prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import numpy as np import pytest from pandas import ( Categorical, CategoricalDtype, CategoricalIndex, DataFrame, Index, MultiIndex, Series, Timestamp, concat, get_dummies, period_range, ) import pandas._testing as tm from pandas.core.arrays import SparseArray class TestGetitem: def test_getitem_unused_level_raises(self): # GH#20410 mi = MultiIndex( levels=[["a_lot", "onlyone", "notevenone"], [1970, ""]], codes=[[1, 0], [1, 0]], ) df = DataFrame(-1, index=range(3), columns=mi) with pytest.raises(KeyError, match="notevenone"): df["notevenone"] def test_getitem_periodindex(self): rng = period_range("1/1/2000", periods=5) df = DataFrame(np.random.randn(10, 5), columns=rng) ts = df[rng[0]] tm.assert_series_equal(ts, df.iloc[:, 0]) # GH#1211; smoketest unrelated to the rest of this test repr(df) ts = df["1/1/2000"] tm.assert_series_equal(ts, df.iloc[:, 0]) def test_getitem_list_of_labels_categoricalindex_cols(self): # GH#16115 cats = Categorical([Timestamp("12-31-1999"), Timestamp("12-31-2000")]) expected = DataFrame( [[1, 0], [0, 1]], dtype="uint8", index=[0, 1], columns=cats ) dummies = get_dummies(cats) result = dummies[list(dummies.columns)] tm.assert_frame_equal(result, expected) def test_getitem_sparse_column_return_type_and_dtype(self): # https://github.com/pandas-dev/pandas/issues/23559 data = SparseArray([0, 1]) df = DataFrame({"A": data}) expected = Series(data, name="A") result = df["A"] tm.assert_series_equal(result, expected) # Also check iloc and loc while we're here result = df.iloc[:, 0] tm.assert_series_equal(result, expected) result = df.loc[:, "A"] tm.assert_series_equal(result, expected) class TestGetitemListLike: def test_getitem_list_missing_key(self): # GH#13822, incorrect error string with non-unique columns when missing # column is accessed df = DataFrame({"x": [1.0], "y": [2.0], "z": [3.0]}) df.columns = ["x", "x", "z"] # Check that we get the correct value in the KeyError with pytest.raises(KeyError, match=r"\['y'\] not in index"): df[["x", "y", "z"]] class TestGetitemCallable: def test_getitem_callable(self, float_frame): # GH#12533 result = float_frame[lambda x: "A"] expected = float_frame.loc[:, "A"] tm.assert_series_equal(result, expected) result = float_frame[lambda x: ["A", "B"]] expected = float_frame.loc[:, ["A", "B"]] tm.assert_frame_equal(result, float_frame.loc[:, ["A", "B"]]) df = float_frame[:3] result = df[lambda x: [True, False, True]] expected = float_frame.iloc[[0, 2], :] tm.assert_frame_equal(result, expected) def test_loc_multiindex_columns_one_level(self): # GH#29749 df = DataFrame([[1, 2]], columns=[["a", "b"]]) expected = DataFrame([1], columns=[["a"]]) result = df["a"]
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
# -*- coding: utf-8 -*- """ Analyzes code age in a git repository Writes reports in the following locations e.g. For repository "cpython" [root] Defaults to ~/git.stats ├── cpython Directory for https://github.com/python/cpython.git │   └── reports │   ├── 2011-03-06.d68ed6fc.2_0 Revision `d68ed6fc` which was created on 2011-03-06 on │   │ │   branch `2.0`. │   │   └── __c.__cpp.__h Report on *.c, *.cpp and *.h files in this revision │   │   ├── Guido_van_Rossum Sub-report on author `<NAME>` │   │   │   ├── code-age.png Graph of code age. LoC / day vs date │   │   │   ├── code-age.txt List of commits in the peaks in the code-age.png graph │   │   │   ├── details.csv LoC in each directory in for these files and authors │   │   │   ├── newest-commits.txt List of newest commits for these files and authors │   │   │   └── oldest-commits.txt List of oldest commits for these files and authors """ from __future__ import division, print_function import subprocess from subprocess import CalledProcessError from collections import defaultdict, Counter import sys import time import re import os import stat import glob import errno import numpy as np from scipy import signal import pandas as pd from pandas import Series, DataFrame, Timestamp import matplotlib import matplotlib.pylab as plt from matplotlib.pylab import cycler import bz2 from multiprocessing import Pool, cpu_count from multiprocessing.pool import ThreadPool import pygments from pygments import lex from pygments.token import Text, Comment, Punctuation, Literal from pygments.lexers import guess_lexer_for_filename # Python 2 / 3 stuff PY2 = sys.version_info[0] < 3 try: import cPickle as pickle except ImportError: import pickle try: reload(sys) sys.setdefaultencoding('utf-8') except: pass # # Configuration. # CACHE_FILE_VERSION = 3 # Update when making incompatible changes to cache file format TIMEZONE = 'Australia/Melbourne' # The timezone used for all commit times. TODO Make configurable SHA_LEN = 8 # The number of characters used when displaying git SHA-1 hashes STRICT_CHECKING = False # For validating code. N_BLAME_PROCESSES = max(1, cpu_count() - 1) # Number of processes to use for blaming N_SHOW_THREADS = 8 # Number of threads for running the many git show commands DO_MULTIPROCESSING = True # For test non-threaded performance # Set graphing style matplotlib.style.use('ggplot') plt.rcParams['axes.prop_cycle'] = cycler('color', ['b', 'y', 'k', '#707040', '#404070']) plt.rcParams['savefig.dpi'] = 300 PATH_MAX = 255 # Files that we don't analyze. These are files that don't have lines of code so that blaming # doesn't make sense. IGNORED_EXTS = { '.air', '.bin', '.bmp', '.cer', '.cert', '.der', '.developerprofile', '.dll', '.doc', '.docx', '.exe', '.gif', '.icns', '.ico', '.jar', '.jpeg', '.jpg', '.keychain', '.launch', '.pdf', '.pem', '.pfx', '.png', '.prn', '.so', '.spc', '.svg', '.swf', '.tif', '.tiff', '.xls', '.xlsx', '.tar', '.zip', '.gz', '.7z', '.rar', '.patch', '.dump', '.h5' } def _is_windows(): """Returns: True if running on a MS-Windows operating system.""" try: sys.getwindowsversion() except: return False else: return True IS_WINDOWS = _is_windows() if IS_WINDOWS: import win32api import win32process import win32con def lowpriority(): """ Set the priority of the process to below-normal. http://stackoverflow.com/questions/1023038/change-process-priority-in-python-cross-platform """ pid = win32api.GetCurrentProcessId() handle = win32api.OpenProcess(win32con.PROCESS_ALL_ACCESS, True, pid) win32process.SetPriorityClass(handle, win32process.BELOW_NORMAL_PRIORITY_CLASS) else: def lowpriority(): os.nice(1) class ProcessPool(object): """Package of Pool and ThreadPool for 'with' usage. """ SINGLE = 0 THREAD = 1 PROCESS = 2 def __init__(self, process_type, n_pool): if not DO_MULTIPROCESSING: process_type = ProcessPool.SINGLE self.process_type = process_type if process_type != ProcessPool.SINGLE: clazz = ThreadPool if process_type == ProcessPool.THREAD else Pool self.pool = clazz(n_pool) def __enter__(self): return self def imap_unordered(self, func, args_iter): if self.process_type != ProcessPool.SINGLE: return self.pool.imap_unordered(func, args_iter) else: return map(func, args_iter) def __exit__(self, exc_type, exc_value, traceback): if self.process_type != ProcessPool.SINGLE: self.pool.terminate() def sha_str(sha): """The way we show git SHA-1 hashes in reports.""" return sha[:SHA_LEN] def date_str(date): """The way we show dates in reports.""" return date.strftime('%Y-%m-%d') DAY = pd.Timedelta('1 days') # 24 * 3600 * 1e9 in pandas nanosec time # Max date accepted for commits. Clearly a sanity check MAX_DATE =
Timestamp('today')
pandas.Timestamp
from io import StringIO import operator import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series, date_range import pandas._testing as tm from pandas.core.computation.check import _NUMEXPR_INSTALLED PARSERS = "python", "pandas" ENGINES = "python", pytest.param("numexpr", marks=td.skip_if_no_ne) @pytest.fixture(params=PARSERS, ids=lambda x: x) def parser(request): return request.param @pytest.fixture(params=ENGINES, ids=lambda x: x) def engine(request): return request.param def skip_if_no_pandas_parser(parser): if parser != "pandas": pytest.skip(f"cannot evaluate with parser {repr(parser)}") class TestCompat: def setup_method(self, method): self.df = DataFrame({"A": [1, 2, 3]}) self.expected1 = self.df[self.df.A > 0] self.expected2 = self.df.A + 1 def test_query_default(self): # GH 12749 # this should always work, whether _NUMEXPR_INSTALLED or not df = self.df result = df.query("A>0") tm.assert_frame_equal(result, self.expected1) result = df.eval("A+1") tm.assert_series_equal(result, self.expected2, check_names=False) def test_query_None(self): df = self.df result = df.query("A>0", engine=None) tm.assert_frame_equal(result, self.expected1) result = df.eval("A+1", engine=None) tm.assert_series_equal(result, self.expected2, check_names=False) def test_query_python(self): df = self.df result = df.query("A>0", engine="python") tm.assert_frame_equal(result, self.expected1) result = df.eval("A+1", engine="python") tm.assert_series_equal(result, self.expected2, check_names=False) def test_query_numexpr(self): df = self.df if _NUMEXPR_INSTALLED: result = df.query("A>0", engine="numexpr") tm.assert_frame_equal(result, self.expected1) result = df.eval("A+1", engine="numexpr") tm.assert_series_equal(result, self.expected2, check_names=False) else: with pytest.raises(ImportError): df.query("A>0", engine="numexpr") with pytest.raises(ImportError): df.eval("A+1", engine="numexpr") class TestDataFrameEval: # smaller hits python, larger hits numexpr @pytest.mark.parametrize("n", [4, 4000]) @pytest.mark.parametrize( "op_str,op,rop", [ ("+", "__add__", "__radd__"), ("-", "__sub__", "__rsub__"), ("*", "__mul__", "__rmul__"), ("/", "__truediv__", "__rtruediv__"), ], ) def test_ops(self, op_str, op, rop, n): # tst ops and reversed ops in evaluation # GH7198 df = DataFrame(1, index=range(n), columns=list("abcd")) df.iloc[0] = 2 m = df.mean() base = DataFrame( # noqa np.tile(m.values, n).reshape(n, -1), columns=list("abcd") ) expected = eval(f"base {op_str} df") # ops as strings result = eval(f"m {op_str} df") tm.assert_frame_equal(result, expected) # these are commutative if op in ["+", "*"]: result = getattr(df, op)(m) tm.assert_frame_equal(result, expected) # these are not elif op in ["-", "/"]: result = getattr(df, rop)(m) tm.assert_frame_equal(result, expected) def test_dataframe_sub_numexpr_path(self): # GH7192: Note we need a large number of rows to ensure this # goes through the numexpr path df = DataFrame(dict(A=np.random.randn(25000))) df.iloc[0:5] = np.nan expected = 1 - np.isnan(df.iloc[0:25]) result = (1 - np.isnan(df)).iloc[0:25] tm.assert_frame_equal(result, expected) def test_query_non_str(self): # GH 11485 df = pd.DataFrame({"A": [1, 2, 3], "B": ["a", "b", "b"]}) msg = "expr must be a string to be evaluated" with pytest.raises(ValueError, match=msg): df.query(lambda x: x.B == "b") with pytest.raises(ValueError, match=msg): df.query(111) def test_query_empty_string(self): # GH 13139 df = pd.DataFrame({"A": [1, 2, 3]}) msg = "expr cannot be an empty string" with pytest.raises(ValueError, match=msg): df.query("") def test_eval_resolvers_as_list(self): # GH 14095 df = DataFrame(np.random.randn(10, 2), columns=list("ab")) dict1 = {"a": 1} dict2 = {"b": 2} assert df.eval("a + b", resolvers=[dict1, dict2]) == dict1["a"] + dict2["b"] assert pd.eval("a + b", resolvers=[dict1, dict2]) == dict1["a"] + dict2["b"] class TestDataFrameQueryWithMultiIndex: def test_query_with_named_multiindex(self, parser, engine): skip_if_no_pandas_parser(parser) a = np.random.choice(["red", "green"], size=10) b = np.random.choice(["eggs", "ham"], size=10) index = MultiIndex.from_arrays([a, b], names=["color", "food"]) df = DataFrame(np.random.randn(10, 2), index=index) ind = Series( df.index.get_level_values("color").values, index=index, name="color" ) # equality res1 = df.query('color == "red"', parser=parser, engine=engine) res2 = df.query('"red" == color', parser=parser, engine=engine) exp = df[ind == "red"] tm.assert_frame_equal(res1, exp) tm.assert_frame_equal(res2, exp) # inequality res1 = df.query('color != "red"', parser=parser, engine=engine) res2 = df.query('"red" != color', parser=parser, engine=engine) exp = df[ind != "red"] tm.assert_frame_equal(res1, exp) tm.assert_frame_equal(res2, exp) # list equality (really just set membership) res1 = df.query('color == ["red"]', parser=parser, engine=engine) res2 = df.query('["red"] == color', parser=parser, engine=engine) exp = df[ind.isin(["red"])] tm.assert_frame_equal(res1, exp) tm.assert_frame_equal(res2, exp) res1 = df.query('color != ["red"]', parser=parser, engine=engine) res2 = df.query('["red"] != color', parser=parser, engine=engine) exp = df[~ind.isin(["red"])] tm.assert_frame_equal(res1, exp) tm.assert_frame_equal(res2, exp) # in/not in ops res1 = df.query('["red"] in color', parser=parser, engine=engine) res2 = df.query('"red" in color', parser=parser, engine=engine) exp = df[ind.isin(["red"])] tm.assert_frame_equal(res1, exp) tm.assert_frame_equal(res2, exp) res1 = df.query('["red"] not in color', parser=parser, engine=engine) res2 = df.query('"red" not in color', parser=parser, engine=engine) exp = df[~ind.isin(["red"])] tm.assert_frame_equal(res1, exp) tm.assert_frame_equal(res2, exp) def test_query_with_unnamed_multiindex(self, parser, engine): skip_if_no_pandas_parser(parser) a = np.random.choice(["red", "green"], size=10) b = np.random.choice(["eggs", "ham"], size=10) index = MultiIndex.from_arrays([a, b]) df = DataFrame(np.random.randn(10, 2), index=index) ind = Series(df.index.get_level_values(0).values, index=index) res1 = df.query('ilevel_0 == "red"', parser=parser, engine=engine) res2 = df.query('"red" == ilevel_0', parser=parser, engine=engine) exp = df[ind == "red"] tm.assert_frame_equal(res1, exp) tm.assert_frame_equal(res2, exp) # inequality res1 = df.query('ilevel_0 != "red"', parser=parser, engine=engine) res2 = df.query('"red" != ilevel_0', parser=parser, engine=engine) exp = df[ind != "red"] tm.assert_frame_equal(res1, exp) tm.assert_frame_equal(res2, exp) # list equality (really just set membership) res1 = df.query('ilevel_0 == ["red"]', parser=parser, engine=engine) res2 = df.query('["red"] == ilevel_0', parser=parser, engine=engine) exp = df[ind.isin(["red"])] tm.assert_frame_equal(res1, exp) tm.assert_frame_equal(res2, exp) res1 = df.query('ilevel_0 != ["red"]', parser=parser, engine=engine) res2 = df.query('["red"] != ilevel_0', parser=parser, engine=engine) exp = df[~ind.isin(["red"])] tm.assert_frame_equal(res1, exp) tm.assert_frame_equal(res2, exp) # in/not in ops res1 = df.query('["red"] in ilevel_0', parser=parser, engine=engine) res2 = df.query('"red" in ilevel_0', parser=parser, engine=engine) exp = df[ind.isin(["red"])] tm.assert_frame_equal(res1, exp) tm.assert_frame_equal(res2, exp) res1 = df.query('["red"] not in ilevel_0', parser=parser, engine=engine) res2 = df.query('"red" not in ilevel_0', parser=parser, engine=engine) exp = df[~ind.isin(["red"])] tm.assert_frame_equal(res1, exp)
tm.assert_frame_equal(res2, exp)
pandas._testing.assert_frame_equal
# # Copyright 2016 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from textwrap import dedent from parameterized import parameterized import numpy as np from numpy import nan import pandas as pd from zipline._protocol import handle_non_market_minutes, BarData from zipline.assets import Asset, Equity from zipline.errors import ( HistoryInInitialize, HistoryWindowStartsBeforeData, ) from zipline.finance.asset_restrictions import NoRestrictions from zipline.testing import ( create_minute_df_for_asset, str_to_seconds, MockDailyBarReader, ) import zipline.testing.fixtures as zf OHLC = ['open', 'high', 'low', 'close'] OHLCP = OHLC + ['price'] ALL_FIELDS = OHLCP + ['volume'] class WithHistory(zf.WithCreateBarData, zf.WithDataPortal): TRADING_START_DT = TRADING_ENV_MIN_DATE = START_DATE = pd.Timestamp( '2014-01-03', tz='UTC', ) TRADING_END_DT = END_DATE = pd.Timestamp('2016-01-29', tz='UTC') SPLIT_ASSET_SID = 4 DIVIDEND_ASSET_SID = 5 MERGER_ASSET_SID = 6 HALF_DAY_TEST_ASSET_SID = 7 SHORT_ASSET_SID = 8 # asset1: # - 2014-03-01 (rounds up to TRADING_START_DT) to 2016-01-29. # - every minute/day. # asset2: # - 2015-01-05 to 2015-12-31 # - every minute/day. # asset3: # - 2015-01-05 to 2015-12-31 # - trades every 10 minutes # SPLIT_ASSET: # - 2015-01-04 to 2015-12-31 # - trades every minute # - splits on 2015-01-05 and 2015-01-06 # DIVIDEND_ASSET: # - 2015-01-04 to 2015-12-31 # - trades every minute # - dividends on 2015-01-05 and 2015-01-06 # MERGER_ASSET # - 2015-01-04 to 2015-12-31 # - trades every minute # - merger on 2015-01-05 and 2015-01-06 @classmethod def init_class_fixtures(cls): super().init_class_fixtures() cls.trading_days = cls.trading_calendar.sessions_in_range( cls.TRADING_START_DT, cls.TRADING_END_DT ) cls.ASSET1 = cls.asset_finder.retrieve_asset(1) cls.ASSET2 = cls.asset_finder.retrieve_asset(2) cls.ASSET3 = cls.asset_finder.retrieve_asset(3) cls.SPLIT_ASSET = cls.asset_finder.retrieve_asset( cls.SPLIT_ASSET_SID, ) cls.DIVIDEND_ASSET = cls.asset_finder.retrieve_asset( cls.DIVIDEND_ASSET_SID, ) cls.MERGER_ASSET = cls.asset_finder.retrieve_asset( cls.MERGER_ASSET_SID, ) cls.HALF_DAY_TEST_ASSET = cls.asset_finder.retrieve_asset( cls.HALF_DAY_TEST_ASSET_SID, ) cls.SHORT_ASSET = cls.asset_finder.retrieve_asset( cls.SHORT_ASSET_SID, ) @classmethod def make_equity_info(cls): jan_5_2015 = pd.Timestamp('2015-01-05', tz='UTC') day_after_12312015 = pd.Timestamp('2016-01-04', tz='UTC') return pd.DataFrame.from_dict( { 1: { 'start_date': pd.Timestamp('2014-01-03', tz='UTC'), 'end_date': cls.TRADING_END_DT, 'symbol': 'ASSET1', 'exchange': "TEST", }, 2: { 'start_date': jan_5_2015, 'end_date': day_after_12312015, 'symbol': 'ASSET2', 'exchange': "TEST", }, 3: { 'start_date': jan_5_2015, 'end_date': day_after_12312015, 'symbol': 'ASSET3', 'exchange': "TEST", }, cls.SPLIT_ASSET_SID: { 'start_date': jan_5_2015, 'end_date': day_after_12312015, 'symbol': 'SPLIT_ASSET', 'exchange': "TEST", }, cls.DIVIDEND_ASSET_SID: { 'start_date': jan_5_2015, 'end_date': day_after_12312015, 'symbol': 'DIVIDEND_ASSET', 'exchange': "TEST", }, cls.MERGER_ASSET_SID: { 'start_date': jan_5_2015, 'end_date': day_after_12312015, 'symbol': 'MERGER_ASSET', 'exchange': "TEST", }, cls.HALF_DAY_TEST_ASSET_SID: { 'start_date': pd.Timestamp('2014-07-02', tz='UTC'), 'end_date': day_after_12312015, 'symbol': 'HALF_DAY_TEST_ASSET', 'exchange': "TEST", }, cls.SHORT_ASSET_SID: { 'start_date': pd.Timestamp('2015-01-05', tz='UTC'), 'end_date': pd.Timestamp('2015-01-06', tz='UTC'), 'symbol': 'SHORT_ASSET', 'exchange': "TEST", } }, orient='index', ) @classmethod def make_splits_data(cls): return pd.DataFrame([ { 'effective_date': str_to_seconds('2015-01-06'), 'ratio': 0.25, 'sid': cls.SPLIT_ASSET_SID, }, { 'effective_date': str_to_seconds('2015-01-07'), 'ratio': 0.5, 'sid': cls.SPLIT_ASSET_SID, }, ]) @classmethod def make_mergers_data(cls): return pd.DataFrame([ { 'effective_date': str_to_seconds('2015-01-06'), 'ratio': 0.25, 'sid': cls.MERGER_ASSET_SID, }, { 'effective_date': str_to_seconds('2015-01-07'), 'ratio': 0.5, 'sid': cls.MERGER_ASSET_SID, } ]) @classmethod def make_dividends_data(cls): return pd.DataFrame([ { # only care about ex date, the other dates don't matter here 'ex_date': pd.Timestamp('2015-01-06', tz='UTC').to_datetime64(), 'record_date': pd.Timestamp('2015-01-06', tz='UTC').to_datetime64(), 'declared_date': pd.Timestamp('2015-01-06', tz='UTC').to_datetime64(), 'pay_date': pd.Timestamp('2015-01-06', tz='UTC').to_datetime64(), 'amount': 2.0, 'sid': cls.DIVIDEND_ASSET_SID, }, { 'ex_date': pd.Timestamp('2015-01-07', tz='UTC').to_datetime64(), 'record_date': pd.Timestamp('2015-01-07', tz='UTC').to_datetime64(), 'declared_date': pd.Timestamp('2015-01-07', tz='UTC').to_datetime64(), 'pay_date': pd.Timestamp('2015-01-07', tz='UTC').to_datetime64(), 'amount': 4.0, 'sid': cls.DIVIDEND_ASSET_SID, }], columns=[ 'ex_date', 'record_date', 'declared_date', 'pay_date', 'amount', 'sid'], ) @classmethod def make_adjustment_writer_equity_daily_bar_reader(cls): return MockDailyBarReader( dates=cls.trading_calendar.sessions_in_range( cls.TRADING_START_DT, cls.TRADING_END_DT, ), ) def verify_regular_dt(self, idx, dt, mode, fields=None, assets=None): if mode == 'daily': freq = '1d' else: freq = '1m' cal = self.trading_calendar equity_cal = self.trading_calendars[Equity] def reindex_to_primary_calendar(a, field): """ Reindex an array of prices from a window on the NYSE calendar by the window on the primary calendar with the same dt and window size. """ if mode == 'daily': dts = cal.sessions_window(dt, -9) # `dt` may not be a session on the equity calendar, so # find the next valid session. equity_sess = equity_cal.minute_to_session_label(dt) equity_dts = equity_cal.sessions_window(equity_sess, -9) elif mode == 'minute': dts = cal.minutes_window(dt, -10) equity_dts = equity_cal.minutes_window(dt, -10) output = pd.Series( index=equity_dts, data=a, ).reindex(dts) # Fill after reindexing, to ensure we don't forward fill # with values that are being dropped. if field == 'volume': return output.fillna(0) elif field == 'price': return output.fillna(method='ffill') else: return output fields = fields if fields is not None else ALL_FIELDS assets = assets if assets is not None else [self.ASSET2, self.ASSET3] bar_data = self.create_bardata( simulation_dt_func=lambda: dt, ) check_internal_consistency( bar_data, assets, fields, 10, freq ) for field in fields: for asset in assets: asset_series = bar_data.history(asset, field, 10, freq) base = MINUTE_FIELD_INFO[field] + 2 if idx < 9: missing_count = 9 - idx present_count = 9 - missing_count if field in OHLCP: if asset == self.ASSET2: # asset2 should have some leading nans np.testing.assert_array_equal( np.full(missing_count, np.nan), asset_series[0:missing_count] ) # asset2 should also have some real values np.testing.assert_array_equal( np.array(range(base, base + present_count + 1)), asset_series[(9 - present_count):] ) if asset == self.ASSET3: # asset3 should be NaN the entire time np.testing.assert_array_equal( np.full(10, np.nan), asset_series ) elif field == 'volume': if asset == self.ASSET2: # asset2 should have some zeros (instead of nans) np.testing.assert_array_equal( np.zeros(missing_count), asset_series[0:missing_count] ) # and some real values np.testing.assert_array_equal( np.array( range(base, base + present_count + 1) ) * 100, asset_series[(9 - present_count):] ) if asset == self.ASSET3: # asset3 is all zeros, no volume yet np.testing.assert_array_equal( np.zeros(10), asset_series ) else: # asset3 should have data every 10 minutes # construct an array full of nans, put something in the # right slot, and test for comparison position_from_end = ((idx + 1) % 10) + 1 # asset3's baseline data is 9 NaNs, then 11, then 9 NaNs, # then 21, etc. for idx 9 to 19, value_for_asset3 should # be a baseline of 11 (then adjusted for the individual # field), thus the rounding down to the nearest 10. value_for_asset3 = (((idx + 1) // 10) * 10) + \ MINUTE_FIELD_INFO[field] + 1 if field in OHLC: asset3_answer_key = np.full(10, np.nan) asset3_answer_key[-position_from_end] = \ value_for_asset3 asset3_answer_key = reindex_to_primary_calendar( asset3_answer_key, field, ) if asset == self.ASSET2: np.testing.assert_array_equal( reindex_to_primary_calendar( np.array( range(base + idx - 9, base + idx + 1) ), field, ), asset_series ) if asset == self.ASSET3: np.testing.assert_array_equal( asset3_answer_key, asset_series ) elif field == 'volume': asset3_answer_key = np.zeros(10) asset3_answer_key[-position_from_end] = \ value_for_asset3 * 100 asset3_answer_key = reindex_to_primary_calendar( asset3_answer_key, field, ) if asset == self.ASSET2: np.testing.assert_array_equal( reindex_to_primary_calendar( np.array( range(base + idx - 9, base + idx + 1) ) * 100, field, ), asset_series ) if asset == self.ASSET3: np.testing.assert_array_equal( asset3_answer_key, asset_series ) elif field == 'price': # price is always forward filled # asset2 has prices every minute, so it's easy if asset == self.ASSET2: # at idx 9, the data is 2 to 11 np.testing.assert_array_equal( reindex_to_primary_calendar( range(idx - 7, idx + 3), field=field, ), asset_series ) if asset == self.ASSET3: # Second part begins on the session after # `position_from_end` on the NYSE calendar. second_begin = ( dt - equity_cal.day * (position_from_end - 1) ) # First part goes up until the start of the # second part, because we forward-fill. first_end = second_begin - cal.day first_part = asset_series[:first_end] second_part = asset_series[second_begin:] decile_count = ((idx + 1) // 10) # in our test data, asset3 prices will be nine # NaNs, then ten 11s, ten 21s, ten 31s... if len(second_part) >= 10: np.testing.assert_array_equal( np.full(len(first_part), np.nan), first_part ) elif decile_count == 1: np.testing.assert_array_equal( np.full(len(first_part), np.nan), first_part ) np.testing.assert_array_equal( np.array([11] * len(second_part)), second_part ) else: np.testing.assert_array_equal( np.array([decile_count * 10 - 9] * len(first_part)), first_part ) np.testing.assert_array_equal( np.array([decile_count * 10 + 1] * len(second_part)), second_part ) def check_internal_consistency(bar_data, assets, fields, bar_count, freq): if isinstance(assets, Asset): asset_list = [assets] else: asset_list = assets if isinstance(fields, str): field_list = [fields] else: field_list = fields multi_field_dict = { asset: bar_data.history(asset, field_list, bar_count, freq) for asset in asset_list } multi_asset_dict = { field: bar_data.history(asset_list, field, bar_count, freq) for field in fields } panel = bar_data.history(asset_list, field_list, bar_count, freq) for field in field_list: # make sure all the different query forms are internally # consistent for asset in asset_list: series = bar_data.history(asset, field, bar_count, freq) np.testing.assert_array_equal( series, multi_asset_dict[field][asset] ) np.testing.assert_array_equal( series, multi_field_dict[asset][field] ) np.testing.assert_array_equal( series, panel[field][asset] ) # each minute's OHLCV data has a consistent offset for each field. # for example, the open is always 1 higher than the close, the high # is always 2 higher than the close, etc. MINUTE_FIELD_INFO = { 'open': 1, 'high': 2, 'low': -1, 'close': 0, 'price': 0, 'volume': 0, # unused, later we'll multiply by 100 } class MinuteEquityHistoryTestCase(WithHistory, zf.WithMakeAlgo, zf.ZiplineTestCase): EQUITY_DAILY_BAR_SOURCE_FROM_MINUTE = True DATA_PORTAL_FIRST_TRADING_DAY = zf.alias('TRADING_START_DT') @classmethod def make_equity_minute_bar_data(cls): equities_cal = cls.trading_calendars[Equity] data = {} sids = {2, 5, cls.SHORT_ASSET_SID, cls.HALF_DAY_TEST_ASSET_SID} for sid in sids: asset = cls.asset_finder.retrieve_asset(sid) data[sid] = create_minute_df_for_asset( equities_cal, asset.start_date, asset.end_date, start_val=2, ) data[1] = create_minute_df_for_asset( equities_cal, pd.Timestamp('2014-01-03', tz='utc'), pd.Timestamp('2016-01-29', tz='utc'), start_val=2, ) asset2 = cls.asset_finder.retrieve_asset(2) data[asset2.sid] = create_minute_df_for_asset( equities_cal, asset2.start_date, equities_cal.previous_session_label(asset2.end_date), start_val=2, minute_blacklist=[ pd.Timestamp('2015-01-08 14:31', tz='UTC'), pd.Timestamp('2015-01-08 21:00', tz='UTC'), ], ) # Start values are crafted so that the thousands place are equal when # adjustments are applied correctly. # The splits and mergers are defined as 4:1 then 2:1 ratios, so the # prices approximate that adjustment by quartering and then halving # the thousands place. data[cls.MERGER_ASSET_SID] = data[cls.SPLIT_ASSET_SID] = pd.concat(( create_minute_df_for_asset( equities_cal, pd.Timestamp('2015-01-05', tz='UTC'), pd.Timestamp('2015-01-05', tz='UTC'), start_val=8000), create_minute_df_for_asset( equities_cal, pd.Timestamp('2015-01-06', tz='UTC'), pd.Timestamp('2015-01-06', tz='UTC'), start_val=2000), create_minute_df_for_asset( equities_cal, pd.Timestamp('2015-01-07', tz='UTC'), pd.Timestamp('2015-01-07', tz='UTC'), start_val=1000), create_minute_df_for_asset( equities_cal, pd.Timestamp('2015-01-08', tz='UTC'), pd.Timestamp('2015-01-08', tz='UTC'), start_val=1000) )) asset3 = cls.asset_finder.retrieve_asset(3) data[3] = create_minute_df_for_asset( equities_cal, asset3.start_date, asset3.end_date, start_val=2, interval=10, ) return data.items() def test_history_in_initialize(self): algo_text = dedent( """\ from zipline.api import history def initialize(context): history([1], 10, '1d', 'price') def handle_data(context, data): pass """ ) algo = self.make_algo(script=algo_text) with self.assertRaises(HistoryInInitialize): algo.run() def test_negative_bar_count(self): """ Negative bar counts leak future information. """ with self.assertRaisesRegex( ValueError, "bar_count must be >= 1, but got -1" ): self.data_portal.get_history_window( [self.ASSET1], pd.Timestamp('2015-01-07 14:35', tz='UTC'), -1, '1d', 'close', 'minute', ) def test_daily_splits_and_mergers(self): # self.SPLIT_ASSET and self.MERGER_ASSET had splits/mergers # on 1/6 and 1/7 jan5 = pd.Timestamp('2015-01-05', tz='UTC') for asset in [self.SPLIT_ASSET, self.MERGER_ASSET]: # before any of the adjustments, 1/4 and 1/5 window1 = self.data_portal.get_history_window( [asset], self.trading_calendar.open_and_close_for_session(jan5)[1], 2, '1d', 'close', 'minute', )[asset] np.testing.assert_array_equal(np.array([np.nan, 8389]), window1) # straddling the first event window2 = self.data_portal.get_history_window( [asset], pd.Timestamp('2015-01-06 14:35', tz='UTC'), 2, '1d', 'close', 'minute', )[asset] # Value from 1/5 should be quartered np.testing.assert_array_equal( [2097.25, # Split occurs. The value of the thousands place should # match. 2004], window2 ) # straddling both events! window3 = self.data_portal.get_history_window( [asset], pd.Timestamp('2015-01-07 14:35', tz='UTC'), 3, '1d', 'close', 'minute', )[asset] np.testing.assert_array_equal( [1048.625, 1194.50, 1004.0], window3 ) # after last event window4 = self.data_portal.get_history_window( [asset], pd.Timestamp('2015-01-08 14:40', tz='UTC'), 2, '1d', 'close', 'minute', )[asset] # should not be adjusted np.testing.assert_array_equal([1389, 1009], window4) def test_daily_dividends(self): # self.DIVIDEND_ASSET had dividends on 1/6 and 1/7 jan5 = pd.Timestamp('2015-01-05', tz='UTC') asset = self.DIVIDEND_ASSET # before any of the dividends window1 = self.data_portal.get_history_window( [asset], self.trading_calendar.session_close(jan5), 2, '1d', 'close', 'minute', )[asset] np.testing.assert_array_equal(np.array([nan, 391]), window1) # straddling the first event window2 = self.data_portal.get_history_window( [asset], pd.Timestamp('2015-01-06 14:35', tz='UTC'), 2, '1d', 'close', 'minute', )[asset] np.testing.assert_array_equal( [383.18, # 391 (last close) * 0.98 (first div) # Dividend occurs prior. 396], window2 ) # straddling both events! window3 = self.data_portal.get_history_window( [asset], pd.Timestamp('2015-01-07 14:35', tz='UTC'), 3, '1d', 'close', 'minute', )[asset] np.testing.assert_array_equal( [367.853, # 391 (last close) * 0.98 * 0.96 (both) 749.76, # 781 (last_close) * 0.96 (second div) 786], # no adjustment window3 ) # after last event window4 = self.data_portal.get_history_window( [asset], pd.Timestamp('2015-01-08 14:40', tz='UTC'), 2, '1d', 'close', 'minute', )[asset] # should not be adjusted, should be 787 to 791 np.testing.assert_array_equal([1171, 1181], window4) def test_minute_before_assets_trading(self): # since asset2 and asset3 both started trading on 1/5/2015, let's do # some history windows that are completely before that minutes = self.trading_calendar.minutes_for_session( self.trading_calendar.previous_session_label(pd.Timestamp( '2015-01-05', tz='UTC' )) )[0:60] for idx, minute in enumerate(minutes): bar_data = self.create_bardata( lambda: minute, ) check_internal_consistency( bar_data, [self.ASSET2, self.ASSET3], ALL_FIELDS, 10, '1m' ) for field in ALL_FIELDS: # OHLCP should be NaN # Volume should be 0 asset2_series = bar_data.history(self.ASSET2, field, 10, '1m') asset3_series = bar_data.history(self.ASSET3, field, 10, '1m') if field == 'volume': np.testing.assert_array_equal(np.zeros(10), asset2_series) np.testing.assert_array_equal(np.zeros(10), asset3_series) else: np.testing.assert_array_equal( np.full(10, np.nan), asset2_series ) np.testing.assert_array_equal( np.full(10, np.nan), asset3_series ) @parameterized.expand([ ('open_sid_2', 'open', 2), ('high_sid_2', 'high', 2), ('low_sid_2', 'low', 2), ('close_sid_2', 'close', 2), ('volume_sid_2', 'volume', 2), ('open_sid_3', 'open', 3), ('high_sid_3', 'high', 3), ('low_sid_3', 'low', 3), ('close_sid_3', 'close', 3), ('volume_sid_3', 'volume', 3), ]) def test_minute_regular(self, name, field, sid): # asset2 and asset3 both started on 1/5/2015, but asset3 trades every # 10 minutes asset = self.asset_finder.retrieve_asset(sid) # Check the first hour of equities trading. minutes = self.trading_calendars[Equity].minutes_for_session( pd.Timestamp('2015-01-05', tz='UTC') )[0:60] for idx, minute in enumerate(minutes): self.verify_regular_dt(idx, minute, 'minute', assets=[asset], fields=[field]) def test_minute_sunday_midnight(self): # Most trading calendars aren't open at midnight on Sunday. sunday_midnight = pd.Timestamp('2015-01-09', tz='UTC') # Find the closest prior minute when the trading calendar was # open (note that if the calendar is open at `sunday_midnight`, # this will be `sunday_midnight`). trading_minutes = self.trading_calendar.all_minutes last_minute = trading_minutes[trading_minutes <= sunday_midnight][-1] sunday_midnight_bar_data = self.create_bardata(lambda: sunday_midnight) last_minute_bar_data = self.create_bardata(lambda: last_minute) # Ensure that we get the same results at midnight on Sunday as # the last open minute. with handle_non_market_minutes(sunday_midnight_bar_data): for field in ALL_FIELDS: np.testing.assert_array_equal( sunday_midnight_bar_data.history( self.ASSET2, field, 30, '1m', ), last_minute_bar_data.history(self.ASSET2, field, 30, '1m') ) def test_minute_after_asset_stopped(self): # SHORT_ASSET's last day was 2015-01-06 # get some history windows that straddle the end minutes = self.trading_calendars[Equity].minutes_for_session( pd.Timestamp('2015-01-07', tz='UTC') )[0:60] for idx, minute in enumerate(minutes): bar_data = self.create_bardata( lambda: minute ) check_internal_consistency( bar_data, self.SHORT_ASSET, ALL_FIELDS, 30, '1m' ) # Reset data portal because it has advanced past next test date. data_portal = self.make_data_portal() # close high low open price volume # 2015-01-06 20:47:00+00:00 768 770 767 769 768 76800 # 2015-01-06 20:48:00+00:00 769 771 768 770 769 76900 # 2015-01-06 20:49:00+00:00 770 772 769 771 770 77000 # 2015-01-06 20:50:00+00:00 771 773 770 772 771 77100 # 2015-01-06 20:51:00+00:00 772 774 771 773 772 77200 # 2015-01-06 20:52:00+00:00 773 775 772 774 773 77300 # 2015-01-06 20:53:00+00:00 774 776 773 775 774 77400 # 2015-01-06 20:54:00+00:00 775 777 774 776 775 77500 # 2015-01-06 20:55:00+00:00 776 778 775 777 776 77600 # 2015-01-06 20:56:00+00:00 777 779 776 778 777 77700 # 2015-01-06 20:57:00+00:00 778 780 777 779 778 77800 # 2015-01-06 20:58:00+00:00 779 781 778 780 779 77900 # 2015-01-06 20:59:00+00:00 780 782 779 781 780 78000 # 2015-01-06 21:00:00+00:00 781 783 780 782 781 78100 # 2015-01-07 14:31:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:32:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:33:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:34:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:35:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:36:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:37:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:38:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:39:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:40:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:41:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:42:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:43:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:44:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:45:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:46:00+00:00 NaN NaN NaN NaN NaN 0 # choose a window that contains the last minute of the asset window_start = pd.Timestamp('2015-01-06 20:47', tz='UTC') window_end = pd.Timestamp('2015-01-07 14:46', tz='UTC') bar_data = BarData( data_portal=data_portal, simulation_dt_func=lambda: minutes[15], data_frequency='minute', restrictions=NoRestrictions(), trading_calendar=self.trading_calendar, ) bar_count = len( self.trading_calendar.minutes_in_range(window_start, window_end) ) window = bar_data.history( self.SHORT_ASSET, ALL_FIELDS, bar_count, '1m', ) # Window should start with 14 values and end with 16 NaNs/0s. for field in ALL_FIELDS: if field == 'volume': np.testing.assert_array_equal( range(76800, 78101, 100), window['volume'][0:14] ) np.testing.assert_array_equal( np.zeros(16), window['volume'][-16:] ) else: np.testing.assert_array_equal( np.array(range(768, 782)) + MINUTE_FIELD_INFO[field], window[field][0:14] ) np.testing.assert_array_equal( np.full(16, np.nan), window[field][-16:] ) # now do a smaller window that is entirely contained after the asset # ends window = bar_data.history(self.SHORT_ASSET, ALL_FIELDS, 5, '1m') for field in ALL_FIELDS: if field == 'volume': np.testing.assert_array_equal(np.zeros(5), window['volume']) else: np.testing.assert_array_equal(np.full(5, np.nan), window[field]) def test_minute_splits_and_mergers(self): # self.SPLIT_ASSET and self.MERGER_ASSET had splits/mergers # on 1/6 and 1/7 jan5 = pd.Timestamp('2015-01-05', tz='UTC') # the assets' close column starts at 2 on the first minute of # 1/5, then goes up one per minute forever for asset in [self.SPLIT_ASSET, self.MERGER_ASSET]: # before any of the adjustments, last 10 minutes of jan 5 equity_cal = self.trading_calendars[Equity] window1 = self.data_portal.get_history_window( [asset], equity_cal.open_and_close_for_session(jan5)[1], 10, '1m', 'close', 'minute', )[asset] np.testing.assert_array_equal( np.array(range(8380, 8390)), window1) # straddling the first event - begins with the last 5 equity # minutes on 2015-01-05, ends with the first 5 on # 2015-01-06. window2_start = pd.Timestamp('2015-01-05 20:56', tz='UTC') window2_end = pd.Timestamp('2015-01-06 14:35', tz='UTC') window2_count = len(self.trading_calendar.minutes_in_range( window2_start, window2_end, )) window2 = self.data_portal.get_history_window( [asset], pd.Timestamp('2015-01-06 14:35', tz='UTC'), window2_count, '1m', 'close', 'minute', )[asset] # five minutes from 1/5 should be halved np.testing.assert_array_equal( [2096.25, 2096.5, 2096.75, 2097, 2097.25], window2[:5], ) # Split occurs. The value of the thousands place should # match. np.testing.assert_array_equal( [2000, 2001, 2002, 2003, 2004], window2[-5:], ) # straddling both events! on the equities calendar this is 5 # minutes of 1/7, 390 of 1/6, and 5 minutes of 1/5. window3_start = pd.Timestamp('2015-01-05 20:56', tz='UTC') window3_end = pd.Timestamp('2015-01-07 14:35', tz='UTC') window3_minutes = self.trading_calendar.minutes_in_range( window3_start, window3_end, ) window3_count = len(window3_minutes) window3 = self.data_portal.get_history_window( [asset], pd.Timestamp('2015-01-07 14:35', tz='UTC'), window3_count, '1m', 'close', 'minute', )[asset] # first five minutes should be 4385-4390, but eigthed np.testing.assert_array_equal( [1048.125, 1048.25, 1048.375, 1048.5, 1048.625], window3[0:5] ) # next 390 minutes (the 2015-01-06 session) should be # 2000-2390, but halved middle_day_open_i = window3_minutes.searchsorted( pd.Timestamp('2015-01-06 14:31', tz='UTC') ) middle_day_close_i = window3_minutes.searchsorted( pd.Timestamp('2015-01-06 21:00', tz='UTC') ) np.testing.assert_array_equal( np.array(range(2000, 2390), dtype='float64') / 2, window3[middle_day_open_i:middle_day_close_i + 1] ) # final 5 minutes should be 1000-1004 np.testing.assert_array_equal(range(1000, 1005), window3[-5:]) # after last event window4 = self.data_portal.get_history_window( [asset], pd.Timestamp('2015-01-07 14:40', tz='UTC'), 5, '1m', 'close', 'minute', )[asset] # should not be adjusted, should be 1005 to 1009 np.testing.assert_array_equal(range(1005, 1010), window4) def test_minute_dividends(self): # self.DIVIDEND_ASSET had dividends on 1/6 and 1/7 # before any of the dividends window1 = self.data_portal.get_history_window( [self.DIVIDEND_ASSET], pd.Timestamp('2015-01-05 21:00', tz='UTC'), 10, '1m', 'close', 'minute', )[self.DIVIDEND_ASSET] np.testing.assert_array_equal(np.array(range(382, 392)), window1) # straddling the first dividend (10 active equity minutes) window2_start = pd.Timestamp('2015-01-05 20:56', tz='UTC') window2_end = pd.Timestamp('2015-01-06 14:35', tz='UTC') window2_count = len( self.trading_calendar.minutes_in_range(window2_start, window2_end) ) window2 = self.data_portal.get_history_window( [self.DIVIDEND_ASSET], window2_end, window2_count, '1m', 'close', 'minute', )[self.DIVIDEND_ASSET] # first dividend is 2%, so the first five values should be 2% lower # than before np.testing.assert_array_almost_equal( np.array(range(387, 392), dtype='float64') * 0.98, window2[0:5] ) # second half of window is unadjusted np.testing.assert_array_equal(range(392, 397), window2[-5:]) # straddling both dividends (on the equities calendar, this is # 5 minutes of 1/7, 390 of 1/6, and 5 minutes of 1/5). window3_start = pd.Timestamp('2015-01-05 20:56', tz='UTC') window3_end = pd.Timestamp('2015-01-07 14:35', tz='UTC') window3_minutes = self.trading_calendar.minutes_in_range( window3_start, window3_end, ) window3_count = len(window3_minutes) window3 = self.data_portal.get_history_window( [self.DIVIDEND_ASSET], window3_end, window3_count, '1m', 'close', 'minute', )[self.DIVIDEND_ASSET] # first five minute from 1/7 should be hit by 0.9408 (= 0.98 * 0.96) np.testing.assert_array_almost_equal( np.around(np.array(range(387, 392), dtype='float64') * 0.9408, 3), window3[0:5] ) # next 390 minutes (the 2015-01-06 session) should be hit by 0.96 # (second dividend) middle_day_open_i = window3_minutes.searchsorted( pd.Timestamp('2015-01-06 14:31', tz='UTC') ) middle_day_close_i = window3_minutes.searchsorted( pd.Timestamp('2015-01-06 21:00', tz='UTC') ) np.testing.assert_array_almost_equal( np.array(range(392, 782), dtype='float64') * 0.96, window3[middle_day_open_i:middle_day_close_i + 1] ) # last 5 minutes should not be adjusted np.testing.assert_array_equal(np.array(range(782, 787)), window3[-5:]) def test_passing_iterable_to_history_regular_hours(self): # regular hours current_dt = pd.Timestamp("2015-01-06 9:45", tz='US/Eastern') bar_data = self.create_bardata( lambda: current_dt, ) bar_data.history(pd.Index([self.ASSET1, self.ASSET2]), "high", 5, "1m") def test_passing_iterable_to_history_bts(self): # before market hours current_dt = pd.Timestamp("2015-01-07 8:45", tz='US/Eastern') bar_data = self.create_bardata( lambda: current_dt, ) with handle_non_market_minutes(bar_data): bar_data.history(pd.Index([self.ASSET1, self.ASSET2]), "high", 5, "1m") def test_overnight_adjustments(self): # Should incorporate adjustments on midnight 01/06 current_dt = pd.Timestamp('2015-01-06 8:45', tz='US/Eastern') bar_data = self.create_bardata( lambda: current_dt, ) adj_expected = { 'open': np.arange(8381, 8391) / 4.0, 'high': np.arange(8382, 8392) / 4.0, 'low': np.arange(8379, 8389) / 4.0, 'close': np.arange(8380, 8390) / 4.0, 'volume': np.arange(8380, 8390) * 100 * 4.0, 'price': np.arange(8380, 8390) / 4.0, } expected = { 'open': np.arange(383, 393) / 2.0, 'high': np.arange(384, 394) / 2.0, 'low': np.arange(381, 391) / 2.0, 'close': np.arange(382, 392) / 2.0, 'volume': np.arange(382, 392) * 100 * 2.0, 'price': np.arange(382, 392) / 2.0, } # Use a window looking back to 3:51pm from 8:45am the following day. # This contains the last ten minutes of the equity session for # 2015-01-05. window_start = pd.Timestamp('2015-01-05 20:51', tz='UTC') window_end = pd.Timestamp('2015-01-06 13:44', tz='UTC') window_length = len( self.trading_calendar.minutes_in_range(window_start, window_end) ) with handle_non_market_minutes(bar_data): # Single field, single asset for field in ALL_FIELDS: values = bar_data.history( self.SPLIT_ASSET, field, window_length, '1m', ) # The first 10 bars the `values` correspond to the last # 10 minutes in the 2015-01-05 session. np.testing.assert_array_equal(values.values[:10], adj_expected[field], err_msg=field) # Multi field, single asset values = bar_data.history( self.SPLIT_ASSET, ['open', 'volume'], window_length, '1m' ) np.testing.assert_array_equal(values.open.values[:10], adj_expected['open']) np.testing.assert_array_equal(values.volume.values[:10], adj_expected['volume']) # Single field, multi asset values = bar_data.history( [self.SPLIT_ASSET, self.ASSET2], 'open', window_length, '1m' ) np.testing.assert_array_equal(values[self.SPLIT_ASSET].values[:10], adj_expected['open']) np.testing.assert_array_equal(values[self.ASSET2].values[:10], expected['open'] * 2) # Multi field, multi asset values = bar_data.history( [self.SPLIT_ASSET, self.ASSET2], ['open', 'volume'], window_length, '1m', ) np.testing.assert_array_equal( values.open[self.SPLIT_ASSET].values[:10], adj_expected['open'] ) np.testing.assert_array_equal( values.volume[self.SPLIT_ASSET].values[:10], adj_expected['volume'] ) np.testing.assert_array_equal( values.open[self.ASSET2].values[:10], expected['open'] * 2 ) np.testing.assert_array_equal( values.volume[self.ASSET2].values[:10], expected['volume'] / 2 ) def test_minute_early_close(self): # 2014-07-03 is an early close # HALF_DAY_TEST_ASSET started trading on 2014-07-02, how convenient # # five minutes into the day after the early close, get 20 1m bars cal = self.trading_calendar window_start = pd.Timestamp('2014-07-03 16:46:00', tz='UTC') window_end = pd.Timestamp('2014-07-07 13:35:00', tz='UTC') bar_count = len(cal.minutes_in_range(window_start, window_end)) window = self.data_portal.get_history_window( [self.HALF_DAY_TEST_ASSET], window_end, bar_count, '1m', 'close', 'minute', )[self.HALF_DAY_TEST_ASSET] # 390 minutes for 7/2, 210 minutes for 7/3, 7/4-7/6 closed # first minute of 7/7 is the 600th trading minute for this asset # this asset's first minute had a close value of 2, so every value is # 2 + (minute index) expected = range(587, 607) # First 15 bars on occur at the end of 2014-07-03. np.testing.assert_array_equal(window[:15], expected[:15]) # Interim bars (only on other calendars) should all be nan. np.testing.assert_array_equal( window[15:-5], np.full(len(window) - 20, np.nan), ) # Last 5 bars occur at the start of 2014-07-07. np.testing.assert_array_equal(window[-5:], expected[-5:]) self.assertEqual( window.index[14], pd.Timestamp('2014-07-03 17:00', tz='UTC') ) self.assertEqual( window.index[-5], pd.Timestamp('2014-07-07 13:31', tz='UTC') ) def test_minute_different_lifetimes(self): cal = self.trading_calendar equity_cal = self.trading_calendars[Equity] # at trading start, only asset1 existed day = self.trading_calendar.next_session_label(self.TRADING_START_DT) # Range containing 100 equity minutes, possibly more on other # calendars (i.e. futures). window_start = pd.Timestamp('2014-01-03 19:22', tz='UTC') window_end = pd.Timestamp('2014-01-06 14:31', tz='UTC') bar_count = len(cal.minutes_in_range(window_start, window_end)) equity_cal = self.trading_calendars[Equity] first_equity_open, _ = equity_cal.open_and_close_for_session(day) asset1_minutes = equity_cal.minutes_for_sessions_in_range( self.ASSET1.start_date, self.ASSET1.end_date ) asset1_idx = asset1_minutes.searchsorted(first_equity_open) window = self.data_portal.get_history_window( [self.ASSET1, self.ASSET2], first_equity_open, bar_count, '1m', 'close', 'minute', ) expected = range(asset1_idx - 97, asset1_idx + 3) # First 99 bars occur on the previous day, np.testing.assert_array_equal( window[self.ASSET1][:99], expected[:99], ) # Any interim bars are not active equity minutes, so should all # be nan. np.testing.assert_array_equal( window[self.ASSET1][99:-1], np.full(len(window) - 100, np.nan), ) # Final bar in the window is the first equity bar of `day`. np.testing.assert_array_equal( window[self.ASSET1][-1:], expected[-1:], ) # All NaNs for ASSET2, since it hasn't started yet. np.testing.assert_array_equal( window[self.ASSET2], np.full(len(window), np.nan), ) def test_history_window_before_first_trading_day(self): # trading_start is 2/3/2014 # get a history window that starts before that, and ends after that first_day_minutes = self.trading_calendar.minutes_for_session( self.TRADING_START_DT ) exp_msg = ( 'History window extends before 2014-01-03. To use this history ' 'window, start the backtest on or after 2014-01-06.' ) for field in OHLCP: with self.assertRaisesRegex( HistoryWindowStartsBeforeData, exp_msg): self.data_portal.get_history_window( [self.ASSET1], first_day_minutes[5], 15, '1m', field, 'minute', )[self.ASSET1] def test_daily_history_blended(self): # daily history windows that end mid-day use minute values for the # last day # January 2015 has both daily and minute data for ASSET2 day = pd.Timestamp('2015-01-07', tz='UTC') minutes = self.trading_calendar.minutes_for_session(day) equity_cal = self.trading_calendars[Equity] equity_minutes = equity_cal.minutes_for_session(day) equity_open, equity_close = equity_minutes[0], equity_minutes[-1] # minute data, baseline: # Jan 5: 2 to 391 # Jan 6: 392 to 781 # Jan 7: 782 to 1172 for minute in minutes: idx = equity_minutes.searchsorted(min(minute, equity_close)) for field in ALL_FIELDS: window = self.data_portal.get_history_window( [self.ASSET2], minute, 3, '1d', field, 'minute', )[self.ASSET2] self.assertEqual(len(window), 3) if field == 'open': self.assertEqual(window[0], 3) self.assertEqual(window[1], 393) elif field == 'high': self.assertEqual(window[0], 393) self.assertEqual(window[1], 783) elif field == 'low': self.assertEqual(window[0], 1) self.assertEqual(window[1], 391) elif field == 'close': self.assertEqual(window[0], 391) self.assertEqual(window[1], 781) elif field == 'volume': self.assertEqual(window[0], 7663500) self.assertEqual(window[1], 22873500) last_val = -1 if minute < equity_open: # If before the equity calendar open, we don't yet # have data (but price is forward-filled). if field == 'volume': last_val = 0 elif field == 'price': last_val = window[1] else: last_val = nan elif field == 'open': last_val = 783 elif field == 'high': # since we increase monotonically, it's just the last # value last_val = 784 + idx elif field == 'low': # since we increase monotonically, the low is the first # value of the day last_val = 781 elif field == 'close' or field == 'price': last_val = 782 + idx elif field == 'volume': # for volume, we sum up all the minutely volumes so far # today last_val = sum(np.array(range(782, 782 + idx + 1)) * 100) np.testing.assert_equal(window[-1], last_val) @parameterized.expand(ALL_FIELDS) def test_daily_history_blended_gaps(self, field): # daily history windows that end mid-day use minute values for the # last day # January 2015 has both daily and minute data for ASSET2 day = pd.Timestamp('2015-01-08', tz='UTC') minutes = self.trading_calendar.minutes_for_session(day) equity_cal = self.trading_calendars[Equity] equity_minutes = equity_cal.minutes_for_session(day) equity_open, equity_close = equity_minutes[0], equity_minutes[-1] # minute data, baseline: # Jan 5: 2 to 391 # Jan 6: 392 to 781 # Jan 7: 782 to 1172 for minute in minutes: idx = equity_minutes.searchsorted(min(minute, equity_close)) window = self.data_portal.get_history_window( [self.ASSET2], minute, 3, '1d', field, 'minute', )[self.ASSET2] self.assertEqual(len(window), 3) if field == 'open': self.assertEqual(window[0], 393) self.assertEqual(window[1], 783) elif field == 'high': self.assertEqual(window[0], 783) self.assertEqual(window[1], 1173) elif field == 'low': self.assertEqual(window[0], 391) self.assertEqual(window[1], 781) elif field == 'close': self.assertEqual(window[0], 781) self.assertEqual(window[1], 1171) elif field == 'price': self.assertEqual(window[0], 781) self.assertEqual(window[1], 1171) elif field == 'volume': self.assertEqual(window[0], 22873500) self.assertEqual(window[1], 38083500) last_val = -1 if minute < equity_open: # If before the equity calendar open, we don't yet # have data (but price is forward-filled). if field == 'volume': last_val = 0 elif field == 'price': last_val = window[1] else: last_val = nan elif field == 'open': if idx == 0: last_val = np.nan else: last_val = 1174.0 elif field == 'high': # since we increase monotonically, it's just the last # value if idx == 0: last_val = np.nan elif idx == 389: last_val = 1562.0 else: last_val = 1174.0 + idx elif field == 'low': # since we increase monotonically, the low is the first # value of the day if idx == 0: last_val = np.nan else: last_val = 1172.0 elif field == 'close': if idx == 0: last_val = np.nan elif idx == 389: last_val = 1172.0 + 388 else: last_val = 1172.0 + idx elif field == 'price': if idx == 0: last_val = 1171.0 elif idx == 389: last_val = 1172.0 + 388 else: last_val = 1172.0 + idx elif field == 'volume': # for volume, we sum up all the minutely volumes so far # today if idx == 0: last_val = 0 elif idx == 389: last_val = sum( np.array(range(1173, 1172 + 388 + 1)) * 100) else: last_val = sum( np.array(range(1173, 1172 + idx + 1)) * 100) np.testing.assert_almost_equal(window[-1], last_val, err_msg='field={0} minute={1}'. format(field, minute)) @parameterized.expand([(("bar_count%s" % x), x) for x in [1, 2, 3]]) def test_daily_history_minute_gaps_price_ffill(self, test_name, bar_count): # Make sure we use the previous day's value when there's been no volume # yet today. # January 5 2015 is the first day, and there is volume only every # 10 minutes. # January 6 has the same volume pattern and is used here to ensure we # ffill correctly from the previous day when there is no volume yet # today. # January 12 is a Monday, ensuring we ffill correctly when the previous # day is not a trading day. for day_idx, day in enumerate([pd.Timestamp('2015-01-05', tz='UTC'), pd.Timestamp('2015-01-06', tz='UTC'), pd.Timestamp('2015-01-12', tz='UTC')]): session_minutes = self.trading_calendar.minutes_for_session(day) equity_cal = self.trading_calendars[Equity] equity_minutes = equity_cal.minutes_for_session(day) if day_idx == 0: # dedupe when session_minutes are same as equity_minutes minutes_to_test = OrderedDict([ (session_minutes[0], np.nan), # No volume yet on first day (equity_minutes[0], np.nan), # No volume yet on first day (equity_minutes[1], np.nan), # ... (equity_minutes[8], np.nan), # Minute before > 0 volume (equity_minutes[9], 11.0), # We have a price! (equity_minutes[10], 11.0), # ffill (equity_minutes[-2], 381.0), # ... (equity_minutes[-1], 391.0), # Last minute of exchange (session_minutes[-1], 391.0), # Last minute of day ]) elif day_idx == 1: minutes_to_test = OrderedDict([ (session_minutes[0], 391.0), # ffill from yesterday (equity_minutes[0], 391.0), # ... (equity_minutes[8], 391.0), # ... (equity_minutes[9], 401.0), # New price today (equity_minutes[-1], 781.0), # Last minute of exchange (session_minutes[-1], 781.0), # Last minute of day ]) else: minutes_to_test = OrderedDict([ (session_minutes[0], 1951.0), # ffill from previous week (equity_minutes[0], 1951.0), # ... (equity_minutes[8], 1951.0), # ... (equity_minutes[9], 1961.0), # New price today ]) for minute, expected in minutes_to_test.items(): window = self.data_portal.get_history_window( [self.ASSET3], minute, bar_count, '1d', 'price', 'minute', )[self.ASSET3] self.assertEqual( len(window), bar_count, "Unexpected window length at {}. Expected {}, but was {}." .format(minute, bar_count, len(window)) ) np.testing.assert_allclose( window[-1], expected, err_msg=f"at minute {minute}", ) class NoPrefetchMinuteEquityHistoryTestCase(MinuteEquityHistoryTestCase): DATA_PORTAL_MINUTE_HISTORY_PREFETCH = 0 DATA_PORTAL_DAILY_HISTORY_PREFETCH = 0 class DailyEquityHistoryTestCase(WithHistory, zf.ZiplineTestCase): CREATE_BARDATA_DATA_FREQUENCY = 'daily' @classmethod def make_equity_daily_bar_data(cls, country_code, sids): yield 1, cls.create_df_for_asset( cls.START_DATE, pd.Timestamp('2016-01-30', tz='UTC') ) yield 3, cls.create_df_for_asset(
pd.Timestamp('2015-01-05', tz='UTC')
pandas.Timestamp
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Tue Nov 20 15:37:54 2018 @author: isaaclera """ import pandas as pd import numpy as np from sklearn import preprocessing df = pd.read_csv("data/data2.csv") ## Normalizar x = df.values #returns a numpy array min_max_scaler = preprocessing.MinMaxScaler() x_scaled = min_max_scaler.fit_transform(x) df =
pd.DataFrame(x_scaled)
pandas.DataFrame
import numpy as np import pandas as pd import mlflow import sys import csv import matplotlib.pyplot as plt import seaborn as sns from collections import Counter, defaultdict import random from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_squared_log_error, accuracy_score, average_precision_score from sklearn.model_selection import KFold, StratifiedKFold, GroupKFold, train_test_split from typing import Optional, Tuple, Union from takaggle.training.model import Model from takaggle.training.util import Logger, Util from takaggle.training.TimeSeriesSplitter import CustomTimeSeriesSplitter # 定数 shap_sampling = 10000 corr_sampling = 10000 def rmse(val_y, val_pred): return np.sqrt(mean_squared_error(val_y, val_pred)) def stratified_group_k_fold(X, y, groups, k, seed=None) -> (list, list): """StratifiedKFoldで分割する関数 Args: X (pd.DataFrame): trainデータ y (pd.DataFrame): 目的変数のDF groups (pd.DataFrame): groupに指定するカラムのDF k (int): k数 seed (int): seet. Defaults to None. Yields: list: trainデータのindexリスト list: validarionのindexリスト """ labels_num = np.max(y) + 1 y_counts_per_group = defaultdict(lambda: np.zeros(labels_num)) y_distr = Counter() for label, g in zip(y, groups): y_counts_per_group[g][label] += 1 y_distr[label] += 1 y_counts_per_fold = defaultdict(lambda: np.zeros(labels_num)) groups_per_fold = defaultdict(set) def eval_y_counts_per_fold(y_counts, fold): y_counts_per_fold[fold] += y_counts std_per_label = [] for label in range(labels_num): label_std = np.std([y_counts_per_fold[i][label] / y_distr[label] for i in range(k)]) std_per_label.append(label_std) y_counts_per_fold[fold] -= y_counts return np.mean(std_per_label) groups_and_y_counts = list(y_counts_per_group.items()) random.Random(seed).shuffle(groups_and_y_counts) for g, y_counts in sorted(groups_and_y_counts, key=lambda x: -np.std(x[1])): best_fold = None min_eval = None for i in range(k): fold_eval = eval_y_counts_per_fold(y_counts, i) if min_eval is None or fold_eval < min_eval: min_eval = fold_eval best_fold = i y_counts_per_fold[best_fold] += y_counts groups_per_fold[best_fold].add(g) all_groups = set(groups) for i in range(k): train_groups = all_groups - groups_per_fold[i] test_groups = groups_per_fold[i] train_indices = [i for i, g in enumerate(groups) if g in train_groups] test_indices = [i for i, g in enumerate(groups) if g in test_groups] yield train_indices, test_indices class Runner: def __init__(self, run_name, model_cls, features, setting, params, cv, categoricals=[], is_add_pseudo=False, pseudo_label_file=''): """コンストラクタ :run_name: runの名前 :model_cls: モデルのクラス :features: 特徴量のリスト :setting: 設定リスト :params: ハイパーパラメータ :cv: CVの設定 """ # setting情報 self.target = setting.get('target') # 目的変数 self.calc_shap = setting.get('calc_shap') # shapを計算するか否か self.save_train_pred = setting.get('save_train_pred') # 学習データでの予測値を保存するか否か self.feature_dir_name = setting.get('feature_directory') # 学習データの読み込み先ディレクトリ self.model_dir_name = setting.get('model_directory') # 学習データの読み込み先ディレクトリ self.train_file_name = setting.get('train_file_name') self.test_file_name = setting.get('test_file_name') self.run_name = run_name # run名 self.model_cls = model_cls # モデルクラス self.features = features # 使用する特徴量のリスト self.params = params # モデルのハイパーパラメータ self.out_dir_name = self.model_dir_name + run_name + '/' self.logger = Logger(self.out_dir_name) # 評価指標 self.metrics_name = setting.get('metrics') self.logger.info(f'{self.run_name} - metrics is {self.metrics_name}') if self.metrics_name == 'MSE': self.metrics = mean_squared_error elif self.metrics_name == 'RMSE': self.metrics = rmse elif self.metrics_name == 'RMSLE': self.metrics = mean_squared_log_error elif self.metrics_name == 'MAE': self.metrics = mean_absolute_error elif self.metrics_name == 'ACC': self.metrics = accuracy_score elif self.metrics_name == 'PR_AUC': self.metrics = average_precision_score elif self.metrics_name == 'CUSTOM': self.metrics = None else: self.metrics = None # データの読み込み self.train_x = self.load_x_train() # 学習データの読み込み self.train_y = self.load_y_train() # 学習データの読み込み # cv情報 self.cv_method = cv.get('method') # CVのメソッド名 self.n_splits = cv.get('n_splits') # k数 self.random_state = cv.get('random_state') # seed self.shuffle = cv.get('shuffle') # shffleの有無 self.cv_target_gr_column = cv.get('cv_target_gr') # GroupKFold or StratifiedGroupKFoldを使用する時に指定する self.cv_target_sf_column = cv.get('cv_target_sf') # StratifiedKFold or StratifiedGroupKFoldを使用する時に指定する self.test_size = cv.get('test_size') # train_test_split用 # ファイル出力用変数 # 各fold,groupのスコアをファイルに出力するための2次元リスト self.score_list = [] self.score_list.append(['run_name', self.run_name]) self.fold_score_list = [] # その他の情報 self.remove_train_index = None # trainデータからデータを絞り込む際に使用する。除外するindexを保持。 if self.calc_shap: self.shap_values = np.zeros(self.train_x.shape) self.categoricals = categoricals # カテゴリ変数を指定する場合に使用する self.is_add_pseudo = is_add_pseudo # pseudo_labelデータを学習に私用する場合に追加する self.pseudo_label_file = pseudo_label_file # pseudo_labelデータを学習に私用する場合に追加する. 特徴量と同じディレクトリに存在するファイルを指定すること if self.is_add_pseudo: if self.pseudo_label_file == '': print('pseudo_label_fileが設定されていません。処理を終了します') sys.exit(0) # ログにデータ件数を出力 self.logger.info(f'{self.run_name} - train_x shape: {self.train_x.shape}') self.logger.info(f'{self.run_name} - train_y shape: {self.train_y.shape}') # TimeSeriecSplits用 self.train_days = cv.get('train_days') self.test_days = cv.get('test_days') self.day_col = cv.get('day_col') self.pred_days = cv.get('pred_days') def visualize_corr(self): """相関係数を算出する """ fig, ax = plt.subplots(figsize=(30, 20)) plt.rcParams["font.size"] = 12 # 図のfontサイズ plt.tick_params(labelsize=14) # 図のラベルのfontサイズ plt.tight_layout() # use a ranked correlation to catch nonlinearities df = self.train_x.copy() df[self.target] = self.train_y.copy() corr = df.sample(corr_sampling).corr(method='spearman') sns.heatmap(corr.round(3), annot=True, xticklabels=corr.columns.values, yticklabels=corr.columns.values) # 保存 plt.savefig(self.out_dir_name + self.run_name + '_corr.png', dpi=300, bbox_inches="tight") plt.close() del df, corr def shap_feature_importance(self) -> None: """計算したshap値を可視化して保存する """ all_columns = self.train_x.columns.values.tolist() + [self.target] ma_shap = pd.DataFrame(sorted(zip(abs(self.shap_values).mean(axis=0), all_columns), reverse=True), columns=['Mean Abs Shapley', 'Feature']).set_index('Feature') ma_shap = ma_shap.sort_values('Mean Abs Shapley', ascending=True) fig = plt.figure(figsize=(8, 25)) plt.tick_params(labelsize=12) # 図のラベルのfontサイズ ax = fig.add_subplot(1, 1, 1) ax.set_title('shap value') ax.barh(ma_shap.index, ma_shap['Mean Abs Shapley'], label='Mean Abs Shapley', align="center", alpha=0.8) labels = ax.get_xticklabels() plt.setp(labels, rotation=0, fontsize=10) ax.legend(loc='upper left') plt.savefig(self.out_dir_name + self.run_name + '_shap.png', dpi=300, bbox_inches="tight") plt.close() def get_feature_name(self): """ 学習に使用する特徴量を返却 """ return self.train_x.columns.values.tolist() def train_fold(self, i_fold: Union[int, str]) -> Tuple[Model, Optional[np.array], Optional[np.array], Optional[float]]: """クロスバリデーションでのfoldを指定して学習・評価を行う 他のメソッドから呼び出すほか、単体でも確認やパラメータ調整に用いる :param i_fold: foldの番号(すべてのときには'all'とする) :return: (モデルのインスタンス、レコードのインデックス、予測値、評価によるスコア)のタプル """ # 学習データの読込 validation = i_fold != 'all' train_x = self.train_x.copy() train_y = self.train_y.copy() if validation: # 学習データ・バリデーションデータのindexを取得 if self.cv_method == 'KFold': tr_idx, va_idx = self.load_index_k_fold(i_fold) elif self.cv_method == 'StratifiedKFold': tr_idx, va_idx = self.load_index_sk_fold(i_fold) elif self.cv_method == 'GroupKFold': tr_idx, va_idx = self.load_index_gk_fold_shuffle(i_fold) elif self.cv_method == 'StratifiedGroupKFold': tr_idx, va_idx = self.load_index_sgk_fold(i_fold) elif self.cv_method == 'TrainTestSplit': tr_idx, va_idx = self.load_index_train_test_split() elif self.cv_method == 'CustomTimeSeriesSplitter': tr_idx, va_idx = self.load_index_custom_ts_fold(i_fold) else: print('CVメソッドが正しくないため終了します') sys.exit(0) tr_x, tr_y = train_x.iloc[tr_idx], train_y.iloc[tr_idx] va_x, va_y = train_x.iloc[va_idx], train_y.iloc[va_idx] # pseudo labelingを行う場合 if self.is_add_pseudo: # pseudo labelingデータを追加する pseudo_df = pd.read_pickle(self.feature_dir_name + self.pseudo_label_file) pseudo_df_x = pseudo_df.drop(self.target, axis=1)[self.features] if self.metrics_name == 'RMSLE': pseudo_df[self.target] = np.log1p(pseudo_df[self.target]) pseudo_df_y = pseudo_df[self.target] # 結合 tr_x = pd.concat([tr_x, pseudo_df_x], axis=0) tr_y = pd.concat([tr_y, pseudo_df_y], axis=0) # 学習を行う model = self.build_model(i_fold) model.train(tr_x, tr_y, va_x, va_y) # TODO: shap値もちゃんと計算できるようにしたい # バリデーションデータへの予測・評価を行う if self.calc_shap: va_pred, self.shap_values[va_idx[:shap_sampling]] = model.predict_and_shap(va_x, shap_sampling) else: va_pred = model.predict(va_x) # 評価指標がRMSLEの場合、log1pで学習させているため、元に戻して計算する if self.metrics_name == 'RMSLE': va_pred = np.expm1(va_pred) va_pred = np.where(va_pred < 0, 0, va_pred) score = np.sqrt(self.metrics(np.expm1(va_y), va_pred)) elif self.metrics_name == 'ACC': va_pred = np.round(va_pred) score = self.metrics(va_y, va_pred) else: score = self.metrics(va_y, va_pred) # foldごとのスコアをリストに追加 self.fold_score_list.append([f'fold{i_fold}', round(score, 4)]) # TODO: ここもconfigで良い感じに管理できると良いね # 特定のカラム(グループ)ごとにスコアを算出したい場合 # カテゴリ変数で、予測が容易なものもあれば難しいものもある場合に、ここを追加することで # そのカテゴリごとのスコアを確認できる # 事前にクラス変数にlistを宣言する必要がある """ # 特別仕様: groupごとのスコアを算出 _temp_df = pd.read_pickle(self.feature_dir_name + 'X_train.pkl')[['chip_id', 'chip_exc_wl']] _temp_df = _temp_df.iloc[va_idx].reset_index(drop=True) _temp_df = pd.concat([_temp_df, va_y.reset_index(drop=True), pd.Series(va_pred, name='pred')], axis=1) # chip_idの辞書 with open(self.feature_dir_name + 'chip_dic.pkl', 'rb') as f: chip_dict = pickle.load(f) for i in sorted(_temp_df['chip_id'].unique().tolist()): chip_df = _temp_df.query('chip_id == @i') chip_y = chip_df['target'] chip_pred = chip_df['pred'] chip_score = self.metrics(chip_y, chip_pred) # chip_idごとのスコアをリストに追加 self.chip_score_list.append([chip_dict[i], round(chip_score, 4)]) for i in sorted(_temp_df['chip_exc_wl'].unique().tolist()): chip_exc_wl_df = _temp_df.query('chip_exc_wl == @i') chip_exc_wl_y = chip_exc_wl_df['target'] chip_exc_wl_pred = chip_exc_wl_df['pred'] chip_exc_wl_score = self.metrics(chip_exc_wl_y, chip_exc_wl_pred) # chip_exc_wlごとのスコアをリストに追加 self.chip_exc_wl_score_list.append([i, round(chip_exc_wl_score, 4)]) """ # モデル、インデックス、予測値、評価を返す return model, va_idx, va_pred, score else: # 学習データ全てで学習を行う model = self.build_model(i_fold) model.train(train_x, train_y) # モデルを返す return model, None, None, None def run_train_cv(self) -> None: """クロスバリデーションでの学習・評価を行う 学習・評価とともに、各foldのモデルの保存、スコアのログ出力についても行う """ self.logger.info(f'{self.run_name} - start training cv') if self.cv_method in ['KFold', 'TrainTestSplit', 'CustomTimeSeriesSplitter']: self.logger.info(f'{self.run_name} - cv method: {self.cv_method}') else: self.logger.info(f'{self.run_name} - cv method: {self.cv_method} - group: {self.cv_target_gr_column} - stratify: {self.cv_target_sf_column}') scores = [] # 各foldのscoreを保存 va_idxes = [] # 各foldのvalidationデータのindexを保存 preds = [] # 各foldの推論結果を保存 # 各foldで学習を行う for i_fold in range(self.n_splits): # 学習を行う self.logger.info(f'{self.run_name} fold {i_fold} - start training') model, va_idx, va_pred, score = self.train_fold(i_fold) self.logger.info(f'{self.run_name} fold {i_fold} - end training - score {score}') # モデルを保存する model.save_model(self.out_dir_name) # 結果を保持する va_idxes.append(va_idx) scores.append(score) preds.append(va_pred) # 各foldの結果をまとめる va_idxes = np.concatenate(va_idxes) order = np.argsort(va_idxes) preds = np.concatenate(preds, axis=0) preds = preds[order] # 全体のスコアを算出 if self.cv_method not in ['TrainTestSplit', 'CustomTimeSeriesSplitter']: if self.metrics_name == 'RMSLE': score_all_data = np.sqrt(self.metrics(np.expm1(self.train_y), preds)) else: score_all_data = self.metrics(self.train_y, preds) else: score_all_data = None # oofデータに対するfoldごとのscoreをcsvに書き込む(foldごとに分析する用) self.score_list.append(['score_all_data', score_all_data]) self.score_list.append(['score_fold_mean', np.mean(scores)]) for i in self.fold_score_list: self.score_list.append(i) with open(self.out_dir_name + f'{self.run_name}_score.csv', 'a') as f: writer = csv.writer(f) writer.writerows(self.score_list) # foldごとのスコアもmlflowでトラッキングする def score_mean(df): df = df.groupby('run_name').mean().round(4).reset_index().sort_values('run_name') return df _score_df = pd.read_csv(self.out_dir_name + f'{self.run_name}_score.csv') _score_df = score_mean(_score_df) _score_df = _score_df.T _score_df.columns = _score_df.iloc[0] _score_df = _score_df.drop(_score_df.index[0]) for col in _score_df.columns.tolist(): mlflow.log_metric(col, _score_df[col].values[0]) # 学習データでの予測結果の保存 if self.save_train_pred: Util.dump_df_pickle(pd.DataFrame(preds), self.out_dir_name + f'.{self.run_name}_train.pkl') # 評価結果の保存 self.logger.result_scores(self.run_name, scores, score_all_data) # shap feature importanceデータの保存 if self.calc_shap: self.shap_feature_importance() def run_predict_cv(self) -> None: """クロスバリデーションで学習した各foldのモデルの平均により、テストデータの予測を行う あらかじめrun_train_cvを実行しておく必要がある """ self.logger.info(f'{self.run_name} - start prediction cv') test_x = self.load_x_test() preds = [] # 各foldのモデルで予測を行う for i_fold in range(self.n_splits): self.logger.info(f'{self.run_name} - start prediction fold:{i_fold}') model = self.build_model(i_fold) model.load_model(self.out_dir_name) if self.metrics_name == 'RMSLE': pred = np.expm1(model.predict(test_x)) else: pred = model.predict(test_x) preds.append(pred) self.logger.info(f'{self.run_name} - end prediction fold:{i_fold}') # 予測の平均値を出力する if self.metrics_name == 'ACC': pred_avg = np.round(np.mean(preds, axis=0)) else: pred_avg = np.mean(preds, axis=0) # 推論結果の保存(submit対象データ) Util.dump_df_pickle(pd.DataFrame(pred_avg), self.out_dir_name + f'{self.run_name}_pred.pkl') self.logger.info(f'{self.run_name} - end prediction cv') def run_train_all(self) -> None: """学習データすべてで学習し、そのモデルを保存する""" self.logger.info(f'{self.run_name} - start training all') # 学習データ全てで学習を行う i_fold = 'all' model, _, _, _ = self.train_fold(i_fold) model.save_model(self.out_dir_name) self.logger.info(f'{self.run_name} - end training all') def run_predict_all(self) -> None: """学習データすべてで学習したモデルにより、テストデータの予測を行う あらかじめrun_train_allを実行しておく必要がある """ self.logger.info(f'{self.run_name} - start prediction all') test_x = self.load_x_test() # 学習データ全てで学習したモデルで予測を行う i_fold = 'all' model = self.build_model(i_fold) model.load_model(self.out_dir_name) pred = model.predict(test_x) # 予測結果の保存 Util.dump(pred, f'../model/pred/{self.run_name}-test.pkl') self.logger.info(f'{self.run_name} - end prediction all') def build_model(self, i_fold: Union[int, str]) -> Model: """クロスバリデーションでのfoldを指定して、モデルの作成を行う :param i_fold: foldの番号 :return: モデルのインスタンス """ # ラン名、fold、モデルのクラスからモデルを作成する run_fold_name = f'{self.run_name}-fold{i_fold}' return self.model_cls(run_fold_name, self.params, self.categoricals) def load_x_train(self, all_cols=False) -> pd.DataFrame: """学習データの特徴量を読み込む 列名で抽出する以上のことを行う場合、このメソッドの修正が必要 :return: 学習データの特徴量 """ # 複数のpklファイルにデータが散らばっている場合 ----------- # dfs = [pd.read_pickle(self.feature_dir_name + f'{f}_train.pkl') for f in self.features] # df = pd.concat(dfs, axis=1) # ------------------------------------------------- # csv or pklにまとまっている場合 ----------- # df = pd.read_csv('../input/train.csv')[self.features] # df = pd.read_pickle(self.feature_dir_name + 'X_train.pkl') df = pd.read_pickle(self.feature_dir_name + f'{self.train_file_name}') if all_cols: # 全てのカラムを返却する場合 # stratify-cvなどで、目的変数を対象にしたい場合はこちらを呼ぶ return df df = df[self.features] # ------------------------------------------------- # 特定のサンプルを除外して学習させる場合 ----------- # self.remove_train_index = df[(df['age']==64) | (df['age']==66) | (df['age']==67)].index # df = df.drop(index = self.remove_train_index) # df = df[self.features] # ------------------------------------------------- return df def load_y_train(self) -> pd.Series: """学習データの目的変数を読み込む 対数変換や使用するデータを削除する場合には、このメソッドの修正が必要 :return: 学習データの目的変数 """ # train_y = pd.read_pickle(self.feature_dir_name + self.target + '_train.pkl') df =
pd.read_pickle(self.feature_dir_name + f'{self.train_file_name}')
pandas.read_pickle
import pandas as pd import numpy as np import re import marcformat class MarcExtractor(object): tag_marc_file = 'MARC_FILE' tag_filter_columns = 'FILTER_COLUMNS' tag_marc_output_file = 'MARC_OUTPUT_FILE' marcFile = '' marcOutFile = '' filteredColumns = [] df = pd.DataFrame() df1 = pd.DataFrame() df2 = pd.DataFrame() chunkSize = 1000 count = 0 def __init__(self, config_file): self.__processConfigFile(config_file) pass def processDataSet(self): header =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd from asset_model import geometric_brownian_motion #TODO # class CcpiStrategy(InvestmentStrategy): # # def __init__(self, drawdown=None, multiplier=3): # self.drawdown = drawdown # self.multiplier = multiplier # # def update_portfolio_weighs(self, current_weights, account_value, returns): # risky_weight = current_weights[0] # safe_weight = current_weights[1] # #TODO # # if self.drawdown is not None: # # peak = np.maximum(peak, account_value) # # floor_value = peak * (1 - drawdown) # cushion = (account_value - floor_value) / account_value # risky_weight = self.multiplier * cushion # risky_weight = np.minimum(risky_weight, 1) # risky_weight = np.maximum(risky_weight, 0) # safe_weight = 1 - risky_weight # return np.array(risky_weight, safe_weight) def backtest_cppi(risky_returns, safe_returns=None, risk_free_rate=0.03, multiplier=3, cushion_ratio=0.8, drawdown=None, start_value=1000): """ Run a backtest of the CPPI strategy, given a set of returns for the risky asset Returns a dictionary containing: Asset Value History, Risk Budget History, Risky Weight History :param risky_returns: history of risky returns :param safe_returns: history of safe returns. If None, default to risk free rate :param risk_free_rate: Rate of return of the risk free asset :param multiplier: multiplier to allocate to risky asset = multiplier*(1-cushion)*wealth :param cushion_ratio: ratio of the wealth to protect :param drawdown: max drawdown allowed (as ratio) :param start_value: Initial monetary value of the account """ # Ensure returns are a data frame if isinstance(risky_returns, pd.Series): risky_returns = pd.DataFrame(risky_returns, columns=["R"]) # If no safe asset is specified, default to the risk free rate if safe_returns is None: safe_returns = pd.DataFrame().reindex_like(risky_returns) safe_returns.values[:] = risk_free_rate / 12 # fast way to set all values to a number # set up the CPPI parameters dates = risky_returns.index steps = len(dates) account_value = start_value floor_value = start_value * cushion_ratio peak = account_value # set up some DataFrames for saving intermediate values account_history = pd.DataFrame().reindex_like(risky_returns) risky_w_history =
pd.DataFrame()
pandas.DataFrame
import json import pandas as pd import plotly import plotly.express as px import plotly.graph_objs as go from flask import Flask # Flask -> class name from flask import jsonify from flask import render_template from web_app.funcs.db import Db # declare application. initialize with Flask instance/class app = Flask(__name__, template_folder='static/stylesheets') # get MongoDB instance db = Db() # @app.route("/", methods=['GET']) # @app.route('/wordclouds') # def word_loud(): # return render_template('wordclouds.html') # # declare route # can also declare methods to accept. like -> 'GET' @app.route("/", methods=['GET']) @app.route("/home.html") def index(): influencer_count_by_category_df = pd.read_csv("data_csv/statistics/influencers_count_by_category.csv", sep=',', header=0, skiprows=0) fig = px.bar(influencer_count_by_category_df, x='_id', y='count', barmode='group') fig = px.pie(influencer_count_by_category_df, values='count', names='_id', title='Percentage of influencers from each category') graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) return render_template("home.html", graph=graphJSON) @app.route("/topic_modeling.html") def topic_modeling(): return render_template("topic_modeling.html") @app.route("/machine_learning.html") def machine_learning(): f_importance_q = pd.read_csv("static/predictions/f_importance_questionnaire.csv", sep=',', header=0, skiprows=0) fig = go.Figure(data=[go.Bar( x=f_importance_q['feature'], y=f_importance_q['score'], marker_color='rgb(0, 179, 179)') ]) fig.update_layout(title='Feature Importance - Questionnaire', title_x=0.5, xaxis=dict(title='Feautures', showgrid=False, linecolor='rgb(204, 204, 204)'), yaxis=dict(title='Score', showgrid=True, linecolor='rgb(204, 204, 204)', showline=True, gridcolor="rgb(204, 204, 204)"), paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) f_importance_q_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) #----------------------------------------------------------------------------------------- f_importance_m = pd.read_csv("static/predictions/f_importance_mongo.csv", sep=',', header=0, skiprows=0) fig = go.Figure(data=[go.Bar( x=f_importance_m['feature'], y=f_importance_m['score'], marker_color='rgb(0, 179, 179)') ]) fig.update_layout(title='Feature Importance - Crowdtangle', title_x=0.5, xaxis=dict(title='Features', showgrid=False, linecolor='rgb(204, 204, 204)'), yaxis=dict(title='Score', showgrid=True, linecolor='rgb(204, 204, 204)', showline=True, gridcolor="rgb(204, 204, 204)"), paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) f_importance_m_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) return render_template("machine_learning.html", f_importance_q=f_importance_q_graphjson, f_importance_mongo=f_importance_m_graphjson) @app.route("/clustering.html") def clustering(): return render_template("clustering.html") @app.route("/wordclouds.html") def wordclouds(): return render_template('wordclouds.html') @app.route("/statistics.html") def statistics(): # --------------- Number of influencer by category --------------- influencer_count_by_category_df = pd.read_csv("data_csv/statistics/influencers_count_by_category.csv", sep=',', header=0, skiprows=0) fig = go.Figure(data=[go.Pie(labels=influencer_count_by_category_df['_id'], values=influencer_count_by_category_df['count'], textinfo='percent', insidetextorientation='radial' )]) fig.update_layout(title='Percentage of influencers from each category', title_x=0.5, paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) #colors = ['gold', 'mediumturquoise'] #fig.update_traces(hoverinfo='label+percent', marker=dict(colors=colors)) influencer_count_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) # ----------------- Number of posts per day ----------------- day_freq_df = pd.read_csv("data_csv/statistics/post_frequency_per_day.csv", sep=',', header=0, skiprows=0) fig = go.Figure(data=[go.Bar( x=day_freq_df['day'], y=day_freq_df['posts'], marker_color='rgb(0, 179, 179)') ]) fig.update_layout(title='No. of posts by day', title_x=0.5, xaxis=dict(title='Day', showgrid=False, linecolor='rgb(204, 204, 204)'), yaxis=dict(title='No. of posts', showgrid=True, linecolor='rgb(204, 204, 204)', showline=True, gridcolor="rgb(204, 204, 204)"), paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) '''fig = px.bar(day_freq_df, x="day", y="posts", labels={ "day": "Day", "posts": "No. of posts", }, title="No. of posts by day")''' day_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) # ----------------- Number of posts per hour ----------------- hour_freq_df = pd.read_csv("data_csv/statistics/post_frequency_per_hour.csv", sep=',', header=0, skiprows=0) fig = go.Figure(data=[go.Scatter( x=hour_freq_df['time'], y=hour_freq_df['posts'], line_color='rgb(0, 179, 179)', mode='lines+markers') ]) fig.update_layout(title='No. of posts by hour', title_x=0.5, xaxis=dict(title='Time', showgrid=False, linecolor='rgb(204, 204, 204)'), yaxis=dict(title='No. of posts', showgrid=True, linecolor='rgb(204, 204, 204)', showline=True, gridcolor="rgb(204, 204, 204)"), paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) '''fig = px.bar(hour_freq_df, x="time", y="posts", labels={ "time": "Time", "posts": "No. of posts", }, title="No. of posts by hour")''' hour_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) posts = db.myLeaderboardsNew_db.find() df = pd.DataFrame(list(posts)) df['Likes'] = df['Likes'].str.replace(',', '').astype(float) df['Views'] = df['Views'].str.replace(',', '').astype(float) df['Total Posts'] = pd.to_numeric(df['Total Posts'], errors='coerce') likes_per_category_sex = df.groupby(['category', 'sex'], as_index=False)['Likes'].sum() # views_per_category_sex = df.groupby(['category', 'sex'], as_index=False)['Views'].sum() posts_per_category_sex = df.groupby(['category', 'sex'], as_index=False)['Total Posts'].sum() likes_per_category = df.groupby(['category'], as_index=False)['Likes'].sum() # comments_per_category = df.groupby(['category'], as_index=False)['Comments'].sum() # data = likes_per_category.copy() # data['posts'] = posts_per_category_sex['posts'] # data['likes'] = likes_per_category['Likes'] # data['comments'] = comments_per_category # data['calc'] = (data['likes'] + data['comments']) / df['Followers'] * data['posts'] category = df['category'].value_counts().to_frame().reset_index() category.rename(columns={'index': 'category', 'category': 'frequency'}, inplace=True) maritalStatus = df['marital_status'].value_counts().to_frame().reset_index() maritalStatus.rename(columns={'index': 'marital_status', 'marital_status': 'frequency'}, inplace=True) age = df['age'].value_counts().to_frame().reset_index() age.rename(columns={'index': 'age', 'age': 'frequency'}, inplace=True) sex = df['sex'].value_counts().to_frame().reset_index() sex.rename(columns={'index': 'sex', 'sex': 'frequency'}, inplace=True) # 1 fig = go.Figure(data=[go.Bar( x=category['category'], y=category['frequency'], marker_color='rgb(0, 179, 179)') ]) # fig = px.bar(category, x='category', y='frequency') fig.update_layout(title='Bar-chart-category', title_x=0.5, xaxis=dict(title='Category', showgrid=False, linecolor='rgb(204, 204, 204)'), yaxis=dict(title='Frequency', showgrid=True, linecolor='rgb(204, 204, 204)', showline=True, gridcolor="rgb(204, 204, 204)"), paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) category_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) # 2 #fig = px.bar(maritalStatus, x='marital_status', y='frequency') fig = go.Figure(data=[go.Bar( x=maritalStatus['marital_status'], y=maritalStatus['frequency'], marker_color='rgb(0, 179, 179)') ]) fig.update_layout(title='Marital status', title_x=0.5, xaxis=dict(title='Marital Status', showgrid=False, linecolor='rgb(204, 204, 204)'), yaxis=dict(title='Frequency', showgrid=True, linecolor='rgb(204, 204, 204)', showline=True, gridcolor="rgb(204, 204, 204)"), paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) maritalStatus_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) # 3 # fig = px.bar(age, x='age', y='frequency') fig = go.Figure(data=[go.Bar( x=age['age'], y=age['frequency'], marker_color='rgb(0, 179, 179)') ]) fig.update_layout(title='Age Distribution', title_x=0.5, xaxis=dict(title='Age', showgrid=False, linecolor='rgb(204, 204, 204)'), yaxis=dict(title='Frequency', showgrid=True, linecolor='rgb(204, 204, 204)', showline=True, gridcolor="rgb(204, 204, 204)"), paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) age_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) # 4 fig = go.Figure(data=[go.Bar( x=sex['sex'], y=sex['frequency'], marker_color='rgb(0, 179, 179)') ]) # fig = px.bar(sex, x='sex', y='frequency') fig.update_layout(title='Sex', title_x=0.5, xaxis=dict(title='Sex', showgrid=False, linecolor='rgb(204, 204, 204)'), yaxis=dict(title='Frequency', showgrid=True, linecolor='rgb(204, 204, 204)', showline=True, gridcolor="rgb(204, 204, 204)"), paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) sex_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) fig = go.Figure( data=[go.Pie(labels=likes_per_category['category'], values=likes_per_category['Likes'], textinfo='percent', insidetextorientation='radial', title='Percentage of likes per category' )]) # fig = px.pie(labels=likes_per_category['category'], values=likes_per_category['Likes'], # title='Percentage of likes per category', # ) fig.update_layout(title='No. of posts by day', title_x=0.5, xaxis=dict(title='Day', showgrid=False, linecolor='rgb(204, 204, 204)'), yaxis=dict(title='No. of posts', showgrid=True, linecolor='rgb(204, 204, 204)', showline=True, gridcolor="rgb(204, 204, 204)"), paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) likes_per_category_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) # fig = px.Figure(data=[go.bar(likes_per_category_sex, x='category', y='Likes', color='sex')]) fig = px.bar(likes_per_category_sex, x="category", y="Likes", color="sex", barmode='group') fig.update_layout(title='likes_per_category_sex', title_x=0.5, xaxis=dict(title='Category', showgrid=False, linecolor='rgb(204, 204, 204)'), yaxis=dict(title='Likes', showgrid=True, linecolor='rgb(204, 204, 204)', showline=True, gridcolor="rgb(204, 204, 204)"), paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) category_sex_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) fig = px.scatter(df, x='Total Posts', y='Likes', color='category', hover_name='sex', log_x=True, log_y=True) fig.update_layout(title='Posts - Likes per user', title_x=0.5, xaxis=dict(title='Total Posts', showgrid=False, linecolor='rgb(204, 204, 204)'), yaxis=dict(title='Likes', showgrid=True, linecolor='rgb(204, 204, 204)', showline=True, gridcolor="rgb(204, 204, 204)"), paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) posts_likes_scatter_json = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) # fig = px.line(posts_per_category_sex, x='category', y='Total Posts', color='sex') fig = px.bar(posts_per_category_sex, x="category", y="Total Posts", color="sex", barmode='group') fig.update_layout(title='Posts per category', title_x=0.5, xaxis=dict(title='Category', showgrid=False, linecolor='rgb(204, 204, 204)'), yaxis=dict(title='Total Posts', showgrid=True, linecolor='rgb(204, 204, 204)', showline=True, gridcolor="rgb(204, 204, 204)"), paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) posts_per_category = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) fig = px.scatter(df, x='Views', y='Total Posts', color='category', hover_name='sex', log_x=True, log_y=True) fig.update_layout(title='Video posts - Views per user', title_x=0.5, xaxis=dict(title='Category', showgrid=False, linecolor='rgb(204, 204, 204)'), yaxis=dict(title='Likes', showgrid=True, linecolor='rgb(204, 204, 204)', showline=True, gridcolor="rgb(204, 204, 204)"), paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) views_posts_scatter_graph_json = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) # fig = px.bar(likes_per_category_sex, x='category', y='Likes') fig = go.Figure(data=[go.Bar( x=likes_per_category_sex['category'], y=likes_per_category_sex['Likes'], marker_color='rgb(0, 179, 179)') ]) fig.update_layout(title='likes-category-Bar-chart', title_x=0.5, xaxis=dict(title='Category', showgrid=False, linecolor='rgb(204, 204, 204)'), yaxis=dict(title='Likes', showgrid=True, linecolor='rgb(204, 204, 204)', showline=True, gridcolor="rgb(204, 204, 204)"), paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) likes_per_category_sex_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) # fig = px.pie(likes_per_category['Likes'], values='Likes', names='category', # title='Percentage of influencers from each category') # likes_per_category_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) return render_template("statistics.html", influencerCountGraphJSON=influencer_count_graphjson, dayGraph=day_graphjson, hourGraph=hour_graphjson, category_Graphjson=category_graphjson, age_Graphjson=age_graphjson, maritalStatus_Graphjson=maritalStatus_graphjson, sex_Graphjson=sex_graphjson, likes_per_category_sex_Graphjson=likes_per_category_sex_graphjson, likes_per_category_Graphjson=likes_per_category_graphjson, category_sex_Graphjson=category_sex_graphjson, posts_likes_scatter_Graphjson=posts_likes_scatter_json, posts_per_category_Graphjson=posts_per_category, views_posts_scatter_Graph_json=views_posts_scatter_graph_json, likes_per_category_sex_Graphjson2=likes_per_category_sex_graphjson ) @app.route("/questionaire_statistics.html") def questionaire_statistics(): """ df = read_questionnaire() gender_df, willing_to_follow_male_df, willing_to_follow_female_df = cluster_by_gender(df) fig = px.pie(gender_df, values='Counter', names='Sex', title='Annotators - Gender Percentage') hour_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) fig = px.pie(willing_to_follow_male_df, values='Counter', names='Willing to follow', title='Male Annotators - Probability of Following') willing_to_follow_male_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) fig = px.pie(willing_to_follow_female_df, values='Counter', names='Willing to follow', title='Female Annotators - Probability of Following') willing_to_follow_female_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) """ gender_graph_json = pd.read_csv("data_csv/gender_df.csv", sep=',', header=0, skiprows=0) fig = go.Figure(data=[go.Pie(values=gender_graph_json['Counter'], labels=gender_graph_json['Sex'], textinfo='label+percent', insidetextorientation='radial' )]) fig.update_layout(title='Annotators - Gender Percentage', title_x=0.5, paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) colors = ['#198DE8', '#EF1453'] fig.update_traces(hoverinfo='label+percent', marker=dict(colors=colors)) gender_graph_json = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) #------------------------------------------------------------------------------------- colorsYesNo = ['#85e085', '#ffa64d'] willing_to_follow_male_df = pd.read_csv("data_csv/willing_to_follow_male_df.csv", sep=',', header=0, skiprows=0) fig = go.Figure(data=[go.Pie(values=willing_to_follow_male_df['Counter'], labels=willing_to_follow_male_df['Willing to follow'], textinfo='label+percent', insidetextorientation='radial' )]) fig.update_layout(title='Male Annotators - Probability of following', title_x=0.5, paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) fig.update_traces(hoverinfo='label+percent', marker=dict(colors=colorsYesNo)) willing_to_follow_male_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) # ------------------------------------------------------------------------------------- willing_to_follow_female_df = pd.read_csv("data_csv/willing_to_follow_female_df.csv", sep=',', header=0, skiprows=0) fig = go.Figure( data=[go.Pie(values=willing_to_follow_female_df['Counter'], labels=willing_to_follow_female_df['Willing to follow'], textinfo='label+percent', insidetextorientation='radial' )]) fig.update_layout(title='Female Annotators - Probability of following', title_x=0.5, paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) fig.update_traces(hoverinfo='label+percent', marker=dict(colors=colorsYesNo)) willing_to_follow_female_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) # ------------------------------------------------------------------------------------- ########## pies with reasons total_reasons = pd.read_csv("data_csv/total_reasons.csv", sep=',', header=0, skiprows=0, nrows=10) fig = go.Figure( data=[go.Pie(values=total_reasons['Counter'], labels=total_reasons['Reason'], textinfo='percent', insidetextorientation='radial' )]) fig.update_layout(title='All categories - Top 10 reasons to follow', title_x=0.5, paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)', legend=dict(font=dict(size=5,color="black"))) fig.update_traces(hoverinfo='label+percent') total_reasons_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) # ------------------------------------------------------------------------------------- athlete = pd.read_csv("data_csv/athlete.csv", sep=',', header=0, skiprows=0) fig = go.Figure( data=[go.Pie(values=athlete['counts'], labels=athlete['reasons'], textinfo='percent', insidetextorientation='radial' )]) fig.update_layout(title='Athlete category - Reasons to follow', title_x=0.5, paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)', legend=dict(font=dict(size=6, color="black"))) fig.update_traces(hoverinfo='label+percent') athlete_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) # ------------------------------------------------------------------------------------- dance = pd.read_csv("data_csv/dance.csv", sep=',', header=0, skiprows=0) fig = go.Figure( data=[go.Pie(values=dance['counts'], labels=dance['reasons'], textinfo='percent', insidetextorientation='radial' )]) fig.update_layout(title='Dance category - Reasons to follow', title_x=0.5, paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)', legend=dict(font=dict(size=5, color="black"))) fig.update_traces(hoverinfo='label+percent') dance_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) # ------------------------------------------------------------------------------------- ballet = pd.read_csv("data_csv/ballet.csv", sep=',', header=0, skiprows=0) fig = go.Figure( data=[go.Pie(values=ballet['counts'], labels=ballet['reasons'], textinfo='percent', insidetextorientation='radial' )]) fig.update_layout(title='Ballet category - Reasons to follow', title_x=0.5, paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)', legend=dict(font=dict(size=8, color="black"))) fig.update_traces(hoverinfo='label+percent') ballet_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) # ------------------------------------------------------------------------------------- nutrition = pd.read_csv("data_csv/nutrition.csv", sep=',', header=0, skiprows=0) fig = go.Figure( data=[go.Pie(values=nutrition['counts'], labels=nutrition['reasons'], textinfo='percent', insidetextorientation='radial' )]) fig.update_layout(title='Nutrition category - Reasons to follow', title_x=0.5, paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)', legend=dict(font=dict(size=6, color="black"))) fig.update_traces(hoverinfo='label+percent') nutrition_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) # ------------------------------------------------------------------------------------- pilates = pd.read_csv("data_csv/pilates.csv", sep=',', header=0, skiprows=0) fig = go.Figure( data=[go.Pie(values=pilates['counts'], labels=pilates['reasons'], textinfo='percent', insidetextorientation='radial' )]) fig.update_layout(title='Pilates category - Reasons to follow', title_x=0.5, paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)', legend=dict(font=dict(size=5, color="black"))) fig.update_traces(hoverinfo='label+percent') pilates_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) # ------------------------------------------------------------------------------------- body_building = pd.read_csv("data_csv/body_building.csv", sep=',', header=0, skiprows=0) fig = go.Figure( data=[go.Pie(values=body_building['counts'], labels=body_building['reasons'], textinfo='percent', insidetextorientation='radial' )]) fig.update_layout(title='Body building category - Reasons to follow', title_x=0.5, paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)', legend=dict(font=dict(size=5, color="black"))) fig.update_traces(hoverinfo='label+percent') body_building_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) # ------------------------------------------------------------------------------------- fitness_model = pd.read_csv("data_csv/fitness_model.csv", sep=',', header=0, skiprows=0) fig = go.Figure( data=[go.Pie(values=fitness_model['counts'], labels=fitness_model['reasons'], textinfo='percent', insidetextorientation='radial' )]) fig.update_layout(title='Fitness model category - Reasons to follow', title_x=0.5, paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)', legend=dict(font=dict(size=5, color="black"))) fig.update_traces(hoverinfo='label+percent') fitness_model_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) # ------------------------------------------------------------------------------------- #total_reasons_df = show_reasons(df) return render_template("questionaire_statistics.html", hour_graph=gender_graph_json, willing_to_follow_male_graph=willing_to_follow_male_graphjson, willing_to_follow_female_graph=willing_to_follow_female_graphjson, athlete=athlete_graphjson, dance=dance_graphjson,ballet=ballet_graphjson, nutrition=nutrition_graphjson, body_building=body_building_graphjson,pilates=pilates_graphjson, fitness_model=fitness_model_graphjson, total_reasons=total_reasons_graphjson) @app.route("/hashtags.html") def hashtags(): # ----------------- Total number of hashtags from each category ----------------- df = pd.read_csv("data_csv/hashtags/no_of_hashtags_by_category.csv", sep=',', header=0, skiprows=0) fig = go.Figure(data=[go.Bar( x=df['category'], y=df['hashtags_count'], marker_color='rgb(175, 122, 197)') ]) fig.update_layout(title='No. of hashtags for each category', title_x=0.5, xaxis=dict(title='Category', showgrid=False, linecolor='rgb(204, 204, 204)'), yaxis=dict(title='No. of total hashtags', showgrid=True, linecolor='rgb(204, 204, 204)', showline=True, gridcolor="rgb(204, 204, 204)"), paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) no_of_hashtags_by_category_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) #fig.write_image("images_for_report/no_of_hashtags_by_category.png") # ----------------- Percentage of hashtags from each category ----------------- df = pd.read_csv("data_csv/hashtags/percentage_of_hashtags_by_category.csv", sep=',', header=0, skiprows=0) df['hashtags_percentage'] = df['hashtags_percentage'] /100 fig = go.Figure(data=[go.Bar( x=df['category'], y=df['hashtags_percentage'], marker_color='rgb(175, 122, 197)') ]) fig.update_layout(title='Percentage of hashtags by category', title_x=0.5, xaxis=dict(title='Category', showgrid=False, linecolor='rgb(204, 204, 204)'), yaxis=dict(title='Percentage of hashtags', showgrid=True, linecolor='rgb(204, 204, 204)', showline=True, gridcolor="rgb(204, 204, 204)", tickformat=".0%"), paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) percentage_of_hashtags_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) #fig.write_image("images_for_report/percentage_of_hashtags_by_category.png") # ----------------- Hashtags distribution ----------------- df = pd.read_csv("data_csv/hashtags/hashtag_distribution.csv", sep=',', header=0, skiprows=0).sort_values(by=['Number of Hashtags'], ascending=True) fig = go.Figure(data=[go.Scatter( x=df['Number of Hashtags'], y=df['Number of Posts'], line_color='rgb(0, 179, 179)', mode='lines+markers') ]) fig.update_layout(title='Hashtags Distribution', title_x=0.5, xaxis=dict(title='No. of hashtags', showgrid=False, linecolor='rgb(204, 204, 204)', zeroline=False), yaxis=dict(title='No. of posts', showgrid=True, linecolor='rgb(204, 204, 204)', showline=True, gridcolor="rgb(204, 204, 204)", zeroline=True, zerolinecolor='rgb(204, 204, 204)', zerolinewidth=1), paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)', updatemenus=[ dict( x=1.01, xanchor="left", buttons=list([ dict(label="Linear", method="relayout", args=[{"yaxis.type": "linear"}]), dict(label="Log", method="relayout", args=[{"yaxis.type": "log"}]) ]))] ) hashtags_distribution_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) #fig.write_image("images_for_report/hashtag_distribution.png") # ----------------- Top hashtag frequencies ----------------- df = pd.read_csv("data_csv/hashtags/top_hashtag_frequency.csv", sep=',', header=0, skiprows=0).head(25) fig = go.Figure(data=[go.Bar( x=df['hashtag'], y=df['count'], marker_color='rgb(0, 179, 179)') ]) fig.update_layout(title='Most Popular Hashtags', title_x=0.5, xaxis=dict(title='Hashtags', showgrid=False, linecolor='rgb(204, 204, 204)'), yaxis=dict(title='No. of posts', showgrid=True, linecolor='rgb(204, 204, 204)', showline=True, gridcolor="rgb(204, 204, 204)"), paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) hashtags_frequency_graphjson = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) #fig.write_image("images_for_report/top_hashtag_frequency.png") # ----------------- Hashtags engagement distribution ----------------- df =
