, ): """Cluster at a global sequence identity threshold.""" try: usearch = sh.Command("usearch", search_paths=SEARCH_PATHS) except sh.CommandNotFound: logger.error("usearch must be installed first.") sys.exit(1) try: inpath, dirpath = get_paths_from_file(seqfile) except FileNotFoundError: logger.error(f'Input file "{seqfile}" does not exist!') sys.exit(1) stem = inpath.stem dirpath = inpath.parent if outname is None: outname = cluster_set_name(stem, identity) outdir = f"{outname}/" logfile = f"{outname}.log" outfilepath = dirpath / outdir logfilepath = dirpath / logfile histfilepath = dirpath / homo_degree_dist_filename(outname) gmlfilepath = dirpath / f"{outname}.gml" statfilepath = dirpath / f"{outname}-stats.tsv" anyfilepath = dirpath / f"{outname}-anyhist.tsv" allfilepath = dirpath / f"{outname}-allhist.tsv" idpath = dirpath / f"{outname}-ids.tsv" if identity == 0.0: identity_string = "Minimum" else: identity_string = f"{prettyprint_float(identity *100, 2)}%" logger.info(f'{identity_string} sequence identity cluster "{outname}":') if not delete: logger.debug(f"Cluster files will be kept in {logfile} and {outdir}") if cluster_stats and write_ids: logger.debug( f"File of cluster ID usage will be written to {anyfilepath} and" f" {allfilepath}" ) if not do_calc: if not logfilepath.exists(): logger.error("Previous results must exist, rerun with --do_calc") sys.exit(1) logger.debug("Using previous results for calculation") if min_id_freq: logger.debug( "Minimum number of times ID's must occur to be counted:" f" {min_id_freq}" ) synonyms = {} if substrs is not None: logger.debug(f"using duplicates in {dirpath / dups}") synonyms.update(read_synonyms(dirpath / substrs)) if dups is not None: logger.debug(f"using duplicates in {dirpath/dups}") synonyms.update(read_synonyms(dirpath / dups)) click_loguru.elapsed_time("Clustering") if do_calc: # # Delete previous results, if any. # if outfilepath.exists() and outfilepath.is_file(): outfilepath.unlink() elif outfilepath.exists() and outfilepath.is_dir(): for file in outfilepath.glob("*"): file.unlink() else: outfilepath.mkdir() # # Do the calculation. # with in_working_directory(dirpath): output = usearch( [ "-cluster_fast", seqfile, "-id", identity, "-clusters", outdir, "-log", logfile, ] ) logger.debug(output) run_stat_dict = OrderedDict([("divergence", 1.0 - identity)]) parse_usearch_log(logfilepath, run_stat_dict) run_stats = pd.DataFrame( list(run_stat_dict.items()), columns=["stat", "val"] ) run_stats.set_index("stat", inplace=True) write_tsv_or_parquet(run_stats, statfilepath) if delete: logfilepath.unlink() if not cluster_stats: file_sizes = [] file_names = [] record_counts = [] logger.debug("Ordering clusters by number of records and size.") for fasta_path in outfilepath.glob("*"): records, size = fasta_records(fasta_path) if records == 1: fasta_path.unlink() continue file_names.append(fasta_path.name) file_sizes.append(size) record_counts.append(records) file_frame = pd.DataFrame( list(zip(file_names, file_sizes, record_counts)), columns=["name", "size", "seqs"], ) file_frame.sort_values( by=["seqs", "size"], ascending=False, inplace=True ) file_frame["idx"] = range(len(file_frame)) for unused_id, row in file_frame.iterrows(): (outfilepath / row["name"]).rename( outfilepath / f'{row["idx"]}.fa' ) file_frame.drop(["name"], axis=1, inplace=True) file_frame.set_index("idx", inplace=True) # write_tsv_or_parquet(file_frame, "clusters.tsv") # cluster histogram cluster_hist = pd.DataFrame(file_frame["seqs"].value_counts()) cluster_hist.rename(columns={"seqs": "clusters"}, inplace=True) cluster_hist.index.name = "n" cluster_hist.sort_index(inplace=True) total_seqs = sum(file_frame["seqs"]) n_clusters = len(file_frame) cluster_hist["pct_clusts"] = ( cluster_hist["clusters"] * 100.0 / n_clusters ) cluster_hist["pct_seqs"] = ( cluster_hist["clusters"] * cluster_hist.index * 100.0 / total_seqs ) cluster_hist.to_csv(CLUSTER_HIST_FILE, sep="\t", float_format="%06.3f") return n_clusters, run_stats, cluster_hist ( cluster_graph, clusters, ids, sizes, unused_degrees, degree_counts, any_counts, all_counts, ) = parse_clusters( # pylint: disable=unused-variable outfilepath, delete=delete, synonyms=synonyms ) # # Write out list of clusters and ids. # id_frame = pd.DataFrame.from_dict( { "id": ids, "hom.cluster": pd.array(clusters, dtype=pd.UInt32Dtype()), "siz": sizes, } ) id_frame.sort_values("siz", ascending=False, inplace=True) id_frame = id_frame.reindex( ["hom.cluster", "siz", "id"], axis=1, ) id_frame.reset_index(inplace=True) id_frame.drop(["index"], axis=1, inplace=True) id_frame.to_csv(idpath, sep="\t") del ids, clusters, sizes, id_frame click_loguru.elapsed_time("graph") # # Write out degree distribution. # cluster_hist = pd.DataFrame( list(degree_counts.items()), columns=["degree", "clusters"] ) cluster_hist.sort_values(["degree"], inplace=True) cluster_hist.set_index("degree", inplace=True) total_clusters = cluster_hist["clusters"].sum() cluster_hist["pct_total"] = ( cluster_hist["clusters"] * 100.0 / total_clusters ) cluster_hist.to_csv(histfilepath, sep="\t", float_format="%06.3f") del degree_counts # # Do histograms of "any" and "all" id usage in cluster # hist_value = f"{identity:f}" any_hist = pd.DataFrame( list(any_counts.items()), columns=["id", hist_value] ) any_hist.set_index("id", inplace=True) any_hist.sort_values(hist_value, inplace=True, ascending=False) all_hist = pd.DataFrame( list(all_counts.items()), columns=["id", hist_value] ) all_hist.set_index("id", inplace=True) all_hist.sort_values(hist_value, inplace=True, ascending=False) if min_id_freq: any_hist = any_hist[any_hist[hist_value] > min_id_freq] all_hist = all_hist[all_hist[hist_value] > min_id_freq] if write_ids: any_hist.to_csv(anyfilepath, sep="\t") all_hist.to_csv(allfilepath, sep="\t") # # Compute cluster stats # # degree_sequence = sorted([d for n, d in cluster_graph.degree()], reverse=True) # degreeCount = Counter(degree_sequence) # degree_hist = pd.DataFrame(list(degreeCount.items()), # columns=['degree', 'count']) # degree_hist.set_index('degree', inplace=True) # degree_hist.sort_values('degree', inplace=True) # degree_hist.to_csv(histfilepath, sep='\t') nx.write_gml(cluster_graph, gmlfilepath) click_loguru.elapsed_time("final") return run_stats, cluster_graph, cluster_hist, any_hist, all_hist def cluster_in_steps(seqfile, steps, min_id_freq=0, substrs=None, dups=None): """Cluster in steps from low to 100% identity.""" try: inpath, dirpath = get_paths_from_file(seqfile) except FileNotFoundError: logger.error('Input file "%s" does not exist!', seqfile) sys.exit(1) stat_path = dirpath / (inpath.stem + STATFILE_SUFFIX) any_path = dirpath / (inpath.stem + ANYFILE_SUFFIX) all_path = dirpath / (inpath.stem + ALLFILE_SUFFIX) logsteps = [1.0] + list( 1.0 - np.logspace(IDENT_LOG_MIN, IDENT_LOG_MAX, num=steps) ) min_fmt = prettyprint_float(min(logsteps) * 100.0, 2) max_fmt = prettyprint_float(max(logsteps) * 100.0, 2) logger.info( f"Clustering at {steps} levels from {min_fmt}% to {max_fmt}% global" " sequence identity" ) stat_list = [] all_frames = [] any_frames = [] for id_level in logsteps: ( stats, unused_graph, unused_hist, any_, all_, ) = homology_cluster( # pylint: disable=unused-variable seqfile, id_level, min_id_freq=min_id_freq, substrs=substrs, dups=dups, ) stat_list.append(stats) any_frames.append(any_) all_frames.append(all_) logger.info(f"Collating results on {seqfile}.") # # Concatenate and write stats # stats = pd.DataFrame(stat_list) stats.to_csv(stat_path, sep="\t") # # Concatenate any/all data # any_ = pd.concat( any_frames, axis=1, join="inner", sort=True, ignore_index=False ) any_.to_csv(any_path, sep="\t") all_ = pd.concat( all_frames, axis=1, join="inner", sort=True, ignore_index=False ) all_.to_csv(all_path, sep="\t") def clusters_to_histograms(infile): """Compute histograms from cluster file.""" try: inpath, dirpath = get_paths_from_file(infile) except FileNotFoundError: logger.error(f'Input file "{infile}" does not exist!') sys.exit(1) histfilepath = dirpath / f"{inpath.stem}-sizedist.tsv" clusters =
pd.read_csv(dirpath / infile, sep="\t", index_col=0)
pandas.read_csv
import sys, os, socket # set directories depending on machine hostname = socket.gethostname() if hostname=='tianx-pc': homeDir = '/analyse/cdhome/' projDir = '/analyse/Project0257/' proj0012Dir = '/analyse/Project0012/' elif hostname[0:7]=='deepnet': homeDir = '/home/chrisd/' projDir = '/analyse/Project0257/' proj0012Dir = '/analyse/Project0012/chrisd/' sys.path.append(os.path.abspath(homeDir+'dlfaceScripts/')) import pandas as pd import numpy as np from resNetUtils import loadTrainData0th1st destinDir = projDir+'tripletTxtLists/randAlloc/' setList = ['train', 'val', 'test'] train_df, val_df, test_df, coltrain_df, colval_df, coltest_df, colleague0_df, colleague1_df = \ loadTrainData0th1st(projDir, costFunc='Multi') for se in range(len(setList)): if setList[se]=='train': thsDf =
pd.concat([train_df, coltrain_df], ignore_index=True)
pandas.concat
import numpy as np import pandas as pd import copy from supervised.tuner.random_parameters import RandomParameters from supervised.algorithms.registry import AlgorithmsRegistry from supervised.tuner.preprocessing_tuner import PreprocessingTuner from supervised.tuner.hill_climbing import HillClimbing from supervised.algorithms.registry import ( BINARY_CLASSIFICATION, MULTICLASS_CLASSIFICATION, REGRESSION, ) import logging from supervised.utils.config import LOG_LEVEL logger = logging.getLogger(__name__) logger.setLevel(LOG_LEVEL) class MljarTuner: def __init__(self, tuner_params, algorithms, ml_task, validation, seed): logger.debug("MljarTuner.__init__") self._start_random_models = tuner_params.get("start_random_models", 5) self._hill_climbing_steps = tuner_params.get("hill_climbing_steps", 3) self._top_models_to_improve = tuner_params.get("top_models_to_improve", 3) self._algorithms = algorithms self._ml_task = ml_task self._validation = validation self._seed = seed self._unique_params_keys = [] def get_not_so_random_params(self, X, y): models_cnt = 0 generated_params = [] for model_type in self._algorithms: for i in range(self._start_random_models): logger.info("Generate parameters for model #{0}".format(models_cnt + 1)) params = self._get_model_params(model_type, X, y, i + 1) if params is None: continue params["name"] = f"model_{models_cnt + 1}" unique_params_key = MljarTuner.get_params_key(params) if unique_params_key not in self._unique_params_keys: generated_params += [params] self._unique_params_keys += [unique_params_key] models_cnt += 1 return generated_params def get_hill_climbing_params(self, current_models): # second, hill climbing for _ in range(self._hill_climbing_steps): # get models orderer by loss # TODO: refactor this callbacks.callbacks[0] models = sorted( [(m.callbacks.callbacks[0].final_loss, m) for m in current_models], key=lambda x: x[0], ) for i in range(min(self._top_models_to_improve, len(models))): m = models[i][1] for p in HillClimbing.get( m.params.get("learner"), self._ml_task, len(current_models) + self._seed, ): logger.info( "Hill climbing step, for model #{0}".format( len(current_models) + 1 ) ) if p is not None: all_params = copy.deepcopy(m.params) all_params["learner"] = p all_params["name"] = f"model_{len(current_models) + 1}" unique_params_key = MljarTuner.get_params_key(all_params) if unique_params_key not in self._unique_params_keys: self._unique_params_keys += [unique_params_key] yield all_params def _get_model_params(self, model_type, X, y, seed): model_info = AlgorithmsRegistry.registry[self._ml_task][model_type] model_params = RandomParameters.get(model_info["params"], seed + self._seed) required_preprocessing = model_info["required_preprocessing"] model_additional = model_info["additional"] preprocessing_params = PreprocessingTuner.get( required_preprocessing, {"train": {"X": X, "y": y}}, self._ml_task ) model_params = { "additional": model_additional, "preprocessing": preprocessing_params, "validation": self._validation, "learner": { "model_type": model_info["class"].algorithm_short_name, "ml_task": self._ml_task, **model_params, }, } num_class = ( len(np.unique(y[~
pd.isnull(y)
pandas.isnull
import pandas as pd import numpy as np from nltk.sentiment.vader import SentimentIntensityAnalyzer as SIA sheet_names = pd.ExcelFile("BaseData.xlsx").sheet_names sheet_name_main_L = [sheet_name for (i,sheet_name) in enumerate(sheet_names) if(i%4==2)] sheet_name_results_L = [sheet_name for (i,sheet_name) in enumerate(sheet_names) if (i%4==3)] weight_files_L = ["s2r2a-Weights.csv","s3r2a-Weights.csv","s4r2a-Weights.csv", "s5r2a-Weights.csv","s7r2a-Weights.csv","s8r2a-Weights.csv"] output_files_L = ["s2r2a.csv","s3r2a.csv","s4r2a.csv","s5r2a.csv","s7r2a.csv","s8r2a.csv"] sia = SIA() NAME_COL = [1,2] NUMER_ORD = [3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19] CAT_ORD = [14,27,29] BIN_PRES = [20,21,22,23,24] COMM = [25,26] REL_COLS = [] REL_COLS.extend(NUMER_ORD) REL_COLS.extend(CAT_ORD) REL_COLS.extend(BIN_PRES) REL_COLS.extend(COMM) REL_COLS = sorted(REL_COLS) def main(): for(sheet_name_main,sheet_name_result,output_file, weight_file) in \ zip(sheet_name_main_L,sheet_name_results_L,output_files_L, weight_files_L): data = pd.read_excel("BaseData.xlsx",sheet_name=sheet_name_main) new_header = data.iloc[0] data = data[1:] data.columns = new_header data2 = data.iloc[:, REL_COLS] data3 = data.iloc[:, NAME_COL] for i in NUMER_ORD: MAX,MIN = data.iloc[:,i].min(), data.iloc[:,i].max() data.iloc[:,i] = data.iloc[:,i].apply(lambda x: (x - MIN)/(MAX - MIN) ) for i in CAT_ORD: if(i==14): def helper_14(x): if("somewhat" in str(x).lower()): return 0.5 elif("highly" in str(x).lower()): return 1.0 else: return 0.0 data.iloc[:,i] = data.iloc[:,i].apply(lambda x: helper_14(x)) if(i==27): def helper_27(x): if("can be there" in str(x).lower()): return 1.0 elif("no chance" in str(x).lower()): return 0.0 else: return 0.5 try: data.iloc[:,i] = data.iloc[:,i].apply(lambda x: helper_27(x)) except: continue if(i==29): def helper_29(x): if("low" in str(x).lower()): return 0.0 elif("high" in str(x).lower()): return 1.0 else: return 0.5 data.iloc[:,i] = data.iloc[:,i].apply(lambda x: helper_29(x)) for i in BIN_PRES: data.iloc[:,i] = data.iloc[:,i].apply(lambda x: int(pd.isna(x))) for i in COMM: def helper_COMM(x): if(
pd.isna(x)
pandas.isna
""" Preprocess sites scripts. Written by <NAME>. Winter 2020 """ import os import configparser import json import csv import math import glob import pandas as pd import geopandas as gpd import pyproj from shapely.geometry import Polygon, MultiPolygon, mapping, shape, MultiLineString, LineString from shapely.ops import transform, unary_union, nearest_points import fiona from fiona.crs import from_epsg import rasterio from rasterio.mask import mask from rasterstats import zonal_stats import networkx as nx from rtree import index import numpy as np import random CONFIG = configparser.ConfigParser() CONFIG.read(os.path.join(os.path.dirname(__file__), 'script_config.ini')) BASE_PATH = CONFIG['file_locations']['base_path'] DATA_RAW = os.path.join(BASE_PATH, 'raw') DATA_INTERMEDIATE = os.path.join(BASE_PATH, 'intermediate') DATA_PROCESSED = os.path.join(BASE_PATH, 'processed') def find_country_list(continent_list): """ This function produces country information by continent. Parameters ---------- continent_list : list Contains the name of the desired continent, e.g. ['Africa'] Returns ------- countries : list of dicts Contains all desired country information for countries in the stated continent. """ glob_info_path = os.path.join(BASE_PATH, 'global_information.csv') countries = pd.read_csv(glob_info_path, encoding = "ISO-8859-1") countries = countries[countries.exclude != 1] if len(continent_list) > 0: data = countries.loc[countries['continent'].isin(continent_list)] else: data = countries output = [] for index, country in data.iterrows(): output.append({ 'country_name': country['country'], 'iso3': country['ISO_3digit'], 'iso2': country['ISO_2digit'], 'regional_level': country['lowest'], 'region': country['region'] }) return output def process_coverage_shapes(country): """ Load in coverage maps, process and export for each country. Parameters ---------- country : string Three digit ISO country code. """ iso3 = country['iso3'] iso2 = country['iso2'] technologies = [ 'GSM', '3G', '4G' ] for tech in technologies: folder_coverage = os.path.join(DATA_INTERMEDIATE, iso3, 'coverage') filename = 'coverage_{}.shp'.format(tech) path_output = os.path.join(folder_coverage, filename) if os.path.exists(path_output): continue print('----') print('Working on {} in {}'.format(tech, iso3)) filename = 'Inclusions_201812_{}.shp'.format(tech) folder = os.path.join(DATA_RAW, 'mobile_coverage_explorer', 'Data_MCE') inclusions = gpd.read_file(os.path.join(folder, filename)) if iso2 in inclusions['CNTRY_ISO2']: filename = 'MCE_201812_{}.shp'.format(tech) folder = os.path.join(DATA_RAW, 'mobile_coverage_explorer', 'Data_MCE') coverage = gpd.read_file(os.path.join(folder, filename)) coverage = coverage.loc[coverage['CNTRY_ISO3'] == iso3] else: filename = 'OCI_201812_{}.shp'.format(tech) folder = os.path.join(DATA_RAW, 'mobile_coverage_explorer', 'Data_OCI') coverage = gpd.read_file(os.path.join(folder, filename)) coverage = coverage.loc[coverage['CNTRY_ISO3'] == iso3] if len(coverage) > 0: print('Dissolving polygons') coverage['dissolve'] = 1 coverage = coverage.dissolve(by='dissolve', aggfunc='sum') coverage = coverage.to_crs('epsg:3857') print('Excluding small shapes') coverage['geometry'] = coverage.apply(clean_coverage,axis=1) print('Removing empty and null geometries') coverage = coverage[~(coverage['geometry'].is_empty)] coverage = coverage[coverage['geometry'].notnull()] print('Simplifying geometries') coverage['geometry'] = coverage.simplify( tolerance = 0.005, preserve_topology=True).buffer(0.0001).simplify( tolerance = 0.005, preserve_topology=True ) coverage = coverage.to_crs('epsg:4326') if not os.path.exists(folder_coverage): os.makedirs(folder_coverage) coverage.to_file(path_output, driver='ESRI Shapefile') return #print('Processed coverage shapes') def process_regional_coverage(country): """ This functions estimates the area covered by each cellular technology. Parameters ---------- country : dict Contains specific country parameters. Returns ------- output : dict Results for cellular coverage by each technology for each region. """ level = country['regional_level'] iso3 = country['iso3'] gid_level = 'GID_{}'.format(level) filename = 'regions_{}_{}.shp'.format(level, iso3) folder = os.path.join(DATA_INTERMEDIATE, iso3, 'regions') path = os.path.join(folder, filename) regions = gpd.read_file(path) technologies = [ 'GSM', '3G', '4G' ] output = {} for tech in technologies: folder = os.path.join(DATA_INTERMEDIATE, iso3, 'coverage') path = os.path.join(folder, 'coverage_{}.shp'.format(tech)) if os.path.exists(path): coverage = gpd.read_file(path, encoding="utf-8") segments = gpd.overlay(regions, coverage, how='intersection') tech_coverage = {} for idx, region in segments.iterrows(): area_km2 = round(area_of_polygon(region['geometry']) / 1e6) tech_coverage[region[gid_level]] = area_km2 output[tech] = tech_coverage return output def get_regional_data(country): """ Extract regional data including luminosity and population. Parameters ---------- country : string Three digit ISO country code. """ iso3 = country['iso3'] level = country['regional_level'] gid_level = 'GID_{}'.format(level) path_output = os.path.join(DATA_INTERMEDIATE, iso3, 'regional_coverage.csv') if os.path.exists(path_output): return #print('Regional data already exists') path_country = os.path.join(DATA_INTERMEDIATE, iso3, 'national_outline.shp') coverage = process_regional_coverage(country) single_country = gpd.read_file(path_country) # print('----') # print('working on {}'.format(iso3)) path_settlements = os.path.join(DATA_INTERMEDIATE, iso3, 'settlements.tif') filename = 'regions_{}_{}.shp'.format(level, iso3) folder = os.path.join(DATA_INTERMEDIATE, iso3, 'regions') path = os.path.join(folder, filename) regions = gpd.read_file(path) results = [] for index, region in regions.iterrows(): with rasterio.open(path_settlements) as src: affine = src.transform array = src.read(1) array[array <= 0] = 0 population_summation = [d['sum'] for d in zonal_stats( region['geometry'], array, stats=['sum'], nodata=0, affine=affine)][0] area_km2 = round(area_of_polygon(region['geometry']) / 1e6) if 'GSM' in [c for c in coverage.keys()]: if region[gid_level] in coverage['GSM']: coverage_GSM_km2 = coverage['GSM'][region[gid_level]] else: coverage_GSM_km2 = 0 else: coverage_GSM_km2 = 0 if '3G' in [c for c in coverage.keys()]: if region[gid_level] in coverage['3G']: coverage_3G_km2 = coverage['3G'][region[gid_level]] else: coverage_3G_km2 = 0 else: coverage_3G_km2 = 0 if '4G' in [c for c in coverage.keys()]: if region[gid_level] in coverage['4G']: coverage_4G_km2 = coverage['4G'][region[gid_level]] else: coverage_4G_km2 = 0 else: coverage_4G_km2 = 0 results.append({ 'GID_0': region['GID_0'], 'GID_id': region[gid_level], 'GID_level': gid_level, # 'mean_luminosity_km2': luminosity_summation / area_km2 if luminosity_summation else 0, 'population': population_summation, # 'pop_under_10_pop': pop_under_10_pop, 'area_km2': area_km2, 'population_km2': population_summation / area_km2 if population_summation else 0, # 'pop_adults_km2': ((population_summation - pop_under_10_pop) / # area_km2 if pop_under_10_pop else 0), 'coverage_GSM_percent': round(coverage_GSM_km2 / area_km2 * 100 if coverage_GSM_km2 else 0, 1), 'coverage_3G_percent': round(coverage_3G_km2 / area_km2 * 100 if coverage_3G_km2 else 0, 1), 'coverage_4G_percent': round(coverage_4G_km2 / area_km2 * 100 if coverage_4G_km2 else 0, 1), }) # print('Working on backhaul') backhaul_lut = estimate_backhaul(iso3, country['region'], '2025') # print('Working on estimating sites') results = estimate_sites(results, iso3, backhaul_lut) results_df = pd.DataFrame(results) results_df.to_csv(path_output, index=False) # print('Completed {}'.format(single_country.NAME_0.values[0])) return #print('Completed night lights data querying') def find_pop_under_10(region, iso3): """ Find the estimated population under 10 years old. Parameters ---------- region : pandas series The region being modeled. iso3 : string ISO3 country code. Returns ------- population : int Population sum under 10 years of age. """ path = os.path.join(DATA_INTERMEDIATE, iso3, 'under_10') all_paths = glob.glob(path + '/*.tif') population = [] for path in all_paths: with rasterio.open(path) as src: affine = src.transform array = src.read(1) array[array <= 0] = 0 population_summation = [d['sum'] for d in zonal_stats( region['geometry'], array, stats=['sum'], nodata=0, affine=affine)][0] if population_summation is not None: population.append(population_summation) return sum(population) def estimate_sites(data, iso3, backhaul_lut): """ Estimate the sites by region. Parameters ---------- data : dataframe Pandas df with regional data. iso3 : string ISO3 country code. backhaul_lut : dict Lookup table of backhaul composition. Returns ------- output : list of dicts All regional data with estimated sites. """ output = [] existing_site_data_path = os.path.join(DATA_INTERMEDIATE, iso3, 'sites', 'sites.csv') existing_site_data = {} if os.path.exists(existing_site_data_path): site_data = pd.read_csv(existing_site_data_path) site_data = site_data.to_dict('records') for item in site_data: existing_site_data[item['GID_id']] = item['sites'] population = 0 for region in data: if region['population'] == None: continue population += int(region['population']) path = os.path.join(DATA_RAW, 'wb_mobile_coverage', 'wb_population_coverage_2G.csv') coverage = pd.read_csv(path, encoding='latin-1') coverage = coverage.loc[coverage['Country ISO3'] == iso3] if len(coverage) > 1: coverage = coverage['2020'].values[0] else: coverage = 0 population_covered = population * (coverage / 100) path = os.path.join(DATA_RAW, 'real_site_data', 'site_counts.csv') towers = pd.read_csv(path, encoding = "ISO-8859-1") towers = towers.loc[towers['iso3'] == iso3] towers = towers['sites'].values[0] if np.isnan(towers): towers = 0 towers_per_pop = 0 else: towers_per_pop = towers / population_covered tower_backhaul_lut = estimate_backhaul_type(backhaul_lut) data = sorted(data, key=lambda k: k['population_km2'], reverse=True) covered_pop_so_far = 0 for region in data: #first try to use actual data if len(existing_site_data) > 0: sites_estimated_total = existing_site_data[region['GID_id']] if region['area_km2'] > 0: sites_estimated_km2 = sites_estimated_total / region['area_km2'] else: sites_estimated_km2 = 0 #or if we don't have data estimates of sites per area else: if covered_pop_so_far < population_covered: sites_estimated_total = region['population'] * towers_per_pop sites_estimated_km2 = region['population_km2'] * towers_per_pop else: sites_estimated_total = 0 sites_estimated_km2 = 0 backhaul_fiber = 0 backhaul_copper = 0 backhaul_wireless = 0 backhaul_satellite = 0 for i in range(1, int(round(sites_estimated_total)) + 1): num = random.uniform(0, 1) if num <= tower_backhaul_lut['fiber']: backhaul_fiber += 1 elif tower_backhaul_lut['fiber'] < num <= tower_backhaul_lut['copper']: backhaul_copper += 1 elif tower_backhaul_lut['copper'] < num <= tower_backhaul_lut['microwave']: backhaul_wireless += 1 elif tower_backhaul_lut['microwave'] < num: backhaul_satellite += 1 output.append({ 'GID_0': region['GID_0'], 'GID_id': region['GID_id'], 'GID_level': region['GID_level'], # 'mean_luminosity_km2': region['mean_luminosity_km2'], 'population': region['population'], # 'pop_under_10_pop': region['pop_under_10_pop'], 'area_km2': region['area_km2'], 'population_km2': region['population_km2'], # 'pop_adults_km2': region['pop_adults_km2'], 'coverage_GSM_percent': region['coverage_GSM_percent'], 'coverage_3G_percent': region['coverage_3G_percent'], 'coverage_4G_percent': region['coverage_4G_percent'], 'total_estimated_sites': sites_estimated_total, 'total_estimated_sites_km2': sites_estimated_km2, 'sites_3G': sites_estimated_total * (region['coverage_3G_percent'] /100), 'sites_4G': sites_estimated_total * (region['coverage_4G_percent'] /100), 'backhaul_fiber': backhaul_fiber, 'backhaul_copper': backhaul_copper, 'backhaul_wireless': backhaul_wireless, 'backhaul_satellite': backhaul_satellite, }) if region['population'] == None: continue covered_pop_so_far += region['population'] return output def estimate_backhaul(iso3, region, year): """ Get the correct backhaul composition for the region. Parameters ---------- iso3 : string ISO3 country code. region : string The continent the country is part of. year : int The year of the backhaul composition desired. Returns ------- output : list of dicts All regional data with estimated sites. """ output = [] path = os.path.join(BASE_PATH, 'raw', 'gsma', 'backhaul.csv') backhaul_lut = pd.read_csv(path) backhaul_lut = backhaul_lut.to_dict('records') for item in backhaul_lut: if region == item['Region'] and int(item['Year']) == int(year): output.append({ 'tech': item['Technology'], 'percentage': int(item['Value']), }) return output def estimate_backhaul_type(backhaul_lut): """ Process the tower backhaul lut. Parameters ---------- backhaul_lut : dict Lookup table of backhaul composition. Returns ------- output : dict Tower backhaul lookup table. """ output = {} preference = [ 'fiber', 'copper', 'microwave', 'satellite' ] perc_so_far = 0 for tech in preference: for item in backhaul_lut: if tech == item['tech'].lower(): perc = item['percentage'] output[tech] = (perc + perc_so_far) / 100 perc_so_far += perc return output def area_of_polygon(geom): """ Returns the area of a polygon. Assume WGS84 before converting to projected crs. Parameters ---------- geom : shapely geometry A shapely geometry object. Returns ------- poly_area : int Area of polygon in square kilometers. """ geod = pyproj.Geod(ellps="WGS84") poly_area, poly_perimeter = geod.geometry_area_perimeter( geom ) return abs(int(poly_area)) def length_of_line(geom): """ Returns the length of a linestring. Assume WGS84 as crs. Parameters ---------- geom : shapely geometry A shapely geometry object. Returns ------- total_length : int Length of the linestring given in kilometers. """ geod = pyproj.Geod(ellps="WGS84") total_length = geod.line_length(*geom.xy) return abs(int(total_length)) def estimate_numers_of_sites(linear_regressor, x_value): """ Function to predict the y value from the stated x value. Parameters ---------- linear_regressor : object Linear regression object. x_value : float The stated x value we want to use to predict y. Returns ------- result : float The predicted y value. """ if not x_value == 0: result = linear_regressor.predict(x_value) result = result[0,0] else: result = 0 return result def exclude_small_shapes(x): """ Remove small multipolygon shapes. Parameters --------- x : polygon Feature to simplify. Returns ------- MultiPolygon : MultiPolygon Shapely MultiPolygon geometry without tiny shapes. """ # if its a single polygon, just return the polygon geometry if x.geometry.geom_type == 'Polygon': return x.geometry # if its a multipolygon, we start trying to simplify # and remove shapes if its too big. elif x.geometry.geom_type == 'MultiPolygon': area1 = 0.01 area2 = 50 # dont remove shapes if total area is already very small if x.geometry.area < area1: return x.geometry # remove bigger shapes if country is really big if x['GID_0'] in ['CHL','IDN']: threshold = 0.01 elif x['GID_0'] in ['RUS','GRL','CAN','USA']: threshold = 0.01 elif x.geometry.area > area2: threshold = 0.1 else: threshold = 0.001 # save remaining polygons as new multipolygon for # the specific country new_geom = [] for y in x.geometry: if y.area > threshold: new_geom.append(y) return MultiPolygon(new_geom) def clean_coverage(x): """ Cleans the coverage polygons by remove small multipolygon shapes. Parameters --------- x : polygon Feature to simplify. Returns ------- MultiPolygon : MultiPolygon Shapely MultiPolygon geometry without tiny shapes. """ # if its a single polygon, just return the polygon geometry if x.geometry.geom_type == 'Polygon': if x.geometry.area > 1e7: return x.geometry # if its a multipolygon, we start trying to simplify and # remove shapes if its too big. elif x.geometry.geom_type == 'MultiPolygon': threshold = 1e7 # save remaining polygons as new multipolygon for # the specific country new_geom = [] for y in x.geometry: if y.area > threshold: new_geom.append(y) return MultiPolygon(new_geom) def estimate_core_nodes(iso3, pop_density_km2, settlement_size): """ This function identifies settlements which exceed a desired settlement size. It is assumed fiber exists at settlements over, for example, 20,000 inhabitants. Parameters ---------- iso3 : string ISO 3 digit country code. pop_density_km2 : int Population density threshold for identifying built up areas. settlement_size : int Overall sittelement size assumption, e.g. 20,000 inhabitants. Returns ------- output : list of dicts Identified major settlements as Geojson objects. """ path = os.path.join(DATA_INTERMEDIATE, iso3, 'settlements.tif') with rasterio.open(path) as src: data = src.read() threshold = pop_density_km2 data[data < threshold] = 0 data[data >= threshold] = 1 polygons = rasterio.features.shapes(data, transform=src.transform) shapes_df = gpd.GeoDataFrame.from_features( [ {'geometry': poly, 'properties':{'value':value}} for poly, value in polygons if value > 0 ], crs='epsg:4326' ) stats = zonal_stats(shapes_df['geometry'], path, stats=['count', 'sum']) stats_df = pd.DataFrame(stats) nodes =
pd.concat([shapes_df, stats_df], axis=1)
pandas.concat
# <NAME> # <EMAIL> import pandas as pd def concat_tablelist(table1=None,table2=None): if table1 is None or table2 is None: if table1 is not None: return table1 else: return table2 return
pd.concat([table1,table2],ignore_index=True)
pandas.concat
import os import pandas as pd import numpy as np import matplotlib.pyplot as plt # ---------------------------------------- # Sources for electricity prices: # ---------------------------------------- # site: https://dataminer2.pjm.com/list # title: Data Miner 2 # institution: PJM # accessed: 1/21/2020 # # 2019_gen_by_fuel.csv # Generation by Fuel Type # Zone: PJM aggregate) # dates: 1/1/2019 - 1/1/2020 # # 2019_rt_hrl_lmps.csv # Real-Time Hourly LMPs (Locational Marginal Pricing) # Zone: PJM-RTO (PJM aggregate) # dates: 1/1/2019 - 1/1/2020 # ---------------------------------------- # inputs # ---------------------------------------- data_folders = ['2015', '2015', '2017', '2017', '2019', '2019'] price_files = ['da_hrl_lmps_DOM_15.csv', 'rt_hrl_lmps_DOM_15.csv', 'da_hrl_lmps_DOM_17.csv', 'rt_hrl_lmps_DOM_17.csv', 'da_hrl_lmps_DOM_19.csv', 'rt_hrl_lmps_DOM_19.csv'] generation_by_fuel_files = ['2015_gen_by_fuel.csv', '2015_gen_by_fuel.csv', '2017_gen_by_fuel.csv', '2017_gen_by_fuel.csv', '2019_gen_by_fuel.csv', '2019_gen_by_fuel.csv'] wind_speed_files = ['Clean_1yr_90m_Windspeeds.txt', 'Clean_1yr_90m_Windspeeds.txt', 'Clean_1yr_90m_Windspeeds.txt', 'Clean_1yr_90m_Windspeeds.txt', 'Clean_1yr_90m_Windspeeds.txt', 'Clean_1yr_90m_Windspeeds.txt'] output_filenames = ['da_timeseries_inputs_2015.csv', 'rt_timeseries_inputs_2015.csv', 'da_timeseries_inputs_2017.csv', 'rt_timeseries_inputs_2017.csv', 'da_timeseries_inputs_2019.csv', 'rt_timeseries_inputs_2019.csv'] # option to output individual column data (good for troubleshooting) write_all_data = False # ---------------------------------------- # begin script # ---------------------------------------- # create a dataframe to combine all results together in to a single dataframe for multi-year simulations df_comb = pd.DataFrame() wrk_dir = os.getcwd() for data_folder, price_file, generation_by_fuel_file, wind_speed_file, output_filename in \ zip(data_folders, price_files, generation_by_fuel_files, wind_speed_files, output_filenames): # ---------------------------------------- # begin processing # ---------------------------------------- os.chdir(data_folder) # ---------------------------------------- # Emission factors (kg CO2/million btu) # ---------------------------------------- # Source: Table A.3. Carbon Dioxide Uncontrolled Emission Factors # https://www.eia.gov/electricity/annual/html/epa_a_03.html # accessed 1/21/2020 # Coal - Bituminous coal, Gas - Natural gas, Multiple Fuels - Residual fuel oil, Oil - Residual fuel oil emission_factors = {'Coal': 93.3, 'Flywheel': 0.0, 'Gas': 53.07, 'Hydro': 0.0, 'Multiple Fuels': 78.79, 'Nuclear': 0.0, 'Oil': 78.79, 'Other': 0.0, 'Other Renewables': 0.0, 'Solar': 0.0, 'Storage': 0.0, 'Wind': 0.0} # ---------------------------------------- # Heat rate (btu / kWh) - 2018 # ---------------------------------------- # Source: Table 8.2. Average Tested Heat Rates by Prime Mover and Energy Source, 2008 - 2018 # https://www.eia.gov/electricity/annual/html/epa_08_02.html # accessed 1/21/2020 # Coal - Coal + Steam Generator, Gas - Natural gas + Gas Turbine, # Multiple Fuels - Petroleum + Gas Turbine, Oil - Petroleum + Gas Turbine heat_rates = {'Coal': 10015, 'Flywheel': 0.0, 'Gas': 11138, 'Hydro': 0.0, 'Multiple Fuels': 13352.0, 'Nuclear': 0.0, 'Oil': 13352.0, 'Other': 0.0, 'Other Renewables': 0.0, 'Solar': 0.0, 'Storage': 0.0, 'Wind': 0.0} # ---------------------------------------- # Pricing # ---------------------------------------- df_price = pd.read_csv(price_file) # $/MWh # set index df_price.datetime_beginning_ept = pd.to_datetime(df_price.datetime_beginning_ept) df_price = df_price.set_index('datetime_beginning_ept') price_type = price_file[:2] if price_type == 'da': # create columns to store generation, VRE and emissions df_price['price_dollarsPerMWh'] = df_price.loc[:, 'total_lmp_da'] # drop columns that we don't need df_price = df_price.drop( columns=['system_energy_price_da', 'datetime_beginning_utc', 'pnode_id', 'pnode_name', 'voltage', 'equipment', 'type', 'zone', 'total_lmp_da', 'congestion_price_da', 'marginal_loss_price_da', 'row_is_current', 'version_nbr']) elif price_type == 'rt': # create columns to store generation, VRE and emissions df_price['price_dollarsPerMWh'] = df_price.loc[:, 'total_lmp_rt'] # drop columns that we don't need df_price = df_price.drop( columns=['system_energy_price_rt', 'datetime_beginning_utc', 'pnode_id', 'pnode_name', 'voltage', 'equipment', 'type', 'zone', 'total_lmp_rt', 'congestion_price_rt', 'marginal_loss_price_rt', 'row_is_current', 'version_nbr']) else: print('Warning - price file type not recognized') print('file should start with da or rt, for day ahead or real time pricing') # save and plot if write_all_data: df_price.to_csv('price.csv') df_price.plot() plt.tight_layout() plt.savefig('price.png') # ---------------------------------------- # Generation by fuel -> # total generation # emissions # generation by VRE (variable renewable energy) # ---------------------------------------- df_gen =
pd.read_csv(generation_by_fuel_file)
pandas.read_csv
