prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import json import logging import time import sys import os import numpy as np import pandas as pd import pathlib import sys import math script_version = 1.79 project_dir = pathlib.Path().absolute().parent sys.path.append(str(project_dir)) from cf_common.CfClient import * class RollingStats: """Creates rolling window statistics object Inputs are sample window size and number of digits to round values too. For example: - transactions per second window size can be 2 or higher with 0 round digits - time to first byte can have 1 round digit, best is to use the same window size """ def __init__(self, sample_window_size, round_digits): # initiate list with sample size count of zeros self.sample_size = sample_window_size self.round_digits = round_digits self.list = [0] * self.sample_size self.current_value = 0 self.avg_val = 0 self.avg_val_last = 0 self.increase_avg = 0 self.variance = 0.000 self.avg_max_load_variance = 0.00 self.new_high = False self.highest_value = 0 self.not_high_count = 0 self.stable = False self.stable_count = 0 def update(self, new_value): """Updates Rolling List and returns current variance :param new_value: new single value of for example TPS or TTFB :return: variance """ self.current_value = new_value if len(self.list) == self.sample_size: self.list.pop(0) self.list.append(self.current_value) self.avg_val = sum(self.list) / len(self.list) self.avg_val = round(self.avg_val, self.round_digits) if self.round_digits == 0: self.avg_val = int(self.avg_val) max_var = max(self.list) - min(self.list) self.variance = (max_var / self.avg_val) if self.avg_val != 0 else 0 self.variance = round(self.variance, 3) # check if new value value is the new high for later use self.check_if_highest() return self.variance def reset(self): """Resets rolling window back to all 0 Can be used after load increase on stat as current load that tracks if load is stable after increase Don't use on reported rolling stat as it will have high increase after its set to all 0 :return: None """ self.list = [0] * self.sample_size def check_if_stable(self, max_var_reference): """Checks if load is stable in current list If its stable also check the increase since a load change was last completed. :param max_var_reference: user/test configured reference value, e.g. 0.03 for 3% :return: True if stable, False if not """ if self.variance <= max_var_reference: self.stable = True self.stable_count += 1 self.increase_since_last_load_change() return True else: self.stable = False self.stable_count = 0 return False def increase_since_last_load_change(self): """Sets increase_avg, the increase since last load This function can be called from check_if_stable. The set result can be used by a function to determine by how much to increase the load. After load change call load_increase_complete to set the value for the next round. :return: None """ if self.avg_val_last != 0: self.increase_avg = ( (self.avg_val - self.avg_val_last) / self.avg_val_last ) * 100 self.increase_avg = round(self.increase_avg, 2) else: self.avg_val_last = 1 def load_increase_complete(self): """set last load change value Use in combination with increase_since_last_load_change :return: None """ self.avg_val_last = self.avg_val def check_if_highest(self): """Checks and sets highest value reference Can be called by update function to track if the current update is the new highest value :return: True if new high, False if not higher vs. previous """ if self.highest_value < self.avg_val: self.highest_value = self.avg_val self.new_high = True self.not_high_count = 0 else: self.new_high = False self.not_high_count += 1 self.avg_max_load_variance = ( (self.avg_val / self.highest_value) if self.highest_value != 0 else 0 ) self.avg_max_load_variance = round(self.avg_max_load_variance, 2) if self.new_high: return True if not self.new_high: return False class CfRunTest: def __init__(self, cf, test_details, result_file, temp_file_dir): log.info(f"script version: {script_version}") self.cf = cf # CfClient instance self.result_file = result_file self.temp_dir = temp_file_dir self.test_id = test_details["id"] self.type_v2 = test_details["type"] self.in_name = test_details["name"] self.in_run = test_details["run"] self.in_load_type = test_details["load_type"] self.in_start_load = test_details["start_load"] self.in_incr_low = int(test_details["incr_low"]) self.in_incr_med = int(test_details["incr_med"]) self.in_incr_high = int(test_details["incr_high"]) self.in_duration = int(test_details["duration"]) self.in_startup = int(test_details["startup"]) self.in_rampup = int(test_details["rampup"]) self.in_rampdown = int(test_details["rampdown"]) self.in_shutdown = int(test_details["shutdown"]) self.in_sustain_period = int(test_details["sustain_period"]) self.in_kpi_1 = test_details.get("kpi_1", "tps") self.in_kpi_2 = test_details.get("kpi_2", "cps") self.in_kpi_and_or = self.return_bool_true(test_details.get("kpi_and_or"), "AND") self.in_threshold_low = float(test_details["low_threshold"]) self.in_threshold_med = float(test_details["med_threshold"]) self.in_threshold_high = float(test_details["high_threshold"]) self.in_sustain_period = int(test_details["sustain_period"]) self.variance_sample_size = int(test_details["variance_sample_size"]) self.in_max_variance = float(test_details["max_variance"]) self.in_ramp_low = int(test_details.get("ramp_low", 60)) self.in_ramp_med = int(test_details.get("ramp_med", 40)) self.in_ramp_high = int(test_details.get("ramp_high", 20)) self.in_ramp_seek = self.if_in_set_true(test_details, "ramp_seek", {"true", "y", "yes"}) self.in_ramp_seek_kpi = test_details.get("ramp_kpi", "tps") self.in_ramp_seek_value = int(test_details.get("ramp_value", 1)) self.in_ramp_step = int(test_details.get("ramp_step", 1)) if not self.in_ramp_seek: self.ramp_seek_complete = True else: self.ramp_seek_complete = False self.living_simusers_max_bool = self.check_if_number( test_details.get("living_simusers_max", False)) self.living_simusers_max = self.return_int_if_present( self.living_simusers_max_bool, test_details.get("living_simusers_max", False)) self.in_goal_seek = False self.first_steady_interval = True self.in_goal_seek = test_details["goal_seek"] if self.in_goal_seek.lower() in {"true", "y", "yes"}: self.in_goal_seek = True self.first_steady_interval = False else: self.in_goal_seek = False self.test_config = self.get_test_config() self.queue_id = self.test_config["config"]["queue"]["id"] self.queue_info = self.get_queue(self.queue_id) self.queue_capacity = int(self.queue_info["capacity"]) log.info(f"queue_capacity: {self.queue_capacity}") self.core_count = self.core_count_lookup(self.queue_info) log.info(f"core_count: {self.core_count}") self.client_port_count = len(self.test_config["config"]["interfaces"]["client"]) log.info(f"client_port_count: {self.client_port_count}") self.server_port_count = len(self.test_config["config"]["interfaces"]["server"]) log.info(f"server_port_count: {self.server_port_count}") self.client_core_count = int( self.core_count / (self.client_port_count + self.server_port_count) * self.client_port_count ) log.info(f"client_core_count: {self.client_core_count}") self.in_capacity_adjust = self.check_capacity_adjust( test_details["capacity_adj"], self.in_load_type, self.client_port_count, self.client_core_count, ) log.info(f"in_capacity_adjust: {self.in_capacity_adjust}") self.load_constraints = {"enabled": False} if not self.update_config_load(): report_error = f"unknown load_type with test type" log.debug(report_error) print(report_error) self.test_config = self.get_test_config() self.test_run = self.start_test_run() if not self.test_started: report_error = f"test did not start\n{json.dumps(self.test_run, indent=4)}" log.debug(report_error) print(report_error) self.test_run_update = None self.id = self.test_run.get("id") self.queue_id = self.test_run.get("queueId") self.score = self.test_run.get("score") self.grade = self.test_run.get("grade") self.run_id = self.test_run.get("runId") self.status = self.test_run.get("status") # main run status 'running' self.name = self.test_run.get("test", {}).get("name") self.type_v1 = self.test_run.get("test", {}).get("type") self.sub_status = self.test_run.get("subStatus") self.created_at = self.test_run.get("createdAt") self.updated_at = self.test_run.get("updatedAt") self.started_at = self.test_run.get("startedAt") self.finished_at = self.test_run.get("finishedAt") self.progress = self.test_run.get("progress") self.time_elapsed = self.test_run.get("timeElapsed") self.time_remaining = self.test_run.get("timeRemaining") self.run_link = ( "https://" + self.cf.controller_ip + "/#livecharts/" + self.type_v1 + "/" + self.id ) print(f"Live charts: {self.run_link}") self.report_link = None self.sub_status = None # subStatus - none while running or not started self.progress = 0 # progress - 0-100 self.time_elapsed = 0 # timeElapsed - seconds self.time_remaining = 0 # timeRemaining - seconds self.started_at = None # startedAt self.finished_at = None # finishedAt self.c_rx_bandwidth = 0 self.c_rx_packet_count = 0 self.c_rx_packet_rate = 0 self.c_tx_bandwidth = 0 self.c_tx_packet_count = 0 self.c_tx_packet_rate = 0 self.c_http_aborted_txns = 0 self.c_http_aborted_txns_sec = 0 self.c_http_attempted_txns = 0 self.c_http_attempted_txns_sec = 0 self.c_http_successful_txns = 0 self.c_http_successful_txns_sec = 0 self.c_http_unsuccessful_txns = 0 self.c_http_unsuccessful_txns_sec = 0 self.c_loadspec_avg_idle = 0 self.c_loadspec_avg_cpu = 0 self.c_memory_main_size = 0 self.c_memory_main_used = 0 self.c_memory_packetmem_used = 0 self.c_memory_rcv_queue_length = 0 self.c_simusers_alive = 0 self.c_simusers_animating = 0 self.c_simusers_blocking = 0 self.c_simusers_sleeping = 0 self.c_tcp_avg_ttfb = 0 self.c_tcp_avg_tt_synack = 0 self.c_tcp_cumulative_attempted_conns = 0 self.c_tcp_cumulative_established_conns = 0 self.c_url_avg_response_time = 0 self.c_tcp_attempted_conn_rate = 0 self.c_tcp_established_conn_rate = 0 self.c_tcp_attempted_conns = 0 self.c_tcp_established_conns = 0 self.c_current_load = 0 self.c_desired_load = 0 self.c_total_bandwidth = 0 self.c_memory_percent_used = 0 self.c_current_desired_load_variance = 0.0 self.c_current_max_load_variance = 0.0 self.c_transaction_error_percentage = 0.0 self.s_rx_bandwidth = 0 self.s_rx_packet_count = 0 self.s_rx_packet_rate = 0 self.s_tx_bandwidth = 0 self.s_tx_packet_count = 0 self.s_tx_packet_rate = 0 self.s_memory_main_size = 0 self.s_memory_main_used = 0 self.s_memory_packetmem_used = 0 self.s_memory_rcv_queue_length = 0 self.s_memory_avg_cpu = 0 self.s_tcp_closed_error = 0 self.s_tcp_closed = 0 self.s_tcp_closed_reset = 0 self.s_memory_percent_used = 0 self.first_ramp_load_increase = True self.first_goal_load_increase = True self.max_load_reached = False self.max_load = 0 self.stop = False # test loop control self.phase = None # time phase of test: ramp up, steady ramp down # rolling statistics self.rolling_sample_size = self.variance_sample_size self.max_var_reference = self.in_max_variance self.rolling_tps = RollingStats(self.rolling_sample_size, 0) self.rolling_ttfb = RollingStats(self.rolling_sample_size, 1) self.rolling_current_load = RollingStats(self.rolling_sample_size, 0) self.rolling_count_since_goal_seek = RollingStats( self.rolling_sample_size, 1 ) # round to 1 for > 0 avg self.rolling_cps = RollingStats(self.rolling_sample_size, 0) self.rolling_conns = RollingStats(self.rolling_sample_size, 0) self.rolling_bw = RollingStats(self.rolling_sample_size, 0) self.kpi_1 = self.rolling_tps self.kpi_2 = self.rolling_cps self.kpi_1_stable = True self.kpi_2_stable = True self.kpi_1_list = [] self.kpi_2_list = [] self.ramp_seek_kpi = self.rolling_tps self.start_time = time.time() self.timer = time.time() - self.start_time self.time_to_run = 0 self.time_to_start = 0 self.time_to_activity = 0 self.time_to_stop_start = 0 self.time_to_stop = 0 self.test_started = False # create entry in result file at the start of test self.save_results() @staticmethod def if_in_set_true(dict_var, dict_key, in_set): if dict_key in dict_var: var = dict_var[dict_key] if var.lower() in in_set: return True return False @staticmethod def check_if_number(in_value): if isinstance(in_value, int) or isinstance(in_value, float): return True if isinstance(in_value, str): if in_value.isdigit(): return True return False @staticmethod def return_int_if_present(present, value): if present: return int(value) def get_test_config(self): try: response = self.cf.get_test( self.type_v2, self.test_id, self.temp_dir / "running_test_config.json" ) log.debug(f"{json.dumps(response, indent=4)}") except Exception as detailed_exception: log.error( f"Exception occurred when retrieving the test: " f"\n<{detailed_exception}>" ) return response def get_queue(self, queue_id): try: response = self.cf.get_queue(queue_id) log.debug(f"{json.dumps(response, indent=4)}") except Exception as detailed_exception: log.error( f"Exception occurred when retrieving test queue informationn: " f"\n<{detailed_exception}>" ) return response @staticmethod def core_count_lookup(queue_info): cores = 0 for cg in queue_info["computeGroups"]: cores = cores + int(cg["cores"]) return cores @staticmethod def check_capacity_adjust( cap_adjust, load_type, client_port_count, client_core_count ): if cap_adjust.lower() == "auto": if load_type.lower() in {"simusers", "simusers/second"}: return client_core_count else: return client_port_count else: return int(cap_adjust) def update_config_load(self): load_type = self.in_load_type.lower() test_type = self.test_type() if test_type in {"tput", "emix"} and load_type == "simusers": load_key = "bandwidth" self.in_load_type = "SimUsers" elif test_type in {"tput", "emix"} and load_type == "bandwidth": load_key = "bandwidth" self.in_load_type = "Bandwidth" elif test_type == "tput" and load_type == "simusers/second": load_key = "bandwidth" self.in_load_type = "SimUsers/Second" elif test_type == "cps" and load_type == "connections/second": load_key = "connectionsPerSecond" self.in_load_type = "Connections/Second" elif test_type == "cps" and load_type == "simusers": load_key = "connectionsPerSecond" self.in_load_type = "SimUsers" elif test_type == "cps" and load_type == "simusers/second": load_key = "connectionsPerSecond" self.in_load_type = "SimUsers/Second" elif test_type == "conns" and load_type == "simusers": load_key = "connections" self.in_load_type = "SimUsers" elif test_type == "conns" and load_type == "connections": load_key = "connections" self.in_load_type = "Connections" else: return False self.in_start_load = int(self.in_start_load) * self.in_capacity_adjust self.update_load_constraints() load_update = { "config": { "loadSpecification": { "duration": int(self.in_duration), "startup": int(self.in_startup), "rampup": int(self.in_rampup), "rampdown": int(self.in_rampdown), "shutdown": int(self.in_shutdown), load_key: int(self.in_start_load), "type": self.in_load_type, "constraints": self.load_constraints, # "constraints": {"enabled": False}, } } } with open(self.temp_dir / "test_load_update.json", "w") as f: json.dump(load_update, f, indent=4) response = self.cf.update_test( self.type_v2, self.test_id, self.temp_dir / "test_load_update.json" ) log.info(f"{json.dumps(response, indent=4)}") return True def update_load_constraints(self): living = {"enabled": False} open_connections = {"enabled": False} birth_rate = {"enabled": False} connections_rate = {"enabled": False} constraints = False if self.living_simusers_max_bool: constraints = True living = { "enabled": True, "max": self.living_simusers_max } if constraints: self.load_constraints = { "enabled": True, "living": living, "openConnections": open_connections, "birthRate": birth_rate, "connectionsRate": connections_rate, } def test_type(self): if self.type_v2 == "http_throughput": test_type = "tput" elif self.type_v2 == "http_connections_per_second": test_type = "cps" elif self.type_v2 == "open_connections": test_type = "conns" elif self.type_v2 == "emix": test_type = "emix" else: test_type = "tput" return test_type def start_test_run(self): try: response = self.cf.start_test(self.test_id) log.info(f"{json.dumps(response, indent=4)}") self.test_started = True except Exception as detailed_exception: log.error( f"Exception occurred when starting the test: " f"\n<{detailed_exception}>" ) self.test_started = False return response def update_test_run(self): self.test_run_update = self.cf.get_test_run(self.id) self.status = self.test_run_update.get("status") # main run status 'running' self.sub_status = self.test_run_update.get("subStatus") self.score = self.test_run_update.get("score") self.grade = self.test_run_update.get("grade") self.started_at = self.test_run_update.get("startedAt") self.finished_at = self.test_run_update.get("finishedAt") self.progress = self.test_run_update.get("progress") self.time_elapsed = self.test_run_update.get("timeElapsed") self.time_remaining = self.test_run_update.get("timeRemaining") update_test_run_log = ( f"Status: {self.status} sub status: {self.sub_status} " f" elapsed: {self.time_elapsed} remaining: {self.time_remaining}" ) log.debug(update_test_run_log) return True def update_phase(self): """updates test phase based on elapsed time vs. loadspec configuration If goal seeking is enabled and the test is in steady phase, the phase will be set to goalseek :return: None """ phase = None steady_duration = self.in_duration - ( self.in_startup + self.in_rampup + self.in_rampdown + self.in_shutdown ) if 0 <= self.time_elapsed <= self.in_startup: phase = "startup" elif self.in_startup <= self.time_elapsed <= (self.in_startup + self.in_rampup): phase = "rampup" elif ( (self.in_startup + self.in_rampup) <= self.time_elapsed <= (self.in_duration - (self.in_rampdown + self.in_shutdown)) ): phase = "steady" if self.first_steady_interval: phase = "rampup" self.first_steady_interval = False elif ( (self.in_startup + self.in_rampup + steady_duration) <= self.time_elapsed <= (self.in_duration - self.in_shutdown) ): phase = "rampdown" elif ( (self.in_duration - self.in_shutdown) <= self.time_elapsed <= self.in_duration ): phase = "shutdown" elif self.in_duration <= self.time_elapsed: phase = "finished" log.info(f"test phase: {phase}") self.phase = phase # Override phase if ramp seek is enabled if self.in_ramp_seek and self.phase == "steady" and not self.ramp_seek_complete: self.phase = "rampseek" log.info(f"ramp seek phase: {self.phase}") # Override phase if goal seeking is enabled elif self.in_goal_seek and self.phase == "steady": self.phase = "goalseek" log.info(f"goal seek phase: {self.phase}") def update_run_stats(self): get_run_stats = self.cf.fetch_test_run_statistics(self.id) # log.debug(f'{get_run_stats}') self.update_client_stats(get_run_stats) self.update_server_stats(get_run_stats) def update_client_stats(self, get_run_stats): client_stats = {} for i in get_run_stats["client"]: if "type" in i and "subType" in i and "value" in i: type = i["type"] sub_type = i["subType"] value = i["value"] if not type in client_stats: client_stats[type] = {} client_stats[type][sub_type] = value elif "type" in i and "value" in i: type = i["type"] value = i["value"] client_stats[type] = value self.assign_client_run_stats(client_stats) def update_server_stats(self, get_run_stats): server_stats = {} for i in get_run_stats["server"]: if "type" in i and "subType" in i and "value" in i: type = i["type"] sub_type = i["subType"] value = i["value"] if not type in server_stats: server_stats[type] = {} server_stats[type][sub_type] = value elif "type" in i and "value" in i: type = i["type"] value = i["value"] server_stats[type] = value self.assign_server_run_stats(server_stats) def assign_client_run_stats(self, client_stats): self.c_rx_bandwidth = client_stats.get("driver", {}).get("rxBandwidth", 0) self.c_rx_packet_count = client_stats.get("driver", {}).get("rxPacketCount", 0) self.c_rx_packet_rate = client_stats.get("driver", {}).get("rxPacketRate", 0) self.c_tx_bandwidth = client_stats.get("driver", {}).get("txBandwidth", 0) self.c_tx_packet_count = client_stats.get("driver", {}).get("txPacketCount", 0) self.c_tx_packet_rate = client_stats.get("driver", {}).get("txPacketRate", 0) self.c_http_aborted_txns = client_stats.get("http", {}).get("abortedTxns", 0) self.c_http_aborted_txns_sec = client_stats.get("http", {}).get( "abortedTxnsPerSec", 0 ) self.c_http_attempted_txns = client_stats.get("sum", {}).get("attemptedTxns", 0) self.c_http_attempted_txns_sec = client_stats.get("sum", {}).get( "attemptedTxnsPerSec", 0 ) self.c_http_successful_txns = client_stats.get("sum", {}).get( "successfulTxns", 0 ) self.c_http_successful_txns_sec = client_stats.get("sum", {}).get( "successfulTxnsPerSec", 0 ) self.c_http_unsuccessful_txns = client_stats.get("sum", {}).get( "unsuccessfulTxns", 0 ) self.c_http_unsuccessful_txns_sec = client_stats.get("sum", {}).get( "unsuccessfulTxnsPerSec", 0 ) self.c_loadspec_avg_idle = client_stats.get("loadspec", {}).get( "averageIdleTime", 0 ) self.c_loadspec_avg_cpu = round( client_stats.get("loadspec", {}).get("cpuUtilized", 0), 1 ) self.c_memory_main_size = client_stats.get("memory", {}).get("mainPoolSize", 0) self.c_memory_main_used = client_stats.get("memory", {}).get("mainPoolUsed", 0) self.c_memory_packetmem_used = client_stats.get("memory", {}).get( "packetMemoryUsed", 0 ) self.c_memory_rcv_queue_length = client_stats.get("memory", {}).get( "rcvQueueLength", 0 ) self.c_simusers_alive = client_stats.get("simusers", {}).get("simUsersAlive", 0) self.c_simusers_animating = client_stats.get("simusers", {}).get( "simUsersAnimating", 0 ) self.c_simusers_blocking = client_stats.get("simusers", {}).get( "simUsersBlocking", 0 ) self.c_simusers_sleeping = client_stats.get("simusers", {}).get( "simUsersSleeping", 0 ) self.c_current_load = client_stats.get("sum", {}).get("currentLoadSpecCount", 0) self.c_desired_load = client_stats.get("sum", {}).get("desiredLoadSpecCount", 0) self.c_tcp_avg_ttfb = round( client_stats.get("tcp", {}).get("averageTimeToFirstByte", 0), 1 ) self.c_tcp_avg_tt_synack = round( client_stats.get("tcp", {}).get("averageTimeToSynAck", 0), 1 ) self.c_tcp_cumulative_attempted_conns = client_stats.get("tcp", {}).get( "cummulativeAttemptedConns", 0 ) self.c_tcp_cumulative_established_conns = client_stats.get("tcp", {}).get( "cummulativeEstablishedConns", 0 ) self.c_url_avg_response_time = round( client_stats.get("url", {}).get("averageRespTimePerUrl", 0), 1 ) self.c_tcp_attempted_conn_rate = client_stats.get("sum", {}).get( "attemptedConnRate", 0 ) self.c_tcp_established_conn_rate = client_stats.get("sum", {}).get( "establishedConnRate", 0 ) self.c_tcp_attempted_conns = client_stats.get("sum", {}).get( "attemptedConns", 0 ) self.c_tcp_established_conns = client_stats.get("sum", {}).get( "currentEstablishedConns", 0 ) self.time_elapsed = client_stats.get("timeElapsed", 0) self.time_remaining = client_stats.get("timeRemaining", 0) self.c_total_bandwidth = self.c_rx_bandwidth + self.c_tx_bandwidth if self.c_memory_main_size > 0 and self.c_memory_main_used > 0: self.c_memory_percent_used = round( self.c_memory_main_used / self.c_memory_main_size, 1 ) if self.c_current_load > 0 and self.c_desired_load > 0: self.c_current_desired_load_variance = round( self.c_current_load / self.c_desired_load, 2 ) if self.c_http_successful_txns > 0: self.c_transaction_error_percentage = ( self.c_http_unsuccessful_txns + self.c_http_aborted_txns ) / self.c_http_successful_txns return True def assign_server_run_stats(self, server_stats): self.s_rx_bandwidth = server_stats.get("driver", {}).get("rxBandwidth", 0) self.s_rx_packet_count = server_stats.get("driver", {}).get("rxPacketCount", 0) self.s_rx_packet_rate = server_stats.get("driver", {}).get("rxPacketRate", 0) self.s_tx_bandwidth = server_stats.get("driver", {}).get("txBandwidth", 0) self.s_tx_packet_count = server_stats.get("driver", {}).get("txPacketCount", 0) self.s_tx_packet_rate = server_stats.get("driver", {}).get("txPacketRate", 0) self.s_memory_main_size = server_stats.get("memory", {}).get("mainPoolSize", 0) self.s_memory_main_used = server_stats.get("memory", {}).get("mainPoolUsed", 0) self.s_memory_packetmem_used = server_stats.get("memory", {}).get( "packetMemoryUsed", 0 ) self.s_memory_rcv_queue_length = server_stats.get("memory", {}).get( "rcvQueueLength", 0 ) self.s_memory_avg_cpu = round( server_stats.get("memory", {}).get("cpuUtilized", 0), 1 ) self.s_tcp_closed_error = server_stats.get("sum", {}).get("closedWithError", 0) self.s_tcp_closed = server_stats.get("sum", {}).get("closedWithNoError", 0) self.s_tcp_closed_reset = server_stats.get("sum", {}).get("closedWithReset", 0) if self.s_memory_main_size > 0 and self.s_memory_main_used > 0: self.s_memory_percent_used = round( self.s_memory_main_used / self.s_memory_main_size, 1 ) return True def print_test_status(self): status = ( f"{self.timer}s -status: {self.status} -sub status: {self.sub_status} " f"-progress: {self.progress} -seconds elapsed: {self.time_elapsed} " f"-remaining: {self.time_remaining}" ) print(status) def print_test_stats(self): stats = ( f"{self.time_elapsed}s {self.phase} -load: {self.c_current_load:,}/{self.c_desired_load:,} " f"-current/desired var: {self.c_current_desired_load_variance} " f"-current avg/max var: {self.rolling_tps.avg_max_load_variance} " f"-seek ready: {self.rolling_count_since_goal_seek.stable}" f"\n-tps: {self.c_http_successful_txns_sec:,} -tps stable: {self.rolling_tps.stable} " f"-tps cur avg: {self.rolling_tps.avg_val:,} -tps prev: {self.rolling_tps.avg_val_last:,} " f"-delta tps: {self.rolling_tps.increase_avg} -tps list:{self.rolling_tps.list} " f"\n-cps: {self.c_tcp_established_conn_rate:,} -cps stable: {self.rolling_cps.stable} " f"-cps cur avg: {self.rolling_cps.avg_val:,} -cps prev: {self.rolling_cps.avg_val_last:,} " f"-delta cps: {self.rolling_cps.increase_avg} -cps list:{self.rolling_cps.list} " f"\n-conns: {self.c_tcp_established_conns:,} -conns stable: {self.rolling_conns.stable} " f"-conns cur avg: {self.rolling_conns.avg_val:,} -conns prev: {self.rolling_conns.avg_val_last:,} " f"-delta conns: {self.rolling_cps.increase_avg} -conns list:{self.rolling_conns.list} " f"\n-bw: {self.c_total_bandwidth:,} -bw stable: {self.rolling_bw.stable} " f"-bw cur avg: {self.rolling_bw.avg_val:,} -bw prev: {self.rolling_bw.avg_val_last:,} " f"-delta bw: {self.rolling_bw.increase_avg} -bw list:{self.rolling_bw.list} " f"\n-ttfb: {self.c_tcp_avg_ttfb:,} -ttfb stable: {self.rolling_ttfb.stable} " f"-ttfb cur avg: {self.rolling_ttfb.avg_val:,} -ttfb prev: {self.rolling_ttfb.avg_val_last:,} " f"-delta ttfb: {self.rolling_ttfb.increase_avg} -ttfb list:{self.rolling_ttfb.list} " # f"\n-total bw: {self.c_total_bandwidth:,} -rx bw: {self.c_rx_bandwidth:,}" # f" tx bw: {self.c_tx_bandwidth:,}" # f"\n-ttfb cur avg: {self.rolling_ttfb.avg_val} -ttfb prev: {self.rolling_ttfb.avg_val_last} " # f"-delta ttfb: {self.rolling_ttfb.increase_avg} -ttfb list:{self.rolling_ttfb.list}" ) print(stats) log.debug(stats) def wait_for_running_status(self): """ Wait for the current test to return a 'running' status. :return: True if no statements failed and there were no exceptions. False otherwise. """ log.debug("Inside the RunTest/wait_for_running_status method.") i = 0 while True: time.sleep(4) self.timer = int(round(time.time() - self.start_time)) i += 4 if not self.update_test_run(): return False if self.status == "running": print(f"{self.timer}s - status: {self.status}") break print( f"{self.timer}s - status: {self.status} sub status: {self.sub_status}" ) if self.status in {"failed", "finished"}: log.error("Test failed") return False # check to see if another test with the same ID is running # (can happen due to requests retry) if i > 120 and self.status == "waiting": self.check_running_tests() # stop after 1800 seconds of waiting if i > 1800: log.error( "Waited for 1800 seconds, test did not transition to a running status." ) return False self.time_to_run = self.timer log.debug(f"Test {self.name} successfully went to running status.") log.debug(json.dumps(self.test_run_update, indent=4)) self.run_id = self.test_run_update.get("runId") self.report_link = ( "https://" + self.cf.controller_ip + "/#results/" + self.type_v1 + "/" + self.run_id ) return True def check_running_tests(self): """Checks if tests with same ID is running and changes control to this test This function can be triggered if waiting status is too long because the requests module retry mechanism has kicked off two duplicate tests in error. It will look for matching running tests and switch control over to the already running duplicate test. :return: None """ # get list of run IDs and test IDs with status test_runs = self.cf.list_test_runs() # look for running status and compare ID for run in test_runs: if run["status"] == "running": log.debug( f"check_running_tests found running test: {json.dumps(run, indent=4)}" ) # if waiting and running test IDs match, change the running test if self.test_id == run["testId"]: log.debug( f"check_running_tests found matching test_id {self.test_id}" ) # stop current waiting test response = self.cf.stop_test(self.id) log.debug( f"change_running_test, stopped duplicate waiting test: {response}" ) # change over to running test self.id = run["id"] else: log.debug( f"check_running_tests test_id: {self.test_id} " f"does not match running test_id: {run['testId']}" ) def wait_for_running_sub_status(self): """ Wait for the current test to return a 'None' sub status. :return: True if no statements failed and there were no exceptions. False otherwise. """ log.debug("Inside the RunTest/wait_for_running_sub_status method.") i = 0 while True: time.sleep(4) self.timer = int(round(time.time() - self.start_time)) i += 4 if not self.update_test_run(): return False print( f"{self.timer}s - status: {self.status} sub status: {self.sub_status}" ) if self.sub_status is None: break if self.status in {"failed", "finished"}: log.error("Test failed") return False # stop after 0 seconds of waiting if i > 360: log.error( "Waited for 360 seconds, test did not transition to traffic state." ) return False self.time_to_start = self.timer - self.time_to_run log.debug(f"Test {self.name} successfully went to traffic state.") log.debug(json.dumps(self.test_run_update, indent=4)) return True def stop_wait_for_finished_status(self): """ Stop and wait for the current test to return a 'finished' status. :return: True if no statements failed and there were no exceptions. False otherwise. """ log.debug("Inside the stop_test/wait_for_finished_status method.") self.time_to_stop_start = self.timer if self.status == "running": self.cf.stop_test(self.id) i = 0 while True: time.sleep(4) self.timer = int(round(time.time() - self.start_time)) i += 4 if not self.update_test_run(): return False if self.status in {"stopped", "finished", "failed"}: print(f"{self.timer} status: {self.status}") break if self.status == "failed": print(f"{self.timer} status: {self.status}") return False print( f"{self.timer}s - status: {self.status} sub status: {self.sub_status}" ) if i > 1800: error_msg = ( "Waited for 1800 seconds, " "test did not transition to a finished status." ) log.error(error_msg) print(error_msg) return False self.time_to_stop = self.timer - self.time_to_stop_start log.debug( f"Test {self.name} successfully went to finished status in " f"{self.time_to_stop} seconds." ) return True def wait_for_test_activity(self): """ Wait for the current test to show activity - metric(s) different than 0. :return: True if no statements failed and there were no exceptions. False otherwise. """ log.debug("Inside the RunTest/wait_for_test_activity method.") test_generates_activity = False i = 0 while not test_generates_activity: self.timer = int(round(time.time() - self.start_time)) self.update_test_run() self.update_run_stats() # self.print_test_status() if self.sub_status is None: self.print_test_stats() self.save_results() if self.c_http_successful_txns_sec > 0: test_generates_activity = True if self.status in {"failed", "finished"}: log.error("Test failed") return False if i > 180: error_msg = ( "Waited for 180 seconds, test did not have successful transactions" ) log.error(error_msg) print(error_msg) return False time.sleep(4) i = i + 4 print(f"") self.time_to_activity = self.timer - self.time_to_start - self.time_to_run return True @staticmethod def countdown(t): """countdown function Can be used after load increase for results to update :param t: countdown in seconds :return: None """ while t: mins, secs = divmod(t, 60) time_format = "{:02d}:{:02d}".format(mins, secs) print(time_format, end="\r") time.sleep(1) t -= 1 def goal_seek(self): log.info(f"In goal_seek function") if self.c_current_load == 0: self.stop = True log.info(f"goal_seek stop, c_current_load == 0") return False if self.first_goal_load_increase: self.first_goal_load_increase = False new_load = self.c_current_load + (self.in_incr_low * self.in_capacity_adjust) else: if self.check_if_load_type_simusers(): new_load = self.goal_seek_set_simuser_kpi(self.kpi_1) log.info(f"new_load = {new_load}") elif self.check_if_load_type_default(): new_load = self.goal_seek_set_default() log.info(f"new_load = {new_load}") else: report_error = f"Unknown load type: " \ f"{self.test_config['config']['loadSpecification']['type']}" log.error(report_error) print(report_error) return False if new_load is False: log.info( f"Config load spec type: {self.test_config['config']['loadSpecification']['type']}" ) log.info(f"Goal_seek return, new_load is False") return False self.change_update_load(new_load, 16) return True def ramp_seek(self, ramp_kpi, ramp_to_value): log.info(f"In ramp_seek function") if self.c_current_load == 0: self.stop = True log.info(f"ramp_seek stop, c_current_load == 0") return False # if self.first_ramp_load_increase: # self.first_ramp_load_increase = False # new_load = self.c_current_load * 2 if self.in_ramp_step < 1: self.ramp_seek_complete = True return if ramp_kpi.current_value < ramp_to_value: load_increase_multiple = round(ramp_to_value / ramp_kpi.current_value, 3) load_increase = (self.c_current_load * load_increase_multiple) - self.c_current_load load_increase = round(load_increase / self.in_ramp_step, 3) new_load = self.round_up_to_even(self.c_current_load + load_increase) self.in_ramp_step = self.in_ramp_step - 1 log.info(f"new load: {new_load}, current_load: {self.c_current_load}" f" * {load_increase} load_increase " f"ramp_step left: {self.in_ramp_step} " f"\n ramp_to_value: {ramp_to_value} " f"ramp_kpi.current_value: {ramp_kpi.current_value}" ) self.in_incr_low = self.round_up_to_even(new_load * self.in_ramp_low/100) self.in_incr_med = self.round_up_to_even(new_load * self.in_ramp_med/100) self.in_incr_high = self.round_up_to_even(new_load * self.in_ramp_high/100) else: self.ramp_seek_complete = True self.change_update_load(new_load, 8) return True @staticmethod def round_up_to_even(v): return math.ceil(v / 2.) * 2 def check_if_load_type_simusers(self): if self.test_config["config"]["loadSpecification"]["type"].lower() in { "simusers", "simusers/second", }: return True return False def check_if_load_type_default(self): if self.test_config["config"]["loadSpecification"]["type"].lower() in { "bandwidth", "connections", "connections/second", }: return True return False def change_update_load(self, new_load, count_down): new_load = self.round_up_to_even(new_load) log_msg = f"\nchanging load from: {self.c_current_load} to: {new_load} status: {self.status}" log.info(log_msg) print(log_msg) try: self.cf.change_load(self.id, new_load) self.rolling_tps.load_increase_complete() self.rolling_ttfb.load_increase_complete() self.rolling_current_load.load_increase_complete() self.rolling_cps.load_increase_complete() self.rolling_conns.load_increase_complete() self.rolling_bw.load_increase_complete() except Exception as detailed_exception: log.error( f"Exception occurred when changing test: " f"\n<{detailed_exception}>" ) self.countdown(count_down) return True def goal_seek_set_default(self): set_load = 0 if self.c_current_desired_load_variance >= 0.97: if self.c_current_load <= self.in_threshold_low: set_load = self.c_current_load + ( self.in_incr_low * self.in_capacity_adjust ) elif self.c_current_load <= self.in_threshold_med: set_load = self.c_current_load + ( self.in_incr_med * self.in_capacity_adjust ) elif self.c_current_load <= self.in_threshold_high: set_load = self.c_current_load + ( self.in_incr_high * self.in_capacity_adjust ) elif self.c_current_load > self.in_threshold_high: return False else: return False if self.in_threshold_high < set_load: if self.c_current_desired_load_variance > 0.99: return False else: set_load = self.in_threshold_high return set_load def goal_seek_set_simuser_kpi(self, kpi): log.debug(f"in goal_seek_set_simuser_kpi function") set_load = 0 if kpi.increase_avg >= self.in_threshold_low: set_load = self.c_current_load + (self.in_incr_low * self.in_capacity_adjust) elif kpi.increase_avg >= self.in_threshold_med: set_load = self.c_current_load + (self.in_incr_med * self.in_capacity_adjust) elif kpi.increase_avg >= self.in_threshold_high: set_load = self.c_current_load + (self.in_incr_high * self.in_capacity_adjust) elif kpi.increase_avg < self.in_threshold_high: log.info( f"rolling_tps.increase_avg {kpi.increase_avg} < " f"{self.in_threshold_high} in_threshold_high" ) return False if kpi.avg_max_load_variance < 0.97: set_load = self.c_current_load self.max_load_reached = True log.info( f"set_load = {set_load} " f"kpi_avg_max_load_variance: {kpi.avg_max_load_variance}" ) return set_load def update_rolling_averages(self): """Updates rolling statistics averages used to make test control decisions :return: None """ self.rolling_tps.update(self.c_http_successful_txns_sec) self.rolling_tps.check_if_stable(self.max_var_reference) self.rolling_ttfb.update(self.c_tcp_avg_ttfb) self.rolling_ttfb.check_if_stable(self.max_var_reference) self.rolling_current_load.update(self.c_current_load) self.rolling_current_load.check_if_stable(self.max_var_reference) self.rolling_cps.update(self.c_tcp_established_conn_rate) self.rolling_cps.check_if_stable(self.max_var_reference) self.rolling_conns.update(self.c_tcp_established_conns) self.rolling_conns.check_if_stable(self.max_var_reference) self.rolling_bw.update(self.c_total_bandwidth) self.rolling_bw.check_if_stable(self.max_var_reference) self.rolling_count_since_goal_seek.update(1) self.rolling_count_since_goal_seek.check_if_stable(0) def check_kpi(self): self.in_kpi_1 = self.in_kpi_1.lower() if self.in_kpi_1 == "tps": self.kpi_1 = self.rolling_tps elif self.in_kpi_1 == "cps": self.kpi_1 = self.rolling_cps elif self.in_kpi_1 == "conns": self.kpi_1 = self.rolling_conns elif self.in_kpi_1 == "bw": self.kpi_1 = self.rolling_bw elif self.in_kpi_1 == "ttfb": self.kpi_1 = self.rolling_ttfb else: log.debug(f"check_kpi unknown kpi_1, setting to TPS") self.kpi_1 = self.rolling_tps self.in_kpi_2 = self.in_kpi_2.lower() if self.in_kpi_2 == "tps": self.kpi_2 = self.rolling_tps elif self.in_kpi_2 == "cps": self.kpi_2 = self.rolling_cps elif self.in_kpi_2 == "conns": self.kpi_2 = self.rolling_conns elif self.in_kpi_2 == "bw": self.kpi_2 = self.rolling_bw elif self.in_kpi_2 == "ttfb": self.kpi_2 = self.rolling_ttfb else: log.debug(f"check_kpi unknown kpi_2, setting to CPS") self.kpi_2 = self.rolling_cps def check_ramp_seek_kpi(self): if self.in_ramp_seek_kpi == "tps": self.ramp_seek_kpi = self.rolling_tps elif self.in_ramp_seek_kpi == "cps": self.ramp_seek_kpi = self.rolling_cps elif self.in_ramp_seek_kpi == "conns": self.ramp_seek_kpi = self.rolling_conns elif self.in_ramp_seek_kpi == "bw": self.ramp_seek_kpi = self.rolling_bw elif self.in_ramp_seek_kpi == "ttfb": self.ramp_seek_kpi = self.rolling_ttfb else: log.debug(f"check_ramp_seek_kpi unknown kpi, setting to TPS") self.ramp_seek_kpi = self.rolling_tps @staticmethod def return_bool_true(check_if, is_value): if isinstance(check_if, bool): return check_if if isinstance(check_if, str) and check_if.lower() == is_value: return True return False def control_test(self): """Main test control Runs test. Start by checking if test is in running state followed by checking for successful connections. First updates stats, checks the phase test is in based on elapsed time, then updates rolloing averages. :return: True if test completed successfully """ # exit control_test if test does not go into running state if not self.wait_for_running_status(): log.info(f"control_test end, wait_for_running_status False") return False # exit control_test if test does not go into running state if not self.wait_for_running_sub_status(): log.info(f"control_test end, wait_for_running_sub_status False") return False # exit control_test if test does not have successful transactions if not self.wait_for_test_activity(): self.stop_wait_for_finished_status() log.info(f"control_test end, wait_for_test_activity False") return False self.check_ramp_seek_kpi() self.check_kpi() self.rolling_count_since_goal_seek.reset() # self.countdown(12) # test control loop - runs until self.stop is set to True while not self.stop: self.update_run_stats() self.update_phase() self.check_stop_conditions() self.update_rolling_averages() # print stats if test is running if self.sub_status is None: self.print_test_stats() self.save_results() if self.in_ramp_seek and not self.ramp_seek_complete: log.info(f"control_test going to ramp_seek") self.control_test_ramp_seek(self.ramp_seek_kpi, self.in_ramp_seek_value) if self.in_goal_seek and self.ramp_seek_complete: log.info(f"control_test going to goal_seek") self.control_test_goal_seek_kpi(self.kpi_1, self.kpi_2, self.in_kpi_and_or) print(f"") time.sleep(4) # if goal_seek is yes enter sustained steady phase if self.in_goal_seek and self.in_sustain_period > 0: self.sustain_test() # stop test and wait for finished status if self.stop_wait_for_finished_status(): self.time_to_stop = self.timer - self.time_to_stop_start self.save_results() return True return False def check_stop_conditions(self): log.debug(f"in check_stop_conditions method") # stop test if time_remaining returned from controller == 0 if self.time_remaining == 0: self.phase = "timeout" log.info(f"control_test end, time_remaining == 0") self.stop = True # stop goal seeking test if time remaining is less than 30s if self.time_remaining < 30 and self.in_goal_seek: self.phase = "timeout" log.info(f"control_test end goal_seek, time_remaining < 30") self.stop = True elif self.time_remaining < 30 and self.in_ramp_seek: self.phase = "timeout" log.info(f"control_test end ramp_seek, time_remaining < 30") self.stop = True if self.phase == "finished": log.info(f"control_test end, over duration time > phase: finished") self.stop = True def control_test_ramp_seek(self, ramp_kpi, ramp_to_value): """ Increases load to a configured tps, cps, conns or bandwidth level. :return: True if no statements failed and there were no exceptions. False otherwise. """ ramp_seek_count = 1 #log.debug("Inside the RunTest/ramp_to_seek method.") log.info( f"Inside the RunTest/ramp_to_seek method.\n" f"rolling_count_list stable: {self.rolling_count_since_goal_seek.stable} " f"list: {self.rolling_count_since_goal_seek.list} " f"\nramp_to_value: {ramp_to_value} ramp_kpi current: {ramp_kpi.current_value}" f" increase: {ramp_kpi.increase_avg}" f"\n current load: {self.c_current_load}" f" desired_load: {self.c_desired_load}" ) if self.phase is not "rampseek": log.info(f"phase {self.phase} is not 'rampseek', " f"returning from contol_test_ramp_seek") return if not self.rolling_count_since_goal_seek.stable: log.info(f"count since goal seek is not stable. " f"count list: {self.rolling_count_since_goal_seek.list}" f"returning from control_test_ramp_seek") return if self.max_load_reached: log.info(f"control_test_ramp_seek end, max_load_reached") self.stop = True return # check if kpi avg is under set avg - if not, stop loop if ramp_to_value < ramp_kpi.current_value: log.info(f"ramp_to_value {ramp_to_value} < ramp_kpi.current_value {ramp_kpi.current_value}" f"completed ramp_seek") self.ramp_seek_complete = True self.in_capacity_adjust = 1 return if self.ramp_seek(ramp_kpi, ramp_to_value): # reset rolling count > no load increase until # at least the window size interval. # allows stats to stabilize after an increase self.rolling_count_since_goal_seek.reset() else: log.info(f"control_test_ramp_seek end, ramp_seek False") self.ramp_seek_complete = True self.in_capacity_adjust = 1 return if (ramp_kpi.current_value / ramp_to_value) > 0.95: log.info( f"ramp_kpi.current_value {ramp_kpi.current_value} / " f"ramp_to_value {ramp_to_value} > 0.95 " f"increasing ramp_seek_count + 1") ramp_seek_count = ramp_seek_count + 1 if ramp_seek_count == self.in_ramp_step: log.info(f"ramp_seek_complete early") self.ramp_seek_complete = True self.in_capacity_adjust = 1 return return def control_test_goal_seek_kpi(self, kpi_1, kpi_2, kpis_and_bool): log.info( f"rolling_count_list stable: {self.rolling_count_since_goal_seek.stable} " f"list: {self.rolling_count_since_goal_seek.list} " f"\nKpi1 stable: {kpi_1.stable} list: {kpi_1.list}" f"\nKpi2 stable: {kpi_2.stable} list: {kpi_2.list}" ) if self.phase is not "goalseek": log.info(f"phase {self.phase} is not 'goalseek', " f"returning from contol_test_goal_seek") return if not self.rolling_count_since_goal_seek.stable: log.info(f"count since goal seek is not stable. " f"count list: {self.rolling_count_since_goal_seek.list}") return if self.max_load_reached: log.info(f"control_test end, max_load_reached") self.stop = True return if kpis_and_bool: if kpi_1.stable and kpi_2.stable: goal_seek = True else: goal_seek = False else: if kpi_1.stable or kpi_2.stable: goal_seek = True else: goal_seek = False if goal_seek: if self.goal_seek(): # reset rolling count > no load increase until # at least the window size interval. # allows stats to stabilize after an increase self.rolling_count_since_goal_seek.reset() else: log.info(f"control_test end, goal_seek False") self.stop = True def sustain_test(self): self.phase = "steady" while self.in_sustain_period > 0: self.timer = int(round(time.time() - self.start_time)) sustain_period_loop_time_start = time.time() self.update_run_stats() if self.time_remaining < 30 and self.in_goal_seek: self.phase = "timeout" self.in_sustain_period = 0 log.info(f"sustain_test end, time_remaining < 30") # self.update_averages() print(f"sustain period time left: {int(self.in_sustain_period)}") # print stats if test is running if self.sub_status is None: self.print_test_stats() self.save_results() time.sleep(4) self.in_sustain_period = self.in_sustain_period - ( time.time() - sustain_period_loop_time_start ) self.phase = "stopping" # self.stop_wait_for_finished_status() return True def save_results(self): csv_list = [ self.in_name, self.time_elapsed, self.phase, self.c_current_load, self.c_desired_load, self.rolling_count_since_goal_seek.stable, self.c_http_successful_txns_sec, self.rolling_tps.stable, self.rolling_tps.increase_avg, self.c_http_successful_txns, self.c_http_unsuccessful_txns, self.c_http_aborted_txns, self.c_transaction_error_percentage, self.c_tcp_established_conn_rate, self.rolling_cps.stable, self.rolling_cps.increase_avg, self.c_tcp_established_conns, self.rolling_conns.stable, self.rolling_conns.increase_avg, self.c_tcp_avg_tt_synack, self.c_tcp_avg_ttfb, self.rolling_ttfb.stable, self.rolling_ttfb.increase_avg, self.c_url_avg_response_time, self.c_tcp_cumulative_established_conns, self.c_tcp_cumulative_attempted_conns, self.c_total_bandwidth, self.rolling_bw.stable, self.rolling_bw.increase_avg, self.c_rx_bandwidth, self.c_tx_bandwidth, self.c_rx_packet_rate, self.c_tx_packet_rate, self.s_tcp_closed, self.s_tcp_closed_reset, self.s_tcp_closed_error, self.c_simusers_alive, self.c_simusers_animating, self.c_simusers_blocking, self.c_simusers_sleeping, self.c_loadspec_avg_cpu, self.c_memory_percent_used, self.c_memory_packetmem_used, self.c_memory_rcv_queue_length, self.s_memory_avg_cpu, self.s_memory_percent_used, self.s_memory_packetmem_used, self.s_memory_rcv_queue_length, self.type_v1, self.type_v2, self.in_load_type, self.test_id, self.id, self.time_to_run, self.time_to_start, self.time_to_activity, self.time_to_stop, script_version, self.report_link, ] self.result_file.append_file(csv_list) class DetailedCsvReport: def __init__(self, report_location): log.debug("Initializing detailed csv result files.") self.time_stamp = time.strftime("%Y%m%d-%H%M") self.report_csv_file = report_location / f"{self.time_stamp}_Detailed.csv" self.columns = [ "test_name", "seconds", "state", "current_load", "desired_load", "seek_ready", "tps", "tps_stable", "tps_delta", "successful_txn", "unsuccessful_txn", "aborted_txn", "txn_error_rate", "cps", "cps_stable", "cps_delta", "open_conns", "conns_stable", "conns_delta", "tcp_avg_tt_synack", "tcp_avg_ttfb", "ttfb_stable", "ttfb_delta", "url_response_time", "total_tcp_established", "total_tcp_attempted", "total_bandwidth", "bw_stable", "bw_delta", "rx_bandwidth", "tx_bandwidth", "rx_packet_rate", "tx_packet_rate", "tcp_closed", "tcp_reset", "tcp_error", "simusers_alive", "simusers_animating", "simusers_blocking", "simusers_sleeping", "client_cpu", "client_mem", "client_pkt_mem", "client_rcv_queue", "server_cpu", "server_mem", "server_pkt_mem", "server_rcv_queue", "test_type_v1", "test_type_v2", "load_type", "test_id", "run_id", "t_run", "t_start", "t_tx", "t_stop", "version", "report", ] def append_columns(self): """ Appends the column headers to the detailed report file. :return: no specific return value. """ try: csv_header = ",".join(map(str, self.columns)) + "\n" with open(self.report_csv_file, "a") as f: f.write(csv_header) except Exception as detailed_exception: log.error( f"Exception occurred writing to the detailed report file: \n<{detailed_exception}>\n" ) log.debug( f"Successfully appended columns to the detailed report file: {self.report_csv_file}." ) def append_file(self, csv_list): """ Appends the detailed report csv file with csv_line. :param csv_list: items to be appended as line to the file. :return: no specific return value. """ try: csv_line = ",".join(map(str, csv_list)) + "\n" with open(self.report_csv_file, "a") as f: f.write(csv_line) except Exception as detailed_exception: log.error( f"Exception occurred writing to the detailed report file: \n<{detailed_exception}>\n" ) class Report: def __init__(self, report_csv_file, column_order): self.report_csv_file = report_csv_file self.col_order = column_order self.df_base = pd.read_csv(self.report_csv_file) self.df_steady = self.df_base[self.df_base.state == "steady"].copy() self.unique_tests = self.df_base["test_name"].unique().tolist() self.results = [] self.process_results() self.format_results() self.df_results =
pd.DataFrame(self.results)
pandas.DataFrame
''' This is an example of cross tabulation tables created from clustering. Inspired from the "Unsupervised Learning" course on Datacamp.com Author: <NAME> ''' # Import pandas import pandas as pd # Fit the pipeline to samples (samples is an array) pipeline.fit(samples) # Calculate the cluster labels: labels labels = pipeline.predict(samples) # Create a DataFrame with labels and species as columns: df df =