pd.read_csv("data_csv/hashtags/hashtags_engagement_distribution.csv", sep=',', header=0, skiprows=0)
pandas.read_csv
import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Conv2D, Dropout, MaxPool2D, Flatten, GlobalAveragePooling2D, add, average, \ maximum import tensorflow_addons as tfa from tensorflow_docs import modeling import tensorflow_datasets as tfds import tensorflow_hub as hub import pandas as pd import numpy as np import matplotlib.pyplot as plt import os import pathlib import shutil tfds.disable_progress_bar() # disable tqdm progress bar print("TensorFlow Version: ", tf.__version__) print("Number of GPU available: ", len(tf.config.experimental.list_physical_devices("GPU"))) def read_and_label(file_path): img = tf.io.read_file(file_path) img = decode_img(img) label = get_label(file_path) return img, label def decode_img(img): img = tf.image.decode_jpeg(img, channels=3) img = tf.image.convert_image_dtype(img, tf.float32) return tf.image.resize(img, [IMG_WIDTH, IMG_HEIGHT]) def get_label(file_path): parts = tf.strings.split(file_path, os.path.sep) return tf.reshape(tf.where(parts[-4] == CLASS_NAMES), []) def augment(image, label): image = tf.image.random_hue(image, max_delta=0.05, seed=5) image = tf.image.random_contrast(image, 0.95, 1.05, seed=5) # tissue quality image = tf.image.random_saturation(image, 0.95, 1.05, seed=5) # stain quality image = tf.image.random_brightness(image, max_delta=0.05) # tissue thickness, glass transparency (clean) image = tf.image.random_flip_left_right(image, seed=5) # cell orientation image = tf.image.random_flip_up_down(image, seed=5) # cell orientation image = tf.image.rot90(image, tf.random.uniform(shape=[], minval=0, maxval=4, dtype=tf.int32)) # cell orientation return image, label IMG_HEIGHT = 100 IMG_WIDTH = 100 BATCH_SIZE = 32 val_fraction = 10 # list location of all training images data_dir = r'C:\Users\kuki\Desktop\Research\Skin\RCNN data\train' data_dir = pathlib.Path(data_dir) train_image_count = len(list(data_dir.glob('*\*\image\*.jpg'))) CLASS_NAMES = np.array( [item.name for item in data_dir.glob('*') if item.name != "LICENSE.txt" and item.name != ".DS_store"]) list_ds = tf.data.Dataset.list_files(str(data_dir / '*/*/image/*')) AUTOTUNE = tf.data.experimental.AUTOTUNE labeled_ds = list_ds.map(read_and_label, num_parallel_calls=AUTOTUNE) # plt.figure(figsize=(10,10)) # for idx,elem in enumerate(labeled_ds.take(25)): # img = elem[0] # label = elem[1] # ax = plt.subplot(5,5,idx+1) # plt.imshow(img) # plt.title(CLASS_NAMES[label].title()) # plt.axis('off') test_data_dir = r'C:\Users\kuki\Desktop\Research\Skin\RCNN data\test' test_data_dir = pathlib.Path(test_data_dir) test_image_count = len(list(test_data_dir.glob('*\*\image\*.jpg'))) test_list_ds = tf.data.Dataset.list_files(str(test_data_dir / '*\*\image\*')) test_labeled_ds = test_list_ds.map(read_and_label, num_parallel_calls=AUTOTUNE) val_image_count = test_image_count // 100 * val_fraction # // : floor division ex) 15/2 = 7.5 -> 7 STEPS_PER_EPOCH = train_image_count // BATCH_SIZE TEST_STEPS = test_image_count // BATCH_SIZE VALIDATION_STEPS = val_image_count // BATCH_SIZE shuffle_buffer_size = 3000 # take first 100 from dataset and shuffle and pick one. train_ds = (labeled_ds # .skip(val_image_count) .cache("./cache/fibro_train.tfcache") .shuffle(buffer_size=shuffle_buffer_size) .repeat() .batch(BATCH_SIZE) .map(augment, num_parallel_calls=AUTOTUNE) # always batch before mapping .prefetch(buffer_size=AUTOTUNE) ) # no shuffle, augment for validation and test dataset val_ds = (test_labeled_ds .shuffle(buffer_size=shuffle_buffer_size) .take(val_image_count) .cache("./cache/fibro_val.tfcache") .repeat() .batch(BATCH_SIZE) .prefetch(buffer_size=AUTOTUNE)) test_ds = (test_labeled_ds .cache("./cache/fibro_test.tfcache") .repeat() .batch(BATCH_SIZE) .prefetch(buffer_size=AUTOTUNE) # time it takes to produce next element ) checkpoint_dir = "training_1" shutil.rmtree(checkpoint_dir, ignore_errors=True) def get_callbacks(name): return [ modeling.EpochDots(), tf.keras.callbacks.EarlyStopping(monitor='val_sparse_categorical_crossentropy', patience=100, restore_best_weights=True), # tf.keras.callbacks.TensorBoard(log_dir/name, histogram_freq=1), tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_dir + "/{}/cp.ckpt".format(name), verbose=0, monitor='val_sparse_categorical_crossentropy', save_weights_only=True, save_best_only=True), tf.keras.callbacks.ReduceLROnPlateau(monitor='val_sparse_categorical_crossentropy', factor=0.1, patience=50, verbose=0, mode='auto', min_delta=0.0001, cooldown=0, min_lr=0), ] lr_schedule = tf.keras.optimizers.schedules.InverseTimeDecay( 1e-3, decay_steps=STEPS_PER_EPOCH * 100, decay_rate=1, staircase=False) def compilefit(model, name, lr, max_epochs=1000): optimizer = tfa.optimizers.AdamW(lr) model.compile(optimizer=optimizer, loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), 'accuracy']) model_history = model.fit(train_ds, steps_per_epoch=STEPS_PER_EPOCH, epochs=max_epochs, verbose=0, validation_data=val_ds, callbacks=get_callbacks(name), validation_steps=VALIDATION_STEPS, use_multiprocessing=True ) namename = os.path.dirname(name) if not os.path.isdir(os.path.abspath(namename)): os.mkdir(os.path.abspath(namename)) if not os.path.isdir(os.path.abspath(name)): os.mkdir(os.path.abspath(name)) model.save(pathlib.Path(name) / 'full_model.h5') return model_history def plotdf(dfobj, condition, lr=None): dfobj.pop('loss') dfobj.pop('val_loss') dfobj1 = dfobj.copy() dfobj2 = dfobj.copy() dfobj.pop('lr') dfobj.pop('sparse_categorical_crossentropy') dfobj.pop('val_sparse_categorical_crossentropy') pd.DataFrame(dfobj).plot(title=condition) dfobj1.pop('lr') dfobj1.pop('accuracy') dfobj1.pop('val_accuracy')
pd.DataFrame(dfobj1)
pandas.DataFrame
""" Script that scans 3 band tiff files and creates csv file with columns: image_id, width, height """ from __future__ import division import tifffile as tiff import os from tqdm import tqdm import pandas as pd data_path = '../data' three_band_path = os.path.join(data_path, 'three_band') file_name_s = [] widths_3 = [] heights_3 = [] for file_name_ in tqdm(sorted(os.listdir(three_band_path))): # TODO: crashes if there anything except tiff files in folder (for ex, QGIS creates a lot of aux files) image_id = file_name_.split('.')[0] image_3 = tiff.imread(os.path.join(three_band_path, file_name_)) file_name_s += [file_name_] _, height_3, width_3 = image_3.shape widths_3 += [width_3] heights_3 += [height_3] df =
pd.DataFrame({'file_name_': file_name_s, 'width': widths_3, 'height': heights_3})
pandas.DataFrame
from __future__ import division, print_function import numpy as np import pandas as pd from astropy import units as u __all__ = ['solid_angle', 'random_radec', 'check_random_state'] def solid_angle(ra_lim, dec_lim): """ Calculate solid angle with given ra & dec range. All angles in degrees. Parameters ---------- ra_lim : list-like, optional ra limits. dec_lim : list-like, optional dec limits. Returns ------- area : float Solid angle in square degrees. """ ra_lim = np.deg2rad(np.asarray(ra_lim)) dec_lim = np.deg2rad(np.asarray(dec_lim)) dsin_dec = np.sin(dec_lim[1]) - np.sin(dec_lim[0]) area = ra_lim.ptp() * dsin_dec * (180.0/np.pi)**2 return area def random_radec(npoints, ra_lim=[0, 360], dec_lim=[-90, 90], random_state=None, as_df=True): """ Generate random ra and dec points within a specified range. All angles in degrees. Parameters ---------- npoints : int Number of random points to generate. ra_lim : list-like, optional ra limits. dec_lim : list-like, optional dec limits. random_state : `None`, int, list of ints, or `numpy.random.RandomState` If ``seed`` is `None`, return the `~numpy.random.RandomState` singleton used by ``numpy.random``. If ``seed`` is an `int`, return a new `~numpy.random.RandomState` instance seeded with ``seed``. If ``seed`` is already a `~numpy.random.RandomState`, return it. Otherwise raise ``ValueError``. as_df : bool If True, return as pandas DataFrame. Returns ------- points : 2d ndarray of pandas DataFrame Random ra and dec points in degrees. """ rng = check_random_state(random_state) ra_lim = np.deg2rad(np.asarray(ra_lim)) dec_lim = np.deg2rad(np.asarray(dec_lim)) zlim = np.sin(dec_lim) z = zlim[0] + zlim.ptp() * rng.uniform(size=int(npoints)) ra = ra_lim[0] + ra_lim.ptp() * rng.uniform(size=int(npoints)) dec = np.arcsin(z) ra, dec = np.rad2deg(ra), np.rad2deg(dec) points = np.array([ra, dec]).T if as_df: df =
pd.DataFrame(data=points, columns=['ra', 'dec'])
pandas.DataFrame
import warnings warnings.filterwarnings("ignore") import logging import os from os.path import join from keras.callbacks import ModelCheckpoint, EarlyStopping from keras.models import load_model, save_model, model_from_json from keras.utils import multi_gpu_model from utils import utils import model_skeleton.featuristic as featuristic import model_skeleton.malfusion as malfusion import model_skeleton.echelon as echelon from keras import optimizers from trend import activation_trend_identification as ati import config.settings as cnst from .train_args import DefaultTrainArguments from plots.plots import plot_partition_epoch_history from predict import predict from predict.predict_args import Predict as pObj, DefaultPredictArguments, QStats import numpy as np from sklearn.utils import class_weight import pandas as pd from plots.plots import display_probability_chart from analyzers.collect_exe_files import get_partition_data, partition_pkl_files_by_count, partition_pkl_files_by_size import gc from shutil import copyfile def train(args): """ Function for training Tier-1 model with whole byte sequence data Args: args: An object containing all the required parameters for training Returns: history: Returns history object from keras training process """ train_steps = len(args.t1_x_train) // args.t1_batch_size args.t1_train_steps = train_steps - 1 if len(args.t1_x_train) % args.t1_batch_size == 0 else train_steps + 1 if args.t1_x_val is not None: val_steps = len(args.t1_x_val) // args.t1_batch_size args.t1_val_steps = val_steps - 1 if len(args.t1_x_val) % args.t1_batch_size == 0 else val_steps + 1 args.t1_ear = EarlyStopping(monitor='acc', patience=3) args.t1_mcp = ModelCheckpoint(join(args.save_path, args.t1_model_name), monitor="acc", save_best_only=args.save_best, save_weights_only=False) data_gen = utils.direct_data_generator(args.t1_x_train, args.t1_y_train) history = args.t1_model_base.fit( data_gen, class_weight=args.t1_class_weights, steps_per_epoch=args.t1_train_steps, epochs=args.t1_epochs, verbose=args.t1_verbose, callbacks=[args.t1_ear, args.t1_mcp] # , validation_data=utils.data_generator(args.t1_x_val, args.t1_y_val, args.t1_max_len, args.t1_batch_size, # args.t1_shuffle) , validation_steps=val_steps ) # plot_history(history, cnst.TIER1) return history def train_by_blocks(args): """ Function for training Tier-2 model with top activation blocks data Args: args: An object containing all the required parameters for training Returns: history: Returns history object from keras training process """ train_steps = len(args.t2_x_train) // args.t2_batch_size args.t2_train_steps = train_steps - 1 if len(args.t2_x_train) % args.t2_batch_size == 0 else train_steps + 1 if args.t2_x_val is not None: val_steps = len(args.t2_x_val) // args.t2_batch_size args.t2_val_steps = val_steps - 1 if len(args.t2_x_val) % args.t2_batch_size == 0 else val_steps + 1 args.t2_ear = EarlyStopping(monitor='acc', patience=3) args.t2_mcp = ModelCheckpoint(join(args.save_path, args.t2_model_name), monitor="acc", save_best_only=args.save_best, save_weights_only=False) data_gen = utils.data_generator(args.train_partition, args.t2_x_train, args.t2_y_train, args.t2_max_len, args.t2_batch_size, args.t2_shuffle) history = args.t2_model_base.fit( data_gen, class_weight=args.t2_class_weights, steps_per_epoch=args.t2_train_steps, epochs=args.t2_epochs, verbose=args.t2_verbose, callbacks=[args.t2_ear, args.t2_mcp] # , validation_data=utils.data_generator_by_section(args.q_sections, args.t2_x_val, args.t2_y_val # , args.t2_max_len, args.t2_batch_size, args.t2_shuffle) # , validation_steps=args.val_steps ) # plot_history(history, cnst.TIER2) return history def train_by_section(args): ''' Obsolete: For block-based implementation''' train_steps = len(args.t2_x_train)//args.t2_batch_size args.t2_train_steps = train_steps - 1 if len(args.t2_x_train) % args.t2_batch_size == 0 else train_steps + 1 if args.t2_x_val is not None: val_steps = len(args.t2_x_val) // args.t2_batch_size args.t2_val_steps = val_steps - 1 if len(args.t2_x_val) % args.t2_batch_size == 0 else val_steps + 1 args.t2_ear = EarlyStopping(monitor='acc', patience=3) args.t2_mcp = ModelCheckpoint(join(args.save_path, args.t2_model_name), monitor="acc", save_best_only=args.save_best, save_weights_only=False) # Check MAX_LEN modification is needed - based on proportion of section vs whole file size # args.max_len = cnst.MAX_FILE_SIZE_LIMIT + (cnst.CONV_WINDOW_SIZE * len(args.q_sections)) data_gen = utils.direct_data_generator_by_section(args.q_sections, args.t2_x_train, args.t2_y_train) history = args.t2_model_base.fit( data_gen, class_weight=args.t2_class_weights, steps_per_epoch=len(args.t2_x_train)//args.t2_batch_size + 1, epochs=args.t2_epochs, verbose=args.t2_verbose, callbacks=[args.t2_ear, args.t2_mcp] # , validation_data=utils.data_generator_by_section(args.q_sections, args.t2_x_val, args.t2_y_val # , args.t2_max_len, args.t2_batch_size, args.t2_shuffle) # , validation_steps=args.val_steps ) # plot_history(history, cnst.TIER2) return history def change_model(model, new_input_shape=(None, cnst.TIER2_NEW_INPUT_SHAPE)): """ Function to transfer weights of pre-trained Malconv to the block based model with reduced input shape. Args: model: An object with required parameters/hyper-parameters for loading, configuring and compiling new_input_shape: a value <= Tier-1 model's input shape. Typically, ( Num of Conv. Filters * Size of Conv. Stride ) Returns: new_model: new model with reduced input shape and weights updated """ model._layers[0].batch_input_shape = new_input_shape new_model = model_from_json(model.to_json()) for layer in new_model.layers: try: layer.set_weights(model.get_layer(name=layer.name).get_weights()) logging.info("Loaded and weights set for layer {}".format(layer.name)) except Exception as e: logging.exception("Could not transfer weights for layer {}".format(layer.name)) return new_model def change_hydra(model, ech_model, new_input_shape=(None, cnst.TIER2_NEW_INPUT_SHAPE)): """ Function to transfer weights of pre-trained Malconv to the block based model with reduced input shape. Args: model: An object with required parameters/hyper-parameters for loading, configuring and compiling new_input_shape: a value <= Tier-1 model's input shape. Typically, ( Num of Conv. Filters * Size of Conv. Stride ) Returns: new_model: new model with reduced input shape and weights updated """ model._layers[0].batch_input_shape = new_input_shape new_model = ech_model # model_from_json(model.to_json()) print("Updating Layer weights") for layer in new_model.layers: try: layer.set_weights(model.get_layer(name=layer.name).get_weights()) logging.info("Loaded and weights set for layer {}".format(layer.name)) except Exception as e: logging.exception("Could not transfer weights for layer {}".format(layer.name)) return new_model def get_model1(args): """ Function to prepare model required for Tier-1's training/prediction. Args: args: An object with required parameters/hyper-parameters for loading, configuring and compiling Returns: model1: Returns a Tier-1 model """ model1 = None optimizer = optimizers.Adam(lr=0.001) # , beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) if args.resume: if cnst.USE_PRETRAINED_FOR_TIER1: logging.info("[ CAUTION ] : Resuming with pretrained model for TIER1 - " + args.pretrained_t1_model_name) model1 = load_model(args.model_path + args.pretrained_t1_model_name, compile=False) print("\n\n\nChanging model input ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n\n\n") logging.info(str(model1.summary())) model1 = change_model(model1, new_input_shape=(None, cnst.TIER2_NEW_INPUT_SHAPE)) logging.info(str(model1.summary())) model1.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) if cnst.NUM_GPU > 1: multi_gpu_model1 = multi_gpu_model(model1, gpus=cnst.NUM_GPU) # multi_gpu_model1.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) return multi_gpu_model1 else: logging.info("[ CAUTION ] : Resuming with old model") model1 = load_model(args.model_path + args.t1_model_name, compile=False) model1.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) if cnst.NUM_GPU > 1: multi_gpu_model1 = multi_gpu_model(model1, gpus=cnst.NUM_GPU) # multi_gpu_model1.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=["accuracy"]) return multi_gpu_model1 else: logging.info("[CAUTION]: Proceeding training with custom model skeleton") if args.byte: premodel = load_model(args.model_path + args.pretrained_t1_model_name, compile=False) echmodel = echelon.model(args.t1_max_len, args.t1_win_size) change_hydra(premodel, echmodel) elif args.featuristic: model1 = featuristic.model(args.total_features) elif args.fusion: model1 = malfusion.model(args.max_len, args.win_size) # optimizer = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model1.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) # param_dict = {'lr': [0.00001, 0.0001, 0.001, 0.1]} # model_gs = GridSearchCV(model, param_dict, cv=10) # model1.summary() return model1 def get_model2(args): '''Obsolete: For block-based implementation''' model2 = None optimizer = optimizers.Adam(lr=0.001) if args.resume: if cnst.USE_PRETRAINED_FOR_TIER2: logging.info("[ CAUTION ] : Resuming with pretrained model for TIER2 - " + args.pretrained_t2_model_name) model2 = load_model(args.model_path + args.pretrained_t2_model_name, compile=False) print("\n\n\nChanging model input ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n\n\n") logging.info(str(model2.summary())) model2 = change_model(model2, new_input_shape=(None, cnst.TIER2_NEW_INPUT_SHAPE)) logging.info(str(model2.summary())) model2.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=["accuracy"]) if cnst.NUM_GPU > 1: model2 = multi_gpu_model(model2, gpus=cnst.NUM_GPU) else: logging.info("[ CAUTION ] : Resuming with old model") model2 = load_model(args.model_path + args.t2_model_name, compile=False) model2.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=["accuracy"]) if cnst.NUM_GPU > 1: model2 = multi_gpu_model(model2, gpus=cnst.NUM_GPU) else: # logging.info("*************************** CREATING new model *****************************") if args.byte: model2 = echelon.model(args.t2_max_len, args.t2_win_size) elif args.featuristic: model2 = featuristic.model(len(args.selected_features)) elif args.fusion: model2 = malfusion.model(args.max_len, args.win_size) # optimizer = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) optimizer = optimizers.Adam(lr=0.001) # , beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) model2.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) # model2.summary() return model2 def get_block_model2(args): """ Function to prepare model required for Tier-2's training/prediction - For top activation block implementation. Model's input shape is set to a reduced value specified in TIER2_NEW_INPUT_SHAPE parameter in settings. Args: args: An object with required parameters/hyper-parameters for loading, configuring and compiling Returns: model2: Returns a Tier-2 model """ model2 = None optimizer = optimizers.Adam(lr=0.001) if args.resume: if cnst.USE_PRETRAINED_FOR_TIER2: logging.info("[ CAUTION ] : Resuming with pretrained model for TIER2 - " + args.pretrained_t2_model_name) model2 = load_model(args.model_path + args.pretrained_t2_model_name, compile=False) model2.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=["accuracy"]) if cnst.NUM_GPU > 1: model2 = multi_gpu_model(model2, gpus=cnst.NUM_GPU) else: logging.info("[ CAUTION ] : Resuming with old model") model2 = load_model(args.model_path + args.t1_model_name, compile=False) logging.info(str(model2.summary())) model2 = change_model(model2, new_input_shape=(None, cnst.TIER2_NEW_INPUT_SHAPE)) logging.info(str(model2.summary())) model2.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=["accuracy"]) if cnst.NUM_GPU > 1: model2 = multi_gpu_model(model2, gpus=cnst.NUM_GPU) else: # logging.info("*************************** CREATING new model *****************************") if args.byte: model2 = echelon.model(args.t2_max_len, args.t2_win_size) elif args.featuristic: model2 = featuristic.model(len(args.selected_features)) elif args.fusion: model2 = malfusion.model(args.max_len, args.win_size) # optimizer = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) optimizer = optimizers.Adam(lr=0.001) # , beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) model2.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) # model2.summary() return model2 def train_tier1(args): # logging.info("************************ TIER 1 TRAINING - STARTED **************************** # Samples:", len(args.t1_x_train)) if args.tier1: if args.byte: return train(args) # logging.info("************************ TIER 1 TRAINING - ENDED ****************************") def train_tier2(args): # logging.info("************************ TIER 2 TRAINING - STARTED ****************************") if args.tier2: if args.byte: return train_by_section(args) # print("************************ TIER 2 TRAINING - ENDED ****************************") def evaluate_tier1(args): """ Function to evaluate the Tier-1 model being trained at the end of each Epoch. (Not after completing each partition !) Args: args: An object with evaluation parameters and data. Returns: history: Returns a history object with Tier-1 evaluation loss and accuracy """ eval_steps = len(args.t1_x_val) // args.t1_batch_size args.t1_val_steps = eval_steps - 1 if len(args.t1_x_val) % args.t1_batch_size == 0 else eval_steps + 1 history = args.t1_model_base.evaluate_generator( # utils.train_data_generator(args.val_partition, args.t1_x_val, args.t1_y_val, args.t1_max_len, args.t1_batch_size, args.t1_shuffle), utils.direct_data_generator(args.t1_x_val, args.t1_y_val), steps=args.t1_val_steps, verbose=args.t1_verbose ) # plot_history(history, cnst.TIER1) return history def evaluate_tier2(args): """ Function to evaluate the Tier-2 model being trained at the end of each Epoch. (Not after completing each partition !) Args: args: An object with evaluation parameters and data. Returns: history: Returns a history object with Tier-2 evaluation loss and accuracy """ eval_steps = len(args.t2_x_val) // args.t2_batch_size args.t2_val_steps = eval_steps - 1 if len(args.t2_x_val) % args.t2_batch_size == 0 else eval_steps + 1 history = args.t2_model_base.evaluate_generator( # utils.train_data_generator_by_section(args.spartition, args.q_sections, args.t2_x_val, args.t2_y_val, args.t2_max_len, args.t2_batch_size, args.t2_shuffle), utils.direct_data_generator_by_section(args.q_sections, args.t2_x_val, args.t2_y_val), steps=args.t2_val_steps, verbose=args.t2_verbose ) # plot_history(history, cnst.TIER2) return history def evaluate_tier2_block(args): """ Function to evaluate the Tier-2 block-based model being trained at the end of each Epoch. (Not after completing each partition !) Args: args: An object with evaluation parameters and data. Returns: history: Returns a history object with block-model evaluation loss and accuracy """ eval_steps = len(args.t2_x_val) // args.t2_batch_size args.t2_val_steps = eval_steps - 1 if len(args.t2_x_val) % args.t2_batch_size == 0 else eval_steps + 1 history = args.t2_model_base.evaluate_generator( utils.data_generator(args.val_partition, args.t2_x_val, args.t2_y_val, args.t2_max_len, args.t2_batch_size, args.t2_shuffle), steps=args.t2_val_steps, verbose=args.t2_verbose ) # plot_history(history, cnst.TIER2) return history def init(model_idx, train_partitions, val_partitions, fold_index): """ Module for Training and Validation # ################################################################################################################## # OBJECTIVES: # 1) Train Tier-1 and select its decision threshold for classification using Training data # 2) Perform ATI over training data and select influential (Qualified) sections to be used by Tier-2 # 3) Train Tier-2 on selected PE sections' top activation blocks # 4) Save trained models for Tier-1 and Tier-2 # ################################################################################################################## Args: model_idx: Default 0 for byte sequence models. Do not change. train_partitions: list of partition indexes to be used for Training val_partitions: list of partition indexes to be used for evaluation and validation fold_index: current fold of cross-validation Returns: None (Resultant data are stored in CSV for further use) """ t_args = DefaultTrainArguments() if cnst.EXECUTION_TYPE[model_idx] == cnst.BYTE: t_args.byte = True elif cnst.EXECUTION_TYPE[model_idx] == cnst.FEATURISTIC: t_args.featuristic = True elif cnst.EXECUTION_TYPE[model_idx] == cnst.FUSION: t_args.fusion = True t_args.t1_model_name = cnst.TIER1_MODELS[model_idx] + "_" + str(fold_index) + ".h5" t_args.t2_model_name = cnst.TIER2_MODELS[model_idx] + "_" + str(fold_index) + ".h5" t_args.t1_best_model_name = cnst.TIER1_MODELS[model_idx] + "_" + str(fold_index) + "_best.h5" t_args.t2_best_model_name = cnst.TIER2_MODELS[model_idx] + "_" + str(fold_index) + "_best.h5" # logging.info("################################## TRAINING TIER-1 ###########################################") # partition_tracker_df = pd.read_csv(cnst.DATA_SOURCE_PATH + cnst.ESC + "partition_tracker_"+str(fold_index)+".csv") if not cnst.SKIP_TIER1_TRAINING: logging.info("************************ TIER 1 TRAINING - STARTED ****************************") t_args.t1_model_base = get_model1(t_args) best_val_loss = float('inf') best_val_acc = 0 epochs_since_best = 0 mean_trn_loss = [] mean_trn_acc = [] mean_val_loss = [] mean_val_acc = [] cwy = [] for tp_idx in train_partitions: cwdf = pd.read_csv(cnst.DATA_SOURCE_PATH + cnst.ESC + "p" + str(tp_idx) + ".csv", header=None) cwy = np.concatenate([cwy, cwdf.iloc[:, 1].values]) t_args.t1_class_weights = class_weight.compute_class_weight('balanced', np.unique(cwy), cwy) for epoch in range(cnst.EPOCHS): # External Partition Purpose logging.info("[ PARTITION LEVEL TIER-1 EPOCH : %s ]", epoch+1) cur_trn_loss = [] cur_trn_acc = [] for tp_idx in train_partitions: logging.info("Training on partition: %s", tp_idx) tr_datadf = pd.read_csv(cnst.DATA_SOURCE_PATH + cnst.ESC + "p" + str(tp_idx) + ".csv", header=None) t_args.t1_x_train, t_args.t1_x_val, t_args.t1_y_train, t_args.t1_y_val = tr_datadf.iloc[:, 0].values, None, tr_datadf.iloc[:, 1].values, None # t_args.t1_class_weights = class_weight.compute_class_weight('balanced', # np.unique(t_args.t1_y_train), t_args.t1_y_train) # Class Imbalance Tackling - Setting class weights t_args.train_partition = get_partition_data(None, None, tp_idx, "t1") t_history = train_tier1(t_args) cur_trn_loss.append(t_history.history['loss'][0]) cur_trn_acc.append(t_history.history['accuracy'][0]) del t_args.train_partition gc.collect() cnst.USE_PRETRAINED_FOR_TIER1 = False cur_val_loss = [] cur_val_acc = [] # Evaluating after each epoch for early stopping over validation loss logging.info("Evaluating on validation data . . .") for vp_idx in val_partitions: val_datadf = pd.read_csv(cnst.DATA_SOURCE_PATH + cnst.ESC + "p" + str(vp_idx) + ".csv", header=None) t_args.t1_x_train, t_args.t1_x_val, t_args.t1_y_train, t_args.t1_y_val = None, val_datadf.iloc[:, 0].values, None, val_datadf.iloc[:, 1].values t_args.val_partition = get_partition_data(None, None, vp_idx, "t1") v_history = evaluate_tier1(t_args) cur_val_loss.append(v_history[0]) cur_val_acc.append(v_history[1]) del t_args.val_partition gc.collect() mean_trn_loss.append(np.mean(cur_trn_loss)) mean_trn_acc.append(np.mean(cur_trn_acc)) mean_val_loss.append(np.mean(cur_val_loss)) mean_val_acc.append(np.mean(cur_val_acc)) if mean_val_loss[epoch] < best_val_loss: best_val_loss = mean_val_loss[epoch] try: copyfile(join(t_args.save_path, t_args.t1_model_name), join(t_args.save_path, t_args.t1_best_model_name)) except Exception as e: logging.exception("Saving EPOCH level best model failed for Tier1") epochs_since_best = 0 logging.info("Current Epoch Loss: %s\tCurrent Epoch Acc: %s\tUpdating best loss: %s", str(mean_val_loss[epoch]).ljust(25), str(mean_val_acc[epoch]).ljust(25), best_val_loss) else: logging.info("Current Epoch Loss: %s\tCurrent Epoch Acc: %s", mean_val_loss[epoch], mean_val_acc[epoch]) epochs_since_best += 1 logging.info('{} epochs passed since best val loss of {}'.format(epochs_since_best, best_val_loss)) if cnst.EARLY_STOPPING_PATIENCE_TIER1 <= epochs_since_best: logging.info('Triggering early stopping as no improvement found since last {} epochs! Best Loss: {}'.format(epochs_since_best, best_val_loss)) try: copyfile(join(t_args.save_path, t_args.t1_best_model_name), join(t_args.save_path, t_args.t1_model_name)) except Exception as e: logging.exception("Retrieving EPOCH level best model failed for Tier1") break if epoch + 1 == cnst.EPOCHS: try: copyfile(join(t_args.save_path, t_args.t1_best_model_name), join(t_args.save_path, t_args.t1_model_name)) except Exception as e: logging.exception("Retrieving EPOCH level best model failed for Tier1.") del t_args.t1_model_base gc.collect() plot_partition_epoch_history(mean_trn_acc, mean_val_acc, mean_trn_loss, mean_val_loss, "Tier1_F" + str(fold_index+1)) logging.info("************************ TIER 1 TRAINING - ENDED ****************************") else: cnst.USE_PRETRAINED_FOR_TIER1 = False # Use model trained through Echelon logging.info("SKIPPED: Tier-1 Training process") if cnst.ONLY_TIER1_TRAINING: return # TIER-1 PREDICTION OVER TRAINING DATA [Select THD1] min_boosting_bound = None max_thd1 = None b1val_partition_count = 0 if not cnst.SKIP_TIER1_VALIDATION: logging.info("*** Prediction over Validation data in TIER-1 to select THD1 and Boosting Bound") pd.DataFrame().to_csv(cnst.PROJECT_BASE_PATH + cnst.ESC + "data" + cnst.ESC + "b1_val_" + str(fold_index) + "_pkl.csv", header=None, index=None) for vp_idx in val_partitions: val_datadf = pd.read_csv(cnst.DATA_SOURCE_PATH + cnst.ESC + "p"+str(vp_idx)+".csv", header=None) predict_t1_val_data = pObj(cnst.TIER1, cnst.TIER1_TARGET_FPR, val_datadf.iloc[:, 0].values, val_datadf.iloc[:, 1].values) predict_t1_val_data.partition = get_partition_data(None, None, vp_idx, "t1") predict_t1_val_data = predict.predict_tier1(model_idx, predict_t1_val_data, fold_index) predict_t1_val_data = predict.select_thd_get_metrics_bfn_mfp(cnst.TIER1, predict_t1_val_data) min_boosting_bound = predict_t1_val_data.boosting_upper_bound if min_boosting_bound is None or predict_t1_val_data.boosting_upper_bound < min_boosting_bound else min_boosting_bound max_thd1 = predict_t1_val_data.thd if max_thd1 is None or predict_t1_val_data.thd > max_thd1 else max_thd1 del predict_t1_val_data.partition # Release Memory gc.collect() val_b1datadf = pd.concat([pd.DataFrame(predict_t1_val_data.xB1),
pd.DataFrame(predict_t1_val_data.yB1)
pandas.DataFrame
"""Utilities related to pandas data frames.""" from pandas import merge def get_colnames(df): """Get the column names of a data frame as a list.""" # Faster than using list(df) return df.columns.get_values().tolist() def split(df, by, include_by=True): """Split a data frame by a grouping column. Parameters ---------- df: pandas.DataFrame The input data frame. by: str The name of the column to split by. include_by: bool If True, the group column is conserved in the output tables, if False it is removed. Returns ------- List[pandas.DataFrame] """ split_dfs = [rows for _, rows in df.groupby(by)] if not include_by: split_dfs = [x.drop(by, axis=1).reindex() for x in split_dfs] return split_dfs def df_subtract(df1, df2): """Remove rows in `df` which are also in `df2` (both DataFrames).""" merged =
merge(df1, df2, how="outer", indicator=True)
pandas.merge
import cv2 import numpy as np import base64 import pandas as pd import plotly.graph_objects as go from datetime import datetime, time, timedelta, date import wget from zipfile import ZipFile import os import json import plotly.express as px import joblib # pip install streamlit --upgrade # pip install streamlit==0.78.0 class Inference: def __init__(self,model_path="model/model.pkl"): self.nomi_regioni = ['Abruzzo', 'Basilicata', 'Calabria', 'Campania', 'Emilia-Romagna', '<NAME>', 'Lazio', 'Liguria', 'Lombardia', 'Marche', 'Molise', '<NAME>', '<NAME>', 'Piemonte', 'Puglia', 'Sardegna', 'Sicilia', 'Toscana', 'Umbria', "Valle d'Aosta", 'Veneto'] dict_names = {"bianca":0,"gialla": 1, "arancione": 2, "rossa": 3} self.names = list(dict_names) self.model = joblib.load(model_path) def predict(self,inputs, regione): idx = self.nomi_regioni.index(regione) v = [ 0 for i in range(0,len(self.nomi_regioni))] v[idx] = 1 inputs.extend(v) X = np.array(inputs,dtype=np.float).reshape(1,-1) Y_hat = self.model.predict(X) return self.names[int(Y_hat[0])] def fig_stats_variation(regione, data_inizio, data_fine,options): #select = ["deceduti","totale_casi","dimessi_guariti","terapia_intensiva","tamponi","isolamento_domiciliare"] df = None title = "Variazione Giornaliera" if regione=="Italia": df = get_data_nazione() df = df[ (df["data"]>=data_inizio) & (df["data"]<=data_fine) ] else: df = get_data_regioni() df = df[ (df["data"]>=data_inizio) & (df["data"]<=data_fine) ] df = df[df["denominazione_regione"]==regione] # Script to aggregate data # https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.resample.html dft = df.copy() dft = dft.set_index("data") dft["count"] = [1 for i in range(0,len(df))] agg = {"count" : "size"} for s in options: agg[s] = "median" dft = dft.resample('1D').agg(agg) # Variation daily df = {"data": dft.index[1:]} for s in options: start = dft[s][:-1].values end = dft[s][1:].values df[s] = ( end - start ) #df[s] = np.round( ( end / start -1 )*100,2) df = pd.DataFrame(df) df = df.set_index("data") #dft.dropna() #print(dft.head()) # Rolling average variation #df = df[ (df["data"]>=data_inizio) & (df["data"]<=data_fine) ] fig = go.Figure() for name in options: fig.add_trace(go.Scatter(x=df.index, y=df[name], mode='lines+markers',#mode='lines+markers', name=name.replace("_"," "), hoverlabel_namelength=-1)) fig.update_layout( showlegend=True, hovermode = "x", yaxis_title = "Persone", #paper_bgcolor = "rgb(0,0,0)" , #plot_bgcolor = "rgb(10,10,10)" , legend=dict(orientation="h",yanchor="bottom", y=1.02,xanchor="right", x=1,title_text=""), dragmode="pan", title=dict( x = 0.5, y = 0.05, text = title, font=dict( size = 20, color = "rgb(0,0,0)" ) ) ) return fig def fig_stats(regione, data_inizio, data_fine,options): #select = ["deceduti","totale_casi","dimessi_guariti","terapia_intensiva","tamponi","isolamento_domiciliare"] df = None title = "Andamento Cumulativo" if regione=="Italia": df = get_data_nazione() df = df[ (df["data"]>=data_inizio) & (df["data"]<=data_fine) ] df = df.set_index("data") else: df = get_data_regioni() df = df[ (df["data"]>=data_inizio) & (df["data"]<=data_fine) ] df = df[df["denominazione_regione"]==regione] df = df.set_index("data") #df = df[ (df["data"]>=data_inizio) & (df["data"]<=data_fine) ] fig = go.Figure() for name in options: fig.add_trace(go.Scatter(x=df.index, y=df[name], mode='lines+markers',#mode='lines+markers', name=name.replace("_"," "), hoverlabel_namelength=-1)) fig.update_layout( showlegend=True, hovermode = "x", yaxis_title = "Persone", #paper_bgcolor = "rgb(0,0,0)" , #plot_bgcolor = "rgb(10,10,10)" , legend=dict(orientation="h",yanchor="bottom", y=1.02,xanchor="right", x=1,title_text=""), dragmode="pan", title=dict( x = 0.5, y = 0.05, text = title, font=dict( size = 20, color = "rgb(0,0,0)" ) ) ) return fig def get_stats(regione,data_inizio, data_fine): select = ["deceduti","totale_casi","dimessi_guariti","variazione_totale_positivi"] df = None if regione=="Italia": df = get_data_nazione() else: df = get_data_regioni() df = df[df["denominazione_regione"]==regione] df = df[ (df["data"]>=data_inizio) & (df["data"]<=data_fine) ] incremento = ( df.iloc[-1,:][select] - df.iloc[-2,:][select] ) .to_dict() data = ( df.iloc[-1,:][select]) .to_dict() df = pd.DataFrame ([data,incremento],columns=select, index=["Situazione","Incremento"]) df = df.rename(columns={"deceduti": "Deceduti", "totale_casi": "Totale Casi", "dimessi_guariti": "Dimessi Guariti","variazione_totale_positivi" : "Var. Totale Positivi" }) return df def get_nomi_regioni(): df = get_data_regioni() #df["data"] = [ datetime.strptime(d, "%Y-%m-%dT%H:%M:%S") for d in df["data"]] return df["denominazione_regione"].unique().tolist() def get_options(): select = ["deceduti","totale_casi","dimessi_guariti","terapia_intensiva","tamponi","isolamento_domiciliare"] return select def get_date(): df = get_data_nazione() start = df["data"].tolist()[0] end= df["data"].tolist()[-1] d = end date = [] date.append(d.strftime("%Y-%m-%d")) while (d>start): t = d -timedelta(days=0, weeks=1) date.append(t.strftime("%Y-%m-%d")) d = t #date = [ d.strftime("%Y-%m-%d") for d in df["data"].dt.date] return date def get_data_nazione(): ''' Keys: ['data', 'stato', 'ricoverati_con_sintomi', 'terapia_intensiva', 'totale_ospedalizzati', 'isolamento_domiciliare', 'totale_positivi', 'variazione_totale_positivi', 'nuovi_positivi', 'dimessi_guariti', 'deceduti', 'casi_da_sospetto_diagnostico', 'casi_da_screening', 'totale_casi', 'tamponi', 'casi_testati', 'note', 'ingressi_terapia_intensiva', 'note_test', 'note_casi', 'totale_positivi_test_molecolare', 'totale_positivi_test_antigenico_rapido', 'tamponi_test_molecolare', 'tamponi_test_antigenico_rapido'] ''' #url = "https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-andamento-nazionale/dpc-covid19-ita-andamento-nazionale.csv" url = "data/dpc-covid19-ita-andamento-nazionale.csv" df = pd.read_csv(url) df["data"] = [ datetime.strptime(d, "%Y-%m-%dT%H:%M:%S") for d in df["data"]] return df def get_data_province(): ''' Keys: ['data', 'stato', 'codice_regione', 'denominazione_regione', 'codice_provincia', 'denominazione_provincia', 'sigla_provincia', 'lat', 'long', 'totale_casi', 'note', 'codice_nuts_1', 'codice_nuts_2', 'codice_nuts_3'] ''' #url = "https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-province/dpc-covid19-ita-province.csv" url = "data/dpc-covid19-ita-province.csv" df = pd.read_csv(url) df["data"] = [ datetime.strptime(d, "%Y-%m-%dT%H:%M:%S") for d in df["data"]] return df def get_data_regioni(): ''' Keys: ['data', 'stato', 'codice_regione', 'denominazione_regione', 'lat', 'long', 'ricoverati_con_sintomi', 'terapia_intensiva', 'totale_ospedalizzati', 'isolamento_domiciliare', 'totale_positivi', 'variazione_totale_positivi', 'nuovi_positivi', 'dimessi_guariti', 'deceduti', 'casi_da_sospetto_diagnostico', 'casi_da_screening', 'totale_casi', 'tamponi', 'casi_testati', 'note', 'ingressi_terapia_intensiva', 'note_test', 'note_casi', 'totale_positivi_test_molecolare', 'totale_positivi_test_antigenico_rapido', 'tamponi_test_molecolare', 'tamponi_test_antigenico_rapido', 'codice_nuts_1', 'codice_nuts_2'] ''' #url = "https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-regioni/dpc-covid19-ita-regioni.csv" url = "data/dpc-covid19-ita-regioni.csv" df = pd.read_csv(url) df["data"] = [ datetime.strptime(d, "%Y-%m-%dT%H:%M:%S") for d in df["data"]] return df def create_dataset(df_p): # Data string to datetime # Le date sono codificate come stringhe. Le vogliamo come datetime df["data"] = [ datetime.strptime(d, "%Y-%m-%dT%H:%M:%S") for d in df["data"]] # Filtro emilia - romagna df = df[df["denomiazione_regione"]=="Emilia-Romagna"] # Dataset (ultime 4 settimane) data_end = df["data"].tolist()[-1] # data di oggi data_start = data_end - timedelta(days=0,weeks=2,hours=0,minutes=0) df_f = df[ (df["data"]>=data_start) & (df["data"]<=data_end) ] # Dataset (ultime 2 settimane) data_end = df["data"].tolist()[-1] # data di oggi data_start = data_end - timedelta(days=0,weeks=1,hours=0,minutes=0) df_ff = df[ (df["data"]>=data_start) & (df["data"]<=data_end) ] # Calcolo Indici Regionali Emilia Romagna # id1 Totale casi ultime 2 settimate i1 = df_f["totale_casi"] #id2 Ricoverati con sentomi utlime 2 settimane i2 = df_f["ricoverati_con_sintomi"] #id3 Terapia intensiva ultime 2 settimate i3 = df_f["terapia_intensiva"] #id4 Isolamento dociciliare i4 = df_f["isolamento_domiciliare"] # id7 % tamponi positivi i7 = ( df_f["totale_positivi_test_molecolare"] + df_f["totale_positivi_test_antigenico_rapido"] ) / df_f["tamponi"] # Numero di deceduti nelle 2 settimane e1 = df_f["deceduti"] i12 = df_f["casi_da_sospetto_diagnostico"] i13 = df_ff["totale_casi"] def get_data_locally(): url = "https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-province/dpc-covid19-ita-province.csv" df = pd.read_csv(url) df.to_csv("data/dpc-covid19-ita-province.csv") url = "https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-regioni/dpc-covid19-ita-regioni.csv" df = pd.read_csv(url) df.to_csv("data/dpc-covid19-ita-regioni.csv") url = "https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-andamento-nazionale/dpc-covid19-ita-andamento-nazionale.csv" df =
pd.read_csv(url)
pandas.read_csv
import pandas as pd import numpy as np import os input_data_folder = "../labeled_logs_csv" output_data_folder = "../labeled_logs_csv_processed" filenames = ["BPIC15_%s_f%s.csv"%(municipality, formula) for municipality in range(1,6) for formula in range(2,3)] case_id_col = "Case ID" activity_col = "Activity" resource_col = "org:resource" timestamp_col = "time:timestamp" label_col = "label" pos_label = "deviant" neg_label = "regular" category_freq_threshold = 10 # features for classifier dynamic_cat_cols = ["Activity", "monitoringResource", "question", "org:resource"] static_cat_cols = ["Responsible_actor"] dynamic_num_cols = [] static_num_cols = ["SUMleges"] static_cols_base = static_cat_cols + static_num_cols + [case_id_col, label_col] dynamic_cols = dynamic_cat_cols + dynamic_num_cols + [timestamp_col] cat_cols = dynamic_cat_cols + static_cat_cols def split_parts(group, parts_col="parts"): return pd.Series(group[parts_col].str.split(',').values[0], name='vals') def extract_timestamp_features(group): group = group.sort_values(timestamp_col, ascending=False, kind='mergesort') tmp = group[timestamp_col] - group[timestamp_col].shift(-1) tmp = tmp.fillna(0) group["timesincelastevent"] = tmp.apply(lambda x: float(x / np.timedelta64(1, 'm'))) # m is for minutes tmp = group[timestamp_col] - group[timestamp_col].iloc[-1] tmp = tmp.fillna(0) group["timesincecasestart"] = tmp.apply(lambda x: float(x / np.timedelta64(1, 'm'))) # m is for minutes group = group.sort_values(timestamp_col, ascending=True, kind='mergesort') group["event_nr"] = range(1, len(group) + 1) return group def get_open_cases(date): return sum((dt_first_last_timestamps["start_time"] <= date) & (dt_first_last_timestamps["end_time"] > date)) for filename in filenames: data = pd.read_csv(os.path.join(input_data_folder, filename), sep=";", encoding='latin-1') data = data[data["caseStatus"] == "G"] # G is closed, O is open # switch labels (deviant/regular was set incorrectly before) data = data.set_value(col=label_col, index=(data[label_col] == pos_label), value="normal") data = data.set_value(col=label_col, index=(data[label_col] == neg_label), value=pos_label) data = data.set_value(col=label_col, index=(data[label_col] == "normal"), value=neg_label) # split the parts attribute to separate columns ser = data.groupby(level=0).apply(split_parts) dt_parts = pd.get_dummies(ser).groupby(level=0).apply(lambda group: group.max()) data =
pd.concat([data, dt_parts], axis=1)
pandas.concat
import pandas as pd # import numpy as np from collections import namedtuple class BasicIndicators: def __init__(self,df,noon_peak,moon_peak,**kwargs): self.df = df self.noon_peak = noon_peak self.moon_peak=moon_peak if kwargs: for name, value in kwargs.items(): setattr(self, name, value) def _get_peak_indicators(self,df): is_noon_peak = (df['order_time'] >= pd.to_datetime(self.noon_peak.begin)) & (df['order_time'] <= pd.to_datetime(self.noon_peak.end)) is_moon_peak = (df['order_time'] >=
pd.to_datetime(self.moon_peak.begin)
pandas.to_datetime
# -*- coding: utf-8 -*- import unittest import platform import pandas as pd import numpy as np import pyarrow.parquet as pq import hpat from hpat.tests.test_utils import ( count_array_REPs, count_parfor_REPs, count_array_OneDs, get_start_end) from hpat.tests.gen_test_data import ParquetGenerator from numba import types from numba.config import IS_32BITS from numba.errors import TypingError _cov_corr_series = [(pd.Series(x), pd.Series(y)) for x, y in [ ( [np.nan, -2., 3., 9.1], [np.nan, -2., 3., 5.0], ), # TODO(quasilyte): more intricate data for complex-typed series. # Some arguments make assert_almost_equal fail. # Functions that yield mismaching results: # _column_corr_impl and _column_cov_impl. ( [complex(-2., 1.0), complex(3.0, 1.0)], [complex(-3., 1.0), complex(2.0, 1.0)], ), ( [complex(-2.0, 1.0), complex(3.0, 1.0)], [1.0, -2.0], ), ( [1.0, -4.5], [complex(-4.5, 1.0), complex(3.0, 1.0)], ), ]] min_float64 = np.finfo('float64').min max_float64 = np.finfo('float64').max test_global_input_data_float64 = [ [1., np.nan, -1., 0., min_float64, max_float64], [np.nan, np.inf, np.NINF, np.NZERO] ] min_int64 = np.iinfo('int64').min max_int64 = np.iinfo('int64').max max_uint64 = np.iinfo('uint64').max test_global_input_data_integer64 = [ [1, -1, 0], [min_int64, max_int64], [max_uint64] ] test_global_input_data_numeric = test_global_input_data_integer64 + test_global_input_data_float64 test_global_input_data_unicode_kind4 = [ 'ascii', '12345', '1234567890', '¡Y tú quién te crees?', '🐍⚡', '大处着眼,小处着手。', ] test_global_input_data_unicode_kind1 = [ 'ascii', '12345', '1234567890', ] def _make_func_from_text(func_text, func_name='test_impl'): loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars[func_name] return test_impl def _make_func_use_binop1(operator): func_text = "def test_impl(A, B):\n" func_text += " return A {} B\n".format(operator) return _make_func_from_text(func_text) def _make_func_use_binop2(operator): func_text = "def test_impl(A, B):\n" func_text += " A {} B\n".format(operator) func_text += " return A\n" return _make_func_from_text(func_text) def _make_func_use_method_arg1(method): func_text = "def test_impl(A, B):\n" func_text += " return A.{}(B)\n".format(method) return _make_func_from_text(func_text) GLOBAL_VAL = 2 class TestSeries(unittest.TestCase): def test_create1(self): def test_impl(): df = pd.DataFrame({'A': [1, 2, 3]}) return (df.A == 1).sum() hpat_func = hpat.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) @unittest.skip('Feature request: implement Series::ctor with list(list(type))') def test_create_list_list_unicode(self): def test_impl(): S = pd.Series([ ['abc', 'defg', 'ijk'], ['lmn', 'opq', 'rstuvwxyz'] ]) return S hpat_func = hpat.jit(test_impl) result_ref = test_impl() result = hpat_func() pd.testing.assert_series_equal(result, result_ref) @unittest.skip('Feature request: implement Series::ctor with list(list(type))') def test_create_list_list_integer(self): def test_impl(): S = pd.Series([ [123, 456, -789], [-112233, 445566, 778899] ]) return S hpat_func = hpat.jit(test_impl) result_ref = test_impl() result = hpat_func() pd.testing.assert_series_equal(result, result_ref) @unittest.skip('Feature request: implement Series::ctor with list(list(type))') def test_create_list_list_float(self): def test_impl(): S = pd.Series([ [1.23, -4.56, 7.89], [11.2233, 44.5566, -778.899] ]) return S hpat_func = hpat.jit(test_impl) result_ref = test_impl() result = hpat_func() pd.testing.assert_series_equal(result, result_ref) def test_create2(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n)}) return (df.A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) def test_create_series1(self): def test_impl(): A = pd.Series([1, 2, 3]) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index1(self): # create and box an indexed Series def test_impl(): A = pd.Series([1, 2, 3], ['A', 'C', 'B']) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index2(self): def test_impl(): A = pd.Series([1, 2, 3], index=['A', 'C', 'B']) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index3(self): def test_impl(): A = pd.Series([1, 2, 3], index=['A', 'C', 'B'], name='A') return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index4(self): def test_impl(name): A = pd.Series([1, 2, 3], index=['A', 'C', 'B'], name=name) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func('A'), test_impl('A')) def test_create_str(self): def test_impl(): df = pd.DataFrame({'A': ['a', 'b', 'c']}) return (df.A == 'a').sum() hpat_func = hpat.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) def test_pass_df1(self): def test_impl(df): return (df.A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df), test_impl(df)) def test_pass_df_str(self): def test_impl(df): return (df.A == 'a').sum() hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['a', 'b', 'c']}) self.assertEqual(hpat_func(df), test_impl(df)) def test_pass_series1(self): # TODO: check to make sure it is series type def test_impl(A): return (A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_pass_series2(self): # test creating dataframe from passed series def test_impl(A): df = pd.DataFrame({'A': A}) return (df.A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_pass_series_str(self): def test_impl(A): return (A == 'a').sum() hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['a', 'b', 'c']}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_pass_series_index1(self): def test_impl(A): return A hpat_func = hpat.jit(test_impl) S = pd.Series([3, 5, 6], ['a', 'b', 'c'], name='A') pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_size(self): def test_impl(S): return S.size hpat_func = hpat.jit(test_impl) n = 11 for S, expected in [ (pd.Series(), 0), (pd.Series([]), 0), (pd.Series(np.arange(n)), n), (pd.Series([np.nan, 1, 2]), 3), (pd.Series(['1', '2', '3']), 3), ]: with self.subTest(S=S, expected=expected): self.assertEqual(hpat_func(S), expected) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_attr2(self): def test_impl(A): return A.copy().values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_attr3(self): def test_impl(A): return A.min() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_series_attr4(self): def test_impl(A): return A.cumsum().values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_argsort1(self): def test_impl(A): return A.argsort() hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.random.ranf(n)) pd.testing.assert_series_equal(hpat_func(A), test_impl(A)) def test_series_attr6(self): def test_impl(A): return A.take([2, 3]).values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_attr7(self): def test_impl(A): return A.astype(np.float64) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_getattr_ndim(self): '''Verifies getting Series attribute ndim is supported''' def test_impl(S): return S.ndim hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_getattr_T(self): '''Verifies getting Series attribute T is supported''' def test_impl(S): return S.T hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) np.testing.assert_array_equal(hpat_func(S), test_impl(S)) def test_series_copy_str1(self): def test_impl(A): return A.copy() hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_copy_int1(self): def test_impl(A): return A.copy() hpat_func = hpat.jit(test_impl) S = pd.Series([1, 2, 3]) np.testing.assert_array_equal(hpat_func(S), test_impl(S)) def test_series_copy_deep(self): def test_impl(A, deep): return A.copy(deep=deep) hpat_func = hpat.jit(test_impl) for S in [ pd.Series([1, 2]), pd.Series([1, 2], index=["a", "b"]), ]: with self.subTest(S=S): for deep in (True, False): with self.subTest(deep=deep): actual = hpat_func(S, deep) expected = test_impl(S, deep) pd.testing.assert_series_equal(actual, expected) self.assertEqual(actual.values is S.values, expected.values is S.values) self.assertEqual(actual.values is S.values, not deep) # Shallow copy of index is not supported yet if deep: self.assertEqual(actual.index is S.index, expected.index is S.index) self.assertEqual(actual.index is S.index, not deep) def test_series_astype_int_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument converts integer series to series of strings ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_int_to_str2(self): '''Verifies Series.astype implementation with a string literal dtype argument converts integer series to series of strings ''' def test_impl(S): return S.astype('str') hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str2(self): '''Verifies Series.astype implementation with a string literal dtype argument handles string series not changing it ''' def test_impl(S): return S.astype('str') hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str_index_str(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=['d', 'e', 'f']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str_index_int(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=[1, 2, 3]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: requires str(datetime64) support in Numba') def test_series_astype_dt_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument converts datetime series to series of strings ''' def test_impl(A): return A.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series([pd.Timestamp('20130101 09:00:00'), pd.Timestamp('20130101 09:00:02'), pd.Timestamp('20130101 09:00:03') ]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('AssertionError: Series are different' '[left]: [0.000000, 1.000000, 2.000000, 3.000000, ...' '[right]: [0.0, 1.0, 2.0, 3.0, ...' 'TODO: needs alignment to NumPy on Numba side') def test_series_astype_float_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument converts float series to series of strings ''' def test_impl(A): return A.astype(str) hpat_func = hpat.jit(test_impl) n = 11.0 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_int32_to_int64(self): '''Verifies Series.astype implementation with NumPy dtype argument converts series with dtype=int32 to series with dtype=int64 ''' def test_impl(A): return A.astype(np.int64) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n), dtype=np.int32) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_int_to_float64(self): '''Verifies Series.astype implementation with NumPy dtype argument converts integer series to series of float ''' def test_impl(A): return A.astype(np.float64) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_float_to_int32(self): '''Verifies Series.astype implementation with NumPy dtype argument converts float series to series of integers ''' def test_impl(A): return A.astype(np.int32) hpat_func = hpat.jit(test_impl) n = 11.0 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: needs Numba astype impl support string literal as dtype arg') def test_series_astype_literal_dtype1(self): '''Verifies Series.astype implementation with a string literal dtype argument converts float series to series of integers ''' def test_impl(A): return A.astype('int32') hpat_func = hpat.jit(test_impl) n = 11.0 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: needs Numba astype impl support converting unicode_type to int') def test_series_astype_str_to_int32(self): '''Verifies Series.astype implementation with NumPy dtype argument converts series of strings to series of integers ''' import numba def test_impl(A): return A.astype(np.int32) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series([str(x) for x in np.arange(n) - n // 2]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: needs Numba astype impl support converting unicode_type to float') def test_series_astype_str_to_float64(self): '''Verifies Series.astype implementation with NumPy dtype argument converts series of strings to series of float ''' def test_impl(A): return A.astype(np.float64) hpat_func = hpat.jit(test_impl) S = pd.Series(['3.24', '1E+05', '-1', '-1.3E-01', 'nan', 'inf']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_index_str(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=['a', 'b', 'c']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_index_int(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=[2, 3, 5]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_np_call_on_series1(self): def test_impl(A): return np.min(A) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_values(self): def test_impl(A): return A.values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_values1(self): def test_impl(A): return (A == 2).values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_shape1(self): def test_impl(A): return A.shape hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_static_setitem_series1(self): def test_impl(A): A[0] = 2 return (A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_setitem_series1(self): def test_impl(A, i): A[i] = 2 return (A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A.copy(), 0), test_impl(df.A.copy(), 0)) def test_setitem_series2(self): def test_impl(A, i): A[i] = 100 hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) A1 = df.A.copy() A2 = df.A hpat_func(A1, 0) test_impl(A2, 0) pd.testing.assert_series_equal(A1, A2) @unittest.skip("enable after remove dead in hiframes is removed") def test_setitem_series3(self): def test_impl(A, i): S = pd.Series(A) S[i] = 100 hpat_func = hpat.jit(test_impl) n = 11 A = np.arange(n) A1 = A.copy() A2 = A hpat_func(A1, 0) test_impl(A2, 0) np.testing.assert_array_equal(A1, A2) def test_setitem_series_bool1(self): def test_impl(A): A[A > 3] = 100 hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) A1 = df.A.copy() A2 = df.A hpat_func(A1) test_impl(A2) pd.testing.assert_series_equal(A1, A2) def test_setitem_series_bool2(self): def test_impl(A, B): A[A > 3] = B[A > 3] hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) A1 = df.A.copy() A2 = df.A hpat_func(A1, df.B) test_impl(A2, df.B) pd.testing.assert_series_equal(A1, A2) def test_static_getitem_series1(self): def test_impl(A): return A[0] hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) self.assertEqual(hpat_func(A), test_impl(A)) def test_getitem_series1(self): def test_impl(A, i): return A[i] hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A, 0), test_impl(df.A, 0)) def test_getitem_series_str1(self): def test_impl(A, i): return A[i] hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['aa', 'bb', 'cc']}) self.assertEqual(hpat_func(df.A, 0), test_impl(df.A, 0)) def test_series_iat1(self): def test_impl(A): return A.iat[3] hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_iat2(self): def test_impl(A): A.iat[3] = 1 return A hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_iloc1(self): def test_impl(A): return A.iloc[3] hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_iloc2(self): def test_impl(A): return A.iloc[3:8] hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal( hpat_func(S), test_impl(S).reset_index(drop=True)) def test_series_op1(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n), 'B': np.ones(n - 1)}) pd.testing.assert_series_equal(hpat_func(df.A, df.B), test_impl(df.A, df.B), check_names=False) def test_series_op2(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: df = pd.DataFrame({'A': np.arange(1, n, dtype=np.int64)}) else: df = pd.DataFrame({'A': np.arange(1, n)}) pd.testing.assert_series_equal(hpat_func(df.A, 1), test_impl(df.A, 1), check_names=False) def test_series_op3(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop2(operator) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n), 'B': np.ones(n - 1)}) pd.testing.assert_series_equal(hpat_func(df.A, df.B), test_impl(df.A, df.B), check_names=False) def test_series_op4(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop2(operator) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n)}) pd.testing.assert_series_equal(hpat_func(df.A, 1), test_impl(df.A, 1), check_names=False) def test_series_op5(self): arithmetic_methods = ('add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'pow') for method in arithmetic_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n), 'B': np.ones(n - 1)}) pd.testing.assert_series_equal(hpat_func(df.A, df.B), test_impl(df.A, df.B), check_names=False) @unittest.skipIf(platform.system() == 'Windows', 'Series values are different (20.0 %)' '[left]: [1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824, 3486784401, 10000000000]' '[right]: [1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824, -808182895, 1410065408]') def test_series_op5_integer_scalar(self): arithmetic_methods = ('add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'pow') for method in arithmetic_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: operand_series = pd.Series(np.arange(1, n, dtype=np.int64)) else: operand_series = pd.Series(np.arange(1, n)) operand_scalar = 10 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_op5_float_scalar(self): arithmetic_methods = ('add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'pow') for method in arithmetic_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 operand_series = pd.Series(np.arange(1, n)) operand_scalar = .5 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_op6(self): def test_impl(A): return -A hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(A), test_impl(A)) def test_series_op7(self): comparison_binops = ('<', '>', '<=', '>=', '!=', '==') for operator in comparison_binops: test_impl = _make_func_use_binop1(operator) hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_names=False) def test_series_op8(self): comparison_methods = ('lt', 'gt', 'le', 'ge', 'ne', 'eq') for method in comparison_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_names=False) @unittest.skipIf(platform.system() == 'Windows', "Attribute dtype are different: int64, int32") def test_series_op8_integer_scalar(self): comparison_methods = ('lt', 'gt', 'le', 'ge', 'eq', 'ne') for method in comparison_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 operand_series = pd.Series(np.arange(1, n)) operand_scalar = 10 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_op8_float_scalar(self): comparison_methods = ('lt', 'gt', 'le', 'ge', 'eq', 'ne') for method in comparison_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 operand_series = pd.Series(np.arange(1, n)) operand_scalar = .5 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_inplace_binop_array(self): def test_impl(A, B): A += B return A hpat_func = hpat.jit(test_impl) n = 11 A = np.arange(n)**2.0 # TODO: use 2 for test int casting B = pd.Series(np.ones(n)) np.testing.assert_array_equal(hpat_func(A.copy(), B), test_impl(A, B)) def test_series_fusion1(self): def test_impl(A, B): return A + B + 1 hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: A = pd.Series(np.arange(n), dtype=np.int64) B = pd.Series(np.arange(n)**2, dtype=np.int64) else: A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B)) self.assertEqual(count_parfor_REPs(), 1) def test_series_fusion2(self): # make sure getting data var avoids incorrect single def assumption def test_impl(A, B): S = B + 2 if A[0] == 0: S = A + 1 return S + B hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: A = pd.Series(np.arange(n), dtype=np.int64) B = pd.Series(np.arange(n)**2, dtype=np.int64) else: A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B)) self.assertEqual(count_parfor_REPs(), 3) def test_series_len(self): def test_impl(A, i): return len(A) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A, 0), test_impl(df.A, 0)) def test_series_box(self): def test_impl(): A = pd.Series([1, 2, 3]) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_series_box2(self): def test_impl(): A = pd.Series(['1', '2', '3']) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_series_list_str_unbox1(self): def test_impl(A): return A.iloc[0] hpat_func = hpat.jit(test_impl) S = pd.Series([['aa', 'b'], ['ccc'], []]) np.testing.assert_array_equal(hpat_func(S), test_impl(S)) # call twice to test potential refcount errors np.testing.assert_array_equal(hpat_func(S), test_impl(S)) def test_np_typ_call_replace(self): # calltype replacement is tricky for np.typ() calls since variable # type can't provide calltype def test_impl(i): return np.int32(i) hpat_func = hpat.jit(test_impl) self.assertEqual(hpat_func(1), test_impl(1)) def test_series_ufunc1(self): def test_impl(A, i): return np.isinf(A).values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A, 1), test_impl(df.A, 1)) def test_list_convert(self): def test_impl(): df = pd.DataFrame({'one': np.array([-1, np.nan, 2.5]), 'two': ['foo', 'bar', 'baz'], 'three': [True, False, True]}) return df.one.values, df.two.values, df.three.values hpat_func = hpat.jit(test_impl) one, two, three = hpat_func() self.assertTrue(isinstance(one, np.ndarray)) self.assertTrue(isinstance(two, np.ndarray)) self.assertTrue(isinstance(three, np.ndarray)) @unittest.skip("needs empty_like typing fix in npydecl.py") def test_series_empty_like(self): def test_impl(A): return np.empty_like(A) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertTrue(isinstance(hpat_func(df.A), np.ndarray)) def test_series_fillna1(self): def test_impl(A): return A.fillna(5.0) hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) pd.testing.assert_series_equal(hpat_func(df.A), test_impl(df.A), check_names=False) # test inplace fillna for named numeric series (obtained from DataFrame) def test_series_fillna_inplace1(self): def test_impl(A): A.fillna(5.0, inplace=True) return A hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) pd.testing.assert_series_equal(hpat_func(df.A), test_impl(df.A), check_names=False) def test_series_fillna_str1(self): def test_impl(A): return A.fillna("dd") hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['aa', 'b', None, 'ccc']}) pd.testing.assert_series_equal(hpat_func(df.A), test_impl(df.A), check_names=False) def test_series_fillna_str_inplace1(self): def test_impl(A): A.fillna("dd", inplace=True) return A hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'ccc']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) # TODO: handle string array reflection # hpat_func(S1) # test_impl(S2) # np.testing.assert_array_equal(S1, S2) def test_series_fillna_str_inplace_empty1(self): def test_impl(A): A.fillna("", inplace=True) return A hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'ccc']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('Unsupported functionality: failed to handle index') def test_series_fillna_index_str(self): def test_impl(S): return S.fillna(5.0) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2.0, np.nan, 1.0], index=['a', 'b', 'c', 'd']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S), check_names=False) @unittest.skip('Unsupported functionality: failed to handle index') def test_series_fillna_index_int(self): def test_impl(S): return S.fillna(5.0) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2.0, np.nan, 1.0], index=[2, 3, 4, 5]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S), check_names=False) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'No support of axis argument in old-style Series.dropna() impl') def test_series_dropna_axis1(self): '''Verifies Series.dropna() implementation handles 'index' as axis argument''' def test_impl(S): return S.dropna(axis='index') hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'No support of axis argument in old-style Series.dropna() impl') def test_series_dropna_axis2(self): '''Verifies Series.dropna() implementation handles 0 as axis argument''' def test_impl(S): return S.dropna(axis=0) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'No support of axis argument in old-style Series.dropna() impl') def test_series_dropna_axis3(self): '''Verifies Series.dropna() implementation handles correct non-literal axis argument''' def test_impl(S, axis): return S.dropna(axis=axis) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() axis_values = [0, 'index'] for value in axis_values: pd.testing.assert_series_equal(hpat_func(S1, value), test_impl(S2, value)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_float_index1(self): '''Verifies Series.dropna() implementation for float series with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) for data in test_global_input_data_float64: S1 = pd.Series(data) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_float_index2(self): '''Verifies Series.dropna() implementation for float series with string index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf], ['a', 'b', 'c', 'd', 'e']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_str_index1(self): '''Verifies Series.dropna() implementation for series of strings with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', '']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_str_index2(self): '''Verifies Series.dropna() implementation for series of strings with string index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', ''], ['a', 'b', 'c', 'd', 'e']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_str_index3(self): def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', ''], index=[1, 2, 5, 7, 10]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('BUG: old-style dropna impl returns series without index, in new-style inplace is unsupported') def test_series_dropna_float_inplace_no_index1(self): '''Verifies Series.dropna() implementation for float series with default index and inplace argument True''' def test_impl(S): S.dropna(inplace=True) return S hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('TODO: add reflection support and check method return value') def test_series_dropna_float_inplace_no_index2(self): '''Verifies Series.dropna(inplace=True) results are reflected back in the original float series''' def test_impl(S): return S.dropna(inplace=True) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() self.assertIsNone(hpat_func(S1)) self.assertIsNone(test_impl(S2)) pd.testing.assert_series_equal(S1, S2) @unittest.skip('BUG: old-style dropna impl returns series without index, in new-style inplace is unsupported') def test_series_dropna_str_inplace_no_index1(self): '''Verifies Series.dropna() implementation for series of strings with default index and inplace argument True ''' def test_impl(S): S.dropna(inplace=True) return S hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', '']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('TODO: add reflection support and check method return value') def test_series_dropna_str_inplace_no_index2(self): '''Verifies Series.dropna(inplace=True) results are reflected back in the original string series''' def test_impl(S): return S.dropna(inplace=True) hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', '']) S2 = S1.copy() self.assertIsNone(hpat_func(S1)) self.assertIsNone(test_impl(S2)) pd.testing.assert_series_equal(S1, S2) def test_series_dropna_str_parallel1(self): '''Verifies Series.dropna() distributed work for series of strings with default index''' def test_impl(A): B = A.dropna() return (B == 'gg').sum() hpat_func = hpat.jit(distributed=['A'])(test_impl) S1 = pd.Series(['aa', 'b', None, 'ccc', 'dd', 'gg']) start, end = get_start_end(len(S1)) # TODO: gatherv self.assertEqual(hpat_func(S1[start:end]), test_impl(S1)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) self.assertTrue(count_array_OneDs() > 0) @unittest.skip('AssertionError: Series are different\n' 'Series length are different\n' '[left]: 3, Int64Index([0, 1, 2], dtype=\'int64\')\n' '[right]: 2, Int64Index([1, 2], dtype=\'int64\')') def test_series_dropna_dt_no_index1(self): '''Verifies Series.dropna() implementation for datetime series with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series([pd.NaT, pd.Timestamp('1970-12-01'), pd.Timestamp('2012-07-25')]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) def test_series_dropna_bool_no_index1(self): '''Verifies Series.dropna() implementation for bool series with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 =
pd.Series([True, False, False, True])
pandas.Series
import tempfile import unittest from typing import Iterable, Union import pandas as pd from exabel_data_sdk.services.csv_reader import CsvReader class TestCsvReader(unittest.TestCase): def _read_csv(self, content: str, string_columns: Iterable[Union[str, int]]): with tempfile.TemporaryDirectory() as tmp: file = f"{tmp}/file.csv" with open(file, "w", encoding="utf-8") as f: for line in content: f.write(",".join(map(str, line)) + "\n") return CsvReader.read_csv( file, separator=",", string_columns=string_columns, keep_default_na=False ) def test_read_csv(self): content = [("Column A", "Column B"), ("a1", "a2"), ("b1", "b2")] result = self._read_csv(content, string_columns=["Column A", "Column B"]) expected = pd.DataFrame({"Column A": ["a1", "b1"], "Column B": ["a2", "b2"]}) pd.testing.assert_frame_equal(expected, result) def test_read_csv_with_obvious_string_columns(self): content = [("Column A", "Column B"), ("a1", "a2"), ("b1", "b2")] result = self._read_csv(content, string_columns=[]) expected = pd.DataFrame({"Column A": ["a1", "b1"], "Column B": ["a2", "b2"]}) pd.testing.assert_frame_equal(expected, result) def test_read_csv_with_integer_column(self): content = [("Column A", "Integer"), ("a1", 2), ("b1", 3)] result = self._read_csv(content, string_columns=["Column A"]) expected = pd.DataFrame({"Column A": ["a1", "b1"], "Integer": [2, 3]}) pd.testing.assert_frame_equal(expected, result) def test_read_csv_with_integer_columns_interpreted_as_string(self): content = [("Column A", "Integer"), ("a1", 2), ("b1", 3)] result = self._read_csv(content, string_columns=["Column A", "Integer"]) expected = pd.DataFrame({"Column A": ["a1", "b1"], "Integer": ["2", "3"]}) pd.testing.assert_frame_equal(expected, result) def test_read_csv_with_integer_column_interpreted_as_string_referred_to_with_index(self): content = [("Column A", "Integer"), ("a1", 2), ("b1", 3)] result = self._read_csv(content, string_columns=["Column A", 1]) expected = pd.DataFrame({"Column A": ["a1", "b1"], "Integer": ["2", "3"]}) pd.testing.assert_frame_equal(expected, result) def test_read_csv_with_empty_value(self): content = [("Column A", "Column B"), ("a1", "a2"), ("b1", "")] result = self._read_csv(content, string_columns=["Column A", "Column B"]) expected = pd.DataFrame({"Column A": ["a1", "b1"], "Column B": ["a2", ""]})
pd.testing.assert_frame_equal(expected, result)
pandas.testing.assert_frame_equal
from hetdesrun.component.registration import register from hetdesrun.datatypes import DataType import pandas as pd import numpy as np # ***** DO NOT EDIT LINES BELOW ***** # These lines may be overwritten if input/output changes. @register(inputs={"data": DataType.Series}, outputs={"cum_sum": DataType.Series}) def main(*, data): """entrypoint function for this component Usage example: >>> main( ... data = pd.Series( ... { ... "2019-08-01T15:20:00": 0.0, ... "2019-08-01T15:20:01": 5.0, ... "2019-08-01T15:20:05": 1.0, ... "2019-08-01T15:20:09": 9.0, ... } ... ) ... )["cum_sum"] 2019-08-01 15:20:00 0.0 2019-08-01 15:20:01 5.0 2019-08-01 15:20:05 6.0 2019-08-01 15:20:09 15.0 dtype: float64 """ # ***** DO NOT EDIT LINES ABOVE ***** # write your code here. if pd.api.types.is_numeric_dtype(data.index.dtype): data_sort = data.sort_index() else: try: data.index =
pd.to_datetime(data.index)
pandas.to_datetime
import inspect import os import datetime from collections import OrderedDict import numpy as np from numpy import nan, array import pandas as pd import pytest from pandas.util.testing import assert_series_equal, assert_frame_equal from numpy.testing import assert_allclose from pvlib import tmy from pvlib import pvsystem from pvlib import clearsky from pvlib import irradiance from pvlib import atmosphere from pvlib import solarposition from pvlib.location import Location from conftest import needs_numpy_1_10, requires_scipy latitude = 32.2 longitude = -111 tus = Location(latitude, longitude, 'US/Arizona', 700, 'Tucson') times = pd.date_range(start=datetime.datetime(2014,1,1), end=datetime.datetime(2014,1,2), freq='1Min') ephem_data = solarposition.get_solarposition(times, latitude=latitude, longitude=longitude, method='nrel_numpy') am = atmosphere.relativeairmass(ephem_data.apparent_zenith) irrad_data = clearsky.ineichen(ephem_data['apparent_zenith'], am, linke_turbidity=3) aoi = irradiance.aoi(0, 0, ephem_data['apparent_zenith'], ephem_data['azimuth']) meta = {'latitude': 37.8, 'longitude': -122.3, 'altitude': 10, 'Name': 'Oakland', 'State': 'CA', 'TZ': -8} pvlib_abspath = os.path.dirname(os.path.abspath(inspect.getfile(tmy))) tmy3_testfile = os.path.join(pvlib_abspath, 'data', '703165TY.csv') tmy2_testfile = os.path.join(pvlib_abspath, 'data', '12839.tm2') tmy3_data, tmy3_metadata = tmy.readtmy3(tmy3_testfile) tmy2_data, tmy2_metadata = tmy.readtmy2(tmy2_testfile) def test_systemdef_tmy3(): expected = {'tz': -9.0, 'albedo': 0.1, 'altitude': 7.0, 'latitude': 55.317, 'longitude': -160.517, 'name': '"SAND POINT"', 'strings_per_inverter': 5, 'modules_per_string': 5, 'surface_azimuth': 0, 'surface_tilt': 0} assert expected == pvsystem.systemdef(tmy3_metadata, 0, 0, .1, 5, 5) def test_systemdef_tmy2(): expected = {'tz': -5, 'albedo': 0.1, 'altitude': 2.0, 'latitude': 25.8, 'longitude': -80.26666666666667, 'name': 'MIAMI', 'strings_per_inverter': 5, 'modules_per_string': 5, 'surface_azimuth': 0, 'surface_tilt': 0} assert expected == pvsystem.systemdef(tmy2_metadata, 0, 0, .1, 5, 5) def test_systemdef_dict(): expected = {'tz': -8, ## Note that TZ is float, but Location sets tz as string 'albedo': 0.1, 'altitude': 10, 'latitude': 37.8, 'longitude': -122.3, 'name': 'Oakland', 'strings_per_inverter': 5, 'modules_per_string': 5, 'surface_azimuth': 0, 'surface_tilt': 5} assert expected == pvsystem.systemdef(meta, 5, 0, .1, 5, 5) @needs_numpy_1_10 def test_ashraeiam(): thetas = np.linspace(-90, 90, 9) iam = pvsystem.ashraeiam(thetas, .05) expected = np.array([ nan, 0.9193437 , 0.97928932, 0.99588039, 1. , 0.99588039, 0.97928932, 0.9193437 , nan]) assert_allclose(iam, expected, equal_nan=True) @needs_numpy_1_10 def test_PVSystem_ashraeiam(): module_parameters = pd.Series({'b': 0.05}) system = pvsystem.PVSystem(module_parameters=module_parameters) thetas = np.linspace(-90, 90, 9) iam = system.ashraeiam(thetas) expected = np.array([ nan, 0.9193437 , 0.97928932, 0.99588039, 1. , 0.99588039, 0.97928932, 0.9193437 , nan]) assert_allclose(iam, expected, equal_nan=True) @needs_numpy_1_10 def test_physicaliam(): thetas = np.linspace(-90, 90, 9) iam = pvsystem.physicaliam(thetas, 1.526, 0.002, 4) expected = np.array([ nan, 0.8893998 , 0.98797788, 0.99926198, nan, 0.99926198, 0.98797788, 0.8893998 , nan]) assert_allclose(iam, expected, equal_nan=True) @needs_numpy_1_10 def test_PVSystem_physicaliam(): module_parameters = pd.Series({'K': 4, 'L': 0.002, 'n': 1.526}) system = pvsystem.PVSystem(module_parameters=module_parameters) thetas = np.linspace(-90, 90, 9) iam = system.physicaliam(thetas) expected = np.array([ nan, 0.8893998 , 0.98797788, 0.99926198, nan, 0.99926198, 0.98797788, 0.8893998 , nan]) assert_allclose(iam, expected, equal_nan=True) # if this completes successfully we'll be able to do more tests below. @pytest.fixture(scope="session") def sam_data(): data = {} data['cecmod'] = pvsystem.retrieve_sam('cecmod') data['sandiamod'] = pvsystem.retrieve_sam('sandiamod') data['cecinverter'] = pvsystem.retrieve_sam('cecinverter') return data @pytest.fixture(scope="session") def sapm_module_params(sam_data): modules = sam_data['sandiamod'] module = 'Canadian_Solar_CS5P_220M___2009_' module_parameters = modules[module] return module_parameters @pytest.fixture(scope="session") def cec_module_params(sam_data): modules = sam_data['cecmod'] module = 'Example_Module' module_parameters = modules[module] return module_parameters def test_sapm(sapm_module_params): times = pd.DatetimeIndex(start='2015-01-01', periods=5, freq='12H') effective_irradiance = pd.Series([-1, 0.5, 1.1, np.nan, 1], index=times) temp_cell = pd.Series([10, 25, 50, 25, np.nan], index=times) out = pvsystem.sapm(effective_irradiance, temp_cell, sapm_module_params) expected = pd.DataFrame(np.array( [[ -5.0608322 , -4.65037767, nan, nan, nan, -4.91119927, -4.15367716], [ 2.545575 , 2.28773882, 56.86182059, 47.21121608, 108.00693168, 2.48357383, 1.71782772], [ 5.65584763, 5.01709903, 54.1943277 , 42.51861718, 213.32011294, 5.52987899, 3.48660728], [ nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan]]), columns=['i_sc', 'i_mp', 'v_oc', 'v_mp', 'p_mp', 'i_x', 'i_xx'], index=times) assert_frame_equal(out, expected, check_less_precise=4) out = pvsystem.sapm(1, 25, sapm_module_params) expected = OrderedDict() expected['i_sc'] = 5.09115 expected['i_mp'] = 4.5462909092579995 expected['v_oc'] = 59.260800000000003 expected['v_mp'] = 48.315600000000003 expected['p_mp'] = 219.65677305534581 expected['i_x'] = 4.9759899999999995 expected['i_xx'] = 3.1880204359100004 for k, v in expected.items(): assert_allclose(out[k], v, atol=1e-4) # just make sure it works with a dict input pvsystem.sapm(effective_irradiance, temp_cell, sapm_module_params.to_dict()) def test_PVSystem_sapm(sapm_module_params): system = pvsystem.PVSystem(module_parameters=sapm_module_params) times = pd.DatetimeIndex(start='2015-01-01', periods=5, freq='12H') effective_irradiance = pd.Series([-1, 0.5, 1.1, np.nan, 1], index=times) temp_cell = pd.Series([10, 25, 50, 25, np.nan], index=times) out = system.sapm(effective_irradiance, temp_cell) @pytest.mark.parametrize('airmass,expected', [ (1.5, 1.00028714375), (np.array([[10, np.nan]]), np.array([[0.999535, 0]])), (pd.Series([5]), pd.Series([1.0387675])) ]) def test_sapm_spectral_loss(sapm_module_params, airmass, expected): out = pvsystem.sapm_spectral_loss(airmass, sapm_module_params) if isinstance(airmass, pd.Series): assert_series_equal(out, expected, check_less_precise=4) else: assert_allclose(out, expected, atol=1e-4) def test_PVSystem_sapm_spectral_loss(sapm_module_params): system = pvsystem.PVSystem(module_parameters=sapm_module_params) times = pd.DatetimeIndex(start='2015-01-01', periods=2, freq='12H') airmass = pd.Series([1, 10], index=times) out = system.sapm_spectral_loss(airmass) @pytest.mark.parametrize('aoi,expected', [ (45, 0.9975036250000002), (np.array([[-30, 30, 100, np.nan]]), np.array([[np.nan, 1.007572, 0, np.nan]])), (pd.Series([80]), pd.Series([0.597472])) ]) def test_sapm_aoi_loss(sapm_module_params, aoi, expected): out = pvsystem.sapm_aoi_loss(aoi, sapm_module_params) if isinstance(aoi, pd.Series): assert_series_equal(out, expected, check_less_precise=4) else: assert_allclose(out, expected, atol=1e-4) def test_sapm_aoi_loss_limits(): module_parameters = {'B0': 5, 'B1': 0, 'B2': 0, 'B3': 0, 'B4': 0, 'B5': 0} assert pvsystem.sapm_aoi_loss(1, module_parameters) == 5 module_parameters = {'B0': 5, 'B1': 0, 'B2': 0, 'B3': 0, 'B4': 0, 'B5': 0} assert pvsystem.sapm_aoi_loss(1, module_parameters, upper=1) == 1 module_parameters = {'B0': -5, 'B1': 0, 'B2': 0, 'B3': 0, 'B4': 0, 'B5': 0} assert pvsystem.sapm_aoi_loss(1, module_parameters) == 0 def test_PVSystem_sapm_aoi_loss(sapm_module_params): system = pvsystem.PVSystem(module_parameters=sapm_module_params) times = pd.DatetimeIndex(start='2015-01-01', periods=2, freq='12H') aoi = pd.Series([45, 10], index=times) out = system.sapm_aoi_loss(aoi) @pytest.mark.parametrize('test_input,expected', [ ([1000, 100, 5, 45, 1000], 1.1400510967821877), ([np.array([np.nan, 1000, 1000]), np.array([100, np.nan, 100]), np.array([1.1, 1.1, 1.1]), np.array([10, 10, 10]), 1000], np.array([np.nan, np.nan, 1.081157])), ([pd.Series([1000]),