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2022/6/16 15:28 Desc: 东方财富网-数据中心-特色数据-千股千评 http://data.eastmoney.com/stockcomment/ """ from datetime import datetime import pandas as pd import requests from tqdm import tqdm def stock_comment_em() -> pd.DataFrame: """ 东方财富网-数据中心-特色数据-千股千评 http://data.eastmoney.com/stockcomment/ :return: 千股千评数据 :rtype: pandas.DataFrame """ url = "https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "sortColumns": "SECURITY_CODE", "sortTypes": "1", "pageSize": "500", "pageNumber": "1", "reportName": "RPT_DMSK_TS_STOCKNEW", "quoteColumns": "f2~01~SECURITY_CODE~CLOSE_PRICE,f8~01~SECURITY_CODE~TURNOVERRATE,f3~01~SECURITY_CODE~CHANGE_RATE,f9~01~SECURITY_CODE~PE_DYNAMIC", "columns": "ALL", "filter": "", "token": "<KEY>", } r = requests.get(url, params=params) data_json = r.json() total_page = data_json["result"]["pages"] big_df = pd.DataFrame() for page in tqdm(range(1, total_page + 1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df["index"] = big_df.index + 1 big_df.columns = [ "序号", "-", "代码", "-", "交易日", "名称", "-", "-", "-", "最新价", "涨跌幅", "-", "换手率", "主力成本", "市盈率", "-", "-", "机构参与度", "-", "-", "-", "-", "-", "-", "-", "-", "综合得分", "上升", "目前排名", "关注指数", "-", ] big_df = big_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "换手率", "市盈率", "主力成本", "机构参与度", "综合得分", "上升", "目前排名", "关注指数", "交易日", ] ] big_df["最新价"] = pd.to_numeric(big_df["最新价"], errors="coerce") big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"], errors="coerce") big_df["换手率"] = pd.to_numeric(big_df["换手率"], errors="coerce") big_df["市盈率"] = pd.to_numeric(big_df["市盈率"], errors="coerce") big_df["主力成本"] = pd.to_numeric(big_df["主力成本"], errors="coerce") big_df["机构参与度"] = pd.to_numeric(big_df["机构参与度"], errors="coerce") big_df["综合得分"] = pd.to_numeric(big_df["综合得分"], errors="coerce") big_df["上升"] = pd.to_numeric(big_df["上升"], errors="coerce") big_df["目前排名"] = pd.to_numeric(big_df["目前排名"], errors="coerce") big_df["关注指数"] = pd.to_numeric(big_df["关注指数"], errors="coerce") big_df["交易日"] = pd.to_datetime(big_df["交易日"]).dt.date return big_df def stock_comment_detail_zlkp_jgcyd_em(symbol: str = "600000") -> pd.DataFrame: """ 东方财富网-数据中心-特色数据-千股千评-主力控盘-机构参与度 https://data.eastmoney.com/stockcomment/stock/600000.html :param symbol: 股票代码 :type symbol: str :return: 主力控盘-机构参与度 :rtype: pandas.DataFrame """ url = f"https://datacenter-web.eastmoney.com/api/data/v1/get" params = { "reportName": "RPT_DMSK_TS_STOCKEVALUATE", "filter": f'(SECURITY_CODE="{symbol}")', "columns": "ALL", "source": "WEB", "client": "WEB", "sortColumns": "TRADE_DATE", "sortTypes": "-1", "_": "1655387358195", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]["data"]) temp_df = temp_df[["TRADE_DATE", "ORG_PARTICIPATE"]] temp_df.columns = ["date", "value"] temp_df["date"] = pd.to_datetime(temp_df["date"]).dt.date temp_df.sort_values(["date"], inplace=True) temp_df.reset_index(inplace=True, drop=True) temp_df["value"] = pd.to_numeric(temp_df["value"]) * 100 return temp_df def stock_comment_detail_zhpj_lspf_em(symbol: str = "600000") -> pd.DataFrame: """ 东方财富网-数据中心-特色数据-千股千评-综合评价-历史评分 https://data.eastmoney.com/stockcomment/stock/600000.html :param symbol: 股票代码 :type symbol: str :return: 综合评价-历史评分 :rtype: pandas.DataFrame """ url = f"https://data.eastmoney.com/stockcomment/api/{symbol}.json" r = requests.get(url) data_json = r.json() temp_df = pd.DataFrame( [ data_json["ApiResults"]["zhpj"]["HistoryScore"]["XData"], data_json["ApiResults"]["zhpj"]["HistoryScore"]["Ydata"]["Score"], data_json["ApiResults"]["zhpj"]["HistoryScore"]["Ydata"]["Price"], ] ).T temp_df.columns = ["日期", "评分", "股价"] temp_df["日期"] = str(datetime.now().year) + "-" + temp_df["日期"] temp_df["日期"] = pd.to_datetime(temp_df["日期"]).dt.date temp_df.sort_values(["日期"], inplace=True) temp_df.reset_index(inplace=True, drop=True) temp_df["评分"] = pd.to_numeric(temp_df["评分"]) temp_df["股价"] = pd.t
o_numeric(temp_df["股价"])
pandas.to_numeric
# utils contains the variables or functions that would be used across several notebooks # These are saved and updated here. The notebooks could then be rerun without too many manual changes. # Convert square foot into acres feet_in_acres = 43560 """ Define functions to upload to GitHub Based on https://github.com/CityOfLosAngeles/aqueduct/tree/master/civis-aqueduct-utils/civis_aqueduct_utils """ import base64 import os import fsspec import requests from arcgis.gis import GIS from arcgis.features import FeatureLayerCollection # Function to overwrite file in GitHub DEFAULT_COMMITTER = { "name": "Service User", "email": "<EMAIL>", } def upload_file_to_github( token, repo, branch, path, local_file_path, commit_message, committer=DEFAULT_COMMITTER, ): """ Parameters ---------- token: str GitHub personal access token and corresponds to GITHUB_TOKEN in Civis credentials. repo: str Repo name, such as 'CityofLosAngeles/covid19-indicators` branch: str Branch name, such as 'master' path: str Path to the file within the repo. local_file_path: str Path to the local file to be uploaded to the repo, which can differ from the path within the GitHub repo. commit_message: str Commit message used when making the git commit. commiter: dict name and email associated with the committer. Defaults to ITA robot user, if another committer is not provided.. """ BASE = "https://api.github.com" # Get the sha of the previous version. # Operate on the dirname rather than the path itself so we # don't run into file size limitations. r = requests.get( f"{BASE}/repos/{repo}/contents/{os.path.dirname(path)}", params={"ref": branch}, headers={"Authorization": f"token {token}"}, ) r.raise_for_status() item = next(i for i in r.json() if i["path"] == path) sha = item["sha"] # Upload the new version with fsspec.open(local_file_path, "rb") as f: contents = f.read() r = requests.put( f"{BASE}/repos/{repo}/contents/{path}", headers={"Authorization": f"token {token}"}, json={ "message": commit_message, "committer": committer, "branch": branch, "sha": sha, "content": base64.b64encode(contents).decode("utf-8"), }, ) r.raise_for_status() """ Uploading to ArcGIS Online """ # Overwrite ESRI layer def update_geohub_layer(geohubUrl, user, pw, layer, update_data): """ user: str, ESRI username pw: str, ESRI password layer: str, ESRI feature layer ID update_data: path to local CSV data used to overwrite feature layer ex: "./file_name.csv" """ #geohub = GIS('https://lahub.maps.arcgis.com', user, pw) geohub = GIS(geohubUrl, user, pw) flayer = geohub.content.get(layer) flayer_collection = FeatureLayerCollection.fromitem(flayer) flayer_collection.manager.overwrite(update_data) print("Successfully updated AGOL") # Function to update feature layer, line by line def chunks(list_of_features, n, agol_layer): """ Yield successive n-sized chunks from list_of_features. list_of_features: list. List of features to be updated. n: numeric. chunk size, 1000 is the max for AGOL feature layer agol_layer: AGOL layer. Ex: flayer = gis.content.get(feature_layer_id) agol_layer = flayer.layers[0] """ for i in range(0, len(list_of_features), n): chunk_list=list_of_features[i:i + n] agol_layer.edit_features(updates=chunk_list) print("update successful") """ Functions to push datasets to Socrata open data portal. """ import os import pandas as pd import sodapy def overwrite_socrata_table(username, password, csv_file, socrata_dataset_id, NUM_MINUTES=20): """ username: str, Socrata username password: str, <PASSWORD> csv_file: str, path to local CSV file used to overwrite Socrata table socrata_dataset_id: str, unique dataset ID for Socrata table NUM_MINUTES: int, number of minutes for the timeout """ client = sodapy.Socrata("data.lacity.org", app_token = None, username = username, password = password) data = open(f"{csv_file}") client.timeout = (NUM_MINUTES * 60) client.replace(socrata_dataset_id, data) print(f"{csv_file} updated") os.remove(f"{csv_file}") def upsert_socrata_rows(username, password, csv_file, socrata_dataset_id, NUM_MINUTES=5): """ username: str, Socrata username password: str, <PASSWORD> csv_file: str, path to local CSV file used to overwrite Socrata table socrata_dataset_id: str, unique dataset ID for Socrata table NUM_MINUTES: int, number of minutes for the timeout """ client = sodapy.Socrata("data.lacity.org", app_token = None, username = username, password = password) # Grab existing table in Socrata and find where it leaves off existing_table = client.get(socrata_dataset_id) existing_table = pd.DataFrame(existing_table) max_date = pd.to_datetime(existing_table.date.max()) df = pd.read_csv(f"{csv_file}") df = df.assign( date =
pd.to_datetime(df.date)
pandas.to_datetime
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import timedelta from numpy import nan import numpy as np import pandas as pd from pandas import (Series, isnull, date_range, MultiIndex, Index) from pandas.tseries.index import Timestamp from pandas.compat import range from pandas.util.testing import assert_series_equal import pandas.util.testing as tm from .common import TestData def _skip_if_no_pchip(): try: from scipy.interpolate import pchip_interpolate # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.pchip missing') def _skip_if_no_akima(): try: from scipy.interpolate import Akima1DInterpolator # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.Akima1DInterpolator missing') class TestSeriesMissingData(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_timedelta_fillna(self): # GH 3371 s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp( '20130102'), Timestamp('20130103 9:01:01')]) td = s.diff() # reg fillna result = td.fillna(0) expected = Series([timedelta(0), timedelta(0), timedelta(1), timedelta( days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) # interprested as seconds result = td.fillna(1) expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) result = td.fillna(timedelta(days=1, seconds=1)) expected = Series([timedelta(days=1, seconds=1), timedelta( 0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) result = td.fillna(np.timedelta64(int(1e9))) expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) from pandas import tslib result = td.fillna(tslib.NaT) expected = Series([tslib.NaT, timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)], dtype='m8[ns]') assert_series_equal(result, expected) # ffill td[2] = np.nan result = td.ffill() expected = td.fillna(0) expected[0] = np.nan assert_series_equal(result, expected) # bfill td[2] = np.nan result = td.bfill() expected = td.fillna(0) expected[2] = timedelta(days=1, seconds=9 * 3600 + 60 + 1) assert_series_equal(result, expected) def test_datetime64_fillna(self): s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp( '20130102'), Timestamp('20130103 9:01:01')]) s[2] = np.nan # reg fillna result = s.fillna(Timestamp('20130104')) expected = Series([Timestamp('20130101'), Timestamp( '20130101'), Timestamp('20130104'), Timestamp('20130103 9:01:01')]) assert_series_equal(result, expected) from pandas import tslib result = s.fillna(tslib.NaT) expected = s assert_series_equal(result, expected) # ffill result = s.ffill() expected = Series([Timestamp('20130101'), Timestamp( '20130101'), Timestamp('20130101'), Timestamp('20130103 9:01:01')]) assert_series_equal(result, expected) # bfill result = s.bfill() expected = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp('20130103 9:01:01'), Timestamp( '20130103 9:01:01')]) assert_series_equal(result, expected) # GH 6587 # make sure that we are treating as integer when filling # this also tests inference of a datetime-like with NaT's s = Series([pd.NaT, pd.NaT, '2013-08-05 15:30:00.000001']) expected = Series( ['2013-08-05 15:30:00.000001', '2013-08-05 15:30:00.000001', '2013-08-05 15:30:00.000001'], dtype='M8[ns]') result = s.fillna(method='backfill') assert_series_equal(result, expected) def test_datetime64_tz_fillna(self): for tz in ['US/Eastern', 'Asia/Tokyo']: # DatetimeBlock s = Series([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp( '2011-01-03 10:00'), pd.NaT]) result = s.fillna(pd.Timestamp('2011-01-02 10:00')) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00'), Timestamp('2011-01-03 10:00'), Timestamp( '2011-01-02 10:00')]) self.assert_series_equal(expected, result) result = s.fillna(pd.Timestamp('2011-01-02 10:00', tz=tz)) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00', tz=tz), Timestamp('2011-01-03 10:00'), Timestamp('2011-01-02 10:00', tz=tz)]) self.assert_series_equal(expected, result) result = s.fillna('AAA') expected = Series([Timestamp('2011-01-01 10:00'), 'AAA', Timestamp('2011-01-03 10:00'), 'AAA'], dtype=object) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz), 3: pd.Timestamp('2011-01-04 10:00')}) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00', tz=tz), Timestamp('2011-01-03 10:00'), Timestamp('2011-01-04 10:00')]) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00'), 3: pd.Timestamp('2011-01-04 10:00')}) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00'), Timestamp('2011-01-03 10:00'), Timestamp( '2011-01-04 10:00')]) self.assert_series_equal(expected, result) # DatetimeBlockTZ idx = pd.DatetimeIndex(['2011-01-01 10:00', pd.NaT, '2011-01-03 10:00', pd.NaT], tz=tz) s = pd.Series(idx) result = s.fillna(pd.Timestamp('2011-01-02 10:00')) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp( '2011-01-02 10:00'), Timestamp('2011-01-03 10:00', tz=tz), Timestamp('2011-01-02 10:00')]) self.assert_series_equal(expected, result) result = s.fillna(pd.Timestamp('2011-01-02 10:00', tz=tz)) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-02 10:00', '2011-01-03 10:00', '2011-01-02 10:00'], tz=tz) expected = Series(idx) self.assert_series_equal(expected, result) result = s.fillna(pd.Timestamp( '2011-01-02 10:00', tz=tz).to_pydatetime()) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-02 10:00', '2011-01-03 10:00', '2011-01-02 10:00'], tz=tz) expected = Series(idx) self.assert_series_equal(expected, result) result = s.fillna('AAA') expected = Series([Timestamp('2011-01-01 10:00', tz=tz), 'AAA', Timestamp('2011-01-03 10:00', tz=tz), 'AAA'], dtype=object) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz), 3: pd.Timestamp('2011-01-04 10:00')}) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp( '2011-01-02 10:00', tz=tz), Timestamp( '2011-01-03 10:00', tz=tz), Timestamp('2011-01-04 10:00')]) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz), 3: pd.Timestamp('2011-01-04 10:00', tz=tz)}) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp( '2011-01-02 10:00', tz=tz), Timestamp( '2011-01-03 10:00', tz=tz), Timestamp('2011-01-04 10:00', tz=tz)]) self.assert_series_equal(expected, result) # filling with a naive/other zone, coerce to object result = s.fillna(Timestamp('20130101')) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp( '2013-01-01'), Timestamp('2011-01-03 10:00', tz=tz), Timestamp( '2013-01-01')]) self.assert_series_equal(expected, result) result = s.fillna(Timestamp('20130101', tz='US/Pacific')) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp('2013-01-01', tz='US/Pacific'), Timestamp('2011-01-03 10:00', tz=tz), Timestamp('2013-01-01', tz='US/Pacific')]) self.assert_series_equal(expected, result) def test_fillna_int(self): s = Series(np.random.randint(-100, 100, 50)) s.fillna(method='ffill', inplace=True) assert_series_equal(s.fillna(method='ffill', inplace=False), s) def test_fillna_raise(self): s = Series(np.random.randint(-100, 100, 50)) self.assertRaises(TypeError, s.fillna, [1, 2]) self.assertRaises(TypeError, s.fillna, (1, 2)) def test_isnull_for_inf(self): s = Series(['a', np.inf, np.nan, 1.0]) with pd.option_context('mode.use_inf_as_null', True): r = s.isnull() dr = s.dropna() e = Series([False, True, True, False]) de = Series(['a', 1.0], index=[0, 3]) tm.assert_series_equal(r, e) tm.assert_series_equal(dr, de) def test_fillna(self): ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5)) self.assert_series_equal(ts, ts.fillna(method='ffill')) ts[2] = np.NaN exp = Series([0., 1., 1., 3., 4.], index=ts.index) self.assert_series_equal(ts.fillna(method='ffill'), exp) exp = Series([0., 1., 3., 3., 4.], index=ts.index) self.assert_series_equal(ts.fillna(method='backfill'), exp) exp = Series([0., 1., 5., 3., 4.], index=ts.index) self.assert_series_equal(ts.fillna(value=5), exp) self.assertRaises(ValueError, ts.fillna) self.assertRaises(ValueError, self.ts.fillna, value=0, method='ffill') # GH 5703 s1 = Series([np.nan]) s2 = Series([1]) result = s1.fillna(s2) expected = Series([1.]) assert_series_equal(result, expected) result = s1.fillna({}) assert_series_equal(result, s1) result = s1.fillna(Series(())) assert_series_equal(result, s1) result = s2.fillna(s1) assert_series_equal(result, s2) result = s1.fillna({0: 1}) assert_series_equal(result, expected) result = s1.fillna({1: 1}) assert_series_equal(result, Series([np.nan])) result = s1.fillna({0: 1, 1: 1}) assert_series_equal(result, expected) result = s1.fillna(Series({0: 1, 1: 1})) assert_series_equal(result, expected) result = s1.fillna(Series({0: 1, 1: 1}, index=[4, 5])) assert_series_equal(result, s1) s1 = Series([0, 1, 2], list('abc')) s2 = Series([0, np.nan, 2], list('bac')) result = s2.fillna(s1) expected = Series([0, 0, 2.], list('bac')) assert_series_equal(result, expected) # limit s = Series(np.nan, index=[0, 1, 2]) result = s.fillna(999, limit=1) expected = Series([999, np.nan, np.nan], index=[0, 1, 2]) assert_series_equal(result, expected) result = s.fillna(999, limit=2) expected = Series([999, 999, np.nan], index=[0, 1, 2]) assert_series_equal(result, expected) # GH 9043 # make sure a string representation of int/float values can be filled # correctly without raising errors or being converted vals = ['0', '1.5', '-0.3'] for val in vals: s = Series([0, 1, np.nan, np.nan, 4], dtype='float64') result = s.fillna(val) expected = Series([0, 1, val, val, 4], dtype='object') assert_series_equal(result, expected) def test_fillna_bug(self): x = Series([nan, 1., nan, 3., nan], ['z', 'a', 'b', 'c', 'd']) filled = x.fillna(method='ffill') expected = Series([nan, 1., 1., 3., 3.], x.index) assert_series_equal(filled, expected) filled = x.fillna(method='bfill') expected = Series([1., 1., 3., 3., nan], x.index) assert_series_equal(filled, expected) def test_fillna_inplace(self): x = Series([nan, 1., nan, 3., nan], ['z', 'a', 'b', 'c', 'd']) y = x.copy() y.fillna(value=0, inplace=True) expected = x.fillna(value=0) assert_series_equal(y, expected) def test_fillna_invalid_method(self): try: self.ts.fillna(method='ffil') except ValueError as inst: self.assertIn('ffil', str(inst)) def test_ffill(self): ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5)) ts[2] = np.NaN assert_series_equal(ts.ffill(), ts.fillna(method='ffill')) def test_bfill(self): ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5)) ts[2] = np.NaN assert_series_equal(ts.bfill(), ts.fillna(method='bfill')) def test_timedelta64_nan(self): from pandas import tslib td = Series([timedelta(days=i) for i in range(10)]) # nan ops on timedeltas td1 = td.copy() td1[0] = np.nan self.assertTrue(isnull(td1[0])) self.assertEqual(td1[0].value, tslib.iNaT) td1[0] = td[0] self.assertFalse(isnull(td1[0])) td1[1] = tslib.iNaT self.assertTrue(isnull(td1[1])) self.assertEqual(td1[1].value, tslib.iNaT) td1[1] = td[1] self.assertFalse(isnull(td1[1])) td1[2] = tslib.NaT self.assertTrue(isnull(td1[2])) self.assertEqual(td1[2].value, tslib.iNaT) td1[2] = td[2] self.assertFalse(isnull(td1[2])) # boolean setting # this doesn't work, not sure numpy even supports it # result = td[(td>np.timedelta64(timedelta(days=3))) & # td<np.timedelta64(timedelta(days=7)))] = np.nan # self.assertEqual(isnull(result).sum(), 7) # NumPy limitiation =( # def test_logical_range_select(self): # np.random.seed(12345) # selector = -0.5 <= self.ts <= 0.5 # expected = (self.ts >= -0.5) & (self.ts <= 0.5) # assert_series_equal(selector, expected) def test_dropna_empty(self): s = Series([]) self.assertEqual(len(s.dropna()), 0) s.dropna(inplace=True) self.assertEqual(len(s), 0) # invalid axis self.assertRaises(ValueError, s.dropna, axis=1) def test_datetime64_tz_dropna(self): # DatetimeBlock s = Series([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp( '2011-01-03 10:00'), pd.NaT]) result = s.dropna() expected = Series([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-03 10:00')], index=[0, 2]) self.assert_series_equal(result, expected) # DatetimeBlockTZ idx = pd.DatetimeIndex(['2011-01-01 10:00', pd.NaT, '2011-01-03 10:00', pd.NaT], tz='Asia/Tokyo') s = pd.Series(idx) self.assertEqual(s.dtype, 'datetime64[ns, Asia/Tokyo]') result = s.dropna() expected = Series([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-03 10:00', tz='Asia/Tokyo')], index=[0, 2]) self.assertEqual(result.dtype, 'datetime64[ns, Asia/Tokyo]') self.assert_series_equal(result, expected) def test_dropna_no_nan(self): for s in [Series([1, 2, 3], name='x'), Series( [False, True, False], name='x')]: result = s.dropna() self.assert_series_equal(result, s) self.assertFalse(result is s) s2 = s.copy() s2.dropna(inplace=True) self.assert_series_equal(s2, s) def test_valid(self): ts = self.ts.copy() ts[::2] = np.NaN result = ts.valid() self.assertEqual(len(result), ts.count()) tm.assert_series_equal(result, ts[1::2]) tm.assert_series_equal(result, ts[pd.notnull(ts)]) def test_isnull(self): ser = Series([0, 5.4, 3, nan, -0.001]) np.array_equal(ser.isnull(), Series([False, False, False, True, False]).values) ser = Series(["hi", "", nan]) np.array_equal(ser.isnull(), Series([False, False, True]).values) def test_notnull(self): ser = Series([0, 5.4, 3, nan, -0.001]) np.array_equal(ser.notnull(), Series([True, True, True, False, True]).values) ser = Series(["hi", "", nan]) np.array_equal(ser.notnull(), Series([True, True, False]).values) def test_pad_nan(self): x = Series([np.nan, 1., np.nan, 3., np.nan], ['z', 'a', 'b', 'c', 'd'], dtype=float) x.fillna(method='pad', inplace=True) expected = Series([np.nan, 1.0, 1.0, 3.0, 3.0], ['z', 'a', 'b', 'c', 'd'], dtype=float) assert_series_equal(x[1:], expected[1:]) self.assertTrue(np.isnan(x[0]), np.isnan(expected[0])) def test_dropna_preserve_name(self): self.ts[:5] = np.nan result = self.ts.dropna() self.assertEqual(result.name, self.ts.name) name = self.ts.name ts = self.ts.copy() ts.dropna(inplace=True) self.assertEqual(ts.name, name) def test_fill_value_when_combine_const(self): # GH12723 s = Series([0, 1, np.nan, 3, 4, 5]) exp = s.fillna(0).add(2) res = s.add(2, fill_value=0) assert_series_equal(res, exp) class TestSeriesInterpolateData(TestData, tm.TestCase): def test_interpolate(self): ts = Series(np.arange(len(self.ts), dtype=float), self.ts.index) ts_copy = ts.copy() ts_copy[5:10] = np.NaN linear_interp = ts_copy.interpolate(method='linear') self.assert_series_equal(linear_interp, ts) ord_ts = Series([d.toordinal() for d in self.ts.index], index=self.ts.index).astype(float) ord_ts_copy = ord_ts.copy() ord_ts_copy[5:10] = np.NaN time_interp = ord_ts_copy.interpolate(method='time') self.assert_series_equal(time_interp, ord_ts) # try time interpolation on a non-TimeSeries # Only raises ValueError if there are NaNs. non_ts = self.series.copy() non_ts[0] = np.NaN self.assertRaises(ValueError, non_ts.interpolate, method='time') def test_interpolate_pchip(self): tm._skip_if_no_scipy() _skip_if_no_pchip() ser = Series(np.sort(np.random.uniform(size=100))) # interpolate at new_index new_index = ser.index.union(Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75])) interp_s = ser.reindex(new_index).interpolate(method='pchip') # does not blow up, GH5977 interp_s[49:51] def test_interpolate_akima(self): tm._skip_if_no_scipy() _skip_if_no_akima() ser = Series([10, 11, 12, 13]) expected = Series([11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0])) # interpolate at new_index new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])) interp_s = ser.reindex(new_index).interpolate(method='akima') assert_series_equal(interp_s[1:3], expected) def test_interpolate_piecewise_polynomial(self): tm._skip_if_no_scipy() ser = Series([10, 11, 12, 13]) expected = Series([11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0])) # interpolate at new_index new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])) interp_s = ser.reindex(new_index).interpolate( method='piecewise_polynomial') assert_series_equal(interp_s[1:3], expected) def test_interpolate_from_derivatives(self): tm._skip_if_no_scipy() ser = Series([10, 11, 12, 13]) expected = Series([11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0])) # interpolate at new_index new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])) interp_s = ser.reindex(new_index).interpolate( method='from_derivatives') assert_series_equal(interp_s[1:3], expected) def test_interpolate_corners(self): s = Series([np.nan, np.nan]) assert_series_equal(s.interpolate(), s) s = Series([]).interpolate() assert_series_equal(s.interpolate(), s) tm._skip_if_no_scipy() s = Series([np.nan, np.nan]) assert_series_equal(s.interpolate(method='polynomial', order=1), s) s = Series([]).interpolate() assert_series_equal(s.interpolate(method='polynomial', order=1), s) def test_interpolate_index_values(self): s = Series(np.nan, index=np.sort(np.random.rand(30))) s[::3] = np.random.randn(10) vals = s.index.values.astype(float) result = s.interpolate(method='index') expected = s.copy() bad = isnull(expected.values) good = ~bad expected = Series(np.interp(vals[bad], vals[good], s.values[good]), index=s.index[bad]) assert_series_equal(result[bad], expected) # 'values' is synonymous with 'index' for the method kwarg other_result = s.interpolate(method='values') assert_series_equal(other_result, result) assert_series_equal(other_result[bad], expected) def test_interpolate_non_ts(self): s = Series([1, 3, np.nan, np.nan, np.nan, 11]) with tm.assertRaises(ValueError): s.interpolate(method='time') # New interpolation tests def test_nan_interpolate(self): s = Series([0, 1, np.nan, 3]) result = s.interpolate() expected = Series([0., 1., 2., 3.]) assert_series_equal(result, expected) tm._skip_if_no_scipy() result = s.interpolate(method='polynomial', order=1) assert_series_equal(result, expected) def test_nan_irregular_index(self): s = Series([1, 2, np.nan, 4], index=[1, 3, 5, 9]) result = s.interpolate() expected = Series([1., 2., 3., 4.], index=[1, 3, 5, 9]) assert_series_equal(result, expected) def test_nan_str_index(self): s = Series([0, 1, 2, np.nan], index=list('abcd')) result = s.interpolate() expected = Series([0., 1., 2., 2.], index=list('abcd')) assert_series_equal(result, expected) def test_interp_quad(self): tm._skip_if_no_scipy() sq = Series([1, 4, np.nan, 16], index=[1, 2, 3, 4]) result = sq.interpolate(method='quadratic') expected = Series([1., 4., 9., 16.], index=[1, 2, 3, 4]) assert_series_equal(result, expected) def test_interp_scipy_basic(self): tm._skip_if_no_scipy() s = Series([1, 3, np.nan, 12, np.nan, 25]) # slinear expected = Series([1., 3., 7.5, 12., 18.5, 25.]) result = s.interpolate(method='slinear') assert_series_equal(result, expected) result = s.interpolate(method='slinear', downcast='infer') assert_series_equal(result, expected) # nearest expected = Series([1, 3, 3, 12, 12, 25]) result = s.interpolate(method='nearest') assert_series_equal(result, expected.astype('float')) result = s.interpolate(method='nearest', downcast='infer') assert_series_equal(result, expected) # zero expected = Series([1, 3, 3, 12, 12, 25]) result = s.interpolate(method='zero') assert_series_equal(result, expected.astype('float')) result = s.interpolate(method='zero', downcast='infer') assert_series_equal(result, expected) # quadratic expected = Series([1, 3., 6.769231, 12., 18.230769, 25.]) result = s.interpolate(method='quadratic') assert_series_equal(result, expected) result = s.interpolate(method='quadratic', downcast='infer') assert_series_equal(result, expected) # cubic expected =
Series([1., 3., 6.8, 12., 18.2, 25.])
pandas.Series
import unittest import dolphindb as ddb import dolphindb.settings as keys import numpy as np from numpy.testing import * from setup import HOST, PORT, WORK_DIR import pandas as pd class DBInfo: dfsDBName = 'dfs://testDatabase' diskDBName = WORK_DIR + '/testDatabase' def existsDB(dbName): s = ddb.session() s.connect(HOST, PORT, "admin", "123456") return s.run("existsDatabase('{db}')".format(db=dbName)) def dropDB(dbName): s = ddb.session() s.connect(HOST, PORT, "admin", "123456") s.run("dropDatabase('{db}')".format(db=dbName)) class DatabaseTest(unittest.TestCase): @classmethod def setUp(cls): cls.s = ddb.session() cls.s.connect(HOST, PORT, "admin", "123456") dbPaths = [DBInfo.dfsDBName, DBInfo.diskDBName] for dbPath in dbPaths: script = """ if(existsDatabase('{dbPath}')) dropDatabase('{dbPath}') if(exists('{dbPath}')) rmdir('{dbPath}', true) """.format(dbPath=dbPath) cls.s.run(script) @classmethod def tearDown(cls): cls.s = ddb.session() cls.s.connect(HOST, PORT, "admin", "123456") dbPaths = [DBInfo.dfsDBName, DBInfo.diskDBName] for dbPath in dbPaths: script = """ if(existsDatabase('{dbPath}')) dropDatabase('{dbPath}') if(exists('{dbPath}')) rmdir('{dbPath}', true) """.format(dbPath=dbPath) cls.s.run(script) def test_create_dfs_database_range_partition(self): if existsDB(DBInfo.dfsDBName): dropDB(DBInfo.dfsDBName) db = self.s.database('db', partitionType=keys.RANGE, partitions=[1, 11, 21], dbPath=DBInfo.dfsDBName) self.assertEqual(existsDB(DBInfo.dfsDBName), True) dct = {'databaseDir': DBInfo.dfsDBName, 'partitionSchema': np.array([1, 11, 21], dtype=np.int32), 'partitionSites': None, 'partitionTypeName':'RANGE', 'partitionType': 2} re = self.s.run("schema(db)") self.assertEqual(re['databaseDir'], dct['databaseDir']) assert_array_equal(re['partitionSchema'], dct['partitionSchema']) self.assertEqual(re['partitionSites'], dct['partitionSites']) df = pd.DataFrame({'id': np.arange(1, 21), 'val': np.repeat(1, 20)}) t = self.s.table(data=df, tableAliasName='t') db.createPartitionedTable(table=t, tableName='pt', partitionColumns='id').append(t) re = self.s.loadTable(tableName='pt', dbPath=DBInfo.dfsDBName).toDF() assert_array_equal(re['id'], np.arange(1, 21)) assert_array_equal(re['val'], np.repeat(1, 20)) db.createTable(table=t, tableName='dt').append(t) re = self.s.loadTable(tableName='dt', dbPath=DBInfo.dfsDBName).toDF() assert_array_equal(re['id'], np.arange(1, 21)) assert_array_equal(re['val'], np.repeat(1, 20)) def test_create_dfs_database_hash_partition(self): if existsDB(DBInfo.dfsDBName): dropDB(DBInfo.dfsDBName) db = self.s.database('db', partitionType=keys.HASH, partitions=[keys.DT_INT, 2], dbPath=DBInfo.dfsDBName) self.assertEqual(existsDB(DBInfo.dfsDBName), True) dct = {'databaseDir': DBInfo.dfsDBName, 'partitionSchema': 2, 'partitionSites': None, 'partitionTypeName':'HASH', 'partitionType': 5} re = self.s.run("schema(db)") self.assertEqual(re['databaseDir'], dct['databaseDir']) self.assertEqual(re['partitionSchema'], dct['partitionSchema']) self.assertEqual(re['partitionSites'], dct['partitionSites']) df = pd.DataFrame({'id':[1,2,3,4,5], 'val':[10, 20, 30, 40, 50]}) t = self.s.table(data=df) pt = db.createPartitionedTable(table=t, tableName='pt', partitionColumns='id') pt.append(t) re = self.s.loadTable(tableName='pt', dbPath=DBInfo.dfsDBName).toDF() assert_array_equal(np.sort(re['id']), df['id']) assert_array_equal(np.sort(re['val']), df['val']) dt = db.createTable(table=t, tableName='dt') dt.append(t) re = self.s.loadTable(tableName='pt', dbPath=DBInfo.dfsDBName).toDF() assert_array_equal(np.sort(re['id']), df['id']) assert_array_equal(np.sort(re['val']), df['val']) def test_create_dfs_database_value_partition(self): if existsDB(DBInfo.dfsDBName): dropDB(DBInfo.dfsDBName) db = self.s.database('db', partitionType=keys.VALUE, partitions=[1, 2, 3], dbPath=DBInfo.dfsDBName) self.assertEqual(existsDB(DBInfo.dfsDBName), True) dct = {'databaseDir': DBInfo.dfsDBName, 'partitionSchema': np.array([3, 1, 2], dtype=np.int32), 'partitionSites': None, 'partitionTypeName':'VALUE', 'partitionType': 1} re = self.s.run("schema(db)") self.assertEqual(re['databaseDir'], dct['databaseDir']) assert_array_equal(re['partitionSchema'], dct['partitionSchema']) self.assertEqual(re['partitionSites'], dct['partitionSites']) df = pd.DataFrame({'id':[1, 2, 3, 1, 2, 3], 'val':[11, 12, 13, 14, 15, 16]}) t = self.s.table(data=df) pt = db.createPartitionedTable(table=t, tableName='pt', partitionColumns='id').append(t) re = self.s.loadTable(tableName='pt', dbPath=DBInfo.dfsDBName).toDF() assert_array_equal(np.sort(df['id']), np.sort(re['id'])) assert_array_equal(np.sort(df['val']), np.sort(re['val'])) dt = db.createTable(table=t, tableName='dt').append(t) re = self.s.loadTable(tableName='dt', dbPath=DBInfo.dfsDBName).toDF() assert_array_equal(np.sort(df['id']), np.sort(re['id'])) assert_array_equal(np.sort(df['val']), np.sort(re['val'])) def test_create_dfs_database_list_partition(self): if existsDB(DBInfo.dfsDBName): dropDB(DBInfo.dfsDBName) db = self.s.database('db', partitionType=keys.LIST, partitions=[['IBM', 'ORCL', 'MSFT'], ['GOOG', 'FB']], dbPath=DBInfo.dfsDBName) self.assertEqual(existsDB(DBInfo.dfsDBName), True) dct = {'databaseDir': DBInfo.dfsDBName, 'partitionSchema': np.array([np.array(['IBM', 'ORCL', 'MSFT']), np.array(['GOOG', 'FB'])]), 'partitionSites': None, 'partitionTypeName':'LIST', 'partitionType': 3} re = self.s.run("schema(db)") self.assertEqual(re['databaseDir'], dct['databaseDir']) assert_array_equal(re['partitionSchema'][0], dct['partitionSchema'][0]) assert_array_equal(re['partitionSchema'][1], dct['partitionSchema'][1]) self.assertEqual(re['partitionSites'], dct['partitionSites']) df = pd.DataFrame({'sym':['IBM', 'ORCL', 'MSFT', 'GOOG', 'FB'], 'val':[1,2,3,4,5]}) t = self.s.table(data=df) db.createPartitionedTable(table=t, tableName='pt', partitionColumns='sym').append(t) re = self.s.loadTable(tableName='pt', dbPath=DBInfo.dfsDBName).toDF() assert_array_equal(re['sym'], df['sym']) assert_array_equal(re['val'], df['val']) db.createTable(table=t, tableName='dt').append(t) re = self.s.loadTable(tableName='dt', dbPath=DBInfo.dfsDBName).toDF() assert_array_equal(re['sym'], df['sym']) assert_array_equal(re['val'], df['val']) def test_create_dfs_database_value_partition_np_date(self): if existsDB(DBInfo.dfsDBName): dropDB(DBInfo.dfsDBName) dates=np.array(pd.date_range(start='20120101', end='20120110'), dtype="datetime64[D]") db = self.s.database('db', partitionType=keys.VALUE, partitions=dates, dbPath=DBInfo.dfsDBName) self.assertEqual(existsDB(DBInfo.dfsDBName), True) dct = {'databaseDir': DBInfo.dfsDBName, 'partitionType': 1, 'partitionSchema': np.array(pd.date_range(start='20120101', end='20120110'), dtype="datetime64[D]"), 'partitionSites': None } re = self.s.run("schema(db)") self.assertEqual(re['databaseDir'], dct['databaseDir']) self.assertEqual(re['partitionType'], dct['partitionType']) assert_array_equal(np.sort(re['partitionSchema']), dct['partitionSchema']) df = pd.DataFrame({'datetime':np.array(['2012-01-01T00:00:00', '2012-01-02T00:00:00'], dtype='datetime64'), 'sym':['AA', 'BB'], 'val':[1,2]}) t = self.s.table(data=df) db.createPartitionedTable(table=t, tableName='pt', partitionColumns='datetime').append(t) re = self.s.run("schema(loadTable('{dbPath}', 'pt')).colDefs".format(dbPath=DBInfo.dfsDBName)) assert_array_equal(re['name'], ['datetime', 'sym', 'val']) assert_array_equal(re['typeString'], ['NANOTIMESTAMP', 'STRING', 'LONG']) re = self.s.loadTable(tableName='pt', dbPath=DBInfo.dfsDBName).toDF() assert_array_equal(re['datetime'], df['datetime']) assert_array_equal(re['sym'], df['sym']) assert_array_equal(re['val'], df['val']) db.createTable(table=t, tableName='dt').append(t) re = self.s.loadTable(tableName='dt', dbPath=DBInfo.dfsDBName).toDF() assert_array_equal(re['datetime'], df['datetime']) assert_array_equal(re['sym'], df['sym']) assert_array_equal(re['val'], df['val']) def test_create_dfs_database_value_partition_np_month(self): if existsDB(DBInfo.dfsDBName): dropDB(DBInfo.dfsDBName) months=np.array(
pd.date_range(start='2012-01', end='2012-10', freq="M")
pandas.date_range