pd.DataFrame({'labels':labels, 'species':species})
pandas.DataFrame
from __future__ import print_function import logging import pandas as pd import numpy as np import scipy.stats as stats from matplotlib.backends.backend_pdf import PdfPages import os.path from .storemanager import StoreManager from .condition import Condition from .constants import WILD_TYPE_VARIANT from .sfmap import sfmap_plot from .dataframe import singleton_dataframe from .random_effects import rml_estimator class Experiment(StoreManager): """ Class for a coordinating multiple :py:class:`~.selection.Selection` objects. Creating an :py:class:`~experiment.Experiment` requires a valid *config* object, usually from a ``.json`` configuration file. """ store_suffix = "exp" treeview_class_name = "Experiment" def __init__(self): StoreManager.__init__(self) self.conditions = list() self._wt = None self.logger = logging.getLogger("{}.{}".format(__name__, self.__class__)) @property def wt(self): if self.has_wt_sequence(): if self._wt is None: self._wt = self.selection_list()[0].wt.duplicate(self.name) return self._wt else: if self._wt is not None: raise ValueError( "Experiment should not contain wild type " "sequence [{}]".format(self.name) ) else: return None def configure(self, cfg, configure_children=True): """ Set up the :py:class:`~experiment.Experiment` using the *cfg* object, usually from a ``.json`` configuration file. """ StoreManager.configure(self, cfg) self.logger = logging.getLogger( "{}.{} - {}".format(__name__, self.__class__.__name__, self.name) ) if configure_children: if "conditions" not in cfg: raise KeyError( "Missing required config value {} [{}]" "".format("conditions", self.name) ) for cnd_cfg in cfg["conditions"]: cnd = Condition() cnd.configure(cnd_cfg) self.add_child(cnd) selection_names = [x.name for x in self.selection_list()] if len(set(selection_names)) != len(selection_names): raise ValueError("Non-unique selection names [{}]" "".format(self.name)) def serialize(self): """ Format this object (and its children) as a config object suitable for dumping to a config file. """ cfg = StoreManager.serialize(self) cfg["conditions"] = [child.serialize() for child in self.children] return cfg def _children(self): """ Method bound to the ``children`` property. Returns a list of all :py:class:`~condition.Condition` objects belonging to this object, sorted by name. """ return sorted(self.conditions, key=lambda x: x.name) def add_child(self, child): """ Add a selection. """ if child.name in self.child_names(): raise ValueError( "Non-unique condition name '{}' [{}]" "".format(child.name, self.name) ) child.parent = self self.conditions.append(child) def remove_child_id(self, tree_id): """ Remove the reference to a :py:class:`~condition.Condition` with Treeview id *tree_id*. """ self.conditions = [x for x in self.conditions if x.treeview_id != tree_id] def selection_list(self): """ Return the :py:class:`~selection.Selection` objects as a list. """ selections = list() for cnd in self.children: selections.extend(cnd.children) return selections def validate(self): """ Calls validate on all child Conditions. Also checks the wild type sequence status. """ # check the wild type sequences if self.has_wt_sequence(): for child in self.selection_list()[1:]: if self.selection_list()[0].wt != child.wt: self.logger.warning("Inconsistent wild type sequences") break for child in self.children: child.validate() def is_coding(self): """ Return ``True`` if the all :py:class:`~selection.Selection` in the :py:class:`~experiment.Experiment` count protein-coding variants, else ``False``. """ return all(x.is_coding() for x in self.selection_list()) def has_wt_sequence(self): """ Return ``True`` if the all :py:class:`~selection.Selection` in the :py:class:`~experiment.Experiment` have a wild type sequence, else ``False``. """ return all(x.has_wt_sequence() for x in self.selection_list()) def calculate(self): """ Calculate scores for all :py:class:`~selection.Selection` objects. """ if len(self.labels) == 0: raise ValueError( "No data present across all conditions [{}]" "".format(self.name) ) for s in self.selection_list(): s.calculate() self.combine_barcode_maps() for label in self.labels: self.calc_counts(label) if self.scoring_method != "counts": self.calc_shared_full(label) self.calc_shared(label) self.calc_scores(label) if label != "barcodes": self.calc_pvalues_wt(label) def combine_barcode_maps(self): """ Combine all barcode maps for :py:class:`~selection.Selection` objects into a single data frame and store it in ``'/main/barcodemap'``. If multiple variants or IDs map to the same barcode, only the first one will be present in the barcode map table. The ``'/main/barcodemap'`` table is not created if no :py:class:`~selection.Selection` has barcode map information. """ if self.check_store("/main/barcodemap"): return bcm = None for sel in self.selection_list(): if "/main/barcodemap" in sel.store.keys(): if bcm is None: bcm = sel.store["/main/barcodemap"] else: bcm = bcm.join( sel.store["/main/barcodemap"], rsuffix=".drop", how="outer" ) new = bcm.loc[pd.isnull(bcm)["value"]] bcm.loc[new.index, "value"] = new["value.drop"] bcm.drop("value.drop", axis="columns", inplace=True) if bcm is not None: bcm.sort_values("value", inplace=True) self.store.put( "/main/barcodemap", bcm, format="table", data_columns=bcm.columns ) def calc_counts(self, label): """ Create a data frame of all counts in this Experiment. This data frame is not used for any calculations, but is provided to facilitate exploration of the data set. """ if self.check_store("/main/{}/counts".format(label)): return # create columns multi-index # has to be lex-sorted for multi-slicing to work self.logger.info("Creating column multi-index for counts ({})".format(label)) conditions_index = list() selections_index = list() values_index = list() for cnd in self.children: for sel in cnd.children: conditions_index.extend([cnd.name] * len(sel.timepoints)) selections_index.extend([sel.name] * len(sel.timepoints)) values_index.extend(["c_{}".format(x) for x in sorted(sel.timepoints)]) columns = pd.MultiIndex.from_tuples( zip(conditions_index, selections_index, values_index), names=["condition", "selection", "timepoint"], ) # create union index self.logger.info("Creating row index for counts ({})".format(label)) combined = None first = True for s in self.selection_list(): if first: combined = s.store.select( "/main/{}/counts_unfiltered" "".format(label), "columns='index'" ).index first = False else: combined = combined.join( s.store.select( "/main/{}/counts_unfiltered".format(label), "columns='index'" ).index, how="outer", ) # create and fill the data frames self.logger.info( "Populating Experiment data frame with counts ({})".format(label) ) data = pd.DataFrame(index=combined, columns=columns) for cnd in self.children: for sel in cnd.children: sel_data = sel.store.select( "/main/{}/counts_unfiltered" "".format(label) ) for tp in sel.timepoints: data.loc[:][cnd.name, sel.name, "c_{}".format(tp)] = sel_data[ "c_{}".format(tp) ] self.store.put("/main/{}/counts".format(label), data, format="table") def calc_shared_full(self, label): """ Use joins to create a data frame containing all scores across all Selections in the Experiment. """ if self.check_store("/main/{}/scores_shared_full".format(label)): return # create columns multi-index # has to be lex-sorted for multi-slicing to work self.logger.info("Creating column multi-index for scores ({})") conditions_index = list() selections_index = list() values_index = list() if self.scoring_method == "simple": values_list = ["score"] else: values_list = ["score", "SE"] for cnd in self.children: for sel in cnd.children: conditions_index.extend([cnd.name] * len(values_list)) selections_index.extend([sel.name] * len(values_list)) values_index.extend(sorted(values_list)) columns = pd.MultiIndex.from_tuples( zip(conditions_index, selections_index, values_index), names=["condition", "selection", "value"], ) # create union index self.logger.info("Creating row index for scores ({})".format(label)) combined = None first = True for s in self.selection_list(): if first: combined = s.store.select( "/main/{}/scores".format(label), "columns='index'" ).index first = False else: combined = combined.join( s.store.select( "/main/{}/scores".format(label), "columns='index'" ).index, how="outer", ) # create and fill the data frames self.logger.info( "Populating Experiment data frame with scores ({})".format(label) ) data = pd.DataFrame(index=combined, columns=columns) for cnd in self.children: for sel in cnd.children: sel_data = sel.store.select("/main/{}/scores".format(label)) for v in values_list: data.loc[:, (cnd.name, sel.name, v)] = sel_data[v] self.store.put( "/main/{}/scores_shared_full".format(label), data, format="table" ) def calc_shared(self, label): """ Get the subset of scores that are shared across all Selections in each Condition. """ if self.check_store("/main/{}/scores_shared".format(label)): return idx = pd.IndexSlice self.logger.info( "Identifying subset shared across all Selections ({})".format(label) ) data = self.store.select("/main/{}/scores_shared_full".format(label)) # identify variants found in all selections in at least one condition complete = np.full(len(data.index), False, dtype=bool) for cnd in data.columns.levels[0]: complete = np.logical_or( complete, data.loc[:, idx[cnd, :, :]].notnull().all(axis="columns") ) data = data.loc[complete] self.store.put("/main/{}/scores_shared".format(label), data, format="table") def calc_scores(self, label): """ Combine the scores and standard errors within each condition. """ if self.check_store("/main/{}/scores".format(label)): return self.logger.info("Calculating per-condition scores ({})".format(label)) # set up new data frame shared_index = self.store.select( "/main/{}/scores_shared" "".format(label), columns="index" ).index columns = pd.MultiIndex.from_product( [sorted(self.child_names()), sorted(["score", "SE", "epsilon"])], names=["condition", "value"], ) data =
pd.DataFrame(np.nan, index=shared_index, columns=columns)
pandas.DataFrame
import time import os import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib.pyplot import savefig from sklearn import preprocessing from sklearn.model_selection import KFold from sklearn.naive_bayes import MultinomialNB from sklearn import svm from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from operator import itemgetter import math import csv attributeType = ["qualitative", "numerical", "qualitative", "qualitative", "numerical", "qualitative", "qualitative", "numerical", "qualitative", "qualitative", "numerical", "qualitative", "numerical", "qualitative", "qualitative", "numerical", "qualitative", "numerical", "qualitative", "qualitative"] def performLabelEncoding(dataframe): le = preprocessing.LabelEncoder() i = 0 # For every column for column in dataframe: # Excluding the last two if i == 20: break # If attribute is qualitative if attributeType[i] == "qualitative": # Label encode it dataframe[column] = le.fit_transform(dataframe[column]) i += 1 return dataframe def createPlots(dataframe): good = dataframe[dataframe["Label"] == 1] bad = dataframe[dataframe["Label"] == 2] i = 0 # For every column for column in dataframe: # Excluding the last two if i == 20: break # If attribute is qualitative if attributeType[i] == "qualitative": plt.title(column + " Good") good[column].value_counts().plot(kind='bar') name = "output/Attribute" + str(i + 1) + "_" + "good.png" savefig(name) plt.figure() plt.title(column + " Bad") bad[column].value_counts().plot(kind='bar') name = "output/Attribute" + str(i + 1) + "_" + "bad.png" savefig(name) if i < 19: plt.figure() # If attribute is numerical elif attributeType[i] == "numerical": plt.title(column + " Good") good.boxplot(column) name = "output/Attribute" + str(i + 1) + "_" + "good.png" savefig(name) plt.figure() plt.title(column + " Bad") bad.boxplot(column) name = "output/Attribute" + str(i + 1) + "_" + "bad.png" savefig(name) if i < 19: plt.figure() i += 1 def classifiers(dataframe): kf = KFold(n_splits=10) attributeColumns = dataframe.iloc[:, 0:20] svm_accuracy = 0 # Run SVM print("Running SVM...(this might take some time)") for train_index, test_index in kf.split(dataframe): X_train_counts = np.array(attributeColumns)[train_index] X_test_counts = np.array(attributeColumns)[test_index] clf_cv = svm.SVC(gamma=1.0, C=1.0, kernel="rbf").fit(X_train_counts, np.array(dataframe["Label"])[train_index]) yPred = clf_cv.predict(X_test_counts) svm_accuracy += accuracy_score(np.array(dataframe["Label"])[test_index], yPred) svm_accuracy /= 10 print("SVM Accuracy: ", svm_accuracy) rf_accuracy = 0 # Run Random Forests print("Running Random Forest...") for train_index, test_index in kf.split(dataframe): X_train_counts = np.array(attributeColumns)[train_index] X_test_counts = np.array(attributeColumns)[test_index] clf_cv = RandomForestClassifier().fit(X_train_counts, np.array(dataframe["Label"])[train_index]) yPred = clf_cv.predict(X_test_counts) rf_accuracy += accuracy_score(np.array(dataframe["Label"])[test_index], yPred) rf_accuracy /= 10 print("Random Forest Accuracy: ", rf_accuracy) nb_accuracy = 0 # Run Naive Bayes print("Running Naive Bayes...") for train_index, test_index in kf.split(dataframe): X_train_counts = np.array(attributeColumns)[train_index] X_test_counts = np.array(attributeColumns)[test_index] clf_cv = MultinomialNB().fit(X_train_counts, np.array(dataframe["Label"])[train_index]) yPred = clf_cv.predict(X_test_counts) nb_accuracy += accuracy_score(np.array(dataframe["Label"])[test_index], yPred) nb_accuracy /= 10 print("Naive Bayes Accuracy: ", nb_accuracy) # Output to a .csv file out_file = open("output/EvaluationMetric_10fold.csv", 'w') wr = csv.writer(out_file, delimiter="\t") firstLine = ["Statistic Measure", "Naive Bayes", "Random Forest", "SVM"] wr.writerow(firstLine) secondLine = ["Accuracy", nb_accuracy, rf_accuracy, svm_accuracy] wr.writerow(secondLine) def predictions(dataframe, test_dataframe): test_dataframe = performLabelEncoding(test_dataframe) # Convert to numpy array only the attributes (exclude label & id) X_train = np.array(dataframe.iloc[:, 0:20]) X_test = np.array(test_dataframe.iloc[:, 0:20]) clf_cv = RandomForestClassifier().fit(X_train, np.array(dataframe["Label"])) predicted = clf_cv.predict(X_test) # Output to a .csv file out_file = open("output/testSet_Predictions.csv", 'w') wr = csv.writer(out_file, delimiter="\t") firstLine = ["Client_ID", "Predicted_Label"] # Write the first line wr.writerow(firstLine) # For every prediction for i in range(len(test_dataframe)): # If its good if predicted[i] == 1: line = [int(test_dataframe["Id"][i]), "Good"] # If its bad else: line = [int(test_dataframe["Id"][i]), "Bad"] # Write the line wr.writerow(line) def entropy(dataframe, attribute): attributeFrequency = {} entropy = 0.0 # For every row of the dataframe, count the frequencies per value for i in range(len(dataframe)): value = dataframe[attribute][i] if value in attributeFrequency: attributeFrequency[value] += 1.0 else: attributeFrequency[value] = 1.0 # For each value apply the entropy formula for frequency in attributeFrequency.values(): entropy += (-frequency / len(dataframe)) * math.log(frequency / len(dataframe), 2) return entropy def informationGain(dataframe, attribute): attributeFrequency = {} subsetEntropy = 0.0 # For every row of the dataframe, count the frequencies per value for i in range(len(dataframe)): value = dataframe[attribute][i] if value in attributeFrequency: attributeFrequency[value] += 1.0 else: attributeFrequency[value] = 1.0 # For each value apply the information gain formula for keyValue in attributeFrequency.keys(): weight = attributeFrequency[keyValue] / sum(attributeFrequency.values()) dataframeSubset = pd.DataFrame() # Create a subset of the dataframe for i in range(len(dataframe)): value = dataframe[attribute][i] if value == keyValue: dataframeSubset.append(dataframe.iloc[i, 0:20]) subsetEntropy += weight * entropy(dataframeSubset, attribute) return entropy(dataframe, attribute) - subsetEntropy def featureSelection(dataframe, encodedDataframe): print("Calculating information gain for every attribute...", end=' ') attributeInfoGain = [] # For every column i = 0 for column in dataframe: # Excluding the last two if i == 20: break i += 1 ig = informationGain(dataframe, column) attributeInfoGain.append((column, ig)) accuracyArray = [] attributeInfoGain.sort(key=itemgetter(1)) print("Done!") for t in attributeInfoGain: print(t[0], "%.2f" % t[1]) attributeColumns = encodedDataframe.iloc[:, 0:20] for attribute, infoGain in attributeInfoGain: kf = KFold(n_splits=10) rf_accuracy = 0 # Run Random Forests print("Running Random Forest with", attributeColumns.shape[1], "features...", end=' ') for train_index, test_index in kf.split(attributeColumns): X_train_counts = np.array(attributeColumns)[train_index] X_test_counts = np.array(attributeColumns)[test_index] clf_cv = RandomForestClassifier().fit(X_train_counts, np.array(encodedDataframe["Label"])[train_index]) yPred = clf_cv.predict(X_test_counts) rf_accuracy += accuracy_score(np.array(encodedDataframe["Label"])[test_index], yPred) rf_accuracy /= 10 print("Accuracy: ", rf_accuracy) accuracyArray.append(rf_accuracy) attributeColumns = attributeColumns.drop(attribute, axis=1) print(attribute, "with information gain %.2f" % infoGain, "removed\n") sh = attributeColumns.shape if sh[1] == 0: break x_axis = [i for i in range(1, 21)] x_axis_reversed = [i for i in reversed(range(1, 21))] t = [] for i in range(0, 19): t.append((x_axis, accuracyArray)) plt.figure() plt.plot(x_axis, accuracyArray) plt.xticks(x_axis, x_axis_reversed) plt.ylabel('Accuracy') plt.xlabel('Number of features') savefig("output/attribute_removal_accuracy_penalty.png") def createBins(dataframe): i = 0 # For every column for column in dataframe: # Excluding the last two if i == 20: break # If attribute is numerical if attributeType[i] == "numerical": # Create bins dataframe[column] = pd.cut(dataframe[column], bins=5, labels=False) i += 1 return dataframe if __name__ == "__main__": os.makedirs(os.path.dirname("output/"), exist_ok=True) start_time = time.time() dataframe =
pd.read_csv('./datasets/train.tsv', sep='\t')
pandas.read_csv
import pandas as pd import time import numpy as np # Scrape ESPN Free Agent Tracker for free agent contracts years = [2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021] espn_salary_data = pd.DataFrame() espn_urls = [] for y in years: url = "http://www.espn.com/mlb/freeagents/_/year/" + str(y) espn_urls.append(url) for url in espn_urls: salary_url = pd.Series(url) espn_url = salary_url.str.split('/|-', expand=True) espn_url.columns = ['protocol', 'blank', 'path_one', 'path_two', 'path_three', '_', 'fix', 'year'] espn_salary_table = pd.read_html(url)[0] new_header = espn_salary_table.iloc[1] # grab the first row for the header espn_salary_table = espn_salary_table[2:] # take the data less the header row espn_salary_table.columns = new_header # set the header row as the df header espn_salary_table = espn_salary_table.rename(columns={espn_salary_table.columns[4]: "PREV TEAM"}) espn_salary_table = espn_salary_table[espn_salary_table['PLAYER'] != "PLAYER"].reset_index(drop=True) espn_salary_table['Season'] = espn_url['year'][0] espn_salary_data = espn_salary_data.append(espn_salary_table, ignore_index=True) time.sleep(5) espn_salary_data['Season'] = espn_salary_data['Season'].astype('int') + 1 espn_salary_data['YRS'] = espn_salary_data['YRS'].fillna(0) espn_salary_data['YRS'] = espn_salary_data['YRS'].astype('int') espn_data = espn_salary_data[(espn_salary_data['Season']) < 2022] # Scrape MLB Trade Rumors FA Tracker for option and qualifying offer data tr_salary_data = pd.DataFrame() mlb_tr_urls = [] for y in years: url = "https://www.mlbtraderumors.com/" + str(y) + "-mlb-free-agent-tracker/" mlb_tr_urls.append(url) for url in mlb_tr_urls: tr_salary_url = pd.Series(url) tr_url = tr_salary_url.str.split('/|-', expand=True) tr_url.columns = ['protocol', 'blank', 'path_one', 'year', 'path_two', 'path_three', 'path_four', 'path_five', 'blank_two'] tr_salary_table = pd.read_html(url)[1] tr_salary_table = tr_salary_table.rename(columns={"Qual?": "Qual"}) tr_salary_table['Season'] = tr_url['year'][0] tr_salary_data = tr_salary_data.append(tr_salary_table, ignore_index=True) time.sleep(5) mlb_tr_data = tr_salary_data # Reformat dtypes mlb_tr_data['Season'] = mlb_tr_data['Season'].astype('int') mlb_tr_data['Years'] = mlb_tr_data['Years'].fillna(0) mlb_tr_data['Years'] = mlb_tr_data['Years'].astype('int') # Fix column names espn_data.columns = ['Player', 'Position', 'Age', 'Status', 'Prev Team', 'Team', 'Years', 'Rank', 'Salary', 'Season'] mlb_tr_data.columns = ['Player', 'Position', 'Team', 'Qual', 'Years', 'Amount', 'AAV', 'Option', 'Season'] # Select certain columns for ease of view mlb_tr_data = mlb_tr_data[['Player', 'Team', 'Qual', 'Years', 'Amount', 'Option', 'Season']] # Merge espn and tr data on player name, team, and season year salary_data = pd.merge(espn_data, mlb_tr_data, how='left', left_on=['Player', 'Team', 'Season'], right_on=['Player', 'Team', 'Season']) # salary_data['Qual'] = salary_data['Qual'].fillna(0) # print(salary_data['Qual'].unique()) def salary_formatting(df): # Take max years #, determined from vesting or misreporting on some outlets df['Years_y'] = df['Years_y'].fillna(0) df['Years'] = np.where(df['Years_x'] >= df['Years_y'], df['Years_x'], df['Years_y']) del df['Years_x'], df['Years_y'] # Remove rows where years == 0 aka player unsigned df = df[(df['Years'] > 0) | (df['Season'] == max(df['Season']))].reset_index(drop=True) # Begin reformatting salary data for analysis, replace $ sign df["Salary"] = df["Salary"].apply(lambda x: x.replace("$", "")) # replace NA from espn with mlb_tr data df['Salary'].fillna(df['Amount'], inplace=True) # replace -- from ESPN with mlb_tr data df['Salary'] = np.where(df['Salary'] == "--", df['Amount'], df['Salary']) # Secondary column used to reformat salaries such as ($1.5MM) df['Value'] = 0 df.loc[df['Amount'].str.contains('$', na=False), 'Value'] = 1 # Refine minor league definition df['Salary'] = np.where((df['Value'] == 1) & (df['Salary'] == "Minor Lg"), df['Amount'], df['Salary']) df['fix_salary_format'] = 0 df.loc[df['Salary'].str.contains('MM', na=False), 'fix_salary_format'] = df['Salary'] df['fix_salary_format'] = df['fix_salary_format'].str.replace("MM", "") df['fix_salary_format'] = df['fix_salary_format'].str.replace("$", "") df['fix_salary_format'] = df['fix_salary_format'].fillna(0) df['fix_salary_format'] = pd.to_numeric(df['fix_salary_format']) df['fix_salary_format'] = np.where(df['fix_salary_format'] > 0, df['fix_salary_format'] * 1000000, df['fix_salary_format']) df['Salary'] = np.where(df['fix_salary_format'] > 0, df['fix_salary_format'], df['Salary']) df['Salary'] = np.where((df['Salary'] == "Minor Lg") | (df['Salary'] == "Minor"), 600000, df['Salary']) df['Salary'] = df['Salary'].str.replace(",", "") df['Salary'] = df['Salary'].fillna(0) # fix "K" values df['fix_salary_format'] = 0 df.loc[df['Salary'].str.contains('K', na=False), 'fix_salary_format'] = df['Salary'] df['fix_salary_format'] = df['fix_salary_format'].astype('str') df['fix_salary_format'] = df['fix_salary_format'].str.replace("K", "") df['fix_salary_format'] = df['fix_salary_format'].str.replace("$", "") df['fix_salary_format'] =
pd.to_numeric(df['fix_salary_format'])
pandas.to_numeric
from pandas.core.common import notnull, isnull import pandas.core.common as common import numpy as np def test_notnull(): assert notnull(1.) assert not notnull(None) assert not notnull(np.NaN) assert not notnull(np.inf) assert not notnull(-np.inf) def test_isnull(): assert not isnull(1.) assert isnull(None) assert isnull(np.NaN) assert isnull(np.inf) assert isnull(-np.inf) def test_any_none(): assert(common._any_none(1, 2, 3, None)) assert(not common._any_none(1, 2, 3, 4)) def test_all_not_none(): assert(common._all_not_none(1, 2, 3, 4)) assert(not common._all_not_none(1, 2, 3, None)) assert(not common._all_not_none(None, None, None, None)) def test_rands(): r = common.rands(10) assert(len(r) == 10) def test_adjoin(): data = [['a', 'b', 'c'], ['dd', 'ee', 'ff'], ['ggg', 'hhh', 'iii']] expected = 'a dd ggg\nb ee hhh\nc ff iii' adjoined = common.adjoin(2, *data) assert(adjoined == expected) def test_iterpairs(): data = [1, 2, 3, 4] expected = [(1, 2), (2, 3), (3, 4)] result = list(common.iterpairs(data)) assert(result == expected) def test_indent(): s = 'a b c\nd e f' result = common.indent(s, spaces=6) assert(result == ' a b c\n d e f') def test_banner(): ban = common.banner('hi') assert(ban == ('%s\nhi\n%s' % ('=' * 80, '=' * 80))) def test_map_indices_py(): data = [4, 3, 2, 1] expected = {4 : 0, 3 : 1, 2 : 2, 1 : 3} result = common.map_indices_py(data) assert(result == expected) def test_union(): a = [1, 2, 3] b = [4, 5, 6] union = sorted(common.union(a, b)) assert((a + b) == union) def test_difference(): a = [1, 2, 3] b = [1, 2, 3, 4, 5, 6] inter = sorted(common.difference(b, a)) assert([4, 5, 6] == inter) def test_intersection(): a = [1, 2, 3] b = [1, 2, 3, 4, 5, 6] inter = sorted(
common.intersection(a, b)
pandas.core.common.intersection
# -*- coding: utf-8 -*- """ Scrape match ids from datdota for pro matches # Tournaments - TI4 """ import os import json import time from lxml import html import requests import pandas as pd from sqlalchemy import create_engine with open(os.path.expanduser('/Users/tom.augspurger/Dropbox/bin/api-keys.txt')) as f: KEY = json.load(f)['steam'] def get_tournaments(): url = "http://www.datdota.com/events.php" tree = html.parse(url) root = tree.getroot() tournaments = filter(lambda x: 'tournament' in x[2], root.iterlinks()) pairs = ((x[0].text, x[2].split('&')[0]) for x in tournaments) base = "http://www.datdota.com/" seen = set() for name, q in pairs: if q not in seen: df = scrape_tournament(base + q) if df is None: continue df['tournament_name'] = name seen.update(q) yield df def scrape_tournament(url): """ url -> Maybe DataFrame """ tables =
pd.read_html(url, attrs={'class': 'dataTable'})
pandas.read_html
# https://www.youtube.com/watch?v=bvDkel5whUY import pandas as pd import numpy as np import requests #!pip install yfinance import yfinance as yf from datetime import date import datetime as dt import streamlit as st #!pip install PyPortfolioOpt from pypfopt.efficient_frontier import EfficientFrontier from pypfopt import risk_models from pypfopt import expected_returns #pip install pulp # Get the discret allocation of each stock from pypfopt.discrete_allocation import DiscreteAllocation, get_latest_prices #pip install cvxpy #pip install cvxopt st.title('Killer Stock Portfolio App') st.markdown(""" This app retrieves the list of the **S&P 500** and **FTSE 100** from Wikipedia. Then gets the corresponding **stock closing price** , and generate a killer portfolio with fund allocation! * **Python libraries:** base64, pandas, streamlit, numpy, matplotlib, seaborn, yfinance * **Data source:** [Wikipedia](https://en.wikipedia.org/wiki/List_of_S%26P_500_companies). """) st.sidebar.header('User Input Features') # Web scraping of S&P 500 data # @st.cache def load_data(): url = 'https://en.wikipedia.org/wiki/List_of_S%26P_500_companies' html = pd.read_html(url, header = 0) df = html[0] return df @st.cache def load_ftse100data(): url = 'https://en.wikipedia.org/wiki/FTSE_100_Index' html = pd.read_html(url, header = 0) df = html[3] return df # Download stock data from Yahoo Finance # @st.cache def get_data(symbols): symbols2 =[] t = [] today = date.today() # End date of the stock d1 = today.strftime("%Y-%m-%d") d = periods*30 d0 = date.today()-dt.timedelta(days=d) # Start date of the stock #d0 = '2010-5-31' #print("d1 =", d1) l = -1 # get all the data tDf = pd.DataFrame() for tickerSymbol in symbols: #get data on this ticker tickerData = yf.Ticker(tickerSymbol) #print(tickerData) #get the historical prices for this ticker #tickerDf = tickerData.history(period='1d', start='2010-5-31', end='2021-8-31') tickerDf = tickerData.history(period='1d', start= d0, end= d1) #print(tickerDf.empty) if not tickerDf.empty: #tDf.append(tickerDf.Close) #tDf.append(tickerDf['Close'].values) if tDf.empty: tDf =
pd.DataFrame(tickerDf.Close)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[19]: import numpy as np import matplotlib.pyplot as plt import h5py import scipy import pandas as pd import scipy.special as special import random import sys # In[20]: #cd D:\ThisSemester\CompNeuro\Homeworks\Hw3\HW3_Can_Kocagil\Assignment question = input('Please select question number [1/2]') # ### Question 1 # In[21]: def Can_Kocagil_21602218_Hw3(question): if question == '1' : f = h5py.File('hw3_data2.mat','r') X = np.array(f.get('Xn')).T y = np.array(f.get('Yn')).flatten() print(X.shape,y.shape) # In[22]: def random_seed(seed:int = 42) -> None : """ Random seeding for reproducebility Arguments: - seed (int) : random state Returns: - None """ np.random.seed(seed) random.seed(seed) # In[23]: class RidgeRegression(object): """ Ridge regression is a method of estimating the coefficients of multiple-regression models in scenarios where independent variables are highly correlated. """ def __init__(self,Lambda:float=1): """ Constructer method for initilization of ridge regression model. Arguments: - Lambda (float): is the parameter which balances the amount of emphasis given to minimizing RSS vs minimizing sum of square of coefficients """ self.Lambda = Lambda def fit(self, X:np.ndarray, y:np.ndarray) -> None: """ Given the pair of X,y, fit the data, i.e., find parameter W such that sum of square error is minimized. Arguments: - X (np.ndarray) : Regressor data - X (np.ndarray) : Ground truths for regressors Returns: - None """ I = np.eye(X.shape[1]) self.W = np.linalg.inv( X.T.dot(X) + self.Lambda * I ).dot(X.T).dot(y) return self def predict(self,X:np.ndarray) -> np.ndarray : """ Given the test data X, we predict the target variable. Arguments: - X (np.ndarray) : The independant variable (regressor) Returns: - Y_hat (np.ndarray) : Estimated value of y """ return X.dot(self.W) def parameters(self) -> None: """ Returns the estimated parameter W of the Ridge Regression """ return self.W def eval_r2(self,y_true:np.ndarray, y_pred:np.ndarray) -> np.float: """ Given the true dependant variable and estimated variable, computes proportion of explained variance R^2 by square the Pearson correlation between true dependant variable and estimated variabl Arguments: - y_true (np.ndarray) : true dependant variable - y_pred (np.ndarray) : estimated variable Returns: - r_squared (np.float) : Proportion of explained variance """ _pearson = np.corrcoef(y_true,y_pred) pearson = _pearson[1][0] r_squared = np.square(pearson) return r_squared @staticmethod def R2(y_true:np.ndarray,y_pred:np.ndarray) -> np.float: r_squared = (1 - (sum((y_true - (y_pred))**2) / ((len(y_true) - 1) * np.var(y_true.T, ddof=1)))) * 100 return r_squared def __str__(self): model = RidgeRegression().__class__.__name__ model += f" with parameter \n" model += f"{self.Lambda}" return model def __repr__(self): model = RidgeRegression().__class__.__name__ model += f" with parameter \n" model += f"{self.Lambda}" return model # In[24]: # In[25]: class K_fold(object): """ Cross-validation, sometimes called rotation estimation or out-of-sample testing, is any of various similar model validation techniques for assessing how the results of a statistical analysis will generalize to an independent data set """ def __init__(self,sample_size:int = y.shape[0], folds:int = 10): """ Constructer method for initializing the sample size and the number of folds Arguments: - sample_size (int) : How many samples are in the dataset - folds (int) : the number of folds """ self.sample_size = sample_size self.folds = folds self.fold_size = int(sample_size / folds) def split(self): """ Generator function for splitting data as validation (10%), testing (10%) and training (80%) as K-fold cross validation based resampling """ for idx in range(self.folds): _val_idx = idx * self.fold_size _test_idx = (idx + 1) * self.fold_size _train_idx = (idx + 2) * self.fold_size val_idx = np.arange(_val_idx, _test_idx) % self.sample_size test_idx = np.arange(_test_idx, _train_idx) % self.sample_size train_idx = np.arange(_train_idx, self.sample_size + _val_idx) % self.sample_size yield val_idx, test_idx, train_idx # In[26]: dict_inference = { 'test' : dict(), 'val' : dict() } phases = [ 'train', 'val', 'test' ] log_lambda_arr = np.logspace( start = 0, stop = 12, num = 500, base = 10 ) cv = K_fold(folds = 10) for val_idx, test_idx, train_idx in cv.split(): X_list = [ X[train_idx], X[val_idx], X[test_idx] ] y_list = [ y[train_idx], y[val_idx], y[test_idx] ] for _lambda in log_lambda_arr: for phase, X_phase, y_phase in zip(phases, X_list, y_list): if phase == 'train': model = RidgeRegression(_lambda) model.fit(X_phase, y_phase) else: preds = model.predict(X_phase) r2_score = model.eval_r2(y_phase, preds) dict_inference[phase].setdefault( _lambda, list()).append(r2_score) inference_r2 = { phase : { _lambda : np.mean(r2_score) for _lambda, r2_score in dict_inference[phase].items() } for phase in ['val','test'] } # In[27]: best_r2 = 0 for _lambda, r_2 in inference_r2['val'].items(): if r_2 > best_r2: best_r2 = r_2 best_lambda = _lambda print(f'Best lambda parameter that maximizes the R^2 is : {best_lambda}') print('Best R^2 along the testing :', inference_r2['test'][best_lambda]) print('Best R^2 along the validation :', inference_r2['val'][best_lambda]) # In[28]: lists1 = sorted(inference_r2['val'].items()) x1, y1 = zip(*lists1) lists2 = sorted(inference_r2['test'].items()) x2, y2 = zip(*lists2) plt.figure(figsize = (10,5)) plt.plot(x2, y2, color='orange') plt.plot(x1, y1, color='g') plt.legend(['test', 'validation']) plt.ylabel('$R^2$') plt.xlabel('$\lambda$') plt.title('$R^2$ versus $\lambda$') plt.xscale('log') plt.grid() plt.show() # In[29]: random_seed(10) bootstrap_iters = range(500) sample_idx = np.arange(X.shape[0]) parameters = list() for idx in bootstrap_iters: bootstrap_idx = np.random.choice(sample_idx, size = 1000, replace = True) y_bootstrap = y[bootstrap_idx] X_bootstrap = X[bootstrap_idx] ridge = RidgeRegression(Lambda = 0) ridge.fit(X_bootstrap,y_bootstrap) parameters.append(ridge.parameters()) w_bootstrap = np.array(parameters) w_mean = np.mean(w_bootstrap, axis=0) w_std = np.std(w_bootstrap, axis=0) # In[30]: plt.figure(figsize = (10,5)) plt.errorbar(np.arange(1, 101), w_mean, yerr= w_std, ecolor='red', elinewidth=1, capsize=1) plt.title('Ridge Model OLS Weights') plt.xlabel('i') plt.ylabel('$W_i$') plt.show() # In[31]: two_sided = 2 p_values = special.ndtr(- w_mean / w_std) * two_sided alpha_level = 0.05 significants = np.argwhere(p_values < alpha_level).flatten() print(f' Index of the parameters that are significantly different than 0: \n {significants}') # In[32]: random_seed(10) bootstrap_iters = range(500) sample_idx = np.arange(X.shape[0]) parameters = list() for idx in bootstrap_iters: bootstrap_idx = np.random.choice(sample_idx, size = 1000, replace = True) y_bootstrap = y[bootstrap_idx] X_bootstrap = X[bootstrap_idx] ridge = RidgeRegression(Lambda = best_lambda) ridge.fit(X_bootstrap,y_bootstrap) parameters.append(ridge.parameters()) w_bootstrap = np.array(parameters) w_mean = np.mean(w_bootstrap, axis=0) w_std = np.std(w_bootstrap, axis=0) # In[33]: plt.figure(figsize = (10,5)) plt.errorbar(np.arange(1, 101), w_mean, yerr= w_std, ecolor='red', elinewidth=1, capsize=1) plt.title('Ridge Model $\lambda_{optimal}$ Weights') plt.xlabel('i') plt.ylabel('$W_i$') plt.show() # In[34]: p_values = scipy.special.ndtr(- w_mean / w_std) * two_sided significants = np.argwhere(p_values < alpha_level).flatten() print(f' Index of the parameters that are significantly different than 0: \n {significants}') elif question == '2' : two_sided = 2 def random_seed(seed:int = 42) -> None : """ Random seeding for reproducebility Arguments: - seed (int) : random state Returns: - None """ np.random.seed(seed) random.seed(seed) # ### Question 2 # ## Part A # In[44]: f = h5py.File('hw3_data3.mat','r') pop1 = np.array( f.get('pop1') ) pop2 = np.array( f.get('pop2') ) # In[45]: def bootstrap(sample:np.ndarray, bootstrap_iters:iter = range(10000), random_state:int = 11) -> np.ndarray: """ Generate bootstrap samples using random sampling with replacement. Arguments: - sample (np.ndarray) : Sample to be bootstraped - bootstrap_iters (iterator object) : Specification of bootstrap iterations - random_state (int) : Random seed for reproducibility Returns: - bootstrap_samples (np.ndarray) : Bootstrapped array """ random_seed(random_state) size = sample.shape[0] bootstrap_samples = list() for idx in bootstrap_iters: bootstrap_idx = np.random.choice(np.arange(sample.shape[0]), size = size, replace = True) bootstrap_samples.append(sample[bootstrap_idx]) return np.array(bootstrap_samples) # In[46]: pop = np.vstack([pop1,pop2]) pop_bootstrap = bootstrap(pop) sample_1 = pop_bootstrap[:,:len(pop1)].squeeze(2) sample_2 = pop_bootstrap[:,len(pop1):].squeeze(2) sample_1_bootstrap_mean = sample_1.mean(axis = 1) sample_2_bootstrap_mean = sample_2.mean(axis = 1) sample_diff_means = sample_1_bootstrap_mean - sample_2_bootstrap_mean sample_mean_dist = pd.DataFrame() sample_mean_dist['Mean Difference'] = sample_diff_means.flatten() fig, ax = plt.subplots(figsize = (10,5)) sample_mean_dist.plot.kde(ax=ax, title='Difference of Means of Bootstrapped Populations 1 and 2') sample_mean_dist.plot.hist(density=True, ax = ax, bins = 15) ax.set_ylabel('Probability $P_X(x)$') ax.set_xlabel('Difference in means (x)') ax.grid(axis='y') ax.set_yticks([]) # In[47]: pop1_bootstrap = bootstrap(pop1) pop2_bootstrap = bootstrap(pop2) pop1_bootstrap_mean = np.mean(pop1_bootstrap, axis = 1) pop2_bootstrap_mean = np.mean(pop2_bootstrap, axis = 1) mean_dist = pd.DataFrame() mean_dist['pop1 Mean'] = pop1_bootstrap_mean.flatten() mean_dist['pop2 Mean'] = pop2_bootstrap_mean.flatten() mean_dist['Mean Difference'] = pop1_bootstrap_mean - pop2_bootstrap_mean fig, ax = plt.subplots(figsize = (10,5)) mean_dist.plot.kde(ax=ax, title='Difference of Means of Bootstrapped Populations 1 and 2') mean_dist.plot.hist(density=True, ax = ax, bins = 15) ax.set_ylabel('Probability $P_X(x)$') ax.set_xlabel('Difference in means (x)') ax.grid(axis='y') ax.set_yticks([]) fig, ax = plt.subplots(figsize = (10,5)) mean_dist['Mean Difference'].plot.kde(ax=ax,legend = True, title='Difference of Means of Bootstrapped Populations 1 and 2') mean_dist['Mean Difference'].plot.hist(density=True, ax = ax, bins = 15) ax.set_ylabel('Probability $P_X(x)$') ax.set_xlabel('Difference in means (x)') ax.grid(axis='y') ax.set_yticks([]) # In[48]: actual_diff_means = pop1.mean() - pop2.mean() std_test = sample_mean_dist['Mean Difference'].std() mean_test = sample_mean_dist['Mean Difference'].mean() z_cal = (mean_test - actual_diff_means) / std_test p_values = scipy.special.ndtr(z_cal) * two_sided print('The two sided p-value is:', p_values) # ## Part B # In[49]: vox1 = np.array( f.get('vox1') ).flatten() vox2 = np.array( f.get('vox2') ).flatten() print( vox1.shape, vox2.shape ) vox1_bootstrap = bootstrap(vox1) vox2_bootstrap = bootstrap(vox2) def corr(X: list or np.ndarray,Y: list or np.ndarray) -> list: """ Given the X,Y distributions, computes the Pearson Correlation element wise. Arguments: - X (list or np.ndarray) : First distribution - Y (list or np.ndarray) : Second distribution Returns: - pearson_corrs (list[float]) : Computed correlations element wise """ assert X.shape == Y.shape, 'Dimension Mismatch!' return [scipy.stats.pearsonr(X[i], Y[i])[0] for i in range(X.shape[0])] corr_bootstrap = corr(vox1_bootstrap,vox2_bootstrap) fig, ax = plt.subplots(figsize = (10,5)) pd.Series(corr_bootstrap).plot.kde(ax=ax, legend = False, title='Sampling Distribution of Correlation between vox1 and vox2') pd.Series(corr_bootstrap).plot.hist(density=True, ax = ax, bins = 20, alpha = 0.8,color = 'red') ax.set_ylabel('Probability $P_Y(y)$') ax.set_xlabel('Pearson Correlation y') ax.grid(axis='y') ax.set_yticks([]) # Thanks to https://stackoverflow.com/questions/15033511/compute-a-confidence-interval-from-sample-data def confidence_interval(data: list or np.ndarray, confidence:float=0.95) -> tuple: """ Given the distribution and confidence level, computes the confidence interval. Arguments: - data (list or np.ndarray) : Input distribution - confidence (float) : confidence level in the range [0,1] Returns: - confidence_level (tuple[np.ndarray]) : lower, upper limits respectively """ a = 1.0 * np.array(data) n = len(a) m, se = np.mean(a), scipy.stats.sem(a) h = se * scipy.stats.t.ppf((1 + confidence) / 2., n-1) return m-h, m+h def _confidence_interval(data, confidence=0.95): return scipy.stats.t.interval(confidence, len(data)-1, loc=np.mean(data), scale=st.sem(data)) corr_mean = np.mean(corr_bootstrap) lower, upper = confidence_interval(corr_bootstrap,confidence=0.95) print('Mean correlation value:', corr_mean) print(f'95% confidence interval of the correlation values: {lower, upper}') is_corr_zero = np.argwhere(corr_bootstrap == 0) corr_zero_percentage = 100 * is_corr_zero.shape[0] / 10000 print('Percentage of zero correlation values:', corr_zero_percentage) # ## Part C # In[50]: vox1_ind = bootstrap(vox1, range(10000), random_state=42) vox2_ind = bootstrap(vox2, range(10000), random_state=21) _corr_ind = corr(vox1_ind,vox2_ind) corr_ind = pd.Series(_corr_ind) fig, ax = plt.subplots(figsize = (10,5)) corr_ind.plot.kde(ax=ax, legend = False, title='Sampling Distribution of Correlation between vox1 and vox2') corr_ind.plot.hist(density=True, ax = ax, bins = 20, alpha = 0.8,color = 'red') ax.set_ylabel('Probability $P_Y(y)$') ax.set_xlabel('Pearson Correlation y') ax.grid(axis='y') ax.set_yticks([]) actual_corr, _ = scipy.stats.pearsonr(vox1,vox2) mean_corr = corr_ind.mean() std_corr = corr_ind.std() z_score = mean_corr - actual_corr z_score /= std_corr p_value = scipy.special.ndtr(z_score) print('The one sided p-value is:', p_value) # ## Part D # In[52]: building = np.array(f.get('building')).flatten() face = np.array(f.get('face')).flatten() print( building.shape, face.shape ) random_seed(31) assert building.shape[0] == face.shape[0],'Dimensionality Mismatch!' sample_size = np.arange(building.shape[0]) _mean_diff = list() bootstrap_iters = np.arange(10000) for ii in bootstrap_iters: resample = [] for jj in sample_size: bootstrap_idx = np.random.choice(np.arange(building.shape[0]), replace = True) options = [0] * 2 _option = building[jj] - face[jj] options.append(_option) _option = face[jj] - building[jj] options.append(_option) resample.append(np.random.choice(options)) _mean_diff.append(np.mean(resample)) mean_diff = pd.Series(_mean_diff) fig, ax = plt.subplots(figsize = (10,5)) mean_diff.plot.kde(ax=ax, legend = False, title='Difference in means of building and face') mean_diff.plot.hist(density=True, ax = ax, bins = 40, alpha = 0.8, color = 'red') ax.set_ylabel('Probability $P_X(x)$') ax.set_xlabel('Difference in means (x)') ax.grid(axis='y') ax.set_yticks([]) x_actual = np.mean(building) - np.mean(face) mean = mean_diff.mean() std = mean_diff.std() z_score = mean - x_actual z_score /= std p_value = scipy.special.ndtr(- z_score) * two_sided print('The two sided p-value is:', p_value) # ## Part E # In[53]: arr_stack = np.hstack((building, face)) arr_bootstrap = bootstrap(arr_stack) samples1 = arr_bootstrap[:, :len(building)] samples2 = arr_bootstrap[:, len(building):] means1 = np.mean(samples1, axis=1) means2 = np.mean(samples2, axis=1) sample_diff_means = means1 - means2 sample_mean_dist =
pd.DataFrame()
pandas.DataFrame
# coding=utf-8 # author=yphacker import os import argparse from tqdm import tqdm import numpy as np import pandas as pd import torch from torch.utils.data import DataLoader from conf import config from model.net import Net from utils.data_utils import MyDataset from utils.data_utils import test_transform import torch.nn as nn import pandas as pd device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def predict(model): #test_path_list = ['{}/{}.jpg'.format(config.image_test_path, x) for x in range(0, data_len)] #test_path_list = ['{}/{}'.format(config.image_test_path, x) for x in os.listdir(config.image_test_path)] csv_path = '/data/beijing/dataset/BOLD/BOLD_public/val.csv' info = pd.read_csv(csv_path) test = list(info['filename']) test_path_list = [] for i in range(len(test)): if os.path.exists(config.image_test_path + '/' + test[i]): test_path_list.append(config.image_test_path + '/' + test[i]) #print(test_path_list) #exit() test_data = np.array(test_path_list) test_dataset = MyDataset(test_data, test_transform, 'test') test_loader = DataLoader(test_dataset, batch_size=config.batch_size, shuffle=False) model.eval() pred_list = [] with torch.no_grad(): for batch_x, _ in tqdm(test_loader): batch_x = batch_x.to(device) # compute output probs = model(batch_x) # preds = torch.argmax(probs, dim=1) # pred_list += [p.item() for p in preds] pred_list.extend(probs.cpu().numpy()) #print('----------------------------------------------------------------------') #print('batch_x = ', batch_x) #print('probs = ', probs) #print(np.shape(batch_x)) #print(np.shape(probs)) #print() #exit() return pred_list,test_data def multi_model_predict(): preds_dict = dict() for model_name in model_name_list: model = Net(model_name).to(device) model_save_path = os.path.join(config.model_path, '{}.bin'.format(model_name)) print() print('model path is : ',model_save_path) #model_save_path = './save_model/model_1/se_densenet121.bin' model = nn.DataParallel(model) model.load_state_dict(torch.load(model_save_path)) pred_list, test_data = predict(model) test_data = list(test_data) submission = pd.DataFrame(pred_list) # submission = pd.DataFrame({"id": range(len(pred_list)), "label": pred_list}) submission.to_csv('{}/{}_val.csv' .format(config.submission_path, model_name), index=False, header=False) #submission.to_csv('./submission_test/se_densenet121/submission_sedensenet121_val.csv') preds_dict['{}'.format(model_name)] = pred_list pred_list = get_pred_list(preds_dict) #print() #print(preds_dict.keys()) #a = preds_dict['se_densenet121'] #print(np.shape(a)) #print() #print(pred_list) #print(np.shape(pred_list)) #exit() #submission = pd.DataFrame({"id": test_data, "label": pred_list}) test_data =
pd.DataFrame(test_data)
pandas.DataFrame
""" The entry point to running permutation-based statistics. Usage ----- run_permutation_stats.run(test_data/registration_test_data/baseline, data/registration_test_data/mutant, test_data/stats_test_data/test_output, 1000) Currently, this module works only with organ volume data. The voxel-based methods are currently too big to do this. Think about including voxel-based stats in the future Outline of pipeline ------------------- Before running the permutation statistics we need to have run jobrunner.py on the baseline and mutant data. The main function in this module run() calles the following functions during the pipeline: get_organ_volume_data and get_staging_data search the registration output folders for the CSVs that contain the organ volumes and staging data and collate into single csvs. distributions.null and distributions.alternative Use the dataframes from the precedding functions to generate null and alternative p-value distributiuon dataframes p_thresholds.get_thresholds Using the null and alternative distributions, these functions generate organ-spceific p-value thresholds. These are generated for both line-level and specimen level calls. annotate This function creates final results CSVs. Puts a line-level csv in the line/output/stats_/ Puts specimen-level csv files in line/output/stats_/specimen_level """ from pathlib import Path from datetime import date import pandas as pd import numpy as np from logzero import logger as logging import yaml from lama import common from lama.stats.permutation_stats import distributions from lama.stats.permutation_stats import p_thresholds from lama.paths import specimen_iterator from lama.qc.organ_vol_plots import make_plots, pvalue_dist_plots from lama.common import write_array, read_array, init_logging GENOTYPE_P_COL_NAME = 'genotype_effect_p_value' PERM_SIGNIFICANT_COL_NAME = 'significant_cal_p' def get_organ_volume_data(root_dir: Path) -> pd.DataFrame: """ Given a root registration directory, collate all the organ volume CSVs into one file. Write out the combined organ volume CSV into the root registration directory. Parameters ---------- root_dir The path to the root registration directory Returns ------- The combined data frame of all the organ volumes specimen id in index organs in rows """ output_dir = root_dir / 'output' dataframes = [] for line_dir, specimen_dir in specimen_iterator(output_dir): organ_vol_file = specimen_dir / 'output' / common.ORGAN_VOLUME_CSV_FILE if not organ_vol_file.is_file(): raise FileNotFoundError(f'Cannot find organ volume file {organ_vol_file}') df = pd.read_csv(organ_vol_file, index_col=0) if len(df) == 0: raise ValueError(f'{organ_vol_file} is empty') dataframes.append(df) # Write the concatenated organ vol file to single csv all_organs = pd.concat(dataframes) # outpath = output_dir / common.ORGAN_VOLUME_CSV_FILE # all_organs.to_csv(outpath) return all_organs def get_staging_data(root_dir: Path) -> pd.DataFrame: """ Given a root registration directory, collate all the staging CSVs into one file. Write out the combined organ volume CSV into the root registration directory. Parameters ---------- root_dir The path to the root registration directory Returns ------- The combined dataframe of all the organ volumes """ output_dir = root_dir / 'output' dataframes = [] for line_dir, specimen_dir in specimen_iterator(output_dir): staging_info = specimen_dir / 'output' / common.STAGING_INFO_FILENAME if not staging_info.is_file(): raise FileNotFoundError(f'Cannot find staging info file {staging_info}') df = pd.read_csv(staging_info, index_col=0) df['line'] = line_dir.name dataframes.append(df) # Write the concatenated staging info to the all_staging = pd.concat(dataframes) outpath = output_dir / common.STAGING_INFO_FILENAME all_staging.to_csv(outpath) return all_staging def annotate(thresholds: pd.DataFrame, lm_results: pd.DataFrame, lines_root_dir: Path, line_level: bool = True, label_info: Path = None, label_map: Path = None, write_thresholded_inv_labels=False, fdr_threshold: float=0.05): """ Using the p_value thresholds and the linear model p-value results, create the following CSV files Line-level results specimen-level results Parameters ---------- thresholds columns label(index), p_thresh, fdr, num_hits_across_all_lines/specimens lm_results The alternative distribution index: line/specimen id cols: labels (+ line_id for specimen_level) outdir The root directory to save the annotated CSV files line_level if not True, place results in specimen-level sub directory label_info CSV to map label number to name Notes ----- Today's date added to the stats output folder in case it's run multiple times, TODO: Add file number prefixes so we don't overwrite mulyiple analyses done on the same day TODO: the organ_volumes folder name is hard-coded. What about if we add a new analysis type to the permutation stats pipeline? """ collated = [] if label_map: label_map = read_array(label_map) for id_, row in lm_results.iterrows(): # Create a dataframe containing p-value column. each organ on rows df = row.to_frame() if not line_level: # specimne-level has an extra line column we need to remove df = df.T.drop(columns=['line']).T # Rename the line_specimen column to be more informative df.rename(columns={id_: GENOTYPE_P_COL_NAME}, inplace=True) if line_level: line = id_ else: line = row['line'] # Merge the permutation results (p-thresh, fdr, number of hit lines fo this label) with the mutant results df.index = df.index.astype(np.int64) # Index needs to be cast from object to enable merge df = df.merge(thresholds, left_index=True, right_index=True, validate='1:1') df.index.name = 'label' output_name = f'{id_}_organ_volumes_{str(date.today())}.csv' line_output_dir = lines_root_dir / line line_output_dir.mkdir(exist_ok=True) if not line_level: # If dealing with specimen-level stats, make subfolder to put results in line_output_dir = line_output_dir / 'specimen_level' / id_ line_output_dir.mkdir(parents=True, exist_ok=True) output_path = line_output_dir / output_name add_significance(df, fdr_threshold) if label_info: df = add_label_names(df , label_info) df.to_csv(output_path) hit_df = df[df['significant_cal_p'] == True] collated.append(hit_df) hit_labels_out = line_output_dir / f'{line}__hit_labels.nrrd' hits = hit_df.index if write_thresholded_inv_labels: _write_thresholded_label_map(label_map, hits, hit_labels_out) return collated def _write_thresholded_label_map(label_map: np.ndarray, hits, out: Path): """ Write a label map with only the 'hit' organs in it """ if label_map is None: return if len(hits) > 0: # Make a copy as it may be being used elsewhere l = np.copy(label_map) # Clear any non-hits l[~np.isin(l, hits)] = 0 write_array(l, out) def add_label_names(df: pd.DataFrame, label_info: Path) -> pd.DataFrame: label_df = pd.read_csv(label_info, index_col=0) df = df.merge(right=label_df[['label_name']], left_index=True, right_index=True) return df def add_significance(df: pd.DataFrame, threshold: float): """ Add a significance column to the output csv in place. Set significance to True if the genotype p-value is lower than the p threshold for that organ and the fdr is lower than fdr threshold. And sort values by significance """ df[PERM_SIGNIFICANT_COL_NAME] = (df[GENOTYPE_P_COL_NAME] <= df['p_thresh']) & (df['fdr'] <= threshold) df.sort_values(by=[PERM_SIGNIFICANT_COL_NAME, GENOTYPE_P_COL_NAME], ascending=[False, True], inplace=True) def prepare_data(wt_organ_vol: pd.DataFrame, wt_staging: pd.DataFrame, mut_organ_vol: pd.DataFrame, mut_staging: pd.DataFrame, label_meta: Path = None, normalise_to_whole_embryo=False) -> pd.DataFrame: """ Do some pre-processing on the input DataFrames and concatenate into one data frame. Normalise organ volumes by whole embryo volume (staging) Returns ------- Concatenated data with line, genotype staging + organ volume columns """ wt_staging.rename(columns={'value': 'staging'}, inplace=True) mut_staging.rename(columns={'value': 'staging'}, inplace=True) wt_staging.index = wt_staging.index.astype(str) if normalise_to_whole_embryo: wt_organ_vol = wt_organ_vol.divide(wt_staging['staging'], axis=0) mut_organ_vol = mut_organ_vol.divide(mut_staging['staging'], axis=0) logging.info('Normalising organ volume to whole embryo volume') # merge the organ vol organ_vols = pd.concat([wt_organ_vol, mut_organ_vol]) # Drop any organ columns that has only zero values. These are the gaps in the label map caused by merging labels organ_vols = organ_vols.loc[:, (organ_vols != 0).any(axis=0)] # For the statsmodels linear mode to work, column names cannot start with a digid. Prefix with 'x' organ_vols.columns = [f'x{x}' if x.isdigit() else x for x in organ_vols.columns] staging = pd.concat([wt_staging, mut_staging]) # Merge staging to the organvolume dataframe. First drop line so we don't get duplicate entries # staging.drop(columns=['line'], inplace=True) data =