pd.Series([100])
pandas.Series
# -*- coding:utf-8 -*- # /usr/bin/env python """ Date: 2021/7/12 15:47 Desc: 东方财富-沪深板块-概念板块 http://quote.eastmoney.com/center/boardlist.html#concept_board """ import requests import pandas as pd def stock_board_concept_name_em() -> pd.DataFrame: """ 东方财富-沪深板块-概念板块-名称 http://quote.eastmoney.com/center/boardlist.html#concept_board :return: 概念板块-名称 :rtype: pandas.DataFrame """ url = "http://79.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "2000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:90 t:3 f:!50", "fields": "f2,f3,f4,f8,f12,f14,f15,f16,f17,f18,f20,f21,f24,f25,f22,f33,f11,f62,f128,f124,f107,f104,f105,f136", "_": "1626075887768", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.columns = [ "排名", "最新价", "涨跌幅", "涨跌额", "换手率", "_", "板块代码", "板块名称", "_", "_", "_", "_", "总市值", "_", "_", "_", "_", "_", "_", "上涨家数", "下跌家数", "_", "_", "领涨股票", "_", "_", "领涨股票-涨跌幅", ] temp_df = temp_df[ [ "排名", "板块名称", "板块代码", "最新价", "涨跌额", "涨跌幅", "总市值", "换手率", "上涨家数", "下跌家数", "领涨股票", "领涨股票-涨跌幅", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["总市值"] = pd.to_numeric(temp_df["总市值"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) temp_df["上涨家数"] = pd.to_numeric(temp_df["上涨家数"]) temp_df["下跌家数"] = pd.to_numeric(temp_df["下跌家数"]) temp_df["领涨股票-涨跌幅"] = pd.to_numeric(temp_df["领涨股票-涨跌幅"]) return temp_df def stock_board_concept_hist_em(symbol: str = "数字货币", adjust: str = "") -> pd.DataFrame: """ 东方财富-沪深板块-概念板块-历史行情 http://q.10jqka.com.cn/gn/detail/code/301558/ :param symbol: 板块名称 :type symbol: str :param adjust: choice of {'': 不复权, "qfq": 前复权, "hfq": 后复权} :type adjust: str :return: 历史行情 :rtype: pandas.DataFrame """ stock_board_concept_em_map = stock_board_concept_name_em() stock_board_code = stock_board_concept_em_map[ stock_board_concept_em_map["板块名称"] == symbol ]["板块代码"].values[0] adjust_map = {"": "0", "qfq": "1", "hfq": "2"} url = "http://91.push2his.eastmoney.com/api/qt/stock/kline/get" params = { "secid": f"90.{stock_board_code}", "ut": "fa5fd1943c7b386f172d6893dbfba10b", "fields1": "f1,f2,f3,f4,f5,f6", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61", "klt": "101", "fqt": adjust_map[adjust], "beg": "0", "end": "20500101", "smplmt": "10000", "lmt": "1000000", "_": "1626079488673", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]["klines"]]) temp_df.columns = [ "日期", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "振幅", "涨跌幅", "涨跌额", "换手率", ] temp_df = temp_df[ [ "日期", "开盘", "收盘", "最高", "最低", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", ] ] temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["振幅"] = pd.to_numeric(temp_df["振幅"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) return temp_df def stock_board_concept_cons_em(symbol: str = "车联网") -> pd.DataFrame: """ 东方财富-沪深板块-概念板块-板块成份 http://quote.eastmoney.com/center/boardlist.html#boards-BK06551 :param symbol: 板块名称 :type symbol: str :return: 板块成份 :rtype: pandas.DataFrame """ stock_board_concept_em_map = stock_board_concept_name_em() stock_board_code = stock_board_concept_em_map[ stock_board_concept_em_map["板块名称"] == symbol ]["板块代码"].values[0] url = "http://29.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "2000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": f"b:{stock_board_code} f:!50", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152,f45", "_": "1626081702127", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.columns = [ "序号", "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "_", "_", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "_", "_", "_", "市净率", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", ] temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开", "昨收", "换手率", "市盈率-动态", "市净率", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.t
o_numeric(temp_df["最低"], errors="coerce")
pandas.to_numeric
# -*- coding: utf-8 -*- """ Created on Sun Apr 5 23:53:33 2018 @author: Fahim """ from tkinter import * from tkinter import filedialog import glob import os import cv2 from sklearn.neighbors import KNeighborsClassifier import pandas as pd from PIL import ImageTk,Image import numpy as np def extract_surf_feature(image): surf = cv2.xfeatures2d.SURF_create() keypoint = surf.detect(image) keypoint, descriptors = surf.compute(image,keypoint) descriptors = descriptors.flatten() descrip = descriptors[0:9856] return descrip labels = [] imageLabel = open('./label.txt', 'r') #print(imageLabel) for label in imageLabel: label = int(label.strip('\n')) labels.append(label) model = KNeighborsClassifier(n_neighbors=3) master = Tk() master.title('Classifier') master.geometry('800x520') msg = Message(master, text="") label = Label(master, text="") label1 = Label(master, text="") var = '/*.jpg' imagePaths = '' def OpenFolder(): global imagePaths global msg global label global label1 try: msg.pack_forget() label.pack_forget() label1.pack_forget() except Exception: pass dirname = filedialog.askdirectory(parent=master, initialdir=os.getcwd(), title="Select Folder") imagePaths = dirname + var label = Label(master, text="Folder Opening Done", bg="green", fg="black") label.pack() msg = Message(master, text=imagePaths) msg.pack() features = [] def Extract_Feature_and_store_in_Database(): global features global imagePaths global msg global label global label1 try: label.pack_forget() msg.pack_forget() label1.pack_forget() except Exception: pass imagefile = glob.glob(imagePaths) for imagePath in imagefile: #print(imagePath) image = cv2.imread(imagePath) surf = extract_surf_feature(image) features.append(surf) print(type(features)) print(features) print(type(features)) df =
pd.DataFrame(data=features)
pandas.DataFrame
import os import cv2 import requests import numpy as np import pandas as pd import matplotlib.pyplot as plt from argparse import ArgumentParser from utils import captha_segmentation from sklearn.cluster import MiniBatchKMeans def parse_args(): parser = ArgumentParser() parser.add_argument('--data-size', '-d', help='size of dataset', default=40000, type=int) parser.add_argument('--k-means', '-k', help='number of clusters', default=200, type=int) parser.add_argument('--batch-size', '-b', help='size of minibatch', default=1000, type=int) parser.add_argument('--load-captha', '-l', help='captha images path', default='captha_imgs.npy') return parser.parse_args() if __name__ == '__main__': params = parse_args() # download if not os.path.isfile(params.load_captha): captha_imgs = [] while True: img_url = f'https://cos{np.random.randint(low=1, high=5)}s.ntnu.edu.tw/AasEnrollStudent/RandImage' response = requests.get(img_url) with open('tmp.jpg', 'wb') as f: f.write(response.content) img = cv2.imread('tmp.jpg', cv2.IMREAD_COLOR) os.remove('tmp.jpg') crop_imgs = captha_segmentation(img) if crop_imgs is None: continue captha_imgs.append(crop_imgs) print(len(captha_imgs)*4) if len(captha_imgs) >= params.data_size//4: break captha_imgs = np.array(captha_imgs, dtype=np.uint8).reshape(-1, 20, 20) np.save(params.load_captha, captha_imgs) else: captha_imgs = np.load(params.load_captha) # K-Means data = np.array(captha_imgs, dtype=np.float32).reshape(-1, 20*20) / 255.0 model = MiniBatchKMeans(n_clusters=params.k_means, batch_size=params.batch_size) model.fit(data) print(f'Number of clusters: {model.n_clusters}') print(f'Inertia: {model.inertia_}') # labeling label_to_ch = np.zeros((params.k_means, ), dtype=np.str) for k in range(params.k_means): fig, ax = plt.subplots(1, 5) ax_idx = 0 for idx, label in enumerate(model.labels_): if label == k: ax[ax_idx].imshow(captha_imgs[idx], cmap='gray') ax_idx += 1 if ax_idx >= 5: break plt.show(block=False) print(f'Input the label of the {k+1}-cluster:', end=' ') while True: ch = input() if len(ch) != 1: print('Incorrect!') else: break label_to_ch[k] = ch plt.close('all') # save csv captha_idx = 0 cols = ['label'] for i in range(20): for j in range(20): cols.append(f'{i+1}x{j+1}') if not os.path.isfile('captha.csv'): captha_df = pd.DataFrame(columns=cols) captha_df.to_csv('captha.csv', header=True, index=False) else: captha_df = pd.read_csv('captha.csv') captha_idx = captha_df.shape[0] if not os.path.exists('captha'): os.mkdir('captha') new_captha = np.insert(captha_imgs.reshape(-1, 20*20).astype(np.str), 0, label_to_ch[model.labels_], axis=1) captha_df =
pd.DataFrame(new_captha, columns=cols)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Feb 7 12:54:10 2021 this script is to join the grant level vocabulary indices and mathy keyword extraction indices @author: sethschimmel """ import json import pandas as pd import numpy as np import ast cd /Users/sethschimmel/Documents/GitHub/CUNY-Capstone/data/sbir # this index has all vocabularies for all terms, unigrams on vocabIndex = json.load(open("/Users/sethschimmel/Documents/GitHub/CUNY-Capstone/data/sbir/sbir_2008to2018_FULLINDEX_clean.json","r")) # this index has all vocabularies but only for bigrams+ tokens, to save space and get rid of potentially junky single word keywords vocabIndex = json.load(open("/Users/sethschimmel/Documents/GitHub/CUNY-Capstone/data/sbir/sbir_2008to2018_FULLINDEX_clean_BIGRAMSplus.json","r")) mathyIndex = pd.read_csv("/Users/sethschimmel/Documents/GitHub/CUNY-Capstone/data/sbir/mathyTFIDF_TEXTRANK_sbir2008to2018.csv") grants = pd.read_csv("/Users/sethschimmel/Documents/GitHub/CUNY-Capstone/data/sbir/sbir2008to2018_geoRefed_FINAL_03.csv") grants = grants.sort_values(by=['index']) g = grants.head() ## the word2vec preprocessing pipeline generates its own id column; using this to validate to ensure the join is correct w2vKey = pd.read_csv("/Users/sethschimmel/Documents/GitHub/CUNY-Capstone/data/sbir/w2v_pipelineKey.csv") ## here I grab the processed abstract outputs so that we can join a wordcount column to each grant and do keyword stats if necessary later on w2vParsed = pd.read_csv("/Users/sethschimmel/Documents/GitHub/CUNY-Capstone/data/sbir/w2v_sbir_2008to2018_textFields.csv") w2vParsed.columns w2vDict = {} for index,row in w2vParsed.iterrows(): w2vDict[str(row['_ref'])] = row['text'] # get the vocabs and create a new col for each vocabs = list(vocabIndex['0'].keys()) vocabs for v in vocabs: grants[v] = "" # ensure the ref id is the old index, use _ref to lookup vocab values grants["_ref"] = grants['index'] g = grants.head() for index,row in grants.iterrows(): for v in vocabs: grants.at[index,v] = vocabIndex[str(row['_ref'])].get(v,[]) g = grants.head() b = mathyIndex.head() # reformat to dict mathyDict = {} for index,row in mathyIndex.iterrows(): mathyDict[str(row['_ref'])] = {"textrank":row["textrank"],\ "tfidf_keywords":row["tfidf_keywords"]} # get the mathy keywords grants["textrank"] = "" grants["tfidf_keywords"]="" for index,row in grants.iterrows(): grants.at[index,"textrank"] = mathyDict[str(row['_ref'])].get('textrank',[]) grants.at[index,"tfidf_keywords"] = mathyDict[str(row['_ref'])].get('tfidf_keywords',[]) g = grants.head() # add the total word count for each grant from w2vParsed, also supply raw counts to textrank and tfidf keyword columns grants["num_words"] = 0 for index,row in grants.iterrows(): grants.loc[index,"num_words"] = len(w2vDict[str(row['_ref'])].split(" ")) grants['textrank'] = [ast.literal_eval(x) for x in grants.textrank] grants['tfidf_keywords'] = [ast.literal_eval(x) for x in grants.tfidf_keywords] #cd /Users/sethschimmel/Documents/GitHub/CUNY-Capstone/data/sbir #grants.to_csv("sbir2008to2018_geoRefed_FINAL_04_wKeywords.csv") #grants.to_csv("sbir2008to2018_geoRefed_FINAL_04_wKeywordsBigrams.csv") ## to do so, we need to confirm the maximum ngram size in the vocabular all_words = [] for index,row in grants.iterrows(): for v in vocabs: #print(type(row[v])) for entry in row[v]: if type(entry) is dict: #print(type(entry)) all_words.append(entry['t']) tfKeys = row['tfidf_keywords'] #print(type(tfKeys)) if type(tfKeys) is dict: for k,v in tfKeys.items(): all_words.append(k) for t in row['textrank']: all_words.append(t) gramSize = [] for word in all_words: w = word.replace("_abbr","") if "_" in w: gramSize.append(w.count("_")+ w.count(" ")+1) if " " in w and "_" not in w: gramSize.append(w.count(" ")+1) # find the longest term... max(gramSize) gramLens = list(set(gramSize)) gramLens # the average term... import statistics statistics.mean(gramSize) statistics.median(gramSize) uniqueGrams = list(set(all_words)) #gramSize.index(21) vocabGrams =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import os import datetime as dt print(os.getcwd()) os.chdir(os.getcwd()+'/Fundamental') tmp = pd.read_excel('DR3M.xlsx') df_DR3M = pd.DataFrame(columns=['Date', 'DR3M']) df_DR3M.loc[:,'Date'] = tmp.loc[:, '日期'] df_DR3M.loc[:, 'DR3M'] = tmp.loc[:, '收盘价'] df_DR3M.set_index('Date', inplace=True) df_RB00 = pd.DataFrame(columns=['Date', 'RB00_p', 'RB00_v', 'RB00_po']) df_RB01 = pd.DataFrame(columns=['Date', 'RB01_p', 'RB01_v', 'RB01_po']) df_RB05 = pd.DataFrame(columns=['Date', 'RB05_p', 'RB05_v', 'RB05_po']) df_RB10 = pd.DataFrame(columns=['Date', 'RB10_p', 'RB10_v', 'RB10_po']) tmp00 = pd.read_excel('./Data/RB00.xlsx') tmp01 = pd.read_excel('./Data/RB01.xlsx') tmp05 = pd.read_excel('./Data/RB05.xlsx') tmp10 = pd.read_excel('./Data/RB10.xlsx') tmp00.dropna(inplace=True) tmp01.dropna(inplace=True) tmp05.dropna(inplace=True) tmp10.dropna(inplace=True) df_RB00.loc[:, 'Date'] = tmp00.loc[:, '日期'] df_RB00.loc[:, 'RB00_p'] = tmp00.loc[:, '收盘价(元)'] df_RB00.loc[:, 'RB00_v'] = tmp00.loc[:, '成交量'] df_RB00.loc[:, 'RB00_po'] = tmp00.loc[:, '持仓量'] df_RB00.set_index('Date', inplace=True) df_RB01.loc[:, 'Date'] = tmp01.loc[:, '日期'] df_RB01.loc[:, 'RB01_p'] = tmp01.loc[:, '收盘价(元)'] df_RB01.loc[:, 'RB01_v'] = tmp01.loc[:, '成交量'] df_RB01.loc[:, 'RB01_po'] = tmp01.loc[:, '持仓量'] df_RB01.set_index('Date', inplace=True) df_RB05.loc[:, 'Date'] = tmp05.loc[:, '日期'] df_RB05.loc[:, 'RB05_p'] = tmp05.loc[:, '收盘价(元)'] df_RB05.loc[:, 'RB05_v'] = tmp05.loc[:, '成交量'] df_RB05.loc[:, 'RB05_po'] = tmp05.loc[:, '持仓量'] df_RB05.set_index('Date', inplace=True) df_RB10.loc[:, 'Date'] = tmp10.loc[:, '日期'] df_RB10.loc[:, 'RB10_p'] = tmp10.loc[:, '收盘价(元)'] df_RB10.loc[:, 'RB10_v'] = tmp10.loc[:, '成交量'] df_RB10.loc[:, 'RB10_po'] = tmp10.loc[:, '持仓量'] df_RB10.set_index('Date', inplace=True) df_DR3M.to_csv('DR3M.csv') df_RB00.to_csv('RB00.csv') df_RB01.to_csv('RB01.csv') df_RB05.to_csv('RB05.csv') df_RB10.to_csv('RB10.csv') df_RB = pd.merge(df_RB01, df_RB05, left_index=True, right_index=True, how='outer') df_RB =
pd.merge(df_RB, df_RB10,left_index=True, right_index=True, how='outer')
pandas.merge
#!/usr/bin/env python # -*- coding: utf-8 -*- """ hbvpy.process ============= **A package to process HBV-light simulation results.** This package is intended to provide functions and methods to parse and process the output of the different types HBV-light simulations (i.e. SingleRun, BatchRun, GAPRun). .. author:: <NAME> """ import os import pandas as pd from . import HBVdata __all__ = ['BatchRun', 'GAPRun', 'MonteCarloRun', 'SingleRun'] class SingleRun(object): """ Process results from HBV-light single run simulations. Attributes ---------- bsn_dir : str Basin directory. """ def __init__(self, bsn_dir): self.bsn_dir = bsn_dir def load_results(self, results_folder='Results', sc=None): """ Load the results from a single HBV-light run. Parameters ---------- results_folder : str, optional Name of the results folder, default is 'Results'. sc : int, optional Sub-catchment number, in case there are more than one sub-catchments, default is None. Returns ------- Pandas.DataFrame Data structure containing the model results. Raises ------ ValueError If the specified file does not exist. """ # Set the results folder path. path = self.bsn_dir + '\\' + results_folder + '\\' # Set the results filename. if sc is not None: filepath = path + 'Results_SubCatchment_' + str(sc) + '.txt' else: filepath = path + 'Results.txt' # Check if the results file exists if not os.path.exists(filepath): raise ValueError('The file does not exist.') # Load the results file. return pd.read_csv( filepath, sep='\t', index_col=0, parse_dates=True, infer_datetime_format=True) def load_dist_results(self, results_folder='Results', sc=None): """ Load the distributed results from a single HBV-light run. Parameters ---------- results_folder : str, optional Name of the results folder, default is 'Results'. sc : int, optional Sub-catchment number, in case there are more than one sub-catchments, default is None. Returns ------- Pandas.DataFrame Data structure containing the distributed model results. Raises ------ ValueError If the specified file does not exist. """ # Set the results folder path. path = self.bsn_dir + '\\' + results_folder + '\\' # Set the results filename. if sc is not None: filepath = path + 'Dis_SubCatchment_' + str(sc) + '.txt' else: filepath = path + 'Dis.txt' # Check if the results file exists. if not os.path.exists(filepath): raise ValueError('The file does not exist.') # Load the results file. return pd.read_csv( filepath, sep='\t', index_col=0, parse_dates=True, infer_datetime_format=True) def load_summary(self, results_folder='Results'): """ Load the summary of the results from a single HBV-light run. Parameters ---------- results_folder : str, optional Name of the results folder, default is 'Results'. Returns ------- Pandas.DataFrame Data structure containing the distributed model results. Raises ------ ValueError If the specified file does not exist. """ # Set the results folder path. path = self.bsn_dir + '\\' + results_folder + '\\' # Set the summary filename. filepath = path + 'Summary.txt' # Check if the summary file exists. if not os.path.exists(filepath): raise ValueError('The file does not exist.') # Load the summary file. return pd.read_csv(filepath, sep='\t', index_col=0) def load_peaks(self, results_folder='Results'): """ Load the list of peak flows from a single HBV-light run. Following the documentation of HBV-light, a peak is defined as a data point with a Qobs value that is at least three times the average Qobs. Only a single peak is allowed in a window of 15 days. Parameters ---------- results_folder : str, optional Name of the results folder, default is 'Results'. Returns ------- Pandas.DataFrame Data structure containing the peak flow dates and values. Raises ------ ValueError If the specified file does not exist. """ # Set the results folder path. path = self.bsn_dir + '\\' + results_folder + '\\' # Set the peaks filename. filepath = path + 'Peaks.txt' # Check if the peaks file exists. if not os.path.exists(filepath): raise ValueError('The file does not exist.') # Load the peaks file. return pd.read_csv( filepath, sep='\t', index_col=0, parse_dates=True, infer_datetime_format=True, squeeze=True) def load_q_peaks(self, results_folder='Results'): """ Load the list of observed runoff and peak flows from a single HBV-light run. Following the documentation of HBV-light, a peak is defined as a data point with a Qobs value that is at least three times the average Qobs. Only a single peak is allowed in a window of 15 days. Parameters ---------- results_folder : str, optional Name of the results folder, default is 'Results'. Returns ------- Pandas.DataFrame Data structure containing the observed discharge values as well as the peak flow values. Raises ------ ValueError If the specified file does not exist. """ # Set the results folder path. path = self.bsn_dir + '\\' + results_folder + '\\' # Set the runoff peaks filename. filepath = path + 'Q_Peaks.txt' # Check if the runoff peaks file exists. if not os.path.exists(filepath): raise ValueError('The file does not exist.') # Load the runoff peaks file. return pd.read_csv( filepath, sep='\t', index_col=0, parse_dates=True, infer_datetime_format=True, squeeze=True) class GAPRun(object): """ Process results from HBV-light GAP run simulations. Attributes ---------- bsn_dir : str Basin directory. """ def __init__(self, bsn_dir): self.bsn_dir = bsn_dir def load_results(self, results_folder='Results'): """ Load the results from an HBV-light GAP calibration run. Parameters ---------- results_folder : str, optional Name of the GAP results folder, default is 'Results'. Returns ------- Pandas.DataFrame Data structure containing the GAP results. Raises ------ ValueError If the specified file does not exist. """ # Set the results folder path. path = self.bsn_dir + '\\' + results_folder + '\\' # Set the results filename. filepath = path + 'GA_best1.txt' # Check if the results file exists. if not os.path.exists(filepath): raise ValueError('The file does not exist.') # Load the results file. return pd.read_csv(filepath, sep='\t') class BatchRun(object): """ Process results from HBV-light batch run simulations. Attributes ---------- bsn_dir : str Basin directory. """ def __init__(self, bsn_dir): self.bsn_dir = bsn_dir def load_results(self, results_folder='Results', sc=None): """ Load the results from a batch HBV-light run. Parameters ---------- results_folder : str, optional Name of the Batch Run results folder, default is 'Results'. sc : int, optional Sub-catchment number, in case there are more than one sub-catchments, default is None. Returns ------- Pandas.DataFrame Data structure containing the Batch Run results. Raises ------ ValueError If the specified file does not exist. """ # Set the results folder path. path = self.bsn_dir + '\\' + results_folder + '\\' # Set the results filename. if sc is not None: filepath = path + 'BatchRun_SubCatchment_' + str(sc) + '.txt' else: filepath = path + 'BatchRun.txt' # Check if the results file exists. if not os.path.exists(filepath): raise ValueError('The file does not exist.') # Load the results file. return pd.read_csv(filepath, sep='\t') def load_runoff(self, results_folder='Results', data='columns', sc=None): """ Load the time series of observed and simulated runoff from a batch HBV-light Run. Parameters ---------- results_folder : str, optional Name of the Batch Run results folder, default is 'Results'. data : {'rows', 'columns'}, optional Organisation of the data in the results file. sc : int, optional Sub-catchment number, in case there are more than one sub-catchments, default is None. Returns ------- Pandas.DataFrame Data structure containing the Batch Run runoff time series. Raises ------ ValueError If the corresponding file does not exist. ValueError If the data structure is not recognised. """ # Set the results folder path. path = self.bsn_dir + '\\' + results_folder + '\\' # Load the data according to the predefined format of the results file. if data == 'columns': # Set the runoff results filename. if sc is not None: filepath = path + 'BatchQsim_(InColumns)_' + str(sc) + '.txt' else: filepath = path + 'BatchQsim_(InColumns).txt' # Check if the runoff results file exists. if not os.path.exists(filepath): raise ValueError('The file does not exist.') # Load the runoff results file. return pd.read_csv( filepath, sep='\t', parse_dates=True, index_col=0, infer_datetime_format=True) elif data == 'rows': # Set the runoff results filename. if sc is not None: filepath = path + 'BatchQsim_' + str(sc) + '.txt' else: filepath = path + 'BatchQsim.txt' # Check if the runoff results file exists. if not os.path.exists(filepath): raise ValueError('The file does not exist.') # Parse the index. dates = pd.read_csv( filepath, sep='\t', header=None, nrows=1, index_col=False, squeeze=True).transpose() # Parse the data. data = pd.read_csv( filepath, sep='\t', header=None, index_col=False, skiprows=1).transpose() # Rename the index and convert it to datetime format. dates.columns = ['Date'] dates = pd.to_datetime(dates['Date'], format='%Y%m%d') # Merge the index and data into a Pandas.DataFrame structure. df = pd.concat([data, dates], axis=1) # Set the index and return the DataFrame return df.set_index('Date') else: raise ValueError('Data organisation not recognised.') def load_runoff_stats(self, results_folder='Results', sc=None): """ Load the time series of observed and simulated runoff statistics from a batch HBV-light Run. The statistics contain: Qobs, Qmedian, Qmean, Qp10, Qp90. Parameters ---------- results_folder : str, optional Name of the Batch Run results folder, default is 'Results'. sc : int, optional Sub-catchment number, in case there are more than one sub-catchments, default is None. Returns ------- Pandas.DataFrame Data structure containing the Batch Run runoff statistics time series. Raises ------ ValueError If the specified file does not exist. """ # Set the results folder path. path = self.bsn_dir + '\\' + results_folder + '\\' # Set the runoff statistics filename. if sc is not None: filepath = path + 'BatchQsimSummary_' + str(sc) + '.txt' else: filepath = path + 'BatchQsimSummary.txt' # Check if the runoff statistics file exists. if not os.path.exists(filepath): raise ValueError('The file does not exist.') # Load the runoff statistics file. return pd.read_csv( filepath, sep='\t', parse_dates=True, index_col=0, infer_datetime_format=True) def load_runoff_component( self, results_folder='Results', component='Snow', sc=None): """ Load the time series of a given runoff component from a batch HBV-light run. Parameters ---------- results_folder : str, optional Name of the Batch Run results folder, default is 'Results'. component : {'Rain', 'Snow', 'Glacier', 'Q0', 'Q1', 'Q2'} Name of the runoff component to load, default 'Snow'. sc : int, optional Sub-catchment number, in case there are more than one sub-catchments, default is None. Returns ------- Pandas.DataFrame Data structure containing the Batch Run runoff component time series. Raises ------ ValueError If the provided runoff component is not recognised. ValueError If the specified file does not exist. """ # Check if the provided component is valid. if component not in ['Rain', 'Snow', 'Glacier', 'Q0', 'Q1', 'Q2']: raise ValueError('Provided runoff compoent not recognised.') # Set the results folder path. path = self.bsn_dir + '\\' + results_folder + '\\' # Set the runoff component filename. if sc is not None: filepath = path + 'BatchQsim_' + component + '_' + str(sc) + '.txt' else: filepath = path + 'BatchQsim_' + component + '.txt.' # Check if the runoff component file exists. if not os.path.exists(filepath): raise ValueError('The file does not exist.') # Parse the index. dates = pd.read_csv( filepath, sep='\t', header=None, nrows=1, index_col=False, squeeze=True).transpose() # Parse the data. data = pd.read_csv( filepath, sep='\t', header=None, index_col=False, skiprows=1).transpose() # Rename the index and convert it to datetime format. dates.columns = ['Date'] dates = pd.to_datetime(dates['Date'], format='%Y%m%d') # Merge the index and data into a single Pandas.DataFrame structure. df = pd.concat([data, dates], axis=1) # Set the index. return df.set_index('Date') def load_monthly_runoff(self, results_folder='Results', sc=None): """ Load the monthly average simulated runoff from each parameter set used for a batch HBV-light run. Parameters ---------- results_folder : str, optional Name of the Batch Run results folder, default is 'Results'. sc : int, optional Sub-catchment number, in case there are more than one sub-catchments, default is None. Returns ------- Pandas.DataFrame Data structure containing the monthly average runoff values from each parameter set. Raises ------ ValueError If the specifed file does not exist. """ # Set the results folder path. path = self.bsn_dir + '\\' + results_folder + '\\' # Set the monthly runoff filename. if sc is not None: filepath = path + 'Qseasonal_' + str(sc) + '.txt' else: filepath = path + 'Qseasonal.txt.' # Check if the monthly runoff file exists. if not os.path.exists(filepath): raise ValueError('The file does not exist.') # Load the monthly runoff file. return pd.read_csv(filepath, sep='\t') def load_swe(self, results_folder='Results'): """ Load the time series of simulated snow water equivalent for each elevation band and parameter set used for a batch HBV-light run. NOTE: This method ONLY works if no additional precipitaiton, temperature, or evaporation series are provided. Parameters ---------- results_folder : str, optional Name of the Batch Run results folder, default is 'Results'. Returns ------- swe : Pandas.DataFrame Data structure containing the simulated snow water equivalent data for each elevation band and parameter set. Raises ------ ValueError If the specifed file does not exist. """ # Set the results folder path. path = self.bsn_dir + '\\' + results_folder + '\\' # Set the snow water equivalent filename. filepath = path + 'Simulated_SWE.txt.' # Check if the snow water equivalent file exists. if not os.path.exists(filepath): raise ValueError('The file does not exist.') # Parse the raw data raw_data = pd.read_csv(filepath, sep='\t') # Get the number of parameter sets param_sets = raw_data['Parameterset'].unique() # Initialise a dict to write the SWE data swe = {ps: None for ps in param_sets} # Parse the data for ps in param_sets: data_tmp = raw_data[raw_data['Parameterset'] == ps] data_tmp.set_index('SWE serie', drop=True, inplace=True) data = data_tmp.drop( ['Parameterset', 'Prec. serie', 'Temp. serie', 'Evap. serie'], axis=1).transpose() data.index = pd.to_datetime(data.index, format='%Y%m%d') swe[ps] = data return swe def calculate_swe_stats(self, results_folder, clarea=None): """ Calculate the catchment-wide statistics of snow water equivalent taking into account all elevation bands and parameter sets used in batch HBV-light run. This method provides median and mean catchment snow water equivalent, in addition to the 10th and 90th percentiles. Parameters ---------- results_folder : str Name of the Batch Run results folder. clarea : str, optional Custom name for the 'Clarea.xml' file. If no value is provided the default file name is used, default is None. Returns ------- sim_swe : Pandas.Series Data structure containing the simulated catchment avverage snow water equivalent for each time step. """ # Instatiate the HBVdata class hbv_data = HBVdata(self.bsn_dir) # Use the default elevation distribution file name if no name is # specified. if clarea is None: clarea = 'Clarea.xml' # Check if the elevation distribution file exists. if not os.path.exists(hbv_data.data_dir + clarea): raise ValueError('The Clarea.xml file does not exist.') # Load the area fraction of each elevation band in the catchment. elev_dist = hbv_data.load_elev_dist(filename=clarea) # Load the distributed simulated snow water equivalent. dist_swe = self.load_swe(results_folder) # Calculate the catchment average snow water equivalent for # each of the parameter sets. avg_swe = pd.DataFrame() for p_set in dist_swe.keys(): for i, col in enumerate(dist_swe[p_set].columns): area = elev_dist.iloc[i] dist_swe[p_set][col] = dist_swe[p_set][col] * area avg_swe[p_set] = dist_swe[p_set].sum(axis=1) # Calculate the snow water equivalent statistics: # median, mean, 10p, and 90p swe_stats =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Join outlier (RNA) and variant (DNA) info. :Author: <NAME> <<EMAIL>> :Date: 2018-05-20 :Copyright: 2018, <NAME> :License: CC BY-SA """ import os import sys import re import pandas as pd from .utils import filter_variant_class class Error(Exception): """Base class for exceptions in this module.""" pass class JoinedDNAandRNAError(Error): """Exception raised for errors in this module. Attributes: message -- explanation of the error """ def __init__(self, message): """Assign error explanation to object.""" self.message = message class JoinedVarExpr(object): """Methods for creating the final DF.""" def __init__(self, var_loc, expr_outs_loc, dna_rna_df_loc, variant_class, exon_class, refgene, ensgene, max_tss_dist, annotations, contigs, logger): """Load and join variants and outliers. Args: var_loc (:obj:`str`): file location for the final set of variants that are being joined with expression (contains a string rep for chrom) expr_outs_loc (:obj:`str`): file location of the outliers dna_rna_df_loc (:obj:`str`): fully joined dataframe output file variant_class (:obj:`str`): annovar variant class to filter on (default None) exon_class (:obj:`str`): annovar EXON class to filter on (default None) max_tss_dist (:obj:`int`): maximum distance from TSS contigs (:obj:`list`): chromosomes that are in the VCF logger (:obj:`logging object`): Current logger Attributes: df (:obj:`DataFrame`): variants and outliers in a single dataframe """ logger.info("Loading outliers...") self.load_outliers(expr_outs_loc) if annotations: anno_list = annotations anno_list = [re.sub("Conserved_TF_sites/", "Conserved_TF_", i) for i in anno_list] anno_list = [re.sub("TfbsClustered_split/", "TfbsClust_", i) for i in anno_list] anno_list = [re.sub("factorbookMotif/", "factorbookMotif_", i) for i in anno_list] rep_w_blank = ".*/|.merged.sorted|.sorted|.bed$|.bed.gz$|.txt$" self.anno_list = [re.sub(rep_w_blank, "", i) for i in anno_list] else: self.anno_list = None if os.path.exists(dna_rna_df_loc): logger.info("Already joined data, now loading from " + dna_rna_df_loc) dtype_specs = { 'dist_refgene': 'str', 'exon_func_refgene': 'str', 'dist_ensgene': 'str', 'exon_func_ensgene': 'str'} self.df = pd.read_table(dna_rna_df_loc, dtype=dtype_specs) # self.df = pd.read_table(dna_rna_df_loc) self.df = filter_variant_class(self.df, variant_class, exon_class, refgene, ensgene) if variant_class: logger.info("Considering vars in these ENSEMBL categories " + ", ".join(set(self.df.func_ensgene))) if exon_class: logger.info("Only vars in these ENSEMBL EXONIC categories " + ", ".join(set(self.df.exon_func_ensgene))) else: logger.info("Loading variants...") self.load_vars(var_loc, contigs, variant_class, exon_class, refgene, ensgene, max_tss_dist, logger) logger.info("joining outliers with variants...") # confirm there are overlapping IDs # logger.debug(self.var_df.head()) # logger.debug(self.var_df.index[:10]) # logger.debug(self.var_df.shape) # logger.debug(self.expr_outlier_df.head()) # logger.debug(self.expr_outlier_df.index[:10]) # logger.debug(self.expr_outlier_df.shape) dna_ids = self.var_df.index.levels[1] pheno_ids = self.expr_outlier_df.index.levels[1] overlapped_ids = dna_ids.isin(pheno_ids) if overlapped_ids.sum() == 0: raise JoinedDNAandRNAError("No overlapping IDs between" + "RNAseq and VCF") self.df = self.var_df.join(self.expr_outlier_df, how='inner') self.df.reset_index(inplace=True) self.write_to_file(dna_rna_df_loc) def load_vars(self, var_loc, contigs, variant_class, exon_class, refgene, ensgene, max_tss_dist, logger): """Load and combine variant data. Attributes: var_df (:obj:`DataFrame`): all variants in a single dataframe """ self.var_df = pd.DataFrame() list_ = [] # cols_to_keep does not include 'gene' and 'blinded_id' # because these are set as the indices cols_to_keep = ['var_id', 'tss_dist', 'gene_refgene', 'func_refgene', 'dist_refgene', 'exon_func_refgene', 'gene_ensgene', 'func_ensgene', 'dist_ensgene', 'exon_func_ensgene', 'popmax_af', 'VCF_af', 'var_id_count', 'var_id_freq'] if self.anno_list: cols_to_keep.extend(self.anno_list) dtype_specs = { 'dist_refgene': 'str', 'exon_func_refgene': 'str', 'dist_ensgene': 'str', 'exon_func_ensgene': 'str'} for chrom in contigs: logger.info("Current chrom: " + chrom) # "chr" + var_df_per_chrom = pd.read_table( var_loc % (chrom), dtype=dtype_specs) if var_df_per_chrom.empty: logger.info("Empty dataframe for chromosome " + chrom) raise JoinedDNAandRNAError("Empty dataframe for " + chrom) var_df_per_chrom.set_index(['gene', 'blinded_id'], inplace=True) var_df_per_chrom = var_df_per_chrom.loc[ abs(var_df_per_chrom.tss_dist) <= max_tss_dist] var_df_per_chrom = filter_variant_class( var_df_per_chrom, variant_class, exon_class, refgene, ensgene) """# [18:118] [118:218] [218:-3] # last one is regions_enh_E013, total length is 371 if len(cols_to_keep) == 14: cols_to_keep.extend(list(var_df_per_chrom)[18:118]) logger.info(cols_to_keep) logger.info("Keeping {} columns".format(len(cols_to_keep))) # modification for summing accross annotations if 'any_gata4' in cols_to_keep: var_df_per_chrom = self.summarise_anno_cols(var_df_per_chrom) """ var_df_per_chrom = var_df_per_chrom.reindex(columns=cols_to_keep) """Keep only lines where any of the annotations are 1. https://stackoverflow.com/a/34243246""" if self.anno_list: nzv = var_df_per_chrom[self.anno_list].any(axis=1) # print(nzv.sum()) # print(var_df_per_chrom[nzv].shape) var_df_per_chrom = var_df_per_chrom[nzv] list_.append(var_df_per_chrom) # list_ is just pointing to DF so doesn't take any memory print(sys.getsizeof(var_df_per_chrom)/(1024**3), "Gb") logger.info("All contigs/chromosomes loaded") self.var_df =
pd.concat(list_)
pandas.concat
import pandas as pd import numpy as np import gspread_dataframe as gd import gspread as gs import setup import queries # csv export of historical sales sales_master = pd.read_csv('Inventory Manager/historical_sales.csv') # dropping na values, filtering out samples sales_master = sales_master.dropna() sales_master = sales_master[sales_master['Sample'] == 'N'] # adding in datetime fields for segmentation sales_master['Delivery Date'] = pd.to_datetime(sales_master['Delivery Date']) sales_master['Month'] = sales_master['Delivery Date'].dt.month sales_master['Year'] = sales_master['Delivery Date'].dt.year sales_master['Week'] = sales_master['Delivery Date'].dt.isocalendar().week # limiting data to only directly purchased and managed inventory sales_master_no_dsw = sales_master[sales_master['Warehouse'] != 'DSW'] # global monthly sales ind = ['Item Description: Product Family', 'Item Description: Size'] cols = ['Year', 'Month'] monthly_sales_global =
pd.pivot_table(sales_master_no_dsw, values='Cases Sold', index=ind, columns=cols, aggfunc=np.sum)
pandas.pivot_table
import pandas as pd from netstats.fsan import Fsan class ListaDataframe: def __init__(self, operacao): self.operacao = operacao def dataframe(self): """ Retorna uma lista de dataframes por FSAN, cada dataframe contém as operações realizadas com a FSAN. Returns ------- list """ fsan = Fsan(self.operacao).lista_de_fsans() sequencia = [] for i in fsan: lista = [] for j in self.operacao.operacao: if i in j or i+':' in j: lista.append(j) sequencia.append(lista) lista_data = [] for i in sequencia: lista_data.append(
pd.DataFrame(i)
pandas.DataFrame
import pytest from hypothesis import given, settings import hypothesis.strategies as st import numpy as np import pandas as pd from generators import ( generate_votes, row_maker, ) def test_row_keys(): voting_machine = row_maker() row = voting_machine() assert list(row.keys()) == ["timestamp", "id", "region", "vote"] @settings(deadline=None) @given(st.integers(min_value=0, max_value=200)) def test_generated_as_many_votes_as_requested(length): votes = generate_votes(length) assert (length == 0 and votes.empty) or generate_votes(length).shape == (length, 4) @settings(deadline=None) @given(st.integers(min_value=0, max_value=200)) def test_votes_columns(length): data = generate_votes(length) assert (length == 0 and data.empty) or list(data.columns) == [ "timestamp", "id", "region", "vote", ] @settings(deadline=None) @given(st.integers(min_value=1, max_value=200)) def test_id_lengths(length): string_lengths = generate_votes(length)["id"].apply(lambda x: len(x)) assert all(uid_len == 36 for uid_len in string_lengths) @settings(deadline=None) @given(st.integers(min_value=1, max_value=200)) def test_ids_have_no_repetitions(length): assert generate_votes(length)["id"].drop_duplicates().shape[0] == length @settings(deadline=None) @given(st.integers(min_value=1, max_value=200)) def test_timestamps_have_constant_date(length): dates = list(generate_votes(length)["timestamp"].dt.date.unique()) assert (length == 0 and not dates) or dates == [pd.Timestamp("2020-12-10")] @settings(deadline=None) @given(st.integers(min_value=1, max_value=200)) def test_timestamps_have_hours_within_range(length): hours = generate_votes(length)["timestamp"].dt.hour.unique() assert all(hour in range(8, 21) for hour in hours) @settings(deadline=None) @given(st.integers(min_value=1000, max_value=1400)) def test_all_regions_appear(length): expected_regions = set(pd.read_csv("data/region_data.csv").region) actual_regions = set(generate_votes(length)["region"].unique()) assert expected_regions == actual_regions @settings(deadline=None) @given(st.integers(min_value=1000, max_value=1800)) def test_regions_distribution(length): expected = pd.read_csv("data/region_data.csv", usecols=["region", "percent"]) regions = pd.DataFrame(generate_votes(length)["region"]) regions["cnt"] = 1 actual = (regions.groupby("region").agg("count") / length).reset_index() joined =
pd.merge(expected, actual, on="region")
pandas.merge
import numpy as np import pandas as pd from tensorflow.keras import Input from keras.layers.core import Dropout, Dense from keras.layers import LSTM, Bidirectional, Concatenate from keras.layers.embeddings import Embedding from keras.models import Model from tensorflow.keras.preprocessing.text import Tokenizer from src.utils import * from model import (do_padding,get_extra,preprocess_text,convert_cities,convert_countries) train = pd.read_csv("data/train.csv") test = pd.read_csv("data/test.csv") # Processing extra vars keyword_bins = pd.read_csv("data/keyword_bins.csv", dtype={"keyword":str, "keyword_bin":str}) locations =
pd.read_csv("data/locations.csv")
pandas.read_csv
#!/usr/bin/python3 import sys import numpy as np import pandas as pd import scipy.stats as ss import tensorflow as tf from tensorflow.keras.utils import to_categorical from segnet import segnet # specify model, datasets prefix='weights/chr20.full.conv3.168' if len(sys.argv) > 1: dataset=sys.argv[1] else: dataset="test_10gen.no_OCE_WAS" in_x="/scratch/users/magu/deepmix/data/simulated_chr20/numpy/"+dataset+".query.npz" in_y="/scratch/users/magu/deepmix/data/simulated_chr20/label/"+dataset+".result.npz" print(in_x) print(in_y) # consider proper variants v = np.loadtxt(prefix+'.var_index.txt', dtype=int) # declare model, compile, load weights -- perhaps make this automated with the file? model=segnet(input_shape=(v.shape[0], 2), n_classes=5, n_blocks=4, n_filters=16, width=16) model.compile(tf.keras.optimizers.Adam(lr=1e-4), loss='categorical_crossentropy', metrics=['accuracy']) model.load_weights(prefix+'.h5') # load data anc=np.array(['AFR','EAS','EUR','NAT','SAS']) # fixed for all test datasets x=np.load(in_x) y=np.load(in_y) X=x['G'][:,v,:] S=x['S'] V=x['V'][v] Y=y['L'][np.ix_(np.array([np.where(y['S']==s)[0][0] for s in S]),v)]-1 print(X.shape, Y.shape) # preliminary evaluation Yhat=model.predict(X) Yhat_lab = np.argmax(Yhat, axis=-1) loss, acc = model.evaluate(X, to_categorical(Y), batch_size=4, verbose=0) print(loss) print(acc) # confusion matrix cf=tf.math.confusion_matrix(Y.flatten(), Yhat_lab.flatten()).numpy() print(np.sum(np.diag(cf))/np.sum(cf)) # verify accuracy print("base pair confusion (rows are ground truth)") print(pd.DataFrame(cf, index=anc, columns=anc).to_latex()) # specificity (column-normalized, diagonal is fraction of A_hat which is truly A) print("specificity (column-normalized) confusion") print(pd.DataFrame(cf, index=anc, columns=anc).divide(cf.sum(axis=0), axis=1).round(decimals=3).to_latex()) # sensitivity (row-normalized, diagonal is fraction of A which we say is A_hat) print("sensitivity (row-normalized) confusion") print(pd.DataFrame(cf, index=anc, columns=anc).divide(cf.sum(axis=1), axis=0).round(decimals=3).to_latex()) # rinse and repeat with mode filter print("---[MODE FILTER: WIDTH=4000]---") mfw=2000 yhat2=np.zeros(Yhat_lab.shape) for j in range(Yhat_lab.shape[-1]): yhat2[:,j]=ss.mode(Yhat_lab[:,max(0,j-mfw):min(Yhat_lab.shape[-1], j+mfw)], axis=1).mode.flatten() print("accuracy") cf2=tf.math.confusion_matrix(Y.flatten(), yhat2.flatten()).numpy() print(np.sum(np.diag(cf2))/np.sum(cf2)) print("base pair confusion (rows are ground truth)") print(
pd.DataFrame(cf2, index=anc, columns=anc)
pandas.DataFrame
from datetime import timedelta import operator import numpy as np import pytest import pytz from pandas._libs.tslibs import IncompatibleFrequency from pandas.core.dtypes.common import is_datetime64_dtype, is_datetime64tz_dtype import pandas as pd from pandas import ( Categorical, Index, IntervalIndex, Series, Timedelta, bdate_range, date_range, isna, ) import pandas._testing as tm from pandas.core import nanops, ops def _permute(obj): return obj.take(np.random.permutation(len(obj))) class TestSeriesFlexArithmetic: @pytest.mark.parametrize( "ts", [ (lambda x: x, lambda x: x * 2, False), (lambda x: x, lambda x: x[::2], False), (lambda x: x, lambda x: 5, True), (lambda x: tm.makeFloatSeries(), lambda x: tm.makeFloatSeries(), True), ], ) @pytest.mark.parametrize( "opname", ["add", "sub", "mul", "floordiv", "truediv", "pow"] ) def test_flex_method_equivalence(self, opname, ts): # check that Series.{opname} behaves like Series.__{opname}__, tser = tm.makeTimeSeries().rename("ts") series = ts[0](tser) other = ts[1](tser) check_reverse = ts[2] op = getattr(Series, opname) alt = getattr(operator, opname) result = op(series, other) expected = alt(series, other) tm.assert_almost_equal(result, expected) if check_reverse: rop = getattr(Series, "r" + opname) result = rop(series, other) expected = alt(other, series) tm.assert_almost_equal(result, expected) def test_flex_method_subclass_metadata_preservation(self, all_arithmetic_operators): # GH 13208 class MySeries(Series): _metadata = ["x"] @property def _constructor(self): return MySeries opname = all_arithmetic_operators op = getattr(Series, opname) m = MySeries([1, 2, 3], name="test") m.x = 42 result = op(m, 1) assert result.x == 42 def test_flex_add_scalar_fill_value(self): # GH12723 s = Series([0, 1, np.nan, 3, 4, 5]) exp = s.fillna(0).add(2) res = s.add(2, fill_value=0) tm.assert_series_equal(res, exp) pairings = [(Series.div, operator.truediv, 1), (Series.rdiv, ops.rtruediv, 1)] for op in ["add", "sub", "mul", "pow", "truediv", "floordiv"]: fv = 0 lop = getattr(Series, op) lequiv = getattr(operator, op) rop = getattr(Series, "r" + op) # bind op at definition time... requiv = lambda x, y, op=op: getattr(operator, op)(y, x) pairings.append((lop, lequiv, fv)) pairings.append((rop, requiv, fv)) @pytest.mark.parametrize("op, equiv_op, fv", pairings) def test_operators_combine(self, op, equiv_op, fv): def _check_fill(meth, op, a, b, fill_value=0): exp_index = a.index.union(b.index) a = a.reindex(exp_index) b = b.reindex(exp_index) amask = isna(a) bmask = isna(b) exp_values = [] for i in range(len(exp_index)): with np.errstate(all="ignore"): if amask[i]: if bmask[i]: exp_values.append(np.nan) continue exp_values.append(op(fill_value, b[i])) elif bmask[i]: if amask[i]: exp_values.append(np.nan) continue exp_values.append(op(a[i], fill_value)) else: exp_values.append(op(a[i], b[i])) result = meth(a, b, fill_value=fill_value) expected = Series(exp_values, exp_index) tm.assert_series_equal(result, expected) a = Series([np.nan, 1.0, 2.0, 3.0, np.nan], index=np.arange(5)) b = Series([np.nan, 1, np.nan, 3, np.nan, 4.0], index=np.arange(6)) result = op(a, b) exp = equiv_op(a, b) tm.assert_series_equal(result, exp) _check_fill(op, equiv_op, a, b, fill_value=fv) # should accept axis=0 or axis='rows' op(a, b, axis=0) class TestSeriesArithmetic: # Some of these may end up in tests/arithmetic, but are not yet sorted def test_add_series_with_period_index(self): rng = pd.period_range("1/1/2000", "1/1/2010", freq="A") ts = Series(np.random.randn(len(rng)), index=rng) result = ts + ts[::2] expected = ts + ts expected.iloc[1::2] = np.nan tm.assert_series_equal(result, expected) result = ts + _permute(ts[::2]) tm.assert_series_equal(result, expected) msg = "Input has different freq=D from PeriodIndex\\(freq=A-DEC\\)" with pytest.raises(IncompatibleFrequency, match=msg): ts + ts.asfreq("D", how="end") @pytest.mark.parametrize( "target_add,input_value,expected_value", [ ("!", ["hello", "world"], ["hello!", "world!"]), ("m", ["hello", "world"], ["hellom", "worldm"]), ], ) def test_string_addition(self, target_add, input_value, expected_value): # GH28658 - ensure adding 'm' does not raise an error a = Series(input_value) result = a + target_add expected = Series(expected_value) tm.assert_series_equal(result, expected) def test_divmod(self): # GH#25557 a = Series([1, 1, 1, np.nan], index=["a", "b", "c", "d"]) b = Series([2, np.nan, 1, np.nan], index=["a", "b", "d", "e"]) result = a.divmod(b) expected = divmod(a, b) tm.assert_series_equal(result[0], expected[0]) tm.assert_series_equal(result[1], expected[1]) result = a.rdivmod(b) expected = divmod(b, a) tm.assert_series_equal(result[0], expected[0]) tm.assert_series_equal(result[1], expected[1]) @pytest.mark.parametrize("index", [None, range(9)]) def test_series_integer_mod(self, index): # GH#24396 s1 = Series(range(1, 10)) s2 = Series("foo", index=index) msg = "not all arguments converted during string formatting" with pytest.raises(TypeError, match=msg): s2 % s1 def test_add_with_duplicate_index(self): # GH14227 s1 = Series([1, 2], index=[1, 1]) s2 = Series([10, 10], index=[1, 2]) result = s1 + s2 expected = Series([11, 12, np.nan], index=[1, 1, 2]) tm.assert_series_equal(result, expected) def test_add_na_handling(self): from datetime import date from decimal import Decimal s = Series( [Decimal("1.3"), Decimal("2.3")], index=[date(2012, 1, 1), date(2012, 1, 2)] ) result = s + s.shift(1) result2 = s.shift(1) + s assert isna(result[0]) assert isna(result2[0]) def test_add_corner_cases(self, datetime_series): empty = Series([], index=Index([]), dtype=np.float64) result = datetime_series + empty assert np.isnan(result).all() result = empty + empty.copy() assert len(result) == 0 # FIXME: dont leave commented-out # TODO: this returned NotImplemented earlier, what to do? # deltas = Series([timedelta(1)] * 5, index=np.arange(5)) # sub_deltas = deltas[::2] # deltas5 = deltas * 5 # deltas = deltas + sub_deltas # float + int int_ts = datetime_series.astype(int)[:-5] added = datetime_series + int_ts expected = Series( datetime_series.values[:-5] + int_ts.values, index=datetime_series.index[:-5], name="ts", ) tm.assert_series_equal(added[:-5], expected) def test_mul_empty_int_corner_case(self): s1 = Series([], [], dtype=np.int32) s2 = Series({"x": 0.0}) tm.assert_series_equal(s1 * s2, Series([np.nan], index=["x"])) def test_sub_datetimelike_align(self): # GH#7500 # datetimelike ops need to align dt = Series(date_range("2012-1-1", periods=3, freq="D")) dt.iloc[2] = np.nan dt2 = dt[::-1] expected = Series([timedelta(0), timedelta(0), pd.NaT]) # name is reset result = dt2 - dt tm.assert_series_equal(result, expected) expected = Series(expected, name=0) result = (dt2.to_frame() - dt.to_frame())[0] tm.assert_series_equal(result, expected) def test_alignment_doesnt_change_tz(self): # GH#33671 dti = pd.date_range("2016-01-01", periods=10, tz="CET") dti_utc = dti.tz_convert("UTC") ser = Series(10, index=dti) ser_utc = Series(10, index=dti_utc) # we don't care about the result, just that original indexes are unchanged ser * ser_utc assert ser.index is dti assert ser_utc.index is dti_utc def test_arithmetic_with_duplicate_index(self): # GH#8363 # integer ops with a non-unique index index = [2, 2, 3, 3, 4] ser = Series(np.arange(1, 6, dtype="int64"), index=index) other = Series(np.arange(5, dtype="int64"), index=index) result = ser - other expected = Series(1, index=[2, 2, 3, 3, 4]) tm.assert_series_equal(result, expected) # GH#8363 # datetime ops with a non-unique index ser = Series(date_range("20130101 09:00:00", periods=5), index=index) other = Series(date_range("20130101", periods=5), index=index) result = ser - other expected = Series(Timedelta("9 hours"), index=[2, 2, 3, 3, 4]) tm.assert_series_equal(result, expected) # ------------------------------------------------------------------ # Comparisons class TestSeriesFlexComparison: @pytest.mark.parametrize("axis", [0, None, "index"]) def test_comparison_flex_basic(self, axis, all_compare_operators): op = all_compare_operators.strip("__") left = Series(np.random.randn(10)) right = Series(np.random.randn(10)) result = getattr(left, op)(right, axis=axis) expected = getattr(operator, op)(left, right) tm.assert_series_equal(result, expected) def test_comparison_bad_axis(self, all_compare_operators): op = all_compare_operators.strip("__") left = Series(np.random.randn(10)) right = Series(np.random.randn(10)) msg = "No axis named 1 for object type" with pytest.raises(ValueError, match=msg): getattr(left, op)(right, axis=1) @pytest.mark.parametrize( "values, op", [ ([False, False, True, False], "eq"), ([True, True, False, True], "ne"), ([False, False, True, False], "le"), ([False, False, False, False], "lt"), ([False, True, True, False], "ge"), ([False, True, False, False], "gt"), ], ) def test_comparison_flex_alignment(self, values, op): left = Series([1, 3, 2], index=list("abc")) right = Series([2, 2, 2], index=list("bcd")) result = getattr(left, op)(right) expected = Series(values, index=list("abcd")) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "values, op, fill_value", [ ([False, False, True, True], "eq", 2), ([True, True, False, False], "ne", 2), ([False, False, True, True], "le", 0), ([False, False, False, True], "lt", 0), ([True, True, True, False], "ge", 0), ([True, True, False, False], "gt", 0), ], ) def test_comparison_flex_alignment_fill(self, values, op, fill_value): left = Series([1, 3, 2], index=list("abc")) right = Series([2, 2, 2], index=list("bcd")) result = getattr(left, op)(right, fill_value=fill_value) expected = Series(values, index=list("abcd")) tm.assert_series_equal(result, expected) class TestSeriesComparison: def test_comparison_different_length(self): a = Series(["a", "b", "c"]) b = Series(["b", "a"]) msg = "only compare identically-labeled Series" with pytest.raises(ValueError, match=msg): a < b a = Series([1, 2]) b = Series([2, 3, 4]) with pytest.raises(ValueError, match=msg): a == b @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_ser_flex_cmp_return_dtypes(self, opname): # GH#15115 ser = Series([1, 3, 2], index=range(3)) const = 2 result = getattr(ser, opname)(const).dtypes expected = np.dtype("bool") assert result == expected @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_ser_flex_cmp_return_dtypes_empty(self, opname): # GH#15115 empty Series case ser = Series([1, 3, 2], index=range(3)) empty = ser.iloc[:0] const = 2 result = getattr(empty, opname)(const).dtypes expected = np.dtype("bool") assert result == expected @pytest.mark.parametrize( "op", [operator.eq, operator.ne, operator.le, operator.lt, operator.ge, operator.gt], ) @pytest.mark.parametrize( "names", [(None, None, None), ("foo", "bar", None), ("baz", "baz", "baz")] ) def test_ser_cmp_result_names(self, names, op): # datetime64 dtype dti = pd.date_range("1949-06-07 03:00:00", freq="H", periods=5, name=names[0]) ser = Series(dti).rename(names[1]) result = op(ser, dti) assert result.name == names[2] # datetime64tz dtype dti = dti.tz_localize("US/Central") dti = pd.DatetimeIndex(dti, freq="infer") # freq not preserved by tz_localize ser = Series(dti).rename(names[1]) result = op(ser, dti) assert result.name == names[2] # timedelta64 dtype tdi = dti - dti.shift(1) ser = Series(tdi).rename(names[1]) result = op(ser, tdi) assert result.name == names[2] # interval dtype if op in [operator.eq, operator.ne]: # interval dtype comparisons not yet implemented ii = pd.interval_range(start=0, periods=5, name=names[0]) ser = Series(ii).rename(names[1]) result = op(ser, ii) assert result.name == names[2] # categorical if op in [operator.eq, operator.ne]: # categorical dtype comparisons raise for inequalities cidx = tdi.astype("category") ser = Series(cidx).rename(names[1]) result = op(ser, cidx) assert result.name == names[2] def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) with np.errstate(invalid="ignore"): expected = (left > right).astype("O") expected[:3] = np.nan tm.assert_almost_equal(result, expected) s = Series(["a", "b", "c"]) s2 = Series([False, True, False]) # it works! exp = Series([False, False, False]) tm.assert_series_equal(s == s2, exp) tm.assert_series_equal(s2 == s, exp) # ----------------------------------------------------------------- # Categorical Dtype Comparisons def test_categorical_comparisons(self): # GH#8938 # allow equality comparisons a = Series(list("abc"), dtype="category") b = Series(list("abc"), dtype="object") c = Series(["a", "b", "cc"], dtype="object") d = Series(list("acb"), dtype="object") e = Categorical(list("abc")) f = Categorical(list("acb")) # vs scalar assert not (a == "a").all() assert ((a != "a") == ~(a == "a")).all() assert not ("a" == a).all() assert (a == "a")[0] assert ("a" == a)[0] assert not ("a" != a)[0] # vs list-like assert (a == a).all() assert not (a != a).all() assert (a == list(a)).all() assert (a == b).all() assert (b == a).all() assert ((~(a == b)) == (a != b)).all() assert ((~(b == a)) == (b != a)).all() assert not (a == c).all() assert not (c == a).all() assert not (a == d).all() assert not (d == a).all() # vs a cat-like assert (a == e).all() assert (e == a).all() assert not (a == f).all() assert not (f == a).all() assert (~(a == e) == (a != e)).all() assert (~(e == a) == (e != a)).all() assert (~(a == f) == (a != f)).all() assert (~(f == a) == (f != a)).all() # non-equality is not comparable msg = "can only compare equality or not" with pytest.raises(TypeError, match=msg): a < b with pytest.raises(TypeError, match=msg): b < a with pytest.raises(TypeError, match=msg): a > b with pytest.raises(TypeError, match=msg): b > a def test_unequal_categorical_comparison_raises_type_error(self): # unequal comparison should raise for unordered cats cat = Series(Categorical(list("abc"))) msg = "can only compare equality or not" with pytest.raises(TypeError, match=msg): cat > "b" cat = Series(Categorical(list("abc"), ordered=False)) with pytest.raises(TypeError, match=msg): cat > "b" # https://github.com/pandas-dev/pandas/issues/9836#issuecomment-92123057 # and following comparisons with scalars not in categories should raise # for unequal comps, but not for equal/not equal cat = Series(Categorical(list("abc"), ordered=True)) msg = "Invalid comparison between dtype=category and str" with pytest.raises(TypeError, match=msg): cat < "d" with pytest.raises(TypeError, match=msg): cat > "d" with pytest.raises(TypeError, match=msg): "d" < cat with pytest.raises(TypeError, match=msg): "d" > cat tm.assert_series_equal(cat == "d", Series([False, False, False])) tm.assert_series_equal(cat != "d", Series([True, True, True])) # ----------------------------------------------------------------- def test_comparison_tuples(self): # GH#11339 # comparisons vs tuple s = Series([(1, 1), (1, 2)]) result = s == (1, 2) expected = Series([False, True]) tm.assert_series_equal(result, expected) result = s != (1, 2) expected = Series([True, False]) tm.assert_series_equal(result, expected) result = s == (0, 0) expected = Series([False, False]) tm.assert_series_equal(result, expected) result = s != (0, 0) expected = Series([True, True]) tm.assert_series_equal(result, expected) s = Series([(1, 1), (1, 1)]) result = s == (1, 1) expected = Series([True, True]) tm.assert_series_equal(result, expected) result = s != (1, 1) expected = Series([False, False]) tm.assert_series_equal(result, expected) s = Series([frozenset([1]), frozenset([1, 2])]) result = s == frozenset([1]) expected = Series([True, False]) tm.assert_series_equal(result, expected) def test_comparison_operators_with_nas(self, all_compare_operators): op = all_compare_operators ser = Series(bdate_range("1/1/2000", periods=10), dtype=object) ser[::2] = np.nan f = getattr(operator, op) # test that comparisons work val = ser[5] result = f(ser, val) expected = f(ser.dropna(), val).reindex(ser.index) if op == "__ne__": expected = expected.fillna(True).astype(bool) else: expected = expected.fillna(False).astype(bool) tm.assert_series_equal(result, expected) # FIXME: dont leave commented-out # result = f(val, ser) # expected = f(val, ser.dropna()).reindex(ser.index) # tm.assert_series_equal(result, expected) def test_ne(self): ts = Series([3, 4, 5, 6, 7], [3, 4, 5, 6, 7], dtype=float) expected = [True, True, False, True, True] assert tm.equalContents(ts.index != 5, expected) assert tm.equalContents(~(ts.index == 5), expected) @pytest.mark.parametrize( "left, right", [ ( Series([1, 2, 3], index=list("ABC"), name="x"), Series([2, 2, 2], index=list("ABD"), name="x"), ), ( Series([1, 2, 3], index=list("ABC"), name="x"), Series([2, 2, 2, 2], index=list("ABCD"), name="x"), ), ], ) def test_comp_ops_df_compat(self, left, right): # GH 1134 msg = "Can only compare identically-labeled Series objects" with pytest.raises(ValueError, match=msg): left == right with pytest.raises(ValueError, match=msg): right == left with pytest.raises(ValueError, match=msg): left != right with pytest.raises(ValueError, match=msg): right != left with pytest.raises(ValueError, match=msg): left < right with pytest.raises(ValueError, match=msg): right < left msg = "Can only compare identically-labeled DataFrame objects" with pytest.raises(ValueError, match=msg): left.to_frame() == right.to_frame() with pytest.raises(ValueError, match=msg): right.to_frame() == left.to_frame() with pytest.raises(ValueError, match=msg): left.to_frame() != right.to_frame() with pytest.raises(ValueError, match=msg): right.to_frame() != left.to_frame() with pytest.raises(ValueError, match=msg): left.to_frame() < right.to_frame() with pytest.raises(ValueError, match=msg): right.to_frame() < left.to_frame() def test_compare_series_interval_keyword(self): # GH#25338 s = Series(["IntervalA", "IntervalB", "IntervalC"]) result = s == "IntervalA" expected = Series([True, False, False]) tm.assert_series_equal(result, expected) # ------------------------------------------------------------------ # Unsorted # These arithmetic tests were previously in other files, eventually # should be parametrized and put into tests.arithmetic class TestTimeSeriesArithmetic: # TODO: De-duplicate with test below def test_series_add_tz_mismatch_converts_to_utc_duplicate(self): rng = date_range("1/1/2011", periods=10, freq="H", tz="US/Eastern") ser = Series(np.random.randn(len(rng)), index=rng) ts_moscow = ser.tz_convert("Europe/Moscow") result = ser + ts_moscow assert result.index.tz is pytz.utc result = ts_moscow + ser assert result.index.tz is pytz.utc def test_series_add_tz_mismatch_converts_to_utc(self): rng = date_range("1/1/2011", periods=100, freq="H", tz="utc") perm = np.random.permutation(100)[:90] ser1 = Series( np.random.randn(90), index=rng.take(perm).tz_convert("US/Eastern") ) perm = np.random.permutation(100)[:90] ser2 = Series( np.random.randn(90), index=rng.take(perm).tz_convert("Europe/Berlin") ) result = ser1 + ser2 uts1 = ser1.tz_convert("utc") uts2 = ser2.tz_convert("utc") expected = uts1 + uts2 assert result.index.tz == pytz.UTC tm.assert_series_equal(result, expected) def test_series_add_aware_naive_raises(self): rng =
date_range("1/1/2011", periods=10, freq="H")
pandas.date_range
# -*- coding:utf-8 -*- import numpy as np import pandas as pd import xgboost as xgb import operator import matplotlib.pyplot as plt from sklearn import preprocessing from sklearn.feature_selection import RFE from sklearn.svm import SVR from sklearn.preprocessing import Imputer from sklearn.ensemble import RandomForestRegressor plt.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体 plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题 def check_nan(): """ 缺失值含义分析与删除 """ train =
pd.read_csv("./data/house/train.csv")
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # Based on [olivier's script](https://www.kaggle.com/ogrellier/xgb-classifier-upsampling-lb-0-283) # In[1]: MAX_ROUNDS = 400 OPTIMIZE_ROUNDS = False LEARNING_RATE = 0.07 EARLY_STOPPING_ROUNDS = 50 # Note: I set EARLY_STOPPING_ROUNDS high so that (when OPTIMIZE_ROUNDS is set) # I will get lots of information to make my own judgment. You should probably # reduce EARLY_STOPPING_ROUNDS if you want to do actual early stopping. # I recommend initially setting <code>MAX_ROUNDS</code> fairly high and using <code>OPTIMIZE_ROUNDS</code> to get an idea of the appropriate number of rounds (which, in my judgment, should be close to the maximum value of <code>best_ntree_limit</code> among all folds, maybe even a bit higher if your model is adequately regularized...or alternatively, you could set <code>verbose=True</code> and look at the details to try to find a number of rounds that works well for all folds). Then I would turn off <code>OPTIMIZE_ROUNDS</code> and set <code>MAX_ROUNDS</code> to the appropraite number of total rounds. # # The problem with "early stopping" by choosing the best round for each fold is that it overfits to the validation data. It's therefore liable not to produce the optimal model for predicting test data, and if it's used to produce validation data for stacking/ensembling with other models, it would cause this one to have too much weight in the ensemble. Another possibility (and the default for XGBoost, it seems) is to use the round where the early stop actually happens (with the lag that verifies lack of improvement) rather than the best round. That solves the overfitting problem (provided the lag is long enough), but so far it doesn't seem to have helped. (I got a worse validation score with 20-round early stopping per fold than with a constant number of rounds for all folds, so the early stopping actually seemed to underfit.) # # In[2]: import numpy as np import pandas as pd from xgboost import XGBClassifier from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold from sklearn.preprocessing import LabelEncoder from numba import jit import time import gc # In[3]: # Compute gini # from CPMP's kernel https://www.kaggle.com/cpmpml/extremely-fast-gini-computation @jit def eval_gini(y_true, y_prob): y_true = np.asarray(y_true) y_true = y_true[np.argsort(y_prob)] ntrue = 0 gini = 0 delta = 0 n = len(y_true) for i in range(n-1, -1, -1): y_i = y_true[i] ntrue += y_i gini += y_i * delta delta += 1 - y_i gini = 1 - 2 * gini / (ntrue * (n - ntrue)) return gini # In[4]: # Funcitons from olivier's kernel # https://www.kaggle.com/ogrellier/xgb-classifier-upsampling-lb-0-283 def gini_xgb(preds, dtrain): labels = dtrain.get_label() gini_score = -eval_gini(labels, preds) return [('gini', gini_score)] def add_noise(series, noise_level): return series * (1 + noise_level * np.random.randn(len(series))) def target_encode(trn_series=None, # Revised to encode validation series val_series=None, tst_series=None, target=None, min_samples_leaf=1, smoothing=1, noise_level=0): """ Smoothing is computed like in the following paper by <NAME> https://kaggle2.blob.core.windows.net/forum-message-attachments/225952/7441/high%20cardinality%20categoricals.pdf trn_series : training categorical feature as a pd.Series tst_series : test categorical feature as a pd.Series target : target data as a pd.Series min_samples_leaf (int) : minimum samples to take category average into account smoothing (int) : smoothing effect to balance categorical average vs prior """ assert len(trn_series) == len(target) assert trn_series.name == tst_series.name temp = pd.concat([trn_series, target], axis=1) # Compute target mean averages = temp.groupby(by=trn_series.name)[target.name].agg(["mean", "count"]) # Compute smoothing smoothing = 1 / (1 + np.exp(-(averages["count"] - min_samples_leaf) / smoothing)) # Apply average function to all target data prior = target.mean() # The bigger the count the less full_avg is taken into account averages[target.name] = prior * (1 - smoothing) + averages["mean"] * smoothing averages.drop(["mean", "count"], axis=1, inplace=True) # Apply averages to trn and tst series ft_trn_series = pd.merge( trn_series.to_frame(trn_series.name), averages.reset_index().rename(columns={'index': target.name, target.name: 'average'}), on=trn_series.name, how='left')['average'].rename(trn_series.name + '_mean').fillna(prior) # pd.merge does not keep the index so restore it ft_trn_series.index = trn_series.index ft_val_series = pd.merge( val_series.to_frame(val_series.name), averages.reset_index().rename(columns={'index': target.name, target.name: 'average'}), on=val_series.name, how='left')['average'].rename(trn_series.name + '_mean').fillna(prior) # pd.merge does not keep the index so restore it ft_val_series.index = val_series.index ft_tst_series = pd.merge( tst_series.to_frame(tst_series.name), averages.reset_index().rename(columns={'index': target.name, target.name: 'average'}), on=tst_series.name, how='left')['average'].rename(trn_series.name + '_mean').fillna(prior) # pd.merge does not keep the index so restore it ft_tst_series.index = tst_series.index return add_noise(ft_trn_series, noise_level), add_noise(ft_val_series, noise_level), add_noise(ft_tst_series, noise_level) # In[5]: # Read data train_df =
pd.read_csv('../input/train.csv', na_values="-1")
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Thu Jul 9 16:49:36 2020 @author: Yumen """ import os import pandas as pd import matplotlib.pyplot as plt import networkx as nx import Preprocessing as pp import Data_Cleaning as dc def DataCleaning(SELECTED_BEACON,time_zone,log_version,time_bins_size, members_metadata_filename, beacons_metadata_filename, attendees_metadata_filename,data_dir): #set global variables SELECTED_BEACON = 12 time_zone = 'US/Eastern' log_version = '2.0' time_bins_size = '1min' proximity_data_filenames = [] for i in range(1, 18): if i < 10: filename = 'CTSIserver{:02d}_proximity_2019-06-01.txt'.format(i) else: filename = 'CTSIserver{}_proximity_2019-06-01.txt'.format(i) proximity_data_filenames.append(filename) #Pre-processing on data ''' First, we load two lists that will help us with some of the analysis: list of membmers and list of location beacons ''' members_metadata = pd.read_csv(data_dir+members_metadata_filename) beacons_metadata = pd.read_excel(data_dir+beacons_metadata_filename, sheet_name='Sheet1') #beacon data peprocessing ''' We create a translation table between the badge ID and member key. This is done based on the data itself, since it should contain data from all the badges that take part in the study. Note that we create a <id,member key> pair for ever time bin. While this is not necessary at this point, it allows this mapping to change (for example, if a badge is re-assigned to a different member). ''' idmaps = [] for proximity_data_filename in proximity_data_filenames: with open(os.path.join(data_dir, proximity_data_filename), 'r') as f: idmaps.append(pp.id_to_member_mapping(f, time_bins_size, tz=time_zone)) tmp_idmaps = idmaps[0] for i in range(1, len(idmaps)): tmp_idmaps =
pd.concat([tmp_idmaps, idmaps[i]])
pandas.concat
from flask import Flask, render_template,request,redirect,flash,url_for from flask import * from flaskext.mysql import MySQL from flask import request import pandas as pd from sklearn.model_selection import train_test_split import missingno as msno import warnings warnings.filterwarnings('ignore') import pickle mysql = MySQL() app = Flask(__name__) model = pickle.load(open('model.pkl', 'rb' )) app.secret_key = 'your_secret_key' @app.route("/") def home(): return render_template("index.html") @app.route("/register") def register(): #Loading the quiz data #reading data df0 = pd.read_csv('data/LWR1.csv') df1 = pd.read_csv('data/MOR1.csv') df2 = pd.read_csv('data/PCR1.csv') df3 = pd.read_csv('data/PVR1.csv') df4 = pd.read_csv('data/SRR1.csv') #spelling data df5 = pd.read_csv('data/LWS1.csv') df6 = pd.read_csv('data/PVS1.csv') df7 = pd.read_csv('data/SOSS1.csv') #memory data df8 = pd.read_csv('data/LWM1.csv') df9 = pd.read_csv('data/LSM1.csv') df10 = pd.read_csv('data/MOM1.csv') df11 = pd.read_csv('data/PCM1.csv') df12 = pd.read_csv('data/PVM1.csv') df13 = pd.read_csv('data/SOM1.csv') #parent's feedback df14 = pd.read_csv('data/PFR1.csv') #In[3]: dl = pd.merge(df0,df1, left_on='id ', right_index=True) # In[4]: dd = pd.merge(dl,df2, left_on='id ', right_index=True) # In[5]: de = pd.merge(dd,df3, left_on='id ', right_index=True) # In[6]: d = pd.merge(de,df4, left_on='id ', right_index=True) # In[7]: dz = pd.merge(d,df5, left_on='id ', right_index=True) # In[8]: dx = pd.merge(dz,df6, left_on='id ', right_index=True) # In[9]: dc = pd.merge(dx,df7, left_on='id ', right_index=True) # In[10]: dv = pd.merge(dx,df8, left_on='id ', right_index=True) # In[11]: db = pd.merge(dv,df9, left_on='id ', right_index=True) # In[12]: dn = pd.merge(db,df10, left_on='id ', right_index=True) # In[13]: dm =
pd.merge(dn,df11, left_on='id ', right_index=True)
pandas.merge
import datetime import fiona import geopandas as gpd import jinja2 import logging import numpy as np import pandas as pd import random import requests import sqlite3 import sys import time import yaml from collections import ChainMap, defaultdict from operator import attrgetter, itemgetter from osgeo import ogr, osr from pathlib import Path from shapely.geometry import LineString, Point from sqlalchemy import create_engine, exc as sqlalchemy_exc from sqlalchemy.engine.base import Engine from tqdm import tqdm from tqdm.auto import trange from typing import Any, Dict, List, Type, Union # Set logger. logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.INFO) handler.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s: %(message)s", "%Y-%m-%d %H:%M:%S")) logger.addHandler(handler) # Enable ogr exceptions. ogr.UseExceptions() # Define globally accessible variables. filepath = Path(__file__).resolve() distribution_format_path = filepath.parent / "distribution_format.yaml" field_domains_path = {lang: filepath.parent / f"field_domains_{lang}.yaml" for lang in ("en", "fr")} class Timer: """Tracks stage runtime.""" def __init__(self) -> None: """Initializes the Timer class.""" self.start_time = None def __enter__(self) -> None: """Starts the timer.""" logger.info("Started.") self.start_time = time.time() def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any) -> None: """ Computes and returns the elapsed time. :param Any exc_type: required parameter for __exit__. :param Any exc_val: required parameter for __exit__. :param Any exc_tb: required parameter for __exit__. """ total_seconds = time.time() - self.start_time delta = datetime.timedelta(seconds=total_seconds) logger.info(f"Finished. Time elapsed: {delta}.") def apply_domain(series: pd.Series, domain: dict, default: Any) -> pd.Series: """ Applies a domain restriction to the given Series based on a domain dictionary. Replaces missing or invalid values with the default value. Non-dictionary domains are treated as Null. Values are left as-is excluding Null types and empty strings, which are replaced with the default value. :param pd.Series series: Series. :param dict domain: dictionary of acceptable domain values. :param Any default: default value. :return pd.Series: Series with enforced domain restriction. """ # Validate against domain dictionary. if isinstance(domain, dict): # Convert keys to lowercase strings. domain = {str(k).lower(): v for k, v in domain.items()} # Configure lookup function, convert invalid values to default. def get_value(val: Any) -> Any: """ Retrieves a domain dictionary value for a given key, non-matches return the default value. :param Any val: lookup key. :return Any: corresponding domain value or the default value. """ try: return domain[str(val).lower()] except KeyError: return default # Get values. return series.map(get_value) else: # Convert empty strings and null types to default. series.loc[(series.map(str).isin(["", "nan", "-2147483648"])) | (series.isna())] = default return series def cast_dtype(val: Any, dtype: Type, default: Any) -> Any: """ Casts the value to the given numpy dtype. Returns the default parameter for invalid or Null values. :param Any val: value. :param Type dtype: numpy type object to be casted to. :param Any default: value to be returned in case of error. :return Any: casted or default value. """ try: if pd.isna(val) or val == "": return default else: return itemgetter(0)(np.array([val]).astype(dtype)) except (TypeError, ValueError): return default def compile_default_values(lang: str = "en") -> dict: """ Compiles the default value for each field in each NRN dataset. :param str lang: output language: 'en', 'fr'. :return dict: dictionary of default values for each attribute of each NRN dataset. """ dft_vals = load_yaml(field_domains_path[lang])["default"] dist_format = load_yaml(distribution_format_path) defaults = dict() try: # Iterate tables. for name in dist_format: defaults[name] = dict() # Iterate fields. for field, dtype in dist_format[name]["fields"].items(): # Configure default value. key = "label" if dtype[0] == "str" else "code" defaults[name][field] = dft_vals[key] except (AttributeError, KeyError, ValueError): logger.exception(f"Invalid schema definition for one or more yamls:" f"\nDefault values: {dft_vals}" f"\nDistribution format: {dist_format}") sys.exit(1) return defaults def compile_domains(mapped_lang: str = "en") -> dict: """ Compiles the acceptable domain values for each field in each NRN dataset. Each domain will consist of the following keys: 1) 'values': all English and French values and keys flattened into a single list. 2) 'lookup': a lookup dictionary mapping each English and French value and key to the value of the given map language. Integer keys and their float-equivalents are both added to accommodate incorrectly casted data. :param str mapped_lang: output language: 'en', 'fr'. :return dict: dictionary of domain values and lookup dictionary for each attribute of each NRN dataset. """ # Compile field domains. domains = defaultdict(dict) # Load domain yamls. domain_yamls = {lang: load_yaml(field_domains_path[lang]) for lang in ("en", "fr")} # Iterate tables and fields with domains. for table in domain_yamls["en"]["tables"]: for field in domain_yamls["en"]["tables"][table]: try: # Compile domains. domain_en = domain_yamls["en"]["tables"][table][field] domain_fr = domain_yamls["fr"]["tables"][table][field] # Configure mapped and non-mapped output domain. domain_mapped = domain_en if mapped_lang == "en" else domain_fr domain_non_mapped = domain_en if mapped_lang != "en" else domain_fr # Compile all domain values and domain lookup table, separately. if domain_en is None: domains[table][field] = {"values": None, "lookup": None} elif isinstance(domain_en, list): domains[table][field] = { "values": sorted(list({*domain_en, *domain_fr}), reverse=True), "lookup": dict([*zip(domain_en, domain_mapped), *zip(domain_fr, domain_mapped)]) } elif isinstance(domain_en, dict): domains[table][field] = { "values": sorted(list({*domain_en.values(), *domain_fr.values()}), reverse=True), "lookup": {**domain_mapped, **{v: v for v in domain_mapped.values()}, **{v: domain_mapped[k] for k, v in domain_non_mapped.items()}} } # Add integer keys as floats to accommodate incorrectly casted data. for k, v in domain_mapped.items(): try: domains[table][field]["lookup"].update({str(float(k)): v}) except ValueError: continue else: raise TypeError except (AttributeError, KeyError, TypeError, ValueError): yaml_paths = ", ".join(str(field_domains_path[lang]) for lang in ("en", "fr")) logger.exception(f"Unable to compile domains from config yamls: {yaml_paths}. Invalid schema " f"definition for table: {table}, field: {field}.") sys.exit(1) return domains def compile_dtypes(length: bool = False) -> dict: """ Compiles the dtype for each field in each NRN dataset. Optionally includes the field length. :param bool length: includes the length of the field in the returned data. :return dict: dictionary of dtypes and, optionally, length for each attribute of each NRN dataset. """ dist_format = load_yaml(distribution_format_path) dtypes = dict() try: # Iterate tables. for name in dist_format: dtypes[name] = dict() # Iterate fields. for field, dtype in dist_format[name]["fields"].items(): # Compile dtype and field length. dtypes[name][field] = dtype if length else dtype[0] except (AttributeError, KeyError, ValueError): logger.exception(f"Invalid schema definition: {dist_format}.") sys.exit(1) return dtypes def create_db_engine(url: str) -> Engine: """ :param str url: NRN database connection URL. :return sqlalchemy.engine.base.Engine: SQLAlchemy database engine. """ logger.info(f"Creating NRN database engine.") # Create database engine. try: engine = create_engine(url) except sqlalchemy_exc.SQLAlchemyError as e: logger.exception(f"Unable to create engine for NRN database.") logger.exception(e) sys.exit(1) return engine def explode_geometry(gdf: gpd.GeoDataFrame) -> gpd.GeoDataFrame: """ Explodes MultiLineStrings and MultiPoints to LineStrings and Points, respectively. :param gpd.GeoDataFrame gdf: GeoDataFrame. :return gpd.GeoDataFrame: GeoDataFrame containing only single-part geometries. """ logger.info("Exploding multi-type geometries.") multi_types = {"MultiLineString", "MultiPoint"} if len(set(gdf.geom_type.unique()).intersection(multi_types)): # Separate multi- and single-type records. multi = gdf.loc[gdf.geom_type.isin(multi_types)] single = gdf.loc[~gdf.index.isin(multi.index)] # Explode multi-type geometries. multi_exploded = multi.explode().reset_index(drop=True) # Merge all records. merged = gpd.GeoDataFrame(pd.concat([single, multi_exploded], ignore_index=True), crs=gdf.crs) return merged.copy(deep=True) else: return gdf.copy(deep=True) def export(dfs: Dict[str, Union[gpd.GeoDataFrame, pd.DataFrame]], dst: Path, driver: str = "GPKG", name_schemas: Union[None, dict] = None, merge_schemas: bool = False, keep_uuid: bool = True, outer_pbar: Union[tqdm, trange, None] = None) -> None: """ Exports one or more (Geo)DataFrames as a specified OGR driver file / layer. :param Dict[str, Union[gpd.GeoDataFrame, pd.DataFrame]] dfs: dictionary of NRN dataset names and (Geo)DataFrames. :param Path dst: output path. :param str driver: OGR driver short name, default='GPKG'. :param Union[None, dict] name_schemas: optional dictionary mapping of dataset and field names for each provided dataset. Expected dictionary format: { <dataset_name>: name: <new_dataset_name> fields: <field_name>: <new_field_name> ... ... } :param bool merge_schemas: optional flag to merge type and name schemas such that attributes from any dataset can exist on each provided dataset, default False. :param bool keep_uuid: optional flag to preserve the uuid column, default True. :param Union[tqdm, trange, None] outer_pbar: optional pre-existing tqdm progress bar. """ try: # Validate / create driver. driver = ogr.GetDriverByName(driver) # Create directory structure and data source (only create source for layer-based drivers). dst = Path(dst).resolve() if dst.suffix: dst.parent.mkdir(parents=True, exist_ok=True) if dst.exists(): source = driver.Open(str(dst), update=1) else: source = driver.CreateDataSource(str(dst)) else: dst.mkdir(parents=True, exist_ok=True) source = None # Compile type schemas, conditionally merge. type_schemas = load_yaml(distribution_format_path) if merge_schemas: merged = {"spatial": any(type_schemas[table]["spatial"] for table in dfs), "fields": dict(ChainMap(*[type_schema["fields"] for table, type_schema in type_schemas.items()]))} type_schemas = {table: merged for table in type_schemas} # Compile name schemas (filter datasets and fields within the existing type schemas and dataframe columns). if not name_schemas: name_schemas = {table: {"name": table, "fields": dict(zip(table_schema["fields"], table_schema["fields"]))} for table, table_schema in type_schemas.items()} # Iterate dataframes. for table, df in dfs.items(): name_schema, type_schema = name_schemas[table], type_schemas[table] schema = {"name": str(name_schema["name"]), "spatial": type_schema["spatial"], "fields": {field: {"name": name_schema["fields"][field], "type": type_schema["fields"][field][0], "width": type_schema["fields"][field][1]} for field in set(name_schema["fields"]).intersection(set(df.columns))}} # Conditionally add uuid to schema. if keep_uuid and "uuid" in df.columns: schema["fields"]["uuid"] = {"name": "uuid", "type": "str", "width": 32} # Configure layer geometry type and spatial reference system. spatial = schema["spatial"] srs = None geom_type = ogr.wkbNone if schema["spatial"]: srs = osr.SpatialReference() srs.ImportFromEPSG(df.crs.to_epsg()) geom_type = attrgetter(f"wkb{df.geom_type.iloc[0]}")(ogr) # Create source (non-layer-based drivers only) and layer. if dst.suffix: layer = source.CreateLayer(name=schema["name"], srs=srs, geom_type=geom_type, options=["OVERWRITE=YES"]) else: source = driver.CreateDataSource(str(dst / schema["name"])) layer = source.CreateLayer(name=Path(schema["name"]).stem, srs=srs, geom_type=geom_type) # Set field definitions from schema. ogr_field_map = {"float": ogr.OFTReal, "int": ogr.OFTInteger, "str": ogr.OFTString} for field, specs in schema["fields"].items(): field_defn = ogr.FieldDefn(specs["name"], ogr_field_map[specs["type"]]) field_defn.SetWidth(specs["width"]) layer.CreateField(field_defn) # Reorder and rename columns to match schema. df = df[[*schema["fields"], "geometry"] if spatial else [*schema["fields"]]].copy(deep=True) df.rename(columns={field: specs["name"] for field, specs in schema["fields"].items()}, inplace=True) # Write layer. layer.StartTransaction() for feat in tqdm(df.itertuples(index=False), total=len(df), desc=f"Writing to file={source.GetName()}, layer={table}", bar_format="{desc}: |{bar}| {percentage:3.0f}% {r_bar}", leave=not bool(outer_pbar)): # Instantiate feature. feature = ogr.Feature(layer.GetLayerDefn()) # Compile feature properties. properties = feat._asdict() # Set feature geometry, if spatial. if spatial: geom = ogr.CreateGeometryFromWkb(properties.pop("geometry").wkb) feature.SetGeometry(geom) # Iterate and set feature properties (attributes). for field_index, prop in enumerate(properties.items()): feature.SetField(field_index, prop[-1]) # Create feature. layer.CreateFeature(feature) # Clear pointer for next iteration. feature = None layer.CommitTransaction() # Update outer progress bar. if outer_pbar: outer_pbar.update(1) except FileExistsError as e: logger.exception(f"Invalid output directory - already exists.") logger.exception(e) sys.exit(1) except (KeyError, ValueError, sqlite3.Error) as e: logger.exception(f"Error raised when writing output: {dst}.") logger.exception(e) sys.exit(1) def extract_nrn(url: str, source_code: int) -> Dict[str, Union[gpd.GeoDataFrame, pd.DataFrame]]: """ Extracts NRN database records for the source into (Geo)DataFrames. :param str url: NRN database connection URL. :param int source_code: code for the source province / territory. :return Dict[str, Union[gpd.GeoDataFrame, pd.DataFrame]]: dictionary of NRN dataset names and (Geo)DataFrames. """ logger.info(f"Extracting NRN datasets for source code: {source_code}.") # Connect to database. con = create_db_engine(url) # Compile field defaults, domains, and dtypes. defaults = compile_default_values(lang="en") domains = compile_domains(mapped_lang="en") dtypes = compile_dtypes() # Load and execute database queries for NRN datasets. dfs = dict() for sql_file in (filepath.parent / "sql/extract").glob("*.sql"): logger.info(f"Extracting NRN dataset: {sql_file.stem}.") try: # Resolve layer name. layer = sql_file.stem # Load document as jinja template. with open(sql_file, "r") as doc: template = jinja2.Template(doc.read()) # Update template. query = template.render( source_code=source_code, metacover=f"'{defaults[layer]['metacover']}'" if isinstance(defaults[layer]["metacover"], str) else defaults[layer]["metacover"], specvers=2.0, muniquad=f"'{defaults['strplaname']['muniquad']}'" if isinstance(defaults['strplaname']["muniquad"], str) else defaults['strplaname']["muniquad"] ) # Execute query. df = gpd.read_postgis(query, con, geom_col="geometry") # Store non-empty dataset. if len(df): dfs[layer] = df.copy(deep=True) except (jinja2.TemplateError, jinja2.TemplateAssertionError, jinja2.UndefinedError) as e: logger.exception(f"Unable to load SQL from: {sql_file}.") logger.exception(e) # Separate individual datasets from extracted data. logger.info("Separating individual datasets from extracted data.") nrn = dict() # Separate dataset: addrange. logger.info("Separating dataset: addrange.") # Separate records. addrange = dfs["roadseg"].loc[dfs["roadseg"]["segment_type"] == 1, [ "addrange_acqtech", "metacover", "addrange_credate", "datasetnam", "accuracy", "addrange_provider", "addrange_revdate", "specvers", "l_altnanid", "r_altnanid", "addrange_l_digdirfg", "addrange_r_digdirfg", "addrange_l_hnumf", "addrange_r_hnumf", "addrange_l_hnumsuff", "addrange_r_hnumsuff", "addrange_l_hnumtypf", "addrange_r_hnumtypf", "addrange_l_hnumstr", "addrange_r_hnumstr", "addrange_l_hnuml", "addrange_r_hnuml", "addrange_l_hnumsufl", "addrange_r_hnumsufl", "addrange_l_hnumtypl", "addrange_r_hnumtypl", "addrange_nid", "segment_id_left", "segment_id_right", "addrange_l_rfsysind", "addrange_r_rfsysind"] ].rename(columns={ "addrange_acqtech": "acqtech", "addrange_credate": "credate", "addrange_provider": "provider", "addrange_revdate": "revdate", "addrange_l_digdirfg": "l_digdirfg", "addrange_r_digdirfg": "r_digdirfg", "addrange_l_hnumf": "l_hnumf", "addrange_r_hnumf": "r_hnumf", "addrange_l_hnumsuff": "l_hnumsuff", "addrange_r_hnumsuff": "r_hnumsuff", "addrange_l_hnumtypf": "l_hnumtypf", "addrange_r_hnumtypf": "r_hnumtypf", "addrange_l_hnumstr": "l_hnumstr", "addrange_r_hnumstr": "r_hnumstr", "addrange_l_hnuml": "l_hnuml", "addrange_r_hnuml": "r_hnuml", "addrange_l_hnumsufl": "l_hnumsufl", "addrange_r_hnumsufl": "r_hnumsufl", "addrange_l_hnumtypl": "l_hnumtypl", "addrange_r_hnumtypl": "r_hnumtypl", "addrange_nid": "nid", "segment_id_left": "l_offnanid", "segment_id_right": "r_offnanid", "addrange_l_rfsysind": "l_rfsysind", "addrange_r_rfsysind": "r_rfsysind"} ).copy(deep=True) addrange.reset_index(drop=True, inplace=True) # Store dataset. nrn["addrange"] =