# -*- coding: utf-8 -*- import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np bd_train = pd.read_csv('/home/mathxs/Documentos/Projetos do Git/DesafioPy/testfiles/train.csv') #bd_train.columns #bd_train = bd_train.dropna(axis=1, how='all'); #bd_train = bd_train.dropna(axis=0, subset=['NU_NOTA_MT', 'CO_UF_RESIDENCIA', 'NU_IDADE', 'TP_COR_RACA', 'TP_NACIONALIDADE', 'TP_ST_CONCLUSAO', 'TP_ANO_CONCLUIU', 'TP_ESCOLA', 'TP_ENSINO', 'IN_TREINEIRO', 'TP_DEPENDENCIA_ADM_ESC', 'IN_BAIXA_VISAO', 'IN_SURDEZ', 'IN_DISLEXIA', 'IN_DISCALCULIA', 'IN_SABATISTA', 'IN_GESTANTE', 'IN_IDOSO', 'TP_PRESENCA_CN', 'TP_PRESENCA_CH', 'TP_PRESENCA_LC', 'NU_NOTA_CN', 'NU_NOTA_CH', 'NU_NOTA_LC', 'TP_LINGUA', 'TP_STATUS_REDACAO', 'NU_NOTA_COMP1', 'NU_NOTA_COMP2', 'NU_NOTA_COMP3', 'NU_NOTA_COMP4', 'NU_NOTA_COMP5', 'NU_NOTA_REDACAO']) bd_train = pd.DataFrame(bd_train, columns=['Q047', 'Q001', 'Q002', 'Q006', 'Q024', 'Q025', 'Q026', 'TP_SEXO','NU_NOTA_MT', 'CO_UF_RESIDENCIA', 'NU_IDADE', 'TP_COR_RACA', 'TP_ST_CONCLUSAO', 'TP_ANO_CONCLUIU', 'TP_ESCOLA', 'TP_ENSINO', 'TP_PRESENCA_CH', 'TP_PRESENCA_LC', 'NU_NOTA_CN', 'NU_NOTA_CH', 'NU_NOTA_LC', 'TP_LINGUA', 'TP_STATUS_REDACAO', 'NU_NOTA_COMP1', 'NU_NOTA_COMP2', 'NU_NOTA_COMP3', 'NU_NOTA_COMP4', 'NU_NOTA_COMP5', 'NU_NOTA_REDACAO']) bd_train = bd_train.replace('M','0') bd_train = bd_train.replace('F','1') bd_train = bd_train.replace('A','0') bd_train = bd_train.replace('B','1') bd_train = bd_train.replace('C','2') bd_train = bd_train.replace('D','3') bd_train = bd_train.replace('E','4') bd_train = bd_train.replace('F','5') bd_train = bd_train.replace('G','6') bd_train = bd_train.replace('H','7') bd_train = bd_train.replace('I','8') bd_train = bd_train.replace('J','9') bd_train = bd_train.replace('K','10') bd_train = bd_train.replace('L','11') bd_train = bd_train.replace('M','12') bd_train = bd_train.replace('N','13') bd_train = bd_train.replace('O','14') bd_train = bd_train.replace('P','15') bd_train = bd_train.replace('Q','16') ''' bd_train = bd_train.replace('c8328ebc6f3238e06076c481bc1b82b8301e7a3f',100) bd_train = bd_train.replace('b9b06ce8c319a3df2158ea3d0aef0f7d3eecaed7',101) bd_train = bd_train.replace('2d22ac1d42e6187f09ee6c578df187a760123ccf',102) bd_train = bd_train.replace('c8328ebc6f3238e06076c481bc1b82b8301e7a3f',103) bd_train = bd_train.replace('66b1dad288e13be0992bae01e81f71eca1c6e8a6',104) bd_train = bd_train.replace('03b1fba5c1ebbc47988cd303b08982cfb2aa9cf2',105) bd_train = bd_train.replace('c87a85497686b3e7b3765f84a2ca95256f0f66aa',106) bd_train = bd_train.replace('69ed2ddcb151cfebe3d2ae372055335ac7c8c144',107) bd_train = bd_train.replace('1bcdece8fb1b952552b319e4e5512bbcf540e338',108) bd_train = bd_train.replace('a27a1efea095c8a973496f0b57a24ac6775d95b0',109) bd_train = bd_train.replace('9cd70f1b922e02bd33453b3f607f5a644fb9b1b8',110) bd_train = bd_train.replace('909237ab0d84688e10c0470e2997348aff585273',111) bd_train = bd_train.replace('f48d390ab6a2428e659c37fb8a9d00afde621889',112) bd_train = bd_train.replace('942ab3dc020af4cf53740b6b07e9dd7060b24164',113) bd_train = bd_train.replace('f94e97c2a5689edd5369740fde9a927e23a9465f',114) bd_train = bd_train.replace('0fb4772fc6ee9b951ade2fbe6699cc37985c422e',115) bd_train = bd_train.replace('c95541bf218d7ff70572ca4bcb421edeff05c6d5',116) bd_train = bd_train.replace('6c3fec2ef505409a9e7c3d2e8634fa2aced4ee93',117) bd_train = bd_train.replace('d5f6d17523d2cce3e4dc0a7f0582a85cec1c15ee',118) bd_train = bd_train.replace('01af53cd161a420fff1767129c10de560cc264dd',119) bd_train = bd_train.replace('01abbb7f1a90505385f44eec9905f82ca2a42cfd',120) bd_train = bd_train.replace('5aebe5cad7fabc1545ac7fba07a4e6177f98483c',121) bd_train = bd_train.replace('72f80e4b3150c627c7ffc93cfe0fa13a9989b610',122) bd_train = bd_train.replace('9cbf6bf31d9d89a64ce2737ece4834fde4a95029',123) bd_train = bd_train.replace('fa86b01f07636b15adfd66b688c79934730721a6',124) bd_train = bd_train.replace('44b09b311799bd684b3d02463bfa99e472c6adb3',125) bd_train = bd_train.replace('481058938110a64a272266e3892102b8ef0ca96f',126) bd_train = bd_train.replace('97caab1e1533dba217deb7ef41490f52e459ab01',127) bd_train = bd_train.replace('81d0ee00ef42a7c23eb04496458c03d4c5b9c31a',128) bd_train = bd_train.replace('767a32545304ed293242d528f54d4edb1369f910',129) bd_train = bd_train.replace('577f8968d95046f5eb5cc158608e12fa9ba34c85',130) bd_train = bd_train.replace('0ec1c8ac02d2747b6e9a99933fbf96127dd6e89e',131) bd_train = bd_train.replace('0e0082361eaceb6418bb17305a2b7912650b4783',132) bd_train = bd_train.replace('6d6961694e839531aec2d35bbd8552b55394a0d7',133) bd_train = bd_train.replace('73c5c86eef8f70263e4c5708d153cca123f93378',134) bd_train = bd_train.replace('16f84b7b3d2aeaff7d2f01297e6b3d0e25c77bb2',135) ''' bd_train = bd_train.fillna('-10') bd_train1 = bd_train[bd_train['TP_PRESENCA_CH'] != 2] bd_train2 = bd_train1[bd_train1['TP_PRESENCA_LC'] == 1] #sns.distplot(bd_train['NU_NOTA_MT'], bd_train['NU_NOTA_CH'], bd_train['NU_NOTA_LC'], bd_train['NU_NOTA_CN']); #sns.distplot(bd_train['NU_NOTA_MT']); columns=['Q047','CO_PROVA_CH', 'CO_PROVA_MT', 'Q001', 'Q002', 'Q006', 'Q024', 'Q025', 'Q026', 'TP_SEXO','NU_NOTA_MT', 'CO_UF_RESIDENCIA', 'NU_IDADE', 'TP_COR_RACA', 'TP_ST_CONCLUSAO', 'TP_ANO_CONCLUIU', 'TP_ESCOLA', 'TP_ENSINO', 'TP_PRESENCA_CH', 'TP_PRESENCA_LC', 'NU_NOTA_CN', 'NU_NOTA_CH', 'NU_NOTA_LC', 'TP_LINGUA', 'TP_STATUS_REDACAO', 'NU_NOTA_COMP1', 'NU_NOTA_COMP2', 'NU_NOTA_COMP3', 'NU_NOTA_COMP4', 'NU_NOTA_COMP5', 'NU_NOTA_REDACAO'] ''' for col in columns: #plt.hist(bd_train[col], normed=True, alpha=0.5) sns.kdeplot(bd_train[col], shade=True) ''' #Regressão linear # Preparando os Dados #X = bd_train[['NU_NOTA_CH']] X = bd_train2[['Q047', 'Q001', 'Q002', 'Q006', 'Q024', 'Q025', 'Q026', 'TP_SEXO','CO_UF_RESIDENCIA', 'NU_IDADE', 'TP_COR_RACA', 'TP_ST_CONCLUSAO', 'TP_ANO_CONCLUIU', 'TP_ESCOLA', 'TP_ENSINO', 'TP_PRESENCA_CH', 'TP_PRESENCA_LC', 'NU_NOTA_CN', 'NU_NOTA_CH', 'NU_NOTA_LC', 'TP_LINGUA', 'TP_STATUS_REDACAO', 'NU_NOTA_COMP1', 'NU_NOTA_COMP2', 'NU_NOTA_COMP3', 'NU_NOTA_COMP4', 'NU_NOTA_COMP5', 'NU_NOTA_REDACAO']] y = bd_train2[['NU_NOTA_MT']] # Separando o conjunto de dados em Conjunto de Treino e Validação from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 10) #Treinando o Modelo de Regressão Linear #from sklearn.linear_model import LinearRegression #regressor = LinearRegression() # import the class #from sklearn.linear_model import LogisticRegression # instantiate the model (using the default parameters) #regressor = LogisticRegression() # Ajustando os Dados de Treinamento ao nosso Modelo #regressor.fit(X, np.array(y).astype(int).ravel()) # Predizendo o preço para nosso Conjunto de Validação #y_pred = regressor.predict(X_test) # Pontuando o Modelo from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) from sklearn.ensemble import RandomForestRegressor regressor = RandomForestRegressor(n_estimators=10000, random_state=0) regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test) from sklearn.metrics import r2_score, mean_squared_error # Valor de R2 perto de 1 nos diz que é um bom modelo print(f"R2 score: {r2_score(y_test, y_pred)}") # MSE Score perto de 0 é um bom modelo print(f"MSE score: {mean_squared_error(y_test, y_pred)}") bd_erro = pd.DataFrame.from_records(y_test) arr = np.array(y_pred) df = pd.DataFrame(data=arr.flatten()) bd_erro = bd_erro.join(df) ''' #plotando o grafico linha = np.linspace(-3, 3, 500).reshape(-1, 1) #Para gerar a linha da predição plt.plot(X_train, y_train, "^", markersize = 5) plt.plot(X_test, y_test, "v", markersize = 7) plt.plot(linha, lr.predict(linha)) plt.grid(True) ''' bd_result = pd.read_csv('/home/mathxs/Documentos/Projetos do Git/DesafioPy/testfiles/test.csv') #bd_train.columns #bd_result = bd_result.dropna(axis=1, how='all'); #bd_result = bd_train.dropna(axis=0, subset=['NU_NOTA_MT']) #bd_result = bd_result.dropna(axis=0, subset=['NU_INSCRICAO', 'CO_UF_RESIDENCIA', 'NU_IDADE', 'TP_COR_RACA', 'TP_NACIONALIDADE', 'TP_ST_CONCLUSAO', 'TP_ANO_CONCLUIU', 'TP_ESCOLA', 'TP_ENSINO', 'IN_TREINEIRO', 'TP_DEPENDENCIA_ADM_ESC', 'IN_BAIXA_VISAO', 'IN_SURDEZ', 'IN_DISLEXIA', 'IN_DISCALCULIA', 'IN_SABATISTA', 'IN_GESTANTE', 'IN_IDOSO', 'TP_PRESENCA_CN', 'TP_PRESENCA_CH', 'TP_PRESENCA_LC', 'NU_NOTA_CN', 'NU_NOTA_CH', 'NU_NOTA_LC', 'TP_LINGUA', 'TP_STATUS_REDACAO', 'NU_NOTA_COMP1', 'NU_NOTA_COMP2', 'NU_NOTA_COMP3', 'NU_NOTA_COMP4', 'NU_NOTA_COMP5', 'NU_NOTA_REDACAO']) bd_result =
pd.DataFrame(bd_result, columns=['Q047', 'Q001', 'Q002', 'Q006', 'Q024', 'Q025', 'Q026', 'TP_SEXO','NU_INSCRICAO', 'CO_UF_RESIDENCIA', 'NU_IDADE', 'TP_COR_RACA', 'TP_ST_CONCLUSAO', 'TP_ANO_CONCLUIU', 'TP_ESCOLA', 'TP_ENSINO' , 'TP_PRESENCA_CH', 'TP_PRESENCA_LC', 'NU_NOTA_CN', 'NU_NOTA_CH', 'NU_NOTA_LC', 'TP_LINGUA', 'TP_STATUS_REDACAO', 'NU_NOTA_COMP1', 'NU_NOTA_COMP2', 'NU_NOTA_COMP3', 'NU_NOTA_COMP4', 'NU_NOTA_COMP5', 'NU_NOTA_REDACAO'])
pandas.DataFrame
# -*- coding: utf-8 -*- import random import logging import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from tests.test_base import BaseTest from mabwiser.mab import MAB, LearningPolicy, NeighborhoodPolicy from mabwiser.simulator import Simulator logging.disable(logging.CRITICAL) class ExampleTest(BaseTest): def test_popularity(self): list_of_arms = ['Arm1', 'Arm2'] decisions = ['Arm1', 'Arm1', 'Arm2', 'Arm1'] rewards = [20, 17, 25, 9] mab = MAB(list_of_arms, LearningPolicy.Popularity()) mab.fit(decisions, rewards) mab.predict() self.assertEqual("Arm2", mab.predict()) self.assertDictEqual({'Arm1': 0.38016528925619836, 'Arm2': 0.6198347107438016}, mab.predict_expectations()) def test_random(self): arm, mab = self.predict(arms=[1, 2], decisions=[1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1], rewards=[10, 17, 22, 9, 4, 0, 7, 8, 20, 9, 50, 5, 7, 12, 10], learning_policy=LearningPolicy.Random(), seed=123456, num_run=1, is_predict=True) self.assertEqual(arm, 1) layout_partial = [1, 2, 1, 2] revenue_partial = [0, 12, 7, 19] mab.partial_fit(decisions=layout_partial, rewards=revenue_partial) mab.add_arm(3) self.assertTrue(3 in mab.arms) self.assertTrue(3 in mab._imp.arm_to_expectation.keys()) def test_greedy15(self): arm, mab = self.predict(arms=[1, 2], decisions=[1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1], rewards=[10, 17, 22, 9, 4, 0, 7, 8, 20, 9, 50, 5, 7, 12, 10], learning_policy=LearningPolicy.EpsilonGreedy(epsilon=0.15), seed=123456, num_run=1, is_predict=True) self.assertEqual(arm, 2) layout_partial = [1, 2, 1, 2] revenue_partial = [0, 12, 7, 19] mab.partial_fit(decisions=layout_partial, rewards=revenue_partial) mab.add_arm(3) self.assertTrue(3 in mab.arms) self.assertTrue(3 in mab._imp.arm_to_expectation.keys()) def test_linucb(self): train_df = pd.DataFrame({'ad': [1, 1, 1, 2, 4, 5, 3, 3, 2, 1, 4, 5, 3, 2, 5], 'revenues': [10, 17, 22, 9, 4, 20, 7, 8, 20, 9, 50, 5, 7, 12, 10], 'age': [22, 27, 39, 48, 21, 20, 19, 37, 52, 26, 18, 42, 55, 57, 38], 'click_rate': [0.2, 0.6, 0.99, 0.68, 0.15, 0.23, 0.75, 0.17, 0.33, 0.65, 0.56, 0.22, 0.19, 0.11, 0.83], 'subscriber': [1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0]} ) # Test data to for new prediction test_df = pd.DataFrame({'age': [37, 52], 'click_rate': [0.5, 0.6], 'subscriber': [0, 1]}) test_df_revenue = pd.Series([7, 13]) # Scale the data scaler = StandardScaler() train = scaler.fit_transform(np.asarray(train_df[['age', 'click_rate', 'subscriber']], dtype='float64')) test = scaler.transform(np.asarray(test_df, dtype='float64')) arms, mab = self.predict(arms=[1, 2, 3, 4, 5], decisions=train_df['ad'], rewards=train_df['revenues'], learning_policy=LearningPolicy.LinUCB(alpha=1.25), context_history=train, contexts=test, seed=123456, num_run=1, is_predict=True) self.assertEqual(arms, [5, 2]) mab.partial_fit(decisions=arms, rewards=test_df_revenue, contexts=test) mab.add_arm(6) self.assertTrue(6 in mab.arms) self.assertTrue(6 in mab._imp.arm_to_expectation.keys()) def test_softmax(self): arm, mab = self.predict(arms=[1, 2], decisions=[1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1], rewards=[10, 17, 22, 9, 4, 0, 7, 8, 20, 9, 50, 5, 7, 12, 10], learning_policy=LearningPolicy.Softmax(tau=1), seed=123456, num_run=1, is_predict=True) self.assertEqual(arm, 2) layout_partial = [1, 2, 1, 2] revenue_partial = [0, 12, 7, 19] mab.partial_fit(decisions=layout_partial, rewards=revenue_partial) mab.add_arm(3) self.assertTrue(3 in mab.arms) self.assertTrue(3 in mab._imp.arm_to_expectation.keys()) def test_lints(self): train_df = pd.DataFrame({'ad': [1, 1, 1, 2, 4, 5, 3, 3, 2, 1, 4, 5, 3, 2, 5], 'revenues': [10, 17, 22, 9, 4, 20, 7, 8, 20, 9, 50, 5, 7, 12, 10], 'age': [22, 27, 39, 48, 21, 20, 19, 37, 52, 26, 18, 42, 55, 57, 38], 'click_rate': [0.2, 0.6, 0.99, 0.68, 0.15, 0.23, 0.75, 0.17, 0.33, 0.65, 0.56, 0.22, 0.19, 0.11, 0.83], 'subscriber': [1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0]} ) # Test data to for new prediction test_df = pd.DataFrame({'age': [37, 52], 'click_rate': [0.5, 0.6], 'subscriber': [0, 1]}) test_df_revenue = pd.Series([7, 13]) # Scale the data scaler = StandardScaler() train = scaler.fit_transform(np.asarray(train_df[['age', 'click_rate', 'subscriber']], dtype='float64')) test = scaler.transform(np.asarray(test_df, dtype='float64')) arms, mab = self.predict(arms=[1, 2, 3, 4, 5], decisions=train_df['ad'], rewards=train_df['revenues'], learning_policy=LearningPolicy.LinTS(alpha=1.5), context_history=train, contexts=test, seed=123456, num_run=1, is_predict=True) self.assertEqual(arms, [5, 2]) mab.partial_fit(decisions=arms, rewards=test_df_revenue, contexts=test) mab.add_arm(6) self.assertTrue(6 in mab.arms) self.assertTrue(6 in mab._imp.arm_to_expectation.keys()) def test_ts(self): dec_to_threshold = {1: 10, 2: 20} def binarize(dec, value): return value >= dec_to_threshold[dec] arm, mab = self.predict(arms=[1, 2], decisions=[1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1], rewards=[10, 17, 22, 9, 4, 0, 7, 8, 20, 9, 50, 5, 7, 12, 10], learning_policy=LearningPolicy.ThompsonSampling(binarizer=binarize), seed=123456, num_run=1, is_predict=True) self.assertEqual(arm, 1) layout_partial = [1, 2, 1, 2] revenue_partial = [0, 12, 7, 19] mab.partial_fit(decisions=layout_partial, rewards=revenue_partial) # Updating of the model with new arm def binary_func2(decision, reward): if decision == 3: return 1 if reward > 15 else 0 else: return 1 if reward > 10 else 0 mab.add_arm(3, binary_func2) self.assertTrue(3 in mab.arms) self.assertTrue(3 in mab._imp.arm_to_expectation.keys()) def test_ts_binary(self): arm, mab = self.predict(arms=[1, 2], decisions=[1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1], rewards=[1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1], learning_policy=LearningPolicy.ThompsonSampling(), seed=123456, num_run=1, is_predict=True) self.assertEqual(arm, 1) layout_partial = [1, 2, 1, 2] revenue_partial = [0, 1, 0, 1] mab.partial_fit(decisions=layout_partial, rewards=revenue_partial) mab.add_arm(3) self.assertTrue(3 in mab.arms) self.assertTrue(3 in mab._imp.arm_to_expectation.keys()) def test_ucb1(self): arm, mab = self.predict(arms=[1, 2], decisions=[1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1], rewards=[10, 17, 22, 9, 4, 0, 7, 8, 20, 9, 50, 5, 7, 12, 10], learning_policy=LearningPolicy.UCB1(alpha=1.25), seed=123456, num_run=1, is_predict=True) self.assertEqual(arm, 2) layout_partial = [1, 2, 1, 2] revenue_partial = [0, 12, 7, 19] mab.partial_fit(decisions=layout_partial, rewards=revenue_partial) mab.add_arm(3) self.assertTrue(3 in mab.arms) self.assertTrue(3 in mab._imp.arm_to_expectation.keys()) def test_ts_series(self): df = pd.DataFrame({'layouts': [1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1], 'revenues': [10, 17, 22, 9, 4, 0, 7, 8, 20, 9, 50, 5, 7, 12, 10]}) arm, mab = self.predict(arms=[1, 2], decisions=df['layouts'], rewards=df['revenues'], learning_policy=LearningPolicy.EpsilonGreedy(epsilon=0.15), seed=123456, num_run=1, is_predict=True) self.assertEqual(arm, 2) def test_ts_numpy(self): arm, mab = self.predict(arms=[1, 2], decisions=np.array([1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1]), rewards=np.array([10, 17, 22, 9, 4, 0, 7, 8, 20, 9, 50, 5, 7, 12, 10]), learning_policy=LearningPolicy.EpsilonGreedy(epsilon=0.15), seed=123456, num_run=1, is_predict=True) self.assertEqual(arm, 2) def test_approximate(self): train_df = pd.DataFrame({'ad': [1, 1, 1, 2, 4, 5, 3, 3, 2, 1, 4, 5, 3, 2, 5], 'revenues': [10, 17, 22, 9, 4, 20, 7, 8, 20, 9, 50, 5, 7, 12, 10], 'age': [22, 27, 39, 48, 21, 20, 19, 37, 52, 26, 18, 42, 55, 57, 38], 'click_rate': [0.2, 0.6, 0.99, 0.68, 0.15, 0.23, 0.75, 0.17, 0.33, 0.65, 0.56, 0.22, 0.19, 0.11, 0.83], 'subscriber': [1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0]} ) # Test data to for new prediction test_df = pd.DataFrame({'age': [37, 52], 'click_rate': [0.5, 0.6], 'subscriber': [0, 1]}) test_df_revenue = pd.Series([7, 13]) # Scale the data scaler = StandardScaler() train = scaler.fit_transform(np.asarray(train_df[['age', 'click_rate', 'subscriber']], dtype='float64')) test = scaler.transform(np.asarray(test_df, dtype='float64')) arms, mab = self.predict(arms=[1, 2, 3, 4, 5], decisions=train_df['ad'], rewards=train_df['revenues'], learning_policy=LearningPolicy.UCB1(alpha=1.25), neighborhood_policy=NeighborhoodPolicy.LSHNearest(n_tables=5, n_dimensions=5), context_history=train, contexts=test, seed=123456, num_run=1, is_predict=True) self.assertEqual(arms, [1, 4]) mab.partial_fit(decisions=arms, rewards=test_df_revenue, contexts=test) mab.add_arm(6) self.assertTrue(6 in mab.arms) self.assertTrue(6 in mab._imp.arm_to_expectation.keys()) def test_radius(self): train_df = pd.DataFrame({'ad': [1, 1, 1, 2, 4, 5, 3, 3, 2, 1, 4, 5, 3, 2, 5], 'revenues': [10, 17, 22, 9, 4, 20, 7, 8, 20, 9, 50, 5, 7, 12, 10], 'age': [22, 27, 39, 48, 21, 20, 19, 37, 52, 26, 18, 42, 55, 57, 38], 'click_rate': [0.2, 0.6, 0.99, 0.68, 0.15, 0.23, 0.75, 0.17, 0.33, 0.65, 0.56, 0.22, 0.19, 0.11, 0.83], 'subscriber': [1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0]} ) # Test data to for new prediction test_df = pd.DataFrame({'age': [37, 52], 'click_rate': [0.5, 0.6], 'subscriber': [0, 1]}) test_df_revenue = pd.Series([7, 13]) # Scale the data scaler = StandardScaler() train = scaler.fit_transform(np.asarray(train_df[['age', 'click_rate', 'subscriber']], dtype='float64')) test = scaler.transform(np.asarray(test_df, dtype='float64')) arms, mab = self.predict(arms=[1, 2, 3, 4, 5], decisions=train_df['ad'], rewards=train_df['revenues'], learning_policy=LearningPolicy.UCB1(alpha=1.25), neighborhood_policy=NeighborhoodPolicy.Radius(radius=5), context_history=train, contexts=test, seed=123456, num_run=1, is_predict=True) self.assertEqual(arms, [4, 4]) mab.partial_fit(decisions=arms, rewards=test_df_revenue, contexts=test) mab.add_arm(6) self.assertTrue(6 in mab.arms) self.assertTrue(6 in mab._imp.arm_to_expectation.keys()) def test_nearest(self): train_df = pd.DataFrame({'ad': [1, 1, 1, 2, 4, 5, 3, 3, 2, 1, 4, 5, 3, 2, 5], 'revenues': [10, 17, 22, 9, 4, 20, 7, 8, 20, 9, 50, 5, 7, 12, 10], 'age': [22, 27, 39, 48, 21, 20, 19, 37, 52, 26, 18, 42, 55, 57, 38], 'click_rate': [0.2, 0.6, 0.99, 0.68, 0.15, 0.23, 0.75, 0.17, 0.33, 0.65, 0.56, 0.22, 0.19, 0.11, 0.83], 'subscriber': [1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0]} ) # Test data to for new prediction test_df = pd.DataFrame({'age': [37, 52], 'click_rate': [0.5, 0.6], 'subscriber': [0, 1]}) test_df_revenue = pd.Series([7, 13]) # Scale the data scaler = StandardScaler() train = scaler.fit_transform(np.asarray(train_df[['age', 'click_rate', 'subscriber']], dtype='float64')) test = scaler.transform(np.asarray(test_df, dtype='float64')) arms, mab = self.predict(arms=[1, 2, 3, 4, 5], decisions=train_df['ad'], rewards=train_df['revenues'], learning_policy=LearningPolicy.UCB1(alpha=1.25), neighborhood_policy=NeighborhoodPolicy.KNearest(k=5), context_history=train, contexts=test, seed=123456, num_run=1, is_predict=True) self.assertEqual(arms, [5, 1]) mab.partial_fit(decisions=arms, rewards=test_df_revenue, contexts=test) mab.add_arm(6) self.assertTrue(6 in mab.arms) self.assertTrue(6 in mab._imp.arm_to_expectation.keys()) def test_linucb_radius(self): train_df = pd.DataFrame({'ad': [1, 1, 1, 2, 4, 5, 3, 3, 2, 1, 4, 5, 3, 2, 5], 'revenues': [10, 17, 22, 9, 4, 20, 7, 8, 20, 9, 50, 5, 7, 12, 10], 'age': [22, 27, 39, 48, 21, 20, 19, 37, 52, 26, 18, 42, 55, 57, 38], 'click_rate': [0.2, 0.6, 0.99, 0.68, 0.15, 0.23, 0.75, 0.17, 0.33, 0.65, 0.56, 0.22, 0.19, 0.11, 0.83], 'subscriber': [1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0]} ) # Test data to for new prediction test_df = pd.DataFrame({'age': [37, 52], 'click_rate': [0.5, 0.6], 'subscriber': [0, 1]}) # Scale the data scaler = StandardScaler() train = scaler.fit_transform(np.asarray(train_df[['age', 'click_rate', 'subscriber']], dtype='float64')) test = scaler.transform(np.asarray(test_df, dtype='float64')) arms, mab = self.predict(arms=[1, 2, 3, 4, 5], decisions=train_df['ad'], rewards=train_df['revenues'], learning_policy=LearningPolicy.LinUCB(alpha=1.25), neighborhood_policy=NeighborhoodPolicy.Radius(radius=1), context_history=train, contexts=test, seed=123456, num_run=1, is_predict=True) self.assertEqual(arms, [1, 2]) def test_linucb_knearest(self): train_df = pd.DataFrame({'ad': [1, 1, 1, 2, 4, 5, 3, 3, 2, 1, 4, 5, 3, 2, 5], 'revenues': [10, 17, 22, 9, 4, 20, 7, 8, 20, 9, 50, 5, 7, 12, 10], 'age': [22, 27, 39, 48, 21, 20, 19, 37, 52, 26, 18, 42, 55, 57, 38], 'click_rate': [0.2, 0.6, 0.99, 0.68, 0.15, 0.23, 0.75, 0.17, 0.33, 0.65, 0.56, 0.22, 0.19, 0.11, 0.83], 'subscriber': [1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0]} ) # Test data to for new prediction test_df = pd.DataFrame({'age': [37, 52], 'click_rate': [0.5, 0.6], 'subscriber': [0, 1]}) # Scale the data scaler = StandardScaler() train = scaler.fit_transform(np.asarray(train_df[['age', 'click_rate', 'subscriber']], dtype='float64')) test = scaler.transform(np.asarray(test_df, dtype='float64')) arms, mab = self.predict(arms=[1, 2, 3, 4, 5], decisions=train_df['ad'], rewards=train_df['revenues'], learning_policy=LearningPolicy.LinUCB(alpha=1.25), neighborhood_policy=NeighborhoodPolicy.KNearest(k=4), context_history=train, contexts=test, seed=123456, num_run=1, is_predict=True) self.assertEqual(arms, [1, 2]) def test_lints_radius(self): train_df = pd.DataFrame({'ad': [1, 1, 1, 2, 4, 5, 3, 3, 2, 1, 4, 5, 3, 2, 5], 'revenues': [10, 17, 22, 9, 4, 20, 7, 8, 20, 9, 50, 5, 7, 12, 10], 'age': [22, 27, 39, 48, 21, 20, 19, 37, 52, 26, 18, 42, 55, 57, 38], 'click_rate': [0.2, 0.6, 0.99, 0.68, 0.15, 0.23, 0.75, 0.17, 0.33, 0.65, 0.56, 0.22, 0.19, 0.11, 0.83], 'subscriber': [1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0]} ) # Test data to for new prediction test_df =
pd.DataFrame({'age': [37, 52], 'click_rate': [0.5, 0.6], 'subscriber': [0, 1]})
pandas.DataFrame
# coding: utf-8 # author: wamhanwan """Tushare API""" import tushare as ts import pandas as pd import numpy as np from time import sleep from FactorLib.utils.tool_funcs import get_members_of_date from functools import update_wrapper _token = '6135b90bf40bb5446ef2fe7aa20a9467ad10023eda97234739743f46' SHEXG = 'SSE' # 上交所代码 SZEXG = 'SZSE' # 深交所代码 ts.set_token(_token) pro_api = ts.pro_api() def set_call_limit(max_times=60, sleep_seconds=60): if isinstance(max_times, int): if max_times < 0: max_times = 1 else: raise TypeError("Expected max_times to be an integer") def decorating_function(user_function): wrapper = _time_limit_wrapper(user_function, max_times, sleep_seconds) return update_wrapper(wrapper, user_function) return decorating_function def _time_limit_wrapper(user_function, max_times, sleep_seconds): times = 0 def wrapper(*args, **kwargs): nonlocal times if times == max_times: print(f"sleep {sleep_seconds} sceonds") sleep(sleep_seconds) times = 0 times += 1 return user_function(*args, **kwargs) return wrapper class TushareDB(object): _instance = None def __new__(cls, *args, **kwargs): if cls._instance is None: cls._instance = object.__new__(cls) return cls._instance return cls._instance def __init__(self): self._api = ts self._pro_api = pro_api self._token = _token @classmethod def get_instance(cls): return TushareDB() def run_api(self, api_name, *args, **kwargs): return getattr(self._pro_api, api_name)(*args, **kwargs) def format_date(self, data, column=None): data[column] = pd.to_datetime(data[column], format='%Y%m%d') return data def stock_basic_get(self, list_status=None, exchange=None, is_hs=None, fields=None): """基础数据-股票列表(只能取最新数据) Parameters: ---------- list_status: str 上市状态 L上市 D退市 P暂停上市 exchange: str 交易所 SHEXG上交所 SZEXG深交所 is_hs: str 是否深港通标的 N否 H沪股通 S深股通 Fields: ------ symbol 股票代码(ticker) name 股票简称 industry 行业 list_status 上市状态 list_date 上市日期 delist_date 退市日期 is_hs 是否深港通标的 """ data1 = self.run_api('stock_basic', list_status='L', exchange=exchange, is_hs=is_hs, fields=fields) data2 = self.run_api('stock_basic', list_status='P', exchange=exchange, is_hs=is_hs, fields=fields) data3 = self.run_api('stock_basic', list_status='D', exchange=exchange, is_hs=is_hs, fields=fields) l = [data1,data2,data3] if list_status: status_index =[['L', 'P', 'D'].index(x) for x in ','.split(list_status)] return pd.concat([l[i] for i in status_index]).sort_values('symbol') return pd.concat(l).sort_values('symbol') def stock_st_get(self, date): """A股戴帽摘帽 Paramters: --------- date: str 日期 YYYYMMDD Returns: ------ DataFrame: IDs name start_date end_date """ data = self.run_api('namechange', end_date=date) data = data[data['name'].str.contains('ST')] data = data.fillna({'end_date': '21001231'}) data = data[(data['start_date']<=date)&(data['end_date']>=date)] data = data[~data['ts_code'].duplicated(keep='last')] data['IDs'] = data['ts_code'].str[:6] return data def stock_onlist_get(self, date): """A股特定日期的股票列表 Return ------ DataFrame: symbol name list_date delist_date """ all_stocks = self.stock_basic_get( fields='symbol,name,list_date,delist_date' ).fillna({'delist_date':'21001231'}) indices = (all_stocks['list_date']<=date)&(all_stocks['delist_date']>date) return all_stocks[indices] def index_weight_get(self, index_code, date): """A股指数成分股权重 Parameters: ----------- index_code: str 指数代码 399300.SZ沪深300 000905.SH中证500 000906.SH中证800 date: str 日期 YYYYMMDD Returns: -------- DataFrame index_code con_code trade_date weight """ start_date = (pd.to_datetime(date)-
pd.Timedelta(days=30)
pandas.Timedelta
# -*- coding: utf-8 -*- """ Created on Sat Jun 19 20:34:46 2021 @author: tapan """ from pydoc import doc import sys import nltk, re import pandas as pd from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from pdf_text_extractor import convert_pdf_to_text # type: ignore class Parse(): inputDF = pd.DataFrame() def __init__(self,verbose=False): print(" Starting Program ") self.tokenizedDF = self.tokenize(self.readResumeFiles()) for index, text, tokens in self.tokenizedDF.itertuples(): print("Started processing document %s" %index) #handle name extraction -- name = self.extract_name(text) #handle email extraction-- email = self.extract_email(text) #handle phone number extraction-- phone = self.extract_phone(text) #handle experience extraction -- experience = self.extract_experience(text) #handle skills extraction-- skills = self.extract_skills(text) #handle qualification extraction-- qualification = self.extract_qualification(text) extractedInfo = self.getInfo("fileName " + str(index), name, email, phone, experience, skills, qualification) # TODO -> move this to util print(extractedInfo) #TODO -> remove this print #TODO -> Dump all jsonRespnses to csv or excel sheet def readResumeFiles(self): try: return convert_pdf_to_text() except: return '' pass def preprocess(self, document): df =
pd.DataFrame()
pandas.DataFrame
""" Functions for writing to .csv September 2020 Written by <NAME> """ import os import pandas as pd import datetime def define_deciles(regions): """ Allocate deciles to regions. """ regions = regions.sort_values(by='population_km2', ascending=True) regions['decile'] = regions.groupby([ 'GID_0', 'scenario', 'strategy', 'confidence' ], as_index=True).population_km2.apply( #cost_per_sp_user pd.qcut, q=11, precision=0, labels=[100,90,80,70,60,50,40,30,20,10,0], duplicates='drop') # [0,10,20,30,40,50,60,70,80,90,100] return regions def write_mno_demand(regional_annual_demand, folder, metric, path): """ Write all annual demand results for a single hypothetical Mobile Network Operator (MNO). """ print('Writing annual_demand') regional_annual_demand = pd.DataFrame(regional_annual_demand) regional_annual_demand = regional_annual_demand[[ 'GID_0', 'GID_id', 'scenario', 'strategy', 'confidence', 'year', 'population', 'area_km2', 'population_km2', 'geotype', 'arpu_discounted_monthly', 'penetration', 'population_with_phones', 'phones_on_network', 'smartphone_penetration', 'population_with_smartphones', 'smartphones_on_network', 'revenue' ]] regional_annual_demand.to_csv(path, index=False) def write_results(regional_results, folder, metric): """ Write all results. """ print('Writing national MNO results') national_results = pd.DataFrame(regional_results) national_results = national_results[[ 'GID_0', 'scenario', 'strategy', 'confidence', 'population', 'area_km2', 'phones_on_network', 'smartphones_on_network', 'total_estimated_sites', 'existing_mno_sites', 'upgraded_mno_sites', 'new_mno_sites', 'mno_network_capex', 'mno_network_opex','mno_network_cost', 'total_mno_revenue', 'total_mno_cost', ]] national_results = national_results.drop_duplicates() national_results = national_results.groupby([ 'GID_0', 'scenario', 'strategy', 'confidence'], as_index=True).sum() national_results['cost_per_network_user'] = ( national_results['total_mno_cost'] / national_results['phones_on_network']) national_results['cost_per_smartphone_user'] = ( national_results['total_mno_cost'] / national_results['smartphones_on_network']) path = os.path.join(folder,'national_mno_results_{}.csv'.format(metric)) national_results.to_csv(path, index=True) print('Writing national cost composition results') national_cost_results = pd.DataFrame(regional_results) national_cost_results = national_cost_results[[ 'GID_0', 'scenario', 'strategy', 'confidence', 'population', 'phones_on_network', 'smartphones_on_network', 'total_mno_revenue', 'ran_capex', 'ran_opex', 'backhaul_capex', 'backhaul_opex', 'civils_capex', 'core_capex', 'core_opex', 'administration', 'spectrum_cost', 'tax', 'profit_margin', 'mno_network_capex', 'mno_network_opex', 'mno_network_cost', 'available_cross_subsidy', 'deficit', 'used_cross_subsidy', 'required_state_subsidy', 'total_mno_cost' ]] national_cost_results = national_cost_results.drop_duplicates() national_cost_results = national_cost_results.groupby([ 'GID_0', 'scenario', 'strategy', 'confidence'], as_index=True).sum() national_cost_results['cost_per_network_user'] = ( national_cost_results['total_mno_cost'] / national_cost_results['phones_on_network']) national_cost_results['cost_per_smartphone_user'] = ( national_cost_results['total_mno_cost'] / national_cost_results['smartphones_on_network']) #Calculate private, govt and financial costs national_cost_results['private_cost'] = national_cost_results['total_mno_cost'] national_cost_results['government_cost'] = ( national_cost_results['required_state_subsidy'] - (national_cost_results['spectrum_cost'] + national_cost_results['tax'])) national_cost_results['financial_cost'] = ( national_cost_results['private_cost'] + national_cost_results['government_cost']) # national_cost_results['required_efficiency_saving'] = ( # national_cost_results['government_cost'] / # national_cost_results['private_cost'] * 100) path = os.path.join(folder,'national_mno_cost_results_{}.csv'.format(metric)) national_cost_results.to_csv(path, index=True) print('Writing general decile results') decile_results = pd.DataFrame(regional_results) decile_results = define_deciles(decile_results) decile_results = decile_results[[ 'GID_0', 'scenario', 'strategy', 'decile', 'confidence', 'population', 'area_km2', 'phones_on_network', 'smartphones_on_network', 'total_estimated_sites', 'existing_mno_sites', 'upgraded_mno_sites', 'new_mno_sites', 'total_mno_revenue', 'mno_network_capex', 'mno_network_opex', 'mno_network_cost', 'total_mno_cost', ]] decile_results = decile_results.drop_duplicates() decile_results = decile_results.groupby([ 'GID_0', 'scenario', 'strategy', 'confidence', 'decile'], as_index=True).sum() decile_results['population_km2'] = ( decile_results['population'] / decile_results['area_km2']) decile_results['phone_density_on_network_km2'] = ( decile_results['phones_on_network'] / decile_results['area_km2']) decile_results['sp_density_on_network_km2'] = ( decile_results['smartphones_on_network'] / decile_results['area_km2']) decile_results['total_estimated_sites_km2'] = ( decile_results['total_estimated_sites'] / decile_results['area_km2']) decile_results['existing_mno_sites_km2'] = ( decile_results['existing_mno_sites'] / decile_results['area_km2']) decile_results['cost_per_network_user'] = ( decile_results['total_mno_cost'] / decile_results['phones_on_network']) decile_results['cost_per_smartphone_user'] = ( decile_results['total_mno_cost'] / decile_results['smartphones_on_network']) path = os.path.join(folder,'decile_mno_results_{}.csv'.format(metric)) decile_results.to_csv(path, index=True) print('Writing cost decile results') decile_cost_results = pd.DataFrame(regional_results) decile_cost_results = define_deciles(decile_cost_results) decile_cost_results = decile_cost_results[[ 'GID_0', 'scenario', 'strategy', 'decile', 'confidence', 'population', 'area_km2', 'phones_on_network', 'smartphones_on_network', 'total_mno_revenue', 'ran_capex', 'ran_opex', 'backhaul_capex', 'backhaul_opex', 'civils_capex', 'core_capex', 'core_opex', 'administration', 'spectrum_cost', 'tax', 'profit_margin', 'mno_network_capex', 'mno_network_opex', 'mno_network_cost', 'total_mno_cost', 'available_cross_subsidy', 'deficit', 'used_cross_subsidy', 'required_state_subsidy', ]] decile_cost_results = decile_cost_results.drop_duplicates() decile_cost_results = decile_cost_results.groupby([ 'GID_0', 'scenario', 'strategy', 'confidence', 'decile'], as_index=True).sum() decile_cost_results['cost_per_network_user'] = ( decile_cost_results['total_mno_cost'] / decile_cost_results['phones_on_network']) decile_cost_results['cost_per_smartphone_user'] = ( decile_cost_results['total_mno_cost'] / decile_cost_results['smartphones_on_network']) decile_cost_results['private_cost'] = decile_cost_results['total_mno_cost'] decile_cost_results['government_cost'] = ( decile_cost_results['required_state_subsidy'] - (decile_cost_results['spectrum_cost'] + decile_cost_results['tax'])) decile_cost_results['financial_cost'] = ( decile_cost_results['private_cost'] + decile_cost_results['government_cost']) path = os.path.join(folder,'decile_mno_cost_results_{}.csv'.format(metric)) decile_cost_results.to_csv(path, index=True) print('Writing regional results') regional_mno_results =
pd.DataFrame(regional_results)
pandas.DataFrame
# -*- coding: utf-8 -*- """ This file is part of the Shotgun Lipidomics Assistant (SLA) project. Copyright 2020 <NAME> (UCLA), <NAME> (UCLA), <NAME> (UW). Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import pandas as pd # from pyopenms import * import os # import tkinter as tk # from tkinter import ttk from tkinter import messagebox # from tkinter.messagebox import showinfo from tkinter import * # import matplotlib.pyplot as plt # import matplotlib # matplotlib.use("Agg") from tkinter import filedialog # import glob import re # import statistics import datetime # from matplotlib.pyplot import cm # import seaborn as sns def imp_map(maploc): # map1 = filedialog.askopenfilename(filetypes=(("excel Files", "*.xlsx"),("all files", "*.*"))) maploc.configure(state="normal") maploc.delete(1.0, END) map1 = filedialog.askopenfilename(filetypes=(("excel Files", "*.xlsx"), ("all files", "*.*"))) maploc.insert(INSERT, map1) maploc.configure(state="disabled") def imp_method1(method1loc): # file1 = filedialog.askopenfilename(filetypes=(("excel Files", "*.xlsx"),("all files", "*.*"))) method1loc.configure(state="normal") method1loc.delete(1.0, END) file1 = filedialog.askopenfilename(filetypes=(("excel Files", "*.xlsx"), ("all files", "*.*"))) method1loc.insert(INSERT, file1) method1loc.configure(state="disabled") def imp_method2(method2loc): # file2 = filedialog.askopenfilename(filetypes=(("excel Files", "*.xlsx"),("all files", "*.*"))) method2loc.configure(state="normal") method2loc.delete(1.0, END) file2 = filedialog.askopenfilename(filetypes=(("excel Files", "*.xlsx"), ("all files", "*.*"))) method2loc.insert(INSERT, file2) method2loc.configure(state="disabled") def set_dir(dirloc_aggregate): # setdir = filedialog.askdirectory() dirloc_aggregate.configure(state="normal") dirloc_aggregate.delete(1.0, END) setdir = filedialog.askdirectory() dirloc_aggregate.insert(INSERT, setdir) dirloc_aggregate.configure(state="disabled") def MergeApp(dirloc_aggregate, proname, method1loc, method2loc, maploc, CheckClustVis): start = datetime.datetime.now() os.chdir(dirloc_aggregate.get('1.0', 'end-1c')) project = proname.get() file1 = method1loc.get('1.0', 'end-1c') file2 = method2loc.get('1.0', 'end-1c') map1 = maploc.get('1.0', 'end-1c') # Fix sample index(name) type for proper merge def qcname(indname): # if 'QC_SPIKE' in str(indname): # return('QC_SPIKE') # elif 'QC' in str(indname): # return('QC') # elif 'b' in str(indname) or 'm' in str(indname): if re.search('[a-zA-Z]', str(indname)): return (str(indname)) else: return (int(indname)) # Import DataFrames from file1 spequant1 = pd.read_excel(file1, sheet_name='Lipid Species Concentrations', header=0, index_col=0, na_values='.') specomp1 = pd.read_excel(file1, sheet_name='Lipid Species Composition', header=0, index_col=0, na_values='.') claquant1 = pd.read_excel(file1, sheet_name='Lipid Class Concentration', header=0, index_col=0, na_values='.') faquant1 = pd.read_excel(file1, sheet_name='Fatty Acid Concentration', header=0, index_col=0, na_values='.') facomp1 = pd.read_excel(file1, sheet_name='Fatty Acid Composition', header=0, index_col=0, na_values='.') spequant1.index = list(map(qcname, list(spequant1.index))) specomp1.index = list(map(qcname, list(specomp1.index))) claquant1.index = list(map(qcname, list(claquant1.index))) faquant1.index = list(map(qcname, list(faquant1.index))) facomp1.index = list(map(qcname, list(facomp1.index))) # Import DataFrames from file2 if file2 != '': spequant2 = pd.read_excel(file2, sheet_name='Lipid Species Concentrations', header=0, index_col=0, na_values='.') specomp2 = pd.read_excel(file2, sheet_name='Lipid Species Composition', header=0, index_col=0, na_values='.') claquant2 = pd.read_excel(file2, sheet_name='Lipid Class Concentration', header=0, index_col=0, na_values='.') faquant2 = pd.read_excel(file2, sheet_name='Fatty Acid Concentration', header=0, index_col=0, na_values='.') facomp2 = pd.read_excel(file2, sheet_name='Fatty Acid Composition', header=0, index_col=0, na_values='.') spequant2.index = list(map(qcname, list(spequant2.index))) specomp2.index = list(map(qcname, list(specomp2.index))) claquant2.index = list(map(qcname, list(claquant2.index))) faquant2.index = list(map(qcname, list(faquant2.index))) facomp2.index = list(map(qcname, list(facomp2.index))) else: spequant2 = pd.DataFrame() specomp2 = pd.DataFrame() claquant2 = pd.DataFrame() faquant2 = pd.DataFrame() facomp2 = pd.DataFrame() # Merge DataFrames spequant = pd.concat([spequant1, spequant2], axis=1, sort=False) specomp = pd.concat([specomp1, specomp2], axis=1, sort=False) claquant = pd.concat([claquant1, claquant2], axis=1, sort=False) faquant = pd.concat([faquant1, faquant2], axis=1, sort=False) facomp = pd.concat([facomp1, facomp2], axis=1, sort=False) # Sort Columns in Merged DataFrames spequant = spequant.reindex(sorted(spequant.columns), axis=1) specomp = specomp.reindex(sorted(specomp.columns), axis=1) claquant = claquant.reindex(sorted(claquant.columns), axis=1) clacomp = claquant.apply(lambda x: 100 * x / x.sum(), axis=1) # get class composit faquant = faquant.reindex(sorted(faquant.columns), axis=1) facomp = facomp.reindex(sorted(facomp.columns), axis=1) # Write Master data sheet # master = pd.ExcelWriter(project+'_master.xlsx') # spequant.to_excel(master, 'Species Quant') # specomp.to_excel(master, 'Species Composit') # claquant.to_excel(master, 'Class Quant') # clacomp.to_excel(master, 'Class Composit') # faquant.to_excel(master, 'FattyAcid Quant') # facomp.to_excel(master, 'FattyAcid Composit') # master.save() # print('master sheet saved') # Import Map sampinfo = pd.read_excel(map1, sheet_name=0, header=1, index_col=0, na_values='.') # Exp name dict expname = dict(zip(sampinfo.ExpNum, sampinfo.ExpName)) sampinfo = sampinfo.drop(['ExpName'], axis=1) sampinfo.index = list(map(qcname, list(sampinfo.index))) sampinfo['SampleNorm'] = sampinfo['SampleNorm'].astype('float64') # Create Normalized Sheets # spenorm = spequant[list(map(lambda x: isinstance(x, int), spequant.index))].copy() # #exclude sample with string name # clanorm = claquant[list(map(lambda x: isinstance(x, int), claquant.index))].copy() # fanorm = faquant[list(map(lambda x: isinstance(x, int), faquant.index))].copy() spenorm = spequant.copy() # inlude all samples clanorm = claquant.copy() fanorm = faquant.copy() spenorm = spenorm.divide( 40) # x0.025 to reverse /0.025 in the standard coef. /0.025 is there to simulate LWM result clanorm = clanorm.divide(40) fanorm = fanorm.divide(40) spenorm = spenorm.divide(sampinfo['SampleNorm'], axis='index') clanorm = clanorm.divide(sampinfo['SampleNorm'], axis='index') fanorm = fanorm.divide(sampinfo['SampleNorm'], axis='index') # Fix GroupName. If GroupName and GroupNum doesn't match, change GroupName to match GroupNum for i in sampinfo['ExpNum'].unique().astype(int): for ii in sampinfo.loc[sampinfo['ExpNum'] == i, 'GroupNum'].unique().astype(int): gNamlogic = np.logical_and(sampinfo['GroupNum'] == ii, sampinfo['ExpNum'] == i) sampinfo.loc[gNamlogic, "GroupName"] = sampinfo['GroupName'][gNamlogic].reset_index(drop=True)[0] # for i in range(1, int(max(sampinfo['ExpNum'])) + 1): # for ii in range(1, int(max(sampinfo.loc[sampinfo['ExpNum'] == i, 'GroupNum'])) + 1): # gNamlogic = np.logical_and(sampinfo['GroupNum'] == ii, sampinfo['ExpNum'] == i) # sampinfo.loc[gNamlogic, "GroupName"] = sampinfo['GroupName'][gNamlogic].reset_index(drop=True)[0] # Merge Map, using index (Sample column in map and sample name in raw data) spequantin = pd.concat([sampinfo, spequant], axis=1, sort=False, join='inner') specompin = pd.concat([sampinfo, specomp], axis=1, sort=False, join='inner') claquantin = pd.concat([sampinfo, claquant], axis=1, sort=False, join='inner') clacompin = pd.concat([sampinfo, clacomp], axis=1, sort=False, join='inner') faquantin = pd.concat([sampinfo, faquant], axis=1, sort=False, join='inner') facompin = pd.concat([sampinfo, facomp], axis=1, sort=False, join='inner') spenormin = pd.concat([sampinfo, spenorm], axis=1, sort=False, join='inner') clanormin =
pd.concat([sampinfo, clanorm], axis=1, sort=False, join='inner')
