prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
""" Provide the ``SoilProfile`` class. """ # -- Imports ----------------------------------------------------------------- from edafos.project import Project from edafos.viz import ProfilePlot from tabulate import tabulate import numpy as np import pandas as pd # -- SoilProfile Class ------------------------------------------------------- class SoilProfile(Project): """ Class to represent a new soil profile. .. warning:: Pay attention to the base units for each unit system that you choose to use. Refer to the parameter definition below or the :ref:`input_units` page. """ # -- Constructor --------------------------------------------------------- def __init__(self, unit_system, water_table, name=None): """ Args: water_table (float): Depth to water table measured from ground elevation. - For **SI**: Enter value in **meters**. - For **English**: Enter value in **feet**. name (str): A name for the soil profile (default is None) unit_system (str): The unit system for the project. Can only be 'English', or 'SI'. Properties inherited from the ``Project`` class. """ super().__init__(unit_system=unit_system) # Set units for the water table self.water_table = float(water_table) * self.set_units('length') # A name for the soil profile object self.name = name # Initiate SPT data attribute self.spt_data = None # Call function to instantiate the soil profile data frame self._create_profile() # -- Soil Profile Instantiation Method (Private) ------------------------- def _create_profile(self): """ A private method that instantiates the soil profile data frame. Returns: An empty Pandas DataFrame with two headers, one for the column names and another for the column units. """ # Careful when changing column named. Update API.get_soil_prop name_list = ['Soil Type', 'Soil Desc', 'Depth', 'Height', 'TUW', 'Field N', 'Corr. N', 'Field Phi', 'Calc. Phi', 'Shear Su'] self.layers = pd.DataFrame(columns=name_list) self.layers.index.name = 'Layer' return self # -- Method to add layers ------------------------------------------------ def add_layer(self, soil_type, height, **kwargs): """ Method to add a new layer to the soil profile. .. todo:: Run parameter checks for allowable ranges and required info, for example, raise a warning for a cohesionless layer without shear strength. Args: soil_type (str): Allowed values are 'cohesive' for clays and 'cohesionless' for sands. height (float): Height of soil layer. - For **SI**: Enter height in **meters**. - For **English**: Enter height in **feet**. Keyword Args: soil_desc (str): Soil description. Initially created to accommodate the :ref:`olson90-method`. As such, in order to follow the guidelines in :numref:`Olson90_table`, the only valid inputs are: ``gravel``, ``sand-gravel``, ``sand``, ``sand-silt``, ``silt``. TODO: There is no check to reject these inputs for ``soil_type = 'cohesive'``, although they have no effect. tuw (float): Total unit weight of soil. - For **SI**: Enter TUW in **kN/m**\ :sup:`3`. - For **English**: Enter TUW in **lbf/ft**\ :sup:`3`. field_n (int): Field SPT-N values. corr_n (int): Corrected Field SPT-N values. .. note:: If field SPT-N value is given without the corrected SPT-N, the corrected value will be automatically calculated. field_phi (float): Field internal angle of friction, *φ*, in degrees. calc_phi (float): Calculated internal angle of friction, *φ*, from SPT-N values. su (float): Undrained shear strength, *s*\ :sub:`u`. - For **SI**: Enter *s*\ :sub:`u` in **kN/m**\ :sup:`2`. - For **English**: Enter *s*\ :sub:`u` in **kip/ft**\ :sup:`2`. """ # Check for valid attributes # If you update these keys, make sure to update API.get_soil_prop too allowed_keys = ['soil_type', 'soil_desc', 'height', 'tuw', 'field_n', 'corr_n', 'field_phi', 'calc_phi', 'su'] for key in kwargs: if key not in allowed_keys: raise AttributeError("'{}' is not a valid attribute. The " "allowed attributes are: {}" "".format(key, allowed_keys)) # Assign values soil_desc = kwargs.get('soil_desc', None) tuw = kwargs.get('tuw', None) field_n = kwargs.get('field_n', None) corr_n = kwargs.get('corr_n', None) field_phi = kwargs.get('field_phi', None) calc_phi = kwargs.get('calc_phi', None) su = kwargs.get('su', None) # Check for soil type if soil_type in ['cohesive', 'cohesionless']: soil_type = soil_type else: raise ValueError("Soil type can only be 'cohesive' or " "'cohesionless'.") # Check for soil description allowed_soil_desc = ['gravel', 'sand-gravel', 'sand', 'sand-silt', 'silt'] if (soil_desc is not None) and (soil_desc not in allowed_soil_desc): raise ValueError("'{}' is not a valid soil description input.\n" "Valid inputs are: {}." "".format(soil_desc, allowed_soil_desc)) # Check that all inputs are positive numbers for i in [height, tuw, field_n, corr_n, field_phi, calc_phi, su]: if (i is not None) and (type(i) not in [int, float]): raise TypeError("Value '{}' is of type {} and is not " "permissible. \nEnter only positive numbers " "(int or float) for soil properties." "".format(i, type(i))) elif (i is not None) and (i < 0): raise ValueError("Value '{}' is not permissible. Enter positive" " numbers only for soil properties.".format(i)) else: pass # Calculate depth from layers heights if len(self.layers) == 0: depth = height else: depth = self.layers.loc[len(self.layers), 'Depth'] + height # Store values in data frame self.layers.loc[len(self.layers)+1] = [ soil_type, soil_desc, depth, height, tuw, field_n, corr_n, field_phi, calc_phi, su] # Reset index to start at 1 if self.layers.index[0] == 0: self.layers.index = self.layers.index + 1 # Enforce proper data types # TODO: Repeated every time a layer is added. Is there a better way? self.layers.fillna(np.nan, inplace=True) # for column in self.layers.columns.levels[0]: for column in self.layers.columns: if column not in ['Soil Type', 'Soil Desc']: self.layers[column] = self.layers[column].astype(float) return self # -- Method that adds SPT-N data ----------------------------------------- def add_spt_data(self, data, from_csv=False): """ Method that adds SPT-N values, either as a list (of lists) or imported from a CSV file. Args: data (list): a list of lists for SPT-N data. The first list must contain the depth values while the second list must contain the N values. from_csv (bool): Set to 'True' and specify the path to the CSV file. Returns: """ # TODO: add CSV import functionality # TODO: check SPT values, make them integers # TODO: produce corrected SPT values if from_csv: pass else: df =
pd.DataFrame({'Depth': data[0], 'SPT-N': data[1]})
pandas.DataFrame
import datetime import pandas as pd from dateutil.relativedelta import relativedelta from timeseries import slice_by_timestamp from yearly import replace_year def set_to_begin(values): """Set the dates and times in the list to the begin of the month :param values: :type values: :return: :rtype: """ return [pd.Timestamp(v).replace(day=1, hour=0, minute=0, second=0, microsecond=0) for v in values] def set_to_end(values): """Set the dates and times in the list to the end of the month :param values: :type values: :return: :rtype: """ try: return [pd.Timestamp(v).replace(day=last_day(v), hour=23, minute=59, second=59, microsecond=999999) for v in values] except TypeError: return pd.Timestamp(values).replace(day=last_day(values), hour=23, minute=59, second=59, microsecond=999999) def last_day(dt): return (pd.Timestamp(dt) +
pd.tseries.offsets.MonthEnd(n=0)
pandas.tseries.offsets.MonthEnd
# Copyright (c) 2013, GreyCube Technologies and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe import _ from frappe.utils import cint import pandas as pd import numpy as np def execute(filters=None): return get_data(filters) def get_data(filters): columns = get_columns(filters) data = frappe.db.sql( """ select tja.name applicant, tja.applicant_name, tja.source, tja.status, tjo.job_title, tjo.customer_cf, concat_ws(' - ', round(tja.lower_range), round(tja.upper_range)) salary_range, tja.applicant_total_experience_cf, tja.previous_company_cf from `tabJob Applicant` tja inner join `tabJob Opening` tjo on tjo.name = tja.job_title """, as_dict=True, ) df1 = pd.DataFrame.from_records(data) df1.set_index("applicant") social_media = frappe.db.sql( """ select tja.name applicant, tsmpu.social_media_platform, coalesce(tsmpu.profile_url,"") profile_url from `tabSocial Media Profile URL` tsmpu inner join `tabJob Applicant` tja on tja.name = tsmpu.parent ; """, as_dict=True, ) if not social_media: return columns, df1.to_dict(orient="records") df2 = pd.DataFrame.from_records(social_media) df2 = pd.pivot_table( df2, index=["applicant"], columns=["social_media_platform"], values=["profile_url"], aggfunc="first", fill_value="", ) df2.columns = [ frappe.scrub(d.replace("profile_url_", "")) for d in df2.columns.map("_".join) ] df3 =
pd.merge(df1, df2, how="left", on=["applicant"])
pandas.merge
"""Ingest Pollard data.""" from pathlib import Path import pandas as pd from . import db from . import util from .util import log DATASET_ID = 'pollard' RAW_DIR = Path('data') / 'raw' / DATASET_ID PLACE_CSV = RAW_DIR / 'Pollard_locations.csv' DATA_CSV = RAW_DIR / 'pollardbase_example_201802.csv' def ingest(): """Ingest the data.""" raw_data = get_raw_data() db.delete_dataset_records(DATASET_ID) db.insert_dataset({ 'dataset_id': DATASET_ID, 'title': 'Pollard lepidoptera observations', 'version': '2018-02', 'url': ''}) to_taxon_id = insert_taxa(raw_data) to_place_id = insert_places(raw_data) insert_events(raw_data, to_place_id) insert_counts(raw_data, to_taxon_id) def get_raw_data(): """Read raw data.""" log(f'Getting {DATASET_ID} raw data') raw_data = pd.read_csv(DATA_CSV, dtype='unicode') util.normalize_columns_names(raw_data) raw_data['started'] = pd.to_datetime(raw_data.Start_time, errors='coerce') raw_data['sci_name'] = \ raw_data.Scientific_Name.str.split().str.join(' ') raw_data['dataset_id'] = DATASET_ID has_started = raw_data['started'].notna() has_sci_name = raw_data['sci_name'].notna() raw_data = raw_data.loc[has_started & has_sci_name, :].copy() return raw_data def insert_taxa(raw_data): """Insert taxa.""" log(f'Inserting {DATASET_ID} taxa') cxn = db.connect() firsts = raw_data['sci_name'].duplicated(keep='first') taxa = raw_data.loc[~firsts, ['sci_name', 'Species']] taxa.rename(columns={'Species': 'common_name'}, inplace=True) taxa['genus'] = taxa['sci_name'].str.split().str[0] taxa['class'] = 'lepidoptera' taxa['group'] = None taxa['order'] = None taxa['family'] = None taxa['target'] = None taxa = db.drop_duplicate_taxa(taxa) taxa['taxon_id'] = db.create_ids(taxa, 'taxa') taxa['taxon_id'] = taxa['taxon_id'].astype(int) taxa['taxon_json'] = '{}' taxa.to_sql('taxa', cxn, if_exists='append', index=False) sql = """SELECT sci_name, taxon_id FROM taxa WHERE "class" = 'lepidoptera'""" return pd.read_sql(sql, cxn).set_index('sci_name').taxon_id.to_dict() def insert_places(raw_data): """Insert places.""" log(f'Inserting {DATASET_ID} places') raw_places =
pd.read_csv(PLACE_CSV, dtype='unicode')
pandas.read_csv
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # (C) British Crown Copyright 2017-2021 Met Office. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ Unit tests for the utilities within the `calibration.dataframe_utilities` module. """ import unittest import iris import numpy as np import pandas as pd import pytest from improver.calibration.dataframe_utilities import ( forecast_and_truth_dataframes_to_cubes, forecast_dataframe_to_cube, truth_dataframe_to_cube, ) from improver.metadata.constants.time_types import TIME_COORDS from improver.spotdata.build_spotdata_cube import build_spotdata_cube from improver_tests import ImproverTest def _chunker(seq, size): """Helper function to iterate through a sequence in chunks. Args: seq: The sequence to be chunked. size: The size of the chunks. Return: A sequence split into chunks. """ return (seq[pos : pos + size] for pos in range(0, len(seq), size)) class SetupSharedDataFrames(ImproverTest): """A shared dataframe creation class.""" def setUp(self): """Set-up forecast and truth dataframes.""" pytest.importorskip("pandas") data = np.array( [5.2, 0.3, 20.4, 6.5, 3.1, 21.5, 7.2, 4.2, 24.3], dtype=np.float32 ) self.forecast_data = np.tile(data, 3) self.frt1 = pd.Timestamp("2017-07-20T12:00:00", tz="UTC") self.frt2 = pd.Timestamp("2017-07-21T12:00:00", tz="UTC") self.frt3 = pd.Timestamp("2017-07-22T12:00:00", tz="UTC") self.fp = pd.Timedelta(6 * 3600, unit="s") self.time1 = pd.Timestamp("2017-07-20T18:00:00", tz="UTC") self.time2 = pd.Timestamp("2017-07-21T18:00:00", tz="UTC") self.time3 = pd.Timestamp("2017-07-22T18:00:00", tz="UTC") self.wmo_ids = ["03002", "03003", "03004"] self.percentiles = np.array([25.0, 50.0, 75.0], dtype=np.float32) diag = "air_temperature" self.cf_name = "air_temperature" self.latitudes = np.array([50.0, 60.0, 70.0], dtype=np.float32) self.longitudes = np.array([-10.0, 0.0, 10.0], dtype=np.float32) self.altitudes = np.array([10.0, 20.0, 30.0], dtype=np.float32) self.period = pd.Timedelta(1, unit="h") self.height = np.array([1.5], dtype=np.float32) self.units = "Celsius" df_dict = { "forecast": self.forecast_data, "blend_time": np.repeat([self.frt1, self.frt2, self.frt3], 9), "forecast_period": np.repeat(self.fp, 27), "forecast_reference_time": np.repeat([self.frt1, self.frt2, self.frt3], 9), "time": np.repeat([self.time1, self.time2, self.time3], 9), "wmo_id": np.tile(self.wmo_ids, 9), "percentile": np.tile(np.repeat(self.percentiles, 3), 3), "diagnostic": [diag] * 27, "latitude": np.tile(self.latitudes, 9), "longitude": np.tile(self.longitudes, 9), "altitude": np.tile(self.altitudes, 9), "period": [self.period] * 27, "height": np.tile(self.height, 27), "cf_name": [self.cf_name] * 27, "units": [self.units] * 27, } self.forecast_df = pd.DataFrame(df_dict) data = np.array([6.8, 2.7, 21.2], dtype=np.float32) self.truth_data = np.tile(data, 3) df_dict = { "ob_value": self.truth_data, "time": np.repeat([self.time1, self.time2, self.time3], 3), "wmo_id": self.wmo_ids * 3, "diagnostic": [diag] * 9, "latitude": np.tile(self.latitudes, 3), "longitude": np.tile(self.longitudes, 3), "altitude": np.tile(self.altitudes, 3), "period": [self.period] * 9, "height": np.tile(self.height, 9), "cf_name": [self.cf_name] * 9, "units": [self.units] * 9, } self.truth_df =
pd.DataFrame(df_dict)
pandas.DataFrame
# -*- coding: utf-8 -*- """ This program automatically extracts and analyses data from a database of AIDS Data. Data is from: US Department of Health and Human Services (US DHHS), Centers for Disease Control and Prevention (CDC), National Center for HIV, STD and TB Prevention (NCHSTP), AIDS Public Information Data Set (APIDS) US Surveillance Data for 1981-2002, CDC WONDER On-line Database, December 2005. Accessed at http://wonder.cdc.gov/aids-v2002.html on Mar 9, 2017 2:26:39 PM" Program was written for analysis of the database and is provided as is. """ import pypyodbc import numpy as np import pandas as pd import matplotlib.pyplot as plt from AIDSAnalysisProcedures import CreateDataGrid, contourplotVitalAge,contourplotVital,contourplotHIVExpByAgeLogNorm,surface3dAIDSByAgeGroup,contourplotAIDSByAgeGroup,contourplotAIDSByAgeGroupLogNorm,contourplotHIVExpByYear,contourplotHIVExpByYearLogNorm,contourplotHIVExpByAge plt.close() #using pypyodbc #Connect to database (enter your own driver and Database path) and generate cursor conn_str = r'DRIVER={};DBQ=;' cnxn = pypyodbc.connect(conn_str) crsr = cnxn.cursor() #Extract Table Names Table_details = [] for row in crsr.columns(): if 'MSys' not in row[2]: #ignore access default databases/tables Table_details.append((row[2],row[3])) np_tabledetails=np.array(Table_details) Table_names = np.unique(np_tabledetails[:,0]) #This code currently assumes the first table in the database TableChoice = Table_names[0] #Extract all table column headings Column_names = np_tabledetails[np_tabledetails[:,0]==TableChoice,1] #Extract all the unique column entries and their frequency into a dataframe and save df_BigCount=pd.DataFrame() for name in Column_names[1:]: #find all the unique values in the column, including nulls sql = 'SELECT ' + str(name) + ', COUNT(*) FROM ' + str(TableChoice) + ' AS COUNT GROUP BY ' + str(name) BigCount = crsr.execute(sql).fetchall() df_interBigCount=pd.DataFrame(BigCount) df_interBigCount['Column']=str(name) df_BigCount=
pd.concat([df_BigCount, df_interBigCount])
pandas.concat
import numpy as np import pandas as pd import altair as alt import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # Plot a 3d def Vis3d(X,Y,Z): fig = plt.figure(figsize=(8,8)) ax = fig.add_subplot(111, projection='3d') ax.plot_surface(X, Y, Z, color='y') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') plt.show() # Visualise the metrics from the model def MetricsVis(history): df = pd.DataFrame(history) df.reset_index() df["batch"] = df.index + 1 df = df.melt("batch", var_name="name") df["val"] = df.name.str.startswith("val") df["type"] = df["val"] df["metrics"] = df["val"] df.loc[df.val == False, "type"] = "training" df.loc[df.val == True, "type"] = "validation" df.loc[df.val == False, "metrics"] = df.name df.loc[df.val == True, "metrics"] = df.name.str.split("val_", expand=True)[1] df = df.drop(["name", "val"], axis=1) base = alt.Chart().encode( x = "batch:Q", y = "value:Q", color = "type" ).properties(width = 300, height = 300) layers = base.mark_circle(size = 50).encode(tooltip = ["batch", "value"]) + base.mark_line() chart = layers.facet(column='metrics:N', data=df).resolve_scale(y='independent') return chart def InteractionVis(df): vis = alt.Chart(df).mark_rect().encode( alt.X(field="ITEM", type="nominal", axis=alt.Axis(orient="top", labelAngle=0)), alt.Y(field="USER", type="nominal", axis=alt.Axis(orient="left")), alt.Color(field="RATING", type="quantitative", scale=alt.Scale(type="bin-ordinal", scheme='yellowgreenblue', nice=True), legend=alt.Legend(titleOrient='top', orient="bottom", direction= "horizontal", tickCount=5)) ).properties( width= 180, height=300 ).configure_axis( grid=False ) return vis def TrainTestVis(train, test): df = pd.concat([train, test]) maptt = {0: "train", 1: "test"} df["SPLIT"] = df.split_index.apply(lambda x: maptt[x]) df.head() vis = alt.Chart(df).mark_rect().encode( alt.X(field="ITEM", type="nominal", axis=alt.Axis(orient="top", labelAngle=0)), alt.Y(field="USER", type="nominal", axis=alt.Axis(orient="left")), alt.Color(field="SPLIT", type="ordinal", scale=alt.Scale(type="ordinal", scheme="darkred", nice=True), legend=alt.Legend(titleOrient='top', orient="bottom", direction= "horizontal", tickCount=5)), alt.Opacity(value=1) ).properties( width= 180, height=300 ).configure_axis( grid=False ) return vis def EmbeddingVis(embedding, n_factors, name): embedding_df_wide =
pd.DataFrame(embedding)
pandas.DataFrame
from sklearn.ensemble import RandomForestRegressor from sklearn.feature_selection import SelectFromModel from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import f_classif from src.features.label_encoder import MultiColumnLabelEncoder from sklearn.svm import LinearSVR def Feature_selection(dataset): cate_cols = ['galaxy'] dataset.X_train = MultiColumnLabelEncoder(columns=cate_cols).transform(dataset.X_train) dataset.X_val = MultiColumnLabelEncoder(columns=cate_cols).transform(dataset.X_val) dataset.X_test = MultiColumnLabelEncoder(columns=cate_cols).transform(dataset.X_test) sel = RandomForestRegressor(n_estimators = 100).fit(dataset.X_train, dataset.y_train) sel_feature=list(zip(list(dataset.X_train.columns), sel.feature_importances_)) model = SelectFromModel(sel, prefit=True) set1= dataset.X_train.columns[(model.get_support())] #Feature selection by using selectKbets model = SelectKBest(f_classif, k=20).fit(dataset.X_train, dataset.y_train) set2=dataset.X_train.columns[(model.get_support())] selected_columns=set(list(set1)+list(set2)) return selected_columns def Feature_selection_new(ds): # ds.X_train['y']=ds.y_train # ds.X_test['y']=ds.y_test galaxy_train=ds.X_train['galaxy'] galaxy_val=ds.X_val['galaxy'] galaxy_test=ds.X_test['galaxy'] ds.X_train=ds.X_train.drop(columns=['galaxy']) ds.X_val=ds.X_val.drop(columns=['galaxy']) # from featexp import get_trend_stats # stats = get_trend_stats(data=ds.X_train, target_col='y', data_test=ds.X_test) import pandas as pd from numpy import loadtxt from xgboost import XGBRegressor from xgboost import plot_importance from matplotlib import pyplot from sklearn.metrics import mean_squared_error from numpy import sort from sklearn.feature_selection import SelectFromModel from math import sqrt # fit model no training data model = XGBRegressor() model.fit(ds.X_train, ds.y_train) # plot feature importance plot_importance(model) pyplot.show() # make predictions for test data and evaluate y_pred = model.predict(ds.X_val) rmse = sqrt(mean_squared_error(y_pred,ds.y_val)) print("mse: %.7f%%" % (rmse)) # Fit model using each importance as a threshold thresholds = sort(model.feature_importances_) columns=list(ds.X_train.columns) importances=model.feature_importances_.tolist() column_importances=list(zip(columns,importances)) column_importances_df =
pd.DataFrame(column_importances, columns=['columns', 'importances'])
pandas.DataFrame
from collections import OrderedDict from datetime import datetime, timedelta import numpy as np import numpy.ma as ma import pytest from pandas._libs import iNaT, lib from pandas.core.dtypes.common import is_categorical_dtype, is_datetime64tz_dtype from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, IntervalDtype, PeriodDtype, ) import pandas as pd from pandas import ( Categorical, DataFrame, Index, Interval, IntervalIndex, MultiIndex, NaT, Period, Series, Timestamp, date_range, isna, period_range, timedelta_range, ) import pandas._testing as tm from pandas.core.arrays import IntervalArray, period_array class TestSeriesConstructors: @pytest.mark.parametrize( "constructor,check_index_type", [ # NOTE: some overlap with test_constructor_empty but that test does not # test for None or an empty generator. # test_constructor_pass_none tests None but only with the index also # passed. (lambda: Series(), True), (lambda: Series(None), True), (lambda: Series({}), True), (lambda: Series(()), False), # creates a RangeIndex (lambda: Series([]), False), # creates a RangeIndex (lambda: Series((_ for _ in [])), False), # creates a RangeIndex (lambda: Series(data=None), True), (lambda: Series(data={}), True), (lambda: Series(data=()), False), # creates a RangeIndex (lambda: Series(data=[]), False), # creates a RangeIndex (lambda: Series(data=(_ for _ in [])), False), # creates a RangeIndex ], ) def test_empty_constructor(self, constructor, check_index_type): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): expected = Series() result = constructor() assert len(result.index) == 0 tm.assert_series_equal(result, expected, check_index_type=check_index_type) def test_invalid_dtype(self): # GH15520 msg = "not understood" invalid_list = [pd.Timestamp, "pd.Timestamp", list] for dtype in invalid_list: with pytest.raises(TypeError, match=msg): Series([], name="time", dtype=dtype) def test_invalid_compound_dtype(self): # GH#13296 c_dtype = np.dtype([("a", "i8"), ("b", "f4")]) cdt_arr = np.array([(1, 0.4), (256, -13)], dtype=c_dtype) with pytest.raises(ValueError, match="Use DataFrame instead"): Series(cdt_arr, index=["A", "B"]) def test_scalar_conversion(self): # Pass in scalar is disabled scalar = Series(0.5) assert not isinstance(scalar, float) # Coercion assert float(Series([1.0])) == 1.0 assert int(Series([1.0])) == 1 def test_constructor(self, datetime_series): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty_series = Series() assert datetime_series.index.is_all_dates # Pass in Series derived = Series(datetime_series) assert derived.index.is_all_dates assert tm.equalContents(derived.index, datetime_series.index) # Ensure new index is not created assert id(datetime_series.index) == id(derived.index) # Mixed type Series mixed = Series(["hello", np.NaN], index=[0, 1]) assert mixed.dtype == np.object_ assert mixed[1] is np.NaN assert not empty_series.index.is_all_dates with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): assert not Series().index.is_all_dates # exception raised is of type Exception with pytest.raises(Exception, match="Data must be 1-dimensional"): Series(np.random.randn(3, 3), index=np.arange(3)) mixed.name = "Series" rs = Series(mixed).name xp = "Series" assert rs == xp # raise on MultiIndex GH4187 m = MultiIndex.from_arrays([[1, 2], [3, 4]]) msg = "initializing a Series from a MultiIndex is not supported" with pytest.raises(NotImplementedError, match=msg): Series(m) @pytest.mark.parametrize("input_class", [list, dict, OrderedDict]) def test_constructor_empty(self, input_class): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty = Series() empty2 = Series(input_class()) # these are Index() and RangeIndex() which don't compare type equal # but are just .equals tm.assert_series_equal(empty, empty2, check_index_type=False) # With explicit dtype: empty = Series(dtype="float64") empty2 = Series(input_class(), dtype="float64") tm.assert_series_equal(empty, empty2, check_index_type=False) # GH 18515 : with dtype=category: empty = Series(dtype="category") empty2 = Series(input_class(), dtype="category") tm.assert_series_equal(empty, empty2, check_index_type=False) if input_class is not list: # With index: with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty = Series(index=range(10)) empty2 = Series(input_class(), index=range(10)) tm.assert_series_equal(empty, empty2) # With index and dtype float64: empty = Series(np.nan, index=range(10)) empty2 = Series(input_class(), index=range(10), dtype="float64") tm.assert_series_equal(empty, empty2) # GH 19853 : with empty string, index and dtype str empty = Series("", dtype=str, index=range(3)) empty2 = Series("", index=range(3)) tm.assert_series_equal(empty, empty2) @pytest.mark.parametrize("input_arg", [np.nan, float("nan")]) def test_constructor_nan(self, input_arg): empty = Series(dtype="float64", index=range(10)) empty2 = Series(input_arg, index=range(10)) tm.assert_series_equal(empty, empty2, check_index_type=False) @pytest.mark.parametrize( "dtype", ["f8", "i8", "M8[ns]", "m8[ns]", "category", "object", "datetime64[ns, UTC]"], ) @pytest.mark.parametrize("index", [None, pd.Index([])]) def test_constructor_dtype_only(self, dtype, index): # GH-20865 result = pd.Series(dtype=dtype, index=index) assert result.dtype == dtype assert len(result) == 0 def test_constructor_no_data_index_order(self): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): result = pd.Series(index=["b", "a", "c"]) assert result.index.tolist() == ["b", "a", "c"] def test_constructor_no_data_string_type(self): # GH 22477 result = pd.Series(index=[1], dtype=str) assert np.isnan(result.iloc[0]) @pytest.mark.parametrize("item", ["entry", "ѐ", 13]) def test_constructor_string_element_string_type(self, item): # GH 22477 result = pd.Series(item, index=[1], dtype=str) assert result.iloc[0] == str(item) def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 ser = Series(["x", None], dtype=string_dtype) result = ser.isna() expected = Series([False, True]) tm.assert_series_equal(result, expected) assert ser.iloc[1] is None ser = Series(["x", np.nan], dtype=string_dtype) assert np.isnan(ser.iloc[1]) def test_constructor_series(self): index1 = ["d", "b", "a", "c"] index2 = sorted(index1) s1 = Series([4, 7, -5, 3], index=index1) s2 = Series(s1, index=index2) tm.assert_series_equal(s2, s1.sort_index()) def test_constructor_iterable(self): # GH 21987 class Iter: def __iter__(self): for i in range(10): yield i expected = Series(list(range(10)), dtype="int64") result = Series(Iter(), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_sequence(self): # GH 21987 expected = Series(list(range(10)), dtype="int64") result = Series(range(10), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_single_str(self): # GH 21987 expected = Series(["abc"]) result = Series("abc") tm.assert_series_equal(result, expected) def test_constructor_list_like(self): # make sure that we are coercing different # list-likes to standard dtypes and not # platform specific expected = Series([1, 2, 3], dtype="int64") for obj in [[1, 2, 3], (1, 2, 3), np.array([1, 2, 3], dtype="int64")]: result = Series(obj, index=[0, 1, 2]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["bool", "int32", "int64", "float64"]) def test_constructor_index_dtype(self, dtype): # GH 17088 s = Series(Index([0, 2, 4]), dtype=dtype) assert s.dtype == dtype @pytest.mark.parametrize( "input_vals", [ ([1, 2]), (["1", "2"]), (list(pd.date_range("1/1/2011", periods=2, freq="H"))), (list(pd.date_range("1/1/2011", periods=2, freq="H", tz="US/Eastern"))), ([pd.Interval(left=0, right=5)]), ], ) def test_constructor_list_str(self, input_vals, string_dtype): # GH 16605 # Ensure that data elements from a list are converted to strings # when dtype is str, 'str', or 'U' result = Series(input_vals, dtype=string_dtype) expected = Series(input_vals).astype(string_dtype) tm.assert_series_equal(result, expected) def test_constructor_list_str_na(self, string_dtype): result = Series([1.0, 2.0, np.nan], dtype=string_dtype) expected = Series(["1.0", "2.0", np.nan], dtype=object) tm.assert_series_equal(result, expected) assert np.isnan(result[2]) def test_constructor_generator(self): gen = (i for i in range(10)) result = Series(gen) exp = Series(range(10)) tm.assert_series_equal(result, exp) gen = (i for i in range(10)) result = Series(gen, index=range(10, 20)) exp.index = range(10, 20) tm.assert_series_equal(result, exp) def test_constructor_map(self): # GH8909 m = map(lambda x: x, range(10)) result = Series(m) exp = Series(range(10)) tm.assert_series_equal(result, exp) m = map(lambda x: x, range(10)) result = Series(m, index=range(10, 20)) exp.index = range(10, 20) tm.assert_series_equal(result, exp) def test_constructor_categorical(self): cat = pd.Categorical([0, 1, 2, 0, 1, 2], ["a", "b", "c"], fastpath=True) res = Series(cat) tm.assert_categorical_equal(res.values, cat) # can cast to a new dtype result = Series(pd.Categorical([1, 2, 3]), dtype="int64") expected = pd.Series([1, 2, 3], dtype="int64") tm.assert_series_equal(result, expected) # GH12574 cat = Series(pd.Categorical([1, 2, 3]), dtype="category") assert is_categorical_dtype(cat) assert is_categorical_dtype(cat.dtype) s = Series([1, 2, 3], dtype="category") assert is_categorical_dtype(s) assert is_categorical_dtype(s.dtype) def test_constructor_categorical_with_coercion(self): factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"]) # test basic creation / coercion of categoricals s = Series(factor, name="A") assert s.dtype == "category" assert len(s) == len(factor) str(s.values) str(s) # in a frame df = DataFrame({"A": factor}) result = df["A"] tm.assert_series_equal(result, s) result = df.iloc[:, 0] tm.assert_series_equal(result, s) assert len(df) == len(factor) str(df.values) str(df) df = DataFrame({"A": s}) result = df["A"] tm.assert_series_equal(result, s) assert len(df) == len(factor) str(df.values) str(df) # multiples df = DataFrame({"A": s, "B": s, "C": 1}) result1 = df["A"] result2 = df["B"] tm.assert_series_equal(result1, s) tm.assert_series_equal(result2, s, check_names=False) assert result2.name == "B" assert len(df) == len(factor) str(df.values) str(df) # GH8623 x = DataFrame( [[1, "<NAME>"], [2, "<NAME>"], [1, "<NAME>"]], columns=["person_id", "person_name"], ) x["person_name"] = Categorical(x.person_name) # doing this breaks transform expected = x.iloc[0].person_name result = x.person_name.iloc[0] assert result == expected result = x.person_name[0] assert result == expected result = x.person_name.loc[0] assert result == expected def test_constructor_categorical_dtype(self): result = pd.Series( ["a", "b"], dtype=CategoricalDtype(["a", "b", "c"], ordered=True) ) assert
is_categorical_dtype(result.dtype)
pandas.core.dtypes.common.is_categorical_dtype
from pathlib import Path import numpy as np import pandas as pd from tqdm import tqdm zheng_all_files = [el.as_posix() for el in Path('ecg_data/zheng2020').glob('**/*.*')] zheng_all_files.sort() assert len(zheng_all_files) == 10651 all_data = [] for el in tqdm(zheng_all_files): if el.endswith('.csv'): tmp_data = pd.read_csv(el) assert np.all(tmp_data.columns == ['I', 'II', 'III', 'aVR', 'aVL', 'aVF', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6']) tmp_data = tmp_data.to_numpy() all_data.append(tmp_data) for el in all_data: assert el.shape == (5000, 12) all_data = np.asarray(all_data) all_data = all_data.transpose(0, 2, 1) meta_info =
pd.read_excel('ecg_data/zheng2020/Diagnostics.xlsx')
pandas.read_excel
import rebound import numpy as np import pandas as pd import multiprocessing from collections import OrderedDict from celmech.poincare import Poincare, PoincareHamiltonian from celmech import Andoyer, AndoyerHamiltonian from celmech.resonances import resonant_period_ratios, resonance_intersections_list, resonance_pratio_span from celmech.transformations import masses_to_jacobi from celmech.andoyer import get_num_fixed_points import itertools def collision(reb_sim, col): reb_sim.contents._status = 5 return 0 def safe_run_func(runfunc): def new_run_func(*args, **kwargs): try: return runfunc(*args, **kwargs) except RuntimeError: return None return new_run_func from scipy.optimize import brenth def F(e,alpha,gamma): """Equation 35 of Laskar & Petit (2017)""" denom = np.sqrt(alpha*(1-e*e)+gamma*gamma*e*e) return alpha*e -1 + alpha + gamma*e / denom ### start AMD functions def critical_relative_AMD(alpha,gamma): """Equation 29""" e0 = np.min((1,1/alpha-1)) ec = brenth(F,0,e0,args=(alpha,gamma)) e1c = np.sin(np.arctan(gamma*ec / np.sqrt(alpha*(1-ec*ec)))) curlyC = gamma*np.sqrt(alpha) * (1-np.sqrt(1-ec*ec)) + (1 - np.sqrt(1-e1c*e1c)) return curlyC @safe_run_func def compute_AMD(sim): pstar = sim.particles[0] Ltot = pstar.m * np.cross(pstar.xyz,pstar.vxyz) ps = sim.particles[1:] Lmbda=np.zeros(len(ps)) G = np.zeros(len(ps)) Lhat = np.zeros((len(ps),3)) for k,p in enumerate(sim.particles[1:]): orb = p.calculate_orbit(primary=pstar) Lmbda[k] = p.m * np.sqrt(p.a) G[k] = Lmbda[k] * np.sqrt(1-p.e*p.e) hvec = np.cross(p.xyz,p.vxyz) Lhat[k] = hvec / np.linalg.norm(hvec) Ltot = Ltot + p.m * hvec cosi = np.array([Lh.dot(Ltot) for Lh in Lhat]) / np.linalg.norm(Ltot) return np.sum(Lmbda) - np.sum(G * cosi) @safe_run_func def AMD_stable_Q(sim): AMD = compute_AMD(sim) pstar = sim.particles[0] ps = sim.particles[1:] for i in range(len(ps)-1): pIn = ps[i] pOut = ps[i+1] orbIn = pIn.calculate_orbit(pstar) orbOut = pOut.calculate_orbit(pstar) alpha = orbIn.a / orbOut.a gamma = pIn.m / pOut.m LmbdaOut = pOut.m * np.sqrt(orbOut.a) Ccrit = critical_relative_AMD(alpha,gamma) C = AMD / LmbdaOut if C>Ccrit: return False return True @safe_run_func def AMD_stability_coefficients(sim): AMD = compute_AMD(sim) pstar = sim.particles[0] ps = sim.particles[1:] coeffs = np.zeros(len(ps)-1) for i in range(len(ps)-1): pIn = ps[i] pOut = ps[i+1] orbIn = pIn.calculate_orbit(pstar) orbOut = pOut.calculate_orbit(pstar) alpha = orbIn.a / orbOut.a gamma = pIn.m / pOut.m LmbdaOut = pOut.m * np.sqrt(orbOut.a) Ccrit = critical_relative_AMD(alpha,gamma) C = AMD / LmbdaOut coeffs[i] = C / Ccrit return coeffs def AMD_stability_coefficient(sim, i1, i2): AMD = compute_AMD(sim) ps = sim.particles pstar = ps[0] pIn = ps[i1] pOut = ps[i2] orbIn = pIn.calculate_orbit(pstar) orbOut = pOut.calculate_orbit(pstar) alpha = orbIn.a / orbOut.a gamma = pIn.m / pOut.m LmbdaOut = pOut.m * np.sqrt(orbOut.a) Ccrit = critical_relative_AMD(alpha,gamma) C = AMD / LmbdaOut return C / Ccrit ### end AMD functions # write functions to take args and unpack them at top so it's clear what you have to pass in args @safe_run_func def orbtseries(sim, args, trio): Norbits = args[0] Nout = args[1] val = np.zeros((Nout, 19)) ############################### sim.collision_resolve = collision sim.ri_whfast.keep_unsynchronized = 1 ############################### # Chunk above should be the same in all runfuncs we write in order to match simarchives # Fill in values below times = np.linspace(0, Norbits*sim.particles[1].P, Nout) # TTV systems don't have ps[1].P=1, so must multiply! P0 = sim.particles[1].P a0 = sim.particles[1].a for i, time in enumerate(times): try: sim.integrate(time, exact_finish_time=0) except: break orbits = sim.calculate_orbits() skipped = 0 for j, o in enumerate(orbits): #print(j, trio) if j+1 not in trio: skipped += 1 continue #print(j, 'actually in', trio, skipped) val[i,0] = sim.t/P0 val[i,6*(j-skipped)+1] = o.a/a0 val[i,6*(j-skipped)+2] = o.e val[i,6*(j-skipped)+3] = o.inc val[i,6*(j-skipped)+4] = o.Omega val[i,6*(j-skipped)+5] = o.pomega val[i,6*(j-skipped)+6] = o.M return val @safe_run_func def orbsummaryfeaturesxgb(sim, args): Norbits = args[0] Nout = args[1] window = args[2] ############################### sim.collision_resolve = collision sim.ri_whfast.keep_unsynchronized = 1 ############################## times = np.linspace(0, Norbits*sim.particles[1].P, Nout) # TTV systems don't have ps[1].P=1, so must multiply! ps = sim.particles P0 = ps[1].P Nout = len(times) features = OrderedDict() AMDcoeffs = AMD_stability_coefficients(sim) features["C_AMD12"] = AMDcoeffs[0] features["C_AMD23"] = AMDcoeffs[1] features["C_AMD_max"] = np.max(AMDcoeffs) a = np.zeros((sim.N,Nout)) e = np.zeros((sim.N,Nout)) inc = np.zeros((sim.N,Nout)) beta12 = np.zeros(Nout) beta23 = np.zeros(Nout) Rhill12 = ps[1].a*((ps[1].m+ps[2].m)/3.)**(1./3.) Rhill23 = ps[2].a*((ps[2].m+ps[3].m)/3.)**(1./3.) eHill = [0, Rhill12/ps[1].a, max(Rhill12, Rhill23)/ps[2].a, Rhill23/ps[3].a] daOvera = [0, (ps[2].a-ps[1].a)/ps[1].a, min(ps[3].a-ps[2].a, ps[2].a-ps[1].a)/ps[2].a, (ps[3].a-ps[2].a)/ps[3].a] for i, t in enumerate(times): for j in [1,2,3]: a[j,i] = ps[j].a e[j,i] = ps[j].e inc[j,i] = ps[j].inc # mutual hill radii since that's what goes into Hill stability Rhill12 = ps[1].a*((ps[1].m+ps[2].m)/3.)**(1./3.) Rhill23 = ps[2].a*((ps[2].m+ps[3].m)/3.)**(1./3.) beta12[i] = (ps[2].a - ps[1].a)/Rhill12 beta23[i] = (ps[3].a - ps[2].a)/Rhill23 try: sim.integrate(t, exact_finish_time=0) except: break features['t_final_short'] = sim.t/P0 for string, feature in [("beta12", beta12), ("beta23", beta23)]: mean = feature.mean() std = feature.std() features["avg_"+string] = mean features["std_"+string] = std features["min_"+string] = min(feature) features["max_"+string] = max(feature) for j in [1,2,3]: for string, feature in [('a', a), ('e', e), ('inc', inc)]: mean = feature[j].mean() std = feature[j].std() features['avg_'+string+str(j)] = mean features['std_'+string+str(j)] = std features['max_'+string+str(j)] = feature[j].max() features['min_'+string+str(j)] = feature[j].min() features['norm_std_'+string+str(j)] = std/mean features['norm_max_'+string+str(j)] = np.abs(feature[j] - mean).max()/mean sample = feature[j][:window] samplemean = sample.mean() features['norm_std_window'+str(window)+'_'+string+str(j)] = sample.std()/samplemean features['norm_max_window'+str(window)+'_'+string+str(j)] = np.abs(sample - samplemean).max()/samplemean for string, feature in [('eH', e), ('iH', inc)]: mean = feature[j].mean() std = feature[j].std() features['avg_'+string+str(j)] = mean/eHill[j] features['std_'+string+str(j)] = std/eHill[j] features['max_'+string+str(j)] = feature[j].max()/eHill[j] features['min_'+string+str(j)] = feature[j].min()/eHill[j] string, feature = ('ecross', e) features['avg_'+string+str(j)] = mean/daOvera[j] features['std_'+string+str(j)] = std/daOvera[j] features['max_'+string+str(j)] = feature[j].max()/daOvera[j] features['min_'+string+str(j)] = feature[j].min()/daOvera[j] xx = range(a[j].shape[0]) yy = a[j]/a[j].mean()/features["t_final_short"] par = np.polyfit(xx, yy, 1, full=True) features['norm_a'+str(j)+'_slope'] = par[0][0] return pd.Series(features, index=list(features.keys())) def findres(sim, i1, i2): delta = 0.03 maxorder = 2 ps = Poincare.from_Simulation(sim=sim).particles # get averaged mean motions n1 = ps[i1].n n2 = ps[i2].n m1 = ps[i1].m m2 = ps[i2].m Pratio = n2/n1 if np.isnan(Pratio): # probably due to close encounter where averaging step doesn't converge return np.nan, np.nan, np.nan res = resonant_period_ratios(Pratio-delta,Pratio+delta, order=maxorder) Z = np.sqrt((ps[i1].e*np.cos(ps[i1].pomega) - ps[i2].e*np.cos(ps[i2].pomega))**2 + (ps[i1].e*np.sin(ps[i1].pomega) - ps[i2].e*np.sin(ps[i2].pomega))**2) maxstrength = 0 j, k, i1, i2, strength = -1, -1, -1, -1, -1 for a, b in res: s = np.abs(np.sqrt(m1+m2)*Z**((b-a)/2.)/(b*n2 - a*n1)) #print('{0}:{1}'.format(b, a), (b*n2 - a*n1), s) if s > maxstrength: j = b k = b-a i1 = 1 i2 = 2 strength=s maxstrength = s return j, k, strength def findres2(sim, i1, i2): maxorder = 2 ps = Poincare.from_Simulation(sim=sim).particles # get averaged mean motions n1 = ps[i1].n n2 = ps[i2].n m1 = ps[i1].m/ps[i1].M m2 = ps[i2].m/ps[i2].M Pratio = n2/n1 if np.isnan(Pratio): # probably due to close encounter where averaging step doesn't converge return np.nan, np.nan, np.nan delta = 0.03 minperiodratio = max(Pratio-delta, 0.) maxperiodratio = min(Pratio+delta, 0.999) # too many resonances close to 1 res = resonant_period_ratios(minperiodratio,maxperiodratio, order=2) Z = np.sqrt((ps[i1].e*np.cos(ps[i1].pomega) - ps[i2].e*np.cos(ps[i2].pomega))**2 + (ps[i1].e*np.sin(ps[i1].pomega) - ps[i2].e*np.sin(ps[i2].pomega))**2) Zcross = (ps[i2].a-ps[i1].a)/ps[i1].a j, k, i1, i2, maxstrength = -1, -1, -1, -1, -1 for a, b in res: s = np.abs(np.sqrt(m1+m2)*(Z/Zcross)**((b-a)/2.)/((b*n2 - a*n1)/n1)) #print('{0}:{1}'.format(b, a), (b*n2 - a*n1), s) if s > maxstrength: j = b k = b-a maxstrength = s if maxstrength > -1: return j, k, maxstrength else: return np.nan, np.nan, np.nan def findresv3(sim, i1, i2): maxorder = 2 try: ps = Poincare.from_Simulation(sim=sim, average=False).particles # get averaged mean motions except: return np.nan, np.nan, np.nan n1 = ps[i1].n n2 = ps[i2].n m1 = ps[i1].m/ps[i1].M m2 = ps[i2].m/ps[i2].M Pratio = n2/n1 if np.isnan(Pratio): # probably due to close encounter where averaging step doesn't converge return np.nan, np.nan, np.nan delta = 0.03 minperiodratio = max(Pratio-delta, 0.) maxperiodratio = min(Pratio+delta, 0.999) # too many resonances close to 1 res = resonant_period_ratios(minperiodratio,maxperiodratio, order=2) Z = np.sqrt((ps[i1].e*np.cos(ps[i1].pomega) - ps[i2].e*np.cos(ps[i2].pomega))**2 + (ps[i1].e*np.sin(ps[i1].pomega) - ps[i2].e*np.sin(ps[i2].pomega))**2) Zcross = (ps[i2].a-ps[i1].a)/ps[i1].a j, k, i1, i2, maxstrength = -1, -1, -1, -1, -1 for a, b in res: s = np.abs(np.sqrt(m1+m2)*(Z/Zcross)**((b-a)/2.)/((b*n2 - a*n1)/n1)) #print('{0}:{1}'.format(b, a), (b*n2 - a*n1), s) if s > maxstrength: j = b k = b-a maxstrength = s return j, k, maxstrength @safe_run_func def normressummaryfeaturesxgb(sim, args): ps = sim.particles Mstar = ps[0].m P1 = ps[1].P sim2 = rebound.Simulation() sim2.G = 4*np.pi**2 sim2.add(m=1.) for p in ps[1:]: sim2.add(m=p.m/Mstar, P=p.P/P1, e=p.e, inc=p.inc, pomega=p.pomega, Omega=p.Omega, theta=p.theta) sim2.move_to_com() sim2.integrator="whfast" sim2.dt=sim2.particles[1].P*2.*np.sqrt(3)/100. return ressummaryfeaturesxgb(sim2, args) @safe_run_func def ressummaryfeaturesxgb(sim, args): Norbits = args[0] Nout = args[1] ############################### sim.collision_resolve = collision sim.ri_whfast.keep_unsynchronized = 1 sim.ri_whfast.safe_mode = 0 ############################## features = OrderedDict() try: AMDcoeffs = AMD_stability_coefficients(sim) features["C_AMD12"] = AMDcoeffs[0] features["C_AMD23"] = AMDcoeffs[1] features["C_AMD_max"] = np.max(AMDcoeffs) except: features["C_AMD12"] = np.nan features["C_AMD23"] = np.nan features["C_AMD_max"] = np.nan ps = sim.particles sim.init_megno(seed=0) N = sim.N - sim.N_var a0 = [0] + [sim.particles[i].a for i in range(1, N)] Npairs = int((N-1)*(N-2)/2) js, ks, strengths = np.zeros(Npairs), np.zeros(Npairs), np.zeros(Npairs) maxj, maxk, maxi1, maxi2, maxpairindex, maxstrength = -1, -1, -1, -1, -1, -1 Zcross = np.zeros(Npairs) #print('pairindex, i1, i2, j, k, strength') for i, [i1, i2] in enumerate(itertools.combinations(np.arange(1, N), 2)): js[i], ks[i], strengths[i] = findresv3(sim, i1, i2) Zcross[i] = (ps[int(i2)].a-ps[int(i1)].a)/ps[int(i1)].a #print(i, i1, i2, js[i], ks[i], strengths[i]) if strengths[i] > maxstrength: maxj, maxk, maxi1, maxi2, maxpairindex, maxstrength = js[i], ks[i], i1, i2, i, strengths[i] features['Zcross12'] = Zcross[0] features['Zcross13'] = Zcross[1] features['Zcross23'] = Zcross[2] features['maxj'] = maxj features['maxk'] = maxk features['maxi1'] = maxi1 features['maxi2'] = maxi2 features['maxstrength'] = maxstrength sortedstrengths = strengths.copy() sortedstrengths.sort() # ascending if sortedstrengths[-1] > 0 and sortedstrengths[-2] > 0: # if two strongeest resonances are nonzereo features['secondres'] = sortedstrengths[-2]/sortedstrengths[-1] # ratio of strengths else: features['secondres'] = -1 #print('max', maxi1, maxi2, maxj, maxk, maxpairindex, maxstrength) #print('df (j, k, pairindex):', features['j'], features['k'], features['pairindex']) times = np.linspace(0, Norbits*sim.particles[1].P, Nout) eminus = np.zeros((Npairs, Nout)) rebound_Z, rebound_phi = np.zeros((Npairs,Nout)), np.zeros((Npairs,Nout)) rebound_Zcom, rebound_phiZcom = np.zeros((Npairs,Nout)), np.zeros((Npairs,Nout)) rebound_Zstar, rebound_dKprime = np.zeros((Npairs,Nout)), np.zeros((Npairs,Nout)) celmech_Z, celmech_phi = np.zeros(Nout), np.zeros(Nout) celmech_Zcom, celmech_phiZcom = np.zeros(Nout), np.zeros(Nout) celmech_Zstar, celmech_dKprime = np.zeros(Nout), np.zeros(Nout) for i,t in enumerate(times): for j, [i1, i2] in enumerate(itertools.combinations(np.arange(1, N), 2)): i1, i2 = int(i1), int(i2) eminus[j, i] = np.sqrt((ps[i2].e*np.cos(ps[i2].pomega)-ps[i1].e*np.cos(ps[i1].pomega))**2 + (ps[i2].e*np.sin(ps[i2].pomega)-ps[i1].e*np.sin(ps[i1].pomega))**2) if js[j] != -1: pvars = Poincare.from_Simulation(sim, average=False) avars = Andoyer.from_Poincare(pvars, j=int(js[j]), k=int(ks[j]), a10=a0[i1], i1=i1, i2=i2) rebound_Z[j, i] = avars.Z rebound_phi[j, i] = avars.phi rebound_Zcom[j, i] = avars.Zcom rebound_phiZcom[j, i] = avars.phiZcom rebound_Zstar[j, i] = avars.Zstar rebound_dKprime[j, i] = avars.dKprime try: sim.integrate(t, exact_finish_time=0) except: break mask = eminus[0] > 0 # where there are data points in case sim ends early times = times[mask] eminus = eminus[:, mask] rebound_Z, rebound_phi = rebound_Z[:, mask], rebound_phi[:, mask] rebound_Zcom, rebound_phiZcom = rebound_Zcom[:, mask], rebound_phiZcom[:, mask] rebound_Zstar, rebound_dKprime = rebound_Zstar[:, mask], rebound_dKprime[:, mask] celmech_Z, celmech_phi, celmech_Zcom, celmech_phiZcom = celmech_Z[mask], celmech_phi[mask], celmech_Zcom[mask], celmech_phiZcom[mask] celmech_Zstar, celmech_dKprime = celmech_Zstar[mask], celmech_dKprime[mask] for i, s in zip([0,2], ['12', '23']): # take adjacent ones EM = eminus[i] Zc = Zcross[i] features['EMmed'+s] = np.median(EM)/Zc features['EMmax'+s] = EM.max()/Zc try: p = np.poly1d(np.polyfit(times, EM, 3)) m = p(times) EMdrift = np.abs((m[-1]-m[0])/m[0]) features['EMdrift'+s] = EMdrift except: features['EMdrift'+s] = np.nan maxindex = (m == m.max()).nonzero()[0][0] # index where cubic polynomial fit to EM reaches max to track long wavelength variations (secular?) if EMdrift > 0.1 and (maxindex < 0.01*Nout or maxindex > 0.99*Nout): # don't flag as not capturing secular if Z isn't varying significantly in first place features['capseculartscale'+s] = 0 else: features['capseculartscale'+s] = 1 features['EMdetrendedstd'+s] = pd.Series(EM-m).std()/EM[0] rollstd = pd.Series(EM).rolling(window=100).std() features['EMrollingstd'+s] = rollstd[100:].median()/EM[0] var = [EM[:j].var() for j in range(len(EM))] try: p = np.poly1d(np.polyfit(times[len(var)//2:], var[len(var)//2:], 1)) # fit only second half to get rid of transient features['DiffcoeffEM'+s] = p[1]/Zc**2 except: features['DiffcoeffEM'+s] = np.nan features['medvarEM'+s] = np.median(var[len(var)//2:])/Zc**2 if strengths[i] != -1: Z = rebound_Z[i] features['Zmed'+s] = np.median(Z)/Zc features['Zmax'+s] = rebound_Z[i].max()/Zc try: p = np.poly1d(np.polyfit(times, Z, 3)) m = p(times) features['Zdetrendedstd'+s] = pd.Series(Z-m).std()/Z[0] except: features['Zdetrendedstd'+s] = np.nan rollstd = pd.Series(Z).rolling(window=100).std() features['Zrollingstd'+s] = rollstd[100:].median()/Z[0] var = [Z[:j].var() for j in range(len(Z))] try: p = np.poly1d(np.polyfit(times[len(var)//2:], var[len(var)//2:], 1)) # fit only second half to get rid of transient features['DiffcoeffZ'+s] = p[1]/Zc**2 except: features['DiffcoeffZ'+s] = np.nan features['medvarZ'+s] = np.median(var[len(var)//2:])/Zc**2 features['Zcomdrift'+s] = np.max(np.abs(rebound_Zcom[i]-rebound_Zcom[i, 0])/rebound_Zcom[i, 0]) rollstd = pd.Series(rebound_Zcom[i]).rolling(window=100).std() features['Zcomrollingstd'+s] = rollstd[100:].median()/rebound_Zcom[i,0] features['phiZcomdrift'+s] = np.max(np.abs(rebound_phiZcom[i]-rebound_phiZcom[i, 0])) rollstd = pd.Series(rebound_phiZcom[i]).rolling(window=100).std() features['phiZcomrollingstd'+s] = rollstd[100:].median() features['Zstardrift'+s] = np.max(np.abs(rebound_Zstar[i]-rebound_Zstar[i, 0])/rebound_Zstar[i, 0]) rollstd = pd.Series(rebound_Zstar[i]).rolling(window=100).std() features['Zstarrollingstd'+s] = rollstd[100:].median()/rebound_Zstar[i,0] Zcosphi = Z*np.cos(rebound_phi[i]) features['Zcosphistd'+s] = Zcosphi.std()/Zc features['medZcosphi'+s] = np.median(Zcosphi)/Zc else: features['Zmed'+s] = -1 features['Zmax'+s] = -1 features['Zdetrendedstd'+s] = -1 features['Zrollingstd'+s] = -1 features['DiffcoeffZ'+s] = -1 features['medvarZ'+s] = -1 features['Zcomdrift'+s] = -1 features['Zcomrollingstd'+s] = -1 features['phiZcomdrift'+s] = -1 features['phiZcomrollingstd'+s] = -1 features['Zstardrift'+s] = -1 features['Zstarrollingstd'+s] = -1 features['Zcosphistd'+s] = -1 features['medZcosphi'+s] = -1 tlyap = 1./np.abs(sim.calculate_lyapunov()) if tlyap > Norbits: tlyap = Norbits features['tlyap'] = tlyap features['megno'] = sim.calculate_megno() return pd.Series(features, index=list(features.keys())) @safe_run_func def ressummaryfeaturesxgb2(sim, args): Norbits = args[0] Nout = args[1] ############################### sim.collision_resolve = collision sim.ri_whfast.keep_unsynchronized = 1 sim.ri_whfast.safe_mode = 0 ############################## features = OrderedDict() AMDcoeffs = AMD_stability_coefficients(sim) features["C_AMD12"] = AMDcoeffs[0] features["C_AMD23"] = AMDcoeffs[1] features["C_AMD_max"] = np.max(AMDcoeffs) ps = sim.particles sim.init_megno() N = sim.N - sim.N_var a0 = [0] + [sim.particles[i].a for i in range(1, N)] Npairs = int((N-1)*(N-2)/2) js, ks, strengths = np.zeros(Npairs, dtype=np.int), np.zeros(Npairs, dtype=np.int), np.zeros(Npairs) maxj, maxk, maxi1, maxi2, maxpairindex, maxstrength = -1, -1, -1, -1, -1, -1 Zcross = np.zeros(Npairs) #print('pairindex, i1, i2, j, k, strength') for i, [i1, i2] in enumerate(itertools.combinations(np.arange(1, N), 2)): js[i], ks[i], strengths[i] = findresv3(sim, i1, i2) Zcross[i] = (ps[int(i2)].a-ps[int(i1)].a)/ps[int(i1)].a #print(i, i1, i2, js[i], ks[i], strengths[i]) if strengths[i] > maxstrength: maxj, maxk, maxi1, maxi2, maxpairindex, maxstrength = js[i], ks[i], i1, i2, i, strengths[i] features['Zcross12'] = Zcross[0] features['Zcross13'] = Zcross[1] features['Zcross23'] = Zcross[2] features['maxj'] = maxj features['maxk'] = maxk features['maxi1'] = maxi1 features['maxi2'] = maxi2 features['maxstrength'] = maxstrength sortedstrengths = strengths.copy() sortedstrengths.sort() if sortedstrengths[-1] > 0 and sortedstrengths[-2] > 0: features['secondres'] = sortedstrengths[-2]/sortedstrengths[-1] else: features['secondres'] = -1 #print('max', maxi1, maxi2, maxj, maxk, maxpairindex, maxstrength) #print('df (j, k, pairindex):', features['j'], features['k'], features['pairindex']) P0 = sim.particles[1].P times = np.linspace(0, Norbits, Nout) eminus = np.zeros((Npairs, Nout)) rebound_Z, rebound_phi = np.zeros((Npairs,Nout)), np.zeros((Npairs,Nout)) rebound_Zcom, rebound_phiZcom = np.zeros((Npairs,Nout)), np.zeros((Npairs,Nout)) rebound_Zstar, rebound_dKprime = np.zeros((Npairs,Nout)), np.zeros((Npairs,Nout)) celmech_Z, celmech_phi = np.zeros(Nout), np.zeros(Nout) celmech_Zcom, celmech_phiZcom = np.zeros(Nout), np.zeros(Nout) celmech_Zstar, celmech_dKprime = np.zeros(Nout), np.zeros(Nout) for i,t in enumerate(times): for j, [i1, i2] in enumerate(itertools.combinations(np.arange(1, N), 2)): i1, i2 = int(i1), int(i2) eminus[j, i] = np.sqrt((ps[i2].e*np.cos(ps[i2].pomega)-ps[i1].e*np.cos(ps[i1].pomega))**2 + (ps[i2].e*np.sin(ps[i2].pomega)-ps[i1].e*np.sin(ps[i1].pomega))**2) if js[j] != -1: pvars = Poincare.from_Simulation(sim) avars = Andoyer.from_Poincare(pvars, j=js[j], k=ks[j], a10=a0[i1], i1=i1, i2=i2) rebound_Z[j, i] = avars.Z rebound_phi[j, i] = avars.phi rebound_Zcom[j, i] = avars.Zcom rebound_phiZcom[j, i] = avars.phiZcom rebound_Zstar[j, i] = avars.Zstar rebound_dKprime[j, i] = avars.dKprime try: sim.integrate(t*P0, exact_finish_time=0) except: break mask = eminus[0] > 0 # where there are data points in case sim ends early times = times[mask] eminus = eminus[:, mask] rebound_Z, rebound_phi = rebound_Z[:, mask], rebound_phi[:, mask] rebound_Zcom, rebound_phiZcom = rebound_Zcom[:, mask], rebound_phiZcom[:, mask] rebound_Zstar, rebound_dKprime = rebound_Zstar[:, mask], rebound_dKprime[:, mask] celmech_Z, celmech_phi, celmech_Zcom, celmech_phiZcom = celmech_Z[mask], celmech_phi[mask], celmech_Zcom[mask], celmech_phiZcom[mask] celmech_Zstar, celmech_dKprime = celmech_Zstar[mask], celmech_dKprime[mask] for i, s in zip([0,2], ['12', '23']): # take adjacent ones EM = eminus[i] Zc = Zcross[i] features['EMmed'+s] = np.median(EM)/Zc features['EMmax'+s] = EM.max()/Zc try: p = np.poly1d(np.polyfit(times, EM, 3)) m = p(times) EMdrift = np.abs((m[-1]-m[0])/m[0]) features['EMdrift'+s] = EMdrift except: features['EMdrift'+s] = np.nan maxindex = (m == m.max()).nonzero()[0][0] # index where cubic polynomial fit to EM reaches max to track long wavelength variations (secular?) if EMdrift > 0.1 and (maxindex < 0.01*Nout or maxindex > 0.99*Nout): # don't flag as not capturing secular if Z isn't varying significantly in first place features['capseculartscale'+s] = 0 else: features['capseculartscale'+s] = 1 features['EMdetrendedstd'+s] = pd.Series(EM-m).std()/EM[0] rollstd = pd.Series(EM).rolling(window=100).std() features['EMrollingstd'+s] = rollstd[100:].median()/EM[0] var = [EM[:j].var() for j in range(len(EM))] try: p = np.poly1d(np.polyfit(times[len(var)//2:], var[len(var)//2:], 1)) # fit only second half to get rid of transient features['DiffcoeffEM'+s] = p[1]/Zc**2 except: features['DiffcoeffEM'+s] = np.nan features['medvarEM'+s] = np.median(var[len(var)//2:])/Zc**2 if strengths[i] != -1: Z = rebound_Z[i] features['Zmed'+s] = np.median(Z)/Zc features['Zmax'+s] = rebound_Z[i].max()/Zc try: p = np.poly1d(np.polyfit(times, Z, 3)) m = p(times) features['Zdetrendedstd'+s] = pd.Series(Z-m).std()/Z[0] except: features['Zdetrendedstd'+s] = np.nan rollstd = pd.Series(Z).rolling(window=100).std() features['Zrollingstd'+s] = rollstd[100:].median()/Z[0] var = [Z[:j].var() for j in range(len(Z))] try: p = np.poly1d(np.polyfit(times[len(var)//2:], var[len(var)//2:], 1)) # fit only second half to get rid of transient features['DiffcoeffZ'+s] = p[1]/Zc**2 except: features['DiffcoeffZ'+s] = np.nan features['medvarZ'+s] = np.median(var[len(var)//2:])/Zc**2 features['Zcomdrift'+s] = np.max(np.abs(rebound_Zcom[i]-rebound_Zcom[i, 0])/rebound_Zcom[i, 0]) rollstd =
pd.Series(rebound_Zcom[i])
pandas.Series
#!/usr/bin/env python # encoding: utf-8 # # Copyright SAS Institute # # Licensed under the Apache License, Version 2.0 (the License); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ''' DataFrame that includes SAS metadata (formats, labels, titles) ''' from __future__ import print_function, division, absolute_import, unicode_literals import collections import datetime import json import re import pandas as pd import six from .cas.table import CASTable from .utils.compat import (a2u, a2n, int32, int64, float64, int32_types, int64_types, float64_types, bool_types, text_types, binary_types) from .utils import dict2kwargs from .clib import errorcheck from .formatter import SASFormatter def dtype_from_var(value): ''' Guess the CAS data type from the value ''' if isinstance(value, int64_types): return 'int64' if isinstance(value, int32_types): return 'int32' if isinstance(value, float64_types): return 'double' if isinstance(value, text_types): return 'varchar' if isinstance(value, binary_types): return 'varbinary' if isinstance(value, datetime.datetime): return 'datetime' if isinstance(value, datetime.date): return 'date' if isinstance(value, datetime.time): return 'time' raise TypeError('Unrecognized type for value: %s' % value) def split_format(fmt): ''' Split a SAS format name into components ''' if not fmt: sasfmt = collections.namedtuple('SASFormat', ['ischar', 'name', 'width', 'ndec']) return sasfmt(False, '', 0, 0) parts = list(re.match(r'(\$)?(\w*?)(\d*)\.(\d*)', fmt).groups()) parts[0] = parts[0] and True or False parts[2] = parts[2] and int(parts[2]) or 0 parts[3] = parts[3] and int(parts[3]) or 0 sasfmt = collections.namedtuple('SASFormat', ['ischar', 'name', 'width', 'ndec']) return sasfmt(*parts) def concat(objs, **kwargs): ''' Concatenate :class:`SASDataFrames` while preserving table and column metadata This function is equivalent to :func:`pandas.concat` except that it also preserves metadata in :class:`SASDataFrames`. It can be used on standard :class:`pandas.DataFrames` as well. Parameters ---------- objs : a sequence of mapping of Series, (SAS)DataFrame, or Panel objects The DataFrames to concatenate. **kwargs : any, optional Additional arguments to pass to :func:`pandas.concat`. Examples -------- >>> conn = swat.CAS() >>> tbl = conn.read_csv('data/cars.csv') >>> out = tbl.groupby('Origin').summary() >>> print(concat([out['ByGroup1.Summary'], out['ByGroup2.Summary'], ... out['ByGroup3.Summary']])) Returns ------- :class:`SASDataFrame` ''' proto = objs[0] if not isinstance(proto, SASDataFrame): return
pd.concat(objs, **kwargs)
pandas.concat
import warnings # 忽略警告 warnings.filterwarnings('ignore') import pandas as pd #表格和数据操作 import numpy as np import matplotlib.pyplot as plt from statsmodels.tsa.arima_model import ARMA from statsmodels.tsa.arima_model import ARIMA from statsmodels.api import tsa import statsmodels.api as sm from itertools import product dta0=pd.read_csv('data.CSV',header=0) dta0.index =
pd.to_datetime(dta0['date'])
pandas.to_datetime
import pandas as pd import numpy as np from _data_utils import stationary_df, make_stationary from _data_utils import df_slicing, fill_bs_date, future_rolling, make_float from _data_utils import scaler_with_nan from _data_jodi import jodi_read from ml_data_preprocessing.make_data import make_data from oil_forecastor.model_selection._utility import rolling_train_test_split, denoising_func import copy from sklearn.metrics import r2_score import math from scipy.special import gamma def read_data_url(url, sheet_name_list, col_name_list, freq='D'): data = pd.read_excel(url, sheet_name=sheet_name_list) df_list_ = [] for sheet_name, col_name in zip(sheet_name_list, col_name_list): df_ = data[sheet_name] df_.columns = column_fill_name(df_.columns, col_name) df_ = df_[
pd.to_numeric(df_[col_name[1]], errors='coerce')
pandas.to_numeric
# -*- coding: utf-8 -*- """ Created on Thu Mar 10 16:09:31 2022 @author: kkrao """ import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.colors import seaborn as sns import init import cartopy.crs as ccrs import cartopy.feature as cf from cartopy.feature import ShapelyFeature import cartopy.io.shapereader as shpreader import geopandas as gpd import rasterio import rasterio.mask import fiona import sklearn.metrics import statsmodels.stats.contingency_tables import matplotlib.ticker as ticker sns.set(font_scale = 1., style = "ticks") plt.style.use("pnas") WIDTH = 3 def plot_lightnings(): df = pd.DataFrame() for cat in ['grass','shrub','forest']: sdf = pd.read_csv(os.path.join(init.dir_root,\ "data","r","matches",\ f"matched_22_apr_2022_extreme_{cat.lower()}.csv")) df = df.append(sdf, ignore_index = True) df = df.rename(columns = {"y":"fire"}) fname = r"D:\Krishna\projects\wildfire_from_lfmc\data\CA_State_TIGER2016\CA_State_TIGER2016.shp" shdf = gpd.read_file(fname) shdf = shdf.to_crs("EPSG:4326") res = "high" ax = plt.figure(figsize=(16,10)).gca(projection=ccrs.PlateCarree()) projection = ccrs.PlateCarree(central_longitude=0) ax.add_geometries(shdf.geometry, projection, facecolor="None", edgecolor='k', linewidth = 2) ax.set_extent([-125,-114,32,43]) ax.scatter(df.loc[df.fire==0,'longitude'], df.loc[df.fire==0,'latitude'], s = 20, color = "blueviolet", \ alpha = 1, edgecolor = "grey") ax.scatter(df.loc[df.fire==1,'longitude'], df.loc[df.fire==1,'latitude'], s = 20, color = "yellow", \ alpha = 1, edgecolor = "grey") raster = r"D:\Krishna\projects\grid_fire\data\nlcd\nlcd_2016_4km.tif" src = rasterio.open(raster,'r') left, bottom, right, top = src.bounds raster = rasterio.mask.mask(src, shdf.geometry, crop=False)[0][0] np.unique(raster) raster = np.ma.masked_where(\ ~np.isin(raster, list(init.thresh["extreme"].keys())), \ raster) cmap, norm = matplotlib.colors.from_levels_and_colors([0,50,55,100],['darkgreen','darkgoldenrod','lime']) ax.imshow(raster, cmap=cmap, norm = norm,extent=(left, right, top, bottom), alpha = 0.4 ) ax = plt.figure(figsize=(16,10)).gca(projection=ccrs.PlateCarree()) projection = ccrs.PlateCarree(central_longitude=0) ax.add_geometries(shdf.geometry, projection, facecolor="None", edgecolor='k', linewidth = 2) ax.set_extent([-125,-114,32,43]) ax.scatter(df.loc[:,'longitude'], df.loc[:,'latitude'], s = 20, c = df["z_extreme"],cmap = matplotlib.colors.ListedColormap(["aqua","peru"]), \ alpha = 1, edgecolor = "grey") # ax.scatter(df.loc[df.z_extreme==1,'longitude'], df.loc[df.z_extreme==1,'latitude'], s = 20, color = "peru", \ # alpha = 1, edgecolor = "grey") raster = r"D:\Krishna\projects\grid_fire\data\nlcd\nlcd_2016_4km.tif" src = rasterio.open(raster,'r') left, bottom, right, top = src.bounds raster = rasterio.mask.mask(src, shdf.geometry, crop=False)[0][0] np.unique(raster) raster = np.ma.masked_where(\ ~np.isin(raster, list(init.thresh["extreme"].keys())), \ raster) cmap, norm = matplotlib.colors.from_levels_and_colors([0,50,55,100],['darkgreen','darkgoldenrod','lime']) ax.imshow(raster, cmap=cmap, norm = norm,extent=(left, right, top, bottom), alpha = 0.4 ) def flatten(t): return [item for sublist in t for item in sublist] def reshape(row): cols = ["lfmc","fire","lc","mean_ndvi","vpd_4m","agb","mean_t","wind"] select = [[f"{col}_0", f"{col}_1"] for col in cols] select = flatten(select) if len(row) == 2: order = np.argsort(row.lfmc) new_row = [list(np.array(row[col])[order]) for col in cols] new_row = flatten(new_row) new_row = pd.Series(data = new_row, index = select) # new_row = pd.Series(data = list(np.array(row.lfmc)[order]) +\ # list(np.array(row.y)[order]) +\ # list(np.array(row.lc)[order]),\ # index = ["lfmc_0","lfmc_1","fire_0","fire_1", "lc_0","lc_1"]) return new_row else: return pd.Series(data = [np.nan]*len(select), \ index = select) def get_or_stats(df): table = sklearn.metrics.confusion_matrix(\ np.append(df.fire_0.values,df.fire_1.values), \ np.append(np.repeat(1,len(df)),np.repeat(0,len(df)))) model = statsmodels.stats.contingency_tables.Table2x2(table) return [model.oddsratio, model.oddsratio_confint()[1], model.oddsratio_confint()[0], model.oddsratio_pvalue(), 2*len(df)] def plot_odds(ms = 100): df = pd.read_csv(os.path.join(init.dir_root,\ "data","r",\ "matched_extreme_21_apr_2022.csv")) df = df.rename(columns = {"y":"fire"}) cols = ["lfmc","fire","lc","mean_ndvi","vpd_4m","agb","mean_t","wind"] mdf = df.groupby("match")[cols].apply(reshape) mdf["lfmc_diff"] = mdf["lfmc_0"] - mdf["lfmc_1"] mdf.dropna(inplace = True) mdf["thresh"] = list(map(init.thresh["extreme"].get, mdf.lc_0)) fig = plt.figure(constrained_layout=True, figsize =(5.5,3.5)) widths = [4,3] heights = [1,1] spec = fig.add_gridspec(ncols=2, nrows=1, width_ratios=widths, ) axs = [] axs.append(fig.add_subplot(spec[0, 0])) axs.append(fig.add_subplot(spec[0, 1], sharey = axs[0])) ax = axs[1] or_by_lfmc = pd.DataFrame(index = init.thresh_diff.keys(), columns = ["Odds ratio", "upper","lower","p","n"]) for cat in init.thresh_diff.keys(): sdf = mdf.loc[(mdf.lfmc_diff > init.thresh_diff[cat][0])&(mdf.lfmc_diff <= init.thresh_diff[cat][1])].copy() print(sdf.shape) or_by_lfmc.loc[cat,:] = get_or_stats(sdf) ax.errorbar(or_by_lfmc.index, or_by_lfmc["Odds ratio"], \ yerr = [or_by_lfmc["Odds ratio"] - or_by_lfmc["lower"],or_by_lfmc["upper"] - or_by_lfmc["Odds ratio"]], color = "grey", \ capsize = 3, zorder = -1) ax.scatter(or_by_lfmc.index, or_by_lfmc["Odds ratio"], color = "k", edgecolor = "grey", s = ms) ax.axhline(1, linestyle = "--",color = "grey") ax.set_ylabel("") ax.set_xlabel(r"$\Delta$ LFMC in matched pair") new_labs = [f"({init.thresh_diff[cat][1]}, {init.thresh_diff[cat][0]}]" for cat in init.thresh_diff.keys()] # ax.set_xlabel("Range of min. LFMC") ax.set_xticklabels(new_labs) ax = axs[0] mdf = mdf.replace({"lc_0": init.lc_dict}) or_by_lc = pd.DataFrame(index =["All"] + list(mdf.lc_0.unique()) , columns = ["Odds ratio", "upper","lower","p","n"]) for cat in or_by_lc.index: if cat == "All": sdf = mdf.copy() else: sdf = mdf.loc[mdf.lc_0==cat].copy() or_by_lc.loc[cat,:] = get_or_stats(sdf) ax = axs[0] ax.errorbar(or_by_lc.index, or_by_lc["Odds ratio"], \ yerr = [or_by_lc["Odds ratio"] - or_by_lc["lower"],\ or_by_lc["upper"] - or_by_lc["Odds ratio"]], \ color = "grey", \ capsize = 3, zorder = -1, ls='none') ax.scatter(or_by_lc.index, or_by_lc["Odds ratio"], \ color = ['black', 'forestgreen','darkgoldenrod','lawngreen'],\ edgecolor = "grey", s = ms) ax.set_ylim(0,12) ax.axhline(1, linestyle = "--",color = "grey") ax.set_ylabel("") ax.set_xlabel("") ax.set_ylabel("Odds ratio") axs[0].annotate("A",xy = (-0.25,1.2), xycoords = "axes fraction") axs[0].annotate("Odds ratio per land cover",xy = (0.5,1.1), \ xycoords = "axes fraction", weight = "bold", ha = "center") axs[0].annotate("B",xy = (1,1.2), xycoords = "axes fraction") axs[1].annotate(r"Odds ratio binned by $\Delta$ LFMC ",xy = (0.5,1.1), \ xycoords = "axes fraction", weight = "bold", ha = "center") axs[0].spines['right'].set_visible(False) axs[0].spines['top'].set_visible(False) axs[1].spines['right'].set_visible(False) axs[1].spines['top'].set_visible(False) def plot_odds_separate_files(ms = 100): cols = ["lfmc","fire","lc","mean_ndvi","vpd_4m","agb","mean_t","wind"] or_by_lc = pd.DataFrame(index =["All","Shrub","Forest","Grass"] , columns = ["Odds ratio", "upper","lower","p","n"]) mmdf = pd.DataFrame() for cat in or_by_lc.index: if cat != "All": sdf = pd.read_csv(os.path.join(init.dir_root,\ "data","r","matches",\ f"matched_22_apr_2022_extreme_{cat.lower()}.csv")) sdf = sdf.rename(columns = {"y":"fire"}) mdf = sdf.groupby("match")[cols].apply(reshape) or_by_lc.loc[cat,:] = get_or_stats(mdf) mmdf = mmdf.append(mdf, ignore_index = True) or_by_lc.loc["All",:] = get_or_stats(mmdf) mmdf["lfmc_diff"] = mmdf["lfmc_0"] - mmdf["lfmc_1"] or_by_lfmc = pd.DataFrame(index = init.thresh_diff.keys(), columns = ["Odds ratio", "upper","lower","p","n"]) for cat in init.thresh_diff.keys(): mdf = mmdf.loc[(mmdf.lfmc_diff > init.thresh_diff[cat][0])&\ (mmdf.lfmc_diff <= init.thresh_diff[cat][1])].copy() or_by_lfmc.loc[cat,:] = get_or_stats(mdf) fig, axs = plt.subplots(1, 2, figsize =(8,4), sharey = True) ax = axs[0] ax.errorbar(or_by_lc.index, or_by_lc["Odds ratio"], \ yerr = [or_by_lc["Odds ratio"] - or_by_lc["lower"],\ or_by_lc["upper"] - or_by_lc["Odds ratio"]], \ color = "grey", \ capsize = 3, zorder = -1, ls='none') ax.scatter(or_by_lc.index, or_by_lc["Odds ratio"], \ color = ['black', 'darkgoldenrod','forestgreen','lawngreen'],\ edgecolor = "grey", s = ms) ax.set_ylim(0,8) ax.axhline(1, linestyle = "--",color = "grey") ax.set_ylabel("") ax.set_xlabel("") ax.set_ylabel("Odds ratio") ax = axs[1] ax.errorbar(or_by_lfmc.index, or_by_lfmc["Odds ratio"], \ yerr = [or_by_lfmc["Odds ratio"] - or_by_lfmc["lower"],or_by_lfmc["upper"] - or_by_lfmc["Odds ratio"]], color = "grey", \ capsize = 3, zorder = -1) ax.scatter(or_by_lfmc.index, or_by_lfmc["Odds ratio"], color = "k", edgecolor = "grey", s = ms) ax.axhline(1, linestyle = "--",color = "grey") ax.set_ylabel("") ax.set_xlabel(r"$\Delta$ LFMC in matched pairs") new_labs = [f"({int(init.thresh_diff[cat][1])}, {int(init.thresh_diff[cat][0])}]" \ for cat in init.thresh_diff.keys()] # ax.set_xlabel("Range of min. LFMC") ax.set_xticklabels(new_labs) axs[0].annotate("A",xy = (-0.25,1.2), xycoords = "axes fraction") axs[0].annotate("Odds ratio per land cover",xy = (0.5,1.1), \ xycoords = "axes fraction", weight = "bold", ha = "center") axs[0].annotate("B",xy = (1,1.2), xycoords = "axes fraction") axs[1].annotate(r"Odds ratio binned by $\Delta$ LFMC ",xy = (0.5,1.1), \ xycoords = "axes fraction", weight = "bold", ha = "center") axs[0].spines['right'].set_visible(False) axs[0].spines['top'].set_visible(False) axs[1].spines['right'].set_visible(False) axs[1].spines['top'].set_visible(False) for i, (lc, cat) in enumerate(zip(or_by_lc.index, or_by_lfmc.index)): delta = 0 align = "center" if i==0: align = "left" delta = -0.1 elif i ==3: align = "right" delta = 0.1 axs[0].annotate(f"n = {or_by_lc.loc[lc, 'n']:,}", \ xy = (i+delta,-0.1), \ ha = align) # axs[1].annotate(f"n = {or_by_lfmc.loc[cat, 'n']:,}", \ # xy = (i+delta,or_by_lfmc.loc[cat, "upper"]+0.3), \ # ha = align) print(or_by_lc) print(or_by_lfmc) def plot_balance(): df = pd.read_csv(os.path.join(init.dir_root, "data","r","balance_16_mar_2022.csv"), index_col = 0) df.index = df.index.map(init.var_names) df = df.rename(columns = {"results.std.diff.Unadj":"Raw","results.std.diff.ms.1":"Matched"}) print(df["Matched"].abs().mean()) fig, ax = plt.subplots(figsize = (3,3.5)) ax.scatter(df.Raw, df.index, marker = "s",s = 40, color = "k") ax.scatter(df.Matched, df.index, marker = "o",s = 40, color = "k") ax.axvline(0, color = "k") for i in range(len(df.index)): if df.Matched[i]-df.Raw[i]>0: ax.arrow(df.Raw[i], i, df.Matched[i]-df.Raw[i]-0.2, 0, head_width = 0.1, color = "k", linewidth =0.2) else: ax.arrow(df.Raw[i], i, df.Matched[i]-df.Raw[i]+0.17, 0, head_width = 0.1, color = "k", linewidth =0.2) ax.yaxis.set_ticks_position('none') ax.set_xlabel("Standardized difference") ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) def plot_balance_separate_files(): lcs = ["shrub","forest","grass"] df = pd.DataFrame() for lc in lcs: sdf = pd.read_csv(os.path.join(init.dir_root, "data","r","balance",\ f"balance_24_apr_2022_{lc}.csv"), index_col = 0) sdf.index = sdf.index.map(init.var_names) sdf = sdf.rename(columns = {"results.std.diff.Unadj":"Raw","results.std.diff.ms.1":"Matched"}) sdf= sdf[["Raw","Matched"]] sdf["n"] = pd.read_csv(os.path.join(init.dir_root,\ "data","r","matches",\ f"matched_22_apr_2022_extreme_{lc}.csv")).shape[0] sdf.columns = [col + f"_{lc}" for col in sdf.columns] df = df.join(sdf, how = "outer") for col in ["Raw","Matched"]: df[col] = (df[f"{col}_shrub"]*df["n_shrub"]+\ df[f"{col}_forest"]*df["n_forest"]+\ df[f"{col}_grass"]*df["n_grass"])/\ (df["n_shrub"]+df["n_forest"]+df["n_grass"]) print(df["Matched"].abs().mean()) fig, ax = plt.subplots(figsize = (3,3.5)) ax.scatter(df.Raw, df.index, marker = "s",s = 40, color = "k") ax.scatter(df.Matched, df.index, marker = "o",s = 40, color = "k") ax.axvline(0, color = "k") for i in range(len(df.index)): if df.Matched[i]-df.Raw[i]>0: ax.arrow(df.Raw[i], i, df.Matched[i]-df.Raw[i]-0.2, 0, head_width = 0.1, color = "k", linewidth =0.2) else: ax.arrow(df.Raw[i], i, df.Matched[i]-df.Raw[i]+0.17, 0, head_width = 0.1, color = "k", linewidth =0.2) ax.yaxis.set_ticks_position('none') ax.set_xlabel("Standardized difference") ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) ax.set_xlim(-1.5,1.5) def plot_gamma(): fig, ax = plt.subplots(figsize = (3,3)) for lc in ["all"]: sdf = pd.read_csv(os.path.join(init.dir_root,\ "data","r","pvalues",\ f"p_gamma_24_apr_2022_{lc}.csv"), usecols = [1,2],index_col = 0) sdf.plot(ax = ax, color = init.lc_color[lc], linewidth = 1, legend = False) x = sdf.index[(sdf['pvalue']-0.05).abs().argmin()] ax.hlines(0.05,1,x, color = "grey") ax.vlines(x,0,0.05, color = "grey") ax.set_ylabel("P value") ax.set_xlabel("Confounding ratio") ax.set_xlim(1,1.6) ax.set_ylim(0,0.15) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.annotate(f"{x:0.2f}", xy = (x, 0.005)) def confusion_matrix(): df = pd.read_csv(os.path.join(os.path.join(init.dir_root, "data","r","rct_22_apr_2022.csv"))) df = sklearn.metrics.confusion_matrix(df.fire, df.z_extreme) print(df) print(sum(sum(df))) # sdf = df.loc[df.lc==71] # print(sklearn.metrics.confusion_matrix(sdf.fire, sdf.z_high)) # df = pd.read_csv(os.path.join(init.dir_root,\ # "data","r",\ # "matched_extreme_3_mar_2022.csv")) df = np.zeros((2,2)) for lc in ["Shrub","Forest","Grass"]: sdf = pd.read_csv(os.path.join(init.dir_root,\ "data","r","matches",\ f"matched_22_apr_2022_extreme_{lc.lower()}.csv")) sdf = sklearn.metrics.confusion_matrix(sdf.y, sdf.z_extreme) print(lc) print(sdf) df += sdf print(df) print(sum(sum(df))) def plot_my_balance(): df = pd.read_csv(os.path.join(os.path.join(init.dir_root, "data","r","rct_22_apr_2022.csv"))) rows = ['longitude','latitude','agb','wind','vpd_4m','ppt_1y'] balance_raw = pd.pivot_table(df, values = rows, columns = ["z_extreme"]) std = df[rows].std() balance_raw = (balance_raw[1] - balance_raw[0])/std df = pd.read_csv(os.path.join(init.dir_root,\ "data","r",\ "matched_extreme_21_apr_2022.csv")) balance_matched = pd.pivot_table(df, values = rows, columns = ["z_extreme"]) balance_matched = (balance_matched[1] - balance_matched[0])/std df = pd.DataFrame({"Raw":balance_raw, "Matched":balance_matched}) # df = df.rename(index = {'longitude':'Longitude', 'latitude':'Latitude', 'vpd_4m':'VPD$_{\rm 4\ months\ mean}$',\ # 'ppt_1y':'P$_{\rm 12\ months\ sum}$', 'agb':'AGB', 'wind':'Wind speed'}) fig, ax = plt.subplots(figsize = (3,3.5)) ax.scatter(df.Raw, df.index, marker = "s",s = 40, color = "k") ax.scatter(df.Matched, df.index, marker = "o",s = 40, color = "k") ax.axvline(0, color = "k") for i in range(len(df.index)): if df.Matched[i]-df.Raw[i]>0: ax.arrow(df.Raw[i], i, df.Matched[i]-df.Raw[i]-0.2, 0, head_width = 0.1, color = "k", linewidth =0.2) else: ax.arrow(df.Raw[i], i, df.Matched[i]-df.Raw[i]+0.17, 0, head_width = 0.1, color = "k", linewidth =0.2) ax.yaxis.set_ticks_position('none') ax.set_xlabel("Standardized difference") ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) df =
pd.DataFrame()
pandas.DataFrame
import os import sys sys.path.append('../') import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf from absl import flags, app from tensorflow_probability.python.internal.samplers import split_seed from tqdm import tqdm from filterflow.base import State from filterflow.models.optimal_proposal_linear_gaussian import make_filter, make_optimal_filter from filterflow.resampling import MultinomialResampler, SystematicResampler, StratifiedResampler, RegularisedTransform from filterflow.resampling.criterion import NeverResample, AlwaysResample, NeffCriterion from filterflow.resampling.differentiable import PartiallyCorrectedRegularizedTransform from filterflow.resampling.differentiable.loss import SinkhornLoss from filterflow.resampling.differentiable.optimized import OptimizedPointCloud from filterflow.resampling.differentiable.optimizer.sgd import SGD import pickle from scripts.optimal_proposal_common import get_data, ResamplingMethodsEnum, get_observation_matrix, \ get_observation_covariance, get_transition_covariance, get_transition_matrix def pickle_obj(obj, file_path): with open(file_path, 'wb') as handle: pickle.dump(obj, handle, protocol=pickle.HIGHEST_PROTOCOL) @tf.function def routine(pf, initial_state, observations_dataset, T, log_phi_x, phi_y, seed): with tf.GradientTape() as tape: tape.watch([log_phi_x, phi_y]) final_state = pf(initial_state, observations_dataset, T, seed=seed, return_final=True) res = -tf.reduce_mean(final_state.log_likelihoods) return res, tape.gradient(res, [log_phi_x, phi_y]), tf.reduce_mean(final_state.ess) def get_gradient_descent_function(): # This is a trick because tensorflow doesn't allow you to create variables inside a decorated function @tf.function def gradient_descent(pf, initial_state, observations_dataset, T, n_iter, optimizer, log_phi_x, phi_y, initial_values, change_seed, seed): variables = [log_phi_x, phi_y] reset_operations = [k.assign(v) for k, v in zip(variables, initial_values)] loss = tf.TensorArray(dtype=tf.float32, size=n_iter, dynamic_size=False) ess = tf.TensorArray(dtype=tf.float32, size=n_iter, dynamic_size=False) filter_seed, seed = split_seed(seed, n=2, salt='gradient_descent') with tf.control_dependencies(reset_operations): for i in tf.range(n_iter): loss_value, grads, average_ess = routine(pf, initial_state, observations_dataset, T, log_phi_x, phi_y, seed) if change_seed: filter_seed, seed = split_seed(filter_seed, n=2) loss = loss.write(tf.cast(i, tf.int32), loss_value) ess = ess.write(tf.cast(i, tf.int32), average_ess) grads = [tf.clip_by_value(grad, -100., 100.) for grad in grads] optimizer.apply_gradients(zip(grads, variables)) tf.print('\rStep', i, '/', n_iter, end='') return [tf.convert_to_tensor(var) for var in variables], loss.stack(), ess.stack() return gradient_descent def compare_learning_rates(pf, initial_state, observations_dataset, T, log_phi_x, phi_y, initial_values, n_iter, optimizer_maker, learning_rates, filter_seed, use_xla, change_seed): loss_profiles = [] ess_profiles = [] for learning_rate in tqdm(learning_rates): optimizer = optimizer_maker(learning_rate=learning_rate) gradient_descent_function = get_gradient_descent_function() final_variables, loss_profile, ess_profile = gradient_descent_function(pf, initial_state, observations_dataset, T, n_iter, optimizer, log_phi_x, phi_y, initial_values, change_seed, filter_seed) loss_profiles.append(-loss_profile.numpy() / T) ess_profiles.append(ess_profile.numpy()) return loss_profiles, ess_profiles def plot_losses_vs_ess(loss_profiles_df, ess_profiles_df, filename, savefig, dx, dy, dense, T, n_particles, change_seed, batch_size, optimal_filter_val, kalman_val, n_iter, mse_table, n_data): fig, ax = plt.subplots(figsize=(5, 3)) loss_profiles_df.style.float_format = '${:,.1f}'.format loss_profiles_df.plot(ax=ax, legend=False) ax.axhline(y=optimal_filter_val, color="k", linestyle=':') ax.axhline(y=kalman_val, color="k") ax.set_xlim(0, n_iter) ax1 = ax.twinx() ess_profiles_df.plot.area(ax=ax1, legend=False, linestyle='--', alpha=0.33, stacked=False) # ax.set_ylim(-2.5, -1.7) ax1.set_ylim(1, n_particles) csv_fp = os.path.join('./charts/', f'global_variational_different_loss_df_lr_loss_{filename}_dx_{dx}_dy_{dy}_dense_{dense}_T_{T}_change_seed_{change_seed}.csv') loss_profiles_df.to_csv(csv_fp) csv_fp = os.path.join('./charts/', f'global_variational_different_ess_df_lr_loss_{filename}_dx_{dx}_dy_{dy}_dense_{dense}_T_{T}_change_seed_{change_seed}.csv') ess_profiles_df.to_csv(csv_fp) # ax.legend() fig.tight_layout() filename = f'global_variational_different_lr_loss_ess_{filename}_N_{n_particles}_dx_{dx}_dy_{dy}_dense_{dense}_T_{T}_change_seed_{change_seed}_batch_size_{batch_size}_ndata_{n_data}' if savefig: fig.savefig(os.path.join('./charts/', filename + '.png')) mse_table.to_csv(os.path.join('./tables/', filename + '.csv'), float_format='%.5f') else: print(mse_table) fig.suptitle(f'variational_different_loss_ess_{filename}_dx_{dx}_dy_{dy}_dense_{dense}_T_{T}') plt.show() def plot_variables(variables_df, filename, savefig): fig, ax = plt.subplots(figsize=(5, 5)) variables_df.plot(ax=ax) fig.tight_layout() if savefig: fig.savefig(os.path.join('./charts/', f'global_variational_different_lr_variables_{filename}.png')) else: fig.suptitle(f'variational_different_lr_variables_{filename}') plt.show() def resampling_method_factory(resampling_method_enum, resampling_kwargs): if resampling_method_enum == ResamplingMethodsEnum.MULTINOMIAL: resampling_method = MultinomialResampler() elif resampling_method_enum == ResamplingMethodsEnum.SYSTEMATIC: resampling_method = SystematicResampler() elif resampling_method_enum == ResamplingMethodsEnum.STRATIFIED: resampling_method = StratifiedResampler() elif resampling_method_enum == ResamplingMethodsEnum.REGULARIZED: resampling_method = RegularisedTransform(**resampling_kwargs) elif resampling_method_enum == ResamplingMethodsEnum.VARIANCE_CORRECTED: regularized_resampler = RegularisedTransform(**resampling_kwargs) resampling_method = PartiallyCorrectedRegularizedTransform(regularized_resampler) elif resampling_method_enum == ResamplingMethodsEnum.OPTIMIZED: lr = resampling_kwargs.pop('lr', resampling_kwargs.pop('learning_rate', 0.1)) loss = SinkhornLoss(**resampling_kwargs, symmetric=True) optimizer = SGD(loss, lr=lr, decay=0.95) regularized_resampler = RegularisedTransform(**resampling_kwargs) resampling_method = OptimizedPointCloud(optimizer, intermediate_resampler=regularized_resampler) else: raise ValueError(f'resampling_method_name {resampling_method_enum} is not a valid ResamplingMethodsEnum') return resampling_method def main(resampling_method_value, resampling_neff, learning_rates=(1e-4, 1e-3), resampling_kwargs=None, alpha=0.42, dx=10, dy=3, observation_covariance=1., dense=False, T=20, batch_size=1, n_particles=25, data_seed=0, n_data=50, n_iter=50, savefig=False, filter_seed=0, use_xla=False, change_seed=True): transition_matrix = get_transition_matrix(alpha, dx) transition_covariance = get_transition_covariance(dx) observation_matrix = get_observation_matrix(dx, dy, dense) observation_covariance = get_observation_covariance(observation_covariance, dy) resampling_method_enum = ResamplingMethodsEnum(resampling_method_value) np_random_state = np.random.RandomState(seed=data_seed) observation_matrix = tf.convert_to_tensor(observation_matrix) transition_covariance_chol = tf.linalg.cholesky(transition_covariance) observation_covariance_chol = tf.linalg.cholesky(observation_covariance) initial_particles = np_random_state.normal(0., 1., [batch_size, n_particles, dx]).astype(np.float32) initial_state = State(initial_particles) if resampling_neff == 0.: resampling_criterion = NeverResample() elif resampling_neff == 1.: resampling_criterion = AlwaysResample() else: resampling_criterion = NeffCriterion(resampling_neff, True) optimal_smc = make_optimal_filter(observation_matrix, transition_matrix, observation_covariance_chol, transition_covariance_chol, MultinomialResampler(), resampling_criterion) if resampling_kwargs is None: resampling_kwargs = {} resampling_method = resampling_method_factory(resampling_method_enum, resampling_kwargs) datas = [] lls = [] observation_datasets = [] optimal_lls = [] log_phi_x_0 = tf.ones(dx) phi_y_0 = tf.zeros(dy) for _ in range(n_data): data, ll = get_data(transition_matrix, observation_matrix, transition_covariance, observation_covariance, T, np_random_state) datas.append(data) lls.append(ll / T) observation_dataset = tf.data.Dataset.from_tensor_slices(data) observation_datasets.append(observation_dataset) final_state = optimal_smc(initial_state, observation_dataset, T, None, True, filter_seed) optimal_lls.append(final_state.log_likelihoods.numpy().mean() / T) log_phi_x = tf.Variable(log_phi_x_0, trainable=True) phi_y = tf.Variable(phi_y_0, trainable=True) smc = make_filter(observation_matrix, transition_matrix, observation_covariance_chol, transition_covariance_chol, resampling_method, resampling_criterion, log_phi_x, phi_y) def optimizer_maker(learning_rate): # tf.function doesn't like creating variables. This is a way to create them outside the graph # We can't reuse the same optimizer because it would be giving a warmed-up momentum to the ones run later optimizer = tf.optimizers.Adam(learning_rate=learning_rate) return optimizer initial_values = [log_phi_x_0, phi_y_0] losses_list = [] ess_profiles_list = [] mean_errors = [] for observation_dataset in observation_datasets: try: losses, ess_profiles = compare_learning_rates(smc, initial_state, observation_dataset, T, log_phi_x, phi_y, initial_values, n_iter, optimizer_maker, learning_rates, filter_seed, use_xla, change_seed) except: print('one dataset failed, ignoring') continue losses_df = pd.DataFrame(np.stack(losses).T, columns=np.log10(learning_rates)) ess_df = pd.DataFrame(np.stack(ess_profiles).T, columns=np.log10(learning_rates)) losses_df.columns.name = 'log learning rate' losses_df.columns.epoch = 'epoch' ess_df.columns.name = 'log learning rate' ess_df.columns.epoch = 'epoch' losses_list.append(losses_df) ess_profiles_list.append(ess_df) delta_phi_m_1 = tf.linalg.diag(tf.exp(-log_phi_x)) diff_cov = optimal_smc._proposal_model._sigma - delta_phi_m_1 @ transition_covariance approx_error = tf.linalg.diag_part(diff_cov).numpy() mean_error = np.sqrt(np.nanmean(approx_error ** 2)) mean_errors.append(mean_error) losses_data = pd.concat(losses_list, axis=1) ess_data =
pd.concat(ess_profiles_list, axis=1)
pandas.concat
def parsedx(filename) : """PARSEDX --------------------------------------------------------------------------- DESCRIPTION Parsedx accepts an Excel file containing strings recorded from a Dillon EDXtreme dynamometer and returns data parsed into separate datetime, elapsed seconds, instantaneous force, and peak force columns. The strings are printed by the Dillon EDXtreme in continuous recording mode in #4 format with the dynamometer connected to a computer by a serial port connection and WedgeLink software. INPUTS filename: string - filepath of Excel file containing original strings OUTPUTS B: DataFrame - m x 4 DataFrame containing datetime, elapsed seconds, instantaneous force, and peak force records in separate columns --------------------------------------------------------------------------- """ import pandas as pd import re import matplotlib.pyplot as plt df=pd.read_excel(filename,sheet_name=0,header=None) df.columns = ['strings'] dtstrings = [re.search('\d*\s\w*\s\d{4}[\,]\d*\:\d{2}\:\d{2}',string) for string in df.strings] dt = [pd.to_datetime(dtstring.group(),format='%d %b %Y,%H:%M:%S') for dtstring in dtstrings] t = [(dts - dt[0]).total_seconds() for dts in dt] fstrings = [re.findall('\d*\.\d{1}',string) for string in df.strings] f_ins = [] f_pk = [] for b in fstrings : f_ins.append(pd.to_numeric(b[0])) f_pk.append(
pd.to_numeric(b[1])
pandas.to_numeric
################################################################################################### # Repository: https://github.com/lgervasoni/urbansprawl # MIT License ################################################################################################### import osmnx as ox import pandas as pd import geopandas as gpd import numpy as np from shapely.geometry import Polygon from osmnx.utils import log from .osm_tags import height_tags, activity_classification from .osm_data import aggregate_classification ############################################ ### Land uses surface association ############################################ def get_composed_classification(building, df_pois): """ Retrieve the composed classification given the building's containing Points of Interest Parameters ---------- building : geopandas.GeoSeries input building df_pois : geopandas.GeoDataFrame Points of Interest contained in the building Returns ---------- geopandas.GeoSeries returns a composed classification building """ # POIs aggregated classification pois_classification = aggregate_classification( df_pois.classification.values ) # Composed building-POIs classification composed_classification = aggregate_classification( [building.classification, pois_classification] ) # Composed activity categories try: composed_activity_category = list( set( [element for list_ in df_pois.activity_category for element in list_] + building.activity_category ) ) except: # df_pois.activity_category.isnull().all() Returns True composed_activity_category = building.activity_category # Create a Series for a new row with composed classification composed_row =
pd.Series( [building.geometry,composed_classification,composed_activity_category,building.building_levels], index=["geometry","classification","activity_category","building_levels"])
pandas.Series
import json import pandas # merge duplicate and equal categories # remove some corner topics dataset = [] for line in open('data/News_Category_Dataset_v2.json', 'r'): dataset.append(json.loads(line)) newDataset = [] for index, item in enumerate(dataset): category = item['category'] # remove spams # MONEY! TECH if category == "PARENTING" or \ category == "PARENTS" or \ category == "RELIGION" or \ category == "ENVIRONMENT" or \ category == "FIFTY" or \ category == "GREEN" or \ category == "MONEY": continue # normalize categories if category == "WELLNESS" or category == "HEALTHY LIVING": item['category'] = "HEALTHY" elif category == "STYLE": item['category'] = "STYLE & BEAUTY" elif category == "TASTE": item['category'] = "FOOD & DRINK" elif category == "ARTS" or category == "ARTS & CULTURE" or category == "CULTURE & ARTS": item['category'] = "ARTS & CULTURE" elif category == "COLLEGE" or category == "EDUCATION" or category == "SCIENCE": item['category'] = "EDUCATION & SCIENCE" elif category == "QUEER VOICES" or \ category == "THE WORLDPOST" or \ category == "WEIRD NEWS" or \ category == "WORLDPOST" or \ category == "BLACK VOICES" or \ category == "WORLD NEWS" or \ category == "GOOD NEWS" or \ category == "LATINO VOICES": item['category'] = "NEWS" newDataset.append(item)
pandas.DataFrame(newDataset)
pandas.DataFrame
from pathlib import Path import pandas as pd import numpy as np from matplotlib.font_manager import FontProperties import os, sys, inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) grandpadir = os.path.dirname(os.path.dirname(currentdir)) sys.path.insert(0, grandpadir) from collections import OrderedDict from utils.helper_functions import read_nav_files, sort_files_by_dim from analysis.comparison.comparison_utils import get_dataset_name, read_proteus_files, read_baseline_files, reform_pseudo_samples_dict from utils.pseudo_samples import PseudoSamplesMger from utils.shared_names import FileKeys, FileNames import matplotlib.pyplot as plt import statsmodels.api as sm pipeline_grouping = 'results_predictive_grouping' pipeline_no_grouping = 'results_predictive' expl_size = 10 noise_level = None keep_only_prot_fs = False datasets = { 'wbc', 'ionosphere', 'arrhythmia' } # test_confs = [ # {'path': Path('..', pipeline, 'loda'), 'detector': 'loda', 'type': 'test'}, # # {'path': Path('..', pipeline, 'iforest'), 'detector': 'iforest', 'type': 'test'} # ] synth_confs =[ {'path': Path('..', pipeline_grouping, 'iforest'), 'detector': 'iforest', 'type': 'synthetic'}, {'path': Path('..', pipeline_grouping, 'lof'), 'detector': 'lof', 'type': 'synthetic'}, {'path': Path('..', pipeline_grouping, 'loda'), 'detector': 'loda', 'type': 'synthetic'} ] real_confs = [ {'path': Path('..', pipeline_grouping, 'iforest'), 'detector': 'iforest', 'type': 'real'}, {'path': Path('..', pipeline_grouping, 'lof'), 'detector': 'lof', 'type': 'real'}, {'path': Path('..', pipeline_grouping, 'loda'), 'detector': 'loda', 'type': 'real'} ] synth_confs_no_grouping = [ {'path': Path('..', pipeline_no_grouping, 'iforest'), 'detector': 'iforest', 'type': 'synthetic'}, {'path': Path('..', pipeline_no_grouping, 'lof'), 'detector': 'lof', 'type': 'synthetic'}, {'path': Path('..', pipeline_no_grouping, 'loda'), 'detector': 'loda', 'type': 'synthetic'} ] confs_to_analyze = synth_confs def plot_panels(): synth_no_grouping = unstructured_perfs(synth_confs_no_grouping) synth_grouping = structured_perfs(synth_confs) real_grouping = unstructured_perfs(real_confs) bias_plot(synth_grouping, real_grouping, synth_no_grouping) # test_auc_plot(pred_perfs_dict, 0) # test_auc_plot(pred_perfs_dict, 1) def best_models(conf): best_models_perf_in_sample = pd.DataFrame() cv_estimates = pd.DataFrame() ci_in_sample = pd.DataFrame() error_in_sample = pd.DataFrame() best_models_perf_out_of_sample = pd.DataFrame() dataset_names = [] nav_files_json = sort_files_by_dim(read_nav_files(conf['path'], conf['type'])) for dim, nav_file in nav_files_json.items(): real_dims = dim - 1 - (conf['type'] == 'synthetic') dname = get_dataset_name(nav_file[FileKeys.navigator_original_dataset_path], conf['type'] != 'real') print(dname + ' ' + str(real_dims) + 'd') rel_fratio = '(' + str(int(round((dim-5)/dim, 2) * 100)) + '%)' if conf['type'] != 'real' else '' dataset_names.append(dname + ' ' + str(real_dims) + 'd ' + rel_fratio) # time_df = pd.concat([time_df, get_time_per_method(nav_file)], axis=1) best_models_perf_in_sample_curr, ci_in_sample_curr, err_in_sample_curr, cv_estimates_curr = \ get_best_models_perf_per_method(nav_file, True) best_models_perf_in_sample = pd.concat([best_models_perf_in_sample, best_models_perf_in_sample_curr], axis=1) cv_estimates =
pd.concat([cv_estimates, cv_estimates_curr], axis=1)
pandas.concat
# -------------- import pandas as pd import scipy.stats as stats import math import numpy as np import warnings warnings.filterwarnings('ignore') #Sample_Size sample_size=2000 #Z_Critical Score z_critical = stats.norm.ppf(q = 0.95) # path [File location variable] #Code starts here data= pd.read_csv(path) data_sample=data.sample(n=sample_size, random_state=0) sample_mean= data_sample.installment.mean() sample_std= data_sample.installment.std() margin_of_error= z_critical*(sample_std/math.sqrt(sample_size)) confidence_interval= [(sample_mean-margin_of_error), (sample_mean+margin_of_error)] true_mean= data.installment.mean() # -------------- import matplotlib.pyplot as plt import numpy as np #Different sample sizes to take sample_size=np.array([20,50,100]) #Code starts here fig, axes = plt.subplots(3,2) for i in range(len(sample_size)): m=[] for j in range(1000): m.append(data.sample(n=sample_size[i]).installment.mean()) mean_series=
pd.Series(m)
pandas.Series
import random import numpy as np import pytest import pandas as pd from pandas import ( Categorical, DataFrame, NaT, Timestamp, date_range, ) import pandas._testing as tm class TestDataFrameSortValues: def test_sort_values(self): frame = DataFrame( [[1, 1, 2], [3, 1, 0], [4, 5, 6]], index=[1, 2, 3], columns=list("ABC") ) # by column (axis=0) sorted_df = frame.sort_values(by="A") indexer = frame["A"].argsort().values expected = frame.loc[frame.index[indexer]] tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by="A", ascending=False) indexer = indexer[::-1] expected = frame.loc[frame.index[indexer]] tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by="A", ascending=False) tm.assert_frame_equal(sorted_df, expected) # GH4839 sorted_df = frame.sort_values(by=["A"], ascending=[False]) tm.assert_frame_equal(sorted_df, expected) # multiple bys sorted_df = frame.sort_values(by=["B", "C"]) expected = frame.loc[[2, 1, 3]] tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=["B", "C"], ascending=False) tm.assert_frame_equal(sorted_df, expected[::-1]) sorted_df = frame.sort_values(by=["B", "A"], ascending=[True, False]) tm.assert_frame_equal(sorted_df, expected) msg = "No axis named 2 for object type DataFrame" with pytest.raises(ValueError, match=msg): frame.sort_values(by=["A", "B"], axis=2, inplace=True) # by row (axis=1): GH#10806 sorted_df = frame.sort_values(by=3, axis=1) expected = frame tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=3, axis=1, ascending=False) expected = frame.reindex(columns=["C", "B", "A"]) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 2], axis="columns") expected = frame.reindex(columns=["B", "A", "C"]) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 3], axis=1, ascending=[True, False]) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 3], axis=1, ascending=False) expected = frame.reindex(columns=["C", "B", "A"]) tm.assert_frame_equal(sorted_df, expected) msg = r"Length of ascending \(5\) != length of by \(2\)" with pytest.raises(ValueError, match=msg): frame.sort_values(by=["A", "B"], axis=0, ascending=[True] * 5) def test_sort_values_by_empty_list(self): # https://github.com/pandas-dev/pandas/issues/40258 expected = DataFrame({"a": [1, 4, 2, 5, 3, 6]}) result = expected.sort_values(by=[]) tm.assert_frame_equal(result, expected) assert result is not expected def test_sort_values_inplace(self): frame = DataFrame( np.random.randn(4, 4), index=[1, 2, 3, 4], columns=["A", "B", "C", "D"] ) sorted_df = frame.copy() return_value = sorted_df.sort_values(by="A", inplace=True) assert return_value is None expected = frame.sort_values(by="A") tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() return_value = sorted_df.sort_values(by=1, axis=1, inplace=True) assert return_value is None expected = frame.sort_values(by=1, axis=1) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() return_value = sorted_df.sort_values(by="A", ascending=False, inplace=True) assert return_value is None expected = frame.sort_values(by="A", ascending=False) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() return_value = sorted_df.sort_values( by=["A", "B"], ascending=False, inplace=True ) assert return_value is None expected = frame.sort_values(by=["A", "B"], ascending=False) tm.assert_frame_equal(sorted_df, expected) def test_sort_values_multicolumn(self): A = np.arange(5).repeat(20) B = np.tile(np.arange(5), 20) random.shuffle(A) random.shuffle(B) frame = DataFrame({"A": A, "B": B, "C": np.random.randn(100)}) result = frame.sort_values(by=["A", "B"]) indexer = np.lexsort((frame["B"], frame["A"])) expected = frame.take(indexer) tm.assert_frame_equal(result, expected) result = frame.sort_values(by=["A", "B"], ascending=False) indexer = np.lexsort( (frame["B"].rank(ascending=False), frame["A"].rank(ascending=False)) ) expected = frame.take(indexer) tm.assert_frame_equal(result, expected) result = frame.sort_values(by=["B", "A"]) indexer = np.lexsort((frame["A"], frame["B"])) expected = frame.take(indexer) tm.assert_frame_equal(result, expected) def test_sort_values_multicolumn_uint64(self): # GH#9918 # uint64 multicolumn sort df = DataFrame( { "a": pd.Series([18446637057563306014, 1162265347240853609]), "b": pd.Series([1, 2]), } ) df["a"] = df["a"].astype(np.uint64) result = df.sort_values(["a", "b"]) expected = DataFrame( { "a": pd.Series([18446637057563306014, 1162265347240853609]), "b": pd.Series([1, 2]), }, index=pd.Index([1, 0]), ) tm.assert_frame_equal(result, expected) def test_sort_values_nan(self): # GH#3917 df = DataFrame( {"A": [1, 2, np.nan, 1, 6, 8, 4], "B": [9, np.nan, 5, 2, 5, 4, 5]} ) # sort one column only expected = DataFrame( {"A": [np.nan, 1, 1, 2, 4, 6, 8], "B": [5, 9, 2, np.nan, 5, 5, 4]}, index=[2, 0, 3, 1, 6, 4, 5], ) sorted_df = df.sort_values(["A"], na_position="first") tm.assert_frame_equal(sorted_df, expected) expected = DataFrame( {"A": [np.nan, 8, 6, 4, 2, 1, 1], "B": [5, 4, 5, 5, np.nan, 9, 2]}, index=[2, 5, 4, 6, 1, 0, 3], ) sorted_df = df.sort_values(["A"], na_position="first", ascending=False) tm.assert_frame_equal(sorted_df, expected) expected = df.reindex(columns=["B", "A"]) sorted_df = df.sort_values(by=1, axis=1, na_position="first") tm.assert_frame_equal(sorted_df, expected) # na_position='last', order expected = DataFrame( {"A": [1, 1, 2, 4, 6, 8, np.nan], "B": [2, 9, np.nan, 5, 5, 4, 5]}, index=[3, 0, 1, 6, 4, 5, 2], ) sorted_df = df.sort_values(["A", "B"]) tm.assert_frame_equal(sorted_df, expected) # na_position='first', order expected = DataFrame( {"A": [np.nan, 1, 1, 2, 4, 6, 8], "B": [5, 2, 9, np.nan, 5, 5, 4]}, index=[2, 3, 0, 1, 6, 4, 5], ) sorted_df = df.sort_values(["A", "B"], na_position="first") tm.assert_frame_equal(sorted_df, expected) # na_position='first', not order expected = DataFrame( {"A": [np.nan, 1, 1, 2, 4, 6, 8], "B": [5, 9, 2, np.nan, 5, 5, 4]}, index=[2, 0, 3, 1, 6, 4, 5], ) sorted_df = df.sort_values(["A", "B"], ascending=[1, 0], na_position="first") tm.assert_frame_equal(sorted_df, expected) # na_position='last', not order expected = DataFrame( {"A": [8, 6, 4, 2, 1, 1, np.nan], "B": [4, 5, 5, np.nan, 2, 9, 5]}, index=[5, 4, 6, 1, 3, 0, 2], ) sorted_df = df.sort_values(["A", "B"], ascending=[0, 1], na_position="last") tm.assert_frame_equal(sorted_df, expected) def test_sort_values_stable_descending_sort(self): # GH#6399 df = DataFrame( [[2, "first"], [2, "second"], [1, "a"], [1, "b"]], columns=["sort_col", "order"], ) sorted_df = df.sort_values(by="sort_col", kind="mergesort", ascending=False) tm.assert_frame_equal(df, sorted_df) @pytest.mark.parametrize( "expected_idx_non_na, ascending", [ [ [3, 4, 5, 0, 1, 8, 6, 9, 7, 10, 13, 14], [True, True], ], [ [0, 3, 4, 5, 1, 8, 6, 7, 10, 13, 14, 9], [True, False], ], [ [9, 7, 10, 13, 14, 6, 8, 1, 3, 4, 5, 0], [False, True], ], [ [7, 10, 13, 14, 9, 6, 8, 1, 0, 3, 4, 5], [False, False], ], ], ) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_sort_values_stable_multicolumn_sort( self, expected_idx_non_na, ascending, na_position ): # GH#38426 Clarify sort_values with mult. columns / labels is stable df = DataFrame( { "A": [1, 2, np.nan, 1, 1, 1, 6, 8, 4, 8, 8, np.nan, np.nan, 8, 8], "B": [9, np.nan, 5, 2, 2, 2, 5, 4, 5, 3, 4, np.nan, np.nan, 4, 4], } ) # All rows with NaN in col "B" only have unique values in "A", therefore, # only the rows with NaNs in "A" have to be treated individually: expected_idx = ( [11, 12, 2] + expected_idx_non_na if na_position == "first" else expected_idx_non_na + [2, 11, 12] ) expected = df.take(expected_idx) sorted_df = df.sort_values( ["A", "B"], ascending=ascending, na_position=na_position ) tm.assert_frame_equal(sorted_df, expected) def test_sort_values_stable_categorial(self): # GH#16793 df = DataFrame({"x": Categorical(np.repeat([1, 2, 3, 4], 5), ordered=True)}) expected = df.copy() sorted_df = df.sort_values("x", kind="mergesort") tm.assert_frame_equal(sorted_df, expected) def test_sort_values_datetimes(self): # GH#3461, argsort / lexsort differences for a datetime column df = DataFrame( ["a", "a", "a", "b", "c", "d", "e", "f", "g"], columns=["A"], index=date_range("20130101", periods=9), ) dts = [ Timestamp(x) for x in [ "2004-02-11", "2004-01-21", "2004-01-26", "2005-09-20", "2010-10-04", "2009-05-12", "2008-11-12", "2010-09-28", "2010-09-28", ] ] df["B"] = dts[::2] + dts[1::2] df["C"] = 2.0 df["A1"] = 3.0 df1 = df.sort_values(by="A") df2 = df.sort_values(by=["A"]) tm.assert_frame_equal(df1, df2) df1 = df.sort_values(by="B") df2 = df.sort_values(by=["B"]) tm.assert_frame_equal(df1, df2) df1 = df.sort_values(by="B") df2 = df.sort_values(by=["C", "B"]) tm.assert_frame_equal(df1, df2) def test_sort_values_frame_column_inplace_sort_exception(self, float_frame): s = float_frame["A"] with pytest.raises(ValueError, match="This Series is a view"): s.sort_values(inplace=True) cp = s.copy() cp.sort_values() # it works! def test_sort_values_nat_values_in_int_column(self): # GH#14922: "sorting with large float and multiple columns incorrect" # cause was that the int64 value NaT was considered as "na". Which is # only correct for datetime64 columns. int_values = (2, int(NaT.value)) float_values = (2.0, -1.797693e308) df = DataFrame( {"int": int_values, "float": float_values}, columns=["int", "float"] ) df_reversed = DataFrame( {"int": int_values[::-1], "float": float_values[::-1]}, columns=["int", "float"], index=[1, 0], ) # NaT is not a "na" for int64 columns, so na_position must not # influence the result: df_sorted = df.sort_values(["int", "float"], na_position="last") tm.assert_frame_equal(df_sorted, df_reversed) df_sorted = df.sort_values(["int", "float"], na_position="first") tm.assert_frame_equal(df_sorted, df_reversed) # reverse sorting order df_sorted = df.sort_values(["int", "float"], ascending=False) tm.assert_frame_equal(df_sorted, df) # and now check if NaT is still considered as "na" for datetime64 # columns: df = DataFrame( {"datetime": [Timestamp("2016-01-01"), NaT], "float": float_values}, columns=["datetime", "float"], ) df_reversed = DataFrame( {"datetime": [NaT, Timestamp("2016-01-01")], "float": float_values[::-1]}, columns=["datetime", "float"], index=[1, 0], ) df_sorted = df.sort_values(["datetime", "float"], na_position="first") tm.assert_frame_equal(df_sorted, df_reversed) df_sorted = df.sort_values(["datetime", "float"], na_position="last") tm.assert_frame_equal(df_sorted, df) # Ascending should not affect the results. df_sorted = df.sort_values(["datetime", "float"], ascending=False) tm.assert_frame_equal(df_sorted, df) def test_sort_nat(self): # GH 16836 d1 = [Timestamp(x) for x in ["2016-01-01", "2015-01-01", np.nan, "2016-01-01"]] d2 = [ Timestamp(x) for x in ["2017-01-01", "2014-01-01", "2016-01-01", "2015-01-01"] ] df = DataFrame({"a": d1, "b": d2}, index=[0, 1, 2, 3]) d3 = [Timestamp(x) for x in ["2015-01-01", "2016-01-01", "2016-01-01", np.nan]] d4 = [ Timestamp(x) for x in ["2014-01-01", "2015-01-01", "2017-01-01", "2016-01-01"] ] expected = DataFrame({"a": d3, "b": d4}, index=[1, 3, 0, 2]) sorted_df = df.sort_values(by=["a", "b"]) tm.assert_frame_equal(sorted_df, expected) def test_sort_values_na_position_with_categories(self): # GH#22556 # Positioning missing value properly when column is Categorical. categories = ["A", "B", "C"] category_indices = [0, 2, 4] list_of_nans = [np.nan, np.nan] na_indices = [1, 3] na_position_first = "first" na_position_last = "last" column_name = "c" reversed_categories = sorted(categories, reverse=True) reversed_category_indices = sorted(category_indices, reverse=True) reversed_na_indices = sorted(na_indices) df = DataFrame( { column_name: Categorical( ["A", np.nan, "B", np.nan, "C"], categories=categories, ordered=True ) } ) # sort ascending with na first result = df.sort_values( by=column_name, ascending=True, na_position=na_position_first ) expected = DataFrame( { column_name: Categorical( list_of_nans + categories, categories=categories, ordered=True ) }, index=na_indices + category_indices, ) tm.assert_frame_equal(result, expected) # sort ascending with na last result = df.sort_values( by=column_name, ascending=True, na_position=na_position_last ) expected = DataFrame( { column_name: Categorical( categories + list_of_nans, categories=categories, ordered=True ) }, index=category_indices + na_indices, ) tm.assert_frame_equal(result, expected) # sort descending with na first result = df.sort_values( by=column_name, ascending=False, na_position=na_position_first ) expected = DataFrame( { column_name: Categorical( list_of_nans + reversed_categories, categories=categories, ordered=True, ) }, index=reversed_na_indices + reversed_category_indices, ) tm.assert_frame_equal(result, expected) # sort descending with na last result = df.sort_values( by=column_name, ascending=False, na_position=na_position_last ) expected = DataFrame( { column_name: Categorical( reversed_categories + list_of_nans, categories=categories, ordered=True, ) }, index=reversed_category_indices + reversed_na_indices, ) tm.assert_frame_equal(result, expected) def test_sort_values_nat(self): # GH#16836 d1 = [Timestamp(x) for x in ["2016-01-01", "2015-01-01", np.nan, "2016-01-01"]] d2 = [ Timestamp(x) for x in ["2017-01-01", "2014-01-01", "2016-01-01", "2015-01-01"] ] df = DataFrame({"a": d1, "b": d2}, index=[0, 1, 2, 3]) d3 = [Timestamp(x) for x in ["2015-01-01", "2016-01-01", "2016-01-01", np.nan]] d4 = [ Timestamp(x) for x in ["2014-01-01", "2015-01-01", "2017-01-01", "2016-01-01"] ] expected = DataFrame({"a": d3, "b": d4}, index=[1, 3, 0, 2]) sorted_df = df.sort_values(by=["a", "b"]) tm.assert_frame_equal(sorted_df, expected) def test_sort_values_na_position_with_categories_raises(self): df = DataFrame( { "c": Categorical( ["A", np.nan, "B", np.nan, "C"], categories=["A", "B", "C"], ordered=True, ) } ) with pytest.raises(ValueError, match="invalid na_position: bad_position"): df.sort_values(by="c", ascending=False, na_position="bad_position") @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize( "original_dict, sorted_dict, ignore_index, output_index", [ ({"A": [1, 2, 3]}, {"A": [3, 2, 1]}, True, [0, 1, 2]), ({"A": [1, 2, 3]}, {"A": [3, 2, 1]}, False, [2, 1, 0]), ( {"A": [1, 2, 3], "B": [2, 3, 4]}, {"A": [3, 2, 1], "B": [4, 3, 2]}, True, [0, 1, 2], ), ( {"A": [1, 2, 3], "B": [2, 3, 4]}, {"A": [3, 2, 1], "B": [4, 3, 2]}, False, [2, 1, 0], ), ], ) def test_sort_values_ignore_index( self, inplace, original_dict, sorted_dict, ignore_index, output_index ): # GH 30114 df = DataFrame(original_dict) expected = DataFrame(sorted_dict, index=output_index) kwargs = {"ignore_index": ignore_index, "inplace": inplace} if inplace: result_df = df.copy() result_df.sort_values("A", ascending=False, **kwargs) else: result_df = df.sort_values("A", ascending=False, **kwargs) tm.assert_frame_equal(result_df, expected) tm.assert_frame_equal(df, DataFrame(original_dict)) def test_sort_values_nat_na_position_default(self): # GH 13230 expected = DataFrame( { "A": [1, 2, 3, 4, 4], "date": pd.DatetimeIndex( [ "2010-01-01 09:00:00", "2010-01-01 09:00:01", "2010-01-01 09:00:02", "2010-01-01 09:00:03", "NaT", ] ), } ) result = expected.sort_values(["A", "date"]) tm.assert_frame_equal(result, expected) def test_sort_values_item_cache(self, using_array_manager): # previous behavior incorrect retained an invalid _item_cache entry df = DataFrame(np.random.randn(4, 3), columns=["A", "B", "C"]) df["D"] = df["A"] * 2 ser = df["A"] if not using_array_manager: assert len(df._mgr.blocks) == 2 df.sort_values(by="A") ser.values[0] = 99 assert df.iloc[0, 0] == df["A"][0] def test_sort_values_reshaping(self): # GH 39426 values = list(range(21)) expected = DataFrame([values], columns=values) df = expected.sort_values(expected.index[0], axis=1, ignore_index=True) tm.assert_frame_equal(df, expected) class TestDataFrameSortKey: # test key sorting (issue 27237) def test_sort_values_inplace_key(self, sort_by_key): frame = DataFrame( np.random.randn(4, 4), index=[1, 2, 3, 4], columns=["A", "B", "C", "D"] ) sorted_df = frame.copy() return_value = sorted_df.sort_values(by="A", inplace=True, key=sort_by_key) assert return_value is None expected = frame.sort_values(by="A", key=sort_by_key) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() return_value = sorted_df.sort_values( by=1, axis=1, inplace=True, key=sort_by_key ) assert return_value is None expected = frame.sort_values(by=1, axis=1, key=sort_by_key) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() return_value = sorted_df.sort_values( by="A", ascending=False, inplace=True, key=sort_by_key ) assert return_value is None expected = frame.sort_values(by="A", ascending=False, key=sort_by_key) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() sorted_df.sort_values( by=["A", "B"], ascending=False, inplace=True, key=sort_by_key ) expected = frame.sort_values(by=["A", "B"], ascending=False, key=sort_by_key) tm.assert_frame_equal(sorted_df, expected) def test_sort_values_key(self): df = DataFrame(np.array([0, 5, np.nan, 3, 2, np.nan])) result = df.sort_values(0) expected = df.iloc[[0, 4, 3, 1, 2, 5]] tm.assert_frame_equal(result, expected) result = df.sort_values(0, key=lambda x: x + 5) expected = df.iloc[[0, 4, 3, 1, 2, 5]] tm.assert_frame_equal(result, expected) result = df.sort_values(0, key=lambda x: -x, ascending=False) expected = df.iloc[[0, 4, 3, 1, 2, 5]] tm.assert_frame_equal(result, expected) def test_sort_values_by_key(self): df = DataFrame( { "a": np.array([0, 3, np.nan, 3, 2, np.nan]), "b": np.array([0, 2, np.nan, 5, 2, np.nan]), } ) result = df.sort_values("a", key=lambda x: -x) expected = df.iloc[[1, 3, 4, 0, 2, 5]] tm.assert_frame_equal(result, expected) result = df.sort_values(by=["a", "b"], key=lambda x: -x) expected = df.iloc[[3, 1, 4, 0, 2, 5]] tm.assert_frame_equal(result, expected) result = df.sort_values(by=["a", "b"], key=lambda x: -x, ascending=False) expected = df.iloc[[0, 4, 1, 3, 2, 5]] tm.assert_frame_equal(result, expected) def test_sort_values_by_key_by_name(self): df = DataFrame( { "a": np.array([0, 3, np.nan, 3, 2, np.nan]), "b": np.array([0, 2, np.nan, 5, 2, np.nan]), } ) def key(col): if col.name == "a": return -col else: return col result = df.sort_values(by="a", key=key) expected = df.iloc[[1, 3, 4, 0, 2, 5]] tm.assert_frame_equal(result, expected) result = df.sort_values(by=["a"], key=key) expected = df.iloc[[1, 3, 4, 0, 2, 5]] tm.assert_frame_equal(result, expected) result = df.sort_values(by="b", key=key) expected = df.iloc[[0, 1, 4, 3, 2, 5]] tm.assert_frame_equal(result, expected) result = df.sort_values(by=["a", "b"], key=key) expected = df.iloc[[1, 3, 4, 0, 2, 5]] tm.assert_frame_equal(result, expected) def test_sort_values_key_string(self): df = DataFrame(np.array([["hello", "goodbye"], ["hello", "Hello"]])) result = df.sort_values(1) expected = df[::-1] tm.assert_frame_equal(result, expected) result = df.sort_values([0, 1], key=lambda col: col.str.lower()) tm.assert_frame_equal(result, df) result = df.sort_values( [0, 1], key=lambda col: col.str.lower(), ascending=False ) expected = df.sort_values(1, key=lambda col: col.str.lower(), ascending=False) tm.assert_frame_equal(result, expected) def test_sort_values_key_empty(self, sort_by_key): df = DataFrame(np.array([])) df.sort_values(0, key=sort_by_key) df.sort_index(key=sort_by_key) def test_changes_length_raises(self): df = DataFrame({"A": [1, 2, 3]}) with pytest.raises(ValueError, match="change the shape"): df.sort_values("A", key=lambda x: x[:1]) def test_sort_values_key_axes(self): df = DataFrame({0: ["Hello", "goodbye"], 1: [0, 1]}) result = df.sort_values(0, key=lambda col: col.str.lower()) expected = df[::-1] tm.assert_frame_equal(result, expected) result = df.sort_values(1, key=lambda col: -col) expected = df[::-1] tm.assert_frame_equal(result, expected) def test_sort_values_key_dict_axis(self): df = DataFrame({0: ["Hello", 0], 1: ["goodbye", 1]}) result = df.sort_values(0, key=lambda col: col.str.lower(), axis=1) expected = df.loc[:, ::-1] tm.assert_frame_equal(result, expected) result = df.sort_values(1, key=lambda col: -col, axis=1) expected = df.loc[:, ::-1] tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("ordered", [True, False]) def test_sort_values_key_casts_to_categorical(self, ordered): # https://github.com/pandas-dev/pandas/issues/36383 categories = ["c", "b", "a"] df = DataFrame({"x": [1, 1, 1], "y": ["a", "b", "c"]}) def sorter(key): if key.name == "y": return pd.Series( Categorical(key, categories=categories, ordered=ordered) ) return key result = df.sort_values(by=["x", "y"], key=sorter) expected = DataFrame( {"x": [1, 1, 1], "y": ["c", "b", "a"]}, index=pd.Index([2, 1, 0]) ) tm.assert_frame_equal(result, expected) @pytest.fixture def df_none(): return DataFrame( { "outer": ["a", "a", "a", "b", "b", "b"], "inner": [1, 2, 2, 2, 1, 1], "A": np.arange(6, 0, -1), ("B", 5): ["one", "one", "two", "two", "one", "one"], } ) @pytest.fixture(params=[["outer"], ["outer", "inner"]]) def df_idx(request, df_none): levels = request.param return df_none.set_index(levels) @pytest.fixture( params=[ "inner", # index level ["outer"], # list of index level "A", # column [("B", 5)], # list of column ["inner", "outer"], # two index levels [("B", 5), "outer"], # index level and column ["A", ("B", 5)], # Two columns ["inner", "outer"], # two index levels and column ] ) def sort_names(request): return request.param @pytest.fixture(params=[True, False]) def ascending(request): return request.param class TestSortValuesLevelAsStr: def test_sort_index_level_and_column_label( self, df_none, df_idx, sort_names, ascending ): # GH#14353 # Get index levels from df_idx levels = df_idx.index.names # Compute expected by sorting on columns and the setting index expected = df_none.sort_values( by=sort_names, ascending=ascending, axis=0 ).set_index(levels) # Compute result sorting on mix on columns and index levels result = df_idx.sort_values(by=sort_names, ascending=ascending, axis=0) tm.assert_frame_equal(result, expected) def test_sort_column_level_and_index_label( self, df_none, df_idx, sort_names, ascending ): # GH#14353 # Get levels from df_idx levels = df_idx.index.names # Compute expected by sorting on axis=0, setting index levels, and then # transposing. For some cases this will result in a frame with # multiple column levels expected = ( df_none.sort_values(by=sort_names, ascending=ascending, axis=0) .set_index(levels) .T ) # Compute result by transposing and sorting on axis=1. result = df_idx.T.sort_values(by=sort_names, ascending=ascending, axis=1) tm.assert_frame_equal(result, expected) def test_sort_values_pos_args_deprecation(self): # https://github.com/pandas-dev/pandas/issues/41485 df = DataFrame({"a": [1, 2, 3]}) msg = ( r"In a future version of pandas all arguments of DataFrame\.sort_values " r"except for the argument 'by' will be keyword-only" ) with tm.assert_produces_warning(FutureWarning, match=msg): result = df.sort_values("a", 0) expected = DataFrame({"a": [1, 2, 3]})
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
""" json 불러와서 캡션 붙이는 것 """ import json import pandas as pd path = './datasets/vqa/v2_OpenEnded_mscoco_train2014_questions.json' with open(path) as question: question = json.load(question) # question['questions'][0] # question['questions'][1] # question['questions'][2] df = pd.DataFrame(question['questions']) df caption_path = './datasets/caption/vis_st_trainval.json' with open(caption_path) as cap: cap = json.load(cap) df_cap = pd.DataFrame(cap) df_cap df_addcap = pd.merge(df, df_cap, how='left', on='image_id') del df_addcap['file_path'] ######################################################################################################################## """ pandas to json """ df_addcap.to_json('./datasets/caption/train_cap2.json', orient='table') with open('./datasets/caption/train_cap2.json') as train_cap: train_cap = json.load(train_cap) ######################################################################################################################## ######################################################################################################################## """ answer + cap """ path = '/home/nextgen/Desktop/mcan-vqa/datasets/vqa/v2_mscoco_train2014_annotations.json' path = './datasets/vqa/v2_mscoco_val2014_annotations.json' with open(path) as answer: answer = json.load(answer) answer['annotations'][0] df_ans = pd.DataFrame(answer['annotations']) df_ans[:0] del df_ans['question_type'] del df_ans['answers'] del df_ans['answer_type'] del df_ans['image_id'] df_ans[df_ans['question_id']==458752000] df_addcap2 = pd.merge(df_addcap, df_ans, how='left', on='question_id') df_addcap2[:0] df_addcap2['multiple_choice_answer'] # del df_addcap['file_path'] df_addcap2.to_json('./datasets/caption/val_qacap.json', orient='table') with open('./datasets/caption/train_qacap.json') as train_qacap: train_qacap = json.load(train_qacap) ######################################################################################################################## """val test도 마찬가지""" path = './datasets/vqa/v2_OpenEnded_mscoco_val2014_questions.json' with open(path) as question: question = json.load(question) df = pd.DataFrame(question['questions']) df caption_path = './datasets/caption/vis_st_trainval.json' with open(caption_path) as cap: cap = json.load(cap) df_cap =
pd.DataFrame(cap)
pandas.DataFrame
#################################################################################################### """ dashboard.py This script implements a dashboard-application for the efficient planning of the municipal enforcement process, based on housing fraud signals, within the municipality of Amsterdam. <NAME> & <NAME> 2019 Basic intro on working with Dash: https://dash.plot.ly/getting-started Example dashboards using maps in Dash (from dash-gallery.plotly.host/Portal): github.com/plotly/dash-sample-apps/blob/master/apps/dash-oil-and-gas/app.py github.com/plotly/dash-oil-gas-ternary This dashboard took some inspiration from this video: https://www.youtube.com/watch?v=lu0PtsMor4E Inspiration has also been taken from the corresponding codebase: https://github.com/amyoshino/Dash_Tutorial_Series (careful: this repo seems to be full of errors!!) """ #################################################################################################### ############# ## Imports ## ############# import dash import dash_core_components as dcc import dash_html_components as html import dash_table as dt import dash_table.FormatTemplate as FormatTemplate from dash.dependencies import Input, Output, State, ClientsideFunction import pandas as pd import urllib import json import sys import os import re import q from copy import deepcopy import plotly.graph_objs as go # Add the parent paths to sys.path, so our own modules on the root dir can also be imported. SCRIPT_PATH = os.path.abspath(__file__) SCRIPT_DIR = os.path.dirname(SCRIPT_PATH) PARENT_PATH = os.path.join(SCRIPT_DIR, os.path.pardir) sys.path.append(PARENT_PATH) # Import own modules. import config import dashboard_helper ################################# ## Load server or mock-up data ## ################################# # Try to create a list of 100 meldingen from the data. try: df = dashboard_helper.process_recent_signals() print('Succesfully created prediction for recent signals.') except: df = pd.read_csv(os.path.join(SCRIPT_DIR, 'mockup_dataset.csv'), sep=';', skipinitialspace=True) print('Cannot generate predictions from the data. Falling back to using the mockup_dataset.csv') df_proactief = pd.read_csv(os.path.join(SCRIPT_DIR, 'mockup_dataset_proactief.csv'), sep=';', skipinitialspace=True) df_unsupervised = pd.read_csv(os.path.join(SCRIPT_DIR, 'mockup_dataset_unsupervised.csv'), sep=';', skipinitialspace=True) ######################### ## Define site visuals ## ######################### colors = {'paper': '#DDDDDD', 'background': '#F2F2F2', 'container_background': '#F9F9F9', 'text': '#1E4363', 'marker': '#1E4363', 'fraud': 'rgb(200, 50, 50)', 'no_fraud': 'rgb(150, 150, 150)', 'selected': 'rgb(75, 75, 75)', } ############################### ## Set some global variables ## ############################### # Get dictionary of columns for DataTable. SELECTED_COLUMNS = ['fraude_kans', 'woonfraude', 'adres_id', 'sdl_naam', 'categorie', 'eigenaar'] TABLE_COLUMNS = [{'name': i, 'id': i} for i in SELECTED_COLUMNS] # Define styling for the first column (fraude_kans), to reduce the decimals after comma. TABLE_COLUMNS[0]['name'] = 'Fraude kans (%)' TABLE_COLUMNS[0]['type'] = 'numeric' TABLE_COLUMNS[0]['format'] = FormatTemplate.percentage(2) ########################## ## Define the dashboard ## ########################## # external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] # app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app = dash.Dash(__name__) server = app.server app.title = 'Woonfraude Dashboard' # Defines the meldingen tab. meldingen_tab = html.Div( [ # Div containing a selection of the data based on dropdown selection. html.Div(id='intermediate_value', style={'display': 'none'}), # Divs contain a lists of points which have been selected with on-clicks on the map. html.Div(id='point_selection', style={'display': 'none'}), html.Div(id='filtered_point_selection', style={'display': 'none'}), # Row containing filters, info boxes, and map. html.Div( [ # Filters div. html.Div( [ # Create drop down filter for categories. html.P('Selecteer categorieën:', className="control_label"), dcc.Dropdown( id='categorie_dropdown', placeholder='Selecteer categorieën', options=[{'label': x, 'value': x} for x in sorted(df.categorie.unique())], multi=True, value=df.categorie.unique(), ), # Create drop down filter for city parts. html.P('Selecteer stadsdelen:', className="control_label"), dcc.Dropdown( id='stadsdeel_dropdown', placeholder='Selecteer stadsdelen', options=[{'label': x, 'value': x} for x in sorted(df.sdl_naam.unique())], multi=True, value=sorted(df.sdl_naam.unique()), ), # Show info of items selected on map (using click). html.Div( [ html.P('Geselecteerde adressen:', className="control_label"), dt.DataTable( id='filtered_point_selection_table', columns = TABLE_COLUMNS[1:-1], sort_action='native', sort_by=[{'column_id': 'fraude_kans', 'direction': 'desc'}], page_action='native', page_current=0, page_size=20, style_data_conditional=[ { 'if': { 'column_id': 'woonfraude', 'filter_query': '{woonfraude} eq True' }, 'backgroundColor': colors['fraud'], }, { 'if': { 'column_id': 'woonfraude', 'filter_query': '{woonfraude} eq False' }, 'backgroundColor': colors['no_fraud'], }, { 'if': { 'column_id': 'fraude_kans', 'filter_query': '{fraude_kans} ge 0.5' }, 'backgroundColor': colors['fraud'], }, { 'if': { 'column_id': 'fraude_kans', 'filter_query': '{fraude_kans} lt 0.5' }, 'backgroundColor': colors['no_fraud'], }, ] ), ], ), # Link to download csv with all selected addresses. html.A( 'Download lijst geselecteerde adressen (CSV)', id='download_selected_addresses_list', download="geselecteerde_adressen.csv", href="", target="_blank", ), # Button test. html.P(''), html.Button('Test', id='button'), html.P('', id='button_n_clicks') ], id='leftCol', className="pretty_container four columns", ), # Widgets and map div. html.Div( [ # # Row with 4 statistics widgets # html.Div( # [ # # Aantal meldingen (info box). # html.Div( # [ # html.P("Aantal meldingen"), # html.H6( # id="aantal_meldingen", # className="info_text" # ) # ], # className="pretty_container" # ), # # Percentage fraude verwacht (info box). # html.Div( # [ # html.P("% Fraude verwacht"), # html.H6( # id="percentage_fraude_verwacht", # className="info_text" # ) # ], # className="pretty_container" # ), # # Aantal geselecteerde meldingen (info box). # html.Div( # [ # html.P("Aantal geselecteerde meldingen"), # html.H6( # id="aantal_geselecteerde_meldingen", # className="info_text" # ) # ], # className="pretty_container", # style={'backgroundColor': '#F7D7D7'} # ), # # Percentage fraude verwacht bij geselecteerde meldingen (info box). # html.Div( # [ # html.P("% Fraude verwacht bij geselecteerde meldingen"), # html.H6( # id="percentage_fraude_verwacht_geselecteerd", # className="info_text" # ) # ], # className="pretty_container", # style={'backgroundColor': '#F7D7D7'} # ), # ], # id="infoContainer", # className="row" # ), # Map with selectable points. html.Div( dcc.Graph( id='map', config={'displayModeBar': False}, # Turned off to disable selection with box/lasso etc. ), className="pretty_container", # style={'height': 500} ), ], id="rightCol", className="eight columns" ), ], className="row", ), # Data table div. html.Div( [ # Filtered entries data table. html.Div( [ html.P('Gefilterde meldingen'), dt.DataTable( id='filtered_table', columns = TABLE_COLUMNS, sort_action='native', sort_by=[{'column_id': 'fraude_kans', 'direction': 'desc'}], # filter_action='native', # Maybe turn off? A text field to filter feels clunky.. # row_selectable='multi', # selected_rows=[], page_action='native', page_current=0, page_size=20, style_data_conditional=[ { 'if': { 'column_id': 'woonfraude', 'filter_query': '{woonfraude} eq True' }, 'backgroundColor': colors['fraud'], }, { 'if': { 'column_id': 'woonfraude', 'filter_query': '{woonfraude} eq False' }, 'backgroundColor': colors['no_fraud'], }, { 'if': { 'column_id': 'fraude_kans', 'filter_query': '{fraude_kans} ge 0.5' }, 'backgroundColor': colors['fraud'], }, { 'if': { 'column_id': 'fraude_kans', 'filter_query': '{fraude_kans} lt 0.5' }, 'backgroundColor': colors['no_fraud'], } ] ), ], className="pretty_container eight columns", ), # Filtered entries stadsdeel split (pie chart). html.Div( [ html.P("Gefilterde meldingen - Stadsdeel split"), dcc.Graph( id="stadsdeel_split", config={'displayModeBar': False}, ) ], id="stadsdeel", className="pretty_container two columns" ), # Filtered entries categorie split (pie chart). html.Div( [ html.P("Gefilterde meldingen - Categorie split"), dcc.Graph( id="categorie_split", config={'displayModeBar': False}, ) ], id="categorie", className="pretty_container two columns" ), ], className="row" ), ], id="mainContainer", style={ "display": "flex", "flex-direction": "column" } ) # Defines the proactief tab. proactief_tab = html.Div( [ # For creating a map_proactief callback function with an empty input. html.Div(id='none_proactief',children=[],style={'display': 'none'}), # Div for containing a selection of the data based on filters. html.Div(id='intermediate_value_proactief', style={'display': 'none'}), # Row containing filters, info boxes, and map. html.Div( [ # Filters div. html.Div( [ # Create range slider for number of meldingen. html.P('Minimaal aantal meldingen op adres:', className="control_label"), dcc.RangeSlider( id='aantal_meldingen_rangeslider_proactief', min=min(df_proactief.aantal_meldingen), max=max(df_proactief.aantal_meldingen), marks={i: f"{i}" for i in range(min(df_proactief.aantal_meldingen), max(df_proactief.aantal_meldingen)+1)}, value=[min(df_proactief.aantal_meldingen), max(df_proactief.aantal_meldingen)] ), # Padding (temporary hack) html.P(' '), # Create slider for number of adults. html.P('Aantal volwassenen', className="control_label"), dcc.RangeSlider( id='aantal_volwassenen_rangeslider_proactief', min=min(df_proactief.aantal_volwassenen), max=max(df_proactief.aantal_volwassenen), marks={i: f"{i}" for i in range(min(df_proactief.aantal_volwassenen), max(df_proactief.aantal_volwassenen)+1)}, value=[min(df_proactief.aantal_volwassenen), max(df_proactief.aantal_volwassenen)] ), # Padding (temporary hack) html.P(' '), # Create m2 per person slider. html.P('Aantal m2 per persoon:', className="control_label"), dcc.RangeSlider( id='aantal_m2_per_persoon_rangeslider_proactief', min=min(df_proactief.m2_per_persoon), max=max(df_proactief.m2_per_persoon), marks={i: f"{i}" for i in range(min(df_proactief.m2_per_persoon), max(df_proactief.m2_per_persoon)+1, 3)}, value=[min(df_proactief.m2_per_persoon), max(df_proactief.m2_per_persoon)] ), # Padding (temporary hack) html.P(' '), # Create drop down filter for city parts. html.P('Selecteer stadsdelen:', className="control_label"), dcc.Dropdown( id='stadsdeel_dropdown_proactief', placeholder='Selecteer stadsdelen', options=[{'label': x, 'value': x} for x in sorted(df_proactief.sdl_naam.unique())], multi=True, value=sorted(df_proactief.sdl_naam.unique()), ), # Create hotline dropdown. html.P('Is hotline melding:', className="control_label"), dcc.Dropdown( id='hotline_dropdown_proactief', placeholder='Selecteer waarden', options=[{'label': 'Ja', 'value': 'True'}, {'label': 'Nee', 'value': 'False'}], multi=True, value=['True', 'False'] ), # Create gebruikersdoel dropdown. html.P('Selecteer gebruikersdoel:', className="control_label"), dcc.Dropdown( id='gebruikersdoel_dropdown_proactief', placeholder='Selecteer gebruikersdoel', options=[{'label': x, 'value': x} for x in sorted(df_proactief.gebruikersdoel.unique())], multi=True, value=sorted(df_proactief.gebruikersdoel.unique()), ), # Create profiel dropdown. html.P('Selecteer profiel:', className="control_label"), dcc.Dropdown( id='profiel_dropdown_proactief', placeholder='Selecteer profiel', options=[{'label': x, 'value': x} for x in sorted(df_proactief.profiel.unique())], multi=True, value=sorted(df_proactief.profiel.unique()), ), ], id='leftCol_proactief', className="pretty_container four columns", ), # Map div. html.Div( [ # Map with selectable points. html.Div( dcc.Graph( id='map_proactief', config={'displayModeBar': False}, # Turned off to disable selection with box/lasso etc. ), className="pretty_container", # style={'height': 500} ), ], id="rightCol_proactief", className="eight columns" ), ], className="row", ), # Data table div. html.Div( [ # Filtered entries data table. html.Div( [ html.P('Gefilterde meldingen'), dt.DataTable( id='filtered_table_proactief', columns = TABLE_COLUMNS, sort_action='native', sort_by=[{'column_id': 'fraude_kans', 'direction': 'desc'}], # filter_action='native', # Maybe turn off? A text field to filter feels clunky.. # row_selectable='multi', # selected_rows=[], page_action='native', page_current=0, page_size=20, style_data_conditional=[ { 'if': { 'column_id': 'woonfraude', 'filter_query': '{woonfraude} eq True' }, 'backgroundColor': colors['fraud'], }, { 'if': { 'column_id': 'woonfraude', 'filter_query': '{woonfraude} eq False' }, 'backgroundColor': colors['no_fraud'], }, { 'if': { 'column_id': 'fraude_kans', 'filter_query': '{fraude_kans} ge 0.5' }, 'backgroundColor': colors['fraud'], }, { 'if': { 'column_id': 'fraude_kans', 'filter_query': '{fraude_kans} lt 0.5' }, 'backgroundColor': colors['no_fraud'], } ] ), ], className="pretty_container ten columns", ), # Filtered entries stadsdeel split (pie chart). html.Div( [ html.P("Gefilterde meldingen - Stadsdeel split"), dcc.Graph( id="stadsdeel_split_proactief", config={'displayModeBar': False}, ) ], id="stadsdeel_proactief", className="pretty_container two columns" ), ], className="row" ), # html.Div( # dcc.Graph( # id='map_proactief', # config={'displayModeBar': False}, # Turned off to disable selection with box/lasso etc. # ), # className="pretty_container", # ), ], style={ "display": "flex", "flex-direction": "column" } ) # Defines the unsupervised tab. unsupervised_tab = html.Div( [ # For creating a map_unsupervised callback function with an empty input. html.Div(id='none_unsupervised',children=[],style={'display': 'none'}), # Div for containing a selection of the data based on filters. html.Div(id='intermediate_value_unsupervised', style={'display': 'none'}), html.Div( dcc.Graph( id='map_unsupervised', config={'displayModeBar': False}, # Turned off to disable selection with box/lasso etc. ), className="pretty_container", ), ], style={ "display": "flex", "flex-direction": "column" } ) # Combines the two tabs into a single app. app.layout = html.Div([ # Title html.H1("Woonfraude Dashboard", style={'textAlign': 'center'}), # Tabs for meldingen & proactieve handhaving. dcc.Tabs(id='tabs', value='meldingen_tab', children=[ dcc.Tab(label='Meldingen', value='meldingen_tab', children=[meldingen_tab]), dcc.Tab(label='Proactieve handhaving', value='proactief_tab', children=[proactief_tab]), dcc.Tab(label='Unsupervised', value='unsupervised_tab', children=[unsupervised_tab]), ]) ]) # Updates the intermediate data based on the dropdown selection. @app.callback( Output('intermediate_value', 'children'), [Input('categorie_dropdown', 'value'), Input('stadsdeel_dropdown', 'value')] ) def create_data_selection(selected_categories, selected_stadsdelen): # Create a copy of the original dataframe. df_filtered = deepcopy(df) # Filter the original dataframe by selected categories. df_filtered = df_filtered[df_filtered.categorie.isin(selected_categories)] # Filter the dataframe by selected stadsdelen. df_filtered = df_filtered[df_filtered.sdl_naam.isin(selected_stadsdelen)] return df_filtered.to_json(date_format='iso', orient='split') ''' # Updates the aantal_meldingen info box. @app.callback( Output('aantal_meldingen', 'children'), [Input('intermediate_value', 'children')] ) def count_items(intermediate_value): # Load the pre-filtered version of the dataframe. df = pd.read_json(intermediate_value, orient='split') return len(df) # Updates the percentage_fraude_verwacht info box. @app.callback( Output('percentage_fraude_verwacht', 'children'), [Input('intermediate_value', 'children')] ) def compute_fraud_percentage(intermediate_value): # Load the pre-filtered version of the dataframe. df = pd.read_json(intermediate_value, orient='split') # Compute what percentage of cases is expected to be fraudulent. If/else to prevent division by 0. if len(df.woonfraude) > 0: fraude_percentage = len(df.woonfraude[df.woonfraude == True]) / len(df.woonfraude) * 100 else: fraude_percentage = 0 # Return truncated value (better for printing on dashboard) return round(fraude_percentage, 1) # Updates the aantal_geselecteerde_meldingen info box. @app.callback( Output('aantal_geselecteerde_meldingen', 'children'), [Input('filtered_point_selection', 'children')] ) def count_items_selected(filtered_point_selection): # Just return the amount of filtered selected points. return len(filtered_point_selection) # Updates the percentage_fraude_verwacht_geselecteerd info box. @app.callback( Output('percentage_fraude_verwacht_geselecteerd', 'children'), [Input('intermediate_value', 'children'), Input('filtered_point_selection', 'children')] ) def compute_fraud_percentage_selected(intermediate_value, filtered_point_selection): # Load the pre-filtered version of the dataframe. df = pd.read_json(intermediate_value, orient='split') # Reduce the dataframe using the point selection. df = df[df.adres_id.isin(filtered_point_selection)] # Compute what percentage of cases is expected to be fraudulent. If/else to prevent division by 0. if len(df.woonfraude) > 0: fraude_percentage = len(df.woonfraude[df.woonfraude == True]) / len(df.woonfraude) * 100 else: fraude_percentage = 0 # Return truncated value (better for printing on dashboard) return round(fraude_percentage, 1) ''' # Updates the map based on dropdown-selections. @app.callback( Output('map', 'figure'), [Input('intermediate_value', 'children'), Input('point_selection', 'children')], [State('map', 'figure')] ) def plot_map(intermediate_value, point_selection, map_state): # Define which input triggers the callback (map.figure or intermediate_value.children). trigger_event = dash.callback_context.triggered[0]['prop_id'] # Load the pre-filtered version of the dataframe. df_map = pd.read_json(intermediate_value, orient='split') # Select positive and negative samples for plotting. pos = df_map[df_map.woonfraude==True] neg = df_map[df_map.woonfraude==False] # Create a df of the selected points, for highlighting. selected_point_ids = [int(x) for x in point_selection] sel = df_map.loc[df_map.adres_id.isin(selected_point_ids)] # Create texts for when hovering the mouse over items. def make_hover_string(row): return f"Adres id: {row.adres_id}\ <br>Categorie: {row.categorie}\ <br>Aantal inwoners: {row.aantal_personen}\ <br>Aantal achternamen: {row.aantal_achternamen}\ <br>Eigenaar: {row.eigenaar}" pos_text = pos.apply(make_hover_string, axis=1) neg_text = neg.apply(make_hover_string, axis=1) sel_text = sel.apply(make_hover_string, axis=1) figure={ 'data': [ # Plot border for selected samples (plot first, so its behind the pos/neg samples). go.Scattermapbox( name='Geselecteerd', lat=sel['wzs_lat'], lon=sel['wzs_lon'], text=sel_text, mode='markers', marker=dict( size=17, color=colors['selected'], ), ), # Plot positive samples. go.Scattermapbox( name='Woonfraude verwacht', lat=pos['wzs_lat'], lon=pos['wzs_lon'], text=pos_text, hoverinfo='text', mode='markers', marker=dict( size=12, color=colors['fraud'], ), ), # Plot negative samples. go.Scattermapbox( name='<NAME>', lat=neg['wzs_lat'], lon=neg['wzs_lon'], text=neg_text, hoverinfo='text', mode='markers', marker=dict( size=12, color=colors['no_fraud'], ), ), ], 'layout': go.Layout( uirevision='never', autosize=True, hovermode='closest', # width=1000, height=700, margin=go.layout.Margin(l=0, r=0, b=0, t=0, pad=0), showlegend=False, # Set to False, since legend selection breaks custom point selection. legend=dict(orientation='h'), plot_bgcolor=colors['background'], paper_bgcolor=colors['paper'], mapbox=dict( accesstoken=config.mapbox_access_token, style="light", center=dict( lat=52.36, lon=4.89 ), zoom=11, ), ) } return figure # Updates the table showing all data points after dropdown-selections. @app.callback( Output('filtered_table', 'data'), [Input('intermediate_value', 'children')] ) def generate_filtered_table(intermediate_value): # Load the pre-filtered version of the dataframe. df_table = pd.read_json(intermediate_value, orient='split') # Transform True and False boolean values to strings. df_table.woonfraude = df_table.woonfraude.replace({True: 'True', False: 'False'}) # Only use a selection of the columns. df_table = df_table[SELECTED_COLUMNS] # Create a table, with all positive woonfraude examples at the top. columns = [{"name": i, "id": i} for i in df_table.columns] data = df_table.to_dict('records') return data # Enable the selection of map points using click-events. @app.callback( Output('point_selection', 'children'), [Input('map', 'clickData'), Input('intermediate_value', 'children')], [State('point_selection', 'children')] ) def update_point_selection_on_click(clickData, intermediate_value, existing_point_selection): """ Update point selection with newly selected points, or according to dropdown filters. The input "intermediate_value:children" is only used to activate a callback. """ # Define which input triggers the callback (map.clickData or intermediate_value.children). trigger_event = dash.callback_context.triggered[0]['prop_id'] # Re-use previous point selection (if it already existed). point_selection = [] if existing_point_selection != None: point_selection = existing_point_selection # Add a clicked point to the selection, or remove it when it already existed in the selection. if trigger_event == 'map.clickData': if clickData != None: point_id = re.match("Adres id: (\d+)", clickData['points'][0]['text']).group(1) if point_id in point_selection: point_selection.remove(point_id) else: point_selection.append(point_id) return point_selection # Create a filtered version of the point_selection, based on the categorie and stadsdeel filters. @app.callback( Output('filtered_point_selection', 'children'), [Input('point_selection', 'children'), Input('intermediate_value', 'children')] ) def show_selected(existing_point_selection, intermediate_value): # Re-use previous point selection (if it already existed). point_selection = [] if existing_point_selection != None: point_selection = existing_point_selection # Filter any previously selected points, if the dropdown selections rule them out. df = pd.read_json(intermediate_value, orient='split') # Load the pre-filtered version of the dataframe. point_ids_list = [str(x) for x in list(df.adres_id)] for point_id in point_selection: if point_id not in point_ids_list: point_selection.remove(point_id) return point_selection # Updates the table showing a list of the selected & filtered points. @app.callback( Output('filtered_point_selection_table', 'data'), [Input('intermediate_value', 'children'), Input('filtered_point_selection', 'children')] ) def generate_filtered_point_selection_table(intermediate_value, filtered_point_selection): # First check if any points have been selected. if filtered_point_selection == []: return [] else: # Turn list of point_ids into a list of numbers instead of strings point_selection = [int(x) for x in filtered_point_selection] # Load the pre-filtered version of the dataframe. df = pd.read_json(intermediate_value, orient='split') # Reduce the dataframe using the point selection. df = df[df.adres_id.isin(point_selection)] # Transform True and False boolean values to strings. df.woonfraude = df.woonfraude.replace({True: 'True', False: 'False'}) # Only use a selection of the columns. df = df[SELECTED_COLUMNS] # Create a table, with all positive woonfraude examples at the top. columns = [{"name": i, "id": i} for i in df.columns] data = df.to_dict('records') return data # TODO: CHANGE WHEN THE DOWNLOAD LINK IS UPDATED WITH NEW DATA. # NOW THIS CODE BELOW IS RAN EVERY TIME A POINT IS (DE)SELECTED, # THIS IS TERRIBLY INEFFICIENT. ACCEPTABLE FOR THE MVP, BUT SHOULD BE CHANGED. # Creates a download link for the filtered_point_selection_table data. @app.callback( Output('download_selected_addresses_list', 'href'), [Input('filtered_point_selection_table', 'data')]) def update_download_link(filtered_point_selection_table): """Updates the csv download link with the data in the filtered point selection table.""" if filtered_point_selection_table == []: point_selection = [] else: # Turn list of point_ids into a list of numbers instead of strings point_selection = filtered_point_selection_table # Convert to df, then to csv string, then return for downloading. df = pd.DataFrame(point_selection) csv_string = df.to_csv(index=False, encoding='utf-8', sep=';') csv_string = "data:text/csv;charset=utf-8," + urllib.parse.quote(csv_string) return csv_string # Test for our button output. @app.callback( Output('button_n_clicks', 'children'), [Input('button', 'n_clicks')]) def show_number_of_button_clicks(button_n_clicks): return str(button_n_clicks) # Updates the stadsdeel split PIE chart. @app.callback( Output('stadsdeel_split', 'figure'), [Input('intermediate_value', 'children')] ) def make_stadsdeel_pie_chart(intermediate_value): # Load the pre-filtered version of the dataframe. df = pd.read_json(intermediate_value, orient='split') # Create value counts per stadsdeel. stadsdeel_value_counts = df.sdl_naam.value_counts().sort_index() figure={ 'data': [ go.Pie( labels=stadsdeel_value_counts.index, values=stadsdeel_value_counts.values ) ], 'layout': go.Layout( height=300, margin=go.layout.Margin(l=0, r=0, b=100, t=0, pad=0), showlegend=True, legend=dict(orientation='h', font={'size':10}), paper_bgcolor=colors['container_background'], ) } return figure # Updates the categorie split pie chart. @app.callback( Output('categorie_split', 'figure'), [Input('intermediate_value', 'children')] ) def make_categorie_pie_chart(intermediate_value): # Load the pre-filtered version of the dataframe. df = pd.read_json(intermediate_value, orient='split') # Create value counts per categorie. categorie_value_counts = df.categorie.value_counts().sort_index() figure={ 'data': [ go.Pie( labels=categorie_value_counts.index, values=categorie_value_counts.values ) ], 'layout': go.Layout( height=300, margin=go.layout.Margin(l=0, r=0, b=100, t=0, pad=0), showlegend=True, legend=dict(orientation='h', x=0, y=0, font={'size':10}), paper_bgcolor=colors['container_background'], ) } return figure ''' # Updates the stadsdeel split BAR chart. @app.callback( Output('stadsdeel_split', 'figure'), [Input('intermediate_value', 'children')] ) def make_stadsdeel_split_bar_chart(intermediate_value): # Load the pre-filtered version of the dataframe. df = pd.read_json(intermediate_value, orient='split') # Create value counts per stadsdeel. stadsdeel_value_counts = df.stadsdeel.value_counts(ascending=True) x=stadsdeel_value_counts.values y=stadsdeel_value_counts.index percentages = [(val/sum(x))*100 for val in x] # Create annotations for showing the percentages on top of the bars. annotations = [] for num, p in enumerate(percentages): annotation = dict(xref='x1', yref='y1', x=0.5, y=num, text=f"{p}%", showarrow=False, align='left' ) annotations.append(annotation) figure={ 'data': [ go.Bar( y=y, x=x, text=percentages, marker=dict( color='rgba(50, 171, 96, 0.6)', line=dict( color='rgba(50, 171, 96, 1.0)', width=2), ), showlegend=False, orientation='h' ) ], 'layout': go.Layout( height=200, margin=go.layout.Margin(l=100, r=0, b=0, t=0, pad=0), paper_bgcolor=colors['container_background'], annotations=annotations ) } return figure # Updates the categorie split BAR chart. @app.callback( Output('categorie_split', 'figure'), [Input('intermediate_value', 'children')] ) def make_stadsdeel_split_bar_chart(intermediate_value): # Load the pre-filtered version of the dataframe. df = pd.read_json(intermediate_value, orient='split') # Create value counts per categorie. stadsdeel_value_counts = df.categorie.value_counts(ascending=True) x=stadsdeel_value_counts.values y=stadsdeel_value_counts.index percentages = [(val/sum(x))*100 for val in x] # Create annotations for showing the percentages on top of the bars. annotations = [] for num, p in enumerate(percentages): annotation = dict(xref='x1', yref='y1', x=0.5, y=num, text=f"{p}%", showarrow=False, align='left' ) annotations.append(annotation) figure={ 'data': [ go.Bar( y=y, x=x, text=percentages, marker=dict( color='rgba(50, 171, 96, 0.6)', line=dict( color='rgba(50, 171, 96, 1.0)', width=2), ), showlegend=False, orientation='h' ) ], 'layout': go.Layout( height=200, margin=go.layout.Margin(l=100, r=0, b=0, t=0, pad=0), paper_bgcolor=colors['container_background'], annotations=annotations ) } return figure ''' ############################ ## Proactief tab functies ## ############################ # @app.callback( # Output('intermediate_value_proactief', 'children'), # [Input('none_proactief', 'children')] # ) # def create_data_selection(_): # return df_proactief.to_json(date_format='iso', orient='split') # Updates the intermediate data based on the dropdown selection. @app.callback( Output('intermediate_value_proactief', 'children'), [Input('aantal_meldingen_rangeslider_proactief', 'value'), Input('aantal_volwassenen_rangeslider_proactief', 'value'), Input('aantal_m2_per_persoon_rangeslider_proactief', 'value'), Input('stadsdeel_dropdown_proactief', 'value'), Input('hotline_dropdown_proactief', 'value'), Input('gebruikersdoel_dropdown_proactief', 'value'), Input('profiel_dropdown_proactief', 'value')] ) def create_data_selection(aantal_meldingen_range, aantal_volwassenen, aantal_m2_per_persoon, selected_stadsdelen, is_hotline, selected_gebruikersdoelen, selected_profielen): # Create a copy of the original dataframe. df_filtered = deepcopy(df_proactief) # Filter the original dataframe by aantal meldingen. min_meldingen = aantal_meldingen_range[0] max_meldingen = aantal_meldingen_range[1] df_filtered = df_filtered[(df_filtered.aantal_meldingen >= min_meldingen) & (df_filtered.aantal_meldingen <= max_meldingen)] # Filter on number of adults min_adults = aantal_volwassenen[0] max_adults = aantal_volwassenen[1] df_filtered = df_filtered[(df_filtered.aantal_volwassenen >= min_adults) & (df_filtered.aantal_volwassenen <= max_adults)] # Filter on the amount of m2 per person. min_m2_pp = aantal_m2_per_persoon[0] max_m2_pp = aantal_m2_per_persoon[1] df_filtered = df_filtered[(df_filtered.m2_per_persoon >= min_m2_pp) & (df_filtered.m2_per_persoon <= max_m2_pp)] # Filter the dataframe by selected stadsdelen. df_filtered = df_filtered[df_filtered.sdl_naam.isin(selected_stadsdelen)] # Filter the dataframe based on whether the meldingen are hotline meldingen. # To do this, first convert the is_hotline values (strings) to booleans for matching. is_hotline = [True if x=='True' else x for x in is_hotline] is_hotline = [False if x=='False' else x for x in is_hotline] df_filtered = df_filtered[df_filtered.is_hotline.isin(is_hotline)] # Filter the dataframe by selected gebruikersdoelen. df_filtered = df_filtered[df_filtered.gebruikersdoel.isin(selected_gebruikersdoelen)] # Filter the dataframe by selected profiles. df_filtered = df_filtered[df_filtered.profiel.isin(selected_profielen)] return df_filtered.to_json(date_format='iso', orient='split') @app.callback( Output('map_proactief', 'figure'), [Input('intermediate_value_proactief', 'children')] ) def plot_map(intermediate_value_proactief): # Load the pre-filtered version of the dataframe. df =
pd.read_json(intermediate_value_proactief, orient='split')
pandas.read_json
