prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import math import string from typing import Optional, Sequence, Tuple import hypothesis.strategies as st import numpy as np import pandas as pd import pandas.testing as tm import pyarrow as pa import pytest from hypothesis import example, given, settings import fletcher as fr from fletcher.testing import examples try: # Only available in pandas 1.2+ # When this class is defined, we can also use `.str` on fletcher columns. from pandas.core.strings.object_array import ObjectStringArrayMixin # noqa F401 _str_accessors = ["str", "fr_str"] except ImportError: _str_accessors = ["fr_str"] @pytest.fixture(params=_str_accessors, scope="module") def str_accessor(request): return request.param @st.composite def string_patterns_st(draw, max_len=50) -> Tuple[Sequence[Optional[str]], str, int]: ab_charset_st = st.sampled_from("ab") ascii_charset_st = st.sampled_from(string.ascii_letters) charset_st = st.sampled_from((ab_charset_st, ascii_charset_st)) charset = draw(charset_st) fixed_pattern_st = st.sampled_from(["a", "aab", "aabaa"]) generated_pattern_st = st.text(alphabet=charset, max_size=max_len) pattern_st = st.one_of(fixed_pattern_st, generated_pattern_st) pattern = draw(pattern_st) min_str_size = 0 if len(pattern) > 0 else 1 raw_str_st = st.one_of( st.none(), st.lists(charset, min_size=min_str_size, max_size=max_len) ) raw_seq_st = st.lists(raw_str_st, max_size=max_len) raw_seq = draw(raw_seq_st) for s in raw_seq: if s is None: continue """ There seems to be a bug in pandas for this edge case >>> pd.Series(['']).str.replace('', 'abc', n=1) 0 dtype: object But >>> pd.Series(['']).str.replace('', 'abc') 0 abc dtype: object I believe the second result is the correct one and this is what the fletcher implementation returns. """ max_ind = len(s) - len(pattern) if max_ind < 0: continue repl_ind_st = st.integers(min_value=0, max_value=max_ind) repl_ind_list_st = st.lists(repl_ind_st, max_size=math.ceil(max_len / 10)) repl_ind_list = draw(repl_ind_list_st) for j in repl_ind_list: s[j : j + len(pattern)] = pattern seq = ["".join(s) if s is not None else None for s in raw_seq] offset = draw(st.integers(min_value=0, max_value=len(seq))) return (seq, pattern, offset) string_patterns = pytest.mark.parametrize( "data, pat", [ ([], ""), (["a", "b"], ""), (["aa", "ab", "ba"], "a"), (["aa", "ab", "ba", "bb", None], "a"), (["aa", "ab", "ba", "bb", None], "A"), (["aa", "ab", "bA", "bB", None], "a"), (["aa", "AB", "ba", "BB", None], "A"), ], ) def _fr_series_from_data(data, fletcher_variant, dtype=pa.string()): arrow_data = pa.array(data, type=dtype) if fletcher_variant == "chunked": fr_array = fr.FletcherChunkedArray(arrow_data) else: fr_array = fr.FletcherContinuousArray(arrow_data) return pd.Series(fr_array) @settings(deadline=None) @given(data=st.lists(st.one_of(st.text(), st.none()))) def test_text_cat(data, str_accessor, fletcher_variant, fletcher_variant_2): if any("\x00" in x for x in data if x): # pytest.skip("pandas cannot handle \\x00 characters in tests") # Skip is not working properly with hypothesis return ser_pd = pd.Series(data, dtype=str) ser_fr = _fr_series_from_data(data, fletcher_variant) ser_fr_other = _fr_series_from_data(data, fletcher_variant_2) result_pd = ser_pd.str.cat(ser_pd) result_fr = getattr(ser_fr, str_accessor).cat(ser_fr_other) result_fr = result_fr.astype(object) # Pandas returns np.nan for NA values in cat, keep this in line result_fr[result_fr.isna()] = np.nan tm.assert_series_equal(result_fr, result_pd) def _check_series_equal(result_fr, result_pd): result_fr = result_fr.astype(result_pd.dtype) tm.assert_series_equal(result_fr, result_pd) def _check_str_to_t( t, func, data, str_accessor, fletcher_variant, test_offset=0, *args, **kwargs ): """Check a .str. function that returns a series with type t.""" tail_len = len(data) - test_offset ser_pd = pd.Series(data, dtype=str).tail(tail_len) result_pd = getattr(ser_pd.str, func)(*args, **kwargs) ser_fr = _fr_series_from_data(data, fletcher_variant).tail(tail_len) result_fr = getattr(getattr(ser_fr, str_accessor), func)(*args, **kwargs) _check_series_equal(result_fr, result_pd) def _check_str_to_str(func, data, str_accessor, fletcher_variant, *args, **kwargs): _check_str_to_t(str, func, data, str_accessor, fletcher_variant, *args, **kwargs) def _check_str_to_bool(func, data, str_accessor, fletcher_variant, *args, **kwargs): _check_str_to_t(bool, func, data, str_accessor, fletcher_variant, *args, **kwargs) @string_patterns def test_text_endswith(data, pat, str_accessor, fletcher_variant): _check_str_to_bool("endswith", data, str_accessor, fletcher_variant, pat=pat) @string_patterns def test_text_startswith(data, pat, str_accessor, fletcher_variant): _check_str_to_bool("startswith", data, str_accessor, fletcher_variant, pat=pat) @string_patterns def test_contains_no_regex(data, pat, str_accessor, fletcher_variant): _check_str_to_bool( "contains", data, str_accessor, fletcher_variant, pat=pat, regex=False ) @pytest.mark.parametrize( "data, pat, expected", [ ([], "", []), (["a", "b"], "", [True, True]), (["aa", "Ab", "ba", "bb", None], "a", [True, False, True, False, None]), ], ) def test_contains_no_regex_ascii(data, pat, expected, str_accessor, fletcher_variant): if str_accessor == "str": pytest.skip( "return types not stable yet, might sometimes return null instead of bool" ) return fr_series = _fr_series_from_data(data, fletcher_variant) fr_expected = _fr_series_from_data(expected, fletcher_variant, pa.bool_()) # Run over slices to check offset handling code for i in range(len(data)): ser = fr_series.tail(len(data) - i) expected = fr_expected.tail(len(data) - i) result = getattr(ser, str_accessor).contains(pat, regex=False) tm.assert_series_equal(result, expected) @settings(deadline=None) @given(data_tuple=string_patterns_st()) def test_contains_no_regex_case_sensitive(data_tuple, str_accessor, fletcher_variant): data, pat, test_offset = data_tuple _check_str_to_bool( "contains", data, str_accessor, fletcher_variant, test_offset=test_offset, pat=pat, case=True, regex=False, ) @string_patterns def test_contains_no_regex_ignore_case(data, pat, str_accessor, fletcher_variant): _check_str_to_bool( "contains", data, str_accessor, fletcher_variant, pat=pat, regex=False, case=False, ) regex_patterns = pytest.mark.parametrize( "data, pat", [ ([], ""), (["a", "b"], ""), (["aa", "ab", "ba"], "a"), (["aa", "ab", "ba", None], "a"), (["aa", "ab", "ba", None], "a$"), (["aa", "ab", "ba", None], "^a"), (["Aa", "ab", "ba", None], "A"), (["aa", "AB", "ba", None], "A$"), (["aa", "AB", "ba", None], "^A"), ], ) @regex_patterns def test_contains_regex(data, pat, str_accessor, fletcher_variant): _check_str_to_bool( "contains", data, str_accessor, fletcher_variant, pat=pat, regex=True ) @regex_patterns def test_contains_regex_ignore_case(data, pat, str_accessor, fletcher_variant): _check_str_to_bool( "contains", data, str_accessor, fletcher_variant, pat=pat, regex=True, case=False, ) @settings(deadline=None) @given( data_tuple=string_patterns_st(), n=st.integers(min_value=0, max_value=10), repl=st.sampled_from(["len4", "", "z"]), ) @example( data_tuple=(["aababaa"], "aabaa", 0), repl="len4", n=1, fletcher_variant="continuous", ) @example(data_tuple=(["aaa"], "a", 0), repl="len4", n=1, fletcher_variant="continuous") def test_replace_no_regex_case_sensitive( data_tuple, repl, n, str_accessor, fletcher_variant ): data, pat, test_offset = data_tuple _check_str_to_str( "replace", data, str_accessor, fletcher_variant, test_offset=test_offset, pat=pat, repl=repl, n=n, case=True, regex=False, ) @settings(deadline=None) @given(data_tuple=string_patterns_st()) @example(data_tuple=(["a"], "", 0), fletcher_variant="chunked") def test_count_no_regex(data_tuple, str_accessor, fletcher_variant): """Check a .str. function that returns a series with type t.""" data, pat, test_offset = data_tuple tail_len = len(data) - test_offset ser_pd = pd.Series(data, dtype=str).tail(tail_len) result_pd = getattr(ser_pd.str, "count")(pat=pat) ser_fr = _fr_series_from_data(data, fletcher_variant).tail(tail_len) kwargs = {} if str_accessor.startswith("fr_"): kwargs["regex"] = False result_fr = getattr(ser_fr, str_accessor).count(pat=pat, **kwargs) _check_series_equal(result_fr, result_pd) def _optional_len(x: Optional[str]) -> int: if x is not None: return len(x) else: return 0 @settings(deadline=None) @given(data=st.lists(st.one_of(st.text(), st.none()))) def test_text_zfill(data, str_accessor, fletcher_variant): if any("\x00" in x for x in data if x): # pytest.skip("pandas cannot handle \\x00 characters in tests") # Skip is not working properly with hypothesis return ser_pd = pd.Series(data, dtype=str) max_str_len = ser_pd.map(_optional_len).max() if pd.isna(max_str_len): max_str_len = 0 arrow_data = pa.array(data, type=pa.string()) if fletcher_variant == "chunked": fr_array = fr.FletcherChunkedArray(arrow_data) else: fr_array = fr.FletcherContinuousArray(arrow_data) ser_fr = pd.Series(fr_array) result_pd = ser_pd.str.zfill(max_str_len + 1) result_fr = getattr(ser_fr, str_accessor).zfill(max_str_len + 1) result_fr = result_fr.astype(object) # Pandas returns np.nan for NA values in cat, keep this in line result_fr[result_fr.isna()] = np.nan tm.assert_series_equal(result_fr, result_pd) @settings(deadline=None, max_examples=3) @given(data=st.lists(st.one_of(st.text(), st.none()))) @examples( example_list=[ [ " 000000000000000000000000000000000000000000İࠀࠀࠀࠀ𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐤱000000000000𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀𐀀" ], ["\x80 "], [], ], example_kword="data", ) def test_text_strip_offset(str_accessor, fletcher_variant, fletcher_slice_offset, data): _do_test_text_strip(str_accessor, fletcher_variant, fletcher_slice_offset, data) @settings(deadline=None) @given(data=st.lists(st.one_of(st.text(), st.none()))) @examples( example_list=[ [], [""], [None], [" "], ["\u2000"], [" a"], ["a "], [" a "], # https://github.com/xhochy/fletcher/issues/174 ["\xa0"], ["\u2000a\u2000"], ["\u2000\u200C\u2000"], ["\n\u200C\r"], ["\u2000\x80\u2000"], ["\t\x80\x0b"], ["\u2000\u10FFFF\u2000"], [" \u10FFFF "], ] + [ [c] for c in " \t\r\n\x1f\x1e\x1d\x1c\x0c\x0b" "\u2000\u2001\u2002\u2003\u2004\u2005\u2006\u2007\u2008\u2000\u2009\u200A\u200B\u2028\u2029\u202F\u205F" ] + [[chr(c)] for c in range(0x32)] + [[chr(c)] for c in range(0x80, 0x85)] + [[chr(c)] for c in range(0x200C, 0x2030)] + [[chr(c)] for c in range(0x2060, 0x2070)] + [[chr(c)] for c in range(0x10FFFE, 0x110000)], example_kword="data", ) def test_text_strip(str_accessor, fletcher_variant, data): _do_test_text_strip(str_accessor, fletcher_variant, 1, data) def _do_test_text_strip(str_accessor, fletcher_variant, fletcher_slice_offset, data): if any("\x00" in x for x in data if x): # pytest.skip("pandas cannot handle \\x00 characters in tests") # Skip is not working properly with hypothesis return ser_pd = pd.Series(data, dtype=str) arrow_data = pa.array( [None for _ in range(fletcher_slice_offset)] + data, type=pa.string() ) if fletcher_variant == "chunked": fr_array = fr.FletcherChunkedArray(arrow_data) else: fr_array = fr.FletcherContinuousArray(arrow_data) ser_fr = pd.Series(fr_array[fletcher_slice_offset:]) result_pd = ser_pd.str.strip() result_fr = getattr(ser_fr, str_accessor).strip() result_fr = result_fr.astype(object) # Pandas returns np.nan for NA values in cat, keep this in line result_fr[result_fr.isna()] = np.nan result_pd[result_pd.isna()] = np.nan tm.assert_series_equal(result_fr, result_pd) def test_fr_str_accessor(fletcher_array): data = ["a", "b"] ser_pd = pd.Series(data) # object series is returned s = ser_pd.fr_str.encode("utf8") assert s.dtype == np.dtype("O") # test fletcher functionality and fallback to pandas arrow_data = pa.array(data, type=pa.string()) fr_array = fletcher_array(arrow_data) ser_fr = pd.Series(fr_array) # pandas strings only method s = ser_fr.fr_str.encode("utf8") assert isinstance(s.values, fr.FletcherBaseArray) def test_fr_str_accessor_fail(fletcher_variant): data = [1, 2] ser_pd = pd.Series(data) with pytest.raises(Exception): ser_pd.fr_str.startswith("a") @pytest.mark.parametrize("regex", ["([0-9]+)", "([0-9]+)\\+([a-z]+)*"]) @pytest.mark.parametrize( "data", [["123+"], ["123+a"], ["123+a", "123+"], ["123+", "123+a"]] ) def test_text_extractall(str_accessor, fletcher_variant, data, regex): if str_accessor == "str": pytest.skip("extractall is not yet dispatched to the ExtensionArray") return ser_fr = _fr_series_from_data(data, fletcher_variant) result_fr = getattr(ser_fr, str_accessor).extractall(regex) assert isinstance(result_fr[0].dtype, fr.FletcherBaseDtype) ser_pd = pd.Series(data) result_pd = ser_pd.str.extractall(regex) tm.assert_frame_equal(result_pd, result_fr.astype(object)) @pytest.mark.parametrize("data", [["123"], ["123+"], ["123+a+", "123+"]]) @pytest.mark.parametrize("expand", [True, False]) def test_text_split(str_accessor, fletcher_variant, data, expand): ser_fr = _fr_series_from_data(data, fletcher_variant) result_fr = getattr(ser_fr, str_accessor).split("+", expand=expand) ser_pd =
pd.Series(data)
pandas.Series
# -*- coding: utf-8 -*- # ***************************************************************************** # Copyright (c) 2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** import numpy as np import pandas as pd import platform import unittest from itertools import combinations, combinations_with_replacement, product from numba.core.config import IS_32BITS from numba.core.errors import TypingError from sdc.tests.test_base import TestCase from sdc.tests.test_utils import (skip_numba_jit, _make_func_from_text, gen_frand_array) def _make_func_use_binop1(operator): func_text = "def test_impl(A, B):\n" func_text += " return A {} B\n".format(operator) return _make_func_from_text(func_text) def _make_func_use_binop2(operator): func_text = "def test_impl(A, B):\n" func_text += " A {} B\n".format(operator) func_text += " return A\n" return _make_func_from_text(func_text) def _make_func_use_method_arg1(method): func_text = "def test_impl(A, B):\n" func_text += " return A.{}(B)\n".format(method) return _make_func_from_text(func_text) class TestSeries_ops(TestCase): def test_series_operators_int(self): """Verifies using all various Series arithmetic binary operators on two integer Series with default indexes""" n = 11 np.random.seed(0) data_to_test = [np.arange(-5, -5 + n, dtype=np.int32), np.ones(n + 3, dtype=np.int32), np.random.randint(-5, 5, n + 7)] arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for data_left, data_right in combinations_with_replacement(data_to_test, 2): # integers to negative powers are not allowed if (operator == '**' and np.any(data_right < 0)): data_right = np.abs(data_right) with self.subTest(left=data_left, right=data_right, operator=operator): S1 = pd.Series(data_left) S2 = pd.Series(data_right) # check_dtype=False because SDC implementation always returns float64 Series pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2), check_dtype=False) def test_series_operators_int_scalar(self): """Verifies using all various Series arithmetic binary operators on an integer Series with default index and a scalar value""" n = 11 np.random.seed(0) data_to_test = [np.arange(-5, -5 + n, dtype=np.int32), np.ones(n + 3, dtype=np.int32), np.random.randint(-5, 5, n + 7)] scalar_values = [1, -1, 0, 3, 7, -5] arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for data, scalar, swap_operands in product(data_to_test, scalar_values, (False, True)): S = pd.Series(data) left, right = (S, scalar) if swap_operands else (scalar, S) # integers to negative powers are not allowed if (operator == '**' and np.any(right < 0)): right = abs(right) with self.subTest(left=left, right=right, operator=operator): # check_dtype=False because SDC implementation always returns float64 Series pd.testing.assert_series_equal(hpat_func(left, right), test_impl(left, right), check_dtype=False) def test_series_operators_float(self): """Verifies using all various Series arithmetic binary operators on two float Series with default indexes""" n = 11 np.random.seed(0) data_to_test = [np.arange(-5, -5 + n, dtype=np.float32), np.ones(n + 3, dtype=np.float32), np.random.ranf(n + 7)] arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for data_left, data_right in combinations_with_replacement(data_to_test, 2): with self.subTest(left=data_left, right=data_right, operator=operator): S1 = pd.Series(data_left) S2 = pd.Series(data_right) # check_dtype=False because SDC implementation always returns float64 Series pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2), check_dtype=False) def test_series_operators_float_scalar(self): """Verifies using all various Series arithmetic binary operators on a float Series with default index and a scalar value""" n = 11 np.random.seed(0) data_to_test = [np.arange(-5, -5 + n, dtype=np.float32), np.ones(n + 3, dtype=np.float32), np.random.ranf(n + 7)] scalar_values = [1., -1., 0., -0., 7., -5.] arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for data, scalar, swap_operands in product(data_to_test, scalar_values, (False, True)): S = pd.Series(data) left, right = (S, scalar) if swap_operands else (scalar, S) with self.subTest(left=left, right=right, operator=operator): pd.testing.assert_series_equal(hpat_func(S, scalar), test_impl(S, scalar), check_dtype=False) @skip_numba_jit('Not implemented in new-pipeline yet') def test_series_operators_inplace(self): arithmetic_binops = ('+=', '-=', '*=', '/=', '//=', '%=', '**=') for operator in arithmetic_binops: test_impl = _make_func_use_binop2(operator) hpat_func = self.jit(test_impl) # TODO: extend to test arithmetic operations between numeric Series of different dtypes n = 11 A1 = pd.Series(np.arange(1, n, dtype=np.float64), name='A') A2 = A1.copy(deep=True) B = pd.Series(np.ones(n - 1), name='B') hpat_func(A1, B) test_impl(A2, B) pd.testing.assert_series_equal(A1, A2) @skip_numba_jit('Not implemented in new-pipeline yet') def test_series_operators_inplace_scalar(self): arithmetic_binops = ('+=', '-=', '*=', '/=', '//=', '%=', '**=') for operator in arithmetic_binops: test_impl = _make_func_use_binop2(operator) hpat_func = self.jit(test_impl) # TODO: extend to test arithmetic operations between numeric Series of different dtypes n = 11 S1 = pd.Series(np.arange(1, n, dtype=np.float64), name='A') S2 = S1.copy(deep=True) hpat_func(S1, 1) test_impl(S2, 1) pd.testing.assert_series_equal(S1, S2) @skip_numba_jit('operator.neg for SeriesType is not implemented in yet') def test_series_operator_neg(self): def test_impl(A): return -A hpat_func = self.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(A), test_impl(A)) def test_series_operators_comp_numeric(self): """Verifies using all various Series comparison binary operators on two integer Series with various indexes""" n = 11 data_left = [1, 2, -1, 3, 4, 2, -3, 5, 6, 6, 0] data_right = [3, 2, -2, 1, 4, 1, -5, 6, 6, 3, -1] dtype_to_index = {'None': None, 'int': np.arange(n, dtype='int'), 'float': np.arange(n, dtype='float'), 'string': ['aa', 'aa', '', '', 'b', 'b', 'cccc', None, 'dd', 'ddd', None]} comparison_binops = ('<', '>', '<=', '>=', '!=', '==') for operator in comparison_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for dtype, index_data in dtype_to_index.items(): with self.subTest(operator=operator, index_dtype=dtype, index=index_data): A = pd.Series(data_left, index=index_data) B = pd.Series(data_right, index=index_data) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B)) def test_series_operators_comp_numeric_scalar(self): """Verifies using all various Series comparison binary operators on an integer Series and scalar values""" S = pd.Series([1, 2, -1, 3, 4, 2, -3, 5, 6, 6, 0]) scalar_values = [2, 2.0, -3, np.inf, -np.inf, np.PZERO, np.NZERO] comparison_binops = ('<', '>', '<=', '>=', '!=', '==') for operator in comparison_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for scalar in scalar_values: with self.subTest(left=S, right=scalar, operator=operator): pd.testing.assert_series_equal(hpat_func(S, scalar), test_impl(S, scalar)) def test_series_operators_comp_str_scalar(self): """Verifies using all various Series comparison binary operators on an string Series and scalar values""" S = pd.Series(['aa', 'aa', '', '', 'b', 'b', 'cccc', None, 'dd', 'ddd', None]) scalar_values = ['a', 'aa', 'ab', 'ba', ''] comparison_binops = ('<', '>', '<=', '>=', '!=', '==') for operator in comparison_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for scalar in scalar_values: with self.subTest(left=S, right=scalar, operator=operator): pd.testing.assert_series_equal(hpat_func(S, scalar), test_impl(S, scalar)) @skip_numba_jit def test_series_operators_inplace_array(self): def test_impl(A, B): A += B return A hpat_func = self.jit(test_impl) n = 11 A = np.arange(n)**2.0 # TODO: use 2 for test int casting B = pd.Series(np.ones(n)) np.testing.assert_array_equal(hpat_func(A.copy(), B), test_impl(A, B)) @skip_numba_jit('Functionally test passes, but in old-style it checked fusion of parfors.\n' 'TODO: implement the same checks in new-pipeline') def test_series_fusion1(self): def test_impl(A, B): return A + B + 1 hpat_func = self.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False) # self.assertEqual(count_parfor_REPs(), 1) @skip_numba_jit('Functionally test passes, but in old-style it checked fusion of parfors.\n' 'TODO: implement the same checks in new-pipeline') def test_series_fusion2(self): def test_impl(A, B): S = B + 2 if A.iat[0] == 0: S = A + 1 return S + B hpat_func = self.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False) # self.assertEqual(count_parfor_REPs(), 3) def test_series_operator_add_numeric_scalar(self): """Verifies Series.operator.add implementation for numeric series and scalar second operand""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 dtype_to_index = {'None': None, 'int': np.arange(n, dtype='int'), 'float': np.arange(n, dtype='float'), 'string': ['aa', 'aa', 'b', 'b', 'cccc', 'dd', 'ddd']} int_scalar = 24 for dtype, index_data in dtype_to_index.items(): with self.subTest(index_dtype=dtype, index=index_data): if platform.system() == 'Windows' and not IS_32BITS: A = pd.Series(np.arange(n, dtype=np.int64), index=index_data) else: A = pd.Series(np.arange(n), index=index_data) result = hpat_func(A, int_scalar) result_ref = test_impl(A, int_scalar) pd.testing.assert_series_equal(result, result_ref, check_dtype=False, check_names=False) float_scalar = 24.0 for dtype, index_data in dtype_to_index.items(): with self.subTest(index_dtype=dtype, index=index_data): if platform.system() == 'Windows' and not IS_32BITS: A = pd.Series(np.arange(n, dtype=np.int64), index=index_data) else: A = pd.Series(np.arange(n), index=index_data) ref_result = test_impl(A, float_scalar) result = hpat_func(A, float_scalar) pd.testing.assert_series_equal(result, ref_result, check_dtype=False, check_names=False) def test_series_operator_add_numeric_same_index_default(self): """Verifies implementation of Series.operator.add between two numeric Series with default indexes and same size""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 dtypes_to_test = (np.int32, np.int64, np.float32, np.float64) for dtype_left, dtype_right in combinations(dtypes_to_test, 2): with self.subTest(left_series_dtype=dtype_left, right_series_dtype=dtype_right): A = pd.Series(np.arange(n), dtype=dtype_left) B = pd.Series(np.arange(n)**2, dtype=dtype_right) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False) @skip_numba_jit def test_series_operator_add_numeric_same_index_numeric(self): """Verifies implementation of Series.operator.add between two numeric Series with the same numeric indexes of different dtypes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 dtypes_to_test = (np.int32, np.int64, np.float32, np.float64) for dtype_left, dtype_right in combinations(dtypes_to_test, 2): with self.subTest(left_series_dtype=dtype_left, right_series_dtype=dtype_right): A = pd.Series(np.arange(n), index=np.arange(n, dtype=dtype_left)) B = pd.Series(np.arange(n)**2, index=np.arange(n, dtype=dtype_right)) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False) def test_series_operator_add_numeric_same_index_numeric_fixme(self): """ Same as test_series_operator_add_same_index_numeric but with w/a for the problem. Can be deleted when the latter is fixed """ def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 index_dtypes_to_test = (np.int32, np.int64, np.float32, np.float64) for dtype_left, dtype_right in combinations(index_dtypes_to_test, 2): # FIXME: skip the sub-test if one of the dtypes is float and the other is integer if not (np.issubdtype(dtype_left, np.integer) and np.issubdtype(dtype_right, np.integer) or np.issubdtype(dtype_left, np.float) and np.issubdtype(dtype_right, np.float)): continue with self.subTest(left_series_dtype=dtype_left, right_series_dtype=dtype_right): A = pd.Series(np.arange(n), index=np.arange(n, dtype=dtype_left)) B = pd.Series(np.arange(n)**2, index=np.arange(n, dtype=dtype_right)) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False) def test_series_operator_add_numeric_same_index_str(self): """Verifies implementation of Series.operator.add between two numeric Series with the same string indexes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 A = pd.Series(np.arange(n), index=['a', 'c', 'e', 'c', 'b', 'a', 'o']) B = pd.Series(np.arange(n)**2, index=['a', 'c', 'e', 'c', 'b', 'a', 'o']) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) def test_series_operator_add_numeric_align_index_int(self): """Verifies implementation of Series.operator.add between two numeric Series with non-equal integer indexes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 11 index_A = [0, 1, 1, 2, 3, 3, 3, 4, 6, 8, 9] index_B = [0, 1, 1, 3, 4, 4, 5, 5, 6, 6, 9] np.random.shuffle(index_A) np.random.shuffle(index_B) A = pd.Series(np.arange(n), index=index_A) B = pd.Series(np.arange(n)**2, index=index_B) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) def test_series_operator_add_numeric_align_index_str(self): """Verifies implementation of Series.operator.add between two numeric Series with non-equal string indexes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 11 index_A = ['', '', 'aa', 'aa', 'ae', 'ae', 'b', 'ccc', 'cccc', 'oo', 's'] index_B = ['', '', 'aa', 'aa', 'cc', 'cccc', 'e', 'f', 'h', 'oo', 's'] np.random.shuffle(index_A) np.random.shuffle(index_B) A = pd.Series(np.arange(n), index=index_A) B = pd.Series(np.arange(n)**2, index=index_B) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) @skip_numba_jit('TODO: fix Series.sort_values to handle both None and '' in string series') def test_series_operator_add_numeric_align_index_str_fixme(self): """Same as test_series_operator_add_align_index_str but with None values in string indexes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 11 index_A = ['', '', 'aa', 'aa', 'ae', 'b', 'ccc', 'cccc', 'oo', None, None] index_B = ['', '', 'aa', 'aa', 'cccc', 'f', 'h', 'oo', 's', None, None] np.random.shuffle(index_A) np.random.shuffle(index_B) A = pd.Series(np.arange(n), index=index_A) B = pd.Series(np.arange(n)**2, index=index_B) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) def test_series_operator_add_numeric_align_index_other_dtype(self): """Verifies implementation of Series.operator.add between two numeric Series with non-equal integer indexes of different dtypes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 A = pd.Series(np.arange(3*n), index=np.arange(-n, 2*n, 1, dtype=np.int64)) B = pd.Series(np.arange(3*n)**2, index=np.arange(0, 3*n, 1, dtype=np.float64)) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) def test_series_operator_add_numeric_diff_series_sizes(self): """Verifies implementation of Series.operator.add between two numeric Series with different sizes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) size_A, size_B = 7, 25 A = pd.Series(np.arange(size_A)) B = pd.Series(np.arange(size_B)**2) result = hpat_func(A, B) result_ref = test_impl(A, B) pd.testing.assert_series_equal(result, result_ref, check_dtype=False, check_names=False) def test_series_operator_add_align_index_int_capacity(self): """Verifies implementation of Series.operator.add and alignment of numeric indexes of large size""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 20000 np.random.seed(0) index1 = np.random.randint(-30, 30, n) index2 = np.random.randint(-30, 30, n) A = pd.Series(np.random.ranf(n), index=index1) B = pd.Series(np.random.ranf(n), index=index2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) def test_series_operator_add_align_index_str_capacity(self): """Verifies implementation of Series.operator.add and alignment of string indexes of large size""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 2000 np.random.seed(0) valid_ids = ['', 'aaa', 'a', 'b', 'ccc', 'ef', 'ff', 'fff', 'fa', 'dddd'] index1 = [valid_ids[i] for i in np.random.randint(0, len(valid_ids), n)] index2 = [valid_ids[i] for i in np.random.randint(0, len(valid_ids), n)] A = pd.Series(np.random.ranf(n), index=index1) B = pd.Series(np.random.ranf(n), index=index2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) def test_series_operator_add_str_same_index_default(self): """Verifies implementation of Series.operator.add between two string Series with default indexes and same size""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) A = pd.Series(['a', '', 'ae', 'b', 'cccc', 'oo', None]) B = pd.Series(['b', 'aa', '', 'b', 'o', None, 'oo']) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) def test_series_operator_add_str_align_index_int(self): """Verifies implementation of Series.operator.add between two string Series with non-equal integer indexes""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) np.random.seed(0) index_A = [0, 1, 1, 2, 3, 3, 3, 4, 6, 8, 9] index_B = [0, 1, 1, 3, 4, 4, 5, 5, 6, 6, 9] np.random.shuffle(index_A) np.random.shuffle(index_B) data = ['', '', 'aa', 'aa', None, 'ae', 'b', 'ccc', 'cccc', None, 'oo'] A = pd.Series(data, index=index_A) B = pd.Series(data, index=index_B) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_dtype=False, check_names=False) def test_series_operator_add_result_name1(self): """Verifies name of the Series resulting from appying Series.operator.add to different arguments""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 series_names = ['A', '', None, 'B'] for left_name, right_name in combinations(series_names, 2): S1 = pd.Series(np.arange(n), name=left_name) S2 = pd.Series(np.arange(n, 0, -1), name=right_name) with self.subTest(left_series_name=left_name, right_series_name=right_name): # check_dtype=False because SDC implementation always returns float64 Series pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2), check_dtype=False) # also verify case when second operator is scalar scalar = 3.0 with self.subTest(scalar=scalar): S1 = pd.Series(np.arange(n), name='A') pd.testing.assert_series_equal(hpat_func(S1, scalar), test_impl(S1, scalar), check_dtype=False) @unittest.expectedFailure def test_series_operator_add_result_name2(self): """Verifies implementation of Series.operator.add differs from Pandas in returning unnamed Series when both operands are named Series with the same name""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 S1 = pd.Series(np.arange(n), name='A') S2 = pd.Series(np.arange(n, 0, -1), name='A') result = hpat_func(S1, S2) result_ref = test_impl(S1, S2) # check_dtype=False because SDC implementation always returns float64 Series pd.testing.assert_series_equal(result, result_ref, check_dtype=False) @unittest.expectedFailure def test_series_operator_add_series_dtype_promotion(self): """Verifies implementation of Series.operator.add differs from Pandas in dtype of resulting Series that is fixed to float64""" def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 dtypes_to_test = (np.int32, np.int64, np.float32, np.float64) for dtype_left, dtype_right in combinations(dtypes_to_test, 2): with self.subTest(left_series_dtype=dtype_left, right_series_dtype=dtype_right): A = pd.Series(np.array(np.arange(n), dtype=dtype_left)) B = pd.Series(np.array(np.arange(n)**2, dtype=dtype_right)) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B)) def test_series_operator_add_str_scalar(self): def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) series_data = ['a', '', 'ae', 'b', 'cccc', 'oo', None] S = pd.Series(series_data) values_to_test = [' ', 'wq', '', '23'] for scalar in values_to_test: with self.subTest(left=series_data, right=scalar): result_ref = test_impl(S, scalar) result = hpat_func(S, scalar) pd.testing.assert_series_equal(result, result_ref) with self.subTest(left=scalar, right=series_data): result_ref = test_impl(scalar, S) result = hpat_func(scalar, S) pd.testing.assert_series_equal(result, result_ref) def test_series_operator_add_str_unsupported(self): def test_impl(A, B): return A + B hpat_func = self.jit(test_impl) n = 7 series_data = ['a', '', 'ae', 'b', 'cccc', 'oo', None] S = pd.Series(series_data) other_operands = [ 1, 3.0, pd.Series(np.arange(n)), pd.Series([True, False, False, True, False, True, True]), ] for operand in other_operands: with self.subTest(right=operand): with self.assertRaises(TypingError) as raises: hpat_func(S, operand) expected_msg = 'Operator add(). Not supported for not-comparable operands.' self.assertIn(expected_msg, str(raises.exception)) def test_series_operator_mul_str_scalar(self): def test_impl(A, B): return A * B hpat_func = self.jit(test_impl) series_data = ['a', '', 'ae', 'b', ' ', 'cccc', 'oo', None] S = pd.Series(series_data) values_to_test = [-1, 0, 2, 5] for scalar in values_to_test: with self.subTest(left=series_data, right=scalar): result_ref = test_impl(S, scalar) result = hpat_func(S, scalar) pd.testing.assert_series_equal(result, result_ref) with self.subTest(left=scalar, right=series_data): result_ref = test_impl(scalar, S) result = hpat_func(scalar, S) pd.testing.assert_series_equal(result, result_ref) def test_series_operator_mul_str_same_index_default(self): """Verifies implementation of Series.operator.add between two string Series with default indexes and same size""" def test_impl(A, B): return A * B hpat_func = self.jit(test_impl) A = pd.Series(['a', '', 'ae', 'b', 'cccc', 'oo', None]) B = pd.Series([-1, 2, 0, 5, 3, -5, 4]) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B)) def test_series_operator_mul_str_align_index_int1(self): """ Verifies implementation of Series.operator.add between two string Series with integer indexes containg same unique values (so alignment doesn't produce NaNs) """ def test_impl(A, B): return A * B hpat_func = self.jit(test_impl) n = 11 np.random.seed(0) shuffled_data = np.arange(n, dtype=np.int) np.random.shuffle(shuffled_data) index_A = shuffled_data np.random.shuffle(shuffled_data) index_B = shuffled_data str_series_values = ['', '', 'aa', 'aa', None, 'ae', 'b', 'ccc', 'cccc', None, 'oo'] int_series_values = np.random.randint(-5, 5, n) A = pd.Series(str_series_values, index=index_A) B = pd.Series(int_series_values, index=index_B) for swap_operands in (False, True): if swap_operands: A, B = B, A with self.subTest(left=A, right=B): result = hpat_func(A, B) result_ref = test_impl(A, B) pd.testing.assert_series_equal(result, result_ref) @unittest.expectedFailure # pandas can't calculate this due to adding NaNs to int series during alignment def test_series_operator_mul_str_align_index_int2(self): """ Verifies implementation of Series.operator.add between two string Series with integer indexes that cannot be aligned without NaNs """ def test_impl(A, B): return A * B hpat_func = self.jit(test_impl) n = 11 np.random.seed(0) index_A = [0, 1, 1, 2, 3, 3, 3, 4, 6, 8, 9] index_B = [0, 1, 1, 3, 4, 4, 5, 5, 6, 6, 9] np.random.shuffle(index_A) np.random.shuffle(index_B) str_series_values = ['', '', 'aa', 'aa', None, 'ae', 'b', 'ccc', 'cccc', None, 'oo'] int_series_values = np.random.randint(-5, 5, n) A = pd.Series(str_series_values, index=index_A) B = pd.Series(int_series_values, index=index_B) for swap_operands in (False, True): if swap_operands: A, B = B, A with self.subTest(left=A, right=B): result = hpat_func(A, B) result_ref = test_impl(A, B) pd.testing.assert_series_equal(result, result_ref) def test_series_operator_mul_str_unsupported(self): def test_impl(A, B): return A * B hpat_func = self.jit(test_impl) series_data = ['a', '', 'ae', 'b', 'cccc', 'oo', None] S = pd.Series(series_data) other_operands = [ 'abc', 3.0, pd.Series(series_data), pd.Series([True, False, False, True, False, True, True]), ] for operand in other_operands: with self.subTest(right=operand): with self.assertRaises(TypingError) as raises: hpat_func(S, operand) expected_msg = 'Operator mul(). Not supported between operands of types:' self.assertIn(expected_msg, str(raises.exception)) def test_series_operator_lt_index_mismatch1(self): """Verifies correct exception is raised when comparing Series with non equal integer indexes""" def test_impl(A, B): return A < B hpat_func = self.jit(test_impl) n = 11 np.random.seed(0) index1 = np.arange(n) index2 = np.copy(index1) np.random.shuffle(index2) A = pd.Series([1, 2, -1, 3, 4, 2, -3, 5, 6, 6, 0], index=index1) B = pd.Series([3, 2, -2, 1, 4, 1, -5, 6, 6, 3, -1], index=index2) with self.assertRaises(Exception) as context: test_impl(A, B) exception_ref = context.exception self.assertRaises(type(exception_ref), hpat_func, A, B) def test_series_operator_lt_index_mismatch2(self): """Verifies correct exception is raised when comparing Series of different size with default indexes""" def test_impl(A, B): return A < B hpat_func = self.jit(test_impl) A = pd.Series([1, 2, -1, 3, 4, 2]) B = pd.Series([3, 2, -2, 1, 4, 1, -5, 6, 6, 3, -1]) with self.assertRaises(Exception) as context: test_impl(A, B) exception_ref = context.exception self.assertRaises(type(exception_ref), hpat_func, A, B) @skip_numba_jit('Numba propagates different exception:\n' 'numba.core.errors.TypingError: Failed in nopython mode pipeline (step: nopython frontend)\n' 'Internal error at <numba.core.typeinfer.IntrinsicCallConstraint ...\n' '\'Signature\' object is not iterable') def test_series_operator_lt_index_mismatch3(self): """Verifies correct exception is raised when comparing two Series with non-comparable indexes""" def test_impl(A, B): return A < B hpat_func = self.jit(test_impl) S1 = pd.Series([1, 2, -1, 3, 4, 2]) S2 =
pd.Series(['a', 'b', '', None, '2', 'ccc'])
pandas.Series
import numpy as np import pandas as pd from scipy.stats import ttest_ind, chisquare, f_oneway, contingency from scipy import stats from ..findings import TTestFindings, DependenceFindings, ChiSquaredFindings, TestResult, FindingsList, AnovaFindings import math import itertools def _anova(data, num_col, group_col, groups): group_samples = [] for i in groups: group_samples.append(data[data[group_col] == i][num_col]) test_result = f_oneway(*group_samples) effect_size = _compute_eta_squared(*group_samples) return test_result, effect_size def _compute_eta_squared(*args): # args refer to the samples for each all_data = np.asarray(list(itertools.chain(*args))) group_mean = [i.mean() for i in args] group_mean = np.array(group_mean) return group_mean.var() / all_data.var() def _t_test(data, num_col, group_col, group_1=None, group_2=None, **kwargs): if group_1 is None and group_2 is None: groups = data[group_col].value_counts() if len(groups) != 2: raise ValueError(f"Column {group_col} has more than 2 groups") else: group_1 = groups.index[0] group_2 = groups.index[1] elif not (group_1 is not None and group_2 is not None): raise ValueError("Please specify both group_1 and group_2") first_sample = data[data[group_col] == group_1][num_col] second_sample = data[data[group_col] == group_2][num_col] test_result = ttest_ind(a = first_sample, b = second_sample, **kwargs) effect_size = _compute_cohen_es(first_sample, second_sample) return test_result, effect_size def _compute_cohen_es(sample_1, sample_2): cohen_es = abs(sample_1.mean() - sample_2.mean()) / sample_1.std() return cohen_es def _compute_phi_es(chi2, n): return math.sqrt(chi2 / n) def _chi_squared(data, col_1, expected=None): # If expected is None, assuming it is about testing for equality. obs = data[col_1].value_counts().values test_result = chisquare(obs, expected) effect_size = _compute_phi_es(test_result.chisq, len(data[col_1])) return test_result, effect_size def _chi_squared_dependence(data, col_1, col_2, groups_1, groups_2, min_sample): if groups_1 is None: filtered, ignored = _filter_sparse_group(data, col_1, min_sample) if len(filtered) < 2: raise ValueError(f"Only one group for {col_1}") groups_1 = filtered if groups_2 is None: filtered, ignored = _filter_sparse_group(data, col_2, min_sample) if len(filtered) < 2: raise ValueError(f"Only one group for {col_2}") groups_2 = filtered group_1 = data[col_1] group_1 = group_1[group_1.isin([groups_1]).index] group_2 = data[col_2] group_2 = group_2[group_2.isin([groups_2]).index] vals, count = contingency.crosstab(group_1.values, group_2.values) test_result = contingency.chi2_contingency(count) test_result = TestResult(name='chi2 contigency', statistic=test_result[0], pvalue=test_result[1], dof=test_result[2], expected=test_result[3], ) effect_size = _compute_phi_es(test_result.statistic, len(data[col_1])) return test_result, effect_size def _compare_group(data, col_1, col_2, p_value=0.05, phi_es=0.2, min_sample=20): groups_1, ignored_1 = _filter_sparse_group(data, col_1, min_sample) groups_2, ignored_2 = _filter_sparse_group(data, col_2, min_sample) if len(groups_1) <= 1 or len(groups_2) <= 1: pass else: test_result, effect_size = _chi_squared_dependence(data, col_1, col_2, groups_1, groups_2, min_sample) if test_result.pvalue <= p_value and effect_size >= phi_es: return DependenceFindings(data=data, col_1=col_1, col_2=col_2, groups_1=groups_1, groups_2=groups_2, test_result=test_result ) return None def _compare_mean(data, num_col, group_col, *, cohen_es=0.2, eta=0.06, p_value=0.05, min_sample=20): groups, ignored = _filter_sparse_group(data, group_col, min_sample) if not ignored.empty: print(f"Ignoring groups {list(ignored)} when comparing {num_col} and {group_col}") if len(groups) == 1: print(f"Skipping comparing {num_col} and {group_col}, only one group available") elif len(groups) == 2: group_1 = groups[0] group_2 = groups[1] test_result, effect_size = _t_test(data, num_col, group_col, group_1, group_2) if test_result.pvalue <= p_value and effect_size >= cohen_es: return TTestFindings(data=data, group_col=group_col, num_col=num_col, group_1=group_1, group_2=group_2, test_result=test_result) else: test_result, effect_size = _anova(data, num_col, group_col, groups) if test_result.pvalue <= p_value and effect_size >= eta: return AnovaFindings(data=data, group_col=group_col, groups=groups, num_col=num_col, test_result=test_result ) return None def _filter_sparse_group(data, group_col, min_sample): group_count = data[group_col].value_counts() ignored = group_count[(group_count < min_sample)] result = group_count.drop(ignored.index) return result.index, ignored.index def _auto_detect(data, num_col, cat_col, cohen_es=0.2, eta=0.06, phi_es=0.2, p_value=0.05, min_sample=20, ignore_list=None): findings_list = [] ignore_list = [] if ignore_list is None else ignore_list # Compare mean for n_col, c_col in itertools.product(num_col, cat_col): # TODO: Check if this is inefficient. if ((n_col, c_col) in ignore_list) or ((c_col, n_col) in ignore_list): continue else: findings = _compare_mean(data, n_col, c_col, cohen_es=cohen_es, eta=eta, p_value=p_value, min_sample=min_sample) if findings is not None: findings_list.append(findings) # Compare dependency of two cat_col for col_1, col_2 in itertools.combinations(cat_col, r=2): # TODO: Check if this is inefficient. if ((col_1, col_2) in ignore_list) or ((col_2, col_1) in ignore_list): continue else: findings = _compare_group(data, col_1, col_2, p_value=p_value, phi_es=phi_es, min_sample=min_sample) if findings is not None: findings_list.append(findings) return FindingsList(findings_list) def _diff_group(data, group_col, num_col): df_group = data.groupby(group_col)[num_col].mean().T result = pd.DataFrame(index=df_group.index) for i in itertools.combinations(df_group.columns, 2): result[f"{i[0]} - {i[1]}"] = df_group[i[0]] - df_group[i[1]] return result def _diff(data, *args): # TODO: Check the len of each args sample. result = pd.DataFrame(index=pd.RangeIndex(len(args[0]))) for i in itertools.combinations(df_group.columns, 2): result[f"{i[0]} - {i[1]}"] = df_group[i[0]] - df_group[i[1]] return result def _t_test_group(data, group_col, num_col, **kwargs): test_result = dict() for i in itertools.combinations(data[group_col].value_counts().index, r=2): test_result[f"{i[0]} vs {i[1]}"] = ttest_ind(a = df[df[group_col] == i[0]][num_col], b = df[df[group_col] == i[1]][num_col], **kwargs) return test_result def _locate_outlier_zscore(data, columns, zscore_threshold, any=True, exclude=False): ''' Locate outliers from numerical columns. Arguments: data: pandas DataFrame columns: A list of column's names for checking outliers. Must be numerical columns zscore_threshold: Threshold for classifying outliers. any: If True, classify the data point as outlier if value from one of the column is a outlier. exclude: If True, return non-outliers. If False, return outliers. Returns pandas DataFrame. ''' mean = data[columns].mean(axis=0) std = data[columns].std(axis=0) lower_bound = (std * zscore_threshold - mean).rename("Lower_bound") upper_bound = (std * zscore_threshold + mean).rename("Upper_bound") outlier_range = pd.concat([lower_bound, upper_bound], axis=1) # TODO: Make this more efficient # The above workflow is equivalent to below, at 3 decimal points mask_include = np.abs(stats.zscore(data[columns])) > zscore_threshold mask_exclude = np.abs(stats.zscore(data[columns])) < zscore_threshold if any: if exclude: return data[mask_exclude.any(axis=1)] else: data = data[mask_include.any(axis=1)] outlier_field = pd.DataFrame(mask_include, columns=columns) outlier_field = outlier_field.apply(lambda x: x.replace(True, x.name).replace(False, "")) outlier_field = outlier_field.apply(lambda x: x.str.cat(sep=''), axis=1) outlier_field = outlier_field.replace("", np.nan).dropna() outlier_field.rename("Outlier_field", inplace=True) assert data.index.equals(outlier_field.index) return (pd.concat([data, outlier_field], axis=1), outlier_range) else: if exclude: return data[mask_exclude.all(axis=1)] else: data = data[mask_include.all(axis=1)] outlier_field =
pd.DataFrame(mask_include, columns=columns)
pandas.DataFrame
""" Tests that rely on a server running """ import base64 import json import datetime import os from unittest import mock import pytest from heavydb import connect, ProgrammingError, DatabaseError from heavydb.cursor import Cursor from heavydb._parsers import Description, ColumnDetails from heavydb.thrift.ttypes import TDBException from heavydb.common.ttypes import TDatumType import geopandas as gpd import pandas as pd import numpy as np import pyarrow as pa from pandas.api.types import is_object_dtype, is_categorical_dtype import pandas.testing as tm import shapely from shapely.geometry import Point, LineString, Polygon, MultiPolygon import textwrap from .conftest import no_gpu from .data import dashboard_metadata heavydb_host = os.environ.get('HEAVYDB_HOST', 'localhost') # XXX: Make it hashable to silence warnings; see if this can be done upstream # This isn't a huge deal, but our testing context mangers for asserting # exceptions need hashability TDBException.__hash__ = id def _cursor2df(cursor): col_types = {c.name: c.type_code for c in cursor.description} has_geodata = { k: v in [ TDatumType.POINT, TDatumType.LINESTRING, TDatumType.POLYGON, TDatumType.MULTIPOLYGON, ] for k, v in col_types.items() } col_names = list(col_types.keys()) df_class = gpd.GeoDataFrame if any(has_geodata.values()) else pd.DataFrame df = df_class(cursor.fetchall(), columns=col_names) for c, _has_geodata in has_geodata.items(): if _has_geodata: df.loc[:, c] = df.loc[:, c].apply(shapely.wkt.loads) return df @pytest.mark.usefixtures("mapd_server") class TestIntegration: def test_connect_binary(self): con = connect( user="admin", password='<PASSWORD>', host=heavydb_host, port=6274, protocol='binary', dbname='omnisci', ) assert con is not None def test_connect_http(self): con = connect( user="admin", password='<PASSWORD>', host=heavydb_host, port=6278, protocol='http', dbname='omnisci', ) assert con is not None def test_connect_uri(self): uri = ( 'heavydb://admin:HyperInteractive@{0}:6274/omnisci?' 'protocol=binary'.format(heavydb_host) ) con = connect(uri=uri) assert con._user == 'admin' assert con._password == '<PASSWORD>' assert con._host == heavydb_host assert con._port == 6274 assert con._dbname == 'omnisci' assert con._protocol == 'binary' def test_connect_uri_and_others_raises(self): uri = ( 'heavydb://admin:HyperInteractive@{0}:6274/heavyai?' 'protocol=binary'.format(heavydb_host) ) with pytest.raises(TypeError): connect(username='heavydb', uri=uri) def test_invalid_sql(self, con): with pytest.raises(ProgrammingError) as r: con.cursor().execute("this is invalid;") return r.match("SQL Error:") def test_nonexistant_table(self, con): with pytest.raises(DatabaseError) as r: con.cursor().execute("select it from fake_table;") r.match("Table 'FAKE_TABLE' does not exist|Object 'fake_table' not") def test_connection_execute(self, con): result = con.execute("drop table if exists FOO;") result = con.execute("create table FOO (a int);") assert isinstance(result, Cursor) con.execute("drop table if exists FOO;") def test_select_sets_description(self, con): c = con.cursor() c.execute('drop table if exists stocks;') create = ( 'create table stocks (date_ text, trans text, symbol text, ' 'qty int, price float, vol float);' ) c.execute(create) i1 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14,1.1);" # noqa i2 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','GOOG',100,12.14,1.2);" # noqa c.execute(i1) c.execute(i2) c.execute("select * from stocks") expected = [ Description('date_', 6, None, None, None, None, True), Description('trans', 6, None, None, None, None, True), Description('symbol', 6, None, None, None, None, True), Description('qty', 1, None, None, None, None, True), Description('price', 3, None, None, None, None, True), Description('vol', 3, None, None, None, None, True), ] assert c.description == expected c.execute('drop table if exists stocks;') def test_select_parametrized(self, con): c = con.cursor() c.execute('drop table if exists stocks;') create = ( 'create table stocks (date_ text, trans text, symbol text, ' 'qty int, price float, vol float);' ) c.execute(create) i1 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14,1.1);" # noqa i2 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','GOOG',100,12.14,1.2);" # noqa c.execute(i1) c.execute(i2) c.execute( 'select symbol, qty from stocks where symbol = :symbol', {'symbol': 'GOOG'}, ) result = list(c) expected = [ ('GOOG', 100), ] # noqa assert result == expected c.execute('drop table if exists stocks;') def test_executemany_parametrized(self, con): c = con.cursor() c.execute('drop table if exists stocks;') create = ( 'create table stocks (date_ text, trans text, symbol text, ' 'qty int, price float, vol float);' ) c.execute(create) i1 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14,1.1);" # noqa i2 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','GOOG',100,12.14,1.2);" # noqa c.execute(i1) c.execute(i2) parameters = [{'symbol': 'GOOG'}, {'symbol': "RHAT"}] expected = [[('GOOG', 100)], [('RHAT', 100)]] query = 'select symbol, qty from stocks where symbol = :symbol' c = con.cursor() result = c.executemany(query, parameters) assert result == expected c.execute('drop table if exists stocks;') def test_executemany_parametrized_insert(self, con): c = con.cursor() c.execute('drop table if exists stocks;') create = ( 'create table stocks (date_ text, trans text, symbol text, ' 'qty int, price float, vol float);' ) c.execute(create) i1 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14,1.1);" # noqa i2 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','GOOG',100,12.14,1.2);" # noqa c.execute(i1) c.execute(i2) c = con.cursor() c.execute("drop table if exists stocks2;") # Create table c.execute('CREATE TABLE stocks2 (symbol text, qty int);') params = [{"symbol": "GOOG", "qty": 10}, {"symbol": "AAPL", "qty": 20}] query = "INSERT INTO stocks2 VALUES (:symbol, :qty);" result = c.executemany(query, params) assert result == [[], []] # TODO: not sure if this is standard c.execute("drop table stocks2;") c.execute('drop table if exists stocks;') @pytest.mark.parametrize( 'query, parameters', [ ('select qty, price from stocks', None), ('select qty, price from stocks where qty=:qty', {'qty': 100}), ], ) def test_select_ipc_parametrized(self, con, query, parameters): c = con.cursor() c.execute('drop table if exists stocks;') create = ( 'create table stocks (date_ text, trans text, symbol text, ' 'qty int, price float, vol float);' ) c.execute(create) i1 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14,1.1);" # noqa i2 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','GOOG',100,12.14,1.2);" # noqa c.execute(i1) c.execute(i2) result = con.select_ipc(query, parameters=parameters) expected = pd.DataFrame( { "qty": np.array([100, 100], dtype=np.int32), "price": np.array( [35.13999938964844, 12.140000343322754], dtype=np.float32 ), } )[['qty', 'price']] tm.assert_frame_equal(result, expected) c.execute('drop table if exists stocks;') def test_select_ipc_first_n(self, con): c = con.cursor() c.execute('drop table if exists stocks;') create = ( 'create table stocks (date_ text, trans text, symbol text, ' 'qty int, price float, vol float);' ) c.execute(create) i1 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14,1.1);" # noqa i2 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','GOOG',100,12.14,1.2);" # noqa c.execute(i1) c.execute(i2) result = con.select_ipc("select * from stocks", first_n=1) assert len(result) == 1 c.execute('drop table if exists stocks;') @pytest.mark.parametrize( 'query, parameters', [ ('select qty, price from stocks', None), ('select qty, price from stocks where qty=:qty', {'qty': 100}), ], ) @pytest.mark.skipif(no_gpu(), reason="No GPU available") def test_select_ipc_gpu(self, con, query, parameters): from cudf.core.dataframe import DataFrame c = con.cursor() c.execute('drop table if exists stocks;') create = ( 'create table stocks (date_ text, trans text, symbol text, ' 'qty int, price float, vol float);' ) c.execute(create) i1 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14,1.1);" # noqa i2 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','GOOG',100,12.14,1.2);" # noqa c.execute(i1) c.execute(i2) result = con.select_ipc_gpu("select qty, price from stocks") assert isinstance(result, DataFrame) dtypes = dict(qty=np.int32, price=np.float32) expected = pd.DataFrame( [[100, 35.14], [100, 12.14]], columns=['qty', 'price'] ).astype(dtypes) result = result.to_pandas()[['qty', 'price']] # column order pd.testing.assert_frame_equal(result, expected) c.execute('drop table if exists stocks;') @pytest.mark.skipif(no_gpu(), reason="No GPU available") def test_select_text_ipc_gpu(self, con): from cudf.core.dataframe import DataFrame c = con.cursor() c.execute('drop table if exists stocks;') create = ( 'create table stocks (date_ text, trans text, symbol text, ' 'qty int, price float, vol float);' ) c.execute(create) symbols = set(['GOOG', 'RHAT', 'IBM', 'NVDA']) for i, sym in enumerate(symbols): stmt = "INSERT INTO stocks VALUES ('2006-01-05_{}','BUY','{}',{},35.{},{}.1);".format( # noqa i, sym, i, i, i ) # noqa # insert twice so we can test # that duplicated text values # are deserialized properly c.execute(stmt) c.execute(stmt) result = con.select_ipc_gpu( "select trans, symbol, qty, price from stocks" ) # noqa assert isinstance(result, DataFrame) assert len(result) == 8 assert set(result['trans'].to_pandas()) == set(["BUY"]) assert set(result['symbol'].to_pandas()) == symbols c.execute('drop table if exists stocks;') @pytest.mark.skipif(no_gpu(), reason="No GPU available") def test_select_gpu_first_n(self, con): c = con.cursor() c.execute('drop table if exists stocks;') create = ( 'create table stocks (date_ text, trans text, symbol text, ' 'qty int, price float, vol float);' ) c.execute(create) i1 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14,1.1);" # noqa i2 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','GOOG',100,12.14,1.2);" # noqa c.execute(i1) c.execute(i2) result = con.select_ipc_gpu("select * from stocks", first_n=1) assert len(result) == 1 c.execute('drop table if exists stocks;') def test_fetchone(self, con): c = con.cursor() c.execute('drop table if exists stocks;') create = ( 'create table stocks (date_ text, trans text, symbol text, ' 'qty int, price float, vol float);' ) c.execute(create) i1 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14,1.1);" # noqa i2 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','GOOG',100,12.14,1.2);" # noqa c.execute(i1) c.execute(i2) c.execute("select symbol, qty from stocks") result = c.fetchone() expected = ('RHAT', 100) assert result == expected c.execute('drop table if exists stocks;') def test_fetchmany(self, con): c = con.cursor() c.execute('drop table if exists stocks;') create = ( 'create table stocks (date_ text, trans text, symbol text, ' 'qty int, price float, vol float);' ) c.execute(create) i1 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14,1.1);" # noqa i2 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','GOOG',100,12.14,1.2);" # noqa c.execute(i1) c.execute(i2) c.execute("select symbol, qty from stocks") result = c.fetchmany() expected = [('RHAT', 100)] assert result == expected c.execute("select symbol, qty from stocks") result = c.fetchmany(size=10) expected = [('RHAT', 100), ('GOOG', 100)] assert result == expected c.execute('drop table if exists stocks;') def test_select_dates(self, con): c = con.cursor() c.execute('drop table if exists dates;') c.execute( 'create table dates (date_ DATE, datetime_ TIMESTAMP, ' 'time_ TIME);' ) i1 = ( "INSERT INTO dates VALUES ('2006-01-05','2006-01-01T12:00:00'," "'12:00:00');" ) i2 = ( "INSERT INTO dates VALUES ('1901-12-14','1901-12-13T20:45:53'," "'23:59:00');" ) c.execute(i1) c.execute(i2) result = list(c.execute("select * from dates")) expected = [ ( datetime.date(2006, 1, 5), datetime.datetime(2006, 1, 1, 12), datetime.time(12), ), ( datetime.date(1901, 12, 14), datetime.datetime(1901, 12, 13, 20, 45, 53), datetime.time(23, 59), ), ] assert result == expected c.execute('drop table if exists dates;') class TestOptionalImports: def test_select_gpu(self, con): with mock.patch.dict( "sys.modules", {"cudf": None, "cudf.core.dataframe": None} ): with pytest.raises(ImportError) as m: con.select_ipc_gpu("select * from foo;") assert m.match("The 'cudf' package is required") class TestExtras: def test_get_tables(self, con): c = con.cursor() c.execute('drop table if exists stocks;') create = ( 'create table stocks (date_ text, trans text, symbol text, ' 'qty int, price float, vol float);' ) c.execute(create) i1 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14,1.1);" # noqa i2 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','GOOG',100,12.14,1.2);" # noqa c.execute(i1) c.execute(i2) result = con.get_tables() assert isinstance(result, list) assert 'stocks' in result c.execute('drop table if exists stocks;') def test_get_table_details(self, con): c = con.cursor() c.execute('drop table if exists stocks;') create = ( 'create table stocks (date_ text, trans text, symbol text, ' 'qty int, price float, vol float, ' 'exchanges TEXT [] ENCODING DICT(32));' ) c.execute(create) i1 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14,1.1,{'NYSE', 'NASDAQ', 'AMEX'});" # noqa i2 = "INSERT INTO stocks VALUES ('2006-01-05','BUY','GOOG',100,12.14,1.2,{'NYSE', 'NASDAQ'});" # noqa c.execute(i1) c.execute(i2) result = con.get_table_details('stocks') expected = [ ColumnDetails( name='date_', type='STR', nullable=True, precision=0, scale=0, comp_param=32, encoding='DICT', is_array=False, ), ColumnDetails( name='trans', type='STR', nullable=True, precision=0, scale=0, comp_param=32, encoding='DICT', is_array=False, ), ColumnDetails( name='symbol', type='STR', nullable=True, precision=0, scale=0, comp_param=32, encoding='DICT', is_array=False, ), ColumnDetails( name='qty', type='INT', nullable=True, precision=0, scale=0, comp_param=0, encoding='NONE', is_array=False, ), ColumnDetails( name='price', type='FLOAT', nullable=True, precision=0, scale=0, comp_param=0, encoding='NONE', is_array=False, ), ColumnDetails( name='vol', type='FLOAT', nullable=True, precision=0, scale=0, comp_param=0, encoding='NONE', is_array=False, ), ColumnDetails( name='exchanges', type='STR', nullable=True, precision=0, scale=0, comp_param=32, encoding='DICT', is_array=True, ), ] assert result == expected c.execute('drop table if exists stocks;') class TestLoaders: @staticmethod def check_empty_insert(result, expected): assert len(result) == 3 assert expected[0][0] == result[0][0] assert expected[0][2] == result[0][2] assert abs(expected[0][1] - result[0][1]) < 1e-7 # floating point def test_load_empty_table(self, con): con.execute("drop table if exists baz;") con.execute("create table baz (a int, b float, c text);") data = [(1, 1.1, 'a'), (2, 2.2, '2'), (3, 3.3, '3')] con.load_table("baz", data) result = sorted(con.execute("select * from baz")) self.check_empty_insert(result, data) con.execute("drop table if exists baz;") def test_load_empty_table_pandas(self, con): con.execute("drop table if exists baz;") con.execute("create table baz (a int, b float, c text);") data = [(1, 1.1, 'a'), (2, 2.2, '2'), (3, 3.3, '3')] df = pd.DataFrame(data, columns=list('abc')) con.load_table("baz", df, method='columnar') result = sorted(con.execute("select * from baz")) self.check_empty_insert(result, data) con.execute("drop table if exists baz;") def test_load_empty_table_arrow(self, con): con.execute("drop table if exists baz;") con.execute("create table baz (a int, b float, c text);") data = [(1, 1.1, 'a'), (2, 2.2, '2'), (3, 3.3, '3')] df = pd.DataFrame(data, columns=list('abc')).astype( {'a': 'int32', 'b': 'float32'} ) table = pa.Table.from_pandas(df, preserve_index=False) con.load_table("baz", table, method='arrow') result = sorted(con.execute("select * from baz")) self.check_empty_insert(result, data) con.execute("drop table if exists baz;") @pytest.mark.parametrize( 'df, table_fields', [ pytest.param( pd.DataFrame( { "a": [1, 2, 3], "b": [1.1, 2.2, 3.3], "c": ['a', '2', '3'], }, ), 'a int, b float, c text', id='scalar_values', ), pytest.param( pd.DataFrame( { "a": [ np.datetime64('2010-01-01 01:01:01.001001001'), np.datetime64('2011-01-01 01:01:01.001001001'), np.datetime64('2012-01-01 01:01:01.001001001'), ], }, ), 'a TIMESTAMP(9)', id='scalar_datetime_nanoseconds', ), pytest.param( pd.DataFrame( { "a": [ datetime.datetime.fromtimestamp( float(1600443582510) / 1e3 ), datetime.datetime.fromtimestamp( float(1600443582510) / 1e3 ), datetime.datetime.fromtimestamp( float(1600443582510) / 1e3 ), ], }, ), 'a TIMESTAMP(3)', id='scalar_datetime_ms', ), pytest.param( pd.DataFrame( { "a": [ datetime.datetime.fromtimestamp( float(1600443582510) / 1e6 ), datetime.datetime.fromtimestamp( float(1600443582510) / 1e6 ), datetime.datetime.fromtimestamp( float(1600443582510) / 1e6 ), ], }, ), 'a TIMESTAMP(6)', id='scalar_datetime_us', ), pytest.param( pd.DataFrame( [ {'ary': [2, 3, 4]}, {'ary': [4444]}, {'ary': []}, {'ary': None}, {'ary': [2, 3, 4]}, ] ), 'ary INT[]', id='array_values', ), pytest.param( pd.DataFrame( [ {'ary': [2, 3, 4], 'strtest': 'teststr'}, {'ary': None, 'strtest': 'teststr'}, {'ary': [4444], 'strtest': 'teststr'}, {'ary': [], 'strtest': 'teststr'}, {'ary': [2, 3, 4], 'strtest': 'teststr'}, ] ), 'ary INT[], strtest TEXT', id='mix_scalar_array_values_with_none_and_empty_list', ), pytest.param( gpd.GeoDataFrame( { 'a': [Point(0, 0), Point(1, 1)], 'b': [ LineString([(2, 0), (2, 4), (3, 4)]), LineString([(0, 0), (1, 1)]), ], 'c': [ Polygon([(0, 0), (1, 0), (0, 1), (0, 0)]), Polygon([(0, 0), (4, 0), (4, 4), (0, 4), (0, 0)]), ], 'd': [ MultiPolygon( [ Polygon([(0, 0), (1, 0), (0, 1), (0, 0)]), Polygon( [ (0, 0), (4, 0), (4, 4), (0, 4), (0, 0), ] ), ] ), MultiPolygon( [ Polygon( [ (0, 0), (4, 0), (4, 4), (0, 4), (0, 0), ] ), Polygon([(0, 0), (1, 0), (0, 1), (0, 0)]), ] ), ], } ), 'a POINT, b LINESTRING, c POLYGON, d MULTIPOLYGON', id='geo_values', ), ], ) def test_load_table_columnar(self, con, tmp_table, df, table_fields): con.execute("create table {} ({});".format(tmp_table, table_fields)) con.load_table_columnar(tmp_table, df) result = _cursor2df(con.execute('select * from {}'.format(tmp_table))) pd.testing.assert_frame_equal(df, result) def test_load_infer(self, con): con.execute("drop table if exists baz;") con.execute("create table baz (a int, b float, c text);") data = pd.DataFrame( { 'a': np.array([0, 1], dtype=np.int32), 'b': np.array([1.1, 2.2], dtype=np.float32), 'c': ['a', 'b'], } ) con.load_table("baz", data) con.execute("drop table if exists baz;") def test_load_infer_bad(self, con): con.execute("drop table if exists baz;") con.execute("create table baz (a int, b float, c text);") with pytest.raises(TypeError): con.load_table("baz", [], method='thing') con.execute("drop table if exists baz;") def test_infer_non_pandas(self, con): con.execute("drop table if exists baz;") con.execute("create table baz (a int, b float, c text);") with pytest.raises(TypeError): con.load_table("baz", [], method='columnar') con.execute("drop table if exists baz;") def test_load_columnar_pandas_all(self, con): c = con.cursor() c.execute('drop table if exists all_types;') create = textwrap.dedent( '''\ create table all_types ( boolean_ BOOLEAN, smallint_ SMALLINT, int_ INT, bigint_ BIGINT, float_ FLOAT, double_ DOUBLE, varchar_ VARCHAR(40), text_ TEXT, time_ TIME, timestamp_ TIMESTAMP, date_ DATE );''' ) # skipping decimal for now c.execute(create) data = pd.DataFrame( { "boolean_": [True, False, True, False], "smallint_": np.array([0, 1, 0, 1], dtype=np.int16), "int_": np.array([0, 1, 0, 1], dtype=np.int32), "bigint_": np.array([0, 1, 0, 1], dtype=np.int64), "float_": np.array([0, 1, 0, 1], dtype=np.float32), "double_": np.array([0, 1, 0, 1], dtype=np.float64), "varchar_": ["a", "b", "a", "b"], "text_": ['a', 'b', 'a', 'b'], "time_": [ datetime.time(0, 11, 59), datetime.time(13), datetime.time(22, 58, 59), datetime.time(7, 13, 43), ], "timestamp_": [ pd.Timestamp("2016"), pd.Timestamp("2017"), pd.Timestamp( '2017-11-28 23:55:59.342380', tz='US/Eastern' ), pd.Timestamp( '2018-11-28 23:55:59.342380', tz='Asia/Calcutta' ), ], "date_": [ datetime.date(2016, 1, 1), datetime.date(2017, 1, 1), datetime.date(2017, 11, 28), datetime.date(2018, 11, 28), ], }, columns=[ 'boolean_', 'smallint_', 'int_', 'bigint_', 'float_', 'double_', 'varchar_', 'text_', 'time_', 'timestamp_', 'date_', ], ) con.load_table_columnar("all_types", data, preserve_index=False) result = list(c.execute("select * from all_types")) expected = [ ( 1, 0, 0, 0, 0.0, 0.0, 'a', 'a', datetime.time(0, 11, 59), datetime.datetime(2016, 1, 1, 0, 0), datetime.date(2016, 1, 1), ), ( 0, 1, 1, 1, 1.0, 1.0, 'b', 'b', datetime.time(13, 0), datetime.datetime(2017, 1, 1, 0, 0), datetime.date(2017, 1, 1), ), ( 1, 0, 0, 0, 0.0, 0.0, 'a', 'a', datetime.time(22, 58, 59), datetime.datetime(2017, 11, 29, 4, 55, 59), datetime.date(2017, 11, 28), ), ( 0, 1, 1, 1, 1.0, 1.0, 'b', 'b', datetime.time(7, 13, 43), datetime.datetime(2018, 11, 28, 18, 25, 59), datetime.date(2018, 11, 28), ), ] assert result == expected c.execute('drop table if exists all_types;') def test_load_table_columnar_arrow_all(self, con): c = con.cursor() c.execute('drop table if exists all_types;') create = textwrap.dedent( '''\ create table all_types ( boolean_ BOOLEAN, smallint_ SMALLINT, int_ INT, bigint_ BIGINT, float_ FLOAT, double_ DOUBLE, varchar_ VARCHAR(40), text_ TEXT, time_ TIME, timestamp_ TIMESTAMP, date_ DATE );''' ) # skipping decimal for now c.execute(create) names = [ 'boolean_', 'smallint_', 'int_', 'bigint_', 'float_', 'double_', 'varchar_', 'text_', 'time_', 'timestamp_', 'date_', ] columns = [ pa.array([True, False, None], type=pa.bool_()), pa.array([1, 0, None]).cast(pa.int16()), pa.array([1, 0, None]).cast(pa.int32()), pa.array([1, 0, None]), pa.array([1.0, 1.1, None]).cast(pa.float32()), pa.array([1.0, 1.1, None]), # no fixed-width string pa.array(['a', 'b', None]), pa.array(['a', 'b', None]), (pa.array([1, 2, None]).cast(pa.int32()).cast(pa.time32('s'))), pa.array( [ datetime.datetime(2016, 1, 1, 12, 12, 12), datetime.datetime(2017, 1, 1), None, ] ), pa.array( [datetime.date(2016, 1, 1), datetime.date(2017, 1, 1), None] ), ] table = pa.Table.from_arrays(columns, names=names) con.load_table_arrow("all_types", table) c.execute('drop table if exists all_types;') def test_select_null(self, con): con.execute("drop table if exists pymapd_test_table;") con.execute("create table pymapd_test_table (a int);") con.execute("insert into pymapd_test_table VALUES (1);") con.execute("insert into pymapd_test_table VALUES (null);") # the test c = con.cursor() result = c.execute("select * from pymapd_test_table") expected = [(1,), (None,)] assert result.fetchall() == expected # cleanup con.execute("drop table if exists pymapd_test_table;") @pytest.mark.parametrize( 'df, expected', [ ( pd.DataFrame( { "a": [1, 2], "b": [1.0, 2.0], "c": [ datetime.date(2016, 1, 1), datetime.date(2017, 1, 1), ], "d": [ np.datetime64("2010-01-01T01:01:01.001001001"), np.datetime64("2011-01-01T01:01:01.001001001"), ], } ), { 'a': {'type': 'BIGINT', 'is_array': False}, 'b': {'type': 'DOUBLE', 'is_array': False}, 'c': {'type': 'DATE', 'is_array': False}, 'd': { 'type': 'TIMESTAMP', 'is_array': False, 'precision': 9, }, }, ), ( pd.DataFrame( { 'a': [[1, 2], [1, 2], None, []], 'b': ['A', 'B', 'C', 'D'], 'c': [[1.0, 2.2], [1.0, 2.2], [], None], 'd': [ [ 9007199254740991, 9007199254740992, 9007199254740993, ], [], None, [ 9007199254740994, 9007199254740995, 9007199254740996, ], ], } ), { 'a': {'type': 'BIGINT', 'is_array': True}, 'b': {'type': 'STR', 'is_array': False}, 'c': {'type': 'DOUBLE', 'is_array': True}, 'd': {'type': 'BIGINT', 'is_array': True}, }, ), ( gpd.GeoDataFrame( { 'a': [Point(0, 0), Point(1, 1)], 'b': [ LineString([(2, 0), (2, 4), (3, 4)]), LineString([(0, 0), (1, 1)]), ], 'c': [ Polygon([(0, 0), (1, 0), (0, 1), (0, 0)]), Polygon([(0, 0), (4, 0), (4, 4), (0, 4), (0, 0)]), ], 'd': [ MultiPolygon( [ Polygon([(0, 0), (1, 0), (0, 1), (0, 0)]), Polygon( [ (0, 0), (4, 0), (4, 4), (0, 4), (0, 0), ] ), ] ), MultiPolygon( [ Polygon( [ (0, 0), (4, 0), (4, 4), (0, 4), (0, 0), ] ), Polygon([(0, 0), (1, 0), (0, 1), (0, 0)]), ] ), ], } ), { 'a': {'type': 'POINT', 'is_array': True}, 'b': {'type': 'LINESTRING', 'is_array': True}, 'c': {'type': 'POLYGON', 'is_array': True}, 'd': {'type': 'MULTIPOLYGON', 'is_array': True}, }, ), ], ) def test_create_table(self, con, tmp_table, df, expected): con.create_table(tmp_table, df) for col in con.get_table_details(tmp_table): assert expected[col.name]['type'] == col.type if 'precision' in expected[col.name]: assert expected[col.name]['precision'] == col.precision def test_load_table_creates(self, con): data = pd.DataFrame( { "boolean_": [True, False], "smallint_cast": np.array([0, 1], dtype=np.int8), "smallint_": np.array([0, 1], dtype=np.int16), "int_": np.array([0, 1], dtype=np.int32), "bigint_": np.array([0, 1], dtype=np.int64), "float_": np.array([0, 1], dtype=np.float32), "double_": np.array([0, 1], dtype=np.float64), "varchar_": ["a", "b"], "text_": ['a', 'b'], "time_": [datetime.time(0, 11, 59), datetime.time(13)], "timestamp1_": [pd.Timestamp("2016"), pd.Timestamp("2017")], "timestamp2_": [ np.datetime64("2010-01-01T01:01:01.001001001"), np.datetime64("2011-01-01T01:01:01.001001001"), ], "date_": [ datetime.date(2016, 1, 1), datetime.date(2017, 1, 1), ], }, columns=[ 'boolean_', 'smallint_', 'int_', 'bigint_', 'float_', 'double_', 'varchar_', 'text_', 'time_', 'timestamp1_', 'timestamp2_', 'date_', ], ) con.execute("drop table if exists test_load_table_creates;") con.load_table("test_load_table_creates", data, create=True) con.execute("drop table if exists test_load_table_creates;") def test_array_in_result_set(self, con): # text con.execute("DROP TABLE IF EXISTS test_lists;") con.execute( "CREATE TABLE IF NOT EXISTS test_lists \ (col1 TEXT, col2 TEXT[]);" ) row = [ ("row1", "{hello,goodbye,aloha}"), ("row2", "{hello2,goodbye2,aloha2}"), ] con.load_table_rowwise("test_lists", row) ans = con.execute("select * from test_lists").fetchall() expected = [ ('row1', ['hello', 'goodbye', 'aloha']), ('row2', ['hello2', 'goodbye2', 'aloha2']), ] assert ans == expected # int con.execute("DROP TABLE IF EXISTS test_lists;") con.execute( "CREATE TABLE IF NOT EXISTS test_lists \ (col1 TEXT, col2 INT[]);" ) row = [("row1", "{10,20,30}"), ("row2", "{40,50,60}")] con.load_table_rowwise("test_lists", row) ans = con.execute("select * from test_lists").fetchall() expected = [('row1', [10, 20, 30]), ('row2', [40, 50, 60])] assert ans == expected # timestamp con.execute("DROP TABLE IF EXISTS test_lists;") con.execute( "CREATE TABLE IF NOT EXISTS test_lists \ (col1 TEXT, col2 TIMESTAMP[], col3 TIMESTAMP(9));" ) row = [ ( "row1", "{2019-03-02 00:00:00,2019-03-02 00:00:00,2019-03-02 00:00:00}", # noqa "2010-01-01T01:01:01.001001001", ), ( "row2", "{2019-03-02 00:00:00,2019-03-02 00:00:00,2019-03-02 00:00:00}", # noqa "2011-01-01T01:01:01.001001001", ), ] con.load_table_rowwise("test_lists", row) ans = con.execute("select * from test_lists").fetchall() expected = [ ( 'row1', [ datetime.datetime(2019, 3, 2, 0, 0), datetime.datetime(2019, 3, 2, 0, 0), datetime.datetime(2019, 3, 2, 0, 0), ], np.datetime64("2010-01-01T01:01:01.001001001"), ), ( 'row2', [ datetime.datetime(2019, 3, 2, 0, 0), datetime.datetime(2019, 3, 2, 0, 0), datetime.datetime(2019, 3, 2, 0, 0), ], np.datetime64("2011-01-01T01:01:01.001001001"), ), ] assert ans == expected # date con.execute("DROP TABLE IF EXISTS test_lists;") con.execute( "CREATE TABLE IF NOT EXISTS test_lists \ (col1 TEXT, col2 DATE[]);" ) row = [ ("row1", "{2019-03-02,2019-03-02,2019-03-02}"), ("row2", "{2019-03-02,2019-03-02,2019-03-02}"), ] con.load_table_rowwise("test_lists", row) ans = con.execute("select * from test_lists").fetchall() expected = [ ( 'row1', [ datetime.date(2019, 3, 2), datetime.date(2019, 3, 2), datetime.date(2019, 3, 2), ], ), ( 'row2', [ datetime.date(2019, 3, 2), datetime.date(2019, 3, 2), datetime.date(2019, 3, 2), ], ), ] assert ans == expected # time con.execute("DROP TABLE IF EXISTS test_lists;") con.execute( "CREATE TABLE IF NOT EXISTS test_lists \ (col1 TEXT, col2 TIME[]);" ) row = [ ("row1", "{23:59:00,23:59:00,23:59:00}"), ("row2", "{23:59:00,23:59:00,23:59:00}"), ] con.load_table_rowwise("test_lists", row) ans = con.execute("select * from test_lists").fetchall() expected = [ ( 'row1', [ datetime.time(23, 59), datetime.time(23, 59), datetime.time(23, 59), ], ), ( 'row2', [ datetime.time(23, 59), datetime.time(23, 59), datetime.time(23, 59), ], ), ] assert ans == expected con.execute("DROP TABLE IF EXISTS test_lists;") def test_upload_pandas_categorical_ipc(self, con): con.execute("DROP TABLE IF EXISTS test_categorical;") df =
pd.DataFrame({"A": ["a", "b", "c", "a"]})
pandas.DataFrame
import math import scipy.stats as ss import numpy as np import pandas as pd from collections import Counter def convert(data, to): converted = None if to == 'array': if isinstance(data, np.ndarray): converted = data elif isinstance(data, pd.Series): converted = data.values elif isinstance(data, list): converted = np.array(data) elif isinstance(data, pd.DataFrame): converted = data.as_matrix() elif to == 'list': if isinstance(data, list): converted = data elif isinstance(data, pd.Series): converted = data.values.tolist() elif isinstance(data, np.ndarray): converted = data.tolist() elif to == 'dataframe': if isinstance(data, pd.DataFrame): converted = data elif isinstance(data, np.ndarray): converted =
pd.DataFrame(data)
pandas.DataFrame
# created by <NAME> <EMAIL> import os import logging import re from datetime import datetime import math import copy import pandas as pd import numpy as np import attr import requests from sklearn.metrics.pairwise import haversine_distances from BuildingControlsSimulator.DataClients.DataSpec import EnergyPlusWeather from BuildingControlsSimulator.DataClients.DataChannel import DataChannel from BuildingControlsSimulator.Conversions.Conversions import Conversions logger = logging.getLogger(__name__) @attr.s(kw_only=True) class WeatherChannel(DataChannel): """Client for weather data.""" epw_path = attr.ib(default=None) epw_data = attr.ib(factory=dict) epw_meta = attr.ib(factory=dict) fill_epw_data = attr.ib(default=None) # env variables ep_tmy3_cache_dir = attr.ib() simulation_epw_dir = attr.ib() nrel_dev_api_key = attr.ib(default=None) nrel_dev_email = attr.ib(default=None) archive_tmy3_dir = attr.ib(default=None) archive_tmy3_meta = attr.ib(default=None) archive_tmy3_data_dir = attr.ib(default=None) # column names datetime_column = attr.ib(default=EnergyPlusWeather.datetime_column) epw_columns = attr.ib(default=EnergyPlusWeather.epw_columns) epw_meta_keys = attr.ib(default=EnergyPlusWeather.epw_meta) epw_column_map = attr.ib(default=EnergyPlusWeather.output_rename_dict) def make_epw_file(self, sim_config, datetime_channel, fill_epw_path=None): """Generate epw file in local time""" if fill_epw_path: if os.path.exists(fill_epw_path): fill_epw_fname = os.path.basename(fill_epw_path) else: ValueError(f"fill_epw_path: {fill_epw_path} does not exist.") else: # attempt to get .epw data from NREL fill_epw_path, fill_epw_fname = self.get_tmy_fill_epw( sim_config["latitude"], sim_config["longitude"] ) (fill_epw_data, self.epw_meta, meta_lines,) = self.read_epw( fill_epw_path, ) # infer if the years in the epw file are garbage from TMY # TMY data is only valid for a period of 1 year and then it must # be wrapped to next year if required for multi-year weather data # the year supplied in TMY data is not a valid sequential time # Therefore the year must be overwritten to desired year if len(fill_epw_data["year"].unique()) > 2 and ( len(fill_epw_data["year"]) < 8762 ): # it is not possible to have full consequtive data for 3 different # years and less than 8762 total data points. # using the mode will handle the case of shifting data points into # adjacent years force_year = ( datetime_channel.data[datetime_channel.spec.datetime_column] .dt.year.mode() .values[0] ) fill_epw_data = self.convert_epw_to_internal( fill_epw_data, force_year=force_year, ) # lat/lon time zone is the time zone we localize with # the datetime_channel timezone is free to be changed later # self.time_zone = copy.deepcopy(datetime_channel.timezone) # if self.time_zone: _hour_offset = ( datetime_channel.timezone.utcoffset(datetime.utcnow()).total_seconds() / 3600 ) if self.epw_meta["TZ"] != _hour_offset: logger.warn( "Timezones from longitude and latitude and given epw do not match." ) self.epw_meta["TZ"] = _hour_offset _epw_path = None if not fill_epw_data.empty: _epw_path = os.path.join( self.simulation_epw_dir, "NREL_EPLUS" + f"_{sim_config['identifier']}" + f"_{fill_epw_fname}", ) # fill any missing fields in epw # need to pass in original dyd datetime column name epw_data = self.fill_epw( input_epw_data=self.data, datetime_channel=datetime_channel, fill_epw_data=fill_epw_data, sim_config=sim_config, ) meta_lines = self.add_epw_data_periods( epw_data=epw_data, meta_lines=meta_lines, sim_config=sim_config, ) # save to file self.to_epw( epw_data=epw_data, meta_lines=meta_lines, fpath=_epw_path, ) self.epw_path = _epw_path else: logger.error("failed to retrieve .epw fill data.") return self.epw_path def add_epw_data_periods(self, epw_data, meta_lines, sim_config): # add correct DATA PERIODS reference to metalines # see https://bigladdersoftware.com/epx/docs/9-4/auxiliary-programs/energyplus-weather-file-epw-data-dictionary.html _starting_timestamp = min(epw_data[self.datetime_column]) _ending_timestamp = max(epw_data[self.datetime_column]) # these are the fields required in DATA PERIODS _num_data_periods = 1 _records_per_hour = int(3600 / sim_config["sim_step_size_seconds"]) _data_period_name = "data" _start_day_of_week = _starting_timestamp.day_name() _start_day = f"{_starting_timestamp.month}/{_starting_timestamp.day}/{_starting_timestamp.year}" _end_day = f"{_ending_timestamp.month}/{_ending_timestamp.day}/{_ending_timestamp.year}" data_periods_idx = None for idx, _line in enumerate(meta_lines): if _line.startswith("DATA PERIODS"): data_periods_idx = idx data_periods_line = "DATA PERIODS," data_periods_line += f"{_num_data_periods},{_records_per_hour}," data_periods_line += f"{_data_period_name},{_start_day_of_week}," data_periods_line += f"{_start_day},{_end_day}" data_periods_line += "\n" if data_periods_idx: meta_lines[data_periods_idx] = data_periods_line else: meta_lines.append(data_periods_line) return meta_lines def read_epw(self, fpath): """ Given a file-like buffer with data in Energy Plus Weather (EPW) format, parse the data into a dataframe. EPW data is composed of data from different years. EPW files always have 365*24 = 8760 data rows be careful with the use of leap years. Parameters ---------- csvdata : file-like buffer a file-like buffer containing data in the EPW format Returns ------- data : DataFrame A pandas dataframe with the columns described in the table below. For more detailed descriptions of each component, please consult the EnergyPlus Auxiliary Programs documentation available at: https://energyplus.net/documentation. meta : dict The site metadata available in the file. meta_epw_lines : list All lines of meta data. See Also -------- pvlib.iotools.read_epw """ # read meta data into list of lines, determine n_meta_line # the last meta data line is marked with "DATA PERIODS" meta_epw_lines = [] with open(fpath, "r") as f: for n_meta_line in range(10): meta_epw_lines.append(f.readline()) if meta_epw_lines[n_meta_line].split(",")[0] == "DATA PERIODS": break meta = dict(zip(self.epw_meta_keys, meta_epw_lines[0].rstrip("\n").split(","))) meta["altitude"] = float(meta["altitude"]) meta["latitude"] = float(meta["latitude"]) meta["longitude"] = float(meta["longitude"]) meta["TZ"] = float(meta["TZ"]) # use starting line determined above data = pd.read_csv( fpath, skiprows=n_meta_line, header=0, names=self.epw_columns ) data = data.astype( { "year": "Int16", "month": "Int8", "day": "Int8", "hour": "Int8", "minute": "Int8", }, ) return data, meta, meta_epw_lines def convert_epw_to_internal(self, data, use_datetime=True, force_year=None): # some EPW files have minutes=60 to represent the end of the hour # this doesnt actually mean it is the next hour, it should be 0 # see: https://discourse.radiance-online.org/t/ \ # meaning-of-epw-files-minute-field-and-why-is-it-60-in-tmy2- \ # based-epw-and-0-in-tmy3-based-epw/1462/3 if data["minute"].mean() == 60: data["minute"] = 0 # EPW format uses hour = [1-24], set to [0-23] data["hour"] = data["hour"] - 1 if force_year: data["year"] = int(force_year) # create datetime column in UTC data[self.datetime_column] = pd.to_datetime( data[["year", "month", "day", "hour", "minute"]] .astype(int) .astype(str) .apply("-".join, 1), format="%Y-%m-%d-%H-%M", ) # localize and convert to UTC data[self.datetime_column] = ( data[self.datetime_column] .dt.tz_localize(int(self.epw_meta["TZ"] * 3600)) .dt.tz_convert(tz="UTC") ) # reset year, month, day, hour, minute columns # the year must be forced back to wrap the year after TZ shift data["year"] = force_year data["month"] = data[self.datetime_column].dt.month data["day"] = data[self.datetime_column].dt.day data["hour"] = data[self.datetime_column].dt.hour data["minute"] = data[self.datetime_column].dt.minute data = data.sort_values( ["year", "month", "day", "hour", "minute"], ascending=True ) if not use_datetime: data = data.drop(axis="columns", columns=[self.datetime_column]) return data def get_cdo(self): raise NotImplementedError # TODO: # https://www.ncdc.noaa.gov/cdo-web/webservices/v2#gettingStarted pass def get_psm(self, location): raise NotImplementedError # TODO: # url = ( # "https://developer.nrel.gov/api/nsrdb/v2/solar/psm3-tmy-download.csv" # + f"?wkt=POINT({lon}%20{lat})&names={year}&leap_day={leap_year}" # + f"&api_key={self.nrel_dev_api_key}&attributes={attributes}" # + f"&utc={utc}&full_name={name}&email={email}&interval={interval}" # ) pass def get_tmy_fill_epw(self, lat, lon): eplus_github_weather_geojson_url = "https://raw.githubusercontent.com/NREL/EnergyPlus/develop/weather/master.geojson" # check for cached eplus geojson # cache is updated daily cache_name = f"eplus_geojson_cache_{datetime.today().strftime('%Y_%m_%d')}.csv" if self.archive_tmy3_dir: cache_path = os.path.join(self.archive_tmy3_dir, cache_name) if self.archive_tmy3_dir and os.path.exists(cache_path): logger.info(f"Reading TMY weather geojson from cache: {cache_path}") df = pd.read_csv(cache_path) if df.empty: logger.error("Cached TMY weather geojson is empty.") else: logger.info( f"Downloading TMY weather geojson from: {eplus_github_weather_geojson_url}" ) df = pd.json_normalize( pd.read_json(eplus_github_weather_geojson_url).features ) # parse coordinates column to lat lon in radians for usage # the geojson coordinates are [lon, lat] coordinates_col = "geometry.coordinates" df[["lon", "lat"]] = pd.DataFrame( df[coordinates_col].to_list(), columns=["lon", "lat"] ) df = df.drop(axis="columns", columns=[coordinates_col]) df["lat"] = np.radians(df["lat"]) df["lon"] = np.radians(df["lon"]) if self.archive_tmy3_dir and os.path.isdir(self.archive_tmy3_dir): df.to_csv(cache_path, index=False) # convert query point to radians and set dimensionality to (2,1) qp = np.radians(np.atleast_2d(np.array([lat, lon]))) dis = haversine_distances(df[["lat", "lon"]].values, qp) # TODO: add finding of TMY3 datasets over TMY of same/similar location # e.g. for phoenix this method find TMY data while TMY3 data exists but # has different coordinates epw_href = df.iloc[np.argmin(dis)]["properties.epw"] # extract download URL from html link match = re.search(r'href=[\'"]?([^\'" >]+)', epw_href) fpath = None if match: epw_url = match.group(1) fname = epw_url.split("/")[-1] if fname: fpath = os.path.join(self.ep_tmy3_cache_dir, fname) # if already downloaded return name and path to cache if not os.path.exists(fpath): logger.info(f"Downloading TMY weather data from: {epw_url}") res = requests.get(epw_url, allow_redirects=True) if res.status_code == 200: with open(fpath, "wb") as f: f.write(res.content) return fpath, fname def get_archive_tmy3(self, lat, lon): """Retrieve TMY3 data from archive based on minimum haversine distance. This requries downloading archive. See README.md section on NSRDB 1991-2005 Archive Data: The archived data contains the most recent TMY3 data with the fields required by the EPW format. Download the archive from: https://nsrdb.nrel.gov/data-sets/archives.html Note: The archive is ~3 GB, but only the TMY data (~300MB compressed, 1.7 GB uncompressed) is required and the hourly data can be deleted after download. :param lat: latitude :type lat: float :param lon: longitude :type lon: float :return: TMY3 data :rtype: pd.DataFrame """ # only need these columns tmy3_meta = pd.read_csv( self.archive_tmy3_meta, usecols=["USAF", "Latitude", "Longitude"] ) # convert query point and all stations all to radians qp = np.radians(np.atleast_2d(np.array([lat, lon]))) tmy3_meta["Latitude"] = np.radians(tmy3_meta["Latitude"]) tmy3_meta["Longitude"] = np.radians(tmy3_meta["Longitude"]) # compute haversine distance from all stations to query point dis = haversine_distances(tmy3_meta[["Latitude", "Longitude"]].values, qp) # station that minimizes distance from query point should be used usaf_code = tmy3_meta.USAF[np.argmin(dis)] # read tmy3 data from archive using usaf code return pd.read_csv( f"{self.archive_tmy3_data_dir}/{usaf_code}TYA.CSV", skiprows=1 ) def get_psm3_tmy3(self, location): # TODO: finish implementing raise NotImplementedError lat = 43.83452 lon = -99.49218 # attributes to extract (e.g., dhi, ghi, etc.), separated by commas. attributes = ",".join( [ "ghi", "dhi", "dni", "surface_pressure", "wind_direction", "wind_speed", "surface_albedo", ] ) # Choose year of data names = "tmy" # local time zone or UTC (confirmed works for TMY3) utc = "true" # see: https://developer.nrel.gov/docs/solar/nsrdb/psm3-tmy-download/ # email address is required url_tmy = ( "https://developer.nrel.gov/api/nsrdb/v2/solar/psm3-tmy-download.csv" + f"?wkt=POINT({lon}%20{lat})" + f"&names={names}" + f"&api_key={self.nrel_dev_api_key}" + f"&attributes={attributes}" + f"&utc={utc}" + f"&email={self.nrel_dev_email}" ) # Return just the first 2 lines to get metadata: meta =
pd.read_csv(url_tmy, nrows=1)
pandas.read_csv