pd.concat([organ_vols, staging], axis=1)
pandas.concat
from tqdm import tqdm import torch import numbers import logging import pandas as pd import numpy as np from torch.utils.data import DataLoader from pathlib import Path from farm.evaluation.metrics import compute_metrics, compute_report_metrics from farm.utils import to_numpy from farm.utils import MLFlowLogger as MlLogger from farm.modeling.adaptive_model import AdaptiveModel from farm.modeling.biadaptive_model import BiAdaptiveModel from farm.visual.ascii.images import BUSH_SEP logger = logging.getLogger(__name__) class Evaluator: """Handles evaluation of a given model over a specified dataset.""" def __init__( self, data_loader, tasks, device, report=True ): """ :param data_loader: The PyTorch DataLoader that will return batches of data from the evaluation dataset :type data_loader: DataLoader :param label_maps: :param device: The device on which the tensors should be processed. Choose from "cpu" and "cuda". :param metrics: The list of metrics which need to be computed, one for each prediction head. :param metrics: list :param report: Whether an eval report should be generated (e.g. classification report per class). :type report: bool """ self.data_loader = data_loader self.tasks = tasks self.device = device self.report = report def eval(self, model, return_preds_and_labels=False, calibrate_conf_scores=False): """ Performs evaluation on a given model. :param model: The model on which to perform evaluation :type model: AdaptiveModel :param return_preds_and_labels: Whether to add preds and labels in the returned dicts of the :type return_preds_and_labels: bool :param calibrate_conf_scores: Whether to calibrate the temperature for temperature scaling of the confidence scores :type calibrate_conf_scores: bool :return all_results: A list of dictionaries, one for each prediction head. Each dictionary contains the metrics and reports generated during evaluation. :rtype all_results: list of dicts """ model.eval() # init empty lists per prediction head loss_all = [0 for _ in model.prediction_heads] preds_all = [[] for _ in model.prediction_heads] label_all = [[] for _ in model.prediction_heads] ids_all = [[] for _ in model.prediction_heads] passage_start_t_all = [[] for _ in model.prediction_heads] logits_all = [[] for _ in model.prediction_heads] for step, batch in enumerate( tqdm(self.data_loader, desc="Evaluating", mininterval=10) ): batch = {key: batch[key].to(self.device) for key in batch} with torch.no_grad(): logits = model.forward(**batch) losses_per_head = model.logits_to_loss_per_head(logits=logits, **batch) preds = model.logits_to_preds(logits=logits, **batch) labels = model.prepare_labels(**batch) # stack results of all batches per prediction head for head_num, head in enumerate(model.prediction_heads): loss_all[head_num] += np.sum(to_numpy(losses_per_head[head_num])) preds_all[head_num] += list(to_numpy(preds[head_num])) label_all[head_num] += list(to_numpy(labels[head_num])) if head.model_type == "span_classification": ids_all[head_num] += list(to_numpy(batch["id"])) passage_start_t_all[head_num] += list(to_numpy(batch["passage_start_t"])) if calibrate_conf_scores: logits_all[head_num] += list(to_numpy(logits)) # Evaluate per prediction head all_results = [] for head_num, head in enumerate(model.prediction_heads): if head.model_type == "multilabel_text_classification": # converting from string preds back to multi-hot encoding from sklearn.preprocessing import MultiLabelBinarizer mlb = MultiLabelBinarizer(classes=head.label_list) # TODO check why .fit() should be called on predictions, rather than on labels preds_all[head_num] = mlb.fit_transform(preds_all[head_num]) label_all[head_num] = mlb.transform(label_all[head_num]) if head.model_type == "span_classification" and calibrate_conf_scores: temperature_previous = head.temperature_for_confidence.item() logger.info(f"temperature used for confidence scores before calibration: {temperature_previous}") head.calibrate_conf(logits_all[head_num], label_all[head_num]) temperature_current = head.temperature_for_confidence.item() logger.info(f"temperature used for confidence scores after calibration: {temperature_current}") temperature_change = (abs(temperature_current - temperature_previous) / temperature_previous) * 100.0 if temperature_change > 50: logger.warning(f"temperature used for calibration of confidence scores changed by more than {temperature_change} percent") if hasattr(head, 'aggregate_preds'): # Needed to convert NQ ids from np arrays to strings ids_all_str = [x.astype(str) for x in ids_all[head_num]] ids_all_list = [list(x) for x in ids_all_str] head_ids = ["-".join(x) for x in ids_all_list] preds_all[head_num], label_all[head_num] = head.aggregate_preds(preds=preds_all[head_num], labels=label_all[head_num], passage_start_t=passage_start_t_all[head_num], ids=head_ids) result = {"loss": loss_all[head_num] / len(self.data_loader.dataset), "task_name": head.task_name} result.update( compute_metrics(metric=head.metric, preds=preds_all[head_num], labels=label_all[head_num] ) ) # Select type of report depending on prediction head output type if self.report: try: result["report"] = compute_report_metrics(head, preds_all[head_num], label_all[head_num]) except: logger.error(f"Couldn't create eval report for head {head_num} with following preds and labels:" f"\n Preds: {preds_all[head_num]} \n Labels: {label_all[head_num]}") result["report"] = "Error" if return_preds_and_labels: result["preds"] = preds_all[head_num] result["labels"] = label_all[head_num] all_results.append(result) return all_results @staticmethod def log_results(results, dataset_name, steps, logging=True, print=True, num_fold=None): # Print a header header = "\n\n" header += BUSH_SEP + "\n" header += "***************************************************\n" if num_fold: header += f"***** EVALUATION | FOLD: {num_fold} | {dataset_name.upper()} SET | AFTER {steps} BATCHES *****\n" else: header += f"***** EVALUATION | {dataset_name.upper()} SET | AFTER {steps} BATCHES *****\n" header += "***************************************************\n" header += BUSH_SEP + "\n" logger.info(header) for head_num, head in enumerate(results): logger.info("\n _________ {} _________".format(head['task_name'])) for metric_name, metric_val in head.items(): # log with ML framework (e.g. Mlflow) if logging: if not metric_name in ["preds","labels"] and not metric_name.startswith("_"): if isinstance(metric_val, numbers.Number): MlLogger.log_metrics( metrics={ f"{dataset_name}_{metric_name}_{head['task_name']}": metric_val }, step=steps, ) # print via standard python logger if print: if metric_name == "report": if isinstance(metric_val, str) and len(metric_val) > 8000: metric_val = metric_val[:7500] + "\n ............................. \n" + metric_val[-500:] logger.info("{}: \n {}".format(metric_name, metric_val)) else: if not metric_name in ["preds", "labels"] and not metric_name.startswith("_"): logger.info("{}: {}".format(metric_name, metric_val)) @staticmethod def log_results(eval_dir, results, dataset_name, epoch, steps, logging=False, print=True, dframe=True, num_fold=None): # Print a header header = "\n\n" header += BUSH_SEP + "\n" header += "***************************************************\n" if num_fold: header += f"***** EVALUATION | FOLD: {num_fold} | {dataset_name.upper()} SET | AFTER {steps} BATCHES *****\n" else: header += f"***** EVALUATION | {dataset_name.upper()} SET | AFTER {steps} BATCHES *****\n" header += "***************************************************\n" header += BUSH_SEP + "\n" logger.info(header) df_metrics = pd.DataFrame() df_report = pd.DataFrame() for head_num, head in enumerate(results): logger.info("\n _________ {} _________".format(head['task_name'])) for metric_name, metric_val in head.items(): # log with ML framework (e.g. Mlflow) if logging: if not metric_name in ["preds","labels"] and not metric_name.startswith("_"): if isinstance(metric_val, numbers.Number): MlLogger.log_metrics( metrics={ f"{dataset_name}_{metric_name}_{head['task_name']}": metric_val }, step=steps, ) # print via standard python logger if print: if metric_name == "report": if isinstance(metric_val, str) and len(metric_val) > 8000: metric_val = metric_val[:7500] + "\n ............................. \n" + metric_val[-500:] logger.info("{}: \n {}".format(metric_name, metric_val)) else: if not metric_name in ["preds", "labels"] and not metric_name.startswith("_"): logger.info("{}: {}".format(metric_name, metric_val)) # save results in pandas dataframe if dframe: if metric_name == "report": try: lines = metric_val.split('\n') for line in lines[2:]: row = {} row_data = line.split() if len(row_data) == 6: row['epoch'] = epoch row['step'] = steps row['class'] = row_data[0] + " " + row_data[1] row['precision'] = row_data[2] row['recall'] = row_data[3] row['f1_score'] = row_data[4] row['support'] = row_data[5] df_tmp = pd.DataFrame(row, index=[0]) df_report =
pd.concat([df_report, df_tmp], ignore_index=True)
pandas.concat
'''Original implementation at https://github.com/wangtongada/BOA ''' import itertools import operator import os import warnings from os.path import join as oj from bisect import bisect_left from collections import defaultdict from copy import deepcopy from itertools import combinations from random import sample import numpy as np import pandas as pd from mlxtend.frequent_patterns import fpgrowth from numpy.random import random from pandas import read_csv from scipy.sparse import csc_matrix from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.ensemble import RandomForestClassifier from sklearn.utils.multiclass import check_classification_targets from sklearn.utils.validation import check_X_y, check_is_fitted from imodels.rule_set.rule_set import RuleSet class BayesianRuleSetClassifier(RuleSet, BaseEstimator, ClassifierMixin): '''Bayesian or-of-and algorithm. Generates patterns that satisfy the minimum support and maximum length and then select the Nrules rules that have the highest entropy. In function SA_patternbased, each local maximum is stored in maps and the best BOA is returned. Remember here the BOA contains only the index of selected rules from Nrules self.rules_ ''' def __init__(self, n_rules: int = 2000, supp=5, maxlen: int = 10, num_iterations=5000, num_chains=3, q=0.1, alpha_pos=100, beta_pos=1, alpha_neg=100, beta_neg=1, alpha_l=None, beta_l=None, discretization_method='randomforest', random_state=0): ''' Params ------ n_rules number of rules to be used in SA_patternbased and also the output of generate_rules supp The higher this supp, the 'larger' a pattern is. 5% is a generally good number maxlen maximum length of a pattern num_iterations number of iterations in each chain num_chains number of chains in the simulated annealing search algorithm q alpha_pos $\rho = alpha/(alpha+beta)$. Make sure $\rho$ is close to one when choosing alpha and beta The alpha and beta parameters alter the prior distributions for different rules beta_pos alpha_neg beta_neg alpha_l beta_l discretization_method discretization method ''' self.n_rules = n_rules self.supp = supp self.maxlen = maxlen self.num_iterations = num_iterations self.num_chains = num_chains self.q = q self.alpha_pos = alpha_pos self.beta_pos = beta_pos self.alpha_neg = alpha_neg self.beta_neg = beta_neg self.discretization_method = discretization_method self.alpha_l = alpha_l self.beta_l = beta_l self.random_state = 0 def fit(self, X, y, feature_names: list = None, init=[], verbose=False): ''' Parameters ---------- X : array-like, shape = [n_samples, n_features] Training data y : array_like, shape = [n_samples] Labels feature_names : array_like, shape = [n_features], optional (default: []) String labels for each feature. If empty and X is a DataFrame, column labels are used. If empty and X is not a DataFrame, then features are simply enumerated ''' # check inputs self.attr_level_num = defaultdict(int) # any missing value defaults to 0 self.attr_names = [] # get feature names if feature_names is None: if isinstance(X, pd.DataFrame): feature_names = X.columns else: feature_names = ['X' + str(i) for i in range(X.shape[1])] # checks X, y = check_X_y(X, y) # converts df to ndarray check_classification_targets(y) assert len(feature_names) == X.shape[1], 'feature_names should be same size as X.shape[1]' np.random.seed(self.random_state) # convert to pandas DataFrame X = pd.DataFrame(X, columns=feature_names) for i, name in enumerate(X.columns): self.attr_level_num[name] += 1 self.attr_names.append(name) self.attr_names_orig = deepcopy(self.attr_names) self.attr_names = list(set(self.attr_names)) # set up patterns self._set_pattern_space() # parameter checking if self.alpha_l is None or self.beta_l is None or len(self.alpha_l) != self.maxlen or len( self.beta_l) != self.maxlen: if verbose: print('No or wrong input for alpha_l and beta_l - the model will use default parameters.') self.C = [1.0 / self.maxlen] * self.maxlen self.C.insert(0, -1) self.alpha_l = [10] * (self.maxlen + 1) self.beta_l = [10 * self.pattern_space[i] / self.C[i] for i in range(self.maxlen + 1)] else: self.alpha_l = [1] + list(self.alpha_l) self.beta_l = [1] + list(self.beta_l) # setup self._generate_rules(X, y, verbose) n_rules_current = len(self.rules_) self.rules_len_list = [len(rule) for rule in self.rules_] maps = defaultdict(list) T0 = 1000 # initial temperature for simulated annealing split = 0.7 * self.num_iterations # run simulated annealing for chain in range(self.num_chains): # initialize with a random pattern set if init != []: rules_curr = init.copy() else: assert n_rules_current > 1, f'Only {n_rules_current} potential rules found, change hyperparams to allow for more' N = sample(range(1, min(8, n_rules_current), 1), 1)[0] rules_curr = sample(range(n_rules_current), N) rules_curr_norm = self._normalize(rules_curr) pt_curr = -100000000000 maps[chain].append( [-1, [pt_curr / 3, pt_curr / 3, pt_curr / 3], rules_curr, [self.rules_[i] for i in rules_curr]]) for iter in range(self.num_iterations): if iter >= split: p = np.array(range(1 + len(maps[chain]))) p = np.array(list(_accumulate(p))) p = p / p[-1] index = _find_lt(p, random()) rules_curr = maps[chain][index][2].copy() rules_curr_norm = maps[chain][index][2].copy() # propose new rules rules_new, rules_norm = self._propose(rules_curr.copy(), rules_curr_norm.copy(), self.q, y) # compute probability of new rules cfmatrix, prob = self._compute_prob(rules_new, y) T = T0 ** (1 - iter / self.num_iterations) # temperature for simulated annealing pt_new = sum(prob) with warnings.catch_warnings(): if not verbose: warnings.simplefilter("ignore") alpha = np.exp(float(pt_new - pt_curr) / T) if pt_new > sum(maps[chain][-1][1]): maps[chain].append([iter, prob, rules_new, [self.rules_[i] for i in rules_new]]) if verbose: print(( '\n** chain = {}, max at iter = {} ** \n accuracy = {}, TP = {},FP = {}, TN = {}, FN = {}' '\n pt_new is {}, prior_ChsRules={}, likelihood_1 = {}, likelihood_2 = {}\n').format( chain, iter, (cfmatrix[0] + cfmatrix[2] + 0.0) / len(y), cfmatrix[0], cfmatrix[1], cfmatrix[2], cfmatrix[3], sum(prob), prob[0], prob[1], prob[2]) ) self._print_rules(rules_new) print(rules_new) if random() <= alpha: rules_curr_norm, rules_curr, pt_curr = rules_norm.copy(), rules_new.copy(), pt_new pt_max = [sum(maps[chain][-1][1]) for chain in range(self.num_chains)] index = pt_max.index(max(pt_max)) self.rules_ = maps[index][-1][3] return self def __str__(self): return ' '.join(str(r) for r in self.rules_) def predict(self, X): check_is_fitted(self) if isinstance(X, np.ndarray): df =
pd.DataFrame(X, columns=self.attr_names_orig)
pandas.DataFrame
#%% import numpy as np import pandas as pd from scipy import stats import tqdm import prot.size as size # Load the data quantifying absolute protein synthesis rates. counts =
pd.read_csv('../../../data/peebo2015_raw_data/peebo2014_copynums_minimal.csv')
pandas.read_csv
# -*- coding: utf-8 -*- import nose import numpy as np from datetime import datetime from pandas.util import testing as tm from pandas.core import config as cf from pandas.compat import u from pandas.tslib import iNaT from pandas import (NaT, Float64Index, Series, DatetimeIndex, TimedeltaIndex, date_range) from pandas.types.dtypes import DatetimeTZDtype from pandas.types.missing import (array_equivalent, isnull, notnull, na_value_for_dtype) _multiprocess_can_split_ = True def test_notnull(): assert notnull(1.) assert not notnull(None) assert not notnull(np.NaN) with cf.option_context("mode.use_inf_as_null", False): assert notnull(np.inf) assert notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.all() with cf.option_context("mode.use_inf_as_null", True): assert not notnull(np.inf) assert not notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.sum() == 2 with cf.option_context("mode.use_inf_as_null", False): for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert (isinstance(isnull(s), Series)) def test_isnull(): assert not isnull(1.) assert isnull(None) assert isnull(np.NaN) assert not isnull(np.inf) assert not isnull(-np.inf) # series for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert (isinstance(isnull(s), Series)) # frame for df in [tm.makeTimeDataFrame(), tm.makePeriodFrame(), tm.makeMixedDataFrame()]: result = isnull(df) expected = df.apply(isnull) tm.assert_frame_equal(result, expected) # panel for p in [tm.makePanel(), tm.makePeriodPanel(), tm.add_nans(tm.makePanel()) ]: result = isnull(p) expected = p.apply(isnull) tm.assert_panel_equal(result, expected) # panel 4d for p in [tm.makePanel4D(), tm.add_nans_panel4d(tm.makePanel4D())]: result = isnull(p) expected = p.apply(isnull) tm.assert_panel4d_equal(result, expected) def test_isnull_lists(): result = isnull([[False]]) exp = np.array([[False]]) assert (np.array_equal(result, exp)) result = isnull([[1], [2]]) exp = np.array([[False], [False]]) assert (np.array_equal(result, exp)) # list of strings / unicode result = isnull(['foo', 'bar']) assert (not result.any()) result = isnull([u('foo'), u('bar')]) assert (not result.any()) def test_isnull_nat(): result = isnull([NaT]) exp = np.array([True]) assert (np.array_equal(result, exp)) result = isnull(np.array([NaT], dtype=object)) exp = np.array([True]) assert (np.array_equal(result, exp)) def test_isnull_numpy_nat(): arr = np.array([NaT, np.datetime64('NaT'), np.timedelta64('NaT'), np.datetime64('NaT', 's')]) result = isnull(arr) expected = np.array([True] * 4) tm.assert_numpy_array_equal(result, expected) def test_isnull_datetime(): assert (not isnull(datetime.now())) assert notnull(datetime.now()) idx = date_range('1/1/1990', periods=20) assert (notnull(idx).all()) idx = np.asarray(idx) idx[0] = iNaT idx = DatetimeIndex(idx) mask = isnull(idx) assert (mask[0]) assert (not mask[1:].any()) # GH 9129 pidx = idx.to_period(freq='M') mask = isnull(pidx) assert (mask[0]) assert (not mask[1:].any()) mask = isnull(pidx[1:]) assert (not mask.any()) class TestIsNull(tm.TestCase): def test_0d_array(self): self.assertTrue(isnull(np.array(np.nan))) self.assertFalse(isnull(np.array(0.0))) self.assertFalse(isnull(np.array(0))) # test object dtype self.assertTrue(isnull(np.array(np.nan, dtype=object))) self.assertFalse(isnull(np.array(0.0, dtype=object))) self.assertFalse(isnull(np.array(0, dtype=object))) def test_array_equivalent(): assert array_equivalent(np.array([np.nan, np.nan]), np.array([np.nan, np.nan])) assert array_equivalent(np.array([np.nan, 1, np.nan]), np.array([np.nan, 1, np.nan])) assert array_equivalent(np.array([np.nan, None], dtype='object'), np.array([np.nan, None], dtype='object')) assert array_equivalent(np.array([np.nan, 1 + 1j], dtype='complex'), np.array([np.nan, 1 + 1j], dtype='complex')) assert not array_equivalent( np.array([np.nan, 1 + 1j], dtype='complex'), np.array( [np.nan, 1 + 2j], dtype='complex')) assert not array_equivalent( np.array([np.nan, 1, np.nan]), np.array([np.nan, 2, np.nan])) assert not array_equivalent( np.array(['a', 'b', 'c', 'd']), np.array(['e', 'e'])) assert array_equivalent(Float64Index([0, np.nan]), Float64Index([0, np.nan])) assert not array_equivalent( Float64Index([0, np.nan]), Float64Index([1, np.nan])) assert array_equivalent(DatetimeIndex([0, np.nan]), DatetimeIndex([0, np.nan])) assert not array_equivalent( DatetimeIndex([0, np.nan]), DatetimeIndex([1, np.nan])) assert array_equivalent(TimedeltaIndex([0, np.nan]), TimedeltaIndex([0, np.nan])) assert not array_equivalent(
TimedeltaIndex([0, np.nan])
pandas.TimedeltaIndex
from datetime import datetime import numpy as np import pytest import pytz from pandas.core.dtypes.common import ( is_categorical_dtype, is_interval_dtype, is_object_dtype, ) from pandas import ( DataFrame, DatetimeIndex, Index, IntervalIndex, Series, Timestamp, cut, date_range, ) import pandas._testing as tm class TestDataFrameAlterAxes: @pytest.fixture def idx_expected(self): idx = DatetimeIndex(["2013-1-1 13:00", "2013-1-2 14:00"], name="B").tz_localize( "US/Pacific" ) expected = Series( np.array( [ Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), Timestamp("2013-01-02 14:00:00-0800", tz="US/Pacific"), ], dtype="object", ), name="B", ) assert expected.dtype == idx.dtype return idx, expected def test_to_series_keep_tz_deprecated_true(self, idx_expected): # convert to series while keeping the timezone idx, expected = idx_expected msg = "stop passing 'keep_tz'" with tm.assert_produces_warning(FutureWarning) as m: result = idx.to_series(keep_tz=True, index=[0, 1]) assert msg in str(m[0].message) tm.assert_series_equal(result, expected) def test_to_series_keep_tz_deprecated_false(self, idx_expected): idx, expected = idx_expected with tm.assert_produces_warning(FutureWarning) as m: result = idx.to_series(keep_tz=False, index=[0, 1]) tm.assert_series_equal(result, expected.dt.tz_convert(None)) msg = "do 'idx.tz_convert(None)' before calling" assert msg in str(m[0].message) def test_setitem_dt64series(self, idx_expected): # convert to utc idx, expected = idx_expected df = DataFrame(np.random.randn(2, 1), columns=["A"]) df["B"] = idx with tm.assert_produces_warning(FutureWarning) as m: df["B"] = idx.to_series(keep_tz=False, index=[0, 1]) msg = "do 'idx.tz_convert(None)' before calling" assert msg in str(m[0].message) result = df["B"] comp = Series(idx.tz_convert("UTC").tz_localize(None), name="B") tm.assert_series_equal(result, comp) def test_setitem_datetimeindex(self, idx_expected): # setting a DataFrame column with a tzaware DTI retains the dtype idx, expected = idx_expected df = DataFrame(np.random.randn(2, 1), columns=["A"]) # assign to frame df["B"] = idx result = df["B"] tm.assert_series_equal(result, expected) def test_setitem_object_array_of_tzaware_datetimes(self, idx_expected): # setting a DataFrame column with a tzaware DTI retains the dtype idx, expected = idx_expected df = DataFrame(np.random.randn(2, 1), columns=["A"]) # object array of datetimes with a tz df["B"] = idx.to_pydatetime() result = df["B"]
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
import sys import time import pandas as pd import numpy as np import copyreg, types from tqdm import tqdm import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns plt.style.use('seaborn-talk') plt.style.use('bmh') #plt.rcParams['font.family'] = 'DejaVu Sans Mono' plt.rcParams['font.size'] = 9.5 plt.rcParams['font.weight'] = 'medium' # ======================================================= # Symmetric CUSUM Filter [2.5.2.1] def getTEvents(gRaw, h): """cusum filter args ---- gRaw: array-like h: int() or float() returns ------- pd.DatetimeIndex() """ tEvents, sPos, sNeg = [], 0, 0 diff = np.log(gRaw).diff().dropna().abs() for i in tqdm(diff.index[1:]): try: pos, neg = float(sPos+diff.loc[i]), float(sNeg+diff.loc[i]) except Exception as e: print(e) print(sPos+diff.loc[i], type(sPos+diff.loc[i])) print(sNeg+diff.loc[i], type(sNeg+diff.loc[i])) break sPos, sNeg=max(0., pos), min(0., neg) if sNeg<-h: sNeg=0;tEvents.append(i) elif sPos>h: sPos=0;tEvents.append(i) return pd.DatetimeIndex(tEvents) # ======================================================= # Daily Volatility Estimator [3.1] ## for wtvr reason dates are not aligned for return calculation ## must account for it for computation def getDailyVol(close,span0=100): # daily vol reindexed to close df0=close.index.searchsorted(close.index-pd.Timedelta(days=1)) #bp() df0=df0[df0>0] #bp() df0=(pd.Series(close.index[df0-1], index=close.index[close.shape[0]-df0.shape[0]:])) #bp() try: df0=close.loc[df0.index]/close.loc[df0.values].values-1 # daily rets except Exception as e: print(e) print('adjusting shape of close.loc[df0.index]') cut = close.loc[df0.index].shape[0] - close.loc[df0.values].shape[0] df0=close.loc[df0.index].iloc[:-cut]/close.loc[df0.values].values-1 df0=df0.ewm(span=span0).std().rename('dailyVol') return df0 # ======================================================= # Triple-Barrier Labeling Method [3.2] def applyPtSlOnT1(close,events,ptSl,molecule): # apply stop loss/profit taking, if it takes place before t1 (end of event) events_=events.loc[molecule] out=events_[['t1']].copy(deep=True) if ptSl[0]>0: pt=ptSl[0]*events_['trgt'] else: pt=pd.Series(index=events.index) # NaNs if ptSl[1]>0: sl=-ptSl[1]*events_['trgt'] else: sl=pd.Series(index=events.index) # NaNs for loc,t1 in events_['t1'].fillna(close.index[-1]).iteritems(): df0=close[loc:t1] # path prices df0=(df0/close[loc]-1)*events_.at[loc,'side'] # path returns out.loc[loc,'sl']=df0[df0<sl[loc]].index.min() # earliest stop loss out.loc[loc,'pt']=df0[df0>pt[loc]].index.min() # earliest profit taking return out # ======================================================= # Gettting Time of First Touch (getEvents) [3.3] def getEvents(close, tEvents, ptSl, trgt, minRet, numThreads,t1=False, side=None): #1) get target trgt=trgt.loc[tEvents] trgt=trgt[trgt>minRet] # minRet #2) get t1 (max holding period) if t1 is False:t1=pd.Series(pd.NaT, index=tEvents) #3) form events object, apply stop loss on t1 if side is None:side_,ptSl_=pd.Series(1.,index=trgt.index), [ptSl[0],ptSl[0]] else: side_,ptSl_=side.loc[trgt.index],ptSl[:2] events=(pd.concat({'t1':t1,'trgt':trgt,'side':side_}, axis=1) .dropna(subset=['trgt'])) df0=mpPandasObj(func=applyPtSlOnT1,pdObj=('molecule',events.index), numThreads=numThreads,close=close,events=events, ptSl=ptSl_) events['t1']=df0.dropna(how='all').min(axis=1) #pd.min ignores nan if side is None:events=events.drop('side',axis=1) return events # ======================================================= # Adding Vertical Barrier [3.4] def addVerticalBarrier(tEvents, close, numDays=1): t1=close.index.searchsorted(tEvents+pd.Timedelta(days=numDays)) t1=t1[t1<close.shape[0]] t1=(pd.Series(close.index[t1],index=tEvents[:t1.shape[0]])) return t1 # ======================================================= # Labeling for side and size [3.5, 3.8] def getBins(events, close, t1=None): ''' Compute event's outcome (including side information, if provided). events is a DataFrame where: -events.index is event's starttime -events['t1'] is event's endtime -events['trgt'] is event's target -events['side'] (optional) implies the algo's position side -t1 is original vertical barrier series Case 1: ('side' not in events): bin in (-1,1) <-label by price action Case 2: ('side' in events): bin in (0,1) <-label by pnl (meta-labeling) ''' # 1) prices aligned with events events_ = events.dropna(subset=['t1']) px = events_.index.union(events_['t1'].values).drop_duplicates() px = close.reindex(px, method='bfill') # 2) create out object out = pd.DataFrame(index=events_.index) out['ret'] = px.loc[events_['t1'].values].values / px.loc[ events_.index] - 1 if 'side' in events_: out['ret'] *= events_['side'] # meta-labeling out['bin'] = np.sign(out['ret']) if 'side' not in events_: # only applies when not meta-labeling. # to update bin to 0 when vertical barrier is touched, we need the # original vertical barrier series since the events['t1'] is the time # of first touch of any barrier and not the vertical barrier # specifically. The index of the intersection of the vertical barrier # values and the events['t1'] values indicate which bin labels needs # to be turned to 0. vtouch_first_idx = events[events['t1'].isin(t1.values)].index out.loc[vtouch_first_idx, 'bin'] = 0. if 'side' in events_: out.loc[out['ret'] <= 0, 'bin'] = 0 # meta-labeling return out # ======================================================= # Expanding getBins to Incorporate Meta-Labeling [3.7] def getBinsOld(events, close): ''' Compute event's outcome (including side information, if provided). events is a DataFrame where: -events.index is event's starttime -events['t1'] is event's endtime -events['trgt'] is event's target -events['side'] (optional) implies the algo's position side Case 1: ('side' not in events): bin in (-1,1) <-label by price action Case 2: ('side' in events): bin in (0,1) <-label by pnl (meta-labeling) ''' #1) prices aligned with events events_=events.dropna(subset=['t1']) px=events_.index.union(events_['t1'].values).drop_duplicates() px=close.reindex(px,method='bfill') #2) create out object out=pd.DataFrame(index=events_.index) out['ret']=px.loc[events_['t1'].values].values/px.loc[events_.index]-1 if 'side' in events_:out['ret']*=events_['side'] # meta-labeling out['bin']=np.sign(out['ret']) if 'side' in events_:out.loc[out['ret']<=0,'bin']=0 # meta-labeling return out # ======================================================= # Dropping Unnecessary Labels [3.8] def dropLabels(events, minPct=.05): # apply weights, drop labels with insufficient examples while True: df0=events['bin'].value_counts(normalize=True) if df0.min()>minPct or df0.shape[0]<3:break print('dropped label: ', df0.argmin(),df0.min()) events=events[events['bin']!=df0.argmin()] return events # ======================================================= # Linear Partitions [20.4.1] def linParts(numAtoms,numThreads): # partition of atoms with a single loop parts=np.linspace(0,numAtoms,min(numThreads,numAtoms)+1) parts=np.ceil(parts).astype(int) return parts def nestedParts(numAtoms,numThreads,upperTriang=False): # partition of atoms with an inner loop parts,numThreads_=[0],min(numThreads,numAtoms) for num in range(numThreads_): part=1+4*(parts[-1]**2+parts[-1]+numAtoms*(numAtoms+1.)/numThreads_) part=(-1+part**.5)/2. parts.append(part) parts=np.round(parts).astype(int) if upperTriang: # the first rows are heaviest parts=np.cumsum(np.diff(parts)[::-1]) parts=np.append(np.array([0]),parts) return parts # ======================================================= # multiprocessing snippet [20.7] def mpPandasObj(func,pdObj,numThreads=24,mpBatches=1,linMols=True,**kargs): ''' Parallelize jobs, return a dataframe or series + func: function to be parallelized. Returns a DataFrame + pdObj[0]: Name of argument used to pass the molecule + pdObj[1]: List of atoms that will be grouped into molecules + kwds: any other argument needed by func Example: df1=mpPandasObj(func,('molecule',df0.index),24,**kwds) ''' import pandas as pd #if linMols:parts=linParts(len(argList[1]),numThreads*mpBatches) #else:parts=nestedParts(len(argList[1]),numThreads*mpBatches) if linMols:parts=linParts(len(pdObj[1]),numThreads*mpBatches) else:parts=nestedParts(len(pdObj[1]),numThreads*mpBatches) jobs=[] for i in range(1,len(parts)): job={pdObj[0]:pdObj[1][parts[i-1]:parts[i]],'func':func} job.update(kargs) jobs.append(job) if numThreads==1:out=processJobs_(jobs) else: out=processJobs(jobs,numThreads=numThreads) if isinstance(out[0],pd.DataFrame):df0=pd.DataFrame() elif isinstance(out[0],pd.Series):df0=pd.Series() else:return out for i in out:df0=df0.append(i) df0=df0.sort_index() return df0 # ======================================================= # single-thread execution for debugging [20.8] def processJobs_(jobs): # Run jobs sequentially, for debugging out=[] for job in jobs: out_=expandCall(job) out.append(out_) return out # ======================================================= # Example of async call to multiprocessing lib [20.9] import multiprocessing as mp import datetime as dt #________________________________ def reportProgress(jobNum,numJobs,time0,task): # Report progress as asynch jobs are completed msg=[float(jobNum)/numJobs, (time.time()-time0)/60.] msg.append(msg[1]*(1/msg[0]-1)) timeStamp=str(dt.datetime.fromtimestamp(time.time())) msg=timeStamp+' '+str(round(msg[0]*100,2))+'% '+task+' done after '+ \ str(round(msg[1],2))+' minutes. Remaining '+str(round(msg[2],2))+' minutes.' if jobNum<numJobs:sys.stderr.write(msg+'\r') else:sys.stderr.write(msg+'\n') return #________________________________ def processJobs(jobs,task=None,numThreads=24): # Run in parallel. # jobs must contain a 'func' callback, for expandCall if task is None:task=jobs[0]['func'].__name__ pool=mp.Pool(processes=numThreads) outputs,out,time0=pool.imap_unordered(expandCall,jobs),[],time.time() # Process asyn output, report progress for i,out_ in enumerate(outputs,1): out.append(out_) reportProgress(i,len(jobs),time0,task) pool.close();pool.join() # this is needed to prevent memory leaks return out # ======================================================= # Unwrapping the Callback [20.10] def expandCall(kargs): # Expand the arguments of a callback function, kargs['func'] func=kargs['func'] del kargs['func'] out=func(**kargs) return out # ======================================================= # Pickle Unpickling Objects [20.11] def _pickle_method(method): func_name=method.im_func.__name__ obj=method.im_self cls=method.im_class return _unpickle_method, (func_name,obj,cls) #________________________________ def _unpickle_method(func_name,obj,cls): for cls in cls.mro(): try:func=cls.__dict__[func_name] except KeyError:pass else:break return func.__get__(obj,cls) #________________________________ # ======================================================= # Estimating uniqueness of a label [4.1] def mpNumCoEvents(closeIdx,t1,molecule): ''' Compute the number of concurrent events per bar. +molecule[0] is the date of the first event on which the weight will be computed +molecule[-1] is the date of the last event on which the weight will be computed Any event that starts before t1[modelcule].max() impacts the count. ''' #1) find events that span the period [molecule[0],molecule[-1]] t1=t1.fillna(closeIdx[-1]) # unclosed events still must impact other weights t1=t1[t1>=molecule[0]] # events that end at or after molecule[0] t1=t1.loc[:t1[molecule].max()] # events that start at or before t1[molecule].max() #2) count events spanning a bar iloc=closeIdx.searchsorted(np.array([t1.index[0],t1.max()])) count=pd.Series(0,index=closeIdx[iloc[0]:iloc[1]+1]) for tIn,tOut in t1.iteritems():count.loc[tIn:tOut]+=1. return count.loc[molecule[0]:t1[molecule].max()] # ======================================================= # Estimating the average uniqueness of a label [4.2] def mpSampleTW(t1,numCoEvents,molecule): # Derive avg. uniqueness over the events lifespan wght=pd.Series(index=molecule) for tIn,tOut in t1.loc[wght.index].iteritems(): wght.loc[tIn]=(1./numCoEvents.loc[tIn:tOut]).mean() return wght # ======================================================= # Sequential Bootstrap [4.5.2] ## Build Indicator Matrix [4.3] def getIndMatrix(barIx,t1): # Get Indicator matrix indM=(pd.DataFrame(0,index=barIx,columns=range(t1.shape[0]))) for i,(t0,t1) in enumerate(t1.iteritems()):indM.loc[t0:t1,i]=1. return indM # ======================================================= # Compute average uniqueness [4.4] def getAvgUniqueness(indM): # Average uniqueness from indicator matrix c=indM.sum(axis=1) # concurrency u=indM.div(c,axis=0) # uniqueness avgU=u[u>0].mean() # avg. uniqueness return avgU # ======================================================= # return sample from sequential bootstrap [4.5] def seqBootstrap(indM,sLength=None): # Generate a sample via sequential bootstrap if sLength is None:sLength=indM.shape[1] phi=[] while len(phi)<sLength: avgU=pd.Series() for i in indM: indM_=indM[phi+[i]] # reduce indM avgU.loc[i]=getAvgUniqueness(indM_).iloc[-1] prob=avgU/avgU.sum() # draw prob phi+=[np.random.choice(indM.columns,p=prob)] return phi # ======================================================= # Determination of sample weight by absolute return attribution [4.10] def mpSampleW(t1,numCoEvents,close,molecule): # Derive sample weight by return attribution ret=np.log(close).diff() # log-returns, so that they are additive wght=pd.Series(index=molecule) for tIn,tOut in t1.loc[wght.index].iteritems(): wght.loc[tIn]=(ret.loc[tIn:tOut]/numCoEvents.loc[tIn:tOut]).sum() return wght.abs() # ======================================================= # fractionally differentiated features snippets # ======================================================= # get weights def getWeights(d,size): # thres>0 drops insignificant weights w=[1.] for k in range(1,size): w_ = -w[-1]/k*(d-k+1) w.append(w_) w=np.array(w[::-1]).reshape(-1,1) return w def getWeights_FFD(d,thres): w,k=[1.],1 while True: w_=-w[-1]/k*(d-k+1) if abs(w_)<thres:break w.append(w_);k+=1 return np.array(w[::-1]).reshape(-1,1) # ======================================================= # expanding window fractional differentiation def fracDiff(series, d, thres=0.01): ''' Increasing width window, with treatment of NaNs Note 1: For thres=1, nothing is skipped Note 2: d can be any positive fractional, not necessarily bounded between [0,1] ''' #1) Compute weights for the longest series w=getWeights(d, series.shape[0]) #2) Determine initial calcs to be skipped based on weight-loss threshold w_=np.cumsum(abs(w)) w_ /= w_[-1] skip = w_[w_>thres].shape[0] #3) Apply weights to values df={} for name in series.columns: seriesF, df_=series[[name]].fillna(method='ffill').dropna(), pd.Series() for iloc in range(skip, seriesF.shape[0]): loc=seriesF.index[iloc] if not np.isfinite(series.loc[loc,name]).any():continue # exclude NAs try: df_.loc[loc]=np.dot(w[-(iloc+1):,:].T, seriesF.loc[:loc])[0,0] except: continue df[name]=df_.copy(deep=True) df=pd.concat(df,axis=1) return df # ======================================================= # fixed-width window fractional differentiation def fracDiff_FFD(series,d,thres=1e-5): # Constant width window (new solution) w = getWeights_FFD(d,thres) width = len(w)-1 df={} for name in series.columns: seriesF, df_=series[[name]].fillna(method='ffill').dropna(), pd.Series() for iloc1 in range(width,seriesF.shape[0]): loc0,loc1=seriesF.index[iloc1-width], seriesF.index[iloc1] test_val = series.loc[loc1,name] # must resample if duplicate index if isinstance(test_val, (pd.Series, pd.DataFrame)): test_val = test_val.resample('1m').mean() if not np.isfinite(test_val).any(): continue # exclude NAs try: df_.loc[loc1]=np.dot(w.T, seriesF.loc[loc0:loc1])[0,0] except: continue df[name]=df_.copy(deep=True) df=pd.concat(df,axis=1) return df """ def fracDiff_FFD(series,d,thres=1e-5): ''' Constant width window (new solution) Note 1: thres determines the cut-off weight for the window Note 2: d can be any positive fractional, not necessarily bounded [0,1]. ''' #1) Compute weights for the longest series w=getWeights_FFD(d, thres) ## WHERE IS THIS FUNCTION IN THE BOOK width=len(w)-1 #2) Apply weights to values df={} for name in series.columns: seriesF, df_=series[[name]].fillna(method='ffill').dropna(), pd.Series() for iloc1 in range(width,seriesF.shape[0]): loc0,loc1=seriesF.index[iloc1-width], seriesF.index[iloc1] if not np.isfinite(series.loc[loc1,name]): continue # exclude NAs df_.loc[loc1]=np.dot(w.T, seriesF.loc[loc0:loc1])[0,0] df[name]=df_.copy(deep=True) df=pd.concat(df,axis=1) return df """ # ======================================================= # finding the min. D value that passes ADF test def plotMinFFD(df0, thres=1e-5): # pg. 85 from statsmodels.tsa.stattools import adfuller import matplotlib.pyplot as plt out=pd.DataFrame(columns=['adfStat','pVal','lags','nObs','95% conf','corr']) for d in np.linspace(0,1,11): df1=np.log(df0[['close']]).resample('1D').last() # downcast to daily obs df2=fracDiff_FFD(df1,d,thres=thres) corr=np.corrcoef(df1.loc[df2.index,'close'],df2['close'])[0,1] df2=adfuller(df2['close'],maxlag=1,regression='c',autolag=None) out.loc[d]=list(df2[:4])+[df2[4]['5%']]+[corr] # with critical value f,ax=plt.subplots(figsize=(9,5)) out[['adfStat','corr']].plot(ax=ax, secondary_y='adfStat') plt.axhline(out['95% conf'].mean(),linewidth=1,color='r',linestyle='dotted') return out # ======================================================= # Modeling snippets # ======================================================= # ======================================================= # Purging observations in the training set (7.1) def getTrainTimes(t1,testTimes): """ Given testTimes, find the times of the training observations -t1.index: Time when the observation started -t1.value: Time when the observation ended -testTimes: Times of testing observations """ trn=t1.copy(deep=True) for i,j in testTimes.iteritems(): df0=trn[(i<=trn.index)&(trn.index<=j)].index # train starts within test df1=trn[(i<=trn)&(trn<=j)].index # train ends within test df2=trn[(trn.index<=i)&(j<=trn)].index # train envelops test trn=trn.drop(df0.union(df1).union(df2)) return trn # ======================================================= # Embargo on Training Observations (7.2) def getEmbargoTimes(times,pctEmbargo): # Get embargo time for each bar step=int(times.shape[0]*pctEmbargo) if step==0: mbrg=pd.Series(times,index=times) else: mbrg=pd.Series(times[step:],index=times[:-step]) mbrg=mbrg.append(pd.Series(times[-1],index=times[-step:])) return mbrg ## Examples # testtimes=pd.Series(mbrg[dt1],index=[dt0]) # include embargo before purge # trainTimes=getTrainTimes(t1,testTimes) # testTimes=t1.loc[dt0:dt1].index # ======================================================= # Cross-validation class when observations overlap (7.3) from sklearn.model_selection._split import _BaseKFold class PurgedKFold(_BaseKFold): """ Extend KFold class to work with labels that span intervals The train is purged of observations overlapping test-label intervals Test set is assumed contiguous (shuffle=False), w/o training samples in between """ def __init__(self,n_splits=3,t1=None,pctEmbargo=0.): if not isinstance(t1,pd.Series): raise ValueError('Label Through Dates must be a pd.Series') super(PurgedKFold,self).__init__(n_splits,shuffle=False,random_state=None) self.t1=t1 self.pctEmbargo=pctEmbargo def split(self,X,y=None,groups=None): if (X.index==self.t1.index).sum()!=len(self.t1): raise ValueError('X and ThruDateValues must have the same index') # TODO: grouping function combinations insert here?? # manage groups by using label in dataframe? # use combinations + group label to split into chunks?? indices=np.arange(X.shape[0]) mbrg=int(X.shape[0]*self.pctEmbargo) test_starts=[ (i[0],i[-1]+1) for i in np.array_split(np.arange(X.shape[0]), self.n_splits) ] for i,j in test_starts: t0=self.t1.index[i] # start of test set test_indices=indices[i:j] maxT1Idx=self.t1.index.searchsorted(self.t1[test_indices].max()) train_indices=self.t1.index.searchsorted(self.t1[self.t1<=t0].index) if maxT1Idx<X.shape[0]: # right train ( with embargo) train_indices=np.concatenate((train_indices, indices[maxT1Idx+mbrg:])) yield train_indices,test_indices # ======================================================= # CV score implements purgedKfold & embargo (7.4) def cvScore(clf,X,y,sample_weight,scoring='neg_log_loss', t1=None,cv=None,cvGen=None,pctEmbargo=None): if scoring not in ['neg_log_loss','accuracy']: raise Exception('wrong scoring method.') from sklearn.metrics import log_loss,accuracy_score idx = pd.IndexSlice if cvGen is None: cvGen=PurgedKFold(n_splits=cv,t1=t1,pctEmbargo=pctEmbargo) # purged score=[] for train,test in cvGen.split(X=X): fit=clf.fit(X=X.iloc[idx[train],:],y=y.iloc[idx[train]], sample_weight=sample_weight.iloc[idx[train]].values) if scoring=='neg_log_loss': prob=fit.predict_proba(X.iloc[idx[test],:]) score_=-log_loss(y.iloc[idx[test]], prob, sample_weight=sample_weight.iloc[idx[test]].values, labels=clf.classes_) else: pred=fit.predict(X.iloc[idx[test],:]) score_=accuracy_score(y.iloc[idx[test]],pred, sample_weight=sample_weight.iloc[idx[test]].values) score.append(score_) return np.array(score) # ======================================================= # Plot ROC-AUC for purgedKFold def crossValPlot(skf,classifier,X,y): """Code adapted from: sklearn crossval example """ from itertools import cycle from sklearn.metrics import roc_curve, auc from scipy import interp tprs = [] aucs = [] mean_fpr = np.linspace(0, 1, 100) idx = pd.IndexSlice f,ax = plt.subplots(figsize=(10,7)) i = 0 for train, test in skf.split(X, y): probas_ = (classifier.fit(X.iloc[idx[train]], y.iloc[idx[train]]) .predict_proba(X.iloc[idx[test]])) # Compute ROC curve and area the curve fpr, tpr, thresholds = roc_curve(y.iloc[idx[test]], probas_[:, 1]) tprs.append(interp(mean_fpr, fpr, tpr)) tprs[-1][0] = 0.0 roc_auc = auc(fpr, tpr) aucs.append(roc_auc) ax.plot(fpr, tpr, lw=1, alpha=0.3, label='ROC fold %d (AUC = %0.2f)' % (i, roc_auc)) i += 1 ax.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r', label='Luck', alpha=.8) mean_tpr = np.mean(tprs, axis=0) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) std_auc = np.std(aucs) ax.plot(mean_fpr, mean_tpr, color='b', label=r'Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (mean_auc, std_auc), lw=2, alpha=.8) std_tpr = np.std(tprs, axis=0) tprs_upper = np.minimum(mean_tpr + std_tpr, 1) tprs_lower = np.maximum(mean_tpr - std_tpr, 0) ax.fill_between(mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2, label=r'$\pm$ 1 std. dev.') ax.set_xlim([-0.05, 1.05]) ax.set_ylim([-0.05, 1.05]) ax.set_xlabel('False Positive Rate') ax.set_ylabel('True Positive Rate') ax.set_title('Receiver operating characteristic example') ax.legend(bbox_to_anchor=(1,1)) #======================================================= # Feature Importance snippets #======================================================= #======================================================= # 8.2 Mean Decrease Impurity (MDI) def featImpMDI(fit,featNames): # feat importance based on IS mean impurity reduction # only works with tree based classifiers df0={i:tree.feature_importances_ for i,tree in enumerate(fit.estimators_)} df0=pd.DataFrame.from_dict(df0,orient='index') df0.columns=featNames df0=df0.replace(0,np.nan) # b/c max_features=1 imp=(pd.concat({'mean':df0.mean(), 'std':df0.std()*df0.shape[0]**-0.5}, axis=1)) imp/=imp['mean'].sum() return imp #======================================================= # 8.3 Mean Decrease Accuracy (MDA) def featImpMDA(clf,X,y,cv,sample_weight,t1,pctEmbargo,scoring='neg_log_loss'): # feat imporant based on OOS score reduction if scoring not in ['neg_log_loss','accuracy']: raise ValueError('wrong scoring method.') from sklearn.metrics import log_loss, accuracy_score cvGen=PurgedKFold(n_splits=cv,t1=t1,pctEmbargo=pctEmbargo) # purged cv scr0,scr1=pd.SEries(), pd.DataFrame(columns=X.columns) for i,(train,test) in enumerate(cvGen.split(X=X)): X0,y0,w0=X.iloc[train,:],y.iloc[train],sample_weight.iloc[train] X1,y1,w1=X.iloc[test,:],y.iloc[test],sample_weight.iloc[test] fit=clf.fit(X=X0,y=y0,sample_weight=w0.values) if scoring=='neg_log_loss': prob=fit.predict_proba(X1) scr0.loc[i]=-log_loss(y1,prob,sample_weight=w1.values, labels=clf.classes_) else: pred=fit.predict(X1) scr0.loc[i]=accuracy_score(y1,pred,sample_weight=w1.values) for j in X.columns: X1_=X1.copy(deep=True) np.random.shuffle(X1_[j].values) # permutation of a single column if scoring=='neg_log_loss': prob=fit.predict_proba(X1_) scr1.loc[i,j]=-log_loss(y1,prob,sample_weight=w1.values, labels=clf.classes_) else: pred=fit.predict(X1_) scr1.loc[i,j]=accuracy_score(y1,pred,sample_weight=w1.values) imp=(-scr1).add(scr0,axis=0) if scoring=='neg_log_loss':imp=imp/-scr1 else: imp=imp/(1.-scr1) imp=(pd.concat({'mean':imp.mean(), 'std':imp.std()*imp.shape[0]**-0.5}, axis=1)) return imp,scr0.mean() #======================================================= # 8.4 Single Feature Importance (SFI) def auxFeatImpSFI(featNames,clf,trnsX,cont,scoring,cvGen): imp=pd.DataFrame(columns=['mean','std']) for featName in featNames: df0=cvScore(clf,X=trnsX[[featName]],y=cont['bin'], sample_weight=cont['w'],scoring=scoring,cvGen=cvGen) imp.loc[featName,'mean']=df0.mean() imp.loc[featName,'std']=df0.std()*df0.shape[0]**-0.5 return imp #======================================================= # 8.5 Computation of Orthogonal Features def get_eVec(dot,varThres): # compute eVec from dot proc matrix, reduce dimension eVal,eVec=np.linalg.eigh(dot) idx=eVal.argsort()[::-1] # arugments for sorting eVal desc. eVal,eVec=eVal[idx],eVec[:,idx] #2) only positive eVals eVal=(pd.Series(eVal,index=['PC_'+str(i+1) for i in range(eVal.shape[0])])) eVec=(pd.DataFrame(eVec,index=dot.index,columns=eVal.index)) eVec=eVec.loc[:,eVal.index] #3) reduce dimension, form PCs cumVar=eVal.cumsum()/eVal.sum() dim=cumVar.values.searchsorted(varThres) eVal,eVec=eVal.iloc[:dim+1],eVec.iloc[:,:dim+1] return eVal,eVec def orthoFeats(dfx,varThres=0.95): # given a DataFrame, dfx, of features, compute orthofeatures dfP dfZ=dfx.sub(dfx.mean(),axis=1).div(dfx.std(),axis=1) # standardize dot=(pd.DataFrame(np.dot(dfZ.T,dfZ), index=dfx.columns, columns=dfx.columns)) eVal,eVec=get_eVec(dot,varThres) dfP=np.dot(dfZ,eVec) return dfP #======================================================= # 8.6 Computation of weighted kendall's tau between feature importance and inverse PCA ranking #from scipy.stats import weightedtau #featImp=np.array([0.55,0.33,0.07,0.05]) # feature importance #pcRank=np.array([1,2,3,4],dtype=np.float) # PCA rank #weightedtau(featImp,pcRank**-1)[0] #======================================================= # 8.7 Creating a Synthetic Dataset def getTestData(n_features=40,n_informative=10,n_redundant=10,n_samples=10_000): # generate a random dataset for a classification problem from sklearn.datasets import make_classification kwds=dict(n_samples=n_samples,n_features=n_feautres, n_informative=n_informative,n_redundant=n_redundant, random_state=0,shuffle=False) trnsX,cont=make_classification(**kwds) df0=(pd.DatetimeIndex(periods=n_samples, freq=pd.tseries.offsets.BDay(), end=pd.datetime.today())) trnsX,cont=(pd.DataFrame(trnsX,index=df0),