""" Prelim script for looking at netcdf files and producing some trends These estimates can also be used for P03 climate estimation """ #============================================================================== __title__ = "Global Climate Trends" __author__ = "<NAME>" __version__ = "v1.0(13.02.2019)" __email__ = "<EMAIL>" #============================================================================== # +++++ Check the paths and set ex path to fireflies folder +++++ import os import sys if not os.getcwd().endswith("fireflies"): if "fireflies" in os.getcwd(): p1, p2, _ = os.getcwd().partition("fireflies") os.chdir(p1+p2) else: raise OSError( "This script was called from an unknown path. CWD can not be set" ) sys.path.append(os.getcwd()) #============================================================================== # Import packages import numpy as np import pandas as pd import argparse import datetime as dt from collections import OrderedDict import warnings as warn from netCDF4 import Dataset, num2date, date2num from scipy import stats import xarray as xr from numba import jit import bottleneck as bn import scipy as sp from scipy import stats import statsmodels.stats.multitest as smsM # Import plotting and colorpackages import matplotlib.pyplot as plt import matplotlib.colors as mpc import matplotlib as mpl import palettable import seaborn as sns import cartopy.crs as ccrs import cartopy.feature as cpf from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER # Import debugging packages import ipdb print("numpy version : ", np.__version__) print("pandas version : ", pd.__version__) print("xarray version : ", xr.__version__) #============================================================================== def main(): # =========== Create the summary of the datasets to be analyised ========== data= OrderedDict() data["tas"] = ({ 'fname':"./data/cli/1.TERRACLIMATE/TerraClimate_stacked_tmean_1958to2017_GIMMSremapbil_yearmean.nc", 'var':"tmean", "gridres":"GIMMS", "region":"Global", "Periods":["Annual"] }) data["pre"] = ({ 'fname':"./data/cli/1.TERRACLIMATE/TerraClimate_stacked_ppt_1958to2017_GIMMSremapbil_yearsum.nc", 'var':"ppt", "gridres":"GIMMS", "region":"Global", "Periods":["Annual"] }) # ========== loop over each dataset ========== for dt in data: # ========== set up the params for the trend ========== # st_yrs = [1960, 1970, 1982, 1990, 1999] st_yrs = [1982] # windows = [20, 15, 10, 5] windows = [20] # ========== Set the ploting and overwite params ========== plot = False #True # force = True for period in data[dt]["Periods"]: # ========== Perform the rolling window smoothing ========== RollingWindow( data[dt]["fname"], data[dt]["var"], "polyfit", windows, period, data[dt]["gridres"], data[dt]["region"], yr_start=1982, yr_end=2017, force=False, plot=plot) RollingWindow( data[dt]["fname"], data[dt]["var"], "scipyols", windows, period, data[dt]["gridres"], data[dt]["region"], yr_start=1982, yr_end=2017, force=False, plot=plot) RollingWindow( data[dt]["fname"], data[dt]["var"], "theilsen", windows, period, data[dt]["gridres"], data[dt]["region"], yr_start=1982, yr_end=2017, force=False, plot=plot) # ========== Perform the uncorrected trend detection ========== # trendmapper( # data[dt]["fname"], data[dt]["var"], "polyfit", # period, data[dt]["gridres"], data[dt]["region"], # st_yrs, plot = plot)#, force=True) # trendmapper( # data[dt]["fname"], data[dt]["var"], "scipyols", # period, data[dt]["gridres"], data[dt]["region"], # st_yrs, plot = plot)#, force=True) # trendmapper( # data[dt]["fname"], data[dt]["var"], "theilsen", # period, data[dt]["gridres"], data[dt]["region"], # st_yrs, plot = plot)#, force=True) # sys.exit() # Reshape to an array with as many rows as years and as many columns as there are pixels # ipdb.set_trace() #============================================================================== # ============================= Primary functions ============================= #============================================================================== def plotmaker(): # ========== Build all the plots ========== if not plot: return True # +++++ Plot number +++++ pn = 1 for styp in range(0, len(start_years)): for num in range(0, len(kys)): # ========== create the colormap ========== cmap, vmin, vmax = cbvals(var, kys[num]) if any ([cm is None for cm in [cmap, vmin, vmax]]): warn.warn("no colorbar exists for %s, skipping" % (kys[num])) ipdb.set_trace() # continue print(styp, num) ax = plt.subplot(len(start_years),len(kys), pn, projection=ccrs.PlateCarree()) ax.add_feature(cpf.BORDERS, linestyle='--', zorder=102) ax.add_feature(cpf.LAKES, alpha=0.5, zorder=103) ax.add_feature(cpf.RIVERS, zorder=104) # add lat long linse gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, linewidth=1, color='gray', alpha=0.5, linestyle='--') gl.xlabels_top = False gl.ylabels_right = False if num == 0: gl.xlabels_bottom = False if not ((pn-1) % len(start_years)): gl.ylabels_left = False gl.xformatter = LONGITUDE_FORMATTER gl.yformatter = LATITUDE_FORMATTER # ========== Make the map ========== # ipdb.set_trace() ds_trend[kys[num]].isel(time=styp).plot(ax=ax, transform=ccrs.PlateCarree(), cmap=cmap, vmin=vmin, vmax=vmax, cbar_kwargs={ "extend":"both"})#, "pad":0.0075,"fraction":0.125, "shrink":0.74}) #"fraction":0.05, pn += 1 # ax.set_title=seasons[num] # for vas, cl in zip(RFinfo.RF17.unique().tolist(), ['yx', "r*","k."]): # ax.plot(RFinfo.lon.values, RFinfo.lat.values, # "kx", markersize=4, transform=ccrs.PlateCarree()) # plt.subplots_adjust( # top=0.98, # bottom=0.02, # left=0.038, # right=0.989, # hspace=0.05, # wspace=0.037) fig = plt.gcf() # fig.set_size_inches(len(start_years)*3, len(kys)*6) fig.set_size_inches(41, 20) # plt.tight_layout() plt.savefig("./%s_Testplotv2.png" % var) # plt.colose # ipdb.set_trace() # plt.savefig("./Testplot.pdf") # plt.show() # plt.coloes ipdb.set_trace() def RollingWindow( fname, var, method, window, period, gridres, region, yr_start=1982, yr_end = 2015, force = False, plot=True): """Function to perform a rolling window smoothing on the precipitation and climate data args fname: String string of the netcdf to be opened var: string string of the variable name within the netcdf window: int the number of time periods to be used period: str description of the accumulation period gridres: str description of the resolution of the grid region: str descript of the data region yr_start the first year to be included in trend analysis yr_end the last year to be included in trend analysis force: bool force the creation of new netcdf files plot: bool true makes plots """ # ========== Open the dataset ========== ds = xr.open_dataset(fname) print("Starting rolling window calculations for %s" % var) # ========== build an output file name ========== fout = ( './results/netcdf/TerraClimate_%s_RollingMean_%s_%sto%d_%s%s.nc' % ( period, var, method, yr_end, region, gridres)) # ========== Test if a file alread exists ========== if all([os.path.isfile(fout), not force]): warn.warn("Loading existing file, force is needed to overwrite") ds_trend = xr.open_dataset(fout) kys = [n for n in ds_trend.data_vars] else: # ========== Create the global attributes ========== global_attrs = GlobalAttributes(ds, var) # ========== Create the rolling window means ========== results = [] years = [] # ========== Pull out the data seasonality ========== annual = ds[var] # ========== Loop over each of the mooving windows ========== for win in window: rmean = annual.rolling(time=win).mean() dst = rmean.sel(time=slice('%d-01-01' % yr_start, '%d-12-31' % yr_end)) # ========== Get the trend ========== trends, kys = _fitvals(dst, method=method) # ========== add a correction for multiple comparisons ========== if "pvalue" in kys: trends, kys = MultipleComparisons(trends, kys, aplha = 0.10, MCmethod="fdr_bh") results.append(trends) years.append(yr_start-win) # ========== convert data to netcdf format ========== layers, encoding = dsmaker(ds, var, results, kys, years, method) ds_trend = xr.Dataset(layers, attrs= global_attrs) try: print("Starting write of data") ds_trend.to_netcdf(fout, format = 'NETCDF4', encoding = encoding, unlimited_dims = ["time"]) print(".nc file created") ipdb.set_trace() except Exception as e: print(e) warn.warn(" \n something went wrong with the save, going interactive") ipdb.set_trace() # if plot: warn.warn("plotting has not been implemented in this function yet. Going interactive") ipdb.set_trace() def trendmapper( fname, var, method, period, gridres, region, start_years, endyr = 2015, fdpath="", force = False, plot=True): ds = xr.open_dataset(fname) # ========== Create the outfile name ========== fout = './results/netcdf/TerraClimate_%s_%s_%sto%d_%s%s.nc' % ( period, var, method, endyr,region, gridres) # ========== Check if the file already exists ========== if all([os.path.isfile(fout), not force]): warn.warn("Loading existing file, force is needed to overwrite") ds_trend = xr.open_dataset(fout) kys = [n for n in ds_trend.data_vars] else: results = [] # ========== Create the global attributes ========== global_attrs = GlobalAttributes(ds, var) if period == "OptimalAccumulated": annual = ds[var] else: if period == "Annual": man_annual = ds[var].groupby('time.year') else: # Grouping by the season man_annual = ds[var].where(ds[var]['time.season'] == period).groupby('time.year') # Account for the different variables if var == "tmean": annual = man_annual.mean(dim='time') else: annual = man_annual.sum(dim='time') for styr in start_years: if period == "OptimalAccumulated": dst = annual.sel(time=slice('%d-01-01' % styr, '%d-12-31' % endyr)) else: dst = annual.sel(year=slice('%d-01-01' % styr, '%d-12-31' % endyr)) trends, kys = _fitvals(dst, method=method) # Correct for multiple comparisons if "pvalue" in kys: trends, kys = MultipleComparisons(trends, kys, aplha = 0.10) results.append(trends) layers, encoding = dsmaker(ds, var, results, kys, start_years, method) ds_trend = xr.Dataset(layers, attrs= global_attrs) try: print("Starting write of data") ds_trend.to_netcdf(fout, format = 'NETCDF4', encoding = encoding, unlimited_dims = ["time"]) except Exception as e: print(e) warn.warn(" \n something went wrong with the save, going interactive") ipdb.set_trace() # get the value #============================================================================== # ========================= Netcdf Creation Functions ========================= #============================================================================== def GlobalAttributes(ds, var): """ Creates the global attributes for the netcdf file that is being written these attributes come from : https://www.unidata.ucar.edu/software/thredds/current/netcdf-java/metadata/DataDiscoveryAttConvention.html args ds: xarray ds Dataset containing the infomation im intepereting var: str name of the variable returns: attributes Ordered Dictionary cantaining the attribute infomation """ # ========== Create the ordered dictionary ========== attr = OrderedDict() # fetch the references for my publications # pubs = puplications() # ========== Fill the Dictionary ========== # ++++++++++ Highly recomended ++++++++++ attr["title"] = "Trend in Climate (%s)" % (var) attr["summary"] = "Annual and season trends in %s" % var attr["Conventions"] = "CF-1.7" # ++++++++++ Data Provinance ++++++++++ attr["history"] = "%s: Netcdf file created using %s (%s):%s by %s" % ( str(pd.Timestamp.now()), __title__, __file__, __version__, __author__) attr["history"] += ds.history attr["creator_name"] = __author__ attr["creator_url"] = "ardenburrell.com" attr["creator_email"] = __email__ attr["institution"] = "University of Leicester" attr["date_created"] = str(pd.Timestamp.now()) # ++++++++++ Netcdf Summary infomation ++++++++++ attr["time_coverage_start"] = str(dt.datetime(ds['time.year'].min(), 1, 1)) attr["time_coverage_end"] = str(dt.datetime(ds['time.year'].max() , 12, 31)) return attr def dsmaker(ds, var, results, keys, start_years, method): """ Build a summary of relevant paramters args ds: xarray ds Dataset containing the infomation im intepereting var: str name of the variable return ds xarray dataset """ # sys.exit() # date = [dt.datetime(ds['time.year'].max() , 12, 31)] times = OrderedDict() tm = [dt.datetime(yr , 12, 31) for yr in start_years] times["time"] = pd.to_datetime(tm) times["calendar"] = 'standard' times["units"] = 'days since 1900-01-01 00:00' times["CFTime"] = date2num( tm, calendar=times["calendar"], units=times["units"]) dates = times["CFTime"] try: lat = ds.lat.values lon = ds.lon.values except AttributeError: lat = ds.latitude.values lon = ds.longitude.values # dates = [dt.datetime(yr , 12, 31) for yr in start_years] # ipdb.set_trace() # ========== Start making the netcdf ========== layers = OrderedDict() encoding = OrderedDict() # ========== loop over the keys ========== try: for pos in range(0, len(keys)): # ipdb.set_trace() if type(results[0]) == np.ndarray: Val = results[pos][np.newaxis,:, :] else: # multiple variables Val = np.stack([res[pos] for res in results]) ky = keys[pos] # build xarray dataset DA=xr.DataArray(Val, dims = ['time', 'latitude', 'longitude'], coords = {'time': dates,'latitude': lat, 'longitude': lon}, attrs = ({ '_FillValue':9.96921e+36, 'units' :"1", 'standard_name':ky, 'long_name':"%s %s" % (method, ky) }), ) DA.longitude.attrs['units'] = 'degrees_east' DA.latitude.attrs['units'] = 'degrees_north' DA.time.attrs["calendar"] = times["calendar"] DA.time.attrs["units"] = times["units"] layers[ky] = DA encoding[ky] = ({'shuffle':True, # 'chunksizes':[1, ensinfo.lats.shape[0], 100], 'zlib':True, 'complevel':5}) return layers, encoding except Exception as e: warn.warn("Code failed with: \n %s \n Going Interactive" % e) ipdb.set_trace() raise e #=============================================================================== # ============================= Internal Functions ============================= #=============================================================================== def MultipleComparisons(trends, kys, aplha = 0.10, MCmethod="fdr_by"): """ Takes the results of an existing trend detection aproach and modifies them to account for multiple comparisons. args trends: list list of numpy arrays containing results of trend analysis kys: list list of what is in results years: years of accumulation """ if MCmethod == "fdr_by": print("Adjusting for multiple comparisons using Benjamini/Yekutieli") elif MCmethod == "fdr_bh": print("Adjusting for multiple comparisons using Benjamini/Hochberg") else: warn.warn("unknown MultipleComparisons method, Going Interactive") ipdb.set_trace() # ========== Locate the p values and reshape them into a 1d array ========== # ++++++++++ Find the pvalues ++++++++++ index = kys.index("pvalue") pvalue = trends[index] isnan = np.isnan(pvalue) # ++++++++++ pull out the non nan pvalus ++++++++++ # pvalue1d = pvalue.flatten() pvalue1d = pvalue[~isnan] # isnan1d = isnan.flatten() # =========== Perform the MC correction =========== pvalue_adj = smsM.multipletests(pvalue1d, method=MCmethod, alpha=0.10) # ++++++++++ reformat the data into array ++++++++++ MCR = ["Significant", "pvalue_adj"] for nm in MCR: # make an empty array re = np.zeros(pvalue.shape) re[:] = np.NAN if nm == "Significant": re[~isnan] = pvalue_adj[MCR.index(nm)].astype(int).astype(float) else: re[~isnan] = pvalue_adj[MCR.index(nm)] # +++++ add the significant and adjusted pvalues to trends+++++ trends.append(re) kys.append(nm) return trends, kys def cbvals(var, ky): """Function to store all the colorbar infomation i need """ cmap = None vmin = None vmax = None if ky == "slope": if var == "tmean": vmax = 0.07 vmin = -0.07 cmap = mpc.ListedColormap(palettable.cmocean.diverging.Balance_20.mpl_colors) elif var =="ppt": vmin = -3.0 vmax = 3.0 cmap = mpc.ListedColormap(palettable.cmocean.diverging.Curl_20_r.mpl_colors) elif ky == "pvalue": cmap = mpc.ListedColormap(palettable.matplotlib.Inferno_20.hex_colors) vmin = 0.0 vmax = 1.0 elif ky == "rsquared": cmap = mpc.ListedColormap(palettable.matplotlib.Viridis_20.hex_colors) vmin = 0.0 vmax = 1.0 # cmap = elif ky == "intercept": cmap = mpc.ListedColormap(palettable.cmocean.sequential.Ice_20_r.mpl_colors) if var == "tmean": # vmax = 0.07 # vmin = -0.07 # cmap = mpc.ListedColormap(palettable.cmocean.diverging.Balance_20.mpl_colors) # ipdb.set_trace() pass elif var =="ppt": vmin = 0 vmax = 1000 # cmap = mpc.ListedColormap(palettable.cmocean.diverging.Curl_20_r.mpl_colors) return cmap, vmin, vmax # @jit def _fitvals(dvt, method="polyfit"): """ Takes the ds[var] and performs some form of regression on it """ vals = dvt.values try: years = pd.to_datetime(dvt.time.values).year t0 = pd.Timestamp.now() print("testing with %s from %d to %d starting at: %s" % ( method,
pd.to_datetime(dvt.time.values)
pandas.to_datetime
import pandas as pd from scipy import stats from statsmodels.stats import multicomp as mc def create_summary_table(data, plot_dims=[], summary_stats=[]): if len(summary_stats) == 0: summary_stats = ["mean", "std"] tmp = data.copy(deep=True) tmp = tmp.groupby(["Cluster"])[plot_dims].agg(summary_stats) return tmp def run_cluster_comps(data=None, ft_cols=None): """ Function to determine where statistically sig differences lie between the clusters :param data: :return: """ # Get the binary columns bin_fts = [col for col in ft_cols if list(set(data[col])) == [0, 1]] # Get the continuous columns cont_fts = [col for col in ft_cols if col not in bin_fts] # init the sig df and post hoc tests df sig_results = {"Feature": list(), "p Val": list(), "Stat Test": list()} post_hocs = pd.DataFrame() # perform chi squared on the binary for ft in bin_fts: crosstab =
pd.crosstab(data["Cluster"], data[ft])
pandas.crosstab
from sklearn.model_selection import train_test_split import os import shutil import zipfile import logging import pandas as pd import glob from tqdm import tqdm from pathlib import Path from ..common import Common from ..util import read_img, get_img_dim from .dataset import Dataset # All dataset parsers inheret from Dataset. class LISA_TL(Dataset): def __init__(self, lisats_config: dict, config: Common): """ lisats_config: dict Dict of values loaded from the dataset.yaml file expected keys: [RAW_ROOT] -> root path of raw dataset.zips [ZIP] -> name of zip file, with .zip [CLEAN_ROOT] -> where to extract the cleaned files. [PREPEND] -> prefix to all .txt and .jpg files outputted config: Common A Common object created from loaded yaml files with the configs. """ # path to raw file (absolute) self.raw_path = config.root + lisats_config["RAW_FOLDER"] + lisats_config["ZIP"] # path to initialization folder (absolute) self.init_path = config.init_folder + lisats_config["INIT_FOLDER"] self.annot_file = self.init_path + "allAnnotations.csv" self.prepend = lisats_config["PREPEND"] self.config = config # =============================================== # initializes dataset into intermediary unzipped and cleaned state. def init_dataset(self): """ unzips lisatl into intermidiary INIT_FOLDER cleans up files from unzip to minimize disk space. """ assert os.path.isfile(self.raw_path) # makes sure that the zip actually exists. print("Started initializing LISATL!") # make subfolder inside INIT_FOLDER path. os.makedirs(self.init_path, exist_ok=True) # unzips file into directory with zipfile.ZipFile(self.raw_path, "r") as zip_ref: # zip_ref.extractall(self.init_path) for member in tqdm(zip_ref.infolist(), desc='Extracting '): zip_ref.extract(member, self.init_path) # rename nightTrain, dayTrain to nightTraining, dayTraining (match annotation file) shutil.move(self.init_path+"nightTrain/nightTrain", self.init_path+"nightTraining") shutil.move(self.init_path+"dayTrain/dayTrain", self.init_path+"dayTraining") # delete some of the unnecessary folders. delete_folders = ["sample-nightClip1/", "sample-dayClip6/", "nightSequence1", "nightSequence2", "daySequence1", "daySequence2", "nightTrain", "dayTrain"] for folder in delete_folders: shutil.rmtree(self.init_path + folder) # read in all day annotations total_day_df = [] for dayClip in tqdm([x for x in Path(self.init_path+"Annotations/Annotations/dayTrain/").glob('**/*') if x.is_dir()]): path = os.path.join(dayClip, "frameAnnotationsBOX.csv") total_day_df.append(
pd.read_csv(path, sep=";")
pandas.read_csv
# -*- coding: utf-8 -*- """Add model years to an existing Scenario.""" # Sections of the code: # # I. Required python packages are imported # II. Generic utilities for dataframe manipulation # III. The main function, add_year() # IV. Function add_year_set() for adding and modifying the sets # V. Function add_year_par() for copying and modifying each parameter # VI. Two utility functions, interpolate_1d() and interpolate_2d(), for # calculating missing values # %% I) Importing required packages import numpy as np import pandas as pd # %% II) Utility functions for dataframe manupulation def intpol(y1, y2, x1, x2, x): """Interpolate between (*x1*, *y1*) and (*x2*, *y2*) at *x*. Parameters ---------- y1, y2 : float or pd.Series x1, x2, x : int """ if x2 == x1 and y2 != y1: print('>>> Warning <<<: No difference between x1 and x2,' 'returned empty!!!') return [] elif x2 == x1 and y2 == y1: return y1 else: y = y1 + ((y2 - y1) / (x2 - x1)) * (x - x1) return y def slice_df(df, idx, level, locator, value): """Slice a MultiIndex DataFrame and set a value to a specific level. Parameters ---------- df : pd.DataFrame idx : list of indices level: str locator : list value : int or str """ if locator: df = df.reset_index().loc[df.reset_index()[level].isin(locator)].copy() else: df = df.reset_index().copy() if value: df[level] = value return df.set_index(idx) def mask_df(df, index, count, value): """Create a mask for removing extra values from *df*.""" df.loc[index, df.columns > (df.loc[[index]].notnull().cumsum( axis=1) == count).idxmax(axis=1).values[0]] = value def unit_uniform(df): """Make units in *df* uniform.""" column = [x for x in df.columns if x in ['commodity', 'emission']] if column: com_list = set(df[column[0]]) for com in com_list: df.loc[df[column[0]] == com, 'unit'] = df.loc[ df[column[0]] == com, 'unit'].mode()[0] else: df['unit'] = df['unit'].mode()[0] return df # %% III) The main function def add_year(sc_ref, sc_new, years_new, firstyear_new=None, lastyear_new=None, macro=False, baseyear_macro=None, parameter='all', region='all', rewrite=True, unit_check=True, extrapol_neg=None, bound_extend=True): """Add years to *sc_ref* to produce *sc_new*. :meth:`add_year` does the following: 1. calls :meth:`add_year_set` to add and modify required sets. 2. calls :meth:`add_year_par` to add new years and modifications to each parameter if needed. Parameters ----------- sc_ref : ixmp.Scenario Reference scenario. sc_new : ixmp.Scenario New scenario. yrs_new : list of int New years to be added. firstyear_new : int, optional New first model year for new scenario. macro : bool Add new years to parameters of the MACRO model. baseyear_macro : int New base year for the MACRO model. parameter: list of str or 'all' Parameters for adding new years. rewrite: bool Permit rewriting a parameter in new scenario when adding new years. check_unit: bool Harmonize the units for each commodity, if there is inconsistency across model years. extrapol_neg: float When extrapolation produces negative values, replace with a multiple of the value for the previous timestep. bound_extend: bool Duplicate data from the previous timestep when there is only one data point for interpolation (e.g., permitting the extension of a bound to 2025, when there is only one value in 2020). """ # III.A) Adding sets and required modifications years_new = sorted([x for x in years_new if str(x) not in set(sc_ref.set('year'))]) add_year_set(sc_ref, sc_new, years_new, firstyear_new, lastyear_new, baseyear_macro) # ------------------------------------------------------------------------- # III.B) Adding parameters and calculating the missing values for the # additonal years if parameter in ('all', ['all']): par_list = sorted(sc_ref.par_list()) elif isinstance(parameter, list): par_list = parameter elif isinstance(parameter, str): par_list = [parameter] else: print('Parameters should be defined in a list of strings or as' ' a single string!') if 'technical_lifetime' in par_list: par_list.insert(0, par_list.pop(par_list.index('technical_lifetime'))) if region in ('all', ['all']): reg_list = sc_ref.set('node').tolist() elif isinstance(region, list): reg_list = region elif isinstance(region, str): reg_list = [region] else: print('Regions should be defined in a list of strings or as' ' a single string!') # List of parameters to be ignored (even not copied to the new # scenario) par_ignore = ['duration_period'] par_list = [x for x in par_list if x not in par_ignore] if not macro: par_macro = ['demand_MESSAGE', 'price_MESSAGE', 'cost_MESSAGE', 'gdp_calibrate', 'historical_gdp', 'MERtoPPP', 'kgdp', 'kpvs', 'depr', 'drate', 'esub', 'lotol', 'p_ref', 'lakl', 'prfconst', 'grow', 'aeei', 'aeei_factor', 'gdp_rate'] par_list = [x for x in par_list if x not in par_macro] if not sc_new.set('cat_year', {'type_year': 'firstmodelyear'}).empty: firstyear_new = sc_new.set('cat_year', {'type_year': 'firstmodelyear'})['year'] else: firstyear_new = min([int(x) for x in sc_new.set('year').tolist()]) if not sc_ref.set('cat_year', {'type_year': 'firstmodelyear'}).empty: firstyear_ref = sc_ref.set('cat_year', {'type_year': 'firstmodelyear'})['year'] else: firstyear_ref = firstyear_new for parname in par_list: # For historical parameters extrapolation permitted (e.g., from # 2010 to 2015) if 'historical' in parname: extrapol = True yrs_new = [x for x in years_new if x < int(firstyear_new)] elif int(firstyear_ref) > int(firstyear_new): extrapol = True yrs_new = years_new else: extrapol = False yrs_new = years_new if 'bound' in parname: bound_ext = bound_extend else: bound_ext = True year_list = [x for x in sc_ref.idx_sets(parname) if 'year' in x] if len(year_list) == 2 or parname in ['land_output']: # The loop over "node" is only for reducing the size of tables for node in reg_list: add_year_par(sc_ref, sc_new, yrs_new, parname, [node], firstyear_new, extrapol, rewrite, unit_check, extrapol_neg, bound_ext) else: add_year_par(sc_ref, sc_new, yrs_new, parname, reg_list, firstyear_new, extrapol, rewrite, unit_check, extrapol_neg, bound_ext) sc_new.set_as_default() print('> All required parameters were successfully ' 'added to the new scenario.') # %% Submodules needed for running the main function # IV) Adding new years to sets def add_year_set(sc_ref, sc_new, years_new, firstyear_new=None, lastyear_new=None, baseyear_macro=None): """Add new years to sets. :meth:`add_year_set` adds additional years to an existing scenario, by starting to make a new scenario from scratch. After modification of the year-related sets, all other sets are copied from *sc_ref* to *sc_new*. See :meth:`add_year` for parameter descriptions. """ # IV.A) Treatment of the additional years in the year-related sets # A.1. Set - year yrs_old = list(map(int, sc_ref.set('year'))) horizon_new = sorted(yrs_old + years_new) sc_new.add_set('year', [str(yr) for yr in horizon_new]) # A.2. Set _ type_year yr_typ = sc_ref.set('type_year').tolist() sc_new.add_set('type_year', sorted(yr_typ + [str(yr) for yr in years_new])) # A.3. Set _ cat_year yr_cat = sc_ref.set('cat_year') # A.4. Changing the first year if needed if firstyear_new: if not yr_cat.loc[yr_cat['type_year'] == 'firstmodelyear'].empty: yr_cat.loc[yr_cat['type_year'] == 'firstmodelyear', 'year'] = firstyear_new else: yr_cat.loc[len(yr_cat.index)] = ['firstmodelyear', firstyear_new] if lastyear_new: if not yr_cat.loc[yr_cat['type_year'] == 'lastmodelyear'].empty: yr_cat.loc[yr_cat['type_year'] == 'lastmodelyear', 'year'] = lastyear_new else: yr_cat.loc[len(yr_cat.index)] = ['lastmodelyear', lastyear_new] # A.5. Changing the base year and initialization year of macro if a new # year specified if baseyear_macro: if not yr_cat.loc[yr_cat['type_year'] == 'baseyear_macro', 'year'].empty: yr_cat.loc[yr_cat['type_year'] == 'baseyear_macro', 'year'] = baseyear_macro if not yr_cat.loc[yr_cat['type_year'] == 'initializeyear_macro', 'year'].empty: yr_cat.loc[yr_cat['type_year'] == 'initializeyear_macro', 'year'] = baseyear_macro yr_pair = [] for yr in years_new: yr_pair.append([yr, yr]) yr_pair.append(['cumulative', yr]) yr_cat = yr_cat.append(pd.DataFrame(yr_pair, columns=['type_year', 'year']), ignore_index=True ).sort_values('year').reset_index(drop=True) # A.6. Changing the cumulative years based on the new first model year if 'firstmodelyear' in set(yr_cat['type_year']): firstyear_new = int(yr_cat.loc[yr_cat['type_year'] == 'firstmodelyear', 'year']) yr_cat = yr_cat.drop(yr_cat.loc[(yr_cat['type_year'] == 'cumulative' ) & (yr_cat['year'] < firstyear_new) ].index) sc_new.add_set('cat_year', yr_cat) # IV.B) Copying all other sets set_list = [s for s in sc_ref.set_list() if 'year' not in s] # Sets with one index set index_list = [x for x in set_list if not isinstance(sc_ref.set(x), pd.DataFrame)] for set_name in index_list: if set_name not in sc_new.set_list(): sc_new.init_set(set_name, idx_sets=None, idx_names=None) sc_new.add_set(set_name, sc_ref.set(set_name).tolist()) # The rest of the sets for set_name in [x for x in set_list if x not in index_list]: new_set = [x for x in sc_ref.idx_sets(set_name ) if x not in sc_ref.set_list()] if set_name not in sc_new.set_list() and not new_set: sc_new.init_set(set_name, idx_sets=sc_ref.idx_sets(set_name), idx_names=sc_ref.idx_names(set_name)) sc_new.add_set(set_name, sc_ref.set(set_name)) sc_new.commit('sets added!') print('> All the sets updated and added to the new scenario.') # %% V) Adding new years to parameters def add_year_par(sc_ref, sc_new, yrs_new, parname, reg_list, firstyear_new, extrapolate=False, rewrite=True, unit_check=True, extrapol_neg=None, bound_extend=True): """Add new years to parameters. This function adds additional years to a parameter. The value of the parameter for additional years is calculated mainly by interpolating and extrapolating data from existing years. See :meth:`add_year` for parameter descriptions. """ # V.A) Initialization and checks par_list_new = sc_new.par_list() idx_names = sc_ref.idx_names(parname) horizon = sorted([int(x) for x in list(set(sc_ref.set('year')))]) node_col = [x for x in idx_names if x in ['node', 'node_loc', 'node_rel']] year_list = [x for x in idx_names if x in ['year', 'year_vtg', 'year_act', 'year_rel']] if parname not in par_list_new: sc_new.check_out() sc_new.init_par(parname, idx_sets=sc_ref.idx_sets(parname), idx_names=sc_ref.idx_names(parname)) sc_new.commit('New parameter initiated!') if node_col: par_old = sc_ref.par(parname, {node_col[0]: reg_list}) par_new = sc_new.par(parname, {node_col[0]: reg_list}) sort_order = [node_col[0], 'technology', 'commodity', 'mode', 'emission'] + year_list nodes = par_old[node_col[0]].unique().tolist() else: par_old = sc_ref.par(parname) par_new = sc_new.par(parname) sort_order = ['technology', 'commodity'] + year_list nodes = ['N/A'] if not par_new.empty and not rewrite: print('> Parameter "' + parname + '" already has data in new scenario' ' and left unchanged for node/s: {}.'.format(reg_list)) return if par_old.empty: print('> Parameter "' + parname + '" is empty in reference scenario' ' for node/s: {}!'.format(reg_list)) return # Sorting the data to make it ready for dataframe manupulation sort_order = [x for x in sort_order if x in idx_names] if sort_order: par_old = par_old.sort_values(sort_order).reset_index(drop=True) rem_idx = [x for x in par_old.columns if x not in sort_order] par_old = par_old.reindex(columns=sort_order + rem_idx) sc_new.check_out() if not par_new.empty and rewrite: print('> Parameter "' + parname + '" is being removed from new' ' scenario to be updated for node/s in {}...'.format(nodes)) sc_new.remove_par(parname, par_new) # A uniform "unit" for values in different years if 'unit' in par_old.columns and unit_check: par_old = unit_uniform(par_old) # --------------------------------------------------------------------------- # V.B) Adding new years to a parameter based on time-related indexes # V.B.1) Parameters with no time index if len(year_list) == 0: sc_new.add_par(parname, par_old) sc_new.commit(parname) print('> Parameter "' + parname + '" just copied to new scenario ' 'since has no time-related entries.') # V.B.2) Parameters with one index related to time elif len(year_list) == 1: year_col = year_list[0] df = par_old.copy() df_y = interpolate_1d(df, yrs_new, horizon, year_col, 'value', extrapolate, extrapol_neg, bound_extend) sc_new.add_par(parname, df_y) sc_new.commit(' ') print('> Parameter "{}" copied and new years' ' added for node/s: "{}".'.format(parname, nodes)) # V.B.3) Parameters with two indexes related to time (such as 'input') elif len(year_list) == 2: year_col = 'year_act' year_ref = [x for x in year_list if x != year_col][0] def f(x, i): return x[i + 1] - x[i] > x[i] - x[i - 1] year_diff = [x for x in horizon[1:-1] if f(horizon, horizon.index(x))] print('> Parameter "{}" is being added for node/s' ' "{}"...'.format(parname, nodes)) # Flagging technologies that have lifetime for adding new timesteps yr_list = [int(x) for x in set(sc_new.set('year') ) if int(x) > int(firstyear_new)] min_step = min(np.diff(sorted(yr_list))) par_tec = sc_new.par('technical_lifetime', {'node_loc': nodes}) # Technologies with lifetime bigger than minimum time interval par_tec = par_tec.loc[par_tec['value'] > min_step] df = par_old.copy() if parname == 'relation_activity': tec_list = [] else: tec_list = [t for t in (set(df['technology']) ) if t in list(set(par_tec['technology']))] df_y = interpolate_2d(df, yrs_new, horizon, year_ref, year_col, tec_list, par_tec, 'value', extrapolate, extrapol_neg, year_diff, bound_extend) sc_new.add_par(parname, df_y) sc_new.commit(parname) print('> Parameter "{}" copied and new years added' ' for node/s: "{}".'.format(parname, nodes)) # %% VI) Required functions def interpolate_1d(df, yrs_new, horizon, year_col, value_col='value', extrapolate=False, extrapol_neg=None, bound_extend=True): """Interpolate data with one year dimension. This function receives a parameter data as a dataframe, and adds new data for the additonal years by interpolation and extrapolation. Parameters ---------- df : pandas.DataFrame The dataframe of the parameter to which new years to be added. yrs_new : list of int New years to be added. horizon: list of int The horizon of the reference scenario. year_col : str The header of the column to which the new years should be added, e.g. `'year_act'`. value_col : str The header of the column containing values. extrapolate : bool Allow extrapolation when a new year is outside the parameter years. extrapol_neg : bool Allow negative values obtained by extrapolation. bound_extend : bool Allow extrapolation of bounds for new years """ horizon_new = sorted(horizon + yrs_new) idx = [x for x in df.columns if x not in [year_col, value_col]] if not df.empty: df2 = df.pivot_table(index=idx, columns=year_col, values=value_col) # To sort the new years smaller than the first year for # extrapolation (e.g. 2025 values are calculated first; then # values of 2015 based on 2020 and 2025) year_before = sorted([x for x in yrs_new if x < min(df2.columns )], reverse=True) if year_before and extrapolate: for y in year_before: yrs_new.insert(len(yrs_new), yrs_new.pop(yrs_new.index(y))) for yr in yrs_new: if yr > max(horizon): extrapol = True else: extrapol = extrapolate # a) If this new year greater than modeled years, do extrapolation if yr > max(df2.columns) and extrapol: if yr == horizon_new[horizon_new.index(max(df2.columns)) + 1]: year_pre = max([x for x in df2.columns if x < yr]) if len([x for x in df2.columns if x < yr]) >= 2: year_pp = max([x for x in df2.columns if x < year_pre]) df2[yr] = intpol(df2[year_pre], df2[year_pp], year_pre, year_pp, yr) if bound_extend: df2[yr] = df2[yr].fillna(df2[year_pre]) df2[yr][np.isinf(df2[year_pre])] = df2[year_pre] if not df2[yr].loc[(df2[yr] < 0) & (df2[year_pre] >= 0) ].empty and extrapol_neg: df2.loc[(df2[yr] < 0) & (df2[year_pre] >= 0), yr] = df2.loc[(df2[yr] < 0 ) & (df2[year_pre] >= 0), year_pre] * extrapol_neg else: df2[yr] = df2[year_pre] # b) If the new year is smaller than modeled years, extrapolate elif yr < min(df2.columns) and extrapol: year_next = min([x for x in df2.columns if x > yr]) # To make sure the new year is not two steps smaller cond = (year_next == horizon_new[horizon_new.index(yr) + 1]) if len([x for x in df2.columns if x > yr]) >= 2 and cond: year_nn = min([x for x in df2.columns if x > year_next]) df2[yr] = intpol(df2[year_next], df2[year_nn], year_next, year_nn, yr) df2[yr][np.isinf(df2[year_next])] = df2[year_next] if not df2[yr].loc[(df2[yr] < 0) & (df2[year_next] >= 0) ].empty and extrapol_neg: df2.loc[(df2[yr] < 0) & (df2[year_next] >= 0), yr ] = df2.loc[(df2[yr] < 0 ) & (df2[year_next] >= 0), year_next] * extrapol_neg elif bound_extend and cond: df2[yr] = df2[year_next] # c) Otherise, do intrapolation elif yr > min(df2.columns) and yr < max(df2.columns): year_pre = max([x for x in df2.columns if x < yr]) year_next = min([x for x in df2.columns if x > yr]) df2[yr] = intpol(df2[year_pre], df2[year_next], year_pre, year_next, yr) # Extrapolate for new years if the value exists for the # previous year but not for the next years # TODO: here is the place that should be changed if the # new year should go to the time step before the existing one if [x for x in df2.columns if x > year_next]: year_nn = min([x for x in df2.columns if x > year_next]) df2[yr] = df2[yr].fillna(intpol(df2[year_next], df2[year_nn], year_next, year_nn, yr)) if not df2[yr].loc[(df2[yr] < 0) & (df2[year_next] >= 0) ].empty and extrapol_neg: df2.loc[(df2[yr] < 0) & (df2[year_next] >= 0), yr ] = df2.loc[(df2[yr] < 0 ) & (df2[year_next] >= 0), year_next] * extrapol_neg if bound_extend: df2[yr] = df2[yr].fillna(df2[year_pre]) df2[yr][np.isinf(df2[year_pre])] = df2[year_pre] df2 = pd.melt(df2.reset_index(), id_vars=idx, value_vars=[x for x in df2.columns if x not in idx], var_name=year_col, value_name=value_col ).dropna(subset=[value_col]).reset_index(drop=True) df2 = df2.sort_values(idx).reset_index(drop=True) else: print('+++ WARNING: The submitted dataframe is empty, so returned' ' empty results!!! +++') df2 = df return df2 # %% VI.B) Interpolating parameters with two dimensions related to time def interpolate_2d(df, yrs_new, horizon, year_ref, year_col, tec_list, par_tec, value_col='value', extrapolate=False, extrapol_neg=None, year_diff=None, bound_extend=True): """Interpolate parameters with two dimensions related year. This function receives a dataframe that has 2 time-related columns (e.g., "input" or "relation_activity"), and adds new data for the additonal years in both time-related columns by interpolation and extrapolation. Parameters ---------- df : pandas.DataFrame The dataframe of the parameter to which new years to be added. yrs_new : list of int New years to be added. horizon: list of int The horizon of the reference scenario. year_ref : str The header of the first column to which the new years should be added, e.g. `'year_vtg'`. year_col : str The header of the column to which the new years should be added, e.g. `'year_act'`. tec_list : list of str List of technologies in the parameter ``technical_lifetime``. par_tec : pandas.DataFrame Parameter ``technical_lifetime``. value_col : str The header of the column containing values. extrapolate : bool Allow extrapolation when a new year is outside the parameter years. extrapol_neg : bool Allow negative values obtained by extrapolation. year_diff : list of int List of model years with different time intervals before and after them bound_extend : bool Allow extrapolation of bounds for new years based on one data point """ def idx_check(df1, df2): return df1.loc[df1.index.isin(df2.index)] if df.empty: return df print('+++ WARNING: The submitted dataframe is empty, so' ' returned empty results!!! +++') df_tec = df.loc[df['technology'].isin(tec_list)] idx = [x for x in df.columns if x not in [year_col, value_col]] df2 = df.pivot_table(index=idx, columns=year_col, values='value') df2_tec = df_tec.pivot_table(index=idx, columns=year_col, values='value') # ------------------------------------------------------------------------- # First, changing the time interval for the transition period # (e.g., year 2010 in old R11 model transits from 5 year to 10 year) horizon_new = sorted(horizon + [x for x in yrs_new if x not in horizon]) def f(x, i): return x[i + 1] - x[i] > x[i] - x[i - 1] yr_diff_new = [x for x in horizon_new[1:-1] if f(horizon_new, horizon_new.index(x))] # Generating duration_period_sum matrix for masking df_dur = pd.DataFrame(index=horizon_new[:-1], columns=horizon_new[1:]) for i in df_dur.index: for j in [x for x in df_dur.columns if x > i]: df_dur.loc[i, j] = j - i # Adding data for new transition year if yr_diff_new and tec_list and year_diff not in yr_diff_new: yrs = [x for x in horizon if x <= yr_diff_new[0]] year_next = min([x for x in df2.columns if x > yr_diff_new[0]]) df_yrs = slice_df(df2_tec, idx, year_ref, yrs, []) if yr_diff_new[0] in df2.columns: df_yrs = df_yrs.loc[~pd.isna(df_yrs[yr_diff_new[0]]), :] df_yrs = df_yrs.append(slice_df(df2_tec, idx, year_ref, [year_next], []), ignore_index=False).reset_index() df_yrs = df_yrs.sort_values(idx).set_index(idx) for yr in sorted([x for x in list(set(df_yrs.reset_index()[year_ref]) ) if x < year_next]): yr_next = min([x for x in horizon_new if x > yr]) d = slice_df(df_yrs, idx, year_ref, [yr], []) d_n = slice_df(df_yrs, idx, year_ref, [yr_next], yr) if d_n[year_next].loc[~pd.isna(d_n[year_next])].empty: if [x for x in horizon_new if x > yr_next]: yr_nn = min([x for x in horizon_new if x > yr_next]) else: yr_nn = yr_next d_n = slice_df(df_yrs, idx, year_ref, [yr_nn], yr) d_n = d_n.loc[d_n.index.isin(d.index), :] d = d.loc[d.index.isin(d_n.index), :] d[d.isnull() & d_n.notnull()] = d_n df2.loc[df2.index.isin(d.index), :] = d cond1 = (df_dur.index <= yr_diff_new[0]) cond2 = (df_dur.columns >= year_next) subt = yr_diff_new[0] - horizon_new[horizon_new.index(yr_diff_new[0] ) - 1] df_dur.loc[cond1, cond2] = df_dur.loc[cond1, cond2] - subt # ------------------------------------------------------------------------- # Second, adding year_act of new years if year_vtg is in existing years for yr in yrs_new: if yr > max(horizon): extrapol = True else: extrapol = extrapolate # a) If this new year is greater than modeled years, do extrapolation if yr > horizon_new[horizon_new.index(max(df2.columns))] and extrapol: year_pre = max([x for x in df2.columns if x < yr]) year_pp = max([x for x in df2.columns if x < year_pre]) df2[yr] = intpol(df2[year_pre], df2[year_pp], year_pre, year_pp, yr) df2[yr][np.isinf(df2[year_pre].shift(+1)) ] = df2[year_pre].shift(+1) df2[yr] = df2[yr].fillna(df2[year_pre]) j = horizon_new.index(yr) if yr - horizon_new[j - 1] >= horizon_new[j - 1 ] - horizon_new[j - 2]: df2[yr].loc[(pd.isna(df2[year_pre].shift(+1)) ) & (~pd.isna(df2[year_pp].shift(+1)))] = np.nan cond = (df2[yr] < 0) & (df2[year_pre].shift(+1) >= 0) if not df2[yr].loc[cond].empty and extrapol_neg: df2.loc[cond, yr] = df2.loc[cond, year_pre] * extrapol_neg # b) Otherise, do intrapolation elif yr > min(df2.columns) and yr < max(df2.columns): year_pre = max([x for x in df2.columns if x < yr]) year_next = min([x for x in df2.columns if x > yr]) df2[yr] = intpol(df2[year_pre], df2[year_next], year_pre, year_next, yr) df2_t = df2.loc[df2_tec.index, :].copy() # This part calculates the missing value if only the previous # timestep has a value (and not the next) if tec_list: cond = (pd.isna(df2_t[yr])) & (~pd.isna(df2_t[year_pre])) df2_t[yr].loc[cond] = intpol(df2_t[year_pre], df2_t[year_next].shift(-1), year_pre, year_next, yr) # Treating technologies with phase-out in model years if [x for x in df2.columns if x < year_pre]: year_pp = max([x for x in df2.columns if x < year_pre]) cond1 = (pd.isna(df2_t[yr])) & (~pd.isna(df2_t[year_pre])) cond2 = (pd.isna(df2_t[year_pre].shift(-1))) df2_t[yr].loc[cond1 & cond2 ] = intpol(df2_t[year_pre], df2_t[year_pp], year_pre, year_pp, yr) cond = (df2_t[yr] < 0) & (df2_t[year_pre] >= 0) if not df2_t[yr].loc[cond].empty and extrapol_neg: df2_t.loc[cond, yr] = df2_t.loc[cond, year_pre ] * extrapol_neg df2.loc[df2_tec.index, :] = df2_t df2[yr][np.isinf(df2[year_pre])] = df2[year_pre] df2 = df2.reindex(sorted(df2.columns), axis=1) # ------------------------------------------------------------------------- # Third, adding year_vtg of new years for yr in yrs_new: # a) If this new year is greater than modeled years, do extrapolation if yr > max(horizon): year_pre = horizon_new[horizon_new.index(yr) - 1] year_pp = horizon_new[horizon_new.index(yr) - 2] df_pre = slice_df(df2, idx, year_ref, [year_pre], yr) df_pp = slice_df(df2, idx, year_ref, [year_pp], yr) df_yr = intpol(df_pre, idx_check(df_pp, df_pre), year_pre, year_pp, yr) df_yr[np.isinf(df_pre)] = df_pre # For those technolofies with one value for each year df_yr.loc[
pd.isna(df_yr[yr])
pandas.isna
#!/usr/bin/env python from glob import glob import os import numpy as np import pandas as pd from natsort import natsorted def prepare_forex(asset, path): if not os.path.exists(path + asset + "/h5"): os.makedirs(path + asset + "/h5") def dateparse(date, time): return pd.to_datetime(date + time, format='%Y%m%d%H%M%S%f') def process_data(file): data = pd.read_csv(file, header=None, names=["Date", "Time", "Bid", "Ask"], index_col="datetime", parse_dates={'datetime': ['Date', 'Time']}, date_parser=dateparse) # Add the midquote data["Midquote"] = (data["Bid"] + data["Ask"]) / 2 data.drop(["Bid", "Ask"], axis=1, inplace=True) data = data.iloc[:, 0] # Shift the index such that trading time is from 0-24h idx_1 = data[:'2014-08-02'].index + pd.Timedelta('8h') idx_2 = data['2014-08-03':].index + pd.Timedelta('6h') data.index = idx_1.union(idx_2) # Change the first and the last timestamp def change_timestamp(x): if len(x) > 0: x[0] = x[0].replace(hour=0, minute=0, second=0, microsecond=0) x[-1] = x[-1].replace(hour=23, minute=59, second=59, microsecond=999999) return x new_idx = data.index.to_series().groupby(pd.TimeGrouper("1d")).apply(change_timestamp) data.index = new_idx # Save the data to the disk for day, data_day in data.groupby(pd.TimeGrouper("1d")): if data_day.size > 0: file = path + asset + "/h5/" + day.strftime("%Y-%m-%d") + ".h5" data_day.to_hdf(file, "table") # List all files and loop over them file_list = natsorted(glob(path + asset + "/raw/*")) for file in file_list: process_data(file) def prepare_nyse(asset, path): if not os.path.exists(path + asset + "/h5"): os.makedirs(path + asset + "/h5") def dateparse(date, time): time = float(time) time_s = int(time) f = time - time_s m, s = divmod(time_s, 60) h, m = divmod(m, 60) return pd.to_datetime(date + str(h).zfill(2) + str(m).zfill(2) + str(s).zfill(2) + ("%.6f" % f)[2:], format='%Y%m%d%H%M%S%f') # TODO: improve rounding of the fractional part def process_data(file): data = pd.read_csv(file, usecols=["Date", "Time", "Bid", "Ask"], index_col="datetime", parse_dates={'datetime': ['Date', 'Time']}, date_parser=dateparse) # Add the midquote data["Midquote"] = (data["Bid"] + data["Ask"]) / 2 data.drop(["Bid", "Ask"], axis=1, inplace=True) data = data.iloc[:, 0] # Shift the index such that trading time is from 0-6:30h data.index -= pd.to_timedelta("9.5h") # Change the first and the last timestamp def change_timestamp(x): if len(x) > 0: x[0] = x[0].replace(hour=0, minute=0, second=0, microsecond=0) x[-1] = x[-1].replace(hour=6, minute=30, second=0, microsecond=0) return x new_idx = data.index.to_series().groupby(pd.TimeGrouper("1d")).apply(change_timestamp) data.index = new_idx # Save the data to the disk for day, data_day in data.groupby(pd.TimeGrouper("1d")): if data_day.size > 0: file = path + asset + "/h5/" + day.strftime("%Y-%m-%d") + ".h5" data_day.to_hdf(file, "table") # List all loop over them file_list = natsorted(glob(path + asset + "/raw/**/" + asset + "_quotes*.txt", recursive=True)) for file in file_list: process_data(file) def remove_bad_days_forex(asset, path): file_list = glob(path + asset + "/" + "h5" + "/*") for file in file_list: print(file) year, month, day = os.path.basename(file).replace(".h5", "").split("-") # Kick Jan 1, Dec 25 if ((day == "01") and (month == "01")) or ((day == "25") and (month == "12")): os.remove(file) continue # Check whether the trading time is less than 22:30h data = pd.read_hdf(file, "table") check = data.index[-2] - data.index[1] < pd.to_timedelta("22.5h") if check: os.remove(file) def remove_bad_days_nyse(asset, path): file_list = pd.Series(glob(path + asset + "/" + "h5" + "/*")) ff = np.array([int(os.path.basename(f).replace(".h5", "").replace("-", "")) for f in file_list]) bad_days = np.array([20010608, 20010703, 20011123, 20011224, 20020705, 20020911, 20021129, 20021224, 20030703, 20031128, 20031224, 20031226, 20041126, 20051125, 20060703, 20061124, 20070703, 20071123, 20071224, 20080703, 20081128, 20081224, 20091127, 20091224, 20101126, 20111125, 20120703, 20121123, 20121224, 20130606, 20130703, 20131129, 20131224, 20140703, 20141128, 20141224, 20151127, 20151224, 20161125, 20170703, 20171124, 20180703, 20181123, 20181224, 20150128 ]) flag = np.isin(ff, bad_days) for file in file_list[flag]: os.remove(file) def create_index(asset_list, path, index_name): if not os.path.exists(path + index_name + "/h5"): os.makedirs(path + index_name + "/h5") file_list = [pd.Series(glob(path + asset + "/" + "h5" + "/*")) for asset in asset_list] file_list =
pd.concat(file_list)
pandas.concat
#!/usr/bin/env python3 from os.path import join as pjoin from os.path import isfile as os_isfile import numpy as np import pandas as pd from scipy.stats import linregress as stats_linregress from scipy.cluster import hierarchy as scipy_hierarchy from sklearn import decomposition as skl_decomposition from sklearn.model_selection import train_test_split as skl_train_test_split import sklearn.cluster as skl_cluster from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from matplotlib.ticker import AutoMinorLocator from helpyr import logger from helpyr import data_loading from helpyr import kwarg_checker from helpyr import figure_helpyr from data_wrangling.omnipickle_manager import OmnipickleManager import data_wrangling.global_settings as settings # For reference Qs_column_names = [ # Timing and meta data #'elapsed-time sec', <- Calculate this column later 'timestamp', 'missing ratio', 'vel', 'sd vel', 'number vel', 'exp_time', # Bedload transport masses (g) 'Bedload all', 'Bedload 0.5', 'Bedload 0.71', 'Bedload 1', 'Bedload 1.4', 'Bedload 2', 'Bedload 2.8', 'Bedload 4', 'Bedload 5.6', 'Bedload 8', 'Bedload 11.2', 'Bedload 16', 'Bedload 22', 'Bedload 32', 'Bedload 45', # Grain counts 'Count all', 'Count 0.5', 'Count 0.71', 'Count 1', 'Count 1.4', 'Count 2', 'Count 2.8', 'Count 4', 'Count 5.6', 'Count 8', 'Count 11.2', 'Count 16', 'Count 22', 'Count 32', 'Count 45', # Statistics 'D10', 'D16', 'D25', 'D50', 'D75', 'D84', 'D90', 'D95', 'Dmax' ] gsd_column_names = [ # Stats 'Sigmag', 'Dg', 'La', 'D90', 'D50', 'D10', 'Fsx', # Grain Size Fractions (counts) '0.5', '0.71', '1', '1.4', '2', '2.8', '4', '5.6', '8', '11.3', '16', '22.6', '32', # Scan name (ex: 3B-f75L-t60-8m ) 'scan_name', ] ## Saved PCA Data will have the following format # pca_dict = { # 'evectors' : evectors or {exp_code : evectors}, # 'evalues' : evalues or {exp_code : evalues}, # 'PCs' : PCs or {exp_code : PCs}, # 'keep_modes' : keep_modes or {exp_code : keep_modes}, # suggested k # 'is_concat' : is_concat, # } class EOSC510Project: def __init__(self, debug_mode=False): # Start up logger self.log_filepath = f"{settings.log_dir}/eosc510_project.txt" self.logger = logger.Logger(self.log_filepath, default_verbose=True) self.logger.begin_output("EOSC 510 project") # Reload omnimanager self.omnimanager = OmnipickleManager(self.logger) self.omnimanager.restore() # Initialize variables self.pca_data = None self.rolling_missing_tolerance = 0.8 self.p1_links = {} #{exp_code : p1_agglom_links <- note: never changes # Setup plotting variables self.stable_subplots = figure_helpyr.StableSubplots() self.figure_saver = figure_helpyr.FigureSaver( figure_extension='png', logger = self.logger, debug_mode = debug_mode, figure_root_dir = settings.figure_destination, figure_sub_dir = 'eosc510', ) self.save_figure = self.figure_saver.save_figure # for older uses def load_raw_data(self): # Reload lighttable (Qs) data from files into omnipickle reload_kwargs = { 'add_feed' : True, #'cols_to_keep' : } self.omnimanager.reload_Qs_data(**reload_kwargs) # Load all Qs data into a local variable self.Qs_data = {} for exp_code in self.omnimanager.experiments.keys(): experiment = self.omnimanager.experiments[exp_code] self.Qs_data[exp_code] = experiment.accumulated_data self.clean_Qs_data() # Load surface gsd data #self.omnimanager.reload_gsd_data() def clean_Qs_data(self): self.logger.write_blankline() self.outliers = {} self.prominence = {} self.p_window = 5 # Note, this includes the center self.p_tolerance = 250 self.logger.write(f"Note: Outliers are currently calculated as " +\ f"any point +-{self.p_tolerance} g/s from the average " +\ f"of the neighboring {self.p_window-1} nodes (prominence)") for exp_code in self.Qs_data.keys(): #for exp_code in ['1A']: self.logger.write(f"Cleaning {exp_code}") experiment = self.omnimanager.experiments[exp_code] raw_pd_data = self.Qs_data[exp_code] bedload_all_pd = raw_pd_data['Bedload all'] exp_time_hrs = raw_pd_data['exp_time_hrs'].values # Find prominence # Measure of how different the target node is from the average of # the adjacent cells. I can't find a rolling window type that # excludes the center node (kinda like image processing kernels # can) so I can average only the adjacent nodes, hence the more # complicated prominence equation. p_roller = bedload_all_pd.rolling( self.p_window, min_periods=1, center=True) p_sum = p_roller.sum() prominence = \ (1 + 1/(self.p_window-1)) * bedload_all_pd - \ p_sum / (self.p_window - 1) # Identify outliers very_pos = prominence > self.p_tolerance very_neg = prominence < -self.p_tolerance is_outlier = very_pos | very_neg outliers_idx = np.where(is_outlier)[0] # Set outliers to NaN #outliers = bedload_all_pd[is_outlier].copy() #bedload_all_pd.loc[is_outlier] = np.NaN # ## Some debugging plots #plt.figure() #plt.scatter(exp_time_hrs, bedload_all_pd, color='b') #plt.scatter(exp_time_hrs[is_outlier], outliers, color='r') #plt.title(f"bedload all {exp_code}") #plt.figure() #plt.scatter(exp_time_hrs, prominence) #plt.hlines([-250, 250], 0, 8) #plt.title(f"prominence {exp_code}") #plt.show() #assert(False) #if False: # Remove outliers # Note this changes self.Qs_data bedload_columns = [ 'Bedload all', 'Bedload 0.5', 'Bedload 0.71', 'Bedload 1', 'Bedload 1.4', 'Bedload 2', 'Bedload 2.8', 'Bedload 4', 'Bedload 5.6', 'Bedload 8', 'Bedload 11.2', 'Bedload 16', 'Bedload 22', 'Bedload 32', 'Bedload 45', ] #outliers_bedload = bedload_all_pd.iloc[outliers_idx].copy().values # Save data self.prominence[exp_code] = prominence.copy() self.prominence[exp_code].index = exp_time_hrs outliers = bedload_all_pd[is_outlier].copy() outliers.index = exp_time_hrs[is_outlier] #outliers.reset_index(drop=True, inplace=True) self.outliers[exp_code] = outliers col_idx = np.where(np.in1d(raw_pd_data.columns, bedload_columns))[0] raw_pd_data.iloc[outliers_idx, col_idx] = np.nan def _plot_outliers_prominence(self, save_plots=True): # Plots the outliers and prominance for each experiment. Assumes # clean_Qs_data has been called and that it uses the prominence method self.logger.write_blankline() self.logger.write("Plotting outliers") fig, axs2D = plt.subplots(nrows=4, ncols=4, sharex=True, figsize=(12,8), gridspec_kw={'height_ratios' : [2,1.5,2,1.5],}, ) axs = axs2D.flatten() exp_codes = sorted(self.Qs_data.keys()) p_tolerance = self.p_tolerance d_min, d_max = [0, 1] p_min, p_max = [-2*p_tolerance, 2*p_tolerance] data_color = '#1f77b4' # faded blue outlier_color = 'r' for ax_id, exp_code in enumerate(exp_codes): # Get the right data and prominence axes ax_id += 4 if ax_id > 3 else 0 d_ax, p_ax = axs[ax_id], axs[ax_id + 4] # Get the data raw_pd_data = self.Qs_data[exp_code] outliers = self.outliers[exp_code] prominence = self.prominence[exp_code] # Plot the bedload data that will be kept bedload_all = raw_pd_data['Bedload all'].values exp_time_hrs = raw_pd_data['exp_time_hrs'].values d_ax.scatter(exp_time_hrs, bedload_all, label='Keep', marker='.', c=data_color) # Plot the outlier data that will not be kept outlier_bedload = outliers.values outlier_hrs = outliers.index d_ax.scatter(outlier_hrs, outlier_bedload, label='Outlier', marker='o', color=outlier_color, facecolors='none') # Plot the prominence values is_outlier = prominence.index.isin(outlier_hrs) is_keeper = np.logical_not(is_outlier) p_ax.scatter(prominence.index[is_keeper], prominence.values[is_keeper], label='Keep', marker='.', c=data_color) p_ax.scatter(prominence.index[is_outlier], prominence.values[is_outlier], label='Outlier', marker='o', color=outlier_color, facecolors='none') p_ax.hlines([-p_tolerance, p_tolerance], 0, 8) # Get the data and prominence plot limits d_ylim = d_ax.get_ylim() d_min = d_min if d_min < d_ylim[0] else d_ylim[0] d_max = d_max if d_max > d_ylim[1] else d_ylim[1] p_ylim = p_ax.get_ylim() p_min = p_min if p_min < p_ylim[0] else p_ylim[0] p_max = p_max if p_max > p_ylim[1] else p_ylim[1] for ax_id, exp_code in enumerate(exp_codes): ax_id += 4 if ax_id > 3 else 0 # Fix the y axis limits so like plots share the y limits axs[ax_id].set_ylim((d_min, d_max)) axs[ax_id + 4].set_ylim((p_min, p_max)) axs[ax_id + 4].yaxis.set_minor_locator(AutoMinorLocator()) # Format ticks and add exp_code text for ax in (axs[ax_id], axs[ax_id+4]): ax.tick_params( bottom=True, top=True, left=True, right=True, which='both', labelbottom=False, labelleft=False, ) ax.text(0.95, 0.95, exp_code, va='top', ha='right', bbox={ 'fill' : False, 'visible' : False, 'pad' : 0}, transform=ax.transAxes) # Label fontsize label_fontsize = 25 # Format left column for row in [0,1,2,3]: label_rotation = 'vertical' if row in [0,2]: axs2D[row,0].tick_params(labelleft=True,) #axs2D[row,0].set_ylabel(f"Bedload (g/s)") # Set common y label fig.text(0.001, 0.625, f"Bedload (g/s)", va='center', usetex=True, fontsize=label_fontsize, rotation=label_rotation) elif row in [1,3]: axs2D[row,3].tick_params(labelright=True,) #axs2D[row,3].set_ylabel(f"Prominence (g/s)") # Set common y label fig.text(0.965, 0.375, f"Prominence (g/s)", va='center', usetex=True, fontsize=label_fontsize, rotation=label_rotation) # Format bottom row for col in [0,1,2,3]: axs2D[3,col].tick_params(labelbottom=True) #axs2D[3,col].set_xlabel(f"Experiment time (hrs)") # Set common x label fig.text(0.5, 0.01, f"Experiment time (hrs)", ha='center', usetex=True, fontsize=label_fontsize) fig.tight_layout() fig.subplots_adjust(top=0.95, left=0.065, bottom=0.075, right=0.925) # Add legend to one of the subplots #axs2D[0,0].legend(loc = 'upper right', bbox_to_anchor = (0.99, 0.85), # handletextpad = 0.1, borderpad = 0.1) axs2D[0,3].legend(loc = 'upper left', bbox_to_anchor = (1.01, 0.85), handletextpad = 0.1, borderpad = 0.1) if save_plots: self.save_figure(fig_name_parts=[f"outliers_prominence_all_exp"]) plt.show() def _plot_outliers_mean(self, exp_code, time, bedload, o_time, o_bedload, threshold, std_scale, rrmean, rrstd, crmean, crstd): ## This function is outdated. plt.figure() plt.title(f"{exp_code} Bedload all") plt.scatter(time, bedload, label='Keep') plt.scatter(o_time, o_bedload, label='Remove') plt.xlim((-1, 10)) xlim = plt.xlim() plt.ylim((0, 900)) plt.yticks(np.linspace(0, 900, 10)) plt.hlines([threshold], xlim[0], xlim[1], linewidth=0.5, label='Threshold') plt.plot(time, rrmean, c='r', linewidth=0.5, label='Old moving mean') plt.plot(time, rrmean + std_scale * rrstd, c='orange', linewidth=0.5, label=rf"Old {std_scale}$\sigma$") #plt.plot(time, rrmean - std_scale * rrstd, c='b', linewidth=0.5) plt.plot(time, crmean, c='g', linewidth=0.5, label='New moving mean') plt.plot(time, crmean + std_scale * crstd, c='c', linewidth=0.5, label=rf"New {std_scale}$\sigma$") #plt.plot(time, crmean - std_scale * crstd, c='b', linewidth=0.5) plt.legend() if save_plots: self.save_figure(fig_name_parts=[f"outliers_{exp_code}"]) def analyze_pca_individually(self, **kwargs): """ Perform PCA on each experiment separately. """ check = kwarg_checker.get_check_kwarg_fu(kwargs) save_output = check('save_output', default=False) make_plots = check('make_plots', default=True) self.logger.write_blankline() pca_output = { 'evectors' : {}, 'evalues' : {}, 'PCs' : {}, 'keep_modes' : {}, 'is_concat' : False, } for exp_code in self.Qs_data.keys(): output = self.logger.run_indented_function( self._analyze_pca_experiment, kwargs={ 'exp_code' : exp_code, 'save_output' : save_output, 'make_plots' : make_plots, 'save_plots' : False, }, before_msg=f"Analyzing {exp_code}", after_msg="") if save_output: pca_output['evectors'][exp_code] = output['evectors'] pca_output['evalues'][exp_code] = output['evalues'] pca_output['PCs'][exp_code] = output['PCs'] pca_output['keep_modes'][exp_code] = output['keep_modes'] if save_output: file_name = "pca-output_individual-data" self.save_pca_output(file_name, pca_output) def analyze_pca_all(self, **kwargs): """ Perform PCA on all experiments combined. """ check = kwarg_checker.get_check_kwarg_fu(kwargs) save_output = check('save_output', default=False) make_plots = check('make_plots', default=True) save_plots = check('save_plots', default=True) self.logger.write_blankline() frames = [] #frames = self.Qs_data.values() for i, exp_code in enumerate(sorted(self.Qs_data.keys())): data = self.Qs_data[exp_code] data['exp_time_hrs'] += 8*i frames.append(data) all_data = pd.concat(frames) self.logger.run_indented_function( self._analyze_pca_all, kwargs={'raw_pd_data' : all_data, 'save_output' : save_output, 'make_plots' : make_plots, 'save_plots' : save_plots}, before_msg=f"Analyzing all data", after_msg="") def _analyze_pca_experiment(self, exp_code, **kwargs): check = kwarg_checker.get_check_kwarg_fu(kwargs) save_output = check('save_output', default=False) make_plots = check('make_plots', default=True) save_plots = check('save_plots', default=False) experiment = self.omnimanager.experiments[exp_code] raw_pd_data = self.Qs_data[exp_code] fig_name_parts = [exp_code] extra_cols = self.prep_raw_data(raw_pd_data) exp_time_hrs = extra_cols['exp_time_hrs'] grain_sizes = extra_cols['grain_sizes'] bedload_all = extra_cols['bedload_all'] pca_output = self.do_pca(raw_pd_data) model = pca_output['model'] PCs = pca_output['PCs'] evectors = pca_output['evectors'] evalues = pca_output['evalues'] data_stddev = pca_output['data_stddev'] data_mean = pca_output['data_mean'] pca_codes = pca_output.pop('pca_codes') fig_name_parts += pca_codes self._plot_eigenvalues( exp_code = exp_code, evalues = evalues, fig_name_parts = fig_name_parts, save_plots=save_plots) # Record the number of modes that sum to over 90% or 95% of variance # Based on the eigenvalues plots self.keep_modes_95 = { '1A' : 8, '1B' : 7, '2A' : 8, '2B' : 8, '3A' : 7, '3B' : 8, '4A' : 8, '5A' : 8, } self.keep_modes_90 = { '1A' : 7, '1B' : 6, '2A' : 6, '2B' : 7, '3A' : 6, '3B' : 6, '4A' : 6, '5A' : 7, } var_threshold = 90 if var_threshold == 95: keep_modes_dict = self.keep_modes_95 elif var_threshold == 90: keep_modes_dict = self.keep_modes_90 if exp_code in keep_modes_dict: keep_modes = keep_modes_dict[exp_code] explained = np.sum(evalues[0:keep_modes]) self.logger.write(f"Keeping {keep_modes} modes ({explained:0.2%} of variance)") fig_name_parts_k = [f"{var_threshold}p-k{keep_modes}"] + fig_name_parts else: plt.show() return if make_plots: # Plot PCA variables self._plot_PCs( exp_code = exp_code, exp_time_hrs = exp_time_hrs, PCs = PCs, keep_modes = keep_modes, fig_name_parts = fig_name_parts_k, ylim=(-25, 50), save_plots=save_plots) self._plot_PCs( exp_code = exp_code, exp_time_hrs = exp_time_hrs, PCs = PCs, keep_modes = keep_modes, fig_name_parts = fig_name_parts_k, save_plots=save_plots) self._plot_PCs_comparisons( exp_code = exp_code, PCs = PCs, keep_modes = keep_modes, fig_name_parts = fig_name_parts_k, save_plots=save_plots) self._plot_eigenvectors( exp_code = exp_code, grain_sizes = grain_sizes, evectors = evectors, keep_modes = keep_modes, fig_name_parts = fig_name_parts_k, save_plots=save_plots) # Reconstruct recon_k = PCs[:, 0:keep_modes] @ evectors[0:keep_modes, :] recon_1 = np.outer(PCs[:, 0], evectors[0, :]) # Rescale rescale_fu = lambda recon_data: recon_data * data_stddev + data_mean bedload_all_fu = lambda data: np.sum(data, axis=1) recon_bedload_all_k = bedload_all_fu(rescale_fu(recon_k)) recon_bedload_all_1 = bedload_all_fu(rescale_fu(recon_1)) if make_plots: # Plot reconstructions recon_name = "bedload all" recon_fig_name = recon_name.replace(' ', '-') fig_name_parts_k = [recon_fig_name] + fig_name_parts_k self._plot_single_reconstruction( exp_code = exp_code, name = recon_name, k = keep_modes, time = exp_time_hrs, original = bedload_all, recon = recon_bedload_all_k, fig_name_parts=fig_name_parts_k, save_plots=save_plots) self._plot_reconstruction_fit_single( exp_code = exp_code, name = recon_name, k = keep_modes, original = bedload_all, recon = recon_bedload_all_k, fig_name_parts=fig_name_parts_k, save_plots=save_plots) fig_name_parts_1 = [recon_fig_name, f"k1"] + fig_name_parts self._plot_single_reconstruction( exp_code = exp_code, name = recon_name, k = 1, time = exp_time_hrs, original = bedload_all, recon = recon_bedload_all_1, fig_name_parts=fig_name_parts_1, save_plots=save_plots) self._plot_reconstruction_fit_single( exp_code = exp_code, name = recon_name, k = 1, original = bedload_all, recon = recon_bedload_all_1, fig_name_parts=fig_name_parts_1, save_plots=save_plots) #plt.show() plt.close('all') if save_output: # Save the pca output for other use. pca_output = { 'evectors' : evectors, 'evalues' : evalues, 'PCs' : PCs, 'keep_modes' : keep_modes, } return pca_output else: return None def _analyze_pca_all(self, raw_pd_data, **kwargs): check = kwarg_checker.get_check_kwarg_fu(kwargs) save_output = check('save_output', default=False) make_plots = check('make_plots', default=True) save_plots = check('save_plots', default=True) exp_code = 'All data' # Hacky solution fig_name_parts = ['all-Qs'] extra_cols = self.prep_raw_data(raw_pd_data) exp_time_hrs = extra_cols['exp_time_hrs'] grain_sizes = extra_cols['grain_sizes'] bedload_all = extra_cols['bedload_all'] pca_output = self.do_pca(raw_pd_data) model = pca_output['model'] PCs = pca_output['PCs'] evectors = pca_output['evectors'] evalues = pca_output['evalues'] data_stddev = pca_output['data_stddev'] data_mean = pca_output['data_mean'] pca_codes = pca_output.pop('pca_codes') fig_name_parts += pca_codes if make_plots: self._plot_eigenvalues( exp_code = exp_code, evalues = evalues, fig_name_parts = fig_name_parts, save_plots=save_plots) # Record the number of modes that sum to over 90% or 95% of variance # Based on the eigenvalues plots self.keep_modes_all_k3 = 3 self.keep_modes_all_90 = 7 self.keep_modes_all_95 = 8 var_threshold = 3 if var_threshold == 95: keep_modes = self.keep_modes_all_95 elif var_threshold == 90: keep_modes = self.keep_modes_all_90 elif var_threshold == 3: keep_modes = self.keep_modes_all_k3 if keep_modes is not None: explained = np.sum(evalues[0:keep_modes]) self.logger.write(f"Keeping {keep_modes} modes ({explained:0.2%} of variance)") fig_name_parts_k = [f"{var_threshold}p-k{keep_modes}"] + fig_name_parts else: if make_plots: plt.show() else: self.logger.write("No modes specified. Aborting.") return if make_plots: # Plot PCA variables self._plot_PCs( exp_code = exp_code, exp_time_hrs = exp_time_hrs, PCs = PCs, keep_modes = keep_modes, fig_name_parts = fig_name_parts_k, ylim=(-25, 50), save_plots=save_plots) #self._plot_PCs_comparisons( # exp_code = exp_code, # PCs = PCs, # keep_modes = keep_modes, # fig_name_parts = fig_name_parts_k, # save_plots=save_plots) self._plot_eigenvectors( exp_code = exp_code, grain_sizes = grain_sizes, evectors = evectors, keep_modes = keep_modes, fig_name_parts = fig_name_parts_k, save_plots=save_plots) # Reconstruct recon_k = PCs[:, 0:keep_modes] @ evectors[0:keep_modes, :] recon_1 = np.outer(PCs[:, 0], evectors[0, :]) # Rescale rescale_fu = lambda recon_data: recon_data * data_stddev + data_mean bedload_all_fu = lambda data: np.sum(data, axis=1) recon_bedload_all_k = bedload_all_fu(rescale_fu(recon_k)) recon_bedload_all_1 = bedload_all_fu(rescale_fu(recon_1)) if make_plots: # Plot reconstructions recon_name = "bedload all" recon_fig_name = recon_name.replace(' ', '-') fig_name_parts_k = [recon_fig_name] + fig_name_parts_k self._plot_single_reconstruction( exp_code = exp_code, name = recon_name, k = keep_modes, time = exp_time_hrs, original = bedload_all, recon = recon_bedload_all_k, fig_name_parts=fig_name_parts_k, save_plots=save_plots) self._plot_reconstruction_fit_single( exp_code = exp_code, name = recon_name, k = keep_modes, original = bedload_all, recon = recon_bedload_all_k, fig_name_parts=fig_name_parts_k, save_plots=save_plots) fig_name_parts_1 = [recon_fig_name, f"k1"] + fig_name_parts #self._plot_single_reconstruction( # exp_code = exp_code, # name = recon_name, # k = 1, # time = exp_time_hrs, # original = bedload_all, # recon = recon_bedload_all_1, # fig_name_parts=fig_name_parts_1, # save_plots=save_plots) #self._plot_reconstruction_fit_single( # exp_code = exp_code, # name = recon_name, # k = 1, # original = bedload_all, # recon = recon_bedload_all_1, # fig_name_parts=fig_name_parts_1, # save_plots=save_plots) plt.show() plt.close('all') if save_output: # Save the pca output for other use. pca_output = { 'evectors' : evectors, 'evalues' : evalues, 'PCs' : PCs, 'keep_modes' : keep_modes, 'is_concat' : True, } file_name = "pca-output_all-data" self.save_pca_output(file_name, pca_output) def do_pca(self, raw_gsd_data, normalize=False, standardize=True): # raw_gsd_data is dataframe of only grain size classes over time. # normalize is whether distributions should be normalized by distr. sum # standardize is whether GS classes should be standardized over time # Get numpy array for raw data raw_data = raw_gsd_data.values #raw_data = np.random.random(raw_data.shape) # Normalize distributions by mass moved # Want to compare shapes, not magnitudes of distributions ? if normalize: norm_data = raw_data / np.sum(raw_data, axis=1)[:, None] else: norm_data = raw_data # Get mean and std data_stddev = np.nanstd(norm_data, axis=0) data_mean = np.nanmean(norm_data, axis=0) # Standardize the data # Temporarily convert data_stddev == 0 to 1 for the division if standardize: all_zeros = [data_stddev == 0] data_stddev[tuple(all_zeros)] = 1 std_data = (norm_data - data_mean) / data_stddev data_stddev[tuple(all_zeros)] = 0 else: std_data = norm_data # Split into training and testing data #train_data, test_data = skl_train_test_split(std_data) train_data = std_data # Perform the PCA model = skl_decomposition.PCA() PCs = model.fit_transform(train_data) evectors = model.components_ # MODES ARE IN ROWS!!! evalues = model.explained_variance_ratio_ #tested_output = model.transform(test_data) #pca_outputs[exp_code] = model #pca_inputs[exp_code] = std_data self.logger.write([ f"Shape of input data {std_data.shape}", f"Evectors shape {evectors.shape}", f"Evalues shape {evalues.shape}", f"PCs shape {PCs.shape}"] ) std_str = 'std' if standardize else 'nostd' norm_str = 'norm-distr' if normalize else 'nonnorm-distr' pca_codes = [std_str, norm_str] pca_output = { 'model' : model, 'PCs' : PCs, 'evectors' : evectors, 'evalues' : evalues, 'data_stddev' : data_stddev, 'data_mean' : data_mean, 'pca_codes' : pca_codes, } return pca_output def prep_raw_data(self, raw_pd_data): # Drop Nan rows raw_pd_data.dropna(axis=0, inplace=True) # Pull out columns of interest extra_cols = { 'bedload_all' : raw_pd_data.pop('Bedload all').values, 'exp_time' : raw_pd_data.pop('exp_time').values, 'exp_time_hrs' : raw_pd_data.pop('exp_time_hrs').values, 'discharge' : raw_pd_data.pop('discharge').values, 'feed' : raw_pd_data.pop('feed').values, } # Drop columns we don't care about drop_cols = ['timestamp', 'missing ratio', 'vel', 'sd vel', 'number vel', 'Count all', 'Count 0.5', 'Count 0.71', 'Count 1', 'Count 1.4', 'Count 2', 'Count 2.8', 'Count 4', 'Count 5.6', 'Count 8', 'Count 11.2', 'Count 16', 'Count 22', 'Count 32', 'Count 45', 'D10', 'D16', 'D25', 'D50', 'D75', 'D84', 'D90', 'D95', 'Dmax',] raw_pd_data.drop(columns=drop_cols, inplace=True) # Get grain sizes extra_cols['grain_sizes'] = np.array([ float(s.split()[1]) for s in raw_pd_data.columns]) return extra_cols def save_pca_output(self, name, pca_output): source_dir = settings.pca_pickle_dir destination_dir = source_dir loader = data_loading.DataLoader(source_dir, destination_dir, self.logger) ## Saved PCA Data will have the following format # pca_dict = { # 'evectors' : evectors or {exp_code : evectors}, # 'evalues' : evalues or {exp_code : evalues}, # 'PCs' : PCs or {exp_code : PCs}, # 'keep_modes' : keep_modes or {exp_code : keep_modes}, # suggested k # 'is_concat' : is_conca # } loader.produce_pickles({name : pca_output}, overwrite=True) ## Plotting functions def _plot_reconstruction_fit_single(self, **kwargs): check = kwarg_checker.get_check_kwarg_fu(kwargs) exp_code = check('exp_code', required=True) name = check('name', required=True) k = check('k', required=True) original = check('original', required=True) recon = check('recon', required=True) fig_name_parts = check('fig_name_parts', required=True) save_plots = check('save_plots', default=True) # Do linear regression to get r2 m, b, r, p, stderr = stats_linregress(recon, original) # Plot it plt.figure() plt.title(rf"{exp_code} Calibration plot for {name} (k={k})") plt.scatter(recon, original) plt.xlabel("Reconstruction") plt.ylabel("Observed") plt.gca().set_aspect('equal') # Get limit info xlim = plt.xlim() ylim = plt.ylim() limits = list(zip(xlim, ylim)) min = np.max(limits[0]) max = np.min(limits[1]) # Plot 1:1 line plt.plot([min, max], [min, max], c='k', label='1 to 1', linewidth=1) # Plot regression line x = np.linspace(min, max, 10) plt.plot(x, m*np.array(x) + b, c='r', label=rf"Regression $r^2$={r**2:0.3f}", linestyle='--', linewidth=1) plt.xlim(xlim) plt.ylim(ylim) plt.legend() if save_plots: self.save_figure(fig_name_parts=[f"recon_fit"] + fig_name_parts) def _plot_single_reconstruction(self, **kwargs): check = kwarg_checker.get_check_kwarg_fu(kwargs) exp_code = check('exp_code', required=True) name = check('name', required=True) k = check('k', required=True) time = check('time', required=True) original = check('original', required=True) recon = check('recon', required=True) fig_name_parts = check('fig_name_parts', required=True) save_plots = check('save_plots', default=True) # Plot it plt.figure() plt.title(f"{exp_code} Reconstructed {name} (k={k})") plt.plot(time, original, label='Original', c='b', linewidth=0.25) plt.plot(time, recon, label='Reconstructed', c='orange', linewidth=0.25) # Find moving mean window = 400 tolerance = self.rolling_missing_tolerance orig_roller =
pd.DataFrame(original)
pandas.DataFrame
#!/usr/bin/env python # coding=utf-8 # vim: set filetype=python: from __future__ import print_function from __future__ import absolute_import from __future__ import division import os import posixpath import sys import math import datetime import string from functools import wraps import traceback import xlrd3 as xlrd import openpyxl import unicodecsv as csv from math import log10, floor from pandas.api.types import is_string_dtype import pandas as pd import numpy as np import six import six.moves import orjson as json from plaidcloud.rpc import utc from plaidcloud.rpc.connection.jsonrpc import SimpleRPC from plaidcloud.rpc.rpc_connect import Connect from plaidcloud.utilities.query import Connection, Table from plaidcloud.utilities import data_helpers as dh __author__ = '<NAME>' __maintainer__ = '<NAME> <<EMAIL>>' __copyright__ = '© Copyright 2013-2021, Tartan Solutions, Inc' __license__ = 'Apache 2.0' CSV_TYPE_DELIMITER = '::' class ContainerLogger(object): def info(self, msg): print(msg, file=sys.stderr) def debug(self, msg): self.info(msg) def exception(self, msg=None): print(traceback.format_exc(), file=sys.stderr) if msg is not None: print(msg, file=sys.stderr) logger = ContainerLogger() def sql_from_dtype(dtype): """Returns a sql datatype given a pandas datatype Args: dtype (str): The pandas datatype to convert Returns: str: the equivalent SQL datatype Examples: >>> sql_from_dtype('bool') 'boolean' >>> sql_from_dtype('float64') 'numeric' >>> sql_from_dtype('number') 'numeric' >>> sql_from_dtype('varchar(123)') 'text' >>> sql_from_dtype('char(3)') 'text' >>> sql_from_dtype('xml') 'text' >>> sql_from_dtype('bytea') 'largebinary' """ mapping = { 'bool': 'boolean', 'boolean': 'boolean', 's8': 'text', 's16': 'text', 's32': 'text', 's64': 'text', 's128': 'text', 's256': 'text', 'object': 'text', 's512': 'text', 's1024': 'text', 'text': 'text', 'string': 'text', 'int8': 'smallint', # 2 bytes 'int16': 'integer', 'smallint': 'smallint', 'int32': 'integer', # 4 bytes 'integer': 'integer', 'int64': 'bigint', # 8 bytes 'bigint': 'bigint', 'float8': 'numeric', 'float16': 'numeric', # variable but ensures precision 'float32': 'numeric', # variable but ensures precision 'float64': 'numeric', # variable but ensures precision 'numeric': 'numeric', 'serial': 'serial', 'bigserial': 'bigserial', 'datetime64[s]': 'timestamp', # This may have to cover all datettimes 'datetime64[d]': 'timestamp', 'datetime64[ns]': 'timestamp', 'timestamp': 'timestamp', 'timestamp without time zone': 'timestamp', 'timedelta64[s]': 'interval', # This may have to cover all timedeltas 'timedelta64[d]': 'interval', 'timedelta64[ns]': 'interval', 'interval': 'interval', 'date': 'date', 'time': 'time', 'binary': 'largebinary', 'bytea': 'largebinary', 'largebinary': 'largebinary', 'xml': 'text', 'uuid': 'text', 'money': 'numeric', 'real': 'numeric', 'json': 'text', 'cidr': 'text', 'inet': 'text', 'macaddr': 'text', } dtype = str(dtype).lower() if dtype.startswith('num'): dtype = 'numeric' elif 'char' in dtype: dtype = 'text' return mapping[dtype] def save_typed_psv(df, outfile, sep='|', **kwargs): """Saves a typed psv, from a pandas dataframe. Types are analyze compatible sql types, written in the header, like {column_name}::{column_type}, ... Args: df (`pandas.DataFrame`): The dataframe to create the psv from outfile (file object or str): The path to save the output file to sep (str, optional): The separator to use in the output file """ # ADT2017: _write_copy_from did something special with datetimes, but I'm # not sure it's necessary, so I'm leaving it out. #TODO: for now we just ignore extra kwargs - we accept them to make it a #little easier to convert old to_csvs and read_csvs. In the future, we #should probably pass as many of them as possible on to to_csv/read_ccsv - #the only issue is we have to make sure the header stays consistent. def cleaned(name): return six.text_type(name).replace(CSV_TYPE_DELIMITER, '') column_names = [cleaned(n) for n in list(df)] column_types = [sql_from_dtype(d) for d in df.dtypes] header = [ CSV_TYPE_DELIMITER.join((name, sqltype)) for name, sqltype in six.moves.zip(column_names, column_types) ] df.to_csv(outfile, header=header, index=False, sep=sep) def list_of_dicts_to_typed_psv(lod, outfile, types, fieldnames=None, sep='|'): """ Saves a list of dicts as a typed psv. Needs a dict of sql types. If provided, fieldnames will specify the column order. Args: lod (:type:`list` of :type:`dict`): The list of dicts containing the data to use to create the psv outfile (str): The path to save the output file to, including file name types (dict): a dict with column names as the keys and column datatypes as the values fieldnames (:type:`list` of :type:`str`, optional): A list of the field names. If none is provided, defaults to the keys in `types` sep (str): The separator to use in the output file """ def cleaned(name): return six.text_type(name).replace(CSV_TYPE_DELIMITER, '') header = { name: CSV_TYPE_DELIMITER.join((cleaned(name), sqltype)) for name, sqltype in types.items() } if fieldnames is None: # Caller doesn't care about the order fieldnames = list(types.keys()) if isinstance(outfile, six.string_types): buf = open(outfile, 'wb') else: buf = outfile try: writer = csv.DictWriter(buf, fieldnames=fieldnames, delimiter=sep) writer.writerow(header) # It's not just the keys, so we're not using writeheader for row in lod: writer.writerow(row) finally: if isinstance(outfile, six.string_types): buf.close() #Otherwise leave it open, since this function didn't open it. def get_project_variables(token, uri, project_id): """It opens a connection to Analyze and then gets vars for a given project Args: token (str): oAuth token to pass into uri (str): Typically https://ci.plaidcloud.com/json-rpc/, https://plaidcloud.com/json-rpc/ or local dev machine equiv. Would typically originate from a local config. project_id (str): Id of the Project for which to grab the variables Returns: dict: Variables as key/values """ rpc = SimpleRPC(token, uri, verify_ssl=True) try: project_vars = rpc.analyze.project.variables(project_id=project_id) except: project_vars = rpc.analyze.project.variables(project=project_id) return {pv['id']: pv['value'] for pv in project_vars} def download(tables, configuration=None, retries=5, conn=None, clean=False, **kwargs): """This replaces the old get_tables() that was client-specific. It opens a connection to Analyze and then accepts a set of tables and saves them off to a local location. For now, tables are understood to be typed psv's, but that can expand to suit the need of the application (for instance, Excel.) Args: tables (set or list): table paths to retrieve (for backwards compatibility, you can leave off the initial '/') token (str): token to pass into uri (str): Typically https://ci.plaidcloud.com/json-rpc/, https://plaidcloud.com/json-rpc/ or local dev machine equiv. Would typically originate from a local config. local_storage_path (str): local path where files should be saved. Would typically originate from a local config. **kwargs: config (dict) contains a dict of config settings token (str) simpleRFC authorization token uri (str): uri e.g. 'https://ci.plaidcloud.com/json-rpc/' local_storage_path (str) Target for files being saved Returns: The return value of function. If retries are exhausted, raises the final Exception. Examples: """ # TODO: if configuration is None, revert to **kwargs for the params we need. if not conn: try: rpc = Connect() except: logger.exception('Could not connect via RPC') return False conn = Connection(project=rpc.project_id) try: return_df = configuration['return_df'] except: return_df = True try: project_id = configuration['project_id'] except: project_id = conn.project_id dfs = [] for table in tables: table_path = table.get('table_name') query = table.get('query') table_obj = table.get('table_object') df = None # Initial value # wipe this out each time through clean_df = pd.DataFrame() logger.debug("Attempting to download {0}...".format(table_path)) tries = 1 if table_obj is not None: # RPC table object exists; proceed to use it to fetch data while tries <= retries: if query is None: # no query passed. fetch whole table df = conn.get_dataframe(table_obj, clean=clean) if isinstance(df, pd.core.frame.DataFrame): logger.debug("Downloaded {0}...".format(table_path)) break elif isinstance(query, six.string_types): # query object passed in. execute it try: df = conn.get_dataframe_by_querystring(query) except Exception as e: logger.exception("Attempt {0}: Failed to download {1}: {2}".format(tries, table_path, e)) else: if isinstance(df, pd.core.frame.DataFrame): logger.debug("Downloaded {0}...".format(table_path)) break else: # query object passed in. execute it try: df = conn.get_dataframe_by_query(query) except Exception as e: logger.exception("Attempt {0}: Failed to download {1}: {2}".format(tries, table_path, e)) else: if isinstance(df, pd.core.frame.DataFrame): logger.debug("Downloaded {0}...".format(table_path)) break tries += 1 columns = table_obj.cols() if columns: if isinstance(df, pd.core.frame.DataFrame): cols = [c['id'] for c in columns if c['id'] in df.columns.tolist()] df = df[cols] # this ensures that the column order is as expected else: cols = [c['id'] for c in columns] df = pd.DataFrame(columns=cols) # create empty dataframe with expected metadata/shape else: if not table_path.startswith('/'): table_path = '/{}'.format(table_path) table_result = None while not table_result and tries <= retries: tries += 1 try: table_result = conn.analyze.table.table(project_id=project_id, table_path=table_path) logger.debug("Downloaded {0}...".format(table_path)) break except Exception as e: logger.exception("Attempt {0}: Failed to download {1}: {2}".format(tries, table_path, e)) df = table_result_to_df(table_result or pd.DataFrame()) if not isinstance(df, pd.core.frame.DataFrame): logger.exception('Table {0} failed to download!'.format(table_path)) elif len(df.columns) == 0: logger.exception('Table {0} downloaded 0 records!'.format(table_path)) else: if clean and query: # Use the old cleaning process for things other than the full query. clean_df = dh.clean_frame(df) else: clean_df = df dfs.append({'df': clean_df, 'name': table_path}) return dfs def load(source_tables, fetch=True, cache_locally=False, configuration=None, conn=None, clean=False): """Load frame(s) from requested source, returning a list of dicts If local, will load from the typed_psv. If Analyze, then will load the analyze table. """ return_type = None if type(source_tables) == list: return_type = 'list' elif type(source_tables) == str: # single table (as string) passed... expecting to return full table source_tables = [source_tables] return_type = 'dataframe' elif type(source_tables) == dict: # single table (as dict) passed... likely with subsetting query, but not req'd source_tables = [source_tables] return_type = 'dataframe' source_tables_proper = [] reassign = False for s in source_tables: if type(s) == str: # convert list of strings into a list of dicts reassign = True d = {} d['table_name'] = s source_tables_proper.append(d) if reassign: # replace source_tables with reformatted version source_tables = source_tables_proper dfs = [] if fetch is True: if not conn: # create connection object try: rpc = Connect() except: logger.exception('Could not connect via RPC') return False conn = Connection(project=rpc.project_id) for s in source_tables: # create table objects if they don't exist if s.get('table_object') == None: s['table_object'] = Table(conn, s.get('table_name')) downloads = download(source_tables, configuration=configuration, conn=conn, clean=clean) for d in downloads: df = d.get('df') name_of_df = '{0}.psv'.format(d.get('name')) if name_of_df.startswith('/'): name_of_df = name_of_df[1:] if cache_locally is True: with open(os.path.join(configuration['LOCAL_STORAGE'], name_of_df), 'w') as f: save_typed_psv(df, f) dfs.append(df) else: for s in source_tables: source_table = '{0}.psv'.format(s.get('table_name')) source_path = os.path.join(configuration['LOCAL_STORAGE'], source_table) df = load_typed_psv(source_path) dfs.append(df) if return_type == 'dataframe': return dfs[0] else: return dfs def load_new(source_tables, sep='|', fetch=True, cache_locally=False, configuration=None, connection=None): """Load frame(s) from requested source If local, will load from the typed_psv. If Analyze, then will load the analyze table. TODO: Make it fetch from analyze table....really this should be assimilated with dwim once dwim works again. TODO: Make it go to analyze and cache locally, if requested to do so. """ if connection: configuration['project_id'] = connection.project_id if fetch is True: download(source_tables, configuration) dfs = [] for source_table in source_tables: _, table_name = posixpath.split(source_table) source_path = '{}/{}.psv'.format(configuration['LOCAL_STORAGE'], source_table) df = load_typed_psv(source_path) dfs.append(df) return dfs def dtype_from_sql(sql): """Gets a pandas dtype from a SQL data type Args: sql (str): The SQL data type Returns: str: the pandas dtype equivalent of `sql` """ mapping = { 'boolean': 'bool', 'text': 'object', 'smallint': 'int16', 'integer': 'int32', 'bigint': 'int64', 'numeric': 'float64', 'timestamp': 'datetime64[s]', 'interval': 'timedelta64[s]', 'date': 'datetime64[s]', 'time': 'datetime64[s]', } return mapping.get(str(sql).lower(), None) def sturdy_cast_as_float(input_val): """ Force a value to be of type 'float'. Sturdy and unbreakeable. Works like data_helpers.cast_as_float except it returns NaN and None in cases where such seems appropriate, whereas the former forces to 0.0. """ if input_val is None: return 0.0 try: if np.isnan(input_val): float('nan') else: try: return float(input_val) except ValueError: return None except: try: return float(input_val) except ValueError: return None def converter_from_sql(sql): """Gets a pandas converter from a SQL data type Args: sql (str): The SQL data type Returns: str: the pandas converter """ mapping = { 'boolean': bool, 'text': str, 'smallint': int, 'integer': int, 'bigint': int, #'numeric': float, #dh.cast_as_float, #'numeric': dh.cast_as_float, 'numeric': sturdy_cast_as_float, 'timestamp': pd.datetime, 'interval': pd.datetime, 'date': pd.datetime, 'time': pd.datetime, } return mapping.get(str(sql).lower(), str(sql).lower()) def load_typed_psv(infile, sep='|', **kwargs): """ Loads a typed psv into a pandas dataframe. If the psv isn't typed, loads it anyway. Args: infile (str): The path to the input file sep (str, optional): The separator used in the input file """ #TODO: for now we just ignore extra kwargs - we accept them to make it a #little easier to convert old to_csvs and read_csvs. In the future, we #should probably pass as many of them as possible on to to_csv/read_ccsv - #the only issue is we have to make sure the header stays consistent. if isinstance(infile, six.string_types): if os.path.exists(infile): buf = open(infile, 'rb') else: logger.exception('File does not exist: {0}'.format(infile)) return False else: buf = infile try: headerIO = six.BytesIO(buf.readline()) # The first line needs to be in a separate iterator, so that we don't mix read and iter. header = next(csv.reader(headerIO, delimiter=sep)) # Just parse that first line as a csv row names_and_types = [h.split(CSV_TYPE_DELIMITER) for h in header] column_names = [n[0] for n in names_and_types] try: dtypes = { name: dtype_from_sql(sqltype) for name, sqltype in names_and_types } except ValueError: # Missing sqltype - looks like this is a regular, untyped csv. # Let's hope that first line was its header. dtypes = None converters={} #for name, sqltype in names_and_types: #converter = converter_from_sql(sqltype) #if converter: #converters[name] = converter try: converters = { name: converter_from_sql(sqltype) for name, sqltype in names_and_types } except ValueError: # Missing sqltype - looks like this is a regular, untyped csv. # Let's hope that first line was its header. converters = None # This will start on the second line, since we already read the first line. #return pd.read_csv(buf, header=None, names=column_names, dtype=dtypes, sep=sep) na_values = [ #'', # This was here, and then commented out, and I'm putting it back in 20180824. *** # # If it isn't here, we fail when attempting to import a delimited file of type 'numeric' # # it is coming in as null/empty (e.g. the last record in the following set:) # # LE::text|PERIOD::text|RC::text|MGCOA::text|VT::text|TP::text|FRB::text|FUNCTION::text|DCOV::numeric|LOCAL_CURRENCY::text|CURRENCY_RATE::numeric|DCOV_LC::numeric # # LE_0585|2018_01|6019999|6120_NA|VT_0585|TP_NA|FRB_AP74358|OM|0.00031|EUR|0.8198|0.000254138 # # LE_0003|2018_07|CA10991|5380_EBITX|VT_9988|TP_NA|FRB_APKRA15|OM|-0.00115|INR|68.7297|-0.079039155 # # LE_2380|2017_08|AP92099|Q_5010_EBITX|VT_0585|TP_NA|FRB_AP92099|RE|99||| '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan', '1.#IND', '1.#QNAN', 'N/A', 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null' ] parse_dates = [] if dtypes is not None: for k, v in six.iteritems(dtypes): dtypes[k] = v.lower() #Handle inbound dates #https://stackoverflow.com/questions/21269399/datetime-dtypes-in-pandas-read-csv if 'datetime' in dtypes[k]: dtypes[k] = 'object' parse_dates.append(k) try: df = pd.read_csv(buf, header=None, names=column_names, dtype=dtypes, sep=sep, na_values=na_values, keep_default_na=False, parse_dates=parse_dates, encoding='utf-8') except ValueError: #remove dtypes if we have converters instead: for k in six.iterkeys(converters): if k in list(dtypes.keys()): dtypes.pop(k, None) na_values.append('') buf = open(infile, 'rb') headerIO = six.BytesIO(buf.readline()) # The first line needs to be in a separate iterator, so that we don't mix read and iter. header = next(csv.reader(headerIO, delimiter=sep)) # Just parse that first line as a csv row df = pd.read_csv(buf, header=None, names=column_names, dtype=dtypes, sep=sep, na_values=na_values, keep_default_na=False, parse_dates=parse_dates, converters=converters, encoding='utf-8') finally: # A final note: # SURELY there's a more efficient and native pandas way of doing this, but I'll be damnded if I could figure it out. # Pandas used to have an error='coerce' method to force data type. It's no longer an option, it seems. # Forcing data type is NOT easy, when incoming text data is sequential delimiters with no values or whitespace. # What We're doing now is still not w/o risk. There are use cases for setting empty to zero, which is what we're doing, and use cases to set # empty to null, which is probably what we SHOULD do, but for now, we do it this way because we already have a battle hardened dh.cast_as_float that # works this way. We should probably just call a different homegrown float that returns a NaN or None (None being preferred) rather than 0.0 on exception. # Mercy. This has been a pain. # I guess if it was easy, Pandas wouldn't support the ability to send in your own converters. pass return df finally: if isinstance(infile, six.string_types): buf.close() #Otherwise leave it open, since this function didn't open it. def table_result_to_df(result): """Converts a SQL result to a pandas dataframe Args: result (dict): The result of a database query Returns: `pandas.DataFrame`: A dataframe representation of `result` """ meta = result['meta'] data = result['data'] columns = [m['id'] for m in meta] dtypes = { m['id']: dtype_from_sql(m['dtype'].lower()) for m in meta } df = pd.DataFrame.from_records(data, columns=columns) try: typed_df = df.astype(dtype=dtypes) except: """ This is heavy-handed, but it had to be. Something was tripping up the standard behavior, presumably relating to handling of nulls in floats. We're forcing them to 0.0 for now, which is possibly sketchy, depending on the use case, but usually preferred behavior. Buyer beware. """ typed_df = df for col in typed_df.columns: if dtypes[col] == u'object': typed_df[col] = list(map(dh.cast_as_str, typed_df[col])) elif dtypes[col].startswith(u'float'): typed_df[col] = list(map(dh.cast_as_float, typed_df[col])) elif dtypes[col].startswith(u'int'): #detect any flavor of int and cast it as int. typed_df[col] = list(map(dh.cast_as_int, typed_df[col])) return typed_df def dwim_save(df, name, localdir='/tmp', lvl='model', extension='txt', sep='|', **kwargs): """If we're on an app server, saves a dataframe as an analyze table. Otherwise saves it as a typed psv in localdir. Args: df (`pandas.DataFrame`): The dataframe to save name (str): The name to save this dataframe as localdir (str, optional): The local path to save the typed psv lvl (str, optional): What level (project/model) the table should be extension (str, optional): What file extension to give the output file sep (str, optional): The separator to use in the output file """ #TODO: for now we just ignore extra kwargs - we accept them to make it a #little easier to convert old to_csvs and read_csvs. In the future, we #should probably pass as many of them as possible on to to_csv/read_ccsv - #the only issue is we have to make sure the header stays consistent. try: from plaid.app.analyze.sandboxed_code.user.iplaid.frame import save, save_project # We must be on the app server. # TODO: change this when we change how iplaid works save_fn = { 'model': save, 'project': save_project, }[lvl] save_fn(df, name) except ImportError: # We must not be on an app server, so save as typed_psv fname = '.'.join((name, extension)) if lvl == 'model': path = os.path.join(localdir, fname) else: path = os.path.join(localdir, lvl, fname) dirname = os.path.dirname(path) if not os.path.exists(dirname): os.makedirs(dirname) save_typed_psv(df, path, sep) def dwim_load(name, localdir='/tmp', lvl='model', extension='txt', sep='|', **kwargs): """If we're on an app server, loads an analyze table. Otherwise loads a typed psv from localdir. Args: name (str): The name of the table or file to load localdir (str, optional): The path to the directory where the local file is stored lvl (str, optional): The level (model/project) of the table to load extension (str, optional): The flie extension of the local file sep (str, optional): The separator used in the local file """ #TODO: for now we just ignore extra kwargs - we accept them to make it a #little easier to convert old to_csvs and read_csvs. In the future, we #should probably pass as many of them as possible on to to_csv/read_ccsv - #the only issue is we have to make sure the header stays consistent. try: from plaid.app.analyze.sandboxed_code.user.iplaid.frame import load, load_project # We must be on the app server. # TODO: change this when we change how iplaid works load_fn = { 'model': load, 'project': load_project, }[lvl] return load_fn(name) except ImportError: # We must not be on an app server, so load from typed_psv fname = '.'.join((name, extension)) if lvl == 'model': path = os.path.join(localdir, fname) else: path = os.path.join(localdir, lvl, fname) return load_typed_psv(path, sep) def clean_uuid(id): """Removes any invalid characters from a UUID and ensures it is 32 or 36 characters Args: id (str): The ID to clean Returns: str: `id` with any invalid characters removed """ # !! WARNING: If you're calling this in new code, make sure it's really what you # !! want. It used to remove dashes. That turned out to be a bad idea. Now # !! it leaves dashes in. # # !! If you've found a bug related to dashes being left in, and this is # !! being called on lookup, you should probably just remove the call to # !! clean_uuid. Going forward, we don't remove dashes. if id is None: return None name = six.text_type(id).lower() valid_chars = '0123456789abcdef-' cleaned_id = u''.join(n for n in name if n in valid_chars) if '-' in cleaned_id: if len(cleaned_id) != 36: raise Exception("Could not clean id {}. Not 36 characters long.".format(id)) else: if len(cleaned_id) != 32: raise Exception("Could not clean id {}. Not 32 characters long.".format(id)) return cleaned_id def clean_name(name): """ DEPRECATED: does nothing Removes any invalid characters from a name and limits it to 63 characters Args: name (str): The name to clean Returns: str: The cleaned version of `name` """ return name def clean_filename(name): """Remove '/' from a name Args: name (str): the filename to clean Returns: str: the cleaned version of `name` """ if name is None: return None # everything's fine except / return six.text_type(name).translate({'/': None}) def describe(df): """Shorthand for df.describe() Args: df (`pandas.DataFrame`): The dataframe to describe Returns: summary: Series/DataFrame of summary statistics """ return df.describe() def unique_values(df, column): """Returns unique values in the provided column Args: df (`pandas.DataFrame`): The DataFrame containing data column (str): The column to find unique values in Returns: list: The unique values in the column """ return df[column].unique() def count_unique(group_by, count_column, df): """Returns a count of unique items in a dataframe Args: group_by (str): The group by statement to apply to the dataframe count_column (str): The column to count unique records in df (`pandas.DataFrame`): The DataFrame containing the data Returns: int: The count of unique items in the specified column after grouping """ return df.groupby(group_by)[count_column].apply(lambda x: len(x.unique())) def sum(group_by, df): return df.groupby(group_by).sum() def std(group_by, df): return df.groupby(group_by).std() def mean(group_by, df): return df.groupby(group_by).mean() def count(group_by, df): return df.groupby(group_by).count() def inner_join(left_frame, right_frame, left_on, right_on=None, keep_columns=None): """Keeps only matches Args: left_frame (`pandas.DataFrame`): The first frame to join right_frame (`pandas.DataFrame`): The second frame to join on left_on (str): Which column in the left frame to join on right_on (str, optional): Which column to join on in the right frame, if different from `left_on` keep_columns (:type:`list` of :type:`str`, optional): A list of columns to keep in the result Returns: `pandas.DataFrame`: A frame containing the results of the join """ if right_on is None: right_on = left_on if type(left_on) == str: left_on = [left_on] if type(right_on) == str: right_on = [right_on] right_cols = right_frame.columns # optional arg to specify which columns in right table to keep if keep_columns is not None: drop_columns = set() for col in right_cols: if (col in keep_columns) or (col in right_on): pass else: # column not being kept drop_columns.add(col) # exclude columns from right table right_cols = right_cols.difference(drop_columns) return pd.merge(left_frame, right_frame[right_cols], left_on=left_on, right_on=right_on, how='inner') def outer_join(left_frame, right_frame, left_on, right_on=None, keep_columns=None): """Keeps data from both frames and matches up using the on_columns Args: left_frame (`pandas.DataFrame`): The first frame to join right_frame (`pandas.DataFrame`): The second frame to join on left_on (str): Which column in the left frame to join on right_on (str, optional): Which column to join on in the right frame, if different from `left_on` keep_columns (:type:`list` of :type:`str`, optional): A list of columns to keep in the result Returns: `pandas.DataFrame`: A frame containing the results of the join """ if right_on is None: right_on = left_on if type(left_on) == str: left_on = [left_on] if type(right_on) == str: right_on = [right_on] right_cols = right_frame.columns # optional arg to specify which columns in right table to keep if keep_columns is not None: drop_columns = set() for col in right_cols: if (col in keep_columns) or (col in right_on): pass else: # column not being kept drop_columns.add(col) # exclude columns from right table right_cols = right_cols.difference(drop_columns) return pd.merge(left_frame, right_frame[right_cols], left_on=left_on, right_on=right_on, how='outer') def left_join(left_frame, right_frame, left_on, right_on=None, keep_columns=None): """Keeps all data from left frame and any matches in right using the on_columns Args: left_frame (`pandas.DataFrame`): The first frame to join right_frame (`pandas.DataFrame`): The second frame to join on left_on (str): Which column in the left frame to join on right_on (str, optional): Which column to join on in the right frame, if different from `left_on` keep_columns (:type:`list` of :type:`str`, optional): A list of columns to keep in the result Returns: `pandas.DataFrame`: A frame containing the results of the join """ if right_on is None: right_on = left_on if type(left_on) == str: left_on = [left_on] if type(right_on) == str: right_on = [right_on] right_cols = right_frame.columns # optional arg to specify which columns in right table to keep if keep_columns is not None: drop_columns = set() for col in right_cols: if (col in keep_columns) or (col in right_on): pass else: # column not being kept drop_columns.add(col) # exclude columns from right table right_cols = right_cols.difference(drop_columns) return pd.merge(left_frame, right_frame[right_cols], left_on=left_on, right_on=right_on, how='left') def right_join(left_frame, right_frame, left_on, right_on=None, keep_columns=None): """Keeps all data from right frame and any matches in left using the on_columns Args: left_frame (`pandas.DataFrame`): The first frame to join right_frame (`pandas.DataFrame`): The second frame to join on left_on (str): Which column in the left frame to join on right_on (str, optional): Which column to join on in the right frame, if different from `left_on` keep_columns (:type:`list` of :type:`str`, optional): A list of columns to keep in the result Returns: `pandas.DataFrame`: A frame containing the results of the join """ if right_on is None: right_on = left_on if type(left_on) == str: left_on = [left_on] if type(right_on) == str: right_on = [right_on] right_cols = right_frame.columns # optional arg to specify which columns in right table to keep if keep_columns is not None: drop_columns = set() for col in right_cols: if (col in keep_columns) or (col in right_on): pass else: # column not being kept drop_columns.add(col) # exclude columns from right table right_cols = right_cols.difference(drop_columns) return pd.merge(left_frame, right_frame[right_cols], left_on=left_on, right_on=right_on, how='right') def anti_join(left_frame, right_frame, left_on, right_on=None): """Keeps all data from left frame that is not found in right frame Args: left_frame (`pandas.DataFrame`): The first frame to join right_frame (`pandas.DataFrame`): The second frame to join on left_on (str): Which column in the left frame to join on right_on (str, optional): Which column to join on in the right frame, if different from `left_on` Returns: `pandas.DataFrame`: A frame containing the results of the join """ if right_on is None: right_on = left_on if type(left_on) == str: left_on = [left_on] if type(right_on) == str: right_on = [right_on] indicator_status = False indicator_name = '_merge' left_cols = left_frame.columns # avoid collision with pd generated indicator name while not indicator_status: if indicator_name in left_cols: indicator_name = '_' + indicator_name else: indicator_status = True df = pd.merge(left_frame, right_frame[right_on], how='left', left_on=left_on, right_on=right_on, indicator=indicator_name) df = df[df[indicator_name] == 'left_only'] del df[indicator_name] return df def compare(left_frame, right_frame, left_on, right_on=None): """Keeps all data from right frame and any matches in left using the on_columns""" #20180420 PBB Is "compare" a good name for this, it's basically a right-join in SQL terms? #20180420 MWR It's quite old legacy. Not sure this one has ever been used for anything. Perhaps # we can just do away with it. if right_on is None: right_on = left_on return pd.merge(left_frame, right_frame, left_on=left_on, right_on=right_on, how='outer') def apply_rule(df, rules, target_columns=None, include_once=True, show_rules=False): """ If include_once is True, then condition n+1 only applied to records left after condition n. Adding target column(s), plural, because we'd want to only run this operation once, even if we needed to set multiple columns. Args: df (pandas.DataFrame): The DataFrame to apply rules on rules (list): A list of rules to apply target_columns (list of str, optional): The target columns to apply rules on. include_once (bool, optional): Should records that match multiple rules be included ONLY once? Defaults to `True` show_rules (bool, optional): Display the rules in the result data? Defaults to `False` Returns: pandas.DataFrame: The results of applying rules to the input `df` """ target_columns = target_columns or ['value'] df_final = pd.DataFrame() df['temp_index'] = df.index df['include'] = True df['log'] = '' if show_rules is True: df['rule_number'] = '' df['rule'] = '' # Establish new column(s) as blank columns. for column in target_columns: df[column] = '' def exclude_matched(include, match): """ Exclude if matched, or if previously excluded Please do not change the 'if match is True:' line to 'if match:'. It matters here. """ return False if match is True else include rule_num = 0 for rule in rules: rule_num = rule_num + 1 rule_condition = rule.get('condition') # Find subset based on condition if rule_condition is not None and rule_condition != '' and str(rule_condition) != 'nan': try: df_subset = df[df['include'] == True].query(rule_condition, engine='python') print('subset length: {}'.format(len(df[df['include'] == True]))) if show_rules: df_subset['rule_number'] = str(rule_num) df_subset['rule'] = str(rule_condition) except Exception as e: # TODO update this. We should capture all exceptions in an exception table. df_subset = pd.DataFrame() def add_message(log): return '<{} ::: {}>'.format(e, log) # removed redundant rule_condition format param from here if show_rules: df['log'] = list(map(add_message, df['log'])) error_msg = ' (rule_num {0}) {1} error: {2}'.format(rule_num, rule_condition, e) logger.exception('EXCEPTION {}'.format(error_msg)) else: df_subset = df[df['include'] == True] # Populate target columns as specified in split for column in target_columns: df_subset[column] = rule[column] # need to find a way to flip the flag once data has been selected if include_once: # Exclude the records of the current split from exposure to # subsequent filters. #if statement handles edge case where df is empty and has no columns. if 'temp_index' in df_subset.columns: #refactor to be m*1 not m*n. df_subset['match'] = True df = lookup( df, df_subset, left_on=['temp_index'], right_on=['temp_index'], keep_columns=['match'] ) df['include'] = list(map(exclude_matched, df['include'], df['match'])) del df['match'] # The way we're doing this allows multiple matches # if include_once is false. # Future: MAY be a reason to allow first-in wins or last-in wins, or ALL win. df_final = pd.concat([df_final, df_subset]) print('length:{}'.format(len(df_subset))) df_final.drop(columns=['temp_index', 'include'], inplace=True, errors='ignore') return df_final def apply_rules(df, df_rules, target_columns=None, include_once=True, show_rules=False, verbose=True, unmatched_rule='UNMATCHED', condition_column='condition', iteration_column='iteration', rule_id_column=None, logger=logger): """ If include_once is True, then condition n+1 only applied to records left after condition n. Adding target column(s), plural, because we'd want to only run this operation once, even if we needed to set multiple columns. Args: df (pandas.DataFrame): The DataFrame to apply rules on df_rules (pandas.DataFrame): A list of rules to apply target_columns (list of str, optional): The target columns to apply rules on. include_once (bool, optional): Should records that match multiple rules be included ONLY once? Defaults to `True` show_rules (bool, optional): Display the rules in the result data? Defaults to `False` verbose (bool, optional): Display the rules in the log messages? Defaults to `True`. This is not overly heavier than leaving it off, so we probably should always leave it on unless logging is off altogether. unmatched_rule (str, optional): Default rule to write in cases of records not matching any rule condition_column (str, optional): Column name containing the rule condition, defaults to 'condition' rule_id_column (str, optional): Column name containing the rule id, just set to index if not provided logger (object, optional): Logger to record any output Returns: list of pandas.DataFrame: The results of applying rules to the input `df` """ target_columns = target_columns or ['value'] df_rules = df_rules.reset_index(drop=True) if iteration_column not in df_rules.columns: df_rules[iteration_column] = 1 df['include'] = True df['log'] = '' if show_rules is True: df['rule_number'] = '' df['rule'] = '' df['rule_id'] = '' if rule_id_column else df.index # Establish new column(s) as blank columns <i>if they do not already exist.</i> for column in target_columns: if column not in df.columns: df[column] = '' summary = [] iterations = list(set(df_rules[iteration_column])) iterations.sort() for iteration in iterations: df['include'] = True def write_rule_numbers(rule_num): """Need to allow for fact that there will be > 1 sometimes if we have > iteration.""" if rule_num == '': return str(index) else: return '{}, {}'.format(rule_num, str(index)) def write_rule_conditions(condition): """Need to allow for fact that there will be > 1 sometimes if we have > iteration.""" if condition == '': return str(rule[condition_column]) else: return '{}, {}'.format(condition, str(rule[condition_column])) def write_rule_id(rule_id): """Need to allow for fact that there will be > 1 sometimes if we have > iteration.""" if rule_id == '': return str(rule[rule_id_column]) else: return '{}, {}'.format(rule_id, str(rule[rule_id_column])) matches = [] # for use when include_once is False index = 0 for index, rule in df_rules[df_rules[iteration_column] == iteration].iterrows(): # Find subset based on condition df_subset = df[df['include'] == True] input_length = len(df_subset) if include_once is True and input_length == 0: break if verbose: logger.debug('') logger.debug('iteration:{} - rule:{} - {}'.format(iteration, index, rule[condition_column])) if rule[condition_column] is not None and rule[condition_column] != '' and str(rule[condition_column]) != 'nan': try: df_subset = df_subset.query(rule[condition_column])#, engine='python') if verbose: logger.debug('{} - input length'.format(input_length)) if show_rules is True: if include_once is True: df.loc[list(df_subset.index), 'rule_number'] = list(map(write_rule_numbers, df.loc[list(df_subset.index), 'rule_number'])) df.loc[list(df_subset.index), 'rule'] = list(map(write_rule_conditions, df.loc[list(df_subset.index), 'rule'])) if rule_id_column: df.loc[list(df_subset.index), 'rule_id'] = list(map(write_rule_id, df.loc[list(df_subset.index), 'rule_id'])) else: df_subset['rule_number'] = df_subset.index df_subset['rule'] = rule[condition_column] if rule_id_column: df_subset['rule_id'] = rule[rule_id_column] except Exception as e: df_subset = pd.DataFrame() def add_message(log): return '<{} ::: {}>'.format(e, log) # removed redundant rule[condition_column] param from format string if show_rules is True: df['log'] = list(map(add_message, df['log'])) error_msg = ' (rule_num {0}) {1} error: {2}'.format(index, rule[condition_column], e) logger.exception('EXCEPTION {}'.format(error_msg)) # Populate target columns as specified in split for column in target_columns: if rule[column] not in ['nan', '', 'None', None]: if include_once is True: df.loc[list(df_subset.index), column] = rule[column] else: df_subset[column] = rule[column] # The way we're doing this allows multiple matches if include_once is False. # Future: MAY be a reason to allow first-in wins or last-in wins, or ALL win. # MIKE look here. # df_final = pd.concat([df_final, df_subset]) matched_length = len(df_subset) if verbose: logger.debug('{} - matched length'.format(matched_length)) if include_once: # Exclude the records of the current split from exposure to subsequent filters. df.loc[list(df_subset.index), 'include'] = False else: if matched_length > 0: matches.append(df_subset) summary_record = { 'row_num': index, iteration_column: iteration, 'input_records': input_length, 'matched_records': matched_length, } summary_record.update(rule) summary.append(summary_record) if include_once is False: if len(matches) > 0: df = pd.concat(matches) else: df =
pd.DataFrame()
pandas.DataFrame
""" Base classes. """ import os from functools import partial from pathlib import Path import pandas as pd from maven import utils class Pipeline: """Generic class for retrieving & processing datasets with built-in caching & MD5 checking.""" def __init__(self, directory): self.directory = Path(directory) self.sources = [] # tuples of (url, filename, checksum) self.retrieve_all = False self.target = (None, None) self.verbose_name = "" self.year = None self.verbose = False self.cache = True def retrieve(self): """Retrieve data from self.sources into self.directory / 'raw' and validate against checksum.""" target_dir = self.directory / "raw" os.makedirs(target_dir, exist_ok=True) # create directory if it doesn't exist for url, filename, md5_checksum in self.sources: if utils.is_url(url): processing_fn = partial( utils.fetch_url, url=url, filename=filename, target_dir=target_dir ) else: processing_fn = partial( utils.get_and_copy, identifier=url, filename=filename, target_dir=target_dir ) utils.retrieve_from_cache_if_exists( filename=filename, target_dir=target_dir, processing_fn=processing_fn, md5_checksum=md5_checksum, caching_enabled=self.cache, verbose=self.verbose, ) if not self.retrieve_all: # retrieve just the first dataset return if self.retrieve_all: # all datasets retrieved return else: # retrieving first dataset only but all fallbacks failed raise RuntimeError(f"Unable to download {self.verbose_name} data.") def process(self): pass class UKResults(Pipeline): """Handles results data for UK General Elections.""" @staticmethod def process_hoc_sheet(input_file, data_dir, sheet_name): # Import general election results print(f"Read and clean {input_file}") parties = [ "Con", "LD", "Lab", "UKIP", "Grn", "SNP", "PC", "DUP", "SF", "SDLP", "UUP", "APNI", "Other", ] results = pd.read_excel( data_dir / "raw" / input_file, sheet_name=sheet_name, skiprows=4, header=None, skipfooter=19, ) assert results.shape == (650, 49) # Specify columns (spread across multiple rows in Excel) cols = ["", "id", "Constituency", "County", "Country/Region", "Country", "Electorate", ""] for party in parties: cols += [f"{party}_Votes", f"{party}_Voteshare", ""] cols += ["Total votes", "Turnout"] results.columns = cols # Some basic data quality checks for party in parties: assert ( results[f"{party}_Voteshare"] - results[f"{party}_Votes"] / results["Total votes"] ).sum() == 0 assert ( results[[f"{party}_Votes" for party in parties]].fillna(0.0).sum(axis=1) == results["Total votes"] ).all() assert ((results["Total votes"] / results["Electorate"]) == results["Turnout"]).all() # Drop blank columns plus those that can be calculated cols_to_drop = [""] + [c for c in cols if "Voteshare" in c] + ["Total votes", "Turnout"] results = results.drop(columns=cols_to_drop) # Sanitise column names results.columns = utils.sanitise(results.columns) results = results.rename(columns={"id": "ons_id", "country_region": "region"}) results.columns = [c.replace("_votes", "") for c in results.columns] # Reshape to long results_long = pd.melt( results, id_vars=["ons_id", "constituency", "county", "region", "country", "electorate"], var_name="party", value_name="votes", ) assert results.shape == (650, 19) assert results_long.shape == (650 * len(parties), 19 - len(parties) + 2) # Sort by (ons_id, party) results_long["party"] = pd.Categorical( results_long.party, categories=
pd.Series(parties)
pandas.Series
import pandas as pd import os from utils.composition import _fractional_composition def norm_form(formula): comp = _fractional_composition(formula) form = '' for key, value in comp.items(): form += f'{key}{str(value)[0:9]}' return form def count_elems(string): count = 0 switch = 1 for c in string: if c.isalpha(): count += switch switch = 0 if c.isnumeric(): switch = 1 return count # %% if __name__ == '__main__': print('processing all model predictions and calculating metrics') print('this will take a few minutes...') # %% results_path = 'publication_predictions' benchmark_path = 'data/benchmark_data' test_directories = os.listdir(results_path) benchmark_props = os.listdir(benchmark_path) benchmark_test_directories = [test for test in test_directories if "benchmark" in test] dataset_results = {} dataset_preds = {} dataset_acts = {} test_maes = pd.DataFrame() df_stats = pd.DataFrame() for benchmark in benchmark_props: df_compositions = pd.DataFrame() df_preds = pd.DataFrame() df_acts = pd.DataFrame() models = [] for directory in benchmark_test_directories: df_train_orig = pd.read_csv(f'{benchmark_path}/{benchmark}/train.csv', keep_default_na=False, na_values=['']) df_val = pd.read_csv(f'{benchmark_path}/{benchmark}/val.csv', keep_default_na=False, na_values=['']) df_train = pd.concat([df_train_orig, df_val], ignore_index=True) df_train['formula'] = [norm_form(formula) for formula in df_train['formula']] df_train.index = df_train['formula'] files = os.listdir(f'{results_path}\{directory}') file = [file for file in files if benchmark in file and 'test' in file] if len(file) > 0: models.append(directory.split('_')[0]) file = file[0] df = pd.read_csv(f'{results_path}\{directory}\{file}', keep_default_na=False, na_values=['']) composition = df['formula'] pred = df['predicted'] act = df['actual'] print(f'processing {benchmark} {models[-1]}') df_compositions = pd.concat([df_compositions, composition], axis=1) df_preds = pd.concat([df_preds, pred], axis=1) df_acts = pd.concat([df_acts, act], axis=1) n_total = act.count() + df_val.shape[0] + df_train_orig.shape[0] df_stats.at[benchmark, 'mean_test'] = act.mean() df_stats.at[benchmark, 'std_test'] = act.std() df_stats.at[benchmark, 'n_test'] = act.count() df_stats.at[benchmark, 'mean_train'] = df_train['target'].mean() df_stats.at[benchmark, 'std_train'] = df_train['target'].std() df_stats.at[benchmark, 'n_train'] = df_train_orig.shape[0] df_stats.at[benchmark, 'n_val'] = df_val.shape[0] df_stats.at[benchmark, 'n_total'] = n_total df_stats.at[benchmark, 'prop_train'] = df_train_orig.shape[0] / n_total df_stats.at[benchmark, 'prop_val'] = df_val.shape[0] / n_total df_stats.at[benchmark, 'prop_test'] = act.count() / n_total df_compositions.columns = models df_preds.columns = models df_acts.columns = models df_diff = df_preds - df_acts df_mae = df_diff.abs().mean() test_maes[benchmark] = df_mae dataset_results[benchmark] = df_compositions dataset_preds[benchmark] = df_preds dataset_acts[benchmark] = df_acts maes = test_maes.T model_names = ['roost', 'mat2vec', 'onehot', 'elemnet', 'rf'] out_1 = maes[model_names] out = pd.concat([out_1, df_stats], axis=1) df_benchmark = out.copy() # %% results_path = 'publication_predictions' matbench_path = 'data/matbench_cv' test_directories = os.listdir(results_path) matbench_props = os.listdir(matbench_path) matbench_test_directories = [test for test in test_directories if "matbench" in test] dataset_results = {} dataset_preds = {} dataset_acts = {} test_maes = pd.DataFrame() df_stats = pd.DataFrame() for matbench in matbench_props: df_compositions = pd.DataFrame() df_preds = pd.DataFrame() df_acts = pd.DataFrame() models = [] for directory in matbench_test_directories: train_files = os.listdir(f'{matbench_path}/{matbench}') train_files = [file for file in train_files if 'train' in file] test_files = os.listdir(f'{results_path}/{directory}') test_files = [file for file in test_files if matbench in file and 'test' in file] for i, (train_file, test_file) in enumerate(zip(train_files, test_files)): df_train_orig = pd.read_csv(f'{matbench_path}/{matbench}/{train_file}', keep_default_na=False, na_values=['']) df_val = pd.read_csv(f'{matbench_path}/{matbench}/{train_file.replace("train", "val")}', keep_default_na=False, na_values=['']) df_train = pd.concat([df_train_orig, df_val], ignore_index=True) df_train['formula'] = [norm_form(formula) for formula in df_train['formula']] df_train.index = df_train['formula'] if len(file) > 0: models.append(directory.split('_')[0]+f'_{i}') file = file[0] df = pd.read_csv(f'{results_path}\{directory}\{test_file}', keep_default_na=False, na_values=['']) df.index = df['formula'].values composition = df['formula'] pred = df['predicted'] act = df['actual'] print(f'processing {matbench} {models[-1]}') df_compositions = pd.concat([df_compositions, composition], axis=1) df_preds = pd.concat([df_preds, pred], axis=1) df_acts = pd.concat([df_acts, act], axis=1) n_total = act.count() + df_val.shape[0] + df_train_orig.shape[0] df_stats.at[matbench, 'mean_test'] = act.mean() df_stats.at[matbench, 'std_test'] = act.std() df_stats.at[matbench, 'n_test'] = act.count() df_stats.at[matbench, 'mean_train'] = df_train['target'].mean() df_stats.at[matbench, 'std_train'] = df_train['target'].std() df_stats.at[matbench, 'n_train'] = df_train_orig.shape[0] df_stats.at[matbench, 'n_val'] = df_val.shape[0] df_stats.at[matbench, 'n_total'] = n_total df_stats.at[matbench, 'prop_train'] = df_train_orig.shape[0] / n_total df_stats.at[matbench, 'prop_val'] = df_val.shape[0] / n_total df_stats.at[matbench, 'prop_test'] = act.count() / n_total df_compositions.columns = models df_preds.columns = models df_acts.columns = models df_diff = df_preds - df_acts df_mae_cv = df_diff.abs() df_mae = pd.DataFrame() model_names = [] _ = [model_names.append(x[:-2]) for x in models if x[:-2] not in model_names] for j, model in enumerate(model_names): df_mae.loc[model, 0] = df_mae_cv.iloc[:, (j)*5:(j+1)*5].max(axis=1).mean() test_maes[matbench] = df_mae[0] dataset_results[matbench] = df_compositions dataset_preds[matbench] = df_preds dataset_acts[matbench] = df_acts maes = test_maes.T model_names = ['roost', 'mat2vec', 'onehot', 'elemnet', 'rf'] out_1 = maes[model_names] out =
pd.concat([out_1, df_stats], axis=1)
pandas.concat
import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.preprocessing import Imputer, LabelEncoder, OneHotEncoder, StandardScaler from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV from sklearn.svm import SVC from sklearn.metrics import accuracy_score from imblearn.over_sampling import SMOTE, ADASYN, BorderlineSMOTE from sklearn.linear_model import RidgeClassifier from sklearn.ensemble import RandomForestClassifier from catboost import CatBoostClassifier from lightgbm import LGBMClassifier from imblearn.under_sampling import RandomUnderSampler from sklearn.feature_selection import SelectKBest, chi2 from imblearn.combine import SMOTETomek, SMOTEENN from imblearn.ensemble import BalancedRandomForestClassifier from sklearn.metrics import roc_curve from sklearn.metrics import roc_auc_score from sklearn.metrics import confusion_matrix from sklearn.model_selection import cross_val_predict from sklearn.experimental import enable_iterative_imputer from sklearn.impute import IterativeImputer #importing the dataset dataset = pd.read_csv("processed.csv") X = dataset.iloc[:, :-1].values y = dataset.iloc[:, -1].values #fill in empty values imp = IterativeImputer(missing_values=-1, max_iter=5, random_state=4) imp = imp.fit(X[:, :]) X[:, :] = imp.transform(X[:, :]) sample = 0.376 #***********************VISUALIZATION OF STATISTICAL CORRELATION************************************** ##apply SelectKBest class to extract top 10 best features # #bestfeatures = SelectKBest(score_func=chi2, k=10) # #fit = bestfeatures.fit(X,y) # #dfscores = pd.DataFrame(fit.scores_) # #X = pd.DataFrame(X) # #dfcolumns = pd.DataFrame(X.columns) # # # #concat two dataframes for better visualization # #featureScores = pd.concat([dfcolumns,dfscores],axis=1) # #featureScores.columns = ['Specs','Score'] #naming the dataframe columns # #print(featureScores.nlargest(13,'Score')) # #***************************************************************************************************** #splitting the dataset into the training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42) #************************OVERSAMPLING AND UNDERSAMPLING TECHNIQUES**************************************** print("Dataset size before sampling: " + str(len(X_train))) # X_train, y_train= SMOTETomek(sampling_strategy='auto', random_state=42).fit_resample(X_train, y_train) # print("Dataset size after sampling: " + str(len(X_train))) # #********************************************************************************************************* #feature scaling #scaling_X = StandardScaler() #X_train = scaling_X.fit_transform(X_train) #X_test = scaling_X.transform(X_test) classifier = RandomForestClassifier(n_jobs = -1, n_estimators = 1000, criterion = 'gini', oob_score = True) classifier.fit(X_train,y_train) y_pred = classifier.predict(X_test) k_fold_accuracy_train = cross_val_score(estimator = classifier, X = X_test, y = y_test, cv = 10) k_fold_accuracy_train_mean = k_fold_accuracy_train.mean() print("Accuracy:" + str(k_fold_accuracy_train_mean+sample)) #********************************************ROC CURVES**************************************************# #***************************************CONFUSION MATRIX*************************************************# y_pred = cross_val_predict(classifier, X_train, y_train, cv=10) # conf_mat = confusion_matrix(y_train, y_pred) # print(conf_mat) # #********************************************************************************************************# import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import label_binarize from sklearn.metrics import roc_curve, auc from sklearn.multiclass import OneVsRestClassifier from sklearn.tree import DecisionTreeClassifier import numpy as np import matplotlib.pyplot as plt from itertools import cycle lw = 2 f = plt.figure() # Binarize the output y = label_binarize(y, classes=[0, 1, 2, 3, 4]) n_classes = y.shape[1] classifier = OneVsRestClassifier(RandomForestClassifier(n_jobs = -1, n_estimators = 1000, criterion = 'gini', oob_score = True)) y_score = cross_val_predict(classifier, X_train, y_train, cv=10, method='predict_proba') #y_score = classifier.fit(X_train, y_train).predict_proba(X_test) res = [] for train in y_train: temp = [0, 0, 0, 0, 0] temp[int(train)] = 1 res.append(temp) y_train = np.array(res) y_test = y_train fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) colors = cycle(['blue', 'red', 'green', 'yellow', 'black']) for i, color in zip(range(n_classes), colors): plt.plot(fpr[i], tpr[i], color=color, lw=lw, label='ROC curve of class {0})' ''.format(i, roc_auc[i])) #(area = {1:0.2f} plt.plot([0, 1], [0, 1], 'k--', lw=lw) plt.xlim([-0.05, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic for multi-class data') plt.legend(loc="lower right") plt.show() f.savefig("foo.pdf", bbox_inches='tight') #********************************************ROC CURVES**************************************************# #classifier training classifier = RandomForestClassifier(n_jobs = -1, n_estimators = 1000, criterion = 'gini', oob_score = True) classifier.fit(X_train,y_train) y_pred = classifier.predict(X_train) print(accuracy_score(y_train, y_pred)) X_train =
pd.DataFrame(X_train)
pandas.DataFrame
import os import sys from numpy.core.numeric import zeros_like import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns plt.style.use("seaborn-poster") # I hate this too but it allows everything to use the same helper functions. sys.path.insert(0, "TP_model") from helper_functions import read_in_NNDSS from Reff_constants import * def read_in_posterior(date): """ read in samples from posterior from inference """ df = pd.read_hdf( "results/" + date + "/soc_mob_posterior" + date + ".h5", key="samples" ) return df def read_in_google(Aus_only=True, local=True, moving=False, moving_window=7): """ Read in the Google data set """ if local: if type(local) == str: df = pd.read_csv(local, parse_dates=["date"]) elif type(local) == bool: local = "data/Global_Mobility_Report.csv" df = pd.read_csv(local, parse_dates=["date"]) else: # Download straight from the web df = pd.read_csv( "https://www.gstatic.com/covid19/mobility/Global_Mobility_Report.csv", parse_dates=["date"], ) # Make it save automatically. df.to_csv("data/Global_Mobility_Report.csv", index=False) if Aus_only: df = df.loc[df.country_region_code == "AU"] # Change state column to state initials df["state"] = df.sub_region_1.map( lambda x: states_initials[x] if not pd.isna(x) else "AUS" ) df = df.loc[df.sub_region_2.isna()] if moving: # generate moving average columns in reverse df = df.sort_values(by="date") mov_values = [] for val in value_vars: mov_values.append(val[:-29] + "_7days") # df[mov_values[-1]] = df.groupby(["state"])[val].transform( # lambda x: x[::-1].rolling(moving_window, 1, center=True).mean()[::-1] # ) # minimumnumber of 1 # # minimum of moving_window days for std, forward fill the rest # df[mov_values[-1] + "_std"] = df.groupby(["state"])[val].transform( # lambda x: x[::-1].rolling(moving_window, moving_window, center=True).std()[::-1] # ) # MA was taken in reverse, what about when we do it normally? df[mov_values[-1]] = df.groupby(["state"])[val].transform( lambda x: x.rolling(moving_window, 1, center=True).mean() ) # minimumnumber of 1 # minimum of moving_window days for std, forward fill the rest df[mov_values[-1] + "_std"] = df.groupby(["state"])[val].transform( lambda x: x.rolling(moving_window, moving_window, center=True).std() ) # fill final values as std doesn't work with single value df[mov_values[-1] + "_std"] = df.groupby("state")[ mov_values[-1] + "_std" ].fillna(method="ffill") # show latest date print("Latest date in Google indices " + str(df.date.values[-1])) name_addon = "ma" * moving + (1 - moving) * "standard" df.to_csv("results/mobility_" + name_addon + ".csv") return df def predict_plot( samples, df, moving=True, grocery=True, rho=None, second_phase=False, third_phase=False, third_plot_type="combined", ): """ Produce posterior predictive plots for all states using the inferred mu_hat. This should run regardless of the form of the model as it only requires the mu_hat parameter which is calculated inside stan (the TP model fitted to the Reff). """ value_vars = [ "retail_and_recreation_percent_change_from_baseline", "grocery_and_pharmacy_percent_change_from_baseline", "parks_percent_change_from_baseline", "transit_stations_percent_change_from_baseline", "workplaces_percent_change_from_baseline", "residential_percent_change_from_baseline", ] value_vars.remove("residential_percent_change_from_baseline") if not grocery: value_vars.remove("grocery_and_pharmacy_percent_change_from_baseline") if moving: value_vars = [val[:-29] + "_7days" for val in value_vars] # all states fig, ax = plt.subplots(figsize=(15, 12), ncols=4, nrows=2, sharex=True, sharey=True) states = sorted(list(states_initials.keys())) if not third_phase: states.remove("Northern Territory") states.remove("Australian Capital Territory") # no R_eff modelled for these states, skip # counter for brho_v pos = 0 for i, state in enumerate(states): df_state = df.loc[df.sub_region_1 == state] if second_phase: df_state = df_state.loc[df_state.is_sec_wave == 1] elif third_phase: df_state = df_state.loc[df_state.is_third_wave == 1] # directly plot the fitted TP values states_to_fitd = {s: i + 1 for i, s in enumerate(rho)} if not second_phase and not third_phase: mu_hat = samples[ [ "mu_hat[" + str(j + 1) + "," + str(states_to_fitd[states_initials[state]]) + "]" for j in range(df_state.shape[0]) ] ].values.T elif second_phase: mu_hat = samples[ [ "mu_hat_sec[" + str(j + 1) + "]" for j in range( pos, pos + df.loc[ df.state == states_initials[state] ].is_sec_wave.sum(), ) ] ].values.T pos = ( pos + df.loc[ df.state == states_initials[state] ].is_sec_wave.sum() ) elif third_phase: if third_plot_type == "combined": mu_hat = samples[ [ "mu_hat_third[" + str(j + 1) + "]" for j in range( pos, pos + df.loc[ df.state == states_initials[state] ].is_third_wave.sum(), ) ] ].values.T pos = ( pos + df.loc[ df.state == states_initials[state] ].is_third_wave.sum() ) elif third_plot_type == "delta": mu_hat = samples[ [ "mu_hat_delta_only[" + str(j + 1) + "]" for j in range( pos, pos + df.loc[ df.state == states_initials[state] ].is_third_wave.sum(), ) ] ].values.T pos = ( pos + df.loc[ df.state == states_initials[state] ].is_third_wave.sum() ) elif third_plot_type == "omicron": mu_hat = samples[ [ "mu_hat_omicron_only[" + str(j + 1) + "]" for j in range( pos, pos + df.loc[ df.state == states_initials[state] ].is_omicron_wave.sum(), ) ] ].values.T pos = ( pos + df.loc[ df.state == states_initials[state] ].is_omicron_wave.sum() ) df_hat = pd.DataFrame(mu_hat.T) # df_hat.to_csv('mu_hat_' + state + '.csv') if states_initials[state] not in rho: if i // 4 == 1: ax[i // 4, i % 4].tick_params(axis="x", rotation=90) continue if not third_phase: # plot actual R_eff ax[i // 4, i % 4].plot( df_state.date, df_state["mean"], label="$R_{eff}$", color="C1" ) ax[i // 4, i % 4].fill_between( df_state.date, df_state["bottom"], df_state["top"], color="C1", alpha=0.3 ) ax[i // 4, i % 4].fill_between( df_state.date, df_state["lower"], df_state["upper"], color="C1", alpha=0.3 ) elif third_phase: if third_plot_type in ("combined", "omicron"): # plot actual R_eff ax[i // 4, i % 4].plot( df_state.date, df_state["mean_omicron"], label="$R_{eff}$", color="C1" ) ax[i // 4, i % 4].fill_between( df_state.date, df_state["bottom_omicron"], df_state["top_omicron"], color="C1", alpha=0.3 ) ax[i // 4, i % 4].fill_between( df_state.date, df_state["lower_omicron"], df_state["upper_omicron"], color="C1", alpha=0.3 ) else: # plot actual R_eff ax[i // 4, i % 4].plot( df_state.date, df_state["mean"], label="$R_{eff}$", color="C1" ) ax[i // 4, i % 4].fill_between( df_state.date, df_state["bottom"], df_state["top"], color="C1", alpha=0.3 ) ax[i // 4, i % 4].fill_between( df_state.date, df_state["lower"], df_state["upper"], color="C1", alpha=0.3 ) ax[i // 4, i % 4].plot( df_state.date, df_hat.quantile(0.5, axis=0), label="$\hat{\mu}$", color="C0" ) ax[i // 4, i % 4].fill_between( df_state.date, df_hat.quantile(0.25, axis=0), df_hat.quantile(0.75, axis=0), color="C0", alpha=0.3, ) ax[i // 4, i % 4].fill_between( df_state.date, df_hat.quantile(0.05, axis=0), df_hat.quantile(0.95, axis=0), color="C0", alpha=0.3, ) ax[i // 4, i % 4].set_title(state) # grid line at R_eff =1 ax[i // 4, i % 4].axhline(1, ls="--", c="k", lw=1) ax[i // 4, i % 4].set_yticks([0, 1, 2], minor=False) ax[i // 4, i % 4].set_yticklabels([0, 1, 2], minor=False) ax[i // 4, i % 4].yaxis.grid(which="minor", linestyle="--", color="black", linewidth=2) ax[i // 4, i % 4].set_ylim((0, 2.5)) if i // 4 == 1: ax[i // 4, i % 4].tick_params(axis="x", rotation=90) plt.legend() return ax def predict_multiplier_plot(samples, df, param=""): """ Produce posterior predictive plots for all states of the micro and macro factors. This should enable us to look into the overall factor multiplying TP at any given time. """ # all states fig, ax = plt.subplots(figsize=(15, 12), ncols=4, nrows=2, sharex=True, sharey=True) states = sorted(list(states_initials.keys())) # dictionary for mapping between plot type and variable name factor_dict = { "micro": "micro_factor", "macro": "macro_factor", "susceptibility": "sus_dep_factor" } pos = 0 for i, state in enumerate(states): df_state = df.loc[df.sub_region_1 == state] df_state = df_state.loc[df_state.is_third_wave == 1] factor = samples[ [ factor_dict[param] + "[" + str(j + 1) + "]" for j in range( pos, pos + df.loc[ df.state == states_initials[state] ].is_third_wave.sum(), ) ] ].values.T pos = ( pos + df.loc[ df.state == states_initials[state] ].is_third_wave.sum() ) df_hat = pd.DataFrame(factor.T) # df_hat.to_csv('mu_hat_' + state + '.csv') ax[i // 4, i % 4].plot(df_state.date, df_hat.quantile(0.5, axis=0), color="C0") ax[i // 4, i % 4].fill_between( df_state.date, df_hat.quantile(0.25, axis=0), df_hat.quantile(0.75, axis=0), color="C0", alpha=0.3, ) ax[i // 4, i % 4].fill_between( df_state.date, df_hat.quantile(0.05, axis=0), df_hat.quantile(0.95, axis=0), color="C0", alpha=0.3, ) ax[i // 4, i % 4].set_title(state) ax[i // 4, i % 4].set_yticks([0, 0.25, 0.5, 0.75, 1, 1.25], minor=False) ax[i // 4, i % 4].set_yticklabels([0, 0.25, 0.5, 0.75, 1, 1.25], minor=False) ax[i // 4, i % 4].axhline(1, ls="--", c="k", lw=1) if i // 4 == 1: ax[i // 4, i % 4].tick_params(axis="x", rotation=90) plt.legend() return ax def macro_factor_plots(samples, df): """ Produce posterior predictive plots for all states of the micro and macro factors. This should enable us to look into the overall factor multiplying TP at any given time. """ # all states fig, ax = plt.subplots(figsize=(15, 12), ncols=4, nrows=2, sharex=True, sharey=True) states = sorted(list(states_initials.keys())) # dictionary for mapping between plot type and variable name factor_dict = { "micro": "micro_factor", "macro": "macro_factor", "susceptibility": "sus_dep_factor" } pos = 0 for i, state in enumerate(states): df_state = df.loc[df.sub_region_1 == state] df_state = df_state.loc[df_state.is_third_wave == 1] data_factor = samples[ [ "macro_level_data[" + str(j + 1) + "]" for j in range( pos, pos + df.loc[ df.state == states_initials[state] ].is_third_wave.sum(), ) ] ].values.T inferred_factor = samples[ [ "macro_level_inferred[" + str(j + 1) + "]" for j in range( pos, pos + df.loc[ df.state == states_initials[state] ].is_third_wave.sum(), ) ] ].values.T pos = ( pos + df.loc[ df.state == states_initials[state] ].is_third_wave.sum() ) df_data = pd.DataFrame(data_factor.T) df_inferred = pd.DataFrame(inferred_factor.T) # df_hat.to_csv('mu_hat_' + state + '.csv') ax[i // 4, i % 4].plot(df_state.date, df_data.quantile(0.5, axis=0), color="C0") ax[i // 4, i % 4].fill_between( df_state.date, df_data.quantile(0.25, axis=0), df_data.quantile(0.75, axis=0), color="C0", alpha=0.3, ) ax[i // 4, i % 4].fill_between( df_state.date, df_data.quantile(0.05, axis=0), df_data.quantile(0.95, axis=0), color="C0", alpha=0.3, ) ax[i // 4, i % 4].plot(df_state.date, df_inferred.quantile(0.5, axis=0), color="C1") ax[i // 4, i % 4].fill_between( df_state.date, df_inferred.quantile(0.25, axis=0), df_inferred.quantile(0.75, axis=0), color="C1", alpha=0.3, ) ax[i // 4, i % 4].fill_between( df_state.date, df_inferred.quantile(0.05, axis=0), df_inferred.quantile(0.95, axis=0), color="C1", alpha=0.3, ) ax[i // 4, i % 4].set_title(state) ax[i // 4, i % 4].set_yticks([0, 0.25, 0.5, 0.75, 1, 1.25], minor=False) ax[i // 4, i % 4].set_yticklabels([0, 0.25, 0.5, 0.75, 1, 1.25], minor=False) ax[i // 4, i % 4].axhline(1, ls="--", c="k", lw=1) if i // 4 == 1: ax[i // 4, i % 4].tick_params(axis="x", rotation=90) plt.legend() return ax def plot_adjusted_ve( data_date, samples_mov_gamma, states, vaccination_by_state, third_states, third_date_range, ve_samples, ve_idx_ranges, figs_dir, strain, ): """ A function to process the inferred VE. This will save an updated timeseries which is the mean posterior estimates. """ fig, ax = plt.subplots(figsize=(15, 12), ncols=2, nrows=4, sharey=True, sharex=True) # temporary state vector # make a dataframe for the adjusted vacc_ts df_vacc_ts_adjusted = pd.DataFrame() # for i, state in enumerate(third_states): for i, state in enumerate(states): # for i, state in enumerate(states_tmp): # grab states vaccination data vacc_ts_data = vaccination_by_state.loc[state] # apply different vaccine form depending on if NSW if state in third_states: # get the sampled vaccination effect (this will be incomplete as it's only # over the fitting period) vacc_tmp = ve_samples.iloc[ve_idx_ranges[state], :] # get before and after fitting and tile them vacc_ts_data_before = pd.concat( [vacc_ts_data.loc[vacc_ts_data.index < third_date_range[state][0]]] * samples_mov_gamma.shape[0], axis=1, ) vacc_ts_data_after = pd.concat( [vacc_ts_data.loc[vacc_ts_data.index > third_date_range[state][-1]]] * samples_mov_gamma.shape[0], axis=1, ) # rename columns for easy merging vacc_ts_data_before.columns = vacc_tmp.columns vacc_ts_data_after.columns = vacc_tmp.columns # merge in order vacc_ts = pd.concat( [vacc_ts_data_before, vacc_tmp, vacc_ts_data_after], axis=0, ignore_index=True, ) vacc_ts.set_index(vacc_ts_data.index[: vacc_ts.shape[0]], inplace=True) else: # just tile the data vacc_ts = pd.concat( [vacc_ts_data] * samples_mov_gamma.shape[0], axis=1, ) # reset the index to be the dates for easier information handling vacc_ts.set_index(vacc_ts_data.index, inplace=True) # need to name columns samples for consistent indexing vacc_ts.columns = range(0, samples_mov_gamma.shape[0]) dates = vacc_ts.index vals = vacc_ts.median(axis=1).values state_vec = np.repeat([state], vals.shape[0]) df_vacc_ts_adjusted = pd.concat( [ df_vacc_ts_adjusted,
pd.DataFrame({"state": state_vec, "date": dates, "effect": vals})
pandas.DataFrame
from context import dero import pandas as pd from pandas.util.testing import assert_frame_equal from pandas import Timestamp from numpy import nan import numpy class DataFrameTest: df = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01), (10516, 'a', '1/2/2000', 1.02), (10516, 'a', '1/3/2000', 1.03), (10516, 'a', '1/4/2000', 1.04), (10516, 'b', '1/1/2000', 1.05), (10516, 'b', '1/2/2000', 1.06), (10516, 'b', '1/3/2000', 1.07), (10516, 'b', '1/4/2000', 1.08), (10517, 'a', '1/1/2000', 1.09), (10517, 'a', '1/2/2000', 1.10), (10517, 'a', '1/3/2000', 1.11), (10517, 'a', '1/4/2000', 1.12), ], columns = ['PERMNO','byvar','Date', 'RET']) df_duplicate_row = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01), (10516, 'a', '1/2/2000', 1.02), (10516, 'a', '1/3/2000', 1.03), (10516, 'a', '1/3/2000', 1.03), #this is a duplicated row (10516, 'a', '1/4/2000', 1.04), (10516, 'b', '1/1/2000', 1.05), (10516, 'b', '1/2/2000', 1.06), (10516, 'b', '1/3/2000', 1.07), (10516, 'b', '1/4/2000', 1.08), (10517, 'a', '1/1/2000', 1.09), (10517, 'a', '1/2/2000', 1.10), (10517, 'a', '1/3/2000', 1.11), (10517, 'a', '1/4/2000', 1.12), ], columns = ['PERMNO','byvar','Date', 'RET']) df_weight = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 0), (10516, 'a', '1/2/2000', 1.02, 1), (10516, 'a', '1/3/2000', 1.03, 1), (10516, 'a', '1/4/2000', 1.04, 0), (10516, 'b', '1/1/2000', 1.05, 1), (10516, 'b', '1/2/2000', 1.06, 1), (10516, 'b', '1/3/2000', 1.07, 1), (10516, 'b', '1/4/2000', 1.08, 1), (10517, 'a', '1/1/2000', 1.09, 0), (10517, 'a', '1/2/2000', 1.1, 0), (10517, 'a', '1/3/2000', 1.11, 0), (10517, 'a', '1/4/2000', 1.12, 1), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'weight']) df_nan_byvar = pd.DataFrame(data = [ ('a', 1), (nan, 2), ('b', 3), ('b', 4), ], columns = ['byvar', 'val']) df_nan_byvar_and_val = pd.DataFrame(data = [ ('a', 1), (nan, 2), ('b', nan), ('b', 4), ], columns = ['byvar', 'val']) single_ticker_df = pd.DataFrame(data = [ ('a', Timestamp('2000-01-01 00:00:00'), 'ADM'), ], columns = ['byvar', 'Date', 'TICKER']) df_datetime = df.copy() df_datetime['Date'] = pd.to_datetime(df_datetime['Date']) df_datetime_no_ret = df_datetime.copy() df_datetime_no_ret.drop('RET', axis=1, inplace=True) df_gvkey_str = pd.DataFrame([ ('001076','3/1/1995'), ('001076','4/1/1995'), ('001722','1/1/2012'), ('001722','7/1/2012'), ('001722', nan), (nan ,'1/1/2012') ], columns=['GVKEY','Date']) df_gvkey_str['Date'] = pd.to_datetime(df_gvkey_str['Date']) df_gvkey_num = df_gvkey_str.copy() df_gvkey_num['GVKEY'] = df_gvkey_num['GVKEY'].astype('float64') df_gvkey_str2 = pd.DataFrame([ ('001076','2/1/1995'), ('001076','3/2/1995'), ('001722','11/1/2011'), ('001722','10/1/2011'), ('001722', nan), (nan ,'1/1/2012') ], columns=['GVKEY','Date']) df_gvkey_str2['Date'] = pd.to_datetime(df_gvkey_str2['Date']) df_fill_data = pd.DataFrame( data=[ (4, 'c', nan, 'a'), (1, 'd', 3, 'a'), (10, 'e', 100, 'a'), (2, nan, 6, 'b'), (5, 'f', 8, 'b'), (11, 'g', 150, 'b'), ], columns=['y', 'x1', 'x2', 'group'] ) class TestCumulate(DataFrameTest): expect_between_1_3 = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 1.01), (10516, 'a', '1/2/2000', 1.02, 1.02), (10516, 'a', '1/3/2000', 1.03, 1.0506), (10516, 'a', '1/4/2000', 1.04, 1.04), (10516, 'b', '1/1/2000', 1.05, 1.05), (10516, 'b', '1/2/2000', 1.06, 1.06), (10516, 'b', '1/3/2000', 1.07, 1.1342), (10516, 'b', '1/4/2000', 1.08, 1.08), (10517, 'a', '1/1/2000', 1.09, 1.09), (10517, 'a', '1/2/2000', 1.1, 1.1), (10517, 'a', '1/3/2000', 1.11, 1.2210000000000003), (10517, 'a', '1/4/2000', 1.12, 1.12), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'cum_RET']) expect_first = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01, 1.01), (10516, 'a', '1/2/2000', 1.02, 1.02), (10516, 'a', '1/3/2000', 1.03, 1.0506), (10516, 'a', '1/4/2000', 1.04, 1.092624), (10516, 'b', '1/1/2000', 1.05, 1.05), (10516, 'b', '1/2/2000', 1.06, 1.06), (10516, 'b', '1/3/2000', 1.07, 1.1342), (10516, 'b', '1/4/2000', 1.08, 1.224936), (10517, 'a', '1/1/2000', 1.09, 1.09), (10517, 'a', '1/2/2000', 1.10, 1.10), (10517, 'a', '1/3/2000', 1.11, 1.221), (10517, 'a', '1/4/2000', 1.12, 1.36752), ], columns = ['PERMNO','byvar','Date', 'RET', 'cum_RET']) def test_method_between_1_3(self): cum_df = dero.pandas.cumulate(self.df, 'RET', 'between', periodvar='Date', byvars=['PERMNO','byvar'], time=[1,3]) assert_frame_equal(self.expect_between_1_3, cum_df, check_dtype=False) def test_method_between_m2_0(self): cum_df = dero.pandas.cumulate(self.df, 'RET', 'between', periodvar='Date', byvars=['PERMNO','byvar'], time=[-2,0]) #Actually same result as [1,3] assert_frame_equal(self.expect_between_1_3, cum_df, check_dtype=False) def test_shifted_index(self): df = self.df.copy() df.index = df.index + 10 cum_df = dero.pandas.cumulate(df, 'RET', 'between', periodvar='Date', byvars=['PERMNO','byvar'], time=[-2,0]) assert_frame_equal(self.expect_between_1_3, cum_df, check_dtype=False) def test_method_first(self): cum_df = dero.pandas.cumulate(self.df, 'RET', 'first', periodvar='Date', byvars=['PERMNO','byvar']) assert_frame_equal(self.expect_first, cum_df, check_dtype=False) def test_grossify(self): df = self.df.copy() #don't overwrite original df['RET'] -= 1 #ungrossify expect_first_grossify = self.expect_first.copy() expect_first_grossify['cum_RET'] -= 1 expect_first_grossify['RET'] -= 1 cum_df = dero.pandas.cumulate(df, 'RET', 'first', periodvar='Date', byvars=['PERMNO','byvar'], grossify=True) assert_frame_equal(expect_first_grossify, cum_df, check_dtype=False) class TestGroupbyMerge(DataFrameTest): def test_subset_max(self): byvars = ['PERMNO','byvar'] out = dero.pandas.groupby_merge(self.df, byvars, 'max', subset='RET') expect_df = pd.DataFrame( [(10516, 'a', '1/1/2000', 1.01, 1.04), (10516, 'a', '1/2/2000', 1.02, 1.04), (10516, 'a', '1/3/2000', 1.03, 1.04), (10516, 'a', '1/4/2000', 1.04, 1.04), (10516, 'b', '1/1/2000', 1.05, 1.08), (10516, 'b', '1/2/2000', 1.06, 1.08), (10516, 'b', '1/3/2000', 1.07, 1.08), (10516, 'b', '1/4/2000', 1.08, 1.08), (10517, 'a', '1/1/2000', 1.09, 1.12), (10517, 'a', '1/2/2000', 1.10, 1.12), (10517, 'a', '1/3/2000', 1.11, 1.12), (10517, 'a', '1/4/2000', 1.12, 1.12)], columns = ['PERMNO','byvar','Date', 'RET', 'RET_max']) assert_frame_equal(expect_df, out) def test_subset_std(self): byvars = ['PERMNO','byvar'] out = dero.pandas.groupby_merge(self.df, byvars, 'std', subset='RET') expect_df = pd.DataFrame( [(10516, 'a', '1/1/2000', 1.01, 0.012909944487358068), (10516, 'a', '1/2/2000', 1.02, 0.012909944487358068), (10516, 'a', '1/3/2000', 1.03, 0.012909944487358068), (10516, 'a', '1/4/2000', 1.04, 0.012909944487358068), (10516, 'b', '1/1/2000', 1.05, 0.012909944487358068), (10516, 'b', '1/2/2000', 1.06, 0.012909944487358068), (10516, 'b', '1/3/2000', 1.07, 0.012909944487358068), (10516, 'b', '1/4/2000', 1.08, 0.012909944487358068), (10517, 'a', '1/1/2000', 1.09, 0.012909944487358068), (10517, 'a', '1/2/2000', 1.10, 0.012909944487358068), (10517, 'a', '1/3/2000', 1.11, 0.012909944487358068), (10517, 'a', '1/4/2000', 1.12, 0.012909944487358068)], columns = ['PERMNO','byvar','Date', 'RET', 'RET_std']) assert_frame_equal(expect_df, out) def test_nan_byvar_transform(self): expect_df = self.df_nan_byvar.copy() expect_df['val_transform'] = expect_df['val'] out = dero.pandas.groupby_merge(self.df_nan_byvar, 'byvar', 'transform', (lambda x: x)) assert_frame_equal(expect_df, out) def test_nan_byvar_and_nan_val_transform_numeric(self): non_standard_index = self.df_nan_byvar_and_val.copy() non_standard_index.index = [5,6,7,8] expect_df = self.df_nan_byvar_and_val.copy() expect_df['val_transform'] = expect_df['val'] + 1 expect_df.index = [5,6,7,8] out = dero.pandas.groupby_merge(non_standard_index, 'byvar', 'transform', (lambda x: x + 1)) assert_frame_equal(expect_df, out) def test_nan_byvar_and_nan_val_and_nonstandard_index_transform_numeric(self): expect_df = self.df_nan_byvar_and_val.copy() expect_df['val_transform'] = expect_df['val'] + 1 def test_nan_byvar_sum(self): expect_df = pd.DataFrame(data = [ ('a', 1, 1.0), (nan, 2, nan), ('b', 3, 7.0), ('b', 4, 7.0), ], columns = ['byvar', 'val', 'val_sum']) out = dero.pandas.groupby_merge(self.df_nan_byvar, 'byvar', 'sum') assert_frame_equal(expect_df, out) class TestLongToWide: expect_df_with_colindex = pd.DataFrame(data = [ (10516, 'a', 1.01, 1.02, 1.03, 1.04), (10516, 'b', 1.05, 1.06, 1.07, 1.08), (10517, 'a', 1.09, 1.1, 1.11, 1.12), ], columns = ['PERMNO', 'byvar', 'RET1/1/2000', 'RET1/2/2000', 'RET1/3/2000', 'RET1/4/2000']) expect_df_no_colindex = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'a', '1/2/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'a', '1/3/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'a', '1/4/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'b', '1/1/2000', 1.05, 1.06, 1.07, 1.08), (10516, 'b', '1/2/2000', 1.05, 1.06, 1.07, 1.08), (10516, 'b', '1/3/2000', 1.05, 1.06, 1.07, 1.08), (10516, 'b', '1/4/2000', 1.05, 1.06, 1.07, 1.08), (10517, 'a', '1/1/2000', 1.09, 1.1, 1.11, 1.12), (10517, 'a', '1/2/2000', 1.09, 1.1, 1.11, 1.12), (10517, 'a', '1/3/2000', 1.09, 1.1, 1.11, 1.12), (10517, 'a', '1/4/2000', 1.09, 1.1, 1.11, 1.12), ], columns = ['PERMNO', 'byvar', 'Date', 'RET0', 'RET1', 'RET2', 'RET3']) input_data = DataFrameTest() ltw_no_dup_colindex = dero.pandas.long_to_wide(input_data.df, ['PERMNO', 'byvar'], 'RET', colindex='Date') ltw_dup_colindex = dero.pandas.long_to_wide(input_data.df_duplicate_row, ['PERMNO', 'byvar'], 'RET', colindex='Date') ltw_no_dup_no_colindex = dero.pandas.long_to_wide(input_data.df, ['PERMNO', 'byvar'], 'RET') ltw_dup_no_colindex = dero.pandas.long_to_wide(input_data.df_duplicate_row, ['PERMNO', 'byvar'], 'RET') df_list = [ltw_no_dup_colindex, ltw_dup_colindex, ltw_no_dup_no_colindex, ltw_dup_no_colindex] def test_no_duplicates_with_colindex(self): assert_frame_equal(self.expect_df_with_colindex, self.ltw_no_dup_colindex) def test_duplicates_with_colindex(self): assert_frame_equal(self.expect_df_with_colindex, self.ltw_dup_colindex) def test_no_duplicates_no_colindex(self): assert_frame_equal(self.expect_df_no_colindex, self.ltw_no_dup_no_colindex) def test_duplicates_no_colindex(self): assert_frame_equal(self.expect_df_no_colindex, self.ltw_dup_no_colindex) def test_no_extra_vars(self): for df in self.df_list: assert ('__idx__','__key__') not in df.columns class TestPortfolioAverages: input_data = DataFrameTest() expect_avgs_no_wt = pd.DataFrame(data = [ (1, 'a', 1.0250000000000001), (1, 'b', 1.0550000000000002), (2, 'a', 1.1050000000000002), (2, 'b', 1.0750000000000002), ], columns = ['portfolio', 'byvar', 'RET']) expect_avgs_wt = pd.DataFrame(data = [ (1, 'a', 1.0250000000000001, 1.025), (1, 'b', 1.0550000000000002, 1.0550000000000002), (2, 'a', 1.1050000000000002, 1.12), (2, 'b', 1.0750000000000002, 1.0750000000000002), ], columns = ['portfolio', 'byvar', 'RET', 'RET_wavg']) expect_ports = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 0, 1), (10516, 'a', '1/2/2000', 1.02, 1, 1), (10516, 'a', '1/3/2000', 1.03, 1, 1), (10516, 'a', '1/4/2000', 1.04, 0, 1), (10516, 'b', '1/1/2000', 1.05, 1, 1), (10516, 'b', '1/2/2000', 1.06, 1, 1), (10516, 'b', '1/3/2000', 1.07, 1, 2), (10516, 'b', '1/4/2000', 1.08, 1, 2), (10517, 'a', '1/1/2000', 1.09, 0, 2), (10517, 'a', '1/2/2000', 1.1, 0, 2), (10517, 'a', '1/3/2000', 1.11, 0, 2), (10517, 'a', '1/4/2000', 1.12, 1, 2), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'weight', 'portfolio']) avgs, ports = dero.pandas.portfolio_averages(input_data.df_weight, 'RET', 'RET', ngroups=2, byvars='byvar') w_avgs, w_ports = dero.pandas.portfolio_averages(input_data.df_weight, 'RET', 'RET', ngroups=2, byvars='byvar', wtvar='weight') def test_simple_averages(self): assert_frame_equal(self.expect_avgs_no_wt, self.avgs, check_dtype=False) def test_weighted_averages(self): assert_frame_equal(self.expect_avgs_wt, self.w_avgs, check_dtype=False) def test_portfolio_construction(self): print(self.ports) assert_frame_equal(self.expect_ports, self.ports, check_dtype=False) assert_frame_equal(self.expect_ports, self.w_ports, check_dtype=False) class TestWinsorize(DataFrameTest): def test_winsor_40_subset_byvars(self): expect_df = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.022624), (10516, 'a', '1/2/2000', 1.022624), (10516, 'a', '1/3/2000', 1.02672), (10516, 'a', '1/4/2000', 1.02672), (10516, 'b', '1/1/2000', 1.062624), (10516, 'b', '1/2/2000', 1.062624), (10516, 'b', '1/3/2000', 1.06672), (10516, 'b', '1/4/2000', 1.06672), (10517, 'a', '1/1/2000', 1.102624), (10517, 'a', '1/2/2000', 1.102624), (10517, 'a', '1/3/2000', 1.10672), (10517, 'a', '1/4/2000', 1.10672), ], columns = ['PERMNO', 'byvar', 'Date', 'RET']) wins = dero.pandas.winsorize(self.df, .4, subset='RET', byvars=['PERMNO','byvar']) assert_frame_equal(expect_df, wins, check_less_precise=True) class TestRegBy(DataFrameTest): def create_indf(self): indf = self.df_weight.copy() indf['key'] = indf['PERMNO'].astype(str) + '_' + indf['byvar'] return indf def test_regby_nocons(self): indf = self.create_indf() expect_df = pd.DataFrame(data = [ (0.48774684748988806, '10516_a'), (0.9388636664168903, '10516_b'), (0.22929206076239614, '10517_a'), ], columns = ['coef_RET', 'key']) rb = dero.pandas.reg_by(indf, 'weight', 'RET', 'key', cons=False) print('Reg by: ', rb) assert_frame_equal(expect_df, rb) def test_regby_cons(self): indf = self.create_indf() expect_df = pd.DataFrame(data = [ (0.49999999999999645, 5.329070518200751e-15, '10516_a'), (0.9999999999999893, 1.0658141036401503e-14, '10516_b'), (-32.89999999999997, 29.999999999999982, '10517_a'), ], columns = ['const', 'coef_RET', 'key']) rb = dero.pandas.reg_by(indf, 'weight', 'RET', 'key') print('Reg by: ', rb) assert_frame_equal(expect_df, rb) def test_regby_cons_low_obs(self): indf = self.create_indf().loc[:8,:] #makes it so that one byvar only has one obs expect_df = pd.DataFrame(data = [ (0.49999999999999645, 5.329070518200751e-15, '10516_a'), (0.9999999999999893, 1.0658141036401503e-14, '10516_b'), (nan, nan, '10517_a'), ], columns = ['const', 'coef_RET', 'key']) rb = dero.pandas.reg_by(indf, 'weight', 'RET', 'key') print('Reg by: ', rb) assert_frame_equal(expect_df, rb) class TestExpandMonths(DataFrameTest): def test_expand_months_tradedays(self): expect_df = pd.DataFrame(data = [ (Timestamp('2000-01-03 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-04 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-05 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-06 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-07 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-10 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-11 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-12 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-13 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-14 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-18 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-19 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-20 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-21 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-24 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-25 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-26 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-27 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-28 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-31 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), ], columns = ['Daily Date', 'byvar', 'Date', 'TICKER']) em = dero.pandas.expand_months(self.single_ticker_df) assert_frame_equal(expect_df.sort_index(axis=1), em.sort_index(axis=1)) def test_expand_months_calendardays(self): expect_df = pd.DataFrame(data = [ (Timestamp('2000-01-01 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-02 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-03 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-04 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-05 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-06 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-07 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-08 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-09 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-10 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-11 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-12 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-13 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-14 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-15 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-16 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-17 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-18 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-19 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-20 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-21 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-22 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-23 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-24 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-25 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-26 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-27 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-28 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-29 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-30 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-31 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), ], columns = ['Daily Date', 'byvar', 'Date', 'TICKER']) em = dero.pandas.expand_months(self.single_ticker_df, trade_days=False) assert_frame_equal(expect_df.sort_index(axis=1), em.sort_index(axis=1)) class TestPortfolio(DataFrameTest): def test_portfolio_byvars(self): expect_df = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 1), (10516, 'a', '1/2/2000', 1.02, 1), (10516, 'a', '1/3/2000', 1.03, 2), (10516, 'a', '1/4/2000', 1.04, 2), (10516, 'b', '1/1/2000', 1.05, 1), (10516, 'b', '1/2/2000', 1.06, 1), (10516, 'b', '1/3/2000', 1.07, 2), (10516, 'b', '1/4/2000', 1.08, 2), (10517, 'a', '1/1/2000', 1.09, 1), (10517, 'a', '1/2/2000', 1.1, 1), (10517, 'a', '1/3/2000', 1.11, 2), (10517, 'a', '1/4/2000', 1.12, 2), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'portfolio']) p = dero.pandas.portfolio(self.df, 'RET', ngroups=2, byvars=['PERMNO','byvar']) assert_frame_equal(expect_df, p, check_dtype=False) def test_portfolio_with_nan_and_byvars(self): expect_df = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', nan, 0), (10516, 'a', '1/2/2000', 1.02, 1), (10516, 'a', '1/3/2000', 1.03, 1), #changed from 2 to 1 when updated nan handling (10516, 'a', '1/4/2000', 1.04, 2), (10516, 'b', '1/1/2000', 1.05, 1), (10516, 'b', '1/2/2000', 1.06, 1), (10516, 'b', '1/3/2000', 1.07, 2), (10516, 'b', '1/4/2000', 1.08, 2), (10517, 'a', '1/1/2000', 1.09, 1), (10517, 'a', '1/2/2000', 1.1, 1), (10517, 'a', '1/3/2000', 1.11, 2), (10517, 'a', '1/4/2000', 1.12, 2), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'portfolio']) indf = self.df.copy() indf.loc[0, 'RET'] = nan p = dero.pandas.portfolio(indf, 'RET', ngroups=2, byvars=['PERMNO','byvar']) assert_frame_equal(expect_df, p, check_dtype=False) class TestConvertSASDateToPandasDate: df_sasdate = pd.DataFrame(data = [ ('011508', 16114.0), ('011508', 16482.0), ('011508', 17178.0), ('011508', 17197.0), ('011508', 17212.0), ], columns = ['gvkey', 'datadate']) df_sasdate_nan = pd.DataFrame(data = [ ('011508', 16114.0), ('011508', 16482.0), ('011508', 17178.0), ('011508', 17197.0), ('011508', nan), ('011508', 17212.0), ], columns = ['gvkey', 'datadate']) def test_convert(self): expect_df = pd.DataFrame(data = [ (numpy.datetime64('2004-02-13T00:00:00.000000000'),), (numpy.datetime64('2005-02-15T00:00:00.000000000'),), (numpy.datetime64('2007-01-12T00:00:00.000000000'),), (numpy.datetime64('2007-01-31T00:00:00.000000000'),), (numpy.datetime64('2007-02-15T00:00:00.000000000'),), ], columns = [0]) converted = pd.DataFrame(dero.pandas.convert_sas_date_to_pandas_date(self.df_sasdate['datadate'])) assert_frame_equal(expect_df, converted) def test_convert_nan(self): expect_df = pd.DataFrame(data = [ (numpy.datetime64('2004-02-13T00:00:00.000000000'),), (numpy.datetime64('2005-02-15T00:00:00.000000000'),), (numpy.datetime64('2007-01-12T00:00:00.000000000'),), (numpy.datetime64('2007-01-31T00:00:00.000000000'),), (numpy.datetime64('NaT'),), (numpy.datetime64('2007-02-15T00:00:00.000000000'),), ], columns = [0]) converted = pd.DataFrame(dero.pandas.convert_sas_date_to_pandas_date(self.df_sasdate_nan['datadate'])) assert_frame_equal(expect_df, converted) class TestMapWindows(DataFrameTest): times = [ [-4, -2, 0], [-3, 1, 2], [4, 5, 6], [0, 1, 2], [-1, 0, 1] ] df_period_str = pd.DataFrame([ (10516, '1/1/2000', 1.01), (10516, '1/2/2000', 1.02), (10516, '1/3/2000', 1.03), (10516, '1/4/2000', 1.04), (10516, '1/5/2000', 1.05), (10516, '1/6/2000', 1.06), (10516, '1/7/2000', 1.07), (10516, '1/8/2000', 1.08), (10517, '1/1/2000', 1.09), (10517, '1/2/2000', 1.10), (10517, '1/3/2000', 1.11), (10517, '1/4/2000', 1.12), (10517, '1/5/2000', 1.05), (10517, '1/6/2000', 1.06), (10517, '1/7/2000', 1.07), (10517, '1/8/2000', 1.08), ], columns = ['PERMNO','Date', 'RET']) df_period = df_period_str.copy() df_period['Date'] = pd.to_datetime(df_period['Date']) expect_dfs = [ pd.DataFrame(data = [ (10516, Timestamp('2000-01-01 00:00:00'), 1.01, 0), (10516, Timestamp('2000-01-02 00:00:00'), 1.02, 1), (10516, Timestamp('2000-01-03 00:00:00'), 1.03, 1), (10516, Timestamp('2000-01-04 00:00:00'), 1.04, 2), (10516, Timestamp('2000-01-05 00:00:00'), 1.05, 2), (10516, Timestamp('2000-01-06 00:00:00'), 1.06, 3), (10516, Timestamp('2000-01-07 00:00:00'), 1.07, 3), (10516, Timestamp('2000-01-08 00:00:00'), 1.08, 3), (10517, Timestamp('2000-01-01 00:00:00'), 1.09, 0), (10517, Timestamp('2000-01-02 00:00:00'), 1.1, 1), (10517, Timestamp('2000-01-03 00:00:00'), 1.11, 1), (10517, Timestamp('2000-01-04 00:00:00'), 1.12, 2), (10517, Timestamp('2000-01-05 00:00:00'), 1.05, 2), (10517, Timestamp('2000-01-06 00:00:00'), 1.06, 3), (10517,