pandas.concat
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from copy import deepcopy from glob import glob import sys, os from copy import deepcopy from scipy.stats import pearsonr,spearmanr import warnings warnings.filterwarnings("ignore") blue, orange, green, red, purple, brown, _, _, _, _=sns.color_palette() palette = [brown, blue, red, green,orange, purple, [0,0,0]] def get_packages(): tmp = pd.read_csv(os.environ['ETERNABENCH_PATH']+'/eternabench/package_metadata.csv') tmp = tmp.set_index('package') return tmp def get_external_Dataset_data(): return pd.read_csv(os.environ['ETERNABENCH_PATH']+'/eternabench/external_dataset_metadata.csv') def get_palette(): return palette, ['Other','ViennaRNA','NUPACK','RNAstructure','CONTRAfold','RNAsoft', 'EternaFold'] def label_subplot(letter,fontsize=16): plt.annotate(letter, xy=(-.25, 1.), xycoords='axes fraction', horizontalalignment='left', verticalalignment='top', fontsize=fontsize) def reactivity_heatmap(df, ind_range=None, **kwargs): '''Plot heatplot image of reactivities. Input: full_df style dataframe.''' if ind_range is None: start,finish = 0,-1 else: start, finish=ind_range max_len = np.max([len(x) for x in df['reactivity'][start:finish]]) arr= [] for x in df['reactivity'][start:finish]: arr.append(np.concatenate([x,np.zeros(max_len-len(x))])) plt.imshow(np.array(arr), cmap='gist_heat_r',vmin=0,vmax=1.5, **kwargs) plt.ylabel('Construct') plt.xlabel('Sequence position') def punpaired_heatmap(df, ind_range=None, package='vienna_2', **kwargs): '''Plot heatplot image of predicted p(unp) values. Input: full_df style dataframe.''' if ind_range is None: start,finish = 0,-1 else: start, finish=ind_range max_len = np.max([len(x) for x in df['reactivity'][start:finish]]) arr= [] for x in df['p_%s'% package][start:finish]: arr.append(np.concatenate([x,np.zeros(max_len-len(x))])) plt.imshow(np.array(arr), cmap='gist_heat_r',vmin=0,vmax=1, **kwargs) plt.xlabel('Construct') plt.ylabel('Sequence position') def create_array(df_o, col1, col2, value, col1_subset=None, col2_subset=None): '''Create array of `value` from dataframe. First index is col1, subset, second index is col2 ''' if col1_subset is None: col1_subset = list(df_o[col1].unique()) if col2_subset is None: col2_subset = list(df_o[col2].unique()) arr = np.nan*np.ones([len(col1_subset),len(col2_subset)]) for i, col1_val in enumerate(col1_subset): for j, col2_val in enumerate(col2_subset): tmp = df_o.loc[df_o[col1]==col1_val][df_o[col2] == col2_val] if len(tmp)>0: assert len(tmp)==1 arr[i,j] = tmp[value].values[0] return arr, col1_subset, col2_subset def single_barplot(df, cat, val, err, titles, **kwargs): u = df[cat].unique() x = np.arange(len(u)) offsets = (np.arange(len(u))-np.arange(len(u)).mean())/(len(u)+1.) plt.barh(x,df[val].values, xerr=df[err].values, **kwargs) plt.ylim([-0.5,len(x)-0.5]) def ranked_heatmap(zscores, metric='pearson_zscore_by_Dataset_mean', package_order=None, dataset_field='Dataset', dataset_order=None, figsize=None, width_ratios=None, cbar_loc=[-0.1,0.05], fig=None, axes=None, vmin=None,vmax=None, ext=False,dataset_labels=None): '''Plot heatmap of packages ranked over datasets, with best at top.''' if package_order is not None: zsc_copy=pd.DataFrame() for pkg in package_order: zsc_copy= zsc_copy.append(zscores.loc[zscores.package==pkg],ignore_index=True) zscores = deepcopy(zsc_copy) if dataset_order is not None: zsc_copy=pd.DataFrame() for ds in dataset_order: zsc_copy= zsc_copy.append(zscores.loc[zscores[dataset_field]==ds],ignore_index=True) zscores = deepcopy(zsc_copy) if figsize is None or width_ratios is None: n=len(zscores[dataset_field].unique()) k = len(zscores.package.unique()) figsize=(.3*n+2,.3*k-1) width_ratios = [.3*n, 2] tmp, package_list, dataset_list = create_array(zscores, 'package', dataset_field, metric) if axes is None: gridkw = dict(width_ratios=width_ratios) fig, (ax1, ax2) = plt.subplots(1,2, gridspec_kw=gridkw, figsize=figsize) else: ax1, ax2 = axes package_data = get_packages() palette, hue_order = get_palette() package_titles=[] for pkg in package_list: try: title = package_data.loc[pkg]['title'] package_titles.append(title) except: package_titles.append(pkg) color_range = np.max(np.abs(tmp)) if vmin is None: vmin=-1*color_range if vmax is None: vmax = color_range im = ax1.imshow(tmp, cmap='seismic_r', vmin = vmin, vmax=vmax,origin='upper') ax1.set_yticks(range(len(package_titles))) ax1.set_yticklabels(package_titles) ax1.set_xticks(range(len(dataset_list))) if ext: ext_data = get_external_Dataset_data() ax1.set_xticklabels([ext_data.loc[ext_data['Dataset']==k].Title.values[0] for k in dataset_list],rotation=45,horizontalalignment='right') else: if dataset_labels is not None: ax1.set_xticklabels(dataset_labels, rotation=45, horizontalalignment='right') else: ax1.set_xticklabels(dataset_list,rotation=45,horizontalalignment='right') cbaxes = fig.add_axes([*cbar_loc, 0.15, 0.03]) fig.colorbar(im, cax = cbaxes,orientation='horizontal', label='Z-score') #ranking = ranking.merge(package_data, on='package') zscores = zscores.merge(package_data, on='package') #ranking['category'] = [hue_order[i] for i in ranking['category']] zscores['category'] = [hue_order[i] for i in zscores['category']] sns.barplot(y='title', x=metric, hue='category', dodge=False, data=zscores, ax=ax2, palette=palette, hue_order=hue_order, linewidth=0) ax2.yaxis.set_ticks_position('right') ax2.set_ylabel('') ax2.axvline(0,color='k',linewidth=0.5,linestyle=':') ax2.set_xlabel('Avg. Z-score') ax2.set_xlim([vmin,vmax]) ax2.legend([],[], frameon=False) def ranked_heatmap_w_bar_overhead(zscores, metric='pearson_zscore_by_Dataset_mean', package_order=None, dataset_field='Dataset', figsize=(7,5), width_ratios=[2,1], cbar_loc=[-0.1,0.05], vmin=None,vmax=None, ext=False,barplot_ymax=0.75, barplot_ylabel='Mean Corr.',RMSE=False, rainbow=False): '''Plot heatmap of packages ranked over datasets, with best at top.''' if RMSE: package_order = list(reversed(package_order)) zscores[metric] *= -1 #ranking[metric] *= -1 if package_order is not None: zsc_copy=
pd.DataFrame()
pandas.DataFrame
import time import sqlite3 import pandas as pd import numpy as np import scipy as sp from scipy import stats import matplotlib.mlab as mlab import matplotlib.pyplot as plt ''' from sklearn.datasets import make_classification from sklearn.linear_model import LogisticRegression from sklearn.ensemble import (RandomTreesEmbedding, RandomForestClassifier, GradientBoostingClassifier) from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import roc_curve from sklearn.pipeline import make_pipeline ''' traindataframes = [] testDataFrame = [] max = 20 #def predict_next_day(): #return 0 def denormalize_features(features): frames = [] for i,r in enumerate(traindataframes): denormalized_features = [] price_col = r['Current_price'] price_col = price_col[0:max] change_col = r['Today_price'] change_col = change_col[0:max] #parse data and remove + sign for j in change_col: if '+' in j: t = j.replace('+','') change_col = change_col.replace(str(j),t) for j in change_col: change_col = change_col.replace(str(j),float(j)) for j,element in enumerate(price_col): initial_price = element - change_col[j] #closing_price = element #normalized = ((closing_price/initial_price)-1) closing_price = (features[i][j] + 1) * initial_price denormalized_features.append(closing_price) frames.append(denormalized_features) features =
pd.DataFrame(frames)
pandas.DataFrame
import pandas as pd import re import sys from pymicruler.utils import util from pymicruler.bp.BlockProcessor import BlockProcessor as BP from pymicruler.bp.BlockInterpreter import BlockInterpreter as BI from pymicruler.bp.NoteAnalysis import NoteAnalysis as NA from pymicruler.bp.TaxonomyHandler import TaxonomyHandler as TH from pymicruler.bp.ResourceCompiler import ResourceCompiler as RC class EucastParser: def __init__(self): self.ires = pd.read_csv(util.Path.IRES.value) self.note_analyser = NA() self.b_i = BI() self.r_c = RC() self.all_sheets = pd.DataFrame() self.table = pd.DataFrame() self.guidelines = pd.DataFrame() def run_eucast_parser(self, bp_path): """ Starts the parsing workflow for a given Eucast breakpoint table. :param bp_path: Path to Eucast breakpoint table. :type: String :return: Parsed breakpoints :rtype: Pandas DataFrame """ self.all_sheets = pd.DataFrame() raw_table = pd.read_excel( bp_path, sheet_name=None, na_values=[''], keep_default_na=False) relevant_sheets = self._filter_sheets(raw_table) for title, sheet in relevant_sheets.items(): organism = list(sheet)[0] note_col = self._column_check(sheet) reduced_sheet = self._column_removal(sheet, note_col) breakpoints = self._process_sheet(reduced_sheet, organism) self.all_sheets =
pd.concat((self.all_sheets, breakpoints))
pandas.concat
#!/usr/bin/env python from bs4 import BeautifulSoup import glob import pandas as pd import re import sys from parsers import parse_totals, parse_tests from util import normalize_int def is_testing_table(table): headers = [th.text for th in table.findAll("th")] return "Tests" in headers # Use the historical HTML files to generate a CSV. # Some pages cannot be handled by the parser so they are filled in manually. def generate_csv(): print("Date,Country,DailyTestsPerformed,TotalTestsPerformed,DailyPeopleTested,TotalPeopleTested") for file in sorted(glob.glob("data/raw/coronavirus-covid-19-number-of-cases-in-uk-*.html")): m = re.match(r".+(\d{4}-\d{2}-\d{2})\.html", file) date = m.group(1) with open(file) as f: html = f.read() if date <= "2020-03-22": # older pages cannot be parsed with current parser continue if date <= "2020-04-07": result = parse_totals("UK", html) print("{},UK,,,,{}".format(date, result["Tests"])) continue result = parse_tests("UK", html) output_row = [date, "UK", result["DailyTestsPerformed"], result["TotalTestsPerformed"], result["DailyPeopleTested"], result["TotalPeopleTested"]] print(",".join([str(val) for val in output_row])) def load_owid(): use_local = False if use_local: file = "data/raw/owid/covid-testing-all-observations.csv" else: file = "https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/testing/covid-testing-all-observations.csv" df = pd.read_csv(file) df = df[(df["Entity"] == "United Kingdom - people tested") | (df["Entity"] == "United Kingdom - tests performed")] df = df[["Date", "Entity", "Cumulative total", "Daily change in cumulative total"]] df.rename(columns={"Cumulative total": "Total", "Daily change in cumulative total": "Daily"}, inplace=True) df = df.replace({"Entity": { "United Kingdom - people tested": "PeopleTested", "United Kingdom - tests performed": "TestsPerformed" }}) df = df.melt(id_vars=["Date", "Entity"], value_vars=["Total", "Daily"]) df["VarEntity"] = df["variable"] + df["Entity"] df = df.pivot(index="Date", columns="VarEntity", values="value") return df def compare(): local = pd.read_csv("data/covid-19-tests-uk.csv") owid = load_owid() compare_tests = pd.merge(local, owid, how="inner", on="Date", right_index=False, left_index=False, suffixes=("", "_owid")) compare_tests.drop(columns=["Country"], inplace=True) compare_people = compare_tests[["Date", "DailyPeopleTested", "TotalPeopleTested", "DailyPeopleTested_owid", "TotalPeopleTested_owid"]] compare_people["DailyPeopleTestedSame"] = compare_people["DailyPeopleTested"] == compare_people["DailyPeopleTested_owid"] compare_people["TotalPeopleTestedSame"] = compare_people["TotalPeopleTested"] == compare_people["TotalPeopleTested_owid"] print(compare_people) compare_tests = compare_tests[["Date", "DailyTestsPerformed", "TotalTestsPerformed", "DailyTestsPerformed_owid", "TotalTestsPerformed_owid"]] compare_tests["DailyTestsPerformedSame"] = compare_tests["DailyTestsPerformed"] == compare_tests["DailyTestsPerformed_owid"] compare_tests["TotalTestsPerformedSame"] = compare_tests["TotalTestsPerformed"] == compare_tests["TotalTestsPerformed_owid"] print(compare_tests) if __name__ == "__main__":
pd.set_option('display.max_rows', None)
pandas.set_option
""" In [8]: y.value_counts(normalize=True) Out[8]: 90 0.294725 42 0.152013 65 0.125000 16 0.117737 15 0.063073 62 0.061672 88 0.047146 92 0.030454 67 0.026504 52 0.023318 95 0.022299 6 0.019241 64 0.012997 53 0.003823 Name: target, dtype: float64 for f in sorted(glob('*.py')): # print(f'nohup python -u {f} 0 > LOG/log_{f}.txt &') print(f'python -u {f} 0 > LOG/log_{f}.txt') """ import warnings warnings.filterwarnings("ignore") import pandas as pd import numpy as np from glob import glob import os from socket import gethostname HOSTNAME = gethostname() from tqdm import tqdm #from itertools import combinations from sklearn.model_selection import KFold from time import time, sleep from datetime import datetime from multiprocessing import cpu_count, Pool import gc # ============================================================================= # global variables # ============================================================================= COMPETITION_NAME = 'PLAsTiCC-2018' SPLIT_SIZE = 100 TEST_LOGS = sorted(glob('../data/test_log*.pkl')) AUG_LOGS = sorted(glob('../data/train_log_aug*.pkl')) GENERATE_FEATURE_SIZE = 500 GENERATE_TEST = True GENERATE_AUG = False IMP_FILE = 'LOG/imp_801_cv.py-2.csv' IMP_FILE_BEST = 'LOG/imp_used_934_predict_1120-1.py.csv' classes_gal = [6, 16, 53, 65, 92] classes_exgal = [15, 42, 52, 62, 64, 67, 88, 90, 95] # ============================================================================= # def # ============================================================================= def start(fname): global st_time st_time = time() print(""" #============================================================================== # START!!! {} PID: {} time: {} #============================================================================== """.format( fname, os.getpid(), datetime.today() )) send_line(f'{HOSTNAME} START {fname} time: {elapsed_minute():.2f}min') return def reset_time(): global st_time st_time = time() return def end(fname): print(""" #============================================================================== # SUCCESS !!! {} #============================================================================== """.format(fname)) print('time: {:.2f}min'.format( elapsed_minute() )) send_line(f'{HOSTNAME} FINISH {fname} time: {elapsed_minute():.2f}min') return def elapsed_minute(): return (time() - st_time)/60 def mkdir_p(path): try: os.stat(path) except: os.mkdir(path) def to_feature(df, path): if df.columns.duplicated().sum()>0: raise Exception(f'duplicated!: { df.columns[df.columns.duplicated()] }') df.reset_index(inplace=True, drop=True) df.columns = [c.replace('/', '-').replace(' ', '-') for c in df.columns] for c in df.columns: df[[c]].to_feather(f'{path}_{c}.f') return def to_pickles(df, path, split_size=3, inplace=True): """ path = '../output/mydf' wirte '../output/mydf/0.p' '../output/mydf/1.p' '../output/mydf/2.p' """ print(f'shape: {df.shape}') if inplace==True: df.reset_index(drop=True, inplace=True) else: df = df.reset_index(drop=True) gc.collect() mkdir_p(path) kf = KFold(n_splits=split_size) for i, (train_index, val_index) in enumerate(tqdm(kf.split(df))): df.iloc[val_index].to_pickle(f'{path}/{i:03d}.p') return def read_pickles(path, col=None, use_tqdm=True): if col is None: if use_tqdm: df = pd.concat([ pd.read_pickle(f) for f in tqdm(sorted(glob(path+'/*'))) ]) else: print(f'reading {path}') df = pd.concat([ pd.read_pickle(f) for f in sorted(glob(path+'/*')) ]) else: df = pd.concat([ pd.read_pickle(f)[col] for f in tqdm(sorted(glob(path+'/*'))) ]) return df #def to_feathers(df, path, split_size=3, inplace=True): # """ # path = '../output/mydf' # # wirte '../output/mydf/0.f' # '../output/mydf/1.f' # '../output/mydf/2.f' # # """ # if inplace==True: # df.reset_index(drop=True, inplace=True) # else: # df = df.reset_index(drop=True) # gc.collect() # mkdir_p(path) # # kf = KFold(n_splits=split_size) # for i, (train_index, val_index) in enumerate(tqdm(kf.split(df))): # df.iloc[val_index].to_feather(f'{path}/{i:03d}.f') # return # #def read_feathers(path, col=None): # if col is None: # df = pd.concat([pd.read_feather(f) for f in tqdm(sorted(glob(path+'/*')))]) # else: # df = pd.concat([pd.read_feather(f)[col] for f in tqdm(sorted(glob(path+'/*')))]) # return df def to_pkl_gzip(df, path): df.to_pickle(path) os.system('rm ' + path + '.gz') os.system('gzip ' + path) return def save_test_features(df): for c in df.columns: df[[c]].to_pickle(f'../feature/test_{c}.pkl') return # ============================================================================= # # ============================================================================= def get_dummies(df): """ binary would be drop_first """ col = df.select_dtypes('O').columns.tolist() nunique = df[col].nunique() col_binary = nunique[nunique==2].index.tolist() [col.remove(c) for c in col_binary] df = pd.get_dummies(df, columns=col) df = pd.get_dummies(df, columns=col_binary, drop_first=True) df.columns = [c.replace(' ', '-') for c in df.columns] return df def reduce_mem_usage(df): col_int8 = [] col_int16 = [] col_int32 = [] col_int64 = [] col_float16 = [] col_float32 = [] col_float64 = [] col_cat = [] for c in tqdm(df.columns, mininterval=20): col_type = df[c].dtype if col_type != object: c_min = df[c].min() c_max = df[c].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: col_int8.append(c) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: col_int16.append(c) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: col_int32.append(c) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: col_int64.append(c) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: col_float16.append(c) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: col_float32.append(c) else: col_float64.append(c) else: col_cat.append(c) if len(col_int8)>0: df[col_int8] = df[col_int8].astype(np.int8) if len(col_int16)>0: df[col_int16] = df[col_int16].astype(np.int16) if len(col_int32)>0: df[col_int32] = df[col_int32].astype(np.int32) if len(col_int64)>0: df[col_int64] = df[col_int64].astype(np.int64) if len(col_float16)>0: df[col_float16] = df[col_float16].astype(np.float16) if len(col_float32)>0: df[col_float32] = df[col_float32].astype(np.float32) if len(col_float64)>0: df[col_float64] = df[col_float64].astype(np.float64) if len(col_cat)>0: df[col_cat] = df[col_cat].astype('category') def check_var(df, var_limit=0, sample_size=None): if sample_size is not None: if df.shape[0]>sample_size: df_ = df.sample(sample_size, random_state=71) else: df_ = df # raise Exception(f'df:{df.shape[0]} <= sample_size:{sample_size}') else: df_ = df var = df_.var() col_var0 = var[var<=var_limit].index if len(col_var0)>0: print(f'remove var<={var_limit}: {col_var0}') return col_var0 def check_corr(df, corr_limit=1, sample_size=None): if sample_size is not None: if df.shape[0]>sample_size: df_ = df.sample(sample_size, random_state=71) else: raise Exception(f'df:{df.shape[0]} <= sample_size:{sample_size}') else: df_ = df corr = df_.corr('pearson').abs() # pearson or spearman a, b = np.where(corr>=corr_limit) col_corr1 = [] for a_,b_ in zip(a, b): if a_ != b_ and a_ not in col_corr1: # print(a_, b_) col_corr1.append(b_) if len(col_corr1)>0: col_corr1 = df.iloc[:,col_corr1].columns print(f'remove corr>={corr_limit}: {col_corr1}') return col_corr1 def remove_feature(df, var_limit=0, corr_limit=1, sample_size=None, only_var=True): col_var0 = check_var(df, var_limit=var_limit, sample_size=sample_size) df.drop(col_var0, axis=1, inplace=True) if only_var==False: col_corr1 = check_corr(df, corr_limit=corr_limit, sample_size=sample_size) df.drop(col_corr1, axis=1, inplace=True) return def savefig_imp(imp, path, x='gain', y='feature', n=30, title='Importance'): import matplotlib as mpl mpl.use('Agg') import seaborn as sns import matplotlib.pyplot as plt fig, ax = plt.subplots() # the size of A4 paper fig.set_size_inches(11.7, 8.27) sns.barplot(x=x, y=y, data=imp.head(n), label=x) plt.subplots_adjust(left=.4, right=.9) plt.title(title+' TOP{0}'.format(n), fontsize=20, alpha=0.8) plt.savefig(path) # ============================================================================= # # ============================================================================= def load_train(col=None): if col is None: return pd.read_pickle('../data/train.pkl') else: return pd.read_pickle('../data/train.pkl')[col] def load_test(col=None): if col is None: return pd.read_pickle('../data/test.pkl') else: return pd.read_pickle('../data/test.pkl')[col] def load_target(): return
pd.read_pickle('../data/target.pkl')
pandas.read_pickle
import numpy as np import pandas as pd from rdt import HyperTransformer from rdt.transformers import OneHotEncodingTransformer def get_input_data_with_nan(): data = pd.DataFrame({ 'integer': [1, 2, 1, 3, 1], 'float': [0.1, 0.2, 0.1, np.nan, 0.1], 'categorical': ['a', 'b', np.nan, 'b', 'a'], 'bool': [False, np.nan, False, True, False], 'datetime': [ np.nan, '2010-02-01', '2010-01-01', '2010-02-01', '2010-01-01' ], 'names': ['Jon', 'Arya', 'Sansa', 'Jon', 'Robb'], }) data['datetime'] = pd.to_datetime(data['datetime']) return data def get_input_data_without_nan(): data = pd.DataFrame({ 'integer': [1, 2, 1, 3], 'float': [0.1, 0.2, 0.1, 0.1], 'categorical': ['a', 'b', 'b', 'a'], 'bool': [False, False, True, False], 'datetime': [ '2010-02-01', '2010-01-01', '2010-02-01', '2010-01-01' ], 'names': ['Jon', 'Arya', 'Sansa', 'Jon'], }) data['datetime'] = pd.to_datetime(data['datetime']) data['bool'] = data['bool'].astype('O') # boolean transformer returns O instead of bool return data def get_transformed_data(): return pd.DataFrame({ 'integer': [1, 2, 1, 3], 'float': [0.1, 0.2, 0.1, 0.1], 'categorical': [0.75, 0.25, 0.25, 0.75], 'bool': [0.0, 0.0, 1.0, 0.0], 'datetime': [ 1.2649824e+18, 1.262304e+18, 1.2649824e+18, 1.262304e+18 ], 'names': [0.25, 0.875, 0.625, 0.25] }) def get_transformed_nan_data(): return pd.DataFrame({ 'integer': [1, 2, 1, 3, 1], 'float': [0.1, 0.2, 0.1, 0.125, 0.1], 'float#1': [0.0, 0.0, 0.0, 1.0, 0.0], 'categorical': [0.6, 0.2, 0.9, 0.2, 0.6], 'bool': [0.0, -1.0, 0.0, 1.0, 0.0], 'bool#1': [0.0, 1.0, 0.0, 0.0, 0.0], 'datetime': [ 1.2636432e+18, 1.2649824e+18, 1.262304e+18, 1.2649824e+18, 1.262304e+18 ], 'datetime#1': [1.0, 0.0, 0.0, 0.0, 0.0], 'names': [0.2, 0.9, 0.5, 0.2, 0.7], }) def get_transformers(): return { 'integer': { 'class': 'NumericalTransformer', 'kwargs': { 'dtype': np.int64, } }, 'float': { 'class': 'NumericalTransformer', 'kwargs': { 'dtype': np.float64, } }, 'categorical': { 'class': 'CategoricalTransformer' }, 'bool': { 'class': 'BooleanTransformer' }, 'datetime': { 'class': 'DatetimeTransformer' }, 'names': { 'class': 'CategoricalTransformer', }, } def test_hypertransformer_with_transformers(): data = get_input_data_without_nan() transformers = get_transformers() ht = HyperTransformer(transformers) ht.fit(data) transformed = ht.transform(data) expected = get_transformed_data() np.testing.assert_allclose( transformed.sort_index(axis=1).values, expected.sort_index(axis=1).values ) reversed_data = ht.reverse_transform(transformed) original_names = data.pop('names') reversed_names = reversed_data.pop('names') pd.testing.assert_frame_equal(data.sort_index(axis=1), reversed_data.sort_index(axis=1)) for name in original_names: assert name not in reversed_names def test_hypertransformer_with_transformers_nan_data(): data = get_input_data_with_nan() transformers = get_transformers() ht = HyperTransformer(transformers) ht.fit(data) transformed = ht.transform(data) expected = get_transformed_nan_data() np.testing.assert_allclose( transformed.sort_index(axis=1).values, expected.sort_index(axis=1).values ) reversed_data = ht.reverse_transform(transformed) original_names = data.pop('names') reversed_names = reversed_data.pop('names') pd.testing.assert_frame_equal(data.sort_index(axis=1), reversed_data.sort_index(axis=1)) for name in original_names: assert name not in reversed_names def test_hypertransformer_without_transformers(): data = get_input_data_without_nan() ht = HyperTransformer() ht.fit(data) transformed = ht.transform(data) expected = get_transformed_data() np.testing.assert_allclose( transformed.sort_index(axis=1).values, expected.sort_index(axis=1).values ) reversed_data = ht.reverse_transform(transformed) original_names = data.pop('names') reversed_names = reversed_data.pop('names') pd.testing.assert_frame_equal(data.sort_index(axis=1), reversed_data.sort_index(axis=1)) for name in original_names: assert name not in reversed_names def test_hypertransformer_without_transformers_nan_data(): data = get_input_data_with_nan() ht = HyperTransformer() ht.fit(data) transformed = ht.transform(data) expected = get_transformed_nan_data() np.testing.assert_allclose( transformed.sort_index(axis=1).values, expected.sort_index(axis=1).values ) reversed_data = ht.reverse_transform(transformed) original_names = data.pop('names') reversed_names = reversed_data.pop('names') pd.testing.assert_frame_equal(data.sort_index(axis=1), reversed_data.sort_index(axis=1)) for name in original_names: assert name not in reversed_names def test_single_category(): ht = HyperTransformer(transformers={ 'a': OneHotEncodingTransformer() }) data = pd.DataFrame({ 'a': ['a', 'a', 'a'] }) ht.fit(data) transformed = ht.transform(data) reverse = ht.reverse_transform(transformed) pd.testing.assert_frame_equal(data, reverse) def test_dtype_category(): df = pd.DataFrame({'a': ['a', 'b', 'c']}, dtype='category') ht = HyperTransformer() ht.fit(df) trans = ht.transform(df) rever = ht.reverse_transform(trans) pd.testing.assert_frame_equal(df, rever) def test_empty_transformers(): """If transformers is an empty dict, do nothing.""" data = get_input_data_without_nan() ht = HyperTransformer(transformers={}) ht.fit(data) transformed = ht.transform(data) reverse = ht.reverse_transform(transformed) pd.testing.assert_frame_equal(data, transformed)
pd.testing.assert_frame_equal(data, reverse)
pandas.testing.assert_frame_equal
#!/usr/bin/python3 # Functions to handle Input ############################################################################################# def read_csv(file): # simple function to read data from a file data = pd.read_csv(file, sep=';') return data # Functions to handle string/value conversion ############################################################################################# # function converts format (DD-)HH:MM:SS to seconds def ave2sec(x): if ( '-' in x ): vals = x.split('-') times = vals[1].split(':') sec = 24*3600*int(vals[0])+3600*int(times[0])+60*int(times[1])+int(times[2]) else: times = x.split(':') sec = 3600*int(times[0])+60*int(times[1])+int(times[2]) return (sec) def scalingref(x): # returns reference scaling factor for MPI jobs based on 1.5 factor: # doubling cores should make parformance x1.5 (or better) if int(x) == 1: ref = 1 else: ref = np.power(1/1.5,np.log2(int(x))) return ref def rss2g(x): return int(float(x[:-1]))/1024 def reqmem2g(x): return int(float(x[:-2]))/1024 # Functions to handle DataFrames ############################################################################################# def parse_df(data): # convert multi-line DataFrame to more compact form for analysis import datetime from dateutil import parser data[['id','subid']] = data.JobID.str.split('_',1, expand=True) data.drop(['subid'],axis=1, inplace=True) df=pd.DataFrame() df=data[~data['JobID'].str.contains("\.")] df.rename(columns={'State': 'Parentstate'}, inplace=True) data2=data.shift(-1).dropna(subset=['JobID']) df2=data2[data2['JobID'].str.contains("\.batch")] data2=data.shift(-2).dropna(subset=['JobID']) df3=data2[data2['JobID'].str.contains("\.0")] df.update(df2.MaxRSS) df.update(df3.MaxRSS) df.update(df2.AveCPU) df.update(df3.AveCPU) df=df.join(df2[['State']]) df.update(df3.State) # drop columns that all all nan df.dropna(axis=1, inplace=True, how='all') # drop rows where any element is nan (errors in the data) df.dropna(axis=0, inplace=True, how='any') df.reset_index(inplace=True) df.loc[:,'State']=df.State.apply(str) # reduce data point, 5min accuracy instead of seconds just fine df['Submit']=pd.to_datetime(df['Submit']).dt.round('5min') df['Start']=pd.to_datetime(df['Start']).dt.round('5min') df['End']=pd.to_datetime(df['End']).dt.round('5min') # add extra columns to df for analysis purposes df.insert(len(df.columns),'runtime',(pd.to_datetime(df['End'])-pd.to_datetime(df['Start']))/np.timedelta64(1,'s')) df.insert(len(df.columns),'waittime',(
pd.to_datetime(df['Start'])
pandas.to_datetime
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import array as arr import datetime import io import operator import random import re import string import textwrap from copy import copy import cupy import numpy as np import pandas as pd import pyarrow as pa import pytest from numba import cuda import cudf from cudf.core._compat import PANDAS_GE_110, PANDAS_GE_120 from cudf.core.column import column from cudf.tests import utils from cudf.tests.utils import ( ALL_TYPES, DATETIME_TYPES, NUMERIC_TYPES, assert_eq, assert_exceptions_equal, does_not_raise, gen_rand, ) def test_init_via_list_of_tuples(): data = [ (5, "cats", "jump", np.nan), (2, "dogs", "dig", 7.5), (3, "cows", "moo", -2.1, "occasionally"), ] pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def _dataframe_na_data(): return [ pd.DataFrame( { "a": [0, 1, 2, np.nan, 4, None, 6], "b": [np.nan, None, "u", "h", "d", "a", "m"], }, index=["q", "w", "e", "r", "t", "y", "u"], ), pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": ["a", "b", "u", "h", "d"]}), pd.DataFrame( { "a": [None, None, np.nan, None], "b": [np.nan, None, np.nan, None], } ), pd.DataFrame({"a": []}), pd.DataFrame({"a": [np.nan], "b": [None]}), pd.DataFrame({"a": ["a", "b", "c", None, "e"]}), pd.DataFrame({"a": ["a", "b", "c", "d", "e"]}), ] @pytest.mark.parametrize("rows", [0, 1, 2, 100]) def test_init_via_list_of_empty_tuples(rows): data = [()] * rows pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq( pdf, gdf, check_like=True, check_column_type=False, check_index_type=False, ) @pytest.mark.parametrize( "dict_of_series", [ {"a": pd.Series([1.0, 2.0, 3.0])}, {"a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 4.0], index=[1, 2, 3]), }, {"a": [1, 2, 3], "b": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "b": pd.Series([1.0, 2.0, 4.0], index=["c", "d", "e"]), }, { "a": pd.Series( ["a", "b", "c"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), "b": pd.Series( ["a", " b", "d"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), }, ], ) def test_init_from_series_align(dict_of_series): pdf = pd.DataFrame(dict_of_series) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) for key in dict_of_series: if isinstance(dict_of_series[key], pd.Series): dict_of_series[key] = cudf.Series(dict_of_series[key]) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) @pytest.mark.parametrize( ("dict_of_series", "expectation"), [ ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 5, 6]), }, pytest.raises( ValueError, match="Cannot align indices with non-unique values" ), ), ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 4, 5]), }, does_not_raise(), ), ], ) def test_init_from_series_align_nonunique(dict_of_series, expectation): with expectation: gdf = cudf.DataFrame(dict_of_series) if expectation == does_not_raise(): pdf = pd.DataFrame(dict_of_series) assert_eq(pdf, gdf) def test_init_unaligned_with_index(): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) gdf = cudf.DataFrame( { "a": cudf.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": cudf.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) assert_eq(pdf, gdf, check_dtype=False) def test_series_basic(): # Make series from buffer a1 = np.arange(10, dtype=np.float64) series = cudf.Series(a1) assert len(series) == 10 np.testing.assert_equal(series.to_array(), np.hstack([a1])) def test_series_from_cupy_scalars(): data = [0.1, 0.2, 0.3] data_np = np.array(data) data_cp = cupy.array(data) s_np = cudf.Series([data_np[0], data_np[2]]) s_cp = cudf.Series([data_cp[0], data_cp[2]]) assert_eq(s_np, s_cp) @pytest.mark.parametrize("a", [[1, 2, 3], [1, 10, 30]]) @pytest.mark.parametrize("b", [[4, 5, 6], [-11, -100, 30]]) def test_append_index(a, b): df = pd.DataFrame() df["a"] = a df["b"] = b gdf = cudf.DataFrame() gdf["a"] = a gdf["b"] = b # Check the default index after appending two columns(Series) expected = df.a.append(df.b) actual = gdf.a.append(gdf.b) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) expected = df.a.append(df.b, ignore_index=True) actual = gdf.a.append(gdf.b, ignore_index=True) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) def test_series_init_none(): # test for creating empty series # 1: without initializing sr1 = cudf.Series() got = sr1.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() # 2: Using `None` as an initializer sr2 = cudf.Series(None) got = sr2.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_basic(): np.random.seed(0) df = cudf.DataFrame() # Populate with cuda memory df["keys"] = np.arange(10, dtype=np.float64) np.testing.assert_equal(df["keys"].to_array(), np.arange(10)) assert len(df) == 10 # Populate with numpy array rnd_vals = np.random.random(10) df["vals"] = rnd_vals np.testing.assert_equal(df["vals"].to_array(), rnd_vals) assert len(df) == 10 assert tuple(df.columns) == ("keys", "vals") # Make another dataframe df2 = cudf.DataFrame() df2["keys"] = np.array([123], dtype=np.float64) df2["vals"] = np.array([321], dtype=np.float64) # Concat df = cudf.concat([df, df2]) assert len(df) == 11 hkeys = np.asarray(np.arange(10, dtype=np.float64).tolist() + [123]) hvals = np.asarray(rnd_vals.tolist() + [321]) np.testing.assert_equal(df["keys"].to_array(), hkeys) np.testing.assert_equal(df["vals"].to_array(), hvals) # As matrix mat = df.as_matrix() expect = np.vstack([hkeys, hvals]).T np.testing.assert_equal(mat, expect) # test dataframe with tuple name df_tup = cudf.DataFrame() data = np.arange(10) df_tup[(1, "foobar")] = data np.testing.assert_equal(data, df_tup[(1, "foobar")].to_array()) df = cudf.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) pdf = pd.