pd.Series(cont,index=df0)
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Aug 8 18:31:16 2020 @author: arti """ import pandas as pd df =
pd.read_csv('stock-data.csv')
pandas.read_csv
# Download images using csv of ids: # python download_image_by_ids.py ~/data/iMaterialist/train.json ~/data/iMaterialist/train_30k ~/data/iMaterialist/train_30k_labels.csv from __future__ import absolute_import from __future__ import division from __future__ import print_function import io import os import sys import json import urllib3 import multiprocessing import pandas as pd from PIL import Image from tqdm import tqdm from urllib3.util import Retry urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) def load_dataset(_dataset, _outdir, _filter_ids): with open(_dataset, 'r') as f: data_dict = json.load(f) imgs = pd.DataFrame(data_dict['images']) imgs.columns = ['id', 'url'] imgs['fn'] = _outdir + imgs['id'] + '.jpg' imgs = imgs.loc[imgs['id'].isin(_filter_ids), :] return imgs def format_urls_for_download(_data_df): _fnames_urls = _data_df[['fn', 'url']].values.tolist() return _fnames_urls def download_image(fnames_and_urls): """ download image and save its with 90% quality as JPG format skip image downloading if image already exists at given path :param fnames_and_urls: tuple containing absolute path and url of image """ fname, url = fnames_and_urls if not os.path.exists(fname): http = urllib3.PoolManager(retries=Retry(connect=3, read=2, redirect=3)) response = http.request("GET", url) image = Image.open(io.BytesIO(response.data)) image_rgb = image.convert("RGB") image_rgb.save(fname, format='JPEG', quality=90) if __name__ == '__main__': if len(sys.argv) < 3: print("error: not enough arguments") sys.exit(0) # get args and create output directory train_json = sys.argv[1] outdir = sys.argv[2] if not outdir.endswith('/'): outdir += '/' labels =
pd.read_csv(sys.argv[3], dtype=str)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import math import utm from shapely import wkt import csv from PointCloudVisualization import convert_fusedata,readFusedata_toDF # In[2]: def readxyz(filename,extra = []): data = [] with open(filename) as f: line = f.readline() while line: line = line.rstrip("\n") d = line.split(",") data.append(d) line = f.readline() a = np.array(data)[0] x_min = float(a[0]) y_min = float(a[1]) z_min = float(a[2]) number = letter = 0 if len(extra) > 0: number = float(a[3]) letter = str(a[4]) return x_min,y_min,z_min,number,letter # In[3]: def readXYZdata_toDF(namedf,ignoreline = False, delimeter = " "): data = [] with open(namedf) as f: line = f.readline() while line: if ignoreline == True: line = f.readline() ignoreline = False continue d = line.split(delimeter) data.append(d) line = f.readline() a = np.array(data) df_PointCloud = pd.DataFrame() df_PointCloud["East"] =
pd.to_numeric(a[:,0])
pandas.to_numeric
from collections import ( abc, deque, ) from decimal import Decimal from warnings import catch_warnings import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, PeriodIndex, Series, concat, date_range, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal class TestConcatenate: def test_append_concat(self): # GH#1815 d1 = date_range("12/31/1990", "12/31/1999", freq="A-DEC") d2 = date_range("12/31/2000", "12/31/2009", freq="A-DEC") s1 = Series(np.random.randn(10), d1) s2 = Series(np.random.randn(10), d2) s1 = s1.to_period() s2 = s2.to_period() # drops index result = concat([s1, s2]) assert isinstance(result.index, PeriodIndex) assert result.index[0] == s1.index[0] def test_concat_copy(self, using_array_manager): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for arr in result._mgr.arrays: assert arr.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for arr in result._mgr.arrays: if arr.dtype.kind == "f": assert arr.base is df._mgr.arrays[0].base elif arr.dtype.kind in ["i", "u"]: assert arr.base is df2._mgr.arrays[0].base elif arr.dtype == object: if using_array_manager: # we get the same array object, which has no base assert arr is df3._mgr.arrays[0] else: assert arr.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for arr in result._mgr.arrays: if arr.dtype.kind == "f": if using_array_manager: # this is a view on some array in either df or df4 assert any( np.shares_memory(arr, other) for other in df._mgr.arrays + df4._mgr.arrays ) else: # the block was consolidated, so we got a copy anyway assert arr.base is None elif arr.dtype.kind in ["i", "u"]: assert arr.base is df2._mgr.arrays[0].base elif arr.dtype == object: # this is a view on df3 assert any(np.shares_memory(arr, other) for other in df3._mgr.arrays) def test_concat_with_group_keys(self): # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result = concat(frames, axis=1) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1) tm.assert_frame_equal(result, expected) keys = ["baz", "foo", "bar"] result = concat(frames, keys=keys) expected = concat([frames[k] for k in keys], keys=keys) tm.assert_frame_equal(result, expected) def test_concat_keys_and_levels(self): df = DataFrame(np.random.randn(1, 3)) df2 = DataFrame(np.random.randn(1, 4)) levels = [["foo", "baz"], ["one", "two"]] names = ["first", "second"] result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, names=names, ) expected = concat([df, df2, df, df2]) exp_index = MultiIndex( levels=levels + [[0]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 0, 0]], names=names + [None], ) expected.index = exp_index tm.assert_frame_equal(result, expected) # no names result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, ) assert result.index.names == (None,) * 3 # no levels result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], names=["first", "second"], ) assert result.index.names == ("first", "second", None) tm.assert_index_equal( result.index.levels[0], Index(["baz", "foo"], name="first") ) def test_concat_keys_levels_no_overlap(self): # GH #1406 df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) msg = "Values not found in passed level" with pytest.raises(ValueError, match=msg): concat([df, df], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) msg = "Key one not in level" with pytest.raises(ValueError, match=msg): concat([df, df2], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) def test_crossed_dtypes_weird_corner(self): columns = ["A", "B", "C", "D"] df1 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="f8"), "B": np.array([1, 2, 3, 4], dtype="i8"), "C": np.array([1, 2, 3, 4], dtype="f8"), "D": np.array([1, 2, 3, 4], dtype="i8"), }, columns=columns, ) df2 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="i8"), "B": np.array([1, 2, 3, 4], dtype="f8"), "C": np.array([1, 2, 3, 4], dtype="i8"), "D": np.array([1, 2, 3, 4], dtype="f8"), }, columns=columns, ) appended = df1.append(df2, ignore_index=True) expected = DataFrame( np.concatenate([df1.values, df2.values], axis=0), columns=columns ) tm.assert_frame_equal(appended, expected) df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) result = concat([df, df2], keys=["one", "two"], names=["first", "second"]) assert result.index.names == ("first", "second") def test_with_mixed_tuples(self, sort): # 10697 # columns have mixed tuples, so handle properly df1 = DataFrame({"A": "foo", ("B", 1): "bar"}, index=range(2)) df2 = DataFrame({"B": "foo", ("B", 1): "bar"}, index=range(2)) # it works concat([df1, df2], sort=sort) def test_concat_mixed_objs(self): # concat mixed series/frames # G2385 # axis 1 index = date_range("01-Jan-2013", periods=10, freq="H") arr = np.arange(10, dtype="int64") s1 = Series(arr, index=index) s2 = Series(arr, index=index) df = DataFrame(arr.reshape(-1, 1), index=index) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 0] ) result = concat([df, df], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 1] ) result = concat([s1, s2], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, s2, s1], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 5).reshape(-1, 5), index=index, columns=[0, 0, 1, 2, 3] ) result = concat([s1, df, s2, s2, s1], axis=1) tm.assert_frame_equal(result, expected) # with names s1.name = "foo" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, 0] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) s2.name = "bar" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, "bar"] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) # ignore index expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, df, s2], axis=1, ignore_index=True) tm.assert_frame_equal(result, expected) # axis 0 expected = DataFrame( np.tile(arr, 3).reshape(-1, 1), index=index.tolist() * 3, columns=[0] ) result = concat([s1, df, s2]) tm.assert_frame_equal(result, expected) expected = DataFrame(np.tile(arr, 3).reshape(-1, 1), columns=[0]) result = concat([s1, df, s2], ignore_index=True) tm.assert_frame_equal(result, expected) def test_dtype_coerceion(self): # 12411 df = DataFrame({"date": [pd.Timestamp("20130101").tz_localize("UTC"), pd.NaT]}) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) # 12045 import datetime df = DataFrame( {"date": [datetime.datetime(2012, 1, 1), datetime.datetime(1012, 1, 2)]} ) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) # 11594 df = DataFrame({"text": ["some words"] + [None] * 9}) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) def test_concat_single_with_key(self): df = DataFrame(np.random.randn(10, 4)) result = concat([df], keys=["foo"]) expected = concat([df, df], keys=["foo", "bar"]) tm.assert_frame_equal(result, expected[:10]) def test_concat_no_items_raises(self): with pytest.raises(ValueError, match="No objects to concatenate"): concat([]) def test_concat_exclude_none(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df[:5], None, None, df[5:]] result = concat(pieces) tm.assert_frame_equal(result, df) with pytest.raises(ValueError, match="All objects passed were None"): concat([None, None]) def test_concat_keys_with_none(self): # #1649 df0 = DataFrame([[10, 20, 30], [10, 20, 30], [10, 20, 30]]) result = concat({"a": None, "b": df0, "c": df0[:2], "d": df0[:1], "e": df0}) expected = concat({"b": df0, "c": df0[:2], "d": df0[:1], "e": df0}) tm.assert_frame_equal(result, expected) result = concat( [None, df0, df0[:2], df0[:1], df0], keys=["a", "b", "c", "d", "e"] ) expected = concat([df0, df0[:2], df0[:1], df0], keys=["b", "c", "d", "e"]) tm.assert_frame_equal(result, expected) def test_concat_bug_1719(self): ts1 = tm.makeTimeSeries() ts2 = tm.makeTimeSeries()[::2] # to join with union # these two are of different length! left = concat([ts1, ts2], join="outer", axis=1) right = concat([ts2, ts1], join="outer", axis=1) assert len(left) == len(right) def test_concat_bug_2972(self): ts0 = Series(np.zeros(5)) ts1 = Series(np.ones(5)) ts0.name = ts1.name = "same name" result = concat([ts0, ts1], axis=1) expected = DataFrame({0: ts0, 1: ts1}) expected.columns = ["same name", "same name"] tm.assert_frame_equal(result, expected) def test_concat_bug_3602(self): # GH 3602, duplicate columns df1 = DataFrame( { "firmNo": [0, 0, 0, 0], "prc": [6, 6, 6, 6], "stringvar": ["rrr", "rrr", "rrr", "rrr"], } ) df2 = DataFrame( {"C": [9, 10, 11, 12], "misc": [1, 2, 3, 4], "prc": [6, 6, 6, 6]} ) expected = DataFrame( [ [0, 6, "rrr", 9, 1, 6], [0, 6, "rrr", 10, 2, 6], [0, 6, "rrr", 11, 3, 6], [0, 6, "rrr", 12, 4, 6], ] ) expected.columns = ["firmNo", "prc", "stringvar", "C", "misc", "prc"] result = concat([df1, df2], axis=1) tm.assert_frame_equal(result, expected) def test_concat_iterables(self): # GH8645 check concat works with tuples, list, generators, and weird # stuff like deque and custom iterables df1 = DataFrame([1, 2, 3]) df2 = DataFrame([4, 5, 6]) expected = DataFrame([1, 2, 3, 4, 5, 6]) tm.assert_frame_equal(concat((df1, df2), ignore_index=True), expected) tm.assert_frame_equal(concat([df1, df2], ignore_index=True), expected) tm.assert_frame_equal( concat((df for df in (df1, df2)), ignore_index=True), expected ) tm.assert_frame_equal(concat(deque((df1, df2)), ignore_index=True), expected) class CustomIterator1: def __len__(self) -> int: return 2 def __getitem__(self, index): try: return {0: df1, 1: df2}[index] except KeyError as err: raise IndexError from err tm.assert_frame_equal(concat(CustomIterator1(), ignore_index=True), expected) class CustomIterator2(abc.Iterable): def __iter__(self): yield df1 yield df2 tm.assert_frame_equal(concat(CustomIterator2(), ignore_index=True), expected) def test_concat_order(self): # GH 17344 dfs = [DataFrame(index=range(3), columns=["a", 1, None])] dfs += [DataFrame(index=range(3), columns=[None, 1, "a"]) for i in range(100)] result = concat(dfs, sort=True).columns expected = dfs[0].columns tm.assert_index_equal(result, expected) def test_concat_different_extension_dtypes_upcasts(self): a = Series(pd.array([1, 2], dtype="Int64")) b = Series(to_decimal([1, 2])) result = concat([a, b], ignore_index=True) expected = Series([1, 2, Decimal(1), Decimal(2)], dtype=object) tm.assert_series_equal(result, expected) def test_concat_ordered_dict(self): # GH 21510 expected = concat( [Series(range(3)), Series(range(4))], keys=["First", "Another"] ) result = concat({"First": Series(range(3)), "Another": Series(range(4))}) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("pdt", [Series, DataFrame]) @pytest.mark.parametrize("dt", np.sctypes["float"]) def test_concat_no_unnecessary_upcast(dt, pdt): # GH 13247 dims = pdt(dtype=object).ndim dfs = [ pdt(np.array([1], dtype=dt, ndmin=dims)), pdt(np.array([np.nan], dtype=dt, ndmin=dims)), pdt(np.array([5], dtype=dt, ndmin=dims)), ] x = concat(dfs) assert x.values.dtype == dt @pytest.mark.parametrize("pdt", [create_series_with_explicit_dtype, DataFrame]) @pytest.mark.parametrize("dt", np.sctypes["int"]) def test_concat_will_upcast(dt, pdt): with catch_warnings(record=True): dims = pdt().ndim dfs = [ pdt(np.array([1], dtype=dt, ndmin=dims)), pdt(np.array([np.nan], ndmin=dims)), pdt(np.array([5], dtype=dt, ndmin=dims)), ] x = concat(dfs) assert x.values.dtype == "float64" def test_concat_empty_and_non_empty_frame_regression(): # GH 18178 regression test df1 = DataFrame({"foo": [1]}) df2 = DataFrame({"foo": []}) expected = DataFrame({"foo": [1.0]}) result = concat([df1, df2])
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
import covasim as cv import covasim.defaults as cvd import covasim.utils as cvu import numba as nb import numpy as np import pandas as pd def generate_people(n_people: int, n_contacts: int, dispersion=None) -> cv.People: people = cv.People(pars={'pop_size': n_people}) people.contacts['a'] = RandomLayer(people.indices(), n_contacts, dispersion) people.age = np.zeros(int(n_people))+40 return people class RandomLayer(cv.Layer): """ Generate and dynamically update random layer """ def __init__(self, inds, mean_contacts, dispersion=None, dynamic=False): super().__init__() self.inds = inds self.mean_contacts = mean_contacts self.dispersion = dispersion self.dynamic = dynamic self.update(force=True) @staticmethod @nb.njit def _get_contacts(inds, number_of_contacts): """ Configuration model network generation Args: inds: person indices number_of_contacts: number of contacts for each ind """ total_number_of_half_edges = np.sum(number_of_contacts) count = 0 source = np.zeros((total_number_of_half_edges,), dtype=cvd.default_int) for i, person_id in enumerate(inds): n_contacts = number_of_contacts[i] source[count:count + n_contacts] = person_id count += n_contacts target = np.random.permutation(source) return source, target def update(self, force: bool = False) -> None: #Dynimically update network contacts if not self.dynamic and not force: return n_people = len(self.inds) # sample from pois or nb if
pd.isna(self.dispersion)
pandas.isna
""" test the scalar Timedelta """ from datetime import timedelta import numpy as np import pytest from pandas._libs import lib from pandas._libs.tslibs import ( NaT, iNaT, ) import pandas as pd from pandas import ( Timedelta, TimedeltaIndex, offsets, to_timedelta, ) import pandas._testing as tm class TestTimedeltaUnaryOps: def test_unary_ops(self): td = Timedelta(10, unit="d") # __neg__, __pos__ assert -td == Timedelta(-10, unit="d") assert -td == Timedelta("-10d") assert +td == Timedelta(10, unit="d") # __abs__, __abs__(__neg__) assert abs(td) == td assert abs(-td) == td assert abs(-td) == Timedelta("10d") class TestTimedeltas: @pytest.mark.parametrize( "unit, value, expected", [ ("us", 9.999, 9999), ("ms", 9.999999, 9999999), ("s", 9.999999999, 9999999999), ], ) def test_rounding_on_int_unit_construction(self, unit, value, expected): # GH 12690 result = Timedelta(value, unit=unit) assert result.value == expected result = Timedelta(str(value) + unit) assert result.value == expected def test_total_seconds_scalar(self): # see gh-10939 rng = Timedelta("1 days, 10:11:12.100123456") expt = 1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456.0 / 1e9 tm.assert_almost_equal(rng.total_seconds(), expt) rng = Timedelta(np.nan) assert np.isnan(rng.total_seconds()) def test_conversion(self): for td in [Timedelta(10, unit="d"), Timedelta("1 days, 10:11:12.012345")]: pydt = td.to_pytimedelta() assert td == Timedelta(pydt) assert td == pydt assert isinstance(pydt, timedelta) and not isinstance(pydt, Timedelta) assert td == np.timedelta64(td.value, "ns") td64 = td.to_timedelta64() assert td64 == np.timedelta64(td.value, "ns") assert td == td64 assert isinstance(td64, np.timedelta64) # this is NOT equal and cannot be roundtripped (because of the nanos) td = Timedelta("1 days, 10:11:12.012345678") assert td != td.to_pytimedelta() def test_fields(self): def check(value): # that we are int assert isinstance(value, int) # compat to datetime.timedelta rng = to_timedelta("1 days, 10:11:12") assert rng.days == 1 assert rng.seconds == 10 * 3600 + 11 * 60 + 12 assert rng.microseconds == 0 assert rng.nanoseconds == 0 msg = "'Timedelta' object has no attribute '{}'" with pytest.raises(AttributeError, match=msg.format("hours")): rng.hours with pytest.raises(AttributeError, match=msg.format("minutes")): rng.minutes with pytest.raises(AttributeError, match=msg.format("milliseconds")): rng.milliseconds # GH 10050 check(rng.days) check(rng.seconds) check(rng.microseconds) check(rng.nanoseconds) td = Timedelta("-1 days, 10:11:12") assert abs(td) == Timedelta("13:48:48") assert str(td) == "-1 days +10:11:12" assert -td == Timedelta("0 days 13:48:48") assert -Timedelta("-1 days, 10:11:12").value == 49728000000000 assert Timedelta("-1 days, 10:11:12").value == -49728000000000 rng = to_timedelta("-1 days, 10:11:12.100123456") assert rng.days == -1 assert rng.seconds == 10 * 3600 + 11 * 60 + 12 assert rng.microseconds == 100 * 1000 + 123 assert rng.nanoseconds == 456 msg = "'Timedelta' object has no attribute '{}'" with pytest.raises(AttributeError, match=msg.format("hours")): rng.hours with pytest.raises(AttributeError, match=msg.format("minutes")): rng.minutes with pytest.raises(AttributeError, match=msg.format("milliseconds")): rng.milliseconds # components tup = to_timedelta(-1, "us").components assert tup.days == -1 assert tup.hours == 23 assert tup.minutes == 59 assert tup.seconds == 59 assert tup.milliseconds == 999 assert tup.microseconds == 999 assert tup.nanoseconds == 0 # GH 10050 check(tup.days) check(tup.hours) check(tup.minutes) check(tup.seconds) check(tup.milliseconds) check(tup.microseconds) check(tup.nanoseconds) tup = Timedelta("-1 days 1 us").components assert tup.days == -2 assert tup.hours == 23 assert tup.minutes == 59 assert tup.seconds == 59 assert tup.milliseconds == 999 assert tup.microseconds == 999 assert tup.nanoseconds == 0 def test_iso_conversion(self): # GH #21877 expected = Timedelta(1, unit="s") assert to_timedelta("P0DT0H0M1S") == expected def test_nat_converters(self): result = to_timedelta("nat").to_numpy() assert result.dtype.kind == "M" assert result.astype("int64") == iNaT result = to_timedelta("nan").to_numpy() assert result.dtype.kind == "M" assert result.astype("int64") == iNaT @pytest.mark.parametrize( "unit, np_unit", [(value, "W") for value in ["W", "w"]] + [(value, "D") for value in ["D", "d", "days", "day", "Days", "Day"]] + [ (value, "m") for value in [ "m", "minute", "min", "minutes", "t", "Minute", "Min", "Minutes", "T", ] ] + [ (value, "s") for value in [ "s", "seconds", "sec", "second", "S", "Seconds", "Sec", "Second", ] ] + [ (value, "ms") for value in [ "ms", "milliseconds", "millisecond", "milli", "millis", "l", "MS", "Milliseconds", "Millisecond", "Milli", "Millis", "L", ] ] + [ (value, "us") for value in [ "us", "microseconds", "microsecond", "micro", "micros", "u", "US", "Microseconds", "Microsecond", "Micro", "Micros", "U", ] ] + [ (value, "ns") for value in [ "ns", "nanoseconds", "nanosecond", "nano", "nanos", "n", "NS", "Nanoseconds", "Nanosecond", "Nano", "Nanos", "N", ] ], ) @pytest.mark.parametrize("wrapper", [np.array, list, pd.Index]) def test_unit_parser(self, unit, np_unit, wrapper): # validate all units, GH 6855, GH 21762 # array-likes expected = TimedeltaIndex( [np.timedelta64(i, np_unit) for i in np.arange(5).tolist()] ) result = to_timedelta(wrapper(range(5)), unit=unit) tm.assert_index_equal(result, expected) result = TimedeltaIndex(wrapper(range(5)), unit=unit) tm.assert_index_equal(result, expected) str_repr = [f"{x}{unit}" for x in np.arange(5)] result = to_timedelta(wrapper(str_repr)) tm.assert_index_equal(result, expected) result = to_timedelta(wrapper(str_repr)) tm.assert_index_equal(result, expected) # scalar expected = Timedelta(np.timedelta64(2, np_unit).astype("timedelta64[ns]")) result = to_timedelta(2, unit=unit) assert result == expected result = Timedelta(2, unit=unit) assert result == expected result = to_timedelta(f"2{unit}") assert result == expected result = Timedelta(f"2{unit}") assert result == expected @pytest.mark.parametrize("unit", ["Y", "y", "M"]) def test_unit_m_y_raises(self, unit): msg = "Units 'M', 'Y', and 'y' are no longer supported" with pytest.raises(ValueError, match=msg): Timedelta(10, unit) with pytest.raises(ValueError, match=msg): to_timedelta(10, unit) with pytest.raises(ValueError, match=msg): to_timedelta([1, 2], unit) def test_numeric_conversions(self): assert Timedelta(0) == np.timedelta64(0, "ns") assert Timedelta(10) == np.timedelta64(10, "ns") assert Timedelta(10, unit="ns") == np.timedelta64(10, "ns") assert Timedelta(10, unit="us") == np.timedelta64(10, "us") assert Timedelta(10, unit="ms") == np.timedelta64(10, "ms") assert Timedelta(10, unit="s") == np.timedelta64(10, "s") assert Timedelta(10, unit="d") == np.timedelta64(10, "D") def test_timedelta_conversions(self): assert Timedelta(timedelta(seconds=1)) == np.timedelta64(1, "s").astype( "m8[ns]" ) assert Timedelta(timedelta(microseconds=1)) == np.timedelta64(1, "us").astype( "m8[ns]" ) assert Timedelta(timedelta(days=1)) == np.timedelta64(1, "D").astype("m8[ns]") def test_to_numpy_alias(self): # GH 24653: alias .to_numpy() for scalars td = Timedelta("10m7s") assert td.to_timedelta64() == td.to_numpy() @pytest.mark.parametrize( "freq,s1,s2", [ # This first case has s1, s2 being the same as t1,t2 below ( "N", Timedelta("1 days 02:34:56.789123456"), Timedelta("-1 days 02:34:56.789123456"), ), ( "U", Timedelta("1 days 02:34:56.789123000"), Timedelta("-1 days 02:34:56.789123000"), ), ( "L", Timedelta("1 days 02:34:56.789000000"), Timedelta("-1 days 02:34:56.789000000"), ), ("S", Timedelta("1 days 02:34:57"), Timedelta("-1 days 02:34:57")), ("2S", Timedelta("1 days 02:34:56"), Timedelta("-1 days 02:34:56")), ("5S", Timedelta("1 days 02:34:55"), Timedelta("-1 days 02:34:55")), ("T", Timedelta("1 days 02:35:00"), Timedelta("-1 days 02:35:00")), ("12T", Timedelta("1 days 02:36:00"), Timedelta("-1 days 02:36:00")), ("H", Timedelta("1 days 03:00:00"), Timedelta("-1 days 03:00:00")), ("d", Timedelta("1 days"), Timedelta("-1 days")), ], ) def test_round(self, freq, s1, s2): t1 = Timedelta("1 days 02:34:56.789123456") t2 = Timedelta("-1 days 02:34:56.789123456") r1 = t1.round(freq) assert r1 == s1 r2 = t2.round(freq) assert r2 == s2 def test_round_invalid(self): t1 = Timedelta("1 days 02:34:56.789123456") for freq, msg in [ ("Y", "<YearEnd: month=12> is a non-fixed frequency"), ("M", "<MonthEnd> is a non-fixed frequency"), ("foobar", "Invalid frequency: foobar"), ]: with pytest.raises(ValueError, match=msg): t1.round(freq) def test_round_implementation_bounds(self): # See also: analogous test for Timestamp # GH#38964 result = Timedelta.min.ceil("s") expected = Timedelta.min + Timedelta(seconds=1) - Timedelta(145224193) assert result == expected result = Timedelta.max.floor("s") expected = Timedelta.max - Timedelta(854775807) assert result == expected with pytest.raises(OverflowError, match="value too large"): Timedelta.min.floor("s") # the second message here shows up in windows builds msg = "|".join( ["Python int too large to convert to C long", "int too big to convert"] ) with pytest.raises(OverflowError, match=msg): Timedelta.max.ceil("s") @pytest.mark.parametrize("n", range(100)) @pytest.mark.parametrize( "method", [Timedelta.round, Timedelta.floor, Timedelta.ceil] ) def test_round_sanity(self, method, n, request): val = np.random.randint(iNaT + 1, lib.i8max, dtype=np.int64) td = Timedelta(val) assert method(td, "ns") == td res = method(td, "us") nanos = 1000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 res = method(td, "ms") nanos = 1_000_000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 res = method(td, "s") nanos = 1_000_000_000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 res = method(td, "min") nanos = 60 * 1_000_000_000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 res = method(td, "h") nanos = 60 * 60 * 1_000_000_000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 res = method(td, "D") nanos = 24 * 60 * 60 * 1_000_000_000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 def test_contains(self): # Checking for any NaT-like objects # GH 13603 td = to_timedelta(range(5), unit="d") + offsets.Hour(1) for v in [NaT, None, float("nan"), np.nan]: assert not (v in td) td = to_timedelta([NaT]) for v in [NaT, None, float("nan"), np.nan]: assert v in td def test_identity(self): td = Timedelta(10, unit="d") assert isinstance(td, Timedelta) assert isinstance(td, timedelta) def test_short_format_converters(self): def conv(v): return v.astype("m8[ns]") assert Timedelta("10") == np.timedelta64(10, "ns") assert Timedelta("10ns") == np.timedelta64(10, "ns") assert Timedelta("100") == np.timedelta64(100, "ns") assert Timedelta("100ns") == np.timedelta64(100, "ns") assert Timedelta("1000") == np.timedelta64(1000, "ns") assert Timedelta("1000ns") == np.timedelta64(1000, "ns") assert Timedelta("1000NS") == np.timedelta64(1000, "ns") assert Timedelta("10us") == np.timedelta64(10000, "ns") assert Timedelta("100us") == np.timedelta64(100000, "ns") assert Timedelta("1000us") == np.timedelta64(1000000, "ns") assert Timedelta("1000Us") == np.timedelta64(1000000, "ns") assert Timedelta("1000uS") == np.timedelta64(1000000, "ns") assert Timedelta("1ms") == np.timedelta64(1000000, "ns") assert Timedelta("10ms") == np.timedelta64(10000000, "ns") assert Timedelta("100ms") == np.timedelta64(100000000, "ns") assert Timedelta("1000ms") == np.timedelta64(1000000000, "ns") assert Timedelta("-1s") == -np.timedelta64(1000000000, "ns") assert Timedelta("1s") == np.timedelta64(1000000000, "ns") assert Timedelta("10s") == np.timedelta64(10000000000, "ns") assert Timedelta("100s") == np.timedelta64(100000000000, "ns") assert Timedelta("1000s") == np.timedelta64(1000000000000, "ns") assert Timedelta("1d") == conv(np.timedelta64(1, "D")) assert Timedelta("-1d") == -conv(np.timedelta64(1, "D")) assert Timedelta("1D") == conv(np.timedelta64(1, "D")) assert Timedelta("10D") == conv(np.timedelta64(10, "D")) assert Timedelta("100D") == conv(np.timedelta64(100, "D")) assert Timedelta("1000D") == conv(np.timedelta64(1000, "D")) assert Timedelta("10000D") == conv(np.timedelta64(10000, "D")) # space assert Timedelta(" 10000D ") == conv(np.timedelta64(10000, "D")) assert Timedelta(" - 10000D ") == -conv(np.timedelta64(10000, "D")) # invalid msg = "invalid unit abbreviation" with pytest.raises(ValueError, match=msg): Timedelta("1foo") msg = "unit abbreviation w/o a number" with pytest.raises(ValueError, match=msg): Timedelta("foo") def test_full_format_converters(self): def conv(v): return v.astype("m8[ns]") d1 = np.timedelta64(1, "D") assert Timedelta("1days") == conv(d1) assert Timedelta("1days,") == conv(d1) assert Timedelta("- 1days,") == -conv(d1) assert Timedelta("00:00:01") == conv(np.timedelta64(1, "s")) assert Timedelta("06:00:01") == conv(np.timedelta64(6 * 3600 + 1, "s")) assert Timedelta("06:00:01.0") == conv(np.timedelta64(6 * 3600 + 1, "s")) assert Timedelta("06:00:01.01") == conv( np.timedelta64(1000 * (6 * 3600 + 1) + 10, "ms") ) assert Timedelta("- 1days, 00:00:01") == conv(-d1 + np.timedelta64(1, "s")) assert Timedelta("1days, 06:00:01") == conv( d1 + np.timedelta64(6 * 3600 + 1, "s") ) assert Timedelta("1days, 06:00:01.01") == conv( d1 + np.timedelta64(1000 * (6 * 3600 + 1) + 10, "ms") ) # invalid msg = "have leftover units" with pytest.raises(ValueError, match=msg): Timedelta("- 1days, 00") def test_pickle(self): v = Timedelta("1 days 10:11:12.0123456") v_p = tm.round_trip_pickle(v) assert v == v_p def test_timedelta_hash_equality(self): # GH 11129 v = Timedelta(1, "D") td = timedelta(days=1) assert hash(v) == hash(td) d = {td: 2} assert d[v] == 2 tds = [Timedelta(seconds=1) + Timedelta(days=n) for n in range(20)] assert all(hash(td) == hash(td.to_pytimedelta()) for td in tds) # python timedeltas drop ns resolution ns_td = Timedelta(1, "ns") assert hash(ns_td) != hash(ns_td.to_pytimedelta()) def test_implementation_limits(self): min_td = Timedelta(Timedelta.min) max_td = Timedelta(Timedelta.max) # GH 12727 # timedelta limits correspond to int64 boundaries assert min_td.value == iNaT + 1 assert max_td.value == lib.i8max # Beyond lower limit, a NAT before the Overflow assert (min_td - Timedelta(1, "ns")) is NaT msg = "int too (large|big) to convert" with pytest.raises(OverflowError, match=msg): min_td - Timedelta(2, "ns") with pytest.raises(OverflowError, match=msg): max_td + Timedelta(1, "ns") # Same tests using the internal nanosecond values td = Timedelta(min_td.value - 1, "ns") assert td is NaT with pytest.raises(OverflowError, match=msg): Timedelta(min_td.value - 2, "ns") with pytest.raises(OverflowError, match=msg): Timedelta(max_td.value + 1, "ns") def test_total_seconds_precision(self): # GH 19458 assert Timedelta("30S").total_seconds() == 30.0 assert Timedelta("0").total_seconds() == 0.0 assert
Timedelta("-2S")
pandas.Timedelta
import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import ( CategoricalIndex, DataFrame, Index, NaT, Series, date_range, offsets, ) import pandas._testing as tm class TestDataFrameShift: @pytest.mark.parametrize( "input_data, output_data", [(np.empty(shape=(0,)), []), (np.ones(shape=(2,)), [np.nan, 1.0])], ) def test_shift_non_writable_array(self, input_data, output_data, frame_or_series): # GH21049 Verify whether non writable numpy array is shiftable input_data.setflags(write=False) result = frame_or_series(input_data).shift(1) if frame_or_series is not Series: # need to explicitly specify columns in the empty case expected = frame_or_series( output_data, index=range(len(output_data)), columns=range(1), dtype="float64", ) else: expected = frame_or_series(output_data, dtype="float64") tm.assert_equal(result, expected) def test_shift_mismatched_freq(self, frame_or_series): ts = frame_or_series( np.random.randn(5), index=date_range("1/1/2000", periods=5, freq="H") ) result = ts.shift(1, freq="5T") exp_index = ts.index.shift(1, freq="5T") tm.assert_index_equal(result.index, exp_index) # GH#1063, multiple of same base result = ts.shift(1, freq="4H") exp_index = ts.index + offsets.Hour(4) tm.assert_index_equal(result.index, exp_index) @pytest.mark.parametrize( "obj", [ Series([np.arange(5)]), date_range("1/1/2011", periods=24, freq="H"), Series(range(5), index=date_range("2017", periods=5)), ], ) @pytest.mark.parametrize("shift_size", [0, 1, 2]) def test_shift_always_copy(self, obj, shift_size, frame_or_series): # GH#22397 if frame_or_series is not Series: obj = obj.to_frame() assert obj.shift(shift_size) is not obj def test_shift_object_non_scalar_fill(self): # shift requires scalar fill_value except for object dtype ser = Series(range(3)) with pytest.raises(ValueError, match="fill_value must be a scalar"): ser.shift(1, fill_value=[]) df = ser.to_frame() with pytest.raises(ValueError, match="fill_value must be a scalar"): df.shift(1, fill_value=np.arange(3)) obj_ser = ser.astype(object) result = obj_ser.shift(1, fill_value={}) assert result[0] == {} obj_df = obj_ser.to_frame() result = obj_df.shift(1, fill_value={}) assert result.iloc[0, 0] == {} def test_shift_int(self, datetime_frame, frame_or_series): ts = tm.get_obj(datetime_frame, frame_or_series).astype(int) shifted = ts.shift(1) expected = ts.astype(float).shift(1) tm.assert_equal(shifted, expected) def test_shift_32bit_take(self, frame_or_series): # 32-bit taking # GH#8129 index = date_range("2000-01-01", periods=5) for dtype in ["int32", "int64"]: arr = np.arange(5, dtype=dtype) s1 = frame_or_series(arr, index=index) p = arr[1] result = s1.shift(periods=p) expected = frame_or_series([np.nan, 0, 1, 2, 3], index=index) tm.assert_equal(result, expected) @pytest.mark.parametrize("periods", [1, 2, 3, 4]) def test_shift_preserve_freqstr(self, periods, frame_or_series): # GH#21275 obj = frame_or_series( range(periods), index=date_range("2016-1-1 00:00:00", periods=periods, freq="H"), ) result = obj.shift(1, "2H") expected = frame_or_series( range(periods), index=date_range("2016-1-1 02:00:00", periods=periods, freq="H"), ) tm.assert_equal(result, expected) def test_shift_dst(self, frame_or_series): # GH#13926 dates = date_range("2016-11-06", freq="H", periods=10, tz="US/Eastern") obj = frame_or_series(dates) res = obj.shift(0) tm.assert_equal(res, obj) assert tm.get_dtype(res) == "datetime64[ns, US/Eastern]" res = obj.shift(1) exp_vals = [NaT] + dates.astype(object).values.tolist()[:9] exp = frame_or_series(exp_vals) tm.assert_equal(res, exp) assert tm.get_dtype(res) == "datetime64[ns, US/Eastern]" res = obj.shift(-2) exp_vals = dates.astype(object).values.tolist()[2:] + [NaT, NaT] exp = frame_or_series(exp_vals) tm.assert_equal(res, exp) assert tm.get_dtype(res) == "datetime64[ns, US/Eastern]" for ex in [10, -10, 20, -20]: res = obj.shift(ex) exp = frame_or_series([NaT] * 10, dtype="datetime64[ns, US/Eastern]") tm.assert_equal(res, exp) assert tm.get_dtype(res) == "datetime64[ns, US/Eastern]" def test_shift_by_zero(self, datetime_frame, frame_or_series): # shift by 0 obj = tm.get_obj(datetime_frame, frame_or_series) unshifted = obj.shift(0) tm.assert_equal(unshifted, obj) def test_shift(self, datetime_frame): # naive shift ser = datetime_frame["A"] shifted = datetime_frame.shift(5) tm.assert_index_equal(shifted.index, datetime_frame.index) shifted_ser = ser.shift(5) tm.assert_series_equal(shifted["A"], shifted_ser) shifted = datetime_frame.shift(-5) tm.assert_index_equal(shifted.index, datetime_frame.index) shifted_ser = ser.shift(-5) tm.assert_series_equal(shifted["A"], shifted_ser) unshifted = datetime_frame.shift(5).shift(-5) tm.assert_numpy_array_equal( unshifted.dropna().values, datetime_frame.values[:-5] ) unshifted_ser = ser.shift(5).shift(-5) tm.assert_numpy_array_equal(unshifted_ser.dropna().values, ser.values[:-5]) def test_shift_by_offset(self, datetime_frame, frame_or_series): # shift by DateOffset obj = tm.get_obj(datetime_frame, frame_or_series) offset = offsets.BDay() shifted = obj.shift(5, freq=offset) assert len(shifted) == len(obj) unshifted = shifted.shift(-5, freq=offset) tm.assert_equal(unshifted, obj) shifted2 = obj.shift(5, freq="B") tm.assert_equal(shifted, shifted2) unshifted = obj.shift(0, freq=offset) tm.assert_equal(unshifted, obj) d = obj.index[0] shifted_d = d + offset * 5 if frame_or_series is DataFrame: tm.assert_series_equal(obj.xs(d), shifted.xs(shifted_d), check_names=False) else: tm.assert_almost_equal(obj.at[d], shifted.at[shifted_d]) def test_shift_with_periodindex(self, frame_or_series): # Shifting with PeriodIndex ps = tm.makePeriodFrame() ps = tm.get_obj(ps, frame_or_series) shifted = ps.shift(1) unshifted = shifted.shift(-1) tm.assert_index_equal(shifted.index, ps.index) tm.assert_index_equal(unshifted.index, ps.index) if frame_or_series is DataFrame: tm.assert_numpy_array_equal( unshifted.iloc[:, 0].dropna().values, ps.iloc[:-1, 0].values ) else: tm.assert_numpy_array_equal(unshifted.dropna().values, ps.values[:-1]) shifted2 = ps.shift(1, "B") shifted3 = ps.shift(1, offsets.BDay()) tm.assert_equal(shifted2, shifted3) tm.assert_equal(ps, shifted2.shift(-1, "B")) msg = "does not match PeriodIndex freq" with pytest.raises(ValueError, match=msg): ps.shift(freq="D") # legacy support shifted4 = ps.shift(1, freq="B") tm.assert_equal(shifted2, shifted4) shifted5 = ps.shift(1, freq=offsets.BDay()) tm.assert_equal(shifted5, shifted4) def test_shift_other_axis(self): # shift other axis # GH#6371 df = DataFrame(np.random.rand(10, 5)) expected = pd.concat( [DataFrame(np.nan, index=df.index, columns=[0]), df.iloc[:, 0:-1]], ignore_index=True, axis=1, ) result = df.shift(1, axis=1) tm.assert_frame_equal(result, expected) def test_shift_named_axis(self): # shift named axis df = DataFrame(np.random.rand(10, 5)) expected = pd.concat( [DataFrame(np.nan, index=df.index, columns=[0]), df.iloc[:, 0:-1]], ignore_index=True, axis=1, ) result = df.shift(1, axis="columns") tm.assert_frame_equal(result, expected) def test_shift_bool(self): df = DataFrame({"high": [True, False], "low": [False, False]}) rs = df.shift(1) xp = DataFrame( np.array([[np.nan, np.nan], [True, False]], dtype=object), columns=["high", "low"], ) tm.assert_frame_equal(rs, xp) def test_shift_categorical1(self, frame_or_series): # GH#9416 obj = frame_or_series(["a", "b", "c", "d"], dtype="category") rt = obj.shift(1).shift(-1) tm.assert_equal(obj.iloc[:-1], rt.dropna()) def get_cat_values(ndframe): # For Series we could just do ._values; for DataFrame # we may be able to do this if we ever have 2D Categoricals return ndframe._mgr.arrays[0] cat = get_cat_values(obj) sp1 = obj.shift(1) tm.assert_index_equal(obj.index, sp1.index) assert np.all(get_cat_values(sp1).codes[:1] == -1) assert np.all(cat.codes[:-1] == get_cat_values(sp1).codes[1:]) sn2 = obj.shift(-2) tm.assert_index_equal(obj.index, sn2.index) assert np.all(get_cat_values(sn2).codes[-2:] == -1) assert np.all(cat.codes[2:] == get_cat_values(sn2).codes[:-2]) tm.assert_index_equal(cat.categories, get_cat_values(sp1).categories) tm.assert_index_equal(cat.categories, get_cat_values(sn2).categories) def test_shift_categorical(self): # GH#9416 s1 = Series(["a", "b", "c"], dtype="category") s2 = Series(["A", "B", "C"], dtype="category") df = DataFrame({"one": s1, "two": s2}) rs = df.shift(1) xp = DataFrame({"one": s1.shift(1), "two": s2.shift(1)}) tm.assert_frame_equal(rs, xp) def test_shift_categorical_fill_value(self, frame_or_series): ts = frame_or_series(["a", "b", "c", "d"], dtype="category") res = ts.shift(1, fill_value="a") expected = frame_or_series( pd.Categorical( ["a", "a", "b", "c"], categories=["a", "b", "c", "d"], ordered=False ) ) tm.assert_equal(res, expected) # check for incorrect fill_value msg = r"Cannot setitem on a Categorical with a new category \(f\)" with pytest.raises(TypeError, match=msg): ts.shift(1, fill_value="f") def test_shift_fill_value(self, frame_or_series): # GH#24128 dti = date_range("1/1/2000", periods=5, freq="H") ts = frame_or_series([1.0, 2.0, 3.0, 4.0, 5.0], index=dti) exp = frame_or_series([0.0, 1.0, 2.0, 3.0, 4.0], index=dti) # check that fill value works result = ts.shift(1, fill_value=0.0) tm.assert_equal(result, exp) exp = frame_or_series([0.0, 0.0, 1.0, 2.0, 3.0], index=dti) result = ts.shift(2, fill_value=0.0) tm.assert_equal(result, exp) ts = frame_or_series([1, 2, 3]) res = ts.shift(2, fill_value=0) assert tm.get_dtype(res) == tm.get_dtype(ts) # retain integer dtype obj = frame_or_series([1, 2, 3, 4, 5], index=dti) exp = frame_or_series([0, 1, 2, 3, 4], index=dti) result = obj.shift(1, fill_value=0) tm.assert_equal(result, exp) exp = frame_or_series([0, 0, 1, 2, 3], index=dti) result = obj.shift(2, fill_value=0) tm.assert_equal(result, exp) def test_shift_empty(self): # Regression test for GH#8019 df = DataFrame({"foo": []}) rs = df.shift(-1) tm.assert_frame_equal(df, rs) def test_shift_duplicate_columns(self): # GH#9092; verify that position-based shifting works # in the presence of duplicate columns column_lists = [list(range(5)), [1] * 5, [1, 1, 2, 2, 1]] data = np.random.randn(20, 5) shifted = [] for columns in column_lists: df = DataFrame(data.copy(), columns=columns) for s in range(5): df.iloc[:, s] = df.iloc[:, s].shift(s + 1) df.columns = range(5) shifted.append(df) # sanity check the base case nulls = shifted[0].isna().sum() tm.assert_series_equal(nulls, Series(range(1, 6), dtype="int64")) # check all answers are the same tm.assert_frame_equal(shifted[0], shifted[1]) tm.assert_frame_equal(shifted[0], shifted[2]) def test_shift_axis1_multiple_blocks(self, using_array_manager): # GH#35488 df1 = DataFrame(np.random.randint(1000, size=(5, 3))) df2 = DataFrame(np.random.randint(1000, size=(5, 2))) df3 = pd.concat([df1, df2], axis=1) if not using_array_manager: assert len(df3._mgr.blocks) == 2 result = df3.shift(2, axis=1) expected = df3.take([-1, -1, 0, 1, 2], axis=1) expected.iloc[:, :2] = np.nan expected.columns = df3.columns tm.assert_frame_equal(result, expected) # Case with periods < 0 # rebuild df3 because `take` call above consolidated df3 = pd.concat([df1, df2], axis=1) if not using_array_manager: assert len(df3._mgr.blocks) == 2 result = df3.shift(-2, axis=1) expected = df3.take([2, 3, 4, -1, -1], axis=1) expected.iloc[:, -2:] = np.nan expected.columns = df3.columns tm.assert_frame_equal(result, expected) @td.skip_array_manager_not_yet_implemented # TODO(ArrayManager) axis=1 support def test_shift_axis1_multiple_blocks_with_int_fill(self): # GH#42719 df1 = DataFrame(np.random.randint(1000, size=(5, 3))) df2 = DataFrame(np.random.randint(1000, size=(5, 2))) df3 = pd.concat([df1.iloc[:4, 1:3], df2.iloc[:4, :]], axis=1) result = df3.shift(2, axis=1, fill_value=np.int_(0)) assert len(df3._mgr.blocks) == 2 expected = df3.take([-1, -1, 0, 1], axis=1) expected.iloc[:, :2] = np.int_(0) expected.columns = df3.columns tm.assert_frame_equal(result, expected) # Case with periods < 0 df3 = pd.concat([df1.iloc[:4, 1:3], df2.iloc[:4, :]], axis=1) result = df3.shift(-2, axis=1, fill_value=np.int_(0)) assert len(df3._mgr.blocks) == 2 expected = df3.take([2, 3, -1, -1], axis=1) expected.iloc[:, -2:] = np.int_(0) expected.columns = df3.columns
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