# Module: Preprocess # Author: <NAME> <<EMAIL>> # License: MIT import pandas as pd import numpy as np import ipywidgets as wg from IPython.display import display from ipywidgets import Layout from sklearn.base import BaseEstimator, TransformerMixin, ClassifierMixin, clone from sklearn.impute._base import _BaseImputer from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import MaxAbsScaler from sklearn.preprocessing import PowerTransformer from sklearn.preprocessing import QuantileTransformer from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import OrdinalEncoder from sklearn.decomposition import PCA from sklearn.decomposition import KernelPCA from sklearn.cross_decomposition import PLSRegression from sklearn.manifold import TSNE from sklearn.decomposition import IncrementalPCA from sklearn.preprocessing import KBinsDiscretizer from pyod.models.knn import KNN from pyod.models.iforest import IForest from pyod.models.pca import PCA as PCA_od from sklearn import cluster from scipy import stats from sklearn.ensemble import RandomForestClassifier as rfc from sklearn.ensemble import RandomForestRegressor as rfr from lightgbm import LGBMClassifier as lgbmc from lightgbm import LGBMRegressor as lgbmr import sys import gc from sklearn.pipeline import Pipeline from sklearn import metrics from datetime import datetime import calendar from sklearn.preprocessing import LabelEncoder from collections import defaultdict from typing import Optional, Union from pycaret.internal.logging import get_logger from pycaret.internal.utils import infer_ml_usecase from sklearn.utils.validation import check_is_fitted, check_X_y, check_random_state from sklearn.utils.validation import _deprecate_positional_args from sklearn.utils import _safe_indexing from sklearn.exceptions import NotFittedError pd.set_option("display.max_columns", 500) pd.set_option("display.max_rows", 500) SKLEARN_EMPTY_STEP = "passthrough" # _____________________________________________________________________________________________________________________________ def str_if_not_null(x): if pd.isnull(x) or (x is None) or pd.isna(x) or (x is not x): return x return str(x) def find_id_columns(data, target, numerical_features): # some times we have id column in the data set, we will try to find it and then will drop it if found len_samples = len(data) id_columns = [] for i in data.select_dtypes( include=["object", "int64", "float64", "float32"] ).columns: col = data[i] if i not in numerical_features and i != target: if sum(col.isnull()) == 0: try: col = col.astype("int64") except: continue if col.nunique() == len_samples: # we extract column and sort it features = col.sort_values() # no we subtract i+1-th value from i-th (calculating increments) increments = features.diff()[1:] # if all increments are 1 (with float tolerance), then the column is ID column if sum(np.abs(increments - 1) < 1e-7) == len_samples - 1: id_columns.append(i) return id_columns class DataTypes_Auto_infer(BaseEstimator, TransformerMixin): """ - This will try to infer data types automatically, option to override learent data types is also available. - This alos automatically delets duplicate columns (values or same colume name), removes rows where target variable is null and remove columns and rows where all the records are null """ def __init__( self, target, ml_usecase, categorical_features=[], numerical_features=[], time_features=[], features_todrop=[], id_columns=[], display_types=True, float_dtype="float32", ): # nothing to define """ User to define the target (y) variable args: target: string, name of the target variable ml_usecase: string , 'regresson' or 'classification . For now, only supports two class classification - this is useful in case target variable is an object / string . it will replace the strings with integers categorical_features: list of categorical features, default None, when None best guess will be used to identify categorical features numerical_features: list of numerical features, default None, when None best guess will be used to identify numerical features time_features: list of date/time features, default None, when None best guess will be used to identify date/time features """ self.target = target self.ml_usecase = ml_usecase self.features_todrop = [str(x) for x in features_todrop] self.categorical_features = [ x for x in categorical_features if x not in self.features_todrop ] self.numerical_features = [ x for x in numerical_features if x not in self.features_todrop ] self.time_features = [x for x in time_features if x not in self.features_todrop] self.display_types = display_types self.id_columns = id_columns self.float_dtype = float_dtype def fit(self, dataset, y=None): # learning data types of all the columns """ Args: data: accepts a pandas data frame Returns: Panda Data Frame """ data = dataset.copy() # also make sure that all the column names are string data.columns = [str(i) for i in data.columns] # drop any columns that were asked to drop data.drop(columns=self.features_todrop, errors="ignore", inplace=True) # remove sepcial char from column names # data.columns= data.columns.str.replace('[,]','') # we will take float as numberic, object as categorical from the begning # fir int64, we will check to see what is the proportion of unique counts to the total lenght of the data # if proportion is lower, then it is probabaly categorical # however, proportion can be lower / disturebed due to samller denominator (total lenghth / number of samples) # so we will take the following chart # 0-50 samples, threshold is 24% # 50-100 samples, th is 12% # 50-250 samples , th is 4.8% # 250-500 samples, th is 2.4% # 500 and above 2% or belwo # if there are inf or -inf then replace them with NaN data.replace([np.inf, -np.inf], np.NaN, inplace=True) # we canc check if somehow everything is object, we can try converting them in float for i in data.select_dtypes(include=["object"]).columns: try: data[i] = data[i].astype("int64") except: None for i in ( data.select_dtypes(include=["object"]) .drop(self.target, axis=1, errors="ignore") .columns ): try: data[i] = pd.to_datetime( data[i], infer_datetime_format=True, utc=False, errors="raise" ) except: continue # if data type is bool or pandas Categorical , convert to categorical for i in data.select_dtypes(include=["bool", "category"]).columns: data[i] = data[i].astype("object") # wiith csv , if we have any null in a colum that was int , panda will read it as float. # so first we need to convert any such floats that have NaN and unique values are lower than 20 for i in data.select_dtypes(include=["float64"]).columns: data[i] = data[i].astype(self.float_dtype) # count how many Nas are there na_count = sum(data[i].isnull()) # count how many digits are there that have decimiles count_float = np.nansum( [False if r.is_integer() else True for r in data[i]] ) # total decimiels digits count_float = ( count_float - na_count ) # reducing it because we know NaN is counted as a float digit # now if there isnt any float digit , & unique levales are less than 20 and there are Na's then convert it to object if (count_float == 0) & (data[i].nunique() <= 20) & (na_count > 0): data[i] = data[i].astype("object") # should really be an absolute number say 20 # length = len(data.iloc[:,0]) # if length in range(0,51): # th=.25 # elif length in range(51,101): # th=.12 # elif length in range(101,251): # th=.048 # elif length in range(251,501): # th=.024 # elif length > 500: # th=.02 # if column is int and unique counts are more than two, then: (exclude target) for i in data.select_dtypes(include=["int64"]).columns: if i != self.target: if data[i].nunique() <= 20: # hard coded data[i] = data[i].apply(str_if_not_null) else: data[i] = data[i].astype(self.float_dtype) # # if colum is objfloat and only have two unique counts , this is probabaly one hot encoded # # make it object for i in data.select_dtypes(include=[self.float_dtype]).columns: if data[i].nunique() == 2: data[i] = data[i].apply(str_if_not_null) # for time & dates # self.drop_time = [] # for now we are deleting time columns # now in case we were given any specific columns dtypes in advance , we will over ride theos for i in self.categorical_features: try: data[i] = data[i].apply(str_if_not_null) except: data[i] = dataset[i].apply(str_if_not_null) for i in self.numerical_features: try: data[i] = data[i].astype(self.float_dtype) except: data[i] = dataset[i].astype(self.float_dtype) for i in self.time_features: try: data[i] = pd.to_datetime( data[i], infer_datetime_format=True, utc=False, errors="raise" ) except: data[i] = pd.to_datetime( dataset[i], infer_datetime_format=True, utc=False, errors="raise" ) for i in data.select_dtypes( include=["datetime64", "datetime64[ns, UTC]"] ).columns: data[i] = data[i].astype("datetime64[ns]") # table of learent types self.learned_dtypes = data.dtypes # self.training_columns = data.drop(self.target,axis=1).columns # if there are inf or -inf then replace them with NaN data = data.replace([np.inf, -np.inf], np.NaN).astype(self.learned_dtypes) # lets remove duplicates # remove duplicate columns (columns with same values) # (too expensive on bigger data sets) # data_c = data.T.drop_duplicates() # data = data_c.T # remove columns with duplicate name data = data.loc[:, ~data.columns.duplicated()] # Remove NAs data.dropna(axis=0, how="all", inplace=True) data.dropna(axis=1, how="all", inplace=True) # remove the row if target column has NA try: data.dropna(subset=[self.target], inplace=True) except KeyError: pass # self.training_columns = data.drop(self.target,axis=1).columns # since due to transpose , all data types have changed, lets change the dtypes to original---- not required any more since not transposing any more # for i in data.columns: # we are taking all the columns in test , so we dot have to worry about droping target column # data[i] = data[i].astype(self.learned_dtypes[self.learned_dtypes.index==i]) if self.display_types == True: display( wg.Text( value="Following data types have been inferred automatically, if they are correct press enter to continue or type 'quit' otherwise.", layout=Layout(width="100%"), ), display_id="m1", ) dt_print_out = pd.DataFrame( self.learned_dtypes, columns=["Feature_Type"] ).drop("UNSUPERVISED_DUMMY_TARGET", errors="ignore") dt_print_out["Data Type"] = "" for i in dt_print_out.index: if i != self.target: if i in self.id_columns: dt_print_out.loc[i, "Data Type"] = "ID Column" elif dt_print_out.loc[i, "Feature_Type"] == "object": dt_print_out.loc[i, "Data Type"] = "Categorical" elif dt_print_out.loc[i, "Feature_Type"] == self.float_dtype: dt_print_out.loc[i, "Data Type"] = "Numeric" elif dt_print_out.loc[i, "Feature_Type"] == "datetime64[ns]": dt_print_out.loc[i, "Data Type"] = "Date" # elif dt_print_out.loc[i,'Feature_Type'] == 'int64': # dt_print_out.loc[i,'Data Type'] = 'Categorical' else: dt_print_out.loc[i, "Data Type"] = "Label" # if we added the dummy target column , then drop it dt_print_out.drop(index="dummy_target", errors="ignore", inplace=True) display(dt_print_out[["Data Type"]]) self.response = input() if self.response in [ "quit", "Quit", "exit", "EXIT", "q", "Q", "e", "E", "QUIT", "Exit", ]: sys.exit( "Read the documentation of setup to learn how to overwrite data types over the inferred types. setup function must run again before you continue modeling." ) # drop time columns # data.drop(self.drop_time,axis=1,errors='ignore',inplace=True) # drop id columns data.drop(self.id_columns, axis=1, errors="ignore", inplace=True) return data def transform(self, dataset, y=None): """ Args: data: accepts a pandas data frame Returns: Panda Data Frame """ data = dataset.copy() # also make sure that all the column names are string data.columns = [str(i) for i in data.columns] # drop any columns that were asked to drop data.drop(columns=self.features_todrop, errors="ignore", inplace=True) data = data[self.final_training_columns] # also make sure that all the column names are string data.columns = [str(i) for i in data.columns] # if there are inf or -inf then replace them with NaN data.replace([np.inf, -np.inf], np.NaN, inplace=True) try: data.dropna(subset=[self.target], inplace=True) except KeyError: pass # remove sepcial char from column names # data.columns= data.columns.str.replace('[,]','') # very first thing we need to so is to check if the training and test data hace same columns for i in self.final_training_columns: if i not in data.columns: raise TypeError( f"test data does not have column {i} which was used for training." ) # just keep picking the data and keep applying to the test data set (be mindful of target variable) for ( i ) in ( data.columns ): # we are taking all the columns in test , so we dot have to worry about droping target column if i == self.target and ( (self.ml_usecase == "classification") and (self.learned_dtypes[self.target] == "object") ): data[i] = self.le.transform(data[i].apply(str).astype("object")) data[i] = data[i].astype("int64") else: if self.learned_dtypes[i].name == "datetime64[ns]": data[i] = pd.to_datetime( data[i], infer_datetime_format=True, utc=False, errors="coerce" ) data[i] = data[i].astype(self.learned_dtypes[i]) # drop time columns # data.drop(self.drop_time,axis=1,errors='ignore',inplace=True) # drop id columns data.drop(self.id_columns, axis=1, errors="ignore", inplace=True) return data # fit_transform def fit_transform(self, dataset, y=None): data = dataset # since this is for training , we dont nees any transformation since it has already been transformed in fit data = self.fit(data) # additionally we just need to treat the target variable # for ml use ase if (self.ml_usecase == "classification") & ( data[self.target].dtype == "object" ): self.le = LabelEncoder() data[self.target] = self.le.fit_transform( data[self.target].apply(str).astype("object") ) self.replacement = _get_labelencoder_reverse_dict(self.le) # self.u = list(pd.unique(data[self.target])) # self.replacement = np.arange(0,len(self.u)) # data[self.target]= data[self.target].replace(self.u,self.replacement) # data[self.target] = data[self.target].astype('int64') # self.replacement = pd.DataFrame(dict(target_variable=self.u,replaced_with=self.replacement)) # drop time columns # data.drop(self.drop_time,axis=1,errors='ignore',inplace=True) # drop id columns data.drop(self.id_columns, axis=1, errors="ignore", inplace=True) # finally save a list of columns that we would need from test data set self.final_training_columns = data.columns.to_list() self.final_training_columns.remove(self.target) return data # _______________________________________________________________________________________________________________________ # Imputation class Simple_Imputer(_BaseImputer): """ Imputes all type of data (numerical,categorical & Time). Highly recommended to run Define_dataTypes class first Numerical values can be imputed with mean or median or filled with zeros categorical missing values will be replaced with "Other" Time values are imputed with the most frequesnt value Ignores target (y) variable Args: Numeric_strategy: string , all possible values {'mean','median','zero'} categorical_strategy: string , all possible values {'not_available','most frequent'} target: string , name of the target variable fill_value_numerical: number, value for filling missing values of numeric columns fill_value_categorical: string, value for filling missing values of categorical columns """ _numeric_strategies = { "mean": "mean", "median": "median", "most frequent": "most_frequent", "zero": "constant", } _categorical_strategies = { "most frequent": "most_frequent", "not_available": "constant", } _time_strategies = { "mean": "mean", "median": "median", "most frequent": "most_frequent", } def __init__( self, numeric_strategy, categorical_strategy, time_strategy, target, fill_value_numerical=0, fill_value_categorical="not_available", ): # Set the target variable, which we don't want to impute self.target = target if numeric_strategy not in self._numeric_strategies: numeric_strategy = "zero" self.numeric_strategy = numeric_strategy if categorical_strategy not in self._categorical_strategies: categorical_strategy = "most frequent" self.categorical_strategy = categorical_strategy if time_strategy not in self._time_strategies: time_strategy = "most frequent" self.time_strategy = time_strategy self.fill_value_numerical = fill_value_numerical self.fill_value_categorical = fill_value_categorical # self.most_frequent_time = [] self.numeric_imputer = SimpleImputer( strategy=self._numeric_strategies[self.numeric_strategy], fill_value=fill_value_numerical, ) self.categorical_imputer = SimpleImputer( strategy=self._categorical_strategies[self.categorical_strategy], fill_value=fill_value_categorical, ) self.time_imputer = SimpleImputer( strategy=self._time_strategies[self.time_strategy], ) def fit(self, X, y=None): """ Fit the imputer on dataset. Args: X : pd.DataFrame, the dataset to be imputed Returns: self : Simple_Imputer """ try: data = X.drop(self.target, axis=1) except: data = X self.numeric_columns = data.select_dtypes( include=["float32", "float64", "int32", "int64"] ).columns self.categorical_columns = data.select_dtypes( include=["object", "bool", "string", "category"] ).columns self.time_columns = data.select_dtypes( include=["datetime64[ns]", "timedelta64[ns]"] ).columns statistics = [] if not self.numeric_columns.empty: self.numeric_imputer.fit(data[self.numeric_columns]) statistics.append((self.numeric_imputer.statistics_, self.numeric_columns)) if not self.categorical_columns.empty: self.categorical_imputer.fit(data[self.categorical_columns]) statistics.append( (self.categorical_imputer.statistics_, self.categorical_columns) ) if not self.time_columns.empty: for col in self.time_columns: data[col] = data[col][data[col].notnull()].astype(np.int64) self.time_imputer.fit(data[self.time_columns]) statistics.append((self.time_imputer.statistics_, self.time_columns)) self.statistics_ = np.zeros(shape=len(data.columns), dtype=object) columns = list(data.columns) for s, index in statistics: for i, j in enumerate(index): self.statistics_[columns.index(j)] = s[i] return self def transform(self, X, y=None): """ Impute all missing values in dataset. Args: X: pd.DataFrame, the dataset to be imputed Returns: data: pd.DataFrame, the imputed dataset """ data = X imputed_data = [] if not self.numeric_columns.empty: numeric_data = pd.DataFrame( self.numeric_imputer.transform(data[self.numeric_columns]), columns=self.numeric_columns, index=data.index, ) imputed_data.append(numeric_data) if not self.categorical_columns.empty: categorical_data = pd.DataFrame( self.categorical_imputer.transform(data[self.categorical_columns]), columns=self.categorical_columns, index=data.index, ) for col in categorical_data.columns: categorical_data[col] = categorical_data[col].apply(str) imputed_data.append(categorical_data) if not self.time_columns.empty: datetime_columns = data.select_dtypes(include=["datetime"]).columns timedelta_columns = data.select_dtypes(include=["timedelta"]).columns timedata_copy = data[self.time_columns].copy() for col in self.time_columns: timedata_copy[col] = timedata_copy[col][ timedata_copy[col].notnull() ].astype(np.int64) time_data = pd.DataFrame( self.time_imputer.transform(timedata_copy), columns=self.time_columns, index=data.index, ) for col in datetime_columns: time_data[col][data[col].notnull()] = data[col][data[col].notnull()] time_data[col] = time_data[col].apply(pd.Timestamp) for col in timedelta_columns: time_data[col][data[col].notnull()] = data[col][data[col].notnull()] time_data[col] = time_data[col].apply(pd.Timedelta) imputed_data.append(time_data) if imputed_data: data.update(pd.concat(imputed_data, axis=1)) data.astype(X.dtypes) return data def fit_transform(self, X, y=None): """ Fit and impute on dataset. Args: X: pd.DataFrame, the dataset to be fitted and imputed Returns: pd.DataFrame, the imputed dataset """ data = X self.fit(data) return self.transform(data) # _______________________________________________________________________________________________________________________ # Imputation with surrogate columns class Surrogate_Imputer(_BaseImputer): """ Imputes feature with surrogate column (numerical,categorical & Time). - Highly recommended to run Define_dataTypes class first - it is also recommended to only apply this to features where it makes business sense to creat surrogate column - feature name has to be provided - only able to handle one feature at a time - Numerical values can be imputed with mean or median or filled with zeros - categorical missing values will be replaced with "Other" - Time values are imputed with the most frequesnt value - Ignores target (y) variable Args: feature_name: string, provide features name feature_type: string , all possible values {'numeric','categorical','date'} strategy: string ,all possible values {'mean','median','zero','not_available','most frequent'} target: string , name of the target variable """ def __init__(self, numeric_strategy, categorical_strategy, target): self.numeric_strategy = numeric_strategy self.target = target self.categorical_strategy = categorical_strategy def fit(self, dataset, y=None): # def zeros(x): return 0 data = dataset # make a table for numerical variable with strategy stats if self.numeric_strategy == "mean": self.numeric_stats = ( data.drop(self.target, axis=1) .select_dtypes(include=["float32", "float64", "int64"]) .apply(np.nanmean) ) elif self.numeric_strategy == "median": self.numeric_stats = ( data.drop(self.target, axis=1) .select_dtypes(include=["float32", "float64", "int64"]) .apply(np.nanmedian) ) else: self.numeric_stats = ( data.drop(self.target, axis=1) .select_dtypes(include=["float32", "float64", "int64"]) .apply(zeros) ) self.numeric_columns = ( data.drop(self.target, axis=1) .select_dtypes(include=["float32", "float64", "int64"]) .columns ) # also need to learn if any columns had NA in training self.numeric_na = pd.DataFrame(columns=self.numeric_columns) for i in self.numeric_columns: if data[i].isnull().any() == True: self.numeric_na.loc[0, i] = True else: self.numeric_na.loc[0, i] = False # for Catgorical , if self.categorical_strategy == "most frequent": self.categorical_columns = ( data.drop(self.target, axis=1).select_dtypes(include=["object"]).columns ) self.categorical_stats = pd.DataFrame( columns=self.categorical_columns ) # place holder for i in self.categorical_stats.columns: self.categorical_stats.loc[0, i] = data[i].value_counts().index[0] # also need to learn if any columns had NA in training, but this is only valid if strategy is "most frequent" self.categorical_na = pd.DataFrame(columns=self.categorical_columns) for i in self.categorical_columns: if sum(data[i].isnull()) > 0: self.categorical_na.loc[0, i] = True else: self.categorical_na.loc[0, i] = False else: self.categorical_columns = ( data.drop(self.target, axis=1).select_dtypes(include=["object"]).columns ) self.categorical_na = pd.DataFrame(columns=self.categorical_columns) self.categorical_na.loc[ 0, : ] = False # (in this situation we are not making any surrogate column) # for time, there is only one way, pick up the most frequent one self.time_columns = ( data.drop(self.target, axis=1) .select_dtypes(include=["datetime64[ns]"]) .columns ) self.time_stats = pd.DataFrame(columns=self.time_columns) # place holder self.time_na = pd.DataFrame(columns=self.time_columns) for i in self.time_columns: self.time_stats.loc[0, i] = data[i].value_counts().index[0] # learn if time columns were NA for i in self.time_columns: if data[i].isnull().any() == True: self.time_na.loc[0, i] = True else: self.time_na.loc[0, i] = False return data # nothing to return def transform(self, dataset, y=None): data = dataset # for numeric columns for i, s in zip(data[self.numeric_columns].columns, self.numeric_stats): array = data[i].isnull() data[i].fillna(s, inplace=True) # make a surrogate column if there was any if self.numeric_na.loc[0, i] == True: data[i + "_surrogate"] = array # make it string data[i + "_surrogate"] = data[i + "_surrogate"].apply(str) # for categorical columns if self.categorical_strategy == "most frequent": for i in self.categorical_stats.columns: # data[i].fillna(self.categorical_stats.loc[0,i],inplace=True) array = data[i].isnull() data[i] = data[i].fillna(self.categorical_stats.loc[0, i]) data[i] = data[i].apply(str) # make surrogate column if self.categorical_na.loc[0, i] == True: data[i + "_surrogate"] = array # make it string data[i + "_surrogate"] = data[i + "_surrogate"].apply(str) else: # this means replace na with "not_available" for i in self.categorical_columns: data[i].fillna("not_available", inplace=True) data[i] = data[i].apply(str) # no need to make surrogate since not_available is itself a new colum # for time for i in self.time_stats.columns: array = data[i].isnull() data[i].fillna(self.time_stats.loc[0, i], inplace=True) # make surrogate column if self.time_na.loc[0, i] == True: data[i + "_surrogate"] = array # make it string data[i + "_surrogate"] = data[i + "_surrogate"].apply(str) return data def fit_transform(self, dataset, y=None): data = dataset data = self.fit(data) return self.transform(data) class Iterative_Imputer(_BaseImputer): def __init__( self, regressor: BaseEstimator, classifier: BaseEstimator, *, target=None, missing_values=np.nan, initial_strategy_numeric: str = "mean", initial_strategy_categorical: str = "most frequent", initial_strategy_time: str = "most frequent", ordinal_columns: Optional[list] = None, max_iter: int = 10, warm_start: bool = False, imputation_order: str = "ascending", verbose: int = 0, random_state: int = None, add_indicator: bool = False, ): super().__init__(missing_values=missing_values, add_indicator=add_indicator) self.regressor = regressor self.classifier = classifier self.initial_strategy_numeric = initial_strategy_numeric self.initial_strategy_categorical = initial_strategy_categorical self.initial_strategy_time = initial_strategy_time self.max_iter = max_iter self.warm_start = warm_start self.imputation_order = imputation_order self.verbose = verbose self.random_state = random_state self.target = target if ordinal_columns is None: ordinal_columns = [] self.ordinal_columns = list(ordinal_columns) self._column_cleaner = Clean_Colum_Names() def _initial_imputation(self, X): if self.initial_imputer_ is None: self.initial_imputer_ = Simple_Imputer( target="__TARGET__", # dummy value, we don't actually want to drop anything numeric_strategy=self.initial_strategy_numeric, categorical_strategy=self.initial_strategy_categorical, time_strategy=self.initial_strategy_time, ) X_filled = self.initial_imputer_.fit_transform(X) else: X_filled = self.initial_imputer_.transform(X) return X_filled def _impute_one_feature(self, X, column, X_na_mask, fit): if not fit: check_is_fitted(self) is_classification = ( X[column].dtype.name == "object" or column in self.ordinal_columns ) if is_classification: if column in self.classifiers_: time, dummy, le, estimator = self.classifiers_[column] elif not fit: return X else: estimator = clone(self._classifier) time = Make_Time_Features() dummy = Dummify(column) le = LabelEncoder() else: if column in self.regressors_: time, dummy, le, estimator = self.regressors_[column] elif not fit: return X else: estimator = clone(self._regressor) time = Make_Time_Features() dummy = Dummify(column) le = None if fit: fit_kwargs = {} X_train = X[~X_na_mask[column]] y_train = X_train[column] # catboost handles categoricals itself if "catboost" not in str(type(estimator)).lower(): X_train = time.fit_transform(X_train) X_train = dummy.fit_transform(X_train) X_train.drop(column, axis=1, inplace=True) else: X_train.drop(column, axis=1, inplace=True) fit_kwargs["cat_features"] = [] for i, col in enumerate(X_train.columns): if X_train[col].dtype.name == "object": X_train[col] = pd.Categorical( X_train[col], ordered=column in self.ordinal_columns ) fit_kwargs["cat_features"].append(i) fit_kwargs["cat_features"] = np.array( fit_kwargs["cat_features"], dtype=int ) X_train = self._column_cleaner.fit_transform(X_train) if le: y_train = le.fit_transform(y_train) try: assert self.warm_start estimator.partial_fit(X_train, y_train) except: estimator.fit(X_train, y_train, **fit_kwargs) X_test = X.drop(column, axis=1)[X_na_mask[column]] X_test = time.transform(X_test) # catboost handles categoricals itself if "catboost" not in str(type(estimator)).lower(): X_test = dummy.transform(X_test) else: for col in X_test.select_dtypes("object").columns: X_test[col] = pd.Categorical( X_test[col], ordered=column in self.ordinal_columns ) result = estimator.predict(X_test) if le: result = le.inverse_transform(result) if fit: if is_classification: self.classifiers_[column] = (time, dummy, le, estimator) else: self.regressors_[column] = (time, dummy, le, estimator) if result.dtype.name == "float64": result = result.astype("float32") X_test[column] = result X.update(X_test[column]) gc.collect() return X def _impute(self, X, fit: bool): if self.target in X.columns: target_column = X[self.target] X = X.drop(self.target, axis=1) else: target_column = None original_columns = X.columns original_index = X.index X = X.reset_index(drop=True) X = self._column_cleaner.fit_transform(X) self.imputation_sequence_ = ( X.isnull().sum().sort_values(ascending=self.imputation_order == "ascending") ) self.imputation_sequence_ = [ col for col in self.imputation_sequence_[self.imputation_sequence_ > 0].index if X[col].dtype.name != "datetime64[ns]" ] X_na_mask = X.isnull() X_imputed = self._initial_imputation(X.copy()) for i in range(self.max_iter if fit else 1): for feature in self.imputation_sequence_: get_logger().info(f"Iterative Imputation: {i+1} cycle | {feature}") X_imputed = self._impute_one_feature(X_imputed, feature, X_na_mask, fit) X_imputed.columns = original_columns X_imputed.index = original_index if target_column is not None: X_imputed[self.target] = target_column return X_imputed def transform(self, X, y=None, **fit_params): return self._impute(X, fit=False) def fit_transform(self, X, y=None, **fit_params): self.random_state_ = getattr( self, "random_state_", check_random_state(self.random_state) ) if self.regressor is None: raise ValueError("No regressor provided") else: self._regressor = clone(self.regressor) try: self._regressor.set_param(random_state=self.random_state_) except: pass if self.classifier is None: raise ValueError("No classifier provided") else: self._classifier = clone(self.classifier) try: self._classifier.set_param(random_state=self.random_state_) except: pass self.classifiers_ = {} self.regressors_ = {} self.initial_imputer_ = None return self._impute(X, fit=True) def fit(self, X, y=None, **fit_params): self.fit_transform(X, y=y, **fit_params) return self # _______________________________________________________________________________________________________________________ # Zero and Near Zero Variance class Zroe_NearZero_Variance(BaseEstimator, TransformerMixin): """ - it eliminates the features having zero variance - it eliminates the features haveing near zero variance - Near zero variance is determined by -1) Count of unique points divided by the total length of the feature has to be lower than a pre sepcified threshold -2) Most common point(count) divided by the second most common point(count) in the feature is greater than a pre specified threshold Once both conditions are met , the feature is dropped -Ignores target variable Args: threshold_1: float (between 0.0 to 1.0) , default is .10 threshold_2: int (between 1 to 100), default is 20 tatget variable : string, name of the target variable """ def __init__(self, target, threshold_1=0.1, threshold_2=20): self.threshold_1 = threshold_1 self.threshold_2 = threshold_2 self.target = target def fit( self, dataset, y=None ): # from training data set we are going to learn what columns to drop data = dataset self.to_drop = [] sampl_len = len(data[self.target]) for i in data.drop(self.target, axis=1).columns: # get the number of unique counts u = pd.DataFrame(data[i].value_counts()).sort_values( by=i, ascending=False, inplace=False ) # take len of u and divided it by the total sample numbers, so this will check the 1st rule , has to be low say 10% # import pdb; pdb.set_trace() first = len(u) / sampl_len # then check if most common divided by 2nd most common ratio is 20 or more if ( len(u[i]) == 1 ): # this means that if column is non variance , automatically make the number big to drop it second = 100 else: second = u.iloc[0, 0] / u.iloc[1, 0] # if both conditions are true then drop the column, however, we dont want to alter column that indicate NA's if (first <= 0.10) and (second >= 20) and (i[-10:] != "_surrogate"): self.to_drop.append(i) # now drop if the column has zero variance if (second == 100) and (i[-10:] != "_surrogate"): self.to_drop.append(i) def transform( self, dataset, y=None ): # since it is only for training data set , nothing here data = dataset.drop(self.to_drop, axis=1) return data def fit_transform(self, dataset, y=None): data = dataset self.fit(data) return self.transform(data) # ____________________________________________________________________________________________________________________________ # rare catagorical variables class Catagorical_variables_With_Rare_levels(BaseEstimator, TransformerMixin): """ -Merges levels in catagorical features with more frequent level if they appear less than a threshold count e.g. Col=[a,a,a,a,b,b,c,c] if threshold is set to 2 , then c will be mrged with b because both are below threshold There has to be atleast two levels belwo threshold for this to work the process will keep going until all the levels have atleast 2(threshold) counts -Only handles catagorical features -It is recommended to run the Zroe_NearZero_Variance and Define_dataTypes first -Ignores target variable Args: threshold: int , default 10 target: string , name of the target variable new_level_name: string , name given to the new level generated, default 'others' """ def __init__(self, target, new_level_name="others_infrequent", threshold=0.05): self.threshold = threshold self.target = target self.new_level_name = new_level_name def fit( self, dataset, y=None ): # we will learn for what columnns what are the level to merge as others # every level of the catagorical feature has to be more than threshols, if not they will be clubed togather as "others" # in order to apply, there should be atleast two levels belwo the threshold ! # creat a place holder data = dataset self.ph = pd.DataFrame( columns=data.drop(self.target, axis=1) .select_dtypes(include="object") .columns ) # ph.columns = df.columns# catagorical only for i in data[self.ph.columns].columns: # determine the infrequebt count v_c = data[i].value_counts() count_th = round(v_c.quantile(self.threshold)) a = np.sum( pd.DataFrame(data[i].value_counts().sort_values())[i] <= count_th ) if a >= 2: # rare levels has to be atleast two count = pd.DataFrame(data[i].value_counts().sort_values()) count.columns = ["fre"] count = count[count["fre"] <= count_th] to_club = list(count.index) self.ph.loc[0, i] = to_club else: self.ph.loc[0, i] = [] # # also need to make a place holder that keep records of all the levels , and in case a new level appears in test we will change it to others # self.ph_level = pd.DataFrame(columns=data.drop(self.target,axis=1).select_dtypes(include="object").columns) # for i in self.ph_level.columns: # self.ph_level.loc[0,i] = list(data[i].value_counts().sort_values().index) def transform(self, dataset, y=None): # # transorm data = dataset for i in data[self.ph.columns].columns: t_replace = self.ph.loc[0, i] data[i].replace( to_replace=t_replace, value=self.new_level_name, inplace=True ) return data def fit_transform(self, dataset, y=None): data = dataset self.fit(data) return self.transform(data) # _______________________________________________________________________________________________________________________ # new catagorical level in test class New_Catagorical_Levels_in_TestData(BaseEstimator, TransformerMixin): """ -This treats if a new level appears in the test dataset catagorical's feature (i.e a level on whihc model was not trained previously) -It simply replaces the new level in test data set with the most frequent or least frequent level in the same feature in the training data set -It is recommended to run the Zroe_NearZero_Variance and Define_dataTypes first -Ignores target variable Args: target: string , name of the target variable replacement_strategy:string , 'raise exception', 'least frequent' or 'most frequent' (default 'most frequent' ) """ def __init__(self, target, replacement_strategy="most frequent"): self.target = target self.replacement_strategy = replacement_strategy def fit(self, data, y=None): # need to make a place holder that keep records of all the levels , and in case a new level appears in test we will change it to others self.ph_train_level = pd.DataFrame( columns=data.drop(self.target, axis=1) .select_dtypes(include="object") .columns ) for i in self.ph_train_level.columns: if self.replacement_strategy == "least frequent": self.ph_train_level.loc[0, i] = list( data[i].value_counts().sort_values().index ) else: self.ph_train_level.loc[0, i] = list(data[i].value_counts().index) def transform(self, data, y=None): # # transorm # we need to learn the same for test data , and then we will compare to check what levels are new in there self.ph_test_level = pd.DataFrame( columns=data.drop(self.target, axis=1, errors="ignore") .select_dtypes(include="object") .columns ) for i in self.ph_test_level.columns: self.ph_test_level.loc[0, i] = list( data[i].value_counts().sort_values().index ) # new we have levels for both test and train, we will start comparing and replacing levels in test set (Only if test set has new levels) for i in self.ph_test_level.columns: new = list( (set(self.ph_test_level.loc[0, i]) - set(self.ph_train_level.loc[0, i])) ) # now if there is a difference , only then replace it if len(new) > 0: if self.replacement_strategy == "raise exception": raise ValueError( f"Column '{i}' contains levels '{new}' which were not present in train data." ) data[i].replace(new, self.ph_train_level.loc[0, i][0], inplace=True) return data def fit_transform( self, data, y=None ): # There is no transformation happening in training data set, its all about test self.fit(data) return data # _______________________________________________________________________________________________________________________ # Group akin features class Group_Similar_Features(BaseEstimator, TransformerMixin): """ - Given a list of features , it creates aggregate features - features created are Min, Max, Mean, Median, Mode & Std - Only works on numerical features Args: list_of_similar_features: list of list, string , e.g. [['col',col2],['col3','col4']] group_name: list, group name/names to be added as prefix to aggregate features, e.g ['gorup1','group2'] """ def __init__(self, group_name=[], list_of_grouped_features=[[]]): self.list_of_similar_features = list_of_grouped_features self.group_name = group_name # if list of list not given try: np.array(self.list_of_similar_features).shape[0] except: raise ( "Group_Similar_Features: list_of_grouped_features is not provided as list of list" ) def fit(self, data, y=None): # nothing to learn return self def transform(self, dataset, y=None): data = dataset # # only going to process if there is an actual missing value in training data set if len(self.list_of_similar_features) > 0: for f, g in zip(self.list_of_similar_features, self.group_name): data[g + "_Min"] = data[f].apply(np.min, 1) data[g + "_Max"] = data[f].apply(np.max, 1) data[g + "_Mean"] = data[f].apply(np.mean, 1) data[g + "_Median"] = data[f].apply(np.median, 1) data[g + "_Mode"] = stats.mode(data[f], 1)[0] data[g + "_Std"] = data[f].apply(np.std, 1) return data else: return data def fit_transform(self, data, y=None): return self.transform(data) # ____________________________________________________________________________________________________________________________________________________________________ # Binning for Continious class Binning(BaseEstimator, TransformerMixin): """ - Converts numerical variables to catagorical variable through binning - Number of binns are automitically determined through Sturges method - Once discretize, original feature will be dropped Args: features_to_discretize: list of featur names to be binned """ def __init__(self, features_to_discretize): self.features_to_discretize = features_to_discretize def fit(self, data, y=None): self.fit_transform(data, y=y) return self def transform(self, dataset, y=None): data = dataset # only do if features are provided if len(self.features_to_discretize) > 0: data_t = self.disc.transform( np.array(data[self.features_to_discretize]).reshape( -1, self.len_columns ) ) # make pandas data frame data_t = pd.DataFrame( data_t, columns=self.features_to_discretize, index=data.index ) # all these columns are catagorical data_t = data_t.astype(str) # drop original columns data.drop(self.features_to_discretize, axis=1, inplace=True) # add newly created columns data = pd.concat((data, data_t), axis=1) return data def fit_transform(self, dataset, y=None): data = dataset # only do if features are given if len(self.features_to_discretize) > 0: # place holder for all the features for their binns self.binns = [] for i in self.features_to_discretize: # get numbr of binns hist, _ = np.histogram(data[i], bins="sturges") self.binns.append(len(hist)) # how many colums to deal with self.len_columns = len(self.features_to_discretize) # now do fit transform self.disc = KBinsDiscretizer( n_bins=self.binns, encode="ordinal", strategy="kmeans" ) data_t = self.disc.fit_transform( np.array(data[self.features_to_discretize]).reshape( -1, self.len_columns ) ) # make pandas data frame data_t = pd.DataFrame( data_t, columns=self.features_to_discretize, index=data.index ) # all these columns are catagorical data_t = data_t.astype(str) # drop original columns data.drop(self.features_to_discretize, axis=1, inplace=True) # add newly created columns data = pd.concat((data, data_t), axis=1) return data # ______________________________________________________________________________________________________________________ # Scaling & Power Transform class Scaling_and_Power_transformation(BaseEstimator, TransformerMixin): """ -Given a data set, applies Min Max, Standar Scaler or Power Transformation (yeo-johnson) -it is recommended to run Define_dataTypes first - ignores target variable Args: target: string , name of the target variable function_to_apply: string , default 'zscore' (standard scaler), all other {'minmaxm','yj','quantile','robust','maxabs'} ( min max,yeo-johnson & quantile power transformation, robust and MaxAbs scaler ) """ def __init__(self, target, function_to_apply="zscore", random_state_quantile=42): self.target = target self.function_to_apply = function_to_apply self.random_state_quantile = random_state_quantile # self.transform_target = transform_target # self.ml_usecase = ml_usecase def fit(self, dataset, y=None): data = dataset # we only want to apply if there are numeric columns self.numeric_features = ( data.drop(self.target, axis=1, errors="ignore") .select_dtypes(include=["float32", "float64", "int64"]) .columns ) if len(self.numeric_features) > 0: if self.function_to_apply == "zscore": self.scale_and_power = StandardScaler() self.scale_and_power.fit(data[self.numeric_features]) elif self.function_to_apply == "minmax": self.scale_and_power = MinMaxScaler() self.scale_and_power.fit(data[self.numeric_features]) elif self.function_to_apply == "yj": self.scale_and_power = PowerTransformer( method="yeo-johnson", standardize=True ) self.scale_and_power.fit(data[self.numeric_features]) elif self.function_to_apply == "quantile": self.scale_and_power = QuantileTransformer( random_state=self.random_state_quantile, output_distribution="normal", ) self.scale_and_power.fit(data[self.numeric_features]) elif self.function_to_apply == "robust": self.scale_and_power = RobustScaler() self.scale_and_power.fit(data[self.numeric_features]) elif self.function_to_apply == "maxabs": self.scale_and_power = MaxAbsScaler() self.scale_and_power.fit(data[self.numeric_features]) return self def transform(self, dataset, y=None): data = dataset if len(self.numeric_features) > 0: self.data_t = pd.DataFrame( self.scale_and_power.transform(data[self.numeric_features]) ) # we need to set the same index as original data self.data_t.index = data.index self.data_t.columns = self.numeric_features for i in self.numeric_features: data[i] = self.data_t[i] return data else: return data def fit_transform(self, dataset, y=None): data = dataset self.fit(data) # convert target if appropriate # default behavious is quantile transformer # if ((self.ml_usecase == 'regression') and (self.transform_target == True)): # self.scale_and_power_target = QuantileTransformer(random_state=self.random_state_quantile,output_distribution='normal') # data[self.target]=self.scale_and_power_target.fit_transform(np.array(data[self.target]).reshape(-1,1)) return self.transform(data) # ______________________________________________________________________________________________________________________ # Scaling & Power Transform class Target_Transformation(BaseEstimator, TransformerMixin): """ - Applies Power Transformation (yeo-johnson , Box-Cox) to target variable (Applicable to Regression only) - 'bc' for Box_Coc & 'yj' for yeo-johnson, default is Box-Cox - if target containes negtive / zero values , yeo-johnson is automatically selected """ def __init__(self, target, function_to_apply="bc"): self.target = target if function_to_apply == "bc": function_to_apply = "box-cox" else: function_to_apply = "yeo-johnson" self.function_to_apply = function_to_apply def inverse_transform(self, dataset, y=None): data = self.p_transform_target.inverse_transform( np.array(dataset).reshape(-1, 1) ) return data def fit(self, dataset, y=None): self.fit_transform(dataset, y=y) return self def transform(self, dataset, y=None): data = dataset if self.target in dataset.columns: # apply transformation data[self.target] = self.p_transform_target.transform( np.array(data[self.target]).reshape(-1, 1) ) return data def fit_transform(self, dataset, y=None): data = dataset # if target has zero or negative values use yj instead if any(data[self.target] <= 0): self.function_to_apply = "yeo-johnson" # apply transformation self.p_transform_target = PowerTransformer(method=self.function_to_apply) data[self.target] = self.p_transform_target.fit_transform( np.array(data[self.target]).reshape(-1, 1) ) return data # __________________________________________________________________________________________________________________________ # Time feature extractor class Make_Time_Features(BaseEstimator, TransformerMixin): """ -Given a time feature , it extracts more features - Only accepts / works where feature / data type is datetime64[ns] - full list of features is: ['month','weekday',is_month_end','is_month_start','hour'] - all extracted features are defined as string / object -it is recommended to run Define_dataTypes first Args: time_feature: list of feature names as datetime64[ns] , default empty/none , if empty/None , it will try to pickup dates automatically where data type is datetime64[ns] list_of_features: list of required features , default value ['month','weekday','is_month_end','is_month_start','hour'] """ def __init__( self, time_feature=None, list_of_features=["month", "weekday", "is_month_end", "is_month_start", "hour"], ): self.time_feature = time_feature self.list_of_features = set(list_of_features) def fit(self, data, y=None): if self.time_feature is None: self.time_feature = data.select_dtypes(include=["datetime64[ns]"]).columns self.has_hour_ = set() for i in self.time_feature: if "hour" in self.list_of_features: if any(x.hour for x in data[i]): self.has_hour_.add(i) return self def transform(self, dataset, y=None): data = dataset.copy() # run fit transform first def get_time_features(r): features = [] if "month" in self.list_of_features: features.append(("_month", str(r.month))) if "weekday" in self.list_of_features: features.append(("_weekday", str(r.weekday()))) if "is_month_end" in self.list_of_features: features.append( ( "_is_month_end", "1" if calendar.monthrange(r.year, r.month)[1] == r.day else "0", ) ) if "is_month_start" in self.list_of_features: features.append(("_is_month_start", "1" if r.day == 1 else "0")) return tuple(features) # start making features for every column in the time list for i in self.time_feature: list_of_features = [get_time_features(r) for r in data[i]] fd = defaultdict(list) for x in list_of_features: for k, v in x: fd[k].append(v) for k, v in fd.items(): data[i + k] = v # make hour column if choosen if "hour" in self.list_of_features and i in self.has_hour_: h = [r.hour for r in data[i]] data[f"{i}_hour"] = h data[f"{i}_hour"] = data[f"{i}_hour"].apply(str) # we dont need time columns any more data.drop(self.time_feature, axis=1, inplace=True) return data def fit_transform(self, dataset, y=None): # if no columns names are given , then pick datetime columns self.fit(dataset, y=y) return self.transform(dataset, y=y) # ____________________________________________________________________________________________________________________________________________________________________ # Ordinal transformer class Ordinal(BaseEstimator, TransformerMixin): """ - converts categorical features into ordinal values - takes a dataframe , and information about column names and ordered categories as dict - returns float panda data frame """ def __init__(self, info_as_dict): self.info_as_dict = info_as_dict def fit(self, data, y=None): self.fit_transform(data, y=y) return self def transform(self, dataset, y=None): data = dataset new_data_test = pd.DataFrame( self.enc.transform(data[self.info_as_dict.keys()]), columns=self.info_as_dict.keys(), index=data.index, ) for i in self.info_as_dict.keys(): data[i] = new_data_test[i] return data def fit_transform(self, dataset, y=None): data = dataset # creat categories from given keys in the data set cat_list = [] for i in self.info_as_dict.values(): i = [np.array(i)] cat_list = cat_list + i # now do fit transform self.enc = OrdinalEncoder(categories=cat_list) new_data_train = pd.DataFrame( self.enc.fit_transform(data.loc[:, self.info_as_dict.keys()]), columns=self.info_as_dict, index=data.index, ) # new_data = pd.DataFrame(self.enc.fit_transform(data.loc[:,self.info_as_dict.keys()])) for i in self.info_as_dict.keys(): data[i] = new_data_train[i] return data # _______________________________________________________________________________________________________________________ # make dummy variables class Dummify(BaseEstimator, TransformerMixin): """ - makes one hot encoded variables for dummy variable - it is HIGHLY recommended to run the Select_Data_Type class first - Ignores target variable Args: target: string , name of the target variable """ def __init__(self, target): self.target = target # creat ohe object self.ohe = OneHotEncoder(handle_unknown="ignore", dtype=np.float32) def fit(self, X, y=None): data = X # will only do this if there are categorical variables if len(data.select_dtypes(include=("object")).columns) > 0: # we need to learn the column names once the training data set is dummify # save non categorical data self.data_nonc = data.drop( self.target, axis=1, errors="ignore" ).select_dtypes(exclude=("object")) if self.target in data.columns: self.target_column = data[[self.target]] else: self.target_column = None # # plus we will only take object data types categorical_data = data.drop( self.target, axis=1, errors="ignore" ).select_dtypes(include=("object")) # # now fit the training column self.ohe.fit(categorical_data) self.data_columns = self.ohe.get_feature_names(categorical_data.columns) return self def transform(self, X, y=None): data = X.copy() # will only do this if there are categorical variables if len(data.select_dtypes(include=("object")).columns) > 0: # only for test data self.data_nonc = data.drop( self.target, axis=1, errors="ignore" ).select_dtypes(exclude=("object")) # fit without target and only categorical columns array = self.ohe.transform( data.drop(self.target, axis=1, errors="ignore").select_dtypes( include=("object") ) ).toarray() data_dummies = pd.DataFrame(array, columns=self.data_columns) data_dummies.index = self.data_nonc.index if self.target in data.columns: target_column = data[[self.target]] else: target_column = None # now put target , numerical and categorical variables back togather data = pd.concat((target_column, self.data_nonc, data_dummies), axis=1) del self.data_nonc return data else: return data def fit_transform(self, dataset, y=None): data = dataset.copy() # will only do this if there are categorical variables if len(data.select_dtypes(include=("object")).columns) > 0: self.fit(data) # fit without target and only categorical columns array = self.ohe.transform( data.drop(self.target, axis=1, errors="ignore").select_dtypes( include=("object") ) ).toarray() data_dummies = pd.DataFrame(array, columns=self.data_columns) data_dummies.index = self.data_nonc.index # now put target , numerical and categorical variables back togather data = pd.concat((self.target_column, self.data_nonc, data_dummies), axis=1) # remove unwanted attributes del (self.target_column, self.data_nonc) return data else: return data # _______________________________________________________________________________________________________________________ # Outlier class Outlier(BaseEstimator, TransformerMixin): """ - Removes outlier using ABOD,KNN,IFO,PCA & HOBS using hard voting - Only takes numerical / One Hot Encoded features """ def __init__( self, target, contamination=0.20, random_state=42, methods=["knn", "iso", "pca"] ): self.target = target self.contamination = contamination self.random_state = random_state self.methods = methods def fit(self, data, y=None): self.fit_transform(data, y=y) return self def transform(self, data, y=None): return data def fit_transform(self, dataset, y=None): # dummify if there are any obects if len(dataset.select_dtypes(include="object").columns) > 0: self.dummy = Dummify(self.target) data = self.dummy.fit_transform(dataset) else: data = dataset data_without_target = data.drop(self.target, axis=1) if "knn" in self.methods: self.knn = KNN(contamination=self.contamination) self.knn.fit(data_without_target) knn_predict = self.knn.predict(data_without_target) data_without_target["knn"] = knn_predict if "iso" in self.methods: self.iso = IForest( contamination=self.contamination, random_state=self.random_state, behaviour="new", ) self.iso.fit(data_without_target) iso_predict = self.iso.predict(data_without_target) data_without_target["iso"] = iso_predict if "pca" in self.methods: self.pca = PCA_od( contamination=self.contamination, random_state=self.random_state ) self.pca.fit(data_without_target) pca_predict = self.pca.predict(data_without_target) data_without_target["pca"] = pca_predict data_without_target["vote_outlier"] = data_without_target[self.methods].sum( axis=1 ) self.outliers = data_without_target[ data_without_target["vote_outlier"] == len(self.methods) ].index return dataset[~dataset.index.isin(self.outliers)] # ____________________________________________________________________________________________________________________________________________________________________ # Column Name cleaner transformer class Clean_Colum_Names(BaseEstimator, TransformerMixin): """ - Cleans special chars that are not supported by jason format """ def fit(self, data, y=None): return self def transform(self, dataset, y=None): data = dataset data.columns = data.columns.str.replace(r"[\,\}\{\]\[\:\"\']", "") return data def fit_transform(self, dataset, y=None): return self.transform(dataset, y=y) # __________________________________________________________________________________________________________________________________________________________________________ # Clustering entire data class Cluster_Entire_Data(BaseEstimator, TransformerMixin): """ - Applies kmeans clustering to the entire data set and produce clusters - Highly recommended to run the DataTypes_Auto_infer class first Args: target_variable: target variable (integer or numerical only) check_clusters_upto: to determine optimum number of kmeans clusters, set the uppler limit of clusters """ def __init__(self, target, check_clusters=20, random_state=42): self.target = target self.check_clusters = check_clusters + 1 self.random_state = random_state def fit(self, data, y=None): self.fit_transform(data, y=y) return self def transform(self, dataset, y=None): data = dataset data = data.drop(self.target, axis=1, errors="ignore") # first convert to dummy if len(data.select_dtypes(include="object").columns) > 0: data_t1 = self.dummy.transform(data) else: data_t1 = data # # # now make PLS # # data_t1 = self.pls.transform(data_t1) # # data_t1 = self.pca.transform(data_t1) # # now predict with the clustes predict = pd.DataFrame(self.k_object.predict(data_t1), index=data.index) data["data_cluster"] = predict data["data_cluster"] = data["data_cluster"].astype("object") if self.target in dataset.columns: data[self.target] = dataset[self.target] return data def fit_transform(self, dataset, y=None): data = dataset.copy() # first convert to dummy (if there are objects in data set) if len(data.select_dtypes(include="object").columns) > 0: self.dummy = Dummify(self.target) data_t1 = self.dummy.fit_transform(data) data_t1 = data_t1.drop(self.target, axis=1) else: data_t1 = data.drop(self.target, axis=1) # now make PLS # self.pls = PLSRegression(n_components=len(data_t1.columns)-1) # data_t1 = self.pls.fit_transform(data_t1.drop(self.target,axis=1),data_t1[self.target])[0] # self.pca = PCA(n_components=len(data_t1.columns)-1) # data_t1 = self.pca.fit_transform(data_t1.drop(self.target,axis=1)) # we are goign to make a place holder , for 2 to 20 clusters self.ph = pd.DataFrame( np.arange(2, self.check_clusters, 1), columns=["clusters"] ) self.ph["Silhouette"] = float(0) self.ph["calinski"] = float(0) # Now start making clusters for k in self.ph.index: c = self.ph["clusters"][k] self.k_object = cluster.KMeans( n_clusters=c, init="k-means++", precompute_distances="auto", n_init=10, random_state=self.random_state, ) self.k_object.fit(data_t1) self.ph.iloc[k, 1] = metrics.silhouette_score( data_t1, self.k_object.labels_ ) self.ph.iloc[k, 2] = metrics.calinski_harabasz_score( data_t1, self.k_object.labels_ ) # now standardize the scores and make a total column m = MinMaxScaler((-1, 1)) self.ph["calinski"] = m.fit_transform( np.array(self.ph["calinski"]).reshape(-1, 1) ) self.ph["Silhouette"] = m.fit_transform( np.array(self.ph["Silhouette"]).reshape(-1, 1) ) self.ph["total"] = self.ph["Silhouette"] + self.ph["calinski"] # sort it by total column and take the first row column 0 , that would represent the optimal clusters try: self.clusters = int( self.ph[self.ph["total"] == max(self.ph["total"])]["clusters"] ) except: # in case there isnt a decisive measure , take calinski as yeard stick self.clusters = int( self.ph[self.ph["calinski"] == max(self.ph["calinski"])]["clusters"] ) # Now make the final cluster object self.k_object = cluster.KMeans( n_clusters=self.clusters, init="k-means++", precompute_distances="auto", n_init=10, random_state=self.random_state, ) # now do fit predict predict = pd.DataFrame(self.k_object.fit_predict(data_t1), index=data.index) data["data_cluster"] = predict data["data_cluster"] = data["data_cluster"].astype("object") if self.target in dataset.columns: data[self.target] = dataset[self.target] return data # __________________________________________________________________________________________________________________________________________ # Clustering catagorical data class Reduce_Cardinality_with_Clustering(BaseEstimator, TransformerMixin): """ - Reduces the level of catagorical column / cardinality through clustering - Highly recommended to run the DataTypes_Auto_infer class first Args: target_variable: target variable (integer or numerical only) catagorical_feature: list of features on which clustering is to be applied / cardinality to be reduced check_clusters_upto: to determine optimum number of kmeans clusters, set the uppler limit of clusters """ def __init__( self, target, catagorical_feature=[], check_clusters=30, random_state=42, ): self.target = target self.catagorical_feature = catagorical_feature self.check_clusters = check_clusters + 1 self.random = random_state def fit(self, data, y=None): self.fit_transform(data, y=y) return self def transform(self, dataset, y=None): data = dataset # we already know which leval belongs to whihc cluster , so all w need is to replace levels with clusters we already have from training data set for i, z in zip(self.catagorical_feature, self.ph_data): data[i] = data[i].replace(list(z["levels"]), z["cluster"]) return data def fit_transform(self, dataset, y=None): data = dataset.copy() # first convert to dummy if len(data.select_dtypes(include="object").columns) > 0: self.dummy = Dummify(self.target) data_t = self.dummy.fit_transform( data.drop(self.catagorical_feature, axis=1) ) # data_t1 = data_t1.drop(self.target,axis=1) else: data_t = data.drop(self.catagorical_feature, axis=1) # now make PLS self.pls = PLSRegression( n_components=2 ) # since we are only using two componenets to group #PLSRegression(n_components=len(data_t1.columns)-1) data_pls = self.pls.fit_transform( data_t.drop(self.target, axis=1), data_t[self.target] )[0] # # now we will take one component and then we calculate mean, median, min, max and sd of that one component grouped by the catagorical levels self.ph_data = [] self.ph_clusters = [] for i in self.catagorical_feature: data_t1 = pd.DataFrame( dict(levels=data[i], comp1=data_pls[:, 0], comp2=data_pls[:, 1]), index=data.index, ) # now group by feature data_t1 = data_t1.groupby("levels") data_t1 = data_t1[["comp1", "comp2"]].agg( ["mean", "median", "min", "max", "std"] ) # this gives us a df with only numeric columns (min , max ) and level as index # some time if a level has only one record its std will come up as NaN, so convert NaN to 1 data_t1.fillna(1, inplace=True) # now number of clusters cant be more than the number of samples in aggregated data , so self.check_clusters = min(self.check_clusters, len(data_t1)) # # we are goign to make a place holder , for 2 to 20 clusters self.ph = pd.DataFrame( np.arange(2, self.check_clusters, 1), columns=["clusters"] ) self.ph["Silhouette"] = float(0) self.ph["calinski"] = float(0) # Now start making clusters for k in self.ph.index: c = self.ph["clusters"][k] self.k_object = cluster.KMeans( n_clusters=c, init="k-means++", precompute_distances="auto", n_init=10, random_state=self.random, ) self.k_object.fit(data_t1) self.ph.iloc[k, 1] = metrics.silhouette_score( data_t1, self.k_object.labels_ ) self.ph.iloc[k, 2] = metrics.calinski_harabasz_score( data_t1, self.k_object.labels_ ) # now standardize the scores and make a total column m = MinMaxScaler((-1, 1)) self.ph["calinski"] = m.fit_transform( np.array(self.ph["calinski"]).reshape(-1, 1) ) self.ph["Silhouette"] = m.fit_transform( np.array(self.ph["Silhouette"]).reshape(-1, 1) ) self.ph["total"] = self.ph["Silhouette"] + self.ph["calinski"] # sort it by total column and take the first row column 0 , that would represent the optimal clusters try: self.clusters = int( self.ph[self.ph["total"] == max(self.ph["total"])]["clusters"] ) except: # in case there isnt a decisive measure , take calinski as yeard stick self.clusters = int( self.ph[self.ph["calinski"] == max(self.ph["calinski"])]["clusters"] ) self.ph_clusters.append(self.ph) # Now make the final cluster object self.k_object = cluster.KMeans( n_clusters=self.clusters, init="k-means++", precompute_distances="auto", n_init=10, random_state=self.random, ) # now do fit predict predict = self.k_object.fit_predict(data_t1) # put it back with the group by aggregate columns data_t1["cluster"] = predict data_t1["cluster"] = data_t1["cluster"].apply(str) # now we dont need all the columns, only the cluster column is required along with the index (index also has a name , we groupy as "levels") data_t1 = data_t1[["cluster"]] # now convert index ot the column data_t1.reset_index( level=0, inplace=True ) # this table now only contains every level and its cluster # self.data_t1= data_t1 # we can now replace cluster with the original level in the original data frame data[i] = data[i].replace(list(data_t1["levels"]), data_t1["cluster"]) self.ph_data.append(data_t1) if self.target in dataset.columns: data[self.target] = dataset[self.target] return data # ____________________________________________________________________________________________________________________________________________ # Clustering catagorical data class Reduce_Cardinality_with_Counts(BaseEstimator, TransformerMixin): """ - Reduces the level of catagorical column by replacing levels with their count & converting objects into float Args: catagorical_feature: list of features on which clustering is to be applied """ def __init__(self, catagorical_feature=[], float_dtype="float32"): self.catagorical_feature = catagorical_feature self.float_dtype = float_dtype def fit(self, data, y=None): self.fit_transform(data, y=y) return self def transform(self, dataset, y=None): data = dataset # we already know level counts for i, z, k in zip(self.catagorical_feature, self.ph_data, self.ph_u): data[i] = data[i].replace(k, z["counts"]) data[i] = data[i].astype(self.float_dtype) return data def fit_transform(self, dataset, y=None): data = dataset # self.ph_data = [] self.ph_u = [] for i in self.catagorical_feature: data_t1 = pd.DataFrame( dict( levels=data[i].groupby(data[i], sort=False).count().index, counts=data[i].groupby(data[i], sort=False).count().values, ) ) u = data[i].unique() # replace levels with counts data[i].replace(u, data_t1["counts"], inplace=True) data[i] = data[i].astype(self.float_dtype) self.ph_data.append(data_t1) self.ph_u.append(u) return data # ____________________________________________________________________________________________________________________________________________ # take noneliner transformations class Make_NonLiner_Features(BaseEstimator, TransformerMixin): """ - convert numerical features into polynomial features - it is HIGHLY recommended to run the Autoinfer_Data_Type class first - Ignores target variable - it picks up data type float32 as numerical - for multiclass classification problem , set subclass arg to 'multi' Args: target: string , name of the target variable Polynomial_degree: int ,default 2 """ def __init__( self, target, ml_usecase="classification", polynomial_degree=2, other_nonliner_features=["sin", "cos", "tan"], top_features_to_pick=0.20, random_state=42, subclass="ignore", n_jobs=1, float_dtype="float32", ): self.target = target self.polynomial_degree = polynomial_degree self.ml_usecase = ml_usecase self.other_nonliner_features = other_nonliner_features self.top_features_to_pick = top_features_to_pick self.random_state = random_state self.subclass = subclass self.n_jobs = n_jobs self.float_dtype = float_dtype def fit(self, data, y=None): self.fit_transform(data, y=y) return self def transform(self, dataset, y=None): # same application for test and train data = dataset self.numeric_columns = ( data.drop(self.target, axis=1, errors="ignore") .select_dtypes(include=self.float_dtype) .columns ) if self.polynomial_degree >= 2: # dont run anything if powr is les than 2 # self.numeric_columns = data.drop(self.target,axis=1,errors='ignore').select_dtypes(include="float32").columns # start taking powers for i in range(2, self.polynomial_degree + 1): ddc_power = np.power(data[self.numeric_columns], i) ddc_col = list(ddc_power.columns) ii = str(i) ddc_col = [ddc_col + "_Power" + ii for ddc_col in ddc_col] ddc_power.columns = ddc_col # put it back with data dummy # data = pd.concat((data,ddc_power),axis=1) else: ddc_power = pd.DataFrame() # take sin: if "sin" in self.other_nonliner_features: ddc_sin = np.sin(data[self.numeric_columns]) ddc_col = list(ddc_sin.columns) ddc_col = ["sin(" + i + ")" for i in ddc_col] ddc_sin.columns = ddc_col # put it back with data dummy # data = pd.concat((data,ddc_sin),axis=1) else: ddc_sin = pd.DataFrame() # take cos: if "cos" in self.other_nonliner_features: ddc_cos = np.cos(data[self.numeric_columns]) ddc_col = list(ddc_cos.columns) ddc_col = ["cos(" + i + ")" for i in ddc_col] ddc_cos.columns = ddc_col # put it back with data dummy # data = pd.concat((data,ddc_cos),axis=1) else: ddc_cos = pd.DataFrame() # take tan: if "tan" in self.other_nonliner_features: ddc_tan = np.tan(data[self.numeric_columns]) ddc_col = list(ddc_tan.columns) ddc_col = ["tan(" + i + ")" for i in ddc_col] ddc_tan.columns = ddc_col # put it back with data dummy # data = pd.concat((data,ddc_tan),axis=1) else: ddc_tan = pd.DataFrame() # dummy_all dummy_all = pd.concat((data, ddc_power, ddc_sin, ddc_cos, ddc_tan), axis=1) # we can select top features using RF # # and we only want to do this if the dummy all have more than 50 features # if len(dummy_all.columns) > 71: dummy_all = dummy_all[self.columns_to_keep] if self.target in dataset.columns: dummy_all[self.target] = dataset[self.target] return dummy_all def fit_transform(self, dataset, y=None): data = dataset self.numeric_columns = ( data.drop(self.target, axis=1, errors="ignore") .select_dtypes(include=self.float_dtype) .columns ) if self.polynomial_degree >= 2: # dont run anything if powr is les than 2 # self.numeric_columns = data.drop(self.target,axis=1,errors='ignore').select_dtypes(include="float32").columns # start taking powers for i in range(2, self.polynomial_degree + 1): ddc_power = np.power(data[self.numeric_columns], i) ddc_col = list(ddc_power.columns) ii = str(i) ddc_col = [ddc_col + "_Power" + ii for ddc_col in ddc_col] ddc_power.columns = ddc_col # put it back with data dummy # data = pd.concat((data,ddc_power),axis=1) else: ddc_power = pd.DataFrame() # take sin: if "sin" in self.other_nonliner_features: ddc_sin = np.sin(data[self.numeric_columns]) ddc_col = list(ddc_sin.columns) ddc_col = ["sin(" + i + ")" for i in ddc_col] ddc_sin.columns = ddc_col # put it back with data dummy # data = pd.concat((data,ddc_sin),axis=1) else: ddc_sin = pd.DataFrame() # take cos: if "cos" in self.other_nonliner_features: ddc_cos = np.cos(data[self.numeric_columns]) ddc_col = list(ddc_cos.columns) ddc_col = ["cos(" + i + ")" for i in ddc_col] ddc_cos.columns = ddc_col # put it back with data dummy # data = pd.concat((data,ddc_cos),axis=1) else: ddc_cos = pd.DataFrame() # take tan: if "tan" in self.other_nonliner_features: ddc_tan = np.tan(data[self.numeric_columns]) ddc_col = list(ddc_tan.columns) ddc_col = ["tan(" + i + ")" for i in ddc_col] ddc_tan.columns = ddc_col # put it back with data dummy # data = pd.concat((data,ddc_tan),axis=1) else: ddc_tan = pd.DataFrame() # dummy_all dummy_all = pd.concat( (data[[self.target]], ddc_power, ddc_sin, ddc_cos, ddc_tan), axis=1 ) # we can select top features using our Feature Selection Classic transformer afs = Advanced_Feature_Selection_Classic( target=self.target, ml_usecase=self.ml_usecase, top_features_to_pick=self.top_features_to_pick, random_state=self.random_state, subclass=self.subclass, n_jobs=self.n_jobs, ) dummy_all_t = afs.fit_transform(dummy_all) data = pd.concat((data, dummy_all_t), axis=1) # # making sure no duplicated columns are there data = data.loc[:, ~data.columns.duplicated()] self.columns_to_keep = data.drop(self.target, axis=1).columns return data # ______________________________________________________________________________________________________________________________________________________ # Feature Selection class Advanced_Feature_Selection_Classic(BaseEstimator, TransformerMixin): """ - Selects important features and reduces the feature space. Feature selection is based on Random Forest , Light GBM and Correlation - to run on multiclass classification , set the subclass argument to 'multi' """ def __init__( self, target, ml_usecase="classification", top_features_to_pick=0.10, random_state=42, subclass="ignore", n_jobs=1, ): self.target = target self.ml_usecase = ml_usecase self.top_features_to_pick = 1 - top_features_to_pick self.random_state = random_state self.subclass = subclass self.n_jobs = n_jobs def fit(self, dataset, y=None): self.fit_transform(dataset, y=y) return self def transform(self, dataset, y=None): # return the data with onlys specific columns data = dataset # self.selected_columns.remove(self.target) data = data[self.selected_columns_test] if self.target in dataset.columns: data[self.target] = dataset[self.target] return data def fit_transform(self, dataset, y=None): dummy_all = dataset.copy() dummy_all[self.target] = dummy_all[self.target].astype("float32") # Random Forest max_fe = min(70, int(np.sqrt(len(dummy_all.columns)))) max_sa = min(1000, int(np.sqrt(len(dummy_all)))) if self.ml_usecase == "classification": m = rfc( 100, max_depth=5, max_features=max_fe, n_jobs=self.n_jobs, max_samples=max_sa, random_state=self.random_state, ) else: m = rfr( 100, max_depth=5, max_features=max_fe, n_jobs=self.n_jobs, max_samples=max_sa, random_state=self.random_state, ) m.fit(dummy_all.drop(self.target, axis=1), dummy_all[self.target]) # self.fe_imp_table= pd.DataFrame(m.feature_importances_,columns=['Importance'],index=dummy_all.drop(self.target,axis=1).columns).sort_values(by='Importance',ascending= False) self.fe_imp_table = pd.DataFrame( m.feature_importances_, columns=["Importance"], index=dummy_all.drop(self.target, axis=1).columns, ) self.fe_imp_table = self.fe_imp_table[ self.fe_imp_table["Importance"] >= self.fe_imp_table.quantile(self.top_features_to_pick)[0] ] top = self.fe_imp_table.index dummy_all_columns_RF = dummy_all[top].columns # LightGBM max_fe = min(70, int(np.sqrt(len(dummy_all.columns)))) max_sa = min( float(1000 / len(dummy_all)), float(np.sqrt(len(dummy_all) / len(dummy_all))), ) if self.ml_usecase == "classification": m = lgbmc( n_estimators=100, max_depth=5, n_jobs=self.n_jobs, subsample=max_sa, random_state=self.random_state, ) else: m = lgbmr( n_estimators=100, max_depth=5, n_jobs=self.n_jobs, subsample=max_sa, random_state=self.random_state, ) m.fit(dummy_all.drop(self.target, axis=1), dummy_all[self.target]) # self.fe_imp_table= pd.DataFrame(m.feature_importances_,columns=['Importance'],index=dummy_all.drop(self.target,axis=1).columns).sort_values(by='Importance',ascending= False) self.fe_imp_table = pd.DataFrame( m.feature_importances_, columns=["Importance"], index=dummy_all.drop(self.target, axis=1).columns, ) self.fe_imp_table = self.fe_imp_table[ self.fe_imp_table["Importance"] >= self.fe_imp_table.quantile(self.top_features_to_pick)[0] ] top = self.fe_imp_table.index dummy_all_columns_LGBM = dummy_all[top].columns # we can now select top correlated feature if self.subclass != "multi": corr = pd.DataFrame(np.corrcoef(dummy_all.T)) corr.columns = dummy_all.columns corr.index = dummy_all.columns # corr = corr[self.target].abs().sort_values(ascending=False)[0:self.top_features_to_pick+1] corr = corr[self.target].abs() corr = corr[corr.index != self.target] # drop the target column corr = corr[corr >= corr.quantile(self.top_features_to_pick)] corr = pd.DataFrame(dict(features=corr.index, value=corr)).reset_index( drop=True ) corr = corr.drop_duplicates(subset="value") corr = corr["features"] # corr = pd.DataFrame(dict(features=corr.index,value=corr)).reset_index(drop=True) # corr = corr.drop_duplicates(subset='value')[0:self.top_features_to_pick+1] # corr = corr['features'] else: corr = list() self.dummy_all_columns_RF = dummy_all_columns_RF self.dummy_all_columns_LGBM = dummy_all_columns_LGBM self.corr = corr self.selected_columns = list( set( [self.target] + list(dummy_all_columns_RF) + list(corr) + list(dummy_all_columns_LGBM) ) ) self.selected_columns_test = ( dataset[self.selected_columns].drop(self.target, axis=1).columns ) return dataset[self.selected_columns] # _ # ______________________________________________________________________________________________________________________________________________________ # Boruta Feature Selection algorithm # Base on: https://github.com/scikit-learn-contrib/boruta_py/blob/master/boruta/boruta_py.py class Boruta_Feature_Selection(BaseEstimator, TransformerMixin): """ Boruta selection algorithm based on borutaPy sklearn-contrib and <NAME>, https://m2.icm.edu.pl/boruta/ Selects the most important features. Args: target (str): target column name ml_usecase (str): case: classification or regression top_features_to_pick: to make... max_iteration {int): overall iterations of shuffle and train forests alpha {float): p-value on which the option to favour one measur to another. e.g. if value is .6 , during feature selection tug of war, correlation target measure will have a higher say. A value of .5 means both measure have equal say """ def __init__( self, target, ml_usecase="classification", top_features_to_pick=1.0, max_iteration=200, n_iter_no_change=25, alpha=0.05, random_state=42, subclass="ignore", n_jobs=1, ): self.target = target self.ml_usecase = ml_usecase self.top_features_to_pick = top_features_to_pick self.random_state = random_state self.subclass = subclass self.max_iteration = max_iteration self.n_iter_no_change = n_iter_no_change self.alpha = alpha self.selected_columns_test = [] self.n_jobs = n_jobs @property def selected_columns(self): return self.selected_columns_test + [self.target] def fit(self, dataset, y=None): from .patches.boruta_py import BorutaPyPatched dummy_data = dataset X, y = dummy_data.drop(self.target, axis=1), dummy_data[self.target].values y = y.astype("float32") X_cols = X.columns X = X.values if self.ml_usecase == "classification": m = rfc( 100, max_depth=5, n_jobs=self.n_jobs, random_state=self.random_state, class_weight="balanced", ) else: m = rfr( 100, max_depth=5, n_jobs=self.n_jobs, random_state=self.random_state, ) feat_selector = BorutaPyPatched( m, n_estimators="auto", perc=int(self.top_features_to_pick * 100), max_iter=self.max_iteration, random_state=self.random_state, early_stopping=(self.n_iter_no_change > 0), n_iter_no_change=self.n_iter_no_change, ) try: feat_selector.fit(X, y) self.selected_columns_test = list(X_cols[feat_selector.support_]) except: # boruta may errors out if all features are selected self.selected_columns_test = list(X_cols) return self def transform(self, dataset, y=None): if self.target in dataset.columns: return dataset[self.selected_columns] else: return dataset[self.selected_columns_test] def fit_transform(self, dataset, y=None): self.fit(dataset, y=y) return self.transform(dataset, y=y) # _________________________________________________________________________________________________________________________________________ class Fix_multicollinearity(BaseEstimator, TransformerMixin): """ Fixes multicollinearity between predictor variables , also considering the correlation between target variable. Only applies to regression or two class classification ML use case Takes numerical and one hot encoded variables only Args: threshold (float): The utmost absolute pearson correlation tolerated beyween featres from 0.0 to 1.0 target_variable (str): The target variable/column name correlation_with_target_threshold: minimum absolute correlation required between every feature and the target variable , default 1.0 (0.0 to 1.0) correlation_with_target_preference: float (0.0 to 1.0), default .08 ,while choosing between a pair of features w.r.t multicol & correlation target , this gives the option to favour one measur to another. e.g. if value is .6 , during feature selection tug of war, correlation target measure will have a higher say. A value of .5 means both measure have equal say """ # mamke a constructer def __init__( self, threshold, target_variable, correlation_with_target_threshold=0.0, correlation_with_target_preference=1.0, ): self.threshold = threshold self.target_variable = target_variable self.correlation_with_target_threshold = correlation_with_target_threshold self.correlation_with_target_preference = correlation_with_target_preference self.target_corr_weight = correlation_with_target_preference self.multicol_weight = 1 - correlation_with_target_preference # Make fit method def fit(self, data, y=None): """ Args: data = takes preprocessed data frame Returns: None """ if data[self.target_variable].dtype not in ["int32", "int64", "float32", "float64"]: raise ValueError('dtype for the target variable should be int32, int64, float32, or float64 only') # global data1 data1 = data.select_dtypes(include=["int32", "int64", "float32", "float64"]) # try: # self.data1 = self.data1.astype('float16') # except: # None # make an correlation db with abs correlation db # self.data_c = self.data1.T.drop_duplicates() # self.data1 = self.data_c.T corr = pd.DataFrame(np.corrcoef(data1.T)) corr.columns = data1.columns corr.index = data1.columns # corr_matrix = abs(data1.corr()) corr_matrix = abs(corr) # for every diagonal value, make it Nan corr_matrix.values[ tuple([np.arange(corr_matrix.shape[0])] * 2) ] = np.NaN # Now Calculate the average correlation of every feature with other, and get a pandas data frame avg_cor = pd.DataFrame(corr_matrix.mean()) avg_cor["feature"] = avg_cor.index avg_cor.reset_index(drop=True, inplace=True) avg_cor.columns = ["avg_cor", "features"] # Calculate the correlation with the target targ_cor = pd.DataFrame(corr_matrix[self.target_variable].dropna()) targ_cor["feature"] = targ_cor.index targ_cor.reset_index(drop=True, inplace=True) targ_cor.columns = ["target_variable", "features"] # Now, add a column for variable name and drop index corr_matrix["column"] = corr_matrix.index corr_matrix.reset_index(drop=True, inplace=True) # now we need to melt it , so that we can correlation pair wise , with two columns cols = corr_matrix.column melt = ( corr_matrix.melt(id_vars=["column"], value_vars=cols) .sort_values(by="value", ascending=False) .dropna() ) # now bring in the avg correlation for first of the pair merge = pd.merge( melt, avg_cor, left_on="column", right_on="features" ).drop("features", axis=1) # now bring in the avg correlation for second of the pair merge = pd.merge( merge, avg_cor, left_on="variable", right_on="features" ).drop("features", axis=1) # now bring in the target correlation for first of the pair merge = pd.merge( merge, targ_cor, left_on="column", right_on="features" ).drop("features", axis=1) # now bring in the avg correlation for second of the pair merge = pd.merge( merge, targ_cor, left_on="variable", right_on="features" ).drop("features", axis=1) # sort and save merge = merge.sort_values(by="value", ascending=False) # we need to now eleminate all the pairs that are actually duplicate e.g cor(x,y) = cor(y,x) , they are the same , we need to find these and drop them merge["all_columns"] = merge["column"] + merge["variable"] # this puts all the coresponding pairs of features togather , so that we can only take one, since they are just the duplicates merge["all_columns"] = [sorted(i) for i in merge["all_columns"]] # now sort by new column merge = merge.sort_values(by="all_columns") # take every second colums merge = merge.iloc[::2, :] # make a ranking column to eliminate features merge["rank_x"] = round( self.multicol_weight * (merge["avg_cor_y"] - merge["avg_cor_x"]) + self.target_corr_weight * (merge["target_variable_x"] - merge["target_variable_y"]), 6, ) # round it to 6 digits ## Now there will be rows where the rank will be exactly zero, these is where the value (corelartion between features) is exactly one ( like price and price^2) ## so in that case , we can simply pick one of the variable # but since , features can be in either column, we will drop one column (say 'column') , only if the feature is not in the second column (in variable column) # both equations below will return the list of columns to drop from here # this is how it goes ## For the portion where correlation is exactly one ! one = merge[merge["rank_x"] == 0] # this portion is complicated # table one have all the paired variable having corelation of 1 # in a nutshell, we can take any column (one side of pair) and delete the other columns (other side of the pair) # however one varibale can appear more than once on any of the sides , so we will run for loop to find all pairs... # here it goes # take a list of all (but unique ) variables that have correlation 1 for eachother, we will make two copies u_all = list( pd.unique(pd.concat((one["column"], one["variable"]), axis=0)) ) u_all_1 = list( pd.unique(pd.concat((one["column"], one["variable"]), axis=0)) ) # take a list of features (unique) for the first side of the pair u_column = pd.unique(one["column"]) # now we are going to start picking each variable from one column (one side of the pair) , check it against the other column (other side of the pair) # to pull all coresponding / paired variables , and delete thoes newly varibale names from all unique list for i in u_column: # print(i) r = one[one["column"] == i]["variable"] for q in r: if q in u_all: # print("_"+q) u_all.remove(q) # now the unique column contains the varibales that should remain, so in order to get the variables that should be deleted : to_drop = list(set(u_all_1) - set(u_all)) # to_drop_a =(list(set(one['column'])-set(one['variable']))) # to_drop_b =(list(set(one['variable'])-set(one['column']))) # to_drop = to_drop_a + to_drop_b ## now we are to treat where rank is not Zero and Value (correlation) is greater than a specific threshold non_zero = merge[ (merge["rank_x"] != 0.0) & (merge["value"] >= self.threshold) ] # pick the column to delete non_zero_list = list( np.where( non_zero["rank_x"] < 0, non_zero["column"], non_zero["variable"], ) ) # add two list self.to_drop = to_drop + non_zero_list # make sure that target column is not a part of the list try: self.to_drop.remove(self.target_variable) except: pass # now we want to keep only the columns that have more correlation with traget by a threshold self.to_drop_taret_correlation = [] if self.correlation_with_target_threshold != 0.0: corr = pd.DataFrame( np.corrcoef(data.drop(self.to_drop, axis=1).T), columns=data.drop(self.to_drop, axis=1).columns, index=data.drop(self.to_drop, axis=1).columns, ) self.to_drop_taret_correlation = corr[self.target_variable].abs() # to_drop_taret_correlation = data.drop(self.to_drop,axis=1).corr()[target_variable].abs() self.to_drop_taret_correlation = self.to_drop_taret_correlation[ self.to_drop_taret_correlation < self.correlation_with_target_threshold ] self.to_drop_taret_correlation = list(self.to_drop_taret_correlation.index) # to_drop = corr + to_drop try: self.to_drop_taret_correlation.remove(self.target_variable) except: pass return self # now Transform def transform(self, dataset, y=None): """ Args:f data = takes preprocessed data frame Returns: data frame """ data = dataset data = data.drop(self.to_drop, axis=1) # now drop less correlated data data.drop(self.to_drop_taret_correlation, axis=1, inplace=True, errors="ignore") return data # fit_transform def fit_transform(self, data, y=None): """ Args: data = takes preprocessed data frame Returns: data frame """ self.fit(data) return self.transform(data) # ____________________________________________________________________________________________________________________________________________________________________ # handle perfect multicollinearity class Remove_100(BaseEstimator, TransformerMixin): """ - Takes DF, return data frame while removing features that are perfectly correlated (droping one) """ def __init__(self, target): self.target = target self.columns_to_drop = [] def fit(self, data, y=None): self.fit_transform(data, y=y) return self def transform(self, dataset, y=None): return dataset.drop(self.columns_to_drop, axis=1) def fit_transform(self, dataset, y=None): data = dataset targetless_data = data.drop(self.target, axis=1) # correlation should be calculated between at least two features, if there is only 1, there is nothing to delete if len(targetless_data.columns) <= 1: return data corr = pd.DataFrame(np.corrcoef(targetless_data.T)) corr.columns = targetless_data.columns corr.index = targetless_data.columns corr_matrix = abs(corr) # Now, add a column for variable name and drop index corr_matrix["column"] = corr_matrix.index corr_matrix.reset_index(drop=True, inplace=True) # now we need to melt it , so that we can correlation pair wise , with two columns cols = corr_matrix.column melt = corr_matrix.melt(id_vars=["column"], value_vars=cols).sort_values( by="value", ascending=False ) # .dropna() melt["value"] = round(melt["value"], 2) # round it to two digits # now pick variables where value is one and 'column' != variabe ( both columns are not same) c1 = melt["value"] == 1.00 c2 = melt["column"] != melt["variable"] melt = melt[((c1 == True) & (c2 == True))] # we need to now eleminate all the pairs that are actually duplicate e.g cor(x,y) = cor(y,x) , they are the same , we need to find these and drop them melt["all_columns"] = melt["column"] + melt["variable"] # this puts all the coresponding pairs of features togather , so that we can only take one, since they are just the duplicates melt["all_columns"] = [sorted(i) for i in melt["all_columns"]] # # now sort by new column melt = melt.sort_values(by="all_columns") # # take every second colums melt = melt.iloc[::2, :] # lets keep the columns on the left hand side of the table self.columns_to_drop = melt["variable"] return data.drop(self.columns_to_drop, axis=1) # _______________________________________________________________________________________________________________________________________________________________________________________________ # custome DFS class DFS_Classic(BaseEstimator, TransformerMixin): """ - Automated feature interactions using multiplication, division , addition & substraction - Only accepts numeric / One Hot Encoded features - Takes DF, return same DF - for Multiclass classification problem , set subclass arg as 'multi' """ def __init__( self, target, ml_usecase="classification", interactions=["multiply", "divide", "add", "subtract"], top_n_correlated=0.05, random_state=42, subclass="ignore", n_jobs=1, ): self.target = target self.interactions = interactions self.top_n_correlated = top_n_correlated # (this will be 1- top_features , but handled in the Advance_feature_selection ) self.ml_usecase = ml_usecase self.random_state = random_state self.subclass = subclass self.n_jobs = n_jobs def fit(self, data, y=None): self.fit_transform(data, y=y) return self def transform(self, dataset, y=None): data = dataset data_without_target = data.drop(self.target, axis=1, errors="ignore") # for multiplication: # we need bot catagorical and numerical columns if "multiply" in self.interactions: data_multiply = pd.concat( [ data_without_target.mul(col[1], axis="index") for col in data_without_target.iteritems() ], axis=1, ) data_multiply.columns = [ "_multiply_".join([i, j]) for j in data_without_target.columns for i in data_without_target.columns ] # we dont need to apply rest of conditions data_multiply.index = data.index else: data_multiply = pd.DataFrame() # for division, we only want it to apply to numerical columns if "divide" in self.interactions: data_divide = pd.concat( [ data_without_target[self.numeric_columns].div(col[1], axis="index") for col in data_without_target[self.numeric_columns].iteritems() ], axis=1, ) data_divide.columns = [ "_divide_".join([i, j]) for j in data_without_target[self.numeric_columns].columns for i in data_without_target[self.numeric_columns].columns ] data_divide.replace([np.inf, -np.inf], 0, inplace=True) data_divide.fillna(0, inplace=True) data_divide.index = data.index else: data_divide = pd.DataFrame() # for addition, we only want it to apply to numerical columns if "add" in self.interactions: data_add = pd.concat( [ data_without_target[self.numeric_columns].add(col[1], axis="index") for col in data_without_target[self.numeric_columns].iteritems() ], axis=1, ) data_add.columns = [ "_add_".join([i, j]) for j in data_without_target[self.numeric_columns].columns for i in data_without_target[self.numeric_columns].columns ] data_add.index = data.index else: data_add = pd.DataFrame() # for substraction, we only want it to apply to numerical columns if "subtract" in self.interactions: data_substract = pd.concat( [ data_without_target[self.numeric_columns].sub(col[1], axis="index") for col in data_without_target[self.numeric_columns].iteritems() ], axis=1, ) data_substract.columns = [ "_subtract_".join([i, j]) for j in data_without_target[self.numeric_columns].columns for i in data_without_target[self.numeric_columns].columns ] data_substract.index = data.index else: data_substract = pd.DataFrame() # get all the dummy data combined dummy_all = pd.concat( (data, data_multiply, data_divide, data_add, data_substract), axis=1 ) del data_multiply del data_divide del data_add del data_substract # now only return the columns we want: dummy_all = dummy_all[self.columns_to_keep] if self.target in dataset.columns: dummy_all[self.target] = dataset[self.target] return dummy_all def fit_transform(self, dataset, y=None): data = dataset data_without_target = data.drop(self.target, axis=1, errors="ignore") # we need to seperate numerical and ont hot encoded columns # self.ohe_columns = [i if ((len(data[i].unique())==2) & (data[i].unique()[0] in [0,1]) & (data[i].unique()[1] in [0,1]) ) else None for i in data.drop(self.target,axis=1).columns] self.ohe_columns = [ i for i in data.columns if data[i].nunique() == 2 and data[i].unique()[0] in [0, 1] and data[i].unique()[1] in [0, 1] ] # self.ohe_columns = [i for i in self.ohe_columns if i is not None] self.numeric_columns = [ i for i in data_without_target.columns if i not in self.ohe_columns ] target_variable = data[[self.target]] # for multiplication: # we need bot catagorical and numerical columns if "multiply" in self.interactions: data_multiply = pd.concat( [ data_without_target.mul(col[1], axis="index") for col in data_without_target.iteritems() ], axis=1, ) data_multiply.columns = [ "_multiply_".join([i, j]) for j in data_without_target.columns for i in data_without_target.columns ] # we dont need columns that are self interacted col = [ "_multiply_".join([i, j]) for j in data_without_target.columns for i in data_without_target.columns if i != j ] data_multiply = data_multiply[col] # we dont need columns where the sum of the total column is null (to catagorical variables never happening togather) col1 = [ i for i in data_multiply.columns if np.nansum(data_multiply[i]) != 0 ] data_multiply = data_multiply[col1] data_multiply.index = data.index else: data_multiply = pd.DataFrame() # for division, we only want it to apply to numerical columns if "divide" in self.interactions: data_divide = pd.concat( [ data_without_target[self.numeric_columns].div(col[1], axis="index") for col in data_without_target[self.numeric_columns].iteritems() ], axis=1, ) data_divide.columns = [ "_divide_".join([i, j]) for j in data_without_target[self.numeric_columns].columns for i in data_without_target[self.numeric_columns].columns ] # we dont need columns that are self interacted col = [ "_divide_".join([i, j]) for j in data_without_target[self.numeric_columns].columns for i in data_without_target[self.numeric_columns].columns if i != j ] data_divide = data_divide[col] # we dont need columns where the sum of the total column is null (to catagorical variables never happening togather) col1 = [i for i in data_divide.columns if np.nansum(data_divide[i]) != 0] data_divide = data_divide[col1] # additionally we need to fill anll the possible NaNs data_divide.replace([np.inf, -np.inf], 0, inplace=True) data_divide.fillna(0, inplace=True) data_divide.index = data.index else: data_divide = pd.DataFrame() # for addition, we only want it to apply to numerical columns if "add" in self.interactions: data_add = pd.concat( [ data_without_target[self.numeric_columns].add(col[1], axis="index") for col in data_without_target[self.numeric_columns].iteritems() ], axis=1, ) data_add.columns = [ "_add_".join([i, j]) for j in data_without_target[self.numeric_columns].columns for i in data_without_target[self.numeric_columns].columns ] # we dont need columns that are self interacted col = [ "_add_".join([i, j]) for j in data_without_target[self.numeric_columns].columns for i in data_without_target[self.numeric_columns].columns if i != j ] data_add = data_add[col] # we dont need columns where the sum of the total column is null (to catagorical variables never happening togather) col1 = [i for i in data_add.columns if np.nansum(data_add[i]) != 0] data_add = data_add[col1] data_add.index = data.index else: data_add = pd.DataFrame() # for substraction, we only want it to apply to numerical columns if "subtract" in self.interactions: data_substract = pd.concat( [ data_without_target[self.numeric_columns].sub(col[1], axis="index") for col in data_without_target[self.numeric_columns].iteritems() ], axis=1, ) data_substract.columns = [ "_subtract_".join([i, j]) for j in data_without_target[self.numeric_columns].columns for i in data_without_target[self.numeric_columns].columns ] # we dont need columns that are self interacted col = [ "_subtract_".join([i, j]) for j in data_without_target[self.numeric_columns].columns for i in data_without_target[self.numeric_columns].columns if i != j ] data_substract = data_substract[col] # we dont need columns where the sum of the total column is null (to catagorical variables never happening togather) col1 = [ i for i in data_substract.columns if np.nansum(data_substract[i]) != 0 ] data_substract = data_substract[col1] data_substract.index = data.index else: data_substract =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Oct 12 11:57:29 2021 @author: ml """ from code.feature_extraction.weekday import Weekday import numpy as np import pandas as pd import unittest class WeekdayTest(unittest.TestCase): def setUp(self): self.INPUT_COLUMN = "input" self.Weekday_feature = Weekday(self.INPUT_COLUMN) self.df =
pd.DataFrame()
pandas.DataFrame
import pathlib import re import tifffile import pandas as pd def get_wh(fn): with tifffile.TiffFile(str(fn)) as im: w, h = reversed(im.asarray().shape[:2]) return w, h if __name__ == '__main__': sm = snakemake re_basic = re.compile(sm.params.re_basic) re_crop = re.compile(sm.params.re_crop) re_suffix = re.compile(sm.params.re_suffix) fol_labs = pathlib.Path(sm.input.fol_labels) file_dict = {fp.name: re_basic.match(fp.name).groupdict() for fp in fol_labs.glob('*_label.tiff')} for fn, dic in file_dict.items(): crop_match = re_crop.match(dic['cropname']) if crop_match is not None: dic.update(**crop_match.groupdict()) suffix_match = re_suffix.match(dic['suffix']) if suffix_match is not None: dic.update(**suffix_match.groupdict()) dic['filename'] = fn if (dic.get('w', None) is None or dic.get('h', None) is None): dic['w'], dic['h'] = get_wh(fol_labs / fn) fn_manual_coordinates = pathlib.Path(sm.params.fn_manual_coordinates) dat_crops = pd.DataFrame(file_dict).T dat_crops['use'] = 1 if fn_manual_coordinates.exists(): dat_m_crops =
pd.read_csv(fn_manual_coordinates)
pandas.read_csv
import sys import requests import pandas as pd from datetime import datetime extraction_date = datetime.today().strftime("%Y%m%d_%H%M%S") HEADERS = { "accept": "application/json; charset=utf-8", "accept-encoding": "gzip, deflate, br", "accept-language": "de-DE,de;q=0.9,en-US;q=0.8,en;q=0.7", "content-length": "0", "content-type": "application/json; charset=utf-8", "origin": "https://www.immobilienscout24.de", "referer": "https://www.immobilienscout24.de/Suche/radius/wohnung-mieten?centerofsearchaddress=Berlin;10829;;;;&geocoordinates=52.4856;13.36495;100.0&enteredFrom=one_step_search", "sec-fetch-mode": "cors", "sec-fetch-site": "same-origin", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.108 Safari/537.36", "x-requested-with": "XMLHttpRequest", } def get_immo24_search_pages(headers=HEADERS): searchresults = [] pageexists = True i = 1 while pageexists: try: r = requests.post( f"https://www.immobilienscout24.de/Suche/de/berlin/berlin/wohnung-mieten?pagenumber={i}", headers=headers, ) rdict = r.json() try: searchresults.append( rdict["searchResponseModel"]["resultlist.resultlist"][ "resultlistEntries" ][0]["resultlistEntry"] ) except: sys.stdout.write(str("All pages fetched...") + '\n') pageexists = False except: sys.stdout.write(str("All pages fetched...") + '\n') pageexists = False i += 1 return searchresults def get_listings_detailed_info(searchresults): listing_results = [] # Solution based in https://github.com/s0er3n/immobilienscout24-scraper/blob/master/immobilienscout24-scraper.py for d in searchresults: for x in d: try: home_id = x["@id"] except: home_id = "N/A" try: title = x["resultlist.realEstate"]["title"] except: title = "N/A" try: postcode = x["resultlist.realEstate"]["address"]["postcode"] except: postcode = "N/A" try: price = x["resultlist.realEstate"]["price"]["value"] except: price = "N/A" try: street = x["resultlist.realEstate"]["address"]["street"] except: street = "N/A" try: houseNumber = x["resultlist.realEstate"]["address"]["houseNumber"] except: houseNumber = "N/A" try: city = x["resultlist.realEstate"]["address"]["city"] except: city = "N/A" try: quarter = x["resultlist.realEstate"]["address"]["quarter"] except: quarter = "N/A" try: latitude = x["resultlist.realEstate"]["address"]["wgs84Coordinate"][ "latitude" ] except: latitude = "N/A" try: longitude = x["resultlist.realEstate"]["address"]["wgs84Coordinate"][ "longitude" ] except: longitude = "N/A" try: livingSpace = x["resultlist.realEstate"]["livingSpace"] except: livingSpace = "N/A" try: numberOfRooms = x["resultlist.realEstate"]["numberOfRooms"] except: numberOfRooms = "N/A" try: balcony = x["resultlist.realEstate"]["balcony"] except: balcony = "N/A" try: garden = x["resultlist.realEstate"]["garden"] except: garden = "N/A" try: monthlyRate = x["resultlist.realEstate"]["monthlyRate"] except: monthlyRate = "N/A" try: builtInKitchen = x["resultlist.realEstate"]["builtInKitchen"] except: builtInKitchen = "N/A" listing_results.append( ( home_id, title, postcode, price, street, houseNumber, city, quarter, latitude, longitude, livingSpace, numberOfRooms, balcony, garden, monthlyRate, builtInKitchen, f"https://www.immobilienscout24.de/expose/{home_id}", ) ) return listing_results def get_df_with_columns(listing_results): df_listings =
pd.DataFrame(listing_results)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # CONTENT # 1. [Introduction](#1) # 2. [Load and Check Data](#2) # 3. [Outlier Detection](#3) # 4. [Fill Missing Value](#4) # 5. [Data Visualization](#5) # 6. [Machine Learning Algorithms](#6) # 7. [Results](#7) # # # # # <a id="1"> </a> # ## INTRODUCTION # # * Chronic kidney disease (CKD) is an important public health problem worldwide, especially for underdeveloped countries. Chronic kidney disease means that the kidney is not working as expected and cannot filter blood properly. Approximately 10% of the world's population suffers from this disease and millions die every year. Recently, the number of patients who have reached renal insufficiency is increasing, which necessitates kidney transplant or dialysis. CKD does not show any symptoms in its early stages. The only way to find out if the patient has kidney disease is by testing. Early detection of CKD in its early stages can help the patient receive effective treatment. # * The aim of this study is to analyze the methods and compare their accuracy values by using 6 different machine learning methods. # In[ ]: # This Python 3 environment comes with many helpful analytics libraries installed import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns from mpl_toolkits.mplot3d import Axes3D from sklearn.preprocessing import StandardScaler from sklearn.impute import KNNImputer from sklearn import metrics from sklearn.metrics import roc_curve, auc, confusion_matrix, classification_report,accuracy_score, f1_score, precision_score, recall_score, roc_auc_score from imblearn.metrics import sensitivity_score from sklearn.pipeline import make_pipeline from sklearn.datasets import make_classification from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import plotly.graph_objs as go from sklearn.model_selection import GridSearchCV , KFold , cross_val_score, ShuffleSplit, cross_validate from collections import Counter plt.style.use("seaborn-muted") # Input data files are available in the read-only "../../../input/mansoordaku_ckdisease/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import warnings # ignore warnings warnings.filterwarnings("ignore") from subprocess import check_output print(check_output(["ls", "../../../input/mansoordaku_ckdisease"]).decode("utf8")) import os for dirname, _, filenames in os.walk("../../../input/mansoordaku_ckdisease"): for filename in filenames: print(os.path.join(dirname, filename)) # <a id="2"> </a> # ## LOAD AND CHECK DATA # In[ ]: #upload dataset df = pd.read_csv("../../../input/mansoordaku_ckdisease/kidney_disease.csv") # In[ ]: #info about dataset df.info() # In[ ]: #first five rows of dataset df.head(10) # In[ ]: #drop id column df.drop(["id"],axis=1,inplace=True) # In[ ]: #convert to numeric data type df.pcv = pd.to_numeric(df.pcv, errors='coerce') df.wc = pd.to_numeric(df.wc, errors='coerce') df.rc = pd.to_numeric(df.rc, errors='coerce') # In[ ]: #statistical information of the features used in the data set df.describe() # In[ ]: #correlation between the features used in the data set df.corr() # In[ ]: #correlation map f,ax = plt.subplots(figsize=(12, 12)) print() print() # <a id="3"> </a> # ## OUTLIER DETECTION # In[ ]: #detect outliers def detect_outliers(df,features): outlier_indices=[] for c in features: Q1=np.percentile(df[c],25) #1st quartile Q3=np.percentile(df[c],75) #3rd quartile IQR=Q3-Q1 #IQR outlier_step=IQR*1.5 #Outlier step outlier_list_col=df[(df[c]<Q1-outlier_step) | (df[c]>Q3 + outlier_step)].index #Detect outlier and their indeces outlier_indices.extend(outlier_list_col) #Store indeces outlier_indices = Counter(outlier_indices) multiple_outliers=list(i for i,v in outlier_indices.items() if v>2) return multiple_outliers # In[ ]: #check if I have outliers df.loc[detect_outliers(df,["age","bp","sg","al","bgr","bu","sc","sod","pot","hemo","pcv","wc","rc"])] # <a id="4"> </a> # ## FILL MISSING VALUE # In[ ]: #number of missing values in features df.isnull().sum() # In[ ]: #another way to show missing data print() #plt.grid() #plt.title("Number of Missing Values") # In[ ]: #show missing data import missingno as msno msno.matrix(df) print() # In[ ]: #show missing data msno.bar(df) print() # In[ ]: #how missing data in age df[df["age"].isnull()] # In[ ]: #fill missing data with mean value df["bgr"]= df["bgr"].fillna(np.mean(df["bgr"])) df["bu"]= df["bu"].fillna(np.mean(df["bu"])) df["sc"]= df["sc"].fillna(np.mean(df["sc"])) df["sod"]= df["sod"].fillna(np.mean(df["sod"])) df["pot"]= df["pot"].fillna(np.mean(df["pot"])) df["hemo"]= df["hemo"].fillna(np.mean(df["hemo"])) df["pcv"]= df["pcv"].fillna(np.mean(df["pcv"])) df["wc"]= df["wc"].fillna(np.mean(df["wc"])) df["rc"]= df["rc"].fillna(np.mean(df["rc"])) # In[ ]: #The number "1" is indicated by "ckd" (the condition of kidney disease) and the number #"0" is indicated by "notckd" (the state of the absence of kidney disease). df["classification"] = [1 if i == "ckd" else 0 for i in df["classification"]] # <a id="5"> </a> # ## DATA VISUALIZATION # In[ ]: sns.countplot(df.classification) plt.xlabel('Chronic Kidney Disease') plt.title("Classification",fontsize=15) print() # In[ ]: print() #print() # In[ ]: #blood pressure-frequency graph sns.factorplot(data=df, x='bp', kind= 'count',size=6,aspect=2) # In[ ]: #density-frequency graph sns.factorplot(data=df, x='sg', kind= 'count',size=6,aspect=2) # In[ ]: #albumin-frequency graph sns.factorplot(data=df, x='al', kind= 'count',size=6,aspect=2) # In[ ]: #sugar-frequency graph sns.factorplot(data=df, x='su', kind= 'count',size=6,aspect=2) # In[ ]: df['dm'] = df['dm'].replace(to_replace={'\tno':'no','\tyes':'yes',' yes':'yes'}) df['cad'] = df['cad'].replace(to_replace='\tno',value='no') # In[ ]: #Check the bar graph of categorical data using factorplot sns.factorplot(data=df, x='rbc', kind= 'count',size=4,aspect=2) sns.factorplot(data=df, x='pc', kind= 'count',size=4,aspect=2) sns.factorplot(data=df, x='pcc', kind= 'count',size=4,aspect=2) sns.factorplot(data=df, x='ba', kind= 'count',size=4,aspect=2) sns.factorplot(data=df, x='pcv', kind= 'count',size=6,aspect=2) sns.factorplot(data=df, x='wc', kind= 'count',size=10,aspect=2) sns.factorplot(data=df, x='rc', kind= 'count',size=6,aspect=2) sns.factorplot(data=df, x='htn', kind= 'count',size=4,aspect=2) sns.factorplot(data=df, x='dm', kind= 'count',size=4,aspect=2) sns.factorplot(data=df, x='cad', kind= 'count',size=4,aspect=2) sns.factorplot(data=df, x='appet', kind= 'count',size=4,aspect=2) sns.factorplot(data=df, x='pe', kind= 'count',size=4,aspect=2) sns.factorplot(data=df, x='ane', kind= 'count',size=4,aspect=2) # In[ ]: def hist_plot(variable): plt.figure(figsize=(9,3)) plt.hist(df[variable],bins=50) plt.xlabel(variable) plt.ylabel("Frequency") plt.title("Age Distribution with Histogram") print() # In[ ]: numericVar = ["age"] for n in numericVar: hist_plot(n) # In[ ]: plt.figure(figsize=(70,25)) plt.legend(loc='upper left') g = sns.countplot(data = df, x = 'age', hue = 'classification') g.legend(title = 'Kidney Disease', loc='upper left', bbox_to_anchor=(0.1, 0.5), ncol=1) g.tick_params(labelsize=20) plt.setp(g.get_legend().get_texts(), fontsize='32') plt.setp(g.get_legend().get_title(), fontsize='42') g.axes.set_title('Graph of the number of patients with chronic kidney disease by age',fontsize=50) g.set_xlabel('Age',fontsize=40) g.set_ylabel("Count",fontsize=40) # In[ ]: g = sns.FacetGrid(df,col="classification") g.map(sns.distplot,"age", bins=25) print() # In[ ]: sns.factorplot(x="classification",y="age",data=df,kind="box") print() # In[ ]: age_corr = ['age', 'classification'] age_corr1 = df[age_corr] age_corr_y = age_corr1[age_corr1['classification'] == 1].groupby(['age']).size().reset_index(name = 'count') age_corr_y.corr() # In[ ]: sns.regplot(data = age_corr_y, x = 'age', y = 'count').set_title("Correlation graph for Age vs chronic kidney disease patient") # In[ ]: age_corr_n = age_corr1[age_corr1['classification'] == 0].groupby(['age']).size().reset_index(name = 'count') age_corr_n.corr() # In[ ]: sns.regplot(data = age_corr_n, x = 'age', y = 'count').set_title("Correlation graph for Age vs healthy patient") # In[ ]: df2 = df.loc[:,["bp","bgr","sod","pot","pcv"]] df2.plot() # In[ ]: df2.plot(subplots = True) print() # In[ ]: g = sns.jointplot("age", "classification", data=df, size=7,ratio=3, color="r") # In[ ]: g = sns.jointplot(df.age, df.classification, kind="kde", size=7) #pearsonr shows the correlation between two features, 1 if positive , -1 if negative, 0 if no correlation. # In[ ]: pal = sns.cubehelix_palette(2, rot=-.5, dark=.3) sns.violinplot(data=df2, palette=pal, inner="points") print() # In[ ]: sns.boxplot(x="sg", y="age", hue="classification",data=df, palette="PRGn") print() # In[ ]: g = sns.FacetGrid(df,col="classification",row="sg") g.map(plt.hist,"age", bins=25) g.add_legend() print() # In[ ]: #I assigned the value 0 and 1 to the nominal features df['rbc'] = df.rbc.replace(['normal','abnormal'], ['1', '0']) df['pc'] = df.pc.replace(['normal','abnormal'], ['1', '0']) df['pcc'] = df.pcc.replace(['present','notpresent'], ['1', '0']) df['ba'] = df.ba.replace(['present','notpresent'], ['1', '0']) df['htn'] = df.htn.replace(['yes','no'], ['1', '0']) df['dm'] = df.dm.replace(['yes','no'], ['1', '0']) df['cad'] = df.cad.replace(['yes','no'], ['1', '0']) df['appet'] = df.appet.replace(['good','poor'], ['1', '0']) df['pe'] = df.pe.replace(['yes','no'], ['1', '0']) df['ane'] = df.ane.replace(['yes','no'], ['1', '0']) df.head() # In[ ]: #then I converted them to numeric data type df.rbc = pd.to_numeric(df.rbc, errors='coerce') df.pc = pd.to_numeric(df.pc, errors='coerce') df.pcc = pd.to_numeric(df.pcc, errors='coerce') df.ba = pd.to_numeric(df.ba, errors='coerce') df.htn = pd.to_numeric(df.htn, errors='coerce') df.dm =
pd.to_numeric(df.dm, errors='coerce')
pandas.to_numeric
import pandas as pd from collections import namedtuple from xbbg.io import logs, param from xbbg.core import timezone Futures = dict( Jan='F', Feb='G', Mar='H', Apr='J', May='K', Jun='M', Jul='N', Aug='Q', Sep='U', Oct='V', Nov='X', Dec='Z', ) CurrencyPair = namedtuple('CurrencyPair', ['ticker', 'factor', 'power']) ValidSessions = ['allday', 'day', 'am', 'pm', 'night', 'pre', 'post'] def exch_info(ticker: str) -> pd.Series: """ Exchange info for given ticker Args: ticker: ticker or exchange Returns: pd.Series Examples: >>> exch_info('SPY US Equity') tz America/New_York allday [04:00, 20:00] day [09:30, 16:00] pre [04:00, 09:30] post [16:01, 20:00] dtype: object >>> exch_info('ES1 Index') tz America/New_York allday [18:00, 17:00] day [08:00, 17:00] dtype: object >>> exch_info('Z 1 Index') tz Europe/London allday [01:00, 21:00] day [01:00, 21:00] dtype: object >>> exch_info('TESTTICKER Corp').empty True >>> exch_info('US') tz America/New_York allday [04:00, 20:00] day [09:30, 16:00] pre [04:00, 09:30] post [16:01, 20:00] dtype: object """ logger = logs.get_logger(exch_info, level='debug') if ' ' not in ticker.strip(): ticker = f'XYZ {ticker.strip()} Equity' info = param.load_info(cat='exch').get( market_info(ticker=ticker).get('exch', ''), dict() ) if ('allday' in info) and ('day' not in info): info['day'] = info['allday'] if any(req not in info for req in ['tz', 'allday', 'day']): logger.error(f'required exchange info cannot be found in {ticker} ...') return pd.Series() for ss in ValidSessions: if ss not in info: continue info[ss] = [param.to_hour(num=s) for s in info[ss]] return
pd.Series(info)
pandas.Series
import pandas as pd import networkx as nx import warnings import seaborn as sns import numpy as np import matplotlib.patches as mpatches import microbe_directory as md from capalyzer.packet_parser import DataTableFactory, NCBITaxaTree, annotate_taxa, TaxaTree from capalyzer.packet_parser.data_utils import group_small_cols from capalyzer.packet_parser.diversity_metrics import ( shannon_entropy, richness, chao1, rarefaction_analysis ) from sklearn.decomposition import PCA from scipy.cluster.hierarchy import linkage, cophenet, leaves_list from scipy.spatial.distance import squareform, pdist, jensenshannon from os.path import join from metasub_utils.packet_parse import MetaSUBTableFactory from capalyzer.packet_parser.experimental import umap from capalyzer.packet_parser.data_utils import group_small_cols from capalyzer.packet_parser.normalize import proportions, prevalence from plotnine import * from scipy.cluster.hierarchy import fcluster from matplotlib import pyplot as plt from capalyzer.constants import MICROBE_DIR from .figs_data import MetaSUBFiguresData class MetaSUBFigures(MetaSUBFiguresData): def tbl1(self): """Return a pandas dataframe listing where and when samples were collected.""" tbl = self.meta.copy() tbl = tbl.loc[tbl['control_type'].isna()] tbl = tbl.loc[~tbl['city'].isna()] tbl = tbl.query('city != "other"') tbl = pd.crosstab(tbl['city'], tbl['project']) tbl['Region'] = self.meta.groupby('city').apply(lambda x: x['continent'].iloc[0]) tbl['Region'] = tbl['Region'].str.replace('_', ' ').str.title() tbl.index = tbl.index.str.replace('_', ' ').str.title() tbl = tbl.set_index('Region', append=True) tbl = tbl.reorder_levels(['Region', 'city']) tbl = tbl.sort_index() other_projs = list(tbl.columns[tbl.sum(axis=0) < 100]) + ['PATHOMAP_WINTER'] tbl['Other'] = tbl[other_projs].sum(axis=1) tbl = tbl.drop(columns=other_projs) tbl['Total'] = tbl.sum(axis=1) tbl = tbl[['PILOT', 'CSD16', 'CSD17', 'Other', 'Total']] # column order continent_totals = tbl.groupby(level=0).sum() continent_totals['city'] = 'AAA Region Total' # AAA so sort puts these first continent_totals = continent_totals.set_index('city', append=True) tbl = pd.concat([tbl, continent_totals]).sort_index() ctrl = self.meta.copy() ctrl = ctrl.loc[~ctrl['control_type'].isna()] ctrl = pd.crosstab(ctrl['control_type'], ctrl['project']) ctrl.index.names = ['city'] ctrl['Region'] = 'Control' ctrl = ctrl.set_index('Region', append=True) ctrl = ctrl.reorder_levels(['Region', 'city']) other_projs = ctrl.columns[ctrl.sum(axis=0) < 10] ctrl['Other'] = ctrl[other_projs].sum(axis=1) ctrl = ctrl.drop(columns=other_projs) ctrl['Total'] = ctrl.sum(axis=1) cols = [ col for col in ['PILOT', 'CSD16', 'CSD17', 'Other', 'Total'] if col in ctrl.columns ] ctrl = ctrl[cols] tbl = pd.concat([ctrl, tbl]) tbl.index = tbl.index.set_levels(tbl.index.levels[1].str.replace('AAA', ''), level=1) return tbl def fig1(self, N=75): """Figure showing the major taxa found in the metasub data.""" return [ self.fig1_core_taxa_tree(), self.fig1_prevalence_curve(), self.fig1_major_taxa_curves(N=N), self.fig1_species_rarefaction(), self.fig1_reference_comparisons(), self.fig1_fraction_unclassified(), ] def fig1_core_taxa_tree(self): """Return an ETE tree showing core taxa with annotations.""" def fig1_prevalence_curve(self): """Return a P9 figure showing the distribution of species prevalences.""" prev = pd.DataFrame({ 'total': prevalence(self.wide_taxa), 'city': self.wide_taxa.groupby(by=self.meta['city']).apply(prevalence).mean(axis=0), }) prev['taxa'] = prev.index prev_flat = prev.melt(id_vars='taxa') plot = ( ggplot(prev_flat, aes(x='value', color='variable', fill='variable')) + geom_density(size=2, alpha=0.2) + theme_minimal() + xlab('Species Prevalence') + ylab('Density') + geom_vline(xintercept=0.25, color='black') + geom_vline(xintercept=0.70, color='black') + geom_vline(xintercept=0.95, color='black') + annotate(geom='label', x=0.65, y=2.9, label="Sub-Core 70-95% (1,084)", size=20) + annotate(geom='label', x=0.33, y=3.5, label="Peripheral, < 25% (2,466)", size=20) + annotate(geom='label', x=0.78, y=3.2, label="Core > 95% (61)", size=20) + scale_color_brewer(type='qualitative', palette=6, direction=1) + scale_fill_brewer(type='qualitative', palette=6, direction=1) + theme( text=element_text(size=20), axis_text_x=element_text(angle=0, hjust=1), figure_size=(8, 8), legend_position='none', ) ) return plot def fig1_major_taxa_curves(self, N=75): """Return two P9 panels showing prevalence and abundance distributions of major taxa.""" taxa = self.wide_taxa_rel city = taxa.groupby(by=self.meta['city']).median() top_taxa = taxa.mean().sort_values(ascending=False)[:N].index taxa, city = 1000 * 1000 * taxa[top_taxa], 1000 * 1000 * city[top_taxa] taxa_prev, city_prev = prevalence(taxa), prevalence(city) taxa_prev =