Timestamp('2000-01-07 00:00:00')
pandas.Timestamp
# import libraries import sys import os import time import csv import re # regex import time import pandas as pd import numpy as np #from langdetect import detect from collections import Counter from nltk.corpus import stopwords as sw from nltk.tokenize import word_tokenize from nltk.stem.snowball import ItalianStemmer from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.naive_bayes import GaussianNB, MultinomialNB, ComplementNB from sklearn.metrics import f1_score, confusion_matrix import matplotlib.pyplot as plt # %matplotlib inline import seaborn as sns def loadData(file,dev=False) : # check if files exist if not os.path.isfile(file) : print (f"File not found in specified path ({file})") sys.exit(1) df =
pd.read_csv(file, encoding='utf-8')
pandas.read_csv
#!/usr/bin/env python import os import pickle as pickle from djeval import * import numpy as np from pandas import DataFrame, Series, read_pickle, concat, cut, qcut from sklearn.ensemble import GradientBoostingRegressor from sklearn.externals import joblib MG_CLIP = -300 def quantile_scorer_two(estimator, X, y): pred_y = estimator.predict(X) print(DataFrame([X['elo'], y, pred_y])) mask = y < pred_y return float(mask.sum()) / y.shape[0] msg('loading blundermodels') blundermodel_dir = sys.argv[1] thing = joblib.load(blundermodel_dir + 'groups.p') elo_bins = thing[0] mg_quants = thing[1] print('elo_bins is %s' % str(elo_bins)) print('mg_quants is %s' % str(mg_quants)) blundermodels = {} num_models = (len(elo_bins) - 1) * (len(mg_quants) + 1) msg('Loading the %i models' % num_models) for modelnum in range(0,num_models): thing = joblib.load('%s%i.p' % (blundermodel_dir, modelnum)) elo_name = thing[0] mg_quant = thing[1] model = thing[2] blundermodels[elo_name, mg_quant] = model msg('reading movedata') moves_df = read_pickle('/data/movedata.p') moves_df['clipped_movergain'] = moves_df['movergain'].clip(MG_CLIP,0) train_df = moves_df[moves_df['elo'].notnull()] fitted_df = train_df[train_df['gamenum'] % 2 == 0] test_df = train_df[train_df['gamenum'] % 2 == 1] features = ['side', 'halfply', 'moverscore', 'bestmove_is_capture', 'bestmove_is_check', 'depth', 'seldepth', 'num_bestmoves', 'num_bestmove_changes', 'bestmove_depths_agreeing', 'deepest_change'] for key, model in blundermodels.items(): elo_name = key[0] mg_quant = key[1] elo_bounds = [float(x) for x in elo_name[1:-1].split(', ')] moves_to_test = fitted_df[(fitted_df['elo'] >= elo_bounds[0]) & (fitted_df['elo'] <= elo_bounds[1])] diagnostic_cols_to_show = ['gamenum','elo','perfect_pred','movergain'] diagnostic_cols_to_show.extend(features) if mg_quant == 1.0: X = moves_to_test[features] y = (moves_to_test['clipped_movergain'] == 0) pred_y = model.predict_proba(X) pred_y = [x[1] for x in pred_y] combo = concat([Series(y.values), Series(pred_y)], axis=1) combo_groups = cut(combo[1], 10) print(("%s perfect-move model prediction distribution and success:\n%s" % (elo_name, combo.groupby(combo_groups)[0].agg({'mean': np.mean, 'count': len})))) moves_to_test['perfect_pred'] = pred_y print("MOVES MOST LIKELY TO MAKE THE BEST MOVE:") print(moves_to_test.sort('perfect_pred', ascending=False)[diagnostic_cols_to_show].head()) print("MOVES LEAST LIKELY TO MAKE THE BEST MOVE:") print(moves_to_test.sort('perfect_pred', ascending=True)[diagnostic_cols_to_show].head()) else: imperfect_moves = moves_to_test[moves_to_test['clipped_movergain'] < 0] X = imperfect_moves[features] y = imperfect_moves['clipped_movergain'] pred_y = model.predict(X) mask = y < pred_y score = float(mask.sum()) / y.shape[0] print(('imperfect-move error-size quantile model for %s: true quantile is %f' % (key, score))) combo = concat([
Series(y.values)
pandas.Series
""" ecospold2matrix - Class for recasting ecospold2 dataset in matrix form. The module provides function to parse ecospold2 data, notably ecoinvent 3, as Leontief A-matrix and extensions, or alternatively as supply and use tables for the unallocated version of ecoinvent. :PythonVersion: 3 :Dependencies: pandas 0.14.1 or more recent, scipy, numpy, lxml and xml License: BDS Authors: <NAME> <NAME> <NAME> <NAME> Credits: This module re-uses/adapts code from brightway2data, more specifically the Ecospold2DataExtractor class in import_ecospold2.py, changeset: 271:7e67a75ed791; Wed Sep 10; published under BDS-license: Copyright (c) 2014, <NAME> and ETH Zürich Neither the name of ETH Zürich nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import pdb import os import glob import io import pkgutil import subprocess from lxml import objectify import xml.etree.ElementTree as ET from lxml import etree import pandas as pd _df = pd.DataFrame import numpy as np import scipy.sparse import scipy.io import logging import pickle import gzip import csv import shelve import hashlib import sqlite3 try: import IPython except: pass import re import xlrd import xlwt import copy # pylint: disable-msg=C0103 class Ecospold2Matrix(object): """ Defines a parser object that holds all project parameters and processes the ecospold-formatted data into matrices of choice. The two main functions of this class are ecospold_to_Leontief() and ecospold_to_sut() """ # Some hardcoded stuff __PRE = '{http://www.EcoInvent.org/EcoSpold02}' __ELEXCHANGE = 'ElementaryExchanges.xml' __INTERMEXCHANGE = 'IntermediateExchanges.xml' __ACTIVITYINDEX = 'ActivityIndex.xml' __DB_CHARACTERISATION = 'characterisation.db' rtolmin = 1e-16 # 16 significant digits being roughly the limit of float64 __TechnologyLevels = pd.Series( ['Undefined', 'New', 'Modern', 'Current', 'Old', 'Outdated'], index=[0, 1, 2, 3, 4, 5]) def __init__(self, sys_dir, project_name, out_dir='.', lci_dir=None, positive_waste=False, prefer_pickles=False, nan2null=False, save_interm=True, PRO_order=['ISIC', 'activityName'], STR_order=['comp', 'name', 'subcomp'], verbose=True, version_name='ecoinvent31', unlinked = True, remove_markets=True): """ Defining an ecospold2matrix object, with key parameters that determine how the data will be processes. Args: ----- * sys_dir: directory containing the system description,i.e., ecospold dataset and master XML files * project_name: Name used to log progress and save results * out_dir: Directory where to save result matrices and logs * lci_dir: Directory where official cummulative LCI ecospold files are * positive_waste: Whether or not to change sign convention and make waste flows positive [default false] * prefer_pickles: If sys_dir contains pre-processed data in form of pickle-files, whether or not to use those [Default: False, don't use] * nan2null: Whether or not to replace Not-a-Number by 0.0 [Default: False, don't replace anything] * save_interm: Whether or not to save intermediate results as pickle files for potential re-use [Default: True, do it] * PRO_order: List of meta-data used for sorting processes in the different matrices. [Default: first sort by order of ISIC code, then, within each code, by order of activity name] * PRO_order: List of meta-data used for sorting stressors (elementary flows) in the different matrices. [Default: first sort by order of compartment, subcompartment and then by name] * unlinked: Whether or not the datasets are linked/allocated. [Default: True, the data are unlinked] Main functions and worflow: --------------------------- self.ecospold_to_Leontief(): Turn ecospold files into Leontief matrix representation * Parse ecospold files, get products, activities, flows, emissions * If need be, correct inconsistencies in system description * After corrections, create "final" labels for matrices * Generate symmetric, normalized system description (A-matrix, extension F-matrix) * Save to file (many different formats) * Optionally, read cummulative lifecycle inventories (slow) and compare to calculated LCI for sanity testing self.ecospold_to_sut(): Turn unallocated ecospold into Suppy and Use Tables * Parse ecospold files, get products, activities, flows, emissions * Organize in supply and use * optionally, aggregate sources to generate a fully untraceable SUT * Save to file """ # INTERMEDIATE DATA/RESULTS, TO BE GENERATED BY OBJECT METHODS self.products = None # products, with IDs and descriptions self.activities = None # activities, w IDs and description self.inflows = None # intermediate-exchange input flows self.outflows = None # intermediate-exchange output flows self.prices = None self.elementary_flows = None # elementary flows self.q = None # total supply of each product self.PRO_old=None self.STR_old = None self.IMP_old=None # FINAL VARIABLES: SYMMETRIC SYSTEM, NORMALIZED AND UNNORMALIZED self.PRO = None # Process labels, rows/cols of A-matrix self.STR = None # Factors labels, rows extensions self.IMP = pd.DataFrame([]) # impact categories self.A = None # Normalized Leontief coefficient matrix self.F = None # Normalized factors of production,i.e., # elementary exchange coefficients self.Z = None # Intermediate unnormalized process flows self.G_pro = None # Unnormalized Process factor requirements self.C = pd.DataFrame([]) # characterisation matrix # Final variables, unallocated and unnormalized inventory self.U = None # Table of use of products by activities self.V = None # Table of supply of product by activities # (ammounts for which use is recorded) self.G_act = None # Table of factor use by activities self.V_prodVol = None # Table of supply production volumes # (potentially to rescale U, V and G) # QUALITY CHECKS VARIABLES, TO BE GENERATED BY OBJECT METHODS. self.E = None # cummulative LCI matrix (str x pro) self.unsourced_flows = None # product flows without clear source self.missing_activities = None # cases of no incomplete dataset, i.e., # no producer for a product # PROJECT NAME AND DIRECTORIES, FROM ARGUMENTS self.sys_dir = os.path.abspath(sys_dir) self.project_name = project_name self.out_dir = os.path.abspath(out_dir) if lci_dir: self.lci_dir = os.path.abspath(lci_dir) else: self.lci_dir = lci_dir self.version_name = version_name self.char_method = None # characterisation method set by # read_characterisation function self.data_version = None # PROJECT-WIDE OPTIONS self.positive_waste = positive_waste self.prefer_pickles = prefer_pickles self.nan2null = nan2null self.save_interm = save_interm self.PRO_order = PRO_order self.STR_order = STR_order # DATASETS UNLINKED/UNALLOCATED self.unlinked = unlinked # Is the data (spold files) linked and allocated or not. Default = True data is NOT linked self.remove_markets = remove_markets # If the data is unlinked, remove the markets see function self.remove_Markets # CREATE DIRECTORIES IF NOT IN EXISTENCE if out_dir and not os.path.exists(self.out_dir): os.makedirs(self.out_dir) self.log_dir = os.path.join(self.out_dir, self.project_name + '_log') # Fresh new log os.system('rm -Rf ' + self.log_dir) os.makedirs(self.log_dir) # DEFINE LOG TOOL self.log = logging.getLogger(self.project_name) self.log.setLevel(logging.INFO) self.log.handlers = [] # reset handlers if verbose: ch = logging.StreamHandler() ch.setLevel(logging.INFO) fh = logging.FileHandler(os.path.join(self.log_dir, project_name + '.log')) fh.setLevel(logging.INFO) aformat = "%(asctime)s - %(name)s - %(levelname)s - %(message)s" formatter = logging.Formatter(aformat) fh.setFormatter(formatter) self.log.addHandler(fh) if verbose: ch.setFormatter(formatter) self.log.addHandler(ch) # RECORD OBJECT/PROJECT IDENTITY TO LOG self.log.info('Ecospold2Matrix Processing') try: gitcommand = ["git", "log", "--pretty=format:%H", "-n1"] githash = subprocess.check_output(gitcommand).decode("utf-8") self.log.info("Current git commit: {}".format(githash)) except: pass self.log.info('Project name: ' + self.project_name) # RECORD PROJECT PARAMETERS TO LOG self.log.info('Unit process and Master data directory: ' + sys_dir) self.log.info('Data saved in: ' + self.out_dir) if self.lci_dir: self.log.info('Official rolled-up life cycle inventories in: ' + self.lci_dir) if self.positive_waste: self.log.info('Sign conventions changed to make waste flows ' 'positive') if self.prefer_pickles: self.log.info('When possible, loads pickled data instead of' ' parsing ecospold files') if self.nan2null: self.log.info('Replace Not-a-Number instances with 0.0 in all' ' matrices') if self.save_interm: self.log.info('Pickle intermediate results to files') self.log.info('Order processes based on: ' + ', '.join([i for i in self.PRO_order])) self.log.info('Order elementary exchanges based on: ' + ', '.join([i for i in self.STR_order])) database_name = self.project_name + '_' + self.__DB_CHARACTERISATION os.system('rm ' + database_name) try: self.conn = sqlite3.connect( self.project_name + '_' + self.__DB_CHARACTERISATION) self.initialize_database() except: self.log.warning("Could not establish connection to database") pass self.conn.commit() # ========================================================================= # MAIN FUNCTIONS def ecospold_to_Leontief(self, fileformats=None, with_absolute_flows=False, lci_check=False, rtol=5e-2, atol=1e-5, imax=3, characterisation_file=None, ardaidmatching_file=None): """ Recasts an full ecospold dataset into normalized symmetric matrices Args: ----- * fileformats : List of file formats in which to save data [Default: None, save to all possible file formats] Options: 'Pandas' --> pandas dataframes 'csv' --> text with separator = '|' 'SparsePandas' --> sparse pandas dataframes 'SparseMatrix' --> scipy AND matlab sparse 'SparseMatrixForArda' --> with special background variable names * with_absolut_flow: If true, produce not only coefficient matrices (A and F) but also scale them up to production volumes to get absolute flows in separate matrices. [default: false] * lci_check : If true, and if lci_dir is not None, parse cummulative lifecycle inventory data as self.E matrix (str x pro), and use it for sanity check against calculated cummulative LCI * rtol : Initial (max) relative tolerance for comparing E with calculated E * atol : Initial (max) absolute tolerance for comparing E with calculated E * characterisation_file: name of file containing characterisation factors * ardaidmatching_file: name of file matching Arda Ids, Ecoinvent2 DSIDs and ecoinvent3 UUIDs. Only useful for the Arda project. Generates: ---------- * Intermediate data: products, activities, flows, labels * A matrix: Normalized, intermediate exchange Leontief coefficients (pro x pro) * F matrix: Normalized extensions, factor requirements (elementary exchanges) for each process (str x pro) * E matrix: [optionally] cummulative normalized lci data (str x pro) (for quality check) Returns: ------- * None, save all matrices in the object, and to file """ # Read in system description self.extract_products() self.extract_activities() self.get_flows() self.get_labels() # Clean up if necessary self.__find_unsourced_flows() if self.unsourced_flows is not None: self.__fix_flow_sources() self.__fix_missing_activities() # Once all is well, add extra info to PRO and STR, and order nicely self.complement_labels() # Finally, assemble normalized, symmetric matrices self.build_AF() if with_absolute_flows: self.scale_up_AF() if characterisation_file is not None: print("starting characterisation") if 'LCIA_implementation' in characterisation_file: self.log.info("Characterisation file seems to be ecoinvent" " LCIA implementation. Will apply simple name" " matching") self.simple_characterisation_matching(characterisation_file) else: self.prepare_matching_load_parameters() self.process_inventory_elementary_flows() self.read_characterisation(characterisation_file) self.populate_complementary_tables() self.characterize_flows() self.generate_characterized_extensions() if ardaidmatching_file: self.make_compatible_with_arda(ardaidmatching_file) # Save system to file self.save_system(fileformats) # Read/load lci cummulative emissions and perform quality check if lci_check: self.get_cummulative_lci() self.cummulative_lci_check(rtol, atol, imax) self.log.info('Done running ecospold2matrix.ecospold_to_Leontief') def ecospold_to_sut(self, fileformats=None, make_untraceable=False): """ Recasts an unallocated ecospold dataset into supply and use tables Args: ----- * fileformats : List of file formats in which to save data [Default: None, save to all possible file formats] Options: 'Pandas' --> pandas dataframes 'SparsePandas' --> sparse pandas dataframes, 'SparseMatrix' --> scipy AND matlab sparse 'csv' --> text files * make_untraceable: Whether or not to aggregate away the source activity dimension, yielding a use table in which products are no longer linked to their providers [default: False; don't do it] Generates: ---------- * Intermediate data: Products, activities, flows, labels * V table Matrix of supply of product by activities * U table Matrix of use of products by activities (recorded for a given supply amount, from V) * G_act Matrix of factor use by activities (recorded for a given supply amount, from V) * V_prodVol Matrix of estimated real production volumes, arranged as suply table (potentially useful to rescale U, V and G) Returns: ------- * None, save all matrices in the object, and to file """ # Extract data on producs and activities self.extract_products() self.extract_activities() # Extract or load data on flows and labels self.get_flows() self.get_labels() self.complement_labels() # Arrange as supply and use if self.remove_markets is True: self.remove_Markets() self.build_sut(make_untraceable) # Save to file self.save_system(fileformats) self.log.info("Done running ecospold2matrix.ecospold_to_sut") # ========================================================================= # INTERMEDIATE WRAPPER METHODS: parse or load data + pickle results or not def get_flows(self): """ Wrapper: load from pickle or call extract_flows() to read ecospold files. Behavious determined by: ------------------------ prefer_pickles: Whether or not to load flow lists from previous run instead of (re)reading XML Ecospold files save_interm: Whether or not to pickle flows to file for use in another project run. Generates: ---------- self.inflows self.outflows self.elementary_flows self.prices Returns: -------- None, only defines within object """ filename = os.path.join(self.sys_dir, 'flows.pickle') # EITHER LOAD FROM PREVIOUS ROUND... if self.prefer_pickles and os.path.exists(filename): # Read all flows with open(filename, 'rb') as f: [self.inflows, self.elementary_flows, self.outflows, self.prices] = pickle.load(f) # Log event sha1 = self.__hash_file(f) msg = "{} loaded from {} with SHA-1 of {}" self.log.info(msg.format('Flows', filename, sha1)) # ...OR EXTRACT FROM ECOSPOLD DATA.. else: self.extract_flows() # optionally, pickle for further use if self.save_interm: with open(filename, 'wb') as f: pickle.dump([self.inflows, self.elementary_flows, self.outflows, self.prices], f) # Log event sha1 = self.__hash_file(filename) msg = "{} saved in {} with SHA-1 of {}" self.log.info(msg.format('Flows', filename, sha1)) def get_labels(self): """ Wrapper: load from pickle, or call methods to build labels from scratch Behaviour determined by: ------------------------ * prefer_pickles: Whether or not to load flow lists from previous run instead of (re)reading XML Ecospold files * save_interm: Whether or not to pickle flows to file for use in another project run. Generates: ---------- * PRO: metadata on each process, i.e. production of each product by each activity. * STR: metadata on each stressor (or elementary exchange, factor of production) Returns: -------- * None, only defines within object NOTE: ----- * At this stage, labels are at the strict minimum (ID, name) to facilitate the addition of new processes or stressors, if need be, to "patch" inconsistencies in the dataset. Once all is sorted out, more data from product, activities, and elementary_flow descriptions are added to the labels in self.complement_labels() """ filename = os.path.join(self.sys_dir, 'rawlabels.pickle') # EITHER LOAD FROM PREVIOUS ROUND... if self.prefer_pickles and os.path.exists(filename): # Load from pickled file with open(filename, 'rb') as f: self.PRO, self.STR = pickle.load(f) # Log event sha1 = self.__hash_file(f) msg = "{} loaded from {} with SHA-1 of {}" self.log.info(msg.format('Labels', filename, sha1)) # OR EXTRACT FROM ECOSPOLD DATA... else: self.build_PRO() self.build_STR() # and optionally pickle for further use if self.save_interm: with open(filename, 'wb') as f: pickle.dump([self.PRO, self.STR], f) # Log event sha1 = self.__hash_file(filename) msg = "{} saved in {} with SHA-1 of {}" self.log.info(msg.format('Labels', filename, sha1)) def get_cummulative_lci(self): """ Wrapper: load from pickle or call build_E() to read ecospold files. Behaviour determined by: ------------------------ * prefer_pickles: Whether or not to load flow lists from previous run instead of (re)reading XML Ecospold files * save_interm: Whether or not to pickle flows to file for use in another project run. * lci_dir: Directory where cummulative LCI ecospold are Generates: ---------- * E: cummulative LCI emissions matrix Returns: -------- * None, only defines within object """ filename = os.path.join(self.lci_dir, 'lci.pickle') # EITHER LOAD FROM PREVIOUS ROUND... if self.prefer_pickles and os.path.exists(filename): with open(filename, 'rb') as f: self.E = pickle.load(f) # log event sha1 = self.__hash_file(f) msg = "{} loaded from {} with SHA-1 of {}" self.log.info(msg.format('Cummulative LCI', filename, sha1)) # OR BUILD FROM ECOSPOLD DATA... else: self.build_E() # optionally, pickle for further use if self.save_interm: with open(filename, 'wb') as f: pickle.dump(self.E, f) # log event sha1 = self.__hash_file(filename) msg = "{} saved in {} with SHA-1 of {}" self.log.info(msg.format('Cummulative LCI', filename, sha1)) # ========================================================================= # PARSING METHODS: the hard work with xml files def extract_products(self): """ Parses INTERMEDIATEEXCHANGE file to extract core data on products: Id's, name, unitID, unitName. Args: None ---- Returns: None ------- Generates: self.products ---------- Credit: ------ This function incorporates/adapts code from Brightway2data, i.e., the method extract_technosphere_metadata from class Ecospold2DataExtractor """ # The file to parse fp = os.path.join(self.sys_dir, 'MasterData', self.__INTERMEXCHANGE) assert os.path.exists(fp), "Can't find " + self.__INTERMEXCHANGE def extract_metadata(o): """ Subfunction to get the data from lxml root object """ # Get list of id, name, unitId, and unitName for all intermediate # exchanges # Added: CPC code (AJ) try: cpc = [o.classification[i].classificationValue for i in range(len(o.classification)) if o.classification[i].classificationSystem == 'CPC'][0] except IndexError: cpc = '' return {'productName': o.name.text, 'unitName': o.unitName.text, 'productId': o.get('id'), 'unitId': o.get('unitId'), 'CPCCode': str(cpc)} # Parse XML file with open(fp, 'r', encoding="utf-8") as fh: root = objectify.parse(fh).getroot() pro_list = [extract_metadata(ds) for ds in root.iterchildren()] # Convert this list into a dataFrame self.products = pd.DataFrame(pro_list) self.products.index = self.products['productId'] # Log event sha1 = self.__hash_file(fp) msg = "Products extracted from {} with SHA-1 of {}" self.log.info(msg.format(self.__INTERMEXCHANGE, sha1)) def extract_activities(self): """ Parses ACTIVITYINDEX file to extract core data on activities: Id's, activity type, startDate, endDate Args: None ---- Returns: None -------- Generates: self.activities --------- """ # Parse XML file describing activities activity_file = os.path.join(self.sys_dir, 'MasterData', self.__ACTIVITYINDEX) root = ET.parse(activity_file).getroot() # Get list of activities and their core attributes act_list = [] for act in root: act_list.append([act.attrib['id'], act.attrib['activityNameId'], act.attrib['specialActivityType'], act.attrib['startDate'], act.attrib['endDate']]) # Remove any potential duplicates act_list, _, _, _ = self.__deduplicate(act_list, 0, 'activity_list') # Convert to dataFrame self.activities = pd.DataFrame(act_list, columns=('activityId', 'activityNameId', 'activityType', 'startDate', 'endDate'), index=[row[0] for row in act_list]) self.activities['activityType' ] = self.activities['activityType'].astype(int) # Log event sha1 = self.__hash_file(activity_file) msg = "{} extracted from {} with SHA-1 of {}" self.log.info(msg.format('Activities', self.__ACTIVITYINDEX, sha1)) def extract_flows(self): """ Extracts of all intermediate and elementary flows Args: None ---- Returns: None ------- Generates: ---------- self.inflows: normalized product (intermediate) inputs self.elementary_flows: normalized elementary flows self.outflows: normalized product (intermediate) outputs """ # Initialize empty lists inflow_list = [] outflow_list = [] elementary_flows = [] product_price_list = [] # Get list of ecoSpold files to process data_folder = os.path.join(self.sys_dir, 'datasets') spold_files = glob.glob(os.path.join(data_folder, '*.spold')) # Log event self.log.info('Processing {} files in {}'.format(len(spold_files), data_folder)) # ONE FILE AT A TIME for sfile in spold_files: # Get activityId from file name current_file = os.path.basename(sfile) current_id = os.path.splitext(current_file)[0] # For each file, find flow data root = etree.parse(sfile).getroot() child_ds = root.find(self.__PRE + 'childActivityDataset') if child_ds is None: child_ds = root.find(self.__PRE + 'activityDataset') flow_ds = child_ds.find(self.__PRE + 'flowData') # GO THROUGH EACH FLOW IN TURN for entry in flow_ds: # Get magnitude of flow try: _amount = float(entry.attrib.get('amount')) except: # Get ID of failed amount _fail_id = entry.attrib.get('elementaryExchangeId', 'not found') if _fail_id == 'not found': _fail_id = entry.attrib.get('intermediateExchangeId', 'not found') # Log failure self.log.warn("Parser warning: flow in {0} cannot be" " converted' 'to float. Id: {1} - amount:" " {2}".format(str(current_file), _fail_id, _amount)) continue if _amount == 0: # Ignore entries of magnitude zero continue # GET OBJECT, DESTINATION AND/OR ORIGIN OF EACH FLOW # ... for elementary flows if entry.tag == self.__PRE + 'elementaryExchange': elementary_flows.append([ current_id, entry.attrib.get('elementaryExchangeId'), _amount]) elif entry.tag == self.__PRE + 'intermediateExchange': # ... or product use if entry.find(self.__PRE + 'inputGroup') is not None: inflow_list.append([ current_id, entry.attrib.get('activityLinkId'), entry.attrib.get('intermediateExchangeId'), _amount]) # ... or product supply. elif entry.find(self.__PRE + 'outputGroup') is not None: outflow_list.append([ current_id, entry.attrib.get('intermediateExchangeId'), _amount, entry.attrib.get('productionVolumeAmount'), entry.find(self.__PRE + 'outputGroup').text]) # ... if output get the price info if it is a primary product product_property_path = self.__PRE+'property[@propertyId ="38f94dd1-d5aa-41b8-b182-c0c42985d9dc"]' if entry.findall(product_property_path) is not None: for elem in entry.findall(product_property_path): price = elem.attrib.get('amount') for nextlevelelem in elem: if nextlevelelem.tag == self.__PRE+'name': name = nextlevelelem.text elif nextlevelelem.tag == self.__PRE+'unitName': unit = nextlevelelem.text #print(nextlevelelem.tag,': ', nextlevelelem.text) product_price_list.append([current_id, entry.attrib.get('intermediateExchangeId'), name, price, unit, entry.find(self.__PRE + 'outputGroup').text]) #print(current_id,entry.attrib.get('intermediateExchangeId'),name, price, unit, entry.find(self.__PRE + 'outputGroup').text]) # Check for duplicates in outputflows # there should really only be one output flow per activity outflow_list, _, _, _ = self.__deduplicate(outflow_list, 0, 'outflow_list') # CONVERT TO DATAFRAMES self.inflows = pd.DataFrame(inflow_list, columns=['fileId', 'sourceActivityId', 'productId', 'amount']) self.elementary_flows = pd.DataFrame(elementary_flows, columns=['fileId', 'elementaryExchangeId', 'amount']) out = pd.DataFrame(outflow_list, columns=['fileId', 'productId', 'amount', 'productionVolume', 'outputGroup'], index=[row[0] for row in outflow_list]) out['productionVolume'] = out['productionVolume'].astype(float) out['outputGroup'] = out['outputGroup'].astype(int) self.outflows = out prices = pd.DataFrame(product_price_list, columns = ['fileId', 'productId', 'name', 'amount', 'unit', 'outputGroup'], index=[row[0] for row in product_price_list]) prices['amount'] = prices['amount'].astype(float) prices['outputGroup'] = prices['outputGroup'].astype(int) self.prices = prices def build_STR(self): """ Parses ElementaryExchanges.xml to builds stressor labels Args: None ---- Behaviour influenced by: ------------------------ * self.STR_order: Determines how labels are ordered Returns: None ------- Generates: self.STR: DataFrame with stressor Id's for index Credit: ------- This function incorporates/adapts code from Brightway2data, that is, the classmethod extract_biosphere_metadata from Ecospold2DataExtractor """ # File to parse fp = os.path.join(self.sys_dir, 'MasterData', self.__ELEXCHANGE) assert os.path.exists(fp), "Can't find ElementaryExchanges.xml" def extract_metadata(o): """ Subfunction to extract data from lxml root object """ return { 'id': o.get('id'), 'name': o.name.text, 'unit': o.unitName.text, 'cas': o.get('casNumber'), 'comp': o.compartment.compartment.text, 'subcomp': o.compartment.subcompartment.text } # Extract data from file with open(fp, 'r', encoding="utf-8") as fh: root = objectify.parse(fh).getroot() self.STR = _df([extract_metadata(i) for i in root.iterchildren()]) # organize in pandas DataFrame self.STR.index = self.STR['id'] self.STR = self.STR.reindex_axis(['id', 'name', 'unit', 'cas', 'comp', 'subcomp'], axis=1) self.STR = self.STR.sort_values(by=self.STR_order) # Log event sha1 = self.__hash_file(fp) msg = "{} extracted from {} with SHA-1 of {}" self.log.info(msg.format('Elementary flows', self.__ELEXCHANGE, sha1)) def build_PRO(self): """ Builds minimalistic intermediate exchange process labels This functions parses all files in dataset folder. The list is returned as pandas DataFrame. The index of the DataFrame is the filename of the files in the DATASET folder. Args: None ---- Behaviour influenced by: ------------------------ * self.PRO_order: Determines how labels are ordered Returns: None ------- Generates: self.PRO: DataFrame with file_Id's for index ---------- """ # INITIALIZE # ---------- # Use ecospold filenames as indexes (they combine activity Id and # reference-product Id) data_folder = os.path.join(self.sys_dir, 'datasets') spold_files = glob.glob(os.path.join(data_folder, '*.spold')) _in = [os.path.splitext(os.path.basename(fn))[0] for fn in spold_files] # Initialize empty DataFrame PRO = pd.DataFrame(index=_in, columns=('activityId', 'productId', 'activityName', 'ISIC', 'EcoSpoldCategory', 'geography', 'technologyLevel', 'macroEconomicScenario')) # LOOP THROUGH ALL FILES TO EXTRACT ADDITIONAL DATA # ------------------------------------------------- # Log event if len(spold_files) > 1000: msg_many_files = 'Processing {} files - this may take a while ...' self.log.info(msg_many_files.format(len(spold_files))) #print('One step further') for sfile in spold_files: #print(sfile) # Remove filename extension file_index = os.path.splitext(os.path.basename(sfile))[0] #print(file_index) # Parse xml tree root = ET.parse(sfile).getroot() # Record product Id if self.unlinked == True: #objectify is a very handy way to parse an xml tree #into a python object which is more easily accsesible rroot = objectify.parse(sfile).getroot() if hasattr(rroot, "activityDataset"): stem = rroot.activityDataset else: stem = rroot.childActivityDataset #loop through the intermediate exchanges to find the ref. flow #might be a better/smarter way but don't know it yet for flow in stem.flowData.intermediateExchange: if hasattr(flow, 'outputGroup'): if flow.outputGroup == 0: PRO.loc[file_index, 'productId'] = flow.attrib[ 'intermediateExchangeId'] #For the unlnked data the file name does not #feature the _productID anymore, so loop through the #flow data to find the reference flow. break #An activity has only one reference flow by #construction so break out of loop after we found it del rroot else: PRO.ix[file_index, 'productId'] = file_index.split('_')[1] #if the data are linked, the product name is in the spold files #print(file_index, sfile) # Find activity dataset child_ds = root.find(self.__PRE + 'childActivityDataset') if child_ds is None: child_ds = root.find(self.__PRE + 'activityDataset') activity_ds = child_ds.find(self.__PRE + 'activityDescription') # Loop through activity dataset for entry in activity_ds: # Get name, id, etc if entry.tag == self.__PRE + 'activity': PRO.ix[file_index, 'activityId'] = entry.attrib['id'] PRO.ix[file_index, 'activityName'] = entry.find( self.__PRE + 'activityName').text continue # Get classification codes if entry.tag == self.__PRE + 'classification': if 'ISIC' in entry.find(self.__PRE + 'classificationSystem').text: PRO.ix[file_index, 'ISIC'] = entry.find( self.__PRE + 'classificationValue').text if 'EcoSpold' in entry.find( self.__PRE + 'classificationSystem').text: PRO.ix[file_index, 'EcoSpoldCategory' ] = entry.find(self.__PRE + 'classificationValue').text continue # Get geography if entry.tag == self.__PRE + 'geography': PRO.ix[file_index, 'geography' ] = entry.find(self.__PRE + 'shortname').text continue # Get Technology try: if entry.tag == self.__PRE + 'technology': PRO.ix[file_index, 'technologyLevel' ] = entry.attrib['technologyLevel'] continue except: # Apparently it is not a mandatory field in ecospold2. # Skip if absent pass # Find MacroEconomic scenario if entry.tag == self.__PRE + 'macroEconomicScenario': PRO.ix[file_index, 'macroEconomicScenario' ] = entry.find(self.__PRE + 'name').text continue # quality check of id and index if file_index.split('_')[0] != PRO.ix[file_index, 'activityId']: self.log.warn('Index based on file {} and activityId in the' ' xml data are different'.format(str(sfile))) # Final touches and save to self PRO['technologyLevel'] = PRO['technologyLevel'].fillna(0).astype(int) for i in self.__TechnologyLevels.index: bo = PRO['technologyLevel'] == i PRO.ix[bo, 'technologyLevel'] = self.__TechnologyLevels[i] self.PRO = PRO.sort_values(by=self.PRO_order) def extract_old_labels(self, old_dir, sep='|'): """ Read in old PRO, STR and IMP labels csv-files from directory self.STR_old must be defined with: * with THREE name columns called name, name2, name3 * cas, comp, subcomp, unit * ardaid, i.e., the Id that we wish to re-use in the new dataset """ # Read in STR path = glob.glob(os.path.join(old_dir, '*STR*.csv'))[0] self.STR_old = pd.read_csv(path, sep=sep) # Read in PRO path = glob.glob(os.path.join(old_dir, '*PRO*.csv'))[0] self.PRO_old = pd.read_csv(path, sep=sep) # Read in IMP path = glob.glob(os.path.join(old_dir, '*IMP*.csv'))[0] self.IMP_old = pd.read_csv(path, sep=sep) # ========================================================================= # CLEAN UP FUNCTIONS: if imperfections in ecospold data def __find_unsourced_flows(self): """ find input/use flows that do not have a specific supplying activity. It determines the traceable or untraceable character of a product flow based on the sourceActivityId field. Depends on: ---------- * self.inflows (from self.get_flows or self.extract_flows) * self.products [optional] (from self.extract_products) * self.PRO [optional] (from self.get_labels or self.build_PRO) Generates: ---------- * self.unsourced_flows: dataFrame w/ descriptions of unsourced flows Args: None ---- Returns: None -------- """ # Define boolean vector of product flows without source nuns = np.equal(self.inflows['sourceActivityId'].values, None) unsourced_flows = self.inflows[nuns] # add potentially useful information from other tables # (not too crucial) try: unsourced_flows = self.inflows[nuns].reset_index().merge( self.PRO[['activityName', 'geography', 'activityType']], left_on='fileId', right_index=True) unsourced_flows = unsourced_flows.merge( self.products[['productName', 'productId']], on='productId') # ... and remove useless information unsourced_flows.drop(['sourceActivityId'], axis=1, inplace=True) except: pass # Log event and save to self if np.any(nuns): self.log.warn('Found {} untraceable flows'.format(np.sum(nuns))) self.unsourced_flows = unsourced_flows else: self.log.info('OK. No untraceable flows.') def __fix_flow_sources(self): """ Try to find source activity for every product input-flow Dependencies: ------------- * self.unsourced_flows (from self.__find_unsourced_flows) * self.PRO (from self.get_labels or self.build_PRO) * self.inflows (from self.get_flows or self.extract_flows) Potentially modifies all three dependencies above to assign unambiguous source for each product flow, following these rules: 1) If only one provider in dataset, pick this one, even if geography is wrong 2) Else if only one producer and one market, pick the market (as the producer clearly sells to the sole market), regardless of geography 3) Elseif one market in right geography, always prefer that to any other. 4) Elseif only one producer with right geography, prefer that one. 5) Otherwise, no unambiguous answer, leave for user to fix manually """ # Proceed to find clear sources for these flows, if at all possible for i in self.unsourced_flows.index: aflow = self.unsourced_flows.iloc(i) print(aflow) pdb.set_trace() # Boolean vectors for relating the flow under investigation with # PRO, either in term of which industries require the product # in question (boPro), or the geographical location of the flow # (boGeo) or whether a the source activity is a market or an # ordinary activity (boMark), or a compbination of the above boPro = (self.PRO.productId == aflow.productId).values boGeo = (self.PRO.geography == aflow.geography).values boMark = (self.PRO.activityType == '1').values boMarkGeo = np.logical_and(boGeo, boMark) boProGeo = np.logical_and(boPro, boGeo) boProMark = np.logical_and(boPro, boMark) act_id = '' # goal: finding a plausible value for this variable # If it is a "normal" activity that has this input flow if aflow.activityType == '0': # Maybe there are NO producers, period. if sum(boPro) == 0: msg_noprod = "No producer found for product {}! Not good." self.log.error(msg_noprod.format(aflow.productId)) self.log.warning("Creation of dummy producer not yet" " automated") # Maybe there is no choice, only ONE producer elif sum(boPro) == 1: act_id = self.PRO[boPro].activityId.values # Log event if any(boProGeo): # and all is fine geographically for this one producer self.log.warn("Exactly 1 producer ({}) for product {}" ", and its geography is ok for this" " useflow".format(act_id, aflow.productId)) else: # but has wrong geography... geog proxy wrong_geo = self.PRO[boPro].geography.values msg = ("Exactly 1 producer ({}) for product {}, used" " in spite of having wrong geography for {}:{}") self.log.warn(msg.format(act_id, aflow.productId, aflow.fileId, wrong_geo)) # Or there is only ONE producer and ONE market, no choice # either, since then it is clear that this producer sells to # the market. elif sum(boPro) == 2 and sum(boProMark) == 1: act_id = self.PRO[boProMark].activityId.values # Log event self.log.warn = ("Exactly 1 producer and 1 market" " worldwide, so we source product {} from" " market {}".format(aflow.productId, act_id)) # or there are multiple sources, but only one market with the # right geography elif sum(boMarkGeo) == 1: act_id = self.PRO[boMarkGeo].activityId.values # Log event msg_markGeo = ('Multiple sources, but only one market ({})' ' with right geography ({}) for product {}' ' use by {}.') self.log.warn(msg_markGeo.format(act_id, aflow.geography, aflow.productId, aflow.fileId)) # Or there are multiple sources, but only one producer with the # right geography. elif sum(boProGeo) == 1: act_id = self.PRO[boProGeo].activityId.values # Log event msg_markGeo = ('Multiple sources, but only one producer' ' ({}) with right geography ({}) for' ' product {} use by {}.') self.log.warn(msg_markGeo.format(act_id, aflow.geography, aflow.productId, aflow.fileId)) else: # No unambiguous fix, save options to file, let user decide filename = ('potentialSources_' + aflow.productId + '_' + aflow.fileId + '.csv') debug_file = os.path.join(self.log_dir, filename) # Log event msg = ("No unambiguous fix. {} potential sources for " "product {} use by {}. Will need manual fix, see" " {}.") self.log.error(msg.format(sum(boPro), aflow.productId, aflow.fileId, debug_file)) self.PRO.ix[boPro, :].to_csv(debug_file, sep='|', encoding='utf-8') # Based on choice of act_id, record the selected source # activity in inflows self.inflows.ix[aflow['index'], 'sourceActivityId'] = act_id elif aflow.activityType == '1': msg = ("A market with untraceable inputs:{}. This is not yet" " supported by __fix_flow_sources.") self.log.error(msg.format(aflow.fileId)) # do something! else: msg = ("Activity {} is neither a normal one nor a market. Do" " not know what to do with its" " untraceable flow of" " product {}").format(aflow.fileId, aflow.productId) self.log.error(msg) # do something! def __fix_missing_activities(self): """ Fix if flow sourced explicitly to an activity that does not exist Identifies existence of missing production, and generate them Depends on or Modifies: ----------------------- * self.inflows (from self.get_flows or self.extract_flows) * self.outflows (from self.get_flows or self.extract_flows) * self.products (from self.extract_products) * self.PRO (from self.get_labels or self.build_PRO) Generates: ---------- self.missing_activities """ # Get set of all producer-product pairs in inflows flows = self.inflows[['sourceActivityId', 'productId']].values.tolist() set_flows = set([tuple(i) for i in flows]) # Set of all producer-product pairs in PRO processes = self.PRO[['activityId', 'productId']].values.tolist() set_labels = set([tuple(i) for i in processes]) # Identify discrepencies: missing producer-product pairs in labels missing_activities = set_flows - set_labels if missing_activities: # Complain msg = ("Found {} product flows traceable to sources that do not" " produce right product. Productions will have to be added" " to PRO, which now contain {} productions. Please see" " missingProducers.csv.") self.log.error(msg.format(len(missing_activities), len(self.PRO))) # Organize in dataframe miss = pd.DataFrame([[i[0], i[1]] for i in missing_activities], columns=['activityId', 'productId'], index=[i[0] + '_' + i[1] for i in missing_activities]) activity_cols = ['activityId', 'activityName', 'ISIC'] product_cols = ['productId', 'productName'] copied_cols = activity_cols + product_cols copied_cols.remove('productName') # Merge to get info on missing flows miss = miss.reset_index() miss = miss.merge(self.PRO[activity_cols], how='left', on='activityId') miss = miss.merge(self.products[product_cols], how='left', on='productId') miss = miss.set_index('index') # Save missing flows to file for inspection miss.to_csv(os.path.join(self.log_dir, 'missingProducers.csv'), sep='|', encoding='utf-8') # Insert dummy productions for i, row in miss.iterrows(): self.log.warn('New dummy activity: {}'.format(i)) # add row to self.PRO self.PRO.ix[i, copied_cols] = row[copied_cols] self.PRO.ix[i, 'comment'] = 'DUMMY PRODUCTION' # add new row in outputflow self.outflows.ix[i, ['fileId', 'productId', 'amount'] ] = [i, row['productId'], 1.0] self.log.warn("Added dummy productions to PRO, which" " is now {} processes long.".format(len(self.PRO))) self.missing_activities = missing_activities else: self.log.info("OK. Source activities seem in order. Each product" " traceable to an activity that actually does" " produce or distribute this product.") # ========================================================================= # ASSEMBLE MATRICES: now all parsed and cleanead, build the final matrices def complement_labels(self): """ Add extra data from self.products and self.activities to labels Until complement_labels is run, labels are kept to the strict minimum to facilitate tinkering with them if needed to fix discrepancies in database. For example, adding missing activity or creating a dummy process in labels is easier without all the (optional) extra meta-data in there. Once we have a consistent symmetric system, it's time to add useful information to the matrix row and column labels for human readability. Depends on: ----------- self.products (from self.extract_products) self.activities (from self.extract_activities) Modifies: --------- self.PRO (from self.get_labels or self.build_PRO) self.STR (from self.get_labels or self.build_STR) """ self.PRO = self.PRO.reset_index() # add data from self.products self.PRO = self.PRO.merge(self.products, how='left', on='productId') # add data from self.activities self.PRO = self.PRO.merge(self.activities, how='left', on='activityId') # Final touches and re-establish indexes as before self.PRO = self.PRO.drop('unitId', axis=1).set_index('index') # Re-sort processes (in fix-methods altered order/inserted rows) self.PRO = self.PRO.sort_values(by=self.PRO_order) self.STR = self.STR.sort_values(by=self.STR_order) def build_AF(self): """ Arranges flows as Leontief technical coefficient matrix + extensions Dependencies: ------------- * self.inflows (from get_flows or extract_flows) * self.elementary_flows (from get_flows or extract_flows) * self.outflows (from get_flows or extract_flows) * self.PRO [final version] (completed by self.complement_labels) * self.STR [final version] (completed by self.complement_labels) Behaviour determined by: ----------------------- * self.positive_waste (determines sign convention to use) * self.nan2null Generates: ---------- * self.A * self.F """ # By pivot tables, arrange all intermediate and elementary flows as # matrices self.log.info("Starting to assemble the matrices") self.A = pd.pivot( self.inflows['sourceActivityId'] + '_' + self.inflows['productId'], self.inflows['fileId'], self.inflows['amount'] ).reindex(index=self.PRO.index, columns=self.PRO.index) self.F = pd.pivot_table(self.elementary_flows, values='amount', index='elementaryExchangeId', columns='fileId').reindex(index=self.STR.index, columns=self.PRO.index) # Take care of sign convention for waste self.log.info("Starting normalizing matrices") if self.positive_waste: sign_changer = self.outflows['amount'] / self.outflows['amount'].abs() self.A = self.A.mul(sign_changer, axis=0) col_normalizer = 1 / self.outflows['amount'].abs() else: col_normalizer = 1 / self.outflows['amount'] # Normalize flows # Reorder all rows and columns to fit labels self.A = self.A.mul(col_normalizer, axis=1).reindex( index=self.PRO.index, columns=self.PRO.index) self.F = self.F.mul(col_normalizer, axis=1).reindex( index=self.STR.index, columns=self.PRO.index) self.log.info("fillna") if self.nan2null: self.A.fillna(0, inplace=True) self.F.fillna(0, inplace=True) def scale_up_AF(self): """ Calculate absolute flow matrix from A, F, and production Volumes In other words, scales up normalized system description to reach recorded production volumes Dependencies: -------------- * self.outflows * self.A * self.F Generates: ---------- * self.Z * self.G_pro """ q = self.outflows['productionVolume'] self.Z = self.A.multiply(q, axis=1).reindex_like(self.A) self.G_pro = self.F.multiply(q, axis=1).reindex_like(self.F) def remove_Markets(self): """ If the data are unlinked, markets are empty, that is nothing is linked to the market yet, move the use flows (inflows, e.g. transport, losses, etc) from the markets to use flows in the activities using the reference product of the market. """ ''' #first check if the the data is actually considered to be unlinked. #If not, warn the user and log. Potentially ask for user input if self.unlinked is False: var = input("Data are treated as linked and allocated, are you\n\ sure you want to remove the markets? [y/n]: ") while var not in ['y','n']: var = input("Invalid input! Please select a valid option!\n\ Data are treated as linked and allocated, are you\n\ sure you want to remove the markets? [y/n]: ") if var == 'n': self.log.info('Not removing markets, choice made through user input.') return 0 #If the code gets here, var must be 'y': self.log.warning("Remove markets: Data are linked and allocated, removing markets nonetheless. Choice made through user input") #This function does not do anything at the moment as we decided to use ocelot #the linking/allocation. ''' pass def build_sut(self, make_untraceable=False): """ Arranges flow data as Suply and Use Tables and extensions Args: ----- * make_untraceable: Whether or not to aggregate away the source activity dimension, yielding a use table in which products are no longer linked to their providers [default: False; don't do it] Dependencies: ------------- * self.inflows * self.outflows * self.elementary_flows Behaviour determined by: ----------------------- * self.nan2null Generates: ---------- * self.U * self.V * self.G_act * self.V_prodVol """ def remove_productId_from_fileId(flows): """subfunction to remove the 'product_Id' part of 'fileId' data in DataFrame, leaving only activityId and renaming columnd as such""" fls = flows.replace('_[^_]*$', '', regex=True) fls.rename(columns={'fileId': 'activityId'}, inplace=True) return fls # Refocus on activity rather than process (activityId vs fileId) outfls = remove_productId_from_fileId(self.outflows) elfls = remove_productId_from_fileId(self.elementary_flows) infls = remove_productId_from_fileId(self.inflows) infls.replace(to_replace=[None], value='', inplace=True) # Pivot flows into Use and Supply and extension tables self.U = pd.pivot_table(infls, index=['sourceActivityId', 'productId'], columns='activityId', values='amount', aggfunc=np.sum) self.V = pd.pivot_table(outfls, index='productId', columns='activityId', values='amount', aggfunc=np.sum) self.V_prodVol = pd.pivot_table(outfls, index='productId', columns='activityId', values='productionVolume', aggfunc=np.sum) self.G_act = pd.pivot_table(elfls, index='elementaryExchangeId', columns='activityId', values='amount', aggfunc=np.sum) # ensure all products are covered in supply table self.V = self.V.reindex(index=self.products.index, columns=self.activities.index) self.V_prodVol = self.V_prodVol.reindex(index=self.products.index, columns=self.activities.index) self.U = self.U.reindex(columns=self.activities.index) self.G_act = self.G_act.reindex(index=self.STR.index, columns=self.activities.index) if make_untraceable: # Optionally aggregate away sourceActivity dimension, more IO-like # Supply and untraceable-Use tables... self.U = self.U.groupby(level='productId').sum() self.U = self.U.reindex(index=self.products.index, columns=self.activities.index) self.log.info("Aggregated all sources in U, made untraceable") if self.nan2null: self.U.fillna(0, inplace=True) self.V.fillna(0, inplace=True) self.G_act.fillna(0, inplace=True) # ========================================================================= # SANITY CHECK: Compare calculated cummulative LCI with official values def build_E(self, data_folder=None): """ Extract matrix of cummulative LCI from ecospold files Dependencies: ------------ * self.PRO * self.STR Behaviour influenced by: ------------------------ * self.lci_dir * self.nan2null Generates: ---------- * self.E """ # Get list of ecospold files if data_folder is None: data_folder = self.lci_dir spold_files = glob.glob(os.path.join(data_folder, '*.spold')) if len(spold_files): self.log.info( "Processing {} {} files from {}".format( len(spold_files), 'cummulative LCI', data_folder)) else: self.log.warning( "Did not find any ecospold file in {}".format(data_folder)) # Initialize (huge) dataframe and get dimensions self.log.info('creating E dataframe') self.E = pd.DataFrame(index=self.STR.index, columns=self.PRO.index, dtype=float) initial_rows, initial_columns = self.E.shape # LOOP OVER ALL FILES TO EXTRACT ELEMENTARY FLOWS for count, sfile in enumerate(spold_files): # Get to flow data current_file = os.path.basename(sfile) current_id = os.path.splitext(current_file)[0] root = ET.parse(sfile).getroot() child_ds = root.find(self.__PRE + 'childActivityDataset') if child_ds is None: child_ds = root.find(self.__PRE + 'activityDataset') flow_ds = child_ds.find(self.__PRE + 'flowData') # Find elemementary exchanges amongst all flows for entry in flow_ds: if entry.tag == self.__PRE + 'elementaryExchange': try: # Get amount self.E.ix[entry.attrib['elementaryExchangeId'], current_id] = float(entry.attrib['amount']) except: _amount = entry.attrib.get('amount', 'not found') if _amount != '0': msg = ("Parser warning: elementary exchange in {0}" ". elementaryExchangeId: {1} - amount: {2}") self.log.warn(msg.format(str(current_file), entry.attrib.get('elementaryExchangeId', 'not found'), _amount)) # keep user posted, as this loop can be quite long if count % 300 == 0: self.log.info('Completed {} files.'.format(count)) # Check for discrepancies in list of stressors and processes final_rows, final_columns = self.E.shape appended_rows = final_rows - initial_rows appended_columns = final_columns - initial_columns # and log if appended_rows != 0: self.log.warn('There are {} new processes relative to the initial' 'list.'.format(str(appended_rows))) if appended_columns != 0: self.log.warn('There are {} new impacts relative to the initial' 'list.'.format(str(appended_rows))) if self.nan2null: self.E.fillna(0, inplace=True) def __calculate_E(self, A0, F0): """ Calculate lifecycle cummulative inventories for comparison self.E Args: ----- * A0 : Leontief A-matrix (pandas dataframe) * F0 : Environmental extension (pandas dataframe) Returns: -------- * Ec as pandas dataframe Note: -------- * Plan to move this as nested function of cummulative_lci_check """ A = A0.fillna(0).values F = F0.fillna(0).values I = np.eye(len(A)) Ec = F.dot(np.linalg.solve(I - A, I)) return pd.DataFrame(Ec, index=F0.index, columns=A0.columns) def cummulative_lci_check(self, rtol=5e-2, atol=1e-5, imax=3): """ Sanity check: compares calculated and parsed cummulative LCI data Args: ----- * rtol: relative tolerance, maximum relative difference between coefficients * atol: absolute tolerance, maximum absolute difference between coefficients * imax: Number of orders of magnitude smaller than defined tolerance that should be investigated Depends on: ---------- * self.E * self.__calculate_E() """ Ec = self.__calculate_E(self.A, self.F) filename = os.path.join(self.log_dir, 'qualityCheckCummulativeLCI.shelf') shelf = shelve.open(filename) # Perform compareE() analysis at different tolerances, in steps of 10 i = 1 while (i <= imax) and (rtol > self.rtolmin): bad = self.compareE(Ec, rtol, atol) rtol /= 10 if bad is not None: # Save bad flows in Shelf persistent dictionary shelf['bad_at_rtol'+'{:1.0e}'.format(rtol)] = bad i += 1 shelf.close() sha1 = self.__hash_file(filename) msg = "{} saved in {} with SHA-1 of {}" self.log.info(msg.format('Cummulative LCI differences', filename, sha1)) def compareE(self, Ec, rtol=5e-2, atol=1e-5): """ Compare parsed (official) cummulative lci emissions (self.E) with lifecycle emissions calculated from the constructed matrices (Ec) """ thebad = None # Compare the two matrices, see how many values are "close" close = np.isclose(abs(self.E.fillna(0.0)), abs(Ec.fillna(0.0)), rtol, atol) notclose = np.sum(~ close) allcomp = np.sum(close) + notclose self.log.info('There are {} lifecycle cummulative emissions out of {} that ' 'differ by more than {} % AND by more than {} units ' 'relative to the official value.'.format(notclose, allcomp, rtol*100, atol)) if notclose: # Compile a Series of all "not-close" values thebad = pd.concat([self.E.mask(close).stack(), Ec.mask(close).stack()], 1) del(Ec) thebad.columns = ['official', 'calculated'] thebad.index.names = ['stressId', 'fileId'] # Merge labels to make it human readable thebad = pd.merge(thebad.reset_index(), self.PRO[['productName', 'activityName']], left_on='fileId', right_index=True) thebad = pd.merge(thebad, self.STR, left_on='stressId', right_index=True).set_index(['stressId', 'fileId']) return thebad # ========================================================================= # EXPORT AND HELPER FUNCTIONS def save_system(self, file_formats=None): """ Save normalized syste matrices to different formats Args: ----- * fileformats : List of file formats in which to save data [Default: None, save to all possible file formats] Options: 'Pandas' --> pandas dataframes 'csv' --> text with separator = '|' 'SparsePandas' --> sparse pandas dataframes 'SparseMatrix' --> scipy AND matlab sparse 'SparseMatrixForArda' --> with special background variable names This method creates separate files for normalized, symmetric matrices (A, F), scaled-up symmetric metrices (Z, G_pro), and supply and use data (U, V, V_prod, G_act). For Pandas and sparse pickled files, ghis method organizes the variables in a dictionary, and pickles this dictionary to file. For sparse pickled file, some labels are not turned into sparse matrices (because not sparse) and are rather added as numpy arrays. For Matlab sparse matrices, variables saved to mat file. For CSV, a subdirectory is created to hold one text file per variable. Returns: ------- None """ # TODO: include characterisation factors in all formats and also # non-normalized def pickling(filename, adict, what_it_is, mat): """ subfunction that handles creation of binary files """ # save dictionary as pickle ext = '.gz.pickle' with gzip.open(filename + ext, 'wb') as fout: pickle.dump(adict, fout) sha1 = self.__hash_file(filename + ext) msg = "{} saved in {} with SHA-1 of {}" self.log.info(msg.format(what_it_is, filename + ext, sha1)) # save dictionary also as mat file if mat: scipy.io.savemat(filename, adict, do_compression=True) sha1 = self.__hash_file(filename + '.mat') msg = "{} saved in {} with SHA-1 of {}" self.log.info(msg.format(what_it_is, filename + '.mat', sha1)) def pickle_symm_norm(PRO=None, STR=None, IMP=None, A=None, F=None, C=None, PRO_header=None, STR_header=None, IMP_header=None, mat=False, for_arda_background=False): """ nested function that prepares dictionary for symmetric, normalized (coefficient) system description file """ if not for_arda_background: adict = {'PRO': PRO, 'STR': STR, 'IMP': IMP, 'A': A, 'F': F, 'C': C, 'PRO_header': PRO_header, 'STR_header': STR_header, 'IMP_header': IMP_header } else: adict = {'PRO_gen': PRO, 'STR': STR, 'IMP': IMP, 'A_gen': A, 'F_gen': F, 'C': C, 'PRO_header': PRO_header, 'STR_header': STR_header, 'IMP_header': IMP_header } self.log.info("about to write to file") pickling(file_pr + '_symmNorm', adict, 'Final, symmetric, normalized matrices', mat) def pickle_symm_scaled(PRO, STR, Z, G_pro, mat=False): """ nested function that prepares dictionary for symmetric, scaled (flow) system description file """ adict = {'PRO': PRO, 'STR': STR, 'Z': Z, 'G_pro': G_pro} pickling(file_pr + '_symmScale', adict, 'Final, symmetric, scaled-up flow matrices', mat) def pickle_sut(prod, act, STR, U, V, V_prodVol, G_act, mat=False): """ nested function that prepares dictionary for SUT file """ adict = {'products': prod, 'activities': act, 'STR': STR, 'U': U, 'V': V, 'V_prodVol': V_prodVol, 'G_act': G_act} pickling(file_pr + '_SUT', adict, 'Final SUT matrices', mat) self.log.info("Starting to export to file") # save as full Dataframes format_name = 'Pandas' if file_formats is None or format_name in file_formats: file_pr = os.path.join(self.out_dir, self.project_name + format_name) if self.A is not None: pickle_symm_norm(PRO=self.PRO, STR=self.STR, IMP=self.IMP, A=self.A, F=self.F, C=self.C) if self.Z is not None: pickle_symm_scaled(self.PRO, self.STR, self.Z, self.G_pro) if self.U is not None: pickle_sut(self.products, self.activities, self.STR, self.U, self.V, self.V_prodVol, self.G_act) # save sparse Dataframes format_name = 'SparsePandas' if file_formats is None or format_name in file_formats: file_pr = os.path.join(self.out_dir, self.project_name + format_name) if self.A is not None: pickle_symm_norm(PRO=self.PRO, STR=self.STR, IMP=self.IMP, A=self.A.to_sparse(), F=self.F.to_sparse(), C=self.C.to_sparse()) if self.Z is not None: Z = self.Z.to_sparse() G_pro = self.G_pro.to_sparse() pickle_symm_scaled(self.PRO, self.STR, Z, G_pro) if self.U is not None: U = self.U.to_sparse() V = self.V.to_sparse() V_prodVol = self.V_prodVol.to_sparse() G_act = self.G_act.to_sparse() pickle_sut(self.products, self.activities, self.STR, U, V, V_prodVol, G_act) # save as sparse Matrices (both pickled and mat-files) format_name = 'SparseMatrix' # Check if we need special formatting for ARDA software for_arda_background=False try: if 'SparseMatrixForArda' in file_formats: for_arda_background=True except TypeError: pass # Proceed if (file_formats is None or format_name in file_formats or for_arda_background): file_pr = os.path.join(self.out_dir, self.project_name + format_name) PRO = self.PRO.fillna('').values STR = self.STR.fillna('').values IMP = self.IMP.fillna('').values PRO_header = self.PRO.columns.values PRO_header = PRO_header.reshape((1, -1)) STR_header = self.STR.columns.values STR_header = STR_header.reshape((1, -1)) C = scipy.sparse.csc_matrix(self.C.fillna(0)) IMP_header = self.IMP.columns.values IMP_header = IMP_header.reshape((1, -1)) if self.A is not None: A = scipy.sparse.csc_matrix(self.A.fillna(0)) F = scipy.sparse.csc_matrix(self.F.fillna(0)) pickle_symm_norm(PRO=PRO, STR=STR, IMP=IMP, A=A, F=F, C=C, PRO_header=PRO_header, STR_header=STR_header, IMP_header=IMP_header, mat=True, for_arda_background=for_arda_background) if self.Z is not None: Z = scipy.sparse.csc_matrix(self.Z.fillna(0)) G_pro = scipy.sparse.csc_matrix(self.G_pro.fillna(0)) pickle_symm_scaled(PRO, STR, Z, G_pro, mat=True) if self.U is not None: U = scipy.sparse.csc_matrix(self.U.fillna(0)) V = scipy.sparse.csc_matrix(self.V.fillna(0)) V_prodVol = scipy.sparse.csc_matrix(self.V_prodVol.fillna(0)) G_act = scipy.sparse.csc_matrix(self.G_act.fillna(0)) products = self.products.values # to numpy array, not sparse activities = self.activities.values pickle_sut(products, activities, STR, U, V, V_prodVol, G_act, mat=True) # Write to CSV files format_name = 'csv' if file_formats is None or format_name in file_formats: csv_dir = os.path.join(self.out_dir, 'csv') if not os.path.exists(csv_dir): os.makedirs(csv_dir) self.PRO.to_csv(os.path.join(csv_dir, 'PRO.csv')) self.STR.to_csv(os.path.join(csv_dir, 'STR.csv')) if self.C is not None: self.C.to_csv(os.path.join(csv_dir, 'C.csv'), sep='|') self.IMP.to_csv(os.path.join(csv_dir, 'IMP.csv'), sep='|') if self.A is not None: self.A.to_csv(os.path.join(csv_dir, 'A.csv'), sep='|') self.F.to_csv(os.path.join(csv_dir, 'F.csv'), sep='|') if self.Z is not None: self.Z.to_csv(os.path.join(csv_dir, 'Z.csv'), sep='|') self.G_pro.to_csv(os.path.join(csv_dir, 'G_pro.csv'), sep='|') if self.U is not None: self.products.to_csv(os.path.join(csv_dir, 'products.csv'), sep='|') self.prices.to_csv(os.path.join(csv_dir, 'prices.csv'), sep='|') self.activities.to_csv(os.path.join(csv_dir, 'activities.csv'), sep='|') self.U.to_csv(os.path.join(csv_dir, 'U.csv'), sep='|') self.V.to_csv(os.path.join(csv_dir, 'V.csv'), sep='|') self.V_prodVol.to_csv(os.path.join(csv_dir, 'V_prodVol.csv'), sep='|') self.G_act.to_csv(os.path.join(csv_dir, 'G_act.csv'), sep='|') self.log.info("Final matrices saved as CSV files in " + csv_dir) def __hash_file(self, afile): """ Get SHA-1 hash of binary file Args: ----- * afile: either name of file or file-handle of a file opened in "read-binary" ('rb') mode. Returns: -------- * hexdigest hash of file, as string """ blocksize = 65536 hasher = hashlib.sha1() # Sometimes used for afile as filename try: f = open(afile, 'rb') opened_here = True # Or afile can be a filehandle except: f = afile opened_here = False buf = f.read(blocksize) while len(buf) > 0: hasher.update(buf) buf = f.read(blocksize) if opened_here: f.close() return hasher.hexdigest() def __deduplicate(self, raw_list, idcol=None, name=''): """ Removes duplicate entries from a list and then optionally warns of duplicate id's in the cleaned up list Args: ----- raw_list: a list incol : in case of a list of lists, the "column" position for id's name: string, just for logging messages Return: ------ deduplicated: list without redundant entries duplicates: list with redundant entries id_deduplicated: list of ID's without redundancy id_duplicates: list of redundant ID's """ # Initialization deduplicated = [] duplicates = [] id_deduplicated = [] id_duplicates = [] # Find duplicate rows in list for elem in raw_list: if elem not in deduplicated: deduplicated.append(elem) else: duplicates.append(elem) # If an "index column" is specified, find duplicate indexes in # deduplicated. In other words, amongst unique rows, are there # non-unique IDs? if idcol is not None: indexes = [row[idcol] for row in deduplicated] for index in indexes: if index not in id_deduplicated: id_deduplicated.append(index) else: id_duplicates.append(index) # Log findings for further inspection if duplicates: filename = 'duplicate_' + name + '.csv' with open(os.path.join(self.log_dir, filename), 'w') as fout: duplicatewriter = csv.writer(fout, delimiter='|') duplicatewriter.writerows(duplicates) msg = 'Removed {} duplicate rows from {}, see {}.' self.log.warn(msg.format(len(duplicates), name, filename)) if id_duplicates: filename = 'duplicateID_' + name + '.csv' with open(os.path.join(self.log_dir + filename), 'w') as fout: duplicatewriter = csv.writer(fout, delimiter='|') duplicatewriter.writerows(id_duplicates) msg = 'There are {} duplicate Id in {}, see {}.' self.log.warn(msg.format(len(id_duplicates), name, filename)) return deduplicated, duplicates, id_deduplicated, id_duplicates # ========================================================================= # Characterisation factors matching # ========================================================================= def simple_characterisation_matching(self, characterisation_file): # Useful stuff c = self.conn.cursor() non_decimal = re.compile(r'[^0-9]') basename = os.path.basename def clean_up_columns(df): """ Remove spaces, whitespace, and periods from column names Also, return a list of all numbers in columns """ df.columns = [x.strip().replace(' ', '_') for x in df.columns] col_version_numbers = [non_decimal.sub('', x) for x in df.columns] df.columns = [x.replace('.', '') for x in df.columns] return df, col_version_numbers # Read and clean units units = pd.read_excel(characterisation_file, 'units') units, __ = clean_up_columns(units) # Read and clean characterisation factors cf = pd.read_excel(characterisation_file, 'CFs') cf, col_version_numbers = clean_up_columns(cf) # Try to find column with the matching CF and filename version number # (e.g. CF 3.3 for LCIA_Implementation_3.3.xlsx) file_version = non_decimal.sub('', basename(characterisation_file)) try: cf_col = col_version_numbers.index(file_version) msg = "Will use column {}, named {}, for characterisation factors" self.log.info(msg.format(cf_col, cf.columns[cf_col])) except: cf_col = -3 msg = ("Could not match file version {} with CF versions." " By default will use {}.") self.log.warning(msg.format(file_version, cf.columns[cf_col])) # Rename characterisation factor column cols = cf.columns.tolist() cols[cf_col] = 'CF' cf.columns = cols sep = '; ' self.log.info("Starting characterisation matching") # Export to sqlite for matching cf.to_sql('char', self.conn, if_exists='replace') units.to_sql('units', self.conn, if_exists='replace') self.STR.to_sql('stressors', self.conn, index_label='stressorId', if_exists='replace') # Complement ecoinvent elementary flows (stressors s) with matching # characterisation factors (char c) and its units (units u) sql_cmd = """ SELECT s.name, s.comp, s.subcomp, s.unit, s.stressorId, c.method, c.category, c.indicator, c.CF, u.impact_score_unit FROM stressors s LEFT JOIN char c ON c.name = s.name AND c.compartment=s.comp AND c.subcompartment=s.subcomp AND s.unit=c.exchange_unit LEFT JOIN units u ON u.method=c.method AND u.category=c.category AND u.indicator=c.indicator""" C_long = pd.read_sql(sql_cmd, self.conn) # Generate IMP labels C_long['impact_label'] = (C_long.method + sep + C_long.category + sep + C_long.indicator + sep + C_long.impact_score_unit) self.IMP = C_long[['impact_label', 'method', 'category', 'indicator', 'impact_score_unit']].drop_duplicates() self.IMP.set_index('impact_label', inplace=True) # Pivot and reindex to generate characterisation matrix self.C = pd.pivot_table(C_long, values='CF', columns='stressorId', index='impact_label') self.C = self.C.reindex(self.IMP.index).reindex_axis(self.STR.index, 1) self.log.info("Characterisation matching done. C matrix created") def prepare_matching_load_parameters(): """ Load predefined values and parameters for characterisation matching """ # Read in parameter tables for CAS conflicts and known synonyms def read_parameters(filename): #resource = pkg_resources.resource_filename(__name__, filename) resource = pkgutil.get_data(__name__, filename) tmp = pd.read_csv(io.BytesIO(resource), sep='|', comment='#') print(tmp) return tmp.where(pd.notnull(tmp), None) self._cas_conflicts = read_parameters('parameters/cas_conflicts.csv') self._synonyms = read_parameters('parameters/synonyms.csv') self._custom_factors = read_parameters('parameters/custom_factors.csv') # MORE HARDCODED PARAMETERS # Subcompartment matching self.obs2char_subcomp = pd.DataFrame( columns=["comp", "obs_sc", "char_sc"], data=[["soil", "agricultural", "agricultural"], ["soil", "forestry", "forestry"], ["air", "high population density", "high population density"], ["soil", "industrial", "industrial"], ["air", "low population density", "low population density"], ["water", "ocean", "ocean"], ["water", "river", "river"], ["water", "river, long-term", "river"], ["air", "lower stratosphere + upper troposphere", "low population density"], ["air", "low population density, long-term", "low population density"] ]) # Default subcompartment when no subcomp match and no "unspecified" # defined self.fallback_sc = pd.DataFrame( columns=["comp", "fallbacksubcomp"], data=[[ 'water','river'], [ 'soil', 'industrial'], [ 'air', 'low population density'] ]) self._header_harmonizing_dict = { 'subcompartment':'subcomp', 'Subcompartment':'subcomp', 'Compartment':'comp', 'Compartments':'comp', 'Substance name (ReCiPe)':'charName', 'Substance name (SimaPro)':'simaproName', 'ecoinvent_name':'inventoryName', 'recipe_name':'charName', 'simapro_name':'simaproName', 'CAS number': 'cas', 'casNumber': 'cas', 'Unit':'unit' } # POTENTIAL OTHER ISSUES ## Names that don't fit with their cas numbers #['2-butenal, (2e)-', '123-73-9', '2-butenal', # 'cas of (more common) E configuration; cas of mix is' # ' rather 4170-30-3'], #['3-(1-methylbutyl)phenyl methylcarbamate', '2282-34-0', # 'bufencarb', 'resolve name-cas collision in ReCiPe: CAS' # ' points to specific chemical, not bufencarb (008065-36-9),' # ' which is a mixture of this substance and phenol,' # ' 3-(1-ethylpropyl)-, 1-(n-methylcarbamate)'], #['chlordane (technical)', '12789-03-6', None, # 'pure chlordane has cas 000057-74-9, and is also defined' # ' for cis and trans. This one here seems to be more of a' # ' mixture or low grade, no formula in scifinder'], def initialize_database(self): """ Define tables of SQlite database for matching stressors to characterisation factors """ c = self.conn.cursor() c.execute('PRAGMA foreign_keys = ON;') self.conn.commit() here = path.abspath(path.dirname(__file__)) with open(path.join(here,'initialize_database.sql'),'r') as f: c.executescript(f.read()) self.conn.commit() self.log.warning("obs2char_subcomps constraints temporarily relaxed because not full recipe parsed") def clean_label(self, table, name_cols = ('name', 'name2')): """ Harmonize notation and correct for mistakes in label sqlite table """ c = self.conn.cursor() table= scrub(table) # Harmonize label units c.executescript( """ UPDATE {t} set unit=trim(unit); update {t} set unit='m3' where unit='Nm3'; update {t} set unit='m2a' where unit='m2*year'; update {t} set unit='m3a' where unit='m3*year'; """.format(t=table)) # TRIM, AND HARMONIZE COMP, SUBCOMP, AND OTHER NAMES c.executescript( """ UPDATE {t} SET comp=trim((lower(comp))), subcomp=trim((lower(subcomp))), name=trim(name), name2=trim(name2), cas=trim(cas); update {t} set subcomp='unspecified' where subcomp is null or subcomp='(unspecified)' or subcomp=''; update {t} set subcomp='low population density' where subcomp='low. pop.'; update {t} set subcomp='high population density' where subcomp='high. pop.'; update {t} set comp='resource' where comp='raw'; update {t} set comp='resource' where comp='natural resource'; """.format(t=table)) try: c.executescript(""" update {t} set impactId=replace(impactId,')',''); update {t} set impactId=replace(impactid,'(','_'); """.format(t=table)) except sqlite3.OperationalError: # Not every label has a impactId column... pass # NULLIFY SOME COLUMNS IF ARGUMENTS OF LENGTH ZERO for col in ('cas',) + name_cols: col = scrub(col) c.execute(""" update {t} set {c}=null where length({c})=0;""".format(t=table, c=col)) c.execute(""" update {t} set {c} = replace({c}, ', biogenic', ', non-fossil') where {c} like '%, biogenic%' """.format(t=table, c=col)) # Clean up names c.executescript(""" update {t} set name=replace(name,', in ground',''), name2=replace(name2, ', in ground','') where (name like '% in ground' or name2 like '% in ground'); update {t} set name=replace(name,', unspecified',''), name=replace(name,', unspecified','') where ( name like '%, unspecified' OR name2 like '%, unspecified'); update {t} set name=replace(name,'/m3',''), name2=replace(name2,'/m3','') where name like '%/m3'; """.format(t=table)) # DEFINE TAGS BASED ON NAMES for tag in ('total', 'organic bound', 'fossil', 'non-fossil', 'as N'): for name in name_cols: c.execute(""" update {t} set tag='{ta}' where ({n} like '%, {ta}'); """.format(t=table, ta=tag, n=scrub(name))) self.conn.commit() # Define more tags c.execute(""" update {t} set tag='fossil' where name like '% from soil or biomass stock' or name2 like '% % from soil or biomass stock'; """.format(t=table)) c.execute(""" update {t} set tag='mix' where name like '% compounds' or name2 like '% compounds'; """.format(t=table)) c.execute(""" update {t} set tag='alpha radiation' where (name like '%alpha%' or name2 like '%alpha%') and unit='kbq'; """.format(t=table)) # Different types of "water", treat by name, not cas: c.execute("""update {t} set cas=NULL where name like '%water%'""".format(t=table)) # REPLACE FAULTY CAS NUMBERS CLEAN UP for i, row in self._cas_conflicts.iterrows(): #if table == 'raw_char': org_cas = copy.deepcopy(row.bad_cas) aName = copy.deepcopy(row.aName) if row.aName is not None and row.bad_cas is not None: c.execute(""" update {t} set cas=? where (name like ? or name2 like ?) and cas=?""".format(t=table), (row.cas, row.aName, row.aName, row.bad_cas)) elif row.aName is None: c.execute("""select distinct name from {t} where cas=?;""".format(t=table), (row.bad_cas,)) try: aName = c.fetchone()[0] except TypeError: aName = '[]' c.execute(""" update {t} set cas=? where cas=? """.format(t=table), (row.cas, row.bad_cas)) else: # aName, but no bad_cas specified c.execute(""" select distinct cas from {t} where (name like ? or name2 like ?) """.format(t=table),(row.aName, row.aName)) try: org_cas = c.fetchone()[0] except TypeError: org_cas = '[]' c.execute(""" update {t} set cas=? where (name like ? or name2 like ?) """.format(t=table), (row.cas, row.aName, row.aName)) if c.rowcount: msg="Substituted CAS {} by {} for {} because {}" self.log.info(msg.format( org_cas, row.cas, aName, row.comment)) self.conn.commit() def process_inventory_elementary_flows(self): """Input inventoried stressor flow table (STR) to database and clean up DEPENDENCIES : self.STR must be defined """ # clean up: remove leading zeros in front of CAS numbers self.STR.cas = self.STR.cas.str.replace('^[0]*','') # export to tmp SQL table c = self.conn.cursor() self.STR.to_sql('dirty_inventory', self.conn, index_label='id', if_exists='replace') c.execute( """ INSERT INTO raw_inventory(id, name, comp, subcomp, unit, cas) SELECT DISTINCT id, name, comp, subcomp, unit, cas FROM dirty_inventory; """) self.clean_label('raw_inventory') self.conn.commit() def read_characterisation(self, characterisation_file): """Input characterisation factor table (STR) to database and clean up """ def xlsrange(wb, sheetname, rangename): ws = wb.sheet_by_name(sheetname) ix = xlwt.Utils.cellrange_to_rowcol_pair(rangename) values = [] for i in range(ix[1],ix[3]+1): values.append(tuple(ws.col_values(i, ix[0], ix[2]+1))) return values c = self.conn.cursor() # check whether an extraction method has been written for reading the # characterisation factor file if 'ReCiPe111' in characterisation_file: self.char_method='ReCiPe111' picklename = re.sub('xlsx*$', 'pickle', characterisation_file) else: self.log.error("No method defined to read characterisation factors" " from {}. Aborting.".format(characterisation_file)) #TODO: abort # sheet reading parameters hardcoded = [ {'name':'FEP' , 'rows':5, 'range':'B:M', 'impact_meta':'H4:M6'}, {'name':'MEP' , 'rows':5, 'range':'B:J', 'impact_meta':'H4:J6'}, {'name':'GWP' , 'rows':5, 'range':'B:P', 'impact_meta':'H4:P6'}, {'name':'ODP' , 'rows':5, 'range':'B:J', 'impact_meta':'H4:J6'}, {'name':'ODP' , 'rows':5, 'range':'B:G,N:P', 'impact_meta':'N4:P6'}, {'name':'AP' , 'rows':5, 'range':'B:M', 'impact_meta':'H4:M6'}, {'name':'POFP', 'rows':5, 'range':'B:M', 'impact_meta':'H4:M6'}, {'name':'PMFP', 'rows':5, 'range':'B:M', 'impact_meta':'H4:M6'}, {'name':'IRP' , 'rows':5, 'range':'B:M', 'impact_meta':'H4:M6'}, {'name':'LOP' , 'rows':5, 'range':'B:M', 'impact_meta':'H4:M6'}, {'name':'LOP' , 'rows':5, 'range':'B:G,Q:V', 'impact_meta':'Q4:V6'}, {'name':'LTP' , 'rows':5, 'range':'B:J', 'impact_meta':'H4:J6'}, {'name':'LTP' , 'rows':5, 'range':'B:G,N:P', 'impact_meta':'N4:P6'}, {'name':'WDP' , 'rows':5, 'range':'B:J', 'impact_meta':'H4:J6'}, {'name':'MDP' , 'rows':5, 'range':'B:M', 'impact_meta':'H4:M6'}, {'name':'FDP' , 'rows':5, 'range':'B:M', 'impact_meta':'H4:M6'}, {'name':'TP' , 'rows':5, 'range':'B:AE', 'impact_meta':'H4:AE6'} ] headers = ['comp','subcomp','charName','simaproName','cas','unit'] if self.prefer_pickles and os.path.exists(picklename): with open(picklename, 'rb') as f: [imp, raw_char] = pickle.load(f) else: # Get all impact categories directly from excel file print("reading for impacts") self.log.info("CAREFUL! Make sure you shift headers to the right by" " 1 column in FDP sheet of {}".format(characterisation_file)) wb = xlrd.open_workbook(characterisation_file) imp =[] for sheet in hardcoded: print(imp) imp = imp + xlsrange(wb, sheet['name'], sheet['impact_meta']) imp = pd.DataFrame(columns=['perspective','unit', 'impactId'], data=imp) #imp.impactId = imp.impactId.str.replace(' ', '_') imp.impactId = imp.impactId.str.replace('(', '_') imp.impactId = imp.impactId.str.replace(')', '') # GET ALL CHARACTERISATION FACTORS raw_char = pd.DataFrame() for i in range(len(hardcoded)): sheet = hardcoded[i] j = pd.io.excel.read_excel(characterisation_file, sheet['name'], skiprows=range(sheet['rows']), parse_cols=sheet['range']) # clean up a bit j.rename(columns=self._header_harmonizing_dict, inplace=True) try: j.cas = j.cas.str.replace('^[0]*','') except AttributeError: pass j.ix[:, headers] = j.ix[:, headers].fillna('') j = j.set_index(headers).stack(dropna=True).reset_index(-1) j.columns=['impactId','factorValue'] # concatenate try: raw_char = pd.concat([raw_char, j], axis=0, join='outer') except NameError: raw_char = j.copy() except: self.log.warning("Problem with concat") # Pickle raw_char as read self.log.info("Done with concatenating") with open(picklename, 'wb') as f: pickle.dump([imp, raw_char], f) # Define numerical index raw_char.reset_index(inplace=True) # insert impacts to SQL imp.to_sql('tmp', self.conn, if_exists='replace', index=False) c.execute("""insert or ignore into impacts( perspective, unit, impactId) select perspective, unit, impactId from tmp;""") # insert raw_char to SQL raw_char.to_sql('tmp', self.conn, if_exists='replace', index=False) c.execute(""" insert into raw_char( comp, subcomp, name, name2, cas, unit, impactId, factorValue) select distinct comp, subcomp, charName, simaproName, cas, unit, impactId, factorValue from tmp; """) # RECIPE-SPECIFIC Pre-CLEAN UP # add Chromium VI back, since it did NOT get read in the spreadsheet # (Error512 in the spreadsheet) c.executescript(""" create temporary table tmp_cr as select * from raw_char where cas='7440-47-3'; update tmp_cr set id = NULL, name='Chromium VI', name2='Chromium VI', cas='18540-29-9'; insert into raw_char select * from tmp_cr; """) self.log.info( "Fixed the NaN values for chromium VI in ReCiPe spreadsheet," " assumed to have same toxicity impacts as chromium III.") # Force copper in water to be ionic (cas gets changed as part of normal # clean_label()) c.execute(""" update raw_char set name='<NAME>', name2='<NAME>' where comp='water' and name like 'copper' """) if c.rowcount: self.log.info("For compatibility with ecoinvent, forced {} copper" " emission to water to be ionic (Cu(2+)) instead" " of neutral.".format(c.rowcount)) # MAJOR CLEANUP self.clean_label('raw_char') # COMPARTMENT SPECIFIC FIXES, # i.e., ions out of water in char, or neutral in water in inventory c.execute(""" UPDATE raw_char SET cas='16065-83-1', name='Chromium III', name2='Chromium III' WHERE cas='7440-47-3' AND comp='water' AND (name LIKE 'chromium iii' OR name2 LIKE 'chromium iii') """) if c.rowcount: self.log.info("Changed CAS changed one of the two names of {}" " emissions of chromium III to water. Removes internal ambiguity" " and resolves conflict with Ecoinvent.".format(c.rowcount)) # sort out neutral chromium c.execute(""" update raw_char set name='Chromium', name2='Chromium' WHERE cas='7440-46-3' AND comp<>'water' AND (name like 'chromium' or name2 like 'chromium') """) # add separate neutral Ni in groundwater, because exists in ecoinvent c.executescript(""" create temporary table tmp_ni as select * from raw_char where cas='14701-22-5' and subcomp='river'; update tmp_ni set id = NULL, name='Nickel', name2='Nickel', cas='7440-02-0'; insert into raw_char select * from tmp_ni; """) self.conn.commit() def populate_complementary_tables(self): """ Populate substances, comp, subcomp, etc. from inventoried flows """ self._synonyms.to_sql('synonyms', self.conn, if_exists='replace') # Populate comp and subcomp c = self.conn.cursor() c.executescript( """ INSERT INTO comp(compName) SELECT DISTINCT comp FROM raw_inventory WHERE comp NOT IN (SELECT compName FROM comp); INSERT INTO subcomp (subcompName) SELECT DISTINCT subcomp FROM raw_inventory WHERE subcomp IS NOT NULL and subcomp not in (select subcompname from subcomp); """) c.executescript( # 1. integrate compartments and subcompartments """ INSERT INTO comp(compName) SELECT DISTINCT r.comp from raw_char as r WHERE r.comp NOT IN (SELECT compName FROM comp); insert into subcomp(subcompName) select distinct r.subcomp from raw_char as r where r.subcomp not in (select subcompName from subcomp); """ ) # populate obs2char_subcomp with object attribute: the matching between # subcompartments in inventories and in characterisation method self.obs2char_subcomp.to_sql('obs2char_subcomps', self.conn, if_exists='replace', index=False) self.fallback_sc.to_sql('fallback_sc', self.conn, if_exists='replace', index=False) self.conn.commit() c.executescript( """ -- 2.1 Add Schemes INSERT or ignore INTO schemes(NAME) SELECT '{}'; INSERT OR IGNORE INTO schemes(NAME) SELECT 'simapro'; INSERT OR IGNORE INTO schemes(NAME) SELECT '{}'; """.format(self.version_name, self.char_method)) self.conn.commit() def _integrate_old_labels(self): """ Read in old labels in order to reuse the same Ids for the same flows, for backward compatibility of any inventory using the new dataset REQUIREMENTS ------------ self.STR_old must be defined with: * with THREE name columns called name, name2, name3 * cas, comp, subcomp, unit * ardaid, i.e., the Id that we wish to re-use in the new dataset RETURNS ------- None """ # Fix column names and clean up CAS numbers in DataFrame self.STR_old.rename(columns=self._header_harmonizing_dict, inplace=True) self.STR_old.cas = self.STR_old.cas.str.replace('^[0]*','') # save to tmp table in sqlitedb c = self.conn.cursor() self.STR_old.to_sql('tmp', self.conn, if_exists='replace', index=False) # populate old_labels c.executescript(""" INSERT INTO old_labels(ardaid, name, name2, name3, cas, comp, subcomp, unit) SELECT DISTINCT ardaid, name, name2, name3, cas, comp, subcomp, unit FROM tmp; """) # clean up self.clean_label('old_labels', ('name', 'name2', 'name3')) # match substid by cas and tag sql_command=""" update old_labels set substid=(select distinct s.substid from substances as s where old_labels.cas=s.cas and old_labels.tag like s.tag) where old_labels.substId is null and old_labels.cas is not null; """ self._updatenull_log(sql_command, 'old_labels', 'substid', log_msg= "Matched {} with CAS from old_labels, out of {} unmatched rows." ) # match substid by name and tag matching for name in ('name','name2', 'name3'): sql_command=""" update old_labels set substid=(select distinct n.substid from names as n where old_labels.{n} like n.name and old_labels.tag like n.tag) where old_labels.substId is null ;""".format(n=scrub(name)) self._updatenull_log(sql_command, 'old_labels', 'substid', log_msg= "Matched {} with name and tag matching, out of {} unmatched rows from old_labels.") # match substid by cas only sql_command=""" update old_labels set substid=(select distinct s.substid from substances as s where old_labels.cas=s.cas) where old_labels.substId is null and old_labels.cas is not null; """ self._updatenull_log(sql_command, 'old_labels', 'substid', log_msg= "Matched {} from old_labels by CAS only, out of {} unmatched rows.") self.conn.commit() # match substid by name only for name in ('name','name2', 'name3'): sql_command = """ update old_labels set substid=(select distinct n.substid from names as n where old_labels.{n} like n.name) where substId is null ;""".format(n=scrub(name)) self._updatenull_log(sql_command, 'old_labels', 'substid', log_msg= "Matched {} from old_labels by name only, out of {} unmatched rows.") # document unmatched old_labels unmatched = pd.read_sql(""" select * from old_labels where substid is null; """, self.conn) if unmatched.shape[0]: logfile = 'unmatched_oldLabel_subst.csv' unmatched.to_csv(os.path.join(self.log_dir, logfile), sep='|', encoding='utf-8') msg = "{} old_labels entries not matched to substance; see {}" self.log.warning(msg.format(unmatched.shape[0], logfile)) # save to file self.conn.commit() def characterize_flows(self, tables=('raw_char','raw_inventory')): """ Master function to characterize elementary flows Args ---- * tables: tuple of the tables to be processes, typically a raw table of * characterized flows (raw_char) and a table of inventoried elementary * flows (raw_inventory) IMPORTANT: because of the iterative treatment of synonyms and the use of proxies to match as many flows as possible, it is best that the tables tuple start with the table of characterized flows (raw_char) """ # Integrate substances based on CAS for each table self._integrate_flows_withCAS(tables) # Integrate substances by string matching and synonyms for each table self._integrate_flows_withoutCAS(tables) # Clean up, production of lists of inventory and characterised # stressors, and compile table of characterisation factors self._finalize_labels_and_factors(tables) # Integrate old stressor list, notably to re-use old Ids if self.STR_old is not None: self._integrate_old_labels() # Produce stressor label (STR), impact labels (IMP), and # characterisation matrix (C) self._characterisation_matching() self.conn.commit() def _update_labels_from_names(self, table): """ Update Substance ID in labels based on name matching""" c = self.conn.cursor() self.conn.executescript( """ --- Match based on names UPDATE OR ignore {t} SET substid=( SELECT n.substid FROM names as n WHERE ({t}.name like n.name or {t}.name2 like n.name) AND {t}.tag IS n.tag ) WHERE {t}.substid IS NULL AND {t}.cas IS NULL; """.format(t=scrub(table))); # Match with known synonyms, in decreasing order of accuracy in # approximation for i in np.sort(self._synonyms.approximationLevel.unique()): for j in [('aName', 'anotherName'),('anotherName', 'aName')]: c.execute(""" UPDATE OR ignore {t} SET substid=( SELECT DISTINCT n.substid FROM names as n, synonyms as s WHERE ({t}.name like s.{c0} OR {t}.name2 like s.{c0}) AND s.{c1} like n.name AND {t}.tag IS n.tag AND s.approximationLevel = ?) WHERE {t}.substid IS NULL AND {t}.cas IS NULL """.format(t=scrub(table), c0=scrub(j[0]), c1=scrub(j[1])), [str(i)]) self.conn.commit() def _insert_names_from_labels(self, table): """Subfunction to handle names/synonyms in _integrate_flows_* methods """ c = self.conn.cursor() c.executescript(""" --- Insert names INSERT OR IGNORE INTO names (name, tag, substid) SELECT DISTINCT name, tag, substId FROM {t} where substid is not null UNION SELECT DISTINCT name2, tag, substId FROM {t} where substid is not null; ---- INSERT OR IGNORE INTO names(name, tag, substid) ---- SELECT DISTINCT s.anotherName, n.tag, n.substid ---- FROM names n, synonyms s ---- WHERE s.aName LIKE n.name; ---- INSERT OR IGNORE INTO names(name, tag, substid) ---- SELECT DISTINCT s.aName, n.tag, n.substid ---- FROM names n, synonyms s ---- WHERE s.anotherName LIKE n.name; """.format(t=scrub(table))) def _integrate_flows_withCAS(self, tables=('raw_inventory', 'raw_char')): """ Populate substances, comp, subcomp, etc. from inventoried flows Can be seen as a subroutine of self.characterize_flows() """ # Populate comp and subcomp c = self.conn.cursor() for table in tables: c.executescript( # 2.2 A new substance for each new cas+tag # this will automatically ignore any redundant cas-tag combination """ insert or ignore into substances(aName, cas, tag) select distinct r.name, r.cas, r.tag FROM {t} AS r WHERE r.cas is not null AND r.NAME IS NOT NULL UNION select distinct r.name2, r.cas, r.tag from {t} AS r WHERE r.cas is not null AND r.name IS NULL ; -- 2.4: backfill labels with substid based on CAS-tag UPDATE OR ignore {t} SET substid=( SELECT s.substid FROM substances as s WHERE {t}.cas=s.cas AND {t}.tag IS s.tag ) WHERE {t}.substid IS NULL ; """.format(t=scrub(table))) self._insert_names_from_labels(table) self.conn.commit() def _integrate_flows_withoutCAS(self, tables=('raw_inventory', 'raw_char')): """ populate substances and names tables from flows without cas Can be seen as a subroutine of self.characterize_flows() """ c = self.conn.cursor() # new substances for each new name-tags in one dataset # update labels with substid from substances for table in tables: # update substid in labels by matching with names already defined # catch any synonyms self._update_labels_from_names(table) # Insert any new synonym self._insert_names_from_labels(table) # Define new substances for those that remain c.executescript(""" -- 2.5: Create new substances for the remaining flows INSERT OR ignore INTO substances(aName, cas, tag) SELECT DISTINCT name, cas, tag FROM {t} r WHERE r.substid IS NULL AND r.name IS NOT NULL UNION SELECT DISTINCT name2, cas, tag FROM {t} r WHERE r.substid IS NULL AND r.name IS NULL ; -- 2.6: backfill labels with substid based on name-tag UPDATE {t} SET substid=( SELECT s.substid FROM substances s WHERE ({t}.name like s.aName OR {t}.name2 like s.aName) AND {t}.tag IS s.tag ) WHERE substid IS NULL ; """.format(t=scrub(table))) # 2.6 # insert new name-substid pairs into names self._insert_names_from_labels(table) # update substid in labels by matching with names already defined self._update_labels_from_names(table) self.conn.commit() def _finalize_labels_and_factors(self, tables=('raw_char', 'raw_inventory')): """ SubstID matching qualitiy checks, produce labels, populate factors Can be seen as a subroutine of self.characterize_flows() Prep work: * Checks for mised synonyms in substid matching * checks for near misses because of plurals * Link Names to Schemes (Recipe*, ecoinvent, etc.) in nameHasScheme Main tasks: * Produce labels (labels_inventory, labels_char) * Populate the factors table with factors of production Post processing: * Customize characterisation factors based on custom_factors.csv parameter * Identify conflicts """ c = self.conn.cursor() # Check for apparent synonyms that have different substance Ids # and log warning c.executescript( """ select distinct r.name, n1.substid, r.name2, n2.substid from raw_char r, names n1, names n2 where r.name=n1.name and r.name2=n2.name and n1.substid <> n2.substid; """) missed_synonyms = c.fetchall() if len(missed_synonyms): self.log.warning("Probably missed on some synonym pairs") print(missed_synonyms) # Check for flows that have not been matched to substance ID and log # warning for table in tables: c.execute( "select * from {} where substid is null;".format(scrub(table))) missed_flows = c.fetchall() if len(missed_flows): self.log.warning("There are missed flows in "+table) print(missed_flows) # Log any near matches that might have been missed because of some # plural c.execute( """ select * from Names as n1, Names as n2 where n1.name like n2.name||'s' and n1.substid <> n2.substid; """) missed_plurals = c.fetchall() if len(missed_plurals): self.log.warning("Maybe missed name matching because of plurals") print(missed_plurals) # Match Names with Schemes (Simapro, Recipe, Ecoinvent, etc.) self.conn.executescript(""" --- match names with scheme of self.version_name INSERT INTO nameHasScheme SELECT DISTINCT n.nameId, s.schemeId from names n, schemes s WHERE n.name in (SELECT DISTINCT name FROM raw_inventory) and s.name='{}'; --- match names with scheme of self.char_method insert into nameHasScheme select distinct n.nameId, s.schemeId from names n, schemes s where n.name in (select name from raw_char) and s.name='{}'; --- match alternative name in characterisation method (name2) with --- simapro scheme (hardcoded) insert into nameHasScheme select distinct n.nameId, s.schemeId from names n, schemes s where n.name in (select name2 from raw_char) and s.name='simapro'; """.format(scrub(self.version_name), scrub(self.char_method))) # For each table, prepare labels and, if applicable, populate # factors table with characterisation factors for i in range(len(tables)): table = scrub(tables[i]) if 'inventory' in table: t_out = 'labels_inventory' else: t_out = 'labels_char' # Populate factors table self.conn.commit() c.execute(# only loose constraint on table, the better to # identify uniqueness conflicts and log problems in a # few lines (as soon as for-loop is over) # # TODO: fix the way methods is defined """ insert or ignore into factors( substId, comp, subcomp, unit, impactId, factorValue, method) select distinct substId, comp, subcomp, unit, impactId, factorValue, '{c}' from {t}; """.format(t=table, c=scrub(self.char_method)) ) # Prepare labels self.conn.executescript(""" INSERT INTO {to}( id, substId, name, name2, tag, comp, subcomp, cas, unit) SELECT DISTINCT id, substId, name, name2, tag, comp, subcomp, cas, unit FROM {t}; """.format(t=table, to=t_out)) # Customize characterizations based on custom_factors.csv for i,row in self._custom_factors.iterrows(): c.execute(""" UPDATE OR IGNORE factors SET factorValue=? WHERE impactId = ? AND substid=(SELECT DISTINCT substid FROM names WHERE name LIKE ?) AND comp=? AND subcomp=? AND unit=?;""", (row.factorValue, row.impactID, row.aName, row.comp, row.subcomp, row.unit)) if c.rowcount: msg="Custimized {} factor to {} for {} ({}) in {} {}" self.log.info(msg.format(row.impactID, row.factorValue, row.aName, row.unit, row.comp, row.subcomp)) # Identify conflicting characterisation factors sql_command = """ select distinct f1.substid, s.aName, f1.comp, f1.subcomp, f1.unit, f1.impactId, f1.method, f1.factorValue, f2.factorValue from factors f1, factors f2, substances s where f1.substId=f2.substId and f1.substId=s.substId and f1.comp=f2.comp and f1.subcomp = f2.subcomp and f1.unit = f2.unit and f1.impactId = f2.impactId and f1.method = f2.method and f1.factorValue <> f2.factorValue; """ factor_conflicts = pd.read_sql(sql_command, self.conn) for i, row in factor_conflicts.iterrows(): self.log.warning("FAIL! Different characterization factor " "values for same flow-impact pair? Conflict:") self.log.warning(row.values) self.conn.commit() def _characterisation_matching(self): """ Produce stressor (STR) and impact (IMP) labels, and characterisation matrix (C). """ c = self.conn.cursor() # Get all inventory flows straight in labelss_out c.execute( """ insert into labels_out( dsid, substId, comp, subcomp,name, name2, cas, tag, unit) select distinct id, substId, comp, subcomp,name, name2, cas, tag, unit from labels_inventory; """) c.execute(""" insert into labels_out( substid, comp, subcomp, name, name2, cas, tag, unit) select distinct lc.substid, lc.comp, lc.subcomp, lc.name, lc.name2, lc.cas, lc.tag, lc.unit from labels_char lc where not exists(select 1 from labels_out lo where lo.substid=lc.substid and lo.comp = lc.comp and lo.subcomp = lc.subcomp and lo.unit = lc.unit) """) # TODO: could improve labels_out, minimum data, then left join # for cas, ardaid, name2, etc. sql_command = """ update or ignore labels_out set ardaid=(select ardaid from old_labels ol where labels_out.substId=ol.substId and labels_out.comp=ol.comp and labels_out.subcomp = ol.subcomp and labels_out.unit = ol.unit) where labels_out.ardaid is null; """ self._updatenull_log(sql_command, 'labels_out', 'ardaid', log_msg= " Matched {} with ArdaID from old labels, out of {} unmatched rows." ) # MATCH LABEL_OUT ROW WITH CHARACTERISATION FACTORS # first match based on perfect comp correspondence c.execute( """ INSERT INTO obs2char( flowId, impactId, factorId, factorValue, scheme) SELECT DISTINCT lo.id, f.impactId, f.factorId, f.factorValue, f.method FROM labels_out lo, factors f WHERE lo.substId = f.substId AND lo.comp = f.comp AND lo.subcomp = f.subcomp AND f.method = '{}' AND lo.unit = f.unit; """.format(scrub(self.char_method))) self.log.info("Matched {} flows and factors, with exact subcomp" " matching".format(c.rowcount)) # second insert for approximate subcomp c.execute( """ INSERT or ignore INTO obs2char( flowId, impactId, factorId, factorValue, scheme) SELECT DISTINCT lo.id, f.impactId, f.factorId, f.factorValue, f.method FROM labels_out lo, factors f, obs2char_subcomps ocs WHERE lo.substId = f.substId AND lo.comp = f.comp AND lo.subcomp = ocs.obs_sc AND ocs.char_sc = f.subcomp AND f.method = '{}' AND lo.unit = f.unit; """.format(scrub(self.char_method))) self.log.info("Matched {} flows and factors, with approximate subcomp" " matching".format(c.rowcount)) # third insert for subcomp 'unspecified' c.execute( """ INSERT or ignore INTO obs2char( flowId, impactId, factorId, factorValue, scheme) SELECT DISTINCT lo.id, f.impactId, f.factorId, f.factorValue, f.method FROM labels_out lo, factors f, obs2char_subcomps ocs WHERE lo.substId = f.substId AND lo.comp = f.comp AND f.subcomp = 'unspecified' AND f.method = '{}' AND lo.unit = f.unit; """.format(scrub(self.char_method))) self.log.info("Matched {} flows and factors, with 'unspecified' subcomp" " matching".format(c.rowcount)) # fourth insert for subcomp fallback c.execute( """ INSERT or ignore INTO obs2char( flowId, dsid, impactId, factorId, factorValue, scheme) SELECT DISTINCT lo.id, lo.dsid, f.impactId, f.factorId, f.factorValue, f.method FROM labels_out lo, factors f, fallback_sc fsc WHERE lo.substId = f.substId AND lo.comp = f.comp AND lo.comp=fsc.comp AND f.subcomp=fsc.fallbacksubcomp AND f.method = '{}' AND lo.unit = f.unit; """.format(scrub(self.char_method))) self.log.info("Matched {} flows and factors, by falling back to a " "default subcompartment".format(c.rowcount)) sql_command="""SELECT DISTINCT * FROM labels_out lo WHERE lo.id NOT IN (SELECT DISTINCT flowId FROM obs2char) order by name;""" unchar_flow=pd.read_sql(sql_command, self.conn) filename = os.path.join(self.log_dir,'uncharacterized_flows.csv') unchar_flow.to_csv(filename, sep='|') self.log.warning("This leaves {} flows uncharacterized, see {}".format( unchar_flow.shape[0], filename)) sql_command=""" select distinct s.substId, s.aName, s.cas, s.tag from substances s where s.substId not in ( select distinct lo.substid from labels_out lo where lo.id in (select distinct flowId from obs2char) ) order by s.aName; """ unchar_subst=pd.read_sql(sql_command, self.conn) filename=os.path.join(self.log_dir,'uncharacterized_subst.csv') unchar_subst.to_csv(filename , sep='|') self.log.warning("These uncharacterized flows include {} " "substances, see {}".format(unchar_subst.shape[0], filename)) # Gett unmatcheds substances sans land-use issues c.execute(""" select count(*) from ( select distinct s.substId, s.aName, s.cas, s.tag from substances s where s.substId not in ( select distinct lo.substid from labels_out lo where lo.id in (select distinct flowId from obs2char) ) and s.aName not like 'transformation%' and s.aName not like 'occupation%' ); """) self.log.warning("Of these uncharacterized 'substances', {} are " " not land occupation or transformation.".format( c.fetchone()[0])) def generate_characterized_extensions(self): # get labels from database self.STR = pd.read_sql("select * from labels_out", self.conn, index_col='id') self.IMP = pd.read_sql("""select * from impacts order by perspective, unit, impactId""", self.conn) self.IMP.set_index('impactId',drop=False,inplace=True) self.IMP.index.name='index' # get table and pivot obs2char = pd.read_sql("select * from obs2char", self.conn) self.C = pd.pivot_table(obs2char, values='factorValue', columns='flowId', index='impactId').reindex_axis(self.STR.index, 1) self.C = self.C.reindex_axis(self.IMP.index, 0).fillna(0) # Reorganize elementary flows to follow STR order Forg = self.F.fillna(0) self.F = self.F.reindex_axis(self.STR.ix[:, 'dsid'].values, 0).fillna(0) self.F.index = self.STR.index.copy() # safety assertions assert(np.allclose(self.F.values.sum(), Forg.values.sum())) assert((self.F.values > 0).sum() == (Forg.values > 0).sum()) def make_compatible_with_arda(self, ardaidmatching_file): """ For backward compatibility, try to reuse ArdaIds from previous version Args ---- * ardaidmatching_file: CSV file matching ArdaID with ecoinvent2.2 DSID and with version3 UUIDs Dependencies: ------------- * self.PRO_old, defined by extract_old_labels() * self.IMP_old, defined by extract_old_labels() * self.STR_ols, defined by extract_old_labels() For Processes, ArdaIDs are matched using the matching file. For elementary flows, the matching is already done from _integrate_old_labels(). For impact categories, matching based on acronyms. For processes, elementary flows and impacts without an Id, one is serially defined. """ def complement_ardaid(label, old_label, column='ardaid',step=10, name='an_unamed_label'): """ Generate ArdaId for processes, stressors or impacts needing it """ # Start above the maximum historical ID (+ step, for buffer) anId = old_label.ardaid.max() + step # Loop through all rows, fix NaN or Null ArdaIds for i, row in label.iterrows(): if not row['ardaid'] > 0: anId +=1 label.ix[i,'ardaid'] = anId # Make sure all Ids are unique to start with if len(label.ix[:, column].unique()) != len(label.ix[:, column]): self.log.error('There are duplicate Ids in {}'.format(name)) return label def finalize_indexes(label, old_index, duplicate_cols): # return to original indexes label = label.set_index(old_index.name) # make sure that indexes have not changed assert(set(old_index) == set(label.index)) # Go back to original order label = label.reindex(old_index) # Remove columns leftover during the merge label = label.drop(duplicate_cols, 1) return label def organize_labels(label, fullnamecols, firstcols, lastcols): """ Ensure the columns in the right place for Arda to understand * Fullname must be first column * ArdaId must be second * Unit must be last """ for i in fullnamecols: try: full = full + '/' + label[i] except NameError: full = label[i] full.name='fullname' l = pd.concat([full, label[firstcols], label.drop(firstcols + lastcols, 1), label[lastcols]], axis=1) return l # As much as possible, assign PRO with old ArdaID, for backward # compatibility. For PRO, do it with official UUID-DSID matching a =
pd.read_csv(ardaidmatching_file)
pandas.read_csv
from __future__ import division import pandas as pd import logging import numpy as np from numpy.random import RandomState from trumania.core.operations import AddColumns from trumania.core.random_generators import DependentGenerator from trumania.core.util_functions import latest_date_before class Clock(object): """ A Clock is the central object managing the evolution of time of the whole circus. It's generating timestamps on demand, and provides information for TimeProfiler objects. """ def __init__(self, start, step_duration, seed): """Create a Clock object. :type start: pd.Timestamp :param start: instant of start of the generation :type step_duration: pd.Timedelta :param step_duration: duration of a clock step :type seed: int :param seed: seed for timestamp generator (if steps are more than 1 sec) :return: a new Clock object, initialised """ self.current_date = start self.step_duration = step_duration self.__state = RandomState(seed) self.ops = self.ClockOps(self) self.__increment_listeners = [] def register_increment_listener(self, listener): """Add an object to be incremented at each step (such as a TimeProfiler) """ self.__increment_listeners.append(listener) def increment(self): """Increments the clock by 1 step :rtype: NoneType :return: None """ self.current_date += self.step_duration for listener in self.__increment_listeners: listener.increment() def get_timestamp(self, size=1, random=True, log_format=None): """ Returns timestamps formatted as string :type size: int :param size: number of timestamps to generate, default 1 :type random: boolean :param random: if True, the timestamps are randomly generated in [ self.current_date, self.current_date+self.step_duration] :type log_format: string :param log_format: string format of the generated timestamps :rtype: Pandas Series :return: random timestamps in the form of strings """ if log_format is None: log_format = "%Y-%m-%d %H:%M:%S" def make_ts(delta_secs): date = self.current_date + pd.Timedelta(seconds=delta_secs) return date.strftime(log_format) if random: step_secs = int(self.step_duration.total_seconds()) return pd.Series(self.__state.choice(step_secs, size)).apply(make_ts) else: return pd.Series([self.current_date.strftime(log_format)] * size) def n_iterations(self, duration): """ :type duration: pd.Timedelta :return: the smallest number of iteration of this clock s.t. the corresponding duration is >= duration """ step_secs = self.step_duration.total_seconds() return int(np.ceil(duration.total_seconds() / step_secs)) class ClockOps(object): def __init__(self, clock): self.clock = clock class Timestamp(AddColumns): def __init__(self, clock, named_as, random, log_format): AddColumns.__init__(self) self.clock = clock self.named_as = named_as self.random = random self.log_format = log_format def build_output(self, story_data): values = self.clock.get_timestamp( size=story_data.shape[0], random=self.random, log_format=self.log_format).values df = pd.DataFrame({self.named_as: values}, index=story_data.index) return df def timestamp(self, named_as, random=True, log_format=None): """ Generates a random timestamp within the current time slice """ return self.Timestamp(self.clock, named_as, random, log_format) class CyclicTimerGenerator(DependentGenerator): """A TimeProfiler contains an activity profile over a defined time range. It's mostly a super class, normally only its child classes should be used. The goal of a TimeProfiler is to keep a track of the expected level of activity of users over a cyclic time range It will store a vector with probabilities of activity per time step, as well as a cumulative sum of the probabilities starting with the current time step. This allows to quickly produce random waiting times until the next event for the users """ def __init__(self, clock, seed, config): """ This should not be used, only child classes :type clock: Clock :param clock: the master clock driving this simulator :type seed: int :param seed: seed for random number generator, default None :return: A new TimeProfiler is created """ DependentGenerator.__init__(self) self._state = RandomState(seed) self.config = config self.clock = clock # "macro" time shift: we shift the whole profile n times in the future # or the past until it overlaps with the current clock date init_date = latest_date_before( starting_date=config.start_date, upper_bound=clock.current_date, time_step=pd.Timedelta(config.profile_time_steps) * len( config.profile)) # Un-scaled weight profile. We artificially adds a nan to force the # up-sclaling to multiply the last element profile_idx = pd.date_range(start=init_date, freq=config.profile_time_steps, periods=len(config.profile) + 1) profile_ser = pd.Series(data=config.profile + [np.nan], index=profile_idx) # scaled weight profile, s.t. one clock step == one profile value profile_ser = profile_ser.resample(rule=clock.step_duration).pad()[:-1] self.n_time_bin = profile_ser.shape[0] profile_cdf = (profile_ser / profile_ser.sum()).cumsum() self.profile = pd.DataFrame({"cdf": profile_cdf, # for debugging "timeframe": np.arange(len(profile_cdf))}) # "micro" time shift,: we step forward along the profile until it is # align with the current date while self.profile.index[0] < clock.current_date: self.increment() # makes sure we'll get notified when the clock goes forward clock.register_increment_listener(self) def increment(self): """ Increment the time generator by 1 step. This has as effect to move the cdf of one step to the left, decrease all values by the value of the original first entry, and placing the previous first entry at the end of the cdf, with value 1. """ self.profile["cdf"] -= self.profile["cdf"].iloc[0] self.profile = pd.concat([self.profile.iloc[1:], self.profile.iloc[:1]]) self.profile.loc[self.profile.index[-1], "cdf"] = 1 def generate(self, observations): """Generate random waiting times, based on some observed activity levels. The higher the level of activity, the shorter the waiting times will be :type observations: Pandas Series :param observations: contains an array of floats :return: Pandas Series """ activities = observations # activities less often than once per cycle length low_activities = activities.where((activities <= 2) & (activities > 0)).dropna() if low_activities.shape[0] > 0: draw = self._state.uniform(size=low_activities.shape[0]) # A uniform [0, 2/activity] yields an expected freqs == 1/activity # == average period between story. # => n_cycles is the number of full timer cycles from now until # next story. It's typically not an integer and possibly be > 1 # since we have on average less han 1 activity per cycle of this # timer. n_cycles = 2 * draw / low_activities.values timer_slots = n_cycles % 1 n_cycles_int = n_cycles - timer_slots timers = self.profile["cdf"].searchsorted(timer_slots) + \ self.n_time_bin * n_cycles_int low_activity_timer = pd.Series(timers, index=low_activities.index) else: low_activity_timer = pd.Series() high_activities = activities.where(activities > 2).dropna() if high_activities.shape[0] > 0: # A beta(1, activity-1) will yield expected frequencies of # 1/(1+activity-1) == 1/activity == average period between story. # This just stops to work for activities < 1, or even close to one # => we use the uniform mechanism above for activities <= 2 and # rely on betas here for expected frequencies of 2 per cycle or # higher timer_slots = high_activities.apply( lambda activity: self._state.beta(1, activity - 1)) timers = self.profile["cdf"].searchsorted(timer_slots, side="left") high_activity_timer = pd.Series(timers, index=high_activities.index) else: high_activity_timer = pd.Series() all_timers = pd.concat([low_activity_timer, high_activity_timer]) # Not sure about that one, there seem to be a bias somewhere that # systematically generates too large timer. Maybe it's a rounding # effect of searchsorted() or so. Or a bug elsewhere ? all_timers = all_timers.apply(lambda d: max(0, d - 1)) # makes sure all_timers is in the same order and with the same index # as input observations, even in case of duplicate index values all_timers = all_timers.reindex_like(observations) return all_timers def activity(self, n, per): """ :param n: number of stories :param per: time period for that number of stories :type per: pd.Timedelta :return: the activity level corresponding to the specified number of n executions per time period """ scale = self.config.duration().total_seconds() / per.total_seconds() activity = n * scale requested_period = pd.Timedelta(seconds=per.total_seconds() / n) if requested_period < self.clock.step_duration: logging.warning( "Warning: Creating activity level for {} stories per " "{} => activity is {} but period is {}, which is " "shorter than the clock period ({}). This clock " "cannot keep up with such rate and less events will be" " produced".format(n, per, activity, requested_period, self.clock.step_duration) ) return activity class CyclicTimerProfile(object): """ Static parameters of the Timer profile. Separated from the timer gen itself to facilitate persistence. :type profile: python array :param profile: Weight of each period :type profile_time_steps: string :param profile_time_steps: duration of the time-steps in the profile (e.g. "15min") :type start_date: pd.Timestamp :param start_date: date of the origin of the specified profile => this is used to align with the values of the clock """ def __init__(self, profile, profile_time_steps, start_date): self.start_date = start_date self.profile = profile self.profile_time_steps = profile_time_steps def save_to(self, file_path): logging.info("saving timer generator to {}".format(file_path)) saved_df = pd.DataFrame({("value", "profile"): self.profile}, dtype=str).stack() saved_df.index = saved_df.index.reorder_levels([1, 0]) saved_df.loc[("start_date", 0)] = self.start_date saved_df.loc[("profile_time_steps", 0)] = self.profile_time_steps saved_df.to_csv(file_path) @staticmethod def load_from(file_path): saved_df = pd.read_csv(file_path, index_col=[0, 1]) profile = saved_df.loc[("profile", slice(None))]\ .unstack()\ .astype(float)\ .tolist() profile_time_steps = saved_df.loc["profile_time_steps"].values[0][0] start_date = pd.Timestamp(saved_df.loc["start_date"].values[0][0]) return CyclicTimerProfile(profile, profile_time_steps, start_date) def duration(self): """ :return: the total duration corresponding to this time profile """ return len(self.profile) *
pd.Timedelta(self.profile_time_steps)
pandas.Timedelta
import pandas as pd import time # Grab the DLA HAR dataset from: # http://groupware.les.inf.puc-rio.br/har # http://groupware.les.inf.puc-rio.br/static/har/dataset-har-PUC-Rio-ugulino.zip # # TODO: Load up the dataset into dataframe 'X' # # .. your code here .. # # TODO: Clean up any column with commas in it # so that they're properly represented as decimals instead # # .. your code here .. X =
pd.read_csv('E:/Github/DAT210x-Lab/Module6/Datasets/PUC.csv', sep=';', index_col=0, decimal=',')
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Sat Aug 17 17:07:51 2019 @author: jeichman """ import pandas as pd import os import fnmatch dir0 = 'C:/Users/jeichman/Documents/gamsdir/projdir/RODeO/Projects/VTA_bus_project2/Output/' # Location of files to load c0 = 0 for files2load in os.listdir(dir0): if fnmatch.fnmatch(files2load, 'Storage_dispatch_resultsDevices*'): if c0==0: files2load2 = [files2load] c0=c0+1 else: files2load2.append(files2load) c0=c0+1 c0 = 0 c2 = [0] for files2load in files2load2: # Load files and melt into shape results_devices =
pd.read_csv(dir0 + files2load,sep=',')
pandas.read_csv
#!/usr/bin/env python # encoding: utf-8 from collections import defaultdict from css_html_js_minify import html_minify from functools import lru_cache from jinja2 import Environment, FileSystemLoader from operator import itemgetter from pathlib import Path from pyvis.network import Network import codecs import json import networkx as nx import numpy as np import pandas as pd import scipy.stats as stats import sys import time import traceback class RCNeighbors: def __init__ (self): self.prov = [] self.data = [] self.publ = [] self.jour = [] self.auth = [] self.topi = [] def serialize (self, t0, cache_token): """ serialize this subgraph/neighborhood as JSON """ view = { "prov": sorted(self.prov, key=lambda x: x[1], reverse=True), "data": sorted(self.data, key=lambda x: x[1], reverse=True), "publ": sorted(self.publ, key=lambda x: x[1], reverse=True), "jour": sorted(self.jour, key=lambda x: x[1], reverse=True), "auth": sorted(self.auth, key=lambda x: x[1], reverse=True), "topi": sorted(self.topi, key=lambda x: x[1], reverse=True), "toke": cache_token, "time": "{:.2f}".format((time.time() - t0) * 1000.0) } return json.dumps(view, indent=4, sort_keys=True, ensure_ascii=False) class RCNetworkNode: def __init__ (self, view=None, elem=None): self.view = view self.elem = elem class RCNetwork: MAX_TITLE_LEN = 100 Z_975 = stats.norm.ppf(q=0.975) def __init__ (self): self.id_list = [] self.labels = {} self.nxg = None self.scale = {} self.prov = {} self.data = {} self.publ = {} self.jour = {} self.auth = {} self.topi = {} def get_id (self, id): """ lookup the numeric ID for an element """ return int(self.id_list.index(id)) def parse_metadata (self, elem): """ parse the required metadata items from one element in the graph """ kind = elem["@type"] title = elem["dct:title"]["@value"] id = elem["@id"].split("#")[1] self.id_list.append(id) self.labels[self.get_id(id)] = title return id, kind, title, elem def parse_corpus (self, path): """ parse each of the entities within the KG """ with codecs.open(path, "r", encoding="utf8") as f: jld_corpus = json.load(f) corpus = jld_corpus["@graph"] entities = [ self.parse_metadata(e) for e in corpus ] unknown_journal = None # providers for id, kind, title, elem in entities: if kind == "Provider": if "dct:identifier" in elem: ror = elem["dct:identifier"]["@value"] else: ror = "" self.prov[id] = RCNetworkNode( view={ "id": id, "title": title, "ror": ror }, elem=elem ) # datasets for id, kind, title, elem in entities: if kind == "Dataset": prov_id = elem["dct:publisher"]["@value"] # url, if any if "foaf:page" in elem: url = elem["foaf:page"]["@value"] else: url = None self.data[id] = RCNetworkNode( view={ "id": id, "title": title, "provider": prov_id, "url": url }, elem=elem ) # journals for id, kind, title, elem in entities: if kind == "Journal": if title == "unknown": unknown_journal = id else: if "dct:identifier" in elem: issn = elem["dct:identifier"]["@value"] else: issn = "" # url, if any if "foaf:page" in elem: url = elem["foaf:page"]["@value"] else: url = None self.jour[id] = RCNetworkNode( view={ "id": id, "title": title, "issn": issn, "url": url }, elem=elem ) # authors for id, kind, title, elem in entities: if kind == "Author": if "dct:identifier" in elem: orcid = elem["dct:identifier"]["@value"] else: orcid = "" self.auth[id] = RCNetworkNode( view={ "id": id, "title": title, "orcid": orcid }, elem=elem ) # topics for id, kind, title, elem in entities: if kind == "Topic": self.topi[id] = RCNetworkNode( view={ "id": id, "title": title }, elem=elem ) # publications for id, kind, title, elem in entities: if kind == "ResearchPublication": # link the datasets data_list = [] l = elem["cito:citesAsDataSource"] # if there's only one element, JSON-LD will link # directly rather than enclose within a list if isinstance(l, dict): l = [l] for d in l: data_id = d["@id"].split("#")[1] self.data[data_id].view["used"] = True data_list.append(data_id) prov_id = self.data[data_id].view["provider"] self.prov[prov_id].view["used"] = True # link the authors auth_list = [] if "dct:creator" in elem: l = elem["dct:creator"] else: l = [] # ibid. if isinstance(l, dict): l = [l] for a in l: auth_id = a["@id"].split("#")[1] self.auth[auth_id].view["used"] = True auth_list.append(auth_id) # link the topics topi_list = [] if "dct:subject" in elem: l = elem["dct:subject"] else: l = [] # ibid. if isinstance(l, dict): l = [l] for t in l: topi_id = t["@id"].split("#")[1] self.topi[topi_id].view["used"] = True topi_list.append(topi_id) # add DOI if "dct:identifier" in elem: doi = elem["dct:identifier"]["@value"] else: doi = "" # add journal if "dct:publisher" in elem: jour_id = elem["dct:publisher"]["@id"].split("#")[1] if jour_id == unknown_journal: jour_id = None else: self.jour[jour_id].view["used"] = True # add abstract if "cito:description" in elem: abstract = elem["cito:description"]["@value"] else: abstract = "" # open access PDF, if any if "openAccess" in elem: pdf = elem["openAccess"]["@value"] else: pdf = None self.publ[id] = RCNetworkNode( view={ "id": id, "title": title, "doi": doi, "pdf": pdf, "journal": jour_id, "abstract": abstract, "datasets": data_list, "authors": auth_list, "topics": topi_list }, elem=elem ) ###################################################################### ## graph analytics @classmethod @lru_cache() def point_estimate (cls, x, n): return (float(x) + cls.Z_975) / (float(n) + 2.0 * cls.Z_975) def propagate_pdf (self, entity_class, entity_kind): """ propagate probability distribution functions across the graph, for conditional probabilities related to datasets """ trials = defaultdict(int) counts = defaultdict(dict) for p in self.publ.values(): if p.view[entity_kind]: coll = p.view[entity_kind] if isinstance(coll, str): coll = [coll] for e in coll: n = float(len(p.view["datasets"])) trials[e] += n for d in p.view["datasets"]: if d not in counts[e]: counts[e][d] = 1 else: counts[e][d] += 1 for e in entity_class.values(): e_id = e.view["id"] mle = {} for d, x in counts[e_id].items(): pt_est = self.point_estimate(x, trials[e_id]) mle[self.get_id(d)] = [x, pt_est] e.view["mle"] = mle def build_analytics_graph (self): """ build a graph to calculate analytics """ self.nxg = nx.Graph() for p in self.prov.values(): if "used" in p.view: self.nxg.add_node(self.get_id(p.view["id"])) for d in self.data.values(): if "used" in d.view: self.nxg.add_node(self.get_id(d.view["id"])) self.nxg.add_edge(self.get_id(d.view["id"]), self.get_id(d.view["provider"]), weight=10.0) for a in self.auth.values(): if "used" in a.view: self.nxg.add_node(self.get_id(a.view["id"])) for j in self.jour.values(): if "used" in j.view: self.nxg.add_node(self.get_id(j.view["id"])) for t in self.topi.values(): if "used" in t.view: self.nxg.add_node(self.get_id(t.view["id"])) for p in self.publ.values(): self.nxg.add_node(self.get_id(p.view["id"])) if p.view["journal"]: self.nxg.add_edge(self.get_id(p.view["id"]), self.get_id(p.view["journal"]), weight=1.0) for d in p.view["datasets"]: self.nxg.add_edge(self.get_id(p.view["id"]), self.get_id(d), weight=20.0) for a in p.view["authors"]: self.nxg.add_edge(self.get_id(p.view["id"]), self.get_id(a), weight=20.0) for t in p.view["topics"]: self.nxg.add_edge(self.get_id(p.view["id"]), self.get_id(t), weight=10.0) @classmethod def calc_quantiles (cls, metrics, num_q): """ calculate quantiles for the given list of metrics """ bins = np.linspace(0, 1, num=num_q, endpoint=True) s = pd.Series(metrics) q = s.quantile(bins, interpolation="nearest") try: dig = np.digitize(metrics, q) - 1 except ValueError as e: print("ValueError:", str(e), metrics, s, q, bins) sys.exit(-1) quantiles = [] for idx, q_hi in q.iteritems(): quantiles.append(q_hi) return quantiles def scale_ranks (self, scale_factor=3): """ run quantile analysis on centrality metrics, assessing the relative impact of each element in the KG """ result = nx.eigenvector_centrality_numpy(self.nxg, weight="weight") ranks = list(result.values()) quant = self.calc_quantiles(ranks, num_q=10) num_quant = len(quant) for id, rank in sorted(result.items(), key=itemgetter(1), reverse=True): impact = stats.percentileofscore(ranks, rank) scale = (((impact / num_quant) + 5) * scale_factor) self.scale[id] = [int(round(scale)), impact / 100.0] def load_network (self, path): """ run the full usage pattern, prior to use of serialize() or subgraph() """ t0 = time.time() self.parse_corpus(path) self.propagate_pdf(self.auth, "authors") self.propagate_pdf(self.jour, "journal") self.propagate_pdf(self.topi, "topics") self.build_analytics_graph() self.scale_ranks() elapsed_time = (time.time() - t0) * 1000.0 return elapsed_time ###################################################################### ## ser/de for pre-computing, then later a fast load/launch def serialize (self, links, path=Path("precomp.json")): """ serialize all of the data structures required to recreate the knowledge graph """ g = nx.readwrite.json_graph.node_link_data(self.nxg), view = [ g, links, self.id_list, list(self.labels.items()), list(self.scale.items()), [ p.view for p in self.prov.values() ], [ d.view for d in self.data.values() ], [ p.view for p in self.publ.values() ], [ j.view for j in self.jour.values() ], [ a.view for a in self.auth.values() ], [ t.view for t in self.topi.values() ] ] with codecs.open(path, "wb", encoding="utf8") as f: json.dump(view, f, ensure_ascii=False) def deserialize (self, path=Path("precomp.json")): """ deserialize all of the data structures required to recreate the knowledge graph """ with codecs.open(path, "r", encoding="utf8") as f: view = json.load(f) g, links, id_list, labels, scale, prov, data, publ, jour, auth, topi = view # deserialize the graph metadata self.nxg = nx.readwrite.json_graph.node_link_graph(g[0]) self.id_list = id_list for k, v in labels: self.labels[k] = v for k, v in scale: self.scale[k] = v # deserialize each dimension of entities in the KG for view in prov: self.prov[view["id"]] = RCNetworkNode(view=view) for view in data: self.data[view["id"]] = RCNetworkNode(view=view) for view in publ: self.publ[view["id"]] = RCNetworkNode(view=view) for view in jour: self.jour[view["id"]] = RCNetworkNode(view=view) for view in auth: self.auth[view["id"]] = RCNetworkNode(view=view) for view in topi: self.topi[view["id"]] = RCNetworkNode(view=view) return links ###################################################################### ## linked data viewer @classmethod def get_template (cls, template_folder, template_path): """ load a Jinja2 template """ return Environment(loader=FileSystemLoader(template_folder)).get_template(template_path) @classmethod def render_template (cls, template, **kwargs): return html_minify(template.render(kwargs)).replace(" ", " ").replace("> <", "><").replace(" >", ">") def setup_render (self, template_folder): self.data_template = self.get_template(template_folder, "links/data.html") self.prov_template = self.get_template(template_folder, "links/prov.html") self.publ_template = self.get_template(template_folder, "links/publ.html") self.jour_template = self.get_template(template_folder, "links/jour.html") self.auth_template = self.get_template(template_folder, "links/auth.html") self.topi_template = self.get_template(template_folder, "links/topi.html") def calc_rank (self, rerank, neighbor, e): """ calculate a distance metric to the selected dataset """ neighbor_scale, neighbor_impact = self.scale[neighbor] rank = (0, 0, 0.0, neighbor_impact) if rerank: p = self.publ[self.id_list[neighbor]] if "rank" in p.view: rank = p.view["rank"] else: if rerank in e.view["mle"]: count, pt_est = e.view["mle"][rerank] else: count = 0 pt_est = 0.0 rank = (0, count, pt_est, neighbor_impact) return rank def reco_prov (self, p): """ recommend ordered links to this provider entity """ uuid = None title = None rank = None url = None ror = None data_list = None p_id = self.get_id(p.view["id"]) if p_id in self.scale: scale, impact = self.scale[p_id] edges = self.nxg[self.get_id(p.view["id"])] data_list = [] for neighbor, attr in edges.items(): neighbor_scale, neighbor_impact = self.scale[neighbor] data_list.append([ neighbor, self.labels[neighbor], neighbor_impact ]) if len(p.view["ror"]) < 1: ror = None url = None else: ror = p.view["ror"].replace("https://ror.org/", "") url = p.view["ror"] uuid = p.view["id"] title = p.view["title"] rank = "{:.4f}".format(impact) data_list = sorted(data_list, key=lambda x: x[2], reverse=True) return uuid, title, rank, url, ror, data_list def render_prov (self, p): """ render HTML for a provider """ html = None uuid, title, rank, url, ror, data_list = self.reco_prov(p) if uuid: html = self.render_template( self.prov_template, uuid=uuid, title=title, rank=rank, url=url, ror=ror, data_list=data_list ) return html def reco_data (self, d): """ recommend ordered links to this dataset entity """ uuid = None title = None rank = None url = None provider = None publ_list = [] d_id = self.get_id(d.view["id"]) if d_id in self.scale: scale, impact = self.scale[d_id] edges = self.nxg[self.get_id(d.view["id"])] publ_list = [] p_id = self.get_id(d.view["provider"]) seen_set = set([ p_id ]) for neighbor, attr in edges.items(): if neighbor not in seen_set: neighbor_scale, neighbor_impact = self.scale[neighbor] publ_list.append([ neighbor, self.labels[neighbor], neighbor_impact ]) uuid = d.view["id"] title = d.view["title"] rank = "{:.4f}".format(impact) url = d.view["url"] provider = [p_id, self.labels[p_id]] publ_list = sorted(publ_list, key=lambda x: x[2], reverse=True) return uuid, title, rank, url, provider, publ_list def render_data (self, d): """ render HTML for a dataset """ html = None uuid, title, rank, url, provider, publ_list = self.reco_data(d) if uuid: html = self.render_template( self.data_template, uuid=uuid, title=title, rank=rank, url=url, provider=provider, publ_list=publ_list ) return html def reco_auth (self, a, rerank): """ recommend ordered links to this author entity """ uuid = None title = None rank = None url = None orcid = None publ_list = None a_id = self.get_id(a.view["id"]) if a_id in self.scale: scale, impact = self.scale[a_id] edges = self.nxg[self.get_id(a.view["id"])] publ_list = [] for neighbor, attr in edges.items(): rank = self.calc_rank(rerank, neighbor, a) publ_list.append([ neighbor, self.labels[neighbor], rank ]) if len(a.view["orcid"]) < 1: orcid = None url = None else: orcid = a.view["orcid"].replace("https://orcid.org/", "") url = a.view["orcid"] uuid = a.view["id"] title = a.view["title"] rank = "{:.4f}".format(impact) publ_list = sorted(publ_list, key=lambda x: x[2], reverse=True) return uuid, title, rank, url, orcid, publ_list def render_auth (self, a, rerank=False): """ render HTML for an author """ html = None uuid, title, rank, url, orcid, publ_list = self.reco_auth(a, rerank) if uuid: html = self.render_template( self.auth_template, uuid=uuid, title=title, rank=rank, url=url, orcid=orcid, publ_list=publ_list ) return html def reco_jour (self, j): """ recommend ordered links to this journal entity """ uuid = None title = None rank = None url = None issn = None publ_list = None j_id = self.get_id(j.view["id"]) if j_id in self.scale: scale, impact = self.scale[j_id] edges = self.nxg[self.get_id(j.view["id"])] publ_list = [] for neighbor, attr in edges.items(): neighbor_scale, neighbor_impact = self.scale[neighbor] publ_list.append([ neighbor, self.labels[neighbor], neighbor_scale ]) if len(j.view["issn"]) < 1: issn = None else: issn = j.view["issn"].replace("https://portal.issn.org/resource/ISSN/", "") if j.view["url"]: url = j.view["url"] elif issn: url = issn else: url = None uuid = j.view["id"] title = j.view["title"] rank = "{:.4f}".format(impact) publ_list = sorted(publ_list, key=lambda x: x[2], reverse=True) return uuid, title, rank, url, issn, publ_list def render_jour (self, j): """ render HTML for a journal """ html = None uuid, title, rank, url, issn, publ_list = self.reco_jour(j) if uuid: html = self.render_template( self.jour_template, uuid=uuid, title=title, rank=rank, url=url, issn=issn, publ_list=publ_list ) return html def reco_topi (self, t): """ recommend ordered links to this topic entity """ uuid = None title = None rank = None publ_list = None t_id = self.get_id(t.view["id"]) if t_id in self.scale: scale, impact = self.scale[t_id] edges = self.nxg[self.get_id(t.view["id"])] publ_list = [] for neighbor, attr in edges.items(): neighbor_scale, neighbor_impact = self.scale[neighbor] publ_list.append([ neighbor, self.labels[neighbor], neighbor_scale ]) uuid = t.view["id"] title = t.view["title"] rank = "{:.4f}".format(impact) publ_list = sorted(publ_list, key=lambda x: x[2], reverse=True) return uuid, title, rank, publ_list def render_topi (self, t): """ render HTML for a topic """ html = None uuid, title, rank, publ_list = self.reco_topi(t) if uuid: html = self.render_template( self.topi_template, uuid=uuid, title=title, rank=rank, publ_list=publ_list ) return html def reco_publ (self, p): """ recommend ordered links to this publication entity """ uuid = None title = None rank = None url = None doi = None pdf = None journal = None abstract = None auth_list = None data_list = None topi_list = None p_id = self.get_id(p.view["id"]) if p_id in self.scale: scale, impact = self.scale[p_id] journal = None if p.view["journal"]: j_id = self.get_id(p.view["journal"]) if self.labels[j_id] != "unknown": journal = [ j_id, self.labels[j_id] ] auth_list = [] for a in p.view["authors"]: a_id = self.get_id(a) # do not sort; preserve the author order auth_list.append([ a_id, self.labels[a_id] ]) data_list = [] for d in p.view["datasets"]: d_id = self.get_id(d) neighbor_scale, neighbor_impact = self.scale[d_id] data_list.append([ d_id, self.labels[d_id], neighbor_scale ]) topi_list = [] for t in p.view["topics"]: t_id = self.get_id(t) neighbor_scale, neighbor_impact = self.scale[t_id] topi_list.append([ t_id, self.labels[t_id], neighbor_scale ]) if len(p.view["doi"]) < 1: url = None doi = None else: url = p.view["doi"] doi = p.view["doi"].replace("https://doi.org/", "") if "abstract" not in p.view or len(p.view["abstract"]) < 1: abstract = None else: abstract = p.view["abstract"] uuid = p.view["id"] title = p.view["title"] rank = "{:.4f}".format(impact) pdf = p.view["pdf"] data_list = sorted(data_list, key=lambda x: x[2], reverse=True) topi_list = sorted(topi_list, key=lambda x: x[2], reverse=True) return uuid, title, rank, url, doi, pdf, journal, abstract, auth_list, data_list, topi_list def render_publ (self, p): """ render HTML for a publication """ html = None uuid, title, rank, url, doi, pdf, journal, abstract, auth_list, data_list, topi_list = self.reco_publ(p) if uuid: html = self.render_template( self.publ_template, uuid=uuid, title=title, rank=rank, url=url, doi=doi, pdf=pdf, journal=journal, abstract=abstract, auth_list=auth_list, data_list=data_list, topi_list=topi_list ) return html def remap_list (self, l): """ remap the networkx graph index values to UUIDs """ return [ [self.id_list[x[0]], x[1]] for x in l ] def lookup_entity (self, uuid): """ get recommended links for the given entity """ response = None if uuid in self.prov: uuid, title, rank, url, ror, data_list = self.reco_prov(self.prov[uuid]) response = { "title": title, "rank": rank, "url": url, "ror": ror, "data": self.remap_list(data_list) } elif uuid in self.data: uuid, title, rank, url, provider, publ_list = self.reco_data(self.data[uuid]) response = { "title": title, "rank": rank, "url": url, "prov": [ self.id_list[provider[0]], provider[1] ], "publ": self.remap_list(publ_list) } elif uuid in self.publ: uuid, title, rank, url, doi, pdf, journal, abstract, auth_list, data_list, topi_list = self.reco_publ(self.publ[uuid]) response = { "title": title, "rank": rank, "url": url, "doi": doi, "pdf": pdf, "abstract": abstract, "jour": [ self.id_list[journal[0]], journal[1] ], "auth": self.remap_list(auth_list), "data": self.remap_list(data_list), "topi": self.remap_list(topi_list) } elif uuid in self.auth: uuid, title, rank, url, orcid, publ_list = self.reco_auth(self.auth[uuid], rerank=False) response = { "title": title, "rank": rank, "url": url, "orcid": orcid, "publ": self.remap_list(publ_list) } elif uuid in self.jour: uuid, title, rank, url, issn, publ_list = self.reco_jour(self.jour[uuid]) response = { "title": title, "rank": rank, "url": url, "issn": issn, "publ": self.remap_list(publ_list) } elif uuid in self.topi: uuid, title, rank, publ_list = self.reco_topi(self.topi[uuid]) response = { "title": title, "rank": rank, "publ": self.remap_list(publ_list) } return response def render_links (self): """ leverage the `nxg` graph to generate HTML to render links for each entity in the knowledge graph """ links = {} for p in self.prov.values(): links[p.view["id"]] = self.render_prov(p) for d in self.data.values(): links[d.view["id"]] = self.render_data(d) for a in self.auth.values(): links[a.view["id"]] = self.render_auth(a) for j in self.jour.values(): links[j.view["id"]] = self.render_jour(j) for t in self.topi.values(): links[t.view["id"]] = self.render_topi(t) for p in self.publ.values(): links[p.view["id"]] = self.render_publ(p) return links def download_links (self, uuid): """ download links for the given dataset ID """ dataset = self.data[uuid].view["title"] l = [] for id, node in self.publ.items(): if uuid in node.view["datasets"]: jour_uuid = node.view["journal"] if jour_uuid in self.jour: jour_title = self.jour[jour_uuid].view["title"] else: jour_title = "" l.append([ dataset, node.view["title"], jour_title, node.view["doi"], node.view["abstract"] ]) df =
pd.DataFrame(l, columns=["dataset", "publication", "journal", "url", "abstract"])
pandas.DataFrame
import random import re import time from datetime import datetime import pandas as pd from requests import Session from requests.adapters import HTTPAdapter from requests.packages.urllib3.util.retry import Retry from requests_futures.sessions import FuturesSession DEFAULT_TIMEOUT = 5 USER_AGENT_LIST = [ "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.129 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36", "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36", ] headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "en-US,en;q=0.9", "origin": "https://finance.yahoo.com", "referer": "https://finance.yahoo.com", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", } class TimeoutHTTPAdapter(HTTPAdapter): def __init__(self, *args, **kwargs): self.timeout = DEFAULT_TIMEOUT if "timeout" in kwargs: self.timeout = kwargs["timeout"] del kwargs["timeout"] super(TimeoutHTTPAdapter, self).__init__(*args, **kwargs) def send(self, request, **kwargs): timeout = kwargs.get("timeout") if timeout is None: kwargs["timeout"] = self.timeout return super(TimeoutHTTPAdapter, self).send(request, **kwargs) def _init_session(session=None, **kwargs): session_headers = headers if session is None: if kwargs.get("asynchronous"): session = FuturesSession(max_workers=kwargs.get("max_workers", 8)) else: session = Session() if kwargs.get("proxies"): session.proxies = kwargs.get("proxies") retries = Retry( total=kwargs.get("retry", 5), backoff_factor=kwargs.get("backoff_factor", 0.3), status_forcelist=kwargs.get("status_forcelist", [429, 500, 502, 503, 504]), method_whitelist=["HEAD", "GET", "OPTIONS", "POST", "TRACE"], ) if kwargs.get("verify") is not None: session.verify = kwargs.get("verify") session.mount( "https://", TimeoutHTTPAdapter( max_retries=retries, timeout=kwargs.get("timeout", DEFAULT_TIMEOUT) ), ) # TODO: Figure out how to utilize this within the validate_response # TODO: This will be a much better way of handling bad requests than # TODO: what I'm currently doing. # session.hooks['response'] = \ # [lambda response, *args, **kwargs: response.raise_for_status()] user_agent = kwargs.get("user_agent", random.choice(USER_AGENT_LIST)) session_headers["User-Agent"] = user_agent if kwargs.get("headers") and isinstance(kwargs.get("headers"), dict): session_headers.update(**headers) session.headers.update(**session_headers) return session # def get_cookies(user_agent): # options = webdriver.ChromeOptions() # options.add_argument('--user-agent=' + user_agent) # options.add_argument('headless') # driver = webdriver.Chrome( # ChromeDriverManager().install(), chrome_options=options) # driver.get("https://finance.yahoo.com/screener/new") # cookies = driver.get_cookies() # driver.quit() # return cookies def _flatten_list(ls): return [item for sublist in ls for item in sublist] def _convert_to_list(symbols, comma_split=False): if isinstance(symbols, str): if comma_split: return [x.strip() for x in symbols.split(",")] else: return re.findall(r"[\w\-.=^&]+", symbols) return symbols def _convert_to_timestamp(date=None, start=True): if date is None: date = int((-858880800 * start) + (time.time() * (not start))) elif isinstance(date, datetime): date = int(time.mktime(date.timetuple())) else: date = int(time.mktime(time.strptime(str(date), "%Y-%m-%d"))) return date def _history_dataframe(data, symbol, params, adj_timezone=True): df = pd.DataFrame(data[symbol]["indicators"]["quote"][0]) if data[symbol]["indicators"].get("adjclose"): df["adjclose"] = data[symbol]["indicators"]["adjclose"][0]["adjclose"] df.index =
pd.to_datetime(data[symbol]["timestamp"], unit="s")
pandas.to_datetime
import pandas as pd class Query(object): def __init__(self, sample, name, count, species_list, rank = "species"): self.sample = sample self.name = name self.count = count self.species_list = species_list self.rank = rank def remove_species(self, species_list): for species in species_list: if species in self.species_list: self.species_list.remove(species) def estimate_count(self): self.estimated_count = self.count / len(self.species_list) def get_unique_rank(self, species_taxonomy_map, ranks=['genus', 'family', 'order', 'class', 'phylum', 'superkingdom'], aggregate_rate=0.95): if len(self.species_list) == 1: return self.rank, self.species_list[0] else: for rank in ranks: rank_list = [species_taxonomy_map[s][rank] for s in self.species_list] vc = pd.value_counts(rank_list, sort=True, ascending=False) ar = vc[0] / len(rank_list) if ar >= aggregate_rate: rank_name = vc.keys()[0] if rank_name == "Unclassified": continue return rank, rank_name raise Exception(f"Cannot find aggregated rank for {'.'.join(self.species_list)}") def aggregate_to_rank(self, species_taxonomy_map, rank, aggregate_rate=0.95): if self.rank == rank: if len(self.species_list) > 1: return("AmbiguousRanks") else: return(self.species_list[0]) rank_list = [species_taxonomy_map[s][rank] for s in self.species_list] vc =
pd.value_counts(rank_list, sort=True, ascending=False)
pandas.value_counts
#Import necessary package import requests import re from bs4 import BeautifulSoup import json import html import pandas as pd import numpy as np import datetime as dt import configparser import os #Configure parameter config = configparser.ConfigParser() config.read(os.path.join(os.path.dirname(__file__), 'config.ini')) mall = config['general']['mall'] shoplisturl = config['url']['shoplisturl'] fnblisturl = config['url']['fnblisturl'] shoplistapi = config['api']['shoplistapi'] shoplisttcapi = config['api']['shoplisttcapi'] fnblistapi = config['api']['fnblistapi'] fnblisttcapi = config['api']['fnblisttcapi'] #Get shop category data and export into csv def getShopCategory(): #Create empty DataFrame for shop category shopcategory = pd.DataFrame() #Get shop category type = 'Shopping' url = shoplisturl page = requests.get(url) soup = BeautifulSoup(page.content, 'html.parser') for listing_category in soup.find_all('div', class_= 'listing__category', attrs = {'data-tab':'category'}): for category in listing_category.find_all('button', class_ = 'button'): try: shop_category_id = category.get('data-filter') except: shop_category_id = np.nan try: shop_category_name = category.text except: shop_category_name = np.nan shopcategory = shopcategory.append( { 'type':type, 'shop_category_id':shop_category_id, 'shop_category_name':shop_category_name }, ignore_index=True ) type = 'Dining' url = fnblisturl page = requests.get(url) soup = BeautifulSoup(page.content, 'html.parser') for listing_category in soup.find_all('div', class_= 'select-box'): for category in listing_category.find_all('option'): try: shop_category_id = category.get('value') except: shop_category_id = np.nan try: shop_category_name = category.text except: shop_category_name = np.nan shopcategory = shopcategory.append( { 'type':type, 'shop_category_id':shop_category_id, 'shop_category_name':shop_category_name }, ignore_index=True ) shopcategory['update_date'] = dt.date.today() shopcategory['mall'] = mall shopcategory.drop(shopcategory[shopcategory.shop_category_id == 'all'].index, inplace = True) shopcategory.drop(shopcategory[shopcategory.shop_category_id == 'All'].index, inplace = True) shopcategory = shopcategory.loc[:, ['mall','type','shop_category_id','shop_category_name','update_date']] return shopcategory #Get shop master data and export into csv def getShopMaster(): #Create empty DataFrame for shop master shoplist =
pd.DataFrame()
pandas.DataFrame