# -*- coding: utf-8 -*- from .._utils import color_digits, color_background from ..data import Data, DataSamples #from ..woe import WOE import pandas as pd #import math as m import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter from matplotlib.colors import LinearSegmentedColormap import seaborn as sns from sklearn.model_selection import cross_val_score, StratifiedKFold, train_test_split, GridSearchCV, PredefinedSplit from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score, roc_curve, auc #rom scipy.stats import chi2, chisquare, ks_2samp, ttest_ind #import statsmodels.formula.api as sm import warnings from abc import ABCMeta, abstractmethod #from sklearn.feature_selection import GenericUnivariateSelect, f_classif from patsy import dmatrices from statsmodels.stats.outliers_influence import variance_inflation_factor import re import ast import os import xlsxwriter from PIL import Image import datetime from dateutil.relativedelta import * import gc #import weakref import copy import itertools import calendar #from ..cross import DecisionTree, Crosses import networkx as nx from operator import itemgetter import matplotlib.ticker as mtick try: import fastcluster except Exception: print('For fullness analysis using hierarchical clustering please install fastcluster package.') from scipy.cluster.hierarchy import fcluster try: import hdbscan except Exception: print('For fullness analysis using HDBSCAN clustering please install hdbscan package.') from sklearn.cluster import KMeans from sklearn.tree import export_graphviz from os import system from IPython.display import Image as Display_Image #from joblib import Parallel, delayed # Created by <NAME> and <NAME> warnings.simplefilter('ignore') plt.rc('font', family='Verdana') plt.style.use('seaborn-darkgrid') pd.set_option('display.precision', 3) class Processor(metaclass = ABCMeta): """ Base class for processing objects of Data class """ @abstractmethod def __init__(self): ''' self.stats is a DataFrame with statistics about self.work() ''' self.stats = pd.DataFrame() @abstractmethod def work(self, data, parameters): pass def param_dict_to_stats(self, data, d): ''' TECH Transforms a dict of parameters to self.stats Parameters ----------- data: Data object being processed d: dictionary {action : list_of_features} where action is a string with action description and list_of_features is a list of features' names to apply the action to ''' col1 = [] col2 = [] for (how, features) in d.items(): col1 = col1 + [how + ' (' + str(round(data.dataframe[features[i]].mean(), 3)) + ')' if how == 'mean' else how for i in range(len(features))] col2 = col2 + features self.stats = pd.DataFrame({'action' : col1, 'features': col2}) #--------------------------------------------------------------- class MissingProcessor(Processor): ''' Class for missing values processing ''' def __init__(self): self.stats = pd.DataFrame() def work(self, data, parameters, quantiles=100, precision=4): ''' Deals with missing values Parameters: ----------- data: an object of Data type that should be processed inplace: whether to change the data or to create a new Data object parameters: {how_to_process : features_to_process} how_to_process takes: 'delete' - to delete samples where the value of any feature from features_to_process is missing 'mean' - for each feature from features_to_process to fill missings with the mean value 'distribution' - for each feature from features_to_process to fill missings according to non-missing distribution a value - for each feature from features_to_process to fill missings with this value features_to_process takes list of features from data quantiles: number of quantiles for 'distribution' type of missing process - all values are divided into quantiles, then missing values are filled with average values of quantiles. If number of unique values is less then number of quantiles or field type is not int, float, etc, then no quantiles are calculated - missings are filled with existing values according to their frequency precision: precision for quantile edges and average quantile values Returns: ---------- A copy of data with missings processed for features mentioned in parameters ''' for how in parameters: if isinstance(parameters[how], str): parameters[how] = [parameters[how]] result = data.dataframe.copy() for how in parameters: if how == 'delete': for feature in parameters[how]: result = result[result[feature].isnull() == False] if data.features != None and feature in data.features: data.features.remove(feature) elif how == 'mean': for feature in parameters[how]: result[feature].fillna(result[feature].mean(), inplace = True) elif how == 'distribution': for feature in parameters[how]: if data.dataframe[feature].dtype not in (float, np.float32, np.float64, int, np.int32, np.int64) or data.dataframe[feature].unique().shape[0]<quantiles: summarized=data.dataframe[[feature]].dropna().groupby(feature).size() summarized=summarized.reset_index().rename({feature:'mean', 0:'size'}, axis=1) else: summarized=data.dataframe[[feature]].rename({feature:'value'}, axis=1).join(pd.qcut(data.dataframe[feature].dropna(), q=quantiles, precision=4, duplicates='drop')).groupby(feature).agg(['mean', 'size']) summarized.columns=summarized.columns.droplevel() summarized=summarized.reset_index(drop=True) #summarized=summarized.reset_index() summarized['p']=summarized['size']/summarized['size'].sum() result[feature]=result[feature].apply(lambda x: np.random.choice(summarized['mean'].round(precision), p=summarized['p']) if pd.isnull(x) else x) else: result[parameters[how]] = result[parameters[how]].fillna(how) # statistics added on Dec-04-2018 self.param_dict_to_stats(data, parameters) return Data(result, data.target, data.features, data.weights, data.name) #--------------------------------------------------------------- class StabilityAnalyzer(Processor): ''' For stability analysis ''' def __init__(self): self.stats = pd.DataFrame({'sample_name' : [], 'parameter' : [], 'meaning': []}) def work(self, data, time_column, sample_name = None, psi = None, event_rate=None, normalized=True, date_format = "%d.%m.%Y", time_func = (lambda x: 100*x.year + x.month), yellow_zone = 0.1, red_zone = 0.25, figsize = None, out = True, out_images = 'StabilityAnalyzer/', sep=';', base_period_index=0): ''' Calculates the dynamic of feature (or groups of values) changes over time so it should be used only for discrete or WOE-transformed features. There are 2 types of analysis: PSI. Represents a heatmap (Stability Table) of features stability that contains 3 main zones: green (the feature is stable), yellow (the feature is not very stable) and red (the feature is unstable). StabilityIndex (PSI) is calculated for each time period relatively to the first period. Stability index algorithm: For each feature value and time period number of samples is calculated: e.g., N[i, t] is number of samples for value i and time period t. StabilityIndex[t] = (N[i, t]/sum_i(N[i, t]) - (N[i, 0]/sum_i(N[i, 0])))* log(N[i, t]/sum_i(N[i, t])/(N[i, 0]/sum_i(N[i, 0]))) ER (event rate). Calculates average event rate and number of observations for each feature's value over time. After calculation displays the Stability Table (a heatmap with stability indexes for each feature value and time period) and Event rate graphs Parameters: ----------- data: data to analyze (type Data) time_column: name of a column with time values to calculate time periods sample_name: name of sample for report psi: list of features for PSI analysis (if None then all features from the input Data object will be used) event_rate: list of features for event rate and distribution in time analysis (if None then all features from the input Data object will be used) date_format: format of time values in time_column. Codes for format: %a Weekday as locale’s abbreviated name. Sun, Mon, …, Sat (en_US) %A Weekday as locale’s full name. Sunday, Monday, …, Saturday (en_US) %w Weekday as a decimal number, where 0 is Sunday and 6 is Saturday. 0, 1, …, 6 %d Day of the month as a zero-padded decimal number. 01, 02, …, 31 %b Month as locale’s abbreviated name. Jan, Feb, …, Dec (en_US) %B Month as locale’s full name. January, February, …, December (en_US) %m Month as a zero-padded decimal number. 01, 02, …, 12 %y Year without century as a zero-padded decimal number. 00, 01, …, 99 %Y Year with century as a decimal number. 1970, 1988, 2001, 2013 %H Hour (24-hour clock) as a zero-padded decimal number. 00, 01, …, 23 %I Hour (12-hour clock) as a zero-padded decimal number. 01, 02, …, 12 %p Locale’s equivalent of either AM or PM. AM, PM (en_US) %M Minute as a zero-padded decimal number. 00, 01, …, 59 %S Second as a zero-padded decimal number. 00, 01, …, 59 %f Microsecond as a decimal number, zero-padded on the left. 000000, 000001, …, 999999 %z UTC offset in the form +HHMM or -HHMM (empty string if the the object is naive). (empty), +0000, -0400, +1030 %Z Time zone name (empty string if the object is naive). (empty), UTC, EST, CST %j Day of the year as a zero-padded decimal number. 001, 002, …, 366 %U Week number of the year (Sunday as the first day of the week) as a zero padded decimal number. All days in a new year preceding the first Sunday are considered to be in week 0. 00, 01, …, 53 (6) %W Week number of the year (Monday as the first day of the week) as a decimal number. All days in a new year preceding the first Monday are considered to be in week 0. 00, 01, …, 53 (6) %c Locale’s appropriate date and time representation. Tue Aug 16 21:30:00 1988 (en_US) %x Locale’s appropriate date representation. 08/16/88 (None); 08/16/1988 (en_US) %X Locale’s appropriate time representation. 21:30:00 (en_US) time_func: function for time_column parsing (changes date to some value, representing time period) or a period type for dt.to_period() function. Codes for available periods: B business day frequency C custom business day frequency (experimental) D calendar day frequency W weekly frequency M month end frequency BM business month end frequency CBM custom business month end frequency MS month start frequency BMS business month start frequency CBMS custom business month start frequency Q quarter end frequency BQ business quarter endfrequency QS quarter start frequency BQS business quarter start frequency A year end frequency BA business year end frequency AS year start frequency BAS business year start frequency BH business hour frequency H hourly frequency T, min minutely frequency S secondly frequency L, ms milliseconds U, us microseconds N nanoseconds yellow_zone: the lower border for the yellow stability zone ('not very stable') in percents of derivation red_zone: the lower border for the red stability zone ('unstable') in percents of derivation figsize: matplotlib figsize of the Stability Table out: a boolean for image output or a path for xlsx output file to export the Stability Tables out_images: a path for image output (default - StabilityAnalyzer/) sep: the separator to be used in case of csv export base_period_index: index of period (starting from 0) for other periods to compare with (0 for the first, -1 for the last) ''' print('Warning: only for discrete features!!!') if sample_name is None: if pd.isnull(data.name): sample_name = 'sample' else: sample_name = data.name out_images = out_images + sample_name + '/' self.stats = self.stats.append(pd.DataFrame({'sample_name' : [sample_name], 'parameter' : ['out'], 'meaning' : [out]})) self.stats = self.stats.append(pd.DataFrame({'sample_name' : [sample_name], 'parameter' : ['out_images'], 'meaning' : [out_images]})) psi = data.features.copy() if psi is None else [x for x in psi if x in data.features] event_rate = data.features.copy() if event_rate is None else [x for x in event_rate if x in data.features] all_features=list(set(psi+event_rate)) if figsize is None: figsize=(12, max(1,round(len(psi)/2,0))) if out==True or isinstance(out, str): directory = os.path.dirname(out_images) if not os.path.exists(directory): os.makedirs(directory) if isinstance(out, str): writer = pd.ExcelWriter(out, engine='openpyxl') tmp_dataset = data.dataframe[all_features + [time_column, data.target] + ([] if data.weights is None else [data.weights])].copy() tmp_dataset[time_column] = pd.to_datetime(tmp_dataset[time_column], format=date_format, errors='coerce') if callable(time_func): tmp_dataset['tt'] = tmp_dataset[time_column].map(time_func) elif isinstance(time_func, str): try: tmp_dataset['tt'] = tmp_dataset[time_column].dt.to_period(time_func).astype(str) except Exception: print('No function or correct period code was provided. Return None.') return None c = 0 for feature in sorted(all_features): print (feature) if data.weights is not None: feature_stats=tmp_dataset[[feature, 'tt', data.target, data.weights]] feature_stats['---weight---']=feature_stats[data.weights] else: feature_stats=tmp_dataset[[feature, 'tt', data.target]] feature_stats['---weight---']=1 feature_stats[data.target]=feature_stats[data.target]*feature_stats['---weight---'] feature_stats=feature_stats[[feature, 'tt', data.target, '---weight---']].groupby([feature, 'tt'], as_index=False).\ agg({'---weight---':'size', data.target:'mean'}).rename({feature:'value', '---weight---':'size', data.target:'mean'}, axis=1) feature_stats['feature']=feature if c == 0: all_stats = feature_stats c = c+1 else: all_stats = all_stats.append(feature_stats, ignore_index=True) all_stats['size']=all_stats['size'].astype(float) all_stats['mean']=all_stats['mean'].astype(float) if len(psi)>0: stability1=all_stats[all_stats.feature.isin(psi)][['feature', 'value', 'tt', 'size']].pivot_table(values='size', columns='tt', index=['feature', 'value']).reset_index().fillna(0) stability1.columns.name=None #display(stability1) dates = stability1.drop(['feature', 'value'], 1).columns.copy() stability2 = stability1[['feature', 'value']].copy() for date in dates: stability2[date] = list(stability1[date]/list(stability1.drop(['value'], 1).groupby(by = 'feature').sum()[date][:1])[0]) #display(stability2) start_date = dates[base_period_index] stability3 = stability2[['feature', 'value']] for date in dates: stability3[date] = round(((stability2[date]-stability2[start_date])*np.log(stability2[date]/stability2[start_date])).fillna(0), 2).replace([]) #display(stability3) stability4 = stability3.drop(['value'], 1).groupby(by = 'feature').sum() #display(stability4) fig, ax = plt.subplots(figsize = figsize) ax.set_facecolor("red") sns.heatmap(stability4, ax=ax, yticklabels=stability4.index, annot = True, cmap = 'RdYlGn_r', center = yellow_zone, vmax = red_zone, linewidths = .05, xticklabels = True) if out==True or isinstance(out, str): plt.savefig(out_images+"stability.png", dpi=100, bbox_inches='tight') plt.show() if isinstance(out, str): if out[-4:]=='.xls' or out[-5:]=='.xlsx': stability4.style.apply(color_background, mn=0, mx=red_zone, cntr=yellow_zone).to_excel(writer, engine='openpyxl', sheet_name='PSI') worksheet = writer.sheets['PSI'] for x in worksheet.columns: if x[0].column=='A': worksheet.column_dimensions[x[0].column].width = 40 else: worksheet.column_dimensions[x[0].column].width = 12 worksheet.freeze_panes = worksheet['B2'] else: print('Unknown or unacceptable format for export several tables. Use .xlsx. Skipping export.') if len(event_rate)>0: for_event_rate=all_stats[all_stats['feature'].isin(event_rate)] date_base=pd.DataFrame(all_stats['tt'].unique(), columns=['tt']).sort_values('tt') for feature in sorted(for_event_rate['feature'].unique()): cur_feature_data=for_event_rate[for_event_rate['feature']==feature].copy() #display(cur_feature_data) if normalized: for tt in sorted(cur_feature_data['tt'].unique(), reverse=True): cur_feature_data.loc[cur_feature_data['tt']==tt, 'percent']=cur_feature_data[cur_feature_data['tt']==tt]['size']/cur_feature_data[cur_feature_data['tt']==tt]['size'].sum() #display(cur_feature_data) fig, ax = plt.subplots(1,1, figsize=(15, 5)) ax2 = ax.twinx() ax.grid(False) ax2.grid(False) sorted_values=sorted(cur_feature_data['value'].unique(), reverse=True) for value in sorted_values: to_visualize='percent' if normalized else 'size' value_filter = (cur_feature_data['value']==value) er=date_base.merge(cur_feature_data[value_filter], on='tt', how='left')['mean'] height=date_base.merge(cur_feature_data[value_filter], on='tt', how='left')[to_visualize].fillna(0) bottom=date_base.merge(cur_feature_data[['tt',to_visualize]][cur_feature_data['value']>value].groupby('tt', as_index=False).sum(), on='tt', how='left')[to_visualize].fillna(0) ax.bar(range(date_base.shape[0]), height, bottom=bottom if value!=sorted_values[0] else None, edgecolor='white', alpha=0.3) ax2.plot(range(date_base.shape[0]), er, label=str(round(value,3)), linewidth=2) plt.xticks(range(date_base.shape[0]), date_base['tt']) fig.autofmt_xdate() ax2.set_ylabel('Event Rate') ax2.yaxis.set_major_formatter(FuncFormatter(lambda y, _: '{:.2%}'.format(y))) if normalized: ax.yaxis.set_major_formatter(FuncFormatter(lambda y, _: '{:.2%}'.format(y))) ax2.annotate('Obs:', xy=(0, 1), xycoords=('axes fraction', 'axes fraction'), xytext=(-25, 5), textcoords='offset pixels', color='blue', size=11) for i in range(date_base.shape[0]): ax2.annotate(str(int(cur_feature_data[cur_feature_data['tt']==date_base['tt'][i]]['size'].sum())), xy=(i, 1), xycoords=('data', 'axes fraction'), xytext=(0, 5), textcoords='offset pixels', #rotation=60, ha='center', #va='bottom', color='blue', size=11) ax.set_ylabel('Total obs') plt.xlabel(time_column) plt.suptitle(feature + ' event rate in time' if callable(time_func) else feature + ' event rate in time, period = '+time_func) handles, labels = ax2.get_legend_handles_labels() ax2.legend(handles[::-1], labels[::-1], loc=0, fancybox=True, framealpha=0.3) if out==True or isinstance(out, str): plt.savefig(out_images+feature+".png", dpi=100, bbox_inches='tight') plt.show() if isinstance(out, str): if out[-4:]=='.xls' or out[-5:]=='.xlsx': event_rate_df=all_stats[['feature', 'value', 'tt', 'mean']].pivot_table(values='mean', columns='tt', index=['feature', 'value']).reset_index().fillna(0) event_rate_df.columns.name=None event_rate_df.style.apply(color_background, mn=0, mx=all_stats['mean'].mean()+2*all_stats['mean'].std(), cntr=None, cmap=matplotlib.cm.RdYlGn_r, subset=pd.IndexSlice[:, [x for x in event_rate_df.columns if x not in ['value','feature']]]).to_excel(writer, engine='openpyxl', sheet_name='Event Rate', index=False) worksheet = writer.sheets['Event Rate'] for x in worksheet.columns: if x[0].column=='A': worksheet.column_dimensions[x[0].column].width = 40 else: worksheet.column_dimensions[x[0].column].width = 12 if x[0].column!='B': for cell in worksheet[x[0].column]: if cell.row!=1: cell.number_format = '0.000%' worksheet.freeze_panes = worksheet['C2'] size_df=all_stats[['feature', 'value', 'tt', 'size']].pivot_table(values='size', columns='tt', index=['feature', 'value']).reset_index().fillna(0) size_df.columns.name=None size_df.style.apply(color_background, mn=0, mx=all_stats['size'].mean()+2*all_stats['size'].std(), cntr=None, cmap=matplotlib.cm.RdYlGn, subset=pd.IndexSlice[:, [x for x in size_df.columns if x not in ['value','feature']]]).to_excel(writer, engine='openpyxl', sheet_name='Observations', index=False) worksheet = writer.sheets['Observations'] for x in worksheet.columns: if x[0].column=='A': worksheet.column_dimensions[x[0].column].width = 40 else: worksheet.column_dimensions[x[0].column].width = 12 worksheet.freeze_panes = worksheet['C2'] else: print('Unknown or unacceptable format for export several tables. Use .xlsx. Skipping export.') if isinstance(out, str): writer.close() #--------------------------------------------------------------- class DataVisualizer(Processor): ''' Supports different types of data visualization ''' def __init__(self): self.stats = pd.DataFrame() def work(self, data, distribution = True, factorplot = True, factorplot_separate = False, pairplot = None, out=False, out_images='DataVisualizer/', plot_cells=20, categorical=None): ''' Produces distribution plot, factorplot, pairplot Parameters: ----------- data: data to visualize distribution: parameter for a distribution plot, if True - plot for data.features, if list - plot for features from the list, if False - do not use distribution plot factorplot: parameter for a factorplot, if True - plot for data.features, if list - plot for features from the list, if False - do not use factorplot factorplot_separate: if True then separate plots for each target value pairplot: list of features to make a pairplot for out: a boolean for images output or a path for xlsx output file out_images: a path for images output (default - DataVisualizer/) plot_cells: how many cells would plots get in output excel categorical: a list of features to be treated as categorical (countplots will be produced instead of distplots) ''' if pairplot is None: pairplot=[] if categorical is None: categorical=[] dataframe_t = data.dataframe[data.features + [data.target]].copy() data = Data(dataframe_t, features = data.features, target = data.target) if out is not None: if out==True or isinstance(out, str): directory = os.path.dirname(out_images) if not os.path.exists(directory): os.makedirs(directory) if isinstance(out, str): # Create an new Excel file and add a worksheet. workbook = xlsxwriter.Workbook(out) worksheet = workbook.add_worksheet('Data Visualization') # Widen the first column to make the text clearer. worksheet.set_column('A:A', 100) current_plot_number=0 if distribution: print ('Distributions of features: ') if type(distribution) == type([1, 1]): features = distribution else: if data.features == None: print ('No features claimed. Please set data.features = ') return None features = data.features for feature in features: current_plot_number=current_plot_number+1 if data.dataframe[feature].dtype==object or feature in categorical: f, axes = plt.subplots() sns.countplot(data.dataframe[feature].dropna()) f.autofmt_xdate() else: sns.distplot(data.dataframe[feature].dropna()) if data.dataframe[feature].isnull().any(): plt.title(feature+' (miss = ' + str(round(data.dataframe[feature].isnull().value_counts()[True]/data.dataframe.shape[0],3))+')') else: plt.title(feature+' (miss = 0)') if out==True or isinstance(out, str): plt.savefig(out_images+feature+"_d.png", dpi=100, bbox_inches='tight') if isinstance(out, str): scale=(20*plot_cells)/Image.open(out_images+feature+"_d.png").size[1] worksheet.write((current_plot_number-1)*(plot_cells+1), 0, 'Distribution plot for '+feature+":") worksheet.insert_image((current_plot_number-1)*(plot_cells+1)+1, 0, out_images+feature+"_d.png", {'x_scale': scale, 'y_scale': scale}) plt.show() print ('---------------------------------------\n') if factorplot: print ('Factorplot: ') if type(factorplot) == type([1, 1]): features = factorplot else: if data.features == None: print ('No features claimed. Please set data.features = ') return None features = data.features if factorplot_separate: for feature in features: current_plot_number=current_plot_number+1 # edited 21-Jun-2018 by <NAME> f, axes = plt.subplots(data.dataframe[data.target].drop_duplicates().shape[0], 1, figsize=(4, 4), sharex=True) f.autofmt_xdate() #for target_v in data.dataframe[data.target].drop_duplicates(): targets = list(data.dataframe[data.target].drop_duplicates()) for target_i in range(len(targets)): if data.dataframe[data.dataframe[data.target]==targets[target_i]][feature].isnull().any(): x_label=feature + ': ' + data.target + ' = ' + str(targets[target_i]) + ', miss = ' + str(round(data.dataframe[data.dataframe[data.target]==targets[target_i]][feature].isnull().value_counts()[True]/data.dataframe[data.dataframe[data.target]==targets[target_i]].shape[0],3)) else: x_label=feature + ': ' + data.target + ' = ' + str(targets[target_i]) + ', miss = 0' if data.dataframe[feature].dtype==object or feature in categorical: ax=sns.countplot(data.dataframe[data.dataframe[data.target] == targets[target_i]][feature].dropna(), ax=axes[target_i], color = 'm') ax.set(xlabel=x_label) else: sns.distplot(data.dataframe[data.dataframe[data.target] == targets[target_i]][feature].dropna(), ax=axes[target_i], axlabel=x_label, color = 'm') if out==True or isinstance(out, str): plt.savefig(out_images+feature+"_f.png", dpi=100, bbox_inches='tight') if isinstance(out, str): scale=(20*plot_cells)/Image.open(out_images+feature+"_f.png").size[1] worksheet.write((current_plot_number-1)*(plot_cells+1), 0, 'Factor plot for '+feature+":") worksheet.insert_image((current_plot_number-1)*(plot_cells+1)+1, 0, out_images+feature+"_f.png", {'x_scale': scale, 'y_scale': scale}) plt.show() else: for feature in features: current_plot_number=current_plot_number+1 sns.factorplot(x=feature, hue = data.target, data = data.dataframe, kind='count', palette = 'Set1') if out==True or isinstance(out, str): plt.savefig(out_images+feature+"_f.png", dpi=100, bbox_inches='tight') if isinstance(out, str): scale=(20*plot_cells)/Image.open(out_images+feature+"_f.png").size[1] worksheet.write((current_plot_number-1)*(plot_cells+1), 0, 'Factor plot for '+feature+":") worksheet.insert_image((current_plot_number-1)*(plot_cells+1)+1, 0, out_images+feature+"_f.png", {'x_scale': scale, 'y_scale': scale}) plt.show() print ('---------------------------------------\n') if pairplot != []: current_plot_number=current_plot_number+1 print ('Pairplot') sns.pairplot(data.dataframe[pairplot].dropna()) if out==True or isinstance(out, str): plt.savefig(out_images+"pairplot.png", dpi=100, bbox_inches='tight') if isinstance(out, str): worksheet.write((current_plot_number-1)*(plot_cells+1), 0, 'Pair plot for '+str(pairplot)+":") worksheet.insert_image((current_plot_number-1)*(plot_cells+1)+1, 0, out_images+"pairplot.png") plt.show() if isinstance(out, str): workbook.close() #--------------------------------------------------------------- class TargetTrendVisualizer(Processor): ''' Supports target trend visualization ''' def __init__(self): self.stats = pd.DataFrame() def work(self, data, features=None, quantiles=100, magnify_trend=False, magnify_std_number=2, hide_every_even_tick_from=50, min_size=10, out=False, out_images='TargetTrendVisualizer/', plot_cells=20): ''' Calculates specified quantiles/takes categories, calculates target rates and sizes, then draws target trends Parameters: ----------- data: an object of Data type features: the list of features to visualize, can be omitted quantiles: number of quantiles to cut feature values on magnify_trend: if True, then axis scale for target rate will be corrected to exclude outliers magnify_std_number: how many standard deviations should be included in magnified scale hide_every_even_tick_from: if there is too many quantiles then every second tick on x axis will be hidden out: a boolean for images output or a path for xlsx output file out_images: a path for images output (default - TargetTrendVisualizer/) plot_cells: how many cells would plots get in output excel ''' if features is None: cycle_features=data.features.copy() else: cycle_features=features.copy() if out is not None: if out==True or isinstance(out, str): directory = os.path.dirname(out_images) if not os.path.exists(directory): os.makedirs(directory) if isinstance(out, str): # Create an new Excel file and add a worksheet. workbook = xlsxwriter.Workbook(out) worksheet = workbook.add_worksheet('Target Trend Visualization') # Widen the first column to make the text clearer. worksheet.set_column('A:A', 100) current_feature_number=0 for f in cycle_features: if f not in data.dataframe: print('Feature', f, 'not in input dataframe. Skipping..') else: print('Processing', f,'..') current_feature_number=current_feature_number+1 if data.dataframe[f].dtype not in (float, np.float32, np.float64, int, np.int32, np.int64) or data.dataframe[f].unique().shape[0]<quantiles: summarized=data.dataframe[[f, data.target]].groupby([f]).agg(['mean', 'size']) else: if data.dataframe[f].dropna().shape[0]<min_size*quantiles: current_quantiles=int(data.dataframe[f].dropna().shape[0]/min_size) if current_quantiles==0: print('The number of non-missing observations is less then', min_size,'. No trend to visualize.') if isinstance(out, str): worksheet.write((current_feature_number-1)*(plot_cells+1), 0, 'Target trend for '+f+":") worksheet.write((current_feature_number-1)*(plot_cells+1)+1, 0, 'The number of non-missing observations is less then '+str(min_size)+'. No trend to visualize.') continue else: print('Too few non-missing observations for', quantiles, 'quantiles. Calculating', current_quantiles, 'quantiles..') else: current_quantiles=quantiles summarized=data.dataframe[[data.target]].join(pd.qcut(data.dataframe[f], q=current_quantiles, precision=4, duplicates='drop')).groupby([f]).agg(['mean', 'size']) small_quantiles=summarized[data.target][summarized[data.target]['size']<min_size]['size'] #display(small_quantiles) if small_quantiles.shape[0]>0: current_quantiles=int(small_quantiles.sum()/min_size)+summarized[data.target][summarized[data.target]['size']>=min_size].shape[0] print('There are quantiles with size less then', min_size,'. Attempting', current_quantiles, 'quantiles..') summarized=data.dataframe[[data.target]].join(pd.qcut(data.dataframe[f], q=current_quantiles, precision=4, duplicates='drop')).groupby([f]).agg(['mean', 'size']) summarized.columns=summarized.columns.droplevel() summarized=summarized.reset_index() if pd.isnull(data.dataframe[f]).any(): with_na=data.dataframe[[f,data.target]][pd.isnull(data.dataframe[f])] summarized.loc[-1]=[np.nan, with_na[data.target].mean(), with_na.shape[0]] summarized=summarized.sort_index().reset_index(drop=True) if summarized.shape[0]==1: print('Too many observations in one value, so only 1 quantile was created. Increasing quantile number is recommended. No trend to visualize.') if isinstance(out, str): worksheet.write((current_feature_number-1)*(plot_cells+1), 0, 'Target trend for '+f+":") worksheet.write((current_feature_number-1)*(plot_cells+1)+1, 0, 'Too many observations in one value, so only 1 quantile was created. Increasing quantile number is recommended. No trend to visualize.') continue fig = plt.figure(figsize=(15,5)) ax = fig.add_subplot(111) ax.set_ylabel('Observations') # blue is for the distribution if summarized.shape[0]>hide_every_even_tick_from: plt.xticks(range(summarized.shape[0]), summarized[f].astype(str), rotation=60, ha="right") xticks = ax.xaxis.get_major_ticks() for i in range(len(xticks)): if i%2==0: xticks[i].label1.set_visible(False) else: plt.xticks(range(summarized.shape[0]), summarized[f].astype(str), rotation=45, ha="right") ax.bar(range(summarized.shape[0]), summarized['size'], zorder=0, alpha=0.3) ax.grid(False) ax.grid(axis='y', zorder=1, alpha=0.6) ax2 = ax.twinx() ax2.set_ylabel('Target Rate') ax2.grid(False) #display(summarized) if magnify_trend: ax2.set_ylim([0, np.average(summarized['mean'], weights=summarized['size'])+magnify_std_number*np.sqrt(np.cov(summarized['mean'], aweights=summarized['size']))]) for i in range(len(summarized['mean'])): if summarized['mean'][i]>np.average(summarized['mean'], weights=summarized['size'])+magnify_std_number*np.sqrt(np.cov(summarized['mean'], aweights=summarized['size'])): ax2.annotate(str(round(summarized['mean'][i],4)), xy=(i, np.average(summarized['mean'], weights=summarized['size'])+magnify_std_number*np.sqrt(np.cov(summarized['mean'], aweights=summarized['size']))), xytext=(i, np.average(summarized['mean'], weights=summarized['size'])+(magnify_std_number+0.05)*np.sqrt(np.cov(summarized['mean'], aweights=summarized['size']))), rotation=60, ha='left', va='bottom', color='red', size=8.5 ) # red is for the target rate values ax2.plot(range(summarized.shape[0]), summarized['mean'], 'ro-', linewidth=2.0, zorder=4) if out==True or isinstance(out, str): plt.savefig(out_images+f+".png", dpi=100, bbox_inches='tight') if isinstance(out, str): scale=(20*plot_cells)/Image.open(out_images+f+".png").size[1] worksheet.write((current_feature_number-1)*(plot_cells+1), 0, 'Target trend for '+f+":") worksheet.insert_image((current_feature_number-1)*(plot_cells+1)+1, 0, out_images+f+".png", {'x_scale': scale, 'y_scale': scale}) plt.show() if isinstance(out, str): workbook.close() class CorrelationAnalyzer(Processor): ''' Produces correlation analysis ''' def __init__(self): self.stats = pd.DataFrame() def work(self, data, drop_features = True, features = None, features_to_leave = None, threshold=0.6, method = 'spearman', drop_with_most_correlations=True, verbose=False, out_before=None, out_after=None, sep=';', cdict = None): ''' Calculates the covariance matrix and correlation coefficients for each pair of features. For each highly correlated pair the algorithm chooses the less significant feature and adds it to the delete list. Parameters ----------- data: a Data or DataSamples object to check (in case of DataSamples, train sample will be checked) drop_features: permission to delete correlated features and return a Data object without them features: a list of features to analyze; by default - all the features features_to_leave: a list of features that must not be deleted from the feature list threshold: the lowest value of a correlation coefficient for two features to be considered correlated method: method for correlation calculation drop_with_most_correlations: should the features with the highest number of correlations be excluded first (otherwise just with any number of correlations and the lowest gini) verbose: flag for detailed output out_before: file name for export of correlation table before feature exclusion (.csv and .xlsx types are supported) out_after: file name for export of correlation table after feature exclusion (.csv and .xlsx types are supported) sep: the separator in case of .csv export Returns -------- Resulting Data or DataSamples object and the correlation table ''' if features is None: features=[] if features_to_leave is None: features_to_leave=[] self.stats = pd.DataFrame({'drop_features' : [drop_features], 'threshold' : [threshold], 'method' : [method], 'out_before' : out_before, 'out_after' : out_after}) if type(data)==DataSamples: sample=data.train else: sample=data if len(sample.ginis)==0: print('No calculated ginis in datasamples.train/data object. Set calc_gini=True while using WOE.transform or use Data.calc_gini. Return None') return None if features == [] or features is None: candidates = sample.features.copy() else: candidates = features.copy() features_to_drop = [] correlations = sample.dataframe[candidates].corr(method = method) cor_out=correlations.copy() if cdict is None: cdict = {'red' : ((0.0, 0.9, 0.9), (0.5, 0.05, 0.05), (1.0, 0.9, 0.9)), 'green': ((0.0, 0.0, 0.0), (0.5, 0.8, 0.8), (1.0, 0.0, 0.0)), 'blue' : ((0.0, 0.1, 0.1), (0.5, 0.1, 0.1), (1.0, 0.1, 0.1))} #edited 21.08.2018 by <NAME> - added verbose variant, optimized feature dropping # edited on Dec-06-18 by <NAME>: added png draw_corr=correlations.copy() draw_corr.index=[x+' (%i)' % i for i,x in enumerate(draw_corr.index)] draw_corr.columns=range(len(draw_corr.columns)) if out_before is not None: out_before_png = 'corr_before.png' if out_before[-4:]=='.csv': draw_corr.round(2).to_csv(out_before, sep = sep) out_before_png = out_before[:-4] + '.png' elif out_before[-5:]=='.xlsx' or out_before[-4:]=='.xls': draw_corr.round(2).style.applymap(color_digits, threshold_red=threshold, threshold_yellow=threshold**2).to_excel(out_before, engine='openpyxl', sheet_name='Correlation (before)') out_before_png = out_before[:-5] + '.png' if out_before[-5:]=='.xlsx' else out_before[:-4] + '.png' elif out_before[-4:]=='.png': out_before_png = out_before else: print('Unknown format for export file. Use .csv or .xlsx. Skipping export.') fig_before = sns.heatmap(draw_corr.round(2), annot = True, cmap = LinearSegmentedColormap('mycmap', cdict), cbar = False, center = 0, yticklabels = True, xticklabels = True).figure fig_before.set_size_inches(draw_corr.shape[0]/2, draw_corr.shape[0]/2) fig_before.savefig(out_before_png, bbox_inches='tight') plt.close() self.stats['out_before'] = out_before_png if verbose: display(draw_corr.round(2).style.applymap(color_digits, threshold_red=threshold, threshold_yellow=threshold**2)) to_check_correlation=True while to_check_correlation: to_check_correlation=False corr_number={} significantly_correlated={} for var in correlations: var_corr=correlations[var].apply(lambda x: abs(x)) var_corr=var_corr[(var_corr.index!=var) & (var_corr>threshold)].sort_values(ascending=False).copy() corr_number[var]=var_corr.shape[0] significantly_correlated[var]=str(var_corr.index.tolist()) if drop_with_most_correlations: with_correlation={x:sample.ginis[x] for x in corr_number if corr_number[x]==max({x:corr_number[x] for x in corr_number if x not in features_to_leave}.values()) and corr_number[x]>0 and x not in features_to_leave} else: with_correlation={x:sample.ginis[x] for x in corr_number if corr_number[x]>0 and x not in features_to_leave} if len(with_correlation)>0: feature_to_drop=min(with_correlation, key=with_correlation.get) features_to_drop.append(feature_to_drop) if verbose: print('Dropping %(v)s because of high correlation with features: %(f)s (Gini=%(g)0.2f)' % {'v':feature_to_drop, 'f':significantly_correlated[feature_to_drop], 'g':with_correlation[feature_to_drop]}) correlations=correlations.drop(feature_to_drop,axis=1).drop(feature_to_drop,axis=0).copy() to_check_correlation=True draw_corr=correlations.copy() draw_corr.index=[x+' (%i)' % i for i,x in enumerate(draw_corr.index)] draw_corr.columns=range(len(draw_corr.columns)) out_after_png = 'corr_after.png' if out_after is not None: if out_after[-4:]=='.csv': draw_corr.round(2).to_csv(out_after, sep = sep) out_after_png = out_after[:-4] + '.png' elif out_after[-5:]=='.xlsx' or out_after[-4:]=='.xls': draw_corr.round(2).style.applymap(color_digits, threshold_red=threshold, threshold_yellow=threshold**2).to_excel(out_after, engine='openpyxl', sheet_name='Correlation (after)') out_after_png = out_after[:-5] + '.png' if out_after[-5:]=='.xlsx' else out_after[:-4] + '.png' elif out_after[-4:]=='.png': out_after_png = out_after else: print('Unknown format for export file. Use .csv or .xlsx. Skipping export.') #sns.heatmap(draw_corr.round(2), annot = True, cmap = 'RdBu_r', cbar = False, center = 0).figure.savefig(out_after_png, bbox_inches='tight') fig_after = sns.heatmap(draw_corr.round(2), annot = True, cmap = LinearSegmentedColormap('mycmap', cdict), cbar = False, center = 0, yticklabels = True, xticklabels = True).figure fig_after.set_size_inches(draw_corr.shape[0]/2, draw_corr.shape[0]/2) fig_after.savefig(out_after_png, bbox_inches='tight') plt.close() if verbose: display(draw_corr.round(2).style.applymap(color_digits, threshold_red=threshold, threshold_yellow=threshold**2)) self.stats['out_after'] = out_after_png result_data = copy.deepcopy(data) if drop_features: result_data.features_exclude(features_to_drop, verbose=False) if verbose: print('Dropped (if drop_features=True):', features_to_drop) return result_data, cor_out def find_correlated_groups(self, data, features = None, features_to_leave = None, threshold=0.6, method = 'spearman', verbose=False, figsize=(12,12), corr_graph_type='connected'): ''' Calculates the covariance matrix and correlation coefficients for each pair of features and returns groups of significantly correlated features Parameters ----------- data: a Data or DataSamples object to check (in case of DataSamples it's train sample will be checked) features: a list of features to analyze; by default - all the features features_to_leave: a list of features that must not be included in analysis threshold: the lowest value of a correlation coefficient for two features to be considered correlated method: method for correlation calculation verbose: flag for detailed output figsize: the size of correlation connections graph (printed if verbose) corr_graph_type: type of connectivity to persue in finding groups of correlated features 'connected' - groups are formed from features directly or indirectly connected by singnificant correlation 'complete' - groups are formed from features that are directly connected to each other by significant correlation (each pair of features from a group will have a significant connection) Returns -------- a list of lists representing correlated group ''' if features is None: features=[] if features_to_leave is None: features_to_leave=[] if type(data)==DataSamples: sample=data.train else: sample=data if features == [] or features is None: candidates = [x for x in sample.features if x not in features_to_leave] else: candidates = [x for x in features if x not in features_to_leave] correlations = sample.dataframe[candidates].corr(method = method) if verbose: draw_corr=correlations.copy() draw_corr.index=[x+' (%i)' % i for i,x in enumerate(draw_corr.index)] draw_corr.columns=range(len(draw_corr.columns)) display(draw_corr.round(2).style.applymap(color_digits,threshold_red=threshold)) G=nx.Graph() for i in range(correlations.shape[0]): for j in range(i+1, correlations.shape[0]): if correlations.loc[correlations.columns[i], correlations.columns[j]]>threshold: G.add_nodes_from([correlations.columns[i], correlations.columns[j]]) G.add_edge(correlations.columns[i], correlations.columns[j], label=str(round(correlations.loc[correlations.columns[i], correlations.columns[j]],3))) if verbose: plt.figure(figsize=(figsize[0]*1.2, figsize[1])) pos = nx.spring_layout(G, k=100) edge_labels = nx.get_edge_attributes(G,'label') nx.draw(G, pos, with_labels=True) nx.draw_networkx_edge_labels(G, pos, edge_labels = edge_labels) plt.margins(x=0.2) plt.show() correlated_groups=[] if corr_graph_type=='connected': for x in nx.connected_components(G): correlated_groups.append(sorted(list(x))) elif corr_graph_type=='complete': for x in nx.find_cliques(G): correlated_groups.append(sorted(x)) else: print('Unknown correlation graph type. Please use "connected" or "complete". Return None.') return None return correlated_groups #--------------------------------------------------------------- class VIF(Processor): ''' Calculates variance inflation factor for each feature ''' def __init__(self): self.stats = pd.DataFrame() def work(self, data, drop_features = False, features=None, features_to_leave=None, threshold = 5, drop_with_highest_VIF=True, verbose=True, out=None, sep=';'): ''' Parameters ----------- data: a Data or DataSamples object to check VIF on (in case of DataSamples it's train sample will be checked) drop_features: permition to delete excluded features and return a Data object without them features: a list of features to analyze; by default - all the features features_to_leave: a list of features that must not be deleted from the feature list threshold: the lowest value of VIF for feature to be excluded drop_with_highest_VIF: should the features with the highest VIF be excluded first (otherwise just with the lowest gini) verbose: flag for detailed output out: file name for export of VIF values (.csv and .xlsx types are supported) sep: the separator in case of .csv export Returns --------- Data or DataSamples object without excluded features A pandas DataFrame with VIF values on different iterations ''' if features_to_leave is None: features_to_leave=[] self.stats = pd.DataFrame({'drop_features' : [drop_features], 'threshold' : [threshold], 'out' : [out]}) if type(data)==DataSamples: sample=data.train else: sample=data if len(sample.ginis)==0: print('No calculated ginis in datasamples.train/data object. Set calc_gini=True while using WOE.transform or use Data.calc_gini. Return None') return None if features is None: features = sample.features.copy() features_to_drop = [] to_check_VIF = True vifs_df=pd.DataFrame(index=features) iteration=-1 while to_check_VIF: to_check_VIF = False iteration=iteration+1 s = sample.target + ' ~ ' for f in features: s = s + f + '+' s = s[:-1] # Break into left and right hand side; y and X y_, X_ = dmatrices(formula_like=s, data=sample.dataframe, return_type="dataframe") # For each Xi, calculate VIF vifs = {features[i-1]:variance_inflation_factor(X_.values, i) for i in range(1, X_.shape[1])} vifs_df=vifs_df.join(pd.DataFrame(vifs, index=[iteration]).T) if drop_with_highest_VIF: with_high_vif={x:sample.ginis[x] for x in vifs if vifs[x]==max({x:vifs[x] for x in vifs if x not in features_to_leave}.values()) and vifs[x]>threshold and x not in features_to_leave} else: with_high_vif={x:sample.ginis[x] for x in vifs if vifs[x]>threshold and x not in features_to_leave} if len(with_high_vif)>0: feature_to_drop=min(with_high_vif, key=with_high_vif.get) features_to_drop.append(feature_to_drop) if verbose: print('Dropping %(v)s because of high VIF (VIF=%(vi)0.2f, Gini=%(g)0.2f)' % {'v':feature_to_drop, 'vi':vifs[feature_to_drop], 'g':with_high_vif[feature_to_drop]}) features.remove(feature_to_drop) to_check_VIF=True result_data = copy.deepcopy(data) if drop_features: result_data.features_exclude(features_to_drop, verbose=False) out_png = 'VIF.png' if out is not None: if out[-4:]=='.csv': vifs_df.round(2).to_csv(out, sep = sep) out_png = out[:-4] + '.png' elif out[-5:]=='.xlsx' or out[-4:]=='.xls': vifs_df.round(2).style.applymap(color_digits, threshold_red=threshold).to_excel(out, engine='openpyxl', sheet_name='Variance Inflation Factor') out_png = out[:-5] + '.png' if out[-5:]=='.xlsx' else out[:-4] + '.png' elif out[-4:] == '.png': out_png = out else: print('Unknown format for export file. Use .csv or .xlsx. Skipping export.') vif_fig = sns.heatmap(vifs_df.round(2).sort_values(0, ascending = False), xticklabels = False, annot = True, cmap = 'RdYlBu_r', cbar = False, vmax = 5, yticklabels = True).figure vif_fig.set_size_inches(vifs_df.shape[0]/4, vifs_df.shape[0]/2) vif_fig.savefig(out_png, bbox_inches='tight') plt.close() self.stats['out'] = out_png if verbose: display(vifs_df.round(2).style.applymap(color_digits, threshold_red=threshold)) print('Dropped (if drop_features=True):', features_to_drop) return result_data, vifs_df #--------------------------------------------------------------- class FeatureEncoder(Processor): ''' For processing non-numeric features ''' def __init__(self): self.stats = pd.DataFrame() def work(self, data, how_to_code, inplace = False): ''' Parameters ----------- data: data to process, Data type how_to_code: a dictionary {how: features_list} where 'how' can be 'one_hot' or 'seq'(means 'sequential') and 'features_list' is a list of columns in data to process inplace: whether to change the data or to create a new Data object Returns --------- Data with additional features and dictionary for sequantial encoding ''' result = data.dataframe.copy() feature_list = data.features.copy() d = {} for how in how_to_code: if how == 'one_hot': for feature in how_to_code[how]: one_hot = pd.get_dummies(result[feature]) one_hot.columns = [feature + '_' + str(c) for c in one_hot.columns] feature_list = feature_list + list(one_hot.columns) result = result.join(one_hot) elif how == 'seq': for feature in how_to_code[how]: for (i, j) in enumerate(result[feature].drop_duplicates()): d[j] = i result[feature + '_code'] = result[feature].apply(lambda x: d[x]) feature_list = feature_list + [feature + '_code'] else: print ('Do not understand your command. Please use "one_hot" or "seq" for how_to_code. Good luck.') return None self.param_dict_to_stats(data, how_to_code) # for sequential, saves actual encoding self.stats.loc[self.stats.action == 'seq', 'action'] = str(d) if inplace: data = Data(result, features = feature_list, target = data.target, weights = data.weights) return d else: return Data(result, features = feature_list, target = data.target, weights = data.weights), d #--------------------------------------------------------------- # Author - <NAME> class GiniChecker(Processor): ''' Class for gini checking ''' def __init__(self): self.stats = pd.DataFrame() def work(self, feature, datasamples, gini_threshold=5, gini_decrease_threshold=0.2, gini_increase_restrict=True, verbose=False, with_test=False, out=False, out_images='GiniChecker/'): ''' Checks if gini of the feature is significant and stable enough Parameters ----------- feature: an object of FeatureWOE type that should be checked datasamples: an object of DataSamples type containing the samples to check input feature on gini_threshold: gini on train and validate/95% bootstrap should be greater then this gini_decrease_threshold: gini decrease from train to validate/95% bootstrap deviation from mean to mean should be greater then this gini_increase_restrict: if gini increase should also be restricted verbose: if comments and graphs should be printed with_test: add checking of gini values on test (calculation is always on) out: a boolean for image output or a path for csv/xlsx output file to export gini values out_images: a path for image output (default - GiniChecker/) Returns ---------- Boolean - whether the check was successful and if isinstance(out,str) then dictionary of gini values for all available samples ''' if out: directory = os.path.dirname(out_images) if not os.path.exists(directory): os.makedirs(directory) if verbose: print('Checking', feature.feature) gini_correct=True d=feature.transform(datasamples.train, original_values=True) fpr, tpr, _ = roc_curve(d.dataframe[d.target], -d.dataframe[feature.feature+'_WOE']) gini_train= (2*auc(fpr, tpr)-1)*100 if verbose: print('Train gini = '+str(round(gini_train,2))) if gini_train<gini_threshold: gini_correct=False if verbose: print('Train gini is less then threshold '+str(gini_threshold)) samples=[datasamples.validate, datasamples.test] sample_names=['Validate', 'Test'] gini_values={'Train':gini_train} for si in range(len(samples)): if samples[si] is not None: d=feature.transform(samples[si], original_values=True) fpr, tpr, _ = roc_curve(d.dataframe[d.target], -d.dataframe[feature.feature+'_WOE']) gini = (2*auc(fpr, tpr)-1)*100 gini_values[samples[si].name]=gini if verbose: print(samples[si].name+' gini = '+str(round(gini,2))) if with_test or samples[si].name!='Test': if gini<gini_threshold: gini_correct=False if verbose: print(samples[si].name+' gini is less then threshold '+str(gini_threshold)) decrease=1-gini/gini_train if decrease>gini_decrease_threshold: gini_correct=False if verbose: print('Gini decrease from Train to '+samples[si].name+' is greater then threshold: '+str(round(decrease,5))+' > '+str(gini_decrease_threshold)) if gini_increase_restrict and -decrease>gini_decrease_threshold: gini_correct=False if verbose: print('Gini increase from Train to '+samples[si].name+' is greater then threshold: '+str(round(-decrease,5))+' > '+str(gini_decrease_threshold)) else: gini_values[sample_names[si]]=None gini_list=[] if datasamples.bootstrap_base is not None: db=feature.transform(datasamples.bootstrap_base.keep(feature.feature), original_values=True) for bn in range(len(datasamples.bootstrap)): d=db.dataframe.iloc[datasamples.bootstrap[bn]] fpr, tpr, _ = roc_curve(d[db.target], -d[feature.feature+'_WOE']) roc_auc = auc(fpr, tpr) gini_list.append(round((roc_auc*2 - 1)*100, 2)) mean=np.mean(gini_list) std=np.std(gini_list) if verbose: sns.distplot(gini_list) plt.axvline(x=mean, linestyle='--', alpha=0.5) plt.text(mean, 0, ' Mean = '+str(round(mean,2))+', std = '+str(round(std,2)), horizontalalignment='right', verticalalignment='bottom', rotation=90) plt.xlabel('Gini values in bootstrap') plt.ylabel('Distribution') plt.title(feature.feature, fontsize = 16) if out: plt.savefig(out_images+feature.feature+".png", dpi=100, bbox_inches='tight') plt.show() if mean-1.96*std<gini_threshold: gini_correct=False if verbose: print('Less then 95% of gini distribution is greater then threshold: (mean-1.96*std) '+str(round(mean-1.96*std,5))+' < '+str(gini_threshold)) val_decrease=1.96*std/mean if val_decrease>gini_decrease_threshold: gini_correct=False if verbose: print('Gini deviation from mean for 95% of distribution is greater then threshold: (1.96*std/mean) '+str(round(val_decrease,5))+' > '+str(gini_decrease_threshold)) if isinstance(out, str): gini_values.update({'Bootstrap'+str(i):gini_list[i] for i in range(len(gini_list))}) return gini_correct, gini_values else: return gini_correct #added 13.08.2018 by <NAME> def work_all(self, woe, features=None, drop_features=False, gini_threshold=5, gini_decrease_threshold=0.2, gini_increase_restrict=True, verbose=False, with_test=False, out=False, out_images='GiniChecker/', sep=';'): ''' Checks if gini of all features from WOE object is significant and stable enough Parameters ----------- woe: an object of WOE type that should be checked drop_features: should the features be dropped from WOE.feature_woes list in case of failed checks gini_threshold: gini on train and validate/95% bootstrap should be greater then this gini_decrease_threshold: gini decrease from train to validate/95% bootstrap deviation from mean to mean should be greater then this gini_increase_restrict: if gini increase should also be restricted verbose: if comments and graphs should be printed with_test: add checking of gini values on test (calculation is always on) out: a boolean for image output or a path for csv/xlsx output file to export gini values out_images: a path for image output (default - GiniChecker/) sep: the separator to be used in case of csv export Returns ---------- Dictionary with results of check for all features from input WOE object ''' if features is None: cycle_features=list(woe.feature_woes) else: cycle_features=list(features) not_in_features_woe=[x for x in cycle_features if x not in woe.feature_woes] if len(not_in_features_woe)>0: print('No', not_in_features_woe, 'in WOE.feature_woes. Abort.') return None if out: directory = os.path.dirname(out_images) if not os.path.exists(directory): os.makedirs(directory) gini_correct={} if isinstance(out, str): gini_df=pd.DataFrame(columns=['Train', 'Validate', 'Test']+['Bootstrap'+str(i) for i in range(len(woe.datasamples.bootstrap))]) for feature in cycle_features: if isinstance(out, str): gini_correct[feature], gini_values=self.work(woe.feature_woes[feature], datasamples=woe.datasamples, gini_threshold=gini_threshold, gini_decrease_threshold=gini_decrease_threshold, gini_increase_restrict=gini_increase_restrict, verbose=verbose, with_test=with_test, out=out, out_images=out_images) #print(feature, gini_values) gini_df=gini_df.append(pd.DataFrame(gini_values, index=[feature])) else: gini_correct[feature]=self.work(woe.feature_woes[feature], datasamples=woe.datasamples, gini_threshold=gini_threshold, gini_decrease_threshold=gini_decrease_threshold, gini_increase_restrict=gini_increase_restrict, verbose=verbose, with_test=with_test, out=out, out_images=out_images) if isinstance(out, str): gini_df=gini_df[['Train', 'Validate', 'Test']+['Bootstrap'+str(i) for i in range(len(woe.datasamples.bootstrap))]].dropna(axis=1) if out[-4:]=='.csv': gini_df.to_csv(out, sep = sep) elif out[-4:]=='.xls' or out[-5:]=='.xlsx': writer = pd.ExcelWriter(out, engine='openpyxl') gini_df.style.apply(color_background, mn=gini_df.min().min(), mx=gini_df.max().max(), cmap='RdYlGn').to_excel(writer, sheet_name='Gini by Samples') # Get the openpyxl objects from the dataframe writer object. worksheet = writer.sheets['Gini by Samples'] for x in worksheet.columns: worksheet.column_dimensions[x[0].column].width = 40 if x[0].column=='A' else 12 writer.save() else: print('Unknown format for export file. Use .csv or .xlsx. Skipping export.') if drop_features: woe.excluded_feature_woes.update({x:woe.feature_woes[x] for x in woe.feature_woes if gini_correct[x]==False}) woe.feature_woes={x:woe.feature_woes[x] for x in woe.feature_woes if gini_correct[x]} return gini_correct def work_tree(self, dtree, input_df=None, gini_threshold=5, gini_decrease_threshold=0.2, gini_increase_restrict=True, verbose=False, with_test=False, out=False): ''' Checks if gini of the tree is significant and stable enough Parameters ----------- dtree: a cross.DecisionTree object input_df: a DataFrame, containing tree description datasamples: an object of DataSamples type containing the samples to check input tree on gini_threshold: gini on train and validate/95% bootstrap should be greater then this gini_decrease_threshold: gini decrease from train to validate/95% bootstrap deviation from mean to mean should be greater then this gini_increase_restrict: if gini increase should also be restricted verbose: if comments and graphs should be printed with_test: add checking of gini values on test (calculation is always on) out: a boolean flag for gini values output Returns ---------- Boolean - whether the check was successful and if out==True then dictionary of gini values for all available samples ''' if input_df is None: tree_df=dtree.tree.copy() else: tree_df=input_df.copy() datasamples=dtree.datasamples features=[x for x in dtree.features if x in tree_df] #[x for x in tree_df.columns[:tree_df.columns.get_loc('node')] if tree_df[x].dropna().shape[0]>0] if verbose: print('Checking tree on', str(features)) gini_correct=True samples=[datasamples.train, datasamples.validate, datasamples.test] sample_names=['Train', 'Validate', 'Test'] gini_values={} for si in range(len(samples)): if samples[si] is not None: to_check=samples[si].keep(features=features).dataframe to_check['woe']=dtree.transform(to_check, tree_df, ret_values=['woe']) fpr, tpr, _ = roc_curve(to_check[samples[si].target], -to_check['woe']) gini = (2*auc(fpr, tpr)-1)*100 gini_values[samples[si].name]=gini if verbose: print(samples[si].name+' gini = '+str(round(gini,2))) if with_test or samples[si].name!