pd.DataFrame({'taxon': taxa_prev.index, 'prevalence': taxa_prev, 'names': taxa_prev.index})
pandas.DataFrame
# AUTOGENERATED! DO NOT EDIT! File to edit: 02_vulnerabilidad_pca.ipynb (unless otherwise specified). __all__ = ['get_pca_geodf', 'scale_vars', 'get_pca_columns', 'ajustar_pca', 'cargar_indices_vulnerabilidad'] # Cell import pandas as pd import geopandas as gpd import numpy as np import datetime from .datos import * from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn import preprocessing # librerias para visualizacion import seaborn as sns import matplotlib.pyplot as plt # librerias de sistema de archivos y busqueda import os import glob import csv # Cell def get_pca_geodf(data, numeric_vars, n_components=3): x = scale_vars(data, numeric_vars) pca = PCA(n_components=n_components) principalComponents = pca.fit_transform(x) columns = get_pca_columns(pca) principalDataframe = pd.DataFrame(data = principalComponents, columns = columns) newDataframe = pd.concat([data, principalDataframe], axis = 1) return pca, newDataframe # Cell def scale_vars(data, numeric_vars): x = data[numeric_vars] x = StandardScaler().fit_transform(x) x = pd.DataFrame(x, columns=numeric_vars) return x # Cell def get_pca_columns(pca): columns = [] for i in range(pca.n_components): columns.append(f'PC{i + 1}') return columns # Cell def ajustar_pca(municipios_df, caracteristicas, version=0): indicadores = ['densi', 'p_mayores', 'p_niños_m', 'p_sin_derech', 'num_hosp_pp', 'num_camas_pp', 'tasa_diabetes', 'tasa_cardiacas', 'tasa_cancer', 'tasa_pulmonares'] raise NotImplementedError('En construccion') # Cell def cargar_indices_vulnerabilidad(nombre_archivo, formato_largo=False): indicadores_municipal = leer_variables_municipales_std() df =
pd.read_csv(nombre_archivo, dtype={'CLAVE_MUNICIPIO_RES': str})
pandas.read_csv
# coding: utf-8 # http://stackoverflow.com/questions/27889873/clustering-text-documents-using-scikit-learn-kmeans-in-python # http://brandonrose.org/clustering import os import re import sys import frontmatter import matplotlib.pyplot as plt import pandas as pd import pytoml as toml import mpld3 import numpy as np from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer from nltk.stem.snowball import SnowballStemmer from sklearn.cluster import KMeans from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.grid_search import GridSearchCV from sklearn.manifold import MDS from sklearn.metrics.pairwise import cosine_similarity from sklearn.pipeline import Pipeline reload(sys) # to re-enable sys.setdefaultencoding() sys.setdefaultencoding('utf-8') stop = stopwords.words('spanish') stopE = stopwords.words('english') stop = stop + stopE + ['com', 'más', 'si', 'está', 'puede', 'ejemplo', 'usar', 'aplicación', 'siguiente', 'cada', 'ser', 'vez', 'hacer', 'podemos' 'cómo', 'forma', 'así', 'asi', 'dos', 'tipo', 'nombre', 'ahora', 'también', 'solo', 'ver', 'qué', 'pueden', 'hace', 'tener', 'número', 'valor', 'artículo', 'parte', '»»', 'c', 'vamos', 'uso', 'debe', 'página', 'todas', 'decir', 'están', 'puedes', 'dentro', 'ello', 'blog', 'realizar', 'lugar', 'además', 'aquí', 'etc', 'aunque', 'nuevo', 'último', 'será', 'tema', 'bien', 'sólo', 'solo', 'hecho', 'cosas', 'poder', 'simplemente', 'simple', 'artículos', 'va', 'debemos', 'debería', 'hoy', 'algún', '–', 'sido', 'sí', 'éste', 'varios', 'aún', 'x', 'tan', 'podría', 'seguir', 'día', 'tres', 'cuatro', 'cinco', 'voy', 'ir', 'tal', 'mientras', 'saber', 'existe', 'sería', 'pasar', 'pueda', '¿qué', 'dejo', 'él', '»', 'ir', 'trabajar', 'Éste', 'n', 'mas', 'serán', 'ejempl', 'algun', 'aplicacion', 'aplic', 'bas', 'cas', 'cre', 'llam', 'numer', 'pod', 'referent', 'pas', 'tambi', u'ultim', u'unic', u'usa', u'usand', u'usuari', u'utiliz', u'variabl', u'version', u'visit', u'vist', u'web', u'\xbb\xbb', 'import', 'podr', 'util', 'gran', 'siti', 'sol', 'solucion', 'aquell', 'pued', 'inform', 'deb', 'archiv', 'sistem', 'mism', 'permit', 'articul', 'ea', 'f', 'fc', 'non', 'bd', 'nuev', 'pdf', 'gui', 'notici', 'debi', 'mejor', 'misc', 'use', 'websit'] stop = set(stop) def readPosts(path, english=False): """Read posts in path and return a pandas Data frame""" df =
pd.DataFrame()
pandas.DataFrame
# -*- coding:utf-8 -*- # !/usr/bin/env python """ Date: 2021/10/14 12:19 Desc: 巨潮资讯-数据中心-专题统计-债券报表-债券发行 http://webapi.cninfo.com.cn/#/thematicStatistics """ import time import pandas as pd import requests from py_mini_racer import py_mini_racer js_str = """ function mcode(input) { var keyStr = "<KEY> <KEY>; var output = ""; var chr1, chr2, chr3 = ""; var enc1, enc2, enc3, enc4 = ""; var i = 0; do { chr1 = input.charCodeAt(i++); chr2 = input.charCodeAt(i++); chr3 = input.charCodeAt(i++); enc1 = chr1 >> 2; enc2 = ((chr1 & 3) << 4) | (chr2 >> 4); enc3 = ((chr2 & 15) << 2) | (chr3 >> 6); enc4 = chr3 & 63; if (isNaN(chr2)) { enc3 = enc4 = 64; } else if (isNaN(chr3)) { enc4 = 64; } output = output + keyStr.charAt(enc1) + keyStr.charAt(enc2) + keyStr.charAt(enc3) + keyStr.charAt(enc4); chr1 = chr2 = chr3 = ""; enc1 = enc2 = enc3 = enc4 = ""; } while (i < input.length); return output; } """ def bond_treasure_issue_cninfo( start_date: str = "20210910", end_date: str = "20211109" ) -> pd.DataFrame: """ 巨潮资讯-数据中心-专题统计-债券报表-债券发行-国债发行 http://webapi.cninfo.com.cn/#/thematicStatistics :param start_date: 开始统计时间 :type start_date: str :param end_date: 开始统计时间 :type end_date: str :return: 国债发行 :rtype: pandas.DataFrame """ url = "http://webapi.cninfo.com.cn/api/sysapi/p_sysapi1120" random_time_str = str(int(time.time())) js_code = py_mini_racer.MiniRacer() js_code.eval(js_str) mcode = js_code.call("mcode", random_time_str) headers = { "Accept": "*/*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Content-Length": "0", "Host": "webapi.cninfo.com.cn", "mcode": mcode, "Origin": "http://webapi.cninfo.com.cn", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "http://webapi.cninfo.com.cn/", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/93.0.4577.63 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } params = { "sdate": "-".join([start_date[:4], start_date[4:6], start_date[6:]]), "edate": "-".join([end_date[:4], end_date[4:6], end_date[6:]]), } r = requests.post(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["records"]) temp_df.rename( columns={ "F009D": "缴款日", "SECNAME": "债券简称", "DECLAREDATE": "公告日期", "F004D": "发行起始日", "F003D": "发行终止日", "F008N": "单位面值", "SECCODE": "债券代码", "F007N": "发行价格", "F006N": "计划发行总量", "F005N": "实际发行总量", "F028N": "增发次数", "BONDNAME": "债券名称", "F014V": "发行对象", "F002V": "交易市场", "F013V": "发行方式", }, inplace=True, ) temp_df = temp_df[ [ "债券代码", "债券简称", "发行起始日", "发行终止日", "计划发行总量", "实际发行总量", "发行价格", "单位面值", "缴款日", "增发次数", "交易市场", "发行方式", "发行对象", "公告日期", "债券名称", ] ] temp_df["发行起始日"] = pd.to_datetime(temp_df["发行起始日"]).dt.date temp_df["发行终止日"] = pd.to_datetime(temp_df["发行终止日"]).dt.date temp_df["缴款日"] = pd.to_datetime(temp_df["缴款日"]).dt.date temp_df["公告日期"] = pd.to_datetime(temp_df["公告日期"]).dt.date temp_df["计划发行总量"] = pd.to_numeric(temp_df["计划发行总量"]) temp_df["实际发行总量"] = pd.to_numeric(temp_df["实际发行总量"]) temp_df["发行价格"] = pd.to_numeric(temp_df["发行价格"]) temp_df["单位面值"] = pd.to_numeric(temp_df["单位面值"]) temp_df["增发次数"] = pd.to_numeric(temp_df["增发次数"]) return temp_df def bond_local_government_issue_cninfo( start_date: str = "20210911", end_date: str = "20211110" ) -> pd.DataFrame: """ 巨潮资讯-数据中心-专题统计-债券报表-债券发行-地方债发行 http://webapi.cninfo.com.cn/#/thematicStatistics :param start_date: 开始统计时间 :type start_date: str :param end_date: 开始统计时间 :type end_date: str :return: 地方债发行 :rtype: pandas.DataFrame """ url = "http://webapi.cninfo.com.cn/api/sysapi/p_sysapi1121" random_time_str = str(int(time.time())) js_code = py_mini_racer.MiniRacer() js_code.eval(js_str) mcode = js_code.call("mcode", random_time_str) headers = { "Accept": "*/*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Content-Length": "0", "Host": "webapi.cninfo.com.cn", "mcode": mcode, "Origin": "http://webapi.cninfo.com.cn", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "http://webapi.cninfo.com.cn/", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/93.0.4577.63 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } params = { "sdate": "-".join([start_date[:4], start_date[4:6], start_date[6:]]), "edate": "-".join([end_date[:4], end_date[4:6], end_date[6:]]), } r = requests.post(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["records"]) temp_df.rename( columns={ "F009D": "缴款日", "SECNAME": "债券简称", "DECLAREDATE": "公告日期", "F004D": "发行起始日", "F003D": "发行终止日", "F008N": "单位面值", "SECCODE": "债券代码", "F007N": "发行价格", "F006N": "计划发行总量", "F005N": "实际发行总量", "F028N": "增发次数", "BONDNAME": "债券名称", "F014V": "发行对象", "F002V": "交易市场", "F013V": "发行方式", }, inplace=True, ) temp_df = temp_df[ [ "债券代码", "债券简称", "发行起始日", "发行终止日", "计划发行总量", "实际发行总量", "发行价格", "单位面值", "缴款日", "增发次数", "交易市场", "发行方式", "发行对象", "公告日期", "债券名称", ] ] temp_df["发行起始日"] = pd.to_datetime(temp_df["发行起始日"]).dt.date temp_df["发行终止日"] = pd.to_datetime(temp_df["发行终止日"]).dt.date temp_df["缴款日"] = pd.to_datetime(temp_df["缴款日"]).dt.date temp_df["公告日期"] = pd.to_datetime(temp_df["公告日期"]).dt.date temp_df["计划发行总量"] = pd.to_numeric(temp_df["计划发行总量"]) temp_df["实际发行总量"] = pd.to_numeric(temp_df["实际发行总量"]) temp_df["发行价格"] = pd.to_numeric(temp_df["发行价格"]) temp_df["单位面值"] = pd.to_numeric(temp_df["单位面值"]) temp_df["增发次数"] = pd.to_numeric(temp_df["增发次数"]) return temp_df def bond_corporate_issue_cninfo( start_date: str = "20210911", end_date: str = "20211110" ) -> pd.DataFrame: """ 巨潮资讯-数据中心-专题统计-债券报表-债券发行-企业债发行 http://webapi.cninfo.com.cn/#/thematicStatistics :param start_date: 开始统计时间 :type start_date: str :param end_date: 开始统计时间 :type end_date: str :return: 企业债发行 :rtype: pandas.DataFrame """ url = "http://webapi.cninfo.com.cn/api/sysapi/p_sysapi1122" random_time_str = str(int(time.time())) js_code = py_mini_racer.MiniRacer() js_code.eval(js_str) mcode = js_code.call("mcode", random_time_str) headers = { "Accept": "*/*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Content-Length": "0", "Host": "webapi.cninfo.com.cn", "mcode": mcode, "Origin": "http://webapi.cninfo.com.cn", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "http://webapi.cninfo.com.cn/", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/93.0.4577.63 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } params = { "sdate": "-".join([start_date[:4], start_date[4:6], start_date[6:]]), "edate": "-".join([end_date[:4], end_date[4:6], end_date[6:]]), } r = requests.post(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["records"]) temp_df.rename( columns={ "SECNAME": "债券简称", "DECLAREDATE": "公告日期", "F004D": "交易所网上发行终止日", "F003D": "交易所网上发行起始日", "F008N": "发行面值", "SECCODE": "债券代码", "F007N": "发行价格", "F006N": "实际发行总量", "F005N": "计划发行总量", "F022N": "最小认购单位", "F017V": "承销方式", "F052N": "最低认购额", "F015V": "发行范围", "BONDNAME": "债券名称", "F014V": "发行对象", "F013V": "发行方式", "F023V": "募资用途说明", }, inplace=True, ) temp_df = temp_df[ [ "债券代码", "债券简称", "公告日期", "交易所网上发行起始日", "交易所网上发行终止日", "计划发行总量", "实际发行总量", "发行面值", "发行价格", "发行方式", "发行对象", "发行范围", "承销方式", "最小认购单位", "募资用途说明", "最低认购额", "债券名称", ] ] temp_df["公告日期"] = pd.to_datetime(temp_df["公告日期"]).dt.date temp_df["交易所网上发行起始日"] = pd.to_datetime(temp_df["交易所网上发行起始日"]).dt.date temp_df["交易所网上发行终止日"] = pd.to_datetime(temp_df["交易所网上发行终止日"]).dt.date temp_df["计划发行总量"] = pd.to_numeric(temp_df["计划发行总量"]) temp_df["实际发行总量"] = pd.to_numeric(temp_df["实际发行总量"]) temp_df["发行面值"] = pd.to_numeric(temp_df["发行面值"]) temp_df["发行价格"] = pd.to_numeric(temp_df["发行价格"]) temp_df["最小认购单位"] = pd.to_numeric(temp_df["最小认购单位"]) temp_df["最低认购额"] = pd.to_numeric(temp_df["最低认购额"]) return temp_df def bond_cov_issue_cninfo( start_date: str = "20210913", end_date: str = "20211112" ) -> pd.DataFrame: """ 巨潮资讯-数据中心-专题统计-债券报表-债券发行-可转债发行 http://webapi.cninfo.com.cn/#/thematicStatistics :param start_date: 开始统计时间 :type start_date: str :param end_date: 开始统计时间 :type end_date: str :return: 可转债发行 :rtype: pandas.DataFrame """ url = "http://webapi.cninfo.com.cn/api/sysapi/p_sysapi1123" random_time_str = str(int(time.time())) js_code = py_mini_racer.MiniRacer() js_code.eval(js_str) mcode = js_code.call("mcode", random_time_str) headers = { "Accept": "*/*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Content-Length": "0", "Host": "webapi.cninfo.com.cn", "mcode": mcode, "Origin": "http://webapi.cninfo.com.cn", "Pragma": "no-cache", "Proxy-Connection": "keep-alive", "Referer": "http://webapi.cninfo.com.cn/", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/93.0.4577.63 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } params = { "sdate": "-".join([start_date[:4], start_date[4:6], start_date[6:]]), "edate": "-".join([end_date[:4], end_date[4:6], end_date[6:]]), } r = requests.post(url, headers=headers, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["records"]) temp_df.rename( columns={ 'F029D': '发行起始日', 'SECNAME': '债券简称', 'F027D': '转股开始日期', 'F003D': '发行终止日', 'F007N': '发行面值', 'F053D': '转股终止日期', 'F005N': '计划发行总量', 'F051D': '网上申购日期', 'F026N': '初始转股价格', 'F066N': '网上申购数量下限', 'F052N': '发行价格', 'BONDNAME': '债券名称', 'F014V': '发行对象', 'F002V': '交易市场', 'F032V': '网上申购简称', 'F086V': '转股代码', 'DECLAREDATE': '公告日期', 'F028D': '债权登记日', 'F004D': '优先申购日', 'F068D': '网上申购中签结果公告日及退款日', 'F054D': '优先申购缴款日', 'F008N': '网上申购数量上限', 'SECCODE': '债券代码', 'F006N': '实际发行总量', 'F067N': '网上申购单位', 'F065N': '配售价格', 'F017V': '承销方式', 'F015V': '发行范围', 'F013V': '发行方式', 'F021V': '募资用途说明', 'F031V': '网上申购代码' }, inplace=True, ) temp_df = temp_df[ [ '债券代码', '债券简称', '公告日期', '发行起始日', '发行终止日', '计划发行总量', '实际发行总量', '发行面值', '发行价格', '发行方式', '发行对象', '发行范围', '承销方式', '募资用途说明', '初始转股价格', '转股开始日期', '转股终止日期', '网上申购日期', '网上申购代码', '网上申购简称', '网上申购数量上限', '网上申购数量下限', '网上申购单位', '网上申购中签结果公告日及退款日', '优先申购日', '配售价格', '债权登记日', '优先申购缴款日', '转股代码', '交易市场', '债券名称', ] ] temp_df["公告日期"] = pd.to_datetime(temp_df["公告日期"]).dt.date temp_df["发行起始日"] = pd.to_datetime(temp_df["发行起始日"]).dt.date temp_df["发行终止日"] = pd.to_datetime(temp_df["发行终止日"]).dt.date temp_df["转股开始日期"] = pd.to_datetime(temp_df["转股开始日期"]).dt.date temp_df["转股终止日期"] = pd.to_datetime(temp_df["转股终止日期"]).dt.date temp_df["转股终止日期"] = pd.to_datetime(temp_df["转股终止日期"]).dt.date temp_df["网上申购日期"] = pd.to_datetime(temp_df["网上申购日期"]).dt.date temp_df["网上申购中签结果公告日及退款日"] = pd.to_datetime(temp_df["网上申购中签结果公告日及退款日"]).dt.date temp_df["债权登记日"] = pd.to_datetime(temp_df["债权登记日"]).dt.date temp_df["优先申购日"] = pd.to_date
time(temp_df["优先申购日"])
pandas.to_datetime
## Basketball Reference Game Log Scraping #################################################################################### # Georgia Tech: Daily Fantasy Sports Project # authors: <NAME> & <NAME> #### Process Outline ######################################################################################################### # Import historical results # Import archives (so entire process doesn't have to re-run) # Filter game-logs to day before contest # Run prediction/optimization for top 10 line-ups (and save). # Find player results within game-logs and calculate total line-up score # if a player has < 10 (? 5?) points, add to "players to remove" lsiting, re-run optimization and resave top-10 line-ups # Produce DF that stores each line-up, its result, entry cost, win/lose cash, percentile and rough estimate from percentile --> $ won # Produce report on total $ won/lost, ROI # (maybe run some cross-validation to see right # of line-ups to use nightly? see if we can start filtering the data for predictions from full season --> last x games and cross-validate?) ############################################################################################################################## ##### Questions ###### ## TO DOs ## # run on everyone # test / confirm # ##### Notes ###### # complete run time: ~ 4 minutes per day of results ############################################################################################################################## # Package Import # import numpy as np import pandas as pd from time_analysis import analysis_timeSeries # to delete in init from optimization import DFS_Optimization # to delete in init from datetime import date, datetime from dateutil import rrule # Functions # def import_hist_results(path): dt = pd.read_csv(path) dt.Date = pd.to_datetime(dt.Date) return dt def identify_new_dates(hist_dt, imported_final_dt): result_dates = hist_dt.Date.dt.date.drop_duplicates().tolist() analysis_dates = imported_final_dt.Date.dt.date.drop_duplicates().tolist() filter_dates = list(set(result_dates) - set(analysis_dates)) filter_dates.sort() filter_dates = [date.strftime('%Y-%m-%d') for date in filter_dates] return filter_dates def prep_historic_data_opt(fd_hist_plyr_results, filt_date): fd_hist_plyr_results = fd_hist_plyr_results[(fd_hist_plyr_results.Date == filt_date)] fd_hist_plyr_results = fd_hist_plyr_results[(fd_hist_plyr_results['FD Points'] >= 10)] fd_hist_slrs = fd_hist_plyr_results[['Position','Player Name','Salary']].copy() fd_hist_slrs = fd_hist_slrs.rename(columns={'Player Name': 'Nickname'}).reset_index(drop=True) fd_hist_slrs = fd_hist_slrs.sort_values('Salary', ascending=False) return fd_hist_plyr_results, fd_hist_slrs def merge_optim_histPlayer(pred_df, fd_hist_results): rslts_df = pd.merge(pred_df, fd_hist_results, left_on=['Date','Player'], right_on=['Date','Player Name'], how='inner') rslts_df = rslts_df.groupby(['Optimization_No','Date','Predicted_Score'])['FD Points'].agg(FD_Points='sum',Player_Count='count').reset_index() rslts_df = rslts_df[['Optimization_No','Date','Predicted_Score','FD_Points','Player_Count']] rslts_df.Date = pd.to_datetime(rslts_df.Date) return rslts_df def merge_model_contest(rslts_df, hst_rslts): rslts_df = pd.merge(rslts_df, hst_rslts, left_on=['Date'], right_on=['Date'], how='inner') rslts_df['Cash'] = np.where(rslts_df['FD_Points'] > rslts_df['Min Cash Score'],'Y','N') rslts_df['Percentile'] = (rslts_df['FD_Points'] - rslts_df['Min Cash Score']) / (rslts_df['1st Place Score'] - rslts_df['Min Cash Score']) rslts_df = rslts_df[['Optimization_No','Date','Predicted_Score','Cost','Player_Count','FD_Points','Cash','Percentile']] return rslts_df def percentile_conversion(rslts_df, prcnt_conv_dict): conversion_df = pd.DataFrame.from_dict(prcnt_conv_dict, orient='index').reset_index() conversion_df.columns = ['Percentile','multiplier'] rslts_df = rslts_df.sort_values('Percentile') conversion_df = conversion_df.sort_values('Percentile') rslts_df = pd.merge_asof(rslts_df, conversion_df, on='Percentile', direction='nearest') rslts_df.Cost = rslts_df.Cost.str.replace('$','') rslts_df.Cost = rslts_df.Cost.astype(float) rslts_df['Outcome'] = np.where(rslts_df.Cash == 'Y',rslts_df.Cost * rslts_df.multiplier, 0) return rslts_df def roi(fnl_df): print('ROI%: ' + str((((fnl_df.Outcome.sum() / fnl_df.Cost.sum()) - 1) * 100))) print('Total $ Value: ' + str(fnl_df.Outcome.sum() - fnl_df.Cost.sum())) # Variables / Hard Codes # hist_results_path = 'fanDuel_results_data.csv' final_df_path = 'final_df.csv' number_of_lineups = 10 players_to_remove = [] percentile_conversion_data = {.05:1.7, .1:1.7, .15:1.7, .2:2, .25:2.1, .3:2.1, .35:2.1, .4:2.3, .45:3, .5:3.9, .55:4.9, .6:7.4, .65:9.2, .7:13.8, .75:27.7, .8:39.1, .85:189.5, .9:827, .95:1755.1} # Execution # print('Execution Started') ####### Execution ####### hist_results = import_hist_results(hist_results_path) import_final_df = import_hist_results(final_df_path) gameLog_dt =
pd.read_csv('gameLog_dt.csv')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created 2022 @author: mminot """ import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import re import pickle from matplotlib.backends.backend_pdf import PdfPages import seaborn as sns def add_metric_to_df(df, is_float, metric_str): data = df.copy() modified_metric = [] if not is_float: for entry in data['output/final_test_' + metric_str]: m = re.search(r'[\-]*0\.[0-9]{4}',entry) try: modified_metric.append(float(m.group(0))) except: if entry.startswith('nan'): modified_metric.append(np.nan) else: modified_metric.append(np.nan) data['best_' + metric_str] = modified_metric else: data['best_' + metric_str] = data['output/final_test_' + metric_str] return data def get_rho_by_variable(df,variable_str, metric_str): df = df[['best_' + metric_str,variable_str,'seed']].copy() s1,s2,s3, s4, s5 = df[df['seed'] == 1].copy(), df[df['seed'] == 2].copy(), df[df['seed'] == 3].copy(), df[df['seed'] == 4].copy(), df[df['seed'] == 5].copy() variable_arr = df[variable_str].drop_duplicates().values variable_arr.sort() df = df.drop_duplicates([variable_str,'seed'],keep='first') df = df.sort_values([variable_str]) for var in variable_arr: if var not in s1[variable_str].values: df = df.append({'best_' + metric_str: np.nan, variable_str: var, 'seed': 1}, ignore_index=True) if var not in s2[variable_str].values: df = df.append({'best_' + metric_str: np.nan, variable_str: var, 'seed': 2}, ignore_index=True) if var not in s3[variable_str].values: df = df.append({'best_' + metric_str: np.nan, variable_str: var, 'seed': 3}, ignore_index=True) if var not in s4[variable_str].values: df = df.append({'best_' + metric_str: np.nan, variable_str: var, 'seed': 4}, ignore_index=True) if var not in s5[variable_str].values: df = df.append({'best_' + metric_str: np.nan, variable_str: var, 'seed': 5}, ignore_index=True) df = df.sort_values(by=[variable_str]) test_rho = [list (x) for x in (zip(df[df['seed'] == 1]['best_' + metric_str], df[df['seed'] == 2]['best_' + metric_str], df[df['seed'] == 3]['best_' + metric_str], df[df['seed'] == 4]['best_' + metric_str], df[df['seed'] == 5]['best_' + metric_str], ))] return test_rho data_type = 'her2' path = f'../results/' cnn = 'her2_cnn.csv' transformer = 'her2_transformer.csv' model_list = [cnn, transformer] model_str_list = ['cnn', 'transformer'] for model, model_str in zip(model_list, model_str_list): data = pd.read_csv(path + model) data['style_col'] = 'NT Augmented' #Parse Metric from DataFrame data = add_metric_to_df(data, is_float = False, metric_str = 'mcc') data = data.rename(columns = {'truncate_factor': 'training pos/neg ratio'}) data_2 = data[data['aug_factor'] == '2'] data_2_rename = data_2.copy() #rename dna aug fraction 1 to DNA data_2_rename['aug_factor'] = '2' data_2_rename['style_col'] = '2' #convert aug_factor type from str to int data_5 = data[data['aug_factor'] == '5'] data_5_rename = data_5.copy() #rename dna aug fraction 1 to DNA data_5_rename['aug_factor'] = '5' data_5_rename['style_col'] = '5' data_10 = data[data['aug_factor'] == '10'] data_10_rename = data_10.copy() #rename dna aug fraction 1 to DNA data_10_rename['aug_factor'] = '10' data_10_rename['style_col'] = '10' data = data.append(data_2_rename, ignore_index = True) data =
pd.merge(data,data_2, how='outer', indicator=True)
pandas.merge
# -*- coding: utf-8 -*- """ Created on Fri Jan 31 19:28:58 2020 @author: hcb """ import pandas as pd import numpy as np import lightgbm as lgb import os from tqdm import tqdm from sklearn.model_selection import KFold from sklearn.metrics import f1_score from config import config import warnings from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import TruncatedSVD import geohash warnings.filterwarnings("ignore") trn_path = config.train_dir test_path = config.test_dir def mode_mean(x): return x.mode().mean() def get_data(path): df_list = [] for file in tqdm(sorted(os.listdir(path))): file_path = os.path.join(path, file) df = pd.read_csv(file_path) df['time_id'] = list(range(len(df))) df_list.append(df) df = pd.concat(df_list) return df def get_latlng(df, precision=7): tmp_df = pd.DataFrame() tmp_df['lng'] = df['lon'] tmp_df['lat'] = df['lat'] tmp_df['code'] = tmp_df[[ 'lng', 'lat' ]].apply(lambda x: geohash.encode(x['lat'], x['lng'], precision=precision), axis=1) code = tmp_df['code'].values return code def transform_day(df): df['day'] = df['time'].apply(lambda x: int(x[0:4])) df['month'] = df['time'].apply(lambda x: int(x[0:2])) df['hour'] = df['time'].apply(lambda x: int(x[5:7])) df['minute'] = df['time'].apply(lambda x: int(x[8:10])) df['seconds'] = df['time'].apply(lambda x: int(x[11:13])) df['time_transform'] = (df['month'] * 31 + df['day']) * 24 + df[ 'hour' ] + df['minute'] / 60 + df['seconds'] / 3600 return df def get_feature(df2, train): df = df2.copy() df['new_id'] = (df['渔船ID'] + 1) * 10000 + df['time_id'] tmp_df = df[['渔船ID', 'lat', 'lon', 'time_transform', 'new_id']].copy() tmp_df.columns = ['渔船ID', 'x_1', 'y_1', 'time_transform_1', 'new_id'] tmp_df['new_id'] = tmp_df['new_id'] + 1 df = df.merge(tmp_df, on=['渔船ID', 'new_id'], how='left') df['dis_path'] = np.sqrt((df['x_1'] - df['lat']) ** 2 + (df['y_1'] - df['lon']) ** 2) df['slope'] = np.abs((df['y_1'] - df['lon']) / (df['x_1'] - df['lat'] + 0.001)) df.dropna(inplace=True) tmp_df = df.groupby('渔船ID')['dis_path'].agg({ 'max', 'median', 'mean', 'sum' }).reset_index() tmp_df.columns = ['渔船ID', 'dis_path_max', 'dis_path_median', 'dis_path_mean', 'dis_path_sum'] train = train.merge(tmp_df, on='渔船ID', how='left') tmp_df = df.groupby('渔船ID')['slope'].agg({ 'max', 'median', 'mean' }).reset_index() tmp_df.columns = ['渔船ID', 'slope_max', 'slope_median', 'slope_mean1'] train = train.merge(tmp_df, on='渔船ID', how='left') tmp_df = df[df['速度'] > 0] tmp_df = tmp_df.groupby('渔船ID')['dis_path'].agg({ 'min', 'std', 'median', 'mean' }).reset_index() tmp_df.columns = ['渔船ID', 'dis_path_min2', 'dis_path_std2', 'dis_path_median2', 'dis_path_mean'] train = train.merge(tmp_df, on='渔船ID', how='left') tmp_df = df.groupby('渔船ID')['slope'].agg({ 'min', 'median', 'mean' }).reset_index() tmp_df.columns = ['渔船ID', 'slope_min', 'slope_median2', 'slope_mean2'] train = train.merge(tmp_df, on='渔船ID', how='left') tmp_df = df[df['速度'] > 0] tmp_df = tmp_df.groupby('渔船ID')['slope'].agg({ 'min', 'std', 'median', 'mean' }).reset_index() tmp_df.columns = ['渔船ID', 'slope_min3', 'slope_std3', 'slope_median3', 'slope_mean3'] train = train.merge(tmp_df, on='渔船ID', how='left') df['time_delt'] = np.abs(df['time_transform_1'] - df['time_transform']) df['dis/time'] = df['dis_path'] / df['time_delt'] tmp_df = df.groupby('渔船ID')['dis/time'].agg({ 'mean', 'median' }).reset_index() tmp_df.columns = ['渔船ID', 'dis/time_mean', 'dis/time_median'] train = train.merge(tmp_df, on='渔船ID', how='left') return train def get_feature2(df2, train): df = df2.copy() df['new_id'] = (df['渔船ID'] + 1) * 10000 + df['time_id'] tmp_df = df[['渔船ID', '方向', '速度', 'new_id']].copy() tmp_df.columns = ['渔船ID', '方向_1', '速度_1', 'new_id'] tmp_df['new_id'] = tmp_df['new_id'] + 1 df = df.merge(tmp_df, on=['渔船ID', 'new_id'], how='left') df['方向_delt'] = np.abs(df['方向_1'] - df['方向']) df['速度_delt'] = np.abs(df['速度_1'] - df['速度']) df.dropna(inplace=True) tmp_df = df.groupby('渔船ID')['方向_delt'].agg({ 'max', 'median', 'mean' }).reset_index() tmp_df.columns = ['渔船ID', '方向_delt_mmax', '方向_delt_median', '方向_delt_mean'] train = train.merge(tmp_df, on='渔船ID', how='left') tmp_df = df[df['速度'] > 0] tmp_df = df.groupby('渔船ID')['方向_delt'].agg({ 'min', 'std', 'median', 'mean' }).reset_index() tmp_df.columns = ['渔船ID', '方向_delt_min2', '方向_delt_std2', '方向_delt_median2', '方向_delt_mean2'] train = train.merge(tmp_df, on='渔船ID', how='left') tmp_df = df[df['速度'] > 0] tmp_df = tmp_df.groupby('渔船ID')['方向_delt'].agg({ 'min', 'std', 'median', 'mean' }).reset_index() tmp_df.columns = ['渔船ID', '方向_delt_min3', '方向_delt_std3', '方向_delt_median3', '方向_delt_mean3'] train = train.merge(tmp_df, on='渔船ID', how='left') tmp_df = df.groupby('渔船ID')['速度_delt'].agg({ 'max', 'median', 'mean' }).reset_index() tmp_df.columns = ['渔船ID', '速度_delt_max', '速度_delt_median', '速度_delt_mean'] train = train.merge(tmp_df, on='渔船ID', how='left') tmp_df = df[df['速度'] > 0] tmp_df = df.groupby('渔船ID')['速度_delt'].agg({ 'min', 'std', 'median', 'mean' }).reset_index() tmp_df.columns = ['渔船ID', '速度_delt_min2', '速度_delt_std2', '速度_delt_median2', '速度_delt_mean2'] train = train.merge(tmp_df, on='渔船ID', how='left') tmp_df = df[df['速度'] > 0] tmp_df = tmp_df.groupby('渔船ID')['速度_delt'].agg({ 'min', 'std', 'median', 'mean' }).reset_index() tmp_df.columns = ['渔船ID', '速度_delt_min3', '速度_delt_std3', '速度_delt_median3', '速度_delt_mean3'] train = train.merge(tmp_df, on='渔船ID', how='left') return train df_train = get_data(trn_path) train_ = df_train[['渔船ID', 'type']].drop_duplicates() df_train = transform_day(df_train) train_ = get_feature(df_train, train_) train_ = get_feature2(df_train, train_) train_.drop(['type', 'slope_mean1', 'slope_mean2'], axis=1, inplace=True) df_test = get_data(test_path) test = df_test[['渔船ID']].drop_duplicates() df_test = transform_day(df_test) test = get_feature(df_test, test) test = get_feature2(df_test, test) test.drop(['slope_mean1', 'slope_mean2'], axis=1, inplace=True) print('begin tfidf') data = pd.concat((df_train, df_test)) data['destination'] = data['lat'].map(str) + '_' + data['lon'].map(str) enc_vec = TfidfVectorizer() group_df = data.groupby(['渔船ID'])['destination'].agg({ lambda x: list(x) }).reset_index() group_df.columns = ['渔船ID', 'destination'] group_df['destination'] = group_df['destination'].apply(lambda x: ' '.join(x)) tfidf_vec = enc_vec.fit_transform(group_df['destination']) svd_enc = TruncatedSVD(n_components=30, n_iter=20, random_state=1996) vec_svd = svd_enc.fit_transform(tfidf_vec) vec_svd = pd.DataFrame(vec_svd) vec_svd.columns = ['svd_{}_{}'.format('destination', i) for i in range(30)] group_df =
pd.concat([group_df, vec_svd], axis=1)
pandas.concat
""" Routine for Classifier and NER training. Provide a version and a model will be trained on a dataset of the same version. This script expects data/<version> to be a directory where models, metrics and dataset are present. Usage: train.py <version> train.py (classification|ner) <version> train.py (-h | --help) train.py --version Options: <version> The version of the dataset to use, the model produced will also be in the same dir. -h --help Show this screen. --version Show version. """ import argparse import json import os import functools from datetime import datetime import pandas as pd import semver from sklearn.model_selection import train_test_split from tqdm import tqdm from slu import constants as const from slu.dev.version import check_version_save_config from slu.src.controller.prediction import get_workflow from slu.utils import logger from slu.utils.config import Config, YAMLLocalConfig def make_label_column_uniform(data_frame: pd.DataFrame) -> None: if const.INTENTS in data_frame.columns: column = const.INTENTS elif const.LABELS in data_frame.columns: column = const.LABELS elif const.TAG in data_frame.columns: column = const.TAG else: raise ValueError( f"Expected one of {const.LABELS}, {const.TAG} to be present in the dataset." ) data_frame.rename(columns={column: const.TAG}, inplace=True) def reftime_patterns(reftime: str): time_fns = [ datetime.fromisoformat, lambda date_string: datetime.strptime(date_string, '%Y-%m-%d %H:%M:%S.%f %z %Z'), lambda date_string: datetime.strptime(date_string, '%Y-%m-%dT%H:%M:%SZ'), lambda date_string: datetime.strptime(date_string, '%Y-%m-%dT%H:%M:%S.%f%z') ] for time_fn in time_fns: try: return time_fn(reftime) except ValueError: continue raise ValueError(f"Could not parse reftime {reftime}") def make_reftime_column_uniform(data_frame: pd.DataFrame) -> None: if const.REFERENCE_TIME not in data_frame.columns: return for i, row in tqdm(data_frame.iterrows(), total=len(data_frame), desc="Fixing reference time"): if row[const.REFERENCE_TIME] is not None and not pd.isna(row[const.REFERENCE_TIME]): data_frame.loc[i, const.REFERENCE_TIME] = reftime_patterns(row[const.REFERENCE_TIME]).isoformat() def make_data_column_uniform(data_frame: pd.DataFrame) -> None: if const.ALTERNATIVES in data_frame.columns: column = const.ALTERNATIVES elif const.DATA in data_frame.columns: column = const.DATA else: raise ValueError( f"Expected one of {const.ALTERNATIVES}, {const.DATA} to be present in the dataset." ) data_frame.rename(columns={column: const.ALTERNATIVES}, inplace=True) for i, row in tqdm( data_frame.iterrows(), total=len(data_frame), desc="Fixing data structure" ): if isinstance(row[const.ALTERNATIVES], str): data = json.loads(row[const.ALTERNATIVES]) if const.ALTERNATIVES in data: data_frame.loc[i, const.ALTERNATIVES] = json.dumps( data[const.ALTERNATIVES] ) def create_data_splits(args: argparse.Namespace) -> None: """ Create a data split for the given version. :param args: The arguments passed to the script. """ version = args.version project_config_map = YAMLLocalConfig().generate() config: Config = list(project_config_map.values()).pop() check_version_save_config(config, version) dataset_file = args.file train_size = args.train_size test_size = args.test_size stratify = args.stratify dest = args.dest or config.get_dataset_dir(const.CLASSIFICATION) if os.listdir(dest): ver_ = semver.VersionInfo.parse(config.version) ver_.bump_patch() raise RuntimeError( f""" Data already exists in {dest} You should create a new version using: ```shell slu dir-setup --version {str(ver_.bump_patch())} ``` """.strip() ) if not os.path.isdir(dest): raise ValueError( f"Destination directory {dest} does not exist or is not a directory." ) data_frame = pd.read_csv(dataset_file) logger.debug(f"Data frame: {data_frame.shape}") skip_list = config.get_skip_list(const.CLASSIFICATION) make_label_column_uniform(data_frame) make_data_column_uniform(data_frame) make_reftime_column_uniform(data_frame) skip_filter = data_frame[const.TAG].isin(skip_list) failed_transcripts = data_frame[const.ALTERNATIVES].isin(["[[]]", "[]"]) non_empty_transcripts = data_frame[const.ALTERNATIVES].isna() invalid_samples = skip_filter | non_empty_transcripts | failed_transcripts train_skip_samples = data_frame[invalid_samples] train_available_samples = data_frame[~invalid_samples] logger.info( f"Dataset has {len(train_skip_samples)} samples unfit for training." f" Using this for tests and {len(train_available_samples)} for train-test split." ) if stratify: labels = data_frame[const.TAG][~invalid_samples] else: labels = None train, test = train_test_split( train_available_samples, train_size=train_size, test_size=test_size, stratify=labels, ) test = pd.concat([train_skip_samples, test], sort=False) train.to_csv(os.path.join(dest, f"{const.TRAIN}.csv"), index=False) test.to_csv(os.path.join(dest, f"{const.TEST}.csv"), index=False) def merge_datasets(args: argparse.Namespace) -> None: """ Merge the datasets. """ data_files = args.files file_name = args.out data_frames = pd.concat([
pd.read_csv(data_file)
pandas.read_csv
# -------------- #Importing header files import pandas as pd import matplotlib.pyplot as plt import seaborn as sns #Code starts here data=
pd.read_csv(path)
pandas.read_csv
import numpy as np import pandas as pd import pytest import xarray as xr from sklearn.utils.estimator_checks import parametrize_with_checks from skdownscale.pointwise_models import ( AnalogRegression, BcsdPrecipitation, BcsdTemperature, CunnaneTransformer, EquidistantCdfMatcher, LinearTrendTransformer, PaddedDOYGrouper, PureAnalog, PureRegression, QuantileMapper, QuantileMappingReressor, ZScoreRegressor, ) @pytest.fixture(scope='module') def sample_X_y(n=365): index = pd.date_range('2019-01-01', periods=n) X = pd.DataFrame( {'foo': np.sin(np.linspace(-10 * np.pi, 10 * np.pi, n)) * 10, 'bar': np.random.rand((n))}, index=index, ) y = X['foo'] + 2 return X, y @parametrize_with_checks( [ # Regressors AnalogRegression(), BcsdPrecipitation(), BcsdTemperature(), PureAnalog(), PureRegression(), ZScoreRegressor(), QuantileMappingReressor(n_endpoints=2), EquidistantCdfMatcher(kind='difference', n_endpoints=2), EquidistantCdfMatcher(kind='ratio', n_endpoints=2), # transformers LinearTrendTransformer(), CunnaneTransformer(), QuantileMapper(), ] ) def test_sklearn_compatible_estimator(estimator, check): check(estimator) def test_linear_trend_roundtrip(): # TODO: there is probably a better analytic test here n = 100 trend = 1 yint = 15 trendline = trend * np.arange(n) + yint trendline = trendline.reshape(-1, 1) noise = np.sin(np.linspace(-10 * np.pi, 10 * np.pi, n)) * 10 noise = noise.reshape(-1, 1) data = trendline + noise ltt = LinearTrendTransformer() # remove trend d_no_trend = ltt.fit_transform(data) # assert detrended data is equal to noise np.testing.assert_almost_equal(d_no_trend, noise, decimal=0) # assert linear coef is equal to trend np.testing.assert_almost_equal(ltt.lr_model_.coef_, trend, decimal=0) # assert roundtrip np.testing.assert_array_equal(ltt.inverse_transform(d_no_trend), data) def test_quantile_mapper(): n = 100 expected = np.sin(np.linspace(-10 * np.pi, 10 * np.pi, n)) * 10 expected = expected.reshape(-1, 1) with_bias = expected + 2 mapper = QuantileMapper() mapper.fit(expected) actual = mapper.transform(with_bias) np.testing.assert_almost_equal(actual, expected) @pytest.mark.xfail(reason='Need 3 part QM routine to handle bias removal') def test_quantile_mapper_detrend(): n = 100 trend = 1 yint = 15 trendline = trend * np.arange(n) + yint base = np.sin(np.linspace(-10 * np.pi, 10 * np.pi, n)) * 10 expected = base + trendline with_bias = expected + 2 mapper = QuantileMapper(detrend=True) mapper.fit(base) actual = mapper.transform(with_bias) np.testing.assert_almost_equal(actual.squeeze(), expected) @pytest.mark.parametrize( 'model', [ BcsdTemperature(), PureAnalog(), AnalogRegression(), PureRegression(), ZScoreRegressor(), QuantileMappingReressor(), QuantileMappingReressor(extrapolate='min'), QuantileMappingReressor(extrapolate='max'), QuantileMappingReressor(extrapolate='both'), QuantileMappingReressor(extrapolate='1to1'), EquidistantCdfMatcher(), EquidistantCdfMatcher(extrapolate='min'), EquidistantCdfMatcher(extrapolate='max'), EquidistantCdfMatcher(extrapolate='both'), EquidistantCdfMatcher(extrapolate='1to1'), ], ) def test_linear_model(model): n = 365 # TODO: add test for time other time ranges (e.g. < 365 days) index = pd.date_range('2019-01-01', periods=n) X = pd.DataFrame({'foo': np.sin(np.linspace(-10 * np.pi, 10 * np.pi, n)) * 10}, index=index) y = X + 2 model.fit(X, y) y_hat = model.predict(X) assert len(y_hat) == len(X) @pytest.mark.parametrize( 'model_cls', [PureAnalog, AnalogRegression, PureRegression], ) def test_models_with_multiple_features(sample_X_y, model_cls): X, y = sample_X_y model = model_cls() model.fit(X, y) y_hat = model.predict(X) assert len(y_hat) == len(X) @pytest.mark.parametrize( 'kind', ['best_analog', 'sample_analogs', 'weight_analogs', 'mean_analogs'], ) def test_gard_analog_models(sample_X_y, kind): X, y = sample_X_y # test non threshold modeling model = PureAnalog(kind=kind, n_analogs=3) model.fit(X, y) out = model.predict(X) y_hat = out['pred'] error = out['prediction_error'] prob = out['exceedance_prob'] assert len(prob) == len(error) == len(y_hat) == len(X) assert (prob == 1).all() # test threshold modeling model = PureAnalog(kind=kind, n_analogs=3, thresh=0) model.fit(X, y) out = model.predict(X) y_hat = out['pred'] error = out['prediction_error'] prob = out['exceedance_prob'] assert len(prob) == len(error) == len(y_hat) == len(X) assert (prob <= 1).all() assert (prob >= 0).all() @pytest.mark.parametrize('thresh', [None, 3]) def test_gard_analog_regression_models(sample_X_y, thresh): X, y = sample_X_y model = AnalogRegression(thresh=thresh) model.fit(X, y) out = model.predict(X) y_hat = out['pred'] error = out['prediction_error'] prob = out['exceedance_prob'] assert len(prob) == len(error) == len(y_hat) == len(X) if model.thresh: assert (prob <= 1).all() assert (prob >= 0).all() else: assert (prob == 1).all() @pytest.mark.parametrize('thresh', [None, 3]) def test_gard_pure_regression_models(sample_X_y, thresh): X, y = sample_X_y model = PureRegression(thresh=thresh) model.fit(X, y) out = model.predict(X) y_hat = out['pred'] error = out['prediction_error'] prob = out['exceedance_prob'] assert len(prob) == len(error) == len(y_hat) == len(X) if model.thresh: assert (prob <= 1).all() assert (prob >= 0).all() else: assert (prob == 1).all() @pytest.mark.parametrize('model_cls', [BcsdPrecipitation]) def test_linear_model_prec(model_cls): n = 365 # TODO: add test for time other time ranges (e.g. < 365 days) index = pd.date_range('2019-01-01', periods=n) X = pd.DataFrame({'foo': np.random.random(n)}, index=index) y = X + 2 model = model_cls() model.fit(X, y) y_hat = model.predict(X) assert len(y_hat) == len(X) def test_zscore_scale(): time = pd.date_range(start='2018-01-01', end='2020-01-01') data_X = np.linspace(0, 1, len(time)) data_y = data_X * 2 X = xr.DataArray(data_X, name='foo', dims=['index'], coords={'index': time}).to_dataframe() y = xr.DataArray(data_y, name='foo', dims=['index'], coords={'index': time}).to_dataframe() data_scale_expected = [2 for i in np.zeros(364)] scale_expected = xr.DataArray( data_scale_expected, name='foo', dims=['day'], coords={'day': np.arange(1, 365)} ).to_series() zscore = ZScoreRegressor() zscore.fit(X, y) np.testing.assert_allclose(zscore.scale_, scale_expected) def test_zscore_shift(): time = pd.date_range(start='2018-01-01', end='2020-01-01') data_X = np.zeros(len(time)) data_y = np.ones(len(time)) X = xr.DataArray(data_X, name='foo', dims=['index'], coords={'index': time}).to_dataframe() y = xr.DataArray(data_y, name='foo', dims=['index'], coords={'index': time}).to_dataframe() shift_expected = xr.DataArray( np.ones(364), name='foo', dims=['day'], coords={'day': np.arange(1, 365)} ).to_series() zscore = ZScoreRegressor() zscore.fit(X, y) np.testing.assert_allclose(zscore.shift_, shift_expected) def test_zscore_predict(): time = pd.date_range(start='2018-01-01', end='2020-01-01') data_X = np.linspace(0, 1, len(time)) X = xr.DataArray(data_X, name='foo', dims=['index'], coords={'index': time}).to_dataframe() shift = xr.DataArray( np.zeros(364), name='foo', dims=['day'], coords={'day': np.arange(1, 365)} ).to_series() scale = xr.DataArray( np.ones(364), name='foo', dims=['day'], coords={'day': np.arange(1, 365)} ).to_series() zscore = ZScoreRegressor() zscore.shift_ = shift zscore.scale_ = scale i = int(zscore.window_width / 2) expected = xr.DataArray( data_X, name='foo', dims=['index'], coords={'index': time} ).to_dataframe() expected[0:i] = 'NaN' expected[-i:] = 'NaN' out = zscore.predict(X) np.testing.assert_allclose(out.astype(float), expected.astype(float)) def test_paddeddoygrouper(): index = pd.date_range(start='1980-01-01', end='1982-12-31') X = pd.DataFrame({'foo': np.random.random(len(index))}, index=index) day_groups = PaddedDOYGrouper(X) doy_group_list = dict(list(day_groups)) day_of_year = 123 days_included = np.arange(day_of_year - 15, day_of_year + 16) np.testing.assert_array_equal( np.unique(doy_group_list[day_of_year].index.dayofyear), days_included ) def test_BcsdTemperature_nasanex(): index =
pd.date_range(start='1980-01-01', end='1982-12-31')
pandas.date_range
import pandas as pd import numpy as np import datetime import calendar from math import e from brightwind.analyse import plot as plt # noinspection PyProtectedMember from brightwind.analyse.analyse import dist_by_dir_sector, dist_12x24, coverage, _convert_df_to_series from ipywidgets import FloatProgress from IPython.display import display from IPython.display import clear_output import re import warnings pd.options.mode.chained_assignment = None __all__ = ['Shear'] class Shear: class TimeSeries: def __init__(self, wspds, heights, min_speed=3, calc_method='power_law', max_plot_height=None, maximise_data=False): """ Calculates alpha, using the power law, or the roughness coefficient, using the log law, for each timestamp of a wind series. :param wspds: pandas DataFrame, list of pandas.Series or list of wind speeds to be used for calculating shear. :type wspds: pandas.DataFrame, list of pandas.Series or list. :param heights: List of anemometer heights. :type heights: list :param min_speed: Only speeds higher than this would be considered for calculating shear, default is 3. :type min_speed: float :param calc_method: method to use for calculation, either 'power_law' (returns alpha) or 'log_law' (returns the roughness coefficient). :type calc_method: str :param max_plot_height: height to which the wind profile plot is extended. :type max_plot_height: float :param maximise_data: If maximise_data is True, calculations will be carried out on all data where two or more anemometers readings exist for a timestamp. If False, calculations will only be carried out on timestamps where readings exist for all anemometers. :type maximise_data: Boolean :return TimeSeries object containing calculated alpha/roughness coefficient values, a plot and other data. :rtype TimeSeries object **Example usage** :: import brightwind as bw import pprint # Load anemometer data to calculate exponents data = bw.load_csv(C:\\Users\\Stephen\\Documents\\Analysis\\demo_data) anemometers = data[['Spd80mS', 'Spd60mS','Spd40mS']] heights = [80, 60, 40] # Using with a DataFrame of wind speeds timeseries_power_law = bw.Shear.TimeSeries(anemometers, heights, maximise_data=True) timeseries_log_law = bw.Shear.TimeSeries(anemometers, heights, calc_method='log_law', max_plot_height=120) # Get the alpha or roughness values calculated timeseries_power_law.alpha timeseries_log_law.roughness # View plot timeseries_power_law.plot timeseries_log_law.plot # View input anemometer data timeseries_power_law.wspds timeseries_log_law.wspds # View other information pprint.pprint(timeseries_power_law.info) pprint.pprint(timeseries_log_law.info) """ print('This may take a while...') wspds, cvg = Shear._data_prep(wspds=wspds, heights=heights, min_speed=min_speed, maximise_data=maximise_data) if calc_method == 'power_law': alpha_c = (wspds[(wspds > min_speed).all(axis=1)].apply(Shear._calc_power_law, heights=heights, return_coeff=True, maximise_data=maximise_data, axis=1)) alpha = pd.Series(alpha_c.iloc[:, 0], name='alpha') self._alpha = alpha elif calc_method == 'log_law': slope_intercept = (wspds[(wspds > min_speed).all(axis=1)].apply(Shear._calc_log_law, heights=heights, return_coeff=True, maximise_data=maximise_data, axis=1)) slope = slope_intercept.iloc[:, 0] intercept = slope_intercept.iloc[:, 1] roughness_coefficient = pd.Series(Shear._calc_roughness(slope=slope, intercept=intercept), name='roughness_coefficient') self._roughness = roughness_coefficient clear_output() avg_plot = Shear.Average(wspds=wspds, heights=heights, calc_method=calc_method, max_plot_height=max_plot_height) self.origin = 'TimeSeries' self.calc_method = calc_method self.wspds = wspds self.plot = avg_plot.plot self.info = Shear._create_info(self, heights=heights, cvg=cvg, min_speed=min_speed) @property def alpha(self): return self._alpha @property def roughness(self): return self._roughness def apply(self, wspds, height, shear_to): """" Applies shear calculated to a wind speed time series and scales wind speed from one height to another for each matching timestamp. :param self: TimeSeries object to use when applying shear to the data. :type self: TimeSeries object :param wspds: Wind speed time series to apply shear to. :type wspds: pandas.Series :param height: height of above wspds. :type height: float :param shear_to: height to which wspds should be scaled to. :type shear_to: float :return: a pandas.Series of the scaled wind speeds. :rtype: pandas.Series **Example Usage** :: import brightwind as bw # Load anemometer data to calculate exponents data = bw.load_csv(C:\\Users\\Stephen\\Documents\\Analysis\\demo_data) anemometers = data[['Spd80mS', 'Spd60mS','Spd40mS']] heights = [80, 60, 40] # Get power law object timeseries_power_law = bw.Shear.TimeSeries(anemometers, heights) timeseries_log_law = bw.Shear.TimeSeries(anemometers, heights, calc_method='log_law') # Scale wind speeds using calculated exponents timeseries_power_law.apply(data['Spd40mN'], height=40, shear_to=70) timeseries_log_law.apply(data['Spd40mN'], height=40, shear_to=70) """ return Shear._apply(self, wspds, height, shear_to) class TimeOfDay: def __init__(self, wspds, heights, min_speed=3, calc_method='power_law', by_month=True, segment_start_time=7, segments_per_day=24, plot_type='line'): """ Calculates alpha, using the power law, or the roughness coefficient, using the log law, for a wind series binned by time of the day and (optionally by) month, depending on the user's inputs. The alpha/roughness coefficient values are calculated based on the average wind speeds at each measurement height in each bin. :param wspds: pandas.DataFrame, list of pandas.Series or list of wind speeds to be used for calculating shear. :type wspds: pandas.DataFrame, list of pandas.Series or list. :param heights: List of anemometer heights.. :type heights: list :param min_speed: Only speeds higher than this would be considered for calculating shear, default is 3 :type min_speed: float :param calc_method: method to use for calculation, either 'power_law' (returns alpha) or 'log_law' (returns the roughness coefficient). :type calc_method: str :param by_month: If True, calculate alpha or roughness coefficient values for each daily segment and month. If False, average alpha or roughness coefficient values are calculated for each daily segment across all months. :type by_month: Boolean :param segment_start_time: Starting time for first segment. :type segment_start_time: int :param segments_per_day: Number of segments into which each 24 period is split. Must be a divisor of 24. :type segments_per_day: int :param plot_type: Type of plot to be generated. Options include 'line', 'step' and '12x24'. :type plot_type: str :return: TimeOfDay object containing calculated alpha/roughness coefficient values, a plot and other data. :rtype: TimeOfDay object **Example usage** :: import brightwind as bw import pprint # Load anemometer data to calculate exponents data = bw.load_csv(C:\\Users\\Stephen\\Documents\\Analysis\\demo_data) anemometers = data[['Spd80mS', 'Spd60mS','Spd40mS']] heights = [80, 60, 40] # Using with a DataFrame of wind speeds timeofday_power_law = bw.Shear.TimeOfDay(anemometers, heights, daily_segments=2, segment_start_time=7) timeofday_log_law = bw.Shear.TimeOfDay(anemometers, heights, calc_method='log_law', by_month=False) # Get alpha or roughness values calculated timeofday_power_law.alpha timeofday_log_law.roughness # View plot timeofday_power_law.plot timeofday_log_law.plot # View input data timeofday_power_law.wspds timeofday_log_law.wspds # View other information pprint.pprint(timeofday_power_law.info) pprint.pprint(timeofday_log_law.info) """ wspds, cvg = Shear._data_prep(wspds=wspds, heights=heights, min_speed=min_speed) # initialise empty series for later use start_times = pd.Series([]) time_wspds = pd.Series([]) mean_time_wspds = pd.Series([]) c = pd.Series([]) slope = pd.Series([]) intercept = pd.Series([]) alpha = pd.Series([]) roughness = pd.Series([]) slope_df = pd.DataFrame([]) intercept_df = pd.DataFrame([]) roughness_df = pd.DataFrame([]) alpha_df = pd.DataFrame([]) # time of day shear calculations interval = int(24 / segments_per_day) if by_month is False and plot_type == '12x24': raise ValueError("12x24 plot is only possible when 'by_month=True'") if not int(segment_start_time) % 1 == 0: raise ValueError("'segment_start_time' must be an integer between 0 and 24'") if not (24 % segments_per_day == 0) | (segments_per_day == 1): raise ValueError("'segments_per_day' must be a divisor of 24'") segment_start_time = str(segment_start_time) start_times[0] = datetime.datetime.strptime(segment_start_time, '%H') dt = datetime.timedelta(hours=interval) # extract wind speeds for each daily segment for i in range(1, segments_per_day): start_times[i] = start_times[i - 1] + dt # extract wind speeds for each month months_tot = pd.unique(wspds.index.month.values) for j in months_tot: anemometers_df = wspds[wspds.index.month == j] for i in range(0, segments_per_day): if segments_per_day == 1: mean_time_wspds[i] = anemometers_df.mean().dropna() elif i == segments_per_day - 1: start_times[i] = start_times[i].strftime("%H:%M:%S") start = str(start_times[i].time()) end = str(start_times[0].time()) time_wspds[i] = pd.DataFrame(anemometers_df).between_time(start, end, include_end=False) mean_time_wspds[i] = time_wspds[i][(time_wspds[i] > min_speed).all(axis=1)].mean().dropna() else: start_times[i] = start_times[i].strftime("%H:%M:%S") start = str(start_times[i].time()) end = str(start_times[i + 1].time()) time_wspds[i] = pd.DataFrame(anemometers_df).between_time(start, end, include_end=False) mean_time_wspds[i] = time_wspds[i][(time_wspds[i] > min_speed).all(axis=1)].mean().dropna() # calculate shear if calc_method == 'power_law': for i in range(0, len(mean_time_wspds)): alpha[i], c[i] = Shear._calc_power_law(mean_time_wspds[i].values, heights, return_coeff=True) alpha_df = pd.concat([alpha_df, alpha], axis=1) if calc_method == 'log_law': for i in range(0, len(mean_time_wspds)): slope[i], intercept[i] = Shear._calc_log_law(mean_time_wspds[i].values, heights, return_coeff=True) roughness[i] = Shear._calc_roughness(slope=slope[i], intercept=intercept[i]) roughness_df = pd.concat([roughness_df, roughness], axis=1) slope_df =
pd.concat([slope_df, slope], axis=1)
pandas.concat
import os import math import copy import random import calendar import csv import pandas as pd import numpy as np import networkx as nx import matplotlib import matplotlib.pyplot as plt import matplotlib.dates as mdates import matplotlib.ticker as ticker import sqlite3 import seaborn as sns #from atnresilience import atn_analysis as atn import atn_analysis import db_tools # Set global styles for plots plt.rcParams["font.family"] = "Times New Roman" sns.set_palette("colorblind") matplotlib.rc('xtick', labelsize=8) matplotlib.rc('ytick', labelsize=8) line_type = {1:'-',2:'--',3:':',4:'-.'} def remove_frequency(db_path, file, airline, include_data, can_limit, zs_limit, processed_direc): """ Creates a dictionary of airports and their removal frequency for a given airline Parameters ---------- file: int Year of selected data airline: string Airline to get data from include_data: string Type of airline data to query from csv can_limit: int Cancellation limit zs_limit: int The z-score limit Returns ------- Returns a dictionary containing airport removal frequency values Notes ----- """ df_net_tuple = pd.DataFrame() df_net = atn_analysis.raw_query(db_path, file, airline) df_net_tuple["Origin"] = df_net.Origin_Airport_Code df_net_tuple["Destination"] = df_net.Destination_Airport_Code graph = [tuple(x) for x in df_net_tuple.to_records(index=False)] G = nx.Graph() G.add_edges_from(graph) tempG = G.copy() Airport_Dict = {} for i in G.nodes(): Airport_Dict[i] = 0 Total_List = get_remove_list(db_path, file,include_data, airline, can_limit, zs_limit, processed_direc) if int(file)%4 == 0: total_day = 366 else: total_day = 365 for j in range(total_day): airport_list = Total_List[j] for l in airport_list: tempG.remove_node(l) Airport_Dict[l] = Airport_Dict[l] + 1 tempG = G.copy() return(Airport_Dict) def weighted_edge(db_path, file, airline): """ Creates a data frame of origin airports, destination airports and weights for each route Parameters ---------- file: int Year of selected data airline: string Airline to get data from include_data: string Type of airline data to query from csv can_limit: int Cancellation limit zs_limit: int The z-score limit Returns ------- Returns a data frame containing each respective weighted route from an origin airport to a destination Notes ----- """ df = atn_analysis.raw_query(db_path, file, airline) by_origin = df.groupby([df.Origin_Airport_Code]).Can_Status.count() airport_list = by_origin.index.tolist() df = df[df['Destination_Airport_Code'].isin(airport_list)] df_tuple = pd.DataFrame() df_weighted = df.groupby([df.Origin_Airport_Code, df.Destination_Airport_Code]).Can_Status.count().reset_index() df_tuple["Origin"] = df_weighted.Origin_Airport_Code df_tuple["Destination"] = df_weighted.Destination_Airport_Code file_str = int(str(file)[:4]) if calendar.isleap(file_str) == 1: days = 366 else: days = 365 df_tuple["Weight"] = df_weighted.Can_Status weight_values = [math.log(y, 10) for y in df_tuple.Weight.values] for i in range(0, len(weight_values)): df_tuple.Weight.values[i] = weight_values[i] return(df_tuple) def get_remove_list(db_path, file, include_data, airline, can_limit, zs_limit, processed_direc): """ Return a remove_list in a year (airline specific, include_data specific) based on cancelation limit and z_score limit. Parameters ---------- file: int Year of selected data include_data: string Specify what kind of data to include in processed flight data. See drop_flights in M-D File. Possible parameters are: CC: Cancellations only ADD: Arrival delays including diversions ADM: Purely arrival delays excluding cancellations or diversions DCC: Combined delay. If arrival delay is greater than a set threshold, the flight is considered cancelled DD: Departure delays. Does not include cancelled or diverted flights. airline: string Airline to get data from. This is the 2 letter airline code (ex: AA, UA, DL, WN) can_limit: float Cancellation Limit. Between 0 and 1 zs_limit: float z-score limit. Between 0 and 1 Returns ------- Pandas df Notes ----- """ z_score_path = '%s%s_%s_Zdata_%s.csv'%(processed_direc, file,airline,include_data) #df_score = pd.read_csv(raw_file_drop, index_col="Date") df_score = pd.read_csv(z_score_path, index_col = "Day_of_Year") df_score.index = pd.to_datetime(df_score.index) airport_list = df_score.columns.tolist() df = atn_analysis.raw_query(db_path,file,airline) df = df[df['Origin_Airport_Code'].isin(airport_list)] # Filtering to make sure airports are equal in both directions df = df[df['Destination_Airport_Code'].isin(airport_list)] by_origin_count = df.groupby(['Flight_Date', 'Origin_Airport_Code'], as_index=False)[['Can_Status']].count() by_origin = df.groupby(['Flight_Date', 'Origin_Airport_Code'], as_index=False)[['Can_Status']].sum() by_origin.Can_Status = by_origin.Can_Status / by_origin_count.Can_Status #print(by_origin) df_score["idx"] = df_score.index df_score = pd.melt(df_score, id_vars='idx', value_vars=airport_list) df_score = df_score.sort_values(['idx', 'variable'], ascending=[True, True]) df_score.columns = ["Date", "Airports", "Z_Score"] df_score.set_index('Date') df_score["Cancellations"] = by_origin.Can_Status ### Creating the or conditions. First is the percentage of delayed flights and the second is the z-score df_score["Z_score_9901"] = np.where((df_score['Cancellations'] > can_limit) | (df_score['Z_Score'] > zs_limit), 1, 0) #print(df_score) ### Creating pivot table for easy manipulation. This creates the date as the index with the properties corresponding to ### it and finally repeats this trend for all airports being considered. df_pivot = df_score.pivot_table('Z_score_9901', ['Date'], 'Airports') #print(df_pivot) s = np.asarray(np.where(df_pivot == 1, ['{}'.format(x) for x in df_pivot.columns], '')).tolist() s_nested = [] for k in s: p = list(filter(None,k)) #p = filter(None,k) s_nested.append(p) #s_nested.extend(p) return s_nested def inv_average_shortest_path_length(graph, weight=None): """ Creates an unweight inverse average path length graph Parameters ---------- graph: python graph object weight: default Returns ------- Returns the IAPL unweighted graph Notes ----- """ avg = 0.0 if weight is None: for node in graph: avg_path_length = nx.single_source_shortest_path_length(graph, node) # get the shortest path lengths from source to all reachable nodes (unweighted) del avg_path_length[node] # Deletes source node from the list to avoid division by 0 inv_avg_path_length = copy.deepcopy(avg_path_length) inv_avg_path_length.update((x, 1/y) for x, y in avg_path_length.items()) avg += sum(inv_avg_path_length.values()) n = len(graph) if n == 1 or n == 0: return 0 else: return avg/(n*(n-1)) def inv_average_shortest_path_length_W(graph, weight=None): """ Creates the table atn_performance in the database at the specified input location if one does not exist. Parameters ---------- graph: python graph object weight: default Returns ------- Returns the inverse average path length weighted graph Notes ----- """ avg = 0.0 if weight is None: for node in graph: avg_path_length = nx.single_source_dijkstra_path_length(graph, node) # get the shortest path lengths from source to all reachable nodes (weighted) del avg_path_length[node] # Deletes source node from the list to avoid division by 0 inv_avg_path_length = copy.deepcopy(avg_path_length) inv_avg_path_length.update((x, 1/y) for x, y in avg_path_length.items()) avg += sum(inv_avg_path_length.values()) n = len(graph) if n == 1 or n == 0: return 0 else: return avg/(n*(n-1)) def Data_Driven_W(file_list, airline_list, include_data, can_limit, zs_limit, processed_direc, graph_direc): """ Calculate the cluster size and IAPL for each day in a year after removal based on data-driven method. Parameters ---------- file_list: list List contaning years to process airline_list: list List contaning airlines to process include_data: string Specify what kind of data to include in processed flight data. See drop_flights in M-D File. Possible parameters are: CC: Cancellations only ADD: Arrival delays including diversions ADM: Purely arrival delays excluding cancellations or diversions DCC: Combined delay. If arrival delay is greater than a set threshold, the flight is considered cancelled DD: Departure delays. Does not include cancelled or diverted flights. can_limit: float Cancellation threshold zs_limit: float z-score threshold Returns ------- The cluster size and IAPL for each day of the year after removal based on data-driven method. Notes ----- """ for file in file_list: ## iteration of years first figure_num = 1 CSV_df = pd.DataFrame(columns = airline_list) for airline in airline_list: # CSV_df[airline] = [1,2,3,4] # CSV_file = "%s_DD_IAPL.csv" %(file) # CSV_df.to_csv(CSV_file, index=False) ## Get the directory path script_dir = os.path.dirname(os.getcwd()) db_local_path = "data/processed/atn_db.sqlite" ## df set up from Keshav (NO CHANGE) (Weighted Graph) df = pd.DataFrame() db_path = os.path.join(script_dir, db_local_path) fields = ["Origin_Airport_Code", "Destination_Airport_Code", "Can_Status"] df_net = atn_analysis.raw_query(db_path,file,airline) df["Origin_Airport_Code"] = df_net.Origin_Airport_Code df["Destination_Airport_Code"] = df_net.Destination_Airport_Code df["Can_Status"] = df_net.Can_Status by_origin = df.groupby([df.Origin_Airport_Code]).Can_Status.count() airport_list = by_origin.index.tolist() df = df[df['Destination_Airport_Code'].isin(airport_list)] #print(df) df_tuple = pd.DataFrame() df_weighted = df.groupby([df.Origin_Airport_Code, df.Destination_Airport_Code]).Can_Status.count().reset_index() df_tuple["Origin"] = df_weighted.Origin_Airport_Code df_tuple["Destination"] = df_weighted.Destination_Airport_Code if int(file)%4 == 0: days = 366 else: days = 365 df_tuple["Weight"] = df_weighted.Can_Status/days df_tuple.Weight = 1/df_tuple.Weight ## Output lists initialization: #day_IAPL = 0 day_CS = 0 #output_IAPL = [] output_CS = [] NoD = [] ## Graph object initialization graph = [tuple(x) for x in df_tuple.to_records(index=False)] G = nx.Graph() ## Set up the weighted graph G.add_weighted_edges_from(graph) #print(G.nodes()) tempG = G.copy() #use temporary graph for the loop ## Remove list for the whole year Total_Remove_List = get_remove_list(db_path,file,include_data, airline, can_limit, zs_limit,processed_direc) if int(file)%4 == 0: total_day = 366 else: total_day = 365 for j in range(total_day): ## Remove the nodes in each day and get the CS and IAPL data #day_IAPL = 0 Day_Remove_List = Total_Remove_List[j] NoD.append(j) for l in Day_Remove_List: tempG.remove_node(l) #largest_component_b = max(nx.connected_components(tempG), key=len) #day_IAPL =(inv_average_shortest_path_length_W(tempG)) largest_component_b = max(nx.connected_components(tempG), key=len) day_CS = len(largest_component_b) #len(largest_component_b) = cluster size #cluster fraction = cluster size/number of nodes #output_IAPL.append(day_IAPL) output_CS.append(day_CS) #sum_IAPL = sum_IAPL + (inv_average_shortest_path_length(tempG)) tempG = G.copy() ## plotting command plt.figure(figure_num) #line = plt.plot(NoD,output_IAPL, label="{}".format(airline)) line = plt.plot(NoD,output_CS, label="{}".format(airline)) plt.legend() #CSV_df[airline] = output_IAPL CSV_df[airline] = output_CS #CSV_file = "%s_DD_IAPL.csv" %(file) CSV_file = "%s%s_DD_CS.csv" %(graph_direc,file) CSV_df.to_csv(CSV_file, index=False) #plt.title("{} Data Driven IAPL".format(str(file))) plt.xlabel("Day") #plt.ylabel("IAPL") plt.ylabel("Cluster Size") #plt.savefig("{}_Data_Driven_IAPL.png".format(str(file))) plt.savefig("%s%s_Data_Driven_CS.png"%(graph_direc,file)) plt.show() figure_num = figure_num + 1 def Pure_Graph_W_Shu(file_list, airline_list, include_data, processed_direc, rep_num): """ Calculate the linear algebraic connectivity, cluster size and IAPL for each day in a year after random removal based on Pure Graph method. Random Removal set up by shuffle function Parameters ---------- file_list: list List contaning years to process airline_list: list List contaning airlines to process include_data: string Specify what kind of data to include in processed flight data. See drop_flights in M-D File. Possible parameters are: CC: Cancellations only ADD: Arrival delays including diversions ADM: Purely arrival delays excluding cancellations or diversions DCC: Combined delay. If arrival delay is greater than a set threshold, the flight is considered cancelled DD: Departure delays. Does not include cancelled or diverted flights. rep_num: int Number of repititions Returns ------- csv with the cluster size and IAPL for each day of the year after removal based on data-driven method. Notes ----- """ for airline in airline_list: rep_ite = 1 Total_AC = [] Total_Cluster_Size = [] Total_IAPL = [] for i in range(len(file_list)): ## initialize the output lists Total_AC.append(0) Total_Cluster_Size.append(0) Total_IAPL.append(0) ## Save the data in csv filename1 = "%s%s_ACR.csv" %(processed_direc,airline) with open(filename1, 'w') as myfile1: wr1 = csv.writer(myfile1, quoting=csv.QUOTE_ALL) wr1.writerow(file_list) filename2 = "%s%s_IAPLR.csv" %(processed_direc,airline) with open(filename2, 'w') as myfile2: wr2 = csv.writer(myfile2, quoting=csv.QUOTE_ALL) wr2.writerow(file_list) filename3 = "%s%s_CSR.csv" %(processed_direc,airline) with open(filename3, 'w') as myfile3: wr3 = csv.writer(myfile3, quoting=csv.QUOTE_ALL) wr3.writerow(file_list) while rep_ite < rep_num+1: ## start the reptition year_IAPL = [] year_Cluster_Size = [] year_AC = [] for file in file_list: ## Get the directory path script_dir = os.path.dirname(os.getcwd()) db_local_path = "data/processed/atn_db.sqlite" ## df set up from Keshav (NO CHANGE) df = pd.DataFrame() db_path = os.path.join(script_dir, db_local_path) fields = ["Origin_Airport_Code", "Destination_Airport_Code", "Can_Status"] #df_net = pd.read_csv(comb_file, usecols=fields) df_net = atn_analysis.raw_query(db_path,file,airline) df["Origin_Airport_Code"] = df_net.Origin_Airport_Code df["Destination_Airport_Code"] = df_net.Destination_Airport_Code df["Can_Status"] = df_net.Can_Status by_origin = df.groupby([df.Origin_Airport_Code]).Can_Status.count() airport_list = by_origin.index.tolist() df = df[df['Destination_Airport_Code'].isin(airport_list)] #print(df) df_tuple =
pd.DataFrame()
pandas.DataFrame
import cobra from cobra.core.metabolite import elements_and_molecular_weights elements_and_molecular_weights['R']=0.0 elements_and_molecular_weights['Z']=0.0 import pandas as pd import numpy as np import csv #### Change Biomass composition # define a function change a biomass reaction in the model def update_biomass(model, rxn, stoich, metabolite): r = model.reactions.get_by_id(rxn) new_stoich = stoich # you now have a dictionary of new stoichs for your model for m,s in r.metabolites.items(): stoich = s*-1 temp_dict = {m:stoich} r.add_metabolites(temp_dict) r.add_metabolites(new_stoich) # Then get the total to equal 1 mg biomass DW total = 0 for m,s in r.metabolites.items(): gfw = model.metabolites.get_by_id(m.id).formula_weight mass = gfw*s*-1 total = total+mass correction = total/1000 # this will get it to 1000 ug total mass # Then adjust the stoichiometry as appropriate for m,s in r.metabolites.items(): # now change the stoich to_add = s/correction-s r.add_metabolites({m:to_add}) # Finally build the biomass_c metabolite imbal = r.check_mass_balance() if 'charge' in imbal.keys(): met_charge = imbal['charge']*-1 del imbal['charge'] met_mass = 0 formula_string = '' for e,v in imbal.items(): if v > 1e-10 or v < -1e-10: mass = elements_and_molecular_weights[e] met_mass = met_mass+(mass*-1*v) form_str = e+str(-1*v) formula_string = formula_string + form_str met = model.metabolites.get_by_id(metabolite) met.formula = formula_string met.charge = met_charge r.add_metabolites({met:1}) # Add GAM constraint if rxn == 'bof_c': gam_met = model.metabolites.GAM_const_c r.add_metabolites({gam_met:1}) model.repair() print(model.reactions.get_by_id(rxn).reaction) print('') print(model.metabolites.get_by_id(met.id).formula) print('') print(model.metabolites.get_by_id(met.id).formula_weight) print('') print(model.reactions.get_by_id(rxn).check_mass_balance()) return model ############################################# #### Simulate growth with all constraints#### ############################################# def figure_2LL(model): ## Run all 27 parameter combos and capture: #### - growth rate #### - biomass import math as m cols = ['ID','GR','mgDW','Cells'] data_out =
pd.DataFrame(columns=cols)
pandas.DataFrame
import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error from tensorflow.keras.layers import Dense from tensorflow.keras.models import Sequential from tensorflow.keras import backend as K from tensorflow.keras.optimizers import SGD, Adagrad, RMSprop, Adadelta, Adamax, Adam from tensorflow.keras.models import model_from_json from tensorflow.keras import backend as K import matplotlib import matplotlib.pyplot as plt matplotlib.use('Agg') import math class Preprocessing: def __init__(self): self.trainScore = 0 self.testScore = 0 self.rmseTrain = 0 self.rmseTest = 0 "load data input" def load_data(self, file): data =
pd.read_excel(file)
pandas.read_excel
""" Functions for analyzing openmc tally results This scripts contains functions for analyzing the tallies from the openmc statepoint file and manipulate the data into what is required in the criticality part (phase1a) of the FHR benchmark. """ import numpy as np import pylab as pl import matplotlib.colorbar as cbar import pandas as pd import matplotlib.pyplot as plt import sys sys.path.insert(1, '../../scripts/') from phase1a_constants import * ############################################################################### # Criticality Functions ############################################################################### def flux_conv(df, sp_power, k, kerr): """Converts flux unit from [n*cm/src] to [n/cm^2*s] Parameters ---------- df: pandas dataframe with flux, nu-fission, and fission values sp_power: float specific power of reactor [W/gU] k: keff [n/src] kerr: keff uncertainty [n/src] Returns ------- flux: np.array(float) array of flux in [n/cm2*s] for each energy group flux_err: np.array(float) array of flux uncertainties in [n/cm2*s] for each energy group """ P = 245486.6796001383 # W Q = 200 * 1.6022e-13 # J/fission nu_fission = np.array( df[df['score'].str.match('nu-fission')]['mean']) # n/src fission = np.array(df[df['score'].str.match('fission')] ['mean']) # fission/src og_flux = np.array(df[df['score'].str.match('flux')]['mean']) # n*cm/src nu_fission_err = np.array( df[df['score'].str.match('nu-fission')]['std. dev.']) fission_err = np.array(df[df['score'].str.match('fission')]['std. dev.']) og_flux_err = np.array(df[df['score'].str.match('flux')]['std. dev.']) nu = nu_fission / fission # n/fission N = P * nu / (Q * k) # src/s V = 3 * np.sqrt(3) / 2 * H_side ** 2 * z_thickness * T_pitch # cm3 flux = 1 / V * N * og_flux # n/(cm2*s) flux[np.isnan(flux)] = 0 flux_err = (np.sqrt((nu_fission_err / nu_fission)**2 + (fission_err / fission)**2 + (og_flux_err / og_flux)**2 + (kerr / k)**2)) * flux flux_err[np.isnan(flux_err)] = 0 return flux, flux_err def beta_b(sp, case): """Returns Beta-effective and its uncertainty Parameters ---------- sp: openmc.statepoint.StatePoint this statepoint.h5 file is created by running the openmc executable on the xml files generated by the build_xml.py files and when tallies_on toggle is on True. case: str case number for naming files Returns ------- This function generates a csv file with beta-effective and its uncertainty. """ name = 'analysis_output/p1a_' + case + '_b' mesh_tally_b = sp.get_tally(name='mesh tally b') df_b = mesh_tally_b.get_pandas_dataframe() beta = df_b['mean'][0] / df_b['mean'][1] beta_err = beta * np.sqrt((df_b['std. dev.'][0] / df_b['mean'][0]) ** 2 + (df_b['std. dev.'][1] / df_b['mean'][1])**2) df_bb = pd.DataFrame() df_bb['beta'] = [beta] df_bb['beta err'] = [beta_err] df_bb.to_csv(name + '.csv') return def reactivity_coefficient_b( keff_og, keff_og_unc, keff_new, keff_new_unc, temp_change): """Generates the reactivity coefficient and its uncertainty Parameters ---------- keff_og: float original keff keff_og_unc: float original keff's uncertainty keff_new: float keff after temperature change keff_og_new: float keff's uncertainty after temperature change temp_change: float temperature change (be sure to include +/- sign) Returns ------- coeff: float reactivity coefficient coeff_unc: float reactivity coefficient uncertainty """ coeff = (keff_new * 1e5 - keff_og * 1e5) / temp_change coeff_unc = np.sqrt((keff_og_unc * 1e5)**2 + (keff_new_unc * 1e5)**2) / temp_change return coeff, coeff_unc def fission_density_c(sp, case): """Generates a csv and png file with results of fission source distribution by 1/5 stripes for phase 1a-c of the benchmark in the analysis_output folder. Parameters ---------- sp: openmc.statepoint.StatePoint this statepoint.h5 file is created by running the openmc executable on the xml files generated by the build_xml.py files and when tallies_on toggle is on True. case: str case number for naming files Returns ------- This function generates a csv file with fission density results and visualization of fission source distribution by 1/5 stripe for phase 1a-c of the benchmark. """ name = 'analysis_output/' + case + '_c' region = ['1', '2', '3', '4', '5'] fission_rates = [] num = 1 for x in range(1, 13): mesh_tally = sp.get_tally(name='mesh tally c' + str(x)) a = mesh_tally.get_pandas_dataframe() a = a.drop(columns=['mesh ' + str(x), 'nuclide', 'score']) if (x % 2) == 0: num = int(x / 2) stripe = [str(num) + 'B'] * 5 else: num = int((x + 1) / 2) stripe = [str(num) + 'T'] * 5 a['Region'] = region a['Stripe'] = stripe if x == 1: df = a else: df = df.append(a) b = a['mean'].to_numpy() fission_rates.append(b) df = df.set_index(['Stripe', 'Region']) ave = df['mean'].mean() df['Fission Density'] = df['mean'] / ave ave_sd = 1 / (len(df['mean'])) * np.sqrt(np.sum(df['std. dev.']**2)) df['FD std dev'] = df['Fission Density'] * \ np.sqrt((df['std. dev.'] / df['mean'])**2 + (ave_sd / ave)**2) df['Relative unc.'] = df['FD std dev'] / df['Fission Density'] df.to_csv(name + '.csv') xs = [] ys = [] ws = np.array([F_len / 5] * 60) hs = np.array([F_width] * 60) fission_rates /= np.mean(fission_rates) vs = fission_rates.flatten() for p in range(6): for f in range(2): x_trans = p * T['A1']['P']['x'] y_trans = p * T['A1']['P']['y'] if f == 1: x_trans += T['A1']['F']['x'] y_trans += T['A1']['F']['y'] for s in range(5): if s > 0: x_trans += F_len / 5 xs.append(V['A1']['F']['L']['x'] + x_trans) ys.append(V['A1']['F']['B']['y'] + y_trans) normal = pl.Normalize(vs.min(), vs.max()) colors = pl.cm.YlOrRd(normal(vs)) fig, ax = plt.subplots() for x, y, w, h, c in zip(xs, ys, ws, hs, colors): rect = pl.Rectangle((x, y), w, h, color=c) ax.add_patch(rect) cax, _ = cbar.make_axes(ax) cb2 = cbar.ColorbarBase(cax, cmap=pl.cm.YlOrRd, norm=normal) ax.set_xlim(-25, 12) ax.set_ylim(-25, 0) ax.set_xlabel('x [cm]') ax.set_ylabel('y [cm]') ax.set_title('Case ' + case + ': Normalized Fission Source') pl.savefig(name, bbox_inches='tight') return def neutron_flux_d(sp, k, kerr, case): """Generates a csv file with results of neutron flux averaged over the whole model, tabulated in 3 coarse energy groups (upper energy boundaries 3 eV for thermal group and 0.1 MeV for intermediate group) in the analysis_output folder. Parameters ---------- sp: openmc.statepoint.StatePoint this statepoint.h5 file is created by running the openmc executable on the xml files generated by the build_xml.py files and when tallies_on toggle is on True. k: float k-effective kerr: float k-effective uncertainty case: str case number for naming files Returns ------- This function generates a csv file with neutron flux results """ name = 'analysis_output/' + case + '_d' mesh_tally_d = sp.get_tally(name='mesh tally d') df_d = mesh_tally_d.get_pandas_dataframe() df_dd = pd.DataFrame(index=['E3', 'E2', 'E1']) df_dd['flux'], df_dd['flux_err'] = flux_conv(df_d, 200, k, kerr) df_dd['relative_err_p'] = df_dd['flux_err'] / df_dd['flux'] df_dd = df_dd.reindex(['E1', 'E2', 'E3']) df_dd.to_csv(name + '.csv') return def neutron_flux_e(sp, k, case): """Generates a csv file and png files with results of neutron flux at 10000 points in model, tabulated in 3 coarse energy groups (upper energy boundaries 3 eV for thermal group and 0.1 MeV for intermediate group) Parameters ---------- sp: openmc.statepoint.StatePoint this statepoint.h5 file is created by running the openmc executable on the xml files generated by the build_xml.py files and when tallies_on toggle is on True. k: float k-effective case: str case number for naming files Returns ------- This function generates a csv file with neutron flux results at 10000 points in the model for 3 energy groups, and 3 png files visualizing the neutron flux distribution for 3 energy groups. """ name = 'analysis_output/' + case + '_e' mesh_tally_e = sp.get_tally(name='mesh tally e') flux = mesh_tally_e.get_slice(scores=['flux']) nu_fission = mesh_tally_e.get_slice(scores=['nu-fission']) fission = mesh_tally_e.get_slice(scores=['fission']) flux_conv = {} eg_names = ['eg3', 'eg2', 'eg1'] egs = [(1e-5, 3), (3, 0.1e6), (0.1e6, 20e6)] P = 245486.6796001383 Q = 200 * 1.6022e-13 V = 3 * np.sqrt(3) / 2 * H_side ** 2 * z_thickness * T_pitch / (100 * 100) for x in range(3): flux_eg = flux.get_slice( filters=[ openmc.EnergyFilter], filter_bins=[ (egs[x],)]) nu_fiss_eg = nu_fission.get_slice( filters=[ openmc.EnergyFilter], filter_bins=[ (egs[x],)]) fiss_eg = fission.get_slice( filters=[ openmc.EnergyFilter], filter_bins=[ (egs[x],)]) nu = nu_fiss_eg.mean / fiss_eg.mean nu = np.nanmean(nu) N = P * nu / (Q * k) flux_conv[eg_names[x]] = flux_eg.mean * 1 / V * N flux_conv[eg_names[x]].shape = (100, 100) flux_conv[eg_names[x]][np.isnan(flux_conv[eg_names[x]])] = 0 plt.figure() plt.imshow( flux_conv['eg1'] / np.mean( flux_conv['eg1']), interpolation='none', origin='lower', cmap='viridis') plt.colorbar() plt.title('Case ' + case + ' Energy Group 1 Flux Distribution') plt.savefig(name + '_eg1') np.savetxt(name + "_eg1.csv", np.flip(flux_conv['eg1'], 0), delimiter=",") plt.figure() plt.imshow( flux_conv['eg2'] / np.mean( flux_conv['eg2']), interpolation='none', origin='lower', cmap='viridis') plt.colorbar() plt.title('Case ' + case + ' Energy Group 2 Flux Distribution') plt.savefig(name + '_eg2') np.savetxt(name + "_eg2.csv", np.flip(flux_conv['eg2'], 0), delimiter=",") plt.figure() plt.imshow( flux_conv['eg3'] / np.mean( flux_conv['eg3']), interpolation='none', origin='lower', cmap='viridis') plt.colorbar() plt.title('Case ' + case + ' Energy Group 3 Flux Distribution') plt.savefig(name + '_eg3') np.savetxt(name + "_eg3.csv", np.flip(flux_conv['eg3'], 0), delimiter=",") return def neutron_spectrum_f(sp, case, k, kerr): """Generates a csv file and png file with results of neutron spectrum averaged over the fuel assembly. Parameters ---------- sp: openmc.statepoint.StatePoint this statepoint.h5 file is created by running the openmc executable on the xml files generated by the build_xml.py files and when tallies_on toggle is on True. case: str case number for naming files Returns ------- This function generates a csv and png file with results of neutron spectrum averaged over the fuel assembly. """ name = 'analysis_output/' + case + '_f' mesh_tally_f = sp.get_tally(name='mesh tally f') df_f = mesh_tally_f.get_pandas_dataframe() index_list = [] for x in range(252): index_list += ['E' + str(x + 1)] df_ff =
pd.DataFrame(index=index_list)
pandas.DataFrame
import matplotlib.image as mpimg import matplotlib.style as style import matplotlib.pyplot as plt from matplotlib import rcParams from simtk.openmm.app import * from simtk.openmm import * from simtk.unit import * from sys import stdout import seaborn as sns from math import exp import pandas as pd import mdtraj as md import pickle as pk import numpy as np import statistics import itertools import fileinput import fnmatch import shutil import random import math import os import re def fix_cap_remove_ace(pdb_file): """ Removes the H atoms of the capped ACE residue. """ remove_words = [ "H1 ACE", "H2 ACE", "H3 ACE", "H31 ACE", "H32 ACE", "H33 ACE", ] with open(pdb_file) as oldfile, open("intermediate.pdb", "w") as newfile: for line in oldfile: if not any(word in line for word in remove_words): newfile.write(line) command = "rm -rf " + pdb_file os.system(command) command = "mv intermediate.pdb " + pdb_file os.system(command) def fix_cap_replace_ace(pdb_file): """ Replaces the alpha carbon atom of the capped ACE residue with a standard name. """ fin = open(pdb_file, "rt") data = fin.read() data = data.replace("CA ACE", "CH3 ACE") data = data.replace("C ACE", "CH3 ACE") fin.close() fin = open(pdb_file, "wt") fin.write(data) fin.close() def fix_cap_remove_nme(pdb_file): """ Removes the H atoms of the capped NME residue. """ remove_words = [ "H1 NME", "H2 NME", "H3 NME", "H31 NME", "H32 NME", "H33 NME", ] with open(pdb_file) as oldfile, open("intermediate.pdb", "w") as newfile: for line in oldfile: if not any(word in line for word in remove_words): newfile.write(line) command = "rm -rf " + pdb_file os.system(command) command = "mv intermediate.pdb " + pdb_file os.system(command) def fix_cap_replace_nme(pdb_file): """ Replaces the alpha carbon atom of the capped NME residue with a standard name. """ fin = open(pdb_file, "rt") data = fin.read() data = data.replace("CA NME", "CH3 NME") data = data.replace("C NME", "CH3 NME") fin.close() fin = open(pdb_file, "wt") fin.write(data) fin.close() def prepare_alanine_dipeptide(): """ Prepares the alanine dipeptide system for Gaussian Accelerated Molecular Dynamics (GaMD) simulations. Downloads the pdb structure from https://markovmodel.github.io/mdshare/ALA2/ and parameterizes it using General Amber Force Field (GAFF). """ os.system( "curl -O http://ftp.imp.fu-berlin.de/pub/cmb-data/alanine-dipeptide-nowater.pdb" ) os.system( "rm -rf system_inputs" ) # Removes any existing directory named system_inputs os.system("mkdir system_inputs") # Creates a directory named system_inputs cwd = os.getcwd() target_dir = cwd + "/" + "system_inputs" os.system("pdb4amber -i alanine-dipeptide-nowater.pdb -o intermediate.pdb") # Delete HH31, HH32 and HH33 from the ACE residue (tleap adds them later) remove_words = ["HH31 ACE", "HH32 ACE", "HH33 ACE"] with open("intermediate.pdb") as oldfile, open( "system.pdb", "w" ) as newfile: for line in oldfile: if not any(word in line for word in remove_words): newfile.write(line) os.system("rm -rf intermediate*") # save the tleap script to file with open("input_TIP3P.leap", "w") as f: f.write( """ source leaprc.protein.ff14SB source leaprc.water.tip3p set default FlexibleWater on set default PBRadii mbondi2 pdb = loadpdb system.pdb solvateBox pdb TIP3PBOX 15 saveamberparm pdb system_TIP3P.prmtop system_TIP3P.inpcrd saveamberparm pdb system_TIP3P.parm7 system_TIP3P.rst7 savepdb pdb system_TIP3P.pdb quit """ ) os.system("tleap -f input_TIP3P.leap") os.system("rm -rf leap.log") shutil.copy( cwd + "/" + "system_TIP3P.inpcrd", target_dir + "/" + "system_TIP3P.inpcrd", ) shutil.copy( cwd + "/" + "system_TIP3P.parm7", target_dir + "/" + "system_TIP3P.parm7", ) shutil.copy( cwd + "/" + "system_TIP3P.pdb", target_dir + "/" + "system_TIP3P.pdb" ) shutil.copy( cwd + "/" + "system_TIP3P.prmtop", target_dir + "/" + "system_TIP3P.prmtop", ) shutil.copy( cwd + "/" + "system_TIP3P.rst7", target_dir + "/" + "system_TIP3P.rst7" ) shutil.copy(cwd + "/" + "system.pdb", target_dir + "/" + "system.pdb") shutil.copy( cwd + "/" + "alanine-dipeptide-nowater.pdb", target_dir + "/" + "alanine-dipeptide-nowater.pdb", ) shutil.copy( cwd + "/" + "input_TIP3P.leap", target_dir + "/" + "input_TIP3P.leap" ) os.system("rm -rf system_TIP3P.inpcrd") os.system("rm -rf system_TIP3P.parm7") os.system("rm -rf system_TIP3P.pdb") os.system("rm -rf system_TIP3P.inpcrd") os.system("rm -rf system_TIP3P.rst7") os.system("rm -rf system_TIP3P.prmtop") os.system("rm -rf system.pdb") os.system("rm -rf input_TIP3P.leap") os.system("rm -rf alanine-dipeptide-nowater.pdb") def create_vectors(x): """ Extracts peridic box information from the given line. """ x = str(x) x = x.replace("Vec3", "") x = re.findall("\d*\.?\d+", x) for i in range(0, len(x)): x[i] = float(x[i]) x = tuple(x) n = int(len(x) / 3) x = [x[i * n : (i + 1) * n] for i in range((len(x) + n - 1) // n)] return x def simulated_annealing( parm="system_TIP3P.prmtop", rst="system_TIP3P.inpcrd", annealing_output_pdb="system_annealing_output.pdb", annealing_steps=100000, pdb_freq=100000, starting_temp=0, target_temp=300, temp_incr=3, ): """ Performs simulated annealing of the system from 0K to 300 K (default) using OpenMM MD engine and saves the last frame of the simulation to be accessed by the next simulation. Parameters ---------- parm: str System's topology file rst: str System's coordinate file annealing_output_pdb: str System's output trajectory file annealing_steps: int Aneealing steps at each temperatrure jump pdb_freq: int Trajectory to be saved after every pdb_freq steps starting_temp: int Initial temperature of Simulated Annealing target_temp: int Final temperature of Simulated Annealing temp_incr: int Temmperature increase for every step """ prmtop = AmberPrmtopFile(parm) inpcrd = AmberInpcrdFile(rst) annealing_system = prmtop.createSystem( nonbondedMethod=PME, nonbondedCutoff=1 * nanometer, constraints=HBonds ) annealing_integrator = LangevinIntegrator( 0 * kelvin, 1 / picosecond, 2 * femtoseconds ) total_steps = ((target_temp / temp_incr) + 1) * annealing_steps annealing_temp_range = int((target_temp / temp_incr) + 1) annealing_platform = Platform.getPlatformByName("CUDA") annealing_properties = {"CudaDeviceIndex": "0", "CudaPrecision": "mixed"} annealing_simulation = Simulation( prmtop.topology, annealing_system, annealing_integrator, annealing_platform, annealing_properties, ) annealing_simulation.context.setPositions(inpcrd.positions) if inpcrd.boxVectors is not None: annealing_simulation.context.setPeriodicBoxVectors(*inpcrd.boxVectors) annealing_simulation.minimizeEnergy() annealing_simulation.reporters.append( PDBReporter(annealing_output_pdb, pdb_freq) ) simulated_annealing_last_frame = ( annealing_output_pdb[:-4] + "_last_frame.pdb" ) annealing_simulation.reporters.append( PDBReporter(simulated_annealing_last_frame, total_steps) ) annealing_simulation.reporters.append( StateDataReporter( stdout, pdb_freq, step=True, time=True, potentialEnergy=True, totalSteps=total_steps, temperature=True, progress=True, remainingTime=True, speed=True, separator="\t", ) ) temp = starting_temp while temp <= target_temp: annealing_integrator.setTemperature(temp * kelvin) if temp == starting_temp: annealing_simulation.step(annealing_steps) annealing_simulation.saveState("annealing.state") else: annealing_simulation.loadState("annealing.state") annealing_simulation.step(annealing_steps) temp += temp_incr state = annealing_simulation.context.getState() print(state.getPeriodicBoxVectors()) annealing_simulation_box_vectors = state.getPeriodicBoxVectors() print(annealing_simulation_box_vectors) with open("annealing_simulation_box_vectors.pkl", "wb") as f: pk.dump(annealing_simulation_box_vectors, f) print("Finshed NVT Simulated Annealing Simulation") def npt_equilibration( parm="system_TIP3P.prmtop", npt_output_pdb="system_npt_output.pdb", pdb_freq=500000, npt_steps=5000000, target_temp=300, npt_pdb="system_annealing_output_last_frame.pdb", ): """ Performs NPT equilibration MD of the system using OpenMM MD engine and saves the last frame of the simulation to be accessed by the next simulation. Parameters ---------- parm: str System's topology file npt_output_pdb: str System's output trajectory file pdb_freq: int Trajectory to be saved after every pdb_freq steps npt_steps: int NPT simulation steps target_temp: int Temperature for MD simulation npt_pdb: str Last frame of the simulation """ npt_init_pdb = PDBFile(npt_pdb) prmtop = AmberPrmtopFile(parm) npt_system = prmtop.createSystem( nonbondedMethod=PME, nonbondedCutoff=1 * nanometer, constraints=HBonds ) barostat = MonteCarloBarostat(25.0 * bar, target_temp * kelvin, 25) npt_system.addForce(barostat) npt_integrator = LangevinIntegrator( target_temp * kelvin, 1 / picosecond, 2 * femtoseconds ) npt_platform = Platform.getPlatformByName("CUDA") npt_properties = {"CudaDeviceIndex": "0", "CudaPrecision": "mixed"} npt_simulation = Simulation( prmtop.topology, npt_system, npt_integrator, npt_platform, npt_properties, ) npt_simulation.context.setPositions(npt_init_pdb.positions) npt_simulation.context.setVelocitiesToTemperature(target_temp * kelvin) with open("annealing_simulation_box_vectors.pkl", "rb") as f: annealing_simulation_box_vectors = pk.load(f) annealing_simulation_box_vectors = create_vectors( annealing_simulation_box_vectors ) npt_simulation.context.setPeriodicBoxVectors( annealing_simulation_box_vectors[0], annealing_simulation_box_vectors[1], annealing_simulation_box_vectors[2], ) npt_last_frame = npt_output_pdb[:-4] + "_last_frame.pdb" npt_simulation.reporters.append(PDBReporter(npt_output_pdb, pdb_freq)) npt_simulation.reporters.append(PDBReporter(npt_last_frame, npt_steps)) npt_simulation.reporters.append( StateDataReporter( stdout, pdb_freq, step=True, time=True, potentialEnergy=True, totalSteps=npt_steps, temperature=True, progress=True, remainingTime=True, speed=True, separator="\t", ) ) npt_simulation.minimizeEnergy() npt_simulation.step(npt_steps) npt_simulation.saveState("npt_simulation.state") state = npt_simulation.context.getState() print(state.getPeriodicBoxVectors()) npt_simulation_box_vectors = state.getPeriodicBoxVectors() print(npt_simulation_box_vectors) with open("npt_simulation_box_vectors.pkl", "wb") as f: pk.dump(npt_simulation_box_vectors, f) print("Finished NPT Simulation") def nvt_equilibration( parm="system_TIP3P.prmtop", nvt_output_pdb="system_nvt_output.pdb", pdb_freq=500000, nvt_steps=5000000, target_temp=300, nvt_pdb="system_npt_output_last_frame.pdb", ): """ Performs NVT equilibration MD of the system using OpenMM MD engine saves the last frame of the simulation to be accessed by the next simulation. Parameters ---------- parm: str System's topology file nvt_output_pdb: str System's output trajectory file pdb_freq: int Trajectory to be saved after every pdb_freq steps nvt_steps: int NVT simulation steps target_temp: int Temperature for MD simulation nvt_pdb: str Last frame of the simulation """ nvt_init_pdb = PDBFile(nvt_pdb) prmtop = AmberPrmtopFile(parm) nvt_system = prmtop.createSystem( nonbondedMethod=PME, nonbondedCutoff=1 * nanometer, constraints=HBonds ) nvt_integrator = LangevinIntegrator( target_temp * kelvin, 1 / picosecond, 2 * femtoseconds ) nvt_platform = Platform.getPlatformByName("CUDA") nvt_properties = {"CudaDeviceIndex": "0", "CudaPrecision": "mixed"} nvt_simulation = Simulation( prmtop.topology, nvt_system, nvt_integrator, nvt_platform, nvt_properties, ) nvt_simulation.context.setPositions(nvt_init_pdb.positions) nvt_simulation.context.setVelocitiesToTemperature(target_temp * kelvin) with open("npt_simulation_box_vectors.pkl", "rb") as f: npt_simulation_box_vectors = pk.load(f) npt_simulation_box_vectors = create_vectors(npt_simulation_box_vectors) nvt_simulation.context.setPeriodicBoxVectors( npt_simulation_box_vectors[0], npt_simulation_box_vectors[1], npt_simulation_box_vectors[2], ) nvt_last_frame = nvt_output_pdb[:-4] + "_last_frame.pdb" nvt_simulation.reporters.append(PDBReporter(nvt_output_pdb, pdb_freq)) nvt_simulation.reporters.append(PDBReporter(nvt_last_frame, nvt_steps)) nvt_simulation.reporters.append( StateDataReporter( stdout, pdb_freq, step=True, time=True, potentialEnergy=True, totalSteps=nvt_steps, temperature=True, progress=True, remainingTime=True, speed=True, separator="\t", ) ) nvt_simulation.minimizeEnergy() nvt_simulation.step(nvt_steps) nvt_simulation.saveState("nvt_simulation.state") state = nvt_simulation.context.getState() print(state.getPeriodicBoxVectors()) nvt_simulation_box_vectors = state.getPeriodicBoxVectors() print(nvt_simulation_box_vectors) with open("nvt_simulation_box_vectors.pkl", "wb") as f: pk.dump(nvt_simulation_box_vectors, f) print("Finished NVT Simulation") def run_equilibration(): """ Runs systematic simulated annealing followed by NPT and NVT equilibration MD simulation. """ cwd = os.getcwd() target_dir = cwd + "/" + "equilibration" os.system("rm -rf equilibration") os.system("mkdir equilibration") shutil.copy( cwd + "/" + "system_inputs" + "/" + "system_TIP3P.inpcrd", target_dir + "/" + "system_TIP3P.inpcrd", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "system_TIP3P.parm7", target_dir + "/" + "system_TIP3P.parm7", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "system_TIP3P.pdb", target_dir + "/" + "system_TIP3P.pdb", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "system_TIP3P.prmtop", target_dir + "/" + "system_TIP3P.prmtop", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "system_TIP3P.rst7", target_dir + "/" + "system_TIP3P.rst7", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "system.pdb", target_dir + "/" + "system.pdb", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "alanine-dipeptide-nowater.pdb", target_dir + "/" + "alanine-dipeptide-nowater.pdb", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "input_TIP3P.leap", target_dir + "/" + "input_TIP3P.leap", ) os.chdir(target_dir) simulated_annealing() npt_equilibration() nvt_equilibration() os.system("rm -rf system_TIP3P.inpcrd") os.system("rm -rf system_TIP3P.parm7") os.system("rm -rf system_TIP3P.pdb") os.system("rm -rf system_TIP3P.rst7") os.system("rm -rf system_TIP3P.prmtop") os.system("rm -rf system.pdb") os.system("rm -rf alanine-dipeptide-nowater.pdb") os.system("rm -rf input_TIP3P.leap") os.chdir(cwd) def create_starting_structures(): """ Prepares starting structures for Amber GaMD simulations. All input files required to run Amber GaMD simulations are placed in the starting_structures directory. """ cwd = os.getcwd() target_dir = cwd + "/" + "starting_structures" os.system("rm -rf starting_structures") os.system("mkdir starting_structures") shutil.copy( cwd + "/" + "equilibration" + "/" + "system_nvt_output_last_frame.pdb", target_dir + "/" + "system_nvt_output_last_frame.pdb", ) os.chdir(target_dir) fix_cap_remove_nme("system_nvt_output_last_frame.pdb") fix_cap_replace_nme("system_nvt_output_last_frame.pdb") # Save the tleap script to file with open("final_input_TIP3P.leap", "w") as f: f.write( """ source leaprc.protein.ff14SB source leaprc.water.tip3p set default FlexibleWater on set default PBRadii mbondi2 pdb = loadpdb system_nvt_output_last_frame.pdb saveamberparm pdb system_final.prmtop system_final.inpcrd saveamberparm pdb system_final.parm7 system_final.rst7 savepdb pdb system_final.pdb quit """ ) os.system("tleap -f final_input_TIP3P.leap") os.system("rm -rf leap.log") os.system("rm -rf system_nvt_output_last_frame.pdb") os.chdir(cwd) def add_vec_inpcrd(): """ Adds box dimensions captured from the last saved frame of the NVT simulations to the inpcrd file. Only to be used when the box dimensions are not present in the inpcrd file. """ cwd = os.getcwd() target_dir = cwd + "/" + "starting_structures" shutil.copy( cwd + "/" + "equilibration" + "/" + "nvt_simulation_box_vectors.pkl", target_dir + "/" + "nvt_simulation_box_vectors.pkl", ) os.chdir(target_dir) with open("nvt_simulation_box_vectors.pkl", "rb") as f: nvt_simulation_box_vectors = pk.load(f) nvt_simulation_box_vectors = create_vectors(nvt_simulation_box_vectors) vectors = ( (nvt_simulation_box_vectors[0][0]) * 10, (nvt_simulation_box_vectors[1][1]) * 10, (nvt_simulation_box_vectors[2][2]) * 10, ) vectors = ( round(vectors[0], 7), round(vectors[1], 7), round(vectors[2], 7), ) last_line = ( " " + str(vectors[0]) + " " + str(vectors[1]) + " " + str(vectors[2]) + " 90.0000000" + " 90.0000000" + " 90.0000000" ) with open("system_final.inpcrd", "a+") as f: f.write(last_line) os.system("rm -rf nvt_simulation_box_vectors.pkl") os.chdir(cwd) def add_vec_prmtop(): """ Adds box dimensions captured from the last saved frame of the NVT simulations to the prmtop file. Only to be used when the box dimensions are not present in the prmtop file. """ cwd = os.getcwd() target_dir = cwd + "/" + "starting_structures" shutil.copy( cwd + "/" + "equilibration" + "/" + "nvt_simulation_box_vectors.pkl", target_dir + "/" + "nvt_simulation_box_vectors.pkl", ) os.chdir(target_dir) with open("nvt_simulation_box_vectors.pkl", "rb") as f: nvt_simulation_box_vectors = pk.load(f) nvt_simulation_box_vectors = create_vectors(nvt_simulation_box_vectors) vectors = ( nvt_simulation_box_vectors[0][0], nvt_simulation_box_vectors[1][1], nvt_simulation_box_vectors[2][2], ) vectors = round(vectors[0], 7), round(vectors[1], 7), round(vectors[2], 7) oldbeta = "9.00000000E+01" x = str(vectors[0]) + str(0) + "E+" + "01" y = str(vectors[1]) + str(0) + "E+" + "01" z = str(vectors[2]) + str(0) + "E+" + "01" line1 = "%FLAG BOX_DIMENSIONS" line2 = "%FORMAT(5E16.8)" line3 = " " + oldbeta + " " + x + " " + y + " " + z with open("system_final.prmtop") as i, open( "system_intermediate_final.prmtop", "w" ) as f: for line in i: if line.startswith("%FLAG RADIUS_SET"): line = line1 + "\n" + line2 + "\n" + line3 + "\n" + line f.write(line) os.system("rm -rf system_final.prmtop") os.system("mv system_intermediate_final.prmtop system_final.prmtop") os.system("rm -rf nvt_simulation_box_vectors.pkl") os.chdir(cwd) def create_filetree( nst_lim=26000000, ntw_x=1000, nt_cmd=1000000, n_teb=1000000, n_tave=50000, ntcmd_prep=200000, nteb_prep=200000, ): """ Creates a directory named gamd_simulations. Inside this directory, there are subdirectories for dihedral, dual and total potential-boosted GaMD with upper and lower threshold boosts separately. Parameters ---------- nst_lim: int Total simulation time including preparatory simulation. For example, if nst_lim = 26000000, then, we may have 2 ns of preparatory simulation i.e. 1000000 preparation steps and 50 ns of GaMD simulation i.e. 25000000 simulation steps ntw_x: int Saving coordinates of the simulation every ntw_x timesteps. For example, 2 ps implies 1000 timesteps nt_cmd: int Number of initial MD simulation step, 2 ns of preparatory simulation requires 1000000 preparation timesteps n_teb: int Number of biasing MD simulation steps n_tave: int Number of simulation steps used to calculate the average and standard deviation of potential energies ntcmd_prep: int Number of preparation conventional molecular dynamics steps.This is used for system equilibration and potential energies are not collected for statistics nteb_prep: int Number of preparation biasing molecular dynamics simulation steps. This is used for system equilibration """ cwd = os.getcwd() os.system("rm -rf gamd_simulations") os.system("mkdir gamd_simulations") os.chdir(cwd + "/" + "gamd_simulations") source_dir = cwd + "/" + "starting_structures" target_dir = cwd + "/" + "gamd_simulations" dir_list = [ "dihedral_threshold_lower", "dihedral_threshold_upper", "dual_threshold_lower", "dual_threshold_upper", "total_threshold_lower", "total_threshold_upper", ] for i in range(len(dir_list)): os.mkdir(dir_list[i]) os.chdir(target_dir + "/" + dir_list[i]) shutil.copy( source_dir + "/" + "system_final.inpcrd", target_dir + "/" + dir_list[i] + "/" + "system_final.inpcrd", ) shutil.copy( source_dir + "/" + "system_final.prmtop", target_dir + "/" + dir_list[i] + "/" + "system_final.prmtop", ) if "lower" in dir_list[i]: i_E = 1 if "upper" in dir_list[i]: i_E = 2 if "total" in dir_list[i]: i_gamd = 1 if "dihedral" in dir_list[i]: i_gamd = 2 if "dual" in dir_list[i]: i_gamd = 3 with open("md.in", "w") as f: f.write("&cntrl" + "\n") f.write(" imin = 0, irest = 0, ntx = 1," + "\n") f.write(" nstlim = " + str(nst_lim) + ", dt = 0.002," + "\n") f.write(" ntc = 2, ntf = 2, tol = 0.000001," + "\n") f.write(" iwrap = 1, ntb = 1, cut = 8.0," + "\n") f.write(" ntt = 3, temp0 = 300.0, gamma_ln = 1.0, " + "\n") f.write( " ntpr = 500, ntwx = " + str(ntw_x) + ", ntwr = 500," + "\n" ) f.write(" ntxo = 2, ioutfm = 1, ig = -1, ntwprt = 0," + "\n") f.write( " igamd = " + str(i_gamd) + ", iE = " + str(i_E) + ", irest_gamd = 0," + "\n" ) f.write( " ntcmd = " + str(nt_cmd) + ", nteb = " + str(n_teb) + ", ntave = " + str(n_tave) + "," + "\n" ) f.write( " ntcmdprep = " + str(ntcmd_prep) + ", ntebprep = " + str(nteb_prep) + "," + "\n" ) f.write(" sigma0D = 6.0, sigma0P = 6.0" + " \n") f.write("&end" + "\n") os.chdir(target_dir) os.chdir(cwd) def run_simulations(): """ Runs GaMD simulations for each of the dihedral, dual and total potential boosts for both thresholds i.e. upper and lower potential thresholds. (Remember to check md.in files for further details and flag information). """ cwd = os.getcwd() os.chdir(cwd + "/" + "gamd_simulations") os.chdir(cwd + "/" + "gamd_simulations" + "/" + "dihedral_threshold_lower") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations" + "/" + "dihedral_threshold_upper") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations" + "/" + "dual_threshold_lower") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations" + "/" + "dual_threshold_upper") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations" + "/" + "total_threshold_lower") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations" + "/" + "total_threshold_upper") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations") os.chdir(cwd) def create_data_files( jump=10, traj="system_final.nc", topology="system_final.prmtop", T=300, ): """ Extracts data from GaMD log files and saves them as weights.dat, Psi.dat and Phi_Psi.dat. gamd.log file