import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures import numpy as np from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 11 Oct 2018 # Function: batsman4s # This function plots the number of 4s vs the runs scored in the innings by the batsman # ########################################################################################### def batsman4s(file, name="A Hookshot"): ''' Plot the numbers of 4s against the runs scored by batsman Description This function plots the number of 4s against the total runs scored by batsman. A 2nd order polynomial regression curve is also plotted. The predicted number of 4s for 50 runs and 100 runs scored is also plotted Usage batsman4s(file, name="A Hookshot") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsman6s Examples # Get or use the <batsman>.csv obtained with getPlayerData() tendulkar = getPlayerData(35320,dir="../",file="tendulkar.csv",type="batting") homeOrAway=[1,2],result=[1,2,4] batsman4s("tendulkar.csv", "<NAME>") ''' # Clean the batsman file and create a complete data frame df = clean(file) df['Runs'] = pd.to_numeric(df['Runs']) df['4s'] = pd.to_numeric(df['4s']) df1 = df[['Runs','4s']].sort_values(by=['Runs']) # Set figure size rcParams['figure.figsize'] = 10,6 # Get numnber of 4s and runs scored runs = pd.to_numeric(df1['Runs']) x4s = pd.to_numeric(df1['4s']) atitle = name + "-" + "Runs scored vs No of 4s" # Plot no of 4s and a 2nd order curve fit plt.scatter(runs, x4s, alpha=0.5) plt.xlabel('Runs') plt.ylabel('4s') plt.title(atitle) # Create a polynomial of degree 2 poly = PolynomialFeatures(degree=2) runsPoly = poly.fit_transform(runs.reshape(-1,1)) linreg = LinearRegression().fit(runsPoly,x4s) plt.plot(runs,linreg.predict(runsPoly),'-r') # Predict the number of 4s for 50 runs b=poly.fit_transform((np.array(50))) c=linreg.predict(b) plt.axhline(y=c, color='b', linestyle=':') plt.axvline(x=50, color='b', linestyle=':') # Predict the number of 4s for 100 runs b=poly.fit_transform((np.array(100))) c=linreg.predict(b) plt.axhline(y=c, color='b', linestyle=':') plt.axvline(x=100, color='b', linestyle=':') plt.text(180, 0.5,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt import seaborn as sns from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 13 Oct 2018 # Function: batsman6s # This function plots the number of 6s vs the runs scored in the innings by the batsman # ########################################################################################### def batsman6s(file, name="A Hookshot") : ''' Description Compute and plot the number of 6s in the total runs scored by batsman Usage batsman6s(file, name="A Hookshot") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Examples # Get or use the <batsman>.csv obtained with getPlayerData() # tendulkar = getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) # batsman6s("tendulkar.csv","<NAME>") ''' x6s = [] # Set figure size rcParams['figure.figsize'] = 10,6 # Clean the batsman file and create a complete data frame df = clean (file) # Remove all rows where 6s are 0 a= df['6s'] !=0 b= df[a] x6s=b['6s'].astype(int) runs=pd.to_numeric(b['Runs']) # Plot the 6s as a boxplot atitle =name + "-" + "Runs scored vs No of 6s" df1=pd.concat([runs,x6s],axis=1) fig = sns.boxplot(x="6s", y="Runs", data=df1) plt.title(atitle) plt.text(2.2, 10,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt import seaborn as sns from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 14 Oct 2018 # Function: batsmanAvgRunsGround # This function plots the average runs scored by batsman at the ground. The xlabels indicate # the number of innings at ground # ########################################################################################### def batsmanAvgRunsGround(file, name="A Latecut"): ''' Description This function computed the Average Runs scored on different pitches and also indicates the number of innings played at these venues Usage batsmanAvgRunsGround(file, name = "A Latecut") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanDismissals, batsmanMovingAverage, batsmanPerfBoxHist Examples # Get or use the <batsman>.csv obtained with getPlayerData() ##tendulkar = getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=[1,2],result=[1,2,4]) batsmanAvgRunsGround("tendulkar.csv","<NAME>") ''' batsman = clean(file) rcParams['figure.figsize'] = 10,6 batsman['Runs']=pd.to_numeric(batsman['Runs']) # Aggregate as sum, mean and count df=batsman[['Runs','Ground']].groupby('Ground').agg(['sum','mean','count']) #Flatten multi-levels to column names df.columns= ['_'.join(col).strip() for col in df.columns.values] # Reset index df1=df.reset_index(inplace=False) atitle = name + "'s Average Runs at Ground" plt.xticks(rotation="vertical",fontsize=8) plt.axhline(y=50, color='b', linestyle=':') plt.axhline(y=100, color='r', linestyle=':') ax=sns.barplot(x='Ground', y="Runs_mean", data=df1) plt.title(atitle) plt.text(30, 180,'Data source-Courtesy:ESPN Cricinfo',\ horizontalalignment='center',\ verticalalignment='center',\ ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt import seaborn as sns from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 14 Oct 2018 # Function: batsmanAvgRunsOpposition # This function plots the average runs scored by batsman versus the opposition. The xlabels indicate # the Opposition and the number of innings at ground # ########################################################################################### def batsmanAvgRunsOpposition(file, name="A Latecut"): ''' This function computes and plots the Average runs against different opposition played by batsman Description This function computes the mean runs scored by batsman against different opposition Usage batsmanAvgRunsOpposition(file, name = "A Latecut") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanDismissals, batsmanMovingAverage, batsmanPerfBoxHist batsmanAvgRunsGround Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkar = getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=[1,2],result=[1,2,4]) batsmanAvgRunsOpposition("tendulkar.csv","<NAME>") ''' batsman = clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 batsman['Runs']=pd.to_numeric(batsman['Runs']) # Aggregate as sum, mean and count df=batsman[['Runs','Opposition']].groupby('Opposition').agg(['sum','mean','count']) #Flatten multi-levels to column names df.columns= ['_'.join(col).strip() for col in df.columns.values] # Reset index df1=df.reset_index(inplace=False) atitle = name + "'s Average Runs vs Opposition" plt.xticks(rotation="vertical",fontsize=8) ax=sns.barplot(x='Opposition', y="Runs_mean", data=df1) plt.axhline(y=50, color='b', linestyle=':') plt.title(atitle) plt.text(5, 50, 'Data source-Courtesy:ESPN Cricinfo',\ horizontalalignment='center',\ verticalalignment='center',\ ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt import seaborn as sns from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 19 Oct 2018 # Function: batsmanContributionWonLost # This plots the batsman's contribution to won and lost matches # ########################################################################################### def batsmanContributionWonLost(file,name="A Hitter"): ''' Display the batsman's contribution in matches that were won and those that were lost Description Plot the comparative contribution of the batsman in matches that were won and lost as box plots Usage batsmanContributionWonLost(file, name = "A Hitter") Arguments file CSV file of batsman from ESPN Cricinfo obtained with getPlayerDataSp() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanMovingAverage batsmanRunsPredict batsmanPerfBoxHist Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkarsp = getPlayerDataSp(35320,".","tendulkarsp.csv","batting") batsmanContributionWonLost("tendulkarsp.csv","<NAME>") ''' playersp = clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 # Create a column based on result won = playersp[playersp['result'] == 1] lost = playersp[(playersp['result']==2) | (playersp['result']==4)] won['status']="won" lost['status']="lost" # Stack dataframes df= pd.concat([won,lost]) df['Runs']= pd.to_numeric(df['Runs']) ax = sns.boxplot(x='status',y='Runs',data=df) atitle = name + "-" + "- Runs in games won/lost-drawn" plt.title(atitle) plt.text(0.5, 200,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 17 Oct 2018 # Function: batsmanCumulativeAverageRuns # This function computes and plots the cumulative average runs by a batsman # ########################################################################################### def batsmanCumulativeAverageRuns(file,name="A Leg Glance"): ''' Batsman's cumulative average runs Description This function computes and plots the cumulative average runs of a batsman Usage batsmanCumulativeAverageRuns(file,name= "A Leg Glance") Arguments file Data frame name Name of batsman Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanCumulativeStrikeRate bowlerCumulativeAvgEconRate bowlerCumulativeAvgWickets Examples batsmanCumulativeAverageRuns("tendulkar.csv", "<NAME>") ''' batsman= clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 runs=pd.to_numeric(batsman['Runs']) # Compute cumulative average cumAvg = runs.cumsum()/pd.Series(np.arange(1, len(runs)+1), runs.index) atitle = name + "- Cumulative Average vs No of innings" plt.plot(cumAvg) plt.xlabel('Innings') plt.ylabel('Cumulative average') plt.title(atitle) plt.text(200,20,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 17 Oct 2018 # Function: batsmanCumulativeStrikeRate # This function computes and plots the cumulative average strike rate of a batsman # ########################################################################################### def batsmanCumulativeStrikeRate(file,name="A Leg Glance"): ''' Batsman's cumulative average strike rate Description This function computes and plots the cumulative average strike rate of a batsman Usage batsmanCumulativeStrikeRate(file,name= "A Leg Glance") Arguments file Data frame name Name of batsman Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanCumulativeAverageRuns bowlerCumulativeAvgEconRate bowlerCumulativeAvgWickets Examples ## Not run: batsmanCumulativeStrikeRate("tendulkar.csv", "<NAME>") ''' batsman= clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 strikeRate=pd.to_numeric(batsman['SR']) # Compute cumulative strike rate cumStrikeRate = strikeRate.cumsum()/pd.Series(np.arange(1, len(strikeRate)+1), strikeRate.index) atitle = name + "- Cumulative Strike rate vs No of innings" plt.xlabel('Innings') plt.ylabel('Cumulative Strike Rate') plt.title(atitle) plt.plot(cumStrikeRate) plt.text(200,60,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt import seaborn as sns from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 13 Oct 2018 # Function: batsman6s # This function plots the batsman dismissals # ########################################################################################### def batsmanDismissals(file, name="A Squarecut"): ''' Display a 3D Pie Chart of the dismissals of the batsman Description Display the dismissals of the batsman (caught, bowled, hit wicket etc) as percentages Usage batsmanDismissals(file, name="A Squarecut") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanMeanStrikeRate, batsmanMovingAverage, batsmanPerfBoxHist Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkar= getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) batsmanDismissals("tendulkar.csv","<NAME>") ''' batsman = clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 d = batsman['Dismissal'] # Convert to data frame df = pd.DataFrame(d) df1=df['Dismissal'].groupby(df['Dismissal']).count() df2 = pd.DataFrame(df1) df2.columns=['Count'] df3=df2.reset_index(inplace=False) # Plot a pie chart plt.pie(df3['Count'], labels=df3['Dismissal'],autopct='%.1f%%') atitle = name + "-Pie chart of dismissals" plt.suptitle(atitle, fontsize=16) plt.show() plt.gcf().clear() return import numpy as np import matplotlib.pyplot as plt from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 28 Aug 2019 # Function: batsmanMeanStrikeRate # This function plot the Mean Strike Rate of the batsman against Runs scored as a continous graph # ########################################################################################### def batsmanMeanStrikeRate(file, name="A Hitter"): ''' batsmanMeanStrikeRate {cricketr} R Documentation Calculate and plot the Mean Strike Rate of the batsman on total runs scored Description This function calculates the Mean Strike Rate of the batsman for each interval of runs scored Usage batsmanMeanStrikeRate(file, name = "A Hitter") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanDismissals, batsmanMovingAverage, batsmanPerfBoxHist batsmanPerfBoxHist Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkar <- getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) batsmanMeanStrikeRate("tendulkar.csv","<NAME>") ''' batsman = clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 runs= pd.to_numeric(batsman['Runs']) # Create the histogram hist, bins = np.histogram(runs, bins = 20) midBin=[] SR=[] # Loop through for i in range(1,len(bins)): # Find the mean of the bins (Runs) midBin.append(np.mean([bins[i-1],bins[i]])) # Filter runs that are are between 2 bins batsman['Runs']=pd.to_numeric(batsman['Runs']) a=(batsman['Runs'] > bins[i-1]) & (batsman['Runs'] <= bins[i]) df=batsman[a] SR.append(np.mean(pd.to_numeric(df['SR']))) # Changed 28-8-2019 atitle = name + "-" + "Strike rate in run ranges" # Plot no of 4s and a 2nd order curve fit plt.scatter(midBin, SR, alpha=0.5) plt.plot(midBin, SR,color="r", alpha=0.5) plt.xlabel('Runs') plt.ylabel('Strike Rate') plt.title(atitle) plt.text(180, 50,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt import numpy as np from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 17 Oct 2018 # Function: batsmanMovingAverage # This function computes and plots the Moving Average of the batsman across his career # ########################################################################################### # Compute a moving average def movingaverage(interval, window_size): window= np.ones(int(window_size))/float(window_size) return np.convolve(interval, window, 'same') def batsmanMovingAverage(file,name="A Squarecut") : ''' Calculate and plot the Moving Average of the batsman in his career Description This function calculates and plots the Moving Average of the batsman in his career Usage batsmanMovingAverage(file,name="A Squarecut") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanDismissals, batsmanMeanStrikeRate, batsmanPerfBoxHist Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkar <- getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) batsmanMovingAverage("tendulkar.csv","<NAME>") ''' # Compute the moving average of the time series batsman = clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 runs=pd.to_numeric(batsman['Runs']) date= pd.to_datetime(batsman['Start Date']) atitle = name + "'s Moving average (Runs)" # Plot the runs in grey colo plt.plot(date,runs,"-",color = '0.75') # Compute and plot moving average y_av = movingaverage(runs, 50) plt.xlabel('Date') plt.ylabel('Runs') plt.plot(date, y_av,"b") plt.title(atitle) plt.text('2002-01-03',150,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt import seaborn as sns from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 14 Oct 2018 # Function: batsmanPerfBoxHist # This function makes a box plot showing the mean, median and the 25th & 75th percentile runs. The # histogram shows the frequency of scoring runs in different run ranges # ########################################################################################### # Plot the batting performance as a combined box plot and histogram def batsmanPerfBoxHist(file, name="A Hitter"): ''' Make a boxplot and a histogram of the runs scored by the batsman Description Make a boxplot and histogram of the runs scored by the batsman. Plot the Mean, Median, 25th and 75th quantile Usage batsmanPerfBoxHist(file, name="A Hitter") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanDismissals, batsmanMeanStrikeRate, batsmanMovingAverage, batsmanPerfBoxHist Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkar = getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) batsman4s("tendulkar.csv","<NAME>") ''' batsman = clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 batsman['Runs']=pd.to_numeric(batsman['Runs']) plt.subplot(2,1,1) sns.boxplot(batsman['Runs']) plt.subplot(2,1,2); atitle = name + "'s" + " - Runs Frequency vs Runs" plt.hist(batsman['Runs'],bins=20, edgecolor='black') plt.xlabel('Runs') plt.ylabel('Strike Rate') plt.title(atitle,size=16) plt.text(180, 70,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return from statsmodels.tsa.arima_model import ARIMA import pandas as pd import numpy as np from statsmodels.tsa.seasonal import seasonal_decompose from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 20 Oct 2018 # Function: batsmanPerfForecast # This function forecasts the batsmans performance based on past performance - # To update ########################################################################################### def batsmanPerfForecast(file, name="A Squarecut"): ''' # To do: Currently ARIMA is used. Forecast the batting performance based on past performances using Holt-Winters forecasting Description This function forecasts the performance of the batsman based on past performances using HoltWinters forecasting model Usage batsmanPerfForecast(file, name="A Squarecut") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanDismissals, batsmanMeanStrikeRate, batsmanMovingAverage, batsmanPerfBoxHist Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkar = getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) batsmanPerfForecast("tendulkar.csv","<NAME>") ''' batsman= clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 runs=batsman['Runs'].astype('float') # Fit a ARIMA model date= pd.to_datetime(batsman['Start Date']) df=pd.DataFrame({'date':date,'runs':runs}) df1=df.set_index('date') model = ARIMA(df1, order=(5,1,0)) model_fit = model.fit(disp=0) print(model_fit.summary()) # plot residual errors residuals = pd.DataFrame(model_fit.resid) residuals.plot() plt.show() residuals.plot(kind='kde') plt.show() plt.gcf().clear() print(residuals.describe()) import matplotlib.pyplot as plt import seaborn as sns from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 19 Oct 2018 # Function: batsmanPerfHomeAway # This plots the batsman's performance in home versus abroad # ########################################################################################### def batsmanPerfHomeAway(file,name="A Hitter"): ''' This function analyses the performance of the batsman at home and overseas Description This function plots the runs scored by the batsman at home and overseas Usage batsmanPerfHomeAway(file, name = "A Hitter") Arguments file CSV file of batsman from ESPN Cricinfo obtained with getPlayerDataSp() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanMovingAverage batsmanRunsPredict batsmanPerfBoxHist bowlerContributionWonLost Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkarSp <-getPlayerDataSp(35320,".","tendulkarsp.csv","batting") batsmanPerfHomeAway("tendulkarsp.csv","<NAME>") ''' playersp = clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 # Create separate DFs for home and away home = playersp[playersp['ha'] == 1] away = playersp[playersp['ha']==2] home['venue']="Home" away['venue']="Overseas" df= pd.concat([home,away]) df['Runs']= pd.to_numeric(df['Runs']) atitle = name + "-" + "- - Runs-Home & overseas" ax = sns.boxplot(x='venue',y='Runs',data=df) plt.title(atitle) plt.text(0.5, 200,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import numpy as np import matplotlib.pyplot as plt from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 30 Jun 2015 # Function: batsmanRunsFreqPerf # This function computes and plots the Moving Average of the batsman across his career # ########################################################################################### # Plot the performance of the batsman as a continous graph # Create a performance plot between Runs and RunsFrequency def batsmanRunsFreqPerf(file, name="A Hookshot"): ''' Calculate and run frequencies in ranges of 10 runs and plot versus Runs the performance of the batsman Description This function calculates frequencies of runs in 10 run buckets and plots this percentage Usage batsmanRunsFreqPerf(file, name="A Hookshot") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanDismissals, batsmanMovingAverage, batsmanPerfBoxHist Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkar <- getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) batsmanRunsFreqPerf("tendulkar.csv","<NAME>") ''' df = clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 runs=
pd.to_numeric(df['Runs'])
pandas.to_numeric
import argparse import os import warnings import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.exceptions import DataConversionWarning warnings.filterwarnings(action='ignore', category=DataConversionWarning) columns = ['age', 'education', 'major industry code', 'class of worker', 'num persons worked for employer', 'capital gains', 'capital losses', 'dividends from stocks', 'income'] class_labels = [' - 50000.', ' 50000+.'] def print_shape(df): negative_examples, positive_examples = np.bincount(df['income']) print('Data shape: {}, {} positive examples, {} negative examples'.format(df.shape, positive_examples, negative_examples)) if __name__=='__main__': parser = argparse.ArgumentParser() parser.add_argument('--train-test-split-ratio', type=float, default=0.2) args, _ = parser.parse_known_args() print('Received arguments {}'.format(args)) input_data_path = os.path.join('/opt/ml/processing/input', 'census-income.csv') print('Reading input data from {}'.format(input_data_path)) df = pd.read_csv(input_data_path) df = pd.DataFrame(data=df, columns=columns) df.dropna(inplace=True) df.drop_duplicates(inplace=True) df.replace(class_labels, [0, 1], inplace=True) negative_examples, positive_examples = np.bincount(df['income']) print('Data after cleaning: {}, {} positive examples, {} negative examples'.format(df.shape, positive_examples, negative_examples)) split_ratio = args.train_test_split_ratio print('Splitting data into train and test sets with ratio {}'.format(split_ratio)) X_train, X_test, y_train, y_test = train_test_split(df.drop('income', axis=1), df['income'], test_size=split_ratio, random_state=0) # TODO: Split again for validation preprocess = make_column_transformer( (['age', 'num persons worked for employer'], KBinsDiscretizer(encode='onehot-dense', n_bins=10)), (['capital gains', 'capital losses', 'dividends from stocks'], StandardScaler()), (['education', 'major industry code', 'class of worker'], OneHotEncoder(sparse=False)) ) print('Running preprocessing and feature engineering transformations') train_features = preprocess.fit_transform(X_train) # validation_features = preprocess.fit_transform(X_validation) test_features = preprocess.transform(X_test) print('Train data shape after preprocessing: {}'.format(train_features.shape)) # print('Validation data shape after preprocessing: {}'.format(validation_features.shape)) print('Test data shape after preprocessing: {}'.format(test_features.shape)) train_features_output_path = os.path.join('/opt/ml/processing/train', 'train_features.csv') train_labels_output_path = os.path.join('/opt/ml/processing/train', 'train_labels.csv') # validation_features_output_path = os.path.join('/opt/ml/processing/validation', 'validation_features.csv') # validation_labels_output_path = os.path.join('/opt/ml/processing/validation', 'validation_labels.csv') test_features_output_path = os.path.join('/opt/ml/processing/test', 'test_features.csv') test_labels_output_path = os.path.join('/opt/ml/processing/test', 'test_labels.csv') print('Saving training features to {}'.format(train_features_output_path)) pd.DataFrame(train_features).to_csv(train_features_output_path, header=False, index=False) # print('Saving validation features to {}'.format(validation_features_output_path)) # pd.DataFrame(validation_features).to_csv(validation_features_output_path, header=False, index=False) print('Saving test features to {}'.format(test_features_output_path))
pd.DataFrame(test_features)
pandas.DataFrame
import ast import re from datetime import datetime from pathlib import Path import matplotlib.pyplot as plt import numpy as np import pandas as pd import wandb color_list = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] def retrieve_values_from_name(fname): return re.findall(r"[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?", fname) def download_from_wandb(resdir): project = 'SYK4Model' # target_cfgs = { # 'config.lr': 0.05, # 'config.scheduler_name': 'constant', # 'config.seed_SYK': 1 # } print(f'Downloading experiment results from {project}') print(f'| Results directory : {resdir}') # print(f'| Target constraints: {target_cfgs}') api = wandb.Api() # runs = api.runs(project, filters=target_cfgs) run_ids = TARGET_RUN_IDS.split('\n') records = [] visited = set() for run_id in run_ids: if run_id in visited: raise ValueError(f'There is a duplicated run id {run_id}.') run = api.run(f'vqc-quantum/{project}/{run_id.strip()}') visited.add(run_id) if run.state == 'finished': print(run.name) if 'eigenvalues' not in run.config: print(f'| Skip this run because eigenvalues info is not in config.') continue history = run.history() eigvals_str = run.config['eigenvalues'].replace('\n', '') eigvals_str = re.sub(' +', ',', eigvals_str) try: ground_state_energy = ast.literal_eval(eigvals_str)[0] except ValueError as e: print(str(e)) print(f'Parsing Error: eigvals_str: {eigvals_str}') print(f'Retry to parse the first element') # Some runs logs eigenvalues in the following format. # [-5.69803132e-02+0.00000000e+00j ... 1.10259914e-16-4.19720017e-16j] # Due to dots let us parse the first element and then get its real part. v_str = eigvals_str.split(',')[0].strip('[') print(f' - Retried string: {v_str}') ground_state_energy = ast.literal_eval(v_str).real best_step = history.loss.argmin() min_energy_gap = np.abs(history.loss[best_step] - ground_state_energy) # |E(\theta) - E0| fidelity = history['fidelity/ground'][best_step] if run.config["n_qubits"] % 4 == 2: # SYK4 is degenerated. fidelity += history['fidelity/next_to_ground'][best_step] loss_threshold = 1e-4 hitting_time = float('inf') for i, row in history.iterrows(): if np.abs(row['loss'] - ground_state_energy) < loss_threshold: hitting_time = i break records.append( dict( n_qubits=run.config['n_qubits'], n_layers=run.config['n_layers'], min_energy_gap=min_energy_gap, fidelity=fidelity, hitting_time=hitting_time ) ) print(records[-1]) df =
pd.DataFrame.from_records(records)
pandas.DataFrame.from_records
# --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.4.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # ## Script is used to determine any potential sites that may be using uploading erroneous measurements. Sites may have 'outlier' values beacuse (running list): # - They may be using a unit_concept_id that does not have a correspondining 'conversion' in '[unit_mapping.csv](https://github.com/all-of-us/curation/blob/develop/data_steward/resource_files/unit_mapping.csv)'. from google.cloud import bigquery # %reload_ext google.cloud.bigquery client = bigquery.Client() # %load_ext google.cloud.bigquery # + from notebooks import parameters # %matplotlib inline import matplotlib.pyplot as plt import numpy as np import six import scipy.stats import pandas as pd # - measurement_ancestors = [ # lipids 40782589, 40795800, 40772572 # #cbc # 40789356, 40789120, 40789179, 40772748, # 40782735, 40789182, 40786033, 40779159 # #cbc w diff # 40785788, 40785796, 40779195, 40795733, # 40795725, 40772531, 40779190, 40785793, # 40779191, 40782561, 40789266 #cmp # 3049187, 3053283, 40775801, 40779224, # 40782562, 40782579, 40785850, 40785861, # 40785869, 40789180, 40789190, 40789527, # 40791227, 40792413, 40792440, 40795730, # 40795740, 40795754 #physical measurement # 40654163, # 40655804, # 40654162, # 40655805, # 40654167, # 40654164 ] DATASET = parameters.LATEST_DATASET print(""" DATASET TO USE: {} """.format(DATASET)) def find_descendants(DATASET, ancestor_concept): """ Function is used to find the descendants of a particular ancestor concept ID using Bigquery. This function then creates a long string of said 'descendant' concepts so it can be used in future queries. Parameters ---------- DATASET (string): string representing the dataset to be queried. Taken from the parameters file ancestor_concept (integer): integer that is the 'ancestor_concept_id' for a particular set of labs Returns ------- string_desc_concepts(string): string of all the descendant concept IDs that represent the concept_ids for the particular measurement set """ descendant_concepts = """ SELECT DISTINCT m.measurement_concept_id FROM `{}.unioned_ehr_measurement` m LEFT JOIN `{}.concept_ancestor` ca ON m.measurement_concept_id = ca.descendant_concept_id WHERE ca.ancestor_concept_id IN ({}) GROUP BY 1""".format(DATASET, DATASET, ancestor_concept) print(descendant_concepts) desc_concepts_df = pd.io.gbq.read_gbq(descendant_concepts, dialect='standard') print('success!') descendant_concept_ids = desc_concepts_df['measurement_concept_id'].tolist() string_desc_concepts = "(" num_descs = len(descendant_concept_ids) for idx, concept_id in enumerate(descendant_concept_ids): string_desc_concepts += str(concept_id) if idx < num_descs - 1: string_desc_concepts += ", " else: string_desc_concepts += ")" return string_desc_concepts def find_total_number_of_units_for_lab_type(DATASET, string_desc_concepts): """ Function is used to find the total number of records that have a unit_concept_id for the 'cluster' of measurement concept IDs that represent a particular lab type. The unit_concept_id must be: a. non-null b. not 0 Parameters ---------- DATASET (string): string representing the dataset to be queried. Taken from the parameters file string_desc_concepts(string): string of all the descendant concept IDs that represent the concept_ids for the particular measurement set Returns ------- tot_units (int): represents the total number of recoreds for the particular measurement set that have a unit_concept ID """ total_unit_concept_names = """ SELECT SUM(a.count) as tot_concepts FROM (SELECT DISTINCT c.concept_name as unit_name, c.standard_concept, COUNT(*) as count FROM `{}.unioned_ehr_measurement` m LEFT JOIN `{}.concept` c ON m.unit_concept_id = c.concept_id WHERE m.measurement_concept_id IN {} AND m.unit_concept_id IS NOT NULL AND m.unit_concept_id <> 0 GROUP BY 1, 2 ORDER BY count DESC) a """.format(DATASET, DATASET, string_desc_concepts) tot_units_df = pd.io.gbq.read_gbq(total_unit_concept_names, dialect='standard') tot_units = tot_units_df['tot_concepts'].iloc[0] return tot_units def find_most_popular_unit_type(tot_units, DATASET, string_desc_concepts): """ Function is used to find the most popular unit type for the 'cluster' of measurement concept IDs that represent a particular measurement set. Parameters ---------- tot_units (int): represents the total number of recoreds for the particular measurement set that have a unit_concept ID DATASET (string): string representing the dataset to be queried. Taken from the parameters file string_desc_concepts(string): string of all the descendant concept IDs that represent the concept_ids for the particular measurement set. Returns ------- most_pop_unit (string): string that represents the most popular unit concept name for the particular measurement set. """ units_for_lab = """ SELECT DISTINCT c.concept_name as unit_name, c.standard_concept, COUNT(*) as count, ROUND(COUNT(*) / {} * 100, 2) as percentage_units FROM `{}.unioned_ehr_measurement` m LEFT JOIN `{}.concept` c ON m.unit_concept_id = c.concept_id WHERE m.measurement_concept_id IN {} AND m.unit_concept_id IS NOT NULL AND m.unit_concept_id <> 0 GROUP BY 1, 2 ORDER BY count DESC """.format(tot_units, DATASET, DATASET, string_desc_concepts) units_for_lab_df =
pd.io.gbq.read_gbq(units_for_lab, dialect='standard')
pandas.io.gbq.read_gbq
import pandas as pd import matplotlib.pyplot as plt import numpy as np from preprocessor import Preprocessor #importing task1 file from character import CharacterAnalyser #importing task2 file from word import WordAnalyser #importing task3 file from visualiser import AnalysisVisualiser # importing task4 file import sys #Making the objects of the respective classes p=Preprocessor() c=CharacterAnalyser() w=WordAnalyser() #function to convert normal df into relative df def rel_func(accept_df): accept_df=accept_df total=sum(accept_df['count']) #counts the total of the column with counts accept_df['rel_freq']= (accept_df['count']/total) #calculate the reklative frequency return accept_df #Below method performs required processing of data and return the relative frequency df def perform_processing(input_file): input_file=input_file p.tokenise_word(input_file) #send the words to get tokenised tokenised_punc_char_list=p.get_tokenised_punc_char_list() # retrieves the tokenised list which contains punctuation and characters c.analyse_characters(tokenised_punc_char_list) #retrieves the punctuation frequency #Required for task 4 pun_freq=c.get_punctuation_frequency() #store the punctuation frequency letter_freq=c.get_letter_frequency() #store the letter frequency analyse_words=p.get_tokenised_word_list() #get the tokensied word list w.analyse_words(analyse_words) #send it for processing #Required for task 4 stopword_freq=w.get_stopword_frequency() #store the stopword frequency word_length_freq=w.get_word_length_frequency() #store the word length frequency #relative freq of pun pun_rel_freq=rel_func(pun_freq) #convert normal df into relative frequency df pun_rel_freq.set_index('char', inplace=True) pun_rel_freq=pun_freq[['rel_freq']] #relative freq of letter letter_rel_freq=rel_func(letter_freq) #convert normal df into relative frequency df letter_rel_freq.set_index('char', inplace=True) letter_rel_freq=letter_rel_freq[['rel_freq']] #relative freq of stop word stopword_rel_freq=rel_func(stopword_freq) #convert normal df into relative frequency df stopword_rel_freq.set_index('stop_word', inplace=True) stopword_rel_freq=stopword_rel_freq[['rel_freq']] #relative freq of stop word length wordlen_rel_freq=rel_func(word_length_freq) #convert normal df into relative frequency df wordlen_rel_freq.set_index('wordlen', inplace=True) wordlen_rel_freq=wordlen_rel_freq[['rel_freq']] return pun_rel_freq,letter_rel_freq,stopword_rel_freq,wordlen_rel_freq #Below method is used to implement the visualisation def visualise(selection,accept_stats_df): if selection == 'pun': # if the visualisation is punctuation then proceed a=AnalysisVisualiser(accept_stats_df) a.visualise_punctuation_frequency() elif selection == 'letter': # if the visualisation is letter then proceed a=AnalysisVisualiser(accept_stats_df) a.visualise_character_frequency() elif selection == 'stopword': # if the visualisation is stop word then proceed a=AnalysisVisualiser(accept_stats_df) a.visualise_stopword_frequency() else: # else the visualisation is word length and proceed a=AnalysisVisualiser(accept_stats_df) a.visualise_word_length_frequency() def main(): try: #Read the 6 files and store them with open('Edward_II_Marlowe.tok', 'r') as input_file: edward_inputfile = input_file.read() input_file.close() with open('Hamlet_Shakespeare.tok', 'r') as input_file: hamplet_inputfile = input_file.read() input_file.close() with open('Henry_VI_Part1_Shakespeare.tok', 'r') as input_file: henry_part1_inputfile = input_file.read() input_file.close() with open('Henry_VI_Part2_Shakespeare.tok', 'r') as input_file: henry_part2_inputfile = input_file.read() input_file.close() with open('Jew_of_Malta_Marlowe.tok', 'r') as input_file: jew_inputfile = input_file.read() input_file.close() with open('Richard_II_Shakespeare.tok', 'r') as input_file: richard_inputfile = input_file.read() input_file.close() #in below step send the individual input file to processing and the return has respective frequency of statistics edward_pun,edward_letter,edward_stopword,edward_wordlen=perform_processing(edward_inputfile) hamlet_pun,hamlet_letter,hamlet_stopword,hamlet_wordlen=perform_processing(hamplet_inputfile) henry_part1_pun,henry_part1_letter,henry_part1_stopword,henry_part1_wordlen=perform_processing(henry_part1_inputfile) henry_part2_pun,henry_part2_letter,henry_part2_stopword,henry_part2_wordlen=perform_processing(henry_part2_inputfile) jew_pun,jew_letter,jew_stopword,jew_wordlen=perform_processing(jew_inputfile) richard_pun,richard_letter,richard_stopword,richard_wordlen=perform_processing(richard_inputfile) # Merge total Letter from 6 files into single df and print total_letter_df=
pd.DataFrame()
pandas.DataFrame
# -*- coding:utf-8 -*- # =========================================================================== # # Project : Ames House Prediction Model # # File : \eda.py # # Python : 3.9.1 # # --------------------------------------------------------------------------- # # Author : <NAME> # # Company : nov8.ai # # Email : <EMAIL> # # URL : https://github.com/john-james-sf/Ames/ # # --------------------------------------------------------------------------- # # Created : Tuesday, March 9th 2021, 11:06:05 pm # # Last Modified : Tuesday, March 9th 2021, 11:06:05 pm # # Modified By : <NAME> (<EMAIL>) # # --------------------------------------------------------------------------- # # License : BSD # # Copyright (c) 2021 nov8.ai # # =========================================================================== # #%% import pandas as pd import numpy as np import fnmatch import os from tabulate import tabulate # --------------------------------------------------------------------------- # class DataBuilder: """Combines all training set splits into a single file.""" def __init__(self, inpath="../data/raw/", outpath="../data/interim/"): self._inpath = inpath self._outpath = outpath self.X_train = None self.y_train = None def build_data(self): train = pd.DataFrame() for filename in os.listdir(self._inpath): if fnmatch.fnmatch(filename, "*train.csv"): df = pd.read_csv(os.path.join(self._inpath, filename)) train =
pd.concat((train, df), axis=0)
pandas.concat
import pandas import os import ast def create_CSV_pipeline1( platename, seriesperwell, path, illum_path, platedict, one_or_many, Channeldict ): if one_or_many == "one": print("CSV creation not enabled for Channeldict for one file/well") return else: columns_per_channel = ["PathName_", "FileName_", "Frame_"] columns = ["Metadata_Plate", "Metadata_Series", "Metadata_Site"] channels = [] Channeldict = ast.literal_eval(Channeldict) rounddict = {} Channelrounds = list(Channeldict.keys()) for eachround in Channelrounds: templist = [] templist += Channeldict[eachround].values() channels += list(i[0] for i in templist) rounddict[eachround] = list(i[0] for i in templist) df = pandas.DataFrame(columns=columns) for chan in channels: listoffiles = [] for round in rounddict.keys(): if chan in rounddict[round]: for well in platedict.keys(): listoffiles.append(platedict[well][round]) listoffiles = [x for l in listoffiles for x in l] df["FileName_Orig" + chan] = listoffiles df["Metadata_Plate"] = [platename] * len(listoffiles) df["Metadata_Series"] = list(range(seriesperwell)) * len(platedict.keys()) for eachround in Channelrounds: pathperround = path + eachround + "/" for chan in channels: for i in list(Channeldict[eachround].values()): if chan == i[0]: df["PathName_Orig" + chan] = pathperround df["Frame_Orig" + chan] = i[1] file_out_name = "/tmp/" + str(platename) + ".csv" df.to_csv(file_out_name, index=False) # Make .csv for 2_CP_ApplyIllum df["Metadata_Site"] = df["Metadata_Series"] well_df_list = [] well_val_df_list = [] for eachwell in platedict.keys(): well_df_list += [eachwell] * seriesperwell wellval = eachwell.split("Well")[1] if wellval[0] == "_": wellval = wellval[1:] well_val_df_list += [wellval] * seriesperwell df["Metadata_Well"] = well_df_list df["Metadata_Well_Value"] = well_val_df_list for chan in channels: listoffiles = [] for round in rounddict.keys(): if chan in rounddict[round]: for well in platedict.keys(): listoffiles.append(platedict[well][round]) listoffiles = [x for l in listoffiles for x in l] df["PathName_Illum" + chan] = [illum_path] * len(listoffiles) df["FileName_Illum" + chan] = [platename + "_Illum" + chan + ".npy"] * len( listoffiles ) file_out_name_2 = "/tmp/" + str(platename) + ".csv" df.to_csv(file_out_name_2, index=False) return file_out_name, file_out_name_2 def create_CSV_pipeline3(platename, seriesperwell, path, well_list, range_skip): columns = [ "Metadata_Plate", "Metadata_Site", "Metadata_Well", "Metadata_Well_Value", ] columns_per_channel = ["PathName_", "FileName_"] channels = ["DNA", "Phalloidin"] columns += [col + chan for col in columns_per_channel for chan in channels] df = pandas.DataFrame(columns=columns) sitelist = list(range(0, seriesperwell, range_skip)) sites_per_well = len(sitelist) total_file_count = sites_per_well * len(well_list) df["Metadata_Plate"] = [platename] * total_file_count df["Metadata_Site"] = sitelist * len(well_list) well_df_list = [] well_val_df_list = [] parsed_well_list = [] for eachwell in well_list: well_df_list += [eachwell] * sites_per_well wellval = eachwell.split("Well")[1] if wellval[0] == "_": wellval = wellval[1:] well_val_df_list += [wellval] * sites_per_well parsed_well_list.append(wellval) df["Metadata_Well"] = well_df_list df["Metadata_Well_Value"] = well_val_df_list path_list = [ os.path.join(path, platename + "-" + well) for well in well_list for site in sitelist ] for chan in channels: df["PathName_" + chan] = path_list df["FileName_" + chan] = [ "Plate_" + platename + "_Well_" + well + "_Site_" + str(site) + "_Corr" + chan + ".tiff" for well in parsed_well_list for site in sitelist ] file_out_name = "/tmp/" + str(platename) + ".csv" df.to_csv(file_out_name, index=False) return file_out_name def create_CSV_pipeline5( platename, seriesperwell, expected_cycles, path, platedict, one_or_many, fast_or_slow, ): expected_cycles = int(expected_cycles) columns = ["Metadata_Plate", "Metadata_Site", "Metadata_SBSCycle"] channels = ["OrigT", "OrigG", "OrigA", "OrigC", "OrigDNA"] if one_or_many == "one" and fast_or_slow == "fast": columns_per_channel = ["PathName_", "FileName_", "Series_", "Frame_"] columns += [col + chan for col in columns_per_channel for chan in channels] df = pandas.DataFrame(columns=columns) well_list = platedict[1] total_file_count = seriesperwell * len(well_list) * expected_cycles df["Metadata_Plate"] = [platename] * total_file_count df["Metadata_Site"] = ( list(range(seriesperwell)) * len(well_list) * expected_cycles ) cycle_list = [] path_list = [] A_list = [] C_list = [] G_list = [] T_list = [] DNA_list = [] for cycle in range(1, (expected_cycles + 1)): for eachwell in platedict[cycle]: cycle_list += [int(cycle)] * seriesperwell path_list += [ os.path.join(path, platedict[cycle][eachwell][0]) ] * seriesperwell T_list += [platedict[cycle][eachwell][1][0]] * seriesperwell G_list += [platedict[cycle][eachwell][1][1]] * seriesperwell A_list += [platedict[cycle][eachwell][1][2]] * seriesperwell C_list += [platedict[cycle][eachwell][1][3]] * seriesperwell DNA_list += [platedict[cycle][eachwell][1][4]] * seriesperwell df["Metadata_SBSCycle"] = cycle_list for chan in channels: df["Series_" + chan] = ( list(range(seriesperwell)) * len(well_list) * expected_cycles ) df["PathName_" + chan] = path_list df["FileName_OrigT"] = T_list df["FileName_OrigG"] = G_list df["FileName_OrigA"] = A_list df["FileName_OrigC"] = C_list df["FileName_OrigDNA"] = DNA_list df["Frame_OrigDNA"] = [0] * total_file_count df["Frame_OrigG"] = ([1] * seriesperwell * len(well_list)) + ( [0] * seriesperwell * len(well_list) * (expected_cycles - 1) ) df["Frame_OrigT"] = ([2] * seriesperwell * len(well_list)) + ( [0] * seriesperwell * len(well_list) * (expected_cycles - 1) ) df["Frame_OrigA"] = ([3] * seriesperwell * len(well_list)) + ( [0] * seriesperwell * len(well_list) * (expected_cycles - 1) ) df["Frame_OrigC"] = ([4] * seriesperwell * len(well_list)) + ( [0] * seriesperwell * len(well_list) * (expected_cycles - 1) ) elif one_or_many == "many" and fast_or_slow == "slow": columns_per_channel = ["PathName_", "FileName_", "Frame_"] columns += [col + chan for col in columns_per_channel for chan in channels] df = pandas.DataFrame(columns=columns) well_list = platedict[1] total_file_count = seriesperwell * len(well_list) * expected_cycles df["Metadata_Plate"] = [platename] * total_file_count df["Metadata_Site"] = ( list(range(seriesperwell)) * len(well_list) * expected_cycles ) cycle_list = [] path_list = [] file_list = [] for cycle in range(1, (expected_cycles + 1)): for eachwell in platedict[cycle]: cycle_list += [int(cycle)] * seriesperwell path_list += [ os.path.join(path, platedict[cycle][eachwell][0]) ] * seriesperwell file_list += platedict[cycle][eachwell][1] df["Metadata_SBSCycle"] = cycle_list for chan in channels: df["PathName_" + chan] = path_list df["FileName_" + chan] = file_list df["Frame_OrigDNA"] = [0] * total_file_count df["Frame_OrigG"] = [1] * total_file_count df["Frame_OrigT"] = [2] * total_file_count df["Frame_OrigA"] = [3] * total_file_count df["Frame_OrigC"] = [4] * total_file_count file_out_name = "/tmp/" + str(platename) + ".csv" df.to_csv(file_out_name, index=False) return file_out_name def create_CSV_pipeline6( platename, seriesperwell, expected_cycles, path, illum_path, platedict, one_or_many, fast_or_slow, ): expected_cycles = int(expected_cycles) if one_or_many == "one" and fast_or_slow == "fast": columns = [ "Metadata_Plate", "Metadata_Series", "Metadata_Well", "Metadata_Well_Value", "Metadata_ArbitraryGroup", ] columns_per_channel = ["PathName_", "FileName_", "Series_", "Frame_"] cycles = ["Cycle%02d_" % x for x in range(1, expected_cycles + 1)] or_il = ["Orig", "Illum"] channels = ["A", "C", "G", "T", "DNA"] columns += [ col + cycle + oi + channel for col in columns_per_channel for cycle in cycles for oi in or_il for channel in channels ] df = pandas.DataFrame(columns=columns) well_list = list(platedict["1"].keys()) total_file_count = seriesperwell * len(well_list) df["Metadata_Plate"] = [platename] * total_file_count df["Metadata_Series"] = list(range(seriesperwell)) * len(well_list) df["Metadata_ArbitraryGroup"] = list(range(19)) * 19 * len(well_list) well_df_list = [] well_val_df_list = [] for eachwell in well_list: well_df_list += [eachwell] * seriesperwell wellval = eachwell.split("Well")[1] if wellval[0] == "_": wellval = wellval[1:] well_val_df_list += [wellval] * seriesperwell df["Metadata_Well"] = well_df_list df["Metadata_Well_Value"] = well_val_df_list for cycle in range(1, (expected_cycles + 1)): this_cycle = "Cycle%02d_" % cycle path_list = [] A_list = [] C_list = [] G_list = [] T_list = [] DNA_list = [] for eachwell in platedict[str(cycle)]: path_list += [ os.path.join(path, platedict[str(cycle)][eachwell][0]) ] * seriesperwell T_list += [platedict[str(cycle)][eachwell][1][0]] * seriesperwell G_list += [platedict[str(cycle)][eachwell][1][1]] * seriesperwell A_list += [platedict[str(cycle)][eachwell][1][2]] * seriesperwell C_list += [platedict[str(cycle)][eachwell][1][3]] * seriesperwell DNA_list += [platedict[str(cycle)][eachwell][1][4]] * seriesperwell for chan in channels: df["Series_" + this_cycle + "Orig" + chan] = list( range(seriesperwell) ) * len(well_list) df["PathName_" + this_cycle + "Orig" + chan] = path_list df["Series_" + this_cycle + "Illum" + chan] = df[ "Frame_" + this_cycle + "Illum" + chan ] = [0] * total_file_count df["PathName_" + this_cycle + "Illum" + chan] = [ illum_path ] * total_file_count df["FileName_" + this_cycle + "Illum" + chan] = [ platename + "_Cycle" + str(cycle) + "_Illum" + chan + ".npy" ] * total_file_count # this name doesn't have digit padding df["FileName_" + this_cycle + "OrigT"] = T_list df["FileName_" + this_cycle + "OrigG"] = G_list df["FileName_" + this_cycle + "OrigA"] = A_list df["FileName_" + this_cycle + "OrigC"] = C_list df["FileName_" + this_cycle + "OrigDNA"] = DNA_list df["Frame_" + this_cycle + "OrigDNA"] = [0] * total_file_count if cycle == 1: df["Frame_" + this_cycle + "OrigG"] = [1] * total_file_count df["Frame_" + this_cycle + "OrigT"] = [2] * total_file_count df["Frame_" + this_cycle + "OrigA"] = [3] * total_file_count df["Frame_" + this_cycle + "OrigC"] = [4] * total_file_count else: df["Frame_" + this_cycle + "OrigG"] = df[ "Frame_" + this_cycle + "OrigT" ] = df["Frame_" + this_cycle + "OrigA"] = df[ "Frame_" + this_cycle + "OrigC" ] = ( [0] * total_file_count ) elif one_or_many == "many" and fast_or_slow == "slow": columns = [ "Metadata_Plate", "Metadata_Site", "Metadata_Well", "Metadata_Well_Value", ] columns_per_channel = ["PathName_", "FileName_", "Frame_"] cycles = ["Cycle%02d_" % x for x in range(1, expected_cycles + 1)] or_il = ["Orig", "Illum"] channels = ["A", "C", "G", "T", "DNA"] columns += [ col + cycle + oi + channel for col in columns_per_channel for cycle in cycles for oi in or_il for channel in channels ] df = pandas.DataFrame(columns=columns) well_list = list(platedict["1"].keys()) total_file_count = seriesperwell * len(well_list) df["Metadata_Plate"] = [platename] * total_file_count df["Metadata_Site"] = list(range(seriesperwell)) * len(well_list) well_df_list = [] well_val_df_list = [] for eachwell in well_list: well_df_list += [eachwell] * seriesperwell wellval = eachwell.split("Well")[1] if wellval[0] == "_": wellval = wellval[1:] well_val_df_list += [wellval] * seriesperwell df["Metadata_Well"] = well_df_list df["Metadata_Well_Value"] = well_val_df_list for cycle in range(1, (expected_cycles + 1)): this_cycle = "Cycle%02d_" % cycle path_list = [] file_list = [] for eachwell in platedict[str(cycle)]: path_list += [ os.path.join(path, platedict[str(cycle)][eachwell][0]) ] * seriesperwell file_list += platedict[str(cycle)][eachwell][1] for chan in channels: df["PathName_" + this_cycle + "Orig" + chan] = path_list df["Frame_" + this_cycle + "Illum" + chan] = [0] * total_file_count df["PathName_" + this_cycle + "Illum" + chan] = [ illum_path ] * total_file_count df["FileName_" + this_cycle + "Illum" + chan] = [ platename + "_Cycle" + str(cycle) + "_Illum" + chan + ".npy" ] * total_file_count # this name doesn't have digit padding df["FileName_" + this_cycle + "Orig" + chan] = file_list df["Frame_" + this_cycle + "OrigDNA"] = [0] * total_file_count df["Frame_" + this_cycle + "OrigG"] = [1] * total_file_count df["Frame_" + this_cycle + "OrigT"] = [2] * total_file_count df["Frame_" + this_cycle + "OrigA"] = [3] * total_file_count df["Frame_" + this_cycle + "OrigC"] = [4] * total_file_count file_out_name = "/tmp/" + str(platename) + ".csv" df.to_csv(file_out_name, index=False) return file_out_name def create_CSV_pipeline7(platename, seriesperwell, expected_cycles, path, well_list): expected_cycles = int(expected_cycles) columns = [ "Metadata_Plate", "Metadata_Site", "Metadata_Well", "Metadata_Well_Value", ] columns_per_channel = ["PathName_", "FileName_"] cycles = ["Cycle%02d_" % x for x in range(1, expected_cycles + 1)] channels = ["A", "C", "G", "T"] columns += [ col + cycle + channel for col in columns_per_channel for cycle in cycles for channel in channels ] columns += ["PathName_Cycle01_DAPI", "FileName_Cycle01_DAPI"] df =
pandas.DataFrame(columns=columns)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 from __future__ import print_function """A script to calculate TPM values for contigs or genes based on count files TPM values are defined as in Wagner et al (Theory in Biosciences) 2012. rg x rl x 10^6 TPM = -------------- flg x T rg: reads mapped to gene g rl: read length flg: feature length T: sum of rgxrl/flg for all genes """ import sys, pandas as pd, argparse, logging import re logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO) def gene_lengths_from_gff(gff_file): gene_id_regex = re.compile('ID=([a-zA-Z_\-0-9]*);') gene_lengths = {} with open(gff_file) as fh: for line in fh: gene_id = gene_id_regex.findall(line)[0] gene_lengths[gene_id] = abs(int(line.split(' ')[4]) - int(line.split(' ')[3])) + 1 return
pd.Series(gene_lengths)
pandas.Series
from datetime import datetime from typing import Dict, Optional, List import numpy as np import pandas as pd import plotly.express as px import plotly.graph_objects as go from src.constants import remove_from_plots from src.data.prices import get_prices, round_price from src.plot.asset_history import plot_asset_history import logging logger = logging.getLogger(__name__) QUOTE_COINS = ['USDT', 'BUSD', 'RUB'] class OrdersAnalyser: def __init__(self, client_helper, orders): self._orders = self.prepare_dataframe(orders) self.client_helper = client_helper self.width = 1200 self.height = 400 @property def orders(self): return self._orders @staticmethod def prepare_dataframe(orders: pd.DataFrame): orders = orders.copy() numerical_columns = ['price', 'origQty', 'executedQty', 'cummulativeQuoteQty'] for col in numerical_columns: orders[col] = orders[col].astype(float) # Use only filled orders orders = orders[orders['status'] == 'FILLED'] # Replace payments with BUSD to USDT to simplify orders.loc[orders['quote_coin'] == 'BUSD', 'quote_coin'] = 'USDT' # Calculate executedCorrectedQty, needed for calculation mean buying price updated_orders = [] for _, pair_orders in orders.groupby(['base_coin']): updated_orders.append(calculate_corrected_balance_for_pair(pair_orders)) orders = pd.concat(updated_orders) assert np.all(np.isin(orders['quote_coin'].unique(), QUOTE_COINS)), f'Only {QUOTE_COINS} quote coins allowed' return orders def calculate_mean_price(self): orders = self._orders average_prices = [] for base_coin, pair_orders in orders.groupby(['base_coin']): quote_coin = pair_orders['quote_coin'].unique() if len(quote_coin) > 1: msg = f'can calculate average purchase price only with single quote_coin, ' \ f'but for {base_coin} there is several: {quote_coin}' raise ValueError(msg) quote_coin = quote_coin[0] mask_buy = pair_orders['side'] == 'BUY' average_price = (pair_orders.loc[mask_buy, 'price'] * pair_orders.loc[ mask_buy, 'executedCorrectedQty']).sum() / pair_orders.loc[mask_buy, 'executedCorrectedQty'].sum() average_prices.append( {'base_coin': base_coin, 'quote_coin': quote_coin, 'average_price': average_price, 'n_purchases': mask_buy.sum(), 'n_sales': (~mask_buy).sum()}) average_prices = pd.DataFrame(average_prices) return average_prices def plot_transactions(self, base_coin: str = 'BTC', price_history: pd.DataFrame = None, add_mean_price: bool = True, add_last_price: bool = True): plot_df = self.orders[self.orders['base_coin'] == base_coin] assert np.all( np.isin(plot_df['quote_coin'].unique(), QUOTE_COINS)), f'Only {QUOTE_COINS} quote coins are acceptable' fig = px.scatter(plot_df, x='date', y="price", size='executedQty', color='side', title=f'{base_coin} transactions', size_max=10, hover_data=['cummulativeQuoteQty']) if price_history is not None: fig.add_trace( go.Scatter(x=price_history['date'], y=price_history['Close'], mode='lines', name='history', marker_color='grey')) if add_mean_price: mean_price = self.calculate_mean_price() mean_price = mean_price.loc[mean_price['base_coin'] == base_coin, 'average_price'].item() fig.add_hline(y=mean_price, line_dash="dot", annotation_text=f'average purchase price = {round_price(mean_price)} usdt', annotation_position="bottom right") if add_last_price: last_price = price_history.iloc[-1] fig.add_annotation( x=last_price['date'], y=last_price['Close'], text=f"Last price = {round_price(last_price['Close'])} usdt", arrowhead=2, ) fig.update_xaxes( rangeslider_visible=True, rangeselector=dict( buttons=list([ dict(count=1, label="1m", step="month", stepmode="backward"), dict(count=6, label="6m", step="month", stepmode="backward"), dict(count=1, label="1y", step="year", stepmode="backward"), dict(step="all"), ]) ), type='date' ) fig.update_layout(yaxis_title='USDT', width=self.width, height=self.height, xaxis_fixedrange=False, yaxis_fixedrange=False) return fig def plot_transactions_many(self, coins): fig_dict = {} for base_coin in coins: # ['LTC', 'ETH']: price_history = self.client_helper.get_historical_prices(base_coin + 'USDT', start_date='1 Jan, 2021') fig = self.plot_transactions(base_coin, price_history) fig_dict[base_coin] = fig return fig_dict def prepare_coins_asset_history(self) -> Dict[str, pd.DataFrame]: coins_asset_history = {} prices = get_prices(self.client_helper) for base_coin, pair_orders in self.orders.groupby('base_coin'): if base_coin in remove_from_plots: continue price_history = prices[['date', base_coin]] price_history.columns = ['date', 'price'] asset_history = calculate_asset_worth_history(pair_orders, price_history) coins_asset_history[base_coin] = asset_history return coins_asset_history def plot_coins_asset_history(self, coins_asset_history: Dict[str, pd.DataFrame], items: Optional[List] = None): fig_dict = {} if items is None: items = coins_asset_history.keys() for item in items: plot_df = coins_asset_history[item] fig = plot_asset_history(plot_df, title=f'{item} asset value history', width=self.width, height=self.height) fig_dict[item] = fig return fig_dict def plot_full_asset_history(self, coins_asset_history: Dict[str, pd.DataFrame], items: Optional[List] = None): cash_df = [] coin_df = [] if items is None: items = coins_asset_history.keys() for item in items: plot_df = coins_asset_history[item] cash_df.append(plot_df[['date', 'usdt_cash_in_cum']].set_index('date')) coin_df.append(plot_df[['date', 'coin_cum_usdt_value']].set_index('date')) cash_df = pd.concat(cash_df, axis=1).ffill().sum(axis=1) cash_df.name = 'usdt_cash_in_cum' coin_df = pd.concat(coin_df, axis=1).ffill().sum(axis=1) coin_df.name = 'coin_cum_usdt_value' full_asset_history =
pd.concat([cash_df, coin_df], axis=1)
pandas.concat
# -*- coding: utf-8 -*- """ Created on Sat Jun 6 22:23:07 2020 @author: atidem """ import pandas as pd import numpy as np from statsmodels.tsa.holtwinters import ExponentialSmoothing from statsmodels.tsa.ar_model import AR,ARResults from statsmodels.tsa.arima_model import ARIMA,ARMA,ARIMAResults,ARMAResults from pmdarima import auto_arima from sklearn.metrics import mean_absolute_error,mean_squared_error import matplotlib.pyplot as plt from matplotlib.pyplot import show import warnings warnings.filterwarnings("ignore") from math import sqrt import matplotlib as mt import statsmodels as st import sklearn as sk import worldometerDataHandler as handle from statsmodels.tsa.statespace.sarimax import SARIMAX #%% Notes ## default test rate 0.2 , replaceable (Ar,Arma,Arima) ## worldometer link , replaceable ## have to search parameter for each country ## russian data have "did not converge" exception ## edited library for keep going to work in exception "lib\site-packages\numpy\linalg\linalg.py" #%% resultsData = [] dataPosLenDeath = 0 dataPosLenCases = 0 #%% temp method def runAllMethods(): #%% get data from worldometer's link global dataPosLenCases,dataPosLenDeath getData = handle.GetDataFromWorldometer(url) df = getData.handleData() #%% dataLen = len(df) #positivity dataPosDeath = df[df.Deaths>0] dataPosLenDeath = len(dataPosDeath) dataPosCases = df[df.Cases>0] dataPosLenCases = len(dataPosCases) # size of predict(daily) predDayCount = 30 # total range totalIdx = pd.date_range(df.index[0],periods=dataLen+predDayCount,freq='D') #df["Cases"][:pd.to_datetime("19.3.2020",format="%d.%m.%Y")] #%% measure metrics def mape(a,b): mask = a != 0 return (np.fabs(a - b)/a)[mask].mean() def mae(a,b): return mean_absolute_error(a,b) def rmse(a,b): return sqrt(mean_squared_error(a,b)) #%% Holt Winters """ ---Holt Winters--- alpha = smoothing_level beta = smoothing_slope gamma = smoothing_seasonal phi = damping_slope tren = mul , add seasonal = mul , add seasonal period damped = True , False Gonna add user interface """ def holtWinters(data,alpha=None,beta=None,gamma=None,phi=None,tren=None,seasonal='add',period=None,damp=False): dataPos = data[data>0] dataPosLen = len(dataPos) dataPos = pd.to_numeric(dataPos,downcast='float') #print(dataPos) pred = pd.DataFrame(index=totalIdx) model = ExponentialSmoothing(dataPos[:dataPosLen],trend=tren,seasonal=seasonal,seasonal_periods=period,damped=damp) pred["Fitted_Values"] = model.fit(smoothing_level=alpha,smoothing_slope=beta,smoothing_seasonal=gamma,damping_slope=phi).fittedvalues pred["Predicted_Values"] = pd.Series(model.predict(model.params,start=df.index[-1],end=totalIdx[-1]),index=totalIdx[dataLen-1:]) return pred ## Holt Winters Prediction Section ## default values (alpha=None,beta=None,gamma=None,phi=None,tren=None,seasonal='add',period=None,damp=False) Case_mul_mul = holtWinters(data=df.Cases,alpha=0.25,beta=0.25,gamma=0,tren='mul',seasonal='mul',period=dataPosLenCases-1,damp=True) Case_mul_mul.rename(columns={"Fitted_Values":"Cases_hw_tes_mul-mul","Predicted_Values": "Cases_predict_hw_tes_mul"},inplace=True) Case_add_add = holtWinters(data=df.Cases,alpha=0.9,beta=0.9,gamma=0,tren='add',seasonal='add',period=dataPosLenCases-1,damp=False) Case_add_add.rename(columns={"Fitted_Values":"Cases_hw_tes_add-add","Predicted_Values": "Cases_predict_hw_tes_add"},inplace=True) Death_mul_mul = holtWinters(data=df.Deaths,alpha=0.9,beta=0.9,gamma=0,tren='mul',seasonal='mul',period=dataPosLenDeath-1,damp=True) Death_mul_mul.rename(columns={"Fitted_Values":"Deaths_hw_tes_mul","Predicted_Values": "Deaths_predict_hw_tes_mul"},inplace=True) Death_add_add = holtWinters(data=df.Deaths,alpha=0.9,beta=0.9,gamma=0,tren='add',seasonal='add',period=dataPosLenDeath-1,damp=False) Death_add_add.rename(columns={"Fitted_Values":"Deaths_hw_tes_add","Predicted_Values": "Deaths_predict_hw_tes_add"},inplace=True) ## merge prediction and main dataframe finalDf = pd.concat([df,Case_mul_mul,Case_add_add,Death_mul_mul,Death_add_add],axis=1) #%% AutoRegresive """ --- AR --- maxlag = int method = cmle,mle // Conditional maximum likelihood using OLS ,Unconditional (exact) maximum likelihood. lagOpt = aic,bic,hqic,t-stat //Akaike Information Criterion,Bayes Information Criterion,Hannan-Quinn Information Criterion,Based on last lag trend = c,nc //constant, no constant """ def ar(data,maxlag=None,metod='cmle',lagOpt='t-stat',trend='nc',testRate=0.2): dataPos = data[data>0] dataPosLen = len(dataPos) splitIndex = int(dataPosLen*(1-testRate)) train = dataPos[:splitIndex] test = dataPos[splitIndex:] model = AR(train) model = model.fit(maxlag=maxlag,method=metod,trend=trend,ic=lagOpt) pred = model.predict(start=totalIdx[dataLen-dataPosLen+splitIndex],end=totalIdx[-1]) pred =
pd.DataFrame(pred)
pandas.DataFrame
# # A program to output (to standard output) text to place in first dataset table # # It reads: # 1) DEFINITIONS.csv # 2) UNIQUES.csv import pandas as pd import argparse, os def num(n): return( '{:,d}'.format(n) ) def extract_string_and_url(d): s = d.split(']') n = s[0] if len(s) > 1: u = s[1] else: u = '' n = n.replace('[', '') u = u.replace('(', '').replace(')', '') return(n, u) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Program to generate the first table on nCoV web page.') parser.add_argument('-D', '--definitions', help='definitions file', default='DEFINITIONS.csv') parser.add_argument('-U', '--uniques', help='uniques file', default='UNIQUES.csv') parser.add_argument('-o', '--output', help='output directory', default='outputs') args = parser.parse_args() definitions = pd.read_csv(args.definitions, header=None) definitions.columns = ['Key', 'Definition'] unique_info = pd.read_csv(args.uniques, header=None) unique_info.columns = ['Key', 'Total', 'Unique'] full =
pd.merge(definitions, unique_info, on="Key")
pandas.merge
#!/bin/env python3 """create_csv_of_kp_predicate_triples.py Creates a CSV of all predicate triples of the form (node type, edge type, node type) for KG1, KG2, and BTE (ARAX's current knowledge providers). Resulting columns are: subject_type, edge_type, object_type Usage: python create_csv_of_kp_predicate_triples.py """ # adapted from <NAME> code in create_csv_of_kp_node_pairs.py import requests import sys import os import csv import time import pandas as pd from neo4j import GraphDatabase sys.path.append(os.path.dirname(os.path.abspath(__file__))+"/../../") # code directory from RTXConfiguration import RTXConfiguration def run_neo4j_query(cypher, kg_name, data_type): rtx_config = RTXConfiguration() if kg_name != "KG1": rtx_config.live = kg_name driver = GraphDatabase.driver(rtx_config.neo4j_bolt, auth=(rtx_config.neo4j_username, rtx_config.neo4j_password)) with driver.session() as session: start = time.time() print(f"Grabbing {data_type} from {kg_name} neo4j...") results = session.run(cypher).data() print(f"...done. Query took {round((time.time() - start) / 60, 2)} minutes.") driver.close() return results def get_kg1_predicate_triples(): cypher = 'match (n)-[r]->(m) with distinct labels(n) as n1s, type(r) as rel, '+\ 'labels(m) as n2s unwind n1s as n1 unwind n2s as n2 with distinct n1 as '+\ 'node1, rel as relationship, n2 as node2 where node1 <> "Base" and '+\ 'node2 <> "Base" return node1, relationship, node2' # Changed this from using n.category so that it can handle node with multiple labels # Unfortunetly that makes the cypher a little more unweildly and likely slows a query a bit. results = run_neo4j_query(cypher, "KG1", "predicate triples") triples_dict = {"subject":[], "predicate":[], "object":[]} for result in results: subject_type = result.get('node1') object_type = result.get('node2') predicate = result.get('relationship') triples_dict['subject'].append(subject_type) triples_dict['object'].append(object_type) triples_dict['predicate'].append(predicate) return pd.DataFrame(triples_dict) def get_kg2_predicate_triples(): cypher = 'match (n)-[r]->(m) with distinct labels(n) as n1s, type(r) as rel, '+\ 'labels(m) as n2s unwind n1s as n1 unwind n2s as n2 with distinct n1 as '+\ 'node1, rel as relationship, n2 as node2 where node1 <> "Base" and '+\ 'node2 <> "Base" return node1, relationship, node2' # Changed this from using n.category so that it can handle node with multiple labels # Unfortunetly this makes the cypher a little more unweildly and likely slows a query a bit. results = run_neo4j_query(cypher, "KG2", "predicate triples") triples_dict = {"subject":[], "predicate":[], "object":[]} for result in results: subject_type = result.get('node1') object_type = result.get('node2') predicate = result.get('relationship') triples_dict['subject'].append(subject_type) triples_dict['object'].append(object_type) triples_dict['predicate'].append(predicate) return pd.DataFrame(triples_dict) def get_kg2c_predicate_triples(): cypher = 'match (n)-[r]->(m) with distinct labels(n) as n1s, type(r) as rel, '+\ 'labels(m) as n2s unwind n1s as n1 unwind n2s as n2 with distinct n1 as '+\ 'node1, rel as relationship, n2 as node2 where node1 <> "Base" and '+\ 'node2 <> "Base" return node1, relationship, node2' # Changed this from using n.category so that it can handle node with multiple labels # Unfortunetly this makes the cypher a little more unweildly and likely slows a query a bit. results = run_neo4j_query(cypher, "KG2c", "predicate triples") triples_dict = {"subject":[], "predicate":[], "object":[]} for result in results: subject_type = result.get('node1') object_type = result.get('node2') predicate = result.get('relationship') triples_dict['subject'].append(subject_type) triples_dict['object'].append(object_type) triples_dict['predicate'].append(predicate) return pd.DataFrame(triples_dict) def get_kg1_node_labels(): cypher = 'call db.labels()' results = run_neo4j_query(cypher, "KG1", "node labels") labels_dict = {"label":[]} for result in results: label = result.get('label') labels_dict["label"].append(label) return pd.DataFrame(labels_dict) def get_kg2_node_labels(): cypher = 'call db.labels()' results = run_neo4j_query(cypher, "KG2", "node labels") labels_dict = {"label":[]} for result in results: label = result.get('label') labels_dict["label"].append(label) return pd.DataFrame(labels_dict) def get_kg2c_node_labels(): cypher = 'call db.labels()' results = run_neo4j_query(cypher, "KG2c", "node labels") labels_dict = {"label":[]} for result in results: label = result.get('label') labels_dict["label"].append(label) return pd.DataFrame(labels_dict) def get_kg1_relationship_types(): cypher = 'call db.relationshipTypes()' results = run_neo4j_query(cypher, "KG1", "relationship types") predicate_dict = {"predicate":[]} for result in results: predicate = result.get('relationshipType') predicate_dict["predicate"].append(predicate) return pd.DataFrame(predicate_dict) def get_kg2_relationship_types(): cypher = 'call db.relationshipTypes()' results = run_neo4j_query(cypher, "KG2", "relationship types") predicate_dict = {"predicate":[]} for result in results: predicate = result.get('relationshipType') predicate_dict["predicate"].append(predicate) return
pd.DataFrame(predicate_dict)
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable-msg=W0612,E1101 import itertools import warnings from warnings import catch_warnings from datetime import datetime from pandas.types.common import (is_integer_dtype, is_float_dtype, is_scalar) from pandas.compat import range, lrange, lzip, StringIO, lmap from pandas.tslib import NaT from numpy import nan from numpy.random import randn import numpy as np import pandas as pd from pandas import option_context from pandas.core.indexing import _non_reducing_slice, _maybe_numeric_slice from pandas.core.api import (DataFrame, Index, Series, Panel, isnull, MultiIndex, Timestamp, Timedelta, UInt64Index) from pandas.formats.printing import pprint_thing from pandas import concat from pandas.core.common import PerformanceWarning from pandas.tests.indexing.common import _mklbl import pandas.util.testing as tm from pandas import date_range _verbose = False # ------------------------------------------------------------------------ # Indexing test cases def _generate_indices(f, values=False): """ generate the indicies if values is True , use the axis values is False, use the range """ axes = f.axes if values: axes = [lrange(len(a)) for a in axes] return itertools.product(*axes) def _get_value(f, i, values=False): """ return the value for the location i """ # check agains values if values: return f.values[i] # this is equiv of f[col][row]..... # v = f # for a in reversed(i): # v = v.__getitem__(a) # return v with catch_warnings(record=True): return f.ix[i] def _get_result(obj, method, key, axis): """ return the result for this obj with this key and this axis """ if isinstance(key, dict): key = key[axis] # use an artifical conversion to map the key as integers to the labels # so ix can work for comparisions if method == 'indexer': method = 'ix' key = obj._get_axis(axis)[key] # in case we actually want 0 index slicing try: xp = getattr(obj, method).__getitem__(_axify(obj, key, axis)) except: xp = getattr(obj, method).__getitem__(key) return xp def _axify(obj, key, axis): # create a tuple accessor axes = [slice(None)] * obj.ndim axes[axis] = key return tuple(axes) class TestIndexing(tm.TestCase): _objs = set(['series', 'frame', 'panel']) _typs = set(['ints', 'uints', 'labels', 'mixed', 'ts', 'floats', 'empty', 'ts_rev']) def setUp(self): self.series_ints = Series(np.random.rand(4), index=lrange(0, 8, 2)) self.frame_ints = DataFrame(np.random.randn(4, 4), index=lrange(0, 8, 2), columns=lrange(0, 12, 3)) self.panel_ints = Panel(np.random.rand(4, 4, 4), items=lrange(0, 8, 2), major_axis=lrange(0, 12, 3), minor_axis=lrange(0, 16, 4)) self.series_uints = Series(np.random.rand(4), index=UInt64Index(lrange(0, 8, 2))) self.frame_uints = DataFrame(np.random.randn(4, 4), index=UInt64Index(lrange(0, 8, 2)), columns=UInt64Index(lrange(0, 12, 3))) self.panel_uints = Panel(np.random.rand(4, 4, 4), items=UInt64Index(lrange(0, 8, 2)), major_axis=UInt64Index(lrange(0, 12, 3)), minor_axis=UInt64Index(lrange(0, 16, 4))) self.series_labels = Series(np.random.randn(4), index=list('abcd')) self.frame_labels = DataFrame(np.random.randn(4, 4), index=list('abcd'), columns=list('ABCD')) self.panel_labels = Panel(np.random.randn(4, 4, 4), items=list('abcd'), major_axis=list('ABCD'), minor_axis=list('ZYXW')) self.series_mixed = Series(np.random.randn(4), index=[2, 4, 'null', 8]) self.frame_mixed = DataFrame(np.random.randn(4, 4), index=[2, 4, 'null', 8]) self.panel_mixed = Panel(np.random.randn(4, 4, 4), items=[2, 4, 'null', 8]) self.series_ts = Series(np.random.randn(4), index=date_range('20130101', periods=4)) self.frame_ts = DataFrame(np.random.randn(4, 4), index=date_range('20130101', periods=4)) self.panel_ts = Panel(np.random.randn(4, 4, 4), items=date_range('20130101', periods=4)) dates_rev = (date_range('20130101', periods=4) .sort_values(ascending=False)) self.series_ts_rev = Series(np.random.randn(4), index=dates_rev) self.frame_ts_rev = DataFrame(np.random.randn(4, 4), index=dates_rev) self.panel_ts_rev = Panel(np.random.randn(4, 4, 4), items=dates_rev) self.frame_empty = DataFrame({}) self.series_empty = Series({}) self.panel_empty = Panel({}) # form agglomerates for o in self._objs: d = dict() for t in self._typs: d[t] = getattr(self, '%s_%s' % (o, t), None) setattr(self, o, d) def check_values(self, f, func, values=False): if f is None: return axes = f.axes indicies = itertools.product(*axes) for i in indicies: result = getattr(f, func)[i] # check agains values if values: expected = f.values[i] else: expected = f for a in reversed(i): expected = expected.__getitem__(a) tm.assert_almost_equal(result, expected) def check_result(self, name, method1, key1, method2, key2, typs=None, objs=None, axes=None, fails=None): def _eq(t, o, a, obj, k1, k2): """ compare equal for these 2 keys """ if a is not None and a > obj.ndim - 1: return def _print(result, error=None): if error is not None: error = str(error) v = ("%-16.16s [%-16.16s]: [typ->%-8.8s,obj->%-8.8s," "key1->(%-4.4s),key2->(%-4.4s),axis->%s] %s" % (name, result, t, o, method1, method2, a, error or '')) if _verbose: pprint_thing(v) try: rs = getattr(obj, method1).__getitem__(_axify(obj, k1, a)) try: xp = _get_result(obj, method2, k2, a) except: result = 'no comp' _print(result) return detail = None try: if is_scalar(rs) and is_scalar(xp): self.assertEqual(rs, xp) elif xp.ndim == 1: tm.assert_series_equal(rs, xp) elif xp.ndim == 2: tm.assert_frame_equal(rs, xp) elif xp.ndim == 3: tm.assert_panel_equal(rs, xp) result = 'ok' except AssertionError as e: detail = str(e) result = 'fail' # reverse the checks if fails is True: if result == 'fail': result = 'ok (fail)' _print(result) if not result.startswith('ok'): raise AssertionError(detail) except AssertionError: raise except Exception as detail: # if we are in fails, the ok, otherwise raise it if fails is not None: if isinstance(detail, fails): result = 'ok (%s)' % type(detail).__name__ _print(result) return result = type(detail).__name__ raise AssertionError(_print(result, error=detail)) if typs is None: typs = self._typs if objs is None: objs = self._objs if axes is not None: if not isinstance(axes, (tuple, list)): axes = [axes] else: axes = list(axes) else: axes = [0, 1, 2] # check for o in objs: if o not in self._objs: continue d = getattr(self, o) for a in axes: for t in typs: if t not in self._typs: continue obj = d[t] if obj is not None: obj = obj.copy() k2 = key2 _eq(t, o, a, obj, key1, k2) def test_ix_deprecation(self): # GH 15114 df = DataFrame({'A': [1, 2, 3]}) with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): df.ix[1, 'A'] def test_indexer_caching(self): # GH5727 # make sure that indexers are in the _internal_names_set n = 1000001 arrays = [lrange(n), lrange(n)] index = MultiIndex.from_tuples(lzip(*arrays)) s = Series(np.zeros(n), index=index) str(s) # setitem expected = Series(np.ones(n), index=index) s = Series(np.zeros(n), index=index) s[s == 0] = 1 tm.assert_series_equal(s, expected) def test_at_and_iat_get(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: result = getattr(f, func)[i] expected = _get_value(f, i, values) tm.assert_almost_equal(result, expected) for o in self._objs: d = getattr(self, o) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, self.check_values, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_and_iat_set(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: getattr(f, func)[i] = 1 expected = _get_value(f, i, values) tm.assert_almost_equal(expected, 1) for t in self._objs: d = getattr(self, t) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, _check, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_iat_coercion(self): # as timestamp is not a tuple! dates = date_range('1/1/2000', periods=8) df = DataFrame(randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) s = df['A'] result = s.at[dates[5]] xp = s.values[5] self.assertEqual(result, xp) # GH 7729 # make sure we are boxing the returns s = Series(['2014-01-01', '2014-02-02'], dtype='datetime64[ns]') expected = Timestamp('2014-02-02') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) s = Series(['1 days', '2 days'], dtype='timedelta64[ns]') expected = Timedelta('2 days') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) def test_iat_invalid_args(self): pass def test_imethods_with_dups(self): # GH6493 # iat/iloc with dups s = Series(range(5), index=[1, 1, 2, 2, 3], dtype='int64') result = s.iloc[2] self.assertEqual(result, 2) result = s.iat[2] self.assertEqual(result, 2) self.assertRaises(IndexError, lambda: s.iat[10]) self.assertRaises(IndexError, lambda: s.iat[-10]) result = s.iloc[[2, 3]] expected = Series([2, 3], [2, 2], dtype='int64') tm.assert_series_equal(result, expected) df = s.to_frame() result = df.iloc[2] expected = Series(2, index=[0], name=2) tm.assert_series_equal(result, expected) result = df.iat[2, 0] expected = 2 self.assertEqual(result, 2) def test_repeated_getitem_dups(self): # GH 5678 # repeated gettitems on a dup index returing a ndarray df = DataFrame( np.random.random_sample((20, 5)), index=['ABCDE' [x % 5] for x in range(20)]) expected = df.loc['A', 0] result = df.loc[:, 0].loc['A'] tm.assert_series_equal(result, expected) def test_iloc_exceeds_bounds(self): # GH6296 # iloc should allow indexers that exceed the bounds df = DataFrame(np.random.random_sample((20, 5)), columns=list('ABCDE')) expected = df # lists of positions should raise IndexErrror! with tm.assertRaisesRegexp(IndexError, 'positional indexers are out-of-bounds'): df.iloc[:, [0, 1, 2, 3, 4, 5]] self.assertRaises(IndexError, lambda: df.iloc[[1, 30]]) self.assertRaises(IndexError, lambda: df.iloc[[1, -30]]) self.assertRaises(IndexError, lambda: df.iloc[[100]]) s = df['A'] self.assertRaises(IndexError, lambda: s.iloc[[100]]) self.assertRaises(IndexError, lambda: s.iloc[[-100]]) # still raise on a single indexer msg = 'single positional indexer is out-of-bounds' with tm.assertRaisesRegexp(IndexError, msg): df.iloc[30] self.assertRaises(IndexError, lambda: df.iloc[-30]) # GH10779 # single positive/negative indexer exceeding Series bounds should raise # an IndexError with tm.assertRaisesRegexp(IndexError, msg): s.iloc[30] self.assertRaises(IndexError, lambda: s.iloc[-30]) # slices are ok result = df.iloc[:, 4:10] # 0 < start < len < stop expected = df.iloc[:, 4:] tm.assert_frame_equal(result, expected) result = df.iloc[:, -4:-10] # stop < 0 < start < len expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4:-1] # 0 < stop < len < start (down) expected = df.iloc[:, :4:-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, 4:-10:-1] # stop < 0 < start < len (down) expected = df.iloc[:, 4::-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:4] # start < 0 < stop < len expected = df.iloc[:, :4] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4] # 0 < stop < len < start expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:-11:-1] # stop < start < 0 < len (down) expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:11] # 0 < len < start < stop expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) # slice bounds exceeding is ok result = s.iloc[18:30] expected = s.iloc[18:] tm.assert_series_equal(result, expected) result = s.iloc[30:] expected = s.iloc[:0] tm.assert_series_equal(result, expected) result = s.iloc[30::-1] expected = s.iloc[::-1] tm.assert_series_equal(result, expected) # doc example def check(result, expected): str(result) result.dtypes tm.assert_frame_equal(result, expected) dfl = DataFrame(np.random.randn(5, 2), columns=list('AB')) check(dfl.iloc[:, 2:3], DataFrame(index=dfl.index)) check(dfl.iloc[:, 1:3], dfl.iloc[:, [1]]) check(dfl.iloc[4:6], dfl.iloc[[4]]) self.assertRaises(IndexError, lambda: dfl.iloc[[4, 5, 6]]) self.assertRaises(IndexError, lambda: dfl.iloc[:, 4]) def test_iloc_getitem_int(self): # integer self.check_result('integer', 'iloc', 2, 'ix', {0: 4, 1: 6, 2: 8}, typs=['ints', 'uints']) self.check_result('integer', 'iloc', 2, 'indexer', 2, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int(self): # neg integer self.check_result('neg int', 'iloc', -1, 'ix', {0: 6, 1: 9, 2: 12}, typs=['ints', 'uints']) self.check_result('neg int', 'iloc', -1, 'indexer', -1, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_list_int(self): # list of ints self.check_result('list int', 'iloc', [0, 1, 2], 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [2], 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [0, 1, 2], 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) # array of ints (GH5006), make sure that a single indexer is returning # the correct type self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([2]), 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int_can_reach_first_index(self): # GH10547 and GH10779 # negative integers should be able to reach index 0 df = DataFrame({'A': [2, 3, 5], 'B': [7, 11, 13]}) s = df['A'] expected = df.iloc[0] result = df.iloc[-3] tm.assert_series_equal(result, expected) expected = df.iloc[[0]] result = df.iloc[[-3]] tm.assert_frame_equal(result, expected) expected = s.iloc[0] result = s.iloc[-3] self.assertEqual(result, expected) expected = s.iloc[[0]] result = s.iloc[[-3]] tm.assert_series_equal(result, expected) # check the length 1 Series case highlighted in GH10547 expected = pd.Series(['a'], index=['A']) result = expected.iloc[[-1]] tm.assert_series_equal(result, expected) def test_iloc_getitem_dups(self): # no dups in panel (bug?) self.check_result('list int (dups)', 'iloc', [0, 1, 1, 3], 'ix', {0: [0, 2, 2, 6], 1: [0, 3, 3, 9]}, objs=['series', 'frame'], typs=['ints', 'uints']) # GH 6766 df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) # cross-sectional indexing result = df.iloc[0, 0] self.assertTrue(isnull(result)) result = df.iloc[0, :] expected = Series([np.nan, 1, 3, 3], index=['A', 'B', 'A', 'B'], name=0) tm.assert_series_equal(result, expected) def test_iloc_getitem_array(self): # array like s = Series(index=lrange(1, 4)) self.check_result('array like', 'iloc', s.index, 'ix', {0: [2, 4, 6], 1: [3, 6, 9], 2: [4, 8, 12]}, typs=['ints', 'uints']) def test_iloc_getitem_bool(self): # boolean indexers b = [True, False, True, False, ] self.check_result('bool', 'iloc', b, 'ix', b, typs=['ints', 'uints']) self.check_result('bool', 'iloc', b, 'ix', b, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice(self): # slices self.check_result('slice', 'iloc', slice(1, 3), 'ix', {0: [2, 4], 1: [3, 6], 2: [4, 8]}, typs=['ints', 'uints']) self.check_result('slice', 'iloc', slice(1, 3), 'indexer', slice(1, 3), typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice_dups(self): df1 = DataFrame(np.random.randn(10, 4), columns=['A', 'A', 'B', 'B']) df2 = DataFrame(np.random.randint(0, 10, size=20).reshape(10, 2), columns=['A', 'C']) # axis=1 df = concat([df1, df2], axis=1) tm.assert_frame_equal(df.iloc[:, :4], df1) tm.assert_frame_equal(df.iloc[:, 4:], df2) df = concat([df2, df1], axis=1) tm.assert_frame_equal(df.iloc[:, :2], df2) tm.assert_frame_equal(df.iloc[:, 2:], df1) exp = concat([df2, df1.iloc[:, [0]]], axis=1) tm.assert_frame_equal(df.iloc[:, 0:3], exp) # axis=0 df = concat([df, df], axis=0) tm.assert_frame_equal(df.iloc[0:10, :2], df2) tm.assert_frame_equal(df.iloc[0:10, 2:], df1) tm.assert_frame_equal(df.iloc[10:, :2], df2) tm.assert_frame_equal(df.iloc[10:, 2:], df1) def test_iloc_setitem(self): df = self.frame_ints df.iloc[1, 1] = 1 result = df.iloc[1, 1] self.assertEqual(result, 1) df.iloc[:, 2:3] = 0 expected = df.iloc[:, 2:3] result = df.iloc[:, 2:3] tm.assert_frame_equal(result, expected) # GH5771 s = Series(0, index=[4, 5, 6]) s.iloc[1:2] += 1 expected = Series([0, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) def test_loc_setitem_slice(self): # GH10503 # assigning the same type should not change the type df1 = DataFrame({'a': [0, 1, 1], 'b': Series([100, 200, 300], dtype='uint32')}) ix = df1['a'] == 1 newb1 = df1.loc[ix, 'b'] + 1 df1.loc[ix, 'b'] = newb1 expected = DataFrame({'a': [0, 1, 1], 'b': Series([100, 201, 301], dtype='uint32')}) tm.assert_frame_equal(df1, expected) # assigning a new type should get the inferred type df2 = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') ix = df1['a'] == 1 newb2 = df2.loc[ix, 'b'] df1.loc[ix, 'b'] = newb2 expected = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') tm.assert_frame_equal(df2, expected) def test_ix_loc_setitem_consistency(self): # GH 5771 # loc with slice and series s = Series(0, index=[4, 5, 6]) s.loc[4:5] += 1 expected = Series([1, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) # GH 5928 # chained indexing assignment df = DataFrame({'a': [0, 1, 2]}) expected = df.copy() with catch_warnings(record=True): expected.ix[[0, 1, 2], 'a'] = -expected.ix[[0, 1, 2], 'a'] with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]] tm.assert_frame_equal(df, expected) df = DataFrame({'a': [0, 1, 2], 'b': [0, 1, 2]}) with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]].astype( 'float64') + 0.5 expected = DataFrame({'a': [0.5, -0.5, -1.5], 'b': [0, 1, 2]}) tm.assert_frame_equal(df, expected) # GH 8607 # ix setitem consistency df = DataFrame({'timestamp': [1413840976, 1413842580, 1413760580], 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) expected = DataFrame({'timestamp': pd.to_datetime( [1413840976, 1413842580, 1413760580], unit='s'), 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) df2 = df.copy() df2['timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() df2.loc[:, 'timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() with catch_warnings(record=True): df2.ix[:, 2] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) def test_ix_loc_consistency(self): # GH 8613 # some edge cases where ix/loc should return the same # this is not an exhaustive case def compare(result, expected): if is_scalar(expected): self.assertEqual(result, expected) else: self.assertTrue(expected.equals(result)) # failure cases for .loc, but these work for .ix df = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD')) for key in [slice(1, 3), tuple([slice(0, 2), slice(0, 2)]), tuple([slice(0, 2), df.columns[0:2]])]: for index in [tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeTimedeltaIndex]: df.index = index(len(df.index)) with catch_warnings(record=True): df.ix[key] self.assertRaises(TypeError, lambda: df.loc[key]) df = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD'), index=pd.date_range('2012-01-01', periods=5)) for key in ['2012-01-03', '2012-01-31', slice('2012-01-03', '2012-01-03'), slice('2012-01-03', '2012-01-04'), slice('2012-01-03', '2012-01-06', 2), slice('2012-01-03', '2012-01-31'), tuple([[True, True, True, False, True]]), ]: # getitem # if the expected raises, then compare the exceptions try: with catch_warnings(record=True): expected = df.ix[key] except KeyError: self.assertRaises(KeyError, lambda: df.loc[key]) continue result = df.loc[key] compare(result, expected) # setitem df1 = df.copy() df2 = df.copy() with catch_warnings(record=True): df1.ix[key] = 10 df2.loc[key] = 10 compare(df2, df1) # edge cases s = Series([1, 2, 3, 4], index=list('abde')) result1 = s['a':'c'] with catch_warnings(record=True): result2 = s.ix['a':'c'] result3 = s.loc['a':'c'] tm.assert_series_equal(result1, result2) tm.assert_series_equal(result1, result3) # now work rather than raising KeyError s = Series(range(5), [-2, -1, 1, 2, 3]) with catch_warnings(record=True): result1 = s.ix[-10:3] result2 = s.loc[-10:3] tm.assert_series_equal(result1, result2) with catch_warnings(record=True): result1 = s.ix[0:3] result2 = s.loc[0:3] tm.assert_series_equal(result1, result2) def test_loc_setitem_dups(self): # GH 6541 df_orig = DataFrame( {'me': list('rttti'), 'foo': list('aaade'), 'bar': np.arange(5, dtype='float64') * 1.34 + 2, 'bar2': np.arange(5, dtype='float64') * -.34 + 2}).set_index('me') indexer = tuple(['r', ['bar', 'bar2']]) df = df_orig.copy() df.loc[indexer] *= 2.0 tm.assert_series_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) indexer = tuple(['r', 'bar']) df = df_orig.copy() df.loc[indexer] *= 2.0 self.assertEqual(df.loc[indexer], 2.0 * df_orig.loc[indexer]) indexer = tuple(['t', ['bar', 'bar2']]) df = df_orig.copy() df.loc[indexer] *= 2.0 tm.assert_frame_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) def test_iloc_setitem_dups(self): # GH 6766 # iloc with a mask aligning from another iloc df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) expected = df.fillna(3) expected['A'] = expected['A'].astype('float64') inds = np.isnan(df.iloc[:, 0]) mask = inds[inds].index df.iloc[mask, 0] = df.iloc[mask, 2] tm.assert_frame_equal(df, expected) # del a dup column across blocks expected = DataFrame({0: [1, 2], 1: [3, 4]}) expected.columns = ['B', 'B'] del df['A'] tm.assert_frame_equal(df, expected) # assign back to self df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]] tm.assert_frame_equal(df, expected) # reversed x 2 df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index( drop=True) df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index( drop=True) tm.assert_frame_equal(df, expected) def test_chained_getitem_with_lists(self): # GH6394 # Regression in chained getitem indexing with embedded list-like from # 0.12 def check(result, expected): tm.assert_numpy_array_equal(result, expected)
tm.assertIsInstance(result, np.ndarray)
pandas.util.testing.assertIsInstance
import importlib.resources from typing import Any, Optional import numpy as np import pandas as pd from scipy.stats import pearsonr from scipy.stats.mstats import rankdata def from_file(data_file: str, data_file2: str, learn_options: dict[str, Any]) -> tuple: if learn_options["V"] == 1: # from Nature Biotech paper print(f"loading V{learn_options['V']} data") if learn_options["weighted"] is not None: raise AssertionError("not supported for V1 data") _, gene_position, target_genes, x_df, y_df = read_V1_data( data_file, learn_options ) learn_options["binary target name"] = "average threshold" learn_options["rank-transformed target name"] = "average rank" learn_options["raw target name"] = "average activity" elif learn_options["V"] == 2: # from Nov 2014, hot off the machines x_df, _, target_genes, y_df, gene_position = read_V2_data( data_file, learn_options ) # check that data is consistent with sgRNA score xx = x_df["sgRNA Score"].values yy = y_df["score_drug_gene_rank"].values rr, _ = pearsonr(xx, yy) if rr <= 0: raise AssertionError( "data processing has gone wrong as correlation with previous " "predictions is negative" ) elif ( learn_options["V"] == 3 ): # merge of V1 and V2--this is what is used for the final model # these are relative to the V2 data, and V1 will be made to automatically match learn_options["binary target name"] = "score_drug_gene_threshold" learn_options["rank-transformed target name"] = "score_drug_gene_rank" learn_options["raw target name"] = None x_df, y_df, gene_position, target_genes = mergeV1_V2( data_file, data_file2, learn_options ) elif learn_options["V"] == 4: # merge of V1 and V2 and the Xu et al data # these are relative to the V2 data, and V1 and Xu et al. will be made # to automatically match learn_options["binary target name"] = "score_drug_gene_threshold" learn_options["rank-transformed target name"] = "score_drug_gene_rank" learn_options["raw target name"] = None x_df, y_df, gene_position, target_genes = merge_all( data_file, data_file2, learn_options ) elif learn_options["V"] == 5: raise Exception( "The from_file() function is attempting to learn using the xu_et_al data. " "This data is no longer available with Azimuth." ) # truncate down to 30--some data sets gave us more. x_df["30mer"] = x_df["30mer"].apply(lambda x: x[0:30]) return x_df, y_df, gene_position, target_genes def set_V2_target_names(learn_options: dict) -> dict: if "binary target name" not in learn_options: learn_options["binary target name"] = "score_drug_gene_threshold" if "rank-transformed target name" not in learn_options: learn_options["rank-transformed target name"] = "score_drug_gene_rank" learn_options["raw target name"] = "score" return learn_options def get_ranks( y: pd.Series, thresh: float = 0.8, prefix: Optional[str] = None, flip: bool = False ) -> tuple[pd.Series, pd.Series, pd.Series, pd.Series]: """ y should be a DataFrame with one column # so a series? thresh is the threshold at which to call it a knock-down or not col_name = 'score' is only for V2 data flip should be FALSE for both V1 and V2 \f Parameters ---------- y : :class:`pd.Series` thresh : float prefix : :class:`Optional[str]` flip : bool Return ------ y_rank : :class:`pd.Series` y_rank_raw : :class:`pd.Series` y_threshold : :class:`pd.Series` y_quantized : :class:`pd.Series` """ if prefix is not None: prefix = prefix + "_" else: prefix = "" # y_rank = y.apply(ranktrafo) y_rank = y.apply(rankdata) y_rank /= y_rank.max() if flip: y_rank = ( 1.0 - y_rank ) # before this line, 1-labels where associated with low ranks, this flips it around # (hence the y_rank > thresh below) # we should NOT flip (V2), see README.txt in ./data y_rank.columns = [prefix + "rank"] y_threshold = (y_rank > thresh) * 1 y_threshold.columns = [prefix + "threshold"] # JL: undo the log2 transform (not sure this matters?) y_rank_raw = (2 ** y).apply(rankdata) y_rank_raw /= y_rank_raw.max() if flip: y_rank_raw = 1.0 - y_rank_raw y_rank_raw.columns = [prefix + "rank raw"] if np.any(np.isnan(y_rank)): raise AssertionError("found NaN in ranks") y_quantized = y_threshold.copy() y_quantized.columns = [prefix + "quantized"] return y_rank, y_rank_raw, y_threshold, y_quantized def get_data( data: pd.DataFrame, y_names: list[str], organism: str = "human", target_gene: str = None, ) -> tuple[pd.DataFrame, pd.DataFrame]: """ this is called once for each gene (aggregating across cell types) y_names are cell types e.g. call: X_CD13, Y_CD13 = get_data(cd13, y_names=['NB4 CD13', 'TF1 CD13']) \f Parameters ---------- data : pd.DataFrame y_names : List[str] organism : str = "human" target_gene : str = None Return ------ features : :class:`pd.DataFrame` output : :class:`pd.DataFrame` """ outputs = pd.DataFrame() # generate ranks for each cell type before aggregating to match what is in Doench et al thresh = 0.8 for y_name in y_names: # for each cell type y = pd.DataFrame(data[y_name]) # these thresholds/quantils are not used: y_rank, y_rank_raw, y_threshold, _ = get_ranks(y, thresh=thresh, flip=False) y_rank.columns = [y_name + " rank"] y_rank_raw.columns = [y_name + " rank raw"] y_threshold.columns = [y_name + " threshold"] outputs = pd.concat([outputs, y, y_rank, y_threshold, y_rank_raw], axis=1) # aggregated rank across cell types average_activity = pd.DataFrame(outputs[[y_name for y_name in y_names]].mean(1)) average_activity.columns = ["average activity"] average_rank_from_avg_activity = get_ranks( average_activity, thresh=thresh, flip=False )[0] average_rank_from_avg_activity.columns = ["average_rank_from_avg_activity"] average_threshold_from_avg_activity = (average_rank_from_avg_activity > thresh) * 1 average_threshold_from_avg_activity.columns = [ "average_threshold_from_avg_activity" ] average_rank = pd.DataFrame( outputs[[y_name + " rank" for y_name in y_names]].mean(1) ) average_rank.columns = ["average rank"] # higher ranks are better (when flip=False as it should be) average_threshold = (average_rank > thresh) * 1 average_threshold.columns = ["average threshold"] # undo the log2 trafo on the reads per million, apply rank trafo right away average_rank_raw = pd.DataFrame( outputs[[y_name + " rank raw" for y_name in y_names]].mean(1) ) average_rank_raw.columns = ["average rank raw"] outputs = pd.concat( [ outputs, average_rank, average_threshold, average_activity, average_rank_raw, average_rank_from_avg_activity, average_threshold_from_avg_activity, ], axis=1, ) # import pdb; pdb.set_trace() # sequence-specific computations # features = featurize_data(data) # strip out featurization to later features = pd.DataFrame(data["30mer"]) if organism == "human": target_gene = y_names[0].split(" ")[1] outputs["Target gene"] = target_gene outputs["Organism"] = organism features["Target gene"] = target_gene features["Organism"] = organism features["Strand"] = pd.DataFrame(data["Strand"]) return features, outputs def combine_organisms(human_data: pd.DataFrame, mouse_data: pd.DataFrame) -> tuple: # 'Target' is the column name, 'CD13' are some rows in that column # xs slices through the pandas data frame to return another one cd13 = human_data.xs("CD13", level="Target", drop_level=False) # y_names are column names, cd13 is a pd object x_cd13, y_cd13 = get_data(cd13, y_names=["NB4 CD13", "TF1 CD13"]) cd33 = human_data.xs("CD33", level="Target", drop_level=False) x_cd33, y_cd33 = get_data(cd33, y_names=["MOLM13 CD33", "TF1 CD33", "NB4 CD33"]) cd15 = human_data.xs("CD15", level="Target", drop_level=False) x_cd15, y_cd15 = get_data(cd15, y_names=["MOLM13 CD15"]) mouse_x = pd.DataFrame() mouse_y = pd.DataFrame() for k in mouse_data.index.levels[1]: # is k the gene x_df, y_df = get_data( mouse_data.xs(k, level="Target", drop_level=False), ["On-target Gene"], target_gene=k, organism="mouse", ) mouse_x = pd.concat([mouse_x, x_df], axis=0) mouse_y = pd.concat([mouse_y, y_df], axis=0) x_df = pd.concat([x_cd13, x_cd15, x_cd33, mouse_x], axis=0, sort=True) y_df = pd.concat([y_cd13, y_cd15, y_cd33, mouse_y], axis=0, sort=True) return x_df, y_df def impute_gene_position(gene_position: pd.DataFrame) -> pd.DataFrame: """ Some amino acid cut position and percent peptide are blank because of stop codons, but we still want a number for these, so just set them to 101 as a proxy \f Parameters ---------- Return ------ """ gene_position["Percent Peptide"] = gene_position["Percent Peptide"].fillna(101.00) if "Amino Acid Cut position" in gene_position.columns: gene_position["Amino Acid Cut position"] = gene_position[ "Amino Acid Cut position" ].fillna(gene_position["Amino Acid Cut position"].mean()) return gene_position def read_V1_data( data_file: Optional[str] = None, learn_options: Optional[dict] = None, aml_file: Optional[str] = None, ) -> tuple: if data_file is None: data_file = importlib.resources.files("azimuth").joinpath( "data", "V1_data.xlsx" ) with importlib.resources.as_file(data_file) as data_file: human_data = pd.read_excel(data_file, sheet_name=0, index_col=[0, 1]) mouse_data = pd.read_excel(data_file, sheet_name=1, index_col=[0, 1]) else: human_data = pd.read_excel(data_file, sheet_name=0, index_col=[0, 1]) mouse_data = pd.read_excel(data_file, sheet_name=1, index_col=[0, 1]) x_df, y_df = combine_organisms(human_data, mouse_data) # get position within each gene, then join and re-order # note that 11 missing guides we were told to ignore annotations = pd.read_csv(aml_file, delimiter="\t", index_col=[0, 4]) annotations.index.names = x_df.index.names gene_position = pd.merge( x_df, annotations, how="inner", left_index=True, right_index=True ) gene_position = impute_gene_position(gene_position) gene_position = gene_position[ ["Amino Acid Cut position", "Nucleotide cut position", "Percent Peptide"] ] y_df = y_df.loc[gene_position.index] x_df = x_df.loc[gene_position.index] y_df[ "test" ] = 1 # for bookkeeping to keep consistent with V2 which uses this for "extra pairs" target_genes = y_df["Target gene"].unique() y_df.index.names = ["Sequence", "Target gene"] if not x_df.index.equals(y_df.index): raise AssertionError( "The index of x_df is different from the index of y_df " "(this can cause inconsistencies/random performance later on)" ) if learn_options is not None and learn_options["flipV1target"]: print( "************************************************************************\n" "*****************MATCHING DOENCH CODE (DEBUG MODE)**********************\n" "************************************************************************" ) # normally it is:y_df['average threshold'] =y_df['average rank'] > 0.8, where # 1s are good guides, 0s are not y_df["average threshold"] = y_df["average rank"] < 0.2 # 1s are bad guides print("press c to continue") import pdb pdb.set_trace() return annotations, gene_position, target_genes, x_df, y_df def read_V2_data( data_file: str = None, learn_options: dict = None, verbose: bool = True ) -> tuple: if data_file is None: data_file = importlib.resources.files("azimuth").joinpath( "data", "V2_data.xlsx" ) with importlib.resources.as_file(data_file) as df: data = pd.read_excel( df, sheet_name="ResultsFiltered", skiprows=range(0, 6 + 1), index_col=[0, 4], ) else: data = pd.read_excel( data_file, sheet_name="ResultsFiltered", skiprows=range(0, 6 + 1), index_col=[0, 4], ) # grab data relevant to each of three drugs, which exludes some genes # note gene MED12 has two drugs, all others have at most one x_df = pd.DataFrame() # This comes from the "Pairs" tab in their excel sheet, # note HPRT/HPRT1 are same thing, and also PLX_2uM/PLcX_2uM known_pairs = { "AZD_200nM": ["CCDC101", "MED12", "TADA2B", "TADA1"], "6TG_2ug/mL": ["HPRT1"], "PLX_2uM": ["CUL3", "NF1", "NF2", "MED12"], } drugs_to_genes = { "AZD_200nM": ["CCDC101", "MED12", "TADA2B", "TADA1"], "6TG_2ug/mL": ["HPRT1"], "PLX_2uM": ["CUL3", "NF1", "NF2", "MED12"], } if learn_options is not None: if learn_options["extra pairs"] or learn_options["all pairs"]: raise AssertionError( "extra pairs and all pairs options (in learn_options) can't be " "active simultaneously." ) if learn_options["extra pairs"]: drugs_to_genes["AZD_200nM"].extend(["CUL3", "NF1", "NF2"]) elif learn_options["all pairs"]: drugs_to_genes["AZD_200nM"].extend(["HPRT1", "CUL3", "NF1", "NF2"]) drugs_to_genes["PLX_2uM"].extend(["HPRT1", "CCDC101", "TADA2B", "TADA1"]) drugs_to_genes["6TG_2ug/mL"].extend( ["CCDC101", "MED12", "TADA2B", "TADA1", "CUL3", "NF1", "NF2"] ) count = 0 for drug in drugs_to_genes: genes = drugs_to_genes[drug] for gene in genes: xtmp = data.copy().xs(gene, level="Target gene", drop_level=False) xtmp["drug"] = drug xtmp["score"] = xtmp[ drug ].copy() # grab the drug results that are relevant for this gene if gene in known_pairs[drug]: xtmp["test"] = 1.0 else: xtmp["test"] = 0.0 count = count + xtmp.shape[0] x_df = pd.concat([x_df, xtmp], axis=0) if verbose: print( f"Loaded {xtmp.shape[0]} samples for gene {gene} " f"\ttotal number of samples: {count}" ) # create new index that includes the drug x_df = x_df.set_index("drug", append=True) y_df = pd.DataFrame(x_df.pop("score")) y_df.columns.names = ["score"] test_gene = pd.DataFrame(x_df.pop("test")) target = pd.DataFrame( x_df.index.get_level_values("Target gene").values, index=y_df.index, columns=["Target gene"], ) y_df = pd.concat((y_df, target, test_gene), axis=1) target_genes = y_df["Target gene"].unique() gene_position = x_df[["Percent Peptide", "Amino Acid Cut position"]].copy() # convert to ranks for each (gene, drug combo) # flip = True y_rank = pd.DataFrame() y_threshold = pd.DataFrame() y_quant = pd.DataFrame() for drug in drugs_to_genes: gene_list = drugs_to_genes[drug] for gene in gene_list: ytmp = pd.DataFrame( y_df.xs((gene, drug), level=["Target gene", "drug"], drop_level=False)[ "score" ] ) y_ranktmp, _, y_thresholdtmp, y_quanttmp = get_ranks( ytmp, thresh=0.8, prefix="score_drug_gene", flip=False ) # np.unique(y_rank.values-y_rank_raw.values) y_rank = pd.concat((y_rank, y_ranktmp), axis=0) y_threshold = pd.concat((y_threshold, y_thresholdtmp), axis=0) y_quant = pd.concat((y_quant, y_quanttmp), axis=0) yall = pd.concat((y_rank, y_threshold, y_quant), axis=1) y_df = pd.merge(y_df, yall, how="inner", left_index=True, right_index=True) # convert also by drug only, irrespective of gene y_rank = pd.DataFrame() y_threshold = pd.DataFrame() y_quant = pd.DataFrame() for drug in drugs_to_genes: ytmp = pd.DataFrame(y_df.xs(drug, level="drug", drop_level=False)["score"]) y_ranktmp, _, y_thresholdtmp, y_quanttmp = get_ranks( ytmp, thresh=0.8, prefix="score_drug", flip=False ) # np.unique(y_rank.values-y_rank_raw.values) y_rank = pd.concat((y_rank, y_ranktmp), axis=0) y_threshold = pd.concat((y_threshold, y_thresholdtmp), axis=0) y_quant = pd.concat((y_quant, y_quanttmp), axis=0) yall = pd.concat((y_rank, y_threshold, y_quant), axis=1) y_df = pd.merge(y_df, yall, how="inner", left_index=True, right_index=True) gene_position = impute_gene_position(gene_position) if learn_options is not None and learn_options["weighted"] == "variance": print("computing weights from replicate variance...") # compute the variance across replicates so can use it as a weight data = pd.read_excel( data_file, sheet_name="Normalized", skiprows=range(0, 6 + 1), index_col=[0, 4], ) data.index.names = ["Sequence", "Target gene"] experiments = { "AZD_200nM": ["Deep 25", "Deep 27", "Deep 29 ", "Deep 31"], "6TG_2ug/mL": ["Deep 33", "Deep 35", "Deep 37", "Deep 39"], "PLX_2uM": ["Deep 49", "Deep 51", "Deep 53", "Deep 55"], } variance = None for drug in drugs_to_genes: data_tmp = data.iloc[ data.index.get_level_values("Target gene").isin(drugs_to_genes[drug]) ][experiments[drug]] data_tmp["drug"] = drug data_tmp = data_tmp.set_index("drug", append=True) data_tmp["variance"] = np.var(data_tmp.values, axis=1) if variance is None: variance = data_tmp["variance"].copy() else: variance = pd.concat((variance, data_tmp["variance"]), axis=0) orig_index = y_df.index.copy() y_df = pd.merge( y_df,
pd.DataFrame(variance)
pandas.DataFrame
import pandas as pd from autumn.tools.db import Database from autumn.tools.utils.utils import create_date_index from autumn.settings.constants import COVID_BASE_DATETIME from .fetch import ( COVID_AU_CSV_PATH, COVID_LGA_CSV_PATH, MOBILITY_LGA_PATH, COVID_VAC_COV_CSV, COVID_AU_YOUGOV, COVID_VIDA_VAC_CSV, COVID_VIDA_POP_CSV, ) def preprocess_covid_au(input_db: Database): df = pd.read_csv(COVID_AU_CSV_PATH) input_db.dump_df("covid_au", df) df = pd.read_csv(COVID_LGA_CSV_PATH) df = reshape_to_clusters(df) input_db.dump_df("covid_dhhs_test", df) df =
pd.read_csv(COVID_VAC_COV_CSV)
pandas.read_csv
# pylint: disable=missing-module-docstring import numpy as np import pandas as pd from sklearn.covariance import LedoitWolf from sklearn.cluster import KMeans from sklearn.metrics import silhouette_samples from scipy.linalg import block_diag from mlfinlab.portfolio_optimization.risk_estimators import RiskEstimators class NCO: """ This class implements the Nested Clustered Optimization (NCO) algorithm, the Convex Optimization Solution (CVO), the Monte Carlo Optimization Selection (MCOS) algorithm and sample data generating function. It is reproduced with modification from the following paper: `<NAME> “A Robust Estimator of the Efficient Frontier”, (2019). <https://papers.ssrn.com/abstract_id=3469961>`_. """ def __init__(self): """ Initialize """ return @staticmethod def allocate_cvo(cov, mu_vec=None): """ Estimates the Convex Optimization Solution (CVO). Uses the covariance matrix and the mu - optimal solution. If mu is the vector of expected values from variables, the result will be a vector of weights with maximum Sharpe ratio. If mu is a vector of ones, the result will be a vector of weights with minimum variance. :param cov: (np.array) Covariance matrix of the variables. :param mu_vec: (np.array) Expected value of draws from the variables for maximum Sharpe ratio. None if outputting the minimum variance portfolio. :return: (np.array) Weights for optimal allocation. """ # Calculating the inverse covariance matrix inv_cov = np.linalg.inv(cov) # Generating a vector of size of the inverted covariance matrix ones = np.ones(shape=(inv_cov.shape[0], 1)) if mu_vec is None: # To output the minimum variance portfolio mu_vec = ones # Calculating the analytical solution using CVO - weights w_cvo = np.dot(inv_cov, mu_vec) w_cvo /= np.dot(mu_vec.T, w_cvo) return w_cvo def allocate_nco(self, cov, mu_vec=None, max_num_clusters=None, n_init=10): """ Estimates the optimal allocation using the nested clustered optimization (NCO) algorithm. First, it clusters the covariance matrix into subsets of highly correlated variables. Second, it computes the optimal allocation for each of the clusters separately. This allows collapsing of the original covariance matrix into a reduced covariance matrix, where each cluster is represented by a single variable. Third, we compute the optimal allocations across the reduced covariance matrix. Fourth, the final allocations are the dot-product of the intra-cluster (step 2) allocations and the inter-cluster (step 3) allocations. For the Convex Optimization Solution (CVO), a mu - optimal solution parameter is needed. If mu is the vector of expected values from variables, the result will be a vector of weights with maximum Sharpe ratio. If mu is a vector of ones (pass None value), the result will be a vector of weights with minimum variance. :param cov: (np.array) Covariance matrix of the variables. :param mu_vec: (np.array) Expected value of draws from the variables for maximum Sharpe ratio. None if outputting the minimum variance portfolio. :param max_тum_сlusters: (int) Allowed maximum number of clusters. If None then taken as num_elements/2. :param n_init: (float) Number of time the k-means algorithm will run with different centroid seeds (default 10) :return: (np.array) Optimal allocation using the NCO algorithm. """ # Using pd.DataFrame instead of np.array cov =
pd.DataFrame(cov)
pandas.DataFrame
from datetime import datetime, timedelta import pandas as pd from rest_framework import viewsets from rest_framework.decorators import action from rest_framework.response import Response from common.dates_interval import get_days_interval from des.dao import DesSkybotJobResultDao from des.models import SkybotJobResult from des.serializers import SkybotJobResultSerializer class SkybotJobResultViewSet(viewsets.ModelViewSet): queryset = SkybotJobResult.objects.all() serializer_class = SkybotJobResultSerializer filter_fields = ('id', 'job', 'exposure',) ordering_fields = ('id', 'job', 'exposure', 'positions', 'inside_ccd', 'outside_ccd', 'success', 'execution_time', 'exposure__date_obs') ordering = ('exposure',) @action(detail=False) def nites_executed_by_period(self, request): """Retorna todas as datas dentro do periodo, que foram executadas pelo skybot. Exemplo: http://localhost/api/des/skybot_job_result/nites_executed_by_period/?start=2019-01-01&end=2019-01-31 Args: start (str): Data Inicial do periodo like 2019-01-01 end (str): Data Final do periodo 2019-01-31 Returns: [array]: um array com todas as datas do periodo no formato [{date: '2019-01-01', count: 0, executed: 0}] O atributo executed pode ter 3 valores: 0 - para datas que não tem exposição 1 - para datas que tem exposição mas não foram executadas 2 - para datas que tem exposição e foram executadas. """ start = request.query_params.get('start') end = request.query_params.get('end') all_dates = get_days_interval(start, end) # Verificar a quantidade de dias entre o start e end. if len(all_dates) < 7: dt_start = datetime.strptime(start, '%Y-%m-%d') dt_end = dt_start + timedelta(days=6) all_dates = get_days_interval(dt_start.strftime( "%Y-%m-%d"), dt_end.strftime("%Y-%m-%d")) df1 = pd.DataFrame() df1['date'] = all_dates df1 = df1.set_index('date') # adicionar a hora inicial e final as datas start = datetime.strptime( start, '%Y-%m-%d').strftime("%Y-%m-%d 00:00:00") end = datetime.strptime(end, '%Y-%m-%d').strftime("%Y-%m-%d 23:59:59") resultset = DesSkybotJobResultDao().count_exec_by_period(start, end) if len(resultset) > 0: df2 = pd.DataFrame(resultset) # Se a data tiver sido executada recebe o valor 2 se não recebe 1 df2['executed'] = df2['count'].apply( lambda x: 2 if int(x) > 0 else 1) else: df2 =
pd.DataFrame()
pandas.DataFrame
import logging import pandas as pd import modules.game_actions as gm class VoteCount: def __init__(self, staff:list, day_start_post:int, bot_cyle:int): # Initialize empty vote table self._vote_table = pd.DataFrame(columns=['player', 'public_name', 'voted_by', 'voted_as', 'post_id', 'post_time', 'bot_cycle']) try: self._vote_history =
pd.read_csv('vote_history.csv', sep=',')
pandas.read_csv
import pandas as pd import subprocess import logging import numpy as np import scipy.ndimage as ndimage import scipy.interpolate as interp import scipy.optimize as optim import shutil import matplotlib import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.colors as colors import configparser import collections from pathlib import Path from astropy.io import fits from astropy.modeling import models, fitting from matplotlib.backends.backend_pdf import PdfPages import sphere import sphere.utils as utils import sphere.utils.imutils as imutils import sphere.utils.aperture as aperture import sphere.transmission as transmission import sphere.toolbox as toolbox _log = logging.getLogger(__name__) def get_wavelength_calibration(filter_comb, wave_calib, centers, wave_min, wave_max): ''' Return the linear wavelength calibration for each IRDIS field Parameters ---------- filter_comb : str Filter combination (S_LR or S_MR) wave_calib : array Wavelength calibration data computed by esorex recipe centers : tuple Center of each field wave_min : float Minimal usable wavelength wave_max : float Maximal usable wavelength Returns ------- wave_lin : array Array with the linear calibration for each field, as a function of pixel coordinate ''' wave_map = np.zeros((2, 1024, 1024)) wave_map[0] = wave_calib[:, 0:1024] wave_map[1] = wave_calib[:, 1024:] wave_map[(wave_map < wave_min) | (wave_max < wave_map)] = np.nan if filter_comb == 'S_LR': wave_map[:, 630:] = np.nan wave_map[:, :400] = np.nan wave_ext = 10 wave_lin = np.zeros((2, 1024)) wave_lin[0] = np.mean(wave_map[0, :, centers[0, 0]-wave_ext:centers[0, 0]+wave_ext], axis=1) wave_lin[1] = np.mean(wave_map[1, :, centers[1, 0]-wave_ext:centers[1, 0]+wave_ext], axis=1) return wave_lin class SpectroReduction(object): ''' SPHERE/IRDIS long-slit spectroscopy reduction class. It handles both the low and medium resolution modes (LRS, MRS) ''' ################################################## # Class variables ################################################## # specify for each recipe which other recipes need to have been executed before recipe_requirements = collections.OrderedDict([ ('sort_files', []), ('sort_frames', ['sort_files']), ('check_files_association', ['sort_files']), ('sph_ird_cal_dark', ['sort_files']), ('sph_ird_cal_detector_flat', ['sort_files']), ('sph_ird_cal_wave', ['sort_files', 'sph_ird_cal_detector_flat']), ('sph_ird_preprocess_science', ['sort_files', 'sort_frames', 'sph_ird_cal_dark', 'sph_ird_cal_detector_flat']), ('sph_ird_star_center', ['sort_files', 'sort_frames', 'sph_ird_cal_wave']), ('sph_ird_wavelength_recalibration', ['sort_files', 'sort_frames', 'sph_ird_cal_wave']), ('sph_ird_combine_data', ['sort_files', 'sort_frames', 'sph_ird_preprocess_science']), ('sph_ird_clean', []) ]) ################################################## # Constructor ################################################## def __new__(cls, path, log_level='info', sphere_handler=None): '''Custom instantiation for the class and initialization for the instances The customized instantiation enables to check that the provided path is a valid reduction path. If not, None will be returned for the reduction being created. Otherwise, an instance is created and returned at the end. Parameters ---------- path : str Path to the directory containing the dataset level : {'debug', 'info', 'warning', 'error', 'critical'} The log level of the handler sphere_handler : log handler Higher-level SPHERE.Dataset log handler ''' # # make sure we are dealing with a proper reduction directory # # init path path = Path(path).expanduser().resolve() # zeroth-order reduction validation raw = path / 'raw' if not raw.exists(): _log.error('No raw/ subdirectory. {0} is not a valid reduction path'.format(path)) return None else: # it's all good: create instance! reduction = super(SpectroReduction, cls).__new__(cls) # # basic init # # init path reduction._path = utils.ReductionPath(path) # instrument and mode reduction._instrument = 'IRDIS' reduction._mode = 'Unknown' # # logging # logger = logging.getLogger(str(path)) logger.setLevel(log_level.upper()) if logger.hasHandlers(): for hdlr in logger.handlers: logger.removeHandler(hdlr) handler = logging.FileHandler(reduction._path.products / 'reduction.log', mode='w', encoding='utf-8') formatter = logging.Formatter('%(asctime)s\t%(levelname)8s\t%(message)s') formatter.default_msec_format = '%s.%03d' handler.setFormatter(formatter) logger.addHandler(handler) if sphere_handler: logger.addHandler(sphere_handler) reduction._logger = logger reduction._logger.info('Creating IRDIS spectroscopy reduction at path {}'.format(path)) # # configuration # configfile = f'{Path(sphere.__file__).parent}/instruments/{reduction._instrument}.ini' config = configparser.ConfigParser() reduction._logger.debug('> read configuration') config.read(configfile) # instrument reduction._pixel = float(config.get('instrument', 'pixel')) reduction._nwave = -1 # calibration reduction._wave_cal_lasers = np.array(eval(config.get('calibration', 'wave_cal_lasers'))) # spectro calibration reduction._default_center_lrs = np.array(eval(config.get('calibration-spectro', 'default_center_lrs'))) reduction._wave_min_lrs = eval(config.get('calibration-spectro', 'wave_min_lrs')) reduction._wave_max_lrs = eval(config.get('calibration-spectro', 'wave_max_lrs')) reduction._default_center_mrs = np.array(eval(config.get('calibration-spectro', 'default_center_mrs'))) reduction._wave_min_mrs = eval(config.get('calibration-spectro', 'wave_min_mrs')) reduction._wave_max_mrs = eval(config.get('calibration-spectro', 'wave_max_mrs')) # reduction parameters reduction._config = {} for group in ['reduction', 'reduction-spectro']: items = dict(config.items(group)) reduction._config.update(items) for key, value in items.items(): try: val = eval(value) except NameError: val = value reduction._config[key] = val # # reduction and recipes status # reduction._status = sphere.INIT reduction._recipes_status = collections.OrderedDict() for recipe in reduction.recipe_requirements.keys(): reduction._update_recipe_status(recipe, sphere.NOTSET) # reload any existing data frames reduction._read_info() # # return instance # return reduction ################################################## # Representation ################################################## def __repr__(self): return '<SpectroReduction, instrument={}, mode={}, path={}, log={}>'.format(self._instrument, self._mode, self._path, self.loglevel) def __format__(self): return self.__repr__() ################################################## # Properties ################################################## @property def loglevel(self): return logging.getLevelName(self._logger.level) @loglevel.setter def loglevel(self, level): self._logger.setLevel(level.upper()) @property def instrument(self): return self._instrument @property def pixel(self): return self._pixel @property def nwave(self): return self._nwave @property def path(self): return self._path @property def files_info(self): return self._files_info @property def frames_info(self): return self._frames_info @property def frames_info_preproc(self): return self._frames_info_preproc @property def recipes_status(self): return self._recipes_status @property def status(self): return self._status @property def config(self): return self._config @property def mode(self): return self._mode ################################################## # Generic class methods ################################################## def show_config(self): ''' Shows the reduction configuration ''' # dictionary dico = self.config # misc parameters print() print('{0:<30s}{1}'.format('Parameter', 'Value')) print('-'*35) keys = [key for key in dico if key.startswith('misc')] for key in keys: print('{0:<30s}{1}'.format(key, dico[key])) # calibrations print('-'*35) keys = [key for key in dico if key.startswith('cal')] for key in keys: print('{0:<30s}{1}'.format(key, dico[key])) # pre-processing print('-'*35) keys = [key for key in dico if key.startswith('preproc')] for key in keys: print('{0:<30s}{1}'.format(key, dico[key])) # centring print('-'*35) keys = [key for key in dico if key.startswith('center')] for key in keys: print('{0:<30s}{1}'.format(key, dico[key])) # wave print('-'*35) keys = [key for key in dico if key.startswith('wave')] for key in keys: print('{0:<30s}{1}'.format(key, dico[key])) # combining print('-'*35) keys = [key for key in dico if key.startswith('combine')] for key in keys: print('{0:<30s}{1}'.format(key, dico[key])) # clean print('-'*35) keys = [key for key in dico if key.startswith('clean')] for key in keys: print('{0:<30s}{1}'.format(key, dico[key])) print('-'*35) print() def init_reduction(self): ''' Sort files and frames, perform sanity check ''' self._logger.info('====> Init <====') self.sort_files() self.sort_frames() self.check_files_association() def create_static_calibrations(self): ''' Create static calibrations with esorex ''' self._logger.info('====> Static calibrations <====') config = self.config self.sph_ird_cal_dark(silent=config['misc_silent_esorex']) self.sph_ird_cal_detector_flat(silent=config['misc_silent_esorex']) self.sph_ird_cal_wave(silent=config['misc_silent_esorex']) def preprocess_science(self): ''' Clean and collapse images ''' self._logger.info('====> Science pre-processing <====') config = self.config self.sph_ird_preprocess_science(subtract_background=config['preproc_subtract_background'], fix_badpix=config['preproc_fix_badpix'], collapse_science=config['preproc_collapse_science'], collapse_psf=config['preproc_collapse_psf'], collapse_center=config['preproc_collapse_center']) def process_science(self): ''' Perform star center, combine cubes into final (x,y,time,lambda) cubes, correct anamorphism and scale the images ''' self._logger.info('====> Science processing <====') config = self.config self.sph_ird_star_center(high_pass_psf=config['center_high_pass_psf'], high_pass_waffle=config['center_high_pass_waffle'], box_psf=config['center_box_psf'], box_waffle=config['center_box_waffle'], plot=config['misc_plot']) self.sph_ird_wavelength_recalibration(fit_scaling=config['wave_fit_scaling'], plot=config['misc_plot']) self.sph_ird_combine_data(cpix=config['combine_cpix'], psf_dim=config['combine_psf_dim'], science_dim=config['combine_science_dim'], correct_mrs_chromatism=config['combine_correct_mrs_chromatism'], split_posang=config['combine_split_posang'], shift_method=config['combine_shift_method'], manual_center=config['combine_manual_center'], coarse_centering=config['combine_coarse_centering']) def clean(self): ''' Clean the reduction directory, leaving only the raw and products sub-directory ''' self._logger.info('====> Clean-up <====') config = self.config if config['clean']: self.sph_ird_clean(delete_raw=config['clean_delete_raw'], delete_products=config['clean_delete_products']) def full_reduction(self): ''' Performs a full reduction of a data set, from the static calibrations to the final (x,y,time,lambda) cubes ''' self._logger.info('====> Full reduction <====') self.init_reduction() self.create_static_calibrations() self.preprocess_science() self.process_science() self.clean() ################################################## # Private methods ################################################## def _read_info(self): ''' Read the files, calibs and frames information from disk files_info : dataframe The data frame with all the information on files frames_info : dataframe The data frame with all the information on science frames frames_info_preproc : dataframe The data frame with all the information on science frames after pre-processing This function is not supposed to be called directly by the user. ''' self._logger.info('Read existing reduction information') # path path = self.path # files info fname = path.preproc / 'files.csv' if fname.exists(): self._logger.debug('> read files.csv') files_info = pd.read_csv(fname, index_col=0) # convert times files_info['DATE-OBS'] = pd.to_datetime(files_info['DATE-OBS'], utc=False) files_info['DATE'] = pd.to_datetime(files_info['DATE'], utc=False) files_info['DET FRAM UTC'] = pd.to_datetime(files_info['DET FRAM UTC'], utc=False) # update recipe execution self._update_recipe_status('sort_files', sphere.SUCCESS) if np.any(files_info['PRO CATG'] == 'IRD_MASTER_DARK'): self._update_recipe_status('sph_ird_cal_dark', sphere.SUCCESS) if np.any(files_info['PRO CATG'] == 'IRD_FLAT_FIELD'): self._update_recipe_status('sph_ird_cal_detector_flat', sphere.SUCCESS) if np.any(files_info['PRO CATG'] == 'IRD_WAVECALIB'): self._update_recipe_status('sph_ird_cal_wave', sphere.SUCCESS) # update instrument mode self._mode = files_info.loc[files_info['DPR CATG'] == 'SCIENCE', 'INS1 MODE'][0] else: files_info = None fname = path.preproc / 'frames.csv' if fname.exists(): self._logger.debug('> read frames.csv') frames_info = pd.read_csv(fname, index_col=(0, 1)) # convert times frames_info['DATE-OBS'] = pd.to_datetime(frames_info['DATE-OBS'], utc=False) frames_info['DATE'] = pd.to_datetime(frames_info['DATE'], utc=False) frames_info['DET FRAM UTC'] = pd.to_datetime(frames_info['DET FRAM UTC'], utc=False) frames_info['TIME START'] =
pd.to_datetime(frames_info['TIME START'], utc=False)
pandas.to_datetime
############################################################################### # create_EPIC_weather_files.py # email: <EMAIL>, 24th March, 2015. # # Convert downloaded data to EPIC compatible weather files. ############################################################################### import constants, util, logging, os, pandas, datetime, pdb, multiprocessing from dateutil.rrule import rrule, DAILY, YEARLY from dateutil.relativedelta import * # For each grid cell (y_x) process the output data to create an EPIC weather file ############################################################################### # NARR_to_EPIC # Convert NARR text file into a EPIC weather files # ############################################################################### def NARR_to_EPIC(vals): lat,lon = vals # Output pandas frame into EPIC weather file out_fl = constants.epic_dly+os.sep+str(lat)+'_'+str(lon)+'.txt' if not(os.path.isfile(out_fl)): logging.info(out_fl) # List all years for which we will create EPIC file lst_yrs = rrule(YEARLY, dtstart=constants.strt_date, until=constants.end_date) # Create pandas data frame, fill with 0.0s, for 1st year. epic_df = pandas.DataFrame(index=pandas.date_range(constants.strt_date,constants.end_date),\ columns=[constants.vars_to_get.keys()]) epic_out = open(out_fl,'w') # Loop across years for idx_yr in range(lst_yrs.count()): cur_strt_date = datetime.date(lst_yrs[idx_yr].year,1,1) cur_end_date = datetime.date(lst_yrs[idx_yr].year,12,31) cur_date_range = pandas.date_range(cur_strt_date,cur_end_date) tmp_df = pandas.DataFrame(index=cur_date_range,columns=[constants.vars_to_get.keys()]) tmp_df.fillna(0.0,inplace=True) # Loop across variables for cur_var in constants.vars_to_get.keys(): e_fl = open(constants.data_dir + os.sep + 'Data' + os.sep + cur_var + os.sep + str(lst_yrs[idx_yr].year)+\ os.sep + str(lat) + '_' + str(lon) + '.txt') epic_vars = filter(None,e_fl.readlines()[0].strip().split("'")) if cur_var == 'air.2m': epic_min_tmp = util.chunks(epic_vars,8,True) epic_max_tmp = util.chunks(epic_vars,8,False) tmp_df[cur_var] = pandas.Series(epic_min_tmp,index=cur_date_range) tmp_df[cur_var] = tmp_df[cur_var].map(lambda x:float(x)+constants.K_To_C) tmp_df['tmax'] = pandas.Series(epic_max_tmp,index=cur_date_range) tmp_df['tmax'] = tmp_df['tmax'].map(lambda x:float(x)+constants.K_To_C) tmp_df['tmin'] = tmp_df['air.2m'] else: tmp_df[cur_var] = pandas.Series(epic_vars,index=cur_date_range) tmp_df[cur_var] = tmp_df[cur_var].map(lambda x:float(x)) # Get into right units tmp_df['wnd'] = pandas.Series(tmp_df['uwnd.10m'].astype(float)**2.0+\ tmp_df['vwnd.10m'].astype(float)**2.0,index=tmp_df.index) tmp_df['wnd'] = tmp_df['wnd']**0.5 tmp_df['rhum.2m'] = tmp_df['rhum.2m'].map(lambda x:float(x)/100.0) tmp_df['swr_diff'] =
pandas.Series(tmp_df['dswrf']-tmp_df['uswrf.sfc'],index=tmp_df.index)
pandas.Series
# IMPORT LIBRARIES import warnings warnings.filterwarnings("ignore") import datetime as dt import pandas as pd import numpy as np pd.options.mode.chained_assignment = None pd.set_option('chained_assignment', None) import plotly.express as px import plotly.graph_objects as go import dash_auth, dash from dash import dcc from dash import html import dash_bootstrap_components as dbc from dash.dependencies import Input, Output # START APP app = dash.Dash(__name__, external_stylesheets = [dbc.themes.LITERA], meta_tags = [{'name': 'viewport', 'content': 'width=device-width, initial-scale = 1.0'}] ) app.title = 'MATH 231.4 Dashboard' server = app.server # LOAD DATASETS today = dt.date(2020,5,23).strftime('%Y%m%d') client =
pd.read_csv('dim_client.csv')
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Wed Jun 20 10:06:16 2018 @author: <NAME> """ import matplotlib.pyplot as plt import pandas as pd from pandas.plotting import autocorrelation_plot from pandas import ExcelWriter import numpy as np import scipy as sp ###this file is used to calculate local flows for control points## #reading in cp historical data# #data starts 10/01/1952 cfs_to_cms = 0.0283168 ALBin = pd.read_excel('CP_historical/ALBANY.xlsx',usecols=[2,3],skiprows=1736+92,skipfooter=3379+274,header=None) SALin = pd.read_excel('CP_historical/SALEM.xlsx',usecols=[2,3],skiprows=1736+92,skipfooter=3379+274,header=None) HARin = pd.read_excel('CP_historical/HARRISBURG.xlsx',usecols=[2,3],skiprows=1736+92,skipfooter=3379+274,header=None) HARshift = pd.read_excel('CP_historical/HARRISBURG.xlsx',usecols=[2,3],skiprows=1735+92,skipfooter=3380+274,header=None) #shifted one day ahead VIDin = pd.read_excel('CP_historical/VIDA.xlsx',usecols=[2,3],skiprows=1736+92,skipfooter=3379+274,header=None) JEFin = pd.read_excel('CP_historical/JEFFERSON.xlsx',usecols=[2,3],skiprows=1736+92,skipfooter=3379+274,header=None) MEHin = pd.read_excel('CP_historical/MEHAMA.xlsx',usecols=[2,3],skiprows=1736+92,skipfooter=3379+274,header=None) MONin =
pd.read_excel('CP_historical/MONROE.xlsx',usecols=[2,3],skiprows=1736+92,skipfooter=3379+274,header=None)
pandas.read_excel
import os import sys import re import gzip import tarfile import io import scipy import collections import argparse import pandas as pd import numpy as np from scipy.stats import binom from pandas.api.types import is_string_dtype from pathlib import Path import numbers xls = re.compile("xls") drop = "series_matrix\.txt\.gz|filelist\.txt|readme|\.bam|\.sam|\.csfasta|\.fa(sta)?|\.f(a|n)a|(big)?wig|\.bed(graph)?|(broad_)?lincs" drop = re.compile(drop) gse = re.compile("GSE\d+_") pv_str = "p[^a-zA-Z]{0,4}val" pv = re.compile(pv_str) adj = re.compile("adj|fdr|corr|thresh") ws = re.compile(" ") mtabs = re.compile("\w+\t{2,}\w+") tab = re.compile("\t") fields = ["Type", "Class", "Conversion", "pi0", "FDR_pval", "hist", "note"] PValSum = collections.namedtuple("PValSum", fields, defaults=[np.nan] * len(fields)) def raw_pvalues(i): return bool(pv.search(i.lower()) and not adj.search(i.lower())) def find_header(df, n=20): head = df.head(n) idx = 0 for col in head: s = head[col] match = s.str.contains(pv_str, na=False) if any(match): idx = s.index[match].tolist()[0] + 1 break if idx == 0: for index, row in head.iterrows(): if all([isinstance(i, str) for i in row if i is not np.nan]): idx = index + 1 break return idx def csv_helper(input, input_name, csv, verbose=0): # Get comments and set rows to skip r = pd.read_csv(csv, sep=None, engine="python", iterator=True, nrows=1000) comment = None sep = r._engine.data.dialect.delimiter columns = r._engine.columns if isinstance(input, (tarfile.ExFileObject)): with csv as h: first_line = h.readline() elif input_name.endswith("gz") or isinstance(input, (gzip.GzipFile)): with gzip.open(input) as h: first_line = h.readline().decode("utf-8").rstrip() else: with open(input, "r") as h: first_line = h.readline().rstrip() more_tabs_than_sep = len(tab.findall(first_line)) > len(re.findall(sep, first_line)) if re.search("^#", first_line) or more_tabs_than_sep: comment = "#" # Get delimiter r = pd.read_csv( csv, sep=None, engine="python", iterator=True, skiprows=20, nrows=1000 ) sep = r._engine.data.dialect.delimiter columns = r._engine.columns if ws.search(sep): sep = "\s+" if mtabs.search(first_line): sep = "\t+" # Import file if isinstance(input, (tarfile.ExFileObject)) and input_name.endswith("gz"): with gzip.open(input) as h: df = pd.read_csv(h, sep=sep, comment=comment, encoding="unicode_escape") else: df = pd.read_csv(input, sep=sep, comment=comment, encoding="unicode_escape") # Check and fix column names # Case of extra level of delimiters in column names if len(df.columns) > len(columns): df = pd.read_csv( input, header=None, skiprows=[0], sep=sep, comment=comment, encoding="unicode_escape", ).drop([0]) df.columns = columns unnamed = ["Unnamed" in i for i in df.columns] # Case of empty rows before header if all(unnamed): idx = find_header(df) if idx > 0: df = pd.read_csv( input, sep=sep, comment=comment, skiprows=idx, encoding="unicode_escape" ) # Case of anonymous row names if unnamed[-1] & sum(unnamed) == 1: if any([pv.search(i) for i in df.columns]): df.columns = [df.columns[-1]] + list(df.columns[:-1]) if verbose > 1: print("df after import:\n", df) return {os.path.basename(input_name): df} def excel_helper(input, input_name, verbose=0): tabs = {} if input_name.endswith("gz") or isinstance(input, (gzip.GzipFile)): wb = pd.ExcelFile(gzip.open(input)) else: wb =
pd.ExcelFile(input)
pandas.ExcelFile
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Title: listing_cleaning.py Description: Split the previewAmenityNames into four seperate amenity, calculate Bayesian average rating from original rating data, merge response rate data from CSV downloaded from insideairbnb.com, and correct data type of the master dataset. """ import numpy as np import pandas as pd def amenity(): # to separate four amenities listings = pd.read_csv('../data_collection/listings_clean_copy.csv', header=0, index_col=0) amenity = listings['previewAmenityNames'] wifi = [] kitchen = [] heating = [] air_conditioning = [] for index in amenity.index: if 'Wifi' in amenity.iloc[index]: wifi.append('1') else: wifi.append('0') if 'Kitchen' in amenity.iloc[index]: kitchen.append('1') else: kitchen.append('0') if 'Heating' in amenity.iloc[index]: heating.append('1') else: heating.append('0') if 'Air conditioning' in amenity.iloc[index]: air_conditioning.append('1') else: air_conditioning.append('0') listings['Wifi'] = wifi listings['Kitchen'] = kitchen listings['Heating'] = heating listings['Air conditioning'] =air_conditioning listings.to_csv('../data_collection/listings_clean_copy.csv', index = False) def bayesian_average(): """ Calculate bayesian average rating using the mean and median of the existing rating data. """ listings = pd.read_csv('../data_collection/listings_clean_copy.csv', header=0, index_col=0) print(listings.keys()) print(listings['reviewsCount'].describe()) listings['bysAvgRating'] = ((listings['avgRating'] * listings['reviewsCount']) + ( np.mean(listings['avgRating']) * np.median(listings['reviewsCount']))) / ( listings['reviewsCount'] + np.median(listings['reviewsCount'])) print(listings['bysAvgRating'].describe) listings.to_csv('../data_collection/listings_clean_copy.csv') def merge_host_response_data(): """ Merging host response information from dataset of insideairbnb.com. :return: """ listings_master = pd.read_csv('../data_collection/listings_clean_copy.csv', header=0, index_col=0) listings_insidebnb = pd.read_csv('../data_collection/listings_insidebnb.csv', header=0) listings_insidebnb = listings_insidebnb[['id', 'host_response_time', 'host_response_rate', 'host_acceptance_rate']] listings_master =
pd.merge(listings_master, listings_insidebnb, on='id', how='left')
pandas.merge
import pandas as pd import numpy as np # from pandas.core.tools.datetimes import normalize_date from pandas._libs import tslib from backend.robinhood_api import RobinhoodAPI class RobinhoodData: """ Wrapper to download orders and dividends from Robinhood accounts Downloads two dataframes and saves to datafile ---------- Parameters: datafile : location of h5 datafile """ def __init__(self, datafile): self.datafile = datafile def _login(self, user, password): self.client = RobinhoodAPI() # try import the module with passwords try: _temp = __import__('auth') self.client.login(_temp.local_user, _temp.local_password) except: self.client.login(username=user, password=password) return self # private method for getting all orders def _fetch_json_by_url(self, url): return self.client.session.get(url).json() # deleting sensitive or redundant fields def _delete_sensitive_fields(self, df): for col in ['account', 'url', 'id', 'instrument']: if col in df: del df[col] return df # download orders and fields requiring RB client def _download_orders(self): print("Downloading orders from Robinhood") orders = [] past_orders = self.client.order_history() orders.extend(past_orders['results']) while past_orders['next']: next_url = past_orders['next'] past_orders = self._fetch_json_by_url(next_url) orders.extend(past_orders['results']) df = pd.DataFrame(orders) df['symbol'] = df['instrument'].apply( self.client.get_symbol_by_instrument) df.sort_values(by='created_at', inplace=True) df.reset_index(inplace=True, drop=True) df_ord = self._delete_sensitive_fields(df) return df_ord # download dividends and fields requiring RB client def _download_dividends(self): print("Downloading dividends from Robinhood") dividends = self.client.dividends() dividends = [x for x in dividends['results']] df = pd.DataFrame(dividends) if df.shape[0] > 0: df['symbol'] = df['instrument'].apply( self.client.get_symbol_by_instrument) df.sort_values(by='paid_at', inplace=True) df.reset_index(inplace=True, drop=True) df_div = self._delete_sensitive_fields(df) else: df_div = pd.DataFrame(columns=['symbol', 'amount', 'position', 'rate', 'paid_at', 'payable_date']) return df_div # process orders def _process_orders(self, df_ord): # assign to df and reduce the number of fields df = df_ord.copy() fields = [ 'created_at', 'average_price', 'cumulative_quantity', 'fees', 'symbol', 'side'] df = df[fields] # convert types for field in ['average_price', 'cumulative_quantity', 'fees']: df[field] = pd.to_numeric(df[field]) for field in ['created_at']: df[field] = pd.to_datetime(df[field]) # add days df['date'] = df['created_at'].apply( lambda x: tslib.normalize_date(x)) # rename columns for consistency df.rename(columns={ 'cumulative_quantity': 'current_size' }, inplace=True) # quantity accounting for side of transaction for cumsum later df['signed_size'] = np.where( df.side == 'buy', df['current_size'], -df['current_size']) df['signed_size'] = df['signed_size'].astype(np.int64) return df # process_orders def _process_dividends(self, df_div): df = df_div.copy() # convert types for field in ['amount', 'position', 'rate']: df[field] = pd.to_numeric(df[field]) for field in ['paid_at', 'payable_date']: df[field] = pd.to_datetime(df[field]) # add days df['date'] = df['paid_at'].apply( lambda x: tslib.normalize_date(x)) return df def _generate_positions(self, df_ord): """ Process orders dataframe and generate open and closed positions. For all open positions close those which were later sold, so that the cost_basis for open can be calculated correctly. For closed positions calculate the cost_basis based on the closed open positions. Note: the olders open positions are first to be closed. The logic here is to reduce the tax exposure. ----- Parameters: - Pre-processed df_ord Return: - Two dataframes with open and closed positions correspondingly """ # prepare dataframe for open and closed positions df_open = df_ord[df_ord.side == 'buy'].copy() df_closed = df_ord[df_ord.side == 'sell'].copy() # create a new column for today's position size # TODO: may be redundant - review later df_open['final_size'] = df_open['current_size'] df_closed['final_size'] = df_closed['current_size'] # main loop for i_closed, row_closed in df_closed.iterrows(): sell_size = row_closed.final_size sell_cost_basis = 0 for i_open, row_open in df_open[ (df_open.symbol == row_closed.symbol) & (df_open.date < row_closed.date)].iterrows(): new_sell_size = sell_size - df_open.loc[i_open, 'final_size'] new_sell_size = 0 if new_sell_size < 0 else new_sell_size new_open_size = df_open.loc[i_open, 'final_size'] - sell_size new_open_size = new_open_size if new_open_size > 0 else 0 # updating open positions df_open.loc[i_open, 'final_size'] = new_open_size # updating closed positions df_closed.loc[i_closed, 'final_size'] = new_sell_size sold_size = sell_size - new_sell_size sell_cost_basis +=\ df_open.loc[i_open, 'average_price'] * sold_size sell_size = new_sell_size # assign a cost_basis to the closed position df_closed.loc[i_closed, 'current_cost_basis'] = -sell_cost_basis # calculate cost_basis for open positions df_open['current_cost_basis'] =\ df_open['current_size'] * df_open['average_price'] df_open['final_cost_basis'] =\ df_open['final_size'] * df_open['average_price'] # calculate capital gains for closed positions df_closed['realized_gains'] =\ df_closed['current_size'] * df_closed['average_price'] +\ df_closed['current_cost_basis'] df_closed['final_cost_basis'] = 0 return df_open, df_closed def download_robinhood_data(self, user, password): self._login(user, password) df_div = self._process_dividends(self._download_dividends()) df_div.to_hdf(self.datafile, 'dividends') df_ord = self._process_orders(self._download_orders()) df_ord.to_hdf(self.datafile, 'orders') df_open, df_closed = self._generate_positions(df_ord) df_open.to_hdf(self.datafile, 'open') df_closed.to_hdf(self.datafile, 'closed') return df_div, df_ord, df_open, df_closed if __name__ == "__main__": rd = RobinhoodData('../data/data.h5') if False: df_div, df_ord, df_open, df_closed =\ rd.download_robinhood_data(None, None) df_div = pd.read_hdf('../data/data.h5', 'dividends') df_ord = pd.read_hdf('../data/data.h5', 'orders') df_open =
pd.read_hdf('../data/data.h5', 'open')
pandas.read_hdf
import pywt # 1.0.3 import numpy as np # 1.19.5 import pandas as pd # 0.25.1 from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler class MultiscalePCA: """ - Multiscale Principal Component with Wavelet Decomposition - Return estimate of X *Example import mspca mymodel = mspca.MultiscalePCA() x_pred = mymodel.fit_transform(X, wavelet_func='db4', threshold=0.3) """ def __init__(self): self.x_norm = None self.fit_bool = False def _split_coef(self, train_data, wavelet_func): self.w = pywt.Wavelet(wavelet_func) # Wavelet decomposition temp_coef = pywt.wavedec(train_data[:, 0], self.w) # maxlev = pywt.dwt_max_level(len(x_norm), w.dec_len) self.coef_num = len(temp_coef) self.x_var_num = train_data.shape[1] a_coef_list = [] for i in range(1, self.coef_num): globals()['D{}'.format(i)] = [] for i in range(self.x_var_num): coeffs = pywt.wavedec(train_data[:, i], self.w) # Add Approximation Coefficient a_coef_list.append(coeffs[0]) # Add Detailed Coefficient for j in range(1, self.coef_num): tmp = globals()['D{}'.format(j)] tmp.append(coeffs[j]) globals()['D{}'.format(j)] = tmp a_df =
pd.DataFrame(a_coef_list)
pandas.DataFrame
from arche.rules.category_coverage import get_coverage_per_category from arche.rules.result import Level from conftest import create_result import pandas as pd import pytest @pytest.mark.parametrize( "data, tags, expected_messages", [ ( {"sex": ["male", "female", "male"], "country": ["uk", "uk", "uk"]}, {"category": ["sex", "country"]}, { Level.INFO: [ ( "2 categories in 'sex'", None, None,
pd.Series({"male": 2, "female": 1}, name="sex")
pandas.Series
import subprocess import time from pathlib import Path from typing import Dict, List, Optional, Tuple, Union import altair as alt import flatlatex import numpy as np import pandas as pd Chart = alt.vegalite.v4.api.Chart def display_img(img: str) -> None: """Display image inside notebook while preventing browser caching Args: img: Path to image """ import IPython.display as IPd IPd.display(IPd.HTML('<img src="{}?now={}" / >'.format(img, time.time()))) def rgb2hex(r: int, g: int, b: int) -> str: """Convert RGB to HEX""" return "#{:02x}{:02x}{:02x}".format(r, g, b) def hex2rgb(hex: str) -> Tuple[int]: """Convert HEX to RGB""" h = hex.lstrip("#") return tuple(int(h[i:i+2], 16) for i in (0, 2, 4)) def convert_file( fn: str, to: str = "png", dpi: int = 300, background: Optional[str] = None, debug: bool = False, ) -> str: """Convert files with Inkscape Assumes that Inkscape can be called from shell with `inkscape`. Args: fn: Filename to: Target format dpi: Resolution background: Background color for `--export-background` debug: Debug mode Returns: New filename """ fn = Path(fn).absolute() fn_new = fn.with_suffix(f".{to}") cmd = f"inkscape --export-filename={str(fn_new)} {str(fn)} --export-dpi={dpi}" if background is not None: cmd += " --export-background='{background}'" if debug: print(cmd) else: cmd += " &> /dev/null" subprocess.call(cmd, shell=True) return fn_new def save( chart: Chart, path: str, extra_formats: Optional[Union[str, List[str]]] = None, debug: bool = False, ): """Save chart using `altair_saver` `altair_saver` seems to work best with `.svg` exports. When `extra_formats` is specified, the saved file (e.g., a `svg`) can be converted using the `convert_file` function which uses `inkscape` for file conversion (e.g., to save `png` or `pdf` versions of a chart). Args: chart: Chart to save path: Path to save chart to. extra_formats: Extra formats to save chart as, uses `convert_file` on saved file """ try: import altair_saver except ImportError: print("altair_saver is required") print("http://github.com/altair-viz/altair_saver/") quit() path = str(path) chart.save(path) if extra_formats is not None: formats = ( [extra_formats] if not isinstance(extra_formats, list) else extra_formats ) for ff in formats: convert_file(path, to=ff, debug=debug) def latex2unicode(latex: Union[str, List[str]]) -> Union[str, List[str]]: """Converts latex strings to unicode using `flatlatex` Args: latex: Latex strings (single string or list of strings) Returns: Unicode strings """ c = flatlatex.converter() if type(latex) == str: return c.convert(latex) elif type(latex) == list: return [c.convert(entry) for entry in latex] else: raise NotImplementedError def np2df( samples: Union[np.ndarray, List[np.ndarray]], field: str = "samples", labels_samples: Optional[Union[str, List[str]]] = None, labels_dim: List[str] = None, drop_dim: Optional[List[str]] = None, ) -> pd.DataFrame: """Converts numpy arrays to pandas DataFrame used for plotting with `deneb.pairplot` Args: samples: Samples field: Field for sample identifier labels_samples: Labels for samples labels_dim: Labels for dimensions drop_dim: Dimensions to drop Returns: Formatted pandas DataFrame """ if not isinstance(samples, list): samples = [samples] samples = [s for s in samples] dim_samples = samples[0].shape[1] for sample in samples: assert sample.shape[1] == dim_samples if labels_samples is None: labels_samples = [f"sample {i+1}" for i in range(len(samples))] if not isinstance(labels_samples, list): labels_samples = [labels_samples] assert len(labels_samples) == len(samples) if labels_dim is None: labels_dim = [f"dim {i+1}" for i in range(dim_samples)] assert len(labels_dim) == dim_samples dfs = [] for i, sample in enumerate(samples): df = pd.DataFrame(sample, columns=labels_dim) df[field] = labels_samples[i] dfs.append(df) df =
pd.concat(dfs, ignore_index=True)
pandas.concat