='Test': if gini<gini_threshold: gini_correct=False if verbose: print(samples[si].name+' gini is less then threshold '+str(gini_threshold)) if samples[si].name!='Train': decrease=1-gini/gini_values['Train'] if decrease>gini_decrease_threshold: gini_correct=False if verbose: print('Gini decrease from Train to '+samples[si].name+' is greater then threshold: '+str(round(decrease,5))+' > '+str(gini_decrease_threshold)) if gini_increase_restrict and -decrease>gini_decrease_threshold: gini_correct=False if verbose: print('Gini increase from Train to '+samples[si].name+' is greater then threshold: '+str(round(-decrease,5))+' > '+str(gini_decrease_threshold)) else: gini_values[sample_names[si]]=None gini_list=[] if datasamples.bootstrap_base is not None: base_with_woe=datasamples.bootstrap_base.keep(features=features).dataframe base_with_woe['woe']=dtree.transform(base_with_woe, tree_df, ret_values=['woe']) for bn in range(len(datasamples.bootstrap)): to_check=base_with_woe.iloc[datasamples.bootstrap[bn]] fpr, tpr, _ = roc_curve(to_check[datasamples.bootstrap_base.target], -to_check['woe']) roc_auc = auc(fpr, tpr) gini_list.append(round((roc_auc*2 - 1)*100, 2)) mean=np.mean(gini_list) std=np.std(gini_list) if verbose>True: sns.distplot(gini_list) plt.axvline(x=mean, linestyle='--', alpha=0.5) plt.text(mean, 0, ' Mean = '+str(round(mean,2))+', std = '+str(round(std,2)), horizontalalignment='right', verticalalignment='bottom', rotation=90) plt.xlabel('Gini values in bootstrap') plt.ylabel('Distribution') plt.title('Tree on '+str(features), fontsize = 16) plt.show() elif verbose: print('Bootstrap: mean = '+str(round(mean,2))+', std = '+str(round(std,2))) if mean-1.96*std<gini_threshold: gini_correct=False if verbose: print('Less then 95% of gini distribution is greater then threshold: (mean-1.96*std) '+str(round(mean-1.96*std,5))+' < '+str(gini_threshold)) val_decrease=1.96*std/mean if val_decrease>gini_decrease_threshold: gini_correct=False if verbose: print('Gini deviation from mean for 95% of distribution is greater then threshold: (1.96*std/mean) '+str(round(val_decrease,5))+' > '+str(gini_decrease_threshold)) if out: gini_values.update({'Bootstrap'+str(i):gini_list[i] for i in range(len(gini_list))}) return gini_correct, gini_values else: return gini_correct #--------------------------------------------------------------- # Author - <NAME> class BusinessLogicChecker(Processor): ''' Class for business logic checking ''' def __init__(self): self.stats = pd.DataFrame() def work(self, feature, conditions='', verbose=False, out=None): ''' Checks if the business logic condition is True Parameters ----------- feature: an object of FeatureWOE type that should be checked conditions: a string with business logic conditions for feature.categorical==True: 'cond_1;cond_2;...;cond_n', where cond_i is 'A sign B', where A and B are comma-separated lists of values (or nothing, but not both at the same time) and where sign is one of the following: <, >, =, <=, >= each condition compares risk of bins with values from A to risk of bins with values from B (if B is omitted, then risk of bins with values from A is compared to risk of bins with values not in A); > means that risk of the second values group is smaller then the risk of the first values group (and values from different groups cannot be in one bin), < means the opposite (again, values from different groups cannot be in one bin), adding = allows values from different groups to be in one bin; ALL of the conditions should be True or conditions should be empty for the input feature to pass the check ----------------------------------------------------------------------------------------------------------- for feature.categorical==False:'cond_1;cond_2;....;cond_n (excl_1;...;excl_n)', where cond_i is 'sign_1 value_2 sign_2 value_3 sign_3 ... value_n sign_n', where sign_i is one of the following: <, > and where value_i is a float/int and can be omitted and where excl_i is a float/int and can be omitted (if there is not excl_i at all, then parentheses can be omitted too) each condition describes how should risk be changing when feature values are increasing; > means that risk will be monotonicaly decreasing with increase of values, < means the opposite, >< means that risk decrease and then increase, adding value between signs tells, that in the bin with this value should be the local risk extremum (>N< means that the bin with N in it should have the least risk); adding values in () will result in exclusion of bins with these values before risk trend checking (and so bins with these values are ignored); each condition should start with a sign and end with a sign, one sign is permitter, values between signs can be omitted; ANY one of the conditions should be True for the input feature to pass the check in case of conditions==None or conditions=='' checker wil return True is risk trend is monotonicaly increasing/decresing (the same check will be processed if only values to exclude are provided) verbose: if comments and graphs should be printed out: a path for csv/xlsx output file to export business logic check results Returns ---------- Boolean - whether the check was successful and if out is not None then dataframe of check log ''' if out is not None: out_df=pd.DataFrame(columns=['feature', 'categorical', 'condition', 'fact', 'condition_result']) if feature.categorical == False: woes_dropna={feature.groups[x][0]:feature.woes[x] for x in feature.woes if isinstance(feature.groups[x],list)} groups_info=pd.DataFrame(woes_dropna, index=['woe']).transpose().reset_index().rename({'index':'lower'}, axis=1) groups_info['upper']=groups_info['lower'].shift(-1).fillna(np.inf) if groups_info.shape[0]==1: if verbose: print('Only 1 group with non-missing values is present. Skipping trend check..') all_cond_correct=True else: all_cond_correct=False for c in conditions.split(';'): #find all floats/ints between > and < - minimal risk #first there should be >, then + or - or nothing, then at least one digit, then . or , or nothing, then zero or more digits and < after that min_risk = re.findall('(?<=>)[-+]?\d+[.,]?\d*(?=<)', c) #find all floats/ints between < and > - maximal risk max_risk = re.findall('(?<=<)[-+]?\d+[.,]?\d*(?=>)', c) #find all floats/ints between ( and ), ( and ; or ; and ) - values to exclude (without risk checking) excl_risk = re.findall('(?<=[(;])[-+]?\d+[.,]?\d*(?=[;)])', c) clear_condition=''.join(x for x in c if x in '<>') gi_check=groups_info.dropna(how='all', subset=['lower','upper'])[['woe','lower','upper']].copy() for excl in excl_risk: gi_check=gi_check[((gi_check['lower']<=float(excl)) & (gi_check['upper']>float(excl)))==False] gi_check['risk_trend']=np.sign((gi_check['woe']-gi_check['woe'].shift(1)).dropna()).apply(lambda x: '+' if (x<0) else '-' if (x>0) else '0') trend=gi_check['risk_trend'].str.cat() reg_exp=r'' for s in clear_condition: if s=='>': reg_exp=reg_exp+r'-+' if s=='<': reg_exp=reg_exp+r'\++' if len(reg_exp)==0: reg_exp='-*|\+*' if re.fullmatch(reg_exp, trend): trend_correct=True if verbose: print('Risk trend in data is consistent with input trend: input ', clear_condition, ', data ', trend) else: trend_correct=False if verbose: print('Risk trend in data is not consistent with input trend: input ', clear_condition, ', data ', trend) #local risk minimums min_risk_data=gi_check[(gi_check['risk_trend']=='-') & (gi_check['risk_trend'].shift(-1)=='+')].reset_index(drop=True) min_risk_correct=True for mr in range(len(min_risk)): if mr+1<=min_risk_data.shape[0]: if verbose: print(feature.feature+': checking min risk in', min_risk[mr], '(between ', min_risk_data['lower'].loc[mr], ' and ', min_risk_data['upper'].loc[mr], ')') min_risk_correct=min_risk_correct and (float(min_risk[mr])>=min_risk_data['lower'].loc[mr] and float(min_risk[mr])<min_risk_data['upper'].loc[mr]) else: if verbose: print(feature.feature+': not enough minimums in data to check', min_risk[mr]) min_risk_correct=False #local risk maximums max_risk_data=gi_check[(gi_check['risk_trend']=='+') & (gi_check['risk_trend'].shift(-1)=='-')].reset_index(drop=True) max_risk_correct=True for mr in range(len(max_risk)): if mr+1<=max_risk_data.shape[0]: if verbose: print(feature.feature+': checking max risk in', max_risk[mr], '(between ', max_risk_data['lower'].loc[mr], ' and ', max_risk_data['upper'].loc[mr], ')') max_risk_correct=max_risk_correct and (float(max_risk[mr])>=max_risk_data['lower'].loc[mr] and float(max_risk[mr])<max_risk_data['upper'].loc[mr]) else: if verbose: print(feature.feature+': not enough maximums in data to check', max_risk[mr]) min_risk_correct=False all_cond_correct=all_cond_correct or (trend_correct and min_risk_correct and max_risk_correct) if out is not None: out_df=out_df.append(dict(feature=feature.feature, categorical=feature.categorical, condition=c, fact=trend, condition_result=trend_correct and min_risk_correct and max_risk_correct), ignore_index=True) if verbose: if all_cond_correct: print(feature.feature+': business logic check succeeded.') else: fig=plt.figure(figsize=(5,0.5)) plt.plot(range(len(groups_info.dropna(how='all', subset=['lower','upper'])['lower'])), groups_info.dropna(how='all', subset=['lower','upper'])['woe'], color='red') plt.xticks(range(len(groups_info.dropna(how='all', subset=['lower','upper'])['lower'])), round(groups_info.dropna(how='all', subset=['lower','upper'])['lower'],3)) plt.ylabel('WoE') fig.autofmt_xdate() plt.show() print(feature.feature+': business logic check failed.') if out is not None: return all_cond_correct, out_df[['feature', 'categorical', 'condition', 'fact', 'condition_result']] else: return all_cond_correct else: all_cond_correct=True if conditions!='': w={} for x in feature.groups: for y in feature.groups[x]: w[y]=feature.woes[x] groups_info=pd.DataFrame(w, index=['woe']).transpose().reset_index().rename({'index':'categories'}, axis=1) groups_info=groups_info[groups_info['categories']!=-np.inf].reset_index(drop=True).copy() cond_types2=['>=','=>','<=','=<'] cond_types1=['>','<','='] for c in conditions.split(';'): c0=[] c1=[] cond_type=[x for x in cond_types2 if x in c] if len(cond_type)==0: cond_type=[x for x in cond_types1 if x in c] cond_type=cond_type[0] if cond_type in ['>=', '=>', '>']: c0=ast.literal_eval('['+c[:c.find(cond_type)]+']') c1=ast.literal_eval('['+c[c.find(cond_type)+len(cond_type):]+']') elif cond_type in ['<=', '=<', '<']: c0=ast.literal_eval('['+c[c.find(cond_type)+len(cond_type):]+']') c1=ast.literal_eval('['+c[:c.find(cond_type)]+']') elif cond_type=='=': c0=ast.literal_eval('['+c[c.find(cond_type)+len(cond_type):]+']') c1=ast.literal_eval('['+c[:c.find(cond_type)]+']') can_be_equal=('=' in cond_type) groups_info['risk_group']=groups_info['categories'].apply(lambda x: 0 if (x in c0 or (len(c0)==0 and x not in c1)) else 1 if (x in c1 or (len(c1)==0 and x not in c0)) else np.nan) cond_correct = (cond_type!='=' and groups_info[groups_info['risk_group']==0]['woe'].max()<groups_info[groups_info['risk_group']==1]['woe'].min()) or (can_be_equal and (groups_info[groups_info['risk_group']==0]['woe'].max()==groups_info[groups_info['risk_group']==1]['woe'].min() or c0==c1)) all_cond_correct=all_cond_correct and cond_correct if verbose: print(feature.feature+': checking condition '+ c + ' => ' + str(cond_correct)) if out is not None: out_df=out_df.append(dict(feature=feature.feature, categorical=feature.categorical, condition=c, fact='', condition_result=cond_correct), ignore_index=True) if verbose: print(feature.feature+': conditions ' + conditions + ' => ' + str(all_cond_correct)) else: if verbose: print(feature.feature+': no conditions were specified, business logic check succeeded.') if out is not None: return all_cond_correct, out_df[['feature', 'categorical', 'condition', 'fact', 'condition_result']] else: return all_cond_correct #added 13.08.2018 by <NAME> def work_all(self, woe, features=None, input_conditions=None, drop_features=False, verbose=False, out=None, sep=';'): ''' Checks if business logic conditions for all features from the WOE object are True Parameters ----------- woe: an object of FeatureWOE type that should be checked input_conditions: adress for excel-file with business logic conditions (columns 'variable' and 'condition' are mandatory) drop_features: should the features be dropped from WOE.feature_woes list in case of failed checks verbose: if comments and graphs should be printed out: a path for csv/xlsx output file to export business logic check results sep: the separator to be used in case of csv export Returns ---------- Dictionary with results of check for all features from input WOE object ''' if out is not None: out_df=pd.DataFrame(columns=['feature', 'categorical', 'condition', 'fact', 'condition_result', 'overall_result']) if features is None: cycle_features=list(woe.feature_woes) else: cycle_features=list(features) not_in_features_woe=[x for x in cycle_features if x not in woe.feature_woes] if len(not_in_features_woe)>0: print('No', not_in_features_woe, 'in self.feature_woes. Abort.') return None business_logic_correct={} ''' if conditions_dict is not None: if isinstance(conditions_dict, dict): conditions_dict=pd.DataFrame(conditions_dict, index=['conditions']).T elif isinstance(conditions_dict, str) and (conditions_dict[-5:]=='.xlsx' or conditions_dict[-4:]=='.xls'): try: conditions=pd.read_excel(conditions_dict).set_index('variable') conditions['conditions']=conditions['conditions'].apply(lambda x: '' if (pd.isnull(x)) else x) except Exception: print('No conditions dictionary was found / no "variable" or "conditions" fields were found. Abort.') return None elif isinstance(conditions_dict, str): conditions_dict=pd.DataFrame({x:conditions_dict for x in cycle_features}, index=['conditions']).T else: conditions=pd.DataFrame() ''' if input_conditions is None: conditions_dict=pd.DataFrame(columns=['feature', 'conditions']) elif isinstance(input_conditions, dict) or isinstance(input_conditions, pd.DataFrame): conditions_dict=input_conditions.copy() elif isinstance(input_conditions, str): if input_conditions[-4:]=='.csv': conditions_dict=pd.read_csv(input_conditions, sep = sep) elif input_conditions[-4:]=='.xls' or input_conditions[-5:]=='.xlsx': conditions_dict=pd.read_excel(input_conditions) else: print('Unknown format for path to conditions dictionary file. Return None.') elif isinstance(input_conditions, tuple): conditions_dict={x:input_conditions[0] if x not in woe.categorical else input_conditions[1] for x in cycle_features} else: print('Unknown format for conditions dictionary file. Return None') return None if isinstance(conditions_dict, pd.DataFrame): for v in ['feature', 'variable', 'var']: if v in conditions_dict: break try: conditions_dict=dict(conditions_dict.fillna('').set_index(v)['conditions']) except Exception: print("No 'feature' ,'variable', 'var' or 'conditions' field in input pandas.DataFrame. Return None.") return None for feature in cycle_features: if feature not in conditions_dict: current_conditions='' else: current_conditions=conditions_dict[feature] if out is not None: business_logic_correct[feature], out_feature_df=self.work(woe.feature_woes[feature], conditions=current_conditions, verbose=verbose, out=out) out_feature_df['overall_result']=business_logic_correct[feature] out_df=out_df.append(out_feature_df, ignore_index=True) else: business_logic_correct[feature]=self.work(woe.feature_woes[feature], conditions=current_conditions, verbose=verbose, out=out) if drop_features: woe.excluded_feature_woes.update({x:woe.feature_woes[x] for x in woe.feature_woes if business_logic_correct[x]==False}) woe.feature_woes={x:woe.feature_woes[x] for x in woe.feature_woes if business_logic_correct[x]} if out is not None: out_df=out_df[['feature', 'categorical', 'condition', 'fact', 'condition_result', 'overall_result']] #display(out_df) if out[-4:]=='.csv': out_df.to_csv(out, sep = sep) elif out[-4:]=='.xls' or out[-5:]=='.xlsx': writer = pd.ExcelWriter(out, engine='openpyxl') out_df.style.apply(self.color_result, subset=pd.IndexSlice[:,['condition_result', 'overall_result']]).to_excel(writer, sheet_name='Business Logic', index=False) # Get the openpyxl objects from the dataframe writer object. worksheet = writer.sheets['Business Logic'] for x in worksheet.columns: worksheet.column_dimensions[x[0].column].width = 40 if x[0].column=='A' else 20 writer.save() else: print('Unknown format for export file. Use .csv or .xlsx. Skipping export.') return business_logic_correct def work_tree(self, dtree, input_df=None, input_conditions=None, max_corrections=None, sep=';', to_correct=False, verbose=False): ''' Checks if the business logic conditions are True in every node of the input tree and corrects the tree for it to pass the check Parameters ----------- dtree: a cross.DecisionTree object to check input_df: a DataFrame, containing tree description input_conditions: a DataFrame, a dictionary or a string with a path to conditions dictionary (in case of DataFrame or string the field with features' names should be called 'feature', 'variable' or 'var') for categorical features: 'cond_1;cond_2;...;cond_n', where cond_i is 'A sign B', where A and B are comma-separated lists of values (or nothing, but not both at the same time) and where sign is one of the following: <, >, =, <=, >= each condition compares risk of bins with values from A to risk of bins with values from B (if B is omitted, then risk of bins with values from A is compared to risk of bins with values not in A); > means that risk of the second values group is smaller then the risk of the first values group (and values from different groups cannot be in one bin), < means the opposite (again, values from different groups cannot be in one bin), adding = allows values from different groups to be in one bin; ALL of the conditions should be True or conditions should be empty for the input feature to pass the check ----------------------------------------------------------------------------------------------------------- for interval features:'cond_1;cond_2;....;cond_n (excl_1;...;excl_n)', where cond_i is 'sign_1 sign_2 sign_3 ... sign_n', where sign_i is one of the following: <, > and where excl_i is a float/int and can be omitted (if there is not excl_i at all, then parentheses can be omitted too) each condition describes how should risk be changing when feature values are increasing; > means that risk will be monotonicaly decreasing with increase of values, < means the opposite, >< means that risk decrease and then increase, values between signs will be ignored because for most of nodes entire sample won't be available for division and extremum values' absense or the presence of new local extremums should not be prohibited; adding values in () will result in exclusion of bins with these values before risk trend checking (and so bins with these values are ignored); each condition should start with a sign and end with a sign, one sign is permitted; ANY one of the conditions should be True for the input feature to pass the check in case of conditions==None or conditions=='' checker wil return True is risk trend is monotonicaly increasing/decresing (the same check will be processed if only values to exclude are provided) max_corrections: maximal number of corrections in attempt to change the tree so it will pass the check sep: a separator in case of csv import for conditions dictionary to_correct: should there be attempts to correct tree by uniting nodes or not verbose: if comments and graphs should be printed Returns ---------- if to_correct: True and a DataFrame with tree description - corrected or initial else: result of the input tree check and the input tree itself ''' #-----------------------------------------------Subsidiary functions-------------------------------------------------- def bl_check_categorical(df, conditions, verbose=False, missing_group_is_correct=True): ''' TECH Check correctness of conditions for a categorical feature Parameters ----------- df: a DataFrame, containing lists of categories and WoE values conditions: a string, containing business logic conditions for a feature verbose: if comments should be printed missing_group_is_correct: should missing of any value from condition in input data be considered as successful check or not Returns ---------- boolean flag of successful check ''' all_cond_correct=True if conditions!='': tree_df=df.copy() #display(tree_df) cat_woes=[] for i in tree_df.index: categories, n, w = tree_df.loc[i] #display(tree_df.loc[i]) #display(categories) for c in categories: cat_woes.append([c, n, w]) groups_info=pd.DataFrame(cat_woes, columns=['categories', 'nodes', 'woe']) #display(groups_info) cond_types2=['>=','=>','<=','=<'] cond_types1=['>','<','='] for c in conditions.split(';'): c0=[] c1=[] cond_type=[x for x in cond_types2 if x in c] if len(cond_type)==0: cond_type=[x for x in cond_types1 if x in c] cond_type=cond_type[0] if cond_type in ['>=', '=>', '>']: c0=ast.literal_eval('['+c[:c.find(cond_type)]+']') c1=ast.literal_eval('['+c[c.find(cond_type)+len(cond_type):]+']') elif cond_type in ['<=', '=<', '<']: c0=ast.literal_eval('['+c[c.find(cond_type)+len(cond_type):]+']') c1=ast.literal_eval('['+c[:c.find(cond_type)]+']') elif cond_type=='=': c0=ast.literal_eval('['+c[c.find(cond_type)+len(cond_type):]+']') c1=ast.literal_eval('['+c[:c.find(cond_type)]+']') can_be_equal=('=' in cond_type) groups_info['risk_group']=groups_info['categories'].apply(lambda x: 0 if (x in c0 or (len(c0)==0 and x not in c1)) else 1 if (x in c1 or (len(c1)==0 and x not in c0)) else np.nan) cond_correct = (cond_type!='=' and groups_info[groups_info['risk_group']==0]['woe'].max()<groups_info[groups_info['risk_group']==1]['woe'].min()) or \ (can_be_equal and (groups_info[groups_info['risk_group']==0]['woe'].max()==groups_info[groups_info['risk_group']==1]['woe'].min() or c0==c1)) or \ (missing_group_is_correct and len(groups_info['risk_group'].dropna().unique())<2) all_cond_correct=all_cond_correct and cond_correct if verbose: print('\tChecking condition '+ c + ' => ' + str(cond_correct)) if verbose: print('\tConditions ' + conditions + ' => ' + str(all_cond_correct)) elif verbose: print('\tNo conditions were specified, business logic check succeeded.') return all_cond_correct def bl_check_interval(df, conditions, verbose=False): ''' TECH Check correctness of conditions for an interval feature Parameters ----------- df: a DataFrame, containing intervals' descriptions and WoE values conditions: a string, containing business logic conditions for a feature verbose: if comments should be printed Returns ---------- boolean flag of successful check ''' tree_df=df.copy() split_feature=tree_df.columns[0] groups_info=tree_df[pd.isnull(tree_df[split_feature])==False] groups_info['upper']=groups_info[split_feature].apply(lambda x: x[0][1] if pd.isnull(x[1]) else x[1]) groups_info['lower']=groups_info[split_feature].apply(lambda x: x[0][0] if pd.isnull(x[1]) else x[0]) #display(groups_info) if groups_info.shape[0]==1: if verbose: print('\tOnly 1 group with non-missing values is present. Skipping trend check..') all_cond_correct=True else: all_cond_correct=False for c in conditions.split(';'): #find all floats/ints between > and < - minimal risk #first there should be >, then + or - or nothing, then at least one digit, then . or , or nothing, then zero or more digits and < after that #min_risk = re.findall('(?<=>)[-+]?\d+[.,]?\d*(?=<)', c) #find all floats/ints between < and > - maximal risk #max_risk = re.findall('(?<=<)[-+]?\d+[.,]?\d*(?=>)', c) #find all floats/ints between ( and ), ( and ; or ; and ) - values to exclude (without risk checking) excl_risk = re.findall('(?<=[(;])[-+]?\d+[.,]?\d*(?=[;)])', c) clear_condition=''.join(x for x in c if x in '<>') gi_check=groups_info.dropna(how='all', subset=['lower','upper'])[['woe','lower','upper']].copy() for excl in excl_risk: gi_check=gi_check[((gi_check['lower']<=float(excl)) & (gi_check['upper']>float(excl)))==False] gi_check['risk_trend']=np.sign((gi_check['woe']-gi_check['woe'].shift(1)).dropna()).apply(lambda x: '+' if (x<0) else '-' if (x>0) else '0') trend=gi_check['risk_trend'].str.cat() reg_exp=r'' for s in clear_condition: if s=='>': reg_exp=reg_exp+r'-+' if s=='<': reg_exp=reg_exp+r'\++' if len(reg_exp)==0: reg_exp='-*|\+*' if re.fullmatch(reg_exp, trend): trend_correct=True if verbose: print('\tRisk trend in data is consistent with input trend: input ', clear_condition, ', data ', trend) else: trend_correct=False if verbose: print('\tRisk trend in data is not consistent with input trend: input ', clear_condition, ', data ', trend) '''#local risk minimums min_risk_data=gi_check[(gi_check['risk_trend']=='-') & (gi_check['risk_trend'].shift(-1)=='+')].reset_index(drop=True) min_risk_correct=True for mr in range(len(min_risk)): if mr+1<=min_risk_data.shape[0]: if verbose: print('\tChecking min risk in', min_risk[mr], '(between ', min_risk_data['lower'].loc[mr], ' and ', min_risk_data['upper'].loc[mr], ')') min_risk_correct=min_risk_correct and (float(min_risk[mr])>=min_risk_data['lower'].loc[mr] and float(min_risk[mr])<min_risk_data['upper'].loc[mr]) else: if verbose: print('\tNot enough minimums in data to check', min_risk[mr]) min_risk_correct=False #local risk maximums max_risk_data=gi_check[(gi_check['risk_trend']=='+') & (gi_check['risk_trend'].shift(-1)=='-')].reset_index(drop=True) max_risk_correct=True for mr in range(len(max_risk)): if mr+1<=max_risk_data.shape[0]: if verbose: print('\tChecking max risk in', max_risk[mr], '(between ', max_risk_data['lower'].loc[mr], ' and ', max_risk_data['upper'].loc[mr], ')') max_risk_correct=max_risk_correct and (float(max_risk[mr])>=max_risk_data['lower'].loc[mr] and float(max_risk[mr])<max_risk_data['upper'].loc[mr]) else: if verbose: print('\tNot enough maximums in data to check', max_risk[mr]) min_risk_correct=False all_cond_correct=all_cond_correct or (trend_correct and min_risk_correct and max_risk_correct)''' all_cond_correct=all_cond_correct or trend_correct if verbose: if all_cond_correct: print('\tBusiness logic check succeeded.') else: fig=plt.figure(figsize=(5,0.5)) plt.plot(range(len(groups_info.dropna(how='all', subset=['lower','upper'])['lower'])), groups_info.dropna(how='all', subset=['lower','upper'])['woe'], color='red') plt.xticks(range(len(groups_info.dropna(how='all', subset=['lower','upper'])['lower'])), round(groups_info.dropna(how='all', subset=['lower','upper'])['lower'],3)) plt.ylabel('WoE') fig.autofmt_xdate() plt.show() print('\tBusiness logic check failed.') return all_cond_correct def bl_recursive_correct(tree_df, node, allowed_corrections=1, corrections=None, conditions='', max_corrections=1, verbose=False): ''' TECH Recursive search of corrections needed for tree to pass business logic checks Parameters ----------- tree_df: a DataFrame, containing tree description node: a node number, whose children are corrected and checked allowed_corrections: a number of remaining corrections, that are allowed max_corrections: maximal number of corrections in attempt to change the tree so it will pass the check corrections: the list of current corrections conditions: a string, containing business logic conditions for a feature, by which current node was split verbose: if comments and graphs should be printed Returns ---------- boolean flag of corrected tree passing the check and the list of corrections, that were made ''' if corrections is None: corrections=[] split_feature=tree_df[(tree_df['node']==node)]['split_feature'].values[0] if allowed_corrections>0: possible_nodes_to_correct=sorted(tree_df[(tree_df['parent_node']==node)]['node'].tolist()) combinations=[] for n1 in range(len(possible_nodes_to_correct)): for n2 in range(len(possible_nodes_to_correct[n1+1:])): if dtree.check_unitability(tree_df, [possible_nodes_to_correct[n1], possible_nodes_to_correct[n1+1:][n2]]): first_condition=tree_df[(tree_df['node']==possible_nodes_to_correct[n1])][split_feature].values[0] if not(isinstance(first_condition, list) or isinstance(first_condition, tuple)): nodes_combination=[possible_nodes_to_correct[n1+1:][n2], possible_nodes_to_correct[n1]] else: nodes_combination=[possible_nodes_to_correct[n1], possible_nodes_to_correct[n1+1:][n2]] combinations.append([nodes_combination, abs(tree_df[tree_df['node']==possible_nodes_to_correct[n1]]['woe'].values[0]- \ tree_df[tree_df['node']==possible_nodes_to_correct[n1+1:][n2]]['woe'].values[0])]) combinations.sort(key=itemgetter(1)) for nodes_to_unite, woe in combinations: if verbose: print('Checking (',(max_corrections-allowed_corrections+1),'): for node', node, 'uniting children', str(nodes_to_unite), 'with woe difference =', woe) tree_df_corrected=dtree.unite_nodes(tree_df, nodes_to_unite) #display(tree_df_corrected) if tree_df_corrected.shape[0]!=tree_df.shape[0]: correct, final_corrections=bl_recursive_correct(tree_df_corrected, node, allowed_corrections-1, corrections+[nodes_to_unite], conditions, max_corrections=max_corrections, verbose=verbose) else: correct=False if correct: return correct, final_corrections else: return False, corrections else: df_to_check=tree_df[(tree_df['parent_node']==node)][[split_feature, 'node', 'woe']] categorical=sum([isinstance(x, list) for x in df_to_check[split_feature]])>0 if verbose: print('Node', node, split_feature, (': Checking categorical business logic..' if categorical \ else ': Checking interval business logic..')) correct=bl_check_categorical(df_to_check, conditions, verbose=verbose) if categorical \ else bl_check_interval(df_to_check, conditions, verbose=verbose) return correct, corrections #--------------------------------------------------------------------------------------------------------------------- if input_df is None: tree_df=dtree.tree.copy() else: tree_df=input_df.copy() features=[x for x in dtree.features if x in tree_df] if input_conditions is None: conditions_dict=pd.DataFrame(columns=['feature', 'conditions']) elif isinstance(input_conditions, dict) or isinstance(input_conditions, pd.DataFrame): conditions_dict=input_conditions.copy() elif isinstance(input_conditions, str): if input_conditions[-4:]=='.csv': conditions_dict=pd.read_csv(input_conditions, sep = sep) elif input_conditions[-4:]=='.xls' or input_conditions[-5:]=='.xlsx': conditions_dict=pd.read_excel(input_conditions) else: print('Unknown format for path to conditions dictionary file. Return None.') elif isinstance(input_conditions, tuple): conditions_dict={x:input_conditions[0] if x not in dtree.categorical else input_conditions[1] for x in features} else: print('Unknown format for conditions dictionary file. Return None') return None if isinstance(conditions_dict, pd.DataFrame): for v in ['feature', 'variable', 'var']: if v in conditions_dict: break try: conditions_dict=dict(conditions_dict.fillna('').set_index(v)['conditions']) except Exception: print("No 'feature' ,'variable', 'var' or 'conditions' field in input pandas.DataFrame. Return None.") return None #tree_df['split_feature'].dropna().unique().tolist() categorical={} for f in features: if f not in conditions_dict: conditions_dict[f]='' categorical[f]=sum([isinstance(x,list) for x in tree_df[f]])>0 nodes_to_check=tree_df[tree_df['leaf']==False].sort_values(['depth', 'node'])['node'].tolist() current_node_index=0 to_check=True correct_all=True while to_check: node=nodes_to_check[current_node_index] to_check=False split_feature=tree_df.loc[tree_df['node']==node, 'split_feature'].values[0] conditions=conditions_dict[split_feature] if conditions is None: if verbose: print('Node', node, split_feature, ': <None> conditions specified, skipping..') correct=True else: df_to_check=tree_df[(tree_df['parent_node']==node)][[split_feature, 'node', 'woe']] if verbose: print('Node', node, split_feature, (': Checking categorical business logic..' if categorical[split_feature] \ else ': Checking interval business logic..')) correct=bl_check_categorical(df_to_check, conditions, verbose=verbose) if categorical[split_feature] \ else bl_check_interval(df_to_check, conditions, verbose=verbose) correct_all=correct_all and correct if correct==False and to_correct: new_correct=False if len(df_to_check['node'].unique())>2: nodes_to_correct=sorted(df_to_check['node'].unique().tolist()) if max_corrections is None: allowed_corrections=len(nodes_to_correct)-1 else: allowed_corrections=min(len(nodes_to_correct)-1, max_corrections) #print('correct', nodes_to_correct) for cur_allowed_corrections in range(1,allowed_corrections): new_correct, corrections=bl_recursive_correct(tree_df, node, allowed_corrections=cur_allowed_corrections, conditions=conditions, max_corrections=allowed_corrections, verbose=verbose) if new_correct: break if new_correct: if verbose: print('Successful corrections:', str(corrections)) for correction in corrections: tree_df=dtree.unite_nodes(tree_df, correction) if new_correct==False: if verbose: print('No successful corrections were found. Pruning node', node) tree_df=dtree.prune(tree_df, node) nodes_to_check=tree_df[tree_df['leaf']==False].sort_values(['depth', 'node'])['node'].tolist() if current_node_index+1<len(nodes_to_check): current_node_index+=1 to_check=True if to_correct: return True, tree_df else: return correct_all, tree_df def color_result(self, x): ''' TECH Defines result cell color for excel export Parameters ----------- x: input values Returns -------- color description for style.apply() ''' colors=[] for e in x: if e: colors.append('background-color: green') else: colors.append('background-color: red') return colors #--------------------------------------------------------------- #added 13.08.2018 by <NAME> class WOEOrderChecker(Processor): ''' Class for WoE order checking ''' def __init__(self): self.stats = pd.DataFrame() def work(self, feature, datasamples, dr_threshold=0.01, correct_threshold=0.85, woe_adjust=0.5, miss_is_incorrect=True, verbose=False, out=False, out_images='WOEOrderChecker/'): ''' Checks if WoE order of the feature remains stable in bootstrap Parameters ----------- feature: an object of FeatureWOE type that should be checked datasamples: an object of DataSamples type containing the samples to check input feature on dr_threshold: if WoE order is not correct, then default rate difference between swaped bins is checked correct_threshold: what part of checks on bootstrap should be correct for feature to pass the check woe_adjust: woe adjustment factor (for Default_Rate_i formula) miss_is_incorrect: is there is no data for a bin on bootstrap sample, should it be treated as error or not verbose: if comments and graphs should be printed out: a boolean for image output or a path for csv/xlsx output file to export woe and er values out_images: a path for image output (default - WOEOrderChecker/) Returns ---------- Boolean - whether the check was successful and if isinstance(out, str) then dataframes with WoE and ER values for groups per existing sample ''' if out: directory = os.path.dirname(out_images) if not os.path.exists(directory): os.makedirs(directory) w={x:feature.woes[x] for x in feature.woes if feature.woes[x] is not None} woes_df=pd.DataFrame(w, index=['Train']).transpose().reset_index().rename({'index':'group'},axis=1).sort_values('group') if isinstance(out, str): out_woes=woes_df.copy() if feature.data.weights is None: out_er=woes_df.drop('Train', axis=1).merge(feature.data.dataframe[['group', feature.data.target]].groupby('group', as_index=False).mean(), on='group').rename({feature.data.target:'Train'}, axis=1) else: for_er=feature.data.dataframe[['group', feature.data.target, feature.data.weights]] for_er[feature.data.target]=for_er[feature.data.target]*for_er[feature.data.weights] out_er=woes_df.drop('Train', axis=1).merge(for_er[['group', feature.data.target]].groupby('group', as_index=False).mean(), on='group').rename({feature.data.target:'Train'}, axis=1) cur_sample_woe=pd.DataFrame(columns=['group', 'woe', 'event_rate']) samples=[datasamples.validate, datasamples.test] sample_names=['Validate', 'Test'] for si in range(len(samples)): if samples[si] is not None: to_keep=[feature.feature, samples[si].target] if samples[si].weights is not None: to_keep.append(samples[si].weights) cur_sample=samples[si].dataframe[to_keep] cur_sample['group']=feature.set_groups(woes=feature.woes, original_values=True, data=cur_sample[feature.feature]) #cur_sample=cur_sample.sort_values('group') if samples[si].weights is None: N_b = cur_sample[samples[si].target].sum() N_g = (1-cur_sample[samples[si].target]).sum() else: N_b = cur_sample[cur_sample[samples[si].target] == 1][samples[si].weights].sum() N_g = cur_sample[cur_sample[samples[si].target] == 0][samples[si].weights].sum() DR = N_b*1.0/N_g index=-1 # for each interval for gr_i in sorted(cur_sample['group'].unique()): index=index+1 if samples[si].weights is None: N_b_i = cur_sample[cur_sample['group']==gr_i][samples[si].target].sum() N_g_i = cur_sample[cur_sample['group']==gr_i].shape[0] - N_b_i else: N_b_i = cur_sample[(cur_sample['group']==gr_i)&(cur_sample[samples[si].target] == 1)][samples[si].weights].sum() N_g_i = cur_sample[(cur_sample['group']==gr_i)&(cur_sample[samples[si].target] == 0)][samples[si].weights].sum() if not(N_b_i==0 and N_g_i==0): DR_i = (N_b_i + woe_adjust)/(N_g_i + woe_adjust) ER_i=N_b_i/(N_b_i+N_g_i) n = N_g_i + N_b_i smoothed_woe_i = np.log(DR*(feature.alpha + n)/(n*DR_i + feature.alpha))#*DR)) cur_sample_woe.loc[index]=[gr_i, smoothed_woe_i, ER_i] out_woes=out_woes.merge(cur_sample_woe.drop('event_rate', axis=1), on='group').rename({'woe':samples[si].name}, axis=1) out_er=out_er.merge(cur_sample_woe.drop('woe', axis=1), on='group').rename({'event_rate':samples[si].name}, axis=1) else: out_woes[sample_names[si]]=np.nan out_er[sample_names[si]]=np.nan if datasamples.bootstrap_base is not None: if verbose: fig = plt.figure(figsize=(15,7)) bootstrap_correct=[] to_keep=[feature.feature, datasamples.bootstrap_base.target]+([datasamples.bootstrap_base.weights] if datasamples.bootstrap_base.weights is not None else []) base_with_group=datasamples.bootstrap_base.dataframe[to_keep] base_with_group['group']=feature.set_groups(woes=feature.woes, original_values=True, data=base_with_group[feature.feature]) for bn in range(len(datasamples.bootstrap)): cur_sample_woe=pd.DataFrame(columns=['group', 'train_woe', 'woe', 'event_rate']) cur_sample=base_with_group.iloc[datasamples.bootstrap[bn]] #cur_sample['train_woe']=cur_sample['group'].apply(lambda x: feature.woes[x]) #cur_sample=cur_sample.sort_values('group') if datasamples.bootstrap_base.weights is None: N_b = cur_sample[datasamples.bootstrap_base.target].sum() N_g = (1-cur_sample[datasamples.bootstrap_base.target]).sum() else: N_b = cur_sample[cur_sample[datasamples.bootstrap_base.target] == 1][datasamples.bootstrap_base.weights].sum() N_g = cur_sample[cur_sample[datasamples.bootstrap_base.target] == 0][datasamples.bootstrap_base.weights].sum() DR = N_b*1.0/N_g index=-1 # for each interval for gr_i in sorted(cur_sample['group'].unique()): index=index+1 if datasamples.bootstrap_base.weights is None: N_b_i = cur_sample[cur_sample['group']==gr_i][datasamples.bootstrap_base.target].sum() N_g_i = cur_sample[cur_sample['group']==gr_i].shape[0] - N_b_i else: N_b_i = cur_sample[(cur_sample['group']==gr_i)&(cur_sample[datasamples.bootstrap_base.target] == 1)][datasamples.bootstrap_base.weights].sum() N_g_i = cur_sample[(cur_sample['group']==gr_i)&(cur_sample[datasamples.bootstrap_base.target] == 0)][datasamples.bootstrap_base.weights].sum() if not(N_b_i==0 and N_g_i==0): DR_i = (N_b_i + woe_adjust)/(N_g_i + woe_adjust) ER_i=N_b_i/(N_b_i+N_g_i) n = N_g_i + N_b_i smoothed_woe_i = np.log(DR*(feature.alpha + n)/(n*DR_i + feature.alpha))#*DR)) cur_sample_woe.loc[index]=[gr_i, feature.woes[gr_i], smoothed_woe_i, ER_i] if isinstance(out, str): out_woes=out_woes.merge(cur_sample_woe.drop('event_rate', axis=1), on='group').rename({'woe':'Bootstrap'+str(bn)}, axis=1).drop('train_woe', axis=1) out_er=out_er.merge(cur_sample_woe.drop('woe', axis=1), on='group').rename({'event_rate':'Bootstrap'+str(bn)}, axis=1).drop('train_woe', axis=1) cur_sample_woe['trend_train']=np.sign((cur_sample_woe['train_woe']-cur_sample_woe['train_woe'].shift(1)).dropna()) cur_sample_woe['trend']=np.sign((cur_sample_woe['woe']-cur_sample_woe['woe'].shift(1)).dropna()) cur_sample_woe['prev_event_rate']=cur_sample_woe['event_rate'].shift(1) cur_sample_woe_error=cur_sample_woe[cur_sample_woe['trend_train']!=cur_sample_woe['trend']].dropna(how='all', subset=['trend_train','trend']) cur_sample_correct=True if cur_sample_woe.shape[0]!=0: for ind, row in cur_sample_woe_error.iterrows(): if abs(row['event_rate']-row['prev_event_rate'])>dr_threshold: cur_sample_correct=False if miss_is_incorrect: cur_sample_correct=cur_sample_correct and woes_df.merge(cur_sample_woe, on='group', how='left')['woe'].notnull().all() if verbose: line_color='green' if cur_sample_correct else 'red' plt.plot(range(woes_df.shape[0]), woes_df.merge(cur_sample_woe, on='group', how='left')['woe'], color=line_color, alpha=0.4) bootstrap_correct.append(cur_sample_correct*1) bootstrap_correct_part=sum(bootstrap_correct)/len(bootstrap_correct) result=(bootstrap_correct_part>=correct_threshold) if verbose: plt.plot(range(woes_df.shape[0]), woes_df['Train'], color='blue', linewidth=5.0) plt.ylabel('WoE') plt.xticks(range(woes_df.shape[0]), woes_df['group']) plt.suptitle(feature.feature, fontsize = 16) fig.autofmt_xdate() if out: plt.savefig(out_images+feature.feature+".png", dpi=100, bbox_inches='tight') plt.show() print('Correct WoE order part = '+str(round(bootstrap_correct_part,4))+' ('+str(sum(bootstrap_correct))+' out of '+str(len(bootstrap_correct))+'), threshold = '+str(correct_threshold)) if bootstrap_correct_part<correct_threshold: print('Not stable enough WoE order.') else: if verbose: print('No bootstrap samples were found is DataSamples object. Return True.') result=True if isinstance(out, str): return result, out_woes, out_er else: return result def work_all(self, woe, features=None, drop_features=False, dr_threshold=0.01, correct_threshold=0.85, woe_adjust=0.5, miss_is_incorrect=True, verbose=False, out=False, out_images='WOEOrderChecker/', out_woe_low=0, out_woe_high=0, out_er_low=0, out_er_high=0): ''' Checks if WoE order of all features from WOE object remains stable in bootstrap Parameters ----------- woe: an object of FeatureWOE type that should be checked features: a list of features to check (if None, then all features from woe object will be checked) drop_features: should the features be dropped from WOE.feature_woes list in case of failed checks dr_threshold: if WoE order is not correct, then default rate difference between swaped bins is checked correct_threshold: what part of checks on bootstrap should be correct for feature to pass the check woe_adjust: woe adjustment factor (for Default_Rate_i formula) miss_is_incorrect: is there is no data for a bin on bootstrap sample, should it be treated as error or not verbose: if comments and graphs should be printed out: a boolean for image output or a path for xlsx output file to export woe and er values out_images: a path for image output (default - WOEOrderChecker/) out_woe_low: correcting coefficient for lower edge of WoE gradient scale (if out is str) out_woe_high: correcting coefficient for upper edge of WoE gradient scale (if out is str) out_er_low: correcting coefficient for lower edge of ER gradient scale (if out is str) out_er_high: correcting coefficient for upper edge of ER gradient scale (if out is str) Returns ---------- Dictionary with results of check for all features from input WOE object ''' if features is None: cycle_features=list(woe.feature_woes) else: cycle_features=list(features) not_in_features_woe=[x for x in cycle_features if x not in woe.feature_woes] if len(not_in_features_woe)>0: print('No', not_in_features_woe, 'in self.feature_woes. Abort.') return None if out: directory = os.path.dirname(out_images) if not os.path.exists(directory): os.makedirs(directory) woe_order_correct={} if isinstance(out, str): woes_df=pd.DataFrame(columns=['feature', 'group', 'Train', 'Validate', 'Test']+['Bootstrap'+str(i) for i in range(len(woe.datasamples.bootstrap))]) er_df=pd.DataFrame(columns=['feature', 'group', 'Train', 'Validate', 'Test']+['Bootstrap'+str(i) for i in range(len(woe.datasamples.bootstrap))]) for feature in cycle_features: if isinstance(out, str): woe_order_correct[feature], woes_df_feature, er_df_feature=self.work(woe.feature_woes[feature], datasamples=woe.datasamples, dr_threshold=dr_threshold, correct_threshold=correct_threshold, woe_adjust=woe_adjust, miss_is_incorrect=miss_is_incorrect, verbose=verbose, out=out, out_images=out_images) woes_df_feature['feature']=feature er_df_feature['feature']=feature woes_df=woes_df.append(woes_df_feature, ignore_index=True) er_df=er_df.append(er_df_feature, ignore_index=True) else: woe_order_correct[feature]=self.work(woe.feature_woes[feature], datasamples=woe.datasamples, dr_threshold=dr_threshold, correct_threshold=correct_threshold, woe_adjust=woe_adjust, miss_is_incorrect=miss_is_incorrect, verbose=verbose, out=out, out_images=out_images) if isinstance(out, str): woes_df=woes_df[['feature', 'group', 'Train', 'Validate', 'Test']+['Bootstrap'+str(i) for i in range(len(woe.datasamples.bootstrap))]].dropna(axis=1) er_df=er_df[['feature', 'group', 'Train', 'Validate', 'Test']+['Bootstrap'+str(i) for i in range(len(woe.datasamples.bootstrap))]].dropna(axis=1) df_columns=[x for x in woes_df.columns if x not in ['feature', 'group']] if out[-4:]=='.csv': print('Unappropriate format for exporting two tables. Use .xlsx. Skipping export.') elif out[-4:]=='.xls' or out[-5:]=='.xlsx': writer = pd.ExcelWriter(out, engine='openpyxl') woes_values=woes_df[df_columns].values.reshape(-1,).tolist() woes_df.style.apply(color_background, mn=np.mean(woes_values)-2*np.std(woes_values), mx=np.mean(woes_values)+2*np.std(woes_values), cmap='RdYlGn', subset=df_columns, high=out_woe_high, low=out_woe_low).to_excel(writer, sheet_name='WoE by Samples', index=False) er_values=er_df[df_columns].values.reshape(-1,).tolist() er_df.style.apply(color_background, mn=max([0,np.mean(er_values)-2*np.std(er_values)]), mx=np.mean(er_values)+2*np.std(er_values), cmap='RdYlGn_r', subset=df_columns, high=out_er_high, low=out_er_low).to_excel(writer, sheet_name='Event Rate by Samples', index=False) # Get the openpyxl objects from the dataframe writer object. for worksheet in writer.sheets: for x in writer.sheets[worksheet].columns: writer.sheets[worksheet].column_dimensions[x[0].column].width = 40 if x[0].column=='A' else 12 writer.save() else: print('Unknown format for export file. Use .xlsx. Skipping export.') if drop_features: woe.excluded_feature_woes.update({x:woe.feature_woes[x] for x in woe.feature_woes if woe_order_correct[x]==False}) woe.feature_woes={x:woe.feature_woes[x] for x in woe.feature_woes if woe_order_correct[x]} return woe_order_correct def work_tree(self, dtree, input_df=None, er_threshold=0.01, correct_threshold=0.85, miss_is_incorrect=True, to_correct=False, max_corrections=2, verbose=False): ''' Checks if WoE order of the tree remains stable in bootstrap and corrects the tree for it to pass the check Parameters ----------- dtree: a cross.DecisionTree object input_df: a DataFrame, containing tree description er_threshold: if WoE order is not correct, then event rate difference between swaped bins is checked correct_threshold: what part of checks on bootstrap should be correct for tree to pass the check miss_is_incorrect: if there is no data for a bin on bootstrap sample, should it be treated as error or not to_correct: should there be attempts to correct tree by uniting nodes/groups or not max_corrections: maximal number of corrections in attempt to change the tree so it will pass the check verbose: if comments and graphs should be printed (False - no output, True or 1 - actions log, 2 - actions and interim checks) Returns ---------- if to_correct: True and a DataFrame with tree description - corrected or initial else: result of the input tree check and the input tree itself ''' #-----------------------------------------------Subsidiary functions-------------------------------------------------- def woeo_check(input_df, bootstrap_tree_list, er_threshold=0.01, correct_threshold=0.85, miss_is_incorrect=True, verbose=False): ''' TECH WoE order stabitility check Parameters ----------- input_df: a DataFrame, containing tree description bootstrap_sample_list: a list of DataFrames, cantaining the same tree, as in tree_df, but with stats from bootstrap samples er_threshold: if WoE order is not correct, then event rate difference between swaped bins is checked correct_threshold: what part of checks on bootstrap should be correct for tree to pass the check miss_is_incorrect: if there is no data for a bin on bootstrap sample, should it be treated as error or not verbose: if comments and graphs should be printed Returns ---------- boolean flag of current tree passing the check and the dictionary of {group:number of errors} ''' tree_df=input_df.copy() tree_groups_stats=tree_df[['group','group_woe', 'group_target', 'group_amount']].rename({'group_woe':'train_woe'}, axis=1).\ dropna().drop_duplicates().reset_index(drop=True).sort_values('group') tree_groups_stats['group_er']=tree_groups_stats['group_target']/tree_groups_stats['group_amount'] features=list(tree_df.columns[:tree_df.columns.get_loc('node')]) if verbose>True: fig = plt.figure(figsize=(15,7)) bootstrap_correct=[] bootstrap_groups_error={} for i in range(len(bootstrap_tree_list)): #display(bootstrap_tree_list[i][bootstrap_tree_list[i]['leaf']]) groups_stats=bootstrap_tree_list[i][bootstrap_tree_list[i]['leaf']][['group', 'group_woe']].drop_duplicates().