pd.DataFrame(addrange)
pandas.DataFrame
# # Planning # ## Challenge # This is an open-ended challenge to find something interesting and useful (with a business case!) from a dataset of New York City's restaurant health inspections. The inspections are performed by the Department of Health and Mental Hygiene (DOHMH). Some suggestions include identifying trends or actionable insights, or providing recommendations. The audience could be restaurant customers, inspectors, or restauranteurs. # I came up with some questions I was interested in answering: # 1. What factors contribute to inspection failures? # 2. Is there any evidence of geographic bias in inspections? # 3. Is there any evidence of cuisine bias in inspections? # 4. Is there any evidence of inspection timing affecting results? # ## Approach # I cleaned, plotted, and examined the data. Documentation describing the inspection process suggested two possible outcome variables to look into: 1) initial inspection failure and 2) closure after reinspection. I wanted to investigate both, but started with initial inspection failure. # I investigated both logistic regression and random forest classification models. I chose to focus on the logistic regression results because I wanted to be able to interpret the coefficients and odds ratios. I tuned hyperparameters and evaluated the model using AUC ROC, because it is a good overall summary of model performance, considering all cells of the confusion matrix. A logistic regression model with L2 (ridge) regression and a penalty of 0.1 classifies initial inspection failures with an AUC of 0.932. # ## Results # ### 1. What factors contribute to inspection failures? # Looking at the odds ratios for each of the features in the logistic regression model, here are some of the most important factors affecting initial inspection failure. # - Features associated with lower odds of passing initial inspection: # - Violation codes related to the presence of mice, rats, cockroaches, or flies # - Violation codes related to lack of washing facilities, lack of food safety plan, improper food storage temperature, and lack of a required certificate # - The borough Queens # - Many kinds of cuisine, including Bangladeshi, Indian, Moroccan, Asian, Malaysian, Spanish, African, Turkish, Latin, Chinese, Mediterranean, Hawaiian, Egyptian, Thai, etc. # - The number of violations cited # - Features associated with higher odds of passing initial inspection: # - Violation codes with lower stakes issues, such as violation of a recently-introduced ban on styrofoam, improper lighting or ventilation, or reuse of single use items # - The borough Staten Island # - Many kinds of cuisine including ice cream, hot dogs, donuts, soups/sandwiches, hamburgers, Continental, cafe/coffee/tea shops, juices/smoothies, Ethiopian, steak, sandwiches, bakeries, bagel/pretzel shops, etc. Many of these seem to be shops that would have less food prep and smaller facilities to maintain, so they make sense. # - Increasing day of the week # ### 2. Is there any evidence of geographic bias in inspections? # Yes, there is some evidence for Queens establishments having lower odds of passing the initial inspection and for Staten Island establishments having higher odds of passing. It's difficult to answer this question without a more sophisticated version of logistic regression to use. # ### 3. Is there any evidence of cuisine bias in inspections? # Yes, the cuisine types with the lowest odds of passing the initial inspection include many of the "ethnic" cuisines. Other information is needed to determine if this is a cause or an effect. # ### 4. Is there any evidence of inspection timing affecting results? # There might be a slight increase in odds of passing the initial inspection for inspections happening later in the week, but it was slight and of unknown significance. There is no evidence of any effect of the time of year (month) on the odds of passing inspection. # ## Takeaways # - Restauranteurs in Queens or those running establishments serving at-risk cuisines (e.g. Bangladeshi, Indian, Moroccan, Malaysian, etc.) should be extra vigilant before inspections. # - Restauranteurs should pay special attention to the violations most associated with lower odds of passing the inspection, such as presence of vermin, lack of washing facilities, improper food storage temperature, and lack of required certficiations or food safety plans. # - NYC food inspectors should carefully examine their inspection process to see if it is being affected by bias against certain cuisines. # - Aspiring restauranteurs could open an ice cream, hot dog, donut, soup & sandwich, or coffee & tea shop to start out with lower odds of failing the initial food saftey inspection. # + import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import pickle import seaborn as sns from datetime import datetime from IPython.display import display from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import plot_confusion_matrix, plot_roc_curve from sklearn.model_selection import cross_validate, GridSearchCV, train_test_split, StratifiedKFold from sklearn.preprocessing import MultiLabelBinarizer, OneHotEncoder from treeinterpreter import treeinterpreter as ti sns.set(style="whitegrid", font_scale=1.25) plt.figure(figsize=(12.8, 9.6), dpi=400) # - # + data_dir = '~/devel/insight-data-challenges/05-nyc-restaurant-inspections/data' output_dir = '~/devel/insight-data-challenges/05-nyc-restaurant-inspections/output' # - # ## Read in and clean the user data # + inspections = pd.read_csv( os.path.join(os.path.expanduser(data_dir), 'DOHMH_New_York_City_Restaurant_Inspection_Results.csv'), parse_dates=['INSPECTION DATE', 'GRADE DATE', 'RECORD DATE'] ) display(inspections.info()) display(inspections.head(15)) # - # ### Fix data types # Find the categorical variables # + # Are there any that look categorical based on number of unique values? values_per_variable = inspections.apply('nunique', 0) variable_dtypes = inspections.dtypes.apply(lambda x: x.name) variable_info = pd.DataFrame({'n_categories': values_per_variable, 'dtype': variable_dtypes, 'variable': values_per_variable.index}).reset_index(drop=True) display(variable_info) # Convert columns to categorical cat_threshold = 110 # If n unique values is below this, it's probably categorical known_cat_cols = [ 'ACTION', 'BORO', 'GRADE', 'INSPECTION TYPE', 'CRITICAL FLAG', 'CUISINE DESCRIPTION', 'VIOLATION CODE', 'VIOLATION DESCRIPTION', 'Community Board', 'Council District' ] variable_info['to_category'] = (variable_info['n_categories'] < cat_threshold)\ & (~variable_info['dtype'].isin(('datetime64[ns]', ))) display(variable_info) # Are there any known categorical variables missing? Or vice versa? set(variable_info['variable'].loc[variable_info['to_category']].to_list()) - set(known_cat_cols) set(known_cat_cols) - set(variable_info['variable'].loc[variable_info['to_category']].to_list()) for v in variable_info['variable'].loc[variable_info['to_category']]: inspections[v] = inspections[v].astype('category') display(inspections.info()) variable_info['dtype'] = inspections.dtypes.apply(lambda x: x.name).to_numpy() # - # ### Convert zipcode to an int # + display(inspections['ZIPCODE'].describe()) display(inspections['ZIPCODE'].isna().sum()) # 5500 NaN values, which is why it's not an int. Leave it for now. # - # ### Fix missing value codes # + inspections['BORO'] = inspections['BORO'].replace('0', np.NaN) for v in inspections.select_dtypes(include='category').columns: print('_' * 20) print(v) display(inspections[v].value_counts(dropna=False)) new_establishment_inspection_date = datetime(1900, 1, 1) inspections['INSPECTION DATE'] = inspections['INSPECTION DATE'].replace(new_establishment_inspection_date, pd.NaT) for v in inspections.select_dtypes(include='datetime').columns: print('_' * 20) print(v) display(inspections[v].value_counts(dropna=False)) display(inspections.select_dtypes(include='number').describe()) variable_info['n_missing'] = inspections.apply(lambda x: x.isna().sum()).to_numpy() # - # ### Make a map from violation code to violation description # + # Check if there's more than one description per violation code, to see if it will work to select the first one display( inspections[['VIOLATION CODE', 'VIOLATION DESCRIPTION']].groupby( 'VIOLATION CODE').aggregate('nunique')['VIOLATION DESCRIPTION'].value_counts() ) # - # There are 15 violation codes without any matching description. # + inspections['VIOLATION CODE'].nunique() violation_descriptions = inspections[['VIOLATION CODE', 'VIOLATION DESCRIPTION']].groupby( 'VIOLATION CODE').aggregate('first') with pd.option_context('display.max_rows', 200): display(violation_descriptions) # - # ## Add some derived variables # ### Use documentation instructions to label gradeable/ungradeable inspections # + gradeable_inspection_types = ( 'Cycle Inspection / Initial Inspection', 'Cycle Inspection / Re-Inspection', 'Pre-Permit (Operational) / Initial Inspection', 'Pre-Permit (Operational)/Re-Inspection', ) gradeable_actions = ( 'Violations were cited in the following area(s).', 'No violations were recorded at the time of this inspection.', 'Establishment Closed by DOHMH.', ) gradeable_inspection_date_min = datetime(2010, 7, 27) inspections['INSPECTION TYPE'].isin(gradeable_inspection_types).sum() inspections['ACTION'].isin(gradeable_actions).sum() np.sum(inspections['INSPECTION DATE'] >= gradeable_inspection_date_min) inspections['is_gradeable'] = ((inspections['INSPECTION TYPE'].isin(gradeable_inspection_types)) & (inspections['ACTION'].isin(gradeable_actions)) & (inspections['INSPECTION DATE'] >= gradeable_inspection_date_min) ) display(inspections['is_gradeable'].value_counts(dropna=False)) # - # ### Add variables for what kind of inspection it was # + inspections['INSPECTION TYPE'].value_counts() inspections['is_cycle_inspection'] = inspections['INSPECTION TYPE'].str.contains('Cycle') inspections['is_opening_inspection'] = inspections['INSPECTION TYPE'].str.contains( 'Pre-permit (Operational)', regex=False) inspections['is_initial_inspection'] = inspections['INSPECTION TYPE'].str.contains('Initial') inspections['is_reinspection'] = inspections['INSPECTION TYPE'].str.contains('Re-inspection') inspections['is_compliance_inspection'] = inspections['INSPECTION TYPE'].str.contains('Compliance') # - # ### Add variables for date components # + inspections['inspection_year'] = inspections['INSPECTION DATE'].dt.year.astype('category') inspections['inspection_month'] = inspections['INSPECTION DATE'].dt.month.astype('category') inspections['inspection_day'] = inspections['INSPECTION DATE'].dt.day inspections['inspection_dayofyear'] = inspections['INSPECTION DATE'].dt.dayofyear inspections['inspection_dayofweek'] = inspections['INSPECTION DATE'].dt.dayofweek.astype('category') inspections['inspection_isweekday'] = inspections['inspection_dayofweek'].isin(range(5)) inspections['inspection_week'] = inspections['INSPECTION DATE'].dt.week.astype('category') display(inspections.info()) # - # ## Plot everything # + # Try the Pandas built in histogram function, even though it's mediocre inspections.select_dtypes(exclude='bool').hist(figsize=(20, 15)) plt.show() # And it fails on boolean columns! # - # ### Histograms of the numeric variables # + g = sns.FacetGrid( inspections.select_dtypes(include='number').melt(), col='variable', col_wrap=4, sharex=False, sharey=False, height=4 ) g.map(plt.hist, 'value', color='steelblue', bins=20) plt.show() # - # ### Barplots of the categorical & boolean variables # Individual plots for variables with too many categories # + cat_col_n_values = inspections.select_dtypes(include='category').apply('nunique', 0) many_values_cat_vars = cat_col_n_values.loc[cat_col_n_values > 20].index other_cat_vars = cat_col_n_values.loc[cat_col_n_values <= 20].index # for v in many_values_cat_vars: # g = sns.countplot(data=inspections, x=v) # g.set_xticklabels(g.get_xticklabels(), rotation=60, horizontalalignment='right') # plt.tight_layout() # plt.show() # The best is really just a sorted table of value counts. for v in many_values_cat_vars: print('_' * 20) print(v) with
pd.option_context('display.max_rows', cat_threshold)
pandas.option_context
import math import os import shutil from datetime import datetime import matplotlib.pyplot as plt import numpy as np import pandas as pd from estimator.delay_estimator import estimate_delays from generator.generator import generator from simulator.shard_allocator import calculate_manhattan_vector_module from simulator.shard_allocator import diff_list from simulator.shard_allocator import shard_allocator from simulator.simulator import simulator CLOUD_LOAD_LEVEL = "cloud_load_lvl" LOAD_VARIATION_RATIO = "load_variation_ratio" SHARDS_PER_NODE_RATIO = "shards_per_node_ratio" class ExperimentExecutor: def __init__(self): self.num_of_shards = 0 self.num_of_samples = 100 self.period = 5.0 self.shape = 2.0 self.scale = 0 self.parallel_requests = 5 self.num_of_nodes = 0 self.experiments = [] self.algorithms = [] self.load_vectors = [] self.shard_on_nodes = pd.DataFrame(columns=["shard", "node"]) self.requests_completed = pd.DataFrame() self.current_algorithm = "random" self.delays_df =
pd.DataFrame(columns=['algorithm', 'nodes', 'sum_of_delay', 'delay_percentage'])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Thu Oct 25 12:09:05 2018 原始fitness:0.26 ;;四工况:1.012 @author: cwktu """ import pandas as pd import matplotlib.pyplot as plt import numpy as np import subprocess from math import sqrt import os ##%%求曲线斜率最大点(即着火燃烧点) def combustion_time(data,m): slope_max = 0 time = 0 if m==1: for i in range(len(data)-1): timex1 = data['Time_Soln#1_(sec)'][i] timex2 = data['Time_Soln#1_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#1_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#1_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==2: for i in range(len(data)-1): timex1 = data['Time_Soln#2_(sec)'][i] timex2 = data['Time_Soln#2_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#2_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#2_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==3: for i in range(len(data)-1): timex1 = data['Time_Soln#3_(sec)'][i] timex2 = data['Time_Soln#3_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#3_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#3_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==4: for i in range(len(data)-1): timex1 = data['Time_Soln#4_(sec)'][i] timex2 = data['Time_Soln#4_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#4_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#4_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==5: for i in range(len(data)-1): timex1 = data['Time_Soln#5_(sec)'][i] timex2 = data['Time_Soln#5_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#5_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#5_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==6: for i in range(len(data)-1): timex1 = data['Time_Soln#6_(sec)'][i] timex2 = data['Time_Soln#6_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#6_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#6_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==7: for i in range(len(data)-1): timex1 = data['Time_Soln#7_(sec)'][i] timex2 = data['Time_Soln#7_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#7_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#7_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==8: for i in range(len(data)-1): timex1 = data['Time_Soln#8_(sec)'][i] timex2 = data['Time_Soln#8_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#8_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#8_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==9: for i in range(len(data)-1): timex1 = data['Time_Soln#9_(sec)'][i] timex2 = data['Time_Soln#9_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#9_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#9_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==10: for i in range(len(data)-1): timex1 = data['Time_Soln#10_(sec)'][i] timex2 = data['Time_Soln#10_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#10_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#10_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==11: for i in range(len(data)-1): timex1 = data['Time_Soln#11_(sec)'][i] timex2 = data['Time_Soln#11_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#11_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#11_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==12: for i in range(len(data)-1): timex1 = data['Time_Soln#12_(sec)'][i] timex2 = data['Time_Soln#12_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#12_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#12_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==13: for i in range(len(data)-1): timex1 = data['Time_Soln#13_(sec)'][i] timex2 = data['Time_Soln#13_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#13_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#13_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i return slope_max,time def error(a,b): error=[] for i in range(len(a)): error.append(abs((a[i]-b[i])/b[i])) me = sum(error)/len(error) return me def Mean_squared_error(a,b): error=[] for i in range(len(a)): error.append((a[i]-b[i])*(a[i]-b[i])) mse = sum(error)/len(error) rmse = sqrt(mse) return rmse def mechanism_computation(path): data1 = pd.read_csv(path+"/CKSoln_solution_no_1.csv") data2 = pd.read_csv(path+"/CKSoln_solution_no_2.csv") data3 = pd.read_csv(path+"/CKSoln_solution_no_3.csv") data4 = pd.read_csv(path+"/CKSoln_solution_no_4.csv") data5 = pd.read_csv(path+"/CKSoln_solution_no_5.csv") data6 = pd.read_csv(path+"/CKSoln_solution_no_6.csv") data7 = pd.read_csv(path+"/CKSoln_solution_no_7.csv") data8 = pd.read_csv(path+"/CKSoln_solution_no_8.csv") data9 = pd.read_csv(path+"/CKSoln_solution_no_9.csv") data10 =
pd.read_csv(path+"/CKSoln_solution_no_10.csv")
pandas.read_csv
import pymongo import pandas as pd import matplotlib.pyplot as plt import numpy as np import datetime import os import sys from datetime import date client = pymongo.MongoClient('mongodb://localhost:27017') db = client["simplii"] p_details = db["tasks"] # profile details records = p_details.find() list_record = list(records) df = pd.DataFrame(list_record) start = df['startdate'].tolist() due = df['duedate'].tolist() email = df['email'].tolist() format = '%Y-%m-%d' st, dt = [], [] for i in start: st.append(datetime.datetime.strptime(i, format).date()) for i in due: dt.append(datetime.datetime.strptime(i, format).date()) in_prog = df.loc[df['status'] == 'In Progress'] in_prog = in_prog.drop(['_id', 'status'], axis=1) blocked = df.loc[df['status'] == 'Blocked'] blocked = blocked.drop(['_id', 'status'], axis=1) sip, dip, sb, db = [], [], [], [] start1 = in_prog['startdate'].tolist() due1 = in_prog['duedate'].tolist() start2 = blocked['startdate'].tolist() due2 = blocked['duedate'].tolist() for i in start1: sip.append(datetime.datetime.strptime(i, format).date()) for i in start2: sb.append(datetime.datetime.strptime(i, format).date()) for i in due1: dip.append(datetime.datetime.strptime(i, format).date()) for i in due2: db.append(datetime.datetime.strptime(i, format).date()) in_prog['startdate'] = pd.to_datetime(in_prog['startdate']) in_prog['duedate'] = pd.to_datetime(in_prog['duedate']) blocked['startdate'] = pd.to_datetime(blocked['startdate']) blocked['duedate'] = pd.to_datetime(blocked['duedate']) df1 = in_prog.loc[(in_prog['startdate'] <=
pd.to_datetime('today')
pandas.to_datetime
from Modules.appLogger import application_logger from Modules.DataLoader import predictionDataLoader from Modules.SaveLoadModel import saveLoadModel from Modules.DataPreprocessor import dataPreprocessor import pandas as pd class predictData: """ Class Name: predictData Description: Predicts the rating of a restaurant based on the inputs. Input: None Output: CSV file containing the ratings of the restaurants given in the input file. On Failure: Raise Exception Written By: <NAME> Version: 1.0 Revisions: None """ def __init__(self): try: self.prediction_logs = pd.read_csv('Logs\\Prediction Logs\\prediction_logs.csv') self.prediction_logs.drop('Unnamed :0', axis = 1, inplace= True) except: self.prediction_logs = pd.DataFrame(columns=['date','time','logs']) self.loggerObj = application_logger.logger() self.data_loaderObj = predictionDataLoader.predictionDataLoader(logger_obj= self.loggerObj, log_file = self.prediction_logs) self.load_modelObj = saveLoadModel.saveLoadModel(loggerObj= self.loggerObj, log_file = self.prediction_logs) self.preprocessObj = dataPreprocessor.processData(logger_object= self.loggerObj, log_file = self.prediction_logs) def predict_data(self, filename): """ Class Name: predict_data Description: Predicts the rating of a restaurant based on the inputs. Input: None Output: CSV file containing the ratings of the restaurants given in the input file. On Failure: Raise Exception Written By: <NAME> Version: 1.0 Revisions: None """ try: self.prediction_logs = self.loggerObj.write_log(self.prediction_logs, "Prediction of data has started") self.prediction_logs = self.loggerObj.write_log(self.prediction_logs,"Entered predict_data of predictData class") prediction_data = self.data_loaderObj.load_prediction_data(filename) #preprocess the data before loading the model preprocessed_prediction_data = self.preprocessObj.preprocess_prediction_data(prediction_data) sku_ids = preprocessed_prediction_data['sku'] preprocessed_prediction_data.drop('sku', axis=1, inplace= True) #loading the model. model = self.load_modelObj.load_model() #predciting using the loaded model. predictions = model.predict(preprocessed_prediction_data) predictions_dataframe = pd.DataFrame(predictions,columns= ['went_on_backorder']) sku_ids_dataframe = pd.DataFrame(sku_ids) # concatenating ratings and dataframes. sku_ids_dataframe.reset_index(inplace=True) predictions_dataframe.reset_index(inplace=True) #concatenating ratings and dataframes. predictions_csv =
pd.concat([sku_ids_dataframe['sku'],predictions_dataframe['went_on_backorder']], axis=1)
pandas.concat
""" SIR 3S Logfile Utilities (short: Lx) """ __version__='192.168.3.11.dev1' import os import sys import logging logger = logging.getLogger(__name__) import argparse import unittest import doctest import nbformat from nbconvert.preprocessors import ExecutePreprocessor from nbconvert.preprocessors.execute import CellExecutionError import timeit import xml.etree.ElementTree as ET import re import struct import collections import zipfile import py7zr import pandas as pd import h5py import subprocess import csv import glob import warnings #warnings.simplefilter(action='ignore', category=PerformanceWarning) # pd.set_option("max_rows", None) # pd.set_option("max_columns", None) # pd.reset_option('max_rows') # ... class LxError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) def fTCCast(x): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) v=x try: if x in ['true','True']: v=1 elif x in ['false','False','']: v=0 else: try: v = float(x) except Exception as e: #logStrTmp="{:s}{!s:s}: Konvertierung zu float schlaegt fehl! - Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,x,sys.exc_info()[-1].tb_lineno,type(e),str(e)) #logger.debug(logStrTmp) try: v = pd.to_numeric(x,errors='raise',downcast='float') #logStrTmp="{:s}{!s:s}: Konvertierung mit pd.to_numeric liefert: {!s:s}".format(logStr,x,v) #logger.debug(logStrTmp) except Exception as e: #logStrTmp="{:s}{!s:s}: Konvertierung zu float mit pd.to_numeric schlaegt auch fehl! - Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,x,sys.exc_info()[-1].tb_lineno,type(e),str(e)) #logger.debug(logStrTmp) #x='2021-04-20 10:56:12.000' #t = pd.Timestamp(x) #t # Timestamp('2021-04-20 10:56:12') #i=int(t.to_datetime64())/1000000000 #i # 1618916172.0 #pd.to_datetime(i,unit='s',errors='coerce'): Timestamp('2021-04-20 10:56:12') try: t = pd.Timestamp(x) i=int(t.to_datetime64())/1000000000 v=pd.to_numeric(i,errors='raise',downcast='float') except Exception as e: logStrTmp="{:s}{!s:s}: Konvertierung zu float (mit pd.to_numeric) schlaegt (auch nach Annahme vaulue=Zeitstring) fehl! - Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,x,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.debug(logStrTmp) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return v def getTCsOPCDerivative(TCsOPC,col,shiftSize,windowSize,fct=None): """ returns a df index: ProcessTime cols: col dt dValue dValueDt dValueDtRollingMean """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) mDf=pd.DataFrame() try: s=TCsOPC[col].dropna() mDf=pd.DataFrame(s) dt=mDf.index.to_series().diff(periods=shiftSize) mDf['dt']=dt mDf['dValue']=mDf[col].diff(periods=shiftSize) mDf=mDf.iloc[shiftSize:] mDf['dValueDt']=mDf.apply(lambda row: row['dValue']/row['dt'].total_seconds(),axis=1) if fct != None: mDf['dValueDt']=mDf['dValueDt'].apply(fct) mDf['dValueDtRollingMean']=mDf['dValueDt'].rolling(window=windowSize).mean() mDf=mDf.iloc[windowSize-1:] except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return mDf logFilenamePattern='([0-9]+)(_)+([0-9]+)(\.log)' # group(3) ist Postfix und Nr. logFilenameHeadPattern='([0-9,_]+)(\.log)' # group(1) ist Head und H5-Key # nicht alle IDs werden von RE pID erfasst # diese werden mit pID2, getDfFromODIHelper und in getDfFromODI "nachbehandelt" pID=re.compile('(?P<Prae>IMDI\.)?(?P<A>[a-z,A-Z,0-9,_]+)\.(?P<B>[a-z,A-Z,0-9,_]+)\.(?P<C1>[a-z,A-Z,0-9]+)_(?P<C2>[a-z,A-Z,0-9]+)_(?P<C3>[a-z,A-Z,0-9]+)_(?P<C4>[a-z,A-Z,0-9]+)_(?P<C5>[a-z,A-Z,0-9]+)(?P<C6>_[a-z,A-Z,0-9]+)?(?P<C7>_[a-z,A-Z,0-9]+)?\.(?P<D>[a-z,A-Z,0-9,_]+)\.(?P<E>[a-z,A-Z,0-9,_]+)(?P<Post>\.[a-z,A-Z,0-9,_]+)?') pID2='(?P<Prae>IMDI\.)?(?P<A>[a-z,A-Z,0-9,_]+)(?P<Post>\.[a-z,A-Z,0-9,_]+)?' def getDfFromODIHelper(row,col,colCheck,pID2=pID2): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: if not pd.isnull(row[colCheck]): res= row[col] resStr='ColCheckOk' elif pd.isnull(row[col]): res=re.search(pID2,row['ID']).group(col) if res != None: resStr='ColNowOk' else: resStr='ColStillNotOk' else: res = row[col] resStr='ColWasOk' except: res = row[col] resStr='ERROR' finally: if resStr not in ['ColCheckOk','ColNowOk']: logger.debug("{:s}col: {:s} resStr: {:s} row['ID']: {:s} res: {:s}".format(logStr,col, resStr,row['ID'],str(res))) #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return res def getDfFromODI(ODIFile,pID=pID): """ returns a defined df from ODIFile """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfID=None try: df=pd.read_csv(ODIFile,delimiter=';') s = pd.Series(df['ID'].unique()) dfID=s.str.extract(pID.pattern,expand=True) dfID['ID']=s dfC=dfID['C1']+'_'+dfID['C2']+'_'+dfID['C3']+'_'+dfID['C4']+'_'+dfID['C5']+'_'+dfID['C6']#+'_'+dfID['C7'] dfID.loc[:,'C']=dfC.values dfID['C']=dfID.apply(lambda row: row['C']+'_'+row['C7'] if not pd.isnull(row['C7']) else row['C'],axis=1) dfID=dfID[['ID','Prae','A','B','C','C1','C2','C3','C4','C5','C6','C7','D','E','Post']] for col in ['Prae','Post','A']: dfID[col]=dfID.apply(lambda row: getDfFromODIHelper(row,col,'A'),axis=1) dfID.sort_values(by=['ID'], axis=0,ignore_index=True,inplace=True) dfID.set_index('ID',verify_integrity=True,inplace=True) dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN','Post']='.EIN' dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN','A']='Objects' dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN','B']='3S_XYZ_PUMPE' dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN','C']='3S_XYZ_GSI_01' dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN','D']='Out' #dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN',:] dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW','Post']='.SOLLW' dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW','A']='Objects' dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW','B']='3S_XYZ_RSCHIEBER' dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW','C']='3S_XYZ_PCV_01' dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW','D']='Out' #dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW',:] dfID['yUnit']=dfID.apply(lambda row: getDfFromODIHelperyUnit(row),axis=1) dfID['yDesc']=dfID.apply(lambda row: getDfFromODIHelperyDesc(row),axis=1) dfID=dfID[['yUnit','yDesc','Prae','A','B','C','C1','C2','C3','C4','C5','C6','C7','D','E','Post']] except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfID def addInitvalueToDfFromODI(INITFile,dfID): """ returns dfID extended with new Cols Initvalue and NumOfInits """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfIDext=dfID try: df=pd.read_csv(INITFile,delimiter=';',header=None,names=['ID','Value'])#,index_col=0) dfGrped=df.groupby(by=['ID'])['Value'].agg(['count','min','max','mean','last']) dfIDext=dfID.merge(dfGrped,left_index=True,right_index=True,how='left').filter(items=dfID.columns.to_list()+['last','count']).rename(columns={'last':'Initvalue','count':'NumOfInits'}) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfIDext def fODIMatch(dfODI,TYPE=None,OBJTYPE=None,NAME1=None,NAME2=None): df=dfODI if TYPE != None: df=df[df['TYPE']==TYPE] if OBJTYPE != None: df=df[df['OBJTYPE']==OBJTYPE] if NAME1 != None: df=df[df['NAME1']==NAME1] if NAME2 != None: df=df[df['NAME2']==NAME2] return df def fODIFindAllSchieberSteuerungsIDs(dfODI,NAME1=None,NAME2=None): # dfODI: pd.read_csv(ODI,delimiter=';') df=fODIMatch(dfODI,TYPE='OL_2',OBJTYPE='VENT',NAME1=NAME1,NAME2=NAME2) return sorted(list(df['ID'].unique())+[ID for ID in df['REF_ID'].unique() if not pd.isnull(ID)]) def fODIFindAllZeilenWithIDs(dfODI,IDs): return dfODI[dfODI['ID'].isin(IDs) | dfODI['REF_ID'].isin(IDs)] def getDfFromODIHelperyUnit(row): """ returns Unit """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) unit=None try: if row['E'] in ['AL_S','SB_S']: unit='[-]' elif row['E'] in ['LR_AV','LP_AV','QD_AV','SD_AV','AM_AV','FZ_AV','MZ_AV','NG_AV']: unit='[Nm³/h]' elif row['E'] in ['AC_AV','LR_AV']: unit='[mm/s²]' else: unit='TBD in Lx' except: unit='ERROR' finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return unit def getDfFromODIHelperyDesc(row): """ returns Desc """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) desc=None try: if row['E'] in ['AL_S','SB_S']: desc='Status' elif row['E'] in ['LR_AV','LP_AV','QD_AV','SD_AV','AM_AV','FZ_AV','MZ_AV','NG_AV']: desc='Fluss' elif row['E'] in ['AC_AV','LR_AV']: desc='Beschleunigung' else: desc='TBD in Lx' except: desc='ERROR' finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return desc def getDfIDUniqueCols(dfID): """ returns df with uniques """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfIDUniqueCols=pd.DataFrame() try: # Spalte mit der groessten Anzahl von Auspraegungen feststellen lenMax=0 colMax='' # ueber alle Spalten for idx,col in enumerate(dfID): s=pd.Series(dfID[col].unique()) if len(s) > lenMax: lenMax=len(s) colMax=col s=pd.Series(dfID[colMax].unique(),name=colMax) s.sort_values(inplace=True) s=pd.Series(s.values,name=colMax) dfIDUniqueCols=pd.DataFrame(s) # ueber alle weiteren Spalten for idx,col in enumerate([col for col in dfID.columns if col != colMax]): # s unique erzeugen s=pd.Series(dfID[col].unique(),name=col) # s sortieren s.sort_values(inplace=True) s=
pd.Series(s.values,name=col)
pandas.Series
import os import numpy as np import pandas as pd import torch from torch.utils.data import Dataset, DataLoader # from sklearn.preprocessing import StandardScaler from utils.tools import StandardScaler from utils.timefeatures import time_features import warnings warnings.filterwarnings('ignore') class Dataset_ETT_hour(Dataset): def __init__(self, root_path, flag='train', size=None, features='S', data_path='ETTh1.csv', target='OT', scale=True, inverse=False, timeenc=0, freq='h', cols=None): # size [seq_len, label_len, pred_len] # info if size == None: self.seq_len = 24*4*4 self.label_len = 24*4 self.pred_len = 24*4 else: self.seq_len = size[0] self.label_len = size[1] self.pred_len = size[2] # init assert flag in ['train', 'test', 'val'] type_map = {'train':0, 'val':1, 'test':2} self.set_type = type_map[flag] self.features = features self.target = target self.scale = scale self.inverse = inverse self.timeenc = timeenc self.freq = freq self.root_path = root_path self.data_path = data_path self.__read_data__() def __read_data__(self): self.scaler = StandardScaler() df_raw = pd.read_csv(os.path.join(self.root_path, self.data_path)) border1s = [0, 12*30*24 - self.seq_len, 12*30*24+4*30*24 - self.seq_len] border2s = [12*30*24, 12*30*24+4*30*24, 12*30*24+8*30*24] border1 = border1s[self.set_type] border2 = border2s[self.set_type] if self.features=='M' or self.features=='MS': cols_data = df_raw.columns[1:] df_data = df_raw[cols_data] elif self.features=='S': df_data = df_raw[[self.target]] if self.scale: train_data = df_data[border1s[0]:border2s[0]] self.scaler.fit(train_data.values) data = self.scaler.transform(df_data.values) else: data = df_data.values df_stamp = df_raw[['date']][border1:border2] df_stamp['date'] = pd.to_datetime(df_stamp.date) data_stamp = time_features(df_stamp, timeenc=self.timeenc, freq=self.freq) self.data_x = data[border1:border2] if self.inverse: self.data_y = df_data.values[border1:border2] else: self.data_y = data[border1:border2] self.data_stamp = data_stamp df_stamp.rename(columns={'date': 'ds'}, inplace=1) df_stamp = df_stamp.reset_index(drop=True) cols = [self.target] if self.features == 'S' else cols_data self.df_scaled = pd.concat([df_stamp,
pd.DataFrame(self.data_x, columns=cols)
pandas.DataFrame
from __future__ import division import socket # for socket import sys import time import re import os from base64 import b64decode from typing import Sized import pandas as pd import random import string import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from datetime import datetime import sys import numpy as np cache_type= '' #Function to setup connection to cache server def setup_connection(ip, port) : try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) print ("Socket successfully created") except socket.error as err: print ("socket creation failed with error %s" %(err)) try: host_ip = socket.gethostbyname(ip) except socket.gaierror: print ("there was an error resolving the host") sys.exit() s.connect((host_ip, port)) print ("the socket has successfully connected to server") return s #Function to calculate statistics def set_up_experiment(ip, port, loss, delay): data = pd.read_csv("source.csv") source_data = data["website"].tolist() iteration_num = 100 # number of iterations for each probe experiment_num = 50 miss =[] hit =[] #initiate empty array to store delay or throughput average_rtt=[] average_size=[] average_th=[] for _ in range(experiment_num): rtt = [] res_size = [] hitCount = 0 missCount = 0 for i in range(iteration_num): req = random.choice(source_data) print("experiment "+str(_)+" iteration "+str(i)) print(req) r,s,t = send_request_to_cache(ip, port, req) print("size", s) r_number = np.random.randint(10) r_number = r_number/10 print(r_number, loss) if r_number < loss : t= 2 # default loss s = 1 # default size missCount = missCount +1 else: if r == 'HIT': hitCount = hitCount+1 print(r, hitCount) elif r == 'MISS': missCount = missCount +1 t = t+ delay rtt.append(t) res_size.append(s) average_rtt.append(sum(rtt)/iteration_num) average_size.append(sum(res_size)/iteration_num) average_th.append(sum(res_size)/sum(rtt)) print("MISS ", missCount/iteration_num) miss.append(missCount/iteration_num) hit.append(hitCount/iteration_num) print("Miss avg ",sum(miss)/experiment_num) print("Hit avg ",sum(hit)/experiment_num) rtt_df =
pd.DataFrame()
pandas.DataFrame
# Copyright (c) 2020 Google LLC # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """Builds a table with SMILES and yield information.""" import collections import dataclasses import pandas as pd from rdkit import Chem from rdkit.Chem import AllChem def location_to_row_col(location, block, plate): """Converts a block location to (row, col) on the plate. Args: location: Text location in the block, e.g. "1:A". block: Integer block number. plate: Integer plate number. Returns: Tuple of (row, col) integers; the location on the plate. """ if plate == 3: row_letter, col = location.split(':') else: col, row_letter = location.split(':') col = int(col) row = ord(row_letter) - 64 if block == 2: col += 24 elif block == 3: row += 16 elif block == 4: row += 16 col += 24 return row, col def read_yield_data(): """Reads location/yield data from the yield_data/ directory. Returns: DataFrame with the following columns: * plate * row * col * yield """ data = [] for plate in [1, 2, 3]: for block in [1, 2, 3, 4]: filename = f'yield_data/plate{plate}.{block}.csv' print(filename) df = pd.read_csv(filename) mask = df.Location.isna() if mask.any(): print(df[mask]) df = df[~mask] locations = df.apply( lambda x: location_to_row_col(x.Location, block, plate), axis=1, result_type='expand') locations.rename(columns={0: 'row', 1: 'col'}, inplace=True) df = pd.concat([df, locations], axis=1) df['plate'] = plate df = df[['plate', 'row', 'col', 'product_scaled']] df.rename(columns={'product_scaled': 'yield'}, inplace=True) data.append(df) return pd.concat(data, ignore_index=True) def read_compound_data(): """Reads location/compound data from the layout/ and smiles/ directories. Returns: DataFrame with the following columns: * plate * row * col * additive * additive_number * additive_smiles * aryl_halide * aryl_halide_number * aryl_halide_smiles * base * base_cas_number * base_smiles * ligand * ligand_cas_number * ligand_smiles * product_smiles """ rows = pd.read_csv('layout/Table_S1.csv') cols =
pd.read_csv('layout/Table_S2.csv')
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 """ This module preprocess the grades files """ import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler def read_grades(dir1='../../data/intermediate_grades.xlsx', dir2='../../data/final_grades.xlsx'): """ Read grades.xlsx files Parameters ---------- dir1: intermidiate grades path dir2: final grades path """ # Error meassages if not isinstance(dir1, str) is True: raise ValueError("'grades' should be should be a string (directory).") if not isinstance(dir2, str) is True: raise ValueError("'grades' should be should be a string (directory).") # Get intermediate grades mid_grades = pd.read_excel(dir1) # Get final grades xl_file = pd.ExcelFile(dir2) sheet_name = xl_file.sheet_names final_1st =
pd.read_excel(dir2, sheet_name=sheet_name[0])
pandas.read_excel
import sys import os sys.path.append(os.path.abspath(".")) sys.dont_write_bytecode = True __author__ = "COSAL" from bson import ObjectId import pandas as pd import pymongo import rpy2 from utils import logger, lib from store import mongo_driver from misconceptions.common import helper, differences FILE_STMT_COLLECTION = "file_stmts" STMT_COLLECTION = "stmts" STMT_NORMALIZED_COLLECTION = "normalized_stmts" INPUTS_COLLECTIONS = "inputs" DIFFERENCES_COLLECTIONS = "differences" SELF_SYNTACTIC_DIFFERENCES_COLLECTION = "self_syntactic_differences" STMT_FILE_COLLECTION = "stmts_file" PRIMITIVES = {int, float, str, bool, type(None), list, set, dict, tuple, unicode} DOT_ESCAPE_CHAR = "|@|" DOLLAR_ESCAPE_CHAR = "|#|" LOGGER = logger.get_logger(os.path.basename(__file__.split(".")[0])) def mongo_escape(s): return s.replace(".", DOT_ESCAPE_CHAR).replace("$", DOLLAR_ESCAPE_CHAR) def mongo_de_escape(s): return s.replace(DOT_ESCAPE_CHAR, ".").replace(DOLLAR_ESCAPE_CHAR, "$") class MongoStore(lib.O): def __init__(self, dataset, **kwargs): self.dataset = dataset lib.O.__init__(self, **kwargs) # File Statements def store_file_stmts(self, file_name, snippets, language): collection = mongo_driver.get_collection(self.dataset, FILE_STMT_COLLECTION) if not mongo_driver.is_collection_exists(collection): mongo_driver.create_unique_index_for_collection(collection, "file_name") collection.insert({ "file_name": file_name, "snippets": snippets, "language": language }) def load_stmts_for_file_name(self, file_name): try: return mongo_driver.get_collection(self.dataset, FILE_STMT_COLLECTION).find_one({"file_name": file_name}) except Exception: LOGGER.critical("Failed to load file name : %s" % file_name) return None def load_file_stmts(self, language=None): if language: return mongo_driver.get_collection(self.dataset, FILE_STMT_COLLECTION).find({"language": language}) else: return mongo_driver.get_collection(self.dataset, FILE_STMT_COLLECTION).find() def delete_file_stmts(self, language=None): if language: mongo_driver.get_collection(self.dataset, FILE_STMT_COLLECTION).delete_many({"language": language}) else: mongo_driver.get_collection(self.dataset, FILE_STMT_COLLECTION).drop() # Statements def store_stmt(self, snippet, language, variables): collection = mongo_driver.get_collection(self.dataset, STMT_COLLECTION) if not mongo_driver.is_collection_exists(collection): mongo_driver.create_unique_index_for_collection(collection, "snippet", "language") collection.insert({ "snippet": snippet, "language": language, "variables": variables }) def update_stmt_outputs(self, stmt_id, outputs): collection = mongo_driver.get_collection(self.dataset, STMT_COLLECTION) stmt = collection.find_one({'_id': stmt_id}) stmt['outputs'] = outputs try: collection.update_one({'_id': stmt_id}, {"$set": stmt}, upsert=False) except Exception: stmt['outputs'] = None try: collection.update_one({'_id': stmt_id}, {"$set": stmt}, upsert=False) except Exception as e: # import pprint # pprint.pprint(outputs[outputs.keys()[0]]) raise e def update_stmt(self, stmt_id, updates): collection = mongo_driver.get_collection(self.dataset, STMT_COLLECTION) collection.update_one({"_id": stmt_id}, {"$set": updates}) def load_stmts(self, language=None, is_valid=True, has_output=False, limit=None, use_normalized=False): collection_name = STMT_NORMALIZED_COLLECTION if use_normalized else STMT_COLLECTION if language: stmts = mongo_driver.get_collection(self.dataset, collection_name).find({"language": language}) else: stmts = mongo_driver.get_collection(self.dataset, collection_name).find() formatted = {} for stmt in stmts: if (not is_valid or (is_valid and stmt.get('variables', None))) \ and (not has_output or (has_output and stmt.get('outputs', None))): formatted[(stmt['snippet'], stmt['language'])] = stmt if limit and len(formatted) == limit: return formatted return formatted def load_stmt(self, mongo_id, projections=None, use_normalized=False): collection_name = STMT_NORMALIZED_COLLECTION if use_normalized else STMT_COLLECTION if not isinstance(mongo_id, ObjectId): mongo_id = ObjectId(mongo_id) return mongo_driver.get_collection(self.dataset, collection_name).find_one({"_id": mongo_id}, projection=projections) def load_raw_stmts(self, language=None, use_normalized=False): collection_name = STMT_NORMALIZED_COLLECTION if use_normalized else STMT_COLLECTION if language: return mongo_driver.get_collection(self.dataset, collection_name).find({"language": language}) else: return mongo_driver.get_collection(self.dataset, collection_name).find() def load_valid_snippets(self, language=None, use_normalized=False): collection_name = STMT_NORMALIZED_COLLECTION if use_normalized else STMT_COLLECTION projection = {"outputs": False} if language: stmts = mongo_driver.get_collection(self.dataset, collection_name).find({"language": language}, projection) else: stmts = mongo_driver.get_collection(self.dataset, collection_name).find({}, projection) valids = [] for stmt in stmts: if stmt.get('variables', None): valids.append(stmt) return valids # Normalized Statements def store_normalized_stmt(self, stmt_dict): collection = mongo_driver.get_collection(self.dataset, STMT_NORMALIZED_COLLECTION) if not mongo_driver.is_collection_exists(collection): mongo_driver.create_unique_index_for_collection(collection, "snippet", "language") try: collection.insert(stmt_dict, continue_on_error=True) except pymongo.errors.DuplicateKeyError as e: pass # Inputs def save_inputs(self, inps): collection = mongo_driver.get_collection(self.dataset, INPUTS_COLLECTIONS) for inp in inps: arg_set = [arg.to_dict(orient='records') for arg in inp] collection.insert({ "args": arg_set }) def delete_inputs(self): collection = mongo_driver.get_collection(self.dataset, INPUTS_COLLECTIONS) if collection: collection.drop() def load_inputs(self, column_names): collection = mongo_driver.get_collection(self.dataset, INPUTS_COLLECTIONS) inps = [] for inp in collection.find(): args = [] for arg in inp["args"]: df =
pd.DataFrame(arg)
pandas.DataFrame
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.10.3 # kernelspec: # display_name: wikirecs # language: python # name: wikirecs # --- # # WikiRecs # A project to recommend the next Wikipedia article you might like to edit # + init_cell=true # %matplotlib inline # %load_ext autoreload # %autoreload 2 import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import logging import wikipedia import requests import os import wikirecs as wr import implicit from scipy.sparse import csr_matrix, csc_matrix, lil_matrix, coo_matrix from tqdm.auto import tqdm import umap import pickle import collections import recommenders import plotly.express as px from pyarrow import feather import itertools from itables import show import matplotlib from implicit.nearest_neighbours import ( bm25_weight) # - from itables.javascript import load_datatables load_datatables() # + init_cell=true pd.set_option('display.max_rows', 100) pd.set_option('display.min_rows', 100) # + init_cell=true logging.basicConfig() logging.getLogger().setLevel(logging.INFO) # - # # Assemble the complete histories import os all_histories = [] for fname in os.listdir('edit_histories_2021-05-28'): if 'feather' in fname: all_histories.append(feather.read_feather('edit_histories_2021-05-28/{}'.format(fname))) all_histories = pd.concat(all_histories, ignore_index=True) feather.write_feather(all_histories, "all_histories_2021-05-28.feather") # %%time all_histories = feather.read_feather("all_histories_2021-05-28.feather") all_histories.columns len(all_histories.pageid.unique()) # # Load all_histories (raw data), transform and split # + # %%time all_histories = feather.read_feather("all_histories_2021-05-28.feather") print("Length raw edit history data: {}".format(len(all_histories))) # + from pull_edit_histories import get_edit_history ## Add one particular user cols = ['userid', 'user', 'pageid', 'title', 'timestamp', 'sizediff'] with open("../username.txt", "r") as file: for username in file: oneuser = get_edit_history(user=username.strip(), latest_timestamp="2021-05-28T22:02:09Z", earliest_timestamp="2020-05-28T22:02:09Z") oneuser = pd.DataFrame(oneuser).loc[:,cols] all_histories = pd.concat([all_histories, oneuser], ignore_index=True) print("Length after adding users: {}".format(len(all_histories))) # - # ## EDA on raw histories # Look at the distribution of edit counts edit_counts = all_histories.groupby('userid').userid.count().values plt.figure(figsize=(20,8)) plt.subplot(1,2,1) sns.distplot(edit_counts,kde=False,bins=np.arange(0,20000,200)) plt.xlabel('Number of edits by user') plt.subplot(1,2,2) sns.distplot(edit_counts,kde=False,bins=np.arange(0,200,1)) plt.xlim([0,200]) plt.xlabel('Number of edits by user') num_counts = len(edit_counts) print("Median edit counts: %d" % np.median(edit_counts)) thres = 5 over_thres = np.sum(edit_counts > thres) print("Number over threshold %d: %d (%.f%%)" % (thres, over_thres, 100*over_thres/num_counts)) # Most edits by user all_histories.groupby(['userid','user']).userid.count().sort_values(ascending=False) # Find the elbow in number of edits plt.plot(all_histories.groupby(['userid','user']).userid.count().sort_values(ascending=False).values) # plt.ylim([0,20000]) # + # What are the most popular pages (edited by the most users) page_popularity = all_histories.drop_duplicates(subset=['title','user']).groupby('title').count().user.sort_values() pd.set_option('display.max_rows', 1000) page_popularity.iloc[-1000:].iloc[::-1] # - # ## Clean data # ### Remove consecutive edits and summarize runs # + # %%time def remove_consecutive_edits(df): c = dict(zip(df.columns, range(len(df.columns)))) keyfunc = lambda x: (x[c['userid']],x[c['pageid']]) first_and_last = lambda run: [run[0][c['userid']], run[0][c['user']], run[0][c['pageid']], run[0][c['title']], run[-1][c['timestamp']], run[0][c['timestamp']], sum([abs(r[c['sizediff']]) for r in run]), len(run)] d = df.values.tolist() return pd.DataFrame([first_and_last(list(g)) for k,g in itertools.groupby(d, key=keyfunc)], columns=['userid', 'user', 'pageid', 'title', 'first_timestamp', 'last_timestamp','sum_sizediff','consecutive_edits']) clean_histories = remove_consecutive_edits(all_histories) # - # ### Remove top N most popular pages # + # Get the top most popular pages TOPN = 20 popularpages = all_histories.drop_duplicates(subset=['title','pageid','userid']).groupby(['title','pageid']).count().user.sort_values()[-TOPN:] before_count = len(all_histories) # - popularpages # Remove those popular pages popular_pageids = popularpages.index.get_level_values(level='pageid').values is_popular_page_edit = clean_histories.pageid.isin(popular_pageids) clean_histories = clean_histories.loc[~is_popular_page_edit].copy() all_histories = None after_count = len(clean_histories) print("%d edits (%.1f%%) were in top %d popular pages. Length after removing: %d" % (np.sum(is_popular_page_edit), 100* np.sum(is_popular_page_edit)/before_count, TOPN, after_count) ) print("Number of unique page ids: {}".format(len(clean_histories.pageid.unique()))) # ### Remove users with too many or too few edits MIN_EDITS = 5 MAX_EDITS = 10000 # Get user edit counts all_user_edit_counts = clean_histories.groupby(['userid','user']).userid.count() # + # Remove users with too few edits keep_user = all_user_edit_counts.values >= MIN_EDITS # Remove users with too many edits keep_user = keep_user & (all_user_edit_counts.values <= MAX_EDITS) # Remove users with "bot" in the name is_bot = ['bot' in username.lower() for username in all_user_edit_counts.index.get_level_values(1).values] keep_user = keep_user & ~np.array(is_bot) print("Keep %d users out of %d (%.1f%%)" % (np.sum(keep_user), len(all_user_edit_counts), 100*float(np.sum(keep_user))/len(all_user_edit_counts))) # + # Remove those users userids_to_keep = all_user_edit_counts.index.get_level_values(0).values[keep_user] clean_histories = clean_histories.loc[clean_histories.userid.isin(userids_to_keep)] clean_histories = clean_histories.reset_index(drop=True) # - print("Length after removing users: {}".format(len(clean_histories))) # %%time # Save cleaned histories feather.write_feather(clean_histories, '../clean_histories_2021-05-28.feather') # ## Build lookup tables # %%time clean_histories = feather.read_feather('../clean_histories_2021-05-28.feather') # + # Page id to title and back lookup = clean_histories.drop_duplicates(subset=['pageid']).loc[:,['pageid','title']] p2t = dict(zip(lookup.pageid, lookup.title)) t2p = dict(zip(lookup.title, lookup.pageid)) # User id to name and back lookup = clean_histories.drop_duplicates(subset=['userid']).loc[:,['userid','user']] u2n = dict(zip(lookup.userid, lookup.user)) n2u = dict(zip(lookup.user, lookup.userid)) # + # Page id and userid to index in cooccurence matrix and back pageids = np.sort(clean_histories.pageid.unique()) userids = np.sort(clean_histories.userid.unique()) p2i = {pageid:i for i, pageid in enumerate(pageids)} u2i = {userid:i for i, userid in enumerate(userids)} i2p = {v: k for k, v in p2i.items()} i2u = {v: k for k, v in u2i.items()} # + # User name and page title to index and back n2i = {k:u2i[v] for k, v in n2u.items() if v in u2i} t2i = {k:p2i[v] for k, v in t2p.items() if v in p2i} i2n = {v: k for k, v in n2i.items()} i2t = {v: k for k, v in t2i.items()} # - wr.save_pickle((p2t, t2p, u2n, n2u, p2i, u2i, i2p, i2u, n2i, t2i, i2n, i2t), '../lookup_tables_2021-05-28.pickle') wr.save_pickle((userids, pageids), '../users_and_pages_2021-05-28.pickle') # # ## Build test and training set p2t, t2p, u2n, n2u, p2i, u2i, i2p, i2u, n2i, t2i, i2n, i2t = wr.load_pickle('../lookup_tables_2021-05-28.pickle') userids, pageids = wr.load_pickle('../users_and_pages_2021-05-28.pickle') # Make a test set from the most recent edit by each user histories_test = clean_histories.groupby(['userid','user'],as_index=False).first() # Subtract it from the rest to make the training set histories_train = wr.dataframe_set_subtract(clean_histories, histories_test) histories_train.reset_index(drop=True, inplace=True) # Make a dev set from the second most recent edit by each user histories_dev = histories_train.groupby(['userid','user'],as_index=False).first() # Subtract it from the rest to make the final training set histories_train = wr.dataframe_set_subtract(histories_train, histories_dev) histories_train.reset_index(drop=True, inplace=True) print("Length of test set: {}".format(len(histories_test))) print("Length of dev set: {}".format(len(histories_dev))) print("Length of training after removal of test: {}".format(len(histories_train))) print("Number of pages in training set: {}".format(len(histories_train.pageid.unique()))) print("Number of users in training set: {}".format(len(histories_train.userid.unique()))) print("Number of pages with > 1 user editing: {}".format(np.sum(histories_train.drop_duplicates(subset=['title','user']).groupby('title').count().user > 1))) feather.write_feather(histories_train, '../histories_train_2021-05-28.feather') feather.write_feather(histories_dev, '../histories_dev_2021-05-28.feather') feather.write_feather(histories_test, '../histories_test_2021-05-28.feather') # + resurface_userids, discovery_userids = wr.get_resurface_discovery(histories_train, histories_dev) print("%d out of %d userids are resurfaced (%.1f%%)" % (len(resurface_userids), len(userids), 100*float(len(resurface_userids))/len(userids))) print("%d out of %d userids are discovered (%.1f%%)" % (len(discovery_userids), len(userids), 100*float(len(discovery_userids))/len(userids))) # - wr.save_pickle((resurface_userids, discovery_userids), '../resurface_discovery_users_2021-05-28.pickle') # # FIG Rama and other examples print("Number of edits by Rama in a year: {}".format(len(all_histories.loc[all_histories.user == 'Rama']))) print("Number of pages edited: {}".format(len(all_histories.loc[all_histories.user == 'Rama'].drop_duplicates(subset=['pageid'])))) # + from pull_edit_histories import get_edit_history oneuser = get_edit_history(user="Thornstrom", latest_timestamp="2021-05-28T22:02:09Z", earliest_timestamp="2020-05-28T22:02:09Z") oneuser = pd.DataFrame(oneuser).loc[:,cols] # - wr.print_user_history(all_histories, user="Rama") wr.print_user_history(all_histories, user="Meow") # # Build matrix for implicit collaborative filtering # + # %%time # Get the user/page edit counts for_implicit = histories_train.groupby(["userid","pageid"]).count().first_timestamp.reset_index().rename(columns={'first_timestamp':'edits'}) for_implicit.loc[:,'edits'] = for_implicit.edits.astype(np.int32) # + row = np.array([p2i[p] for p in for_implicit.pageid.values]) col = np.array([u2i[u] for u in for_implicit.userid.values]) implicit_matrix_coo = coo_matrix((for_implicit.edits.values, (row, col))) implicit_matrix = csc_matrix(implicit_matrix_coo) # - # %%time wr.save_pickle(implicit_matrix,'../implicit_matrix_2021-05-28.pickle') # ### Test the matrix and indices implicit_matrix = wr.load_pickle('../implicit_matrix_2021-05-28.pickle') # + # Crude item to item recs by looking for items edited by the same editors (count how many editors overlap) veditors = np.flatnonzero(implicit_matrix[t2i['Hamburger'],:].toarray()) indices = np.flatnonzero(np.sum(implicit_matrix[:,veditors] > 0,axis=1)) totals = np.asarray(np.sum(implicit_matrix[:,veditors] > 0 ,axis=1)[indices]) sorted_order = np.argsort(totals.squeeze()) [i2t.get(i, "") + " " + str(total[0]) for i,total in zip(indices[sorted_order],totals[sorted_order])][::-1] # - # Histories of editors who had that item for ved in veditors: print("\n\n\n" + i2n[ved]) wr.print_user_history(all_histories, user=i2n[ved]) # # Implicit recommendation implicit_matrix = wr.load_pickle('../implicit_matrix_2021-05-28.pickle') p2t, t2p, u2n, n2u, p2i, u2i, i2p, i2u, n2i, t2i, i2n, i2t = wr.load_pickle('../lookup_tables_2021-05-28.pickle') bm25_matrix = bm25_weight(implicit_matrix, K1=100, B=0.25) num_factors =200 regularization = 0.01 os.environ["OPENBLAS_NUM_THREADS"] = "1" model = implicit.als.AlternatingLeastSquares( factors=num_factors, regularization=regularization ) model.fit(bm25_matrix) wr.save_pickle(model,'../als%d_bm25_model.pickle' % num_factors) model = wr.load_pickle('../als200_bm25_model_2021-05-28.pickle') results = model.similar_items(t2i['Steven Universe'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] u = n2u["Rama"] recommendations = model.recommend(u2i[u], bm25_matrix.tocsc(), N=1000, filter_already_liked_items=False) [ ("*" if implicit_matrix[ind,u2i[u]]>0 else "") + '%s %.4f' % (i2t[ind], score) + ' %d' % (implicit_matrix[ind,:]>0).sum() for ind, score in recommendations] # ## Grid search results grid_search_results = wr.load_pickle("../implicit_grid_search.pickle") pd.DataFrame(grid_search_results) pd.DataFrame([[i['num_factors'], i['regularization']] + list(i['metrics'].values()) for i in grid_search_results], columns = ['num_factors','regularization'] + list(grid_search_results[0]['metrics'].keys())) grid_search_results_bm25 = wr.load_pickle("../implicit_grid_search_bm25.pickle") pd.DataFrame([[i['num_factors'], i['regularization']] + list(i['metrics'].values()) for i in grid_search_results_bm25], columns = ['num_factors','regularization'] + list(grid_search_results_bm25[0]['metrics'].keys())) # # B25 Recommendation from implicit.nearest_neighbours import BM25Recommender # + bm25_matrix = bm25_weight(implicit_matrix, K1=20, B=1) bm25_matrix = bm25_matrix.tocsc() sns.distplot(implicit_matrix[implicit_matrix.nonzero()],bins = np.arange(0,100,1),kde=False) sns.distplot(bm25_matrix[bm25_matrix.nonzero()],bins = np.arange(0,100,1),kde=False) # - K1 = 100 B = 0.25 model = BM25Recommender(K1, B) model.fit(implicit_matrix) wr.save_pickle(model, '../bm25_model_2021-05-28.pkl') results = model.similar_items(t2i['<NAME>'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] a = ['Steven Universe 429.4746', 'List of Steven Universe episodes 178.4544', 'Demon Bear 128.7237', 'Legion of Super Heroes (TV series) 128.7237', 'The Amazing World of Gumball 126.3522', 'Steven Universe Future 123.9198'] results = model.similar_items(t2i['Steven Universe'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] results = model.similar_items(t2i['<NAME>'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] results = model.similar_items(t2i['Hamburger'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] u = n2u["Rama"] recommendations = model.recommend(u2i[u], implicit_matrix.astype(np.float32), N=1000, filter_already_liked_items=True) [ ("*" if implicit_matrix[ind,u2i[u]]>0 else "") + '%s %.4f' % (i2t[ind], score) for ind, score in recommendations] plt.plot([ score for i,(ind, score) in enumerate(recommendations) if implicit_matrix[ind,u2i[u]]==0]) wr.save_pickle(model, "b25_model.pickle") model = wr.load_pickle("b25_model.pickle") # # Evaluate models # ## Item to item recommendation results = model.similar_items(t2i['Steven Universe'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] # ## User to item recommendations # + # Check out a specific example u = n2u["HyprMarc"] wr.print_user_history(clean_histories, userid=u) # - u = n2u["HyprMarc"] recommendations = model.recommend(u2i[u], implicit_matrix, N=100, filter_already_liked_items=False) [ ("*" if implicit_matrix[ind,u2i[u]]>0 else "") + '%s %.4f' % (i2t[ind], score) for ind, score in recommendations] # # Visualize implicit embeddings model = wr.load_pickle('../als150_model.pickle') # + # Only plot the ones with over 3 entries indices = np.squeeze(np.asarray(np.sum(implicit_matrix[nonzero,:],axis=1))) > 3 indices = nonzero[indices] # - len(indices) # Visualize the collaborative filtering item vectors, embedding into 2D space with UMAP # nonzero = np.flatnonzero(implicit_matrix.sum(axis=1)) # indices = nonzero[::100] embedding = umap.UMAP().fit_transform(model.item_factors[indices,:]) plt.figure(figsize=(10,10)) plt.plot(embedding[:,0], embedding[:,1],'.') # _ = plt.axis('square') # ## Visualize actors in the embeddings space # + edit_counts = np.squeeze(np.asarray(np.sum(implicit_matrix[indices,:],axis=1))) log_edit_counts = np.log10(np.squeeze(np.asarray(np.sum(implicit_matrix[indices,:],axis=1)))) emb_df = pd.DataFrame({'dim1':embedding[:,0].squeeze(), 'dim2':embedding[:,1].squeeze(), 'title':[i2t[i] for i in indices], 'edit_count':edit_counts, 'log_edit_count':log_edit_counts }) # - actors = ['<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME> (actor)', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>'] actor_indices = [t2i[a] for a in actors] edit_counts = np.squeeze(np.asarray(np.sum(implicit_matrix[actor_indices,:],axis=1))) log_edit_counts = np.log10(np.squeeze(np.asarray(np.sum(implicit_matrix[actor_indices,:],axis=1)))) embedding = umap.UMAP().fit_transform(model.item_factors[actor_indices,:]) emb_df = pd.DataFrame({'dim1':embedding[:,0].squeeze(), 'dim2':embedding[:,1].squeeze(), 'title':[i2t[i] for i in actor_indices], 'edit_count':edit_counts, 'log_edit_count':log_edit_counts }) key = np.zeros(len(actors)) key[:8] = 1 fig = px.scatter(data_frame=emb_df, x='dim1', y='dim2', hover_name='title', color=key, hover_data=['edit_count']) fig.update_layout( autosize=False, width=600, height=600,) fig.show() # + # Full embedding plotly interactive visualization emb_df = pd.DataFrame({'dim1':embedding[:,0].squeeze(), 'dim2':embedding[:,1].squeeze(), 'title':[i2t[i] for i in indices], 'edit_count':edit_counts, 'log_edit_count':log_edit_counts }) fig = px.scatter(data_frame=emb_df, x='dim1', y='dim2', hover_name='title', color='log_edit_count', hover_data=['edit_count']) fig.update_layout( autosize=False, width=600, height=600,) fig.show() # - # # Evaluate on test set # + # Load the edit histories in the training set and the test set histories_train = feather.read_feather('../histories_train_2021-05-28.feather') histories_test = feather.read_feather('../histories_test_2021-05-28.feather') histories_dev = feather.read_feather('../histories_dev_2021-05-28.feather') implicit_matrix = wr.load_pickle('../implicit_matrix_2021-05-28.pickle') p2t, t2p, u2n, n2u, p2i, u2i, i2p, i2u, n2i, t2i, i2n, i2t = wr.load_pickle('../lookup_tables_2021-05-28.pickle') userids, pageids = wr.load_pickle('../users_and_pages_2021-05-28.pickle') resurface_userids, discovery_userids = wr.load_pickle('../resurface_discovery_users_2021-05-28.pickle') results = {} # - wr.display_recs_with_history( recs, userids[:100], histories_test, histories_train, p2t, u2n, recs_to_display=5, hist_to_display=10, ) # ## Most popular # + # %%time K=20 rec_name = "Popularity" prec = recommenders.PopularityRecommender(histories_train) precs = prec.recommend_all(userids, K) wr.save_pickle(precs, "../" + rec_name +"_recs.pickle") # + results[rec_name] = wr.get_recs_metrics( histories_dev, precs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # - # ## Most recent # %%time # Most recent K=20 rrec = recommenders.MostRecentRecommender(histories_train) rrecs = rrec.recommend_all(userids, K, interactions=histories_train) rec_name = "Recent" wr.save_pickle(rrecs, "../" + rec_name +"_recs.pickle") len(resurface_userids) results ={} results[rec_name] = wr.get_recs_metrics( histories_dev, rrecs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # ## Most frequent # %%time # Sorted by frequency of edits K=20 frec = recommenders.MostFrequentRecommender(histories_train) frecs = frec.recommend_all(userids, K, interactions=histories_train) rec_name = "Frequent" wr.save_pickle(frecs, "../" + rec_name +"_recs.pickle") results[rec_name] = wr.get_recs_metrics( histories_dev, frecs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # ## BM25 # %%time K=20 brec = recommenders.MyBM25Recommender(model, implicit_matrix) brecs = brec.recommend_all(userids, K, u2i=u2i, n2i=n2i, i2p=i2p, filter_already_liked_items=False) rec_name = "bm25" wr.save_pickle(brecs, "../" + rec_name +"_recs.pickle") # filter_already_liked_items = False results[rec_name] = wr.get_recs_metrics( histories_dev, brecs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # filter_already_liked_items = True rec_name = "bm25_filtered" brecs_filtered = brec.recommend_all(userids, K, u2i=u2i, n2i=n2i, i2p=i2p, filter_already_liked_items=True) wr.save_pickle(brecs_filtered, "../" + rec_name +"_recs.pickle") results[rec_name] = wr.get_recs_metrics( histories_dev, recs['bm25_filtered'], K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] results[rec_name] = wr.get_recs_metrics( histories_dev, recs['bm25_filtered'], K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # ## ALS Implicit collaborative filtering model_als = wr.load_pickle('../als200_bm25_model_2021-05-28.pickle') # %%time rec_name = "als" K=20 irec = recommenders.ImplicitCollaborativeRecommender(model_als, bm25_matrix.tocsc()) irecs = irec.recommend_all(userids, K, i2p=i2p, filter_already_liked_items=False) wr.save_pickle(irecs, "../" + rec_name +"_recs.pickle") results[rec_name] = wr.get_recs_metrics( histories_dev, irecs, K, discovery_userids, resurface_userids, bm25_matrix.tocsc(), i2p, u2i) results[rec_name] rec_name = "als_filtered" K=20 irec = recommenders.ImplicitCollaborativeRecommender(model_als, bm25_matrix.tocsc()) irecs_filtered = irec.recommend_all(userids, K, i2p=i2p, filter_already_liked_items=True) results[rec_name] = wr.get_recs_metrics( histories_dev, irecs_filtered, K, discovery_userids, resurface_userids, bm25_matrix.tocsc(), i2p, u2i) results[rec_name] wr.save_pickle(irecs_filtered, "../" + rec_name +"_recs.pickle") show(pd.DataFrame(results).T) # ## Jaccard # %%time # Sorted by Jaccard K=20 rrec = recommenders.MostRecentRecommender(histories_train) recent_pages_dict = rrec.all_recent_only(K, userids, interactions=histories_train) jrec = recommenders.JaccardRecommender(implicit_matrix, p2i=p2i, t2i=t2i, i2t=i2t, i2p=i2p, n2i=n2i, u2i=u2i, i2u=i2u) jrecs = jrec.recommend_all(userids, K, num_lookpage_pages=1, recent_pages_dict=recent_pages_dict, interactions=histories_train) wr.save_pickle(jrecs,"jaccard-1_recs.pickle") rec_name = "Jaccard" results[rec_name] = wr.get_recs_metrics( histories_dev, jrecs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] wr.display_recs_with_history( jrecs, userids[:30], histories_test, histories_train, p2t, u2n, recs_to_display=5, hist_to_display=10, ) # %%time # Sorted by Jaccard K=5 jrec = recommenders.JaccardRecommender(implicit_matrix, p2i=p2i, t2i=t2i, i2t=i2t, i2p=i2p, n2i=n2i, u2i=u2i, i2u=i2u) jrecs = jrec.recommend_all(userids[:1000], 10, num_lookpage_pages=50, recent_pages_dict=recent_pages_dict, interactions=histories_train) print("Jaccard") print("Recall @ %d: %.1f%%" % (K, 100*wr.recall(histories_test, jrecs, K))) print("Prop resurfaced: %.1f%%" % (100*wr.prop_resurface(jrecs, K, implicit_matrix, i2p, u2i))) print("Recall @ %d (discovery): %.1f%%" % (K, 100*wr.recall(histories_test, jrecs, K, userid_subset=discovery_userids))) print("Recall @ %d (resurface): %.1f%%" % (K, 100*wr.recall(histories_test, jrecs, K, userid_subset=resurface_userids))) # ## Interleaved recs.keys() # + # Interleaved jaccard and recent K=20 rec_name = "Interleaved" print(rec_name) intrec = recommenders.InterleaveRecommender() intrecs = intrec.recommend_all(K, [recs['Recent'], recs['bm25_filtered']]) wr.save_pickle(intrecs, "../" + rec_name +"_recs.pickle") # - results[rec_name] = wr.get_recs_metrics( histories_dev, intrecs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # # Report on evaluations results # ## Hard coded metrics # + results = {} results["Popularity"] = {'recall': 0.16187274312040842, 'ndcg': 0.0005356797596941751, 'resurfaced': 0.6213422985929523, 'recall_discover': 0.11947959996459864, 'recall_resurface': 0.2624396388830569, 'ndcg_discover': 0.000410354483750028, 'ndcg_resurface': 0.0008329819416998272} results["Recent"] = {'recall': 22.618602913709378, 'ndcg': 0.14306080818547054, 'resurfaced': 71.13808990163118, 'recall_discover': 0.03982653332153288, 'recall_resurface': 76.18097837497375, 'ndcg_discover': 0.00011494775493754298, 'ndcg_resurface': 0.4821633227780786} results["Frequent"] = {'recall': 20.834889802017184, 'ndcg': 0.11356953338215306, 'resurfaced': 76.10353629684971, 'recall_discover': 0.035401362952473675, 'recall_resurface': 70.17635943732941, 'ndcg_discover': 9.90570471847343e-05, 'ndcg_resurface': 0.38274923359395385} results["ALS"] = {'recall': 5.488108579255385, 'ndcg': 0.026193145556306998, 'resurfaced': 16.251556468683848, 'recall_discover': 1.146119125586335, 'recall_resurface': 15.788368675204703, 'ndcg_discover': 0.004817135435898367, 'ndcg_resurface': 0.0769022655123215} results["ALS_filtered"] = {'recall': 0.9027518366330469, 'ndcg': 0.003856703716094881, 'resurfaced': 0.0, 'recall_discover': 1.2832994070271706, 'recall_resurface': 0.0, 'ndcg_discover': 0.005482465270193466, 'ndcg_resurface': 0.0} results["BM25"] = {'recall': 18.945336819823186, 'ndcg': 0.1015175508656068, 'resurfaced': 74.0469742248786, 'recall_discover': 1.3939286662536507, 'recall_resurface': 60.581566239764854, 'ndcg_discover': 0.004204510293040833, 'ndcg_resurface': 0.332367864833573} results["BM25_filtered"] = {'recall': 1.8148424853691942, 'ndcg': 0.008622285155255174, 'resurfaced': 0.14848711243929774, 'recall_discover': 2.522347110363749, 'recall_resurface': 0.1364686122191896, 'ndcg_discover': 0.011740495141426633, 'ndcg_resurface': 0.0012251290280766518} results["Interleaved"] = {'recall': 21.382766778732414, 'ndcg': 0.12924273396038563, 'resurfaced': 42.478676379031256, 'recall_discover': 1.8364457031595716, 'recall_resurface': 67.75141717404996, 'ndcg_discover': 0.006943981897312752, 'ndcg_resurface': 0.4193652616867473} results_df = pd.DataFrame(results).T results_df.reset_index(inplace=True) # - # ## Table of results results_df # ### FIG Table for post # + def scatter_text(x, y, text_column, data, title, xlabel, ylabel): """Scatter plot with country codes on the x y coordinates Based on this answer: https://stackoverflow.com/a/54789170/2641825""" # Create the scatter plot p1 = sns.scatterplot(x, y, data=data, size = 8, legend=False) # Add text besides each point for line in range(0,data.shape[0]): p1.text(data[x][line]+0.01, data[y][line], data[text_column][line], horizontalalignment='left', size='medium', color='black', weight='semibold') # Set title and axis labels plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) return p1 def highlight_max(s): ''' highlight the maximum in a Series yellow. ''' is_max = s == s.max() return ['background-color: yellow' if v else '' for v in is_max] results_df.sort_values("recall", ascending=False).style.apply(highlight_max, subset=["recall", "ndcg", "resurfaced", "recall_discover", "recall_resurface", "ndcg_discover", "ndcg_resurface",]).format({"recall": "{:.1f}%", "ndcg": "{:.3f}", "resurfaced": "{:.1f}%", "recall_discover": "{:.1f}%", "recall_resurface": "{:.1f}%", "ndcg_discover": "{:.3f}", "ndcg_resurface": "{:.3f}", }) # - colnames = ["Recommender", "Recall@20", "nDCG@20","Resurfaced","Recall@20 discovery","Recall@20 resurface","nDCG@20 discovery","nDCG@20 resurface"] #apply(highlight_max, subset=colnames[1:]). results_df.columns = colnames results_df.sort_values("Recall@20", ascending=False).style.\ format({"Recall@20": "{:.1f}%", "nDCG@20": "{:.3f}", "Resurfaced": "{:.1f}%", "Recall@20 discovery": "{:.1f}%", "Recall@20 resurface": "{:.1f}%", "nDCG@20 discovery": "{:.3f}", "nDCG@20 resurface": "{:.3f}", }) # ## Scatter plots (resurface vs discover) fig = px.scatter(data_frame=results_df, x='ndcg_discover', y='ndcg_resurface', hover_name='index') # hover_name='title',) fig.show() fig = px.scatter(data_frame=results_df, x='recall_discover', y='recall_resurface', hover_name='index') # hover_name='title',) fig.show() # ### FIG Scatterplot for post x = 2*[results_df.loc[results_df.Recommender == "Interleaved","Recall@20 resurface"].values[0]] y = [0, results_df.loc[results_df.Recommender == "Interleaved","Recall@20 discovery"].values[0]] # + sns.set_theme(style="darkgrid") matplotlib.rcParams.update({'font.size': 48, 'figure.figsize':(8,5), 'legend.edgecolor':'k'}) plt.figure(figsize=(12,7)) A = results_df.loc[:,'Recall@20 discovery'] B = results_df.loc[:,'Recall@20 resurface'] x = 2*[results_df.loc[results_df.Recommender == "Interleaved","Recall@20 discovery"].values[0]] y = [-1, results_df.loc[results_df.Recommender == "Interleaved","Recall@20 resurface"].values[0]] plt.plot(x,y,":k") x[0] = 0 y[0] = y[1] # plt.rcParams.update({'font.size': 48}) plt.rc('xtick', labelsize=3) font = {'family' : 'normal', 'weight' : 'normal', 'size' : 22} matplotlib.rc('font', **font) plt.plot(x,y,":k") plt.plot(A,B,'.', MarkerSize=15) for xyz in zip(results_df.Recommender, A, B): # <-- plt.gca().annotate('%s' % xyz[0], xy=np.array(xyz[1:])+(0.05,0), textcoords='data', fontsize=18) # <-- for tick in plt.gca().xaxis.get_major_ticks(): tick.label.set_fontsize(20) for tick in plt.gca().yaxis.get_major_ticks(): tick.label.set_fontsize(20) plt.xlabel("Recall@20 discovery (%)",fontsize=20) plt.ylabel("Recall@20 resurface (%)",fontsize=20) plt.xlim([0,3]) plt.ylim([-2,85]) axes = plt.gca() # - # ## Read recs in from files recommender_names = ['Popularity', 'Recent', 'Frequent', 'ALS', 'ALS_filtered', 'BM25', 'BM25_filtered', 'Interleaved'] recs = {rname:wr.load_pickle("../" + rname + "_recs.pickle") for rname in recommender_names} # ## Recall curves histories_dev = feather.read_feather('../histories_dev_2021-05-28.feather') plt.figure(figsize=(15,10)) for rname in recommender_names: recall_curve = wr.recall_curve(histories_dev, recs[rname], 20) # print(recall_curve[-1]) plt.plot(recall_curve,'.-') plt.legend(recommender_names) plt.figure(figsize=(15,10)) for rname in recommender_names: recall_curve = wr.recall_curve(histories_dev, recs[rname], 20, discovery_userids) plt.plot(recall_curve,'.-') plt.legend(recommender_names) plt.figure(figsize=(15,10)) for rname in recommender_names: recall_curve = wr.recall_curve(histories_dev, recs[rname], 20, resurface_userids) plt.plot(recall_curve,'.-') plt.legend(recommender_names) # ### FIG Implicit vs BM25 figure sns.set_theme(style="darkgrid") matplotlib.rcParams.update({'font.size': 18, 'figure.figsize':(8,5), 'legend.edgecolor':'k'}) plt.figure(figsize=(10,6)) for rname in ["ALS","BM25"]: recall_curve = wr.recall_curve(histories_dev, recs[rname], 20, discovery_userids) plt.plot(np.array(recall_curve)*100,'.-',markersize=12) plt.legend( ["ALS","BM25"],title="Algorithm", fontsize=16, title_fontsize=16, facecolor="w") plt.xlabel("@N",fontsize=20) plt.ylabel("Discovery recall (%)",fontsize=20) _ = plt.xticks(np.arange(0,20,2),np.arange(0,20,2)+1) # plt.gca().legend(prop=dict(size=20)) for tick in plt.gca().xaxis.get_major_ticks(): tick.label.set_fontsize(20) for tick in plt.gca().yaxis.get_major_ticks(): tick.label.set_fontsize(20) # # User recommendation comparison recs_subset = ["Recent","Frequent","Popularity","Implicit","bm25","interleaved"] print("Next edit: " + histories_dev.loc[histories_dev.userid == userid].title.values[0]) # ## FIG Rama table # + def bold_viewed(val, viewed_pages): """ Takes a scalar and returns a string with the css property `'color: red'` for negative strings, black otherwise. """ weight = 'bold' if val in viewed_pages else 'normal' return 'font-weight: %s' % weight def color_target(val, target_page): """ Takes a scalar and returns a string with the css property `'color: red'` for negative strings, black otherwise. """ color = 'red' if val == target_page else 'black' return 'color: %s' % color def display_user_recs_comparison(user_name, recs, recs_subset, train_set, test_set, N=20): userid = n2u[user_name] recs_table =
pd.DataFrame({rec_name: [p2t[r] for r in recs[rec_name][userid][:N]] for rec_name in recs_subset})
pandas.DataFrame
import streamlit as st import pandas as pd import numpy as np import altair as alt import random from ..data import load_cuba_data @st.cache def get_events(data): events = [] for i, d in data.iterrows(): person_id = d["Cons"] try: age = int(d["Edad"]) sex = "FEMALE" if d["Sexo"] == "F" else "MALE" except ValueError: continue state = "L" if d["Asintomatico"]: events.append( dict( from_state="L", to_state="A", duration=0, age=age, sex=sex, id=person_id, ) ) if d["Evolución"] == "Alta": events.append( dict( from_state="A", to_state="R", duration=( pd.to_datetime(d["Fecha Alta"]) - pd.to_datetime(d["F. Conf"]) ).days, age=age, sex=sex, id=person_id, ) ) continue events.append( dict( from_state="L", to_state="I", duration=0, age=age, sex=sex, id=person_id, ) ) events.append( dict( from_state="I", to_state="Is", duration=0, age=age, sex=sex, id=person_id, ) ) try: symptoms_start = pd.to_datetime(d["FIS"], format="%m/%d/%Y", errors="raise") admission_start = pd.to_datetime(d["FI"], format="%m/%d/%Y", errors="raise") except: continue events.append( dict( from_state="Is", to_state="H", duration=(admission_start - symptoms_start).days, age=age, sex=sex, id=person_id, ) ) try: alta = pd.to_datetime(d["Fecha Alta"], format="%m/%d/%Y", errors="raise") except: continue if d["Evolución"] == "Fallecido": events.append( dict( from_state="H", to_state="D", duration=(alta - admission_start).days, age=age, sex=sex, id=person_id, ) ) elif d["Evolución"] == "Alta": events.append( dict( from_state="H", to_state="R", duration=(alta - admission_start).days, age=age, sex=sex, id=person_id, ) ) return pd.DataFrame(events) @st.cache def get_daily_values(data, asympt_length): day_states = [] fend = data["Fecha Alta"].max() + pd.Timedelta(days=1) for i, row in data.iterrows(): fs: pd.Timestamp = row["FIS"] fi: pd.Timestamp = row["FI"] fc: pd.Timestamp = row["F. Conf"] fa: pd.Timestamp = row["Fecha Alta"] contacts = row['# de contactos'] if pd.isna(contacts): contacts = 0 if pd.isna(fa): fa = fend if pd.isna(fc): continue day_states.append(dict(day=fc, id=row["Cons"], status="nuevo-confirmado")) if fa < fend: day_states.append(dict(day=fa, id=row["Cons"], status="nuevo-alta")) for day in range((fa - fc).days): day_states.append( dict( day=fc + pd.Timedelta(days=day), id=row["Cons"], status="activo" ) ) if not
pd.isna(fi)
pandas.isna
import os import sys import numpy as np import pandas as pd import xlwings as xw from logzero import logger from openpyxl import load_workbook from openpyxl.styles import Alignment from spareparts.lib.colors import Colors from spareparts.lib.filters import ( trash_assemblies, trash_description, trash_fastener, trash_file_name, trash_item_number, trash_parts_ending_P1_or_A1, trash_prp, trash_prp1, trash_robot, ) from spareparts.lib.settings import ( JDEPATH, blue, dict_header, excel_headers, headers_bg_hue, mauve, orange, splname, temp_jde, template1, template2, tempo_local, ) from yaspin import Spinner, yaspin sp = Spinner([ "[ ]", "[= ]", "[== ]", "[=== ]", "[ ===]", "[ ==]", "[ =]", "[ ]", "[ =]", "[ ==]", "[ ===]", "[====]", "[=== ]", "[== ]", "[= ]" ], 80) class Spareparts: """Generate spareparts list.""" JDE_TEMP = os.path.join(tempo_local, temp_jde) def __init__(self): self.jde = self.load_jde_data() self.db = pd.DataFrame() self.spl = pd.DataFrame() self.asm = pd.DataFrame() self.elec = pd.DataFrame() self.garbage = pd.DataFrame() self.nuts = pd.DataFrame() self.plates = pd.DataFrame() self.gearbox =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import pytest from pandas.api.types import is_categorical_dtype from _helpers import assert_array_nan_equal from cellrank.tools import Lineage from cellrank.tools._utils import ( _one_hot, _process_series, _fuzzy_to_discrete, _merge_categorical_series, _series_from_one_hot_matrix, ) from cellrank.tools._colors import _map_names_and_colors class TestToolsUtils: def test_merge_not_categorical(self): x = pd.Series(["a", "b", np.nan, "b", np.nan]).astype("category") y = pd.Series(["b", np.nan, np.nan, "d", "a"]) with pytest.raises(TypeError): _ = _merge_categorical_series(x, y) def test_merge_different_index(self): x = pd.Series(["a", "b", np.nan, "b", np.nan]).astype("category") y = pd.Series(["b", np.nan, np.nan, "d", "a"], index=[5, 4, 3, 2, 1]).astype( "category" ) with pytest.raises(ValueError): _ = _merge_categorical_series(x, y) def test_merge_normal_run(self): x = pd.Series(["a", "b", np.nan, "b", np.nan]).astype("category") y = pd.Series(["b", np.nan, "a", "d", "a"]).astype("category") expected = pd.Series(["b", "b", "a", "d", "a"]).astype("category") res = _merge_categorical_series(x, y, inplace=False) np.testing.assert_array_equal(res.values, expected.values) def test_merge_normal_run_inplace(self): x = pd.Series(["a", "b", np.nan, "b", np.nan]).astype("category") y = pd.Series(["b", np.nan, "a", "d", "a"]).astype("category") expected = pd.Series(["b", "b", "a", "d", "a"]).astype("category") _ = _merge_categorical_series(x, y, inplace=True) assert _ is None np.testing.assert_array_equal(x.values, expected.values) def test_merge_normal_run_completely_different_categories(self): x = pd.Series(["a", "a", "a"]).astype("category") y =
pd.Series(["b", "b", "b"])
pandas.Series
# -*- coding: utf-8 -*- """ Created on 8/5/17 Author: <NAME> """ import numpy as np import pandas as pd import config features = ['symboling', 'normalized_losses', 'make', 'fuel_type', 'aspiration', 'num_of_doors', 'body_style', 'drive_wheels', 'engine_location', 'wheel_base', 'length', 'width', 'height', 'curb_weight', 'engine_type', 'num_of_cylinders', 'engine_size', 'fuel_system', 'bore', 'stroke', 'compression_ratio', 'horsepower', 'peak_rpm', 'city_mpg', 'highway_mpg', 'price'] def load_data(): """Returns dataset replaced with null values('?') to np.NaN""" data = pd.read_csv(config.DATA_DIR+'imports-85.data', names=features) data = data.replace('?', np.NaN) return data def split_X_y(data): y =
pd.to_numeric(data["normalized_losses"])
pandas.to_numeric