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) assert_eq(df, pdf) gdf = cudf.DataFrame({"id": [0, 1], "val": [None, None]}) gdf["val"] = gdf["val"].astype("int") assert gdf["val"].isnull().all() @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "columns", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_columns(pdf, columns, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(columns=columns, inplace=inplace) actual = gdf.drop(columns=columns, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_0(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=0, inplace=inplace) actual = gdf.drop(labels=labels, axis=0, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "index", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_index(pdf, index, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace) actual = gdf.drop(index=index, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5}, index=pd.MultiIndex( levels=[ ["lama", "cow", "falcon"], ["speed", "weight", "length"], ], codes=[ [0, 0, 0, 1, 1, 1, 2, 2, 2, 1], [0, 1, 2, 0, 1, 2, 0, 1, 2, 1], ], ), ) ], ) @pytest.mark.parametrize( "index,level", [ ("cow", 0), ("lama", 0), ("falcon", 0), ("speed", 1), ("weight", 1), ("length", 1), pytest.param( "cow", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "lama", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "falcon", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_multiindex(pdf, index, level, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace, level=level) actual = gdf.drop(index=index, inplace=inplace, level=level) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_1(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=1, inplace=inplace) actual = gdf.drop(labels=labels, axis=1, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) def test_dataframe_drop_error(): df = cudf.DataFrame({"a": [1], "b": [2], "c": [3]}) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "d"}), rfunc_args_and_kwargs=([], {"columns": "d"}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), rfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), rfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), expected_error_message="Cannot specify both", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"axis": 1}), rfunc_args_and_kwargs=([], {"axis": 1}), expected_error_message="Need to specify at least", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([[2, 0]],), rfunc_args_and_kwargs=([[2, 0]],), expected_error_message="One or more values not found in axis", ) def test_dataframe_drop_raises(): df = cudf.DataFrame( {"a": [1, 2, 3], "c": [10, 20, 30]}, index=["x", "y", "z"] ) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["p"],), rfunc_args_and_kwargs=(["p"],), expected_error_message="One or more values not found in axis", ) # label dtype mismatch assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([3],), rfunc_args_and_kwargs=([3],), expected_error_message="One or more values not found in axis", ) expect = pdf.drop("p", errors="ignore") actual = df.drop("p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "p"}), rfunc_args_and_kwargs=([], {"columns": "p"}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(columns="p", errors="ignore") actual = df.drop(columns="p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), rfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(labels="p", axis=1, errors="ignore") actual = df.drop(labels="p", axis=1, errors="ignore") assert_eq(actual, expect) def test_dataframe_column_add_drop_via_setitem(): df = cudf.DataFrame() data = np.asarray(range(10)) df["a"] = data df["b"] = data assert tuple(df.columns) == ("a", "b") del df["a"] assert tuple(df.columns) == ("b",) df["c"] = data assert tuple(df.columns) == ("b", "c") df["a"] = data assert tuple(df.columns) == ("b", "c", "a") def test_dataframe_column_set_via_attr(): data_0 = np.asarray([0, 2, 4, 5]) data_1 = np.asarray([1, 4, 2, 3]) data_2 = np.asarray([2, 0, 3, 0]) df = cudf.DataFrame({"a": data_0, "b": data_1, "c": data_2}) for i in range(10): df.c = df.a assert assert_eq(df.c, df.a, check_names=False) assert tuple(df.columns) == ("a", "b", "c") df.c = df.b assert assert_eq(df.c, df.b, check_names=False) assert tuple(df.columns) == ("a", "b", "c") def test_dataframe_column_drop_via_attr(): df = cudf.DataFrame({"a": []}) with pytest.raises(AttributeError): del df.a assert tuple(df.columns) == tuple("a") @pytest.mark.parametrize("axis", [0, "index"]) def test_dataframe_index_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper={1: 5, 2: 6}, axis=axis) got = gdf.rename(mapper={1: 5, 2: 6}, axis=axis) assert_eq(expect, got) expect = pdf.rename(index={1: 5, 2: 6}) got = gdf.rename(index={1: 5, 2: 6}) assert_eq(expect, got) expect = pdf.rename({1: 5, 2: 6}) got = gdf.rename({1: 5, 2: 6}) assert_eq(expect, got) # `pandas` can support indexes with mixed values. We throw a # `NotImplementedError`. with pytest.raises(NotImplementedError): gdf.rename(mapper={1: "x", 2: "y"}, axis=axis) def test_dataframe_MI_rename(): gdf = cudf.DataFrame( {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)} ) gdg = gdf.groupby(["a", "b"]).count() pdg = gdg.to_pandas() expect = pdg.rename(mapper={1: 5, 2: 6}, axis=0) got = gdg.rename(mapper={1: 5, 2: 6}, axis=0) assert_eq(expect, got) @pytest.mark.parametrize("axis", [1, "columns"]) def test_dataframe_column_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper=lambda name: 2 * name, axis=axis) got = gdf.rename(mapper=lambda name: 2 * name, axis=axis) assert_eq(expect, got) expect = pdf.rename(columns=lambda name: 2 * name) got = gdf.rename(columns=lambda name: 2 * name) assert_eq(expect, got) rename_mapper = {"a": "z", "b": "y", "c": "x"} expect = pdf.rename(columns=rename_mapper) got = gdf.rename(columns=rename_mapper) assert_eq(expect, got) def test_dataframe_pop(): pdf = pd.DataFrame( {"a": [1, 2, 3], "b": ["x", "y", "z"], "c": [7.0, 8.0, 9.0]} ) gdf = cudf.DataFrame.from_pandas(pdf) # Test non-existing column error with pytest.raises(KeyError) as raises: gdf.pop("fake_colname") raises.match("fake_colname") # check pop numeric column pdf_pop = pdf.pop("a") gdf_pop = gdf.pop("a") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check string column pdf_pop = pdf.pop("b") gdf_pop = gdf.pop("b") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check float column and empty dataframe pdf_pop = pdf.pop("c") gdf_pop = gdf.pop("c") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check empty dataframe edge case empty_pdf = pd.DataFrame(columns=["a", "b"]) empty_gdf = cudf.DataFrame(columns=["a", "b"]) pb = empty_pdf.pop("b") gb = empty_gdf.pop("b") assert len(pb) == len(gb) assert empty_pdf.empty and empty_gdf.empty @pytest.mark.parametrize("nelem", [0, 3, 100, 1000]) def test_dataframe_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df["a"].dtype is np.dtype(np.int32) df["b"] = df["a"].astype(np.float32) assert df["b"].dtype is np.dtype(np.float32) np.testing.assert_equal(df["a"].to_array(), df["b"].to_array()) @pytest.mark.parametrize("nelem", [0, 100]) def test_index_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df.index.dtype is np.dtype(np.int64) df.index = df.index.astype(np.float32) assert df.index.dtype is np.dtype(np.float32) df["a"] = df["a"].astype(np.float32) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) df["b"] = df["a"] df = df.set_index("b") df["a"] = df["a"].astype(np.int16) df.index = df.index.astype(np.int16) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) def test_dataframe_to_string(): pd.options.display.max_rows = 5 pd.options.display.max_columns = 8 # Test basic df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) string = str(df) assert string.splitlines()[-1] == "[6 rows x 2 columns]" # Test skipped columns df = cudf.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16], "c": [11, 12, 13, 14, 15, 16], "d": [11, 12, 13, 14, 15, 16], } ) string = df.to_string() assert string.splitlines()[-1] == "[6 rows x 4 columns]" # Test masked df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) data = np.arange(6) mask = np.zeros(1, dtype=cudf.utils.utils.mask_dtype) mask[0] = 0b00101101 masked = cudf.Series.from_masked_array(data, mask) assert masked.null_count == 2 df["c"] = masked # check data values = masked.copy() validids = [0, 2, 3, 5] densearray = masked.to_array() np.testing.assert_equal(data[validids], densearray) # valid position is corret for i in validids: assert data[i] == values[i] # null position is correct for i in range(len(values)): if i not in validids: assert values[i] is cudf.NA pd.options.display.max_rows = 10 got = df.to_string() expect = """ a b c 0 1 11 0 1 2 12 <NA> 2 3 13 2 3 4 14 3 4 5 15 <NA> 5 6 16 5 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_to_string_wide(monkeypatch): monkeypatch.setenv("COLUMNS", "79") # Test basic df = cudf.DataFrame() for i in range(100): df["a{}".format(i)] = list(range(3)) pd.options.display.max_columns = 0 got = df.to_string() expect = """ a0 a1 a2 a3 a4 a5 a6 a7 ... a92 a93 a94 a95 a96 a97 a98 a99 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2 [3 rows x 100 columns] """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_empty_to_string(): # Test for printing empty dataframe df = cudf.DataFrame() got = df.to_string() expect = "Empty DataFrame\nColumns: []\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_emptycolumns_to_string(): # Test for printing dataframe having empty columns df = cudf.DataFrame() df["a"] = [] df["b"] = [] got = df.to_string() expect = "Empty DataFrame\nColumns: [a, b]\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy(): # Test for copying the dataframe using python copy pkg df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = copy(df) df2["b"] = [4, 5, 6] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy_shallow(): # Test for copy dataframe using class method df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = df.copy() df2["b"] = [4, 2, 3] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_dtypes(): dtypes = pd.Series( [np.int32, np.float32, np.float64], index=["c", "a", "b"] ) df = cudf.DataFrame( {k: np.ones(10, dtype=v) for k, v in dtypes.iteritems()} ) assert df.dtypes.equals(dtypes) def test_dataframe_add_col_to_object_dataframe(): # Test for adding column to an empty object dataframe cols = ["a", "b", "c"] df = pd.DataFrame(columns=cols, dtype="str") data = {k: v for (k, v) in zip(cols, [["a"] for _ in cols])} gdf = cudf.DataFrame(data) gdf = gdf[:0] assert gdf.dtypes.equals(df.dtypes) gdf["a"] = [1] df["a"] = [10] assert gdf.dtypes.equals(df.dtypes) gdf["b"] = [1.0] df["b"] = [10.0] assert gdf.dtypes.equals(df.dtypes) def test_dataframe_dir_and_getattr(): df = cudf.DataFrame( { "a": np.ones(10), "b": np.ones(10), "not an id": np.ones(10), "oop$": np.ones(10), } ) o = dir(df) assert {"a", "b"}.issubset(o) assert "not an id" not in o assert "oop$" not in o # Getattr works assert df.a.equals(df["a"]) assert df.b.equals(df["b"]) with pytest.raises(AttributeError): df.not_a_column @pytest.mark.parametrize("order", ["C", "F"]) def test_empty_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() # Check fully empty dataframe. mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 0) df = cudf.DataFrame() nelem = 123 for k in "abc": df[k] = np.random.random(nelem) # Check all columns in empty dataframe. mat = df.head(0).as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 3) @pytest.mark.parametrize("order", ["C", "F"]) def test_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() nelem = 123 for k in "abcd": df[k] = np.random.random(nelem) # Check all columns mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (nelem, 4) for i, k in enumerate(df.columns): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) # Check column subset mat = df.as_gpu_matrix(order=order, columns=["a", "c"]).copy_to_host() assert mat.shape == (nelem, 2) for i, k in enumerate("ac"): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) def test_dataframe_as_gpu_matrix_null_values(): df = cudf.DataFrame() nelem = 123 na = -10000 refvalues = {} for k in "abcd": df[k] = data = np.random.random(nelem) bitmask = utils.random_bitmask(nelem) df[k] = df[k].set_mask(bitmask) boolmask = np.asarray( utils.expand_bits_to_bytes(bitmask)[:nelem], dtype=np.bool_ ) data[~boolmask] = na refvalues[k] = data # Check null value causes error with pytest.raises(ValueError) as raises: df.as_gpu_matrix() raises.match("column 'a' has null values") for k in df.columns: df[k] = df[k].fillna(na) mat = df.as_gpu_matrix().copy_to_host() for i, k in enumerate(df.columns): np.testing.assert_array_equal(refvalues[k], mat[:, i]) def test_dataframe_append_empty(): pdf = pd.DataFrame( { "key": [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], } ) gdf = cudf.DataFrame.from_pandas(pdf) gdf["newcol"] = 100 pdf["newcol"] = 100 assert len(gdf["newcol"]) == len(pdf) assert len(pdf["newcol"]) == len(pdf) assert_eq(gdf, pdf) def test_dataframe_setitem_from_masked_object(): ary = np.random.randn(100) mask = np.zeros(100, dtype=bool) mask[:20] = True np.random.shuffle(mask) ary[mask] = np.nan test1_null = cudf.Series(ary, nan_as_null=True) assert test1_null.nullable assert test1_null.null_count == 20 test1_nan = cudf.Series(ary, nan_as_null=False) assert test1_nan.null_count == 0 test2_null = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=True ) assert test2_null["a"].nullable assert test2_null["a"].null_count == 20 test2_nan = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=False ) assert test2_nan["a"].null_count == 0 gpu_ary = cupy.asarray(ary) test3_null = cudf.Series(gpu_ary, nan_as_null=True) assert test3_null.nullable assert test3_null.null_count == 20 test3_nan = cudf.Series(gpu_ary, nan_as_null=False) assert test3_nan.null_count == 0 test4 = cudf.DataFrame() lst = [1, 2, None, 4, 5, 6, None, 8, 9] test4["lst"] = lst assert test4["lst"].nullable assert test4["lst"].null_count == 2 def test_dataframe_append_to_empty(): pdf = pd.DataFrame() pdf["a"] = [] pdf["b"] = [1, 2, 3] gdf = cudf.DataFrame() gdf["a"] = [] gdf["b"] = [1, 2, 3] assert_eq(gdf, pdf) def test_dataframe_setitem_index_len1(): gdf = cudf.DataFrame() gdf["a"] = [1] gdf["b"] = gdf.index._values np.testing.assert_equal(gdf.b.to_array(), [0]) def test_empty_dataframe_setitem_df(): gdf1 = cudf.DataFrame() gdf2 = cudf.DataFrame({"a": [1, 2, 3, 4, 5]}) gdf1["a"] = gdf2["a"] assert_eq(gdf1, gdf2) def test_assign(): gdf = cudf.DataFrame({"x": [1, 2, 3]}) gdf2 = gdf.assign(y=gdf.x + 1) assert list(gdf.columns) == ["x"] assert list(gdf2.columns) == ["x", "y"] np.testing.assert_equal(gdf2.y.to_array(), [2, 3, 4]) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000]) def test_dataframe_hash_columns(nrows): gdf = cudf.DataFrame() data = np.asarray(range(nrows)) data[0] = data[-1] # make first and last the same gdf["a"] = data gdf["b"] = gdf.a + 100 out = gdf.hash_columns(["a", "b"]) assert isinstance(out, cupy.ndarray) assert len(out) == nrows assert out.dtype == np.int32 # Check default out_all = gdf.hash_columns() np.testing.assert_array_equal(cupy.asnumpy(out), cupy.asnumpy(out_all)) # Check single column out_one = cupy.asnumpy(gdf.hash_columns(["a"])) # First matches last assert out_one[0] == out_one[-1] # Equivalent to the cudf.Series.hash_values() np.testing.assert_array_equal(cupy.asnumpy(gdf.a.hash_values()), out_one) @pytest.mark.parametrize("nrows", [3, 10, 100, 1000]) @pytest.mark.parametrize("nparts", [1, 2, 8, 13]) @pytest.mark.parametrize("nkeys", [1, 2]) def test_dataframe_hash_partition(nrows, nparts, nkeys): np.random.seed(123) gdf = cudf.DataFrame() keycols = [] for i in range(nkeys): keyname = "key{}".format(i) gdf[keyname] = np.random.randint(0, 7 - i, nrows) keycols.append(keyname) gdf["val1"] = np.random.randint(0, nrows * 2, nrows) got = gdf.partition_by_hash(keycols, nparts=nparts) # Must return a list assert isinstance(got, list) # Must have correct number of partitions assert len(got) == nparts # All partitions must be DataFrame type assert all(isinstance(p, cudf.DataFrame) for p in got) # Check that all partitions have unique keys part_unique_keys = set() for p in got: if len(p): # Take rows of the keycolumns and build a set of the key-values unique_keys = set(map(tuple, p.as_matrix(columns=keycols))) # Ensure that none of the key-values have occurred in other groups assert not (unique_keys & part_unique_keys) part_unique_keys |= unique_keys assert len(part_unique_keys) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_value(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["val"] = gdf["val"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.key]) expected_value = row.key + 100 if valid else np.nan got_value = row.val assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_keys(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["key"] = gdf["key"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3, keep_index=False) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.val - 100]) # val is key + 100 expected_value = row.val - 100 if valid else np.nan got_value = row.key assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("keep_index", [True, False]) def test_dataframe_hash_partition_keep_index(keep_index): gdf = cudf.DataFrame( {"val": [1, 2, 3, 4], "key": [3, 2, 1, 4]}, index=[4, 3, 2, 1] ) expected_df1 = cudf.DataFrame( {"val": [1], "key": [3]}, index=[4] if keep_index else None ) expected_df2 = cudf.DataFrame( {"val": [2, 3, 4], "key": [2, 1, 4]}, index=[3, 2, 1] if keep_index else range(1, 4), ) expected = [expected_df1, expected_df2] parts = gdf.partition_by_hash(["key"], nparts=2, keep_index=keep_index) for exp, got in zip(expected, parts): assert_eq(exp, got) def test_dataframe_hash_partition_empty(): gdf = cudf.DataFrame({"val": [1, 2], "key": [3, 2]}, index=["a", "b"]) parts = gdf.iloc[:0].partition_by_hash(["key"], nparts=3) assert len(parts) == 3 for part in parts: assert_eq(gdf.iloc[:0], part) @pytest.mark.parametrize("dtype1", utils.supported_numpy_dtypes) @pytest.mark.parametrize("dtype2", utils.supported_numpy_dtypes) def test_dataframe_concat_different_numerical_columns(dtype1, dtype2): df1 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype1))) df2 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype2))) if dtype1 != dtype2 and "datetime" in dtype1 or "datetime" in dtype2: with pytest.raises(TypeError): cudf.concat([df1, df2]) else: pres = pd.concat([df1, df2]) gres = cudf.concat([cudf.from_pandas(df1), cudf.from_pandas(df2)]) assert_eq(cudf.from_pandas(pres), gres) def test_dataframe_concat_different_column_types(): df1 = cudf.Series([42], dtype=np.float64) df2 = cudf.Series(["a"], dtype="category") with pytest.raises(ValueError): cudf.concat([df1, df2]) df2 = cudf.Series(["a string"]) with pytest.raises(TypeError): cudf.concat([df1, df2]) @pytest.mark.parametrize( "df_1", [cudf.DataFrame({"a": [1, 2], "b": [1, 3]}), cudf.DataFrame({})] ) @pytest.mark.parametrize( "df_2", [cudf.DataFrame({"a": [], "b": []}), cudf.DataFrame({})] ) def test_concat_empty_dataframe(df_1, df_2): got = cudf.concat([df_1, df_2]) expect = pd.concat([df_1.to_pandas(), df_2.to_pandas()], sort=False) # ignoring dtypes as pandas upcasts int to float # on concatenation with empty dataframes assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "df1_d", [ {"a": [1, 2], "b": [1, 2], "c": ["s1", "s2"], "d": [1.0, 2.0]}, {"b": [1.9, 10.9], "c": ["s1", "s2"]}, {"c": ["s1"], "b": [None], "a": [False]}, ], ) @pytest.mark.parametrize( "df2_d", [ {"a": [1, 2, 3]}, {"a": [1, None, 3], "b": [True, True, False], "c": ["s3", None, "s4"]}, {"a": [], "b": []}, {}, ], ) def test_concat_different_column_dataframe(df1_d, df2_d): got = cudf.concat( [cudf.DataFrame(df1_d), cudf.DataFrame(df2_d), cudf.DataFrame(df1_d)], sort=False, ) expect = pd.concat( [pd.DataFrame(df1_d), pd.DataFrame(df2_d), pd.DataFrame(df1_d)], sort=False, ) # numerical columns are upcasted to float in cudf.DataFrame.to_pandas() # casts nan to 0 in non-float numerical columns numeric_cols = got.dtypes[got.dtypes != "object"].index for col in numeric_cols: got[col] = got[col].astype(np.float64).fillna(np.nan) assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "ser_1", [pd.Series([1, 2, 3]), pd.Series([], dtype="float64")] ) @pytest.mark.parametrize("ser_2", [pd.Series([], dtype="float64")]) def test_concat_empty_series(ser_1, ser_2): got = cudf.concat([cudf.Series(ser_1), cudf.Series(ser_2)]) expect = pd.concat([ser_1, ser_2]) assert_eq(got, expect) def test_concat_with_axis(): df1 = pd.DataFrame(dict(x=np.arange(5), y=np.arange(5))) df2 = pd.DataFrame(dict(a=np.arange(5), b=np.arange(5))) concat_df = pd.concat([df1, df2], axis=1) cdf1 = cudf.from_pandas(df1) cdf2 = cudf.from_pandas(df2) # concat only dataframes concat_cdf = cudf.concat([cdf1, cdf2], axis=1) assert_eq(concat_cdf, concat_df) # concat only series concat_s = pd.concat([df1.x, df1.y], axis=1) cs1 = cudf.Series.from_pandas(df1.x) cs2 = cudf.Series.from_pandas(df1.y) concat_cdf_s = cudf.concat([cs1, cs2], axis=1) assert_eq(concat_cdf_s, concat_s) # concat series and dataframes s3 = pd.Series(np.random.random(5)) cs3 = cudf.Series.from_pandas(s3) concat_cdf_all = cudf.concat([cdf1, cs3, cdf2], axis=1) concat_df_all = pd.concat([df1, s3, df2], axis=1) assert_eq(concat_cdf_all, concat_df_all) # concat manual multi index midf1 = cudf.from_pandas(df1) midf1.index = cudf.MultiIndex( levels=[[0, 1, 2, 3], [0, 1]], codes=[[0, 1, 2, 3, 2], [0, 1, 0, 1, 0]] ) midf2 = midf1[2:] midf2.index = cudf.MultiIndex( levels=[[3, 4, 5], [2, 0]], codes=[[0, 1, 2], [1, 0, 1]] ) mipdf1 = midf1.to_pandas() mipdf2 = midf2.to_pandas() assert_eq(cudf.concat([midf1, midf2]), pd.concat([mipdf1, mipdf2])) assert_eq(cudf.concat([midf2, midf1]), pd.concat([mipdf2, mipdf1])) assert_eq( cudf.concat([midf1, midf2, midf1]), pd.concat([mipdf1, mipdf2, mipdf1]) ) # concat groupby multi index gdf1 = cudf.DataFrame( { "x": np.random.randint(0, 10, 10), "y": np.random.randint(0, 10, 10), "z": np.random.randint(0, 10, 10), "v": np.random.randint(0, 10, 10), } ) gdf2 = gdf1[5:] gdg1 = gdf1.groupby(["x", "y"]).min() gdg2 = gdf2.groupby(["x", "y"]).min() pdg1 = gdg1.to_pandas() pdg2 = gdg2.to_pandas() assert_eq(cudf.concat([gdg1, gdg2]), pd.concat([pdg1, pdg2])) assert_eq(cudf.concat([gdg2, gdg1]), pd.concat([pdg2, pdg1])) # series multi index concat gdgz1 = gdg1.z gdgz2 = gdg2.z pdgz1 = gdgz1.to_pandas() pdgz2 = gdgz2.to_pandas() assert_eq(cudf.concat([gdgz1, gdgz2]), pd.concat([pdgz1, pdgz2])) assert_eq(cudf.concat([gdgz2, gdgz1]), pd.concat([pdgz2, pdgz1])) @pytest.mark.parametrize("nrows", [0, 3, 10, 100, 1000]) def test_nonmatching_index_setitem(nrows): np.random.seed(0) gdf = cudf.DataFrame() gdf["a"] = np.random.randint(2147483647, size=nrows) gdf["b"] = np.random.randint(2147483647, size=nrows) gdf = gdf.set_index("b") test_values = np.random.randint(2147483647, size=nrows) gdf["c"] = test_values assert len(test_values) == len(gdf["c"]) assert ( gdf["c"] .to_pandas() .equals(cudf.Series(test_values).set_index(gdf._index).to_pandas()) ) def test_from_pandas(): df = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) gdf = cudf.DataFrame.from_pandas(df) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = df.x gs = cudf.Series.from_pandas(s) assert isinstance(gs, cudf.Series) assert_eq(s, gs) @pytest.mark.parametrize("dtypes", [int, float]) def test_from_records(dtypes): h_ary = np.ndarray(shape=(10, 4), dtype=dtypes) rec_ary = h_ary.view(np.recarray) gdf = cudf.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) df = pd.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame.from_records(rec_ary) df = pd.DataFrame.from_records(rec_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) @pytest.mark.parametrize("columns", [None, ["first", "second", "third"]]) @pytest.mark.parametrize( "index", [ None, ["first", "second"], "name", "age", "weight", [10, 11], ["abc", "xyz"], ], ) def test_from_records_index(columns, index): rec_ary = np.array( [("Rex", 9, 81.0), ("Fido", 3, 27.0)], dtype=[("name", "U10"), ("age", "i4"), ("weight", "f4")], ) gdf = cudf.DataFrame.from_records(rec_ary, columns=columns, index=index) df = pd.DataFrame.from_records(rec_ary, columns=columns, index=index) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_construction_from_cupy_arrays(): h_ary = np.array([[1, 2, 3], [4, 5, 6]], np.int32) d_ary = cupy.asarray(h_ary) gdf = cudf.DataFrame(d_ary, columns=["a", "b", "c"]) df = pd.DataFrame(h_ary, columns=["a", "b", "c"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) df = pd.DataFrame(h_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary, index=["a", "b"]) df = pd.DataFrame(h_ary, index=["a", "b"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=0, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=0, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=1, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=1, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_cupy_wrong_dimensions(): d_ary = cupy.empty((2, 3, 4), dtype=np.int32) with pytest.raises( ValueError, match="records dimension expected 1 or 2 but found: 3" ): cudf.DataFrame(d_ary) def test_dataframe_cupy_array_wrong_index(): d_ary = cupy.empty((2, 3), dtype=np.int32) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index=["a"]) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index="a") def test_index_in_dataframe_constructor(): a = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) b = cudf.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) assert_eq(a, b) assert_eq(a.loc[4:], b.loc[4:]) dtypes = NUMERIC_TYPES + DATETIME_TYPES + ["bool"] @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) padf = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) gdf = cudf.DataFrame.from_arrow(padf) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = pa.Array.from_pandas(df.a) gs = cudf.Series.from_arrow(s) assert isinstance(gs, cudf.Series) # For some reason PyArrow to_pandas() converts to numpy array and has # better type compatibility np.testing.assert_array_equal(s.to_pandas(), gs.to_array()) @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_to_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) pa_i = pa.Array.from_pandas(df.index) pa_gi = gdf.index.to_arrow() assert isinstance(pa_gi, pa.Array) assert pa.Array.equals(pa_i, pa_gi) @pytest.mark.parametrize("data_type", dtypes) def test_to_from_arrow_nulls(data_type): if data_type == "longlong": data_type = "int64" if data_type == "bool": s1 = pa.array([True, None, False, None, True], type=data_type) else: dtype = np.dtype(data_type) if dtype.type == np.datetime64: time_unit, _ = np.datetime_data(dtype) data_type = pa.timestamp(unit=time_unit) s1 = pa.array([1, None, 3, None, 5], type=data_type) gs1 = cudf.Series.from_arrow(s1) assert isinstance(gs1, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s1.buffers()[0]).view("u1")[0], gs1._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s1, gs1.to_arrow()) s2 = pa.array([None, None, None, None, None], type=data_type) gs2 = cudf.Series.from_arrow(s2) assert isinstance(gs2, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s2.buffers()[0]).view("u1")[0], gs2._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s2, gs2.to_arrow()) def test_to_arrow_categorical(): df = pd.DataFrame() df["a"] = pd.Series(["a", "b", "c"], dtype="category") gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) def test_from_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert_eq( pd.Series(pa_cat.to_pandas()), # PyArrow returns a pd.Categorical gd_cat.to_pandas(), ) def test_to_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert pa.Array.equals(pa_cat, gd_cat.to_arrow()) @pytest.mark.parametrize("data_type", dtypes) def test_from_scalar_typing(data_type): if data_type == "datetime64[ms]": scalar = ( np.dtype("int64") .type(np.random.randint(0, 5)) .astype("datetime64[ms]") ) elif data_type.startswith("datetime64"): scalar = np.datetime64(datetime.date.today()).astype("datetime64[ms]") data_type = "datetime64[ms]" else: scalar = np.dtype(data_type).type(np.random.randint(0, 5)) gdf = cudf.DataFrame() gdf["a"] = [1, 2, 3, 4, 5] gdf["b"] = scalar assert gdf["b"].dtype == np.dtype(data_type) assert len(gdf["b"]) == len(gdf["a"]) @pytest.mark.parametrize("data_type", NUMERIC_TYPES) def test_from_python_array(data_type): np_arr = np.random.randint(0, 100, 10).astype(data_type) data = memoryview(np_arr) data = arr.array(data.format, data) gs = cudf.Series(data) np.testing.assert_equal(gs.to_array(), np_arr) def test_series_shape(): ps = pd.Series([1, 2, 3, 4]) cs = cudf.Series([1, 2, 3, 4]) assert ps.shape == cs.shape def test_series_shape_empty(): ps = pd.Series(dtype="float64") cs = cudf.Series([]) assert ps.shape == cs.shape def test_dataframe_shape(): pdf = pd.DataFrame({"a": [0, 1, 2, 3], "b": [0.1, 0.2, None, 0.3]}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.shape == gdf.shape def test_dataframe_shape_empty(): pdf = pd.DataFrame() gdf = cudf.DataFrame() assert pdf.shape == gdf.shape @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) @pytest.mark.parametrize("dtype", dtypes) @pytest.mark.parametrize("nulls", ["none", "some", "all"]) def test_dataframe_transpose(nulls, num_cols, num_rows, dtype): pdf = pd.DataFrame() null_rep = np.nan if dtype in ["float32", "float64"] else None for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(np.random.randint(0, 26, num_rows).astype(dtype)) if nulls == "some": idx = np.random.choice( num_rows, size=int(num_rows / 2), replace=False ) data[idx] = null_rep elif nulls == "all": data[:] = null_rep pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function) assert_eq(expect, got_property) @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) def test_dataframe_transpose_category(num_cols, num_rows): pdf = pd.DataFrame() for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(list(string.ascii_lowercase), dtype="category") data = data.sample(num_rows, replace=True).reset_index(drop=True) pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function.to_pandas()) assert_eq(expect, got_property.to_pandas()) def test_generated_column(): gdf = cudf.DataFrame({"a": (i for i in range(5))}) assert len(gdf) == 5 @pytest.fixture def pdf(): return pd.DataFrame({"x": range(10), "y": range(10)}) @pytest.fixture def gdf(pdf): return cudf.DataFrame.from_pandas(pdf) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize( "func", [ lambda df, **kwargs: df.min(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.product(**kwargs), lambda df, **kwargs: df.cummin(**kwargs), lambda df, **kwargs: df.cummax(**kwargs), lambda df, **kwargs: df.cumsum(**kwargs), lambda df, **kwargs: df.cumprod(**kwargs), lambda df, **kwargs: df.mean(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.std(ddof=1, **kwargs), lambda df, **kwargs: df.var(ddof=1, **kwargs), lambda df, **kwargs: df.std(ddof=2, **kwargs), lambda df, **kwargs: df.var(ddof=2, **kwargs), lambda df, **kwargs: df.kurt(**kwargs), lambda df, **kwargs: df.skew(**kwargs), lambda df, **kwargs: df.all(**kwargs), lambda df, **kwargs: df.any(**kwargs), ], ) @pytest.mark.parametrize("skipna", [True, False, None]) def test_dataframe_reductions(data, func, skipna): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf, skipna=skipna), func(gdf, skipna=skipna)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("func", [lambda df: df.count()]) def test_dataframe_count_reduction(data, func): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf), func(gdf)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("ops", ["sum", "product", "prod"]) @pytest.mark.parametrize("skipna", [True, False, None]) @pytest.mark.parametrize("min_count", [-10, -1, 0, 1, 2, 3, 10]) def test_dataframe_min_count_ops(data, ops, skipna, min_count): psr = pd.DataFrame(data) gsr = cudf.DataFrame(data) if PANDAS_GE_120 and psr.shape[0] * psr.shape[1] < min_count: pytest.xfail("https://github.com/pandas-dev/pandas/issues/39738") assert_eq( getattr(psr, ops)(skipna=skipna, min_count=min_count), getattr(gsr, ops)(skipna=skipna, min_count=min_count), check_dtype=False, ) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_df(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf, pdf) g = binop(gdf, gdf) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_df(pdf, gdf, binop): d = binop(pdf, pdf + 1) g = binop(gdf, gdf + 1) assert_eq(d, g) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_series(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf.x, pdf.y) g = binop(gdf.x, gdf.y) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_series(pdf, gdf, binop): d = binop(pdf.x, pdf.y + 1) g = binop(gdf.x, gdf.y + 1) assert_eq(d, g) @pytest.mark.parametrize("unaryop", [operator.neg, operator.inv, operator.abs]) def test_unaryops_df(pdf, gdf, unaryop): d = unaryop(pdf - 5) g = unaryop(gdf - 5) assert_eq(d, g) @pytest.mark.parametrize( "func", [ lambda df: df.empty, lambda df: df.x.empty, lambda df: df.x.fillna(123, limit=None, method=None, axis=None), lambda df: df.drop("x", axis=1, errors="raise"), ], ) def test_unary_operators(func, pdf, gdf): p = func(pdf) g = func(gdf) assert_eq(p, g) def test_is_monotonic(gdf): pdf = pd.DataFrame({"x": [1, 2, 3]}, index=[3, 1, 2]) gdf = cudf.DataFrame.from_pandas(pdf) assert not gdf.index.is_monotonic assert not gdf.index.is_monotonic_increasing assert not gdf.index.is_monotonic_decreasing def test_iter(pdf, gdf): assert list(pdf) == list(gdf) def test_iteritems(gdf): for k, v in gdf.iteritems(): assert k in gdf.columns assert isinstance(v, cudf.Series) assert_eq(v, gdf[k]) @pytest.mark.parametrize("q", [0.5, 1, 0.001, [0.5], [], [0.005, 0.5, 1]]) @pytest.mark.parametrize("numeric_only", [True, False]) def test_quantile(q, numeric_only): ts = pd.date_range("2018-08-24", periods=5, freq="D") td = pd.to_timedelta(np.arange(5), unit="h") pdf = pd.DataFrame( {"date": ts, "delta": td, "val": np.random.randn(len(ts))} ) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf["date"].quantile(q), gdf["date"].quantile(q)) assert_eq(pdf["delta"].quantile(q), gdf["delta"].quantile(q)) assert_eq(pdf["val"].quantile(q), gdf["val"].quantile(q)) if numeric_only: assert_eq(pdf.quantile(q), gdf.quantile(q)) else: q = q if isinstance(q, list) else [q] assert_eq( pdf.quantile( q if isinstance(q, list) else [q], numeric_only=False ), gdf.quantile(q, numeric_only=False), ) def test_empty_quantile(): pdf = pd.DataFrame({"x": []}) df = cudf.DataFrame({"x": []}) actual = df.quantile() expected = pdf.quantile() assert_eq(actual, expected) def test_from_pandas_function(pdf): gdf = cudf.from_pandas(pdf) assert isinstance(gdf, cudf.DataFrame) assert_eq(pdf, gdf) gdf = cudf.from_pandas(pdf.x) assert isinstance(gdf, cudf.Series) assert_eq(pdf.x, gdf) with pytest.raises(TypeError): cudf.from_pandas(123) @pytest.mark.parametrize("preserve_index", [True, False]) def test_arrow_pandas_compat(pdf, gdf, preserve_index): pdf["z"] = range(10) pdf = pdf.set_index("z") gdf["z"] = range(10) gdf = gdf.set_index("z") pdf_arrow_table = pa.Table.from_pandas(pdf, preserve_index=preserve_index) gdf_arrow_table = gdf.to_arrow(preserve_index=preserve_index) assert pa.Table.equals(pdf_arrow_table, gdf_arrow_table) gdf2 = cudf.DataFrame.from_arrow(pdf_arrow_table) pdf2 = pdf_arrow_table.to_pandas() assert_eq(pdf2, gdf2) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000, 100000]) def test_series_hash_encode(nrows): data = np.asarray(range(nrows)) # Python hash returns different value which sometimes # results in enc_with_name_arr and enc_arr to be same. # And there is no other better way to make hash return same value. # So using an integer name to get constant value back from hash. s = cudf.Series(data, name=1) num_features = 1000 encoded_series = s.hash_encode(num_features) assert isinstance(encoded_series, cudf.Series) enc_arr = encoded_series.to_array() assert np.all(enc_arr >= 0) assert np.max(enc_arr) < num_features enc_with_name_arr = s.hash_encode(num_features, use_name=True).to_array() assert enc_with_name_arr[0] != enc_arr[0] @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) def test_cuda_array_interface(dtype): np_data = np.arange(10).astype(dtype) cupy_data = cupy.array(np_data) pd_data = pd.Series(np_data) cudf_data = cudf.Series(cupy_data) assert_eq(pd_data, cudf_data) gdf = cudf.DataFrame() gdf["test"] = cupy_data pd_data.name = "test" assert_eq(pd_data, gdf["test"]) @pytest.mark.parametrize("nelem", [0, 2, 3, 100]) @pytest.mark.parametrize("nchunks", [1, 2, 5, 10]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow_chunked_arrays(nelem, nchunks, data_type): np_list_data = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array = pa.chunked_array(np_list_data) expect = pd.Series(pa_chunk_array.to_pandas()) got = cudf.Series(pa_chunk_array) assert_eq(expect, got) np_list_data2 = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array2 = pa.chunked_array(np_list_data2) pa_table = pa.Table.from_arrays( [pa_chunk_array, pa_chunk_array2], names=["a", "b"] ) expect = pa_table.to_pandas() got = cudf.DataFrame.from_arrow(pa_table) assert_eq(expect, got) @pytest.mark.skip(reason="Test was designed to be run in isolation") def test_gpu_memory_usage_with_boolmask(): ctx = cuda.current_context() def query_GPU_memory(note=""): memInfo = ctx.get_memory_info() usedMemoryGB = (memInfo.total - memInfo.free) / 1e9 return usedMemoryGB cuda.current_context().deallocations.clear() nRows = int(1e8) nCols = 2 dataNumpy = np.asfortranarray(np.random.rand(nRows, nCols)) colNames = ["col" + str(iCol) for iCol in range(nCols)] pandasDF = pd.DataFrame(data=dataNumpy, columns=colNames, dtype=np.float32) cudaDF = cudf.core.DataFrame.from_pandas(pandasDF) boolmask = cudf.Series(np.random.randint(1, 2, len(cudaDF)).astype("bool")) memory_used = query_GPU_memory() cudaDF = cudaDF[boolmask] assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col0"].index._values.data_array_view.device_ctypes_pointer ) assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col1"].index._values.data_array_view.device_ctypes_pointer ) assert memory_used == query_GPU_memory() def test_boolmask(pdf, gdf): boolmask = np.random.randint(0, 2, len(pdf)) > 0 gdf = gdf[boolmask] pdf = pdf[boolmask] assert_eq(pdf, gdf) @pytest.mark.parametrize( "mask_shape", [ (2, "ab"), (2, "abc"), (3, "ab"), (3, "abc"), (3, "abcd"), (4, "abc"), (4, "abcd"), ], ) def test_dataframe_boolmask(mask_shape): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.random.randint(0, 10, 3) pdf_mask = pd.DataFrame() for col in mask_shape[1]: pdf_mask[col] = np.random.randint(0, 2, mask_shape[0]) > 0 gdf = cudf.DataFrame.from_pandas(pdf) gdf_mask = cudf.DataFrame.from_pandas(pdf_mask) gdf = gdf[gdf_mask] pdf = pdf[pdf_mask] assert np.array_equal(gdf.columns, pdf.columns) for col in gdf.columns: assert np.array_equal( gdf[col].fillna(-1).to_pandas().values, pdf[col].fillna(-1).values ) @pytest.mark.parametrize( "mask", [ [True, False, True], pytest.param( cudf.Series([True, False, True]), marks=pytest.mark.xfail( reason="Pandas can't index a multiindex with a Series" ), ), ], ) def test_dataframe_multiindex_boolmask(mask): gdf = cudf.DataFrame( {"w": [3, 2, 1], "x": [1, 2, 3], "y": [0, 1, 0], "z": [1, 1, 1]} ) gdg = gdf.groupby(["w", "x"]).count() pdg = gdg.to_pandas() assert_eq(gdg[mask], pdg[mask]) def test_dataframe_assignment(): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.array([0, 1, 1, -2, 10]) gdf = cudf.DataFrame.from_pandas(pdf) gdf[gdf < 0] = 999 pdf[pdf < 0] = 999 assert_eq(gdf, pdf) def test_1row_arrow_table(): data = [pa.array([0]), pa.array([1])] batch = pa.RecordBatch.from_arrays(data, ["f0", "f1"]) table = pa.Table.from_batches([batch]) expect = table.to_pandas() got = cudf.DataFrame.from_arrow(table) assert_eq(expect, got) def test_arrow_handle_no_index_name(pdf, gdf): gdf_arrow = gdf.to_arrow() pdf_arrow = pa.Table.from_pandas(pdf) assert pa.Table.equals(pdf_arrow, gdf_arrow) got = cudf.DataFrame.from_arrow(gdf_arrow) expect = pdf_arrow.to_pandas() assert_eq(expect, got) @pytest.mark.parametrize("num_rows", [1, 3, 10, 100]) @pytest.mark.parametrize("num_bins", [1, 2, 4, 20]) @pytest.mark.parametrize("right", [True, False]) @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) @pytest.mark.parametrize("series_bins", [True, False]) def test_series_digitize(num_rows, num_bins, right, dtype, series_bins): data = np.random.randint(0, 100, num_rows).astype(dtype) bins = np.unique(np.sort(np.random.randint(2, 95, num_bins).astype(dtype))) s = cudf.Series(data) if series_bins: s_bins = cudf.Series(bins) indices = s.digitize(s_bins, right) else: indices = s.digitize(bins, right) np.testing.assert_array_equal( np.digitize(data, bins, right), indices.to_array() ) def test_series_digitize_invalid_bins(): s = cudf.Series(np.random.randint(0, 30, 80), dtype="int32") bins = cudf.Series([2, None, None, 50, 90], dtype="int32") with pytest.raises( ValueError, match="`bins` cannot contain null entries." ): _ = s.digitize(bins) def test_pandas_non_contiguious(): arr1 = np.random.sample([5000, 10]) assert arr1.flags["C_CONTIGUOUS"] is True df = pd.DataFrame(arr1) for col in df.columns: assert df[col].values.flags["C_CONTIGUOUS"] is False gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.to_pandas(), df) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) @pytest.mark.parametrize("null_type", [np.nan, None, "mixed"]) def test_series_all_null(num_elements, null_type): if null_type == "mixed": data = [] data1 = [np.nan] * int(num_elements / 2) data2 = [None] * int(num_elements / 2) for idx in range(len(data1)): data.append(data1[idx]) data.append(data2[idx]) else: data = [null_type] * num_elements # Typecast Pandas because None will return `object` dtype expect = pd.Series(data, dtype="float64") got = cudf.Series(data) assert_eq(expect, got) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) def test_series_all_valid_nan(num_elements): data = [np.nan] * num_elements sr = cudf.Series(data, nan_as_null=False) np.testing.assert_equal(sr.null_count, 0) def test_series_rename(): pds = pd.Series([1, 2, 3], name="asdf") gds = cudf.Series([1, 2, 3], name="asdf") expect = pds.rename("new_name") got = gds.rename("new_name") assert_eq(expect, got) pds = pd.Series(expect) gds = cudf.Series(got) assert_eq(pds, gds) pds = pd.Series(expect, name="name name") gds = cudf.Series(got, name="name name") assert_eq(pds, gds) @pytest.mark.parametrize("data_type", dtypes) @pytest.mark.parametrize("nelem", [0, 100]) def test_head_tail(nelem, data_type): def check_index_equality(left, right): assert left.index.equals(right.index) def check_values_equality(left, right): if len(left) == 0 and len(right) == 0: return None np.testing.assert_array_equal(left.to_pandas(), right.to_pandas()) def check_frame_series_equality(left, right): check_index_equality(left, right) check_values_equality(left, right) gdf = cudf.