contains data excluding the initial equilibration MD simulation steps but trajectory output file has all the trajectories including the initial equilibration MD steps. This part has ben taken care to make the data consistent. Parameters ---------- jump: int Every nth frame to be considered for reweighting traj: str System's trajectory file topology: str System's topology file T: int MD simulation temperature """ # To make data consistent with gamd.log and .nc file factor = 0.001987 * T with open("md.in") as f: lines = f.readlines() for i in lines: if "nstlim =" in i: nstlim_line = i if "ntcmd =" in i: ntcmd_line = i if "ntwx =" in i: ntwx_line = i x = re.findall(r"\b\d+\b", ntcmd_line) ntcmd = int(x[0]) x = re.findall(r"\b\d+\b", nstlim_line) nstlim = int(x[0]) x = re.findall(r"\b\d+\b", ntwx_line) ntwx = int(x[1]) # From the .nc trajectory files, we will not consider ntcmd trajectories leave_frames = int(ntcmd / ntwx) no_frames = int(nstlim / ntwx) # Recheck conditions file = open("gamd.log", "r") number_of_lines = 0 for line in file: line = line.strip("\n") number_of_lines += 1 file.close() f = open("gamd.log") fourth_line = f.readlines()[3] if str(ntcmd) in fourth_line: datapoints = number_of_lines - 4 if not str(ntcmd) in fourth_line: datapoints = number_of_lines - 3 print(datapoints == int((nstlim - ntcmd) / ntwx)) # Creating Psi.dat and Phi_Psi.dat traj = md.load(traj, top=topology) traj = traj[leave_frames:no_frames:jump] phi = md.compute_phi(traj) phi = phi[1] # 0:indices, 1:phi angles phi = np.array([math.degrees(i) for i in phi]) # radians to degrees psi = md.compute_psi(traj) psi = psi[1] # 0:indices, 1:psi angles psi = np.array([math.degrees(i) for i in psi]) # radians to degrees df_psi = pd.DataFrame(phi, columns=["Psi"]) df_psi = df_psi.tail(int(datapoints)) df_psi.to_csv("Psi.dat", sep="\t", index=False, header=False) df_phi = pd.DataFrame(psi, columns=["Phi"]) df_phi = df_phi.tail(int(datapoints)) df_phi_psi = pd.concat([df_phi, df_psi], axis=1) df_phi_psi.to_csv("Phi_Psi.dat", sep="\t", index=False, header=False) # Creating weights.dat with open("gamd.log") as f: lines = f.readlines() column_names = lines[2] column_names = column_names.replace("#", "") column_names = column_names.replace("\n", "") column_names = column_names.replace(" ", "") column_names = column_names.split(",") list_words = ["#"] with open("gamd.log") as oldfile, open("data.log", "w") as newfile: for line in oldfile: if not any(word in line for word in list_words): newfile.write(line) df = pd.read_csv("data.log", delim_whitespace=True, header=None) df.columns = column_names df["dV(kcal/mol)"] = ( df["Boost-Energy-Potential"] + df["Boost-Energy-Dihedral"] ) df["dV(kbT)"] = df["dV(kcal/mol)"] / factor df_ = df[["dV(kbT)", "total_nstep", "dV(kcal/mol)"]] df_ = df_[::jump] df_.to_csv("weights.dat", sep="\t", index=False, header=False) os.system("rm -rf data.log") print(df_phi_psi.shape) print(df_phi.shape) print(df_.shape) def create_bins(lower_bound, width, upper_bound): """ Creates bin if given the lower and upper bound with the wirdth information. """ bins = [] for low in range(lower_bound, upper_bound, width): bins.append([low, low + width]) return bins def find_bin(value, bins): """ Finds which value belongs to which bin. """ for i in range(0, len(bins)): if bins[i][0] <= value < bins[i][1]: return i return -1 def reweight_1d( binspace=10, n_structures=4, Xdim=[-180, 180], T=300.0, min_prob=0.000001 ): """ Reweights boosted potential energies in one-dimension based on Maclaurin series expansion to one, two and three degrees. Parameters ---------- binspace: int Spacing between the bins n_structures: int Number of structures per bin chosen for Weighted Ensemble (WE) simulations Xdim: list Range of dihedral angles T: float MD simulation temperature min_prob: float minimum probability threshold """ beta = 1.0 / (0.001987 * float(T)) df_Psi = pd.read_csv("Psi.dat", delim_whitespace=True, header=None) df_Psi.columns = ["Psi"] df_weight = pd.read_csv("weights.dat", delim_whitespace=True, header=None) df_weight.columns = ["dV_kBT", "timestep", "dVkcalmol"] sum_total = df_Psi.shape[0] binsX = np.arange(float(Xdim[0]), (float(Xdim[1]) + binspace), binspace) hist, hist_edges = np.histogram(df_Psi[["Psi"]], bins=binsX, weights=None) pstarA = [i / sum_total for i in list(hist)] bins = create_bins( lower_bound=int(Xdim[0]), width=binspace, upper_bound=int(Xdim[1]) ) data = df_Psi["Psi"].values.tolist() binned_weights = [] for value in data: bin_index = find_bin(value, bins) binned_weights.append(bin_index) df_index = pd.DataFrame(binned_weights) df_index.columns = ["index"] df = pd.concat([df_index, df_Psi, df_weight], axis=1) dV_c1 = [] dV_c2 = [] dV_c3 = [] dV = [] for i in range(len(bins)): df_i = df.loc[(df["index"] == i)] dV_list = df_i["dVkcalmol"].values.tolist() if len(dV_list) >= 10: dV_c1.append(statistics.mean(dV_list)) dV_c2.append( statistics.mean([i ** 2 for i in dV_list]) - (statistics.mean(dV_list)) ** 2 ) dV_c3.append( statistics.mean([i ** 3 for i in dV_list]) - 3 * (statistics.mean([i ** 2 for i in dV_list])) * (statistics.mean(dV_list)) + 2 * (statistics.mean(dV_list)) ** 3 ) if len(dV_list) < 10: dV_c1.append(0) dV_c2.append(0) dV_c3.append(0) dV.append(dV_list) c1 = [i * beta for i in dV_c1] c2 = [i * ((beta ** 2) / 2) for i in dV_c2] c3 = [i * ((beta ** 3) / 6) for i in dV_c3] c1 = c1 c12 = [a + b for a, b in zip(c1, c2)] c123 = [a + b for a, b in zip(c12, c3)] for i in range(len(c1)): if c1[i] >= 700: c1[i] = 700 for i in range(len(c12)): if c12[i] >= 700: c12[i] = 700 for i in range(len(c123)): if c123[i] >= 700: c123[i] = 700 ensemble_average_c1 = [exp(i) for i in c1] ensemble_average_c12 = [exp(i) for i in c12] ensemble_average_c123 = [exp(i) for i in c123] numerator_c1 = [a * b for a, b in zip(pstarA, ensemble_average_c1)] numerator_c12 = [a * b for a, b in zip(pstarA, ensemble_average_c12)] numerator_c123 = [a * b for a, b in zip(pstarA, ensemble_average_c123)] #### c1 denominatorc1 = [] for i in range(len(bins)): product_c1 = pstarA[i] * ensemble_average_c1[i] denominatorc1.append(product_c1) denominator_c1 = sum(denominatorc1) pA_c1 = [i / denominator_c1 for i in numerator_c1] #### c12 denominatorc12 = [] for i in range(len(bins)): product_c12 = pstarA[i] * ensemble_average_c12[i] denominatorc12.append(product_c12) denominator_c12 = sum(denominatorc12) pA_c12 = [i / denominator_c12 for i in numerator_c12] #### c123 denominatorc123 = [] for i in range(len(bins)): product_c123 = pstarA[i] * ensemble_average_c123[i] denominatorc123.append(product_c123) denominator_c123 = sum(denominatorc123) pA_c123 = [i / denominator_c123 for i in numerator_c123] data_c1 = list(zip(bins, pA_c1)) data_c12 = list(zip(bins, pA_c12)) data_c123 = list(zip(bins, pA_c123)) df_c1 = pd.DataFrame(data_c1, columns=["bins", "pA_c1"]) df_c12 = pd.DataFrame(data_c12, columns=["bins", "pA_c12"]) df_c123 = pd.DataFrame(data_c123, columns=["bins", "pA_c123"]) ####c1 df_c1.to_csv("c1_1d.txt", header=True, index=None, sep=" ", mode="w") with open("c1_1d.txt", "r") as f1, open("pA_c1_1d.txt", "w") as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c1_1d.txt") ####c12 df_c12.to_csv("c12_1d.txt", header=True, index=None, sep=" ", mode="w") with open("c12_1d.txt", "r") as f1, open("pA_c12_1d.txt", "w") as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c12_1d.txt") ####c123 df_c123.to_csv("c123_1d.txt", header=True, index=None, sep=" ", mode="w") with open("c123_1d.txt", "r") as f1, open("pA_c123_1d.txt", "w") as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c123_1d.txt") ####c1_arranged df_c1_arranged = df_c1.sort_values(by="pA_c1", ascending=False) df_c1_arranged = df_c1_arranged[df_c1_arranged.pA_c1 > min_prob] df_c1_arranged.to_csv( "c1_arranged_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c1_arranged_1d.txt", "r") as f1, open( "pA_c1_arranged_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c1_arranged_1d.txt") ####c12_arranged df_c12_arranged = df_c12.sort_values(by="pA_c12", ascending=False) df_c12_arranged = df_c12_arranged[df_c12_arranged.pA_c12 > min_prob] df_c12_arranged.to_csv( "c12_arranged_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c12_arranged_1d.txt", "r") as f1, open( "pA_c12_arranged_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c12_arranged_1d.txt") ####c123_arranged df_c123_arranged = df_c123.sort_values(by="pA_c123", ascending=False) df_c123_arranged = df_c123_arranged[df_c123_arranged.pA_c123 > min_prob] df_c123_arranged.to_csv( "c123_arranged_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c123_arranged_1d.txt", "r") as f1, open( "pA_c123_arranged_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c123_arranged_1d.txt") ####c1_arranged df_c1_arranged["index"] = df_c1_arranged.index index_list_c1 = df_c1_arranged["index"].tolist() df["frame_index"] = df.index df_frame_index = df[["frame_index", "index"]] frame_indices_c1 = [] index_indces_c1 = [] for i in index_list_c1: df_index_list_c1 = df_frame_index.loc[df_frame_index["index"] == i] frame_c1 = df_index_list_c1["frame_index"].tolist() frame_indices_c1.append(frame_c1) index_c1 = [i] * len(frame_c1) index_indces_c1.append(index_c1) frame_indices_c1 = [item for elem in frame_indices_c1 for item in elem] index_indces_c1 = [item for elem in index_indces_c1 for item in elem] df_c1_frame = pd.DataFrame(frame_indices_c1, columns=["frame_index"]) df_c1_index = pd.DataFrame(index_indces_c1, columns=["index"]) df_c1_frame_index = pd.concat([df_c1_frame, df_c1_index], axis=1) df_c1_frame_index = df_c1_frame_index.groupby("index").filter( lambda x: len(x) >= 10 ) df_c1_frame_index.to_csv( "c1_frame_index_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c1_frame_index_1d.txt", "r") as f1, open( "c1_frame_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c1_frame_index_1d.txt") ####c12_arranged df_c12_arranged["index"] = df_c12_arranged.index index_list_c12 = df_c12_arranged["index"].tolist() df["frame_index"] = df.index df_frame_index = df[["frame_index", "index"]] frame_indices_c12 = [] index_indces_c12 = [] for i in index_list_c12: df_index_list_c12 = df_frame_index.loc[df_frame_index["index"] == i] frame_c12 = df_index_list_c12["frame_index"].tolist() frame_indices_c12.append(frame_c12) index_c12 = [i] * len(frame_c12) index_indces_c12.append(index_c12) frame_indices_c12 = [item for elem in frame_indices_c12 for item in elem] index_indces_c12 = [item for elem in index_indces_c12 for item in elem] df_c12_frame = pd.DataFrame(frame_indices_c12, columns=["frame_index"]) df_c12_index = pd.DataFrame(index_indces_c12, columns=["index"]) df_c12_frame_index = pd.concat([df_c12_frame, df_c12_index], axis=1) df_c12_frame_index = df_c12_frame_index.groupby("index").filter( lambda x: len(x) >= 10 ) df_c12_frame_index.to_csv( "c12_frame_index_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c12_frame_index_1d.txt", "r") as f1, open( "c12_frame_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c12_frame_index_1d.txt") ####c123_arranged df_c123_arranged["index"] = df_c123_arranged.index index_list_c123 = df_c123_arranged["index"].tolist() df["frame_index"] = df.index df_frame_index = df[["frame_index", "index"]] frame_indices_c123 = [] index_indces_c123 = [] for i in index_list_c123: df_index_list_c123 = df_frame_index.loc[df_frame_index["index"] == i] frame_c123 = df_index_list_c123["frame_index"].tolist() frame_indices_c123.append(frame_c123) index_c123 = [i] * len(frame_c123) index_indces_c123.append(index_c123) frame_indices_c123 = [item for elem in frame_indices_c123 for item in elem] index_indces_c123 = [item for elem in index_indces_c123 for item in elem] df_c123_frame = pd.DataFrame(frame_indices_c123, columns=["frame_index"]) df_c123_index = pd.DataFrame(index_indces_c123, columns=["index"]) df_c123_frame_index = pd.concat([df_c123_frame, df_c123_index], axis=1) df_c123_frame_index = df_c123_frame_index.groupby("index").filter( lambda x: len(x) >= 10 ) df_c123_frame_index.to_csv( "c123_frame_index_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c123_frame_index_1d.txt", "r") as f1, open( "c123_frame_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c123_frame_index_1d.txt") ####c1 indices_c1_1d = df_c1_frame_index["index"].unique() frames_c1 = [] for i in indices_c1_1d: x = df_c1_frame_index.loc[df_c1_frame_index["index"] == i] y = x["frame_index"].values.tolist() z = random.sample(y, n_structures) frames_c1.append(z) frames_c1_1d = [item for elem in frames_c1 for item in elem] with open("frames_c1_1d.pickle", "wb") as f: pk.dump(frames_c1_1d, f) with open("indices_c1_1d.pickle", "wb") as f: pk.dump(indices_c1_1d, f) ####c12 indices_c12_1d = df_c12_frame_index["index"].unique() frames_c12 = [] for i in indices_c12_1d: x = df_c12_frame_index.loc[df_c12_frame_index["index"] == i] y = x["frame_index"].values.tolist() z = random.sample(y, n_structures) frames_c12.append(z) frames_c12_1d = [item for elem in frames_c12 for item in elem] with open("frames_c12_1d.pickle", "wb") as f: pk.dump(frames_c12_1d, f) with open("indices_c12_1d.pickle", "wb") as f: pk.dump(indices_c12_1d, f) ####c123 indices_c123_1d = df_c123_frame_index["index"].unique() frames_c123 = [] for i in indices_c123_1d: x = df_c123_frame_index.loc[df_c123_frame_index["index"] == i] y = x["frame_index"].values.tolist() z = random.sample(y, n_structures) frames_c123.append(z) frames_c123_1d = [item for elem in frames_c123 for item in elem] with open("frames_c123_1d.pickle", "wb") as f: pk.dump(frames_c123_1d, f) with open("indices_c123_1d.pickle", "wb") as f: pk.dump(indices_c123_1d, f) ##saving probabilities for each selected frame ####c1 prob_c1_1d_list = [] for i in indices_c1_1d: prob_c1_1d_list.append(df_c1["pA_c1"][i]) prob_c1_1d_list = list( itertools.chain.from_iterable( itertools.repeat(x, n_structures) for x in prob_c1_1d_list ) ) prob_c1_1d_list = [x / n_structures for x in prob_c1_1d_list] with open("prob_c1_1d_list.pickle", "wb") as f: pk.dump(prob_c1_1d_list, f) ####c12 prob_c12_1d_list = [] for i in indices_c12_1d: prob_c12_1d_list.append(df_c12["pA_c12"][i]) prob_c12_1d_list = list( itertools.chain.from_iterable( itertools.repeat(x, n_structures) for x in prob_c12_1d_list ) ) prob_c12_1d_list = [x / n_structures for x in prob_c12_1d_list] with open("prob_c12_1d_list.pickle", "wb") as f: pk.dump(prob_c12_1d_list, f) ####c123 prob_c123_1d_list = [] for i in indices_c123_1d: prob_c123_1d_list.append(df_c123["pA_c123"][i]) prob_c123_1d_list = list( itertools.chain.from_iterable( itertools.repeat(x, n_structures) for x in prob_c123_1d_list ) ) prob_c123_1d_list = [x / n_structures for x in prob_c123_1d_list] with open("prob_c123_1d_list.pickle", "wb") as f: pk.dump(prob_c123_1d_list, f) ref_df_1d = pd.DataFrame(bins, columns=["dim0", "dim1"]) ref_df_1d["bins"] = ref_df_1d.agg( lambda x: f"[{x['dim0']} , {x['dim1']}]", axis=1 ) ref_df_1d = ref_df_1d[["bins"]] index_ref_1d = [] for i in range(len(bins)): index_ref_1d.append(i) index_ref_df_1d = pd.DataFrame(index_ref_1d, columns=["index"]) df_ref_1d = pd.concat([ref_df_1d, index_ref_df_1d], axis=1) df_ref_1d.to_csv("ref_1d.txt", header=True, index=None, sep=" ", mode="w") df.to_csv("df_1d.csv", index=False) os.system("rm -rf __pycache__") print("Successfully Completed Reweighing") def reweight_2d( binspace=10, n_structures=4, Xdim=[-180, 180], Ydim=[-180, 180], T=300.0, min_prob=0.000001, ): """ Reweights boosted potential energies in two-dimensions based on Maclaurin series expansion to one, two and three degrees. Parameters ---------- binspace: int Spacing between the bins n_structures: int Number of structures per bin chosen for Weighted Ensemble (WE) simulations Xdim: list Range of dihedral angles (1st dimension) Ydim: list Range of dihedral angles (2nd dimension) T: float MD simulation temperature min_prob: float minimum probability threshold """ beta = 1.0 / (0.001987 * float(T)) df_Phi_Psi = pd.read_csv("Phi_Psi.dat", delim_whitespace=True, header=None) df_Phi_Psi.columns = ["Phi", "Psi"] df_weight = pd.read_csv("weights.dat", delim_whitespace=True, header=None) df_weight.columns = ["dV_kBT", "timestep", "dVkcalmol"] sum_total = df_Phi_Psi.shape[0] binsX = np.arange(float(Xdim[0]), (float(Xdim[1]) + binspace), binspace) binsY = np.arange(float(Ydim[0]), (float(Ydim[1]) + binspace), binspace) hist2D, hist_edgesX, hist_edgesY = np.histogram2d( df_Phi_Psi["Phi"].values.tolist(), df_Phi_Psi["Psi"].values.tolist(), bins=(binsX, binsY), weights=None, ) pstarA_2D = [i / sum_total for i in list(hist2D)] bins_tuple_X = create_bins( lower_bound=int(Xdim[0]), width=binspace, upper_bound=int(Xdim[1]) ) bins_tuple_Y = create_bins( lower_bound=int(Ydim[0]), width=binspace, upper_bound=int(Ydim[1]) ) bins = [] for i in range(len(bins_tuple_X)): for j in range(len(bins_tuple_Y)): bins.append([bins_tuple_X[i], bins_tuple_Y[j]]) pstarA = [item for elem in pstarA_2D for item in elem] hist = [item for elem in hist2D for item in elem] hist = [int(i) for i in hist] data_X = df_Phi_Psi["Phi"].values.tolist() binned_weights_X = [] for value in data_X: bin_index_X = find_bin(value, bins_tuple_X) binned_weights_X.append(bin_index_X) data_Y = df_Phi_Psi["Psi"].values.tolist() binned_weights_Y = [] for value in data_Y: bin_index_Y = find_bin(value, bins_tuple_Y) binned_weights_Y.append(bin_index_Y) binned_weights_2D = [] for i in range(len(binned_weights_X)): binned_weights_2D.append([binned_weights_X[i], binned_weights_Y[i]]) binned_weights = [] for i in range(len(binned_weights_2D)): binned_weights.append( (binned_weights_2D[i][0] * len(bins_tuple_Y)) + (binned_weights_2D[i][1] + 1) ) df_index = pd.DataFrame(binned_weights) df_index.columns = ["index"] df_index["index"] = df_index["index"] - 1 df = pd.concat([df_index, df_Phi_Psi, df_weight], axis=1) dV_c1 = [] dV_c2 = [] dV_c3 = [] dV = [] for i in range(len(bins)): df_i = df.loc[(df["index"] == i)] dV_list = df_i["dVkcalmol"].values.tolist() if len(dV_list) >= 10: dV_c1.append(statistics.mean(dV_list)) dV_c2.append( statistics.mean([i ** 2 for i in dV_list]) - (statistics.mean(dV_list)) ** 2 ) dV_c3.append( statistics.mean([i ** 3 for i in dV_list]) - 3 * (statistics.mean([i ** 2 for i in dV_list])) * (statistics.mean(dV_list)) + 2 * (statistics.mean(dV_list)) ** 3 ) if len(dV_list) < 10: dV_c1.append(0) dV_c2.append(0) dV_c3.append(0) dV.append(dV_list) c1 = [i * beta for i in dV_c1] c2 = [i * ((beta ** 2) / 2) for i in dV_c2] c3 = [i * ((beta ** 3) / 6) for i in dV_c3] c1 = c1 c12 = [a + b for a, b in zip(c1, c2)] c123 = [a + b for a, b in zip(c12, c3)] for i in range(len(c1)): if c1[i] >= 700: c1[i] = 700 for i in range(len(c12)): if c12[i] >= 700: c12[i] = 700 for i in range(len(c123)): if c123[i] >= 700: c123[i] = 700 ensemble_average_c1 = [exp(i) for i in c1] ensemble_average_c12 = [exp(i) for i in c12] ensemble_average_c123 = [exp(i) for i in c123] numerator_c1 = [a * b for a, b in zip(pstarA, ensemble_average_c1)] numerator_c12 = [a * b for a, b in zip(pstarA, ensemble_average_c12)] numerator_c123 = [a * b for a, b in zip(pstarA, ensemble_average_c123)] #### c1 denominatorc1 = [] for i in range(len(bins)): product_c1 = pstarA[i] * ensemble_average_c1[i] denominatorc1.append(product_c1) denominator_c1 = sum(denominatorc1) pA_c1 = [i / denominator_c1 for i in numerator_c1] #### c12 denominatorc12 = [] for i in range(len(bins)): product_c12 = pstarA[i] * ensemble_average_c12[i] denominatorc12.append(product_c12) denominator_c12 = sum(denominatorc12) pA_c12 = [i / denominator_c12 for i in numerator_c12] #### c123 denominatorc123 = [] for i in range(len(bins)): product_c123 = pstarA[i] * ensemble_average_c123[i] denominatorc123.append(product_c123) denominator_c123 = sum(denominatorc123) pA_c123 = [i / denominator_c123 for i in numerator_c123] data_c1 = list(zip(bins, pA_c1)) data_c12 = list(zip(bins, pA_c12)) data_c123 = list(zip(bins, pA_c123)) df_c1 = pd.DataFrame(data_c1, columns=["bins", "pA_c1"]) df_c12 = pd.DataFrame(data_c12, columns=["bins", "pA_c12"]) df_c123 = pd.DataFrame(data_c123, columns=["bins", "pA_c123"]) df_c1.to_csv("c1_2d.txt", header=True, index=None, sep=" ", mode="w") with open("c1_2d.txt", "r") as f1, open("pA_c1_2d.txt", "w") as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c1_2d.txt") ####c12 df_c12.to_csv("c12_2d.txt", header=True, index=None, sep=" ", mode="w") with open("c12_2d.txt", "r") as f1, open("pA_c12_2d.txt", "w") as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c12_2d.txt") ####c123 df_c123.to_csv("c123_2d.txt", header=True, index=None, sep=" ", mode="w") with open("c123_2d.txt", "r") as f1, open("pA_c123_2d.txt", "w") as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c123_2d.txt") ####c1_arranged df_c1_arranged = df_c1.sort_values(by="pA_c1", ascending=False) df_c1_arranged = df_c1_arranged[df_c1_arranged.pA_c1 > min_prob] df_c1_arranged.to_csv( "c1_arranged_2d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c1_arranged_2d.txt", "r") as f1, open( "pA_c1_arranged_2d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c1_arranged_2d.txt") ####c12_arranged df_c12_arranged = df_c12.sort_values(by="pA_c12", ascending=False) df_c12_arranged = df_c12_arranged[df_c12_arranged.pA_c12 > min_prob] df_c12_arranged.to_csv( "c12_arranged_2d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c12_arranged_2d.txt", "r") as f1, open( "pA_c12_arranged_2d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c12_arranged_2d.txt") ####c123_arranged df_c123_arranged = df_c123.sort_values(by="pA_c123", ascending=False) df_c123_arranged = df_c123_arranged[df_c123_arranged.pA_c123 > min_prob] df_c123_arranged.to_csv( "c123_arranged_2d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c123_arranged_2d.txt", "r") as f1, open( "pA_c123_arranged_2d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c123_arranged_2d.txt") ####c1_arranged df_c1_arranged["index"] = df_c1_arranged.index index_list_c1 = df_c1_arranged["index"].tolist() df["frame_index"] = df.index df_frame_index = df[["frame_index", "index"]] frame_indices_c1 = [] index_indces_c1 = [] for i in index_list_c1: df_index_list_c1 = df_frame_index.loc[df_frame_index["index"] == i] frame_c1 = df_index_list_c1["frame_index"].tolist() frame_indices_c1.append(frame_c1) index_c1 = [i] * len(frame_c1) index_indces_c1.append(index_c1) frame_indices_c1 = [item for elem in frame_indices_c1 for item in elem] index_indces_c1 = [item for elem in index_indces_c1 for item in elem] df_c1_frame = pd.DataFrame(frame_indices_c1, columns=["frame_index"]) df_c1_index = pd.DataFrame(index_indces_c1, columns=["index"]) df_c1_frame_index = pd.concat([df_c1_frame, df_c1_index], axis=1) df_c1_frame_index = df_c1_frame_index.groupby("index").filter( lambda x: len(x) >= 10 ) df_c1_frame_index.to_csv( "c1_frame_index_2d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c1_frame_index_2d.txt", "r") as f1, open( "c1_frame_2d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c1_frame_index_2d.txt") ####c12_arranged df_c12_arranged["index"] = df_c12_arranged.index index_list_c12 = df_c12_arranged["index"].tolist() df["frame_index"] = df.index df_frame_index = df[["frame_index", "index"]] frame_indices_c12 = [] index_indces_c12 = [] for i in index_list_c12: df_index_list_c12 = df_frame_index.loc[df_frame_index["index"] == i] frame_c12 = df_index_list_c12["frame_index"].tolist() frame_indices_c12.append(frame_c12) index_c12 = [i] * len(frame_c12) index_indces_c12.append(index_c12) frame_indices_c12 = [item for elem in frame_indices_c12 for item in elem] index_indces_c12 = [item for elem in index_indces_c12 for item in elem] df_c12_frame = pd.DataFrame(frame_indices_c12, columns=["frame_index"]) df_c12_index = pd.DataFrame(index_indces_c12, columns=["index"]) df_c12_frame_index = pd.concat([df_c12_frame, df_c12_index], axis=1) df_c12_frame_index = df_c12_frame_index.groupby("index").filter( lambda x: len(x) >= 10 ) df_c12_frame_index.to_csv( "c12_frame_index_2d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c12_frame_index_2d.txt", "r") as f1, open( "c12_frame_2d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c12_frame_index_2d.txt") ####c123_arranged df_c123_arranged["index"] = df_c123_arranged.index df_c123_arranged["index"] = df_c123_arranged.index index_list_c123 = df_c123_arranged["index"].tolist() df["frame_index"] = df.index df_frame_index = df[["frame_index", "index"]] frame_indices_c123 = [] index_indces_c123 = [] for i in index_list_c123: df_index_list_c123 = df_frame_index.loc[df_frame_index["index"] == i] frame_c123 = df_index_list_c123["frame_index"].tolist() frame_indices_c123.append(frame_c123) index_c123 = [i] * len(frame_c123) index_indces_c123.append(index_c123) frame_indices_c123 = [item for elem in frame_indices_c123 for item in elem] index_indces_c123 = [item for elem in index_indces_c123 for item in elem] df_c123_frame = pd.DataFrame(frame_indices_c123, columns=["frame_index"]) df_c123_index = pd.DataFrame(index_indces_c123, columns=["index"]) df_c123_frame_index = pd.concat([df_c123_frame, df_c123_index], axis=1) df_c123_frame_index = df_c123_frame_index.groupby("index").filter( lambda x: len(x) >= 10 ) df_c123_frame_index.to_csv( "c123_frame_index_2d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c123_frame_index_2d.txt", "r") as f1, open( "c123_frame_2d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c123_frame_index_2d.txt") ####c1 indices_c1_2d = df_c1_frame_index["index"].unique() frames_c1 = [] for i in indices_c1_2d: x = df_c1_frame_index.loc[df_c1_frame_index["index"] == i] y = x["frame_index"].values.tolist() z = random.sample(y, n_structures) frames_c1.append(z) frames_c1_2d = [item for elem in frames_c1 for item in elem] with open("frames_c1_2d.pickle", "wb") as f: pk.dump(frames_c1_2d, f) with open("indices_c1_2d.pickle", "wb") as f: pk.dump(indices_c1_2d, f) ####c12 indices_c12_2d = df_c12_frame_index["index"].unique() frames_c12 = [] for i in indices_c12_2d: x = df_c12_frame_index.loc[df_c12_frame_index["index"] == i] y = x["frame_index"].values.tolist() z = random.sample(y, n_structures) frames_c12.append(z) frames_c12_2d = [item for elem in frames_c12 for item in elem] with open("frames_c12_2d.pickle", "wb") as f: pk.dump(frames_c12_2d, f) with open("indices_c12_2d.pickle", "wb") as f: pk.dump(indices_c12_2d, f) ####c123 indices_c123_2d = df_c123_frame_index["index"].unique() frames_c123 = [] for i in indices_c123_2d: x = df_c123_frame_index.loc[df_c123_frame_index["index"] == i] y = x["frame_index"].values.tolist() z = random.sample(y, n_structures) frames_c123.append(z) frames_c123_2d = [item for elem in frames_c123 for item in elem] with open("frames_c123_2d.pickle", "wb") as f: pk.dump(frames_c123_2d, f) with open("indices_c123_2d.pickle", "wb") as f: pk.dump(indices_c123_2d, f) ##saving probabilities for each selected frame ####c1 prob_c1_2d_list = [] for i in indices_c1_2d: prob_c1_2d_list.append(df_c1["pA_c1"][i]) prob_c1_2d_list = list( itertools.chain.from_iterable( itertools.repeat(x, n_structures) for x in prob_c1_2d_list ) ) prob_c1_2d_list = [x / n_structures for x in prob_c1_2d_list] with open("prob_c1_2d_list.pickle", "wb") as f: pk.dump(prob_c1_2d_list, f) ####c12 prob_c12_2d_list = [] for i in indices_c12_2d: prob_c12_2d_list.append(df_c12["pA_c12"][i]) prob_c12_2d_list = list( itertools.chain.from_iterable( itertools.repeat(x, n_structures) for x in prob_c12_2d_list ) ) prob_c12_2d_list = [x / n_structures for x in prob_c12_2d_list] with open("prob_c12_2d_list.pickle", "wb") as f: pk.dump(prob_c12_2d_list, f) ####c123 prob_c123_2d_list = [] for i in indices_c123_2d: prob_c123_2d_list.append(df_c123["pA_c123"][i]) prob_c123_2d_list = list( itertools.chain.from_iterable( itertools.repeat(x, n_structures) for x in prob_c123_2d_list ) ) prob_c123_2d_list = [x / n_structures for x in prob_c123_2d_list] with open("prob_c123_2d_list.pickle", "wb") as f: pk.dump(prob_c123_2d_list, f) ref_df_2d =
pd.DataFrame(bins, columns=["binsX", "binsY"])
pandas.DataFrame
from wordcloud import WordCloud, STOPWORDS from PIL import Image import os import seaborn as sns import csv import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection import matplotlib.dates as mdates from mpl_toolkits.axes_grid1.inset_locator import inset_axes import matplotlib as mpl from Support.Additional import get_grey_colour from Support.LoadData import make_timely from mpl_toolkits.basemap import Basemap from matplotlib.colors import Normalize plt.style.use('seaborn-ticks') plt.rcParams["font.family"] = "Helvetica" mpl.rcParams.update(mpl.rcParamsDefault) def wordcloud_figure(abstract_count, output_file): """ Make the double helix word cloud: just a bit of fun.""" words_array = [] with open(abstract_count, 'r', errors='replace') as csvfile: reader = csv.DictReader(csvfile) for row in reader: if row['word'].lower() not in STOPWORDS: if len(row['word']) > 3: words_array.append( (row['word'].upper(), float(row['num_words']))) mask = Image.new('RGBA', (8000, 4467)) icon = Image.open(os.path.abspath( os.path.join('__file__', '../..', 'Data', 'Support', 'doublehelix_mask.png'))).convert('RGBA') mask.paste(icon, icon) mask = np.array(mask) wc = WordCloud(background_color='white', max_words=1250, mask=mask, max_font_size=5000) wc.generate_from_frequencies(dict(words_array)) wc.recolor(color_func=get_grey_colour) wc.to_file(output_file) plt.figure(figsize=(16, 8)) plt.imshow(wc, interpolation='bilinear') plt.axis('off') plt.show() def gwas_growth(output_file, Cat_Studies, Cat_Ancestry, Cat_Ancestry_groupedbyN): """ Plot the growth of GWAS over time (Figure 1)""" plt.style.use('seaborn-ticks') plt.rcParams['font.family'] = 'Helvetica' plt.rcParams['axes.linewidth'] = 0.75 yearlist = [] yearquarterlist = [] for year in range(2007, 2018): yearlist.append(str(year)) for quarter in ['Q1', 'Q2', 'Q3', 'Q4']: yearquarterlist.append(str(year) + quarter) variables = ['N ≤ 5,000', '5,001 ≤ N ≤ 50,000', '50,001 ≤ N ≤ 100,000', '100,001 ≤ N', 'N', 'Associations', 'Journals Printing GWAS', '# Diseases Studied'] df_years, df_quarters = make_timely(variables, yearlist, yearquarterlist, Cat_Studies, Cat_Ancestry, Cat_Ancestry_groupedbyN) plt.figure(figsize=(15, 10)) axA = plt.subplot(2, 1, 1) ax0variables = ['N ≤ 5,000', '5,001 ≤ N ≤ 50,000', '50,001 ≤ N ≤ 100,000', '100,001 ≤ N'] ax0 = df_quarters[ax0variables].plot(kind='bar', stacked=True, ax=axA, color=['#e41a1c', '#377eb8', '#4daf4a', '#ff7f00'], alpha=0.6, edgecolor='k') sns.despine(top=True, right=True, ax=ax0) ax0.set_ylabel('Number of Study Accessions', fontsize=12) ax0.tick_params(labelsize=10) ax0.legend(fontsize=12, loc='upper left') axB = plt.subplot(2, 2, 3) ax1a = df_years[['Associations']].plot(ax=axB, color='#e41a1c', alpha=0.75, rot=90, marker='o', linewidth=1.5, markersize=8, label='Associations Discovered', markeredgecolor='k', markeredgewidth=0.5) ax1b = axB.twinx() ax1b.plot(df_years[['N']], color='#377eb8', marker='s', markersize=7, linewidth=1.5, markeredgecolor='k', markeredgewidth=0.5) ax1a.set_ylabel('Number of Associations Discovered', fontsize=12) ax1b.set_ylabel('Number of Study Participants Analyzed', fontsize=12) ax1b.grid(False) axB.plot(0, 0, '-r', color='#377eb8', marker='s', markersize=7, markeredgecolor='k', markeredgewidth=0.5) axB.legend(['Associations (left)', 'Participants (right)'], fontsize=12, loc='upper left') ax1a.tick_params(labelsize=10) ax1b.tick_params(labelsize=10) plt.axis('tight') axC = plt.subplot(2, 2, 4) axtest = axC.twinx() ax_2a = df_years[['Journals Printing GWAS']].plot(kind='bar', ax=axC, position=1, color='#377eb8', legend=False, width=0.35, alpha=0.75, edgecolor='k') ax_2b = df_years[['# Diseases Studied']].plot(kind='bar', ax=axtest, position=0, color='#ff7f00', width=0.35, legend=False, alpha=0.75, edgecolor='k') ax_2a.set_ylabel('Unique Number of Journals Publishing GWAS', fontsize=12) ax_2b.set_ylabel('Unique Number of Diseases Studied', fontsize=12) ax_2b.grid(False) axC.plot(np.nan, '#377eb8', linewidth=4) axC.plot(np.nan, '#ff7f00', linewidth=4) axC.legend(['Journals (left)', 'Diseases (right)'], fontsize=12, loc='upper left') ax_2a.margins(1, 0.5) ax_2a.tick_params(labelsize=10) ax_2b.tick_params(labelsize=10) plt.axis('tight') plt.tick_params(axis='both', which='minor', labelsize=10) plt.tight_layout() plt.savefig(output_file, bbox_inches='tight') def choropleth_map(df, input_series, cmap, output_path): """ fairly generic function to make a choropleth map feed in either 'N' or 'ParticipationPerPerson': Population adjusted is just for robustness""" cm = plt.get_cmap(cmap) df['scheme'] = [ cm(df[input_series][i] / df[input_series].max()) for i in df.index] fig = plt.figure(figsize=(20, 10)) ax = fig.add_subplot(111, facecolor='#deeff5', frame_on=False) m = Basemap(lon_0=0, projection='robin', resolution='i') m.drawmapboundary(color='k', linewidth=0.075) m.drawcountries(color='k', linewidth=0.025) m.drawmeridians(np.arange(0, 360, 60), labels=[False, False, False, True], color='#bdbdbd', dashes=[6, 6], linewidth=0.1, fontsize=10) m.drawparallels(np.arange(-90, 90, 30), labels=[True, False, False, False], color='#bdbdbd', dashes=[6, 6], linewidth=0.1, fontsize=10) m.readshapefile(os.path.abspath(os.path.join('__file__', '../..', 'data', 'ShapeFiles', 'ne_10m_admin_0_countries')), 'units', color='#444444', linewidth=.075) for info, shape in zip(m.units_info, m.units): country = info['NAME_CIAWF'] if country not in df.index: color = 'w' else: color = df.loc[country]['scheme'] patches = [Polygon(np.array(shape), True)] pc = PatchCollection(patches) pc.set_facecolor(color) ax.add_collection(pc) norm = Normalize() mapper = mpl.cm.ScalarMappable(norm=norm, cmap=cm) if input_series == 'N': mapper.set_array(df[input_series] / 1000000) else: mapper.set_array(df[input_series]) clb = plt.colorbar(mapper, shrink=0.75) clb.ax.tick_params(labelsize=10) if input_series == 'N': clb.ax.set_title('Number of\n People (m)', y=1.02, fontsize=11) elif input_series == 'Per Rec': clb.ax.set_title('Participations\nPer Recruitment', y=1.02, fontsize=11) plt.savefig(output_path, bbox_inches='tight') plt.show() def plot_heatmap(funder_ancestry, funder_parent, output_path): ''' Build the funder heatmaps ''' sns.set(font_scale=1, font='Arial', style='white') f, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, sharex=False, sharey=True, figsize=(18, 11), gridspec_kw={'width_ratios': [.25, .7], 'wspace': .05, 'hspace': 0}) gg = sns.heatmap(funder_ancestry.astype(float), ax=ax1, fmt='.0f', annot=True, cmap='Oranges', xticklabels=True, yticklabels=True, linewidth=0.1, linecolor='k', robust=True, cbar=False, annot_kws={'size': 10}) gg.tick_params(axis='both', which='major', labelsize=12) gg.set_xlabel('Ancestry', fontsize=12) hh = sns.heatmap(funder_parent.astype(float), ax=ax2, fmt='.0f', annot=True, cmap='Blues', xticklabels=True, yticklabels=True, linewidth=0.1, linecolor='k', robust=True, cbar=False, annot_kws={'size': 11}) hh.tick_params(axis='both', which='major', labelsize=12) hh.set_xlabel('Broad EFO Category', fontsize=12) plt.gcf() plt.setp(ax2.get_yticklabels(), visible=False) plt.tight_layout(h_pad=5) plt.savefig(output_path, bbox_inches='tight') def plot_bubbles(output_path, Cat_Ancestry, Broad_Ancestral_NoNR, countriesdict): """ This makes the Broader Ancestry bubble plot (Figure 2) """ fig = plt.figure(figsize=(12, 6), dpi=800) ax = fig.add_subplot(1, 1, 1) for obs in Cat_Ancestry.index: for key, value in countriesdict.items(): if Cat_Ancestry['Broader'][obs].strip() == key: ax.plot_date(x=pd.to_datetime(Cat_Ancestry['Dates'][obs]), y=Cat_Ancestry['N'][obs], color=value, marker='.', label='the data', alpha=0.4, markersize=Cat_Ancestry['N'][obs] / 6500) ax.xaxis.set_major_locator(mdates.MonthLocator(interval=24)) ax.set_xlim(pd.Timestamp('2007-01-01'),
pd.Timestamp('2018-12-31')
pandas.Timestamp
import os import fnmatch import numpy as np import csv import sys import pandas as pd import re from sklearn import preprocessing from scipy import signal from scipy import stats def readinputclustering(filename, preprocessingmode): df = pd.read_csv(filename, header=None) X = df.ix[:, 1::].astype(float) X.fillna(0, inplace=True) labels = df.ix[:, 0] if preprocessing == 'log': # log transform the dataframe cause values differ by orders of magnitude X = np.log(X) X[~np.isfinite(X)] = 0 labels = df.ix[:, 0] else: min_max_scaler = preprocessing.MinMaxScaler() x_scaled = min_max_scaler.fit_transform(X) X = pd.DataFrame(x_scaled) labels = df.ix[:, 0] return X, labels # reads input for SAX time series discretization def readMStimedomaintransient(filename): MS = pd.read_csv(filename, sep =',') return MS def crawl_folders(path, extensions): directories = [] for dirpath, dirnames, files in os.walk(path): for directory in dirnames: if directory != 'rawdata' and directory != 'spectrograms' and directory != 'spectrogrampics' and directory != 'results': p = os.path.join(dirpath, directory) directories.append(p) return directories # find files path, reads csv files only unless specified differently in extensions def find_files(path, extensions): # Allow both with ".csv" and without "csv" to be used for extensions extensions = [e.replace(".", "") for e in extensions] for dirpath, dirnames, files in os.walk(path): for extension in extensions: for f in fnmatch.filter(files, "*.%s" % extension): p = os.path.join(dirpath, f) yield (p, extension) # maybe specify a limit parameter such that optionally # only part of the spectrogram is examined for now leave whole # spectrogram # to make comparisons between m/z series normalization within and between samples is necessary def read(filename): spectrogram = pd.read_csv(filename, sep =',') min_max_scaler = preprocessing.MinMaxScaler() x_scaled = min_max_scaler.fit_transform(spectrogram) arr2D = x_scaled return arr2D # read in original freq, mass, intensity data raw data from Basem def readdataframe(filename): sampleID = os.path.basename(filename) originaldata =
pd.read_table(filename, sep=',', header=0)
pandas.read_table
from torch.utils.data import DataLoader, Dataset import cv2 import os from utils import make_mask,mask2enc,make_mask_ import numpy as np import pandas as pd from albumentations import (HorizontalFlip, Normalize, Compose, Resize, RandomRotate90, Flip, RandomCrop, PadIfNeeded) from albumentations.pytorch import ToTensor from sklearn.model_selection import train_test_split,GroupKFold,KFold,GroupShuffleSplit path = './input/' RANDOM_STATE = 2019 class SteelDataset(Dataset): def __init__(self, df, data_folder, mean, std, phase): self.df = df self.root = data_folder self.mean = mean self.std = std self.phase = phase self.transforms = get_transforms(phase, mean, std) self.fnames = self.df.index.tolist() def __getitem__(self, idx): image_id, mask = make_mask(idx, self.df) image_path = os.path.join(self.root, "train_images", image_id) # img = Image.open(image_path) # img = np.array(img)[:, :, 0] img = cv2.imread(image_path)[:, :, 0] img = img[:, :, np.newaxis] augmented = self.transforms(image=img, mask=mask) img = augmented['image'] mask = augmented['mask'] # 1x256x1600x4 mask = mask[0].permute(2, 0, 1) # 1x4x256x1600 return img, mask def __len__(self): return len(self.fnames) class SteelDatasetCopped(Dataset): def __init__(self, df, data_folder, mean= (0.41009), std= (0.16991), phase='train'): self.df = df self.root = data_folder self.mean = (0.3959) self.std = (0.1729) self.phase = phase self.transforms = get_transforms(phase, mean, std) self.fnames = self.df.index.tolist() def __getitem__(self, idx): image_id, mask = make_mask_(idx, self.df) # print(image_id) image_path = os.path.join(self.root, "images", image_id) try: img = cv2.imread(image_path)[:, :, 0] except Exception: image_path = os.path.join(self.root, "images_n", image_id) img = cv2.imread(image_path)[:, :, 0] img = img[:, :, np.newaxis] augmented = self.transforms(image=img, mask=mask) img = augmented['image'] mask = augmented['mask'] # 1x256x1600x4 mask = mask[0].permute(2, 0, 1) # 1x4x256x1600 return img, mask def __len__(self): return len(self.fnames) def get_transforms(phase, mean, std): list_transforms = [] if phase == "train": list_transforms.extend( [ # PadIfNeeded(min_height=256, min_width=256), # RandomCrop(height=256, width=256, p=1), # RandomCrop(height=224, width=224, p=1), HorizontalFlip(p=0.5), # only horizontal flip as of now Flip(p=0.5), # RandomRotate90(p=0.5), # PadIfNeeded(min_height=256, min_width=256) ] ) else: list_transforms.extend( [ PadIfNeeded(min_height=256, min_width=256), ] ) list_transforms.extend( [ Normalize(mean=mean, std=std, p=1), ToTensor(), ] ) list_trfms = Compose(list_transforms) return list_trfms def provider( data_folder, df_path, phase, mean=None, std=None, batch_size=4, num_workers=4, cropped=False ): '''Returns dataloader for the model training''' if cropped ==False: df = pd.read_csv(df_path) # some preprocessing # https://www.kaggle.com/amanooo/defect-detection-starter-u-net df['ImageId'], df['ClassId'] = zip(*df['ImageId_ClassId'].str.split('_')) df['ClassId'] = df['ClassId'].astype(int) df = df.pivot(index='ImageId', columns='ClassId', values='EncodedPixels') df['defects'] = df.count(axis=1) train_df, val_df = train_test_split(df, test_size=0.2, stratify=df["defects"], random_state=RANDOM_STATE) df = train_df if phase == "train" else val_df image_dataset = SteelDataset(df, data_folder, mean, std, phase) dataloader = DataLoader( image_dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=True, shuffle=True, ) else: if os.path.exists('./other_thing/cropped_df.csv'): df_ = pd.read_csv('./other_thing/cropped_df.csv') df_ = df_.fillna('') else: print('Prepare rle ing') df = pd.DataFrame() df['ImageId'] = os.listdir('./other_thing/images') df['Image'] = df['ImageId'].apply(lambda x: x.split('.')[0][:-2]) predictions = [] for imgid in os.listdir('./other_thing/images'): mask = cv2.imread('./other_thing/masks/'+imgid) rles = mask2enc(mask) predictions.append(rles) img_neg = pd.read_csv('./input/pred.csv') img_neg = img_neg['fname'].unique()[:15000] df2 = pd.DataFrame() df2['ImageId'] = img_neg df2['Image'] = df2['ImageId'].apply(lambda x: x.split('.')[0][:-2]) predictions2 = [['', '', '', '']]*15000 df_ = pd.DataFrame(predictions2+predictions, columns=[1, 2, 3, 4]) df_['ImageId'] = pd.concat([df2, df], axis=0)['ImageId'].values df_['Image'] =
pd.concat([df2, df], axis=0)
pandas.concat
import pandas as pd from collections import defaultdict import datetime from xlrd import xldate_as_datetime import os import sys import json from openpyxl import load_workbook from .os_functions import last_day_of_month,enter_exit, generate_md5 from .regex_functions import replace_re_special, strQ2B, strB2Q,symbol_to_spaces, normalize_punctuations from .nlp_functions import get_keyword_dict, get_word_freq_dict, convert_key2list, process_text_eng from .excel_functions import write_format_columns from .func_classes import DfDict import gc import re import warnings import traceback import logging from pandas.errors import OutOfBoundsDatetime import swifter from flashtext import KeywordProcessor warnings.filterwarnings('ignore') def read_config_table(file_path, dtype=str): df =
pd.DataFrame([])
pandas.DataFrame
#!/usr/bin/env python # -*- coding: UTF-8 -*- # Pixel Starships Market API # ----- Packages ------------------------------------------------------ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse import datetime import csv import numpy as np import os import pandas as pd import pss_core as core import pss_prestige as p import re import urllib.request import xml.etree.ElementTree # Discord limits messages to 2000 characters MESSAGE_CHARACTER_LIMIT = 2000 HOME = os.getenv('HOME') base_url = 'http://{}/'.format(core.get_production_server()) # ----- Utilities ----------------------------------------------------- def save_raw_text(raw_text, filename): with open(filename, 'w') as f: f.write(raw_text) def get_base_url(api_version=1, https=False): if https is True: prefix = 'https://' else: prefix = 'http://' if api_version==2: return prefix + 'api2.pixelstarships.com/' else: return prefix + 'api.pixelstarships.com/' # ----- Get Latest Version -------------------------------------------- def get_latest_version(): url= base_url + 'SettingService/GetLatestVersion?language=Key=en' data = urllib.request.urlopen(url).read() return data.decode() # ----- Item Designs -------------------------------------------------- def get_item_designs(): url = base_url + 'ItemService/ListItemDesigns2?languageKey=en' data = urllib.request.urlopen(url).read() return data.decode() def save_item_design_raw(raw_text): now = datetime.datetime.now() filename = 'data/items-{}.txt'.format(now.strftime('%Y%m%d')) save_raw_text(raw_text, filename) def load_item_design_raw(refresh=False): now = datetime.datetime.now() filename = 'data/items{}.txt'.format(now.strftime('%Y%m%d')) if os.path.isfile(filename) and refresh is False: with open(filename, 'r') as f: raw_text = f.read() else: raw_text = get_item_designs() save_item_design_raw(raw_text) return raw_text def parse_item_designs(raw_text): d = {} # r_lookup = {} root = xml.etree.ElementTree.fromstring(raw_text) for c in root: # print(c.tag) # ListItemDesigns for cc in c: # print(cc.tag) # ItemDesigns for ccc in cc: # print(ccc.tag) # ItemDesign if ccc.tag != 'ItemDesign': continue item_name = ccc.attrib['ItemDesignName'] d[item_name] = ccc.attrib # r_lookup[int(ccc.attrib['ItemDesignId'])] = item_name return d def xmltext_to_df(raw_text): df = pd.DataFrame() root = xml.etree.ElementTree.fromstring(raw_text) for c in root: for cc in c: for i, ccc in enumerate(cc): df = df.append(pd.DataFrame(ccc.attrib, index=[i])) return df # ----- Lists --------------------------------------------------------- def get_lists(df_items): item_rarities = list(df_items.Rarity.unique()) item_enhancements = list(df_items.EnhancementType.unique()) item_types = list(df_items.ItemType.unique()) item_subtypes = list(df_items.ItemSubType.unique()) return item_rarities, item_enhancements, item_types, item_subtypes # ----- Parsing ------------------------------------------------------- def fix_item(item): # Convert to lower case & non alpha-numeric item = re.sub('[^a-z0-9]', '', item.lower()) item = re.sub('anonmask', 'anonymousmask', item) item = re.sub('armour', 'armor', item) item = re.sub('bunny', 'rabbit', item) item = re.sub("(darkmatterrifle|dmr)(mark|mk)?(ii|2)", "dmrmarkii", item) item = re.sub('golden', 'gold', item) return item def filter_item_designs(search_str, rtbl, filter): item_original = list(rtbl.keys()) item_lookup = [ fix_item(s) for s in item_original ] item_fixed = fix_item(search_str) txt = '' for i, item_name in enumerate(item_lookup): m = re.search(item_fixed, item_name) if m is not None: item_name = item_original[i] d = rtbl[item_name] # Filter out items if (item_name == 'Gas' or item_name == 'Mineral' or d['MissileDesignId'] != '0' or d['CraftDesignId'] != '0' or d['CharacterDesignId'] != '0'): continue # Process # item_price = d['FairPrice'] item_price = d['MarketPrice'] item_slot = re.sub('Equipment', '', d['ItemSubType']) item_stat = d['EnhancementType'] item_stat_value = d['EnhancementValue'] if filter == 'price': if item_price == '0': item_price = 'NA' txt += '{}: {}\n'.format(item_name, item_price) elif filter == 'stats': if item_stat == 'None': continue txt += '{}: {} +{} ({})\n'.format(item_name, item_stat, item_stat_value, item_slot) else: print('Invalid filter') quit() if len(txt) == 0: return None else: return txt.strip('\n') def get_real_name(search_str, rtbl): item_original = list(rtbl.keys()) item_lookup = [ fix_item(s) for s in item_original ] item_fixed = fix_item(search_str) try: # Attempt to find an exact match idx = item_lookup.index(item_fixed) return item_original[idx] except: # Perform search if the exact match failed m = [ re.search(item_fixed, n) is not None for n in item_lookup ] item = pd.Series(item_original)[m] if len(item) > 0: return item.iloc[0] else: return None # ----- Item Stats ---------------------------------------------------- def get_item_stats(item_name): raw_text = load_item_design_raw() item_lookup = parse_item_designs(raw_text) market_txt = filter_item_designs(item_name, item_lookup, filter='stats') if market_txt is not None: market_txt = '**Item Stats**\n' + market_txt return market_txt # ----- Best Items ---------------------------------------------------- def rtbl2items(rtbl): df_rtbl =
pd.DataFrame(rtbl)
pandas.DataFrame
import time from matplotlib import pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pynanoflann from contexttimer import Timer from sklearn import neighbors n_index_points = 200000 n_query_points = 1000 n_repititions = 5 data_dim = 3 n_neighbors = 100 index_type = np.float32 data = np.random.uniform(0, 100, size=(n_index_points, data_dim)).astype(index_type) queries = np.random.uniform(0, 100, size=(n_query_points, data_dim)).astype(index_type) algs = { 'sklearn_brute': neighbors.NearestNeighbors(n_neighbors=n_neighbors, algorithm='brute'), 'sklearn_ball_tree': neighbors.NearestNeighbors(n_neighbors=n_neighbors, algorithm='ball_tree'), 'sklearn_kd_tree': neighbors.NearestNeighbors(n_neighbors=n_neighbors, algorithm='kd_tree'), 'pynanoflann': pynanoflann.KDTree(n_neighbors=n_neighbors), } results = [] for rep in range(n_repititions): for alg_name, nn in algs.items(): with Timer() as index_build_time: nn.fit(data) with Timer() as query_time: dist, idx = nn.kneighbors(queries) results.append((alg_name, index_build_time.elapsed, query_time.elapsed)) df =
pd.DataFrame(results, columns=['Algorithm', 'Index build time, second', 'Query time, second'])
pandas.DataFrame
import pandas as pd import seaborn as sn import numpy as np from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt ##read in the file file_name="train.csv" titanic=pd.read_csv(file_name,header=0,sep=",") ###split data X=titanic.drop("Survived",axis=1) y=titanic["Survived"] X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2, random_state=42) #80% of training, 20% test ###inspect data X_train.head() titanic_edl=pd.concat([X_train, y_train], axis=1) titanic_edl.head() titanic_edl=pd.concat([X_train, y_train], axis=1) titanic_edl.head() ### inspect survival titanic_edl[["Survived","PassengerId"]].groupby("Survived").nunique() #### create 3 colmns : one for total family members and one for titles (embeded in names) ###one for cabins titanic_edl['Title'] = titanic_edl['Name'].map(lambda x: x.split(', ')[1].split('.')[0]) titanic_edl['Title'].unique() titanic_edl["Family_size"]=titanic_edl["SibSp"] + titanic_edl["Parch"] titanic_edl["Level_cabin"]=titanic_edl["Cabin"].str[0] titanic_edl["Level_cabin"][titanic_edl.Level_cabin.isna()]="No Cabin" ###percentage of survived customers from 1st class first_class=titanic_edl["Pclass"]==1 survived_1=titanic_edl[["Pclass","Survived","PassengerId"]].loc[first_class].groupby("Survived").nunique()["PassengerId"] survived_1_total=titanic_edl[["Pclass","Survived","PassengerId"]].loc[first_class].nunique()["PassengerId"] prop_survived_1=survived_1/survived_1_total*100 print(prop_survived_1) #####bar plot showing proportion of males to females over all classes titanic_edl[["Pclass","Sex","PassengerId"]].groupby(["Pclass","Sex"]).count().plot.bar() male_female=titanic_edl[["Pclass","Sex","PassengerId"]].groupby(["Pclass","Sex"]).count() male_female.reset_index(inplace=True) ###plot with seaborn males/females plt.figure(figsize=(5,5)) sn.barplot(x="Pclass",y="PassengerId",hue="Sex",data=male_female) plt.xlabel("Class") plt.ylabel("Number of passengers") plt.title("Gender distribution") plt.show() ###females outnumber males in all classes, except the 3ed class, where males are more #than double the number of females ####survival of females and males in all classes grouped_=titanic_edl[["Pclass","Sex","PassengerId","Survived"]].groupby(["Pclass","Sex","Survived"]).count() grouped_.reset_index(inplace=True) ###find distribution of total survived? total non survived over class and sex grouped_["SV_NSV"]=grouped_[["Survived","PassengerId"]].groupby("Survived").transform("sum") grouped_["prop_surv"]=grouped_["PassengerId"]/grouped_["SV_NSV"]*100 grouped_.head() #### plot survival based on sex over all classes, sum of probability of survival is 1 plt.figure(figsize=(5,5)) sn.barplot(x="Pclass",y="prop_surv",hue="Sex",data=grouped_[grouped_["Survived"]==1]) plt.xlabel("Class") plt.ylabel("Survival rate") plt.title("Survival rate based on classe for all genders)") plt.show() ###when it comes to survival rates: females again have a higher survival rate than men, # even in the 3ed class (by 5%), where men outnumber women #women survival is actually almost more tahn double that of men #### calculate how many % of women actually survived vs men grouped_["Total_gender"]=grouped_[["Sex","PassengerId"]].groupby("Sex").transform("sum") grouped_["Surv_sex"]=grouped_["PassengerId"]/grouped_["Total_gender"]*100 ###plot survival rates based on gender plt.figure(figsize=(5,5)) sn.boxplot(x="Sex",y="Surv_sex",hue="Survived", data=grouped_) plt.xlabel("Sex") plt.ylabel("Survival rate") plt.title("Survival distribution based on gender (over all classes)") plt.show() #### age and fare titanic_edl[["Survived","Age"]].groupby(["Survived"]).mean() ### on average the lower the age the higher the survival chances were (28.4) titanic_edl[["Survived","Age","Sex"]].groupby(["Survived","Sex"]).mean().unstack().plot.bar() plt.title("Age distribution per gender and survival") plt.show() #### overall age mean for surviving women passangers was higher than that of surviving male passangers, # but also higher than that of non surviving females (which is strange ). # basically age for women is directly prop to survival rate . for men the distribution is # as expected --> namly older men died whilst younger survived titanic_edl[["Survived","Age","Pclass"]].groupby(["Survived","Pclass"]).mean().unstack().plot.bar() plt.ylabel("Age") plt.xlabel("Survived, Class") plt.title("Survived per age and class") plt.show() ### this looks a bit more "normal": the survival age increases by class and is usually lower than the age on non survival ####let"s look at the age distribution for each passenger class #We can set dodge as True in the swarmplot to split the distributions fig, ax = plt.subplots(figsize=(12,6), nrows=1, ncols=3) plt.suptitle('Age Distribution of Survivor state by Gender in Each Class', fontsize=16) for i in range(3): ax[i].set_title('Class {}'.format(i+1)) ax[i].set_ylim(-5,85) sn.boxplot(data=titanic_edl[titanic_edl['Pclass']==i+1], x='Survived', y='Age', hue='Sex', hue_order=['male','female'], dodge=True, ax=ax[i]) ax[1].set_ylabel(None) ax[2].set_ylabel(None) ax[0].legend_.remove() ax[1].legend_.remove() ##lets look at prices titanic_edl[["Survived","Fare"]].groupby(["Survived"]).mean() titanic_edl[["Survived","Fare","Sex"]].groupby(["Survived","Sex"]).mean().unstack().plot.bar() plt.ylabel("Fare Prices") plt.title("Average Fare price per gender and survival") plt.show() ### fare prices for females who survived, where higher than those of men who survived ### fare price seems to be correlated to more than just class, # # since females are less in absolute numbers, but whit higher fare rates # # men in fisrt class are more than double than women in fisrt class titanic_edl[["Survived","Fare","Sex","Pclass"]].groupby(["Survived","Sex","Pclass"]).mean().unstack().plot.bar(legend=False) plt.ylabel("Fare") plt.title("Fare Price distributed across survival state, per gender and class") ## men the ones that survive consitantly outpay the ones that don"t ##Let"s look at the distribution of Fare prices accross classes and genders fig, ax = plt.subplots(figsize=(12,6), nrows=1, ncols=3) plt.suptitle('Fare Price Distribution of Survivor state by Gender in Each Class', fontsize=16) for i in range(3): ax[i].set_title('Class {}'.format(i+1)) ax[i].set_ylim(-5,260) sn.boxplot(data=titanic_edl[titanic_edl['Pclass']==i+1], x='Survived', y='Fare', hue='Sex', hue_order=['male','female'], dodge=True, ax=ax[i]) ax[1].set_ylabel(None) ax[2].set_ylabel(None) ax[0].legend_.remove() ax[1].legend_.remove() ##lets look at prices titanic_edl[["Survived","Fare"]].groupby(["Survived"]).mean() titanic_edl[["Survived","Fare","Sex"]].groupby(["Survived","Sex"]).mean().unstack().plot.bar() plt.ylabel("Fare Prices") plt.title("Average Fare price per gender and survival") plt.show() ### let"s see the connection amongst sex and sib/spouses and fare and sib/spuses titanic_edl[["Survived","SibSp","PassengerId"]].groupby(["Survived","SibSp"]).count().unstack().plot.bar() ###survival with up to 4 siblings/spuses (small families) #the most who survived where alone ###survival with up to 4 siblings/spuses (small families) titanic_edl[["Survived","SibSp","Sex"]].groupby(["Survived","Sex"]).count() titanic_edl[["Survived","SibSp","Sex","Fare"]].groupby(["Survived","SibSp","Sex"]).mean() ### the ones that survived have up to 4 siblings, and with 3 siblings you actually spend the highest amount of money ##only women with 3 siblings survived titanic_edl[["Survived","SibSp","Pclass","Fare"]].groupby(["Survived","SibSp","Pclass"]).mean() ###fare price for 3 siblings is the same in survived and non survived--> it only matters if you are a female in oredr to survive dist_sib_fare=titanic_edl[["Survived","SibSp","Pclass","Fare"]].groupby(["Survived","SibSp","Pclass"]).mean() dist_sib_fare.reset_index(inplace=True) plt.figure(figsize=(5,5)) sn.boxplot(x="SibSp",y="Fare",hue="Survived",data=dist_sib_fare) plt.xlabel("Siblings") plt.ylabel("Fare price") plt.title("Fare prices based on #siblings") plt.show() ###fare price and gender distribution sex_sib=titanic_edl[["Survived","SibSp","Sex","Fare"]].groupby(["Survived","SibSp","Sex"]).mean() sex_sib.reset_index(inplace=True) plt.figure(figsize=(5,5)) sn.boxplot(x="Sex",y="Fare",hue="Survived",data=sex_sib) plt.xlabel("Siblings") plt.ylabel("Fare price") plt.title("Fare prices based on #siblings") plt.show() #### let's look at the significance of name titles to survived class titanic_edl.groupby("Title")["Survived"].aggregate(["mean","count"]) total_pop=titanic_edl["Survived"].count() def weighted_survival(df): weight=df["Survived"].count()/total_pop surv=df["Survived"] * weight*100 return np.sum(surv) titanic_edl.groupby("Title").apply(weighted_survival).plot.bar() plt.title("Avg. weighted Suvival rate by title (adj. by population size") plt.ylabel("Survival rate in %") titanic_edl.groupby(["Title","Pclass"])["Survived"].mean().unstack().plot.bar() plt.title("Avg. weighted Suvival rate by title and class(adj. by population size") plt.ylabel("Survival rate in %") ###let's investigate family size alone titanic_edl.groupby(["Family_size"])["Survived"].mean().plot.bar() plt.title("Survival by family size ") plt.ylabel("Survival rate in %") ###let's investigate family size based on ther factors: gender, class titanic_edl.groupby(["Family_size","Pclass"])["Survived"].mean().unstack().plot.bar() plt.title("Survival by family size and class") plt.ylabel("Survival rate in %") ####is survival rate dependent on family size and sex? titanic_edl.groupby(["Family_size","Sex"])["Survived"].mean().unstack().plot.bar() plt.title("Survival by family size and class") plt.ylabel("Survival rate in %") ### whats the undelying distribution of male/ females to family size titanic_edl.groupby(["Family_size","Sex"])["PassengerId"].count().unstack().plot.bar() plt.title("Survival by family size and class") plt.ylabel("Number of passengers") plt.show() ###let"s look at parent alone titanic_edl.groupby(["Parch"])["Survived"].mean().plot.bar(legend=False) plt.title("Survival by direct dependecy: parents") plt.ylabel("Survval rate") plt.show() ###above depedence of 3 there are no survivers ####Parch dosen"t seem to add any other value ###parents by direct dependency titanic_edl.groupby(["Parch","Sex"])["Survived"].mean().unstack().plot.bar() plt.title("Survival by direct dependecy: parents") plt.ylabel("Survval rate") plt.show() ###make a dummy variable that encodes having siblings >4 !! # (the more dependency you have the less likly it is that you survive) titanic_edl.groupby(["SibSp"])["Survived"].mean().plot.bar() plt.title("Survival rate by direct dependency: child or spouse") plt.ylabel("Survval rate") plt.show() ### children dependent on gender titanic_edl.groupby(["SibSp","Sex"])["Survived"].mean().unstack().plot.bar() plt.title("Survival rate by gender and direct dependency: child or spouse") plt.ylabel("Survval rate") plt.show() #####Let"s investigate if cabin is relevant for survival rate titanic_edl["Level_cabin"].unique() titanic_edl.groupby("Level_cabin")["Survived"].mean().plot.bar() plt.title("Survival rates by cabin levels") plt.ylabel("Survival rate") ###inspect cabin levels by class titanic_edl.groupby(["Level_cabin","Pclass"])["Survived"].mean().unstack().plot.bar() plt.title("Survival rates by cabin levels and class") plt.ylabel("Survival rate") ####most of the upper level cabins belong to the 1st class--? there is a correlation between classse # and cabins titanic_edl.groupby(["Level_cabin","Pclass"])["Survived"].count().unstack().plot.bar() plt.title("Survival rates by cabin levels and class") plt.ylabel("#Passengers") ###bin split the data titanic_edl["fam_size"]=pd.cut(titanic_edl["Family_size"], bins=3, labels=["small_fam","medium_fam","large_fam"]) titanic_edl["Sib_Sp_num"]=pd.cut(titanic_edl["SibSp"], bins=2, labels=["less_4","over_4"]) ###heatmap with initial variables one_hot_family=pd.get_dummies(titanic_edl["fam_size"]) one_hot_sibling=
pd.get_dummies(titanic_edl["Sib_Sp_num"])
pandas.get_dummies
from contextlib import contextmanager import pandas as pd import pytest from pandas._testing import assert_frame_equal from biopsykit.metadata import bmi, whr from biopsykit.utils.exceptions import ValueRangeError @contextmanager def does_not_raise(): yield def data_complete(): return pd.DataFrame( { "weight": [68, 68, 64], "height": [165, 178, 190], "waist": [76, 92, 0.71], "hip": [97, 112, 0.89], } ) def bmi_correct(): return pd.DataFrame( { "weight": [68, 68, 64], "height": [165, 178, 190], } ) def bmi_wrong_order(): return pd.DataFrame( { "height": [165, 178], "weight": [68, 68], } ) def whr_correct(): return pd.DataFrame( { "waist": [76, 92, 0.71], "hip": [97, 112, 0.89], } ) def whr_wrong_values(): return pd.DataFrame( { "hip": [50, 4, 0.5], "waist": [100, 20, 0.1], } ) def bmi_correct_solution(): return pd.DataFrame({"BMI": [24.98, 21.46, 17.73]}) def whr_correct_solution(): return pd.DataFrame({"WHR": [0.784, 0.821, 0.798]}) class TestMetadata: @pytest.mark.parametrize( "input_data, expected", [(bmi_correct(), does_not_raise()), (bmi_wrong_order(), pytest.raises(ValueRangeError))], ) def test_bmi_raises(self, input_data, expected): with expected: bmi(input_data) @pytest.mark.parametrize( "input_data, columns, expected", [(bmi_correct(), None, bmi_correct_solution()), (bmi_correct(), ["weight", "height"], bmi_correct_solution())], ) def test_bmi(self, input_data, columns, expected): data_out = bmi(input_data, columns)
assert_frame_equal(data_out, expected)
pandas._testing.assert_frame_equal
from warnings import simplefilter import ntpath import os import pandas as pd import pickle import run from colorama import Fore from pandas import DataFrame # ignore all future warnings simplefilter(action='ignore', category=FutureWarning) simplefilter(action='ignore', category=UserWarning) dir_path = os.path.dirname(os.path.realpath(__file__)) def input_path(): """ Check path of the mounted system image and return nothing. """ print( Fore.GREEN + 'Provide full path of mounted system image (.vhdx) ' + Fore.YELLOW + 'e.g. F:\C\Windows or F:\C ') print(Fore.GREEN) path = str(input('Path:')).strip() mount = path[0:2] # print (mount) if ntpath.ismount(mount): # print (mount + ' is mounted') if path == mount + '\C': sig_scan(path) else: sig_scan(path) else: print(Fore.YELLOW + '\nError -provide correct path. Mounted system image -try again \n') input_path() return 0 def sig_scan(path): """ Receives the location of the mounted files and runs sigcheck.exe and save the output for later analysis """ dir_path = os.path.dirname(os.path.realpath(__file__)) sigcheck = dir_path + r'\bin\sigcheck.exe' options = '-s -c -e -h -v -vt -w -nobanner' save = dir_path + r'\csvFiles\sigcheckToOrganise.csv' sig_cmd = sigcheck + ' ' + options + ' ' + save + ' ' + path print(Fore.YELLOW + '\nThis execution might take some time....') os.system(sig_cmd) if os.stat(dir_path + r'\csvFiles\sigcheckToOrganise.csv').st_size <= 317: print('Try again\n') input_path() else: analysis() return 0 def analysis(): """ Analyse the output generated by sigcheck.exe using Machine Learning """ save = dir_path + r'\csvFiles\sigcheckToOrganise.csv' sigs = pd.read_csv(save, encoding='utf-16', delimiter=',') bigdata = sigs[['Path', 'Verified', 'Machine Type', 'Publisher', 'Description', 'MD5', 'VT detection']] organised = DataFrame(bigdata) path_organised = organised['Path'] df1 = organised.loc[organised['Verified'] == 'Unsigned'] df1 = DataFrame(df1) # ML part # filename = dir_path + r'\ML\cmdModel.sav' vectfile = dir_path + r'\ML\vecFile.sav' se_model = pickle.load(open(filename, 'rb')) load_vect = pickle.load(open(vectfile, 'rb')) text = load_vect.transform(path_organised) print_this = se_model.predict(text) print_prob = se_model.predict_proba(text) * 100 listdf = pd.DataFrame(print_this) line_pr = pd.DataFrame(data=print_prob) linesdf = pd.DataFrame(path_organised) listdf = listdf.rename(columns={0: 'ML-Output'}) linesdf = linesdf.rename(columns={0: 'path'}) result = pd.concat([linesdf, listdf, line_pr], axis=1, sort=False) re = result.sort_values(by='ML-Output', ascending=False) re = pd.DataFrame(re) dff2 = re.loc[re['ML-Output'] == 1] pd.DataFrame(dff2).to_excel(dir_path + r'\ML\Step-3-results' + r'\suspicious_paths.xlsx', index=False) pd.DataFrame(re).to_excel(dir_path + r'\ML\Step-3-results' + r'\all_paths.xlsx', index=False) if df1.empty: print(Fore.YELLOW + 'Nothing verified to be suspicious') if
pd.DataFrame(dff2)
pandas.DataFrame
""" ====== BLOCK OF FUNCTIONS ====== """ import xosrm import os from IPython.display import display import pandas as pd def df_first(data): df_first = pd.DataFrame(data['первая половина месяца']).T df_first.fillna(0, inplace=True) return df_first def df_second(data): df_second = pd.DataFrame(data['вторая половина месяца']).T df_second.fillna(0, inplace=True) return df_second def open_excel_file(file_path): '''Open Excel file and create DataFrame input: filepath output: DataFrame''' data = pd.read_excel(file_path) return data def schedule(df): ''' Crete df for each day for even and odd week even - четная неделя; odd - нечентная неделя input: DataFrame (schedule) output: dict with coords ''' # Create nested dicts monthly_coords = {} monthly_coords['первая половина месяца'] = {} monthly_coords['вторая половина месяца'] = {} monthly_coords['первая половина месяца']['четная нед.'] = {} monthly_coords['первая половина месяца']['не четная нед.'] = {} monthly_coords['вторая половина месяца']['четная нед.'] = {} monthly_coords['вторая половина месяца']['не четная нед.'] = {} '''First part of the month''' # Crete df for each day of even week and add to dict first_part = df[df['№п/п четная нед.'].notnull() & (df['Интервал повторений'].isin([1,2,4]))] even_mon = first_part[first_part['Дни недели']==1].sort_values(by=['№п/п четная нед.']) monthly_coords['первая половина месяца']['четная нед.']['1-ПН'] = even_mon.to_dict('records') even_tue = first_part[first_part['Дни недели']==2].sort_values(by=['№п/п четная нед.']) monthly_coords['первая половина месяца']['четная нед.']['2-ВТ'] = even_tue.to_dict('records') even_wed = first_part[first_part['Дни недели']==3].sort_values(by=['№п/п четная нед.']) monthly_coords['первая половина месяца']['четная нед.']['3-СР'] = even_wed.to_dict('records') even_thu = first_part[first_part['Дни недели']==4].sort_values(by=['№п/п четная нед.']) monthly_coords['первая половина месяца']['четная нед.']['4-ЧТ'] = even_thu.to_dict('records') even_fri = first_part[first_part['Дни недели']==5].sort_values(by=['№п/п четная нед.']) monthly_coords['первая половина месяца']['четная нед.']['5-ПТ'] = even_fri.to_dict('records') # Crete df for each day of odd week and add to dict first_part = df[df['№п/п не четная нед.'].notnull() & (df['Интервал повторений'].isin([1,2,4]))] odd_mon = first_part[first_part['Дни недели']==1].sort_values(by=['№п/п не четная нед.']) monthly_coords['первая половина месяца']['не четная нед.']['1-ПН'] = odd_mon.to_dict('records') odd_tue = first_part[first_part['Дни недели']==2].sort_values(by=['№п/п не четная нед.']) monthly_coords['первая половина месяца']['не четная нед.']['2-ВТ'] = odd_tue.to_dict('records') odd_wed = first_part[first_part['Дни недели']==3].sort_values(by=['№п/п не четная нед.']) monthly_coords['первая половина месяца']['не четная нед.']['3-СР'] = odd_wed.to_dict('records') odd_thu = first_part[first_part['Дни недели']==4].sort_values(by=['№п/п не четная нед.']) monthly_coords['первая половина месяца']['не четная нед.']['4-ЧТ'] = odd_thu.to_dict('records') odd_fri = first_part[first_part['Дни недели']==5].sort_values(by=['№п/п не четная нед.']) monthly_coords['первая половина месяца']['не четная нед.']['5-ПТ'] = odd_fri.to_dict('records') '''Second part of the month''' # Crete df for each day of even week and add to dict first_part = df[df['№п/п четная нед.'].notnull() & (df['Интервал повторений'].isin([1,2,8]))] even_mon = first_part[first_part['Дни недели']==1].sort_values(by=['№п/п четная нед.']) monthly_coords['вторая половина месяца']['четная нед.']['1-ПН'] = even_mon.to_dict('records') even_tue = first_part[first_part['Дни недели']==2].sort_values(by=['№п/п четная нед.']) monthly_coords['вторая половина месяца']['четная нед.']['2-ВТ'] = even_tue.to_dict('records') even_wed = first_part[first_part['Дни недели']==3].sort_values(by=['№п/п четная нед.']) monthly_coords['вторая половина месяца']['четная нед.']['3-СР'] = even_wed.to_dict('records') even_thu = first_part[first_part['Дни недели']==4].sort_values(by=['№п/п четная нед.']) monthly_coords['вторая половина месяца']['четная нед.']['4-ЧТ'] = even_thu.to_dict('records') even_fri = first_part[first_part['Дни недели']==5].sort_values(by=['№п/п четная нед.']) monthly_coords['вторая половина месяца']['четная нед.']['5-ПТ'] = even_fri.to_dict('records') # Crete df for each day of odd week and add to dict first_part = df[df['№п/п не четная нед.'].notnull() & (df['Интервал повторений'].isin([1,2,8]))] odd_mon = first_part[first_part['Дни недели']==1].sort_values(by=['№п/п не четная нед.']) monthly_coords['вторая половина месяца']['не четная нед.']['1-ПН'] = odd_mon.to_dict('records') odd_tue = first_part[first_part['Дни недели']==2].sort_values(by=['№п/п не четная нед.']) monthly_coords['вторая половина месяца']['не четная нед.']['2-ВТ'] = odd_tue.to_dict('records') odd_wed = first_part[first_part['Дни недели']==3].sort_values(by=['№п/п не четная нед.']) monthly_coords['вторая половина месяца']['не четная нед.']['3-СР'] = odd_wed.to_dict('records') odd_thu = first_part[first_part['Дни недели']==4].sort_values(by=['№п/п не четная нед.']) monthly_coords['вторая половина месяца']['не четная нед.']['4-ЧТ'] = odd_thu.to_dict('records') odd_fri = first_part[first_part['Дни недели']==5].sort_values(by=['№п/п не четная нед.']) monthly_coords['вторая половина месяца']['не четная нед.']['5-ПТ'] = odd_fri.to_dict('records') return monthly_coords def calc_routes(full_dict): ''' Calculate SIMPLE_ROUTE for coords in a given order Calculate distances and durations for each day of the week Output: dict of geometries for each day ''' result_dict = full_dict.copy() for key0, value0 in result_dict.items(): print('================== {} =================='.format(key0)) for key, value in value0.items(): print('================== {} =================='.format(key)) for key2, value2 in value.items(): print(key2) if len(value2) > 1: # If list has more than 1 point coords = [] for point in value2: coords.append((point['Долгота'], point['Широта'])) source = coords[0] dest = coords[0] coords = coords[1:] result = xosrm.simple_route(source, dest, coords, output='full', overview="full", geometry="geojson") print(result['routes'][0]['distance']/1000, 'km') print(result['routes'][0]['duration']/60.026, 'min') result_dict[key0][key][key2].append(result['routes'][0]['geometry']) else: pass return result_dict def calc_dist(full_dict): ''' Calculate distances for each day of the week Output: dict of distances ''' result_dict = full_dict.copy() # Create dict of distances dist_dict = {} for key0, value0 in result_dict.items(): dist_dict[key0] = {} for key, value in value0.items(): dist_dict[key0][key]= {} for key2, value2 in value.items(): if len(value2) > 1: # If list has more than 1 point coords = [] for point in value2: coords.append([point['Долгота'], point['Широта']]) source = coords[0] dest = coords[0] coords = coords[1:] result = xosrm.simple_route(source, dest, coords, continue_straight="false", output='full', overview="full", geometry="geojson") # Add distances to dict distance = result['routes'][0]['distance']/1000 dist_dict[key0][key][key2] = distance else: dist_dict[key0][key][key2] = 0 return dist_dict def calc_trips(full_dict): ''' Calculate TRIP_ROUTE Calculate distances and durations for each day of the week Output: dict of geometries for each day ''' # Dict of geometries of route by day result_dict = full_dict.copy() # Create dict of distances dist_dict = {} for key0, value0 in result_dict.items(): dist_dict[key0] = {} for key, value in value0.items(): dist_dict[key0][key]= {} for key2, value2 in value.items(): if len(value2) > 1: # If list has more than 1 point coords = [] for point in value2: coords.append([point['Долгота'], point['Широта']]) result = xosrm.trip(coords, source='first', roundtrip=True, output='full', overview="full", geometry="geojson") distance = result['trips'][0]['distance']/1000 dist_dict[key0][key][key2] = distance # Get waypoinnt order and replace origin order in the dict for index, point in enumerate(value2): if key == 'четная нед.': point.update({'№п/п четная нед.': result['waypoints'][index]['waypoint_index'] + 1}) point.update({'№п/п не четная нед.': None}) if key == 'не четная нед.': point.update({'№п/п не четная нед.': result['waypoints'][index]['waypoint_index'] + 1}) point.update({'№п/п четная нед.': None}) else: dist_dict[key0][key][key2] = 0 return dist_dict, result_dict def write_to_excel(data, short_file_name): writer = pd.ExcelWriter('Расписания ТП расчетные.xlsx', engine = 'xlsxwriter') short_file_name = short_file_name.split(" ")[0] full_schedule = pd.DataFrame() for key0, value0 in data[1].items(): for key, value in value0.items(): for key2, value2 in value.items(): df = pd.DataFrame.from_dict(value2, orient='columns') full_schedule = pd.concat([full_schedule, df], ignore_index=True) # Get uniq rows even_part = full_schedule[['Внешний ID ТТ', '№п/п четная нед.']].drop_duplicates(subset='Внешний ID ТТ', keep='first', inplace=False) # Get only not null rows for even week even_part = even_part[even_part['№п/п четная нед.'].notnull()] # Create table with uniq rows WITHOUT even week odd_part = full_schedule[['Внешний ID ТТ','Клиент', 'Адрес', 'Долгота', 'Широта', 'Интервал повторений', 'Дни недели', '№п/п не четная нед.']].drop_duplicates(subset=['Внешний ID ТТ', 'Дни недели'], keep='last', inplace=False) # Merge two tables on ID TT merge_table =
pd.merge(odd_part, even_part, on='Внешний ID ТТ', how='left')
pandas.merge
""" Utility functions used for AMPL dataset curation and creation. """ """ TOC: aggregate_assay_data(assay_df, value_col='VALUE_NUM', output_value_col=None, label_actives=True, active_thresh=None, id_col='CMPD_NUMBER', smiles_col='rdkit_smiles', relation_col='VALUE_FLAG', date_col=None) replicate_rmsd(dset_df, smiles_col='base_rdkit_smiles', value_col='PIC50', relation_col='relation') mle_censored_mean(cmpd_df, std_est, value_col='PIC50', relation_col='relation') get_three_level_class(value, red_thresh, yellow_thresh) get_binary_class(value, thresh=4.0) set_group_permissions(path, system='AD', owner='GSK') filter_in_by_column_values (column, values, data) filter_out_by_column_values (column, values, data) filter_out_comments (values, values_cs, data) ...delete rows that contain comments listed (can specify 'case sensitive' if needed) get_rdkit_smiles_parent (data)...................creates a new column with the rdkit smiles parent (salts stripped off) average_and_remove_duplicates (column, tolerance, list_bad_duplicates, data) summarize_data(column, num_bins, title, units, filepath, data)..............prints mix/max/avg/histogram """ import os import pdb import pandas as pd import numpy as np from scipy.stats import norm from scipy.optimize import minimize_scalar from sklearn import metrics import logging import urllib3 from atomsci.ddm.utils.struct_utils import get_rdkit_smiles, base_smiles_from_smiles feather_supported = True try: import feather except (ImportError, AttributeError, ModuleNotFoundError): feather_supported = False from rdkit import Chem from rdkit.Chem.Descriptors import MolWt import seaborn as sns import matplotlib import matplotlib.pyplot as plt # ****************************************************************************************************************************************** def set_group_permissions(path, system='AD', owner='GSK'): """Set file group and permissions to standard values for a dataset containing proprietary data owned by 'owner'. Later we may add a 'public' option, or groups for data from other pharma companies. Args: path (string): File path system (string): Computing environment from which group ownerships will be derived; currently, either 'LC' for LC filesystems or 'AD' for LLNL systems where owners and groups are managed by Active Directory. owner (string): Who the data belongs to, either 'public' or the name of a company (e.g. 'GSK') associated with a restricted access group. Returns: None """ # Currently, if we're not on an LC machine, we're on an AD-controlled system. This could change. if system != 'LC': system = 'AD' owner_group_map = dict(GSK = {'LC' : 'gskcraa', 'AD' : 'gskusers-ad'}, public = {'LC' : 'atom', 'AD' : 'atom'} ) group = owner_group_map[owner][system] shutil.chown(path, group=group) os.chmod(path, 0o770) # ****************************************************************************************************************************************** def replicate_rmsd(dset_df, smiles_col='base_rdkit_smiles', value_col='PIC50', relation_col='relation'): """ Compute RMS deviation of all replicate uncensored measurements in dset_df from their means. Measurements are treated as replicates if they correspond to the same SMILES string, and are considered censored if the relation column contains > or <. The resulting value is meant to be used as an estimate of measurement error for all compounds in the dataset. """ dset_df = dset_df[~(dset_df[relation_col].isin(['<', '>']))] uniq_smiles, uniq_counts = np.unique(dset_df[smiles_col].values, return_counts=True) smiles_with_reps = uniq_smiles[uniq_counts > 1] uniq_devs = [] for smiles in smiles_with_reps: values = dset_df[dset_df[smiles_col] == smiles][value_col].values uniq_devs.extend(values - values.mean()) uniq_devs = np.array(uniq_devs) rmsd = np.sqrt(np.mean(uniq_devs ** 2)) return rmsd # ****************************************************************************************************************************************** def mle_censored_mean(cmpd_df, std_est, value_col='PIC50', relation_col='relation'): """ Compute a maximum likelihood estimate of the true mean value underlying the distribution of replicate assay measurements for a single compound. The data may be a mix of censored and uncensored measurements, as indicated by the 'relation' column in the input data frame cmpd_df. std_est is an estimate for the standard deviation of the distribution, which is assumed to be Gaussian; we typically compute a common estimate for the whole dataset using replicate_rmsd(). """ left_censored = np.array(cmpd_df[relation_col].values == '<', dtype=bool) right_censored = np.array(cmpd_df[relation_col].values == '>' , dtype=bool) not_censored = ~(left_censored | right_censored) n_left_cens = sum(left_censored) n_right_cens = sum(right_censored) nreps = cmpd_df.shape[0] values = cmpd_df[value_col].values nan = float('nan') relation = '' # If all the replicate values are left- or right-censored, return the smallest or largest reported (threshold) value accordingly. if n_left_cens == nreps: mle_value = min(values) relation = '<' elif n_right_cens == nreps: mle_value = max(values) relation = '>' elif n_left_cens + n_right_cens == 0: # If no values are censored, the MLE is the actual mean. mle_value = np.mean(values) else: # Some, but not all observations are censored. # First, define the negative log likelihood function def loglik(mu): ll = -sum(norm.logpdf(values[not_censored], loc=mu, scale=std_est)) if n_left_cens > 0: ll -= sum(norm.logcdf(values[left_censored], loc=mu, scale=std_est)) if n_right_cens > 0: ll -= sum(norm.logsf(values[right_censored], loc=mu, scale=std_est)) return ll # Then minimize it opt_res = minimize_scalar(loglik, method='brent') if not opt_res.success: print('Likelihood maximization failed, message is: "%s"' % opt_res.message) mle_value = nan else: mle_value = opt_res.x return mle_value, relation # ****************************************************************************************************************************************** def aggregate_assay_data(assay_df, value_col='VALUE_NUM', output_value_col=None, label_actives=True, active_thresh=None, id_col='CMPD_NUMBER', smiles_col='rdkit_smiles', relation_col='VALUE_FLAG', date_col=None): """ Map RDKit SMILES strings in assay_df to base structures, then compute an MLE estimate of the mean value over replicate measurements for the same SMILES strings, taking censoring into account. Generate an aggregated result table with one value for each unique base SMILES string, to be used in an ML-ready dataset. :param assay_df: The input data frame to be processed. :param value_col: The column in the data frame containing assay values to be averaged. :param output_value_col: Optional; the column name to use in the output data frame for the averaged data. :param label_actives: If True, generate an additional column 'active' indicating whether the mean value is above a threshold specified by active_thresh. :param active_thresh: The threshold to be used for labeling compounds as active or inactive. If active_thresh is None (the default), the threshold used is the minimum reported value across all records with left-censored values (i.e., those with '<' in the relation column. :param id_col: The input data frame column containing compound IDs. :param smiles_col: The input data frame column containing SMILES strings. :param relation_col: The input data frame column containing relational operators (<, >, etc.). :param date_col: The input data frame column containing dates when the assay data was uploaded. If not None, the code will assign the earliest date among replicates to the aggregate data record. :return: A data frame containing averaged assay values, with one value per compound. """ assay_df = assay_df.fillna({relation_col: '', smiles_col: ''}) # Filter out rows where SMILES is missing n_missing_smiles = np.array([len(smiles) == 0 for smiles in assay_df[smiles_col].values]).sum() print("%d entries in input table are missing SMILES strings" % n_missing_smiles) has_smiles = np.array([len(smiles) > 0 for smiles in assay_df[smiles_col].values]) assay_df = assay_df[has_smiles].copy() # Estimate the measurement error across replicates for this assay std_est = replicate_rmsd(assay_df, smiles_col=smiles_col, value_col=value_col, relation_col=relation_col) # Map SMILES strings to base structure SMILES strings, then map these to indices into the list of # unique base structures orig_smiles_strs = assay_df[smiles_col].values norig = len(set(orig_smiles_strs)) smiles_strs = [base_smiles_from_smiles(smiles, True) for smiles in orig_smiles_strs] assay_df['base_rdkit_smiles'] = smiles_strs uniq_smiles_strs = list(set(smiles_strs)) nuniq = len(uniq_smiles_strs) print("%d unique SMILES strings are reduced to %d unique base SMILES strings" % (norig, nuniq)) smiles_map = dict([(smiles,i) for i, smiles in enumerate(uniq_smiles_strs)]) smiles_indices = np.array([smiles_map.get(smiles, nuniq) for smiles in smiles_strs]) assay_vals = assay_df[value_col].values value_flags = assay_df[relation_col].values # Compute a maximum likelihood estimate of the mean assay value for each compound, averaging over replicates # and factoring in censoring. Report the censoring/relation/value_flag only if the flags are consistent across # all replicates. # Exclude compounds that couldn't be mapped to SMILES strings. cmpd_ids = assay_df[id_col].values reported_cmpd_ids = ['']*nuniq reported_value_flags = ['']*nuniq if date_col is not None: reported_dates = ['']*nuniq reported_assay_val = np.zeros(nuniq, dtype=float) for i in range(nuniq): cmpd_ind = np.where(smiles_indices == i)[0] cmpd_df = assay_df.iloc[cmpd_ind] reported_assay_val[i], reported_value_flags[i] = mle_censored_mean(cmpd_df, std_est, value_col=value_col, relation_col=relation_col) # When multiple compound IDs map to the same base SMILES string, use the lexicographically smallest one. reported_cmpd_ids[i] = sorted(set(cmpd_ids[cmpd_ind]))[0] # If a date column is specified, use the earliest one among replicates if date_col is not None: # np.datetime64 doesn't seem to understand the date format in GSK's crit res tables #earliest_date = sorted([np.datetime64(d) for d in cmpd_df[date_col].values])[0] earliest_date = sorted(pd.to_datetime(cmpd_df[date_col], infer_datetime_format=True).values)[0] reported_dates[i] = np.datetime_as_string(earliest_date) if output_value_col is None: output_value_col = value_col agg_df = pd.DataFrame({ 'compound_id' : reported_cmpd_ids, 'base_rdkit_smiles' : uniq_smiles_strs, 'relation' : reported_value_flags, output_value_col : reported_assay_val}) if date_col is not None: agg_df[date_col] = reported_dates # Label each compound as active or not, based on the reported relation and values relative to a common threshold if label_actives: inactive_df = agg_df[agg_df.relation == '<'] if inactive_df.shape[0] > 0 and active_thresh is None: active_thresh = np.min(inactive_df[output_value_col].values) if active_thresh is not None: is_active = ((agg_df.relation != '<') & (agg_df[output_value_col].values > active_thresh)) agg_df['active'] = [int(a) for a in is_active] else: agg_df['active'] = 1 return agg_df # ****************************************************************************************************************************************** def freq_table(dset_df, column, min_freq=1): """ Generate a data frame tabulating the repeat frequencies of each unique value in 'vals'. Restrict it to values occurring at least min_freq times. """ vals = dset_df[column].values uniq_vals, counts = np.unique(vals, return_counts=True) uniq_df = pd.DataFrame({column: uniq_vals, 'Count': counts}).sort_values(by='Count', ascending=False) uniq_df = uniq_df[uniq_df.Count >= min_freq] return uniq_df # ****************************************************************************************************************************************** def labeled_freq_table(dset_df, columns, min_freq=1): """ Generate a frequency table in which additional columns are included. The first column in 'columns' is assumed to be a unique ID; there should be a many-to-1 mapping from the ID to each of the additional columns. """ id_col = columns[0] freq_df = freq_table(dset_df, id_col, min_freq=min_freq) uniq_ids = freq_df[id_col].values addl_cols = columns[1:] addl_vals = {colname: [] for colname in addl_cols} uniq_df = dset_df.drop_duplicates(subset=columns) for uniq_id in uniq_ids: subset_df = uniq_df[uniq_df[id_col] == uniq_id] if subset_df.shape[0] > 1: raise Exception("Additional columns should be unique for ID %s" % uniq_id) for colname in addl_cols: addl_vals[colname].append(subset_df[colname].values[0]) for colname in addl_cols: freq_df[colname] = addl_vals[colname] return freq_df # ****************************************************************************************************************************************** # The functions below are from <NAME>'s data_utils module. # ****************************************************************************************************************************************** def filter_in_out_by_column_values (column, values, data, in_out): """Include rows only for given values in specified column. column - column name. values - list of acceptable values. """ if in_out == 'in': data = data.loc[data[column].isin (values)] else: data = data.loc[~data[column].isin (values)] return data # ****************************************************************************************************************************************** def filter_in_by_column_values (column, values, data): return filter_in_out_by_column_values (column, values, data, 'in') # ****************************************************************************************************************************************** def filter_out_by_column_values (column, values, data): return filter_in_out_by_column_values (column, values, data, 'out') # ****************************************************************************************************************************************** def filter_out_comments (values, values_cs, data): """Remove rows that contain the text listed values - list of values that are not case sensitive values_cs - list of values that are case sensitive """ column = 'COMMENTS' data['Remove'] = np.where (data[column].str.contains ('|'.join (values), case=False), 1, 0) data['Remove'] = np.where (data[column].str.contains ('|'.join (values_cs), case=True), 1, data['Remove']) data['Remove'] = np.where (data[column].str.contains ('nan', case=False), 0, data['Remove']) data['Remove'] = np.where (data[column] == ' ', 0, data['Remove']) data_removed = data[data.Remove == 1] data = data[data.Remove != 1] data_removed = data_removed['COMMENTS'] #print(data_removed) del data['Remove'] # Results #print ("") #print('Remove results with comments indicating bad data') #print("Dataframe size", data.shape[:]) #comments = pd.DataFrame(data['COMMENTS'].unique()) #comments = comments.sort_values(comments.columns[0]) #print (comments) # For the purpose of reviewing comments remaining return data # ****************************************************************************************************************************************** def get_rdkit_smiles_parent (data): print ("") print ("Adding SMILES column 'rdkit_smiles_parent' with salts stripped...(may take a while)", flush=True) """ ___Strip the salts off the rdkit SMILES strings___ First, loops through data and determines the base/parent smiles string for each row. Appends the base smiles string to a new row in a list. Then adds the list as a new column in 'data'" """ i_max = data.shape[0] rdkit_smiles_parent = [] for i in range (i_max): smile = data['rdkit_smiles'].iloc[i] if type (smile) is float: split = '' else: split = base_smiles_from_smiles (smile) rdkit_smiles_parent.append (split) # 2. Add base smiles string (stripped smiles) to dataset data['rdkit_smiles_parent'] = rdkit_smiles_parent return data # ****************************************************************************************************************************************** def average_and_remove_duplicates (column, tolerance, list_bad_duplicates, data, max_stdev = 100000, compound_id='CMPD_NUMBER',smiles_col='rdkit_smiles_parent'): """This while loop loops through until no'bad duplicates' are left. column - column with the value of interest tolerance - acceptable % difference between value and average ie.: if "[(value - mean)/mean*100]>tolerance" then remove data row note: The mean is recalculated on each loop through to make sure it isn't skewed by the 'bad duplicate' values""" list_bad_duplicates = list_bad_duplicates i = 0 bad_duplicates = 1 removed = [] removed =
pd.DataFrame(removed)
pandas.DataFrame
from __future__ import division, print_function import logging from builtins import range from datetime import datetime import numpy as np import pandas as pd import pandas.api.types as pdtypes from .timedelta import Timedelta from featuretools import variable_types as vtypes from featuretools.utils import is_string from featuretools.utils.wrangle import ( _check_time_type, _check_timedelta, _dataframes_equal ) logger = logging.getLogger('featuretools.entityset') _numeric_types = vtypes.PandasTypes._pandas_numerics _categorical_types = [vtypes.PandasTypes._categorical] _datetime_types = vtypes.PandasTypes._pandas_datetimes class Entity(object): """Represents an entity in a Entityset, and stores relevant metadata and data An Entity is analogous to a table in a relational database See Also: :class:`.Relationship`, :class:`.Variable`, :class:`.EntitySet` """ id = None variables = None time_index = None index = None def __init__(self, id, df, entityset, variable_types=None, index=None, time_index=None, secondary_time_index=None, last_time_index=None, encoding=None, relationships=None, already_sorted=False, created_index=None, verbose=False): """ Create Entity Args: id (str): Id of Entity. df (pd.DataFrame): Dataframe providing the data for the entity. entityset (EntitySet): Entityset for this Entity. variable_types (dict[str -> dict[str -> type]]) : Optional mapping of entity_id to variable_types dict with which to initialize an entity's store. An entity's variable_types dict maps string variable ids to types (:class:`.Variable`). index (str): Name of id column in the dataframe. time_index (str): Name of time column in the dataframe. secondary_time_index (dict[str -> str]): Dictionary mapping columns in the dataframe to the time index column they are associated with. last_time_index (pd.Series): Time index of the last event for each instance across all child entities. encoding (str, optional)) : If None, will use 'ascii'. Another option is 'utf-8', or any encoding supported by pandas. relationships (list): List of known relationships to other entities, used for inferring variable types. """ assert is_string(id), "Entity id must be a string" assert len(df.columns) == len(set(df.columns)), "Duplicate column names" self.data = {"df": df, "last_time_index": last_time_index, } self.encoding = encoding self._verbose = verbose self.created_index = created_index self.convert_all_variable_data(variable_types) self.id = id self.entityset = entityset variable_types = variable_types or {} self.index = index self.time_index = time_index self.secondary_time_index = secondary_time_index or {} # make sure time index is actually in the columns for ti, cols in self.secondary_time_index.items(): if ti not in cols: cols.append(ti) relationships = relationships or [] link_vars = [v.id for rel in relationships for v in [rel.parent_variable, rel.child_variable] if v.entity.id == self.id] inferred_variable_types = self.infer_variable_types(ignore=list(variable_types.keys()), link_vars=link_vars) for var_id, desired_type in variable_types.items(): if isinstance(desired_type, tuple): desired_type = desired_type[0] inferred_variable_types.update({var_id: desired_type}) self.variables = [] for v in inferred_variable_types: # TODO document how vtype can be tuple vtype = inferred_variable_types[v] if isinstance(vtype, tuple): # vtype is (ft.Variable, dict_of_kwargs) _v = vtype[0](v, self, **vtype[1]) else: _v = inferred_variable_types[v](v, self) self.variables += [_v] # do one last conversion of data once we've inferred self.convert_all_variable_data(inferred_variable_types) # make sure index is at the beginning index_variable = [v for v in self.variables if v.id == self.index][0] self.variables = [index_variable] + [v for v in self.variables if v.id != self.index] self.update_data(df=self.df, already_sorted=already_sorted, recalculate_last_time_indexes=False) def __repr__(self): repr_out = u"Entity: {}\n".format(self.id) repr_out += u" Variables:" for v in self.variables: repr_out += u"\n {} (dtype: {})".format(v.id, v.dtype) shape = self.shape repr_out += u"\n Shape:\n (Rows: {}, Columns: {})".format( shape[0], shape[1]) # encode for python 2 if type(repr_out) != str: repr_out = repr_out.encode("utf-8") return repr_out @property def shape(self): return self.df.shape def __eq__(self, other, deep=False): if self.index != other.index: return False if self.time_index != other.time_index: return False if self.secondary_time_index != other.secondary_time_index: return False if len(self.variables) != len(other.variables): return False for v in self.variables: if v not in other.variables: return False if deep: if self.last_time_index is None and other.last_time_index is not None: return False elif self.last_time_index is not None and other.last_time_index is None: return False elif self.last_time_index is not None and other.last_time_index is not None: if not self.last_time_index.equals(other.last_time_index): return False if not _dataframes_equal(self.df, other.df): return False return True def __sizeof__(self): return sum([value.__sizeof__() for value in self.data.values()]) @property def is_metadata(self): return self.entityset.is_metadata @property def df(self): return self.data["df"] @df.setter def df(self, _df): self.data["df"] = _df @property def last_time_index(self): return self.data["last_time_index"] @last_time_index.setter def last_time_index(self, lti): self.data["last_time_index"] = lti @property def parents(self): return [p.parent_entity.id for p in self.entityset.get_forward_relationships(self.id)] def __hash__(self): return id(self.id) def __getitem__(self, variable_id): return self._get_variable(variable_id) def _get_variable(self, variable_id): """Get variable instance Args: variable_id (str) : Id of variable to get. Returns: :class:`.Variable` : Instance of variable. Raises: RuntimeError : if no variable exist with provided id """ for v in self.variables: if v.id == variable_id: return v raise KeyError("Variable: %s not found in entity" % (variable_id)) @property def variable_types(self): return {v.id: type(v) for v in self.variables} def convert_variable_type(self, variable_id, new_type, convert_data=True, **kwargs): """Convert variable in dataframe to different type Args: variable_id (str) : Id of variable to convert. new_type (subclass of `Variable`) : Type of variable to convert to. entityset (:class:`.BaseEntitySet`) : EntitySet associated with this entity. convert_data (bool) : If True, convert underlying data in the EntitySet. Raises: RuntimeError : Raises if it cannot convert the underlying data Examples: >>> es["customer"].convert_variable_type("education_level", vtypes.Categorical, EntitySet) True """ if convert_data: # first, convert the underlying data (or at least try to) self.convert_variable_data( variable_id, new_type, **kwargs) # replace the old variable with the new one, maintaining order variable = self._get_variable(variable_id) new_variable = new_type.create_from(variable) self.variables[self.variables.index(variable)] = new_variable def convert_all_variable_data(self, variable_types): for var_id, desired_type in variable_types.items(): type_args = {} if isinstance(desired_type, tuple): # grab args before assigning type type_args = desired_type[1] desired_type = desired_type[0] if var_id not in self.df.columns: raise LookupError("Variable ID %s not in DataFrame" % (var_id)) current_type = self.df[var_id].dtype.name if issubclass(desired_type, vtypes.Numeric) and \ current_type not in _numeric_types: self.convert_variable_data(var_id, desired_type, **type_args) if issubclass(desired_type, vtypes.Discrete) and \ current_type not in _categorical_types: self.convert_variable_data(var_id, desired_type, **type_args) if issubclass(desired_type, vtypes.Datetime) and \ current_type not in _datetime_types: self.convert_variable_data(var_id, desired_type, **type_args) def convert_variable_data(self, column_id, new_type, **kwargs): """ Convert variable in data set to different type """ df = self.df if df[column_id].empty: return if new_type == vtypes.Numeric: orig_nonnull = df[column_id].dropna().shape[0] df[column_id] =
pd.to_numeric(df[column_id], errors='coerce')
pandas.to_numeric
import nltk import string import re import numpy as np import pandas as pd import pickle import sys import numpy as np import os import pandas as pd from sklearn import preprocessing import re from nltk.corpus import stopwords from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import TfidfVectorizer from nltk.corpus import stopwords from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import MultinomialNB from sklearn.svm import SVC from sklearn.linear_model import SGDClassifier from sklearn.metrics import accuracy_score , roc_auc_score , log_loss import sklearn.linear_model as lm from sklearn.model_selection import GridSearchCV import Stemmer from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import roc_auc_score, log_loss from numpy import linalg as LA from sklearn import neighbors from sklearn.neural_network import MLPClassifier from bs4 import BeautifulSoup #import xgboost as xgb import matplotlib.pyplot as plt import seaborn as sns from nltk.stem.porter import * from nltk.tokenize import word_tokenize, sent_tokenize from nltk.corpus import stopwords from sklearn.feature_extraction import stop_words from collections import Counter from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import CountVectorizer from sklearn.decomposition import LatentDirichletAllocation import numpy as np import pandas as pd from sklearn.model_selection import KFold from sklearn.linear_model import Ridge from sklearn.pipeline import FeatureUnion from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.metrics import mean_squared_log_error from sklearn.metrics import fbeta_score, make_scorer def split_cat(text): try: return text.split("/") except: return ("Other", "Other", "Other") train = pd.read_csv('train.tsv', sep='\t') test = pd.read_csv('test.tsv', sep='\t') sample_submission =
pd.read_csv("sample_submission.csv")
pandas.read_csv