import keras from keras.models import Model from keras.layers import Input,Dense, Dropout, Activation, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.utils import multi_gpu_model from keras.utils import plot_model from keras import losses import os import tensorflow as tf from keras import backend as K import DataGenerator as dg import get_modelv2_3 import get_model import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from keras.callbacks import ModelCheckpoint from keras.callbacks import EarlyStopping import pandas as pd import numpy as np from keras.models import load_model import re import seaborn as sns from sklearn.linear_model import LinearRegression import scipy import warnings import sys from sklearn.metrics import roc_curve, auc import time warnings.filterwarnings('ignore') os.environ['CUDA_VISIBLE_DEVICES'] = '0, 1, 2' class multi_task_training_respect: def __init__(self): self.model = keras.Model() self.model_class_task= keras.Model() self.model_reg_task= keras.Model() self.lr1 = 0.0001 self.lr2 = 0.0001 self.alpha = 0.5 self.patience_class = 6 self.patience_reg = 6 self.font1 = { 'weight': 'normal', 'size': 16, } self.font2 = { 'weight': 'normal', 'size': 23, } def get_batch_data(self,prot, comp, y, batch_count, batch_size, batch_count_per_epoch): batch_count = batch_count % batch_count_per_epoch batch_prot = prot[batch_size * batch_count:min(batch_size * (batch_count + 1), len(prot))] batch_comp = comp[batch_size * batch_count:min(batch_size * (batch_count + 1), len(prot))] batch_y = y[batch_size * batch_count:min(batch_size * (batch_count + 1), len(prot))] return batch_prot, batch_comp, batch_y def draw_loss_and_accuracy_curve(self,history_class, history_class_vali, model_name, save_dir): train_loss = [] vali_loss = [] train_accuracy = [] vali_accuracy = [] for tmp in history_class: train_loss.append(tmp[0]) train_accuracy.append(tmp[1]) for tmp in history_class_vali: vali_loss.append(tmp[0]) vali_accuracy.append(tmp[1]) epochs = range(1, len(history_class) + 1) ##---------------draw loss curve------------------## plt.figure(figsize=(10, 10)) plt.plot(epochs, train_loss, 'b', label='Classification training loss') plt.plot(epochs, vali_loss, 'r', label='Classification validation loss') plt.title('Classification Training and Validation Loss', self.font2) plt.xlabel('Epochs', self.font2) plt.ylabel('Loss', self.font2) plt.legend(prop=self.font1) plt.savefig(save_dir + '/%s_class_training_validation_loss.png' % model_name) ##---------------draw accuracy curve------------------## plt.figure(figsize=(10, 10)) plt.plot(epochs, train_accuracy, 'b', label='Classification training accuracy') plt.plot(epochs, vali_accuracy, 'r', label='Classification validation accuracy') plt.title('Training and Validation Accuracy', self.font2) plt.xlabel('Epochs', self.font2) plt.ylabel('Accuracy', self.font2) plt.legend(prop=self.font1) plt.savefig(save_dir + '/%s_class_training_validation_accuracy.png' % model_name) def draw_loss_and_mse_curve(self,history_reg, history_reg_vali, model_name, save_dir): train_loss = [] vali_loss = [] train_mse = [] vali_mse = [] for tmp in history_reg: train_loss.append(tmp[0]) train_mse.append(tmp[1]) for tmp in history_reg_vali: vali_loss.append(tmp[0]) vali_mse.append(tmp[1]) epochs = range(1, len(history_reg) + 1) ##---------------draw loss curve------------------## plt.figure(figsize=(10.3, 10)) plt.plot(epochs, train_loss, 'b', label='Regression training loss') plt.plot(epochs, vali_loss, 'r', label='Regression validation loss') plt.title('Regression Training and Validation Loss', self.font2) plt.xlabel('Epochs', self.font2) plt.ylabel('Loss', self.font2) plt.legend(prop=self.font1) plt.savefig(save_dir + '/%s_reg_training_validation_loss.png' % model_name) ##---------------draw accuracy curve------------------## plt.figure(figsize=(10, 10)) plt.plot(epochs, train_mse, 'b', label='Regression training mse') plt.plot(epochs, vali_mse, 'r', label='Regression validation mse') plt.title('Regression Training and Validation MSE', self.font2) plt.xlabel('Epochs', self.font2) plt.ylabel('MSE', self.font2) plt.legend(prop=self.font1) plt.savefig(save_dir + '/%s_reg_training_validation_mse.png' % model_name) def mean_squared_error_l2(self,y_true, y_pred, lmbda=0.01): cost = K.mean(K.square(y_pred - y_true)) # weights = self.model.get_weights() weights = [] for layer in self.model_reg_task.layers: # print(layer) weights = weights + layer.get_weights() # print (weights) result = tf.reduce_sum([tf.reduce_sum(tf.pow(wi, 2)) for wi in weights]) l2 = lmbda * result # K.sum([K.square(wi) for wi in weights]) return cost + l2 def train_model(self,class_training_file,class_validation_file,reg_training_file,reg_validation_file,model_name, reg_batch_size=128,class_batch_size=128,class_epoch = 50,reg_epoch = 100, pro_branch_switch1 = 'inception_block', pro_branch_switch2 = 'inception_block', pro_branch_switch3='inception_block_b', pro_add_attention = False, comp_branch_switch1 = 'inception_block', comp_branch_switch2 = 'inception_block', comp_branch_switch3 = 'inception_block_b', comp_add_attention = False):#reg_size=256 ##2.get_model save_dir = os.path.join(os.getcwd(), 'models',model_name) if not os.path.exists(save_dir): os.mkdir(save_dir) self.model_class_task, self.model_reg_task = get_model.get_multi_model(save_dir, self.alpha, pro_branch_switch1=pro_branch_switch1,pro_branch_switch2=pro_branch_switch2, pro_branch_switch3=pro_branch_switch3,pro_add_attention=pro_add_attention, comp_branch_switch1=comp_branch_switch1,comp_branch_switch2=comp_branch_switch2, comp_branch_switch3=comp_branch_switch3,comp_add_attention=comp_add_attention) optimizer1 = keras.optimizers.Adam(lr=self.lr1) self.model_reg_task.compile(optimizer=optimizer1, loss=self.mean_squared_error_l2,#'mean_squared_error' metrics=['mse','mae']) optimizer2 = keras.optimizers.Adam(lr=self.lr2) self.model_class_task.compile(optimizer=optimizer2,loss='binary_crossentropy',metrics=['accuracy']) ##1.read data print("Starting read reg training data:") reg_train_generator = dg.read_reg_generator(reg_training_file, reg_batch_size) reg_vali_prot, reg_vali_comp, reg_vali_value = dg.read_reg(reg_validation_file) print('regression validation data shape:', len(reg_vali_prot)) class_train_generator = dg.read_class_generator(class_training_file, class_batch_size) class_vali_prot, class_vali_comp, class_vali_label = dg.read_class(class_validation_file) print('classification validation data shape:', len(class_vali_prot)) ##3.training model #before train prepare batch_count_of_class=0 batch_count_per_epoch_class=189109//class_batch_size batch_count_of_reg = 0 batch_count_per_epoch_reg = 18071 // reg_batch_size epoch_class = 0 epoch_reg=0 history_class=[] history_class_vali=[] history_reg=[] history_reg_vali=[] class_erally_stop_flag=1 reg_erally_stop_flag = 1 class_batch_count = class_epoch * batch_count_per_epoch_class reg_batch_count = reg_epoch * batch_count_per_epoch_reg K = reg_batch_count/class_batch_count total_batch_count=class_batch_count+reg_batch_count #start train reg_min_loss = float('inf') reg_min_loss_index = 0 class_min_loss=float('inf') class_min_loss_index=0 best_reg_model = None best_class_model = None best_reg_file = save_dir + "/%s_best_reg_model.hdf5" % model_name best_class_file = save_dir + "/%s_best_class_model.hdf5" % model_name reg_loss=[] class_loss=[] for i in range(total_batch_count): #regression if np.random.rand() * (1+K) >= 1 and reg_erally_stop_flag and epoch_reg<reg_epoch: print('batch %d(reg):'%i) reg_batch_prot, reg_batch_comp, reg_batch_value = next(reg_train_generator) tmp_loss=self.model_reg_task.train_on_batch([reg_batch_prot, reg_batch_comp], reg_batch_value) reg_loss.append(tmp_loss) batch_count_of_reg+=1 if batch_count_of_reg % batch_count_per_epoch_reg==0 and batch_count_of_reg>0: epoch_reg += 1 print("regression epoch %d:"%epoch_reg) #train performance:loss, mse, mae print(' regression training loss=',np.mean(reg_loss,axis=0)) history_reg.append(np.mean(reg_loss,axis=0)) reg_loss=[] #validation performance score=self.model_reg_task.evaluate([reg_vali_prot,reg_vali_comp],reg_vali_value) print(' regression evaluation loss=',score) history_reg_vali.append(score) #checkpoint and earlly stop if epoch_reg-reg_min_loss_index>=self.patience_reg: reg_erally_stop_flag=0 if score[0]<reg_min_loss: reg_min_loss_index=epoch_reg reg_min_loss=score[0] #checkpoint best_reg_model = self.model_reg_task # classification else: if class_erally_stop_flag and epoch_class<class_epoch: print('batch %d(class):' % i) class_batch_prot, class_batch_comp, class_batch_label = next(class_train_generator) tmp_loss=self.model_class_task.train_on_batch([class_batch_prot, class_batch_comp], class_batch_label) class_loss.append(tmp_loss) batch_count_of_class += 1 if batch_count_of_class % batch_count_per_epoch_class == 0 and batch_count_of_class>0: epoch_class += 1 print("classification epoch %d:"%epoch_class) # train performance:loss, mse, mae print(' classification training loss=',np.mean(class_loss,axis=0)) history_class.append(np.mean(class_loss,axis=0)) class_loss=[]# accuracy = self.model_class_task.evaluate([class_vali_prot, class_vali_comp], class_vali_label) # validation performance print(' classification evaluation loss=',accuracy) history_class_vali.append(accuracy) # checkpoint and earlly stop if epoch_class - class_min_loss_index >= self.patience_class: class_erally_stop_flag = 0 if accuracy[0] < class_min_loss: class_min_loss_index = epoch_class class_min_loss = accuracy[0] # checkpoint best_class_model = self.model_class_task ##5.save model #(1).class model model_path = os.path.join(save_dir,model_name+'_class.h5') best_class_model.save(model_path) #(2).reg model model_path = os.path.join(save_dir,model_name+'_reg.h5') best_reg_model.save(model_path) print("save model!") def save_predict_result(self,predict_result,real_label_or_value,model_name,class_or_reg,type): if predict_result.shape[1] == 1: if class_or_reg=='class': df = predict_result df.columns = ['predict_label'] else: df = predict_result df.columns = ['predict_value'] else: df = predict_result df.columns = ['predict_label','predict_value'] if class_or_reg=='class': df['real_lable'] = real_label_or_value else: df['real_value'] = real_label_or_value df['set']=type if not os.path.exists('predict_value'): os.mkdir('predict_value') df.to_csv('predict_value/multi-task_model_%s_%s_%s_predict_result.csv' % (model_name,class_or_reg,type), index=False) print('predict_value/multi-task_model_%s_%s_%s_predict_result.csv has been saved!' % (model_name,class_or_reg,type)) return df def computer_parameter_draw_scatter_plot(self,predictions, model_name): sns.set(context='paper', style='white') sns.set_color_codes() set_colors = {'train': 'b', 'validation': 'green', 'test': 'purple'} for set_name, table in predictions.groupby('set'): rmse = ((table['predict_value'] - table['real_value']) ** 2).mean() ** 0.5 mae = (np.abs(table['predict_value'] - table['real_value'])).mean() corr = scipy.stats.pearsonr(table['predict_value'], table['real_value']) lr = LinearRegression() lr.fit(table[['predict_value']], table['real_value']) y_ = lr.predict(table[['predict_value']]) sd = (((table["real_value"] - y_) ** 2).sum() / (len(table) - 1)) ** 0.5 print("%10s set: RMSE=%.3f, MAE=%.3f, R=%.2f (p=%.2e), SD=%.3f" % (set_name, rmse, mae, *corr, sd)) grid = sns.jointplot('real_value', 'predict_value', data=table, stat_func=None, color=set_colors[set_name], space=0, size=4, ratio=4, s=20, edgecolor='w', ylim=(0, 16), xlim=(0, 16)) # (0.16) grid.set_axis_labels('real', 'predicted')#, fontsize=16 grid.ax_joint.set_xticks(range(0, 16, 5)) grid.ax_joint.set_yticks(range(0, 16, 5)) a = {'train': 'training', 'validation': 'validation', 'test': 'test'} set_name=a[set_name] grid.ax_joint.text(1, 14, set_name + ' set', fontsize=14) # 调整标题大小 grid.ax_joint.text(16, 19.5, 'RMSE: %.3f' % (rmse), fontsize=9) grid.ax_joint.text(16, 18.5, 'MAE: %.3f ' % mae, fontsize=9) grid.ax_joint.text(16, 17.5, 'R: %.2f ' % corr[0], fontsize=9) grid.ax_joint.text(16, 16.5, 'SD: %.3f ' % sd, fontsize=9) grid.fig.savefig('%s_%s_scatter_plot.jpg' %(model_name,set_name), dpi=400) def draw_ROC_curve(self,predictions, model_name): set_colors = {'train': 'b', 'validation': 'green', 'test': 'purple','independent test':'r'} for set_name, table in predictions.groupby('set'): fpr, tpr, threshold = roc_curve(table['real_lable'],table['predict_label']) roc_auc = auc(fpr, tpr) plt.figure(figsize=(10, 10)) lw = 2 plt.plot(fpr, tpr, color=set_colors[set_name], lw=lw, label='ROC curve (auc = %0.3f)' % roc_auc) plt.plot([0, 1], [0, 1], 'b--', lw=lw, label='Random guess (auc = 0.5)') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.tick_params(labelsize=20) plt.xlabel('False Positive Rate', self.font2) plt.ylabel('True Positive Rate', self.font2) # plt.title('ROC curv') plt.legend(loc="lower right", prop=self.font1) plt.savefig("%s_%s_ROC_curve.png" %(model_name,set_name)) def test_model(self,model_file,class_test_file,class_train_file,class_vali_file, reg_test_file,reg_train_file,reg_vali_file): ##read data print('starting read data!') #1.train data class_train_prot, class_train_comp, class_train_label=dg.multi_process_read_pro_com_file(class_train_file) reg_train_prot, reg_train_comp,_, reg_train_value=dg.multi_process_read_pro_com_file_regression(reg_train_file) #2.validation data class_vali_prot, class_vali_comp, class_vali_label = dg.multi_process_read_pro_com_file(class_vali_file) reg_vali_prot, reg_vali_comp, _,reg_vali_value = dg.multi_process_read_pro_com_file_regression(reg_vali_file) #3.test data class_test_prot, class_test_comp, class_test_label = dg.multi_process_read_pro_com_file(class_test_file) reg_test_prot, reg_test_comp,_, reg_test_value = dg.multi_process_read_pro_com_file_regression(reg_test_file) print('classification data size:', len(class_train_prot), len(class_vali_prot), len(class_test_prot)) print('regression data size:', len(reg_train_prot),len(reg_vali_prot),len(reg_test_prot)) ##load_model print('loading modle!') model = load_model(model_file) tmp = model_file.split('/')[-1] model_name = re.findall(r"(.+?).h5", tmp)[0] ## saving predict value #predict value #1.train class_train_predict_value = model.predict([class_train_prot, class_train_comp]) class_train_predict_value_df=pd.DataFrame(class_train_predict_value[0],columns=['label']) class_train_predict_value_df['value']=class_train_predict_value[1] reg_train_predict_value = model.predict([reg_train_prot, reg_train_comp]) reg_train_predict_value_df=pd.DataFrame(reg_train_predict_value[0],columns=['label']) reg_train_predict_value_df['value']=reg_train_predict_value[1] #2.vali class_vali_predict_value = model.predict([class_vali_prot, class_vali_comp]) class_vali_predict_value_df = pd.DataFrame(class_vali_predict_value[0]) class_vali_predict_value_df['value']=class_vali_predict_value[1] reg_vali_predict_value = model.predict([reg_vali_prot, reg_vali_comp]) reg_vali_predict_value_df = pd.DataFrame(reg_vali_predict_value[0]) reg_vali_predict_value_df['value']=reg_vali_predict_value[1] #3.test class_test_predict_value = model.predict([class_test_prot, class_test_comp]) class_test_predict_value_df = pd.DataFrame(class_test_predict_value[0]) class_test_predict_value_df['value']=class_test_predict_value[1] reg_test_predict_value=model.predict([reg_test_prot, reg_test_comp]) reg_test_predict_value_df = pd.DataFrame(reg_test_predict_value[0]) reg_test_predict_value_df['value']=reg_test_predict_value[1] # save predicted value #1 class_train_df = self.save_predict_result(class_train_predict_value_df, class_train_label, model_name, 'class', 'train') reg_train_df = self.save_predict_result(reg_train_predict_value_df, reg_train_value, model_name, 'reg', 'train') #2 class_vali_df = self.save_predict_result(class_vali_predict_value_df, class_vali_label, model_name, 'class', 'validation') reg_vali_df = self.save_predict_result(reg_vali_predict_value_df, reg_vali_value, model_name, 'reg', 'validation') #3 class_test_df = self.save_predict_result(class_test_predict_value_df, class_test_label, model_name, 'class', 'test') reg_test_df = self.save_predict_result(reg_test_predict_value_df, reg_test_value, model_name, 'reg', 'test') ## computing parameters and drawing scatter plot self.computer_parameter_draw_scatter_plot(reg_train_df, model_name) self.computer_parameter_draw_scatter_plot(reg_vali_df, model_name) self.computer_parameter_draw_scatter_plot(reg_test_df, model_name) self.draw_ROC_curve(class_train_df, model_name) self.draw_ROC_curve(class_vali_df, model_name) self.draw_ROC_curve(class_test_df, model_name) def reg_test_model(self,model_file,reg_test_file,reg_train_file=None,reg_vali_file=None): ##load_model print('loading modle!') self.model_reg_task = load_model(model_file, custom_objects={'mean_squared_error_l2': self.mean_squared_error_l2}) tmp = model_file.split('/')[-1] if tmp.find('.h5')!=-1: model_name = re.findall(r"(.+?).h5", tmp)[0] else: model_name = re.findall(r"(.+?).hdf5", tmp)[0] ##1.read data print('starting read data!') reg_test_prot, reg_test_comp,_, reg_test_value = dg.read_pro_com_file_regression(reg_test_file)#multi_process_read_pro_com_file_regression(reg_test_file) print('test data size:',len(reg_test_prot)) reg_test_predict_value=self.model_reg_task.predict([reg_test_prot, reg_test_comp]) if model_name[-3:]=='reg':#reg_model reg_test_predict_value_df = pd.DataFrame(reg_test_predict_value,columns=['value']) else:#total model reg_test_predict_value_df = pd.DataFrame(reg_test_predict_value[0], columns=['label']) reg_test_predict_value_df['value']=reg_test_predict_value[1] reg_test_df = self.save_predict_result(reg_test_predict_value_df, reg_test_value, model_name, 'reg', 'test') self.computer_parameter_draw_scatter_plot(reg_test_df, model_name) if reg_train_file!=None: reg_train_prot, reg_train_comp,_, reg_train_value = dg.multi_process_read_pro_com_file_regression(reg_train_file) reg_train_predict_value = self.model_reg_task.predict([reg_train_prot, reg_train_comp]) reg_train_predict_value=pd.DataFrame(reg_train_predict_value) reg_train_df = self.save_predict_result(reg_train_predict_value, reg_train_value, model_name, 'reg', 'train') self.computer_parameter_draw_scatter_plot(reg_train_df, model_name) if reg_vali_file!=None: reg_vali_prot, reg_vali_comp,_, reg_vali_value = dg.multi_process_read_pro_com_file_regression(reg_vali_file) #predict value reg_vali_predict_value = self.model_reg_task.predict([reg_vali_prot, reg_vali_comp]) reg_vali_predict_value=pd.DataFrame(reg_vali_predict_value) reg_vali_df = self.save_predict_result(reg_vali_predict_value, reg_vali_value, model_name, 'reg', 'validation') self.computer_parameter_draw_scatter_plot(reg_vali_df, model_name) def class_test_model(self,model_file,class_test_file,class_train_file=None,class_vali_file=None): ##load_model print('loading modle!') self.model_class_task = load_model(model_file) tmp = model_file.split('/')[-1] if tmp.find('.h5')!=-1: model_name = re.findall(r"(.+?).h5", tmp)[0] else: model_name = re.findall(r"(.+?).hdf5", tmp)[0] # 1. data ##read data print('starting read data!') if class_test_file.split('/')[2]=='one-hot_dataset4': print("对dataset4进行特殊对待!") class_test_prot, class_test_comp, class_test_label,class_test_value = dg.multi_process_read_pro_com_file_regression(class_test_file) # df_tmp = pd.DataFrame(class_test_value, columns=['real_value']) # df_tmp.to_csv('dataset4_real_value.csv') else: class_test_prot, class_test_comp, class_test_label = dg.multi_process_read_pro_com_file(class_test_file) print('test data size:', len(class_test_prot)) # 2.predict value class_test_predict_value = self.model_class_task.predict([class_test_prot, class_test_comp]) print(model_name[-9:-4] ) if model_name[-9:-4] == 'class': # class_model class_test_predict_value_df = pd.DataFrame(class_test_predict_value, columns=['label']) else: # total model class_test_predict_value_df = pd.DataFrame(class_test_predict_value[0], columns=['label']) class_test_predict_value_df['value'] = class_test_predict_value[1] # 3.save predicted value test_file_name = re.findall(r"(.+?).txt", class_test_file)[0].split('/')[-1] class_test_df = self.save_predict_result(class_test_predict_value_df, class_test_label, model_name+test_file_name, 'class', 'test') # 4.computing parameters and drawing auc plot self.draw_ROC_curve(class_test_df, model_name+test_file_name) if class_train_file!=None: # 1.read data class_train_prot, class_train_comp, class_train_label = dg.multi_process_read_pro_com_file(class_train_file) print('train data size:',len(class_train_prot)) # 2.predict value class_train_predict_value = self.model_class_task.predict([class_train_prot, class_train_comp]) if model_name[-4:] == 'class': # reg_model class_train_predict_value_df = pd.DataFrame(class_train_predict_value, columns=['label']) else: # total model class_train_predict_value_df = pd.DataFrame(class_train_predict_value[0], columns=['label']) class_train_predict_value_df['value'] = class_train_predict_value[1] # 3.save predicted value class_train_df = self.save_predict_result(class_train_predict_value_df, class_train_label, model_name, 'class', 'train') # 4.computing parameters and drawing auc plot self.draw_ROC_curve(class_train_df, model_name) if class_vali_file != None: # 1.read data class_vali_prot, class_vali_comp, class_vali_label = dg.multi_process_read_pro_com_file(class_vali_file) print('validation data size:', len(class_vali_prot)) # 2.predict value class_vali_predict_value = self.model_class_task.predict([class_vali_prot, class_vali_comp]) if model_name[-4:] == 'class': # reg_model class_vali_predict_value_df = pd.DataFrame(class_vali_predict_value, columns=['label']) else: # total model class_vali_predict_value_df = pd.DataFrame(class_vali_predict_value[0], columns=['label']) class_vali_predict_value_df['value'] = class_vali_predict_value[1] # 3.save predicted value class_vali_df = self.save_predict_result(class_vali_predict_value_df, class_vali_label, model_name, 'class', 'validation') # 4.computing parameters and drawing auc plot self.draw_ROC_curve(class_vali_df, model_name) def load_model_predict(self,model_file,file): ##read data print('starting read data!') x_prot, x_comp, y_label = dg.read_pro_com_file(file) # class_test_prot, class_test_comp, class_test_label = dg.multi_process_read_pro_com_file(class_test_file) print('data size:', len(x_prot), len(x_comp), len(y_label)) ##load_model print('loading modle!') model = load_model(model_file) tmp = model_file.split('/')[-1] model_name = re.findall(r"(.+?).h5", tmp)[0] ## saving predict value #predict value predict_value = model.predict([x_prot, x_comp]) predict_value_df =
pd.DataFrame(predict_value[0])
pandas.DataFrame
# %% import json import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns # %% # # Input # try: result_file = snakemake.input["result_file"] json_file = snakemake.input["config_file"] output_file = snakemake.output["output_file"] output_zoomed_file = snakemake.output["output_zoomed_file"] except NameError: result_file = "../data/lfr-benchmark/results/results.csv" json_file = "../data/lfr-benchmark/lfr-config.json" output_file = "../figs/result-lfr.pdf" output_zoomed_file = "../figs/result-zoomed-lfr.pdf" # %% # # Load # result_table = pd.read_csv(result_file) with open(json_file, "r") as f: config_file = json.load(f) config_table = pd.DataFrame(config_file) config_table["param_id"] = np.arange(config_table.shape[0]) result_table =
pd.merge(result_table, config_table, on="param_id", how="left")
pandas.merge
## 5. Generating Regression Data ## from sklearn.datasets import make_regression import pandas as pd data = make_regression(n_samples=100, n_features=3, random_state=1) features =
pd.DataFrame(data[0])
pandas.DataFrame
from __future__ import division from datetime import timedelta from functools import partial import itertools from nose.tools import assert_true from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain import platform if platform.system() != 'Windows': from zipline.pipeline.loaders.blaze.estimates import ( BlazeNextEstimatesLoader, BlazeNextSplitAdjustedEstimatesLoader, BlazePreviousEstimatesLoader, BlazePreviousSplitAdjustedEstimatesLoader, ) from zipline.pipeline.loaders.earnings_estimates import ( INVALID_NUM_QTRS_MESSAGE, NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal, assert_raises_regex from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import platform import unittest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, 'estimate', 'knowledge_date']) df = df.pivot_table(columns=SID_FIELD_NAME, values='estimate', index='knowledge_date') df = df.reindex( pd.date_range(start_date, end_date) ) # Index name is lost during reindex. df.index = df.index.rename('knowledge_date') df['at_date'] = end_date.tz_localize('utc') df = df.set_index(['at_date', df.index.tz_localize('utc')]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp('2014-12-28') END_DATE = pd.Timestamp('2015-02-04') @classmethod def make_loader(cls, events, columns): raise NotImplementedError('make_loader') @classmethod def make_events(cls): raise NotImplementedError('make_events') @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: 'event_date', Estimates.fiscal_quarter: 'fiscal_quarter', Estimates.fiscal_year: 'fiscal_year', Estimates.estimate: 'estimate' } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ 's' + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader(cls.events, {column.name: val for column, val in cls.columns.items()}) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: 'event_date', MultipleColumnsEstimates.fiscal_quarter: 'fiscal_quarter', MultipleColumnsEstimates.fiscal_year: 'fiscal_year', MultipleColumnsEstimates.estimate1: 'estimate1', MultipleColumnsEstimates.estimate2: 'estimate2' } @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-06')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-10'), pd.Timestamp('2015-01-20')], 'estimate1': [1., 2.], 'estimate2': [3., 4.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015] }) @classmethod def make_expected_out(cls): raise NotImplementedError('make_expected_out') @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp('2015-01-15', tz='utc'), end_date=pd.Timestamp('2015-01-15', tz='utc'), ) assert_frame_equal(results, self.expected_out) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp('2015-01-10'), 'estimate1': 1., 'estimate2': 3., FISCAL_QUARTER_FIELD_NAME: 1., FISCAL_YEAR_FIELD_NAME: 2015., }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp('2015-01-15', tz='utc'), cls.sid0),) ) ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp('2015-01-20'), 'estimate1': 2., 'estimate2': 4., FISCAL_QUARTER_FIELD_NAME: 2., FISCAL_YEAR_FIELD_NAME: 2015., }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp('2015-01-15', tz='utc'), cls.sid0),) ) ) dummy_df = pd.DataFrame({SID_FIELD_NAME: 0}, columns=[SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, 'estimate'], index=[0]) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = {c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns} p = Pipeline(columns) with self.assertRaises(ValueError) as e: engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) assert_raises_regex(e, INVALID_NUM_QTRS_MESSAGE % "-1,-2") def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with self.assertRaises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = ["split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof"] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand(itertools.product( (NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader), )) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: 'event_date', Estimates.fiscal_quarter: 'fiscal_quarter', Estimates.fiscal_year: 'fiscal_year', Estimates.estimate: 'estimate' } with self.assertRaises(ValueError): loader(dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01")) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp('2015-01-28') q1_knowledge_dates = [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-04'), pd.Timestamp('2015-01-07'), pd.Timestamp('2015-01-11')] q2_knowledge_dates = [pd.Timestamp('2015-01-14'), pd.Timestamp('2015-01-17'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-23')] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-14')] # One day late q2_release_dates = [pd.Timestamp('2015-01-25'), # One day early pd.Timestamp('2015-01-26')] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if (q1e1 < q1e2 and q2e1 < q2e2 and # All estimates are < Q2's event, so just constrain Q1 # estimates. q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0]): sid_estimates.append(cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid)) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-26')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-26')], 'estimate': [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid }) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame({ EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, 'estimate': [.1, .2, .3, .4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, }) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert_true(sid_estimates.isnull().all().all()) else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [self.get_expected_estimate( q1_knowledge[q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None)], q2_knowledge[q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None)], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index], axis=0) assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if (not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif (not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateLoaderTestCase(NextEstimate): """ Run the same tests as EventsLoaderTestCase, but using a BlazeEventsLoader. """ @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if (not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date): return q2_knowledge.iloc[-1:] elif (not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateLoaderTestCase(PreviousEstimate): """ Run the same tests as EventsLoaderTestCase, but using a BlazeEventsLoader. """ @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-06')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-10'), pd.Timestamp('2015-01-20')], 'estimate': [1., 2.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015] }) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame(columns=[cls.columns[col] + '1' for col in cls.columns] + [cls.columns[col] + '2' for col in cls.columns], index=cls.trading_days) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ('1', '2') ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime( expected[expected_name] ) else: expected[expected_name] = expected[ expected_name ].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge([{c.name + '1': c.latest for c in dataset1.columns}, {c.name + '2': c.latest for c in dataset2.columns}]) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + '1' for col in self.columns] q2_columns = [col.name + '2' for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal(sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values)) assert_equal(self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1)) class NextEstimateMultipleQuarters( WithEstimateMultipleQuarters, ZiplineTestCase ): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-11'), raw_name + '1' ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp('2015-01-11'):pd.Timestamp('2015-01-20'), raw_name + '1' ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ['estimate', 'event_date']: expected.loc[ pd.Timestamp('2015-01-06'):pd.Timestamp('2015-01-10'), col_name + '2' ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-09'), FISCAL_QUARTER_FIELD_NAME + '2' ] = 2 expected.loc[ pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20'), FISCAL_QUARTER_FIELD_NAME + '2' ] = 3 expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-20'), FISCAL_YEAR_FIELD_NAME + '2' ] = 2015 return expected @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateMultipleQuarters(NextEstimateMultipleQuarters): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) class PreviousEstimateMultipleQuarters( WithEstimateMultipleQuarters, ZiplineTestCase ): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected[raw_name + '1'].loc[ pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-19') ] = cls.events[raw_name].iloc[0] expected[raw_name + '1'].loc[ pd.Timestamp('2015-01-20'): ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out for col_name in ['estimate', 'event_date']: expected[col_name + '2'].loc[ pd.Timestamp('2015-01-20'): ] = cls.events[col_name].iloc[0] expected[ FISCAL_QUARTER_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20')] = 4 expected[ FISCAL_YEAR_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20')] = 2014 expected[ FISCAL_QUARTER_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-20'):] = 1 expected[ FISCAL_YEAR_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-20'):] = 2015 return expected @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateMultipleQuarters(PreviousEstimateMultipleQuarters): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) class WithVaryingNumEstimates(WithEstimates): """ ZiplineTestCase mixin providing fixtures and a test to ensure that we have the correct overwrites when the event date changes. We want to make sure that if we have a quarter with an event date that gets pushed back, we don't start overwriting for the next quarter early. Likewise, if we have a quarter with an event date that gets pushed forward, we want to make sure that we start applying adjustments at the appropriate, earlier date, rather than the later date. Methods ------- assert_compute() Defines how to determine that results computed for the `SomeFactor` factor are correct. Tests ----- test_windows_with_varying_num_estimates() Tests that we create the correct overwrites from 2015-01-13 to 2015-01-14 regardless of how event dates were updated for each quarter for each sid. """ @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 3 + [1] * 3, TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-13')] * 2, EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-20')], 'estimate': [11., 12., 21.] * 2, FISCAL_QUARTER_FIELD_NAME: [1, 1, 2] * 2, FISCAL_YEAR_FIELD_NAME: [2015] * 6 }) @classmethod def assert_compute(cls, estimate, today): raise NotImplementedError('assert_compute') def test_windows_with_varying_num_estimates(self): dataset = QuartersEstimates(1) assert_compute = self.assert_compute class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = 3 def compute(self, today, assets, out, estimate): assert_compute(estimate, today) engine = self.make_engine() engine.run_pipeline( Pipeline({'est': SomeFactor()}), start_date=pd.Timestamp('2015-01-13', tz='utc'), # last event date we have end_date=pd.Timestamp('2015-01-14', tz='utc'), ) class PreviousVaryingNumEstimates( WithVaryingNumEstimates, ZiplineTestCase ): def assert_compute(self, estimate, today): if today == pd.Timestamp('2015-01-13', tz='utc'): assert_array_equal(estimate[:, 0], np.array([np.NaN, np.NaN, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 12, 12])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 12, 12])) assert_array_equal(estimate[:, 1], np.array([12, 12, 12])) @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousVaryingNumEstimates(PreviousVaryingNumEstimates): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) class NextVaryingNumEstimates( WithVaryingNumEstimates, ZiplineTestCase ): def assert_compute(self, estimate, today): if today == pd.Timestamp('2015-01-13', tz='utc'): assert_array_equal(estimate[:, 0], np.array([11, 12, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, np.NaN, 21])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 21, 21])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 21, 21])) @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextVaryingNumEstimates(NextVaryingNumEstimates): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) class WithEstimateWindows(WithEstimates): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows. Attributes ---------- events : pd.DataFrame DataFrame with estimates for 2 quarters for 2 sids. window_test_start_date : pd.Timestamp The date from which the window should start. timelines : dict[int -> pd.DataFrame] A dictionary mapping to the number of quarters out to snapshots of how the data should look on each date in the date range. Methods ------- make_expected_timelines() -> dict[int -> pd.DataFrame] Creates a dictionary of expected data. See `timelines`, above. Tests ----- test_estimate_windows_at_quarter_boundaries() Tests that we overwrite values with the correct quarter's estimate at the correct dates when we have a factor that asks for a window of data. """ END_DATE = pd.Timestamp('2015-02-10') window_test_start_date = pd.Timestamp('2015-01-05') critical_dates = [pd.Timestamp('2015-01-09', tz='utc'), pd.Timestamp('2015-01-15', tz='utc'), pd.Timestamp('2015-01-20', tz='utc'), pd.Timestamp('2015-01-26', tz='utc'), pd.Timestamp('2015-02-05', tz='utc'), pd.Timestamp('2015-02-10', tz='utc')] # Starting date, number of announcements out. window_test_cases = list(itertools.product(critical_dates, (1, 2))) @classmethod def make_events(cls): # Typical case: 2 consecutive quarters. sid_0_timeline = pd.DataFrame({ TS_FIELD_NAME: [cls.window_test_start_date, pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-02-10'), # We want a case where we get info for a later # quarter before the current quarter is over but # after the split_asof_date to make sure that # we choose the correct date to overwrite until. pd.Timestamp('2015-01-18')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-04-01')], 'estimate': [100., 101.] + [200., 201.] + [400], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2 + [4], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, }) # We want a case where we skip a quarter. We never find out about Q2. sid_10_timeline = pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-15')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-22'), pd.Timestamp('2015-01-22'), pd.Timestamp('2015-02-05'), pd.Timestamp('2015-02-05')], 'estimate': [110., 111.] + [310., 311.], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [3] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 10 }) # We want to make sure we have correct overwrites when sid quarter # boundaries collide. This sid's quarter boundaries collide with sid 0. sid_20_timeline = pd.DataFrame({ TS_FIELD_NAME: [cls.window_test_start_date, pd.Timestamp('2015-01-07'), cls.window_test_start_date, pd.Timestamp('2015-01-17')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-02-10')], 'estimate': [120., 121.] + [220., 221.], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 20 }) concatted = pd.concat([sid_0_timeline, sid_10_timeline, sid_20_timeline]).reset_index() np.random.seed(0) return concatted.reindex(np.random.permutation(concatted.index)) @classmethod def get_sids(cls): sids = sorted(cls.events[SID_FIELD_NAME].unique()) # Add extra sids between sids in our data. We want to test that we # apply adjustments to the correct sids. return [sid for i in range(len(sids) - 1) for sid in range(sids[i], sids[i+1])] + [sids[-1]] @classmethod def make_expected_timelines(cls): return {} @classmethod def init_class_fixtures(cls): super(WithEstimateWindows, cls).init_class_fixtures() cls.create_expected_df_for_factor_compute = partial( create_expected_df_for_factor_compute, cls.window_test_start_date, cls.get_sids() ) cls.timelines = cls.make_expected_timelines() @parameterized.expand(window_test_cases) def test_estimate_windows_at_quarter_boundaries(self, start_date, num_announcements_out): dataset = QuartersEstimates(num_announcements_out) trading_days = self.trading_days timelines = self.timelines # The window length should be from the starting index back to the first # date on which we got data. The goal is to ensure that as we # progress through the timeline, all data we got, starting from that # first date, is correctly overwritten. window_len = ( self.trading_days.get_loc(start_date) - self.trading_days.get_loc(self.window_test_start_date) + 1 ) class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = window_len def compute(self, today, assets, out, estimate): today_idx = trading_days.get_loc(today) today_timeline = timelines[ num_announcements_out ].loc[today].reindex( trading_days[:today_idx + 1] ).values timeline_start_idx = (len(today_timeline) - window_len) assert_almost_equal(estimate, today_timeline[timeline_start_idx:]) engine = self.make_engine() engine.run_pipeline( Pipeline({'est': SomeFactor()}), start_date=start_date, # last event date we have end_date=pd.Timestamp('2015-02-10', tz='utc'), ) class PreviousEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat([ pd.concat([ cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date) ], end_date) for end_date in pd.date_range('2015-01-09', '2015-01-19') ]), cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-20'))], pd.Timestamp('2015-01-20') ), cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-20'))], pd.Timestamp('2015-01-21') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, 111, pd.Timestamp('2015-01-22')), (20, 121, pd.Timestamp('2015-01-20'))], end_date ) for end_date in pd.date_range('2015-01-22', '2015-02-04') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, 311, pd.Timestamp('2015-02-05')), (20, 121, pd.Timestamp('2015-01-20'))], end_date ) for end_date in pd.date_range('2015-02-05', '2015-02-09') ]), cls.create_expected_df_for_factor_compute( [(0, 201, pd.Timestamp('2015-02-10')), (10, 311, pd.Timestamp('2015-02-05')), (20, 221, pd.Timestamp('2015-02-10'))], pd.Timestamp('2015-02-10') ), ]) twoq_previous = pd.concat( [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-09', '2015-02-09')] + # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. [cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-02-10')), (10, np.NaN, pd.Timestamp('2015-02-05')), (20, 121, pd.Timestamp('2015-02-10'))], pd.Timestamp('2015-02-10') )] ) return { 1: oneq_previous, 2: twoq_previous } @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateWindows(PreviousEstimateWindows): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader(bz.data(events), columns) class NextEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07'))], pd.Timestamp('2015-01-09') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07'))], end_date ) for end_date in pd.date_range('2015-01-12', '2015-01-19') ]), cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (0, 101, pd.Timestamp('2015-01-20')), (10, 110, pd.Timestamp('2015-01-09')), (10, 111,
pd.Timestamp('2015-01-12')
pandas.Timestamp
import pandas as pd from business_rules.operators import (DataframeType, StringType, NumericType, BooleanType, SelectType, SelectMultipleType, GenericType) from . import TestCase from decimal import Decimal import sys import pandas class StringOperatorTests(TestCase): def test_operator_decorator(self): self.assertTrue(StringType("foo").equal_to.is_operator) def test_string_equal_to(self): self.assertTrue(StringType("foo").equal_to("foo")) self.assertFalse(StringType("foo").equal_to("Foo")) def test_string_not_equal_to(self): self.assertTrue(StringType("foo").not_equal_to("Foo")) self.assertTrue(StringType("foo").not_equal_to("boo")) self.assertFalse(StringType("foo").not_equal_to("foo")) def test_string_equal_to_case_insensitive(self): self.assertTrue(StringType("foo").equal_to_case_insensitive("FOo")) self.assertTrue(StringType("foo").equal_to_case_insensitive("foo")) self.assertFalse(StringType("foo").equal_to_case_insensitive("blah")) def test_string_starts_with(self): self.assertTrue(StringType("hello").starts_with("he")) self.assertFalse(StringType("hello").starts_with("hey")) self.assertFalse(StringType("hello").starts_with("He")) def test_string_ends_with(self): self.assertTrue(StringType("hello").ends_with("lo")) self.assertFalse(StringType("hello").ends_with("boom")) self.assertFalse(StringType("hello").ends_with("Lo")) def test_string_contains(self): self.assertTrue(StringType("hello").contains("ell")) self.assertTrue(StringType("hello").contains("he")) self.assertTrue(StringType("hello").contains("lo")) self.assertFalse(StringType("hello").contains("asdf")) self.assertFalse(StringType("hello").contains("ElL")) def test_string_matches_regex(self): self.assertTrue(StringType("hello").matches_regex(r"^h")) self.assertFalse(StringType("hello").matches_regex(r"^sh")) def test_non_empty(self): self.assertTrue(StringType("hello").non_empty()) self.assertFalse(StringType("").non_empty()) self.assertFalse(StringType(None).non_empty()) class NumericOperatorTests(TestCase): def test_instantiate(self): err_string = "foo is not a valid numeric type" with self.assertRaisesRegexp(AssertionError, err_string): NumericType("foo") def test_numeric_type_validates_and_casts_decimal(self): ten_dec = Decimal(10) ten_int = 10 ten_float = 10.0 if sys.version_info[0] == 2: ten_long = long(10) else: ten_long = int(10) # long and int are same in python3 ten_var_dec = NumericType(ten_dec) # this should not throw an exception ten_var_int = NumericType(ten_int) ten_var_float = NumericType(ten_float) ten_var_long = NumericType(ten_long) self.assertTrue(isinstance(ten_var_dec.value, Decimal)) self.assertTrue(isinstance(ten_var_int.value, Decimal)) self.assertTrue(isinstance(ten_var_float.value, Decimal)) self.assertTrue(isinstance(ten_var_long.value, Decimal)) def test_numeric_equal_to(self): self.assertTrue(NumericType(10).equal_to(10)) self.assertTrue(NumericType(10).equal_to(10.0)) self.assertTrue(NumericType(10).equal_to(10.000001)) self.assertTrue(NumericType(10.000001).equal_to(10)) self.assertTrue(NumericType(Decimal('10.0')).equal_to(10)) self.assertTrue(NumericType(10).equal_to(Decimal('10.0'))) self.assertFalse(NumericType(10).equal_to(10.00001)) self.assertFalse(NumericType(10).equal_to(11)) def test_numeric_not_equal_to(self): self.assertTrue(NumericType(10).not_equal_to(10.00001)) self.assertTrue(NumericType(10).not_equal_to(11)) self.assertTrue(NumericType(Decimal('10.0')).not_equal_to(Decimal('10.1'))) self.assertFalse(NumericType(10).not_equal_to(10)) self.assertFalse(NumericType(10).not_equal_to(10.0)) self.assertFalse(NumericType(Decimal('10.0')).not_equal_to(Decimal('10.0'))) def test_other_value_not_numeric(self): error_string = "10 is not a valid numeric type" with self.assertRaisesRegexp(AssertionError, error_string): NumericType(10).equal_to("10") def test_numeric_greater_than(self): self.assertTrue(NumericType(10).greater_than(1)) self.assertFalse(NumericType(10).greater_than(11)) self.assertTrue(NumericType(10.1).greater_than(10)) self.assertFalse(NumericType(10.000001).greater_than(10)) self.assertTrue(NumericType(10.000002).greater_than(10)) def test_numeric_greater_than_or_equal_to(self): self.assertTrue(NumericType(10).greater_than_or_equal_to(1)) self.assertFalse(NumericType(10).greater_than_or_equal_to(11)) self.assertTrue(NumericType(10.1).greater_than_or_equal_to(10)) self.assertTrue(NumericType(10.000001).greater_than_or_equal_to(10)) self.assertTrue(NumericType(10.000002).greater_than_or_equal_to(10)) self.assertTrue(NumericType(10).greater_than_or_equal_to(10)) def test_numeric_less_than(self): self.assertTrue(NumericType(1).less_than(10)) self.assertFalse(NumericType(11).less_than(10)) self.assertTrue(NumericType(10).less_than(10.1)) self.assertFalse(NumericType(10).less_than(10.000001)) self.assertTrue(NumericType(10).less_than(10.000002)) def test_numeric_less_than_or_equal_to(self): self.assertTrue(NumericType(1).less_than_or_equal_to(10)) self.assertFalse(NumericType(11).less_than_or_equal_to(10)) self.assertTrue(NumericType(10).less_than_or_equal_to(10.1)) self.assertTrue(NumericType(10).less_than_or_equal_to(10.000001)) self.assertTrue(NumericType(10).less_than_or_equal_to(10.000002)) self.assertTrue(NumericType(10).less_than_or_equal_to(10)) class BooleanOperatorTests(TestCase): def test_instantiate(self): err_string = "foo is not a valid boolean type" with self.assertRaisesRegexp(AssertionError, err_string): BooleanType("foo") err_string = "None is not a valid boolean type" with self.assertRaisesRegexp(AssertionError, err_string): BooleanType(None) def test_boolean_is_true_and_is_false(self): self.assertTrue(BooleanType(True).is_true()) self.assertFalse(BooleanType(True).is_false()) self.assertFalse(BooleanType(False).is_true()) self.assertTrue(BooleanType(False).is_false()) class SelectOperatorTests(TestCase): def test_contains(self): self.assertTrue(SelectType([1, 2]).contains(2)) self.assertFalse(SelectType([1, 2]).contains(3)) self.assertTrue(SelectType([1, 2, "a"]).contains("A")) def test_does_not_contain(self): self.assertTrue(SelectType([1, 2]).does_not_contain(3)) self.assertFalse(SelectType([1, 2]).does_not_contain(2)) self.assertFalse(SelectType([1, 2, "a"]).does_not_contain("A")) class SelectMultipleOperatorTests(TestCase): def test_contains_all(self): self.assertTrue(SelectMultipleType([1, 2]). contains_all([2, 1])) self.assertFalse(SelectMultipleType([1, 2]). contains_all([2, 3])) self.assertTrue(SelectMultipleType([1, 2, "a"]). contains_all([2, 1, "A"])) def test_is_contained_by(self): self.assertTrue(SelectMultipleType([1, 2]). is_contained_by([2, 1, 3])) self.assertFalse(SelectMultipleType([1, 2]). is_contained_by([2, 3, 4])) self.assertTrue(SelectMultipleType([1, 2, "a"]). is_contained_by([2, 1, "A"])) def test_shares_at_least_one_element_with(self): self.assertTrue(SelectMultipleType([1, 2]). shares_at_least_one_element_with([2, 3])) self.assertFalse(SelectMultipleType([1, 2]). shares_at_least_one_element_with([4, 3])) self.assertTrue(SelectMultipleType([1, 2, "a"]). shares_at_least_one_element_with([4, "A"])) def test_shares_exactly_one_element_with(self): self.assertTrue(SelectMultipleType([1, 2]). shares_exactly_one_element_with([2, 3])) self.assertFalse(SelectMultipleType([1, 2]). shares_exactly_one_element_with([4, 3])) self.assertTrue(SelectMultipleType([1, 2, "a"]). shares_exactly_one_element_with([4, "A"])) self.assertFalse(SelectMultipleType([1, 2, 3]). shares_exactly_one_element_with([2, 3, "a"])) def test_shares_no_elements_with(self): self.assertTrue(SelectMultipleType([1, 2]). shares_no_elements_with([4, 3])) self.assertFalse(SelectMultipleType([1, 2]). shares_no_elements_with([2, 3])) self.assertFalse(SelectMultipleType([1, 2, "a"]). shares_no_elements_with([4, "A"])) class DataframeOperatorTests(TestCase): def test_exists(self): df = pandas.DataFrame.from_dict({ "var1": [1, 2, 4, ], "var2": [3, 5, 6, ], }) result: pd.Series = DataframeType({"value": df}).exists({"target": "var1"}) self.assertTrue(result.equals(pd.Series([True, True, True, ]))) result: pd.Series = DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).exists({"target": "--r1"}) self.assertTrue(result.equals(pd.Series([True, True, True, ]))) result: pd.Series = DataframeType({"value": df}).exists({"target": "invalid"}) self.assertTrue(result.equals(pd.Series([False, False, False, ]))) def test_not_exists(self): df = pandas.DataFrame.from_dict({ "var1": [1, 2, 4, ], "var2": [3, 5, 6, ] }) result: pd.Series = DataframeType({"value": df}).not_exists({"target": "invalid"}) self.assertTrue(result.equals(pd.Series([True, True, True, ]))) result: pd.Series = DataframeType({"value": df}).not_exists({"target": "var1"}) self.assertTrue(result.equals(pd.Series([False, False, False, ]))) result: pd.Series = DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).not_exists({"target": "--r1"}) self.assertTrue(result.equals(pd.Series([False, False, False, ]))) def test_equal_to(self): df = pandas.DataFrame.from_dict({ "var1": [1, 2, 4, "", 7, ], "var2": [3, 5, 6, "", 2, ], "var3": [1, 3, 8, "", 7, ], "var4": ["test", "issue", "one", "", "two", ] }) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": "" }).equals(pandas.Series([False, False, False, False, False, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": 2 }).equals(pandas.Series([False, True, False, False, False, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([True, False, False, False, True, ]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).equal_to({ "target": "--r1", "comparator": "--r3" }).equals(pandas.Series([True, False, False, False, True, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([False, False, False, False, False, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": 20 }).equals(pandas.Series([False, False, False, False, False, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var4", "comparator": "var1", "value_is_literal": True }).equals(pandas.Series([False, False, False, False, False, ]))) def test_not_equal_to(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).not_equal_to({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).not_equal_to({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).not_equal_to({ "target": "--r1", "comparator": "--r2" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).not_equal_to({ "target": "--r1", "comparator": 20 }).equals(pandas.Series([True, True, True]))) def test_equal_to_case_insensitive(self): df = pandas.DataFrame.from_dict({ "var1": ["word", "", "new", "val"], "var2": ["WORD", "", "test", "VAL"], "var3": ["LET", "", "GO", "read"] }) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "NEW" }).equals(pandas.Series([False, False, True, False]))) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "" }).equals(pandas.Series([False, False, False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).equal_to_case_insensitive({ "target": "--r1", "comparator": "--r2" }).equals(pandas.Series([True, False, False, True]))) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([True, False, False, True]))) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "var1", "value_is_literal": True }).equals(pandas.Series([False, False, False, False]))) def test_not_equal_to_case_insensitive(self): df = pandas.DataFrame.from_dict({ "var1": ["word", "new", "val"], "var2": ["WORD", "test", "VAL"], "var3": ["LET", "GO", "read"], "var4": ["WORD", "NEW", "VAL"] }) self.assertTrue(DataframeType({"value": df}).not_equal_to_case_insensitive({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).not_equal_to_case_insensitive({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([False, True, False]))) self.assertTrue(DataframeType({"value": df}).not_equal_to_case_insensitive({ "target": "var1", "comparator": "var1", "value_is_literal": True }).equals(pandas.Series([True, True, True]))) def test_less_than(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).less_than({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).less_than({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).less_than({ "target": "--r1", "comparator": "var3" }).equals(pandas.Series([False, True, True]))) self.assertTrue(DataframeType({"value": df}).less_than({ "target": "var2", "comparator": 2 }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).less_than({ "target": "var1", "comparator": 3 }).equals(pandas.Series([True, True, False]))) another_df = pandas.DataFrame.from_dict( { "LBDY": [4, None, None, None, None] } ) self.assertTrue(DataframeType({"value": another_df}).less_than({ "target": "LBDY", "comparator": 5 }).equals(pandas.Series([True, False, False, False, False, ]))) def test_less_than_or_equal_to(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).less_than_or_equal_to({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).less_than_or_equal_to({ "target": "--r1", "comparator": "var4" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).less_than_or_equal_to({ "target": "var2", "comparator": "var1" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).less_than_or_equal_to({ "target": "var2", "comparator": 2 }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).less_than_or_equal_to({ "target": "var2", "comparator": "var3" }).equals(pandas.Series([False, False, True]))) another_df = pandas.DataFrame.from_dict( { "LBDY": [4, 5, None, None, None] } ) self.assertTrue(DataframeType({"value": another_df}).less_than_or_equal_to({ "target": "LBDY", "comparator": 5 }).equals(pandas.Series([True, True, False, False, False, ]))) def test_greater_than(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).greater_than({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).greater_than({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).greater_than({ "target": "var1", "comparator": "--r3" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).greater_than({ "target": "var2", "comparator": 2 }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).greater_than({ "target": "var1", "comparator": 5000 }).equals(pandas.Series([False, False, False]))) another_df = pandas.DataFrame.from_dict( { "LBDY": [4, None, None, None, None] } ) self.assertTrue(DataframeType({"value": another_df}).greater_than({ "target": "LBDY", "comparator": 3 }).equals(pandas.Series([True, False, False, False, False, ]))) def test_greater_than_or_equal_to(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).greater_than_or_equal_to({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).greater_than_or_equal_to({ "target": "var1", "comparator": "--r4" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).greater_than_or_equal_to({ "target": "var2", "comparator": "var3" }).equals(pandas.Series([True, True, False]))) self.assertTrue(DataframeType({"value": df}).greater_than_or_equal_to({ "target": "var2", "comparator": 2 }).equals(pandas.Series([True, True, True]))) another_df = pandas.DataFrame.from_dict( { "LBDY": [4, 3, None, None, None] } ) self.assertTrue(DataframeType({"value": another_df}).greater_than_or_equal_to({ "target": "LBDY", "comparator": 3 }).equals(pandas.Series([True, True, False, False, False, ]))) def test_contains(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4], "string_var": ["hj", "word", "c"], "var5": [[1,3,5],[1,3,5], [1,3,5]] }) self.assertTrue(DataframeType({"value": df}).contains({ "target": "var1", "comparator": 2 }).equals(pandas.Series([False, True, False]))) self.assertTrue(DataframeType({"value": df}).contains({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([True, False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).contains({ "target": "var1", "comparator": "--r3" }).equals(
pandas.Series([True, False, False])
pandas.Series
# -*- coding: utf-8 -*- import sys import numpy as np import pandas as pd import itertools import logging import inspect from result import AlgoResult, ListResult from scipy.misc import comb import tools class Algo(object): """ Base class for algorithm calculating weights for online portfolio. You have to subclass either step method to calculate weights sequentially or weights method, which does it at once. weights method might be useful for better performance when using matrix calculation, but be careful about look-ahead bias. Upper case letters stand for matrix and lower case for vectors (such as B and b for weights). """ # if true, replace missing values by last values REPLACE_MISSING = False # type of prices going into weights or step function # ratio: pt / pt-1 # log: log(pt / pt-1) # raw: pt PRICE_TYPE = 'ratio' def __init__(self, min_history=None): """ Subclass to define algo specific parameters here. :param min_history: If not None, use initial weights for first min_window days. Use this if the algo needs some history for proper parameter estimation. """ self.min_history = min_history or 0 def init_weights(self, m): """ Set initial weights. :param m: Number of assets. """ return np.zeros(m) def init_step(self, X): """ Called before step method. Use to initialize persistent variables. :param X: Entire stock returns history. """ pass def step(self, x, last_b, history): """ Calculate new portfolio weights. If history parameter is omited, step method gets passed just parameters `x` and `last_b`. This significantly increases performance. :param x: Last returns. :param last_b: Last weights. :param history: All returns up to now. You can omit this parameter to increase performance. """ raise NotImplementedError('Subclass must implement this!') def weights(self, X, log_progress=True): """ Return weights. Call step method to update portfolio sequentially. Subclass this method only at your own risk. """ # init B = X.copy() * 0. last_b = self.init_weights(X.shape[1]) # use history parameter in step method? step_args = inspect.getargspec(self.step)[0] use_history = len(step_args) >= 4 # run algo self.init_step(X) for t, (_, x) in enumerate(X.iterrows()): # save weights B.ix[t] = last_b # keep initial weights for min_history if t < self.min_history: continue # predict for t+1 if use_history: history = X.iloc[:t+1] last_b = self.step(x, last_b, history) else: last_b = self.step(x, last_b) # convert last_b to suitable format if needed if type(last_b) == np.matrix: # remove dimension last_b = np.squeeze(np.array(last_b)) # show progress by 10 pcts if log_progress: tools.log_progress(t, len(X), by=10) return B def run(self, S, log_progress=True): """ Run algorithm and get weights. :params S: Absolute stock prices. DataFrame with stocks in columns. :param show_progress: Log computation progress. Works only for algos with defined step method. """ if log_progress: logging.debug('Running {}...'.format(self.__class__.__name__)) if isinstance(S, ListResult): P = S.to_dataframe() else: P = S # get weights X = self._convert_prices(P, self.PRICE_TYPE, self.REPLACE_MISSING) try: B = self.weights(X, log_progress=log_progress) except TypeError: # weights are missing log_progress parameter B = self.weights(X) # cast to dataframe if weights return numpy array if not isinstance(B, pd.DataFrame): B =
pd.DataFrame(B, index=P.index, columns=P.columns)
pandas.DataFrame
# coding: utf-8 # In[3]: import pandas as pd import pybedtools import pyBigWig import numpy as np import os # In[1]: # Develop a function that takes the top N intervals from an SV, and averages those, instead of just doing max. def topUsage(df,n): df['topUsage'] = df.sort_values('avgUsage',ascending=False).iloc[0:n,:]['avgUsage'].mean() df['topExp'] = df.sort_values('avgExp',ascending=False).iloc[0:n,:]['avgExp'].mean() return df # In[2]: # Define two functions that determine how far into the amino acids the SV begins # assumes exon rank ordered. def cdsRank(df): l = df.shape[0] dff = df.iloc[0,:] # get the first entry # first separate by strand if dff['strand'] == 1: if dff['start'] - dff['cStart'] < 0: # if sv begins before the first exon df['early'] = dff['cdsCount'] return df else: df['early'] = dff['start'] - dff['cStart'] + dff['cdsCount'] return df # reverse strand if dff['strand'] == -1: if dff['cStop'] - dff['stop'] < 0: # if sv begins before the first exon df['early'] = dff['cdsCount'] return df else: df['early'] = dff['cStop'] - dff['stop'] + dff['cdsCount'] return df # assumes reverse exon rank ordered. def cdsEnd(df): l = df.shape[0] dff = df.iloc[0,:] # first separate by strand if dff['strand'] == 1: if dff['stop'] > dff['cStop']: # if sv begins before the first exon df['late'] = dff['cdsCount'] + dff['size'] return df else: df['late'] = dff['stop'] - dff['cStart'] + dff['cdsCount'] return df # reverse strand if dff['strand'] == -1: if dff['start'] < dff['cStart']: # if sv ends after the last overlapped exon df['late'] = dff['cdsCount'] + dff['size'] return df else: df['late'] = dff['cStop'] - dff['start'] + dff['cdsCount'] return df # In[2]: # for def: def annotateSVs(inpath, outpath, phylopPath, tempdir): # read csv file into dataframe df = pd.read_csv(inpath) # Do all exon-level and gene-level features exons = pybedtools.BedTool('data/exons_Appris_featurized_transcript_Chr1-Y_loeuf.sorted.bed') df['ID'] = 'sv' + pd.Series(df.index.values).apply(str) df[['chrom','start','end','ID']].to_csv(os.path.join(tempdir,'df.bed'),sep='\t', index=False,header=False) a = pybedtools.BedTool(os.path.join(tempdir,'df.bed')) b = a.intersect(exons, wa=True, wb=True).saveas(os.path.join(tempdir,'dfExonOverlap.bed')) del a del exons del b exonOverlap = pd.read_csv(os.path.join(tempdir,'dfExonOverlap.bed'), sep='\t', header=None, names=['chrom', 'start', 'stop', 'ID', 'eChrom', 'eStart', 'eStop', 'gene', 'exonRank', 'skippable', 'exonsInGene', 'const','pLI','loeuf']) exonOverlap['numExonsFinal'] = exonOverlap.groupby(by='ID').eStart.transform('size') exonOverlap['allSkippable'] = exonOverlap.groupby(by='ID').skippable.transform(lambda x: all(x)) exonOverlap['lowestExonRank'] = exonOverlap.groupby(by='ID').exonRank.transform('min') exonOverlap['lowestExonsInGene'] = exonOverlap.groupby(by='ID').exonsInGene.transform('min') exonOverlap['anyConstExon'] = exonOverlap.groupby(by='ID').const.transform('max') exonOverlap['pLIMax'] = exonOverlap.groupby(by='ID').pLI.transform('max') exonOverlap['loeufMin'] = exonOverlap.groupby(by='ID').loeuf.transform('min') exonOverlap.drop_duplicates(subset='ID', inplace=True) df = df.merge(exonOverlap[['ID', 'numExonsFinal', 'allSkippable', 'lowestExonRank', 'lowestExonsInGene', 'anyConstExon','pLIMax','loeufMin']], how='left', on='ID') del exonOverlap # numExons = the total number of exons that an SV overlaps, across all genes # allSkippable = 1 if all exons overlapped start and end in same phase, 0 otherwise # lowestExonRank = the minimum rank of all exons overlapped # lowestExonsInGene = the number of exons in the gene overlapped, minimum if multiple genes # anyConstExon = 1 if any exon overlapped is constitutive, 0 otherwise # pLIMax = the maximum pLI of all overlapped genes (high pLI is more intolerant) # loeufMin = the minimum LOEUF of all overlapped genes (low loeuf is more intolerant) # Calculate conservation feature using phyloP as average of top 400 most conserved position size = 400 with open("data/hg38chromsizes.tsv") as f: chrms = dict((k, v) for k,v in (line.split() for line in f)) consBW = pyBigWig.open(phylopPath) # get phyloP value for each position in the SV x = [] for i in range(df.shape[0]): if int(df.loc[i,'end']) - int(df.loc[i,'start']) > 1000000: x.append(np.array([15.0])) else: try: x.append(np.nan_to_num(np.array(consBW.values(df.loc[i,'chrom'], int(df.loc[i,'start']), int(df.loc[i,'end']))))) except: print(df.loc[i,'start']) x.append(np.array([0.5])) del consBW x = np.asarray(x) # get the mean of the top 100 most conserved positions cons = [np.mean(y[np.argsort(y)[-size:]]) for y in x] del x df['phyloP'] = pd.Series(cons) del cons # Add TAD features tads = pybedtools.BedTool('data/rep12tadsMergedhg38.bed') df[['chrom','start','end','ID']].to_csv(os.path.join(tempdir,'df.bed'),sep='\t', index=False,header=False) a = pybedtools.BedTool(os.path.join(tempdir,'df.bed')) b = a.intersect(tads, wa=True, wb=True).saveas(os.path.join(tempdir,'dfTadOverlap.bed')) tadOverlap = pd.read_csv(os.path.join(tempdir,'dfTadOverlap.bed'), sep='\t', header=None, names=['chrom', 'start', 'stop', 'ID', 'tChrom', 'tStart', 'tStop', 'strength']) tadOverlap['maxStrength'] = tadOverlap.groupby(by='ID').strength.transform('max') tadOverlap.drop_duplicates(subset='ID', inplace=True) df = df.merge(tadOverlap[['ID', 'maxStrength']], how='left', on='ID') df['maxStrength'].fillna(value=0, inplace=True) del tads del tadOverlap ## Add amino acid features cds = pybedtools.BedTool('data/exons_CDS_Chr1-Y.sorted.bed') df[['chrom','start','end','ID']].to_csv(os.path.join(tempdir,'df.bed'),sep='\t', index=False,header=False) a = pybedtools.BedTool(os.path.join(tempdir,'df.bed')) b = a.intersect(cds, wa=True, wb=True).saveas(os.path.join(tempdir,'dfCDSOverlap.bed')) cdsOverlap = pd.read_csv(os.path.join(tempdir,'dfCDSOverlap.bed'), sep='\t', header=None, names=['chrom', 'start', 'stop', 'ID', 'cChrom', 'cStart', 'cStop', 'CDSLength', 'size', 'exonRank', 'strand','gene', 'cdsCount', 'pLI','loeuf']) del cds # use if statement to address possible scenario in which all given variants are in UTR and don't overlap a CDS if cdsOverlap.shape[0] != 0: # apply above functions to the SVs that were previously intersected with coding exons out = cdsOverlap.sort_values('exonRank').groupby(['ID','gene']).apply(cdsRank) out = out.sort_values('exonRank', ascending=False).groupby(['ID','gene']).apply(cdsEnd) # get shape, but don't drop duplicates (not in place) out.drop_duplicates(subset='ID').shape[0] # Featurize above information into features normalized by cds length out['cdsFracStart'] = out['early']/out['CDSLength'] out['cdsFracEnd'] = out['late']/out['CDSLength'] out['cdsFrac'] = (out['late'] - out['early'])/out['CDSLength'] # This is an experimental feature, which gives the max pLI and loeuf of the genes which are signficantly disrupted by the SV. out['pLI_max25'] = out[(out['cdsFracStart'] == 0) | (out['cdsFrac'] > 0.25)].groupby('ID')['pLI'].transform('max') #out['pLI_max25'].fillna(value=0, inplace=True) out['loeuf_min25']= out[(out['cdsFracStart'] == 0) | (out['cdsFrac'] > 0.25)].groupby('ID')['loeuf'].transform('min') #out['loeuf_min25'].fillna(value=0, inplace=True) # but we now need to fill in all the cells with the max loeuf_max25 in their ID out['pLI_max25_ID'] = out.groupby('ID')['pLI_max25'].transform('max') out['loeuf_min25_ID'] = out.groupby('ID')['loeuf_min25'].transform('max') out['cdsFracMax'] = out.groupby('ID')['cdsFrac'].transform('max') out['cdsFracStartMin'] = out.groupby('ID')['cdsFracStart'].transform('min') out['cdsFracEndMax'] = out.groupby('ID')['cdsFracEnd'].transform('max') out.drop_duplicates(subset='ID', inplace=True) final = df.merge(out[['ID', 'cdsFracStartMin', 'cdsFracEndMax', 'cdsFracMax', 'pLI_max25_ID', 'loeuf_min25_ID']], how='left') del out else: final = df.copy() del df final['cdsFracStartMin'] = float('NaN') final['cdsFracEndMax'] = float('NaN') final['cdsFracMax'] = float('NaN') final['pLI_max25_ID'] = float('NaN') final['loeuf_min25_ID'] = float('NaN') del cdsOverlap final['cdsFracStartMin'].fillna(value=2, inplace=True) final['cdsFracEndMax'].fillna(value=-1, inplace=True) final['cdsFracMax'].fillna(value=-1, inplace=True) final['pLI_max25_ID'].fillna(value=-1, inplace=True) final['loeuf_min25_ID'].fillna(value=3, inplace=True) # Add exon inclusion features usage = pybedtools.BedTool('data/summary_exon_usage_hg38.sorted.bed') final[['chrom','start','end','ID']].to_csv(os.path.join(tempdir,'df.bed'),sep='\t', index=False,header=False) a = pybedtools.BedTool(os.path.join(tempdir,'df.bed')) b = a.intersect(usage, wa=True, wb=True).saveas(os.path.join(tempdir,'dfUsageOverlap.bed')) usageOverlap = pd.read_csv(os.path.join(tempdir,'dfUsageOverlap.bed'), sep='\t', header=None, names=['chrom', 'start', 'stop', 'ID', 'uChrom', 'uStart', 'uStop', 'avgUsage', 'avgExp']) out = usageOverlap.groupby('ID').apply(topUsage,n=size) out.drop_duplicates(subset='ID', inplace=True) del a del b if out.shape[0] == 0: # try looking for features that are nearby, using bedtools window, and window size of 1000 b = a.window(usage, w=1000).saveas(os.path.join(tempdir,'dfUsageOverlap.bed')) usageOverlap = pd.read_csv(os.path.join(tempdir,'dfUsageOverlap.bed'), sep='\t', header=None, names=['chrom', 'start', 'stop', 'ID', 'uChrom', 'uStart', 'uStop', 'avgUsage', 'avgExp']) pd.read_csv('data/summary_exon_usage_hg38.sorted.bed') out = usageOverlap.groupby('ID').apply(topUsage,n=size) out.drop_duplicates(subset='ID', inplace=True) if out.shape[0] == 0: # if still zero, assume too far from exon to be found, give the median values of all exons exp =
pd.read_csv('data/summary_exon_usage_hg38.sorted.bed', names=['uChrom', 'uStart', 'uStop','Usage','Exp'],sep='\t')
pandas.read_csv
import os from datetime import date from typing import List, Union, Tuple import pandas as pd from code_base.excess_mortality.cov_mort import GetFullCovidMortality from code_base.pyll.decode_vars import LIST_LIFE_EXP_DT_COUNTRIES from code_base.pyll.folder_constants import output_pyll_bg, output_pyll_cz, source_le_countries_data from code_base.pyll.get_life_data import FullLifeExpectancy from code_base.utils.file_utils import SaveFileMixin class MergeMortalityLifeExpectancy(SaveFileMixin): # Class only applicable for Bulgaria and Czechia currently. def __init__(self, country: str): self.countries = LIST_LIFE_EXP_DT_COUNTRIES if country not in self.countries: raise TypeError(f'Incorrect country entered. Only acceptable options are: {", ".join(self.countries)}.') self.country = country self.directory = { 'Bulgaria': output_pyll_bg, 'Czechia': output_pyll_cz } self.cov_mort_file = GetFullCovidMortality(self.country).get_covid_mortality self.life_expectancy_file = FullLifeExpectancy(self.country).get_life_tables() self.work_life_ex = os.path.join(source_le_countries_data, 'work_life_expectancy.csv') def __get_cov_mort_and_lf_expectancy(self, start_date: Union[List, Tuple], end_date: Union[List, Tuple], start_age: int, end_age: int, sheet_name: str, mode: str = 'PYLL') -> str: if not mode == 'PYLL': lf_ex = pd.read_csv(self.work_life_ex) else: lf_ex = pd.read_csv(self.life_expectancy_file) if sheet_name: cov_mort = pd.read_excel(self.cov_mort_file, sheet_name=sheet_name) else: cov_mort =
pd.read_csv(self.cov_mort_file)
pandas.read_csv
###################################################################### # (c) Copyright EFC of NICS, Tsinghua University. All rights reserved. # Author: <NAME> # Email : <EMAIL> # # Create Date : 2020.08.16 # File Name : read_results.py # Description : read the config of train and test accuracy data from # log file and show on one screen to compare # Dependencies: ###################################################################### import os import sys import h5py import argparse import numpy as np import pandas as pd import matplotlib.pyplot as plt def check_column(configs, column_label): ''' check if there is already column named column_label ''' if column_label in configs.columns.values.tolist(): return True else: return False def add_line(configs, count, wordlist, pos): ''' add info in one line of one file into dataframe configs count is the line index wordlist is the word list of this line pos=1 means first level configs and pos=3 means second ''' # first level configs if pos == 1: column_label = wordlist[0] if check_column(configs, column_label): configs.loc[count,(column_label)] = wordlist[2] \ if column_label != 'output_dir' else wordlist[2][-17:] else: configs[column_label] = None configs.loc[count,(column_label)] = wordlist[2] \ if column_label != 'output_dir' else wordlist[2][-17:] # second level configs elif pos == 3: # deal with q_cfg if wordlist[2] == 'q_cfg': for i in range(4, len(wordlist)): if wordlist[i].endswith("':"): column_label = wordlist[i] data_element = wordlist[i+1] for j in range(i+2, len(wordlist)): if wordlist[j].endswith("':"): break else: data_element += wordlist[j] if check_column(configs, column_label): configs.loc[count,(column_label)] = data_element else: configs[column_label] = None configs.loc[count,(column_label)] = data_element # len > 5 means list configs elif len(wordlist) > 5: column_label = wordlist[0]+wordlist[2] data_element = wordlist[4] for i in range(5, len(wordlist)): data_element += wordlist[i] if check_column(configs, column_label): configs.loc[count,(column_label)] = data_element else: configs[column_label] = None configs.loc[count,(column_label)] = data_element # !len > 5 means one element configs else: column_label = wordlist[0]+wordlist[2] if check_column(configs, column_label): configs.loc[count,(column_label)] = wordlist[4] else: configs[column_label] = None configs.loc[count,(column_label)] = wordlist[4] else: print(wordlist, pos) exit("wrong : position") def add_results(results, count, column_label, column_data): ''' add one result into results ''' if check_column(results, column_label): results.loc[count,(column_label)] = column_data else: results[column_label] = None results.loc[count,(column_label)] = column_data def process_file(filepath, configs, results, count): ''' process one file line by line and add all configs and values into dataframe ''' with open(filepath) as f: temp_epoch = 0 train_acc = 0 train_loss = 0 test_loss = 0 for line in f: # check line by line wordlist = line.split() # split one line to a list # process long config lines with : at position 3 if len(wordlist) >= 5 and wordlist[0] != 'accuracy'\ and wordlist[0] != 'log': if wordlist[3]==':': add_line(configs, count, wordlist, 3) # add this line to configs # process long config lines with : at position 1 elif len(wordlist) >= 3 and wordlist[0] != 'gpu': if wordlist[1]==':': add_line(configs, count, wordlist, 1) # add this line to configs # process best result if len(wordlist) > 1: # add best acc if wordlist[0] == 'best': add_results(results, count, 'bestacc', wordlist[2]) add_results(results, count, 'bestepoch', wordlist[5]) # add train loss and acc elif wordlist[0] == 'epoch:': train_acc = wordlist[13][1:-1] train_loss = wordlist[10][1:-1] # add test loss elif wordlist[0] == 'test:': test_loss = wordlist[7][1:-1] # add test acc and save all results in this epoch to results elif wordlist[0] == '*': add_results(results, count, str(temp_epoch)+'trainacc', train_acc) add_results(results, count, str(temp_epoch)+'trainloss', train_loss) add_results(results, count, str(temp_epoch)+'testloss', test_loss) add_results(results, count, str(temp_epoch)+'testacc', wordlist[2]) add_results(results, count, str(temp_epoch)+'test5acc', wordlist[4]) temp_epoch += 1 return temp_epoch def main(argv): print(argparse) print(type(argparse)) parser = argparse.argumentparser() # required arguments: parser.add_argument( "type", help = "what type of mission are you going to do.\n\ supported: compare loss_curve acc_curve data_range" ) parser.add_argument( "output_dir", help = "the name of output dir to store the results." ) parser.add_argument( "--results_name", help = "what results are you going to plot or compare.\n \ supported: best_acc test_acc train_acc test_loss train_loss" ) parser.add_argument( "--config_name", help = "what configs are you going to show.\n \ example: all bw group hard " ) parser.add_argument( "--file_range", nargs='+', help = "the date range of input file to read the results." ) args = parser.parse_args() print(args.file_range) dirlist = os.listdir('./') print(dirlist) configs = pd.dataframe() print(configs) results =
pd.dataframe()
pandas.dataframe
import os from tempfile import TemporaryFile import joblib import pandas as pd from google.cloud import storage from superwise import Superwise CLIENT_ID = os.getenv("SUPERWISE_CLIENT_ID") SECRET = os.getenv("SUPERWISE_SECRET") SUPERWISE_MODEL_ID = os.getenv("SUPERWISE_MODEL_ID") SUPERWISE_VERSION_ID = os.getenv("SUPERWISE_VERSION_ID") class DiamondPricePredictor(object): def __init__(self, model_gcs_path): self._model = self._set_model(model_gcs_path) self._sw = Superwise( client_id=os.getenv("SUPERWISE_CLIENT_ID"), secret=os.getenv("SUPERWISE_SECRET") ) def _send_monitor_data(self, predictions): """ send predictions and input data to Superwise :param pd.Serie prediction :return str transaction_id """ transaction_id = self._sw.transaction.log_records( model_id=int(os.getenv("SUPERWISE_MODEL_ID")), version_id=int(os.getenv("SUPERWISE_VERSION_ID")), records=predictions ) return transaction_id def _set_model(self, model_gcs_path): """ download file from gcs to temp file and deserialize it to sklearn object :param str model_gcs_path: Path to gcs file :return sklearn.Pipeline model: Deserialized pipeline ready for production """ storage_client = storage.Client() bucket_name = os.environ["BUCKET_NAME"] print(f"Loading from bucket {bucket_name} model {model_gcs_path}") bucket = storage_client.get_bucket(bucket_name) # select bucket file blob = bucket.blob(model_gcs_path) with TemporaryFile() as temp_file: # download blob into temp file blob.download_to_file(temp_file) temp_file.seek(0) # load into joblib model = joblib.load(temp_file) print(f"Finished loading model from GCS") return model def predict(self, instances): """ apply predictions on instances and log predictions to Superwise :param list instances: [{record1}, {record2} ... {record-N}] :return dict api_output: {[predicted_prices: prediction, transaction_id: str]} """ input_df =
pd.DataFrame(instances)
pandas.DataFrame
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from os.path import join as pjoin import datetime import io import os import json import pytest from pyarrow.compat import guid, u from pyarrow.filesystem import LocalFileSystem import pyarrow as pa from .pandas_examples import dataframe_with_arrays, dataframe_with_lists import numpy as np import pandas as pd import pandas.util.testing as tm # Ignore these with pytest ... -m 'not parquet' parquet = pytest.mark.parquet def _write_table(table, path, **kwargs): import pyarrow.parquet as pq if isinstance(table, pd.DataFrame): table = pa.Table.from_pandas(table) pq.write_table(table, path, **kwargs) return table def _read_table(*args, **kwargs): import pyarrow.parquet as pq return pq.read_table(*args, **kwargs) @parquet def test_single_pylist_column_roundtrip(tmpdir): for dtype in [int, float]: filename = tmpdir.join('single_{}_column.parquet' .format(dtype.__name__)) data = [pa.array(list(map(dtype, range(5))))] table = pa.Table.from_arrays(data, names=('a', 'b')) _write_table(table, filename.strpath) table_read = _read_table(filename.strpath) for col_written, col_read in zip(table.itercolumns(), table_read.itercolumns()): assert col_written.name == col_read.name assert col_read.data.num_chunks == 1 data_written = col_written.data.chunk(0) data_read = col_read.data.chunk(0) assert data_written.equals(data_read) def alltypes_sample(size=10000, seed=0): np.random.seed(seed) df = pd.DataFrame({ 'uint8': np.arange(size, dtype=np.uint8), 'uint16': np.arange(size, dtype=np.uint16), 'uint32': np.arange(size, dtype=np.uint32), 'uint64': np.arange(size, dtype=np.uint64), 'int8': np.arange(size, dtype=np.int16), 'int16': np.arange(size, dtype=np.int16), 'int32': np.arange(size, dtype=np.int32), 'int64': np.arange(size, dtype=np.int64), 'float32': np.arange(size, dtype=np.float32), 'float64': np.arange(size, dtype=np.float64), 'bool': np.random.randn(size) > 0, # TODO(wesm): Test other timestamp resolutions now that arrow supports # them 'datetime': np.arange("2016-01-01T00:00:00.001", size, dtype='datetime64[ms]'), 'str': [str(x) for x in range(size)], 'str_with_nulls': [None] + [str(x) for x in range(size - 2)] + [None], 'empty_str': [''] * size }) return df @parquet def test_pandas_parquet_2_0_rountrip(tmpdir): import pyarrow.parquet as pq df = alltypes_sample(size=10000) filename = tmpdir.join('pandas_rountrip.parquet') arrow_table = pa.Table.from_pandas(df) assert b'pandas' in arrow_table.schema.metadata _write_table(arrow_table, filename.strpath, version="2.0", coerce_timestamps='ms') table_read = pq.read_pandas(filename.strpath) assert b'pandas' in table_read.schema.metadata assert arrow_table.schema.metadata == table_read.schema.metadata df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) @parquet def test_pandas_parquet_custom_metadata(tmpdir): import pyarrow.parquet as pq df = alltypes_sample(size=10000) filename = tmpdir.join('pandas_rountrip.parquet') arrow_table = pa.Table.from_pandas(df) assert b'pandas' in arrow_table.schema.metadata _write_table(arrow_table, filename.strpath, version="2.0", coerce_timestamps='ms') md = pq.read_metadata(filename.strpath).metadata assert b'pandas' in md js = json.loads(md[b'pandas'].decode('utf8')) assert js['index_columns'] == ['__index_level_0__'] @parquet def test_pandas_parquet_2_0_rountrip_read_pandas_no_index_written(tmpdir): import pyarrow.parquet as pq df = alltypes_sample(size=10000) filename = tmpdir.join('pandas_rountrip.parquet') arrow_table = pa.Table.from_pandas(df, preserve_index=False) js = json.loads(arrow_table.schema.metadata[b'pandas'].decode('utf8')) assert not js['index_columns'] _write_table(arrow_table, filename.strpath, version="2.0", coerce_timestamps='ms') table_read = pq.read_pandas(filename.strpath) js = json.loads(table_read.schema.metadata[b'pandas'].decode('utf8')) assert not js['index_columns'] assert arrow_table.schema.metadata == table_read.schema.metadata df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) @parquet def test_pandas_parquet_1_0_rountrip(tmpdir): size = 10000 np.random.seed(0) df = pd.DataFrame({ 'uint8': np.arange(size, dtype=np.uint8), 'uint16': np.arange(size, dtype=np.uint16), 'uint32': np.arange(size, dtype=np.uint32), 'uint64': np.arange(size, dtype=np.uint64), 'int8': np.arange(size, dtype=np.int16), 'int16': np.arange(size, dtype=np.int16), 'int32': np.arange(size, dtype=np.int32), 'int64': np.arange(size, dtype=np.int64), 'float32': np.arange(size, dtype=np.float32), 'float64': np.arange(size, dtype=np.float64), 'bool': np.random.randn(size) > 0, 'str': [str(x) for x in range(size)], 'str_with_nulls': [None] + [str(x) for x in range(size - 2)] + [None], 'empty_str': [''] * size }) filename = tmpdir.join('pandas_rountrip.parquet') arrow_table = pa.Table.from_pandas(df) _write_table(arrow_table, filename.strpath, version="1.0") table_read = _read_table(filename.strpath) df_read = table_read.to_pandas() # We pass uint32_t as int64_t if we write Parquet version 1.0 df['uint32'] = df['uint32'].values.astype(np.int64) tm.assert_frame_equal(df, df_read) @parquet def test_pandas_column_selection(tmpdir): size = 10000 np.random.seed(0) df = pd.DataFrame({ 'uint8': np.arange(size, dtype=np.uint8), 'uint16': np.arange(size, dtype=np.uint16) }) filename = tmpdir.join('pandas_rountrip.parquet') arrow_table = pa.Table.from_pandas(df) _write_table(arrow_table, filename.strpath) table_read = _read_table(filename.strpath, columns=['uint8']) df_read = table_read.to_pandas() tm.assert_frame_equal(df[['uint8']], df_read) def _random_integers(size, dtype): # We do not generate integers outside the int64 range platform_int_info = np.iinfo('int_') iinfo = np.iinfo(dtype) return np.random.randint(max(iinfo.min, platform_int_info.min), min(iinfo.max, platform_int_info.max), size=size).astype(dtype) def _test_dataframe(size=10000, seed=0): np.random.seed(seed) df = pd.DataFrame({ 'uint8': _random_integers(size, np.uint8), 'uint16': _random_integers(size, np.uint16), 'uint32': _random_integers(size, np.uint32), 'uint64': _random_integers(size, np.uint64), 'int8': _random_integers(size, np.int8), 'int16': _random_integers(size, np.int16), 'int32': _random_integers(size, np.int32), 'int64': _random_integers(size, np.int64), 'float32': np.random.randn(size).astype(np.float32), 'float64': np.arange(size, dtype=np.float64), 'bool': np.random.randn(size) > 0, 'strings': [tm.rands(10) for i in range(size)], 'all_none': [None] * size, 'all_none_category': [None] * size }) # TODO(PARQUET-1015) # df['all_none_category'] = df['all_none_category'].astype('category') return df @parquet def test_pandas_parquet_native_file_roundtrip(tmpdir): df = _test_dataframe(10000) arrow_table = pa.Table.from_pandas(df) imos = pa.BufferOutputStream() _write_table(arrow_table, imos, version="2.0") buf = imos.get_result() reader = pa.BufferReader(buf) df_read = _read_table(reader).to_pandas() tm.assert_frame_equal(df, df_read) @parquet def test_read_pandas_column_subset(tmpdir): import pyarrow.parquet as pq df = _test_dataframe(10000) arrow_table = pa.Table.from_pandas(df) imos = pa.BufferOutputStream() _write_table(arrow_table, imos, version="2.0") buf = imos.get_result() reader = pa.BufferReader(buf) df_read = pq.read_pandas(reader, columns=['strings', 'uint8']).to_pandas() tm.assert_frame_equal(df[['strings', 'uint8']], df_read) @parquet def test_pandas_parquet_empty_roundtrip(tmpdir): df = _test_dataframe(0) arrow_table = pa.Table.from_pandas(df) imos = pa.BufferOutputStream() _write_table(arrow_table, imos, version="2.0") buf = imos.get_result() reader = pa.BufferReader(buf) df_read = _read_table(reader).to_pandas() tm.assert_frame_equal(df, df_read) @parquet def test_pandas_parquet_pyfile_roundtrip(tmpdir): filename = tmpdir.join('pandas_pyfile_roundtrip.parquet').strpath size = 5 df = pd.DataFrame({ 'int64': np.arange(size, dtype=np.int64), 'float32': np.arange(size, dtype=np.float32), 'float64': np.arange(size, dtype=np.float64), 'bool': np.random.randn(size) > 0, 'strings': ['foo', 'bar', None, 'baz', 'qux'] }) arrow_table = pa.Table.from_pandas(df) with open(filename, 'wb') as f: _write_table(arrow_table, f, version="1.0") data = io.BytesIO(open(filename, 'rb').read()) table_read = _read_table(data) df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) @parquet def test_pandas_parquet_configuration_options(tmpdir): size = 10000 np.random.seed(0) df = pd.DataFrame({ 'uint8': np.arange(size, dtype=np.uint8), 'uint16': np.arange(size, dtype=np.uint16), 'uint32': np.arange(size, dtype=np.uint32), 'uint64': np.arange(size, dtype=np.uint64), 'int8': np.arange(size, dtype=np.int16), 'int16': np.arange(size, dtype=np.int16), 'int32': np.arange(size, dtype=np.int32), 'int64': np.arange(size, dtype=np.int64), 'float32': np.arange(size, dtype=np.float32), 'float64': np.arange(size, dtype=np.float64), 'bool': np.random.randn(size) > 0 }) filename = tmpdir.join('pandas_rountrip.parquet') arrow_table = pa.Table.from_pandas(df) for use_dictionary in [True, False]: _write_table(arrow_table, filename.strpath, version="2.0", use_dictionary=use_dictionary) table_read = _read_table(filename.strpath) df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) for compression in ['NONE', 'SNAPPY', 'GZIP']: _write_table(arrow_table, filename.strpath, version="2.0", compression=compression) table_read = _read_table(filename.strpath) df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) def make_sample_file(df): import pyarrow.parquet as pq a_table = pa.Table.from_pandas(df) buf = io.BytesIO() _write_table(a_table, buf, compression='SNAPPY', version='2.0', coerce_timestamps='ms') buf.seek(0) return pq.ParquetFile(buf) @parquet def test_parquet_metadata_api(): df = alltypes_sample(size=10000) df = df.reindex(columns=sorted(df.columns)) fileh = make_sample_file(df) ncols = len(df.columns) # Series of sniff tests meta = fileh.metadata repr(meta) assert meta.num_rows == len(df) assert meta.num_columns == ncols + 1 # +1 for index assert meta.num_row_groups == 1 assert meta.format_version == '2.0' assert 'parquet-cpp' in meta.created_by # Schema schema = fileh.schema assert meta.schema is schema assert len(schema) == ncols + 1 # +1 for index repr(schema) col = schema[0] repr(col) assert col.name == df.columns[0] assert col.max_definition_level == 1 assert col.max_repetition_level == 0 assert col.max_repetition_level == 0 assert col.physical_type == 'BOOLEAN' assert col.logical_type == 'NONE' with pytest.raises(IndexError): schema[ncols + 1] # +1 for index with pytest.raises(IndexError): schema[-1] # Row group rg_meta = meta.row_group(0) repr(rg_meta) assert rg_meta.num_rows == len(df) assert rg_meta.num_columns == ncols + 1 # +1 for index @parquet def test_compare_schemas(): df = alltypes_sample(size=10000) fileh = make_sample_file(df) fileh2 = make_sample_file(df) fileh3 = make_sample_file(df[df.columns[::2]]) assert fileh.schema.equals(fileh.schema) assert fileh.schema.equals(fileh2.schema) assert not fileh.schema.equals(fileh3.schema) assert fileh.schema[0].equals(fileh.schema[0]) assert not fileh.schema[0].equals(fileh.schema[1]) @parquet def test_column_of_arrays(tmpdir): df, schema = dataframe_with_arrays() filename = tmpdir.join('pandas_rountrip.parquet') arrow_table = pa.Table.from_pandas(df, schema=schema) _write_table(arrow_table, filename.strpath, version="2.0", coerce_timestamps='ms') table_read = _read_table(filename.strpath) df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) @parquet def test_coerce_timestamps(tmpdir): # ARROW-622 df, schema = dataframe_with_arrays() filename = tmpdir.join('pandas_rountrip.parquet') arrow_table = pa.Table.from_pandas(df, schema=schema) _write_table(arrow_table, filename.strpath, version="2.0", coerce_timestamps='us') table_read = _read_table(filename.strpath) df_read = table_read.to_pandas() df_expected = df.copy() for i, x in enumerate(df_expected['datetime64']): if isinstance(x, np.ndarray): df_expected['datetime64'][i] = x.astype('M8[us]') tm.assert_frame_equal(df_expected, df_read) with pytest.raises(ValueError): _write_table(arrow_table, filename.strpath, version="2.0", coerce_timestamps='unknown') @parquet def test_column_of_lists(tmpdir): df, schema = dataframe_with_lists() filename = tmpdir.join('pandas_rountrip.parquet') arrow_table = pa.Table.from_pandas(df, schema=schema) _write_table(arrow_table, filename.strpath, version="2.0", coerce_timestamps='ms') table_read = _read_table(filename.strpath) df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) @parquet def test_date_time_types(): t1 = pa.date32() data1 = np.array([17259, 17260, 17261], dtype='int32') a1 = pa.Array.from_pandas(data1, type=t1) t2 = pa.date64() data2 = data1.astype('int64') * 86400000 a2 = pa.Array.from_pandas(data2, type=t2) t3 = pa.timestamp('us') start = pd.Timestamp('2000-01-01').value / 1000 data3 = np.array([start, start + 1, start + 2], dtype='int64') a3 = pa.Array.from_pandas(data3, type=t3) t4 = pa.time32('ms') data4 = np.arange(3, dtype='i4') a4 = pa.Array.from_pandas(data4, type=t4) t5 = pa.time64('us') a5 = pa.Array.from_pandas(data4.astype('int64'), type=t5) t6 = pa.time32('s') a6 = pa.Array.from_pandas(data4, type=t6) ex_t6 = pa.time32('ms') ex_a6 = pa.Array.from_pandas(data4 * 1000, type=ex_t6) t7 = pa.timestamp('ns') start = pd.Timestamp('2001-01-01').value data7 = np.array([start, start + 1000, start + 2000], dtype='int64') a7 = pa.Array.from_pandas(data7, type=t7) t7_us = pa.timestamp('us') start = pd.Timestamp('2001-01-01').value data7_us = np.array([start, start + 1000, start + 2000], dtype='int64') // 1000 a7_us = pa.Array.from_pandas(data7_us, type=t7_us) table = pa.Table.from_arrays([a1, a2, a3, a4, a5, a6, a7], ['date32', 'date64', 'timestamp[us]', 'time32[s]', 'time64[us]', 'time32_from64[s]', 'timestamp[ns]']) # date64 as date32 # time32[s] to time32[ms] # 'timestamp[ns]' to 'timestamp[us]' expected = pa.Table.from_arrays([a1, a1, a3, a4, a5, ex_a6, a7_us], ['date32', 'date64', 'timestamp[us]', 'time32[s]', 'time64[us]', 'time32_from64[s]', 'timestamp[ns]']) _check_roundtrip(table, expected=expected, version='2.0') # date64 as date32 # time32[s] to time32[ms] # 'timestamp[ns]' is saved as INT96 timestamp expected = pa.Table.from_arrays([a1, a1, a3, a4, a5, ex_a6, a7], ['date32', 'date64', 'timestamp[us]', 'time32[s]', 'time64[us]', 'time32_from64[s]', 'timestamp[ns]']) _check_roundtrip(table, expected=expected, version='2.0', use_deprecated_int96_timestamps=True) # Unsupported stuff def _assert_unsupported(array): table = pa.Table.from_arrays([array], ['unsupported']) buf = io.BytesIO() with pytest.raises(NotImplementedError): _write_table(table, buf, version="2.0") t7 = pa.time64('ns') a7 = pa.Array.from_pandas(data4.astype('int64'), type=t7) _assert_unsupported(a7) @parquet def test_fixed_size_binary(): t0 = pa.binary(10) data = [b'fooooooooo', None, b'barooooooo', b'quxooooooo'] a0 = pa.array(data, type=t0) table = pa.Table.from_arrays([a0], ['binary[10]']) _check_roundtrip(table) def _check_roundtrip(table, expected=None, **params): buf = io.BytesIO() _write_table(table, buf, **params) buf.seek(0) if expected is None: expected = table result = _read_table(buf) assert result.equals(expected) @parquet def test_multithreaded_read(): df = alltypes_sample(size=10000) table = pa.Table.from_pandas(df) buf = io.BytesIO() _write_table(table, buf, compression='SNAPPY', version='2.0') buf.seek(0) table1 = _read_table(buf, nthreads=4) buf.seek(0) table2 = _read_table(buf, nthreads=1) assert table1.equals(table2) @parquet def test_min_chunksize(): data = pd.DataFrame([np.arange(4)], columns=['A', 'B', 'C', 'D']) table = pa.Table.from_pandas(data.reset_index()) buf = io.BytesIO() _write_table(table, buf, chunk_size=-1) buf.seek(0) result = _read_table(buf) assert result.equals(table) with pytest.raises(ValueError): _write_table(table, buf, chunk_size=0) @parquet def test_pass_separate_metadata(): import pyarrow.parquet as pq # ARROW-471 df = alltypes_sample(size=10000) a_table = pa.Table.from_pandas(df) buf = io.BytesIO() _write_table(a_table, buf, compression='snappy', version='2.0') buf.seek(0) metadata = pq.read_metadata(buf) buf.seek(0) fileh = pq.ParquetFile(buf, metadata=metadata) tm.assert_frame_equal(df, fileh.read().to_pandas()) @parquet def test_read_single_row_group(): import pyarrow.parquet as pq # ARROW-471 N, K = 10000, 4 df = alltypes_sample(size=N) a_table = pa.Table.from_pandas(df) buf = io.BytesIO() _write_table(a_table, buf, row_group_size=N / K, compression='snappy', version='2.0') buf.seek(0) pf = pq.ParquetFile(buf) assert pf.num_row_groups == K row_groups = [pf.read_row_group(i) for i in range(K)] result = pa.concat_tables(row_groups) tm.assert_frame_equal(df, result.to_pandas()) @parquet def test_read_single_row_group_with_column_subset(): import pyarrow.parquet as pq N, K = 10000, 4 df = alltypes_sample(size=N) a_table = pa.Table.from_pandas(df) buf = io.BytesIO() _write_table(a_table, buf, row_group_size=N / K, compression='snappy', version='2.0') buf.seek(0) pf = pq.ParquetFile(buf) cols = df.columns[:2] row_groups = [pf.read_row_group(i, columns=cols) for i in range(K)] result = pa.concat_tables(row_groups) tm.assert_frame_equal(df[cols], result.to_pandas()) @parquet def test_parquet_piece_read(tmpdir): import pyarrow.parquet as pq df = _test_dataframe(1000) table = pa.Table.from_pandas(df) path = tmpdir.join('parquet_piece_read.parquet').strpath _write_table(table, path, version='2.0') piece1 = pq.ParquetDatasetPiece(path) result = piece1.read() assert result.equals(table) @parquet def test_parquet_piece_basics(): import pyarrow.parquet as pq path = '/baz.parq' piece1 = pq.ParquetDatasetPiece(path) piece2 = pq.ParquetDatasetPiece(path, row_group=1) piece3 = pq.ParquetDatasetPiece( path, row_group=1, partition_keys=[('foo', 0), ('bar', 1)]) assert str(piece1) == path assert str(piece2) == '/baz.parq | row_group=1' assert str(piece3) == 'partition[foo=0, bar=1] /baz.parq | row_group=1' assert piece1 == piece1 assert piece2 == piece2 assert piece3 == piece3 assert piece1 != piece3 @parquet def test_partition_set_dictionary_type(): import pyarrow.parquet as pq set1 = pq.PartitionSet('key1', [u('foo'), u('bar'), u('baz')]) set2 = pq.PartitionSet('key2', [2007, 2008, 2009]) assert isinstance(set1.dictionary, pa.StringArray) assert isinstance(set2.dictionary, pa.IntegerArray) set3 = pq.PartitionSet('key2', [datetime.datetime(2007, 1, 1)]) with pytest.raises(TypeError): set3.dictionary @parquet def test_read_partitioned_directory(tmpdir): fs = LocalFileSystem.get_instance() base_path = str(tmpdir) _partition_test_for_filesystem(fs, base_path) @pytest.yield_fixture def s3_example(): access_key = os.environ['PYARROW_TEST_S3_ACCESS_KEY'] secret_key = os.environ['PYARROW_TEST_S3_SECRET_KEY'] bucket_name = os.environ['PYARROW_TEST_S3_BUCKET'] import s3fs fs = s3fs.S3FileSystem(key=access_key, secret=secret_key) test_dir = guid() bucket_uri = 's3://{0}/{1}'.format(bucket_name, test_dir) fs.mkdir(bucket_uri) yield fs, bucket_uri fs.rm(bucket_uri, recursive=True) @pytest.mark.s3 @parquet def test_read_partitioned_directory_s3fs(s3_example): from pyarrow.filesystem import S3FSWrapper import pyarrow.parquet as pq fs, bucket_uri = s3_example wrapper = S3FSWrapper(fs) _partition_test_for_filesystem(wrapper, bucket_uri) # Check that we can auto-wrap dataset = pq.ParquetDataset(bucket_uri, filesystem=fs) dataset.read() def _partition_test_for_filesystem(fs, base_path): import pyarrow.parquet as pq foo_keys = [0, 1] bar_keys = ['<KEY>'] partition_spec = [ ['foo', foo_keys], ['bar', bar_keys] ] N = 30 df = pd.DataFrame({ 'index': np.arange(N), 'foo': np.array(foo_keys, dtype='i4').repeat(15), 'bar': np.tile(np.tile(np.array(bar_keys, dtype=object), 5), 2), 'values': np.random.randn(N) }, columns=['index', 'foo', 'bar', 'values']) _generate_partition_directories(fs, base_path, partition_spec, df) dataset = pq.ParquetDataset(base_path, filesystem=fs) table = dataset.read() result_df = (table.to_pandas() .sort_values(by='index') .reset_index(drop=True)) expected_df = (df.sort_values(by='index') .reset_index(drop=True) .reindex(columns=result_df.columns)) expected_df['foo'] = pd.Categorical(df['foo'], categories=foo_keys) expected_df['bar'] = pd.Categorical(df['bar'], categories=bar_keys) assert (result_df.columns == ['index', 'values', 'foo', 'bar']).all() tm.assert_frame_equal(result_df, expected_df) def _generate_partition_directories(fs, base_dir, partition_spec, df): # partition_spec : list of lists, e.g. [['foo', [0, 1, 2], # ['bar', ['a', 'b', 'c']] # part_table : a pyarrow.Table to write to each partition DEPTH = len(partition_spec) def _visit_level(base_dir, level, part_keys): name, values = partition_spec[level] for value in values: this_part_keys = part_keys + [(name, value)] level_dir = pjoin(base_dir, '{0}={1}'.format(name, value)) fs.mkdir(level_dir) if level == DEPTH - 1: # Generate example data file_path = pjoin(level_dir, 'data.parq') filtered_df = _filter_partition(df, this_part_keys) part_table = pa.Table.from_pandas(filtered_df) with fs.open(file_path, 'wb') as f: _write_table(part_table, f) else: _visit_level(level_dir, level + 1, this_part_keys) _visit_level(base_dir, 0, []) @parquet def test_read_common_metadata_files(tmpdir): import pyarrow.parquet as pq N = 100 df = pd.DataFrame({ 'index': np.arange(N), 'values': np.random.randn(N) }, columns=['index', 'values']) base_path = str(tmpdir) data_path = pjoin(base_path, 'data.parquet') table = pa.Table.from_pandas(df) _write_table(table, data_path) metadata_path = pjoin(base_path, '_metadata') pq.write_metadata(table.schema, metadata_path) dataset = pq.ParquetDataset(base_path) assert dataset.metadata_path == metadata_path common_schema = pq.read_metadata(data_path).schema assert dataset.schema.equals(common_schema) # handle list of one directory dataset2 = pq.ParquetDataset([base_path]) assert dataset2.schema.equals(dataset.schema) @parquet def test_read_schema(tmpdir): import pyarrow.parquet as pq N = 100 df = pd.DataFrame({ 'index': np.arange(N), 'values': np.random.randn(N) }, columns=['index', 'values']) data_path = pjoin(str(tmpdir), 'test.parquet') table = pa.Table.from_pandas(df) _write_table(table, data_path) assert table.schema.equals(pq.read_schema(data_path)) def _filter_partition(df, part_keys): predicate = np.ones(len(df), dtype=bool) to_drop = [] for name, value in part_keys: to_drop.append(name) predicate &= df[name] == value return df[predicate].drop(to_drop, axis=1) @parquet def test_read_multiple_files(tmpdir): import pyarrow.parquet as pq nfiles = 10 size = 5 dirpath = tmpdir.join(guid()).strpath os.mkdir(dirpath) test_data = [] paths = [] for i in range(nfiles): df = _test_dataframe(size, seed=i) # Hack so that we don't have a dtype cast in v1 files df['uint32'] = df['uint32'].astype(np.int64) path = pjoin(dirpath, '{0}.parquet'.format(i)) table = pa.Table.from_pandas(df) _write_table(table, path) test_data.append(table) paths.append(path) # Write a _SUCCESS.crc file with open(pjoin(dirpath, '_SUCCESS.crc'), 'wb') as f: f.write(b'0') def read_multiple_files(paths, columns=None, nthreads=None, **kwargs): dataset = pq.ParquetDataset(paths, **kwargs) return dataset.read(columns=columns, nthreads=nthreads) result = read_multiple_files(paths) expected = pa.concat_tables(test_data) assert result.equals(expected) # Read with provided metadata metadata = pq.read_metadata(paths[0]) result2 = read_multiple_files(paths, metadata=metadata) assert result2.equals(expected) result3 = pa.localfs.read_parquet(dirpath, schema=metadata.schema) assert result3.equals(expected) # Read column subset to_read = [result[0], result[2], result[6], result[result.num_columns - 1]] result = pa.localfs.read_parquet( dirpath, columns=[c.name for c in to_read]) expected = pa.Table.from_arrays(to_read, metadata=result.schema.metadata) assert result.equals(expected) # Read with multiple threads pa.localfs.read_parquet(dirpath, nthreads=2) # Test failure modes with non-uniform metadata bad_apple = _test_dataframe(size, seed=i).iloc[:, :4] bad_apple_path = tmpdir.join('{0}.parquet'.format(guid())).strpath t = pa.Table.from_pandas(bad_apple) _write_table(t, bad_apple_path) bad_meta = pq.read_metadata(bad_apple_path) with pytest.raises(ValueError): read_multiple_files(paths + [bad_apple_path]) with pytest.raises(ValueError): read_multiple_files(paths, metadata=bad_meta) mixed_paths = [bad_apple_path, paths[0]] with pytest.raises(ValueError): read_multiple_files(mixed_paths, schema=bad_meta.schema) with pytest.raises(ValueError): read_multiple_files(mixed_paths) @parquet def test_dataset_read_pandas(tmpdir): import pyarrow.parquet as pq nfiles = 5 size = 5 dirpath = tmpdir.join(guid()).strpath os.mkdir(dirpath) test_data = [] frames = [] paths = [] for i in range(nfiles): df = _test_dataframe(size, seed=i) df.index = np.arange(i * size, (i + 1) * size) df.index.name = 'index' path = pjoin(dirpath, '{0}.parquet'.format(i)) table = pa.Table.from_pandas(df) _write_table(table, path) test_data.append(table) frames.append(df) paths.append(path) dataset = pq.ParquetDataset(dirpath) columns = ['uint8', 'strings'] result = dataset.read_pandas(columns=columns).to_pandas() expected = pd.concat([x[columns] for x in frames]) tm.assert_frame_equal(result, expected) @parquet def test_dataset_read_pandas_common_metadata(tmpdir): # ARROW-1103 import pyarrow.parquet as pq nfiles = 5 size = 5 dirpath = tmpdir.join(guid()).strpath os.mkdir(dirpath) test_data = [] frames = [] paths = [] for i in range(nfiles): df = _test_dataframe(size, seed=i) df.index = pd.Index(np.arange(i * size, (i + 1) * size)) df.index.name = 'index' path = pjoin(dirpath, '{0}.parquet'.format(i)) df_ex_index = df.reset_index(drop=True) df_ex_index['index'] = df.index table = pa.Table.from_pandas(df_ex_index, preserve_index=False) # Obliterate metadata table = table.replace_schema_metadata(None) assert table.schema.metadata is None _write_table(table, path) test_data.append(table) frames.append(df) paths.append(path) # Write _metadata common file table_for_metadata = pa.Table.from_pandas(df) pq.write_metadata(table_for_metadata.schema, pjoin(dirpath, '_metadata')) dataset = pq.ParquetDataset(dirpath) columns = ['uint8', 'strings'] result = dataset.read_pandas(columns=columns).to_pandas() expected = pd.concat([x[columns] for x in frames]) tm.assert_frame_equal(result, expected) @parquet def test_ignore_private_directories(tmpdir): import pyarrow.parquet as pq nfiles = 10 size = 5 dirpath = tmpdir.join(guid()).strpath os.mkdir(dirpath) test_data = [] paths = [] for i in range(nfiles): df = _test_dataframe(size, seed=i) path = pjoin(dirpath, '{0}.parquet'.format(i)) test_data.append(_write_table(df, path)) paths.append(path) # private directory os.mkdir(pjoin(dirpath, '_impala_staging')) dataset = pq.ParquetDataset(dirpath) assert set(paths) == set(x.path for x in dataset.pieces) @parquet def test_multiindex_duplicate_values(tmpdir): num_rows = 3 numbers = list(range(num_rows)) index = pd.MultiIndex.from_arrays( [['foo', 'foo', 'bar'], numbers], names=['foobar', 'some_numbers'], ) df =