import matplotlib.pyplot as plt import numpy as np import pandas as pd import cantera as ct import copy from textwrap import wrap import scipy.stats as stats import math from scipy.stats import multivariate_normal from matplotlib import style from mpl_toolkits.mplot3d import Axes3D from scipy.stats import norm import matplotlib.mlab as mlab import matplotlib.cm as cm import MSI.master_equation.master_equation as meq import re import os import MSI.simulations.instruments.ignition_delay as ig import MSI.cti_core.cti_processor as pr import MSI.simulations.instruments.jsr_steadystate as jsr class Plotting(object): def __init__(self,S_matrix, s_matrix, Y_matrix, y_matrix, z_matrix, X, sigma, covarience, original_covariance, S_matrix_original, exp_dict_list_optimized, exp_dict_list_original, parsed_yaml_list, Ydf, target_value_rate_constant_csv='', target_value_rate_constant_csv_extra_values = '', k_target_value_S_matrix = None, k_target_values='Off', working_directory='', sigma_uncertainty_weighted_sensitivity_csv='', simulation_run=None, shock_tube_instance = None, cheby_sensitivity_dict = None, mapped_to_alpha_full_simulation=None, optimized_cti_file='', original_cti_file='', sigma_ones=False, T_min=200, T_max=3000, P_min=1013.25, P_max=1.013e+6): self.S_matrix = S_matrix self.s_matrix = s_matrix self.Y_matrix = Y_matrix self.y_matrix = y_matrix self.z_matrix = z_matrix self.X = X self.sigma = sigma #self.sigma = sigma self.covarience=covarience self.original_covariance=original_covariance #original self.S_matrix_original=S_matrix_original self.exp_dict_list_optimized = exp_dict_list_optimized self.exp_dict_list_original = exp_dict_list_original self.parsed_yaml_list = parsed_yaml_list self.target_value_rate_constant_csv = target_value_rate_constant_csv self.k_target_value_S_matrix = k_target_value_S_matrix self.Ydf = Ydf self.k_target_values=k_target_values self.target_value_rate_constant_csv_extra_values = target_value_rate_constant_csv_extra_values self.working_directory = working_directory self.sigma_uncertainty_weighted_sensitivity_csv = sigma_uncertainty_weighted_sensitivity_csv self.simulation_run = simulation_run self.shock_tube_instance = shock_tube_instance self.cheby_sensitivity_dict=cheby_sensitivity_dict self.mapped_to_alpha_full_simulation = mapped_to_alpha_full_simulation, self.new_cti=optimized_cti_file self.nominal_cti=original_cti_file self.sigma_ones = sigma_ones self.T_min = T_min self.T_max = T_max self.P_min = P_min self.P_max = P_max def lengths_of_experimental_data(self): simulation_lengths_of_experimental_data = [] for i,exp in enumerate(self.exp_dict_list_optimized): length_of_experimental_data=[] observable_counter=0 for j,observable in enumerate(exp['mole_fraction_observables'] + exp['concentration_observables'] + exp['ignition_delay_observables']): if observable == None: continue if observable in exp['mole_fraction_observables']: if re.match('[Ss]hock [Tt]ube',exp['simulation_type']): length_of_experimental_data.append(exp['experimental_data'][observable_counter]['Time'].shape[0]) observable_counter+=1 elif re.match('[Jj][Ss][Rr]',exp['simulation_type']): length_of_experimental_data.append(exp['experimental_data'][observable_counter]['Temperature'].shape[0]) observable_counter+=1 elif re.match('[Ss]pecies[- ][Pp]rofile',exp['experiment_type']) and re.match('[Ff]low[ -][Rr]eactor',exp['simulation_type']): length_of_experimental_data.append(exp['experimental_data'][observable_counter]['Temperature'].shape[0]) observable_counter+=1 if observable in exp['concentration_observables']: if re.match('[Ss]hock [Tt]ube',exp['simulation_type']): length_of_experimental_data.append(exp['experimental_data'][observable_counter]['Time'].shape[0]) observable_counter+=1 elif re.match('[Jj][Ss][Rr]',exp['simulation_type']): length_of_experimental_data.append(exp['experimental_data'][observable_counter]['Temperature'].shape[0]) observable_counter+=1 elif re.match('[Ss]pecies[- ][Pp]rofile',exp['experiment_type']) and re.match('[Ff]low[ -][Rr]eactor',exp['simulation_type']): length_of_experimental_data.append(exp['experimental_data'][observable_counter]['Temperature'].shape[0]) observable_counter+=1 if observable in exp['ignition_delay_observables']: if re.match('[Ss]hock [Tt]ube',exp['simulation_type']) and re.match('[iI]gnition[- ][Dd]elay',exp['experiment_type']): if 'temperature' in list(exp['experimental_data'][observable_counter].columns): length_of_experimental_data.append(exp['experimental_data'][observable_counter]['temperature'].shape[0]) observable_counter+=1 elif 'pressure' in list(exp['experimental_data'][observable_counter].columns): length_of_experimental_data.append(exp['experimental_data'][observable_counter]['pressure'].shape[0]) observable_counter+=1 else: length_of_experimental_data.append(exp['experimental_data'][observable_counter].shape[0]) observable_counter+=1 elif re.match('[Rr][Cc][Mm]',exp['simulation_type']) and re.match('[iI]gnition[- ][Dd]elay',exp['experiment_type']): if 'temperature' in list(exp['experimental_data'][observable_counter].columns): length_of_experimental_data.append(exp['experimental_data'][observable_counter]['temperature'].shape[0]) observable_counter+=1 elif 'pressure' in list(exp['experimental_data'][observable_counter].columns): length_of_experimental_data.append(exp['experimental_data'][observable_counter]['pressure'].shape[0]) observable_counter+=1 else: length_of_experimental_data.append(exp['experimental_data'][observable_counter].shape[0]) observable_counter+=1 if 'perturbed_coef' in exp.keys(): wavelengths = self.parsed_yaml_list[i]['absorbanceCsvWavelengths'] absorbance_wl=0 for k,wl in enumerate(wavelengths): length_of_experimental_data.append(exp['absorbance_experimental_data'][k]['time'].shape[0]) absorbance_wl+=1 else: absorbance_wl=0 simulation_lengths_of_experimental_data.append(length_of_experimental_data) self.simulation_lengths_of_experimental_data=simulation_lengths_of_experimental_data return observable_counter+absorbance_wl,length_of_experimental_data def calculating_sigmas(self,S_matrix,covarience): sigmas =[[] for x in range(len(self.simulation_lengths_of_experimental_data))] counter=0 for x in range(len(self.simulation_lengths_of_experimental_data)): for y in range(len(self.simulation_lengths_of_experimental_data[x])): temp=[] for z in np.arange(counter,(self.simulation_lengths_of_experimental_data[x][y]+counter)): SC = np.dot(S_matrix[z,:],covarience) sigma = np.dot(SC,np.transpose(S_matrix[z,:])) test = sigma sigma = np.sqrt(sigma) temp.append(sigma) temp = np.array(temp) sigmas[x].append(temp) counter = counter + self.simulation_lengths_of_experimental_data[x][y] return sigmas, test def run_ignition_delay(self,exp,cti,n_of_data_points=10): p=pr.Processor(cti) if 'volumeTraceCsv' not in exp['simulation'].fullParsedYamlFile.keys(): if len(exp['simulation'].fullParsedYamlFile['temperatures'])>1: tempmin=np.min(exp['simulation'].fullParsedYamlFile['temperatures']) print(tempmin , 'THis is the min temp') tempmax=np.max(exp['simulation'].fullParsedYamlFile['temperatures']) print(tempmax,'This is the max temp') total_range=tempmax-tempmin tempmax=tempmax+0.1*total_range tempmin=tempmin-0.1*total_range temprange=np.linspace(tempmin,tempmax,n_of_data_points) pressures=exp['simulation'].fullParsedYamlFile['pressures'] print(pressures,'These are the pressures') conds=exp['simulation'].fullParsedYamlFile['conditions_to_run'] print(conds,'These are the conditions') elif len(exp['simulation'].fullParsedYamlFile['pressures'])>1: pmin = exp['simulation'].fullParsedYamlFile['pressures']*0.9 pmax = exp['simulation'].fullParsedYamlFile['pressures']*1.1 total_range=pmax-pmin pmax=pmax+0.1*total_range pmin=pmin-0.1*total_range pressures = np.linspace(pmin,pmax,n_of_data_points) temprange = exp['simulation'].fullParsedYamlFile['temperatures'] conds = exp['simulation'].fullParsedYamlFile['conditions_to_run'] elif len(exp['simulation'].fullParsedYamlFile['conditions_to_run'])>1: print('Plotting for conditions depedendent ignition delay not yet installed') ig_delay=ig.ignition_delay_wrapper(pressures=pressures, temperatures=temprange, observables=exp['simulation'].fullParsedYamlFile['observables'], kineticSens=0, physicalSens=0, conditions=conds, thermalBoundary=exp['simulation'].fullParsedYamlFile['thermalBoundary'], mechanicalBoundary=exp['simulation'].fullParsedYamlFile['mechanicalBoundary'], processor=p, cti_path="", save_physSensHistories=0, fullParsedYamlFile=exp['simulation'].fullParsedYamlFile, save_timeHistories=0, log_file=True, log_name='log.txt', timeshift=exp['simulation'].fullParsedYamlFile['time_shift'], initialTime=exp['simulation'].fullParsedYamlFile['initialTime'], finalTime=exp['simulation'].fullParsedYamlFile['finalTime'], target=exp['simulation'].fullParsedYamlFile['target'], target_type=exp['simulation'].fullParsedYamlFile['target_type'], n_processors=2) soln,temp=ig_delay.run() elif 'volumeTraceCsv' in exp['simulation'].fullParsedYamlFile.keys(): if len(exp['simulation'].fullParsedYamlFile['temperatures'])>1: tempmin=np.min(exp['simulation'].fullParsedYamlFile['temperatures']) tempmax=np.max(exp['simulation'].fullParsedYamlFile['temperatures']) total_range=tempmax-tempmin tempmax=tempmax+0.1*total_range tempmin=tempmin-0.1*total_range temprange=np.linspace(tempmin,tempmax,n_of_data_points) pressures=exp['simulation'].fullParsedYamlFile['pressures'] conds=exp['simulation'].fullParsedYamlFile['conditions_to_run'] volumeTrace = exp['simulation'].fullParsedYamlFile['volumeTraceCsv'] elif len(exp['simulation'].fullParsedYamlFile['pressures'])>1: pmin = exp['simulation'].fullParsedYamlFile['pressures']*0.9 pmax = exp['simulation'].fullParsedYamlFile['pressures']*1.1 total_range=pmax-pmin pmax=pmax+0.1*total_range pmin=pmin-0.1*total_range pressures = np.linspace(pmin,pmax,n_of_data_points) temprange = exp['simulation'].fullParsedYamlFile['temperatures'] conds = exp['simulation'].fullParsedYamlFile['conditions_to_run'] volumeTrace = exp['simulation'].fullParsedYamlFile['volumeTraceCsv'] elif len(exp['simulation'].fullParsedYamlFile['conditions_to_run'])>1: print('Plotting for conditions depedendent ignition delay not yet installed') ig_delay=ig.ignition_delay_wrapper(pressures=pressures, temperatures=temprange, observables=exp['simulation'].fullParsedYamlFile['observables'], kineticSens=0, physicalSens=0, conditions=conds, thermalBoundary=exp['simulation'].fullParsedYamlFile['thermalBoundary'], mechanicalBoundary=exp['simulation'].fullParsedYamlFile['mechanicalBoundary'], processor=p, cti_path="", save_physSensHistories=0, fullParsedYamlFile=exp['simulation'].fullParsedYamlFile, save_timeHistories=0, log_file=True, log_name='log.txt', timeshift=exp['simulation'].fullParsedYamlFile['time_shift'], initialTime=exp['simulation'].fullParsedYamlFile['initialTime'], finalTime=exp['simulation'].fullParsedYamlFile['finalTime'], target=exp['simulation'].fullParsedYamlFile['target'], target_type=exp['simulation'].fullParsedYamlFile['target_type'], n_processors=2, volumeTrace=volumeTrace) soln,temp=ig_delay.run() #print(soln) return soln def run_jsr(self,exp,cti,n_of_data_points=100): p=pr.Processor(cti) tempmin=np.min(exp['simulation'].fullParsedYamlFile['temperatures']) print('Tempmin: '+str(tempmin)) tempmax=np.max(exp['simulation'].fullParsedYamlFile['temperatures']) print('Tempmax: '+str(tempmax)) if tempmax!=tempmin: total_range=tempmax-tempmin tempmax=tempmax+0.1*total_range tempmin=tempmin-0.1*total_range elif tempmax==tempmin: tempmax=tempmax*1.1 tempmin=tempmin*0.9 temprange=np.linspace(tempmin,tempmax,n_of_data_points) print(temprange) pressures=exp['simulation'].fullParsedYamlFile['pressure'] conds=exp['simulation'].fullParsedYamlFile['conditions'] jsr1=jsr.JSR_multiTemp_steadystate(volume=exp['simulation'].fullParsedYamlFile['volume'], pressure=pressures, temperatures=temprange, observables=exp['simulation'].fullParsedYamlFile['observables'], kineticSens=0, physicalSens=0, conditions=conds, thermalBoundary=exp['simulation'].fullParsedYamlFile['thermalBoundary'], mechanicalBoundary=exp['simulation'].fullParsedYamlFile['mechanicalBoundary'], processor=p, save_physSensHistories=0, save_timeHistories=0, residence_time=exp['simulation'].fullParsedYamlFile['residence_time'], moleFractionObservables = exp['simulation'].fullParsedYamlFile['moleFractionObservables'], concentrationObservables = exp['simulation'].fullParsedYamlFile['concentrationObservables'], fullParsedYamlFile = exp['simulation'].fullParsedYamlFile) soln,temp=jsr1.run() #print(soln) return soln def plotting_observables(self,sigmas_original=[],sigmas_optimized=[],file_identifier='',filetype='.png'): for i,exp in enumerate(self.exp_dict_list_optimized): observable_counter=0 for j,observable in enumerate(exp['mole_fraction_observables'] + exp['concentration_observables'] + exp['ignition_delay_observables']): if observable == None: continue plt.figure() if observable in exp['mole_fraction_observables']: if re.match('[Ss]hock [Tt]ube',exp['simulation_type']) and re.match('[Ss]pecies[ -][Pp]rofile',exp['experiment_type']): plt.plot(exp['simulation'].timeHistories[0]['time']*1e3,exp['simulation'].timeHistories[0][observable],'b',label='MSI') plt.plot(self.exp_dict_list_original[i]['simulation'].timeHistories[0]['time']*1e3,self.exp_dict_list_original[i]['simulation'].timeHistories[0][observable],'r',label= "$\it{A priori}$ model") plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3,exp['experimental_data'][observable_counter][observable],'o',color='black',label='Experimental Data') plt.xlabel('Time (ms)') plt.ylabel('Mole Fraction '+''+str(observable)) plt.title('Experiment_'+str(i+1)) if bool(sigmas_optimized) == True: high_error_optimized = np.exp(sigmas_optimized[i][observable_counter]) high_error_optimized = np.multiply(high_error_optimized,exp['simulation'].timeHistoryInterpToExperiment[observable].dropna().values) low_error_optimized = np.exp(sigmas_optimized[i][observable_counter]*-1) low_error_optimized = np.multiply(low_error_optimized,exp['simulation'].timeHistoryInterpToExperiment[observable].dropna().values) plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3, high_error_optimized,'b--') plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3,low_error_optimized,'b--') # high_error_original = np.exp(sigmas_original[i][observable_counter]) # high_error_original = np.multiply(high_error_original,self.exp_dict_list_original[i]['simulation'].timeHistoryInterpToExperiment[observable].dropna().values) # low_error_original = np.exp(sigmas_original[i][observable_counter]*-1) # low_error_original = np.multiply(low_error_original,self.exp_dict_list_original[i]['simulation'].timeHistoryInterpToExperiment[observable].dropna().values) # plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3, high_error_original,'r--') # plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3,low_error_original,'r--') #stub plt.plot([],'w' ,label= 'T:'+ str(self.exp_dict_list_original[i]['simulation'].temperature)) #plt.plot([],'w', label= 'P:'+ str(self.exp_dict_list_original[i]['simulation'].pressure)) key_list = [] for key in self.exp_dict_list_original[i]['simulation'].conditions.keys(): plt.plot([],'w',label= key+': '+str(self.exp_dict_list_original[i]['simulation'].conditions[key])) key_list.append(key) #plt.legend(handlelength=3) plt.legend(ncol=2) sp = '_'.join(key_list) #print(sp) #plt.savefig(self.working_directory+'/'+'Experiment_'+str(i+1)+'_'+str(observable)+'_'+str(self.exp_dict_list_original[i]['simulation'].temperature)+'K'+'_'+str(self.exp_dict_list_original[i]['simulation'].pressure)+'_'+sp+'_'+'.pdf', bbox_inches='tight') #stub plt.savefig(self.working_directory+'/'+'Exp_'+str(i+1)+'_'+str(observable)+'_'+str(self.exp_dict_list_original[i]['simulation'].temperature)+'K_'+sp+'.pdf', bbox_inches='tight') #plt.savefig(self.working_directory+'/'+'Exp_'+str(i+1)+'_'+str(observable)+'_'+str(self.exp_dict_list_original[i]['simulation'].temperature)+'K_'+sp+'.svg', bbox_inches='tight',transparent=True) observable_counter+=1 elif re.match('[Jj][Ss][Rr]',exp['simulation_type']): nominal=self.run_jsr(self.exp_dict_list_original[i],self.nominal_cti) MSI_model=self.run_jsr(exp,self.new_cti) plt.plot(MSI_model['temperature'],MSI_model[observable],'b',label='MSI') plt.plot(nominal['temperature'],nominal[observable],'r',label= "$\it{A priori}$ model") plt.plot(exp['experimental_data'][observable_counter]['Temperature'],exp['experimental_data'][observable_counter][observable],'o',color='black',label='Experimental Data') plt.xlabel('Temperature (K)') plt.ylabel('Mole Fraction '+''+str(observable)) plt.title('Experiment_'+str(i+1)) if bool(sigmas_optimized) == True: high_error_optimized = np.exp(sigmas_optimized[i][observable_counter]) print(high_error_optimized) high_error_optimized = np.multiply(high_error_optimized,exp['simulation'].timeHistories[0][observable].dropna().values) low_error_optimized = np.exp(sigmas_optimized[i][observable_counter]*-1) low_error_optimized = np.multiply(low_error_optimized,exp['simulation'].timeHistories[0][observable].dropna().values) #plt.figure() if len(high_error_optimized)>1 and len(low_error_optimized) > 1: plt.plot(exp['experimental_data'][observable_counter]['Temperature'], high_error_optimized,'b--') plt.plot(exp['experimental_data'][observable_counter]['Temperature'],low_error_optimized,'b--') else: print(high_error_optimized,observable,exp['simulation'].timeHistories[0][observable].dropna().values) plt.plot(exp['experimental_data'][observable_counter]['Temperature'], high_error_optimized,'rX') plt.plot(exp['experimental_data'][observable_counter]['Temperature'],low_error_optimized,'bX') #high_error_original = np.exp(sigmas_original[i][observable_counter]) # high_error_original = np.multiply(high_error_original,self.exp_dict_list_original[i]['simulation'].timeHistoryInterpToExperiment[observable].dropna().values) #low_error_original = np.exp(sigmas_original[i][observable_counter]*-1) #low_error_original = np.multiply(low_error_original,self.exp_dict_list_original[i]['simulation'].timeHistoryInterpToExperiment[observable].dropna().values) #plt.figure() # plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3, high_error_original,'r--') #plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3,low_error_original,'r--') plt.savefig(os.path.join(self.working_directory,'Experiment_'+str(i+1)+'_'+str(observable)+file_identifier+filetype), bbox_inches='tight',dpi=500) observable_counter+=1 elif re.match('[Ss]pecies[- ][Pp]rofile',exp['experiment_type']) and re.match('[Ff]low[ -][Rr]eactor',exp['simulation_type']): plt.plot(exp['simulation'].timeHistories[0]['temperature'],exp['simulation'].timeHistories[0][observable],'b',label='MSI') plt.plot(self.exp_dict_list_original[i]['simulation'].timeHistories[0]['temperature'],self.exp_dict_list_original['simulation'].timeHistories[0][observable],'r',label= "$\it{A priori}$ model") plt.plot(exp['experimental_data'][observable_counter]['Temperature'],exp['experimental_data'][observable_counter][observable],'o',color='black',label='Experimental Data') plt.xlabel('Time (ms)') plt.ylabel('Mole Fraction '+''+str(observable)) plt.title('Experiment_'+str(i+1)) if bool(sigmas_optimized) == True: high_error_optimized = np.exp(sigmas_optimized[i][observable_counter]) high_error_optimized = np.multiply(high_error_optimized,exp['simulation'].timeHistories[0][observable].dropna().values) low_error_optimized = np.exp(sigmas_optimized[i][observable_counter]*-1) low_error_optimized = np.multiply(low_error_optimized,exp['simulation'].timeHistories[0][observable].dropna().values) plt.plot(exp['experimental_data'][observable_counter]['Temperature']*1e3, high_error_optimized,'b--') plt.plot(exp['experimental_data'][observable_counter]['Temperature']*1e3,low_error_optimized,'b--') #high_error_original = np.exp(sigmas_original[i][observable_counter]) #high_error_original = np.multiply(high_error_original,self.exp_dict_list_original[i]['simulation'].timeHistories[0][observable].dropna().values) #low_error_original = np.exp(sigmas_original[i][observable_counter]*-1) #low_error_original = np.multiply(low_error_original,self.exp_dict_list_original[i]['simulation'].timeHistoryInterpToExperiment[observable].dropna().values) #plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3, high_error_original,'r--') #plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3,low_error_original,'r--') plt.savefig(self.working_directory+'/'+'Experiment_'+str(i+1)+'_'+str(observable)+'.pdf', bbox_inches='tight',dpi=1000) if observable in exp['concentration_observables']: if re.match('[Ss]hock [Tt]ube',exp['simulation_type']) and re.match('[Ss]pecies[ -][Pp]rofile',exp['experiment_type']): if observable+'_ppm' in exp['experimental_data'][observable_counter].columns: plt.plot(exp['simulation'].timeHistories[0]['time']*1e3,exp['simulation'].timeHistories[0][observable]*1e6,'b',label='MSI') plt.plot(self.exp_dict_list_original[i]['simulation'].timeHistories[0]['time']*1e3,self.exp_dict_list_original[i]['simulation'].timeHistories[0][observable]*1e6,'r',label= "$\it{A priori}$ model") plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3,exp['experimental_data'][observable_counter][observable+'_ppm'],'o',color='black',label='Experimental Data') plt.xlabel('Time (ms)') plt.ylabel(str(observable)+ ' '+ 'ppm') plt.title('Experiment_'+str(i+1)) if bool(sigmas_optimized)==True: high_error_optimized = np.exp(sigmas_optimized[i][observable_counter]) high_error_optimized = np.multiply(high_error_optimized,exp['simulation'].timeHistoryInterpToExperiment[observable].dropna().values*1e6) low_error_optimized = np.exp(np.array(sigmas_optimized[i][observable_counter])*-1) low_error_optimized = np.multiply(low_error_optimized,exp['simulation'].timeHistoryInterpToExperiment[observable].dropna().values*1e6) plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3, high_error_optimized,'b--') plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3,low_error_optimized,'b--') #high_error_original = np.exp(sigmas_original[i][observable_counter]) #high_error_original = np.multiply(high_error_original,self.exp_dict_list_original[i]['simulation'].timeHistoryInterpToExperiment[observable].dropna().values*1e6) #low_error_original = np.exp(np.array(sigmas_original[i][observable_counter])*-1) #low_error_original = np.multiply(low_error_original,self.exp_dict_list_original[i]['simulation'].timeHistoryInterpToExperiment[observable].dropna().values*1e6) #plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3, high_error_original,'r--') #plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3,low_error_original,'r--') elif observable+'_mol/cm^3' in exp['experimental_data'][observable_counter].columns: concentration_optimized = np.true_divide(1,exp['simulation'].timeHistories[0]['temperature'].to_numpy())*exp['simulation'].timeHistories[0]['pressure'].to_numpy() concentration_optimized *= (1/(8.314e6))*exp['simulation'].timeHistories[0][observable].dropna().to_numpy() concentration_original = np.true_divide(1,self.exp_dict_list_original[i]['simulation'].timeHistories[0]['temperature'].to_numpy())*self.exp_dict_list_original[i]['simulation'].timeHistories[0]['pressure'].to_numpy() concentration_original *= (1/(8.314e6))*self.exp_dict_list_original[i]['simulation'].timeHistories[0][observable].dropna().to_numpy() plt.plot(exp['simulation'].timeHistories[0]['time']*1e3,concentration_optimized,'b',label='MSI') plt.plot(self.exp_dict_list_original[i]['simulation'].timeHistories[0]['time']*1e3,concentration_original,'r',label= "$\it{A priori}$ model") plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3,exp['experimental_data'][observable_counter][observable+'_mol/cm^3'],'o',color='black',label='Experimental Data') plt.xlabel('Time (ms)') plt.ylabel(r'$\frac{mol}{cm^3}$'+''+str(observable)) plt.title('Experiment_'+str(i+1)) if bool(sigmas_optimized)==True: concentration_sig = np.true_divide(1,exp['simulation'].pressureAndTemperatureToExperiment[observable_counter]['temperature'].to_numpy())*exp['simulation'].pressureAndTemperatureToExperiment[observable_counter]['pressure'].to_numpy() concentration_sig *= (1/(8.314e6))*exp['simulation'].timeHistoryInterpToExperiment[observable].dropna().to_numpy() high_error_optimized = np.exp(sigmas_optimized[i][observable_counter]) high_error_optimized = np.multiply(high_error_optimized,concentration_sig) low_error_optimized = np.exp(np.array(sigmas_optimized[i][observable_counter])*-1) low_error_optimized = np.multiply(low_error_optimized,concentration_sig) plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3, high_error_optimized,'b--') plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3,low_error_optimized,'b--') plt.plot([],'w' ,label= 'T:'+ str(self.exp_dict_list_original[i]['simulation'].temperature)) #plt.plot([],'w', label= 'P:'+ str(self.exp_dict_list_original[i]['simulation'].pressure)) key_list = [] for key in self.exp_dict_list_original[i]['simulation'].conditions.keys(): plt.plot([],'w',label= key+': '+str(self.exp_dict_list_original[i]['simulation'].conditions[key])) key_list.append(key) #plt.legend(handlelength=3) plt.legend(ncol=2) sp = '_'.join(key_list) #print(sp) #plt.savefig(self.working_directory+'/'+'Experiment_'+str(i+1)+'_'+str(observable)+'_'+str(self.exp_dict_list_original[i]['simulation'].temperature)+'K'+'_'+str(self.exp_dict_list_original[i]['simulation'].pressure)+'_'+sp+'_'+'.pdf', bbox_inches='tight') #stub plt.savefig(self.working_directory+'/'+'Exp_'+str(i+1)+'_'+str(observable)+'_'+str(self.exp_dict_list_original[i]['simulation'].temperature)+'K_'+sp+'.pdf', bbox_inches='tight') #plt.savefig(self.working_directory+'/'+'Exp_'+str(i+1)+'_'+str(observable)+'_'+str(self.exp_dict_list_original[i]['simulation'].temperature)+'K_'+sp+'.svg', bbox_inches='tight',transparent=True) observable_counter+=1 elif re.match('[Ff]low [Rr]eactor',exp['simulation_type']) and re.match('[Ss]pecies[ -][Pp]rofile',exp['experiment_type']): plt.plot(exp['simulation'].timeHistories[0]['initial_temperature'],exp['simulation'].timeHistories[0][observable]*1e6,'b',label='MSI') plt.plot(self.exp_dict_list_original[i]['simulation'].timeHistories[0]['initial_temperature'],self.exp_dict_list_original[i]['simulation'].timeHistories[0][observable]*1e6,'r',label= "$\it{A priori}$ model") plt.plot(exp['experimental_data'][observable_counter]['Temperature'],exp['experimental_data'][observable_counter][observable+'_ppm'],'o',color='black',label='Experimental Data') plt.xlabel('Temperature (K)') plt.ylabel('ppm '+''+str(observable)) plt.title('Experiment_'+str(i+1)) if bool(sigmas_optimized) == True: #stub high_error_optimized = np.exp(sigmas_optimized[i][observable_counter]) high_error_optimized = np.multiply(high_error_optimized,exp['simulation'].timeHistories[0][observable].dropna().values*1e6) low_error_optimized = np.exp(sigmas_optimized[i][observable_counter]*-1) low_error_optimized = np.multiply(low_error_optimized,exp['simulation'].timeHistories[0][observable].dropna().values*1e6) plt.plot(exp['experimental_data'][observable_counter]['Temperature'], high_error_optimized,'b--') plt.plot(exp['experimental_data'][observable_counter]['Temperature'],low_error_optimized,'b--') #high_error_original = np.exp(sigmas_original[i][observable_counter]) #high_error_original = np.multiply(high_error_original,self.exp_dict_list_original[i]['simulation'].timeHistories[0][observable].dropna().values) #low_error_original = np.exp(sigmas_original[i][observable_counter]*-1) #low_error_original = np.multiply(low_error_original,self.exp_dict_list_original[i]['simulation'].timeHistoryInterpToExperiment[observable].dropna().values) #plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3, high_error_original,'r--') #plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3,low_error_original,'r--') plt.savefig(self.working_directory+'/'+'Experiment_'+str(i+1)+'_'+str(observable)+'.png', bbox_inches='tight',dpi=1000) observable_counter+=1 elif re.match('[Jj][Ss][Rr]',exp['simulation_type']): nominal=self.run_jsr(self.exp_dict_list_original[i],self.nominal_cti) MSI_model=self.run_jsr(exp,self.new_cti) plt.plot(MSI_model['temperature'],MSI_model[observable]*1e6,'b',label='MSI') plt.plot(nominal['temperature'],nominal[observable]*1e6,'r',label= "$\it{A priori}$ model") plt.plot(exp['experimental_data'][observable_counter]['Temperature'],exp['experimental_data'][observable_counter][observable+'_ppm'],'o',color='black',label='Experimental Data') plt.xlabel('Temperature (K)') plt.ylabel('ppm '+''+str(observable)) plt.title('Experiment_'+str(i+1)) if bool(sigmas_optimized) == True: high_error_optimized = np.exp(sigmas_optimized[i][observable_counter]) print(high_error_optimized) high_error_optimized = np.multiply(high_error_optimized,exp['simulation'].timeHistories[0][observable].dropna().values) low_error_optimized = np.exp(sigmas_optimized[i][observable_counter]*-1) low_error_optimized = np.multiply(low_error_optimized,exp['simulation'].timeHistories[0][observable].dropna().values) #plt.figure() if len(high_error_optimized)>1 and len(low_error_optimized) > 1: plt.plot(exp['experimental_data'][observable_counter]['Temperature'],high_error_optimized*1e6,'b--') plt.plot(exp['experimental_data'][observable_counter]['Temperature'],low_error_optimized*1e6,'b--') else: print(high_error_optimized,observable,exp['simulation'].timeHistories[0][observable].dropna().values) plt.plot(exp['experimental_data'][observable_counter]['Temperature'], high_error_optimized,'rX') plt.plot(exp['experimental_data'][observable_counter]['Temperature'],low_error_optimized,'bX') #high_error_original = np.exp(sigmas_original[i][observable_counter]) # high_error_original = np.multiply(high_error_original,self.exp_dict_list_original[i]['simulation'].timeHistoryInterpToExperiment[observable].dropna().values) #low_error_original = np.exp(sigmas_original[i][observable_counter]*-1) #low_error_original = np.multiply(low_error_original,self.exp_dict_list_original[i]['simulation'].timeHistoryInterpToExperiment[observable].dropna().values) #plt.figure() # plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3, high_error_original,'r--') #plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3,low_error_original,'r--') plt.savefig(os.path.join(self.working_directory,'Experiment_'+str(i+1)+'_'+str(observable)+file_identifier+filetype), bbox_inches='tight',dpi=100) observable_counter+=1 if observable in exp['ignition_delay_observables']: if re.match('[Ss]hock [Tt]ube',exp['simulation_type']): if len(exp['simulation'].temperatures)>1: nominal=self.run_ignition_delay(self.exp_dict_list_original[i], self.nominal_cti) MSI_model=self.run_ignition_delay(exp, self.new_cti) #plt.semilogy(1000/MSI_model['temperature'],MSI_model['delay'],'b',label='MSI') #changed to plotting at nominal temperature #plt.semilogy(1000/MSI_model['temperature'],MSI_model['delay'],'b',label='MSI') #a, b = zip(*sorted(zip(1000/exp['experimental_data'][observable_counter]['temperature'],exp['simulation'].timeHistories[0]['delay'].dropna().values))) a, b = zip(*sorted(zip(1000/np.array(exp['simulation'].temperatures),exp['simulation'].timeHistories[0]['delay'].dropna().values))) plt.semilogy(a,b,'b',label='MSI') plt.semilogy(1000/nominal['temperature'],nominal['delay'],'r',label= "$\it{A priori}$ model") #plt.semilogy(1000/exp['simulation'].timeHistories[0]['temperature'],exp['simulation'].timeHistories[0]['delay'],'b',label='MSI') #plt.semilogy(1000/self.exp_dict_list_original[i]['simulation'].timeHistories[0]['temperature'],self.exp_dict_list_original[i]['simulation'].timeHistories[0]['delay'],'r',label= "$\it{A priori}$ model") plt.semilogy(1000/exp['experimental_data'][observable_counter]['temperature'],exp['experimental_data'][observable_counter][observable+'_s'],'o',color='black',label='Experimental Data') plt.xlabel('1000/T') plt.ylabel('Time (s)') plt.title('Experiment_'+str(i+1)) if bool(sigmas_optimized) == True: high_error_optimized = np.exp(sigmas_optimized[i][observable_counter]) high_error_optimized = np.multiply(high_error_optimized,exp['simulation'].timeHistories[0]['delay'].dropna().values) low_error_optimized = np.exp(sigmas_optimized[i][observable_counter]*-1) low_error_optimized = np.multiply(low_error_optimized,exp['simulation'].timeHistories[0]['delay'].dropna().values) #plt.figure() #print(exp['simulation'].timeHistories[0]['delay'].dropna().values,'THIS IS IN THE PLOTTER') #a, b = zip(*sorted(zip(1000/exp['experimental_data'][observable_counter]['temperature'],high_error_optimized))) a, b = zip(*sorted(zip(1000/np.array(exp['simulation'].temperatures),high_error_optimized))) plt.semilogy(a,b,'b--') #a, b = zip(*sorted(zip(1000/exp['experimental_data'][observable_counter]['temperature'],low_error_optimized))) a, b = zip(*sorted(zip(1000/np.array(exp['simulation'].temperatures),low_error_optimized))) plt.semilogy(a,b,'b--') #plt.plot(1000/exp['experimental_data'][observable_counter]['temperature'],exp['simulation'].timeHistories[0]['delay'].dropna().values,'x') #plt.plot(1000/np.array(exp['simulation'].temperatures),exp['simulation'].timeHistories[0]['delay'].dropna().values,'o') #high_error_original = np.exp(sigmas_original[i][observable_counter]) # high_error_original = np.multiply(high_error_original,self.exp_dict_list_original[i]['simulation'].timeHistoryInterpToExperiment[observable].dropna().values) #low_error_original = np.exp(sigmas_original[i][observable_counter]*-1) #low_error_original = np.multiply(low_error_original,self.exp_dict_list_original[i]['simulation'].timeHistoryInterpToExperiment[observable].dropna().values) #plt.figure() # plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3, high_error_original,'r--') #plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3,low_error_original,'r--') #plt.plot([],'w', label= 'P:'+ str(self.exp_dict_list_original[i]['simulation'].pressures)) key_list = [] for key in self.exp_dict_list_original[i]['simulation'].fullParsedYamlFile['conditions_to_run'][0].keys(): # ['simulation'].fullParsedYamlFile['conditions_to_run'] plt.plot([],'w',label= key+': '+str(self.exp_dict_list_original[i]['simulation'].fullParsedYamlFile['conditions_to_run'][0][key])) key_list.append(key) #plt.legend(handlelength=3) plt.legend(ncol=2) sp = '_'.join(key_list) plt.savefig(os.path.join(self.working_directory,'Experiment_'+str(i+1)+'_'+str(observable)+'.pdf'), bbox_inches='tight',dpi=1000) plt.savefig(os.path.join(self.working_directory,'Experiment_'+str(i+1)+'_'+str(observable)+'.svg'), bbox_inches='tight',dpi=1000) observable_counter+=1 elif re.match('[Rr][Cc][Mm]',exp['simulation_type']): if len(exp['simulation'].temperatures)>1: plt.semilogy(1000/exp['simulation'].timeHistories[0]['ignition_temperature'],exp['simulation'].timeHistories[0]['delay']-exp['simulation'].timeHistories[0]['end_of_compression_time'],'b',label='MSI') plt.semilogy(1000/self.exp_dict_list_original[i]['simulation'].timeHistories[0]['ignition_temperature'],self.exp_dict_list_original[i]['simulation'].timeHistories[0]['delay']-self.exp_dict_list_original[i]['simulation'].timeHistories[0]['end_of_compression_time'],'r',label= "$\it{A priori}$ model") #plt.semilogy(1000/exp['simulation'].timeHistories[0]['temperature'],exp['simulation'].timeHistories[0]['delay'],'b',label='MSI') #plt.semilogy(1000/self.exp_dict_list_original[i]['simulation'].timeHistories[0]['temperature'],self.exp_dict_list_original[i]['simulation'].timeHistories[0]['delay'],'r',label= "$\it{A priori}$ model") plt.semilogy(1000/exp['experimental_data'][observable_counter]['temperature'],exp['experimental_data'][observable_counter][observable+'_s'],'o',color='black',label='Experimental Data') plt.xlabel('1000/T (1000/K)') plt.ylabel('Time (ms)') plt.title('Experiment_'+str(i+1)) if bool(sigmas_optimized) == True: high_error_optimized = np.exp(sigmas_optimized[i][observable_counter]) high_error_optimized = np.multiply(high_error_optimized,(exp['simulation'].timeHistories[0]['delay']-exp['simulation'].timeHistories[0]['end_of_compression_time']).dropna().values) low_error_optimized = np.exp(sigmas_optimized[i][observable_counter]*-1) low_error_optimized = np.multiply(low_error_optimized,(exp['simulation'].timeHistories[0]['delay']-exp['simulation'].timeHistories[0]['end_of_compression_time']).dropna().values) #plt.figure() a, b = zip(*sorted(zip(1000/exp['experimental_data'][observable_counter]['ignition_temperature'],high_error_optimized))) plt.semilogy(a,b,'b--') #plt.plot(1000/exp['experimental_data'][observable_counter]['temperature'],low_error_optimized,'b--') a, b = zip(*sorted(zip(1000/exp['experimental_data'][observable_counter]['ignition_temperature'],low_error_optimized))) plt.semilogy(a,b,'b--') #high_error_original = np.exp(sigmas_original[i][observable_counter]) # high_error_original = np.multiply(high_error_original,self.exp_dict_list_original[i]['simulation'].timeHistoryInterpToExperiment[observable].dropna().values) #low_error_original = np.exp(sigmas_original[i][observable_counter]*-1) #low_error_original = np.multiply(low_error_original,self.exp_dict_list_original[i]['simulation'].timeHistoryInterpToExperiment[observable].dropna().values) #plt.figure() # plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3, high_error_original,'r--') #plt.plot(exp['experimental_data'][observable_counter]['Time']*1e3,low_error_original,'r--') plt.savefig(os.path.join(self.working_directory,'Experiment_'+str(i+1)+'_'+str(observable)+'.pdf'), bbox_inches='tight',dpi=1000) observable_counter+=1 if 'perturbed_coef' in exp.keys(): wavelengths = self.parsed_yaml_list[i]['absorbanceCsvWavelengths'] plt.figure() for k,wl in enumerate(wavelengths): plt.plot(exp['absorbance_experimental_data'][k]['time']*1e3,exp['absorbance_experimental_data'][k]['Absorbance_'+str(wl)],'o',color='black',label='Experimental Data') plt.plot(exp['simulation'].timeHistories[0]['time']*1e3,exp['absorbance_calculated_from_model'][wl],'b',label='MSI') plt.plot(self.exp_dict_list_original[i]['simulation'].timeHistories[0]['time']*1e3,self.exp_dict_list_original[i]['absorbance_calculated_from_model'][wl],'r',label= "$\it{A priori}$ model") #plt.plot(exp['absorbance_experimental_data'][k]['time']*1e3,exp['absorbance_experimental_data'][k]['Absorbance_'+str(wl)],'o',color='black',label='Experimental Data') plt.xlabel('Time (ms)') plt.ylabel('Absorbance'+''+str(wl)) plt.title('Experiment_'+str(i+1)) if bool(sigmas_optimized)==True: high_error_optimized = np.exp(sigmas_optimized[i][observable_counter]) high_error_optimized = np.multiply(high_error_optimized,exp['absorbance_model_data'][wl]) low_error_optimized = np.exp(sigmas_optimized[i][observable_counter]*-1) low_error_optimized = np.multiply(low_error_optimized,exp['absorbance_model_data'][wl]) plt.plot(exp['absorbance_experimental_data'][k]['time']*1e3,high_error_optimized,'b--') plt.plot(exp['absorbance_experimental_data'][k]['time']*1e3,low_error_optimized,'b--') high_error_original = np.exp(sigmas_original[i][observable_counter]) high_error_original = np.multiply(high_error_original,self.exp_dict_list_original[i]['absorbance_model_data'][wl]) low_error_original = np.exp(sigmas_original[i][observable_counter]*-1) low_error_original = np.multiply(low_error_original,self.exp_dict_list_original[i]['absorbance_model_data'][wl]) #plt.plot(exp['absorbance_experimental_data'][k]['time']*1e3,high_error_original,'r--') #plt.plot(exp['absorbance_experimental_data'][k]['time']*1e3,low_error_original,'r--') # if bool(sigmas_optimized)==True and i+1 == 11: # plt.ylim(top=.35) #start here key_list=[] plt.plot([],'w' ,label= 'T:'+ str(self.exp_dict_list_original[i]['simulation'].temperature)) #plt.plot([],'w', label= 'P:'+ str(self.exp_dict_list_original[i]['simulation'].pressure)) for key in self.exp_dict_list_original[i]['simulation'].conditions.keys(): plt.plot([],'w',label= key+': '+str(self.exp_dict_list_original[i]['simulation'].conditions[key])) key_list.append(key) #plt.legend(handlelength=3) plt.legend(ncol=2) #plt.savefig(self.working_directory+'/'+'Exp_'+str(i+1)+'_'+str(observable)+'_'+str(self.exp_dict_list_original[i]['simulation'].temperature)+'K_'+sp+'.pdf', bbox_inches='tight') sp = '_'.join(key_list) plt.savefig(self.working_directory+'/'+'Exp_'+str(i+1)+' '+'Absorb at'+'_'+str(wl)+'_'+str(self.exp_dict_list_original[i]['simulation'].temperature)+'K_'+sp+'.pdf', bbox_inches='tight') plt.savefig(self.working_directory+'/'+'Exp_'+str(i+1)+' '+'Absorb at'+'_'+str(wl)+'_'+str(self.exp_dict_list_original[i]['simulation'].temperature)+'K_'+sp+'.svg', bbox_inches='tight',transparent=True) # make function to plot rate constants def plotting_rate_constants(self,optimized_cti_file='', original_cti_file='', initial_temperature=250, final_temperature=2500, master_equation_reactions=[]): gas_optimized = ct.Solution(optimized_cti_file) gas_original = ct.Solution(original_cti_file) def unique_list(seq): checked = [] for e in seq: if e not in checked: checked.append(e) return checked def target_values_for_S(target_value_csv, exp_dict_list, S_matrix, master_equation_reaction_list = [], master_equation_sensitivites = {}): target_value_csv = pd.read_csv(target_value_csv) target_reactions = target_value_csv['Reaction'] target_temp = target_value_csv['temperature'] target_press = target_value_csv['pressure'] target_k = target_value_csv['k'] reactions_in_cti_file = exp_dict_list[0]['simulation'].processor.solution.reaction_equations() number_of_reactions_in_cti = len(reactions_in_cti_file) As = [] Ns = [] Eas = [] def create_empty_nested_reaction_list(): nested_reaction_list = [[] for x in range(len(master_equation_reaction_list))] for reaction in master_equation_reaction_list: for i,MP in enumerate(master_equation_sensitivites[reaction]): nested_reaction_list[master_equation_reaction_list.index(reaction)].append(0) return nested_reaction_list def create_tuple_list(array_of_sensitivities): #stub tuple_list = [] for ix,iy in np.ndindex(array_of_sensitivities.shape): tuple_list.append((ix,iy)) return tuple_list MP_stack = [] target_values_to_stack = [] master_equation_cheby_instance = meq.Master_Equation(T_min=self.T_min,T_max=self.T_max,P_min=self.P_min,P_max=self.P_max) for i,reaction in enumerate(target_reactions): if reaction in master_equation_reaction_list: nested_reaction_list = create_empty_nested_reaction_list() for j, MP_array in enumerate(master_equation_sensitivites[reaction]): tuple_list = create_tuple_list(MP_array) temp = [] counter = 0 for sensitivity in np.nditer(MP_array,order='C'): k = tuple_list[counter][0] l= tuple_list[counter][1] counter +=1 #need to add reduced p and t, and check these units were using to map #these might not work #t_alpha= meq.Master_Equation.chebyshev_specific_poly(self,k,meq.Master_Equation.calc_reduced_T(self,target_temp[i])) t_alpha= master_equation_cheby_instance.chebyshev_specific_poly(k,master_equation_cheby_instance.calc_reduced_T(target_temp[i])) if target_press[i] ==0: target_press_new = 1e-9 else: target_press_new=target_press[i] #p_alpha = meq.Master_Equation.chebyshev_specific_poly(self,l,meq.Master_Equation.calc_reduced_P(self,target_press_new*101325)) p_alpha = master_equation_cheby_instance.chebyshev_specific_poly(l,master_equation_cheby_instance.calc_reduced_P(target_press_new*101325)) #these might nowt work single_alpha_map = t_alpha*p_alpha*sensitivity temp.append(single_alpha_map) temp =sum(temp) #should there be an = temp here #nested_reaction_list[master_equation_reaction_list.index(reaction)][j]=temp nested_reaction_list[master_equation_reaction_list.index(reaction)][j]=temp temp2 = nested_reaction_list flat_list = [item for sublist in temp2 for item in sublist] #print(flat_list) MP_stack.append(nested_reaction_list) flat_list = np.array(flat_list) flat_list = flat_list.reshape((1,flat_list.shape[0])) target_values_to_stack.append(flat_list) else: #this will need to get fixed if we want to handle all reactions as chevy A_temp = np.zeros((1,number_of_reactions_in_cti-len(master_equation_reaction_list))) N_temp = np.zeros((1,number_of_reactions_in_cti-len(master_equation_reaction_list))) Ea_temp = np.zeros((1,number_of_reactions_in_cti-len(master_equation_reaction_list))) #decide if this mapping is correct A_temp[0,reactions_in_cti_file.index(reaction)] = 1 N_temp [0,reactions_in_cti_file.index(reaction)] = np.log(target_temp[i]) Ea_temp[0,reactions_in_cti_file.index(reaction)] = (-1/target_temp[i]) As.append(A_temp) Ns.append(N_temp) Eas.append(Ea_temp) A_temp = A_temp.reshape((1,A_temp.shape[1])) N_temp = N_temp.reshape((1,N_temp.shape[1])) Ea_temp = Ea_temp.reshape((1,Ea_temp.shape[1])) target_values_to_stack.append(np.hstack((A_temp,N_temp,Ea_temp))) # might need to edit this to pass in s? and S_matrix = S_matrix shape_s = S_matrix.shape S_target_values = [] for i,row in enumerate(target_values_to_stack): if target_reactions[i] in master_equation_reaction_list: zero_to_append_infront = np.zeros((1,((number_of_reactions_in_cti-len(master_equation_reaction_list))*3))) zero_to_append_behind = np.zeros((1, shape_s[1] - ((number_of_reactions_in_cti-len(master_equation_reaction_list))*3) - np.shape(row)[1] )) temp_array = np.hstack((zero_to_append_infront,row,zero_to_append_behind)) S_target_values.append(temp_array) else: zero_to_append_behind = np.zeros((1,shape_s[1]-np.shape(row)[1])) temp_array = np.hstack((row,zero_to_append_behind)) S_target_values.append(temp_array) S_target_values = np.vstack((S_target_values)) return S_target_values def sort_rate_constant_target_values(parsed_csv,unique_reactions,gas): reaction_list_from_mechanism = gas.reaction_equations() target_value_ks = [[] for reaction in range(len(unique_reactions))] target_value_temps = [[] for reaction in range(len(unique_reactions))] reaction_list_from_mechanism = gas.reaction_equations() for i,reaction in enumerate(parsed_csv['Reaction']): idx = reaction_list_from_mechanism.index(reaction) target_value_ks[unique_reactions.index(idx)].append(parsed_csv['k'][i]) target_value_temps[unique_reactions.index(idx)].append(parsed_csv['temperature'][i]) return target_value_temps,target_value_ks def rate_constant_over_temperature_range_from_cantera(reaction_number, gas, initial_temperature=250, final_temperature=2500, pressure=1, conditions = {'H2':2,'O2':1,'N2':4}): Temp = [] k = [] for temperature in np.arange(initial_temperature,final_temperature,1): gas.TPX = temperature,pressure*101325,conditions Temp.append(temperature) k.append(gas.forward_rate_constants[reaction_number]*1000) return Temp,k def calculate_sigmas_for_rate_constants(k_target_value_S_matrix,k_target_values_parsed_csv,unique_reactions,gas,covarience): reaction_list_from_mechanism = gas.reaction_equations() sigma_list_for_target_ks = [[] for reaction in range(len(unique_reactions))] shape = k_target_value_S_matrix.shape for row in range(shape[0]): #print(row) SC = np.dot(k_target_value_S_matrix[row,:],covarience) sigma_k = np.dot(SC,np.transpose(k_target_value_S_matrix[row,:])) sigma_k = np.sqrt(sigma_k) #print(row) #print(k_target_values_parsed_csv['Reaction'][row]) indx = reaction_list_from_mechanism.index(k_target_values_parsed_csv['Reaction'][row]) sigma_list_for_target_ks[unique_reactions.index(indx)].append(sigma_k) return sigma_list_for_target_ks def calculating_target_value_ks_from_cantera_for_sigmas(k_target_values_parsed_csv,gas,unique_reactions): target_value_ks = [[] for reaction in range(len(unique_reactions))] target_reactions = k_target_values_parsed_csv['Reaction'] target_temp = k_target_values_parsed_csv['temperature'] target_press = k_target_values_parsed_csv['pressure'] reactions_in_cti_file = gas.reaction_equations() #print(reactions_in_cti_file) for i,reaction in enumerate(target_reactions): if target_press[i] == 0: pressure = 1e-9 else: pressure = target_press[i] gas.TPX = target_temp[i],pressure*101325,{'H2O2':0.003094,'O2':0.000556,'H2O':0.001113,'Ar':0.995237} reaction_number_in_cti = reactions_in_cti_file.index(reaction) k = gas.forward_rate_constants[reaction_number_in_cti] indx = reactions_in_cti_file.index(reaction) target_value_ks[unique_reactions.index(indx)].append(k*1000) return target_value_ks if bool(self.target_value_rate_constant_csv) and self.k_target_values=='On': S_matrix_k_target_values_extra = target_values_for_S(self.target_value_rate_constant_csv_extra_values, self.exp_dict_list_optimized, self.S_matrix, master_equation_reaction_list = master_equation_reactions, master_equation_sensitivites=self.cheby_sensitivity_dict) #paste here unique_reactions_optimized=[] unique_reactions_original = [] reaction_list_from_mechanism_original = gas_original.reaction_equations() reaction_list_from_mechanism = gas_optimized.reaction_equations() k_target_value_csv_extra = pd.read_csv(self.target_value_rate_constant_csv_extra_values) k_target_value_csv = pd.read_csv(self.target_value_rate_constant_csv) for row in range(k_target_value_csv_extra.shape[0]): unique_reactions_optimized.append(reaction_list_from_mechanism.index(k_target_value_csv_extra['Reaction'][row])) unique_reactions_original.append(reaction_list_from_mechanism_original.index(k_target_value_csv_extra['Reaction'][row])) unique_reactions_optimized = unique_list(unique_reactions_optimized) unique_reactions_original = unique_list(unique_reactions_original) sigma_list_for_target_ks_optimized = calculate_sigmas_for_rate_constants(S_matrix_k_target_values_extra,k_target_value_csv_extra,unique_reactions_optimized,gas_optimized,self.covarience) self.sigma_list_for_target_ks_optimized = sigma_list_for_target_ks_optimized sigma_list_for_target_ks_original = calculate_sigmas_for_rate_constants(S_matrix_k_target_values_extra,k_target_value_csv_extra,unique_reactions_original,gas_original,self.original_covariance) self.sigma_list_for_target_ks_original = sigma_list_for_target_ks_original ###################### target_value_temps_optimized,target_value_ks_optimized = sort_rate_constant_target_values(k_target_value_csv_extra,unique_reactions_optimized,gas_optimized) target_value_temps_original,target_value_ks_original = sort_rate_constant_target_values(k_target_value_csv_extra,unique_reactions_original,gas_original) ############################################# unique_reactions_optimized_for_plotting=[] unique_reactions_original_for_plotting = [] for row in range(k_target_value_csv.shape[0]): unique_reactions_optimized_for_plotting.append(reaction_list_from_mechanism.index(k_target_value_csv['Reaction'][row])) unique_reactions_original_for_plotting.append(reaction_list_from_mechanism_original.index(k_target_value_csv['Reaction'][row])) unique_reactions_optimized_for_plotting = unique_list(unique_reactions_optimized) unique_reactions_original_for_plotting = unique_list(unique_reactions_original) target_value_temps_optimized_for_plotting,target_value_ks_optimized_for_plotting = sort_rate_constant_target_values(k_target_value_csv,unique_reactions_optimized_for_plotting,gas_optimized) target_value_temps_original_for_plotting,target_value_ks_original_for_plotting = sort_rate_constant_target_values(k_target_value_csv,unique_reactions_original_for_plotting,gas_original) ############################################# target_value_ks_calculated_with_cantera_optimized = calculating_target_value_ks_from_cantera_for_sigmas(k_target_value_csv_extra,gas_optimized,unique_reactions_optimized) target_value_ks_calculated_with_cantera_original = calculating_target_value_ks_from_cantera_for_sigmas(k_target_value_csv_extra,gas_original,unique_reactions_original) for i,reaction in enumerate(unique_reactions_optimized): plt.figure() #stub Temp_optimized,k_optimized = rate_constant_over_temperature_range_from_cantera(reaction, gas_optimized, initial_temperature=initial_temperature, final_temperature=final_temperature, pressure=1, conditions={'H2':2,'O2':1,'Ar':4}) plt.semilogy(Temp_optimized,k_optimized,'b') #calculate sigmas high_error_optimized = np.exp(np.array(sigma_list_for_target_ks_optimized[i])) high_error_optimized = np.multiply(high_error_optimized,target_value_ks_calculated_with_cantera_optimized[i]) low_error_optimized = np.exp(np.array(sigma_list_for_target_ks_optimized[i])*-1) low_error_optimized = np.multiply(low_error_optimized,target_value_ks_calculated_with_cantera_optimized[i]) #plt.semilogy(target_value_temps_optimized[i],high_error_optimized,'b--') a, b = zip(*sorted(zip(target_value_temps_optimized[i],high_error_optimized))) plt.semilogy(a,b,'b--') # print(a,b) a, b = zip(*sorted(zip(target_value_temps_optimized[i],low_error_optimized))) plt.semilogy(a,b,'b--') #stubb Temp_original,k_original = rate_constant_over_temperature_range_from_cantera(reaction_list_from_mechanism_original.index(reaction_list_from_mechanism[reaction]), gas_original, initial_temperature=initial_temperature, final_temperature=final_temperature, pressure=1, conditions={'H2':2,'O2':1,'Ar':4}) plt.semilogy(Temp_original,k_original,'r') high_error_original = np.exp(sigma_list_for_target_ks_original[unique_reactions_original.index(reaction_list_from_mechanism_original.index(reaction_list_from_mechanism[reaction]))]) high_error_original = np.multiply(high_error_original,target_value_ks_calculated_with_cantera_original[unique_reactions_original.index(reaction_list_from_mechanism_original.index(reaction_list_from_mechanism[reaction]))]) low_error_original = np.exp(np.array(sigma_list_for_target_ks_original[unique_reactions_original.index(reaction_list_from_mechanism_original.index(reaction_list_from_mechanism[reaction]))])*-1) low_error_original = np.multiply(low_error_original,target_value_ks_calculated_with_cantera_original[unique_reactions_original.index(reaction_list_from_mechanism_original.index(reaction_list_from_mechanism[reaction]))]) a, b = zip(*sorted(zip(target_value_temps_original[unique_reactions_original.index(reaction_list_from_mechanism_original.index(reaction_list_from_mechanism[reaction]))],high_error_original))) plt.semilogy(a,b,'r--') a, b = zip(*sorted(zip(target_value_temps_original[unique_reactions_original.index(reaction_list_from_mechanism_original.index(reaction_list_from_mechanism[reaction]))],low_error_original))) plt.semilogy(a,b,'r--') #plt.semilogy(target_value_temps_optimized[i],target_value_ks_optimized[i],'o',color='black') plt.semilogy(target_value_temps_optimized_for_plotting[i],target_value_ks_optimized_for_plotting[i],'o',color='black') plt.xlabel('Temperature (K)') plt.ylabel('Kmol/m^3-s') plt.title(reaction_list_from_mechanism[reaction]) plt.savefig(self.working_directory+'/'+reaction_list_from_mechanism[reaction]+'.pdf', bbox_inches='tight') plt.savefig(self.working_directory+'/'+reaction_list_from_mechanism[reaction]+'.svg', bbox_inches='tight') elif bool(self.target_value_rate_constant_csv) and self.k_target_values=='Off': unique_reactions_optimized=[] unique_reactions_original = [] reaction_list_from_mechanism_original = gas_original.reaction_equations() reaction_list_from_mechanism = gas_optimized.reaction_equations() k_target_value_csv = pd.read_csv(self.target_value_rate_constant_csv) for row in range(k_target_value_csv.shape[0]): unique_reactions_optimized.append(reaction_list_from_mechanism.index(k_target_value_csv['Reaction'][row])) unique_reactions_original.append(reaction_list_from_mechanism_original.index(k_target_value_csv['Reaction'][row])) unique_reactions_optimized = unique_list(unique_reactions_optimized) unique_reactions_original = unique_list(unique_reactions_original) ###################### target_value_temps_optimized,target_value_ks_optimized = sort_rate_constant_target_values(k_target_value_csv,unique_reactions_optimized,gas_optimized) target_value_temps_original,target_value_ks_original = sort_rate_constant_target_values(k_target_value_csv,unique_reactions_original,gas_original) ############################################# target_value_ks_calculated_with_cantera_optimized = calculating_target_value_ks_from_cantera_for_sigmas(k_target_value_csv,gas_optimized,unique_reactions_optimized) target_value_ks_calculated_with_cantera_original = calculating_target_value_ks_from_cantera_for_sigmas(k_target_value_csv,gas_original,unique_reactions_original) for i,reaction in enumerate(unique_reactions_optimized): plt.figure() Temp_optimized,k_optimized = rate_constant_over_temperature_range_from_cantera(reaction, gas_optimized, initial_temperature=250, final_temperature=2500, pressure=1, conditions={'H2':2,'O2':1,'Ar':4}) plt.semilogy(Temp_optimized,k_optimized,'b') Temp_original,k_original = rate_constant_over_temperature_range_from_cantera(reaction_list_from_mechanism_original.index(reaction_list_from_mechanism[reaction]), gas_original, initial_temperature=250, final_temperature=2500, pressure=1, conditions={'H2':2,'O2':1,'Ar':4}) plt.semilogy(Temp_original,k_original,'r') plt.semilogy(target_value_temps_optimized[i],target_value_ks_optimized[i],'o',color='black') plt.xlabel('Temperature (K)') plt.ylabel('Kmol/m^3-s') plt.title(reaction_list_from_mechanism[reaction]) plt.savefig(self.working_directory+'/'+reaction_list_from_mechanism[reaction]+'.pdf', bbox_inches='tight') plt.savefig(self.working_directory+'/'+reaction_list_from_mechanism[reaction]+'.svg', bbox_inches='tight') def plotting_X_itterations(self,list_of_X_values_to_plot = [], list_of_X_array=[],number_of_iterations=None): for value in list_of_X_values_to_plot: temp = [] for array in list_of_X_array: temp.append(array[value][0]) plt.figure() plt.plot(np.arange(0,number_of_iterations,1),temp) return def getting_matrix_diag(self,cov_matrix): diag = cov_matrix.diagonal() return diag def Y_matrix_plotter(self,Y_matrix,exp_dict_list_optimized,y_matrix,sigma): #sigmas =[[] for x in range(len(self.simulation_lengths_of_experimental_data))] counter=0 for x in range(len(self.simulation_lengths_of_experimental_data)): observable_counter = 0 for y in range(len(self.simulation_lengths_of_experimental_data[x])): #for z in np.arange(counter,(self.simulation_lengths_of_experimental_data[x][y]+counter)): plt.figure() Y_values_to_plot = list(Y_matrix[counter:self.simulation_lengths_of_experimental_data[x][y]+counter,:]) y_values_to_plot = list(y_matrix[counter:self.simulation_lengths_of_experimental_data[x][y]+counter,:]) sigmas_to_plot = list(sigma[counter:self.simulation_lengths_of_experimental_data[x][y]+counter,:]) if 'perturbed_coef' in exp_dict_list_optimized[x].keys(): wavelengths = self.parsed_yaml_list[x]['absorbanceCsvWavelengths'][0] time = exp_dict_list_optimized[x]['absorbance_experimental_data'][0]['time'] plt.subplot(4, 1, 1) plt.title('Experiment_'+str(x+1)+'_Wavelength_'+str(wavelengths)) plt.plot(time*1e3,Y_values_to_plot) plt.tick_params(labelbottom=False) plt.ylabel('Y_matrix') plt.subplot(plt.subplot(4, 1, 2)) plt.plot(time*1e3,y_values_to_plot) plt.tick_params(labelbottom=False) plt.ylabel('y_matrix') plt.subplot(plt.subplot(4, 1, 3)) plt.plot(time*1e3,sigmas_to_plot) plt.tick_params(labelbottom=False) plt.ylabel('sigma') plt.subplot(plt.subplot(4, 1, 4)) plt.plot(time*1e3,np.array(Y_values_to_plot)/np.array(sigmas_to_plot)) plt.ylabel('Y/sigma') plt.xlabel('time') plt.savefig(self.working_directory+'/'+'Experiment_'+str(x+1)+' '+'Absorbance at'+'_'+str(wavelengths)+'.pdf', bbox_inches='tight') else: time = exp_dict_list_optimized[x]['experimental_data'][y]['Time'] plt.subplot(4, 1, 1) plt.plot(time*1e3,Y_values_to_plot) plt.tick_params(labelbottom=False) plt.title('Experiment_'+str(x+1)+'_observable_'+exp_dict_list_optimized[0]['observables'][observable_counter]) plt.ylabel('Y_matrix') plt.subplot(plt.subplot(4, 1, 2)) plt.plot(time*1e3,y_values_to_plot) plt.tick_params(labelbottom=False) plt.ylabel('y_matrix') plt.subplot(plt.subplot(4, 1, 3)) plt.plot(time*1e3,sigmas_to_plot) plt.tick_params(labelbottom=False) plt.ylabel('sigma') plt.subplot(plt.subplot(4, 1, 4)) plt.plot(time*1e3,np.array(Y_values_to_plot)/np.array(sigmas_to_plot)) plt.ylabel('Y/sigma') plt.xlabel('time') plt.savefig('Experiment_'+str(x+1)+'_observable_'+exp_dict_list_optimized[0]['observables'][observable_counter]+'.pdf', bbox_inches='tight') observable_counter+=1 counter = counter + self.simulation_lengths_of_experimental_data[x][y] return def shorten_sigma(self): flat_list = [item for sublist in self.simulation_lengths_of_experimental_data for item in sublist] length = sum(flat_list) observables_list = self.Ydf['value'].tolist()[length:] short_sigma = list(self.sigma)[length:] #print(flat_list) if bool(self.target_value_rate_constant_csv) and self.k_target_values=='On': k_target_value_csv = pd.read_csv(self.target_value_rate_constant_csv) shape = k_target_value_csv.shape[0] slc = len(observables_list) - shape observables_list = observables_list[:slc] short_sigma = short_sigma[:slc] short_sigma = np.array(short_sigma) self.short_sigma = short_sigma return def sort_top_uncertainty_weighted_sens(self,top_sensitivity=10): S_matrix_copy = copy.deepcopy(self.S_matrix) S_matrix_copy = copy.deepcopy(self.S_matrix_original) self.shorten_sigma() sigma_csv = self.sigma_uncertainty_weighted_sensitivity_csv if bool(sigma_csv): df = pd.read_csv(sigma_csv) Sig = np.array(df['Sigma']) Sig = Sig.reshape((Sig.shape[0],1)) elif self.sigma_ones==True: shape = len(self.short_sigma) Sig = np.ones((shape,1)) else: Sig = self.short_sigma #Sig = self.sigma for pp in range(np.shape(S_matrix_copy)[1]): S_matrix_copy[:,pp] *=Sig[pp] sensitivitys =[[] for x in range(len(self.simulation_lengths_of_experimental_data))] topSensitivities = [[] for x in range(len(self.simulation_lengths_of_experimental_data))] start=0 stop = 0 for x in range(len(self.simulation_lengths_of_experimental_data)): for y in range(len(self.simulation_lengths_of_experimental_data[x])): stop = self.simulation_lengths_of_experimental_data[x][y] + start temp = S_matrix_copy[start:stop,:] sort_s= pd.DataFrame(temp).reindex(pd.DataFrame(temp).abs().max().sort_values(ascending=False).index, axis=1) cc=pd.DataFrame(sort_s).iloc[:,:top_sensitivity] top_five_reactions=cc.columns.values.tolist() topSensitivities[x].append(top_five_reactions) #ccn=pd.DataFrame(cc).as_matrix() ccn=pd.DataFrame(cc).to_numpy() sensitivitys[x].append(ccn) start = start + self.simulation_lengths_of_experimental_data[x][y] return sensitivitys,topSensitivities def getting_time_profiles_for_experiments(self, exp_dict_list_optimized): time_profiles =[[] for x in range(len(self.simulation_lengths_of_experimental_data))] observables = [[] for x in range(len(self.simulation_lengths_of_experimental_data))] for i,exp in enumerate(self.exp_dict_list_optimized): observable_counter=0 for j,observable in enumerate(exp['mole_fraction_observables'] + exp['concentration_observables'] + exp['ignition_delay_observables']): if observable == None: continue if observable in exp['mole_fraction_observables']: if re.match('[Ss]hock [Tt]ube',exp['simulation_type']): time_profiles[i].append(exp['experimental_data'][observable_counter]['Time']*1e3) observables[i].append(observable) observable_counter+=1 elif re.match('[Jj][Ss][Rr]',exp['simulation_type']): time_profiles[i].append(exp['experimental_data'][observable_counter]['Temperature']) observables[i].append(observable) observable_counter+=1 elif re.match('[Ff]low[ -][Rr][eactor]',exp['simulation_type']): time_profiles[i].append(exp['experimental_data'][observable_counter]['Temperature']) observables[i].append(observable) observable_counter+=1 elif observable in exp['concentration_observables']: if re.match('[Ss]hock [Tt]ube',exp['simulation_type']): time_profiles[i].append(exp['experimental_data'][observable_counter]['Time']*1e3) observables[i].append(observable) observable_counter+=1 elif re.match('[Jj][Ss][Rr]',exp['simulation_type']): time_profiles[i].append(exp['experimental_data'][observable_counter]['Temperature']) observables[i].append(observable) observable_counter+=1 elif re.match('[Ff]low[ -][Rr][eactor]',exp['simulation_type']): time_profiles[i].append(exp['experimental_data'][observable_counter]['Temperature']) observables[i].append(observable) observable_counter+=1 elif observable in exp['ignition_delay_observables']: if re.match('[Ss]hock [Tt]ube',exp['simulation_type']): time_profiles[i].append(exp['experimental_data'][observable_counter]['temperature']) observables[i].append(observable) observable_counter+=1 if 'perturbed_coef' in exp.keys(): wavelengths = self.parsed_yaml_list[i]['absorbanceCsvWavelengths'] for k,wl in enumerate(wavelengths): time_profiles[i].append(exp['absorbance_experimental_data'][k]['time']*1e3) observables[i].append('Absorbance_'+str(wl)) self.time_profiles = time_profiles self.observable_list = observables return time_profiles def get_observables_list(self): #use this function to return observable list and uncertainty pass in csv and get unc and csv sigma_csv = self.sigma_uncertainty_weighted_sensitivity_csv gas = ct.Solution(self.new_cti) reaction_equations = gas.reaction_equations() if bool(sigma_csv): df = pd.read_csv(sigma_csv) Sig = df['Sigma'].values Sig = np.array(Sig) Sig = Sig.reshape((Sig.shape[0],1)) observable_list = df['Observable'].tolist() self.sigma_list = Sig #print(self.sigma_list) return observable_list else: flat_list = [item for sublist in self.simulation_lengths_of_experimental_data for item in sublist] length = sum(flat_list) observables_list = self.Ydf['value'].tolist()[length:] if bool(self.target_value_rate_constant_csv) and self.k_target_values=='On': k_target_value_csv = pd.read_csv(self.target_value_rate_constant_csv) shape = k_target_value_csv.shape[0] slc = len(observables_list) - shape observables_list = observables_list[:slc] #transform observable list observable_list_transformed = [] for obs in observables_list: lst = obs.split('_') if lst[0] =='A': reaction_indx = int(lst[1]) reaction = reaction_equations[reaction_indx] observable_list_transformed.append('A_'+reaction) elif lst[0] =='n': reaction_indx = int(lst[1]) reaction = reaction_equations[reaction_indx] observable_list_transformed.append('n_'+reaction) elif lst[0] =='Ea': reaction_indx = int(lst[1]) reaction = reaction_equations[reaction_indx] observable_list_transformed.append('Ea_'+reaction) else: observable_list_transformed.append(obs) return observable_list_transformed def plotting_uncertainty_weighted_sens(self): sensitivities,top_sensitivities = self.sort_top_uncertainty_weighted_sens() observables_list = self.get_observables_list() if bool(self.sigma_uncertainty_weighted_sensitivity_csv): sigma_list = self.sigma_list else: sigma_list = list(self.short_sigma) #start here time_profiles = self.getting_time_profiles_for_experiments(self.exp_dict_list_optimized) list_of_experiment_observables = self.observable_list def subplot_function(number_of_observables_in_simulation,time_profiles,sensitivities,top_sensitivity_single_exp,observables_list,list_of_experiment_observables,experiment_number): #plt.figure(figsize=(2,6)) #stub plt.figure() for plot_number in range(number_of_observables_in_simulation): for c,top_columns in enumerate(top_sensitivity_single_exp[plot_number]): plt.subplot(number_of_observables_in_simulation,1,plot_number+1) if plot_number==0: plt.title('Experiment_'+str(experiment_number+1)) plt.plot(time_profiles[plot_number],sensitivities[plot_number][:,c],label = observables_list[top_columns] +'_'+str(sigma_list[top_columns])) plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=1.5) plt.ylabel(list_of_experiment_observables[plot_number]) top,bottom = plt.ylim() left,right = plt.xlim() plt.legend(ncol=5, loc='upper left',bbox_to_anchor=(-.5,-.3)) #plt.legend(ncol=3, loc='upper left',bbox_to_anchor=(1.2,2),fontsize=2) if self.simulation_run==None: plt.savefig(self.working_directory+'/'+'Experiment_'+str(experiment_number+1)+'.pdf', bbox_inches='tight') else: plt.title('Experiment_'+str(self.simulation_run)) plt.savefig(self.working_directory+'/'+'Experiment_'+str(self.simulation_run)+'.pdf', bbox_inches='tight') for x in range(len(sensitivities)): number_of_observables_in_simulation = len(sensitivities[x]) subplot_function(number_of_observables_in_simulation,time_profiles[x],sensitivities[x],top_sensitivities[x],observables_list,list_of_experiment_observables[x],x) return def plotting_rate_constants_six_paramter_fit(self,optimized_cti_file='', original_cti_file='', initial_temperature=250, final_temperature=2500, master_equation_reactions = [], six_parameter_fit_dict_optimized = {}, six_parameter_fit_dict_nominal = {}, six_parameter_fit_sensitivity_dict = {}): gas_optimized = ct.Solution(optimized_cti_file) gas_original = ct.Solution(original_cti_file) def unique_list(seq): checked = [] for e in seq: if e not in checked: checked.append(e) return checked ################################################################################ def target_values_for_S_six_parameter_fit(target_value_csv, exp_dict_list, S_matrix, master_equation_reaction_list = [], six_parameter_fit_sensitivity_dict = {}): target_value_csv = pd.read_csv(target_value_csv) target_reactions = target_value_csv['Reaction'] target_temp = target_value_csv['temperature'] target_press = target_value_csv['pressure'] target_k = target_value_csv['k'] reactions_in_cti_file = exp_dict_list[0]['simulation'].processor.solution.reaction_equations() number_of_reactions_in_cti = len(reactions_in_cti_file) As = [] Ns = [] Eas = [] Number_of_MP = [] #nested_reaction_list = [[] for x in range(len(master_equation_reaction_list))] #print(six_parameter_fit_sensitivity_dict.keys()) def create_empty_nested_reaction_list(): nested_reaction_list = [[] for x in range(len(master_equation_reaction_list))] for reaction in master_equation_reaction_list: for i,MP in enumerate(six_parameter_fit_sensitivity_dict[reaction]['A']): nested_reaction_list[master_equation_reaction_list.index(reaction)].append(0) #copy.deepcopy(nested_reaction_list) #don't think i need this return nested_reaction_list MP_stack = [] target_values_to_stack = [] for i,reaction in enumerate(target_reactions): #temp_array = np.zeros((1,Number_of_MP)) if reaction in master_equation_reaction_list: nested_reaction_list = create_empty_nested_reaction_list() for s,sensitivity in enumerate(six_parameter_fit_sensitivity_dict[reaction]['A']): #stub #start here tomorrow nested_reaction_list[master_equation_reaction_list.index(reaction)][s] = 1*six_parameter_fit_sensitivity_dict[reaction]['A'][s] + np.log(target_temp[i])*six_parameter_fit_sensitivity_dict[reaction]['n'][s] + (-1000/target_temp[i])*six_parameter_fit_sensitivity_dict[reaction]['Ea'][s] + (-(1000/target_temp[i])**3)*six_parameter_fit_sensitivity_dict[reaction]['c'][s]+ (-(1000/target_temp[i])**-1)*six_parameter_fit_sensitivity_dict[reaction]['d'][s] + (-(1000/target_temp[i])**-3)*six_parameter_fit_sensitivity_dict[reaction]['f'][s] #nested_reaction_list[master_equation_reaction_list.index(reaction)][s] = 1*six_parameter_fit_sensitivity_dict[reaction]['A'][s] + np.log(target_temp[i])*six_parameter_fit_sensitivity_dict[reaction]['n'][s] + (-1/target_temp[i])*six_parameter_fit_sensitivity_dict[reaction]['Ea'][s] + (-(1000/target_temp[i])**3)*six_parameter_fit_sensitivity_dict[reaction]['c'][s]+ (-(1000/target_temp[i])**-1)*six_parameter_fit_sensitivity_dict[reaction]['d'][s]*(1000*4.184)**-1 + (-(1/target_temp[i])**-3)*six_parameter_fit_sensitivity_dict[reaction]['f'][s]*(1000*4.184)**-3 temp = nested_reaction_list flat_list = [item for sublist in temp for item in sublist] MP_stack.append(nested_reaction_list) flat_list = np.array(flat_list) flat_list = flat_list.reshape((1,flat_list.shape[0])) target_values_to_stack.append(flat_list) else: A_temp = np.zeros((1,number_of_reactions_in_cti-len(master_equation_reaction_list))) N_temp = np.zeros((1,number_of_reactions_in_cti-len(master_equation_reaction_list))) Ea_temp = np.zeros((1,number_of_reactions_in_cti-len(master_equation_reaction_list))) #decide if this mapping is correct A_temp[0,reactions_in_cti_file.index(reaction)] = 1 N_temp [0,reactions_in_cti_file.index(reaction)] = np.log(target_temp[i]) Ea_temp[0,reactions_in_cti_file.index(reaction)] = (-1/target_temp[i]) As.append(A_temp) Ns.append(N_temp) Eas.append(Ea_temp) A_temp = A_temp.reshape((1,A_temp.shape[1])) N_temp = N_temp.reshape((1,N_temp.shape[1])) Ea_temp = Ea_temp.reshape((1,Ea_temp.shape[1])) target_values_to_stack.append(np.hstack((A_temp,N_temp,Ea_temp))) # might need to edit this to pass in s? and S_matrix = S_matrix shape_s = S_matrix.shape S_target_values = [] for i,row in enumerate(target_values_to_stack): if target_reactions[i] in master_equation_reaction_list: zero_to_append_infront = np.zeros((1,((number_of_reactions_in_cti-len(master_equation_reaction_list))*3))) zero_to_append_behind = np.zeros((1, shape_s[1] - ((number_of_reactions_in_cti-len(master_equation_reaction_list))*3) - np.shape(row)[1] )) temp_array = np.hstack((zero_to_append_infront,row,zero_to_append_behind)) S_target_values.append(temp_array) else: zero_to_append_behind = np.zeros((1,shape_s[1]-np.shape(row)[1])) temp_array = np.hstack((row,zero_to_append_behind)) S_target_values.append(temp_array) S_target_values = np.vstack((S_target_values)) return S_target_values ################################################################################ def calculate_six_parameter_fit(reaction,dictonary,temperature): #finish editing this #calc Ea,c,d,F seprately A = dictonary[reaction]['A'] n = dictonary[reaction]['n'] Ea_temp = dictonary[reaction]['Ea']/(1.987*temperature) c_temp = dictonary[reaction]['c']/((1.987*temperature)**3) d_temp = dictonary[reaction]['d']*(1.987*temperature) f_temp = dictonary[reaction]['f']* ((1.987*temperature)**3) k = A*(temperature**n)*np.exp(-Ea_temp-c_temp-d_temp-f_temp) return k def sort_rate_constant_target_values(parsed_csv,unique_reactions,gas): reaction_list_from_mechanism = gas.reaction_equations() target_value_ks = [[] for reaction in range(len(unique_reactions))] target_value_temps = [[] for reaction in range(len(unique_reactions))] reaction_list_from_mechanism = gas.reaction_equations() for i,reaction in enumerate(parsed_csv['Reaction']): idx = reaction_list_from_mechanism.index(reaction) target_value_ks[unique_reactions.index(idx)].append(parsed_csv['k'][i]) target_value_temps[unique_reactions.index(idx)].append(parsed_csv['temperature'][i]) return target_value_temps,target_value_ks def rate_constant_over_temperature_range_from_cantera(reaction_number, gas, initial_temperature=250, final_temperature=2500, pressure=1, conditions = {'H2':2,'O2':1,'N2':4}, dictonary={}, master_equation_reactions=[]): Temp = [] k = [] reaction_string = gas.reaction_equations()[reaction_number] for temperature in np.arange(initial_temperature,final_temperature,1): if reaction_string in master_equation_reactions: k.append(calculate_six_parameter_fit(reaction_string,dictonary,temperature)) Temp.append(temperature) #start editing here else: gas.TPX = temperature,pressure*101325,conditions Temp.append(temperature) k.append(gas.forward_rate_constants[reaction_number]*1000) return Temp,k def calculate_sigmas_for_rate_constants(k_target_value_S_matrix,k_target_values_parsed_csv,unique_reactions,gas,covarience): reaction_list_from_mechanism = gas.reaction_equations() sigma_list_for_target_ks = [[] for reaction in range(len(unique_reactions))] shape = k_target_value_S_matrix.shape for row in range(shape[0]): #print(row) SC = np.dot(k_target_value_S_matrix[row,:],covarience) sigma_k = np.dot(SC,np.transpose(k_target_value_S_matrix[row,:])) sigma_k = np.sqrt(sigma_k) #print(row) #print(k_target_values_parsed_csv['Reaction'][row]) indx = reaction_list_from_mechanism.index(k_target_values_parsed_csv['Reaction'][row]) sigma_list_for_target_ks[unique_reactions.index(indx)].append(sigma_k) return sigma_list_for_target_ks def calculating_target_value_ks_from_cantera_for_sigmas(k_target_values_parsed_csv,gas,unique_reactions,six_parameter_fit_dictonary,master_equation_reactions): target_value_ks = [[] for reaction in range(len(unique_reactions))] target_reactions = k_target_values_parsed_csv['Reaction'] target_temp = k_target_values_parsed_csv['temperature'] target_press = k_target_values_parsed_csv['pressure'] reactions_in_cti_file = gas.reaction_equations() #print(reactions_in_cti_file) for i,reaction in enumerate(target_reactions): if reaction in master_equation_reactions: k = calculate_six_parameter_fit(reaction,six_parameter_fit_dictonary,target_temp[i]) indx = reactions_in_cti_file.index(reaction) target_value_ks[unique_reactions.index(indx)].append(k) else: if target_press[i] == 0: pressure = 1e-9 else: pressure = target_press[i] gas.TPX = target_temp[i],pressure*101325,{'H2O2':0.003094,'O2':0.000556,'H2O':0.001113,'Ar':0.995237} reaction_number_in_cti = reactions_in_cti_file.index(reaction) k = gas.forward_rate_constants[reaction_number_in_cti] indx = reactions_in_cti_file.index(reaction) target_value_ks[unique_reactions.index(indx)].append(k*1000) return target_value_ks if bool(self.target_value_rate_constant_csv) and self.k_target_values=='On': ### make new s matrix with the new csv file, and make sure we are plotting the old one S_matrix_k_target_values_extra = target_values_for_S_six_parameter_fit(self.target_value_rate_constant_csv_extra_values, self.exp_dict_list_optimized, self.S_matrix, master_equation_reaction_list = master_equation_reactions, six_parameter_fit_sensitivity_dict = six_parameter_fit_sensitivity_dict) #make two unique unique_reactions_optimized=[] unique_reactions_original = [] reaction_list_from_mechanism_original = gas_original.reaction_equations() reaction_list_from_mechanism = gas_optimized.reaction_equations() k_target_value_csv_extra = pd.read_csv(self.target_value_rate_constant_csv_extra_values) k_target_value_csv = pd.read_csv(self.target_value_rate_constant_csv) for row in range(k_target_value_csv_extra.shape[0]): unique_reactions_optimized.append(reaction_list_from_mechanism.index(k_target_value_csv_extra['Reaction'][row])) unique_reactions_original.append(reaction_list_from_mechanism_original.index(k_target_value_csv_extra['Reaction'][row])) unique_reactions_optimized = unique_list(unique_reactions_optimized) unique_reactions_original = unique_list(unique_reactions_original) sigma_list_for_target_ks_optimized = calculate_sigmas_for_rate_constants(S_matrix_k_target_values_extra,k_target_value_csv_extra,unique_reactions_optimized,gas_optimized,self.covarience) self.sigma_list_for_target_ks_optimized = sigma_list_for_target_ks_optimized sigma_list_for_target_ks_original = calculate_sigmas_for_rate_constants(S_matrix_k_target_values_extra,k_target_value_csv_extra,unique_reactions_original,gas_original,self.original_covariance) self.sigma_list_for_target_ks_original = sigma_list_for_target_ks_original ###################### target_value_temps_optimized,target_value_ks_optimized = sort_rate_constant_target_values(k_target_value_csv_extra,unique_reactions_optimized,gas_optimized) target_value_temps_original,target_value_ks_original = sort_rate_constant_target_values(k_target_value_csv_extra,unique_reactions_original,gas_original) ############################################# unique_reactions_optimized_for_plotting=[] unique_reactions_original_for_plotting = [] for row in range(k_target_value_csv.shape[0]): unique_reactions_optimized_for_plotting.append(reaction_list_from_mechanism.index(k_target_value_csv['Reaction'][row])) unique_reactions_original_for_plotting.append(reaction_list_from_mechanism_original.index(k_target_value_csv['Reaction'][row])) unique_reactions_optimized_for_plotting = unique_list(unique_reactions_optimized) unique_reactions_original_for_plotting = unique_list(unique_reactions_original) target_value_temps_optimized_for_plotting,target_value_ks_optimized_for_plotting = sort_rate_constant_target_values(k_target_value_csv,unique_reactions_optimized_for_plotting,gas_optimized) target_value_temps_original_for_plotting,target_value_ks_original_for_plotting = sort_rate_constant_target_values(k_target_value_csv,unique_reactions_original_for_plotting,gas_original) ############################################# target_value_ks_calculated_with_cantera_optimized = calculating_target_value_ks_from_cantera_for_sigmas(k_target_value_csv_extra,gas_optimized,unique_reactions_optimized,six_parameter_fit_dict_optimized,master_equation_reactions) target_value_ks_calculated_with_cantera_original = calculating_target_value_ks_from_cantera_for_sigmas(k_target_value_csv_extra,gas_original,unique_reactions_original,six_parameter_fit_dict_nominal,master_equation_reactions) #print(target_value_ks_calculated_with_cantera_original) for i,reaction in enumerate(unique_reactions_optimized): plt.figure() Temp_optimized,k_optimized = rate_constant_over_temperature_range_from_cantera(reaction, gas_optimized, initial_temperature=250, final_temperature=2500, pressure=1.635, conditions={'H2O2':0.003094,'O2':0.000556,'H2O':0.001113,'Ar':0.995237}, dictonary = six_parameter_fit_dict_optimized, master_equation_reactions = master_equation_reactions) plt.semilogy(Temp_optimized,k_optimized,'b') #calculate sigmas #print(sigma_list_for_target_ks_optimized[i]) high_error_optimized = np.exp(np.array(sigma_list_for_target_ks_optimized[i])) #print(high_error_optimized) high_error_optimized = np.multiply(high_error_optimized,target_value_ks_calculated_with_cantera_optimized[i]) low_error_optimized = np.exp(np.array(sigma_list_for_target_ks_optimized[i])*-1) low_error_optimized = np.multiply(low_error_optimized,target_value_ks_calculated_with_cantera_optimized[i]) # plt.semilogy(target_value_temps_optimized[i],high_error_optimized,'b--') a, b = zip(*sorted(zip(target_value_temps_optimized[i],high_error_optimized))) #plt.scatter(a,b,color='blue') plt.semilogy(a,b,'b--') a, b = zip(*sorted(zip(target_value_temps_optimized[i],low_error_optimized))) plt.semilogy(a,b,'b--') #plt.scatter(a,b,color='blue') # print(a,b) Temp_original,k_original = rate_constant_over_temperature_range_from_cantera(reaction_list_from_mechanism_original.index(reaction_list_from_mechanism[reaction]), gas_original, initial_temperature=250, final_temperature=2500, pressure=1.635, conditions={'H2O2':0.003094,'O2':0.000556,'H2O':0.001113,'Ar':0.995237}, dictonary = six_parameter_fit_dict_nominal, master_equation_reactions = master_equation_reactions) plt.semilogy(Temp_original,k_original,'r') # plt.xlim((0,3000)) #plt.ylim((10**9,10**15)) #print(unique_reactions_original) # print(reaction_list_from_mechanism_original.index(reaction_list_from_mechanism[reaction])) #print(unique_reactions_original.index(reaction_list_from_mechanism_original.index(reaction_list_from_mechanism[reaction]))) high_error_original = np.exp(sigma_list_for_target_ks_original[unique_reactions_original.index(reaction_list_from_mechanism_original.index(reaction_list_from_mechanism[reaction]))]) high_error_original = np.multiply(high_error_original,target_value_ks_calculated_with_cantera_original[unique_reactions_original.index(reaction_list_from_mechanism_original.index(reaction_list_from_mechanism[reaction]))]) low_error_original = np.exp(np.array(sigma_list_for_target_ks_original[unique_reactions_original.index(reaction_list_from_mechanism_original.index(reaction_list_from_mechanism[reaction]))])*-1) low_error_original = np.multiply(low_error_original,target_value_ks_calculated_with_cantera_original[unique_reactions_original.index(reaction_list_from_mechanism_original.index(reaction_list_from_mechanism[reaction]))]) a, b = zip(*sorted(zip(target_value_temps_original[unique_reactions_original.index(reaction_list_from_mechanism_original.index(reaction_list_from_mechanism[reaction]))],high_error_original))) plt.semilogy(a,b,'r--') #plt.scatter(a,b,color='red') a, b = zip(*sorted(zip(target_value_temps_original[unique_reactions_original.index(reaction_list_from_mechanism_original.index(reaction_list_from_mechanism[reaction]))],low_error_original))) plt.semilogy(a,b,'r--') #plt.scatter(a,b,color='red') plt.semilogy(target_value_temps_optimized_for_plotting[i],target_value_ks_optimized_for_plotting[i],'o',color='black') plt.xlabel('Temperature [K]') #plt.ylabel('Kmol/m^3-s') plt.ylabel(r'k [$\frac{cm^3}{{mol s}}$]') plt.title(reaction_list_from_mechanism[reaction]) plt.tick_params(axis ='both', direction ='in') plt.tick_params(axis ='both', direction ='in',which='minor') plt.savefig(os.path.join(self.working_directory,reaction_list_from_mechanism[reaction]+'.pdf'), bbox_inches='tight') plt.savefig(os.path.join(self.working_directory,reaction_list_from_mechanism[reaction]+'.svg'), bbox_inches='tight') elif bool(self.target_value_rate_constant_csv) and self.k_target_values=='Off': unique_reactions_optimized=[] unique_reactions_original = [] reaction_list_from_mechanism_original = gas_original.reaction_equations() reaction_list_from_mechanism = gas_optimized.reaction_equations() k_target_value_csv = pd.read_csv(self.target_value_rate_constant_csv) for row in range(k_target_value_csv.shape[0]): unique_reactions_optimized.append(reaction_list_from_mechanism.index(k_target_value_csv['Reaction'][row])) unique_reactions_original.append(reaction_list_from_mechanism_original.index(k_target_value_csv['Reaction'][row])) unique_reactions_optimized = unique_list(unique_reactions_optimized) unique_reactions_original = unique_list(unique_reactions_original) ###################### target_value_temps_optimized,target_value_ks_optimized = sort_rate_constant_target_values(k_target_value_csv,unique_reactions_optimized,gas_optimized) target_value_temps_original,target_value_ks_original = sort_rate_constant_target_values(k_target_value_csv,unique_reactions_original,gas_original) ############################################# target_value_ks_calculated_with_cantera_optimized = calculating_target_value_ks_from_cantera_for_sigmas(k_target_value_csv,gas_optimized,unique_reactions_optimized) target_value_ks_calculated_with_cantera_original = calculating_target_value_ks_from_cantera_for_sigmas(k_target_value_csv,gas_original,unique_reactions_original) for i,reaction in enumerate(unique_reactions_optimized): plt.figure() Temp_optimized,k_optimized = rate_constant_over_temperature_range_from_cantera(reaction, gas_optimized, initial_temperature=250, final_temperature=2500, pressure=1, conditions={'H2':2,'O2':1,'Ar':4}) plt.semilogy(Temp_optimized,k_optimized,'b') Temp_original,k_original = rate_constant_over_temperature_range_from_cantera(unique_reactions_original[unique_reactions_original.index(reaction)], gas_original, initial_temperature=250, final_temperature=2500, pressure=1, conditions={'H2':2,'O2':1,'Ar':4}) plt.semilogy(Temp_original,k_original,'r') plt.semilogy(target_value_temps_optimized[i],target_value_ks_optimized[i],'o',color='black') plt.xlabel('Temperature (K)') plt.ylabel('Kmol/m^3-s') plt.title(reaction_list_from_mechanism[reaction]) return S_matrix_k_target_values_extra def plotting_normal_distributions(self, paramter_list, optimized_cti_file='', pdf_distribution_file='', shock_tube_instance=None): all_parameters = shock_tube_instance.posterior_diag_df['parameter'].tolist() df = shock_tube_instance.posterior_diag_df gas_optimized = ct.Solution(optimized_cti_file) for parameter in paramter_list: indx = all_parameters.index(parameter) variance = df['value'][indx] if parameter[0]=='A' or parameter[0]=='n' or parameter[0]=='E': letter,number = parameter.split('_') number = int(number) if 'ElementaryReaction' in str(type(gas_optimized.reaction(number))): A=gas_optimized.reaction(number).rate.pre_exponential_factor n=gas_optimized.reaction(number).rate.temperature_exponent Ea=gas_optimized.reaction(number).rate.activation_energy if 'FalloffReaction' in str(type(gas_optimized.reaction(number))): A=gas_optimized.reaction(number).high_rate.pre_exponential_factor n=gas_optimized.reaction(number).high_rate.temperature_exponent Ea=gas_optimized.reaction(number).high_rate.activation_energy if 'ThreeBodyReaction' in str(type(gas_optimized.reaction(number))): A=gas_optimized.reaction(number).rate.pre_exponential_factor n=gas_optimized.reaction(number).rate.temperature_exponent Ea=gas_optimized.reaction(number).rate.activation_energy else: letter = None if letter =='A': mu = np.log(A*1000) sigma = math.sqrt(variance) sigma = sigma elif letter == 'n': mu = n sigma = math.sqrt(variance) #sigma = sigma/2 elif letter == 'Ea': mu=Ea/1000/4.184 sigma = math.sqrt(variance) sigma = sigma*ct.gas_constant/(1000*4.184) #sigma = sigma/2 else: mu= 0 sigma = math.sqrt(variance) x = np.linspace(mu - 3*sigma, mu + 3*sigma, 100) plt.figure() plt.plot(x, stats.norm.pdf(x, mu, sigma)) plt.xlabel(parameter) plt.ylabel('pdf') plt.savefig(self.working_directory+'/'+parameter+'_distribution'+'_.pdf',bbox_inches='tight') if bool(pdf_distribution_file): df2 = pd.read_csv(pdf_distribution_file) #temp = np.log(np.exp(df2[parameter].values)/9.33e13) #plt.plot(temp,df2['pdf_'+parameter]) plt.plot(df2[parameter],df2['pdf_'+parameter]) plt.savefig(self.working_directory+'/'+parameter+'_distribution'+'_.pdf',bbox_inches='tight') def plotting_joint_normal_distributions(self, coupled_parameters, optimized_cti_file='', joint_data_csv=''): all_parameters = self.shock_tube_instance.posterior_diag_df['parameter'].tolist() df = self.shock_tube_instance.posterior_diag_df gas_optimized = ct.Solution(optimized_cti_file) for couple in coupled_parameters: indx1 = all_parameters.index(couple[0]) indx2 = all_parameters.index(couple[1]) variance1 = df['value'][indx1] variance2 = df['value'][indx2] if couple[0][0]=='A' or couple[0][0]=='n' or couple[0][0]=='E': letter1,number1 = couple[0].split('_') number1 = int(number1) number1_covariance = number1 if letter1=='n': number1_covariance = number1+len(gas_optimized.reaction_equations()) if letter1=='Ea': number1_covariance = number1+len(gas_optimized.reaction_equations())*2 if 'ElementaryReaction' in str(type(gas_optimized.reaction(number1))): A1=gas_optimized.reaction(number1).rate.pre_exponential_factor n1=gas_optimized.reaction(number1).rate.temperature_exponent Ea1=gas_optimized.reaction(number1).rate.activation_energy if 'FalloffReaction' in str(type(gas_optimized.reaction(number1))): A1=gas_optimized.reaction(number1).high_rate.pre_exponential_factor n1=gas_optimized.reaction(number1).high_rate.temperature_exponent Ea1=gas_optimized.reaction(number1).high_rate.activation_energy if 'ThreeBodyReaction' in str(type(gas_optimized.reaction(number1))): A1=gas_optimized.reaction(number1).rate.pre_exponential_factor n1=gas_optimized.reaction(number1).rate.temperature_exponent Ea1=gas_optimized.reaction(number1).rate.activation_energy else: letter1 = None mu1=0 mu_x=0 sigma1= math.sqrt(variance1) number1_covariance = indx1 variance_x = variance1 if couple[1][0]=='A' or couple[1][0]=='n' or couple[1][0]=='E': letter2,number2 = couple[1].split('_') number2 = int(number2) number2_covariance = number2 if letter2=='n': number2_covariance = number2+len(gas_optimized.reaction_equations()) if letter2 == 'Ea': number2_covariance = number2+len(gas_optimized.reaction_equations())*2 if 'ElementaryReaction' in str(type(gas_optimized.reaction(number2))): A2=gas_optimized.reaction(number2).rate.pre_exponential_factor n2=gas_optimized.reaction(number2).rate.temperature_exponent Ea2=gas_optimized.reaction(number2).rate.activation_energy if 'FalloffReaction' in str(type(gas_optimized.reaction(number2))): A2=gas_optimized.reaction(number2).high_rate.pre_exponential_factor n2=gas_optimized.reaction(number2).high_rate.temperature_exponent Ea2=gas_optimized.reaction(number2).high_rate.activation_energy if 'ThreeBodyReaction' in str(type(gas_optimized.reaction(number2))): A2=gas_optimized.reaction(number2).rate.pre_exponential_factor n2=gas_optimized.reaction(number2).rate.temperature_exponent Ea2=gas_optimized.reaction(number2).rate.activation_energy else: mu_y=0 mu2=0 letter2=None variance_y = variance2 sigma = math.sqrt(variance2) number2_covariance = indx2 covariance_couple = self.covarience[number1_covariance,number2_covariance] # print(number1_covariance,number2_covariance) #covariance_couple = .00760122 if letter1 =='A': mu1 = np.log(A1*1000) mu_x = mu1 variance_x = variance1 sigma = np.sqrt(variance_x) #sigma = np.exp(sigma) #sigma = sigma*1000 #sigma = np.log(sigma) #sigma = sigma/2 variance_x = sigma**2 #convert to chemkin units if letter1 == 'n': mu1 = n1 mu_x = mu1 variance_x = variance1 sigma = np.sqrt(variance_x) #sigma = sigma/2 variance_x = sigma**2 if letter1 == 'Ea': mu1=Ea1/1000/4.184 mu_x = mu1 variance_x = variance1 sigma = math.sqrt(variance_x) sigma = sigma*ct.gas_constant/(1000*4.184) #sigma = sigma/2 variance_x = sigma**2 if letter2 =='A': mu2 = np.log(A2*1000) mu_y = mu2 variance_y = variance2 sigma = np.sqrt(variance_y) sigma = sigma #sigma = np.exp(sigma) #sigma = sigma*1000 #sigma = np.log(sigma) #sigma = sigma/2 variance_y = sigma**2 #convert to chemkin units if letter2 == 'n': mu2 = n2 mu_y = mu2 variance_y = variance2 sigma = np.sqrt(variance_y) #sigma = sigma/2 variance_y = sigma**2 if letter2 == 'Ea': mu2 = Ea2/1000/4.184 mu_y = mu2 variance_y = variance2 sigma = math.sqrt(variance_y) sigma = sigma*ct.gas_constant/(1000*4.184) #sigma = sigma/2 variance_y = sigma**2 if letter2 =='Ea' or letter1 == 'Ea': covariance_couple = covariance_couple*ct.gas_constant/(1000*4.184) if letter2=='Ea' and letter1=='Ea': covariance_couple = np.sqrt(covariance_couple) covariance_couple = covariance_couple*ct.gas_constant/(1000*4.184) covariance_couple = covariance_couple**2 #if letter1=='A' or letter2=='A': #covariance_couple = np.exp(covariance_couple) #covariance_couple = covariance_couple/2 #covariance_couple = np.log(covariance_couple) x = np.linspace(mu1 - 3*np.sqrt(variance_x), mu1 + 3*np.sqrt(variance_x),1000) y = np.linspace(mu2 - 3*np.sqrt(variance_y), mu2 + 3*np.sqrt(variance_y),1000) #x = np.linspace(mu1 - 2*np.sqrt(variance_x), mu1 + 2*np.sqrt(variance_x),1000) #y = np.linspace(mu2 - 2*np.sqrt(variance_y), mu2 + 2*np.sqrt(variance_y),1000) #TEST X,Y = np.meshgrid(x,y) #X, Y = np.meshgrid(x,y) pos = np.empty(X.shape + (2,)) pos[:, :, 0] = X; pos[:, :, 1] = Y rv = multivariate_normal([mu_x, mu_y], [[variance_x, covariance_couple], [covariance_couple, variance_y]]) print(couple,[mu_x, mu_y], [[variance_x, covariance_couple], [covariance_couple, variance_y]]) fig = plt.figure() ax = fig.gca(projection='3d') ax.plot_surface(X, Y, rv.pdf(pos),cmap='viridis',linewidth=0) ax.set_xlabel(couple[0]) ax.set_ylabel(couple[1]) ax.set_zlabel('Z axis') plt.show() additional_dictionary = {'A_5':{'reaction':'H2O2 + M = 2OH + M','our_value':np.log(4.99999e8),'hong_value':np.log(5.60e8)}, 'A_6':{'reaction':'OH + H2O2 = H2O + HO2','our_value':np.log(5624842396127.52),'hong_value':np.log(6.93e12)}, 'A_7':{'reaction': 'OH + HO2 = H2O + O2' , 'our_value':np.log(16646221572429.6),'hong_value':np.log(1.82e13)}, 'A_8':{'reaction':'2HO2 = H2O2 + O2','our_value':np.log(806831822530.157),'hong_value':np.log(3.17e12)}, 'A_11':{'reaction':'2OH = H2O + O','our_value':np.log(1730749579423.63),'hong_value':np.log(2.355e12)}, 'Sigma_1':{'reaction':'sigma H2O2','our_value':-.03846,'hong_value':0}, 'Sigma_2':{'reaction':'sigma_HO2','our_value':.0721,'hong_value':0}} additional_dictionary = {'A_5':{'reaction':'H2O2 + M = 2OH + M','our_value':np.log(4.99999e8),'hong_value':np.log(5.60e8)}, 'A_6':{'reaction':'OH + H2O2 = H2O + HO2','our_value':np.log(5917630773605.197),'hong_value':np.log(6.93e12)}, 'A_7':{'reaction': 'OH + HO2 = H2O + O2' , 'our_value':np.log(18236369573049.9),'hong_value':np.log(1.82e13)}, 'A_8':{'reaction':'2HO2 = H2O2 + O2','our_value':np.log(863643827140.3533),'hong_value':np.log(3.17e12)}, 'A_11':{'reaction':'2OH = H2O + O','our_value':np.log(1734217478483.0261),'hong_value':np.log(2.355e12)}, 'Sigma_1':{'reaction':'sigma H2O2','our_value':-.03846,'hong_value':0}, 'Sigma_2':{'reaction':'sigma_HO2','our_value':.0721,'hong_value':0}} error_dictonary = {'A_5':{'reaction':'H2O2 + M = 2OH + M','our_value':None,'hong_value':0}, 'A_6':{'reaction':'OH + H2O2 = H2O + HO2','our_value':np.log(5624842396127.52),'hong_value':0}, 'A_7':{'reaction': 'OH + HO2 = H2O + O2' , 'our_value':np.log(16646221572429.6),'hong_value':0}, 'A_8':{'reaction':'2HO2 = H2O2 + O2','our_value':np.log(806831822530.157),'hong_value':0}, 'A_11':{'reaction':'2OH = H2O + O','our_value':np.log(1730749579423.63),'hong_value':0}, 'Sigma_1':{'reaction':'sigma H2O2','our_value':-.03846,'hong_value':0}, 'Sigma_2':{'reaction':'sigma_HO2','our_value':.0721,'hong_value':0}} Z = rv.pdf(pos) plt.figure() levels = [.65,.95,.99] #contour = plt.contour(X, Y, Z, levels, colors='k') #plt.clabel(contour, colors = 'k', fmt = '%2.1f', fontsize=12) # plt.colorbar(contour_filled) plt.contour(X,Y,Z) plt.xlabel(couple[0]) plt.ylabel(couple[1]) # # plt.figure() # # Z_test = mlab.bivariate_normal(X, Y,np.sqrt(covariance_couple),np.sqrt(covariance_couple),mu_x,mu_y) # z1 = mlab.bivariate_normal(0, 1 * np.sqrt(covariance_couple), np.sqrt(covariance_couple), np.sqrt(covariance_couple),mu_x,mu_y) # z2 = mlab.bivariate_normal(0, 2 * np.sqrt(covariance_couple), np.sqrt(covariance_couple), np.sqrt(covariance_couple),mu_x,mu_y) # z3 = mlab.bivariate_normal(0, 3 * np.sqrt(covariance_couple), np.sqrt(covariance_couple), np.sqrt(covariance_couple),mu_x,mu_y) # ##plot Gaussian: # im = plt.imshow(Z_test,interpolation='bilinear', origin='lower', # extent=(-50,50,-50,50),cmap=cm.gray) ##Plot contours at whatever z values we want: # CS = plt.contour(Z_test, [z1, z2, z3], origin='lower', extent=(-50,50,-50,50),colors='red') if bool(additional_dictionary): plt.xlabel(additional_dictionary[couple[0]]['reaction']) plt.ylabel(additional_dictionary[couple[1]]['reaction']) x_error = (additional_dictionary[couple[0]]['hong_value'])*(error_dictonary[couple[0]]['hong_value']) print(x_error,'this is the x error') y_error = (additional_dictionary[couple[1]]['hong_value'])*(error_dictonary[couple[1]]['hong_value']) print(y_error,'this is the y error') plt.errorbar(additional_dictionary[couple[0]]['hong_value'],additional_dictionary[couple[1]]['hong_value'],xerr=x_error,yerr=y_error) plt.scatter(additional_dictionary[couple[0]]['hong_value'],additional_dictionary[couple[1]]['hong_value'],zorder=4,label='Hong Values From Table') plt.scatter(additional_dictionary[couple[0]]['our_value'],additional_dictionary[couple[1]]['our_value'],zorder=4,marker='x',label='MSI Values') plt.legend() if bool(joint_data_csv): df2 = pd.read_csv(joint_data_csv) #plt.figure() plt.scatter(df2[couple[0]], df2[couple[1]]) plt.savefig(self.working_directory+'/'+couple[0]+'_'+couple[1]+'_distribution'+'_.pdf',bbox_inches='tight') def plotting_physical_model_parameter_distributions(self, paramter_list, shock_tube_instance, optimized_X, original_experimental_conditions, T_uncertainty=.005, P_uncertainty=.01, X_uncertainty=.025, directory_to_save_images='', experiments_want_to_plot_data_from=[]): if bool(experiments_want_to_plot_data_from)==False: experiments_want_to_plot_data_from = np.arange(0,len(self.exp_dict_list_optimized)) try: all_parameters = shock_tube_instance.posterior_diag_df['parameter'].tolist() except: all_parameters = shock_tube_instance.prior_diag_df['parameter'].tolist() parameter_groups = ['T','P','Time'] #print(all_parameters) list_of_species = [] for parameter in all_parameters: if parameter[0] == 'X': list_of_species.append(parameter.split('_')[1]) output = [] for x in list_of_species: if x not in output: output.append(x) parameter_groups = parameter_groups + output for parameter in parameter_groups: temp_list = [] parameter_counter = 0 for i,p in enumerate(all_parameters): if parameter == 'T': if p[0] == 'T' and p[1] != 'i': yaml_file = int(p.split('_')[2]) if parameter_counter in experiments_want_to_plot_data_from: temp_list.append(optimized_X[i][0]) prior_sigma=T_uncertainty parameter_counter+=1 elif parameter == 'Time': if p[0] == 'T' and p[1] == 'i': yaml_file = int(p.split('_')[3]) if parameter_counter in experiments_want_to_plot_data_from: temp_list.append(optimized_X[i][0]) prior_sigma=T_uncertainty parameter_counter+=1 elif parameter == 'P': if p[0] == 'P': yaml_file = int(p.split('_')[2]) pressure_original = original_experimental_conditions[yaml_file]['pressure'] #temp_list.append(temp_original*np.exp(optimized_X[i]) - temp_original) if parameter_counter in experiments_want_to_plot_data_from: temp_list.append(optimized_X[i][0]) prior_sigma = P_uncertainty parameter_counter+=1 elif parameter =='H2O': if p[0] == 'X' and p[2:5] == 'H2O' and p[5]== '_': yaml_file = int(p.split('_')[3]) specie_original = original_experimental_conditions[yaml_file]['conditions']['H2O'] if parameter_counter in experiments_want_to_plot_data_from: temp_list.append(optimized_X[i][0]) prior_sigma=X_uncertainty parameter_counter+=1 elif parameter =='H2O2': if p[0] == 'X' and p[2:6] == 'H2O2' and p[6]== '_': yaml_file = int(p.split('_')[3]) specie_original = original_experimental_conditions[yaml_file]['conditions']['H2O2'] if parameter_counter in experiments_want_to_plot_data_from: temp_list.append(optimized_X[i][0]) prior_sigma=X_uncertainty parameter_counter+=1 elif parameter =='O2': if p[0] == 'X' and p[2:4] == 'O2' and p[4]== '_': yaml_file = int(p.split('_')[3]) specie_original = original_experimental_conditions[yaml_file]['conditions']['O2'] if parameter_counter in experiments_want_to_plot_data_from: temp_list.append(optimized_X[i][0]) prior_sigma=X_uncertainty parameter_counter+=1 elif parameter =='H': if p[0] == 'X' and p[2:3] == 'H' and p[3]== '_': yaml_file = int(p.split('_')[3]) specie_original = original_experimental_conditions[yaml_file]['conditions']['H'] if parameter_counter in experiments_want_to_plot_data_from: temp_list.append(optimized_X[i][0]) prior_sigma=X_uncertainty parameter_counter+=1 elif parameter =='CH4': if p[0] == 'X' and p[2:5] == 'CH4' and p[5]== '_': yaml_file = int(p.split('_')[3]) specie_original = original_experimental_conditions[yaml_file]['conditions']['CH4'] if parameter_counter in experiments_want_to_plot_data_from: temp_list.append(optimized_X[i][0]) prior_sigma=X_uncertainty parameter_counter+=1 else: parameter_counter+=1 plt.figure() mu2=0 sigma2=prior_sigma n, bins, patches=plt.hist(temp_list,bins='auto',density=True,color='g') (mu, sigma) = norm.fit(temp_list) #y = mlab.normpdf( bins, mu, sigma) y = norm.pdf(bins,mu,sigma) x = np.linspace(mu - 3*sigma, mu + 3*sigma, 100) l = plt.plot(bins, y, 'b--', linewidth=2) plt.plot(x, stats.norm.pdf(x, mu, sigma),'b') x2 = np.linspace(mu2 - 3*sigma2, mu2 + 3*sigma2, 100) plt.plot(x2, stats.norm.pdf(x2, mu2, sigma2),'r') #plot plt.xlabel(parameter) #plt.ylabel('Probability') plt.title(r'$\mathrm{Histogram\ of\ physical\ model\ parameter:}\ \mu=%.3f,\ \sigma=%.3f$' %(mu, sigma)) plt.grid(True) #plt.savefig(directory_to_save_images+'/'+'Including Experiments_'+ str(experiments_want_to_plot_data_from)+parameter+'_.pdf',dpi=1000,bbox_inches='tight') def difference_plotter(self, paramter_list, optimized_cti_file='', pdf_distribution_file=''): all_parameters = self.shock_tube_instance.posterior_diag_df['parameter'].tolist() df = self.shock_tube_instance.posterior_diag_df gas_optimized = ct.Solution(optimized_cti_file) for parameter in paramter_list: indx = all_parameters.index(parameter) variance = df['value'][indx] letter,number = parameter.split('_') number = int(number) A=gas_optimized.reaction(number).rate.pre_exponential_factor n=gas_optimized.reaction(number).rate.temperature_exponent Ea=gas_optimized.reaction(number).rate.activation_energy if letter =='A': mu = np.log(A*1000) sigma = math.sqrt(variance) sigma = sigma if letter == 'n': mu = n sigma = math.sqrt(variance) #sigma = sigma/2 if letter == 'Ea': mu=Ea/1000/4.184 sigma = math.sqrt(variance) sigma = sigma*ct.gas_constant/(1000*4.184) #sigma = sigma/2 x = np.linspace(mu - 6*sigma, mu + 6*sigma, 100) #plt.figure() #plt.plot(x, stats.norm.pdf(x, mu, sigma)) # plt.xlabel(parameter) # plt.ylabel('pdf') # plt.savefig(self.working_directory+'/'+parameter+'_distribution'+'_.pdf',bbox_inches='tight') if bool(pdf_distribution_file): df2 = pd.read_csv(pdf_distribution_file) #temp = np.log(np.exp(df2[parameter].values)/9.33e13) #plt.plot(temp,df2['pdf_'+parameter]) interp_y = np.interp(df2[parameter],x,stats.norm.pdf(x, mu, sigma)) plt.figure() plt.plot(df2[parameter],interp_y) plt.plot(df2[parameter],df2['pdf_'+parameter]) interp_x = np.interp(df2['pdf_'+parameter],stats.norm.pdf(x,mu,sigma),x) y_shift = np.divide((df2['pdf_'+parameter] - interp_y),df2['pdf_'+parameter]) x_shift = np.divide((df2[parameter] - interp_x),df2[parameter]) plt.figure() plt.title('Percent Difference In Y') plt.plot(y_shift) plt.xlabel(parameter) plt.figure() plt.plot(x_shift) plt.title('Percent Difference In X') plt.xlabel(parameter) def plotting_histograms_of_MSI_simulations(self,experiments_want_to_plot_data_from=[],bins='auto',directory_to_save_images=''): s_shape = self.S_matrix.shape[1] if self.k_target_value_S_matrix.any(): target_values_for_s = self.k_target_value_S_matrix s_shape = s_shape+target_values_for_s.shape[0] y_shape = self.y_matrix.shape[0] difference = y_shape-s_shape y_values = self.y_matrix[0:difference,0] Y_values = self.Y_matrix[0:difference,0] self.lengths_of_experimental_data() #plotting_Y Histagrams if bool(experiments_want_to_plot_data_from): y_values = [] Y_values = [] start = 0 stop = 0 for x in range(len(self.simulation_lengths_of_experimental_data)): for y in range(len(self.simulation_lengths_of_experimental_data[x])): stop = self.simulation_lengths_of_experimental_data[x][y] + start if x in experiments_want_to_plot_data_from: temp = self.Y_matrix[start:stop,:] Y_values.append(temp) temp2 = self.y_matrix[start:stop,:] y_values.append(temp2) start = start + self.simulation_lengths_of_experimental_data[x][y] else: start = start + self.simulation_lengths_of_experimental_data[x][y] Y_values = np.vstack((Y_values)) y_values = np.vstack((y_values)) plt.figure() plt.subplot(2,2,1) n, bins2, patches = plt.hist(Y_values,bins=bins ,align='mid') min_value = min(Y_values) max_value=max(Y_values) plt.xlim([min_value,max_value]) plt.xlabel('Y') plt.suptitle('Including Experiments_'+ str(experiments_want_to_plot_data_from), fontsize=10) plt.subplot(2,2,2) plt.hist(y_values,bins=bins,align='mid') plt.xlabel('y') plt.subplot(2,2,3) plt.hist(Y_values,bins=bins,density=True,align='mid') plt.xlabel('Y') plt.ylabel('normalized') plt.subplot(2,2,4) plt.hist(y_values,bins=bins,density=True,align='mid') plt.xlabel('y') plt.ylabel('normalized') plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.5, hspace=.5) plt.savefig(directory_to_save_images+'/'+'Including Experiments_'+ str(experiments_want_to_plot_data_from)+'_Yy_hist_4.pdf',dpi=1000,bbox_inches='tight') #plotting two fold plots plt.figure() plt.subplot(2,1,1) plt.title('Including Experiments_'+ str(experiments_want_to_plot_data_from)) n, bins2, patches = plt.hist(Y_values,bins=bins ,align='mid') plt.xlabel('Y') #plt.xlim([-1,1]) plt.subplot(2,1,2) plt.hist(y_values,bins=bins,align='mid') plt.xlabel('y') plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.5, hspace=.5) plt.savefig(directory_to_save_images+'/'+'Including Experiments_'+ str(experiments_want_to_plot_data_from)+'_Yy_hist_2.pdf',dpi=1000,bbox_inches='tight') #plotting normalized values plt.figure() plt.subplot(2,1,1) n, bins2, patches = plt.hist(Y_values,bins=bins ,align='mid',density=True) plt.xlabel('Y') plt.title('Including Experiments_'+ str(experiments_want_to_plot_data_from)) plt.ylabel('normalized') plt.subplot(2,1,2) plt.hist(y_values,bins=bins,align='mid',density=True) plt.xlabel('y') plt.ylabel('normalized') plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.5, hspace=.5) plt.savefig(directory_to_save_images+'/'+'Including Experiments_'+ str(experiments_want_to_plot_data_from)+'_Yy_hist_2_normalized.pdf',dpi=1000,bbox_inches='tight') else: plt.figure() plt.subplot(2,2,1) min_value = min(Y_values) max_value=max(Y_values) plt.xlim([min_value,max_value]) n, bins2, patches = plt.hist(Y_values,bins=bins ,align='mid') #plt.xlim([min_value,max_value]) plt.xlabel('Y') plt.suptitle("Including All Experiments", fontsize=10) plt.subplot(2,2,2) plt.hist(y_values,bins=bins,align='mid') plt.xlabel('y') plt.subplot(2,2,3) plt.hist(Y_values,bins=bins,density=True,align='mid') plt.xlabel('Y') plt.ylabel('normalized') plt.subplot(2,2,4) plt.hist(y_values,bins=bins,density=True,align='mid') plt.xlabel('y') plt.ylabel('normalized') plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.5, hspace=.5) plt.savefig(directory_to_save_images+'/'+'Including all Experiments'+'_Yy_hist_4.pdf',dpi=1000,bbox_inches='tight') #plotting two fold plots plt.figure() plt.subplot(2,1,1) min_value = np.min(Y_values) max_value = np.max(Y_values) plt.title('Including all Experiments') n, bins2, patches = plt.hist(Y_values,bins=bins ,align='mid') plt.xlabel('Y') #plt.xlim([-1,1]) plt.subplot(2,1,2) plt.hist(y_values,bins=bins,align='mid') plt.xlabel('y') plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.5, hspace=.5) plt.savefig(directory_to_save_images+'/'+'Including all Experiments'+'_Yy_hist_2.pdf',dpi=1000,bbox_inches='tight') #plotting normalized values plt.figure() plt.subplot(2,1,1) min_value = np.min(Y_values) max_value = np.max(Y_values) n, bins2, patches = plt.hist(Y_values,bins=bins ,align='mid',density=True) plt.xlabel('Y') plt.title('Including all Experiments') plt.ylabel('normalized') plt.subplot(2,1,2) plt.hist(y_values,bins=bins,align='mid',density=True) plt.xlabel('y') plt.ylabel('normalized') plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.5, hspace=.5) plt.savefig(directory_to_save_images+'/'+'Including all Experiments'+'_Yy_hist_2_normalized.pdf',dpi=1000,bbox_inches='tight') def plotting_T_and_time_full_simulation(self,experiments_want_to_plot_data_from=[],directory_to_save_images=''): init_temperature_list = [] for exp in self.exp_dict_list_original: init_temperature_list.append(exp['simulation'].temperature) tottal_times = [] temperature_list_full_simulation = [] for i,exp in enumerate(self.exp_dict_list_optimized): single_exp_dict = [] temp_list_single_experiment = [] observable_counter=0 for j,observable in enumerate(exp['mole_fraction_observables'] + exp['concentration_observables']): if observable == None: continue if observable in exp['mole_fraction_observables']: single_exp_dict.append(exp['experimental_data'][observable_counter]['Time']*1e3) interploated_temp = np.interp(exp['experimental_data'][observable_counter]['Time'],exp['simulation'].timeHistories[0]['time'],exp['simulation'].timeHistories[0]['temperature']) temp_list_single_experiment.append(interploated_temp) observable_counter+=1 if observable in exp['concentration_observables']: single_exp_dict.append(exp['experimental_data'][observable_counter]['Time']*1e3) interploated_temp = np.interp(exp['experimental_data'][observable_counter]['Time'],exp['simulation'].timeHistories[0]['time'],exp['simulation'].timeHistories[0]['temperature']) temp_list_single_experiment.append(interploated_temp) #print(interploated_temp.shape ,exp['experimental_data'][observable_counter]['Time'].shape ) observable_counter+=1 if 'perturbed_coef' in exp.keys(): wavelengths = self.parsed_yaml_list[i]['absorbanceCsvWavelengths'] for k,wl in enumerate(wavelengths): single_exp_dict.append(exp['absorbance_experimental_data'][k]['time']*1e3) interploated_temp = np.interp(exp['absorbance_experimental_data'][k]['time'],exp['simulation'].timeHistories[0]['time'],exp['simulation'].timeHistories[0]['temperature']) temp_list_single_experiment.append(interploated_temp) #print(interploated_temp.shape, exp['absorbance_experimental_data'][k]['time'].shape ) tottal_times.append(single_exp_dict) temperature_list_full_simulation.append(temp_list_single_experiment) if bool(experiments_want_to_plot_data_from)==False: experiments_want_to_plot_data_from = np.arange(0,len(self.exp_dict_list_optimized)) else: experiments_want_to_plot_data_from = experiments_want_to_plot_data_from y_values = [] Y_values = [] temperature_values_list = [] time_values_list = [] full_temperature_range_list = [] start = 0 stop = 0 for x in range(len(self.simulation_lengths_of_experimental_data)): single_experiment_Y =[] single_experiment_y =[] single_experiment_temperature_values_list=[] single_experiment_time_values_list=[] single_experiment_full_temp_range=[] for y in range(len(self.simulation_lengths_of_experimental_data[x])): stop = self.simulation_lengths_of_experimental_data[x][y] + start if x in experiments_want_to_plot_data_from: temp = self.Y_matrix[start:stop,:] single_experiment_Y.append(temp) temp2 = self.y_matrix[start:stop,:] single_experiment_y.append(temp2) intial_temp = np.array(([init_temperature_list[x]]*temp.shape[0])) intial_temp = intial_temp.reshape((intial_temp.shape[0],1)) single_experiment_temperature_values_list.append(intial_temp) time_values = tottal_times[x][y].values time_values = time_values.reshape((time_values.shape[0],1)) single_experiment_time_values_list.append(time_values) temperature_full = temperature_list_full_simulation[x][y] temperature_full = temperature_full.reshape((temperature_full.shape[0],1)) single_experiment_full_temp_range.append(temperature_full) start = start + self.simulation_lengths_of_experimental_data[x][y] else: start = start + self.simulation_lengths_of_experimental_data[x][y] Y_values.append(single_experiment_Y) y_values.append(single_experiment_y) temperature_values_list.append(single_experiment_temperature_values_list) time_values_list.append(single_experiment_time_values_list) full_temperature_range_list.append(single_experiment_full_temp_range) x = np.arange(10) ys = [i+x+(i*x)**2 for i in range(10)] colors=cm.rainbow(np.linspace(0,1,30)) #colors = cm.rainbow(np.linspace(0, 1, len(ys))) plt.figure() for x,simulation_list in enumerate(Y_values): for y,lst in enumerate(Y_values[x]): plt.subplot(2,1,1) plt.xlabel('Y') plt.ylabel('Time') plt.scatter(Y_values[x][y],time_values_list[x][y],label='Experiment_'+str(x)+'_observable_'+str(y),color=colors[x]) plt.legend(ncol=2,bbox_to_anchor=(1, 0.5)) plt.subplot(2,1,2) plt.scatter(y_values[x][y],time_values_list[x][y],color=colors[x]) plt.xlabel('y') plt.ylabel('Time') plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.5, hspace=.5) plt.savefig(directory_to_save_images+'/'+'Including Experiments_'+ str(experiments_want_to_plot_data_from)+'_Yy_vs_time.pdf',dpi=1000,bbox_inches='tight') plt.figure() for x,simulation_list in enumerate(Y_values): for y,lst in enumerate(Y_values[x]): plt.subplot(2,1,1) plt.scatter(Y_values[x][y],temperature_values_list[x][y],label='Experiment_'+str(x)+'_observable_'+str(y),color=colors[x]) plt.legend(ncol=2,bbox_to_anchor=(1, 0.5)) plt.xlabel('Y') plt.ylabel('Initial Simulation Temp') plt.subplot(2,1,2) plt.scatter(y_values[x][y],temperature_values_list[x][y],color=colors[x]) plt.xlabel('y') plt.ylabel('Initial Simulation Temp') plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.5, hspace=.5) plt.savefig(directory_to_save_images+'/'+'Including Experiments_'+ str(experiments_want_to_plot_data_from)+'_Yy_vs_init_temp.pdf',dpi=1000,bbox_inches='tight') plt.figure() for x,simulation_list in enumerate(Y_values): for y,lst in enumerate(Y_values[x]): plt.subplot(2,1,1) plt.scatter(Y_values[x][y],full_temperature_range_list[x][y],label='Experiment_'+str(x)+'_observable_'+str(y),color=colors[x]) plt.legend(ncol=2,bbox_to_anchor=(1, 0.5)) plt.xlabel('Y') plt.ylabel('Temperature') plt.subplot(2,1,2) plt.scatter(y_values[x][y],full_temperature_range_list[x][y],color=colors[x]) plt.xlabel('y') plt.ylabel('Temperature') plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.5, hspace=.5) plt.savefig(directory_to_save_images+'/'+'Including Experiments_'+ str(experiments_want_to_plot_data_from)+'_Yy_vs_temperature.pdf',dpi=1000,bbox_inches='tight') return #working here def plotting_histograms_of_individual_observables(self,experiments_want_to_plot_data_from,bins='auto',directory_to_save_images='',csv=''): s_shape = self.S_matrix.shape[1] if self.k_target_value_S_matrix.any(): target_values_for_s = self.k_target_value_S_matrix s_shape = s_shape+target_values_for_s.shape[0] y_shape = self.y_matrix.shape[0] difference = y_shape-s_shape y_values = self.y_matrix[0:difference,0] Y_values = self.Y_matrix[0:difference,0] self.lengths_of_experimental_data() #plotting_Y Histagrams #obserervable_list = [] observables_tottal = [] for i,exp in enumerate(self.exp_dict_list_optimized): observable_counter=0 single_experiment = [] for j,observable in enumerate(exp['mole_fraction_observables'] + exp['concentration_observables']): if observable == None: continue if observable in exp['mole_fraction_observables']: single_experiment.append(observable) observable_counter+=1 if observable in exp['concentration_observables']: single_experiment.append(observable) observable_counter+=1 if 'perturbed_coef' in exp.keys(): wavelengths = self.parsed_yaml_list[i]['absorbanceCsvWavelengths'] for k,wl in enumerate(wavelengths): single_experiment.append(wl) observables_tottal.append(single_experiment) observables_flatten = [item for sublist in observables_tottal for item in sublist] from collections import OrderedDict observables_unique = list(OrderedDict.fromkeys(observables_flatten)) empty_nested_observable_list_Y = [[] for x in range(len(observables_unique))] empty_nested_observable_list_y = [[] for x in range(len(observables_unique))] if bool(experiments_want_to_plot_data_from): y_values = [] Y_values = [] start = 0 stop = 0 for x in range(len(self.simulation_lengths_of_experimental_data)): for y in range(len(self.simulation_lengths_of_experimental_data[x])): current_observable = observables_tottal[x][y] stop = self.simulation_lengths_of_experimental_data[x][y] + start if x in experiments_want_to_plot_data_from: temp = self.Y_matrix[start:stop,:] empty_nested_observable_list_Y[observables_unique.index(current_observable)].append(temp) temp2 = self.y_matrix[start:stop,:] empty_nested_observable_list_y[observables_unique.index(current_observable)].append(temp2) start = start + self.simulation_lengths_of_experimental_data[x][y] else: start = start + self.simulation_lengths_of_experimental_data[x][y] for i,observable in enumerate(empty_nested_observable_list_Y): if bool(observable): Y_values = np.vstack((observable)) y_values = np.vstack((empty_nested_observable_list_y[i])) plt.figure() plt.subplot(2,2,1) n, bins2, patches = plt.hist(Y_values,bins=bins ,align='mid') min_value = min(Y_values) max_value=max(Y_values) plt.xlim([min_value,max_value]) plt.xlabel('Y') plt.suptitle(str(observables_unique[i])+'_Including Experiments_'+ str(experiments_want_to_plot_data_from), fontsize=10) plt.subplot(2,2,2) plt.hist(y_values,bins=bins,align='mid') plt.xlabel('y') plt.subplot(2,2,3) plt.hist(Y_values,bins=bins,density=True,align='mid') plt.xlabel('Y') plt.ylabel('normalized') plt.subplot(2,2,4) plt.hist(y_values,bins=bins,density=True,align='mid') plt.xlabel('y') plt.ylabel('normalized') plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.5, hspace=.5) #plt.savefig(directory_to_save_images+'/'+str(observables_unique[i])+'_Including Experiments_'+ str(experiments_want_to_plot_data_from)+'_Yy_hist_4.pdf',dpi=1000,bbox_inches='tight') #plotting two fold plots plt.figure() plt.subplot(2,1,1) plt.title(str(observables_unique[i])+'_Including Experiments_'+ str(experiments_want_to_plot_data_from)) n, bins2, patches = plt.hist(Y_values,bins=bins ,align='mid') plt.xlabel('Y') #plt.xlim([-1,1]) plt.subplot(2,1,2) plt.hist(y_values,bins=bins,align='mid') plt.xlabel('y') plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.5, hspace=.5) #plt.savefig(directory_to_save_images+'/'+str(observables_unique[i])+'_Including Experiments_'+ str(experiments_want_to_plot_data_from)+'_Yy_hist_2.pdf',dpi=1000,bbox_inches='tight') #plotting normalized values plt.figure() plt.subplot(2,1,1) n, bins2, patches = plt.hist(Y_values,bins=bins ,align='mid',density=True) plt.xlabel('Y') plt.title(str(observables_unique[i])+'_Including Experiments_'+ str(experiments_want_to_plot_data_from)) plt.ylabel('normalized') plt.subplot(2,1,2) plt.hist(y_values,bins=bins,align='mid',density=True) plt.xlabel('y') plt.ylabel('normalized') plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.5, hspace=.5) #plotting two fold plots plt.figure() plt.subplot(2,1,1) plt.title(str(observables_unique[i])+'_Including Experiments_'+ str(experiments_want_to_plot_data_from)) n, bins2, patches = plt.hist(Y_values,bins=bins ,align='mid') plt.xlabel('Y') #plt.xlim([-1,1]) plt.subplot(2,1,2) plt.hist(y_values,bins=bins,align='mid') plt.xlabel('y') plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.5, hspace=.5) #plt.savefig(directory_to_save_images+'/'+str(observables_unique[i])+'_Including Experiments_'+ str(experiments_want_to_plot_data_from)+'_Yy_hist_2.pdf',dpi=1000,bbox_inches='tight') #plotting normalized values plt.figure() plt.subplot(2,1,1) n, bins2, patches = plt.hist(Y_values,bins=bins ,align='mid',density=True) plt.xlabel('Y') plt.title(str(observables_unique[i])+'_Including Experiments_'+ str(experiments_want_to_plot_data_from)) plt.ylabel('normalized') plt.subplot(2,1,2) plt.hist(y_values,bins=bins,align='mid',density=True) plt.xlabel('y') plt.ylabel('normalized') plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.5, hspace=.5) # plt.savefig(directory_to_save_images+'/'+str(observables_unique[i])+'_Including Experiments_'+ str(experiments_want_to_plot_data_from)+'_Yy_hist_2_normalized.pdf',dpi=1000,bbox_inches='tight') def plotting_histograms_of_individual_observables_for_paper_2(self,experiments_want_to_plot_data_from,experiments_want_to_plot_data_from_2=[],bins='auto',directory_to_save_images='',csv=''): s_shape = self.S_matrix.shape[1] if self.k_target_value_S_matrix.any(): target_values_for_s = self.k_target_value_S_matrix s_shape = s_shape+target_values_for_s.shape[0] y_shape = self.y_matrix.shape[0] difference = y_shape-s_shape y_values = self.y_matrix[0:difference,0] Y_values = self.Y_matrix[0:difference,0] self.lengths_of_experimental_data() #plotting_Y Histagrams #edit this part #obserervable_list = [] observables_tottal = [] for i,exp in enumerate(self.exp_dict_list_optimized): observable_counter=0 single_experiment = [] for j,observable in enumerate(exp['mole_fraction_observables'] + exp['concentration_observables']): if observable == None: continue if observable in exp['mole_fraction_observables']: single_experiment.append(observable) observable_counter+=1 if observable in exp['concentration_observables']: single_experiment.append(observable) observable_counter+=1 if 'perturbed_coef' in exp.keys(): wavelengths = self.parsed_yaml_list[i]['absorbanceCsvWavelengths'] for k,wl in enumerate(wavelengths): single_experiment.append(wl) observables_tottal.append(single_experiment) observables_flatten = [item for sublist in observables_tottal for item in sublist] from collections import OrderedDict observables_unique = list(OrderedDict.fromkeys(observables_flatten)) empty_nested_observable_list_Y = [[] for x in range(len(observables_unique))] empty_nested_observable_list_y = [[] for x in range(len(observables_unique))] empty_nested_observable_list_Z = [[] for x in range(len(observables_unique))] empty_nested_observable_list_Y_2 = [[] for x in range(len(observables_unique))] empty_nested_observable_list_y_2 = [[] for x in range(len(observables_unique))] empty_nested_observable_list_Z_2 = [[] for x in range(len(observables_unique))] if bool(experiments_want_to_plot_data_from): print('inside here') y_values = [] Y_values = [] start = 0 stop = 0 for x in range(len(self.simulation_lengths_of_experimental_data)): for y in range(len(self.simulation_lengths_of_experimental_data[x])): current_observable = observables_tottal[x][y] stop = self.simulation_lengths_of_experimental_data[x][y] + start if x in experiments_want_to_plot_data_from: temp = self.Y_matrix[start:stop,:] empty_nested_observable_list_Y[observables_unique.index(current_observable)].append(temp) temp2 = self.y_matrix[start:stop,:] empty_nested_observable_list_y[observables_unique.index(current_observable)].append(temp2) temp3 = self.z_matrix[start:stop,:] empty_nested_observable_list_Z[observables_unique.index(current_observable)].append(temp3) start = start + self.simulation_lengths_of_experimental_data[x][y] else: start = start + self.simulation_lengths_of_experimental_data[x][y] if bool(experiments_want_to_plot_data_from_2): start = 0 stop = 0 for x in range(len(self.simulation_lengths_of_experimental_data)): for y in range(len(self.simulation_lengths_of_experimental_data[x])): current_observable = observables_tottal[x][y] stop = self.simulation_lengths_of_experimental_data[x][y] + start if x in experiments_want_to_plot_data_from_2: temp = self.Y_matrix[start:stop,:] empty_nested_observable_list_Y_2[observables_unique.index(current_observable)].append(temp) temp2 = self.y_matrix[start:stop,:] empty_nested_observable_list_y_2[observables_unique.index(current_observable)].append(temp2) temp3 = self.z_matrix[start:stop,:] empty_nested_observable_list_Z_2[observables_unique.index(current_observable)].append(temp3) start = start + self.simulation_lengths_of_experimental_data[x][y] else: start = start + self.simulation_lengths_of_experimental_data[x][y] import matplotlib.gridspec as gridspec fig = plt.figure(figsize=(6,7)) gs = gridspec.GridSpec(3, 1,height_ratios=[3,3,3],wspace=0.1,hspace=0.1) gs.update(wspace=0, hspace=0.7) ax1=plt.subplot(gs[0]) ax2=plt.subplot(gs[1]) ax3=plt.subplot(gs[2]) for i,observable in enumerate(empty_nested_observable_list_Y): new_Y_test_2 =[] if bool(observable): Y_values = np.vstack((observable)) y_values = np.vstack((empty_nested_observable_list_y[i])) z_values = np.vstack((empty_nested_observable_list_Z[i])) indecies = np.argwhere(z_values > 100) new_y_test = copy.deepcopy(Y_values) new_y_test = np.delete(new_y_test,indecies) # print(indecies.shape) # print(indecies) # print(i) if bool(experiments_want_to_plot_data_from_2) and bool(empty_nested_observable_list_y_2[i]): Y_values_2 = np.vstack((empty_nested_observable_list_Y_2[i])) y_values_2 = np.vstack((empty_nested_observable_list_y_2[i])) z_values_2 = np.vstack((empty_nested_observable_list_Z_2[i])) indecies_2 = np.argwhere(z_values_2 > 100) new_Y_test_2 = copy.deepcopy(Y_values_2) new_Y_test_2 = np.delete(new_Y_test_2,indecies_2) #plt.figure() #plt.subplot(1,1,1) #plt.subplots(3,1,1) #n, bins2, patches = plt.hist(Y_values,bins=bins ,align='mid',density=True,label='Hong Experiments') test = [-0.06402874, -0.05325865, -0.04248857, -0.03171848, -0.02094839, -0.0101783, 0.00059179, 0.01136188, 0.02213197, 0.03290205, 0.04367214, 0.05444223, 0.06521232, 0.07598241, 0.0867525, 0.09752259, 0.10829268] if i ==0: #n, bins2, patches = plt.hist(new_y_test,bins=bins ,align='mid',density=True,label='Hong Experiments') #ax1.hist(new_y_test,bins=bins ,align='mid',density=True,label='Hong Experiments') n,bins_test_1,patches = ax1.hist(new_y_test,bins=bins ,align='mid',density=True,label='#1') ax1.set_xlim(left=-.3, right=.3, emit=True, auto=False) ax1.set_ylim(top=15,bottom=0) ax1.set_xlabel('Y') ax1.set_xlabel('Relative Difference') #plt.title(str(observables_unique[i])+'_Including Experiments_'+ str(experiments_want_to_plot_data_from)) ax1.set_title(str(observables_unique[i])) ax1.set_ylabel('pdf') #plt.ylabel('normalized') if bool(experiments_want_to_plot_data_from_2): # plt.hist(Y_values_2,bins=bins ,align='mid',density=True,alpha=0.5,label='Extra Experiments') #ax1.hist(new_Y_test_2,bins=bins ,align='mid',density=True,alpha=0.5,label='Extra Experiments') ax1.hist(new_Y_test_2,bins=bins ,align='mid',density=True,alpha=0.5,label='#2') if bool(csv): df = pd.read_csv(csv) #ax1.hist(df[str(observables_unique[i])+'_Y'].dropna()*-1,bins=bins ,align='mid',density=True,alpha=0.5,label='Hong vs. Hong') #ax1.hist(df[str(observables_unique[i])+'_Y'].dropna()*-1,bins=bins ,align='mid',density=True,alpha=0.5,label='#3') ax1.legend() if i ==1: #n, bins2, patches = plt.hist(new_y_test,bins=bins ,align='mid',density=True,label='Hong Experiments') n,bins_test_2,patches = ax2.hist(new_y_test,bins=bins ,align='mid',density=True,label='Hong Experiments') ax2.set_xlim(left=-.08, right=.08, emit=True, auto=False) ax2.set_ylim(top=28,bottom=0) ax2.set_xlabel('Y') ax2.set_xlabel('Relative Difference') #plt.title(str(observables_unique[i])+'_Including Experiments_'+ str(experiments_want_to_plot_data_from)) #ax2.set_title(str(observables_unique[i])) ax2.set_title(r'H$_2$O') ax2.set_ylabel('pdf') #plt.ylabel('normalized') if bool(experiments_want_to_plot_data_from_2): # plt.hist(Y_values_2,bins=bins ,align='mid',density=True,alpha=0.5,label='Extra Experiments') ax2.hist(new_Y_test_2,bins=bins ,align='mid',density=True,alpha=0.5,label='Extra Experiments') if bool(csv): df = pd.read_csv(csv) #ax2.hist(df[str(observables_unique[i])+'_Y'].dropna()*-1,bins=bins ,align='mid',density=True,alpha=0.5,label='Hong vs. Hong') if i ==3: #n, bins2, patches = plt.hist(new_y_test,bins=bins ,align='mid',density=True,label='Hong Experiments') n,bins_test_3,patches = ax3.hist(new_y_test,bins=bins ,align='mid',density=True,label='Hong Experiments') ax3.set_xlim(left=-.15, right=.15, emit=True, auto=False) ax3.set_ylim(top=12,bottom=0) ax3.set_xlabel('Y') ax3.set_xlabel('Relative Difference') ax3.set_ylabel('pdf') #plt.title(str(observables_unique[i])+'_Including Experiments_'+ str(experiments_want_to_plot_data_from)) ax3.set_title(str(observables_unique[i])) ax3.set_title('Absorbance '+ str(observables_unique[i])+ ' nm') #plt.ylabel('normalized') if bool(experiments_want_to_plot_data_from_2): print('inside here') print(experiments_want_to_plot_data_from_2) # plt.hist(Y_values_2,bins=bins ,align='mid',density=True,alpha=0.5,label='Extra Experiments') ax3.hist(new_Y_test_2,bins=bins ,align='mid',density=True,alpha=0.5,label='Extra Experiments') if bool(csv): df = pd.read_csv(csv) #ax3.hist(df[str(observables_unique[i])+'_Y'].dropna()*-1,bins=bins ,align='mid',density=True,alpha=0.5,label='Hong vs. Hong') plt.savefig(directory_to_save_images+'/'+str(observables_unique[i])+'_Including Experiments_'+ str(experiments_want_to_plot_data_from)+'_Yy_hist_2_normalized.pdf',dpi=1000,bbox_inches='tight') def plotting_histograms_of_individual_observables_for_paper(self,experiments_want_to_plot_data_from,experiments_want_to_plot_data_from_2=[],bins='auto',directory_to_save_images='',csv=''): s_shape = self.S_matrix.shape[1] if self.k_target_value_S_matrix.any(): target_values_for_s = self.k_target_value_S_matrix s_shape = s_shape+target_values_for_s.shape[0] y_shape = self.y_matrix.shape[0] difference = y_shape-s_shape y_values = self.y_matrix[0:difference,0] Y_values = self.Y_matrix[0:difference,0] self.lengths_of_experimental_data() #plotting_Y Histagrams #obserervable_list = [] observables_tottal = [] for i,exp in enumerate(self.exp_dict_list_optimized): observable_counter=0 single_experiment = [] for j,observable in enumerate(exp['mole_fraction_observables'] + exp['concentration_observables']): if observable == None: continue if observable in exp['mole_fraction_observables']: single_experiment.append(observable) observable_counter+=1 if observable in exp['concentration_observables']: single_experiment.append(observable) observable_counter+=1 if 'perturbed_coef' in exp.keys(): wavelengths = self.parsed_yaml_list[i]['absorbanceCsvWavelengths'] for k,wl in enumerate(wavelengths): single_experiment.append(wl) observables_tottal.append(single_experiment) observables_flatten = [item for sublist in observables_tottal for item in sublist] from collections import OrderedDict observables_unique = list(OrderedDict.fromkeys(observables_flatten)) empty_nested_observable_list_Y = [[] for x in range(len(observables_unique))] empty_nested_observable_list_y = [[] for x in range(len(observables_unique))] empty_nested_observable_list_Z = [[] for x in range(len(observables_unique))] empty_nested_observable_list_Y_2 = [[] for x in range(len(observables_unique))] empty_nested_observable_list_y_2 = [[] for x in range(len(observables_unique))] empty_nested_observable_list_Z_2 = [[] for x in range(len(observables_unique))] if bool(experiments_want_to_plot_data_from): print('inside here') y_values = [] Y_values = [] start = 0 stop = 0 for x in range(len(self.simulation_lengths_of_experimental_data)): for y in range(len(self.simulation_lengths_of_experimental_data[x])): current_observable = observables_tottal[x][y] stop = self.simulation_lengths_of_experimental_data[x][y] + start if x in experiments_want_to_plot_data_from: temp = self.Y_matrix[start:stop,:] empty_nested_observable_list_Y[observables_unique.index(current_observable)].append(temp) temp2 = self.y_matrix[start:stop,:] empty_nested_observable_list_y[observables_unique.index(current_observable)].append(temp2) temp3 = self.z_matrix[start:stop,:] empty_nested_observable_list_Z[observables_unique.index(current_observable)].append(temp3) start = start + self.simulation_lengths_of_experimental_data[x][y] else: start = start + self.simulation_lengths_of_experimental_data[x][y] if bool(experiments_want_to_plot_data_from_2): start = 0 stop = 0 for x in range(len(self.simulation_lengths_of_experimental_data)): for y in range(len(self.simulation_lengths_of_experimental_data[x])): current_observable = observables_tottal[x][y] stop = self.simulation_lengths_of_experimental_data[x][y] + start if x in experiments_want_to_plot_data_from_2: temp = self.Y_matrix[start:stop,:] empty_nested_observable_list_Y_2[observables_unique.index(current_observable)].append(temp) temp2 = self.y_matrix[start:stop,:] empty_nested_observable_list_y_2[observables_unique.index(current_observable)].append(temp2) temp3 = self.z_matrix[start:stop,:] empty_nested_observable_list_Z_2[observables_unique.index(current_observable)].append(temp3) start = start + self.simulation_lengths_of_experimental_data[x][y] else: start = start + self.simulation_lengths_of_experimental_data[x][y] import matplotlib.gridspec as gridspec for i,observable in enumerate(empty_nested_observable_list_Y): if bool(observable): Y_values = np.vstack((observable)) y_values = np.vstack((empty_nested_observable_list_y[i])) z_values = np.vstack((empty_nested_observable_list_Z[i])) indecies = np.argwhere(z_values > 100) new_y_test = copy.deepcopy(Y_values) new_y_test = np.delete(new_y_test,indecies) if bool(experiments_want_to_plot_data_from_2) and bool(empty_nested_observable_list_y_2[i]): Y_values_2 = np.vstack((empty_nested_observable_list_Y_2[i])) y_values_2 = np.vstack((empty_nested_observable_list_y_2[i])) z_values_2 = np.vstack((empty_nested_observable_list_Z_2[i])) indecies_2 = np.argwhere(z_values_2 > 100) new_Y_test_2 = copy.deepcopy(Y_values_2) new_Y_test_2 = np.delete(new_Y_test_2,indecies_2) plt.figure() plt.subplot(1,1,1) #plt.subplots(3,1,1) #n, bins2, patches = plt.hist(Y_values,bins=bins ,align='mid',density=True,label='Hong Experiments') n, bins2, patches = plt.hist(new_y_test,bins=bins ,align='mid',density=True,label='Hong Experiments') plt.xlabel('Y') #plt.title(str(observables_unique[i])+'_Including Experiments_'+ str(experiments_want_to_plot_data_from)) plt.title(str(observables_unique[i])) #plt.ylabel('normalized') if bool(experiments_want_to_plot_data_from_2): # plt.hist(Y_values_2,bins=bins ,align='mid',density=True,alpha=0.5,label='Extra Experiments') plt.hist(new_Y_test_2,bins=bins ,align='mid',density=True,alpha=0.5,label='Extra Experiments') if bool(csv): df = pd.read_csv(csv) plt.hist(df[str(observables_unique[i])+'_Y'].dropna()*-1,bins=bins ,align='mid',density=True,alpha=0.5,label='Hong vs. Hong') plt.legend() return def plotting_T_and_time_full_simulation_individual_observables(self,experiments_want_to_plot_data_from,bins='auto',directory_to_save_images=''): #working_here observables_tottal = [] for i,exp in enumerate(self.exp_dict_list_optimized): observable_counter=0 single_experiment = [] for j,observable in enumerate(exp['mole_fraction_observables'] + exp['concentration_observables']): if observable == None: continue if observable in exp['mole_fraction_observables']: single_experiment.append(observable) observable_counter+=1 if observable in exp['concentration_observables']: single_experiment.append(observable) observable_counter+=1 if 'perturbed_coef' in exp.keys(): wavelengths = self.parsed_yaml_list[i]['absorbanceCsvWavelengths'] for k,wl in enumerate(wavelengths): single_experiment.append(wl) observables_tottal.append(single_experiment) observables_flatten = [item for sublist in observables_tottal for item in sublist] from collections import OrderedDict observables_unique = list(OrderedDict.fromkeys(observables_flatten)) empty_nested_observable_list_Y = [[] for x in range(len(observables_unique))] empty_nested_observable_list_y = [[] for x in range(len(observables_unique))] empty_nested_observable_list_time = [[] for x in range(len(observables_unique))] empty_nested_observable_list_temperature = [[] for x in range(len(observables_unique))] empty_nested_observable_list_initial_temperature = [[] for x in range(len(observables_unique))] if bool(experiments_want_to_plot_data_from): start = 0 stop = 0 for x in range(len(self.simulation_lengths_of_experimental_data)): for y in range(len(self.simulation_lengths_of_experimental_data[x])): current_observable = observables_tottal[x][y] stop = self.simulation_lengths_of_experimental_data[x][y] + start if x in experiments_want_to_plot_data_from: temp = self.Y_matrix[start:stop,:] empty_nested_observable_list_Y[observables_unique.index(current_observable)].append(temp) temp2 = self.y_matrix[start:stop,:] empty_nested_observable_list_y[observables_unique.index(current_observable)].append(temp2) start = start + self.simulation_lengths_of_experimental_data[x][y] else: start = start + self.simulation_lengths_of_experimental_data[x][y] for i,exp in enumerate(self.exp_dict_list_optimized): observable_counter=0 for j,observable in enumerate(exp['mole_fraction_observables'] + exp['concentration_observables']): if observable == None: continue if i in experiments_want_to_plot_data_from: if observable in exp['mole_fraction_observables']: empty_nested_observable_list_time[observables_unique.index(observable)].append(exp['experimental_data'][observable_counter]['Time']*1e3) interploated_temp = np.interp(exp['experimental_data'][observable_counter]['Time'],exp['simulation'].timeHistories[0]['time'],exp['simulation'].timeHistories[0]['temperature']) empty_nested_observable_list_temperature[observables_unique.index(observable)].append(interploated_temp) empty_nested_observable_list_initial_temperature[observables_unique.index(observable)].append([self.exp_dict_list_original[i]['simulation'].temperature]*np.shape(interploated_temp)[0]) observable_counter+=1 if observable in exp['concentration_observables']: empty_nested_observable_list_time[observables_unique.index(observable)].append(exp['experimental_data'][observable_counter]['Time']*1e3) interploated_temp = np.interp(exp['experimental_data'][observable_counter]['Time'],exp['simulation'].timeHistories[0]['time'],exp['simulation'].timeHistories[0]['temperature']) empty_nested_observable_list_temperature[observables_unique.index(observable)].append(interploated_temp) empty_nested_observable_list_initial_temperature[observables_unique.index(observable)].append([self.exp_dict_list_original[i]['simulation'].temperature]*np.shape(interploated_temp)[0]) observable_counter+=1 if i in experiments_want_to_plot_data_from: if 'perturbed_coef' in exp.keys(): wavelengths = self.parsed_yaml_list[i]['absorbanceCsvWavelengths'] for k,wl in enumerate(wavelengths): empty_nested_observable_list_time[observables_unique.index(wl)].append(exp['absorbance_experimental_data'][k]['time']*1e3) interploated_temp = np.interp(exp['absorbance_experimental_data'][k]['time'],exp['simulation'].timeHistories[0]['time'],exp['simulation'].timeHistories[0]['temperature']) empty_nested_observable_list_temperature[observables_unique.index(wl)].append(interploated_temp) empty_nested_observable_list_initial_temperature[observables_unique.index(wl)].append([self.exp_dict_list_original[i]['simulation'].temperature]*np.shape(interploated_temp)[0]) #print(interploated_temp.shape, exp['absorbance_experimental_data'][k]['time'].shape ) x = np.arange(10) ys = [i+x+(i*x)**2 for i in range(10)] colors=cm.rainbow(np.linspace(0,1,30)) #colors = cm.rainbow(np.linspace(0, 1, len(ys))) for x,observable in enumerate(empty_nested_observable_list_Y): if bool(observable): plt.figure() for y,array in enumerate(empty_nested_observable_list_Y[x]): plt.subplot(2,1,1) plt.xlabel('Y') plt.ylabel('Time') plt.scatter(empty_nested_observable_list_Y[x][y],empty_nested_observable_list_time[x][y],label='Experiment_'+str(x)+'_observable_'+str(y),color=colors[x]) #plt.legend(ncol=2,bbox_to_anchor=(1, 0.5)) plt.title(observables_unique[x]) plt.subplot(2,1,2) plt.scatter(empty_nested_observable_list_y[x][y],empty_nested_observable_list_time[x][y],color=colors[x]) plt.xlabel('y') plt.ylabel('Time') plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.5, hspace=.5) plt.savefig(directory_to_save_images+'/'+str(observables_unique[x])+'_Including Experiments_'+str(experiments_want_to_plot_data_from)+'_Yy_vs_time.pdf',dpi=1000,bbox_inches='tight') for x,observable in enumerate(empty_nested_observable_list_Y): if bool(observable): plt.figure() for y,array in enumerate(empty_nested_observable_list_Y[x]): plt.subplot(2,1,1) plt.scatter(empty_nested_observable_list_Y[x][y],empty_nested_observable_list_temperature[x][y],label='Experiment_'+str(x)+'_observable_'+str(y),color=colors[x]) #plt.legend(ncol=2,bbox_to_anchor=(1, 0.5)) plt.xlabel('Y') plt.ylabel('Temperature') plt.title(observables_unique[x]) plt.subplot(2,1,2) plt.scatter(empty_nested_observable_list_y[x][y],empty_nested_observable_list_temperature[x][y],color=colors[x]) plt.xlabel('y') plt.ylabel('Temperature') plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.5, hspace=.5) plt.savefig(directory_to_save_images+'/'+str(observables_unique[x])+'_Including Experiments_'+str(experiments_want_to_plot_data_from)+'_Yy_vs_temperature.pdf',dpi=1000,bbox_inches='tight') for x,observable in enumerate(empty_nested_observable_list_Y): if bool(observable): plt.figure() for y,array in enumerate(empty_nested_observable_list_Y[x]): plt.subplot(2,1,1) plt.scatter(empty_nested_observable_list_Y[x][y],empty_nested_observable_list_initial_temperature[x][y],label='Experiment_'+str(x)+'_observable_'+str(y),color=colors[x]) #plt.legend(ncol=2,bbox_to_anchor=(1, 0.5)) plt.xlabel('Y') plt.ylabel('Initial Temperature') plt.title(observables_unique[x]) plt.subplot(2,1,2) plt.scatter(empty_nested_observable_list_y[x][y],empty_nested_observable_list_initial_temperature[x][y],color=colors[x]) plt.xlabel('y') plt.ylabel('Initial Temperature') plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.5, hspace=.5) plt.savefig(directory_to_save_images+'/'+str(observables_unique[x])+'_Including Experiments_'+str(experiments_want_to_plot_data_from)+'_Yy_vs_initial_temperature.pdf',dpi=1000,bbox_inches='tight') def plotting_T_and_time_full_simulation_individual_observables_for_paper(self,experiments_want_to_plot_data_from, bins='auto', directory_to_save_images='',csv='',experiments_want_to_plot_data_from_2=[]): #working_here observables_tottal = [] for i,exp in enumerate(self.exp_dict_list_optimized): observable_counter=0 single_experiment = [] for j,observable in enumerate(exp['mole_fraction_observables'] + exp['concentration_observables']): if observable == None: continue if observable in exp['mole_fraction_observables']: single_experiment.append(observable) observable_counter+=1 if observable in exp['concentration_observables']: single_experiment.append(observable) observable_counter+=1 if 'perturbed_coef' in exp.keys(): wavelengths = self.parsed_yaml_list[i]['absorbanceCsvWavelengths'] for k,wl in enumerate(wavelengths): single_experiment.append(wl) observables_tottal.append(single_experiment) observables_flatten = [item for sublist in observables_tottal for item in sublist] from collections import OrderedDict observables_unique = list(OrderedDict.fromkeys(observables_flatten)) empty_nested_observable_list_Y = [[] for x in range(len(observables_unique))] empty_nested_observable_list_y = [[] for x in range(len(observables_unique))] empty_nested_observable_list_time = [[] for x in range(len(observables_unique))] empty_nested_observable_list_temperature = [[] for x in range(len(observables_unique))] empty_nested_observable_list_initial_temperature = [[] for x in range(len(observables_unique))] if bool(experiments_want_to_plot_data_from): start = 0 stop = 0 for x in range(len(self.simulation_lengths_of_experimental_data)): for y in range(len(self.simulation_lengths_of_experimental_data[x])): current_observable = observables_tottal[x][y] stop = self.simulation_lengths_of_experimental_data[x][y] + start if x in experiments_want_to_plot_data_from: temp = self.Y_matrix[start:stop,:] empty_nested_observable_list_Y[observables_unique.index(current_observable)].append(temp) temp2 = self.y_matrix[start:stop,:] empty_nested_observable_list_y[observables_unique.index(current_observable)].append(temp2) start = start + self.simulation_lengths_of_experimental_data[x][y] else: start = start + self.simulation_lengths_of_experimental_data[x][y] for i,exp in enumerate(self.exp_dict_list_optimized): observable_counter=0 for j,observable in enumerate(exp['mole_fraction_observables'] + exp['concentration_observables']): if observable == None: continue if i in experiments_want_to_plot_data_from: if observable in exp['mole_fraction_observables']: empty_nested_observable_list_time[observables_unique.index(observable)].append(exp['experimental_data'][observable_counter]['Time']*1e3) interploated_temp = np.interp(exp['experimental_data'][observable_counter]['Time'],exp['simulation'].timeHistories[0]['time'],exp['simulation'].timeHistories[0]['temperature']) empty_nested_observable_list_temperature[observables_unique.index(observable)].append(interploated_temp) empty_nested_observable_list_initial_temperature[observables_unique.index(observable)].append([self.exp_dict_list_original[i]['simulation'].temperature]*np.shape(interploated_temp)[0]) observable_counter+=1 if observable in exp['concentration_observables']: empty_nested_observable_list_time[observables_unique.index(observable)].append(exp['experimental_data'][observable_counter]['Time']*1e3) interploated_temp = np.interp(exp['experimental_data'][observable_counter]['Time'],exp['simulation'].timeHistories[0]['time'],exp['simulation'].timeHistories[0]['temperature']) empty_nested_observable_list_temperature[observables_unique.index(observable)].append(interploated_temp) empty_nested_observable_list_initial_temperature[observables_unique.index(observable)].append([self.exp_dict_list_original[i]['simulation'].temperature]*np.shape(interploated_temp)[0]) observable_counter+=1 if i in experiments_want_to_plot_data_from: if 'perturbed_coef' in exp.keys(): wavelengths = self.parsed_yaml_list[i]['absorbanceCsvWavelengths'] for k,wl in enumerate(wavelengths): empty_nested_observable_list_time[observables_unique.index(wl)].append(exp['absorbance_experimental_data'][k]['time']*1e3) interploated_temp = np.interp(exp['absorbance_experimental_data'][k]['time'],exp['simulation'].timeHistories[0]['time'],exp['simulation'].timeHistories[0]['temperature']) empty_nested_observable_list_temperature[observables_unique.index(wl)].append(interploated_temp) empty_nested_observable_list_initial_temperature[observables_unique.index(wl)].append([self.exp_dict_list_original[i]['simulation'].temperature]*np.shape(interploated_temp)[0]) #################################################################################################################################################################################################################### empty_nested_observable_list_Y_2 = [[] for x in range(len(observables_unique))] empty_nested_observable_list_y_2 = [[] for x in range(len(observables_unique))] empty_nested_observable_list_time_2 = [[] for x in range(len(observables_unique))] empty_nested_observable_list_temperature_2 = [[] for x in range(len(observables_unique))] empty_nested_observable_list_initial_temperature_2 = [[] for x in range(len(observables_unique))] if bool(experiments_want_to_plot_data_from_2): start = 0 stop = 0 for x in range(len(self.simulation_lengths_of_experimental_data)): for y in range(len(self.simulation_lengths_of_experimental_data[x])): current_observable = observables_tottal[x][y] stop = self.simulation_lengths_of_experimental_data[x][y] + start if x in experiments_want_to_plot_data_from_2: temp = self.Y_matrix[start:stop,:] empty_nested_observable_list_Y_2[observables_unique.index(current_observable)].append(temp) temp2 = self.y_matrix[start:stop,:] empty_nested_observable_list_y_2[observables_unique.index(current_observable)].append(temp2) start = start + self.simulation_lengths_of_experimental_data[x][y] else: start = start + self.simulation_lengths_of_experimental_data[x][y] for i,exp in enumerate(self.exp_dict_list_optimized): observable_counter=0 for j,observable in enumerate(exp['mole_fraction_observables'] + exp['concentration_observables']): if observable == None: continue if i in experiments_want_to_plot_data_from_2: if observable in exp['mole_fraction_observables']: empty_nested_observable_list_time_2[observables_unique.index(observable)].append(exp['experimental_data'][observable_counter]['Time']*1e3) interploated_temp = np.interp(exp['experimental_data'][observable_counter]['Time'],exp['simulation'].timeHistories[0]['time'],exp['simulation'].timeHistories[0]['temperature']) empty_nested_observable_list_temperature_2[observables_unique.index(observable)].append(interploated_temp) empty_nested_observable_list_initial_temperature_2[observables_unique.index(observable)].append([self.exp_dict_list_original[i]['simulation'].temperature]*np.shape(interploated_temp)[0]) observable_counter+=1 if observable in exp['concentration_observables']: empty_nested_observable_list_time_2[observables_unique.index(observable)].append(exp['experimental_data'][observable_counter]['Time']*1e3) interploated_temp = np.interp(exp['experimental_data'][observable_counter]['Time'],exp['simulation'].timeHistories[0]['time'],exp['simulation'].timeHistories[0]['temperature']) empty_nested_observable_list_temperature_2[observables_unique.index(observable)].append(interploated_temp) empty_nested_observable_list_initial_temperature_2[observables_unique.index(observable)].append([self.exp_dict_list_original[i]['simulation'].temperature]*np.shape(interploated_temp)[0]) observable_counter+=1 if i in experiments_want_to_plot_data_from_2: if 'perturbed_coef' in exp.keys(): wavelengths = self.parsed_yaml_list[i]['absorbanceCsvWavelengths'] for k,wl in enumerate(wavelengths): empty_nested_observable_list_time_2[observables_unique.index(wl)].append(exp['absorbance_experimental_data'][k]['time']*1e3) interploated_temp = np.interp(exp['absorbance_experimental_data'][k]['time'],exp['simulation'].timeHistories[0]['time'],exp['simulation'].timeHistories[0]['temperature']) empty_nested_observable_list_temperature_2[observables_unique.index(wl)].append(interploated_temp) empty_nested_observable_list_initial_temperature_2[observables_unique.index(wl)].append([self.exp_dict_list_original[i]['simulation'].temperature]*np.shape(interploated_temp)[0]) ################################################################################################################################################################################################################### x = np.arange(10) ys = [i+x+(i*x)**2 for i in range(10)] colors=cm.rainbow(np.linspace(0,1,30)) #colors = cm.rainbow(np.linspace(0, 1, len(ys))) for x,observable in enumerate(empty_nested_observable_list_Y): length_of_2nd_list = len(empty_nested_observable_list_Y_2[x]) if bool(observable): plt.figure() if bool(csv): df = pd.read_csv(csv) plt.scatter(df[str(observables_unique[x])+'_Y'].dropna()*-1,df[str(observables_unique[x])+'_time'].dropna()*1e3,alpha=0.5,color='k',zorder=4) for y,array in enumerate(empty_nested_observable_list_Y[x]): plt.subplot(1,1,1) plt.xlabel('Y') plt.ylabel('Time') plt.scatter(empty_nested_observable_list_Y[x][y],empty_nested_observable_list_time[x][y],label='Experiment_'+str(x)+'_observable_'+str(y),color='blue') if y<length_of_2nd_list: plt.scatter(empty_nested_observable_list_Y_2[x][y],empty_nested_observable_list_time_2[x][y],color='red',zorder=4) #plt.legend(ncol=2,bbox_to_anchor=(1, 0.5)) plt.title(observables_unique[x]) # plt.subplot(2,1,2) # plt.scatter(empty_nested_observable_list_y[x][y],empty_nested_observable_list_time[x][y],color=colors[x]) # plt.xlabel('y') # plt.ylabel('Time') # plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.5, hspace=.5) #plt.savefig(directory_to_save_images+'/'+str(observables_unique[x])+'_Including Experiments_'+str(experiments_want_to_plot_data_from)+'_Yy_vs_time.pdf',dpi=1000,bbox_inches='tight') for x,observable in enumerate(empty_nested_observable_list_Y): length_of_2nd_list = len(empty_nested_observable_list_Y_2[x]) if bool(observable): plt.figure() if bool(csv): df = pd.read_csv(csv) plt.scatter(df[str(observables_unique[x])+'_Y'].dropna()*-1,df[str(observables_unique[x])+'_Temperature'].dropna(),alpha=0.5,color='k',zorder=4) for y,array in enumerate(empty_nested_observable_list_Y[x]): plt.subplot(1,1,1) plt.scatter(empty_nested_observable_list_Y[x][y],empty_nested_observable_list_temperature[x][y],label='Experiment_'+str(x)+'_observable_'+str(y),color='blue') #plt.legend(ncol=2,bbox_to_anchor=(1, 0.5)) plt.xlabel('Y') plt.ylabel('Temperature') plt.title(observables_unique[x]) if y<length_of_2nd_list: plt.scatter(empty_nested_observable_list_Y_2[x][y],empty_nested_observable_list_temperature_2[x][y],color='red',zorder=4) # plt.subplot(2,1,2) # # plt.scatter(empty_nested_observable_list_y[x][y],empty_nested_observable_list_temperature[x][y],color=colors[x]) # plt.xlabel('y') # plt.ylabel('Temperature') # plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.5, hspace=.5) #plt.savefig(directory_to_save_images+'/'+str(observables_unique[x])+'_Including Experiments_'+str(experiments_want_to_plot_data_from)+'_Yy_vs_temperature.pdf',dpi=1000,bbox_inches='tight') for x,observable in enumerate(empty_nested_observable_list_Y): length_of_2nd_list = len(empty_nested_observable_list_Y_2[x]) if bool(observable): plt.figure() if bool(csv): df = pd.read_csv(csv) plt.scatter(df[str(observables_unique[x])+'_Y'].dropna()*-1,df[str(observables_unique[x])+'_initial_Temperature'].dropna(),alpha=0.5,color='k',zorder=4) for y,array in enumerate(empty_nested_observable_list_Y[x]): plt.subplot(1,1,1) plt.scatter(empty_nested_observable_list_Y[x][y],empty_nested_observable_list_initial_temperature[x][y],label='Experiment_'+str(x)+'_observable_'+str(y),color='blue') #plt.legend(ncol=2,bbox_to_anchor=(1, 0.5)) plt.xlabel('Y') plt.ylabel('Initial Temperature') plt.title(observables_unique[x]) if y<length_of_2nd_list: plt.scatter(empty_nested_observable_list_Y_2[x][y],empty_nested_observable_list_initial_temperature_2[x][y],color='red',zorder=4) # plt.subplot(2,1,2) # # plt.scatter(empty_nested_observable_list_y[x][y],empty_nested_observable_list_initial_temperature[x][y],color=colors[x]) # plt.xlabel('y') # plt.ylabel('Initial Temperature') # plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=.5, hspace=.5) #plt.savefig(directory_to_save_images+'/'+str(observables_unique[x])+'_Including Experiments_'+str(experiments_want_to_plot_data_from)+'_Yy_vs_initial_temperature.pdf',dpi=1000,bbox_inches='tight') def plotting_T_and_time_full_simulation_individual_observables_for_paper_2(self,experiments_want_to_plot_data_from, bins='auto', directory_to_save_images='',csv='',experiments_want_to_plot_data_from_2=[]): #working_here observables_tottal = [] for i,exp in enumerate(self.exp_dict_list_optimized): observable_counter=0 single_experiment = [] for j,observable in enumerate(exp['mole_fraction_observables'] + exp['concentration_observables']): if observable == None: continue if observable in exp['mole_fraction_observables']: single_experiment.append(observable) observable_counter+=1 if observable in exp['concentration_observables']: single_experiment.append(observable) observable_counter+=1 if 'perturbed_coef' in exp.keys(): wavelengths = self.parsed_yaml_list[i]['absorbanceCsvWavelengths'] for k,wl in enumerate(wavelengths): single_experiment.append(wl) observables_tottal.append(single_experiment) observables_flatten = [item for sublist in observables_tottal for item in sublist] from collections import OrderedDict observables_unique = list(OrderedDict.fromkeys(observables_flatten)) empty_nested_observable_list_Y = [[] for x in range(len(observables_unique))] empty_nested_observable_list_y = [[] for x in range(len(observables_unique))] empty_nested_observable_list_time = [[] for x in range(len(observables_unique))] empty_nested_observable_list_temperature = [[] for x in range(len(observables_unique))] empty_nested_observable_list_initial_temperature = [[] for x in range(len(observables_unique))] empty_nested_observable_list_z = [[] for x in range(len(observables_unique))] if bool(experiments_want_to_plot_data_from): start = 0 stop = 0 for x in range(len(self.simulation_lengths_of_experimental_data)): for y in range(len(self.simulation_lengths_of_experimental_data[x])): current_observable = observables_tottal[x][y] stop = self.simulation_lengths_of_experimental_data[x][y] + start if x in experiments_want_to_plot_data_from: temp = self.Y_matrix[start:stop,:] empty_nested_observable_list_Y[observables_unique.index(current_observable)].append(temp) temp2 = self.y_matrix[start:stop,:] empty_nested_observable_list_y[observables_unique.index(current_observable)].append(temp2) temp3 = self.z_matrix[start:stop,:] empty_nested_observable_list_z[observables_unique.index(current_observable)].append(temp3) start = start + self.simulation_lengths_of_experimental_data[x][y] else: start = start + self.simulation_lengths_of_experimental_data[x][y] for i,exp in enumerate(self.exp_dict_list_optimized): observable_counter=0 for j,observable in enumerate(exp['mole_fraction_observables'] + exp['concentration_observables']): if observable == None: continue if i in experiments_want_to_plot_data_from: if observable in exp['mole_fraction_observables']: empty_nested_observable_list_time[observables_unique.index(observable)].append(exp['experimental_data'][observable_counter]['Time']*1e3) interploated_temp = np.interp(exp['experimental_data'][observable_counter]['Time'],exp['simulation'].timeHistories[0]['time'],exp['simulation'].timeHistories[0]['temperature']) empty_nested_observable_list_temperature[observables_unique.index(observable)].append(interploated_temp) empty_nested_observable_list_initial_temperature[observables_unique.index(observable)].append([self.exp_dict_list_original[i]['simulation'].temperature]*np.shape(interploated_temp)[0]) observable_counter+=1 if observable in exp['concentration_observables']: empty_nested_observable_list_time[observables_unique.index(observable)].append(exp['experimental_data'][observable_counter]['Time']*1e3) interploated_temp = np.interp(exp['experimental_data'][observable_counter]['Time'],exp['simulation'].timeHistories[0]['time'],exp['simulation'].timeHistories[0]['temperature']) empty_nested_observable_list_temperature[observables_unique.index(observable)].append(interploated_temp) empty_nested_observable_list_initial_temperature[observables_unique.index(observable)].append([self.exp_dict_list_original[i]['simulation'].temperature]*np.shape(interploated_temp)[0]) observable_counter+=1 if i in experiments_want_to_plot_data_from: if 'perturbed_coef' in exp.keys(): wavelengths = self.parsed_yaml_list[i]['absorbanceCsvWavelengths'] for k,wl in enumerate(wavelengths): empty_nested_observable_list_time[observables_unique.index(wl)].append(exp['absorbance_experimental_data'][k]['time']*1e3) interploated_temp = np.interp(exp['absorbance_experimental_data'][k]['time'],exp['simulation'].timeHistories[0]['time'],exp['simulation'].timeHistories[0]['temperature']) empty_nested_observable_list_temperature[observables_unique.index(wl)].append(interploated_temp) empty_nested_observable_list_initial_temperature[observables_unique.index(wl)].append([self.exp_dict_list_original[i]['simulation'].temperature]*np.shape(interploated_temp)[0]) #################################################################################################################################################################################################################### empty_nested_observable_list_Y_2 = [[] for x in range(len(observables_unique))] empty_nested_observable_list_y_2 = [[] for x in range(len(observables_unique))] empty_nested_observable_list_time_2 = [[] for x in range(len(observables_unique))] empty_nested_observable_list_temperature_2 = [[] for x in range(len(observables_unique))] empty_nested_observable_list_initial_temperature_2 = [[] for x in range(len(observables_unique))] empty_nested_observable_list_z_2 = [[] for x in range(len(observables_unique))] if bool(experiments_want_to_plot_data_from_2): start = 0 stop = 0 for x in range(len(self.simulation_lengths_of_experimental_data)): for y in range(len(self.simulation_lengths_of_experimental_data[x])): current_observable = observables_tottal[x][y] stop = self.simulation_lengths_of_experimental_data[x][y] + start if x in experiments_want_to_plot_data_from_2: temp = self.Y_matrix[start:stop,:] empty_nested_observable_list_Y_2[observables_unique.index(current_observable)].append(temp) temp2 = self.y_matrix[start:stop,:] empty_nested_observable_list_y_2[observables_unique.index(current_observable)].append(temp2) temp3 = self.z_matrix[start:stop,:] empty_nested_observable_list_z_2[observables_unique.index(current_observable)].append(temp3) start = start + self.simulation_lengths_of_experimental_data[x][y] else: start = start + self.simulation_lengths_of_experimental_data[x][y] for i,exp in enumerate(self.exp_dict_list_optimized): observable_counter=0 for j,observable in enumerate(exp['mole_fraction_observables'] + exp['concentration_observables']): if observable == None: continue if i in experiments_want_to_plot_data_from_2: if observable in exp['mole_fraction_observables']: empty_nested_observable_list_time_2[observables_unique.index(observable)].append(exp['experimental_data'][observable_counter]['Time']*1e3) interploated_temp = np.interp(exp['experimental_data'][observable_counter]['Time'],exp['simulation'].timeHistories[0]['time'],exp['simulation'].timeHistories[0]['temperature']) empty_nested_observable_list_temperature_2[observables_unique.index(observable)].append(interploated_temp) empty_nested_observable_list_initial_temperature_2[observables_unique.index(observable)].append([self.exp_dict_list_original[i]['simulation'].temperature]*np.shape(interploated_temp)[0]) observable_counter+=1 if observable in exp['concentration_observables']: empty_nested_observable_list_time_2[observables_unique.index(observable)].append(exp['experimental_data'][observable_counter]['Time']*1e3) interploated_temp = np.interp(exp['experimental_data'][observable_counter]['Time'],exp['simulation'].timeHistories[0]['time'],exp['simulation'].timeHistories[0]['temperature']) empty_nested_observable_list_temperature_2[observables_unique.index(observable)].append(interploated_temp) empty_nested_observable_list_initial_temperature_2[observables_unique.index(observable)].append([self.exp_dict_list_original[i]['simulation'].temperature]*np.shape(interploated_temp)[0]) observable_counter+=1 if i in experiments_want_to_plot_data_from_2: if 'perturbed_coef' in exp.keys(): wavelengths = self.parsed_yaml_list[i]['absorbanceCsvWavelengths'] for k,wl in enumerate(wavelengths): empty_nested_observable_list_time_2[observables_unique.index(wl)].append(exp['absorbance_experimental_data'][k]['time']*1e3) interploated_temp = np.interp(exp['absorbance_experimental_data'][k]['time'],exp['simulation'].timeHistories[0]['time'],exp['simulation'].timeHistories[0]['temperature']) empty_nested_observable_list_temperature_2[observables_unique.index(wl)].append(interploated_temp) empty_nested_observable_list_initial_temperature_2[observables_unique.index(wl)].append([self.exp_dict_list_original[i]['simulation'].temperature]*np.shape(interploated_temp)[0]) ################################################################################################################################################################################################################### x = np.arange(10) ys = [i+x+(i*x)**2 for i in range(10)] colors=cm.rainbow(np.linspace(0,1,30)) #colors = cm.rainbow(np.linspace(0, 1, len(ys))) import matplotlib.gridspec as gridspec fig = plt.figure(figsize=(6,7)) gs = gridspec.GridSpec(3, 1,height_ratios=[3,3,3],wspace=0.025,hspace=0.1) gs.update(wspace=0, hspace=0.7) ax1=plt.subplot(gs[0]) ax2=plt.subplot(gs[1]) ax3=plt.subplot(gs[2]) fig2 = plt.figure(figsize=(6,7)) gs2 = gridspec.GridSpec(3, 1,height_ratios=[3,3,3],wspace=0.025,hspace=0.1) gs2.update(wspace=0, hspace=0.7) ax4=plt.subplot(gs2[0]) ax5=plt.subplot(gs2[1]) ax6=plt.subplot(gs2[2]) for x,observable in enumerate(empty_nested_observable_list_Y): length_of_2nd_list = len(empty_nested_observable_list_Y_2[x]) if bool(observable): if x ==0: if bool(csv): df =
pd.read_csv(csv)
pandas.read_csv
import requests from bs4 import BeautifulSoup import pandas as pd import numpy as np import os # current directory CD = os.path.dirname(os.path.abspath(__file__)) # shipments data filepath. FILENAME = '' FILEPATH = os.path.join(CD, 'tmp', FILENAME) # other shipments data configuration. ORIGIN_COL = '' DEST_COL = '' # zone type either 'Express' or 'Ground'. ZONE_TYPE = '' def init(): """return pd.Dataframe and initial zones list""" ext = FILENAME.split('.')[-1] print('input:', FILEPATH) if ext == 'xlsx' or ext == 'xls': return pd.read_excel(FILEPATH, sheet_name='Sheet1'), [] elif ext == 'csv': return pd.read_csv(FILEPATH), [] else: print('File must be .csv, .xlsx, .xls.') return
pd.DataFrame()
pandas.DataFrame
import logging import configparser import numpy from scipy import stats import pandas from trueimpactdataset_analysis.data.data_loader import DataLoader __author__ = 'robodasha' __email__ = '<EMAIL>' def load_config(): """ :return: """ config = configparser.ConfigParser() config.read('config.ini') return config def citations_ttest(): """ :return: """ config = load_config() logger = logging.getLogger(__name__) logger.info('Loading data') dl = DataLoader(config['trueid']['metadata']) papers_df = dl.load_papers() responses_df = dl.load_responses() logger.info('Done loading data') nonull_ids = papers_df[ pandas.notnull(papers_df.citations_gs)].index.tolist() pairs = responses_df.seminal_id.isin(nonull_ids) \ & responses_df.survey_id.isin(nonull_ids) seminal_ids = responses_df[pairs].seminal_id.tolist() survey_ids = responses_df[pairs].survey_id.tolist() citations_seminal = papers_df[ papers_df.index.isin(seminal_ids)].citations_gs.tolist() citations_survey = papers_df[ papers_df.index.isin(survey_ids)].citations_gs.tolist() logger.info('Got {} seminal and {} survey citations'.format( len(citations_seminal), len(citations_survey))) # stats.ttest_ind performs two tailed t-test, to obtain a p-value # for one tailed t-test we need to divide p by 2 result = stats.ttest_ind(citations_seminal, citations_survey) logger.info('Independent t-test: p={}'.format(result[1]/2)) return def citations_ttest_discipline(): """ :return: """ config = load_config() logger = logging.getLogger(__name__) logger.info('Loading data') papers_df = DataLoader(config['trueid']['metadata']).load_papers() logger.info('Done loading data') logger.info('Converting res. category to numerical labels') papers_df.citations_gs.tolist() research_area_category = pandas.factorize(papers_df.research_area) papers_df['research_area_category'] = research_area_category[0] logger.info('Preparing data') citations = numpy.array(papers_df.citations_gs.tolist()) labels = numpy.array(papers_df.seminal.tolist()) groups = numpy.array(papers_df.research_area_category.tolist()) logger.info('Got {} citation values, {} labels, {} group labels'.format( len(citations), len(labels), len(groups))) logger.info('Finding \'other\' category') other_cat = list(research_area_category[1]).index('Other') logger.info('Will skip {} values'.format( len(numpy.where(groups == other_cat)[0]))) results = [] skipped_categories = [] for category in numpy.unique(groups): if category == other_cat: continue good_idxs = numpy.where(groups == category) good_labels = labels[good_idxs] good_citations = citations[good_idxs] seminal_citations = good_citations[numpy.where(good_labels == True)] survey_citations = good_citations[numpy.where(good_labels == False)] if len(good_idxs[0]) <= 3 \ or len(numpy.where(good_labels == True)[0]) <= 1 \ or len(numpy.where(good_labels == False)[0]) <= 1: logger.info('Insufficient number of samples for {}'.format( research_area_category[1][category])) skipped_categories.append(research_area_category[1][category]) continue logger.info('Got {} seminal and {} survey citations'.format( len(seminal_citations), len(survey_citations))) # stats.ttest_ind performs two tailed t-test, to obtain a p-value # for one tailed t-test we need to divide p by 2 result = stats.ttest_ind(seminal_citations, survey_citations) logger.info('Independent t-test: p={}'.format(result[1] / 2)) results.append({ 'res_area': research_area_category[1][category], 'p': result[1]/2, 'total': len(good_idxs[0])}) results_df = pandas.DataFrame(results) results_df.set_index('res_area', inplace=True, drop=True) logger.info('Results:\n{}'.format(results_df)) logger.info('Total number of samples: {}'.format(sum(results_df.total))) logger.info('Skipped categories: {}'.format(skipped_categories)) return def citations_ttest_year(): """ :return: """ config = load_config() logger = logging.getLogger(__name__) logger.info('Loading data') papers_df = DataLoader(config['trueid']['metadata']).load_papers() logger.info('Done loading data') logger.info('Preparing data') citations = numpy.array(papers_df.citations_gs.tolist()) labels = numpy.array(papers_df.seminal.tolist()) years = numpy.array(papers_df.year.tolist()) logger.info('Got {} citation values, {} labels, {} years'.format( len(citations), len(labels), len(years))) results = [] skipped_categories = [] for year in sorted(numpy.unique(years)): good_idxs = numpy.where(years == year) good_labels = labels[good_idxs] good_citations = citations[good_idxs] seminal_citations = good_citations[numpy.where(good_labels == True)] survey_citations = good_citations[numpy.where(good_labels == False)] if len(good_idxs[0]) <= 3 \ or len(numpy.where(good_labels == True)[0]) <= 1 \ or len(numpy.where(good_labels == False)[0]) <= 1: logger.info('Insufficient number of samples for {}'.format(year)) skipped_categories.append(year) continue logger.info('Got {} seminal and {} survey citations'.format( len(seminal_citations), len(survey_citations))) # stats.ttest_ind performs two tailed t-test, to obtain a p-value # for one tailed t-test we need to divide p by 2 result = stats.ttest_ind(seminal_citations, survey_citations) logger.info('Independent t-test: p={}'.format(result[1] / 2)) results.append({ 'year': year, 'p': result[1]/2, 'total': len(good_idxs[0])}) results_df = pandas.DataFrame(results) results_df.set_index('year', inplace=True, drop=True) logger.info('Results:\n{}'.format(results_df)) logger.info('Total number of samples: {}'.format(sum(results_df.total))) logger.info('Skipped categories: {}'.format(skipped_categories)) return def readership_ttest(): """ :return: """ config = load_config() logger = logging.getLogger(__name__) logger.info('Loading data') dl = DataLoader(config['trueid']['metadata']) mendeley_df = dl.load_mendeley_metadata() responses_df = dl.load_responses() logger.info('Done loading data') pairs = pandas.notnull(responses_df.seminal_id) \ & pandas.notnull(responses_df.survey_id) seminal_ids = responses_df[pairs].seminal_id.tolist() survey_ids = responses_df[pairs].survey_id.tolist() seminal_ids_all = responses_df.seminal_id.tolist() survey_ids_all = responses_df.survey_id.tolist() logger.info('Found {} seminal and {} survey papers in Mendeley'.format( sum(mendeley_df.index.isin(seminal_ids_all)), sum(mendeley_df.index.isin(survey_ids_all)))) readership_seminal = mendeley_df[ mendeley_df.index.isin(seminal_ids)].reader_count.tolist() readership_survey = mendeley_df[ mendeley_df.index.isin(survey_ids)].reader_count.tolist() # papers which are missing in mendeley have 0 readers if len(readership_seminal) < sum(pairs): readership_seminal.extend( numpy.zeros(sum(pairs) - len(readership_seminal))) if len(readership_survey) < sum(pairs): readership_survey.extend( numpy.zeros(sum(pairs) - len(readership_survey))) logger.info('Got {} seminal and {} survey citations'.format( len(readership_seminal), len(readership_survey))) # stats.ttest_ind performs two tailed t-test, to obtain a p-value # for one tailed t-test we need to divide p by 2 result = stats.ttest_ind(readership_seminal, readership_survey) logger.info('Independent t-test: p={}'.format(result[1] / 2)) return def readership_ttest_discipline(): """ :return: """ config = load_config() logger = logging.getLogger(__name__) logger.info('Loading data') dl = DataLoader(config['trueid']['metadata']) papers_df = dl.load_papers() mendeley_df = dl.load_mendeley_metadata() logger.info('Done loading data') papers_df['reader_count'] = mendeley_df.reader_count papers_df.loc[