import tensorflow as tf import numpy as np import scipy.io as sio import pandas as pd import os import csv from feature_encoding import * from keras.models import load_model from keras.utils import to_categorical import Efficient_CapsNet_sORF150 import Efficient_CapsNet_sORF250 import lightgbm as lgb from sklearn.metrics import roc_auc_score import sys from optparse import OptionParser ##read Fasta sequence def readFasta(file): if os.path.exists(file) == False: print('Error: "' + file + '" does not exist.') sys.exit(1) with open(file) as f: records = f.read() if re.search('>', records) == None: print('The input file seems not in fasta format.') sys.exit(1) records = records.split('>')[1:] myFasta = [] for fasta in records: array = fasta.split('\n') name, sequence = array[0].split()[0], re.sub('[^ARNDCQEGHILKMFPSTWYV-]', '-', ''.join(array[1:]).upper()) myFasta.append([name, sequence]) return myFasta ##extract sORF sequence def get_sORF(fastas): sORF_seq = [] for i in fastas: name, seq = i[0], re.sub('-', '', i[1]) g = 0 if len(seq) > 303: for j in range(len(seq)-2): seg_start = seq[j:j+3] if seg_start == 'ATG': for k in range(j+3, len(seq)-2, 3): seg_end = seq[k:k+3] if seg_end == 'TAA': sequence = seq[j:k+3] if np.mod(len(sequence), 3) == 0 and 12 <= len(sequence) <= 303: g+=1 sequence_name = '>' + name + '_sORF' + str(g) sORF_seq.append([sequence_name, sequence]) break if seg_end == 'TAG': sequence = seq[j:k+3] if np.mod(len(sequence), 3) == 0 and 12 <= len(sequence) <= 303: g+=1 sequence_name = '>' + name + '_sORF' + str(g) sORF_seq.append([sequence_name, sequence]) break if seg_end == 'TGA': sequence = seq[j:k+3] if np.mod(len(sequence), 3) == 0 and 12 <= len(sequence) <= 303: g+=1 sequence_name = '>' + name + '_sORF' + str(g) sORF_seq.append([sequence_name, sequence]) break elif len(seq) <= 303 and np.mod(len(seq), 3) != 0: for j in range(len(seq)-2): seg_start = seq[j:j+3] if seg_start == 'ATG': for k in range(j+3, len(seq)-2, 3): seg_end = seq[k:k+3] if seg_end == 'TAA': sequence = seq[j:k+3] if np.mod(len(sequence), 3) == 0 and 12 <= len(sequence) <= 303: g+=1 sequence_name = '>' + name + '_sORF' + str(g) sORF_seq.append([sequence_name, sequence]) break if seg_end == 'TAG': sequence = seq[j:k+3] if np.mod(len(sequence), 3) == 0 and 12 <= len(sequence) <= 303: g+=1 sequence_name = '>' + name + '_sORF' + str(g) sORF_seq.append([sequence_name, sequence]) break if seg_end == 'TGA': sequence = seq[j:k+3] if np.mod(len(sequence), 3) == 0 and 12 <= len(sequence) <= 303: g+=1 sequence_name = '>' + name + '_sORF' + str(g) sORF_seq.append([sequence_name, sequence]) break elif seq[0:3] == 'ATG' and seq[len(seq)-3:len(seq)] == 'TAA' and np.mod(len(seq), 3) == 0 and 12 <= len(seq) <= 303: sORF_seq.append([name, seq]) elif seq[0:3] == 'ATG' and seq[len(seq)-3:len(seq)] == 'TAG' and np.mod(len(seq), 3) == 0 and 12 <= len(seq) <= 303: sORF_seq.append([name, seq]) elif seq[0:3] == 'ATG' and seq[len(seq)-3:len(seq)] == 'TGA' and np.mod(len(seq), 3) == 0 and 12 <= len(seq) <= 303: sORF_seq.append([name, seq]) return sORF_seq ##get protein sequence def get_protein(fastas): protein_seq=[] start_codon = 'ATG' codon_table = { 'ATA': 'I', 'ATC': 'I', 'ATT': 'I', 'ATG': 'M', 'ACA': 'T', 'ACC': 'T', 'ACG': 'T', 'ACT': 'T', 'AAC': 'N', 'AAT': 'N', 'AAA': 'K', 'AAG': 'K', 'AGC': 'S', 'AGT': 'S', 'AGA': 'R', 'AGG': 'R', 'CTA': 'L', 'CTC': 'L', 'CTG': 'L', 'CTT': 'L', 'CCA': 'P', 'CCC': 'P', 'CCG': 'P', 'CCT': 'P', 'CAC': 'H', 'CAT': 'H', 'CAA': 'Q', 'CAG': 'Q', 'CGA': 'R', 'CGC': 'R', 'CGG': 'R', 'CGT': 'R', 'GTA': 'V', 'GTC': 'V', 'GTG': 'V', 'GTT': 'V', 'GCA': 'A', 'GCC': 'A', 'GCG': 'A', 'GCT': 'A', 'GAC': 'D', 'GAT': 'D', 'GAA': 'E', 'GAG': 'E', 'GGA': 'G', 'GGC': 'G', 'GGG': 'G', 'GGT': 'G', 'TCA': 'S', 'TCC': 'S', 'TCG': 'S', 'TCT': 'S', 'TTC': 'F', 'TTT': 'F', 'TTA': 'L', 'TTG': 'L', 'TAC': 'Y', 'TAT': 'Y', 'TAA': '', 'TAG': '', 'TGC': 'C', 'TGT': 'C', 'TGA': '', 'TGG': 'W'} for i in fastas: name, seq = i[0], re.sub('-', '', i[1]) start_site = re.search(start_codon, seq) protein = '' for site in range(start_site.start(), len(seq), 3): protein = protein + codon_table[seq[site:site+3]] protein_name = '>Micropeptide_' + name protein_seq.append([protein_name, protein]) return protein_seq ##extract features def feature_encode(datapath, dna_seq, protein_seq, s_type, d_type): if s_type == 'H.sapiens': if d_type == 'CDS': c_m = pd.read_csv(datapath + 'human_cds_trainp_6mermean.csv', header=None, delimiter=',') nc_m = pd.read_csv(datapath + 'human_cds_trainn_6mermean.csv', header=None, delimiter=',') Tc_pos1 = pd.read_csv(datapath + 'human_cds_trainp_framed_3mer_1.csv', header=None, delimiter=',') Tc_neg1 = pd.read_csv(datapath + 'human_cds_trainn_framed_3mer_1.csv', header=None, delimiter=',') Tc_pos2 = pd.read_csv(datapath + 'human_cds_trainp_framed_3mer_2.csv', header=None, delimiter=',') Tc_neg2 = pd.read_csv(datapath + 'human_cds_trainn_framed_3mer_2.csv', header=None, delimiter=',') Tc_pos3 = pd.read_csv(datapath + 'human_cds_trainp_framed_3mer_3.csv', header=None, delimiter=',') Tc_neg3 = pd.read_csv(datapath + 'human_cds_trainn_framed_3mer_3.csv', header=None, delimiter=',') fea1_1 = np.array(ratio_ORFlength_hcds(dna_seq)) dna_fea = np.array(extract_DNAfeatures(dna_seq, c_m, nc_m, Tc_pos1, Tc_neg1, Tc_pos2, Tc_neg2, Tc_pos3, Tc_neg3, fea1_1)) elif d_type == 'non-CDS': c_m = pd.read_csv(datapath + 'human_noncds_trainp_6mermean.csv', header=None, delimiter=',') nc_m = pd.read_csv(datapath + 'human_noncds_trainn_6mermean.csv', header=None, delimiter=',') Tc_pos1 = pd.read_csv(datapath + 'human_noncds_trainp_framed_3mer_1.csv', header=None, delimiter=',') Tc_neg1 = pd.read_csv(datapath + 'human_noncds_trainn_framed_3mer_1.csv', header=None, delimiter=',') Tc_pos2 = pd.read_csv(datapath + 'human_noncds_trainp_framed_3mer_2.csv', header=None, delimiter=',') Tc_neg2 = pd.read_csv(datapath + 'human_noncds_trainn_framed_3mer_2.csv', header=None, delimiter=',') Tc_pos3 = pd.read_csv(datapath + 'human_noncds_trainp_framed_3mer_3.csv', header=None, delimiter=',') Tc_neg3 = pd.read_csv(datapath + 'human_noncds_trainn_framed_3mer_3.csv', header=None, delimiter=',') fea1_1 = np.array(ratio_ORFlength_hnoncds(dna_seq)) dna_fea = np.array(extract_DNAfeatures(dna_seq, c_m, nc_m, Tc_pos1, Tc_neg1, Tc_pos2, Tc_neg2, Tc_pos3, Tc_neg3, fea1_1)) else: print("Type error") elif s_type == 'M.musculus': if d_type == 'CDS': c_m = pd.read_csv(datapath + 'mouse_cds_trainp_6mermean.csv', header=None, delimiter=',') nc_m = pd.read_csv(datapath + 'mouse_cds_trainn_6mermean.csv', header=None, delimiter=',') Tc_pos1 = pd.read_csv(datapath + 'mouse_cds_trainp_framed_3mer_1.csv', header=None, delimiter=',') Tc_neg1 = pd.read_csv(datapath + 'mouse_cds_trainn_framed_3mer_1.csv', header=None, delimiter=',') Tc_pos2 = pd.read_csv(datapath + 'mouse_cds_trainp_framed_3mer_2.csv', header=None, delimiter=',') Tc_neg2 = pd.read_csv(datapath + 'mouse_cds_trainn_framed_3mer_2.csv', header=None, delimiter=',') Tc_pos3 = pd.read_csv(datapath + 'mouse_cds_trainp_framed_3mer_3.csv', header=None, delimiter=',') Tc_neg3 = pd.read_csv(datapath + 'mouse_cds_trainn_framed_3mer_3.csv', header=None, delimiter=',') fea1_1 = np.array(ratio_ORFlength_mcds(dna_seq)) dna_fea = np.array(extract_DNAfeatures(dna_seq, c_m, nc_m, Tc_pos1, Tc_neg1, Tc_pos2, Tc_neg2, Tc_pos3, Tc_neg3, fea1_1)) elif d_type == 'non-CDS': c_m = pd.read_csv(datapath + 'mouse_noncds_trainp_6mermean.csv', header=None, delimiter=',') nc_m =
pd.read_csv(datapath + 'mouse_noncds_trainn_6mermean.csv', header=None, delimiter=',')
pandas.read_csv
#!/usr/bin/env python import sys, time import numpy as np from io import StringIO import pickle as pickle from pandas import DataFrame from pandas import concat from pandas import read_pickle from pandas import cut from pandas import concat from sklearn.externals import joblib from sklearn.cross_validation import cross_val_score from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error from djeval import * CROSS_VALIDATION_N = 150000 MIN_SAMPLES_LEAF = 300 MIN_SAMPLES_SPLIT = 1000 FITTING_N = 50000 n_estimators = 200 cv_groups = 3 n_jobs = -1 # For when we were messing around with blundergroups: # # so that we can test the idea that dataset size being equal, # we make better predictions with data specifically in that blundergroup # # CROSS_VALIDATION_N = 7500 # debugging 'Cannot allocate memory' n_jobs = 1 if False: inflation = 4 CROSS_VALIDATION_N = inflation * CROSS_VALIDATION_N MIN_SAMPLES_LEAF = inflation * MIN_SAMPLES_LEAF MIN_SAMPLES_SPLIT = inflation * MIN_SAMPLES_SPLIT FITTING_N = inflation * FITTING_N just_testing = False if just_testing: CROSS_VALIDATION_N = 1500 n_estimators = 2 n_jobs = -1 blunder_cv_results = [] def sample_df(df, n_to_sample): if n_to_sample >= len(df.index.values): return df row_indexes = np.random.choice(df.index.values, n_to_sample, replace=False) return df.ix[row_indexes] def group_scorer(estimator, X, y): pred_y = estimator.predict(X) msg("GROUPED SCORES FOR a CV GROUP:") dfx = DataFrame(X, columns=features_to_use) dfx['pred_abserror'] = abs(pred_y - y) blunder_cvgroups, blunder_cvbins = cut(dfx['movergain'], blunder_cats, retbins=True) blunder_cvgrouped = dfx.groupby(blunder_cvgroups)['pred_abserror'].agg({'lad': np.mean}) blunder_cv_results.append(blunder_cvgrouped) msg("scores: %s" % str(blunder_cvgrouped)) return mean_absolute_error(y, pred_y) def crossval_rfr(df): sampled_df = sample_df(df, CROSS_VALIDATION_N) sample_size = len(sampled_df) mss = max([sample_size / 150, 100]) msl = max([sample_size / 450, 30]) # rfr_here = RandomForestRegressor(n_estimators=n_estimators, n_jobs=n_jobs, min_samples_leaf=msl, min_samples_split=mss, verbose=1) rfr_here = RandomForestRegressor(n_estimators=n_estimators, n_jobs=n_jobs, min_samples_leaf=MIN_SAMPLES_LEAF, min_samples_split=MIN_SAMPLES_SPLIT, verbose=1) crossval_X = sampled_df[features_to_use] crossval_y = sampled_df['elo'] crossval_weights = sampled_df['weight'] msg("Starting cross validation. %i records" % sample_size) begin_time = time.time() cvs = cross_val_score(rfr_here, crossval_X, crossval_y, cv=cv_groups, n_jobs=n_jobs, scoring='mean_absolute_error', fit_params={'sample_weight': crossval_weights}) msg("Cross validation took %f seconds with %i threads, %i records, %i estimators and %i CV groups" % ((time.time() - begin_time), n_jobs, len(crossval_X), n_estimators, cv_groups)) msg("Results: %f, %s" % (np.mean(cvs), str(cvs))) return np.mean(cvs) msg("Hi, reading moves.") moves_df =
read_pickle(sys.argv[1])
pandas.read_pickle
import config_my import requests from bs4 import BeautifulSoup import pandas as pd # from tabulate import tabulate import telebot print(config_my.token) bot = telebot.TeleBot(config_my.token) pict = [ 'https://avatars.mds.yandex.net/get-pdb/2864819/2091b635-1a05-4a81-9f4f-9cdd46cb9be0/s1200', 'https://avatars.mds.yandex.net/get-zen_doc/196516/pub_5d65e93efe289100adb4c54e_5d66099378125e00ac052d00/scale_1200', 'https://avatars.mds.yandex.net/get-pdb/1683100/d71b5f09-b408-42ce-b480-cbcd0d340efe/s1200?webp=false', 'https://avatars.mds.yandex.net/get-zen_doc/1899089/pub_5d9b5f2f35c8d800ae71fb5a_5d9b60a98f011100b48eb4fb/scale_1200', 'https://avatars.mds.yandex.net/get-zen_doc/196516/pub_5d65e93efe289100adb4c54e_5d66099378125e00ac052d00/scale_1200', 'http://ysia.ru/wp-content/uploads/2018/01/1-19.jpg' ] def stat(tag=0): url = 'https://www.worldometers.info/coronavirus/' website = requests.get(url).text soup = BeautifulSoup(website, 'lxml') table = soup.find_all('table')[tag] rows = table.find_all('tr') fields_list = [] for i in range(9): col = list() col.append(rows[0].find_all('th')[i + 1].get_text().strip()) for row in rows[1:224]: r = row.find_all('td') col.append(r[i + 1].get_text().strip()) fields_list.append(col) d = dict() for i in range(9): d[fields_list[i][0]] = fields_list[i][1:] df =
pd.DataFrame(d)
pandas.DataFrame
import pymc3 as pm import pandas as pd from covid.models.generative import GenerativeModel from covid.data import summarize_inference_data url = '../../data/covid19za_provincial_cumulative_timeline_confirmed.csv' states_cases = pd.read_csv(url, parse_dates=['date'], dayfirst=True, index_col=0) states_cases.tail() url = '../../data/covid19za_timeline_testing.csv' states_tests = pd.read_csv(url, parse_dates=['date'], dayfirst=True, index_col=0) states_tests.tail() cases = pd.Series(states_cases['total'], index=states_cases.index, name='cases') casezero = states_cases.index[0] caselast = states_cases.index[-1] idx = pd.date_range(casezero, caselast) tests_all = pd.Series(states_tests['cumulative_tests'], index=states_tests.index, name='tests') tests = tests_all.loc[casezero:caselast] combined_model =
pd.concat([cases, tests], axis=1)
pandas.concat
import numpy as np import pandas as pd import torch import torchvision from am_utils.utils import walk_dir from torch.utils.data import DataLoader from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from tqdm import tqdm from ..dataset.dataset_object_inference import DatasetObjectInference, DatasetObjectInferenceMosaic from ..transforms.bbox import get_test_transform from ..utils.utils import collate_fn from ..utils.utils import remove_overlapping_boxes, get_boxes_above_threshold def get_df_of_file_list(input_dir, id_name='image_id'): """ List files in given folder and generate a dataframe for the data loader. Parameters ---------- input_dir : str Input directory id_name : str, optional Column name to specify image ID. Default is 'image_id' Returns ------- pd.DataFrame Dataframe with a list of input files. """ files = walk_dir(input_dir) files = [fn[len(input_dir) + 1:] for fn in files] df =
pd.DataFrame({id_name: files})
pandas.DataFrame
from django.http import JsonResponse import requests import asyncio import aiohttp import numpy as np import pandas as pd from pandas import json_normalize import json from functools import reduce import unidecode from random import randint from time import sleep import traceback import sys import random import logging def get_spotify_music_profile(request): spotifyAPI = SpotifyAPI(request) try: music_profile = spotifyAPI.get_music_profile() return music_profile except Exception as e: # traceback.format_exc() print('GLOBAL EXCEPTION - BAD. RETURNING ERROR TO FRONT END') logging.exception("music profile refresh exception") error_report = { 'error': { 'message': str(e), 'status': 500, } } return error_report class SpotifyAPI: REQUEST_EXCEPTION_MSG = "Spotify API Request Exception while fetching " SAVE_PROFILE_AS_CSV = False USER_PLAYLISTS_ONLY = True # don't change unless you want playlists a user follows to also be included def __init__(self, access_token): self.header = {'Authorization' : "Bearer "+access_token} self.user_id = self.fetch_user_id() self.artist_columns = [] self.track_columns = [] self.artists_dataframes = [] self.tracks_dataframes = [] def get_music_profile(self): asyncio.run(self.collect_artists_and_tracks_dataframes()) print("converting dataframes to JSON...") print(f'returning { self.artists_df.shape[0] } artists and { self.tracks_df.shape[0] } tracks') if self.SAVE_PROFILE_AS_CSV: self.artists_df.to_csv('artists_df.csv') self.tracks_df.to_csv('tracks_df.csv') artists_json = self.get_artists_json(self.artists_df) tracks_json = self.get_tracks_json(self.tracks_df) music_profile = { "artists" : artists_json, "tracks" : tracks_json, } return music_profile def get_artists_json(self, artists_df): return artists_df.to_json(orient='records') def get_tracks_json(self, tracks_df): return tracks_df.to_json(orient='records') async def collect_artists_and_tracks_dataframes(self): # fetch artists and tracks together, due to how the Spotify API returns both print("collect_artists_and_tracks_dataframes()...") tasks = [self.fetch_top_artists("long_term"), self.fetch_top_artists("medium_term"), self.fetch_top_artists("short_term") , self.fetch_top_tracks("long_term"), self.fetch_top_tracks("medium_term"), self.fetch_top_tracks("short_term") , self.fetch_followed_artists(), self.fetch_saved_tracks(), self.get_all_playlists()] await asyncio.gather(*tasks) print("initial tasks (fetches) have finishing gathering..") print("initiating get_artists_master_df(), where full artist objects will be fetched..") self.artists_df = await self.get_artists_master_df() print("finished fetching full objects.") self.tracks_df = self.get_tracks_master_df() async def get_artists_master_df(self): if self.artists_dataframes == []: return pd.DataFrame() artists_df = None if len(self.artists_dataframes) > 1: artists_df = reduce(lambda left, right:
pd.merge(left, right, how="outer")
pandas.merge
""" @author: hugonnet derive all values present in the text of the manuscript: accelerations, SLR contributions, etc.. """ import os, sys import numpy as np import pandas as pd from glob import glob import pyddem.fit_tools as ft import pyddem.tdem_tools as tt reg_dir = '/home/atom/ongoing/work_worldwide/vol/final' fn_tarea = '/home/atom/data/inventory_products/RGI/tarea_zemp.csv' list_fn_reg= [os.path.join(reg_dir,'dh_'+str(i).zfill(2)+'_rgi60_int_base_reg.csv') for i in [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]] periods = ['2000-01-01_2005-01-01','2005-01-01_2010-01-01','2010-01-01_2015-01-01','2015-01-01_2020-01-01','2000-01-01_2020-01-01'] tlims = [(np.datetime64('2000-01-01'),np.datetime64('2005-01-01')),(np.datetime64('2005-01-01'),np.datetime64('2010-01-01')),(np.datetime64('2010-01-01'),np.datetime64('2015-01-01')),(np.datetime64('2015-01-01'),np.datetime64('2020-01-01')),(np.datetime64('2000-01-01'),np.datetime64('2020-01-01'))] list_df = [] for fn_reg in list_fn_reg: for period in periods: df_tmp = tt.aggregate_all_to_period(pd.read_csv(fn_reg),[tlims[periods.index(period)]],fn_tarea=fn_tarea,frac_area=1) list_df.append(df_tmp) df = pd.concat(list_df) list_df_all = [] for period in periods: df_p = df[df.period == period] df_global = tt.aggregate_indep_regions_rates(df_p) df_global['reg']='global' df_global['period'] = period df_noperiph = tt.aggregate_indep_regions_rates(df_p[~df_p.reg.isin([5, 19])]) df_noperiph['reg']='global_noperiph' df_noperiph['period'] =period df_full_p = pd.concat([df_p,df_noperiph,df_global]) list_df_all.append(df_full_p) df_all = pd.concat(list_df_all) df_g = df_all[df_all.reg=='global'] df_np = df_all[df_all.reg=='global_noperiph'] #CONTRIBUTION TO SLR # from <NAME>: AVISO-based sea-level rise trend for 2000.0-2020.0 and 1-sigma errors gmsl_trend = 3.56 gmsl_trend_err = 0.2 gmsl_acc = 0.15 gmsl_acc_err = 0.04 glac_trend = df_g[df_g.period == '2000-01-01_2020-01-01'].dmdt.values[0]/361.8 glac_trend_err = df_g[df_g.period == '2000-01-01_2020-01-01'].err_dmdt.values[0]/361.8 print('Glacier mass loss totalled '+'{:.2f}'.format(df_g[df_g.period == '2000-01-01_2020-01-01'].dmdt.values[0])+' ± '+'{:.2f}'.format(2*df_g[df_g.period == '2000-01-01_2020-01-01'].err_dmdt.values[0])+ ' Gt yr-1') print('Glacier mass loss totalled '+'{:.3f}'.format(glac_trend)+' ± '+'{:.3f}'.format(2*glac_trend_err)+ ' mm of sea-level rise') contr_trend = -glac_trend/gmsl_trend*100 contr_trend_err = -glac_trend/gmsl_trend*np.sqrt((gmsl_trend_err/gmsl_trend)**2+(glac_trend_err/glac_trend)**2)*100 print('Glacier contribution to SLR is '+'{:.2f}'.format(contr_trend)+' % ± '+'{:.2f}'.format(2*contr_trend_err)+' %') #GLACIER ACCELERATION beta1_t, beta0, incert_slope, _, _ = ft.wls_matrix(x=np.arange(0,16,5),y=df_g.dhdt.values[:-1],w=1/df_g.err_dhdt.values[:-1]**2) print('Global thinning acceleration is '+'{:.5f}'.format(beta1_t)+' ± '+'{:.5f}'.format(2*incert_slope)+ ' m yr-2') beta1, beta0, incert_slope, _, _ = ft.wls_matrix(x=np.array([0,5,10,15]),y=df_np.dhdt.values[:-1],w=1/df_np.err_dhdt.values[:-1]**2) print('Global excl. GRL and ANT thinning acceleration is '+'{:.5f}'.format(beta1)+' ± '+'{:.5f}'.format(2*incert_slope)+ ' m yr-2') beta1_g, beta0, incert_slope_g, _, _ = ft.wls_matrix(x=np.arange(0,16,5),y=df_g.dmdt.values[:-1],w=1/df_g.err_dmdt.values[:-1]**2) print('Global mass loss acceleration is '+'{:.5f}'.format(beta1_g)+' ± '+'{:.5f}'.format(2*incert_slope_g)+ ' Gt yr-2') beta1, beta0, incert_slope, _, _ = ft.wls_matrix(x=np.array([0,5,10,15]),y=df_np.dmdt.values[:-1],w=1/df_np.err_dmdt.values[:-1]**2) print('Global excl. GRL and ANT mass loss acceleration is '+'{:.5f}'.format(beta1)+' ± '+'{:.5f}'.format(2*incert_slope)+ ' Gt yr-2') #CONTRIBUTION TO ACCELERATION OF SLR glac_acc = -beta1_g/361.8 glac_acc_err = incert_slope_g/361.8 contr_acc = glac_acc/gmsl_acc*100 # error is not symmetrial, error of acceleration of SLR is 20 times larger than glacier error rss_gmsl_acc_err = np.sqrt(glac_acc_err**2+gmsl_acc_err**2) upper_bound = glac_acc/(gmsl_acc-2*rss_gmsl_acc_err)*100 lower_bound = glac_acc/(gmsl_acc+2*rss_gmsl_acc_err)*100 print('Glacier contribution to acceleration of SLR is '+'{:.2f}'.format(contr_acc)+' % with 95% confidence interval of '+'{:.1f}'.format(lower_bound)+'-'+'{:.1f}'.format(upper_bound)+' %') #YEARLY VALUES periods = ['20'+str(i).zfill(2)+'-01-01_'+'20'+str(i+1).zfill(2)+'-01-01' for i in np.arange(0,20,1)] tlims = [(np.datetime64('20'+str(i).zfill(2)+'-01-01'),np.datetime64('20'+str(i+1).zfill(2)+'-01-01')) for i in np.arange(0,20,1)] list_df_yrly = [] for fn_reg in list_fn_reg: for period in periods: df_tmp = tt.aggregate_all_to_period(pd.read_csv(fn_reg),[tlims[periods.index(period)]],fn_tarea=fn_tarea,frac_area=1) list_df_yrly.append(df_tmp) df_yrly = pd.concat(list_df_yrly) list_df_all_yrly = [] for period in periods: df_p = df_yrly[df_yrly.period == period] df_global = tt.aggregate_indep_regions_rates(df_p) df_global['reg']='global' df_global['period'] = period df_noperiph = tt.aggregate_indep_regions_rates(df_p[~df_p.reg.isin([5, 19])]) df_noperiph['reg']='global_noperiph' df_noperiph['period'] =period df_full_p = pd.concat([df_p,df_noperiph,df_global]) list_df_all_yrly.append(df_full_p) df_all_yrly = pd.concat(list_df_all_yrly) dhdt_2000_global = df_all_yrly[np.logical_and(df_all_yrly.period=='2000-01-01_2001-01-01',df_all_yrly.reg=='global_noperiph')].dhdt.values[0] dhdt_2000_global_err = df_all_yrly[np.logical_and(df_all_yrly.period=='2000-01-01_2001-01-01',df_all_yrly.reg=='global_noperiph')].err_dhdt.values[0] dhdt_2019_global = df_all_yrly[np.logical_and(df_all_yrly.period=='2019-01-01_2020-01-01',df_all_yrly.reg=='global_noperiph')].dhdt.values[0] dhdt_2019_global_err = df_all_yrly[np.logical_and(df_all_yrly.period=='2019-01-01_2020-01-01',df_all_yrly.reg=='global_noperiph')].err_dhdt.values[0] print('Global excl. GRL and ANT thinning rates in 2000: '+'{:.3f}'.format(dhdt_2000_global)+' ± '+'{:.3f}'.format(2*dhdt_2000_global_err)+' m yr-1') print('Global excl. GRL and ANT thinning rates in 2019: '+'{:.3f}'.format(dhdt_2019_global)+' ± '+'{:.3f}'.format(2*dhdt_2019_global_err)+' m yr-1') # REGIONAL PERCENTAGES df_tot = df_all[df_all.period == '2000-01-01_2020-01-01'] list_cont_perc = [] for i in range(19): cont = df_tot[df_tot.reg==i+1].dmdt.values[0]/df_tot[df_tot.reg=='global'].dmdt.values[0]*100 list_cont_perc.append(cont) print('Contribution of Alaska: '+'{:.1f}'.format(list_cont_perc[0])+' %') print('Contribution of Greenland Periphery: '+'{:.1f}'.format(list_cont_perc[4])+' %') print('Contribution of Arctic Canada North: '+'{:.1f}'.format(list_cont_perc[2])+' %') print('Contribution of Arctic Canada South: '+'{:.1f}'.format(list_cont_perc[3])+' %') print('Contribution of Antarctic Periphery: '+'{:.1f}'.format(list_cont_perc[18])+' %') print('Contribution of High Moutain Asia: '+'{:.1f}'.format(list_cont_perc[12]+list_cont_perc[13]+list_cont_perc[14])+' %') print('Contribution of Southern Andes: '+'{:.1f}'.format(list_cont_perc[16])+' %') #separate contribution from North Greenland and South: done manually print('Iceland specific rate: '+'{:.2f}'.format(df_tot[df_tot.reg==6].dmdtda.values[0])+' ± '+'{:.2f}'.format(2*df_tot[df_tot.reg==6].err_dmdtda.values[0])+' m w.e yr-1') df_nonpolar = tt.aggregate_indep_regions_rates(df_tot[df_tot.reg.isin([10, 11, 12, 16, 17, 18])]) print('Non-polar specific rate: '+'{:.2f}'.format(df_nonpolar.dmdtda.values[0])+' ± '+'{:.2f}'.format(2*df_nonpolar.err_dmdtda.values[0])+' m w.e yr-1') #for HMA, account for correlated error all at once: fn_hma=os.path.join(reg_dir,'dh_13_14_15_rgi60_int_base_reg.csv') df_hma = tt.aggregate_all_to_period(pd.read_csv(fn_hma),[(np.datetime64('2000-01-01'),np.datetime64('2020-01-01'))],fn_tarea=fn_tarea,frac_area=1) print('HMA specific rate: '+'{:.2f}'.format(df_hma.dmdtda.values[0])+' ± '+'{:.2f}'.format(2*df_hma.err_dmdtda.values[0])+' m w.e yr-1') print('Antarctic and Subantartic specific rate: '+'{:.2f}'.format(df_tot[df_tot.reg==19].dmdtda.values[0])+' ± '+'{:.2f}'.format(2*df_tot[df_tot.reg==19].err_dmdtda.values[0])+' m w.e yr-1') #corresponding period for comparison to Shean et al., 2019 df_hma = tt.aggregate_all_to_period(pd.read_csv(fn_hma),[(np.datetime64('2000-01-01'),np.datetime64('2018-01-01'))],fn_tarea=fn_tarea,frac_area=1) print('Shean comparison: HMA specific rate: '+'{:.2f}'.format(df_hma.dmdtda.values[0])+' ± '+'{:.2f}'.format(2*df_hma.err_dmdtda.values[0])+' m w.e yr-1') #corresponding period for comparison to Braun et al., 2019 df_sa = tt.aggregate_all_to_period(pd.read_csv(list_fn_reg[16]),[(np.datetime64('2000-01-01'),np.datetime64('2013-01-01'))],fn_tarea=fn_tarea,frac_area=1) print('Braun comparison: Southern Andes specific rate: '+'{:.2f}'.format(df_sa.dmdtda.values[0])+' ± '+'{:.2f}'.format(2*df_sa.err_dmdtda.values[0])+' m w.e yr-1') df_trp = tt.aggregate_all_to_period(
pd.read_csv(list_fn_reg[15])
pandas.read_csv
# Copyright (c) 2018 The Regents of the University of Michigan # and the University of Pennsylvania # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ Utility functions for performing cross-validation for model training/testing. """ from morf.utils.log import set_logger_handlers, execute_and_log_output from morf.utils.docker import load_docker_image, make_docker_run_command from morf.utils.config import MorfJobConfig from morf.utils import fetch_complete_courses, fetch_sessions, download_train_test_data, initialize_input_output_dirs, make_feature_csv_name, make_label_csv_name, clear_s3_subdirectory, upload_file_to_s3, download_from_s3, initialize_labels, aggregate_session_input_data from morf.utils.s3interface import make_s3_key_path from morf.utils.api_utils import collect_course_cv_results from multiprocessing import Pool import logging import tempfile import pandas as pd import os import numpy as np from sklearn.model_selection import StratifiedKFold module_logger = logging.getLogger(__name__) CONFIG_FILENAME = "config.properties" mode = "cv" def make_folds(job_config, raw_data_bucket, course, k, label_type, raw_data_dir="morf-data/"): """ Utility function to be called by create_course_folds for creating the folds for a specific course. :return: """ logger = set_logger_handlers(module_logger, job_config) user_id_col = "userID" label_col = "label_value" logger.info("creating cross-validation folds for course {}".format(course)) with tempfile.TemporaryDirectory(dir=job_config.local_working_directory) as working_dir: input_dir, output_dir = initialize_input_output_dirs(working_dir) # download data for each session for session in fetch_sessions(job_config, raw_data_bucket, data_dir=raw_data_dir, course=course, fetch_all_sessions=True): # get the session feature and label data download_train_test_data(job_config, raw_data_bucket, raw_data_dir, course, session, input_dir, label_type=label_type) # merge features to ensure splits are correct feat_csv_path = aggregate_session_input_data("features", os.path.join(input_dir, course)) label_csv_path = aggregate_session_input_data("labels", os.path.join(input_dir, course)) feat_df = pd.read_csv(feat_csv_path, dtype=object) label_df = pd.read_csv(label_csv_path, dtype=object) feat_label_df = pd.merge(feat_df, label_df, on=user_id_col) if feat_df.shape[0] != label_df.shape[0]: logger.error( "number of observations in extracted features and labels do not match for course {}; features contains {} and labels contains {} observations".format( course, feat_df.shape[0], label_df.shape[0])) # create the folds logger.info("creating cv splits with k = {} course {} session {}".format(k, course, session)) skf = StratifiedKFold(n_splits=k, shuffle=True) folds = skf.split(np.zeros(feat_label_df.shape[0]), feat_label_df.label_value) for fold_num, train_test_indices in enumerate(folds, 1): # write each fold train/test data to csv and push to s3 train_index, test_index = train_test_indices train_df, test_df = feat_label_df.loc[train_index,].drop(label_col, axis=1), feat_label_df.loc[ test_index,].drop(label_col, axis=1) train_df_name = os.path.join(working_dir, make_feature_csv_name(course, fold_num, "train")) test_df_name = os.path.join(working_dir, make_feature_csv_name(course, fold_num, "test")) train_df.to_csv(train_df_name, index=False) test_df.to_csv(test_df_name, index=False) # upload to s3 try: train_key = make_s3_key_path(job_config, course, os.path.basename(train_df_name)) upload_file_to_s3(train_df_name, job_config.proc_data_bucket, train_key, job_config, remove_on_success=True) test_key = make_s3_key_path(job_config, course, os.path.basename(test_df_name)) upload_file_to_s3(test_df_name, job_config.proc_data_bucket, test_key, job_config, remove_on_success=True) except Exception as e: logger.warning("exception occurred while uploading cv results: {}".format(e)) return def create_course_folds(label_type, k = 5, multithread = True): """ From extract and extract-holdout data, create k randomized folds, pooling data by course (across sessions) and archive results to s3. :param label_type: type of outcome label to use. :param k: number of folds. :param multithread: logical indicating whether multiple cores should be used (if available) :param raw_data_dir: name of subfolder in s3 buckets containing raw data. :return: """ job_config = MorfJobConfig(CONFIG_FILENAME) job_config.update_mode(mode) logger = set_logger_handlers(module_logger, job_config) # clear any preexisting data for this user/job/mode clear_s3_subdirectory(job_config) if multithread: num_cores = job_config.max_num_cores else: num_cores = 1 logger.info("creating cross-validation folds") for raw_data_bucket in job_config.raw_data_buckets: reslist = [] with Pool(num_cores) as pool: for course in fetch_complete_courses(job_config, raw_data_bucket): poolres = pool.apply_async(make_folds, [job_config, raw_data_bucket, course, k, label_type]) reslist.append(poolres) pool.close() pool.join() for res in reslist: logger.info(res.get()) return def create_session_folds(label_type, k = 5, multithread = True, raw_data_dir="morf-data/"): """ From extract and extract-holdout data, create k randomized folds for each session and archive results to s3. :param label_type: type of outcome label to use. :param k: number of folds. :param multithread: logical indicating whether multiple cores should be used (if available) :param raw_data_dir: name of subfolder in s3 buckets containing raw data. :return: """ user_id_col = "userID" label_col = "label_value" job_config = MorfJobConfig(CONFIG_FILENAME) job_config.update_mode(mode) logger = set_logger_handlers(module_logger, job_config) # clear any preexisting data for this user/job/mode clear_s3_subdirectory(job_config) if multithread: num_cores = job_config.max_num_cores else: num_cores = 1 logger.info("creating cross-validation folds") with Pool(num_cores) as pool: for raw_data_bucket in job_config.raw_data_buckets: for course in fetch_complete_courses(job_config, raw_data_bucket): for session in fetch_sessions(job_config, raw_data_bucket, data_dir=raw_data_dir, course=course, fetch_all_sessions=True): with tempfile.TemporaryDirectory(dir=job_config.local_working_directory) as working_dir: # todo: call make_folds() here via apply_async(); currently this is not parallelized! input_dir, output_dir = initialize_input_output_dirs(working_dir) # get the session feature and label data download_train_test_data(job_config, raw_data_bucket, raw_data_dir, course, session, input_dir, label_type=label_type) feature_file = os.path.join(input_dir, course, session, make_feature_csv_name(course, session)) label_file = os.path.join(input_dir, course, session, make_label_csv_name(course, session)) feat_df = pd.read_csv(feature_file, dtype=object) label_df = pd.read_csv(label_file, dtype=object) # merge features to ensure splits are correct feat_label_df =
pd.merge(feat_df, label_df, on=user_id_col)
pandas.merge
from pymoab import core, types from pymoab.rng import Range import dagmc_stats.DagmcFile as df import dagmc_stats.DagmcQuery as dq import pandas as pd import numpy as np import warnings import pytest test_env = {'three_vols': 'tests/3vols.h5m', 'single_cube': 'tests/single-cube.h5m', 'pyramid': 'tests/pyramid.h5m'} def test_pandas_data_frame(): """Tests the initialization of pandas data frames """ single_cube = df.DagmcFile(test_env['single_cube']) single_cube_query = dq.DagmcQuery(single_cube) exp_vert_data = pd.DataFrame() assert(single_cube_query._vert_data.equals(exp_vert_data)) exp_tri_data = pd.DataFrame() assert(single_cube_query._tri_data.equals(exp_tri_data)) exp_surf_data =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd # Based on https://towardsdatascience.com/time-series-of-price-anomaly-detection-13586cd5ff46 def get_distance_by_point(data, model): """ Calculates the distance between the points in the data to its nearest centroid :param data: the data points :param model: the kmeans model """ distance =
pd.Series()
pandas.Series
import os import csv import requests import pandas as pd import pyarrow as pa import pyarrow.parquet as pq from datetime import datetime import logging from airflow.decorators import dag, task os.chdir(os.environ['AIRFLOW_HOME']) @dag(schedule_interval=None, start_date=datetime(2022, 2, 15), catchup=False, tags=['nyctaxi']) def nyctaxi(): logging.basicConfig(level=logging.INFO) @task() def initialize(): logging.info('initializing...') # on the first run, it checks for the existence of config.csv file with future trip data ranges if os.path.isfile('./projects/nyctaxi/config/config.csv'): # if it finds the file, it knows it is not the first run first_run = False with open('./projects/nyctaxi/config/config.csv', 'r') as configfile: # config.csv logs the taxis, years and months of the missing ranges reader = csv.reader(configfile) taxis = set() years = set() months = set() for row in reader: taxis.add(row[0]) years.add(int(row[1])) months.add(int((row[2]))) taxis = list(taxis) years = list(years) months = list(months) # checks to see if config.csv is empty if years: year_min = years[0] year_max = years[-1] + 1 month_min = months[0] month_max = months[-1] + 1 else: # if config.csv is empty, all downloads are complete year_min = year_max = month_min = month_max = 0 logging.info('all data is downloaded') else: # if config.csv is not available, it initializes with the default configuration first_run = True taxis = ['yellow', 'green'] year_min = 2021 year_max = 2022 month_min = 1 month_max = 13 # last, it gets rid of the .gitkeep files to prevent any collision folders = ['./projects/nyctaxi/tripdata/csv/renamed/', './projects/nyctaxi/tripdata/pq/'] for folder in folders: with os.scandir(folder) as entries: for entry in entries: if entry.name == '.gitkeep': os.remove(entry.path) return dict(taxis=taxis, year_min=year_min, year_max=year_max, month_min=month_min, month_max=month_max, first_run=first_run) @task() def extract(init_dict: dict): if init_dict['taxis']: logging.info('getting csv...') csv_available = False # it sets csv_available to False, because at this point it doesn't know if it will find a file with open('./projects/nyctaxi/config/config.csv', 'w') as configfile: configfile_writer = csv.writer(configfile) for taxi in init_dict['taxis']: for year in range(init_dict['year_min'], init_dict['year_max']): for month in range(init_dict['month_min'], init_dict['month_max']): month_str = str(month).zfill(2) url = 'https://nyc-tlc.s3.amazonaws.com/trip+data/' + taxi + '_tripdata_' + str( year) + '-' + month_str + '.csv' r = requests.get(url, allow_redirects=True) if r.status_code == requests.codes.ok: # if it finds a file, it sets csv_available to true, i.e. data is available csv_available = True filename = url.split('/')[-1] logging.info('processing ' + filename) open('./projects/nyctaxi/tripdata/csv/' + filename, 'wb').write(r.content) # it renames the pickup datetime column to normalize across # yellow and green taxi tripdata # to be able select and run stats on this column for both data sets with open('./projects/nyctaxi/tripdata/csv/' + filename, 'r') as inFile, \ open('./projects/nyctaxi/tripdata/csv/renamed/' + filename, 'w') as outfile: r = csv.reader(inFile) w = csv.writer(outfile) header = list() for i, row in enumerate(r): if i == 0: for col in row: if col == 'tpep_pickup_datetime' or col == 'lpep_pickup_datetime': header.append('pickup_datetime') else: header.append(col) w.writerow(header) else: w.writerow(row) os.remove('./projects/nyctaxi/tripdata/csv/' + filename) else: # if it can't find a file, it logs the taxi, year and month # to look for it on the next run configfile_writer.writerow([taxi, year, month]) logging.info( 'file not available: ' + taxi + '_tripdata_' + str(year) + '-' + str(month).zfill( 2) + '.csv. I will look for it on the next run.') return csv_available else: return False @task() def transform(csv_available: bool): if csv_available: # transforms csv to parquet with os.scandir('./projects/nyctaxi/tripdata/csv/renamed/') as files: for file in files: logging.info('loading to parquet ' + file.name) df =
pd.read_csv('./projects/nyctaxi/tripdata/csv/renamed/' + file.name, low_memory=False)
pandas.read_csv
''' Recommend musical artists part II Suppose you were a big fan of <NAME> - which other musicial artists might you like? Use your NMF features from the previous exercise and the cosine similarity to find similar musical artists. A solution to the previous exercise has been run, so norm_features is an array containing the normalized NMF features as rows. The names of the musical artists are available as the list artist_names. INSTRUCTIONS 100XP Import pandas as pd. Create a DataFrame df from norm_features, using artist_names as an index. Use the .loc[] accessor of df to select the row of '<NAME>'. Assign the result to artist. Apply the .dot() method of df to artist to calculate the dot product of every row with artist. Save the result as similarities. Print the result of the .nlargest() method of similarities to display the artists most similar to '<NAME>'. ''' # Import pandas import pandas as pd # Create a DataFrame: df df =
pd.DataFrame(norm_features, index=artist_names)
pandas.DataFrame
import pandas as pd import numpy as np import warnings warnings.filterwarnings('ignore') import os os.environ['OMP_NUM_THREADS'] = '4' import gc import time os.environ["CUDA_VISIBLE_DEVICES"] = '3' import setproctitle setproctitle.setproctitle('Kaggle@shihongzhi') t0 = time.time() path = '/data/mas/shihongzhi/Kaggle/' dtypes = { 'ip' : 'uint32', 'app' : 'uint16', 'device' : 'uint16', 'os' : 'uint16', 'channel' : 'uint16', 'is_attributed' : 'uint8', 'click_id' : 'uint32' } print('load train....') is_sample = 0 if(is_sample): train_file = "train_sample.csv"; test_file = "test_sample.csv" else: train_file = "train.csv"; test_file = "test.csv" train_df = pd.read_csv(path+train_file, dtype=dtypes, skiprows = range(1, 131886954), usecols=['ip','app','device','os', 'channel', 'click_time', 'is_attributed'], parse_dates=['click_time']) print('load test....') test_df = pd.read_csv(path+test_file, dtype=dtypes, usecols=['ip','app','device','os', 'channel', 'click_time', 'click_id'], parse_dates=['click_time']) len_train = len(train_df) train_df=train_df.append(test_df) del test_df; gc.collect() print('click time....') train_df['click_time'] = (train_df['click_time'].astype(np.int64) // 10 ** 9).astype(np.int32) train_df['next_click'] = (train_df.groupby(['ip', 'app', 'device', 'os']).click_time.shift(-1) - train_df.click_time).astype(np.float32) train_df['next_click'].fillna((train_df['next_click'].mean()), inplace=True) print('hour, day, wday....') train_df['hour'] =
pd.to_datetime(train_df.click_time)
pandas.to_datetime
from sqlalchemy import create_engine import pandas as pd import datetime import config import pmdarima as pm import numpy as np import arch import statistics import traceback pd.set_option('display.max_columns', None) def initializer(symbol): # Get Data engine = create_engine(config.psql) num_data_points = 255 one_year_ago = (datetime.datetime.utcnow().date() - datetime.timedelta(days=num_data_points * 1.45)).strftime("%Y-%m-%d") query = f"select distinct * from stockdata_hist where symbol = '{symbol}' and tdate > '{one_year_ago}' AND (CAST(tdate AS TIME) = '20:00') limit {num_data_points}" df = pd.read_sql_query(query, con=engine).sort_values(by='tdate', ascending=True) # Get Forecast Range steps = 5 today = df['tdate'].iloc[-1] end_prediction_date = today + datetime.timedelta(days=steps) end_friday = end_prediction_date + datetime.timedelta((4-end_prediction_date.weekday()) % 7) tomorrow = today+datetime.timedelta(days=1) date_range = pd.date_range(tomorrow, end_friday, freq="B") period = len(pd.date_range(tomorrow, end_friday, freq="B")) return df, tomorrow, date_range, period, engine def arima(symbol, df, period, date_range): df['tdate'] = pd.to_datetime(df['tdate']) df.set_index(df['tdate'], inplace=True) y = df['tick_close'] # Model ARIMA parameters # model = pm.auto_arima(y, error_action='ignore', trace=True, # suppress_warnings=True, maxiter=10, # seasonal=True, m=50) # print(type(model)) # print("get params:") # print(model.get_params()['order']) # print(type(model.get_params()['order'])) # print(model.summary()) m = 7 order = (1, 1, 1) sorder = (0, 0, 1, m) model = pm.arima.ARIMA(order, seasonal_order=sorder, start_params=None, method='lbfgs', maxiter=50, suppress_warnings=True, out_of_sample_size=0, scoring='mse', scoring_args=None, trend=None, with_intercept=True) model.fit(y) # Forecast forecasts = model.predict(n_periods=period, return_conf_int=True) # predict N steps into the future flatten = forecasts[1].tolist() results_df = pd.DataFrame(flatten, columns=['arima_low', 'arima_high']) results_df['arima_forecast'] = forecasts[0] results_df['tdate'] = date_range results_df['uticker'] = symbol results_df['arima_order'] = f"{order} {sorder}" results_df['last_price'] = df['tick_close'][-1] results_df['last_vwap'] = df['vwap'][-1] results_df['arima_diff'] = (results_df['arima_forecast']-results_df['last_price'])/results_df['last_price'] results_df = results_df[['uticker', 'tdate', 'arima_low', 'arima_forecast', 'arima_high', 'arima_order', 'last_price', 'last_vwap', 'arima_diff']] return results_df def garch_model(df, period, date_range): df = df.sort_index(ascending=True) df['tdate'] = pd.to_datetime(df['tdate']) df.set_index(df['tdate'], inplace=True) market = df['tick_close'] returns = market.pct_change().dropna() garch = arch.arch_model(returns, vol="GARCH", p=1, q=1, dist="normal") fit_model = garch.fit(update_freq=1) forecasts = fit_model.forecast(horizon=period, method='analytic', reindex=False) f_mean = forecasts.mean.iloc[0:].iloc[0].reset_index().iloc[:, 1] f_vol = np.sqrt(forecasts.variance.iloc[0:]).iloc[0].reset_index().iloc[:, 1] f_res = np.sqrt(forecasts.residual_variance.iloc[0:]).iloc[0].reset_index().iloc[:, 1] h_vol = statistics.stdev(returns.iloc[::-1]) h_mean = statistics.mean(returns.iloc[::-1]) temp_df =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd from functools import reduce #Let's import some data from csv files to pandas dataframes! cgm = pd.read_csv('./data/cgm_aligned.csv') hr = pd.read_csv('./data/hr_aligned.csv') meal =
pd.read_csv('./data/meal_aligned.csv')
pandas.read_csv
#!/usr/bin/env python3 from datetime import datetime from geoedfframework.GeoEDFPlugin import GeoEDFPlugin from geoedfframework.utils.GeoEDFError import GeoEDFError from .helper import GeomHelper, ColorHelper """Module to create map of a stream reach based on a specified NWIS (USGS) site and range (up/down stream), including various feature layers derived from USGS NLDI navigation along the stream, its tributaries and associated drainage basins, while also extracting data for further visualization. Input parameter include: nwis_site ['USGS-03206000'] um_dist [50] dm_dist [25] begin_date = [1/1/xx, where xx is 3 years past] end_date = [today] ignore_wqp_dates [True, all dates] """ class WQPMap(GeoEDFPlugin): # Required inputs: # nwis_site: NWIS (USGS) Station # Optional inputs: # um_dist: Upstream distance (km) along main stream from NWIS Station to traverse [50] # dm_dist: Downstream distance (km) to traverse [25] # begin_date: Beginning date (mm/dd/YYYY) to query properties [1/1/CurrentYear-3] # end_data: End date to query properties [CurrentDay] # ignore_wqp_dates: Option (True/False) to ignore above date for WQP properties [True] __required_params = ['nwis_site'] __optional_params = ['um_dist','dm_dist','begin_date','end_date','ignore_wqp_dates'] # we use just kwargs since this makes it easier to instantiate the object from the # GeoEDFProcessor class def __init__(self, **kwargs): #list to hold all parameter names self.provided_params = self.__required_params + self.__optional_params # check that all required params have been provided for param in self.__required_params: if param not in kwargs: raise GeoEDFError('Required parameter %s for SimpleDataClean not provided' % param) # set all required parameters for key in self.__required_params: setattr(self,key,kwargs.get(key)) # set optional parameters for key in self.__optional_params: if key == 'um_dist': val = kwargs.get(key,50) setattr(self,key,val) continue if key == 'dm_dist': val = kwargs.get(key,25) setattr(self,key,val) continue if key == 'begin_date': val = kwargs.get(key,None) if val is not None: val = datetime.strptime(val,"%m/%d/%Y") else: val = kwargs.get(key,datetime(datetime.now().year-3, 1, 1)) setattr(self,key,val) continue if key == 'end_date': val = kwargs.get(key,None) if val is not None: val = datetime.strptime(val,"%m/%d/%Y") else: val = datetime.now() setattr(self,key,val) continue if key == 'ignore_wqp_dates': val = kwargs.get(key,True) setattr(self,key,val) continue #if key not provided in optional arguments, defaults value to None setattr(self,key,kwargs.get(key,None)) # super class init super().__init__() # The process method that generates the map def process(self): # Get things set up from os import path # Enable numerical arrays and matrices with NumPy import numpy as np # Enable R-style DataFrames with Pandas import pandas as pd # Enable Math functions import math # Enable working with Dates and Times from datetime import datetime # Enable geospatial DataFrames with GeoPandas (built on Fiona, which is built on GDAL/OGR) import geopandas as gpd # Enable other geospatial functions using Shapely from shapely.geometry import Point, Polygon # Enable Leatlet.JS-based mapping with Folium import folium from folium import IFrame import folium.plugins as plugins # Enable HTTP requests and parsing of JSON results import requests import json # Set parameters NWIS_SITE = self.nwis_site UM_DIST = self.um_dist DM_DIST = self.dm_dist BEGIN_DATE = "{0:02d}-{1:02d}-{2:4d}".format(self.begin_date.month,self.begin_date.day,self.begin_date.year) END_DATE = "{0:02d}-{1:02d}-{2:4d}".format(self.end_date.month,self.end_date.day,self.end_date.year) IGNORE_WQP_DATES = self.ignore_wqp_dates # URLs for REST Web Services USGS_NLDI_WS = "https://labs.waterdata.usgs.gov/api/nldi/linked-data" # USGS NLDI REST web services NWIS_SITE_URL = USGS_NLDI_WS+"/nwissite/"+NWIS_SITE NWIS_SITE_NAV = NWIS_SITE_URL+"/navigate" TNM_WS = "https://hydro.nationalmap.gov/arcgis/rest/services" # The National Map REST web services ARCGIS_WS = "http://server.arcgisonline.com/arcgis/rest/services" # ARCGIS Online REST web services # Set Output Directory if (self.target_path == None): OUT_DIR = "." else: OUT_DIR = self.target_path try: # Get Lat/Lon coordinates of starting site (NWIS station) nwis_site_json = gpd.read_file(NWIS_SITE_URL) nwis_site_geom = nwis_site_json.iloc[0]['geometry'] nwis_site_coord = [nwis_site_geom.y, nwis_site_geom.x] # Generate map river_map = folium.Map(nwis_site_coord,zoom_start=10,tiles=None) plugins.ScrollZoomToggler().add_to(river_map); plugins.Fullscreen( position='bottomright', title='Full Screen', title_cancel='Exit Full Screen', force_separate_button=True ).add_to(river_map); # Add sites within reach using NLDI web services at USGS # Popup parameters width = 500 height = 120 max_width = 1000 # Main Stream folium.GeoJson(NWIS_SITE_NAV+"/UM?distance="+str(UM_DIST),name="Main Stream (up)",show=True,control=False).add_to(river_map); folium.GeoJson(NWIS_SITE_NAV+"/DM?distance="+str(DM_DIST),name="Main Stream (down)",show=True,control=False).add_to(river_map); # NWIS Sites fg_nwis = folium.FeatureGroup(name="USGS (NWIS) Sites",overlay=True,show=False) color = 'darkred' icon = 'dashboard' nwis_sites_dm = gpd.read_file(NWIS_SITE_NAV+"/DM/nwissite?distance="+str(DM_DIST)) nwis_sites_um = gpd.read_file(NWIS_SITE_NAV+"/UM/nwissite?distance="+str(UM_DIST)) nwis_sites = gpd.GeoDataFrame(pd.concat([nwis_sites_dm,nwis_sites_um], ignore_index=True), crs=nwis_sites_dm.crs) # TODO: eliminate duplicate for anchor site for i, nwis_site in nwis_sites.iterrows(): coord = [nwis_site.geometry.y,nwis_site.geometry.x] label = 'NWIS Station: '+nwis_site.identifier html = label html += '<br>{0:s}'.format(nwis_site['name']) html += '<br><a href=\"{0:s}\" target=\"_blank\">{1:s}</a>'.format(nwis_site.uri+'/#parameterCode=00065&startDT='+BEGIN_DATE+'&endDT='+END_DATE,nwis_site.uri) html += '<br>Lat: {0:.4f}, Lon: {1:.4f}'.format(nwis_site.geometry.y,nwis_site.geometry.x) html += '<br>Comid: {0:s}'.format(nwis_site.comid) iframe = folium.IFrame(html,width=width,height=height) popup = folium.Popup(iframe,max_width=max_width) fg_nwis.add_child(folium.Marker(location=coord,icon=folium.Icon(color=color,icon=icon),popup=popup,tooltip=label)); fg_nwis.add_to(river_map) # WQP Stations fg_wqp = folium.FeatureGroup(name="WQP Stations",overlay=True,show=False) color = 'darkgreen' radius = 3 wqp_sites_dm = gpd.read_file(NWIS_SITE_NAV+"/DM/wqp?distance="+str(DM_DIST)) wqp_sites_um = gpd.read_file(NWIS_SITE_NAV+"/UM/wqp?distance="+str(UM_DIST)) wqp_sites = gpd.GeoDataFrame(pd.concat([wqp_sites_dm,wqp_sites_um], ignore_index=True), crs=wqp_sites_dm.crs) for i, wqp_site in wqp_sites.iterrows(): coord = [wqp_site.geometry.y,wqp_site.geometry.x] label = 'WQP Station: '+wqp_site.identifier html = label html += '<br>{0:s}'.format(wqp_site['name']) html += '<br><a href=\"{0:s}\" target=\"_blank\">{1:s}</a>'.format(wqp_site.uri,wqp_site.uri) html += '<br>Lat: {0:.4f}, Lon: {1:.4f}'.format(wqp_site.geometry.y,wqp_site.geometry.x) html += '<br>Comid: {0:s}'.format(wqp_site.comid) iframe = folium.IFrame(html,width=width,height=height) popup = folium.Popup(iframe,max_width=max_width) fg_wqp.add_child(folium.CircleMarker(location=coord,radius=radius,color=color,popup=popup,tooltip=label)); fg_wqp.add_to(river_map); # Add HUC12 Pour Points, *differential* drainage basins, HUC4-10 boundaries associated with each fg_huc12pp = folium.FeatureGroup(name="HUC12 Pour Points",overlay=True,show=False) fg_basins = folium.FeatureGroup(name="Drainage Basins",overlay=True,show=False) fg_wbd4 = folium.FeatureGroup(name="HUC4 Boundaries",overlay=True,show=False) fg_wbd6 = folium.FeatureGroup(name="HUC6 Boundaries",overlay=True,show=False) fg_wbd8 = folium.FeatureGroup(name="HUC8 Boundaries",overlay=True,show=False) fg_wbd10 = folium.FeatureGroup(name="HUC10 Boundaries",overlay=True,show=False) fg_wbd12 = folium.FeatureGroup(name="HUC12 Boundaries",overlay=True,show=False) huc4_list = [] huc6_list = [] huc8_list = [] huc10_list = [] huc12_list = [] color = 'darkblue' radius = 3 try: huc12pp_sites_dm = gpd.read_file(NWIS_SITE_NAV+"/DM/huc12pp?distance="+str(DM_DIST),driver='GeoJSON') except Exception as ex: print("An exception of type {0} occurred. Arguments:\n{1!r}".format(type(ex).__name__, ex.args)) huc12pp_sites_dm = gpd.GeoDataFrame() try: huc12pp_sites_um = gpd.read_file(NWIS_SITE_NAV+"/UM/huc12pp?distance="+str(UM_DIST),driver='GeoJSON') except Exception as ex: print("An exception of type {0} occurred. Arguments:\n{1!r}".format(type(ex).__name__, ex.args)) huc12pp_sites_um = gpd.GeoDataFrame() huc12pp_sites = gpd.GeoDataFrame(pd.concat([huc12pp_sites_dm,huc12pp_sites_um], ignore_index=True), crs=huc12pp_sites_dm.crs) n_segs = len(huc12pp_sites)-1 # Sort sites by decreasing area of drainage basin def get_area(x): x_basin = gpd.read_file(USGS_NLDI_WS+"/comid/"+x+"/basin") return int(round(x_basin.iloc[0].geometry.area,3)*1000) huc12pp_sites['area']=huc12pp_sites.apply(lambda x: get_area(x.comid), axis=1) huc12pp_sites.set_index(['area'],inplace=True,drop=True) huc12pp_sites.sort_index(inplace=True,ascending=False) i = 0 for area, huc12pp_site in huc12pp_sites.iterrows(): # Add to HUC12 PP to Site table in database # if (DB_NOT_FOUND): # huc12pp = Site(type='HUC12PP',name=huc12pp_site.identifier,desc=huc12pp_site['name'],url=huc12pp_site.uri,comid=huc12pp_site.comid,geom='POINT({0:.4f} {1:.4f})'.format(huc12pp_site.geometry.x,huc12pp_site.geometry.y)) # spatialite_session.add(huc12pp) # Get HUC12 PP drainage basin basin_url = USGS_NLDI_WS+"/comid/{0:s}/basin".format(huc12pp_site.comid) try: basin = gpd.read_file(basin_url,driver='GeoJSON') except Exception as ex: print("An exception of type {0} occurred. Arguments:\n{1!r}".format(type(ex).__name__, ex.args)) i = i + 1 continue basin_area = GeomHelper.geom_area(basin) basin_diff_area = basin_area # Get HUC12 watershed boudary (WBD) wbd12_url = TNM_WS+"/wbd/MapServer/6/query?where=HUC12%3D%27{0:s}%27&outFields=NAME%2CHUC12%2CAREASQKM&f=geojson".format(huc12pp_site.identifier) try: wbd12 = gpd.read_file(wbd12_url,driver='GeoJSON') except Exception as ex: print("An exception of type {0} occurred. Arguments:\n{1!r}".format(type(ex).__name__, ex.args)) i = i + 1 continue if i < n_segs: # Add HUC12 boundary a feature layer style_function = lambda x: {'color': 'darkgreen', 'weight': 1, 'fillColor': 'green', 'fillOpacity': 0.1} highlight_function = lambda x: {'color':'yellow', 'weight':2} tooltip = "HUC12: {0:s} ({1:s}), Area: {2:.2f}".format(wbd12.iloc[0]['huc12'],wbd12.iloc[0]['name'],GeomHelper.geom_area(wbd12)[0]) wbd12_feature = folium.GeoJson(wbd12.iloc[0].geometry,style_function=style_function,highlight_function=highlight_function,tooltip=tooltip) fg_wbd12.add_child(wbd12_feature); huc12_list.append(huc12pp_site.identifier) if i > 0: # Generate and show difference between sussessive drainage basins -- this is for the previous (downstream) basin, associated with previous HUC12 PP basin_diff = gpd.overlay(basin_prev,basin,how='difference') basin_diff_area = GeomHelper.geom_area(basin_diff) style_function = lambda x: {'color': 'red', 'weight': 1, 'fillColor': 'blue', 'fillOpacity': 0.1} highlight_function = lambda x: {'color':'yellow', 'weight':3} tooltip = "Differential Drainage Basin for HUC12 Pour Point: {0:s} ({1:s}), Area: {2:.2f}".format(wbd12.iloc[0]['huc12'],wbd12.iloc[0]['name'],basin_diff_area[0]) basin_diff_feature = folium.GeoJson(basin_diff.iloc[0].geometry.buffer(-0.001).buffer(0.001),style_function=style_function,highlight_function=highlight_function,tooltip=tooltip) fg_basins.add_child(basin_diff_feature); if i == n_segs: # Show large basin of first (highest upstream) pour point style_function = lambda x: {'color': 'gray', 'weight': 1, 'fillColor': 'gray', 'fillOpacity': 0.1} highlight_function = lambda x: {'color':'yellow', 'weight':1} tooltip = "Total Drainage Basin for HUC12 Pour Point: {0:s} ({1:s}), Area: {2:.2f}".format(wbd12.iloc[0]['huc12'],wbd12.iloc[0]['name'],basin_area[0]) basin_feature = folium.GeoJson(basin.iloc[0].geometry,style_function=style_function,highlight_function=highlight_function,tooltip=tooltip) fg_basins.add_child(basin_feature); # Get HUC10 containing HUC12 and add that to another feature layer huc10_identifier = huc12pp_prev[:-2] wbd10_url = TNM_WS+"/wbd/MapServer/5/query?where=HUC10%3D%27{0:s}%27&outFields=NAME%2CHUC10%2CAREASQKM&f=geojson".format(huc10_identifier) try: wbd10 = gpd.read_file(wbd10_url) except: pass else: basin_huc10_overlap = gpd.overlay(wbd10,basin_diff,how='intersection') style_function = lambda x: {'color': 'darkgreen', 'weight': 1, 'fillColor': 'green', 'fillOpacity': 0.05} highlight_function = lambda x: {'color':'yellow', 'weight':2} tooltip = "HUC10 Overlap: {0:s} ({1:s}), Area: {2:.2f}".format(wbd10.iloc[0]['huc10'],wbd10.iloc[0]['name'],GeomHelper.geom_area(basin_huc10_overlap)[0]) wbd10_feature = folium.GeoJson(basin_huc10_overlap.iloc[0].geometry.buffer(-0.001).buffer(0.001),style_function=style_function,highlight_function=highlight_function,tooltip=tooltip) fg_wbd10.add_child(wbd10_feature); if (huc10_identifier not in huc10_list): tooltip = "HUC10: {0:s} ({1:s}), Area: {2:.2f}".format(wbd10.iloc[0]['huc10'],wbd10.iloc[0]['name'],wbd10.iloc[0].areasqkm) wbd10_feature = folium.GeoJson(wbd10.iloc[0].geometry.buffer(-0.001).buffer(0.001),style_function=style_function,highlight_function=highlight_function,tooltip=tooltip) fg_wbd10.add_child(wbd10_feature); huc10_list.append(huc10_identifier) # Get HUC8 containing HUC12 and add that to another feature layer huc8_identifier = huc12pp_prev[:-4] wbd8_url = TNM_WS+"/wbd/MapServer/4/query?where=HUC8%3D%27{0:s}%27&outFields=NAME%2CHUC8%2CAREASQKM&f=geojson".format(huc8_identifier) try: wbd8 = gpd.read_file(wbd8_url) except: pass else: basin_huc8_overlap = gpd.overlay(wbd8,basin_diff,how='intersection') style_function = lambda x: {'color': 'darkgreen', 'weight': 1, 'fillColor': 'green', 'fillOpacity': 0.05} highlight_function = lambda x: {'color':'yellow', 'weight':2} tooltip = "HUC8 Overlap: {0:s} ({1:s}), Area: {2:.2f}".format(wbd8.iloc[0]['huc8'],wbd8.iloc[0]['name'],GeomHelper.geom_area(basin_huc8_overlap)[0]) wbd8_feature = folium.GeoJson(basin_huc8_overlap.iloc[0].geometry.buffer(-0.001).buffer(0.001),style_function=style_function,highlight_function=highlight_function,tooltip=tooltip) fg_wbd8.add_child(wbd8_feature); if (huc8_identifier not in huc8_list): tooltip = "HUC8: {0:s} ({1:s}), Area: {2:.2f}".format(wbd8.iloc[0]['huc8'],wbd8.iloc[0]['name'],wbd8.iloc[0].areasqkm) wbd8_feature = folium.GeoJson(wbd8.iloc[0].geometry.buffer(-0.001).buffer(0.001),style_function=style_function,highlight_function=highlight_function,tooltip=tooltip) fg_wbd8.add_child(wbd8_feature); huc8_list.append(huc8_identifier) # Get HUC6 containing HUC12 and add that to another feature layer huc6_identifier = huc12pp_prev[:-6] wbd6_url = TNM_WS+"/wbd/MapServer/3/query?where=HUC6%3D%27{0:s}%27&outFields=NAME%2CHUC6%2CAREASQKM&f=geojson".format(huc6_identifier) try: wbd6 = gpd.read_file(wbd6_url) except: pass else: basin_huc6_overlap = gpd.overlay(wbd6,basin_diff,how='intersection') style_function = lambda x: {'color': 'darkgreen', 'weight': 1, 'fillColor': 'green', 'fillOpacity': 0.05} highlight_function = lambda x: {'color':'yellow', 'weight':2} tooltip = "HUC6 Overlap: {0:s} ({1:s}), Area: {2:.2f}".format(wbd6.iloc[0]['huc6'],wbd6.iloc[0]['name'],GeomHelper.geom_area(basin_huc6_overlap)[0]) wbd6_feature = folium.GeoJson(basin_huc6_overlap.iloc[0].geometry.buffer(-0.001).buffer(0.001),style_function=style_function,highlight_function=highlight_function,tooltip=tooltip) fg_wbd6.add_child(wbd6_feature); if (huc6_identifier not in huc6_list): tooltip = "HUC6: {0:s} ({1:s}), Area: {2:.2f}".format(wbd6.iloc[0]['huc6'],wbd6.iloc[0]['name'],wbd6.iloc[0].areasqkm) wbd6_feature = folium.GeoJson(wbd6.iloc[0].geometry.buffer(-0.001).buffer(0.001),style_function=style_function,highlight_function=highlight_function,tooltip=tooltip) fg_wbd6.add_child(wbd6_feature); huc6_list.append(huc6_identifier) # Get HUC4 containing HUC12 and add that to another feature layer huc4_identifier = huc12pp_prev[:-8] wbd4_url = TNM_WS+"/wbd/MapServer/2/query?where=HUC4%3D%27{0:s}%27&outFields=NAME%2CHUC4%2CAREASQKM&f=geojson".format(huc4_identifier) try: wbd4 = gpd.read_file(wbd4_url) except: pass else: basin_huc4_overlap = gpd.overlay(wbd4,basin_diff,how='intersection') style_function = lambda x: {'color': 'darkgreen', 'weight': 1, 'fillColor': 'green', 'fillOpacity': 0.05} highlight_function = lambda x: {'color':'yellow', 'weight':2} tooltip = "HUC4 Overlap: {0:s} ({1:s}), Area: {2:.2f}".format(wbd4.iloc[0]['huc4'],wbd4.iloc[0]['name'],GeomHelper.geom_area(basin_huc4_overlap)[0]) wbd4_feature = folium.GeoJson(basin_huc4_overlap.iloc[0].geometry.buffer(-0.001).buffer(0.001),style_function=style_function,highlight_function=highlight_function,tooltip=tooltip) fg_wbd4.add_child(wbd4_feature); if (huc4_identifier not in huc4_list): tooltip = "HUC4: {0:s} ({1:s}), Area: {2:.2f}".format(wbd4.iloc[0]['huc4'],wbd4.iloc[0]['name'],wbd4.iloc[0].areasqkm) wbd4_feature = folium.GeoJson(wbd4.iloc[0].geometry.buffer(-0.001).buffer(0.001),style_function=style_function,highlight_function=highlight_function,tooltip=tooltip) fg_wbd4.add_child(wbd4_feature); huc4_list.append(huc4_identifier) basin_prev = basin huc12pp_prev = huc12pp_site.identifier # HUC12 Pour Point markers coord = [huc12pp_site.geometry.y,huc12pp_site.geometry.x] label = 'Pour Point for HUC12: '+wbd12.iloc[0]['name'] html = label html += '<br>Indentifier: {0:s}'.format(huc12pp_site.identifier) html += '<br>Lat: {0:.2f}, Lon: {1:.2f}'.format(huc12pp_site.geometry.y,huc12pp_site.geometry.x) html += '<br>Comid: {0:s}'.format(huc12pp_site.comid) html += '<br>Area Total: {0:.2f}'.format(basin_area[0]) html += '<br>Area Difference: {0:.2f}'.format(basin_diff_area[0]) iframe = folium.IFrame(html,width=width,height=height) popup = folium.Popup(iframe,max_width=max_width) fg_huc12pp.add_child(folium.CircleMarker(location=coord,radius=radius,color=color,popup=popup,tooltip=label)); i = i + 1 basin_prev = basin huc12pp_prev = huc12pp_site.identifier # Do HUC2-10s for final upstream basin huc10_identifier = huc12pp_prev[:-2] wbd10_url = TNM_WS+"/wbd/MapServer/5/query?where=HUC10%3D%27{0:s}%27&outFields=NAME%2CHUC10%2CAREASQKM&f=geojson".format(huc10_identifier) try: wbd10 = gpd.read_file(wbd10_url) except: pass else: basin_huc10_overlap = gpd.overlay(wbd10,basin_diff,how='intersection') style_function = lambda x: {'color': 'darkgreen', 'weight': 1, 'fillColor': 'green', 'fillOpacity': 0.05} highlight_function = lambda x: {'color':'yellow', 'weight':2} tooltip = "HUC10 Overlap: {0:s} ({1:s}), Area: {2:.2f}".format(wbd10.iloc[0]['huc10'],wbd10.iloc[0]['name'],GeomHelper.geom_area(basin_huc10_overlap)[0]) wbd10_feature = folium.GeoJson(basin_huc10_overlap.iloc[0].geometry.buffer(-0.001).buffer(0.001),style_function=style_function,highlight_function=highlight_function,tooltip=tooltip) fg_wbd10.add_child(wbd10_feature); if (huc10_identifier not in huc10_list): tooltip = "HUC10: {0:s} ({1:s}), Area: {2:.2f}".format(wbd10.iloc[0]['huc10'],wbd10.iloc[0]['name'],wbd10.iloc[0].areasqkm) wbd10_feature = folium.GeoJson(wbd10.iloc[0].geometry.buffer(-0.001).buffer(0.001),style_function=style_function,highlight_function=highlight_function,tooltip=tooltip) fg_wbd10.add_child(wbd10_feature); huc10_list.append(huc10_identifier) huc8_identifier = huc12pp_prev[:-4] wbd8_url = TNM_WS+"/wbd/MapServer/4/query?where=HUC8%3D%27{0:s}%27&outFields=NAME%2CHUC8%2CAREASQKM&f=geojson".format(huc8_identifier) try: wbd8 = gpd.read_file(wbd8_url) except: pass else: basin_huc8_overlap = gpd.overlay(wbd8,basin_diff,how='intersection') style_function = lambda x: {'color': 'darkgreen', 'weight': 1, 'fillColor': 'green', 'fillOpacity': 0.05} highlight_function = lambda x: {'color':'yellow', 'weight':2} tooltip = "HUC8 Overlap: {0:s} ({1:s}), Area: {2:.2f}".format(wbd8.iloc[0]['huc8'],wbd8.iloc[0]['name'],GeomHelper.geom_area(basin_huc8_overlap)[0]) wbd8_feature = folium.GeoJson(basin_huc8_overlap.iloc[0].geometry.buffer(-0.001).buffer(0.001),style_function=style_function,highlight_function=highlight_function,tooltip=tooltip) fg_wbd8.add_child(wbd8_feature); if (huc8_identifier not in huc8_list): tooltip = "HUC8: {0:s} ({1:s}), Area: {2:.2f}".format(wbd8.iloc[0]['huc8'],wbd8.iloc[0]['name'],wbd8.iloc[0].areasqkm) wbd8_feature = folium.GeoJson(wbd8.iloc[0].geometry.buffer(-0.001).buffer(0.001),style_function=style_function,highlight_function=highlight_function,tooltip=tooltip) fg_wbd8.add_child(wbd8_feature); huc8_list.append(huc8_identifier) huc6_identifier = huc12pp_prev[:-6] wbd6_url = TNM_WS+"/wbd/MapServer/3/query?where=HUC6%3D%27{0:s}%27&outFields=NAME%2CHUC6%2CAREASQKM&f=geojson".format(huc6_identifier) try: wbd6 = gpd.read_file(wbd6_url) except: pass else: basin_huc6_overlap = gpd.overlay(wbd6,basin_diff,how='intersection') style_function = lambda x: {'color': 'darkgreen', 'weight': 1, 'fillColor': 'green', 'fillOpacity': 0.05} highlight_function = lambda x: {'color':'yellow', 'weight':2} tooltip = "HUC6 Overlap: {0:s} ({1:s}), Area: {2:.2f}".format(wbd6.iloc[0]['huc6'],wbd6.iloc[0]['name'],GeomHelper.geom_area(basin_huc6_overlap)[0]) wbd6_feature = folium.GeoJson(basin_huc6_overlap.iloc[0].geometry.buffer(-0.001).buffer(0.001),style_function=style_function,highlight_function=highlight_function,tooltip=tooltip) fg_wbd6.add_child(wbd6_feature); if (huc6_identifier not in huc6_list): tooltip = "HUC6: {0:s} ({1:s}), Area: {2:.2f}".format(wbd6.iloc[0]['huc6'],wbd6.iloc[0]['name'],wbd6.iloc[0].areasqkm) wbd6_feature = folium.GeoJson(wbd6.iloc[0].geometry.buffer(-0.001).buffer(0.001),style_function=style_function,highlight_function=highlight_function,tooltip=tooltip) fg_wbd6.add_child(wbd6_feature); huc6_list.append(huc6_identifier) huc4_identifier = huc12pp_prev[:-8] wbd4_url = TNM_WS+"/wbd/MapServer/2/query?where=HUC4%3D%27{0:s}%27&outFields=NAME%2CHUC4%2CAREASQKM&f=geojson".format(huc4_identifier) try: wbd4 = gpd.read_file(wbd4_url) except: pass else: basin_huc4_overlap = gpd.overlay(wbd4,basin_diff,how='intersection') style_function = lambda x: {'color': 'darkgreen', 'weight': 1, 'fillColor': 'green', 'fillOpacity': 0.05} highlight_function = lambda x: {'color':'yellow', 'weight':2} tooltip = "HUC4 Overlap: {0:s} ({1:s}), Area: {2:.2f}".format(wbd4.iloc[0]['huc4'],wbd4.iloc[0]['name'],GeomHelper.geom_area(basin_huc4_overlap)[0]) wbd4_feature = folium.GeoJson(basin_huc4_overlap.iloc[0].geometry.buffer(-0.001).buffer(0.001),style_function=style_function,highlight_function=highlight_function,tooltip=tooltip) fg_wbd4.add_child(wbd4_feature); if (huc4_identifier not in huc4_list): tooltip = "HUC4: {0:s} ({1:s}), Area: {2:.2f}".format(wbd4.iloc[0]['huc4'],wbd4.iloc[0]['name'],wbd4.iloc[0].areasqkm) wbd4_feature = folium.GeoJson(wbd4.iloc[0].geometry.buffer(-0.001).buffer(0.001),style_function=style_function,highlight_function=highlight_function,tooltip=tooltip) fg_wbd4.add_child(wbd4_feature); huc4_list.append(huc4_identifier) fg_huc12pp.add_to(river_map); fg_basins.add_to(river_map); fg_wbd4.add_to(river_map); fg_wbd6.add_to(river_map); fg_wbd8.add_to(river_map); fg_wbd10.add_to(river_map); fg_wbd12.add_to(river_map); # Add HUC12s that are contained in the drainage basins # * TODO: Search by shape fg_huc12_plus = folium.FeatureGroup(name="Other HUC12s in HUC10",overlay=True,show=False) i = 0 n_segs = len(huc12pp_sites) for area, huc12pp_site in huc12pp_sites.iterrows(): if i >= n_segs - 1: break basin_url = USGS_NLDI_WS+"/comid/{0:s}/basin".format(huc12pp_site.comid) try: basin = gpd.read_file(basin_url,driver='GeoJSON') except: i = i + 1 continue # Get HUC12 watershed boundaries sharing the same HUC10 huc12_plus_url = TNM_WS+"/wbd/MapServer/6/query?where=HUC12%20LIKE%20%27{0:s}%25%27&outFields=NAME%2CHUC12%2CSHAPE_Length&f=geojson".format(huc12pp_site.identifier[:-2]) try: huc12_plus = gpd.read_file(huc12_plus_url,driver='GeoJSON') except: i = i + 1 continue huc12_basin_overlap = gpd.overlay(huc12_plus,basin,how='intersection') if (not huc12_basin_overlap.empty): for k, huc12_in_basin in huc12_basin_overlap.iterrows(): huc12_wbd_url = TNM_WS+"/wbd/MapServer/6/query?where=HUC12%3D%27{0:s}%27&outFields=NAME%2CHUC12%2CSHAPE_Length&f=geojson".format(huc12_in_basin.huc12) huc12_wbd = gpd.read_file(huc12_wbd_url,driver='GeoJSON') huc12_overlap = gpd.overlay(huc12_wbd,basin,how='intersection') if ((not huc12_overlap.empty) and (huc12_overlap.iloc[0].geometry.area > 0.001) and (huc12_in_basin.huc12 not in huc12_list)): huc12_list.append(huc12_in_basin.huc12) # Add HUC12 WBD boundary style_function = lambda x: {'color': 'darkgreen', 'weight': 1, 'fillColor': 'green', 'fillOpacity': 0.05} highlight_function = lambda x: {'color':'yellow', 'weight':2} tooltip = "HUC12: {0:s} ({1:s}), Area: {2:.2f}".format(huc12_wbd.iloc[0]['huc12'],huc12_wbd.iloc[0]['name'],GeomHelper.geom_area(huc12_wbd)[0]) huc12_plus_feature = folium.GeoJson(huc12_wbd.iloc[0].geometry,style_function=style_function,highlight_function=highlight_function,tooltip=tooltip) fg_huc12_plus.add_child(huc12_plus_feature); i = i + 1 fg_huc12_plus.add_to(river_map); # Add HUC12s that are contained in nearby HUC10s (in same HUC8 as the HUC12 Pour Point) and in the associated drainage basin # * TODO: How to exclude more distant HUC10s? # Add tributaries upstream of HUC12 Pour Points fg_utpp = folium.FeatureGroup(name="Tribs upstream of PPs",overlay=True,show=False) for huc12 in huc12_list: wbd12_url = TNM_WS+"/wbd/MapServer/6/query?where=HUC12%3D%27{0:s}%27&f=geojson".format(huc12) try: wbd12 = gpd.read_file(wbd12_url) except: continue distance = int(round(GeomHelper.geom_diagonal(wbd12),0)) # May need to exend for winding streams #distance = 35 tribs = folium.GeoJson(USGS_NLDI_WS+"/huc12pp/{0:s}/navigate/UT?distance={1:d}".format(huc12,distance)) fg_utpp.add_child(tribs); fg_utpp.add_to(river_map); # Add water quality (WQP) properties wqp_property_series = [] for i, wqp_site in wqp_sites.iterrows(): if (IGNORE_WQP_DATES): wqp_properties = pd.read_csv("https://www.waterqualitydata.us/data/Result/search?siteid="+wqp_site.identifier+"&mimeType=csv") else: wqp_properties =
pd.read_csv("https://www.waterqualitydata.us/data/Result/search?siteid="+wqp_site.identifier+"&startDateLo="+BEGIN_DATE+"&startDateHi="+END_DATE+"&mimeType=csv")
pandas.read_csv
import numpy as np import pandas as pd from numpy.random import default_rng #///////////////////// miscellaneous functions starts here def cAngle(i): x=i % 360 return x def weib(x,A,k): #A is the scale and k is the shape factor return (k / A) * (x / A)**(k - 1) * np.exp(-(x / A)**k) #This function show the probabilty of occurence of a specific wind speed. def weib_cumulative(x,A,k): #A is the scale and k is the shape factor return 1-np.exp(-1*(x/A)**k) #This function show the probabilty of occurence of a specific wind speed. #///////////////////// miscellaneous functions ends here class environment: """ Creates the stand-alone environment and returns it with the given unique ID. By default, wind speeds from 0 m/s to 50 m/s with an increment of 0.5 m/s and also 360 degree with 1 degree increment are also added. The temperature of 25 degree Celsius and pressure of 101325 Pa is assumed. See example below: :param uniqueID: [*req*] the given unique ID. :Example: >>> Env = environment("C_Env") >>> #Creates an environment without assigning it to any wind farm. >>> print(Env.info.keys()) dict_keys(['Wind directions', 'Sectors', 'Wind speeds', 'Pressure', 'Temperature', 'Wind probability', 'Scale parameter of wind distribution', 'Shape parameter of wind distribution']) >>> print(Env.info['Wind directions']) #doctest:+ELLIPSIS [0, 1, 2, 3, ...] >>> print(Env.info['Wind speeds']) # doctest:+ELLIPSIS [0.0, 0.5, 1.0, 1.5, 2.0, ...] \\---------------------------------------------------------------------------------------------------------------------------------------------------------- """ created_environments=[] def __init__(self, uniqueID): if uniqueID in environment.created_environments: #Checks if the environment ID is already taken raise Exception ("The environment unique ID [" + str(uniqueID) + "] is already taken.") else: if type(uniqueID) == str and len(uniqueID.split())==1: if uniqueID in globals().keys(): #Checks if the given unique Id is not in conflict with user's already assigned variables. raise Exception ("Another object with the same uniqe ID globally exists. New environment not created.") else: globals()[uniqueID] = self #environment is dynamicall created and referenced with the unique ID to the users assigned variable. environment.created_environments.append(uniqueID) #we append the created environment to the list self.uID=uniqueID else: raise Exception("Unique ID should be a string without spaces.") self.__conditionsDic={} self.__conditionsDic["Wind directions"]=[i for i in range(0,360)] #degrees self.__conditionsDic["Sectors"] = None self.__conditionsDic["Wind speeds"]=[i for i in np.arange(0,30.5,0.5)] #m/s self.__conditionsDic["Pressure"]= 101325 #pascals self.__conditionsDic["Air Density [kg/m^3]"]=1.225 self.__conditionsDic["Temperature"]=25 #celcius self.__conditionsDic["Wind probability"]=[] #how often the wind blows in this sector self.__conditionsDic["Scale parameter of wind distribution"]=[] # the scale parameter of the wind distribution in the particular sector in m/s self.__conditionsDic["Shape parameter of wind distribution"]=[] # the shape parameter of the wind distribution in the particular sector self.windSectors=None @property def info(self): """ Returns all the defined conditions of the environment. :param None: :Example: >>> dantysk=windfarm("DanTysk") >>> env=environment("D_Env") >>> print(env.info.keys()) dict_keys(['Wind directions', 'Sectors', 'Wind speeds', 'Pressure', 'Temperature', 'Wind probability', 'Scale parameter of wind distribution', 'Shape parameter of wind distribution']) >>> print(env.info['Wind directions']) # doctest:+ELLIPSIS [0, 1, 2, 3, ...] >>> print(env.info['Wind speeds']) # doctest:+ELLIPSIS [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, ...] \---------------------------------------------------------------------------------------------------------------------------------------------------------- """ return self.__conditionsDic def windConditions(self,windProbability=[1/12 for i in range(12)], aParams=[7 for i in range(12)], kParams=[2.5 for i in range(12)]): """ Creates and assigns the given wind conditions to the related environment. Returns the result as a data frame. Divides the 360 degrees to given number of sectors. By default it divides to 12 sectors and assigns the 12 standard names for every sector e.g. N_0 starts from 346 degrees and ends at 15 degrees. :param windProbability: [*opt*] the probabiliyt of wind presence in each sector, by default equal to 1/12. :param aParams: [*opt*] the scale factor of the weibull distribution of the wind in the sector, by default equal to 7 m/s . :param kParams: [*opt*] the shape factor of the weibull distribution of the wind int the sector, by default equla to 2.5. :Example: >>> from PyWinda import pywinda as pw >>> Env=pw.environment("C_Env2") \----------------------------------------------------------------------------------------------------------------------------------------------------------- """ #TODO che the example of the windConditions purpose. self.__conditionsDic["Wind probability"]=windProbability self.__conditionsDic["Scale parameter of wind distribution"]=aParams self.__conditionsDic["Shape parameter of wind distribution"]=kParams def makeSectors(self,n=12,sectorNames=["N_0","NNE_30","NEN_60","E_90","ESE_120","SSE_150","S_180","SSW_210","WSW_240","W_270","WNW_300","NNW_330"]):#by default the function will divide the sector in 12 regions """ Creates the given sectors to the related environment. Returns the result as a data frame. Divides the 360 degrees to given number of sectors. By default it divides to 12 sectors and assigns the 12 standard names for every sector e.g. N_0 starts from 346 degrees and ends at 15 degrees. :param n: [*opt*] the number of sectors. :param sectorNames: [*opt*] names of the sectors given by user or default names for n=12. :Example: >>> Env=environment("C_Env2") >>> print(Env.makeSectors()) N_0 NNE_30 NEN_60 E_90 ... WSW_240 W_270 WNW_300 NNW_330 0 346.0 16.0 46.0 76.0 ... 226.0 256.0 286.0 316.0 1 347.0 17.0 47.0 77.0 ... 227.0 257.0 287.0 317.0 2 348.0 18.0 48.0 78.0 ... 228.0 258.0 288.0 318.0 3 349.0 19.0 49.0 79.0 ... 229.0 259.0 289.0 319.0 4 350.0 20.0 50.0 80.0 ... 230.0 260.0 290.0 320.0 5 351.0 21.0 51.0 81.0 ... 231.0 261.0 291.0 321.0 6 352.0 22.0 52.0 82.0 ... 232.0 262.0 292.0 322.0 7 353.0 23.0 53.0 83.0 ... 233.0 263.0 293.0 323.0 8 354.0 24.0 54.0 84.0 ... 234.0 264.0 294.0 324.0 9 355.0 25.0 55.0 85.0 ... 235.0 265.0 295.0 325.0 10 356.0 26.0 56.0 86.0 ... 236.0 266.0 296.0 326.0 11 357.0 27.0 57.0 87.0 ... 237.0 267.0 297.0 327.0 12 358.0 28.0 58.0 88.0 ... 238.0 268.0 298.0 328.0 13 359.0 29.0 59.0 89.0 ... 239.0 269.0 299.0 329.0 14 0.0 30.0 60.0 90.0 ... 240.0 270.0 300.0 330.0 15 1.0 31.0 61.0 91.0 ... 241.0 271.0 301.0 331.0 16 2.0 32.0 62.0 92.0 ... 242.0 272.0 302.0 332.0 17 3.0 33.0 63.0 93.0 ... 243.0 273.0 303.0 333.0 18 4.0 34.0 64.0 94.0 ... 244.0 274.0 304.0 334.0 19 5.0 35.0 65.0 95.0 ... 245.0 275.0 305.0 335.0 20 6.0 36.0 66.0 96.0 ... 246.0 276.0 306.0 336.0 21 7.0 37.0 67.0 97.0 ... 247.0 277.0 307.0 337.0 22 8.0 38.0 68.0 98.0 ... 248.0 278.0 308.0 338.0 23 9.0 39.0 69.0 99.0 ... 249.0 279.0 309.0 339.0 24 10.0 40.0 70.0 100.0 ... 250.0 280.0 310.0 340.0 25 11.0 41.0 71.0 101.0 ... 251.0 281.0 311.0 341.0 26 12.0 42.0 72.0 102.0 ... 252.0 282.0 312.0 342.0 27 13.0 43.0 73.0 103.0 ... 253.0 283.0 313.0 343.0 28 14.0 44.0 74.0 104.0 ... 254.0 284.0 314.0 344.0 29 15.0 45.0 75.0 105.0 ... 255.0 285.0 315.0 345.0 <BLANKLINE> [30 rows x 12 columns] \----------------------------------------------------------------------------------------------------------------------------------------------------------- """ sectorSpan = 360 / n eachS2E=[i for i in np.arange(1 - sectorSpan / 2, 360, sectorSpan)] #this makes a set of starts to end of each sector such that first sector starts from 0+1-sectorSpan / 2 goes to 360 (excluding 360) and the distance between consecutive units is equal to sectorSpan. The +1 makes sure that the sector starts and ends in the correct place. For example sector E_90 with n=12 starts from 90-30+1=61 and ends at 90+30=120 sectorsDic = {} sectorNamesToReturn=sectorNames #this by default, of course user can give his/her own names as well. if n!=12: #After user give n other than 12, user can either give sectorNames or leave it, if left the script makes names automatically by assigning half othe span of the sector as the name of the sector if len(sectorNames)==12: sectorNamesToReturn = [str(i) for i in np.arange(0,360,sectorSpan)] elif len(sectorNames)!=12: sectorNamesToReturn=sectorNames if n == len(sectorNamesToReturn) and type(n) == int and n > 0: #this makes sure n is an integer and that the number of given sectors is equal to n if defined by user. for i in range(n): sectorsDic[sectorNamesToReturn[i]]=[cAngle(temp) for temp in np.arange(eachS2E[i],eachS2E[i+1],1)] self.windSectors=sectorsDic self.__conditionsDic["Sectors"]=sectorsDic return pd.DataFrame(sectorsDic) else: raise Exception("Number of sectors and proposed number of names are not equal.") def probabilityDistribution(self,aParams=[],kParams=[],probabs=[],avgWindSpeeds=[]): if len(aParams)|len(kParams)|len(probabs)|len(avgWindSpeeds)!=len(self.windSectors): raise Exception("Number of given parameters and existing number of sectors are not equal") else: pdDic={} SectorNames=self.__conditionsDic["Sectors"].keys() for index,i in enumerate(SectorNames): pdDic[i]=[aParams[index],kParams[index],probabs[index],avgWindSpeeds[index]] self.__conditionsDic["probabilityDistribution"]=pdDic print(pdDic) # self.__conditionsDic["ProbabilityDistributions"]=pdDic # print(len(self.windSectors)) def test(self): return self.uID class windfarm: """ Creates wind farm object with the given unique ID. Pywinda will also create an internal shallow copy of the same windfarm object. :param uniqueID: [*req*] Unique Id of the wind farm as a string. :Example: >>> from PyWinda import pywinda as pw >>> curslack = pw.windfarm("Curslack_uID") >>> print(pw.Curslack_uID==curslack) True \----------------------------------------------------------------------------------------------------------------------------------------------------------- """ created_windfarms=[] def __init__(self,uniqueID,lifetime=25*365*24*3600): if uniqueID in windfarm.created_windfarms: #Checks if the wind farm ID is already taken raise Exception ("The wind farm unique ID [" + str(uniqueID) + "] is already taken.") else: if type(uniqueID) == str and len(uniqueID.split())==1: if uniqueID in globals().keys(): #Checks if the given unique Id is not in conflict with user's already assigned variables. raise Exception ("Another object with the same uniqe ID globally exists. New wind farm not created.") else: globals()[uniqueID] = self #wind farm is dynamicall created and referenced with the unique ID to the users assigned variable. windfarm.created_windfarms.append(uniqueID) #we append the created wind farm to the list self.uID=uniqueID else: raise Exception("Unique ID should be a string without spaces.") self.createdSRTs=[] #This is the store dictionary. Stores the wind turbine reference names created in a particular wind farm self.createdMRTs=[] self.farmEnvironment=None #A wind farm will have only one environment self.__numOfSRT=len(self.createdSRTs) self.__numOfMRT=len(self.createdMRTs) self.__allDistances=pd.DataFrame() self.lifetime=lifetime #by default 25 years in seconds @property #This helps to protect the info from direct changes by user def info(self): """ Returns a data frame containing all the information about the wind farm. :param None: :Example: >>> from PyWinda import pywinda as pw >>> curslack=pw.windfarm("uID_Curslack") >>> WT1=curslack.addTurbine('uID_WT1',turbineType='SRT',hubHeigt=120, x_horizontal=100,y_vertical=100) >>> WT2=curslack.addTurbine('uID_WT2',turbineType='SRT',hubHeigt=120, x_horizontal=150,y_vertical=150) >>> WT3=curslack.addTurbine('uID_MWT3',turbineType='MRT',hubHeigt=200, x_horizontal=300,y_vertical=300) >>> print(curslack.info) Property Value 0 Unique ID uID_Curslack 1 Created SRTs [uID_WT1, uID_WT2] 2 Created MRTs [uID_MWT3] 3 Number of SRTs 2 4 Number of MRTs 1 \----------------------------------------------------------------------------------------------------------------------------------------------------------- """ statistics={"Property":["Unique ID","Created SRTs", "Created MRTs","Number of SRTs","Number of MRTs"], "Value":[self.uID,self.createdSRTs,self.createdMRTs,self.__numOfSRT,self.__numOfMRT]} return
pd.DataFrame(statistics)
pandas.DataFrame
""" Two types of solvers/optimizers: 1. The first type take in an augmented data set returned by data_augment, and try to minimize classification error over the following hypothesis class: { h(X) = 1[ f(x) >= x['theta']] : f in F} over some real-valued class F. Input: augmented data set, (X, Y, W) Output: a model that can predict label Y These solvers are used with exp_grad 2. The second type simply solves the regression problem on a data set (x, a, y) These solvers serve as our unconstrained benchmark methods. """ import functools import numpy as np import pandas as pd import random import data_parser as parser import data_augment as augment from gurobipy import * from sklearn import linear_model from sklearn.metrics import mean_squared_error, mean_absolute_error, log_loss from sklearn.linear_model import LogisticRegression, LogisticRegressionCV from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor, GradientBoostingRegressor, GradientBoostingClassifier import xgboost as xgb import time _LOGISTIC_C = 5 # Constant for rescaled logisitic loss; might have to # change for data_augment # from sklearn.model_selection import train_test_split """ Oracles for fair regression algorithm """ class SVM_LP_Learner: """ Gurobi based cost-sensitive classification oracle Assume there is a 'theta' field in the X data frame Oracle=CS; Class=linear """ def __init__(self, off_set=0, norm_bdd=1): self.weights = None self.norm_bdd = norm_bdd # initialize the norm bound to be 2 self.off_set = off_set self.name = 'SVM_LP' def fit(self, X, Y, W): w = SVM_Gurobi(X, Y, W, self.norm_bdd, self.off_set) self.weights = pd.Series(w, index=list(X.drop(['theta'], 1))) def predict(self, X): y_values = (X.drop(['theta'], axis=1)).dot(np.array(self.weights)) pred = 1*(y_values - X['theta'] >= 0) # w * x - theta return pred class LeastSquaresLearner: """ Basic Least regression square based oracle Oracle=LS; class=linear """ def __init__(self, Theta): self.weights = None self.Theta = Theta self.name = "OLS" def fit(self, X, Y, W): matX, vecY = approximate_data(X, Y, W, self.Theta) self.lsqinfo = np.linalg.lstsq(matX, vecY, rcond=None) self.weights = pd.Series(self.lsqinfo[0], index=list(matX)) def predict(self, X): y_values = (X.drop(['theta'], axis=1)).dot(np.array(self.weights)) pred = 1*(y_values - X['theta'] >= 0) # w * x - theta return pred class LogisticRegressionLearner: """ Basic Logistic regression baed oracle Oralce=LR; Class=linear """ def __init__(self, Theta, C=10000, regr=None): self.Theta = Theta self.name = "LR" if regr is None: self.regr = LogisticRegression(random_state=0, C=C, max_iter=1200, fit_intercept=False, solver='lbfgs') else: self.regr = regr def fit(self, X, Y, W): matX, vecY, vecW = approx_data_logistic(X, Y, W, self.Theta) self.regr.fit(matX, vecY, sample_weight=vecW) pred_prob = self.regr.predict_proba(matX) def predict(self, X): pred_prob = self.regr.predict_proba(X.drop(['theta'], axis=1)) prob_values = pd.DataFrame(pred_prob)[1] y_values = (np.log(1 / prob_values - 1) / (- _LOGISTIC_C) + 1) / 2 # y_values = pd.DataFrame(pred_prob)[1] pred = 1*(y_values - X['theta'] >= 0) # w * x - theta return pred class RF_Classifier_Learner: """ Basic RF classifier based CSC Oracle=LR; Class=Tree ensemble """ def __init__(self, Theta): self.Theta = Theta self.name = "RF Classifier" self.clf = RandomForestClassifier(max_depth=4, random_state=0, n_estimators=20) def fit(self, X, Y, W): matX, vecY, vecW = approx_data_logistic(X, Y, W, self.Theta) self.clf.fit(matX, vecY, sample_weight=vecW) def predict(self, X): pred_prob = self.clf.predict_proba(X.drop(['theta'], axis=1)) y_values = pd.DataFrame(pred_prob)[1] pred = 1*(y_values - X['theta'] >= 0) return pred class XGB_Classifier_Learner: """ Basic GB classifier based oracle Oracle=LR; Class=Tree ensemble """ def __init__(self, Theta, clf=None): self.Theta = Theta self.name = "XGB Classifier" param = {'max_depth' : 3, 'silent' : 1, 'objective' : 'binary:logistic', 'n_estimators' : 150, 'gamma' : 2} if clf is None: self.clf = xgb.XGBClassifier(**param) else: self.clf = clf def fit(self, X, Y, W): matX, vecY, vecW = approx_data_logistic(X, Y, W, self.Theta) self.clf.fit(matX, vecY, sample_weight=vecW) def predict(self, X): pred_prob = self.clf.predict_proba(X.drop(['theta'], axis=1)) prob_values = pd.DataFrame(pred_prob)[1] y_values = (np.log(1 / prob_values - 1) / (- _LOGISTIC_C) + 1) / 2 pred = 1*(y_values - X['theta'] >= 0) return pred class RF_Regression_Learner: """ Basic random forest based oracle Oracle=LS; Class=Tree ensemble """ def __init__(self, Theta): self.Theta = Theta self.name = "RF Regression" self.regr = RandomForestRegressor(max_depth=4, random_state=0, n_estimators=200) def fit(self, X, Y, W): matX, vecY = approximate_data(X, Y, W, self.Theta) self.regr.fit(matX, vecY) def predict(self, X): y_values = self.regr.predict(X.drop(['theta'], axis=1)) pred = 1*(y_values - X['theta'] >= 0) # w * x - theta return pred class XGB_Regression_Learner: """ Gradient boosting based oracle Oracle=LS; Class=Tree Ensemble """ def __init__(self, Theta): self.Theta = Theta self.name = "XGB Regression" params = {'max_depth': 4, 'silent': 1, 'objective': 'reg:linear', 'n_estimators': 200, 'reg_lambda' : 1, 'gamma':1} self.regr = xgb.XGBRegressor(**params) def fit(self, X, Y, W): matX, vecY = approximate_data(X, Y, W, self.Theta) self.regr.fit(matX, vecY) def predict(self, X): y_values = self.regr.predict(X.drop(['theta'], axis=1)) pred = 1*(y_values - X['theta'] >= 0) # w * x - theta return pred # HELPER FUNCTIONS HERE FOR BestH Oracles def SVM_Gurobi(X, Y, W, norm_bdd, off_set): """ Solving SVM using Gurobi solver X: design matrix with the last two columns being 'theta' A: protected feature impose ell_infty constraint over the coefficients """ d = len(X.columns) - 1 # number of predictive features (excluding theta) N = X.shape[0] # number of augmented examples m = Model() m.setParam('OutputFlag', 0) Y_aug = Y.map({1: 1, 0: -1}) # Add a coefficient variable per feature w = {} for j in range(d): w[j] = m.addVar(lb=-norm_bdd, ub=norm_bdd, vtype=GRB.CONTINUOUS, name="w%d" % j) w = pd.Series(w) # Add a threshold value per augmented example t = {} # threshold values for i in range(N): t[i] = m.addVar(lb=0, vtype=GRB.CONTINUOUS, name="t%d" % i) t = pd.Series(t) m.update() for i in range(N): xi = np.array(X.drop(['theta'], 1).iloc[i]) yi = Y_aug.iloc[i] theta_i = X['theta'][i] # Hinge Loss Constraint m.addConstr(t[i] >= off_set - (w.dot(xi) - theta_i) * yi) m.setObjective(quicksum(t[i] * W.iloc[i] for i in range(N))) m.optimize() weights = np.array([w[i].X for i in range(d)]) return np.array(weights) def approximate_data(X, Y, W, Theta): """ Given the augmented data (X, Y, W), recover for each example the prediction in Theta + alpha/2 that minimizes the cost; Thus we reduce the size back to the same orginal size """ n = int(len(X) / len(Theta)) # size of the dataset alpha = (Theta[1] - Theta[0])/2 x = X.iloc[:n, :].drop(['theta'], 1) pred_vec = Theta + alpha # the vector of possible preds minimizer = {} pred_vec = {} # mapping theta to pred vector for pred in (Theta + alpha): pred_vec[pred] = (1 * (pred >= pd.Series(Theta))) for i in range(n): index_set = [i + j * n for j in range(len(Theta))] # the set of rows for i-th example W_i = W.iloc[index_set] Y_i = Y.iloc[index_set] Y_i.index = range(len(Y_i)) W_i.index = range(len(Y_i)) cost_i = {} for pred in (Theta + alpha): cost_i[pred] = abs(Y_i - pred_vec[pred]).dot(W_i) minimizer[i] = min(cost_i, key=cost_i.get) return x, pd.Series(minimizer) def approx_data_logistic(X, Y, W, Theta): """ Given the augmented data (X, Y, W), recover for each example the prediction in Theta + alpha/2 that minimizes the cost; Then create a pair of weighted example so that the prob pred will minimize the log loss. """ n = int(len(X) / len(Theta)) # size of the dataset alpha = (Theta[1] - Theta[0])/2 x = X.iloc[:n, :].drop(['theta'], 1) pred_vec = {} # mapping theta to pred vector Theta_mid = [0] + list(Theta + alpha) + [1] Theta_mid = list(filter(lambda x: x >= 0, Theta_mid)) Theta_mid = list(filter(lambda x: x <= 1, Theta_mid)) for pred in Theta_mid: pred_vec[pred] = (1 * (pred >= pd.Series(Theta))) minimizer = {} for i in range(n): index_set = [i + j * n for j in range(len(Theta))] # the set of rows for i-th example W_i = W.iloc[index_set] Y_i = Y.iloc[index_set] Y_i.index = range(len(Y_i)) W_i.index = range(len(Y_i)) cost_i = {} for pred in Theta_mid: # enumerate different possible # predictions cost_i[pred] = abs(Y_i - pred_vec[pred]).dot(W_i) minimizer[i] = min(cost_i, key=cost_i.get) matX =
pd.concat([x]*2, ignore_index=True)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Nov 15 14:09:59 2017 @author: SaintlyVi """ import pandas as pd import numpy as np from support import writeLog def uncertaintyStats(submodel): """ Creates a dict with statistics for observed hourly profiles for a given year. Use evaluation.evalhelpers.observedHourlyProfiles() to generate the input dataframe. """ allstats = list() for c in submodel['class'].unique(): stats = submodel[submodel['class']==c].describe() stats['customer_class'] = c stats.reset_index(inplace=True) stats.set_index(['customer_class','index'], inplace=True) allstats.append(stats) df = pd.concat(allstats) return df[['AnswerID_count','valid_obs_ratio']] def dataIntegrity(submodels, min_answerid, min_obsratio): """ This function returns the slice of submodels that meet the specified minimum uncertainty requirements. Submodels must form part of the same experiment (eg demand summary and hourly profiles). """ if isinstance(submodels, list): models = submodels else: models = [submodels] validmodels = pd.DataFrame(columns = ['submodel_name','valid_data','uncertainty_index', 'valid_unit_count', 'unit']) for m in models: name = m.name valid_data = m[(m.AnswerID_count>=min_answerid) & (m.valid_obs_ratio>=min_obsratio)] uix = len(valid_data) / len(m) try: valid_unit_count = valid_data['valid_hours'].sum() unit = 'total_valid_hours' except: valid_unit_count = valid_data['AnswerID_count'].sum() unit = 'valid_AnswerID_count' validmodels = validmodels.append({'submodel_name':name, 'valid_data':valid_data, 'uncertainty_index':uix, 'valid_unit_count':valid_unit_count, 'unit':unit}, ignore_index=True) validmodels.set_index('submodel_name', drop=True, inplace=True) return validmodels def modelSimilarity(ex_submodel, ex_ts, valid_new_submodel, new_ts, submod_type): """ This function calcualtes the evaluation measure for the run. ex_submodel = (DataFrame) either existing/expert demand_summary or hourly_profiles submodel valid_new_submodel = (DataFrame) output from dataIntegrity function -> only want to compare valid data submod_type = (str) one of [ds, hp] -> ds=demand_summary, hp=hourly_profiles """ if submod_type == 'ds': index_cols = ['class','YearsElectrified'] elif submod_type == 'hp': index_cols = ['class','YearsElectrified','month','daytype','hour'] else: return(print('Valid submod_type is one of [ds, hp] -> ds=demand_summary, hp=hourly_profiles.')) merged_sub = ex_submodel.merge(valid_new_submodel, how='left', on=index_cols) simvec = merged_sub[new_ts] - merged_sub[ex_ts] simvec.dropna(inplace=True) simveccount = len(simvec) eucliddist = np.sqrt(sum(simvec**2)) return eucliddist, simveccount, merged_sub def logCalibration(bm_model, year, exp_model, min_answerid = 2, min_obsratio = 0.85): """ This function logs the evaluation results of the run. ex_model = [demand_summary, hourly_profiles, ds_val_col_name, hp_val_col_name] """ #Generate data model ods = pd.read_csv('data/experimental_model/'+exp_model+'/demand_summary_'+year+'.csv') ohp =
pd.read_csv('data/experimental_model/'+exp_model+'/hourly_profiles_'+year+'.csv')
pandas.read_csv
# -*- coding: utf-8 -*- """ @author: <NAME> - https://www.linkedin.com/in/adamrvfisher/ """ #This is a summary statistic + database query tool #pandas_datareader is deprecated, use YahooGrabber #Import modules import numpy as np import pandas.io.data as web import pandas as pd #Define function def SDSD(s): #Request data s =
web.get_data_yahoo(s, start='1/1/1900', end='01/01/2018')
pandas.io.data.get_data_yahoo
import requests import pandas as pd import geopandas as gpd import glob import re import numpy as np import os from requests import get from requests.exceptions import RequestException from contextlib import closing from bs4 import BeautifulSoup from multiprocessing import Pool import sqlite3 import schedule import time import datetime import pytz # Functions def simple_get(url): """ Attempts to get the content at `url` by making an HTTP GET request. If the content-type of response is some kind of HTML/XML, return the text content, otherwise return None. """ try: with closing(get(url, stream=True)) as resp: if is_good_response(resp): return resp.content else: return None except RequestException as e: log_error('Error during requests to {0} : {1}'.format(url, str(e))) return None def is_good_response(resp): """ Returns True if the response seems to be HTML, False otherwise. """ content_type = resp.headers['Content-Type'].lower() return (resp.status_code == 200 and content_type is not None and content_type.find('html') > -1) def log_error(e): """ It is always a good idea to log errors. This function just prints them, but you can make it do anything. """ print(e) def function_requests(nom_fichier): print(nom_fichier) CEHQ_URL = "https://www.cehq.gouv.qc.ca/depot/historique_donnees/fichier/" rq = requests.get(CEHQ_URL + os.path.basename(nom_fichier[0].strip()) + '_Q.txt') # create HTTP response object if rq.status_code == 200: with open(nom_fichier[0].strip() + '_Q.txt', 'wb') as f: f.write(rq.content) rn = requests.get(CEHQ_URL + os.path.basename(nom_fichier[0].strip()) + '_N.txt') # create HTTP response object if rn.status_code == 200: with open(nom_fichier[0].strip() + '_N.txt', 'wb') as f: f.write(rn.content) def CEHQ(f, DATA_PATH, DB_PATH, shp_path): print('##########################################################') print('[' + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + '] : NEW JOB STARTED: CEHQ update') print('##########################################################') ORIGINAL_PATH = 'https://www.cehq.gouv.qc.ca/hydrometrie/historique_donnees/ListeStation.asp?regionhydro=$&Tri=Non' nb_region = ["%02d" % n for n in range(0, 13)] regions = [] print('[' + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + '] Getting all available stations...') for reg in nb_region: path = ORIGINAL_PATH.replace('$', reg) raw_html = simple_get(path) html = BeautifulSoup(raw_html, 'html.parser') for li in (html.select('area')): if li['href'].find('NoStation')>0: a = li['title'].split('-',1) a[0] = a[0].strip() a[0] = DATA_PATH + '/' + a[0] regions.append(a) print('[' + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + '] '+ str(len(regions)) + ' available stations...') # URL Request # Si parallèle # with Pool(8) as p: # p.map(f, regions) # Sinon : # for nom_fichier in regions: # f(nom_fichier, DATA_PATH) print('[' + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + '] Getting all available stations...done') print('[' + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + '] Parsing all available stations') # Parsing listeStations = glob.glob(DATA_PATH + "/*.txt") # Validate or correct file def del_if_2_cols(lines): if (len(lines[0].split()))!=4: lines.pop(0) del_if_2_cols(lines) return lines if os.name == 'nt': encoding = "ISO-8859-1" else: encoding = "ISO-8859-1" for file in listeStations: with open(file, 'r', encoding=encoding) as f: head = f.readlines()[0:21] f.close() with open(file, 'r', encoding=encoding) as f: lines = f.readlines()[22:] f.close() if lines and (len(lines[0].split())) != 4: print(os.path.splitext(os.path.basename(file))[0]) del_if_2_cols(lines) text_fin = head + lines with open(file, "w", encoding=encoding)as f: f.write(''.join(map(str, text_fin))) f.close() list_coords = [] list_sup = [] list_stations = [] list_type = [] list_id = [] liste_nom = [] liste_regime = [] liste_regions = np.array([os.path.basename(file) for file in np.array(regions)[:, 0]]) # Ne retient que les stations pour lesquels un fichier de forme est disponible. # Plus contraignant, mais plus propre pour conserver une base de données robuste basename_listeStations = [ os.path.basename(x).split('.')[0].split("_")[0] for x in listeStations] print(basename_listeStations) print(len(basename_listeStations)) lst_shp = sorted(glob.glob(shp_path + '/*/*.shp')) basename_lst_shp = [os.path.basename(x).split('.')[0].split("_")[0] for x in lst_shp] basename_lst_shp = ([*{*basename_lst_shp}]) print(lst_shp) print(len(basename_lst_shp)) available_stations = sorted(list(set(basename_listeStations).intersection(basename_lst_shp))) print(available_stations) print(len(available_stations)) listOfIndices_unique = [basename_listeStations.index(key) for key in available_stations] print(listOfIndices_unique) listOfIndices_unique = [basename_listeStations.index(key) for key in available_stations] print(listOfIndices_unique) print(len(listOfIndices_unique)) listOfIndices_not_unique = [i for y in available_stations for i, x in enumerate(basename_listeStations) if x == y] print(listOfIndices_not_unique) print(len(listOfIndices_not_unique)) for file in [listeStations[i] for i in listOfIndices_not_unique]: with open(file, encoding=encoding) as f: lines = f.readlines() type_var = os.path.basename(file).replace('.', '_').split('_')[1] if type_var == 'Q': list_type.append('Debit') else: list_type.append('Niveau') stations = lines[2] itemindex = np.where(liste_regions == stations.split()[1]) nom_long = regions[itemindex[0][0]][-1].strip() liste_nom.append(nom_long) type_var = os.path.basename(file).replace('.', '_').split('_')[1] liste_regime.append(lines[3][15:].split()[-1]) list_stations.append(stations.split()[1]) list_id.append(stations.split()[1] + '_' + type_var) superficie = float(lines[3][15:].split()[0]) coords = lines[4][22:-2].split() list_sup.append(superficie) if len(coords) < 5: coords = [x for x in coords if x] list_coords.append([float(coords[0]), float(coords[2])]) elif len(coords) >= 5: coords = [re.sub(r'[^-\d]', '', coord) for coord in coords] coords = [x for x in coords if x] list_coords.append([float(coords[0]) + float(coords[1]) / 60 + float(coords[2]) / 3600, float(coords[3]) - float(coords[4]) / 60 - float(coords[5]) / 3600]) else: print(file) print('[' + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + '] Parsing all available stations...done') print('[' + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + '] Making dataframes...') df_sup1 = pd.DataFrame(np.array([list_id, list_stations, liste_nom, list_type, liste_regime,list_coords, list_sup]).T, columns=['STATION_ID', 'NUMERO_STATION', 'NOM_STATION', 'TYPE_SERIE', 'REGIME', 'COORDS', 'SUPERFICIE']) # Importation de tous les fichiers .txt vers une liste de dataframe fields = ['DATE','VALUE'] dict_df = {os.path.splitext(os.path.basename(station))[0] : pd.read_csv(station, skiprows=22,delim_whitespace=True, usecols=[1, 2], names=fields, header=None, encoding='latin1').fillna(np.nan) for station in [listeStations[i] for i in listOfIndices_not_unique]} key_to_delete = [] for key, value in dict_df.items(): value['VALUE'] = value['VALUE'].map(lambda x: float(str(x).lstrip('+-').rstrip('aAbBcC'))) value = value.set_index('DATE') value.index = pd.to_datetime(value.index) value.index = value.index.tz_localize("Etc/GMT+5", ambiguous='infer', nonexistent='shift_forward') value.index = value.index.tz_convert("America/Montreal") value['STATION_ID'] = key dict_df[key] = value if len(value['VALUE'].dropna()) > 0: debut = value['VALUE'].dropna().index[0] fin = value['VALUE'].dropna().index[-1] df_sup1.loc[df_sup1.index[df_sup1['STATION_ID'] == key], 'DATE_DEBUT'] = debut df_sup1.loc[df_sup1.index[df_sup1['STATION_ID'] == key], 'DATE_FIN'] = fin else: df_sup1.drop(df_sup1.index[df_sup1['STATION_ID'] == key], inplace=True) key_to_delete.append(key) print(key_to_delete) for k in key_to_delete: dict_df.pop(k, None) df = pd.concat(dict_df.values()) df.reset_index(level=0, inplace=True) # Index dataframe df_sup1 = df_sup1.sort_values(by=['NUMERO_STATION']).reset_index().drop(['index'], axis=1) df_sup1['LATITUDE'], df_sup1['LONGITUDE'] = df_sup1['COORDS'].map(lambda x: ':'.join(list(map(str, x)))).str.split(':', 1).str df_sup1 = df_sup1.drop('COORDS', axis=1) meta_sta_hydro = df_sup1.drop(columns=['STATION_ID','TYPE_SERIE', 'DATE_DEBUT', 'DATE_FIN']) meta_sta_hydro = meta_sta_hydro.drop_duplicates() meta_sta_hydro.insert(loc=2, column='PROVINCE', value='QC') meta_sta_hydro.insert(loc=0, column='ID_POINT', value=range(1000, 1000 + meta_sta_hydro.shape[0], 1)) gdf_json = [gpd.read_file(shp).to_json() for shp in [shp_path + '/' + s + '/' + s + '.shp' for s in available_stations]] meta_sta_hydro.insert(loc=8, column='GEOM', value=gdf_json) meta_sta_hydro.insert(loc=3, column='NOM_EQUIV', value=np.nan) meta_ts = df_sup1.drop(columns = ['NOM_STATION','REGIME','SUPERFICIE','LATITUDE','LONGITUDE']) meta_ts.insert(loc=3, column='PAS_DE_TEMPS', value='1_J') meta_ts.insert(loc=4, column='AGGREGATION', value='moy') meta_ts.insert(loc=5, column='UNITE', value='m3/s') meta_ts.insert(loc=8, column='SOURCE', value='CEHQ') meta_ts = pd.merge(meta_ts, meta_sta_hydro[['ID_POINT', 'NUMERO_STATION']], left_on='NUMERO_STATION', right_on='NUMERO_STATION', how='left').drop(columns=['NUMERO_STATION']) cols = meta_ts.columns.tolist() cols = cols[-1:] + cols[:-1] meta_ts = meta_ts[cols] meta_ts.insert(loc=0, column='ID_SERIE', value=range(1000, 1000 + meta_ts.shape[0], 1)) df = pd.merge(df, meta_ts[['ID_SERIE', 'STATION_ID']], left_on='STATION_ID', right_on='STATION_ID', how='left').drop(columns=['STATION_ID']) cols = df.columns.tolist() cols = cols[-1:] + cols[:-1] df = df[cols] meta_ts = meta_ts.drop(columns=['STATION_ID']) meta_ts['DATE_DEBUT'] =
pd.to_datetime(meta_ts['DATE_DEBUT'])
pandas.to_datetime
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49:
pd.Timestamp("2012-06-20 00:00:00")
pandas.Timestamp