pd.DataFrame({'numbers': numbers}, index=index)
pandas.DataFrame
from sklearn.cluster import KMeans import plotly.express as px from sklearn.decomposition import PCA from sklearn.preprocessing import RobustScaler import pyarrow.parquet as pq import os from pathlib import Path from hdbscan import HDBSCAN import pandas as pd def hdbscan_cluster( df: pd.DataFrame, min_cluster_size: int = 10, gen_min_span_tree: bool = True ): clusterer = HDBSCAN( min_cluster_size=min_cluster_size, gen_min_span_tree=gen_min_span_tree) clusterer.fit(df) return clusterer.labels_, clusterer.probabilities_ run_id = '4d8ddb41e7f340c182a6a62699502d9f' score_path = os.path.join("data/output/score", run_id) cols = ['mask_press', 'resp_flow', 'delivered_volum', 'mask_press_mu', 'resp_flow_mu', 'delivered_volum_mu', 'mask_press_se', 'resp_flow_se', 'delivered_volum_se', 'epoch_id'] scores = [] for f in Path(score_path).iterdir(): df = pq.read_table(f, columns=cols).to_pandas() df["file_name"] = os.path.basename(f)[:15] scores.append(df) scores =
pd.concat(scores)
pandas.concat
import numpy as np from scipy import stats import pandas as pd import matplotlib.pyplot as plt class EventMatrix(object): def __init__(self, datetimes, symbols): ''' :param datetimes: :param symbols: Constructs A pandas dataframe indexed by datetimes and with columns for each symbol. The constructor fills this with all NANs and an abstract base method exists to be customized. ''' # Build an empty event matrix with an index of all the datetimes and columns for each symbol. # Fill with NANs self.event_matrix = pd.DataFrame({'Date': datetimes}) self.event_matrix = self.event_matrix.set_index('Date') self.event_matrix.tz_localize(tz='America/New_York') self.event_matrix = self.event_matrix.sort_index() self.event_matrix = self.event_matrix.loc[~self.event_matrix.index.duplicated(keep='first')] # Prints True is sorted #print(self.event_matrix.index.is_monotonic) self.symbols = symbols for symbol in self.symbols: self.event_matrix[symbol] = np.nan def build_event_matrix(self, start_date, end_date): ''' Implement this method a derived class. :param start_date: :param end_date: :return: FIll up the event matrix with 1's in the row/column for which there was an event. ''' raise NotImplementedError("Please Implement this method in a base class") class CarsCavcsResult(object): def __init__(self, num_events, cars, cars_std_err, cars_t_test, cars_significant, cars_positive, cars_num_stocks_positive, cars_num_stocks_negative, cavcs, cavcs_std_err, cavcs_t_test, cavcs_significant, cavcs_positive, cavcs_num_stocks_positive, cavcs_num_stocks_negative): """ :param num_events: the number of events in the matrix :param cars: time series of Cumulative Abnormal Return :params cars_std_err: std error of the CARs :param cars_t_test: t-test statistic that checks whether the CARs of all stock are significantly different from 0 :param cars_significant: True if the CARs of all stocks are significant :param cars_positive: True if the CAR is positive :param cars_num_stocks_positive: The number of stocks for which the CAR was significantly positive :param cars_num_stocks_negative: The number of stocks for which the CAR was significantly negative :param cavcs: time series of Cumulative Abnormal Volume Changes :params cavcs_std_err: std error of the CAVCs :param cavcs_t_test: t-test statistic that checks whether the CAVCs of all stock are significantly different from 0 :param cavcs_significant: True if the CAVCs of all stocks are significant :param cavcs_positive: True if the CAVC is positive :param cavcs_num_stocks_positive: The number of stocks for which the CAVC was significantly positive :param cavcs_num_stocks_negative: The number of stocks for which the CAVC was significantly negative All of the above t-tests are significant when they are in the 95% confidence levels """ self.num_events = num_events self.cars = cars self.cars_std_err = cars_std_err self.cars_t_test = cars_t_test self.cars_significant = cars_significant self.cars_positive = cars_positive self.cars_num_stocks_positive = cars_num_stocks_positive self.cars_num_stocks_negative = cars_num_stocks_negative self.cavcs = cavcs self.cavcs_std_err = cavcs_std_err self.cavcs_t_test = cavcs_t_test self.cavcs_significant = cavcs_significant self.cavcs_positive = cavcs_positive self.cavcs_num_stocks_positive = cavcs_num_stocks_positive self.cavcs_num_stocks_negative = cavcs_num_stocks_negative def results_as_string(self): result_string = 'Number of events processed: ' + str(self.num_events) + '\n' result_string += 'CARS Results' + '\n' result_string += ' Number of stocks with +CARS: ' + str(self.cars_num_stocks_positive) + '\n' result_string += ' Number of stocks with -CARS: ' + str(self.cars_num_stocks_negative) + '\n' result_string += ' CARS t-test value: ' + str(self.cars_t_test) + '\n' result_string += ' CARS significant: ' + str(self.cars_significant) + '\n' result_string += ' CARS positive: ' + str(self.cars_positive) + '\n' result_string += 'CAVCS Results' + '\n' result_string += ' Number of stocks with +CAVCS: ' + str(self.cavcs_num_stocks_positive) + '\n' result_string += ' Number of stocks with -CAVCS: ' + str(self.cavcs_num_stocks_negative) + '\n' result_string += ' CAVCS full t-test value: ' + str(self.cavcs_t_test) + '\n' result_string += ' CAVCS significant: ' + str(self.cavcs_significant) + '\n' result_string += ' CAVCS positive: ' + str(self.cavcs_positive) + '\n' return result_string class Calculator(object): def __init__(self): pass def calculate_using_naive_benchmark(self, event_matrix, stock_data, market_symbol, look_back, look_forward): """ :param event_matrix: :param stock_data: :param market_symbol: :param look_back: :param look_forward: :return car: time series of Cumulative Abnormal Return :return std_err: the standard error :return num_events: the number of events in the matrix Most of the code was from here: https://github.com/brettelliot/QuantSoftwareToolkit/blob/master/QSTK/qstkstudy/EventProfiler.py """ # Copy the stock prices into a new dataframe which will become filled with the returns #import pdb; #pdb.set_trace() try: # For IB daily_returns = stock_data['Close'].copy() volumes = stock_data['Volume'].copy() except KeyError: # For AV daily_returns = stock_data['adjusted_close'].copy() volumes = stock_data['volume'].copy() # Convert prices into daily returns. # This is the amount that the specific stock increased or decreased in value for one day. daily_returns = daily_returns.pct_change().fillna(0) mypct = lambda x: x[-1] - np.mean(x[:-1]) vlm_changes = volumes.rolling(5, 5).apply(mypct).fillna(0) # Subtract the market returns from all of the stock's returns. The result is the abnormal return. # beta = get_beta() beta = 1.0 # deal with beta later symbols = daily_returns.index.get_level_values(0).unique() abnormal_returns = daily_returns.copy() ex_vols = vlm_changes.copy() #import pdb; #pdb.set_trace() for sym in symbols: abnormal_returns.loc[sym, slice(None)] -= beta * daily_returns.loc[market_symbol, slice(None)].values ex_vols.loc[sym, slice(None)] -= beta * vlm_changes.loc[market_symbol, slice(None)].values #import pdb; #pdb.set_trace() # remove the market symbol from the returns and event matrix. It's no longer needed. del daily_returns[market_symbol] del vlm_changes[market_symbol] del abnormal_returns[market_symbol] del ex_vols[market_symbol] try: del event_matrix[market_symbol] except KeyError as e: pass starting_event_num = len(event_matrix[(event_matrix == 1.0).any(axis=1)]) print("Starting number of events: {}".format(starting_event_num)) # The event matrix has a row for every data in the stock data. # Zero (NaN) out any events in the rows at the beginning and end that would # not have data. event_matrix.values[0:look_back, :] = np.NaN event_matrix.values[-look_forward:, :] = np.NaN ending_event_num = len(event_matrix[(event_matrix == 1.0).any(axis=1)]) print("Ending number of events: {}".format(ending_event_num)) if (starting_event_num != ending_event_num): print("{} events were dropped because they require data outside the data range.".format(starting_event_num - ending_event_num)) # Number of events i_no_events = int(np.logical_not(np.isnan(event_matrix.values)).sum()) assert i_no_events > 0, "Zero events in the event matrix" na_all_rets = "False" na_all_vlms = "False" # import pdb; pdb.set_trace() results = pd.DataFrame(index=symbols, columns=['pos', 'neg', 'vpos', 'vneg']) # Looking for the events and pushing them to a matrix #print(event_matrix.columns) #print(symbols) try: #for i, s_sym in enumerate(event_matrix.columns): for s_sym in symbols: if s_sym == market_symbol: continue na_stock_rets = "False" na_stock_vlms = "False" for j, dt_date in enumerate(event_matrix.index): if event_matrix[s_sym][dt_date] == 1: na_ret = abnormal_returns[s_sym][j - look_back:j + 1 + look_forward] na_vls = ex_vols[s_sym][j - look_back:j + 1 + look_forward] if type(na_stock_rets) == type(""): na_stock_rets = na_ret na_stock_vlms = na_vls else: na_stock_rets = np.vstack((na_stock_rets, na_ret)) na_stock_vlms = np.vstack((na_stock_vlms, na_vls)) # reurns/vols for a particular stock analyze here # then append to all rets #import pdb; #pdb.set_trace() if type(na_stock_rets) == type("") or type(na_stock_rets) == type(""): continue if (np.mean(na_stock_rets) > 0): results.loc[s_sym, 'pos'] = True #print(s_sym) else: results.loc[s_sym, 'neg'] = True if (np.mean(na_stock_vlms) > 0): results.loc[s_sym, 'vpos'] = True else: results.loc[s_sym, 'vneg'] = True if type(na_all_rets) == type(""): na_all_rets = na_stock_rets na_all_vlms = na_stock_vlms else: na_all_rets = np.vstack((na_all_rets, na_stock_rets)) na_all_vlms = np.vstack((na_all_vlms, na_stock_vlms)) except Exception as e: #import pdb; #pdb.set_trace() #print(e) raise e #import pdb; #pdb.set_trace() if len(na_all_rets.shape) == 1: na_all_rets = np.expand_dims(na_all_rets, axis=0) # Computing daily returns num_events = len(na_all_rets) cars = np.mean(na_all_rets, axis=0) cavs = np.mean(na_all_vlms, axis=0) cars_std_err = np.std(na_all_rets, axis=0) cavs_std_err = np.std(na_all_vlms, axis=0) na_cum_rets = np.cumprod(na_all_rets + 1, axis=1) na_cum_rets = (na_cum_rets.T / na_cum_rets[:, look_back]).T na_cum_vlms = np.cumsum(na_all_vlms, axis=1) cars_cum = np.mean(na_cum_rets, axis=0) cavs_cum = np.mean(na_cum_vlms, axis=0) if (cars_cum[-1] - 1) > 0: cars_positive = True else: cars_positive = False if (cavs_cum[-1]) > 0: cavs_positive = True else: cavs_positive = False cars_num_stocks_positive = results['pos'].sum() cars_num_stocks_negative = results['neg'].sum() cavs_num_stocks_positive = results['vpos'].sum() cavs_num_stocks_negative = results['vneg'].sum() std1 = np.std(cars) cars_t_test = np.mean(cars) / std1 * np.sqrt(len(cars)) std2 = np.std(cavs) cavs_t_test = np.mean(cavs) / std2 * np.sqrt(len(cavs)) #import pdb; #pdb.set_trace() from scipy import stats # pval1 = 1 - stats.t.cdf(cars_t_test,df=len(cars)) pval1 = 2 * (1 - stats.t.cdf(abs(cars_t_test), df=num_events)) # pvalues = 2*(1-tcdf(abs(t),n-v)) pval2 = 2 * (1 - stats.t.cdf(abs(cavs_t_test), df=num_events)) if (pval1 < .05): cars_significant = True else: cars_significant = False if (pval2 < .05): cavs_significant = True else: cavs_significant = False #import pdb; #pdb.set_trace() ccr = CarsCavcsResult(num_events, cars_cum, cars_std_err, cars_t_test, cars_significant, cars_positive, cars_num_stocks_positive, cars_num_stocks_negative, cavs_cum, cavs_std_err, cavs_t_test, cavs_significant, cavs_positive, cavs_num_stocks_positive, cavs_num_stocks_negative) return ccr #import pdb; #pdb.set_trace() def calculate_using_single_factor_benchmark(self, event_matrix, stock_data, market_symbol, estimation_window=200, buffer=5, pre_event_window=10, post_event_window=10): ''' :param event_matrix: :param stock_data: :param market_symbol: :param estimation_window: :param buffer: :param pre_event_window: :param post_event_window: :return cars_cavcs_result: An instance of CarsCavcsResult containing the results. Modeled after http://arno.uvt.nl/show.cgi?fid=129765 ''' import pandas as pd import numpy as np import matplotlib.pyplot as plt import datetime as dt # The event matrix has a row for every data in the stock data. # Zero (NaN) out any events in the rows at the beginning and end that would # not have data. starting_event_num = len(event_matrix[(event_matrix == 1.0).any(axis=1)]) print("Starting number of events: {}".format(starting_event_num)) event_matrix.values[0:estimation_window + buffer + pre_event_window + post_event_window, :] = np.NaN event_matrix.values[-estimation_window - buffer - pre_event_window - post_event_window:, :] = np.NaN ending_event_num = len(event_matrix[(event_matrix == 1.0).any(axis=1)]) print("Ending number of events: {}".format(ending_event_num)) if(starting_event_num != ending_event_num): print("{} events were dropped because they require data outside the data range.".format(starting_event_num - ending_event_num)) events = event_matrix[(event_matrix == 1.0).any(axis=1)] dates = stock_data.loc[market_symbol, slice(None)].index date1 = events.index[0] index1 = dates.tolist().index(date1) wtf = dates[index1] date11 = dates[index1 - buffer] date12 = dates[index1 - (buffer + estimation_window)] #import pdb; #pdb.set_trace() # check remove duplicates stock_data.index.value_counts() stock_data.drop_duplicates(inplace=True) # import pdb; pdb.set_trace() try: # For IB closing_prices = stock_data['Close'] volumes = stock_data['Volume'] except KeyError: # For AV closing_prices = stock_data['adjusted_close'] volumes = stock_data['volume'] # check for duplicates closing_prices.index.value_counts() '''(RGR, 2005-12-30 00:00:00) 2 (SPY, 2000-12-29 00:00:00) 2 (RGR, 2006-12-29 00:00:00) 2''' # removing duplicates # now we are ready to do anlaysis stock_ret = closing_prices.copy() symbols = stock_data.index.get_level_values(0).unique().tolist() mypct = lambda x: x[-1] - np.mean(x[:-1]) stock_ret = closing_prices.pct_change().fillna(0) vlm_changes = volumes.rolling(5, 5).apply(mypct).fillna(0) # do regeression pre_stock_returns = stock_ret[ (stock_data.index.get_level_values(1) > date12) & (stock_data.index.get_level_values(1) <= date11)] pre_stock_vlms = vlm_changes[ (stock_data.index.get_level_values(1) > date12) & (stock_data.index.get_level_values(1) <= date11)] # ************** # First compute cars ****** # *************** #import pdb; #pdb.set_trace() dates = stock_data.index.get_level_values(1).unique().tolist() if (market_symbol in symbols): stocks = [x for x in symbols if x != market_symbol] else: raise ValueError('calculate_using_single_factor_benchmark: market_symbol not found in data') ar1 = ['cars', 'cavs']; ar2 = ['slope', 'intercept'] from itertools import product tuples = [(i, j) for i, j in product(ar1, ar2)] # tuples = list(zip(*arrays)) index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) df_regress = pd.DataFrame(0.0, index=index, columns=symbols) # import pdb; pdb.set_trace() for stock in stocks: # set up data x1 = pre_stock_returns[market_symbol] y1 = pre_stock_returns[stock] slope1, intercept1, cars0 = regress_vals(x1, y1) cars = np.cumprod(cars0 + 1, axis=0) # plot if you need #plot_regressvals(x1, y1, slope1, intercept1, cars, stock) # the same for cvals x2 = pre_stock_vlms[market_symbol] y2 = pre_stock_vlms[stock] # y2.argsort()[::-1][:n] # import pdb; pdb.set_trace() slope2, intercept2, cavs0 = regress_vals(x2, y2) cavs = np.cumsum(cavs0) #plot_regressvals(x2, y2, slope2, intercept2, cavs, stock) # store the regresion values df_regress.loc[('cars', 'slope'), stock] = slope1 df_regress.loc[('cars', 'intercept'), stock] = intercept1 df_regress.loc[('cavs', 'slope'), stock] = slope2 df_regress.loc[('cavs', 'intercept'), stock] = intercept2 # do the same for volumes # *************** # now the event cars and cavs computations ar11 = stocks ar12 = ['cars', 'cavs'] tuples2 = [(i, j) for i, j in product(ar11, ar12)] # tuples = list(zip(*arrays)) index2 = pd.MultiIndex.from_tuples(tuples2, names=['first', 'second']) df_results = pd.DataFrame(0.0, index=index2, columns=['positive', 'significant']) ccarray = [] cvarray = [] # now the big loop #import pdb; #pdb.set_trace() try: for stock in stocks: slope1 = df_regress.loc[('cars', 'slope'), stock] intercept1 = df_regress.loc[('cars', 'intercept'), stock] slope2 = df_regress.loc[('cavs', 'slope'), stock] intercept2 = df_regress.loc[('cavs', 'intercept'), stock] ccr = [] cvr = [] for event in events.iterrows(): dt1 = event[0] idx1 = dates.index(dt1) window = dates[idx1 - pre_event_window:idx1 + post_event_window + 1] dummy_rets =
pd.Series(0.0, index=window)
pandas.Series
import sys import numpy as np import matplotlib.pyplot as plt import pandas as pd from mpl_toolkits import mplot3d def trajectory_generator(T_final, N, traj=0, show_traj=False): ''' Generates a circular trajectory given a final time and a sampling time ''' r = 1 # radius th = np.linspace(0,6*np.pi,N) c_x, c_y = [0,0] # center coordinates ## circular trajectory if traj ==0: t = np.linspace(0,T_final,N) x = r * np.cos(th) + c_x y = r * np.sin(th) + c_y z = np.ones_like(th) if show_traj == True: plt.figure() ax = plt.axes(projection = "3d") plt.title('Reference trajectory') ax.plot3D(x, y, z) ax.set_xlabel("x[m]") ax.set_ylabel("y[m]") ax.set_zlabel("z[m]") plt.show() ## hellical trajectory if traj ==1: t = np.linspace(0,T_final,N) x = r * np.cos(th) + c_x y = r * np.sin(th) + c_y z = np.linspace(1,2,N) if show_traj == True: plt.figure() ax = plt.axes(projection = "3d") plt.title('Reference trajectory') ax.plot3D(x, y, z) plt.show() ## vertical trajectory if traj ==2: t = np.linspace(0,T_final,N) x = np.ones_like(t) y = np.zeros_like(t) z = np.linspace(1,2,N) if show_traj == True: plt.figure() ax = plt.axes(projection = "3d") plt.title('Reference trajectory') ax.plot3D(x, y, z) plt.show() return t,x,y,z def trajectory_generator2D( x0: np.array, # initial position of the quadrotor N_hover: int, # number of time steps in the hovering phase N_traj: int, # number of time steps in the simulation N: int, # number of time step in a single time horizon (used to add an additional horizon in order for the closed loop simulation to work) radius: float, # radius of the circular trajectory show_traj=False): # boolean to show trajectory before the simulation ''' Generates a circular trajectory with a hovering time of T_hover at the start, given a trajectory time and a sampling time. ''' # hovering trajectory y_hover = np.ones(N_hover) * x0[0] z_hover = np.ones(N_hover) * x0[1] # circular trajectory parameters theta = np.linspace(0,4*np.pi, N_traj+N) c_x, c_y = [4,5] # center coordinates ## circular trajectory y_circle = radius * np.cos(theta) + c_x z_circle = radius * np.sin(theta) + c_y # appending the hovering and the circular trajectories y = np.append(y_hover, y_circle) z = np.append(z_hover, z_circle) if show_traj == True: fig, ax = plt.subplots() plt.title('Reference trajectory') ax.plot(y, z) ax.set_xlabel("y[m]") ax.set_ylabel("z[m]") plt.show() return y,z # trajectory generation with velocities def trajectory_generotaor2D_with_vel( x0: np.array, # initial potision of the quadrotor N_hover: int, # number of time steps in the hovering phase model: object, # model of the drone (used to check if the maximum ) radius: float, # radius of the circular trajectory freq: float, # used to control the speed of the trajectory T_traj: float, # final time of the tre Tf: float, # control horizon (used to add an additional horizon in order for the closed loop simulation to work) dt: float): # hovering trajectory y_hover = np.ones(N_hover) * x0[0] z_hover = np.ones(N_hover) * x0[1] vz_hover = np.zeros(N_hover) vy_hover = np.zeros(N_hover) t = np.arange(0,T_traj+Tf,dt) c_y, c_z = [4,5] # center coordinates y_circle = radius * np.cos(freq * t) + c_y z_circle = radius * np.sin(freq * t) + c_z vy_circle = - radius * freq * np.sin(freq * t) vz_circle = + radius * freq * np.cos(freq * t) # appending the hovering and the circular trajectories y = np.append(y_hover, y_circle) z = np.append(z_hover, z_circle) vy = np.append(vy_hover, vy_circle) vz = np.append(vz_hover, vz_circle) v = np.sqrt(vy**2 + vz**2) # maximum velocity in the trajectory v_max = np.max(v) if v_max > model.v_max: sys.exit("The desired trajectory contains velocities that the drone cannot handle.") else: return y, z, vy, vz def readTrajectory(T_hover, N): # import csv file of measX and simU (noisy measurement) # ref_traj = pd.read_csv('used_data/matlab/ga4/measX.csv') # ref_U = pd.read_csv('used_data/matlab/ga4/simU.csv') # ref_traj = pd.read_csv('used_data/matlab/fmincon/J=u1/measX.csv') # ref_U = pd.read_csv('used_data/matlab/fmincon/J=u1/simU.csv') ref_traj = pd.read_csv('used_data/matlab/globalsearch_1/measX.csv') ref_U =
pd.read_csv('used_data/matlab/globalsearch_1/simU.csv')
pandas.read_csv
import pandas as pd import numpy as np from pathlib import Path def load(path, dt=False, stats=False): print("loading data from",path) dataFrames = {} dataFrames['gameLogs'] = pd.read_csv(path/'GameLogs.csv', index_col=False) if dt: dataFrames['gameLogs']['Date'] = pd.to_datetime(dataFrames['gameLogs']['Date']) dataFrames['people'] = pd.read_csv(path/'People.csv', index_col=False) dataFrames['teams'] = pd.read_csv(path/'Teams.csv', index_col=False) dataFrames['managers'] = pd.read_csv(path/'Managers.csv', index_col=False) dataFrames['fieldings'] = pd.read_csv(path/'Fielding.csv', index_col=False) dataFrames['pitchings'] = pd.read_csv(path/'Pitching.csv', index_col=False) dataFrames['battings'] = pd.read_csv(path/'Batting.csv', index_col=False) if stats: dataFrames['stats'] = pd.read_csv(path/'Stats.csv', index_col=False) print("data loaded") return dataFrames def save(path, dataFrames, stats=False): print("Saving data to",path) dataFrames['gameLogs'].to_csv(path/'GameLogs.csv', index = False) dataFrames['people'].to_csv(path/'People.csv', index = False) dataFrames['teams'].to_csv(path/'Teams.csv', index = False) dataFrames['managers'].to_csv(path/'Managers.csv', index = False) dataFrames['fieldings'].to_csv(path/'Fielding.csv', index = False) dataFrames['pitchings'].to_csv(path/'Pitching.csv', index = False) dataFrames['battings'].to_csv(path/'Batting.csv', index = False) if stats: dataFrames['stats'].to_csv(path/'Stats.csv', index = False) print("Data saved") def filter(path, saveState=True): def filterFrame(frame, columns, renames=None): frame = frame[columns] if(renames!=None): frame = frame.rename(columns=renames) return frame.reset_index(drop=True) def filterGameLogs(gameLogs, people): gameLogs['Date'] = pd.to_datetime(gameLogs['Date'], format="%Y%m%d") gameLogs['Visiting league AL'] = gameLogs['Visiting league']=="AL" gameLogs['Home league AL'] = gameLogs['Home league']=="AL" gameLogs = gameLogs[gameLogs['Forfeit information'].isna()] gameLogs = gameLogs[gameLogs['Protest information'].isna()] generalColumns = [ 'Date','Visiting: Team','Visiting league AL','Home: Team','Home league AL','Visiting: Score','Home: Score'] visitingStatsColumns = [ 'Visiting at-bats','Visiting hits','Visiting doubles','Visiting triples','Visiting homeruns','Visiting RBI','Visiting sacrifice hits','Visiting sacrifice flies', 'Visiting hit-by-pitch','Visiting walks','Visiting intentional walks','Visiting strikeouts','Visiting stolen bases','Visiting caught stealing','Visiting grounded into double plays', 'Visiting left on base','Visiting pitchers used','Visiting individual earned runs','Visiting team earned runs','Visiting wild pitches', 'Visiting balks','Visiting putouts','Visiting assists','Visiting errors','Visiting passed balls','Visiting double plays','Visiting triple plays'] homeStatsColumns = [ 'Home at-bats','Home hits','Home doubles','Home triples','Home homeruns','Home RBI','Home sacrifice hits','Home sacrifice flies', 'Home hit-by-pitch','Home walks','Home intentional walks','Home strikeouts','Home stolen bases','Home caught stealing','Home grounded into double plays', 'Home left on base','Home pitchers used','Home individual earned runs','Home team earned runs','Home wild pitches', 'Home balks','Home putouts','Home assists','Home errors','Home passed balls','Home double plays','Home triple plays'] visitingIDColumns = [ 'Visiting team manager ID','Visiting starting pitcher ID', 'Visiting starting player 1 ID','Visiting starting player 2 ID','Visiting starting player 3 ID', 'Visiting starting player 4 ID','Visiting starting player 5 ID','Visiting starting player 6 ID', 'Visiting starting player 7 ID','Visiting starting player 8 ID','Visiting starting player 9 ID'] homeIDColumns = [ 'Home team manager ID','Home starting pitcher ID', 'Home starting player 1 ID','Home starting player 2 ID','Home starting player 3 ID', 'Home starting player 4 ID','Home starting player 5 ID','Home starting player 6 ID', 'Home starting player 7 ID','Home starting player 8 ID','Home starting player 9 ID'] identifier = people[['playerID','retroID']].drop_duplicates(subset=['retroID']).dropna() for column in visitingIDColumns+homeIDColumns: merged = pd.merge(gameLogs[column], identifier, left_on=column, right_on='retroID', how="left") gameLogs[column] = merged['playerID'] gameLogs = filterFrame(gameLogs, generalColumns+visitingStatsColumns+homeStatsColumns+visitingIDColumns+homeIDColumns) gameLogs = gameLogs.dropna(subset=generalColumns) for column in visitingStatsColumns+homeStatsColumns: gameLogs = gameLogs[(gameLogs[column]>=0) | (gameLogs[column].isna())] return gameLogs.reset_index(drop=True) def filterPeople(people): people['yearID'] = people['birthYear'] people['weight'] = 0.453592*people['weight'] people['height'] = 0.0254*people['height'] people['bats right'] = (people['bats']=="R") | (people['bats']=="B") people['bats left'] = (people['bats']=="L") | (people['bats']=="B") people['throws right'] = people['throws']=="R" people = filterFrame(people, ['yearID','playerID','weight','height','bats right', 'bats left', 'throws right']) return people.reset_index(drop=True) def filterTeams(teams): teams = filterFrame(teams, ['yearID','teamIDretro','divID','Rank','G','W','L','DivWin','LgWin','WSWin','R','AB','H','2B','3B','HR','BB','SO','SB','CS','HBP','SF','RA','ER','ERA','SHO','SV','HA','HRA','BBA','SOA','E','DP','FP'], {"teamIDretro":"teamID","divID":"Division","G":"Games","W":"Wins","L":"Losses","DivWin":"Division winner","LgWin":"League winner","WSWin":"World series winner","R":"Runs scored","AB":"At bats" ,"H":"Hits by batters","2B":"Doubles","3B":"Triples","HR":"Homeruns","BB":"Walks","SO":"Strikeouts","SB":"Stolen bases","CS":"Cought stealing","HBP":"Batters hit by pitch" ,"SF":"Sacrifice flies","RA":"Opponents runs scored","ER":"Earned runs allowed","ERA":"Earned runs average","SHO":"Shutouts","SV":"Saves","HA":"Hits allowed" ,"HRA":"Homeruns allowed","BBA":"Walks allowed","SOA":"Strikeouts allowed","E":"Errors","DP":"Double plays","FP":"Fielding percentage"}) teams['division C'] = (teams['Division']=="C") teams['division E'] = (teams['Division']=="E") teams['division W'] = (teams['Division']=="W") teams = teams.drop(columns=['Division']) teams['Division winner'] = (teams['Division winner']=='Y') teams['League winner'] = (teams['League winner']=='Y') teams['World series winner']= (teams['World series winner']=='Y') return teams.reset_index(drop=True) print("start filtering") dataFrames = load(path/'Input') print("filter gameLogs") dataFrames['gameLogs'] = filterGameLogs(dataFrames['gameLogs'], dataFrames['people']) print("filter people") dataFrames['people'] = filterPeople(dataFrames['people']) print("filter teams") dataFrames['teams'] = filterTeams(dataFrames['teams']) print("filter managers") dataFrames['managers'] = filterFrame(dataFrames['managers'], ['yearID','playerID','G','W','L'], {"G":"Games","W":"Wins","L":"Losses"}) print("filter fieldings") dataFrames['fieldings'] = filterFrame(dataFrames['fieldings'], ['yearID','playerID','PO','A','E','DP','PB','WP','SB','CS'], {"PO":"Putouts","A":"Assists","E":"Error","DP":"Double plays","PB":"Passed Balls","WP":"Wild Pitches","SB":"Opponent Stolen Bases","CS":"Opponents Caught Stealing"}) print("filter pitchings") dataFrames['pitchings'] = filterFrame(dataFrames['pitchings'], ['yearID','playerID','W','L','G','H','ER','HR','BB','SO','BAOpp','ERA','IBB','WP','HBP','BK','BFP','R','SH','SF','GIDP','SV','SHO'], {"G":"Games","W":"Wins","L":"Losses","H":"Hits","ER":"Earned Runs","HR":"Homeruns","BB":"Walks","SO":"Strikeouts","BAOpp":"Opponent batting average","ERA":"ERA" ,"IBB":"Intentional walks","WP":"Wild pitches","HBP":"Batters hit by pitch","BK":"Balks","BFP":"Batters faced","R":"Runs allowed","SH":"Batters sacrifices" ,"SF":"Batters sacrifice flies","GIDP":"Grounded into double plays","SV":"Saves","SHO":"Shutouts"}) print("filter battings") dataFrames['battings'] = filterFrame(dataFrames['battings'], ['yearID','playerID','AB','R','H','2B','3B','HR','RBI','SB','CS','BB','SO','IBB','HBP','SH','SF','GIDP'], {"AB":"At bats","R":"Runs","H":"Hits","2B":"Doubles","3B":"Triples","HR":"Homeruns","RBI":"Runs batted in","SB":"Stolen bases","CS":"Caught stealing" ,"BB":"Base on balls","SO":"Strikeouts","IBB":"Intentional walks","HBP":"Hit by pitch","SH":"Sacrifice hits","SF":"Sacrifice flies","GIDP":"Grounded into double plays"}) print("data filtered") if saveState: save(path/'Filtered', dataFrames) return dataFrames def replace(path, dataFrames, default="mean", lastKnownState=True, saveState=True, inpurity=0.5): def replaceFrame(frame, targets, gameLogs, default, lastKnownState, inpurity): #define ID column mID = 'playerID' for column in frame.columns: if column=='teamID': mID = 'teamID' break if column=='playerID': break #drop inpure columns nanFrame = frame.isna().sum().reset_index() nanFrame['inpurity'] = nanFrame[0]/frame.index.size frame = frame[nanFrame[nanFrame['inpurity']<=inpurity]['index'].tolist()] #creating frame containing only usefull data onlyFrame = None for column in targets: temp = gameLogs[['Date',column]] temp['yearID'] = temp['Date'].dt.year-1 temp = temp.rename(columns={column:mID}) onlyFrame = pd.concat([onlyFrame, temp]).drop(columns=['Date']).drop_duplicates().dropna().reset_index(drop=True) #combining duplicates aggregators = {} for column in frame.drop(columns=['yearID',mID]).columns: if (column.find("average")>-1) or (column.find("percentage")>-1): aggregators[column] = 'mean' elif (column.find("winner")>-1) or (column.find("division")>-1) or (column.find("Rank")>-1): aggregators[column] = 'max' else: aggregators[column] = 'sum' temp = frame[frame.duplicated(keep=False, subset=['yearID',mID])] temp2 = pd.merge(temp[['yearID',mID]],temp.drop(columns=['yearID',mID]).notna(), left_index=True, right_index=True).groupby(['yearID',mID], as_index=False).sum() temp = temp.groupby(['yearID',mID], as_index=False).agg(aggregators) for column in temp.columns: vec = temp2[column]==0 col = temp[column] col[vec] = None temp[column] = col frame = frame.drop_duplicates(keep=False, subset=['yearID',mID]) frame = pd.concat([frame, temp]) mIDs = np.array(list(dict.fromkeys(frame[mID].unique().tolist()+onlyFrame[mID].unique().tolist()))) years = np.array(list(dict.fromkeys(frame['yearID'].unique().tolist()+onlyFrame['yearID'].unique().tolist()))) fullFrame = pd.DataFrame(np.array(np.meshgrid(years, mIDs)).T.reshape(-1,2), columns=['yearID',mID]) fullFrame['yearID'] =
pd.to_numeric(fullFrame['yearID'])
pandas.to_numeric
# -*- coding: utf-8 -*- """ we test .agg behavior / note that .apply is tested generally in test_groupby.py """ from __future__ import print_function import pytest from datetime import datetime, timedelta from functools import partial import numpy as np from numpy import nan import pandas as pd from pandas import (date_range, MultiIndex, DataFrame, Series, Index, bdate_range, concat) from pandas.util.testing import assert_frame_equal, assert_series_equal from pandas.core.groupby import SpecificationError, DataError from pandas.compat import OrderedDict from pandas.io.formats.printing import pprint_thing import pandas.util.testing as tm class TestGroupByAggregate(object): def setup_method(self, method): self.ts = tm.makeTimeSeries() self.seriesd = tm.getSeriesData() self.tsd = tm.getTimeSeriesData() self.frame = DataFrame(self.seriesd) self.tsframe = DataFrame(self.tsd) self.df = DataFrame( {'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C': np.random.randn(8), 'D': np.random.randn(8)}) self.df_mixed_floats = DataFrame( {'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C': np.random.randn(8), 'D': np.array( np.random.randn(8), dtype='float32')}) index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) self.mframe = DataFrame(np.random.randn(10, 3), index=index, columns=['A', 'B', 'C']) self.three_group = DataFrame( {'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) def test_agg_api(self): # GH 6337 # http://stackoverflow.com/questions/21706030/pandas-groupby-agg-function-column-dtype-error # different api for agg when passed custom function with mixed frame df = DataFrame({'data1': np.random.randn(5), 'data2': np.random.randn(5), 'key1': ['a', 'a', 'b', 'b', 'a'], 'key2': ['one', 'two', 'one', 'two', 'one']}) grouped = df.groupby('key1') def peak_to_peak(arr): return arr.max() - arr.min() expected = grouped.agg([peak_to_peak]) expected.columns = ['data1', 'data2'] result = grouped.agg(peak_to_peak) assert_frame_equal(result, expected) def test_agg_regression1(self): grouped = self.tsframe.groupby([lambda x: x.year, lambda x: x.month]) result = grouped.agg(np.mean) expected = grouped.mean() assert_frame_equal(result, expected) def test_agg_datetimes_mixed(self): data = [[1, '2012-01-01', 1.0], [2, '2012-01-02', 2.0], [3, None, 3.0]] df1 = DataFrame({'key': [x[0] for x in data], 'date': [x[1] for x in data], 'value': [x[2] for x in data]}) data = [[row[0], datetime.strptime(row[1], '%Y-%m-%d').date() if row[1] else None, row[2]] for row in data] df2 = DataFrame({'key': [x[0] for x in data], 'date': [x[1] for x in data], 'value': [x[2] for x in data]}) df1['weights'] = df1['value'] / df1['value'].sum() gb1 = df1.groupby('date').aggregate(np.sum) df2['weights'] = df1['value'] / df1['value'].sum() gb2 = df2.groupby('date').aggregate(np.sum) assert (len(gb1) == len(gb2)) def test_agg_period_index(self): from pandas import period_range, PeriodIndex prng = period_range('2012-1-1', freq='M', periods=3) df = DataFrame(np.random.randn(3, 2), index=prng) rs = df.groupby(level=0).sum() assert isinstance(rs.index, PeriodIndex) # GH 3579 index = period_range(start='1999-01', periods=5, freq='M') s1 = Series(np.random.rand(len(index)), index=index) s2 = Series(np.random.rand(len(index)), index=index) series = [('s1', s1), ('s2', s2)] df = DataFrame.from_items(series) grouped = df.groupby(df.index.month) list(grouped) def test_agg_dict_parameter_cast_result_dtypes(self): # GH 12821 df = DataFrame( {'class': ['A', 'A', 'B', 'B', 'C', 'C', 'D', 'D'], 'time': date_range('1/1/2011', periods=8, freq='H')}) df.loc[[0, 1, 2, 5], 'time'] = None # test for `first` function exp = df.loc[[0, 3, 4, 6]].set_index('class') grouped = df.groupby('class') assert_frame_equal(grouped.first(), exp) assert_frame_equal(grouped.agg('first'), exp) assert_frame_equal(grouped.agg({'time': 'first'}), exp) assert_series_equal(grouped.time.first(), exp['time']) assert_series_equal(grouped.time.agg('first'), exp['time']) # test for `last` function exp = df.loc[[0, 3, 4, 7]].set_index('class') grouped = df.groupby('class') assert_frame_equal(grouped.last(), exp) assert_frame_equal(grouped.agg('last'), exp) assert_frame_equal(grouped.agg({'time': 'last'}), exp) assert_series_equal(grouped.time.last(), exp['time']) assert_series_equal(grouped.time.agg('last'), exp['time']) # count exp = pd.Series([2, 2, 2, 2], index=Index(list('ABCD'), name='class'), name='time') assert_series_equal(grouped.time.agg(len), exp) assert_series_equal(grouped.time.size(), exp) exp = pd.Series([0, 1, 1, 2], index=Index(list('ABCD'), name='class'), name='time') assert_series_equal(grouped.time.count(), exp) def test_agg_cast_results_dtypes(self): # similar to GH12821 # xref #11444 u = [datetime(2015, x + 1, 1) for x in range(12)] v = list('aaabbbbbbccd') df = pd.DataFrame({'X': v, 'Y': u}) result = df.groupby('X')['Y'].agg(len) expected = df.groupby('X')['Y'].count() assert_series_equal(result, expected) def test_agg_must_agg(self): grouped = self.df.groupby('A')['C'] pytest.raises(Exception, grouped.agg, lambda x: x.describe()) pytest.raises(Exception, grouped.agg, lambda x: x.index[:2]) def test_agg_ser_multi_key(self): # TODO(wesm): unused ser = self.df.C # noqa f = lambda x: x.sum() results = self.df.C.groupby([self.df.A, self.df.B]).aggregate(f) expected = self.df.groupby(['A', 'B']).sum()['C'] assert_series_equal(results, expected) def test_agg_apply_corner(self): # nothing to group, all NA grouped = self.ts.groupby(self.ts * np.nan) assert self.ts.dtype == np.float64 # groupby float64 values results in Float64Index exp = Series([], dtype=np.float64, index=pd.Index( [], dtype=np.float64)) assert_series_equal(grouped.sum(), exp) assert_series_equal(grouped.agg(np.sum), exp) assert_series_equal(grouped.apply(np.sum), exp, check_index_type=False) # DataFrame grouped = self.tsframe.groupby(self.tsframe['A'] * np.nan) exp_df = DataFrame(columns=self.tsframe.columns, dtype=float, index=pd.Index([], dtype=np.float64)) assert_frame_equal(grouped.sum(), exp_df, check_names=False) assert_frame_equal(grouped.agg(np.sum), exp_df, check_names=False) assert_frame_equal(grouped.apply(np.sum), exp_df.iloc[:, :0], check_names=False) def test_agg_grouping_is_list_tuple(self): from pandas.core.groupby import Grouping df = tm.makeTimeDataFrame() grouped = df.groupby(lambda x: x.year) grouper = grouped.grouper.groupings[0].grouper grouped.grouper.groupings[0] = Grouping(self.ts.index, list(grouper)) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) grouped.grouper.groupings[0] = Grouping(self.ts.index, tuple(grouper)) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) def test_aggregate_float64_no_int64(self): # see gh-11199 df = DataFrame({"a": [1, 2, 3, 4, 5], "b": [1, 2, 2, 4, 5], "c": [1, 2, 3, 4, 5]}) expected = DataFrame({"a": [1, 2.5, 4, 5]}, index=[1, 2, 4, 5]) expected.index.name = "b" result = df.groupby("b")[["a"]].mean() tm.assert_frame_equal(result, expected) expected = DataFrame({"a": [1, 2.5, 4, 5], "c": [1, 2.5, 4, 5]}, index=[1, 2, 4, 5]) expected.index.name = "b" result = df.groupby("b")[["a", "c"]].mean() tm.assert_frame_equal(result, expected) def test_aggregate_api_consistency(self): # GH 9052 # make sure that the aggregates via dict # are consistent df = DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'two', 'two', 'two', 'one', 'two'], 'C': np.random.randn(8) + 1.0, 'D': np.arange(8)}) grouped = df.groupby(['A', 'B']) c_mean = grouped['C'].mean() c_sum = grouped['C'].sum() d_mean = grouped['D'].mean() d_sum = grouped['D'].sum() result = grouped['D'].agg(['sum', 'mean']) expected = pd.concat([d_sum, d_mean], axis=1) expected.columns = ['sum', 'mean'] assert_frame_equal(result, expected, check_like=True) result = grouped.agg([np.sum, np.mean]) expected = pd.concat([c_sum, c_mean, d_sum, d_mean], axis=1) expected.columns = MultiIndex.from_product([['C', 'D'], ['sum', 'mean']]) assert_frame_equal(result, expected, check_like=True) result = grouped[['D', 'C']].agg([np.sum, np.mean]) expected = pd.concat([d_sum, d_mean, c_sum, c_mean], axis=1) expected.columns = MultiIndex.from_product([['D', 'C'], ['sum', 'mean']]) assert_frame_equal(result, expected, check_like=True) result = grouped.agg({'C': 'mean', 'D': 'sum'}) expected = pd.concat([d_sum, c_mean], axis=1) assert_frame_equal(result, expected, check_like=True) result = grouped.agg({'C': ['mean', 'sum'], 'D': ['mean', 'sum']}) expected = pd.concat([c_mean, c_sum, d_mean, d_sum], axis=1) expected.columns = MultiIndex.from_product([['C', 'D'], ['mean', 'sum']]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = grouped[['D', 'C']].agg({'r': np.sum, 'r2': np.mean}) expected = pd.concat([d_sum, c_sum, d_mean, c_mean], axis=1) expected.columns = MultiIndex.from_product([['r', 'r2'], ['D', 'C']]) assert_frame_equal(result, expected, check_like=True) def test_agg_dict_renaming_deprecation(self): # 15931 df = pd.DataFrame({'A': [1, 1, 1, 2, 2], 'B': range(5), 'C': range(5)}) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False) as w: df.groupby('A').agg({'B': {'foo': ['sum', 'max']}, 'C': {'bar': ['count', 'min']}}) assert "using a dict with renaming" in str(w[0].message) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): df.groupby('A')[['B', 'C']].agg({'ma': 'max'}) with tm.assert_produces_warning(FutureWarning) as w: df.groupby('A').B.agg({'foo': 'count'}) assert "using a dict on a Series for aggregation" in str( w[0].message) def test_agg_compat(self): # GH 12334 df = DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'two', 'two', 'two', 'one', 'two'], 'C': np.random.randn(8) + 1.0, 'D': np.arange(8)}) g = df.groupby(['A', 'B']) expected = pd.concat([g['D'].sum(), g['D'].std()], axis=1) expected.columns = MultiIndex.from_tuples([('C', 'sum'), ('C', 'std')]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = g['D'].agg({'C': ['sum', 'std']}) assert_frame_equal(result, expected, check_like=True) expected = pd.concat([g['D'].sum(), g['D'].std()], axis=1) expected.columns = ['C', 'D'] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = g['D'].agg({'C': 'sum', 'D': 'std'}) assert_frame_equal(result, expected, check_like=True) def test_agg_nested_dicts(self): # API change for disallowing these types of nested dicts df = DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'two', 'two', 'two', 'one', 'two'], 'C': np.random.randn(8) + 1.0, 'D': np.arange(8)}) g = df.groupby(['A', 'B']) def f(): g.aggregate({'r1': {'C': ['mean', 'sum']}, 'r2': {'D': ['mean', 'sum']}}) pytest.raises(SpecificationError, f) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = g.agg({'C': {'ra': ['mean', 'std']}, 'D': {'rb': ['mean', 'std']}}) expected = pd.concat([g['C'].mean(), g['C'].std(), g['D'].mean(), g['D'].std()], axis=1) expected.columns = pd.MultiIndex.from_tuples([('ra', 'mean'), ( 'ra', 'std'), ('rb', 'mean'), ('rb', 'std')]) assert_frame_equal(result, expected, check_like=True) # same name as the original column # GH9052 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): expected = g['D'].agg({'result1': np.sum, 'result2': np.mean}) expected = expected.rename(columns={'result1': 'D'}) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = g['D'].agg({'D': np.sum, 'result2': np.mean}) assert_frame_equal(result, expected, check_like=True) def test_agg_python_multiindex(self): grouped = self.mframe.groupby(['A', 'B']) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) def test_aggregate_str_func(self): def _check_results(grouped): # single series result = grouped['A'].agg('std') expected = grouped['A'].std() assert_series_equal(result, expected) # group frame by function name result = grouped.aggregate('var') expected = grouped.var() assert_frame_equal(result, expected) # group frame by function dict result = grouped.agg(OrderedDict([['A', 'var'], ['B', 'std'], ['C', 'mean'], ['D', 'sem']])) expected = DataFrame(OrderedDict([['A', grouped['A'].var( )], ['B', grouped['B'].std()], ['C', grouped['C'].mean()], ['D', grouped['D'].sem()]])) assert_frame_equal(result, expected) by_weekday = self.tsframe.groupby(lambda x: x.weekday()) _check_results(by_weekday) by_mwkday = self.tsframe.groupby([lambda x: x.month, lambda x: x.weekday()]) _check_results(by_mwkday) def test_aggregate_item_by_item(self): df = self.df.copy() df['E'] = ['a'] * len(self.df) grouped = self.df.groupby('A') # API change in 0.11 # def aggfun(ser): # return len(ser + 'a') # result = grouped.agg(aggfun) # assert len(result.columns) == 1 aggfun = lambda ser: ser.size result = grouped.agg(aggfun) foo = (self.df.A == 'foo').sum() bar = (self.df.A == 'bar').sum() K = len(result.columns) # GH5782 # odd comparisons can result here, so cast to make easy exp = pd.Series(np.array([foo] * K), index=list('BCD'), dtype=np.float64, name='foo') tm.assert_series_equal(result.xs('foo'), exp) exp = pd.Series(np.array([bar] * K), index=list('BCD'), dtype=np.float64, name='bar') tm.assert_almost_equal(result.xs('bar'), exp) def aggfun(ser): return ser.size result = DataFrame().groupby(self.df.A).agg(aggfun) assert isinstance(result, DataFrame) assert len(result) == 0 def test_agg_item_by_item_raise_typeerror(self): from numpy.random import randint df = DataFrame(randint(10, size=(20, 10))) def raiseException(df): pprint_thing('----------------------------------------') pprint_thing(df.to_string()) raise TypeError pytest.raises(TypeError, df.groupby(0).agg, raiseException) def test_series_agg_multikey(self): ts = tm.makeTimeSeries() grouped = ts.groupby([lambda x: x.year, lambda x: x.month]) result = grouped.agg(np.sum) expected = grouped.sum() assert_series_equal(result, expected) def test_series_agg_multi_pure_python(self): data = DataFrame( {'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) def bad(x): assert (len(x.base) > 0) return 'foo' result = data.groupby(['A', 'B']).agg(bad) expected = data.groupby(['A', 'B']).agg(lambda x: 'foo') assert_frame_equal(result, expected) def test_cythonized_aggers(self): data = {'A': [0, 0, 0, 0, 1, 1, 1, 1, 1, 1., nan, nan], 'B': ['A', 'B'] * 6, 'C': np.random.randn(12)} df = DataFrame(data) df.loc[2:10:2, 'C'] = nan def _testit(name): op = lambda x: getattr(x, name)() # single column grouped = df.drop(['B'], axis=1).groupby('A') exp = {} for cat, group in grouped: exp[cat] = op(group['C']) exp = DataFrame({'C': exp}) exp.index.name = 'A' result = op(grouped) assert_frame_equal(result, exp) # multiple columns grouped = df.groupby(['A', 'B']) expd = {} for (cat1, cat2), group in grouped: expd.setdefault(cat1, {})[cat2] = op(group['C']) exp = DataFrame(expd).T.stack(dropna=False) exp.index.names = ['A', 'B'] exp.name = 'C' result = op(grouped)['C'] if name in ['sum', 'prod']: assert_series_equal(result, exp) _testit('count') _testit('sum') _testit('std') _testit('var') _testit('sem') _testit('mean') _testit('median') _testit('prod') _testit('min') _testit('max') def test_cython_agg_boolean(self): frame = DataFrame({'a': np.random.randint(0, 5, 50), 'b': np.random.randint(0, 2, 50).astype('bool')}) result = frame.groupby('a')['b'].mean() expected = frame.groupby('a')['b'].agg(np.mean) assert_series_equal(result, expected) def test_cython_agg_nothing_to_agg(self): frame = DataFrame({'a': np.random.randint(0, 5, 50), 'b': ['foo', 'bar'] * 25}) pytest.raises(DataError, frame.groupby('a')['b'].mean) frame = DataFrame({'a': np.random.randint(0, 5, 50), 'b': ['foo', 'bar'] * 25}) pytest.raises(DataError, frame[['b']].groupby(frame['a']).mean) def test_cython_agg_nothing_to_agg_with_dates(self): frame = DataFrame({'a': np.random.randint(0, 5, 50), 'b': ['foo', 'bar'] * 25, 'dates': pd.date_range('now', periods=50, freq='T')}) with tm.assert_raises_regex(DataError, "No numeric types to aggregate"): frame.groupby('b').dates.mean() def test_cython_agg_frame_columns(self): # #2113 df = DataFrame({'x': [1, 2, 3], 'y': [3, 4, 5]}) df.groupby(level=0, axis='columns').mean() df.groupby(level=0, axis='columns').mean() df.groupby(level=0, axis='columns').mean() df.groupby(level=0, axis='columns').mean() def test_cython_agg_return_dict(self): # GH 16741 ts = self.df.groupby('A')['B'].agg( lambda x: x.value_counts().to_dict()) expected = Series([{'two': 1, 'one': 1, 'three': 1}, {'two': 2, 'one': 2, 'three': 1}], index=
Index(['bar', 'foo'], name='A')
pandas.Index
import os import pandas as pd import module_debug import importlib as implib from typing import List, Dict, Tuple, Union import module_dataset_analysis; implib.reload(module_dataset_analysis) import module_io; implib.reload(module_io) p = print #____________________________________________________________________________________________________________________________________ def rename_hrv(df: pd.DataFrame ) -> pd.DataFrame: """ :param df: df with standardized glyco features :return dataframe with renamed columns """ # get column names column_names = df.columns.to_list() # rename columns for i in range(len(column_names)): column_names[i] = column_names[i].replace('(‰)', '')\ .replace(' Prima', '-1').replace(' Secunda', '-2').replace(' Tertia', '-3') # assign column names df.columns = column_names return df #____________________________________________________________________________________________________________________________________ def read_test_ecg_lt3c(source_dir: str, intervals: List[str], drop_frequency_domain: bool = True, stop_after: Union[int, float] = float('inf'), write_dir: str = None) -> Union[Tuple[dict, pd.DataFrame], None]: """ NOTE: to be refactored to work with all datasets Parse files downloaded from test.ecg :param source_dir: dir of test.ecg files :param intervals: the intervals for which to parse the files, with corresponding time unit. ex: ['1h', '2h, ... '24h'] :param drop_frequency_domain: if True, don't consider frequency domain parameters :param stop_after: stop after certain amount of patients if debugging or some other rechecking is needed :param write_dir: write directory :return: if no write directory is specified, the parsed dataframes are returned together with the samples and patients info """ # initialize paths and files source = source_dir patients_classification_path = 'C:\\Users\\ilija\\Pycharm Projects\\GLYCO\\DATA\\Classification_of_Patients\\NewClasses__ND_GD_BD.csv' patients_classification = pd.read_csv(patients_classification_path) patients_hba1c_path = 'C:\\Users\\ilija\\Pycharm Projects\\GLYCO\\DATA\\Clinical_Records\\PatientID_Hba1C_06102020.csv' patients_hba1c =
pd.read_csv(patients_hba1c_path)
pandas.read_csv
# -*- coding: utf-8 -*- """omin.intermine_tools Provides -------- Tools for querying the intermine database. Tools for investigating with fasta and uniprot. """ # Copyright 2018 <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. # ========== # TO DO LIST # ========== # FIXME: Make all of these functions verbose. # FIXME: ID the brittle functions. # FIXME: Extent to other intermine APIs. # ---------------- # EXTERNAL IMPORTS # ---------------- import re import pandas as pd import numpy as np from urllib.error import HTTPError from urllib.request import urlopen # Try to import the intermine package. try: from intermine.webservice import Service except ImportError as err: print("Cannot import Intermine:", err) # ============== # INTERMINETOOLS # ============== class IntermineTools(object): @staticmethod def mousemine_accession_lookup(accession, verbose=False): """Return an intermine query object for a given protien accession number. The query is design to find Entrez gene IDs for proetiens of a given accession number. It only considers the cannonical isoform of whole mouse proteins(not fragments) presnt in the Swiss-Prot or TrEMBL databases. Parameters ---------- accession: str Accession numbers in the form: XXXXXX-N, will be shortented to: XXXXXX. verbose: bool Defaults to False set to True for printed error messages. Returns ------- result: (:obj) Intermine query object. See Also -------- mousemine_query_format mousemine_accession_lookup_reduce mousemine_accession_to_entrez """ query = None # Remove the isoform number if present. if "-" in accession: accession = accession.split('-')[0] try: # Begin intermine call. service = Service("http://www.mousemine.org/mousemine/service") query = service.new_query("Gene") query.add_view("primaryIdentifier", "ncbiGeneNumber", "proteins.primaryAccession", "symbol", "proteins.synonyms.value", "proteins.length", "proteins.isFragment", "proteins.dataSets.name") # Declare sort order of results. query.add_sort_order("Gene.symbol", "ASC") query.add_sort_order("Gene.proteins.dataSets.name", "ASC") query.add_sort_order("Gene.proteins.length", "DESC") # Declare constraints. query.add_constraint("organism.taxonId", "=", "10090", code="B") query.add_constraint("proteins.isFragment", "=", "False", code="C") query.add_constraint("proteins.dataSets.name", "ONE OF", ["Swiss-Prot data set", "TrEMBL data set"], code="D") # Main constraint: find all with accession number X. query.add_constraint("Gene", "LOOKUP", accession, code="A") return query except Exception as err: if verbose: print(err) return query @staticmethod def mousemine_query_format(query, format_list=None, verbose=False): """Return a DataFrame from an intermine query object. Parameters ---------- query: (:obj) Intermine query object. format_list: list List of information to include in the result. Returns ------- result: pandas.DataFrame With columns labels based on format list. """ result = None if format_list is None: format_list = ["primaryIdentifier", "ncbiGeneNumber", "proteins.primaryAccession", "symbol", "proteins.synonyms.value", "proteins.isFragment"] # Remove the dots from the terms in format for DataFrame safety. column_labels = list(map(lambda x: x.replace('.', ''), format_list)) result = list() try: for row in query.rows(): row_out = [row[j] for j in format_list] result.append(row_out) result =
pd.DataFrame(result)
pandas.DataFrame
import unittest import os from collections import defaultdict from unittest import mock import warnings import pandas as pd import numpy as np from dataprofiler.profilers import FloatColumn from dataprofiler.profilers.profiler_options import FloatOptions test_root_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) class TestFloatColumn(unittest.TestCase): def test_base_case(self): data = pd.Series([], dtype=object) profiler = FloatColumn(data.name) profiler.update(data) self.assertEqual(profiler.match_count, 0) self.assertEqual(profiler.min, None) self.assertEqual(profiler.max, None) self.assertEqual(profiler.sum, 0) self.assertEqual(profiler.mean, 0) self.assertTrue(profiler.median is np.nan) self.assertEqual([np.nan], profiler.mode) self.assertTrue(profiler.variance is np.nan) self.assertTrue(profiler.skewness is np.nan) self.assertTrue(profiler.kurtosis is np.nan) self.assertTrue(profiler.stddev is np.nan) self.assertIsNone(profiler.histogram_selection) self.assertEqual(len(profiler.quantiles), 999) self.assertIsNone(profiler.data_type_ratio) def test_single_data_variance_case(self): data = pd.Series([1.5]).apply(str) profiler = FloatColumn(data.name) profiler.update(data) self.assertEqual(profiler.match_count, 1.0) self.assertEqual(profiler.mean, 1.5) self.assertTrue(profiler.variance is np.nan) data = pd.Series([2.5]).apply(str) profiler.update(data) self.assertEqual(profiler.match_count, 2) self.assertEqual(profiler.mean, 2.0) self.assertEqual(profiler.variance, 0.5) def test_profiled_precision(self): """ Checks whether the precision for the profiler is correct. :return: """ df_1 = pd.Series([0.4, 0.3, 0.1, 0.1, 0.1]).apply(str) df_2 = pd.Series([0.11, 0.11, 0.12, 2.11]).apply(str) df_3 = pd.Series([4.114, 3.161, 2.512, 2.131]).apply(str) df_mix = pd.Series([4.1, '3.', 2.52, 2.13143]).apply(str) float_profiler = FloatColumn("Name") float_profiler.update(df_3) self.assertEqual(4, float_profiler.precision['min']) self.assertEqual(4, float_profiler.precision['max']) float_profiler.update(df_2) self.assertEqual(2, float_profiler.precision['min']) self.assertEqual(4, float_profiler.precision['max']) float_profiler.update(df_1) self.assertEqual(1, float_profiler.precision['min']) self.assertEqual(4, float_profiler.precision['max']) float_profiler = FloatColumn("Name") float_profiler.update(df_mix) self.assertEqual(1, float_profiler.precision['min']) self.assertEqual(6, float_profiler.precision['max']) # edge cases # # integer with 0s on right and left side df_ints = pd.Series(['0013245678', '123456700', '0012345600']) float_profiler = FloatColumn("Name") float_profiler.update(df_ints) self.assertEqual(6, float_profiler.precision['min']) self.assertEqual(8, float_profiler.precision['max']) # scientific df_scientific = pd.Series(['1.23e-3', '2.2344', '1.244e4']) float_profiler = FloatColumn("Name") float_profiler.update(df_scientific) self.assertEqual(3, float_profiler.precision['min']) self.assertEqual(5, float_profiler.precision['max']) # plus df_plus = pd.Series(['+1.3e-3', '+2.244', '+1.3324e4']) float_profiler = FloatColumn("Name") float_profiler.update(df_plus) self.assertEqual(2, float_profiler.precision['min']) self.assertEqual(5, float_profiler.precision['max']) # minus df_minus = pd.Series(['-1.3234e-3', '-0.244', '-1.3324e4']) float_profiler = FloatColumn("Name") float_profiler.update(df_minus) self.assertEqual(3, float_profiler.precision['min']) self.assertEqual(5, float_profiler.precision['max']) # spaces around values df_spaces = pd.Series([' -1.3234e-3 ', ' -0.244 ']) float_profiler = FloatColumn("Name") float_profiler.update(df_spaces) self.assertEqual(3, float_profiler.precision['min']) self.assertEqual(5, float_profiler.precision['max']) # constant precision df_constant = pd.Series(['1.34', '+1.23e-4', '00101', '+100.', '0.234', '-432', '.954', '+.342', '-123e1', '23.1']) float_profiler = FloatColumn("Name") float_profiler.update(df_constant) self.assertEqual(3, float_profiler.precision['min']) self.assertEqual(3, float_profiler.precision['max']) self.assertEqual(3, float_profiler.precision['mean']) self.assertEqual(10, float_profiler.precision['sample_size']) self.assertEqual(0, float_profiler.precision['var']) self.assertEqual(0, float_profiler.precision['std']) # random precision df_random = pd.Series(['+ 9', '-.3', '-1e-3', '3.2343', '0', '1230', '0.33', '4.3', '302.1', '-4.322']) float_profiler = FloatColumn("Name") float_profiler.update(df_random) self.assertEqual(0, float_profiler.precision['min']) self.assertEqual(5, float_profiler.precision['max']) self.assertEqual(2.4444, float_profiler.precision['mean']) self.assertEqual(9, float_profiler.precision['sample_size']) self.assertEqual(2.7778, float_profiler.precision['var']) self.assertEqual(1.6667, float_profiler.precision['std']) # Ensure order doesn't change anything df_random_order = pd.Series(['1230', '0.33', '4.3', '302.1', '-4.322', '+ 9', '-.3', '-1e-3', '3.2343', '0']) float_profiler_order = FloatColumn("Name") float_profiler_order.update(df_random) self.assertDictEqual( float_profiler.precision, float_profiler_order.precision ) # check to make sure all formats of precision are correctly predicted samples = [ # value, min expected precision ['10.01', 4], ['.01', 1], ['0.01', 1], ['-0.01', 1], ['+0.01', 1], [' +0.013', 2], [' -1.3234e-3 ', 5], [' 0012345600 ', 6], [' 0012345600. ', 8], [' -0012345600. ', 8], ] for sample in samples: df_series = pd.Series([sample[0]]) min_expected_precision = sample[1] precision = FloatColumn._get_float_precision(df_series) self.assertEqual(min_expected_precision, precision['min'], msg='Errored for: {}'.format(sample[0])) def test_profiled_min(self): # test with multiple values data = np.linspace(-5, 5, 11) df = pd.Series(data).apply(str) profiler = FloatColumn(df.name) profiler.update(df[1:]) self.assertEqual(profiler.min, -4) profiler.update(df) self.assertEqual(profiler.min, -5) profiler.update(pd.Series(['-4'])) self.assertEqual(profiler.min, -5) # empty data data = pd.Series([], dtype=object) profiler = FloatColumn(data.name) profiler.update(data) self.assertEqual(profiler.min, None) # data with None value df = pd.Series([2.0, 3.0, None, np.nan]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertEqual(profiler.min, 2.0) # data with one value df = pd.Series([2.0]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertEqual(profiler.min, 2.0) # data with unique value df = pd.Series([2.0, 2.0, 2.0, 2.0, 2.0]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertEqual(profiler.min, 2.0) # data with unique value as zero df = pd.Series([0.0, 0.0, 0.0, 0.0, 0.0]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertEqual(profiler.min, 0.0) def test_profiled_max(self): data = np.linspace(-5, 5, 11) df = pd.Series(data).apply(str) profiler = FloatColumn(df.name) profiler.update(df[:-1]) self.assertEqual(profiler.max, 4) profiler.update(df) self.assertEqual(profiler.max, 5) profiler.update(pd.Series(['4'])) self.assertEqual(profiler.max, 5) # empty data data = pd.Series([], dtype=object) profiler = FloatColumn(data.name) profiler.update(data) self.assertEqual(profiler.max, None) # data with None value df = pd.Series([2.0, 3.0, None, np.nan]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertEqual(profiler.max, 3.0) # data with one value df = pd.Series([2.0]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertEqual(profiler.max, 2.0) # data with unique value df = pd.Series([2.0, 2.0, 2.0, 2.0, 2.0]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertEqual(profiler.max, 2.0) # data with unique value as zero df = pd.Series([0.0, 0.0, 0.0, 0.0, 0.0]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertEqual(profiler.max, 0.0) def test_profiled_mode(self): # disabled mode df = pd.Series([1, 1, 1, 1, 1, 1, 1]).apply(str) options = FloatOptions() options.mode.is_enabled = False profiler = FloatColumn(df.name, options) profiler.update(df) self.assertListEqual([np.nan], profiler.mode) # same values df = pd.Series([1, 1, 1, 1, 1, 1, 1]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertListEqual([1], profiler.mode) # multiple modes df = pd.Series([1.5, 1.5, 2.5, 2.5, 3.5, 3.5, 4.1, 4.1]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) np.testing.assert_array_almost_equal([1.5, 2.5, 3.5, 4.1], profiler.mode, decimal=2) # with different values df = pd.Series([1.25, 1.25, 1.25, 1.25, 2.9]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) np.testing.assert_array_almost_equal([1.25], profiler.mode, decimal=2) # with negative values df = pd.Series([-1.1, 1.9, 1.9, 1.9, 2.1, 2.01, 2.01, 2.01]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) np.testing.assert_array_almost_equal([1.9, 2.01], profiler.mode, decimal=2) # all unique values df = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) # By default, returns 5 of the possible modes np.testing.assert_array_almost_equal([1, 2, 3, 4, 5], profiler.mode, decimal=2) # Edge case where mode appears later in the dataset df = pd.Series([1, 2, 3, 4, 5, 6.2, 6.2]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) np.testing.assert_array_almost_equal([6.2], profiler.mode, decimal=2) df = pd.Series([2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7.1, 7.1, 7.1]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) np.testing.assert_array_almost_equal([7.1], profiler.mode, decimal=2) def test_top_k_modes(self): # Default options options = FloatOptions() df = pd.Series([1, 1, 2, 2, 3, 3, 4, 4, 5, 5]).apply(str) profiler = FloatColumn(df.name, options) profiler.update(df) self.assertEqual(5, len(profiler.mode)) # Test if top_k_modes is less than the number of modes options = FloatOptions() options.mode.top_k_modes = 2 df = pd.Series([1, 1, 2, 2, 3, 3, 4, 4, 5, 5]).apply(str) profiler = FloatColumn(df.name, options) profiler.update(df) self.assertEqual(2, len(profiler.mode)) # Test if top_k_mode is greater than the number of modes options = FloatOptions() options.mode.top_k_modes = 8 df = pd.Series([1, 1, 2, 2, 3, 3, 4, 4, 5, 5]).apply(str) profiler = FloatColumn(df.name, options) profiler.update(df) # Only 5 possible modes so return 5 self.assertEqual(5, len(profiler.mode)) def test_profiled_median(self): # disabled median df = pd.Series([1, 1, 1, 1, 1, 1, 1]).apply(str) options = FloatOptions() options.median.is_enabled = False profiler = FloatColumn(df.name, options) profiler.update(df) self.assertTrue(profiler.median is np.nan) # same values df = pd.Series([1, 1, 1, 1, 1, 1, 1]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertEqual(1, profiler.median) # median lies between two values (2.5 and 3.5) df = pd.Series([1.5, 1.5, 2.5, 2.5, 3.5, 3.5, 4.1, 4.1]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertAlmostEqual(3, profiler.median, places=2) # with different values df = pd.Series([1.25, 1.25, 1.25, 1.25, 2.9]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertAlmostEqual(1.25, profiler.median, places=2) # with negative values, median lies in between values df = pd.Series([-1.1, 1.9, 1.9, 1.9, 2.1, 2.1, 2.1, 2.1]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertAlmostEqual(2, profiler.median, places=2) # all unique values df = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertAlmostEqual(5, profiler.median, places=2) def test_profiled_mean_and_variance(self): """ Checks the mean and variance of profiled numerical columns. :return: """ def mean(df): total = 0 for item in df: total += item return total / len(df) def var(df): var = 0 mean_df = mean(df) for item in df: var += (item - mean_df) ** 2 return var / (len(df) - 1) def batch_variance(mean_a, var_a, count_a, mean_b, var_b, count_b): delta = mean_b - mean_a m_a = var_a * (count_a - 1) m_b = var_b * (count_b - 1) M2 = m_a + m_b + delta ** 2 * count_a * count_b / ( count_a + count_b) return M2 / (count_a + count_b - 1) data = np.linspace(-5, 5, 11).tolist() df1 = pd.Series(data) data = np.linspace(-3, 2, 11).tolist() df2 = pd.Series(data) data = np.full((10,), 1) df3 = pd.Series(data) num_profiler = FloatColumn(df1.name) num_profiler.update(df1.apply(str)) self.assertEqual(mean(df1), num_profiler.mean) self.assertEqual(var(df1), num_profiler.variance) self.assertEqual(np.sqrt(var(df1)), num_profiler.stddev) variance = batch_variance( mean_a=num_profiler.mean, var_a=num_profiler.variance, count_a=num_profiler.match_count, mean_b=mean(df2), var_b=var(df2), count_b=df2.count() ) num_profiler.update(df2.apply(str)) df = pd.concat([df1, df2]) self.assertEqual(mean(df), num_profiler.mean) self.assertEqual(variance, num_profiler.variance) self.assertEqual(np.sqrt(variance), num_profiler.stddev) variance = batch_variance( mean_a=num_profiler.mean, var_a=num_profiler.variance, count_a=num_profiler.match_count, mean_b=mean(df3), var_b=var(df3), count_b=df3.count() ) num_profiler.update(df3.apply(str)) df = pd.concat([df1, df2, df3]) self.assertEqual(mean(df), num_profiler.mean) self.assertEqual(variance, num_profiler.variance) self.assertEqual(np.sqrt(variance), num_profiler.stddev) def test_profiled_skewness(self): data = np.linspace(-5, 5, 11).tolist() df1 = pd.Series(data) data = np.linspace(-3, 2, 11).tolist() df2 = pd.Series(data) data = np.full((10,), 1) df3 = pd.Series(data) num_profiler = FloatColumn(df1.name) num_profiler.update(df1.apply(str)) self.assertEqual(0, num_profiler.skewness) num_profiler.update(df2.apply(str)) self.assertAlmostEqual(np.sqrt(22 * 21) / 20 * 133 / 750, num_profiler.skewness) num_profiler.update(df3.apply(str)) self.assertAlmostEqual(-0.3109967, num_profiler.skewness) def test_profiled_kurtosis(self): data = np.linspace(-5, 5, 11).tolist() df1 = pd.Series(data) data = np.linspace(-3, 2, 11).tolist() df2 = pd.Series(data) data = np.full((10,), 1) df3 = pd.Series(data) num_profiler = FloatColumn(df1.name) num_profiler.update(df1.apply(str)) self.assertAlmostEqual(-6 / 5, num_profiler.kurtosis) num_profiler.update(df2.apply(str)) self.assertAlmostEqual(-0.390358, num_profiler.kurtosis) num_profiler.update(df3.apply(str)) self.assertAlmostEqual(0.3311739, num_profiler.kurtosis) def test_bias_correction_option(self): # df1 = [-5, -4, ..., 3, 4, 5] data = np.linspace(-5, 5, 11).tolist() df1 = pd.Series(data) # df2 = [-3, -2.5, -2, ..., 1.5, 2] data = np.linspace(-3, 2, 11).tolist() df2 = pd.Series(data) # df3 = [1, 1, ... , 1] (ten '1's) data = np.full((10,), 1) df3 = pd.Series(data) # Disable bias correction options = FloatOptions(); options.bias_correction.is_enabled = False num_profiler = FloatColumn(df1.name, options=options) num_profiler.update(df1.apply(str)) # Test biased values of variance, skewness, kurtosis self.assertAlmostEqual(10, num_profiler.variance) self.assertAlmostEqual(0, num_profiler.skewness) self.assertAlmostEqual(89/50 - 3, num_profiler.kurtosis) df2_ints = df2[df2 == df2.round()] num_profiler.update(df2.apply(str)) df = pd.concat([df1, df2_ints]) self.assertAlmostEqual(6.3125, num_profiler.variance) self.assertAlmostEqual(0.17733336, num_profiler.skewness) self.assertAlmostEqual(-0.56798353, num_profiler.kurtosis) df3_ints = df3[df3 == df3.round()] num_profiler.update(df3.apply(str)) df = pd.concat([df1, df2_ints, df3_ints]) self.assertAlmostEqual(4.6755371, num_profiler.variance) self.assertAlmostEqual(-0.29622465, num_profiler.skewness) self.assertAlmostEqual(0.099825352, num_profiler.kurtosis) def test_bias_correction_merge(self): data = np.linspace(-5, 5, 11).tolist() df1 = pd.Series(data) data = np.linspace(-3, 2, 11).tolist() df2 = pd.Series(data) data = np.full((10,), 1) df3 = pd.Series(data) # Disable bias correction options = FloatOptions(); options.bias_correction.is_enabled = False num_profiler1 = FloatColumn(df1.name, options=options) num_profiler1.update(df1.apply(str)) self.assertAlmostEqual(10, num_profiler1.variance) self.assertAlmostEqual(0, num_profiler1.skewness) self.assertAlmostEqual(89 / 50 - 3, num_profiler1.kurtosis) num_profiler2 = FloatColumn(df2.name) num_profiler2.update(df2.apply(str)) num_profiler = num_profiler1 + num_profiler2 self.assertFalse(num_profiler.bias_correction) self.assertAlmostEqual(6.3125, num_profiler.variance) self.assertAlmostEqual(0.17733336, num_profiler.skewness) self.assertAlmostEqual(-0.56798353, num_profiler.kurtosis) num_profiler3 = FloatColumn(df3.name) num_profiler3.update(df3.apply(str)) num_profiler = num_profiler1 + num_profiler2 + num_profiler3 self.assertFalse(num_profiler.bias_correction) self.assertAlmostEqual(4.6755371, num_profiler.variance) self.assertAlmostEqual(-0.29622465, num_profiler.skewness) self.assertAlmostEqual(0.099825352, num_profiler.kurtosis) def test_null_values_for_histogram(self): data = pd.Series(['-inf', 'inf']) profiler = FloatColumn(data.name) profiler.update(data) profile = profiler.profile histogram = profile['histogram'] self.assertEqual(histogram['bin_counts'], None) self.assertEqual(histogram['bin_edges'], None) data = pd.Series(['-2', '-1', '1', '2', '-inf', 'inf']) profiler = FloatColumn(data.name) profiler.update(data) profile = profiler.profile histogram = profile['histogram'] expected_histogram = { 'bin_counts': np.array([1, 1, 0, 2]), 'bin_edges': np.array([-2., -1., 0., 1., 2.]), } self.assertEqual(expected_histogram['bin_counts'].tolist(), histogram['bin_counts'].tolist()) self.assertCountEqual(expected_histogram['bin_edges'], histogram['bin_edges']) def test_profiled_histogram(self): """ Checks the histogram of profiled numerical columns. :return: """ list_data_test = [] # this data has 4 bins, range of 3 # with equal bin size, each bin has the width of 0.75 df1 = pd.Series(["1.0", "2.0", "3.0", "4.0"]) expected_histogram1 = { 'bin_counts': np.array([1, 1, 1, 1]), 'bin_edges': np.array([1.0, 1.75, 2.5, 3.25, 4.0]), } list_data_test.append([df1, expected_histogram1]) # this data has 4 bins, range of 12 # with equal bin size, each bin has the width of 3.0 df2 = pd.Series(["1.0", "5.0", "8.0", "13.0"]) expected_histogram2 = { 'bin_counts': np.array([1, 1, 1, 1]), 'bin_edges': np.array([1.0, 4.0, 7.0, 10.0, 13.0]), } list_data_test.append([df2, expected_histogram2]) # this data has 3 bins, range of 3 # with equal bin size, each bin has the width of 1 df3 = pd.Series(["1.0", "1.0", "3.0", "4.0"]) expected_histogram3 = { 'bin_counts': np.array([2, 0, 1, 1]), 'bin_edges': np.array([1.0, 1.75, 2.5, 3.25, 4.0]), } list_data_test.append([df3, expected_histogram3]) # this data has only one unique value, not overflow df4 = pd.Series([-10.0, -10.0, -10.0]).apply(str) expected_histogram4 = { 'bin_counts': np.array([3]), 'bin_edges': np.array([-10.0, -10.0]), } list_data_test.append([df4, expected_histogram4]) # this data has only one unique value, overflow df5 = pd.Series([-10.0 ** 20]).apply(str) expected_histogram5 = { 'bin_counts': np.array([1]), 'bin_edges': np.array([-10.0 ** 20, -10.0 ** 20]), } list_data_test.append([df5, expected_histogram5]) for i, (df, expected_histogram) in enumerate(list_data_test): profiler = FloatColumn(df.name) profiler.update(df) profile = profiler.profile histogram = profile['histogram'] self.assertEqual(expected_histogram['bin_counts'].tolist(), histogram['bin_counts'].tolist()) if i != 4: self.assertCountEqual(np.round(expected_histogram['bin_edges'], 12), np.round(histogram['bin_edges'], 12)) else: # for overflow, dont use np.round self.assertCountEqual(expected_histogram['bin_edges'], histogram['bin_edges']) def test_profile_histogram_w_updates(self): """ Checks if histogram properly resets the _profiled histogram after merge or update. :return: """ list_data_test = [] # this data has 4 bins, range of 3 # with equal bin size, each bin has the width of 0.75 df1 = pd.Series(["1.0", "2.0", "3.0", "4.0"]) expected_histogram1 = { 'bin_counts': np.array([1, 1, 1, 1]), 'bin_edges': np.array([1.0, 1.75, 2.5, 3.25, 4.0]), } list_data_test.append([df1, expected_histogram1]) # this data will be the second update of the profile. # this results in the combination of the previous data and this data. # the range should update to 12 from 3. df2 = pd.Series(["1.0", "5.0", "8.0", "13.0"]) expected_histogram2 = { 'bin_counts': np.array([4, 1, 1, 1, 0, 1]), 'bin_edges': np.array([1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0]), } list_data_test.append([df2, expected_histogram2]) profiler = FloatColumn("test") for i, (df, expected_histogram) in enumerate(list_data_test): profiler.update(df) self.assertIsNone(profiler.histogram_selection) profile = profiler.profile self.assertIsNotNone(profiler.histogram_selection) histogram = profile['histogram'] self.assertEqual(expected_histogram['bin_counts'].tolist(), histogram['bin_counts'].tolist()) self.assertCountEqual(np.round(expected_histogram['bin_edges'], 12), np.round(histogram['bin_edges'], 12)) # apply test to merging profiles expected_histogram = { 'bin_edges': np.array([1., 19/7, 31/7, 43/7, 55/7, 67/7, 79/7, 13.]), 'bin_counts': np.array([6, 4, 2, 0, 2, 0, 2]) } merged_profiler = profiler + profiler self.assertIsNone(merged_profiler.histogram_selection) profile = merged_profiler.profile self.assertIsNotNone(merged_profiler.histogram_selection) histogram = profile['histogram'] self.assertEqual(expected_histogram['bin_counts'].tolist(), histogram['bin_counts'].tolist()) self.assertCountEqual(np.round(expected_histogram['bin_edges'], 12), np.round(histogram['bin_edges'], 12)) def test_histogram_with_varying_number_of_bin(self): """ Checks the histogram with large number of bins """ # this data use number of bins less than the max limit df1 = pd.Series([1, 2, 3, 4]).apply(str) profiler1 = FloatColumn(df1.name) profiler1.max_histogram_bin = 50 profiler1.update(df1) num_bins = len(profiler1.profile['histogram']['bin_counts']) self.assertEqual(4, num_bins) # this data uses large number of bins, which will be set to # the max limit df2 = pd.Series([3.195103249264023e+18, 9999995.0, 9999999.0, 0.0, -10 ** 10]).apply(str) profiler2 = FloatColumn(df2.name) profiler2.max_histogram_bin = 50 profiler2.update(df2) num_bins = len(profiler2.profile['histogram']['bin_counts']) self.assertEqual(50, num_bins) # max number of bin is increased to 10000 profiler2 = FloatColumn(df2.name) profiler2.max_histogram_bin = 10000 profiler2.update(df2) num_bins = len(profiler2.profile['histogram']['bin_counts']) self.assertEqual(10000, num_bins) def test_estimate_stats_from_histogram(self): data = pd.Series([], dtype=object) profiler = FloatColumn(data.name) profiler.update(data) profiler._stored_histogram['histogram']['bin_counts'] = \ np.array([1, 2, 1]) profiler._stored_histogram['histogram']['bin_edges'] = \ np.array([1.0, 3.0, 5.0, 7.0]) expected_mean = (2.0 * 1 + 4.0 * 2 + 6.0 * 1) / 4 expected_var = (1 * (2.0 - expected_mean) ** 2 + 2 * (4.0 - expected_mean) ** 2 + 1 * (6.0 - expected_mean) ** 2) / 4 expected_std = np.sqrt(expected_var) est_var = profiler._estimate_stats_from_histogram() self.assertEqual(expected_var, est_var) def test_total_histogram_bin_variance(self): data = pd.Series([], dtype=object) profiler = FloatColumn(data.name) profiler.update(data) profiler._stored_histogram['histogram']['bin_counts'] = \ np.array([3, 2, 1]) profiler._stored_histogram['histogram']['bin_edges'] = \ np.array([1.0, 3.0, 5.0, 7.0]) input_array = np.array([1.1, 1.5, 2.3, 3.5, 4.0, 6.5]) expected_total_var = np.array([1.1, 1.5, 2.3]).var() \ + np.array([3.5, 4.0]).var() \ + np.array([6.5]).var() est_total_var = profiler._total_histogram_bin_variance(input_array) self.assertEqual(expected_total_var, est_total_var) def test_histogram_loss(self): # run time is small diff_var, avg_diffvar, total_var, avg_totalvar, run_time, avg_runtime =\ 0.3, 0.2, 0.1, 0.05, 0.0014, 0.0022 expected_loss = 0.1 / 0.2 + 0.05 / 0.05 est_loss = FloatColumn._histogram_loss( diff_var, avg_diffvar, total_var, avg_totalvar, run_time, avg_runtime) self.assertEqual(expected_loss, est_loss) # run time is big diff_var, avg_diffvar, total_var, avg_totalvar, run_time, avg_runtime =\ 0.3, 0.2, 0.1, 0.05, 22, 14 expected_loss = 0.1 / 0.2 + 0.05 / 0.05 + 8 / 14 est_loss = FloatColumn._histogram_loss( diff_var, avg_diffvar, total_var, avg_totalvar, run_time, avg_runtime) self.assertEqual(expected_loss, est_loss) def test_select_method_for_histogram(self): data = pd.Series([], dtype=object) profiler = FloatColumn(data.name) profiler.update(data) list_method = ['auto', 'fd', 'doane', 'scott', 'rice', 'sturges', 'sqrt'] current_exact_var = 0 # sqrt has the least current loss current_est_var = np.array([0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.005]) current_total_var = np.array([0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]) current_run_time = np.array([0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]) # all methods have the same total loss list_total_loss = np.array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]) for i, method in enumerate(list_method): profiler.histogram_methods[method]['total_loss'] = \ list_total_loss[i] selected_method = profiler._select_method_for_histogram( current_exact_var, current_est_var, current_total_var, current_run_time) self.assertEqual(selected_method, 'sqrt') # another test current_exact_var = 0 # sqrt has the least current loss current_est_var = np.array([0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.029]) current_total_var = np.array([0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]) current_run_time = np.array([0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]) # but sturges has the least total loss list_total_loss = np.array([0.1, 0.1, 0.1, 0.1, 0.1, 0.05, 0.1]) for i, method in enumerate(list_method): profiler.histogram_methods[method]['total_loss'] = \ list_total_loss[i] selected_method = profiler._select_method_for_histogram( current_exact_var, current_est_var, current_total_var, current_run_time) self.assertEqual(selected_method, 'sturges') def test_histogram_to_array(self): data = pd.Series([], dtype=object) profiler = FloatColumn(data.name) profiler.update(data) profiler._stored_histogram['histogram']['bin_counts'] = \ np.array([3, 2, 1]) profiler._stored_histogram['histogram']['bin_edges'] = \ np.array([1.0, 3.0, 5.0, 7.0]) array_from_histogram = profiler._histogram_to_array() expected_array = [1.0, 1.0, 1.0, 3.0, 3.0, 7.0] self.assertEqual(expected_array, array_from_histogram.tolist()) def test_merge_histogram(self): data = pd.Series([], dtype=object) profiler = FloatColumn(data.name) profiler.update(data) profiler._stored_histogram['histogram']['bin_counts'] = np.array([3, 2]) profiler._stored_histogram['histogram']['bin_edges'] = \ np.array([1.0, 3.0, 5.0]) input_array = [0.5, 1.0, 2.0, 5.0] profiler._merge_histogram(input_array) merged_hist = profiler._histogram_for_profile('sqrt')[0] expected_bin_counts, expected_bin_edges = \ [5, 2, 2], [0.5, 2.0, 3.5, 5.0] self.assertEqual(expected_bin_counts, merged_hist['bin_counts'].tolist()) self.assertCountEqual(expected_bin_edges, merged_hist['bin_edges']) def test_profiled_quantiles(self): """ Checks the quantiles of profiled numerical columns. :return: """ # this data has 4 bins, range of 3 # with equal bin size, each bin has the width of 0.75 data = ["1.0", "2.0", "3.0", "4.0"] df = pd.Series(data) profiler = FloatColumn(df.name) profiler.update(df) profile = profiler.profile est_quantiles = profile['quantiles'] est_Q1 = est_quantiles[249] est_Q2 = est_quantiles[499] est_Q3 = est_quantiles[749] self.assertEqual(999, len(est_quantiles)) self.assertAlmostEqual(1.000012, est_quantiles[0]) self.assertEqual(est_Q1, 1.003) self.assertEqual(est_Q2, 2.5) self.assertEqual(est_Q3, 3.001) self.assertAlmostEqual(3.999988, est_quantiles[-1]) def test_data_type_ratio(self): data = np.linspace(-5, 5, 4) df = pd.Series(data).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertEqual(profiler.data_type_ratio, 1.0) df = pd.Series(['not a float']) profiler.update(df) self.assertEqual(profiler.data_type_ratio, 0.8) def test_profile(self): data = [2.5, 12.5, 'not a float', 5, 'not a float'] df = pd.Series(data).apply(str) profiler = FloatColumn(df.name) expected_profile = dict( min=2.5, max=12.5, mode=[2.5, 5, 12.5], median=5, sum=20.0, mean=20/3.0, variance=27 + 1/12.0, skewness=35/13*np.sqrt(3/13), kurtosis=np.nan, num_negatives = 0, num_zeros = 0, stddev=np.sqrt(27+1/12.0), histogram={ 'bin_counts': np.array([1, 1, 0, 1]), 'bin_edges': np.array([2.5, 5.0, 7.5, 10.0, 12.5]), }, quantiles={ 0: 2.5075, 1: 5.005 , 2: 12.4925, }, times=defaultdict(float, {'histogram_and_quantiles': 1.0, 'precision': 1.0, 'max': 1.0, 'min': 1.0, 'skewness': 1.0, 'kurtosis': 1.0, 'sum': 1.0, 'variance': 1.0, 'num_zeros': 1.0, 'num_negatives': 1.0}), precision={ 'min': 1, 'max': 3, 'mean': 2.0, 'var': 1.0, 'std': 1.0, 'sample_size': 3, 'margin_of_error': 1.9, 'confidence_level': 0.999 } ) time_array = [float(i) for i in range(100, 0, -1)] with mock.patch('time.time', side_effect=lambda: time_array.pop()): # Validate that the times dictionary is empty self.assertEqual(defaultdict(float), profiler.profile['times']) profiler.update(df) profile = profiler.profile # Validate mode mode = profile.pop('mode') expected_mode = expected_profile.pop('mode') np.testing.assert_array_almost_equal(expected_mode, mode, decimal=2) # pop out the histogram to test separately from the rest of the dict # as we need comparison with some precision histogram = profile.pop('histogram') expected_histogram = expected_profile.pop('histogram') quantiles = profile.pop('quantiles') expected_quantiles = expected_profile.pop('quantiles') median = profile.pop('median') expected_median = expected_profile.pop('median') skewness = profile.pop('skewness') expected_skewness = expected_profile.pop('skewness') variance = profile.pop('variance') expected_variance = expected_profile.pop('variance') self.assertDictEqual(expected_profile, profile) self.assertDictEqual(expected_profile['precision'], profile['precision']) self.assertEqual(expected_histogram['bin_counts'].tolist(), histogram['bin_counts'].tolist()) self.assertCountEqual(np.round(expected_histogram['bin_edges'], 12), np.round(histogram['bin_edges'], 12)) self.assertAlmostEqual(expected_quantiles[0], quantiles[249]) self.assertAlmostEqual(expected_quantiles[1], quantiles[499]) self.assertAlmostEqual(expected_quantiles[2], quantiles[749]) self.assertAlmostEqual(expected_skewness, skewness) self.assertAlmostEqual(expected_variance, variance) self.assertAlmostEqual(expected_median, median, places=2) # Validate time in datetime class has expected time after second update profiler.update(df) expected = defaultdict(float, {'min': 2.0, 'max': 2.0, 'sum': 2.0, 'variance': 2.0, 'precision': 2.0, 'histogram_and_quantiles': 2.0, 'skewness': 2.0, 'kurtosis': 2.0, 'num_negatives': 2.0, 'num_zeros': 2.0,}) self.assertEqual(expected, profiler.profile['times']) def test_option_precision(self): data = [1.1, 2.2, 3.3, 4.4] df = pd.Series(data).apply(str) # Turn off precision options = FloatOptions() options.set({"precision.is_enabled": False}) profiler = FloatColumn(df.name, options=options) profiler.update(df) self.assertEqual(None, profiler.precision['sample_size']) # Turn on precision, check sample_size options = FloatOptions() options.set({"precision.is_enabled": True}) profiler = FloatColumn(df.name, options=options) profiler.update(df) self.assertEqual(4, profiler.precision['sample_size']) # Turn on precision, set 0.5 sample_size options = FloatOptions() options.set({"precision.sample_ratio": 0.5}) profiler = FloatColumn(df.name, options=options) profiler.update(df) self.assertEqual(2, profiler.precision['sample_size']) def test_option_timing(self): data = [2.0, 12.5, 'not a float', 6.0, 'not a float'] df = pd.Series(data).apply(str) options = FloatOptions() options.set({"min.is_enabled": False}) profiler = FloatColumn(df.name, options=options) time_array = [float(i) for i in range(100, 0, -1)] with mock.patch('time.time', side_effect=lambda: time_array.pop()): # Validate that the times dictionary is empty self.assertEqual(defaultdict(float), profiler.profile['times']) profiler.update(df) # Validate the time in the datetime class has the expected time. profile = profiler.profile expected = defaultdict(float, {'max': 1.0, 'sum': 1.0, 'variance': 1.0, 'precision': 1.0, 'skewness': 1.0, 'kurtosis': 1.0, 'num_negatives': 1.0, 'num_zeros': 1.0, 'histogram_and_quantiles': 15.0}) self.assertCountEqual(expected, profile['times']) # Validate time in datetime class has expected time after second update profiler.update(df) expected = defaultdict(float, {'max': 2.0, 'sum': 2.0, 'variance': 2.0, 'precision': 2.0, 'skewness': 2.0, 'kurtosis': 2.0, 'num_negatives': 2.0, 'num_zeros': 2.0, 'histogram_and_quantiles': 30.0}) self.assertCountEqual(expected, profiler.profile['times']) def test_profile_merge(self): data = [2.0, 'not a float', 6.0, 'not a float'] df = pd.Series(data).apply(str) profiler1 = FloatColumn("Float") profiler1.update(df) data2 = [10.0, 'not a float', 15.0, 'not a float'] df2 = pd.Series(data2).apply(str) profiler2 = FloatColumn("Float") profiler2.update(df2) expected_profile = dict( min=2.0, max=15.0, mode=[2, 6, 10, 15], sum=33.0, mean=8.25, variance=30.916666666666668, stddev=np.sqrt(30.916), skewness=918 * np.sqrt(3 / 371) / 371, kurtosis=-16068/19663, histogram={ 'bin_counts': np.array([1, 1, 1, 1]), 'bin_edges': np.array([2., 5.25, 8.5, 11.75, 15.]) }, ) profiler3 = profiler1 + profiler2 expected_histogram = expected_profile.pop('histogram') profile3 = profiler3.profile histogram = profile3.pop('histogram') expected_mode = expected_profile.pop('mode') mode = profile3.pop('mode') np.testing.assert_array_almost_equal(expected_mode, mode, decimal=2) self.assertTrue(profiler3.bias_correction) self.assertAlmostEqual(profiler3.stddev, expected_profile.pop('stddev'), places=3) self.assertAlmostEqual(profiler3.variance, expected_profile.pop('variance'), places=3) self.assertAlmostEqual(profiler3.skewness, expected_profile.pop('skewness'),places=3) self.assertAlmostEqual(profiler3.kurtosis, expected_profile.pop('kurtosis'), places=3) self.assertEqual(profiler3.mean, expected_profile.pop('mean')) self.assertEqual(profiler3.histogram_selection, 'doane') self.assertEqual(profiler3.min, expected_profile.pop('min')) self.assertEqual(profiler3.max, expected_profile.pop('max')) self.assertEqual(histogram['bin_counts'].tolist(), expected_histogram['bin_counts'].tolist()) self.assertCountEqual(histogram['bin_edges'], expected_histogram['bin_edges']) def test_profile_merge_for_zeros_and_negatives(self): data = [2.0, 8.5, 'not an int', 6.0, -3, 0] df = pd.Series(data).apply(str) profiler1 = FloatColumn("Float") profiler1.update(df) data2 = [0.0, 3.5, 'not an int', 125.0, 0, -0.1, -88] df2 = pd.Series(data2).apply(str) profiler2 = FloatColumn("Float") profiler2.update(df2) expected_profile = dict( num_zeros=3, num_negatives=3 ) profiler3 = profiler1 + profiler2 self.assertEqual(profiler3.num_zeros, expected_profile.pop('num_zeros')) self.assertEqual(profiler3.num_negatives, expected_profile.pop('num_negatives')) def test_profile_merge_edge_case(self): data = [2.0, 'not a float', 6.0, 'not a float'] df = pd.Series(data).apply(str) profiler1 = FloatColumn("Float") profiler1.update(df) profiler1.match_count = 0 data2 = [10.0, 'not a float', 15.0, 'not a float'] df2 = pd.Series(data2).apply(str) profiler2 = FloatColumn("Float") profiler2.update(df2) profiler3 = profiler1 + profiler2 self.assertEqual(profiler3.stddev, profiler2.stddev) # test merge with empty data df1 = pd.Series([], dtype=object) profiler1 = FloatColumn("Float") profiler1.update(df1) df2 = pd.Series([], dtype=object) profiler2 = FloatColumn("Float") profiler2.update(df2) profiler = profiler1 + profiler2 self.assertTrue(np.isnan(profiler.skewness)) self.assertTrue(np.isnan(profiler.kurtosis)) self.assertEqual(profiler.min, None) self.assertEqual(profiler.max, None) df3 = pd.Series([2.0, 3.0]).apply(str) profiler3 = FloatColumn("Float") profiler3.update(df3) profiler = profiler1 + profiler3 self.assertTrue(np.isnan(profiler.skewness)) self.assertTrue(np.isnan(profiler.kurtosis)) self.assertEqual(profiler.min, 2.0) self.assertEqual(profiler.max, 3.0) df4 = pd.Series([4.0, 5.0]).apply(str) profiler4 = FloatColumn("Float") profiler4.update(df4) profiler = profiler3 + profiler4 self.assertEqual(profiler.skewness, 0) self.assertAlmostEqual(profiler.kurtosis, -1.2) self.assertEqual(profiler.min, 2.0) self.assertEqual(profiler.max, 5.0) self.assertEqual(profiler.num_zeros, 0) self.assertEqual(profiler.num_negatives, 0) df5 = pd.Series([0.0, 0.0, -1.1, -1.0]).apply(str) profiler5 = FloatColumn("Float") profiler5.update(df5) profiler = profiler4 + profiler5 self.assertEqual(profiler.min, -1.1) self.assertEqual(profiler.max, 5) self.assertEqual(profiler.num_zeros, 2) self.assertEqual(profiler.num_negatives, 2) def test_custom_bin_count_merge(self): options = FloatOptions() options.histogram_and_quantiles.bin_count_or_method = 10 data = [2.0, 'not a float', 6.0, 'not a float'] df =