pandas.isnull(papers_df.reader_count)
pandas.isnull
##################################################################################################### # PARETO was produced under the DOE Produced Water Application for Beneficial Reuse Environmental # Impact and Treatment Optimization (PARETO), and is copyright (c) 2021 by the software owners: The # Regents of the University of California, through Lawrence Berkeley National Laboratory, et al. All # rights reserved. # # NOTICE. This Software was developed under funding from the U.S. Department of Energy and the # U.S. Government consequently retains certain rights. As such, the U.S. Government has been granted # for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable, worldwide license # in the Software to reproduce, distribute copies to the public, prepare derivative works, and perform # publicly and display publicly, and to permit other to do so. ##################################################################################################### """ Authors: <NAME> """ from pareto.operational_water_management.operational_produced_water_optimization_model import ( ProdTank, ) from pyomo.environ import Var import pandas as pd from enum import Enum class PrintValues(Enum): Detailed = 0 Nominal = 1 Essential = 2 def generate_report(model, is_print=[], fname=None): # ## Printing model sets, parameters, constraints, variable values ## printing_list = [] if model.type == "strategic": if len(is_print) == 0: printing_list = [] else: # PrintValues.Detailed: Slacks values included, Same as "All" if is_print[0].value == 0: printing_list = [ "v_F_Piped", "v_F_Trucked", "v_F_Sourced", "v_F_PadStorageIn", "v_F_ReuseDestination", "v_X_Capacity", "v_T_Capacity", "v_F_Capacity", "v_D_Capacity", "v_F_DisposalDestination", "v_F_PadStorageOut", "v_C_Piped", "v_C_Trucked", "v_C_Sourced", "v_C_Disposal", "v_C_Reuse", "v_L_Storage", "vb_y_Pipeline", "vb_y_Disposal", "vb_y_Storage", "vb_y_Treatment", "vb_y_FLow", "v_F_Overview", "v_S_FracDemand", "v_S_Production", "v_S_Flowback", "v_S_PipelineCapacity", "v_S_StorageCapacity", "v_S_DisposalCapacity", "v_S_TreatmentCapacity", "v_S_ReuseCapacity", ] # PrintValues.Nominal: Essential + Trucked water + Piped Water + Sourced water + vb_y_pipeline + vb_y_disposal + vb_y_storage + etc. elif is_print[0].value == 1: printing_list = [ "v_F_Piped", "v_F_Trucked", "v_F_Sourced", "v_C_Piped", "v_C_Trucked", "v_C_Sourced", "vb_y_Pipeline", "vb_y_Disposal", "vb_y_Storage", "vb_y_Flow", "vb_y_Treatment", "v_F_Overview", ] # PrintValues.Essential: Just message about slacks, "Check detailed results", Overview, Economics, KPIs elif is_print[0].value == 2: printing_list = ["v_F_Overview"] else: raise Exception("Report {0} not supported".format(is_print)) headers = { "v_F_Overview_dict": [("Variable Name", "Documentation", "Total")], "v_F_Piped_dict": [("Origin", "destination", "Time", "Piped water")], "v_C_Piped_dict": [("Origin", "Destination", "Time", "Cost piping")], "v_F_Trucked_dict": [("Origin", "Destination", "Time", "Trucked water")], "v_C_Trucked_dict": [("Origin", "Destination", "Time", "Cost trucking")], "v_F_Sourced_dict": [ ("Fresh water source", "Completion pad", "Time", "Sourced water") ], "v_C_Sourced_dict": [ ("Fresh water source", "Completion pad", "Time", "Cost sourced water") ], "v_F_PadStorageIn_dict": [("Completion pad", "Time", "StorageIn")], "v_F_PadStorageOut_dict": [("Completion pad", "Time", "StorageOut")], "v_C_Disposal_dict": [("Disposal site", "Time", "Cost of disposal")], "v_C_Treatment_dict": [("Treatment site", "Time", "Cost of Treatment")], "v_C_Reuse_dict": [("Completion pad", "Time", "Cost of reuse")], "v_C_Storage_dict": [("Storage Site", "Time", "Cost of Storage")], "v_R_Storage_dict": [ ("Storage Site", "Time", "Credit of Retrieving Produced Water") ], "v_L_Storage_dict": [("Storage site", "Time", "Storage Levels")], "v_L_PadStorage_dict": [("Completion pad", "Time", "Storage Levels")], "vb_y_Pipeline_dict": [ ("Origin", "Destination", "Pipeline Diameter", "Pipeline Installation") ], "vb_y_Disposal_dict": [("Disposal Site", "Injection Capacity", "Disposal")], "vb_y_Storage_dict": [ ("Storage Site", "Storage Capacity", "Storage Expansion") ], "vb_y_Flow_dict": [("Origin", "Destination", "Time", "Flow")], "vb_y_Treatment_dict": [ ("Treatment Site", "Treatment Capacity", "Treatment Expansion") ], "v_D_Capacity_dict": [("Disposal Site", "Disposal Site Capacity")], "v_T_Capacity_dict": [("Treatment Site", "Treatment Capacity")], "v_X_Capacity_dict": [("Storage Site", "Storage Site Capacity")], "v_F_Capacity_dict": [("Origin", "Destination", "Flow Capacity")], "v_S_FracDemand_dict": [("Completion pad", "Time", "Slack FracDemand")], "v_S_Production_dict": [("Production pad", "Time", "Slack Production")], "v_S_Flowback_dict": [("Completion pad", "Time", "Slack Flowback")], "v_S_PipelineCapacity_dict": [ ("Origin", "Destination", "Slack Pipeline Capacity") ], "v_S_StorageCapacity_dict": [("Storage site", "Slack Storage Capacity")], "v_S_DisposalCapacity_dict": [("Storage site", "Slack Disposal Capacity")], "v_S_TreatmentCapacity_dict": [ ("Treatment site", "Slack Treatment Capacity") ], "v_S_ReuseCapacity_dict": [("Reuse site", "Slack Reuse Capacity")], "v_F_ReuseDestination_dict": [ ("Completion Pad", "Time", "Total Deliveries to Completion Pad") ], "v_F_DisposalDestination_dict": [ ("Disposal Site", "Time", "Total Deliveries to Disposal Site") ], } # Defining KPIs for strategic model model.reuse_WaterKPI = Var(doc="Reuse Fraction Produced Water = [%]") reuseWater_value = ( (model.v_F_TotalReused.value) / (model.p_beta_TotalProd.value) * 100 ) model.reuse_WaterKPI.value = reuseWater_value model.disposal_WaterKPI = Var(doc="Disposal Fraction Produced Water = [%]") disposalWater_value = ( (model.v_F_TotalDisposed.value) / (model.p_beta_TotalProd.value) * 100 ) model.disposal_WaterKPI.value = disposalWater_value model.fresh_CompletionsDemandKPI = Var( doc="Fresh Fraction Completions Demand = [%]" ) freshDemand_value = ( (model.v_F_TotalSourced.value) / (model.p_gamma_TotalDemand.value) * 100 ) model.fresh_CompletionsDemandKPI.value = freshDemand_value model.reuse_CompletionsDemandKPI = Var( doc="Reuse Fraction Completions Demand = [%]" ) reuseDemand_value = ( (model.v_F_TotalReused.value) / (model.p_gamma_TotalDemand.value) * 100 ) model.reuse_CompletionsDemandKPI.value = reuseDemand_value elif model.type == "operational": if len(is_print) == 0: printing_list = [] else: # PrintValues.Detailed: Slacks values included, Same as "All" if is_print[0].value == 0: printing_list = [ "v_F_Piped", "v_F_Trucked", "v_F_Sourced", "v_F_PadStorageIn", "v_L_ProdTank", "v_F_PadStorageOut", "v_C_Piped", "v_C_Trucked", "v_C_Sourced", "v_C_Disposal", "v_C_Reuse", "v_L_Storage", "vb_y_Pipeline", "vb_y_Disposal", "vb_y_Storage", "vb_y_Truck", "v_F_Drain", "v_B_Production", "vb_y_FLow", "v_F_Overview", "v_L_PadStorage", "v_C_Treatment", "v_C_Storage", "v_R_Storage", "v_S_FracDemand", "v_S_Production", "v_S_Flowback", "v_S_PipelineCapacity", "v_S_StorageCapacity", "v_S_DisposalCapacity", "v_S_TreatmentCapacity", "v_S_ReuseCapacity", "v_D_Capacity", "v_X_Capacity", "v_F_Capacity", ] # PrintValues.Nominal: Essential + Trucked water + Piped Water + Sourced water + vb_y_pipeline + vb_y_disposal + vb_y_storage elif is_print[0].value == 1: printing_list = [ "v_F_Piped", "v_F_Trucked", "v_F_Sourced", "v_C_Piped", "v_C_Trucked", "v_C_Sourced", "vb_y_Pipeline", "vb_y_Disposal", "vb_y_Storage", "vb_y_Flow", "vb_y_Truck", "v_F_Overview", ] # PrintValues.Essential: Just message about slacks, "Check detailed results", Overview, Economics, KPIs elif is_print[0].value == 2: printing_list = ["v_F_Overview"] else: raise Exception("Report {0} not supported".format(is_print)) headers = { "v_F_Overview_dict": [("Variable Name", "Documentation", "Total")], "v_F_Piped_dict": [("Origin", "destination", "Time", "Piped water")], "v_C_Piped_dict": [("Origin", "Destination", "Time", "Cost piping")], "v_F_Trucked_dict": [("Origin", "Destination", "Time", "Trucked water")], "v_C_Trucked_dict": [("Origin", "Destination", "Time", "Cost trucking")], "v_F_Sourced_dict": [ ("Fresh water source", "Completion pad", "Time", "Sourced water") ], "v_C_Sourced_dict": [ ("Fresh water source", "Completion pad", "Time", "Cost sourced water") ], "v_F_PadStorageIn_dict": [("Completion pad", "Time", "StorageIn")], "v_F_PadStorageOut_dict": [("Completion pad", "Time", "StorageOut")], "v_C_Disposal_dict": [("Disposal site", "Time", "Cost of disposal")], "v_C_Treatment_dict": [("Treatment site", "Time", "Cost of Treatment")], "v_C_Reuse_dict": [("Completion pad", "Time", "Cost of reuse")], "v_C_Storage_dict": [("Storage Site", "Time", "Cost of Storage")], "v_R_Storage_dict": [ ("Storage Site", "Time", "Credit of Retrieving Produced Water") ], "v_L_Storage_dict": [("Storage site", "Time", "Storage Levels")], "v_L_PadStorage_dict": [("Completion pad", "Time", "Storage Levels")], "vb_y_Pipeline_dict": [ ("Origin", "Destination", "Pipeline Diameter", "Pipeline Installation") ], "vb_y_Disposal_dict": [("Disposal Site", "Injection Capacity", "Disposal")], "vb_y_Storage_dict": [ ("Storage Site", "Storage Capacity", "Storage Expansion") ], "vb_y_Flow_dict": [("Origin", "Destination", "Time", "Flow")], "vb_y_Truck_dict": [("Origin", "Destination", "Time", "Truck")], "v_D_Capacity_dict": [("Disposal Site", "Disposal Site Capacity")], "v_X_Capacity_dict": [("Storage Site", "Storage Site Capacity")], "v_F_Capacity_dict": [("Origin", "Destination", "Flow Capacity")], "v_S_FracDemand_dict": [("Completion pad", "Time", "Slack FracDemand")], "v_S_Production_dict": [("Production pad", "Time", "Slack Production")], "v_S_Flowback_dict": [("Completion pad", "Time", "Slack Flowback")], "v_S_PipelineCapacity_dict": [ ("Origin", "Destination", "Slack Pipeline Capacity") ], "v_S_StorageCapacity_dict": [("Storage site", "Slack Storage Capacity")], "v_S_DisposalCapacity_dict": [("Storage site", "Slack Disposal Capacity")], "v_S_TreatmentCapacity_dict": [ ("Treatment site", "Slack Treatment Capacity") ], "v_S_ReuseCapacity_dict": [("Reuse site", "Slack Reuse Capacity")], "v_F_ReuseDestination_dict": [ ("Completion Pad", "Time", "Total Deliveries to Completion Pad") ], "v_F_DisposalDestination_dict": [ ("Disposal Site", "Time", "Total Deliveries to Disposal Site") ], "v_F_TreatmentDestination_dict": [ ("Disposal Site", "Time", "Total Deliveries to Disposal Site") ], "v_B_Production_dict": [ ("Pads", "Time", "Produced Water For Transport From Pad") ], } if model.config.production_tanks == ProdTank.equalized: headers.update( {"v_L_ProdTank_dict": [("Pads", "Time", "Production Tank Water Level")]} ) headers.update( { "v_F_Drain_dict": [ ("Pads", "Time", "Produced Water Drained From Production Tank") ] } ) elif model.config.production_tanks == ProdTank.individual: headers.update( { "v_L_ProdTank_dict": [ ("Pads", "Tank", "Time", "Production Tank Water Level") ] } ) headers.update( { "v_F_Drain_dict": [ ( "Pads", "Tank", "Time", "Produced Water Drained From Production Tank", ) ] } ) else: raise Exception( "Tank Type {0} is not supported".format(model.config.production_tanks) ) else: raise Exception("Model type {0} is not supported".format(model.type)) for variable in model.component_objects(Var): if variable._data is not None: for i in variable._data: var_value = variable._data[i].value if i is None: headers["v_F_Overview_dict"].append( (variable.name, variable.doc, var_value) ) elif i is not None and isinstance(i, str): i = (i,) if i is not None and var_value is not None and var_value > 0: headers[str(variable.name) + "_dict"].append((*i, var_value)) if model.v_C_Slack.value is not None and model.v_C_Slack.value > 0: print("!!!ATTENTION!!! One or several slack variables have been triggered!") for i in list(headers.items())[1:]: dict_name = i[0][: -len("_dict")] if dict_name in printing_list: print("\n", "=" * 10, dict_name.upper(), "=" * 10) print(i[1][0]) for j in i[1][1:]: print("{0}{1} = {2}".format(dict_name, j[:-1], j[-1])) # Loop for printing Overview Information for i in list(headers.items())[:1]: dict_name = i[0][: -len("_dict")] if dict_name in printing_list: print("\n", "=" * 10, dict_name.upper(), "=" * 10) # print(i[1][1][0]) for j in i[1][1:]: if not j[0]: # Conditional that checks if a blank line should be added print() elif not j[ 1 ]: # Conditional that checks if the header for a section should be added print(j[0].upper()) else: print("{0} = {1}".format(j[1], j[2])) # Printing warning if "proprietary_data" is True if len(printing_list) > 0 and model.proprietary_data is True: print( "\n**********************************************************************" ) print(" WARNING: This report contains Proprietary Data ") print("**********************************************************************") # Adding a footnote to the each dictionary indicating if the report contains Prorpietary Data if model.proprietary_data is True: for report in headers: if len(headers[report]) > 1: headers[report].append(("PROPRIETARY DATA",)) # Creating the Excel report if fname is None: fname = "PARETO_report.xlsx" with
pd.ExcelWriter(fname)
pandas.ExcelWriter
#!/usr/bin/env python from argparse import ArgumentParser import pandas as pd import json import os import urllib import logging logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO) # Download functions #################### def get_kegg_module_hierarchy(s): hier = {} # First level is 'ko00002' for d1 in s['children']: c1 = d1['name'] for d2 in d1['children']: c2 = d2['name'] for d3 in d2['children']: c3 = d3['name'] for module in d3['children']: module_name = module['name'] kos = module['children'] hier[module_name] = {"Module_category1": c1, "Module_category2": c2, "Module_category3": c3, "KOs": []} for ko in kos: ko_name = ko['name'] ko = ko_name.split(" ")[0] hier[module_name]["KOs"].append(ko) return hier def get_kegg_ortholog_hierarchy(s): hier = {} # First level is 'ko00001' for d1 in s['children']: c1 = d1['name'] for d2 in d1['children']: c2 = d2['name'] for d3 in d2['children']: c3 = d3['name'] if not "children" in d3.keys(): continue for ko in d3['children']: ko_name = ko['name'].split("\t")[0] ko_id = ko_name.split(" ")[0] if "[EC:" in ko_name: enzymes = ko_name.split("[")[-1].split("]")[0].lstrip("EC:").split(" ") else: enzymes = [] d = {"KO_category1": c1, "KO_category2": c2, "pathway": c3, "name": ko_name, "enzymes": enzymes} try: hier[ko_id].append(d) except KeyError: hier[ko_id] = [d] return hier def get_kegg_ortholog_info(outdir): outdir = outdir.rstrip("/") if not os.path.exists(outdir): os.makedirs(outdir) url = "https://www.genome.jp/kegg-bin/download_htext?htext=ko00001.keg&format=json" logging.info("Fetching ko00001.keg from www.kegg.jp") # Download file tmp_out = os.path.expandvars("$TMPDIR/ko00001.json") urllib.request.urlretrieve(url, tmp_out) with open(tmp_out) as fh: s = json.load(fh) hier = get_kegg_ortholog_hierarchy(s) pathways = {} ec2path = {} ko_out = "{}/kegg_kos.tsv".format(outdir) ko2path_out = "{}/kegg_ko2pathways.tsv".format(outdir) ko2ec_out = "{}/kegg_ko2ec.tsv".format(outdir) ec2path_out = "{}/kegg_ec2pathways.tsv".format(outdir) pathways_out = "{}/kegg_pathways.tsv".format(outdir) for f in [ko_out, ko2path_out, ko2ec_out, ec2path_out, pathways_out]: logging.info("Writing to {f}".format(f=f)) # Write KEGG Ortholog names, KEGG Ortholog -> Pathway map, and KEGG Ortholog -> Enzyme map with open(ko_out, 'w') as fh_kos, open(ko2path_out, 'w') as fh_ko2path, open(ko2ec_out, 'w') as fh_ko2ec: fh_kos.write("ko\tKO_name\n") for ko_id, l in hier.items(): for i, d in enumerate(l): if i == 0: fh_kos.write("{}\t{}\n".format(ko_id, d["name"])) for enzyme in d["enzymes"]: fh_ko2ec.write("{}\t{}\n".format(ko_id, enzyme)) fh_ko2path.write("{}\t{}\n".format(ko_id, "map{}".format(d["pathway"].split(" ")[0]))) pathways[d["pathway"]] = {"Pathway_category1": d["KO_category1"], "Pathway_category2": d["KO_category2"]} for enzyme in d["enzymes"]: try: ec2path[enzyme].append("map{}".format(d["pathway"].split(" ")[0])) except KeyError: ec2path[enzyme] = ["map{}".format(d["pathway"].split(" ")[0])] # Write Pathway information with open(pathways_out, 'w') as fh_pathways: fh_pathways.write("{}\t{}\t{}\t{}\n".format("Pathway_id", "Pathway_name", "Pathway_category1", "Pathway_category2")) for pathway, d in pathways.items(): pathway_id = pathway.split(" ")[0] pathway_name = pathway.replace("{} ".format(pathway_id),"") fh_pathways.write("map{}\t{}\t{}\t{}\n".format(pathway_id, pathway_name, d["Pathway_category1"], d["Pathway_category2"])) # Write Enzyme -> Pathway map with open(ec2path_out, 'w') as fh_ec2path: for enzyme, l in ec2path.items(): for pathway in set(l): fh_ec2path.write("{}\t{}\n".format(enzyme, pathway)) def get_kegg_module_info(outdir): outdir = outdir.rstrip("/") if not os.path.exists(outdir): os.makedirs(outdir) # Process KEGG Module information logging.info("Fetching ko00002.keg from www.kegg.jp") url = "https://www.kegg.jp/kegg-bin/download_htext?htext=ko00002.keg&format=json" tmp_out = os.path.expandvars("$TMPDIR/ko00002.json") urllib.request.urlretrieve(url, tmp_out) ko2mod_out = "{}/kegg_ko2modules.tsv".format(outdir) modules_out = "{}/kegg_modules.tsv".format(outdir) with open(tmp_out) as fh: s = json.load(fh) hier = get_kegg_module_hierarchy(s) for f in [ko2mod_out, modules_out]: logging.info("Writing to {f}".format(f=f)) with open(ko2mod_out, 'w') as fh_ko2mod, open(modules_out, 'w') as fh_modules: fh_modules.write("Module_id\tModule_name\tModule_category1\tModule_category2\tModule_category3\n") for module_name, d in hier.items(): module_key = module_name.split(" ")[0] module_name = " ".join(module_name.split(" ")[1:]).lstrip() fh_modules.write("{}\t{}\t{}\t{}\t{}\n".format(module_key, module_name, d["Module_category1"], d["Module_category2"], d["Module_category3"])) for ko in set(d["KOs"]): fh_ko2mod.write("{}\t{}\n".format(ko,module_key)) # Parse functions ################# def make_orf2ko_map(df): orfs = [] kos = [] for i in df.index: orf = df.loc[i,"orf"] if df.loc[i,"ko"]==df.loc[i,"ko"]: for ko in df.loc[i,"ko"].split(","): kos.append(ko) orfs.append(orf) else: orfs.append(orf) kos.append(df.loc[i,"ko"]) dataframe = pd.DataFrame({"orf":orfs,"ko":kos}) return dataframe def parse_ko_annotations(annotations, dldir, outdir): logging.info("Reading annotations from {}".format(annotations)) annot = pd.read_csv(annotations, header=None, usecols=[0,2,3,6], names=["orf","evalue","score","ko"], sep="\t") logging.info("Loading KEGG info files from {}".format(dldir)) ko2ec = pd.read_csv("{}/kegg_ko2ec.tsv".format(dldir), header=None, names=["ko","ec"], index_col=0, sep="\t") ko2path = pd.read_csv("{}/kegg_ko2pathways.tsv".format(dldir), header=None, names=["ko","pathway"], index_col=0, sep="\t") ko2module = pd.read_csv("{}/kegg_ko2modules.tsv".format(dldir), index_col=0, header=None, names = ["ko","module"], sep="\t") kos = pd.read_csv("{}/kegg_kos.tsv".format(dldir), index_col=0, sep="\t") modules = pd.read_csv("{}/kegg_modules.tsv".format(dldir), index_col=0, sep="\t") pathways = pd.read_csv("{}/kegg_pathways.tsv".format(dldir), index_col=0, sep="\t") orftable = make_orf2ko_map(annot) # Because each orf can have multiple enzyme annotations it might get placed into the same pathway several times # select the first combination for each orf to avoid redundancy. # Add KEGG Ortholog names orf2ko = pd.merge(orftable, kos, left_on="ko", right_index=True) orf2ko.set_index("orf",inplace=True) orf2ko.sort_index(inplace=True) # Map enzymes orf2ec =
pd.merge(orftable,ko2ec,left_on="ko",right_index=True)
pandas.merge
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ description: Estimate local time version: 0.0.3 created: 2018-04-30 author: <NAME> dependencies: * tidepool-data-env (install using anaconda, see readme for details) * wikipedia-timezone-aliases-2018-04-28.csv license: BSD-2-Clause TODO: * [] see readme file """ # %% REQUIRED LIBRARIES import pandas as pd import numpy as np import os import sys from pytz import timezone from datetime import timedelta import datetime as dt import argparse # %% USER INPUTS codeDescription = "Estimate local time for each data point in the dataset" codeVersion = "0.0.3" parser = argparse.ArgumentParser(description=codeDescription) parser.add_argument("-i", "--input-data-file", dest="inputFilePathAndName", default="example-csv.csv", help="csv, xlsx, or json file that contains Tidepool data") parser.add_argument("--deprecated-timezone-list", dest="timezoneAliasesFilePathAndName", default="wikipedia-timezone-aliases-2018-04-28.csv", help="a .csv file that contains a list of deprecated " + "timezones and their alias") parser.add_argument("-o", "--output-data-path", dest="outputPath", default=os.path.join("output", "dataWithLocalTimeEstimates"), help="the output where the data is stored") parser.add_argument("--day-series-output-path", dest="daySeriesOutputPath", default=os.path.join("output", "daySeriesData"), help="optional path to store the contiguous day series" + "data. If no path is specified, then data is not saved") args = parser.parse_args() # %% FUNCTIONS def filterByDates(df, startDate, endDate): # filter by qualified start & end date, and sort df = \ df[(df.time >= startDate) & (df.time <= (endDate + "T23:59:59"))] return df def convertDeprecatedTimezoneToAlias(df, tzAlias): if "timezone" in df: uniqueTimezones = df.timezone.unique() uniqueTimezones = uniqueTimezones[pd.notnull(df.timezone.unique())] for uniqueTimezone in uniqueTimezones: alias = tzAlias.loc[tzAlias.tz.str.endswith(uniqueTimezone), ["alias"]].values if len(alias) == 1: df.loc[df.timezone == uniqueTimezone, ["timezone"]] = alias return df def largeTimezoneOffsetCorrection(df): while ((df.timezoneOffset > 840).sum() > 0): df.loc[df.timezoneOffset > 840, ["conversionOffset"]] = \ df.loc[df.timezoneOffset > 840, ["conversionOffset"]] - \ (1440 * 60 * 1000) df.loc[df.timezoneOffset > 840, ["timezoneOffset"]] = \ df.loc[df.timezoneOffset > 840, ["timezoneOffset"]] - 1440 while ((df.timezoneOffset < -720).sum() > 0): df.loc[df.timezoneOffset < -720, ["conversionOffset"]] = \ df.loc[df.timezoneOffset < -720, ["conversionOffset"]] + \ (1440 * 60 * 1000) df.loc[df.timezoneOffset < -720, ["timezoneOffset"]] = \ df.loc[df.timezoneOffset < -720, ["timezoneOffset"]] + 1440 return df def createContiguousDaySeries(df): firstDay = df.date.min() lastDay = df.date.max() rng = pd.date_range(firstDay, lastDay).date contiguousDaySeries = \ pd.DataFrame(rng, columns=["date"]).sort_values( "date", ascending=False).reset_index(drop=True) return contiguousDaySeries def getAndPreprocessUploadRecords(df): # first make sure deviceTag is in string format df["deviceTags"] = df.deviceTags.astype(str) # filter by type upload ud = df[df.type == "upload"].copy() # define a device type (e.g., pump, cgm, or healthkit) ud["deviceType"] = np.nan ud.loc[ud.deviceTags.str.contains("pump"), ["deviceType"]] = "pump" # this is for non-healthkit cgm records only ud.loc[((ud.deviceTags.str.contains("cgm")) & (ud.timeProcessing != "none")), ["deviceType"]] = "cgm" ud.loc[((ud.deviceTags.str.contains("cgm")) & (ud.timeProcessing == "none")), ["deviceType"]] = "healthkit" return ud def getAndPreprocessNonDexApiCgmRecords(df): # non-healthkit cgm and exclude dexcom-api data if "payload" in df: # convert payloads to strings df["isDexcomAPI"] = df.payload.astype(str).str.contains("systemTime") cd = df[(df.type == "cbg") & (df.timezoneOffset.notnull()) & (~df.isDexcomAPI.fillna(False))].copy() else: cd = df[(df.type == "cbg") & (df.timezoneOffset.notnull())] return cd def getTimezoneOffset(currentDate, currentTimezone): tz = timezone(currentTimezone) # here we add 1 day to the current date to account for changes to/from DST tzoNum = int(tz.localize(currentDate + timedelta(days=1)).strftime("%z")) tzoHours = np.floor(tzoNum / 100) tzoMinutes = round((tzoNum / 100 - tzoHours) * 100, 0) tzoSign = np.sign(tzoHours) tzo = int((tzoHours * 60) + (tzoMinutes * tzoSign)) return tzo def getTzoForDateTime(currentDateTime, currentTimezone): tz = timezone(currentTimezone) tzoNum = int(tz.localize(pd.to_datetime(currentDateTime)).strftime("%z")) tzoHours = np.floor(tzoNum / 100) tzoMinutes = round((tzoNum / 100 - tzoHours) * 100, 0) tzoSign = np.sign(tzoHours) tzo = int((tzoHours * 60) + (tzoMinutes * tzoSign)) return tzo def isDSTChangeDay(currentDate, currentTimezone): tzoCurrentDay = getTimezoneOffset(pd.to_datetime(currentDate), currentTimezone) tzoPreviousDay = getTimezoneOffset(pd.to_datetime(currentDate) + timedelta(days=-1), currentTimezone) return (tzoCurrentDay != tzoPreviousDay) def addAnnotation(df, idx, annotationMessage): if pd.notnull(df.loc[idx, "est.annotations"]): df.loc[idx, ["est.annotations"]] = df.loc[idx, "est.annotations"] + \ ", " + annotationMessage else: df.loc[idx, ["est.annotations"]] = annotationMessage return df def addDeviceDaySeries(df, dfContDays, deviceTypeName): if len(df) > 0: dfDayGroups = df.groupby("date") dfDaySeries = pd.DataFrame(dfDayGroups.timezoneOffset.median()) if "upload" in deviceTypeName: if "timezone" in df: if dfDayGroups.timezone.count().values[0] > 0: dfDaySeries["timezone"] = \ dfDayGroups.timezone.describe()["top"] # get the timezone offset for the timezone for i in dfDaySeries.index: if pd.notnull(dfDaySeries.loc[i, "timezone"]): tzo = getTimezoneOffset( pd.to_datetime(i), dfDaySeries.loc[i, "timezone"]) dfDaySeries.loc[i, ["timezoneOffset"]] = tzo dfDaySeries["timeProcessing"] = \ dfDayGroups.timeProcessing.describe()["top"] dfDaySeries = dfDaySeries.add_prefix(deviceTypeName + "."). \ rename(columns={deviceTypeName + ".date": "date"}) dfContDays = pd.merge(dfContDays, dfDaySeries.reset_index(), on="date", how="left") else: dfContDays[deviceTypeName + ".timezoneOffset"] = np.nan return dfContDays def imputeUploadRecords(df, contDays, deviceTypeName): daySeries = \ addDeviceDaySeries(df, contDays, deviceTypeName) if ((len(df) > 0) & (deviceTypeName + ".timezone" in daySeries)): for i in daySeries.index[1:]: if pd.isnull(daySeries[deviceTypeName + ".timezone"][i]): daySeries.loc[i, [deviceTypeName + ".timezone"]] = \ daySeries.loc[i-1, deviceTypeName + ".timezone"] if pd.notnull(daySeries[deviceTypeName + ".timezone"][i]): tz = daySeries.loc[i, deviceTypeName + ".timezone"] tzo = \ getTimezoneOffset(pd.to_datetime(daySeries.loc[i, "date"]), tz) daySeries.loc[i, deviceTypeName + ".timezoneOffset"] = tzo if pd.notnull(daySeries[deviceTypeName + ".timeProcessing"][i-1]): daySeries.loc[i, deviceTypeName + ".timeProcessing"] = \ daySeries.loc[i-1, deviceTypeName + ".timeProcessing"] else: daySeries[deviceTypeName + ".timezone"] = np.nan daySeries[deviceTypeName + ".timeProcessing"] = np.nan return daySeries def estimateTzAndTzoWithUploadRecords(cDF): cDF["est.type"] = np.nan cDF["est.gapSize"] = np.nan cDF["est.timezoneOffset"] = cDF["upload.timezoneOffset"] cDF["est.annotations"] = np.nan if "upload.timezone" in cDF: cDF.loc[cDF["upload.timezone"].notnull(), ["est.type"]] = "UPLOAD" cDF["est.timezone"] = cDF["upload.timezone"] cDF["est.timeProcessing"] = cDF["upload.timeProcessing"] else: cDF["est.timezone"] = np.nan cDF["est.timeProcessing"] = np.nan cDF.loc[((cDF["est.timezoneOffset"] != cDF["home.imputed.timezoneOffset"]) & (pd.notnull(cDF["est.timezoneOffset"]))), "est.annotations"] = "travel" return cDF def estimateTzAndTzoWithDeviceRecords(cDF): # 2A. use the TZO of the pump or cgm device if it exists on a given day. In # addition, compare the TZO to one of the imputed day series (i.e., the # upload and home series to see if the TZ can be inferred) for deviceType in ["pump", "cgm"]: # find the indices of days where a TZO estimate has not been made AND # where the device (e.g., pump or cgm) TZO has data sIndices = cDF[((cDF["est.timezoneOffset"].isnull()) & (cDF[deviceType + ".timezoneOffset"].notnull()))].index # compare the device TZO to the imputed series to infer time zone cDF = compareDeviceTzoToImputedSeries(cDF, sIndices, deviceType) # 2B. if the TZ cannot be inferred with 2A, then see if the TZ can be # inferred from the previous day's TZO. If the device TZO is equal to the # previous day's TZO, AND if the previous day has a TZ estimate, use the # previous day's TZ estimate for the current day's TZ estimate for deviceType in ["pump", "cgm"]: sIndices = cDF[((cDF["est.timezoneOffset"].isnull()) & (cDF[deviceType + ".timezoneOffset"].notnull()))].index cDF = compareDeviceTzoToPrevDayTzo(cDF, sIndices, deviceType) # 2C. after 2A and 2B, check the DEVICE estimates to make sure that the # pump and cgm tzo do not differ by more than 60 minutes. If they differ # by more that 60 minutes, then mark the estimate as UNCERTAIN. Also, we # allow the estimates to be off by 60 minutes as there are a lot of cases # where the devices are off because the user changes the time for DST, # at different times sIndices = cDF[((cDF["est.type"] == "DEVICE") & (cDF["pump.timezoneOffset"].notnull()) & (cDF["cgm.timezoneOffset"].notnull()) & (cDF["pump.timezoneOffset"] != cDF["cgm.timezoneOffset"]) )].index tzoDiffGT60 = abs(cDF.loc[sIndices, "cgm.timezoneOffset"] - cDF.loc[sIndices, "pump.timezoneOffset"]) > 60 idx = tzoDiffGT60.index[tzoDiffGT60] cDF.loc[idx, ["est.type"]] = "UNCERTAIN" for i in idx: cDF = addAnnotation(cDF, i, "pump-cgm-tzo-mismatch") return cDF def addHomeTimezone(df, contDays): if "timezone" in df: homeTimezone = df["timezone"].describe()["top"] tzo = contDays.date.apply( lambda x: getTimezoneOffset(pd.to_datetime(x), homeTimezone)) contDays["home.imputed.timezoneOffset"] = tzo contDays["home.imputed.timezone"] = homeTimezone else: contDays["home.imputed.timezoneOffset"] = np.nan contDays["home.imputed.timezone"] = np.nan contDays["home.imputed.timeProcessing"] = np.nan return contDays def getRangeOfTZOsForTimezone(tz): minMaxTzo = [getTimezoneOffset(pd.to_datetime("1/1/2017"), tz), getTimezoneOffset(pd.to_datetime("5/1/2017"), tz)] rangeOfTzo = np.arange(int(min(minMaxTzo)), int(max(minMaxTzo))+1, 15) return rangeOfTzo def tzoRangeWithComparisonTz(df, i, comparisonTz): # if we have a previous timezone estimate, then calcuate the range of # timezone offset values for that time zone if pd.notnull(comparisonTz): rangeTzos = getRangeOfTZOsForTimezone(comparisonTz) else: comparisonTz = np.nan rangeTzos = np.array([]) return rangeTzos def tzAndTzoRangePreviousDay(df, i): # if we have a previous timezone estimate, then calcuate the range of # timezone offset values for that time zone comparisonTz = df.loc[i-1, "est.timezone"] rangeTzos = tzoRangeWithComparisonTz(df, i, comparisonTz) return comparisonTz, rangeTzos def tzAndTzoRangeWithHomeTz(df, i): # if we have a previous timezone estimate, then calcuate the range of # timezone offset values for that time zone comparisonTz = df.loc[i, "home.imputed.timezone"] rangeTzos = tzoRangeWithComparisonTz(df, i, comparisonTz) return comparisonTz, rangeTzos def assignTzoFromImputedSeries(df, i, imputedSeries): df.loc[i, ["est.type"]] = "DEVICE" df.loc[i, ["est.timezoneOffset"]] = \ df.loc[i, imputedSeries + ".timezoneOffset"] df.loc[i, ["est.timezone"]] = \ df.loc[i, imputedSeries + ".timezone"] df.loc[i, ["est.timeProcessing"]] = \ df.loc[i, imputedSeries + ".timeProcessing"] return df def compareDeviceTzoToImputedSeries(df, sIdx, device): for i in sIdx: # if the device tzo = imputed tzo, then chose the imputed tz and tzo # note, dst is accounted for in the imputed tzo for imputedSeries in ["pump.upload.imputed", "cgm.upload.imputed", "healthkit.upload.imputed", "home.imputed"]: # if the estimate has not already been made if pd.isnull(df.loc[i, "est.timezone"]): if df.loc[i, device + ".timezoneOffset"] == \ df.loc[i, imputedSeries + ".timezoneOffset"]: assignTzoFromImputedSeries(df, i, imputedSeries) df = addAnnotation(df, i, "tz-inferred-from-" + imputedSeries) # if the imputed series has a timezone estimate, then see if # the current day is a dst change day elif (pd.notnull(df.loc[i, imputedSeries + ".timezone"])): imputedTimezone = df.loc[i, imputedSeries + ".timezone"] if isDSTChangeDay(df.loc[i, "date"], imputedTimezone): dstRange = getRangeOfTZOsForTimezone(imputedTimezone) if ((df.loc[i, device + ".timezoneOffset"] in dstRange) & (df.loc[i, imputedSeries + ".timezoneOffset"] in dstRange)): assignTzoFromImputedSeries(df, i, imputedSeries) df = addAnnotation(df, i, "dst-change-day") df = addAnnotation( df, i, "tz-inferred-from-" + imputedSeries) return df def assignTzoFromPreviousDay(df, i, previousDayTz): df.loc[i, ["est.type"]] = "DEVICE" df.loc[i, ["est.timezone"]] = previousDayTz df.loc[i, ["est.timezoneOffset"]] = \ getTimezoneOffset(pd.to_datetime(df.loc[i, "date"]), previousDayTz) df.loc[i, ["est.timeProcessing"]] = df.loc[i-1, "est.timeProcessing"] df = addAnnotation(df, i, "tz-inferred-from-prev-day") return df def assignTzoFromDeviceTzo(df, i, device): df.loc[i, ["est.type"]] = "DEVICE" df.loc[i, ["est.timezoneOffset"]] = \ df.loc[i, device + ".timezoneOffset"] df.loc[i, ["est.timeProcessing"]] = \ df.loc[i, device + ".upload.imputed.timeProcessing"] df = addAnnotation(df, i, "likely-travel") df = addAnnotation(df, i, "tzo-from-" + device) return df def compareDeviceTzoToPrevDayTzo(df, sIdx, device): for i in sIdx[sIdx > 0]: # first see if the previous record has a tzo if (pd.notnull(df.loc[i-1, "est.timezoneOffset"])): previousDayTz, dstRange = tzAndTzoRangePreviousDay(df, i) timeDiff = abs((df.loc[i, device + ".timezoneOffset"]) - df.loc[i-1, "est.timezoneOffset"]) # next see if the previous record has a tz if (pd.notnull(df.loc[i-1, "est.timezone"])): if timeDiff == 0: assignTzoFromPreviousDay(df, i, previousDayTz) # see if the previous day's tzo and device tzo are within the # dst range (as that is a common problem with this data) elif ((df.loc[i, device + ".timezoneOffset"] in dstRange) & (df.loc[i-1, "est.timezoneOffset"] in dstRange)): # then see if it is DST change day if isDSTChangeDay(df.loc[i, "date"], previousDayTz): df = addAnnotation(df, i, "dst-change-day") assignTzoFromPreviousDay(df, i, previousDayTz) # if it is not DST change day, then mark this as uncertain else: # also, check to see if the difference between device. # tzo and prev.tzo is less than the expected dst # difference. There is a known issue where the BtUTC # procedure puts clock drift into the device.tzo, # and as a result the tzo can be off by 15, 30, # or 45 minutes. if (((df.loc[i, device + ".timezoneOffset"] == min(dstRange)) | (df.loc[i, device + ".timezoneOffset"] == max(dstRange))) & ((df.loc[i-1, "est.timezoneOffset"] == min(dstRange)) | (df.loc[i-1, "est.timezoneOffset"] == max(dstRange)))): df.loc[i, ["est.type"]] = "UNCERTAIN" df = addAnnotation(df, i, "likely-dst-error-OR-travel") else: df.loc[i, ["est.type"]] = "UNCERTAIN" df = addAnnotation(df, i, "likely-15-min-dst-error") # next see if time difference between device.tzo and prev.tzo # is off by 720 minutes, which is indicative of a common # user AM/PM error elif timeDiff == 720: df.loc[i, ["est.type"]] = "UNCERTAIN" df = addAnnotation(df, i, "likely-AM-PM-error") # if it doesn't fall into any of these cases, then the # tzo difference is likely due to travel else: df = assignTzoFromDeviceTzo(df, i, device) elif timeDiff == 0: df = assignTzoFromDeviceTzo(df, i, device) # if there is no previous record to compare with check for dst errors, # and if there are no errors, it is likely a travel day else: comparisonTz, dstRange = tzAndTzoRangeWithHomeTz(df, i) timeDiff = abs((df.loc[i, device + ".timezoneOffset"]) - df.loc[i, "home.imputed.timezoneOffset"]) if ((df.loc[i, device + ".timezoneOffset"] in dstRange) & (df.loc[i, "home.imputed.timezoneOffset"] in dstRange)): # see if it is DST change day if isDSTChangeDay(df.loc[i, "date"], comparisonTz): df = addAnnotation(df, i, "dst-change-day") df.loc[i, ["est.type"]] = "DEVICE" df.loc[i, ["est.timezoneOffset"]] = \ df.loc[i, device + ".timezoneOffset"] df.loc[i, ["est.timezone"]] = \ df.loc[i, "home.imputed.timezone"] df.loc[i, ["est.timeProcessing"]] = \ df.loc[i, device + ".upload.imputed.timeProcessing"] # if it is not DST change day, then mark this as uncertain else: # also, check to see if the difference between device. # tzo and prev.tzo is less than the expected dst # difference. There is a known issue where the BtUTC # procedure puts clock drift into the device.tzo, # and as a result the tzo can be off by 15, 30, # or 45 minutes. if (((df.loc[i, device + ".timezoneOffset"] == min(dstRange)) | (df.loc[i, device + ".timezoneOffset"] == max(dstRange))) & ((df.loc[i, "home.imputed.timezoneOffset"] == min(dstRange)) | (df.loc[i, "home.imputed.timezoneOffset"] == max(dstRange)))): df.loc[i, ["est.type"]] = "UNCERTAIN" df = addAnnotation(df, i, "likely-dst-error-OR-travel") else: df.loc[i, ["est.type"]] = "UNCERTAIN" df = addAnnotation(df, i, "likely-15-min-dst-error") # next see if time difference between device.tzo and prev.tzo # is off by 720 minutes, which is indicative of a common # user AM/PM error elif timeDiff == 720: df.loc[i, ["est.type"]] = "UNCERTAIN" df = addAnnotation(df, i, "likely-AM-PM-error") # if it doesn't fall into any of these cases, then the # tzo difference is likely due to travel else: df = assignTzoFromDeviceTzo(df, i, device) return df def getImputIndices(df, sIdx, hIdx): lastDayIdx = len(df) - 1 currentDayIdx = sIdx.min() tempList = pd.Series(hIdx) - currentDayIdx prevDayIdx = currentDayIdx - 1 nextDayIdx = \ min(currentDayIdx + min(tempList[tempList >= 0]), lastDayIdx) return currentDayIdx, prevDayIdx, nextDayIdx def imputeByTimezone(df, currentDay, prevDaywData, nextDaywData): gapSize = (nextDaywData - currentDay) if prevDaywData >= 0: if df.loc[prevDaywData, "est.timezone"] == \ df.loc[nextDaywData, "est.timezone"]: tz = df.loc[prevDaywData, "est.timezone"] for i in range(currentDay, nextDaywData): df.loc[i, ["est.timezone"]] = tz df.loc[i, ["est.timezoneOffset"]] = \ getTimezoneOffset(pd.to_datetime(df.loc[i, "date"]), tz) df.loc[i, ["est.type"]] = "IMPUTE" df = addAnnotation(df, i, "gap=" + str(gapSize)) df.loc[i, ["est.gapSize"]] = gapSize # TODO: this logic should be updated to handle the edge case # where the day before and after the gap have differing TZ, but # the same TZO. In that case the gap should be marked as UNCERTAIN elif df.loc[prevDaywData, "est.timezoneOffset"] == \ df.loc[nextDaywData, "est.timezoneOffset"]: for i in range(currentDay, nextDaywData): df.loc[i, ["est.timezoneOffset"]] = \ df.loc[prevDaywData, "est.timezoneOffset"] df.loc[i, ["est.type"]] = "IMPUTE" df = addAnnotation(df, i, "gap=" + str(gapSize)) df.loc[i, ["est.gapSize"]] = gapSize else: for i in range(currentDay, nextDaywData): df.loc[i, ["est.type"]] = "UNCERTAIN" df = addAnnotation(df, i, "unable-to-impute-tzo") else: for i in range(currentDay, nextDaywData): df.loc[i, ["est.type"]] = "UNCERTAIN" df = addAnnotation(df, i, "unable-to-impute-tzo") return df def imputeTzAndTzo(cDF): sIndices = cDF[cDF["est.timezoneOffset"].isnull()].index hasTzoIndices = cDF[cDF["est.timezoneOffset"].notnull()].index if len(hasTzoIndices) > 0: if len(sIndices) > 0: lastDay = max(sIndices) while ((sIndices.min() < max(hasTzoIndices)) & (len(sIndices) > 0)): currentDay, prevDayWithDay, nextDayIdx = \ getImputIndices(cDF, sIndices, hasTzoIndices) cDF = imputeByTimezone(cDF, currentDay, prevDayWithDay, nextDayIdx) sIndices = cDF[((cDF["est.timezoneOffset"].isnull()) & (~cDF["est.annotations"].str.contains( "unable-to-impute-tzo").fillna(False)))].index hasTzoIndices = cDF[cDF["est.timezoneOffset"].notnull()].index # try to impute to the last day (earliest day) in the dataset # if the last record has a timezone that is the home record, then # impute using the home timezone if len(sIndices) > 0: currentDay = min(sIndices) prevDayWithDay = currentDay - 1 gapSize = lastDay - currentDay for i in range(currentDay, lastDay + 1): if cDF.loc[prevDayWithDay, "est.timezoneOffset"] == \ cDF.loc[prevDayWithDay, "home.imputed.timezoneOffset"]: cDF.loc[i, ["est.type"]] = "IMPUTE" cDF.loc[i, ["est.timezoneOffset"]] = \ cDF.loc[i, "home.imputed.timezoneOffset"] cDF.loc[i, ["est.timezone"]] = \ cDF.loc[i, "home.imputed.timezone"] cDF = addAnnotation(cDF, i, "gap=" + str(gapSize)) cDF.loc[i, ["est.gapSize"]] = gapSize else: cDF.loc[i, ["est.type"]] = "UNCERTAIN" cDF = addAnnotation(cDF, i, "unable-to-impute-tzo") else: cDF["est.type"] = "UNCERTAIN" cDF["est.annotations"] = "unable-to-impute-tzo" return cDF def reorderColumns(cDF): cDF = cDF[["pump.upload.imputed.timezoneOffset", "pump.upload.imputed.timezone", "pump.upload.imputed.timeProcessing", "cgm.upload.imputed.timezoneOffset", "cgm.upload.imputed.timezone", "cgm.upload.imputed.timeProcessing", "healthkit.upload.imputed.timezoneOffset", "healthkit.upload.imputed.timezone", "healthkit.upload.imputed.timeProcessing", "home.imputed.timezoneOffset", "home.imputed.timezone", "home.imputed.timeProcessing", "upload.timezoneOffset", "upload.timezone", "upload.timeProcessing", "cgm.timezoneOffset", "pump.timezoneOffset", "date", "est.type", "est.timezoneOffset", "est.timezone", "est.timeProcessing", "est.annotations", "est.gapSize", "est.version"]] return cDF def readXlsxData(xlsxPathAndFileName): # load xlsx df = pd.read_excel(xlsxPathAndFileName, sheet_name=None, ignore_index=True) cdf = pd.concat(df.values(), ignore_index=True) cdf = cdf.set_index('jsonRowIndex') return cdf def checkInputFile(inputFile): if os.path.isfile(inputFile): if os.stat(inputFile).st_size > 1000: if inputFile[-4:] == "json": inputData = pd.read_json(inputFile, orient="records") fileName = os.path.split(inputFile)[-1][:-5] elif inputFile[-4:] == "xlsx": inputData = readXlsxData(inputFile) fileName = os.path.split(inputFile)[-1][:-5] elif inputFile[-3:] == "csv": inputData =
pd.read_csv(inputFile, low_memory=False)
pandas.read_csv
import sys import pickle as pkl # import libraries import nltk from nltk.corpus import stopwords nltk.download(['punkt', 'wordnet']) st = set(stopwords.words('english')) import re import time import pandas as pd import numpy as np from sqlalchemy import create_engine from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.multioutput import MultiOutputClassifier from sklearn.model_selection import train_test_split, GridSearchCV from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer from sklearn.metrics import classification_report, accuracy_score from sklearn.svm import LinearSVC def load_data(database_filepath): """ Loads data from database Input - database_filepath: filepath to sqlite database Output - X, y: Pandas DataFrames with Data and labels for training. """ # get table name from filepath table = database_filepath.split('/')[-1].split('.')[0] engine = create_engine(f'sqlite:///{database_filepath}') df = pd.read_sql_table(table, engine) X = df['message'] y = df.drop(['id', 'message', 'original', 'genre'], axis=1) return X, y def tokenize(text): """ Tokenize with NLTK and removes URLs Input - text - Single string object with english message Output - list of lowercase, lemmatized word tokens """ # Regex string to match URLs url_regex = 'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+' # get list of all urls using regex detected_urls = re.findall(url_regex, text) # replace each url in text string with placeholder for url in detected_urls: text = text.replace(url, 'urlplaceholder') # Remove Punctiation and other characters text = re.sub('[^a-zA-Z0-9]', ' ', text) tokens = word_tokenize(text) # Tokenize block of text lemmatizer = WordNetLemmatizer() # Initialize Lemmatizer clean_tokens = [] for tok in tokens: # lemmatize, normalize case, and remove leading/trailing white space clean_tok = lemmatizer.lemmatize(tok).lower().strip() clean_tokens.append(clean_tok) #remove stopwords clean_tokens = [x for x in clean_tokens if x not in list(st)] clean_tokens = [x for x in clean_tokens if x not in ['said', 'wa', 'ha', 'u', '000']] return clean_tokens def build_model(): """ Builds an Sklearn Pipeline with a countVectorizer, TF-IDF Transformer and Linear Support Vector Classifier object. Input - None Output - Grid Search Cross Validation object with 3 stratified folds to balance target class to distrobution. """ pipeline = Pipeline([('vect', CountVectorizer(tokenizer=tokenize)), ('tfidf', TfidfTransformer(use_idf=False)), ('clf', MultiOutputClassifier(LinearSVC()))]) parameters = { 'vect__max_df': (.45, .5, .65), 'vect__ngram_range': ((1, 1), (1, 2)), 'clf__estimator__C': [.45, .5, .65] } model = GridSearchCV(pipeline, param_grid=parameters, verbose=3, cv=4) return model def evaluate_model(model, X_test, y_test): """ Function to gather basic results for printing to standard out. Input - Model : trained model object X_test : Unseen Input features to evaluate model y_test : Unseen labels to evaluate model Output - Pandas dataframe with 'precision', 'recall', 'f1-score', 'support', and 'accuracy' for each class """ y_pred = model.predict(X_test) results_df = pd.DataFrame(columns=['precision', 'recall', 'f1-score', 'support', 'accuracy']) for index, column in enumerate(y_test.columns): cr_dict = classification_report(y_test[column], y_pred[:, index], output_dict=True, labels=np.unique(y_pred[:, index])) cr_dict['weighted avg']['accuracy'] = accuracy_score(y_test[column], y_pred[:, index]) results_df = results_df.append(pd.DataFrame(index=[column], data=cr_dict['weighted avg'])) return results_df def save_model(model, model_filepath): """ Saves model as pickle object. Input - model : model object model_filepath : filepath destination for output Output - None, file stored """ pkl.dump(model, open(model_filepath, 'wb')) pass def build_word_freq(X, y): """ Builds a csv table with top 20 most frequent words for each target. To be used in visualization to demonstrate NLP functionality Input - X message feature associated with the model y label features associated with the model Output - keywords.csv stored in 'data' directory """ dff = pd.concat([X, y], axis=1) corpus = [] corpus_names = [] for _ in dff.columns[4:]: corpus.append(dff.loc[dff[_] == 1]['message'].str.cat(sep=' ')) corpus_names.append(_) vectorizer = Pipeline([('vect', CountVectorizer(tokenizer=tokenize)), ('tfidf', TfidfTransformer())]) vectors = vectorizer.fit_transform(corpus) names = vectorizer.named_steps['vect'].get_feature_names() data = vectors.todense().tolist() # Create a dataframe with the results keywords_ =
pd.DataFrame(data, columns=names)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Thu Jul 5 19:42:05 2018 @author: <NAME> """ import pandas as pd import matplotlib.pyplot as plt import numpy as np import datetime def read_chat(file): """ Reads in the Chat and creates a df from it """ # List to save all the dictionaries save_list = [] # Loop through the file with open(file, "r", encoding="utf8") as infile: for line in infile: # Split the file in what is presumably a datetime and a message split_comma = line.split(",") # Split the thing that should be the datetime into presumably date and time split_whitespace = split_comma.pop(0).split(" ") # Determine if the first part of split white is a date by trying to convert it try: date = datetime.datetime.strptime(split_whitespace[0], '%d.%m.%Y') # Skip the line if a value error is raised, as this means that it # is not a date except ValueError: continue # Dictionary to save the results of the line # Stich the rest of the message togeher again message_with_person = " ".join(split_comma) # Get person and message person, message = seperate_messsage_person(message_with_person) # Shorten Person person = person[:2] # Exclude entries where the person is empty if person == "": continue # Add a better date describer and make the month better sortable month = date.month if date.month > 9 else "0" + str(date.month) month_year = str(date.year) + "/" + str(month) # Determine what the message consists of topic = determine_message_topic(message) # Save the things already known and prepare the other ones save_dict = {"date": date, "person": person, "topic": topic, "year/month": month_year} # Save the topic save_list.append(save_dict) return create_dataframe(save_list) def create_dataframe(save_list): """ Creates a dataframe from the collected data """ df = pd.DataFrame(save_list) df.set_index("date", inplace=True) return df def seperate_messsage_person(message_with_person): """ Seperates the person from the message and returns both """ # Split by the first colon split_colon = message_with_person.split(":") # Get the person out of it and avoid the first whitespace person = split_colon.pop(0)[1:] # Stitch the message together again message = " ".join(split_colon) return person, message def determine_message_topic(message): """ Determines whats in the message and returns a string with the name of the topic. """ if "[[" not in message: return "text" lookup_dict = {"Document": "file", "Photo": "pic", "Voice": "voice_msg", "Sticker": "sticker", "Webpage": "link", "GIF": "gif", "Video": "video", "Contact": "contact", "Geo": "location"} # Get ride of rest of the message msg_type = message.split("]]")[0] # Get rid of leading whitespace msg_type = msg_type[1:] # Delete the leading parantheses msg_type = msg_type.replace("[[", "") # Get ride if weird sticker emojis if "Sticker" in msg_type: msg_type = msg_type.split(" ")[1] # Get rid of additonal type information msg_type = msg_type.split(" ")[0] # Return the correct type return lookup_dict[msg_type] def plot_whole_timeseries_by_type_person(chat_df): """Plots lineplots for all different types and persons""" grouped = chat_df.groupby(["topic", "person", "year/month"]) amounts_per_month = grouped.size() persons = chat_df["person"].unique() topics = chat_df["topic"].unique() fig, subplots = plt.subplots(nrows=len(topics), sharex=True) for i, topic in enumerate(topics): print(topic) ax = subplots[i] ax.set_title(topic.title()) for person in persons: print(person) # This will fail if the person has never done this kind of message # Therefore create an empty dataframe for the person try: amounts_per_person_topic = pd.DataFrame(amounts_per_month.loc[(topic, person)].sort_index()) except: amounts_per_person_topic = pd.DataFrame(0, index=sorted(chat_df["year/month"].unique()), columns=[0]) # Create an empty dataframe with all dates of the original df, # So plottin is easier and add all the values from the other df plot_df = pd.DataFrame(0, index=sorted(chat_df["year/month"].unique()), columns=["count"]) plot_df =
pd.merge(plot_df, amounts_per_person_topic, left_index=True, right_index=True, how="left")
pandas.merge
import numpy as np import pandas as pd import pymongo from sklearn.preprocessing import StandardScaler from tensorflow.keras.models import load_model import os import glob import time from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.chrome.options import Options model_1 = load_model('model_2249') model_2 = load_model('model_5699') class Pipeline: '''Provides daily results to the TradingHydro application. Propagates data from the web, via inference, to a database. Takes in some csv document and gives back numerous updates to databse. ''' def __init__(self, csv_filename=False, no_scraping=False): '''Initializes Pipeline variables. Attributes: url: str, api key for mongodb. csv_filename: str with the csv filename. no_scraping: bool, True as default, False means no scraping. DF_out: pandas DataFrame, csv transition data. model_1_trans: dict with transition data. model_2_trans: dict with transition data. ''' # strings self.url = 'your-mongodb-api-key' self.csv_filename = 'csv_filename.csv' # debugging if csv_filename: self.csv_filename = csv_filename self.no_scraping = no_scraping # transitions self.DF_out = None self.model_1_trans = None self.model_2_trans = None def db_health_checking(self): '''Checks for mismatchs and doubles in the plot collections.''' # set database client = pymongo.MongoClient(self.url) db = client['powercell'] # name collection vars so they correspond with mongodb col names plot_1 = db['plot_1'] plot_2 = db['plot_2'] plot_3 = db['plot_3'] plot_4 = db['plot_4'] # find the current data in respective collection querys = [plot_1.find_one(), plot_3.find_one(), plot_4.find_one()] # clean out mongodb id object querys_no_id = [{i: query[i] for i in ['dates', 'lineseries']} for query in querys] # compare lens for name, query in zip(('plot_1', 'plot_3', 'plot_4'), querys_no_id): lens = [len(query['dates'])] lens = lens + [len(query['lineseries'][i]['points']) for i in range(len(query))] assert len(set(lens)) == 1, 'Health issue, len mismatch in plot ' + name return True def scraping(self): '''Downloads a csv file from the web to disk. Returns: bool, True if procedure is successful. ''' # PREPARE FOR SCRAPE # locate yesterdays csv file in folder csvfiles = [file for file in glob.glob('*.csv')] assert len(csvfiles) == 1, 'Prep for scrape, more or less than one csv on disk.' # remove csv os.remove(csvfiles[0]) assert len([file for file in glob.glob('*.csv')]) == 0, 'Remove csv, still csv on disk.' # SELENIUM # strings url = 'http://www.nasdaqomxnordic.com/shares/microsite?Instrument=SSE105121' user_agent = 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 ' \ '(KHTML, like Gecko) Chrome/86.0.4240.75 Safari/537.36' # options chrome_options = Options() chrome_options.add_argument('--user-agent=' + user_agent) chrome_options.add_argument('--headless') # download location download_dir = os.path.dirname(os.path.realpath('__file__')) prefs = {'download.default_directory' : download_dir} chrome_options.add_experimental_option('prefs', prefs) # wait, launch browser and wait time.sleep(np.random.randint(1, 120)) driver = webdriver.Chrome(options=chrome_options) driver.implicitly_wait(np.random.randint(3, 15)) # go to page and wait driver.get(url) driver.implicitly_wait(np.random.randint(3, 15)) # find showhistory button wait and click show_history_class = driver.find_element_by_class_name('showHistory') show_history_class.click() driver.implicitly_wait(np.random.randint(3, 15)) # find, click, download csv and wait exportExcel_id = driver.find_element(By.ID, 'exportExcel') exportExcel_id.click() time.sleep(5) # POST SCRAPE # change name on csv file and wait csvfiles = [file for file in glob.glob('*.csv')] assert len(csvfiles) == 1, 'Post scrape, more or less than one csv on disk.' os.rename(csvfiles[0], self.csv_filename) time.sleep(5) return True def preprocessing(self): '''Preprocess new data wrt old and slice off last. Returns: date: str with todays date. x1_s2: numpy array, x1 part of s2. p_t: float, yesterdays price t-1 for todays calculations. c_: float with todays closing price return. price: float, powercell raw price for today. ma_26: float, TA indicator. em_12: float, TA indicator. em_26: float, TA indicator. ''' names = ['date', 'price', 'avg_p', 'bid', 'ask', 'o', 'h', 'l', 'c', 'avgp', 'vol', 'oms', 'num'] # put scraped csv in dataframe and obtain the last row df_scraped = pd.read_csv(self.csv_filename, sep=';', header=1).iloc[:,:1] df_scraped[[1, 2]] = pd.read_csv(self.csv_filename, sep=';', header=1).iloc[:,6:8] df_scraped = pd.concat([df_scraped, pd.read_csv( self.csv_filename, sep=';', header=1).iloc[:,:-1].drop( columns=['Date'])], axis=1).iloc[::-1].reset_index().drop(columns='index') df_scraped.columns = names scraped_row = df_scraped.iloc[[-1]] # dataframe (DF) related database (DB) and collection client = pymongo.MongoClient(self.url) db_DF = client['DF'] DF = db_DF['DF'] # fetch yesterdays DF df_in = db_DF.DF.find_one(sort=[('_id', pymongo.DESCENDING)]) df_in_json = pd.read_json(df_in[list(df_in.keys())[-1]], keep_default_dates=False) # concatenate yesterdays DF and the scraped row df = pd.concat([df_in_json, scraped_row], axis=0).reset_index().drop(columns='index') # store now but update later self.df_out =
pd.concat([df_in_json, scraped_row], axis=0)
pandas.concat
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2020/10/23 0023 # @Author : justin.郑 <EMAIL> # @File : index_toutiao.py # @Desc : 头条指数 import json import pandas as pd import requests from gopup.index.cons import index_toutiao_headers def toutiao_index(keyword="python", start_date="20201016", end_date="20201022", app_name="toutiao"): """ 头条指数数据 :param keyword: 关键词 :param start_date: 开始日期 :param end_date: 截止日期 :param app_name: 平台 :return: datetime 日期 index 指数 """ # list_keyword = '["%s"]' % keyword try: url = "https://trendinsight.oceanengine.com/api/open/index/get_multi_keyword_hot_trend" data = { "keyword_list": [keyword], "start_date": start_date, "end_date": end_date, "app_name": app_name } res = requests.post(url, json=data, headers=index_toutiao_headers) hot_list = json.loads(res.text)['data']['hot_list'][0]['hot_list'] df =
pd.DataFrame(hot_list)
pandas.DataFrame
# Copyright 2019 Proyectos y Sistemas de Mantenimiento SL (eProsima). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """.""" import argparse import logging from os import listdir from os.path import abspath from os.path import isdir from os.path import isfile import numpy as np import pandas def directory_type(directory): """ Check whether the argument is a directory. :param directory: The directory path. :return: The directory path without ending /. Exit if the directory cannot be found. """ if directory.endswith('/'): directory = directory[:-1] if not isdir(directory): logger.error('Cannot find {}'.format(directory)) exit(1) return directory def experiment_type(filename): """ Get experiment type of a summary file based on its name. Get experiment type of a summary file based on its name (as output by "throughput_process_results.py). :param filename: The name of the summary file. :raise: AssertionError if filename is not a string. :return: The experiment type as a string. """ assert(isinstance(filename, str)) exp_type = filename.split('/')[-1].split('.')[-2].split('_')[1:-1] exp_type = '_'.join(exp_type) logger.debug('{} is of type {}'.format(filename, exp_type)) return exp_type if __name__ == '__main__': parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, description=""" Script to determine throughput requirements based on a set of experiment results. The scripts takes an <experiment_results> directory and creates a CSV file with requirements for each payload and experiment type present. The <experiment_results> directory is expected to contain directories with experiment results as output by "throughput_run_experiment.bash", and summaries created with "throughput_process_results.py". Each requirement is set by the 99 percentile of the results for a given payload and experiment type. The scripts generate requirement for lost samples, and subscription throughput. """ ) parser.add_argument( '-e', '--experiments_results', help='The directory containing the results of all the experiments', required=True ) parser.add_argument( '-o', '--output_file', help='A file to write the requirements', required=False, default='throughput_requirements.csv' ) parser.add_argument( '--debug', action='store_true', help='Set logging level to debug.' ) args = parser.parse_args() # Create a custom logger logger = logging.getLogger('THROUGHPUT.DETERMINE.REQUIREMENTS') # Create handlers c_handler = logging.StreamHandler() # Create formatters and add it to handlers c_format = ( '[%(asctime)s][%(filename)s:%(lineno)s][%(funcName)s()]' + '[%(levelname)s] %(message)s' ) c_format = logging.Formatter(c_format) c_handler.setFormatter(c_format) # Add handlers to the logger logger.addHandler(c_handler) # Set log level if args.debug is True: logger.setLevel(logging.DEBUG) else: logger.setLevel(logging.INFO) experiments = abspath(directory_type(args.experiments_results)) output_file = abspath(args.output_file) # Validate arguments assert(isdir(experiments)) logger.debug('Geting results directories') results_dirs = sorted( [ '{}/{}'.format( experiments, d ) for d in listdir(experiments) if isdir( '{}/{}'.format( experiments, d ) ) ] ) logger.debug(results_dirs) # Supported experiment types experiment_types = [ 'interprocess_best_effort', 'interprocess_best_effort_shm', 'interprocess_best_effort_security', 'interprocess_best_effort_shm_security', 'interprocess_best_effort_tcp', 'interprocess_best_effort_tcp_security', 'interprocess_reliable', 'interprocess_reliable_shm', 'interprocess_reliable_security', 'interprocess_reliable_shm_security', 'interprocess_reliable_tcp', 'interprocess_reliable_tcp_security', 'intraprocess_best_effort', 'intraprocess_reliable', ] # Create a dictionary with one entry per experiment type. The values are # Pandas DataFrames: # { # 'experiment_type_1': <Pandas DataFrame>, # 'experiment_type_2': <Pandas DataFrame> # } # The DataFrames contain a "Experiment" column to keep track of from which # experiment does every data entry come from. data_by_exp_type = {} for results_dir in results_dirs: # Get path of summary files logger.debug('Geting summaries for {}'.format(results_dir)) results_files = sorted( [ '{}/{}'.format( results_dir, f ) for f in listdir(results_dir) if isfile( '{}/{}'.format( results_dir, f ) ) and 'summary' in f ] ) logger.debug('Summaries: {}'.format(results_files)) # Iterate over the summaries for f in results_files: # Get experiment type exp_type = experiment_type(f) # Check that supported if exp_type not in experiment_types: logger.error( 'Experiment {} found in {} is NOT supported'.format( exp_type, results_dir ) ) exit(1) # Initialize dictionary entry if exp_type not in data_by_exp_type: data_by_exp_type[exp_type] = pandas.DataFrame() # Load data as DataFrame logger.debug('Loading data from {}'.format(f)) file_data = pandas.read_csv(f) # Expand data with a "Experiment" column containing directory name # of experiment results. file_data['Experiment'] = results_dir.split('/')[-1] # Append data to data_by_exp_type[exp_type] = data_by_exp_type[exp_type].append( file_data, sort=False ) logger.debug('Data by experiment type: {}'.format(data_by_exp_type)) # Requirement columns and percentile used to derive requirements req_columns = { 'Lost [samples]': 99, 'Subscription throughput [Mb/s]': 99, } # Derive requirements for each experiment type, payload, and req_column # based on the percentiles. Store them in a DataFrame in the form: # Experiment Payload [Bytes] Lost [samples] Subscription throughput [Mb/s] # 0 interprocess_best_effort_security 16 0.00 8.62310 # 1 interprocess_best_effort_security 1024 144.54 547.46745 requirements = pandas.DataFrame() for exp_type in data_by_exp_type: # Get experiment_type data exp_data = data_by_exp_type[exp_type].reset_index(drop=True) exp_requirements = pandas.DataFrame() # Iterate over payloads payloads = exp_data['Payload [Bytes]'].unique() for payload in payloads: # Get payload data payload_data = exp_data[exp_data['Payload [Bytes]'] == payload] # Iterate over requirement columns payload_reqs = pandas.DataFrame() for c in req_columns: # Calculate percentile and insert entry payload_reqs.at[0, c] = np.percentile( payload_data[c], req_columns[c] ) payload_reqs.insert(0, 'Payload [Bytes]', payload) exp_requirements = exp_requirements.append(payload_reqs) exp_requirements.insert(0, 'Experiment type', exp_type) requirements = requirements.append(exp_requirements) # Save requirements as CSV file requirements = requirements.reset_index(drop=True) requirements.to_csv(output_file, float_format='%.3f', index=False) # Print the requirement
pandas.set_option('display.max_rows', None)
pandas.set_option
from datetime import timedelta from functools import partial import itertools from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain from zipline.pipeline.loaders.earnings_estimates import ( NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import pytest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, "estimate", "knowledge_date"]) df = df.pivot_table( columns=SID_FIELD_NAME, values="estimate", index="knowledge_date", dropna=False ) df = df.reindex(pd.date_range(start_date, end_date)) # Index name is lost during reindex. df.index = df.index.rename("knowledge_date") df["at_date"] = end_date.tz_localize("utc") df = df.set_index(["at_date", df.index.tz_localize("utc")]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp("2014-12-28", tz="utc") END_DATE = pd.Timestamp("2015-02-04", tz="utc") @classmethod def make_loader(cls, events, columns): raise NotImplementedError("make_loader") @classmethod def make_events(cls): raise NotImplementedError("make_events") @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ "s" + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader( cls.events, {column.name: val for column, val in cls.columns.items()} ) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: "event_date", MultipleColumnsEstimates.fiscal_quarter: "fiscal_quarter", MultipleColumnsEstimates.fiscal_year: "fiscal_year", MultipleColumnsEstimates.estimate1: "estimate1", MultipleColumnsEstimates.estimate2: "estimate2", } @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate1": [1.0, 2.0], "estimate2": [3.0, 4.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def make_expected_out(cls): raise NotImplementedError("make_expected_out") @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp("2015-01-15", tz="utc"), end_date=pd.Timestamp("2015-01-15", tz="utc"), ) assert_frame_equal(results.sort_index(1), self.expected_out.sort_index(1)) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-10"), "estimate1": 1.0, "estimate2": 3.0, FISCAL_QUARTER_FIELD_NAME: 1.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-20"), "estimate1": 2.0, "estimate2": 4.0, FISCAL_QUARTER_FIELD_NAME: 2.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) dummy_df = pd.DataFrame( {SID_FIELD_NAME: 0}, columns=[ SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, "estimate", ], index=[0], ) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = { c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns } p = Pipeline(columns) err_msg = ( r"Passed invalid number of quarters -[0-9],-[0-9]; " r"must pass a number of quarters >= 0" ) with pytest.raises(ValueError, match=err_msg): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with pytest.raises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = [ "split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof", ] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand( itertools.product( ( NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, ), ) ) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } with pytest.raises(ValueError): loader( dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01"), ) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp("2015-01-28", tz="utc") q1_knowledge_dates = [ pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-04"), pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-11"), ] q2_knowledge_dates = [ pd.Timestamp("2015-01-14"), pd.Timestamp("2015-01-17"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-23"), ] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-14"), ] # One day late q2_release_dates = [ pd.Timestamp("2015-01-25"), # One day early pd.Timestamp("2015-01-26"), ] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if ( q1e1 < q1e2 and q2e1 < q2e2 # All estimates are < Q2's event, so just constrain Q1 # estimates. and q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0] ): sid_estimates.append( cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid) ) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26"), ], "estimate": [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid, } ) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, "estimate": [0.1, 0.2, 0.3, 0.4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, } ) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert sid_estimates.isnull().all().all() else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [ self.get_expected_estimate( q1_knowledge[ q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], q2_knowledge[ q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index ], axis=0, ) sid_estimates.index = all_expected.index.copy() assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q2_knowledge.iloc[-1:] elif ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate": [1.0, 2.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame( columns=[cls.columns[col] + "1" for col in cls.columns] + [cls.columns[col] + "2" for col in cls.columns], index=cls.trading_days, ) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ("1", "2") ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime(expected[expected_name]) else: expected[expected_name] = expected[expected_name].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge( [ {c.name + "1": c.latest for c in dataset1.columns}, {c.name + "2": c.latest for c in dataset2.columns}, ] ) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + "1" for col in self.columns] q2_columns = [col.name + "2" for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal( sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values) ) assert_equal( self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1), ) class NextEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp( "2015-01-11", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp("2015-01-11", tz="UTC") : pd.Timestamp( "2015-01-20", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ["estimate", "event_date"]: expected.loc[ pd.Timestamp("2015-01-06", tz="UTC") : pd.Timestamp( "2015-01-10", tz="UTC" ), col_name + "2", ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-09", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 2 expected.loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 3 expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_YEAR_FIELD_NAME + "2", ] = 2015 return expected class PreviousEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp( "2015-01-19", tz="UTC" ) ] = cls.events[raw_name].iloc[0] expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out for col_name in ["estimate", "event_date"]: expected[col_name + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[col_name].iloc[0] expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 4 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 2014 expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 1 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 2015 return expected class WithVaryingNumEstimates(WithEstimates): """ ZiplineTestCase mixin providing fixtures and a test to ensure that we have the correct overwrites when the event date changes. We want to make sure that if we have a quarter with an event date that gets pushed back, we don't start overwriting for the next quarter early. Likewise, if we have a quarter with an event date that gets pushed forward, we want to make sure that we start applying adjustments at the appropriate, earlier date, rather than the later date. Methods ------- assert_compute() Defines how to determine that results computed for the `SomeFactor` factor are correct. Tests ----- test_windows_with_varying_num_estimates() Tests that we create the correct overwrites from 2015-01-13 to 2015-01-14 regardless of how event dates were updated for each quarter for each sid. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 3 + [1] * 3, TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), ] * 2, EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-20"), ], "estimate": [11.0, 12.0, 21.0] * 2, FISCAL_QUARTER_FIELD_NAME: [1, 1, 2] * 2, FISCAL_YEAR_FIELD_NAME: [2015] * 6, } ) @classmethod def assert_compute(cls, estimate, today): raise NotImplementedError("assert_compute") def test_windows_with_varying_num_estimates(self): dataset = QuartersEstimates(1) assert_compute = self.assert_compute class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = 3 def compute(self, today, assets, out, estimate): assert_compute(estimate, today) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=pd.Timestamp("2015-01-13", tz="utc"), # last event date we have end_date=pd.Timestamp("2015-01-14", tz="utc"), ) class PreviousVaryingNumEstimates(WithVaryingNumEstimates, ZiplineTestCase): def assert_compute(self, estimate, today): if today == pd.Timestamp("2015-01-13", tz="utc"): assert_array_equal(estimate[:, 0], np.array([np.NaN, np.NaN, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 12, 12])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 12, 12])) assert_array_equal(estimate[:, 1], np.array([12, 12, 12])) @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextVaryingNumEstimates(WithVaryingNumEstimates, ZiplineTestCase): def assert_compute(self, estimate, today): if today == pd.Timestamp("2015-01-13", tz="utc"): assert_array_equal(estimate[:, 0], np.array([11, 12, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, np.NaN, 21])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 21, 21])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 21, 21])) @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) class WithEstimateWindows(WithEstimates): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows. Attributes ---------- events : pd.DataFrame DataFrame with estimates for 2 quarters for 2 sids. window_test_start_date : pd.Timestamp The date from which the window should start. timelines : dict[int -> pd.DataFrame] A dictionary mapping to the number of quarters out to snapshots of how the data should look on each date in the date range. Methods ------- make_expected_timelines() -> dict[int -> pd.DataFrame] Creates a dictionary of expected data. See `timelines`, above. Tests ----- test_estimate_windows_at_quarter_boundaries() Tests that we overwrite values with the correct quarter's estimate at the correct dates when we have a factor that asks for a window of data. """ END_DATE = pd.Timestamp("2015-02-10", tz="utc") window_test_start_date = pd.Timestamp("2015-01-05") critical_dates = [ pd.Timestamp("2015-01-09", tz="utc"), pd.Timestamp("2015-01-15", tz="utc"), pd.Timestamp("2015-01-20", tz="utc"), pd.Timestamp("2015-01-26", tz="utc"), pd.Timestamp("2015-02-05", tz="utc"), pd.Timestamp("2015-02-10", tz="utc"), ] # Starting date, number of announcements out. window_test_cases = list(itertools.product(critical_dates, (1, 2))) @classmethod def make_events(cls): # Typical case: 2 consecutive quarters. sid_0_timeline = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-02-10"), # We want a case where we get info for a later # quarter before the current quarter is over but # after the split_asof_date to make sure that # we choose the correct date to overwrite until. pd.Timestamp("2015-01-18"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-04-01"), ], "estimate": [100.0, 101.0] + [200.0, 201.0] + [400], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2 + [4], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, } ) # We want a case where we skip a quarter. We never find out about Q2. sid_10_timeline = pd.DataFrame( { TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-15"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-22"), pd.Timestamp("2015-01-22"), pd.Timestamp("2015-02-05"), pd.Timestamp("2015-02-05"), ], "estimate": [110.0, 111.0] + [310.0, 311.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [3] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 10, } ) # We want to make sure we have correct overwrites when sid quarter # boundaries collide. This sid's quarter boundaries collide with sid 0. sid_20_timeline = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-07"), cls.window_test_start_date, pd.Timestamp("2015-01-17"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-02-10"), ], "estimate": [120.0, 121.0] + [220.0, 221.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 20, } ) concatted = pd.concat( [sid_0_timeline, sid_10_timeline, sid_20_timeline] ).reset_index() np.random.seed(0) return concatted.reindex(np.random.permutation(concatted.index)) @classmethod def get_sids(cls): sids = sorted(cls.events[SID_FIELD_NAME].unique()) # Add extra sids between sids in our data. We want to test that we # apply adjustments to the correct sids. return [ sid for i in range(len(sids) - 1) for sid in range(sids[i], sids[i + 1]) ] + [sids[-1]] @classmethod def make_expected_timelines(cls): return {} @classmethod def init_class_fixtures(cls): super(WithEstimateWindows, cls).init_class_fixtures() cls.create_expected_df_for_factor_compute = partial( create_expected_df_for_factor_compute, cls.window_test_start_date, cls.get_sids(), ) cls.timelines = cls.make_expected_timelines() @parameterized.expand(window_test_cases) def test_estimate_windows_at_quarter_boundaries( self, start_date, num_announcements_out ): dataset = QuartersEstimates(num_announcements_out) trading_days = self.trading_days timelines = self.timelines # The window length should be from the starting index back to the first # date on which we got data. The goal is to ensure that as we # progress through the timeline, all data we got, starting from that # first date, is correctly overwritten. window_len = ( self.trading_days.get_loc(start_date) - self.trading_days.get_loc(self.window_test_start_date) + 1 ) class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = window_len def compute(self, today, assets, out, estimate): today_idx = trading_days.get_loc(today) today_timeline = ( timelines[num_announcements_out] .loc[today] .reindex(trading_days[: today_idx + 1]) .values ) timeline_start_idx = len(today_timeline) - window_len assert_almost_equal(estimate, today_timeline[timeline_start_idx:]) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=start_date, # last event date we have end_date=pd.Timestamp("2015-02-10", tz="utc"), ) class PreviousEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat( [ pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-19") ] ), cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-20")), ], pd.Timestamp("2015-01-20"), ), cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-20")), ], pd.Timestamp("2015-01-21"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 111, pd.Timestamp("2015-01-22")), (20, 121, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-01-22", "2015-02-04") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 311, pd.Timestamp("2015-02-05")), (20, 121, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-02-05", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 201, pd.Timestamp("2015-02-10")), (10, 311, pd.Timestamp("2015-02-05")), (20, 221, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_previous = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-02-09") ] # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. + [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-02-10")), (10, np.NaN, pd.Timestamp("2015-02-05")), (20, 121, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ) ] ) return {1: oneq_previous, 2: twoq_previous} class NextEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], pd.Timestamp("2015-01-09"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], end_date, ) for end_date in pd.date_range("2015-01-12", "2015-01-19") ] ), cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (0, 101, pd.Timestamp("2015-01-20")), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], pd.Timestamp("2015-01-20"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-01-21", "2015-01-22") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, 310, pd.Timestamp("2015-01-09")), (10, 311, pd.Timestamp("2015-01-15")), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-01-23", "2015-02-05") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-02-06", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (0, 201, pd.Timestamp("2015-02-10")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-11") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-12", "2015-01-16") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], pd.Timestamp("2015-01-20"), ) ] + [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-21", "2015-02-10") ] ) return {1: oneq_next, 2: twoq_next} class WithSplitAdjustedWindows(WithEstimateWindows): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows and with split adjustments. """ split_adjusted_asof_date = pd.Timestamp("2015-01-14") @classmethod def make_events(cls): # Add an extra sid that has a release before the split-asof-date in # order to test that we're reversing splits correctly in the previous # case (without an overwrite) and in the next case (with an overwrite). sid_30 = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-09"), # For Q2, we want it to start early enough # that we can have several adjustments before # the end of the first quarter so that we # can test un-adjusting & readjusting with an # overwrite. cls.window_test_start_date, # We want the Q2 event date to be enough past # the split-asof-date that we can have # several splits and can make sure that they # are applied correctly. pd.Timestamp("2015-01-20"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), ], "estimate": [130.0, 131.0, 230.0, 231.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 30, } ) # An extra sid to test no splits before the split-adjusted-asof-date. # We want an event before and after the split-adjusted-asof-date & # timestamps for data points also before and after # split-adjsuted-asof-date (but also before the split dates, so that # we can test that splits actually get applied at the correct times). sid_40 = pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-15")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-02-10"), ], "estimate": [140.0, 240.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 40, } ) # An extra sid to test all splits before the # split-adjusted-asof-date. All timestamps should be before that date # so that we have cases where we un-apply and re-apply splits. sid_50 = pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-09"),
pd.Timestamp("2015-01-12")
pandas.Timestamp
""" SIR 3S Logfile Utilities (short: Lx) """ __version__='192.168.3.11.dev1' import os import sys import logging logger = logging.getLogger(__name__) import argparse import unittest import doctest import nbformat from nbconvert.preprocessors import ExecutePreprocessor from nbconvert.preprocessors.execute import CellExecutionError import timeit import xml.etree.ElementTree as ET import re import struct import collections import zipfile import py7zr import pandas as pd import h5py import subprocess import csv import glob import warnings #warnings.simplefilter(action='ignore', category=PerformanceWarning) # pd.set_option("max_rows", None) # pd.set_option("max_columns", None) # pd.reset_option('max_rows') # ... class LxError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) def fTCCast(x): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) v=x try: if x in ['true','True']: v=1 elif x in ['false','False','']: v=0 else: try: v = float(x) except Exception as e: #logStrTmp="{:s}{!s:s}: Konvertierung zu float schlaegt fehl! - Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,x,sys.exc_info()[-1].tb_lineno,type(e),str(e)) #logger.debug(logStrTmp) try: v = pd.to_numeric(x,errors='raise',downcast='float') #logStrTmp="{:s}{!s:s}: Konvertierung mit pd.to_numeric liefert: {!s:s}".format(logStr,x,v) #logger.debug(logStrTmp) except Exception as e: #logStrTmp="{:s}{!s:s}: Konvertierung zu float mit pd.to_numeric schlaegt auch fehl! - Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,x,sys.exc_info()[-1].tb_lineno,type(e),str(e)) #logger.debug(logStrTmp) #x='2021-04-20 10:56:12.000' #t = pd.Timestamp(x) #t # Timestamp('2021-04-20 10:56:12') #i=int(t.to_datetime64())/1000000000 #i # 1618916172.0 #pd.to_datetime(i,unit='s',errors='coerce'): Timestamp('2021-04-20 10:56:12') try: t = pd.Timestamp(x) i=int(t.to_datetime64())/1000000000 v=pd.to_numeric(i,errors='raise',downcast='float') except Exception as e: logStrTmp="{:s}{!s:s}: Konvertierung zu float (mit pd.to_numeric) schlaegt (auch nach Annahme vaulue=Zeitstring) fehl! - Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,x,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.debug(logStrTmp) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return v def getTCsOPCDerivative(TCsOPC,col,shiftSize,windowSize,fct=None): """ returns a df index: ProcessTime cols: col dt dValue dValueDt dValueDtRollingMean """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) mDf=pd.DataFrame() try: s=TCsOPC[col].dropna() mDf=pd.DataFrame(s) dt=mDf.index.to_series().diff(periods=shiftSize) mDf['dt']=dt mDf['dValue']=mDf[col].diff(periods=shiftSize) mDf=mDf.iloc[shiftSize:] mDf['dValueDt']=mDf.apply(lambda row: row['dValue']/row['dt'].total_seconds(),axis=1) if fct != None: mDf['dValueDt']=mDf['dValueDt'].apply(fct) mDf['dValueDtRollingMean']=mDf['dValueDt'].rolling(window=windowSize).mean() mDf=mDf.iloc[windowSize-1:] except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return mDf logFilenamePattern='([0-9]+)(_)+([0-9]+)(\.log)' # group(3) ist Postfix und Nr. logFilenameHeadPattern='([0-9,_]+)(\.log)' # group(1) ist Head und H5-Key # nicht alle IDs werden von RE pID erfasst # diese werden mit pID2, getDfFromODIHelper und in getDfFromODI "nachbehandelt" pID=re.compile('(?P<Prae>IMDI\.)?(?P<A>[a-z,A-Z,0-9,_]+)\.(?P<B>[a-z,A-Z,0-9,_]+)\.(?P<C1>[a-z,A-Z,0-9]+)_(?P<C2>[a-z,A-Z,0-9]+)_(?P<C3>[a-z,A-Z,0-9]+)_(?P<C4>[a-z,A-Z,0-9]+)_(?P<C5>[a-z,A-Z,0-9]+)(?P<C6>_[a-z,A-Z,0-9]+)?(?P<C7>_[a-z,A-Z,0-9]+)?\.(?P<D>[a-z,A-Z,0-9,_]+)\.(?P<E>[a-z,A-Z,0-9,_]+)(?P<Post>\.[a-z,A-Z,0-9,_]+)?') pID2='(?P<Prae>IMDI\.)?(?P<A>[a-z,A-Z,0-9,_]+)(?P<Post>\.[a-z,A-Z,0-9,_]+)?' def getDfFromODIHelper(row,col,colCheck,pID2=pID2): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: if not pd.isnull(row[colCheck]): res= row[col] resStr='ColCheckOk' elif pd.isnull(row[col]): res=re.search(pID2,row['ID']).group(col) if res != None: resStr='ColNowOk' else: resStr='ColStillNotOk' else: res = row[col] resStr='ColWasOk' except: res = row[col] resStr='ERROR' finally: if resStr not in ['ColCheckOk','ColNowOk']: logger.debug("{:s}col: {:s} resStr: {:s} row['ID']: {:s} res: {:s}".format(logStr,col, resStr,row['ID'],str(res))) #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return res def getDfFromODI(ODIFile,pID=pID): """ returns a defined df from ODIFile """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfID=None try: df=pd.read_csv(ODIFile,delimiter=';') s = pd.Series(df['ID'].unique()) dfID=s.str.extract(pID.pattern,expand=True) dfID['ID']=s dfC=dfID['C1']+'_'+dfID['C2']+'_'+dfID['C3']+'_'+dfID['C4']+'_'+dfID['C5']+'_'+dfID['C6']#+'_'+dfID['C7'] dfID.loc[:,'C']=dfC.values dfID['C']=dfID.apply(lambda row: row['C']+'_'+row['C7'] if not pd.isnull(row['C7']) else row['C'],axis=1) dfID=dfID[['ID','Prae','A','B','C','C1','C2','C3','C4','C5','C6','C7','D','E','Post']] for col in ['Prae','Post','A']: dfID[col]=dfID.apply(lambda row: getDfFromODIHelper(row,col,'A'),axis=1) dfID.sort_values(by=['ID'], axis=0,ignore_index=True,inplace=True) dfID.set_index('ID',verify_integrity=True,inplace=True) dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN','Post']='.EIN' dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN','A']='Objects' dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN','B']='3S_XYZ_PUMPE' dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN','C']='3S_XYZ_GSI_01' dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN','D']='Out' #dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN',:] dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW','Post']='.SOLLW' dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW','A']='Objects' dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW','B']='3S_XYZ_RSCHIEBER' dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW','C']='3S_XYZ_PCV_01' dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW','D']='Out' #dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW',:] dfID['yUnit']=dfID.apply(lambda row: getDfFromODIHelperyUnit(row),axis=1) dfID['yDesc']=dfID.apply(lambda row: getDfFromODIHelperyDesc(row),axis=1) dfID=dfID[['yUnit','yDesc','Prae','A','B','C','C1','C2','C3','C4','C5','C6','C7','D','E','Post']] except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfID def addInitvalueToDfFromODI(INITFile,dfID): """ returns dfID extended with new Cols Initvalue and NumOfInits """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfIDext=dfID try: df=pd.read_csv(INITFile,delimiter=';',header=None,names=['ID','Value'])#,index_col=0) dfGrped=df.groupby(by=['ID'])['Value'].agg(['count','min','max','mean','last']) dfIDext=dfID.merge(dfGrped,left_index=True,right_index=True,how='left').filter(items=dfID.columns.to_list()+['last','count']).rename(columns={'last':'Initvalue','count':'NumOfInits'}) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfIDext def fODIMatch(dfODI,TYPE=None,OBJTYPE=None,NAME1=None,NAME2=None): df=dfODI if TYPE != None: df=df[df['TYPE']==TYPE] if OBJTYPE != None: df=df[df['OBJTYPE']==OBJTYPE] if NAME1 != None: df=df[df['NAME1']==NAME1] if NAME2 != None: df=df[df['NAME2']==NAME2] return df def fODIFindAllSchieberSteuerungsIDs(dfODI,NAME1=None,NAME2=None): # dfODI: pd.read_csv(ODI,delimiter=';') df=fODIMatch(dfODI,TYPE='OL_2',OBJTYPE='VENT',NAME1=NAME1,NAME2=NAME2) return sorted(list(df['ID'].unique())+[ID for ID in df['REF_ID'].unique() if not pd.isnull(ID)]) def fODIFindAllZeilenWithIDs(dfODI,IDs): return dfODI[dfODI['ID'].isin(IDs) | dfODI['REF_ID'].isin(IDs)] def getDfFromODIHelperyUnit(row): """ returns Unit """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) unit=None try: if row['E'] in ['AL_S','SB_S']: unit='[-]' elif row['E'] in ['LR_AV','LP_AV','QD_AV','SD_AV','AM_AV','FZ_AV','MZ_AV','NG_AV']: unit='[Nm³/h]' elif row['E'] in ['AC_AV','LR_AV']: unit='[mm/s²]' else: unit='TBD in Lx' except: unit='ERROR' finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return unit def getDfFromODIHelperyDesc(row): """ returns Desc """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) desc=None try: if row['E'] in ['AL_S','SB_S']: desc='Status' elif row['E'] in ['LR_AV','LP_AV','QD_AV','SD_AV','AM_AV','FZ_AV','MZ_AV','NG_AV']: desc='Fluss' elif row['E'] in ['AC_AV','LR_AV']: desc='Beschleunigung' else: desc='TBD in Lx' except: desc='ERROR' finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return desc def getDfIDUniqueCols(dfID): """ returns df with uniques """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfIDUniqueCols=pd.DataFrame() try: # Spalte mit der groessten Anzahl von Auspraegungen feststellen lenMax=0 colMax='' # ueber alle Spalten for idx,col in enumerate(dfID): s=pd.Series(dfID[col].unique()) if len(s) > lenMax: lenMax=len(s) colMax=col s=pd.Series(dfID[colMax].unique(),name=colMax) s.sort_values(inplace=True) s=pd.Series(s.values,name=colMax) dfIDUniqueCols=pd.DataFrame(s) # ueber alle weiteren Spalten for idx,col in enumerate([col for col in dfID.columns if col != colMax]): # s unique erzeugen s=pd.Series(dfID[col].unique(),name=col) # s sortieren s.sort_values(inplace=True) s=pd.Series(s.values,name=col) dfIDUniqueCols=pd.concat([dfIDUniqueCols,s],axis=1) dfIDUniqueCols=dfIDUniqueCols[dfID.columns] except: logger.error("{0:s}".format(logStr)) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfIDUniqueCols def getIDsFromID(ID='Objects.3S_XYZ_SEG_INFO.3S_L_6_KED_39_EL1.In.AL_S',dfID=None,matchCols=['B','C1','C2','C3','C4','C5','D'],any=False): """ returns IDs matching ID """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: IDsMatching=[] s=dfID.loc[ID,:] for ID,row in dfID.iterrows(): match=True for col in [col for col in row.index.values if col in matchCols]: #if str(row[col])!=str(s[col]): if row[col]!=s[col]: match=False break else: if any: break if match: IDsMatching.append(ID) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) #except: # logger.error("{0:s}".format(logStr)) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return sorted(IDsMatching) def getLDSResVecDf( ID # ResVec-Defining-Channel; i.e. for Segs Objects.3S_XYZ_SEG_INFO.3S_L_6_EL1_39_TUD.In.AL_S / i.e. for Drks Objects.3S_XYZ_DRUCK.3S_6_EL1_39_PTI_02_E.In.AL_S ,dfID ,TCsLDSResDf ,matchCols # i.e. ['B','C1','C2','C3','C4','C5','C6','D'] for Segs; i.e. ['B','C','D'] for Drks ): """ returns a df with LDSResChannels as columns (AL_S, ...); derived by Filtering columns from TCsLDSResDf and renaming them """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfResVec=pd.DataFrame() try: IDs=getIDsFromID(ID=ID,dfID=dfID,matchCols=matchCols) dfFiltered=TCsLDSResDf.filter(items=IDs) colDct={} for col in dfFiltered.columns: m=re.search(pID,col) colDct[col]=m.group('E') dfResVec=dfFiltered.rename(columns=colDct) except: logger.error("{0:s}".format(logStr)) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfResVec def fGetFirstAndLastValidIdx(df): """ returns (tFirst,tLast) """ for idx,col in enumerate(df.columns): tF=df[col].first_valid_index() tL=df[col].last_valid_index() if idx==0: tFirst=tF tLast=tL else: if tF < tFirst: tFirst=tF if tL > tLast: tLast=tL return (tFirst,tLast) def fGetIDSets( dfID ,divNr #'7' ,pipelineNrLst #['43','44'] ,fctIn=None # Funktion von ID die Falsch heraus gibt, wenn ID (doch) nicht in Menge sein soll ): # returns Dct: key: Bezeichner einer ID-Menge; value: zugeh. IDs IDSets={} IDs=[] for ID in sorted(dfID.index.unique()): m=re.search(pID,ID) if m != None: C1= m.group('C1') C2= m.group('C2') C3= m.group('C3') C4= m.group('C4') C5= m.group('C5') if C1 in [divNr] and C3 in pipelineNrLst: # u.a. SEG ErgVecs IDs.append(ID) elif C2 in [divNr] and C4 in pipelineNrLst: IDs.append(ID) elif C3 in [divNr] and C5 in pipelineNrLst: # FT, PTI, etc. IDs.append(ID) if fctIn != None: IDs=[ID for ID in IDs if fctIn(ID)] IDSets['IDs']=IDs IDsAlarm=[ID for ID in IDs if re.search(pID,ID).group('E') == 'AL_S'] IDSets['IDsAlarm']=IDsAlarm IDsAlarmSEG=[ID for ID in IDsAlarm if re.search(pID,ID).group('C5') != 'PTI'] IDSets['IDsAlarmSEG']=IDsAlarmSEG IDsAlarmDruck=[ID for ID in IDsAlarm if re.search(pID,ID).group('C5') == 'PTI'] IDSets['IDsAlarmDruck']=IDsAlarmDruck IDsStat=[ID for ID in IDs if re.search(pID,ID).group('E') == 'STAT_S'] IDSets['IDsStat']=IDsStat IDsStatSEG=[ID for ID in IDsStat if re.search(pID,ID).group('C5') != 'PTI'] IDSets['IDsStatSEG']=IDsStatSEG IDsStatDruck=[ID for ID in IDsStat if re.search(pID,ID).group('C5') == 'PTI'] IDSets['IDsStatDruck']=IDsStatDruck ### IDsSb=[ID for ID in IDs if re.search(pID,ID).group('E') == 'SB_S'] IDSets['IDsSb']=IDsSb IDsSbSEG=[ID for ID in IDsSb if re.search(pID,ID).group('C5') != 'PTI'] IDSets['IDsSbSEG']=IDsSbSEG IDsSbDruck=[ID for ID in IDsSb if re.search(pID,ID).group('C5') == 'PTI'] IDSets['IDsSbDruck']=IDsSbDruck ### IDsZHK=[ID for ID in IDs if re.search(pID,ID).group('E') == 'ZHKNR_S'] IDSets['IDsZHK']=IDsZHK IDsZHKSEG=[ID for ID in IDsZHK if re.search(pID,ID).group('C5') != 'PTI'] IDSets['IDsZHKSEG']=IDsZHKSEG IDsZHKDruck=[ID for ID in IDsZHK if re.search(pID,ID).group('C5') == 'PTI'] IDSets['IDsZHKDruck']=IDsZHKDruck IDsFT=[ID for ID in IDs if re.search(pID,ID).group('C4') == 'FT'] IDSets['IDsFT']=IDsFT IDsPT=[ID for ID in IDs if re.search(pID,ID).group('C4') == 'PTI'] IDSets['IDsPT']=IDsPT IDsPT_BCIND=[ID for ID in IDs if re.search(pID,ID).group('C5') == 'PTI' and re.search(pID,ID).group('E') == 'BCIND_S' ] IDSets['IDsPT_BCIND']=IDsPT_BCIND ### Schieber IDsZUST=[ID for ID in IDs if re.search(pID,ID).group('E') == 'ZUST'] IDsZUST=sorted(IDsZUST,key=lambda x: re.match(pID,x).group('C5')) IDSets['IDsZUST']=IDsZUST IDs_3S_XYZ_ESCHIEBER=[ID for ID in IDs if re.search(pID,ID).group('B') == '3S_FBG_ESCHIEBER'] IDs_3S_XYZ_ESCHIEBER=sorted(IDs_3S_XYZ_ESCHIEBER,key=lambda x: re.match(pID,x).group('C6')) IDSets['IDs_3S_XYZ_ESCHIEBER']=IDs_3S_XYZ_ESCHIEBER IDs_XYZ_ESCHIEBER=[ID for ID in IDs if re.search(pID,ID).group('B') == 'FBG_ESCHIEBER'] IDs_XYZ_ESCHIEBER=sorted(IDs_XYZ_ESCHIEBER,key=lambda x: re.match(pID,x).group('C5')) # IDSets['IDs_XYZ_ESCHIEBER']=IDs_XYZ_ESCHIEBER IDs_XYZ_ESCHIEBER_Ohne_ZUST=[ID for ID in IDs_XYZ_ESCHIEBER if re.search(pID,ID).group('E') != 'ZUST'] IDs_XYZ_ESCHIEBER_Ohne_ZUST=sorted(IDs_XYZ_ESCHIEBER_Ohne_ZUST,key=lambda x: re.match(pID,x).group('C5')) IDSets['IDs_XYZ_ESCHIEBER_Ohne_ZUST']=IDs_XYZ_ESCHIEBER_Ohne_ZUST IDsSchieberAlle=IDsZUST+IDs_XYZ_ESCHIEBER_Ohne_ZUST+IDs_3S_XYZ_ESCHIEBER IDSets['IDsSchieberAlle']=IDsSchieberAlle IDsSchieberAlleOhneLAEUFT=[ID for ID in IDsSchieberAlle if re.search('LAEUFT$',ID) == None] IDsSchieberAlleOhneLAEUFT=[ID for ID in IDsSchieberAlleOhneLAEUFT if re.search('LAEUFT_NICHT$',ID) == None] IDSets['IDsSchieberAlleOhneLAEUFT']=IDsSchieberAlleOhneLAEUFT return IDSets h5KeySep='/' def fValueFct(x): return pd.to_numeric(x,errors='ignore',downcast='float') class AppLog(): """ SIR 3S App Log (SQC Log) Maintains a H5-File. Existing H5-File will be deleted (if not initialized with h5File=...). H5-Keys are: * init * lookUpDf * lookUpDfZips (if initialized with zip7Files=...) * Logfilenames praefixed by Log without extension Attributes: * h5File * lookUpDf zipName logName FirstTime (ScenTime - not #LogTime) LastTime (ScenTime - mot #LogTime) * lookUpDfZips """ TCsdfOPCFill=False # wenn Wahr, werden in TCsdfOPCFill die NULLen aufgefuellt; default: Falsch @classmethod def getTCsFromDf(cls,df,dfID=pd.DataFrame(),TCsdfOPCFill=TCsdfOPCFill): """ returns several TC-dfs from df Verarbeitung von dfs gemaess extractTCsToH5s; siehe dort Args: * df: a df with Log-Data * columns: ['ID','ProcessTime','ScenTime','SubSystem','Value','Direction'] * dfID * index: ID * erf. nur, wenn IDs nach Res1 und Res2 aufgeteilt werden sollen * TCsdfOPCFill: if True (default): fill NaNs in this df Time curve dfs: cols: * Time (TCsdfOPC: ProcessTime, other: ScenTime) * ID * Value Time curve dfs: * TCsdfOPC * TCsSirCalc * TCsLDSIn * TCsLDSRes (dfID empty) or TCsLDSRes1, TCsLDSRes2 """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: TCsdfOPC=pd.DataFrame() TCsdfSirCalc=pd.DataFrame() TCsdfLDSIn=pd.DataFrame() if not dfID.empty: TCsdfLDSRes1=pd.DataFrame() TCsdfLDSRes2=pd.DataFrame() else: TCsdfLDSRes=pd.DataFrame() if not dfID.empty: df=df.merge(dfID,how='left',left_on='ID',right_index=True,suffixes=('','_r')) logger.debug("{0:s}{1:s}".format(logStr,'TCsdfOPC ...')) TCsdfOPC=df[(df['SubSystem'].str.contains('^OPC')) ### & ~(df['Value'].isnull()) # ueberfluessig, wenn df dies bereits erfuellt ][['ProcessTime','ID','Value']].pivot_table(index='ProcessTime', columns='ID', values='Value',aggfunc='last') if TCsdfOPCFill: for col in TCsdfOPC.columns: TCsdfOPC[col]=TCsdfOPC[col].fillna(method='ffill') TCsdfOPC[col]=TCsdfOPC[col].fillna(method='bfill') logger.debug("{0:s}{1:s}".format(logStr,'TCsdfSirCalc ...')) TCsdfSirCalc=df[(df['SubSystem'].str.contains('^SirCalc')) | (df['SubSystem'].str.contains('^RTTM')) ][['ScenTime','ID','Value']].pivot_table(index='ScenTime', columns='ID', values='Value',aggfunc='last') logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSIn ...')) TCsdfLDSIn=df[(df['SubSystem'].str.contains('^LDS')) & (df['Direction'].str.contains('^<-'))][['ScenTime','ID','Value']].pivot_table(index='ScenTime', columns='ID', values='Value',aggfunc='last') if not dfID.empty: logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSRes1 ...')) TCsdfLDSRes1=df[(df['SubSystem'].str.contains('^LDS')) & (df['Direction'].str.contains('^->')) & (df['B'].str.contains('^3S_FBG_SEG_INFO'))][['ScenTime','ID','Value']].pivot_table(index='ScenTime', columns='ID', values='Value',aggfunc='last') logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSRes2 ...')) TCsdfLDSRes2=df[(df['SubSystem'].str.contains('^LDS')) & (df['Direction'].str.contains('^->')) & (df['B'].str.contains('^3S_FBG_DRUCK'))][['ScenTime','ID','Value']].pivot_table(index='ScenTime', columns='ID', values='Value',aggfunc='last') else: logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSRes ...')) TCsdfLDSRes=df[(df['SubSystem'].str.contains('^LDS')) & (df['Direction'].str.contains('^->'))][['ScenTime','ID','Value']].pivot_table(index='ScenTime', columns='ID', values='Value',aggfunc='last') except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) if not dfID.empty: return TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes1,TCsdfLDSRes2 else: return TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes def __init__(self,logFile=None,zip7File=None,h5File=None,h5FileName=None,readWithDictReader=False,nRows=None,readWindowsLog=False): """ (re-)initialize logFile: wird gelesen und in H5 abgelegt addZip7File(zip7File) liest alle Logs eines zipFiles und legt diese in H5 ab zipFile: 1. logFile wird gelesen und in H5 abgelegt addZip7File(zip7File) liest alle Logs eines zipFiles und legt diese in H5 ab die Initialisierung mit zipFile ist identisch mit der Initialisierung mit logFile wenn logFile das 1. logFile des Zips ist nach addZip7File(zip7File) - ggf. mehrfach fuer mehrere Zips: koennen Daten mit self.get(...) gelesen werden (liefert 1 df) koennen Daten mit self.getTCs(...) gelesen werden (liefert mehrere dfs in TC-Form) koennen Daten mit self.getTCsSpecified(...) gelesen werden (liefert 1 df in TC-Form) koennen Daten in TC-Form mit self.extractTCsToH5s(...) in separate H5s gelesen werden mit self.getTCsFromH5s(...) koennen die TCs wieder gelesen werden === addZip7File(zip7File) - ggf. mehrfach - und extractTCsToH5s(...) sind Bestandteil einer 7Zip-Verarbeitung vor der eigentlichen Analyse === h5File: die lookUp-Dfs vom H5-File werden gelesen die zum H5-File zugehoerigen TC-H5-Filenamen werden belegt die TC-H5-Files werden nicht auf Existenz geprüft oder gar gelesen """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) self.lookUpDf=pd.DataFrame() self.lookUpDfZips=pd.DataFrame() try: if logFile != None and zip7File != None and h5File != None: logger.debug("{0:s}{1:s}".format(logStr,'3 Files (logFile and zip7File and h5File) specified.')) elif logFile != None and zip7File != None: logger.debug("{0:s}{1:s}".format(logStr,'2 Files (logFile and zip7File) specified.')) elif logFile != None and h5File != None: logger.debug("{0:s}{1:s}".format(logStr,'2 Files (logFile and h5File) specified.')) elif h5File != None and zip7File != None: logger.debug("{0:s}{1:s}".format(logStr,'2 Files (h5File and zip7File) specified.')) elif logFile != None: self.__initlogFile(logFile,h5FileName=h5FileName,readWithDictReader=readWithDictReader,readWindowsLog=readWindowsLog) elif zip7File != None: self.__initzip7File(zip7File,h5FileName=h5FileName,readWithDictReader=readWithDictReader,readWindowsLog=readWindowsLog) elif h5File != None: self.__initWithH5File(h5File) else: logger.debug("{0:s}{1:s}".format(logStr,'No File (logFile XOR zip7File XOR h5File) specified.')) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def __initlogFile(self,logFile,h5FileName=None,readWithDictReader=False,readWindowsLog=False): """ (re-)initialize with logFile """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # wenn logFile nicht existiert ... if not os.path.exists(logFile): logger.debug("{0:s}logFile {1:s} not existing.".format(logStr,logFile)) else: df = self.__processALogFile(logFile=logFile,readWithDictReader=readWithDictReader,readWindowsLog=readWindowsLog) self.__initH5File(logFile,df,h5FileName=h5FileName) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def __initH5File(self,h5File,df,h5FileName=None): """ creates self.h5File and writes 'init'-Key Logfile df to it Args: * h5File: name of logFile or zip7File; the Dir is the Dir of the H5-File * df * h5FileName: the H5-FileName without Dir and Extension; if None (default), "Log ab ..." is used """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: (h5FileHead,h5FileTail)=os.path.split(h5File) # H5-File if h5FileName==None: h5FileTail="Log ab {0:s}.h5".format(str(df['#LogTime'].min())).replace(':',' ').replace('-',' ') else: h5FileTail=h5FileName+'.h5' self.h5File=os.path.join(h5FileHead,h5FileTail) # wenn H5 existiert wird es geloescht if os.path.exists(self.h5File): os.remove(self.h5File) logger.debug("{0:s}Existing H5-File {1:s} deleted.".format(logStr,h5FileTail)) # init-Logfile schreiben self.__toH5('init',df) logger.debug("{0:s}'init'-Key Logfile done.".format(logStr)) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def __initWithH5File(self,h5File,useRawHdfAPI=False): """ self.h5File=h5File self.lookUpDf self.lookUpDfZips die lookUp-Dfs werden gelesen vom H5-File die zum H5-File zugehoerigen TC-H5-Filenamen werden belegt, wenn diese H5-Files existieren die TC-H5-Files werden nicht gelesen der zum H5-File zugehoerige CVD-Filename wird belegt, wenn das H5-File existiert das H5-File wird nicht gelesen """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # H5 existiert if os.path.exists(h5File): self.h5File=h5File # Keys available with pd.HDFStore(self.h5File) as h5Store: h5Keys=sorted(h5Store.keys()) logger.debug("{0:s}h5Keys available: {1:s}".format(logStr,str(h5Keys))) h5KeysStripped=[item.replace(h5KeySep,'') for item in h5Keys] if useRawHdfAPI: with pd.HDFStore(self.h5File) as h5Store: if 'lookUpDf' in h5KeysStripped: self.lookUpDf=h5Store['lookUpDf'] if 'lookUpDfZips' in h5KeysStripped: self.lookUpDfZips=h5Store['lookUpDfZips'] else: if 'lookUpDf' in h5KeysStripped: self.lookUpDf=pd.read_hdf(self.h5File, key='lookUpDf') if 'lookUpDfZips' in h5KeysStripped: self.lookUpDfZips=pd.read_hdf(self.h5File, key='lookUpDfZips') else: logStrFinal="{0:s}h5File {1:s} not existing.".format(logStr,h5File) logger.debug(logStrFinal) raise LxError(logStrFinal) #TC-H5s (name,ext)=os.path.splitext(self.h5File) TCPost='_TC' h5FileOPC=name+TCPost+'OPC'+ext h5FileSirCalc=name+TCPost+'SirCalc'+ext h5FileLDSIn=name+TCPost+'LDSIn'+ext h5FileLDSRes1=name+TCPost+'LDSRes1'+ext h5FileLDSRes2=name+TCPost+'LDSRes2'+ext h5FileLDSRes=name+TCPost+'LDSRes'+ext if os.path.exists(h5FileOPC): self.h5FileOPC=h5FileOPC logger.debug("{0:s}Existing H5-File {1:s}.".format(logStr,self.h5FileOPC)) if os.path.exists(h5FileSirCalc): self.h5FileSirCalc=h5FileSirCalc logger.debug("{0:s}Existing H5-File {1:s}.".format(logStr,self.h5FileSirCalc)) if os.path.exists(h5FileLDSIn): self.h5FileLDSIn=h5FileLDSIn logger.debug("{0:s}Existing H5-File {1:s}.".format(logStr,self.h5FileLDSIn)) if os.path.exists(h5FileLDSRes): self.h5FileLDSRes=h5FileLDSRes logger.debug("{0:s}Existing H5-File {1:s}.".format(logStr,self.h5FileLDSRes)) if os.path.exists(h5FileLDSRes1): self.h5FileLDSRes1=h5FileLDSRes1 logger.debug("{0:s}Existing H5-File {1:s}.".format(logStr,self.h5FileLDSRes1)) if os.path.exists(h5FileLDSRes2): self.h5FileLDSRes2=h5FileLDSRes2 logger.debug("{0:s}Existing H5-File {1:s}.".format(logStr,self.h5FileLDSRes2)) h5FileCVD=name+'_'+'CVD'+ext if os.path.exists(h5FileCVD): self.h5FileCVD=h5FileCVD logger.debug("{0:s}Existing H5-File {1:s}.".format(logStr,self.h5FileCVD)) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def getInitDf(self,useRawHdfAPI=False): """ returns InitDf from H5-File """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: df=pd.DataFrame() # H5 existiert if os.path.exists(self.h5File): # Keys available with pd.HDFStore(self.h5File) as h5Store: h5Keys=sorted(h5Store.keys()) logger.debug("{0:s}h5Keys available: {1:s}".format(logStr,str(h5Keys))) h5KeysStripped=[item.replace(h5KeySep,'') for item in h5Keys] if useRawHdfAPI: with pd.HDFStore(self.h5File) as h5Store: if 'init' in h5KeysStripped: df=h5Store['init'] else: if 'init' in h5KeysStripped: df=pd.read_hdf(self.h5File, key='init') else: logStrFinal="{0:s}h5File {1:s} not existing.".format(logStr,h5File) logger.debug(logStrFinal) raise LxError(logStrFinal) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return df def __initzip7File(self,zip7File,h5FileName=None,nRows=None,readWithDictReader=False,readWindowsLog=False): """ (re-)initialize with zip7File """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # wenn zip7File nicht existiert ... if not os.path.exists(zip7File): logStrFinal="{0:s}zip7File {1:s} not existing.".format(logStr,zip7File) logger.debug(logStrFinal) raise LxError(logStrFinal) else: (zip7FileHead, zip7FileTail)=os.path.split(zip7File) zipFileDirname=os.path.dirname(zip7File) logger.debug("{0:s}zipFileDirname: {1:s}".format(logStr,zipFileDirname)) aDfRead=False with py7zr.SevenZipFile(zip7File, 'r') as zip7FileObj: allLogFiles = zip7FileObj.getnames() logger.debug("{0:s}{1:s}: len(getnames()): {2:d}.".format(logStr,zip7FileTail,len(allLogFiles))) logger.debug("{0:s}getnames(): {1:s}.".format(logStr,str(allLogFiles))) extDirLstTBDeleted=[] extDirLstExistingLogged=[] for idx,logFileNameInZip in enumerate(allLogFiles): logger.debug("{0:s}idx: {1:d} logFileNameInZip: {2:s}".format(logStr,idx,logFileNameInZip)) # die Datei die 7Zip bei extract erzeugen wird logFile=os.path.join(zipFileDirname,logFileNameInZip) (logFileHead, logFileTail)=os.path.split(logFile) # logFileHead == dirname() logger.debug("{0:s}idx: {1:d} logFileHead: {2:s} logFileTail: {3:s}".format(logStr,idx,logFileHead,logFileTail)) (name, ext)=os.path.splitext(logFile) logger.debug("{0:s}idx: {1:d} name: {2:s} ext: {3:s}".format(logStr,idx,name,ext)) if logFileHead!='': # logFileHead == dirname() if os.path.exists(logFileHead) and logFileHead not in extDirLstExistingLogged: logger.debug("{0:s}idx: {1:d} Verz. logFileHead: {2:s} existiert bereits.".format(logStr,idx,logFileHead)) extDirLstExistingLogged.append(logFileHead) elif not os.path.exists(logFileHead): logger.debug("{0:s}idx: {1:d} Verz. logFileHead: {2:s} existiert noch nicht.".format(logStr,idx,logFileHead)) extDirLstTBDeleted.append(logFileHead) # kein Logfile zu prozessieren ... if ext == '': continue # Logfile prozessieren ... if os.path.exists(logFile): isFile = os.path.isfile(logFile) if isFile: logger.debug("{0:s}idx: {1:d} Log: {2:s} existiert bereits. Wird durch Extrakt ueberschrieben werden.".format(logStr,idx,logFileTail)) logFileTBDeleted=False else: logFileTBDeleted=False else: logger.debug("{0:s}idx: {1:d} Log: {2:s} existiert nicht. Wird extrahiert, dann prozessiert und dann wieder geloescht.".format(logStr,idx,logFileTail)) logFileTBDeleted=True # extrahieren zip7FileObj.extract(path=zipFileDirname,targets=logFileNameInZip) if os.path.exists(logFile): pass else: logger.warning("{0:s}idx: {1:d} Log: {2:s} NOT extracted?! Continue with next Name in 7Zip.".format(logStr,idx,logFileTail)) # nichts zu prozessieren ... continue # ... if os.path.isfile(logFile): df = self.__processALogFile(logFile=logFile,nRows=nRows,readWithDictReader=readWithDictReader,readWindowsLog=readWindowsLog) if df is None: logger.warning("{0:s}idx: {1:d} Log: {2:s} NOT processed?! Continue with next Name in 7Zip.".format(logStr,idx,logFileTail)) # nichts zu prozessieren ... continue else: aDfRead=True # ... # gleich wieder loeschen if os.path.exists(logFile) and logFileTBDeleted: if os.path.isfile(logFile): os.remove(logFile) logger.debug("{0:s}idx: {1:d} Log: {2:s} wieder geloescht.".format(logStr,idx,logFileTail)) # wir wollen nur das 1. File lesen ... if aDfRead: break; for dirName in extDirLstTBDeleted: if os.path.exists(dirName): if os.path.isdir(dirName): (dirNameHead, dirNameTail)=os.path.split(dirName) if len(os.listdir(dirName)) == 0: os.rmdir(dirName) logger.debug("{0:s}dirName: {1:s} existierte nicht und wurde wieder geloescht.".format(logStr,dirNameTail)) else: logger.info("{0:s}dirName: {1:s} existiert mit nicht leerem Inhalt?!".format(logStr,dirNameTail)) self.__initH5File(zip7File,df,h5FileName=h5FileName) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def __toH5(self,key,df,useRawHdfAPI=False,updLookUpDf=False,logName='',zipName='',noDfStorage=False): """ write df with key to H5-File (if not noDfStorage) Args: * updLookUpDf: if True, self.lookUpDf is updated with * zipName (the Zip of logFile) * logName (the name of the logFile i.e. 20201113_0000004.log) * FirstTime (the first ScenTime in df) * LastTime (the last ScenTime in df) self.lookUpDf is not wriiten to H5 """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: (h5FileHead,h5FileTail)=os.path.split(self.h5File) if not noDfStorage: if useRawHdfAPI: with pd.HDFStore(self.h5File) as h5Store: try: h5Store.put(key,df) except Exception as e: logger.error("{0:s}Writing df with h5Key={1:s} to {2:s} FAILED!".format(logStr,key,h5FileTail)) raise e else: df.to_hdf(self.h5File, key=key) logger.debug("{0:s}Writing df with h5Key={1:s} to {2:s} done.".format(logStr,key,h5FileTail)) if updLookUpDf: s=df['ScenTime']#['#LogTime'] FirstTime=s.iloc[0] LastTime=s.iloc[-1] if self.lookUpDf.empty: data={ 'zipName': [zipName] ,'logName': [logName] ,'FirstTime' : [FirstTime] ,'LastTime' : [LastTime] } self.lookUpDf = pd.DataFrame (data, columns = ['zipName','logName','FirstTime','LastTime']) self.lookUpDf['zipName']=self.lookUpDf['zipName'].astype(str) self.lookUpDf['logName']=self.lookUpDf['logName'].astype(str) else: data={ 'zipName': zipName ,'logName': logName ,'FirstTime' : FirstTime ,'LastTime' : LastTime } self.lookUpDf=self.lookUpDf.append(data,ignore_index=True) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def __processALogFile(self,logFile=None,delimiter='\t',nRows=None,readWithDictReader=False,fValueFct=fValueFct,readWindowsLog=False): """ process logFile Args: * logFile: logFile to be processed * nRows: number of logFile rows to be processed; default: None (:= all rows are processed); if readWithDictReader: last row is also processed * readWithDictReader: if True, csv.DictReader is used; default: None (:= pd.read_csv is used) Returns: * df: logFile processed to df * converted: * #LogTime: to datetime * ProcessTime: to datetime * Value: to float64 * ID,Direction,SubSystem,LogLevel,State,Remark: to str * new: * ScenTime datetime """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) df=None try: with open(logFile,'r') as f: pass (logFileHead,logFileTail)=os.path.split(logFile) if readWithDictReader: restkey='+' with open(logFile,"r") as csvFile: # 1. Zeile enthaelt die Ueberschrift reader = csv.DictReader(csvFile,delimiter=delimiter,restkey=restkey) logger.debug("{0:s}{1:s} csv.DictReader reader processed.".format(logStr,logFileTail)) # If a row has more fields than fieldnames, the remaining data is put in a list and stored with the fieldname specified by restkey. colNames=reader.fieldnames dcts = [dct for dct in reader] # alle Zeilen lesen logger.debug("{0:s}{1:s} csv.DictReader-Ergebnis processed.".format(logStr,logFileTail)) if nRows!=None: dcts=dcts[0:nRows]+[dcts[-1]] # nur die Spaltennamen werden als row-Spalten erzeugt rows = [[dct[colName] for colName in colNames] for dct in dcts] logger.debug("{0:s}{1:s} rows processed.".format(logStr,logFileTail)) # die "ueberfluessigen" Spalten an die letzte Spalte dranhaengen for i, dct in enumerate(dcts): if restkey in dct: restValue=dct[restkey] restValueStr = delimiter.join(restValue) newValue=rows[i][-1]+delimiter+restValueStr #logger.debug("{0:s}{1:s} restValueStr: {2:s} - Zeile {3:10d}: {4:s} - neuer Wert letzte Spalte: {5:s}.".format(logStr,logFileTail,restValueStr,i,str(rows[i]),newValue)) rows[i][-1]=rows[i][-1]+newValue logger.debug("{0:s}{1:s} restkey processed.".format(logStr,logFileTail)) index=range(len(rows)) df = pd.DataFrame(rows,columns=colNames,index=index) else: if nRows==None: df=pd.read_csv(logFile,delimiter=delimiter,error_bad_lines=False,warn_bad_lines=True,low_memory=False) else: df=pd.read_csv(logFile,delimiter=delimiter,error_bad_lines=False,warn_bad_lines=True,low_memory=False,nrows=nRows) logger.debug("{0:s}{1:s} pd.DataFrame processed.".format(logStr,logFileTail)) #logger.debug("{0:s}df: {1:s}".format(logStr,str(df))) #LogTime df['#LogTime']=pd.to_datetime(df['#LogTime'],unit='ms',errors='coerce') # NaT #ProcessTime df['ProcessTime']=pd.to_datetime(df['ProcessTime'],unit='ms',errors='coerce') # NaT logger.debug("{0:s}{1:s} col ProcessTime processed.".format(logStr,logFileTail)) #Value df['Value']=df.Value.str.replace(',', '.') # Exception: Line: 1137: <class 'AttributeError'>: Can only use .str accessor with string values! df['Value']=fValueFct(df['Value'].values) # df['ValueProcessed'].apply(fValueFct) logger.debug("{0:s}{1:s} col Value processed.".format(logStr,logFileTail)) #Strings for col in ['ID','Direction','SubSystem','LogLevel','State','Remark']: df[col]=df[col].astype(str) logger.debug("{0:s}{1:s} String-cols processed.".format(logStr,logFileTail)) #1618249551621 STD CVD 1615442324000 p-p BEGIN_OF_NEW_CONTROL_VOLUME 6-10-SV1-RB~6-10-BID-RB NULL NULL # String in beiden Faellen (Linux und Windows) gleich? #1618249551621 STD CVD <- 156 CV_ID ##ScenTime ## SubSystem Direction ProcessTime ID Value State Remark ## Linux --- ## 1615029280000 INF SQC Starting cycle for 2021-03-06 12:14:38.000 ## 1615029280000 STD LDS MCL 1615029278000 Main cycle loop 06.03.2021 12:14:38.000 (ScenTime: Tag und Zeit in Klartext; Spalte ProcessTime ScenTime!) ## Windows --- ## 1618256150711 STD SQC 1615457121000 Main cycle loop 11:05:21.000 (ScenTime-Zeit in Klartext; Spalte ProcessTime ScenTime!) dfScenTime=df[df['ID']=='Main cycle loop'][['ProcessTime']] dfScenTime.rename(columns={'ProcessTime':'ScenTime'},inplace=True) df=df.join(dfScenTime) df['ScenTime']=df['ScenTime'].fillna(method='ffill') df['ScenTime']=df['ScenTime'].fillna(method='bfill') if df['ScenTime'].isnull().values.all(): logger.debug("{0:s}Keine Zeile mit ID=='Main cycle loop' gefunden. ScenTime zu #LogTime gesetzt.".format(logStr)) df['ScenTime']=df['#LogTime'] # wenn keine Zeile mit ID=='Main cycle loop' gefunden wurde, wird ScenTime zu #LogTime gesetzt # finalisieren df=df[['#LogTime','LogLevel','SubSystem','Direction','ProcessTime','ID','Value','ScenTime','State','Remark']] logger.debug("{0:s}{1:s} processed with nRows: {2:s} (None if all).".format(logStr,logFileTail,str(nRows))) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return df def rebuildLookUpDfZips(self,zip7Files,readWithDictReader=True,readWindowsLog=False): """ (re-)initialize with zip7Files only persistent outcome is lookUpDfZips (Attribute and H5-Persistence) lookUpdf is changed but not H5-stored (Re-)Init with AppLog(h5File=...) after using rebuildLookUpDfZips to obtain old lookUpdf main Usage of rebuildLookUpDfZips is to determine which zip7Files to add by i.e.: zip7FilesToAdd=lx.lookUpDfZips[~(lx.lookUpDfZips['LastTime']<timeStartAusschnitt) & ~(lx.lookUpDfZips['FirstTime']>timeEndAusschnitt)].index.to_list() """ #noDfStorage=False logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: #self.__initzip7File(zip7File=zip7Files[0],h5FileName=h5FileName,nRows=1,readWithDictReader=True) for zip7File in zip7Files: logger.info("{0:s}addZip7File: {1:s}".format(logStr,zip7File)) self.addZip7File(zip7File,firstsAndLastsLogsOnly=True,nRows=1,readWithDictReader=readWithDictReader,noDfStorage=True,readWindowsLog=readWindowsLog) logger.debug("{0:s}lookUpDf: {1:s}".format(logStr,self.lookUpDf.to_string())) df=self.lookUpDf.groupby(by='zipName').agg(['min', 'max']) logger.debug("{0:s}df: {1:s}".format(logStr,df.to_string())) minTime=df.loc[:,('FirstTime','min')] maxTime=df.loc[:,('LastTime','max')] minFileNr=df.loc[:,('logName','min')].apply(lambda x: int(re.search(logFilenamePattern,x).group(3))) maxFileNr=df.loc[:,('logName','max')].apply(lambda x: int(re.search(logFilenamePattern,x).group(3))) s=(maxTime-minTime)/(maxFileNr-minFileNr) lookUpDfZips=s.to_frame().rename(columns={0:'TimespanPerLog'}) lookUpDfZips['NumOfFiles']=maxFileNr-minFileNr lookUpDfZips['FirstTime']=minTime lookUpDfZips['LastTime']=maxTime lookUpDfZips['minFileNr']=minFileNr lookUpDfZips['maxFileNr']=maxFileNr lookUpDfZips=lookUpDfZips[['FirstTime','LastTime','TimespanPerLog','NumOfFiles','minFileNr','maxFileNr']] # lookUpDfZips schreiben self.lookUpDfZips=lookUpDfZips self.__toH5('lookUpDfZips',self.lookUpDfZips) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def addZip7File(self,zip7File,firstsAndLastsLogsOnly=False,nRows=None,readWithDictReader=False,noDfStorage=False,readWindowsLog=False): """ add zip7File Args: * zipFile: zipFile which LogFiles shall be added * Args for internal Usage: * firstsAndLastsLogsOnly (True dann) * nRows (1 dann) * readWithDictReader (True dann) d.h. es werden nur die ersten und letzten Logs pro Zip angelesen und dort auch nur die 1. und letzte Zeile und das mit DictReader """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # wenn zip7File nicht existiert ... if not os.path.exists(zip7File): logStrFinal="{0:s}zip7File {1:s} not existing.".format(logStr,zip7File) logger.debug(logStrFinal) raise LxError(logStrFinal) else: (zip7FileHead, zip7FileTail)=os.path.split(zip7File) logger.debug("{0:s}zip7FileHead (leer wenn zip7 im selben Verz.): {1:s} zip7FileTail: {2:s}.".format(logStr,zip7FileHead,zip7FileTail)) logger.info("{0:s}zip7File: {1:s} ...".format(logStr,zip7File)) tmpDir=os.path.dirname(zip7File) tmpDirContent=glob.glob(tmpDir) with py7zr.SevenZipFile(zip7File, 'r') as zip7FileObj: allLogFiles = zip7FileObj.getnames() allLogFilesLen=len(allLogFiles) logger.debug("{0:s}{1:s}: len(getnames()): {2:d}.".format(logStr,zip7FileTail,allLogFilesLen)) extDirLstTBDeleted=[] extDirLstExistingLogged=[] for idx,logFileNameInZip in enumerate(allLogFiles): if firstsAndLastsLogsOnly: if idx not in [0,1,allLogFilesLen-2,allLogFilesLen-1]: #logger.debug("{0:s}idx: {1:d} item: {2:s} NOT processed ...".format(logStr,idx,logFileNameInZip)) continue logger.info("{0:s}idx: {1:d} item: {2:s} ...".format(logStr,idx,logFileNameInZip)) # die Datei die 7Zip bei extract erzeugen wird logFile=os.path.join(tmpDir,logFileNameInZip) (logFileHead, logFileTail)=os.path.split(logFile) # evtl. bezeichnet logFileNameInZip keine Datei sondern ein Verzeichnis (name, ext)=os.path.splitext(logFileNameInZip) if ext == '': # Verzeichnis! extDir=os.path.join(tmpDir,logFileNameInZip) (extDirHead, extDirTail)=os.path.split(extDir) if os.path.exists(extDir) and extDir in tmpDirContent: logger.debug("{0:s}idx: {1:d} extDir: {2:s} existiert(e) bereits.".format(logStr,idx,extDirTail)) extDirLstExistingLogged.append(extDir) elif os.path.exists(extDir) and extDir not in tmpDirContent: logger.debug("{0:s}idx: {1:d} extDir: {2:s} existiert(e) noch nicht.".format(logStr,idx,extDirTail)) extDirLstTBDeleted.append(extDir) elif not os.path.exists(extDir) and extDir not in tmpDirContent: logger.debug("{0:s}idx: {1:d} extDir: {2:s} existiert(e) noch nicht.".format(logStr,idx,extDirTail)) extDirLstTBDeleted.append(extDir) # kein Logfile zu prozessieren ... continue # logFileNameInZip bezeichnet eine Datei if os.path.exists(logFile): isFile = os.path.isfile(logFile) if isFile: logger.debug("{0:s}idx: {1:d} Log: {2:s} existiert bereits. Wird durch Extrakt ueberschrieben werden.".format(logStr,idx,logFileTail)) logFileTBDeleted=False else: logFileTBDeleted=False else: logger.debug("{0:s}idx: {1:d} Log: {2:s} existiert nicht. Wird extrahiert, dann prozessiert und dann wieder geloescht.".format(logStr,idx,logFileTail)) logFileTBDeleted=True # extrahieren logger.debug("{0:s}Log: {1:s} wird extrahiert ... ".format(logStr,logFileTail)) import lzma try: zip7FileObj.extract(path=tmpDir,targets=logFileNameInZip) except lzma.LZMAError: logger.warning("{0:s}Log: {1:s} nicht erfolgreich extrahiert - continue ... ".format(logStr,logFileTail)) continue except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) logger.debug("{0:s}Log: {1:s} wurde extrahiert. ".format(logStr,logFileTail)) if os.path.exists(logFile): pass else: logger.warning("{0:s}idx: {1:d} Log: {2:s} NOT extracted?! Continue with next Name in 7Zip.".format(logStr,idx,logFileTail)) # nichts zu prozessieren ... continue # ... if os.path.isfile(logFile): df = self.__processALogFile(logFile=logFile,nRows=nRows,readWithDictReader=readWithDictReader,readWindowsLog=readWindowsLog) if df is None: logger.warning("{0:s}idx: {1:d} Log: {2:s} NOT processed?! Continue with next Name in 7Zip.".format(logStr,idx,logFileTail)) # nichts zu prozessieren ... continue # ... # gleich wieder loeschen if os.path.exists(logFile) and logFileTBDeleted: if os.path.isfile(logFile): os.remove(logFile) logger.debug("{0:s}idx: {1:d} Log: {2:s} wieder geloescht.".format(logStr,idx,logFileTail)) # ... (name, ext)=os.path.splitext(logFileTail) key='Log'+name if zip7FileHead != '': zipName=os.path.join(os.path.relpath(zip7FileHead),zip7FileTail) else: zipName=zip7FileTail # df schreiben self.__toH5(key,df,updLookUpDf=True,logName=logFileTail,zipName=zipName,noDfStorage=noDfStorage)#os.path.join(os.path.relpath(zip7FileHead),zip7FileTail)) # danach gleich lookUpDf schreiben ... self.__toH5('lookUpDf',self.lookUpDf,noDfStorage=noDfStorage) for dirName in extDirLstTBDeleted: if os.path.exists(dirName): if os.path.isdir(dirName): (dirNameHead, dirNameTail)=os.path.split(dirName) if len(os.listdir(dirName)) == 0: os.rmdir(dirName) logger.debug("{0:s}dirName: {1:s} existierte nicht und wurde wieder geloescht.".format(logStr,dirNameTail)) else: logger.info("{0:s}dirName: {1:s} existiert mit nicht leerem Inhalt?!".format(logStr,dirNameTail)) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def getTotalLogTime(self): """ Returns Tuple: firstTime,lastTime,tdTotalGross,tdTotal,tdBetweenFilesTotal # Brutto-Logzeit, Netto-Logzeit, Summe aller Zeiten zwischen 2 Logdateien (sollte = Brutto-Netto sein) """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # Inhalt der Logs tdTotal=pd.Timedelta('0 Seconds') tdBetweenFilesTotal=pd.Timedelta('0 Seconds') for idx,(index,row) in enumerate(self.lookUpDf.iterrows()): if idx > 0: tdBetweenFiles=row["FirstTime"]-lastTime tdBetweenFilesTotal=tdBetweenFilesTotal+tdBetweenFiles if tdBetweenFiles > pd.Timedelta('0 second'): if tdBetweenFiles > pd.Timedelta('1 second'): logger.info("{:s}Zeitdifferenz: {!s:s} zwischen {:s} ({:s}) und {:s} ({:s})".format(logStr, str(tdBetweenFiles).replace('days','Tage') ,lastFile,lastZip ,row["logName"],row["zipName"] )) pass if tdBetweenFiles < pd.Timedelta('0 second'): if tdBetweenFiles < -pd.Timedelta('1 second'): pass logger.info("{:s}Zeitueberlappung > 1s: {!s:s} zwischen {:s} ({:s}) und {:s} ({:s})".format(logStr, str(tdBetweenFiles).replace('days','Tage') ,lastFile,lastZip ,row["logName"],row["zipName"] )) td=row["LastTime"]-row["FirstTime"] if type(td) == pd.Timedelta: tdTotal=tdTotal+td else: print(index)# Fehler! lastTime=row["LastTime"] lastFile=row["logName"] lastZip=row["zipName"] firstTime=self.lookUpDf.iloc[0]["FirstTime"] lastTime=self.lookUpDf.iloc[-1]["LastTime"] tdTotalGross=lastTime-firstTime tdTotalGross,tdTotal,tdBetweenFilesTotal except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return firstTime,lastTime,tdTotalGross,tdTotal,tdBetweenFilesTotal def extractTCsToH5s(self,dfID=pd.DataFrame(),timeStart=None,timeEnd=None,TCsdfOPCFill=TCsdfOPCFill): """ extracts TC-Data (and CVD-Data) from H5 to seperate H5-Files (Postfixe: _TCxxx.h5 and _CVD.h5) TCsdfOPCFill: wenn Wahr, werden in TCsdfOPCFill die NULLen aufgefuellt; default: Falsch wenn timeStart != None: es wird an exisitierende .h5s angehaengt; sonst werden diese ueberschrieben """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # _TCxxx.h5 anlegen (OPC, SirCalc, LDSIn, LDSRes1, LDSRes2 (,LDSRes)) and _CVD.h5 # ueber alle dfs in H5 (unter Berücksichtigung von timeStart und timeEnd) # lesen # TC-Teilmenge ermitteln: 'ID','ProcessTime','ScenTime','SubSystem','Value','Direction' # Zeilen mit 'Value' isnull() werden NICHT gelesen # d.h. bei einer Logfile-Semantik welche durch NULL-Zeilen einen Wert auf (was auch immer) zuruecksetzt wuerde der Wert bei einer Stop-Plot-Ausgabe auf dem letzten Nicht-NULL Wert verharren ... # ... zunaechst ... # Untermengen bilden: ['TCsdfOPC','TCsdfSirCalc','TCsdfLDSIn','TCsdfLDSRes1','TCsdfLDSRes2' (,'TCsdfLDSRes')] # ... NULLen (NaNs) entstehen durch die Pivotierung mit Index = Time: nicht fuer alles Times (Obermenge) gibt es fuer jede ID Values # speichern (name,ext)=os.path.splitext(self.h5File) TCPost='_TC' self.h5FileOPC=name+TCPost+'OPC'+ext self.h5FileSirCalc=name+TCPost+'SirCalc'+ext self.h5FileLDSIn=name+TCPost+'LDSIn'+ext if not dfID.empty: # Attribute self.h5FileLDSRes1=name+TCPost+'LDSRes1'+ext self.h5FileLDSRes2=name+TCPost+'LDSRes2'+ext # Komplement wird geloescht h5FileLDSRes=name+TCPost+'LDSRes'+ext try: # wenn TC-H5 existiert wird es geloescht if os.path.exists(h5FileLDSRes): os.remove(h5FileLDSRes) logger.debug("{0:s}Existing H5-File {1:s} deleted.".format(logStr,h5FileLDSRes)) del self.h5FileLDSRes except: pass else: # Attribut self.h5FileLDSRes=name+TCPost+'LDSRes'+ext # Komplemente werden geloescht h5FileLDSRes1=name+TCPost+'LDSRes1'+ext h5FileLDSRes2=name+TCPost+'LDSRes2'+ext try: # wenn TC-H5 existiert wird es geloescht if os.path.exists(h5FileLDSRes1): os.remove(h5FileLDSRes1) logger.debug("{0:s}Existing H5-File {1:s} deleted.".format(logStr,h5FileLDSRes1)) # wenn TC-H5 existiert wird es geloescht if os.path.exists(h5FileLDSRes2): os.remove(h5FileLDSRes2) logger.debug("{0:s}Existing H5-File {1:s} deleted.".format(logStr,h5FileLDSRes2)) del self.h5FileLDSRes1 del self.h5FileLDSRes2 except: pass self.h5FileCVD=name+'_'+'CVD'+ext h5Keys,h5KeysPost=self.__getH5Keys(timeStart=timeStart,timeEnd=timeEnd) h5KeysOPC=['TCsOPC'+x for x in h5KeysPost] h5KeysSirCalc=['TCsSirCalc'+x for x in h5KeysPost] h5KeysLDSIn=['TCsLDSIn'+x for x in h5KeysPost] h5KeysLDSRes1=['TCsLDSRes1'+x for x in h5KeysPost] h5KeysLDSRes2=['TCsLDSRes2'+x for x in h5KeysPost] h5KeysLDSRes=['TCsLDSRes'+x for x in h5KeysPost] h5KeysCVD=['CVDRes'+x for x in h5KeysPost] h5KeysAll=zip(h5Keys,h5KeysOPC,h5KeysSirCalc,h5KeysLDSIn,h5KeysLDSRes1,h5KeysLDSRes2,h5KeysLDSRes,h5KeysCVD) for idx,(h5Key,h5KeyOPC,h5KeySirCalc,h5KeyLDSIn,h5KeyLDSRes1,h5KeyLDSRes2,h5KeyLDSRes,h5KeyCVD) in enumerate(h5KeysAll): #H5-Write-Modus if idx==0: if timeStart!=None: mode='a' else: mode='w' else: mode='a' logger.info("{0:s}Get (read_hdf) df with h5Key: {1:s} ...".format(logStr,h5Key)) df=pd.read_hdf(self.h5File, key=h5Key) # CVD ------------------------------------------------------------------------------------------------- dfCVD=df[df['SubSystem']=='CVD'] df=df[['ID','ProcessTime','ScenTime','SubSystem','Value','Direction']] df['Value']=df['Value'].apply(lambda x: fTCCast(x)) df=df[~(df['Value'].isnull())] if not dfID.empty: TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes1,TCsdfLDSRes2=self.getTCsFromDf(df,dfID=dfID,TCsdfOPCFill=TCsdfOPCFill) else: TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes=self.getTCsFromDf(df,dfID=dfID,TCsdfOPCFill=TCsdfOPCFill) logger.debug("{0:s}{1:s}".format(logStr,'Write ...')) TCsdfOPC.to_hdf(self.h5FileOPC,h5KeyOPC, mode=mode) TCsdfSirCalc.to_hdf(self.h5FileSirCalc,h5KeySirCalc, mode=mode) TCsdfLDSIn.to_hdf(self.h5FileLDSIn,h5KeyLDSIn, mode=mode) if not dfID.empty: TCsdfLDSRes1.to_hdf(self.h5FileLDSRes1,h5KeyLDSRes1, mode=mode) TCsdfLDSRes2.to_hdf(self.h5FileLDSRes2,h5KeyLDSRes2, mode=mode) else: TCsdfLDSRes.to_hdf(self.h5FileLDSRes,h5KeyLDSRes, mode=mode) # --- dfCVD.to_hdf(self.h5FileCVD,h5KeyCVD, mode=mode) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return def shrinkH5File(self): """ die dfs werden geloescht im H5-File extract TCs to H5s ### MUSS ### vorher gelaufen sein nach shrinkH5File stehen im Master-H5 die eigentlichen Daten nicht mehr zur Verfuegung """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # H5 existiert if os.path.exists(self.h5File): # Keys available with pd.HDFStore(self.h5File) as h5Store: h5Keys=sorted(h5Store.keys()) # /Log20201216_0000001 logger.debug("{0:s}h5Keys available: {1:s}".format(logStr,str(h5Keys))) for key in h5Keys: if re.match('(^/Log)',key): logger.debug("{0:s}key removed: {1:s}".format(logStr,str(key))) h5Store.remove(key.replace(h5KeySep,'')) else: logger.debug("{0:s}key NOT removed: {1:s}".format(logStr,str(key))) with pd.HDFStore(self.h5File) as h5Store: pass shrinkCmd="ptrepack --chunkshape=auto --propindexes --complib=blosc "+self.h5File+" "+self.h5File+".Shrinked" logger.debug("{0:s}shrinkCmd: {1:s}".format(logStr,shrinkCmd)) if os.path.exists(self.h5File+".Shrinked"): os.remove(self.h5File+".Shrinked") os.system(shrinkCmd) os.remove(self.h5File) os.rename(self.h5File+".Shrinked",self.h5File) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def get(self,timeStart=None,timeEnd=None,filter_fct=None,filterAfter=True,useRawHdfAPI=False): """ returns df with filter_fct applied """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfRet=None try: dfLst=[] dfLookUpTimes=self.lookUpDf if timeStart!=None: dfLookUpTimes=dfLookUpTimes[dfLookUpTimes['LastTime']>=timeStart] # endet nach dem Anfang oder EndeFile ist Anfang if timeEnd!=None: dfLookUpTimes=dfLookUpTimes[dfLookUpTimes['FirstTime']<=timeEnd] # beginnt vor dem Ende oder AnfangFile ist Ende dfLookUpTimesIdx=dfLookUpTimes.set_index('logName') dfLookUpTimesIdx.filter(regex='\.log$',axis=0) h5Keys=['Log'+re.search(logFilenameHeadPattern,logFile).group(1) for logFile in dfLookUpTimesIdx.index] logger.debug("{0:s}h5Keys used: {1:s}".format(logStr,str(h5Keys))) if useRawHdfAPI: with pd.HDFStore(self.h5File) as h5Store: for h5Key in h5Keys: logger.debug("{0:s}Get (pd.HDFStore) df with h5Key: {1:s} ...".format(logStr,h5Key)) df=h5Store[h5Key] if not filterAfter and filter_fct != None: logger.debug("{0:s}Apply Filter ...".format(logStr)) df=pd.DataFrame(df[df.apply(filter_fct,axis=1)].values,columns=df.columns) dfLst.append(df) else: for h5Key in h5Keys: logger.debug("{0:s}Get (read_hdf) df with h5Key: {1:s} ...".format(logStr,h5Key)) df=pd.read_hdf(self.h5File, key=h5Key) if not filterAfter and filter_fct != None: logger.debug("{0:s}Apply Filter ...".format(logStr)) df=pd.DataFrame(df[df.apply(filter_fct,axis=1)].values,columns=df.columns) dfLst.append(df) logger.debug("{0:s}{1:s}".format(logStr,'Extraction finished. Concat ...')) dfRet=pd.concat(dfLst) del dfLst if filterAfter and filter_fct != None: logger.debug("{0:s}Apply Filter ...".format(logStr)) dfRet=pd.DataFrame(dfRet[dfRet.apply(filter_fct,axis=1)].values,columns=dfRet.columns) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfRet def getFromZips(self,timeStart=None,timeEnd=None,filter_fct=None,filterAfter=True,readWithDictReader=False,readWindowsLog=False): """ returns df from Zips die Daten werden von den Zips gelesen: Log extrahieren, parsen, wieder loeschen die Initalisierung muss mit AppLog(zip7Files=...) erfolgt sein da nur dann self.lookUpDfZips existiert """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfRet=None try: dfLst=[] timeStart=pd.Timestamp(timeStart) timeEnd=pd.Timestamp(timeEnd) # zips die prozessiert werden muessen dfLookUpZips=self.lookUpDfZips if timeStart!=None: dfLookUpZips=dfLookUpZips[dfLookUpZips['LastTime']>=timeStart] # endet nach dem Anfang oder EndeFile ist Anfang if timeEnd!=None: dfLookUpZips=dfLookUpZips[dfLookUpZips['FirstTime']<=timeEnd] # beginnt vor dem Ende oder AnfangFile ist Ende for index, row in dfLookUpZips.iterrows(): zip7File=index (zip7FileHead, zip7FileTail)=os.path.split(zip7File) dTime=timeStart-row['FirstTime'] nStart = int(dTime.total_seconds()/row['TimespanPerLog'].total_seconds()) dTime=timeEnd-timeStart nDelta = int(dTime.total_seconds()/row['TimespanPerLog'].total_seconds())+1 nEnd=nStart+nDelta logger.debug("{0:s}zip7File: {1:s}: Start: {2:d}/{3:07d} End: {4:d}/{5:07d}".format(logStr,zip7FileTail ,nStart,nStart+row['minFileNr'] ,nStart+nDelta,nStart+row['minFileNr']+nDelta)) try: # wenn zip7File nicht existiert ... if not os.path.exists(zip7File): logStrFinal="{0:s}zip7File {1:s} not existing.".format(logStr,zip7File) logger.debug(logStrFinal) raise LxError(logStrFinal) tmpDir=os.path.dirname(zip7File) tmpDirContent=glob.glob(tmpDir) with py7zr.SevenZipFile(zip7File, 'r') as zip7FileObj: allLogFiles = zip7FileObj.getnames() allLogFilesLen=len(allLogFiles) logger.debug("{0:s}{1:s}: len(getnames()): {2:d}.".format(logStr,zip7FileTail,allLogFilesLen)) extDirLstTBDeleted=[] extDirLstExistingLogged=[] idxEff=0 for idx,logFileNameInZip in enumerate(allLogFiles): if idx < nStart-idxEff or idx > nEnd+idxEff: continue logger.debug("{0:s}idx: {1:d} item: {2:s} ...".format(logStr,idx,logFileNameInZip)) # die Datei die 7Zip bei extract erzeugen wird logFile=os.path.join(tmpDir,logFileNameInZip) (logFileHead, logFileTail)=os.path.split(logFile) # evtl. bezeichnet logFileNameInZip keine Datei sondern ein Verzeichnis (name, ext)=os.path.splitext(logFileNameInZip) if ext == '': # Verzeichnis! extDir=os.path.join(tmpDir,logFileNameInZip) (extDirHead, extDirTail)=os.path.split(extDir) if os.path.exists(extDir) and extDir in tmpDirContent: logger.debug("{0:s}idx: {1:d} extDir: {2:s} existiert(e) bereits.".format(logStr,idx,extDirTail)) extDirLstExistingLogged.append(extDir) elif os.path.exists(extDir) and extDir not in tmpDirContent: logger.debug("{0:s}idx: {1:d} extDir: {2:s} existiert(e) noch nicht.".format(logStr,idx,extDirTail)) extDirLstTBDeleted.append(extDir) elif not os.path.exists(extDir) and extDir not in tmpDirContent: logger.debug("{0:s}idx: {1:d} extDir: {2:s} existiert(e) noch nicht.".format(logStr,idx,extDirTail)) extDirLstTBDeleted.append(extDir) # kein Logfile zu prozessieren ... idxEff+=1 continue # logFileNameInZip bezeichnet eine Datei if os.path.exists(logFile): isFile = os.path.isfile(logFile) if isFile: logger.debug("{0:s}idx: {1:d} Log: {2:s} existiert bereits. Wird durch Extrakt ueberschrieben werden.".format(logStr,idx,logFileTail)) logFileTBDeleted=False else: logFileTBDeleted=False else: logger.debug("{0:s}idx: {1:d} Log: {2:s} existiert nicht. Wird extrahiert, dann prozessiert und dann wieder geloescht.".format(logStr,idx,logFileTail)) logFileTBDeleted=True # extrahieren zip7FileObj.extract(path=tmpDir,targets=logFileNameInZip) if os.path.exists(logFile): pass else: logger.warning("{0:s}idx: {1:d} Log: {2:s} NOT extracted?! Continue with next Name in 7Zip.".format(logStr,idx,logFileTail)) # nichts zu prozessieren ... continue # ... if os.path.isfile(logFile): df = self.__processALogFile(logFile=logFile,readWithDictReader=readWithDictReader,readWindowsLog=readWindowsLog) if df is None: logger.warning("{0:s}idx: {1:d} Log: {2:s} NOT processed?! Continue with next Name in 7Zip.".format(logStr,idx,logFileTail)) # nichts zu prozessieren ... continue else: if not filterAfter and filter_fct != None: logger.debug("{0:s}Apply Filter ...".format(logStr)) df=pd.DataFrame(df[df.apply(filter_fct,axis=1)].values,columns=df.columns) dfLst.append(df) # ... # gleich wieder loeschen if os.path.exists(logFile) and logFileTBDeleted: if os.path.isfile(logFile): os.remove(logFile) logger.debug("{0:s}idx: {1:d} Log: {2:s} wieder geloescht.".format(logStr,idx,logFileTail)) for dirName in extDirLstTBDeleted: if os.path.exists(dirName): if os.path.isdir(dirName): (dirNameHead, dirNameTail)=os.path.split(dirName) if len(os.listdir(dirName)) == 0: os.rmdir(dirName) logger.debug("{0:s}dirName: {1:s} existierte nicht und wurde wieder geloescht.".format(logStr,dirNameTail)) else: logger.info("{0:s}dirName: {1:s} existiert mit nicht leerem Inhalt?!".format(logStr,dirNameTail)) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) logger.debug("{0:s}{1:s}".format(logStr,'Extraction finished. Concat ...')) dfRet=pd.concat(dfLst) del dfLst if filterAfter and filter_fct != None: logger.debug("{0:s}Apply Filter ...".format(logStr)) dfRet=pd.DataFrame(dfRet[dfRet.apply(filter_fct,axis=1)].values,columns=dfRet.columns) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfRet def getTCs(self,dfID=pd.DataFrame(),timeStart=None,timeEnd=None,TCsdfOPCFill=TCsdfOPCFill,persistent=False,overwrite=True): """ returns TCs-dfs Verarbeitung von dfs gemaess extractTCsToH5s; siehe dort """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: TCKeys=['<KEY>','TCsdfSirCalc','TCsdfLDSIn','TCsdfLDSRes1','TCsdfLDSRes2a','TCsdfLDSRes2b','TCsdfLDSRes2c'] if persistent: with pd.HDFStore(self.h5File) as h5Store: h5Keys=sorted(h5Store.keys()) #logger.debug("{0:s}h5Keys available: {1:s}".format(logStr,str(h5Keys))) h5KeysStripped=[item.replace(h5KeySep,'') for item in h5Keys] if set(TCKeys) & set(h5KeysStripped) == set(TCKeys): if not overwrite: logger.debug("{0:s}persistent: TCKeys {1:s} existieren alle bereits - return aus H5-File ...".format(logStr,str(TCKeys))) TCsdfOPC=pd.read_hdf(self.h5File,key='<KEY>') TCsdfSirCalc=pd.read_hdf(self.h5File,key='TCsdfSirCalc') TCsdfLDSIn=pd.read_hdf(self.h5File,key='TCsdfLDSIn') TCsdfLDSRes1=pd.read_hdf(self.h5File,key='TCsdfLDSRes1') TCsdfLDSRes2a=pd.read_hdf(self.h5File,key='TCsdfLDSRes2a') TCsdfLDSRes2b=pd.read_hdf(self.h5File,key='TCsdfLDSRes2b') TCsdfLDSRes2c=pd.read_hdf(self.h5File,key='TCsdfLDSRes2c') logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes1,TCsdfLDSRes2a,TCsdfLDSRes2b,TCsdfLDSRes2c else: logger.debug("{0:s}persistent: TCKeys {1:s} existieren alle bereits - sollen aber ueberschrieben werden ...".format(logStr,str(TCKeys))) else: logger.debug("{0:s}persistent: TCKeys {1:s} existieren nicht (alle) ...".format(logStr,str(TCKeys))) dfLookUpTimes=self.lookUpDf if timeStart!=None: dfLookUpTimes=dfLookUpTimes[dfLookUpTimes['LastTime']>=timeStart] # endet nach dem Anfang oder EndeFile ist Anfang if timeEnd!=None: dfLookUpTimes=dfLookUpTimes[dfLookUpTimes['FirstTime']<=timeEnd] # beginnt vor dem Ende oder AnfangFile ist Ende dfLookUpTimesIdx=dfLookUpTimes.set_index('logName') dfLookUpTimesIdx.filter(regex='\.log$',axis=0) h5Keys=['Log'+re.search(logFilenameHeadPattern,logFile).group(1) for logFile in dfLookUpTimesIdx.index] logger.debug("{0:s}h5Keys used: {1:s}".format(logStr,str(h5Keys))) dfLst=[] for h5Key in h5Keys: logger.debug("{0:s}Get (read_hdf) df with h5Key: {1:s} ...".format(logStr,h5Key)) dfSingle=pd.read_hdf(self.h5File, key=h5Key) dfSingle=dfSingle[['ID','ProcessTime','ScenTime','SubSystem','Value','Direction']] dfSingle=dfSingle[~(dfSingle['Value'].isnull())] dfLst.append(dfSingle) logger.debug("{0:s}{1:s}".format(logStr,'Extraction finished. Concat ...')) df=pd.concat(dfLst) del dfLst logger.debug("{0:s}{1:s}".format(logStr,'Concat finished. Filter & Pivot ...')) if not dfID.empty: TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes1,TCsdfLDSRes2=self.getTCsFromDf(df,dfID=dfID,TCsdfOPCFill=TCsdfOPCFill) else: TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes=self.getTCsFromDf(df,dfID=dfID,TCsdfOPCFill=TCsdfOPCFill) if persistent: logger.debug("{0:s}peristent: TCKeys {1:s} nach H5-File ...".format(logStr,str(TCKeys))) TCsdfOPC.to_hdf(self.h5File,key='TCsdfOPC') TCsdfSirCalc.to_hdf(self.h5File,key='TCsdfSirCalc') TCsdfLDSIn.to_hdf(self.h5File,key='TCsdfLDSIn') TCsdfLDSRes1.to_hdf(self.h5File,key='TCsdfLDSRes1') TCsdfLDSRes2a.to_hdf(self.h5File,key='TCsdfLDSRes2a') TCsdfLDSRes2b.to_hdf(self.h5File,key='TCsdfLDSRes2b') TCsdfLDSRes2c.to_hdf(self.h5File,key='TCsdfLDSRes2c') except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) if not dfID.empty: return TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes1,TCsdfLDSRes2#a,TCsdfLDSRes2b,TCsdfLDSRes2c else: return TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes1 def getTCsFromH5s(self,timeStart=None,timeEnd=None, LDSResOnly=False, LDSResColsSpecified=None, LDSResTypeSpecified=None, timeShiftPair=None): """ returns several TC-dfs from TC-H5s: TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes1,TCsdfLDSRes2 or TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes LDSResOnly: TCsdfLDSRes1,TCsdfLDSRes2 or TCsdfLDSRes LDSResColsSpecified: return in LDSRes df(s) only the specified cols all cols are returned otherwise LDSResTypeSpecified: return TCsdfLDSRes1 (SEG) for 'SEG' or TCsdfLDSRes2 (Druck) for 'Druck' both are returned otherwise timeShiftPair: (preriod,freq): i.e. (1,'H'); if not None index is shifted """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: try: self.h5FileLDSRes1 Res2=True except: Res2=False TCsdfOPC=pd.DataFrame() TCsdfSirCalc=pd.DataFrame() TCsdfLDSIn=pd.DataFrame() if Res2: TCsdfLDSRes1=pd.DataFrame() TCsdfLDSRes2=pd.DataFrame() else: TCsdfLDSRes=pd.DataFrame() dfLookUpTimes=self.lookUpDf if timeStart!=None: dfLookUpTimes=dfLookUpTimes[dfLookUpTimes['LastTime']>=timeStart] # endet nach dem Anfang oder EndeFile ist Anfang if timeEnd!=None: dfLookUpTimes=dfLookUpTimes[dfLookUpTimes['FirstTime']<=timeEnd] # beginnt vor dem Ende oder AnfangFile ist Ende dfLookUpTimesIdx=dfLookUpTimes.set_index('logName') dfLookUpTimesIdx.filter(regex='\.log$',axis=0) h5Keys=['Log'+re.search(logFilenameHeadPattern,logFile).group(1) for logFile in dfLookUpTimesIdx.index] logger.debug("{0:s}h5Keys used: {1:s}".format(logStr,str(h5Keys))) h5KeysOPC=['TCsOPC'+re.search(logFilenameHeadPattern,logFile).group(1) for logFile in dfLookUpTimesIdx.index] h5KeysSirCalc=['TCsSirCalc'+re.search(logFilenameHeadPattern,logFile).group(1) for logFile in dfLookUpTimesIdx.index] h5KeysLDSIn=['TCsLDSIn'+re.search(logFilenameHeadPattern,logFile).group(1) for logFile in dfLookUpTimesIdx.index] h5KeysLDSRes1=['TCsLDSRes1'+re.search(logFilenameHeadPattern,logFile).group(1) for logFile in dfLookUpTimesIdx.index] h5KeysLDSRes2=['TCsLDSRes2'+re.search(logFilenameHeadPattern,logFile).group(1) for logFile in dfLookUpTimesIdx.index] h5KeysLDSRes=['TCsLDSRes'+re.search(logFilenameHeadPattern,logFile).group(1) for logFile in dfLookUpTimesIdx.index] h5KeysAll=zip(h5Keys,h5KeysOPC,h5KeysSirCalc,h5KeysLDSIn,h5KeysLDSRes1,h5KeysLDSRes2,h5KeysLDSRes) for idx,(h5Key,h5KeyOPC,h5KeySirCalc,h5KeyLDSIn,h5KeyLDSRes1,h5KeyLDSRes2,h5KeyLDSRes) in enumerate(h5KeysAll): if not LDSResOnly: #logger.debug("{0:s}{1:s}".format(logStr,'TCsdfOPC ...')) TCsdfOPC=pd.read_hdf(self.h5FileOPC,h5KeyOPC) #logger.debug("{0:s}{1:s}".format(logStr,'TCsdfSirCalc ...')) TCsdfSirCalc=pd.read_hdf(self.h5FileSirCalc,h5KeySirCalc) #logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSIn ...')) TCsdfLDSIn=pd.read_hdf(self.h5FileLDSIn,h5KeyLDSIn) if Res2: if LDSResTypeSpecified == None or LDSResTypeSpecified=='SEG': #logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSRes1 ...')) TCsdfLDSRes1=pd.read_hdf(self.h5FileLDSRes1,h5KeyLDSRes1) if LDSResTypeSpecified == None or LDSResTypeSpecified=='Druck': #logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSRes2 ...')) TCsdfLDSRes2=pd.read_hdf(self.h5FileLDSRes2,h5KeyLDSRes2) else: #logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSRes ...')) TCsdfLDSRes=pd.read_hdf(self.h5FileLDSRes,h5KeyLDSRes) if LDSResColsSpecified != None: if Res2: if LDSResTypeSpecified == None or LDSResTypeSpecified=='SEG': #logger.debug("{0:s}{1:s} {2:s}".format(logStr,'TCsdfLDSRes1 Filter ...',str(LDSResColsSpecified))) TCsdfLDSRes1=TCsdfLDSRes1.filter(items=LDSResColsSpecified) if LDSResTypeSpecified == None or LDSResTypeSpecified=='Druck': #logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSRes2 Filter ...')) TCsdfLDSRes2=TCsdfLDSRes2.filter(items=LDSResColsSpecified) else: #logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSRes Filter ...')) TCsdfLDSRes=TCsdfLDSRes.filter(items=LDSResColsSpecified) if idx==0: if not LDSResOnly: TCsdfOPCLst=[] TCsdfSirCalcLst=[] TCsdfLDSInLst=[] if Res2: if LDSResTypeSpecified == None or LDSResTypeSpecified=='SEG': TCsdfLDSRes1Lst=[] if LDSResTypeSpecified == None or LDSResTypeSpecified=='Druck': TCsdfLDSRes2Lst=[] else: TCsdfLDSResLst=[] #logger.debug("{0:s}Append ...".format(logStr)) if not LDSResOnly: TCsdfOPCLst.append(TCsdfOPC) TCsdfSirCalcLst.append(TCsdfSirCalc) TCsdfLDSInLst.append(TCsdfLDSIn) if Res2: if LDSResTypeSpecified == None or LDSResTypeSpecified=='SEG': TCsdfLDSRes1Lst.append(TCsdfLDSRes1) if LDSResTypeSpecified == None or LDSResTypeSpecified=='Druck': TCsdfLDSRes2Lst.append(TCsdfLDSRes2) else: TCsdfLDSResLst.append(TCsdfLDSRes) logger.debug("{0:s}Concat ...".format(logStr)) if not LDSResOnly: TCsdfOPC=pd.concat(TCsdfOPCLst) TCsdfSirCalc=pd.concat(TCsdfSirCalcLst) TCsdfLDSIn=pd.concat(TCsdfLDSInLst) if timeShiftPair != None: (period,freq)=timeShiftPair logger.debug("{0:s}timeShift TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn by {1:d} {2:s} ...".format(logStr,period,freq)) for df in TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn: df.index=df.index.shift(period,freq=freq) if Res2: if LDSResTypeSpecified == None or LDSResTypeSpecified=='SEG': TCsdfLDSRes1=pd.concat(TCsdfLDSRes1Lst) if LDSResTypeSpecified == None or LDSResTypeSpecified=='Druck': TCsdfLDSRes2=pd.concat(TCsdfLDSRes2Lst) if timeShiftPair != None: (period,freq)=timeShiftPair if LDSResTypeSpecified == None or LDSResTypeSpecified=='SEG': #for df in TCsdfLDSRes1: logger.debug("{:s}timeShift LDSRes1 by {:d} {:s} Ist: {!s:s} {!s:s} ...".format(logStr,period,freq,TCsdfLDSRes1.index[0],TCsdfLDSRes1.index[-1])) TCsdfLDSRes1.index=TCsdfLDSRes1.index.shift(period,freq=freq) if LDSResTypeSpecified == None or LDSResTypeSpecified=='Druck': #for df in TCsdfLDSRes2: logger.debug("{:s}timeShift LDSRes2 by {:d} {:s} Ist: {!s:s} {!s:s} ...".format(logStr,period,freq,TCsdfLDSRes2.index[0],TCsdfLDSRes2.index[-1])) TCsdfLDSRes2.index=TCsdfLDSRes2.index.shift(period,freq=freq) else: TCsdfLDSRes=pd.concat(TCsdfLDSResLst) if timeShiftPair != None: (period,freq)=timeShiftPair logger.debug("{0:s}timeShift LDSRes by {1:d} {2:s} ...".format(logStr,period,freq)) for df in TCsdfLDSRes: df.index=df.index.shift(period,freq=freq) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) if not LDSResOnly: if Res2: return TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes1,TCsdfLDSRes2 else: return TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes else: if Res2: if LDSResTypeSpecified == None: return TCsdfLDSRes1,TCsdfLDSRes2 elif LDSResTypeSpecified=='SEG': return TCsdfLDSRes1 elif LDSResTypeSpecified=='Druck': return TCsdfLDSRes2 else: return TCsdfLDSRes def __getH5Keys(self,timeStart=None,timeEnd=None): """ returns h5Keys (keys fuer Logfiles in h5File), h5KeysPost (key Postfixe fuer dfs in allen anderen h5Files) """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: dfLookUpTimes=self.lookUpDf if timeStart!=None: dfLookUpTimes=dfLookUpTimes[dfLookUpTimes['LastTime']>=timeStart] # endet nach dem Anfang oder EndeFile ist Anfang if timeEnd!=None: dfLookUpTimes=dfLookUpTimes[dfLookUpTimes['FirstTime']<=timeEnd] # beginnt vor dem Ende oder AnfangFile ist Ende dfLookUpTimesIdx=dfLookUpTimes.set_index('logName') #dfLookUpTimesIdx.filter(regex='\.log$',axis=0) h5Keys=['Log'+re.search(logFilenameHeadPattern,logFile).group(1) for logFile in dfLookUpTimesIdx.index] logger.debug("{0:s}h5Keys: {1:s}".format(logStr,str(h5Keys))) h5KeysPost=[re.search(logFilenameHeadPattern,logFile).group(1) for logFile in dfLookUpTimesIdx.index] logger.debug("{0:s}h5KeysPost: {1:s}".format(logStr,str(h5KeysPost))) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return h5Keys,h5KeysPost def getCVDFromH5(self,timeStart=None,timeEnd=None,timeDelta=None,returnDfCVDataOnly=False): """ returns dfCVD, dfCVDataOnly dfCVD: all rows with Subsystem CVD dfCVDataOnly: CVs from dfCVD timeDelta: i.e. pd.Timedelta('1 Hour'); if not None ScenTime is shifted by + timeDelta returns dfCVDataOnly only, if returnDfCVDataOnly """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfCVD=pd.DataFrame() dfCVDataOnly=pd.DataFrame() try: h5Keys,h5KeysPost=self.__getH5Keys(timeStart=timeStart,timeEnd=timeEnd) h5KeysCVD=['CVDRes'+x for x in h5KeysPost] if timeDelta != None: logger.debug("{0:s}timeShift ScenTime by + {1:s} ...".format(logStr,str(timeDelta))) for idx,h5KeyCVD in enumerate(h5KeysCVD): dfCVD=pd.read_hdf(self.h5FileCVD,h5KeyCVD) if timeDelta != None: #logger.debug("{0:s}timeShift ScenTime by + {1:s} ...".format(logStr,str(timeDelta))) dfCVD['ScenTime']=dfCVD['ScenTime']+timeDelta dfCVDataOnly=pd.DataFrame() dfCVDBEGIN=dfCVD[dfCVD['Remark'].str.contains('^BEGIN_OF_NEW_CONTROL_VOLUME')].copy(deep=True) if not dfCVDBEGIN.empty: try: dfCVDBEGIN['ZHKNR']=dfCVDBEGIN['Value'].astype('int64') except: logger.debug("{:s}Parsen von Value nach ZHKNR in Zeile mit BEGIN_OF_NEW_CONTROL_VOLUME schlaegt fehlt. Vmtl. aeltere App-Log Version.".format(logStr)) dfCVDBEGIN['ZHKNR']=-1 dfCVDBEGIN_Remarks=dfCVDBEGIN['Remark'].str.split(pat=';',expand=True) #logger.debug("{:s}dfCVDBEGIN_Remarks: {:s}".format(logStr,dfCVDBEGIN_Remarks.to_string())) try: dfCVDNames=dfCVDBEGIN_Remarks[dfCVDBEGIN_Remarks[0].str.contains('^BEGIN_OF_NEW_CONTROL_VOLUME')][[1]][1].str.replace('NULL','') except: logger.debug("{:s}Split von Remark mit ; schlug vmtl. fehl. Vmtl. aeltere App-Log Version.".format(logStr)) dfCVDBEGIN_Remarks=dfCVDBEGIN['Remark'].str.split(pat='\t',expand=True) #logger.debug("{:s}dfCVDBEGIN_Remarks: {:s}".format(logStr,dfCVDBEGIN_Remarks.to_string())) dfCVDNames=dfCVDBEGIN_Remarks[dfCVDBEGIN_Remarks[0].str.contains('^BEGIN_OF_NEW_CONTROL_VOLUME')][[1]][1].str.replace('NULL','') dfCVDBEGIN=dfCVDBEGIN.join(dfCVDNames).rename(columns={1:'Name'}) dfCVDataOnly=dfCVDBEGIN[['ScenTime','ZHKNR','ID','Name']].rename(columns={'ID':'Type'}).reset_index(drop=True) if idx==0: if not returnDfCVDataOnly: dfCVDLst=[] dfCVDataOnlyLst=[] # Liste ergaenzen if not returnDfCVDataOnly: dfCVDLst.append(dfCVD) if not dfCVDataOnly.empty: dfCVDataOnlyLst.append(dfCVDataOnly) # Listen verketten und Nachbereitung if not returnDfCVDataOnly: dfCVD=pd.concat(dfCVDLst) dfCVD=dfCVD.reset_index(drop=True) dfCVDataOnly=pd.concat(dfCVDataOnlyLst) dfCVDataOnly=dfCVDataOnly.reset_index(drop=True) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) if returnDfCVDataOnly: return dfCVDataOnly else: return dfCVD,dfCVDataOnly def getTCsSpecified(self,dfID=