import sys import pandas as pd import numpy as np from pandas_profiling import ProfileReport def test_example(get_data_file, test_output_dir): file_name = get_data_file( "meteorites.csv", "https://data.nasa.gov/api/views/gh4g-9sfh/rows.csv?accessType=DOWNLOAD", ) df =
pd.read_csv(file_name)
pandas.read_csv
import collections import json import os from datetime import time import random from tqdm import tqdm from main import cvtCsvDataframe import pickle import numpy as np import pandas as pd import random import networkx as nx import time from main import FPGrowth from shopping import Shopping, Cell import main # QoL for display pd.set_option('display.max_columns', 30) def encodeData(): df = pd.read_csv('products.txt', delimiter="\t") dataHere = df['Nome'].str.strip() indexes = [x for x in range(0,len(dataHere))] df['ID'] = indexes #print(data.to_numpy()) return df products = encodeData() ''' It is suppose to simulate N amount of shopping trips given test wishlists and staminas. 1 - Create a shopping with the given configuration 2 - Generate N random wishlists and their stamina 3 - Simulate each one and save the results 4 - Analyse the supermarket profit ''' class SoS: def __init__(self, configuration, staminaDistr,explanations): self.shoppingClass = Shopping([23,21],configuration) #self.shoppingClass.changeShoppingConfig(configuration) self.shopping = self.shoppingClass.shopping self.staminaDistr = staminaDistr self.explanations = explanations self.auxNeighbors = self.getAuxNeighbors() self.auxNeighborsPrimary = self.getAuxNeighborsPrimary() data, explanations = cvtCsvDataframe(pd.read_csv("data.csv"), pd.read_csv("explanations.csv")) mergedReceiptExplanations = pd.merge(data, explanations, on='receiptID', how='outer') self.boughtAndWishlist = mergedReceiptExplanations[['PRODUCTS', 'WISHLIST']].to_numpy() def generateCustomers(self, samples): ''' :return: Returns a sample of random customers with stamina and wishlist ''' customers = [] wishlists = list(self.explanations['WISHLIST'].to_numpy()) randomWishlists = random.sample(wishlists,samples) staminas = self.staminaDistr.sample(samples) for i, j in zip(randomWishlists,staminas): customers.append((i,int(j))) return customers def findNeighbors(self, currentCell, typeSearch): ''' :param currentCell: Current cell to search :param typeSearch: Type of search 1 - Halls 2- Shelves :return: Return the neighbors ''' neighbors = [] try: #If there are neighbors in the top if currentCell[0] > 0: #Get the top neighbor neighbors.append(self.shopping[currentCell[0] - 1][currentCell[1]].id) #If there are neighbors on the left if currentCell[1] > 0: neighbors.append(self.shopping[currentCell[0]][currentCell[1] - 1].id) #If there are neighbors on the right if currentCell[1] < self.shopping.shape[1]: neighbors.append(self.shopping[currentCell[0]][currentCell[1] + 1].id) #If there are neighbors on the bottom if currentCell[0] < self.shopping.shape[0]: neighbors.append(self.shopping[currentCell[0] + 1][currentCell[1]].id) except: pass aux = [] if typeSearch == 1: notToAdd = [1,461,483,23] for i in neighbors: if i not in self.shoppingClass.config and i not in notToAdd: aux.append(i) else: notToAdd = [1, 461, 483, 23] for i in neighbors: if i in self.shoppingClass.config and i not in notToAdd: aux.append(i) return aux def findClosestProduct(self, item): ''' :param item: Receives an item to search for :return: Returns the closest product path there is ''' size = self.shopping.shape allPathsToItem = [] for j in range(size[1]): for i in range(size[0]): if self.shopping[i][j].product == item: pathsToThisCell = self.auxNeighborsPrimary[f"[{i},{j}]"] for s in pathsToThisCell: allPathsToItem.append(s) pathsLenght = [] paths = [] for possiblePath in allPathsToItem: paths.append(nx.dijkstra_path(self.shoppingClass.graphShopping, self.shoppingClass.entrance, possiblePath)) pathsLenght.append(len(nx.dijkstra_path(self.shoppingClass.graphShopping, self.shoppingClass.entrance, possiblePath))) #Return the minimium path return paths[np.argmin(pathsLenght)] def getAuxNeighborsPrimary(self): aux = {} size = self.shopping.shape for j in range(size[1]): for i in range(size[0]): aux[f"[{i},{j}]"] = self.findNeighbors([i, j], 1) return aux def getAuxNeighbors(self): aux = {} size = self.shopping.shape for j in range(size[1]): for i in range(size[0]): aux[f"[{i},{j}]"] = self.findNeighbors([i, j], 2) return aux def getCellProducts(self, cell): size = self.shopping.shape for j in range(size[1]): for i in range(size[0]): if self.shopping[i][j].id == cell: cells = self.auxNeighbors[f"[{i},{j}]"] products = [] for c in cells: products.append(self.shoppingClass.productsAux[c]) return products def getProbabilityOfPicking(self, product): #Check if the file already exists if os.path.exists("probabilityBuy.p"): probToBuy = pickle.load(open("probabilityBuy.p","rb")) #Otherwise write it else: # organize_data() # Read the csv file and convert it to a well formatted dataframe aux = {} #For each receipt for p in tqdm(self.boughtAndWishlist): #go through the products bought for i in p[0]: if i not in list(aux.keys()): aux[i] = {'NotIn': 0, 'Counter':0} #Increase counter aux[i]['Counter'] += 1 #If the product bought is not in the wishlist if i not in p[1]: #Increase counter of times that the product was bought and was not in the wishlist aux[i]['NotIn'] += 1 probToBuy = {} for k in aux: probToBuy[k] = aux[k]['NotIn'] / aux[k]['Counter'] pickle.dump(probToBuy,open("probabilityBuy.p","wb")) #Reutrn the respective probability return probToBuy[product] def simulateCustomers(self,customers): ''' :param customers: Receives a list of customers :return: Returns the simulation results ''' sales = [] #For each customer for customer in tqdm(customers): currentWishlist = customer[0] currentWishlist.reverse() currentStamina = customer[1] productsBought = [] #print(f"Customer wishlist: {currentWishlist}") #While the customer still has products the wants and still has stamina keep the simulation while len(currentWishlist) > 0 and currentStamina > 0: item = currentWishlist[0] #print(f"Looking for {products.loc[products['ID'] == item, 'Nome'].iloc[0]}") closest = self.findClosestProduct(item) #print(f"Found {products.loc[products['ID'] == item, 'Nome'].iloc[0]} on cell {closest[-1]}") for cell in range(len(closest)): #print(f"I am on cell {closest[cell]}") prodcutsCloseToCell = self.getCellProducts(closest[cell]) for prod in prodcutsCloseToCell: #If the product is in the wishlist then buy it if prod in currentWishlist: #print(f"Found {products.loc[products['ID'] == prod, 'Nome'].iloc[0]} which was in my wishlist, so I bought it.") #Remove it from the wishlist currentWishlist.remove(prod) productsBought.append(prod) #Otherwise calculate the probability of buying it else: #Probability of this product being picked without being in the wishlist prob = self.getProbabilityOfPicking(prod) #Random probability randomProb = random.uniform(0,1) #If it is bought if randomProb <= prob: productsBought.append(prod) #print(f"Felt like buying {products.loc[products['ID'] == prod, 'Nome'].iloc[0]}, so I bought it.") currentStamina -= 1 #print(f"Current stamina : {currentStamina}") #Scenarios that the person leaves the shopping if currentStamina <= 0: #print("I got tired!") break elif len(currentWishlist) <= 0: #print("Bought everything!") break sales.append(productsBought) return sales def evaluateShoppingCost(self, sales): ''' :param sales: Receives a list of sales from customers :return: Return the calcualte profit for those sales ''' totalProfit = 0 for sale in tqdm(sales): for product in sale: totalProfit += (products.loc[products['ID'] == product, 'Preço'].iloc[0] / products.loc[products['ID'] == product, '<NAME>'].iloc[0]) return totalProfit def generateSimulator(config): #QoL for display pd.set_option('display.max_columns', 30) data, explanations = main.cvtCsvDataframe(pd.read_csv("data.csv"), pd.read_csv("explanations.csv")) mergedReceiptExplanations = pd.merge(data, explanations, on='receiptID', how='outer') simulator = SoS(config,main.obtainStaminaDistribution(mergedReceiptExplanations['DISTANCE'].to_numpy()), explanations) return simulator def orderProductsPerImportanceAndProfit(shop): #Order products ordered = products.sort_values(by=['<NAME>'], ascending=True) ordered = ordered['ID'].to_numpy() aux = [] for p in ordered: for _ in range(products.loc[products['ID'] == p,'Total Prateleiras'].iloc[0]): aux.append(p) size = [23,21] ranksShelves = {} #Order importance cells for j in range(size[1]): for i in range(size[0]): ranksShelves[shop.shopping[i][j].id] = shop.shopping[i][j].rank ranksShelves = dict(sorted(ranksShelves.items(), key=lambda item: item[1])) indice = 0 for i in ranksShelves.keys(): if i in shop.shoppingClass.config: ranksShelves[i] = int(aux[indice]) indice += 1 with open("profitImportance.json","w") as f: json.dump(ranksShelves,f) return ranksShelves def orderProductsPerPair(shop): data, explanations = cvtCsvDataframe(pd.read_csv("data.csv"), pd.read_csv("explanations.csv")) if os.path.exists("productPair.csv"): dfAux = pd.read_csv("productPair.csv") shelves = dfAux['shelve'].to_numpy() products_aux = dfAux['product'].to_numpy() dictionary = {} for i, j in zip(shelves,products_aux): dictionary[i] = j return dict(collections.OrderedDict(sorted(dictionary.items()))) else: #Order products ordered = products.sort_values(by=['<NAME>'], ascending=True) ordered = ordered['ID'].to_numpy() aux = [] for p in ordered: for _ in range(products.loc[products['ID'] == p,'Total Prateleiras'].iloc[0]): aux.append(p) size = [23,21] ranksShelves = {} auxRankShelves = {} #Order importance cells for j in range(size[1]): for i in range(size[0]): ranksShelves[shop.shopping[i][j].id] = shop.shopping[i][j].rank auxRankShelves[shop.shopping[i][j].id] = False ranksShelves = dict(sorted(ranksShelves.items(), key=lambda item: item[1])) indice = 0 pairShelves1 = [[6,7,8,9], [185,208,231,254], [215,216,217,218], [470,471,472,473], [250,273,296,251]] resultsFP = FPGrowth(data,0.6,0.5) resultsFP = [list(s) for s in resultsFP] for shelves in pairShelves1: counter = 0 for shelf in shelves: try: sample = random.sample(resultsFP[counter],1)[0] ranksShelves[shelf] = sample aux.remove(sample) auxRankShelves[shelf] = True except: pass counter+=1 #First place the products pairs for i in ranksShelves.keys(): if i in shop.shoppingClass.config: if not auxRankShelves[i]: ranksShelves[i] = int(aux[indice]) indice += 1 dfAux =
pd.Series(ranksShelves)
pandas.Series
import pandas as pd import plotly.tools as tls from plotly.offline import iplot class backtest: def __init__(self, base, close, start, period, positions_dict): if isinstance(close, pd.Series): close = pd.DataFrame(close) start = pd.to_datetime(start) self.dc = dca(base, close, start, period) self.bh = buyandhold(base, close, start, period) self.strats = dict() for ind, values in positions_dict.items(): self.strats[ind] = strategy(base, close, values, start, period) def get_strat_stats(self, name): if name == "DollarCostAvg": return self.dc elif name == "BuyandHold": return self.bh else: return self.strats[name] def get_values(self): all_values = pd.concat([self.dc.TotalValue, self.bh.TotalValue], axis=1) all_values.columns = ["DollarCostAvg", "BuyandHold"] for i in self.strats.keys(): all_values[i] = self.strats[i].TotalValue return all_values def get_plot(self): d1 = self.get_values() d1.sort_index(ascending=True, inplace=True) fig = tls.make_subplots(rows=2, cols=1, shared_xaxes=True) close =
pd.DataFrame(self.dc.Close)
pandas.DataFrame
# # Prepare of the hvorg screenshots # import os import pickle import json import numpy as np import pandas as pd from sunpy.time import parse_time, is_time # The sources ids get_sources_ids = 'getDataSources.json' # Save the data save_directory = os.path.expanduser('~/Data/hvanalysis/derived') # Read in the data directory = os.path.expanduser('~/Data/hvanalysis/source') hvorg_screenshots = 'screenshots.csv' # hvorg_screenshots = 'screenshots_test.csv' f = os.path.join(directory, hvorg_screenshots) print('Loading ' + f) path = os.path.expanduser(f) df = pd.read_csv(path) hvorg_screenshots_legacy = 'screenshots_legacy.csv' # hvorg_screenshots_legacy = 'screenshots_test.csv' f = os.path.join(directory, hvorg_screenshots_legacy) print('Loading ' + f) path = os.path.expanduser(f) df_legacy =
pd.read_csv(path)
pandas.read_csv
# -*- coding: utf-8 -*- """ Plotting utilities. """ import logging from matplotlib import pyplot as plt import numpy as np import seaborn as sns import pandas as pd from .utils import auto_bins sns.set() sns.set_style('ticks') logger = logging.getLogger(__name__) pairplot_kwargs = dict(corner=True, kind='scatter', diag_kws=dict(histtype='step', bins='auto', lw=1.5, density=True, color='teal'), plot_kws=dict(s=1.0, edgecolor=None, palette='viridis', color='teal')) def plot_live_points(live_points, filename=None, bounds=None, c=None, **kwargs): """ Plot a set of live points in a corner-like plot. Parameters ---------- live_points : ndarray Structured array of live points to plot. filename : str Filename for resulting figure bounds : dict: Dictionary of lower and upper bounds to plot c : str, optional Name of field in the structured array to use as the hue when plotting the samples. If not specified, no hue is used. kwargs : Keyword arguments used to update the pairplot kwargs. Diagonal and off- diagonal plots can be configured with ``diag_kws`` and ``plot_kws``. """ pairplot_kwargs.update(kwargs) df =
pd.DataFrame(live_points)
pandas.DataFrame
from collections import abc, deque from decimal import Decimal from io import StringIO from warnings import catch_warnings import numpy as np from numpy.random import randn import pytest from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, concat, date_range, read_csv, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal @pytest.fixture(params=[True, False]) def sort(request): """Boolean sort keyword for concat and DataFrame.append.""" return request.param class TestConcatenate: def test_concat_copy(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for b in result._mgr.blocks: assert b.values.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is df._mgr.blocks[0].values.base elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is None elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None def test_concat_with_group_keys(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] def test_concat_dataframe_keys_bug(self, sort): t1 = DataFrame( {"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))} ) t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))}) # it works result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort) assert list(result.columns) == [("t1", "value"), ("t2", "value")] def test_concat_series_partial_columns_names(self): # GH10698 foo = Series([1, 2], name="foo") bar = Series([1, 2]) baz = Series([4, 5]) result = concat([foo, bar, baz], axis=1) expected = DataFrame( {"foo": [1, 2], 0: [1, 2], 1: [4, 5]}, columns=["foo", 0, 1] ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, keys=["red", "blue", "yellow"]) expected = DataFrame( {"red": [1, 2], "blue": [1, 2], "yellow": [4, 5]}, columns=["red", "blue", "yellow"], ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, ignore_index=True) expected = DataFrame({0: [1, 2], 1: [1, 2], 2: [4, 5]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result = concat(frames, axis=1) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1) tm.assert_frame_equal(result, expected) keys = ["baz", "foo", "bar"] result = concat(frames, keys=keys) expected = concat([frames[k] for k in keys], keys=keys) tm.assert_frame_equal(result, expected) def test_concat_ignore_index(self, sort): frame1 = DataFrame( {"test1": ["a", "b", "c"], "test2": [1, 2, 3], "test3": [4.5, 3.2, 1.2]} ) frame2 = DataFrame({"test3": [5.2, 2.2, 4.3]}) frame1.index = Index(["x", "y", "z"]) frame2.index = Index(["x", "y", "q"]) v1 = concat([frame1, frame2], axis=1, ignore_index=True, sort=sort) nan = np.nan expected = DataFrame( [ [nan, nan, nan, 4.3], ["a", 1, 4.5, 5.2], ["b", 2, 3.2, 2.2], ["c", 3, 1.2, nan], ], index=Index(["q", "x", "y", "z"]), ) if not sort: expected = expected.loc[["x", "y", "z", "q"]] tm.assert_frame_equal(v1, expected) @pytest.mark.parametrize( "name_in1,name_in2,name_in3,name_out", [ ("idx", "idx", "idx", "idx"), ("idx", "idx", None, None), ("idx", None, None, None), ("idx1", "idx2", None, None), ("idx1", "idx1", "idx2", None), ("idx1", "idx2", "idx3", None), (None, None, None, None), ], ) def test_concat_same_index_names(self, name_in1, name_in2, name_in3, name_out): # GH13475 indices = [ Index(["a", "b", "c"], name=name_in1), Index(["b", "c", "d"], name=name_in2), Index(["c", "d", "e"], name=name_in3), ] frames = [ DataFrame({c: [0, 1, 2]}, index=i) for i, c in zip(indices, ["x", "y", "z"]) ] result = pd.concat(frames, axis=1) exp_ind = Index(["a", "b", "c", "d", "e"], name=name_out) expected = DataFrame( { "x": [0, 1, 2, np.nan, np.nan], "y": [np.nan, 0, 1, 2, np.nan], "z": [np.nan, np.nan, 0, 1, 2], }, index=exp_ind, ) tm.assert_frame_equal(result, expected) def test_concat_multiindex_with_keys(self): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["first", "second"], ) frame = DataFrame( np.random.randn(10, 3), index=index, columns=Index(["A", "B", "C"], name="exp"), ) result = concat([frame, frame], keys=[0, 1], names=["iteration"]) assert result.index.names == ("iteration",) + index.names tm.assert_frame_equal(result.loc[0], frame) tm.assert_frame_equal(result.loc[1], frame) assert result.index.nlevels == 3 def test_concat_multiindex_with_none_in_index_names(self): # GH 15787 index = pd.MultiIndex.from_product([[1], range(5)], names=["level1", None]) df = DataFrame({"col": range(5)}, index=index, dtype=np.int32) result = concat([df, df], keys=[1, 2], names=["level2"]) index = pd.MultiIndex.from_product( [[1, 2], [1], range(5)], names=["level2", "level1", None] ) expected = DataFrame({"col": list(range(5)) * 2}, index=index, dtype=np.int32) tm.assert_frame_equal(result, expected) result = concat([df, df[:2]], keys=[1, 2], names=["level2"]) level2 = [1] * 5 + [2] * 2 level1 = [1] * 7 no_name = list(range(5)) + list(range(2)) tuples = list(zip(level2, level1, no_name)) index = pd.MultiIndex.from_tuples(tuples, names=["level2", "level1", None]) expected = DataFrame({"col": no_name}, index=index, dtype=np.int32) tm.assert_frame_equal(result, expected) def test_concat_keys_and_levels(self): df = DataFrame(np.random.randn(1, 3)) df2 = DataFrame(np.random.randn(1, 4)) levels = [["foo", "baz"], ["one", "two"]] names = ["first", "second"] result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, names=names, ) expected = concat([df, df2, df, df2]) exp_index = MultiIndex( levels=levels + [[0]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 0, 0]], names=names + [None], ) expected.index = exp_index tm.assert_frame_equal(result, expected) # no names result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, ) assert result.index.names == (None,) * 3 # no levels result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], names=["first", "second"], ) assert result.index.names == ("first", "second", None) tm.assert_index_equal( result.index.levels[0], Index(["baz", "foo"], name="first") ) def test_concat_keys_levels_no_overlap(self): # GH #1406 df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) msg = "Values not found in passed level" with pytest.raises(ValueError, match=msg): concat([df, df], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) msg = "Key one not in level" with pytest.raises(ValueError, match=msg): concat([df, df2], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) def test_concat_rename_index(self): a = DataFrame( np.random.rand(3, 3), columns=list("ABC"), index=Index(list("abc"), name="index_a"), ) b = DataFrame( np.random.rand(3, 3), columns=list("ABC"), index=Index(list("abc"), name="index_b"), ) result = concat([a, b], keys=["key0", "key1"], names=["lvl0", "lvl1"]) exp = concat([a, b], keys=["key0", "key1"], names=["lvl0"]) names = list(exp.index.names) names[1] = "lvl1" exp.index.set_names(names, inplace=True) tm.assert_frame_equal(result, exp) assert result.index.names == exp.index.names def test_crossed_dtypes_weird_corner(self): columns = ["A", "B", "C", "D"] df1 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="f8"), "B": np.array([1, 2, 3, 4], dtype="i8"), "C": np.array([1, 2, 3, 4], dtype="f8"), "D": np.array([1, 2, 3, 4], dtype="i8"), }, columns=columns, ) df2 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="i8"), "B": np.array([1, 2, 3, 4], dtype="f8"), "C": np.array([1, 2, 3, 4], dtype="i8"), "D": np.array([1, 2, 3, 4], dtype="f8"), }, columns=columns, ) appended = df1.append(df2, ignore_index=True) expected = DataFrame( np.concatenate([df1.values, df2.values], axis=0), columns=columns ) tm.assert_frame_equal(appended, expected) df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) result = concat([df, df2], keys=["one", "two"], names=["first", "second"]) assert result.index.names == ("first", "second") def test_dups_index(self): # GH 4771 # single dtypes df = DataFrame( np.random.randint(0, 10, size=40).reshape(10, 4), columns=["A", "A", "C", "C"], ) result =
concat([df, df], axis=1)
pandas.concat
""" Functions for writing a directory for iModulonDB webpages """ import logging import os import re from itertools import chain from zipfile import ZipFile import numpy as np import pandas as pd from matplotlib.colors import to_hex from tqdm.notebook import tqdm from pymodulon.plotting import _broken_line, _get_fit, _solid_line ################## # User Functions # ################## def imodulondb_compatibility(model, inplace=False, tfcomplex_to_gene=None): """ Checks for all issues and missing information prior to exporting to iModulonDB. If inplace = True, modifies the model (not recommended for main model variables). Parameters ---------- model: :class:`~pymodulon.core.IcaData` IcaData object to check inplace: bool, optional If true, modifies the model to prepare for export. Not recommended for use with your main model variable. tfcomplex_to_gene: dict, optional dictionary pointing complex TRN entries to matching gene names in the gene table (ex: {"FlhDC":"flhD"}) Returns ------- table_issues: pd.DataFrame Each row corresponds to an issue with one of the main class elements. Columns: * Table: which table or other variable the issue is in * Missing Column: the column of the Table with the issue (not case sensitive; capitalization is ignored). * Solution: Unless "CRITICAL" is in this cell, the site behavior if the issue remained is described here. tf_issues: pd.DataFrame Each row corresponds to a regulator that is used in the imodulon_table. Columns: * in_trn: whether the regulator is in the model.trn. Regulators not in the TRN will be ignored in the site's histograms and gene tables. * has_link: whether the regulator has a link in tf_links. If not, no link to external regulator databases will be shown. * has_gene: whether the regulator can be matched to a gene in the model. If this is false, then there will be no regulator scatter plot on the site. You can link TF complexes to one of their genes using the tfcomplex_to_gene input. missing_g_links: pd.Series The genes on this list don't have links in the gene_links. Their gene pages for these genes will not display links. missing_DOIs: pd.Series The samples listed here don't have DOIs in the sample_table. Clicking on their associated bars in the activity plots will not link to relevant papers. """ if tfcomplex_to_gene is None: tfcomplex_to_gene = {} table_issues = pd.DataFrame(columns=["Table", "Missing Column", "Solution"]) # Check for X if model.X is None: table_issues = table_issues.append( { "Table": "X", "Missing Column": "all", "Solution": "CRITICAL. Add the expression matrix" " so that gene pages can be generated.", }, ignore_index=True, ) logging.warning("Critical issue: No X matrix") # Check for updated imodulondb table default_imdb_table = { "organism": "New Organism", "dataset": "New Dataset", "strain": "Unspecified", "publication_name": "Unpublished Study", "publication_link": "", "gene_link_db": "External Database", "organism_folder": "new_organism", "dataset_folder": "new_dataset", } for k, v in default_imdb_table.items(): if model.imodulondb_table[k] == v: if k == "publication_link": solution = "The publication name will not be a hyperlink." else: solution = 'The default, "{}", will be used.'.format(v) table_issues = table_issues.append( { "Table": "iModulonDB", "Missing Column": k, "Solution": solution, }, ignore_index=True, ) # Check the gene table gene_table_cols = { "gene_name": "Locus tags (gene_table.index) will be used.", "gene_product": "Locus tags (gene_table.index) will be used.", "cog": "COG info will not display & the gene scatter plot will" " not have color.", "start": "The x axis of the scatter plot will be a numerical" " value instead of a genome location.", "operon": "Operon info will not display.", "regulator": "Regulator info will not display. If you have a" " TRN, add it to the model to auto-generate this column.", } gene_table_lower = {i.lower(): i for i in model.gene_table.columns} for col in gene_table_cols.keys(): if not (col in gene_table_lower.keys()): table_issues = table_issues.append( { "Table": "Gene", "Missing Column": col, "Solution": gene_table_cols[col], }, ignore_index=True, ) if (col in ["gene_name", "gene_product"]) & inplace: model.gene_table[col] = model.gene_table.index elif inplace: model.gene_table = model.gene_table.rename( {gene_table_lower[col]: col}, axis=1 ) # check for missing gene links missing_g_links = [] for g in model.M.index: if ( not (isinstance(model.gene_links[g], str)) or model.gene_links[g].strip() == "" ): missing_g_links.append(g) missing_g_links = pd.Series(missing_g_links, name="missing_gene_links") # check for errors in the n_replicates column of the sample table if inplace & ("n_replicates" in model.sample_table.columns): try: imdb_activity_bar_df(model, model.imodulon_table.index[0]) except ValueError: logging.warning( "Error detected in sample_table['n_replicates']." " Deleting that column. It will be auto-regenerated." " You can prevent this from happening in the future" " using generate_n_replicates_column(model)" ) model.sample_table = model.sample_table.drop("n_replicates", 1) # check the sample table sample_table_cols = { "project": "This is a CRITICAL column defining the largest" " grouping of samples. Vertical bars in the activity plot" " will separate projects.", "condition": "This is an CRITICAL column defining the smallest" " grouping of samples. Biological replicates must have matching" " projects and conditions, and they will appear as single bars" " with averaged activities.", "sample": "The sample_table.index will be used. Each entry must be" ' unique. Note that the preferred syntax is "project__condition__#."', "n_replicates": "This column will be generated for you.", "doi": "Clicking on activity plot bars will not link to relevant" " papers for the samples.", } sample_table_lower = {i.lower(): i for i in model.sample_table.columns} if model.sample_table.columns.str.lower().duplicated().any(): logging.warning( "Critical issue: Duplicated column names" " (case insensitive) in sample_table" ) table_issues = table_issues.append( { "Table": "Sample", "Missing Column": "N/A - Duplicated Columns Exist", "Solution": "Column names (case insensitive) should not " "be duplicated. Pay special attention the 'sample' column.", }, ignore_index=True, ) for col in sample_table_cols.keys(): if not (col in sample_table_lower.keys()): if (col == "sample") & (model.sample_table.index.name == "sample"): continue if col in ["project", "condition"]: logging.warning( "Critical issue: No {} column in sample_table.".format(col) ) table_issues = table_issues.append( { "Table": "Sample", "Missing Column": col, "Solution": sample_table_cols[col], }, ignore_index=True, ) if (col == "n_replicates") & inplace: generate_n_replicates_column(model) elif inplace: model.sample_table = model.sample_table.rename( {sample_table_lower[col]: col}, axis=1 ) # check for missing DOIs if "doi" in sample_table_lower.keys(): if inplace: doi_idx = "doi" else: doi_idx = sample_table_lower["doi"] missing_DOIs = model.sample_table.index[ model.sample_table[doi_idx].isna() ].copy() missing_DOIs.name = "missing_DOIs" else: missing_DOIs = model.sample_table.index.copy() missing_DOIs.name = "missing_DOIs" # check the iModulon table columns try: model.imodulon_table.index.astype(int) im_idx = "int" except TypeError: im_idx = "str" iM_table_cols = { "name": "imodulon_table.index will be used.", "regulator": "The regulator details will be left blank.", "function": "The function will be blank in the dataset table and" ' "Uncharacterized" in the iModulon dashboard', "category": 'The categories will be filled in as "Uncharacterized".', "n_genes": "This column will be computed for you.", "precision": "This column will be left blank.", "recall": "This column will be left blank.", "exp_var": "This column will be left blank.", } iM_table_lower = {i.lower(): i for i in model.imodulon_table.columns} for col in iM_table_cols.keys(): if not (col in iM_table_lower.keys()): table_issues = table_issues.append( { "Table": "iModulon", "Missing Column": col, "Solution": iM_table_cols[col], }, ignore_index=True, ) if inplace: if col == "name": if im_idx == "int": model.imodulon_table["name"] = [ "iModulon {}".format(i) for i in model.imodulon_table.index ] else: model.imodulon_table["name"] = model.imodulon_table.index elif col == "n_genes": model.imodulon_table["n_genes"] = model.M_binarized.sum().astype( int ) else: model.imodulon_table[col] = np.nan elif inplace: model.imodulon_table = model.imodulon_table.rename( {iM_table_lower[col]: col}, axis=1 ) if inplace: if im_idx == "str": model.rename_imodulons( dict(zip(model.imodulon_names, range(len(model.imodulon_names)))) ) for idx, tf in zip(model.imodulon_table.index, model.imodulon_table.regulator): try: model.imodulon_table.loc[idx, "regulator_readable"] = ( model.imodulon_table.regulator[idx] .replace("/", " or ") .replace("+", " and ") ) except AttributeError: model.imodulon_table.loc[ idx, "regulator_readable" ] = model.imodulon_table.regulator[idx] # check the TRN cols = ["in_trn", "has_link", "has_gene"] tf_issues = pd.DataFrame(columns=cols) if "regulator" in iM_table_lower.keys(): if inplace: reg_idx = "regulator" else: reg_idx = iM_table_lower["regulator"] for tf_string in model.imodulon_table[reg_idx]: _, no_trn = parse_tf_string(model, tf_string) _, no_link = tf_with_links(model, tf_string) _, no_gene = get_tfs_to_scatter(model, tf_string, tfcomplex_to_gene) tfs_to_add = set(no_trn + no_link + no_gene) for tf in tfs_to_add: row = dict(zip(cols, [True] * 3)) for col, tf_set in zip(cols, [no_trn, no_link, no_gene]): if tf in tf_set: row[col] = False tf_issues.loc[tf] = row return table_issues, tf_issues, missing_g_links, missing_DOIs def imodulondb_export( model, path=".", cat_order=None, tfcomplex_to_gene=None, skip_iMs=False, skip_genes=False, ): """ Generates the iModulonDB page for the data and exports to the path. If certain columns are unavailable but can be filled in automatically, they will be. Parameters ---------- model : :class:`~pymodulon.core.IcaData` IcaData object to export path : str, optional Path to iModulonDB main hosting folder (default = ".") cat_order : list, optional List of categories in the imodulon_table, ordered as you would like them to appear in the dataset table (default = None) tfcomplex_to_gene : dict, optional dictionary pointing complex TRN entries to matching gene names in the gene table ex: {"FlhDC":"flhD"} skip_iMs : bool, optional If this is True, do not output iModulon files (to save time) skip_genes : bool, optional If this is True, do not output gene files (to save time) Returns ------- None: None """ if tfcomplex_to_gene is None: tfcomplex_to_gene = {} model1 = model.copy() imodulondb_compatibility(model1, True, tfcomplex_to_gene=tfcomplex_to_gene) print("Writing main site files...") folder = imodulondb_main_site_files(model1, path, cat_order=cat_order) print("Done writing main site files. Writing plot files...") if not (skip_iMs and skip_genes): print( "Two progress bars will appear below. The second will take " "significantly longer than the first." ) if not (skip_iMs): print("Writing iModulon page files (1/2)") imdb_generate_im_files(model1, folder, "start", tfcomplex_to_gene) if not (skip_genes): print("Writing Gene page files (2/2)") imdb_generate_gene_files(model1, folder) print( "Complete! (Organism = {}; Dataset = {})".format( model1.imodulondb_table["organism_folder"], model1.imodulondb_table["dataset_folder"], ) ) ############################### # Major Outputs (Called Once) # ############################### def imdb_dataset_table(model): """ Converts the model's imodulondb_table into dataset metadata for the gray box on the left side of the dataset page Parameters ---------- model: :class:`~pymodulon.core.IcaData` An IcaData object Returns ------- res: ~pandas.Series A series of formatted metadata """ res = pd.Series(dtype=str) if model.imodulondb_table["organism"] == "New Organism": org_short = "" else: org_parts = model.imodulondb_table["organism"].split(" ") org_short = org_parts[0][0].upper() + ". " + org_parts[1].lower() org_short = "<i>" + org_short + "</i>" res["Title"] = org_short + " " + model.imodulondb_table["dataset"] res["Organism"] = "<i>" + model.imodulondb_table["organism"] + "</i>" res["Strain"] = model.imodulondb_table["strain"] if model.imodulondb_table["publication_link"] == "": res["Publication"] = model.imodulondb_table["publication_name"] else: pub_str = '<a href="' + model.imodulondb_table["publication_link"] pub_str += '">' + model.imodulondb_table["publication_name"] + "</a>" res["Publication"] = pub_str res["Number of Samples"] = model.A.shape[1] if ("project" in model.sample_table.columns) and ( "condition" in model.sample_table.columns ): num_conds = len(model.sample_table.groupby(["condition", "project"])) else: num_conds = "Unknown" res["Number of Unique Conditions"] = num_conds res["Number of Genes"] = model.M.shape[0] res["Number of iModulons"] = model.M.shape[1] return res def imdb_iM_table(imodulon_table, cat_order=None): """ Reformats the iModulon table according Parameters ---------- imodulon_table : ~pandas.DataFrame Table formatted similar to IcaData.imodulon_table cat_order : list, optional List of categories in imodulon_table.category, ordered as desired Returns ------- im_table: ~pandas.DataFrame New iModulon table with the columns expected by iModulonDB """ im_table = imodulon_table[ [ "name", "regulator_readable", "function", "category", "n_genes", "exp_var", "precision", "recall", ] ].copy() im_table.index.name = "k" im_table.category = im_table.category.fillna("Uncharacterized") if cat_order is not None: cat_dict = {val: i for i, val in enumerate(cat_order)} im_table.loc[:, "category_num"] = [ cat_dict[im_table.category[k]] for k in im_table.index ] else: try: im_table.loc[:, "category_num"] = imodulon_table["new_idx"] except KeyError: im_table.loc[:, "category_num"] = im_table.index return im_table def imdb_gene_presence(model): """ Generates the two versions of the gene presence file, one as a binary matrix, and one as a DataFrame Parameters ---------- model: :class:`~pymodulon.core.IcaData` An IcaData object Returns ------- mbin: ~pandas.DataFrame Binarized M matrix mbin_list: ~pandas.DataFrame Table mapping genes to iModulons """ mbin = model.M_binarized.astype(bool) mbin_list = pd.DataFrame(columns=["iModulon", "Gene"]) for k in mbin.columns: for g in mbin.index[mbin[k]]: mbin_list = mbin_list.append({"iModulon": k, "Gene": g}, ignore_index=True) return mbin, mbin_list def imodulondb_main_site_files( model, path_prefix=".", rewrite_annotations=True, cat_order=None ): """ Generates all parts of the site that do not require large iteration loops Parameters ---------- model : :class:`~pymodulon.core.IcaData` IcaData object path_prefix : str, optional Main folder for iModulonDB files (default = ".") rewrite_annotations : bool, optional Set to False if the gene_table and trn are unchanged (default = True) cat_order : list, optional list of categories in data.imodulon_table.category, ordered as you want them to appear on the dataset page (default = None) Returns ------- main_folder: str Dataset folder, for use as the path_prefix in imdb_generate_im_files() """ organism = model.imodulondb_table["organism_folder"] dataset = model.imodulondb_table["dataset_folder"] # create new folders organism_folder = os.path.join(path_prefix, "organisms", organism) if not (os.path.isdir(organism_folder)): os.makedirs(organism_folder) annot_folder = os.path.join(organism_folder, "annotation") if not (os.path.isdir(annot_folder)): rewrite_annotations = True os.makedirs(annot_folder) # save annotations if rewrite_annotations: # make the folder if necessary gene_folder = os.path.join(annot_folder, "gene_files") if not (os.path.isdir(gene_folder)): os.makedirs(gene_folder) # add files to the folder model.gene_table.to_csv(os.path.join(gene_folder, "gene_info.csv")) try: model.trn.to_csv(os.path.join(gene_folder, "trn.csv")) except FileNotFoundError: pass # zip the folder old_cwd = os.getcwd() os.chdir(gene_folder) with ZipFile("../gene_files.zip", "w") as z: z.write("gene_info.csv") z.write("trn.csv") os.chdir(old_cwd) main_folder = os.path.join(organism_folder, dataset) if not (os.path.isdir(main_folder)): os.makedirs(main_folder) # save the metadata files in the main folder dataset_meta = imdb_dataset_table(model) dataset_meta.to_csv(os.path.join(main_folder, "dataset_meta.csv")) # num_ims - used so that the 'next iModulon' button doesn't overflow file = open(main_folder + "/num_ims.txt", "w") file.write(str(model.M.shape[1])) file.close() # save the dataset files in the data folder data_folder = os.path.join(main_folder, "data_files") if not (os.path.isdir(data_folder)): os.makedirs(data_folder) model.X.to_csv(os.path.join(data_folder, "log_tpm.csv")) model.A.to_csv(os.path.join(data_folder, "A.csv")) model.M.to_csv(os.path.join(data_folder, "M.csv")) im_table = imdb_iM_table(model.imodulon_table, cat_order) im_table.to_csv(os.path.join(data_folder, "iM_table.csv")) model.sample_table.to_csv(os.path.join(data_folder, "sample_table.csv")) mbin, mbin_list = imdb_gene_presence(model) mbin.to_csv(os.path.join(data_folder, "gene_presence_matrix.csv")) mbin_list.to_csv(os.path.join(data_folder, "gene_presence_list.csv")) pd.Series(model.thresholds).to_csv(os.path.join(data_folder, "M_thresholds.csv")) # zip the data folder old_cwd = os.getcwd() os.chdir(data_folder) with ZipFile("../data_files.zip", "w") as z: z.write("log_tpm.csv") z.write("A.csv") z.write("M.csv") z.write("iM_table.csv") z.write("sample_table.csv") z.write("gene_presence_list.csv") z.write("gene_presence_matrix.csv") z.write("M_thresholds.csv") os.chdir(old_cwd) # make iModulons searchable enrich_df = model.imodulon_table.copy() enrich_df["component"] = enrich_df.index enrich_df = enrich_df[["component", "name", "regulator", "function"]] enrich_df = enrich_df.rename({"function": "Function"}, axis=1) try: enrich_df = enrich_df.sort_values(by="name").fillna(value="N/A") except TypeError: enrich_df["name"] = enrich_df["name"].astype(str) enrich_df = enrich_df.sort_values(by="name").fillna(value="N/A") if not (os.path.isdir(main_folder + "/iModulon_files")): os.makedirs(main_folder + "/iModulon_files") enrich_df.to_json(main_folder + "/iModulon_files/im_list.json", orient="records") # make genes searchable gene_df = model.gene_table.copy() gene_df = gene_df[gene_df.index.isin(model.X.index)] gene_df["gene_id"] = gene_df.index gene_df = gene_df[["gene_name", "gene_id", "gene_product"]] gene_df = gene_df.sort_values(by="gene_name").fillna(value="not available") if not (os.path.isdir(main_folder + "/gene_page_files")): os.makedirs(main_folder + "/gene_page_files") gene_df.to_json(main_folder + "/gene_page_files/gene_list.json", orient="records") # make the html html = '<div class="panel">\n' html += ' <div class="panel-header">\n' html += ' <h2 class="mb-0">\n' html += ' <button class="btn btn-link collapsed organism" type="button"' html += ' data-toggle="collapse" data-target="#new_org" aria-expanded="false"' html += ' aria-controls="new_org">\n <i>' html += model.imodulondb_table["organism"] html += "</i>\n </button>\n </h2>\n </div>\n" html += ' <div id="new_org" class="collapse" aria-labelledby="headingThree"' html += ' data-parent="#organismAccordion">\n' html += ' <div class="panel-body">\n' html += ' <ul class="nav navbar-dark flex-column">\n' html += ' <li class="nav-item dataset">\n' html += ' <a class="nav-link active" href="dataset.html?organism=' html += organism html += "&dataset=" html += dataset html += '"><i class="fas fa-angle-right pr-2"></i>' html += model.imodulondb_table["dataset"] html += "\n </a>\n </li>\n" html += " </ul>\n </div>\n </div>\n</div>" file = open(main_folder + "/html_for_splash.html", "w") file.write(html) file.close() return main_folder def imdb_generate_im_files( model, path_prefix=".", gene_scatter_x="start", tfcomplex_to_gene=None ): """ Generates all files for all iModulons in data Parameters ---------- model : :class:`~pymodulon.core.IcaData` IcaData object path_prefix : str, optional Dataset folder in which to store the files (default = ".") gene_scatter_x : str Column from the gene table that specificies what to use on the X-axis of the gene scatter plot (default = "start") tfcomplex_to_gene : dict, optional dictionary pointing complex TRN entries to matching gene names in the gene table ex: {"FlhDC":"flhD"} """ if tfcomplex_to_gene is None: tfcomplex_to_gene = {} for k in tqdm(model.imodulon_table.index): make_im_directory(model, k, path_prefix, gene_scatter_x, tfcomplex_to_gene) def imdb_generate_gene_files(model, path_prefix="."): """ Generates all files for all iModulons in IcaData object Parameters ---------- model : :class:`~pymodulon.core.IcaData` IcaData object path_prefix : str, optional Dataset folder in which to store the files (default = ".") Returns ------- None """ for g in tqdm(model.M.index): make_gene_directory(model, g, path_prefix) ################################################### # iModulon-Related Outputs (and Helper Functions) # ################################################### # Gene Table def parse_tf_string(model, tf_str, verbose=False): """ Returns a list of relevant tfs from a string. Will ignore TFs not in the trn file. iModulonDB helper function. Parameters ---------- model : :class:`~pymodulon.core.IcaData` IcaData object tf_str : str String of tfs joined by '+' and '/' operators verbose : bool, optional Whether or nor to print outputs Returns ------- tfs: list List of relevant TFs """ if not (type(tf_str) == str): return [], [] if tf_str == "": return [], [] tf_str = tf_str.replace("[", "").replace("]", "") tfs = re.split("[+/]", tf_str) # Check if there is an issue, just remove the issues for now. bad_tfs = [] for tf in tfs: tf = tf.strip() if tf not in model.trn.regulator.unique(): if verbose: print("Regulator not in TRN:", tf) print( "To remedy this, add rows to the TRN for each gene associated " "with this regulator. Otherwise, it will be ignored in the gene" "tables and histograms." ) bad_tfs.append(tf) tfs = [t.strip() for t in list(set(tfs) - set(bad_tfs))] bad_tfs = list(set(bad_tfs)) return tfs, bad_tfs def imdb_gene_table_df(model, k): """ Creates the gene table dataframe for iModulonDB Parameters ---------- model : :class:`~pymodulon.core.IcaData` IcaData object k : int or str iModulon name Returns ------- res: ~pandas.DataFrame DataFrame of the gene table that is compatible with iModulonDB """ # get TFs and large table row = model.imodulon_table.loc[k] tfs, _ = parse_tf_string(model, row.regulator) res = model.view_imodulon(k) # sort columns = [] for c in [ "gene_weight", "gene_name", "old_locus_tag", "gene_product", "cog", "operon", "regulator", ]: if c in res.columns: columns.append(c) res = res[columns] res = res.sort_values("gene_weight", ascending=False) # add TFs for tf in tfs: reg_genes = model.trn.gene_id[model.trn.regulator == tf].values res[tf] = [i in reg_genes for i in res.index] # add links res["link"] = [model.gene_links[g] for g in res.index] # clean up res.index.name = "locus" return res # Gene Histogram def _component_DF(model, k, tfs=None): """ Helper function for imdb_gene_hist_df Parameters ---------- model : :class:`~pymodulon.core.IcaData` IcaData object k : int or str iModulon name tfs : list List of TFs (default = None) Returns ------- gene_table: ~pandas.DataFrame Gene table for the iModulon """ df = pd.DataFrame(model.M[k].sort_values()) df.columns = ["gene_weight"] if "gene_product" in model.gene_table.columns: df["gene_product"] = model.gene_table["gene_product"] if "gene_name" in model.gene_table.columns: df["gene_name"] = model.gene_table["gene_name"] if "operon" in model.gene_table.columns: df["operon"] = model.gene_table["operon"] if "length" in model.gene_table.columns: df["length"] = model.gene_table.length if "regulator" in model.gene_table.columns: df["regulator"] = model.gene_table.regulator.fillna("") if tfs is not None: for tf in tfs: df[tf] = [tf in regs.split(",") for regs in df["regulator"]] return df.sort_values("gene_weight") def _tf_combo_string(row): """ Creates a formatted string for the histogram legends. Helper function for imdb_gene_hist_df. Parameters ---------- row : ~pandas.Series Boolean series indexed by TFs for a given gene Returns ------- str A string formatted for display (i.e. "Regulated by ...") """ if row.sum() == 0: return "unreg" if row.sum() == 1: return row.index[row][0] if row.sum() == 2: return " and ".join(row.index[row]) else: return ", ".join(row.index[row][:-1]) + ", and " + row.index[row][-1] def _sort_tf_strings(tfs, unique_elts): """ Sorts TF strings for the legend of the histogram. Helper function for imdb_gene_hist_df. Parameters ---------- tfs : list[str] Sequence of TFs in the desired order unique_elts : list[str] All combination strings made by _tf_combo_string Returns ------- list[str] A sorted list of combination strings that have a consistent ordering """ # unreg always goes first unique_elts.remove("unreg") sorted_elts = ["unreg"] # then the individual TFs for tf in tfs: if tf in unique_elts: sorted_elts.append(tf) unique_elts.remove(tf) # then pairs pairs = [i for i in unique_elts if "," not in i] for i in tfs: for j in tfs: name = i + " and " + j if name in pairs: sorted_elts.append(name) unique_elts.remove(name) # then longer combos, which won't be sorted for now return sorted_elts + unique_elts def imdb_gene_hist_df(model, k, bins=20, tol=0.001): """ Creates the gene histogram for an iModulon Parameters ---------- model : :class:`~pymodulon.core.IcaData` IcaData object k : int or str iModulon name bins : int Number of bins in the histogram (default = 20) tol : float Distance to threshold for deciding if a bar is in the iModulon (default = .001) Returns ------- gene_hist_table: ~pandas.DataFrame A dataframe for producing the histogram that is compatible with iModulonDB """ # get TFs row = model.imodulon_table.loc[k] if not (type(row.regulator) == str): tfs = [] else: tfs, _ = parse_tf_string(model, row.regulator) tfs = list(set(tfs)) # get genes DF_gene = _component_DF(model, k, tfs) # add a tf_combo column if len(tfs) == 0: DF_gene["tf_combos"] = ["unreg"] * DF_gene.shape[0] else: tf_bools = DF_gene[tfs] DF_gene["tf_combos"] = [ _tf_combo_string(tf_bools.loc[g]) for g in tf_bools.index ] # get the list of tf combos in the correct order tf_combo_order = _sort_tf_strings(tfs, list(DF_gene.tf_combos.unique())) # compute bins xmin = min(min(DF_gene.gene_weight), -model.thresholds[k]) xmax = max(max(DF_gene.gene_weight), model.thresholds[k]) width = ( 2 * model.thresholds[k] / max((np.floor(2 * model.thresholds[k] * bins / (xmax - xmin) - 1)), 1) ) xmin = -model.thresholds[k] - width * np.ceil((-model.thresholds[k] - xmin) / width) xmax = xmin + width * bins # column headers: bin middles columns = np.arange(xmin + width / 2, xmax + width / 2, width)[:bins] index = ["thresh"] + tf_combo_order + [i + "_genes" for i in tf_combo_order] res = pd.DataFrame(index=index, columns=columns) # row 0: threshold indices and number of unique tf combos thresh1 = -model.thresholds[k] thresh2 = model.thresholds[k] num_combos = len(tf_combo_order) res.loc["thresh"] = [thresh1, thresh2, num_combos] + [np.nan] * (len(columns) - 3) # next set of rows: heights of bars for r in tf_combo_order: res.loc[r] = np.histogram( DF_gene.gene_weight[DF_gene.tf_combos == r], bins, (xmin, xmax) )[0] # last set of rows: gene names for b_mid in columns: # get the bin bounds b_lower = b_mid - width / 2 b_upper = b_lower + width for r in tf_combo_order: # get the genes for this regulator and bin genes = DF_gene.index[ (DF_gene.tf_combos == r) & (DF_gene.gene_weight < b_upper) & (DF_gene.gene_weight > b_lower) ] # use the gene names, and get them with num2name (more robust) genes = [model.num2name(g) for g in genes] res.loc[r, b_mid] = len(genes) gene_list = np.array2string(np.array(genes), separator=" ") # don't list unregulated genes unless they are in the i-modulon if r == "unreg": if (b_lower + tol >= model.thresholds[k]) or ( b_upper - tol <= -model.thresholds[k] ): res.loc[r + "_genes", b_mid] = gene_list else: res.loc[r + "_genes", b_mid] = "[]" else: res.loc[r + "_genes", b_mid] = gene_list return res # Gene Scatter Plot def _gene_color_dict(model): """ Helper function to match genes to colors based on COG. Used by imdb_gene_scatter_df. Parameters ---------- model : :class:`~pymodulon.core.IcaData` IcaData object Returns ------- dict Dictionary associating gene names to colors """ try: gene_cogs = model.gene_table.cog.to_dict() except AttributeError: return {k: "dodgerblue" for k in model.gene_table.index} try: return {k: model.cog_colors[v] for k, v in gene_cogs.items()} except (KeyError, AttributeError): # previously, this would call the setter using: # data.cog_colors = None cogs = sorted(model.gene_table.cog.unique()) model.cog_colors = dict( zip( cogs, [ "red", "pink", "y", "orchid", "mediumvioletred", "green", "lightgray", "lightgreen", "slategray", "blue", "saddlebrown", "turquoise", "lightskyblue", "c", "skyblue", "lightblue", "fuchsia", "dodgerblue", "lime", "sandybrown", "black", "goldenrod", "chocolate", "orange", ], ) ) return {k: model.cog_colors[v] for k, v in gene_cogs.items()} def imdb_gene_scatter_df(model, k, gene_scatter_x="start"): """ Generates a dataframe for the gene scatter plot in iModulonDB Parameters ---------- model : :class:`~pymodulon.core.IcaData` IcaData object k : int or str iModulon name gene_scatter_x : str Determines x-axis of the scatterplot Returns ------- res: ~pandas.DataFrame A dataframe for producing the scatterplot """ columns = ["name", "x", "y", "cog", "color", "link"] res = pd.DataFrame(columns=columns, index=model.M.index) res.index.name = "locus" cutoff = model.thresholds[k] # x&y scatterplot points - do alternatives later if gene_scatter_x == "start": try: res.x = model.gene_table.loc[res.index, "start"] except KeyError: gene_scatter_x = "gene number" res.x = range(len(res.index)) else: raise ValueError("Only 'start' is supported as a gene_scatter_x input.") # res.x = data.X[base_conds].mean(axis=1) res.y = model.M[k] # add other data res.name = [model.num2name(i) for i in res.index] try: res.cog = model.gene_table.cog[res.index] except AttributeError: res.cog = "Unknown" gene_colors = _gene_color_dict(model) res.color = [to_hex(gene_colors[gene]) for gene in res.index] # if the gene is in the iModulon, it is clickable in_im = res.index[res.y.abs() > cutoff] for g in in_im: res.loc[g, "link"] = model.gene_links[g] # add a row to store the threshold cutoff_row = pd.DataFrame( [gene_scatter_x, cutoff] + [np.nan] * 4, columns=["meta"], index=columns ).T res = pd.concat([cutoff_row, res]) return res # Activity Bar Graph def generate_n_replicates_column(model): """ Generates the "n_replicates" column of the sample_table for iModulonDB. Parameters ---------- model: :class:`~pymodulon.core.IcaData` IcaData object. Will overwrite the existing column if it exists. Returns ------- None: None """ try: for name, group in model.sample_table.groupby(["project", "condition"]): model.sample_table.loc[group.index, "n_replicates"] = group.shape[0] except KeyError: logging.warning( "Unable to write n_replicates column. Add" " project & condition columns (required)." ) def imdb_activity_bar_df(model, k): """ Generates a dataframe for the activity bar graph of iModulon k Parameters ---------- model : :class:`~pymodulon.core.IcaData` IcaData object k : int or str iModulon name Returns ------- res: ~pandas.DataFrame A dataframe for producing the activity bar graph for iModulonDB """ samp_table = model.sample_table.reset_index(drop=True) # get the row of A A_k = model.A.loc[k] A_k = A_k.rename(dict(zip(A_k.index, samp_table.index))) # initialize the dataframe max_replicates = int(samp_table["n_replicates"].max()) columns = ["A_avg", "A_std", "n"] + list( chain( *[ ["rep{}_idx".format(i), "rep{}_A".format(i)] for i in range(1, max_replicates + 1) ] ) ) res = pd.DataFrame(columns=columns) # iterate through conditions and fill in rows for cond, group in samp_table.groupby(["project", "condition"], sort=False): # get condition name and A values cond_name = cond[0] + "__" + cond[1] # project__cond vals = A_k[group.index] # compute statistics new_row = [vals.mean(), vals.std(), len(vals)] # fill in individual samples (indices and values) for idx in group.index: new_row += [idx, vals[idx]] new_row += [np.nan] * ((max_replicates - len(vals)) * 2) res.loc[cond_name] = new_row # clean up res.index.name = "condition" res = res.reset_index() return res # Regulon Venn Diagram def _parse_regulon_string(model, s): """ The Bacillus microarray dataset uses [] to create unusually complicated TF strings. This function parses those, as a helper to _get_reg_genes for imdb_regulon_venn_df. Parameters ---------- model : :class:`~pymodulon.core.IcaData` IcaData object s : str TF string Returns ------- res: set Set of genes regulated by this string """ res = set() if not (isinstance(s, str)): return res if "/" in s: union = s.split("] / [") union[0] = union[0][1:] union[-1] = union[-1][:-1] else: union = [s] for r in union: if "+" in r: intersection = r.split(" + ") genes = set(model.trn.gene_id[model.trn.regulator == intersection[0]]) for i in intersection[1:]: genes = genes.intersection( set(model.trn.gene_id[model.trn.regulator == i]) ) else: genes = set(model.trn.gene_id[model.trn.regulator == r]) res = res.union(genes) return res def _get_reg_genes(model, tf): """ Finds the set of genes regulated by the boolean combination of regulators in a TF string Parameters ---------- model : :class:`~pymodulon.core.IcaData` IcaData object tf : str string of TFs separated by +, /, and/or [] Returns ------- reg_genes: set[str] Set of regulated genes """ # the Bacillus tf strings use '[]' to make complicated boolean combinations if "[" in tf: reg_genes = _parse_regulon_string(model, tf) # other datasets can use this simpler code else: tf = tf.strip() if "+" in tf: reg_list = [] for tfx in tf.split("+"): tfx = tfx.strip() reg_list.append( set(model.trn[model.trn.regulator == tfx].gene_id.unique()) ) reg_genes = set.intersection(*reg_list) elif "/" in tf: reg_genes = set( model.trn[ model.trn.regulator.isin([t.strip() for t in tf.split("/")]) ].gene_id.unique() ) else: reg_genes = set(model.trn[model.trn.regulator == tf].gene_id.unique()) # return result return reg_genes def imdb_regulon_venn_df(model, k): """ Generates a dataframe for the regulon venn diagram of iModulon k. Returns None if there is no diagram to draw Parameters ---------- model : :class:`~pymodulon.core.IcaData` IcaData object k : int or str iModulon name Returns ------- res: ~pandas.DataFrame A DataFrame for producing the venn diagram in iModulonDB """ row = model.imodulon_table.loc[k] tf = row["regulator"] if not (type(tf) == str): return None if tf.strip() == "": return None # Take care of and/or enrichments reg_genes = _get_reg_genes(model, tf) # Get component genes comp_genes = set(model.view_imodulon(k).index) both_genes = set(reg_genes & comp_genes) # Get gene and operon counts reg_gene_count = len(reg_genes) comp_gene_count = len(comp_genes) both_gene_count = len(both_genes) # Add adjustments for venn plotting (add '2' for alternates) reg_gene_count2 = 0 comp_gene_count2 = 0 both_gene_count2 = 0 if reg_genes == comp_genes: reg_gene_count = 0 comp_gene_count = 0 both_gene_count = 0 reg_gene_count2 = 0 comp_gene_count2 = 0 both_gene_count2 = len(reg_genes) elif all(item in comp_genes for item in reg_genes): reg_gene_count = 0 both_gene_count = 0 reg_gene_count2 = len(reg_genes) comp_gene_count2 = 0 both_gene_count2 = 0 elif all(item in reg_genes for item in comp_genes): comp_gene_count = 0 both_gene_count = 0 reg_gene_count2 = 0 comp_gene_count2 = len(comp_genes) both_gene_count2 = 0 res = pd.DataFrame( [ tf, reg_gene_count, comp_gene_count, both_gene_count, reg_gene_count2, comp_gene_count2, both_gene_count2, ], columns=["Value"], index=[ "TF", "reg_genes", "comp_genes", "both_genes", "reg_genes2", "comp_genes2", "both_genes2", ], ) # gene lists just_reg = reg_genes - both_genes just_comp = comp_genes - both_genes for i, l in zip( ["reg_genes", "comp_genes", "both_genes"], [just_reg, just_comp, both_genes] ): gene_list = np.array([model.num2name(g) for g in l]) gene_list = np.array2string(gene_list, separator=" ") res.loc[i, "list"] = gene_list return res # Regulon Scatter Plot def get_tfs_to_scatter(model, tf_string, tfcomplex_to_genename=None, verbose=False): """ Parameters ---------- model : :class:`~pymodulon.core.IcaData` IcaData object tf_string : str or ~numpy.nan String of TFs, or np.nan tfcomplex_to_genename : dict, optional dictionary pointing complex TRN entries to matching gene names in the gene table ex: {"FlhDC":"flhD"} verbose : bool Show verbose output (default: False) Returns ------- res: list List of gene loci """ # hard-coded TF names # should just modify TRN/gene info so everything matches but ok if tfcomplex_to_genename is None: tfcomplex_to_genename = {} rename_tfs = { "csqR": "yihW", "hprR": "yedW", "thi-box": "Thi-box", "FlhDC": "flhD", "RcsAB": "rcsB", "ntrC": "glnG", "gutR": "srlR", "IHF": "ihfB", "H-NS": "hns", "GadE-RcsB": "gadE", } for k, v in tfcomplex_to_genename.items(): rename_tfs[k] = v res = [] bad_res = [] if type(tf_string) == str: tf_string = tf_string.replace("[", "").replace("]", "") tfs = re.split("[+/]", tf_string) for tf in tfs: tf = tf.strip() if tf in rename_tfs.keys(): tf = rename_tfs[tf] try: b_num = model.name2num(tf) if b_num in model.X.index: res.append(tf) except ValueError: bad_res.append(tf) if verbose: print("TF has no associated expression profile:", tf) print("If {} is not a gene, this behavior is expected.".format(tf)) print( "If it is a gene, use consistent naming" " between the TRN and gene_table." ) res = list(set(res)) # remove duplicates bad_res = list(set(bad_res)) return res, bad_res def imdb_regulon_scatter_df(model, k, tfcomplex_to_genename=None): """ Parameters ---------- model : :class:`~pymodulon.core.IcaData` IcaData object k : int or str iModulon name tfcomplex_to_genename : dict, optional dictionary pointing complex TRN entries to matching gene names in the gene table ex: {"FlhDC":"flhD"} Returns ------- res: ~pandas.DataFrame A dataframe for producing the regulon scatter plots in iModulonDB """ if tfcomplex_to_genename is None: tfcomplex_to_genename = {} row = model.imodulon_table.loc[k] tfs, _ = get_tfs_to_scatter(model, row.regulator, tfcomplex_to_genename) if len(tfs) == 0: return None # coordinates for points coord = pd.DataFrame(columns=["A"] + tfs, index=model.A.columns) coord["A"] = model.A.loc[k] # params for fit line param_df = pd.DataFrame( columns=["A"] + tfs, index=["R2", "xmin", "xmid", "xmax", "ystart", "yend"] ) # fill in dfs for tf in tfs: # coordinates coord[tf] = model.X.loc[model.name2num(tf)] xlim = np.array([coord[tf].min(), coord[tf].max()]) # fit line params, r2 = _get_fit(coord[tf], coord["A"]) if len(params) == 2: # unbroken y = _solid_line(xlim, *params) out = [xlim[0], np.nan, xlim[1], y[0], y[1]] else: # broken xvals = np.array([xlim[0], params[2], xlim[1]]) y = _broken_line(xvals, *params) out = [xlim[0], params[2], xlim[1], y[0], y[2]] param_df[tf] = [r2] + out res =
pd.concat([param_df, coord], axis=0)
pandas.concat
# Copyright (C) 2021 ServiceNow, Inc. """ Functionality for training all keyword prediction downstream models and building the downstream task dataset """ import pandas as pd from typing import Union, List, Callable import tqdm import datetime import random import pathlib import numpy as np import subprocess import sys import joblib import os import re import json import wandb import sklearn import nrcan_p2.data_processing.pipeline_utilities as pu from sklearn.preprocessing import MultiLabelBinarizer from sklearn.model_selection import StratifiedKFold, KFold from sklearn.model_selection import cross_validate from sklearn.model_selection import GroupShuffleSplit, GridSearchCV from sklearn.model_selection import train_test_split from filelock import FileLock from imblearn.over_sampling import RandomOverSampler from nrcan_p2.data_processing.vectorization import convert_dfcol_text_to_vector from sklearn.metrics import ( accuracy_score, precision_recall_fscore_support, multilabel_confusion_matrix, confusion_matrix ) from keras import backend as K from tensorflow import keras import tensorflow as tf from tensorflow.keras import layers import pandas as pd import pathlib from gensim.test.utils import datapath, get_tmpfile from gensim.models import KeyedVectors from gensim.scripts.glove2word2vec import glove2word2vec from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.callbacks import Callback from gensim.test.utils import datapath, get_tmpfile from gensim.models import KeyedVectors from gensim.scripts.glove2word2vec import glove2word2vec #from sklearn.multioutput import MultiOutputClassifier from nrcan_p2.evaluation.sklearn_multioutput import MultiOutputClassifier from nrcan_p2.evaluation.bert_keyword_prediction import main as run_bert_multiclass_script class SupressSettingWithCopyWarning: """ To be used in with blocks to suppress SettingWithCopyWarning """ def __enter__(self): pd.options.mode.chained_assignment = None def __exit__(self, *args): pd.options.mode.chained_assignment = 'warn' def produce_text_column( df:pd.DataFrame, text_column:str, text_column_is_list:bool, text_col_processing:str, pre_pipeline:str, post_pipeline:str, ): """ Given a raw metadata df, produce the "text" column, adding "keyword_text" column to the df. This assumes that the input text column is either a str or a list of str that should be somehow converted to a single str :returns: input df, with an extra column 'keyword_text' with the processed text from column 'text_column """ output_col = 'keyword_text' # get the text df[output_col] = df[text_column] # the text column might be a list, # convert to a string as necesssary, using the # text_col_processing method if text_column_is_list: if text_col_processing == 'join': df[output_col] = df[output_col].str.join(' ') elif text_col_processing == 'first': df[output_col] = df[output_col].str[0] else: raise ValueError('Unknown text_col_processing') if pre_pipeline is not None: dff = pu.run_pipeline(df[[output_col]], col=output_col, next_col=output_col, preprocessing_pipe=pre_pipeline) else: dff = df if post_pipeline is not None: dff[output_col] = dff.apply( lambda row: pu.run_pipeline( row.to_frame().transpose(), col=output_col, next_col=output_col, postmerge_preprocessing_pipe=post_pipeline), axis=1 ) df[output_col] = dff[output_col] return df def produce_cat_column( df, keyword_col, pre_pipeline, post_pipeline ): """ Given a raw metadata df, produce the "category" column, adding "keyword_cat" column to the df. This assumes that the input category column is a list of strings. :returns: input df, with an extra column 'keyword_cat' with the processed text from column indicated by 'keyword_col' """ output_col = 'keyword_cat' df = df.copy() df[output_col] = df[keyword_col] if pre_pipeline is None and post_pipeline is None: return df # assume it's a list of keywords df_kw = df.explode(column=output_col) if pre_pipeline is not None: df_kw = pu.run_pipeline(df_kw[[output_col]], col=output_col, next_col=output_col, preprocessing_pipe=pre_pipeline) if post_pipeline is not None: df_kw[output_col] = df_kw.apply( lambda row: pu.run_pipeline( row.to_frame().transpose(), col=output_col, next_col=output_col, postmerge_preprocessing_pipe=post_pipeline), axis=1 ) df_kw = df_kw.reset_index().groupby(['index']).agg(lambda x: list(x)) # the previous step inserts nan values into what should be empty lists. remove them df_kw[output_col] = df_kw[output_col].apply(lambda x: [xx for xx in x if xx is not None and type(xx) == 'str']) df[output_col] = df_kw[output_col] return df def produce_keyword_classification_dataset_from_df( df_parquet:Union[str,pd.DataFrame], pre_pipeline:str, post_pipeline:str, cat_pre_pipeline:str, cat_post_pipeline:str, text_column:str, text_column_is_list:bool, text_col_processing:str, keyword_col:str, n_categories:int, task:str, n_negative_sample:int, do_not_drop:bool=False, ): """ Produce a keyword classification dataset :param df_parquet: the raw metadata file for produce a keyword dataset as either a df or the name of a parquet file to load :param pre_pipeline: the name of an NRCan "pre" pipeline to be used to process the text column. A pre pipeline is one that operates at the textbox level. :param post_pipeline: the name of an NRCan "post" pipeline to be used to process the text column after pre_pipeline. A post pipeline is one that operates on the textboxes once merged, but will be applied here per example in the input df :param cat_pre_pipeline: the name of an NRCan "pre" pipeline to be used to process the category column :param cat_post_pipeline: the name of an NRCan "post" pipeline to be used to process the category column :param text_column: the name of the text column in the input :param text_column_is_list: whether or not the text column is a str or a list of str :param keyword_col: the name of the keyword column in the input :param n_categories: the top-n categories to maintain :param task: the type of dataset to produce, MULTICLASS or PAIRING :param n_negative_samples: the number of negative samples for the PAIRING task, None to get all negative samples :param do_not_drop: whether to not drop rows with null values :returns: df with the columns MULTICLASS: 'keyword_text', 'cat_X' ... for each X in the output categories keyword_text is the text input cat_X is 0/1 indicating the presence of a category PAIRING: 'keyword_text', 'cat', 'label' keyword_text is the text input cat is the category name label is 0/1 to indicate whether the cat matches the keyword_text """ if type(df_parquet) == str: df = pd.read_parquet(df_parquet) else: df = df_parquet with SupressSettingWithCopyWarning(): df = produce_text_column( df, text_column=text_column, text_column_is_list=text_column_is_list, text_col_processing=text_col_processing, pre_pipeline=pre_pipeline, post_pipeline=post_pipeline, ) # get the subject # drop None values in the keywords with SupressSettingWithCopyWarning(): if task == 'MULTICLASS': df['keyword_cat'] = df[keyword_col].apply(lambda x: [xx.strip() for xx in x if xx is not None] if x is not None else []) else: df['keyword_cat'] = df[keyword_col].apply(lambda x: [xx.strip() for xx in x if xx is not None] if x is not None else x) df = produce_cat_column( df, keyword_col='keyword_cat', pre_pipeline=cat_pre_pipeline, post_pipeline=cat_post_pipeline, ) vc = df['keyword_cat'].explode().value_counts() if n_categories is None: vc_subset = vc.index else: vc_subset = vc.index[0:n_categories] if task == "MULTICLASS": assert df.index.is_unique mlb = MultiLabelBinarizer() # multiclass classifier, produce one column per label if not do_not_drop: print(df.shape) df = df.dropna(subset=['keyword_cat']) print(df.shape) t = mlb.fit_transform(df.keyword_cat) Y = pd.DataFrame(t,columns=['cat_' + c for c in mlb.classes_]) Y = Y[['cat_' + c for c in vc_subset]] df_ret = pd.merge(df, Y, right_index=True, left_index=True) elif task == "PAIRING": if not do_not_drop: print('Dropping...') print(df.shape) df = df.dropna(subset=['keyword_cat']) print(df.shape) full_vc_set = set(vc_subset) if n_negative_sample is not None: def get_sampled_categories(x): # Sample the desired number of negative examples rest = full_vc_set.difference(x) # if there are more elements than the sample we want, take a sample if len(rest) > n_negative_sample: rest = random.sample(full_vc_set.difference(x),n_negative_sample) # otherwise, just use the full set # probably unnecessary to check for nulls, but just in case... if len(rest) == 0: return None else: return rest df['cat_negative_sample'] = df.keyword_cat.apply(get_sampled_categories) else: def get_remaining_categories(x): # Produce all negative examples rest = list(full_vc_set.difference(x)) if len(rest) == 0: return None else: return rest df['cat_negative_sample'] = df.keyword_cat.apply(get_remaining_categories) print('Dropping negative samples...') print(df.shape) df = df.dropna(subset=['cat_negative_sample']) print(df.shape) df_pos = df.explode(column='keyword_cat') df_pos['label'] = 1 df_pos['cat'] = df_pos['keyword_cat'] df_neg = df.explode(column='cat_negative_sample') df_neg['label'] = 0 df_neg['cat'] = df_neg['cat_negative_sample'] df_ret = pd.concat([df_pos, df_neg]) df_ret = df_ret.drop(columns=['cat_negative_sample', 'keyword_cat']) #'cat_negative', elif task == "PREDICT": raise NotImplementedError() return df_ret def load_glove_model(model_path): print(f'Loading model from {model_path}...') glove_file = datapath(model_path) tmp_file_name = f"{pathlib.Path(model_path).parent}/tmp_word2vec.txt" with FileLock(str(tmp_file_name) + ".lock"): tmp_file = get_tmpfile(tmp_file_name) _ = glove2word2vec(glove_file, tmp_file) model = KeyedVectors.load_word2vec_format(tmp_file) return model class KerasValidMetrics(Callback): def __init__(self, val_data, batch_size = 32): super().__init__() self.validation_data = val_data #self.batch_size = batch_size def on_train_begin(self, logs={}): self.val_micro_precision = [] self.val_micro_recall = [] self.val_micro_fb1 = [] self.val_macro_precision = [] self.val_macro_recall = [] self.val_macro_fb1 = [] self.val_sample_precision = [] self.val_sample_recall = [] self.val_sample_fb1 = [] self.val_sample_support = [] self.val_accuracy = [] def on_epoch_end(self, epoch, logs={}): val_predict = (np.asarray(self.model.predict(self.validation_data[0]))).round() val_targ = self.validation_data[1] metrics = compute_metrics_multiclass(val_targ, val_predict) self.val_micro_precision.append(metrics['micro-precision']) self.val_macro_precision.append(metrics['macro-precision']) self.val_micro_recall.append(metrics['micro-recall']) self.val_macro_recall.append(metrics['macro-recall']) self.val_micro_fb1.append(metrics['micro-fb1']) self.val_macro_fb1.append(metrics['macro-fb1']) self.val_accuracy.append(metrics['accuracy']) self.val_sample_precision.append(metrics['sample-precision']) self.val_sample_recall.append(metrics['sample-recall']) self.val_sample_fb1.append(metrics['sample-fb1']) self.val_sample_support.append(metrics['support']) print(f" - val_micro-precision: {metrics['micro-precision']} - val_micro-recall: {metrics['micro-recall']} - val_micro_fb1: {metrics['micro-fb1']}") print(f" - val_macro-precision: {metrics['macro-precision']} - val_macro-recall: {metrics['macro-recall']} - val_macro_fb1: {metrics['macro-fb1']}") print(f" - val_accuracy: {metrics['accuracy']}") print(f" - val_sample_precision: {metrics['sample-precision']}") print(f" - val_sample_recall: {metrics['sample-recall']}") print(f" - val_sample_fb1: {metrics['sample-fb1']}") print(f" - val_sample_support: {metrics['support']}") return def run_keyword_prediction_keras( data_dir, output_dir, n_splits, n_rerun=5, keyword_text_col='sentence1', label_col='label', keyword_cat_col='cat', task='MULTICLASS', use_class_weight=False, embedding_model_path=None, njobs=None, existing_run_dir=None, ): """ Train a model with keras """ saved_args = locals() maxlen = 200 if existing_run_dir is not None: print('Starting from an existing run...') output_dir = pathlib.Path(existing_run_dir) assert output_dir.exists() else: now = datetime.datetime.today().strftime('%Y-%m-%d-%H-%M-%S%f') output_dir_parent = pathlib.Path(output_dir) output_dir = pathlib.Path(output_dir) / f'run-glove-keras-{task}_{now}' output_dir.mkdir(parents=False, exist_ok=False) input_df_log = output_dir / "input_data.log" if not input_df_log.exists(): with open(input_df_log, 'w') as f: json.dump({k: v.__name__ if callable(v) else v for k,v in saved_args.items()}, f, indent=4) embedding_model = load_glove_model(embedding_model_path) else: with open(input_df_log) as f: loaded_args = json.load(f) data_dir = loaded_args['data_dir'] n_splits = loaded_args['n_splits'] n_rerun = loaded_args['n_rerun'] keyword_text_col = loaded_args['keyword_text_col'] label_col = loaded_args['label_col'] keyword_cat_col = loaded_args['keyword_cat_col'] task = loaded_args['task'] use_class_weight = loaded_args['use_class_weight'] assert type(use_class_weight) == bool embedding_model_path = loaded_args['embedding_model_path'] njobs = loaded_args['njobs'] print('replacing...') print(saved_args) print('with..') print(loaded_args) embedding_model = load_glove_model(embedding_model_path) data_dir = pathlib.Path(data_dir) models_all = {} cv_scores_all = {} for i in range(0,n_splits): suffix = '.csv' print('--------------------------------------------------') print(f"Training split {i}...") train_file = data_dir / f"split_{i}" / ("train" + suffix) print(f"Train file: {train_file}") train_df = pd.read_csv(train_file) valid_file = data_dir / f"split_{i}" / ("valid" + suffix) print(f"Valid file: {valid_file}") valid_df = pd.read_csv(valid_file) valid_df = valid_df.fillna("") # we let the tokenizer build on both the train/val because we might # have representations for tokens in val in our embedding already # but these might not be in the training set print('Building tokenizer...') tokenizer = Tokenizer( num_words=None, filters="", lower=True, split=" ", char_level=False, oov_token=None, document_count=0, ) tokenizer.fit_on_texts(pd.concat([train_df,valid_df])[keyword_text_col].values) train_sequences_sent1 = tokenizer.texts_to_sequences(train_df[keyword_text_col].values) valid_sequences_sent1 = tokenizer.texts_to_sequences(valid_df[keyword_text_col].values) word_index = tokenizer.word_index print(f'Found {len(word_index)} unique tokens in {keyword_text_col}.') if task == 'MULTICLASS': X_train = keras.preprocessing.sequence.pad_sequences(train_sequences_sent1, maxlen=maxlen) X_test = keras.preprocessing.sequence.pad_sequences(valid_sequences_sent1, maxlen=maxlen) print(X_train.shape) print(X_test.shape) cols = train_df.filter(regex=keyword_cat_col).columns Y_train = train_df.loc[:,cols].values Y_test = valid_df.loc[:,cols].values class_weights = Y_train.shape[0]/Y_train.sum(axis=0) class_weights_per_datum = np.dot(Y_train, class_weights) elif task == 'PAIRING': raise NotImplementedError() else: raise ValueError(f'Unknown task {task}') models={} cv_scores={} for j in range(n_rerun): print(f"Training rerun {j}...") sub_output_dir = output_dir / f"split_{i}_run_{j}" print(f'...{sub_output_dir}') if existing_run_dir is not None: model_save_name = pathlib.Path(sub_output_dir) / "model.keras" model_cv_results_file = pathlib.Path(sub_output_dir) / "model_history.json" scores_file = pathlib.Path(sub_output_dir) / "metrics.json" if model_save_name.exists() and model_cv_results_file.exists() and scores_file.exists(): print(f'...already trained for split {i} run {j}. Skipping...') continue else: sub_output_dir.mkdir(parents=False, exist_ok=False) keras_model = build_keras_model( embedding_model=embedding_model, task=task, output_classes_shape=Y_train.shape[1] ) def weighted_binary_crossentropy(y_true, y_pred, class_weights): return K.mean(K.binary_crossentropy(tf.cast(y_true, tf.float32), y_pred) * class_weights, axis=-1) if use_class_weight: print(f'Training using class weighted loss..') loss = lambda y_true, y_pred: weighted_binary_crossentropy(y_true, y_pred, class_weights) else: print(f'Training using normal un-class weighted loss..') loss = 'binary_crossentropy' keras_model.compile("adam", loss=loss) model, cv_score = run_keras_model_cv( X_train=X_train, Y_train=Y_train, X_test=X_test, Y_test=Y_test, output_dir=sub_output_dir, model=keras_model, random_state=j, njobs=njobs, ) models[j] = model cv_scores[j] = cv_score cv_scores_all[i] = cv_scores models_all[i] = models return models_all, cv_scores_all def run_keyword_prediction_classic( data_dir, output_dir, clf_initializer, n_splits, n_rerun=5, keyword_text_col='sentence1', label_col='label', keyword_cat_col='cat', task='MULTICLASS', use_class_weight=False, embedding_model_path=None, njobs=None, use_multioutput_wrapper=False, vectorization_method='sum', ): """ Train a model using sklearn """ saved_args = locals() now = datetime.datetime.today().strftime('%Y-%m-%d-%H-%M-%S%f') output_dir_parent = pathlib.Path(output_dir) output_dir = pathlib.Path(output_dir) / f'run-glove-{task}_{now}' output_dir.mkdir(parents=False, exist_ok=False) embedding_model = load_glove_model(embedding_model_path) input_df_log = output_dir / "input_data.log" with open(input_df_log, 'w') as f: json.dump({k: v.__name__ if callable(v) else v for k,v in saved_args.items()}, f, indent=4) data_dir = pathlib.Path(data_dir) models_all = {} cv_scores_all = {} for i in range(0,n_splits): suffix = '.csv' print('--------------------------------------------------') print(f"Training split {i}...") train_file = data_dir / f"split_{i}" / ("train" + suffix) print(f"Train file: {train_file}") train_df = pd.read_csv(train_file) valid_file = data_dir / f"split_{i}" / ("valid" + suffix) print(f"Valid file: {valid_file}") valid_df = pd.read_csv(valid_file) if task == 'MULTICLASS': X_train = convert_dfcol_text_to_vector(train_df, keyword_text_col, embedding_model, method=vectorization_method) # fillna if necessary valid_df[keyword_text_col] = valid_df[keyword_text_col].fillna('') X_test = convert_dfcol_text_to_vector(valid_df, keyword_text_col, embedding_model, method=vectorization_method) cols = train_df.filter(regex=keyword_cat_col).columns Y_train = train_df.loc[:,cols].values Y_test = valid_df.loc[:,cols].values class_weights = Y_train.shape[0]/Y_train.sum(axis=0) class_weights_per_datum = np.dot(Y_train, class_weights) elif task == 'PAIRING': X1 = convert_dfcol_text_to_vector(train_df, keyword_text_col, embedding_model, method=vectorization_method) X2 = convert_dfcol_text_to_vector(train_df, cat_text_col, embedding_model, method=vectorization_method) X_train= np.concatenate([X1, X2], axis=1) Y_train = train_df[label_col].values X1 = convert_dfcol_text_to_vector(valid_df, keyword_text_col, embedding_model, method=vectorization_method) X2 = convert_dfcol_text_to_vector(valid_df, cat_text_col, embedding_model, method=vectorization_method) X_test= np.concatenate([X1, X2], axis=1) Y_test = valid_df[label_col].values else: raise ValueError(f'Unknown task {task}') models={} cv_scores={} for j in range(n_rerun): print(f"Training rerun {j}...") sub_output_dir = output_dir / f"split_{i}_run_{j}" print(f'...{sub_output_dir}') sub_output_dir.mkdir(parents=False, exist_ok=False) model, cv_score = run_sklearn_model_cv( X_train=X_train, Y_train=Y_train, X_test=X_test, Y_test=Y_test, output_dir=sub_output_dir, use_class_weight=use_class_weight, class_weights_per_datum=class_weights_per_datum, clf_initializer=clf_initializer, random_state=j, njobs=njobs, use_multioutput_wrapper=use_multioutput_wrapper ) models[j] = model cv_scores[j] = cv_score cv_scores_all[i] = cv_scores models_all[i] = models return models_all, cv_scores_all def compute_metrics_multiclass(y_true, y_pred): """ Compute multiclass metrics """ micro_precision, micro_recall, micro_fb1, support = precision_recall_fscore_support(y_true, y_pred, average='micro') macro_precision, macro_recall, macro_fb1, support = precision_recall_fscore_support(y_true, y_pred, average='macro') weighted_precision, weighted_recall, weighted_fb1, support = precision_recall_fscore_support(y_true, y_pred, average='weighted') sample_precision, sample_recall, sample_fb1, support = precision_recall_fscore_support(y_true, y_pred, average=None) confusion_matrix = multilabel_confusion_matrix(y_true, y_pred) return {'accuracy': accuracy_score(y_true, y_pred), 'micro-precision': micro_precision, 'micro-recall': micro_recall, 'micro-fb1': micro_fb1, 'macro-precision': macro_precision, 'macro-recall': macro_recall, 'macro-fb1': macro_fb1, 'support': support.tolist(), 'sample-precision': sample_precision.tolist(), 'sample-recall': sample_recall.tolist(), 'sample-fb1': sample_fb1.tolist(), 'confusion_matrix': confusion_matrix.tolist() } class NumpyEncoder(json.JSONEncoder): """ For saving dict with numpy arrays to json """ def default(self, obj): if isinstance(obj, np.ndarray): return obj.tolist() return json.JSONEncoder.default(self, obj) def build_keras_model( embedding_model, task, output_classes_shape, ): """ Build the keras model """ if task == 'MULTICLASS': inputs = keras.Input(shape=(None,), dtype="int32") embedding_layer = embedding_model.get_keras_embedding() x = embedding_layer(inputs) x = layers.Bidirectional(layers.LSTM(64))(x) outputs = layers.Dense(output_classes_shape, activation="sigmoid")(x) model = keras.Model(inputs, outputs) model.summary() elif task == 'PAIRING': inputs = keras.Input(shape=(None,), dtype="int32") embedding_layer = embedding_model.get_keras_embedding() x = embedding_layer(inputs) x = layers.Bidirectional(layers.LSTM(64))(x) y = embedding_layer(inputs2) y = layers.Bidirectional(layers.LSTM(64))(x) x = layers.Concatenate(axis=-1)([x,y]) outputs = layers.Dense(y_train.shape[1], activation="sigmoid")(x) model = keras.Model(inputs, outputs) model.summary() return model def run_keras_model_cv( X_train, Y_train, X_test, Y_test, output_dir, model, random_state:float, njobs=None, ): """ Run cross validation for a single keras model """ print(X_train.shape, Y_train.shape, X_test.shape, Y_test.shape) X_train_train, X_train_valid, Y_train_train, Y_train_valid = train_test_split(X_train, Y_train, test_size=0.1, random_state=random_state) keras_valid_metrics = KerasValidMetrics(val_data=(X_train_valid, Y_train_valid)) history = model.fit(X_train_train, Y_train_train, batch_size=32, epochs=200, validation_data=(X_train_valid, Y_train_valid), callbacks=[keras_valid_metrics]) # save the model model_save_name = pathlib.Path(output_dir) / "model.keras" print(f"Saving model to {model_save_name}") model.save(model_save_name) model_cv_results_file = pathlib.Path(output_dir) / "model_history.json" with open(model_cv_results_file, 'w') as f: json.dump(history.history, f, indent=4, cls=NumpyEncoder) preds_prob = model.predict(X_test) preds = (preds_prob > 0.5).astype(int) preds_prob_x = model.predict(X_train) preds_x = (preds_prob_x > 0.5).astype(int) print(preds_x.shape, preds.shape) score_values = {} test_metrics = compute_metrics_multiclass(Y_test, preds) for metric_name,metric_value in test_metrics.items(): metric_name = f'eval_{metric_name}' score_values[metric_name] = metric_value print(f'{metric_name}: {score_values[metric_name]}') train_metrics = compute_metrics_multiclass(Y_train,preds_x) for metric_name,metric_value in train_metrics.items(): metric_name = f'train_{metric_name}' score_values[metric_name] = metric_value print(f'{metric_name}: {score_values[metric_name]}') scores_file = pathlib.Path(output_dir) / "metrics.json" print(f"Writing metrics to {scores_file}...") with open(scores_file, 'w') as f: json.dump(score_values, f, indent=4) return model, score_values def run_sklearn_model_cv( X_train, Y_train, X_test, Y_test, output_dir, clf_initializer, use_class_weight:bool, class_weights_per_datum:np.ndarray, #only used if use_class_weight is true and is necessary random_state:float, njobs=None, use_multioutput_wrapper=False, ): """ Run cross validation for a single sklearn model """ print(X_train.shape, Y_train.shape, X_test.shape, Y_test.shape) clf, params, gs_params = clf_initializer(class_weight="balanced" if use_class_weight else None, njobs=njobs, random_state=random_state) using_mlp = type(clf) in [sklearn.neural_network.MLPClassifier] if use_multioutput_wrapper: print('Wrapping the classifier with a multioutput classifier...') gs_params = {f'estimator__{key}':value for key,value in gs_params.items()} clf = MultiOutputClassifier(clf, n_jobs=njobs) gs = GridSearchCV(clf, gs_params, refit='f1_macro', cv=5, return_train_score=True, scoring=['accuracy', 'f1_macro', 'f1_micro', 'f1_samples', 'recall_macro', 'recall_micro', 'recall_samples', 'precision_macro', 'precision_micro', 'precision_samples']) if use_class_weight and using_mlp: print('Training with sample weights....') ros = RandomOverSampler(random_state=random_state) if use_multioutput_wrapper: print('..Training with multioutput oversampling...') gs.fit(X_train,Y_train, imbalanced_sampler=ros) else: print('..NN dont support sampling') gs.fit(X_train, Y_train) else: print('Training without sample_weights...') gs.fit(X_train,Y_train) # save the model model_save_name = pathlib.Path(output_dir) / "model.joblib" print(f"Saving model to {model_save_name}") joblib.dump(clf, model_save_name) gs_save_name = pathlib.Path(output_dir) / "gs.joblib" print(f"Saving gs to {gs_save_name}") joblib.dump(gs, gs_save_name) model_cv_results_file = pathlib.Path(output_dir) / "model_cv_results.json" with open(model_cv_results_file, 'w') as f: json.dump(gs.cv_results_, f, indent=4, cls=NumpyEncoder) model_params = pathlib.Path(output_dir) / "model_params.json" with open(model_params, 'w') as f: json.dump(gs.best_params_, f, indent=4, cls=NumpyEncoder) preds = gs.predict(X_test) preds_x = gs.predict(X_train) print(preds_x.shape, preds.shape) score_values = {} test_metrics = compute_metrics_multiclass(Y_test, preds) for metric_name,metric_value in test_metrics.items(): metric_name = f'eval_{metric_name}' score_values[metric_name] = metric_value print(f'{metric_name}: {score_values[metric_name]}') train_metrics = compute_metrics_multiclass(Y_train,preds_x) for metric_name,metric_value in train_metrics.items(): metric_name = f'train_{metric_name}' score_values[metric_name] = metric_value print(f'{metric_name}: {score_values[metric_name]}') scores_file = pathlib.Path(output_dir) / "metrics.json" print(f"Writing metrics to {scores_file}...") with open(scores_file, 'w') as f: json.dump(score_values, f, indent=4) return clf, score_values def produce_dataset_splits( output_dir:str, # the output dir for the data input_df_file:str, # the input file output_name:str, # the name of the output subfolder task:str, # PAIRING or MULTICLASS, keyword_text_col='keyword_text', label_col='label', keyword_cat_col='cat', n_splits=5, test_size=0.8, dropna=False, model_type="BERT" ): output_dir = pathlib.Path(output_dir) / output_name if output_dir.exists(): raise ValueError(f'ERROR: output dir {output_dir} already exists') if not output_dir.exists(): output_dir.mkdir(parents=False, exist_ok=False) input_df_log = output_dir / "input_data.log" with open(input_df_log, 'w') as f: f.write(str(input_df_file)) df =
pd.read_parquet(input_df_file)
pandas.read_parquet
""" Tests dtype specification during parsing for all of the parsers defined in parsers.py """ from io import StringIO import os import numpy as np import pytest from pandas.errors import ParserWarning from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import Categorical, DataFrame, Index, MultiIndex, Series, Timestamp, concat import pandas._testing as tm @pytest.mark.parametrize("dtype", [str, object]) @pytest.mark.parametrize("check_orig", [True, False]) def test_dtype_all_columns(all_parsers, dtype, check_orig): # see gh-3795, gh-6607 parser = all_parsers df = DataFrame( np.random.rand(5, 2).round(4), columns=list("AB"), index=["1A", "1B", "1C", "1D", "1E"], ) with tm.ensure_clean("__passing_str_as_dtype__.csv") as path: df.to_csv(path) result = parser.read_csv(path, dtype=dtype, index_col=0) if check_orig: expected = df.copy() result = result.astype(float) else: expected = df.astype(str) tm.assert_frame_equal(result, expected) def test_dtype_all_columns_empty(all_parsers): # see gh-12048 parser = all_parsers result = parser.read_csv(StringIO("A,B"), dtype=str) expected = DataFrame({"A": [], "B": []}, index=[], dtype=str) tm.assert_frame_equal(result, expected) def test_dtype_per_column(all_parsers): parser = all_parsers data = """\ one,two 1,2.5 2,3.5 3,4.5 4,5.5""" expected = DataFrame( [[1, "2.5"], [2, "3.5"], [3, "4.5"], [4, "5.5"]], columns=["one", "two"] ) expected["one"] = expected["one"].astype(np.float64) expected["two"] = expected["two"].astype(object) result = parser.read_csv(StringIO(data), dtype={"one": np.float64, 1: str}) tm.assert_frame_equal(result, expected) def test_invalid_dtype_per_column(all_parsers): parser = all_parsers data = """\ one,two 1,2.5 2,3.5 3,4.5 4,5.5""" with pytest.raises(TypeError, match="data type [\"']foo[\"'] not understood"): parser.read_csv(StringIO(data), dtype={"one": "foo", 1: "int"}) @pytest.mark.parametrize( "dtype", [ "category", CategoricalDtype(), {"a": "category", "b": "category", "c": CategoricalDtype()}, ], ) def test_categorical_dtype(all_parsers, dtype): # see gh-10153 parser = all_parsers data = """a,b,c 1,a,3.4 1,a,3.4 2,b,4.5""" expected = DataFrame( { "a": Categorical(["1", "1", "2"]), "b": Categorical(["a", "a", "b"]), "c": Categorical(["3.4", "3.4", "4.5"]), } ) actual = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(actual, expected) @pytest.mark.parametrize("dtype", [{"b": "category"}, {1: "category"}]) def test_categorical_dtype_single(all_parsers, dtype): # see gh-10153 parser = all_parsers data = """a,b,c 1,a,3.4 1,a,3.4 2,b,4.5""" expected = DataFrame( {"a": [1, 1, 2], "b": Categorical(["a", "a", "b"]), "c": [3.4, 3.4, 4.5]} ) actual = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(actual, expected) def test_categorical_dtype_unsorted(all_parsers): # see gh-10153 parser = all_parsers data = """a,b,c 1,b,3.4 1,b,3.4 2,a,4.5""" expected = DataFrame( { "a": Categorical(["1", "1", "2"]), "b": Categorical(["b", "b", "a"]), "c": Categorical(["3.4", "3.4", "4.5"]), } ) actual = parser.read_csv(StringIO(data), dtype="category") tm.assert_frame_equal(actual, expected) def test_categorical_dtype_missing(all_parsers): # see gh-10153 parser = all_parsers data = """a,b,c 1,b,3.4 1,nan,3.4 2,a,4.5""" expected = DataFrame( { "a": Categorical(["1", "1", "2"]), "b": Categorical(["b", np.nan, "a"]), "c": Categorical(["3.4", "3.4", "4.5"]), } ) actual = parser.read_csv(StringIO(data), dtype="category") tm.assert_frame_equal(actual, expected) @pytest.mark.slow def test_categorical_dtype_high_cardinality_numeric(all_parsers): # see gh-18186 parser = all_parsers data = np.sort([str(i) for i in range(524289)]) expected = DataFrame({"a": Categorical(data, ordered=True)}) actual = parser.read_csv(StringIO("a\n" + "\n".join(data)), dtype="category") actual["a"] = actual["a"].cat.reorder_categories( np.sort(actual.a.cat.categories), ordered=True ) tm.assert_frame_equal(actual, expected) def test_categorical_dtype_latin1(all_parsers, csv_dir_path): # see gh-10153 pth = os.path.join(csv_dir_path, "unicode_series.csv") parser = all_parsers encoding = "latin-1" expected = parser.read_csv(pth, header=None, encoding=encoding) expected[1] = Categorical(expected[1]) actual = parser.read_csv(pth, header=None, encoding=encoding, dtype={1: "category"}) tm.assert_frame_equal(actual, expected) def test_categorical_dtype_utf16(all_parsers, csv_dir_path): # see gh-10153 pth = os.path.join(csv_dir_path, "utf16_ex.txt") parser = all_parsers encoding = "utf-16" sep = "\t" expected = parser.read_csv(pth, sep=sep, encoding=encoding) expected = expected.apply(Categorical) actual = parser.read_csv(pth, sep=sep, encoding=encoding, dtype="category") tm.assert_frame_equal(actual, expected) def test_categorical_dtype_chunksize_infer_categories(all_parsers): # see gh-10153 parser = all_parsers data = """a,b 1,a 1,b 1,b 2,c""" expecteds = [ DataFrame({"a": [1, 1], "b": Categorical(["a", "b"])}), DataFrame({"a": [1, 2], "b": Categorical(["b", "c"])}, index=[2, 3]), ] actuals = parser.read_csv(StringIO(data), dtype={"b": "category"}, chunksize=2) for actual, expected in zip(actuals, expecteds): tm.assert_frame_equal(actual, expected) def test_categorical_dtype_chunksize_explicit_categories(all_parsers): # see gh-10153 parser = all_parsers data = """a,b 1,a 1,b 1,b 2,c""" cats = ["a", "b", "c"] expecteds = [ DataFrame({"a": [1, 1], "b": Categorical(["a", "b"], categories=cats)}), DataFrame( {"a": [1, 2], "b": Categorical(["b", "c"], categories=cats)}, index=[2, 3] ), ] dtype = CategoricalDtype(cats) actuals = parser.read_csv(StringIO(data), dtype={"b": dtype}, chunksize=2) for actual, expected in zip(actuals, expecteds): tm.assert_frame_equal(actual, expected) @pytest.mark.parametrize("ordered", [False, True]) @pytest.mark.parametrize( "categories", [["a", "b", "c"], ["a", "c", "b"], ["a", "b", "c", "d"], ["c", "b", "a"]], ) def test_categorical_category_dtype(all_parsers, categories, ordered): parser = all_parsers data = """a,b 1,a 1,b 1,b 2,c""" expected = DataFrame( { "a": [1, 1, 1, 2], "b": Categorical( ["a", "b", "b", "c"], categories=categories, ordered=ordered ), } ) dtype = {"b": CategoricalDtype(categories=categories, ordered=ordered)} result = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_categorical_category_dtype_unsorted(all_parsers): parser = all_parsers data = """a,b 1,a 1,b 1,b 2,c""" dtype = CategoricalDtype(["c", "b", "a"]) expected = DataFrame( { "a": [1, 1, 1, 2], "b": Categorical(["a", "b", "b", "c"], categories=["c", "b", "a"]), } ) result = parser.read_csv(StringIO(data), dtype={"b": dtype}) tm.assert_frame_equal(result, expected) def test_categorical_coerces_numeric(all_parsers): parser = all_parsers dtype = {"b": CategoricalDtype([1, 2, 3])} data = "b\n1\n1\n2\n3" expected = DataFrame({"b": Categorical([1, 1, 2, 3])}) result = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_categorical_coerces_datetime(all_parsers): parser = all_parsers dti = pd.DatetimeIndex(["2017-01-01", "2018-01-01", "2019-01-01"], freq=None) dtype = {"b": CategoricalDtype(dti)} data = "b\n2017-01-01\n2018-01-01\n2019-01-01" expected = DataFrame({"b": Categorical(dtype["b"].categories)}) result = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_categorical_coerces_timestamp(all_parsers): parser = all_parsers dtype = {"b": CategoricalDtype([Timestamp("2014")])} data = "b\n2014-01-01\n2014-01-01T00:00:00" expected = DataFrame({"b": Categorical([Timestamp("2014")] * 2)}) result = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_categorical_coerces_timedelta(all_parsers): parser = all_parsers dtype = {"b": CategoricalDtype(pd.to_timedelta(["1H", "2H", "3H"]))} data = "b\n1H\n2H\n3H" expected = DataFrame({"b": Categorical(dtype["b"].categories)}) result = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "data", [ "b\nTrue\nFalse\nNA\nFalse", "b\ntrue\nfalse\nNA\nfalse", "b\nTRUE\nFALSE\nNA\nFALSE", "b\nTrue\nFalse\nNA\nFALSE", ], ) def test_categorical_dtype_coerces_boolean(all_parsers, data): # see gh-20498 parser = all_parsers dtype = {"b": CategoricalDtype([False, True])} expected = DataFrame({"b": Categorical([True, False, None, False])}) result = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_categorical_unexpected_categories(all_parsers): parser = all_parsers dtype = {"b": CategoricalDtype(["a", "b", "d", "e"])} data = "b\nd\na\nc\nd" # Unexpected c expected = DataFrame({"b": Categorical(list("dacd"), dtype=dtype["b"])}) result = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_empty_pass_dtype(all_parsers): parser = all_parsers data = "one,two" result = parser.read_csv(StringIO(data), dtype={"one": "u1"}) expected = DataFrame( {"one": np.empty(0, dtype="u1"), "two": np.empty(0, dtype=object)}, index=Index([], dtype=object), ) tm.assert_frame_equal(result, expected) def test_empty_with_index_pass_dtype(all_parsers): parser = all_parsers data = "one,two" result = parser.read_csv( StringIO(data), index_col=["one"], dtype={"one": "u1", 1: "f"} ) expected = DataFrame( {"two": np.empty(0, dtype="f")}, index=Index([], dtype="u1", name="one") ) tm.assert_frame_equal(result, expected) def test_empty_with_multi_index_pass_dtype(all_parsers): parser = all_parsers data = "one,two,three" result = parser.read_csv( StringIO(data), index_col=["one", "two"], dtype={"one": "u1", 1: "f8"} ) exp_idx = MultiIndex.from_arrays( [np.empty(0, dtype="u1"), np.empty(0, dtype=np.float64)], names=["one", "two"] ) expected = DataFrame({"three": np.empty(0, dtype=object)}, index=exp_idx) tm.assert_frame_equal(result, expected) def test_empty_with_mangled_column_pass_dtype_by_names(all_parsers): parser = all_parsers data = "one,one" result = parser.read_csv(StringIO(data), dtype={"one": "u1", "one.1": "f"}) expected = DataFrame( {"one": np.empty(0, dtype="u1"), "one.1": np.empty(0, dtype="f")}, index=Index([], dtype=object), ) tm.assert_frame_equal(result, expected) def test_empty_with_mangled_column_pass_dtype_by_indexes(all_parsers): parser = all_parsers data = "one,one" result = parser.read_csv(StringIO(data), dtype={0: "u1", 1: "f"}) expected = DataFrame( {"one": np.empty(0, dtype="u1"), "one.1": np.empty(0, dtype="f")}, index=Index([], dtype=object), ) tm.assert_frame_equal(result, expected) def test_empty_with_dup_column_pass_dtype_by_indexes(all_parsers): # see gh-9424 parser = all_parsers expected = concat( [Series([], name="one", dtype="u1"), Series([], name="one.1", dtype="f")], axis=1, ) expected.index = expected.index.astype(object) data = "one,one" result = parser.read_csv(StringIO(data), dtype={0: "u1", 1: "f"}) tm.assert_frame_equal(result, expected) def test_empty_with_dup_column_pass_dtype_by_indexes_raises(all_parsers): # see gh-9424 parser = all_parsers expected = concat( [Series([], name="one", dtype="u1"), Series([], name="one.1", dtype="f")], axis=1, ) expected.index = expected.index.astype(object) with pytest.raises(ValueError, match="Duplicate names"): data = "" parser.read_csv(StringIO(data), names=["one", "one"], dtype={0: "u1", 1: "f"}) def test_raise_on_passed_int_dtype_with_nas(all_parsers): # see gh-2631 parser = all_parsers data = """YEAR, DOY, a 2001,106380451,10 2001,,11 2001,106380451,67""" msg = ( "Integer column has NA values" if parser.engine == "c" else "Unable to convert column DOY" ) with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), dtype={"DOY": np.int64}, skipinitialspace=True) def test_dtype_with_converters(all_parsers): parser = all_parsers data = """a,b 1.1,2.2 1.2,2.3""" # Dtype spec ignored if converted specified. with tm.assert_produces_warning(ParserWarning): result = parser.read_csv( StringIO(data), dtype={"a": "i8"}, converters={"a": lambda x: str(x)} ) expected =
DataFrame({"a": ["1.1", "1.2"], "b": [2.2, 2.3]})
pandas.DataFrame