\ merge(tree_groups_stats, on='group', how='left').sort_values('group') groups_stats['trend_train']=np.sign((groups_stats['train_woe']-groups_stats['train_woe'].shift(1)).dropna()) groups_stats['trend']=np.sign((groups_stats['group_woe']-groups_stats['group_woe'].shift(1)).dropna()) groups_stats['prev_er']=groups_stats['group_er'].shift(1) #display(groups_stats) groups_error=groups_stats[groups_stats['trend_train']!=groups_stats['trend']].dropna(how='all', subset=['trend_train','trend']) sample_correct=True if groups_stats.shape[0]!=0: for ind, row in groups_error.iterrows(): if abs(row['group_er']-row['prev_er'])>er_threshold: if row['group'] in bootstrap_groups_error: bootstrap_groups_error[row['group']]+=1 else: bootstrap_groups_error[row['group']]=1 sample_correct=False if miss_is_incorrect: sample_correct=sample_correct and tree_groups_stats.merge(groups_stats, on='group', how='left')['group_woe'].notnull().all() if verbose>True: line_color='green' if sample_correct else 'red' plt.plot(range(tree_groups_stats.shape[0]), tree_groups_stats.merge(groups_stats, on='group', how='left')['group_woe'], color=line_color, alpha=0.4) bootstrap_correct.append(sample_correct*1) bootstrap_correct_part=sum(bootstrap_correct)/len(bootstrap_correct) result=(bootstrap_correct_part>=correct_threshold) if verbose>True: plt.plot(range(tree_groups_stats.shape[0]), tree_groups_stats['train_woe'], color='blue', linewidth=5.0) plt.ylabel('WoE') plt.xticks(range(tree_groups_stats.shape[0]), tree_groups_stats['group']) plt.suptitle('Tree on '+str(features), fontsize = 16) fig.autofmt_xdate() plt.show() if verbose: print('Correct WoE order part = '+str(round(bootstrap_correct_part,4))+' ('+str(sum(bootstrap_correct))+' out of '+str(len(bootstrap_correct))+'), threshold = '+str(correct_threshold)) if bootstrap_correct_part<correct_threshold: print('Not stable enough WoE order.') return result, bootstrap_groups_error def woeo_recursive_correct(tree_df, bootstrap_sample_list, worst_group, allowed_corrections=1, corrections=None, verbose=False, er_threshold=0.01, correct_threshold=0.85, miss_is_incorrect=True, max_corrections=1): ''' TECH Recursive search of corrections needed for tree to pass WoE order stabitility check Parameters ----------- tree_df: a DataFrame, containing tree description bootstrap_sample_list: a list of DataFrames, cantaining the same tree, as in tree_df, but with stats from bootstrap samples worst_group: a number of group, in which the most part of errors was found during WoE order check (so this group switched places with the one before it) allowed_corrections: a number of remaining corrections, that are allowed corrections: the list of current corrections verbose: if comments and graphs should be printed er_threshold: if WoE order is not correct, then event rate difference between swaped bins is checked correct_threshold: what part of checks on bootstrap should be correct for tree to pass the check miss_is_incorrect: if there is no data for a bin on bootstrap sample, should it be treated as error or not max_corrections: maximal number of corrections in attempt to change the tree so it will pass the check Returns ---------- boolean flag of corrected tree passing the check and the list of corrections, that were made ''' if corrections is None: corrections=[] if allowed_corrections>0: possible_nodes_to_correct=[] #each group is compared to the previous one and the worst_group has the most number of errors with the previous #group (by woe), also groups are numbered by woe, so we need to check the worst, the previous one and also the one #before previous and the one after the worst (because maybe we need to unite two groups before the worst, or #the worst and the next or both variants) for g in range(worst_group-2, worst_group+2): group_filter=(tree_df['group']==g) #if group exists and it is not a united group if group_filter.sum()==1: add_node_series=tree_df[group_filter] possible_nodes_to_correct.append(add_node_series['node'].values[0]) #also for groups that were changing their places in woe order we are looking for adjacent nodes that are leaves #and are not in united groups (because there are cases like this one: groups (3,1), (2,0), most errors are #between 0 and 1, but above we are looking only at groups -1, 0, 1 and 2, so we also need to check the factual #tree structure, not only groups woe order) if g in [worst_group-1, worst_group]: adjacent_filter=(tree_df['parent_node']==add_node_series['parent_node'].values[0])&(tree_df['node']!=add_node_series['node'].values[0]) if adjacent_filter.sum()==1: adjacent_node_series=tree_df[adjacent_filter] if tree_df[tree_df['group']==adjacent_node_series['group'].values[0]].shape[0]==1 and adjacent_node_series['leaf'].values[0]: possible_nodes_to_correct.append(adjacent_node_series['node'].values[0]) possible_nodes_to_correct=sorted(list(set(possible_nodes_to_correct))) combinations=[] for n1 in range(len(possible_nodes_to_correct)): first_node=possible_nodes_to_correct[n1] for n2 in range(len(possible_nodes_to_correct[n1+1:])): second_node=possible_nodes_to_correct[n1+1:][n2] if dtree.check_unitability(tree_df, [first_node, second_node]): first_node_series=tree_df[tree_df['node']==first_node] parent_node=first_node_series['parent_node'].values[0] split_feature=tree_df[(tree_df['node']==parent_node)]['split_feature'].values[0] first_condition=first_node_series[split_feature].values[0] if not(isinstance(first_condition, list) or isinstance(first_condition, tuple)): nodes_combination=[second_node, first_node] else: nodes_combination=[first_node, second_node] combinations.append([nodes_combination, abs(first_node_series['woe'].values[0]- \ tree_df[tree_df['node']==second_node]['woe'].values[0])]) combinations.sort(key=itemgetter(1)) if verbose: print('\t'*(max_corrections-allowed_corrections)+'Possible corrections (by nodes):', str([x[0] for x in combinations])) for nodes_to_unite, woe in combinations: if verbose: print('\t'*(max_corrections-allowed_corrections+1)+'Checking (level =',max_corrections-allowed_corrections+1, '): uniting nodes', str(nodes_to_unite), 'with woe difference =', woe) corrected_tree_df=dtree.unite_nodes(tree_df, nodes_to_unite) corrected_bootstrap_sample_list=[] for bs_tree in bootstrap_sample_list: corrected_bootstrap_sample=dtree.unite_nodes(bs_tree, nodes_to_unite) corrected_bootstrap_sample=corrected_bootstrap_sample.drop('group', axis=1).merge(corrected_tree_df[['node', 'group']], on='node', how='left') corrected_bootstrap_sample_list.append(corrected_bootstrap_sample) correct, errors = woeo_check(corrected_tree_df, corrected_bootstrap_sample_list, verbose=(verbose>True), er_threshold=er_threshold, correct_threshold=correct_threshold, miss_is_incorrect=miss_is_incorrect) if correct: if verbose: print('\t'*(max_corrections-allowed_corrections+1)+'Corrections', str(corrections+[nodes_to_unite]), 'succeeded!') return correct, corrections+[nodes_to_unite] else: if allowed_corrections==1: if verbose: print('\t'*(max_corrections-allowed_corrections+1)+'Maximum correction level reached. Corrections', str(corrections+[nodes_to_unite]), 'failed.') else: new_worst_group=int(max(errors, key=errors.get)) if verbose: print('\t'*(max_corrections-allowed_corrections+1)+'Most errors were produced by', new_worst_group, 'group. Trying to correct..') correct, final_corrections=woeo_recursive_correct(corrected_tree_df, corrected_bootstrap_sample_list, new_worst_group, allowed_corrections-1, corrections+[nodes_to_unite], verbose, er_threshold=er_threshold, correct_threshold=correct_threshold, miss_is_incorrect=miss_is_incorrect, max_corrections=max_corrections) if correct: return correct, final_corrections return False, corrections #--------------------------------------------------------------------------------------------------------------- if input_df is None: tree_df=dtree.tree.copy() else: tree_df=input_df.copy() datasamples=dtree.datasamples features=[x for x in dtree.features if x in tree_df] #list(tree_df.columns[:tree_df.columns.get_loc('node')]) if max_corrections is None: max_corrections=2 alpha=dtree.alpha woe_adjust=dtree.woe_adjust bootstrap_sample_list=[] if datasamples.bootstrap_base is not None: base_for_woe=datasamples.bootstrap_base.keep(features=features).dataframe base_for_woe['node']=dtree.transform(base_for_woe, tree_df, ret_values=['node']) base_for_woe['---weight---']=base_for_woe[datasamples.bootstrap_base.weights] if datasamples.bootstrap_base.weights is not None else 1 base_for_woe[datasamples.bootstrap_base.target]=base_for_woe[datasamples.bootstrap_base.target]*base_for_woe['---weight---'] base_for_woe=base_for_woe[['node', datasamples.bootstrap_base.target, '---weight---']] for i in range(len(datasamples.bootstrap)): for_woe=base_for_woe.iloc[datasamples.bootstrap[i]] groups_stats=for_woe.groupby('node', as_index=False).sum() groups_stats.columns=['node', 'target', 'amount'] sample_tree_df=tree_df[features+['node', 'parent_node', 'depth', 'leaf', 'split_feature', 'group']].merge(groups_stats, on=['node'], how='left') for parent_node in sample_tree_df.sort_values('depth', ascending=False)['parent_node'].unique(): for v in ['target', 'amount']: sample_tree_df.loc[sample_tree_df['node']==parent_node, v]=sample_tree_df.loc[sample_tree_df['parent_node']==parent_node, v].sum() sample_tree_df['nontarget']=sample_tree_df['amount']-sample_tree_df['target'] good_bad=[sample_tree_df[sample_tree_df['leaf']]['nontarget'].sum(), sample_tree_df[sample_tree_df['leaf']]['target'].sum()] sample_tree_df['er']=sample_tree_df['target']/sample_tree_df['amount'] sample_tree_df['woe']=np.log(((good_bad[1]/good_bad[0])*(alpha + sample_tree_df['amount'])/ \ (sample_tree_df['amount']*((sample_tree_df['target'] + woe_adjust)/(sample_tree_df['nontarget'] + woe_adjust)) + alpha)).astype(float)) groupped=sample_tree_df[['group', 'target', 'nontarget', 'amount']].groupby('group', as_index=False).sum().rename({'target':'group_target', 'nontarget':'group_nontarget', 'amount':'group_amount'}, axis=1) groupped['group_woe']=np.log(((good_bad[1]/good_bad[0])*(alpha + groupped['group_amount'])/ \ (groupped['group_amount']*((groupped['group_target'] + woe_adjust)/(groupped['group_nontarget'] + woe_adjust)) + alpha)).astype(float)) sample_tree_df=sample_tree_df.merge(groupped, on=['group'], how='left') bootstrap_sample_list.append(sample_tree_df) else: if verbose: print('No bootstrap samples were found. Skipping WoE order check..') return True, tree_df correct, errors = woeo_check(tree_df, bootstrap_sample_list, verbose=verbose, er_threshold=er_threshold, correct_threshold=correct_threshold, miss_is_incorrect=miss_is_incorrect) if to_correct and correct==False: worst_group=int(max(errors, key=errors.get)) if verbose: print('Most errors were produced by', worst_group, 'group. Trying to correct..') new_correct=False allowed_corrections=min(tree_df[tree_df['leaf']].shape[0]-2, max_corrections) #print('allowed_corrections', allowed_corrections) for cur_allowed_corrections in range(1,allowed_corrections+1): if verbose: print('Current maximum number of corrections =', cur_allowed_corrections) new_correct, corrections=woeo_recursive_correct(tree_df, bootstrap_sample_list, worst_group, allowed_corrections=cur_allowed_corrections, corrections=[], verbose=verbose, er_threshold=er_threshold, correct_threshold=correct_threshold, miss_is_incorrect=miss_is_incorrect, max_corrections=cur_allowed_corrections) #print('new_correct', new_correct) if new_correct: break if new_correct: if verbose: print('Successful corrections:', str(corrections)) for correction in corrections: tree_df=dtree.unite_nodes(tree_df, correction) correct=new_correct else: if verbose: print('No successful corrections were found. Proceed to uniting groups..') while correct==False: if verbose: print('Uniting groups:', worst_group, worst_group-1) tree_df=dtree.unite_groups(tree_df, [worst_group, worst_group-1]) corrected_bootstrap_sample_list=[] for bs_tree in bootstrap_sample_list: corrected_bootstrap_sample=dtree.unite_groups(bs_tree, [worst_group, worst_group-1]) corrected_bootstrap_sample=corrected_bootstrap_sample.drop('group', axis=1).merge(tree_df[['node', 'group']], on='node', how='left') corrected_bootstrap_sample_list.append(corrected_bootstrap_sample) bootstrap_sample_list=corrected_bootstrap_sample_list.copy() correct, errors = woeo_check(tree_df, bootstrap_sample_list, verbose=verbose, er_threshold=er_threshold, correct_threshold=correct_threshold, miss_is_incorrect=miss_is_incorrect) worst_group=int(max(errors, key=errors.get)) if len(errors)>0 else None if to_correct: for g in tree_df['group'].unique(): group_nodes=tree_df[tree_df['group']==g]['node'].tolist() for i in range(len(group_nodes)): for j in range(len(group_nodes[i+1:])): if dtree.check_unitability(tree_df, [group_nodes[i], group_nodes[i+1:][j]]): if verbose: print('Unitable nodes', str([group_nodes[i], group_nodes[i+1:][j]]), 'were found in the same group. Uniting..') tree_df=dtree.unite_nodes(tree_df, [group_nodes[i], group_nodes[i+1:][j]]) return True, tree_df else: return correct, tree_df #--------------------------------------------------------------- # Author - <NAME> 24.08.2018 class WaldBSChecker(Processor): ''' Class for coefficient significance checking on bootstrap samples ''' def __init__(self): self.stats = pd.DataFrame() def work(self, model, woe, refit_data=None, drop_features=False, features_to_leave=None, pvalue_threshold=0.05, correctness_threshold=0.85, verbose=False, out=False, out_images='WaldBSChecker/'): ''' Checks model's coefficients significance in bootstrap. If drop_features==True, then features will be dropped and the model will be refitted Parameters ----------- model: an object of LogisticRegressionModel type, whose coefficients should be checked woe: a WOE object, containing feature transformations to WoE refit_data: data with woe-transformed feature to refit model in case of drop_features=True drop_features: should the features be dropped in case of not stable enough significance of their coefficients features_to_leave: features not to be dropped in any case pvalue_threshold: maximal p-value for Wald chi-square statistic for coefficient to be considered significant correctness_threshold: minimal part of bootstrap samples on which coefficient stays significant for feature to be considered having coefficient with stable enough significance verbose: if comments and graphs should be printed out: a boolean for image output or a path for xlsx output file to export p-value by iteration values out_images: a path for image output (default - WaldBSChecker/) Returns ---------- a dataframe with standard error, wald statistic and p-value for feature coefficients in case of not dropping them or a list of features to stay ''' if features_to_leave is None: features_to_leave=[] if out: directory = os.path.dirname(out_images) if not os.path.exists(directory): os.makedirs(directory) to_check_wald=True if woe.datasamples.bootstrap_base is not None: if isinstance(out,str) and (out[-4:]=='.xls' or out[-5:]=='.xlsx'): writer = pd.ExcelWriter(out, engine='openpyxl') with_woe=woe.transform(woe.datasamples.bootstrap_base, original_values=True, calc_gini=False) it=0 while to_check_wald: it=it+1 if out: wald_df=pd.DataFrame(index=['intercept']+model.selected) samples=[woe.datasamples.train, woe.datasamples.validate, woe.datasamples.test] sample_names=['Train', 'Validate', 'Test'] for si in range(len(samples)): if samples[si] is not None: sample_wald=model.wald_test(samples[si], woe_transform=woe) wald_df=wald_df.join(sample_wald[['feature', 'p-value']].set_index('feature')).rename({'p-value':sample_names[si]}, axis=1) else: wald_df[sample_names[si]]=np.nan wald_df=wald_df.join(sample_wald[['feature','coefficient']].set_index('feature'))#.rename({0:'Train', 1:'Validate', 2:'Test'}, axis=1) to_check_wald=False wald_correct={} for f in model.selected: wald_correct[f]=0 for bn in range(len(woe.datasamples.bootstrap)): if woe.datasamples.bootstrap_base.weights is not None: w=model.wald_test(Data(with_woe.dataframe.iloc[woe.datasamples.bootstrap[bn]][model.selected+[woe.datasamples.bootstrap_base.target, woe.datasamples.bootstrap_base.weights]], woe.datasamples.bootstrap_base.target, features=model.selected, weights=woe.datasamples.bootstrap_base.weights)) else: w=model.wald_test(Data(with_woe.dataframe.iloc[woe.datasamples.bootstrap[bn]][model.selected+[woe.datasamples.bootstrap_base.target]], woe.datasamples.bootstrap_base.target, features=model.selected)) if out: wald_df=wald_df.join(w[['feature', 'p-value']].set_index('feature')).rename({'p-value':'Bootstrap'+str(bn)}, axis=1) for f in model.selected: wald_correct[f]=wald_correct[f]+(w[w['feature']==f]['p-value'].values[0]<pvalue_threshold) for f in model.selected: wald_correct[f]=wald_correct[f]/len(woe.datasamples.bootstrap) if out: #display(wald_df) wald_df=wald_df[['coefficient', 'Train', 'Validate', 'Test']+['Bootstrap'+str(i) for i in range(len(woe.datasamples.bootstrap))]].dropna(axis=1) wald_columns=[x for x in wald_df.columns if x!='coefficient'] for ind in wald_df.index: p_value_list=wald_df[[x for x in wald_df.columns if x[:9]=='Bootstrap']].loc[ind].tolist() mean=np.mean(p_value_list) std=np.std(p_value_list) sns.distplot(p_value_list) plt.axvline(x=mean, linestyle='--', alpha=0.5) plt.text(mean, 0, ' Mean = '+str(round(mean,8))+', std = '+str(round(std,8)), horizontalalignment='right', verticalalignment='bottom', rotation=90) plt.xlabel('Wald p-values in bootstrap') plt.ylabel('Distribution') plt.title(str(ind), fontsize = 16) plt.savefig(out_images+str(ind)+"_"+str(it)+".png", dpi=100, bbox_inches='tight') plt.close() if isinstance(out,str): if out[-4:]=='.xls' or out[-5:]=='.xlsx': wald_df.style.apply(color_background, mn=0, mx=pvalue_threshold, cmap='RdYlGn_r', subset=pd.IndexSlice[:, wald_columns]).to_excel(writer, sheet_name='Iteration '+str(it)) # Get the openpyxl objects from the dataframe writer object. worksheet = writer.sheets['Iteration '+str(it)] for x in worksheet.columns: if x[0].column=='A': worksheet.column_dimensions[x[0].column].width = 40 else: worksheet.column_dimensions[x[0].column].width = 12 for cell in worksheet[x[0].column]: cell.number_format = '0.00000000' worksheet.freeze_panes = worksheet['C2'] else: print('Unknown or unappropriate format for export several tables. Use .xlsx. Skipping export.') if drop_features and refit_data is not None: if verbose: display(wald_correct) insignificant={x:refit_data.ginis[x] for x in wald_correct if wald_correct[x]<correctness_threshold and x not in features_to_leave} if len(insignificant)>0: feature_to_drop=min(insignificant, key=insignificant.get) if verbose: print('Dropping', feature_to_drop, 'because of not stable enough significance of coefficient: ', wald_correct[feature_to_drop], '(gini =', refit_data.ginis[feature_to_drop],')') model.selected.remove(feature_to_drop) model.fit(refit_data, selected_features=True) if verbose: model.draw_coefs() to_check_wald=True else: if verbose: print('drop_features==False or no refit_data was specified, so returning wald test results') return wald_correct if isinstance(out,str) and (out[-4:]=='.xls' or out[-5:]=='.xlsx'): writer.save() return model.selected else: print('No bootstrap samples!') return None #--------------------------------------------------------------- class FullnessAnalyzer(): ''' Visualizing data fullness by blocks (if provided), using cluster analysis to split data according to its fullness and explaining clusters by training sklearn's Decision Tree on its labels (for easier interpretation and determining, to which cluster each observation belongs) For full functionality it needs hdbscan and fastcluster packages to be installed (because other methods works too slow with highly-dimensional data exceeding 50000 obs). Otherwise only sklearn's k-means clustering is available. Also for Decision Tree visualization graphviz needs to be installed in OS and graphviz_converter_path should be provided to .work and .explain_clusters methods (it is a path to dot.exe, which can transform .dot file to .png for it to be displayed in the notebook) Because sklearn's Decision Tree is used for explanation only interval values without inf or nan should be used. The safe (but maybe not the best) aproach is to base explanation on already transformed features. ''' def __init__(self, data=None, linked=None, clusterer=None, categorical=None): ''' Parameters ----------- stats: a pandas DataFrame, containing technical information for report generation data: a Data object with transformed features and cluster labels (if the process has already reached the .get_clusters step) linked: a linkage matrix, which is generated by hierarchy clustering (used for getting cluster labels from) clusterer: a trained clusterer object (hdbscan.HDBSCAN or sklearn.cluster.KMeans) (used for getting cluster labels from) categorical: a list of categorical features (their alues will be changed to -1 and 1 without 0) ''' self.stats = pd.DataFrame() self.data = data self.linked = linked self.clusterer = clusterer self.conditions = None self.categorical = None def work(self, input_data=None, to_transform=True, to_train=True, to_explain=True, features=None, categorical=None, exclude=None, blocks=None, interval_min_unique=None, clusterer=None, clusterer_options=None, clusters_number=None, explainer_features=None, explainer_max_leaf_nodes=None, explainer_max_depth=None, explainer_min_samples_leaf=None, graphviz_converter_path='C:\\Program Files (x86)\\Graphviz2.38\\bin\\dot.exe', verbose=True): ''' Fully process input data for fullness clustering meaning transformation to fullness values, visualizing this data, clustering, getting cluster labels, visualizing fullness by clusters and explaining clusters with Decision Tree Because sklearn's Decision Tree is used for explanation only interval values without inf or nan should be used. The safe (but maybe not the best) aproach is to base explanation on already transformed features. Parameters ----------- input_data: a pandas DataFrame or a Data object to analyze to_transform: should the input data be transformed to fullness values (-1 for missing, 0 for interval features' zero, 1 for the rest) to_train: should the clusterer be trained (it can be omitted if it was already trained and we only need to get/explain clusters) to_explain: should the clusters be explained features: a list of features to analyze categorical: a list of categorical features (their alues will be changed to -1 and 1 without 0) exclude: a list of features to exclude from analysis (they can be used later for explanation) blocks: a path to Excel file or a pandas DataFrame with blocks information (features will be sorted by blocks during visualization) interval_min_unique: a minimal number of unique values for feature to be considered interval (if categorical is None) clusterer: a type of clusterer to be used. Default is k-means. 'k-means' - partitions observations into k clusters in which each observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster. This is the fastest method with usually poor results. 'hierarchy'- hierarchical agglomerative clustering seeks to build a hierarchy of clusters. This is a "bottom-up" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy. For 60000 observations and 500 features it works for about 40 minutes. Number of clusters can be adjusted without need to retrain the clusterer. 'hdbscan' - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Searches for the areas with the higher density allowing different values of variance for each cluster and existance of points without clusters (label -1). For 60000 observations and 500 features it works for about 55 minutes. Number of clusters cannot be adjusted directly, only by changing clusterer options like min_cluster_size, min_samples etc, clusterer must be retrained. clusterer_options: a dictionary of options for clusterer. Contents depend on clusterer type (see main options below): 'k-means' (for more information look for sklearn.cluster.KMeans): init - the method for choosing centroids, 'random' and 'k-means++' are available n_clusters - the desired number of clusters n_init - the number of iterations to choose best clustering from 'hierarchy' (for more information look for http://danifold.net/fastcluster.html): method - for memory-friendly clustering available methods are centroid (worked best so far), median, ward and single. For memory-hungry clustering other methods can be used: complete, average, weighted. For a dataset with 60000 observations and 500 features 'complete' method used about 10 GB RAM and crushed. Use on your own risk. metric - for centroid, median and ward methods only euclidian metric can be used. For other methods these metrics are available: euclidian, sqeuclidean, seuclidean, mahalanobis, cityblock, chebychev, minkowski, cosine, correlation, canberra, braycurtis, hamming, jaccard, yule, dice, rogerstanimoto, russellrao, sokalsneath, kulsinski, matching (sokalmichener), user-defined. 'hdbscan' (for more information look for https://hdbscan.readthedocs.io/en/latest/): min_cluster_size - the minimal number of observations to form a cluster min_samples - number of samples in a neighbourhood for a point to be considered a core point. The larger this values is the more conservative clustering will be (more points will be considered as noise) clusters_number: the desired number of clusters to get from clusterer (used for k-means during training and for hierarchy after training, for hdbscan this option is ignored) explainer_features: a list of features to train Decision Tree for cluster labels prediction on (if None all features are used) explainer_max_leaf_nodes: a maximal number of explanation tree leaves (if None, then number of clusters is used) explainer_max_depth: a maximal depth of explanation tree (if None, then number of clusters - 1 is used) explainer_min_samples_leaf: a minimal number of observations in an explanation tree leaf (if None, then minimal cluster size is used) graphviz_converter_path: a path to dot.exe, which can transform .dot file to .png for it to be displayed in the notebook verbose: a flag for detailed output (including fullness visualization) Returns ---------- a dataframe with clusters explanation and statistics ''' to_self=False if input_data is None: to_self=True input_data=self.data if to_transform: print('Transforming data according to its fullness..') processed_data=self.transform(input_data, features=features, categorical=categorical, exclude=exclude, interval_min_unique=interval_min_unique) to_self=True else: processed_data=copy.deepcopy(input_data) if verbose: print('Visualizing data fullness..') self.visualize(processed_data, features=features, blocks=blocks, to_transform=False, exclude=exclude, text_color = 'k', figsize=(15,5)) if to_train: print('Training', clusterer if clusterer is not None else '', 'clusterer..') self.train_clusterer(processed_data, features=features, exclude=exclude, clusterer=clusterer, options=clusterer_options, clusters_number=clusters_number, verbose=verbose) print('Getting clusters..') processed_data.dataframe['cluster']=self.get_clusters(clusterer=clusterer, number=clusters_number, to_self=to_self) if verbose: print('Visualizing data fullness by clusters..') self.visualize(processed_data, features=features, blocks=blocks, groups=['cluster'], to_transform=False, text_color = 'k', figsize=(15,5)) if to_explain: print('Training explanation Decision Tree..') return self.explain_clusters(processed_data, cluster='cluster', features=explainer_features, max_leaf_nodes=explainer_max_leaf_nodes, max_depth=explainer_max_depth, min_samples_leaf=explainer_min_samples_leaf, graphviz_converter_path=graphviz_converter_path) def transform(self, input_data=None, features=None, categorical=None, exclude=None, interval_min_unique=None): ''' Transforms input data features to fullness values (-1 for missing, 0 for interval features' zero, 1 for the rest) Parameters ----------- input_data: a pandas DataFrame or a Data object to analyze features: a list of features to analyze categorical: a list of categorical features (their values will be changed to -1 and 1 without 0) exclude: a list of features to exclude from analysis (they can be used later for explanation) interval_min_unique: a minimal number of unique values for feature to be considered interval (if categorical is None) Returns ---------- a Data object, containing transformed data ''' def lists_contents_equal(a,b): return sorted([x for x in a if pd.isnull(x)==False])==sorted([x for x in b if pd.isnull(x)==False]) and \ ((np.nan in a and np.nan in b) or (np.nan not in a and np.nan not in b)) if interval_min_unique is None: interval_min_unique=30 if input_data is None: input_data=self.data if isinstance(input_data, pd.DataFrame): data=Data(input_data) else: data=copy.deepcopy(input_data) if features is None: features=data.features if exclude is not None: features=[x for x in features if x not in exclude] if categorical is None and self.categorical is not None: categorical=self.categorical.copy() if categorical is None: categorical=[] interval=[] for f in features: unique=data.dataframe[f].unique() field_type=data.dataframe[f].dtype if field_type==object or unique.shape[0]<interval_min_unique or \ (lists_contents_equal(unique, [0,1]) or \ lists_contents_equal(unique, [0,1, np.nan])): categorical.append(f) else: interval.append(f) else: interval=[x for x in features if x not in categorical] self.categorical=categorical.copy() result_data=data.dataframe.copy() result_data[categorical]=result_data[categorical].applymap(lambda x: -1 if pd.isnull(x) else 1) result_data[interval]=result_data[interval].applymap(lambda x: -1 if pd.isnull(x) else 1 if x!=0 else 0) self.data=Data(result_data) return self.data def visualize(self, input_data=None, features=None, groups=None, blocks=None, to_transform=True, exclude=None, show_features_labels=False, text_color = 'k', figsize=(15,5)): ''' Visualize data fullness by features, sorted in their blocks order (if provided). For each combination of groups' features' values separate plot is made. Parameters ----------- input_data: a pandas DataFrame or a Data object to analyze features: a list of features to analyze groups: a list of features to draw separate plots for (a plot for a combination of features' values) blocks: a path to Excel file or a pandas DataFrame with blocks information (features will be sorted by blocks during visualization) to_transform: should the input data be transformed to fullness values (-1 for missing, 0 for interval features' zero, 1 for the rest) exclude: a list of features to exclude from analysis (they can be used later for explanation) show_features_labels: should feature labels be shown on the plot or not (if True, then no blocks information will be displayed) text_color: a color for all text in plots (including ticks, axis and legend) figsize: a size for plots' figure ''' if input_data is None: input_data=self.data if isinstance(input_data, pd.DataFrame): data=Data(input_data) else: data=copy.deepcopy(input_data) if features is None: features=data.features if groups is not None: features=[x for x in features if x not in groups] try: groups_data=data.dataframe[groups].drop_duplicates().sort_values(groups).reset_index(drop=True).reset_index() except Exception: print("No specified groups columns in input data. Return None.") return None groups_number=groups_data.shape[0] else: groups_number=1 if exclude is not None: features=[x for x in features if x not in exclude] if blocks is not None and show_features_labels==False: if isinstance(blocks, str): blocks=pd.read_excel(blocks) blocks.columns=blocks.columns.str.lower() for v in ['feature', 'variable', 'var', 'column']: if v in blocks: break try: blocks=blocks.sort_values(['block', v]) except Exception: print("No 'feature' ,'variable', 'var', 'column' or 'block' field in input data. Return None.") return None blocks=blocks[blocks[v].isin(features)].reset_index(drop=True) nd_block=[{v:f, 'block':'Not defined'} for f in features if f not in blocks[v].tolist()] blocks=blocks.append(pd.DataFrame(nd_block), ignore_index=True).sort_values(['block', v]).reset_index(drop=True) blocks_first=blocks.groupby('block').first().reset_index() blocks_edges_x=list(blocks[blocks[v].isin(blocks_first[v])].index)+[blocks.shape[0]] blocks_labels_x=[(blocks_edges_x[i]+blocks_edges_x[i+1])/2 for i in range(len(blocks_edges_x)-1)] blocks_edges_x=blocks_edges_x[1:-1] features=blocks[v].tolist() else: features=sorted(features) if to_transform: print('Transforming data according to its fullness..') data=self.transform(data, features=features) c_text=matplotlib.rcParams['text.color'] c_axes=matplotlib.rcParams['axes.labelcolor'] c_xtick=matplotlib.rcParams['xtick.color'] c_ytick=matplotlib.rcParams['ytick.color'] matplotlib.rcParams['text.color'] = text_color matplotlib.rcParams['axes.labelcolor'] = text_color matplotlib.rcParams['xtick.color'] = text_color matplotlib.rcParams['ytick.color'] = text_color group_stats={} f, axes = plt.subplots(groups_number, 1, sharex=True, figsize=figsize) if isinstance(axes, np.ndarray)==False: axes=[axes] for g in range(groups_number): if groups is not None: current_data=data.dataframe.merge(groups_data[groups_data['index']==g].drop('index', axis=1), on=groups, how='inner') else: current_data=data.dataframe group_stats[g]=current_data[features].apply(pd.value_counts) group_stats[g]=group_stats[g]/group_stats[g].sum() group_stats[g].T.plot(kind='bar', ax=axes[g], stacked=True, width=1, legend=False, grid=False, ylim=(0,1)) handles, _ = axes[g].get_legend_handles_labels() if groups_number>1: axes[g].set_ylabel(str(dict(groups_data[groups].iloc[g])).replace('{', '').replace('}', '').replace("'", '')+'\namount = '+str(current_data.shape[0]), rotation=0, ha='right', va='center') if blocks is not None and show_features_labels==False: axes[g].set_xticks(blocks_labels_x) axes[g].set_xticklabels(blocks_first.block.tolist()) for edge in blocks_edges_x: axes[g].axvline(edge-0.5, ymin=-0.5 if g!=groups_number-1 else 0, ymax=1.5 if g!=0 else 1, linestyle='--', color='red', alpha=1, lw=1, clip_on=False) elif show_features_labels: axes[g].set_xticks([i for i in range(len(features))]) axes[g].set_xticklabels(features) else: axes[g].set_xticks([]) axes[g].yaxis.set_major_formatter(mtick.PercentFormatter(1)) labels=['Пропущенные' if x==-1 else '0 (для интервальных)' if x==0 else 'Не пропущенные' if x==1 else x \ for x in sorted(np.unique(data.dataframe[features]))] f.legend(handles=handles, labels=labels,ncol=len(labels), bbox_to_anchor=(0.5,1), loc='center') plt.tight_layout() plt.show() matplotlib.rcParams['text.color'] = c_text matplotlib.rcParams['axes.labelcolor'] = c_axes matplotlib.rcParams['xtick.color'] = c_xtick matplotlib.rcParams['ytick.color'] = c_ytick def train_clusterer(self, input_data=None, features=None, exclude=None, clusterer=None, options=None, clusters_number=None, verbose=True): ''' Trains the chosen clusterer to obtain cluster labels or a linkage matrix for them (for hierarchy clusterer) Parameters ----------- input_data: a pandas DataFrame or a Data object to analyze features: a list of features to analyze exclude: a list of features to exclude from analysis (they can be used later for explanation) clusterer: a type of clusterer to be used. Default is k-means. 'k-means' - partitions observations into k clusters in which each observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster. This is the fastest method with usually poor results. 'hierarchy'- hierarchical agglomerative clustering seeks to build a hierarchy of clusters. This is a "bottom-up" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy. For 60000 observations and 500 features it works for about 40 minutes. Number of clusters can be adjusted without need to retrain the clusterer. 'hdbscan' - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Searches for the areas with the higher density allowing different values of variance for each cluster and existance of points without clusters (label -1). For 60000 observations and 500 features it works for about 55 minutes. Number of clusters cannot be adjusted directly, only by changing clusterer options like min_cluster_size, min_samples etc, clusterer must be retrained. options: a dictionary of options for clusterer. Contents depend on clusterer type (see main options below): 'k-means' (for more information look for sklearn.cluster.KMeans): init - the method for choosing centroids, 'random' and 'k-means++' are available n_clusters - the desired number of clusters n_init - the number of iterations to choose best clustering from 'hierarchy' (for more information look for http://danifold.net/fastcluster.html): method - for memory-friendly clustering available methods are centroid (worked best so far), median, ward and single. For memory-hungry clustering other methods can be used: complete, average, weighted. For a dataset with 60000 observations and 500 features 'complete' method used about 10 GB RAM and crushed. Use on your own risk. metric - for centroid, median and ward methods only euclidian metric can be used. For other methods these metrics are available: euclidian, sqeuclidean, seuclidean, mahalanobis, cityblock, chebychev, minkowski, cosine, correlation, canberra, braycurtis, hamming, jaccard, yule, dice, rogerstanimoto, russellrao, sokalsneath, kulsinski, matching (sokalmichener), user-defined. 'hdbscan' (for more information look for https://hdbscan.readthedocs.io/en/latest/): min_cluster_size - the minimal number of observations to form a cluster min_samples - number of samples in a neighbourhood for a point to be considered a core point. The larger this values is the more conservative clustering will be (more points will be considered as noise) clusters_number: the desired number of clusters to get from clusterer (used for k-means during training and for hierarchy after training, for hdbscan this option is ignored) verbose: a flag for detailed output ''' if input_data is None: input_data=self.data if isinstance(input_data, pd.DataFrame): data=Data(input_data) else: data=copy.deepcopy(input_data) if features is None: features=data.features.copy() if exclude is not None: features=[x for x in features if x not in exclude] if clusterer is None: clusterer='k-means' if options is None: if clusterer=='hierarchy': options={'method':'centroid'} if clusterer=='hdbscan': options={'min_cluster_size':1000, 'min_samples':500} if clusterer=='k-means': options={'init':'random', 'n_clusters':3 if clusters_number is None else clusters_number, 'n_init':10} if verbose: print('-- Starting at: '+str(datetime.datetime.now())) if clusterer=='hierarchy': if 'method' in options and options['method'] in ['complete', 'average', 'weighted']: self.linked = fastcluster.linkage(data.dataframe[features], **options) else: self.linked = fastcluster.linkage_vector(data.dataframe[features], **options) if clusterer=='hdbscan': self.clusterer = hdbscan.HDBSCAN(**options) self.clusterer.fit(data.dataframe[features]) if clusterer=='k-means': self.clusterer = KMeans(**options) self.clusterer.fit(data.dataframe[features]) if verbose: print('-- Finished at: '+str(datetime.datetime.now())) def get_clusters(self, clusterer=None, number=None, to_self=True): ''' Gets cluster labels as a pandas Series object for the data, stored in self.data (basicaly for the data, that was used to train clusterer on) Parameters ----------- clusterer: a type of clusterer that was used (there is a different behavior for retrieving cluster labels for different clusterers). Available clusterers: 'k-means' (default), 'hierarchy', 'hdbscan' number: the desired number of clusters to get from clusterer (used for hierarchy clusterer, for other clusterers is ignored) to_self: should cluster labels be written to self.data.dataframe.cluster Returns ---------- a pandas Series object, containing cluster labels ''' if clusterer is None: clusterer='k-means' if clusterer=='hdbscan' and number is not None: print('With hdbscan clusterer there is no way to directly choose the number of clusters. Use k-means of hierarchy instead.') if clusterer=='hierarchy': result=fcluster(self.linked, 3 if number is None else number , criterion='maxclust') if clusterer in ['hdbscan', 'k-means']: result=self.clusterer.labels_ if to_self: self.data.dataframe['cluster']=result return result def change_clusters(self, replace_dict, cluster='cluster', input_data=None): ''' Changes values of clusters based on replace dictionary in format {old_value: new_value} Parameters ----------- replace_dict: a dictionary in format {old_value: new_value} to change cluster labels cluster: a field with cluster labels input_data: a pandas DataFrame or score-kit Data object, containing the filed with cluster labels Returns ---------- a changed pandas DataFrame or score-kit Data object ''' to_self=False if input_data is None: to_self=True input_data=self.data if isinstance(input_data, pd.DataFrame): data=Data(input_data) else: data=copy.deepcopy(input_data) data.dataframe[cluster]=data.dataframe[cluster].replace(replace_dict) if to_self: self.data=copy.deepcopy(data) return data def explain_clusters(self, input_data=None, cluster='cluster', features=None, max_leaf_nodes=None, max_depth=None, min_samples_leaf=None, graphviz_converter_path='C:\\Program Files (x86)\\Graphviz2.38\\bin\\dot.exe'): ''' Trains an sklearn's Decision tree to predict cluster labels based on input features, then visualizes it and returns a pandas DataFrame with clusters explanation For Decision Tree visualization graphviz needs to be installed in OS and graphviz_converter_path should be provided to .work and .explain_clusters methods (it is a path to dot.exe, which can transform .dot file to .png for it to be displayed in the notebook) Parameters ----------- input_data: a pandas DataFrame or a Data object to analyze cluster: the name of column, containing cluster labels features: a list of features to train Decision Tree for cluster labels prediction on (if None all features are used) max_leaf_nodes: a maximal number of explanation tree leaves (if None, then number of clusters is used) max_depth: a maximal depth of explanation tree (if None, then number of clusters - 1 is used) min_samples_leaf: a minimal number of observations in an explanation tree leaf (if None, then minimal cluster size is used) graphviz_converter_path: a path to dot.exe, which can transform .dot file to .png for it to be displayed in the notebook Returns ---------- a dataframe with clusters explanation and statistics ''' def recursive_tree_conditions_generator(tree, features, node, leaves=None, input_leaf=None): ''' TECH Recursively passes through the tree to get each leaf's splits and statistics ''' if tree.children_left[node]==-1 and tree.children_right[node]==-1: current_leaf=copy.deepcopy(input_leaf) for cn in range(len(tree.value[node][0])): current_leaf[cn]=tree.value[node][0][cn] leaves.append(current_leaf) return leaves else: current_leaf=copy.deepcopy(input_leaf) if features[tree.feature[node]] in current_leaf: condition=current_leaf[features[tree.feature[node]]] current_leaf[features[tree.feature[node]]]=[condition[0], tree.threshold[node]] else: current_leaf[features[tree.feature[node]]]=[-np.inf, tree.threshold[node]] leaves=recursive_tree_conditions_generator(tree, features, tree.children_left[node], leaves, current_leaf) current_leaf=copy.deepcopy(input_leaf) if features[tree.feature[node]] in current_leaf: condition=current_leaf[features[tree.feature[node]]] current_leaf[features[tree.feature[node]]]=[tree.threshold[node], condition[1]] else: current_leaf[features[tree.feature[node]]]=[tree.threshold[node], np.inf] leaves=recursive_tree_conditions_generator(tree, features, tree.children_right[node], leaves, current_leaf) return leaves if input_data is None: input_data=self.data if isinstance(input_data, pd.DataFrame): data=Data(input_data) else: data=copy.deepcopy(input_data) if features is None: features=data.features.copy() features=[ x for x in features if x!=cluster] if max_leaf_nodes is None: max_leaf_nodes=data.dataframe[cluster].unique().shape[0] if max_depth is None: max_depth=data.dataframe[cluster].unique().shape[0]-1 if min_samples_leaf is None: min_samples_leaf=min(data.dataframe[cluster].value_counts()) clf = DecisionTreeClassifier(criterion='gini', max_leaf_nodes=max_leaf_nodes, max_depth=max_depth, min_samples_leaf=min_samples_leaf) clf.fit(data.dataframe[features], y=data.dataframe[cluster]) if graphviz_converter_path is not None: export_graphviz(clf, out_file="cluster_tree.dot", feature_names=features, filled = True, rounded = True) try: system('"'+graphviz_converter_path+'" -Tpng cluster_tree.dot -o cluster_tree.png') display(Display_Image(filename='cluster_tree.png')) except Exception: print('Executable dot.exe was not found at the specified address. \n'+ 'Please make sure, that graphviz is installed on your system and provide the correct address for dot converter.') conditions_df=pd.DataFrame(recursive_tree_conditions_generator(clf.tree_, features, 0, [], {})) conditions_df=conditions_df.rename({i:clf.classes_[i] for i in range(len(clf.classes_))}, axis=1) conditions_df=conditions_df[[x for x in conditions_df if x not in clf.classes_.tolist()] +clf.classes_.tolist()] self.conditions=conditions_df.copy() return conditions_df def split_data(self, input_data, not_transformed=None, use_index_as_cluster=False): ''' Splits input pandas DataFrame of Data object into clusters according to conditions table and returns the dictionary of Data objects. The key of this dictionary is the cluster number and it is determined as the cluster with most observations in the current part. Sometimes it may not work correctly, in that case cluster number can be set to the conditions table index (with use_index_as_cluster option) Parameters ----------- input_data: a pandas DataFrame or a Data object to split not_transformed: a list of features that were not transformed to their's fullness values, for them conditions will be interpreted as the simple conditions for interval features (for the rest of the features conditions will be changed according to the fullness coding) use_index_as_cluster: if True the key of the result dictionary will be set to the index value of conditions Returns ---------- a dictionary with pandas DataFrame or Data objects ''' if self.conditions is None: print('No conditions were found. Please, tun .explain_clusters method. Return None.') return None if isinstance(input_data, Data): data=input_data.dataframe.copy() else: data=input_data.copy() if not_transformed is None: not_transformed=[] features=[] for f in self.conditions: if self.conditions[f].apply(lambda x: isinstance(x, list) or pd.isnull(x)).all(): features.append(f) result={} for ind, conditions in self.conditions[features].iterrows(): df_filter=pd.Series([True]*data.shape[0], index=data.index) for fn in range(len(features)): f=features[fn] if isinstance(conditions[fn], list): if f in not_transformed: df_filter=df_filter & ((data[f]>conditions[f][0])&(data[f]<=conditions[f][1])) else: new_filter=pd.Series([False]*data.shape[0], index=data.index) if -1>conditions[f][0] and -1<=conditions[f][1]: new_filter=new_filter | (
pd.isnull(data[f])
pandas.isnull
import pandas as pd import glob import os import numpy as np import time import fastparquet import argparse from multiprocessing import Pool import multiprocessing as mp from os.path import isfile parser = argparse.ArgumentParser(description='Program to run google compounder for a particular file and setting') parser.add_argument('--data', type=str, help='location of the pickle file') # don't use this for now parser.add_argument('--word', action='store_true', help='Extracting context for words only?') parser.add_argument('--output', type=str, help='directory to save dataset in') args = parser.parse_args() with open('/mnt/dhr/CreateChallenge_ICC_0821/no_ner_0_50000.txt','r') as f: contexts=f.read().split("\n") contexts=contexts[:-1] def left_side_parser(df): # N N _ _ _ cur_df=df.copy() try: cur_df[['modifier','head','w1','w2','w3']]=cur_df.lemma_pos.str.split(' ',expand=True) except ValueError: compound_df=pd.DataFrame() modifier_df=pd.DataFrame() head_df=pd.DataFrame() return compound_df,modifier_df,head_df compound_df=pd.melt(cur_df,id_vars=['modifier','head','year','count'],value_vars=['w1','w2','w3'],value_name='context') compound_df=compound_df.loc[compound_df.context.isin(contexts)] modifier_df=pd.melt(cur_df,id_vars=['modifier','year','count'],value_vars=['head','w1','w2'],value_name='context') modifier_df=modifier_df.loc[modifier_df.context.isin(contexts)] head_df=
pd.melt(cur_df,id_vars=['head','year','count'],value_vars=['modifier','w1','w2','w3'],value_name='context')
pandas.melt