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) check_frame_series_equality(gdf.head(), gdf[:5]) check_frame_series_equality(gdf.head(3), gdf[:3]) check_frame_series_equality(gdf.head(-2), gdf[:-2]) check_frame_series_equality(gdf.head(0), gdf[0:0]) check_frame_series_equality(gdf["a"].head(), gdf["a"][:5]) check_frame_series_equality(gdf["a"].head(3), gdf["a"][:3]) check_frame_series_equality(gdf["a"].head(-2), gdf["a"][:-2]) check_frame_series_equality(gdf.tail(), gdf[-5:]) check_frame_series_equality(gdf.tail(3), gdf[-3:]) check_frame_series_equality(gdf.tail(-2), gdf[2:]) check_frame_series_equality(gdf.tail(0), gdf[0:0]) check_frame_series_equality(gdf["a"].tail(), gdf["a"][-5:]) check_frame_series_equality(gdf["a"].tail(3), gdf["a"][-3:]) check_frame_series_equality(gdf["a"].tail(-2), gdf["a"][2:]) def test_tail_for_string(): gdf = cudf.DataFrame() gdf["id"] = cudf.Series(["a", "b"], dtype=np.object_) gdf["v"] = cudf.Series([1, 2]) assert_eq(gdf.tail(3), gdf.to_pandas().tail(3)) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index(pdf, gdf, drop): assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_named_index(pdf, gdf, drop): pdf.index.name = "cudf" gdf.index.name = "cudf" assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index_inplace(pdf, gdf, drop): pdf.reset_index(drop=drop, inplace=True) gdf.reset_index(drop=drop, inplace=True) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ { "a": [1, 2, 3, 4, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize( "index", [ "a", ["a", "b"], pd.CategoricalIndex(["I", "II", "III", "IV", "V"]), pd.Series(["h", "i", "k", "l", "m"]), ["b", pd.Index(["I", "II", "III", "IV", "V"])], ["c", [11, 12, 13, 14, 15]], pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), # corner case [pd.Series(["h", "i", "k", "l", "m"]), pd.RangeIndex(0, 5)], [ pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), ], ], ) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) def test_set_index(data, index, drop, append, inplace): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() expected = pdf.set_index(index, inplace=inplace, drop=drop, append=append) actual = gdf.set_index(index, inplace=inplace, drop=drop, append=append) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "data", [ { "a": [1, 1, 2, 2, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize("index", ["a", pd.Index([1, 1, 2, 2, 3])]) @pytest.mark.parametrize("verify_integrity", [True]) @pytest.mark.xfail def test_set_index_verify_integrity(data, index, verify_integrity): gdf = cudf.DataFrame(data) gdf.set_index(index, verify_integrity=verify_integrity) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("nelem", [10, 200, 1333]) def test_set_index_multi(drop, nelem): np.random.seed(0) a = np.arange(nelem) np.random.shuffle(a) df = pd.DataFrame( { "a": a, "b": np.random.randint(0, 4, size=nelem), "c": np.random.uniform(low=0, high=4, size=nelem), "d": np.random.choice(["green", "black", "white"], nelem), } ) df["e"] = df["d"].astype("category") gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.set_index("a", drop=drop), gdf.set_index(["a"], drop=drop)) assert_eq( df.set_index(["b", "c"], drop=drop), gdf.set_index(["b", "c"], drop=drop), ) assert_eq( df.set_index(["d", "b"], drop=drop), gdf.set_index(["d", "b"], drop=drop), ) assert_eq( df.set_index(["b", "d", "e"], drop=drop), gdf.set_index(["b", "d", "e"], drop=drop), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_0(copy): # TODO (ptaylor): pandas changes `int` dtype to `float64` # when reindexing and filling new label indices with NaN gdf = cudf.datasets.randomdata( nrows=6, dtypes={ "a": "category", # 'b': int, "c": float, "d": str, }, ) pdf = gdf.to_pandas() # Validate reindex returns a copy unmodified assert_eq(pdf.reindex(copy=True), gdf.reindex(copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_1(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis defaults to 0 assert_eq(pdf.reindex(index, copy=True), gdf.reindex(index, copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_2(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(index, axis=0, copy=True), gdf.reindex(index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_3(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=0 assert_eq( pdf.reindex(columns, axis=1, copy=True), gdf.reindex(columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_4(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(labels=index, axis=0, copy=True), gdf.reindex(labels=index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_5(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=1 assert_eq( pdf.reindex(labels=columns, axis=1, copy=True), gdf.reindex(labels=columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_6(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis='index' assert_eq( pdf.reindex(labels=index, axis="index", copy=True), gdf.reindex(labels=index, axis="index", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_7(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis='columns' assert_eq( pdf.reindex(labels=columns, axis="columns", copy=True), gdf.reindex(labels=columns, axis="columns", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_8(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes labels when index=labels assert_eq( pdf.reindex(index=index, copy=True), gdf.reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_9(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes column names when columns=labels assert_eq( pdf.reindex(columns=columns, copy=True), gdf.reindex(columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_10(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_change_dtype(copy): if PANDAS_GE_110: kwargs = {"check_freq": False} else: kwargs = {} index = pd.date_range("12/29/2009", periods=10, freq="D") columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), **kwargs, ) @pytest.mark.parametrize("copy", [True, False]) def test_series_categorical_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"a": "category"}) pdf = gdf.to_pandas() assert_eq(pdf["a"].reindex(copy=True), gdf["a"].reindex(copy=copy)) assert_eq( pdf["a"].reindex(index, copy=True), gdf["a"].reindex(index, copy=copy) ) assert_eq( pdf["a"].reindex(index=index, copy=True), gdf["a"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_float_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"c": float}) pdf = gdf.to_pandas() assert_eq(pdf["c"].reindex(copy=True), gdf["c"].reindex(copy=copy)) assert_eq( pdf["c"].reindex(index, copy=True), gdf["c"].reindex(index, copy=copy) ) assert_eq( pdf["c"].reindex(index=index, copy=True), gdf["c"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_string_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"d": str}) pdf = gdf.to_pandas() assert_eq(pdf["d"].reindex(copy=True), gdf["d"].reindex(copy=copy)) assert_eq( pdf["d"].reindex(index, copy=True), gdf["d"].reindex(index, copy=copy) ) assert_eq( pdf["d"].reindex(index=index, copy=True), gdf["d"].reindex(index=index, copy=copy), ) def test_to_frame(pdf, gdf): assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = "foo" gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = False gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(gdf_new_name, pdf_new_name) assert gdf_new_name.columns[0] is name def test_dataframe_empty_sort_index(): pdf = pd.DataFrame({"x": []}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.sort_index() got = gdf.sort_index() assert_eq(expect, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_sort_index( axis, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( {"b": [1, 3, 2], "a": [1, 4, 3], "c": [4, 1, 5]}, index=[3.0, 1.0, np.nan], ) gdf = cudf.DataFrame.from_pandas(pdf) expected = pdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) got = gdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: assert_eq(pdf, gdf) else: assert_eq(expected, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize( "level", [ 0, "b", 1, ["b"], "a", ["a", "b"], ["b", "a"], [0, 1], [1, 0], [0, 2], None, ], ) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_mulitindex_sort_index( axis, level, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( { "b": [1.0, 3.0, np.nan], "a": [1, 4, 3], 1: ["a", "b", "c"], "e": [3, 1, 4], "d": [1, 2, 8], } ).set_index(["b", "a", 1]) gdf = cudf.DataFrame.from_pandas(pdf) # ignore_index is supported in v.1.0 expected = pdf.sort_index( axis=axis, level=level, ascending=ascending, inplace=inplace, na_position=na_position, ) if ignore_index is True: expected = expected got = gdf.sort_index( axis=axis, level=level, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: if ignore_index is True: pdf = pdf.reset_index(drop=True) assert_eq(pdf, gdf) else: if ignore_index is True: expected = expected.reset_index(drop=True) assert_eq(expected, got) @pytest.mark.parametrize("dtype", dtypes + ["category"]) def test_dataframe_0_row_dtype(dtype): if dtype == "category": data = pd.Series(["a", "b", "c", "d", "e"], dtype="category") else: data = np.array([1, 2, 3, 4, 5], dtype=dtype) expect = cudf.DataFrame() expect["x"] = data expect["y"] = data got = expect.head(0) for col_name in got.columns: assert expect[col_name].dtype == got[col_name].dtype expect = cudf.Series(data) got = expect.head(0) assert expect.dtype == got.dtype @pytest.mark.parametrize("nan_as_null", [True, False]) def test_series_list_nanasnull(nan_as_null): data = [1.0, 2.0, 3.0, np.nan, None] expect = pa.array(data, from_pandas=nan_as_null) got = cudf.Series(data, nan_as_null=nan_as_null).to_arrow() # Bug in Arrow 0.14.1 where NaNs aren't handled expect = expect.cast("int64", safe=False) got = got.cast("int64", safe=False) assert pa.Array.equals(expect, got) def test_column_assignment(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float} ) new_cols = ["q", "r", "s"] gdf.columns = new_cols assert list(gdf.columns) == new_cols def test_select_dtype(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float, "d": str} ) pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("float64"), gdf.select_dtypes("float64")) assert_eq(pdf.select_dtypes(np.float64), gdf.select_dtypes(np.float64)) assert_eq( pdf.select_dtypes(include=["float64"]), gdf.select_dtypes(include=["float64"]), ) assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["int64", "float64"]), gdf.select_dtypes(include=["int64", "float64"]), ) assert_eq( pdf.select_dtypes(include=np.number), gdf.select_dtypes(include=np.number), ) assert_eq( pdf.select_dtypes(include=[np.int64, np.float64]), gdf.select_dtypes(include=[np.int64, np.float64]), ) assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(exclude=np.number), gdf.select_dtypes(exclude=np.number), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=([], {"includes": ["Foo"]}), rfunc_args_and_kwargs=([], {"includes": ["Foo"]}), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), rfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), ) gdf = cudf.DataFrame( {"A": [3, 4, 5], "C": [1, 2, 3], "D": ["a", "b", "c"]} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["object"], exclude=["category"]), gdf.select_dtypes(include=["object"], exclude=["category"]), ) gdf = cudf.DataFrame({"a": range(10), "b": range(10, 20)}) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(include=["float"]), gdf.select_dtypes(include=["float"]), ) assert_eq( pdf.select_dtypes(include=["object"]), gdf.select_dtypes(include=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"]), gdf.select_dtypes(include=["int"]) ) assert_eq( pdf.select_dtypes(exclude=["float"]), gdf.select_dtypes(exclude=["float"]), ) assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, ) gdf = cudf.DataFrame( {"a": cudf.Series([], dtype="int"), "b": cudf.Series([], dtype="str")} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) def test_select_dtype_datetime(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("datetime64"), gdf.select_dtypes("datetime64")) assert_eq( pdf.select_dtypes(np.dtype("datetime64")), gdf.select_dtypes(np.dtype("datetime64")), ) assert_eq( pdf.select_dtypes(include="datetime64"), gdf.select_dtypes(include="datetime64"), ) def test_select_dtype_datetime_with_frequency(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_exceptions_equal( pdf.select_dtypes, gdf.select_dtypes, (["datetime64[ms]"],), (["datetime64[ms]"],), ) def test_array_ufunc(): gdf = cudf.DataFrame({"x": [2, 3, 4.0], "y": [9.0, 2.5, 1.1]}) pdf = gdf.to_pandas() assert_eq(np.sqrt(gdf), np.sqrt(pdf)) assert_eq(np.sqrt(gdf.x), np.sqrt(pdf.x)) @pytest.mark.parametrize("nan_value", [-5, -5.0, 0, 5, 5.0, None, "pandas"]) def test_series_to_gpu_array(nan_value): s = cudf.Series([0, 1, None, 3]) np.testing.assert_array_equal( s.to_array(nan_value), s.to_gpu_array(nan_value).copy_to_host() ) def test_dataframe_describe_exclude(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(exclude=["float"]) pdf_results = pdf.describe(exclude=["float"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_include(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(include=["int"]) pdf_results = pdf.describe(include=["int"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_default(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe() pdf_results = pdf.describe() assert_eq(pdf_results, gdf_results) def test_series_describe_include_all(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) df["animal"] = np.random.choice(["dog", "cat", "bird"], data_length) pdf = df.to_pandas() gdf_results = df.describe(include="all") pdf_results = pdf.describe(include="all") assert_eq(gdf_results[["x", "y"]], pdf_results[["x", "y"]]) assert_eq(gdf_results.index, pdf_results.index) assert_eq(gdf_results.columns, pdf_results.columns) assert_eq( gdf_results[["animal"]].fillna(-1).astype("str"), pdf_results[["animal"]].fillna(-1).astype("str"), ) def test_dataframe_describe_percentiles(): np.random.seed(12) data_length = 10000 sample_percentiles = [0.0, 0.1, 0.33, 0.84, 0.4, 0.99] df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(percentiles=sample_percentiles) pdf_results = pdf.describe(percentiles=sample_percentiles) assert_eq(pdf_results, gdf_results) def test_get_numeric_data(): pdf = pd.DataFrame( {"x": [1, 2, 3], "y": [1.0, 2.0, 3.0], "z": ["a", "b", "c"]} ) gdf = cudf.from_pandas(pdf) assert_eq(pdf._get_numeric_data(), gdf._get_numeric_data()) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_shift(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) shifted_outcome = gdf.a.shift(period).fillna(0) expected_outcome = pdf.a.shift(period).fillna(0).astype(dtype) if data_empty: assert_eq(shifted_outcome, expected_outcome, check_index_type=False) else: assert_eq(shifted_outcome, expected_outcome) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_diff(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) expected_outcome = pdf.a.diff(period) diffed_outcome = gdf.a.diff(period).astype(expected_outcome.dtype) if data_empty: assert_eq(diffed_outcome, expected_outcome, check_index_type=False) else: assert_eq(diffed_outcome, expected_outcome) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_isnull_isna(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.isnull(), gdf.isnull()) assert_eq(df.isna(), gdf.isna()) # Test individual columns for col in df: assert_eq(df[col].isnull(), gdf[col].isnull()) assert_eq(df[col].isna(), gdf[col].isna()) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_notna_notnull(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.notnull(), gdf.notnull()) assert_eq(df.notna(), gdf.notna()) # Test individual columns for col in df: assert_eq(df[col].notnull(), gdf[col].notnull()) assert_eq(df[col].notna(), gdf[col].notna()) def test_ndim(): pdf = pd.DataFrame({"x": range(5), "y": range(5, 10)}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.ndim == gdf.ndim assert pdf.x.ndim == gdf.x.ndim s = pd.Series(dtype="float64") gs = cudf.Series() assert s.ndim == gs.ndim @pytest.mark.parametrize( "decimals", [ -3, 0, 5, pd.Series([1, 4, 3, -6], index=["w", "x", "y", "z"]), cudf.Series([-4, -2, 12], index=["x", "y", "z"]), {"w": -1, "x": 15, "y": 2}, ], ) def test_dataframe_round(decimals): pdf = pd.DataFrame( { "w": np.arange(0.5, 10.5, 1), "x": np.random.normal(-100, 100, 10), "y": np.array( [ 14.123, 2.343, np.nan, 0.0, -8.302, np.nan, 94.313, -112.236, -8.029, np.nan, ] ), "z": np.repeat([-0.6459412758761901], 10), } ) gdf = cudf.DataFrame.from_pandas(pdf) if isinstance(decimals, cudf.Series): pdecimals = decimals.to_pandas() else: pdecimals = decimals result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) # with nulls, maintaining existing null mask for c in pdf.columns: arr = pdf[c].to_numpy().astype("float64") # for pandas nulls arr.ravel()[np.random.choice(10, 5, replace=False)] = np.nan pdf[c] = gdf[c] = arr result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) for c in gdf.columns: np.array_equal(gdf[c].nullmask.to_array(), result[c].to_array()) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: all does not " "support columns of object dtype." ) ], ), ], ) def test_all(data): # Pandas treats `None` in object type columns as True for some reason, so # replacing with `False` if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data).replace( [None], False ) gdata = cudf.Series.from_pandas(pdata) else: pdata = pd.DataFrame(data, columns=["a", "b"]).replace([None], False) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.all(bool_only=True) expected = pdata.all(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.all(bool_only=False) with pytest.raises(NotImplementedError): gdata.all(level="a") got = gdata.all() expected = pdata.all() assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [0, 0, 0, 0, 0], [0, 0, None, 0], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: any does not " "support columns of object dtype." ) ], ), ], ) @pytest.mark.parametrize("axis", [0, 1]) def test_any(data, axis): if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data) gdata = cudf.Series.from_pandas(pdata) if axis == 1: with pytest.raises(NotImplementedError): gdata.any(axis=axis) else: got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) else: pdata = pd.DataFrame(data, columns=["a", "b"]) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.any(bool_only=True) expected = pdata.any(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.any(bool_only=False) with pytest.raises(NotImplementedError): gdata.any(level="a") got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) @pytest.mark.parametrize("axis", [0, 1]) def test_empty_dataframe_any(axis): pdf = pd.DataFrame({}, columns=["a", "b"]) gdf = cudf.DataFrame.from_pandas(pdf) got = gdf.any(axis=axis) expected = pdf.any(axis=axis) assert_eq(got, expected, check_index_type=False) @pytest.mark.parametrize("indexed", [False, True]) def test_dataframe_sizeof(indexed): rows = int(1e6) index = list(i for i in range(rows)) if indexed else None gdf = cudf.DataFrame({"A": [8] * rows, "B": [32] * rows}, index=index) for c in gdf._data.columns: assert gdf._index.__sizeof__() == gdf._index.__sizeof__() cols_sizeof = sum(c.__sizeof__() for c in gdf._data.columns) assert gdf.__sizeof__() == (gdf._index.__sizeof__() + cols_sizeof) @pytest.mark.parametrize("a", [[], ["123"]]) @pytest.mark.parametrize("b", ["123", ["123"]]) @pytest.mark.parametrize( "misc_data", ["123", ["123"] * 20, 123, [1, 2, 0.8, 0.9] * 50, 0.9, 0.00001], ) @pytest.mark.parametrize("non_list_data", [123, "abc", "zyx", "rapids", 0.8]) def test_create_dataframe_cols_empty_data(a, b, misc_data, non_list_data): expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = b actual["b"] = b assert_eq(actual, expected) expected = pd.DataFrame({"a": []}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = misc_data actual["b"] = misc_data assert_eq(actual, expected) expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = non_list_data actual["b"] = non_list_data assert_eq(actual, expected) def test_empty_dataframe_describe(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) expected = pdf.describe() actual = gdf.describe() assert_eq(expected, actual) def test_as_column_types(): col = column.as_column(cudf.Series([])) assert_eq(col.dtype, np.dtype("float64")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float64")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="float32") assert_eq(col.dtype, np.dtype("float32")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float32")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="str") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="str")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="object") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="object")) assert_eq(pds, gds) pds = pd.Series(np.array([1, 2, 3]), dtype="float32") gds = cudf.Series(column.as_column(np.array([1, 2, 3]), dtype="float32")) assert_eq(pds, gds) pds = pd.Series([1, 2, 3], dtype="float32") gds = cudf.Series([1, 2, 3], dtype="float32") assert_eq(pds, gds) pds = pd.Series([], dtype="float64") gds = cudf.Series(column.as_column(pds)) assert_eq(pds, gds) pds = pd.Series([1, 2, 4], dtype="int64") gds = cudf.Series(column.as_column(cudf.Series([1, 2, 4]), dtype="int64")) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="float32") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="float32") ) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="str") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="str") ) assert_eq(pds, gds) pds = pd.Series(pd.Index(["1", "18", "9"]), dtype="int") gds = cudf.Series( cudf.core.index.StringIndex(["1", "18", "9"]), dtype="int" ) assert_eq(pds, gds) def test_one_row_head(): gdf = cudf.DataFrame({"name": ["carl"], "score": [100]}, index=[123]) pdf = gdf.to_pandas() head_gdf = gdf.head() head_pdf = pdf.head() assert_eq(head_pdf, head_gdf) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric(dtype, as_dtype): psr = pd.Series([1, 2, 4, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric_nulls(dtype, as_dtype): data = [1, 2, None, 3] sr = cudf.Series(data, dtype=dtype) got = sr.astype(as_dtype) expect = cudf.Series([1, 2, None, 3], dtype=as_dtype) assert_eq(expect, got) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "as_dtype", [ "str", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_numeric_to_other(dtype, as_dtype): psr = pd.Series([1, 2, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "str", "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05"] else: data = ["1", "2", "3"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_datetime_to_other(as_dtype): data = ["2001-01-01", "2002-02-02", "2001-01-05"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "inp", [ ("datetime64[ns]", "2011-01-01 00:00:00.000000000"), ("datetime64[us]", "2011-01-01 00:00:00.000000"), ("datetime64[ms]", "2011-01-01 00:00:00.000"), ("datetime64[s]", "2011-01-01 00:00:00"), ], ) def test_series_astype_datetime_to_string(inp): dtype, expect = inp base_date = "2011-01-01" sr = cudf.Series([base_date], dtype=dtype) got = sr.astype(str)[0] assert expect == got @pytest.mark.parametrize( "as_dtype", [ "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_series_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") gsr = cudf.from_pandas(psr) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( psr.astype("int32").astype(ordered_dtype_pd).astype("int32"), gsr.astype("int32").astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_cat_ordered_to_unordered(ordered): pd_dtype = pd.CategoricalDtype(categories=[1, 2, 3], ordered=ordered) pd_to_dtype = pd.CategoricalDtype( categories=[1, 2, 3], ordered=not ordered ) gd_dtype = cudf.CategoricalDtype.from_pandas(pd_dtype) gd_to_dtype = cudf.CategoricalDtype.from_pandas(pd_to_dtype) psr = pd.Series([1, 2, 3], dtype=pd_dtype) gsr = cudf.Series([1, 2, 3], dtype=gd_dtype) expect = psr.astype(pd_to_dtype) got = gsr.astype(gd_to_dtype) assert_eq(expect, got) def test_series_astype_null_cases(): data = [1, 2, None, 3] # numerical to other assert_eq(cudf.Series(data, dtype="str"), cudf.Series(data).astype("str")) assert_eq( cudf.Series(data, dtype="category"), cudf.Series(data).astype("category"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="int32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="uint32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data).astype("datetime64[ms]"), ) # categorical to other assert_eq( cudf.Series(data, dtype="str"), cudf.Series(data, dtype="category").astype("str"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="category").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data, dtype="category").astype("datetime64[ms]"), ) # string to other assert_eq( cudf.Series([1, 2, None, 3], dtype="int32"), cudf.Series(["1", "2", None, "3"]).astype("int32"), ) assert_eq( cudf.Series( ["2001-01-01", "2001-02-01", None, "2001-03-01"], dtype="datetime64[ms]", ), cudf.Series(["2001-01-01", "2001-02-01", None, "2001-03-01"]).astype( "datetime64[ms]" ), ) assert_eq( cudf.Series(["a", "b", "c", None], dtype="category").to_pandas(), cudf.Series(["a", "b", "c", None]).astype("category").to_pandas(), ) # datetime to other data = [ "2001-01-01 00:00:00.000000", "2001-02-01 00:00:00.000000", None, "2001-03-01 00:00:00.000000", ] assert_eq( cudf.Series(data), cudf.Series(data, dtype="datetime64[us]").astype("str"), ) assert_eq( pd.Series(data, dtype="datetime64[ns]").astype("category"), cudf.from_pandas(
pd.Series(data, dtype="datetime64[ns]")
pandas.Series
import pandas as pd import numpy as np import json from utils import get_next_gw from ranked_probability_score import ranked_probability_score, match_outcome class Baselines: """ Baselines and dummy models """ def __init__(self, games): """ Args: games (pd.DataFrame): Finished games to used for training. """ self.games = games.loc[:, ["score1", "score2", "team1", "team2"]] self.games = self.games.dropna() self.games["score1"] = self.games["score1"].astype(int) self.games["score2"] = self.games["score2"].astype(int) self.teams = np.sort(np.unique(self.games["team1"])) self.league_size = len(self.teams) def uniform(self, games): """ Uniform outcome odds Args: games (pd.DataFrame): Fixtures Returns: (pd.DataFrame): Fixture with outcome prediction """ parameter_df = ( pd.DataFrame() .assign(team=self.teams) ) fixtures_df = ( pd.merge(games, parameter_df, left_on='team1', right_on='team') .merge(parameter_df, left_on='team2', right_on='team') ) fixtures_df["home_win_p"] = 0.333 fixtures_df["draw_p"] = 0.333 fixtures_df["away_win_p"] = 0.333 return fixtures_df def home_bias(self, games): """ Odds biased towards home team Args: games (pd.DataFrame): Fixtures Returns: (pd.DataFrame): Fixture with outcome prediction """ parameter_df = ( pd.DataFrame() .assign(team=self.teams) ) fixtures_df = ( pd.merge(games, parameter_df, left_on='team1', right_on='team') .merge(parameter_df, left_on='team2', right_on='team') ) fixtures_df["home_win_p"] = 1 fixtures_df["draw_p"] = 0 fixtures_df["away_win_p"] = 0 return fixtures_df def draw_bias(self, games): """ Odds biased towards draw Args: games (pd.DataFrame): Fixtures Returns: (pd.DataFrame): Fixture with outcome prediction """ parameter_df = ( pd.DataFrame() .assign(team=self.teams) ) fixtures_df = ( pd.merge(games, parameter_df, left_on='team1', right_on='team') .merge(parameter_df, left_on='team2', right_on='team') ) fixtures_df["home_win_p"] = 0 fixtures_df["draw_p"] = 1 fixtures_df["away_win_p"] = 0 return fixtures_df def away_bias(self, games): """ Odds biased towards away team Args: games (pd.DataFrame): Fixtures Returns: (pd.DataFrame): Fixture with outcome prediction """ parameter_df = ( pd.DataFrame() .assign(team=self.teams) ) fixtures_df = ( pd.merge(games, parameter_df, left_on='team1', right_on='team') .merge(parameter_df, left_on='team2', right_on='team') ) fixtures_df["home_win_p"] = 0 fixtures_df["draw_p"] = 0 fixtures_df["away_win_p"] = 1 return fixtures_df def random_odds(self, games): """ Random odds Args: games (pd.DataFrame): Fixtures Returns: (pd.DataFrame): Fixture with outcome prediction """ parameter_df = ( pd.DataFrame() .assign(team=self.teams) ) fixtures_df = ( pd.merge(games, parameter_df, left_on='team1', right_on='team') .merge(parameter_df, left_on='team2', right_on='team') ) odds = np.random.rand(3, fixtures_df.shape[0]) fixtures_df["home_win_p"] = odds[0] / np.sum(odds, 0) fixtures_df["draw_p"] = odds[1] / np.sum(odds, 0) fixtures_df["away_win_p"] = odds[2] / np.sum(odds, 0) return fixtures_df def bookies_odds(self, games, path): """ Bookies odds Args: games (pd.DataFrame): Fixtures Returns: (pd.DataFrame): Fixture with outcome prediction """ parameter_df = ( pd.DataFrame() .assign(team=self.teams) ) fixtures_df = ( pd.merge(games, parameter_df, left_on='team1', right_on='team') .merge(parameter_df, left_on='team2', right_on='team') ) predictions_market = ( pd.read_csv(f'{path}data/betting/2021-22.csv') .loc[:, ["HomeTeam", "AwayTeam", "B365H", "B365D", "B365A"]] .rename(columns={ "HomeTeam": "team1", "AwayTeam": "team2", "B365H": "home_win_p", "B365D": "draw_p", "B365A": "away_win_p"}) ) predictions_market = predictions_market.replace({ 'Brighton': 'Brighton and Hove Albion', 'Leicester': 'Leicester City', 'Leeds': 'Leeds United', 'Man City': 'Manchester City', 'Man United': 'Manchester United', 'Norwich': 'Norwich City', 'Tottenham': 'Tottenham Hotspur', 'West Ham': 'West Ham United', 'Wolves': 'Wolverhampton' }) fixtures_df = pd.merge( fixtures_df, predictions_market, left_on=['team1', 'team2'], right_on=['team1', 'team2']) fixtures_df['total'] = ( 100 / fixtures_df['home_win_p'] + 100 / fixtures_df['draw_p'] + 100 / fixtures_df['away_win_p']) fixtures_df['home_win_p'] = ( 100 / fixtures_df['home_win_p'] / fixtures_df['total']) fixtures_df['away_win_p'] = ( 100 / fixtures_df['away_win_p'] / fixtures_df['total']) fixtures_df['draw_p'] = ( 100 / fixtures_df['draw_p'] / fixtures_df['total']) return fixtures_df def bookies_favorite(self, games, path): """ Bookies Odds biased towards the favorite Args: games (pd.DataFrame): Fixtures Returns: (pd.DataFrame): Fixture with outcome prediction """ parameter_df = ( pd.DataFrame() .assign(team=self.teams) ) fixtures_df = ( pd.merge(games, parameter_df, left_on='team1', right_on='team') .merge(parameter_df, left_on='team2', right_on='team') ) predictions_market = ( pd.read_csv(f'{path}data/betting/2021-22.csv') .loc[:, ["HomeTeam", "AwayTeam", "B365H", "B365D", "B365A"]] .rename(columns={ "HomeTeam": "team1", "AwayTeam": "team2", "B365H": "home_win_p", "B365D": "draw_p", "B365A": "away_win_p"}) ) predictions_market = predictions_market.replace({ 'Brighton': 'Brighton and Hove Albion', 'Leicester': 'Leicester City', 'Leeds': 'Leeds United', 'Man City': 'Manchester City', 'Man United': 'Manchester United', 'Norwich': 'Norwich City', 'Tottenham': 'Tottenham Hotspur', 'West Ham': 'West Ham United', 'Wolves': 'Wolverhampton' }) fixtures_df = pd.merge( fixtures_df, predictions_market, left_on=['team1', 'team2'], right_on=['team1', 'team2']) max_odds = np.argmax( fixtures_df[['home_win_p', 'draw_p', 'away_win_p']].values, 1) favorites = np.zeros( fixtures_df[['home_win_p', 'draw_p', 'away_win_p']].values.shape) favorites[np.arange(0, max_odds.shape[0]), max_odds] = 1 fixtures_df['home_win_p'] = favorites[:, 0] fixtures_df['away_win_p'] = favorites[:, 2] fixtures_df['draw_p'] = favorites[:, 1] return fixtures_df def evaluate(self, games, function_name, path=''): """ Evaluate the model's prediction accuracy Args: games (pd.DataFrame): Fixtured to evaluate on function_name (string): Function to execute path (string): Path extension to adjust to ipynb use Returns: pd.DataFrame: df with appended metrics """ if function_name == "uniform": fixtures_df = self.uniform(games) if function_name == "home": fixtures_df = self.home_bias(games) if function_name == "draw": fixtures_df = self.draw_bias(games) if function_name == "away": fixtures_df = self.away_bias(games) if function_name == "random": fixtures_df = self.random_odds(games) if function_name == "bookies": fixtures_df = self.bookies_odds(games, path) if function_name == "favorite": fixtures_df = self.bookies_favorite(games, path) fixtures_df["winner"] = match_outcome(fixtures_df) fixtures_df["rps"] = fixtures_df.apply( lambda row: ranked_probability_score( [row["home_win_p"], row["draw_p"], row["away_win_p"]], row["winner"]), axis=1) return fixtures_df if __name__ == "__main__": with open('info.json') as f: season = json.load(f)['season'] next_gw = get_next_gw() df = pd.read_csv("data/fivethirtyeight/spi_matches.csv") df = ( df .loc[(df['league_id'] == 2411) | (df['league_id'] == 2412)] ) # Get GW dates fixtures = ( pd.read_csv("data/fpl_official/vaastav/data/2021-22/fixtures.csv") .loc[:, ['event', 'kickoff_time']]) fixtures["kickoff_time"] =
pd.to_datetime(fixtures["kickoff_time"])
pandas.to_datetime
#!/usr/bin/env python """ Fuse csv files into one single file. """ ## file_fuser.py ### fuse individual files into one giant file import pandas as pd import os import argparse from abc import ABCMeta, abstractmethod class CsvFuserAbs(object, metaclass=ABCMeta): ## This object initialized from command line arguments when used in a Python script def __init__(self): ## parse named arguments from command line self.parser = argparse.ArgumentParser() self.parser.add_argument('--inputStart', '-i', help="intput file name starting pattern (only files that match will be fused)", type=str) self.parser.add_argument('--input_index', '-idx', help="enter True if input has an index / Omit this argument if it doesn't", type=bool, default=False) self.parser.add_argument('--output', '-o', help="Name of final output file", type= str) self.parser.add_argument('--output_index', '-odx', help="enter true to output an index / Omit this argument to leave off the index", type=bool, default=False) self.parser.add_argument('--dir', '-d', help="input files directory", type= str, default=".") self.args=self.parser.parse_args() self.pyVer = "3.6.1" self.tmpDF = pd.DataFrame() # holds entire input file when self.tmpDF2 = pd.DataFrame() # DF to get overwritten by each file fragment def fuse_files(self): fileStart = self.args.inputStart # start of filenames to fuse here (assumes all files have a pattern starting with this) outfilename = self.args.output # output file to merge files into path = self.args.dir # directory files are found in print("Input files will be located at: ", path) print("args.input_index is set to:", str(type(self.args.input_index)), self.args.input_index) print("args.output_index is set to:", str(type(self.args.output_index)), self.args.output_index) filesInDir = os.listdir(path) # print(type(filesInDir)) # is list filesInDir.sort() outDF = pd.DataFrame() tmpDF = pd.DataFrame() if self.args.input_index == True: df_input_indx = 0 ## if true - set index column number to index 0 else: df_input_indx = False for name in filesInDir: if name[0:len(fileStart)] == fileStart: # print(name[0:len(fileStart)]) # print(name) print("Adding This File To Output: ", name) tmpDF =
pd.read_csv(name, index_col=df_input_indx)
pandas.read_csv