import numpy as np import pandas as pd from sklearn.preprocessing import LabelBinarizer from sklearn.model_selection import StratifiedKFold from sklearn.preprocessing import StandardScaler from joblib import parallel_backend from multiprocessing import cpu_count import os, gc, joblib from tqdm import tqdm from collections import defaultdict import torch import warnings warnings.filterwarnings('ignore') pd.set_option("display.max_colwidth", 100) pd.set_option("display.max_rows", 20) osj = os.path.join; osl = os.listdir n_cpus = cpu_count() class ViralDataset(torch.utils.data.Dataset): def __init__(self, df: pd.DataFrame, feat_cols: list, mode: str): self.X = df[feat_cols].values # [:,np.newaxis,:] self.mode = mode if mode != 'test': self.targets = df['virality'].values # [:,np.newaxis] # - 1 # assert np.sum(~df['virality'].isin(list(range(5))))==0 def __len__(self): return len(self.X) def __getitem__(self, idx): if self.mode=='test': return torch.tensor(self.X[idx], dtype=torch.float32) else: return (torch.tensor(self.X[idx], dtype=torch.float32), torch.tensor(self.targets[idx], dtype=torch.long)) # long)) class ExtractFeatsDataset(torch.utils.data.Dataset): def __init__(self, df: pd.DataFrame, feat_cols: list, target_cols: list, mode: str): self.X = df[feat_cols].values # [:,np.newaxis,:] # self.target_cols = target_cols self.mode = mode if mode != 'test': if len(target_cols)==1: self.targets = df[target_cols[0]].values # [:,np.newaxis] # - 1 self.target_dtype = torch.long else: self.targets = df[target_cols].values # [:,np.newaxis] # - 1 self.target_dtype = torch.float32 # assert np.sum(~df['virality'].isin(list(range(5))))==0 def __len__(self): return len(self.X) def __getitem__(self, idx): if self.mode=='test': return torch.tensor(self.X[idx], dtype=torch.float32) else: return (torch.tensor(self.X[idx], dtype=torch.float32), torch.tensor(self.targets[idx], dtype=self.target_dtype)) # long)) def to_binary_categories(df, cat_col='tweet_language_id'): df.loc[:, cat_col] = (df[cat_col]!=0).astype(np.int8) return df def freq_encoding(df, freq_cols: list, main_col='tweet_id'): for c in freq_cols: count_df = df.groupby([c])[main_col].count().reset_index() count_df.columns = [c, '{}_freq'.format(c)] df = df.merge(count_df, how='left', on=c) return df def bin_feats(df, feats=[], n_bins_default=20): bin_counts = defaultdict(lambda: n_bins_default) bin_counts['user_tweet_count'] = 20 for feature in feats: if '_binned' in feature: continue n_bins = bin_counts[feature] if n_bins: bins = np.unique(df[feature].quantile(np.linspace(0, 1, n_bins)).values) df[feature + '_binned'] = pd.cut( df[feature], bins=bins, duplicates='drop' ).cat.codes return df def to_categorical(df): cat_cols = ['tweet_has_attachment', 'user_has_location', 'user_has_url', 'user_verified', ] df[cat_cols] = df[cat_cols].astype('category') return df def change2float32(df): float_cols = df.select_dtypes('float64').columns df[float_cols] = df[float_cols].astype(np.float32) return df def merge_df2media(df, df_media): num_media = (df_media.groupby('tweet_id')['media_id'] .nunique() .reset_index()) df_media.drop('media_id', axis=1, inplace=True) num_media.columns = ['tweet_id', 'num_media'] df_media = df_media.merge(num_media, how='left', on='tweet_id') media_cols = [col for col in df_media if col not in ['tweet_id','media_id']] df_media = df_media.groupby('tweet_id')[media_cols].mean().reset_index() # df_media = mean_feats.merge(df_media[['tweet_id']], how='left', on='tweet_id') # del mean_feats; _ = gc.collect() df_media['tweet_has_media'] = True df = df.merge(df_media, how='left', on='tweet_id') # fillna False if tweet has no media df['tweet_has_media'] = df['tweet_has_media'].fillna(False) # the same for the count of number of media per tweet df['num_media'] = df['num_media'].fillna(0).astype(np.int8) return df # def add_num_media_user(df): # # todo when not debug: df['num_media'].equals(df['num_media_user']) # num_media_user = df.groupby('tweet_id')['num_media'].sum().reset_index() # num_media_user.columns = ['tweet_id','num_media_user'] # df = df.merge(num_media_user, how='left', on='tweet_id') # df['num_media_user'] = df['num_media_user'].astype(np.int8) # return df def tweets_user_created_date(df): for feat_ in ['tweet_created_at_year', 'tweet_created_at_month', 'tweet_created_at_day', 'tweet_created_at_hour']: # counts_df_cols = ['tweet_user_id']+[f"tweets_in_{feat_.split('_')[-1]}_{time_}" for time_ in np.sort(df[feat_].unique())] # tweet_user_ids = np.sort(df['tweet_user_id'].unique()) # counts_df = pd.DataFrame(index=range(tweet_user_ids), columns=counts_df_cols) # counts_df['tweet_user_id'] = tweet_user_ids counts_map = df.groupby('tweet_user_id')[feat_].apply(lambda x: x.value_counts()) counts_map = counts_map.unstack(level=1) counts_map.columns = [f"tweets_in_{feat_.split('_')[-1]}_"+str(col) for col in counts_map.columns] counts_map = counts_map.fillna(0).reset_index() df = df.merge(counts_map, how='left', on='tweet_user_id') return df # n_tweets_time_user = df.groupby('tweet_user_id')[feat_].count().reset_index() # n_tweets_time_user.columns = ['tweet_user_id', f"n_tweets_{feat_.split('_')[-1]}_user_count"] # df = df.merge(n_tweets_time_user, how='left', on='tweet_user_id') def create_date_col(df): tweet_date_cols = ['tweet_created_at_year', 'tweet_created_at_month', 'tweet_created_at_day'] df['date'] = df[tweet_date_cols].apply(lambda x: str(x['tweet_created_at_month']).strip() + '/' + str(x['tweet_created_at_day']).strip() + '/' + str(x['tweet_created_at_year']).strip(), axis=1) df['date'] = pd.to_datetime(df['date']) return df def add_sincos(df): hour_sine = np.sin(2 * np.pi * df['tweet_created_at_hour'] / 24.0) hour_sine.name = 'sin_hour' hour_cosine = np.cos(2 * np.pi * df['tweet_created_at_hour'] / 24.0) hour_cosine.name = 'cos_hour' df = df.join([hour_sine, hour_cosine]) return df def add_dummy_dates(df): year = pd.get_dummies(df.tweet_created_at_year, prefix='ohe_year') month = pd.get_dummies(df.tweet_created_at_month, prefix='ohe_month') day = pd.get_dummies(df.tweet_created_at_day, prefix='ohe_day') user_year = pd.get_dummies(df.user_created_at_year, prefix='ohe_user_year') user_month = pd.get_dummies(df.user_created_at_month, prefix='ohe_user_month') df = df.join([year, month, day, user_year, user_month]) return df def add_date_feats(df): # todo OHE date # todo to sin, cos(date) #df_old_index = df.index df = create_date_col(df) df = add_sincos(df) df = add_dummy_dates(df) cols_resample = ['tweet_hashtag_count', 'tweet_url_count', 'tweet_mention_count', ] date_freqs = ['1Q'] # ,'1M'] # todo DON't use _func_min if does not affect CV (low feat importance) stats = ['sum','mean','std','max'] # ['mean', 'max', 'min', 'median', 'std'] for freq_ in date_freqs: for stat_ in stats: df.set_index('date', inplace=True) g = (df.groupby('tweet_user_id').resample(freq_, closed='left') [cols_resample].agg(stat_) .astype(np.float32) ) # .set_index('date')) g = g.unstack('date').fillna(0) g.columns = [col1 + f'_func_{stat_}_' + col2.strftime('%Y-%m-%d') for (col1, col2) in g.columns] g.reset_index(inplace=True) # g = g.rename(columns ={col: f"{col}_rsmpl_{freq_}_func_{stat_}" # for col in g.columns if col not in ['tweet_user_id','date']}) #df = df.reset_index().merge(g, how='left', on='tweet_user_id') df = df.reset_index().merge(g, how='left', on='tweet_user_id') # df.reset_index(drop=False, inplace=True) # todo count 'tweet_id' for each period for user today = pd.to_datetime('7/1/2021') df['days_since_tweet'] = (today - df['date']).dt.days # .astype(int) df['user_followers_count_2days'] = df['user_followers_count'] / df['days_since_tweet'] df['user_following_count_2days'] = df['user_following_count'] / df['days_since_tweet'] df['user_listed_on_count_2days'] = df['user_listed_on_count'] / df['days_since_tweet'] df['user_tweet_count_2days'] = df['user_tweet_count'] / df['days_since_tweet'] df['tweet_hashtag_count_2days'] = df['tweet_hashtag_count'] / df['days_since_tweet'] df['tweet_mention_count_2days'] = df['tweet_mention_count'] / df['days_since_tweet'] df['tweet_url_count_2days'] = df['tweet_url_count'] / df['days_since_tweet'] # todo not a date related functions: df['tweet_mention_count_div_followers'] = df['tweet_mention_count'].divide(df['user_followers_count']+1) df['tweet_url_count_div_followers'] = df['tweet_url_count'].divide(df['user_followers_count']+1) df['tweet_hashtag_count_div_followers'] = df['tweet_hashtag_count'].divide(df['user_followers_count']+1) df['tweet_mention_count_div_followers'] = df['tweet_mention_count'].divide(df['user_followers_count']+1) df['tweet_mention_count_div_n_tweets'] = df['tweet_mention_count'].divide(df['user_tweet_count']+1) df['tweet_url_count_div_n_tweets'] = df['tweet_url_count'].divide(df['user_tweet_count']+1) df['tweet_hashtag_count_div_n_tweets'] = df['tweet_hashtag_count'].divide(df['user_tweet_count']+1) df['tweet_mention_count_div_n_tweets'] = df['tweet_mention_count'].divide(df['user_tweet_count']+1) df['tweet_mention_count_div_likes'] = df['tweet_mention_count'].divide(df['user_like_count']+1) df['tweet_url_count_div_likes'] = df['tweet_url_count'].divide(df['user_like_count']+1) df['tweet_hashtag_count_div_likes'] = df['tweet_hashtag_count'].divide(df['user_like_count']+1) df['tweet_mention_count_div_likes'] = df['tweet_mention_count'].divide(df['user_like_count']+1) cols_drop = ['date', 'tweet_created_at_year', 'tweet_created_at_month', 'tweet_created_at_day', 'user_created_at_year', 'user_created_at_month'] df.drop(cols_drop, axis=1, inplace=True) return df def ohe_func(df, cat_col, ohe_tfm=LabelBinarizer(), prefix=None): """ OHE one categorical column of df, and return df with columns 'label_{range(1,x}' added """ # ohe.iloc[:, df['tweet_language_id'].tolist()] ohe_tfm.fit(df[cat_col]) ohe_transformed = ohe_tfm.transform(df[cat_col]) if prefix: cat_cols = [f'{prefix}_{cat_col}_{i}' for i in range(ohe_transformed.shape[1])] else: cat_cols = [f'{cat_col}_{i}' for i in range(ohe_transformed.shape[1])] ohe_df = pd.DataFrame(ohe_transformed, index=df.index, columns=cat_cols) df = pd.concat([df, ohe_df], axis=1) df.drop(cat_col, axis=1, inplace=True) return df def drop_unnecessary_cols(cfg, df): cols_drop = [] # 'tweet_created_at_year', 'tweet_created_at_month', # 'tweet_created_at_day'] # 'days_since_user', 'user_created_at_year', 'user_created_at_month', # 'user_verified', 'user_has_url'] if cfg.drop_rare_ohe_language_ids and cfg.one_hot_encode: lang_leave_ids = [0, 1, 3] cols_drop += [f'tweet_language_id_{i}' for i in range(31) if i not in lang_leave_ids ] for col in cols_drop: if col in df.columns: df.drop(col, axis=1, inplace=True) # print(f"Dropped col: {col}") return df class Features(): def __init__(self,): self.transformers = {} self.impute_img_feature_nulls = -1 self.media_img_feat_cols = [] self.text_feat_cols = [] self.user_des_feat_cols = [] self.user_img_feat_cols = [] # union of topic ids in train and test , 0 - nan value, min=36, max=172 # xor train, test = [ 38, 117, 123, 165] # in test but not in train = [ 38, 117, 123] self.unique_topic_ids = [ 0, 36, 37, 38, 39, 43, 44, 45, 52, 58, 59, 60, 61, 63, 68, 71, 72, 73, 78, 79, 80, 81, 82, 87, 88, 89, 91, 93, 98, 99, 100, 101, 104, 111, 112, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 147, 148, 149, 150, 151, 152, 153, 155, 156, 163, 165, 169, 170, 171, 172] self.cols2int8 = ['fold', 'user_created_at_month', 'tweet_created_at_day', 'tweet_created_at_hour', 'tweet_hashtag_count', 'tweet_url_count', 'tweet_mention_count', 'tweet_has_attachment', 'virality', 'tweet_has_media', 'user_has_url', 'user_verified', 'num_media', 'user_id', 'tweet_user_id'] # 'tweet_created_at_year', 'user_created_at_year', self.cols2int8 += [f'tweet_language_id_{i}' for i in range(30)] def get_data_stage1(self, cfg, base_dir, n_samples=int(1e10)): df = pd.read_csv(osj(base_dir, 'Tweets',f'train_tweets.csv'), nrows=n_samples) test = pd.read_csv(osj(base_dir, 'Tweets',f'test_tweets.csv'), nrows=n_samples) # test_tweet_ids = test['tweet_id'].to_list() # self.tabular_feats.append() df =
pd.concat([df, test])
pandas.concat
# -*- coding: utf-8 -*- """ Created on Fri Jan 10 17:28:46 2020 @author: manuel.chavez """ import tkinter as tk import pandas as pd import networkx as nx import numpy as np from extraction import pdf_finder as pdf from extraction.user_interface import manual_edition_ui as me from support_modules import support as sup class TaskEvaluator(): """ This class evaluates the tasks durations and associates resources to it """ def __init__(self, process_graph, process_stats, resource_pool, settings): """constructor""" self.tasks = self.get_task_list(process_graph) self.model_data = self.get_model_data(process_graph) self.process_stats = process_stats self.resource_pool = resource_pool self.pdef_method = settings['pdef_method'] self.pdef_values = dict() self.load_pdef_values(settings) self.one_timestamp = settings['read_options']['one_timestamp'] self.elements_data = self.evaluate_tasks() def load_pdef_values(self, settings): if self.pdef_method == 'apx': self.pdef_values = settings['tasks'] elif self.pdef_method == 'apx_percentage': # Iterator for task in settings['percentage'].keys(): self.pdef_values[task] = (settings['percentage'][task] * settings['enabling_times'][task]) def evaluate_tasks(self): """ Process the task data and association of resources Returns ------- elements_data : Dataframe """ elements_data = list() # processing time discovery method if self.pdef_method == 'automatic': elements_data = self.mine_processing_time() if self.pdef_method in ['manual', 'semi-automatic']: elements_data = self.define_distributions_manually() if self.pdef_method in ['apx', 'apx_percentage']: elements_data = self.match_predefined_time() # Resource association elements_data = self.associate_resource(elements_data) elements_data = elements_data.to_dict('records') elements_data = self.add_start_end_info(elements_data) return elements_data def mine_processing_time(self): """ Performs the mining of activities durations from data Returns ------- elements_data : Dataframe """ elements_data = list() for task in self.tasks: s_key = 'duration' if self.one_timestamp else 'processing_time' task_processing = ( self.process_stats[ self.process_stats.task == task][s_key].tolist()) dist = pdf.DistributionFinder(task_processing).distribution elements_data.append({'id': sup.gen_id(), 'type': dist['dname'], 'name': task, 'mean': str(dist['dparams']['mean']), 'arg1': str(dist['dparams']['arg1']), 'arg2': str(dist['dparams']['arg2'])}) elements_data = pd.DataFrame(elements_data) elements_data = elements_data.merge( self.model_data[['name', 'elementid']], on='name', how='left') return elements_data def match_predefined_time(self): """ Perform the matching btween the information given by the hyper-opt and the BPMN model and resources data Returns ------- elements_data : Dataframe """ elements_data = list() # Predefined tasks records creation default_record = {'type': 'EXPONENTIAL', 'mean': '0', 'arg2': '0'} for task, value in self.pdef_values.items(): record = { **{'id': sup.gen_id(), 'name': str(task), 'arg1': str(value)}, **default_record} elements_data.append(record) # Check If there is tasks with not predefined time pdef_tasks = list(self.pdef_values.keys()) not_included = [task for task in self.tasks if task not in pdef_tasks] default_record = {'type': 'EXPONENTIAL', 'mean': '0', 'arg1': '60', 'arg2': '0'} for task in not_included: elements_data.append({**{'id': sup.gen_id(), 'name': task}, **default_record}) elements_data = pd.DataFrame(elements_data) # Matching with model info elements_data = elements_data.merge(self.model_data[['name', 'elementid']], on='name', how='left').sort_values(by='name') return elements_data def define_distributions_manually(self): """ Enable the manual edition of tasks duration Returns ------- elements_data : Dataframe """ if self.pdef_method == 'semi-automatic': elements_data = self.mine_processing_time().sort_values(by='name') elements_data = elements_data.to_dict('records') else: elements_data = self.default_values() root = tk.Tk() window = me.MainWindow(root, elements_data) root.mainloop() new_elements = pd.DataFrame(window.new_elements) elements_data = pd.DataFrame(elements_data) elements_data = new_elements.merge( elements_data[['id', 'name', 'elementid']], on='id', how='left') return elements_data def default_values(self): """ Performs the mining of activities durations from data Returns ------- elements_data : Dataframe """ elements_data = list() for task in self.tasks: s_key = 'duration' if self.one_timestamp else 'processing_time' task_processing = ( self.process_stats[ self.process_stats.task == task][s_key].tolist()) try: mean_time = np.mean(task_processing) if task_processing else 0 except: mean_time = 0 elements_data.append({'id': sup.gen_id(), 'type': 'EXPONENTIAL', 'name': task, 'mean': str(0), 'arg1': str(np.round(mean_time, 2)), 'arg2': str(0)}) elements_data = pd.DataFrame(elements_data) elements_data = elements_data.merge( self.model_data[['name', 'elementid']], on='name', how='left') return elements_data.to_dict('records') def add_start_end_info(self, elements_data): # records creation temp_elements_data = list() default_record = {'type': 'FIXED', 'mean': '0', 'arg1': '0', 'arg2': '0'} for task in ['Start', 'End']: temp_elements_data.append({**{'id': sup.gen_id(), 'name': task}, **default_record}) temp_elements_data =
pd.DataFrame(temp_elements_data)
pandas.DataFrame
""" 动作选择 """ import sys import copy from pyAudioAnalysis.audioBasicIO import read_audio_file, stereo_to_mono import os import pandas as pd from random import sample, randint import re from pyAudioAnalysis.MidTermFeatures import mid_feature_extraction, beat_extraction from pydub import AudioSegment from plan2dance.Plan2Dance.common import AboutClass from plan2dance.Plan2Dance.common import ProjectPath """ ----------------------------------------------------------------------------------------------------------------------- -------------------------------------------------动作选择--------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------------ 思路 1、先对输入音频进行分段类型预测 2、整合预测结果的类型分布,便于选择动作 3、根据整合结果和action_type.csv文件中动作类型选择动作 """ class ActionSelect: def __init__(self, ms): self.ms = ms self.action_config = ms.action_config self.action_path = ms.action_path self.config = self.ms.Config self.dance_type = self.config["dance_type"] self.segment = self.config['segment'] self.cluster_csv = os.path.join(ProjectPath, 'Data/Train/action_type.csv') self.music_path = ms.music_path self.weight = int(self.config['type-weight']) # 类型分布的间隔 self.action_select = int(self.config['action-select']) # action num self.action_time = {} self.__set_action_type_csv() self.temporary_dir_path = self._mkdir_new_dir() self.low_action = self.__get_low_action() self.ms.low_action = self.low_action def _mkdir_new_dir(self): """ Make a new directory to save temporary file """ new_dir_name = self.music_path.split('.')[0] if not os.path.exists(new_dir_name): os.mkdir(new_dir_name) return new_dir_name def _get_music_beat_info(self, start, end): """ 获取音乐中的bpm等信息 """ segment_path = os.path.join(self.temporary_dir_path, "temporary.wav") audiofile = AudioSegment.from_file(self.music_path, 'mp3') audiofile[start * 1000:end * 1000].export( segment_path, format="wav") [fs, x] = read_audio_file(segment_path) x = stereo_to_mono(x) # 将双声道或立体声的信号转为单声道,声道可以说是录制时候的音源数量问题 mt_win = 1 mt_step = 2 st_win = 0.1 st_step = 0.1 try: [_, st_features, _] = mid_feature_extraction(x, fs, round(mt_win * fs), round(mt_step * fs), round(fs * st_win), round(fs * st_step)) [beat, beat_conf] = beat_extraction(st_features, st_step) except: print("beat特征提取错误") beat, beat_conf = 0, 0 os.remove(segment_path) return beat, beat_conf def __get_low_action(self): """ 获取时间较少的动作 """ actions = os.listdir(self.action_path) low_action = [] for action in actions: cur_action = action.split('.')[0] path = os.path.join(self.action_path, '{}.mtnx'.format(cur_action)) with open(path, 'r', encoding='utf-8') as f: action_content = f.read() frame = re.findall(r'frame="\d+"', action_content)[-1] frame = re.findall(r'\d+', frame)[0] time = round(float(frame) / 128, 3) self.action_time[cur_action] = time if time < 1: low_action.append(cur_action) return low_action def __get_action_time(self, action_name): """ 获取动作的时长 :param action_name: 动作名称 :return: """ actions = os.listdir(self.action_path) for action in actions: cur_action = action.split('.')[0] if action_name.lower() == cur_action.lower(): action_name = cur_action break if action_name in self.action_time.keys(): return self.action_time[action_name] else: path = os.path.join(self.action_path, '{}.mtnx'.format(action_name)) with open(path, 'r') as f: action_content = f.read() frame = re.findall(r'frame="\d+"', action_content)[-1] frame = re.findall(r'\d+', frame)[0] time = round(float(frame) / 128, 3) self.action_time[action_name] = time if time < 1: self.low_action.append(action_name) return time def __get_type(self): """ 获取类型 """ if 'cluster-count' in self.config: cluster_count = int(self.config['cluster-count']) type_list = [] for i in range(cluster_count): type_list.append('type_' + str(i)) return type_list def __select_from_csv_by_type(self, type_select, ductive_time, action_select): """ 根据类型来选择动作 :param type_select: 类型 :return: 动作列表 """ if self.dance_type == "pop": self.ms.action_type_csv['type-probability'] = self.ms.action_type_csv['probability'] * \ self.ms.action_type_csv[ "type_" + str(type_select)] sort_csv = self.ms.action_type_csv.sort_values(by="type-probability", ascending=False).drop( columns=['type-probability']) value = 7 actions = [action for action in sort_csv[0:value]["action"]] if ductive_time < 4.5: num = 5 if ductive_time < 2.5: low_action = self.ms.low_action cur_sort_low_action = [] actions = [action for action in sort_csv["action"]] # All include the duration in [0.5,0.8] for action in actions: if action in low_action: cur_sort_low_action.append(action) actions = cur_sort_low_action if len(actions) >= 3: num = 3 else: num = len(actions) else: num = randint(action_select, action_select + 1) if self.segment == "one": actions = [action for action in sort_csv["action"]] cur_actions = copy.copy(actions) else: cur_actions = sample(actions, num) # 1、定义选择的动作为高频动作 cur_actions = [v.lower() for v in cur_actions] # 变为小写 high_list = copy.copy(cur_actions) dance_show_actions = [action.lower() for action in sort_csv["action"]] # 2、定义出现在已有舞蹈但不属于1的动作为中频动作 intermediate_list = list(set(dance_show_actions).difference(set(cur_actions))) # 求差集 cur_actions.extend(intermediate_list) # 3、定义不出现在已有舞蹈的动作为低频动作 low_list = list(set([v.lower() for v in self.action_config.keys()]).difference(set(cur_actions))) # 求差集 cur_actions.extend(low_list) action_str = str() for action in cur_actions: action_str += ("," + str(action)) action_frequency = self.__get_action_frequency(high_list, intermediate_list, low_list) # 定义频率字典 else: # 民族舞没有已有数据 # 那么所有动作都是初始数据 high_list, intermediate_list = [], [] low_list = [v.lower() for v in self.action_config.keys()] action_frequency = self.__get_action_frequency(high_list, intermediate_list, low_list) action_str = str() for action in low_list: action_str += ("," + str(action)) return action_frequency, action_str[1:] # sample随机选择列表中动作,randint随机动作个数 @staticmethod def __get_action_frequency(high_list, intermediate_list, low_list): """ 整理动作频率 """ cur_dict = {} for action in high_list: cur_dict[action] = 'high-frequency' for action in intermediate_list: cur_dict[action] = "intermediate-frequency" for action in low_list: cur_dict[action] = "low-frequency" return cur_dict def __set_action_type_csv(self): """ 读取action_type_csv文件并处理其中的参数 :return: """ action_type_csv = pd.read_csv(self.cluster_csv) # 对type字段进行归一化 for action_type_select in self.__get_type(): action_type_csv[action_type_select] = round( 100 * (action_type_csv[action_type_select] / sum(action_type_csv[action_type_select])), 3) self.ms.action_type_csv = action_type_csv def __select_action(self, segment_result): """ 对整合后的类型分布做一定的切割,然后选择动作 :return: """ col = ['start', 'end', 'durative', 'action', 'type', 'beat', 'beat_conf'] action_csv = pd.DataFrame([], columns=col) frequency_dict = dict() point = 0 for row in segment_result: start_time = row[0] end_time = row[1] action_type = row[2] duration_time = end_time - start_time # 分段获取每段的节拍信息 beat, beat_conf = self._get_music_beat_info(start_time, end_time) if duration_time > 18 and self.config['segment'] != 'one': cur_duration_time = duration_time / 2 action_frequency, actions = self.__select_from_csv_by_type(action_type, cur_duration_time, self.action_select) arr = [start_time, end_time - cur_duration_time, cur_duration_time, actions, action_type, beat, beat_conf] # 时间,动作序列,类型 current_csv = pd.DataFrame([arr], columns=col) action_csv = action_csv.append(current_csv, ignore_index=True) # 两个值 frequency_dict[point] = action_frequency point += 1 action_frequency, actions = self.__select_from_csv_by_type(action_type, cur_duration_time, self.action_select) arr = [start_time + cur_duration_time, end_time, cur_duration_time, actions, action_type, beat, beat_conf] # 时间,动作序列,类型 current_csv = pd.DataFrame([arr], columns=col) action_csv = action_csv.append(current_csv, ignore_index=True) frequency_dict[point] = action_frequency else: action_frequency, actions = self.__select_from_csv_by_type(action_type, duration_time, self.action_select) arr = [start_time, end_time, duration_time, actions, action_type, beat, beat_conf] # 时间,动作序列,类型 current_csv = pd.DataFrame([arr], columns=col) action_csv = action_csv.append(current_csv, ignore_index=True) # 返回动作列表 frequency_dict[point] = action_frequency point += 1 return frequency_dict, action_csv def __select_action_folk_dance(self, segment_result): """ 对整合后的类型分布做一定的切割,然后选择动作 :return: """ col = ['start', 'end', 'durative', 'action', 'type', 'beat', 'beat_conf'] action_csv = pd.DataFrame([], columns=col) frequency_dict = dict() point = 0 for row in segment_result: start_time = row[0] end_time = row[1] action_type = row[2] duration_time = end_time - start_time # 分段获取每段的节拍信息 beat, beat_conf = self._get_music_beat_info(start_time, end_time) if duration_time > 18 and self.config['segment'] != 'one': cur_duration_time = duration_time / 2 action_frequency, actions = self.__select_from_csv_by_type(action_type, cur_duration_time, self.action_select) arr = [start_time, end_time - cur_duration_time, cur_duration_time, actions, action_type, beat, beat_conf] # 时间,动作序列,类型 current_csv =
pd.DataFrame([arr], columns=col)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for `wkr.pd` package.""" import pandas as pd import pytest from wkr.pd import pandas_memoize def dataframe_gen(): """Generate a number of DataFrames.""" d = { "one": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "two": pd.Series([1.0, 2.0, 3.0, 4.0], index=["a", "b", "c", "d"]), } yield pd.DataFrame(d, index=["d", "b", "a"]) df = pd.DataFrame(d, index=["d", "b", "a"], columns=["two", "three"]) df["three"] = pd.to_numeric(df["three"]) yield df yield pd.DataFrame( {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]}, index=["a", "b", "c", "d"], ) yield pd.DataFrame([{"a": 1, "b": 2}, {"a": 5, "b": 10, "c": 20}]) def test_memoize_pandas_save(tmpdir): """Test that `wkr.pd.memoize_pandas` saves to CSV.""" for idx, df in enumerate(dataframe_gen()): filename = tmpdir.join("data{}.csv".format(idx)) @pandas_memoize(filename.strpath) def f(): return df assert not filename.exists() df2 = f() assert df2.equals(df) assert filename.exists() df3 = pd.read_csv(filename.strpath, encoding="utf-8", index_col=0) assert df3.equals(df) def test_memoize_pandas_load(tmpdir): """Test that `wkr.pd.memoize_pandas` loads from CSV.""" for idx, df in enumerate(dataframe_gen()): filename = tmpdir.join("data{}.csv".format(idx)) # define a memoized function that returns a known value @pandas_memoize(filename.strpath) def f(): return df # now write to its CSV file a value that is different df2 = pd.DataFrame( {"x": list(range(40, 30, -1)), "y": list(range(20, 30))}, index=list(range(5, 15)), ) assert not df2.equals(df) df2.to_csv(filename.strpath, encoding="utf-8") assert filename.exists() # show that f() now returns df2, not df df3 = f() assert not df3.equals(df) assert df3.equals(df2) # remove the CSV file filename.remove() @pytest.mark.skip(reason="fails on travis CI") def test_memoize_pandas_parse_dates(tmpdir): """Test `wkr.pd.memoize_pandas` on loading datetimes.""" filename = tmpdir.join("data.csv") @pandas_memoize(filename.strpath) def f(): return pd.DataFrame( list(range(72)), columns=["count"], index=pd.date_range("1/1/2011", periods=72, freq="H"), ) assert not filename.exists() df = f() assert filename.exists() df2 = f() # DataFrames are equal even if their types aren't the same assert df2.equals(df) assert df2.index.dtype != df.index.dtype @pandas_memoize(filename.strpath, parse_dates=True) def f(): return pd.DataFrame( list(range(72)), columns=["count"], index=
pd.date_range("1/1/2011", periods=72, freq="H")
pandas.date_range
from pathlib import Path import numpy as np import pandas as pd from src import utils class ARCPData(): # american red cross preparedness data def __init__(self, ACS, file_name = 'ARC Preparedness Data.csv' ): self.data = None self.file_name = utils.DATA['master'] / file_name self.Load() self.standardizeColumnNames(ACS) def Load(self): self.data = pd.read_csv(self.file_name) def standardizeColumnNames(self, ACS): """ Standardizes column names """ df = self.data df.columns = map(str.lower, df.columns) df.columns = df.columns.str.replace(', ', '_') df.columns = df.columns.str.replace('-', '_') df.columns = df.columns.str.replace('/', '_') df.columns = df.columns.str.replace('(', '_') df.columns = df.columns.str.replace(')', '_') df.columns = df.columns.str.replace(' ', '_') df.dropna(inplace = True) # trim geoid leading saftey marks df['geoid'] = df['geoid'].str[2:] df = df[df['geoid'].isin(ACS.tot_pop.index)] self.data = df class ACSData(): # TODO: typechecking def __init__(self,year = 2016,level = 'block_group', pop_thresh = 0): self.file_name = utils.DATA['acs'] / "acs_{}_data.csv".format(year) self.level = level self.data = None self.tot_pop = None self.pop_thresh = pop_thresh self.Load() self.Clean(self.data) self.Munge(self.data,self.tot_pop, self.pop_thresh, self.level) def Load(self): self.data = pd.read_csv(self.file_name, dtype = {'GEOID':'object'}, index_col = 1) def Clean(self,ACS): ## Cleans ACS data # 'ACS' - ACS variable from LoadACS # 'self.level' - geography level to munge the data to # levels can be found in utils.GEOID # #Note: this can function can only aggregate data # Ensures GEOID variable is in the correct format and sets it as the dataframe index ACS.reset_index(inplace = True) ACS['GEOID'] = ACS['geoid'].str[2:] ACS.set_index(['GEOID'],inplace = True) ACS.drop('geoid','columns',inplace =True) # Removes extraneous features (i.e. non-numeric) in the dataframe if 'Unnamed: 0' in ACS.columns: ACS.drop('Unnamed: 0','columns',inplace= True) if 'NAME' in ACS.columns: ACS.drop('NAME','columns',inplace= True) #if 'inc_pcincome' in ACS.columns: # ACS.drop('inc_pcincome','columns',inplace= True) self.tot_pop = ACS[['tot_population']].groupby('GEOID').sum() # Drop all total count columns in ACS and keeps all percentage columns #cols = ACS.columns.to_list() #print(cols) #for col in cols: # if col.find('tot') != -1 : # print(col) # ACS.drop(col,'columns', inplace = True) # Remove missing values from dataframe ACS.replace([np.inf, -np.inf], np.nan,inplace = True) #ACS.dropna(inplace = True) self.data = ACS def Munge(self,ACS,tot_pop, pop_thresh,level='block_group'): ## ACS Munging #ACS.drop(ACS.loc[:, 'state':'in_poverty'], inplace = True, axis = 1) #print(ACS.columns) #education adjustment ACS['educ_less_12th'] = ACS.loc[:,'educ_nursery_4th':'educ_12th_no_diploma'].sum(axis =1 ) ACS['educ_high_school'] = ACS.loc[:,'educ_high_school_grad':'educ_some_col_no_grad'].sum(axis =1 ) ACS.drop(ACS.loc[:, 'educ_nursery_4th':'educ_some_col_no_grad'], inplace = True, axis = 1) # house age adjustment ACS['house_yr_pct_before_1960'] =ACS.loc[:,'house_yr_pct_1950_1959':'house_yr_pct_earlier_1939'].sum(axis =1 ) ACS['house_yr_pct_after_2000'] = ACS.loc[:, 'house_yr_pct_2014_plus':'house_yr_pct_2000_2009'].sum(axis = 1 ) ACS['house_yr_pct_1960_2000'] = ACS.loc[:, 'house_yr_pct_1990_1999':'house_yr_pct_1960_1969'].sum(axis = 1 ) ACS.drop(ACS.loc[:, 'house_yr_pct_2014_plus':'house_yr_pct_earlier_1939'], inplace = True, axis = 1) # housing Price adjustment ACS['house_val_less_50K']=ACS.loc[:,'house_val_less_10K':'house_val_40K_50K'].sum(axis =1 ) ACS['house_val_50_100K']=ACS.loc[:,'house_val_50K_60K':'house_val_90K_100K'].sum(axis =1 ) ACS['house_val_100K_300K']=ACS.loc[:,'house_val_100K_125K':'house_val_250K_300K'].sum(axis =1 ) ACS['house_val_300K_500K']=ACS.loc[:,'house_val_300K_400K':'house_val_400K_500K'].sum(axis =1 ) ACS['house_val_more_500K'] = ACS.loc[:,'house_val_500K_750K':'house_val_more_2M'].sum(axis = 1) ACS.drop(ACS.loc[:, 'house_val_less_10K':'house_val_more_2M'], inplace = True, axis = 1) ACS['race_pct_black_or_amind'] = ACS.loc[:,'race_pct_black'] \ + ACS.loc[:,'race_pct_amind'] ACS['pct_alt_heat'] = ACS.loc[:,'heat_pct_fueloil_kerosene'] \ + ACS.loc[:,'heat_pct_coal'] \ + ACS.loc[:,'heat_pct_wood'] \ + ACS.loc[:,'heat_pct_bottled_tank_lpgas'] #print(ACS.columns) self.data = ACS # munge to appropriate level if self.level =='block_group': #ACS data already at block_group level self.tot_pop = tot_pop else: Data = self.data Data = Data.multiply(tot_pop['tot_population'],axis= 'index') Data.index , tot_pop.index = Data.index.str[0:utils.GEOID[level]], \ tot_pop.index.str[0:utils.GEOID[level]] Data, tot_pop = Data.groupby(Data.index).sum(), \ tot_pop.groupby(tot_pop.index).sum() self.data = Data.divide(tot_pop['tot_population'],axis = 'index') self.tot_pop = tot_pop #only get geoids with population greater than user defined value self.tot_pop = self.tot_pop[self.tot_pop['tot_population']>=self.pop_thresh] self.data = self.data[self.data.index.isin(self.tot_pop.index)] class SVIData(): # TODO: typechecking # level and year are fixe def __init__(self,ACS): self.file_name = utils.DATA['svi'] / "SVI Tract Data.csv" self.data = None self.Load() self.Clean(ACS) def Load(self): self.data = pd.read_csv(self.file_name, encoding='ISO-8859-1') self.data['Tract'] = self.data['GEOID'].str[2:] def Clean(self, ACS): ACS['Tract'] = ACS.index.str[:-1] ACS['geos'] = ACS.index merged = ACS.merge(self.data, how = 'left', left_on = 'Tract' , right_on ='Tract') merged.set_index('geos', inplace=True) cols = ['inc_pct_poverty','RPL_THEME1', 'RPL_THEME2', 'RPL_THEME3','RPL_THEME4'] self.data = merged[cols] class NFIRSData(): def __init__(self,level,tot_pop,pop_thresh = 0, sev=False, min_loss = 10000): self.file_name = utils.DATA['master'] /'NFIRS Fire Incident Data.csv' self.tot_pop = tot_pop self.level = level self.severeFiresOnly = sev self.pop_thresh = pop_thresh self.data = None self.fires = None self.top10 = None self.severeFire = None self.min_loss = min_loss self.Load() # self.Clean(self.data) # munge to appropriate level self.Munge(self.data, self.tot_pop,self.level, self.min_loss, self.pop_thresh) def set_sev_loss(self, min_loss): self.min_loss = min_loss nfirs = self.data nfirs['severe_fire'] = 'not_sev_fire' sev_fire_mask = (nfirs['oth_death'] > 0) | (nfirs['oth_inj'] > 0) | (nfirs['tot_loss'] >= self.min_loss) | (nfirs['tot_units_affected'] > 1) nfirs.loc[sev_fire_mask,'severe_fire'] = 'sev_fire' nfirs['min_loss'] = np.where(nfirs['tot_loss']>=self.min_loss,'had_min_loss','no_min_loss') self.data = nfirs return def Load(self): cols_to_use = ['state','fdid','inc_date','oth_inj','oth_death','prop_loss', 'cont_loss','tot_loss','tot_units_affected','geoid'] # Specify particular data type for geoid column col_dtypes = {'geoid':str} # utils.DATA['master'] / self.file_name #Read in NFIRS dataframe Data_path = self.file_name Data = pd.read_csv(Data_path, dtype = col_dtypes, usecols = cols_to_use, encoding='latin-1') self.data = Data def Munge(self, nfirs, tot_pop, level, min_loss, pop_thresh): #NFIRS Munging #Convert inc_date column values to python datetime type nfirs['inc_date'] =
pd.to_datetime(nfirs['inc_date'], infer_datetime_format=True)
pandas.to_datetime
# Exercise 3: Fitting k-Means Model and Assigning Predictions # import data import pandas as pd df =
pd.read_csv('glass.csv')
pandas.read_csv
import numpy as np from datetime import timedelta from distutils.version import LooseVersion import pandas as pd import pandas.util.testing as tm from pandas import to_timedelta from pandas.util.testing import assert_series_equal, assert_frame_equal from pandas import (Series, Timedelta, DataFrame, Timestamp, TimedeltaIndex, timedelta_range, date_range, DatetimeIndex, Int64Index, _np_version_under1p10, Float64Index, Index, tslib) from pandas.tests.test_base import Ops class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'H']: idx = pd.TimedeltaIndex(['1 hours', '2 hours'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length self.assertRaises(ValueError, lambda: tdi + dti[0:1]) self.assertRaises(ValueError, lambda: tdi[0:1] + dti) # random indexes self.assertRaises(TypeError, lambda: tdi + Int64Index([1, 2, 3])) # this is a union! # self.assertRaises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') self.assertEqual(result, expected) result = td + dt expected = Timestamp('20130102') self.assertEqual(result, expected) def test_comp_nat(self): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = timedelta_range('1 days 09:00:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = TimedeltaIndex(np.repeat(idx.values, range(1, len(idx) + 1))) exp_idx = timedelta_range('1 days 18:00:00', freq='-1H', periods=10) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = timedelta_range('1 days 09:00:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = TimedeltaIndex(['1 days 09:00:00', '1 days 09:00:00', '1 days 09:00:00', '1 days 08:00:00', '1 days 08:00:00', pd.NaT]) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00']) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00', pd.NaT]) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(TimedeltaIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['00:01:00', '00:01:00', '00:02:00'], ['00:01:00', '00:01:00', '00:00:01'])): tm.assertIn(idx[0], idx) def test_unknown_attribute(self): # GH 9680 tdi = pd.timedelta_range(start=0, periods=10, freq='1s') ts = pd.Series(np.random.normal(size=10), index=tdi) self.assertNotIn('foo', ts.__dict__.keys()) self.assertRaises(AttributeError, lambda: ts.foo) def test_order(self): # GH 10295 idx1 = TimedeltaIndex(['1 day', '2 day', '3 day'], freq='D', name='idx') idx2 = TimedeltaIndex( ['1 hour', '2 hour', '3 hour'], freq='H', name='idx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) idx1 = TimedeltaIndex(['1 hour', '3 hour', '5 hour', '2 hour ', '1 hour'], name='idx1') exp1 = TimedeltaIndex(['1 hour', '1 hour', '2 hour', '3 hour', '5 hour'], name='idx1') idx2 = TimedeltaIndex(['1 day', '3 day', '5 day', '2 day', '1 day'], name='idx2') # TODO(wesm): unused? # exp2 = TimedeltaIndex(['1 day', '1 day', '2 day', # '3 day', '5 day'], name='idx2') # idx3 = TimedeltaIndex([pd.NaT, '3 minute', '5 minute', # '2 minute', pd.NaT], name='idx3') # exp3 = TimedeltaIndex([pd.NaT, pd.NaT, '2 minute', '3 minute', # '5 minute'], name='idx3') for idx, expected in [(idx1, exp1), (idx1, exp1), (idx1, exp1)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx[0] self.assertEqual(result, pd.Timedelta('1 day')) result = idx[0:5] expected = pd.timedelta_range('1 day', '5 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.timedelta_range('1 day', '9 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.timedelta_range('12 day', '24 day', freq='3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = TimedeltaIndex(['5 day', '4 day', '3 day', '2 day', '1 day'], freq='-1D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx.take([0]) self.assertEqual(result, pd.Timedelta('1 day')) result = idx.take([-1]) self.assertEqual(result, pd.Timedelta('31 day')) result = idx.take([0, 1, 2]) expected = pd.timedelta_range('1 day', '3 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.timedelta_range('1 day', '5 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.timedelta_range('8 day', '2 day', freq='-3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = TimedeltaIndex(['4 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = TimedeltaIndex(['29 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['D', '3D', '-3D', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S' ]: idx = pd.timedelta_range('1', freq=freq, periods=10) result = pd.TimedeltaIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.timedelta_range('1', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.TimedeltaIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 idx = pd.TimedeltaIndex([], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.TimedeltaIndex(['5 hours', '6 hours', '9 hours'], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.TimedeltaIndex(['8 hours', '9 hours', '12 hours'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.TimedeltaIndex(['2 hours', '3 hours', '6 hours'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='H'), exp) tm.assert_index_equal(idx.shift(0, freq='T'), idx) exp = pd.TimedeltaIndex(['05:03:00', '06:03:00', '9:03:00'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='T'), exp) exp = pd.TimedeltaIndex(['04:57:00', '05:57:00', '8:57:00'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='T'), exp) def test_repeat(self): index = pd.timedelta_range('1 days', periods=2, freq='D') exp = pd.TimedeltaIndex(['1 days', '1 days', '2 days', '2 days']) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = TimedeltaIndex(['1 days', 'NaT', '3 days']) exp = TimedeltaIndex(['1 days', '1 days', '1 days', 'NaT', 'NaT', 'NaT', '3 days', '3 days', '3 days']) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_nat(self): self.assertIs(pd.TimedeltaIndex._na_value, pd.NaT) self.assertIs(pd.TimedeltaIndex([])._na_value, pd.NaT) idx = pd.TimedeltaIndex(['1 days', '2 days']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.TimedeltaIndex(['1 days', 'NaT']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 idx = pd.TimedeltaIndex(['1 days', '2 days', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.TimedeltaIndex(['2 days', '1 days', 'NaT']) self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.asobject.equals(idx2.asobject)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) class TestTimedeltas(tm.TestCase): _multiprocess_can_split_ = True def test_ops(self): td = Timedelta(10, unit='d') self.assertEqual(-td, Timedelta(-10, unit='d')) self.assertEqual(+td, Timedelta(10, unit='d')) self.assertEqual(td - td, Timedelta(0, unit='ns')) self.assertTrue((td - pd.NaT) is pd.NaT) self.assertEqual(td + td, Timedelta(20, unit='d')) self.assertTrue((td + pd.NaT) is pd.NaT) self.assertEqual(td * 2, Timedelta(20, unit='d')) self.assertTrue((td * pd.NaT) is pd.NaT) self.assertEqual(td / 2, Timedelta(5, unit='d')) self.assertEqual(abs(td), td) self.assertEqual(abs(-td), td) self.assertEqual(td / td, 1) self.assertTrue((td / pd.NaT) is np.nan) # invert self.assertEqual(-td, Timedelta('-10d')) self.assertEqual(td * -1, Timedelta('-10d')) self.assertEqual(-1 * td, Timedelta('-10d')) self.assertEqual(abs(-td), Timedelta('10d')) # invalid self.assertRaises(TypeError, lambda: Timedelta(11, unit='d') // 2) # invalid multiply with another timedelta self.assertRaises(TypeError, lambda: td * td) # can't operate with integers self.assertRaises(TypeError, lambda: td + 2) self.assertRaises(TypeError, lambda: td - 2) def test_ops_offsets(self): td = Timedelta(10, unit='d') self.assertEqual(Timedelta(241, unit='h'), td + pd.offsets.Hour(1)) self.assertEqual(Timedelta(241, unit='h'), pd.offsets.Hour(1) + td) self.assertEqual(240, td / pd.offsets.Hour(1)) self.assertEqual(1 / 240.0, pd.offsets.Hour(1) / td) self.assertEqual(Timedelta(239, unit='h'), td - pd.offsets.Hour(1)) self.assertEqual(Timedelta(-239, unit='h'), pd.offsets.Hour(1) - td) def test_ops_ndarray(self): td = Timedelta('1 day') # timedelta, timedelta other = pd.to_timedelta(['1 day']).values expected = pd.to_timedelta(['2 days']).values self.assert_numpy_array_equal(td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other + td, expected) self.assertRaises(TypeError, lambda: td + np.array([1])) self.assertRaises(TypeError, lambda: np.array([1]) + td) expected = pd.to_timedelta(['0 days']).values self.assert_numpy_array_equal(td - other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(-other + td, expected) self.assertRaises(TypeError, lambda: td - np.array([1])) self.assertRaises(TypeError, lambda: np.array([1]) - td) expected = pd.to_timedelta(['2 days']).values self.assert_numpy_array_equal(td * np.array([2]), expected) self.assert_numpy_array_equal(np.array([2]) * td, expected) self.assertRaises(TypeError, lambda: td * other) self.assertRaises(TypeError, lambda: other * td) self.assert_numpy_array_equal(td / other, np.array([1], dtype=np.float64)) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other / td, np.array([1], dtype=np.float64)) # timedelta, datetime other = pd.to_datetime(['2000-01-01']).values expected = pd.to_datetime(['2000-01-02']).values self.assert_numpy_array_equal(td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other + td, expected) expected = pd.to_datetime(['1999-12-31']).values self.assert_numpy_array_equal(-td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other - td, expected) def test_ops_series(self): # regression test for GH8813 td = Timedelta('1 day') other = pd.Series([1, 2]) expected = pd.Series(pd.to_timedelta(['1 day', '2 days'])) tm.assert_series_equal(expected, td * other) tm.assert_series_equal(expected, other * td) def test_ops_series_object(self): # GH 13043 s = pd.Series([pd.Timestamp('2015-01-01', tz='US/Eastern'), pd.Timestamp('2015-01-01', tz='Asia/Tokyo')], name='xxx') self.assertEqual(s.dtype, object) exp = pd.Series([pd.Timestamp('2015-01-02', tz='US/Eastern'), pd.Timestamp('2015-01-02', tz='Asia/Tokyo')], name='xxx') tm.assert_series_equal(s + pd.Timedelta('1 days'), exp) tm.assert_series_equal(pd.Timedelta('1 days') + s, exp) # object series & object series s2 = pd.Series([pd.Timestamp('2015-01-03', tz='US/Eastern'), pd.Timestamp('2015-01-05', tz='Asia/Tokyo')], name='xxx') self.assertEqual(s2.dtype, object) exp = pd.Series([pd.Timedelta('2 days'), pd.Timedelta('4 days')], name='xxx') tm.assert_series_equal(s2 - s, exp) tm.assert_series_equal(s - s2, -exp) s = pd.Series([pd.Timedelta('01:00:00'), pd.Timedelta('02:00:00')], name='xxx', dtype=object) self.assertEqual(s.dtype, object) exp = pd.Series([pd.Timedelta('01:30:00'), pd.Timedelta('02:30:00')], name='xxx') tm.assert_series_equal(s + pd.Timedelta('00:30:00'), exp) tm.assert_series_equal(pd.Timedelta('00:30:00') + s, exp) def test_ops_notimplemented(self): class Other: pass other = Other() td = Timedelta('1 day') self.assertTrue(td.__add__(other) is NotImplemented) self.assertTrue(td.__sub__(other) is NotImplemented) self.assertTrue(td.__truediv__(other) is NotImplemented) self.assertTrue(td.__mul__(other) is NotImplemented) self.assertTrue(td.__floordiv__(td) is NotImplemented) def test_ops_error_str(self): # GH 13624 tdi = TimedeltaIndex(['1 day', '2 days']) for l, r in [(tdi, 'a'), ('a', tdi)]: with tm.assertRaises(TypeError): l + r with tm.assertRaises(TypeError): l > r with tm.assertRaises(TypeError): l == r with tm.assertRaises(TypeError): l != r def test_timedelta_ops(self): # GH4984 # make sure ops return Timedelta s = Series([Timestamp('20130101') + timedelta(seconds=i * i) for i in range(10)]) td = s.diff() result = td.mean() expected = to_timedelta(timedelta(seconds=9)) self.assertEqual(result, expected) result = td.to_frame().mean() self.assertEqual(result[0], expected) result = td.quantile(.1) expected = Timedelta(np.timedelta64(2600, 'ms')) self.assertEqual(result, expected) result = td.median() expected = to_timedelta('00:00:09') self.assertEqual(result, expected) result = td.to_frame().median() self.assertEqual(result[0], expected) # GH 6462 # consistency in returned values for sum result = td.sum() expected = to_timedelta('00:01:21') self.assertEqual(result, expected) result = td.to_frame().sum() self.assertEqual(result[0], expected) # std result = td.std() expected = to_timedelta(Series(td.dropna().values).std()) self.assertEqual(result, expected) result = td.to_frame().std() self.assertEqual(result[0], expected) # invalid ops for op in ['skew', 'kurt', 'sem', 'prod']: self.assertRaises(TypeError, getattr(td, op)) # GH 10040 # make sure NaT is properly handled by median() s = Series([Timestamp('2015-02-03'), Timestamp('2015-02-07')]) self.assertEqual(s.diff().median(), timedelta(days=4)) s = Series([Timestamp('2015-02-03'), Timestamp('2015-02-07'), Timestamp('2015-02-15')]) self.assertEqual(s.diff().median(), timedelta(days=6)) def test_timedelta_ops_scalar(self): # GH 6808 base = pd.to_datetime('20130101 09:01:12.123456') expected_add = pd.to_datetime('20130101 09:01:22.123456') expected_sub = pd.to_datetime('20130101 09:01:02.123456') for offset in [pd.to_timedelta(10, unit='s'), timedelta(seconds=10), np.timedelta64(10, 's'), np.timedelta64(10000000000, 'ns'), pd.offsets.Second(10)]: result = base + offset self.assertEqual(result, expected_add) result = base - offset self.assertEqual(result, expected_sub) base = pd.to_datetime('20130102 09:01:12.123456') expected_add = pd.to_datetime('20130103 09:01:22.123456') expected_sub = pd.to_datetime('20130101 09:01:02.123456') for offset in [pd.to_timedelta('1 day, 00:00:10'), pd.to_timedelta('1 days, 00:00:10'), timedelta(days=1, seconds=10), np.timedelta64(1, 'D') + np.timedelta64(10, 's'),
pd.offsets.Day()
pandas.offsets.Day
import json import pandas as pd from datetime import datetime class Evento: def __init__(self, json_evento=''): if not json_evento: self.id = '' self.category = {} else: self.id = json.dumps(json_evento['id']).replace('"','') self.category = [] json_category = json_evento["category"] i = 0 for json_categoria in json_category: categoria = json_categoria.strip('"') self.category.append(categoria) i += 1 def to_series(self): dict_atributos = {} for nome_categoria in self.category: dict_atributos[nome_categoria+'_evnt'] = True #print('lista de atributos que vai virar serie', dict_atributos) return
pd.Series(data=dict_atributos)
pandas.Series
""" Functions for loading the Assistments data. Originally from https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010 """ import pickle import logging import numpy as np import pandas as pd from .constants import (ITEM_IDX_KEY, TEMPLATE_IDX_KEY, CONCEPT_IDX_KEY, USER_IDX_KEY, TIME_IDX_KEY, CORRECT_KEY, SINGLE) SKILL_ID_KEY = 'skill_id' PROBLEM_ID_KEY = 'problem_id' TEMPLATE_ID_KEY = 'template_id' USER_ID_KEY = 'user_id' LOGGER = logging.getLogger(__name__) def load_data(file_path, item_id_col=SKILL_ID_KEY, template_id_col=None, concept_id_col=None, remove_nan_skill_ids=False, max_interactions_per_user=None, drop_duplicates=False, min_interactions_per_user=2): """ Load the Assistments dataset as a pandas dataframe, filter out students with only a single interaction, and optionally truncate student histories. The columns used for item and concept identifiers can be specified in the input arguments. Note that multiple skill ids associated with an interaction will result in the first skill name lexicographically being retained. :param str file_path: path to the skill builder file :param str item_id_col: indicates column of csv file to use for item ids :param str template_id_col: Set a particular column to represent a template id for hierarchical IRT. If 'single', assumes a dummy single hierarchical level; if None, no column is retained for templates. :param str concept_id_col: indicates column of csv file to use for concept ids. If 'single', assumes a dummy single concept. If None, concept column is not retained. :param bool remove_nan_skill_ids: whether to filter out interactions with NaN skill ids :param int max_interactions_per_user: number of interactions to keep per user (default is to keep all) :param int min_interactions_per_user: The minimum amount of history that is required to retain a student history. :param bool drop_duplicates: Whether to keep only the first of rows with duplicate order_id fields :return: processed data, student ids corresponding to the student indices, item ids corresponding to the item indices, template ids corresponding to the template indices, and concept ids corresponding to the concept indices :rtype: (pd.DataFrame, np.ndarray[int], np.ndarray[int], np.ndarray[int]) """ data =
pd.DataFrame.from_csv(file_path)
pandas.DataFrame.from_csv
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import array as arr import datetime import io import operator import random import re import string import textwrap from copy import copy import cupy import numpy as np import pandas as pd import pyarrow as pa import pytest from numba import cuda import cudf from cudf.core._compat import PANDAS_GE_110, PANDAS_GE_120 from cudf.core.column import column from cudf.tests import utils from cudf.tests.utils import ( ALL_TYPES, DATETIME_TYPES, NUMERIC_TYPES, assert_eq, assert_exceptions_equal, does_not_raise, gen_rand, ) def test_init_via_list_of_tuples(): data = [ (5, "cats", "jump", np.nan), (2, "dogs", "dig", 7.5), (3, "cows", "moo", -2.1, "occasionally"), ] pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def _dataframe_na_data(): return [ pd.DataFrame( { "a": [0, 1, 2, np.nan, 4, None, 6], "b": [np.nan, None, "u", "h", "d", "a", "m"], }, index=["q", "w", "e", "r", "t", "y", "u"], ), pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": ["a", "b", "u", "h", "d"]}), pd.DataFrame( { "a": [None, None, np.nan, None], "b": [np.nan, None, np.nan, None], } ), pd.DataFrame({"a": []}), pd.DataFrame({"a": [np.nan], "b": [None]}), pd.DataFrame({"a": ["a", "b", "c", None, "e"]}), pd.DataFrame({"a": ["a", "b", "c", "d", "e"]}), ] @pytest.mark.parametrize("rows", [0, 1, 2, 100]) def test_init_via_list_of_empty_tuples(rows): data = [()] * rows pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq( pdf, gdf, check_like=True, check_column_type=False, check_index_type=False, ) @pytest.mark.parametrize( "dict_of_series", [ {"a": pd.Series([1.0, 2.0, 3.0])}, {"a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 4.0], index=[1, 2, 3]), }, {"a": [1, 2, 3], "b": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "b": pd.Series([1.0, 2.0, 4.0], index=["c", "d", "e"]), }, { "a": pd.Series( ["a", "b", "c"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), "b": pd.Series( ["a", " b", "d"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), }, ], ) def test_init_from_series_align(dict_of_series): pdf = pd.DataFrame(dict_of_series) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) for key in dict_of_series: if isinstance(dict_of_series[key], pd.Series): dict_of_series[key] = cudf.Series(dict_of_series[key]) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) @pytest.mark.parametrize( ("dict_of_series", "expectation"), [ ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 5, 6]), }, pytest.raises( ValueError, match="Cannot align indices with non-unique values" ), ), ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 4, 5]), }, does_not_raise(), ), ], ) def test_init_from_series_align_nonunique(dict_of_series, expectation): with expectation: gdf = cudf.DataFrame(dict_of_series) if expectation == does_not_raise(): pdf = pd.DataFrame(dict_of_series) assert_eq(pdf, gdf) def test_init_unaligned_with_index(): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) gdf = cudf.DataFrame( { "a": cudf.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": cudf.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) assert_eq(pdf, gdf, check_dtype=False) def test_series_basic(): # Make series from buffer a1 = np.arange(10, dtype=np.float64) series = cudf.Series(a1) assert len(series) == 10 np.testing.assert_equal(series.to_array(), np.hstack([a1])) def test_series_from_cupy_scalars(): data = [0.1, 0.2, 0.3] data_np = np.array(data) data_cp = cupy.array(data) s_np = cudf.Series([data_np[0], data_np[2]]) s_cp = cudf.Series([data_cp[0], data_cp[2]]) assert_eq(s_np, s_cp) @pytest.mark.parametrize("a", [[1, 2, 3], [1, 10, 30]]) @pytest.mark.parametrize("b", [[4, 5, 6], [-11, -100, 30]]) def test_append_index(a, b): df = pd.DataFrame() df["a"] = a df["b"] = b gdf = cudf.DataFrame() gdf["a"] = a gdf["b"] = b # Check the default index after appending two columns(Series) expected = df.a.append(df.b) actual = gdf.a.append(gdf.b) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) expected = df.a.append(df.b, ignore_index=True) actual = gdf.a.append(gdf.b, ignore_index=True) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) def test_series_init_none(): # test for creating empty series # 1: without initializing sr1 = cudf.Series() got = sr1.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() # 2: Using `None` as an initializer sr2 = cudf.Series(None) got = sr2.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_basic(): np.random.seed(0) df = cudf.DataFrame() # Populate with cuda memory df["keys"] = np.arange(10, dtype=np.float64) np.testing.assert_equal(df["keys"].to_array(), np.arange(10)) assert len(df) == 10 # Populate with numpy array rnd_vals = np.random.random(10) df["vals"] = rnd_vals np.testing.assert_equal(df["vals"].to_array(), rnd_vals) assert len(df) == 10 assert tuple(df.columns) == ("keys", "vals") # Make another dataframe df2 = cudf.DataFrame() df2["keys"] = np.array([123], dtype=np.float64) df2["vals"] = np.array([321], dtype=np.float64) # Concat df = cudf.concat([df, df2]) assert len(df) == 11 hkeys = np.asarray(np.arange(10, dtype=np.float64).tolist() + [123]) hvals = np.asarray(rnd_vals.tolist() + [321]) np.testing.assert_equal(df["keys"].to_array(), hkeys) np.testing.assert_equal(df["vals"].to_array(), hvals) # As matrix mat = df.as_matrix() expect = np.vstack([hkeys, hvals]).T np.testing.assert_equal(mat, expect) # test dataframe with tuple name df_tup = cudf.DataFrame() data = np.arange(10) df_tup[(1, "foobar")] = data np.testing.assert_equal(data, df_tup[(1, "foobar")].to_array()) df = cudf.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) pdf = pd.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) assert_eq(df, pdf) gdf = cudf.DataFrame({"id": [0, 1], "val": [None, None]}) gdf["val"] = gdf["val"].astype("int") assert gdf["val"].isnull().all() @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "columns", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_columns(pdf, columns, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(columns=columns, inplace=inplace) actual = gdf.drop(columns=columns, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_0(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=0, inplace=inplace) actual = gdf.drop(labels=labels, axis=0, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "index", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_index(pdf, index, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace) actual = gdf.drop(index=index, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5}, index=pd.MultiIndex( levels=[ ["lama", "cow", "falcon"], ["speed", "weight", "length"], ], codes=[ [0, 0, 0, 1, 1, 1, 2, 2, 2, 1], [0, 1, 2, 0, 1, 2, 0, 1, 2, 1], ], ), ) ], ) @pytest.mark.parametrize( "index,level", [ ("cow", 0), ("lama", 0), ("falcon", 0), ("speed", 1), ("weight", 1), ("length", 1), pytest.param( "cow", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "lama", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "falcon", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_multiindex(pdf, index, level, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace, level=level) actual = gdf.drop(index=index, inplace=inplace, level=level) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_1(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=1, inplace=inplace) actual = gdf.drop(labels=labels, axis=1, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) def test_dataframe_drop_error(): df = cudf.DataFrame({"a": [1], "b": [2], "c": [3]}) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "d"}), rfunc_args_and_kwargs=([], {"columns": "d"}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), rfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), rfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), expected_error_message="Cannot specify both", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"axis": 1}), rfunc_args_and_kwargs=([], {"axis": 1}), expected_error_message="Need to specify at least", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([[2, 0]],), rfunc_args_and_kwargs=([[2, 0]],), expected_error_message="One or more values not found in axis", ) def test_dataframe_drop_raises(): df = cudf.DataFrame( {"a": [1, 2, 3], "c": [10, 20, 30]}, index=["x", "y", "z"] ) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["p"],), rfunc_args_and_kwargs=(["p"],), expected_error_message="One or more values not found in axis", ) # label dtype mismatch assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([3],), rfunc_args_and_kwargs=([3],), expected_error_message="One or more values not found in axis", ) expect = pdf.drop("p", errors="ignore") actual = df.drop("p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "p"}), rfunc_args_and_kwargs=([], {"columns": "p"}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(columns="p", errors="ignore") actual = df.drop(columns="p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), rfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(labels="p", axis=1, errors="ignore") actual = df.drop(labels="p", axis=1, errors="ignore") assert_eq(actual, expect) def test_dataframe_column_add_drop_via_setitem(): df = cudf.DataFrame() data = np.asarray(range(10)) df["a"] = data df["b"] = data assert tuple(df.columns) == ("a", "b") del df["a"] assert tuple(df.columns) == ("b",) df["c"] = data assert tuple(df.columns) == ("b", "c") df["a"] = data assert tuple(df.columns) == ("b", "c", "a") def test_dataframe_column_set_via_attr(): data_0 = np.asarray([0, 2, 4, 5]) data_1 = np.asarray([1, 4, 2, 3]) data_2 = np.asarray([2, 0, 3, 0]) df = cudf.DataFrame({"a": data_0, "b": data_1, "c": data_2}) for i in range(10): df.c = df.a assert assert_eq(df.c, df.a, check_names=False) assert tuple(df.columns) == ("a", "b", "c") df.c = df.b assert assert_eq(df.c, df.b, check_names=False) assert tuple(df.columns) == ("a", "b", "c") def test_dataframe_column_drop_via_attr(): df = cudf.DataFrame({"a": []}) with pytest.raises(AttributeError): del df.a assert tuple(df.columns) == tuple("a") @pytest.mark.parametrize("axis", [0, "index"]) def test_dataframe_index_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper={1: 5, 2: 6}, axis=axis) got = gdf.rename(mapper={1: 5, 2: 6}, axis=axis) assert_eq(expect, got) expect = pdf.rename(index={1: 5, 2: 6}) got = gdf.rename(index={1: 5, 2: 6}) assert_eq(expect, got) expect = pdf.rename({1: 5, 2: 6}) got = gdf.rename({1: 5, 2: 6}) assert_eq(expect, got) # `pandas` can support indexes with mixed values. We throw a # `NotImplementedError`. with pytest.raises(NotImplementedError): gdf.rename(mapper={1: "x", 2: "y"}, axis=axis) def test_dataframe_MI_rename(): gdf = cudf.DataFrame( {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)} ) gdg = gdf.groupby(["a", "b"]).count() pdg = gdg.to_pandas() expect = pdg.rename(mapper={1: 5, 2: 6}, axis=0) got = gdg.rename(mapper={1: 5, 2: 6}, axis=0) assert_eq(expect, got) @pytest.mark.parametrize("axis", [1, "columns"]) def test_dataframe_column_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper=lambda name: 2 * name, axis=axis) got = gdf.rename(mapper=lambda name: 2 * name, axis=axis) assert_eq(expect, got) expect = pdf.rename(columns=lambda name: 2 * name) got = gdf.rename(columns=lambda name: 2 * name) assert_eq(expect, got) rename_mapper = {"a": "z", "b": "y", "c": "x"} expect = pdf.rename(columns=rename_mapper) got = gdf.rename(columns=rename_mapper) assert_eq(expect, got) def test_dataframe_pop(): pdf = pd.DataFrame( {"a": [1, 2, 3], "b": ["x", "y", "z"], "c": [7.0, 8.0, 9.0]} ) gdf = cudf.DataFrame.from_pandas(pdf) # Test non-existing column error with pytest.raises(KeyError) as raises: gdf.pop("fake_colname") raises.match("fake_colname") # check pop numeric column pdf_pop = pdf.pop("a") gdf_pop = gdf.pop("a") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check string column pdf_pop = pdf.pop("b") gdf_pop = gdf.pop("b") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check float column and empty dataframe pdf_pop = pdf.pop("c") gdf_pop = gdf.pop("c") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check empty dataframe edge case empty_pdf = pd.DataFrame(columns=["a", "b"]) empty_gdf = cudf.DataFrame(columns=["a", "b"]) pb = empty_pdf.pop("b") gb = empty_gdf.pop("b") assert len(pb) == len(gb) assert empty_pdf.empty and empty_gdf.empty @pytest.mark.parametrize("nelem", [0, 3, 100, 1000]) def test_dataframe_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df["a"].dtype is np.dtype(np.int32) df["b"] = df["a"].astype(np.float32) assert df["b"].dtype is np.dtype(np.float32) np.testing.assert_equal(df["a"].to_array(), df["b"].to_array()) @pytest.mark.parametrize("nelem", [0, 100]) def test_index_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df.index.dtype is np.dtype(np.int64) df.index = df.index.astype(np.float32) assert df.index.dtype is np.dtype(np.float32) df["a"] = df["a"].astype(np.float32) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) df["b"] = df["a"] df = df.set_index("b") df["a"] = df["a"].astype(np.int16) df.index = df.index.astype(np.int16) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) def test_dataframe_to_string(): pd.options.display.max_rows = 5 pd.options.display.max_columns = 8 # Test basic df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) string = str(df) assert string.splitlines()[-1] == "[6 rows x 2 columns]" # Test skipped columns df = cudf.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16], "c": [11, 12, 13, 14, 15, 16], "d": [11, 12, 13, 14, 15, 16], } ) string = df.to_string() assert string.splitlines()[-1] == "[6 rows x 4 columns]" # Test masked df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) data = np.arange(6) mask = np.zeros(1, dtype=cudf.utils.utils.mask_dtype) mask[0] = 0b00101101 masked = cudf.Series.from_masked_array(data, mask) assert masked.null_count == 2 df["c"] = masked # check data values = masked.copy() validids = [0, 2, 3, 5] densearray = masked.to_array() np.testing.assert_equal(data[validids], densearray) # valid position is corret for i in validids: assert data[i] == values[i] # null position is correct for i in range(len(values)): if i not in validids: assert values[i] is cudf.NA pd.options.display.max_rows = 10 got = df.to_string() expect = """ a b c 0 1 11 0 1 2 12 <NA> 2 3 13 2 3 4 14 3 4 5 15 <NA> 5 6 16 5 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_to_string_wide(monkeypatch): monkeypatch.setenv("COLUMNS", "79") # Test basic df = cudf.DataFrame() for i in range(100): df["a{}".format(i)] = list(range(3)) pd.options.display.max_columns = 0 got = df.to_string() expect = """ a0 a1 a2 a3 a4 a5 a6 a7 ... a92 a93 a94 a95 a96 a97 a98 a99 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2 [3 rows x 100 columns] """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_empty_to_string(): # Test for printing empty dataframe df = cudf.DataFrame() got = df.to_string() expect = "Empty DataFrame\nColumns: []\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_emptycolumns_to_string(): # Test for printing dataframe having empty columns df = cudf.DataFrame() df["a"] = [] df["b"] = [] got = df.to_string() expect = "Empty DataFrame\nColumns: [a, b]\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy(): # Test for copying the dataframe using python copy pkg df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = copy(df) df2["b"] = [4, 5, 6] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy_shallow(): # Test for copy dataframe using class method df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = df.copy() df2["b"] = [4, 2, 3] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_dtypes(): dtypes = pd.Series( [np.int32, np.float32, np.float64], index=["c", "a", "b"] ) df = cudf.DataFrame( {k: np.ones(10, dtype=v) for k, v in dtypes.iteritems()} ) assert df.dtypes.equals(dtypes) def test_dataframe_add_col_to_object_dataframe(): # Test for adding column to an empty object dataframe cols = ["a", "b", "c"] df = pd.DataFrame(columns=cols, dtype="str") data = {k: v for (k, v) in zip(cols, [["a"] for _ in cols])} gdf = cudf.DataFrame(data) gdf = gdf[:0] assert gdf.dtypes.equals(df.dtypes) gdf["a"] = [1] df["a"] = [10] assert gdf.dtypes.equals(df.dtypes) gdf["b"] = [1.0] df["b"] = [10.0] assert gdf.dtypes.equals(df.dtypes) def test_dataframe_dir_and_getattr(): df = cudf.DataFrame( { "a": np.ones(10), "b": np.ones(10), "not an id": np.ones(10), "oop$": np.ones(10), } ) o = dir(df) assert {"a", "b"}.issubset(o) assert "not an id" not in o assert "oop$" not in o # Getattr works assert df.a.equals(df["a"]) assert df.b.equals(df["b"]) with pytest.raises(AttributeError): df.not_a_column @pytest.mark.parametrize("order", ["C", "F"]) def test_empty_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() # Check fully empty dataframe. mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 0) df = cudf.DataFrame() nelem = 123 for k in "abc": df[k] = np.random.random(nelem) # Check all columns in empty dataframe. mat = df.head(0).as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 3) @pytest.mark.parametrize("order", ["C", "F"]) def test_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() nelem = 123 for k in "abcd": df[k] = np.random.random(nelem) # Check all columns mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (nelem, 4) for i, k in enumerate(df.columns): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) # Check column subset mat = df.as_gpu_matrix(order=order, columns=["a", "c"]).copy_to_host() assert mat.shape == (nelem, 2) for i, k in enumerate("ac"): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) def test_dataframe_as_gpu_matrix_null_values(): df = cudf.DataFrame() nelem = 123 na = -10000 refvalues = {} for k in "abcd": df[k] = data = np.random.random(nelem) bitmask = utils.random_bitmask(nelem) df[k] = df[k].set_mask(bitmask) boolmask = np.asarray( utils.expand_bits_to_bytes(bitmask)[:nelem], dtype=np.bool_ ) data[~boolmask] = na refvalues[k] = data # Check null value causes error with pytest.raises(ValueError) as raises: df.as_gpu_matrix() raises.match("column 'a' has null values") for k in df.columns: df[k] = df[k].fillna(na) mat = df.as_gpu_matrix().copy_to_host() for i, k in enumerate(df.columns): np.testing.assert_array_equal(refvalues[k], mat[:, i]) def test_dataframe_append_empty(): pdf = pd.DataFrame( { "key": [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], } ) gdf = cudf.DataFrame.from_pandas(pdf) gdf["newcol"] = 100 pdf["newcol"] = 100 assert len(gdf["newcol"]) == len(pdf) assert len(pdf["newcol"]) == len(pdf) assert_eq(gdf, pdf) def test_dataframe_setitem_from_masked_object(): ary = np.random.randn(100) mask = np.zeros(100, dtype=bool) mask[:20] = True np.random.shuffle(mask) ary[mask] = np.nan test1_null = cudf.Series(ary, nan_as_null=True) assert test1_null.nullable assert test1_null.null_count == 20 test1_nan = cudf.Series(ary, nan_as_null=False) assert test1_nan.null_count == 0 test2_null = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=True ) assert test2_null["a"].nullable assert test2_null["a"].null_count == 20 test2_nan = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=False ) assert test2_nan["a"].null_count == 0 gpu_ary = cupy.asarray(ary) test3_null = cudf.Series(gpu_ary, nan_as_null=True) assert test3_null.nullable assert test3_null.null_count == 20 test3_nan = cudf.Series(gpu_ary, nan_as_null=False) assert test3_nan.null_count == 0 test4 = cudf.DataFrame() lst = [1, 2, None, 4, 5, 6, None, 8, 9] test4["lst"] = lst assert test4["lst"].nullable assert test4["lst"].null_count == 2 def test_dataframe_append_to_empty(): pdf = pd.DataFrame() pdf["a"] = [] pdf["b"] = [1, 2, 3] gdf = cudf.DataFrame() gdf["a"] = [] gdf["b"] = [1, 2, 3] assert_eq(gdf, pdf) def test_dataframe_setitem_index_len1(): gdf = cudf.DataFrame() gdf["a"] = [1] gdf["b"] = gdf.index._values np.testing.assert_equal(gdf.b.to_array(), [0]) def test_empty_dataframe_setitem_df(): gdf1 = cudf.DataFrame() gdf2 = cudf.DataFrame({"a": [1, 2, 3, 4, 5]}) gdf1["a"] = gdf2["a"] assert_eq(gdf1, gdf2) def test_assign(): gdf = cudf.DataFrame({"x": [1, 2, 3]}) gdf2 = gdf.assign(y=gdf.x + 1) assert list(gdf.columns) == ["x"] assert list(gdf2.columns) == ["x", "y"] np.testing.assert_equal(gdf2.y.to_array(), [2, 3, 4]) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000]) def test_dataframe_hash_columns(nrows): gdf = cudf.DataFrame() data = np.asarray(range(nrows)) data[0] = data[-1] # make first and last the same gdf["a"] = data gdf["b"] = gdf.a + 100 out = gdf.hash_columns(["a", "b"]) assert isinstance(out, cupy.ndarray) assert len(out) == nrows assert out.dtype == np.int32 # Check default out_all = gdf.hash_columns() np.testing.assert_array_equal(cupy.asnumpy(out), cupy.asnumpy(out_all)) # Check single column out_one = cupy.asnumpy(gdf.hash_columns(["a"])) # First matches last assert out_one[0] == out_one[-1] # Equivalent to the cudf.Series.hash_values() np.testing.assert_array_equal(cupy.asnumpy(gdf.a.hash_values()), out_one) @pytest.mark.parametrize("nrows", [3, 10, 100, 1000]) @pytest.mark.parametrize("nparts", [1, 2, 8, 13]) @pytest.mark.parametrize("nkeys", [1, 2]) def test_dataframe_hash_partition(nrows, nparts, nkeys): np.random.seed(123) gdf = cudf.DataFrame() keycols = [] for i in range(nkeys): keyname = "key{}".format(i) gdf[keyname] = np.random.randint(0, 7 - i, nrows) keycols.append(keyname) gdf["val1"] = np.random.randint(0, nrows * 2, nrows) got = gdf.partition_by_hash(keycols, nparts=nparts) # Must return a list assert isinstance(got, list) # Must have correct number of partitions assert len(got) == nparts # All partitions must be DataFrame type assert all(isinstance(p, cudf.DataFrame) for p in got) # Check that all partitions have unique keys part_unique_keys = set() for p in got: if len(p): # Take rows of the keycolumns and build a set of the key-values unique_keys = set(map(tuple, p.as_matrix(columns=keycols))) # Ensure that none of the key-values have occurred in other groups assert not (unique_keys & part_unique_keys) part_unique_keys |= unique_keys assert len(part_unique_keys) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_value(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["val"] = gdf["val"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.key]) expected_value = row.key + 100 if valid else np.nan got_value = row.val assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_keys(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["key"] = gdf["key"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3, keep_index=False) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.val - 100]) # val is key + 100 expected_value = row.val - 100 if valid else np.nan got_value = row.key assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("keep_index", [True, False]) def test_dataframe_hash_partition_keep_index(keep_index): gdf = cudf.DataFrame( {"val": [1, 2, 3, 4], "key": [3, 2, 1, 4]}, index=[4, 3, 2, 1] ) expected_df1 = cudf.DataFrame( {"val": [1], "key": [3]}, index=[4] if keep_index else None ) expected_df2 = cudf.DataFrame( {"val": [2, 3, 4], "key": [2, 1, 4]}, index=[3, 2, 1] if keep_index else range(1, 4), ) expected = [expected_df1, expected_df2] parts = gdf.partition_by_hash(["key"], nparts=2, keep_index=keep_index) for exp, got in zip(expected, parts): assert_eq(exp, got) def test_dataframe_hash_partition_empty(): gdf = cudf.DataFrame({"val": [1, 2], "key": [3, 2]}, index=["a", "b"]) parts = gdf.iloc[:0].partition_by_hash(["key"], nparts=3) assert len(parts) == 3 for part in parts: assert_eq(gdf.iloc[:0], part) @pytest.mark.parametrize("dtype1", utils.supported_numpy_dtypes) @pytest.mark.parametrize("dtype2", utils.supported_numpy_dtypes) def test_dataframe_concat_different_numerical_columns(dtype1, dtype2): df1 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype1))) df2 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype2))) if dtype1 != dtype2 and "datetime" in dtype1 or "datetime" in dtype2: with pytest.raises(TypeError): cudf.concat([df1, df2]) else: pres = pd.concat([df1, df2]) gres = cudf.concat([cudf.from_pandas(df1), cudf.from_pandas(df2)]) assert_eq(cudf.from_pandas(pres), gres) def test_dataframe_concat_different_column_types(): df1 = cudf.Series([42], dtype=np.float64) df2 = cudf.Series(["a"], dtype="category") with pytest.raises(ValueError): cudf.concat([df1, df2]) df2 = cudf.Series(["a string"]) with pytest.raises(TypeError): cudf.concat([df1, df2]) @pytest.mark.parametrize( "df_1", [cudf.DataFrame({"a": [1, 2], "b": [1, 3]}), cudf.DataFrame({})] ) @pytest.mark.parametrize( "df_2", [cudf.DataFrame({"a": [], "b": []}), cudf.DataFrame({})] ) def test_concat_empty_dataframe(df_1, df_2): got = cudf.concat([df_1, df_2]) expect = pd.concat([df_1.to_pandas(), df_2.to_pandas()], sort=False) # ignoring dtypes as pandas upcasts int to float # on concatenation with empty dataframes assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "df1_d", [ {"a": [1, 2], "b": [1, 2], "c": ["s1", "s2"], "d": [1.0, 2.0]}, {"b": [1.9, 10.9], "c": ["s1", "s2"]}, {"c": ["s1"], "b": [None], "a": [False]}, ], ) @pytest.mark.parametrize( "df2_d", [ {"a": [1, 2, 3]}, {"a": [1, None, 3], "b": [True, True, False], "c": ["s3", None, "s4"]}, {"a": [], "b": []}, {}, ], ) def test_concat_different_column_dataframe(df1_d, df2_d): got = cudf.concat( [cudf.DataFrame(df1_d), cudf.DataFrame(df2_d), cudf.DataFrame(df1_d)], sort=False, ) expect = pd.concat( [pd.DataFrame(df1_d), pd.DataFrame(df2_d), pd.DataFrame(df1_d)], sort=False, ) # numerical columns are upcasted to float in cudf.DataFrame.to_pandas() # casts nan to 0 in non-float numerical columns numeric_cols = got.dtypes[got.dtypes != "object"].index for col in numeric_cols: got[col] = got[col].astype(np.float64).fillna(np.nan) assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "ser_1", [pd.Series([1, 2, 3]), pd.Series([], dtype="float64")] ) @pytest.mark.parametrize("ser_2", [pd.Series([], dtype="float64")]) def test_concat_empty_series(ser_1, ser_2): got = cudf.concat([cudf.Series(ser_1), cudf.Series(ser_2)]) expect = pd.concat([ser_1, ser_2]) assert_eq(got, expect) def test_concat_with_axis(): df1 = pd.DataFrame(dict(x=np.arange(5), y=np.arange(5))) df2 = pd.DataFrame(dict(a=np.arange(5), b=np.arange(5))) concat_df = pd.concat([df1, df2], axis=1) cdf1 = cudf.from_pandas(df1) cdf2 = cudf.from_pandas(df2) # concat only dataframes concat_cdf = cudf.concat([cdf1, cdf2], axis=1) assert_eq(concat_cdf, concat_df) # concat only series concat_s = pd.concat([df1.x, df1.y], axis=1) cs1 = cudf.Series.from_pandas(df1.x) cs2 = cudf.Series.from_pandas(df1.y) concat_cdf_s = cudf.concat([cs1, cs2], axis=1) assert_eq(concat_cdf_s, concat_s) # concat series and dataframes s3 = pd.Series(np.random.random(5)) cs3 = cudf.Series.from_pandas(s3) concat_cdf_all = cudf.concat([cdf1, cs3, cdf2], axis=1) concat_df_all = pd.concat([df1, s3, df2], axis=1) assert_eq(concat_cdf_all, concat_df_all) # concat manual multi index midf1 = cudf.from_pandas(df1) midf1.index = cudf.MultiIndex( levels=[[0, 1, 2, 3], [0, 1]], codes=[[0, 1, 2, 3, 2], [0, 1, 0, 1, 0]] ) midf2 = midf1[2:] midf2.index = cudf.MultiIndex( levels=[[3, 4, 5], [2, 0]], codes=[[0, 1, 2], [1, 0, 1]] ) mipdf1 = midf1.to_pandas() mipdf2 = midf2.to_pandas() assert_eq(cudf.concat([midf1, midf2]), pd.concat([mipdf1, mipdf2])) assert_eq(cudf.concat([midf2, midf1]), pd.concat([mipdf2, mipdf1])) assert_eq( cudf.concat([midf1, midf2, midf1]), pd.concat([mipdf1, mipdf2, mipdf1]) ) # concat groupby multi index gdf1 = cudf.DataFrame( { "x": np.random.randint(0, 10, 10), "y": np.random.randint(0, 10, 10), "z": np.random.randint(0, 10, 10), "v": np.random.randint(0, 10, 10), } ) gdf2 = gdf1[5:] gdg1 = gdf1.groupby(["x", "y"]).min() gdg2 = gdf2.groupby(["x", "y"]).min() pdg1 = gdg1.to_pandas() pdg2 = gdg2.to_pandas() assert_eq(cudf.concat([gdg1, gdg2]), pd.concat([pdg1, pdg2])) assert_eq(cudf.concat([gdg2, gdg1]), pd.concat([pdg2, pdg1])) # series multi index concat gdgz1 = gdg1.z gdgz2 = gdg2.z pdgz1 = gdgz1.to_pandas() pdgz2 = gdgz2.to_pandas() assert_eq(cudf.concat([gdgz1, gdgz2]), pd.concat([pdgz1, pdgz2])) assert_eq(cudf.concat([gdgz2, gdgz1]), pd.concat([pdgz2, pdgz1])) @pytest.mark.parametrize("nrows", [0, 3, 10, 100, 1000]) def test_nonmatching_index_setitem(nrows): np.random.seed(0) gdf = cudf.DataFrame() gdf["a"] = np.random.randint(2147483647, size=nrows) gdf["b"] = np.random.randint(2147483647, size=nrows) gdf = gdf.set_index("b") test_values = np.random.randint(2147483647, size=nrows) gdf["c"] = test_values assert len(test_values) == len(gdf["c"]) assert ( gdf["c"] .to_pandas() .equals(cudf.Series(test_values).set_index(gdf._index).to_pandas()) ) def test_from_pandas(): df = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) gdf = cudf.DataFrame.from_pandas(df) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = df.x gs = cudf.Series.from_pandas(s) assert isinstance(gs, cudf.Series) assert_eq(s, gs) @pytest.mark.parametrize("dtypes", [int, float]) def test_from_records(dtypes): h_ary = np.ndarray(shape=(10, 4), dtype=dtypes) rec_ary = h_ary.view(np.recarray) gdf = cudf.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) df = pd.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame.from_records(rec_ary) df = pd.DataFrame.from_records(rec_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) @pytest.mark.parametrize("columns", [None, ["first", "second", "third"]]) @pytest.mark.parametrize( "index", [ None, ["first", "second"], "name", "age", "weight", [10, 11], ["abc", "xyz"], ], ) def test_from_records_index(columns, index): rec_ary = np.array( [("Rex", 9, 81.0), ("Fido", 3, 27.0)], dtype=[("name", "U10"), ("age", "i4"), ("weight", "f4")], ) gdf = cudf.DataFrame.from_records(rec_ary, columns=columns, index=index) df = pd.DataFrame.from_records(rec_ary, columns=columns, index=index) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_construction_from_cupy_arrays(): h_ary = np.array([[1, 2, 3], [4, 5, 6]], np.int32) d_ary = cupy.asarray(h_ary) gdf = cudf.DataFrame(d_ary, columns=["a", "b", "c"]) df = pd.DataFrame(h_ary, columns=["a", "b", "c"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) df = pd.DataFrame(h_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary, index=["a", "b"]) df = pd.DataFrame(h_ary, index=["a", "b"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=0, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=0, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=1, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=1, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_cupy_wrong_dimensions(): d_ary = cupy.empty((2, 3, 4), dtype=np.int32) with pytest.raises( ValueError, match="records dimension expected 1 or 2 but found: 3" ): cudf.DataFrame(d_ary) def test_dataframe_cupy_array_wrong_index(): d_ary = cupy.empty((2, 3), dtype=np.int32) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index=["a"]) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index="a") def test_index_in_dataframe_constructor(): a = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) b = cudf.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) assert_eq(a, b) assert_eq(a.loc[4:], b.loc[4:]) dtypes = NUMERIC_TYPES + DATETIME_TYPES + ["bool"] @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) padf = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) gdf = cudf.DataFrame.from_arrow(padf) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = pa.Array.from_pandas(df.a) gs = cudf.Series.from_arrow(s) assert isinstance(gs, cudf.Series) # For some reason PyArrow to_pandas() converts to numpy array and has # better type compatibility np.testing.assert_array_equal(s.to_pandas(), gs.to_array()) @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_to_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) pa_i = pa.Array.from_pandas(df.index) pa_gi = gdf.index.to_arrow() assert isinstance(pa_gi, pa.Array) assert pa.Array.equals(pa_i, pa_gi) @pytest.mark.parametrize("data_type", dtypes) def test_to_from_arrow_nulls(data_type): if data_type == "longlong": data_type = "int64" if data_type == "bool": s1 = pa.array([True, None, False, None, True], type=data_type) else: dtype = np.dtype(data_type) if dtype.type == np.datetime64: time_unit, _ = np.datetime_data(dtype) data_type = pa.timestamp(unit=time_unit) s1 = pa.array([1, None, 3, None, 5], type=data_type) gs1 = cudf.Series.from_arrow(s1) assert isinstance(gs1, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s1.buffers()[0]).view("u1")[0], gs1._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s1, gs1.to_arrow()) s2 = pa.array([None, None, None, None, None], type=data_type) gs2 = cudf.Series.from_arrow(s2) assert isinstance(gs2, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s2.buffers()[0]).view("u1")[0], gs2._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s2, gs2.to_arrow()) def test_to_arrow_categorical(): df = pd.DataFrame() df["a"] = pd.Series(["a", "b", "c"], dtype="category") gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) def test_from_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert_eq( pd.Series(pa_cat.to_pandas()), # PyArrow returns a pd.Categorical gd_cat.to_pandas(), ) def test_to_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert pa.Array.equals(pa_cat, gd_cat.to_arrow()) @pytest.mark.parametrize("data_type", dtypes) def test_from_scalar_typing(data_type): if data_type == "datetime64[ms]": scalar = ( np.dtype("int64") .type(np.random.randint(0, 5)) .astype("datetime64[ms]") ) elif data_type.startswith("datetime64"): scalar = np.datetime64(datetime.date.today()).astype("datetime64[ms]") data_type = "datetime64[ms]" else: scalar = np.dtype(data_type).type(np.random.randint(0, 5)) gdf = cudf.DataFrame() gdf["a"] = [1, 2, 3, 4, 5] gdf["b"] = scalar assert gdf["b"].dtype == np.dtype(data_type) assert len(gdf["b"]) == len(gdf["a"]) @pytest.mark.parametrize("data_type", NUMERIC_TYPES) def test_from_python_array(data_type): np_arr = np.random.randint(0, 100, 10).astype(data_type) data = memoryview(np_arr) data = arr.array(data.format, data) gs = cudf.Series(data) np.testing.assert_equal(gs.to_array(), np_arr) def test_series_shape(): ps = pd.Series([1, 2, 3, 4]) cs = cudf.Series([1, 2, 3, 4]) assert ps.shape == cs.shape def test_series_shape_empty(): ps = pd.Series(dtype="float64") cs = cudf.Series([]) assert ps.shape == cs.shape def test_dataframe_shape(): pdf = pd.DataFrame({"a": [0, 1, 2, 3], "b": [0.1, 0.2, None, 0.3]}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.shape == gdf.shape def test_dataframe_shape_empty(): pdf = pd.DataFrame() gdf = cudf.DataFrame() assert pdf.shape == gdf.shape @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) @pytest.mark.parametrize("dtype", dtypes) @pytest.mark.parametrize("nulls", ["none", "some", "all"]) def test_dataframe_transpose(nulls, num_cols, num_rows, dtype): pdf = pd.DataFrame() null_rep = np.nan if dtype in ["float32", "float64"] else None for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(np.random.randint(0, 26, num_rows).astype(dtype)) if nulls == "some": idx = np.random.choice( num_rows, size=int(num_rows / 2), replace=False ) data[idx] = null_rep elif nulls == "all": data[:] = null_rep pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function) assert_eq(expect, got_property) @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) def test_dataframe_transpose_category(num_cols, num_rows): pdf = pd.DataFrame() for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(list(string.ascii_lowercase), dtype="category") data = data.sample(num_rows, replace=True).reset_index(drop=True) pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function.to_pandas()) assert_eq(expect, got_property.to_pandas()) def test_generated_column(): gdf = cudf.DataFrame({"a": (i for i in range(5))}) assert len(gdf) == 5 @pytest.fixture def pdf(): return pd.DataFrame({"x": range(10), "y": range(10)}) @pytest.fixture def gdf(pdf): return cudf.DataFrame.from_pandas(pdf) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize( "func", [ lambda df, **kwargs: df.min(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.product(**kwargs), lambda df, **kwargs: df.cummin(**kwargs), lambda df, **kwargs: df.cummax(**kwargs), lambda df, **kwargs: df.cumsum(**kwargs), lambda df, **kwargs: df.cumprod(**kwargs), lambda df, **kwargs: df.mean(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.std(ddof=1, **kwargs), lambda df, **kwargs: df.var(ddof=1, **kwargs), lambda df, **kwargs: df.std(ddof=2, **kwargs), lambda df, **kwargs: df.var(ddof=2, **kwargs), lambda df, **kwargs: df.kurt(**kwargs), lambda df, **kwargs: df.skew(**kwargs), lambda df, **kwargs: df.all(**kwargs), lambda df, **kwargs: df.any(**kwargs), ], ) @pytest.mark.parametrize("skipna", [True, False, None]) def test_dataframe_reductions(data, func, skipna): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf, skipna=skipna), func(gdf, skipna=skipna)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("func", [lambda df: df.count()]) def test_dataframe_count_reduction(data, func): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf), func(gdf)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("ops", ["sum", "product", "prod"]) @pytest.mark.parametrize("skipna", [True, False, None]) @pytest.mark.parametrize("min_count", [-10, -1, 0, 1, 2, 3, 10]) def test_dataframe_min_count_ops(data, ops, skipna, min_count): psr = pd.DataFrame(data) gsr = cudf.DataFrame(data) if PANDAS_GE_120 and psr.shape[0] * psr.shape[1] < min_count: pytest.xfail("https://github.com/pandas-dev/pandas/issues/39738") assert_eq( getattr(psr, ops)(skipna=skipna, min_count=min_count), getattr(gsr, ops)(skipna=skipna, min_count=min_count), check_dtype=False, ) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_df(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf, pdf) g = binop(gdf, gdf) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_df(pdf, gdf, binop): d = binop(pdf, pdf + 1) g = binop(gdf, gdf + 1) assert_eq(d, g) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_series(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf.x, pdf.y) g = binop(gdf.x, gdf.y) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_series(pdf, gdf, binop): d = binop(pdf.x, pdf.y + 1) g = binop(gdf.x, gdf.y + 1) assert_eq(d, g) @pytest.mark.parametrize("unaryop", [operator.neg, operator.inv, operator.abs]) def test_unaryops_df(pdf, gdf, unaryop): d = unaryop(pdf - 5) g = unaryop(gdf - 5) assert_eq(d, g) @pytest.mark.parametrize( "func", [ lambda df: df.empty, lambda df: df.x.empty, lambda df: df.x.fillna(123, limit=None, method=None, axis=None), lambda df: df.drop("x", axis=1, errors="raise"), ], ) def test_unary_operators(func, pdf, gdf): p = func(pdf) g = func(gdf) assert_eq(p, g) def test_is_monotonic(gdf): pdf = pd.DataFrame({"x": [1, 2, 3]}, index=[3, 1, 2]) gdf = cudf.DataFrame.from_pandas(pdf) assert not gdf.index.is_monotonic assert not gdf.index.is_monotonic_increasing assert not gdf.index.is_monotonic_decreasing def test_iter(pdf, gdf): assert list(pdf) == list(gdf) def test_iteritems(gdf): for k, v in gdf.iteritems(): assert k in gdf.columns assert isinstance(v, cudf.Series) assert_eq(v, gdf[k]) @pytest.mark.parametrize("q", [0.5, 1, 0.001, [0.5], [], [0.005, 0.5, 1]]) @pytest.mark.parametrize("numeric_only", [True, False]) def test_quantile(q, numeric_only): ts = pd.date_range("2018-08-24", periods=5, freq="D") td = pd.to_timedelta(np.arange(5), unit="h") pdf = pd.DataFrame( {"date": ts, "delta": td, "val": np.random.randn(len(ts))} ) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf["date"].quantile(q), gdf["date"].quantile(q)) assert_eq(pdf["delta"].quantile(q), gdf["delta"].quantile(q)) assert_eq(pdf["val"].quantile(q), gdf["val"].quantile(q)) if numeric_only: assert_eq(pdf.quantile(q), gdf.quantile(q)) else: q = q if isinstance(q, list) else [q] assert_eq( pdf.quantile( q if isinstance(q, list) else [q], numeric_only=False ), gdf.quantile(q, numeric_only=False), ) def test_empty_quantile(): pdf = pd.DataFrame({"x": []}) df = cudf.DataFrame({"x": []}) actual = df.quantile() expected = pdf.quantile() assert_eq(actual, expected) def test_from_pandas_function(pdf): gdf = cudf.from_pandas(pdf) assert isinstance(gdf, cudf.DataFrame) assert_eq(pdf, gdf) gdf = cudf.from_pandas(pdf.x) assert isinstance(gdf, cudf.Series) assert_eq(pdf.x, gdf) with pytest.raises(TypeError): cudf.from_pandas(123) @pytest.mark.parametrize("preserve_index", [True, False]) def test_arrow_pandas_compat(pdf, gdf, preserve_index): pdf["z"] = range(10) pdf = pdf.set_index("z") gdf["z"] = range(10) gdf = gdf.set_index("z") pdf_arrow_table = pa.Table.from_pandas(pdf, preserve_index=preserve_index) gdf_arrow_table = gdf.to_arrow(preserve_index=preserve_index) assert pa.Table.equals(pdf_arrow_table, gdf_arrow_table) gdf2 = cudf.DataFrame.from_arrow(pdf_arrow_table) pdf2 = pdf_arrow_table.to_pandas() assert_eq(pdf2, gdf2) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000, 100000]) def test_series_hash_encode(nrows): data = np.asarray(range(nrows)) # Python hash returns different value which sometimes # results in enc_with_name_arr and enc_arr to be same. # And there is no other better way to make hash return same value. # So using an integer name to get constant value back from hash. s = cudf.Series(data, name=1) num_features = 1000 encoded_series = s.hash_encode(num_features) assert isinstance(encoded_series, cudf.Series) enc_arr = encoded_series.to_array() assert np.all(enc_arr >= 0) assert np.max(enc_arr) < num_features enc_with_name_arr = s.hash_encode(num_features, use_name=True).to_array() assert enc_with_name_arr[0] != enc_arr[0] @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) def test_cuda_array_interface(dtype): np_data = np.arange(10).astype(dtype) cupy_data = cupy.array(np_data) pd_data = pd.Series(np_data) cudf_data = cudf.Series(cupy_data) assert_eq(pd_data, cudf_data) gdf = cudf.DataFrame() gdf["test"] = cupy_data pd_data.name = "test" assert_eq(pd_data, gdf["test"]) @pytest.mark.parametrize("nelem", [0, 2, 3, 100]) @pytest.mark.parametrize("nchunks", [1, 2, 5, 10]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow_chunked_arrays(nelem, nchunks, data_type): np_list_data = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array = pa.chunked_array(np_list_data) expect = pd.Series(pa_chunk_array.to_pandas()) got = cudf.Series(pa_chunk_array) assert_eq(expect, got) np_list_data2 = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array2 = pa.chunked_array(np_list_data2) pa_table = pa.Table.from_arrays( [pa_chunk_array, pa_chunk_array2], names=["a", "b"] ) expect = pa_table.to_pandas() got = cudf.DataFrame.from_arrow(pa_table) assert_eq(expect, got) @pytest.mark.skip(reason="Test was designed to be run in isolation") def test_gpu_memory_usage_with_boolmask(): ctx = cuda.current_context() def query_GPU_memory(note=""): memInfo = ctx.get_memory_info() usedMemoryGB = (memInfo.total - memInfo.free) / 1e9 return usedMemoryGB cuda.current_context().deallocations.clear() nRows = int(1e8) nCols = 2 dataNumpy = np.asfortranarray(np.random.rand(nRows, nCols)) colNames = ["col" + str(iCol) for iCol in range(nCols)] pandasDF = pd.DataFrame(data=dataNumpy, columns=colNames, dtype=np.float32) cudaDF = cudf.core.DataFrame.from_pandas(pandasDF) boolmask = cudf.Series(np.random.randint(1, 2, len(cudaDF)).astype("bool")) memory_used = query_GPU_memory() cudaDF = cudaDF[boolmask] assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col0"].index._values.data_array_view.device_ctypes_pointer ) assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col1"].index._values.data_array_view.device_ctypes_pointer ) assert memory_used == query_GPU_memory() def test_boolmask(pdf, gdf): boolmask = np.random.randint(0, 2, len(pdf)) > 0 gdf = gdf[boolmask] pdf = pdf[boolmask] assert_eq(pdf, gdf) @pytest.mark.parametrize( "mask_shape", [ (2, "ab"), (2, "abc"), (3, "ab"), (3, "abc"), (3, "abcd"), (4, "abc"), (4, "abcd"), ], ) def test_dataframe_boolmask(mask_shape): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.random.randint(0, 10, 3) pdf_mask = pd.DataFrame() for col in mask_shape[1]: pdf_mask[col] = np.random.randint(0, 2, mask_shape[0]) > 0 gdf = cudf.DataFrame.from_pandas(pdf) gdf_mask = cudf.DataFrame.from_pandas(pdf_mask) gdf = gdf[gdf_mask] pdf = pdf[pdf_mask] assert np.array_equal(gdf.columns, pdf.columns) for col in gdf.columns: assert np.array_equal( gdf[col].fillna(-1).to_pandas().values, pdf[col].fillna(-1).values ) @pytest.mark.parametrize( "mask", [ [True, False, True], pytest.param( cudf.Series([True, False, True]), marks=pytest.mark.xfail( reason="Pandas can't index a multiindex with a Series" ), ), ], ) def test_dataframe_multiindex_boolmask(mask): gdf = cudf.DataFrame( {"w": [3, 2, 1], "x": [1, 2, 3], "y": [0, 1, 0], "z": [1, 1, 1]} ) gdg = gdf.groupby(["w", "x"]).count() pdg = gdg.to_pandas() assert_eq(gdg[mask], pdg[mask]) def test_dataframe_assignment(): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.array([0, 1, 1, -2, 10]) gdf = cudf.DataFrame.from_pandas(pdf) gdf[gdf < 0] = 999 pdf[pdf < 0] = 999 assert_eq(gdf, pdf) def test_1row_arrow_table(): data = [pa.array([0]), pa.array([1])] batch = pa.RecordBatch.from_arrays(data, ["f0", "f1"]) table = pa.Table.from_batches([batch]) expect = table.to_pandas() got = cudf.DataFrame.from_arrow(table) assert_eq(expect, got) def test_arrow_handle_no_index_name(pdf, gdf): gdf_arrow = gdf.to_arrow() pdf_arrow = pa.Table.from_pandas(pdf) assert pa.Table.equals(pdf_arrow, gdf_arrow) got = cudf.DataFrame.from_arrow(gdf_arrow) expect = pdf_arrow.to_pandas() assert_eq(expect, got) @pytest.mark.parametrize("num_rows", [1, 3, 10, 100]) @pytest.mark.parametrize("num_bins", [1, 2, 4, 20]) @pytest.mark.parametrize("right", [True, False]) @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) @pytest.mark.parametrize("series_bins", [True, False]) def test_series_digitize(num_rows, num_bins, right, dtype, series_bins): data = np.random.randint(0, 100, num_rows).astype(dtype) bins = np.unique(np.sort(np.random.randint(2, 95, num_bins).astype(dtype))) s = cudf.Series(data) if series_bins: s_bins = cudf.Series(bins) indices = s.digitize(s_bins, right) else: indices = s.digitize(bins, right) np.testing.assert_array_equal( np.digitize(data, bins, right), indices.to_array() ) def test_series_digitize_invalid_bins(): s = cudf.Series(np.random.randint(0, 30, 80), dtype="int32") bins = cudf.Series([2, None, None, 50, 90], dtype="int32") with pytest.raises( ValueError, match="`bins` cannot contain null entries." ): _ = s.digitize(bins) def test_pandas_non_contiguious(): arr1 = np.random.sample([5000, 10]) assert arr1.flags["C_CONTIGUOUS"] is True df = pd.DataFrame(arr1) for col in df.columns: assert df[col].values.flags["C_CONTIGUOUS"] is False gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.to_pandas(), df) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) @pytest.mark.parametrize("null_type", [np.nan, None, "mixed"]) def test_series_all_null(num_elements, null_type): if null_type == "mixed": data = [] data1 = [np.nan] * int(num_elements / 2) data2 = [None] * int(num_elements / 2) for idx in range(len(data1)): data.append(data1[idx]) data.append(data2[idx]) else: data = [null_type] * num_elements # Typecast Pandas because None will return `object` dtype expect = pd.Series(data, dtype="float64") got = cudf.Series(data) assert_eq(expect, got) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) def test_series_all_valid_nan(num_elements): data = [np.nan] * num_elements sr = cudf.Series(data, nan_as_null=False) np.testing.assert_equal(sr.null_count, 0) def test_series_rename(): pds = pd.Series([1, 2, 3], name="asdf") gds = cudf.Series([1, 2, 3], name="asdf") expect = pds.rename("new_name") got = gds.rename("new_name") assert_eq(expect, got) pds = pd.Series(expect) gds = cudf.Series(got) assert_eq(pds, gds) pds = pd.Series(expect, name="name name") gds = cudf.Series(got, name="name name") assert_eq(pds, gds) @pytest.mark.parametrize("data_type", dtypes) @pytest.mark.parametrize("nelem", [0, 100]) def test_head_tail(nelem, data_type): def check_index_equality(left, right): assert left.index.equals(right.index) def check_values_equality(left, right): if len(left) == 0 and len(right) == 0: return None np.testing.assert_array_equal(left.to_pandas(), right.to_pandas()) def check_frame_series_equality(left, right): check_index_equality(left, right) check_values_equality(left, right) gdf = cudf.