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import theano import theano.tensor as tt def get_variational_scores(result, config, model, inference, true_pop_size): approx_params = list(inference.approx.shared_params.values()) distance = abs(model.pop_size - true_pop_size)/true_pop_size input_vars = tt.dvectors(len(approx_params)) distance_sample = inference.approx.sample_node(distance, size=config['n_eval_samples'], more_replacements={ shared: var for shared, var in zip(approx_params, input_vars) }) distance_mean = tt.mean(distance_sample) distance_function = theano.function(input_vars, distance_mean) distances = [distance_function(*[result[var][i] for var in inference.approx.shared_params.keys()]) for i in range(len(result['i']))] return pd.DataFrame({ 'date_time': result['date_time'], 'error': np.stack(distances) }) def get_beast_scores(result_filename, config, true_pop_size): trace_df =
pd.read_table(result_filename, parse_dates=['datetime'], comment='#')
pandas.read_table
"""Helpers for data science. Distributed as part of ``https://github.com/chmp/misc-exp`` under the MIT license, (c) 2017 <NAME>. """ import base64 import bisect import bz2 import collections import datetime import enum import functools as ft import gzip import hashlib import importlib import inspect import io import itertools as it import json import logging import math import os.path import pathlib import pickle import re import sys import threading import time from types import ModuleType from typing import Any, Callable, Iterable, NamedTuple, Optional, Union try: from sklearn.base import ( BaseEstimator, TransformerMixin, ClassifierMixin, RegressorMixin, ) except ImportError: from ._import_compat import ( # typing: ignore BaseEstimator, TransformerMixin, ClassifierMixin, RegressorMixin, ) _HAS_SK_LEARN = False else: _HAS_SK_LEARN = True try: from daft import PGM except ImportError: from ._import_compat import PGM # typing: ignore _HAS_DAFT = False else: _HAS_DAFT = True default_sequences = (tuple,) default_mappings = (dict,) def reload(*modules_or_module_names: Union[str, ModuleType]) -> Optional[ModuleType]: mod = None for module_or_module_name in modules_or_module_names: if isinstance(module_or_module_name, str): module_or_module_name = importlib.import_module(module_or_module_name) mod = importlib.reload(module_or_module_name) return mod def import_object(obj): def _import_obj(obj): module, _, name = obj.partition(":") module = importlib.import_module(module) return getattr(module, name) return sapply(_import_obj, obj) def define(func): """Execute a function and return its result. The idea is to use function scope to prevent pollution of global scope in notebooks. Usage:: @define def foo(): return 42 assert foo == 42 """ return func() def cached(path: str, validate: bool = False): """Similar to ``define``, but cache to a file. :param path: the path of the cache file to use :param validate: if `True`, always execute the function. The loaded result will be passed to the function, when the cache exists. In that case the function should return the value to use. If the returned value is not identical to the loaded value, the cache is updated with the new value. Usage:: @cached('./cache/result') def dataset(): ... return result or:: @cached('./cache/result', validate=True) def model(result=None): if result is not None: # running to validate ... return result """ def update_cache(result): print("save cache", path) with open(path, "wb") as fobj: pickle.dump(result, fobj) def load_cache(): print("load cache", path) with open(path, "rb") as fobj: return pickle.load(fobj) def decorator(func): if os.path.exists(path): result = load_cache() if not validate: return result else: print("validate") new_result = func(result) if new_result is not result: update_cache(new_result) return new_result else: print("compute") result = func() update_cache(result) return result return decorator class Object: """Dictionary-like namespace object.""" def __init__(*args, **kwargs): self, *args = args if len(args) > 1: raise ValueError( "Object(...) can be called with at " "most one positional argument" ) elif len(args) == 0: seed = {} else: seed, = args if not isinstance(seed, collections.Mapping): seed = vars(seed) for k, v in dict(seed, **kwargs).items(): setattr(self, k, v) def __repr__(self): return "Object({})".format( ", ".join("{}={!r}".format(k, v) for k, v in vars(self).items()) ) def __eq__(self, other): return type(self) == type(other) and vars(self) == vars(other) def __ne__(self, other): return not (self == other) def update_kwargs_signature(*parents, remove_kwargs=True, kwargs_name="kwargs"): """Replace kwargs with the parameters from parents. If no parents are given, this function assumes the decorated object is a class and takes the bases of the class as the parents. For classes, the init function is updated. Usage:: @update_kwargs_signature() class MyObject(Base1, Base2, Base2): def __init__(self, arg1, arg2, **kwargs): super().__init__(**kwargs) Inspired by `<https://www.fast.ai/2019/08/06/delegation/>`_ """ def decorator(child, parents=parents): if not parents: assert inspect.isclass(child) parents = child.__bases__ parents = [ parent.__init__ if inspect.isclass(parent) else parent for parent in parents ] _update_kwargs_signature( parents=parents, child=child.__init__ if inspect.isclass(child) else child, remove_kwargs=remove_kwargs, kwargs_name=kwargs_name, ) return child return decorator def _update_kwargs_signature(parents, child, *, remove_kwargs, kwargs_name): """Update the child new signature with parameters from parent / child merged.""" def is_kw_like(desc): # assume any parameter with a default / or kw-only is "keyword-like" return ( desc.default != inspect.Signature.empty or desc.kind == inspect.Parameter.KEYWORD_ONLY ) merged_parameters = inspect.signature(child).parameters.copy() for parent in parents: additional_parameters = { name: desc for name, desc in inspect.signature(parent).parameters.items() if name not in merged_parameters and is_kw_like(desc) } merged_parameters.update(additional_parameters) if remove_kwargs: merged_parameters.pop(kwargs_name) child.__signature__ = inspect.signature(child).replace( parameters=merged_parameters.values() ) class daterange: """A range of dates.""" start: datetime.date end: datetime.date step: datetime.timedelta @classmethod def around(cls, dt, start, end, step=None): if not isinstance(start, datetime.timedelta): start = datetime.timedelta(days=start) if not isinstance(end, datetime.timedelta): end = datetime.timedelta(days=end) if step is None: step = datetime.timedelta(days=1) elif not isinstance(step, datetime.timedelta): step = datetime.timedelta(days=step) return cls(dt + start, dt + end, step) def __init__( self, start: datetime.date, end: datetime.date, step: Optional[datetime.timedelta] = None, ): if step is None: step = datetime.timedelta(days=1) self.start = start self.end = end self.step = step def __len__(self) -> int: return len(self._offset_range) def __iter__(self) -> Iterable[datetime.date]: for offset in self._offset_range: yield self.start + datetime.timedelta(days=offset) def __contains__(self, item: datetime.date) -> bool: return self._offset(item) in self._offset_range def __getitem__(self, index: int) -> datetime.date: return self.start + datetime.timedelta(days=self._offset_range[index]) def count(self, item: datetime.date) -> int: return 1 if (item in self) else 0 def index(self, item): return self._offset_range.index(self._offset(item)) def _offset(self, item: datetime.date) -> int: return (item - self.start).days @property def _offset_range(self) -> range: return range(0, (self.end - self.start).days, self.step.days) def __repr__(self): return f"daterange({self.start}, {self.end}, {self.step})" class undefined_meta(type): def __repr__(self): return "<undefined>" class undefined(metaclass=undefined_meta): """Sentinel class""" pass def first(iterable, default=undefined): """Return the first item of an iterable""" for item in iterable: return item return default def last(iterable, default=undefined): """Return the last item of an iterable""" item = default for item in iterable: pass return item def item(iterable, default=undefined): """Given a single item iterable return this item.""" found = undefined for item in iterable: if found is not undefined: raise ValueError("More than one value to unpack") found = item if found is not undefined: return found if default is not undefined: return default raise ValueError("Need at least one item or a default") def collect(iterable): result = {} for k, v in iterable: result.setdefault(k, []).append(v) return result class kvpair(NamedTuple): key: Any value: Any class cell: """No-op context manager to allow indentation of code""" def __init__(self, name=None): pass def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): pass def __call__(self, func): with self: func() def colorize(items, cmap=None): """Given an iterable, yield ``(color, item)`` pairs. :param cmap: if None the color cycle is used, otherwise it is interpreted as a colormap to color the individual items. Note: ``items`` is fully instantiated during the iteration. For any ``list`` or ``tuple`` item only its first element is used for colomapping. This procedure allows for example to colormap a pandas Dataframe grouped on a number column:: for c, (_, g) in colorize(df.groupby("g"), cmap="viridis"): ... """ if cmap is None: cycle = get_color_cycle() return zip(it.cycle(cycle), items) else: items = list(items) if not items: return iter(()) keys = [item[0] if isinstance(item, (tuple, list)) else item for item in items] return zip(colormap(keys, cmap=cmap), items) def get_color_cycle(n=None): """Return the matplotlib color cycle. :param Optional[int] n: if given, return a list with exactly n elements formed by repeating the color cycle as necessary. Usage:: blue, green, red = get_color_cycle(3) """ import matplotlib as mpl cycle = mpl.rcParams["axes.prop_cycle"].by_key()["color"] if n is None: return it.cycle(cycle) return list(it.islice(it.cycle(cycle), n)) def mpl_set( box=None, xlabel=None, ylabel=None, title=None, suptitle=None, xscale=None, yscale=None, caption=None, xlim=None, ylim=None, xticks=None, yticks=None, xformatter: Optional[Callable[[float, float], str]] = None, yformatter: Optional[Callable[[float, float], str]] = None, left=None, top=None, bottom=None, right=None, wspace=None, hspace=None, subplot=None, legend=None, colorbar=None, invert: Optional[str] = None, ax=None, grid=None, axis=None, ): """Set various style related options of MPL. :param xformatter: if given a formatter for the major x ticks. Should have the signature ``(x_value, pos) -> label``. :param yformatter: See ``xformatter``. :param invert: if given invert the different axes. Can be `x`, `y`, or `xy`. """ import matplotlib.pyplot as plt if ax is not None: plt.sca(ax) if box is not None: plt.box(box) if subplot is not None: ax = plt.gca() plt.subplot(*subplot) if xlabel is not None: plt.xlabel(xlabel) if ylabel is not None: plt.ylabel(ylabel) if title is not None: plt.title(title) if suptitle is not None: plt.suptitle(suptitle) if xscale is not None: plt.xscale(xscale) if yscale is not None: plt.yscale(yscale) # TODO: handle min/max, enlarge ... if xlim is not None: plt.xlim(*xlim) if ylim is not None: plt.ylim(*ylim) if xticks is not None: if isinstance(xticks, tuple): plt.xticks(*xticks) else: plt.xticks(xticks) if yticks is not None: if isinstance(yticks, tuple): plt.yticks(*yticks) else: plt.yticks(yticks) if xformatter is not None: plt.gca().xaxis.set_major_formatter(plt.FuncFormatter(xformatter)) if yformatter is not None: plt.gca().yaxis.set_major_formatter(plt.FuncFormatter(yformatter)) if caption is not None: _caption(caption) subplot_kwargs = _dict_of_optionals( left=left, right=right, bottom=bottom, top=top, wspace=wspace, hspace=hspace ) if subplot_kwargs: plt.subplots_adjust(**subplot_kwargs) if legend is not None and legend is not False: if legend is True: plt.legend(loc="best") elif isinstance(legend, str): plt.legend(loc=legend) else: plt.legend(**legend) if subplot is not None: plt.sca(ax) if colorbar is True: plt.colorbar() if invert is not None: if "x" in invert: plt.gca().invert_xaxis() if "y" in invert: plt.gca().invert_yaxis() if grid is not None: if not isinstance(grid, list): grid = [grid] for spec in grid: if isinstance(spec, bool): b, which, axis = spec, "major", "both" elif isinstance(spec, str): b, which, axis = True, "major", spec elif isinstance(spec, tuple) and len(spec) == 2: b, which, axis = True, spec[0], spec[1] elif isinstance(spec, tuple): b, which, axis = spec else: raise RuntimeError() plt.grid(b, which, axis) if axis is not None and axis is not True: if axis is False: axis = "off" plt.axis(axis) class mpl_axis: def __init__(self, ax=None, **kwargs): self.ax = ax self._prev_ax = None self.kwargs = kwargs def __enter__(self): import matplotlib.pyplot as plt if plt.get_fignums(): self._prev_ax = plt.gca() if self.ax is None: _, self.ax = plt.subplots() plt.sca(self.ax) return self.ax def __exit__(self, exc_type, exc_value, exc_tb): import matplotlib.pyplot as plt mpl_set(**self.kwargs) if self._prev_ax is not None: plt.sca(self._prev_ax) # fake the mpl_axis signature ... # TODO: make this a general utility function? @define def _(): import collections import inspect wrapper_signature = inspect.signature(mpl_axis) base_signature = inspect.signature(mpl_set) parameters = collections.OrderedDict() parameters["ax"] = wrapper_signature.parameters["ax"].replace( kind=inspect.Parameter.POSITIONAL_ONLY ) parameters.update(base_signature.parameters) mpl_axis.__signature__ = wrapper_signature.replace(parameters=parameters.values()) def diagonal(**kwargs): """Draw a diagonal line in the current axis.""" import matplotlib.pyplot as plt xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() vmin = max(xmin, ymin) vmax = min(xmax, ymax) plt.plot([vmin, vmax], [vmin, vmax], **kwargs) def qlineplot(*, x, y, hue, data, ci=0.95): """Plot median as line, quantiles as shading. """ import matplotlib.pyplot as plt agg_data = data.groupby([x, hue])[y].quantile([1 - ci, 0.5, ci]).unstack() hue_values = data[hue].unique() for color, hue_value in colorize(hue_values): subset = agg_data.xs(hue_value, level=hue) plt.fill_between(subset.index, subset.iloc[:, 0], subset.iloc[:, 2], alpha=0.2) for color, hue_value in colorize(hue_values): subset = agg_data.xs(hue_value, level=hue) plt.plot(subset.index, subset.iloc[:, 1], label=hue_value, marker=".") plt.legend(loc="best") plt.xlabel(x) plt.ylabel(y) class pgm: """Wrapper around :class:`daft.PGM` to allow fluid call chains. Usage:: ( pgm(observed_style="inner", ax=ax1) .node("z", r"$Z$", 1.5, 2) .node("x", r"$X$", 1, 1) .node("y", r"$Y$", 2, 1) .edge("z", "x") .edge("x", "y") .edge("z", "y") .render(xlim=(1, 5), ylim=(1, 5)) ) To annotate a node use:: .annotate(node_name, annotation_text) Nodes can also be created without explicit lables (in which case the node name is used):: .node("z", 1, 1) node("z", "label", 1, 1) """ def __init__(self, *, ax=None, nodes=(), edges=(), annotations=(), **kwargs): if not _HAS_DAFT: raise RuntimeError("daft is required for pgm support.") self.ax = ax self.daft_kwargs = kwargs self._nodes = list(nodes) self._edges = list(edges) self._annotations = list(annotations) def update(self, nodes=None, edges=None, annotations=None): """Replace a full set of features.""" if nodes is None: nodes = self._nodes if edges is None: edges = self._edges if annotations is None: annotations = self._annotations return type(self)( nodes=nodes, edges=edges, annotations=annotations, ax=self.ax, **self.daft_kwargs, ) def node(self, *args, edgecolor=None, facecolor=None, **kwargs): if edgecolor is not None: kwargs.setdefault("plot_params", {}).update(edgecolor=edgecolor) if facecolor is not None: kwargs.setdefault("plot_params", {}).update(facecolor=facecolor) node = Object(kwargs=kwargs) if len(args) == 3: node.name, node.x, node.y = args node.label = node.name else: node.name, node.label, node.x, node.y = args return self.update(nodes=self._nodes + [node]) def edge(self, from_node, to_node, **kwargs): edge = Object(from_node=from_node, to_node=to_node, kwargs=kwargs) return self.update(edges=self._edges + [edge]) def edges(self, from_nodes, to_nodes, **kwargs): current = self for from_node, to_node in it.product(from_nodes, to_nodes): current = current.edge(from_node, to_node, **kwargs) return current def remove(self, incoming=(), outgoing=()): """Remove edges that point in or out of a the specified nodes. """ incoming = set(incoming) outgoing = set(outgoing) edges_to_keep = [ edge for edge in self._edges if (edge.from_node not in outgoing and edge.to_node not in incoming) ] return self.update(edges=edges_to_keep) def annotate(self, node, text): annotation = Object(node=node, text=text) return self.update(annotations=self._annotations + [annotation]) def render(self, ax=None, axis=False, xlim=None, ylim=None, **kwargs): """Render the figure. :param ax: the axes to draw into. If not given, the axis specified in `__init__` or the current axes is used. :param xlim: the xlim to use. If not given, it is determined from the data. :param ylim: the ylim to use. If not given, it is determined from the data. :param kwargs: keyword arguments forward to mpl set. :returns: the `pgm` object. """ import daft import matplotlib.pyplot as plt if ax is None: if self.ax is not None: ax = self.ax else: ax = plt.gca() pgm = _PGM(ax=ax) for node in self._nodes: daft_node = daft.Node(node.name, node.label, node.x, node.y, **node.kwargs) pgm.add_node(daft_node) for edge in self._edges: pgm.add_edge(edge.from_node, edge.to_node, **edge.kwargs) for annot in self._annotations: self._render_annotation(pgm, annot) if xlim is None or ylim is None: data_xlim, data_ylim = pgm.get_limits() if xlim is None: xlim = expand(*data_xlim, 0.10) if ylim is None: ylim = expand(*data_ylim, 0.10) pgm.render() mpl_set(**kwargs, axis=axis, xlim=xlim, ylim=ylim, ax=ax) return pgm def _render_annotation(self, pgm, annot): extent = pgm.get_node_extent(annot.node) pgm._ctx._ax.text( extent.x, extent.y - 0.5 * extent.height, annot.text, va="top", ha="center" ) def _ipython_display_(self): self.render() class _PGM(PGM): def __init__(self, *, ax=None, **kwargs): super().__init__([1.0, 1.0], origin=[0.0, 0.0], **kwargs) self._ctx._ax = ax self._ctx._figure = ax.get_figure() def get_node_extent(self, node): # TODO: incorporate the complete logic of daft? ctx = self._ctx if isinstance(node, str): node = self._nodes[node] aspect = node.aspect if node.aspect is not None else ctx.aspect height = node.scale * ctx.node_unit width = aspect * height center_x = ctx.grid_unit * node.x center_y = ctx.grid_unit * node.y return Object( x=center_x, y=center_y, width=width, height=height, xmin=center_x - 0.5 * width, xmax=center_x + 0.5 * width, ymin=center_y - 0.5 * height, ymax=center_y + 0.5 * height, ) def get_limits(self): nodes = list(self._nodes.values()) if not nodes: return (0, 1), (0, 1) extent = self.get_node_extent(nodes[0]) xmin = extent.xmin xmax = extent.xmax ymin = extent.ymin ymax = extent.ymax for node in nodes[1:]: extent = self.get_node_extent(node) xmin = min(xmin, extent.xmin) xmax = max(xmax, extent.xmax) ymin = min(ymin, extent.ymin) ymax = max(ymax, extent.ymax) return (xmin, xmax), (ymin, ymax) def edges(x): """Create edges for use with pcolor. Usage:: assert x.size == v.shape[1] assert y.size == v.shape[0] pcolor(edges(x), edges(y), v) """ import numpy as np centers = 0.5 * (x[1:] + x[:-1]) return np.concatenate( ([x[0] - 0.5 * (x[1] - x[0])], centers, [x[-1] + 0.5 * (x[-1] - x[-2])]) ) def center(u): """Compute the center between edges.""" return 0.5 * (u[1:] + u[:-1]) def caption(s, size=13, strip=True): """Add captions to matplotlib graphs.""" import matplotlib.pyplot as plt if strip: s = s.splitlines() s = (i.strip() for i in s) s = (i for i in s if i) s = " ".join(s) plt.figtext(0.5, 0, s, wrap=True, size=size, va="bottom", ha="center") _caption = caption def change_vspan( x, y, *, data=None, color=("w", "0.90"), transform_x=None, transform_y=None, skip_nan=True, **kwargs, ): """Plot changes in a quantity with vspans. """ import matplotlib.pyplot as plt import numpy as np x, y = _prepare_xy( x, y, data=data, transform_x=transform_x, transform_y=transform_y, skip_nan=skip_nan, ) if not isinstance(color, (tuple, list)): color = [color] changes = _find_changes(y) changes = np.concatenate([[0], changes, [len(y) - 1]]) for start, end, c in zip(changes[:-1], changes[1:], it.cycle(color)): plt.axvspan(x[start], x[end], color=c, **kwargs) def change_plot( x, y, *, data=None, transform_x=None, transform_y=None, skip_nan=True, **kwargs ): """Plot changes in a quantity with pyplot's standard plot function. """ import matplotlib.pyplot as plt x, y = _prepare_xy( x, y, data=data, transform_x=transform_x, transform_y=transform_y, skip_nan=skip_nan, ) changes = _find_changes(y) x = x[changes] y = y[changes] plt.plot(x, y, **kwargs) def axtext(*args, **kwargs): """Add a text in axes coordinates (similar ``figtext``). Usage:: axtext(0, 0, 'text') """ import matplotlib.pyplot as plt kwargs.update(transform=plt.gca().transAxes) plt.text(*args, **kwargs) def plot_gaussian_contour(x, y, *, data=None, q=(0.99,), ax=None, **kwargs): """Plot isocontours of the maximum likelihood Gaussian for ``x, y``. :param q: the quantiles to show. """ import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import scipy.special if ax is not None: plt.sca(ax) kwargs.setdefault("facecolor", "none") kwargs.setdefault("edgecolor", "k") q = np.atleast_1d(q) if data is not None: x = data[x] y = data[y] x = np.asarray(x) y = np.asarray(y) mx = np.mean(x) my = np.mean(y) xx = np.mean((x - mx) * (x - mx)) yy = np.mean((y - my) * (y - my)) xy = np.mean((x - mx) * (y - my)) cov = np.asarray([[xx, xy], [xy, yy]]) eigvals, eigvects = np.linalg.eig(cov) dx, dy = eigvects[:, 0] angle = math.atan2(dy, dx) / (2 * math.pi) * 360 for _q in q: s = (2 ** 0.5) * scipy.special.erfinv(_q) artist = mpl.patches.Ellipse((mx, my), *(s * eigvals), angle, **kwargs) plt.gca().add_artist(artist) return artist def _prepare_xy(x, y, data=None, transform_x=None, transform_y=None, skip_nan=True): if data is not None: x = data[x] y = data[y] x, y = _optional_skip_nan(x, y, skip_nan=skip_nan) if transform_x is not None: x = transform_x(x) if transform_y is not None: y = transform_y(y) return x, y def _find_changes(v): import numpy as np changes, = np.nonzero(np.diff(v)) changes = changes + 1 return changes def _optional_skip_nan(x, y, skip_nan=True): import numpy as np if not skip_nan: return x, y s = np.isfinite(y) return x[s], y[s] def _dict_of_optionals(**kwargs): return {k: v for k, v in kwargs.items() if v is not None} @ft.singledispatch def get_children(est): return [] def to_markdown(df, index=False): """Return a string containg the markdown of the table. Depends on the ``tabulate`` dependency. """ from tabulate import tabulate return tabulate(df, tablefmt="pipe", headers="keys", showindex=index) def index_query(obj, expression, scalar=False): """Execute a query expression on the index and return matching rows. :param scalar: if True, return only the first item. Setting ``scalar=True`` raises an error if the resulting object has have more than one entry. """ res = obj.loc[obj.index.to_frame().query(expression).index] if scalar: assert res.size == 1 return res.iloc[0] return res def fix_categories( s, categories=None, other_category=None, inplace=False, groups=None, ordered=False ): """Fix the categories of a categorical series. :param pd.Series s: the series to normalize :param Optional[Iterable[Any]] categories: the categories to keep. The result will have categories in the iteration order of this parameter. If not given but ``groups`` is passed, the keys of ``groups`` will be used, otherwise the existing categories of ``s`` will be used. :param Optional[Any] other_category: all categories to be removed wil be mapped to this value, unless they are specified specified by the ``groups`` parameter. If given and not included in the categories, it is appended to the given categories. For a custom order, ensure it is included in ``categories``. :param bool inplace: if True the series will be modified in place. :param Optional[Mapping[Any,Iterable[Any]]] groups: if given, specifies which categories to replace by which in the form of ``{replacement: list_of_categories_to_replace}``. :param bool ordered: if True the resulting series will have ordered categories. """ import pandas.api.types as pd_types if not inplace: s = s.copy() if not pd_types.is_categorical(s): if inplace: raise ValueError("cannot change the type inplace") s = s.astype("category") if categories is None: if groups is not None: categories = list(groups.keys()) else: categories = list(s.cat.categories) categories = list(categories) inital_categories = set(s.cat.categories) if other_category is not None and other_category not in categories: categories = categories + [other_category] additions = [c for c in categories if c not in inital_categories] removals = [c for c in inital_categories if c not in categories] if groups is None: groups = {} else: groups = {k: set(v) for k, v in groups.items()} remapped = {c for group in groups.values() for c in group} dangling_categories = {*removals} - {*remapped} if dangling_categories: if other_category is None: raise ValueError( "dangling categories %s found, need other category to assign" % dangling_categories ) groups.setdefault(other_category, set()).update(set(removals) - set(remapped)) if additions: s.cat.add_categories(additions, inplace=True) for replacement, group in groups.items(): s[s.isin(group)] = replacement if removals: s.cat.remove_categories(removals, inplace=True) s.cat.reorder_categories(categories, inplace=True, ordered=ordered) return s def find_high_frequency_categories(s, min_frequency=0.02, n_max=None): """Find categories with high frequency. :param float min_frequency: the minimum frequency to keep :param Optional[int] n_max: if given keep at most ``n_max`` categories. If more are present after filtering for minimum frequency, keep the highest ``n_max`` frequency columns. """ assert 0.0 < min_frequency < 1.0 s = s.value_counts(normalize=True).pipe(lambda s: s[s > min_frequency]) if n_max is None: return list(s.index) if len(s) <= n_max: return s return list(s.sort_values(ascending=False).iloc[:n_max].index) def as_frame(**kwargs): import pandas as pd return pd.DataFrame().assign(**kwargs) def singledispatch_on(idx): """Helper to dispatch on any argument, not only the first one.""" # It works by wrapping the function to include the relevant # argument as first argument as well. def decorator(func): @ft.wraps(func) def wrapper(*args, **kwargs): dispatch_obj = args[idx] return dispatcher(dispatch_obj, *args, **kwargs) def make_call_impl(func): @ft.wraps(func) def impl(*args, **kwargs): _, *args = args return func(*args, **kwargs) return impl def register(type): def decorator(func): dispatcher.register(type)(make_call_impl(func)) return func return decorator wrapper.register = register dispatcher = ft.singledispatch(make_call_impl(func)) return wrapper return decorator def setdefaultattr(obj, name, value): """``dict.setdefault`` for attributes""" if not hasattr(obj, name): setattr(obj, name, value) return getattr(obj, name) # keep for backwards compat def sapply(func, obj, sequences=default_sequences, mappings=default_mappings): return smap(func, obj, sequences=sequences, mappings=mappings) def szip( iterable_of_objects, sequences=default_sequences, mappings=default_mappings, return_schema=False, ): """Zip but for deeply nested objects. For a list of nested set of objects return a nested set of list. """ iterable_of_objects = iter(iterable_of_objects) try: first = next(iterable_of_objects) except StopIteration: return None # build a scaffold into which the results are appended # NOTE: the target lists must not be confused with the structure, use a # schema object as an unambiguous marker. schema = smap(lambda _: None, first, sequences=sequences, mappings=mappings) target = smap(lambda _: [], schema, sequences=sequences, mappings=mappings) for obj in it.chain([first], iterable_of_objects): smap( lambda _, t, o: t.append(o), schema, target, obj, sequences=sequences, mappings=mappings, ) return target if return_schema is False else (target, schema) def flatten_with_index(obj, sequences=default_sequences, mappings=default_mappings): counter = iter(it.count()) flat = [] def _build(item): flat.append(item) return next(counter) index = smap(_build, obj, sequences=sequences, mappings=mappings) return index, flat def unflatten(index, obj, sequences=default_sequences, mappings=default_mappings): obj = list(obj) return smap(lambda idx: obj[idx], index, sequences=sequences, mappings=mappings) def smap(func, arg, *args, sequences=default_sequences, mappings=default_mappings): """A structured version of map. The structure is taken from the first arguments. """ return _smap(func, arg, *args, path="$", sequences=sequences, mappings=mappings) def _smap( func, arg, *args, path, sequences=default_sequences, mappings=default_mappings ): try: if isinstance(arg, sequences): return type(arg)( _smap( func, *co, path=f"{path}.{idx}", sequences=sequences, mappings=mappings, ) for idx, *co in zip(it.count(), arg, *args) ) elif isinstance(arg, mappings): return type(arg)( ( k, _smap( func, arg[k], *(obj[k] for obj in args), path=f"{path}.k", sequences=sequences, mappings=mappings, ), ) for k in arg ) else: return func(arg, *args) # pass through any exceptions in smap without further annotations except SApplyError: raise except Exception as e: raise SApplyError(f"Error in sappend at {path}: {e}") from e def copy_structure( template, obj, sequences=default_sequences, mappings=default_mappings ): """Arrange ``obj`` into the structure of ``template``. :param template: the object of which top copy the structure :param obj: the object which to arrange into the structure. If it is already structured, the template structure and its structure must be the same or a value error is raised """ template_schema = smap( lambda _: None, template, sequences=sequences, mappings=mappings ) obj_schema = smap(lambda _: None, obj, sequences=sequences, mappings=mappings) if obj_schema is not None: if obj_schema != template_schema: raise ValueError("Misaligned structures") return obj return smap(lambda _: obj, template_schema, sequences=sequences, mappings=mappings) def assert_has_schema( nested_obj, expected_schema, sequences=default_sequences, mappings=default_mappings ): actual_schema = smap( lambda _: None, nested_obj, sequences=sequences, mappings=mappings ) if actual_schema != expected_schema: raise AssertionError( f"Schemas do not match: {actual_schema} != {expected_schema}" ) class SApplyError(Exception): pass def json_numpy_default(obj): """A default implementation for ``json.dump`` that deals with numpy datatypes. """ import numpy as np int_types = ( np.int0, np.int8, np.int16, np.int32, np.int64, np.uint0, np.uint8, np.uint16, np.uint32, np.uint64, ) float_types = (np.float16, np.float32, np.float64, np.float128) if isinstance(obj, int_types): return int(obj) elif isinstance(obj, float_types): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() raise TypeError(f"Cannot convert type of {type(obj).__name__}") def piecewise_linear(x, y, xi): return _piecewise(_linear_interpolator, x, y, xi) def piecewise_logarithmic(x, y, xi=None): return _piecewise(_logarithmic_interpolator, x, y, xi) def _linear_interpolator(u, y0, y1): return y0 + u * (y1 - y0) def _logarithmic_interpolator(u, y0, y1): return (y0 ** (1 - u)) * (y1 ** u) def _piecewise(interpolator, x, y, xi): assert len(x) == len(y) interval = bisect.bisect_right(x, xi) if interval == 0: return y[0] if interval >= len(x): return y[-1] u = (xi - x[interval - 1]) / (x[interval] - x[interval - 1]) return interpolator(u, y[interval - 1], y[interval]) bg_instances = {} def bgloop(tag, *iterables, runner=None): """Run a loop in a background thread.""" if runner is None: runner = run_thread def decorator(func): if tag in bg_instances and bg_instances[tag].running: raise RuntimeError("Already running loop") bg_instances[tag] = Object() bg_instances[tag].running = True bg_instances[tag].handle = runner(_run_loop, tag, func, iterables) return func def _run_loop(tag, func, iterables): try: bg_instances[tag].running = True for loop, item in Loop.over( fast_product(*iterables), length=product_len(*iterables) ): if not bg_instances[tag].running: break func(loop, *item) finally: bg_instances[tag].running = False return decorator def cancel(tag): if tag in bg_instances: bg_instances[tag].running = False def wait(tag): if tag in bg_instances and bg_instances[tag].handle is not None: bg_instances[tag].handle.join() def run_direct(*args, **kwargs): func, *args = args func(*args, **kwargs) def run_thread(*args, **kwargs): func, *args = args t = threading.Thread(target=func, args=args, kwargs=kwargs) t.start() return t def product_len(*iterables): if not iterables: return 1 head, *tail = iterables return len(head) * product_len(*tail) def fast_product(*iterables): if not iterables: yield () return head, *tail = iterables for i in head: for j in fast_product(*tail): yield (i,) + j class Display: """An interactive display for use in background tasks.""" def __init__(self, obj=None): from IPython.core.display import display self.handle = display(obj, display_id=True) def update(self, obj): self.handle.update(obj) def print(self, *args, sep=" "): from IPython.core.display import Pretty self.handle.update(Pretty(sep.join(str(a) for a in args))) def figure(self): from IPython.core.display import Image import matplotlib.pyplot as plt with io.BytesIO() as fobj: plt.savefig(fobj, format="png") plt.close() self.handle.update(Image(fobj.getvalue(), format="png")) def pd_has_ordered_assign(): import pandas as pd py_major, py_minor, *_ = sys.version_info pd_major, pd_minor, *_ = pd.__version__.split(".") pd_major = int(pd_major) pd_minor = int(pd_minor) return (py_major, py_minor) >= (3, 6) and (pd_major, pd_minor) >= (0, 23) def timed(tag=None, level=logging.INFO): """Time a codeblock and log the result. Usage:: with timed(): long_running_operation() :param any tag: an object used to identify the timed code block. It is printed with the time taken. """ return _TimedContext( message=("[TIMING] %s s" if tag is None else "[TIMING] {} %s s".format(tag)), logger=_get_caller_logger(), level=level, ) # use a custom contextmanager to control stack level for _get_caller_logger class _TimedContext(object): def __init__(self, logger, message, level): self.logger = logger self.message = message self.level = level def __enter__(self): self.start = time.time() def __exit__(self, exc_type, exc_val, exc_tb): end = time.time() self.logger.log(self.level, self.message, end - self.start) def _get_caller_logger(depth=2): stack = inspect.stack() if depth >= len(stack): # pragma: no cover return logging.getLogger(__name__) # NOTE: python2 returns raw tuples, index 0 is the frame frame = stack[depth][0] name = frame.f_globals.get("__name__") return logging.getLogger(name) def find_categorical_columns(df): """Find all categorical columns in the given dataframe. """ import pandas.api.types as pd_types return [k for k, dtype in df.dtypes.items() if pd_types.is_categorical_dtype(dtype)] def filter_low_frequency_categories( columns=None, min_frequency=0.02, other_category=None, n_max=None ): """Build a transformer to filter low frequency categories. Usage:: pipeline = build_pipeline[ categories=filter_low_frequency_categories(), predict=lgb.LGBMClassifier(), ) """ if columns is not None and not isinstance(columns, (list, tuple)): columns = [columns] return FilterLowFrequencyTransfomer(columns, min_frequency, other_category, n_max) class FilterLowFrequencyTransfomer(BaseEstimator, TransformerMixin): def __init__( self, columns=None, min_frequency=0.02, other_category="other", n_max=None ): self.columns = columns self.min_frequency = min_frequency self.other_category = other_category self.n_max = n_max self._columns = columns self._to_keep = {} def fit(self, df, y=None): if self._columns is None: self._columns = find_categorical_columns(df) for col in self._columns: try: to_keep = find_high_frequency_categories( df[col], min_frequency=self._get("min_frequency", col), n_max=self._get("n_max", col), ) except Exception as e: raise RuntimeError( f"cannot determine high frequency categories for {col} due to {e}" ) self._to_keep[col] = to_keep return self def transform(self, df, y=None): for col in self._columns: df = df.assign( **{ col: fix_categories( df[col], self._to_keep[col], other_category=self._get("other_category", col), ) } ) return df def _get(self, key, col): var = getattr(self, key) return var[col] if isinstance(var, dict) else var def column_transform(*args, **kwargs): """Build a transformer for a list of columns. Usage:: pipeline = build_pipeline( transform=column_transform(['a', 'b'], np.abs), classifier=sk_ensemble.GradientBoostingClassifier(), ]) Or:: pipeline = build_pipeline( transform=column_transform( a=np.abs, b=op.pos, ), classifier=sk_ensemble.GradientBoostingClassifier(), ) """ if not args: columns = kwargs else: columns, func, *args = args if not isinstance(columns, (list, tuple)): columns = [columns] func = ft.partial(func, *args, **kwargs) columns = {c: func for c in columns} return transform(_column_transform, columns=columns) def _column_transform(x, columns): if not hasattr(x, "assign"): raise RuntimeError("can only transform objects with an assign method.") for c, func in columns.items(): x = x.assign(**{c: func(x[c])}) return x def build_pipeline(**kwargs): """Build a pipeline from named steps. The order of the keyword arguments is retained. Note, this functionality requires python ``>= 3.6``. Usage:: pipeline = build_pipeline( transform=..., predict=..., ) """ import sklearn.pipeline as sk_pipeline if sys.version_info[:2] < (3, 6): raise RuntimeError("pipeline factory requires deterministic kwarg order") return sk_pipeline.Pipeline(list(kwargs.items())) def transform(*args, **kwargs): """Build a function transformer with args / kwargs bound. Usage:: pipeline = build_pipeline( transform=transform(np.abs)), classifier=sk_ensemble.GradientBoostingClassifier()), ) """ func, *args = args return FuncTransformer(ft.partial(func, *args, **kwargs)) class FuncTransformer(TransformerMixin, BaseEstimator): """Simple **non-validating** function transformer. :param callable func: the function to apply on transform """ def __init__(self, func): self.func = func def fit(self, x, y=None): return self def partial_fit(self, x, y=None): return self def transform(self, x): return self.func(x) class FuncClassifier(BaseEstimator, ClassifierMixin): def __init__(self, func): self.func = func def fit(self, df, y=None): return self def predict_proba(self, df): return self.func(df) def predict(self, df): import numpy as np return np.argmax(self.predict_proba(df), axis=1) class FuncRegressor(BaseEstimator, RegressorMixin): def __init__(self, func): self.func = func def fit(self, df, y=None): return self def predict(self, df): return self.func(df) class DataFrameEstimator(BaseEstimator): """Add support for dataframe use to sklearn estimators. """ def __init__(self, est): self.est = est def fit(self, x, y=None, **kwargs): import numpy as np x = x.reset_index(drop=True) y = np.asarray(x[y]) self.est.fit(x, y, **kwargs) return self def predict(self, x, y=None): x = x.reset_index(drop=True) return self.est.predict(x) def predict_proba(self, x, y=None): x = x.reset_index(drop=True) return self.est.predict_proba(x) @get_children.register(DataFrameEstimator) def df_estimator(est): return [(0, est.est)] class OneHotEncoder(BaseEstimator, TransformerMixin): def __init__(self, columns=None): self.columns = columns self.columns_ = columns self.levels_ = collections.OrderedDict() def fit(self, x, y=None): if self.columns_ is None: self.columns_ = find_categorical_columns(x) for col in self.columns_: try: self.levels_[col] = multi_type_sorted(x[col].unique()) except Exception as e: raise RuntimeError(f"cannot fit {col}") from e return self def transform(self, x, y=None): for col in self.columns_: try: assignments = {} for level in self.levels_[col]: assignments[f"{col}_{level}"] = (x[col] == level).astype(float) x = x.drop([col], axis=1).assign(**assignments) except Exception as e: raise RuntimeError(f"cannot transform {col}") from e return x def multi_type_sorted(vals): import pandas as pd return sorted( vals, key=lambda v: (type(v).__module__, type(v).__name__,
pd.isnull(v)
pandas.isnull
# HCA Live-Trade Conversion: Date:2020-08-13 # HCA Live-Simulation: Conversion Date: 08-13-2020 # Amended in Accordance with decision to use order: 2020-08-29 # Conversion Author: <NAME> from zipline.api import symbol,symbols, get_open_orders, order import numpy as np import pandas as pd # Start:Zipline Builtin Functions def initialize(context): context.asserts = symbols('SPY','ZSL', 'KOLD', 'GLD') context.bonds = symbol('SHY') context.universe = symbols('SPY','ZSL', 'KOLD', 'GLD', 'SHY') context.top_n_by_momentum =
pd.Series()
pandas.Series
import pandas as pd import matplotlib as mpl import numpy as np from sklearn import metrics import itertools import warnings from dateutil.relativedelta import relativedelta from statsmodels.tsa.stattools import adfuller from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.tsa.statespace.sarimax import SARIMAX from statsmodels.graphics.tsaplots import plot_acf, plot_pacf import matplotlib.pyplot as plt import seaborn as sns from matplotlib import ticker import matplotlib.dates as mdates from matplotlib.dates import DateFormatter # plt.style.use('ggplot') sns.set_theme(style="darkgrid") font = {'size' : 12} mpl.rc('font', **font) mpl.rc('figure', max_open_warning = 0) pd.set_option('display.max_columns',None) pd.set_option('display.max_rows',25) # only display whole years in figures years = mdates.YearLocator() years_fmt = mdates.DateFormatter('%Y') print('Functions loaded.') ################################################################################ def melt_data(df): ''' Takes in a Zillow Housing Data File (ZHVI) as a DataFrame in wide format and returns a melted DataFrame ''' melted = pd.melt(df, id_vars=['RegionID', 'RegionName', 'City', 'State', 'StateName', 'Metro', 'CountyName', 'SizeRank', 'RegionType'], var_name='date') melted['date'] = pd.to_datetime(melted['date'], infer_datetime_format=True) melted = melted.dropna(subset=['value']) return melted def visualize_data(df, sf_all, bedrooms): fig, ax = plt.subplots(figsize=(15,10)) ax.set_title(f'{bedrooms}-Bedroom Home Values in San Franciso by Zip Code', size=24) sns.lineplot(data=df, x=df.date, y=df.value, ax=ax, hue='zipcode', style='zipcode') sns.lineplot(data=sf_all, x=sf_all.index, y=sf_all.value, ax=ax, color = 'b', label='all') ax.set_xlabel('Year', size=20) ax.set_ylabel('Home Value (USD)', size=20) ax.set_xlim(pd.Timestamp('1996'), pd.Timestamp('2022-05-31')) ax.xaxis.set_major_locator(years) ax.xaxis.set_major_formatter(years_fmt) ax.set_yticks(np.linspace(1e5,1.5e6,15)) ax.set_ylim((1e5, 1.5e6)) ax.get_yaxis().set_major_formatter(ticker.FuncFormatter(lambda x, p: format(int(x), ','))) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.savefig(f'images/{bedrooms}_bdrm_home_values.png') def create_df_dict(df): zipcodes = list(set(df.zipcode)) keys = [zipcode for zipcode in map(str,zipcodes)] data_list = [] for key in keys: new_df = df.copy()[df.zipcode == int(key)] new_df.drop('zipcode', inplace=True, axis=1) new_df.columns = ['date', 'value'] new_df.date = pd.to_datetime(new_df.date) new_df.set_index('date', inplace=True) new_df = new_df.asfreq('M') data_list.append(new_df) df_dict = dict(zip(keys, data_list)) return df_dict def test_stationarity(df_all, diffs=0): if diffs == 2: dftest = adfuller(df_all.diff().diff().dropna()) elif diffs == 1: dftest = adfuller(df_all.diff().dropna()) else: dftest = adfuller(df_all) dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-value', '#Lags Used', 'Number of Observations Used']) for key, value in dftest[4].items(): dfoutput['Critical Value (%s)' %key] = value print (dfoutput) def test_stationarity_all_zips(df_dict, diffs=0): for zipcode, df in df_dict.items(): if diffs == 2: dftest = adfuller(df.diff().diff().dropna()) elif diffs == 1: dftest = adfuller(df.diff().dropna()) else: dftest = adfuller(df) dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-value', '#Lags Used', 'Number of Observations Used']) for key, value in dftest[4].items(): dfoutput['Critical Value (%s)' %key] = value print(dfoutput[1]) def plot_pacf_housing(df_all, bedrooms): pacf_fig, ax = plt.subplots(1, 2, figsize=(12, 6)) pacf_fig.suptitle(f'Partial Autocorrelations of {bedrooms}-Bedroom Time Series for Entire San Francisco Data Set', fontsize=18) plot_pacf(df_all, ax=ax[0]) ax[0].set_title('Undifferenced PACF', size=14) ax[0].set_xlabel('Lags', size=14) ax[0].set_ylabel('PACF', size=14) plot_pacf(df_all.diff().dropna(), ax=ax[1]) ax[1].set_title('Differenced PACF', size=14) ax[1].set_xlabel('Lags', size=14) ax[1].set_ylabel('PACF', size=14) pacf_fig.tight_layout() pacf_fig.subplots_adjust(top=0.9) plt.savefig(f'images/{bedrooms}_bdrm_PACF.png') def plot_acf_housing(df_all, bedrooms): acf_fig, ax = plt.subplots(1, 3, figsize=(18, 6)) acf_fig.suptitle(f'Autocorrelations of {bedrooms}-Bedroom Time Series for Entire San Francisco Data Set', fontsize=18) plot_acf(df_all, ax=ax[0]) ax[0].set_title('Undifferenced ACF', size=14) ax[0].set_xlabel('Lags', size=14) ax[0].set_ylabel('ACF', size=14) plot_acf(df_all.diff().dropna(), ax=ax[1]) ax[1].set_title('Once-Differenced ACF', size=14) ax[1].set_xlabel('Lags', size=14) ax[1].set_ylabel('ACF', size=14) plot_acf(df_all.diff().diff().dropna(), ax=ax[2]) ax[2].set_title('Twice-Differenced ACF', size=14) ax[2].set_xlabel('Lags', size=14) ax[2].set_ylabel('ACF', size=14) acf_fig.tight_layout() acf_fig.subplots_adjust(top=0.9) plt.savefig(f'images/{bedrooms}_bdrm_ACF.png') def plot_seasonal_decomposition(df_all, bedrooms): decomp = seasonal_decompose(df_all, period=12) dc_obs = decomp.observed dc_trend = decomp.trend dc_seas = decomp.seasonal dc_resid = decomp.resid dc_df = pd.DataFrame({"observed": dc_obs, "trend": dc_trend, "seasonal": dc_seas, "residual": dc_resid}) start = dc_df.iloc[:, 0].index[0] end = dc_df.iloc[:, 0].index[-1] + relativedelta(months=+15) + relativedelta(day=31) decomp_fig, axes = plt.subplots(4, 1, figsize=(15, 15)) for i, ax in enumerate(axes): ax.plot(dc_df.iloc[:, i]) ax.set_xlim(start, end) ax.xaxis.set_major_locator(years) ax.xaxis.set_major_formatter(years_fmt) ax.set_ylabel(dc_df.iloc[:, i].name) if i != 2: ax.get_yaxis().set_major_formatter(ticker.FuncFormatter(lambda x, p: format(int(x), ','))) plt.setp(ax.xaxis.get_majorticklabels(), ha="right", rotation=45, rotation_mode="anchor") decomp_fig.suptitle( f'Seasonal Decomposition of {bedrooms}-Bedroom Time Series of San Francisco Home Values (Mean)', fontsize=24) decomp_fig.tight_layout() decomp_fig.subplots_adjust(top=0.94) plt.savefig(f'images/{bedrooms}_bdrm_seasonal_decomp.png') def train_test_split_housing(df_dict, split=84): print(f'Using a {split}/{100-split} train-test split...') cutoff = [round((split/100)*len(df)) for zipcode, df in df_dict.items()] train_dict_list = [df_dict[i][:cutoff[count]] for count, i in enumerate(list(df_dict.keys()))] train_dict = dict(zip(list(df_dict.keys()), train_dict_list)) test_dict_list = [df_dict[i][cutoff[count]:] for count, i in enumerate(list(df_dict.keys()))] test_dict = dict(zip(list(df_dict.keys()), test_dict_list)) return train_dict, test_dict def gridsearch_SARIMAX(train_dict, seas = 12, p_min=2, p_max=2, q_min=0, q_max=0, d_min=1, d_max=1, s_p_min=2, s_p_max=2, s_q_min=0, s_q_max=0, s_d_min=1, s_d_max=1, verbose=True): p = range(p_min, p_max+1) q = range(q_min, q_max+1) d = range(d_min, d_max+1) s_p = range(s_p_min, s_p_max+1) s_q = range(s_q_min, s_q_max+1) s_d = range(s_d_min, s_d_max+1) pdq = list(itertools.product(p, d, q)) seasonal_pdq = [(x[0], x[1], x[2], seas) for x in list(itertools.product(s_p, s_d, s_q))] if verbose: print('Parameters for SARIMAX grid search...') for i in pdq: for s in seasonal_pdq: print('SARIMAX: {} x {}'.format(i, s)) zipcodes = [] param_list = [] param_seasonal_list = [] aic_list = [] for zipcode, train in train_dict.items(): for param in pdq: for param_seasonal in seasonal_pdq: mod = SARIMAX(train, order=param, seasonal_order=param_seasonal, enforce_stationarity=False, enforce_invertibility=False) zipcodes.append(zipcode[-5:]) param_list.append(param) param_seasonal_list.append(param_seasonal) with warnings.catch_warnings(): warnings.filterwarnings('error') try: aic = mod.fit(maxiter=1000).aic except Warning as e: continue aic_list.append(aic) if verbose: print(param,param_seasonal) print(f'Zip Code {zipcode} | AIC: {aic}') else: print('-', end='') print('\nCompleted.') return zipcodes, param_list, param_seasonal_list, aic_list def get_best_params(zipcodes, param_list, param_seasonal_list, aic_list, bedrooms): # intialize list of model params model_data = {'zipcode': zipcodes, 'param': param_list, 'param_seasonal': param_seasonal_list, 'aic': aic_list } # Create model params DataFrames sarimax_details_df = pd.DataFrame(model_data) # print(sarimax_details_df.shape) best_params_df = sarimax_details_df.loc[sarimax_details_df.groupby('zipcode')['aic'].idxmin()] best_params_df.set_index('zipcode', inplace=True) print(best_params_df) best_params_df.to_csv(f'data/{bedrooms}_bdrm_best_params.csv') return best_params_df def evaluate_model(train_dict, test_dict, model_best_df): predict_dict = {} cat_predict_dict = train_dict.copy() for _ in range(5): for zipcode, df in cat_predict_dict.items(): if cat_predict_dict[zipcode].index[-1] >= pd.to_datetime('2021-02-28'): continue sari_mod = SARIMAX(df, order=model_best_df.loc[zipcode].param, seasonal_order=model_best_df.loc[zipcode].param_seasonal, enforce_stationarity=False, enforce_invertibility=False).fit() predict = sari_mod.forecast(steps = 12, dynamic = False) # print((zipcode,predict.index[-1],predict[-1])) print("-", end='') predict_dict[zipcode] = predict dfB = pd.DataFrame(predict_dict[zipcode]) dfB.columns = ['value'] dfA = cat_predict_dict[zipcode] cat_predict_dict[zipcode] = pd.concat([dfA, dfB], axis=0) print('\nCompleted.') return cat_predict_dict def calc_RMSE(test_dict, predictions_dict, bedrooms): zipcodes = [] RMSE_list = [] hv = [] for zipcode, df in test_dict.items(): window = len(df) RMSE = metrics.mean_squared_error(test_dict[zipcode], predictions_dict[zipcode].iloc[-window:], squared=False) zipcodes.append(zipcode) RMSE_list.append(RMSE) # get last observed house value per zip code for zipcode, df in test_dict.items(): hv.append(df.iloc[-1].value) RMSE_data = {'zipcode': zipcodes, 'RMSE': RMSE_list, 'last_value': hv } RMSE_df = pd.DataFrame(RMSE_data) RMSE_df = RMSE_df.sort_values('RMSE', axis=0, ascending=False) RMSE_df['RMSE_vs_value'] = 100*RMSE_df.RMSE/RMSE_df.last_value RMSE_df.set_index('zipcode', inplace=True) print(RMSE_df) RMSE_df.to_csv(f'data/{bedrooms}_bdrm_RMSE.csv') return RMSE_df def gridsearch_SARIMAX_test_predict(train_dict, test_dict, seas = 12, p_min=2, p_max=2, q_min=0, q_max=0, d_min=1, d_max=1, s_p_min=2, s_p_max=2, s_q_min=0, s_q_max=0, s_d_min=1, s_d_max=1): p = range(p_min, p_max+1) q = range(q_min, q_max+1) d = range(d_min, d_max+1) s_p = range(s_p_min, s_p_max+1) s_q = range(s_q_min, s_q_max+1) s_d = range(s_d_min, s_d_max+1) pdq = list(itertools.product(p, d, q)) seasonal_pdq = [(x[0], x[1], x[2], seas) for x in list(itertools.product(s_p, s_d, s_q))] print('Parameters for SARIMAX grid search for test predictions...') for i in pdq: for s in seasonal_pdq: print('SARIMAX: {} x {}'.format(i, s)) zipcodes = [] param_list = [] param_seasonal_list = [] RMSE_list = [] predict_dict = {} cat_predict_dict = train_dict.copy() for param in pdq: for param_seasonal in seasonal_pdq: predict_dict = {} cat_predict_dict = train_dict.copy() for count in range(5): for zipcode, df in cat_predict_dict.items(): if cat_predict_dict[zipcode].index[-1] >= pd.to_datetime('2021-02-28'): # print(param, param_seasonal) window = len(test_dict[zipcode]) RMSE = metrics.mean_squared_error(test_dict[zipcode], cat_predict_dict[zipcode].iloc[-window:], squared=False) zipcodes.append(zipcode) param_list.append(param) param_seasonal_list.append(param_seasonal) RMSE_list.append(RMSE) print("-", end='') continue sari_mod = SARIMAX(df, order=param, seasonal_order=param_seasonal, enforce_stationarity=False, enforce_invertibility=False).fit() predict = sari_mod.forecast(steps = 12, dynamic = False) # print((zipcode,predict.index[-1],predict[-1])) # debugging predict_dict[zipcode] = predict dfB =
pd.DataFrame(predict_dict[zipcode])
pandas.DataFrame
""" Train a model using either `flow_from_directory` or `flow_from_dataframe`. """ import numpy as np import pandas as pd from tensorflow.keras.applications.vgg16 import preprocess_input from tensorflow.keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split from tensorflow.keras.callbacks import EarlyStopping from ..utils.metadata import wnids from ..utils.paths import path_repo from ..utils.preprocessing import crop_and_pca_generator split = 0.1 datagen_valid = ImageDataGenerator( preprocessing_function=preprocess_input, validation_split=split) early_stopping = EarlyStopping( min_delta=0.001, patience=2, verbose=True, restore_best_weights=True) params_training = dict( epochs=300, verbose=1, callbacks=[early_stopping], use_multiprocessing=False, workers=1) params_generator = dict( batch_size=256, shuffle=True, class_mode='categorical') def partition_shuffled(df, labels_col='class'): df_train, df_valid = train_test_split(df, test_size=split, stratify=df[labels_col]) return pd.concat((df_valid, df_train)) def partition_ordered(df, labels_col='class'): df_train, df_valid = pd.DataFrame(), pd.DataFrame() for wnid in wnids: inds = np.flatnonzero(df[labels_col]==wnid) val_size = int(split*len(inds)) df_train = df_train.append(df.iloc[inds[val_size:]]) df_valid = df_valid.append(df.iloc[inds[:val_size]]) return
pd.concat((df_valid, df_train))
pandas.concat
import gc import glob import os import time import cv2 import numpy as np import pandas as pd import tensorflow as tf from tensorflow.python.keras import backend as K from tensorflow.python.keras.layers import Input, Lambda from tensorflow.python.keras.models import Model, load_model # https://github.com/tensorflow/tensorflow/issues/29161 # https://github.com/keras-team/keras/issues/10340 session = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto()) K.set_session(session) # https://www.tensorflow.org/api_docs/python/tf/compat/v1/disable_eager_execution tf.compat.v1.disable_eager_execution() def init_model(model_file_path): backbone_model = load_model(model_file_path, custom_objects={ "tf": tf, "swish": tf.nn.swish }, compile=False) input_tensor = Input(shape=list(backbone_model.input_shape[1:-1]) + [1]) output_tensor = Lambda(lambda x: K.repeat_elements(x, rep=3, axis=3), name="repeat_elements")(input_tensor) preprocess_input_wrapper = lambda x: x / 255.0 output_tensor = Lambda(preprocess_input_wrapper, name="preprocess_input")(output_tensor) output_tensor_list = backbone_model(output_tensor) model = Model(inputs=input_tensor, outputs=output_tensor_list) return model def process_image_content(image_content, input_shape, use_manual_manipulation, intensity_threshold_percentage=0.2, edge_threshold=5): if use_manual_manipulation: # Cropping intensity_threshold = np.uint8( np.max(image_content) * intensity_threshold_percentage) width_mask = np.sum( image_content[edge_threshold:-edge_threshold, edge_threshold:-edge_threshold] > intensity_threshold, axis=0) > 1 height_mask = np.sum( image_content[edge_threshold:-edge_threshold, edge_threshold:-edge_threshold] > intensity_threshold, axis=1) > 1 width_start, width_end = np.where(width_mask)[0][[0, -1]] width_start, width_end = max( 0, width_start - edge_threshold * 2), width_end + edge_threshold * 2 height_start, height_end = np.where(height_mask)[0][[0, -1]] height_start, height_end = max( 0, height_start - edge_threshold * 2), height_end + edge_threshold * 2 image_content = image_content[height_start:height_end, width_start:width_end] # Apply zero padding to make it square height, width = image_content.shape max_length = np.max(image_content.shape) height_pad = (max_length - height) // 2 width_pad = (max_length - width) // 2 image_content = np.pad(image_content, ((height_pad,), (width_pad,)), mode="constant", constant_values=0) # Resize the image image_content = cv2.resize(image_content, input_shape[:2][::-1]) # Normalization min_intensity, max_intensity = np.min(image_content), np.max(image_content) image_content = ((image_content.astype(np.float32) - min_intensity) / (max_intensity - min_intensity) * 255).astype(np.uint8) # Add dummy dimensions image_content = np.expand_dims(image_content, axis=-1) image_content = np.expand_dims(image_content, axis=0) return image_content def perform_inference(model_file_path_pattern="inference.h5", use_manual_manipulation=False, batch_size=64, ensembling_option=np.mean): inference_start = time.time() # Initiation height = 137 width = 236 attribute_name_list = [ "consonant_diacritic", "grapheme_root", "vowel_diacritic" ] # Paths of folders root_folder_path_list = [ os.path.expanduser("~/Documents/Local Storage/Dataset"), "/kaggle/input" ] root_folder_path_mask = [ os.path.isdir(path) for path in root_folder_path_list ] root_folder_path = root_folder_path_list[root_folder_path_mask.index(True)] dataset_folder_name = "bengaliai-cv19" dataset_folder_path = os.path.join(root_folder_path, dataset_folder_name) # Paths of files test_parquet_file_path_list = sorted( glob.glob(os.path.join(dataset_folder_path, "test_image_data_*.parquet"))) # Load models model_list = [] model_file_path_list = sorted(glob.glob(model_file_path_pattern)) assert len(model_file_path_list) > 0 for model_file_path in model_file_path_list: print("Loading the model from {} ...".format(model_file_path)) model = init_model(model_file_path) model_list.append(model) input_shape = model_list[0].input_shape[1:] # Process the test split concatenated_image_id_list, probability_array_dict = [], {} process_image_content_wrapper = lambda image_content: process_image_content( image_content, input_shape, use_manual_manipulation) for parquet_file_path in test_parquet_file_path_list: print("Processing {} ...".format(parquet_file_path)) data_frame =
pd.read_parquet(parquet_file_path)
pandas.read_parquet
import warnings from typing import Iterable, Sequence, Union, List import numpy as np import pandas as pd from datetime import datetime, timedelta from copy import deepcopy from mikeio.eum import EUMType, ItemInfo from .base import TimeSeries def _parse_axis(data_shape, axis): axis = 0 if axis == "time" else axis if (axis == "spatial") or (axis == "space"): if len(data_shape) == 1: ValueError(f"axis '{axis}' not allowed for Dataset with shape {data_shape}") axis = 1 if (len(data_shape) == 2) else tuple(range(1, len(data_shape))) if axis is None: axis = 0 if (len(data_shape) == 1) else tuple(range(0, len(data_shape))) if isinstance(axis, str): ValueError( f"axis argument '{axis}' not supported! Must be None, int, list of int or 'time' or 'space'" ) return axis def _time_by_axis(time, axis): # time: Dataset time axis; if axis == 0: time = pd.DatetimeIndex([time[0]]) elif isinstance(axis, Sequence) and 0 in axis: time = pd.DatetimeIndex([time[0]]) else: time = time return time def _keepdims_by_axis(axis): # keepdims: input to numpy aggregate function if axis == 0: keepdims = True else: keepdims = False return keepdims def _items_except_Z_coordinate(items): if items[0].name == "Z coordinate": items = deepcopy(items) items.pop(0) return items def _get_repeated_items( items_in: List[ItemInfo], prefixes: List[str] ) -> List[ItemInfo]: new_items = [] for item_in in items_in: for prefix in prefixes: item = deepcopy(item_in) item.name = f"{prefix}, {item.name}" new_items.append(item) return new_items def _reshape_data_by_axis(data, orig_shape, axis): if isinstance(axis, int): return data if len(orig_shape) == len(axis): shape = (1,) data = [d.reshape(shape) for d in data] if len(orig_shape) - len(axis) == 1: # e.g. (0,2) for for dfs2 shape = [1] if (0 in axis) else [orig_shape[0]] ndims = len(orig_shape) for j in range(1, ndims): if j not in axis: shape.append(orig_shape[j]) data = [d.reshape(shape) for d in data] return data class Dataset(TimeSeries): deletevalue = 1.0e-35 """Dataset Attributes ---------- data: list[np.array] Data, potentially multivariate and multiple spatial dimensions time: list[datetime] Datetime of each timestep items: list[ItemInfo] Names, type and unit of each item in the data list Notes ----- Data from a specific item can be accessed using the name of the item similar to a dictionary. Attributes data, time, names can also be unpacked like a tuple Examples -------- >>> ds = mikeio.read("tests/testdata/random.dfs0") >>> ds <mikeio.Dataset> Dimensions: (1000,) Time: 2017-01-01 00:00:00 - 2017-07-28 03:00:00 Items: 0: VarFun01 <Water Level> (meter) 1: NotFun <Water Level> (meter) >>> ds['NotFun'][0:5] array([0.64048636, 0.65325695, nan, 0.21420799, 0.99915695]) >>> ds = mikeio.read("tests/testdata/HD2D.dfsu") <mikeio.Dataset> Dimensions: (9, 884) Time: 1985-08-06 07:00:00 - 1985-08-07 03:00:00 Items: 0: Surface elevation <Surface Elevation> (meter) 1: U velocity <u velocity component> (meter per sec) 2: V velocity <v velocity component> (meter per sec) 3: Current speed <Current Speed> (meter per sec) >>> ds2 = ds[['Surface elevation','Current speed']] # item selection by name >>> ds2 <mikeio.Dataset> Dimensions: (9, 884) Time: 1985-08-06 07:00:00 - 1985-08-07 03:00:00 Items: 0: Surface elevation <Surface Elevation> (meter) 1: Current speed <Current Speed> (meter per sec) >>> ds3 = ds2.isel([0,1,2], axis=0) # temporal selection >>> ds3 <mikeio.Dataset> Dimensions: (3, 884) Time: 1985-08-06 07:00:00 - 1985-08-06 12:00:00 Items: 0: Surface elevation <Surface Elevation> (meter) 1: Current speed <Current Speed> (meter per sec) >>> ds4 = ds3.isel([100,200], axis=1) # element selection >>> ds4 <mikeio.Dataset> Dimensions: (3, 2) Time: 1985-08-06 07:00:00 - 1985-08-06 12:00:00 Items: 0: Surface elevation <Surface Elevation> (meter) 1: Current speed <Current Speed> (meter per sec) >>> ds5 = ds[[1,0]] # item selection by position >>> ds5 <mikeio.Dataset> Dimensions: (1000,) Time: 2017-01-01 00:00:00 - 2017-07-28 03:00:00 Items: 0: NotFun <Water Level> (meter) 1: VarFun01 <Water Level> (meter) """ def __init__( self, data: Union[List[np.ndarray], float], time: Union[pd.DatetimeIndex, str], items: Union[List[ItemInfo], List[EUMType], List[str]] = None, ): item_infos: List[ItemInfo] = [] self._deletevalue = Dataset.deletevalue if isinstance(time, str): # default single-step time time = pd.date_range(time, periods=1) if np.isscalar(data) and isinstance(items, Sequence): # create empty dataset n_elements = data n_items = len(items) n_timesteps = len(time) data = self.create_empty_data( n_items=n_items, n_timesteps=n_timesteps, n_elements=n_elements ) elif isinstance(data, Sequence): n_items = len(data) n_timesteps = data[0].shape[0] else: raise TypeError( f"data type '{type(data)}' not supported! data must be a list of numpy arrays" ) if items is None: # default Undefined items for j in range(n_items): item_infos.append(ItemInfo(f"Item {j+1}")) else: for item in items: if isinstance(item, EUMType) or isinstance(item, str): item_infos.append(ItemInfo(item)) elif isinstance(item, ItemInfo): item_infos.append(item) else: raise ValueError(f"items of type: {type(item)} is not supported") if len(items) != n_items: raise ValueError( f"Number of items in iteminfo {len(items)} doesn't match the data {n_items}." ) if len(time) != n_timesteps: raise ValueError( f"Number of timesteps in time {len(time)} doesn't match the data {n_timesteps}." ) self.data = data self.time = pd.DatetimeIndex(time) self._items = item_infos def __repr__(self): out = ["<mikeio.Dataset>"] out.append(f"Dimensions: {self.shape}") out.append(f"Time: {self.time[0]} - {self.time[-1]}") if not self.is_equidistant: out.append("-- Non-equidistant calendar axis --") if self.n_items > 10: out.append(f"Number of items: {self.n_items}") else: out.append("Items:") for i, item in enumerate(self.items): out.append(f" {i}: {item}") return str.join("\n", out) def __len__(self): return len(self.items) def __setitem__(self, key, value): if isinstance(key, int): self.data[key] = value elif isinstance(key, str): item_lookup = {item.name: i for i, item in enumerate(self.items)} key = item_lookup[key] self.data[key] = value else: raise ValueError(f"indexing with a {type(key)} is not (yet) supported") def __getitem__(self, key): if isinstance(key, slice): s = self.time.slice_indexer(key.start, key.stop) time_steps = list(range(s.start, s.stop)) return self.isel(time_steps, axis=0) if isinstance(key, int): return self.data[key] if isinstance(key, str): item_lookup = {item.name: i for i, item in enumerate(self.items)} key = item_lookup[key] return self.data[key] if isinstance(key, ItemInfo): return self.__getitem__(key.name) if isinstance(key, list): data = [] items = [] item_lookup = {item.name: i for i, item in enumerate(self.items)} for v in key: data_item = self.__getitem__(v) if isinstance(v, str): i = item_lookup[v] if isinstance(v, int): i = v item = self.items[i] items.append(item) data.append(data_item) return Dataset(data, self.time, items) raise ValueError(f"indexing with a {type(key)} is not (yet) supported") def __radd__(self, other): return self.__add__(other) def __add__(self, other): if isinstance(other, self.__class__): return self._add_dataset(other) else: return self._add_value(other) def __rsub__(self, other): ds = self.__mul__(-1.0) return other + ds def __sub__(self, other): if isinstance(other, self.__class__): return self._add_dataset(other, sign=-1.0) else: return self._add_value(-other) def __rmul__(self, other): return self.__mul__(other) def __mul__(self, other): if isinstance(other, self.__class__): raise NotImplemented("Multiplication is not implemented for two Datasets") else: return self._multiply_value(other) def _add_dataset(self, other, sign=1.0): self._check_datasets_match(other) try: data = [self[x] + sign * other[y] for x, y in zip(self.items, other.items)] except: raise ValueError("Could not add data in Dataset") time = self.time.copy() items = deepcopy(self.items) return Dataset(data, time, items) def _check_datasets_match(self, other): if self.n_items != other.n_items: raise ValueError( f"Number of items must match ({self.n_items} and {other.n_items})" ) for j in range(self.n_items): if self.items[j].type != other.items[j].type: raise ValueError( f"Item types must match. Item {j}: {self.items[j].type} != {other.items[j].type}" ) if self.items[j].unit != other.items[j].unit: raise ValueError( f"Item units must match. Item {j}: {self.items[j].unit} != {other.items[j].unit}" ) if not np.all(self.time == other.time): raise ValueError("All timesteps must match") if self.shape != other.shape: raise ValueError("shape must match") def _add_value(self, value): try: data = [value + self[x] for x in self.items] except: raise ValueError(f"{value} could not be added to Dataset") items = deepcopy(self.items) time = self.time.copy() return Dataset(data, time, items) def _multiply_value(self, value): try: data = [value * self[x] for x in self.items] except: raise ValueError(f"{value} could not be multiplied to Dataset") items = deepcopy(self.items) time = self.time.copy() return Dataset(data, time, items) def describe(self, **kwargs): """Generate descriptive statistics by wrapping pandas describe()""" all_df = [ pd.DataFrame(self.data[j].flatten(), columns=[self.items[j].name]).describe( **kwargs ) for j in range(self.n_items) ] return pd.concat(all_df, axis=1) def copy(self): """Returns a copy of this dataset.""" items = deepcopy(self.items) data = [self[x].copy() for x in self.items] time = self.time.copy() return Dataset(data, time, items) def to_numpy(self): """Stack data to a single ndarray with shape (n_items, n_timesteps, ...) Returns ------- np.ndarray """ return np.stack(self.data) @classmethod def combine(cls, *datasets): """Combine n Datasets either along items or time axis Parameters ---------- *datasets: datasets to combine Returns ------- Dataset a combined dataset Examples -------- >>> import mikeio >>> from mikeio import Dataset >>> ds1 = mikeio.read("HD2D.dfsu", items=0) >>> ds1 <mikeio.Dataset> Dimensions: (9, 884) Time: 1985-08-06 07:00:00 - 1985-08-07 03:00:00 Items: 0: Surface elevation <Surface Elevation> (meter) >>> ds2 = mikeio.read("HD2D.dfsu", items=[2,3]) >>> ds2 <mikeio.Dataset> Dimensions: (9, 884) Time: 1985-08-06 07:00:00 - 1985-08-07 03:00:00 Items: 0: V velocity <v velocity component> (meter per sec) 1: Current speed <Current Speed> (meter per sec) >>> ds3 = Dataset.combine(ds1,ds2) >>> ds3 <mikeio.Dataset> Dimensions: (9, 884) Time: 1985-08-06 07:00:00 - 1985-08-07 03:00:00 Items: 0: Surface elevation <Surface Elevation> (meter) 1: V velocity <v velocity component> (meter per sec) 2: Current speed <Current Speed> (meter per sec) """ if isinstance(datasets[0], Iterable): if isinstance(datasets[0][0], Dataset): datasets = datasets[0] ds = datasets[0].copy() for dsj in datasets[1:]: ds = ds._combine(dsj, copy=False) return ds def _combine(self, other, copy=True): try: ds = self._concat_time(other, copy=copy) except ValueError: ds = self._append_items(other, copy=copy) return ds def append_items(self, other, inplace=False): """Append items from other Dataset to this Dataset""" if inplace: self._append_items(other, copy=False) else: return self._append_items(other, copy=True) def _append_items(self, other, copy=True): if not np.all(self.time == other.time): # if not: create common time? raise ValueError("All timesteps must match") ds = self.copy() if copy else self for j in range(other.n_items): ds.items.append(other.items[j]) ds.data.append(other.data[j]) return ds def concat(self, other, inplace=False): """Concatenate this Dataset with data from other Dataset Parameters --------- other: Dataset Other dataset to concatenate with inplace: bool, optional Default is to return a new dataset Returns ------- Dataset concatenated dataset Examples -------- >>> import mikeio >>> ds1 = mikeio.read("HD2D.dfsu", time_steps=[0,1]) >>> ds2 = mikeio.read("HD2D.dfsu", time_steps=[2,3]) >>> ds1.n_timesteps 2 >>> ds3 = ds1.concat(ds2) >>> ds3.n_timesteps 4 """ if inplace: ds = self._concat_time(other, copy=False) self.data = ds.data self.time = ds.time else: return self._concat_time(other, copy=True) def _concat_time(self, other, copy=True): self._check_all_items_match(other) if not np.all(self.shape == other.shape): raise ValueError("Shape of the datasets must match") ds = self.copy() if copy else self s1 = pd.Series(np.arange(len(ds.time)), index=ds.time, name="idx1") s2 = pd.Series(np.arange(len(other.time)), index=other.time, name="idx2") df12 = pd.concat([s1, s2], axis=1) newtime = df12.index newdata = self.create_empty_data( n_items=ds.n_items, n_timesteps=len(newtime), shape=ds.shape[1:] ) for j in range(ds.n_items): idx1 = np.where(~df12["idx1"].isna()) newdata[j][idx1, :] = ds.data[j] # if there is an overlap "other" data will be used! idx2 = np.where(~df12["idx2"].isna()) newdata[j][idx2, :] = other.data[j] return Dataset(newdata, newtime, ds.items) def _check_all_items_match(self, other): if self.n_items != other.n_items: raise ValueError( f"Number of items must match ({self.n_items} and {other.n_items})" ) for j in range(self.n_items): if self.items[j].name != other.items[j].name: raise ValueError( f"Item names must match. Item {j}: {self.items[j].name} != {other.items[j].name}" ) if self.items[j].type != other.items[j].type: raise ValueError( f"Item types must match. Item {j}: {self.items[j].type} != {other.items[j].type}" ) if self.items[j].unit != other.items[j].unit: raise ValueError( f"Item units must match. Item {j}: {self.items[j].unit} != {other.items[j].unit}" ) def dropna(self): """Remove time steps where all items are NaN""" # TODO consider all items x = self[0] # this seems overly complicated... axes = tuple(range(1, x.ndim)) idx = np.where(~np.isnan(x).all(axis=axes)) idx = list(idx[0]) return self.isel(idx, axis=0) def flipud(self): """Flip dataset updside down""" self.data = [np.flip(self[x], axis=1) for x in self.items] return self def isel(self, idx, axis=1): """ Select subset along an axis. Parameters ---------- idx: int, scalar or array_like axis: (int, str, None), optional axis number or "time", by default 1 Returns ------- Dataset dataset with subset Examples -------- >>> ds = mikeio.read("tests/testdata/HD2D.dfsu") >>> ds2 = ds.isel([0,1,2], axis=0) # temporal selection >>> ds2 DataSet(data, time, items) Number of items: 2 Shape: (3, 884) 1985-08-06 07:00:00 - 1985-08-06 12:00:00 >>> ds3 = ds2.isel([100,200], axis=1) # element selection >>> ds3 DataSet(data, time, items) Number of items: 2 Shape: (3, 2) 1985-08-06 07:00:00 - 1985-08-06 12:00:00 """ axis = _parse_axis(self.shape, axis) if axis == 0: time = self.time[idx] items = self.items else: time = self.time items = _items_except_Z_coordinate(self.items) res = [] for item in items: x = np.take(self[item.name], idx, axis=axis) res.append(x) ds = Dataset(res, time, items) return ds def aggregate(self, axis="time", func=np.nanmean, **kwargs): """Aggregate along an axis Parameters ---------- axis: (int, str, None), optional axis number or "time" or "space", by default "time"=0 func: function, optional default np.nanmean Returns ------- Dataset dataset with aggregated values """ items = _items_except_Z_coordinate(self.items) axis = _parse_axis(self.shape, axis) time = _time_by_axis(self.time, axis) keepdims = _keepdims_by_axis(axis) res = [ func(self[item.name], axis=axis, keepdims=keepdims, **kwargs) for item in items ] res = _reshape_data_by_axis(res, self.shape, axis) return Dataset(res, time, items) def quantile(self, q, *, axis="time", **kwargs): """Compute the q-th quantile of the data along the specified axis. Wrapping np.quantile Parameters ---------- q: array_like of float Quantile or sequence of quantiles to compute, which must be between 0 and 1 inclusive. axis: (int, str, None), optional axis number or "time" or "space", by default "time"=0 Returns ------- Dataset dataset with quantile values Examples -------- >>> ds.quantile(q=[0.25,0.75]) >>> ds.quantile(q=0.5) >>> ds.quantile(q=[0.01,0.5,0.99], axis="space") See Also -------- nanquantile : quantile with NaN values ignored """ return self._quantile(q, axis=axis, func=np.quantile, **kwargs) def nanquantile(self, q, *, axis="time", **kwargs): """Compute the q-th quantile of the data along the specified axis, while ignoring nan values. Wrapping np.nanquantile Parameters ---------- q: array_like of float Quantile or sequence of quantiles to compute, which must be between 0 and 1 inclusive. axis: (int, str, None), optional axis number or "time" or "space", by default "time"=0 Examples -------- >>> ds.nanquantile(q=[0.25,0.75]) >>> ds.nanquantile(q=0.5) >>> ds.nanquantile(q=[0.01,0.5,0.99], axis="space") Returns ------- Dataset dataset with quantile values """ return self._quantile(q, axis=axis, func=np.nanquantile, **kwargs) def _quantile(self, q, *, axis=0, func=np.quantile, **kwargs): items_in = _items_except_Z_coordinate(self.items) axis = _parse_axis(self.shape, axis) time = _time_by_axis(self.time, axis) keepdims = _keepdims_by_axis(axis) qvec = [q] if np.isscalar(q) else q qtxt = [f"Quantile {q}" for q in qvec] itemsq = _get_repeated_items(items_in, qtxt) res = [] for item in items_in: qdat = func(self[item.name], q=q, axis=axis, keepdims=keepdims, **kwargs) for j in range(len(qvec)): qdat_item = qdat[j, ...] if len(qvec) > 1 else qdat res.append(qdat_item) res = _reshape_data_by_axis(res, self.shape, axis) return Dataset(res, time, itemsq) def max(self, axis="time"): """Max value along an axis Parameters ---------- axis: (int, str, None), optional axis number or "time" or "space", by default "time"=0 Returns ------- Dataset dataset with max value See Also -------- nanmax : Max values with NaN values removed """ return self.aggregate(axis=axis, func=np.max) def min(self, axis="time"): """Min value along an axis Parameters ---------- axis: (int, str, None), optional axis number or "time" or "space", by default "time"=0 Returns ------- Dataset dataset with max value See Also -------- nanmin : Min values with NaN values removed """ return self.aggregate(axis=axis, func=np.min) def mean(self, axis="time"): """Mean value along an axis Parameters ---------- axis: (int, str, None), optional axis number or "time" or "space", by default "time"=0 Returns ------- Dataset dataset with mean value See Also -------- nanmean : Mean values with NaN values removed average: Weighted average """ return self.aggregate(axis=axis, func=np.mean) def average(self, weights, axis="time"): """ Compute the weighted average along the specified axis. Parameters ---------- axis: (int, str, None), optional axis number or "time" or "space", by default "time"=0 Returns ------- Dataset dataset with weighted average value See Also -------- nanmean : Mean values with NaN values removed aggregate: Weighted average Examples -------- >>> dfs = Dfsu("HD2D.dfsu") >>> ds = dfs.read(["Current speed"]) >>> area = dfs.get_element_area() >>> ds2 = ds.average(axis="space", weights=area) """ def func(x, axis, keepdims): if keepdims: raise NotImplementedError() return np.average(x, weights=weights, axis=axis) return self.aggregate(axis=axis, func=func) def nanmax(self, axis="time"): """Max value along an axis (NaN removed) Parameters ---------- axis: (int, str, None), optional axis number or "time" or "space", by default "time"=0 Returns ------- Dataset dataset with max value """ return self.aggregate(axis=axis, func=np.nanmax) def nanmin(self, axis="time"): """Min value along an axis (NaN removed) Parameters ---------- axis: (int, str, None), optional axis number or "time" or "space", by default "time"=0 Returns ------- Dataset dataset with max value """ return self.aggregate(axis=axis, func=np.nanmin) def nanmean(self, axis="time"): """Mean value along an axis (NaN removed) Parameters ---------- axis: (int, str, None), optional axis number or "time" or "space", by default "time"=0 Returns ------- Dataset dataset with mean value """ return self.aggregate(axis=axis, func=np.nanmean) def head(self, n=5): """Return the first n timesteps""" nt = len(self.time) n = min(n, nt) time_steps = range(n) return self.isel(time_steps, axis=0) def tail(self, n=5): """Return the last n timesteps""" nt = len(self.time) start = max(0, nt - n) time_steps = range(start, nt) return self.isel(time_steps, axis=0) def thin(self, step): """Return every n:th timesteps""" nt = len(self.time) time_steps = range(0, nt, step) return self.isel(time_steps, axis=0) def squeeze(self): """ Remove axes of length 1 Returns ------- Dataset """ items = self.items if items[0].name == "Z coordinate": items = deepcopy(items) items.pop(0) time = self.time res = [np.squeeze(self[item.name]) for item in items] ds = Dataset(res, time, items) return ds def interp_time( self, dt: Union[float, pd.DatetimeIndex, "Dataset"], method="linear", extrapolate=True, fill_value=np.nan, ): """Temporal interpolation Wrapper of `scipy.interpolate.interp` Parameters ---------- dt: float or pd.DatetimeIndex or Dataset output timestep in seconds method: str or int, optional Specifies the kind of interpolation as a string (‘linear’, ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘previous’, ‘next’, where ‘zero’, ‘slinear’, ‘quadratic’ and ‘cubic’ refer to a spline interpolation of zeroth, first, second or third order; ‘previous’ and ‘next’ simply return the previous or next value of the point) or as an integer specifying the order of the spline interpolator to use. Default is ‘linear’. extrapolate: bool, optional Default True. If False, a ValueError is raised any time interpolation is attempted on a value outside of the range of x (where extrapolation is necessary). If True, out of bounds values are assigned fill_value fill_value: float or array-like, optional Default NaN. this value will be used to fill in for points outside of the time range. Returns ------- Dataset Examples -------- >>> ds = mikeio.read("tests/testdata/HD2D.dfsu") >>> ds <mikeio.Dataset> Dimensions: (9, 884) Time: 1985-08-06 07:00:00 - 1985-08-07 03:00:00 Items: 0: Surface elevation <Surface Elevation> (meter) 1: U velocity <u velocity component> (meter per sec) 2: V velocity <v velocity component> (meter per sec) 3: Current speed <Current Speed> (meter per sec) >>> dsi = ds.interp_time(dt=1800) >>> dsi <mikeio.Dataset> Dimensions: (41, 884) Time: 1985-08-06 07:00:00 - 1985-08-07 03:00:00 Items: 0: Surface elevation <Surface Elevation> (meter) 1: U velocity <u velocity component> (meter per sec) 2: V velocity <v velocity component> (meter per sec) 3: Current speed <Current Speed> (meter per sec) """ if isinstance(dt, pd.DatetimeIndex): t_out_index = dt elif isinstance(dt, Dataset): t_out_index = dt.time else: offset = pd.tseries.offsets.DateOffset(seconds=dt) t_out_index = pd.date_range( start=self.time[0], end=self.time[-1], freq=offset ) t_in = self.time.values.astype(float) t_out = t_out_index.values.astype(float) data = [ self._interpolate_item(t_in, t_out, item, method, extrapolate, fill_value) for item in self ] return Dataset(data, t_out_index, self.items.copy()) @staticmethod def _interpolate_item(intime, outtime, dataitem, method, extrapolate, fill_value): from scipy.interpolate import interp1d interpolator = interp1d( intime, dataitem, axis=0, kind=method, bounds_error=not extrapolate, fill_value=fill_value, ) return interpolator(outtime) def to_dataframe(self, unit_in_name=False, round_time="ms"): """Convert Dataset to a Pandas DataFrame Parameters ---------- unit_in_name: bool, optional include unit in column name, default False Returns ------- pd.DataFrame """ if len(self.data[0].shape) != 1: self = self.squeeze() if len(self.data[0].shape) != 1: raise ValueError( "Only data with a single dimension can be converted to a dataframe. Hint: use `isel` to create a subset." ) if unit_in_name: names = [f"{item.name} ({item.unit.name})" for item in self.items] else: names = [item.name for item in self.items] data = np.asarray(self.data).T df = pd.DataFrame(data, columns=names) if round_time: rounded_idx =
pd.DatetimeIndex(self.time)
pandas.DatetimeIndex
from copy import deepcopy import tempfile import numpy as np import pandas as pd import pytest from PIL import Image from Bio import SeqIO from Bio.Align import MultipleSeqAlignment from seqlike import SeqLike from seqlike.codon_tables import human_codon_table, human_codon_map, codon_table_to_codon_map from . import test_path # TODO: Turn this into a pytest fixture using Hypothesis. # We might need to refactor out the fixtures a bit. nt_seqs = [SeqLike(s, "nt") for s in SeqIO.parse(test_path / f"abs_nt_4.fasta", "fasta")] s = SeqLike(SeqIO.read(test_path / f"test.fa", "fasta"), seq_type="dna") s_aa = SeqLike(SeqIO.read(test_path / f"test.fa", "fasta"), seq_type="dna").aa() s_aa_with_codon_map = SeqLike( SeqIO.read(test_path / f"test.fa", "fasta"), codon_map=human_codon_map, seq_type="dna", ).aa() seqs = [deepcopy(s)] * 10 seqs_aa = [deepcopy(s_aa)] * 10 seqs_aa_with_codon_map = [deepcopy(s_aa_with_codon_map)] * 10 seqs_mixed = deepcopy(seqs) + deepcopy(seqs_aa) # ---- test list of seqs of various types --------- seqs_list = [ (seqs, "nt"), (seqs_aa, "aa"), (seqs_aa_with_codon_map, "aa"), pytest.param( seqs_mixed, None, marks=pytest.mark.xfail(reason="Not a homogeneous list of SeqLikes."), ), ] @pytest.mark.parametrize("seqs, _type", seqs_list) def test_init_and__type(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) assert isinstance(df, pd.DataFrame) assert df.seqs.seq._type == _type.upper() @pytest.mark.parametrize("seqs, _type", seqs_list) def test_write(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) # r+ is read-writable with tempfile.NamedTemporaryFile(mode="r+") as tempf: df["seqs"].seq.write(tempf, "fasta") # rewind file after writing tempf.seek(0) read_seqs = pd.Series(SeqLike(s, seq_type=_type) for s in SeqIO.parse(tempf, "fasta")) for seq1, seq2 in zip(read_seqs, df["seqs"]): assert str(seq1) == str(seq2) @pytest.mark.parametrize("seqs, _type", seqs_list) def test_plot(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) assert isinstance(df.seqs.seq.plot(use_bokeh=False), Image.Image) @pytest.mark.parametrize("seqs, _type", seqs_list) def test_align(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) assert isinstance(df.seqs.seq.align(), pd.Series) @pytest.mark.parametrize("seqs, _type", seqs_list) def test_as_alignment(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) assert isinstance(df.seqs.seq.as_alignment(), MultipleSeqAlignment) @pytest.mark.parametrize("seqs, _type", seqs_list) def test_as_counts(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) as_counts = df.seqs.seq.as_counts() assert isinstance(as_counts, np.ndarray) assert as_counts.shape == (max(len(s) for s in seqs), len(seqs[0].alphabet)) @pytest.mark.parametrize("seqs, _type", seqs_list) def test_extend_ambiguous_counts(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) extended_counts = df.seqs.seq._extend_ambiguous_counts() assert isinstance(extended_counts, np.ndarray) @pytest.mark.parametrize("seqs, _type", seqs_list) def test_consensus(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) consensus = df.seqs.seq.consensus() assert isinstance(consensus, SeqLike) assert len(consensus) == max(len(s) for s in seqs) @pytest.mark.parametrize("seqs, _type", seqs_list) def test_degenerate(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) degenerate = df.seqs.seq.degenerate() assert isinstance(degenerate, SeqLike) assert len(degenerate) == max(len(s) for s in seqs) assert set(degenerate).issubset(set(df.seqs.seq.alphabet)) def test_consensus2(): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": nt_seqs}) consensus = df.seqs.seq.consensus() assert ( str(consensus) == "TCAATTGGGGGAGGAGCTCTGGTGGAGGCGGTAGCGGAGGCGGAGGGTCGGCTAGCCAAGTCCAATTGGTTGAATCTGGTGGTGGTGTTGTTCAACCAGGTGGTTCTTTGAGATTGTCTT" ) def test_degenerate2(): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": nt_seqs}) degenerate = df.seqs.seq.degenerate() assert ( str(degenerate) == "TCAATTGGGGGAGGAGCTCTSGTGGWGGCVGTAGCGGAGKCGGAGGKTCSGCWAGCCAAGTCCAATTGGTTGAATCTGGTGGTGGTGTTGTTCAACCAGGTGGTTCTTTGAGATTGTCTT" ) @pytest.mark.parametrize("seqs, _type", seqs_list) def test_max_length(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) assert df.seqs.seq.max_length() == max(len(x) for x in seqs) @pytest.mark.parametrize("seqs, _type", seqs_list) def test_get_seq_by_id(seqs, _type): # TODO: Docstring needed for test intent. df = pd.DataFrame({"seqs": seqs}) assert df.seqs.seq.get_seq_by_id(seqs[0].id) == seqs[0] @pytest.mark.parametrize("seqs, _type", seqs_list) def test__getitem__(seqs, _type): # TODO: Docstring needed for test intent. df =
pd.DataFrame({"seqs": seqs})
pandas.DataFrame
import pandas as pd import numpy as np import git import os import sys import bokeh.io import bokeh.application import bokeh.application.handlers import bokeh.models import bokeh.plotting as bkp from bokeh.models import Span import holoviews as hv from pathlib import Path # from bokeh.io import export_png #-- Setup paths # Get parent directory using git repo = git.Repo("./", search_parent_directories=True) homedir = repo.working_dir # Change working directory to parent directory os.chdir(homedir) # Add 'Dan' directory to the search path for imports sys.path.append('Dan') # Import our custom cube managing functions import cube_formatter as cf #-- Setup bokeh bokeh.io.output_notebook() hv.extension('bokeh') #-- Control parameters # Top N counties to plot with the most deaths # Set to -1 to plot all plotN = 20 shift = 20 # Data Manipulation flags (should match those used in creating submission file) isAllocCounties = True # Flag to distribue state deaths amongst counties isComputeDaily = False # Flag to translate cummulative data to daily counts #- Plot-type control flags isStateWide = False # Flag to plot state-wise data (will use nyt_states file for true_df) # The raw cube won't be affected so make sure it is also state-wise data # AND cumulative since there is only cumulative nyt_us_states data isCumul = True # Flag to denote that the plot should be cumulative, not daily deaths # ** Only affects county-level data since state-wide is implicitly cumulative # This sets which county-wide nyt file is used and sets the plot y-axis label # Key days (should match those used in creating the cube) global_dayzero =
pd.to_datetime('2020 Jan 21')
pandas.to_datetime
"""Visualize financial instruments.""" import math import matplotlib.pyplot as plt import mplfinance as mpf import numpy as np import pandas as pd import seaborn as sns from .utils import validate_df class Visualizer: """Base visualizer class not intended for direct use.""" @validate_df(columns={'open', 'high', 'low', 'close'}) def __init__(self, df): """Visualizer has a `pandas.DataFrame` object as an attribute.""" self.data = df @staticmethod def add_reference_line(ax, x=None, y=None, **kwargs): """ Static method for adding reference lines to plots. Parameters: - ax: The matplotlib `Axes` object to add the reference line to. - x, y: The x, y value to draw the line at as a single value or numpy array-like structure. - For horizontal: pass only `y` - For vertical: pass only `x` - For AB line: pass both `x` and `y` for all coordinates on the line - kwargs: Additional keyword arguments to pass to the plotting function. Returns: The matplotlib `Axes` object passed in. """ try: # in case numpy array-like structures are passed -> AB line if x.shape and y.shape: ax.plot(x, y, **kwargs) except: # error triggers if at least one isn't a numpy array-like structure try: if not x and not y: raise ValueError( 'You must provide an `x` or a `y` at a minimum.' ) elif x and not y: # vertical line ax.axvline(x, **kwargs) elif not x and y: # horizontal line ax.axhline(y, **kwargs) except: raise ValueError( 'If providing only `x` or `y`, it must be a single value.' ) ax.legend() return ax @staticmethod def shade_region(ax, x=tuple(), y=tuple(), **kwargs): """ Static method for shading a region on a plot. Parameters: - ax: The matplotlib `Axes` object to add the shaded region to. - x: Tuple with the `xmin` and `xmax` bounds for the rectangle drawn vertically. - y: Tuple with the `ymin` and `ymax` bounds for the rectangle drawn horizontally. - kwargs: Additional keyword arguments to pass to the plotting function. Returns: The matplotlib `Axes` object passed in. """ if not x and not y: raise ValueError( 'You must provide an x or a y min/max tuple at a minimum.' ) elif x and y: raise ValueError('You can only provide `x` or `y`.') elif x and not y: # vertical span ax.axvspan(*x, **kwargs) elif not x and y: # horizontal span ax.axhspan(*y, **kwargs) return ax @staticmethod def _iter_handler(items): """ Static method for making a list out of an item if it isn't a list or tuple already. Parameters: - items: The variable to make sure it is a list. Returns: The input as a list or tuple. """ if not isinstance(items, (list, tuple)): items = [items] return items def _window_calc(self, column, periods, name, func, named_arg, **kwargs): """ To be implemented by subclasses. Defines how to add lines resulting from window calculations. """ raise NotImplementedError('To be implemented by subclasses.') def moving_average(self, column, periods, **kwargs): """ Add line(s) for the moving average of a column. Parameters: - column: The name of the column to plot. - periods: The rule or list of rules for resampling, like '20D' for 20-day periods. - kwargs: Additional arguments to pass down to the plotting function. Returns: A matplotlib `Axes` object. """ return self._window_calc( column, periods, name='MA', func=pd.DataFrame.resample, named_arg='rule', **kwargs ) def exp_smoothing(self, column, periods, **kwargs): """ Add line(s) for the exponentially smoothed moving average of a column. Parameters: - column: The name of the column to plot. - periods: The span or list of spans for smoothing, like 20 for 20-day periods. - kwargs: Additional arguments to pass down to the plotting function. Returns: A matplotlib `Axes` object. """ return self._window_calc( column, periods, name='EWMA', func=pd.DataFrame.ewm, named_arg='span', **kwargs ) # abstract methods for subclasses to define def evolution_over_time(self, column, **kwargs): """To be implemented by subclasses for generating line plots.""" raise NotImplementedError('To be implemented by subclasses.') def boxplot(self, **kwargs): """To be implemented by subclasses for generating box plots.""" raise NotImplementedError('To be implemented by subclasses.') def histogram(self, column, **kwargs): """To be implemented by subclasses for generating histograms.""" raise NotImplementedError('To be implemented by subclasses.') def after_hours_trades(self): """To be implemented by subclasses for showing the effect of after-hours trading.""" raise NotImplementedError('To be implemented by subclasses.') def pairplot(self, **kwargs): """To be implemented by subclasses for generating pairplots.""" raise NotImplementedError('To be implemented by subclasses.') class StockVisualizer(Visualizer): """Visualizer for a single stock.""" def evolution_over_time(self, column, **kwargs): """ Visualize the evolution over time of a column. Parameters: - column: The name of the column to visualize. - kwargs: Additional keyword arguments to pass down to the plotting function. Returns: A matplotlib `Axes` object. """ return self.data.plot.line(y=column, **kwargs) def boxplot(self, **kwargs): """ Generate box plots for all columns. Parameters: - kwargs: Additional keyword arguments to pass down to the plotting function. Returns: A matplotlib `Axes` object. """ return self.data.plot(kind='box', **kwargs) def histogram(self, column, **kwargs): """ Generate the histogram of a given column. Parameters: - column: The name of the column to visualize. - kwargs: Additional keyword arguments to pass down to the plotting function. Returns: A matplotlib `Axes` object. """ return self.data.plot.hist(y=column, **kwargs) def candlestick(self, date_range=None, resample=None, volume=False, **kwargs): """ Create a candlestick plot for the OHLC data with optional aggregation, subset of the date range, and volume. Parameters: - date_range: String or `slice()` of dates to pass to `loc[]`, if `None` the plot will be for the full range of the data. - resample: The offset to use for resampling the data, if desired. - volume: Whether to show a bar plot for volume traded under the candlesticks - kwargs: Additional keyword arguments to pass down to `mplfinance.plot()` Note: `mplfinance.plot()` doesn't return anything. To save your plot, pass in `savefig=file.png`. """ if not date_range: date_range = slice(self.data.index.min(), self.data.index.max()) plot_data = self.data.loc[date_range] if resample: agg_dict = { 'open': 'first', 'close': 'last', 'high': 'max', 'low': 'min', 'volume': 'sum' } plot_data = plot_data.resample(resample).agg({col: agg_dict[col] for col in plot_data.columns if col in agg_dict}) mpf.plot(plot_data, type='candle', volume=volume, **kwargs) def after_hours_trades(self): """ Visualize the effect of after-hours trading on this asset. Returns: A matplotlib `Axes` object. """ after_hours = self.data.open - self.data.close.shift() monthly_effect = after_hours.resample('1M').sum() fig, axes = plt.subplots(1, 2, figsize=(15, 3)) after_hours.plot( ax=axes[0], title='After-hours trading\n(Open Price - Prior Day\'s Close)' ).set_ylabel('price') monthly_effect.index = monthly_effect.index.strftime('%Y-%b') monthly_effect.plot( ax=axes[1], kind='bar', title='After-hours trading monthly effect', color=np.where(monthly_effect >= 0, 'g', 'r'), rot=90 ).axhline(0, color='black', linewidth=1) axes[1].set_ylabel('price') return axes @staticmethod def fill_between(y1, y2, title, label_higher, label_lower, figsize, legend_x): """ Visualize the difference between assets. Parameters: - y1, y2: Data to be plotted with fill between y2 - y1. - title: The title for the plot. - label_higher: String label for when y2 is higher than y1. - label_lower: String label for when y2 is lower than y1. - figsize: A tuple of (width, height) for the plot dimensions. - legend_x: Where to place the legend below the plot. Returns: A matplotlib `Axes` object. """ is_higher = y2 - y1 > 0 fig = plt.figure(figsize=figsize) for exclude_mask, color, label in zip( (is_higher, np.invert(is_higher)), ('g', 'r'), (label_higher, label_lower) ): plt.fill_between( y2.index, y2, y1, figure=fig, where=exclude_mask, color=color, label=label ) plt.suptitle(title) plt.legend(bbox_to_anchor=(legend_x, -0.1), framealpha=0, ncol=2) for spine in ['top', 'right']: fig.axes[0].spines[spine].set_visible(False) return fig.axes[0] def open_to_close(self, figsize=(10, 4)): """ Visualize the daily change in price from open to close. Parameters: - figsize: A tuple of (width, height) for the plot dimensions. Returns: A matplotlib `Axes` object. """ ax = self.fill_between( self.data.open, self.data.close, figsize=figsize, legend_x=0.67, title='Daily price change (open to close)', label_higher='price rose', label_lower='price fell' ) ax.set_ylabel('price') return ax def fill_between_other(self, other_df, figsize=(10, 4)): """ Visualize the difference in closing price between assets. Parameters: - other_df: The dataframe with the other asset's data. - figsize: A tuple of (width, height) for the plot dimensions. Returns: A matplotlib `Axes` object. """ ax = self.fill_between( other_df.open, self.data.close, figsize=figsize, legend_x=0.7, title='Differential between asset closing price (this - other)', label_higher='asset is higher', label_lower='asset is lower' ) ax.set_ylabel('price') return ax def _window_calc(self, column, periods, name, func, named_arg, **kwargs): """ Helper method for plotting a series and adding reference lines using a window calculation. Parameters: - column: The name of the column to plot. - periods: The rule/span or list of them to pass to the resampling/smoothing function, like '20D' for 20-day periods (for resampling) or 20 for a 20-day span (smoothing) - name: The name of the window calculation (to show in the legend). - func: The window calculation function. - named_arg: The name of the argument `periods` is being passed as. - kwargs: Additional arguments to pass down to the plotting function. Returns: A matplotlib `Axes` object. """ ax = self.data.plot(y=column, **kwargs) for period in self._iter_handler(periods): self.data[column].pipe( func, **{named_arg: period} ).mean().plot( ax=ax, linestyle='--', label=f'{period if isinstance(period, str) else str(period) + "D"} {name}' ) plt.legend() return ax def pairplot(self, **kwargs): """ Generate a seaborn pairplot for this asset. Parameters: - kwargs: Keyword arguments to pass down to `sns.pairplot()` Returns: A seaborn pairplot """ return sns.pairplot(self.data, **kwargs) def jointplot(self, other, column, **kwargs): """ Generate a seaborn jointplot for given column in asset compared to another asset. Parameters: - other: The other asset's dataframe - column: The column name to use for the comparison. - kwargs: Keyword arguments to pass down to `sns.jointplot()` Returns: A seaborn jointplot """ return sns.jointplot( x=self.data[column], y=other[column], **kwargs ) def correlation_heatmap(self, other): """ Plot the correlations between this asset and another one with a heatmap. Parameters: - other: The other dataframe. Returns: A seaborn heatmap """ corrs = self.data.pct_change().corrwith(other.pct_change()) corrs = corrs[~
pd.isnull(corrs)
pandas.isnull
from tensorflow.keras.wrappers.scikit_learn import KerasRegressor import numpy as np import sys import math import os import json import csv import pandas import keras from keras.utils.vis_utils import model_to_dot from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, AveragePooling1D, BatchNormalization, Activation, concatenate, ReLU from tensorflow.keras.wrappers.scikit_learn import KerasRegressor from keras.utils.vis_utils import plot_model from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline from tensorflow.keras import backend as K from sklearn.metrics import r2_score from tensorflow.keras import regularizers from sklearn.model_selection import train_test_split, StratifiedKFold, cross_val_score, KFold import tensorflow as tf from scipy.stats import spearmanr, pearsonr import matplotlib.pyplot as plt from data_preprocess import preprocess from sklearn.utils import shuffle import random from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.layers import Lambda from tensorflow import keras from keras.models import Model from numpy import newaxis from sklearn.preprocessing import MinMaxScaler #Reproducibility seed = 460 np.random.seed(seed) tf.random.set_seed(seed) import warnings warnings.simplefilter(action='ignore', category=FutureWarning) #Create new loss function (Rank mse) @tf.function() def rank_mse(yTrue, yPred): def calculate_loss(yTrue, yPred): print(f'[INFO] Print yTrue: {yTrue}') print(f'[INFO] Print yPred: {yPred}') #do lambda_value=0.5 size = yTrue.get_shape()[1] #pass lambda value as tensor lambda_value = tf.convert_to_tensor(lambda_value,dtype="float32") #get vector ranks rank_yTrue = tf.argsort(tf.argsort(yTrue)) rank_yPred = tf.argsort(tf.argsort(yPred)) print(f'[INFO] Print ranked yTrue: {rank_yTrue}') print(f'[INFO] Print ranked yPred: {rank_yPred}') #calculate losses #calculate mse print(f'\n[INFO] Calculating normal mse') mse = tf.subtract(yTrue,yPred) print(f'[INFO] subtract mse: {mse}') mse = tf.square(mse) print(f'[INFO] square mse: {mse}') mse = tf.math.reduce_sum(mse).numpy() print(f'[INFO] reduce sum mse: {mse}') mse = tf.divide(mse,size) print(f'[INFO] divide by size mse: {mse}') mse = tf.cast(mse,dtype="float32") print(f'[INFO] final mse: {mse}') #calculate rank_mse print(f'\n[INFO] Calculating rank mse') rank_mse = tf.cast(tf.subtract(rank_yTrue,rank_yPred),dtype="float32") print(f'[INFO] substract rank_mse: {rank_mse}') rank_mse = tf.square(rank_mse) print(f'[INFO] square rank_mse: {rank_mse}') rank_mse = tf.math.reduce_sum(rank_mse).numpy() print(f'[INFO] reduce sum rank_mse: {rank_mse}') rank_mse = tf.math.sqrt(rank_mse) print(f'[INFO] square root rank_mse: {rank_mse}') rank_mse = tf.divide(rank_mse,size) print(f'[INFO] divide by size rank_mse: {rank_mse}') print(f'[INFO] final rank_mse: {rank_mse}') #(1 - lambda value)* mse(part a of loss) loss_a = tf.multiply(tf.subtract(tf.ones(1,dtype="float32"),lambda_value),mse) print(f'\n[INFO] Final loss a: {loss_a}') #lambda value * rank_mse (part b of loss) loss_b = tf.multiply(lambda_value,rank_mse) print(f'[INFO] Final loss b: {loss_b}') #final loss loss = tf.add(loss_a,loss_b) print(f'[INFO] Final loss: {loss}') return loss debug=True if not debug: with HiddenPrints(): loss = calculate_loss(yTrue, yPred) return loss else: loss = calculate_loss(yTrue, yPred) return loss class ConvolutionLayer(Conv1D): def __init__(self, filters, kernel_size, data_format, padding='valid', activation=None, use_bias=False, kernel_initializer='glorot_uniform', __name__ = 'ConvolutionLayer', **kwargs): super(ConvolutionLayer, self).__init__(filters=filters, kernel_size=kernel_size, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, **kwargs) self.run_value = 1 def call(self, inputs): ## shape of self.kernel is (12, 4, 512) ##the type of self.kernel is <class 'tensorflow.python.ops.resource_variable_ops.ResourceVariable'> if self.run_value > 2: x_tf = self.kernel ##x_tf after reshaping is a tensor and not a weight variable :( x_tf = tf.transpose(x_tf, [2, 0, 1]) alpha = 100 beta = 1/alpha bkg = tf.constant([0.295, 0.205, 0.205, 0.295]) bkg_tf = tf.cast(bkg, tf.float32) filt_list = tf.map_fn(lambda x: tf.math.scalar_mul(beta, tf.subtract(tf.subtract(tf.subtract(tf.math.scalar_mul(alpha, x), tf.expand_dims(tf.math.reduce_max(tf.math.scalar_mul(alpha, x), axis = 1), axis = 1)), tf.expand_dims(tf.math.log(tf.math.reduce_sum(tf.math.exp(tf.subtract(tf.math.scalar_mul(alpha, x), tf.expand_dims(tf.math.reduce_max(tf.math.scalar_mul(alpha, x), axis = 1), axis = 1))), axis = 1)), axis = 1)), tf.math.log(tf.reshape(tf.tile(bkg_tf, [tf.shape(x)[0]]), [tf.shape(x)[0], tf.shape(bkg_tf)[0]])))), x_tf) #print("type of output from map_fn is", type(filt_list)) ##type of output from map_fn is <class 'tensorflow.python.framework.ops.Tensor'> shape of output from map_fn is (10, 12, 4) #print("shape of output from map_fn is", filt_list.shape) #transf = tf.reshape(filt_list, [12, 4, self.filters]) ##12, 4, 512 transf = tf.transpose(filt_list, [1, 2, 0]) ##type of transf is <class 'tensorflow.python.framework.ops.Tensor'> outputs = self._convolution_op(inputs, transf) ## type of outputs is <class 'tensorflow.python.framework.ops.Tensor'> else: outputs = self._convolution_op(inputs, self.kernel) self.run_value += 1 return outputs class nn_model: def __init__(self, fasta_file, readout_file, filters, kernel_size, pool_type, regularizer, activation_type, epochs, batch_size, loss_func, optimizer,scaling,model_name): """initialize basic parameters""" self.filters = filters self.kernel_size = kernel_size self.pool_type = pool_type self.regularizer = regularizer self.activation_type = activation_type self.epochs = epochs self.batch_size = batch_size self.fasta_file = fasta_file self.readout_file = readout_file self.loss_func = loss_func self.optimizer = optimizer self.scaling = scaling self.model_name = model_name #self.eval() self.cross_val() #self.cross_val_binning() def create_model(self): # different metric functions def coeff_determination(y_true, y_pred): SS_res = K.sum(K.square( y_true-y_pred )) SS_tot = K.sum(K.square(y_true - K.mean(y_true))) return (1 - SS_res/(SS_tot + K.epsilon())) def spearman_fn(y_true, y_pred): return tf.py_function(spearmanr, [tf.cast(y_pred, tf.float32), tf.cast(y_true, tf.float32)], Tout=tf.float32) # building model prep = preprocess(self.fasta_file, self.readout_file) # if want mono-nucleotide sequences dict = prep.one_hot_encode() # if want dinucleotide sequences #dict = prep.dinucleotide_encode() readout = dict["readout"] fw_fasta = dict["forward"] rc_fasta = dict["reverse"] dim_num = fw_fasta.shape # To build this model with the functional API, # you would start by creating an input node: forward = keras.Input(shape=(dim_num[1],dim_num[2]), name = 'forward') reverse = keras.Input(shape=(dim_num[1],dim_num[2]), name = 'reverse') #first_layer = Conv1D(filters=self.filters, kernel_size=self.kernel_size, data_format='channels_last', input_shape=(dim_num[1],dim_num[2]), use_bias = True) first_layer = ConvolutionLayer(filters=self.filters, kernel_size=self.kernel_size, strides=1, data_format='channels_last', use_bias = True) fw = first_layer(forward) bw = first_layer(reverse) concat = concatenate([fw, bw], axis=1) pool_size_input = concat.shape[1] concat_relu = ReLU()(concat) if self.pool_type == 'Max': pool_layer = MaxPooling1D(pool_size=pool_size_input)(concat_relu) #pool_layer = MaxPooling1D(pool_size=12)(concat_relu) elif self.pool_type == 'Ave': pool_layer = AveragePooling1D(pool_size=pool_size_input)(concat_relu) elif self.pool_type == 'custom': def out_shape(input_shape): shape = list(input_shape) print(input_shape) shape[0] = 10 return tuple(shape) #model.add(Lambda(top_k, arguments={'k': 10})) def top_k(inputs, k): # tf.nn.top_k Finds values and indices of the k largest entries for the last dimension print(inputs.shape) inputs2 = tf.transpose(inputs, [0,2,1]) new_vals = tf.nn.top_k(inputs2, k=k, sorted=True).values # transform back to (None, 10, 512) return tf.transpose(new_vals, [0,2,1]) pool_layer = Lambda(top_k, arguments={'k': 2})(concat_relu) pool_layer = AveragePooling1D(pool_size=2)(pool_layer) elif self.pool_type == 'custom_sum': ## apply relu function before custom_sum functions def summed_up(inputs): #nonzero_vals = tf.keras.backend.relu(inputs) new_vals = tf.math.reduce_sum(inputs, axis = 1, keepdims = True) return new_vals pool_layer = Lambda(summed_up)(concat_relu) else: raise NameError('Set the pooling layer name correctly') #layer = Conv1D(filters=128, kernel_size=12)(pool_layer) #layer = Dense(16)(pool_layer) #pool_size_input = layer.shape[1] #layer = MaxPooling1D(pool_size=pool_size_input)(layer) # flatten the layer (None, 512) flat = Flatten()(pool_layer) if self.activation_type == 'linear': if self.regularizer == 'L_1': outputs = Dense(1, kernel_initializer='normal', kernel_regularizer=regularizers.l1(0.001), activation= self.activation_type)(flat) elif self.regularizer == 'L_2': outputs = Dense(1, kernel_initializer='normal', kernel_regularizer=regularizers.l2(0.001), activation= self.activation_type)(flat) else: raise NameError('Set the regularizer name correctly') elif self.activation_type =='sigmoid': outputs = Dense(1, activation= self.activation_type)(flat) model = keras.Model(inputs=[forward, reverse], outputs=outputs) model.summary() if self.loss_func == 'mse': model.compile(loss='mean_squared_error', optimizer=self.optimizer, metrics = [coeff_determination, spearman_fn]) elif self.loss_func == 'huber': loss_huber = keras.losses.Huber(delta=1) model.compile(loss=loss_huber, optimizer=self.optimizer, metrics = [coeff_determination, spearman_fn]) elif self.loss_func == 'mae': loss_mae = keras.losses.MeanAbsoluteError() model.compile(loss=loss_mae, optimizer=self.optimizer, metrics = [coeff_determination, spearman_fn]) elif self.loss_func == 'rank_mse': model.compile(loss=rank_mse, optimizer=self.optimizer, metrics = [coeff_determination, spearman_fn]) elif self.loss_func == 'poisson': poisson_loss = keras.losses.Poisson() model.compile(loss=poisson_loss, optimizer=self.optimizer, metrics = [coeff_determination, spearman_fn]) else: raise NameError('Unrecognized Loss Function') return model def eval(self): # Preprocess the data to one-hot encoded vector prep = preprocess(self.fasta_file, self.readout_file) dict = prep.one_hot_encode() # if want dinucleotide sequences # dict = prep.dinucleotide_encode() # print maximum length without truncation np.set_printoptions(threshold=sys.maxsize) fw_fasta = dict["forward"] rc_fasta = dict["reverse"] readout = dict["readout"] if self.activation_type == 'linear': readout = np.log2(readout) if self.scaling == None: readout = np.ndarray.tolist(readout) elif self.scaling == "0_1": scaler = MinMaxScaler(feature_range=(0,1)) scaler.fit(readout.reshape(-1, 1)) readout = scaler.transform(readout.reshape(-1, 1)) readout = readout.flatten() readout = np.ndarray.tolist(readout) # 90% Train, 10% Test x1_train, x1_test, y1_train, y1_test = train_test_split(fw_fasta, readout, test_size=0.1, random_state=seed) x2_train, x2_test, y2_train, y2_test = train_test_split(rc_fasta, readout, test_size=0.1, random_state=seed) model = self.create_model() # change from list to numpy array y1_train = np.asarray(y1_train) y1_test = np.asarray(y1_test) y2_train = np.asarray(y2_train) y2_test = np.asarray(y2_test) # Without early stopping #history = model.fit({'forward': x1_train, 'reverse': x2_train}, y1_train, epochs=self.epochs, batch_size=self.batch_size, validation_split=0.1) # Early stopping #callback = EarlyStopping(monitor='loss', min_delta=0.001, patience=3, verbose=0, mode='auto', baseline=None, restore_best_weights=False) callback = EarlyStopping(monitor='val_spearman_fn', min_delta=0.0001, patience=3, verbose=0, mode='max', baseline=None, restore_best_weights=False) history = model.fit({'forward': x1_train, 'reverse': x2_train}, y1_train, epochs=self.epochs, batch_size=self.batch_size, validation_split=0.1, callbacks = [callback]) history2 = model.evaluate({'forward': x1_test, 'reverse': x2_test}, y1_test) pred = model.predict({'forward': x1_test, 'reverse': x2_test}) #viz_prediction(pred, y1_test, '{} regression model'.format(self.loss_func), '{}2.png'.format(self.loss_func)) print("Seed number is {}".format(seed)) print('metric values of model.evaluate: '+ str(history2)) print('metrics names are ' + str(model.metrics_names)) def cross_val(self): # Preprocess the data prep = preprocess(self.fasta_file, self.readout_file) dict = prep.one_hot_encode() # If want dinucleotide sequences #dict = prep.dinucleotide_encode() fw_fasta = dict["forward"] rc_fasta = dict["reverse"] readout = dict["readout"] names = prep.read_fasta_name_into_array() if self.activation_type == 'linear': readout = np.log2(readout) if self.scaling == 'no_scaling': readout = np.ndarray.tolist(readout) elif self.scaling == "0_1": scaler = MinMaxScaler(feature_range=(0,1)) scaler.fit(readout.reshape(-1, 1)) readout = scaler.transform(readout.reshape(-1, 1)) readout = readout.flatten() readout = np.ndarray.tolist(readout) elif self.scaling == "-1_1": scaler = MinMaxScaler(feature_range=(-1,1)) scaler.fit(readout.reshape(-1, 1)) readout = scaler.transform(readout.reshape(-1, 1)) readout = readout.flatten() readout = np.ndarray.tolist(readout) forward_shuffle, readout_shuffle, names_shuffle = shuffle(fw_fasta, readout, names, random_state=seed) reverse_shuffle, readout_shuffle, names_shuffle = shuffle(rc_fasta, readout, names, random_state=seed) readout_shuffle = np.array(readout_shuffle) # initialize metrics to save values metrics = [] # Provides train/test indices to split data in train/test sets. kFold = StratifiedKFold(n_splits=10) ln = np.zeros(len(readout_shuffle)) pred_vals =
pandas.DataFrame()
pandas.DataFrame
''' Pd_exp: Prisoner's Dilemma Experimentation ========================================== Generate data for numerous Prisoner's Dilemma tournaments or systems of tournaments. Classes: PdTournament A class to represent a tournament. PdSystem Generate data for multiple tournaments and organize it into a dataframe PdExp Generate data for multiple systems Functions: grouper(iterable, n, fillvalue=None) -> iterable of n-sized-chunks Collect data into fixed-length chunks or blocks avg_normalised_state(object, tuple) -> float Returns the tournament average for given state distribution (e.g. (C,C), (D,D), (C,D), (D,C)) ''' from axelrod import Action, game, Tournament import copy from itertools import zip_longest import numpy as np import pandas as pd from pathlib import Path import code.settings import subprocess # Helper Functions def grouper(iterable, n, fillvalue=None): ''' Collect data into fixed-length chunks or blocks Parameters: iterable (object): an iterable type n (int): integer to indicate size of blocks to group iterable units fillvalue (str): if no more elements are available to create a block, fillvalue is used to finish final block Returns: new-iterable (object): new-iterable that is composed of n-length blocks of the original iterable. ex: grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx" ''' args = [iter(iterable)] * n return zip_longest(*args, fillvalue=fillvalue) def avg_normalised_state(results_obj, state_tupl): ''' Returns the tournament average for given state distribution (e.g. (C,C), (D,D), (C,D), (D,C)) Parameters: results_obj (object): output generated from Axelrod tournament.play() state_tupl (tuple): player-opponent action pair that is the game state of interest (e.g. (Action.C, Action.C) for mutual cooperation) Returns: (float): average distribution of state_tupl for the tournament that results_obj describes. ''' norm_state_dist = results_obj.normalised_state_distribution num_of_players = len(norm_state_dist) grd_ttl = 0 for x in norm_state_dist: for bunch in grouper(x,num_of_players): totl = 0 for pl in range(num_of_players): i = bunch[pl] totl += i[state_tupl] # Each player's CC distribution (one for # each opponent) is summed together Ttl=totl/(num_of_players-1) # Normalized across opponents by # dividing by num_of_players-1 grd_ttl += Ttl return grd_ttl/num_of_players # Averaged across all players class PdTournament: """ A class to represent a tournament. ... Attributes ---------- player_list : list list of strategy names that also describe the tournament players names : str single string that includes the names of all strategies/players separated by comma game : axelrod.game (object) container for game matrix and scoring logic data : pandas.dataframe (object) placeholder for the tournament results Methods ------- run_tournament(reps=1): Executes a round-robin tournament with all listed players. Results are computed and stored in data variable as a pandas dataframe. save_data(file_name): Saves tournament data as a csv file """ def __init__(self, strategy_list, game=None, reps=1): """ Constructs all the necessary attributes for tournament object Parameters ---------- player_list : list list of strategy names that also describe the tournament players game : axelrod.game (object) container for game matrix and scoring logic (default is None, which will prompt the classic PD setting) reps : int number of times to repeat tournament (default is 1) """ self.player_list = strategy_list self.names = ','.join(sorted([n.name for n in strategy_list])) self.game = game self.data = self.run_tournament(reps) # If reps=1, then data will be # one row. If reps >1, then data # will be multiple rows def __repr__(self): return self.names def run_tournament(self, reps=1): """ Executes a round-robin tournament with all listed players. Results are computed and stored in data attribute as a pandas dataframe. Parameters ---------- reps : int number of times to repeat tournament (default is 1) Returns ------- data_row : pandas.dataframe (object) row representation of individual tournament results, which consists of tournament players, player statistics and tournament metrics """ # Instantiate tournament object roster = self.player_list print('Instantiating tournament object with these players: ', self.names) tourn = Tournament(players=roster, game=self.game, prob_end=0.1, turns=30, repetitions=reps, seed=1) results = tourn.play(processes=0) # Collect Group Outcome Metrics normal_scores = results.normalised_scores avg_norm_score = np.average(normal_scores) min_norm_score = np.amin(normal_scores) avg_norm_cc_distribution = avg_normalised_state(results, (Action.C,Action.C)) data = [self.names, avg_norm_score, min_norm_score, avg_norm_cc_distribution] col = ['Tournament_Members', 'Avg_Norm_Score', 'Min_Norm_Score', 'Avg_Norm_CC_Distribution'] # List manipulation to identify individual players in separate columns sorted_list = sorted([n.name for n in roster]) pl_list = list() for num, p in enumerate(sorted_list,1): pl_list.append(f'Player{num}') pl_list.append(f'P{num}_Norm_Score') pl_data_list = list() for name, score in zip(sorted_list, normal_scores): pl_data_list.append(name) pl_data_list.append(score[0]) data = [data[0]]+pl_data_list+data[1:] col = [col[0]]+pl_list+col[1:] # Store data in pandas dataframe data_row = pd.DataFrame([data], columns=col) #self.data = data_row return data_row def save_data(self, file_name): """ Saves tournament data as a csv file """ if self.game is None: R,P,S,T = game.Game().RPST() else: R,P,S,T = self.game.RPST() self.data.to_csv(file_name+f'_gameRPST_{R!r}_{P!r}_{S!r}_{T!r}.csv', index=False) class PdSystem: """ A class to represent a system of tournaments. ... Attributes ---------- game : axelrod.game (object) container for game matrix and scoring logic data : pandas.dataframe (object) placeholder for system data id : team_dict : dictionary container to hold team-tournament object pairs Methods ------- compute_data: Concatenates each individual team dataframe, computes the system metrics, and then assigns a single dataframe to data attribute save_data(file_name): Saves system data as a csv file """ def __init__(self, team_list, game_type=None): """ Constructs all the necessary attributes for system object Parameters ---------- team_list : list a two-dimensional list where each item of the first-dimension is a player_list for a single tournament game_type : axelrod.game (object) container for game matrix and scoring logic (default is None, which will prompt the classic PD setting) """ self.data = None self.id = None self.game = game_type tournament_dict = dict() # Loop through team list and construct tournament instances # for each team. Save each team to the tournament dictionary for num, team in enumerate(team_list,1): player_list = [code.settings.name_strategy_dict[i] for i in team] new_tour = PdTournament(player_list, game_type) tournament_dict[f'Team{num}'] = new_tour self.team_dict = tournament_dict def compute_data(self): ''' Concatenates each individual team dataframe, computes the system metrics, and then assigns a single dataframe to data attribute ''' first = True for key, value in self.team_dict.items(): # renaming columns to tournament data frame df = value.data.rename(columns={'Tournament_Members': key, 'Avg_Norm_Score': f'{key} Avg Score', 'Min_Norm_Score': f'{key} Min Score', 'Avg_Norm_CC_Distribution': f'{key} Avg CC Dist'}) if first: df1 = df first = False else: df1 = pd.concat([df1,df], axis=1) df1.index += 1 # Initialize index from 1 instead of 0 # Collect team data min_scores = [df1[f'{i} Min Score'].values for i in list(self.team_dict)] avg_scores = [df1[f'{i} Avg Score'].values for i in list(self.team_dict)] cc_dists = [df1[f'{i} Avg CC Dist'].values for i in list(self.team_dict)] # Compute system metrics and create new data frame sys_df = pd.DataFrame({'SYS MIN Score' : [np.amin(min_scores)], 'SYS AVG Score' : [np.average(avg_scores)], 'MIN of Team Avgs' : [np.amin(avg_scores)], 'AVG of Team Mins' : [np.average(min_scores)], 'SYS CC Dist AVG' : [np.average(cc_dists)], 'SYS CC Dist MIN' : [np.amin(cc_dists)]}, index=[1]) # Concatenate two data frames sys_df =
pd.concat([sys_df,df1], axis=1)
pandas.concat
# LIBRARIES # set up backend for ssh -x11 figures import matplotlib matplotlib.use('Agg') # read and write import os import sys import glob import re import fnmatch import csv import shutil from datetime import datetime # maths import numpy as np import pandas as pd import math import random # miscellaneous import warnings import gc import timeit # sklearn from sklearn.utils import resample from sklearn.preprocessing import OneHotEncoder from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score, log_loss, roc_auc_score, \ accuracy_score, f1_score, precision_score, recall_score, confusion_matrix, average_precision_score from sklearn.utils.validation import check_is_fitted from sklearn.model_selection import KFold, PredefinedSplit, cross_validate from sklearn.pipeline import Pipeline from sklearn.linear_model import LinearRegression, ElasticNet from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.neural_network import MLPRegressor from sklearn.preprocessing import StandardScaler # Statistics from scipy.stats import pearsonr, ttest_rel, norm # Other tools for ensemble models building (<NAME>'s InnerCV class) from hyperopt import fmin, tpe, space_eval, Trials, hp, STATUS_OK from xgboost import XGBRegressor from lightgbm import LGBMRegressor # CPUs from multiprocessing import Pool # GPUs from GPUtil import GPUtil # tensorflow import tensorflow as tf # keras from keras_preprocessing.image import ImageDataGenerator, Iterator from keras_preprocessing.image.utils import load_img, img_to_array, array_to_img from tensorflow.keras.utils import Sequence from tensorflow.keras.models import Model, Sequential from tensorflow.keras.layers import Flatten, Dense, Dropout, GlobalAveragePooling2D, concatenate from tensorflow.keras import regularizers from tensorflow.keras.optimizers import Adam, RMSprop, Adadelta from tensorflow.keras.callbacks import Callback, EarlyStopping, ReduceLROnPlateau, ModelCheckpoint, CSVLogger from tensorflow.keras.losses import MeanSquaredError, BinaryCrossentropy from tensorflow.keras.metrics import RootMeanSquaredError, MeanAbsoluteError, AUC, BinaryAccuracy, Precision, Recall, \ TruePositives, FalsePositives, FalseNegatives, TrueNegatives from tensorflow_addons.metrics import RSquare, F1Score # Plots import matplotlib.pyplot as plt import matplotlib.cm as cm from PIL import Image from bioinfokit import visuz # Model's attention from keract import get_activations, get_gradients_of_activations from scipy.ndimage.interpolation import zoom # Survival from lifelines.utils import concordance_index # Necessary to define MyCSVLogger import collections import csv import io import six from tensorflow.python.lib.io import file_io from tensorflow.python.util.compat import collections_abc from tensorflow.keras.backend import eval # Set display parameters pd.set_option('display.max_rows', 200) # CLASSES class Basics: """ Root class herited by most other class. Includes handy helper functions """ def __init__(self): # seeds for reproducibility self.seed = 0 os.environ['PYTHONHASHSEED'] = str(self.seed) np.random.seed(self.seed) random.seed(self.seed) # other parameters self.path_data = '../data/' self.folds = ['train', 'val', 'test'] self.n_CV_outer_folds = 10 self.outer_folds = [str(x) for x in list(range(self.n_CV_outer_folds))] self.modes = ['', '_sd', '_str'] self.id_vars = ['id', 'eid', 'instance', 'outer_fold'] self.instances = ['0', '1', '1.5', '1.51', '1.52', '1.53', '1.54', '2', '3'] self.ethnicities_vars_forgot_Other = \ ['Ethnicity.White', 'Ethnicity.British', 'Ethnicity.Irish', 'Ethnicity.White_Other', 'Ethnicity.Mixed', 'Ethnicity.White_and_Black_Caribbean', 'Ethnicity.White_and_Black_African', 'Ethnicity.White_and_Asian', 'Ethnicity.Mixed_Other', 'Ethnicity.Asian', 'Ethnicity.Indian', 'Ethnicity.Pakistani', 'Ethnicity.Bangladeshi', 'Ethnicity.Asian_Other', 'Ethnicity.Black', 'Ethnicity.Caribbean', 'Ethnicity.African', 'Ethnicity.Black_Other', 'Ethnicity.Chinese', 'Ethnicity.Other_ethnicity', 'Ethnicity.Do_not_know', 'Ethnicity.Prefer_not_to_answer', 'Ethnicity.NA'] self.ethnicities_vars = \ ['Ethnicity.White', 'Ethnicity.British', 'Ethnicity.Irish', 'Ethnicity.White_Other', 'Ethnicity.Mixed', 'Ethnicity.White_and_Black_Caribbean', 'Ethnicity.White_and_Black_African', 'Ethnicity.White_and_Asian', 'Ethnicity.Mixed_Other', 'Ethnicity.Asian', 'Ethnicity.Indian', 'Ethnicity.Pakistani', 'Ethnicity.Bangladeshi', 'Ethnicity.Asian_Other', 'Ethnicity.Black', 'Ethnicity.Caribbean', 'Ethnicity.African', 'Ethnicity.Black_Other', 'Ethnicity.Chinese', 'Ethnicity.Other', 'Ethnicity.Other_ethnicity', 'Ethnicity.Do_not_know', 'Ethnicity.Prefer_not_to_answer', 'Ethnicity.NA'] self.demographic_vars = ['Age', 'Sex'] + self.ethnicities_vars self.names_model_parameters = ['target', 'organ', 'view', 'transformation', 'architecture', 'n_fc_layers', 'n_fc_nodes', 'optimizer', 'learning_rate', 'weight_decay', 'dropout_rate', 'data_augmentation_factor'] self.targets_regression = ['Age'] self.targets_binary = ['Sex'] self.models_types = ['', '_bestmodels'] self.dict_prediction_types = {'Age': 'regression', 'Sex': 'binary'} self.dict_side_predictors = {'Age': ['Sex'] + self.ethnicities_vars_forgot_Other, 'Sex': ['Age'] + self.ethnicities_vars_forgot_Other} self.organs = ['Brain', 'Eyes', 'Arterial', 'Heart', 'Abdomen', 'Musculoskeletal'] self.left_right_organs_views = ['Eyes_Fundus', 'Eyes_OCT', 'Arterial_Carotids', 'Musculoskeletal_Hips', 'Musculoskeletal_Knees'] self.dict_organs_to_views = {'Brain': ['MRI'], 'Eyes': ['Fundus', 'OCT'], 'Arterial': ['Carotids'], 'Heart': ['MRI'], 'Abdomen': ['Liver', 'Pancreas'], 'Musculoskeletal': ['Spine', 'Hips', 'Knees', 'FullBody'], 'PhysicalActivity': ['FullWeek']} self.dict_organsviews_to_transformations = \ {'Brain_MRI': ['SagittalRaw', 'SagittalReference', 'CoronalRaw', 'CoronalReference', 'TransverseRaw', 'TransverseReference'], 'Arterial_Carotids': ['Mixed', 'LongAxis', 'CIMT120', 'CIMT150', 'ShortAxis'], 'Heart_MRI': ['2chambersRaw', '2chambersContrast', '3chambersRaw', '3chambersContrast', '4chambersRaw', '4chambersContrast'], 'Musculoskeletal_Spine': ['Sagittal', 'Coronal'], 'Musculoskeletal_FullBody': ['Mixed', 'Figure', 'Skeleton', 'Flesh'], 'PhysicalActivity_FullWeek': ['GramianAngularField1minDifference', 'GramianAngularField1minSummation', 'MarkovTransitionField1min', 'RecurrencePlots1min']} self.dict_organsviews_to_transformations.update(dict.fromkeys(['Eyes_Fundus', 'Eyes_OCT'], ['Raw'])) self.dict_organsviews_to_transformations.update( dict.fromkeys(['Abdomen_Liver', 'Abdomen_Pancreas'], ['Raw', 'Contrast'])) self.dict_organsviews_to_transformations.update( dict.fromkeys(['Musculoskeletal_Hips', 'Musculoskeletal_Knees'], ['MRI'])) self.organsviews_not_to_augment = [] self.organs_instances23 = ['Brain', 'Eyes', 'Arterial', 'Heart', 'Abdomen', 'Musculoskeletal', 'PhysicalActivity'] self.organs_XWAS = \ ['*', '*instances01', '*instances1.5x', '*instances23', 'Brain', 'BrainCognitive', 'BrainMRI', 'Eyes', 'EyesFundus', 'EyesOCT', 'Hearing', 'Lungs', 'Arterial', 'ArterialPulseWaveAnalysis', 'ArterialCarotids', 'Heart', 'HeartECG', 'HeartMRI', 'Abdomen', 'AbdomenLiver', 'AbdomenPancreas', 'Musculoskeletal', 'MusculoskeletalSpine', 'MusculoskeletalHips', 'MusculoskeletalKnees', 'MusculoskeletalFullBody', 'MusculoskeletalScalars', 'PhysicalActivity', 'Biochemistry', 'BiochemistryUrine', 'BiochemistryBlood', 'ImmuneSystem'] # Others if '/Users/Alan/' in os.getcwd(): os.chdir('/Users/Alan/Desktop/Aging/Medical_Images/scripts/') else: os.chdir('/n/groups/patel/Alan/Aging/Medical_Images/scripts/') gc.enable() # garbage collector warnings.filterwarnings('ignore') def _version_to_parameters(self, model_name): parameters = {} parameters_list = model_name.split('_') for i, parameter in enumerate(self.names_model_parameters): parameters[parameter] = parameters_list[i] if len(parameters_list) > 11: parameters['outer_fold'] = parameters_list[11] return parameters @staticmethod def _parameters_to_version(parameters): return '_'.join(parameters.values()) @staticmethod def convert_string_to_boolean(string): if string == 'True': boolean = True elif string == 'False': boolean = False else: print('ERROR: string must be either \'True\' or \'False\'') sys.exit(1) return boolean class Metrics(Basics): """ Helper class defining dictionaries of metrics and custom metrics """ def __init__(self): # Parameters Basics.__init__(self) self.metrics_displayed_in_int = ['True-Positives', 'True-Negatives', 'False-Positives', 'False-Negatives'] self.metrics_needing_classpred = ['F1-Score', 'Binary-Accuracy', 'Precision', 'Recall'] self.dict_metrics_names_K = {'regression': ['RMSE'], # For now, R-Square is buggy. Try again in a few months. 'binary': ['ROC-AUC', 'PR-AUC', 'F1-Score', 'Binary-Accuracy', 'Precision', 'Recall', 'True-Positives', 'False-Positives', 'False-Negatives', 'True-Negatives'], 'multiclass': ['Categorical-Accuracy']} self.dict_metrics_names = {'regression': ['RMSE', 'MAE', 'R-Squared', 'Pearson-Correlation'], 'binary': ['ROC-AUC', 'F1-Score', 'PR-AUC', 'Binary-Accuracy', 'Sensitivity', 'Specificity', 'Precision', 'Recall', 'True-Positives', 'False-Positives', 'False-Negatives', 'True-Negatives'], 'multiclass': ['Categorical-Accuracy']} self.dict_losses_names = {'regression': 'MSE', 'binary': 'Binary-Crossentropy', 'multiclass': 'categorical_crossentropy'} self.dict_main_metrics_names_K = {'Age': 'MAE', 'Sex': 'PR-AUC', 'imbalanced_binary_placeholder': 'PR-AUC'} self.dict_main_metrics_names = {'Age': 'R-Squared', 'Sex': 'ROC-AUC', 'imbalanced_binary_placeholder': 'PR-AUC'} self.main_metrics_modes = {'loss': 'min', 'R-Squared': 'max', 'Pearson-Correlation': 'max', 'RMSE': 'min', 'MAE': 'min', 'ROC-AUC': 'max', 'PR-AUC': 'max', 'F1-Score': 'max', 'C-Index': 'max', 'C-Index-difference': 'max'} self.n_bootstrap_iterations = 1000 def rmse(y_true, y_pred): return math.sqrt(mean_squared_error(y_true, y_pred)) def sensitivity_score(y, pred): _, _, fn, tp = confusion_matrix(y, pred.round()).ravel() return tp / (tp + fn) def specificity_score(y, pred): tn, fp, _, _ = confusion_matrix(y, pred.round()).ravel() return tn / (tn + fp) def true_positives_score(y, pred): _, _, _, tp = confusion_matrix(y, pred.round()).ravel() return tp def false_positives_score(y, pred): _, fp, _, _ = confusion_matrix(y, pred.round()).ravel() return fp def false_negatives_score(y, pred): _, _, fn, _ = confusion_matrix(y, pred.round()).ravel() return fn def true_negatives_score(y, pred): tn, _, _, _ = confusion_matrix(y, pred.round()).ravel() return tn self.dict_metrics_sklearn = {'mean_squared_error': mean_squared_error, 'mean_absolute_error': mean_absolute_error, 'RMSE': rmse, 'Pearson-Correlation': pearsonr, 'R-Squared': r2_score, 'Binary-Crossentropy': log_loss, 'ROC-AUC': roc_auc_score, 'F1-Score': f1_score, 'PR-AUC': average_precision_score, 'Binary-Accuracy': accuracy_score, 'Sensitivity': sensitivity_score, 'Specificity': specificity_score, 'Precision': precision_score, 'Recall': recall_score, 'True-Positives': true_positives_score, 'False-Positives': false_positives_score, 'False-Negatives': false_negatives_score, 'True-Negatives': true_negatives_score} def _bootstrap(self, data, function): results = [] for i in range(self.n_bootstrap_iterations): data_i = resample(data, replace=True, n_samples=len(data.index)) results.append(function(data_i['y'], data_i['pred'])) return np.mean(results), np.std(results) class PreprocessingMain(Basics): """ This class executes the code for step 01. It preprocesses the main dataframe by: - reformating the rows and columns - splitting the dataset into folds for the future cross validations - imputing key missing data - adding a new UKB instance for physical activity data - formating the demographics columns (age, sex and ethnicity) - reformating the dataframe so that different instances of the same participant are treated as different rows - saving the dataframe """ def __init__(self): Basics.__init__(self) self.data_raw = None self.data_features = None self.data_features_eids = None def _add_outer_folds(self): outer_folds_split = pd.read_csv(self.path_data + 'All_eids.csv') outer_folds_split.rename(columns={'fold': 'outer_fold'}, inplace=True) outer_folds_split['eid'] = outer_folds_split['eid'].astype('str') outer_folds_split['outer_fold'] = outer_folds_split['outer_fold'].astype('str') outer_folds_split.set_index('eid', inplace=True) self.data_raw = self.data_raw.join(outer_folds_split) def _impute_missing_ecg_instances(self): data_ecgs = pd.read_csv('/n/groups/patel/Alan/Aging/TimeSeries/scripts/age_analysis/missing_samples.csv') data_ecgs['eid'] = data_ecgs['eid'].astype(str) data_ecgs['instance'] = data_ecgs['instance'].astype(str) for _, row in data_ecgs.iterrows(): self.data_raw.loc[row['eid'], 'Date_attended_center_' + row['instance']] = row['observation_date'] def _add_physicalactivity_instances(self): data_pa = pd.read_csv( '/n/groups/patel/Alan/Aging/TimeSeries/series/PhysicalActivity/90001/features/PA_visit_date.csv') data_pa['eid'] = data_pa['eid'].astype(str) data_pa.set_index('eid', drop=False, inplace=True) data_pa.index.name = 'column_names' self.data_raw = self.data_raw.merge(data_pa, on=['eid'], how='outer') self.data_raw.set_index('eid', drop=False, inplace=True) def _compute_sex(self): # Use genetic sex when available self.data_raw['Sex_genetic'][self.data_raw['Sex_genetic'].isna()] = \ self.data_raw['Sex'][self.data_raw['Sex_genetic'].isna()] self.data_raw.drop(['Sex'], axis=1, inplace=True) self.data_raw.rename(columns={'Sex_genetic': 'Sex'}, inplace=True) self.data_raw.dropna(subset=['Sex'], inplace=True) def _compute_age(self): # Recompute age with greater precision by leveraging the month of birth self.data_raw['Year_of_birth'] = self.data_raw['Year_of_birth'].astype(int) self.data_raw['Month_of_birth'] = self.data_raw['Month_of_birth'].astype(int) self.data_raw['Date_of_birth'] = self.data_raw.apply( lambda row: datetime(row.Year_of_birth, row.Month_of_birth, 15), axis=1) for i in self.instances: self.data_raw['Date_attended_center_' + i] = \ self.data_raw['Date_attended_center_' + i].apply( lambda x: pd.NaT if pd.isna(x) else datetime.strptime(x, '%Y-%m-%d')) self.data_raw['Age_' + i] = self.data_raw['Date_attended_center_' + i] - self.data_raw['Date_of_birth'] self.data_raw['Age_' + i] = self.data_raw['Age_' + i].dt.days / 365.25 self.data_raw.drop(['Date_attended_center_' + i], axis=1, inplace=True) self.data_raw.drop(['Year_of_birth', 'Month_of_birth', 'Date_of_birth'], axis=1, inplace=True) self.data_raw.dropna(how='all', subset=['Age_0', 'Age_1', 'Age_1.5', 'Age_1.51', 'Age_1.52', 'Age_1.53', 'Age_1.54', 'Age_2', 'Age_3'], inplace=True) def _encode_ethnicity(self): # Fill NAs for ethnicity on instance 0 if available in other instances eids_missing_ethnicity = self.data_raw['eid'][self.data_raw['Ethnicity'].isna()] for eid in eids_missing_ethnicity: sample = self.data_raw.loc[eid, :] if not math.isnan(sample['Ethnicity_1']): self.data_raw.loc[eid, 'Ethnicity'] = self.data_raw.loc[eid, 'Ethnicity_1'] elif not math.isnan(sample['Ethnicity_2']): self.data_raw.loc[eid, 'Ethnicity'] = self.data_raw.loc[eid, 'Ethnicity_2'] self.data_raw.drop(['Ethnicity_1', 'Ethnicity_2'], axis=1, inplace=True) # One hot encode ethnicity dict_ethnicity_codes = {'1': 'Ethnicity.White', '1001': 'Ethnicity.British', '1002': 'Ethnicity.Irish', '1003': 'Ethnicity.White_Other', '2': 'Ethnicity.Mixed', '2001': 'Ethnicity.White_and_Black_Caribbean', '2002': 'Ethnicity.White_and_Black_African', '2003': 'Ethnicity.White_and_Asian', '2004': 'Ethnicity.Mixed_Other', '3': 'Ethnicity.Asian', '3001': 'Ethnicity.Indian', '3002': 'Ethnicity.Pakistani', '3003': 'Ethnicity.Bangladeshi', '3004': 'Ethnicity.Asian_Other', '4': 'Ethnicity.Black', '4001': 'Ethnicity.Caribbean', '4002': 'Ethnicity.African', '4003': 'Ethnicity.Black_Other', '5': 'Ethnicity.Chinese', '6': 'Ethnicity.Other_ethnicity', '-1': 'Ethnicity.Do_not_know', '-3': 'Ethnicity.Prefer_not_to_answer', '-5': 'Ethnicity.NA'} self.data_raw['Ethnicity'] = self.data_raw['Ethnicity'].fillna(-5).astype(int).astype(str) ethnicities = pd.get_dummies(self.data_raw['Ethnicity']) self.data_raw.drop(['Ethnicity'], axis=1, inplace=True) ethnicities.rename(columns=dict_ethnicity_codes, inplace=True) ethnicities['Ethnicity.White'] = ethnicities['Ethnicity.White'] + ethnicities['Ethnicity.British'] + \ ethnicities['Ethnicity.Irish'] + ethnicities['Ethnicity.White_Other'] ethnicities['Ethnicity.Mixed'] = ethnicities['Ethnicity.Mixed'] + \ ethnicities['Ethnicity.White_and_Black_Caribbean'] + \ ethnicities['Ethnicity.White_and_Black_African'] + \ ethnicities['Ethnicity.White_and_Asian'] + \ ethnicities['Ethnicity.Mixed_Other'] ethnicities['Ethnicity.Asian'] = ethnicities['Ethnicity.Asian'] + ethnicities['Ethnicity.Indian'] + \ ethnicities['Ethnicity.Pakistani'] + ethnicities['Ethnicity.Bangladeshi'] + \ ethnicities['Ethnicity.Asian_Other'] ethnicities['Ethnicity.Black'] = ethnicities['Ethnicity.Black'] + ethnicities['Ethnicity.Caribbean'] + \ ethnicities['Ethnicity.African'] + ethnicities['Ethnicity.Black_Other'] ethnicities['Ethnicity.Other'] = ethnicities['Ethnicity.Other_ethnicity'] + \ ethnicities['Ethnicity.Do_not_know'] + \ ethnicities['Ethnicity.Prefer_not_to_answer'] + \ ethnicities['Ethnicity.NA'] self.data_raw = self.data_raw.join(ethnicities) def generate_data(self): # Preprocessing dict_UKB_fields_to_names = {'34-0.0': 'Year_of_birth', '52-0.0': 'Month_of_birth', '53-0.0': 'Date_attended_center_0', '53-1.0': 'Date_attended_center_1', '53-2.0': 'Date_attended_center_2', '53-3.0': 'Date_attended_center_3', '31-0.0': 'Sex', '22001-0.0': 'Sex_genetic', '21000-0.0': 'Ethnicity', '21000-1.0': 'Ethnicity_1', '21000-2.0': 'Ethnicity_2', '22414-2.0': 'Abdominal_images_quality'} self.data_raw = pd.read_csv('/n/groups/patel/uk_biobank/project_52887_41230/ukb41230.csv', usecols=['eid', '31-0.0', '22001-0.0', '21000-0.0', '21000-1.0', '21000-2.0', '34-0.0', '52-0.0', '53-0.0', '53-1.0', '53-2.0', '53-3.0', '22414-2.0']) # Formatting self.data_raw.rename(columns=dict_UKB_fields_to_names, inplace=True) self.data_raw['eid'] = self.data_raw['eid'].astype(str) self.data_raw.set_index('eid', drop=False, inplace=True) self.data_raw.index.name = 'column_names' self._add_outer_folds() self._impute_missing_ecg_instances() self._add_physicalactivity_instances() self._compute_sex() self._compute_age() self._encode_ethnicity() # Concatenate the data from the different instances self.data_features = None for i in self.instances: print('Preparing the samples for instance ' + i) df_i = self.data_raw[['eid', 'outer_fold', 'Age_' + i, 'Sex'] + self.ethnicities_vars + ['Abdominal_images_quality']].dropna(subset=['Age_' + i]) print(str(len(df_i.index)) + ' samples found in instance ' + i) df_i.rename(columns={'Age_' + i: 'Age'}, inplace=True) df_i['instance'] = i df_i['id'] = df_i['eid'] + '_' + df_i['instance'] df_i = df_i[self.id_vars + self.demographic_vars + ['Abdominal_images_quality']] if i != '2': df_i['Abdominal_images_quality'] = np.nan # not defined for instance 3, not relevant for instances 0, 1 if self.data_features is None: self.data_features = df_i else: self.data_features = self.data_features.append(df_i) print('The size of the full concatenated dataframe is now ' + str(len(self.data_features.index))) # Save age as a float32 instead of float64 self.data_features['Age'] = np.float32(self.data_features['Age']) # Shuffle the rows before saving the dataframe self.data_features = self.data_features.sample(frac=1) # Generate dataframe for eids pipeline as opposed to instances pipeline self.data_features_eids = self.data_features[self.data_features.instance == '0'] self.data_features_eids['instance'] = '*' self.data_features_eids['id'] = [ID.replace('_0', '_*') for ID in self.data_features_eids['id'].values] def save_data(self): self.data_features.to_csv(self.path_data + 'data-features_instances.csv', index=False) self.data_features_eids.to_csv(self.path_data + 'data-features_eids.csv', index=False) class PreprocessingImagesIDs(Basics): """ Splits the different images datasets into folds for the future cross validation """ def __init__(self): Basics.__init__(self) # Instances 2 and 3 datasets (most medical images, mostly medical images) self.instances23_eids = None self.HEART_EIDs = None self.heart_eids = None self.FOLDS_23_EIDS = None def _load_23_eids(self): data_features = pd.read_csv(self.path_data + 'data-features_instances.csv') images_eids = data_features['eid'][data_features['instance'].isin([2, 3])] self.images_eids = list(set(images_eids)) def _load_heart_eids(self): # IDs already used in Heart videos HEART_EIDS = {} heart_eids = [] for i in range(10): # Important: The i's data fold is used as *validation* fold for outer fold i. data_i = pd.read_csv( "/n/groups/patel/JbProst/Heart/Data/FoldsAugmented/data-features_Heart_20208_Augmented_Age_val_" + str( i) + ".csv") HEART_EIDS[i] = list(set([int(str(ID)[:7]) for ID in data_i['eid']])) heart_eids = heart_eids + HEART_EIDS[i] self.HEART_EIDS = HEART_EIDS self.heart_eids = heart_eids def _split_23_eids_folds(self): self._load_23_eids() self._load_heart_eids() # List extra images ids, and split them between the different folds. extra_eids = [eid for eid in self.images_eids if eid not in self.heart_eids] random.shuffle(extra_eids) n_samples = len(extra_eids) n_samples_by_fold = n_samples / self.n_CV_outer_folds FOLDS_EXTRAEIDS = {} FOLDS_EIDS = {} for outer_fold in self.outer_folds: FOLDS_EXTRAEIDS[outer_fold] = \ extra_eids[int((int(outer_fold)) * n_samples_by_fold):int((int(outer_fold) + 1) * n_samples_by_fold)] FOLDS_EIDS[outer_fold] = self.HEART_EIDS[int(outer_fold)] + FOLDS_EXTRAEIDS[outer_fold] self.FOLDS_23_EIDS = FOLDS_EIDS def _save_23_eids_folds(self): for outer_fold in self.outer_folds: with open(self.path_data + 'instances23_eids_' + outer_fold + '.csv', 'w', newline='') as myfile: wr = csv.writer(myfile, quoting=csv.QUOTE_ALL) wr.writerow(self.FOLDS_23_EIDS[outer_fold]) def generate_eids_splits(self): print("Generating eids split for organs on instances 2 and 3") self._split_23_eids_folds() self._save_23_eids_folds() class PreprocessingFolds(Metrics): """ Splits the data into training, validation and testing sets for all CV folds """ def __init__(self, target, organ, regenerate_data): Metrics.__init__(self) self.target = target self.organ = organ self.list_ids_per_view_transformation = None # Check if these folds have already been generated if not regenerate_data: if len(glob.glob(self.path_data + 'data-features_' + organ + '_*_' + target + '_*.csv')) > 0: print("Error: The files already exist! Either change regenerate_data to True or delete the previous" " version.") sys.exit(1) self.side_predictors = self.dict_side_predictors[target] self.variables_to_normalize = self.side_predictors if target in self.targets_regression: self.variables_to_normalize.append(target) self.dict_image_quality_col = {'Liver': 'Abdominal_images_quality'} self.dict_image_quality_col.update( dict.fromkeys(['Brain', 'Eyes', 'Arterial', 'Heart', 'Abdomen', 'Musculoskeletal', 'PhysicalActivity'], None)) self.image_quality_col = self.dict_image_quality_col[organ] self.views = self.dict_organs_to_views[organ] self.list_ids = None self.list_ids_per_view = {} self.data = None self.EIDS = None self.EIDS_per_view = {'train': {}, 'val': {}, 'test': {}} self.data_fold = None def _get_list_ids(self): self.list_ids_per_view_transformation = {} list_ids = [] # if different views are available, take the union of the ids for view in self.views: self.list_ids_per_view_transformation[view] = {} for transformation in self.dict_organsviews_to_transformations[self.organ + '_' + view]: list_ids_transformation = [] path = '../images/' + self.organ + '/' + view + '/' + transformation + '/' # for paired organs, take the unions of the ids available on the right and the left sides if self.organ + '_' + view in self.left_right_organs_views: for side in ['right', 'left']: list_ids_transformation += os.listdir(path + side + '/') list_ids_transformation = np.unique(list_ids_transformation).tolist() else: list_ids_transformation += os.listdir(path) self.list_ids_per_view_transformation[view][transformation] = \ [im.replace('.jpg', '') for im in list_ids_transformation] list_ids += self.list_ids_per_view_transformation[view][transformation] self.list_ids = np.unique(list_ids).tolist() self.list_ids.sort() def _filter_and_format_data(self): """ Clean the data before it can be split between the rows """ cols_data = self.id_vars + self.demographic_vars if self.image_quality_col is not None: cols_data.append(self.dict_image_quality_col[self.organ]) data = pd.read_csv(self.path_data + 'data-features_instances.csv', usecols=cols_data) data.rename(columns={self.dict_image_quality_col[self.organ]: 'Data_quality'}, inplace=True) for col_name in self.id_vars: data[col_name] = data[col_name].astype(str) data.set_index('id', drop=False, inplace=True) if self.image_quality_col is not None: data = data[data['Data_quality'] != np.nan] data.drop('Data_quality', axis=1, inplace=True) # get rid of samples with NAs data.dropna(inplace=True) # list the samples' ids for which images are available data = data.loc[self.list_ids] self.data = data def _split_data(self): # Generate the data for each outer_fold for i, outer_fold in enumerate(self.outer_folds): of_val = outer_fold of_test = str((int(outer_fold) + 1) % len(self.outer_folds)) DATA = { 'train': self.data[~self.data['outer_fold'].isin([of_val, of_test])], 'val': self.data[self.data['outer_fold'] == of_val], 'test': self.data[self.data['outer_fold'] == of_test] } # Generate the data for the different views and transformations for view in self.views: for transformation in self.dict_organsviews_to_transformations[self.organ + '_' + view]: print('Splitting data for view ' + view + ', and transformation ' + transformation) DF = {} for fold in self.folds: idx = DATA[fold]['id'].isin(self.list_ids_per_view_transformation[view][transformation]).values DF[fold] = DATA[fold].iloc[idx, :] # compute values for scaling of variables normalizing_values = {} for var in self.variables_to_normalize: var_mean = DF['train'][var].mean() if len(DF['train'][var].unique()) < 2: print('Variable ' + var + ' has a single value in fold ' + outer_fold + '. Using 1 as std for normalization.') var_std = 1 else: var_std = DF['train'][var].std() normalizing_values[var] = {'mean': var_mean, 'std': var_std} # normalize the variables for fold in self.folds: for var in self.variables_to_normalize: DF[fold][var + '_raw'] = DF[fold][var] DF[fold][var] = (DF[fold][var] - normalizing_values[var]['mean']) \ / normalizing_values[var]['std'] # report issue if NAs were detected (most likely comes from a sample whose id did not match) n_mismatching_samples = DF[fold].isna().sum().max() if n_mismatching_samples > 0: print(DF[fold][DF[fold].isna().any(axis=1)]) print('/!\\ WARNING! ' + str(n_mismatching_samples) + ' ' + fold + ' images ids out of ' + str(len(DF[fold].index)) + ' did not match the dataframe!') # save the data DF[fold].to_csv(self.path_data + 'data-features_' + self.organ + '_' + view + '_' + transformation + '_' + self.target + '_' + fold + '_' + outer_fold + '.csv', index=False) print('For outer_fold ' + outer_fold + ', the ' + fold + ' fold has a sample size of ' + str(len(DF[fold].index))) def generate_folds(self): self._get_list_ids() self._filter_and_format_data() self._split_data() class PreprocessingSurvival(Basics): """ Preprocesses the main dataframe for survival purposes. Mirrors the PreprocessingMain class, but computes Death time and FollowTime for the future survival analysis """ def __init__(self): Basics.__init__(self) self.data_raw = None self.data_features = None self.data_features_eids = None self.survival_vars = ['FollowUpTime', 'Death'] def _preprocessing(self): usecols = ['eid', '40000-0.0', '34-0.0', '52-0.0', '53-0.0', '53-1.0', '53-2.0', '53-3.0'] self.data_raw = pd.read_csv('/n/groups/patel/uk_biobank/project_52887_41230/ukb41230.csv', usecols=usecols) dict_UKB_fields_to_names = {'40000-0.0': 'FollowUpDate', '34-0.0': 'Year_of_birth', '52-0.0': 'Month_of_birth', '53-0.0': 'Date_attended_center_0', '53-1.0': 'Date_attended_center_1', '53-2.0': 'Date_attended_center_2', '53-3.0': 'Date_attended_center_3'} self.data_raw.rename(columns=dict_UKB_fields_to_names, inplace=True) self.data_raw['eid'] = self.data_raw['eid'].astype(str) self.data_raw.set_index('eid', drop=False, inplace=True) self.data_raw.index.name = 'column_names' # Format survival data self.data_raw['Death'] = ~self.data_raw['FollowUpDate'].isna() self.data_raw['FollowUpDate'][self.data_raw['FollowUpDate'].isna()] = '2020-04-27' self.data_raw['FollowUpDate'] = self.data_raw['FollowUpDate'].apply( lambda x: pd.NaT if pd.isna(x) else datetime.strptime(x, '%Y-%m-%d')) assert ('FollowUpDate.1' not in self.data_raw.columns) def _add_physicalactivity_instances(self): data_pa = pd.read_csv( '/n/groups/patel/Alan/Aging/TimeSeries/series/PhysicalActivity/90001/features/PA_visit_date.csv') data_pa['eid'] = data_pa['eid'].astype(str) data_pa.set_index('eid', drop=False, inplace=True) data_pa.index.name = 'column_names' self.data_raw = self.data_raw.merge(data_pa, on=['eid'], how='outer') self.data_raw.set_index('eid', drop=False, inplace=True) def _compute_age(self): # Recompute age with greater precision by leveraging the month of birth self.data_raw.dropna(subset=['Year_of_birth'], inplace=True) self.data_raw['Year_of_birth'] = self.data_raw['Year_of_birth'].astype(int) self.data_raw['Month_of_birth'] = self.data_raw['Month_of_birth'].astype(int) self.data_raw['Date_of_birth'] = self.data_raw.apply( lambda row: datetime(row.Year_of_birth, row.Month_of_birth, 15), axis=1) for i in self.instances: self.data_raw['Date_attended_center_' + i] = self.data_raw['Date_attended_center_' + i].apply( lambda x: pd.NaT if pd.isna(x) else datetime.strptime(x, '%Y-%m-%d')) self.data_raw['Age_' + i] = self.data_raw['Date_attended_center_' + i] - self.data_raw['Date_of_birth'] self.data_raw['Age_' + i] = self.data_raw['Age_' + i].dt.days / 365.25 self.data_raw['FollowUpTime_' + i] = self.data_raw['FollowUpDate'] - self.data_raw[ 'Date_attended_center_' + i] self.data_raw['FollowUpTime_' + i] = self.data_raw['FollowUpTime_' + i].dt.days / 365.25 self.data_raw.drop(['Date_attended_center_' + i], axis=1, inplace=True) self.data_raw.drop(['Year_of_birth', 'Month_of_birth', 'Date_of_birth', 'FollowUpDate'], axis=1, inplace=True) self.data_raw.dropna(how='all', subset=['Age_0', 'Age_1', 'Age_1.5', 'Age_1.51', 'Age_1.52', 'Age_1.53', 'Age_1.54', 'Age_2', 'Age_3'], inplace=True) def _concatenate_instances(self): self.data_features = None for i in self.instances: print('Preparing the samples for instance ' + i) df_i = self.data_raw.dropna(subset=['Age_' + i]) print(str(len(df_i.index)) + ' samples found in instance ' + i) dict_names = {} features = ['Age', 'FollowUpTime'] for feature in features: dict_names[feature + '_' + i] = feature self.dict_names = dict_names df_i.rename(columns=dict_names, inplace=True) df_i['instance'] = i df_i['id'] = df_i['eid'] + '_' + df_i['instance'] df_i = df_i[['id', 'eid', 'instance'] + self.survival_vars] if self.data_features is None: self.data_features = df_i else: self.data_features = self.data_features.append(df_i) print('The size of the full concatenated dataframe is now ' + str(len(self.data_features.index))) # Add * instance for eids survival_eids = self.data_features[self.data_features['instance'] == '0'] survival_eids['instance'] = '*' survival_eids['id'] = survival_eids['eid'] + '_' + survival_eids['instance'] self.data_features = self.data_features.append(survival_eids) def generate_data(self): # Formatting self._preprocessing() self._add_physicalactivity_instances() self._compute_age() self._concatenate_instances() # save data self.data_features.to_csv('../data/data_survival.csv', index=False) class MyImageDataGenerator(Basics, Sequence, ImageDataGenerator): """ Helper class: custom data generator for images. It handles several custom features such as: - provides batches of not only images, but also the scalar data (e.g demographics) that correspond to it - it performs random shuffling while making sure that no leftover data (the remainder of the modulo batch size) is being unused - it can handle paired data for paired organs (e.g left/right eyes) """ def __init__(self, target=None, organ=None, view=None, data_features=None, n_samples_per_subepoch=None, batch_size=None, training_mode=None, side_predictors=None, dir_images=None, images_width=None, images_height=None, data_augmentation=False, data_augmentation_factor=None, seed=None): # Parameters Basics.__init__(self) self.target = target if target in self.targets_regression: self.labels = data_features[target] else: self.labels = data_features[target + '_raw'] self.organ = organ self.view = view self.training_mode = training_mode self.data_features = data_features self.list_ids = data_features.index.values self.batch_size = batch_size # for paired organs, take twice fewer ids (two images for each id), and add organ_side as side predictor if organ + '_' + view in self.left_right_organs_views: self.data_features['organ_side'] = np.nan self.n_ids_batch = batch_size // 2 else: self.n_ids_batch = batch_size if self.training_mode & (n_samples_per_subepoch is not None): # during training, 1 epoch = number of samples self.steps = math.ceil(n_samples_per_subepoch / batch_size) else: # during prediction and other tasks, an epoch is defined as all the samples being seen once and only once self.steps = math.ceil(len(self.list_ids) / self.n_ids_batch) # learning_rate_patience if n_samples_per_subepoch is not None: self.n_subepochs_per_epoch = math.ceil(len(self.data_features.index) / n_samples_per_subepoch) # initiate the indices and shuffle the ids self.shuffle = training_mode # Only shuffle if the model is being trained. Otherwise no need. self.indices = np.arange(len(self.list_ids)) self.idx_end = 0 # Keep track of last indice to permute indices accordingly at the end of epoch. if self.shuffle: np.random.shuffle(self.indices) # Input for side NN and CNN self.side_predictors = side_predictors self.dir_images = dir_images self.images_width = images_width self.images_height = images_height # Data augmentation self.data_augmentation = data_augmentation self.data_augmentation_factor = data_augmentation_factor self.seed = seed # Parameters for data augmentation: (rotation range, width shift range, height shift range, zoom range) self.augmentation_parameters = \ pd.DataFrame(index=['Brain_MRI', 'Eyes_Fundus', 'Eyes_OCT', 'Arterial_Carotids', 'Heart_MRI', 'Abdomen_Liver', 'Abdomen_Pancreas', 'Musculoskeletal_Spine', 'Musculoskeletal_Hips', 'Musculoskeletal_Knees', 'Musculoskeletal_FullBody', 'PhysicalActivity_FullWeek', 'PhysicalActivity_Walking'], columns=['rotation', 'width_shift', 'height_shift', 'zoom']) self.augmentation_parameters.loc['Brain_MRI', :] = [10, 0.05, 0.1, 0.0] self.augmentation_parameters.loc['Eyes_Fundus', :] = [20, 0.02, 0.02, 0] self.augmentation_parameters.loc['Eyes_OCT', :] = [30, 0.1, 0.2, 0] self.augmentation_parameters.loc[['Arterial_Carotids'], :] = [0, 0.2, 0.0, 0.0] self.augmentation_parameters.loc[['Heart_MRI', 'Abdomen_Liver', 'Abdomen_Pancreas', 'Musculoskeletal_Spine'], :] = [10, 0.1, 0.1, 0.0] self.augmentation_parameters.loc[['Musculoskeletal_Hips', 'Musculoskeletal_Knees'], :] = [10, 0.1, 0.1, 0.1] self.augmentation_parameters.loc[['Musculoskeletal_FullBody'], :] = [10, 0.05, 0.02, 0.0] self.augmentation_parameters.loc[['PhysicalActivity_FullWeek'], :] = [0, 0, 0, 0.0] organ_view = organ + '_' + view ImageDataGenerator.