pd.Series(data)
pandas.Series
""" Functions for preparing various inputs passed to the DataFrame or Series constructors before passing them to a BlockManager. """ from collections import abc from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple, Union import numpy as np import numpy.ma as ma from pandas._libs import lib from pandas._typing import Axis, DtypeObj, Label, Scalar from pandas.core.dtypes.cast import ( construct_1d_arraylike_from_scalar, construct_1d_ndarray_preserving_na, dict_compat, maybe_cast_to_datetime, maybe_convert_platform, maybe_infer_to_datetimelike, maybe_upcast, ) from pandas.core.dtypes.common import ( is_categorical_dtype, is_datetime64tz_dtype, is_dtype_equal, is_extension_array_dtype, is_integer_dtype, is_list_like, is_named_tuple, is_object_dtype, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCDatetimeIndex, ABCIndex, ABCSeries, ABCTimedeltaIndex, ) from pandas.core import algorithms, common as com from pandas.core.arrays import Categorical from pandas.core.construction import extract_array, sanitize_array from pandas.core.indexes import base as ibase from pandas.core.indexes.api import ( Index, ensure_index, get_objs_combined_axis, union_indexes, ) from pandas.core.internals.managers import ( create_block_manager_from_arrays, create_block_manager_from_blocks, ) if TYPE_CHECKING: from numpy.ma.mrecords import MaskedRecords from pandas import Series # --------------------------------------------------------------------- # BlockManager Interface def arrays_to_mgr( arrays, arr_names, index, columns, dtype: Optional[DtypeObj] = None, verify_integrity: bool = True, ): """ Segregate Series based on type and coerce into matrices. Needs to handle a lot of exceptional cases. """ arr_names = ensure_index(arr_names) if verify_integrity: # figure out the index, if necessary if index is None: index = extract_index(arrays) else: index = ensure_index(index) # don't force copy because getting jammed in an ndarray anyway arrays = _homogenize(arrays, index, dtype) columns = ensure_index(columns) else: columns = ensure_index(columns) index = ensure_index(index) # from BlockManager perspective axes = [columns, index] return create_block_manager_from_arrays(arrays, arr_names, axes) def masked_rec_array_to_mgr( data: "MaskedRecords", index, columns, dtype: Optional[DtypeObj], copy: bool ): """ Extract from a masked rec array and create the manager. """ # essentially process a record array then fill it fdata = ma.getdata(data) if index is None: index = _get_names_from_index(fdata) if index is None: index = ibase.default_index(len(data)) index = ensure_index(index) if columns is not None: columns = ensure_index(columns) arrays, arr_columns = to_arrays(fdata, columns) # fill if needed new_arrays = [] for col in arr_columns: arr = data[col] fv = arr.fill_value mask = ma.getmaskarray(arr) if mask.any(): arr, fv = maybe_upcast(arr, fill_value=fv, copy=True) arr[mask] = fv new_arrays.append(arr) # create the manager arrays, arr_columns = reorder_arrays(new_arrays, arr_columns, columns) if columns is None: columns = arr_columns mgr = arrays_to_mgr(arrays, arr_columns, index, columns, dtype) if copy: mgr = mgr.copy() return mgr # --------------------------------------------------------------------- # DataFrame Constructor Interface def init_ndarray(values, index, columns, dtype: Optional[DtypeObj], copy: bool): # input must be a ndarray, list, Series, index if isinstance(values, ABCSeries): if columns is None: if values.name is not None: columns = [values.name] if index is None: index = values.index else: values = values.reindex(index) # zero len case (GH #2234) if not len(values) and columns is not None and len(columns): values = np.empty((0, 1), dtype=object) # we could have a categorical type passed or coerced to 'category' # recast this to an arrays_to_mgr if is_categorical_dtype(getattr(values, "dtype", None)) or is_categorical_dtype( dtype ): if not hasattr(values, "dtype"): values = _prep_ndarray(values, copy=copy) values = values.ravel() elif copy: values = values.copy() index, columns = _get_axes(len(values), 1, index, columns) return arrays_to_mgr([values], columns, index, columns, dtype=dtype) elif is_extension_array_dtype(values) or is_extension_array_dtype(dtype): # GH#19157 if isinstance(values, np.ndarray) and values.ndim > 1: # GH#12513 a EA dtype passed with a 2D array, split into # multiple EAs that view the values values = [values[:, n] for n in range(values.shape[1])] else: values = [values] if columns is None: columns = Index(range(len(values))) return arrays_to_mgr(values, columns, index, columns, dtype=dtype) # by definition an array here # the dtypes will be coerced to a single dtype values = _prep_ndarray(values, copy=copy) if dtype is not None and not is_dtype_equal(values.dtype, dtype): try: values = construct_1d_ndarray_preserving_na( values.ravel(), dtype=dtype, copy=False ).reshape(values.shape) except Exception as orig: # e.g. ValueError when trying to cast object dtype to float64 raise ValueError( f"failed to cast to '{dtype}' (Exception was: {orig})" ) from orig # _prep_ndarray ensures that values.ndim == 2 at this point index, columns = _get_axes( values.shape[0], values.shape[1], index=index, columns=columns ) values = values.T # if we don't have a dtype specified, then try to convert objects # on the entire block; this is to convert if we have datetimelike's # embedded in an object type if dtype is None and is_object_dtype(values.dtype): if values.ndim == 2 and values.shape[0] != 1: # transpose and separate blocks dvals_list = [maybe_infer_to_datetimelike(row) for row in values] for n in range(len(dvals_list)): if isinstance(dvals_list[n], np.ndarray): dvals_list[n] = dvals_list[n].reshape(1, -1) from pandas.core.internals.blocks import make_block # TODO: What about re-joining object columns? block_values = [ make_block(dvals_list[n], placement=[n], ndim=2) for n in range(len(dvals_list)) ] else: datelike_vals = maybe_infer_to_datetimelike(values) block_values = [datelike_vals] else: block_values = [values] return create_block_manager_from_blocks(block_values, [columns, index]) def init_dict(data: Dict, index, columns, dtype: Optional[DtypeObj] = None): """ Segregate Series based on type and coerce into matrices. Needs to handle a lot of exceptional cases. """ arrays: Union[Sequence[Any], "Series"] if columns is not None: from pandas.core.series import Series arrays = Series(data, index=columns, dtype=object) data_names = arrays.index missing = arrays.isna() if index is None: # GH10856 # raise ValueError if only scalars in dict index = extract_index(arrays[~missing]) else: index = ensure_index(index) # no obvious "empty" int column if missing.any() and not is_integer_dtype(dtype): if dtype is None or ( not is_extension_array_dtype(dtype) and np.issubdtype(dtype, np.flexible) ): # GH#1783 nan_dtype = np.dtype(object) else: nan_dtype = dtype val = construct_1d_arraylike_from_scalar(np.nan, len(index), nan_dtype) arrays.loc[missing] = [val] * missing.sum() else: keys = list(data.keys()) columns = data_names = Index(keys) arrays = [com.maybe_iterable_to_list(data[k]) for k in keys] # GH#24096 need copy to be deep for datetime64tz case # TODO: See if we can avoid these copies arrays = [arr if not isinstance(arr, ABCIndex) else arr._data for arr in arrays] arrays = [ arr if not is_datetime64tz_dtype(arr) else arr.copy() for arr in arrays ] return arrays_to_mgr(arrays, data_names, index, columns, dtype=dtype) def nested_data_to_arrays( data: Sequence, columns: Optional[Index], index: Optional[Index], dtype: Optional[DtypeObj], ): """ Convert a single sequence of arrays to multiple arrays. """ # By the time we get here we have already checked treat_as_nested(data) if is_named_tuple(data[0]) and columns is None: columns = data[0]._fields arrays, columns = to_arrays(data, columns, dtype=dtype) columns = ensure_index(columns) if index is None: if isinstance(data[0], ABCSeries): index = _get_names_from_index(data) elif isinstance(data[0], Categorical): index = ibase.default_index(len(data[0])) else: index = ibase.default_index(len(data)) return arrays, columns, index def treat_as_nested(data) -> bool: """ Check if we should use nested_data_to_arrays. """ return len(data) > 0 and is_list_like(data[0]) and getattr(data[0], "ndim", 1) == 1 # --------------------------------------------------------------------- def _prep_ndarray(values, copy: bool = True) -> np.ndarray: if not isinstance(values, (np.ndarray, ABCSeries, Index)): if len(values) == 0: return np.empty((0, 0), dtype=object) elif isinstance(values, range): arr = np.arange(values.start, values.stop, values.step, dtype="int64") return arr[..., np.newaxis] def convert(v): return maybe_convert_platform(v) # we could have a 1-dim or 2-dim list here # this is equiv of np.asarray, but does object conversion # and platform dtype preservation try: if is_list_like(values[0]) or hasattr(values[0], "len"): values = np.array([convert(v) for v in values]) elif isinstance(values[0], np.ndarray) and values[0].ndim == 0: # GH#21861 values = np.array([convert(v) for v in values]) else: values = convert(values) except (ValueError, TypeError): values = convert(values) else: # drop subclass info, do not copy data values = np.asarray(values) if copy: values = values.copy() if values.ndim == 1: values = values.reshape((values.shape[0], 1)) elif values.ndim != 2: raise ValueError(f"Must pass 2-d input. shape={values.shape}") return values def _homogenize(data, index, dtype: Optional[DtypeObj]): oindex = None homogenized = [] for val in data: if isinstance(val, ABCSeries): if dtype is not None: val = val.astype(dtype) if val.index is not index: # Forces alignment. No need to copy data since we # are putting it into an ndarray later val = val.reindex(index, copy=False) else: if isinstance(val, dict): if oindex is None: oindex = index.astype("O") if isinstance(index, (ABCDatetimeIndex, ABCTimedeltaIndex)): val = dict_compat(val) else: val = dict(val) val = lib.fast_multiget(val, oindex._values, default=np.nan) val = sanitize_array( val, index, dtype=dtype, copy=False, raise_cast_failure=False ) homogenized.append(val) return homogenized def extract_index(data) -> Index: """ Try to infer an Index from the passed data, raise ValueError on failure. """ index = None if len(data) == 0: index = Index([]) elif len(data) > 0: raw_lengths = [] indexes: List[Union[List[Label], Index]] = [] have_raw_arrays = False have_series = False have_dicts = False for val in data: if isinstance(val, ABCSeries): have_series = True indexes.append(val.index) elif isinstance(val, dict): have_dicts = True indexes.append(list(val.keys())) elif is_list_like(val) and getattr(val, "ndim", 1) == 1: have_raw_arrays = True raw_lengths.append(len(val)) if not indexes and not raw_lengths: raise ValueError("If using all scalar values, you must pass an index") if have_series: index = union_indexes(indexes) elif have_dicts: index = union_indexes(indexes, sort=False) if have_raw_arrays: lengths = list(set(raw_lengths)) if len(lengths) > 1: raise ValueError("All arrays must be of the same length") if have_dicts: raise ValueError( "Mixing dicts with non-Series may lead to ambiguous ordering." ) if have_series: assert index is not None # for mypy if lengths[0] != len(index): msg = ( f"array length {lengths[0]} does not match index " f"length {len(index)}" ) raise ValueError(msg) else: index = ibase.default_index(lengths[0]) return ensure_index(index) def reorder_arrays(arrays, arr_columns, columns): # reorder according to the columns if ( columns is not None and len(columns) and arr_columns is not None and len(arr_columns) ): indexer = ensure_index(arr_columns).get_indexer(columns) arr_columns = ensure_index([arr_columns[i] for i in indexer]) arrays = [arrays[i] for i in indexer] return arrays, arr_columns def _get_names_from_index(data): has_some_name = any(getattr(s, "name", None) is not None for s in data) if not has_some_name: return ibase.default_index(len(data)) index: List[Label] = list(range(len(data))) count = 0 for i, s in enumerate(data): n = getattr(s, "name", None) if n is not None: index[i] = n else: index[i] = f"Unnamed {count}" count += 1 return index def _get_axes(N, K, index, columns) -> Tuple[Index, Index]: # helper to create the axes as indexes # return axes or defaults if index is None: index = ibase.default_index(N) else: index = ensure_index(index) if columns is None: columns = ibase.default_index(K) else: columns = ensure_index(columns) return index, columns def dataclasses_to_dicts(data): """ Converts a list of dataclass instances to a list of dictionaries. Parameters ---------- data : List[Type[dataclass]] Returns -------- list_dict : List[dict] Examples -------- >>> @dataclass >>> class Point: ... x: int ... y: int >>> dataclasses_to_dicts([Point(1,2), Point(2,3)]) [{"x":1,"y":2},{"x":2,"y":3}] """ from dataclasses import asdict return list(map(asdict, data)) # --------------------------------------------------------------------- # Conversion of Inputs to Arrays def to_arrays(data, columns, dtype: Optional[DtypeObj] = None): """ Return list of arrays, columns. """ if isinstance(data, ABCDataFrame): if columns is not None: arrays = [ data._ixs(i, axis=1).values for i, col in enumerate(data.columns) if col in columns ] else: columns = data.columns arrays = [data._ixs(i, axis=1).values for i in range(len(columns))] return arrays, columns if not len(data): if isinstance(data, np.ndarray): columns = data.dtype.names if columns is not None: return [[]] * len(columns), columns return [], [] # columns if columns is not None else [] elif isinstance(data[0], Categorical): if columns is None: columns = ibase.default_index(len(data)) return data, columns elif isinstance(data, np.ndarray) and data.dtype.names is not None: # e.g. recarray columns = list(data.dtype.names) arrays = [data[k] for k in columns] return arrays, columns if isinstance(data[0], (list, tuple)): content, columns = _list_to_arrays(data, columns) elif isinstance(data[0], abc.Mapping): content, columns = _list_of_dict_to_arrays(data, columns) elif isinstance(data[0], ABCSeries): content, columns = _list_of_series_to_arrays(data, columns) else: # last ditch effort data = [tuple(x) for x in data] content, columns = _list_to_arrays(data, columns) content, columns = _finalize_columns_and_data(content, columns, dtype) return content, columns def _list_to_arrays( data: List[Scalar], columns: Union[Index, List], ) -> Tuple[List[Scalar], Union[Index, List[Axis]]]: # Note: we already check len(data) > 0 before getting hre if isinstance(data[0], tuple): content = lib.to_object_array_tuples(data) else: # list of lists content = lib.to_object_array(data) return content, columns def _list_of_series_to_arrays( data: List, columns: Union[Index, List], ) -> Tuple[List[Scalar], Union[Index, List[Axis]]]: if columns is None: # We know pass_data is non-empty because data[0] is a Series pass_data = [x for x in data if isinstance(x, (ABCSeries, ABCDataFrame))] columns = get_objs_combined_axis(pass_data, sort=False) indexer_cache: Dict[int, Scalar] = {} aligned_values = [] for s in data: index = getattr(s, "index", None) if index is None: index = ibase.default_index(len(s)) if id(index) in indexer_cache: indexer = indexer_cache[id(index)] else: indexer = indexer_cache[id(index)] = index.get_indexer(columns) values =
extract_array(s, extract_numpy=True)
pandas.core.construction.extract_array
""" This module contains function to plot smooth ROC curves using KFold Examples: result, aucs = roc_curve_cv(xgb.XGBClassifier(), X, y, n_splits=6) plot_roc_curve_cv(result) plt.show() plot_specificity_cv(result) plt.show() plot_specificity_cv(result, invert_x=True, invert_y=True) plt.show() print(f"AUC: {np.mean(aucs)} (std:{np.std(aucs)})") Comparing models: result_xgb, aucs = roc_curve_cv(xgb.XGBClassifier(), X, y, n_splits=6, n_repeats=4) result_rf, aucs = roc_curve_cv(RandomForestClassifier(), X, y, n_splits=6, n_repeats=4) plot_specificity_cv({'XGB': result_xgb, 'RF':result_rf}) plt.show() Comparing hyperparameters results = [] for max_depth in (3,10): for max_features in (0.5, 0.9): result, _ = roc_curve_cv( RandomForestClassifier(max_depth=max_depth, max_features=max_features), x_full, y_full, n_repeats=4, properties={'max features':max_features, 'max depth':max_depth}) results.append(result) plot_specificity_cv(results, hue='max features', style='max depth', ci=False) plt.show() plot_roc_curve_cv(results, hue='max features', style='max depth', ci=False) plt.show() """ from sklearn.model_selection import StratifiedKFold, RepeatedStratifiedKFold from numpy import interp import numpy as np from sklearn.metrics import roc_curve, auc import seaborn as sns import matplotlib.pyplot as plt import pandas as pd from sklearn.preprocessing import label_binarize def roc_curve_simple(model, X, y): y_pred = model.predict_proba(X)[:,1] fpr, tpr, thres = roc_curve(y, y_pred) result_df = pd.DataFrame({'fpr':fpr, 'tpr':tpr, 'threshold':thres}, index=range(len(fpr))) return result_df, auc(fpr,tpr) def roc_curve_cv(model, X, y, n_splits=5, n_repeats=1, properties=None): if n_repeats > 1: cv = RepeatedStratifiedKFold(n_splits=n_splits, n_repeats=n_repeats) else: cv = StratifiedKFold(n_splits=n_splits) auc_list = [] result_df = pd.DataFrame() for i, (train, test) in enumerate(cv.split(X, y)): x_train, x_test = X.iloc[train], X.iloc[test] y_train, y_test = y.iloc[train], y.iloc[test] model.fit(x_train, y_train) y_test_pred = model.predict_proba(x_test)[:,1] fpr, tpr, thres = roc_curve(y_test, y_test_pred) # x_label = "False Positive Rate" # y_label = "True Positive Rate" df = pd.DataFrame({'run':i, 'fpr':fpr, 'tpr':tpr, 'threshold':thres}, index=range(len(fpr))) result_df = pd.concat([result_df, df]) auc_list.append(auc(fpr,tpr)) if properties is not None: for key, value, in properties.items(): result_df[key] = value return result_df, auc_list def plot_roc_curve_cv(result, n_step=100, title=None, **kwargs): """ plot the ROC curve with a confidence interval """ fpr_linspace = np.linspace(0,1,n_step) tpr_df = pd.DataFrame() x_label = "False Positive Rate" y_label = "True Positive Rate" if isinstance(result, dict): for key, value in result.items(): value['model'] = key result = pd.concat(result.values()) kwargs['hue'] = 'model' elif isinstance(result, list): result = pd.concat(result) result = result.rename(columns={'tpr':y_label, 'fpr':x_label}) group_cols = list(set(result.columns)-{x_label, y_label,'threshold'}) for name, group in result.groupby(group_cols): df = pd.DataFrame(columns=[y_label, x_label]+group_cols) df[y_label] = interp(fpr_linspace, group[x_label], group[y_label]) df[x_label] = fpr_linspace df[group_cols] = name tpr_df = pd.concat([tpr_df,df]) fig = plt.axes() sns.lineplot(x=x_label, y =y_label, data=tpr_df, **kwargs) if title is None: title = "Roc curve cv" fig.set_title(title) return fig def plot_specificity_cv(result, n_step=100, invert_x=False, invert_y=False, title=None, **kwargs): """ plot the curve of the specificity as a function of the sensibility """ tpr_linspace = np.linspace(0,1,n_step) fpr_df = pd.DataFrame() if isinstance(result, dict): for key, value in result.items(): value['model'] = key result = pd.concat(result.values()) kwargs['hue'] = 'model' elif isinstance(result, list): result = pd.concat(result) group_cols = list(set(result.columns)-{'fpr','tpr','threshold'}) for name, group in result.groupby(group_cols): df = pd.DataFrame(columns=['tpr', 'fpr']+group_cols) df['fpr'] = interp(tpr_linspace, group['tpr'], group['fpr'])[:-1] df['tpr'] = tpr_linspace[:-1] df[group_cols]=name fpr_df = pd.concat([fpr_df,df]) if invert_x: x_label = 'False Negative Rate' fpr_df[x_label] = 1-fpr_df['tpr'] else: x_label = 'Sensitivity' fpr_df[x_label] = fpr_df['tpr'] if invert_y: y_label = 'False Positive Rate' fpr_df[y_label] = fpr_df['fpr'] else: y_label = 'Specificity' fpr_df[y_label] = 1-fpr_df['fpr'] fig = plt.axes() sns.lineplot(x=x_label, y =y_label, data=fpr_df) if title is None: title = "Specificity vs Sensitivity" fig.set_title(title) return fig def plot_roc_threshold_cv(result, n_step=101, title=None, tpr=True, fpr=True, tnr=False, fnr=False, **kwargs): """ plot the ROC curve with a confidence interval """ fpr_linspace = np.linspace(0,1,n_step) tpr_df = pd.DataFrame() if isinstance(result, dict): for key, value in result.items(): value['model'] = key result = pd.concat(result.values()) kwargs['hue'] = 'model' elif isinstance(result, list): result = pd.concat(result) threshold_dfs = [] group_cols = list(set(result.columns)-{'fpr','tpr','threshold'}) for name, group in result.groupby(group_cols): group = group.sort_values(by='threshold') if fpr: df =
pd.DataFrame(columns=['rate', 'metric','threshold']+group_cols)
pandas.DataFrame
import random import csv import signal from typing import List, Tuple import numpy as np import pandas as pd from db_env.DatabaseEnvironment import DatabaseEnvironment from shared_utils.consts import PROJECT_DIR from shared_utils.utils import create_logger AGENT_CSV_FILE = f'{PROJECT_DIR}/data/agent_history.csv' WEIGHTS_FILE = f'{PROJECT_DIR}/data/weights.csv' class Agent: def __init__(self, env: DatabaseEnvironment): random.seed(2) np.random.seed(2) self._log = create_logger('agent') self._env = env self.exploration_probability = 0.9 self.exploration_probability_discount = 0.9 self.learning_rate = 0.001 self.discount_factor = 0.8 self._experience_memory_max_size = np.inf self._experience_replay_count = 30 self._weights = np.random.rand(1 + self._env.action_space.n + self._env.observation_space.n) """Estimated weights of features with bias for every action.""" self._experience_memory: List[Tuple[List[int], int, float, List[int]]] = [] self.dict_info = { 'episode': int, 'step': int, 'state': List[bool], 'action': int, 'reward': float, 'next_state': List[bool], 'q': float, 'max_a': int, 'max_q': float, 'td_target': float, 'td_error': float, 'total_reward': float, 'exploration_probability': float, 'random_action': bool, 'initial_state_reward': float } self._pause_request = False def signal_handler(sig, frame): self._log.info('CTRL+C pressed - pausing training requested') self._pause_request = True signal.signal(signal.SIGINT, signal_handler) def train(self, episode_count: int, steps_per_episode: int): with open(AGENT_CSV_FILE, 'w', newline='') as file: wr = csv.writer(file) wr.writerow(self.dict_info.keys()) for episode in range(episode_count): state = self._env.reset() total_reward = 0.0 for step in range(steps_per_episode): self._log.info(f'EPISODE {episode} - STEP {step} ' f'({(episode_count - episode) * steps_per_episode - step - 1} more steps to go)') action = self._choose_action(state) next_state, reward, _, info = self._env.step(action) total_reward += reward previous_weights = self._weights.copy() self._update_weights(state, action, reward, next_state, previous_weights) self._save_agent_information(episode, step, state, next_state, action, reward, total_reward, info) self._experience_replay(previous_weights) self._experience_append(state, action, reward, next_state) self._save_agent_weights() state = next_state if self._pause_request: return self._reduce_exploration_probability() def _get_features(self, state, action): # bias + each action has own feature + state has n columns - n features # return np.array([0] + [action == a for a in range(self._env.action_space.n)] + state) l = np.array([0] + [action == a for a in range(self._env.action_space.n)] + state) return l def _experience_append(self, state, action, reward, next_state): self._experience_memory.append((state, action, reward, next_state)) if len(self._experience_memory) > self._experience_memory_max_size: self._experience_memory.pop() def _experience_replay(self, previous_weights): samples_count = min(len(self._experience_memory), self._experience_replay_count) samples = random.sample(self._experience_memory, k=samples_count) for state, action, reward, next_state in samples: self._update_weights(state, action, reward, next_state, previous_weights) def _update_weights(self, state, action, reward, next_state, weights): features = self._get_features(state, action) max_action, max_q = self._get_max_action(next_state) approx_q = weights @ features td_target = reward + self.discount_factor * max_q td_error = td_target - approx_q # w = w + a(r + y(max q) - w^T * F(s)) * F(s) self._weights += self.learning_rate * td_error * features self.dict_info['q'] = approx_q self.dict_info['max_a'] = max_action self.dict_info['max_q'] = max_q self.dict_info['td_target'] = td_target self.dict_info['td_error'] = td_error def _get_max_action(self, state): max_q = float('-inf') max_action = None for action in self._possible_actions(state): q = self._calculate_q_value(state, action) if max_q < q: max_q = q max_action = action return max_action, max_q def _calculate_q_value(self, state, action): """:return dot product of weights and features""" return self._weights @ self._get_features(state, action) def _possible_actions(self, state) -> List[int]: return [i * 2 + (not is_indexed) for i, is_indexed in enumerate(state)] def _choose_action(self, state): """ :param state: current environment state :return: random action with probability epsilon otherwise best action with probability 1-epsilon """ self.dict_info['random_action'] = False self.dict_info['exploration_probability'] = self.exploration_probability if random.random() < self.exploration_probability: self.dict_info['random_action'] = True return random.choice(self._possible_actions(state)) max_action, _ = self._get_max_action(state) return max_action def _reduce_exploration_probability(self): self.exploration_probability = self.exploration_probability_discount * self.exploration_probability def _save_agent_information(self, episode, step, state, next_state, action, reward, total_reward, info): self.dict_info['episode'] = episode self.dict_info['step'] = step self.dict_info['state'] = state self.dict_info['next_state'] = next_state self.dict_info['action'] = action self.dict_info['reward'] = reward self.dict_info['total_reward'] = total_reward self.dict_info['initial_state_reward'] = info['initial_state_reward'] with open(AGENT_CSV_FILE, 'a', newline='') as file: wr = csv.writer(file) wr.writerow(self.dict_info.values()) def _save_agent_weights(self):
pd.DataFrame(self._weights)
pandas.DataFrame
import pandas as pd import numpy as np import datetime def clean_dates(df_in): df = df_in.copy() df_types = df.dtypes date_cols = list(df_types.loc[df_types=="datetime64[ns]"].index) + ["covid19_admission_hospital_release","covid19_admission_hospital_date","covid19_date_lab_test", "covid19_date_suspected_onset","dmt_start_date","edss_date_diagnosis","ms_diagnosis_date","ms_onset_date","covid19_outcome_death_date", 'covid19_self_isolation_date','dmt_end_date','dmt_glucocorticoid_start_date', 'dmt_glucocorticoid_stop_date','dmt_stop_date'] for col in date_cols: df[col] =
pd.to_datetime(df[col],errors="coerce")
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jul 17 18:04:57 2018 Generate manuscript figures. @author: ben """ import os import time import warnings import json import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import tqdm # NOTE: Add the module path to sys.path if calling from the scripts subdirectory import pathlib import sys # sys.path.insert(1, "/workspaces/DPE") sys.path.insert(0, str(pathlib.Path(__file__).parent.parent.absolute())) # print(sys.path) import dpe from dpe.utilities import construct_mixture, format_seconds, load_accuracy # get_fpr_tpr, from dpe.datasets import (load_diabetes_data, load_renal_data, load_coeliac_data, load_glaucoma_data) from dpe.plots import (plot_roc, plot_distributions, plot_bootstraps, plot_characterisation, plot_selected_violins, get_error_bars) # from dpe.config import adjust_excess, ci_method, correct_bias # ---------------------------- Define constants ------------------------------ # TODO: Apply bias correction to other methods e.g. 'bca'? # TODO: Report or use correct_bias? FRESH_DATA = False # CAUTION! seed = 0 sample_seed = 42 # Used for sampling for Renal non-cases n_boot = 1000 # 10 # 1000 n_mix = 100 # 10 # 100 sample_size = 1000 # -1 n_seeds = 1 # Deprecated n_construction_seeds = 100 verbose = False # Set method details alpha = 0.05 # Alpha for confidence intervals ci_method = "bca" # "experimental" # "stderr" # "centile" "jeffreys" correct_bias = False # Flag to use bias correction: corrected = 2 * pe_point - mean(pe_boot) adjust_excess = False # TODO: Reimplement this or remove? # KDE_kernel = 'gaussian' # ['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine'] methods = {method: True for method in dpe._ALL_METHODS_} # Configure plots output_diabetes_rocs = False output_application = {'Diabetes': False, 'Renal': False, 'Coeliac': True, 'Glaucoma': True} output_application_vary_cases = {'Diabetes': False, 'Renal': False, 'Coeliac': False, 'Glaucoma': True} application_xlims = {'Diabetes': None, 'Renal': (0, 0.3), 'Coeliac': (0, 0.3), 'Glaucoma': (0, 0.3)} output_analysis = {'Diabetes': True, 'Renal': False, 'Coeliac': False, 'Glaucoma': False} output_characterisation = {'Diabetes': False, 'Renal': False, 'Coeliac': False, 'Glaucoma': False} average = np.mean # NOTE: Used in get_error_bars, calculate_bias (and plot_characterisation). Does not apply when using BCa (which implicitly uses the median). # deviation = np.std # Set plotting style mpl.rc('figure', figsize=(10, 8)) mpl.rc('font', size=14) mpl.rc('axes', titlesize=14) # fontsize of the axes title mpl.rc('axes', labelsize=14) # fontsize of the x and y labels mpl.rc('xtick', labelsize=12) # fontsize of the tick labels mpl.rc('ytick', labelsize=12) # fontsize of the tick labels mpl.rc('legend', fontsize=11) # legend fontsize mpl.rc('figure', titlesize=14) # fontsize of the figure title mpl.rc('lines', linewidth=2) mpl.rc('figure', dpi=100) mpl.rc('savefig', dpi=600) mpl.rc('mpl_toolkits', legacy_colorbar=False) # Supress MatplotlibDeprecationWarning # mpl.style.use('seaborn') # plt.style.use('seaborn-white') sns.set_style("ticks") np.seterr(divide='ignore', invalid='ignore') # ---------------------------------------------------------------------------- if __name__ == "__main__": if seed is None: seed = np.random.randint(np.iinfo(np.int32).max) print(f"Created new RNG seed: {seed}") assert 0 <= seed < np.iinfo(np.int32).max # Create output directories characterisation_dir = os.path.join("results", "characterisation") out_dir = os.path.join("results", f"n{sample_size}_m{n_mix}_b{n_boot}_s{seed}") fig_dir = os.path.join(out_dir, "figs") os.makedirs(out_dir, exist_ok=True) os.makedirs(fig_dir, exist_ok=True) if output_diabetes_rocs: # Plot ROC curves fig, axes = plt.subplots(2, 3, sharex=False, sharey=False, figsize=(18, 12)) (scores, bins, means, medians, p_C) = load_diabetes_data('T1GRS') plot_roc(scores, bins, title='Diabetes: T1GRS', ax=axes[0, 0]) plot_distributions(scores, bins, 'Diabetes: T1GRS', norm=True, despine=False, ax=axes[1, 0]) (scores, bins, means, medians, p_C) = load_diabetes_data('T2GRS') plot_roc(scores, bins, title='Diabetes: T2GRS', ax=axes[0, 1]) plot_distributions(scores, bins, 'Diabetes: T2GRS', norm=True, despine=False, ax=axes[1, 1]) (scores, bins, means, medians, p_C) = load_renal_data() plot_roc(scores, bins, title='Renal', ax=axes[0, 2]) plot_distributions(scores, bins, 'Renal', norm=True, despine=False, ax=axes[1, 2]) fig.savefig(os.path.join(fig_dir, 'roc_Diabetes.png')) # exit() if adjust_excess: adjustment_factor = 1 / 0.92 # adjusted for fact it underestimates by 8% else: adjustment_factor = 1.0 for data_label, data in [("Diabetes", load_diabetes_data('T1GRS')), ("Coeliac", load_coeliac_data()), ("Renal", load_renal_data(seed=sample_seed)), ("Glaucoma", load_glaucoma_data())]: # Set random seed # np.random.seed(seed) # rng = np.random.RandomState(42) ... rng.choie() # rng = np.random.default_rng(seed) (scores, bins, means, medians, p_C) = data if output_application[data_label]: res_file = os.path.join(out_dir, f"pe_results_{data_label}.pkl") summary_file = os.path.join(out_dir, f"summary_{data_label}.json") if FRESH_DATA or not os.path.isfile(res_file): print(f"Running mixture analysis on {data_label} scores...", flush=True) t = time.time() # Start timer summary, df_pe = dpe.analyse_mixture(scores, bins, methods, n_boot=n_boot, boot_size=-1, n_mix=n_mix, # boot_size=sample_size, alpha=alpha, ci_method=ci_method, correct_bias=correct_bias, seed=seed, n_jobs=-1, # Previously correct_bias defaulted to False true_pC=p_C, logfile=os.path.join(out_dir, f"pe_{data_label}.log")) elapsed = time.time() - t print(f'Elapsed time = {elapsed:.3f} seconds\n') # Save results df_pe.to_pickle(res_file) with open(summary_file, "w") as sf: json.dump(summary, sf, indent=4) else: print(f"Loading {data_label} analysis...", flush=True) df_pe = pd.read_pickle(res_file) # if os.path.isfile(res_file): # df_pe = pd.read_pickle(res_file) # else: # warnings.warn(f"Missing data file: {res_file}") # break with open(summary_file, "r") as sf: summary = json.load(sf) # Plot worked examples print(f"Plotting application with {data_label} scores...", flush=True) with mpl.rc_context({'axes.labelsize': 11, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'legend.fontsize': 9}): fig_ex = plt.figure(figsize=(12, 3.7)) # gs = plt.GridSpec(nrows=1, ncols=2, hspace=0.15, wspace=0.15, # left=0.08, right=0.95, bottom=0.15, top=0.96) gs = plt.GridSpec(nrows=1, ncols=3, hspace=0.3, wspace=0.25, left=0.08, right=0.95, bottom=0.15, top=0.96) # sns.set_style("ticks") with sns.axes_style("ticks"): ax_dists_ex = fig_ex.add_subplot(gs[0, 0]) plot_distributions(scores, bins, data_label, ax=ax_dists_ex) with sns.axes_style("ticks"): ax_roc_ex = fig_ex.add_subplot(gs[0, 1]) plot_roc(scores, bins, full_labels=False, ax=ax_roc_ex) sns.despine(ax=ax_roc_ex, top=True, right=True, trim=True) ax_roc_ex.set_xlim([0, 1.01]) # Prevent clipping of line ax_roc_ex.set_ylim([0, 1.01]) # Prevent clipping of line # with sns.axes_style("whitegrid"): with sns.axes_style("ticks", {"axes.grid": True, "axes.spines.left": False, 'ytick.left': False}): ax_ci_ex = fig_ex.add_subplot(gs[0, -1]) plot_bootstraps(df_pe, summary, # for confidence_intervals # scores=scores, bins=bins, prepared_methods=methods, correct_bias=correct_bias, p_C=p_C, ax=ax_ci_ex, limits=application_xlims[data_label], ci_method=ci_method, initial=False, legend=False, violins=True, orient='h', average=average) # if application_xlims[data_label]: # ax_ci_ex.set_xlim(*application_xlims[data_label]) fig_ex.savefig(os.path.join(fig_dir, f'application_{data_label}.png')) fig_ex.savefig(os.path.join(fig_dir, f'application_{data_label}.svg'), transparent=True) if output_application_vary_cases[data_label]: assert "Mix_C" in scores and "Mix_N" in scores res_file = os.path.join(out_dir, f"pe_results_vary_cases_{data_label}.pkl") n_steps = int(round(1 / 0.05)) + 1 # 5% steps including ends constructed_p_Cs = np.linspace(0, 1, num=n_steps, endpoint=True) if FRESH_DATA or not os.path.isfile(res_file): print(f"Running mixture analysis with varying cases on {data_label} scores...", flush=True) t = time.time() # Start timer # Seed RNG for permutations, construct_mixture and analyse_mixture rng = np.random.default_rng(seed) mix_seeds = rng.integers(0, np.iinfo(np.int32).max, endpoint=False, size=n_steps * n_construction_seeds) # Maintain the same mixture size for each constructed mixture (sampling with replacement) size = len(scores["Mix"]) construct_results = [] p_C_bar = tqdm.tqdm(constructed_p_Cs, dynamic_ncols=True) for p, constructed_p_C in enumerate(p_C_bar): p_C_bar.set_description(f" p_C = {constructed_p_C:6.2f}") for mix in tqdm.trange(n_construction_seeds, dynamic_ncols=True, desc=" Mix"): mix_seed = mix_seeds[p * n_construction_seeds + mix] # Construct new mixtures constructed_scores = {"R_C": scores["R_C"], "R_N": scores["R_N"]} # Ensure summary statistics are updated constructed_scores["Mix"] = construct_mixture(scores['Mix_C'], scores['Mix_N'], constructed_p_C, size, seed=mix_seed) # Consider only the point estimates n_boot=0 summary, df_pe = dpe.analyse_mixture(constructed_scores, bins, methods, n_boot=0, boot_size=-1, n_mix=n_mix, # boot_size=sample_size, alpha=alpha, ci_method=ci_method, correct_bias=correct_bias, seed=mix_seed, n_jobs=-1, # Previously correct_bias defaulted to False verbose=0, true_pC=constructed_p_C, logfile=os.path.join(out_dir, f"pe_{data_label}_constructed_p_C_{constructed_p_C:3.2f}.log")) # summary := {"Excess": {"p_C": ...}, ...} df_construct = df_pe.iloc[[0]].copy() df_construct["p_C"] = constructed_p_C df_construct["Mix"] = mix construct_results.append(df_construct) df_construct = pd.concat(construct_results, ignore_index=True) elapsed = time.time() - t print(f'Elapsed time = {elapsed:.3f} seconds\n') # Save results df_construct.to_pickle(res_file) else: print(f"Loading {data_label} with varying cases analysis...", flush=True) df_construct = pd.read_pickle(res_file) # Plot results print("Plotting analysis of p_C vs. constructed p_C with {} scores...".format(data_label), flush=True) with sns.axes_style("whitegrid"): fig, axes = plt.subplots(nrows=1, ncols=len(methods), sharex=True, sharey=True, figsize=(12, 4)) df_construct_tidy = df_construct.melt(var_name="Method", id_vars=["p_C", "Mix"], value_name="Estimate") for m, method in enumerate(methods): method_data = df_construct_tidy.query(f"Method == '{method}'") ax = axes[m] sns.lineplot(x="p_C", y="Estimate", data=method_data, err_style="bars", ax=ax) ax.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Perfect Estimator') ax.set_aspect('equal') ax.set_xlim([0, 1]) ax.set_ylim([0, 1]) ticks = np.linspace(0, 1, 6, endpoint=True) ax.set_xticks(ticks) ax.set_yticks(ticks) if m == 0: ax.set_ylabel(r"$\hat{p}_C$ (Estimate)") ax.set_xlabel(r"$p_C$ (Ground Truth)") ax.set_title(method) fig.savefig(os.path.join(fig_dir, f'estimation_test_{data_label}.png')) fig.savefig(os.path.join(fig_dir, f'estimation_test_{data_label}.svg'), transparent=True) if output_characterisation[data_label]: # if FRESH_DATA: # exec(open("./bootstrap.py").read()) # Load bootstraps of accurarcy data (point_estimates, boots_estimates, proportions, sample_sizes) = load_accuracy(characterisation_dir, data_label) # Plot point estimates of p1 if bool(point_estimates): print("Plotting characterisation of {} scores...".format(data_label), flush=True) fig = plot_characterisation(point_estimates, proportions, sample_sizes, average=average) fig.savefig(os.path.join(fig_dir, 'point_characterise_{}.png'.format(data_label))) fig.savefig(os.path.join(fig_dir, 'point_characterise_{}.svg'.format(data_label)), transparent=True) # Plot bootstrapped estimates of p1 if False: # bool(boots_estimates): print("Plotting bootstrapped characterisation of {} scores...".format(data_label), flush=True) fig = plot_characterisation(boots_estimates, proportions, sample_sizes, average=average) fig.savefig(os.path.join(fig_dir, 'boots_characterise_{}.png'.format(data_label))) if output_analysis[data_label]: # Seed RNG for permutations, construct_mixture and analyse_mixture rng = np.random.default_rng(seed) # Plot violins for a set of proportions # p_stars = [0.05, 0.25, 0.50, 0.75, 0.95] # sizes = [100, 500, 1000, 5000, 10000] # p_stars = [0.25, 0.50, 0.75] # p_stars = [0.1, 0.50, 0.75] p_stars = [0.1, 0.4, 0.8] sizes = [500, 1000, 5000] # n_boot = 5 selected_mix = 0 # Generate multiple mixes point_estimates_res_file = os.path.join(out_dir, f"pe_stack_analysis_point_{data_label}.pkl") boot_estimates_res_file = os.path.join(out_dir, f"pe_stack_analysis_{data_label}.pkl") summaries_file = os.path.join(out_dir, f"ma_summaries_{data_label}.json") if FRESH_DATA: # or True: print(f"Running mixture analysis with {data_label} scores...", flush=True) t = time.time() # Start timer # Split the references distributions to ensure i.i.d. data for # constructing the mixtures and estimating them. n_R_C, n_R_N = len(scores['R_C']), len(scores['R_N']) partition_R_C, partition_R_N = n_R_C // 2, n_R_N // 2 # inds_R_C = np.random.permutation(n_R_C) # inds_R_N = np.random.permutation(n_R_N) inds_R_C = rng.permutation(n_R_C) inds_R_N = rng.permutation(n_R_N) hold_out_scores = {'R_C': scores['R_C'][inds_R_C[:partition_R_C]], 'R_N': scores['R_N'][inds_R_N[:partition_R_N]]} violin_scores = {'R_C': scores['R_C'][inds_R_C[partition_R_C:]], 'R_N': scores['R_N'][inds_R_N[partition_R_N:]]} dfs_point = [] dfs_boot = [] mix_dfs = [] summaries = [] size_bar = tqdm.tqdm(sizes, dynamic_ncols=True) for s, size in enumerate(size_bar): size_bar.set_description(f"Size = {size:6,}") Mixtures = {mix: {} for mix in range(n_seeds)} mix_dfs.append([]) summaries.append([]) for mix in tqdm.trange(n_seeds, dynamic_ncols=True, desc=" Mix"): # Redundant loop mix_dist_file = os.path.join(out_dir, f"ma_{data_label}_size_{size:05d}_mix_{mix:03d}.pkl") summaries[s].append([]) prop_bar = tqdm.tqdm(p_stars, dynamic_ncols=True) for p, p_star in enumerate(prop_bar): prop_bar.set_description(f" p_C = {p_star:6.2f}") violin_scores['Mix'] = construct_mixture(hold_out_scores['R_C'], hold_out_scores['R_N'], p_star, size, seed=rng) Mixtures[mix][p_star] = violin_scores['Mix'] summary, df_cm = dpe.analyse_mixture(violin_scores, bins, methods, n_boot=n_boot, boot_size=size, n_mix=n_mix, alpha=alpha, true_pC=p_star, ci_method=ci_method, correct_bias=correct_bias, # Previously correct_bias defaulted to False seed=rng.integers(np.iinfo(np.int32).max, dtype=np.int32), n_jobs=-1, verbose=0, logfile=os.path.join(out_dir, f"pe_{data_label}_size_{size:05d}_p_C_{p_star:3.2f}.log")) summaries[s][mix].append(summary) # summary_file = os.path.join(out_dir, f"ma_{data_label}_size_{size:05d}_mix_{mix:03d}_p_C_{p_star:3.2f}.json") # with open(summary_file, "w") as sf: # json.dump(summary, sf) df_point = df_cm.iloc[[0]].copy() df_point['Size'] = size df_point["p_C"] = p_star df_point['Mix'] = mix # df_point = df_point.melt(var_name='Method', id_vars=["p_C", 'Size', 'Mix'], value_name='Estimate') dfs_point.append(df_point) df_boots = df_cm.iloc[1:, :].copy() if n_mix > 0: n_bootstraps_total = n_mix * n_boot else: n_bootstraps_total = n_boot df_boots['Size'] = size * np.ones(n_bootstraps_total, dtype=int) df_boots["p_C"] = p_star * np.ones(n_bootstraps_total) df_boots['Mix'] = mix * np.ones(n_bootstraps_total, dtype=int) df_boots["Boot"] = list(range(n_bootstraps_total)) df_boots = df_boots.melt(var_name='Method', id_vars=["p_C", 'Size', 'Mix', "Boot"], value_name='Estimate') dfs_boot.append(df_boots) df_size = pd.DataFrame(Mixtures[mix], columns=p_stars) mix_dfs[s].append(df_size) df_size.to_pickle(mix_dist_file) df_point =
pd.concat(dfs_point, ignore_index=True)
pandas.concat
#!/usr/bin/env python # coding: utf-8 import os import pprint import pandas as pd from collections import OrderedDict def get_parameters(): # Read Data try: df_363 = pd.read_excel( io=os.path.join(os.path.dirname(__file__), 'data', 'tab_dd_363.xlsx'), sheet_name='dd_363', index_col=0 ) except Exception as e: #print(e, '\n') #print('Read table from GitHub') df_363 = pd.read_excel( io='https://github.com/gaemapiracicaba/norma_dd_363_11/raw/main/src/normas/data/tab_dd_363.xlsx', sheet_name='dd_363', index_col=0 ) # Filter only quality df_363 = df_363.loc[(df_363['tipo_padrao'] == 'qualidade')] # Classes list_classes = list(set(df_363['padrao_qualidade'])) list_classes = [x for x in list_classes if pd.notnull(x)] list_classes.sort() return df_363, list_classes def filter_by_classe(df_363, classe): # Filter dataframe by Classe df_363 = df_363.loc[(df_363['padrao_qualidade'] == classe)] # Parâmetros list_parametros = list(set(df_363['parametro_descricao'])) list_parametros = [x for x in list_parametros if pd.notnull(x)] list_parametros.sort() return df_363, list_parametros # def filter_by_parameters(df_363, parametro): # # Filter dataframe by Parametro # df_363 = df_363.loc[(df_363['parametro_descricao'] == parametro)] # # # Check and Get Results # if len(df_363) == 1: # dict_363 = df_363.to_dict(orient='records')[0] # dict_363 = OrderedDict(sorted(dict_363.items(), key=lambda x: df_363.columns.get_loc(x[0]))) # return dict_363 # else: # return 'erro' def filter_by_parameters(df_363, parametro, condicao=None): # Filter dataframe by Parametro df_363 = df_363.loc[(df_363['parametro_descricao'] == parametro)] # Condição array = df_363['condicao'].values dict_condicao = dict(enumerate(array.flatten(), 1)) # Check and Get Results if len(df_363) == 1 and len(array) == 1: dict_363 = df_363.to_dict(orient='records')[0] dict_363 = OrderedDict(sorted(dict_363.items(), key=lambda x: df_363.columns.get_loc(x[0]))) return dict_363 elif len(df_363) > 1 and len(array) > 1 and condicao is not None: try: # Filtra a Condição #condicao = df_357['condicao'].values[condicao] df_363 = df_363.loc[(df_363['condicao'] == dict_condicao[int(condicao)])] dict_363 = df_363.to_dict(orient='records')[0] dict_363 = OrderedDict(sorted(dict_363.items(), key=lambda x: df_363.columns.get_loc(x[0]))) return dict_363 except Exception as e: #print(e) print('A condição definida foi "{}".\nAs opções possíveis são:\n'.format(condicao)) print(*('{} - {}'.format(k, v) for k,v in dict_condicao.items()), sep='\n') else: print('Parâmetro "{}" tem mais de um registro.\nFaz-se necessário definir condição!\n'.format(parametro)) print(*('{} - {}'.format(k, v) for k,v in dict_condicao.items()), sep='\n') def set_type_desconformidade(dict_363): if pd.isnull(dict_363['valor_minimo_permitido']) & pd.notnull(dict_363['valor_maximo_permitido']): #print('Parâmetro só tem "valor máximo". Caso o valor medido esteja acima, é amostra desconforme!') tipo_363 = 'acima>desconforme' elif pd.notnull(dict_363['valor_minimo_permitido']) & pd.isnull(dict_363['valor_maximo_permitido']): #print('Parâmetro só tem "valor mínimo". Caso o valor medido esteja abaixo, é amostra desconforme!') tipo_363 = 'abaixo>desconforme' elif pd.notnull(dict_363['valor_minimo_permitido']) & pd.notnull(dict_363['valor_maximo_permitido']): #print('Parâmetro tem "valor mínimo" e "valor máximo". Caso o valor medido acima ou abaixo, é amostra desconforme!') tipo_363 = 'abaixo_acima>desconforme' elif
pd.isnull(dict_363['valor_minimo_permitido'])
pandas.isnull
import os from io import BytesIO import zipfile import time import warnings import json from pathlib import Path import argparse import requests import pandas as pd import geopandas as gpd import fiona DATA_DIR = Path(os.path.dirname(__file__), "../data") RAW_DIR = Path(DATA_DIR, "raw") PROCESSED_DIR = Path(DATA_DIR, "processed") def load_gdf(path, epsg=27700): gdf = gpd.read_file(path) gdf.to_crs(epsg=epsg, inplace=True) return gdf def download_la_shape(lad20cd="E08000021", overwrite=False): save_path = Path(PROCESSED_DIR, lad20cd, "la_shape", "la.shp") if os.path.exists(save_path) and not overwrite: return gpd.read_file(save_path) os.makedirs(save_path.parent, exist_ok=True) # From https://geoportal.statistics.gov.uk/datasets/ons::local-authority-districts-december-2020-uk-bgc/about base = "https://services1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/rest/services/Local_Authority_Districts_December_2020_UK_BGC/FeatureServer/0" query = ( f"query?where=LAD20CD%20%3D%20%27{lad20cd}%27&outFields=*&outSR=27700&f=json" ) url = f"{base}/{query}" la = query_ons_records(url, save_path=None) la = columns_to_lowercase(la) la = la[["geometry", "lad20cd", "lad20nm"]] la.to_file(save_path) return la def lad20cd_to_lad11cd(lad20cd, mappings=None): if mappings is None: mappings = download_oa_mappings() return mappings[mappings.lad20cd == lad20cd]["lad11cd"].unique() def lad11cd_to_lad20cd(lad11cd, mappings=None): if mappings is None: mappings = download_oa_mappings() return mappings[mappings.lad11cd == lad11cd]["lad20cd"].unique() def lad20nm_to_lad20cd(lad20nm, mappings=None): if mappings is None: mappings = download_oa_mappings() return mappings[mappings.lad20nm == lad20nm]["lad20cd"].iloc[0] def lad20cd_to_lad20nm(lad20cd, mappings=None): if mappings is None: mappings = download_oa_mappings() return mappings[mappings.lad20cd == lad20cd]["lad20nm"].iloc[0] def lad11nm_to_lad11cd(lad11nm, mappings=None): if mappings is None: mappings = download_oa_mappings() return mappings[mappings.lad11nm == lad11nm]["lad11cd"].iloc[0] def download_oa_shape(lad11cd="E08000021", lad20cd=None, overwrite=False): if isinstance(lad11cd, str): lad11cd = [lad11cd] if lad20cd is None: lad20cd = lad11cd_to_lad20cd(lad11cd[0])[0] save_path = Path(PROCESSED_DIR, lad20cd, "oa_shape", "oa.shp") if os.path.exists(save_path) and not overwrite: return gpd.read_file(save_path) os.makedirs(save_path.parent, exist_ok=True) oa = [] for la in lad11cd: # From https://geoportal.statistics.gov.uk/datasets/ons::output-areas-december-2011-boundaries-ew-bgc-1/about url = f"https://ons-inspire.esriuk.com/arcgis/rest/services/Census_Boundaries/Output_Area_December_2011_Boundaries/FeatureServer/2/query?where=lad11cd%20%3D%20'{la}'&outFields=*&outSR=27700&f=json" oa.append(query_ons_records(url, save_path=None)) oa = pd.concat(oa) oa = columns_to_lowercase(oa) oa = oa[["oa11cd", "geometry"]] oa.to_file(save_path) return oa def download_oa_mappings(overwrite=False): save_path = Path(RAW_DIR, "oa_mappings.csv") if os.path.exists(save_path) and not overwrite: return pd.read_csv(save_path, dtype=str) # 2011 # https://geoportal.statistics.gov.uk/datasets/ons::output-area-to-lower-layer-super-output-area-to-middle-layer-super-output-area-to-local-authority-district-december-2011-lookup-in-england-and-wales/about url = "https://opendata.arcgis.com/api/v3/datasets/6ecda95a83304543bc8feedbd1a58303_0/downloads/data?format=csv&spatialRefId=4326" df2011 = pd.read_csv(url) df2011.drop("ObjectId", axis=1, inplace=True) # 2020 # https://geoportal.statistics.gov.uk/datasets/ons::output-area-to-lower-layer-super-output-area-to-middle-layer-super-output-area-to-local-authority-district-december-2020-lookup-in-england-and-wales/about url = "https://opendata.arcgis.com/api/v3/datasets/65664b00231444edb3f6f83c9d40591f_0/downloads/data?format=csv&spatialRefId=4326" df2020 =
pd.read_csv(url)
pandas.read_csv
# coding: utf-8 # In[193]: #Libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib import style import plotly import plotly.plotly as py import plotly.tools as tls import plotly.graph_objs as go import time import pandas_datareader as web # Package and modules for importing data; import datetime import requests import json as js import csv # In[195]: # Calling API for Microsoft stock prices headers = { 'X-API-KEY': 'Get API key', } API_KEY = 'Get API key' url = 'https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=MSFT&outputsize=full&apikey='+API_KEY api_call=requests.get(url, headers=headers) file1 = api_call.text file1=js.loads(api_call.text) # In[197]: file1['Time Series (Daily)']['2017-07-27'] # In[198]: # To write into csv from datetime import datetime csv.writer(open("data.csv", "wb"), dialect="excel") x = file1 #f = csv.writer(open("abc.csv", "")) # Write CSV Header, If you dont need that, remove this line #f.writerow(["pk", "model", "codename", "name", "content_type"]) temp_data = file1['Time Series (Daily)'] with open('Microsoft_stock.csv','w') as f: writ = csv.writer(f) label=('Date','Open','High','Low','Close','Volume') writ.writerow(label) for temp_date in temp_data: datetime_object = datetime.strptime(temp_date, '%Y-%m-%d') fields =[datetime_object, float(temp_data[temp_date]['1. open']), float(temp_data[temp_date]['2. high']), float(temp_data[temp_date]['3. low']), float(temp_data[temp_date]['4. close']), float(temp_data[temp_date]['5. volume'])] # print (fields) with open('Microsoft_stock.csv','a') as f: writ = csv.writer(f) writ.writerow(fields) # In[199]: # Changing time to Day Month Year format temp_data = file1['Time Series (Daily)'] for temp_date in temp_data: datetime_object = datetime.strptime(temp_date, '%Y-%m-%d') (datetime_object) # In[200]: Microsoft.dropna(inplace=True) Microsoft=pd.read_csv('Microsoft_stock.csv', parse_dates=True, index_col=0 ) print(Microsoft.head(5)) # In[201]: Microsoft.index.values # In[202]: #Cleaning the index values. Changing time to Day Month Year format Address_M='Microsoft_stock.csv' Microsoft=pd.read_csv(Address_M) Microsoft['Date'] = pd.to_datetime(Microsoft['Date']).apply(lambda x: x.strftime('%Y-%m-%d')if not pd.isnull(x) else '') # In[203]: Microsoft[['High','Low']].plot() plt.show() print() # In[204]: a=Microsoft['Date'] b=Microsoft['High'] trace= go.Scatter(x=a,y=b) data=[trace] py.iplot(data, filename='Microsoft') # In[205]: # Calling API for Apple's stock prices headers = { 'X-API-KEY': 'Get api key ', } API_KEY = 'Get api key' url = 'https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=AAPL&outputsize=ful&apikey='+API_KEY api_call=requests.get(url, headers=headers) file2 = api_call.text file2=js.loads(api_call.text) # In[206]: # To write into csv csv.writer(open("data.csv", "wb"), dialect="excel") x = file2 temp_data = file2['Time Series (Daily)'] with open('Apple_stock.csv','w') as f: writ = csv.writer(f) label=('Date','Open','High','Low','Close','Volume') writ.writerow(label) for temp_date in temp_data: datetime_object = datetime.strptime(temp_date, '%Y-%m-%d') fields =[datetime_object, float(temp_data[temp_date]['1. open']), float(temp_data[temp_date]['2. high']), float(temp_data[temp_date]['3. low']), float(temp_data[temp_date]['4. close']), float(temp_data[temp_date]['5. volume'])] # print (fields) with open('Apple_stock.csv','a') as f: writ = csv.writer(f) writ.writerow(fields) # In[207]: # Changing time to Day Month Year format temp_data = file2['Time Series (Daily)'] for temp_date in temp_data: datetime_object = datetime.strptime(temp_date, '%Y-%m-%d') (datetime_object) # In[208]: Apple.dropna(inplace=True) Apple=pd.read_csv('Apple_stock.csv', parse_dates=True, index_col=0 ) # In[209]: #Cleaning the index values. Changing time to Day Month Year format Address_A='Apple_stock.csv' Apple=pd.read_csv(Address_A) Apple['Date'] = pd.to_datetime(Apple['Date']).apply(lambda x: x.strftime('%Y-%m-%d')if not pd.isnull(x) else '') # In[210]: a=Apple['Date'] b=Apple['High'] trace= go.Scatter(x=a,y=b) data=[trace] py.iplot(data, filename='Apple') # In[211]: # Calling API for Facebook stock prices headers = { 'X-API-KEY': 'Get API key', } API_KEY = 'Get API key' url = 'https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=FB&outputsize=full&apikey='+API_KEY api_call=requests.get(url, headers=headers) file3 = api_call.text file3=js.loads(api_call.text) # In[212]: # To write into csv csv.writer(open("data.csv", "wb"), dialect="excel") x = file3 temp_data = file3['Time Series (Daily)'] with open('Facebook_stock.csv','w') as f: writ = csv.writer(f) label=('Date','Open','High','Low','Close','Volume') writ.writerow(label) for temp_date in temp_data: datetime_object = datetime.strptime(temp_date, '%Y-%m-%d') fields =[datetime_object, float(temp_data[temp_date]['1. open']), float(temp_data[temp_date]['2. high']), float(temp_data[temp_date]['3. low']), float(temp_data[temp_date]['4. close']), float(temp_data[temp_date]['5. volume'])] # print (fields) with open('Facebook_stock.csv','a') as f: writ = csv.writer(f) writ.writerow(fields) # In[213]: # Changing time to Day Month Year format temp_data = file3['Time Series (Daily)'] for temp_date in temp_data: datetime_object = datetime.strptime(temp_date, '%Y-%m-%d') (datetime_object) # In[214]: Facebook = pd.read_csv('Facebook_stock.csv', parse_dates=True, index_col=0 ) Facebook.dropna(inplace=True) # In[215]: #Cleaning the index values. Changing time to Day Month Year format Address_F='Facebook_stock.csv' Facebook=pd.read_csv(Address_F) Facebook['Date'] = pd.to_datetime(Facebook['Date']).apply(lambda x: x.strftime('%Y-%m-%d')if not pd.isnull(x) else '') # In[216]: a=Facebook['Date'] b=Facebook['High'] trace= go.Scatter(x=a,y=b) data=[trace] py.iplot(data, filename='Facebook') # In[217]: # Calling API for Google stock prices headers = { 'X-API-KEY': 'Get API key', } API_KEY = 'Get API key' url = 'https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=GOOG&outputsize=full&apikey='+API_KEY api_call=requests.get(url, headers=headers) file4 = api_call.text file4=js.loads(api_call.text) a=file4['Time Series (Daily)'] # In[218]: x = file4 temp_data = file4['Time Series (Daily)'] with open('Google_stock.csv','w') as f: writ = csv.writer(f) label=('Date','Open','High','Low','Close','Volume') writ.writerow(label) for temp_date in temp_data: datetime_object = datetime.strptime(temp_date, '%Y-%m-%d') fields =[datetime_object, float(temp_data[temp_date]['1. open']), float(temp_data[temp_date]['2. high']), float(temp_data[temp_date]['3. low']), float(temp_data[temp_date]['4. close']), float(temp_data[temp_date]['5. volume'])] # print (fields) with open('Google_stock.csv','a') as f: writ = csv.writer(f) writ.writerow(fields) # In[219]: # Changing time to Day Month Year format temp_data = file4['Time Series (Daily)'] for temp_date in temp_data: datetime_object = datetime.strptime(temp_date, '%Y-%m-%d') (datetime_object) # In[220]: Google = pd.read_csv('Google_stock.csv', parse_dates=True, index_col=0 ) Google.dropna(inplace=True) # In[221]: #Cleaning the index values. Changing time to Day Month Year format Address_G='Google_stock.csv' Google=pd.read_csv(Address_G) Google['Date'] = pd.to_datetime(Google['Date']).apply(lambda x: x.strftime('%Y-%m-%d')if not pd.isnull(x) else '') # In[222]: a=Google['Date'] b=Google['High'] trace= go.Scatter(x=a,y=b) data=[trace] py.iplot(data, filename='Google') # In[224]: # Calling API for Disney stock prices headers = { 'X-API-KEY': 'Get API key', } API_KEY = 'Get API key' url = 'https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=DIS&outputsize=full&apikey='+API_KEY api_call=requests.get(url, headers=headers) file5 = api_call.text file5=js.loads(api_call.text) # In[225]: # To write into csv csv.writer(open("data.csv", "wb"), dialect="excel") x = file5 temp_data = file5['Time Series (Daily)'] with open('Disney_stock.csv','w') as f: writ = csv.writer(f) label=('Date','Open','High','Low','Close','Volume') writ.writerow(label) for temp_date in temp_data: datetime_object = datetime.strptime(temp_date, '%Y-%m-%d') fields =[datetime_object, float(temp_data[temp_date]['1. open']), float(temp_data[temp_date]['2. high']), float(temp_data[temp_date]['3. low']), float(temp_data[temp_date]['4. close']), float(temp_data[temp_date]['5. volume'])] # print (fields) with open('Disney_stock.csv','a') as f: writ = csv.writer(f) writ.writerow(fields) # In[226]: # Changing time to Day Month Year format temp_data = file5['Time Series (Daily)'] for temp_date in temp_data: datetime_object = datetime.strptime(temp_date, '%Y-%m-%d') (datetime_object) # In[227]: Disney = pd.read_csv('Disney_stock.csv', parse_dates=True, index_col=0 ) Disney.dropna(inplace=True) # In[228]: #Cleaning the index values. Changing time to Day Month Year format Address_D='Disney_stock.csv' Disney=pd.read_csv(Address_D) Disney['Date'] = pd.to_datetime(Disney['Date']).apply(lambda x: x.strftime('%Y-%m-%d')if not pd.isnull(x) else '') # In[230]: a=Disney['Date'] b=Disney['High'] trace= go.Scatter(x=a,y=b) data=[trace] py.iplot(data, filename='Disney') # In[231]: # Calling API for Netflix stock prices headers = { 'X-API-KEY': 'Get API key', } API_KEY = 'Get API key' url = 'https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=NFLX&outputsize=full&apikey='+API_KEY api_call=requests.get(url, headers=headers) file6 = api_call.text file6=js.loads(api_call.text) # In[232]: # To write into csv csv.writer(open("data.csv", "wb"), dialect="excel") x = file6 temp_data = file6['Time Series (Daily)'] with open('Netflix_stock.csv','w') as f: writ = csv.writer(f) label=('Date','Open','High','Low','Close','Volume') writ.writerow(label) for temp_date in temp_data: datetime_object = datetime.strptime(temp_date, '%Y-%m-%d') fields =[datetime_object, float(temp_data[temp_date]['1. open']), float(temp_data[temp_date]['2. high']), float(temp_data[temp_date]['3. low']), float(temp_data[temp_date]['4. close']), float(temp_data[temp_date]['5. volume'])] # print (fields) with open('Netflix_stock.csv','a') as f: writ = csv.writer(f) writ.writerow(fields) # In[233]: # Changing time to Day Month Year format temp_data = file6['Time Series (Daily)'] for temp_date in temp_data: datetime_object = datetime.strptime(temp_date, '%Y-%m-%d') (datetime_object) # In[234]: Netflix = pd.read_csv('Netflix_stock.csv', parse_dates=True, index_col=0 ) Netflix.dropna(inplace=True) # In[235]: #Cleaning the index values. Changing time to Day Month Year format Address_N='Netflix_stock.csv' Netflix=pd.read_csv(Address_N) Netflix['Date'] = pd.to_datetime(Netflix['Date']).apply(lambda x: x.strftime('%Y-%m-%d')if not pd.isnull(x) else '') # In[236]: a=Netflix['Date'] b=Netflix['High'] trace= go.Scatter(x=a,y=b) data=[trace] py.iplot(data, filename='Netflix') # In[237]: # Calling API for Amazon stock prices headers = { 'X-API-KEY': 'Get API key', } API_KEY = 'Get API key' url = 'https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=AMZN&outputsize=full&apikey='+API_KEY api_call=requests.get(url, headers=headers) file7 = api_call.text file7 =js.loads(api_call.text) # In[238]: # To write into csv csv.writer(open("data.csv", "wb"), dialect="excel") x = file7 temp_data = file7['Time Series (Daily)'] with open('Amazon_stock.csv','w') as f: writ = csv.writer(f) label=('Date','Open','High','Low','Close','Volume') writ.writerow(label) for temp_date in temp_data: datetime_object = datetime.strptime(temp_date, '%Y-%m-%d') fields =[datetime_object, float(temp_data[temp_date]['1. open']), float(temp_data[temp_date]['2. high']), float(temp_data[temp_date]['3. low']), float(temp_data[temp_date]['4. close']), float(temp_data[temp_date]['5. volume'])] # print (fields) with open('Amazon_stock.csv','a') as f: writ = csv.writer(f) writ.writerow(fields) # In[239]: # Changing time to Day Month Year format temp_data = file7['Time Series (Daily)'] for temp_date in temp_data: datetime_object = datetime.strptime(temp_date, '%Y-%m-%d') (datetime_object) # In[240]: Amazon = pd.read_csv('Amazon_stock.csv', parse_dates=True, index_col=0 ) Amazon.dropna(inplace=True) # In[241]: #Cleaning the index values. Changing time to Day Month Year format Address_A='Amazon_stock.csv' Amazon=pd.read_csv(Address_A) Amazon['Date'] =
pd.to_datetime(Amazon['Date'])
pandas.to_datetime
#Rule 1 - Perfect excel format no extra spaces. - No leading and trailing spaces in the column names. No leading and trailing zeros. Please make sure you delete any unwanted spaces in TEXT . def perfect_excel_format(fle, fleName, target): import re import os import sys import json import openpyxl import pandas as pd from pandas import ExcelWriter from pandas import ExcelFile from dateutil.parser import parse import validators file_name="Perfect_Excel_format.py" configFile = 'https://s3.us-east.cloud-object-storage.appdomain.cloud/sharad-saurav-bucket/Configuration.xlsx' rule="Perfect_Excel_format" config=pd.read_excel(configFile) newdf=config[config['RULE']==rule] to_check='' for index,row in newdf.iterrows(): to_check=row['TO_CHECK'] to_check=json.loads(to_check) files_to_apply=to_check['files_to_apply'] columns_to_match=to_check['columns_to_match'] if(files_to_apply=='ALL' or fleName in files_to_apply): data=[] regex = re.compile('[@!#$%^&*()<>?/\|}{~:]') cols = {} df = pd.read_excel(fle) df.index = range(2,df.shape[0]+2) columns=df.columns for col in columns: if(col.startswith(' ')): entry=[index,fleName,col+' has leading spaces'] print('Column name '+col+' in the file '+fleName+' has leading spaces') data.append(entry) if(col.endswith(' ')): entry=[index,fleName,col+' has trailing spaces'] print('Column name '+col+' in the file '+fleName+' has trailing spaces') data.append(entry) if(regex.search(col) != None): entry=[index,fleName,col+' has special characters'] print('Column name '+col+' in the file '+fleName+' has special characters') data.append(entry) if(col.startswith('0')): entry=[index,fleName,col+' has leading zeros'] print('Column name '+col+' in the file '+fleName+' has leading zeros') data.append(entry) if(col.endswith('0')): entry=[index,fleName,col+' has trailing zeros'] print('Column name '+col+' in the file '+fleName+' has trailing zeros') data.append(entry) #Rule - Check if the columns satisfies the data structure of all the data files for key,value in cols.items(): cols_value=columns_to_match[key] if(sorted(cols_value)!=sorted(value.to_list())): entry=[index,fleName,key+' does not match the structure of the data file'] print('The columns of the '+key+' does not match the structure of the data file') df1 = pd.DataFrame(data, columns = ['ROW_NO', 'FILE_NAME', 'COMMENTS']) if(
ExcelFile(target)
pandas.ExcelFile
import os from io import StringIO from pathlib import Path import pandas as pd import pandas._testing as pt import pytest from pyplotutil.datautil import Data, DataSet csv_dir_path = os.path.join(os.path.dirname(__file__), "data") test_data = """\ a,b,c,d,e 1,0.01,10.0,3.5,100 2,0.02,20.0,7.5,200 3,0.03,30.0,9.5,300 4,0.04,40.0,11.5,400 """ test_dataset = """\ tag,a,b,c,d,e tag01,0,1,2,3,4 tag01,5,6,7,8,9 tag01,10,11,12,13,14 tag01,15,16,17,18,19 tag01,20,21,22,23,24 tag01,25,26,27,28,29 tag02,10,11,12,13,14 tag02,15,16,17,18,19 tag02,110,111,112,113,114 tag02,115,116,117,118,119 tag02,120,121,122,123,124 tag02,125,126,127,128,129 tag03,20,21,22,23,24 tag03,25,26,27,28,29 tag03,210,211,212,213,214 tag03,215,216,217,218,219 tag03,220,221,222,223,224 tag03,225,226,227,228,229 """ @pytest.mark.parametrize("cls", [str, Path]) def test_data_init_path(cls) -> None: csv_path = os.path.join(csv_dir_path, "test.csv") path = cls(csv_path) expected_df = pd.read_csv(csv_path) data = Data(path) assert data.datapath == Path(csv_path) pt.assert_frame_equal(data.dataframe, expected_df) def test_data_init_StringIO() -> None: csv_path = os.path.join(csv_dir_path, "test.csv") expected_df = pd.read_csv(csv_path) data = Data(StringIO(test_data)) assert data.datapath is None pt.assert_frame_equal(data.dataframe, expected_df) def test_data_init_DataFrame() -> None: csv_path = os.path.join(csv_dir_path, "test.csv") expected_df = pd.read_csv(csv_path) if isinstance(expected_df, pd.DataFrame): data = Data(expected_df) assert data.datapath is None pt.assert_frame_equal(data.dataframe, expected_df) else: pytest.skip(f"Expected DataFram type: {type(expected_df)}") def test_data_init_kwds() -> None: csv_path = os.path.join(csv_dir_path, "test.csv") expected_df = pd.read_csv(csv_path, usecols=[0, 1]) data = Data(csv_path, usecols=[0, 1]) assert len(data.dataframe.columns) == 2 pt.assert_frame_equal(data.dataframe, expected_df) def test_data_getitem() -> None: df = pd.DataFrame([[0, 1, 2], [3, 4, 5], [6, 7, 8]], columns=["a", "b", "c"]) data = Data(df) pt.assert_series_equal(data["a"], df.a) # type: ignore pt.assert_series_equal(data["b"], df.b) # type: ignore pt.assert_series_equal(data["c"], df.c) # type: ignore def test_data_getitem_no_header() -> None: df = pd.DataFrame([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) data = Data(df)
pt.assert_series_equal(data[0], df[0])
pandas._testing.assert_series_equal
## # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## ''' Run test: >> pytest -q python/test/test_aggregate.py ''' import numpy as np import pyarrow as pa import pandas as pd import pycylon as cn from pycylon import CylonContext def test_aggregate(): ctx: CylonContext = CylonContext(config=None, distributed=False) columns = 2 data1 = np.array([0, 1, 2, 3, 4, 5], dtype=np.int32) data2 = np.array([10, 11, 12, 13, 14, 15], dtype=np.float32) nd_array_list = [data1, data2] ar_array: pa.array = pa.array(nd_array_list) ar_table: pa.Table = pa.Table.from_arrays(nd_array_list, names=['x0', 'x1']) ar1 = pa.array([1, 2, 3, 4]) ar2 = pa.array(['a', 'b', 'c', 'd']) ar_tb2: pa.Table = pa.Table.from_arrays([ar1, ar2], names=['col1', 'col2']) assert isinstance(ar_tb2, pa.Table) col_names = ['col1', 'col2'] cn_tb1 = cn.Table.from_numpy(ctx, col_names, nd_array_list) assert cn_tb1.row_count == data1.shape[0] and cn_tb1.column_count == len(nd_array_list) data_list = [[1, 2, 3, 4], ['p', 'q', 'r', 's']] cn_tb2 = cn.Table.from_list(ctx, col_names, data_list) assert cn_tb2.row_count == len(data_list[0]) and cn_tb2.column_count == len(data_list) dict1 = {'col1': [1, 2], 'col2': ['a', 'b']} ar_tb3: pa.Table = pa.Table.from_pydict(dict1) cn_tb3: cn.Table = cn.Table.from_pydict(ctx, dict1) assert cn_tb3.row_count == len(dict1['col1']) and cn_tb3.column_count == len(dict1) pdf =
pd.DataFrame(dict1)
pandas.DataFrame
import glob import datetime import os import pandas as pd import numpy as np import re from tkinter import filedialog from tkinter import * from tkinter import ttk from tkinter import messagebox # pyinstaller --onefile --noconsole --icon GetCSV.ico Arca_GetCSVConverter_2-0-0.py #for MMW 18-6 spreadsheets probCol = False #infer desktop desktopPath = os.path.expanduser("~/Desktop/") filelist=[''] probRecords = [] probColls = [] #filename = r'arms_modsonly_May9.csv' col_names = ["IslandoraContentModel","BCRDHSimpleObjectPID",'imageLink','filename','directory','childKey','title', 'alternativeTitle', 'creator1', 'creator2','creator3'] col_names += ['corporateCreator1','corporateCreator2','contributor1','contributor2','corporateContributor1','publisher_original','publisher_location'] col_names += ['dateCreated','description','extent','topicalSubject1','topicalSubject2','topicalSubject3','topicalSubject4','topicalSubject5'] col_names += ['geographicSubject1','coordinates','personalSubject1','personalSubject2','corporateSubject1','corporateSubject2', 'dateIssued_start'] col_names += ['dateIssued_end','dateRange', 'frequency','genre','genreAuthority','type','internetMediaType','language1','language2','notes'] col_names += ['accessIdentifier','localIdentifier','ISBN','classification','URI'] col_names += ['source','rights','creativeCommons_URI','rightsStatement_URI','relatedItem_title','relatedItem_PID','recordCreationDate','recordOrigin'] pattern1 = r'^[A-Z][a-z]{2}-\d{2}$' #%b-%Y date (e.g. Jun-17) pattern2 = r'^\d{2}-\d{2}-[1-2]\d{3}$' contentModels = { r"info:fedora/islandora:sp_large_image_cmodel": "Large Image", r"info:fedora/islandora:sp_basic_image": "Basic Image", r"info:fedora/islandora:bookCModel": "Book", r"info:fedora/islandora:newspaperIssueCModel":"Newspaper - issue", r"info:fedora/islandora:newspaperPageCModel":"Newspaper", r"info:fedora/islandora:sp_PDF":"PDF", r"info:fedora/islandora:sp-audioCModel":"Audio", r"info:fedora/islandora:sp_videoCModel":"Video", r"info:fedora/islandora:sp_compoundCModel":"Compound", r"info:fedora/ir:citationCModel":"Citation" } def browse_button(): # Allow user to select a directory and store it in global var # called folder_path1 lbl1['text'] = "" csvname = filedialog.askopenfilename(initialdir = desktopPath,title = "Select file",filetypes = (("csv files","*.csv"),("all files","*.*"))) if ".csv" not in csvname: lbl1['text'] = "**Please choose a file with a .csv extension!" else: filelist[0] = csvname lbl1['text'] = csvname def splitMultiHdgs(hdgs): if pd.notna(hdgs): hdgs = hdgs.replace("\\,",";") hdgs = hdgs.split(",") newhdgs = [] for hdg in hdgs: newhdg = hdg.replace(";", ",") newhdgs.append(newhdg) return newhdgs else: return None def getMultiVals(item, string, df, pd): hdgs = df.filter(like=string).columns for hdg in hdgs: vals = df.at[item.Index,hdg] if pd.notna(vals): vals = splitMultiHdgs(vals) return vals return None def convert_date(dt_str, letter_date): """ Converts an invalid formatted date into a proper date for ARCA Mods Correct format: Y-m-d Fixes: Incorrect format: m-d-Y Incorrect format (letter date): m-d e.g. Jun-17 :param dt_str: the date string :param letter_date: whether the string is a letter date. Letter date is something like Jun-17 :return: the correctly formatted date """ if letter_date: rev_date = datetime.datetime.strptime(dt_str, '%b-%y').strftime('%Y-%m') # convert date to yymm string format rev_date_pts = rev_date.split("-") year_num = int(rev_date_pts[0]) if year_num > 1999: year_num = year_num - 100 year_str = str(year_num) rev_date_pts[0] = year_str revised = "-".join(rev_date_pts) else: revised = datetime.datetime.strptime(dt_str, '%d-%m-%Y').strftime( '%Y-%m-%d') # convert date to YY-mm string format return revised def sortValues(lst): for item in lst: if pd.isna(item): lst.remove(item) lst = set(lst) lst = list(lst) return lst def dropNullCols(df): nullcols = [] for col in df.columns: notNull = df[col].notna().sum() if notNull < 1: nullcols.append(col) return nullcols def convert(): probCol = False df2 = pd.DataFrame(columns = col_names) df2.append(pd.Series(), ignore_index=True) f=filelist[0] # if not os.path.exists(savePath): #if folder does not exist # os.makedirs(savePath) try: df = pd.read_csv(f,dtype = "string", encoding = 'utf_7') except UnicodeDecodeError: df = pd.read_csv(f,dtype = "string", encoding = 'utf_8') nullcols = dropNullCols(df) df.drop(nullcols, axis=1, inplace=True) i = 1 for item in df.itertuples(): #PID df2.at[i, 'BCRDHSimpleObjectPID'] = item.PID if 'mods_subject_name_personal_namePart_ms' in df.columns: pNames = item.mods_subject_name_personal_namePart_ms #ContentModel cModel = item.RELS_EXT_hasModel_uri_s df2.at[i,"IslandoraContentModel"] =contentModels[cModel] #Local Identifier if 'mods_identifier_local_ms' in df.columns: localID = item.mods_identifier_local_ms if pd.notna(localID) and localID != "None": df2.at[i,'localIdentifier'] = localID #Access Identifer if 'mods_identifier_access_ms' in df.columns: accessID = item.mods_identifier_access_ms if pd.notna(accessID): df2.at[i,'accessIdentifier'] = accessID #Image Link # Link to Image PIDparts = item.PID.split(":") repo = PIDparts[0] #repository code num = PIDparts[1] #auto-generated accession number imageLink = "https://bcrdh.ca/islandora/object/" + repo + "%3A" + num df2.at[i, 'imageLink'] = imageLink #Title if 'mods_titleInfo_title_ms' in df.columns: title = item.mods_titleInfo_title_ms if pd.notna(title): df2.at[i,'title'] = title.replace("\,",",") #Alternative Title if "mods_titleInfo_alternative_title_ms" in df.columns: altTitle = item.mods_titleInfo_alternative_title_ms if pd.notna(altTitle): df2.at[i, 'alternativeTitle'] = altTitle.replace("\,",",") #Date if "mods_originInfo_dateIssued_ms" in df.columns: dt = item.mods_originInfo_dateIssued_ms if pd.notna(dt): if (re.match(pattern1, dt)): #letter date, i.e. Jun-17 dt = convert_date(dt, True) elif (re.match(pattern2, dt)): #reverse date dt = convert_date(dt, False) df2.at[i,'dateCreated'] = dt #Date Issued Start if 'mods_originInfo_encoding_w3cdtf_keyDate_yes_point_start_dateIssued_ms' in df.columns: startDt = item.mods_originInfo_encoding_w3cdtf_keyDate_yes_point_start_dateIssued_ms if pd.notna(startDt): df2.at[i,'dateIssued_start'] = startDt #Date Issued End if 'mods_originInfo_encoding_w3cdtf_keyDate_yes_point_end_dateIssued_ms' in df.columns: endDt = item.mods_originInfo_encoding_w3cdtf_keyDate_yes_point_end_dateIssued_ms if pd.notna(endDt): df2.at[i,'dateIssued_end'] = startDt #Publisher if 'mods_originInfo_publisher_ms' in df.columns: pub = item.mods_originInfo_publisher_ms if pd.notna(pub): df2.at[i, 'publisher_original'] = pub #Publisher Location if 'mods_originInfo_place_placeTerm_text_ms' in df.columns: place = item.mods_originInfo_place_placeTerm_text_ms if pd.notna(place): df2.at[i,'publisher_location'] = place #Frequency (serials only) if 'mods_originInfo_frequency_ms' in df.columns: freq = item.mods_originInfo_frequency_ms if
pd.notna(freq)
pandas.notna
from pypowerbifix.client import PowerBIClient from pypowerbifix.activity_logs import ActivityLogs from datetime import datetime import pandas as pd from Credentials import client_id, username, password # create your powerbi api client client = PowerBIClient.get_client_with_username_password(client_id=client_id, username=username, password=password) # When testing, only logs from December 15th, 2019 and later were available. This may change in the future though. dt = datetime(2019, 12, 16) logs = client.activity_logs.get_activity_logs(dt) print(logs) pandas_installed = True try: import pandas as pd
pd.set_option('display.max_columns', 500)
pandas.set_option
import itertools import click import click_log from datetime import datetime from dotenv import load_dotenv import os import pandas as pd from pathlib import Path from .core import estimate_tray_centroids, extract_tray_carry_events_from_inferred, infer_tray_interactions, fetch_cuwb_data, fetch_cuwb_data_from_datapoints, fetch_motion_features, generate_human_activity_groundtruth, generate_human_activity_model, generate_tray_carry_groundtruth, generate_tray_carry_model, infer_human_activity, infer_tray_carry, pose_data_with_body_centroid from .utils.io import load_csv, read_generic_pkl, write_cuwb_data_pkl, write_datafile_to_csv, write_generic_pkl from .utils.log import logger from .uwb_predict_tray_centroids import validate_tray_centroids_dataframe now = datetime.now().strftime("%Y-%m-%dT%H:%M:%S") valid_date_formats = list(itertools.chain.from_iterable( map(lambda d: ["{}".format(d), "{}%z".format(d), "{} %Z".format(d)], ['%Y-%m-%dT%H:%M:%S', '%Y-%m-%d %H:%M:%S']))) _cli_options_env_start_end = [ click.option("--environment", type=str, required=True), click.option("--start", type=click.DateTime(formats=valid_date_formats), required=True, help="Filter is passed to remote query or used to filter --cuwb-data (if --cuwb-data is provided)"), click.option("--end", type=click.DateTime(formats=valid_date_formats), required=True, help="Filter is passed to remote query or used to filter --cuwb-data (if --cuwb-data is provided)") ] _cli_options_uwb_data = [ click.option("--cuwb-data", type=click.Path(exists=True), required=False, help="Pickle formatted UWB data (create with 'fetch-cuwb-data')") ] _cli_options_uwb_motion_data = [ click.option("--motion-feature-data", type=click.Path(exists=True), required=False, help="Pickle formatted UWB motion data object (create with 'fetch-motion-features')") ] def add_options(options): def _add_options(func): for option in reversed(options): func = option(func) return func return _add_options def _load_model_and_scaler(model_path, feature_scaler_path=None): model = read_generic_pkl(model_path) feature_scaler = None if feature_scaler_path is not None: feature_scaler = read_generic_pkl(feature_scaler_path) return model, feature_scaler def _load_tray_positions_from_csv(tray_positions_csv): df_tray_centroids = None if tray_positions_csv is not None: try: df_tray_centroids = load_csv(tray_positions_csv) valid, msg = validate_tray_centroids_dataframe(df_tray_centroids) if not valid: logger.error(msg) return None except Exception as err: logger.error(err) return None return df_tray_centroids def _infer_tray_carry(df_tray_features, model, scaler=None): inferred = infer_tray_carry(model=model, scaler=scaler, df_tray_features=df_tray_features) df_carry_events = extract_tray_carry_events_from_inferred(inferred) if df_carry_events is None or len(df_carry_events) == 0: logger.warn("No carry events inferred") return None return df_carry_events def _infer_human_activity(df_person_features, model, scaler=None): df_person_features_with_nan = df_person_features[df_person_features.isna().any(axis=1)] devices_without_acceleration = list(pd.unique(df_person_features_with_nan['device_id'])) if len(devices_without_acceleration) > 0: logger.info("Devices dropped due to missing acceleration data: {}".format(devices_without_acceleration)) df_person_features.dropna(inplace=True) return infer_human_activity(model=model, scaler=scaler, df_person_features=df_person_features) @click.command(name="fetch-cuwb-data", help="Generate a pickled dataframe of CUWB data") @add_options(_cli_options_env_start_end) @click.option("--entity-type", type=click.Choice(['tray', 'person', 'all'], case_sensitive=False), default='all', help="CUWB entity type") @click.option("--data-type", type=click.Choice(['position', 'accelerometer', 'gyroscope', 'magnetometer', 'all'], case_sensitive=False), default='all', help="Data to return") @click.option("--data-source", type=click.Choice(['datapoints', 'imu_tables'], case_sensitive=False), default='imu_tables', help="Source data resides (datapoints was retired 03/23/2021)") @click.option("--output", type=click.Path(), default="%s/output" % (os.getcwd()), help="output folder for CUWB data, data stored in <<output>>/uwb_data/<<file>>.pkl") def cli_fetch_cuwb_data(environment, start, end, entity_type, data_type, data_source, output): uwb_output = "{}/uwb_data".format(output) Path(uwb_output).mkdir(parents=True, exist_ok=True) if data_source == 'datapoints': df = fetch_cuwb_data_from_datapoints(environment, start, end, entity_type=entity_type, data_type=data_type) else: df = fetch_cuwb_data( environment, start, end, entity_type=entity_type, data_type=data_type ) if df is None or len(df) == 0: logger.warning("No CUWB data found") return write_cuwb_data_pkl( df, filename_prefix='uwb', environment_name=environment, start_time=start, end_time=end, directory=uwb_output ) @click.command(name="fetch-motion-features", help="Generate a pickled dataframe of UWB data converted into motion features") @add_options(_cli_options_env_start_end) @add_options(_cli_options_uwb_data) @click.option("--output", type=click.Path(), default="%s/output" % (os.getcwd()), help="output folder for cuwb tray features data, features stored in <<output>>/feature_data/<<file>>.pkl") def cli_fetch_motion_features(environment, start, end, cuwb_data, output): feature_data_output = "{}/feature_data".format(output) Path(feature_data_output).mkdir(parents=True, exist_ok=True) df_uwb_data = None if cuwb_data is not None: df_uwb_data = read_generic_pkl(cuwb_data) df_uwb_data = df_uwb_data.loc[(df_uwb_data.index >= start) & (df_uwb_data.index <= end)] df_features = fetch_motion_features( environment, start, end, include_meta_fields=True, df_uwb_data=df_uwb_data ) if df_features is None or len(df_features) == 0: logger.warning("No CUWB data found") return write_cuwb_data_pkl( df_features, filename_prefix='motion-features', environment_name=environment, start_time=start, end_time=end, directory=feature_data_output ) @click.command(name="generate-tray-carry-groundtruth", help="Generate a pickled dataframe of trainable groundtruth features") @click.option("--groundtruth-csv", type=click.Path(exists=True), help="CSV formatted groundtruth data", required=True) @click.option("--output", type=click.Path(), default="%s/output" % (os.getcwd()), help="output folder, output includes data features pickle (<<output>>/groundtruth/<<now>>_tray_carry_groundtruth_features.pkl)") def cli_generate_tray_carry_groundtruth(groundtruth_csv, output): groundtruth_features_output = "{}/groundtruth".format(output) Path(groundtruth_features_output).mkdir(parents=True, exist_ok=True) df_groundtruth_features = generate_tray_carry_groundtruth(groundtruth_csv) if df_groundtruth_features is None: logger.warn("Unexpected result, unable to store groundtruth features") else: write_generic_pkl( df_groundtruth_features, "{}_tray_carry_groundtruth_features".format(now), groundtruth_features_output) @click.command(name="generate-human-activity-groundtruth", help="Generate a pickled dataframe of trainable groundtruth features") @click.option("--groundtruth-csv", type=click.Path(exists=True), help="CSV formatted groundtruth data", required=True) @click.option("--output", type=click.Path(), default="%s/output" % (os.getcwd()), help="output folder, output includes data features pickle (<<output>>/groundtruth/<<now>>_human_activity_groundtruth_features.pkl)") def cli_generate_human_activity_groundtruth(groundtruth_csv, output): groundtruth_features_output = "{}/groundtruth".format(output) Path(groundtruth_features_output).mkdir(parents=True, exist_ok=True) df_groundtruth_features = generate_human_activity_groundtruth(groundtruth_csv) if df_groundtruth_features is None: logger.warn("Unexpected result, unable to store groundtruth features") else: write_generic_pkl( df_groundtruth_features, "{}_human_activity_groundtruth_features".format(now), groundtruth_features_output) @click.command(name="train-human-activity-model", help="Train and generate a pickled model and feature scaler given groundtruth features") @click.option("--groundtruth-features", type=click.Path(exists=True), help="Pickle formatted groundtruth features data (create with 'generate-human-activity-groundtruth')") @click.option("--output", type=click.Path(), default="%s/output/models" % (os.getcwd()), help="output folder, model output includes pickled model (<<output>>/models/<<DATE>>_model.pkl) and pickled scaler (<<output>>/models/<<DATE>>_scaler.pkl)") def cli_train_human_activity_model(groundtruth_features, output): models_output = "{}/models".format(output) Path(models_output).mkdir(parents=True, exist_ok=True) df_groundtruth_features =