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) check_frame_series_equality(gdf.head(), gdf[:5]) check_frame_series_equality(gdf.head(3), gdf[:3]) check_frame_series_equality(gdf.head(-2), gdf[:-2]) check_frame_series_equality(gdf.head(0), gdf[0:0]) check_frame_series_equality(gdf["a"].head(), gdf["a"][:5]) check_frame_series_equality(gdf["a"].head(3), gdf["a"][:3]) check_frame_series_equality(gdf["a"].head(-2), gdf["a"][:-2]) check_frame_series_equality(gdf.tail(), gdf[-5:]) check_frame_series_equality(gdf.tail(3), gdf[-3:]) check_frame_series_equality(gdf.tail(-2), gdf[2:]) check_frame_series_equality(gdf.tail(0), gdf[0:0]) check_frame_series_equality(gdf["a"].tail(), gdf["a"][-5:]) check_frame_series_equality(gdf["a"].tail(3), gdf["a"][-3:]) check_frame_series_equality(gdf["a"].tail(-2), gdf["a"][2:]) def test_tail_for_string(): gdf = cudf.DataFrame() gdf["id"] = cudf.Series(["a", "b"], dtype=np.object_) gdf["v"] = cudf.Series([1, 2]) assert_eq(gdf.tail(3), gdf.to_pandas().tail(3)) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index(pdf, gdf, drop): assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_named_index(pdf, gdf, drop): pdf.index.name = "cudf" gdf.index.name = "cudf" assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index_inplace(pdf, gdf, drop): pdf.reset_index(drop=drop, inplace=True) gdf.reset_index(drop=drop, inplace=True) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ { "a": [1, 2, 3, 4, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize( "index", [ "a", ["a", "b"], pd.CategoricalIndex(["I", "II", "III", "IV", "V"]), pd.Series(["h", "i", "k", "l", "m"]), ["b", pd.Index(["I", "II", "III", "IV", "V"])], ["c", [11, 12, 13, 14, 15]], pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), # corner case [pd.Series(["h", "i", "k", "l", "m"]), pd.RangeIndex(0, 5)], [ pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), ], ], ) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) def test_set_index(data, index, drop, append, inplace): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() expected = pdf.set_index(index, inplace=inplace, drop=drop, append=append) actual = gdf.set_index(index, inplace=inplace, drop=drop, append=append) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "data", [ { "a": [1, 1, 2, 2, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize("index", ["a", pd.Index([1, 1, 2, 2, 3])]) @pytest.mark.parametrize("verify_integrity", [True]) @pytest.mark.xfail def test_set_index_verify_integrity(data, index, verify_integrity): gdf = cudf.DataFrame(data) gdf.set_index(index, verify_integrity=verify_integrity) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("nelem", [10, 200, 1333]) def test_set_index_multi(drop, nelem): np.random.seed(0) a = np.arange(nelem) np.random.shuffle(a) df = pd.DataFrame( { "a": a, "b": np.random.randint(0, 4, size=nelem), "c": np.random.uniform(low=0, high=4, size=nelem), "d": np.random.choice(["green", "black", "white"], nelem), } ) df["e"] = df["d"].astype("category") gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.set_index("a", drop=drop), gdf.set_index(["a"], drop=drop)) assert_eq( df.set_index(["b", "c"], drop=drop), gdf.set_index(["b", "c"], drop=drop), ) assert_eq( df.set_index(["d", "b"], drop=drop), gdf.set_index(["d", "b"], drop=drop), ) assert_eq( df.set_index(["b", "d", "e"], drop=drop), gdf.set_index(["b", "d", "e"], drop=drop), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_0(copy): # TODO (ptaylor): pandas changes `int` dtype to `float64` # when reindexing and filling new label indices with NaN gdf = cudf.datasets.randomdata( nrows=6, dtypes={ "a": "category", # 'b': int, "c": float, "d": str, }, ) pdf = gdf.to_pandas() # Validate reindex returns a copy unmodified assert_eq(pdf.reindex(copy=True), gdf.reindex(copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_1(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis defaults to 0 assert_eq(pdf.reindex(index, copy=True), gdf.reindex(index, copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_2(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(index, axis=0, copy=True), gdf.reindex(index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_3(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=0 assert_eq( pdf.reindex(columns, axis=1, copy=True), gdf.reindex(columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_4(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(labels=index, axis=0, copy=True), gdf.reindex(labels=index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_5(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=1 assert_eq( pdf.reindex(labels=columns, axis=1, copy=True), gdf.reindex(labels=columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_6(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis='index' assert_eq( pdf.reindex(labels=index, axis="index", copy=True), gdf.reindex(labels=index, axis="index", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_7(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis='columns' assert_eq( pdf.reindex(labels=columns, axis="columns", copy=True), gdf.reindex(labels=columns, axis="columns", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_8(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes labels when index=labels assert_eq( pdf.reindex(index=index, copy=True), gdf.reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_9(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes column names when columns=labels assert_eq( pdf.reindex(columns=columns, copy=True), gdf.reindex(columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_10(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_change_dtype(copy): if PANDAS_GE_110: kwargs = {"check_freq": False} else: kwargs = {} index = pd.date_range("12/29/2009", periods=10, freq="D") columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), **kwargs, ) @pytest.mark.parametrize("copy", [True, False]) def test_series_categorical_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"a": "category"}) pdf = gdf.to_pandas() assert_eq(pdf["a"].reindex(copy=True), gdf["a"].reindex(copy=copy)) assert_eq( pdf["a"].reindex(index, copy=True), gdf["a"].reindex(index, copy=copy) ) assert_eq( pdf["a"].reindex(index=index, copy=True), gdf["a"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_float_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"c": float}) pdf = gdf.to_pandas() assert_eq(pdf["c"].reindex(copy=True), gdf["c"].reindex(copy=copy)) assert_eq( pdf["c"].reindex(index, copy=True), gdf["c"].reindex(index, copy=copy) ) assert_eq( pdf["c"].reindex(index=index, copy=True), gdf["c"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_string_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"d": str}) pdf = gdf.to_pandas() assert_eq(pdf["d"].reindex(copy=True), gdf["d"].reindex(copy=copy)) assert_eq( pdf["d"].reindex(index, copy=True), gdf["d"].reindex(index, copy=copy) ) assert_eq( pdf["d"].reindex(index=index, copy=True), gdf["d"].reindex(index=index, copy=copy), ) def test_to_frame(pdf, gdf): assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = "foo" gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = False gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(gdf_new_name, pdf_new_name) assert gdf_new_name.columns[0] is name def test_dataframe_empty_sort_index(): pdf = pd.DataFrame({"x": []}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.sort_index() got = gdf.sort_index() assert_eq(expect, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_sort_index( axis, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( {"b": [1, 3, 2], "a": [1, 4, 3], "c": [4, 1, 5]}, index=[3.0, 1.0, np.nan], ) gdf = cudf.DataFrame.from_pandas(pdf) expected = pdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) got = gdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: assert_eq(pdf, gdf) else: assert_eq(expected, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize( "level", [ 0, "b", 1, ["b"], "a", ["a", "b"], ["b", "a"], [0, 1], [1, 0], [0, 2], None, ], ) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_mulitindex_sort_index( axis, level, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( { "b": [1.0, 3.0, np.nan], "a": [1, 4, 3], 1: ["a", "b", "c"], "e": [3, 1, 4], "d": [1, 2, 8], } ).set_index(["b", "a", 1]) gdf = cudf.DataFrame.from_pandas(pdf) # ignore_index is supported in v.1.0 expected = pdf.sort_index( axis=axis, level=level, ascending=ascending, inplace=inplace, na_position=na_position, ) if ignore_index is True: expected = expected got = gdf.sort_index( axis=axis, level=level, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: if ignore_index is True: pdf = pdf.reset_index(drop=True) assert_eq(pdf, gdf) else: if ignore_index is True: expected = expected.reset_index(drop=True) assert_eq(expected, got) @pytest.mark.parametrize("dtype", dtypes + ["category"]) def test_dataframe_0_row_dtype(dtype): if dtype == "category": data = pd.Series(["a", "b", "c", "d", "e"], dtype="category") else: data = np.array([1, 2, 3, 4, 5], dtype=dtype) expect = cudf.DataFrame() expect["x"] = data expect["y"] = data got = expect.head(0) for col_name in got.columns: assert expect[col_name].dtype == got[col_name].dtype expect = cudf.Series(data) got = expect.head(0) assert expect.dtype == got.dtype @pytest.mark.parametrize("nan_as_null", [True, False]) def test_series_list_nanasnull(nan_as_null): data = [1.0, 2.0, 3.0, np.nan, None] expect = pa.array(data, from_pandas=nan_as_null) got = cudf.Series(data, nan_as_null=nan_as_null).to_arrow() # Bug in Arrow 0.14.1 where NaNs aren't handled expect = expect.cast("int64", safe=False) got = got.cast("int64", safe=False) assert pa.Array.equals(expect, got) def test_column_assignment(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float} ) new_cols = ["q", "r", "s"] gdf.columns = new_cols assert list(gdf.columns) == new_cols def test_select_dtype(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float, "d": str} ) pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("float64"), gdf.select_dtypes("float64")) assert_eq(pdf.select_dtypes(np.float64), gdf.select_dtypes(np.float64)) assert_eq( pdf.select_dtypes(include=["float64"]), gdf.select_dtypes(include=["float64"]), ) assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["int64", "float64"]), gdf.select_dtypes(include=["int64", "float64"]), ) assert_eq( pdf.select_dtypes(include=np.number), gdf.select_dtypes(include=np.number), ) assert_eq( pdf.select_dtypes(include=[np.int64, np.float64]), gdf.select_dtypes(include=[np.int64, np.float64]), ) assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(exclude=np.number), gdf.select_dtypes(exclude=np.number), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=([], {"includes": ["Foo"]}), rfunc_args_and_kwargs=([], {"includes": ["Foo"]}), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), rfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), ) gdf = cudf.DataFrame( {"A": [3, 4, 5], "C": [1, 2, 3], "D": ["a", "b", "c"]} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["object"], exclude=["category"]), gdf.select_dtypes(include=["object"], exclude=["category"]), ) gdf = cudf.DataFrame({"a": range(10), "b": range(10, 20)}) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(include=["float"]), gdf.select_dtypes(include=["float"]), ) assert_eq( pdf.select_dtypes(include=["object"]), gdf.select_dtypes(include=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"]), gdf.select_dtypes(include=["int"]) ) assert_eq( pdf.select_dtypes(exclude=["float"]), gdf.select_dtypes(exclude=["float"]), ) assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, ) gdf = cudf.DataFrame( {"a": cudf.Series([], dtype="int"), "b": cudf.Series([], dtype="str")} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) def test_select_dtype_datetime(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("datetime64"), gdf.select_dtypes("datetime64")) assert_eq( pdf.select_dtypes(np.dtype("datetime64")), gdf.select_dtypes(np.dtype("datetime64")), ) assert_eq( pdf.select_dtypes(include="datetime64"), gdf.select_dtypes(include="datetime64"), ) def test_select_dtype_datetime_with_frequency(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_exceptions_equal( pdf.select_dtypes, gdf.select_dtypes, (["datetime64[ms]"],), (["datetime64[ms]"],), ) def test_array_ufunc(): gdf = cudf.DataFrame({"x": [2, 3, 4.0], "y": [9.0, 2.5, 1.1]}) pdf = gdf.to_pandas() assert_eq(np.sqrt(gdf), np.sqrt(pdf)) assert_eq(np.sqrt(gdf.x), np.sqrt(pdf.x)) @pytest.mark.parametrize("nan_value", [-5, -5.0, 0, 5, 5.0, None, "pandas"]) def test_series_to_gpu_array(nan_value): s = cudf.Series([0, 1, None, 3]) np.testing.assert_array_equal( s.to_array(nan_value), s.to_gpu_array(nan_value).copy_to_host() ) def test_dataframe_describe_exclude(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(exclude=["float"]) pdf_results = pdf.describe(exclude=["float"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_include(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(include=["int"]) pdf_results = pdf.describe(include=["int"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_default(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe() pdf_results = pdf.describe() assert_eq(pdf_results, gdf_results) def test_series_describe_include_all(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) df["animal"] = np.random.choice(["dog", "cat", "bird"], data_length) pdf = df.to_pandas() gdf_results = df.describe(include="all") pdf_results = pdf.describe(include="all") assert_eq(gdf_results[["x", "y"]], pdf_results[["x", "y"]]) assert_eq(gdf_results.index, pdf_results.index) assert_eq(gdf_results.columns, pdf_results.columns) assert_eq( gdf_results[["animal"]].fillna(-1).astype("str"), pdf_results[["animal"]].fillna(-1).astype("str"), ) def test_dataframe_describe_percentiles(): np.random.seed(12) data_length = 10000 sample_percentiles = [0.0, 0.1, 0.33, 0.84, 0.4, 0.99] df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(percentiles=sample_percentiles) pdf_results = pdf.describe(percentiles=sample_percentiles) assert_eq(pdf_results, gdf_results) def test_get_numeric_data(): pdf = pd.DataFrame( {"x": [1, 2, 3], "y": [1.0, 2.0, 3.0], "z": ["a", "b", "c"]} ) gdf = cudf.from_pandas(pdf) assert_eq(pdf._get_numeric_data(), gdf._get_numeric_data()) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_shift(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) shifted_outcome = gdf.a.shift(period).fillna(0) expected_outcome = pdf.a.shift(period).fillna(0).astype(dtype) if data_empty: assert_eq(shifted_outcome, expected_outcome, check_index_type=False) else: assert_eq(shifted_outcome, expected_outcome) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_diff(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) expected_outcome = pdf.a.diff(period) diffed_outcome = gdf.a.diff(period).astype(expected_outcome.dtype) if data_empty: assert_eq(diffed_outcome, expected_outcome, check_index_type=False) else: assert_eq(diffed_outcome, expected_outcome) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_isnull_isna(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.isnull(), gdf.isnull()) assert_eq(df.isna(), gdf.isna()) # Test individual columns for col in df: assert_eq(df[col].isnull(), gdf[col].isnull()) assert_eq(df[col].isna(), gdf[col].isna()) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_notna_notnull(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.notnull(), gdf.notnull()) assert_eq(df.notna(), gdf.notna()) # Test individual columns for col in df: assert_eq(df[col].notnull(), gdf[col].notnull()) assert_eq(df[col].notna(), gdf[col].notna()) def test_ndim(): pdf = pd.DataFrame({"x": range(5), "y": range(5, 10)}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.ndim == gdf.ndim assert pdf.x.ndim == gdf.x.ndim s = pd.Series(dtype="float64") gs = cudf.Series() assert s.ndim == gs.ndim @pytest.mark.parametrize( "decimals", [ -3, 0, 5, pd.Series([1, 4, 3, -6], index=["w", "x", "y", "z"]), cudf.Series([-4, -2, 12], index=["x", "y", "z"]), {"w": -1, "x": 15, "y": 2}, ], ) def test_dataframe_round(decimals): pdf = pd.DataFrame( { "w": np.arange(0.5, 10.5, 1), "x": np.random.normal(-100, 100, 10), "y": np.array( [ 14.123, 2.343, np.nan, 0.0, -8.302, np.nan, 94.313, -112.236, -8.029, np.nan, ] ), "z": np.repeat([-0.6459412758761901], 10), } ) gdf = cudf.DataFrame.from_pandas(pdf) if isinstance(decimals, cudf.Series): pdecimals = decimals.to_pandas() else: pdecimals = decimals result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) # with nulls, maintaining existing null mask for c in pdf.columns: arr = pdf[c].to_numpy().astype("float64") # for pandas nulls arr.ravel()[np.random.choice(10, 5, replace=False)] = np.nan pdf[c] = gdf[c] = arr result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) for c in gdf.columns: np.array_equal(gdf[c].nullmask.to_array(), result[c].to_array()) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: all does not " "support columns of object dtype." ) ], ), ], ) def test_all(data): # Pandas treats `None` in object type columns as True for some reason, so # replacing with `False` if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data).replace( [None], False ) gdata = cudf.Series.from_pandas(pdata) else: pdata = pd.DataFrame(data, columns=["a", "b"]).replace([None], False) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.all(bool_only=True) expected = pdata.all(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.all(bool_only=False) with pytest.raises(NotImplementedError): gdata.all(level="a") got = gdata.all() expected = pdata.all() assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [0, 0, 0, 0, 0], [0, 0, None, 0], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: any does not " "support columns of object dtype." ) ], ), ], ) @pytest.mark.parametrize("axis", [0, 1]) def test_any(data, axis): if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data) gdata = cudf.Series.from_pandas(pdata) if axis == 1: with pytest.raises(NotImplementedError): gdata.any(axis=axis) else: got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) else: pdata = pd.DataFrame(data, columns=["a", "b"]) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.any(bool_only=True) expected = pdata.any(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.any(bool_only=False) with pytest.raises(NotImplementedError): gdata.any(level="a") got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) @pytest.mark.parametrize("axis", [0, 1]) def test_empty_dataframe_any(axis): pdf = pd.DataFrame({}, columns=["a", "b"]) gdf = cudf.DataFrame.from_pandas(pdf) got = gdf.any(axis=axis) expected = pdf.any(axis=axis) assert_eq(got, expected, check_index_type=False) @pytest.mark.parametrize("indexed", [False, True]) def test_dataframe_sizeof(indexed): rows = int(1e6) index = list(i for i in range(rows)) if indexed else None gdf = cudf.DataFrame({"A": [8] * rows, "B": [32] * rows}, index=index) for c in gdf._data.columns: assert gdf._index.__sizeof__() == gdf._index.__sizeof__() cols_sizeof = sum(c.__sizeof__() for c in gdf._data.columns) assert gdf.__sizeof__() == (gdf._index.__sizeof__() + cols_sizeof) @pytest.mark.parametrize("a", [[], ["123"]]) @pytest.mark.parametrize("b", ["123", ["123"]]) @pytest.mark.parametrize( "misc_data", ["123", ["123"] * 20, 123, [1, 2, 0.8, 0.9] * 50, 0.9, 0.00001], ) @pytest.mark.parametrize("non_list_data", [123, "abc", "zyx", "rapids", 0.8]) def test_create_dataframe_cols_empty_data(a, b, misc_data, non_list_data): expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = b actual["b"] = b assert_eq(actual, expected) expected = pd.DataFrame({"a": []}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = misc_data actual["b"] = misc_data assert_eq(actual, expected) expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = non_list_data actual["b"] = non_list_data assert_eq(actual, expected) def test_empty_dataframe_describe(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) expected = pdf.describe() actual = gdf.describe() assert_eq(expected, actual) def test_as_column_types(): col = column.as_column(cudf.Series([])) assert_eq(col.dtype, np.dtype("float64")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float64")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="float32") assert_eq(col.dtype, np.dtype("float32")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float32")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="str") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="str")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="object") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="object")) assert_eq(pds, gds) pds = pd.Series(np.array([1, 2, 3]), dtype="float32") gds = cudf.Series(column.as_column(np.array([1, 2, 3]), dtype="float32")) assert_eq(pds, gds) pds = pd.Series([1, 2, 3], dtype="float32") gds = cudf.Series([1, 2, 3], dtype="float32") assert_eq(pds, gds) pds = pd.Series([], dtype="float64") gds = cudf.Series(column.as_column(pds)) assert_eq(pds, gds) pds = pd.Series([1, 2, 4], dtype="int64") gds = cudf.Series(column.as_column(cudf.Series([1, 2, 4]), dtype="int64")) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="float32") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="float32") ) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="str") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="str") ) assert_eq(pds, gds) pds = pd.Series(pd.Index(["1", "18", "9"]), dtype="int") gds = cudf.Series( cudf.core.index.StringIndex(["1", "18", "9"]), dtype="int" ) assert_eq(pds, gds) def test_one_row_head(): gdf = cudf.DataFrame({"name": ["carl"], "score": [100]}, index=[123]) pdf = gdf.to_pandas() head_gdf = gdf.head() head_pdf = pdf.head() assert_eq(head_pdf, head_gdf) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric(dtype, as_dtype): psr = pd.Series([1, 2, 4, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric_nulls(dtype, as_dtype): data = [1, 2, None, 3] sr = cudf.Series(data, dtype=dtype) got = sr.astype(as_dtype) expect = cudf.Series([1, 2, None, 3], dtype=as_dtype) assert_eq(expect, got) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "as_dtype", [ "str", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_numeric_to_other(dtype, as_dtype): psr = pd.Series([1, 2, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "str", "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05"] else: data = ["1", "2", "3"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_datetime_to_other(as_dtype): data = ["2001-01-01", "2002-02-02", "2001-01-05"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "inp", [ ("datetime64[ns]", "2011-01-01 00:00:00.000000000"), ("datetime64[us]", "2011-01-01 00:00:00.000000"), ("datetime64[ms]", "2011-01-01 00:00:00.000"), ("datetime64[s]", "2011-01-01 00:00:00"), ], ) def test_series_astype_datetime_to_string(inp): dtype, expect = inp base_date = "2011-01-01" sr = cudf.Series([base_date], dtype=dtype) got = sr.astype(str)[0] assert expect == got @pytest.mark.parametrize( "as_dtype", [ "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_series_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") gsr = cudf.from_pandas(psr) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( psr.astype("int32").astype(ordered_dtype_pd).astype("int32"), gsr.astype("int32").astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_cat_ordered_to_unordered(ordered): pd_dtype = pd.CategoricalDtype(categories=[1, 2, 3], ordered=ordered) pd_to_dtype = pd.CategoricalDtype( categories=[1, 2, 3], ordered=not ordered ) gd_dtype = cudf.CategoricalDtype.from_pandas(pd_dtype) gd_to_dtype = cudf.CategoricalDtype.from_pandas(pd_to_dtype) psr = pd.Series([1, 2, 3], dtype=pd_dtype) gsr = cudf.Series([1, 2, 3], dtype=gd_dtype) expect = psr.astype(pd_to_dtype) got = gsr.astype(gd_to_dtype) assert_eq(expect, got) def test_series_astype_null_cases(): data = [1, 2, None, 3] # numerical to other assert_eq(cudf.Series(data, dtype="str"), cudf.Series(data).astype("str")) assert_eq( cudf.Series(data, dtype="category"), cudf.Series(data).astype("category"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="int32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="uint32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data).astype("datetime64[ms]"), ) # categorical to other assert_eq( cudf.Series(data, dtype="str"), cudf.Series(data, dtype="category").astype("str"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="category").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data, dtype="category").astype("datetime64[ms]"), ) # string to other assert_eq( cudf.Series([1, 2, None, 3], dtype="int32"), cudf.Series(["1", "2", None, "3"]).astype("int32"), ) assert_eq( cudf.Series( ["2001-01-01", "2001-02-01", None, "2001-03-01"], dtype="datetime64[ms]", ), cudf.Series(["2001-01-01", "2001-02-01", None, "2001-03-01"]).astype( "datetime64[ms]" ), ) assert_eq( cudf.Series(["a", "b", "c", None], dtype="category").to_pandas(), cudf.Series(["a", "b", "c", None]).astype("category").to_pandas(), ) # datetime to other data = [ "2001-01-01 00:00:00.000000", "2001-02-01 00:00:00.000000", None, "2001-03-01 00:00:00.000000", ] assert_eq( cudf.Series(data), cudf.Series(data, dtype="datetime64[us]").astype("str"), ) assert_eq( pd.Series(data, dtype="datetime64[ns]").astype("category"), cudf.from_pandas(pd.Series(data, dtype="datetime64[ns]")).astype( "category" ), ) def test_series_astype_null_categorical(): sr = cudf.Series([None, None, None], dtype="category") expect = cudf.Series([None, None, None], dtype="int32") got = sr.astype("int32") assert_eq(expect, got) @pytest.mark.parametrize( "data", [ ( pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ), [ pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ], ], ) def test_create_dataframe_from_list_like(data): pdf = pd.DataFrame(data, index=["count", "mean", "std", "min"]) gdf = cudf.DataFrame(data, index=["count", "mean", "std", "min"]) assert_eq(pdf, gdf) pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def test_create_dataframe_column(): pdf = pd.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) gdf = cudf.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) assert_eq(pdf, gdf) pdf = pd.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) gdf = cudf.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pd.Categorical(["a", "b", "c"]), ["m", "a", "d", "v"], ], ) def test_series_values_host_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) np.testing.assert_array_equal(pds.values, gds.values_host) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pytest.param( pd.Categorical(["a", "b", "c"]), marks=pytest.mark.xfail(raises=NotImplementedError), ), pytest.param( ["m", "a", "d", "v"], marks=pytest.mark.xfail(raises=NotImplementedError), ), ], ) def test_series_values_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) gds_vals = gds.values assert isinstance(gds_vals, cupy.ndarray) np.testing.assert_array_equal(gds_vals.get(), pds.values) @pytest.mark.parametrize( "data", [ {"A": [1, 2, 3], "B": [4, 5, 6]}, {"A": [1.0, 2.0, 3.0], "B": [4.0, 5.0, 6.0]}, {"A": [1, 2, 3], "B": [1.0, 2.0, 3.0]}, {"A": np.float32(np.arange(3)), "B": np.float64(np.arange(3))}, pytest.param( {"A": [1, None, 3], "B": [1, 2, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [None, None, None], "B": [None, None, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [], "B": []}, marks=pytest.mark.xfail(reason="Requires at least 1 row"), ), pytest.param( {"A": [1, 2, 3], "B": ["a", "b", "c"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), pytest.param( {"A": pd.Categorical(["a", "b", "c"]), "B": ["d", "e", "f"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), ], ) def test_df_values_property(data): pdf = pd.DataFrame.from_dict(data) gdf = cudf.DataFrame.from_pandas(pdf) pmtr = pdf.values gmtr = gdf.values.get() np.testing.assert_array_equal(pmtr, gmtr) def test_value_counts(): pdf = pd.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) gdf = cudf.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) assert_eq( pdf.numeric.value_counts().sort_index(), gdf.numeric.value_counts().sort_index(), check_dtype=False, ) assert_eq( pdf.alpha.value_counts().sort_index(), gdf.alpha.value_counts().sort_index(), check_dtype=False, ) @pytest.mark.parametrize( "data", [ [], [0, 12, 14], [0, 14, 12, 12, 3, 10, 12, 14], np.random.randint(-100, 100, 200), pd.Series([0.0, 1.0, None, 10.0]), [None, None, None, None], [np.nan, None, -1, 2, 3], ], ) @pytest.mark.parametrize( "values", [ np.random.randint(-100, 100, 10), [], [np.nan, None, -1, 2, 3], [1.0, 12.0, None, None, 120], [0, 14, 12, 12, 3, 10, 12, 14, None], [None, None, None], ["0", "12", "14"], ["0", "12", "14", "a"], ], ) def test_isin_numeric(data, values): index = np.random.randint(0, 100, len(data)) psr = cudf.utils.utils._create_pandas_series(data=data, index=index) gsr = cudf.Series.from_pandas(psr, nan_as_null=False) expected = psr.isin(values) got = gsr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["2018-01-01", "2019-04-03", None, "2019-12-30"], dtype="datetime64[ns]", ), pd.Series( [ "2018-01-01", "2019-04-03", None, "2019-12-30", "2018-01-01", "2018-01-01", ], dtype="datetime64[ns]", ), ], ) @pytest.mark.parametrize( "values", [ [], [1514764800000000000, 1577664000000000000], [ 1514764800000000000, 1577664000000000000, 1577664000000000000, 1577664000000000000, 1514764800000000000, ], ["2019-04-03", "2019-12-30", "2012-01-01"], [ "2012-01-01", "2012-01-01", "2012-01-01", "2019-04-03", "2019-12-30", "2012-01-01", ], ], ) def test_isin_datetime(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["this", "is", None, "a", "test"]), pd.Series(["test", "this", "test", "is", None, "test", "a", "test"]),
pd.Series(["0", "12", "14"])
pandas.Series
# statiz_batter_crawler.py # for chrome ver.97 # coded by <NAME> from bs4 import BeautifulSoup from selenium import webdriver from selenium.webdriver.common.keys import Keys from html_table_parser import parser_functions import pandas as pd import sys import io # KOR crack prevent sys.stdout = io.TextIOWrapper(sys.stdout.detach(), encoding = 'utf-8') sys.stderr = io.TextIOWrapper(sys.stderr.detach(), encoding = 'utf-8') # Load driver = webdriver.Chrome("C:\chromedriver.exe") driver.implicitly_wait(5) url = 'http://www.statiz.co.kr/stat.php?re=1&lr=' # Dataframe list df_list = [] # lists for birth ds_pit_names_list=[] ds_pit_birth_list=[] driver.get(url) while True: # Get table html = driver.page_source soup = BeautifulSoup(html, 'html.parser') table = soup.find_all("table") ds_pit_names=soup.select('#fixcol > table > tbody > tr > td > a') for ds_pit_name in ds_pit_names: ds_pit_names_list.append(ds_pit_name.get_text()) ds_pit_birth_list.append(ds_pit_name['href'][-10:]) # Parsing p = parser_functions.make2d(table[1]) # Set DataFrame df_temp =
pd.DataFrame(p[2:], columns=p[0])
pandas.DataFrame
""" Testing model.py module """ from unittest import TestCase import numpy as np import pandas as pd from pandas.util.testing import assert_series_equal, assert_index_equal, \ assert_frame_equal from forecast_box.model import * # TODO: Check forward steps <= 0 class ExampleModel(Model): def __init__(self, forward_steps, ar_order, **kwargs): Model.__init__(self, forward_steps, ar_order, **kwargs) def _train_once(self, y_train, X_train): return {'theta': 123} def _predict_once(self, X_test, forward_step): return pd.Series(data=[9, 9, 9], index=
pd.date_range('2000-01-03', periods=3)
pandas.date_range
import os import sys import time import logging import numpy as np import pandas as pd from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler, MinMaxScaler, MaxAbsScaler os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras import backend as K from tensorflow.keras.metrics import binary_crossentropy, mean_squared_error file_path = os.path.dirname(os.path.realpath(__file__)) lib_path = os.path.abspath(os.path.join(file_path, '..', '..', 'common')) sys.path.append(lib_path) import candle DATA_URL = 'http://ftp.mcs.anl.gov/pub/candle/public/benchmarks/Examples/rnagen/' logger = logging.getLogger(__name__) additional_definitions = [ {'name': 'latent_dim', 'type': int, 'default': 10, 'help': "latent dimensions"}, {'name': 'model', 'default': 'cvae', 'help': 'generator model to use: ae, vae, cvae'}, {'name': 'top_k_types', 'type': int, 'default': 20, 'help': 'number of top sample types to use'}, {'name': 'n_samples', 'type': int, 'default': 10000, 'help': 'number of RNAseq samples to generate'}, {'name': 'plot', 'type': candle.str2bool, 'help': 'plot test performance comparision with and without synthetic training data'} ] required = ['latent_dim', 'model', 'top_k_types', 'n_samples', 'plot'] class BenchmarkRNAGen(candle.Benchmark): def set_locals(self): """Functionality to set variables specific for the benchmark - required: set of required parameters for the benchmark. - additional_definitions: list of dictionaries describing the additional parameters for the benchmark. """ if required is not None: self.required = set(required) if additional_definitions is not None: self.additional_definitions = additional_definitions def initialize_parameters(default_model='rnagen_default_model.txt'): # Build benchmark object rnagenBmk = BenchmarkRNAGen(file_path, default_model, 'keras', prog='rnagen_baseline', desc='RNAseq generator') # Initialize parameters gParameters = candle.finalize_parameters(rnagenBmk) # logger.info('Params: {}'.format(gParameters)) return gParameters def get_file(url): fname = os.path.basename(url) return candle.get_file(fname, origin=url, cache_subdir='Examples') def impute_and_scale(df, scaling='std', imputing='mean', dropna='all'): """Impute missing values with mean and scale data included in pandas dataframe. Parameters ---------- df : pandas dataframe dataframe to impute and scale scaling : 'maxabs' [-1,1], 'minmax' [0,1], 'std', or None, optional (default 'std') type of scaling to apply """ if dropna: df = df.dropna(axis=1, how=dropna) else: empty_cols = df.columns[df.notnull().sum() == 0] df[empty_cols] = 0 if imputing is None or imputing.lower() == 'none': mat = df.values else: imputer = SimpleImputer(strategy=imputing) mat = imputer.fit_transform(df) if scaling is None or scaling.lower() == 'none': return
pd.DataFrame(mat, columns=df.columns)
pandas.DataFrame
from fuzzywuzzy import fuzz import string import pandas as pd import random import datetime from annoy import AnnoyIndex import numpy as np from pandas.api.types import is_numeric_dtype ### UTILITY Methods # from importutil import reload #sys.path.append('c:\\users\\pkapaleeswaran\\workspacej3\\py') class PyFrame: x = 7 def __init__(self, cache): self.cache = cache @classmethod def makefm(cls, frame): cache = {} cache['data']=frame cache['version'] = 0 cache['low_version'] = 0 cache[0] = frame return cls(cache) @classmethod def makefm_csv(cls, fileName): frame = pd.read_csv(fileName) cache = {} cache['data']=frame cache['version'] = 0 cache['low_version'] = 0 cache[0] = frame return cls(cache) def id_generator(self, size=6, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) def makeCopy(this): version = 0 if(version in this.cache): if('high_version' in this.cache): version = this.cache['high_version'] else: version = this.cache['version'] version = version+1 this.cache[version] = this.cache['data'].copy() this.cache['version'] = version this.cache['high_version'] = version # falls back to the last version def fallback(this): version = this.cache['version'] low_version = this.cache['low_version'] if(version in this.cache and version > low_version): this.cache['high_version'] = version version = version - 1 this.cache['version'] = version this.cache['data'] = this.cache[version] else: print ('cant fall back. In the latest') def calcRatio(self, actual_col, predicted_col): result = [] #actual_col = actual_col.unique #predicted_col = predicted_col.unique for x in actual_col: for y in predicted_col: ratio = fuzz.ratio(x,y) ratio = 1 - (ratio / 100) if(ratio != 0): data = [x,y,ratio] result.append(data) result = pd.DataFrame(result) return result def match(this, actual_col, predicted_col): cache = this.cache key_name = actual_col + "_" + predicted_col if( not(key_name in cache)): print ('building cache', key_name) daFrame = cache['data'] var_name = this.calcRatio(daFrame[actual_col].unique(), daFrame[predicted_col].unique()) var_name.columns = ['col1','col2','distance'] cache[key_name] = var_name var_name = cache[key_name] #print(var_name.head()) # seems like we dont need that right now #output = var_name[(var_name[2] > threshold) & (var_name[2] != 100)] return var_name def drop_col(this, col_name, inplace=True): frame = this.cache['data'] if not inplace: this.makeCopy() frame.drop(col_name, axis =1, inplace=True) this.cache['data'] = frame def split(this, col_name, delim, inplace=True): frame = this.cache['data'] if not inplace: this.makeCopy() col_to_split = frame[col_name] splitcol = col_to_split.str.split(delim, expand = True) for len in splitcol: frame[col_name + '_' + str(len)] = splitcol[len] this.cache['data'] = frame return frame def replace_val(this, col_name, old_value, new_value, regx=True, inplace=True): frame = this.cache['data'] if not inplace: this.makeCopy() nf = frame.replace({col_name: old_value}, {col_name: new_value}, regex=regx, inplace=inplace) print('replacing inplace') #this.cache['data'] = nf def replace_val2(this, col_name, cur_value, new_col, new_value, regx= True, inplace=True): frame = this.cache['data'] if not inplace: this.makeCopy() nf = frame.replace({col_name: cur_value}, {new_col: new_value}, regex=regx, inplace=inplace) print('replacing inplace') def upper(this, col_name, inplace=True): if not inplace: this.makeCopy() frame = this.cache['data'] column = frame[col_name] frame[col_name] = column.str.upper() this.cache['data'] = frame def lower(this, col_name, inplace=True): if not inplace: this.makeCopy() frame = this.cache['data'] column = frame[col_name] frame[col_name] = column.str.lower() this.cache['data'] = frame def title(this, col_name, inplace=True): if not inplace: this.makeCopy() frame = this.cache['data'] column = frame[col_name] frame[col_name] = column.str.title() this.cache['data'] = frame def concat(this, col1, col2, newcol, glue='_', inplace=True): if not inplace: this.makeCopy() frame = this.cache['data'] frame[newcol] = frame[col1] + glue + frame[col2] this.cache['data'] = frame def mathcat(this, operation, newcol, inplace=True): if not inplace: this.makeCopy() frame = this.cache['data'] frame[newcol] = operation this.cache['data'] = frame def dupecol(this, oldcol, newcol, inplace=True): if not inplace: this.makeCopy() frame = this.cache['data'] frame[newcol] = frame[oldcol] this.cache['data'] = frame # dropping row has to be done from inside java # newframe = mv[mv['Genre'] != 'Drama'] # change type is also done from java # The actual type is sent from java def change_col_type(this, col, type, inplace=True): frame = this.cache['data'] if not inplace: this.makeCopy() frame[col] = frame[col].astype(type) this.cache['data'] = frame # Index in euclidean space tc. # input is a pandas frame # the first column is typically the identifier # The remaining are the vector def buildnn(this, trees=10, type='euclidean'): frame = this.cache['data'] cols = len(frame.columns) - 1 t = AnnoyIndex() for i, row in frame: t.add_item(i, row[1:]) this.cache['nn'] = t # drops non numeric data columns from the frame def dropalpha(this, inplace=True): numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] df = this.cache['data'] if not inplace: this.makeCopy() this.cache['data'] = df.select_dtypes(include=numerics) # drops non numeric data columns from the frame def dropnum(this, inplace=True): numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] df = this.cache['data'] if not inplace: this.makeCopy() this.cache['data'] = df.select_dtypes(exclude=numerics) def extract_num(this, col_name, newcol='assign', inplace=True): if(newcol == 'assign'): this.replace_val(col_name, '[a-zA-Z]+', '') else: this.dupecol(col_name, newcol) this.replace_val(newcol, '[a-zA-Z]+', '') def extract_alpha(this, col_name, newcol='assign', inplace=True): if(newcol == 'assign'): this.replace_val(col_name, '\d+', '') else: this.dupecol(col_name, newcol) this.replace_val(newcol, '\d+', '') def unpivot(this, valcols, idcols=['all'], inplace=True): frame = this.cache['data'] if not inplace: this.makeCopy() # assimilate all the columns if the idcols = 'all' if idcols == ['all']: idcols = list(set(list(frame.columns.values)) - set(valcols)) output = pd.melt(mv, id_vars=idcols, value_vars=valcols) this.cache['data'] = output def split_unpivot(this, col_name, delim, var = 'variable', inplace=True): frame = this.cache['data'] if not inplace: this.makeCopy() col_to_split = frame[col_name] splitcol = col_to_split.str.split(delim, expand = True) valcols = [] for len in splitcol: valcolname = col_name + '_' + str(len) frame[valcolname] = splitcol[len] valcols.append(valcolname) #now unpivot these columns # drop the col that is about to be replaced this.drop_col(col_name) print('dropped col') idcols = list(set(list(frame.columns.values)) - set(valcols)) #reassign frame = this.cache['data'] # change the name of variable column if one exists with same name if var in frame.columns: var = this.id_generator(4) output = pd.melt(frame, id_vars=idcols, value_vars=valcols, var_name=var, value_name=col_name).dropna(subset=[col_name]) print('Dropped') # and finally replace # need a way to drop the none this.cache['data'] = output #this.cache['data'] = output[output[col_name] != 'None'] this.drop_col(var) return output def rename_col(this, col_name, new_col_name, inplace=True): frame = this.cache['data'] if not inplace: this.makeCopy() frame = frame.rename(index = str, columns={col_name : new_col_name}) this.cache['data'] = frame return frame def countif(this, col_name, str_to_count, new_col='assign', inplace=True): frame = this.cache['data'] if not inplace: this.makeCopy() # see if I need to assign a new name if new_col == 'assign': count = 0 new_col = col_name + '_' + str_to_count + '_countif' #while new_col in frame.columns: # count = count + 1 # new_col = col_name + '_' + count print (new_col) frame[new_col] = frame[col_name].str.count(str_to_count) this.cache['data'] = frame # val is the other columns to keep def pivot(this, column_to_pivot, val='assign', inplace=True): frame = this.cache['data'] if not inplace: this.makeCopy() if val == 'assign': frame = frame.pivot(columns=column_to_pivot) else: frame = frame.pivot(columns=column_to_pivot, values=values) this.cache['data'] = frame # val is the other columns to keep # index = columns to pivot # Columns = Columns to show # Values = actual values to pivot #agg function = how to aggregate # pvt = pd.pivot_table(mv, index=['Studio', 'Genre'], columns='Nominated', values='MovieBudget' ).reset_index() # pvt.columns = pvt.columns.to_series().str.join('_') # pvt.reset_index() def is_numeric(this, col_name, inplace=True): frame = this.cache['data'] return
is_numeric_dtype(frame[col_name])
pandas.api.types.is_numeric_dtype
import matplotlib.pyplot as plt import numpy as np import pandas as pd from FileUtil import FileUtil from Util import Util from constants import Constants from pathlib import Path import scipy.stats as stats import seaborn as sns import stats.CliffDelta as cld from scipy import stats class AgeNorm: def __init__(self): self.all_age = [] # 0, 183, 365, 730, 1095, 1460, 1825 self.AGES = [0, 183, 365, 730, 1095, 1460] def process(self): for json_file in Path(Constants.PROCESSED_DATA).rglob('*'): repo = json_file.name.replace(".json", "") print("Processing {0}...".format(repo)) data = FileUtil.load_json(json_file) bugdata = FileUtil.load_json(Constants.BASE_PATH + "bugData/" + repo + ".json") for m in data: method = data[m] mtdBugData = bugdata[m] self.all_age.append({ "age": method["changeDates"][-1], "rev": len(method["changeDates"]) - 1, "bug": mtdBugData["exactBug0Match"][1:].count(True), "repo": method["repo"] }) FileUtil.save_json(Constants.BASE_PATH + "age/all_age_bug_rev.json", self.all_age) print("Saved all_age_bug_rev.json.....") self.age_vs_bug_and_rev() def age_vs_bug_and_rev(self): if not self.all_age: self.all_age = FileUtil.load_json(Constants.BASE_PATH + "age/all_age_bug_rev.json") df = pd.DataFrame.from_dict(self.all_age) result = [] result.append( self.apply_stats(df["age"], df["rev"], "Age_vs_Revisions", "all", stats_to_apply="kendall", age_threshold=0)) result.append( self.apply_stats(df["age"], df["bug"], "Age_vs_Bug", "all", stats_to_apply="kendall", age_threshold=0)) result_df = pd.DataFrame.from_dict(result) print("Corr of age with revisions and bugs:") print(result_df) result_df.to_csv(Constants.BASE_PATH + "age/all_age_bug_rev.csv") print("Done process age vs bug vs rev........") def age_with_versioning(self, AGE_THRESHOLD, apply_change_filter=False): result = { "Age_threshold": AGE_THRESHOLD, "data": [] } if apply_change_filter: outFile = Constants.BASE_PATH + "age/age_norm_onlyChangedM_" + str(AGE_THRESHOLD) + ".json" else: outFile = Constants.BASE_PATH + "age/age_norm_" + str(AGE_THRESHOLD) + ".json" for json_file in Path(Constants.PROCESSED_DATA).rglob('*'): repo = json_file.name.replace(".json", "") data = FileUtil.load_json(json_file) bugdata = FileUtil.load_json(Constants.BASE_PATH + "bugData/" + repo + ".json") negCount = 0 for method in data: method_details = data[method] mtdBugData = bugdata[method] if method_details["Age"] <= AGE_THRESHOLD and method_details["Age"] > 0: shouldSkipXmethods = True else: shouldSkipXmethods = False if apply_change_filter: if len(method_details["changeDates"]) == 1: continue sloc_version = {} track = 0 for i in range(1, len(method_details["diffSizes"])): track = 1 if method_details["changeDates"][i] > AGE_THRESHOLD: if AGE_THRESHOLD != 0: break prevSLOC = method_details["sloc"][i - 1] if prevSLOC not in sloc_version: sloc_version[prevSLOC] = { "allChanges": 1, "essentialChanges": 1 if method_details["isEssentialChange"][i] else 0, "bodychanges": 1 if Util.is_body_change(method_details["changeTypes"][i]) else 0, "minorchanges": 1 if not method_details["isEssentialChange"][i] else 0, "diffSizes": method_details["diffSizes"][i], "newAdditions": method_details["newAdditions"][i], "isGetterOrSetter": method_details["isGetter"][i] or method_details["isSetter"][i], "editDistance": method_details["editDistance"][i], "repo": method_details["repo"], "shouldSkipXMethods": shouldSkipXmethods } if mtdBugData["exactBug0Match"][i]: sloc_version[prevSLOC]["bugCount"] = 1 else: sloc_version[prevSLOC]["bugCount"] = 0 else: sloc_version[prevSLOC]["allChanges"] += 1 essentialChanges = 1 if method_details["isEssentialChange"][i] else 0 bodychanges = 1 if Util.is_body_change(method_details["changeTypes"][i]) else 0 minorchanges = 1 if not method_details["isEssentialChange"][i] else 0 sloc_version[prevSLOC]["essentialChanges"] += essentialChanges sloc_version[prevSLOC]["bodychanges"] += bodychanges sloc_version[prevSLOC]["minorchanges"] += minorchanges sloc_version[prevSLOC]["diffSizes"] += method_details["diffSizes"][i] sloc_version[prevSLOC]["newAdditions"] += method_details["newAdditions"][i] sloc_version[prevSLOC]["editDistance"] += method_details["editDistance"][i] if mtdBugData["exactBug0Match"][i]: sloc_version[prevSLOC]["bugCount"] += 1 if track == 0: sloc_version[method_details["sloc"][0]] = { "allChanges": 0, "essentialChanges": 0, "bodychanges": 0, "minorchanges": 0, "diffSizes": 0, "newAdditions": 0, "bugCount": 0, "editDistance": 0, "shouldSkipXMethods": shouldSkipXmethods, "isGetterOrSetter": method_details["isGetter"][0] or method_details["isSetter"][0], "repo": method_details["repo"] } for sloc in sloc_version: result["data"].append({ "sloc": int(sloc), "allChanges": sloc_version[sloc]["allChanges"], "essentialChanges": sloc_version[sloc]["essentialChanges"], "bodychanges": sloc_version[sloc]["bodychanges"], "minorchanges": sloc_version[sloc]["minorchanges"], "diffSizes": sloc_version[sloc]["diffSizes"], "newAdditions": sloc_version[sloc]["newAdditions"], "editDistance": sloc_version[sloc]["editDistance"], "change_by_sloc": round(sloc_version[sloc]["essentialChanges"] / int(sloc), 4), "bugCount": sloc_version[sloc]["bugCount"], "repo": sloc_version[sloc]["repo"], "shouldSkipXMethods": sloc_version[sloc]["shouldSkipXMethods"], "isGetterOrSetter": sloc_version[sloc]["isGetterOrSetter"] }) FileUtil.save_json(outFile, result) print("Done age norm for age threshold {0}".format(AGE_THRESHOLD)) # interval = [183, 365, 730, 1095, 1460, 5] def interval_age_versioning(self, age_interval=[0, 183], exclude_x_methods=False): interval_range = str(age_interval[0]) + "-" + str(age_interval[1]) result = { "interval": interval_range, "data": [] } if exclude_x_methods: outfile = Constants.BASE_PATH + "interval/interval_age_excluded_" + interval_range + ".json" else: outfile = Constants.BASE_PATH + "interval/interval_age_" + interval_range + ".json" for json_file in Path(Constants.PROCESSED_DATA).rglob('*'): repo = json_file.name.replace(".json", "") data = FileUtil.load_json(json_file) bugdata = FileUtil.load_json(Constants.BASE_PATH + "bugData/" + repo + ".json") for method in data: method_details = data[method] mtdBugData = bugdata[method] # if method_details["Age"] <= AGE_THRESHOLD: # continue if exclude_x_methods: if age_interval[1] != 5: if method_details["Age"] < age_interval[1] and method_details["Age"] > 0: continue elif age_interval[1] == 5: if method_details["Age"] < age_interval[0] and method_details["Age"] > 0: continue sloc_version = {} track = 0 for i in range(1, len(method_details["diffSizes"])): track = 1 if age_interval[1] != 5: if age_interval[1] >= method_details["changeDates"][i] >= age_interval[0]: interval = interval_range else: continue if age_interval[1] == 5 and not (method_details["changeDates"][i] >= age_interval[0]): continue # if method_details["isEssentialChange"][i]: prevSLOC = str(method_details["sloc"][i - 1]) if prevSLOC not in sloc_version: sloc_version[prevSLOC] = { "allChanges": 1, "essentialChanges": 1 if method_details["isEssentialChange"][i] else 0, "bodychanges": 1 if Util.is_body_change(method_details["changeTypes"][i]) else 0, "minorchanges": 1 if not method_details["isEssentialChange"][i] else 0, "diffSizes": method_details["diffSizes"][i], "newAdditions": method_details["newAdditions"][i], "isGetterOrSetter": method_details["isGetter"][i] or method_details["isSetter"][i], "editDistance": method_details["editDistance"][i], "repo": method_details["repo"], "interval": interval_range } if mtdBugData["exactBug0Match"][i]: sloc_version[prevSLOC]["bugCount"] = 1 else: sloc_version[prevSLOC]["bugCount"] = 0 else: sloc_version[prevSLOC]["allChanges"] += 1 essentialChanges = 1 if method_details["isEssentialChange"][i] else 0 bodychanges = 1 if Util.is_body_change(method_details["changeTypes"][i]) else 0 minorchanges = 1 if not method_details["isEssentialChange"][i] else 0 sloc_version[prevSLOC]["essentialChanges"] += essentialChanges sloc_version[prevSLOC]["bodychanges"] += bodychanges sloc_version[prevSLOC]["minorchanges"] += minorchanges sloc_version[prevSLOC]["diffSizes"] += method_details["diffSizes"][i] sloc_version[prevSLOC]["newAdditions"] += method_details["newAdditions"][i] sloc_version[prevSLOC]["editDistance"] += method_details["editDistance"][i] if mtdBugData["exactBug0Match"][i]: sloc_version[prevSLOC]["bugCount"] += 1 if track == 0: if age_interval[0] == 0: sloc_version[method_details["sloc"][0]] = { "allChanges": 0, "essentialChanges": 0, "bodychanges": 0, "minorchanges": 0, "diffSizes": 0, "newAdditions": 0, "bugCount": 0, "editDistance": 0, "isGetterOrSetter": method_details["isGetter"][0] or method_details["isSetter"][0], "interval": interval_range, "repo": method_details["repo"] } for sc in sloc_version: sloc = int(sc) # interval = int(sloc_interval[1]) result["data"].append({ "sloc": int(sloc), "allChanges": sloc_version[sc]["allChanges"], "essentialChanges": sloc_version[sc]["essentialChanges"], "bodychanges": sloc_version[sc]["bodychanges"], "minorchanges": sloc_version[sc]["minorchanges"], "diffSizes": sloc_version[sc]["diffSizes"], "newAdditions": sloc_version[sc]["newAdditions"], "editDistance": sloc_version[sc]["editDistance"], "bugCount": sloc_version[sc]["bugCount"], "repo": sloc_version[sc]["repo"], "interval": interval_range, "isGetterOrSetter": sloc_version[sc]["isGetterOrSetter"] }) FileUtil.save_json(outfile, result) print("Done preparing data in interval {0} and {1}".format(age_interval[0], age_interval[1])) def calc_interval_corr(self, exclude_x_methods=False): result = [] for json_file in Path(Constants.BASE_PATH + "interval/").rglob('*'): data = FileUtil.load_json(json_file) interval_range = data["interval"] print("Processing interval {0}".format(interval_range)) df = pd.DataFrame.from_dict(data["data"]) for repo in Constants.ALL_MINED_REPOS: repo_data = df[df["repo"] == repo] if not repo_data.empty: result.append( self.apply_stats( repo_data["sloc"], repo_data["allChanges"], "sloc-allChanges-" + interval_range, repo, stats_to_apply="kendall", age_threshold=interval_range ) ) result.append( self.apply_stats( repo_data["sloc"], repo_data["bugCount"], "sloc-bugCount-" + interval_range, repo, stats_to_apply="kendall", age_threshold=interval_range ) ) pd.DataFrame.from_dict(result).to_csv(Constants.BASE_PATH + "age/all_corr_interval_age_data.csv") print("Done calculating corr....") # def calc_cliff_delta_for_age_interval(self, grp, intervals=[183, 365, 730, 1095, 1825, 6]): # df = pd.read_csv(Constants.BASE_PATH + "age/all_corr_interval_age_data.csv") # # intervals = [365, 730, 1095, 1825, 6] # yearHalf = df[(df["age_threshold"] == intervals[0]) & (df["group"] == grp)] # year1 = df[(df["age_threshold"] == intervals[1]) & (df["group"] == grp)] # year2 = df[(df["age_threshold"] == intervals[2]) & (df["group"] == grp)] # year3 = df[(df["age_threshold"] == intervals[3]) & (df["group"] == grp)] # year5 = df[(df["age_threshold"] == intervals[4]) & (df["group"] == grp)] # after5 = df[(df["age_threshold"] == intervals[5]) & (df["group"] == grp)] # result = [] # result.append(self.apply_cliff_delta(yearHalf["corr"], year1["corr"], "0.5yr", "1yr")) # result.append(self.apply_cliff_delta(yearHalf["corr"], year2["corr"], "0.5yr", "2yr")) # result.append(self.apply_cliff_delta(yearHalf["corr"], year3["corr"], "0.5yr", "3yr")) # # result.append(self.apply_cliff_delta(yearHalf["corr"], year5["corr"], "0.5yr", "5yr")) # result.append(self.apply_cliff_delta(yearHalf["corr"], after5["corr"], "0.5yr", "after5yr")) # result.append(self.apply_cliff_delta(year1["corr"], year2["corr"], "1yr", "2yr")) # result.append(self.apply_cliff_delta(year1["corr"], year3["corr"], "1yr", "3yr")) # # result.append(self.apply_cliff_delta(year1["corr"], year5["corr"], "1yr", "5yr")) # result.append(self.apply_cliff_delta(year1["corr"], after5["corr"], "1yr", "after5yr")) # result.append(self.apply_cliff_delta(year2["corr"], year3["corr"], "2yr", "3yr")) # # result.append(self.apply_cliff_delta(year2["corr"], year5["corr"], "2yr", "5yr")) # result.append(self.apply_cliff_delta(year2["corr"], after5["corr"], "2yr", "after5yr")) # # result.append(self.apply_cliff_delta(year3["corr"], year5["corr"], "3yr", "5yr")) # result.append(self.apply_cliff_delta(year3["corr"], after5["corr"], "3yr", "after5yr")) # # result.append(self.apply_cliff_delta(year5["corr"], after5["corr"], "5yr", "after5yr")) # pd.DataFrame.from_dict(result).to_csv(Constants.BASE_PATH + "age/interval_wise_corr_" + grp + ".csv") # print("Done.......") # print("Plotting graph....") # sns.ecdfplot(yearHalf, x=yearHalf["corr"], linewidth=1.0, marker="o", markersize=5) # sns.ecdfplot(year1, x=year1["corr"], linewidth=1.0, marker="o", markersize=5) # sns.ecdfplot(year2, x=year2["corr"], linewidth=1.0, marker="*", markersize=5) # sns.ecdfplot(year3, x=year3["corr"], linewidth=1.0, marker="v", markersize=5) # sns.ecdfplot(year5, x=year5["corr"], linewidth=1.0, marker="d", markersize=5) # sns.ecdfplot(after5, x=after5["corr"], linewidth=1.0, marker="3", markersize=5) # plt.legend(["0-0.5yr" , "0.5-1yr", "1-2yr", "2-3yr", "3-5yr", "after 5 yr"]) # plt.savefig( # Constants.BASE_PATH + "age/" + grp + "_interval_change_cdf.png", # bbox_inches='tight') # plt.show() def apply_stats(self, x1, x2, label, repo, stats_to_apply="kendall", age_threshold=0): if stats_to_apply == "kendall": corr, p_value = stats.kendalltau(x1, x2) elif stats_to_apply == 'spearman': corr, p_value = stats.spearmanr(x1, x2) else: corr, p_value = stats.pearsonr(x1, x2) return { "corr": round(corr, 2), "p_value": p_value, "significant": 'yes' if p_value < 0.05 else "no", "group": label, "repo": repo, "type": stats_to_apply, "age_threshold": age_threshold } def calculate_corr(self, AGES=[0, 183, 365, 730, 1095, 1460], should_exclued_less_than_x_years=False, apply_change_filter=False): if should_exclued_less_than_x_years: filename_to_save = "age/all_age_norm_data_without_x_years_methods" else: filename_to_save = "age/all_age_norm_data" if apply_change_filter: filename_to_save = filename_to_save + "_onlyChangedM.csv" elif should_exclued_less_than_x_years: filename_to_save = filename_to_save + ".csv" else: filename_to_save = filename_to_save + ".csv" print("Start processing....") result = [] for age in AGES: print("Processing age {0}".format(age)) if apply_change_filter: inFile = Constants.BASE_PATH + "age/age_norm_onlyChangedM_" + str(age) + ".json" else: inFile = Constants.BASE_PATH + "age/age_norm_" + str(age) + ".json" data = FileUtil.load_json(inFile) if data["Age_threshold"] == age: df = pd.DataFrame.from_dict(data['data']) if should_exclued_less_than_x_years: df = df[df["shouldSkipXMethods"] == False] # print("Number of methods {0} for age {1}...".format(df.shape[0], age)) for repo in Constants.ALL_MINED_REPOS: repo_data = df[df["repo"] == repo] print("Processing for repo {0}".format(repo)) # print("Number of methods {0} for age {1} in repo {2}...".format(repo_data.shape[0], age, repo)) try: if not repo_data.empty: result.append( self.apply_stats(repo_data["sloc"], repo_data["allChanges"], "sloc_vs_all_changes", repo, stats_to_apply="kendall", age_threshold=age)) result.append( self.apply_stats(repo_data["sloc"], repo_data["essentialChanges"], "sloc_vs_essential_changes", repo, stats_to_apply="kendall", age_threshold=age)) result.append( self.apply_stats(repo_data["sloc"], repo_data["bodychanges"], "sloc_vs_bodychanges", repo, stats_to_apply="kendall", age_threshold=age)) result.append( self.apply_stats(repo_data["sloc"], repo_data["minorchanges"], "sloc_vs_minorchanges", repo, stats_to_apply="kendall", age_threshold=age)) result.append( self.apply_stats(repo_data["sloc"], repo_data["bugCount"], "sloc_vs_bugCount", repo, stats_to_apply="kendall", age_threshold=age)) except Exception as e: print(e) else: print("File does not exist. Create files first") break pd.DataFrame.from_dict(result).to_csv(Constants.BASE_PATH + filename_to_save) print("Done processing age norm csv.....") def plot_corr_cdf(self, stats_to_use, filter_less_than_x_age=False): # 0, 183, 365, 730, 1825 if filter_less_than_x_age: data = pd.read_csv(Constants.BASE_PATH + "age/all_age_norm_data_without_x_years_methods.csv") else: data = pd.read_csv(Constants.BASE_PATH + "age/all_age_norm_data.csv") not_sig_data = data[(data["significant"] == "no") & (data["type"] == stats_to_use)] not_sig_data.to_csv(Constants.BASE_PATH + "age/not_sig_age_data.csv") data = data[data["type"] == stats_to_use] all_change_filename = 'sloc_vs_all_changes_age' bug_filename = "sloc_vs_bug_age" if filter_less_than_x_age: all_change_filename = "rq3_" + all_change_filename bug_filename = "rq3_" + bug_filename self.render_graph(data, 'sloc_vs_all_changes', all_change_filename + ".pdf", self.AGES) self.render_graph(data, 'sloc_vs_bugCount', bug_filename + ".pdf", self.AGES) def render_graph(self, data, grp, filename, ages): age0 = data[(data["age_threshold"] == ages[0]) & (data["group"] == grp)] self.print_repo_not_in_list(age0, ages[0], grp) age183 = data[(data["age_threshold"] == ages[1]) & (data["group"] == grp)] self.print_repo_not_in_list(age183, ages[1], grp) age365 = data[(data["age_threshold"] == ages[2]) & (data["group"] == grp)] self.print_repo_not_in_list(age365, ages[2], grp) age730 = data[(data["age_threshold"] == ages[3]) & (data["group"] == grp)] self.print_repo_not_in_list(age730, ages[3], grp) age1095 = data[(data["age_threshold"] == ages[4]) & (data["group"] == grp)] self.print_repo_not_in_list(age1095, ages[4], grp) age1460 = data[(data["age_threshold"] == ages[5]) & (data["group"] == grp)] self.print_repo_not_in_list(age1095, ages[5], grp) result = [] result.append(self.apply_cliff_delta(age0["corr"], age183["corr"], "age0", "age183")) result.append(self.apply_cliff_delta(age0["corr"], age365["corr"], "age0", "age365")) result.append(self.apply_cliff_delta(age0["corr"], age730["corr"], "age0", "age730")) result.append(self.apply_cliff_delta(age0["corr"], age1095["corr"], "age0", "age1095")) result.append(self.apply_cliff_delta(age0["corr"], age1460["corr"], "age0", "age1460")) result.append(self.apply_cliff_delta(age183["corr"], age365["corr"], "age183", "age365")) result.append(self.apply_cliff_delta(age183["corr"], age730["corr"], "age183", "age730")) result.append(self.apply_cliff_delta(age183["corr"], age1095["corr"], "age183", "age1095")) result.append(self.apply_cliff_delta(age183["corr"], age1460["corr"], "age183", "age1460")) result.append(self.apply_cliff_delta(age365["corr"], age730["corr"], "age365", "age730")) result.append(self.apply_cliff_delta(age365["corr"], age1095["corr"], "age365", "age1095")) result.append(self.apply_cliff_delta(age365["corr"], age1460["corr"], "age365", "age1460")) result.append(self.apply_cliff_delta(age730["corr"], age1095["corr"], "age730", "age1095")) result.append(self.apply_cliff_delta(age730["corr"], age1460["corr"], "age730", "age1460")) result.append(self.apply_cliff_delta(age1095["corr"], age1460["corr"], "age1095", "age1460")) tmp_df =
pd.DataFrame.from_dict(result)
pandas.DataFrame.from_dict
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188: pd.Timestamp("2012-11-06 00:00:00"), 189: pd.Timestamp("2012-11-07 00:00:00"), 190: pd.Timestamp("2012-11-08 00:00:00"), 191: pd.Timestamp("2012-11-09 00:00:00"), 192: pd.Timestamp("2012-11-10 00:00:00"), 193: pd.Timestamp("2012-11-11 00:00:00"), 194: pd.Timestamp("2012-11-12 00:00:00"), 195: pd.Timestamp("2012-11-13 00:00:00"), 196: pd.Timestamp("2012-11-14 00:00:00"), 197: pd.Timestamp("2012-11-15 00:00:00"), 198: pd.Timestamp("2012-11-16 00:00:00"), 199: pd.Timestamp("2012-11-17 00:00:00"), 200: pd.Timestamp("2012-11-18 00:00:00"), 201: pd.Timestamp("2012-11-19 00:00:00"), 202: pd.Timestamp("2012-11-20 00:00:00"), 203: pd.Timestamp("2012-11-21 00:00:00"), 204: pd.Timestamp("2012-11-22 00:00:00"), 205: pd.Timestamp("2012-11-23 00:00:00"), 206: pd.Timestamp("2012-11-24 00:00:00"), 207: pd.Timestamp("2012-11-25 00:00:00"), 208: pd.Timestamp("2012-11-26 00:00:00"), 209: pd.Timestamp("2012-11-27 00:00:00"), 210: pd.Timestamp("2012-11-28 00:00:00"), 211: pd.Timestamp("2012-11-29 00:00:00"), 212: pd.Timestamp("2012-11-30 00:00:00"), 213: pd.Timestamp("2012-12-01 00:00:00"), 214: pd.Timestamp("2012-12-02 00:00:00"), 215: pd.Timestamp("2012-12-03 00:00:00"), 216:
pd.Timestamp("2012-12-04 00:00:00")
pandas.Timestamp
import re import yaml import calendar import pandas as pd from pathlib import Path from datetime import datetime from influxdb import InfluxDBClient from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer # VADER analyzer = SentimentIntensityAnalyzer() # InfluxDB connections settings host = 'XXX.XXX.XXX.XXX' port = XXX user = 'XXX' password = '<PASSWORD>' dbname = 'cryptotweets' metric = 'tweets' client = InfluxDBClient(host, port, user, password, dbname) def create_filters(config): filters = {} topics = config['topics'] for key, keywords in topics.items(): regex = [] for keyword in keywords: regex.append(re.escape(keyword) + r'\b') filters[key] = regex return filters def process_tweets(raw_tweets, filters): tweets = {} for key, _ in filters.items(): tweets[key] = [] for response in raw_tweets: for tweet in response: if not tweet: break time = calendar.timegm(datetime.strptime( tweet['time'][:19], "%Y-%m-%dT%H:%M:%S").timetuple()) polarity = analyzer.polarity_scores(tweet['text']) new_t = { 'time': time, 'neg': polarity['neg'], 'neu': polarity['neu'], 'pos': polarity['pos'], 'norm': polarity['compound'] } for key, keywords in filters.items(): regex = '|'.join(map(str, keywords)) if re.search(regex, tweet['text']): tweets[key].append(new_t) return tweets def fetch_tweets(start_time, end_time): with open('config.yml', 'r') as config_file: config = yaml.load(config_file) start_date =
pd.to_datetime(start_time, unit='s')
pandas.to_datetime
#!usr/bin/env python3 # -*- coding:utf-8 -*- # @time : 2021/2/19 9:38 # @author : <NAME> import argparse import asyncio import os import time from functools import partial from multiprocessing import Pool, Process import numpy as np import pandas as pd from my_utils import Smiles from tqdm import tqdm import warnings warnings.filterwarnings('ignore') def sdf2csv(content): line = content[0] last_name = line.split(' 3D')[0].split('\n')[-2] score = line.split('> <r_i_docking_score>')[1].split('\n')[1] pd.DataFrame([last_name, score, job_type]).T.to_csv(dst_csv, index=False, header=False, mode='a') n = 1 for line in content[1:]: lig_name = line.split(' 3D')[0].split('\n')[-2] if lig_name == last_name: lig_name = f'{lig_name}_{n}' n += 1 else: last_name = lig_name n = 1 score = line.split('> <r_i_docking_score>')[1].split('\n')[1] pd.DataFrame([lig_name, score, job_type]).T.to_csv(dst_csv, index=False, header=False, mode='a') def sp2csv(src_score_file, dst_score_file): src_df = pd.read_csv(src_score_file) # get uniq_active_names uniq_names = list(set(i for i in src_df.loc[:, 'NAME'].values)) # get score for uniq_name in uniq_names: tmp_df = src_df[src_df.NAME == uniq_name] tmp_df.sort_values(by='r_i_docking_score', inplace=True) tmp_df = tmp_df.loc[:, ['NAME', 'r_i_docking_score']] tmp_df['NAME'] = [f'{uniq_name}_{i}' for i in range(len(tmp_df))] tmp_df_ac = pd.DataFrame(tmp_df.iloc[0, :]).T if tmp_df_ac.iloc[0, 1] <= -6: tmp_df_decoys = tmp_df.iloc[1:, :] tmp_df_decoys = tmp_df_decoys[tmp_df_decoys.r_i_docking_score >= -4].iloc[-50:, :] tmp_df = tmp_df_ac.append(tmp_df_decoys, sort=False) tmp_df.to_csv(dst_score_file, index=True, header=False, mode='a') def split_(lig_name, content, dst_path, format_): # lig_name = content.split('\n')[0].strip() # 获取小分子名字 lig_file = '{}/{}.{}'.format(dst_path, lig_name, format_) # 定义输出分子路径 if not os.path.exists(lig_file): # 输出文件 with open(lig_file, 'w') as f: f.write(f'{file_label[format_]}\n' + content) if __name__ == '__main__': # init argparser = argparse.ArgumentParser() argparser.add_argument('--target', type=str, default='mpro') argparser.add_argument('--src_path', type=str, default='/home/xujun/Project_5/total_worflow/docking') argparser.add_argument('--lig_score_csv', type=str, default='score.csv') args = argparser.parse_args() # instance target = args.target src_path = f'{args.src_path}/{target}/docked' dst_path = f'{args.src_path}/{target}/ad' format_ = 'sdf' src_ligand_file = f'{src_path}/SP_raw.{format_}' src_score_file = f'{src_path}/SP_raw.csv' dst_csv = f'{dst_path}/{args.lig_score_csv}' dst_ligand = f'{dst_path}/decoy_conformations.{format_}' # smile smiler = Smiles(smile_lis=[''], names=[]) file_label = { 'sdf': '$$$$', 'mol2': '@<TRIPOS>MOLECULE' } # split if not os.path.exists(dst_path): os.makedirs(dst_path) # read file # 读取数据,存到con中 with open(src_ligand_file, 'r') as f: con = f.read() # 根据@<TRIPOS>MOLECULE分割字符串 第一个是None, 根据$$$$\n分割 最后一个是‘’ con = con.split(f'{file_label[format_]}\n')[:-1] # 判断数据量是否相同 df =
pd.read_csv(src_score_file)
pandas.read_csv
#%% import pandas as pd import numpy as np ## initial trial with 500 normal and abnormal transcripts #allnormal=np.load('allnormal30875_first500.npy', allow_pickle=True) #allabnormal=np.load('allabnormal30875_first500.npy', allow_pickle=True) # Load full SAD Human Body Map ERR030875 data allnormal=np.load("/home/priyamvada/data/allnormal30875.npy",allow_pickle=True) allabnormal=np.load("/home/priyamvada/data/allabnormal30875.npy",allow_pickle=True) column_names=('transcript_name', 'expected_coverage', 'observed_coverage', 'label') df_normal=
pd.DataFrame(allnormal,columns=column_names)
pandas.DataFrame
import unittest from enda.timeseries import TimeSeries import pandas as pd import pytz class TestTimeSeries(unittest.TestCase): def test_collapse_dt_series_into_periods(self): # periods is a list of (start, end) pairs. periods = [ (pd.to_datetime('2018-01-01 00:15:00+01:00'), pd.to_datetime('2018-01-01 00:45:00+01:00')), (pd.to_datetime('2018-01-01 10:15:00+01:00'), pd.to_datetime('2018-01-01 15:45:00+01:00')), (pd.to_datetime('2018-01-01 20:15:00+01:00'), pd.to_datetime('2018-01-01 21:45:00+01:00')), ] # expand periods to build a time-series with gaps dti = pd.DatetimeIndex([]) for s, e in periods: dti = dti.append(pd.date_range(s, e, freq="30min")) self.assertEqual(2+12+4, dti.shape[0]) # now find periods in the time-series # should work with 2 types of freq arguments for freq in ["30min", pd.to_timedelta("30min")]: computed_periods = TimeSeries.collapse_dt_series_into_periods(dti, freq) self.assertEqual(len(computed_periods), len(periods)) for i in range(len(periods)): self.assertEqual(computed_periods[i][0], periods[i][0]) self.assertEqual(computed_periods[i][1], periods[i][1]) def test_collapse_dt_series_into_periods_2(self): dti = pd.DatetimeIndex([ pd.to_datetime('2018-01-01 00:15:00+01:00'), pd.to_datetime('2018-01-01 00:45:00+01:00'), pd.to_datetime('2018-01-01 00:30:00+01:00'), pd.to_datetime('2018-01-01 01:00:00+01:00') ]) with self.assertRaises(ValueError): # should raise an error because 15min gaps are not multiples of freq=30min TimeSeries.collapse_dt_series_into_periods(dti, freq="30min") def test_collapse_dt_series_into_periods_3(self): dti = pd.DatetimeIndex([ pd.to_datetime('2018-01-01 00:00:00+01:00'), pd.to_datetime('2018-01-01 00:15:00+01:00'), pd.to_datetime('2018-01-01 00:30:00+01:00'), pd.to_datetime('2018-01-01 00:45:00+01:00') ]) with self.assertRaises(ValueError): # should raise an error because 15min gaps are not multiples of freq=30min TimeSeries.collapse_dt_series_into_periods(dti, "30min") def test_find_missing_and_extra_periods_1(self): dti = pd.DatetimeIndex([ pd.to_datetime('2018-01-01 00:00:00+01:00'), pd.to_datetime('2018-01-01 00:15:00+01:00'),
pd.to_datetime('2018-01-01 00:30:00+01:00')
pandas.to_datetime
# %% import pandas as pd import numpy as np import paddle.fluid as fluid def create_df(output): list = [] for em in output: list.append(em[0]) df = pd.DataFrame() df['similarity'] = list norm = pd.read_csv('../task_data/xw/norm_q.txt', sep='\t') df['norm_query'] = norm['text_a'] df.sort_values('similarity', inplace=True, ascending=False) # print(df.head()) # print(norm.head()) return df def cos_sim(np_x, np_y): x = fluid.layers.data(name='x', shape=[666, 768], dtype='float32', append_batch_size=False) y = fluid.layers.data(name='y', shape=[1, 768], dtype='float32', append_batch_size=False) out = fluid.layers.cos_sim(x, y) place = fluid.CUDAPlace(0) #place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) output = exe.run(feed={"x": np_x, "y": np_y}, fetch_list=[out]) return output[0] # print(output) # %% if __name__ == '__main__': emb1 = np.load('norm/cls_emb.npy') emb2 = np.load('sim/cls_emb.npy') df_emb2 =
pd.read_csv('../task_data/xw/sim_q.txt', sep='\t')
pandas.read_csv
# -*- coding: utf-8 -*- """ Collection of utility objects and functions for the :mod:`fluxdataqaqc` module. """ import numpy as np import pandas as pd from pathlib import Path class Convert(object): """ Tools for unit conversions for ``flux-data-qaqc`` module. """ # this is a work in progress, add more as needed/conversions are handled # input unit strings are not case sensitive, they will be forced to lower allowable_units = { 'LE': ['w/m2','mj/m2'], 'H': ['w/m2','mj/m2'], 'Rn': ['w/m2','mj/m2'], 'G': ['w/m2','mj/m2'], 'lw_in': ['w/m2','mj/m2'], 'lw_out': ['w/m2','mj/m2'], 'sw_in': ['w/m2'], 'sw_out': ['w/m2','mj/m2'], 'ppt': ['mm', 'in', 'm'], 'vp': ['kpa', 'hpa', 'pa'], 'vpd': ['kpa', 'hpa', 'pa'], 't_avg': ['c', 'f', 'k'], 't_min': ['c', 'f', 'k'], 't_max': ['c', 'f', 'k'], 'ws': ['m/s', 'mph'] } # for printing and plotting purposes pretty_unit_names = { 'pa': 'Pa', 'hpa': 'hPa', 'kpa': 'kPa', 'c': 'C', 'f': 'F', 'k': 'K' } # some variables need to be in specified units for internal calculations # they will be attempted to be converted upon initialization of a QaQc obj # allowable initial units can be found in QaQc.allowable_units required_units = { 'LE': 'w/m2', 'H': 'w/m2', 'Rn': 'w/m2', 'G': 'w/m2', 'lw_in': 'w/m2', 'lw_out': 'w/m2', 'sw_in': 'w/m2', 'sw_out': 'w/m2', 'ppt': 'mm', 'vp': 'kpa', 'vpd': 'kpa', 't_avg': 'c', 't_min': 'c', 't_max': 'c', 'ws': 'm/s' } def __init__(self): self._conversion_map = { 'k_to_c': self._k_to_c, 'hpa_to_kpa': self._hpa_to_kpa, 'pa_to_kpa': self._pa_to_kpa, 'in_to_mm': self._in_to_mm, 'm_to_mm': self._m_to_mm, 'f_to_c': self._f_to_c, 'mj/m2_to_w/m2': self._mj_per_m2_to_watts_per_m2, 'mph_to_m/s': self._mph_to_m_per_s # miles/hr to meters/sec } @classmethod def convert(cls, var_name, initial_unit, desired_unit, df): """ Givin a valid initial and desired variable dimension for a variable within a :obj:`pandas.DataFrame`, make the conversion and return the updated :obj:`pandas.DataFrame`. For a list of variables that require certain units within ``flux-data-qaqc`` see :attr:`Convert.allowable_units` (names of allowable options of input variable dimensions) and :attr:`Convert.required_units` (for the mandatory dimensions of certain variables before running QaQc calculations). Arguments: var_name (str): name of variable to convert in ``df``. initial_unit (str): name of initial unit of variable, must be valid from :attr:`Convert.allowable_units`. desired_unit (str): name of units to convert to, also must be valid. df (:obj:`pandas.DataFrame`): :obj:`pandas.DataFrame` containing variable to be converted, i.e. with ``var_name`` in columns. Returns: df (:obj:`pandas.DataFrame`): updated dataframe with specified variable's units converted Note: Many potential dimensions may not be provided for automatic conversion, if so you may need to update your variable dimensions manually, e.g. within a :attr:`.Data.df` before creating a :obj:`.QaQc` instance. Unit conversions are required for variables that can potentially be used in calculations within :obj:`.Data` or :obj:`.QaQc`. """ conv = cls() convert_key = '{}_to_{}'.format(initial_unit, desired_unit) convert_func = conv._conversion_map[convert_key] print( 'Converting {} from {} to {}'.format( var_name, initial_unit, desired_unit ) ) df = convert_func(df, var_name) return df def _in_to_mm(self, df, var_name): df[var_name] *= 25.4 return df def _m_to_mm(self, df, var_name): df[var_name] *= 1000 return df def _f_to_c(self, df, var_name): df[var_name] = (32 * df[var_name]) * (5/9) return df def _k_to_c(self, df, var_name): df[var_name] -= 273.15 return df def _hpa_to_kpa(self, df, var_name): df[var_name] /= 10 return df def _pa_to_kpa(self, df, var_name): df[var_name] /= 1000 return df def _mph_to_m_per_s(self, df, var_name): df[var_name] *= 0.44704 return df def _mj_per_m2_to_watts_per_m2(self, df, var_name): # assumes average mj per day is correct- only valid daily # because shortwate rad may be used in data (before daily) it is # not covered for automatic conversion because time period is unknown df[var_name] *= 11.574074074074074 return df def monthly_resample(df, cols, agg_str, thresh=0.75): """ Resample dataframe to monthly frequency while excluding months missing more than a specified percentage of days of the month. Arguments: df (:obj:`pandas.DataFrame`): datetime indexed DataFrame instance cols (list): list of columns in `df` to resample to monthy frequency agg_str (str): resample function as string, e.g. 'mean' or 'sum' Keyword Arguments: thresh (float): threshold (decimal fraction) of how many days in a month must exist for it to be temporally resampled, otherwise the monthly value for the month will be null. Returns: ret (:obj:`pandas.DataFrame`): datetime indexed DataFrame that has been resampled to monthly time frequency. Note: If taking monthly totals (`agg_str` = 'sum') missing days will be filled with the months daily mean before summation. """ if agg_str == 'sum': mdf = df.loc[:,cols].apply(pd.to_numeric).resample('M').agg( [agg_str, 'count', 'mean'] ) else: mdf = df.loc[:,cols].apply(pd.to_numeric).resample('M').agg( [agg_str, 'count'] ) ret =
pd.DataFrame()
pandas.DataFrame
from django.http import JsonResponse import requests import asyncio import aiohttp import numpy as np import pandas as pd from pandas import json_normalize import json from functools import reduce import unidecode from random import randint from time import sleep import traceback import sys import random import logging def get_spotify_music_profile(request): spotifyAPI = SpotifyAPI(request) try: music_profile = spotifyAPI.get_music_profile() return music_profile except Exception as e: # traceback.format_exc() print('GLOBAL EXCEPTION - BAD. RETURNING ERROR TO FRONT END') logging.exception("music profile refresh exception") error_report = { 'error': { 'message': str(e), 'status': 500, } } return error_report class SpotifyAPI: REQUEST_EXCEPTION_MSG = "Spotify API Request Exception while fetching " SAVE_PROFILE_AS_CSV = False USER_PLAYLISTS_ONLY = True # don't change unless you want playlists a user follows to also be included def __init__(self, access_token): self.header = {'Authorization' : "Bearer "+access_token} self.user_id = self.fetch_user_id() self.artist_columns = [] self.track_columns = [] self.artists_dataframes = [] self.tracks_dataframes = [] def get_music_profile(self): asyncio.run(self.collect_artists_and_tracks_dataframes()) print("converting dataframes to JSON...") print(f'returning { self.artists_df.shape[0] } artists and { self.tracks_df.shape[0] } tracks') if self.SAVE_PROFILE_AS_CSV: self.artists_df.to_csv('artists_df.csv') self.tracks_df.to_csv('tracks_df.csv') artists_json = self.get_artists_json(self.artists_df) tracks_json = self.get_tracks_json(self.tracks_df) music_profile = { "artists" : artists_json, "tracks" : tracks_json, } return music_profile def get_artists_json(self, artists_df): return artists_df.to_json(orient='records') def get_tracks_json(self, tracks_df): return tracks_df.to_json(orient='records') async def collect_artists_and_tracks_dataframes(self): # fetch artists and tracks together, due to how the Spotify API returns both print("collect_artists_and_tracks_dataframes()...") tasks = [self.fetch_top_artists("long_term"), self.fetch_top_artists("medium_term"), self.fetch_top_artists("short_term") , self.fetch_top_tracks("long_term"), self.fetch_top_tracks("medium_term"), self.fetch_top_tracks("short_term") , self.fetch_followed_artists(), self.fetch_saved_tracks(), self.get_all_playlists()] await asyncio.gather(*tasks) print("initial tasks (fetches) have finishing gathering..") print("initiating get_artists_master_df(), where full artist objects will be fetched..") self.artists_df = await self.get_artists_master_df() print("finished fetching full objects.") self.tracks_df = self.get_tracks_master_df() async def get_artists_master_df(self): if self.artists_dataframes == []: return pd.DataFrame() artists_df = None if len(self.artists_dataframes) > 1: artists_df = reduce(lambda left, right: pd.merge(left, right, how="outer"), self.artists_dataframes) else: artists_df = self.artists_dataframes[0] artists_df = artists_df.drop_duplicates() if 'id' not in artists_df: return pd.DataFrame() # add all columns needed if we don't have them yet for col in self.artist_columns: if col not in artists_df: artists_df[col] = np.NaN if 'track.id' not in artists_df: artists_df['track.id'] = np.NaN # here, i fill in missing values # with a second gather operation if 'image' in artists_df: artists_missing = artists_df[artists_df['image'].isnull()] else: artists_missing = artists_df missing_ids = artists_missing['id'].tolist() missing_ids = list(set(missing_ids)) if len(missing_ids) > 0: artists_full_df = await self.get_full_artist_dataframes(missing_ids) artists_df = pd.merge(artists_df, artists_full_df, how="outer") artists_df = artists_df.drop_duplicates() artists_df['smallImage'] = artists_df['image'] artists_df['bigImage'] = artists_df['image'] artists_df.drop('image', axis = 1) artists_df_transform = {} for column in self.artist_columns: artists_df_transform[column] = 'max' artists_df_transform['bigImage'] = 'first' artists_df_transform['smallImage'] = 'last' artists_df_transform['uri'] = 'first' def agg_track_list(tracks): # set to remove duplicates track_list = [x for x in list(set(tracks)) if str(x) != 'nan'] return track_list artists_df_transform['track.id'] = agg_track_list def agg_genres_list(genres): genre_list = [x for x in list(set(genres)) if str(x) != 'nan'] return genre_list artists_df_transform['genres'] = agg_genres_list artists_df = artists_df.groupby(['id', 'name']).agg(artists_df_transform) artists_df.rename(columns = {'track.id': 'tracks'}, inplace = True) artists_df[self.artist_columns] = artists_df[self.artist_columns].fillna(value=False) artists_df.reset_index(level=['id', 'name'], inplace = True) # add artist's tracks_length def get_tracks_len(row): return len(list(row['tracks'])) artists_df['tracks_length'] = artists_df.apply(get_tracks_len, axis=1) # add artist's genres_length def get_genres_len(row): return len(list(row['genres'])) artists_df['genres_length'] = artists_df.apply(get_genres_len, axis=1) def get_ascii_artist_name(row): return unidecode.unidecode(row['name']) artists_df['name_ascii'] = artists_df.apply(get_ascii_artist_name, axis=1) return artists_df def get_tracks_master_df(self): if self.tracks_dataframes == []: return pd.DataFrame() tracks_df = reduce(lambda left, right: pd.merge(left, right, how="outer"), self.tracks_dataframes) tracks_df = tracks_df.drop_duplicates() if 'id' not in tracks_df: return pd.DataFrame() tracks_df[self.track_columns] = tracks_df[self.track_columns].fillna(value=False) tracks_df_transform = {} tracks_df_transform['image_size'] = 'min' tracks_df_transform['image_url'] = 'first' #tracks_df_transform['top_tracks_short_term'] = 'first' #tracks_df_transform['saved_tracks'] = 'first' #tracks_df_transform['top_tracks_medium_term'] = 'first' #tracks_df_transform['top_tracks_long_term'] = 'first' #tracks_df_transform['playlist'] = 'first' tracks_df = tracks_df.groupby(['id', 'name', 'uri']).agg(tracks_df_transform) tracks_df.reset_index(level=['id', 'name', 'uri'], inplace = True) return tracks_df async def fetch_top_artists(self, time_range): print('fetching top artists... ', time_range) self.artist_columns.append("top_artists_" + time_range) self.artist_columns.append("top_artists_" + time_range + "_ranking") offsets = [0, 49] top_artists = [] for offset in offsets: URL = "https://api.spotify.com/v1/me/top/artists?limit=50&offset="+str(offset)+"&time_range="+time_range resp_dict = await self.fetch_json_from_URL(URL = URL, name = "top artists({}):".format(time_range)) # so if user's dont listen to enough artists in the short term, # then less than 100 short term artists are returned # in which case ['items'] equals [] and so we must check for this # and just simply do nothing when it happens if resp_dict and resp_dict['total'] > 0 and len(resp_dict['items']) > 0: artists_df = self.extract_full_artist_from_json(resp_dict['items']) artists_df["top_artists_"+time_range] = True top_artists.append(artists_df) if len(top_artists) > 0: artists_df = pd.concat(top_artists) if 'id' in artists_df: current_ranking = 0 rankings = [] seen_id = set() for index, row in artists_df.iterrows(): if row['id'] not in seen_id: current_ranking += 1 seen_id.add(row['id']) rankings.append(current_ranking) artists_df["top_artists_" + time_range + "_ranking"] = rankings artists_df = artists_df[artists_df['id'].notnull()] self.artists_dataframes.append(artists_df) async def fetch_top_tracks(self, time_range): print('fetching top tracks... ', time_range) #self.track_columns.append("top_tracks_" + time_range) offsets = [0, 49] all_artists = [] all_tracks = [] for offset in offsets: URL = "https://api.spotify.com/v1/me/top/tracks?limit=50&offset="+str(offset)+"&time_range="+time_range resp_dict = await self.fetch_json_from_URL(URL = URL, name = "artists from top tracks({})".format(time_range)) if resp_dict and resp_dict['total'] > 0 and len(resp_dict['items']) > 0: artists_df = json_normalize(data = resp_dict['items'], record_path=['artists'], meta=['id'], meta_prefix='track.') artists_df = artists_df[['id', 'name', 'track.id']] all_artists.append(artists_df) tracks_df = json_normalize(data = resp_dict['items'], record_path=['album', 'images'], meta=['id', 'name', 'uri'], meta_prefix='track.') tracks_df = self.cleanup_tracks_df(tracks_df) tracks_df["top_tracks_"+time_range] = True all_tracks.append(tracks_df) if len(all_artists) > 0: all_artists_df = pd.concat(all_artists) if 'id' in all_artists_df: all_artists_df = all_artists_df[all_artists_df['id'].notnull()] self.artists_dataframes.append(all_artists_df) if len(all_tracks) > 0: all_tracks_df = pd.concat(all_tracks) if 'id' in all_tracks_df: all_tracks_df = all_tracks_df[all_tracks_df['id'].notnull()] self.tracks_dataframes.append(all_tracks_df) async def fetch_followed_artists(self): print('fetching followed artists... ') self.artist_columns.append("followed_artist") next = "https://api.spotify.com/v1/me/following?type=artist&limit=50&offset=0" followed_artists = [] while next: resp_dict = await self.fetch_json_from_URL(URL = next, name = "followed artists") if resp_dict and resp_dict['artists'] and resp_dict['artists']['total'] > 0 and len(resp_dict['artists']['items']) > 0: next = resp_dict['artists']['next'] artists_df = self.extract_full_artist_from_json(resp_dict['artists']['items']) artists_df['followed_artist'] = True followed_artists.append(artists_df) else: break if len(followed_artists) > 0: followed_artists_df = pd.concat(followed_artists) if 'id' in followed_artists_df: followed_artists_df = followed_artists_df[followed_artists_df['id'].notnull()] self.artists_dataframes.append(followed_artists_df) async def fetch_saved_tracks(self): print('fetching saved tracks... ') #self.track_columns.append("saved_tracks") next = "https://api.spotify.com/v1/me/tracks?limit=50&offset=0" all_artists = [] all_tracks = [] while next: resp_dict = await self.fetch_json_from_URL(URL = next, name = "saved tracks") if resp_dict and resp_dict['total'] > 0 and len(resp_dict['items']) > 0: next = resp_dict['next'] artists_df = json_normalize(data = resp_dict['items'], record_path=['track', 'artists'], meta=[['track', 'id']]) artists_df = artists_df[['id', 'name', 'track.id']] all_artists.append(artists_df) tracks_df = json_normalize(data = resp_dict['items'], record_path=['track', 'album', 'images'], meta=[['track', 'name'], ['track', 'id'], ['track', 'uri']]) tracks_df = self.cleanup_tracks_df(tracks_df) tracks_df["saved_tracks"] = True all_tracks.append(tracks_df) else: break if len(all_artists) > 0: all_artists_df = pd.concat(all_artists) if 'id' in all_artists_df: all_artists_df = all_artists_df[all_artists_df['id'].notnull()] self.artists_dataframes.append(all_artists_df) if len(all_tracks) > 0: all_tracks_df = pd.concat(all_tracks) if 'id' in all_tracks_df: all_tracks_df = all_tracks_df[all_tracks_df['id'].notnull()] self.tracks_dataframes.append(all_tracks_df) async def fetch_playlists(self): print('fetch_playlists...') playlists_all = [] next = "https://api.spotify.com/v1/me/playlists?limit=50&offset=0" while next: resp_dict = await self.fetch_json_from_URL(URL = next, name = "playlists") if resp_dict and resp_dict['total'] > 0 and len(resp_dict['items']) > 0: next = resp_dict['next'] playlists_full = json_normalize(resp_dict['items']) playlists = playlists_full[['id', 'owner.id']] if self.USER_PLAYLISTS_ONLY: playlists = playlists[playlists['owner.id'] == self.user_id] playlists.drop('owner.id', axis=1, inplace=True) playlists_all.append(playlists) else: break if len(playlists_all) > 0: return pd.concat(playlists_all) return pd.DataFrame() async def get_all_playlists(self): playlists = await self.fetch_playlists() self.artist_columns.append("playlist") if playlists.empty or 'id' not in playlists: return tracks = [] artists = [] print('fetching', len(playlists), 'playlists...') tasks = [self.fetch_playlist(playlistID) for playlistID in playlists['id']] playlistDatas = await asyncio.gather(*tasks) for playlistData in playlistDatas: if not playlistData[0].empty: artists.append(playlistData[0]) if not playlistData[1].empty: tracks.append(playlistData[1]) if artists and len(artists) > 0: self.artists_dataframes.append(pd.concat(artists)) if tracks and len(tracks) > 0: self.tracks_dataframes.append(pd.concat(tracks)) async def fetch_playlist(self, ID): next = "https://api.spotify.com/v1/playlists/"+ID+"/tracks?limit=100&offset=0" all_artists = [] all_tracks = [] while next: resp_dict = await self.fetch_json_from_URL(URL = next, name = "tracks from playlist") if resp_dict and resp_dict['total'] > 0 and len(resp_dict['items']) > 0: next = resp_dict['next'] artists_df = json_normalize(data = resp_dict['items'], record_path=['track', 'artists'], meta=[['track', 'id']]) artists_df = artists_df[['id', 'name', 'track.id']] artists_df['playlist'] = True all_artists.append(artists_df) tracks_df = json_normalize(data = resp_dict['items'], record_path=['track', 'album', 'images'], meta=[['track', 'name'], ['track', 'id'], ['track', 'uri']]) tracks_df = self.cleanup_tracks_df(tracks_df) tracks_df["playlist"] = True all_tracks.append(tracks_df) else: break all_artists_df = pd.DataFrame() all_tracks_df = pd.DataFrame() if len(all_artists) > 0: all_artists_df = pd.concat(all_artists) if 'id' in all_artists_df: all_artists_df = all_artists_df[all_artists_df['id'].notnull()] if len(all_tracks) > 0: all_tracks_df = pd.concat(all_tracks) if 'id' in all_tracks_df: all_tracks_df = all_tracks_df[all_tracks_df['id'].notnull()] return all_artists_df, all_tracks_df ''' takes a list of artist IDs, fetches the full artist objects from spotify using these IDs (50 at a time max), calls extract_full_artist_from_json on the returns and returns a dataframe with all the columns needed for the mobile app ''' async def get_full_artist_dataframes(self, all_IDs): print(f"get_all_details_on({len(all_IDs)})_artists...") ID_segments = self.split_into_N(all_IDs, 50) tasks = [self.fetch_full_artists(IDs) for IDs in ID_segments] artist_dataframes = await asyncio.gather(*tasks) return pd.concat(artist_dataframes) ''' IDs should be of length 50 or less ''' async def fetch_full_artists(self, IDs): URL = "https://api.spotify.com/v1/artists" resp_dict = await self.fetch_json_from_URL( URL = URL, params = [('ids', ",".join(IDs))], name = "full artist objects") if resp_dict and resp_dict['artists']: try: artist_df = self.extract_full_artist_from_json(resp_dict['artists']) except Exception as e: with open('errorArtists.json', 'w') as outfile: json.dump(resp_dict['artists'], outfile) if artist_df.empty: return pd.DataFrame() if 'id' in artist_df: artist_df = artist_df[artist_df['id'].notnull()] return artist_df return pd.DataFrame() def split_into_N(self, _list, N): return [_list[i * N:(i + 1) * N] for i in range((len(_list) + N - 1) // N )] ''' json_data must be a JSON array of full artist objects. Returns a dataframe of all the objects with columns: id, name, genres, image, image_size''' def extract_full_artist_from_json(self, json_data): json_data_no_none = [] for val in json_data: if val != None: json_data_no_none.append(val) artists_genres =
json_normalize(data = json_data_no_none, record_path='genres', meta=['id', 'name', 'uri'])
pandas.json_normalize
from pandas.core.frame import DataFrame from airflow.models.baseoperator import BaseOperator from airflow.utils.decorators import apply_defaults from airflow.models import Variable import boto3 import json import pandas as pd class FinancialProcessorOperator(BaseOperator): ui_color = '#358140' @apply_defaults def __init__(self, stock_method:str, *args, **kwargs): super(FinancialProcessorOperator, self).__init__(*args, **kwargs) self.__AWS_S3_BUCKET_BRONZE = Variable.get("S3_BUCKET_BRONZE") self.__AWS_S3_BUCKET_SILVER = Variable.get("S3_BUCKET_SILVER") self.__AWS_ACCESS_KEY_ID = Variable.get("USER_ACCESS_KEY_ID") self.__AWS_SECRET_ACCESS_KEY = Variable.get("USER_SECRET_ACCESS_KEY") self.__STOCK_METHOD = stock_method.lower() @staticmethod def generate_file_path(stock_method: str, company: str, file_name: str, file_format: str): return f"stock_method={stock_method}/company={company}/{file_name}.{file_format}" def client_connection(self): client = boto3.client( "s3", aws_access_key_id=self.__AWS_ACCESS_KEY_ID, aws_secret_access_key=self.__AWS_SECRET_ACCESS_KEY, ) return client def get_object(self, bucket: str, key: str): client = self.client_connection() response = client.get_object(Bucket=bucket, Key=key) if self.__STOCK_METHOD == "time_series_daily_adjusted": data = response.get("Body") else: data = json.loads(response.get("Body").read().decode('utf-8')) return data def read_from_bronze(self, company): data = self.get_object(bucket=self.__AWS_S3_BUCKET_BRONZE, key=self.generate_file_path(stock_method=self.__STOCK_METHOD, company=company['Symbol'], file_name=self.__STOCK_METHOD, file_format="json")) return data def save_to_silver(self, company:str, df: DataFrame): df.to_parquet( "s3://{}/{}".format(self.__AWS_S3_BUCKET_SILVER, self.generate_file_path(stock_method=self.__STOCK_METHOD, company=company['Symbol'], file_name=self.__STOCK_METHOD, file_format="parquet")), storage_options={ "key": self.__AWS_ACCESS_KEY_ID, "secret": self.__AWS_SECRET_ACCESS_KEY }, index=False, engine="fastparquet" ) return '{} was processed'.format(company['Symbol']) def process_earnings(self): companies = self.get_object(bucket=self.__AWS_S3_BUCKET_BRONZE, key="companies/s&p-500-companies.json") for company in companies: s3_data = self.read_from_bronze(company=company) try: symbol = s3_data['symbol'] quarterlyEarnings = s3_data['quarterlyEarnings'] df = pd.DataFrame(quarterlyEarnings) df['company'] = symbol self.log.info(self.save_to_silver(company, df)) except Exception as exception: self.log.info(exception) def process_overview(self): companies = self.get_object(bucket=self.__AWS_S3_BUCKET_BRONZE, key="companies/s&p-500-companies.json") for company in companies: s3_data = self.read_from_bronze(company=company) try: df = pd.DataFrame(s3_data, index=['Symbol']) if "Name" in df.columns: self.log.info(self.save_to_silver(company, df)) except Exception as exception: self.log.info(exception) def process_time_series(self): companies = self.get_object(bucket=self.__AWS_S3_BUCKET_BRONZE, key="companies/s&p-500-companies.json") companies = json.loads(companies.read().decode('utf-8')) for company in companies: s3_data = self.read_from_bronze(company=company) try: df =
pd.read_json(s3_data, orient='records')
pandas.read_json
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import pandas as pd from astropy.coordinates import SkyCoord from astropy.io.votable import parse from sh import bzip2 from ...lib.context_managers import cd # ============================================================================= # CONSTANTS # ============================================================================= PATH = os.path.abspath(os.path.dirname(__file__)) CATALOG_PATH = os.path.join(PATH, "carpyncho_catalog.pkl") # ============================================================================= # BUILD # ============================================================================= def get_ogle_3_resume(): with cd(PATH): bzip2("-f", "-dk", "ogleIII_all.csv.bz2") df =
pd.read_csv("ogleIII_all.csv")
pandas.read_csv
"""Make predictions based on class probabilities and thresholds""" from pathlib import Path import pandas as pd def prediction_dataframe(probabilities, thresholds=0.0): if isinstance(probabilities, list): # Need to join multiple csv-files as one df df_list = [] for csv in probabilities: df = pd.read_csv(csv) # Create multi-index from sample name and roi number df.insert(0, "sample", Path(csv).with_suffix("").stem) df.set_index(["sample", "roi"], inplace=True) df_list.append(df) df = pd.concat(df_list) elif isinstance(probabilities, (str, Path)): df =
pd.read_csv(probabilities, index_col=0)
pandas.read_csv
import pandas as pd import numpy as np from texthero import nlp from . import PandasTestCase import doctest import unittest import string """ Test doctest """ def load_tests(loader, tests, ignore): tests.addTests(doctest.DocTestSuite(nlp)) return tests class TestNLP(PandasTestCase): """ Named entity. """ def test_named_entities(self): s = pd.Series("New York is a big city") s_true = pd.Series([[("New York", "GPE", 0, 8)]]) self.assertEqual(nlp.named_entities(s), s_true) """ Noun chunks. """ def test_noun_chunks(self): s = pd.Series("Today is such a beautiful day") s_true = pd.Series( [[("Today", "NP", 0, 5), ("such a beautiful day", "NP", 9, 29)]] ) self.assertEqual(nlp.noun_chunks(s), s_true) """ Count sentences. """ def test_count_sentences(self): s = pd.Series("I think ... it counts correctly. Doesn't it? Great!") s_true = pd.Series(3) self.assertEqual(nlp.count_sentences(s), s_true) def test_count_sentences_numeric(self): s = pd.Series([13.0, 42.0]) self.assertRaises(TypeError, nlp.count_sentences, s) def test_count_sentences_missing_value(self): s = pd.Series(["Test.", np.nan]) self.assertRaises(TypeError, nlp.count_sentences, s) def test_count_sentences_index(self): s = pd.Series(["Test"], index=[5]) counted_sentences_s = nlp.count_sentences(s) t_same_index = pd.Series([""], index=[5]) self.assertTrue(counted_sentences_s.index.equals(t_same_index.index)) def test_count_sentences_wrong_index(self): s = pd.Series(["Test", "Test"], index=[5, 6]) counted_sentences_s = nlp.count_sentences(s) t_different_index = pd.Series(["", ""], index=[5, 7]) self.assertFalse(counted_sentences_s.index.equals(t_different_index.index)) """ POS tagging. """ def test_pos(self): s =
pd.Series(["Today is such a beautiful day", "São Paulo is a great city"])
pandas.Series
""" Tests for statistical pipeline terms. """ from numpy import ( arange, full, full_like, nan, where, ) from pandas import ( DataFrame, date_range, Int64Index, Timestamp, ) from pandas.util.testing import assert_frame_equal from scipy.stats import linregress, pearsonr, spearmanr from catalyst.assets import Equity from catalyst.errors import IncompatibleTerms, NonExistentAssetInTimeFrame from catalyst.pipeline import CustomFactor, Pipeline from catalyst.pipeline.data import USEquityPricing from catalyst.pipeline.data.testing import TestingDataSet from catalyst.pipeline.engine import SimplePipelineEngine from catalyst.pipeline.factors.equity import ( Returns, RollingLinearRegressionOfReturns, RollingPearsonOfReturns, RollingSpearmanOfReturns, ) from catalyst.pipeline.loaders.frame import DataFrameLoader from catalyst.pipeline.sentinels import NotSpecified from catalyst.testing import ( AssetID, AssetIDPlusDay, check_arrays, make_alternating_boolean_array, make_cascading_boolean_array, parameter_space, ) from catalyst.testing.fixtures import ( WithSeededRandomPipelineEngine, WithTradingEnvironment, CatalystTestCase, ) from catalyst.utils.numpy_utils import ( bool_dtype, datetime64ns_dtype, float64_dtype, ) class StatisticalBuiltInsTestCase(WithTradingEnvironment, CatalystTestCase): sids = ASSET_FINDER_EQUITY_SIDS = Int64Index([1, 2, 3]) START_DATE = Timestamp('2015-01-31', tz='UTC') END_DATE = Timestamp('2015-03-01', tz='UTC') @classmethod def init_class_fixtures(cls): super(StatisticalBuiltInsTestCase, cls).init_class_fixtures() day = cls.trading_calendar.day cls.dates = dates = date_range( '2015-02-01', '2015-02-28', freq=day, tz='UTC', ) # Using these start and end dates because they are a contigous span of # 5 days (Monday - Friday) and they allow for plenty of days to look # back on when computing correlations and regressions. cls.start_date_index = start_date_index = 14 cls.end_date_index = end_date_index = 18 cls.pipeline_start_date = dates[start_date_index] cls.pipeline_end_date = dates[end_date_index] cls.num_days = num_days = end_date_index - start_date_index + 1 sids = cls.sids cls.assets = assets = cls.asset_finder.retrieve_all(sids) cls.my_asset_column = my_asset_column = 0 cls.my_asset = assets[my_asset_column] cls.num_assets = num_assets = len(assets) cls.raw_data = raw_data = DataFrame( data=arange(len(dates) * len(sids), dtype=float64_dtype).reshape( len(dates), len(sids), ), index=dates, columns=assets, ) # Using mock 'close' data here because the correlation and regression # built-ins use USEquityPricing.close as the input to their `Returns` # factors. Since there is no way to change that when constructing an # instance of these built-ins, we need to test with mock 'close' data # to most accurately reflect their true behavior and results. close_loader = DataFrameLoader(USEquityPricing.close, raw_data) cls.run_pipeline = SimplePipelineEngine( {USEquityPricing.close: close_loader}.__getitem__, dates, cls.asset_finder, ).run_pipeline cls.cascading_mask = \ AssetIDPlusDay() < (sids[-1] + dates[start_date_index].day) cls.expected_cascading_mask_result = make_cascading_boolean_array( shape=(num_days, num_assets), ) cls.alternating_mask = (AssetIDPlusDay() % 2).eq(0) cls.expected_alternating_mask_result = make_alternating_boolean_array( shape=(num_days, num_assets), ) cls.expected_no_mask_result = full( shape=(num_days, num_assets), fill_value=True, dtype=bool_dtype, ) @parameter_space(returns_length=[2, 3], correlation_length=[3, 4]) def _test_correlation_factors(self, returns_length, correlation_length): """ Tests for the built-in factors `RollingPearsonOfReturns` and `RollingSpearmanOfReturns`. """ assets = self.assets my_asset = self.my_asset my_asset_column = self.my_asset_column dates = self.dates start_date = self.pipeline_start_date end_date = self.pipeline_end_date start_date_index = self.start_date_index end_date_index = self.end_date_index num_days = self.num_days run_pipeline = self.run_pipeline returns = Returns(window_length=returns_length) masks = (self.cascading_mask, self.alternating_mask, NotSpecified) expected_mask_results = ( self.expected_cascading_mask_result, self.expected_alternating_mask_result, self.expected_no_mask_result, ) for mask, expected_mask in zip(masks, expected_mask_results): pearson_factor = RollingPearsonOfReturns( target=my_asset, returns_length=returns_length, correlation_length=correlation_length, mask=mask, ) spearman_factor = RollingSpearmanOfReturns( target=my_asset, returns_length=returns_length, correlation_length=correlation_length, mask=mask, ) columns = { 'pearson_factor': pearson_factor, 'spearman_factor': spearman_factor, } pipeline = Pipeline(columns=columns) if mask is not NotSpecified: pipeline.add(mask, 'mask') results = run_pipeline(pipeline, start_date, end_date) pearson_results = results['pearson_factor'].unstack() spearman_results = results['spearman_factor'].unstack() if mask is not NotSpecified: mask_results = results['mask'].unstack() check_arrays(mask_results.values, expected_mask) # Run a separate pipeline that calculates returns starting # (correlation_length - 1) days prior to our start date. This is # because we need (correlation_length - 1) extra days of returns to # compute our expected correlations. results = run_pipeline( Pipeline(columns={'returns': returns}), dates[start_date_index - (correlation_length - 1)], dates[end_date_index], ) returns_results = results['returns'].unstack() # On each day, calculate the expected correlation coefficients # between the asset we are interested in and each other asset. Each # correlation is calculated over `correlation_length` days. expected_pearson_results = full_like(pearson_results, nan) expected_spearman_results = full_like(spearman_results, nan) for day in range(num_days): todays_returns = returns_results.iloc[ day:day + correlation_length ] my_asset_returns = todays_returns.iloc[:, my_asset_column] for asset, other_asset_returns in todays_returns.iteritems(): asset_column = int(asset) - 1 expected_pearson_results[day, asset_column] = pearsonr( my_asset_returns, other_asset_returns, )[0] expected_spearman_results[day, asset_column] = spearmanr( my_asset_returns, other_asset_returns, )[0] expected_pearson_results = DataFrame( data=where(expected_mask, expected_pearson_results, nan), index=dates[start_date_index:end_date_index + 1], columns=assets, ) assert_frame_equal(pearson_results, expected_pearson_results) expected_spearman_results = DataFrame( data=where(expected_mask, expected_spearman_results, nan), index=dates[start_date_index:end_date_index + 1], columns=assets, ) assert_frame_equal(spearman_results, expected_spearman_results) @parameter_space(returns_length=[2, 3], regression_length=[3, 4]) def _test_regression_of_returns_factor(self, returns_length, regression_length): """ Tests for the built-in factor `RollingLinearRegressionOfReturns`. """ assets = self.assets my_asset = self.my_asset my_asset_column = self.my_asset_column dates = self.dates start_date = self.pipeline_start_date end_date = self.pipeline_end_date start_date_index = self.start_date_index end_date_index = self.end_date_index num_days = self.num_days run_pipeline = self.run_pipeline # The order of these is meant to align with the output of `linregress`. outputs = ['beta', 'alpha', 'r_value', 'p_value', 'stderr'] returns = Returns(window_length=returns_length) masks = self.cascading_mask, self.alternating_mask, NotSpecified expected_mask_results = ( self.expected_cascading_mask_result, self.expected_alternating_mask_result, self.expected_no_mask_result, ) for mask, expected_mask in zip(masks, expected_mask_results): regression_factor = RollingLinearRegressionOfReturns( target=my_asset, returns_length=returns_length, regression_length=regression_length, mask=mask, ) columns = { output: getattr(regression_factor, output) for output in outputs } pipeline = Pipeline(columns=columns) if mask is not NotSpecified: pipeline.add(mask, 'mask') results = run_pipeline(pipeline, start_date, end_date) if mask is not NotSpecified: mask_results = results['mask'].unstack() check_arrays(mask_results.values, expected_mask) output_results = {} expected_output_results = {} for output in outputs: output_results[output] = results[output].unstack() expected_output_results[output] = full_like( output_results[output], nan, ) # Run a separate pipeline that calculates returns starting # (regression_length - 1) days prior to our start date. This is # because we need (regression_length - 1) extra days of returns to # compute our expected regressions. results = run_pipeline( Pipeline(columns={'returns': returns}), dates[start_date_index - (regression_length - 1)], dates[end_date_index], ) returns_results = results['returns'].unstack() # On each day, calculate the expected regression results for Y ~ X # where Y is the asset we are interested in and X is each other # asset. Each regression is calculated over `regression_length` # days of data. for day in range(num_days): todays_returns = returns_results.iloc[ day:day + regression_length ] my_asset_returns = todays_returns.iloc[:, my_asset_column] for asset, other_asset_returns in todays_returns.iteritems(): asset_column = int(asset) - 1 expected_regression_results = linregress( y=other_asset_returns, x=my_asset_returns, ) for i, output in enumerate(outputs): expected_output_results[output][day, asset_column] = \ expected_regression_results[i] for output in outputs: output_result = output_results[output] expected_output_result = DataFrame( where(expected_mask, expected_output_results[output], nan), index=dates[start_date_index:end_date_index + 1], columns=assets, ) assert_frame_equal(output_result, expected_output_result) def _test_correlation_and_regression_with_bad_asset(self): """ Test that `RollingPearsonOfReturns`, `RollingSpearmanOfReturns` and `RollingLinearRegressionOfReturns` raise the proper exception when given a nonexistent target asset. """ my_asset = Equity(0, exchange="TEST") start_date = self.pipeline_start_date end_date = self.pipeline_end_date run_pipeline = self.run_pipeline # This filter is arbitrary; the important thing is that we test each # factor both with and without a specified mask. my_asset_filter = AssetID().eq(1) for mask in (NotSpecified, my_asset_filter): pearson_factor = RollingPearsonOfReturns( target=my_asset, returns_length=3, correlation_length=3, mask=mask, ) spearman_factor = RollingSpearmanOfReturns( target=my_asset, returns_length=3, correlation_length=3, mask=mask, ) regression_factor = RollingLinearRegressionOfReturns( target=my_asset, returns_length=3, regression_length=3, mask=mask, ) with self.assertRaises(NonExistentAssetInTimeFrame): run_pipeline( Pipeline(columns={'pearson_factor': pearson_factor}), start_date, end_date, ) with self.assertRaises(NonExistentAssetInTimeFrame): run_pipeline( Pipeline(columns={'spearman_factor': spearman_factor}), start_date, end_date, ) with self.assertRaises(NonExistentAssetInTimeFrame): run_pipeline( Pipeline(columns={'regression_factor': regression_factor}), start_date, end_date, ) def test_require_length_greater_than_one(self): my_asset = Equity(0, exchange="TEST") with self.assertRaises(ValueError): RollingPearsonOfReturns( target=my_asset, returns_length=3, correlation_length=1, ) with self.assertRaises(ValueError): RollingSpearmanOfReturns( target=my_asset, returns_length=3, correlation_length=1, ) with self.assertRaises(ValueError): RollingLinearRegressionOfReturns( target=my_asset, returns_length=3, regression_length=1, ) class StatisticalMethodsTestCase(WithSeededRandomPipelineEngine, CatalystTestCase): sids = ASSET_FINDER_EQUITY_SIDS = Int64Index([1, 2, 3]) START_DATE =
Timestamp('2015-01-31', tz='UTC')
pandas.Timestamp