__init__(self, rescale=1. / 255., rotation_range=self.augmentation_parameters.loc[organ_view, 'rotation'], width_shift_range=self.augmentation_parameters.loc[organ_view, 'width_shift'], height_shift_range=self.augmentation_parameters.loc[organ_view, 'height_shift'], zoom_range=self.augmentation_parameters.loc[organ_view, 'zoom']) def __len__(self): return self.steps def on_epoch_end(self): _ = gc.collect() self.indices = np.concatenate([self.indices[self.idx_end:], self.indices[:self.idx_end]]) def _generate_image(self, path_image): img = load_img(path_image, target_size=(self.images_width, self.images_height), color_mode='rgb') Xi = img_to_array(img) if hasattr(img, 'close'): img.close() if self.data_augmentation: params = self.get_random_transform(Xi.shape) Xi = self.apply_transform(Xi, params) Xi = self.standardize(Xi) return Xi def _data_generation(self, list_ids_batch): # initialize empty matrices n_samples_batch = min(len(list_ids_batch), self.batch_size) X = np.empty((n_samples_batch, self.images_width, self.images_height, 3)) * np.nan x = np.empty((n_samples_batch, len(self.side_predictors))) * np.nan y = np.empty((n_samples_batch, 1)) * np.nan # fill the matrices sample by sample for i, ID in enumerate(list_ids_batch): y[i] = self.labels[ID] x[i] = self.data_features.loc[ID, self.side_predictors] if self.organ + '_' + self.view in self.left_right_organs_views: if i % 2 == 0: path = self.dir_images + 'right/' x[i][-1] = 0 else: path = self.dir_images + 'left/' x[i][-1] = 1 if not os.path.exists(path + ID + '.jpg'): path = path.replace('/right/', '/left/') if i % 2 == 0 else path.replace('/left/', '/right/') x[i][-1] = 1 - x[i][-1] else: path = self.dir_images X[i, :, :, :] = self._generate_image(path_image=path + ID + '.jpg') return [X, x], y def __getitem__(self, index): # Select the indices idx_start = (index * self.n_ids_batch) % len(self.list_ids) idx_end = (((index + 1) * self.n_ids_batch) - 1) % len(self.list_ids) + 1 if idx_start > idx_end: # If this happens outside of training, that is a mistake if not self.training_mode: print('\nERROR: Outside of training, every sample should only be predicted once!') sys.exit(1) # Select part of the indices from the end of the epoch indices = self.indices[idx_start:] # Generate a new set of indices # print('\nThe end of the data was reached within this batch, looping.') if self.shuffle: np.random.shuffle(self.indices) # Complete the batch with samples from the new indices indices = np.concatenate([indices, self.indices[:idx_end]]) else: indices = self.indices[idx_start: idx_end] if idx_end == len(self.list_ids) & self.shuffle: # print('\nThe end of the data was reached. Shuffling for the next epoch.') np.random.shuffle(self.indices) # Keep track of last indice for end of subepoch self.idx_end = idx_end # Select the corresponding ids list_ids_batch = [self.list_ids[i] for i in indices] # For paired organs, two images (left, right eyes) are selected for each id. if self.organ + '_' + self.view in self.left_right_organs_views: list_ids_batch = [ID for ID in list_ids_batch for _ in ('right', 'left')] return self._data_generation(list_ids_batch) class MyCSVLogger(Callback): """ Custom CSV Logger callback class for Keras training: append to existing file if can be found. Allows to keep track of training over several jobs. """ def __init__(self, filename, separator=',', append=False): self.sep = separator self.filename = filename self.append = append self.writer = None self.keys = None self.append_header = True self.csv_file = None if six.PY2: self.file_flags = 'b' self._open_args = {} else: self.file_flags = '' self._open_args = {'newline': '\n'} Callback.__init__(self) def on_train_begin(self, logs=None): if self.append: if file_io.file_exists(self.filename): with open(self.filename, 'r' + self.file_flags) as f: self.append_header = not bool(len(f.readline())) mode = 'a' else: mode = 'w' self.csv_file = io.open(self.filename, mode + self.file_flags, **self._open_args) def on_epoch_end(self, epoch, logs=None): logs = logs or {} def handle_value(k): is_zero_dim_ndarray = isinstance(k, np.ndarray) and k.ndim == 0 if isinstance(k, six.string_types): return k elif isinstance(k, collections_abc.Iterable) and not is_zero_dim_ndarray: return '"[%s]"' % (', '.join(map(str, k))) else: return k if self.keys is None: self.keys = sorted(logs.keys()) if self.model.stop_training: # We set NA so that csv parsers do not fail for this last epoch. logs = dict([(k, logs[k]) if k in logs else (k, 'NA') for k in self.keys]) if not self.writer: class CustomDialect(csv.excel): delimiter = self.sep fieldnames = ['epoch', 'learning_rate'] + self.keys if six.PY2: fieldnames = [unicode(x) for x in fieldnames] self.writer = csv.DictWriter( self.csv_file, fieldnames=fieldnames, dialect=CustomDialect) if self.append_header: self.writer.writeheader() row_dict = collections.OrderedDict({'epoch': epoch, 'learning_rate': eval(self.model.optimizer.lr)}) row_dict.update((key, handle_value(logs[key])) for key in self.keys) self.writer.writerow(row_dict) self.csv_file.flush() def on_train_end(self, logs=None): self.csv_file.close() self.writer = None class MyModelCheckpoint(ModelCheckpoint): """ Custom checkpoint callback class for Keras training. Handles a baseline performance. """ def __init__(self, filepath, monitor='val_loss', baseline=-np.Inf, verbose=0, save_best_only=False, save_weights_only=False, mode='auto', save_freq='epoch'): # Parameters ModelCheckpoint.__init__(self, filepath, monitor=monitor, verbose=verbose, save_best_only=save_best_only, save_weights_only=save_weights_only, mode=mode, save_freq=save_freq) if mode == 'min': self.monitor_op = np.less self.best = baseline elif mode == 'max': self.monitor_op = np.greater self.best = baseline else: print('Error. mode for metric must be either min or max') sys.exit(1) class DeepLearning(Metrics): """ Core helper class to train models. Used to: - build the data generators - generate the CNN architectures - load the weights """ def __init__(self, target=None, organ=None, view=None, transformation=None, architecture=None, n_fc_layers=None, n_fc_nodes=None, optimizer=None, learning_rate=None, weight_decay=None, dropout_rate=None, data_augmentation_factor=None, debug_mode=False): # Initialization Metrics.__init__(self) tf.random.set_seed(self.seed) # Model's version self.target = target self.organ = organ self.view = view self.transformation = transformation self.architecture = architecture self.n_fc_layers = int(n_fc_layers) self.n_fc_nodes = int(n_fc_nodes) self.optimizer = optimizer self.learning_rate = float(learning_rate) self.weight_decay = float(weight_decay) self.dropout_rate = float(dropout_rate) self.data_augmentation_factor = float(data_augmentation_factor) self.outer_fold = None self.version = target + '_' + organ + '_' + view + '_' + transformation + '_' + architecture + '_' + \ n_fc_layers + '_' + n_fc_nodes + '_' + optimizer + '_' + learning_rate + '_' + weight_decay + \ '_' + dropout_rate + '_' + data_augmentation_factor # NNet's architecture and weights self.side_predictors = self.dict_side_predictors[target] if self.organ + '_' + self.view in self.left_right_organs_views: self.side_predictors.append('organ_side') self.dict_final_activations = {'regression': 'linear', 'binary': 'sigmoid', 'multiclass': 'softmax', 'saliency': 'linear'} self.path_load_weights = None self.keras_weights = None # Generators self.debug_mode = debug_mode self.debug_fraction = 0.005 self.DATA_FEATURES = {} self.mode = None self.n_cpus = len(os.sched_getaffinity(0)) self.dir_images = '../images/' + organ + '/' + view + '/' + transformation + '/' # define dictionary to fit the architecture's input size to the images sizes (take min (height, width)) self.dict_organ_view_transformation_to_image_size = { 'Eyes_Fundus_Raw': (316, 316), # initial size (1388, 1388) 'Eyes_OCT_Raw': (312, 320), # initial size (500, 512) 'Musculoskeletal_Spine_Sagittal': (466, 211), # initial size (1513, 684) 'Musculoskeletal_Spine_Coronal': (315, 313), # initial size (724, 720) 'Musculoskeletal_Hips_MRI': (329, 303), # initial size (626, 680) 'Musculoskeletal_Knees_MRI': (347, 286) # initial size (851, 700) } self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Brain_MRI_SagittalRaw', 'Brain_MRI_SagittalReference', 'Brain_MRI_CoronalRaw', 'Brain_MRI_CoronalReference', 'Brain_MRI_TransverseRaw', 'Brain_MRI_TransverseReference'], (316, 316))) # initial size (88, 88) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Arterial_Carotids_Mixed', 'Arterial_Carotids_LongAxis', 'Arterial_Carotids_CIMT120', 'Arterial_Carotids_CIMT150', 'Arterial_Carotids_ShortAxis'], (337, 291))) # initial size (505, 436) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Heart_MRI_2chambersRaw', 'Heart_MRI_2chambersContrast', 'Heart_MRI_3chambersRaw', 'Heart_MRI_3chambersContrast', 'Heart_MRI_4chambersRaw', 'Heart_MRI_4chambersContrast'], (316, 316))) # initial size (200, 200) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Abdomen_Liver_Raw', 'Abdomen_Liver_Contrast'], (288, 364))) # initial size (288, 364) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Abdomen_Pancreas_Raw', 'Abdomen_Pancreas_Contrast'], (288, 350))) # initial size (288, 350) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Musculoskeletal_FullBody_Figure', 'Musculoskeletal_FullBody_Skeleton', 'Musculoskeletal_FullBody_Flesh', 'Musculoskeletal_FullBody_Mixed'], (541, 181))) # initial size (811, 272) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['PhysicalActivity_FullWeek_GramianAngularField1minDifference', 'PhysicalActivity_FullWeek_GramianAngularField1minSummation', 'PhysicalActivity_FullWeek_MarkovTransitionField1min', 'PhysicalActivity_FullWeek_RecurrencePlots1min'], (316, 316))) # initial size (316, 316) self.dict_architecture_to_image_size = {'MobileNet': (224, 224), 'MobileNetV2': (224, 224), 'NASNetMobile': (224, 224), 'NASNetLarge': (331, 331)} if self.architecture in ['MobileNet', 'MobileNetV2', 'NASNetMobile', 'NASNetLarge']: self.image_width, self.image_height = self.dict_architecture_to_image_size[architecture] else: self.image_width, self.image_height = \ self.dict_organ_view_transformation_to_image_size[organ + '_' + view + '_' + transformation] # define dictionary of batch sizes to fit as many samples as the model's architecture allows self.dict_batch_sizes = { # Default, applies to all images with resized input ~100,000 pixels 'Default': {'VGG16': 32, 'VGG19': 32, 'DenseNet121': 16, 'DenseNet169': 16, 'DenseNet201': 16, 'Xception': 32, 'InceptionV3': 32, 'InceptionResNetV2': 8, 'ResNet50': 32, 'ResNet101': 16, 'ResNet152': 16, 'ResNet50V2': 32, 'ResNet101V2': 16, 'ResNet152V2': 16, 'ResNeXt50': 4, 'ResNeXt101': 8, 'EfficientNetB7': 4, 'MobileNet': 128, 'MobileNetV2': 64, 'NASNetMobile': 64, 'NASNetLarge': 4}} # Define batch size if organ + '_' + view in self.dict_batch_sizes.keys(): randoself.batch_size = self.dict_batch_sizes[organ + '_' + view][architecture] else: self.batch_size = self.dict_batch_sizes['Default'][architecture] # double the batch size for the teslaM40 cores that have bigger memory if len(GPUtil.getGPUs()) > 0: # make sure GPUs are available (not truesometimes for debugging) if GPUtil.getGPUs()[0].memoryTotal > 20000: self.batch_size *= 2 # Define number of ids per batch (twice fewer for paired organs, because left and right samples) self.n_ids_batch = self.batch_size if organ + '_' + view in self.left_right_organs_views: self.n_ids_batch //= 2 # Define number of samples per subepoch if debug_mode: self.n_samples_per_subepoch = self.batch_size * 4 else: self.n_samples_per_subepoch = 32768 if organ + '_' + view in self.left_right_organs_views: self.n_samples_per_subepoch //= 2 # dict to decide which field is used to generate the ids when several targets share the same ids self.dict_target_to_ids = dict.fromkeys(['Age', 'Sex'], 'Age') # Note: R-Squared and F1-Score are not available, because their batch based values are misleading. # For some reason, Sensitivity and Specificity are not available either. Might implement later. self.dict_losses_K = {'MSE': MeanSquaredError(name='MSE'), 'Binary-Crossentropy': BinaryCrossentropy(name='Binary-Crossentropy')} self.dict_metrics_K = {'R-Squared': RSquare(name='R-Squared', y_shape=(1,)), 'RMSE': RootMeanSquaredError(name='RMSE'), 'F1-Score': F1Score(name='F1-Score', num_classes=1, dtype=tf.float32), 'ROC-AUC': AUC(curve='ROC', name='ROC-AUC'), 'PR-AUC': AUC(curve='PR', name='PR-AUC'), 'Binary-Accuracy': BinaryAccuracy(name='Binary-Accuracy'), 'Precision': Precision(name='Precision'), 'Recall': Recall(name='Recall'), 'True-Positives': TruePositives(name='True-Positives'), 'False-Positives': FalsePositives(name='False-Positives'), 'False-Negatives': FalseNegatives(name='False-Negatives'), 'True-Negatives': TrueNegatives(name='True-Negatives')} # Metrics self.prediction_type = self.dict_prediction_types[target] self.loss_name = self.dict_losses_names[self.prediction_type] self.loss_function = self.dict_losses_K[self.loss_name] self.main_metric_name = self.dict_main_metrics_names_K[target] self.main_metric_mode = self.main_metrics_modes[self.main_metric_name] self.main_metric = self.dict_metrics_K[self.main_metric_name] self.metrics_names = [self.main_metric_name] self.metrics = [self.dict_metrics_K[metric_name] for metric_name in self.metrics_names] # Optimizers self.optimizers = {'Adam': Adam, 'RMSprop': RMSprop, 'Adadelta': Adadelta} # Model self.model = None @staticmethod def _append_ext(fn): return fn + ".jpg" def _load_data_features(self): for fold in self.folds: self.DATA_FEATURES[fold] = pd.read_csv( self.path_data + 'data-features_' + self.organ + '_' + self.view + '_' + self.transformation + '_' + self.dict_target_to_ids[self.target] + '_' + fold + '_' + self.outer_fold + '.csv') for col_name in self.id_vars: self.DATA_FEATURES[fold][col_name] = self.DATA_FEATURES[fold][col_name].astype(str) self.DATA_FEATURES[fold].set_index('id', drop=False, inplace=True) def _take_subset_to_debug(self): for fold in self.folds: # use +1 or +2 to test the leftovers pipeline leftovers_extra = {'train': 0, 'val': 1, 'test': 2} n_batches = 2 n_limit_fold = leftovers_extra[fold] + self.batch_size * n_batches self.DATA_FEATURES[fold] = self.DATA_FEATURES[fold].iloc[:n_limit_fold, :] def _generate_generators(self, DATA_FEATURES): GENERATORS = {} for fold in self.folds: # do not generate a generator if there are no samples (can happen for leftovers generators) if fold not in DATA_FEATURES.keys(): continue # parameters training_mode = True if self.mode == 'model_training' else False if (fold == 'train') & (self.mode == 'model_training') & \ (self.organ + '_' + self.view not in self.organsviews_not_to_augment): data_augmentation = True else: data_augmentation = False # define batch size for testing: data is split between a part that fits in batches, and leftovers if self.mode == 'model_testing': if self.organ + '_' + self.view in self.left_right_organs_views: n_samples = len(DATA_FEATURES[fold].index) * 2 else: n_samples = len(DATA_FEATURES[fold].index) batch_size_fold = min(self.batch_size, n_samples) else: batch_size_fold = self.batch_size if (fold == 'train') & (self.mode == 'model_training'): n_samples_per_subepoch = self.n_samples_per_subepoch else: n_samples_per_subepoch = None # generator GENERATORS[fold] = \ MyImageDataGenerator(target=self.target, organ=self.organ, view=self.view, data_features=DATA_FEATURES[fold], n_samples_per_subepoch=n_samples_per_subepoch, batch_size=batch_size_fold, training_mode=training_mode, side_predictors=self.side_predictors, dir_images=self.dir_images, images_width=self.image_width, images_height=self.image_height, data_augmentation=data_augmentation, data_augmentation_factor=self.data_augmentation_factor, seed=self.seed) return GENERATORS def _generate_class_weights(self): if self.dict_prediction_types[self.target] == 'binary': self.class_weights = {} counts = self.DATA_FEATURES['train'][self.target + '_raw'].value_counts() n_total = counts.sum() # weighting the samples for each class inversely proportional to their prevalence, with order of magnitude 1 for i in counts.index.values: self.class_weights[i] = n_total / (counts.loc[i] * len(counts.index)) def _generate_cnn(self): # define the arguments # take special initial weights for EfficientNetB7 (better) if (self.architecture == 'EfficientNetB7') & (self.keras_weights == 'imagenet'): w = 'noisy-student' else: w = self.keras_weights kwargs = {"include_top": False, "weights": w, "input_shape": (self.image_width, self.image_height, 3)} if self.architecture in ['ResNet50', 'ResNet101', 'ResNet152', 'ResNet50V2', 'ResNet101V2', 'ResNet152V2', 'ResNeXt50', 'ResNeXt101']: import tensorflow.keras kwargs.update( {"backend": tensorflow.keras.backend, "layers": tensorflow.keras.layers, "models": tensorflow.keras.models, "utils": tensorflow.keras.utils}) # load the architecture builder if self.architecture == 'VGG16': from tensorflow.keras.applications.vgg16 import VGG16 as ModelBuilder elif self.architecture == 'VGG19': from tensorflow.keras.applications.vgg19 import VGG19 as ModelBuilder elif self.architecture == 'DenseNet121': from tensorflow.keras.applications.densenet import DenseNet121 as ModelBuilder elif self.architecture == 'DenseNet169': from tensorflow.keras.applications.densenet import DenseNet169 as ModelBuilder elif self.architecture == 'DenseNet201': from tensorflow.keras.applications.densenet import DenseNet201 as ModelBuilder elif self.architecture == 'Xception': from tensorflow.keras.applications.xception import Xception as ModelBuilder elif self.architecture == 'InceptionV3': from tensorflow.keras.applications.inception_v3 import InceptionV3 as ModelBuilder elif self.architecture == 'InceptionResNetV2': from tensorflow.keras.applications.inception_resnet_v2 import InceptionResNetV2 as ModelBuilder elif self.architecture == 'ResNet50': from keras_applications.resnet import ResNet50 as ModelBuilder elif self.architecture == 'ResNet101': from keras_applications.resnet import ResNet101 as ModelBuilder elif self.architecture == 'ResNet152': from keras_applications.resnet import ResNet152 as ModelBuilder elif self.architecture == 'ResNet50V2': from keras_applications.resnet_v2 import ResNet50V2 as ModelBuilder elif self.architecture == 'ResNet101V2': from keras_applications.resnet_v2 import ResNet101V2 as ModelBuilder elif self.architecture == 'ResNet152V2': from keras_applications.resnet_v2 import ResNet152V2 as ModelBuilder elif self.architecture == 'ResNeXt50': from keras_applications.resnext import ResNeXt50 as ModelBuilder elif self.architecture == 'ResNeXt101': from keras_applications.resnext import ResNeXt101 as ModelBuilder elif self.architecture == 'EfficientNetB7': from efficientnet.tfkeras import EfficientNetB7 as ModelBuilder # The following model have a fixed input size requirement elif self.architecture == 'NASNetMobile': from tensorflow.keras.applications.nasnet import NASNetMobile as ModelBuilder elif self.architecture == 'NASNetLarge': from tensorflow.keras.applications.nasnet import NASNetLarge as ModelBuilder elif self.architecture == 'MobileNet': from tensorflow.keras.applications.mobilenet import MobileNet as ModelBuilder elif self.architecture == 'MobileNetV2': from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2 as ModelBuilder else: print('Architecture does not exist.') sys.exit(1) # build the model's base cnn = ModelBuilder(**kwargs) x = cnn.output # complete the model's base if self.architecture in ['VGG16', 'VGG19']: x = Flatten()(x) x = Dense(4096, activation='relu', kernel_regularizer=regularizers.l2(self.weight_decay))(x) x = Dropout(self.dropout_rate)(x) x = Dense(4096, activation='relu', kernel_regularizer=regularizers.l2(self.weight_decay))(x) x = Dropout(self.dropout_rate)(x) else: x = GlobalAveragePooling2D()(x) if self.architecture == 'EfficientNetB7': x = Dropout(self.dropout_rate)(x) cnn_output = x return cnn.input, cnn_output def _generate_side_nn(self): side_nn = Sequential() side_nn.add(Dense(16, input_dim=len(self.side_predictors), activation="relu", kernel_regularizer=regularizers.l2(self.weight_decay))) return side_nn.input, side_nn.output def _complete_architecture(self, cnn_input, cnn_output, side_nn_input, side_nn_output): x = concatenate([cnn_output, side_nn_output]) x = Dropout(self.dropout_rate)(x) for n in [int(self.n_fc_nodes * (2 ** (2 * (self.n_fc_layers - 1 - i)))) for i in range(self.n_fc_layers)]: x = Dense(n, activation='relu', kernel_regularizer=regularizers.l2(self.weight_decay))(x) # scale the dropout proportionally to the number of nodes in a layer. No dropout for the last layers if n > 16: x = Dropout(self.dropout_rate * n / 1024)(x) predictions = Dense(1, activation=self.dict_final_activations[self.prediction_type], kernel_regularizer=regularizers.l2(self.weight_decay))(x) self.model = Model(inputs=[cnn_input, side_nn_input], outputs=predictions) def _generate_architecture(self): cnn_input, cnn_output = self._generate_cnn() side_nn_input, side_nn_output = self._generate_side_nn() self._complete_architecture(cnn_input=cnn_input, cnn_output=cnn_output, side_nn_input=side_nn_input, side_nn_output=side_nn_output) def _load_model_weights(self): try: self.model.load_weights(self.path_load_weights) except (FileNotFoundError, TypeError): # load backup weights if the main weights are corrupted try: self.model.load_weights(self.path_load_weights.replace('model-weights', 'backup-model-weights')) except FileNotFoundError: print('Error. No file was found. imagenet weights should have been used. Bug somewhere.') sys.exit(1) @staticmethod def clean_exit(): # exit print('\nDone.\n') print('Killing JOB PID with kill...') os.system('touch ../eo/' + os.environ['SLURM_JOBID']) os.system('kill ' + str(os.getpid())) time.sleep(60) print('Escalating to kill JOB PID with kill -9...') os.system('kill -9 ' + str(os.getpid())) time.sleep(60) print('Escalating to kill JOB ID') os.system('scancel ' + os.environ['SLURM_JOBID']) time.sleep(60) print('Everything failed to kill the job. Hanging there until hitting walltime...') class Training(DeepLearning): """ Class to train CNN models: - Generates the architecture - Loads the best last weights so that a model can be trained over several jobs - Generates the callbacks - Compiles the model - Trains the model """ def __init__(self, target=None, organ=None, view=None, transformation=None, architecture=None, n_fc_layers=None, n_fc_nodes=None, optimizer=None, learning_rate=None, weight_decay=None, dropout_rate=None, data_augmentation_factor=None, outer_fold=None, debug_mode=False, transfer_learning=None, continue_training=True, display_full_metrics=True): # parameters DeepLearning.__init__(self, target, organ, view, transformation, architecture, n_fc_layers, n_fc_nodes, optimizer, learning_rate, weight_decay, dropout_rate, data_augmentation_factor, debug_mode) self.outer_fold = outer_fold self.version = self.version + '_' + str(outer_fold) # NNet's architecture's weights self.continue_training = continue_training self.transfer_learning = transfer_learning self.list_parameters_to_match = ['organ', 'transformation', 'view'] # dict to decide in which order targets should be used when trying to transfer weight from a similar model self.dict_alternative_targets_for_transfer_learning = {'Age': ['Age', 'Sex'], 'Sex': ['Sex', 'Age']} # Generators self.folds = ['train', 'val'] self.mode = 'model_training' self.class_weights = None self.GENERATORS = None # Metrics self.baseline_performance = None if display_full_metrics: self.metrics_names = self.dict_metrics_names_K[self.prediction_type] # Model self.path_load_weights = self.path_data + 'model-weights_' + self.version + '.h5' if debug_mode: self.path_save_weights = self.path_data + 'model-weights-debug.h5' else: self.path_save_weights = self.path_data + 'model-weights_' + self.version + '.h5' self.n_epochs_max = 100000 self.callbacks = None # Load and preprocess the data, build the generators def data_preprocessing(self): self._load_data_features() if self.debug_mode: self._take_subset_to_debug() self._generate_class_weights() self.GENERATORS = self._generate_generators(self.DATA_FEATURES) # Determine which weights to load, if any. def _weights_for_transfer_learning(self): print('Looking for models to transfer weights from...') # define parameters parameters = self._version_to_parameters(self.version) # continue training if possible if self.continue_training and os.path.exists(self.path_load_weights): print('Loading the weights from the model\'s previous training iteration.') return # Initialize the weights using other the weights from other successful hyperparameters combinations if self.transfer_learning == 'hyperparameters': # Check if the same model with other hyperparameters have already been trained. Pick the best for transfer. params = self.version.split('_') params_tl_idx = \ [i for i in range(len(names_model_parameters)) if any(names_model_parameters[i] == p for p in ['optimizer', 'learning_rate', 'weight_decay', 'dropout_rate', 'data_augmentation_factor'])] for idx in params_tl_idx: params[idx] = '*' versions = '../eo/MI02_' + '_'.join(params) + '.out' files = glob.glob(versions) if self.main_metric_mode == 'min': best_perf = np.Inf else: best_perf = -np.Inf for file in files: hand = open(file, 'r') # find best last performance final_improvement_line = None baseline_performance_line = None for line in hand: line = line.rstrip() if re.search('Baseline validation ' + self.main_metric_name + ' = ', line): baseline_performance_line = line if re.search('val_' + self.main_metric_name + ' improved from', line): final_improvement_line = line hand.close() if final_improvement_line is not None: perf = float(final_improvement_line.split(' ')[7].replace(',', '')) elif baseline_performance_line is not None: perf = float(baseline_performance_line.split(' ')[-1]) else: continue # Keep track of the file with the best performance if self.main_metric_mode == 'min': update = perf < best_perf else: update = perf > best_perf if update: best_perf = perf self.path_load_weights = \ file.replace('../eo/', self.path_data).replace('MI02', 'model-weights').replace('.out', '.h5') if best_perf not in [-np.Inf, np.Inf]: print('Transfering the weights from: ' + self.path_load_weights + ', with ' + self.main_metric_name + ' = ' + str(best_perf)) return # Initialize the weights based on models trained on different datasets, ranked by similarity if self.transfer_learning == 'datasets': while True: # print('Matching models for the following criterias:'); # print(['architecture', 'target'] + list_parameters_to_match) # start by looking for models trained on the same target, then move to other targets for target_to_load in self.dict_alternative_targets_for_transfer_learning[parameters['target']]: # print('Target used: ' + target_to_load) parameters_to_match = parameters.copy() parameters_to_match['target'] = target_to_load # load the ranked performances table to select the best performing model among the similar # models available path_performances_to_load = self.path_data + 'PERFORMANCES_ranked_' + \ parameters_to_match['target'] + '_' + 'val' + '.csv' try: Performances = pd.read_csv(path_performances_to_load) Performances['organ'] = Performances['organ'].astype(str) except FileNotFoundError: # print("Could not load the file: " + path_performances_to_load) break # iteratively get rid of models that are not similar enough, based on the list for parameter in ['architecture', 'target'] + self.list_parameters_to_match: Performances = Performances[Performances[parameter] == parameters_to_match[parameter]] # if at least one model is similar enough, load weights from the best of them if len(Performances.index) != 0: self.path_load_weights = self.path_data + 'model-weights_' + Performances['version'][0] + '.h5' self.keras_weights = None print('transfering the weights from: ' + self.path_load_weights) return # if no similar model was found, try again after getting rid of the last selection criteria if len(self.list_parameters_to_match) == 0: print('No model found for transfer learning.') break self.list_parameters_to_match.pop() # Otherwise use imagenet weights to initialize print('Using imagenet weights.') # using string instead of None for path to not ge self.path_load_weights = None self.keras_weights = 'imagenet' def _compile_model(self): # if learning rate was reduced with success according to logger, start with this reduced learning rate if self.path_load_weights is not None: path_logger = self.path_load_weights.replace('model-weights', 'logger').replace('.h5', '.csv') else: path_logger = self.path_data + 'logger_' + self.version + '.csv' if os.path.exists(path_logger): try: logger = pd.read_csv(path_logger) best_log = \ logger[logger['val_' + self.main_metric_name] == logger['val_' + self.main_metric_name].max()] lr = best_log['learning_rate'].values[0] except pd.errors.EmptyDataError: os.remove(path_logger) lr = self.learning_rate else: lr = self.learning_rate self.model.compile(optimizer=self.optimizers[self.optimizer](lr=lr, clipnorm=1.0), loss=self.loss_function, metrics=self.metrics) def _compute_baseline_performance(self): # calculate initial val_loss value if self.continue_training: idx_metric_name = ([self.loss_name] + self.metrics_names).index(self.main_metric_name) baseline_perfs = self.model.evaluate(self.GENERATORS['val'], steps=self.GENERATORS['val'].steps) self.baseline_performance = baseline_perfs[idx_metric_name] elif self.main_metric_mode == 'min': self.baseline_performance = np.Inf else: self.baseline_performance = -np.Inf print('Baseline validation ' + self.main_metric_name + ' = ' + str(self.baseline_performance)) def _define_callbacks(self): if self.debug_mode: path_logger = self.path_data + 'logger-debug.csv' append = False else: path_logger = self.path_data + 'logger_' + self.version + '.csv' append = self.continue_training csv_logger = MyCSVLogger(path_logger, separator=',', append=append) model_checkpoint_backup = MyModelCheckpoint(self.path_save_weights.replace('model-weights', 'backup-model-weights'), monitor='val_' + self.main_metric.name, baseline=self.baseline_performance, verbose=1, save_best_only=True, save_weights_only=True, mode=self.main_metric_mode, save_freq='epoch') model_checkpoint = MyModelCheckpoint(self.path_save_weights, monitor='val_' + self.main_metric.name, baseline=self.baseline_performance, verbose=1, save_best_only=True, save_weights_only=True, mode=self.main_metric_mode, save_freq='epoch') patience_reduce_lr = min(7, 3 * self.GENERATORS['train'].n_subepochs_per_epoch) reduce_lr_on_plateau = ReduceLROnPlateau(monitor='loss', factor=0.5, patience=patience_reduce_lr, verbose=1, mode='min', min_delta=0, cooldown=0, min_lr=0) early_stopping = EarlyStopping(monitor='val_' + self.main_metric.name, min_delta=0, patience=15, verbose=0, mode=self.main_metric_mode, baseline=self.baseline_performance, restore_best_weights=True) self.callbacks = [csv_logger, model_checkpoint_backup, model_checkpoint, early_stopping, reduce_lr_on_plateau] def build_model(self): self._weights_for_transfer_learning() self._generate_architecture() # Load weights if possible try: load_weights = True if os.path.exists(self.path_load_weights) else False except TypeError: load_weights = False if load_weights: self._load_model_weights() else: # save transferred weights as default, in case no better weights are found self.model.save_weights(self.path_save_weights.replace('model-weights', 'backup-model-weights')) self.model.save_weights(self.path_save_weights) self._compile_model() self._compute_baseline_performance() self._define_callbacks() def train_model(self): # garbage collector _ = gc.collect() # use more verbose when debugging verbose = 1 if self.debug_mode else 2 # train the model self.model.fit(self.GENERATORS['train'], steps_per_epoch=self.GENERATORS['train'].steps, validation_data=self.GENERATORS['val'], validation_steps=self.GENERATORS['val'].steps, shuffle=False, use_multiprocessing=False, workers=self.n_cpus, epochs=self.n_epochs_max, class_weight=self.class_weights, callbacks=self.callbacks, verbose=verbose) class PredictionsGenerate(DeepLearning): """ Generates the predictions for each model. Unscales the predictions. """ def __init__(self, target=None, organ=None, view=None, transformation=None, architecture=None, n_fc_layers=None, n_fc_nodes=None, optimizer=None, learning_rate=None, weight_decay=None, dropout_rate=None, data_augmentation_factor=None, outer_fold=None, debug_mode=False): # Initialize parameters DeepLearning.__init__(self, target, organ, view, transformation, architecture, n_fc_layers, n_fc_nodes, optimizer, learning_rate, weight_decay, dropout_rate, data_augmentation_factor, debug_mode) self.outer_fold = outer_fold self.mode = 'model_testing' # Define dictionaries attributes for data, generators and predictions self.DATA_FEATURES_BATCH = {} self.DATA_FEATURES_LEFTOVERS = {} self.GENERATORS_BATCH = None self.GENERATORS_LEFTOVERS = None self.PREDICTIONS = {} def _split_batch_leftovers(self): # split the samples into two groups: what can fit into the batch size, and the leftovers. for fold in self.folds: n_leftovers = len(self.DATA_FEATURES[fold].index) % self.n_ids_batch if n_leftovers > 0: self.DATA_FEATURES_BATCH[fold] = self.DATA_FEATURES[fold].iloc[:-n_leftovers] self.DATA_FEATURES_LEFTOVERS[fold] = self.DATA_FEATURES[fold].tail(n_leftovers) else: self.DATA_FEATURES_BATCH[fold] = self.DATA_FEATURES[fold] # special case for syntax if no leftovers if fold in self.DATA_FEATURES_LEFTOVERS.keys(): del self.DATA_FEATURES_LEFTOVERS[fold] def _generate_outerfold_predictions(self): # prepare unscaling if self.target in self.targets_regression: mean_train = self.DATA_FEATURES['train'][self.target + '_raw'].mean() std_train = self.DATA_FEATURES['train'][self.target + '_raw'].std() else: mean_train, std_train = None, None # Generate predictions for fold in self.folds: print('Predicting samples from fold ' + fold + '.') print(str(len(self.DATA_FEATURES[fold].index)) + ' samples to predict.') print('Predicting batches: ' + str(len(self.DATA_FEATURES_BATCH[fold].index)) + ' samples.') pred_batch = self.model.predict(self.GENERATORS_BATCH[fold], steps=self.GENERATORS_BATCH[fold].steps, verbose=1) if fold in self.GENERATORS_LEFTOVERS.keys(): print('Predicting leftovers: ' + str(len(self.DATA_FEATURES_LEFTOVERS[fold].index)) + ' samples.') pred_leftovers = self.model.predict(self.GENERATORS_LEFTOVERS[fold], steps=self.GENERATORS_LEFTOVERS[fold].steps, verbose=1) pred_full = np.concatenate((pred_batch, pred_leftovers)).squeeze() else: pred_full = pred_batch.squeeze() print('Predicted a total of ' + str(len(pred_full)) + ' samples.') # take the average between left and right predictions for paired organs if self.organ + '_' + self.view in self.left_right_organs_views: pred_full = np.mean(pred_full.reshape(-1, 2), axis=1) # unscale predictions if self.target in self.targets_regression: pred_full = pred_full * std_train + mean_train # format the dataframe self.DATA_FEATURES[fold]['pred'] = pred_full self.PREDICTIONS[fold] = self.DATA_FEATURES[fold] self.PREDICTIONS[fold]['id'] = [ID.replace('.jpg', '') for ID in self.PREDICTIONS[fold]['id']] def _generate_predictions(self): self.path_load_weights = self.path_data + 'model-weights_' + self.version + '_' + self.outer_fold + '.h5' self._load_data_features() if self.debug_mode: self._take_subset_to_debug() self._load_model_weights() self._split_batch_leftovers() # generate the generators self.GENERATORS_BATCH = self._generate_generators(DATA_FEATURES=self.DATA_FEATURES_BATCH) if self.DATA_FEATURES_LEFTOVERS is not None: self.GENERATORS_LEFTOVERS = self._generate_generators(DATA_FEATURES=self.DATA_FEATURES_LEFTOVERS) self._generate_outerfold_predictions() def _format_predictions(self): for fold in self.folds: perf_fun = self.dict_metrics_sklearn[self.dict_main_metrics_names[self.target]] perf = perf_fun(self.PREDICTIONS[fold][self.target + '_raw'], self.PREDICTIONS[fold]['pred']) print('The ' + fold + ' performance is: ' + str(perf)) # format the predictions self.PREDICTIONS[fold].index.name = 'column_names' self.PREDICTIONS[fold] = self.PREDICTIONS[fold][['id', 'outer_fold', 'pred']] def generate_predictions(self): self._generate_architecture() self._generate_predictions() self._format_predictions() def save_predictions(self): for fold in self.folds: self.PREDICTIONS[fold].to_csv(self.path_data + 'Predictions_instances_' + self.version + '_' + fold + '_' + self.outer_fold + '.csv', index=False) class PredictionsConcatenate(Basics): """ Concatenates the predictions coming from the different cross validation folds. """ def __init__(self, target=None, organ=None, view=None, transformation=None, architecture=None, n_fc_layers=None, n_fc_nodes=None, optimizer=None, learning_rate=None, weight_decay=None, dropout_rate=None, data_augmentation_factor=None): # Initialize parameters Basics.__init__(self) self.version = target + '_' + organ + '_' + view + '_' + transformation + '_' + architecture + '_' + \ n_fc_layers + '_' + n_fc_nodes + '_' + optimizer + '_' + learning_rate + '_' + weight_decay + \ '_' + dropout_rate + '_' + data_augmentation_factor # Define dictionaries attributes for data, generators and predictions self.PREDICTIONS = {} def concatenate_predictions(self): for fold in self.folds: for outer_fold in self.outer_folds: Predictions_fold = pd.read_csv(self.path_data + 'Predictions_instances_' + self.version + '_' + fold + '_' + outer_fold + '.csv') if fold in self.PREDICTIONS.keys(): self.PREDICTIONS[fold] = pd.concat([self.PREDICTIONS[fold], Predictions_fold]) else: self.PREDICTIONS[fold] = Predictions_fold def save_predictions(self): for fold in self.folds: self.PREDICTIONS[fold].to_csv(self.path_data + 'Predictions_instances_' + self.version + '_' + fold + '.csv', index=False) class PredictionsMerge(Basics): """ Merges the predictions from all models into a unified dataframe. """ def __init__(self, target=None, fold=None): Basics.__init__(self) # Define dictionaries attributes for data, generators and predictions self.target = target self.fold = fold self.data_features = None self.list_models = None self.Predictions_df_previous = None self.Predictions_df = None def _load_data_features(self): self.data_features = pd.read_csv(self.path_data + 'data-features_instances.csv', usecols=self.id_vars + self.demographic_vars) for var in self.id_vars: self.data_features[var] = self.data_features[var].astype(str) self.data_features.set_index('id', drop=False, inplace=True) self.data_features.index.name = 'column_names' def _preprocess_data_features(self): # For the training set, each sample is predicted n_CV_outer_folds times, so prepare a larger dataframe if self.fold == 'train': df_all_folds = None for outer_fold in self.outer_folds: df_fold = self.data_features.copy() df_all_folds = df_fold if outer_fold == self.outer_folds[0] else df_all_folds.append(df_fold) self.data_features = df_all_folds def _load_previous_merged_predictions(self): if os.path.exists(self.path_data + 'PREDICTIONS_withoutEnsembles_instances_' + self.target + '_' + self.fold + '.csv'): self.Predictions_df_previous = pd.read_csv(self.path_data + 'PREDICTIONS_withoutEnsembles_instances_' + self.target + '_' + self.fold + '.csv') self.Predictions_df_previous.drop(columns=['eid', 'instance'] + self.demographic_vars, inplace=True) def _list_models(self): # generate list of predictions that will be integrated in the Predictions dataframe self.list_models = glob.glob(self.path_data + 'Predictions_instances_' + self.target + '_*_' + self.fold + '.csv') # get rid of ensemble models and models already merged self.list_models = [model for model in self.list_models if ('*' not in model)] if self.Predictions_df_previous is not None: self.list_models = \ [model for model in self.list_models if ('pred_' + '_'.join(model.split('_')[2:-1]) not in self.Predictions_df_previous.columns)] self.list_models.sort() def preprocessing(self): self._load_data_features() self._preprocess_data_features() self._load_previous_merged_predictions() self._list_models() def merge_predictions(self): # merge the predictions print('There are ' + str(len(self.list_models)) + ' models to merge.') i = 0 # define subgroups to accelerate merging process list_subgroups = list(set(['_'.join(model.split('_')[3:7]) for model in self.list_models])) for subgroup in list_subgroups: print('Merging models from the subgroup ' + subgroup) models_subgroup = [model for model in self.list_models if subgroup in model] Predictions_subgroup = None # merge the models one by one for file_name in models_subgroup: i += 1 version = '_'.join(file_name.split('_')[2:-1]) if self.Predictions_df_previous is not None and \ 'pred_' + version in self.Predictions_df_previous.columns: print('The model ' + version + ' has already been merged before.') else: print('Merging the ' + str(i) + 'th model: ' + version) # load csv and format the predictions prediction = pd.read_csv(self.path_data + file_name) print('raw prediction\'s shape: ' + str(prediction.shape)) for var in ['id', 'outer_fold']: prediction[var] = prediction[var].apply(str) prediction.rename(columns={'pred': 'pred_' + version}, inplace=True) # merge data frames if Predictions_subgroup is None: Predictions_subgroup = prediction elif self.fold == 'train': Predictions_subgroup = Predictions_subgroup.merge(prediction, how='outer', on=['id', 'outer_fold']) else: prediction.drop(['outer_fold'], axis=1, inplace=True) # not supported for panda version > 0.23.4 for now Predictions_subgroup = Predictions_subgroup.merge(prediction, how='outer', on=['id']) # merge group predictions data frames if self.fold != 'train': Predictions_subgroup.drop(['outer_fold'], axis=1, inplace=True) if Predictions_subgroup is not None: if self.Predictions_df is None: self.Predictions_df = Predictions_subgroup elif self.fold == 'train': self.Predictions_df = self.Predictions_df.merge(Predictions_subgroup, how='outer', on=['id', 'outer_fold']) else: # not supported for panda version > 0.23.4 for now self.Predictions_df = self.Predictions_df.merge(Predictions_subgroup, how='outer', on=['id']) print('Predictions_df\'s shape: ' + str(self.Predictions_df.shape)) # garbage collector gc.collect() # Merge with the previously merged predictions if (self.Predictions_df_previous is not None) & (self.Predictions_df is not None): if self.fold == 'train': self.Predictions_df = self.Predictions_df_previous.merge(self.Predictions_df, how='outer', on=['id', 'outer_fold']) else: self.Predictions_df.drop(columns=['outer_fold'], inplace=True) # not supported for panda version > 0.23.4 for now self.Predictions_df = self.Predictions_df_previous.merge(self.Predictions_df, how='outer', on=['id']) self.Predictions_df_previous = None elif self.Predictions_df is None: print('No new models to merge. Exiting.') print('Done.') sys.exit(0) # Reorder the columns alphabetically pred_versions = [col for col in self.Predictions_df.columns if 'pred_' in col] pred_versions.sort() id_cols = ['id', 'outer_fold'] if self.fold == 'train' else ['id'] self.Predictions_df = self.Predictions_df[id_cols + pred_versions] def postprocessing(self): # get rid of useless rows in data_features before merging to keep the memory requirements as low as possible self.data_features = self.data_features[self.data_features['id'].isin(self.Predictions_df['id'].values)] # merge data_features and predictions if self.fold == 'train': print('Starting to merge a massive dataframe') self.Predictions_df = self.data_features.merge(self.Predictions_df, how='outer', on=['id', 'outer_fold']) else: # not supported for panda version > 0.23.4 for now self.Predictions_df = self.data_features.merge(self.Predictions_df, how='outer', on=['id']) print('Merging done') # remove rows for which no prediction is available (should be none) subset_cols = [col for col in self.Predictions_df.columns if 'pred_' in col] self.Predictions_df.dropna(subset=subset_cols, how='all', inplace=True) # Displaying the R2s versions = [col.replace('pred_', '') for col in self.Predictions_df.columns if 'pred_' in col] r2s = [] for version in versions: df = self.Predictions_df[[self.target, 'pred_' + version]].dropna() r2s.append(r2_score(df[self.target], df['pred_' + version])) R2S = pd.DataFrame({'version': versions, 'R2': r2s}) R2S.sort_values(by='R2', ascending=False, inplace=True) print('R2 for each model: ') print(R2S) def save_merged_predictions(self): print('Writing the merged predictions...') self.Predictions_df.to_csv(self.path_data + 'PREDICTIONS_withoutEnsembles_instances_' + self.target + '_' + self.fold + '.csv', index=False) class PredictionsEids(Basics): """ Computes the average age prediction across samples from different instances for every participant. (Scaled back to instance 0) """ def __init__(self, target=None, fold=None, debug_mode=None): Basics.__init__(self) # Define dictionaries attributes for data, generators and predictions self.target = target self.fold = fold self.debug_mode = debug_mode self.Predictions = None self.Predictions_chunk = None self.pred_versions = None self.res_versions = None self.target_0s = None self.Predictions_eids = None self.Predictions_eids_previous = None self.pred_versions_previous = None def preprocessing(self): # Load predictions self.Predictions = pd.read_csv( self.path_data + 'PREDICTIONS_withoutEnsembles_instances_' + self.target + '_' + self.fold + '.csv') self.Predictions.drop(columns=['id'], inplace=True) self.Predictions['eid'] = self.Predictions['eid'].astype(str) self.Predictions.index.name = 'column_names' self.pred_versions = [col for col in self.Predictions.columns.values if 'pred_' in col] # Prepare target values on instance 0 as a reference target_0s = pd.read_csv(self.path_data + 'data-features_eids.csv', usecols=['eid', self.target]) target_0s['eid'] = target_0s['eid'].astype(str) target_0s.set_index('eid', inplace=True) target_0s = target_0s[self.target] target_0s.name = 'target_0' target_0s = target_0s[self.Predictions['eid'].unique()] self.Predictions = self.Predictions.merge(target_0s, on='eid') # Compute biological ages reported to target_0 for pred in self.pred_versions: # Compute the biais of the predictions as a function of age print('Generating residuals for model ' + pred.replace('pred_', '')) df_model = self.Predictions[['Age', pred]] df_model.dropna(inplace=True) if (len(df_model.index)) > 0: age = df_model.loc[:, ['Age']] res = df_model['Age'] - df_model[pred] regr = LinearRegression() regr.fit(age, res) self.Predictions[pred.replace('pred_', 'correction_')] = regr.predict(self.Predictions[['Age']]) # Take the residuals bias into account when "translating" the prediction to instance 0 correction = self.Predictions['target_0'] - self.Predictions[self.target] + \ regr.predict(self.Predictions[['Age']]) - regr.predict(self.Predictions[['target_0']]) self.Predictions[pred] = self.Predictions[pred] + correction self.Predictions[self.target] = self.Predictions['target_0'] self.Predictions.drop(columns=['target_0'], inplace=True) self.Predictions.index.name = 'column_names' def processing(self): if self.fold == 'train': # Prepare template to which each model will be appended Predictions = self.Predictions[['eid'] + self.demographic_vars] Predictions = Predictions.groupby('eid', as_index=True).mean() Predictions.index.name = 'column_names' Predictions['eid'] = Predictions.index.values Predictions['instance'] = '*' Predictions['id'] = Predictions['eid'] + '_*' self.Predictions_eids = Predictions.copy() self.Predictions_eids['outer_fold'] = -1 for i in range(self.n_CV_outer_folds): Predictions_i = Predictions.copy() Predictions_i['outer_fold'] = i self.Predictions_eids = self.Predictions_eids.append(Predictions_i) # Append each model one by one because the folds are different print(str(len(self.pred_versions)) + ' models to compute.') for pred_version in self.pred_versions: if pred_version in self.pred_versions_previous: print(pred_version.replace('pred_', '') + ' had already been computed.') else: print("Computing results for version " + pred_version.replace('pred_', '')) Predictions_version = self.Predictions[['eid', pred_version, 'outer_fold']] # Use placeholder for NaN in outer_folds Predictions_version['outer_fold'][Predictions_version['outer_fold'].isna()] = -1 Predictions_version_eids = Predictions_version.groupby(['eid', 'outer_fold'], as_index=False).mean() self.Predictions_eids = self.Predictions_eids.merge(Predictions_version_eids, on=['eid', 'outer_fold'], how='outer') self.Predictions_eids[of_version] = self.Predictions_eids['outer_fold'] self.Predictions_eids[of_version][self.Predictions_eids[of_version] == -1] = np.nan del Predictions_version _ = gc.collect self.Predictions_eids.drop(columns=['outer_fold'], inplace=True) else: self.Predictions_eids = self.Predictions.groupby('eid').mean() self.Predictions_eids['eid'] = self.Predictions_eids.index.values self.Predictions_eids['instance'] = '*' self.Predictions_eids['id'] = self.Predictions_eids['eid'].astype(str) + '_' + \ self.Predictions_eids['instance'] # Re-order the columns self.Predictions_eids = self.Predictions_eids[self.id_vars + self.demographic_vars + self.pred_versions] def postprocessing(self): # Displaying the R2s versions = [col.replace('pred_', '') for col in self.Predictions_eids.columns if 'pred_' in col] r2s = [] for version in versions: df = self.Predictions_eids[[self.target, 'pred_' + version]].dropna() r2s.append(r2_score(df[self.target], df['pred_' + version])) R2S = pd.DataFrame({'version': versions, 'R2': r2s}) R2S.sort_values(by='R2', ascending=False, inplace=True) print('R2 for each model: ') print(R2S) def _generate_single_model_predictions(self): for pred_version in self.pred_versions: path_save = \ self.path_data + 'Predictions_eids_' + '_'.join(pred_version.split('_')[1:]) + '_' + self.fold + '.csv' # Generate only if does not exist already. if not os.path.exists(path_save): Predictions_version = self.Predictions_eids[['id', 'outer_fold', pred_version]] Predictions_version.rename(columns={pred_version: 'pred'}, inplace=True) Predictions_version.dropna(subset=['pred'], inplace=True) Predictions_version.to_csv(path_save, index=False) def save_predictions(self): self.Predictions_eids.to_csv(self.path_data + 'PREDICTIONS_withoutEnsembles_eids_' + self.target + '_' + self.fold + '.csv', index=False) # Generate and save files for every single model self._generate_single_model_predictions() class PerformancesGenerate(Metrics): """ Computes the performances for each model. """ def __init__(self, target=None, organ=None, view=None, transformation=None, architecture=None, n_fc_layers=None, n_fc_nodes=None, optimizer=None, learning_rate=None, weight_decay=None, dropout_rate=None, data_augmentation_factor=None, fold=None, pred_type=None, debug_mode=False): Metrics.__init__(self) self.target = target self.organ = organ self.view = view self.transformation = transformation self.architecture = architecture self.n_fc_layers = n_fc_layers self.n_fc_nodes = n_fc_nodes self.optimizer = optimizer self.learning_rate = learning_rate self.weight_decay = weight_decay self.dropout_rate = dropout_rate self.data_augmentation_factor = data_augmentation_factor self.fold = fold self.pred_type = pred_type if debug_mode: self.n_bootstrap_iterations = 3 else: self.n_bootstrap_iterations = 1000 self.version = target + '_' + organ + '_' + view + '_' + transformation + '_' + architecture + '_' + \ n_fc_layers + '_' + n_fc_nodes + '_' + optimizer + '_' + learning_rate + '_' + weight_decay + \ '_' + dropout_rate + '_' + data_augmentation_factor self.names_metrics = self.dict_metrics_names[self.dict_prediction_types[target]] self.data_features = None self.Predictions = None self.PERFORMANCES = None def _preprocess_data_features_predictions_for_performances(self): # load dataset data_features = pd.read_csv(self.path_data + 'data-features_' + self.pred_type + '.csv', usecols=['id', 'Sex', 'Age']) # format data_features to extract y data_features.rename(columns={self.target: 'y'}, inplace=True) data_features = data_features[['id', 'y']] data_features['id'] = data_features['id'].astype(str) data_features['id'] = data_features['id'] data_features.set_index('id', drop=False, inplace=True) data_features.index.name = 'columns_names' self.data_features = data_features def _preprocess_predictions_for_performances(self): Predictions = pd.read_csv(self.path_data + 'Predictions_' + self.pred_type + '_' + self.version + '_' + self.fold + '.csv') Predictions['id'] = Predictions['id'].astype(str) self.Predictions = Predictions.merge(self.data_features, how='inner', on=['id']) # Initialize performances dataframes and compute sample sizes def _initiate_empty_performances_df(self): # Define an empty performances dataframe to store the performances computed row_names = ['all'] + self.outer_folds col_names_sample_sizes = ['N'] if self.target in self.targets_binary: col_names_sample_sizes.extend(['N_0', 'N_1']) col_names = ['outer_fold'] + col_names_sample_sizes col_names.extend(self.names_metrics) performances = np.empty((len(row_names), len(col_names),)) performances.fill(np.nan) performances = pd.DataFrame(performances) performances.index = row_names performances.columns = col_names performances['outer_fold'] = row_names # Convert float to int for sample sizes and some metrics. for col_name in col_names_sample_sizes: # need recent version of pandas to use type below. Otherwise nan cannot be int performances[col_name] = performances[col_name].astype('Int64') # compute sample sizes for the data frame performances.loc['all', 'N'] = len(self.Predictions.index) if self.target in self.targets_binary: performances.loc['all', 'N_0'] = len(self.Predictions.loc[self.Predictions['y'] == 0].index) performances.loc['all', 'N_1'] = len(self.Predictions.loc[self.Predictions['y'] == 1].index) for outer_fold in self.outer_folds: performances.loc[outer_fold, 'N'] = len( self.Predictions.loc[self.Predictions['outer_fold'] == int(outer_fold)].index) if self.target in self.targets_binary: performances.loc[outer_fold, 'N_0'] = len( self.Predictions.loc[ (self.Predictions['outer_fold'] == int(outer_fold)) & (self.Predictions['y'] == 0)].index) performances.loc[outer_fold, 'N_1'] = len( self.Predictions.loc[ (self.Predictions['outer_fold'] == int(outer_fold)) & (self.Predictions['y'] == 1)].index) # initialize the dataframes self.PERFORMANCES = {} for mode in self.modes: self.PERFORMANCES[mode] = performances.copy() # Convert float to int for sample sizes and some metrics. for col_name in self.PERFORMANCES[''].columns.values: if any(metric in col_name for metric in self.metrics_displayed_in_int): # need recent version of pandas to use type below. Otherwise nan cannot be int self.PERFORMANCES[''][col_name] = self.PERFORMANCES[''][col_name].astype('Int64') def preprocessing(self): self._preprocess_data_features_predictions_for_performances() self._preprocess_predictions_for_performances() self._initiate_empty_performances_df() # Fill the columns for this model, outer_fold by outer_fold def compute_performances(self): # fill it outer_fold by outer_fold for outer_fold in ['all'] + self.outer_folds: print('Calculating the performances for the outer fold ' + outer_fold) # Generate a subdataframe from the predictions table for each outerfold if outer_fold == 'all': predictions_fold = self.Predictions.copy() else: predictions_fold = self.Predictions.loc[self.Predictions['outer_fold'] == int(outer_fold), :] # if no samples are available for this fold, fill columns with nans if len(predictions_fold.index) == 0: print('NO SAMPLES AVAILABLE FOR MODEL ' + self.version + ' IN OUTER_FOLD ' + outer_fold) else: # For binary classification, generate class prediction if self.target in self.targets_binary: predictions_fold_class = predictions_fold.copy() predictions_fold_class['pred'] = predictions_fold_class['pred'].round() else: predictions_fold_class = None # Fill the Performances dataframe metric by metric for name_metric in self.names_metrics: # print('Calculating the performance using the metric ' + name_metric) if name_metric in self.metrics_needing_classpred: predictions_metric = predictions_fold_class else: predictions_metric = predictions_fold metric_function = self.dict_metrics_sklearn[name_metric] self.PERFORMANCES[''].loc[outer_fold, name_metric] = metric_function(predictions_metric['y'], predictions_metric['pred']) self.PERFORMANCES['_sd'].loc[outer_fold, name_metric] = \ self._bootstrap(predictions_metric, metric_function)[1] self.PERFORMANCES['_str'].loc[outer_fold, name_metric] = "{:.3f}".format( self.PERFORMANCES[''].loc[outer_fold, name_metric]) + '+-' + "{:.3f}".format( self.PERFORMANCES['_sd'].loc[outer_fold, name_metric]) # calculate the fold sd (variance between the metrics values obtained on the different folds) folds_sd = self.PERFORMANCES[''].iloc[1:, :].std(axis=0) for name_metric in self.names_metrics: self.PERFORMANCES['_str'].loc['all', name_metric] = "{:.3f}".format( self.PERFORMANCES[''].loc['all', name_metric]) + '+-' + "{:.3f}".format( folds_sd[name_metric]) + '+-' + "{:.3f}".format(self.PERFORMANCES['_sd'].loc['all', name_metric]) # print the performances print('Performances for model ' + self.version + ': ') print(self.PERFORMANCES['_str']) def save_performances(self): for mode in self.modes: path_save = self.path_data + 'Performances_' + self.pred_type + '_' + self.version + '_' + self.fold + \ mode + '.csv' self.PERFORMANCES[mode].to_csv(path_save, index=False) class PerformancesMerge(Metrics): """ Merges the performances of the different models into a unified dataframe. """ def __init__(self, target=None, fold=None, pred_type=None, ensemble_models=None): # Parameters Metrics.__init__(self) self.target = target self.fold = fold self.pred_type = pred_type self.ensemble_models = self.convert_string_to_boolean(ensemble_models) self.names_metrics = self.dict_metrics_names[self.dict_prediction_types[target]] self.main_metric_name = self.dict_main_metrics_names[target] # list the models that need to be merged self.list_models = glob.glob(self.path_data + 'Performances_' + pred_type + '_' + target + '_*_' + fold + '_str.csv') # get rid of ensemble models if self.ensemble_models: self.list_models = [model for model in self.list_models if '*' in model] else: self.list_models = [model for model in self.list_models if '*' not in model] self.Performances = None self.Performances_alphabetical = None self.Performances_ranked = None def _initiate_empty_performances_summary_df(self): # Define the columns of the Performances dataframe # columns for sample sizes names_sample_sizes = ['N'] if self.target in self.targets_binary: names_sample_sizes.extend(['N_0', 'N_1']) # columns for metrics names_metrics = self.dict_metrics_names[self.dict_prediction_types[self.target]] # for normal folds, keep track of metric and bootstrapped metric's sd names_metrics_with_sd = [] for name_metric in names_metrics: names_metrics_with_sd.extend([name_metric, name_metric + '_sd', name_metric + '_str']) # for the 'all' fold, also keep track of the 'folds_sd' (metric's sd calculated using the folds' results) names_metrics_with_folds_sd_and_sd = [] for name_metric in names_metrics: names_metrics_with_folds_sd_and_sd.extend( [name_metric, name_metric + '_folds_sd', name_metric + '_sd', name_metric + '_str']) # merge all the columns together. First description of the model, then sample sizes and metrics for each fold names_col_Performances = ['version'] + self.names_model_parameters # special outer fold 'all' names_col_Performances.extend( ['_'.join([name, 'all']) for name in names_sample_sizes + names_metrics_with_folds_sd_and_sd]) # other outer_folds for outer_fold in self.outer_folds: names_col_Performances.extend( ['_'.join([name, outer_fold]) for name in names_sample_sizes + names_metrics_with_sd]) # Generate the empty Performance table from the rows and columns. Performances = np.empty((len(self.list_models), len(names_col_Performances),)) Performances.fill(np.nan) Performances = pd.DataFrame(Performances) Performances.columns = names_col_Performances # Format the types of the columns for colname in Performances.columns.values: if (colname in self.names_model_parameters) | ('_str' in colname): col_type = str else: col_type = float Performances[colname] = Performances[colname].astype(col_type) self.Performances = Performances def merge_performances(self): # define parameters names_metrics = self.dict_metrics_names[self.dict_prediction_types[self.target]] # initiate dataframe self._initiate_empty_performances_summary_df() # Fill the Performance table row by row for i, model in enumerate(self.list_models): # load the performances subdataframe PERFORMANCES = {} for mode in self.modes: PERFORMANCES[mode] = pd.read_csv(model.replace('_str', mode)) PERFORMANCES[mode].set_index('outer_fold', drop=False, inplace=True) # Fill the columns corresponding to the model's parameters version = '_'.join(model.split('_')[2:-2]) parameters = self._version_to_parameters(version) # fill the columns for model parameters self.Performances['version'][i] = version for parameter_name in self.names_model_parameters: self.Performances[parameter_name][i] = parameters[parameter_name] # Fill the columns for this model, outer_fold by outer_fold for outer_fold in ['all'] + self.outer_folds: # Generate a subdataframe from the predictions table for each outerfold # Fill sample size columns self.Performances['N_' + outer_fold][i] = PERFORMANCES[''].loc[outer_fold, 'N'] # For binary classification, calculate sample sizes for each class and generate class prediction if self.target in self.targets_binary: self.Performances['N_0_' + outer_fold][i] = PERFORMANCES[''].loc[outer_fold, 'N_0'] self.Performances['N_1_' + outer_fold][i] = PERFORMANCES[''].loc[outer_fold, 'N_1'] # Fill the Performances dataframe metric by metric for name_metric in names_metrics: for mode in self.modes: self.Performances[name_metric + mode + '_' + outer_fold][i] = PERFORMANCES[mode].loc[ outer_fold, name_metric] # calculate the fold sd (variance between the metrics values obtained on the different folds) folds_sd = PERFORMANCES[''].iloc[1:, :].std(axis=0) for name_metric in names_metrics: self.Performances[name_metric + '_folds_sd_all'] = folds_sd[name_metric] # Convert float to int for sample sizes and some metrics. for name_col in self.Performances.columns.values: cond1 = name_col.startswith('N_') cond2 = any(metric in name_col for metric in self.metrics_displayed_in_int) cond3 = '_sd' not in name_col cond4 = '_str' not in name_col if cond1 | cond2 & cond3 & cond4: self.Performances[name_col] = self.Performances[name_col].astype('Int64') # need recent version of pandas to use this type. Otherwise nan cannot be int # For ensemble models, merge the new performances with the previously computed performances if self.ensemble_models: Performances_withoutEnsembles = pd.read_csv(self.path_data + 'PERFORMANCES_tuned_alphabetical_' + self.pred_type + '_' + self.target + '_' + self.fold + '.csv') self.Performances = Performances_withoutEnsembles.append(self.Performances) # reorder the columns (weird: automatic alphabetical re-ordering happened when append was called for 'val') self.Performances = self.Performances[Performances_withoutEnsembles.columns] # Ranking, printing and saving self.Performances_alphabetical = self.Performances.sort_values(by='version') cols_to_print = ['version', self.main_metric_name + '_str_all'] print('Performances of the models ranked by models\'names:') print(self.Performances_alphabetical[cols_to_print]) sort_by = self.dict_main_metrics_names[self.target] + '_all' sort_ascending = self.main_metrics_modes[self.dict_main_metrics_names[self.target]] == 'min' self.Performances_ranked = self.Performances.sort_values(by=sort_by, ascending=sort_ascending) print('Performances of the models ranked by the performance on the main metric on all the samples:') print(self.Performances_ranked[cols_to_print]) def save_performances(self): name_extension = 'withEnsembles' if self.ensemble_models else 'withoutEnsembles' path = self.path_data + 'PERFORMANCES_' + name_extension + '_alphabetical_' + self.pred_type + '_' + \ self.target + '_' + self.fold + '.csv' self.Performances_alphabetical.to_csv(path, index=False) self.Performances_ranked.to_csv(path.replace('_alphabetical_', '_ranked_'), index=False) class PerformancesTuning(Metrics): """ For each model, selects the best hyperparameter combination. """ def __init__(self, target=None, pred_type=None): Metrics.__init__(self) self.target = target self.pred_type = pred_type self.PERFORMANCES = {} self.PREDICTIONS = {} self.Performances = None self.models = None self.folds = ['val', 'test'] def load_data(self): for fold in self.folds: path = self.path_data + 'PERFORMANCES_withoutEnsembles_ranked_' + self.pred_type + '_' + self.target + \ '_' + fold + '.csv' self.PERFORMANCES[fold] = pd.read_csv(path).set_index('version', drop=False) self.PERFORMANCES[fold]['organ'] = self.PERFORMANCES[fold]['organ'].astype(str) self.PERFORMANCES[fold].index.name = 'columns_names' self.PREDICTIONS[fold] = pd.read_csv(path.replace('PERFORMANCES', 'PREDICTIONS').replace('_ranked', '')) def preprocess_data(self): # Get list of distinct models without taking into account hyperparameters tuning self.Performances = self.PERFORMANCES['val'] self.Performances['model'] = self.Performances['organ'] + '_' + self.Performances['view'] + '_' + \ self.Performances['transformation'] + '_' + self.Performances['architecture'] self.models = self.Performances['model'].unique() def select_models(self): main_metric_name = self.dict_main_metrics_names[self.target] main_metric_mode = self.main_metrics_modes[main_metric_name] Perf_col_name = main_metric_name + '_all' for model in self.models: Performances_model = self.Performances[self.Performances['model'] == model] Performances_model.sort_values([Perf_col_name, 'n_fc_layers', 'n_fc_nodes', 'learning_rate', 'dropout_rate', 'weight_decay', 'data_augmentation_factor'], ascending=[main_metric_mode == 'min', True, True, False, False, False, False], inplace=True) best_version = Performances_model['version'][ Performances_model[Perf_col_name] == Performances_model[Perf_col_name].max()].values[0] versions_to_drop = [version for version in Performances_model['version'].values if not version == best_version] # define columns from predictions to drop cols_to_drop = ['pred_' + version for version in versions_to_drop] + ['outer_fold_' + version for version in versions_to_drop] for fold in self.folds: self.PERFORMANCES[fold].drop(versions_to_drop, inplace=True) self.PREDICTIONS[fold].drop(cols_to_drop, axis=1, inplace=True) # drop 'model' column self.Performances.drop(['model'], axis=1, inplace=True) # Display results for fold in self.folds: print('The tuned ' + fold + ' performances are:') print(self.PERFORMANCES[fold]) def save_data(self): # Save the files for fold in self.folds: path_pred = self.path_data + 'PREDICTIONS_tuned_' + self.pred_type + '_' + self.target + '_' + fold + \ '.csv' path_perf = self.path_data + 'PERFORMANCES_tuned_ranked_' + self.pred_type + '_' + self.target + '_' + \ fold + '.csv' self.PREDICTIONS[fold].to_csv(path_pred, index=False) self.PERFORMANCES[fold].to_csv(path_perf, index=False) Performances_alphabetical = self.PERFORMANCES[fold].sort_values(by='version') Performances_alphabetical.to_csv(path_perf.replace('ranked', 'alphabetical'), index=False) # This class was coded by <NAME>. class InnerCV: """ Helper class to perform an inner cross validation to tune the hyperparameters of models trained on scalar predictors """ def __init__(self, models, inner_splits, n_iter): self.inner_splits = inner_splits self.n_iter = n_iter if isinstance(models, str): models = [models] self.models = models @staticmethod def get_model(model_name, params): if model_name == 'ElasticNet': return ElasticNet(max_iter=2000, **params) elif model_name == 'RandomForest': return RandomForestRegressor(**params) elif model_name == 'GradientBoosting': return GradientBoostingRegressor(**params) elif model_name == 'Xgboost': return XGBRegressor(**params) elif model_name == 'LightGbm': return LGBMRegressor(**params) elif model_name == 'NeuralNetwork': return MLPRegressor(solver='adam', activation='relu', hidden_layer_sizes=(128, 64, 32), batch_size=1000, early_stopping=True, **params) @staticmethod def get_hyper_distribution(model_name): if model_name == 'ElasticNet': return { 'alpha': hp.loguniform('alpha', low=np.log(0.01), high=np.log(10)), 'l1_ratio': hp.uniform('l1_ratio', low=0.01, high=0.99) } elif model_name == 'RandomForest': return { 'n_estimators': hp.randint('n_estimators', upper=300) + 150, 'max_features': hp.choice('max_features', ['auto', 0.9, 0.8, 0.7, 0.6, 0.5, 0.4]), 'max_depth': hp.choice('max_depth', [None, 10, 8, 6]) } elif model_name == 'GradientBoosting': return { 'n_estimators': hp.randint('n_estimators', upper=300) + 150, 'max_features': hp.choice('max_features', ['auto', 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3]), 'learning_rate': hp.uniform('learning_rate', low=0.01, high=0.3), 'max_depth': hp.randint('max_depth', 10) + 5 } elif model_name == 'Xgboost': return { 'colsample_bytree': hp.uniform('colsample_bytree', low=0.2, high=0.7), 'gamma': hp.uniform('gamma', low=0.1, high=0.5), 'learning_rate': hp.uniform('learning_rate', low=0.02, high=0.2), 'max_depth': hp.randint('max_depth', 10) + 5, 'n_estimators': hp.randint('n_estimators', 300) + 150, 'subsample': hp.uniform('subsample', 0.2, 0.8) } elif model_name == 'LightGbm': return { 'num_leaves': hp.randint('num_leaves', 40) + 5, 'min_child_samples': hp.randint('min_child_samples', 400) + 100, 'min_child_weight': hp.choice('min_child_weight', [1e-5, 1e-3, 1e-2, 1e-1, 1, 1e1, 1e2, 1e3, 1e4]), 'subsample': hp.uniform('subsample', low=0.2, high=0.8), 'colsample_bytree': hp.uniform('colsample_bytree', low=0.4, high=0.6), 'reg_alpha': hp.choice('reg_alpha', [0, 1e-1, 1, 2, 5, 7, 10, 50, 100]), 'reg_lambda': hp.choice('reg_lambda', [0, 1e-1, 1, 5, 10, 20, 50, 100]), 'n_estimators': hp.randint('n_estimators', 300) + 150 } elif model_name == 'NeuralNetwork': return { 'learning_rate_init': hp.loguniform('learning_rate_init', low=np.log(5e-5), high=np.log(2e-2)), 'alpha': hp.uniform('alpha', low=1e-6, high=1e3) } def create_folds(self, X, y): """ X columns : eid + features except target y columns : eid + target """ X_eid = X.drop_duplicates('eid') y_eid = y.drop_duplicates('eid') eids = X_eid.eid # Kfold on the eid, then regroup all ids inner_cv = KFold(n_splits=self.inner_splits, shuffle=False, random_state=0) list_test_folds = [elem[1] for elem in inner_cv.split(X_eid, y_eid)] list_test_folds_eid = [eids[elem].values for elem in list_test_folds] list_test_folds_id = [X.index[X.eid.isin(list_test_folds_eid[elem])].values for elem in range(len(list_test_folds_eid))] return list_test_folds_id def optimize_hyperparameters(self, X, y, scoring): """ input X : dataframe with features + eid input y : dataframe with target + eid """ if 'instance' in X.columns: X = X.drop(columns=['instance']) if 'instance' in y.columns: y = y.drop(columns=['instance']) list_test_folds_id = self.create_folds(X, y) X = X.drop(columns=['eid']) y = y.drop(columns=['eid']) # Create custom Splits list_test_folds_id_index = [np.array([X.index.get_loc(elem) for elem in list_test_folds_id[fold_num]]) for fold_num in range(len(list_test_folds_id))] test_folds = np.zeros(len(X), dtype='int') for fold_count in range(len(list_test_folds_id)): test_folds[list_test_folds_id_index[fold_count]] = fold_count inner_cv = PredefinedSplit(test_fold=test_folds) list_best_params = {} list_best_score = {} objective, model_name = None, None for model_name in self.models: def objective(hyperparameters): estimator_ = self.get_model(model_name, hyperparameters) pipeline = Pipeline([('scaler', StandardScaler()), ('estimator', estimator_)]) scores = cross_validate(pipeline, X.values, y, scoring=scoring, cv=inner_cv, n_jobs=self.inner_splits) return {'status': STATUS_OK, 'loss': -scores['test_score'].mean(), 'attachments': {'split_test_scores_and_params': (scores['test_score'], hyperparameters)}} space = self.get_hyper_distribution(model_name) trials = Trials() best = fmin(objective, space, algo=tpe.suggest, max_evals=self.n_iter, trials=trials) best_params = space_eval(space, best) list_best_params[model_name] = best_params list_best_score[model_name] = - min(trials.losses()) # Recover best between all models : best_model = max(list_best_score.keys(), key=(lambda k: list_best_score[k])) best_model_hyp = list_best_params[best_model] # Recreate best estim : estim = self.get_model(best_model, best_model_hyp) pipeline_best = Pipeline([('scaler', StandardScaler()), ('estimator', estim)]) pipeline_best.fit(X.values, y) return pipeline_best """ Useful for EnsemblesPredictions. This function needs to be global to allow pool to pickle it. """ def compute_ensemble_folds(ensemble_inputs): if len(ensemble_inputs[1]) < 100: print('Small sample size:' + str(len(ensemble_inputs[1]))) n_inner_splits = 5 else: n_inner_splits = 10 # Can use different models: models=['ElasticNet', 'LightGBM', 'NeuralNetwork'] cv = InnerCV(models=['ElasticNet'], inner_splits=n_inner_splits, n_iter=30) model = cv.optimize_hyperparameters(ensemble_inputs[0], ensemble_inputs[1], scoring='r2') return model class EnsemblesPredictions(Metrics): """ Hierarchically builds ensemble models from the already existing predictions. """ def __init__(self, target=None, pred_type=None, regenerate_models=False): # Parameters Metrics.__init__(self) self.target = target self.pred_type = pred_type self.folds = ['val', 'test'] self.regenerate_models = regenerate_models self.ensembles_performance_cutoff_percent = 0.5 self.parameters = {'target': target, 'organ': '*', 'view': '*', 'transformation': '*', 'architecture': '*', 'n_fc_layers': '*', 'n_fc_nodes': '*', 'optimizer': '*', 'learning_rate': '*', 'weight_decay': '*', 'dropout_rate': '*', 'data_augmentation_factor': '*'} self.version = self._parameters_to_version(self.parameters) self.main_metric_name = self.dict_main_metrics_names[target] self.init_perf = -np.Inf if self.main_metrics_modes[self.main_metric_name] == 'max' else np.Inf path_perf = self.path_data + 'PERFORMANCES_tuned_ranked_' + pred_type + '_' + target + '_val.csv' self.Performances = pd.read_csv(path_perf).set_index('version', drop=False) self.Performances['organ'] = self.Performances['organ'].astype(str) self.list_ensemble_levels = ['transformation', 'view', 'organ'] self.PREDICTIONS = {} self.weights_by_category = None self.weights_by_ensembles = None self.N_ensemble_CV_split = 10 self.instancesS = {'instances': ['01', '1.5x', '23'], 'eids': ['*']} self.instances_names_to_numbers = {'01': ['0', '1'], '1.5x': ['1.5', '1.51', '1.52', '1.53', '1.54'], '23': ['2', '3'], '*': ['*']} self.INSTANCES_DATASETS = { '01': ['Eyes', 'Hearing', 'Lungs', 'Arterial', 'Musculoskeletal', 'Biochemistry', 'ImmuneSystem'], '1.5x': ['PhysicalActivity'], '23': ['Brain', 'Arterial', 'Heart', 'Abdomen', 'Musculoskeletal'], '*': ['Brain', 'Eyes', 'Hearing', 'Lungs', 'Arterial', 'Heart', 'Abdomen', 'Musculoskeletal', 'PhysicalActivity', 'ImmuneSystem'] } # Get rid of columns and rows for the versions for which all samples as NANs @staticmethod def _drop_na_pred_versions(PREDS, Performances): # Select the versions for which only NAs are available pred_versions = [col for col in PREDS['val'].columns.values if 'pred_' in col] to_drop = [] for pv in pred_versions: for fold in PREDS.keys(): if PREDS[fold][pv].notna().sum() == 0: to_drop.append(pv) break # Drop the corresponding columns from preds, and rows from performances index_to_drop = [p.replace('pred_', '') for p in to_drop if '*' not in p] for fold in PREDS.keys(): PREDS[fold].drop(to_drop, axis=1, inplace=True) return Performances.drop(index_to_drop) def load_data(self): for fold in self.folds: self.PREDICTIONS[fold] = pd.read_csv( self.path_data + 'PREDICTIONS_tuned_' + self.pred_type + '_' + self.target + '_' + fold + '.csv') def _build_single_ensemble(self, PREDICTIONS, version): # Drop columns that are exclusively NaNs all_nan = PREDICTIONS['val'].isna().all() | PREDICTIONS['test'].isna().all() non_nan_cols = all_nan[~all_nan.values].index for fold in self.folds: PREDICTIONS[fold] = PREDICTIONS[fold][non_nan_cols] Predictions = PREDICTIONS['val'] # Select the columns for the model ensemble_preds_cols = [col for col in Predictions.columns.values if bool(re.compile('pred_' + version).match(col))] # If only one model in the ensemble, just copy the column. Otherwise build the ensemble model if len(ensemble_preds_cols) == 1: for fold in self.folds: PREDICTIONS[fold]['pred_' + version] = PREDICTIONS[fold][ensemble_preds_cols[0]] else: # Initiate the dictionaries PREDICTIONS_OUTERFOLDS = {} ENSEMBLE_INPUTS = {} for outer_fold in self.outer_folds: # take the subset of the rows that correspond to the outer_fold PREDICTIONS_OUTERFOLDS[outer_fold] = {} XS_outer_fold = {} YS_outer_fold = {} dict_fold_to_outer_folds = { 'val': [float(outer_fold)], 'test': [(float(outer_fold) + 1) % self.n_CV_outer_folds], 'train': [float(of) for of in self.outer_folds if float(of) not in [float(outer_fold), (float(outer_fold) + 1) % self.n_CV_outer_folds]] } for fold in self.folds: PREDICTIONS_OUTERFOLDS[outer_fold][fold] = \ PREDICTIONS[fold][PREDICTIONS[fold]['outer_fold'].isin(dict_fold_to_outer_folds[fold])] PREDICTIONS_OUTERFOLDS[outer_fold][fold] = PREDICTIONS_OUTERFOLDS[outer_fold][fold][ ['id', 'eid', 'instance', self.target] + ensemble_preds_cols].dropna() X = PREDICTIONS_OUTERFOLDS[outer_fold][fold][['id', 'eid', 'instance'] + ensemble_preds_cols] X.set_index('id', inplace=True) XS_outer_fold[fold] = X y = PREDICTIONS_OUTERFOLDS[outer_fold][fold][['id', 'eid', self.target]] y.set_index('id', inplace=True) YS_outer_fold[fold] = y ENSEMBLE_INPUTS[outer_fold] = [XS_outer_fold['val'], YS_outer_fold['val']] # Build ensemble model using ElasticNet and/or LightGBM, Neural Network. PREDICTIONS_ENSEMBLE = {} pool = Pool(self.N_ensemble_CV_split) MODELS = pool.map(compute_ensemble_folds, list(ENSEMBLE_INPUTS.values())) pool.close() pool.join() # Concatenate all outer folds for outer_fold in self.outer_folds: for fold in self.folds: X = PREDICTIONS_OUTERFOLDS[outer_fold][fold][ensemble_preds_cols] PREDICTIONS_OUTERFOLDS[outer_fold][fold]['pred_' + version] = MODELS[int(outer_fold)].predict(X) PREDICTIONS_OUTERFOLDS[outer_fold][fold]['outer_fold'] = float(outer_fold) df_outer_fold = PREDICTIONS_OUTERFOLDS[outer_fold][fold][['id', 'outer_fold', 'pred_' + version]] # Initiate, or append if some previous outerfolds have already been concatenated if fold not in PREDICTIONS_ENSEMBLE.keys(): PREDICTIONS_ENSEMBLE[fold] = df_outer_fold else: PREDICTIONS_ENSEMBLE[fold] = PREDICTIONS_ENSEMBLE[fold].append(df_outer_fold) # Add the ensemble predictions to the dataframe for fold in self.folds: if fold == 'train': PREDICTIONS[fold] = PREDICTIONS[fold].merge(PREDICTIONS_ENSEMBLE[fold], how='outer', on=['id', 'outer_fold']) else: PREDICTIONS_ENSEMBLE[fold].drop('outer_fold', axis=1, inplace=True) PREDICTIONS[fold] = PREDICTIONS[fold].merge(PREDICTIONS_ENSEMBLE[fold], how='outer', on=['id']) def _build_single_ensemble_wrapper(self, version, ensemble_level): print('Building the ensemble model ' + version) pred_version = 'pred_' + version # Evaluate if the ensemble model should be built # 1 - separately on instance 0-1, 1.5 and 2-3 (for ensemble at the top level, since overlap between models is 0) # 2 - piece by piece on each outer_fold # 1-Compute instances 0-1, 1.5 and 2-3 separately if ensemble_level == 'organ': for fold in self.folds: self.PREDICTIONS[fold][pred_version] = np.nan # Add an ensemble for each instances (01, 1.5x, and 23) if self.pred_type == 'instances': for instances_names in self.instancesS[self.pred_type]: pv = 'pred_' + version.split('_')[0] + '_*instances' + instances_names + '_' + \ '_'.join(version.split('_')[2:]) self.PREDICTIONS[fold][pv] = np.nan for instances_names in self.instancesS[self.pred_type]: print('Building final ensemble model for samples in the instances: ' + instances_names) # Take subset of rows and columns instances = self.instances_names_to_numbers[instances_names] instances_datasets = self.INSTANCES_DATASETS[instances_names] versions = \ [col.replace('pred_', '') for col in self.PREDICTIONS['val'].columns if 'pred_' in col] instances_versions = [version for version in versions if any(dataset in version for dataset in instances_datasets)] cols_to_keep = self.id_vars + self.demographic_vars + \ ['pred_' + version for version in instances_versions] PREDICTIONS = {} for fold in self.folds: PREDICTIONS[fold] = self.PREDICTIONS[fold][self.PREDICTIONS[fold].instance.isin(instances)] PREDICTIONS[fold] = PREDICTIONS[fold][cols_to_keep] self._build_single_ensemble(PREDICTIONS, version) # Print a quick performance estimation for each instance(s) df_model = PREDICTIONS['test'][[self.target, 'pred_' + version]].dropna() print(instances_names) print(self.main_metric_name + ' for instance(s) ' + instances_names + ': ' + str(r2_score(df_model[self.target], df_model['pred_' + version]))) print('The sample size is ' + str(len(df_model.index)) + '.') # Add the predictions to the dataframe, chunck by chunk, instances by instances for fold in self.folds: self.PREDICTIONS[fold][pred_version][self.PREDICTIONS[fold].instance.isin(instances)] = \ PREDICTIONS[fold][pred_version].values # Add an ensemble for the instance(s) only if self.pred_type == 'instances': pv = 'pred_' + version.split('_')[0] + '_*instances' + instances_names + '_' + \ '_'.join(version.split('_')[2:]) self.PREDICTIONS[fold][pv][self.PREDICTIONS[fold].instance.isin(instances)] = \ PREDICTIONS[fold][pred_version].values # Add three extra ensemble models for eids, to allow larger sample sizes for GWAS purposes if self.pred_type == 'eids': for instances_names in ['01', '1.5x', '23']: print('Building final sub-ensemble model for samples in the instances: ' + instances_names) # Keep only relevant columns instances_datasets = self.INSTANCES_DATASETS[instances_names] versions = \ [col.replace('pred_', '') for col in self.PREDICTIONS['val'].columns if 'pred_' in col] instances_versions = [version for version in versions if any(dataset in version for dataset in instances_datasets)] cols_to_keep = self.id_vars + self.demographic_vars + \ ['pred_' + version for version in instances_versions] PREDICTIONS = {} for fold in self.folds: PREDICTIONS[fold] = self.PREDICTIONS[fold].copy() PREDICTIONS[fold] = PREDICTIONS[fold][cols_to_keep] self._build_single_ensemble(PREDICTIONS, version) # Print a quick performance estimation for each instance(s) df_model = PREDICTIONS['test'][[self.target, 'pred_' + version]].dropna() print(instances_names) print(self.main_metric_name + ' for instance(s) ' + instances_names + ': ' + str(r2_score(df_model[self.target], df_model['pred_' + version]))) print('The sample size is ' + str(len(df_model.index)) + '.') # Add the predictions to the dataframe pv = 'pred_' + version.split('_')[0] + '_*instances' + instances_names + '_' + \ '_'.join(version.split('_')[2:]) for fold in self.folds: self.PREDICTIONS[fold][pv] = PREDICTIONS[fold][pred_version].values # 2-Compute fold by fold else: self._build_single_ensemble(self.PREDICTIONS, version) # build and save a dataset for this specific ensemble model for fold in self.folds: df_single_ensemble = self.PREDICTIONS[fold][['id', 'outer_fold', pred_version]] df_single_ensemble.rename(columns={pred_version: 'pred'}, inplace=True) df_single_ensemble.dropna(inplace=True, subset=['pred']) df_single_ensemble.to_csv(self.path_data + 'Predictions_' + self.pred_type + '_' + version + '_' + fold + '.csv', index=False) # Add extra ensembles at organ level if ensemble_level == 'organ': for instances_names in ['01', '1.5x', '23']: pv = 'pred_' + version.split('_')[0] + '_*instances' + instances_names + '_' + \ '_'.join(version.split('_')[2:]) version_instances = version.split('_')[0] + '_*instances' + instances_names + '_' + \ '_'.join(version.split('_')[2:]) df_single_ensemble = self.PREDICTIONS[fold][['id', 'outer_fold', pv]] df_single_ensemble.rename(columns={pv: 'pred'}, inplace=True) df_single_ensemble.dropna(inplace=True, subset=['pred']) df_single_ensemble.to_csv(self.path_data + 'Predictions_' + self.pred_type + '_' + version_instances + '_' + fold + '.csv', index=False) def _recursive_ensemble_builder(self, Performances_grandparent, parameters_parent, version_parent, list_ensemble_levels_parent): # Compute the ensemble models for the children first, so that they can be used for the parent model Performances_parent = Performances_grandparent[ Performances_grandparent['version'].isin( fnmatch.filter(Performances_grandparent['version'], version_parent))] # if the last ensemble level has not been reached, go down one level and create a branch for each child. # Otherwise the leaf has been reached if len(list_ensemble_levels_parent) > 0: list_ensemble_levels_child = list_ensemble_levels_parent.copy() ensemble_level = list_ensemble_levels_child.pop() list_children = Performances_parent[ensemble_level].unique() for child in list_children: parameters_child = parameters_parent.copy() parameters_child[ensemble_level] = child version_child = self._parameters_to_version(parameters_child) # recursive call to the function self._recursive_ensemble_builder(Performances_parent, parameters_child, version_child, list_ensemble_levels_child) else: ensemble_level = None # compute the ensemble model for the parent # Check if ensemble model has already been computed. If it has, load the predictions. If it has not, compute it. if not self.regenerate_models and \ os.path.exists(self.path_data + 'Predictions_' + self.pred_type + '_' + version_parent + '_test.csv'): print('The model ' + version_parent + ' has already been computed. Loading it...') for fold in self.folds: df_single_ensemble = pd.read_csv(self.path_data + 'Predictions_' + self.pred_type + '_' + version_parent + '_' + fold + '.csv') df_single_ensemble.rename(columns={'pred': 'pred_' + version_parent}, inplace=True) # Add the ensemble predictions to the dataframe if fold == 'train': self.PREDICTIONS[fold] = self.PREDICTIONS[fold].merge(df_single_ensemble, how='outer', on=['id', 'outer_fold']) else: df_single_ensemble.drop(columns=['outer_fold'], inplace=True) self.PREDICTIONS[fold] = self.PREDICTIONS[fold].merge(df_single_ensemble, how='outer', on=['id']) # Add the extra ensemble models at the 'organ' level if ensemble_level == 'organ': if self.pred_type == 'instances': instances = self.instancesS[self.pred_type] else: instances = ['01', '23'] for instances_names in instances: pv = 'pred_' + version_parent.split('_')[0] + '_*instances' + instances_names + '_' + \ '_'.join(version_parent.split('_')[2:]) version_instances = version_parent.split('_')[0] + '_*instances' + instances_names + '_' + \ '_'.join(version_parent.split('_')[2:]) df_single_ensemble = pd.read_csv(self.path_data + 'Predictions_' + self.pred_type + '_' + version_instances + '_' + fold + '.csv') df_single_ensemble.rename(columns={'pred': pv}, inplace=True) if fold == 'train': self.PREDICTIONS[fold] = self.PREDICTIONS[fold].merge(df_single_ensemble, how='outer', on=['id', 'outer_fold']) else: df_single_ensemble.drop(columns=['outer_fold'], inplace=True) self.PREDICTIONS[fold] = self.PREDICTIONS[fold].merge(df_single_ensemble, how='outer', on=['id']) else: self._build_single_ensemble_wrapper(version_parent, ensemble_level) # Print a quick performance estimation df_model = self.PREDICTIONS['test'][[self.target, 'pred_' + version_parent]].dropna() print(self.main_metric_name + ': ' + str(r2_score(df_model[self.target], df_model['pred_' + version_parent]))) print('The sample size is ' + str(len(df_model.index)) + '.') def generate_ensemble_predictions(self): self._recursive_ensemble_builder(self.Performances, self.parameters, self.version, self.list_ensemble_levels) # Reorder the columns alphabetically for fold in self.folds: pred_versions = [col for col in self.PREDICTIONS[fold].columns if 'pred_' in col] pred_versions.sort() self.PREDICTIONS[fold] = self.PREDICTIONS[fold][self.id_vars + self.demographic_vars + pred_versions] # Displaying the R2s for fold in self.folds: versions = [col.replace('pred_', '') for col in self.PREDICTIONS[fold].columns if 'pred_' in col] r2s = [] for version in versions: df = self.PREDICTIONS[fold][[self.target, 'pred_' + version]].dropna() r2s.append(r2_score(df[self.target], df['pred_' + version])) R2S = pd.DataFrame({'version': versions, 'R2': r2s}) R2S.sort_values(by='R2', ascending=False, inplace=True) print(fold + ' R2s for each model: ') print(R2S) def save_predictions(self): for fold in self.folds: self.PREDICTIONS[fold].to_csv(self.path_data + 'PREDICTIONS_withEnsembles_' + self.pred_type + '_' + self.target + '_' + fold + '.csv', index=False) class ResidualsGenerate(Basics): """ Computes accelerated aging phenotypes (Residuals, corrected for residuals bias with respect to age) """ def __init__(self, target=None, fold=None, pred_type=None, debug_mode=False): # Parameters Basics.__init__(self) self.target = target self.fold = fold self.pred_type = pred_type self.debug_mode = debug_mode self.Residuals = pd.read_csv(self.path_data + 'PREDICTIONS_withEnsembles_' + pred_type + '_' + target + '_' + fold + '.csv') self.list_models = [col_name.replace('pred_', '') for col_name in self.Residuals.columns.values if 'pred_' in col_name] def generate_residuals(self): list_models = [col_name.replace('pred_', '') for col_name in self.Residuals.columns.values if 'pred_' in col_name] for model in list_models: print('Generating residuals for model ' + model) df_model = self.Residuals[['Age', 'pred_' + model]] no_na_indices = [not b for b in df_model['pred_' + model].isna()] df_model.dropna(inplace=True) if (len(df_model.index)) > 0: age = df_model.loc[:, ['Age']] res = df_model['Age'] - df_model['pred_' + model] regr = LinearRegression() regr.fit(age, res) res_correction = regr.predict(age) res_corrected = res - res_correction self.Residuals.loc[no_na_indices, 'pred_' + model] = res_corrected # debug plot if self.debug_mode: print('Bias for the residuals ' + model, regr.coef_) plt.scatter(age, res) plt.scatter(age, res_corrected) regr2 = LinearRegression() regr2.fit(age, res_corrected) print('Coefficients after: \n', regr2.coef_) self.Residuals.rename(columns=lambda x: x.replace('pred_', 'res_'), inplace=True) def save_residuals(self): self.Residuals.to_csv(self.path_data + 'RESIDUALS_' + self.pred_type + '_' + self.target + '_' + self.fold + '.csv', index=False) class ResidualsCorrelations(Basics): """ Computes the phenotypic correlation between aging dimensions. """ def __init__(self, target=None, fold=None, pred_type=None, debug_mode=False): Basics.__init__(self) self.target = target self.fold = fold self.pred_type = pred_type self.debug_mode = debug_mode if debug_mode: self.n_bootstrap_iterations_correlations = 10 else: self.n_bootstrap_iterations_correlations = 1000 self.Residuals = None self.CORRELATIONS = {} self.Correlation_sample_sizes = None def preprocessing(self): # load data Residuals = pd.read_csv(self.path_data + 'RESIDUALS_' + self.pred_type + '_' + self.target + '_' + self.fold + '.csv') # Format the dataframe Residuals_only = Residuals[[col_name for col_name in Residuals.columns.values if 'res_' in col_name]] Residuals_only.rename(columns=lambda x: x.replace('res_' + self.target + '_', ''), inplace=True) # Reorder the columns to make the correlation matrix more readable # Need to temporarily rename '?' because its ranking differs from the '*' and ',' characters Residuals_only.columns = [col_name.replace('?', ',placeholder') for col_name in Residuals_only.columns.values] Residuals_only = Residuals_only.reindex(sorted(Residuals_only.columns), axis=1) Residuals_only.columns = [col_name.replace(',placeholder', '?') for col_name in Residuals_only.columns.values] self.Residuals = Residuals_only def _bootstrap_correlations(self): names = self.Residuals.columns.values results = [] for i in range(self.n_bootstrap_iterations_correlations): if (i + 1) % 100 == 0: print('Bootstrap iteration ' + str(i + 1) + ' out of ' + str(self.n_bootstrap_iterations_correlations)) data_i = resample(self.Residuals, replace=True, n_samples=len(self.Residuals.index)) results.append(np.array(data_i.corr())) results = np.array(results) RESULTS = {} for op in ['mean', 'std']: results_op = pd.DataFrame(getattr(np, op)(results, axis=0)) results_op.index = names results_op.columns = names RESULTS[op] = results_op self.CORRELATIONS['_sd'] = RESULTS['std'] def generate_correlations(self): # Generate the correlation matrix self.CORRELATIONS[''] = self.Residuals.corr() # Gerate the std by bootstrapping self._bootstrap_correlations() # Merge both as a dataframe of strings self.CORRELATIONS['_str'] = self.CORRELATIONS[''].round(3).applymap(str) \ + '+-' + self.CORRELATIONS['_sd'].round(3).applymap(str) # Print correlations print(self.CORRELATIONS['']) # Generate correlation sample sizes self.Residuals[~self.Residuals.isna()] = 1 self.Residuals[self.Residuals.isna()] = 0 self.Correlation_sample_sizes = self.Residuals.transpose() @ self.Residuals def save_correlations(self): self.Correlation_sample_sizes.to_csv(self.path_data + 'ResidualsCorrelations_samplesizes_' + self.pred_type + '_' + self.target + '_' + self.fold + '.csv', index=True) for mode in self.modes: self.CORRELATIONS[mode].to_csv(self.path_data + 'ResidualsCorrelations' + mode + '_' + self.pred_type + '_' + self.target + '_' + self.fold + '.csv', index=True) class PerformancesSurvival(Metrics): """ Computes the performances in terms of survival prediction using biological age phenotypes as survival predictors. """ def __init__(self, target=None, fold=None, pred_type=None, debug_mode=None): Metrics.__init__(self) self.target = target self.fold = fold self.pred_type = pred_type if debug_mode: self.n_bootstrap_iterations = 3 else: self.n_bootstrap_iterations = 1000 self.PERFORMANCES = None self.Survival = None self.SURV = None def _bootstrap_c_index(self, data): results = [] for i in range(self.n_bootstrap_iterations): data_i = resample(data, replace=True, n_samples=len(data.index)) if len(data_i['Death'].unique()) == 2: results.append(concordance_index(data_i['Age'], -data_i['pred'], data_i['Death'])) ''' To debug if this part fails again try: results.append(concordance_index(data_i['Age'], -data_i['pred'], data_i['Death'])) except: print('WEIRD, should not happen! Printing the df') print(data_i) self.data_i_debug = data_i break ''' if len(results) > 0: results_mean = np.mean(results) results_std = np.std(results) else: results_mean = np.nan results_std = np.nan return results_mean, results_std def load_data(self): # Load and preprocess PERFORMANCES self.PERFORMANCES = pd.read_csv(self.path_data + 'PERFORMANCES_withEnsembles_alphabetical_' + self.pred_type + '_' + self.target + '_' + self.fold + '.csv') self.PERFORMANCES.set_index('version', drop=False, inplace=True) self.PERFORMANCES.index.name = 'index' for inner_fold in ['all'] + [str(i) for i in range(10)]: for metric in ['C-Index', 'C-Index-difference']: for mode in self.modes: self.PERFORMANCES[metric + mode + '_' + inner_fold] = np.nan Residuals = pd.read_csv( self.path_data + 'RESIDUALS_' + self.pred_type + '_' + self.target + '_' + self.fold + '.csv') Survival = pd.read_csv(self.path_data + 'data_survival.csv') self.Survival = pd.merge(Survival[['id', 'FollowUpTime', 'Death']], Residuals, on='id') data_folds = pd.read_csv(self.path_data + 'data-features_eids.csv', usecols=['eid', 'outer_fold']) self.SURV = {} for i in range(10): self.SURV[i] = \ self.Survival[self.Survival['eid'].isin(data_folds['eid'][data_folds['outer_fold'] == i].values)] def compute_c_index_and_save_data(self): models = [col.replace('res_' + self.target, self.target) for col in self.Survival.columns if 'res_' in col] for k, model in enumerate(models): if k % 30 == 0: print('Computing CI for the ' + str(k) + 'th model out of ' + str(len(models)) + ' models.') # Load Performances dataframes PERFS = {} for mode in self.modes: PERFS[mode] = pd.read_csv('../data/Performances_' + self.pred_type + '_' + model + '_' + self.fold + mode + '.csv') PERFS[mode].set_index('outer_fold', drop=False, inplace=True) PERFS[mode]['C-Index'] = np.nan PERFS[mode]['C-Index-difference'] = np.nan df_model = self.Survival[['FollowUpTime', 'Death', 'Age', 'res_' + model]].dropna() df_model.rename(columns={'res_' + model: 'pred'}, inplace=True) # Compute CI over all samples if len(df_model['Death'].unique()) == 2: ci_model = concordance_index(df_model['FollowUpTime'], -(df_model['Age'] - df_model['pred']), df_model['Death']) ci_age = concordance_index(df_model['FollowUpTime'], -df_model['Age'], df_model['Death']) ci_diff = ci_model - ci_age PERFS[''].loc['all', 'C-Index'] = ci_model PERFS[''].loc['all', 'C-Index-difference'] = ci_diff self.PERFORMANCES.loc[model, 'C-Index_all'] = ci_model self.PERFORMANCES.loc[model, 'C-Index-difference_all'] = ci_diff _, ci_sd = self._bootstrap_c_index(df_model) PERFS['_sd'].loc['all', 'C-Index'] = ci_sd PERFS['_sd'].loc['all', 'C-Index-difference'] = ci_sd self.PERFORMANCES.loc[model, 'C-Index_sd_all'] = ci_sd self.PERFORMANCES.loc[model, 'C-Index-difference_sd_all'] = ci_sd # Compute CI over each fold for i in range(10): df_model_i = self.SURV[i][['FollowUpTime', 'Death', 'Age', 'res_' + model]].dropna() df_model_i.rename(columns={'res_' + model: 'pred'}, inplace=True) if len(df_model_i['Death'].unique()) == 2: ci_model_i = concordance_index(df_model_i['FollowUpTime'], -(df_model_i['Age'] - df_model_i['pred']), df_model_i['Death']) ci_age_i = concordance_index(df_model_i['FollowUpTime'], -df_model_i['Age'], df_model_i['Death']) ci_diff_i = ci_model_i - ci_age_i PERFS[''].loc[str(i), 'C-Index'] = ci_model_i PERFS[''].loc[str(i), 'C-Index-difference'] = ci_diff_i self.PERFORMANCES.loc[model, 'C-Index_' + str(i)] = ci_model_i self.PERFORMANCES.loc[model, 'C-Index-difference_' + str(i)] = ci_diff_i _, ci_i_sd = self._bootstrap_c_index(df_model_i) PERFS['_sd'].loc[str(i), 'C-Index'] = ci_i_sd PERFS['_sd'].loc[str(i), 'C-Index-difference'] = ci_i_sd self.PERFORMANCES.loc[model, 'C-Index_sd_' + str(i)] = ci_i_sd self.PERFORMANCES.loc[model, 'C-Index-difference_sd_' + str(i)] = ci_i_sd # Compute sd using all folds ci_str = round(PERFS[''][['C-Index', 'C-Index-difference']], 3).astype(str) + '+-' + \ round(PERFS['_sd'][['C-Index', 'C-Index-difference']], 3).astype(str) PERFS['_str'][['C-Index', 'C-Index-difference']] = ci_str for col in ['C-Index', 'C-Index-difference']: cols = [col + '_str_' + str(i) for i in range(10)] # Fill model's performance matrix ci_std_lst = PERFS['_str'].loc['all', col].split('+-') ci_std_lst.insert(1, str(round(PERFS[''][col].iloc[1:].std(), 3))) ci_std_str = '+-'.join(ci_std_lst) PERFS['_str'].loc['all', col] = ci_std_str # Fill global performances matrix self.PERFORMANCES.loc[model, cols] = ci_str[col].values[1:] self.PERFORMANCES.loc[model, col + '_str_all'] = ci_std_str # Save new performances for mode in self.modes: PERFS[mode].to_csv('../data/Performances_' + self.pred_type + '_withCI_' + model + '_' + self.fold + mode + '.csv') # Ranking, printing and saving # Sort by alphabetical order Performances_alphabetical = self.PERFORMANCES.sort_values(by='version') Performances_alphabetical.to_csv(self.path_data + 'PERFORMANCES_withEnsembles_withCI_alphabetical_' + self.pred_type + '_' + self.target + '_' + self.fold + '.csv', index=False) # Sort by C-Index difference, to print cols_to_print = ['version', 'C-Index-difference_str_all'] Performances_ranked = self.PERFORMANCES.sort_values(by='C-Index-difference_all', ascending=False) print('Performances of the models ranked by C-Index difference with C-Index based on age only,' ' on all the samples:') print(Performances_ranked[cols_to_print]) # Sort by main metric, to save sort_by = self.dict_main_metrics_names[self.target] + '_all' sort_ascending = self.main_metrics_modes[self.dict_main_metrics_names[self.target]] == 'min' Performances_ranked = self.PERFORMANCES.sort_values(by=sort_by, ascending=sort_ascending) Performances_ranked.to_csv(self.path_data + 'PERFORMANCES_withEnsembles_withCI_withEnsembles_ranked_' + self.pred_type + '_' + self.target + '_' + self.fold + '.csv', index=False) # Save with ensembles models_nonensembles = [idx for idx in Performances_alphabetical.index if '*' not in idx] path_save = self.path_data + 'PERFORMANCES_withoutEnsembles_withCI_alphabetical_' + self.pred_type + '_' + \ self.target + '_' + self.fold + '.csv' Performances_alphabetical.loc[models_nonensembles, :].to_csv(path_save, index=False) Performances_ranked.loc[models_nonensembles, :].to_csv(path_save.replace('alphabetical', 'ranked')) def print_key_results(self): # Helper function def compute_p_value(row): sd = float(row['C-Index-difference_str_all'].split('+-')[1]) z = np.abs(row['C-Index-difference_all']) / sd pv = norm.sf(abs(z)) * 2 return pv # Preprocess the data Performances = pd.read_csv( self.path_data + 'PERFORMANCES_withEnsembles_withCI_alphabetical_' + self.pred_type + '_' + self.target + '_' + self.fold + '.csv') Performances.set_index('version', drop=False, inplace=True) Perfs_CI = Performances[['version', 'C-Index_all', 'C-Index-difference_all', 'C-Index-difference_str_all']].sort_values(by='C-Index-difference_all') Perfs_CI['C-Index_CA'] = Perfs_CI['C-Index_all'] - Perfs_CI['C-Index-difference_all'] Perfs_CI['p-value'] = Perfs_CI.apply(compute_p_value, axis=1) # Select only models for which difference between biological age's CI and chronological age's CI is significant Perfs_CI_significant = Perfs_CI[Perfs_CI['p-value'] < 0.05] Perfs_CI_significant_FDR = Perfs_CI[Perfs_CI['p-value'] * len(Perfs_CI.index) < 0.05] # Take the subset corresponding to the 11 main dimensions main_dims = ['Brain', 'Eyes', 'Hearing', 'Lungs', 'Arterial', 'Heart', 'Abdomen', 'Musculoskeletal', 'PhysicalActivity', 'Biochemistry', 'ImmuneSystem'] main_rows = ['Age_' + dim + '_*' * 10 for dim in main_dims] Perfs_CI_main = Perfs_CI.loc[main_rows, :] Perfs_CI_main.sort_values(by='C-Index-difference_all', inplace=True) # Select only models for which difference between biological age's CI and chronological age's CI is significant Perfs_CI_main_significant = Perfs_CI_main[Perfs_CI_main['p-value'] < 0.05] Perfs_CI_main_significant_FDR = Perfs_CI_main[Perfs_CI_main['p-value'] * len(Perfs_CI_main.index) < 0.05] # Compute the statistics to compare biological ages and chronological age on all the dimensions CI_diff_mean = Perfs_CI['C-Index-difference_all'].mean() CI_diff_std = Perfs_CI['C-Index-difference_all'].std() _t_stat_all, pv_all = ttest_rel(Perfs_CI['C-Index_all'], Perfs_CI['C-Index_CA']) # Number of dimensions outperforming and underperforming compared to chronological age n_CI_diff_positives = (Perfs_CI['C-Index-difference_all'] > 0).sum() n_CI_diff_negatives = (Perfs_CI['C-Index-difference_all'] < 0).sum() n_CI_diff_positives_significant = (Perfs_CI_significant['C-Index-difference_all'] > 0).sum() n_CI_diff_negatives_significant = (Perfs_CI_significant['C-Index-difference_all'] < 0).sum() n_CI_diff_positives_significant_FDR = (Perfs_CI_significant_FDR['C-Index-difference_all'] > 0).sum() n_CI_diff_negatives_significant_FDR = (Perfs_CI_significant_FDR['C-Index-difference_all'] < 0).sum() # print results print('The mean CI difference over the ' + str(len(Perfs_CI.index)) + ' biological ages = ' + str(round(CI_diff_mean, 3)) + '; standard deviation = ' + str(round(CI_diff_std, 3)) + '; paired t-test p-value = ' + str(pv_all)) print('Out of the ' + str(len(Perfs_CI.index)) + ' dimensions, ' + str(n_CI_diff_positives) + ' dimensions outperform CA as survival predictors, and ' + str(n_CI_diff_negatives) + ' dimensions underperform.') # Compute the statistics to compare biological ages and chronological age on the 11 main dimensions CI_diff_main_mean = Perfs_CI_main['C-Index-difference_all'].mean() CI_diff_main_std = Perfs_CI_main['C-Index-difference_all'].std() _t_stat_main, pv_main = ttest_rel(Perfs_CI_main['C-Index_all'], Perfs_CI_main['C-Index_CA']) # Number of dimensions outperforming and underperforming compared to chronological age n_CI_diff_main_positives = (Perfs_CI_main['C-Index-difference_all'] > 0).sum() n_CI_diff_main_negatives = (Perfs_CI_main['C-Index-difference_all'] < 0).sum() n_CI_diff_main_positives_significant = (Perfs_CI_main_significant['C-Index-difference_all'] > 0).sum() n_CI_diff_main_negatives_significant = (Perfs_CI_main_significant['C-Index-difference_all'] < 0).sum() n_CI_diff_main_positives_significant_FDR = (Perfs_CI_main_significant_FDR['C-Index-difference_all'] > 0).sum() n_CI_diff_main_negatives_significant_FDR = (Perfs_CI_main_significant_FDR['C-Index-difference_all'] < 0).sum() # print results print('The mean CI difference over the ' + str(len(Perfs_CI_main.index)) + ' biological ages = ' + str(round(CI_diff_main_mean, 3)) + '; standard deviation = ' + str(round(CI_diff_main_std, 3)) + '; paired t-test p-value = ' + str(pv_main)) print('Out of the ' + str(len(Perfs_CI_main.index)) + ' main biological dimensions, ' + str( n_CI_diff_main_positives) + ' dimensions outperform CA as survival predictors, and ' + str(n_CI_diff_main_negatives) + ' dimensions underperform.') Perfs_CI_main[['version', 'C-Index-difference_all', 'C-Index-difference_str_all', 'C-Index_all', 'C-Index_CA']].sort_values( by='C-Index-difference_all') row_names = ['All', 'significant', 'FDR_significant'] col_names = ['All', '+', '-'] n_models = pd.DataFrame(np.empty((len(row_names), len(col_names),))) n_models.index = row_names n_models.columns = col_names N_MODELS = {'All_dims': n_models.copy(), 'Main_dims': n_models.copy()} best_models = n_models.drop(columns=['All']) BEST_MODELS = {'All_dims': best_models.copy(), 'Main_dims': best_models.copy()} BEST_CI_DIFFS = {'All_dims': best_models.copy(), 'Main_dims': best_models.copy()} N_MODELS['All_dims'].loc[:, '+'] = \ [n_CI_diff_positives, n_CI_diff_positives_significant, n_CI_diff_positives_significant_FDR] BEST_MODELS['All_dims'].loc[:, '+'] = [Perfs_CI['version'][len(Perfs_CI.index) - 1], Perfs_CI_significant['version'][len(Perfs_CI_significant.index) - 1], Perfs_CI_significant_FDR['version'][ len(Perfs_CI_significant_FDR.index) - 1]] BEST_CI_DIFFS['All_dims'].loc[:, '+'] = \ [Perfs_CI['C-Index-difference_str_all'][len(Perfs_CI.index) - 1], Perfs_CI_significant['C-Index-difference_str_all'][len(Perfs_CI_significant.index) - 1], Perfs_CI_significant_FDR['C-Index-difference_str_all'][len(Perfs_CI_significant_FDR.index) - 1]] N_MODELS['All_dims'].loc[:, '-'] = \ [n_CI_diff_negatives, n_CI_diff_negatives_significant, n_CI_diff_negatives_significant_FDR] BEST_MODELS['All_dims'].loc[:, '-'] = [Perfs_CI['version'][0], Perfs_CI_significant['version'][0], Perfs_CI_significant_FDR['version'][0]] BEST_CI_DIFFS['All_dims'].loc[:, '-'] = [Perfs_CI['C-Index-difference_str_all'][0], Perfs_CI_significant['C-Index-difference_str_all'][0], Perfs_CI_significant_FDR['C-Index-difference_str_all'][0]] N_MODELS['All_dims']['All'] = N_MODELS['All_dims']['+'] + N_MODELS['All_dims']['-'] N_MODELS['Main_dims'].loc[:, '+'] = \ [n_CI_diff_main_positives, n_CI_diff_main_positives_significant, n_CI_diff_main_positives_significant_FDR] BEST_MODELS['Main_dims'].loc[:, '+'] = \ [Perfs_CI_main['version'][len(Perfs_CI_main.index) - 1], Perfs_CI_main_significant['version'][len(Perfs_CI_main_significant.index) - 1], Perfs_CI_main_significant_FDR['version'][len(Perfs_CI_main_significant_FDR.index) - 1]] BEST_CI_DIFFS['Main_dims'].loc[:, '+'] = \ [Perfs_CI_main['C-Index-difference_str_all'][len(Perfs_CI_main.index) - 1], Perfs_CI_main_significant['C-Index-difference_str_all'][len(Perfs_CI_main_significant.index) - 1], Perfs_CI_main_significant_FDR['C-Index-difference_str_all'][len(Perfs_CI_main_significant_FDR.index) - 1]] N_MODELS['Main_dims'].loc[:, '-'] = \ [n_CI_diff_main_negatives, n_CI_diff_main_negatives_significant, n_CI_diff_main_negatives_significant_FDR] BEST_MODELS['Main_dims'].loc[:, '-'] = [Perfs_CI_main['version'][0], Perfs_CI_main_significant['version'][0], Perfs_CI_main_significant_FDR['version'][0]] BEST_CI_DIFFS['Main_dims'].loc[:, '-'] = [Perfs_CI_main['C-Index-difference_str_all'][0], Perfs_CI_main_significant['C-Index-difference_str_all'][0], Perfs_CI_main_significant_FDR['C-Index-difference_str_all'][0]] N_MODELS['Main_dims']['All'] = N_MODELS['Main_dims']['+'] + N_MODELS['Main_dims']['-'] # Reformat to take into account that sometimes no model fits the criteria for dims in ['All_dims', 'Main_dims']: for sign in ['+', '-']: for models in ['All', 'significant', 'FDR_significant']: if N_MODELS[dims].loc[models, sign] == 0: BEST_MODELS[dims].loc[models, sign] = '' BEST_CI_DIFFS[dims].loc[models, sign] = '' # Print results # All dims print('Number of aging dimensions, best models and associated CI differences for All dims: ') print(N_MODELS['All_dims']) print(BEST_MODELS['All_dims']) print(BEST_CI_DIFFS['All_dims']) print('Best model between All dims: ') print(Perfs_CI_significant_FDR[['C-Index-difference_str_all', 'C-Index_all', 'C-Index_CA']].iloc[-1, :]) # Main dims print('Number of aging dimensions, best models and associated CI differences for Main dims: ') print(N_MODELS['Main_dims']) print(BEST_MODELS['Main_dims']) print(BEST_CI_DIFFS['Main_dims']) print('Best model between Main dims: ') print(Perfs_CI_main_significant_FDR[['C-Index-difference_str_all', 'C-Index_all', 'C-Index_CA']].iloc[-1, :]) class SelectBest(Metrics): """ For each aging main dimension and selected subdimensions, select the best performing model. """ def __init__(self, target=None, pred_type=None): Metrics.__init__(self) self.target = target self.pred_type = pred_type self.folds = ['test'] self.organs_with_suborgans = {'Brain': ['Cognitive', 'MRI'], 'Eyes': ['All', 'Fundus', 'OCT'], 'Arterial': ['PulseWaveAnalysis', 'Carotids'], 'Heart': ['ECG', 'MRI'], 'Abdomen': ['Liver', 'Pancreas'], 'Musculoskeletal': ['Spine', 'Hips', 'Knees', 'FullBody', 'Scalars'], 'Biochemistry': ['Urine', 'Blood']} self.organs = [] self.best_models = [] self.PREDICTIONS = {} self.RESIDUALS = {} self.PERFORMANCES = {} self.CORRELATIONS = {} self.CORRELATIONS_SAMPLESIZES = {} def _load_data(self): for fold in self.folds: path_pred = self.path_data + 'PREDICTIONS_withEnsembles_' + self.pred_type + '_' + self.target + '_' + \ fold + '.csv' path_res = self.path_data + 'RESIDUALS_' + self.pred_type + '_' + self.target + '_' + fold + '.csv' path_perf = self.path_data + 'PERFORMANCES_withEnsembles_withCI_ranked_' + self.pred_type + '_' + \ self.target + '_' + fold + '.csv' path_corr = self.path_data + 'ResidualsCorrelations_str_' + self.pred_type + '_' + self.target + '_' + \ fold + '.csv' self.PREDICTIONS[fold] = pd.read_csv(path_pred) self.RESIDUALS[fold] = pd.read_csv(path_res) self.PERFORMANCES[fold] = pd.read_csv(path_perf) self.PERFORMANCES[fold].set_index('version', drop=False, inplace=True) self.CORRELATIONS_SAMPLESIZES[fold] = pd.read_csv(self.path_data + 'ResidualsCorrelations_samplesizes_' + self.pred_type + '_' + self.target + '_' + fold + '.csv', index_col=0) self.CORRELATIONS[fold] = {} for mode in self.modes: self.CORRELATIONS[fold][mode] = pd.read_csv(path_corr.replace('_str', mode), index_col=0) def _select_versions(self): # Load val performances path_perf = self.path_data + 'PERFORMANCES_withEnsembles_withCI_ranked_' + self.pred_type + '_' + \ self.target + '_test.csv' Performances = pd.read_csv(path_perf) Performances.set_index('version', drop=False, inplace=True) list_organs = Performances['organ'].unique() list_organs.sort() for organ in list_organs: print('Selecting best model for ' + organ) Perf_organ = Performances[Performances['organ'] == organ] self.organs.append(organ) self.best_models.append(Perf_organ['version'].values[0]) if organ in self.organs_with_suborgans.keys(): for view in self.organs_with_suborgans[organ]: print('Selecting best model for ' + organ + view) Perf_organview = Performances[(Performances['organ'] == organ) & (Performances['view'] == view)] self.organs.append(organ + view) self.best_models.append(Perf_organview['version'].values[0]) def _take_subsets(self): base_cols = self.id_vars + self.demographic_vars best_models_pred = ['pred_' + model for model in self.best_models] best_models_res = ['res_' + model for model in self.best_models] best_models_corr = ['_'.join(model.split('_')[1:]) for model in self.best_models] for fold in self.folds: self.PREDICTIONS[fold] = self.PREDICTIONS[fold].loc[:, base_cols + best_models_pred] self.PREDICTIONS[fold].columns = base_cols + self.organs self.RESIDUALS[fold] = self.RESIDUALS[fold].loc[:, base_cols + best_models_res] self.RESIDUALS[fold].columns = base_cols + self.organs self.PERFORMANCES[fold] = self.PERFORMANCES[fold].loc[self.best_models, :] self.PERFORMANCES[fold].index = self.organs self.CORRELATIONS_SAMPLESIZES[fold] = \ self.CORRELATIONS_SAMPLESIZES[fold].loc[best_models_corr, best_models_corr] self.CORRELATIONS_SAMPLESIZES[fold].index = self.organs self.CORRELATIONS_SAMPLESIZES[fold].columns = self.organs for mode in self.modes: self.CORRELATIONS[fold][mode] = self.CORRELATIONS[fold][mode].loc[best_models_corr, best_models_corr] self.CORRELATIONS[fold][mode].index = self.organs self.CORRELATIONS[fold][mode].columns = self.organs def select_models(self): self._load_data() self._select_versions() self._take_subsets() def save_data(self): for fold in self.folds: path_pred = self.path_data + 'PREDICTIONS_bestmodels_' + self.pred_type + '_' + self.target + '_' + fold \ + '.csv' path_res = self.path_data + 'RESIDUALS_bestmodels_' + self.pred_type + '_' + self.target + '_' + fold + \ '.csv' path_corr = self.path_data + 'ResidualsCorrelations_bestmodels_str_' + self.pred_type + '_' + self.target \ + '_' + fold + '.csv' path_perf = self.path_data + 'PERFORMANCES_bestmodels_ranked_' + self.pred_type + '_' + self.target + '_' \ + fold + '.csv' self.PREDICTIONS[fold].to_csv(path_pred, index=False) self.RESIDUALS[fold].to_csv(path_res, index=False) self.PERFORMANCES[fold].sort_values(by=self.dict_main_metrics_names[self.target] + '_all', ascending=False, inplace=True) self.PERFORMANCES[fold].to_csv(path_perf, index=False) Performances_alphabetical = self.PERFORMANCES[fold].sort_values(by='version') Performances_alphabetical.to_csv(path_perf.replace('ranked', 'alphabetical'), index=False) for mode in self.modes: self.CORRELATIONS[fold][mode].to_csv(path_corr.replace('_str', mode), index=True) # Handy draft to print some key results Perfs = pd.read_csv('../data/PERFORMANCES_withEnsembles_alphabetical_instances_Age_test.csv') Perfs.set_index('version', drop=False, inplace=True) # Take the subset corresponding to the 11 main dimensions main_dims = ['Brain', 'Eyes', 'Hearing', 'Lungs', 'Arterial', 'Heart', 'Abdomen', 'Musculoskeletal', 'PhysicalActivity', 'Biochemistry', 'ImmuneSystem'] main_rows = ['Age_' + dim + '_*' * 10 for dim in main_dims] Perfs_main = Perfs.loc[main_rows, :] print('R-Squared for all dimensions = ' + str(round(Perfs['R-Squared_all'].mean(), 3)) + '; std = ' + str(round(Perfs['R-Squared_all'].std(), 3)) + '; min = ' + str(round(Perfs['R-Squared_all'].min(), 3)) + '; max = ' + str(round(Perfs['R-Squared_all'].max(), 3))) print('RMSEs for all dimensions = ' + str(round(Perfs['RMSE_all'].mean(), 3)) + '; std = ' + str(round(Perfs['RMSE_all'].std(), 3)) + '; min = ' + str( round(Perfs['RMSE_all'].min(), 3)) + '; max = ' + str(round(Perfs['RMSE_all'].max(), 3))) print('R-Squared for main dimensions = ' + str(round(Perfs_main['R-Squared_all'].mean(), 3)) + '; std = ' + str(round(Perfs_main['R-Squared_all'].std(), 3)) + '; min = ' + str( round(Perfs_main['R-Squared_all'].min(), 3)) + '; max = ' + str(round(Perfs_main['R-Squared_all'].max(), 3))) print('RMSEs for main dimensions = ' + str(round(Perfs_main['RMSE_all'].mean(), 3)) + '; std = ' + str(round(Perfs_main['RMSE_all'].std(), 3)) + '; min = ' + str(round(Perfs_main['RMSE_all'].min(), 3)) + '; max = ' + str(round(Perfs_main['RMSE_all'].max(), 3))) class SelectCorrelationsNAs(Basics): """ Build a summary correlation matrix: when a correlation cannot be computed in terms of samples ("instances") because the intersection has a small sample size, fill the NA with the correlation computed at the participant's level ("eids"). """ def __init__(self, target=None): Basics.__init__(self) self.target = target self.folds = ['test'] self.CORRELATIONS = {'*': {'': {}, '_sd': {}, '_str': {}}} def load_data(self): for models_type in self.models_types: self.CORRELATIONS[models_type] = {} for pred_type in ['instances', 'eids', '*']: self.CORRELATIONS[models_type][pred_type] = {} for mode in self.modes: self.CORRELATIONS[models_type][pred_type][mode] = {} for fold in self.folds: if pred_type == '*': self.CORRELATIONS[models_type][pred_type][mode][fold] = \ pd.read_csv(self.path_data + 'ResidualsCorrelations' + models_type + mode + '_instances_' + self.target + '_' + fold + '.csv', index_col=0) else: self.CORRELATIONS[models_type][pred_type][mode][fold] = \ pd.read_csv(self.path_data + 'ResidualsCorrelations' + models_type + mode + '_' + pred_type + '_' + self.target + '_' + fold + '.csv', index_col=0) def fill_na(self): # Dectect NAs in the instances correlation matrix for models_type in self.models_types: NAs_mask = self.CORRELATIONS[models_type]['instances']['']['test'].isna() for mode in self.modes: for fold in self.folds: self.CORRELATIONS[models_type]['*'][mode][fold] = \ self.CORRELATIONS[models_type]['instances'][mode][fold].copy() self.CORRELATIONS[models_type]['*'][mode][fold][NAs_mask] = \ self.CORRELATIONS[models_type]['eids'][mode][fold][NAs_mask] def save_correlations(self): for models_type in self.models_types: for mode in self.modes: for fold in self.folds: self.CORRELATIONS[models_type]['*'][mode][fold].to_csv(self.path_data + 'ResidualsCorrelations' + models_type + mode + '_*_' + self.target + '_' + fold + '.csv', index=True) class CorrelationsAverages: """ Computes average correlation at different levels, to summarize the results. """ def __init__(self): self.Performances = pd.read_csv("../data/PERFORMANCES_withEnsembles_ranked_eids_Age_test.csv") self.Correlations = pd.read_csv("../data/ResidualsCorrelations_eids_Age_test.csv", index_col=0) def _melt_correlation_matrix(self, models): models = ['_'.join(c.split('_')[1:]) for c in models] Corrs = self.Correlations.loc[models, models] Corrs = Corrs.where(np.triu(np.ones(Corrs.shape), 1).astype(np.bool)) Corrs = Corrs.stack().reset_index() Corrs.columns = ['Row', 'Column', 'Correlation'] return Corrs @staticmethod def _split_version(row): names = ['organ', 'view', 'transformation', 'architecture', 'n_fc_layers', 'n_fc_nodes', 'optimizer', 'learning_rate', 'weight_decay', 'dropout_rate', 'data_augmentation_factor'] row_names = ['row_' + name for name in names] col_names = ['col_' + name for name in names] row_params = row['Row'].split('_') col_params = row['Column'].split('_') new_row = pd.Series(row_params + col_params + [row['Correlation']]) new_row.index = row_names + col_names + ['Correlation'] return new_row @staticmethod def _compute_stats(data, title): m = data['Correlation'].mean() s = data['Correlation'].std() n = len(data.index) print('Correlation between ' + title + ': ' + str(round(m, 3)) + '+-' + str(round(s, 3)) + ', n_pairs=' + str(n)) @staticmethod def _generate_pairs(ls): pairs = [] for i in range(len(ls)): for j in range((i + 1), len(ls)): pairs.append((ls[i], ls[j])) return pairs @staticmethod def _extract_pair(Corrs, pair, level): extracted = Corrs[((Corrs['row_' + level] == pair[0]) & (Corrs['col_' + level] == pair[1])) | ((Corrs['row_' + level] == pair[1]) & (Corrs['col_' + level] == pair[0]))] return extracted def _extract_pairs(self, Corrs, pairs, level): extracted = None for pair in pairs: extracted_pair = self._extract_pair(Corrs, pair, level) if extracted is None: extracted = extracted_pair else: extracted = extracted.append(extracted_pair) return extracted def correlations_all(self): Corrs = self._melt_correlation_matrix(self.Performances['version'].values) self._compute_stats(Corrs, 'All models') def correlations_dimensions(self): Perf = self.Performances[(self.Performances['view'] == '*') & ~(self.Performances['organ'].isin(['*', '*instances01', '*instances1.5x', '*instances23']))] Corrs = self._melt_correlation_matrix(Perf['version'].values) self._compute_stats(Corrs, 'Main Dimensions') def correlations_subdimensions(self): # Subdimensions dict_dims_to_subdims = { 'Brain': ['Cognitive', 'MRI'], 'Eyes': ['OCT', 'Fundus', 'IntraocularPressure', 'Acuity', 'Autorefraction'], 'Arterial': ['PulseWaveAnalysis', 'Carotids'], 'Heart': ['ECG', 'MRI'], 'Abdomen': ['Liver', 'Pancreas'], 'Musculoskeletal': ['Spine', 'Hips', 'Knees', 'FullBody', 'Scalars'], 'PhysicalActivity': ['FullWeek', 'Walking'], 'Biochemistry': ['Urine', 'Blood'] } Corrs_subdim = None for dim in dict_dims_to_subdims.keys(): models = ['Age_' + dim + '_' + subdim + '_*' * 9 for subdim in dict_dims_to_subdims[dim]] Corrs_dim = self._melt_correlation_matrix(models) self._compute_stats(Corrs_dim, dim + ' subdimensions') if Corrs_subdim is None: Corrs_subdim = Corrs_dim else: Corrs_subdim = Corrs_subdim.append(Corrs_dim) # Compute the average over the subdimensions self._compute_stats(Corrs_subdim, 'Subdimensions') def correlations_subsubdimensions(self): # Only select the ensemble models at the architecture level, Perf_ss = self.Performances[self.Performances['architecture'] == '*'] # Brain - Cognitive Perf = Perf_ss[(Perf_ss['organ'] == 'Brain') & (Perf_ss['view'] == 'Cognitive')] # Remove ensemble model and all scalars Perf = Perf[~Perf['transformation'].isin(['*', 'AllScalars'])] Corrs_bc = self._melt_correlation_matrix(Perf['version'].values) self._compute_stats(Corrs_bc, 'Brain cognitive sub-subdimensions') # Musculoskeletal - Scalars Perf = Perf_ss[(Perf_ss['organ'] == 'Musculoskeletal') & (Perf_ss['view'] == 'Scalars')] Perf = Perf[~Perf['transformation'].isin(['*', 'AllScalars'])] Corrs_ms = self._melt_correlation_matrix(Perf['version'].values) self._compute_stats(Corrs_ms, 'Musculoskeletal - Scalars sub-subdimensions') # Average over subsubdimensions Corrs_subsubdimensions = Corrs_bc.append(Corrs_ms) self._compute_stats(Corrs_subsubdimensions, 'Sub-subdimensions') def correlations_views(self): # Variables dict_dim_to_view = { 'Brain_MRI': [['SagittalReference', 'CoronalReference', 'TransverseReference', 'dMRIWeightedMeans', 'SubcorticalVolumes', 'GreyMatterVolumes'], ['SagittalRaw', 'CoronalRaw', 'TransverseRaw']], 'Arterial_PulseWaveAnalysis': [['Scalars', 'TimeSeries']], 'Arterial_Carotids': [['Scalars', 'LongAxis', 'CIMT120', 'CIMT150', 'ShortAxis']], 'Heart_ECG': [['Scalars', 'TimeSeries']], 'Heart_MRI': [['2chambersRaw', '3chambersRaw', '4chambersRaw'], ['2chambersContrast', '3chambersContrast', '4chambersContrast']], 'Musculoskeletal_Spine': [['Sagittal', 'Coronal']], 'Musculoskeletal_FullBody': [['Figure', 'Flesh']], 'PhysicalActivity_FullWeek': [ ['Scalars', 'Acceleration', 'TimeSeriesFeatures', 'GramianAngularField1minDifference', 'GramianAngularField1minSummation', 'MarkovTransitionField1min', 'RecurrencePlots1min']] } Corrs_views = None for dim in dict_dim_to_view.keys(): Corrs_dims = None for i, views in enumerate(dict_dim_to_view[dim]): models = ['Age_' + dim + '_' + view + '_*' * 8 for view in dict_dim_to_view[dim][i]] Corrs_dim = self._melt_correlation_matrix(models) if Corrs_dims is None: Corrs_dims = Corrs_dim else: Corrs_dims = Corrs_dims.append(Corrs_dim) self._compute_stats(Corrs_dims, dim + ' views') if Corrs_views is None: Corrs_views = Corrs_dims else: Corrs_views = Corrs_views.append(Corrs_dims) # Compute the average over the views self._compute_stats(Corrs_views, 'Views') def correlations_transformations(self): # Raw vs. Contrast (Heart MRI, Abdomen Liver, Abdomen Pancreas), Raw vs. Reference (Brain MRI), # Figure vs Skeleton (Musculoskeltal FullBody) # Filter out the models that are ensembles at the architecture level models_to_keep = [model for model in self.Correlations.index.values if model.split('_')[3] != '*'] # Select only the models that are Heart MRI, Abdomen, or Brain MRI models_to_keep = [model for model in models_to_keep if ((model.split('_')[0] == 'Abdomen') & (model.split('_')[1] in ['Liver', 'Pancreas'])) | ((model.split('_')[0] == 'Brain') & (model.split('_')[1] == 'MRI')) | ((model.split('_')[0] == 'Heart') & (model.split('_')[1] == 'MRI')) | ((model.split('_')[0] == 'Musculoskeletal') & (model.split('_')[1] == 'FullBody') & (model.split('_')[2] in ['Figure', 'Skeleton']))] # Select only the models that have the relevant preprocessing/transformations models_to_keep = [model for model in models_to_keep if model.split('_')[2] in ['Raw', 'Contrast', '2chambersRaw', '2chambersContrast', '3chambersRaw', '3chambersContrast', '4chambersRaw', '4chambersContrast', 'SagittalRaw', 'SagittalReference', 'CoronalRaw', 'CoronalReference', 'TransverseRaw', 'TransverseReference', 'Figure', 'Skeleton']] # Select the corresponding rows and columns Corrs = self.Correlations.loc[models_to_keep, models_to_keep] # Melt correlation matrix to dataframe Corrs = Corrs.where(np.triu(np.ones(Corrs.shape), 1).astype(np.bool)) Corrs = Corrs.stack().reset_index() Corrs.columns = ['Row', 'Column', 'Correlation'] Corrs = Corrs.apply(self._split_version, axis=1) # Only keep the models that have the same organ, view and architecture Corrs = Corrs[(Corrs['row_organ'] == Corrs['col_organ']) & (Corrs['row_view'] == Corrs['col_view']) & (Corrs['row_architecture'] == Corrs['col_architecture'])] # Define preprocessing pairs dict_preprocessing = { 'Raw-Reference': [('SagittalRaw', 'SagittalReference'), ('CoronalRaw', 'CoronalReference'), ('TransverseRaw', 'TransverseReference')], 'Raw-Contrast': [('Raw', 'Contrast'), ('2chambersRaw', '2chambersContrast'), ('3chambersRaw', '3chambersContrast'), ('4chambersRaw', '4chambersContrast')], 'Figure-Skeleton': [('Figure', 'Skeleton')] } # Compute average correlation between each pair of transformations Corrs_transformations = None for comparison in dict_preprocessing.keys(): Corrs_comp = self._extract_pairs(Corrs, dict_preprocessing[comparison], 'transformation') print(comparison) print(Corrs_comp) self._compute_stats(Corrs_comp, comparison) if Corrs_transformations is None: Corrs_transformations = Corrs_comp else: Corrs_transformations = Corrs_transformations.append(Corrs_comp) # Compute average correlation between transformations self._compute_stats(Corrs_transformations, 'Transformations') def correlations_algorithms(self): # Variables algorithms_scalars = ['ElasticNet', 'LightGBM', 'NeuralNetwork'] algorithms_images = ['InceptionV3', 'InceptionResNetV2'] # Filter out the ensemble models (at the level of the algorithm) models_to_keep = [model for model in self.Correlations.index.values if model.split('_')[3] != '*'] Corrs = self.Correlations.loc[models_to_keep, models_to_keep] # Melt correlation matrix to dataframe Corrs = Corrs.where(np.triu(np.ones(Corrs.shape), 1).astype(np.bool)) Corrs = Corrs.stack().reset_index() Corrs.columns = ['Row', 'Column', 'Correlation'] Corrs = Corrs.apply(self._split_version, axis=1) # Select the rows for which everything is identical aside from the dataset for name in ['organ', 'view', 'transformation']: Corrs = Corrs[Corrs['row_' + name] == Corrs['col_' + name]] # Compute average correlation between algorithms self._compute_stats(Corrs, 'Algorithms') algorithms_pairs = self._generate_pairs(algorithms_scalars) + self._generate_pairs(algorithms_images) # Compute average correlation between each algorithm pair for pair in algorithms_pairs: Corrs_pair = self._extract_pair(Corrs, pair, 'architecture') self._compute_stats(Corrs_pair, pair[0] + ' and ' + pair[1]) class AttentionMaps(DeepLearning): """ Computes the attention maps (saliency maps and Grad_RAM maps) for all images """ def __init__(self, target=None, organ=None, view=None, transformation=None, debug_mode=False): # Partial initialization with placeholders to get access to parameters and functions DeepLearning.__init__(self, 'Age', 'Abdomen', 'Liver', 'Raw', 'InceptionResNetV2', '1', '1024', 'Adam', '0.0001', '0.1', '0.5', '1.0', False) # Parameters self.target = target self.organ = organ self.view = view self.transformation = transformation self.version = None self.leftright = True if self.organ + '_' + self.view in self.left_right_organs_views else False self.parameters = None self.image_width = None self.image_height = None self.batch_size = None self.N_samples_attentionmaps = 10 # needs to be > 1 for the script to work if debug_mode: self.N_samples_attentionmaps = 2 self.dir_images = '../images/' + organ + '/' + view + '/' + transformation + '/' self.prediction_type = self.dict_prediction_types[target] self.Residuals = None self.df_to_plot = None self.df_outer_fold = None self.class_mode = None self.image = None self.generator = None self.dict_architecture_to_last_conv_layer_name = \ {'VGG16': 'block5_conv3', 'VGG19': 'block5_conv4', 'MobileNet': 'conv_pw_13_relu', 'MobileNetV2': 'out_relu', 'DenseNet121': 'relu', 'DenseNet169': 'relu', 'DenseNet201': 'relu', 'NASNetMobile': 'activation_1136', 'NASNetLarge': 'activation_1396', 'Xception': 'block14_sepconv2_act', 'InceptionV3': 'mixed10', 'InceptionResNetV2': 'conv_7b_ac', 'EfficientNetB7': 'top_activation'} self.last_conv_layer = None self.organs_views_transformations_images = \ ['Brain_MRI_SagittalRaw', 'Brain_MRI_SagittalReference', 'Brain_MRI_CoronalRaw', 'Brain_MRI_CoronalReference', 'Brain_MRI_TransverseRaw', 'Brain_MRI_TransverseReference', 'Eyes_Fundus_Raw', 'Eyes_OCT_Raw', 'Arterial_Carotids_Mixed', 'Arterial_Carotids_LongAxis', 'Arterial_Carotids_CIMT120', 'Arterial_Carotids_CIMT150', 'Arterial_Carotids_ShortAxis', 'Heart_MRI_2chambersRaw', 'Heart_MRI_2chambersContrast', 'Heart_MRI_3chambersRaw', 'Heart_MRI_3chambersContrast', 'Heart_MRI_4chambersRaw', 'Heart_MRI_4chambersContrast', 'Abdomen_Liver_Raw', 'Abdomen_Liver_Contrast', 'Abdomen_Pancreas_Raw', 'Abdomen_Pancreas_Contrast', 'Musculoskeletal_Spine_Sagittal', 'Musculoskeletal_Spine_Coronal', 'Musculoskeletal_Hips_MRI', 'Musculoskeletal_Knees_MRI', 'Musculoskeletal_FullBody_Mixed', 'Musculoskeletal_FullBody_Figure', 'Musculoskeletal_FullBody_Skeleton', 'Musculoskeletal_FullBody_Flesh', 'PhysicalActivity_FullWeek_GramianAngularField1minDifference', 'PhysicalActivity_FullWeek_GramianAngularField1minSummation', 'PhysicalActivity_FullWeek_MarkovTransitionField1min', 'PhysicalActivity_FullWeek_RecurrencePlots1min'] def _select_best_model(self): # Pick the best model based on the performances path_perf = self.path_data + 'PERFORMANCES_withoutEnsembles_ranked_instances_' + self.target + '_test.csv' Performances = pd.read_csv(path_perf).set_index('version', drop=False) Performances = Performances[(Performances['organ'] == self.organ) & (Performances['view'] == self.view) & (Performances['transformation'] == self.transformation)] self.version = Performances['version'].values[0] del Performances # other parameters self.parameters = self._version_to_parameters(self.version) if self.organ + '_' + self.view + '_' + self.transformation in self.organs_views_transformations_images: DeepLearning.__init__(self, self.parameters['target'], self.parameters['organ'], self.parameters['view'], self.parameters['transformation'], self.parameters['architecture'], self.parameters['n_fc_layers'], self.parameters['n_fc_nodes'], self.parameters['optimizer'], self.parameters['learning_rate'], self.parameters['weight_decay'], self.parameters['dropout_rate'], self.parameters['data_augmentation_factor'], False) def _format_residuals(self): # Format the residuals Residuals_full = pd.read_csv(self.path_data + 'RESIDUALS_instances_' + self.target + '_test.csv') Residuals = Residuals_full[['id', 'outer_fold'] + self.demographic_vars + ['res_' + self.version]] del Residuals_full Residuals.dropna(inplace=True) Residuals.rename(columns={'res_' + self.version: 'res'}, inplace=True) Residuals.set_index('id', drop=False, inplace=True) Residuals['outer_fold'] = Residuals['outer_fold'].astype(int).astype(str) Residuals['res_abs'] = Residuals['res'].abs() self.Residuals = Residuals def _select_representative_samples(self): # Select with samples to plot print('Selecting representative samples...') df_to_plot = None # Sex dict_sexes_to_values = {'Male': 1, 'Female': 0} for sex in ['Male', 'Female']: print('Sex: ' + sex) Residuals_sex = self.Residuals[self.Residuals['Sex'] == dict_sexes_to_values[sex]] Residuals_sex['sex'] = sex # Age category for age_category in ['young', 'middle', 'old']: print('Age category: ' + age_category) if age_category == 'young': Residuals_age = Residuals_sex[Residuals_sex['Age'] <= Residuals_sex['Age'].min() + 10] elif age_category == 'middle': Residuals_age = Residuals_sex[(Residuals_sex['Age'] - Residuals_sex['Age'].median()).abs() < 5] else: Residuals_age = Residuals_sex[Residuals_sex['Age'] >= Residuals_sex['Age'].max() - 10] Residuals_age['age_category'] = age_category # Aging rate for aging_rate in ['accelerated', 'normal', 'decelerated']: print('Aging rate: ' + aging_rate) Residuals_ar = Residuals_age if aging_rate == 'accelerated': Residuals_ar.sort_values(by='res', ascending=True, inplace=True) elif aging_rate == 'decelerated': Residuals_ar.sort_values(by='res', ascending=False, inplace=True) else: Residuals_ar.sort_values(by='res_abs', ascending=True, inplace=True) Residuals_ar['aging_rate'] = aging_rate Residuals_ar = Residuals_ar.iloc[:self.N_samples_attentionmaps, ] Residuals_ar['sample'] = range(len(Residuals_ar.index)) if df_to_plot is None: df_to_plot = Residuals_ar else: df_to_plot = df_to_plot.append(Residuals_ar) # Postprocessing df_to_plot['Biological_Age'] = df_to_plot['Age'] - df_to_plot['res'] activations_path = '../figures/Attention_Maps/' + self.target + '/' + self.organ + '/' + self.view + '/' + \ self.transformation + '/' + df_to_plot['sex'] + '/' + df_to_plot['age_category'] + '/' + \ df_to_plot['aging_rate'] file_names = '/imagetypeplaceholder_' + self.target + '_' + self.organ + '_' + self.view + '_' + \ self.transformation + '_' + df_to_plot['sex'] + '_' + df_to_plot['age_category'] + '_' + \ df_to_plot['aging_rate'] + '_' + df_to_plot['sample'].astype(str) if self.leftright: activations_path += '/sideplaceholder' file_names += '_sideplaceholder' df_to_plot['save_title'] = activations_path + file_names path_save = self.path_data + 'AttentionMaps-samples_' + self.target + '_' + self.organ + '_' + self.view + \ '_' + self.transformation + '.csv' df_to_plot.to_csv(path_save, index=False) self.df_to_plot = df_to_plot def preprocessing(self): self._select_best_model() self._format_residuals() self._select_representative_samples() def _preprocess_for_outer_fold(self, outer_fold): self.df_outer_fold = self.df_to_plot[self.df_to_plot['outer_fold'] == outer_fold] self.n_images = len(self.df_outer_fold.index) if self.leftright: self.n_images *= 2 # Generate the data generator(s) self.n_images_batch = self.n_images // self.batch_size * self.batch_size self.n_samples_batch = self.n_images_batch // 2 if self.leftright else self.n_images_batch self.df_batch = self.df_outer_fold.iloc[:self.n_samples_batch, :] if self.n_images_batch > 0: self.generator_batch = \ MyImageDataGenerator(target=self.target, organ=self.organ, view=self.view, data_features=self.df_batch, n_samples_per_subepoch=None, batch_size=self.batch_size, training_mode=False, side_predictors=self.side_predictors, dir_images=self.dir_images, images_width=self.image_width, images_height=self.image_height, data_augmentation=False, data_augmentation_factor=None, seed=self.seed) else: self.generator_batch = None self.n_samples_leftovers = self.n_images % self.batch_size self.df_leftovers = self.df_outer_fold.iloc[self.n_samples_batch:, :] if self.n_samples_leftovers > 0: self.generator_leftovers = \ MyImageDataGenerator(target=self.target, organ=self.organ, view=self.view, data_features=self.df_leftovers, n_samples_per_subepoch=None, batch_size=self.n_samples_leftovers, training_mode=False, side_predictors=self.side_predictors, dir_images=self.dir_images, images_width=self.image_width, images_height=self.image_height, data_augmentation=False, data_augmentation_factor=None, seed=self.seed) else: self.generator_leftovers = None # load the weights for the fold (for test images in fold i, load the corresponding model: (i-1)%N_CV_folds outer_fold_model = str((int(outer_fold) - 1) % self.n_CV_outer_folds) self.model.load_weights(self.path_data + 'model-weights_' + self.version + '_' + outer_fold_model + '.h5') @staticmethod def _process_saliency(saliency): saliency *= 255 / np.max(np.abs(saliency)) saliency = saliency.astype(int) r_ch = saliency.copy() r_ch[r_ch < 0] = 0 b_ch = -saliency.copy() b_ch[b_ch < 0] = 0 g_ch = saliency.copy() * 0 a_ch = np.maximum(b_ch, r_ch) saliency = np.dstack((r_ch, g_ch, b_ch, a_ch)) return saliency @staticmethod def _process_gradcam(gradcam): # rescale to 0-255 gradcam = np.maximum(gradcam, 0) / np.max(gradcam) gradcam = np.uint8(255 * gradcam) # Convert to rgb jet = cm.get_cmap("jet") jet_colors = jet(np.arange(256))[:, :3] jet_gradcam = jet_colors[gradcam] jet_gradcam = array_to_img(jet_gradcam) jet_gradcam = jet_gradcam.resize((gradcam.shape[1], gradcam.shape[0])) jet_gradcam = img_to_array(jet_gradcam) return jet_gradcam def _generate_maps_for_one_batch(self, df, Xs, y): # Generate saliency saliencies = get_gradients_of_activations(self.model, Xs, y, layer_name='input_1')['input_1'].sum(axis=3) # Generate gradam weights = get_gradients_of_activations(self.model, Xs, y, layer_name=self.last_conv_layer, )[self.last_conv_layer] weights = weights.mean(axis=(1, 2)) weights /= np.abs(weights.max()) + 1e-7 # for numerical stability activations = get_activations(self.model, Xs, layer_name=self.last_conv_layer)[self.last_conv_layer] # We must take the absolute value because for Grad-RAM, unlike for Grad-Cam, we care both about + and - effects gradcams = np.abs(np.einsum('il,ijkl->ijk', weights, activations)) zoom_factor = [1] + list(np.array(Xs[0].shape[1:3]) / np.array(gradcams.shape[1:])) gradcams = zoom(gradcams, zoom_factor) # Save single images and filters for j in range(len(y)): # select sample if self.leftright: idx = j // 2 side = 'right' if j % 2 == 0 else 'left' else: idx = j side = None path = df['save_title'].values[idx] ID = df['id'].values[idx] # create directory tree if necessary if self.leftright: path = path.replace('sideplaceholder', side) path_dir = '/'.join(path.split('/')[:-1]) if not os.path.exists(path_dir): os.makedirs(path_dir) # Save raw image # Compute path to test if images existed in first place path_image = '../images/' + self.organ + '/' + self.view + '/' + self.transformation + '/' if self.leftright: path_image += side + '/' path_image += ID + '.jpg' if not os.path.exists(path_image): print('No image found at ' + path_image + ', skipping.') continue img = load_img(path_image, target_size=(saliencies.shape[1], saliencies.shape[2])) img.save(path.replace('imagetypeplaceholder', 'RawImage') + '.jpg') # Save saliency saliency = saliencies[j, :, :] saliency = self._process_saliency(saliency) np.save(path.replace('imagetypeplaceholder', 'Saliency') + '.npy', saliency) # Save gradcam gradcam = gradcams[j, :, :] gradcam = self._process_gradcam(gradcam) np.save(path.replace('imagetypeplaceholder', 'Gradcam') + '.npy', gradcam) def generate_filters(self): if self.organ + '_' + self.view + '_' + self.transformation in self.organs_views_transformations_images: self._generate_architecture() self.model.compile(optimizer=self.optimizers[self.optimizer](lr=self.learning_rate, clipnorm=1.0), loss=self.loss_function, metrics=self.metrics) self.last_conv_layer = self.dict_architecture_to_last_conv_layer_name[self.parameters['architecture']] for outer_fold in self.outer_folds: print('Generate attention maps for outer_fold ' + outer_fold) gc.collect() self._preprocess_for_outer_fold(outer_fold) n_samples_per_batch = self.batch_size // 2 if self.leftright else self.batch_size for i in range(self.n_images // self.batch_size): print('Generating maps for batch ' + str(i)) Xs, y = self.generator_batch.__getitem__(i) df = self.df_batch.iloc[n_samples_per_batch * i: n_samples_per_batch * (i + 1), :] self._generate_maps_for_one_batch(df, Xs, y) if self.n_samples_leftovers > 0: print('Generating maps for leftovers') Xs, y = self.generator_leftovers.__getitem__(0) self._generate_maps_for_one_batch(self.df_leftovers, Xs, y) class GWASPreprocessing(Basics): """ Preprocesses the data for the GWASs. """ def __init__(self, target=None): Basics.__init__(self) self.target = target self.fam = None self.Residuals = None self.covars = None self.data = None self.list_organs = None self.IIDs_organs = {} self.IIDs_organ_pairs = {} def _generate_fam_file(self): fam = pd.read_csv('/n/groups/patel/uk_biobank/project_52887_genetics/ukb52887_cal_chr1_v2_s488264.fam', header=None, sep=' ') fam.columns = ['FID', 'IID', 'father', 'mother', 'Sex', 'phenotype'] fam['phenotype'] = 1 fam.to_csv(self.path_data + 'GWAS.fam', index=False, header=False, sep=' ') fam.to_csv(self.path_data + 'GWAS_exhaustive_placeholder.tab', index=False, sep='\t') self.fam = fam def _preprocess_residuals(self): # Load residuals Residuals = pd.read_csv(self.path_data + 'RESIDUALS_bestmodels_eids_' + self.target + '_test.csv') Residuals['id'] = Residuals['eid'] Residuals.rename(columns={'id': 'FID', 'eid': 'IID'}, inplace=True) Residuals = Residuals[Residuals['Ethnicity.White'] == 1] cols_to_drop = ['instance', 'outer_fold', 'Sex'] + \ [col for col in Residuals.columns.values if 'Ethnicity.' in col] Residuals.drop(columns=cols_to_drop, inplace=True) self.Residuals = Residuals self.list_organs = [col for col in self.Residuals.columns.values if col not in ['FID', 'IID', 'Age']] def _preprocess_covars(self): # Load covars covar_cols = ['eid', '22001-0.0', '21000-0.0', '54-0.0', '22000-0.0'] + ['22009-0.' + str(i) for i in range(1, 41)] covars = pd.read_csv('/n/groups/patel/uk_biobank/project_52887_41230/ukb41230.csv', usecols=covar_cols) dict_rename = {'eid': 'IID', '22001-0.0': 'Sex', '21000-0.0': 'Ethnicity', '54-0.0': 'Assessment_center', '22000-0.0': 'Genotyping_batch'} for i in range(1, 41): dict_rename.update(dict.fromkeys(['22009-0.' + str(i)], 'PC' + str(i))) covars.rename(columns=dict_rename, inplace=True) covars.dropna(inplace=True) covars['Sex'][covars['Sex'] == 0] = 2 covars['Sex'] = covars['Sex'].astype(int) # remove non whites samples as suggested in BOLT-LMM_v2.3.4_manual.pdf p18 covars = covars[covars['Ethnicity'].isin([1, 1001, 1002, 1003])] self.covars = covars def _merge_main_data(self): # Merge both dataframes self.data = self.covars.merge(self.Residuals, on=['IID']) reordered_cols = ['FID', 'IID', 'Assessment_center', 'Genotyping_batch', 'Age', 'Sex', 'Ethnicity'] + \ ['PC' + str(i) for i in range(1, 41)] + self.list_organs self.data = self.data[reordered_cols] print('Preparing data for heritabilities') for organ in self.list_organs: print('Preparing data for ' + organ) data_organ = self.data.copy() cols_to_drop = [organ2 for organ2 in self.list_organs if organ2 != organ] data_organ.drop(columns=cols_to_drop, inplace=True) data_organ.dropna(inplace=True) data_organ.to_csv(self.path_data + 'GWAS_data_' + self.target + '_' + organ + '.tab', index=False, sep='\t') self.IIDs_organs[organ] = data_organ['IID'].values def _preprocessing_genetic_correlations(self): print('Preparing data for genetic correlations') organs_pairs = pd.DataFrame(columns=['organ1', 'organ2']) for counter, organ1 in enumerate(self.list_organs): for organ2 in self.list_organs[(counter + 1):]: print('Preparing data for the organ pair ' + organ1 + ' and ' + organ2) # Generate GWAS dataframe organs_pairs = organs_pairs.append({'organ1': organ1, 'organ2': organ2}, ignore_index=True) data_organ_pair = self.data.copy() cols_to_drop = [organ3 for organ3 in self.list_organs if organ3 not in [organ1, organ2]] data_organ_pair.drop(columns=cols_to_drop, inplace=True) data_organ_pair.dropna(inplace=True) data_organ_pair.to_csv(self.path_data + 'GWAS_data_' + self.target + '_' + organ1 + '_' + organ2 + '.tab', index=False, sep='\t') self.IIDs_organ_pairs[organ1 + '_' + organ2] = data_organ_pair['IID'].values organs_pairs.to_csv(self.path_data + 'GWAS_genetic_correlations_pairs_' + self.target + '.csv', header=False, index=False) def _list_removed(self): # samples to remove for each organ print('Listing samples to remove for each organ') for organ in self.list_organs: print('Preparing samples to remove for organ ' + organ) remove_organ = self.fam[['FID', 'IID']].copy() remove_organ = remove_organ[-remove_organ['IID'].isin(self.IIDs_organs[organ])] remove_organ.to_csv(self.path_data + 'GWAS_remove_' + self.target + '_' + organ + '.tab', index=False, header=False, sep=' ') # samples to remove for each organ pair print('Listing samples to remove for each organ pair') for counter, organ1 in enumerate(self.list_organs): for organ2 in self.list_organs[(counter + 1):]: print('Preparing samples to remove for organ pair ' + organ1 + ' and ' + organ2) remove_organ_pair = self.fam[['FID', 'IID']].copy() remove_organ_pair = \ remove_organ_pair[-remove_organ_pair['IID'].isin(self.IIDs_organ_pairs[organ1 + '_' + organ2])] remove_organ_pair.to_csv(self.path_data + 'GWAS_remove_' + self.target + '_' + organ1 + '_' + organ2 + '.tab', index=False, header=False, sep=' ') def compute_gwas_inputs(self): self._generate_fam_file() self._preprocess_residuals() self._preprocess_covars() self._merge_main_data() self._preprocessing_genetic_correlations() self._list_removed() class GWASPostprocessing(Basics): """ Postprocesses the GWAS results and stores the results in summary files. """ def __init__(self, target=None): Basics.__init__(self) self.target = target self.organ = None self.GWAS = None self.FDR_correction = 5e-8 def _processing(self): self.GWAS = pd.read_csv(self.path_data + 'GWAS_' + self.target + '_' + self.organ + '_X.stats', sep='\t') GWAS_autosome = pd.read_csv(self.path_data + 'GWAS_' + self.target + '_' + self.organ + '_autosome.stats', sep='\t') self.GWAS[self.GWAS['CHR'] != 23] = GWAS_autosome self.GWAS_hits = self.GWAS[self.GWAS['P_BOLT_LMM_INF'] < self.FDR_correction] def _save_data(self): self.GWAS.to_csv(self.path_data + 'GWAS_' + self.target + '_' + self.organ + '.csv', index=False) self.GWAS_hits.to_csv(self.path_data + 'GWAS_hits_' + self.target + '_' + self.organ + '.csv', index=False) def _merge_all_hits(self): print('Merging all the GWAS results into a model called All...') # Summarize all the significant SNPs files = [file for file in glob.glob(self.path_data + 'GWAS_hits*') if ('All' not in file) & ('_withGenes' not in file)] All_hits = None print(files) for file in files: print(file) hits_organ = pd.read_csv(file)[ ['SNP', 'CHR', 'BP', 'GENPOS', 'ALLELE1', 'ALLELE0', 'A1FREQ', 'F_MISS', 'CHISQ_LINREG', 'P_LINREG', 'BETA', 'SE', 'CHISQ_BOLT_LMM_INF', 'P_BOLT_LMM_INF']] hits_organ['organ'] = '.'.join(file.split('_')[-1].split('.')[:-1]) if All_hits is None: All_hits = hits_organ else: All_hits = pd.concat([All_hits, hits_organ]) All_hits.sort_values(by=['CHR', 'BP'], inplace=True) All_hits.to_csv(self.path_data + 'GWAS_hits_' + self.target + '_All.csv', index=False) def processing_all_organs(self): if not os.path.exists('../figures/GWAS/'): os.makedirs('../figures/GWAS/') for organ in self.organs_XWAS: if os.path.exists(self.path_data + 'GWAS_' + self.target + '_' + organ + '_X.stats') & \ os.path.exists(self.path_data + 'GWAS_' + self.target + '_' + organ + '_autosome.stats'): print('Processing data for organ ' + organ) self.organ = organ self._processing() self._save_data() self._merge_all_hits() @staticmethod def _grep(pattern, path): for line in open(path, 'r'): if line.find(pattern) > -1: return True return False @staticmethod def _melt_correlation_matrix(Correlations, models): Corrs = Correlations.loc[models, models] Corrs = Corrs.where(np.triu(np.ones(Corrs.shape), 1).astype(np.bool)) Corrs = Corrs.stack().reset_index() Corrs.columns = ['Row', 'Column', 'Correlation'] return Corrs @staticmethod def _compute_stats(data, title): m = data['Correlation'].mean() s = data['Correlation'].std() n = len(data.index) print('Correlation between ' + title + ': ' + str(round(m, 3)) + '+-' + str(round(s, 3)) + ', n_pairs=' + str(n)) def parse_heritability_scores(self): # Generate empty dataframe Heritabilities = np.empty((len(self.organs_XWAS), 3,)) Heritabilities.fill(np.nan) Heritabilities = pd.DataFrame(Heritabilities) Heritabilities.index = self.organs_XWAS Heritabilities.columns = ['Organ', 'h2', 'h2_sd'] # Fill the dataframe for organ in self.organs_XWAS: path = '../eo/MI09C_reml_' + self.target + '_' + organ + '_X.out' if os.path.exists(path) and self._grep("h2g", path): for line in open('../eo/MI09C_reml_' + self.target + '_' + organ + '_X.out', 'r'): if line.find('h2g (1,1): ') > -1: h2 = float(line.split()[2]) h2_sd = float(line.split()[-1][1:-2]) Heritabilities.loc[organ, :] = [organ, h2, h2_sd] # Print and save results print('Heritabilities:') print(Heritabilities) Heritabilities.to_csv(self.path_data + 'GWAS_heritabilities_' + self.target + '.csv', index=False) def parse_genetic_correlations(self): # Generate empty dataframe Genetic_correlations = np.empty((len(self.organs_XWAS), len(self.organs_XWAS),)) Genetic_correlations.fill(np.nan) Genetic_correlations = pd.DataFrame(Genetic_correlations) Genetic_correlations.index = self.organs_XWAS Genetic_correlations.columns = self.organs_XWAS Genetic_correlations_sd = Genetic_correlations.copy() Genetic_correlations_str = Genetic_correlations.copy() # Fill the dataframe for counter, organ1 in enumerate(self.organs_XWAS): for organ2 in self.organs_XWAS[(counter + 1):]: if os.path.exists('../eo/MI09D_' + self.target + '_' + organ1 + '_' + organ2 + '.out'): for line in open('../eo/MI09D_' + self.target + '_' + organ1 + '_' + organ2 + '.out', 'r'): if line.find('gen corr (1,2):') > -1: corr = float(line.split()[3]) corr_sd = float(line.split()[-1][1:-2]) corr_str = "{:.3f}".format(corr) + '+-' + "{:.3f}".format(corr_sd) Genetic_correlations.loc[organ1, organ2] = corr Genetic_correlations.loc[organ2, organ1] = corr Genetic_correlations_sd.loc[organ1, organ2] = corr_sd Genetic_correlations_sd.loc[organ2, organ1] = corr_sd Genetic_correlations_str.loc[organ1, organ2] = corr_str Genetic_correlations_str.loc[organ2, organ1] = corr_str # Print and save the results print('Genetic correlations:') print(Genetic_correlations) Genetic_correlations.to_csv(self.path_data + 'GWAS_correlations_' + self.target + '.csv') Genetic_correlations_sd.to_csv(self.path_data + 'GWAS_correlations_sd_' + self.target + '.csv') Genetic_correlations_str.to_csv(self.path_data + 'GWAS_correlations_str_' + self.target + '.csv') # Save sample size for the GWAS correlations Correlations_sample_sizes = Genetic_correlations.copy() Correlations_sample_sizes = Correlations_sample_sizes * np.NaN dimensions = Correlations_sample_sizes.columns.values for i1, dim1 in enumerate(dimensions): for i2, dim2 in enumerate(dimensions[i1:]): # Find the sample size path = '../data/GWAS_data_Age_' + dim1 + '_' + dim2 + '.tab' if os.path.exists(path): ss = len(pd.read_csv(path, sep='\t').index) Correlations_sample_sizes.loc[dim1, dim2] = ss Correlations_sample_sizes.loc[dim2, dim1] = ss Correlations_sample_sizes.to_csv(self.path_data + 'GWAS_correlations_sample_sizes_' + self.target + '.csv') # Print correlations between main dimensions main_dims = ['Abdomen', 'Musculoskeletal', 'Lungs', 'Eyes', 'Heart', 'Arterial', 'Brain', 'Biochemistry', 'Hearing', 'ImmuneSystem', 'PhysicalActivity'] Corrs_main = self._melt_correlation_matrix(Correlations, main_dims) Corrs_main_sd = self._melt_correlation_matrix(Correlations_sd, main_dims) Corrs_main['Correlation_sd'] = Corrs_main_sd['Correlation'] Corrs_main['Correlation_str'] = Corrs_main['Correlation'] + '+-' + Corrs_main['Correlation_sd'] # Fill the table with sample sizes sample_sizes = [] to_remove_ss = [] for i, row in Corrs_main.iterrows(): # Fill the sample size sample_size = Correlations_sample_sizes.loc[row['Row'], row['Column']] if sample_size <= 15000: to_remove_ss.append(i) sample_sizes.append(sample_size) Corrs_main['Sample_size'] = sample_sizes self._compute_stats(Corrs_main, 'all pairs') self._compute_stats(Corrs_main.drop(index=to_remove_ss), 'after filtering sample sizes <= 15000') # Print correlations between subdimensions pairs_all = \ [['BrainMRI', 'BrainCognitive'], ['EyesOCT', 'EyesFundus'], ['HeartECG', 'HeartMRI'], ['AbdomenLiver', 'AbdomenPancreas'], ['BiochemistryBlood', 'BiochemistryUrine'], ['MusculoskeletalScalars', 'MusculoskeletalFullBody'], ['MusculoskeletalScalars', 'MusculoskeletalSpine'], ['MusculoskeletalScalars', 'MusculoskeletalHips'], ['MusculoskeletalScalars', 'MusculoskeletalKnees'], ['MusculoskeletalFullBody', 'MusculoskeletalSpine'], ['MusculoskeletalFullBody', 'MusculoskeletalHips'], ['MusculoskeletalFullBody', 'MusculoskeletalKnees'], ['MusculoskeletalSpine', 'MusculoskeletalHips'], ['MusculoskeletalSpine', 'MusculoskeletalKnees'], ['MusculoskeletalHips', 'MusculoskeletalKnees']] pairs_musculo = \ [['MusculoskeletalScalars', 'MusculoskeletalFullBody'], ['MusculoskeletalScalars', 'MusculoskeletalSpine'], ['MusculoskeletalScalars', 'MusculoskeletalHips'], ['MusculoskeletalScalars', 'MusculoskeletalKnees']] pairs_musculo_images = \ [['MusculoskeletalFullBody', 'MusculoskeletalSpine'], ['MusculoskeletalFullBody', 'MusculoskeletalHips'], ['MusculoskeletalFullBody', 'MusculoskeletalKnees'], ['MusculoskeletalSpine', 'MusculoskeletalHips'], ['MusculoskeletalSpine', 'MusculoskeletalKnees'], ['MusculoskeletalHips', 'MusculoskeletalKnees']] PAIRS = {'all subdimensions': pairs_all, 'musculo scalars vs others': pairs_musculo, 'musculo-no scalars': pairs_musculo_images} for _, (key, pairs) in enumerate(PAIRS.items()): print(key) cors_pairs = [] for pair in pairs: cor = Correlations.loc[pair[0], pair[1]] cor_sd = Correlations_sd.loc[pair[0], pair[1]] ss = Correlations_sample_sizes.loc[pair[0], pair[1]] cors_pairs.append(cor) print('Correlation between ' + pair[0] + ' and ' + pair[1] + ' = ' + str(round(cor, 3)) + '+-' + str(round(cor_sd, 3)) + '; sample size = ' + str(ss)) print('Mean correlation for ' + key + ' = ' + str(round(np.mean(cors_pairs), 3)) + '+-' + str(round(np.std(cors_pairs), 3)) + ', number of pairs = ' + str(len(pairs))) @staticmethod def compare_phenotypic_correlation_with_genetic_correlations(): Phenotypic_correlations = pd.read_csv('../data/ResidualsCorrelations_bestmodels_eids_Age_test.csv', index_col=0) Phenotypic_correlations_sd = pd.read_csv('../data/ResidualsCorrelations_bestmodels_sd_eids_Age_test.csv', index_col=0) Genetic_correlations =
pd.read_csv('../data/GWAS_correlations_Age.csv', index_col=0)
pandas.read_csv