pd.read_pickle(groundtruth_features)
pandas.read_pickle
# -*- coding: utf-8 -*- from datetime import timedelta import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas import (Timedelta, period_range, Period, PeriodIndex, _np_version_under1p10) import pandas.core.indexes.period as period class TestPeriodIndexArithmetic(object): def test_pi_add_offset_array(self): # GH#18849 pi = pd.PeriodIndex([pd.Period('2015Q1'), pd.Period('2016Q2')]) offs = np.array([pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12)]) res = pi + offs expected = pd.PeriodIndex([pd.Period('2015Q2'), pd.Period('2015Q4')]) tm.assert_index_equal(res, expected) unanchored = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) with pytest.raises(period.IncompatibleFrequency): pi + unanchored with pytest.raises(TypeError): unanchored + pi @pytest.mark.xfail(reason='GH#18824 radd doesnt implement this case') def test_pi_radd_offset_array(self): # GH#18849 pi = pd.PeriodIndex([pd.Period('2015Q1'), pd.Period('2016Q2')]) offs = np.array([pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12)]) res = offs + pi expected = pd.PeriodIndex([pd.Period('2015Q2'), pd.Period('2015Q4')]) tm.assert_index_equal(res, expected) def test_add_iadd(self): rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) # previously performed setop union, now raises TypeError (GH14164) with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): rng += other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng + pd.offsets.YearEnd(5) expected = pd.period_range('2019', '2029', freq='A') tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng + pd.offsets.MonthEnd(5) expected = pd.period_range('2014-06', '2017-05', freq='M') tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h'), Timedelta('72:00:00')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng + delta expected = pd.period_range('2014-05-04', '2014-05-18', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23), Timedelta('23:00:00')]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm'), Timedelta(minutes=120)] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng + delta expected = pd.period_range('2014-01-01 12:00', '2014-01-05 12:00', freq='H') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's'), Timedelta(seconds=30)]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + delta with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng += delta def test_pi_add_int(self, one): # Variants of `one` for #19012 rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng + one expected = pd.period_range('2000-01-01 10:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += one tm.assert_index_equal(rng, expected) @pytest.mark.parametrize('five', [5, np.array(5, dtype=np.int64)]) def test_sub(self, five): rng = period_range('2007-01', periods=50) result = rng - five exp = rng + (-five) tm.assert_index_equal(result, exp) def test_sub_isub(self): # previously performed setop, now raises TypeError (GH14164) # TODO needs to wait on #13077 for decision on result type rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) with pytest.raises(TypeError): rng - other with pytest.raises(TypeError): rng -= other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng - pd.offsets.YearEnd(5) expected = pd.period_range('2009', '2019', freq='A') tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014', '2024', freq='A') msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng - o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng - pd.offsets.MonthEnd(5) expected = pd.period_range('2013-08', '2016-07', freq='M') tm.assert_index_equal(result, expected) rng -= pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng - o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng - delta expected = pd.period_range('2014-04-28', '2014-05-12', freq='D') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23)]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng - o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm')] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng - delta expected = pd.period_range('2014-01-01 08:00', '2014-01-05 08:00', freq='H') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's')]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + delta with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng += delta # int rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng - 1 expected = pd.period_range('2000-01-01 08:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) class TestPeriodIndexSeriesMethods(object): """ Test PeriodIndex and Period Series Ops consistency """ def _check(self, values, func, expected): idx = pd.PeriodIndex(values) result = func(idx) if isinstance(expected, pd.Index): tm.assert_index_equal(result, expected) else: # comp op results in bool tm.assert_numpy_array_equal(result, expected) s = pd.Series(values) result = func(s) exp = pd.Series(expected, name=values.name) tm.assert_series_equal(result, exp) def test_pi_ops(self): idx = PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04'], freq='M', name='idx') expected = PeriodIndex(['2011-03', '2011-04', '2011-05', '2011-06'], freq='M', name='idx') self._check(idx, lambda x: x + 2, expected) self._check(idx, lambda x: 2 + x, expected) self._check(idx + 2, lambda x: x - 2, idx) result = idx - Period('2011-01', freq='M') exp = pd.Index([0, 1, 2, 3], name='idx') tm.assert_index_equal(result, exp) result = Period('2011-01', freq='M') - idx exp = pd.Index([0, -1, -2, -3], name='idx')
tm.assert_index_equal(result, exp)
pandas.util.testing.assert_index_equal
import numpy as np import pandas as pd import pytest from etna.datasets import TSDataset from etna.datasets import generate_ar_df from etna.datasets import generate_const_df from etna.datasets import generate_periodic_df from etna.metrics import R2 from etna.models import LinearPerSegmentModel from etna.transforms import FilterFeaturesTransform from etna.transforms.encoders.categorical import LabelEncoderTransform from etna.transforms.encoders.categorical import OneHotEncoderTransform @pytest.fixture def two_df_with_new_values(): d = { "timestamp": list(
pd.date_range(start="2021-01-01", end="2021-01-03")
pandas.date_range
import math import warnings import matplotlib.pyplot as plt import numpy as np import pandas as pd import xgboost from scipy.stats import pearsonr from sklearn.linear_model import Ridge, LinearRegression, Lasso from sklearn.metrics import mean_squared_log_error from sklearn.model_selection import KFold from sklearn.pipeline import Pipeline from sklearn.preprocessing import Imputer, RobustScaler from sklearn.tree import DecisionTreeRegressor from MLE import MultiLabelEncoder warnings.filterwarnings(action="ignore", module="scipy", message="^internal gelsd") pd.set_option('display.max_rows', 1000) trainingFile = "./data/train.csv" testFile = "./data/test.csv" trainDf = pd.read_csv(trainingFile, header=0) testDf = pd.read_csv(testFile, header=0) trainDf['MoSold'] = trainDf['MoSold'].apply(str) testDf['MoSold'] = testDf['MoSold'].apply(str) target = 'SalePrice' Y = trainDf[target] def prepare_data(): training = trainDf.drop(['Id'], axis=1) testing = testDf.drop(['Id'], axis=1) str_cols = [] str_cols_idx = [] pos = 0 for c in training.columns: if c != target: if training[c].dtype == np.object: str_cols.append(c) str_cols_idx.append(pos) pos = pos + 1 print("Number of string columns %d " % len(str_cols)) # treat NaN as a different category for c in str_cols: training[c] = training[c].fillna("$NULL") testing[c] = testing[c].fillna("$NULL") # training = training.drop(training[(training['GrLivArea']>4000) & (training['SalePrice']<300000)].index) training = training.drop([target], axis=1) print(training.dtypes) print(training.head(10)) enc = MultiLabelEncoder(input_cols=np.array(str_cols_idx)) t_pipe = Pipeline(steps=[ ('catencode', enc), ('null_handler', Imputer(missing_values='NaN', strategy='mean', axis=0)), ('rs', RobustScaler()) ]) fit_pipeline = t_pipe.fit(pd.concat([training, testing], axis=0)) transformed = fit_pipeline.transform(training) transformed_test = fit_pipeline.transform(testing) print("T_TRAIN: ", transformed) print("T_TEST: ", transformed_test) return (pd.DataFrame(data=transformed, columns=training.columns), pd.DataFrame(data=transformed_test, columns=testing.columns)) def correlations(t_df): correlations = {} features = t_df.columns for f in features: if f != target: x1 = t_df[f] key = f + ' vs ' + target correlations[key] = pearsonr(x1, Y)[0] data_correlations = pd.DataFrame(correlations, index=['Value']).T sorted_c = data_correlations.loc[data_correlations['Value'].abs().sort_values(ascending=False).index] pd.set_option('display.max_rows', None) print(sorted_c) def cv(df, pipeline): iter_rmsle = [] iteration = 0 kf = KFold(n_splits=10, random_state=10) for train_idx, test_idx in kf.split(df): print("KFold iteration ", iteration) x_train, x_test = df.iloc[train_idx], df.iloc[test_idx] y_train, y_test = Y[train_idx], Y[test_idx] model = pipeline.fit(x_train, y_train) y_predict = model.predict(x_test) mse = mean_squared_log_error(y_test, y_predict) rmsle = math.sqrt(mse) print(rmsle) iter_rmsle.append(rmsle) iteration += 1 return np.mean(iter_rmsle) def select_pipeline(t_df, make_pipelines): c_df = t_df.copy() rmsles = [] pipelines = [] for pipeline in make_pipelines(): mean = cv(c_df, pipeline) print("Mean RMSLE: ", mean) rmsles.append(mean) pipelines.append(pipeline) min_index = np.argmin(rmsles) print('Min RMSLE: ', np.min(rmsles)) print('Min RMSLE index: ', min_index) best_pipeline = pipelines[min_index] print('Best pipeline', best_pipeline) best_model = best_pipeline.fit(c_df, Y) print("RMSLES : ", rmsles) return (best_model, rmsles) def decision_tree_regressor(): pipelines = [] for d in range(2, 20): est = DecisionTreeRegressor(max_depth=d, random_state=10) pipelines.append(Pipeline(steps=[('DecisionTreeRegressor', est)])) return pipelines def xgb_regressor(): pipelines = [] for l in [0, 0.5, 0.7, 1.0, 2]: est = xgboost.XGBRegressor(base_score=0.5, colsample_bylevel=1, colsample_bytree=0.8, gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=5, min_child_weight=1, missing=None, n_estimators=500, nthread=-1, objective='reg:linear', reg_alpha=l, reg_lambda=0, scale_pos_weight=1, seed=10, silent=True, subsample=1) pipelines.append(Pipeline(steps=[('XGBRegressor', est)])) return pipelines def ridge(): pipelines = [] for l in [0, 0.5, 0.7, 1.0, 1.5, 2]: est = Ridge(alpha=l, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=10, solver='auto', tol=0.0001) pipelines.append(Pipeline(steps=[('Ridge', est)])) return pipelines def linear(): pipelines = [] est = LinearRegression(normalize=False) pipelines.append(Pipeline(steps=[('LinearRegression', est)])) return pipelines def lasso(): pipelines = [] for l in [0, 0.5, 0.7, 1.0, 2.0, 3.0, 10, 20, 30, 50, 100, 300, 1000, 2000, 5000]: est = Lasso(alpha=l, max_iter=10000, tol=0.01) pipelines.append(Pipeline(steps=[('Lasso', est)])) return pipelines def predict(model, testing): sp_id = testDf['Id'] pred = model.predict(testing) result = pd.DataFrame({'Id': sp_id, 'SalePrice': pred}, index=None) print(result.head(10)) result.to_csv('./submission.csv', index=False) print("Submission file created") def stacking(training, y, test, pipelines): kf = KFold(n_splits=5, random_state=10) validation_body = { } test_body = { } for p in pipelines: validation_body['pred_' + p.steps[0][0]] = np.zeros(len(training.index)) test_body['pred_' + p.steps[0][0]] = np.zeros(len(test.index)) valid_df = pd.DataFrame(validation_body) test_df =
pd.DataFrame(test_body)
pandas.DataFrame
"""Visualizes burst data.""" import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.dates as mdates def to_pandas(ebursts, offsets, svo, unit='s'): """Exports burst and offset data to dataframes for a single term. ebursts is an edgebust dict from the SVO object offsets is an offsets dict from the SVO object """ svos = " | ".join(svo) bdf = pd.DataFrame(ebursts) bdf[1] = pd.to_datetime(bdf[1], unit=unit) bdf[2] = pd.to_datetime(bdf[2], unit=unit) bdf.columns = ['level', 'start', 'end'] bdf['svo'] = svos odf = pd.DataFrame() i = pd.to_datetime(offsets, unit='s') odf['Date'], odf['Year'], odf['Month'], odf[ 'Day'] = i.date, i.year, i.month, i.day odf = odf.set_index(i) odf['svo'] = svos return bdf, odf def plot_bursts(odf, bdf, lowest_level=0, title=True, daterange=None, xrangeoffsets=3, s=None, gamma=None): """Plots burst and offset data. odf = an offsets dataframe bdf = an edgeburst dataframe lowest_level = subset the burst dataframe with bursts greater than or equal to the specified level daterange = a tuple with two elements: a start date and end date as *strings*. format is 'year-month-day' xrangeoffsets = the number of days to add before and after the min and max x dates """ svo_title = str(set(bdf['svo']).pop()) fig, (axa, axb) = plt.subplots(2, sharey=False, sharex=True) fig.set_figwidth(10) fig.set_figheight(6) formatter = mdates.DateFormatter("%b %d\n%Y") axb.xaxis.set_major_formatter(formatter) # offsets plot day_freq = odf.resample('D').size() axa.plot(day_freq, color='#32363A') axa.xaxis.set_major_formatter(formatter) axa.xaxis_date() axa.tick_params(axis='both', which='both', length=0) axa.set_ylabel('Daily offsets') if daterange: axa.set_xlim(pd.Timestamp(daterange[0]), pd.Timestamp(daterange[1])) # bursts plot days = [day_freq.index[0]] levels = [0] for i in range(1, len(day_freq.index)): period_start = odf.resample('D').size().index[i - 1] period_end = odf.resample('D').size().index[i] max_burst = set() days.append(period_end) for j in range(len(bdf)): burst_start = bdf['start'][j] burst_end = bdf['end'][j] level = bdf['level'][j] if burst_end < period_start or period_end < burst_start : pass else: max_burst.add(level) levels.append(max(max_burst)) finaldf = pd.DataFrame({"start": days, "level": levels}) if lowest_level > 0: bdf = bdf[bdf['level'] >= lowest_level] xmin = min(bdf['start']) xmax = max(bdf['start']) if xmin == xmax: raise Exception("There must be at least two bursts at or above the specified level. Try reducing the `lowest_level` parameter.") daterange = ((xmin + pd.DateOffset(days=2)).date(), (xmax + pd.DateOffset(days=2)).date()) # bursts plot axb.bar(finaldf['start'], finaldf['level'], color='#32363A', width=1) if s != None and gamma != None: axb.set_ylabel(r'Burst levels (s = {}, $\gamma$ = {})'.format(s, gamma)) else: axb.set_ylabel('Burst level') axb.tick_params(axis='both', which='both', length=0) if daterange: axb.set_xlim(
pd.Timestamp(daterange[0])
pandas.Timestamp
import pandas as pd import streamlit as st # import sqlite3 # from sqlite3 import Connection # from . import excelpage,dashboard # from .resource import * # from multipage import MultiPage import numpy as np import pandas as pd from utils.data_helper import load_data import plotly.express as px from sklearn.preprocessing import StandardScaler import plotly.figure_factory as ff #import excelpage # @st.cache #from DataTransfer.src.resource import * def app(): df = load_data() outlier_temp = """<div style="background-color:#98AFC7;padding:10px"><h4 style="color:white;text-align:center;">Outlier</h4> <h6 style="color:white;text-align:center;">In statistics, an outlier is a data point that differs significantly from other observations. An outlier may be due to variability in the measurement or it may indicate experimental error; the latter are sometimes excluded from the data set. An outlier can cause serious problems in statistical analyses.</h6></div><br></br>""" st.markdown(outlier_temp, unsafe_allow_html=True) st.markdown( """<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" integrity="<KEY>" crossorigin="anonymous">""", unsafe_allow_html=True,) query_params = st.experimental_get_query_params() tabs = ["IQR Test", "Z-Score Test", "Visualize"] if "tab" in query_params: active_tab = query_params["tab"][0] else: active_tab = "Z-Score Test" if active_tab not in tabs: st.experimental_set_query_params(tab="Z-Score Test") active_tab = "Z-Score Test" li_items = "".join( f""" <li class="nav-item"> <a class="nav-link{' active' if t == active_tab else ''}" href="/?tab={t}">{t}</a> </li> """ for t in tabs) tabs_html = f""" <ul class="nav nav-tabs"> {li_items} </ul>""" st.markdown(tabs_html, unsafe_allow_html=True) st.markdown("<br>", unsafe_allow_html=True) def outlier_detection_iqr(dataframe): my_dict = {'Features': [], 'IQR': [], 'Q3 + 1.5*IQR': [], 'Q1 - 1.5*IQR': [], 'Upper outlier count': [], 'Lower outlier count': [], 'Total outliers': [], 'Outlier percent': []} for column in dataframe.select_dtypes(include=np.number).columns: try: upper_count = 0 lower_count = 0 q1 = np.percentile(dataframe[column].fillna(dataframe[column].mean()), 25) q3 = np.percentile(dataframe[column].fillna(dataframe[column].mean()), 75) IQR = q3 - q1 upper_limit = q3 + (IQR * 1.5) lower_limit = q1 - (IQR * 1.5) for element in dataframe[column].fillna(dataframe[column].mean()): if element > upper_limit: upper_count += 1 elif element < lower_limit: lower_count += 1 my_dict['Features'].append(column) my_dict['IQR'].append(IQR) my_dict['Q3 + 1.5*IQR'].append(upper_limit) my_dict['Q1 - 1.5*IQR'].append(lower_limit) my_dict['Upper outlier count'].append(upper_count) my_dict['Lower outlier count'].append(lower_count) my_dict['Total outliers'].append(upper_count + lower_count) my_dict['Outlier percent'].append(round((upper_count + lower_count) / len(dataframe[column]) * 100, 2)) except Exception as e: print(e) return
pd.DataFrame(my_dict)
pandas.DataFrame
import pandas as pd import numpy as np # Sample the given dataframe df to select n_sample number of points. def stratified_sample_df(df, col, n_samples,sampled='stratified',random_state=1): if(sampled=='stratified'): df_=df.groupby(col, group_keys=False).apply(lambda x: x.sample(int(np.rint(n_samples*len(x)/len(df))))).sample(frac=1,random_state=random_state).reset_index(drop=True) elif(sampled=='equal'): df_=df.groupby(col, group_keys=False).apply(lambda x: x.sample(int(n_samples/2))).sample(frac=1,random_state=random_state).reset_index(drop=True) return df_ ###### data collection taking all at a time def data_collector(file_names,params,is_train): if(params['csv_file']=='*_full.csv'): index=12 elif(params['csv_file']=='*_translated.csv'): index=23 sample_ratio=params['sample_ratio'] type_train=params['how_train'] sampled=params['samp_strategy'] take_ratio=params['take_ratio'] language=params['language'] # If the data being loaded is not train, i.e. either val or test, load everything and return if(is_train!=True): df_test=[] for file in file_names: lang_temp=file.split('/')[-1][:-index] if(lang_temp==language): df_test.append(pd.read_csv(file)) df_test=pd.concat(df_test,axis=0) return df_test # If train data is being loaded, else: # Baseline setting - only target language data is loaded if(type_train=='baseline'): df_test=[] for file in file_names: lang_temp=file.split('/')[-1][:-index] print(lang_temp) if(lang_temp==language): temp=
pd.read_csv(file)
pandas.read_csv
from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer # -*- coding:utf-8 -*- from app.classificator import helpers from sklearn import svm import pandas as pd class Models(): def __init__(self): self.cv = CountVectorizer() self.svm_model = None self.dataset = None self.document_fake = None self.document_real = None return def create_documents(self, dataset): # Count vectorizer self.cv.fit_transform(dataset['text'].values) # Dataset to cv dataset_real = dataset.loc[dataset['label'] == 0] dataset_fake = dataset.loc[dataset['label'] == 1] cv_real = self.cv.transform(dataset_real['text']) cv_fake = self.cv.transform(dataset_fake['text']) # Create TF-IDF models tfidf_model_real = TfidfTransformer(use_idf=True).fit(cv_real) tfidf_model_fake = TfidfTransformer(use_idf=True).fit(cv_fake) # Get TF-IDF distribution tfidf_real = tfidf_model_real.transform(cv_real) tfidf_fake = tfidf_model_fake.transform(cv_fake) # Get relevant words topn = 600 sorted_items= helpers.sort_coo(tfidf_real.tocoo()) feature_names = self.cv.get_feature_names() results, top_real_words = helpers.extract_topn_from_vector(feature_names, sorted_items, topn) sorted_items= helpers.sort_coo(tfidf_fake.tocoo()) feature_names = self.cv.get_feature_names() results, top_fake_words = helpers.extract_topn_from_vector(feature_names, sorted_items, topn) # Store documents self.document_real = top_real_words self.document_fake = top_fake_words self.dataset = dataset def compute_similarity_dataset(self): top_real_words_coded = self.cv.transform([' '.join(self.document_real)]) top_fake_words_coded = self.cv.transform([' '.join(self.document_fake)]) self.dataset['cos_fake'] = self.dataset['label']*0.000000000005 self.dataset['cos_real'] = self.dataset['label']*0.000000000005 for index, row in self.dataset.iterrows(): to_number = self.cv.transform([row['text']]) cosine_sim_fake = helpers.get_cosine_similarity(top_fake_words_coded, to_number) cosine_sim_real = helpers.get_cosine_similarity(top_real_words_coded, to_number) self.dataset.at[index,'cos_fake'] = cosine_sim_fake[0] self.dataset.at[index,'cos_real'] = cosine_sim_real[0] return self.dataset[['cos_real', 'cos_fake']].values def update_cv(self, content): self.cv = CountVectorizer() all_text = self.document_fake + self.document_real + content self.cv.fit_transform(all_text) def predict(self, x, y): dataset =
pd.DataFrame()
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 import numpy as np import pandas as pd from pandas import (Index, Series, DataFrame, isnull) from pandas.compat import lrange from pandas import compat from pandas.util.testing import assert_series_equal import pandas.util.testing as tm from .common import TestData class TestSeriesApply(TestData, tm.TestCase): def test_apply(self): with np.errstate(all='ignore'): assert_series_equal(self.ts.apply(np.sqrt), np.sqrt(self.ts)) # elementwise-apply import math assert_series_equal(self.ts.apply(math.exp), np.exp(self.ts)) # how to handle Series result, #2316 result = self.ts.apply(lambda x: Series( [x, x ** 2], index=['x', 'x^2'])) expected = DataFrame({'x': self.ts, 'x^2': self.ts ** 2}) tm.assert_frame_equal(result, expected) # empty series s = Series(dtype=object, name='foo', index=pd.Index([], name='bar')) rs = s.apply(lambda x: x) tm.assert_series_equal(s, rs) # check all metadata (GH 9322) self.assertIsNot(s, rs) self.assertIs(s.index, rs.index) self.assertEqual(s.dtype, rs.dtype) self.assertEqual(s.name, rs.name) # index but no data s = Series(index=[1, 2, 3]) rs = s.apply(lambda x: x) tm.assert_series_equal(s, rs) def test_apply_same_length_inference_bug(self): s = Series([1, 2]) f = lambda x: (x, x + 1) result = s.apply(f) expected = s.map(f) assert_series_equal(result, expected) s = Series([1, 2, 3]) result = s.apply(f) expected = s.map(f) assert_series_equal(result, expected) def test_apply_dont_convert_dtype(self): s = Series(np.random.randn(10)) f = lambda x: x if x > 0 else np.nan result = s.apply(f, convert_dtype=False) self.assertEqual(result.dtype, object) def test_apply_args(self): s = Series(['foo,bar']) result = s.apply(str.split, args=(',', )) self.assertEqual(result[0], ['foo', 'bar']) tm.assertIsInstance(result[0], list) def test_apply_box(self): # ufunc will not be boxed. Same test cases as the test_map_box vals = [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')] s = pd.Series(vals) self.assertEqual(s.dtype, 'datetime64[ns]') # boxed value must be Timestamp instance res = s.apply(lambda x: '{0}_{1}_{2}'.format(x.__class__.__name__, x.day, x.tz)) exp = pd.Series(['Timestamp_1_None', 'Timestamp_2_None']) tm.assert_series_equal(res, exp) vals = [pd.Timestamp('2011-01-01', tz='US/Eastern'), pd.Timestamp('2011-01-02', tz='US/Eastern')] s = pd.Series(vals) self.assertEqual(s.dtype, 'datetime64[ns, US/Eastern]') res = s.apply(lambda x: '{0}_{1}_{2}'.format(x.__class__.__name__, x.day, x.tz)) exp = pd.Series(['Timestamp_1_US/Eastern', 'Timestamp_2_US/Eastern']) tm.assert_series_equal(res, exp) # timedelta vals = [pd.Timedelta('1 days'), pd.Timedelta('2 days')] s = pd.Series(vals) self.assertEqual(s.dtype, 'timedelta64[ns]') res = s.apply(lambda x: '{0}_{1}'.format(x.__class__.__name__, x.days)) exp = pd.Series(['Timedelta_1', 'Timedelta_2']) tm.assert_series_equal(res, exp) # period (object dtype, not boxed) vals = [pd.Period('2011-01-01', freq='M'), pd.Period('2011-01-02', freq='M')] s = pd.Series(vals) self.assertEqual(s.dtype, 'object') res = s.apply(lambda x: '{0}_{1}'.format(x.__class__.__name__, x.freqstr)) exp = pd.Series(['Period_M', 'Period_M']) tm.assert_series_equal(res, exp) def test_apply_datetimetz(self): values = pd.date_range('2011-01-01', '2011-01-02', freq='H').tz_localize('Asia/Tokyo') s = pd.Series(values, name='XX') result = s.apply(lambda x: x + pd.offsets.Day()) exp_values = pd.date_range('2011-01-02', '2011-01-03', freq='H').tz_localize('Asia/Tokyo') exp = pd.Series(exp_values, name='XX') tm.assert_series_equal(result, exp) # change dtype # GH 14506 : Returned dtype changed from int32 to int64 result = s.apply(lambda x: x.hour) exp = pd.Series(list(range(24)) + [0], name='XX', dtype=np.int64) tm.assert_series_equal(result, exp) # not vectorized def f(x): if not isinstance(x, pd.Timestamp): raise ValueError return str(x.tz) result = s.map(f) exp = pd.Series(['Asia/Tokyo'] * 25, name='XX') tm.assert_series_equal(result, exp) class TestSeriesMap(TestData, tm.TestCase): def test_map(self): index, data = tm.getMixedTypeDict() source = Series(data['B'], index=data['C']) target = Series(data['C'][:4], index=data['D'][:4]) merged = target.map(source) for k, v in compat.iteritems(merged): self.assertEqual(v, source[target[k]]) # input could be a dict merged = target.map(source.to_dict()) for k, v in compat.iteritems(merged): self.assertEqual(v, source[target[k]]) # function result = self.ts.map(lambda x: x * 2) self.assert_series_equal(result, self.ts * 2) # GH 10324 a = Series([1, 2, 3, 4]) b = Series(["even", "odd", "even", "odd"], dtype="category") c = Series(["even", "odd", "even", "odd"]) exp = Series(["odd", "even", "odd", np.nan], dtype="category") self.assert_series_equal(a.map(b), exp) exp = Series(["odd", "even", "odd", np.nan]) self.assert_series_equal(a.map(c), exp) a = Series(['a', 'b', 'c', 'd']) b = Series([1, 2, 3, 4], index=pd.CategoricalIndex(['b', 'c', 'd', 'e'])) c = Series([1, 2, 3, 4], index=Index(['b', 'c', 'd', 'e'])) exp = Series([np.nan, 1, 2, 3]) self.assert_series_equal(a.map(b), exp) exp = Series([np.nan, 1, 2, 3]) self.assert_series_equal(a.map(c), exp) a = Series(['a', 'b', 'c', 'd']) b = Series(['B', 'C', 'D', 'E'], dtype='category', index=pd.CategoricalIndex(['b', 'c', 'd', 'e'])) c = Series(['B', 'C', 'D', 'E'], index=Index(['b', 'c', 'd', 'e'])) exp = Series(pd.Categorical([np.nan, 'B', 'C', 'D'], categories=['B', 'C', 'D', 'E'])) self.assert_series_equal(a.map(b), exp) exp = Series([np.nan, 'B', 'C', 'D']) self.assert_series_equal(a.map(c), exp) def test_map_compat(self): # related GH 8024 s = Series([True, True, False], index=[1, 2, 3]) result = s.map({True: 'foo', False: 'bar'}) expected = Series(['foo', 'foo', 'bar'], index=[1, 2, 3]) assert_series_equal(result, expected) def test_map_int(self): left = Series({'a': 1., 'b': 2., 'c': 3., 'd': 4}) right = Series({1: 11, 2: 22, 3: 33}) self.assertEqual(left.dtype, np.float_) self.assertTrue(issubclass(right.dtype.type, np.integer)) merged = left.map(right) self.assertEqual(merged.dtype, np.float_) self.assertTrue(isnull(merged['d'])) self.assertTrue(not isnull(merged['c'])) def test_map_type_inference(self): s = Series(lrange(3)) s2 = s.map(lambda x: np.where(x == 0, 0, 1)) self.assertTrue(issubclass(s2.dtype.type, np.integer)) def test_map_decimal(self): from decimal import Decimal result = self.series.map(lambda x: Decimal(str(x))) self.assertEqual(result.dtype, np.object_)
tm.assertIsInstance(result[0], Decimal)
pandas.util.testing.assertIsInstance
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188: pd.Timestamp("2012-11-06 00:00:00"), 189: pd.Timestamp("2012-11-07 00:00:00"), 190: pd.Timestamp("2012-11-08 00:00:00"), 191: pd.Timestamp("2012-11-09 00:00:00"), 192: pd.Timestamp("2012-11-10 00:00:00"), 193: pd.Timestamp("2012-11-11 00:00:00"), 194: pd.Timestamp("2012-11-12 00:00:00"), 195: pd.Timestamp("2012-11-13 00:00:00"), 196: pd.Timestamp("2012-11-14 00:00:00"), 197: pd.Timestamp("2012-11-15 00:00:00"), 198: pd.Timestamp("2012-11-16 00:00:00"), 199: pd.Timestamp("2012-11-17 00:00:00"), 200: pd.Timestamp("2012-11-18 00:00:00"), 201: pd.Timestamp("2012-11-19 00:00:00"), 202: pd.Timestamp("2012-11-20 00:00:00"), 203: pd.Timestamp("2012-11-21 00:00:00"), 204: pd.Timestamp("2012-11-22 00:00:00"), 205: pd.Timestamp("2012-11-23 00:00:00"), 206: pd.Timestamp("2012-11-24 00:00:00"), 207: pd.Timestamp("2012-11-25 00:00:00"), 208: pd.Timestamp("2012-11-26 00:00:00"), 209: pd.Timestamp("2012-11-27 00:00:00"), 210: pd.Timestamp("2012-11-28 00:00:00"), 211: pd.Timestamp("2012-11-29 00:00:00"), 212: pd.Timestamp("2012-11-30 00:00:00"), 213: pd.Timestamp("2012-12-01 00:00:00"), 214: pd.Timestamp("2012-12-02 00:00:00"), 215: pd.Timestamp("2012-12-03 00:00:00"), 216: pd.Timestamp("2012-12-04 00:00:00"), 217: pd.Timestamp("2012-12-05 00:00:00"), 218: pd.Timestamp("2012-12-06 00:00:00"), 219: pd.Timestamp("2012-12-07 00:00:00"), 220: pd.Timestamp("2012-12-08 00:00:00"), 221: pd.Timestamp("2012-12-09 00:00:00"), 222: pd.Timestamp("2012-12-10 00:00:00"), 223: pd.Timestamp("2012-12-11 00:00:00"), 224: pd.Timestamp("2012-12-12 00:00:00"), 225: pd.Timestamp("2012-12-13 00:00:00"), 226: pd.Timestamp("2012-12-14 00:00:00"), 227: pd.Timestamp("2012-12-15 00:00:00"), 228: pd.Timestamp("2012-12-16 00:00:00"), 229: pd.Timestamp("2012-12-17 00:00:00"), 230: pd.Timestamp("2012-12-18 00:00:00"), 231: pd.Timestamp("2012-12-19 00:00:00"), 232: pd.Timestamp("2012-12-20 00:00:00"), 233: pd.Timestamp("2012-12-21 00:00:00"), 234: pd.Timestamp("2012-12-22 00:00:00"), 235: pd.Timestamp("2012-12-23 00:00:00"), 236: pd.Timestamp("2012-12-24 00:00:00"), 237: pd.Timestamp("2012-12-25 00:00:00"), 238: pd.Timestamp("2012-12-26 00:00:00"), 239: pd.Timestamp("2012-12-27 00:00:00"), 240: pd.Timestamp("2012-12-28 00:00:00"), 241: pd.Timestamp("2012-12-29 00:00:00"), 242: pd.Timestamp("2012-12-30 00:00:00"), 243: pd.Timestamp("2012-12-31 00:00:00"), 244: pd.Timestamp("2013-01-01 00:00:00"), 245: pd.Timestamp("2013-01-02 00:00:00"), 246: pd.Timestamp("2013-01-03 00:00:00"), 247: pd.Timestamp("2013-01-04 00:00:00"), 248: pd.Timestamp("2013-01-05 00:00:00"), 249: pd.Timestamp("2013-01-06 00:00:00"), 250: pd.Timestamp("2013-01-07 00:00:00"), 251: pd.Timestamp("2013-01-08 00:00:00"), 252: pd.Timestamp("2013-01-09 00:00:00"), 253: pd.Timestamp("2013-01-10 00:00:00"), 254: pd.Timestamp("2013-01-11 00:00:00"), 255: pd.Timestamp("2013-01-12 00:00:00"), 256: pd.Timestamp("2013-01-13 00:00:00"), 257: pd.Timestamp("2013-01-14 00:00:00"), 258: pd.Timestamp("2013-01-15 00:00:00"), 259: pd.Timestamp("2013-01-16 00:00:00"), 260: pd.Timestamp("2013-01-17 00:00:00"), 261: pd.Timestamp("2013-01-18 00:00:00"), 262: pd.Timestamp("2013-01-19 00:00:00"), 263: pd.Timestamp("2013-01-20 00:00:00"), 264: pd.Timestamp("2013-01-21 00:00:00"), 265: pd.Timestamp("2013-01-22 00:00:00"), 266: pd.Timestamp("2013-01-23 00:00:00"), 267: pd.Timestamp("2013-01-24 00:00:00"), 268: pd.Timestamp("2013-01-25 00:00:00"), 269: pd.Timestamp("2013-01-26 00:00:00"), 270: pd.Timestamp("2013-01-27 00:00:00"), 271: pd.Timestamp("2013-01-28 00:00:00"), 272: pd.Timestamp("2013-01-29 00:00:00"), 273: pd.Timestamp("2013-01-30 00:00:00"), 274: pd.Timestamp("2013-01-31 00:00:00"), 275: pd.Timestamp("2013-02-01 00:00:00"), 276: pd.Timestamp("2013-02-02 00:00:00"), 277: pd.Timestamp("2013-02-03 00:00:00"), 278: pd.Timestamp("2013-02-04 00:00:00"), 279: pd.Timestamp("2013-02-05 00:00:00"), 280: pd.Timestamp("2013-02-06 00:00:00"), 281: pd.Timestamp("2013-02-07 00:00:00"), 282: pd.Timestamp("2013-02-08 00:00:00"), 283: pd.Timestamp("2013-02-09 00:00:00"), 284: pd.Timestamp("2013-02-10 00:00:00"), 285: pd.Timestamp("2013-02-11 00:00:00"), 286: pd.Timestamp("2013-02-12 00:00:00"), 287: pd.Timestamp("2013-02-13 00:00:00"), 288: pd.Timestamp("2013-02-14 00:00:00"), 289: pd.Timestamp("2013-02-15 00:00:00"), 290: pd.Timestamp("2013-02-16 00:00:00"), 291: pd.Timestamp("2013-02-17 00:00:00"), 292: pd.Timestamp("2013-02-18 00:00:00"), 293: pd.Timestamp("2013-02-19 00:00:00"), 294: pd.Timestamp("2013-02-20 00:00:00"), 295: pd.Timestamp("2013-02-21 00:00:00"), 296: pd.Timestamp("2013-02-22 00:00:00"), 297: pd.Timestamp("2013-02-23 00:00:00"), 298: pd.Timestamp("2013-02-24 00:00:00"), 299: pd.Timestamp("2013-02-25 00:00:00"), 300: pd.Timestamp("2013-02-26 00:00:00"), 301: pd.Timestamp("2013-02-27 00:00:00"), 302: pd.Timestamp("2013-02-28 00:00:00"), 303: pd.Timestamp("2013-03-01 00:00:00"), 304: pd.Timestamp("2013-03-02 00:00:00"), 305: pd.Timestamp("2013-03-03 00:00:00"), 306: pd.Timestamp("2013-03-04 00:00:00"), 307: pd.Timestamp("2013-03-05 00:00:00"), 308: pd.Timestamp("2013-03-06 00:00:00"), 309: pd.Timestamp("2013-03-07 00:00:00"), 310: pd.Timestamp("2013-03-08 00:00:00"), 311: pd.Timestamp("2013-03-09 00:00:00"), 312: pd.Timestamp("2013-03-10 00:00:00"), 313: pd.Timestamp("2013-03-11 00:00:00"), 314: pd.Timestamp("2013-03-12 00:00:00"), 315: pd.Timestamp("2013-03-13 00:00:00"), 316: pd.Timestamp("2013-03-14 00:00:00"), 317: pd.Timestamp("2013-03-15 00:00:00"), 318: pd.Timestamp("2013-03-16 00:00:00"), 319: pd.Timestamp("2013-03-17 00:00:00"), 320: pd.Timestamp("2013-03-18 00:00:00"), 321: pd.Timestamp("2013-03-19 00:00:00"), 322: pd.Timestamp("2013-03-20 00:00:00"), 323: pd.Timestamp("2013-03-21 00:00:00"), 324: pd.Timestamp("2013-03-22 00:00:00"), 325: pd.Timestamp("2013-03-23 00:00:00"), 326: pd.Timestamp("2013-03-24 00:00:00"), 327: pd.Timestamp("2013-03-25 00:00:00"), 328: pd.Timestamp("2013-03-26 00:00:00"), 329: pd.Timestamp("2013-03-27 00:00:00"), 330: pd.Timestamp("2013-03-28 00:00:00"), 331: pd.Timestamp("2013-03-29 00:00:00"), 332: pd.Timestamp("2013-03-30 00:00:00"), 333: pd.Timestamp("2013-03-31 00:00:00"), 334: pd.Timestamp("2013-04-01 00:00:00"), 335: pd.Timestamp("2013-04-02 00:00:00"), 336: pd.Timestamp("2013-04-03 00:00:00"), 337: pd.Timestamp("2013-04-04 00:00:00"), 338: pd.Timestamp("2013-04-05 00:00:00"), 339: pd.Timestamp("2013-04-06 00:00:00"), 340: pd.Timestamp("2013-04-07 00:00:00"), 341: pd.Timestamp("2013-04-08 00:00:00"), 342: pd.Timestamp("2013-04-09 00:00:00"), 343: pd.Timestamp("2013-04-10 00:00:00"), 344: pd.Timestamp("2013-04-11 00:00:00"), 345: pd.Timestamp("2013-04-12 00:00:00"), 346: pd.Timestamp("2013-04-13 00:00:00"), 347: pd.Timestamp("2013-04-14 00:00:00"), 348: pd.Timestamp("2013-04-15 00:00:00"), 349: pd.Timestamp("2013-04-16 00:00:00"), 350: pd.Timestamp("2013-04-17 00:00:00"), 351: pd.Timestamp("2013-04-18 00:00:00"), 352: pd.Timestamp("2013-04-19 00:00:00"), 353: pd.Timestamp("2013-04-20 00:00:00"), 354: pd.Timestamp("2013-04-21 00:00:00"), 355: pd.Timestamp("2013-04-22 00:00:00"), 356: pd.Timestamp("2013-04-23 00:00:00"), 357: pd.Timestamp("2013-04-24 00:00:00"), 358: pd.Timestamp("2013-04-25 00:00:00"), 359: pd.Timestamp("2013-04-26 00:00:00"), 360: pd.Timestamp("2013-04-27 00:00:00"), 361: pd.Timestamp("2013-04-28 00:00:00"), 362: pd.Timestamp("2013-04-29 00:00:00"), 363: pd.Timestamp("2013-04-30 00:00:00"), 364: pd.Timestamp("2013-05-01 00:00:00"), 365: pd.Timestamp("2013-05-02 00:00:00"), 366: pd.Timestamp("2013-05-03 00:00:00"), 367: pd.Timestamp("2013-05-04 00:00:00"), 368: pd.Timestamp("2013-05-05 00:00:00"), 369: pd.Timestamp("2013-05-06 00:00:00"), 370: pd.Timestamp("2013-05-07 00:00:00"), 371: pd.Timestamp("2013-05-08 00:00:00"), 372: pd.Timestamp("2013-05-09 00:00:00"), 373: pd.Timestamp("2013-05-10 00:00:00"), 374: pd.Timestamp("2013-05-11 00:00:00"), 375: pd.Timestamp("2013-05-12 00:00:00"), 376: pd.Timestamp("2013-05-13 00:00:00"), 377: pd.Timestamp("2013-05-14 00:00:00"), 378: pd.Timestamp("2013-05-15 00:00:00"), 379: pd.Timestamp("2013-05-16 00:00:00"), 380: pd.Timestamp("2013-05-17 00:00:00"), 381: pd.Timestamp("2013-05-18 00:00:00"), 382: pd.Timestamp("2013-05-19 00:00:00"), 383: pd.Timestamp("2013-05-20 00:00:00"), 384: pd.Timestamp("2013-05-21 00:00:00"), 385: pd.Timestamp("2013-05-22 00:00:00"), 386: pd.Timestamp("2013-05-23 00:00:00"), 387: pd.Timestamp("2013-05-24 00:00:00"), 388: pd.Timestamp("2013-05-25 00:00:00"), 389: pd.Timestamp("2013-05-26 00:00:00"), 390: pd.Timestamp("2013-05-27 00:00:00"), 391: pd.Timestamp("2013-05-28 00:00:00"), 392: pd.Timestamp("2013-05-29 00:00:00"), 393: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.348604308646497, 1: 8.348964254851197, 2: 8.349324201055898, 3: 8.349684147260598, 4: 8.350044093465298, 5: 8.350404039669998, 6: 8.3507639858747, 7: 8.3511239320794, 8: 8.3514838782841, 9: 8.351843824488801, 10: 8.352203770693501, 11: 8.352563716898201, 12: 8.352923663102903, 13: 8.353283609307603, 14: 8.353643555512303, 15: 8.354003501717003, 16: 8.354363447921704, 17: 8.354723394126404, 18: 8.355083340331104, 19: 8.355443286535806, 20: 8.355803232740506, 21: 8.356163178945206, 22: 8.356523125149906, 23: 8.356883071354607, 24: 8.357243017559307, 25: 8.357602963764007, 26: 8.357962909968709, 27: 8.358322856173409, 28: 8.358682802378109, 29: 8.35904274858281, 30: 8.35940269478751, 31: 8.35976264099221, 32: 8.36012258719691, 33: 8.360482533401612, 34: 8.360842479606312, 35: 8.361202425811012, 36: 8.361562372015714, 37: 8.361922318220413, 38: 8.362282264425113, 39: 8.362642210629813, 40: 8.363002156834515, 41: 8.363362103039215, 42: 8.363722049243915, 43: 8.364081995448617, 44: 8.364441941653316, 45: 8.364801887858016, 46: 8.365161834062716, 47: 8.365521780267418, 48: 8.365881726472118, 49: 8.366241672676818, 50: 8.36660161888152, 51: 8.36696156508622, 52: 8.36732151129092, 53: 8.367681457495621, 54: 8.368041403700321, 55: 8.368401349905021, 56: 8.36876129610972, 57: 8.369121242314423, 58: 8.369481188519122, 59: 8.369841134723822, 60: 8.370201080928524, 61: 8.370561027133224, 62: 8.370920973337924, 63: 8.371280919542624, 64: 8.371640865747326, 65: 8.372000811952026, 66: 8.372360758156725, 67: 8.372720704361427, 68: 8.373080650566127, 69: 8.373440596770827, 70: 8.373800542975529, 71: 8.374160489180229, 72: 8.374520435384929, 73: 8.374880381589628, 74: 8.37524032779433, 75: 8.37560027399903, 76: 8.37596022020373, 77: 8.376320166408432, 78: 8.376680112613132, 79: 8.377040058817832, 80: 8.377400005022531, 81: 8.377759951227233, 82: 8.378119897431933, 83: 8.378479843636633, 84: 8.378839789841335, 85: 8.379199736046035, 86: 8.379559682250735, 87: 8.379919628455436, 88: 8.380279574660136, 89: 8.380639520864836, 90: 8.380999467069536, 91: 8.381359413274238, 92: 8.381719359478938, 93: 8.382079305683638, 94: 8.38243925188834, 95: 8.38279919809304, 96: 8.38315914429774, 97: 8.383519090502439, 98: 8.38387903670714, 99: 8.38423898291184, 100: 8.38459892911654, 101: 8.384958875321242, 102: 8.385318821525942, 103: 8.385678767730642, 104: 8.386038713935344, 105: 8.386398660140044, 106: 8.386758606344744, 107: 8.387118552549444, 108: 8.387478498754145, 109: 8.387838444958845, 110: 8.388198391163545, 111: 8.388558337368247, 112: 8.388918283572947, 113: 8.389278229777647, 114: 8.389638175982347, 115: 8.389998122187048, 116: 8.390358068391748, 117: 8.390718014596448, 118: 8.39107796080115, 119: 8.39143790700585, 120: 8.39179785321055, 121: 8.392157799415251, 122: 8.392517745619951, 123: 8.392877691824651, 124: 8.393237638029351, 125: 8.393597584234053, 126: 8.393957530438753, 127: 8.394317476643453, 128: 8.394677422848154, 129: 8.395037369052854, 130: 8.395397315257554, 131: 8.395757261462254, 132: 8.396117207666956, 133: 8.396477153871656, 134: 8.396837100076356, 135: 8.397197046281057, 136: 8.397556992485757, 137: 8.397916938690457, 138: 8.398276884895157, 139: 8.398636831099859, 140: 8.398996777304559, 141: 8.399356723509259, 142: 8.39971666971396, 143: 8.40007661591866, 144: 8.40043656212336, 145: 8.400796508328062, 146: 8.401156454532762, 147: 8.401516400737462, 148: 8.401876346942162, 149: 8.402236293146863, 150: 8.402596239351563, 151: 8.402956185556263, 152: 8.403316131760965, 153: 8.403676077965665, 154: 8.404036024170365, 155: 8.404395970375065, 156: 8.404755916579767, 157: 8.405115862784466, 158: 8.405475808989166, 159: 8.405835755193868, 160: 8.406195701398568, 161: 8.406555647603268, 162: 8.40691559380797, 163: 8.40727554001267, 164: 8.40763548621737, 165: 8.40799543242207, 166: 8.408355378626771, 167: 8.408715324831471, 168: 8.409075271036171, 169: 8.409435217240873, 170: 8.409795163445573, 171: 8.410155109650272, 172: 8.410515055854972, 173: 8.410875002059674, 174: 8.411234948264374, 175: 8.411594894469074, 176: 8.411954840673776, 177: 8.412314786878476, 178: 8.412674733083175, 179: 8.413034679287877, 180: 8.413394625492577, 181: 8.413754571697277, 182: 8.414114517901977, 183: 8.414474464106679, 184: 8.414834410311379, 185: 8.415194356516078, 186: 8.41555430272078, 187: 8.41591424892548, 188: 8.41627419513018, 189: 8.41663414133488, 190: 8.416994087539582, 191: 8.417354033744282, 192: 8.417713979948982, 193: 8.418073926153683, 194: 8.418433872358383, 195: 8.418793818563083, 196: 8.419153764767785, 197: 8.419513710972485, 198: 8.419873657177185, 199: 8.420233603381885, 200: 8.420593549586586, 201: 8.420953495791286, 202: 8.421313441995986, 203: 8.421673388200688, 204: 8.422033334405388, 205: 8.422393280610088, 206: 8.422753226814788, 207: 8.42311317301949, 208: 8.42347311922419, 209: 8.423833065428889, 210: 8.42419301163359, 211: 8.42455295783829, 212: 8.42491290404299, 213: 8.42527285024769, 214: 8.425632796452392, 215: 8.425992742657092, 216: 8.426352688861792, 217: 8.426712635066494, 218: 8.427072581271194, 219: 8.427432527475894, 220: 8.427792473680595, 221: 8.428152419885295, 222: 8.428512366089995, 223: 8.428872312294695, 224: 8.429232258499397, 225: 8.429592204704097, 226: 8.429952150908797, 227: 8.430312097113498, 228: 8.430672043318198, 229: 8.431031989522898, 230: 8.431391935727598, 231: 8.4317518819323, 232: 8.432111828137, 233: 8.4324717743417, 234: 8.432831720546401, 235: 8.433191666751101, 236: 8.433551612955801, 237: 8.433911559160503, 238: 8.434271505365203, 239: 8.434631451569903, 240: 8.434991397774603, 241: 8.435351343979304, 242: 8.435711290184004, 243: 8.436071236388704, 244: 8.436431182593406, 245: 8.436791128798106, 246: 8.437151075002806, 247: 8.437511021207506, 248: 8.437870967412207, 249: 8.438230913616907, 250: 8.438590859821607, 251: 8.438950806026309, 252: 8.439310752231009, 253: 8.439670698435709, 254: 8.44003064464041, 255: 8.44039059084511, 256: 8.44075053704981, 257: 8.44111048325451, 258: 8.441470429459212, 259: 8.441830375663912, 260: 8.442190321868612, 261: 8.442550268073314, 262: 8.442910214278013, 263: 8.443270160482713, 264: 8.443630106687413, 265: 8.443990052892115, 266: 8.444349999096815, 267: 8.444709945301515, 268: 8.445069891506217, 269: 8.445429837710916, 270: 8.445789783915616, 271: 8.446149730120318, 272: 8.446509676325018, 273: 8.446869622529718, 274: 8.447229568734418, 275: 8.44758951493912, 276: 8.44794946114382, 277: 8.44830940734852, 278: 8.448669353553221, 279: 8.449029299757921, 280: 8.449389245962621, 281: 8.449749192167321, 282: 8.450109138372023, 283: 8.450469084576723, 284: 8.450829030781422, 285: 8.451188976986124, 286: 8.451548923190824, 287: 8.451908869395524, 288: 8.452268815600226, 289: 8.452628761804926, 290: 8.452988708009626, 291: 8.453348654214325, 292: 8.453708600419027, 293: 8.454068546623727, 294: 8.454428492828427, 295: 8.454788439033129, 296: 8.455148385237829, 297: 8.455508331442529, 298: 8.455868277647228, 299: 8.45622822385193, 300: 8.45658817005663, 301: 8.45694811626133, 302: 8.457308062466032, 303: 8.457668008670732, 304: 8.458027954875432, 305: 8.458387901080131, 306: 8.458747847284833, 307: 8.459107793489533, 308: 8.459467739694233, 309: 8.459827685898935, 310: 8.460187632103635, 311: 8.460547578308335, 312: 8.460907524513036, 313: 8.461267470717736, 314: 8.461627416922436, 315: 8.461987363127136, 316: 8.462347309331838, 317: 8.462707255536538, 318: 8.463067201741238, 319: 8.46342714794594, 320: 8.46378709415064, 321: 8.46414704035534, 322: 8.464506986560039, 323: 8.46486693276474, 324: 8.46522687896944, 325: 8.46558682517414, 326: 8.465946771378842, 327: 8.466306717583542, 328: 8.466666663788242, 329: 8.467026609992944, 330: 8.467386556197644, 331: 8.467746502402344, 332: 8.468106448607044, 333: 8.468466394811745, 334: 8.468826341016445, 335: 8.469186287221145, 336: 8.469546233425847, 337: 8.469906179630547, 338: 8.470266125835247, 339: 8.470626072039947, 340: 8.470986018244648, 341: 8.471345964449348, 342: 8.471705910654048, 343: 8.47206585685875, 344: 8.47242580306345, 345: 8.47278574926815, 346: 8.473145695472851, 347: 8.473505641677551, 348: 8.473865587882251, 349: 8.474225534086951, 350: 8.474585480291653, 351: 8.474945426496353, 352: 8.475305372701053, 353: 8.475665318905754, 354: 8.476025265110454, 355: 8.476385211315154, 356: 8.476745157519854, 357: 8.477105103724556, 358: 8.477465049929256, 359: 8.477824996133956, 360: 8.478184942338657, 361: 8.478544888543357, 362: 8.478904834748057, 363: 8.479264780952759, 364: 8.479624727157459, 365: 8.479984673362159, 366: 8.480344619566859, 367: 8.48070456577156, 368: 8.48106451197626, 369: 8.48142445818096, 370: 8.481784404385662, 371: 8.482144350590362, 372: 8.482504296795062, 373: 8.482864242999762, 374: 8.483224189204464, 375: 8.483584135409163, 376: 8.483944081613863, 377: 8.484304027818565, 378: 8.484663974023265, 379: 8.485023920227965, 380: 8.485383866432667, 381: 8.485743812637367, 382: 8.486103758842066, 383: 8.486463705046766, 384: 8.486823651251468, 385: 8.487183597456168, 386: 8.487543543660868, 387: 8.48790348986557, 388: 8.48826343607027, 389: 8.48862338227497, 390: 8.48898332847967, 391: 8.489343274684371, 392: 8.489703220889071, 393: 8.490063167093771, }, "fcst_lower": { 0: -np.inf, 1: -np.inf, 2: -np.inf, 3: -np.inf, 4: -np.inf, 5: -np.inf, 6: -np.inf, 7: -np.inf, 8: -np.inf, 9: -np.inf, 10: -np.inf, 11: -np.inf, 12: -np.inf, 13: -np.inf, 14: -np.inf, 15: -np.inf, 16: -np.inf, 17: -np.inf, 18: -np.inf, 19: -np.inf, 20: -np.inf, 21: -np.inf, 22: -np.inf, 23: -np.inf, 24: -np.inf, 25: -np.inf, 26: -np.inf, 27: -np.inf, 28: -np.inf, 29: -np.inf, 30: -np.inf, 31: -np.inf, 32: -np.inf, 33: -np.inf, 34: -np.inf, 35: -np.inf, 36: -np.inf, 37: -np.inf, 38: -np.inf, 39: -np.inf, 40: -np.inf, 41: -np.inf, 42: -np.inf, 43: -np.inf, 44: -np.inf, 45: -np.inf, 46: -np.inf, 47: -np.inf, 48: -np.inf, 49: -np.inf, 50: -np.inf, 51: -np.inf, 52: -np.inf, 53: -np.inf, 54: -np.inf, 55: -np.inf, 56: -np.inf, 57: -np.inf, 58: -np.inf, 59: -np.inf, 60: -np.inf, 61: -np.inf, 62: -np.inf, 63: -np.inf, 64: -np.inf, 65: -np.inf, 66: -np.inf, 67: -np.inf, 68: -np.inf, 69: -np.inf, 70: -np.inf, 71: -np.inf, 72: -np.inf, 73: -np.inf, 74: -np.inf, 75: -np.inf, 76: -np.inf, 77: -np.inf, 78: -np.inf, 79: -np.inf, 80: -np.inf, 81: -np.inf, 82: -np.inf, 83: -np.inf, 84: -np.inf, 85: -np.inf, 86: -np.inf, 87: -np.inf, 88: -np.inf, 89: -np.inf, 90: -np.inf, 91: -np.inf, 92: -np.inf, 93: -np.inf, 94: -np.inf, 95: -np.inf, 96: -np.inf, 97: -np.inf, 98: -np.inf, 99: -np.inf, 100: -np.inf, 101: -np.inf, 102: -np.inf, 103: -np.inf, 104: -np.inf, 105: -np.inf, 106: -np.inf, 107: -np.inf, 108: -np.inf, 109: -np.inf, 110: -np.inf, 111: -np.inf, 112: -np.inf, 113: -np.inf, 114: -np.inf, 115: -np.inf, 116: -np.inf, 117: -np.inf, 118: -np.inf, 119: -np.inf, 120: -np.inf, 121: -np.inf, 122: -np.inf, 123: -np.inf, 124: -np.inf, 125: -np.inf, 126: -np.inf, 127: -np.inf, 128: -np.inf, 129: -np.inf, 130: -np.inf, 131: -np.inf, 132: -np.inf, 133: -np.inf, 134: -np.inf, 135: -np.inf, 136: -np.inf, 137: -np.inf, 138: -np.inf, 139: -np.inf, 140: -np.inf, 141: -np.inf, 142: -np.inf, 143: -np.inf, 144: -np.inf, 145: -np.inf, 146: -np.inf, 147: -np.inf, 148: -np.inf, 149: -np.inf, 150: -np.inf, 151: -np.inf, 152: -np.inf, 153: -np.inf, 154: -np.inf, 155: -np.inf, 156: -np.inf, 157: -np.inf, 158: -np.inf, 159: -np.inf, 160: -np.inf, 161: -np.inf, 162: -np.inf, 163: -np.inf, 164: -np.inf, 165: -np.inf, 166: -np.inf, 167: -np.inf, 168: -np.inf, 169: -np.inf, 170: -np.inf, 171: -np.inf, 172: -np.inf, 173: -np.inf, 174: -np.inf, 175: -np.inf, 176: -np.inf, 177: -np.inf, 178: -np.inf, 179: -np.inf, 180: -np.inf, 181: -np.inf, 182: -np.inf, 183: -np.inf, 184: -np.inf, 185: -np.inf, 186: -np.inf, 187: -np.inf, 188: -np.inf, 189: -np.inf, 190: -np.inf, 191: -np.inf, 192: -np.inf, 193: -np.inf, 194: -np.inf, 195: -np.inf, 196: -np.inf, 197: -np.inf, 198: -np.inf, 199: -np.inf, 200: -np.inf, 201: -np.inf, 202: -np.inf, 203: -np.inf, 204: -np.inf, 205: -np.inf, 206: -np.inf, 207: -np.inf, 208: -np.inf, 209: -np.inf, 210: -np.inf, 211: -np.inf, 212: -np.inf, 213: -np.inf, 214: -np.inf, 215: -np.inf, 216: -np.inf, 217: -np.inf, 218: -np.inf, 219: -np.inf, 220: -np.inf, 221: -np.inf, 222: -np.inf, 223: -np.inf, 224: -np.inf, 225: -np.inf, 226: -np.inf, 227: -np.inf, 228: -np.inf, 229: -np.inf, 230: -np.inf, 231: -np.inf, 232: -np.inf, 233: -np.inf, 234: -np.inf, 235: -np.inf, 236: -np.inf, 237: -np.inf, 238: -np.inf, 239: -np.inf, 240: -np.inf, 241: -np.inf, 242: -np.inf, 243: -np.inf, 244: -np.inf, 245: -np.inf, 246: -np.inf, 247: -np.inf, 248: -np.inf, 249: -np.inf, 250: -np.inf, 251: -np.inf, 252: -np.inf, 253: -np.inf, 254: -np.inf, 255: -np.inf, 256: -np.inf, 257: -np.inf, 258: -np.inf, 259: -np.inf, 260: -np.inf, 261: -np.inf, 262: -np.inf, 263: -np.inf, 264: -np.inf, 265: -np.inf, 266: -np.inf, 267: -np.inf, 268: -np.inf, 269: -np.inf, 270: -np.inf, 271: -np.inf, 272: -np.inf, 273: -np.inf, 274: -np.inf, 275: -np.inf, 276: -np.inf, 277: -np.inf, 278: -np.inf, 279: -np.inf, 280: -np.inf, 281: -np.inf, 282: -np.inf, 283: -np.inf, 284: -np.inf, 285: -np.inf, 286: -np.inf, 287: -np.inf, 288: -np.inf, 289: -np.inf, 290: -np.inf, 291: -np.inf, 292: -np.inf, 293: -np.inf, 294: -np.inf, 295: -np.inf, 296: -np.inf, 297: -np.inf, 298: -np.inf, 299: -np.inf, 300: -np.inf, 301: -np.inf, 302: -np.inf, 303: -np.inf, 304: -np.inf, 305: -np.inf, 306: -np.inf, 307: -np.inf, 308: -np.inf, 309: -np.inf, 310: -np.inf, 311: -np.inf, 312: -np.inf, 313: -np.inf, 314: -np.inf, 315: -np.inf, 316: -np.inf, 317: -np.inf, 318: -np.inf, 319: -np.inf, 320: -np.inf, 321: -np.inf, 322: -np.inf, 323: -np.inf, 324: -np.inf, 325: -np.inf, 326: -np.inf, 327: -np.inf, 328: -np.inf, 329: -np.inf, 330: -np.inf, 331: -np.inf, 332: -np.inf, 333: -np.inf, 334: -np.inf, 335: -np.inf, 336: -np.inf, 337: -np.inf, 338: -np.inf, 339: -np.inf, 340: -np.inf, 341: -np.inf, 342: -np.inf, 343: -np.inf, 344: -np.inf, 345: -np.inf, 346: -np.inf, 347: -np.inf, 348: -np.inf, 349: -np.inf, 350: -np.inf, 351: -np.inf, 352: -np.inf, 353: -np.inf, 354: -np.inf, 355: -np.inf, 356: -np.inf, 357: -np.inf, 358: -np.inf, 359: -np.inf, 360: -np.inf, 361: -np.inf, 362: -np.inf, 363: -np.inf, 364: -np.inf, 365: -np.inf, 366: -np.inf, 367: -np.inf, 368: -np.inf, 369: -np.inf, 370: -np.inf, 371: -np.inf, 372: -np.inf, 373: -np.inf, 374: -np.inf, 375: -np.inf, 376: -np.inf, 377: -np.inf, 378: -np.inf, 379: -np.inf, 380: -np.inf, 381: -np.inf, 382: -np.inf, 383: -np.inf, 384: -np.inf, 385: -np.inf, 386: -np.inf, 387: -np.inf, 388: -np.inf, 389: -np.inf, 390: -np.inf, 391: -np.inf, 392: -np.inf, 393: -np.inf, }, "fcst_upper": { 0: np.inf, 1: np.inf, 2: np.inf, 3: np.inf, 4: np.inf, 5: np.inf, 6: np.inf, 7: np.inf, 8: np.inf, 9: np.inf, 10: np.inf, 11: np.inf, 12: np.inf, 13: np.inf, 14: np.inf, 15: np.inf, 16: np.inf, 17: np.inf, 18: np.inf, 19: np.inf, 20: np.inf, 21: np.inf, 22: np.inf, 23: np.inf, 24: np.inf, 25: np.inf, 26: np.inf, 27: np.inf, 28: np.inf, 29: np.inf, 30: np.inf, 31: np.inf, 32: np.inf, 33: np.inf, 34: np.inf, 35: np.inf, 36: np.inf, 37: np.inf, 38: np.inf, 39: np.inf, 40: np.inf, 41: np.inf, 42: np.inf, 43: np.inf, 44: np.inf, 45: np.inf, 46: np.inf, 47: np.inf, 48: np.inf, 49: np.inf, 50: np.inf, 51: np.inf, 52: np.inf, 53: np.inf, 54: np.inf, 55: np.inf, 56: np.inf, 57: np.inf, 58: np.inf, 59: np.inf, 60: np.inf, 61: np.inf, 62: np.inf, 63: np.inf, 64: np.inf, 65: np.inf, 66: np.inf, 67: np.inf, 68: np.inf, 69: np.inf, 70: np.inf, 71: np.inf, 72: np.inf, 73: np.inf, 74: np.inf, 75: np.inf, 76: np.inf, 77: np.inf, 78: np.inf, 79: np.inf, 80: np.inf, 81: np.inf, 82: np.inf, 83: np.inf, 84: np.inf, 85: np.inf, 86: np.inf, 87: np.inf, 88: np.inf, 89: np.inf, 90: np.inf, 91: np.inf, 92: np.inf, 93: np.inf, 94: np.inf, 95: np.inf, 96: np.inf, 97: np.inf, 98: np.inf, 99: np.inf, 100: np.inf, 101: np.inf, 102: np.inf, 103: np.inf, 104: np.inf, 105: np.inf, 106: np.inf, 107: np.inf, 108: np.inf, 109: np.inf, 110: np.inf, 111: np.inf, 112: np.inf, 113: np.inf, 114: np.inf, 115: np.inf, 116: np.inf, 117: np.inf, 118: np.inf, 119: np.inf, 120: np.inf, 121: np.inf, 122: np.inf, 123: np.inf, 124: np.inf, 125: np.inf, 126: np.inf, 127: np.inf, 128: np.inf, 129: np.inf, 130: np.inf, 131: np.inf, 132: np.inf, 133: np.inf, 134: np.inf, 135: np.inf, 136: np.inf, 137: np.inf, 138: np.inf, 139: np.inf, 140: np.inf, 141: np.inf, 142: np.inf, 143: np.inf, 144: np.inf, 145: np.inf, 146: np.inf, 147: np.inf, 148: np.inf, 149: np.inf, 150: np.inf, 151: np.inf, 152: np.inf, 153: np.inf, 154: np.inf, 155: np.inf, 156: np.inf, 157: np.inf, 158: np.inf, 159: np.inf, 160: np.inf, 161: np.inf, 162: np.inf, 163: np.inf, 164: np.inf, 165: np.inf, 166: np.inf, 167: np.inf, 168: np.inf, 169: np.inf, 170: np.inf, 171: np.inf, 172: np.inf, 173: np.inf, 174: np.inf, 175: np.inf, 176: np.inf, 177: np.inf, 178: np.inf, 179: np.inf, 180: np.inf, 181: np.inf, 182: np.inf, 183: np.inf, 184: np.inf, 185: np.inf, 186: np.inf, 187: np.inf, 188: np.inf, 189: np.inf, 190: np.inf, 191: np.inf, 192: np.inf, 193: np.inf, 194: np.inf, 195: np.inf, 196: np.inf, 197: np.inf, 198: np.inf, 199: np.inf, 200: np.inf, 201: np.inf, 202: np.inf, 203: np.inf, 204: np.inf, 205: np.inf, 206: np.inf, 207: np.inf, 208: np.inf, 209: np.inf, 210: np.inf, 211: np.inf, 212: np.inf, 213: np.inf, 214: np.inf, 215: np.inf, 216: np.inf, 217: np.inf, 218: np.inf, 219: np.inf, 220: np.inf, 221: np.inf, 222: np.inf, 223: np.inf, 224: np.inf, 225: np.inf, 226: np.inf, 227: np.inf, 228: np.inf, 229: np.inf, 230: np.inf, 231: np.inf, 232: np.inf, 233: np.inf, 234: np.inf, 235: np.inf, 236: np.inf, 237: np.inf, 238: np.inf, 239: np.inf, 240: np.inf, 241: np.inf, 242: np.inf, 243: np.inf, 244: np.inf, 245: np.inf, 246: np.inf, 247: np.inf, 248: np.inf, 249: np.inf, 250: np.inf, 251: np.inf, 252: np.inf, 253: np.inf, 254: np.inf, 255: np.inf, 256: np.inf, 257: np.inf, 258: np.inf, 259: np.inf, 260: np.inf, 261: np.inf, 262: np.inf, 263: np.inf, 264: np.inf, 265: np.inf, 266: np.inf, 267: np.inf, 268: np.inf, 269: np.inf, 270: np.inf, 271: np.inf, 272: np.inf, 273: np.inf, 274: np.inf, 275: np.inf, 276: np.inf, 277: np.inf, 278: np.inf, 279: np.inf, 280: np.inf, 281: np.inf, 282: np.inf, 283: np.inf, 284: np.inf, 285: np.inf, 286: np.inf, 287: np.inf, 288: np.inf, 289: np.inf, 290: np.inf, 291: np.inf, 292: np.inf, 293: np.inf, 294: np.inf, 295: np.inf, 296: np.inf, 297: np.inf, 298: np.inf, 299: np.inf, 300: np.inf, 301: np.inf, 302: np.inf, 303: np.inf, 304: np.inf, 305: np.inf, 306: np.inf, 307: np.inf, 308: np.inf, 309: np.inf, 310: np.inf, 311: np.inf, 312: np.inf, 313: np.inf, 314: np.inf, 315: np.inf, 316: np.inf, 317: np.inf, 318: np.inf, 319: np.inf, 320: np.inf, 321: np.inf, 322: np.inf, 323: np.inf, 324: np.inf, 325: np.inf, 326: np.inf, 327: np.inf, 328: np.inf, 329: np.inf, 330: np.inf, 331: np.inf, 332: np.inf, 333: np.inf, 334: np.inf, 335: np.inf, 336: np.inf, 337: np.inf, 338: np.inf, 339: np.inf, 340: np.inf, 341: np.inf, 342: np.inf, 343: np.inf, 344: np.inf, 345: np.inf, 346: np.inf, 347: np.inf, 348: np.inf, 349: np.inf, 350: np.inf, 351: np.inf, 352: np.inf, 353: np.inf, 354: np.inf, 355: np.inf, 356: np.inf, 357: np.inf, 358: np.inf, 359: np.inf, 360: np.inf, 361: np.inf, 362: np.inf, 363: np.inf, 364: np.inf, 365: np.inf, 366: np.inf, 367: np.inf, 368: np.inf, 369: np.inf, 370: np.inf, 371: np.inf, 372: np.inf, 373: np.inf, 374: np.inf, 375: np.inf, 376: np.inf, 377: np.inf, 378: np.inf, 379: np.inf, 380: np.inf, 381: np.inf, 382: np.inf, 383: np.inf, 384: np.inf, 385: np.inf, 386: np.inf, 387: np.inf, 388: np.inf, 389: np.inf, 390: np.inf, 391: np.inf, 392: np.inf, 393: np.inf, }, } ) PEYTON_FCST_LINEAR_INVALID_NEG_ONE = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188: pd.Timestamp("2012-11-06 00:00:00"), 189: pd.Timestamp("2012-11-07 00:00:00"), 190: pd.Timestamp("2012-11-08 00:00:00"), 191: pd.Timestamp("2012-11-09 00:00:00"), 192: pd.Timestamp("2012-11-10 00:00:00"), 193: pd.Timestamp("2012-11-11 00:00:00"), 194: pd.Timestamp("2012-11-12 00:00:00"), 195: pd.Timestamp("2012-11-13 00:00:00"), 196: pd.Timestamp("2012-11-14 00:00:00"), 197: pd.Timestamp("2012-11-15 00:00:00"), 198: pd.Timestamp("2012-11-16 00:00:00"), 199: pd.Timestamp("2012-11-17 00:00:00"), 200: pd.Timestamp("2012-11-18 00:00:00"), 201: pd.Timestamp("2012-11-19 00:00:00"), 202: pd.Timestamp("2012-11-20 00:00:00"), 203: pd.Timestamp("2012-11-21 00:00:00"), 204: pd.Timestamp("2012-11-22 00:00:00"), 205: pd.Timestamp("2012-11-23 00:00:00"), 206: pd.Timestamp("2012-11-24 00:00:00"), 207: pd.Timestamp("2012-11-25 00:00:00"), 208: pd.Timestamp("2012-11-26 00:00:00"), 209: pd.Timestamp("2012-11-27 00:00:00"), 210: pd.Timestamp("2012-11-28 00:00:00"), 211: pd.Timestamp("2012-11-29 00:00:00"), 212: pd.Timestamp("2012-11-30 00:00:00"), 213: pd.Timestamp("2012-12-01 00:00:00"), 214: pd.Timestamp("2012-12-02 00:00:00"), 215: pd.Timestamp("2012-12-03 00:00:00"), 216: pd.Timestamp("2012-12-04 00:00:00"), 217: pd.Timestamp("2012-12-05 00:00:00"), 218: pd.Timestamp("2012-12-06 00:00:00"), 219: pd.Timestamp("2012-12-07 00:00:00"), 220: pd.Timestamp("2012-12-08 00:00:00"), 221: pd.Timestamp("2012-12-09 00:00:00"), 222: pd.Timestamp("2012-12-10 00:00:00"), 223: pd.Timestamp("2012-12-11 00:00:00"), 224: pd.Timestamp("2012-12-12 00:00:00"), 225: pd.Timestamp("2012-12-13 00:00:00"), 226: pd.Timestamp("2012-12-14 00:00:00"), 227: pd.Timestamp("2012-12-15 00:00:00"), 228: pd.Timestamp("2012-12-16 00:00:00"), 229: pd.Timestamp("2012-12-17 00:00:00"), 230: pd.Timestamp("2012-12-18 00:00:00"), 231: pd.Timestamp("2012-12-19 00:00:00"), 232: pd.Timestamp("2012-12-20 00:00:00"), 233: pd.Timestamp("2012-12-21 00:00:00"), 234: pd.Timestamp("2012-12-22 00:00:00"), 235: pd.Timestamp("2012-12-23 00:00:00"), 236: pd.Timestamp("2012-12-24 00:00:00"), 237: pd.Timestamp("2012-12-25 00:00:00"), 238: pd.Timestamp("2012-12-26 00:00:00"), 239: pd.Timestamp("2012-12-27 00:00:00"), 240: pd.Timestamp("2012-12-28 00:00:00"), 241: pd.Timestamp("2012-12-29 00:00:00"), 242: pd.Timestamp("2012-12-30 00:00:00"), 243: pd.Timestamp("2012-12-31 00:00:00"), 244: pd.Timestamp("2013-01-01 00:00:00"), 245: pd.Timestamp("2013-01-02 00:00:00"), 246: pd.Timestamp("2013-01-03 00:00:00"), 247: pd.Timestamp("2013-01-04 00:00:00"), 248: pd.Timestamp("2013-01-05 00:00:00"), 249: pd.Timestamp("2013-01-06 00:00:00"), 250: pd.Timestamp("2013-01-07 00:00:00"), 251: pd.Timestamp("2013-01-08 00:00:00"), 252: pd.Timestamp("2013-01-09 00:00:00"), 253: pd.Timestamp("2013-01-10 00:00:00"), 254: pd.Timestamp("2013-01-11 00:00:00"), 255: pd.Timestamp("2013-01-12 00:00:00"), 256: pd.Timestamp("2013-01-13 00:00:00"), 257: pd.Timestamp("2013-01-14 00:00:00"), 258: pd.Timestamp("2013-01-15 00:00:00"), 259: pd.Timestamp("2013-01-16 00:00:00"), 260: pd.Timestamp("2013-01-17 00:00:00"), 261: pd.Timestamp("2013-01-18 00:00:00"), 262: pd.Timestamp("2013-01-19 00:00:00"), 263: pd.Timestamp("2013-01-20 00:00:00"), 264: pd.Timestamp("2013-01-21 00:00:00"), 265: pd.Timestamp("2013-01-22 00:00:00"), 266: pd.Timestamp("2013-01-23 00:00:00"), 267: pd.Timestamp("2013-01-24 00:00:00"), 268: pd.Timestamp("2013-01-25 00:00:00"), 269: pd.Timestamp("2013-01-26 00:00:00"), 270: pd.Timestamp("2013-01-27 00:00:00"), 271: pd.Timestamp("2013-01-28 00:00:00"), 272: pd.Timestamp("2013-01-29 00:00:00"), 273: pd.Timestamp("2013-01-30 00:00:00"), 274: pd.Timestamp("2013-01-31 00:00:00"), 275: pd.Timestamp("2013-02-01 00:00:00"), 276: pd.Timestamp("2013-02-02 00:00:00"), 277: pd.Timestamp("2013-02-03 00:00:00"), 278: pd.Timestamp("2013-02-04 00:00:00"), 279: pd.Timestamp("2013-02-05 00:00:00"), 280: pd.Timestamp("2013-02-06 00:00:00"), 281: pd.Timestamp("2013-02-07 00:00:00"), 282: pd.Timestamp("2013-02-08 00:00:00"), 283: pd.Timestamp("2013-02-09 00:00:00"), 284: pd.Timestamp("2013-02-10 00:00:00"), 285: pd.Timestamp("2013-02-11 00:00:00"), 286: pd.Timestamp("2013-02-12 00:00:00"), 287: pd.Timestamp("2013-02-13 00:00:00"), 288: pd.Timestamp("2013-02-14 00:00:00"), 289: pd.Timestamp("2013-02-15 00:00:00"), 290: pd.Timestamp("2013-02-16 00:00:00"), 291: pd.Timestamp("2013-02-17 00:00:00"), 292: pd.Timestamp("2013-02-18 00:00:00"), 293: pd.Timestamp("2013-02-19 00:00:00"), 294: pd.Timestamp("2013-02-20 00:00:00"), 295: pd.Timestamp("2013-02-21 00:00:00"), 296: pd.Timestamp("2013-02-22 00:00:00"), 297: pd.Timestamp("2013-02-23 00:00:00"), 298: pd.Timestamp("2013-02-24 00:00:00"), 299: pd.Timestamp("2013-02-25 00:00:00"), 300: pd.Timestamp("2013-02-26 00:00:00"), 301: pd.Timestamp("2013-02-27 00:00:00"), 302: pd.Timestamp("2013-02-28 00:00:00"), 303: pd.Timestamp("2013-03-01 00:00:00"), 304: pd.Timestamp("2013-03-02 00:00:00"), 305: pd.Timestamp("2013-03-03 00:00:00"), 306: pd.Timestamp("2013-03-04 00:00:00"), 307: pd.Timestamp("2013-03-05 00:00:00"), 308: pd.Timestamp("2013-03-06 00:00:00"), 309: pd.Timestamp("2013-03-07 00:00:00"), 310: pd.Timestamp("2013-03-08 00:00:00"), 311: pd.Timestamp("2013-03-09 00:00:00"), 312: pd.Timestamp("2013-03-10 00:00:00"), 313: pd.Timestamp("2013-03-11 00:00:00"), 314: pd.Timestamp("2013-03-12 00:00:00"), 315: pd.Timestamp("2013-03-13 00:00:00"), 316: pd.Timestamp("2013-03-14 00:00:00"), 317: pd.Timestamp("2013-03-15 00:00:00"), 318: pd.Timestamp("2013-03-16 00:00:00"), 319: pd.Timestamp("2013-03-17 00:00:00"), 320: pd.Timestamp("2013-03-18 00:00:00"), 321: pd.Timestamp("2013-03-19 00:00:00"), 322: pd.Timestamp("2013-03-20 00:00:00"), 323: pd.Timestamp("2013-03-21 00:00:00"), 324: pd.Timestamp("2013-03-22 00:00:00"), 325: pd.Timestamp("2013-03-23 00:00:00"), 326: pd.Timestamp("2013-03-24 00:00:00"), 327: pd.Timestamp("2013-03-25 00:00:00"), 328: pd.Timestamp("2013-03-26 00:00:00"), 329: pd.Timestamp("2013-03-27 00:00:00"), 330: pd.Timestamp("2013-03-28 00:00:00"), 331: pd.Timestamp("2013-03-29 00:00:00"), 332: pd.Timestamp("2013-03-30 00:00:00"), 333: pd.Timestamp("2013-03-31 00:00:00"), 334: pd.Timestamp("2013-04-01 00:00:00"), 335: pd.Timestamp("2013-04-02 00:00:00"), 336: pd.Timestamp("2013-04-03 00:00:00"), 337: pd.Timestamp("2013-04-04 00:00:00"), 338: pd.Timestamp("2013-04-05 00:00:00"), 339: pd.Timestamp("2013-04-06 00:00:00"), 340: pd.Timestamp("2013-04-07 00:00:00"), 341: pd.Timestamp("2013-04-08 00:00:00"), 342: pd.Timestamp("2013-04-09 00:00:00"), 343: pd.Timestamp("2013-04-10 00:00:00"), 344: pd.Timestamp("2013-04-11 00:00:00"), 345: pd.Timestamp("2013-04-12 00:00:00"), 346: pd.Timestamp("2013-04-13 00:00:00"), 347: pd.Timestamp("2013-04-14 00:00:00"), 348: pd.Timestamp("2013-04-15 00:00:00"), 349: pd.Timestamp("2013-04-16 00:00:00"), 350: pd.Timestamp("2013-04-17 00:00:00"), 351: pd.Timestamp("2013-04-18 00:00:00"), 352: pd.Timestamp("2013-04-19 00:00:00"), 353: pd.Timestamp("2013-04-20 00:00:00"), 354: pd.Timestamp("2013-04-21 00:00:00"), 355: pd.Timestamp("2013-04-22 00:00:00"), 356: pd.Timestamp("2013-04-23 00:00:00"), 357: pd.Timestamp("2013-04-24 00:00:00"), 358: pd.Timestamp("2013-04-25 00:00:00"), 359: pd.Timestamp("2013-04-26 00:00:00"), 360: pd.Timestamp("2013-04-27 00:00:00"), 361: pd.Timestamp("2013-04-28 00:00:00"), 362: pd.Timestamp("2013-04-29 00:00:00"), 363: pd.Timestamp("2013-04-30 00:00:00"), 364: pd.Timestamp("2013-05-01 00:00:00"), 365: pd.Timestamp("2013-05-02 00:00:00"), 366: pd.Timestamp("2013-05-03 00:00:00"), 367: pd.Timestamp("2013-05-04 00:00:00"), 368: pd.Timestamp("2013-05-05 00:00:00"), 369: pd.Timestamp("2013-05-06 00:00:00"), 370: pd.Timestamp("2013-05-07 00:00:00"), 371:
pd.Timestamp("2013-05-08 00:00:00")
pandas.Timestamp
import os import requests import json import pandas as pd import time from datetime import datetime # Make sure the environment variable is already set up bearer_token = os.environ.get("BEARER_TOKEN") def extract_public_metrics(df_tweets): ''' Pulls out the `public_metrics` object and appends this to the Pandas dataframe as separate columns. ''' if 'public_metrics' in df_tweets.columns: public_metric_columns = ['retweet_count', 'reply_count', 'like_count', 'quote_count'] for public_metric in public_metric_columns: df_tweets[public_metric] = df_tweets['public_metrics'].apply(lambda x: x[public_metric]) df_tweets = df_tweets.drop(columns=['public_metrics']) return df_tweets def extract_referenced_tweets(df_tweets): ''' Pulls out the `referenced_tweets` object and appends this to the Pandas dataframe as separate columns. ''' if 'referenced_tweets' in df_tweets.columns: df_tweets['type'] = df_tweets['referenced_tweets'].apply(lambda x: x[0]['type'] if isinstance(x, list) else None) df_tweets['referenced_tweet_id'] = df_tweets['referenced_tweets'].apply(lambda x: x[0]['id'] if isinstance(x, list) else None) df_tweets = df_tweets.drop(columns=['referenced_tweets']) return df_tweets def clean_tweets_dataframe(df_tweets): ''' Clean up dataframe object obtained from REST API JSON ''' df_tweets = extract_public_metrics(df_tweets) df_tweets = extract_referenced_tweets(df_tweets) return df_tweets def tweets_url(ids:list): tweet_fields = 'id,author_id,public_metrics,conversation_id,created_at' #,in_reply_to_user_id #,entities user_fields = 'name,username,profile_image_url' expansions = 'author_id,referenced_tweets.id,in_reply_to_user_id,referenced_tweets.id.author_id' url = f"https://api.twitter.com/2/tweets?ids={','.join(ids)}"+\ f"&tweet.fields={tweet_fields}"+\ f"&user.fields={user_fields}"+\ f"&expansions={expansions}" return url def tweet_url(tweet_id:str): ''' Pulls data for an individual tweet. You can adjust ids to include a single Tweets or add to up to 100 comma-separated IDs ''' tweet_fields = "tweet.fields=lang,author_id" ids = "ids="+tweet_id url = "https://api.twitter.com/2/tweets?{}&{}".format(ids, tweet_fields) return url def search_url(query:str, max_results:int=100, start_time=None, end_time=None) -> str: ''' Generates endpoint for Twitter REST API: GET /2/tweets/search/recent Time format must be in RFC 3339 UTC timestamp eg `2022-01-04T00:00:00.000Z` ''' tweet_fields = 'id,author_id,public_metrics,conversation_id,created_at' #,in_reply_to_user_id #,entities user_fields = 'name,username,profile_image_url' expansions = 'author_id,referenced_tweets.id,in_reply_to_user_id,referenced_tweets.id.author_id' url = f"https://api.twitter.com/2/tweets/search/recent"+\ f"?query={query} -is:reply -is:quote"+\ f"&max_results={max_results}"+\ f"&tweet.fields={tweet_fields}"+\ f"&user.fields={user_fields}"+\ f"&expansions={expansions}" if start_time is not None: url+=f"&start_time={start_time}" if start_time is not None: url+=f"&end_time={end_time}" return url def replies_to_user_url(user_id:str, max_results:int=100) -> str: ''' Generates endpoint for Twitter REST API: GET /2/tweets/search/recent Gets all replies to an individual user_id ''' tweet_fields = 'id,author_id,public_metrics' user_fields = 'name,username,profile_image_url' expansions = 'author_id,referenced_tweets.id,in_reply_to_user_id,referenced_tweets.id.author_id' url = f"https://api.twitter.com/2/tweets/search/recent?query=to%3A{user_id}%20OR%20retweets_of%3A{user_id}"+\ f"&max_results={max_results}"+\ f"&tweet.fields={tweet_fields}"+\ f"&user.fields={user_fields}"+\ f"&expansions={expansions}" return url def liking_users_url(tweet_id): ''' ''' url = f"https://api.twitter.com/2/tweets/{tweet_id}/liking_users" return url def retweeting_users_url(tweet_id): url = f"https://api.twitter.com/2/tweets/{tweet_id}/retweeted_by" return url def user_url(user_id): url = f"https://api.twitter.com/2/users/{user_id}" return url def get_conversation_url(conversation_id, max_results=100): ''' Get all comments and replies related to this tweet ''' tweet_fields = 'id,author_id,public_metrics,conversation_id,created_at' #,in_reply_to_user_id #,entities user_fields = 'name,username,profile_image_url' expansions = 'author_id,referenced_tweets.id,in_reply_to_user_id,referenced_tweets.id.author_id' url = f"https://api.twitter.com/2/tweets/search/recent"+\ f"?query=conversation_id:{conversation_id}"+\ f"&max_results={max_results}"+\ f"&tweet.fields={tweet_fields}"+\ f"&user.fields={user_fields}"+\ f"&expansions={expansions}" return url def bearer_oauth(r): ''' Method required by bearer token authentication. ''' r.headers['Authorization'] = f"Bearer {bearer_token}" return r def connect_to_endpoint(url, wait_on_timeout=True): response = requests.request("GET", url, auth=bearer_oauth) epochtime = response.headers['x-rate-limit-reset'] rate_limit_reset_time = datetime.fromtimestamp(int(epochtime)) rate_limit_remaining = response.headers['x-rate-limit-remaining'] print(f"{response.status_code}\tx-rate-limit-remaining: {rate_limit_remaining}\tx-rate-limit-reset: {rate_limit_reset_time}") # If the REST API limit is reached, we can sleep until the limit is reset and then continue if response.status_code == 429 and wait_on_timeout == True: rate_limit_reset_time = datetime.fromtimestamp(int(epochtime)) time_difference = rate_limit_reset_time-datetime.now() print(f"Rate limit resets at {rate_limit_reset_time}. Sleeping for {time_difference.seconds} seconds...") time.sleep(time_difference.seconds+10) print(datetime.now()) response = requests.request("GET", url, auth=bearer_oauth) if response.status_code != 200: raise Exception( "Request returned an error: {} {}".format( response.status_code, response.text ) ) return response.json() def day_to_time(day:str) -> str: ''' Convert `dd-mon-yyyy` format to UTC timestamp. Used to generate Twitter API url. ''' if day is not None: time = datetime.strptime(day,'%d-%b-%Y').isoformat() + "Z" else: time = None return time def search_and_paginate(query:str, num_results:int=100, wait_on_timeout=True, start_day=None, end_day=None): ''' Calls the Twitter REST API /2/tweets/search/recent and paginates results :return: Tweets as a Pandas dataframe. ''' results_each_call = 100 # Must be RFC 3339 UTC timestamp start_time = day_to_time(start_day) end_time = day_to_time(end_day) url = search_url(query, results_each_call,start_time,end_time) json_response = connect_to_endpoint(url, wait_on_timeout) df_tweets = pd.DataFrame(json_response['data']) df_users = pd.DataFrame(json_response['includes']['users']) # As maximum results for each call is 100, more REST API calls may need to be made to collect # more results. while 'next_token' in json_response['meta'] and len(df_tweets) < num_results: pagination_token = json_response['meta']['next_token'] json_response = connect_to_endpoint(f'{url}&next_token={pagination_token}', wait_on_timeout) df_tweets = df_tweets.append(pd.DataFrame(json_response['data']),ignore_index=True) df_users = df_users.append(pd.DataFrame(json_response['includes']['users']),ignore_index=True) df_tweets = clean_tweets_dataframe(df_tweets) return df_tweets, df_users def get_original_tweets(df_tweets, df_users): ''' If the retweeted tweet is not in the original list, grab this as well and append it to the Pandas dataframe. Can probably do one call for multiple `conversation_id`s ''' df_referenced_tweets =
pd.DataFrame()
pandas.DataFrame
r""" Tests for news results Author: <NAME> License: BSD-3 """ from statsmodels.compat.pandas import NumericIndex from statsmodels.compat.pandas import ( assert_frame_equal, assert_series_equal, ) import numpy as np from numpy.testing import assert_, assert_allclose, assert_equal import pandas as pd import pytest from statsmodels import datasets from statsmodels.tsa.statespace import ( dynamic_factor, sarimax, structural, varmax, ) dta = datasets.macrodata.load_pandas().data dta.index = pd.period_range(start='1959Q1', end='2009Q3', freq='Q') def check_impact_indices(news, impact_dates, impacted_variables): # Note: the index for impacts is only a time index, because we compute # impacts for all variables during these time periods. for attr in ['total_impacts', 'update_impacts', 'revision_impacts', 'post_impacted_forecasts', 'prev_impacted_forecasts']: val = getattr(news, attr) assert_(val.index.equals(impact_dates)) assert_equal(val.columns.tolist(), impacted_variables) def check_revision_indices(news, revisions_index): # Note: revision indices must be a MultiIndex, because for each time # period, not all variables necessarily revised. # If there are no revisions, we just check the length is zero if news.news_results.revision_impacts is None: assert_equal(len(news.revisions_iloc['revision date']), 0) assert_equal(len(news.revisions_iloc['revised variable']), 0) assert_equal(len(news.revisions_ix['revision date']), 0) assert_equal(len(news.revisions_ix['revised variable']), 0) # Otherwise, check that the revision indexes are correct else: # Get the integer locations of the given indexes dates = news.previous.model._index endog_names = news.previous.model.endog_names if isinstance(endog_names, str): endog_names = [endog_names] desired_ix = revisions_index.to_frame().reset_index(drop=True) desired_iloc = desired_ix.copy() desired_iloc['revision date'] = [ dates.get_loc(date) for date in desired_ix['revision date']] desired_iloc['revised variable'] = [ endog_names.index(name) for name in desired_ix['revised variable']] assert_(news.revisions_iloc.equals(desired_iloc)) assert_(news.revisions_ix.equals(desired_ix)) def check_update_indices(news, updates_index): # Note: update indices are also a MultiIndex, for the same reason as the # revision indices. # If there are no updates, we just check the length is zero if news.news_results.update_impacts is None: assert_equal(len(news.updates_iloc['update date']), 0) assert_equal(len(news.updates_iloc['updated variable']), 0) assert_equal(len(news.updates_ix['update date']), 0) assert_equal(len(news.updates_ix['updated variable']), 0) # Otherwise, check that the revision indexes are correct else: # Get the integer locations of the given indexes dates = news.updated.model._index endog_names = news.updated.model.endog_names if isinstance(endog_names, str): endog_names = [endog_names] desired_ix = updates_index.to_frame().reset_index(drop=True) desired_iloc = desired_ix.copy() desired_iloc['update date'] = [ dates.get_loc(date) for date in desired_ix['update date']] desired_iloc['updated variable'] = [ endog_names.index(name) for name in desired_ix['updated variable']] assert_(news.updates_iloc.equals(desired_iloc)) assert_(news.updates_ix.equals(desired_ix)) def check_news_indices(news, updates_index, impact_dates): # News are computed only from updates, so the news indices are the same as # the update indices if len(updates_index): news_index = updates_index else: news_index = pd.MultiIndex.from_product( [[], []], names=['update date', 'updated variable']) endog_names = news.previous.model.endog_names if isinstance(endog_names, str): endog_names = [endog_names] assert_(news.news.index.equals(news_index)) assert_(news.update_forecasts.index.equals(news_index)) assert_(news.update_realized.index.equals(news_index)) assert_(news.weights.index.equals(news_index)) weights_columns = pd.MultiIndex.from_product([impact_dates, endog_names]) assert_(news.weights.columns.equals(weights_columns)) def check_news(news, revisions, updates, impact_dates, impacted_variables, revisions_index, updates_index, revision_impacts, update_impacts, prev_impacted_forecasts, post_impacted_forecasts, update_forecasts, update_realized, news_desired, weights): # Note: we use atol=1e-12 to handle cases where impacts, etc. are equal to # zero, but numerical precision of the Kalman filter procedures gives an # answer of e.g. 1e-16. # Note: Here we set the tolerance to be slightly negative, since some of # the tests have weights or impacts exactly equal to zero, while we still # want to include those in tests. news.tolerance = -1e-10 # - Indexes -------------------------------------------------------------- # Index of impacts check_impact_indices(news, impact_dates, impacted_variables) # Reivision indices check_revision_indices(news, revisions_index) # Update indices check_update_indices(news, updates_index) # News indices check_news_indices(news, updates_index, impact_dates) # - Impacts -------------------------------------------------------------- if updates: assert_allclose(news.update_impacts, update_impacts, atol=1e-12) else: assert_(np.all(news.update_impacts.isnull())) # Impacts from revisions if revisions: assert_allclose(news.revision_impacts, revision_impacts, atol=1e-12) else: assert_(news.news_results.revision_impacts is None) assert_(np.all(news.revision_impacts.isnull())) # Total impacts total_impacts = (news.revision_impacts.fillna(0) + news.update_impacts.fillna(0)) assert_allclose(news.total_impacts, total_impacts, atol=1e-12) # - Impacted variable forecasts ------------------------------------------ assert_allclose(news.prev_impacted_forecasts, prev_impacted_forecasts, atol=1e-12) assert_allclose(news.post_impacted_forecasts, post_impacted_forecasts, atol=1e-12) # - News ----------------------------------------------------------------- assert_allclose(news.update_forecasts, update_forecasts, atol=1e-12) assert_allclose(news.update_realized, update_realized, atol=1e-12) # The "news" is simply the forecast error assert_allclose(news.news, news_desired, atol=1e-12) # The weight is zero on previously known data, and is geometrically # declining (according to the AR parameter) in the forecast period assert_allclose(news.weights, weights, atol=1e-12) # - Table: data revisions ------------------------------------------------ assert_equal(news.data_revisions.columns.tolist(), ['observed (prev)', 'revised']) assert_equal(news.data_revisions.index.names, ['revision date', 'revised variable']) assert_(news.data_revisions.index.equals(revisions_index)) # - Table: data updates -------------------------------------------------- assert_equal(news.data_updates.columns.tolist(), ['observed', 'forecast (prev)']) assert_equal(news.data_updates.index.names, ['update date', 'updated variable']) assert_(news.data_updates.index.equals(news.news.index)) assert_allclose(news.data_updates['forecast (prev)'], news.update_forecasts, atol=1e-12) assert_allclose(news.data_updates['observed'], news.update_realized, atol=1e-12) # - Table: details_by_impact --------------------------------------------- details_by_impact = news.details_by_impact desired = ['observed', 'forecast (prev)', 'news', 'weight', 'impact'] assert_equal(details_by_impact.columns.tolist(), desired) desired = ['impact date', 'impacted variable', 'update date', 'updated variable'] assert_equal(details_by_impact.index.names, desired) if updates: actual = (news.details_by_impact['forecast (prev)'] .drop_duplicates() .reset_index([0, 1])['forecast (prev)']) assert_allclose(actual, news.update_forecasts, atol=1e-12) actual = (news.details_by_impact['observed'] .drop_duplicates().reset_index([0, 1])['observed']) assert_allclose(actual, news.update_realized, atol=1e-12) actual = (news.details_by_impact['news'] .drop_duplicates().reset_index([0, 1])['news']) assert_allclose(actual, news.news, atol=1e-12) # Weights assert_allclose(details_by_impact['weight'].unstack([0, 1]), news.weights, atol=1e-12) # Impact of news actual = (news.details_by_impact['impact'] .unstack([2, 3]).sum(axis=1).unstack(1)) assert_allclose(actual, news.update_impacts, atol=1e-12) # - Table: details_by_update --------------------------------------------- details_by_update = news.details_by_update desired = ['news', 'weight', 'impact'] assert_equal(details_by_update.columns.tolist(), desired) desired = ['update date', 'updated variable', 'observed', 'forecast (prev)', 'impact date', 'impacted variable'] assert_equal(details_by_update.index.names, desired) if updates: # News # Special case for Pandas = 0.23, see above actual = (news.details_by_update['news'] .drop_duplicates().reset_index([2, 3, 4, 5])['news']) assert_allclose(actual, news.news, atol=1e-12) # Weights assert_allclose(news.details_by_update['weight'].unstack([4, 5]), news.weights, atol=1e-12) # Impact of news actual = (news.details_by_update['impact'] .unstack([4, 5]).sum(axis=0).unstack(1)) assert_allclose(actual, news.update_impacts, atol=1e-12) # - Table: impacts ------------------------------------------------------- impacts = news.impacts desired = ['estimate (prev)', 'impact of revisions', 'impact of news', 'total impact', 'estimate (new)'] assert_equal(impacts.columns.tolist(), desired) desired = ['impact date', 'impacted variable'] assert_equal(impacts.index.names, desired) assert_allclose(impacts.loc[:, 'estimate (prev)'], news.prev_impacted_forecasts.stack(), atol=1e-12) assert_allclose(impacts.loc[:, 'impact of revisions'], news.revision_impacts.fillna(0).stack(), atol=1e-12) assert_allclose(impacts.loc[:, 'impact of news'], news.update_impacts.fillna(0).stack(), atol=1e-12) assert_allclose(impacts.loc[:, 'total impact'], news.total_impacts.stack(), atol=1e-12) assert_allclose(impacts.loc[:, 'estimate (new)'], news.post_impacted_forecasts.stack(), atol=1e-12) @pytest.mark.parametrize('revisions', [True, False]) @pytest.mark.parametrize('updates', [True, False]) def test_sarimax_time_invariant(revisions, updates): # Construct previous and updated datasets endog = dta['infl'].copy() comparison_type = None if updates: endog1 = endog.loc[:'2009Q2'].copy() endog2 = endog.loc[:'2009Q3'].copy() else: endog1 = endog.loc[:'2009Q3'].copy() endog2 = endog.loc[:'2009Q3'].copy() # Without updates and without NaN values, we need to specify that # the type of the comparison object that we're passing is "updated" comparison_type = 'updated' if revisions: endog1.iloc[-1] = 0. # Get the previous results object and compute the news mod = sarimax.SARIMAX(endog1) res = mod.smooth([0.5, 1.0]) news = res.news(endog2, start='2009Q2', end='2010Q1', comparison_type=comparison_type) # Compute the true values for each combination of (revsions, updates) impact_dates = pd.period_range(start='2009Q2', end='2010Q1', freq='Q') impacted_variables = ['infl'] # Revisions if revisions and updates: revisions_index = pd.MultiIndex.from_arrays( [endog1.index[-1:], ['infl']], names=['revision date', 'revised variable']) # If we have updates, the revision is to 2009Q2 revision_impacts = endog2.iloc[-2] * 0.5**np.arange(4).reshape(4, 1) elif revisions: revisions_index = pd.MultiIndex.from_arrays( [endog1.index[-1:], ['infl']], names=['revision date', 'revised variable']) # With no updates, the revision is to 2009Q3 revision_impacts = np.r_[ 0, endog2.iloc[-1] * 0.5**np.arange(3)].reshape(4, 1) else: revisions_index = pd.MultiIndex.from_arrays( [[], []], names=['revision date', 'revised variable']) revision_impacts = None # Updates if updates: updates_index = pd.MultiIndex.from_arrays( [pd.period_range(start='2009Q3', periods=1, freq='Q'), ['infl']], names=['update date', 'updated variable']) update_impacts = np.array([[ 0, endog.loc['2009Q3'] - 0.5 * endog.loc['2009Q2'], 0.5 * endog.loc['2009Q3'] - 0.5**2 * endog.loc['2009Q2'], 0.5**2 * endog.loc['2009Q3'] - 0.5**3 * endog.loc['2009Q2']]]).T else: updates_index = pd.MultiIndex.from_arrays( [[], []], names=['update date', 'updated variable']) update_impacts = None # Impact forecasts if updates: prev_impacted_forecasts = np.r_[ endog1.iloc[-1] * 0.5**np.arange(4)].reshape(4, 1) else: prev_impacted_forecasts = np.r_[ endog1.iloc[-2], endog1.iloc[-1] * 0.5**np.arange(3)].reshape(4, 1) post_impacted_forecasts = np.r_[ endog2.iloc[-2], 0.5 ** np.arange(3) * endog2.iloc[-1]].reshape(4, 1) # News if updates: # Note: update_forecasts is created using the endog2 dataset even if # there were revisions, because it should be computed after revisions # have already been taken into account update_forecasts = [0.5 * endog2.loc['2009Q2']] update_realized = [endog2.loc['2009Q3']] news_desired = [update_realized[i] - update_forecasts[i] for i in range(len(update_forecasts))] weights = pd.DataFrame(np.r_[0, 0.5**np.arange(3)]).T else: update_forecasts = pd.Series([], dtype=np.float64) update_realized = pd.Series([], dtype=np.float64) news_desired =
pd.Series([], dtype=np.float64)
pandas.Series
import logging import itertools import numpy import pandas def trade_pair(pair_code, bid, ask, volume): """ Computes the balance after the operation takes place. Example: XXLMXXBT 38092.21 0.000008210 0.000008340 121.618 --> With a volume of 1 we go long 0.000008210 XXBT and short 1 XXLM :param pair_code: :param bid: :param ask: :param volume: :return: """ currency_first = pair_code[:4] currency_second = pair_code[4:] balance = {currency_first: 0, currency_second: 0} trade = None if volume > 0: allowed_volume = min(volume, bid['volume']) capped = numpy.NaN if allowed_volume < volume: capped = allowed_volume balance = {currency_first: allowed_volume * -1, currency_second: allowed_volume * bid['price']} trade = {'direction': 'buy', 'pair': pair_code, 'quantity': allowed_volume, 'price': bid['price'], 'capped': capped} elif volume < 0: allowed_volume = min(abs(volume), ask['volume']) capped = numpy.NaN if allowed_volume < abs(volume): capped = allowed_volume balance = {currency_first: allowed_volume, currency_second: allowed_volume * ask['price'] * -1} trade = {'direction': 'sell', 'pair': pair_code, 'quantity': allowed_volume, 'price': ask['price'], 'capped': capped} return balance, trade def buy_currency_using_pair(currency, volume, pair_code, bid, ask): """ :param currency: :param volume: amount to buy denominated in currency :param pair_code: :param bid: :param ask: :return: """ logging.info('buying {} {} using {}'.format(volume, currency, pair_code)) if pair_code[4:] == currency: # Direct quotation logging.debug('direct quotation') target_volume = volume / bid['price'] balance, performed_trade = trade_pair(pair_code, bid, ask, round(target_volume, 10)) else: # Indirect quotation logging.debug('indirect quotation') balance, performed_trade = trade_pair(pair_code, bid, ask, volume * -1) return balance, performed_trade def sell_currency_using_pair(currency, volume, pair_code, bid, ask): """ :param currency: :param volume: amount to buy denominated in currency :param pair_code: :param bid: :param ask: :return: """ logging.info('selling {} {} using {}'.format(volume, currency, pair_code)) if pair_code[4:] == currency: # Direct quotation logging.debug('direct quotation') target_volume = -1 * volume / ask['price'] balance, performed_trade = trade_pair(pair_code, bid, ask, round(target_volume, 10)) else: # Indirect quotation logging.debug('indirect quotation') balance, performed_trade = trade_pair(pair_code, bid, ask, volume) return balance, performed_trade def calculate_arbitrage_opportunity(pair_1, pair_bid_1, pair_ask_1, pair_2, pair_bid_2, pair_ask_2, pair_3, pair_bid_3, pair_ask_3, skip_capped=True): """ :param pair_1: :param pair_bid_1: :param pair_ask_1: :param pair_2: :param pair_bid_2: :param pair_ask_2: :param pair_3: :param pair_bid_3: :param pair_ask_3: :param skip_capped: :return: (trades, balances) """ pairs = [pair_1, pair_2, pair_3] pair_bids = [pair_bid_1, pair_bid_2, pair_bid_3] pair_asks = [pair_ask_1, pair_ask_2, pair_ask_3] results = list() for first, second, third in itertools.permutations([0, 1, 2]): currency_initial = pairs[first][4:] initial_bid = pair_bids[first] initial_ask = pair_asks[first] if currency_initial in pairs[second]: next_pair = pairs[second] next_bid = pair_bids[second] next_ask = pair_asks[second] final_pair = pairs[third] final_bid = pair_bids[third] final_ask = pair_asks[third] else: next_pair = pairs[third] next_bid = pair_bids[third] next_ask = pair_asks[third] final_pair = pairs[second] final_bid = pair_bids[second] final_ask = pair_asks[second] if next_pair[:4] != currency_initial: currency_next = next_pair[:4] else: currency_next = next_pair[4:] balance_initial, trade_initial = buy_currency_using_pair(currency_initial, 1, pairs[first], initial_bid, initial_ask) balance_next, trade_next = sell_currency_using_pair(currency_initial, balance_initial[currency_initial], next_pair, next_bid, next_ask) balance_final, trade_final = sell_currency_using_pair(currency_next, balance_next[currency_next], final_pair, final_bid, final_ask) balance1_series = pandas.Series(balance_initial, name='initial') balance2_series = pandas.Series(balance_next, name='next') balance3_series = pandas.Series(balance_final, name='final') balances = pandas.concat([balance1_series, balance2_series, balance3_series], axis=1) trades_df =
pandas.DataFrame([trade_initial, trade_next, trade_final])
pandas.DataFrame