import pandas as pd import io import lithops from .utils import derived_from, is_series_like, M no_default = "__no_default__" class DataFrame: def __init__(self, df, filepath, npartitions): self.filepath = filepath self.df = df self.npartitions = npartitions def reduction( self, chunk, aggregate=None, combine=None, meta=no_default, token=None, split_every=None, chunk_kwargs=None, aggregate_kwargs=None, combine_kwargs=None, **kwargs, ): """Generic row-wise reductions. Parameters ---------- chunk : callable Function to operate on each partition. Should return a ``pandas.DataFrame``, ``pandas.Series``, or a scalar. aggregate : callable, optional Function to operate on the concatenated result of ``chunk``. If not specified, defaults to ``chunk``. Used to do the final aggregation in a tree reduction. The input to ``aggregate`` depends on the output of ``chunk``. If the output of ``chunk`` is a: - scalar: Input is a Series, with one row per partition. - Series: Input is a DataFrame, with one row per partition. Columns are the rows in the output series. - DataFrame: Input is a DataFrame, with one row per partition. Columns are the columns in the output dataframes. Should return a ``pandas.DataFrame``, ``pandas.Series``, or a scalar. combine : callable, optional Function to operate on intermediate concatenated results of ``chunk`` in a tree-reduction. If not provided, defaults to ``aggregate``. The input/output requirements should match that of ``aggregate`` described above. $META token : str, optional The name to use for the output keys. split_every : int, optional Group partitions into groups of this size while performing a tree-reduction. If set to False, no tree-reduction will be used, and all intermediates will be concatenated and passed to ``aggregate``. Default is 8. chunk_kwargs : dict, optional Keyword arguments to pass on to ``chunk`` only. aggregate_kwargs : dict, optional Keyword arguments to pass on to ``aggregate`` only. combine_kwargs : dict, optional Keyword arguments to pass on to ``combine`` only. kwargs : All remaining keywords will be passed to ``chunk``, ``combine``, and ``aggregate``. Examples -------- >>> import pandas as pd >>> import dask.dataframe as dd >>> df = pd.DataFrame({'x': range(50), 'y': range(50, 100)}) >>> ddf = dd.from_pandas(df, npartitions=4) Count the number of rows in a DataFrame. To do this, count the number of rows in each partition, then sum the results: >>> res = ddf.reduction(lambda x: x.count(), ... aggregate=lambda x: x.sum()) >>> res.compute() x 50 y 50 dtype: int64 Count the number of rows in a Series with elements greater than or equal to a value (provided via a keyword). >>> def count_greater(x, value=0): ... return (x >= value).sum() >>> res = ddf.x.reduction(count_greater, aggregate=lambda x: x.sum(), ... chunk_kwargs={'value': 25}) >>> res.compute() 25 Aggregate both the sum and count of a Series at the same time: >>> def sum_and_count(x): ... return pd.Series({'count': x.count(), 'sum': x.sum()}, ... index=['count', 'sum']) >>> res = ddf.x.reduction(sum_and_count, aggregate=lambda x: x.sum()) >>> res.compute() count 50 sum 1225 dtype: int64 Doing the same, but for a DataFrame. Here ``chunk`` returns a DataFrame, meaning the input to ``aggregate`` is a DataFrame with an index with non-unique entries for both 'x' and 'y'. We groupby the index, and sum each group to get the final result. >>> def sum_and_count(x): ... return pd.DataFrame({'count': x.count(), 'sum': x.sum()}, ... columns=['count', 'sum']) >>> res = ddf.reduction(sum_and_count, ... aggregate=lambda x: x.groupby(level=0).sum()) >>> res.compute() count sum x 50 1225 y 50 3725 """ if aggregate is None: aggregate = chunk if combine is None: if combine_kwargs: raise ValueError("`combine_kwargs` provided with no `combine`") combine = aggregate combine_kwargs = aggregate_kwargs chunk_kwargs = chunk_kwargs.copy() if chunk_kwargs else {} chunk_kwargs["aca_chunk"] = chunk combine_kwargs = combine_kwargs.copy() if combine_kwargs else {} combine_kwargs["aca_combine"] = combine aggregate_kwargs = aggregate_kwargs.copy() if aggregate_kwargs else {} aggregate_kwargs["aca_aggregate"] = aggregate return aca( self, chunk=_reduction_chunk, aggregate=_reduction_aggregate, combine=_reduction_combine, meta=meta, token=token, split_every=split_every, chunk_kwargs=chunk_kwargs, aggregate_kwargs=aggregate_kwargs, combine_kwargs=combine_kwargs, **kwargs, ) def _reduction_agg(self, name, axis=None, skipna=True, split_every=False, out=None): axis = self._validate_axis(axis) meta = getattr(self._meta_nonempty, name)(axis=axis, skipna=skipna) token = self._token_prefix + name method = getattr(M, name) if axis == 1: result = self.map_partitions( method, meta=meta, token=token, skipna=skipna, axis=axis ) return handle_out(out, result) else: result = self.reduction( method, meta=meta, token=token, skipna=skipna, axis=axis, split_every=split_every, ) if isinstance(self, DataFrame): result.divisions = (self.columns.min(), self.columns.max()) return handle_out(out, result) def apply( self, func, axis=0, broadcast=None, raw=False, reduce=None, args=(), meta=no_default, result_type=None, **kwds, ): """Parallel version of pandas.DataFrame.apply This mimics the pandas version except for the following: 1. Only ``axis=1`` is supported (and must be specified explicitly). 2. The user should provide output metadata via the `meta` keyword. Parameters ---------- func : function Function to apply to each column/row axis : {0 or 'index', 1 or 'columns'}, default 0 - 0 or 'index': apply function to each column (NOT SUPPORTED) - 1 or 'columns': apply function to each row $META args : tuple Positional arguments to pass to function in addition to the array/series Additional keyword arguments will be passed as keywords to the function Returns ------- applied : Series or DataFrame Examples -------- >>> import pandas as pd >>> import dask.dataframe as dd >>> df = pd.DataFrame({'x': [1, 2, 3, 4, 5], ... 'y': [1., 2., 3., 4., 5.]}) >>> ddf = dd.from_pandas(df, npartitions=2) Apply a function to row-wise passing in extra arguments in ``args`` and ``kwargs``: >>> def myadd(row, a, b=1): ... return row.sum() + a + b >>> res = ddf.apply(myadd, axis=1, args=(2,), b=1.5) # doctest: +SKIP By default, dask tries to infer the output metadata by running your provided function on some fake data. This works well in many cases, but can sometimes be expensive, or even fail. To avoid this, you can manually specify the output metadata with the ``meta`` keyword. This can be specified in many forms, for more information see ``dask.dataframe.utils.make_meta``. Here we specify the output is a Series with name ``'x'``, and dtype ``float64``: >>> res = ddf.apply(myadd, axis=1, args=(2,), b=1.5, meta=('x', 'f8')) In the case where the metadata doesn't change, you can also pass in the object itself directly: >>> res = ddf.apply(lambda row: row + 1, axis=1, meta=ddf) See Also -------- dask.DataFrame.map_partitions """ pandas_kwargs = {"axis": axis, "raw": raw, "result_type": result_type} if axis == 0: msg = ( "lithops.DataFrame.apply only supports axis=1\n" " Try: df.apply(func, axis=1)" ) raise NotImplementedError(msg) def pandas_apply_function(obj): buf = io.BytesIO(obj.data_stream.read()) df = pd.read_csv(buf) df.apply(func, args=args, **kwds, **pandas_kwargs) fexec = lithops.FunctionExecutor() fexec.map(pandas_apply_function, [self.filepath], chunk_n=self.npartitions) fexec.wait() return self @derived_from(pd.DataFrame) def all(self, axis=None, skipna=True, split_every=False, out=None): def pandas_all_function(obj): buf = io.BytesIO(obj.data_stream.read()) df = pd.read_csv(buf) df.all(axis=axis, skipna=skipna) fexec = lithops.FunctionExecutor() fexec.map(pandas_all_function, [self.filepath], chunk_n=self.npartitions) fexec.wait() return self @derived_from(pd.DataFrame) def any(self, axis=None, skipna=True, split_every=False, out=None): def pandas_any_function(obj): buf = io.BytesIO(obj.data_stream.read()) df =
pd.read_csv(buf)
pandas.read_csv
import numpy as np import matplotlib.pyplot as plt import GPy from gosafeopt import linearly_spaced_combinations from gosafeopt import GoSafeOptPractical import matplotlib.pyplot as plt import matplotlib.cm as cm import pandas as pd import os import time ''' own example ''' plt.rcParams.update({'font.size': 16}) import random #warnings.filterwarnings("ignore") random.seed(10) np.random.seed(10) class mod_sys: """ class used to define 1D nonlinear system """ def __init__(self,k_init=0,x_des=0,high=0.8): self.a = 1.01 self.b = -0.2 self.k = k_init self.state = np.array([[0]]) self.x_des = x_des high_obs = np.array([high]) self.state_limits = list(zip(-high_obs,high_obs)) def reset(self,x_0=None): if x_0 is None: self.state = np.array([[0]]) else: self.state=np.array([[x_0]]) def step(self): v = np.random.normal(0, 1e-4) w = np.random.normal(0, 1e-4) obs = self.state + w action = np.abs(self.k * (obs - self.x_des)) self.state = self.a * np.sqrt(np.abs(self.state)) + self.b * np.sqrt(action) + v def generate_heat_map(n_points): """ Performs grid search to generate a map for the objective and constraint function with respect to the parameters and initial states. """ overall_points=int(3*n_points/5) a1 = np.linspace(-6,6,overall_points) a2=np.linspace(-1,1,n_points-overall_points) a=np.hstack((a1,a2)) a[::-1].sort() x_0 = np.linspace(-0.3,0.3,n_points) sys=mod_sys() n_steps=1000 F=np.zeros([n_points,n_points]) G=np.ones([n_points,n_points])*np.inf for k in range(n_points): for s in range(n_points): sys.reset(x_0[s]) sys.k = a[k] F[k,s]=-sys.state**2 G[k,s]=min(G[k,s],F[k,s]) for j in range(n_steps): sys.step() cost=sys.state**2 F[k,s]=F[k,s]-cost[0] G[k,s]=min(G[k,s],-cost[0]) Data=np.zeros([n_points,2]) Data[:,0]=a Data[:,1]=x_0 return Data,F,G def plot_function(n_points=101): """ Plots the objetive function and safe set. """ a = np.linspace(-6, 6, n_points) sys = mod_sys() n_steps = 1000 f=np.zeros(n_points) g=np.ones(n_points)*np.inf for k in range(n_points): sys.reset() sys.k=a[k] f[k]=-sys.state**2 g[k]=min(g[k],f[k]) for j in range(n_steps): sys.step() cost = sys.state ** 2 f[k] = f[k] - cost[0] g[k] = min(g[k], -cost[0]) fig_g = plt.figure(figsize=(14, 14)) left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 ax = fig_g.add_axes([left, bottom, width, height]) ax.plot(a, g, color="black", label="g") ax.axhline(y=-0.81, color='r', linestyle='-') ax.set_title('Constraint function') ax.set_xlabel('a') ax.set_ylabel('g') ax.set_xlim([-6.5, 6.5]) name = "g.png" fig_g.savefig(name, dpi=300) fig_f = plt.figure(figsize=(14, 14)) left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 ax = fig_f.add_axes([left, bottom, width, height]) ax.plot(a, f, color="black", label="g") ax.axhline(y=-800, color='r', linestyle='-') ax.set_title('objective function') ax.set_xlabel('a') ax.set_ylabel('f') ax.set_xlim([-6.5, 6.5]) name = "f.png" fig_f.savefig(name, dpi=300) class Optimizer(object): """ Defines the optimizer """ def __init__(self,initial_k=1,high=0.9,f_min=-np.inf,num_it=1000,lengthscale=0.5,ARD=True,variance=10000,eta=0.5): self.Fail = False self.at_boundary = False self.sys=mod_sys(high=high) self.high=high self.f_min=f_min self.cost_bound=min(-f_min,num_it) self.sys.k=initial_k self.num_it=num_it self.rollout_values=[0,0] self.rollout_limit = 10 self.rollout_data = [] # Define bounds for parameters bounds = [[-6, 5]] self.horizon_cost = np.zeros(self.num_it + 1) # Simulate to gather initial safe policy self.simulate() y1 = np.array([[self.rollout_values[0]]]) y1 = y1.reshape(-1, 1) y2 = np.array([[self.rollout_values[1]]]) y2 = y2.reshape(-1, 1) L = [lengthscale,0.2] # GPs. a=np.asarray([[self.sys.k]]) x = np.array([[self.sys.k, 0]]) KERNEL_f = GPy.kern.sde_Matern32(input_dim=x.shape[1], lengthscale=L, ARD=ARD,variance=variance) gp_full1 = GPy.models.GPRegression(x, y1, noise_var=0.01**2, kernel=KERNEL_f) #noise_var=0.01**2 KERNEL_g=GPy.kern.sde_Matern32(input_dim=x.shape[1], lengthscale=L, ARD=ARD,variance=1) gp_full2 = GPy.models.GPRegression(x, y2, noise_var=0.01 ** 2, kernel=KERNEL_g) KERNEL_f = GPy.kern.sde_Matern32(input_dim=a.shape[1], lengthscale=lengthscale, ARD=ARD, variance=variance) gp1 = GPy.models.GPRegression(a, y1, noise_var=0.01 ** 2, kernel=KERNEL_f) KERNEL_g = GPy.kern.sde_Matern32(input_dim=a.shape[1], lengthscale=lengthscale * 2, ARD=ARD, variance=1) gp2 = GPy.models.GPRegression(a, y2, noise_var=0.01 ** 2, kernel=KERNEL_g) # Set up optimizer L_states=L[1] self.opt=GoSafeOptPractical(gp=[gp1, gp2],gp_full=[gp_full1,gp_full2],L_states=L_states,bounds=bounds,fmin=[f_min, -high**2],x_0=np.array([[0]]),eta_L=eta,max_S1_steps=30,max_S3_steps=10,eps=0.1,max_data_size=100,reset_size=20) #worked for maxS2_steps=100 params = np.linspace(2, 3, 2) self.initialize_gps(params) self.time_recorded=[] def reset(self,x_0=None): """ Reset system to iniitial state """ self.sys.reset(x_0) self.Fail=False self.at_boundary=False self.rollout_values = [0, 0] self.rollout_data=[] self.horizon_cost = np.zeros(self.num_it + 1) def initialize_gps(self,params): for k in params: self.sys.k=k self.simulate() x = np.array([[self.sys.k, 0]]) y = np.array([[self.rollout_values[0]], [self.rollout_values[1]]]) y = y.squeeze() self.opt.add_new_data_point(x, y) def simulate(self,opt=None,x_0=None): """ Simulate system """ self.reset(x_0) f = -self.sys.state[0] ** 2 g = f self.horizon_cost[0]=f for i in range(self.num_it): if i<self.rollout_limit: x = np.array([[self.sys.k, self.sys.state[0][0]]]) self.rollout_data.append(x) cost, constraint = self.step(opt) if self.Fail: self.rollout_values = [f, g] print("Failed",end=" ") break f =f - cost[0] self.horizon_cost[i+1]=-cost[0] g = min(g, constraint[0]) if not self.Fail: self.rollout_values=[f,g] print("function values",f,g,end=" ") def optimize(self): """ Perform 1 full optimization step """ self.opt.update_boundary_points() start_time = time.time() a = self.opt.optimize() self.time_recorded.append(time.time()-start_time) print(self.opt.criterion,a,end=" ") self.sys.k = a self.simulate(opt=self.opt) x = np.array([[a.squeeze(), self.opt.x_0.squeeze()]]) y = np.array([[self.rollout_values[0]], [self.rollout_values[1]]]) y = y.squeeze() if self.rollout_values[0]<=self.f_min or self.rollout_values[1]<=-self.high**2: print("hit constraint", end= " ") if not self.at_boundary: self.add_data(y) #self.opt.add_new_data_point(x,y) else: self.opt.add_boundary_points(a.reshape(1,-1)) df2 =
pd.DataFrame([[a, self.opt.x_0,self.rollout_values[0][0],self.rollout_values[1][0],self.opt.criterion,self.at_boundary,self.Fail]], columns=['a',"x","f","g","criteria","boundary","Fail"])
pandas.DataFrame
import re import os import pandas as pd import numpy as np def readGas(DataPath, building, building_num, write_data, datafile, floor_area): dateparse = lambda x: pd.datetime.strptime(x, '%d-%b-%y') print('importing gas data from:', DataPath + building + '/Data/' + datafile + '_SubmeteringData.csv') if building_num == 1: # Central House df = pd.read_csv(DataPath + building + '/Data/' + datafile + '_GasData.csv', date_parser=dateparse, header=0, index_col=0) df = df.loc['2013-01-01':'2016-10-01'] # ['2015-09-31':'2016-10-01'] ['2012-01-24':'2016-10-01'] df = df.groupby(df.index.month).mean() # get the monthly mean over multiple years df = pd.concat([df[9:], df[:9]]) # reorder the months to align with the submetered data... rng = pd.date_range(start='09/2016', end='09/2017', freq='M') df = df.set_index(rng) # set new index to align mean monthly gas data with metered electricity df.rename(columns={df.columns[0]: 'Gas'}, inplace=True) return df def readSTM(DataPathSTM, building, building_num, write_data, datafile, floor_area): """ Short Term Monitoring """ if building_num in {0}: dateparseSTM = lambda x: pd.datetime.strptime(x, '%d-%m-%y %H:%M') elif building_num in {1}: dateparseSTM = lambda x: pd.datetime.strptime(x, '%d/%m/%Y %H:%M') if building_num in {0,1}: df_stm = pd.read_csv(DataPathSTM + datafile + '/' + datafile + '_combined.csv', date_parser=dateparseSTM, header=0,index_col=0) else: df_stm = pd.DataFrame() cols = df_stm.columns.tolist() if building_num == 0: # MaletPlaceEngineering cols_new = ['Server GF [GP3]', 'Lighting 2nd', 'Power 2nd', 'Lighting 3rd', 'Power 3rd', 'DB1', 'Lighting 6th', 'Power 6th', 'Power 7th', 'Lighting 7th'] for i, v in enumerate(cols): df_stm.rename(columns={cols[i]: cols_new[i]}, inplace=True) if building_num == 1: # CentralHouse cols_new = ['MCP01', 'B2', 'PV', '3A', '3D', 'B41'] for i, v in enumerate(cols): df_stm.rename(columns={cols[i]: cols_new[i]}, inplace=True) """ Manipulate """ # Created average and standard deviation profiles for the weekday and weekendday for short term monitoring. Interpolated the values to half-hour based on 2hour metering data. df_stm = df_stm.divide(8) # because it's kWh each value needs to be divided by 8 if we go from 2h to 15min frequency df_stm = df_stm[~df_stm.index.duplicated(keep='first')] df_stm = df_stm.reindex(pd.date_range(start=df_stm.index.min(), end=df_stm.index.max(), freq='15Min')) df_stm = df_stm.interpolate(method='linear') return df_stm def readSubmetering(DataPath, building, building_num, building_abr, write_data, datafile, df_stm, floor_area): print(building_abr) print('importing submetering data from:', DataPath + building + '/Data/' + datafile + '_SubmeteringData.csv') if building_abr == 'MPEB': # Malet Place Engineering dateparse = lambda x: pd.datetime.strptime(x, '%Y-%b-%d %H:%M:%S.000') df = pd.read_csv(DataPath + building + '/Data/' + datafile + '_SubmeteringData.csv', date_parser=dateparse, header=0, index_col=0) # Check if there are duplicate index values (of which there are in CH data) and remove them... df = df[~df.index.duplicated(keep='first')] # There are missing indices in the data, reindex the missing indices of which there are only a few and backfill them df = df.reindex(pd.date_range(df.index.min(), df.index.max(), freq='15Min'), method='backfill') df_realweather = pd.DataFrame() cols = df.columns.tolist() df = df.loc['2016-09-01 00:15:00':'2017-08-31'] # ['2016-09-01':'2017-04-30'] cols_new = ['B10', 'B11', 'B12', 'B14', 'B15', 'B16', 'B17', 'B8', 'B9', 'BB4', 'BB3', 'CH1', 'CH2', 'DB5MS', 'GP2', 'Dynamo', 'Fire Lift', 'Lift Panel', 'Lift P1', 'LV1', 'LV2', 'LV3', 'MCCB03', 'MCCB01', 'BB2', 'BB1'] # print(pd.DataFrame([df.columns, cols_new]).T) # stm cols [server excluded...,'2L','2P','3L','3P','DB1','6L','6P','7P','7L'] for i, v in enumerate(cols): df.rename(columns={cols[i]: cols_new[i]}, inplace=True) df_stm = pd.concat([df_stm], axis=1, join_axes=[df.index]) # set the short term monitoring to the same axis df = pd.concat([df, df_stm], axis=1) # df = df.convert_objects(convert_numeric=True).fillna(0) df[df < 0] = 0 # set negative values (LV3) to 0 df_MPEB = pd.concat([df[['LV1', 'LV2']]], axis=1) df_MPEB = df_MPEB.sum(axis=1) df_MPEB = df_MPEB.sum(axis=0) print('df_MPEB total kWh/m2a:', df_MPEB / floor_area) # real LV metered df_LV1_real = df['LV1'] df_LV2_real = df['LV2'] df_mains = pd.DataFrame(pd.concat([df_LV1_real, df_LV2_real], axis=1).sum(axis=1), columns=['Mains']) df_workshops = pd.DataFrame(pd.concat([df[['BB4', 'BB3', 'LV3', 'GP2']]], axis=1).sum(axis=1), columns=['Workshops']) df_lifts = pd.DataFrame(pd.concat([df[['Fire Lift', 'Lift Panel']]], axis=1).sum(axis=1), columns=['Lifts']) df_mech = pd.DataFrame(pd.concat([df[['MCCB03', 'Dynamo', 'MCCB01']]], axis=1).sum(axis=1), columns=['Systems']) df_chillers = pd.DataFrame(pd.concat([df[['CH1', 'CH2']]]).sum(axis=1), columns=['Chillers']) # Lighting and Power df_BB2 = pd.DataFrame(pd.concat([df[['Lighting 6th', 'Power 6th', 'Lighting 7th', 'Power 7th']].sum(axis=1), pd.DataFrame(df[['Lighting 7th', 'Power 6th']].sum(axis=1) * 3)], axis=1).sum( axis=1), columns=['BB2 L&P']) df_BB1 = pd.DataFrame(pd.concat([df[['Lighting 2nd', 'Power 2nd', 'Lighting 3rd', 'Power 3rd']].sum(axis=1), pd.DataFrame(df[['Lighting 6th', 'Power 6th']].sum(axis=1) * 2)], axis=1).sum( axis=1), columns=['BB1 L&P']) df_BB1_surplus = df['BB1'] - df['DB1'] - df['Server GF [GP3]'] - df_BB1['BB1 L&P'] df_BB2_surplus = df['BB2'] - df_BB2['BB2 L&P'] print('Busbar 1') print('BB1', df['BB1'].sum(axis=0) / floor_area) print('DB1', df['DB1'].sum(axis=0) / floor_area) print('GP3', df['Server GF [GP3]'].sum(axis=0) / floor_area) print('BB1 L&P', df_BB1['BB1 L&P'].sum(axis=0) / floor_area) print('BB1remaining', df_BB1_surplus.sum(axis=0) / floor_area) print('LP on 6th', pd.DataFrame(df[['Lighting 6th', 'Power 6th']]).sum(axis=1).sum(axis=0) / floor_area) print('LP on 2 and 3rd', df[['Lighting 2nd', 'Power 2nd', 'Lighting 3rd', 'Power 3rd']].sum(axis=1).sum(axis=0) / floor_area) print('Busbar 2') print('BB2', df['BB2'].sum(axis=0) / floor_area) print('BB2 L&P', df_BB2['BB2 L&P'].sum(axis=0) / floor_area) print('BB2remaining', df_BB2_surplus.sum(axis=0) / floor_area) print(((df_BB1_surplus.sum(axis=0) / floor_area) + (df_BB2_surplus.sum(axis=0) / floor_area)) / ( df['DB1'].sum(axis=0) / floor_area)) print(((df_BB1_surplus.sum(axis=0) / floor_area) + (df_BB2_surplus.sum(axis=0) / floor_area)) / df['DB1'].sum( axis=0) / floor_area) df_lp = pd.DataFrame(pd.concat([df_BB1['BB1 L&P'], df_BB2['BB2 L&P']], axis=1).sum(axis=1), columns=['floors L&P']) surplus_basedonDB1 = df['DB1'] * ((((df_BB1_surplus.sum(axis=0) / floor_area) + ( df_BB2_surplus.sum(axis=0) / floor_area)) / (df['DB1'].sum(axis=0) / floor_area)) / 10) # keep within 20% of the mean. surplus_basedonDB1[ surplus_basedonDB1 < surplus_basedonDB1.mean() - 0.2 * surplus_basedonDB1.mean()] = surplus_basedonDB1.mean() # remove negative values.. surplus_basedonDB1[ surplus_basedonDB1 > surplus_basedonDB1.mean() + 0.2 * surplus_basedonDB1.mean()] = surplus_basedonDB1.mean() # remove negative values.. df_BB1and2 = pd.DataFrame( df[['BB1', 'BB2']].sum(axis=1) - surplus_basedonDB1 - df['Server GF [GP3]'] - df['DB1'], columns=['L&P']) # scaled_daily(df_BB1and2.resample('30Min').sum(), building_label='MPEB', building_abr='MPEB', day_type='three', scale=False, time_interval='30Min') surplus = pd.concat([df_BB1_surplus + df_BB2_surplus], axis=1) # determine server based on difference between LV2 and dissaggregated LV2. df_LV2_aggregate = pd.concat([df[['BB1', 'BB2', 'CH2', 'MCCB01', 'GP2']]], axis=1) # LV2, missing Fire alam and DB409 (big server) df_LV2_aggregate = df_LV2_aggregate.sum(axis=1) df_bigserver = pd.DataFrame(df_LV2_real - df_LV2_aggregate, columns=[ 'DB409']) # difference between LV2 and LV2 dissaggregated is the difference, which should be the server. df_bigserver[df_bigserver < 0] = 0 # remove negative values... df_bigserver = pd.DataFrame( pd.concat([df_bigserver, surplus_basedonDB1, df['Server GF [GP3]'], df['DB1']], axis=1).sum(axis=1), columns=['DB409']) print(df_bigserver.sum(axis=0) / floor_area, 'kWh/m2a') df_floorsLP = pd.DataFrame(pd.concat([df[['BB1', 'BB2']]], axis=1).sum(axis=1), columns=['L&P']) df_floorsLP['L&P'] = df_floorsLP['L&P'] - df['Server GF [GP3]'] df_floorsLP = pd.DataFrame(pd.concat([df_BB1, df_BB2], axis=1).sum(axis=1), columns=['L&P']) df_servers = pd.DataFrame(pd.concat([df_bigserver, df[['Server GF [GP3]']]], axis=1).sum(axis=1), columns=['Servers']) print("Average kWh per day for the server DB409 = " + str(df_bigserver.mean())) df_LVL1 = pd.concat([df_BB1and2, df_chillers, df_mech, df_servers, df_workshops], axis=1) # LV1, missing LV1A, PF LV1 print('Workshops', df_workshops.values.sum() / floor_area, 'servers', df_servers.values.sum() / floor_area, 'Lifts', df_lifts.values.sum() / floor_area) print('lift', df['Lift P1'].values.sum() / floor_area) print('GP2', df['GP2'].values.sum() / floor_area) print('DB5MS', df['DB5MS'].values.sum() / floor_area) # diff between BB3 aggregated and separate df_BB3 = df[['B9', 'B10', 'B14', 'B15', 'B8']] # these combined form Busbar-2 (BB3) df_BB4 = df[['B12', 'B16', 'B17', 'B11']] # these combined form Busbar-1 (BB4) # excludes B13 df_BB3and4 = pd.concat([df_BB3, df_BB4], axis=1) df_BB3and4 = df_BB3and4.sum(axis=1) df_BB3and4real = pd.concat([df['BB2'], df['BB1']], axis=1) df = pd.concat([df, df_bigserver], axis=1) if building_abr == 'CH': # CentralHouse dateparse = lambda x: pd.datetime.strptime(x, '%Y-%b-%d %H:%M:%S.000') df = pd.read_csv(DataPath + building + '/Data/' + datafile + '_SubmeteringData.csv', date_parser=dateparse, header=0, index_col=0) # Check if there are duplicate index values (of which there are in CH data) and remove them... df = df[~df.index.duplicated(keep='first')] # There are missing indices in the data, reindex the missing indices of which there are only a few and backfill them df = df.reindex(pd.date_range(df.index.min(), df.index.max(), freq='15Min'), method='backfill') df_realweather = pd.DataFrame() df = df.loc['2016-09-01':'2017-08-31'] # Naming # cols_new = ['BB2', 'LIFT1', 'LIFT2', 'LIFT3', 'B1', 'B4', 'BB1', 'LIFT4', 'DB21', 'R1', 'Server [B5]', 'R2', # 'G2', 'G1', 'B31', 'B32', 'B44', 'B52', 'B54', 'B53', # 'B62', 'B64', 'B11', 'B12', 'B21', 'B22', 'B43', 'B42', 'B51', # 'B61', 'MP1'] cols = df.columns.tolist() # STM ['MCP01', 'B2', 'PV', '3A', '3D', 'B41'] cols_new = ['BB2', 'LIFT1', 'LIFT2', 'LIFT3', 'B1', 'B4', 'BB1', 'LIFT4', 'DB21', 'R1', 'Server', 'R2', 'G2', 'G1', 'B31', 'B32', 'B44', 'B52', 'B54', 'B53', 'B62', 'B64', 'B11', 'B12', 'B21', 'B22', 'B43', 'B42', 'B51', 'B61', 'MP1'] for i, v in enumerate(cols): df.rename(columns={cols[i]: cols_new[i]}, inplace=True) df_m = df.resample('M').sum() df_m_sum = df_m.mean(axis=0) # combine B1 and B2 and B4 (boiler house L&P) as Basement L&P df_basementLP = pd.concat([df[['B1', 'B4']], df_stm[['B2']]], axis=1, join_axes=[df.index]) df_basementLP = pd.DataFrame(df_basementLP.sum(axis=1), columns=['L&P Basement']) # combine L&P per floor df_groundLP = df[['G1', 'G2']] df_groundLP = pd.DataFrame(df_groundLP.sum(axis=1), columns=['L&P Ground floor']) # first floor lighting and power df_firstLP = df[['B12', 'B11']] df_firstLP = pd.DataFrame(df_firstLP.sum(axis=1), columns=['L&P 1st floor']) # second floor lighting and power df_secondLP = df[['B21', 'B22']] df_secondLP = pd.DataFrame(df_secondLP.sum(axis=1), columns=['L&P 2nd floor']) # third floor lighting and power df_thirdLP = pd.concat([df[['B31', 'B32']], df_stm[['3A', '3D']]], axis=1, join_axes=[df.index]) df_thirdLP = pd.DataFrame(df_thirdLP.sum(axis=1), columns=['L&P 3rd floor']) # fourth floor lighting and power df_fourthLP = pd.concat([df[['B42', 'B43', 'B44']], df_stm[['B41']]], axis=1, join_axes=[df.index]) df_fourthLP = pd.DataFrame(df_fourthLP.sum(axis=1), columns=['L&P 4th floor']) # [B41, B42] # fifth floor lighting and power df_fifthLP = df[['B51', 'B53', 'B54']] df_fifthLP = pd.DataFrame(df_fifthLP.sum(axis=1), columns=['L&P 5th floor']) # sixth floor lighting and power df_sixthLP = df[['B61', 'B62']] df_sixthLP = pd.DataFrame(df_sixthLP.sum(axis=1), columns=['L&P 6th floor']) # combine Lifts 1-4 df_lifts = pd.DataFrame(df[['LIFT1', 'LIFT2', 'LIFT3', 'LIFT4']].sum(axis=1), columns=['Lifts']) # combine R1, R2 and MCP01 as systems df_mech = pd.concat([df[['R1', 'R2']], df_stm[['MCP01']]], axis=1, join_axes=[df.index]) df_mech = pd.DataFrame(df_mech.sum(axis=1), columns=['Systems']) df_BBs = pd.concat([df[['BB1', 'BB2']], df_basementLP], axis=1, join_axes=[df.index]) df_BBs = df_BBs.sum(axis=1) df_BBs = pd.DataFrame(df_BBs) df_BBs.rename(columns={df_BBs.columns[0]: 'L&P'}, inplace=True) # R1, R2', MCP01 df_BB1 = df[['G1', 'B11', 'B21', 'B61', 'B42']] df_BB2 = pd.concat([df[['G2', 'B12', 'B22', 'B51', 'B62']], df_stm[['B41']]], axis=1, join_axes=[df.index]) df_lighting = pd.concat([df[['B31', 'B62']], df_stm[['B41']]], axis=1, join_axes=[df.index]) # is this correct? df_MP1_real = df['MP1'] df_floorsLP = pd.concat( [df_basementLP, df_groundLP, df_firstLP, df_secondLP, df_thirdLP, df_fourthLP, df_fifthLP, df_sixthLP], axis=1) # B3 is not measured... (should be small) df_floorsLP_sum = pd.concat([df_floorsLP, df[['Server']], df_lifts], axis=1) df_floorsLP_sum = pd.DataFrame(df_floorsLP_sum.sum(axis=1), columns=['L&P']) df_LVL1 = pd.concat([df_floorsLP_sum, df_mech], axis=1, join_axes=[df.index]) # B3 is not measured... (should be small) df_stm = pd.concat([df_stm], axis=1, join_axes=[df.index]) df_mains = pd.DataFrame( pd.concat([df[['MP1']], df[['B31', 'B32']], df_stm[['3A', '3D']]], axis=1, join_axes=[df.index]).sum( axis=1), columns=['Mains']) if building_abr == '17': # 17 dateparse = lambda x: pd.datetime.strptime(x, '%d-%m-%y %H:%M') # for pilot study # df = pd.read_csv(DataPath + building + '/Data/17_actual_clean.csv', date_parser=dateparse, header=0, index_col=0) df = pd.read_csv(DataPath + building + '/Data/17_SubmeteringData.csv', date_parser=dateparse, header=0, index_col=0) # Check if there are duplicate index values (of which there are in CH data) and remove them... df = df[~df.index.duplicated(keep='first')] # There are missing indices in the data, reindex the missing indices of which there are only a few and backfill them df = df.reindex(pd.date_range(df.index.min(), df.index.max(), freq='30Min'), method='backfill') df_realweather = pd.DataFrame() df = df[:-1] cols = df.columns.tolist() print(df.columns) cols_new = ['Gas', 'B_Power', 'B_Lights', 'B_AC', 'Print', 'Canteen', 'GF_Lights', 'Servers', 'GF_Power', '1st_Lights', 'GF_AC', 'Lift', '1st_Power', '2nd_Lights', '2nd_Power'] for i, v in enumerate(cols): df.rename(columns={cols[i]: cols_new[i]}, inplace=True) # ['Gas', 'B_Power', 'B_Lights', 'B_AC', 'Print', 'Canteen', 'Server', 'GF_Power', 'GF_Lights', 'GF_AC', 'Lift', '1st_Power', '1st_Lights', '2nd_Power', '2nd_Lights'] df_lights = pd.concat([df[['B_Lights', 'GF_Lights', '1st_Lights', '2nd_Lights']]], axis=1) df_lights = pd.DataFrame(df_lights.sum(axis=1), columns=['Lights']) df_mech = pd.concat([df[['B_AC', 'GF_AC']]], axis=1) df_mech = pd.DataFrame(df_mech.sum(axis=1), columns=['AC']) df_power = pd.concat([df[['B_Power', 'GF_Power', '1st_Power', '2nd_Power']]], axis=1) df_power = pd.DataFrame(df_power.sum(axis=1), columns=['Power']) # L&P df_floorsLP = pd.concat([df[['B_Power', 'B_Lights', 'GF_Power', 'GF_Lights', '1st_Power', '1st_Lights', '2nd_Power', '2nd_Lights']]], axis=1) # B3 is not measured... (should be small) df_LVL1 = pd.concat([df_lights, df_power, df[['Gas', 'Servers', 'Canteen', 'Print']]], axis=1) df_mains = pd.DataFrame(
pd.concat([df_lights, df_power, df[['Servers', 'Canteen', 'Print']]], axis=1)
pandas.concat
#!usr/bin/env python3 # -*- coding:utf-8 -*- # @time : 2021/2/19 16:24 # @author : <NAME> import os import pickle import warnings from functools import reduce, partial # from pathos.multiprocessing import ProcessPool as Pool from multiprocessing import Pool import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler warnings.filterwarnings('ignore') class xgb_model(): def __init__(self, model_file, ifps, labels): # get file self.model_file = model_file # train model if not os.path.exists(self.model_file): print('model file not exist') # train print('start training......') clf = self.train_xgb(ifps, labels) # save self.save_model(clf) # load model print('load model......') self.model = self.load_model() def train_xgb(self, ifps, labels, hyper_rounds=20): from sklearn.model_selection import cross_val_score, StratifiedKFold from xgboost import XGBClassifier from hyperopt import hp, fmin, tpe # 超参数寻优 def model(hyper_parameter): # 待寻优函数 clf = XGBClassifier(**hyper_parameter, n_jobs=28, random_state=42) e = cross_val_score(clf, ifps, labels, cv=StratifiedKFold(n_splits=5, shuffle=True, random_state=42), n_jobs=1, scoring='f1').mean() print(f'Mean F1 socre:{e:.3f}') return -e hyper_parameter = {'n_estimators': hp.choice('n_estimators', range(100, 301, 10)), 'max_depth': hp.choice('max_depth', range(3, 11)), 'learning_rate': hp.loguniform('learning_rate', 1e-8, 0.1), 'reg_lambda': hp.loguniform('reg_lambda', 0.5, 3)} # 选择要优化的超参数 # 创建对应的超参数列表 estimators = [i for i in range(100, 301, 10)] depth = [i for i in range(3, 11)] # 寻优 best = fmin(model, hyper_parameter, algo=tpe.suggest, max_evals=hyper_rounds, rstate=np.random.RandomState(42)) # 寻找model()函数的最小值,计算次数为100次 # 训练 clf = XGBClassifier(n_estimators=estimators[best['n_estimators']], max_depth=depth[best['max_depth']], learning_rate=best['learning_rate'], reg_lambda=best['reg_lambda'], n_jobs=-1, random_state=42) # 定义分类器 clf.fit(X=ifps, y=labels) return clf def save_model(self, clf): with open(self.model_file, 'wb') as f: pickle.dump(clf, f) def load_model(self): with open(self.model_file, 'rb') as f: return pickle.load(f) def predict(self, x): model = self.load_model() pred_y = model.predict(x) pred_proba = model.predict_proba(x) return pred_y, pred_proba.T[1] def metric(self, pred_proba, pred_y, y_true): from sklearn.metrics import f1_score, accuracy_score, roc_auc_score, recall_score, precision_score, confusion_matrix f1_ = f1_score(pred_y, y_true) acc = accuracy_score(pred_y, y_true) roc_auc_ = roc_auc_score(y_true, pred_proba) recall = recall_score(y_true=y_true, y_pred=pred_y) precision = precision_score(y_true=y_true, y_pred=pred_y) tn, fp, fn, tp = confusion_matrix(y_true, pred_y).ravel() print( f'---------------metric---------------\nF1_score:{f1_:.3f} || Accuracy:{acc:.3f} || ROC_AUC:{roc_auc_:.3f}|| Recall:{recall:.3f} || Precision:{precision:.3f}\nTN:{tn:.3f} || FP:{fp:.3f} || FN:{fn:.3f}|| TP:{tp:.3f}') def get_des_label(csv_file, des_type): # read_file df = pd.read_csv(csv_file, encoding='utf-8').dropna() # add label df_ac = df[df.iloc[:, 0].str.contains('_0')] df_ac['label'] = np.ones((len(df_ac))) df_inac = df[~df.iloc[:, 0].str.contains('_0')] df_inac['label'] = np.zeros((len(df_inac))) # merge df = df_ac.append(df_inac, sort=False) # get data if des_type == 'sp': df = df.iloc[:, [0] + list(range(7, 19))] return df def get_top_n(molecule_name, df, top_n=50, ascending=True): df = df[df.iloc[:, 0].str.startswith(f'{molecule_name}_')] df_seed =
pd.DataFrame(df.iloc[0, :])
pandas.DataFrame
from non_feature_based.opencrowd_gibbs import sampler import pandas as pd import numpy as np from sklearn.metrics import accuracy_score,roc_auc_score def gete2t(train_size,truth_labels): e2t = {} for example in range(train_size): e2t[example] = truth_labels[example] return e2t def run_experiment(epochs, file_out, value_range, value_name, param): ground_truth = pd.factorize(
pd.read_csv(param['labels_file'],sep=",")
pandas.read_csv
from collections import abc, deque from decimal import Decimal from io import StringIO from warnings import catch_warnings import numpy as np from numpy.random import randn import pytest from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, concat, date_range, read_csv, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal @pytest.fixture(params=[True, False]) def sort(request): """Boolean sort keyword for concat and DataFrame.append.""" return request.param class TestConcatenate: def test_concat_copy(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for b in result._mgr.blocks: assert b.values.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is df._mgr.blocks[0].values.base elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is None elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None def test_concat_with_group_keys(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] def test_concat_dataframe_keys_bug(self, sort): t1 = DataFrame( {"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))} ) t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))}) # it works result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort) assert list(result.columns) == [("t1", "value"), ("t2", "value")] def test_concat_series_partial_columns_names(self): # GH10698 foo = Series([1, 2], name="foo") bar = Series([1, 2]) baz = Series([4, 5]) result = concat([foo, bar, baz], axis=1) expected = DataFrame( {"foo": [1, 2], 0: [1, 2], 1: [4, 5]}, columns=["foo", 0, 1] ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, keys=["red", "blue", "yellow"]) expected = DataFrame( {"red": [1, 2], "blue": [1, 2], "yellow": [4, 5]}, columns=["red", "blue", "yellow"], ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, ignore_index=True) expected = DataFrame({0: [1, 2], 1: [1, 2], 2: [4, 5]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result = concat(frames, axis=1) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1) tm.assert_frame_equal(result, expected) keys = ["baz", "foo", "bar"] result = concat(frames, keys=keys) expected = concat([frames[k] for k in keys], keys=keys) tm.assert_frame_equal(result, expected) def test_concat_ignore_index(self, sort): frame1 = DataFrame( {"test1": ["a", "b", "c"], "test2": [1, 2, 3], "test3": [4.5, 3.2, 1.2]} ) frame2 = DataFrame({"test3": [5.2, 2.2, 4.3]}) frame1.index = Index(["x", "y", "z"]) frame2.index = Index(["x", "y", "q"]) v1 = concat([frame1, frame2], axis=1, ignore_index=True, sort=sort) nan = np.nan expected = DataFrame( [ [nan, nan, nan, 4.3], ["a", 1, 4.5, 5.2], ["b", 2, 3.2, 2.2], ["c", 3, 1.2, nan], ], index=Index(["q", "x", "y", "z"]), ) if not sort: expected = expected.loc[["x", "y", "z", "q"]] tm.assert_frame_equal(v1, expected) @pytest.mark.parametrize( "name_in1,name_in2,name_in3,name_out", [ ("idx", "idx", "idx", "idx"), ("idx", "idx", None, None), ("idx", None, None, None), ("idx1", "idx2", None, None), ("idx1", "idx1", "idx2", None), ("idx1", "idx2", "idx3", None), (None, None, None, None), ], ) def test_concat_same_index_names(self, name_in1, name_in2, name_in3, name_out): # GH13475 indices = [ Index(["a", "b", "c"], name=name_in1), Index(["b", "c", "d"], name=name_in2), Index(["c", "d", "e"], name=name_in3), ] frames = [ DataFrame({c: [0, 1, 2]}, index=i) for i, c in zip(indices, ["x", "y", "z"]) ] result = pd.concat(frames, axis=1) exp_ind = Index(["a", "b", "c", "d", "e"], name=name_out) expected = DataFrame( { "x": [0, 1, 2, np.nan, np.nan], "y": [np.nan, 0, 1, 2, np.nan], "z": [np.nan, np.nan, 0, 1, 2], }, index=exp_ind, ) tm.assert_frame_equal(result, expected) def test_concat_multiindex_with_keys(self): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["first", "second"], ) frame = DataFrame( np.random.randn(10, 3), index=index, columns=Index(["A", "B", "C"], name="exp"), ) result = concat([frame, frame], keys=[0, 1], names=["iteration"]) assert result.index.names == ("iteration",) + index.names tm.assert_frame_equal(result.loc[0], frame) tm.assert_frame_equal(result.loc[1], frame) assert result.index.nlevels == 3 def test_concat_multiindex_with_none_in_index_names(self): # GH 15787 index = pd.MultiIndex.from_product([[1], range(5)], names=["level1", None]) df = DataFrame({"col": range(5)}, index=index, dtype=np.int32) result = concat([df, df], keys=[1, 2], names=["level2"]) index = pd.MultiIndex.from_product( [[1, 2], [1], range(5)], names=["level2", "level1", None] ) expected = DataFrame({"col": list(range(5)) * 2}, index=index, dtype=np.int32) tm.assert_frame_equal(result, expected) result = concat([df, df[:2]], keys=[1, 2], names=["level2"]) level2 = [1] * 5 + [2] * 2 level1 = [1] * 7 no_name = list(range(5)) + list(range(2)) tuples = list(zip(level2, level1, no_name)) index = pd.MultiIndex.from_tuples(tuples, names=["level2", "level1", None]) expected = DataFrame({"col": no_name}, index=index, dtype=np.int32) tm.assert_frame_equal(result, expected) def test_concat_keys_and_levels(self): df = DataFrame(np.random.randn(1, 3)) df2 = DataFrame(np.random.randn(1, 4)) levels = [["foo", "baz"], ["one", "two"]] names = ["first", "second"] result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, names=names, ) expected = concat([df, df2, df, df2]) exp_index = MultiIndex( levels=levels + [[0]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 0, 0]], names=names + [None], ) expected.index = exp_index tm.assert_frame_equal(result, expected) # no names result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, ) assert result.index.names == (None,) * 3 # no levels result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], names=["first", "second"], ) assert result.index.names == ("first", "second", None) tm.assert_index_equal( result.index.levels[0], Index(["baz", "foo"], name="first") ) def test_concat_keys_levels_no_overlap(self): # GH #1406 df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) msg = "Values not found in passed level" with pytest.raises(ValueError, match=msg): concat([df, df], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) msg = "Key one not in level" with pytest.raises(ValueError, match=msg): concat([df, df2], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) def test_concat_rename_index(self): a = DataFrame( np.random.rand(3, 3), columns=list("ABC"), index=Index(list("abc"), name="index_a"), ) b = DataFrame( np.random.rand(3, 3), columns=list("ABC"), index=Index(list("abc"), name="index_b"), ) result = concat([a, b], keys=["key0", "key1"], names=["lvl0", "lvl1"]) exp = concat([a, b], keys=["key0", "key1"], names=["lvl0"]) names = list(exp.index.names) names[1] = "lvl1" exp.index.set_names(names, inplace=True) tm.assert_frame_equal(result, exp) assert result.index.names == exp.index.names def test_crossed_dtypes_weird_corner(self): columns = ["A", "B", "C", "D"] df1 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="f8"), "B": np.array([1, 2, 3, 4], dtype="i8"), "C": np.array([1, 2, 3, 4], dtype="f8"), "D": np.array([1, 2, 3, 4], dtype="i8"), }, columns=columns, ) df2 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="i8"), "B": np.array([1, 2, 3, 4], dtype="f8"), "C": np.array([1, 2, 3, 4], dtype="i8"), "D": np.array([1, 2, 3, 4], dtype="f8"), }, columns=columns, ) appended = df1.append(df2, ignore_index=True) expected = DataFrame( np.concatenate([df1.values, df2.values], axis=0), columns=columns ) tm.assert_frame_equal(appended, expected) df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) result = concat([df, df2], keys=["one", "two"], names=["first", "second"]) assert result.index.names == ("first", "second") def test_dups_index(self): # GH 4771 # single dtypes df = DataFrame( np.random.randint(0, 10, size=40).reshape(10, 4), columns=["A", "A", "C", "C"], ) result = concat([df, df], axis=1) tm.assert_frame_equal(result.iloc[:, :4], df) tm.assert_frame_equal(result.iloc[:, 4:], df) result = concat([df, df], axis=0) tm.assert_frame_equal(result.iloc[:10], df) tm.assert_frame_equal(result.iloc[10:], df) # multi dtypes df = concat( [ DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]), DataFrame( np.random.randint(0, 10, size=20).reshape(10, 2), columns=["A", "C"] ), ], axis=1, ) result = concat([df, df], axis=1) tm.assert_frame_equal(result.iloc[:, :6], df) tm.assert_frame_equal(result.iloc[:, 6:], df) result = concat([df, df], axis=0) tm.assert_frame_equal(result.iloc[:10], df) tm.assert_frame_equal(result.iloc[10:], df) # append result = df.iloc[0:8, :].append(df.iloc[8:]) tm.assert_frame_equal(result, df) result = df.iloc[0:8, :].append(df.iloc[8:9]).append(df.iloc[9:10]) tm.assert_frame_equal(result, df) expected = concat([df, df], axis=0) result = df.append(df) tm.assert_frame_equal(result, expected) def test_with_mixed_tuples(self, sort): # 10697 # columns have mixed tuples, so handle properly df1 = DataFrame({"A": "foo", ("B", 1): "bar"}, index=range(2)) df2 = DataFrame({"B": "foo", ("B", 1): "bar"}, index=range(2)) # it works concat([df1, df2], sort=sort) def test_handle_empty_objects(self, sort): df = DataFrame(np.random.randn(10, 4), columns=list("abcd")) baz = df[:5].copy() baz["foo"] = "bar" empty = df[5:5] frames = [baz, empty, empty, df[5:]] concatted = concat(frames, axis=0, sort=sort) expected = df.reindex(columns=["a", "b", "c", "d", "foo"]) expected["foo"] = expected["foo"].astype("O") expected.loc[0:4, "foo"] = "bar" tm.assert_frame_equal(concatted, expected) # empty as first element with time series # GH3259 df = DataFrame( dict(A=range(10000)), index=date_range("20130101", periods=10000, freq="s") ) empty = DataFrame() result = concat([df, empty], axis=1) tm.assert_frame_equal(result, df) result = concat([empty, df], axis=1) tm.assert_frame_equal(result, df) result = concat([df, empty]) tm.assert_frame_equal(result, df) result = concat([empty, df]) tm.assert_frame_equal(result, df) def test_concat_mixed_objs(self): # concat mixed series/frames # G2385 # axis 1 index = date_range("01-Jan-2013", periods=10, freq="H") arr = np.arange(10, dtype="int64") s1 = Series(arr, index=index) s2 = Series(arr, index=index) df = DataFrame(arr.reshape(-1, 1), index=index) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 0] ) result = concat([df, df], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 1] ) result = concat([s1, s2], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, s2, s1], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 5).reshape(-1, 5), index=index, columns=[0, 0, 1, 2, 3] ) result = concat([s1, df, s2, s2, s1], axis=1) tm.assert_frame_equal(result, expected) # with names s1.name = "foo" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, 0] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) s2.name = "bar" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, "bar"] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) # ignore index expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, df, s2], axis=1, ignore_index=True) tm.assert_frame_equal(result, expected) # axis 0 expected = DataFrame( np.tile(arr, 3).reshape(-1, 1), index=index.tolist() * 3, columns=[0] ) result = concat([s1, df, s2]) tm.assert_frame_equal(result, expected) expected = DataFrame(np.tile(arr, 3).reshape(-1, 1), columns=[0]) result = concat([s1, df, s2], ignore_index=True) tm.assert_frame_equal(result, expected) def test_empty_dtype_coerce(self): # xref to #12411 # xref to #12045 # xref to #11594 # see below # 10571 df1 = DataFrame(data=[[1, None], [2, None]], columns=["a", "b"]) df2 = DataFrame(data=[[3, None], [4, None]], columns=["a", "b"]) result = concat([df1, df2]) expected = df1.dtypes tm.assert_series_equal(result.dtypes, expected) def test_dtype_coerceion(self): # 12411 df = DataFrame({"date": [pd.Timestamp("20130101").tz_localize("UTC"), pd.NaT]}) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) # 12045 import datetime df = DataFrame( {"date": [datetime.datetime(2012, 1, 1), datetime.datetime(1012, 1, 2)]} ) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) # 11594 df = DataFrame({"text": ["some words"] + [None] * 9}) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) def test_concat_series(self): ts = tm.makeTimeSeries() ts.name = "foo" pieces = [ts[:5], ts[5:15], ts[15:]] result = concat(pieces) tm.assert_series_equal(result, ts) assert result.name == ts.name result = concat(pieces, keys=[0, 1, 2]) expected = ts.copy() ts.index = DatetimeIndex(np.array(ts.index.values, dtype="M8[ns]")) exp_codes = [np.repeat([0, 1, 2], [len(x) for x in pieces]), np.arange(len(ts))] exp_index = MultiIndex(levels=[[0, 1, 2], ts.index], codes=exp_codes) expected.index = exp_index tm.assert_series_equal(result, expected) def test_concat_series_axis1(self, sort=sort): ts = tm.makeTimeSeries() pieces = [ts[:-2], ts[2:], ts[2:-2]] result = concat(pieces, axis=1) expected = DataFrame(pieces).T tm.assert_frame_equal(result, expected) result = concat(pieces, keys=["A", "B", "C"], axis=1) expected = DataFrame(pieces, index=["A", "B", "C"]).T tm.assert_frame_equal(result, expected) # preserve series names, #2489 s = Series(randn(5), name="A") s2 = Series(randn(5), name="B") result = concat([s, s2], axis=1) expected = DataFrame({"A": s, "B": s2}) tm.assert_frame_equal(result, expected) s2.name = None result = concat([s, s2], axis=1) tm.assert_index_equal(result.columns, Index(["A", 0], dtype="object")) # must reindex, #2603 s = Series(randn(3), index=["c", "a", "b"], name="A") s2 = Series(randn(4), index=["d", "a", "b", "c"], name="B") result = concat([s, s2], axis=1, sort=sort) expected = DataFrame({"A": s, "B": s2}) tm.assert_frame_equal(result, expected) def test_concat_series_axis1_names_applied(self): # ensure names argument is not ignored on axis=1, #23490 s = Series([1, 2, 3]) s2 = Series([4, 5, 6]) result = concat([s, s2], axis=1, keys=["a", "b"], names=["A"]) expected = DataFrame( [[1, 4], [2, 5], [3, 6]], columns=Index(["a", "b"], name="A") ) tm.assert_frame_equal(result, expected) result = concat([s, s2], axis=1, keys=[("a", 1), ("b", 2)], names=["A", "B"]) expected = DataFrame( [[1, 4], [2, 5], [3, 6]], columns=MultiIndex.from_tuples([("a", 1), ("b", 2)], names=["A", "B"]), ) tm.assert_frame_equal(result, expected) def test_concat_single_with_key(self): df = DataFrame(np.random.randn(10, 4)) result = concat([df], keys=["foo"]) expected = concat([df, df], keys=["foo", "bar"]) tm.assert_frame_equal(result, expected[:10]) def test_concat_exclude_none(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df[:5], None, None, df[5:]] result = concat(pieces) tm.assert_frame_equal(result, df) with pytest.raises(ValueError, match="All objects passed were None"): concat([None, None]) def test_concat_timedelta64_block(self): from pandas import to_timedelta rng = to_timedelta(np.arange(10), unit="s") df = DataFrame({"time": rng}) result = concat([df, df]) assert (result.iloc[:10]["time"] == rng).all() assert (result.iloc[10:]["time"] == rng).all() def test_concat_keys_with_none(self): # #1649 df0 = DataFrame([[10, 20, 30], [10, 20, 30], [10, 20, 30]]) result = concat(dict(a=None, b=df0, c=df0[:2], d=df0[:1], e=df0)) expected = concat(dict(b=df0, c=df0[:2], d=df0[:1], e=df0)) tm.assert_frame_equal(result, expected) result = concat( [None, df0, df0[:2], df0[:1], df0], keys=["a", "b", "c", "d", "e"] ) expected = concat([df0, df0[:2], df0[:1], df0], keys=["b", "c", "d", "e"]) tm.assert_frame_equal(result, expected) def test_concat_bug_1719(self): ts1 = tm.makeTimeSeries() ts2 = tm.makeTimeSeries()[::2] # to join with union # these two are of different length! left =
concat([ts1, ts2], join="outer", axis=1)
pandas.concat
import pendulum as pdl import sys sys.path.append(".") # the memoization-related library import loguru import itertools import portion import klepto.keymaps import CacheIntervals as ci from CacheIntervals.utils import flatten from CacheIntervals.utils import pdl2pd, pd2pdl from CacheIntervals.utils import Timer from CacheIntervals.Intervals import pd2po, po2pd from CacheIntervals.RecordInterval import RecordIntervals, RecordIntervalsPandas class QueryRecorder: ''' A helper class ''' pass class MemoizationWithIntervals(object): ''' The purpose of this class is to optimise the number of call to a function retrieving possibly disjoint intervals: - do standard caching for a given function - additively call for a date posterior to one already cached is supposed to yield a pandas Frame which can be obtained by concatenating the cached result and a -- hopefully much -- smaller query Maintains a list of intervals that have been called. With a new interval: - ''' keymapper = klepto.keymaps.stringmap(typed=False, flat=False) def __init__(self, pos_args=None, names_kwarg=None, classrecorder=RecordIntervalsPandas, aggregation=lambda listdfs: pd.concat(listdfs, axis=0), debug=False, # memoization=klepto.lru_cache( # cache=klepto.archives.hdf_archive( # f'{pdl.today().to_date_string()}_memoization.hdf5'), # keymap=keymapper), memoization=klepto.lru_cache( cache=klepto.archives.dict_archive(), keymap=keymapper), **kwargs): ''' :param pos_args: the indices of the positional arguments that will be handled as intervals :param names_kwarg: the name of the named parameters that will be handled as intervals :param classrecorder: the interval recorder type we want to use :param memoization: a memoization algorithm ''' # A dictionary of positional arguments indices # that are intervals self.argsi = {} self.kwargsi = {} # if pos_args is not None: # for posarg in pos_args: # self.argsi[posarg] = classrecorder(**kwargs) self.pos_args_itvl = pos_args if pos_args is not None else [] #print(self.args) # if names_kwarg is not None: # for namedarg in names_kwarg: # self.kwargsi[namedarg] = classrecorder(**kwargs) self.names_kwargs_itvl = names_kwarg if names_kwarg is not None else {} #print(self.kwargs) self.memoization = memoization self.aggregation = aggregation self.debugQ = debug self.argsdflt = None self.kwargsdflt = None self.time_last_call = pdl.today() self.classrecorder = classrecorder self.kwargsrecorder = kwargs self.argssolver = None self.query_recorder = QueryRecorder() def __call__(self, f): ''' The interval memoization leads to several calls to the standard memoised function and generates a list of return values. The aggregation is needed for the doubly lazy function to have the same signature as the To access, the underlying memoized function pass get_function_cachedQ=True to the kwargs of the overloaded call (not of this function :param f: the function to memoize :return: the wrapper to the memoized function ''' if self.argssolver is None: self.argssolver = ci.Functions.ArgsSolver(f, split_args_kwargsQ=True) @self.memoization def f_cached(*args, **kwargs): ''' The cached function is used for a double purpose: 1. for standard calls, will act as the memoised function in a traditional way 2. Additively when pass parameters of type QueryRecorder, it will create or retrieve the interval recorders associated with the values of non-interval parameters. In this context, we use the cached function as we would a dictionary. ''' QueryRecorderQ = False args_new = [] kwargs_new = {} ''' check whether this is a standard call to the user function or a request for the interval recorders ''' for i,arg in enumerate(args): if isinstance(arg, QueryRecorder): args_new.append(self.classrecorder(**self.kwargsrecorder)) QueryRecorderQ = True else: args_new.append(args[i]) for name in kwargs: if isinstance(kwargs[name], QueryRecorder): kwargs_new[name] = self.classrecorder(**self.kwargsrecorder) QueryRecorderQ = True else: kwargs_new[name] = kwargs[name] if QueryRecorderQ: return args_new, kwargs_new return f(*args, **kwargs) def wrapper(*args, **kwargs): if kwargs.get('get_function_cachedQ', False): return f_cached #loguru.logger.debug(f'function passed: {f_cached}') loguru.logger.debug(f'args passed: {args}') loguru.logger.debug(f'kwargs passed: {kwargs}') # First pass: resolve the recorders dargs_exp, kwargs_exp = self.argssolver(*args, **kwargs) # Intervals are identified by position and keyword name # 1. First get the interval recorders args_exp = list(dargs_exp.values()) args_exp_copy = args_exp.copy() kwargs_exp_copy = kwargs_exp.copy() for i in self.pos_args_itvl: args_exp_copy[i] = self.query_recorder for name in self.names_kwargs_itvl: kwargs_exp_copy[name] = self.query_recorder args_with_ri, kwargs_with_ri = f_cached(*args_exp_copy, **kwargs_exp_copy) # 2. Now get the the actual list of intervals for i in self.pos_args_itvl: # reuse args_exp_copy to store the list args_exp_copy[i] = args_with_ri[i](args_exp[i]) for name in self.names_kwargs_itvl: # reuse kwargs_exp_copy to store the list kwargs_exp_copy[name] = kwargs_with_ri[name](kwargs_exp[name]) '''3. Then generate all combination of parameters 3.a - args''' ns_args = range(len(args_exp)) lists_possible_args = [[args_exp[i]] if i not in self.pos_args_itvl else args_exp_copy[i] for i in ns_args] # Take the cartesian product of these calls_args = list( map(list,itertools.product(*lists_possible_args))) '''3.b kwargs''' #kwargs_exp_vals = kwargs_exp_copy.values() names_kwargs = list(kwargs_exp_copy.keys()) lists_possible_kwargs = [[kwargs_exp[name]] if name not in self.names_kwargs_itvl else kwargs_exp_copy[name] for name in names_kwargs] calls_kwargs = list(map(lambda l: dict(zip(names_kwargs,l)), itertools.product(*lists_possible_kwargs))) calls = list(itertools.product(calls_args, calls_kwargs)) if self.debugQ: results = [] for call in calls: with Timer() as timer: results.append(f_cached(*call[0], **call[1]) ) print('Timer to demonstrate caching:') timer.display(printQ=True) else: results = [f_cached(*call[0], **call[1]) for call in calls] result = self.aggregation(results) return result return wrapper if __name__ == "__main__": import logging import daiquiri import pandas as pd import time daiquiri.setup(logging.DEBUG) logging.getLogger('OneTick64').setLevel(logging.WARNING) logging.getLogger('databnpp.ODCB').setLevel(logging.WARNING) logging.getLogger('requests_kerberos').setLevel(logging.WARNING) pd.set_option('display.max_rows', 200) pd.set_option('display.width', 600) pd.set_option('display.max_columns', 200) tssixdaysago = pdl2pd(pdl.yesterday('UTC').add(days=-5)) tsfivedaysago = pdl2pd(pdl.yesterday('UTC').add(days=-4)) tsfourdaysago = pdl2pd(pdl.yesterday('UTC').add(days=-3)) tsthreedaysago = pdl2pd(pdl.yesterday('UTC').add(days=-2)) tstwodaysago = pdl2pd(pdl.yesterday('UTC').add(days=-1)) tsyesterday = pdl2pd(pdl.yesterday('UTC')) tstoday = pdl2pd(pdl.today('UTC')) tstomorrow = pdl2pd(pdl.tomorrow('UTC')) tsintwodays = pdl2pd(pdl.tomorrow('UTC').add(days=1)) tsinthreedays = pdl2pd(pdl.tomorrow('UTC').add(days=2)) def print_calls(calls): print( list( map( lambda i: (i.left, i.right), calls))) def print_calls_dates(calls): print( list( map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) def display_calls(calls): loguru.logger.info( list( map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) # Testing record intervals -> ok if True: itvals = RecordIntervals() calls = itvals(portion.closed(pdl.yesterday(), pdl.today())) print(list(map( lambda i: (i.lower.to_date_string(), i.upper.to_date_string()), calls))) print(list(map(lambda i: type(i), calls))) calls = itvals( portion.closed(pdl.yesterday().add(days=-1), pdl.today().add(days=1))) #print(calls) print( list( map( lambda i: (i.lower.to_date_string(), i.upper.to_date_string()), calls))) # Testing record intervals pandas -> ok if True: itvals = RecordIntervalsPandas() # yesterday -> today calls = itvals(pd.Interval(pdl2pd(pdl.yesterday()), pdl2pd(pdl.today()), closed='left')) print( list( map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) # day before yesterday -> tomorrow: should yield 3 intervals calls = itvals(pd.Interval(pdl2pd(pdl.yesterday().add(days=-1)), pdl2pd(pdl.today().add(days=1)))) print( list( map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) # day before yesterday -> day after tomorrow: should yield 4 intervals calls = itvals( pd.Interval(pdl2pd(pdl.yesterday().add(days=-1)), pdl2pd(pdl.tomorrow().add(days=1)))) print( list( map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) # 2 days before yesterday -> 2day after tomorrow: should yield 6 intervals calls = itvals( pd.Interval(pdl2pd(pdl.yesterday().add(days=-2)), pdl2pd(pdl.tomorrow().add(days=2)))) print(list(map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) # Further tests on record intervals pandas if False: itvals = RecordIntervalsPandas() calls = itvals(pd.Interval(tstwodaysago, tstomorrow, closed='left')) display_calls(calls) calls = itvals( pd.Interval(tstwodaysago, tsyesterday)) display_calls(calls) calls = itvals( pd.Interval(tstwodaysago, tsintwodays)) display_calls(calls) calls = itvals( pd.Interval(pdl2pd(pdl.yesterday().add(days=-2)), pdl2pd(pdl.tomorrow().add(days=2)))) display_calls(calls) # proof-of_concept of decorator to modify function parameters if False: class dector_arg: # a toy model def __init__(self, pos_arg=None, f_arg=None, name_kwarg=None, f_kwarg=None): ''' :param pos_arg: the positional argument :param f_arg: the function to apply to the positional argument :param name_kwarg: the keyword argument :param f_kwarg: the function to apply to the keyword argument ''' self.args = {} self.kwargs = {} if pos_arg: self.args[pos_arg] = f_arg print(self.args) if name_kwarg: self.kwargs[name_kwarg] = f_kwarg print(self.kwargs) def __call__(self, f): ''' the decorator action :param f: the function to decorate :return: a function whose arguments have the function f_args and f_kwargs pre-applied. ''' self.f = f def inner_func(*args, **kwargs): print(f'function passed: {self.f}') print(f'args passed: {args}') print(f'kwargs passed: {kwargs}') largs = list(args) for i, f in self.args.items(): print(i) print(args[i]) largs[i] = f(args[i]) for name, f in self.kwargs.items(): kwargs[name] = f(kwargs[name]) return self.f(*largs, **kwargs) return inner_func dec = dector_arg(pos_arg=0, f_arg=lambda x: x + 1, name_kwarg='z', f_kwarg=lambda x: x + 1) @dector_arg(1, lambda x: x + 1, 'z', lambda x: x + 1) def g(x, y, z=3): ''' The decorated function should add one to the second positional argument and :param x: :param y: :param z: :return: ''' print(f'x->{x}') print(f'y->{y}') print(f'z->{z}') g(1, 10, z=100) if False: memo = MemoizationWithIntervals() # testing MemoizationWithIntervals # typical mechanism if False: @MemoizationWithIntervals( None, ['interval'], aggregation=list, debug=True, memoization=klepto.lru_cache( maxsize=200, cache=klepto.archives.hdf_archive( f'{pdl.today().to_date_string()}_memoisation.hdf5'), keymap=klepto.keymaps.stringmap(typed=False, flat=False))) def function_with_interval_param(dummy1,dummy2, kdummy=1, interval=pd.Interval(tstwodaysago, tstomorrow)): time.sleep(1) print('****') print(f'dummy1: {dummy1}, dummy2: {dummy2}') print(f'kdummy: {kdummy}') print(f'interval: {interval}') return [dummy1, dummy2, kdummy, interval] print('=*=*=*=* MECHANISM DEMONSTRATION =*=*=*=*') print('==== First pass ===') print("initialisation with an interval from yesterday to today") # function_with_interval_params(pd.Interval(pdl.yesterday(), pdl.today(),closed='left'), # interval1 = pd.Interval(pdl.yesterday().add(days=0), # pdl.today(), closed='both') # ) print( f'Final result:\n{function_with_interval_param(0, 1, interval=pd.Interval(tsyesterday, tstoday))}') print('==== Second pass ===') print("request for data from the day before yesterday to today") print("expected split in two intervals with results from yesterday to today being cached") print( f'Final result: {function_with_interval_param(0,1, interval=pd.Interval(tstwodaysago, tstoday))}' ) print('==== 3rd pass ===') print("request for data from three days to yesterday") print("expected split in two intervals") print(f'Final result:\n {function_with_interval_param(0,1, interval=pd.Interval(tsthreedaysago, tsyesterday))}' ) print('==== 4th pass ===') print("request for data from three days to tomorrow") print("expected split in three intervals") print(f'Final result:\n\ {function_with_interval_param(0,1, interval1= pd.Interval(tsthreedaysago, tstomorrow))}' ) print('==== 5th pass ===') print("request for data from two days ago to today with different first argument") print("No caching expected and one interval") print( f'Final result:\n{function_with_interval_param(1, 1, interval=pd.Interval(tstwodaysago, tstoday))}' ) print('==== 6th pass ===') print("request for data from three days ago to today with different first argument") print("Two intervals expected") print( f'Final result: {function_with_interval_param(1, 1, interval=pd.Interval(tsthreedaysago, tstoday))}' ) # Testing with an interval as position argument and one interval as keyword argument if False: @MemoizationWithIntervals( [0], ['interval1'], aggregation=list, debug=True, memoization=klepto.lru_cache( maxsize=200, cache=klepto.archives.hdf_archive( f'{pdl.today().to_date_string()}_memoisation.hdf5'), keymap=klepto.keymaps.stringmap(typed=False, flat=False))) def function_with_interval_params(interval0, interval1=pd.Interval(tstwodaysago, tstomorrow)): time.sleep(1) print('***') print(f'interval0: {interval0}') print(f'interval1: {interval1}') return (interval0, interval1) print('=*=*=*=* DEMONSTRATION WITH TWO INTERVAL PARAMETERS =*=*=*=*') print('==== First pass ===') print(f'Initialisation: first interval:\nyest to tday - second interval: two days ago to tomorrow') print(f'Final result:\n{function_with_interval_params(pd.Interval(tsyesterday, tstoday))}') print('==== Second pass ===') print(f'Call with first interval:\n3 days ago to tday - second interval: unchanged') print('Expected caching and split of first interval in two') print( f'Final result: {function_with_interval_params(pd.Interval(tsthreedaysago, tstoday))}' ) print('==== 3rd pass ===') print(f'Call with first interval:\nunchanged - second interval: yest to today') print('Expected only cached results and previous split of first interval') print(f'Final result:\n {function_with_interval_params(pd.Interval(tsthreedaysago, tstoday), interval1 = pd.Interval(tsyesterday, tstoday))}' ) print('==== 4th pass ===') print(f'Call with first interval:\n3 days ago to today - second interval: yest to today') print('Expected only cached results and only split of first interval') print(f'Final result:\n {function_with_interval_params(pd.Interval(tsthreedaysago, tstoday), interval1 = pd.Interval(tsyesterday, tstoday))}' ) print('==== 5th pass ===') print(f'Call with first interval:\n3 days ago to yesterday - second interval: 3 days ago to tomorrow') print('Expected no split of first interval and split of second interval in two. Only one none-cached call') print(f'Final result:\n\ {function_with_interval_params(pd.Interval(tsthreedaysago, tsyesterday), interval1= pd.Interval(tsthreedaysago, tstomorrow))}' ) print('==== 6th pass ===') print(f'Call with first interval:\n3 days ago to today - second interval: 3 days ago to tomorrow') print('Expected split of first interval in two and split of second interval in two. One non-cached call: today - tomorrow x ') print(f'Final result:\n\ {function_with_interval_params(pd.Interval(tsthreedaysago, tstoday), interval1=pd.Interval(tsthreedaysago, tstomorrow))}' ) # Showing the issue with the current version if False: @MemoizationWithIntervals(None, ['interval'], aggregation=list, debug=True, memoization=klepto.lru_cache( maxsize=200, keymap=klepto.keymaps.stringmap(typed=False, flat=False))) def function_with_interval_param(valint, interval=pd.Interval(tstwodaysago, tstomorrow)): time.sleep(1) print('**********************************') print(f'valint: {valint}') print(f'interval: {interval}') return (valint, interval) print('==== First pass ===') print( f'Final result:\n{function_with_interval_param(2, interval=pd.Interval(tsyesterday, tstoday))}') print('==== Second pass ===') print(f'Final result: {function_with_interval_param(2, interval=pd.Interval(tsthreedaysago, tstoday))}') print('==== 3rd pass ===') print( f'Final result:\n {function_with_interval_param(3, interval=pd.Interval(tsthreedaysago, tstoday))}') print('==== 4th pass ===') print(f'Final result:\n\ {function_with_interval_param(3, interval=pd.Interval(tsthreedaysago, tstomorrow))}') # testing getting back the memoized function from MemoizationWithIntervals if False: @MemoizationWithIntervals( [0], ['interval1'], aggregation=list, debug=True, memoization=klepto.lru_cache( maxsize=200, cache=klepto.archives.file_archive( f'{pdl.today().to_date_string()}_memoisation.pkl'), keymap=klepto.keymaps.stringmap(typed=False, flat=False))) def function_with_interval_params(interval0, interval1=pd.Interval( tstwodaysago, tstomorrow)): time.sleep(1) print('**********************************') print(f'interval0: {interval0}') print(f'interval1: {interval1}') return (interval0, interval1) print('==== First pass ===') # function_with_interval_params(pd.Interval(pdl.yesterday(), pdl.today(),closed='left'), # interval1 = pd.Interval(pdl.yesterday().add(days=0), # pdl.today(), closed='both') # ) f_mzed = function_with_interval_params(get_function_cachedQ=True) print( f'Final result:\n{function_with_interval_params(pd.Interval(tsyesterday, tstoday))}' ) print(f'==============\nf_memoized live cache: {f_mzed.__cache__()}') print(f'f_memoized live cache type: {type(f_mzed.__cache__())}') print(f'f_memoized file cache: {f_mzed.__cache__().archive}') print(f'f_memoized live cache: {f_mzed.info()}') f_mzed.__cache__().dump() print(f'f_memoized file cache: {f_mzed.__cache__().archive}') # print('==== Second pass ===') # print(f'Final result: {function_with_interval_params(pd.Interval(pdl.yesterday().add(days=-2), pdl.today()))}') # print('==== 3rd pass ===') # print(f'Final result:\n\ # {function_with_interval_params(pd.Interval(pdl.yesterday().add(days=-2), pdl.yesterday()), interval1 = pd.Interval(pdl.yesterday().add(days=0), pdl.today()))}') # print('==== 4th pass ===') # print(f'Final result:\n\ # {function_with_interval_params(pd.Interval(pdl.yesterday().add(days=-2), pdl.yesterday()), interval1= pd.Interval(pdl.yesterday().add(days=-2), pdl.tomorrow()))}') # testing serialization with HDF5 memoized function from MemoizationWithIntervals if False: @MemoizationWithIntervals( [0], ['interval1'], aggregation=list, debug=True, memoization=klepto.lru_cache( maxsize=200, cache=klepto.archives.hdf_archive( f'{pdl.today().to_date_string()}_memoisation.hdf5', serialized=True, cached=False, meta=False), keymap=klepto.keymaps.stringmap(typed=False, flat=False))) def function_with_interval_params(interval0, interval1=pd.Interval( tstwodaysago, tstomorrow)): time.sleep(1) print('*********** function called *******************') print(f'interval0: {interval0}') print(f'interval1: {interval1}') return (interval0, interval1) print('==== First pass ===') # function_with_interval_params(pd.Interval(pdl.yesterday(), pdl.today(),closed='left'), # interval1 = pd.Interval(pdl.yesterday().add(days=0), # pdl.today(), closed='both') # ) f_mzed = function_with_interval_params(get_function_cachedQ=True) print( f'Final result:\n{function_with_interval_params(pd.Interval(tsyesterday, tstoday))}' ) print(f'==============\nf_memoized live cache: {f_mzed.__cache__()}') print(f'f_memoized live cache type: {type(f_mzed.__cache__())}') print(f'f_memoized file cache: {f_mzed.__cache__().archive}') print(f'f_memoized live cache: {f_mzed.info()}') f_mzed.__cache__().dump() print(f'f_memoized file cache: {f_mzed.__cache__().archive}') if False: @MemoizationWithIntervals([0], aggregation=list, debug=False) def function_with_interval_params(interval0): time.sleep(1) print('**********************************') print(f'interval0: {interval0}') return (interval0) print('==== First pass ===') print( f'Final result: {function_with_interval_params(pd.Interval(tsyesterday, tstoday))}' ) print('==== Second pass ===') print( f'Final result: {function_with_interval_params(pd.Interval(tsthreedaysago, tstoday) )}' ) print('==== 3rd pass ===') print( f'Final result: {function_with_interval_params(pd.Interval(tsthreedaysago, tsyesterday))}' ) print('==== 4th pass ===') print( f'Final result: {function_with_interval_params(pd.Interval(tsthreedaysago, tstomorrow))}' ) # Testing kwargs only if False: @MemoizationWithIntervals([], ['period'], aggregation=list, debug=False) def function_with_interval_params(array=['USD/JPY'], period=pd.Interval( tsyesterday, pd.Timestamp.now('UTC'))): time.sleep(1) print('************* function called *********************') print(f'interval0: {period}') return (array, period) print('==== First pass ===') print( f'Final result: {function_with_interval_params(array=["USD/JPY"], period = pd.Interval(tsyesterday, pd.Timestamp.now(tz="UTC")))}' ) print('==== Second pass ===') print( f'Final result: {function_with_interval_params(array=["USD/JPY"],period = pd.Interval(tsyesterday, pd.Timestamp.now(tz="UTC")) )}' ) print('==== 3rd pass ===') print( f'Final result: {function_with_interval_params(array=["USD/JPY"],period = pd.Interval(tsyesterday, pd.Timestamp.now(tz="UTC")))}' ) # Testing tolerance if False: timenow = pdl.now() timenowplus5s = timenow.add(seconds=5) fiveseconds = timenowplus5s - timenow @MemoizationWithIntervals([], ['period'], aggregation=list, debug=False, rounding=fiveseconds) def function_with_interval_params(array=['USD/JPY'], period=pd.Interval(tsyesterday, pd.Timestamp.now(tz="UTC")) ): time.sleep(1) print('************* function called *********************') print(f'interval0: {period}') return (period) print('==== First pass ===') print( f'Final result: {function_with_interval_params(array=["USD/JPY"], period=pd.Interval(tstoday, pd.Timestamp.now(tz="UTC")))}' ) print('==== Second pass ===') time.sleep(1) print( f'Final result: {function_with_interval_params(["USD/JPY"], period=pd.Interval(tstoday, pd.Timestamp.now(tz="UTC")))}' ) time.sleep(6) print('==== 3rd pass ===') print( f'Final result: {function_with_interval_params(["USD/JPY"], period=pd.Interval(tstoday, pd.Timestamp.now(tz="UTC")))}' ) print('==== 4th pass ===') print( f'Final result: {function_with_interval_params(["USD/JPY"], period = pd.Interval(tstoday, pd.Timestamp.now(tz="UTC")))}' ) if False: itvals = RecordIntervalsPandas() calls = itvals(pd.Interval(pdl.yesterday(), pdl.today())) print( list( map( lambda i: (i.left.to_date_string(), i.right.to_date_string()), calls))) calls = itvals(pd.Interval(pdl.yesterday().add(days=-2), pdl.today())) print( list( map( lambda i: (i.left.to_date_string(), i.right.to_date_string()), calls))) calls = itvals( pd.Interval(pdl.yesterday().add(days=-2), pdl.yesterday())) print( list( map( lambda i: (i.left.to_date_string(), i.right.to_date_string()), calls))) calls = itvals( pd.Interval(pdl.yesterday().add(days=-4), pdl.tomorrow())) print( list( map( lambda i: (i.left.to_date_string(), i.right.to_date_string()), calls))) if False: def solution(data, n): counts = {} counts = {x: counts.get(x, data.count(x)) for x in data} return [x for x in data if counts[x] <= n] print(solution([1, 2, 3], 0)) print(solution([1, 2, 2, 3, 3, 4, 5, 5], 1)) if False: cont = {0: [0, 1], 2: [3, 4]} argsorg = [5, 6, 7] calls_args = [[ arg if i not in cont.keys() else cont[i][j] for i, arg in enumerate(argsorg) ] for p in cont.keys() for j in range(len(cont[p]))] if True: print("Testing subintervals and strategies") print("1. No sub") itvals_nosub = RecordIntervalsPandas(subintervals_requiredQ=False, subinterval_minQ=False) print("-6->-1") calls = itvals_nosub(pd.Interval(-6, -1)) print("-3->0") calls = itvals_nosub(pd.Interval(-3, 0 )) print_calls(calls) print("2. No sub first strategy") itvals_sub = RecordIntervalsPandas(subintervals_requiredQ=True, subinterval_minQ=False) print("-6->-1") calls = itvals_sub(pd.Interval(-6,-1)) print("-3->0") calls = itvals_sub(pd.Interval(-3,0)) print_calls(calls) print("3. Sub second strategy") itvals_sub2 = RecordIntervalsPandas(subintervals_requiredQ=True, subinterval_minQ=True) print("-6->-1") calls = itvals_sub2(pd.Interval(-6,-1)) print("-3->0") calls = itvals_sub2(pd.Interval(-3,0)) print_calls(calls) # Test ok if False: print("Testing subintervals and strategies") print("1. No sub") itvals_nosub = RecordIntervalsPandas(subintervals_requiredQ=False, subinterval_minQ=False) print("-6->-1") calls = itvals_nosub(pd.Interval(tssixdaysago, tsyesterday)) print("-3->0") calls = itvals_nosub(pd.Interval(tsthreedaysago, tstoday )) print_calls(calls) print("2. No sub first strategy") itvals_sub = RecordIntervalsPandas(subintervals_requiredQ=True, subinterval_minQ=False) print("-6->-1") calls = itvals_sub(pd.Interval(tssixdaysago, tsyesterday)) print("-3->0") calls = itvals_sub(pd.Interval(tsthreedaysago, tstoday )) print_calls(calls) print("3. Sub second strategy") itvals_sub2 = RecordIntervalsPandas(subintervals_requiredQ=True, subinterval_minQ=True) print("-6->-1") calls = itvals_sub2(pd.Interval(tssixdaysago, tsyesterday)) print("-3->0") calls = itvals_sub2(pd.Interval(tsthreedaysago, tstoday)) print_calls(calls) if False: print("Testing subinterval and first strategy") itvals = RecordIntervalsPandas(subintervals_requiredQ=True, subinterval_minQ=False) calls = itvals(pd.Interval(tsfourdaysago, tsthreedaysago)) print(list(map(lambda i: (i.left, i.right), calls))) calls = itvals(pd.Interval(tstwodaysago, tstoday)) print(list(map(lambda i: (i.left, i.right), calls))) calls = itvals(pd.Interval(tssixdaysago, tsyesterday)) print(list(map(lambda i: (i.left, i.right), calls))) calls = itvals(pd.Interval(tssixdaysago, tsyesterday)) print("should be broken in 3 intervals: -5->-4 | -4->-3 | -3->-1") print(sorted(list(map(lambda i: (i.left, i.right), calls)))) if False: print("Testing subinterval and second strategy") itvals = RecordIntervalsPandas(subintervals_requiredQ=True, subinterval_minQ=True) calls = itvals(pd.Interval(tsfourdaysago, tsthreedaysago)) print(list(map(lambda i: (i.left, i.right), calls))) calls = itvals(pd.Interval(tstwodaysago, tstoday)) print(list(map(lambda i: (i.left, i.right), calls))) calls = itvals(pd.Interval(tssixdaysago, tsyesterday)) print(sorted(list(map(lambda i: (i.left, i.right), calls)))) calls = itvals(pd.Interval(tssixdaysago, tsyesterday)) print("should be broken in 3 intervals: -5->-4 | -4->-3 | -3->-1") print(sorted(list(map(lambda i: (i.left, i.right), calls)))) if False: print("Testing subinterval and first strategy") itvals = RecordIntervalsPandas(subintervals_requiredQ=True, subinterval_minQ=False) calls = itvals(pd.Interval(-2, 0)) print_calls(calls) calls = itvals(pd.Interval(-4, -3)) print_calls(calls) calls = itvals(pd.Interval(-6, 1)) print("should be broken in 3 intervals: -6->-4 | -4->-3 | -3->-2 | -2->0 | 0->1") print_calls(calls) if False: print("Testing subinterval and second strategy") itvals = RecordIntervalsPandas(subintervals_requiredQ=True, subinterval_minQ=True) calls = itvals(
pd.Interval(-2, 0)
pandas.Interval