import numpy as np import pandas as pd import pkg_resources import seaborn as sns import matplotlib.pyplot as plt from math import sqrt from GIPlot import GIPlot from scipy.stats import pearsonr, spearmanr from sklearn.metrics import mean_squared_error from adjustText import adjust_text from dualguide import read_gi_library from crispy.DataImporter import CRISPR from crispy.CRISPRData import ReadCounts from crispy import CrispyPlot, QCplot, Utils DPATH = pkg_resources.resource_filename("data", "dualguide/") RPATH = pkg_resources.resource_filename("notebooks", "dualguide/reports/") def pairgrid(df, annotate_guides=False, ntop_annotate=3): def triu_plot(x, y, color, label, **kwargs): ax = plt.gca() z = CrispyPlot.density_interpolate(x, y) idx = z.argsort() x, y, z = x[idx], y[idx], z[idx] ax.scatter(x, y, c=z, **kwargs) ax.axhline(0, ls=":", lw=0.1, c="#484848", zorder=0) ax.axvline(0, ls=":", lw=0.1, c="#484848", zorder=0) (x0, x1), (y0, y1) = ax.get_xlim(), ax.get_ylim() lims = [max(x0, y0), min(x1, y1)] ax.plot(lims, lims, ls=":", lw=0.1, c="#484848", zorder=0) if annotate_guides: diff = (x - y).sort_values() idxs = list(diff.head(ntop_annotate).index) + list( diff.tail(ntop_annotate).index ) texts = [ ax.text( x.loc[i], y.loc[i], ";".join(lib.loc[i, ["gene1", "gene2"]]), color="k", fontsize=4, ) for i in idxs ] adjust_text( texts, arrowprops=dict(arrowstyle="-", color="k", alpha=0.75, lw=0.3), ax=ax, ) def diag_plot(x, color, label, **kwargs): sns.distplot(x, label=label) grid = sns.PairGrid(df, height=1.1, despine=False) grid.fig.subplots_adjust(wspace=0.05, hspace=0.05) plt.gcf().set_size_inches(2 * df.shape[1], 2 * df.shape[1]) grid.map_diag(diag_plot, kde=True, hist_kws=dict(linewidth=0), bins=30) for i, j in zip(*np.tril_indices_from(grid.axes, -1)): ax = grid.axes[i, j] r, p = spearmanr(df.iloc[:, i], df.iloc[:, j], nan_policy="omit") rmse = sqrt(mean_squared_error(df.iloc[:, i], df.iloc[:, j])) ax.annotate( f"R={r:.2f}\nRMSE={rmse:.2f}", xy=(0.5, 0.5), xycoords=ax.transAxes, ha="center", va="center", fontsize=9, ) grid.map_upper(triu_plot, marker="o", edgecolor="", cmap="Spectral_r", s=2) def scattergrid( df, columns, xprefix, yprefix, density=True, highlight_text=None, xlabel="", ylabel="", add_corr=True, n_highlight=10, fontsize=3, ): fig, axs = plt.subplots( 1, len(columns), figsize=(2 * len(columns), 2), sharex="all", sharey="all" ) for i, s in enumerate(columns): ax = axs[i] df_s = pd.concat( [df[f"{xprefix}_{s}"].rename("x"), df[f"{yprefix}_{s}"].rename("y")], axis=1, sort=False, ).dropna(subset=["x", "y"]) if density: df_s["z"] = CrispyPlot.density_interpolate(df_s["x"], df_s["y"]) df_s = df_s.sort_values("z") ax.scatter( df_s["x"], df_s["y"], c=df_s["z"] if density else CrispyPlot.PAL_DBGD[0], marker="o", edgecolor="", cmap="Spectral_r" if density else None, s=3, ) ax.axhline(0, ls=":", lw=0.1, c="#484848", zorder=0) ax.axvline(0, ls=":", lw=0.1, c="#484848", zorder=0) (x0, x1), (y0, y1) = ax.get_xlim(), ax.get_ylim() lims = [max(x0, y0), min(x1, y1)] ax.plot(lims, lims, ls=":", lw=0.1, c="#484848", zorder=0) if highlight_text is not None: diff = (df_s["x"] - df_s["y"]).sort_values() idxs = list(diff.head(n_highlight).index) + list( diff.tail(n_highlight).index ) texts = [ ax.text( df_s["x"].loc[i], df_s["y"].loc[i], ";".join(df.loc[i, highlight_text]), color="k", fontsize=fontsize, ) for i in idxs ] adjust_text( texts, arrowprops=dict(arrowstyle="-", color="k", alpha=0.75, lw=0.3), ax=ax, ) if add_corr: r, p = spearmanr(df_s["x"], df_s["y"]) ax.annotate( f"R={r:.2f},p={p:.1e}" if p != 0 else f"R={r:.2f},p<0.0001", xy=(0.01, 0.01), xycoords=ax.transAxes, ha="left", va="bottom", fontsize=5, ) ax.set_title(f"{s} (N={df_s.shape[0]})") ax.set_xlabel(xlabel) ax.set_ylabel(ylabel if i == 0 else "") fig.subplots_adjust(wspace=0.05, hspace=0.05) ESS_GENES = Utils.get_essential_genes(return_series=False) NESS_GENES = Utils.get_non_essential_genes(return_series=False) def classify_gene(gene="ARID1A", gene_chr="1"): if (str(gene) == "nan") & (str(gene_chr) == "nan"): return "non-targeting" if (str(gene) == "nan") & (str(gene_chr) != "nan"): return "intergenic" elif gene in ESS_GENES: return "essential" elif gene in NESS_GENES: return "non-essential" else: return "unclassified" if __name__ == "__main__": # Project score # cscore_obj = CRISPR() cscore = cscore_obj.filter(dtype="merged") cscore_ht29 = cscore["SIDM00136"] # Samplesheet # lib_name = "2gCRISPR_Pilot_library_v2.0.0.xlsx" lib_ss = pd.read_excel(f"{DPATH}/gi_samplesheet.xlsx") lib_ss = lib_ss.query(f"library == '{lib_name}'") lib = read_gi_library(lib_name) lib["sgRNA1_class"] = [classify_gene(g, c) for g, c in lib[["sgRNA1_Approved_Symbol", "sgRNA1_Chr"]].values] lib["sgRNA2_class"] = [classify_gene(g, c) for g, c in lib[["sgRNA2_Approved_Symbol", "sgRNA2_Chr"]].values] lib["vector_class"] = lib["sgRNA1_class"] + " + " + lib["sgRNA2_class"] samples = list(set(lib_ss["name"])) samples_pal = lib_ss.groupby("name")["palette"].first() # Counts # counts = ReadCounts(
pd.read_excel(f"{DPATH}/{lib_name}_samples_counts.xlsx", index_col=0)
pandas.read_excel
import numpy as np from sklearn.utils.multiclass import type_of_target from mindware.base_estimator import BaseEstimator from mindware.components.utils.constants import type_dict, MULTILABEL_CLS, IMG_CLS, TEXT_CLS, OBJECT_DET from mindware.components.feature_engineering.transformation_graph import DataNode class Classifier(BaseEstimator): """This class implements the classification task. """ def initialize(self, data: DataNode, **kwargs): if self.metric is None: self.metric = 'acc' # Check the task type: {binary, multiclass} task_type = type_of_target(data.data[1]) if task_type in type_dict: task_type = type_dict[task_type] else: raise ValueError("Invalid Task Type: %s!" % task_type) self.task_type = task_type super().initialize(data=data, **kwargs) def fit(self, data: DataNode, **kwargs): """ Fit the classifier to given training data. :param data: instance of DataNode :return: self """ if self._ml_engine is None: self.initialize(data=data, **kwargs) super().fit(data, **kwargs) return self def predict(self, X, batch_size=None, n_jobs=1): """ Predict classes for X. :param X: Datanode :param batch_size: int :param n_jobs: int :return: y : array of shape = [n_samples] The predicted classes. """ if not isinstance(X, DataNode): raise ValueError("X is supposed to be a Data Node, but get %s" % type(X)) return super().predict(X, batch_size=batch_size, n_jobs=n_jobs) def refit(self): return super().refit() def predict_proba(self, X, batch_size=None, n_jobs=1): """ Predict probabilities of classes for all samples X. :param X: Datanode :param batch_size: int :param n_jobs: int :return: y : array of shape = [n_samples, n_classes] The predicted class probabilities. """ if not isinstance(X, DataNode): raise ValueError("X is supposed to be a Data Node, but get %s" % type(X)) pred_proba = super().predict_proba(X, batch_size=batch_size, n_jobs=n_jobs) if self.task_type != MULTILABEL_CLS: assert ( np.allclose( np.sum(pred_proba, axis=1), np.ones_like(pred_proba[:, 0])) ), "Prediction probability does not sum up to 1!" # Check that all probability values lie between 0 and 1. assert ( (pred_proba >= 0).all() and (pred_proba <= 1).all() ), "Found prediction probability value outside of [0, 1]!" return pred_proba def get_tree_importance(self, data: DataNode): from lightgbm import LGBMClassifier import pandas as pd X, y = self.data_transformer(data).data lgb = LGBMClassifier(random_state=1) lgb.fit(X, y) _importance = lgb.feature_importances_ h = {} h['feature_id'] = np.array(range(len(_importance))) h['feature_importance'] = _importance return pd.DataFrame(h) def get_linear_importance(self, data: DataNode): from sklearn.linear_model import LogisticRegression import pandas as pd X, y = self.data_transformer(data).data clf = LogisticRegression(random_state=1) clf.fit(X, y) _ef = clf.coef_ std_array = np.std(_ef, ddof=1, axis=0) abs_array = abs(_ef) mean_array = np.mean(abs_array, axis=0) _importance = std_array / mean_array h = {} h['feature_id'] = np.array(range(len(_importance))) h['feature_importance'] = _importance return pd.DataFrame(h) def get_linear_impact(self, data: DataNode): from sklearn.linear_model import LogisticRegression import pandas as pd if (len(set(data.data[1]))) > 2: print('ERROR! Only binary classification is supported!') return 0 X, y = self.data_transformer(data).data clf = LogisticRegression(random_state=1) clf.fit(X, y) _ef = clf.coef_ _impact = _ef[0] h = {} h['feature_id'] = np.array(range(len(_impact))) h['feature_impact'] = _impact return
pd.DataFrame(h)
pandas.DataFrame
import numpy as np import scipy.stats as stats import pandas as pd import math """ Obtain 39 sleep feats, following https://www.nature.com/articles/s41598-020-79217-x.pdf """ def get_pre_mean_diff(data, index, num_ele): pre_eles = data[index - num_ele : index] pre_mean = np.mean(pre_eles) return pre_mean - data[index] def get_next_mean_diff(data, index, num_ele): next_eles = data[index + 1 : index + num_ele + 1] next_mean = np.mean(next_eles) return data[index] - next_mean def moving_sum(a, n=30 * 60 * 30): # n = 30 min x 60 sec x 30 hz # since n is even, so we need to shift to left or right by 1 half_win_len = int(n / 2) a = np.pad(a, pad_width=[half_win_len, half_win_len]) ret = np.cumsum(a, dtype=float) ret[half_win_len:-half_win_len] = ret[n:] - ret[:-n] return ret[half_win_len - 1 : -half_win_len - 1] def moving_avg(a, n=30 * 60 * 30): # n = 30 min x 60 sec x 30 hz # since n is even, so we need to shift to left or right by 1 win_sum = moving_sum(a, n) # will have to apply division considering boundary condiiton half_win_len = int(n / 2) win_sum[half_win_len:-half_win_len] = win_sum[half_win_len:-half_win_len] / n for i in range(half_win_len): win_sum[i] = win_sum[i] / n win_sum[-i - 1] = win_sum[-i - 1] / n return win_sum def get_stats_measures(signal, signal_name="signal"): """ Obtain seven stat measure for a sleep signal signal: N x 1: N = sample_rate * window length """ feats = { signal_name + "_mean": np.mean(signal), signal_name + "_std": np.std(signal), signal_name + "_min": np.min(signal), signal_name + "_max": np.max(signal), signal_name + "_mad": stats.median_abs_deviation(signal), signal_name + "_entropy20": stats.entropy(np.histogram(signal, bins=20)[0]), signal_name + "_entropy200": stats.entropy(np.histogram(signal, bins=200)[0]), } return feats def win2frame(data): # data (narray) of shape M x 3 x N: N = sample_rate * window_len # M is the epoch count # output long_format (narray) of shape MN x 3 x = data[:, 0, :] y = data[:, 1, :] z = data[:, 2, :] long_format = np.array([x.flatten(), y.flatten(), z.flatten()]).T return long_format def get_enmo(x, y, z): x_sq = x ** 2 y_sq = y ** 2 z_sq = z ** 2 tmp = np.sqrt(x_sq + y_sq + z_sq) - 1 enmo = np.maximum(0, tmp) return enmo, x_sq, y_sq def get_LISD(enmo): pre_activity_count = np.maximum(0, enmo - 0.02) win_len = 10 # min activity_count = moving_sum(pre_activity_count, n=win_len * 60 * 30) LIDS = 100.0 / (activity_count + 1) win_len = 30 # min LIDS = moving_avg(LIDS, n=win_len * 60 * 30) return LIDS def get_epoch_feats(enmo, angleZ, LIDS, epoch_len=30, sample_rate=30): # Get stats at epoch level # Epoch_len (sec) # Sample_len (sec) enmo = enmo.reshape(-1, epoch_len * sample_rate) angleZ = angleZ.reshape(-1, epoch_len * sample_rate) LIDS = LIDS.reshape(-1, epoch_len * sample_rate) enmo_feats = pd.DataFrame([get_stats_measures(x, signal_name="enmo") for x in enmo]) angleZ_feats = pd.DataFrame( [get_stats_measures(x, signal_name="angleZ") for x in angleZ] ) LIDS_feats = pd.DataFrame([get_stats_measures(x, signal_name="LIDS") for x in LIDS]) merged = pd.merge( left=enmo_feats, left_index=True, right=angleZ_feats, right_index=True, how="inner", ) merged = pd.merge( left=merged, left_index=True, right=LIDS_feats, right_index=True, how="inner" ) return merged def getInterEpochFeat(signal_mean, signal_name): # This only works when window size is 30sec # default to 0 at boundary # signale_mean (narray) Prev30Diff = [] Next30Diff = [] Prev60Diff = [] Next60Diff = [] Prev120Diff = [] Next120Diff = [] epoch_len = 30 nrow_30 = int(30 / epoch_len) nrow_60 = int(60 / epoch_len) nrow_120 = int(120 / epoch_len) for i in range(len(signal_mean)): if i < nrow_30: Prev30Diff.append(0) else: Prev30Diff.append(get_pre_mean_diff(signal_mean, i, nrow_30)) if i < nrow_60: Prev60Diff.append(0) else: Prev60Diff.append(get_pre_mean_diff(signal_mean, i, nrow_60)) if i < nrow_120: Prev120Diff.append(0) else: Prev120Diff.append(get_pre_mean_diff(signal_mean, i, nrow_120)) if i + nrow_30 >= len(signal_mean): Next30Diff.append(0) else: Next30Diff.append(get_next_mean_diff(signal_mean, i, nrow_30)) if i + nrow_60 >= len(signal_mean): Next60Diff.append(0) else: Next60Diff.append(get_next_mean_diff(signal_mean, i, nrow_60)) if i + nrow_120 >= len(signal_mean): Next120Diff.append(0) else: Next120Diff.append(get_next_mean_diff(signal_mean, i, nrow_120)) tmp_feats = { signal_name + "Prev30diff": Prev30Diff, signal_name + "Prev60diff": Prev60Diff, signal_name + "Prev120diff": Prev120Diff, signal_name + "Next30diff": Next30Diff, signal_name + "Next60diff": Next60Diff, signal_name + "Next120diff": Next120Diff, } tmp_df =
pd.DataFrame(tmp_feats)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Retrieve bikeshare stations metadata.""" # pylint: disable=invalid-name from typing import Dict, List import pandas as pd import pandera as pa import requests stations_schema = pa.DataFrameSchema( columns={ "station_id": pa.Column(pa.Int), "name": pa.Column(pd.StringDtype()), "physical_configuration": pa.Column(pd.StringDtype()), "lat": pa.Column(pa.Float64), "lon": pa.Column(pa.Float64), "altitude": pa.Column(pa.Float64, nullable=True), "address": pa.Column(pd.StringDtype()), "capacity": pa.Column(pa.Int), "physicalkey": pa.Column(pa.Int), "transitcard": pa.Column(pa.Int), "creditcard": pa.Column(pa.Int), "phone": pa.Column(pa.Int), }, index=pa.Index(pa.Int), ) def get_stations_metadata( stations_url: str, stations_params: Dict ) -> pd.DataFrame: """Get bikeshare stations metadata from JSON feed.""" package = requests.get(stations_url, params=stations_params).json() resources = package["result"]["resources"] df_about = pd.DataFrame.from_records(resources) r = requests.get(df_about["url"].tolist()[0]).json() url_stations = r["data"]["en"]["feeds"][2]["url"] df_stations = pd.DataFrame.from_records( requests.get(url_stations).json()["data"]["stations"] ) df_stations = df_stations.astype( { "physical_configuration": pd.StringDtype(), "name":
pd.StringDtype()
pandas.StringDtype
from collections import defaultdict from shapely.geometry import Polygon from shapely.ops import cascaded_union from descartes import PolygonPatch import seaborn as sns import re import theano.tensor as tt import scipy.stats from itertools import product import datetime import pickle as pkl import numpy as np import pandas as pd import pymc3 as pm # from pymc3.stats import quantiles from collections import OrderedDict import isoweek import itertools as it import os from datetime import timedelta yearweek_regex = re.compile(r"([0-9]+)-KW([0-9]+)") def make_county_dict(): with open('../data/counties/counties.pkl', "rb") as f: counties = pkl.load(f) county_list = [] #print(counties) for key, _ in counties.items(): county_name = counties[key]['name'] encoded_name = counties[key]['name'].encode('utf-8') if b'\xc2\x96' in encoded_name: ix = encoded_name.index(b'\xc2\x96') county_name = counties[key]['name'][:ix]+'-'+counties[key]['name'][ix+1:] county_list.append((county_name, key)) return OrderedDict(county_list) def _parse_yearweek(yearweek): """Utility function to convert internal string representations of calender weeks into datetime objects. Uses strings of format `<year>-KW<week>`. Weeks are 1-based.""" year, week = yearweek_regex.search(yearweek).groups() # datetime.combine(isoweek.Week(int(year), int(week)).wednesday(),time(0)) return isoweek.Week(int(year), int(week)) parse_yearweek = np.frompyfunc(_parse_yearweek, 1, 1) def load_data(prediction_region, counties, csv_path, seperator=",", pad=None): data = pd.read_csv(csv_path, sep=seperator, encoding='iso-8859-1', index_col=0) if "99999" in data.columns: data.drop("99999", inplace=True, axis=1) data = data.loc[:, list( filter(lambda cid: prediction_region in counties[cid]["region"], data.columns))] if pad is not None: # get last date last_date = pd.Timestamp(data.iloc[:, -1].index[-1]) extra_range = pd.date_range( last_date+timedelta(1), last_date+timedelta(pad)) for x in extra_range: data = data.append(pd.Series(name=str(x)[:11])) data.index = [pd.Timestamp(date) for date in data.index] return data def load_data_n_weeks( start, n_weeks, csv_path, seperator=",", pad = None ): data = pd.read_csv(csv_path, sep=seperator, encoding='iso-8859-1', index_col=0) if "99999" in data.columns: data.drop("99999", inplace=True, axis=1) data.index = [pd.Timestamp(date) for date in data.index] start_day = pd.Timestamp('2020-01-28') + pd.Timedelta(days=start) data = data.loc[start_day <= data.index] if pad is not None: last_date = data.index[-1] extended_index = pd.date_range(last_date + pd.Timedelta(days=1), last_date + pd.Timedelta(days=pad)) for x in extended_index: data = data.append(pd.Series(name=x)) data.index = [
pd.Timestamp(date)
pandas.Timestamp
''' (c) University of Liverpool 2019 All rights reserved. @author: neilswainston ''' # pylint: disable=invalid-name # pylint: disable=too-many-branches # pylint: disable=too-many-nested-blocks # pylint: disable=too-many-statements # pylint: disable=wrong-import-order import ast import re from liv_ms.data import mona, rt import pandas as pd _FLOW_RATE_PATTERN = r'(\d+(?:\.\d+)?)\s?([um])[lL]\s?/\s?min' + \ r'(?:\s+at\s+(\d+(?:\.\d+)?)(?:-(\d+(?:\.\d+)?))? min)?' _FLOW_GRAD_PATTERN_1 = r'(\d+(?:\.\d+)?)(?:/(\d+(?:\.\d+)?))?' + \ r'(?:/(\d+(?:\.\d+)?))?(?:\s+at\s+(\d+(?:\.\d+)?)' + \ r'(?:-(\d+(?:\.\d+)?))? min)?\.?$' _FLOW_GRAD_PATTERN_2 = r'(\d+(?:\.\d+)?)(?:min)?:(\d+(?:\.\d+)?)%' _FLOW_GRAD_PATTERN_3 = r'(\d+(?:\.\d+)?) % (\w) ?to ?(\d+(?:\.\d+)?)' + \ r' % (\w)\/(\d+(?:\.\d+)?) min' _FLOW_GRAD_PATTERN_4 = r'linear from (\d+(?:\.\d+)?)\w\/(\d+(?:\.\d+)?)\w' + \ r' at (\d+(?:\.\d+)?) min to (\d+(?:\.\d+)?)\w\/(\d+(?:\.\d+)?)\w' + \ r' at (\d+(?:\.\d+)?) min(?:, hold (\d+(?:\.\d+)?) min' + \ r' at (\d+(?:\.\d+)?)\w\/(\d+(?:\.\d+)?)\w, reequilibration' + \ r' (\d+(?:\.\d+)?)\w\/(\d+(?:\.\d+)?)\w \((\d+(?:\.\d+)?) min\))?' _SOL_REGEXP = r'(?:(\d+(?:\.\d+)?)' + \ r'\:?(\d+(?:\.\d+)?)?\:?(\d+(?:\.\d+)?)?)?' + \ r' ?([a-z\s]+)(?:\:([a-z\s]+))?(?:\:([a-z\s]+))?' + \ r' ?(?:(\d+(?:\.\d+)?)\:?(\d+(?:\.\d+)?)?\:?(\d+(?:\.\d+)?)?)?' _DIM_PATTERN = \ r'(\d+(?:\.\d+)?)(?: )?(?:mm)?(?: )?(?:x|by)(?: )?(\d+(?:\.\d+)?) ?mm' _PART_PATTERN = r'(\d+(?:\.\d+)?)(?: )?(?:um|micron|microm)' _HYDROPHOBIC_PATTERN = r'C\d+|BEH' def get_rt_data(filename, num_spec=1e32, regen_stats=True): '''Get RT data.''' if regen_stats: # Get spectra: df = mona.get_spectra(filename, num_spec=num_spec) # Clean data: df = _clean_ms_level(df) df = _clean_rt(df) df = _clean_flow_rate(df) df = _clean_gradient(df) # Encode column: _encode_column(df) # Get stats: stats_df = rt.get_stats(df) # Save stats_df: _save_stats(stats_df) else: stats_df = pd.read_csv( 'mona_stats.csv', converters={'column values': ast.literal_eval, 'flow rate values': ast.literal_eval, 'gradient values': ast.literal_eval}) return stats_df def _save_stats(stats_df): '''Save stats.''' # Convert values to list to enable saving: for col_name in ['column values', 'flow rate values', 'gradient values']: stats_df.loc[:, col_name] = \ stats_df[col_name].apply( lambda x: x if isinstance(x, float) else list(x)) stats_df.to_csv('mona_stats.csv', index=False) def _clean_ms_level(df): '''Clean MS level.''' return df[df['ms level'] == 'MS2'] def _clean_rt(df): '''Clean retention time.''' df = df.dropna(subset=['retention time']) res = df['retention time'].apply(_clean_rt_row) df.loc[:, 'retention time'] = res df.loc[:, 'retention time'] = df['retention time'].astype('float32') return df.dropna(subset=['retention time']) def _clean_rt_row(val): '''Clean single retention time value.''' try: val = val.replace('N/A', 'NaN') val = val.replace('min', '') if 's' in val: val = val.replace('sec', '') val = val.replace('s', '') return float(val) / 60.0 except AttributeError: # Forgiveness, not permission. Assume float and pass: pass try: return float(val) except ValueError: return float('NaN') def _clean_flow_rate(df): '''Clean flow rate.''' df.loc[:, 'flow rate values'] = \ df['flow rate'].apply(_clean_flow_rate_row) return df def _clean_flow_rate_row(val): '''Clean single flow rate value.''' terms = [] try: terms.extend([(0.0, float(val)), (2**16, float(val))]) except ValueError: val = val.lower() for term in val.split(','): term = term.strip() term = term.replace('min-1', '/min') mtch = re.match(_FLOW_RATE_PATTERN, term) if mtch: grps = mtch.groups() factor = 1.0 if grps[1] == 'm' else 1000.0 rate = float(grps[0]) / factor if grps[2]: terms.extend([(float(grps[2]), rate)]) else: terms.extend([(0.0, rate), (2**16, rate)]) if grps[3]: terms.extend([(float(grps[3]), rate)]) else: terms.extend([(0.0, float('NaN')), (2**16, float('NaN'))]) return rt.get_timecourse_vals(list(zip(*terms))) def _clean_gradient(df): '''Clean gradient.''' _clean_solvents(df) df.loc[:, 'gradient values'] = \ df.apply(_clean_gradient_row, axis=1) return df def _clean_solvents(df): '''Clean solvent columns.''' for col in ['solvent', 'solvent a', 'solvent a)', 'solvent b']: # Lowercase: df[col] = df[col].str.lower() # Replace chemicals: for trgt, rplcmnt in [('h2o', 'water'), ('acn', 'acetonitrile'), ('ch3cn', 'acetonitrile'), ('acetonitril ', 'acetonitrile '), ('meoh', 'methanol'), ('hcooh', 'formic acid'), ('fa', 'formic acid')]: df[col] = [val.replace(trgt, rplcmnt) if
pd.notnull(val)
pandas.notnull
import yfinance as yf import matplotlib.pyplot as plt import numpy as npf import pandas as pd import datetime from smart_weights import * from connect_database import add_portfolio # Variables # Will have to globalize the yfinance data too cause having to constantly do api calls is going to make our code really slow global stock global stock_info # two step process # 1. Input a ticker # 2. Then the user will input the function def last_trading_day(): rightnow = datetime.datetime.now(datetime.timezone(datetime.timedelta(hours=-5), 'EST')) # US Markets close at 4pm, but afterhours trading ends at 8pm. # yFinance stubbornly only gives the day's data after 8pm, so we will wait until 9pm to pull data from # the current day. market_close = rightnow.replace(hour=21, minute=0, second=0, microsecond=0) if rightnow < market_close: DELTA = 1 # If it is saturday or sunday elif rightnow.weekday() >= 5: DELTA = 1 else: DELTA = 0 start_date = (datetime.datetime.now() - datetime.timedelta(days=15)).strftime("%Y-%m-%d") end_date = (datetime.datetime.now() -
pd.tseries.offsets.BDay(DELTA)
pandas.tseries.offsets.BDay
import MDAnalysis import MDAnalysis.analysis.hbonds import pandas as pd import numpy as np import os from collections import defaultdict import networkx as nx import matplotlib.pyplot as plt import sys import logging logging.basicConfig(level=logging.INFO, format='%(message)s') logger = logging.getLogger() #logger.addHandler(logging.FileHandler('test.log', 'a')) print = logger.info sys.setrecursionlimit(1000) print(sys.getrecursionlimit()) class HB_MD: def __init__(self, frame): self.direct_connection = pd.DataFrame(columns = ['donor_residue', 'acceptor_residue']) self.one_water_connection = pd.DataFrame(columns = ['donor_residue', 'acceptor_residue']) self.two_water_connection = pd.DataFrame(columns = ['donor_residue', 'acceptor_residue']) self.three_water_connection = pd.DataFrame(columns = ['donor_residue', 'acceptor_residue']) self.four_water_connection = pd.DataFrame(columns = ['donor_residue', 'acceptor_residue']) self.hb_analysis(frame, self.direct_connection, self.one_water_connection, self.two_water_connection, self.three_water_connection, self.four_water_connection) return def addEdge(self, graph,u,v): graph[u].append(v) def generate_edges(self, graph): edges = [] for node in graph: for neighbour in graph[node]: edges.append((node, neighbour)) return edges def find_path(self, graph, start, end, path =[]): path = path + [start] if start == end: return path for node in graph[start]: if node not in path: newpath = find_path(graph, node, end, path) if newpath: return newpath return None def find_all_path(self, graph, start, path, paths): if len(path) == 6: return paths.append(list(path)) if len(graph[start]) == 0: return paths.append(list(path)) for node in graph[start]: if node in path: continue path.append(node) self.find_all_path(graph, node, path, paths) path.pop() def get_chain(self, frame, chain): i = 0 pdb = open(frame, 'r') #os.system('sed -i "s/1H / H1/" hoh.pdb') for line in pdb: #line.replace('HOH', 'TIP3') if line[0:4] != 'ATOM': continue chain[i] = line[21:22] i += 1 return def MDtraj(self, pdb): #print('Getting coordinate') h3 = MDAnalysis.analysis.hbonds.HydrogenBondAnalysis(pdb, 'not resname ALA and not resname GLN and not resname GLY and not resname ILE and not resname LEU and not resname PHE and not resname PRO and not resname VAL', 'not resname ALA and not resname GLN and not resname GLY and not resname ILE and not resname LEU and not resname PHE and not resname PRO and not resname VAL', distance=3.5, angle=90.0, acceptors = {'O1', 'O2'}) #print('Analyzing') h3.run() #print('Generating table') h3.generate_table() #print('Generating form') df3 = pd.DataFrame.from_records(h3.table) h3.generate_table() df3 = pd.DataFrame.from_records(h3.table) return df3 def get_all_connection(self, df3, chain, index_donor, index_accept): for index2, row2 in df3.iterrows(): if row2['donor_resnm'] == 'TIP3'and row2['acceptor_resnm'] != 'TIP3': if row2['donor_atom'] == 'H1': index_donor.append(row2['donor_resnm'] + '_' + str(row2['donor_index']-1)) index_accept.append(row2['acceptor_resnm'] + '_' + chain[row2['acceptor_index']] + '_' + str(row2['acceptor_resid'])) if row2['donor_atom'] == 'H2': index_donor.append(row2['donor_resnm'] + '_' + str(row2['donor_index']-2)) index_accept.append(row2['acceptor_resnm'] + '_' + chain[row2['acceptor_index']] + '_' + str(row2['acceptor_resid'])) elif row2['acceptor_resnm'] == 'TIP3' and row2['donor_resnm'] != 'TIP3': index_accept.append(row2['acceptor_resnm'] + '_' + str(row2['acceptor_index'])) index_donor.append(row2['donor_resnm'] + '_' + chain[row2['donor_index']] + '_' + str(row2['donor_resid'])) elif row2['acceptor_resnm'] == 'TIP3' and row2['donor_resnm'] == 'TIP3': if row2['donor_atom'] == 'H1': index_donor.append(row2['donor_resnm'] + '_' + str(row2['donor_index']-1)) index_accept.append(row2['acceptor_resnm'] + '_' + str(row2['acceptor_index'])) if row2['donor_atom'] == 'H2': index_donor.append(row2['donor_resnm'] + '_' + str(row2['donor_index']-2)) index_accept.append(row2['acceptor_resnm'] + '_' + str(row2['acceptor_index'])) else: index_donor.append(row2['donor_resnm'] + '_' + chain[row2['donor_index']] + '_' + str(row2['donor_resid'])) index_accept.append(row2['acceptor_resnm'] + '_' + chain[row2['acceptor_index']] + '_' + str(row2['acceptor_resid'])) return def divide_networks(self, hb_two, donor_residue, acceptor_residue, donor_residue2, acceptor_residue2): #print('Divide networks') for row in range(len(hb_two)): if hb_two['donor_residue'][row][0:3] != 'TIP' and hb_two['acceptor_residue'][row][0:3] != 'TIP': if hb_two['donor_residue'][row] == hb_two['acceptor_residue'][row]: continue else: donor_residue.append(hb_two['donor_residue'][row]) acceptor_residue.append(hb_two['acceptor_residue'][row]) else: if hb_two['donor_residue'][row] == hb_two['acceptor_residue'][row]: continue else: donor_residue2.append(hb_two['donor_residue'][row]) acceptor_residue2.append(hb_two['acceptor_residue'][row]) return def count_water_num(self, path, donor, accept, wat_num): #print('Count number of water in paths') for item in path: donor_column = [item[0]] accpt_column = [] count = 0 for r in range(1, len(item)): if item[r][0:3] != 'TIP': donor_column.append(item[r]) accpt_column.append(item[r]) wat_num.append(count) count = 0 else: count += 1 if len(donor_column) > len(accpt_column): donor_column.pop() else: accpt_column.pop() donor.extend(donor_column) accept.extend(accpt_column) return #c = u.select_atoms("protein and prop z > 85 or around 3.0 protein and prop z > 85 ") #c.write('/Users/zhangyingying/Dropbox (City College)/Yingying/large_file/new_trajectories_PSII_wt/cut_frame32_50_test.pdb') def hb_analysis(self, frame, direct_connection, one_water_connection, two_water_connection, three_water_connection, four_water_connection): chain = {} graph = defaultdict(list) pdb = MDAnalysis.Universe(frame) self.get_chain(frame, chain) df3 = self.MDtraj(pdb) index_donor = [] index_accept = [] self.get_all_connection(df3, chain, index_donor, index_accept) df3['donor_residue'] = index_donor df3['acceptor_residue'] = index_accept dic_hdonnor = {'ASP':['HD1', 'HD2'], 'ARG': ['HH11', 'HH12', 'HH21', 'HH22', 'HE'], 'GLU':['HE1', 'HE2'], 'HIS':['HD1', 'HE2'], 'HSD':['HD1', 'HE2'], 'HSE':['HD1', 'HE2'], 'HSP':['HD1', 'HE2'], 'SER':['HG'], 'THR':['HG1'], 'ASN':['HD21', 'HD22'], 'GLN':['HE21', 'HE22'], 'CYS':['HG'], 'TYR':['HH'], 'TRP':['HE1'], 'LYS':['HZ1', 'HZ2', 'HZ3'], 'TIP3':['H1', 'H2'], 'HOH':['1H', '2H']} dic_accept = {'ASP':['OD1', 'OD2'], 'HCO': ['OC1', 'OC2'], 'ARG': ['NE', 'NH1', 'NH2'], 'GLU':['OE1', 'OE2'], 'HSD':['ND1', 'NE2'], 'HSE':['ND1', 'NE2'], 'HSP':['ND1', 'NE2'], 'HIS':['ND1', 'NE2'], 'SER':['OG'], 'THR':['OG1'], 'ASN':['OD1'], 'GLN':['OE1'], 'CYS':['SG'], 'TYR':['OH'], 'LYS':['NZ'], 'MET':['SD'], 'CLX':['CLX'], 'CLA':['CLA'], 'OX2':['OX2'], 'PL9':['O1', 'O2'], 'FX':['FX'], 'TIP3':['OH2'], 'HOH':['O'], 'MQ8':['O1', 'O2']} donor_residue_pick = [] acceptor_residue_pick = [] for index, row in df3.iterrows(): if row['donor_resnm'] in dic_hdonnor.keys() and row['acceptor_resnm'] in dic_accept.keys(): if row['donor_atom'] in dic_hdonnor[row['donor_resnm']] and row['acceptor_atom'] in dic_accept[row['acceptor_resnm']]: donor_residue_pick.append(row['donor_residue']) acceptor_residue_pick.append(row['acceptor_residue']) else: continue hb_two = pd.DataFrame({'donor_residue':donor_residue_pick, 'acceptor_residue':acceptor_residue_pick}) donor_residue = [] acceptor_residue = [] donor_residue2 = [] acceptor_residue2 = [] self.divide_networks(hb_two, donor_residue, acceptor_residue, donor_residue2, acceptor_residue2) dire_con = pd.DataFrame({'donor_residue': donor_residue, 'acceptor_residue': acceptor_residue, 'wat_num': [0]*len(donor_residue)}) wat_con = pd.DataFrame({'donor_residue': donor_residue2, 'acceptor_residue': acceptor_residue2}) # connection via water wat_con = wat_con.drop_duplicates() wat_con.index = range(0, len(wat_con)) # direct connection dire_con = dire_con.drop_duplicates() dire_con.index = range(0, len(dire_con)) #wat_con.to_csv('/Users/zhangyingying/Dropbox (City College)/Yingying/PSII/quinone/hb_network/conncetion_hoh_frame32_50.csv') #print('Generating graph') for i in range(len(wat_con)): self.addEdge(graph, wat_con['donor_residue'][i], wat_con['acceptor_residue'][i]) visited = [] path = [] #print('Finding all paths through water') for res in range(len(wat_con)): results = [] if wat_con['donor_residue'][res] not in visited and wat_con['donor_residue'][res][0:3] != 'TIP': self.find_all_path(graph, wat_con['donor_residue'][res], [wat_con['donor_residue'][res]], results) path = path + results visited.append(wat_con['donor_residue'][res]) else: continue donor = [] accept = [] wat_num = [] self.count_water_num(path, donor, accept, wat_num) # put all the connection together get the network res_wat_res = pd.DataFrame({'donor_residue': donor, 'acceptor_residue': accept, 'wat_num': wat_num}) res_wat_res = res_wat_res.drop_duplicates() hb_network = pd.concat([dire_con, res_wat_res]) hb_network.index = range(0, len(hb_network)) visited_1 = [] visited_2 = [] visited_3 = [] visited_4 = [] for i in range(0, len(hb_network)): if hb_network['wat_num'][i] == 0: new_row = pd.Series({'donor_residue': hb_network['donor_residue'][i], 'acceptor_residue': hb_network['acceptor_residue'][i]}) direct_connection = direct_connection.append(new_row, ignore_index=True) if hb_network['wat_num'][i] <= 1 and [hb_network['donor_residue'][i], hb_network['acceptor_residue'][i]] not in visited_1: visited_1.append([hb_network['donor_residue'][i], hb_network['acceptor_residue'][i]]) new_row = pd.Series({'donor_residue': hb_network['donor_residue'][i], 'acceptor_residue': hb_network['acceptor_residue'][i]}) one_water_connection = one_water_connection.append(new_row, ignore_index=True) if hb_network['wat_num'][i] <= 2 and [hb_network['donor_residue'][i], hb_network['acceptor_residue'][i]] not in visited_2: visited_2.append([hb_network['donor_residue'][i], hb_network['acceptor_residue'][i]]) new_row = pd.Series({'donor_residue': hb_network['donor_residue'][i], 'acceptor_residue': hb_network['acceptor_residue'][i]}) two_water_connection = two_water_connection.append(new_row, ignore_index=True) if hb_network['wat_num'][i] <= 3 and [hb_network['donor_residue'][i], hb_network['acceptor_residue'][i]] not in visited_3: visited_3.append([hb_network['donor_residue'][i], hb_network['acceptor_residue'][i]]) new_row = pd.Series({'donor_residue': hb_network['donor_residue'][i], 'acceptor_residue': hb_network['acceptor_residue'][i]}) three_water_connection = three_water_connection.append(new_row, ignore_index=True) if hb_network['wat_num'][i] <= 4 and [hb_network['donor_residue'][i], hb_network['acceptor_residue'][i]] not in visited_4: visited_4.append([hb_network['donor_residue'][i], hb_network['acceptor_residue'][i]]) new_row =
pd.Series({'donor_residue': hb_network['donor_residue'][i], 'acceptor_residue': hb_network['acceptor_residue'][i]})
pandas.Series
import gc import pandas as pd import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split # 1. 读取数据 path = "./data/" train_file = "train3.csv" test_file = "test3.csv" trainDf = pd.read_csv(path + train_file) # testDf = pd.read_csv(path + train_file, nrows=1000, skiprows=range(1, 10000)) pos_trainDf = trainDf[trainDf['target'] == 1] neg_trainDf = trainDf[trainDf['target'] == 0].sample(n=20000, random_state=2018) trainDf = pd.concat([pos_trainDf, neg_trainDf], axis=0).sample(frac=1.0, random_state=2018) del pos_trainDf; del neg_trainDf; gc.collect(); print(trainDf.shape, trainDf['target'].mean()) trainDf, testDf, _, _ = train_test_split(trainDf, trainDf['target'], test_size=0.25, random_state=2018) print(trainDf['target'].mean(), trainDf.shape) print(testDf['target'].mean(), testDf.shape) """ 一共59个特征,包括id, target bin特征17个;cat特征14个;连续特征26个; Code: columns = trainDf.columns.tolist() bin_feats = [] cat_feats = [] con_feats = [] for col in columns: if 'bin' in col: bin_feats.append(col) continue if 'cat' in col: cat_feats.append(col) continue if 'id' != col and 'target' != col: con_feats.append(col) print(len(bin_feats), bin_feats) print(len(cat_feats), cat_feats) print(len(con_feats), con_feats) """ bin_feats = ['ps_ind_06_bin', 'ps_ind_07_bin', 'ps_ind_08_bin', 'ps_ind_09_bin', 'ps_ind_10_bin', 'ps_ind_11_bin', 'ps_ind_12_bin', 'ps_ind_13_bin', 'ps_ind_16_bin', 'ps_ind_17_bin', 'ps_ind_18_bin', 'ps_calc_15_bin', 'ps_calc_16_bin', 'ps_calc_17_bin', 'ps_calc_18_bin', 'ps_calc_19_bin', 'ps_calc_20_bin'] cat_feats = ['ps_ind_02_cat', 'ps_ind_04_cat', 'ps_ind_05_cat', 'ps_car_01_cat', 'ps_car_02_cat', 'ps_car_03_cat', 'ps_car_04_cat', 'ps_car_05_cat', 'ps_car_06_cat', 'ps_car_07_cat', 'ps_car_08_cat', 'ps_car_09_cat', 'ps_car_10_cat', 'ps_car_11_cat'] con_feats = ['ps_ind_01', 'ps_ind_03', 'ps_ind_14', 'ps_ind_15', 'ps_reg_01', 'ps_reg_02', 'ps_reg_03', 'ps_car_11', 'ps_car_12', 'ps_car_13', 'ps_car_14', 'ps_car_15', 'ps_calc_01', 'ps_calc_02', 'ps_calc_03', 'ps_calc_04', 'ps_calc_05', 'ps_calc_06', 'ps_calc_07', 'ps_calc_08', 'ps_calc_09', 'ps_calc_10', 'ps_calc_11', 'ps_calc_12', 'ps_calc_13', 'ps_calc_14'] # 2. 特征处理 trainDf = trainDf.fillna(0) testDf = testDf.fillna(0) train_sz = trainDf.shape[0] combineDf = pd.concat([trainDf, testDf], axis=0) del trainDf del testDf gc.collect() # 2.1 连续特征全部归一化 from sklearn.preprocessing import MinMaxScaler for col in con_feats: scaler = MinMaxScaler() combineDf[col] = scaler.fit_transform(np.array(combineDf[col].values.tolist()).reshape(-1,1)) # 2.2 离散特征one-hot for col in bin_feats + cat_feats: onehotret =
pd.get_dummies(combineDf[col], prefix=col)
pandas.get_dummies
import numpy as np import pandas as pd import pytest from pandas.util import testing as tm from ibis.pandas.aggcontext import window_agg_udf @pytest.mark.parametrize( 'param', [ ( pd.Series([True, True, True, True]), pd.Series([1.0, 2.0, 2.0, 3.0]), ), ( pd.Series([False, True, True, False]),
pd.Series([np.NaN, 2.0, 2.0, np.NaN])
pandas.Series
""" NAD Lab Tools This program was written for the NAD Lab at the University of Arizona by <NAME>. It processes intracellular calcium concentration and pH measurements (from the InCytim2 software) as well as filters the data for outliers and spikes. The experiment consists of placing fluorescent-stained cells under a microscope to measure either calcium concentration or pH. Over a period of time, solutions are added to determine the response of the quantities. <NAME> 2019 """ import sys import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import tkinter as tk from tkinter import ttk from tkinter.filedialog import askopenfilenames, askdirectory # File names for analysis names = [] # Output directory output = '' # Names of drugs added to solution events = [] # Beginning of baseline measurement itime = 60 # End of baseline measurement ftime = 200 # Lower threshold to exclude cells lbase = 50 # Upper threshold to exclude cells ubase = 150 # Mode to analyze data - can be either 'Calcium' or 'pH' measure = 'Calcium' def process_data(df): """ Takes in a pandas dataframe and calculates the mean Calcium/pH as well as ratios between different wavelength measurements. Then formats the data into a CSV file. Lastly, uses the user-defined thresholds to exclude outlier cells. Arguments: df {pd.DataFrame} -- a dataframe to process Returns: tuple -- a tuple of dataframes containing the processed dataframes, their outliers, and graph data """ global itime, ftime, lbase, ubase, measure # Adjusts parameters based on Calcium/pH mode meas = '' length1 = '' length2 = '' meanname = '' if measure == 'Calcium': meas = 'Ca++' length1 = '340' length2 = '380' meanname = 'Mean Calcium (nM)' elif measure == 'pH': meas = 'pH' length1 = '488' length2 = '460' meanname = 'Mean pH' # Reads pertinent data from dataframe times = df.iloc[:, 0].to_frame(name='Time (s)').astype(float) calcium = df.filter(like=meas, axis=1).astype(float) conc_340 = df.filter(like=length1, axis=1).astype(float) conc_380 = df.filter(like=length2, axis=1).astype(float) ratio =
pd.DataFrame()
pandas.DataFrame
# License: Apache-2.0 import databricks.koalas as ks import pandas as pd import pytest from pandas.testing import assert_frame_equal from gators.binning.bin_rare_events import BinRareEvents ks.set_option("compute.default_index_type", "distributed-sequence") @pytest.fixture def data(): X = pd.DataFrame( { "A": ["w", "z", "q", "q", "q", "z"], "B": ["x", "x", "w", "w", "w", "x"], "C": ["c", "c", "e", "d", "d", "c"], "D": [1, 2, 3, 4, 5, 6], } ) X_expected = pd.DataFrame( { "A": ["OTHERS", "OTHERS", "q", "q", "q", "OTHERS"], "B": ["x", "x", "w", "w", "w", "x"], "C": ["c", "c", "OTHERS", "OTHERS", "OTHERS", "c"], "D": [1, 2, 3, 4, 5, 6], } ) obj = BinRareEvents(min_ratio=0.5).fit(X) return obj, X, X_expected @pytest.fixture def data_1object(): X = pd.DataFrame({"A": ["w", "z", "q", "q", "q", "z"], "D": [1, 2, 3, 4, 5, 6]}) X_expected = pd.DataFrame( {"A": ["OTHERS", "OTHERS", "q", "q", "q", "OTHERS"], "D": [1, 2, 3, 4, 5, 6]} ) obj = BinRareEvents(min_ratio=0.5).fit(X) return obj, X, X_expected @pytest.fixture def data_all_others(): X = pd.DataFrame( { "A": ["w", "z", "q", "q", "q", "z"], "B": ["x", "x", "w", "w", "w", "x"], "C": ["c", "c", "e", "d", "d", "c"], "D": [1, 2, 3, 4, 5, 6], } ) X_expected = pd.DataFrame( { "A": ["OTHERS", "OTHERS", "OTHERS", "OTHERS", "OTHERS", "OTHERS"], "B": ["OTHERS", "OTHERS", "OTHERS", "OTHERS", "OTHERS", "OTHERS"], "C": ["OTHERS", "OTHERS", "OTHERS", "OTHERS", "OTHERS", "OTHERS"], "D": [1, 2, 3, 4, 5, 6], } ) obj = BinRareEvents(min_ratio=1.0).fit(X) return obj, X, X_expected @pytest.fixture def data_no_other(): X = pd.DataFrame( { "A": ["w", "z", "q", "q", "q", "z"], "B": ["x", "x", "w", "w", "w", "x"], "C": ["c", "c", "e", "d", "d", "c"], "D": [1, 2, 3, 4, 5, 6], } ) obj = BinRareEvents(min_ratio=0.0).fit(X) obj = BinRareEvents(min_ratio=0.0).fit(X) return obj, X, X.copy() @pytest.fixture def data_num(): X = pd.DataFrame({"A": [1, 2, 3, 4, 5, 6], "B": [1, 2, 3, 4, 5, 6]}) obj = BinRareEvents(min_ratio=1.0).fit(X) return obj, X, X.copy() @pytest.fixture def data_ks(): X = ks.DataFrame( { "A": ["w", "z", "q", "q", "q", "z"], "B": ["x", "x", "w", "w", "w", "x"], "C": ["c", "c", "e", "d", "d", "c"], "D": [1, 2, 3, 4, 5, 6], } ) X_expected = pd.DataFrame( { "A": ["OTHERS", "OTHERS", "q", "q", "q", "OTHERS"], "B": ["x", "x", "w", "w", "w", "x"], "C": ["c", "c", "OTHERS", "OTHERS", "OTHERS", "c"], "D": [1, 2, 3, 4, 5, 6], } ) obj = BinRareEvents(min_ratio=0.5).fit(X) return obj, X, X_expected @pytest.fixture def data_1object_ks(): X = ks.DataFrame({"A": ["w", "z", "q", "q", "q", "z"], "D": [1, 2, 3, 4, 5, 6]}) X_expected = pd.DataFrame( {"A": ["OTHERS", "OTHERS", "q", "q", "q", "OTHERS"], "D": [1, 2, 3, 4, 5, 6]} ) obj = BinRareEvents(min_ratio=0.5).fit(X) return obj, X, X_expected @pytest.fixture def data_all_others_ks(): X = ks.DataFrame( { "A": ["w", "z", "q", "q", "q", "z"], "B": ["x", "x", "w", "w", "w", "x"], "C": ["c", "c", "e", "d", "d", "c"], "D": [1, 2, 3, 4, 5, 6], } ) X_expected = pd.DataFrame( { "A": ["OTHERS", "OTHERS", "OTHERS", "OTHERS", "OTHERS", "OTHERS"], "B": ["OTHERS", "OTHERS", "OTHERS", "OTHERS", "OTHERS", "OTHERS"], "C": ["OTHERS", "OTHERS", "OTHERS", "OTHERS", "OTHERS", "OTHERS"], "D": [1, 2, 3, 4, 5, 6], } ) obj = BinRareEvents(min_ratio=1.0).fit(X) return obj, X, X_expected @pytest.fixture def data_no_other_ks(): X = ks.DataFrame( { "A": ["w", "z", "q", "q", "q", "z"], "B": ["x", "x", "w", "w", "w", "x"], "C": ["c", "c", "e", "d", "d", "c"], "D": [1, 2, 3, 4, 5, 6], } ) obj = BinRareEvents(min_ratio=0.0).fit(X) obj = BinRareEvents(min_ratio=0.0).fit(X) return obj, X, X.to_pandas().copy() @pytest.fixture def data_num_ks(): X = ks.DataFrame({"A": [1, 2, 3, 4, 5, 6], "B": [1, 2, 3, 4, 5, 6]}) obj = BinRareEvents(min_ratio=1.0).fit(X) return obj, X, X.to_pandas().copy() def test_pd(data): obj, X, X_expected = data X_new = obj.transform(X) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_ks(data_ks): obj, X, X_expected = data_ks X_new = obj.transform(X) assert_frame_equal(X_new.to_pandas(), X_expected) def test_pd_np(data): obj, X, X_expected = data X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame(X_numpy_new, columns=X_expected.columns) X_expected.index = X_new.index assert_frame_equal(X_new, X_expected.astype(object)) @pytest.mark.koalas def test_ks_np(data_ks): obj, X, X_expected = data_ks X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new =
pd.DataFrame(X_numpy_new, columns=X_expected.columns)
pandas.DataFrame
# Copyright (c) ZenML GmbH 2021. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing # permissions and limitations under the License. import pandas as pd import tensorflow as tf from zenml.core.repo import Repository from zenml.integrations.dash.visualizers.pipeline_run_lineage_visualizer import ( PipelineRunLineageVisualizer, ) from zenml.pipelines import pipeline from zenml.steps import Output, step FEATURE_COLS = [ "CRIM", "ZN", "INDUS", "CHAS", "NOX", "RM", "AGE", "DIS", "RAD", "TAX", "PTRATIO", "B", "STAT", ] TARGET_COL_NAME = "target" def convert_np_to_pandas(X, y): df =
pd.DataFrame(X, columns=FEATURE_COLS)
pandas.DataFrame
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import logging from pathlib import Path from typing import Iterable, List import gym import pandas as pd import yaml from llvm_autotuning.autotuners import Autotuner from llvm_autotuning.benchmarks import Benchmarks from pydantic import BaseModel, Field from compiler_gym import CompilerEnvStateWriter from compiler_gym.util.executor import Executor logger = logging.getLogger(__name__) class Experiment(BaseModel): """The composition of a full autotuning experiment, comprising autotuner, executor, and programs to tune. """ # === Start of fields list. === executor: Executor """The execution environment to use for training / testing jobs.""" autotuner: Autotuner benchmarks: Benchmarks """The set of benchmarks to test on.""" working_directory: Path """The working directory where logs and other artifacts are written to.""" experiment: str = "unnamed_experiment" """A logical name for this experiment. This is used for naming RLlib trials. """ num_replicas: int = Field(default=1, ge=1) """The number of duplicate jobs to run. E.g. for training, this will train :code:`n` independent models in trials that share the same working directory. """ seed: int = 0xCC """A numeric random seed.""" # === Start of public API. === def run(self) -> None: """Run the experiment.""" # The working directory may already have been created by hydra, so we # will check for the config.json file below to see if this experiment # has already run. self.working_directory.mkdir(parents=True, exist_ok=True) # Dump the parsed config to file. assert not self.config_path.is_file(), ( f"Refusing to overwrite file: {self.config_path}. " "Is the working directory clean?" ) with open(self.config_path, "w") as f: print(json.dumps(json.loads(self.json()), indent=2), file=f) logger.info("Wrote %s", self.config_path) results_num = 0 with self.executor.get_executor( logs_dir=self.working_directory / "logs" ) as executor: with gym.make("llvm-v0") as env: for replica_num in range(self.num_replicas): for benchmark in self.benchmarks.benchmark_uris_iterator(env): results_num += 1 results_path = ( self.working_directory / f"results-{results_num}.csv" ) executor.submit( _experiment_worker, autotuner=self.autotuner, benchmark=benchmark, results_path=results_path, seed=self.seed + replica_num, ) def yaml(self) -> str: """Serialize the model configuration to a YAML string.""" # We can't directly dump the dict() representation because we need to # simplify the types first, so we go via JSON. simplified_data = json.loads(self.json()) return yaml.dump(simplified_data) @property def config_path(self) -> Path: return self.working_directory / "config.json" @property def results_paths(self) -> Iterable[Path]: """Return an iterator over results files.""" for path in self.working_directory.iterdir(): if path.is_file() and path.name.startswith("results-"): yield path @property def configuration_number(self) -> str: return self.working_directory.name.split("-")[-1] @property def timestamp(self) -> str: return f"{self.working_directory.parent.parent.name}/{self.working_directory.parent.name}" @property def dataframe(self) -> pd.DataFrame: """Return the results as a dataframe.""" dfs = [] for path in self.results_paths: dfs.append(pd.read_csv(path)) if not dfs: return
pd.DataFrame()
pandas.DataFrame
from time import perf_counter from os import chdir, getcwd import numpy as np import pandas as pd from plot import * class del_then_inter: def __init__(self, infile: str, has_imu: bool, conv_time: bool, plot_choice): self.df, _ = setup(infile, has_imu, conv_time) self.plot_choice = plot_choice # Delete unimportant columns #self.df.drop(self.df.loc[:,'IMU_AngVelX':'IMU_LinearAccZ'].columns, inplace=True, axis=1) def delete_vals(self) -> None: print('\n\tdeleting bad values...\n') self.df = self.df.reset_index() for i in range(len(self.df.GPS_Long)): if self.df.SDn[i] > 0.005: self.df.loc[i,'GPS_Long':'GPS_Alt'] = pd.NA def interpolate(self) -> None: print('\tinterpolating...\n') # Force columns into numeric data types self.df['GPS_Long'] = pd.to_numeric(self.df['GPS_Long'], errors='coerce') self.df['GPS_Lat'] = pd.to_numeric(self.df['GPS_Lat'], errors='coerce') self.df['GPS_Alt'] = pd.to_numeric(self.df['GPS_Alt'], errors='coerce') # Interpolate all GNSS values in the df as floats self.df.loc[:, 'GPS_Long':'GPS_Alt'] = self.df.loc[:, 'GPS_Long':'GPS_Alt'].interpolate(method='linear') self.df['GPS_Status'] = self.df['GPS_Status'].interpolate(method='ffill') # Remove previously deleted values self.df = self.df[self.df['GPS_Long'].notna()] def write_to_file(self, name: str): # Change 'time' back to rospy.time[] self.df.Time = self.df.Time.apply(lambda x: f'rospy.Time[{x:19d}]') self.df.drop('index', axis=1, inplace=True) # Save the file self.df.to_csv(f'.\\results\\{name}.csv', index=False) print(f'\nSaved new file to .\\results\\{name}.csv') # Plot the desired plot if self.plot_choice: print(f'\nPlotting...\n') choose_plot(self.df, self.plot_choice) class fix_from_vel: def __init__(self, infile, has_imu, conv_time): self.gnss_df, _ = setup(infile, has_imu, conv_time) self.gnss_df.loc[:, 'GPS_Long':'GPS_Lat'] = [geodetic_to_geocentric(*a) for a in tuple(zip(self.gnss_df['GPS_Long'], self.gnss_df['GPS_Lat'], self.gnss_df['GPS_Alt']))] self.gnss_df = add_vectors(self.gnss_df) def rem_vel_outlier(df) -> None: ''' Status: nulling values based on Std works, but not based on absolute velocity change Values are still strecthed when compared to GPS_Long, GPS_Lat This notably wasnt the case before I force converted the merged df to numeric ''' df['Rolling_X'] = df.VelX.rolling(5).mean() df['Rolling_Y'] = df.VelY.rolling(5).mean() df['Rolling_Z'] = df.VelZ.rolling(5).mean() #df.loc[df[df.SDn > 10].index, 'VelX':'VelZ'] = pd.NA df.VelX.map(lambda x: pd.NA if abs(x-df.Rolling_X)/() > 1 else x.VelX) class fix_from_imu: def __init__(self, infile, has_imu): self.gnss_df, self.imu_df = setup(infile, has_imu) self.gnss_df.loc[:, 'GPS_Long':'GPS_Lat'] = [geodetic_to_geocentric(*a) for a in tuple(zip(self.gnss_df['GPS_Long'], self.gnss_df['GPS_Lat'], self.gnss_df['GPS_Alt']))] self.gnss_df = add_vectors(self.gnss_df) self.gnss_df = trim_df_vel(self.gnss_df, 10, 1) self.df = merge_dfs(self.gnss_df, self.imu_df) ### PLOT FUNCTIONS def choose_plot(df, plot_choice): if plot_choice == 1: plot_track(df) elif plot_choice == 2: pass ### MAIN FUNCTIONS def setup(infile: str, has_imu: bool, conv_time: bool) -> pd.DataFrame: t1 = perf_counter() print('\n' + '#'*80 + '\n') def ingest_file(infile) -> pd.DataFrame: # Set and Get directory chdir(r'C:\Users\mikeh\OneDrive\Documents\GitHub\ouster_localization') dir = getcwd() print(f'\ndirectory: {dir}\n\n') print('\treading file...\n') # Import the comma delimited .txt file as a pandas dataframe df =
pd.read_csv(f'{dir}\\{infile}', delimiter=',')
pandas.read_csv
from dataclasses import replace import datetime as dt from functools import partial import inspect from pathlib import Path import re import types import uuid import pandas as pd from pandas.testing import assert_frame_equal import pytest from solarforecastarbiter import datamodel from solarforecastarbiter.io import api, nwp, utils from solarforecastarbiter.reference_forecasts import main, models from solarforecastarbiter.conftest import default_forecast, default_observation BASE_PATH = Path(nwp.__file__).resolve().parents[0] / 'tests/data' @pytest.mark.parametrize('model', [ models.gfs_quarter_deg_hourly_to_hourly_mean, models.gfs_quarter_deg_to_hourly_mean, models.hrrr_subhourly_to_hourly_mean, models.hrrr_subhourly_to_subhourly_instantaneous, models.nam_12km_cloud_cover_to_hourly_mean, models.nam_12km_hourly_to_hourly_instantaneous, models.rap_cloud_cover_to_hourly_mean, models.gefs_half_deg_to_hourly_mean ]) def test_run_nwp(model, site_powerplant_site_type, mocker): """ to later patch the return value of load forecast, do something like def load(*args, **kwargs): return load_forecast_return_value mocker.patch.object(inspect.unwrap(model), '__defaults__', (partial(load),)) """ mocker.patch.object(inspect.unwrap(model), '__defaults__', (partial(nwp.load_forecast, base_path=BASE_PATH),)) mocker.patch( 'solarforecastarbiter.reference_forecasts.utils.get_init_time', return_value=pd.Timestamp('20190515T0000Z')) site, site_type = site_powerplant_site_type fx = datamodel.Forecast('Test', dt.time(5), pd.Timedelta('1h'), pd.Timedelta('1h'), pd.Timedelta('6h'), 'beginning', 'interval_mean', 'ghi', site) run_time = pd.Timestamp('20190515T1100Z') issue_time = pd.Timestamp('20190515T1100Z') out = main.run_nwp(fx, model, run_time, issue_time) for var in ('ghi', 'dni', 'dhi', 'air_temperature', 'wind_speed', 'ac_power'): if site_type == 'site' and var == 'ac_power': assert out.ac_power is None else: ser = getattr(out, var) assert len(ser) >= 6 assert isinstance(ser, (pd.Series, pd.DataFrame)) assert ser.index[0] == pd.Timestamp('20190515T1200Z') assert ser.index[-1] < pd.Timestamp('20190515T1800Z') @pytest.fixture def obs_5min_begin(site_metadata): observation = default_observation( site_metadata, interval_length=pd.Timedelta('5min'), interval_label='beginning') return observation @pytest.fixture def observation_values_text(): """JSON text representation of test data""" tz = 'UTC' data_index = pd.date_range( start='20190101', end='20190112', freq='5min', tz=tz, closed='left') # each element of data is equal to the hour value of its label data = pd.DataFrame({'value': data_index.hour, 'quality_flag': 0}, index=data_index) text = utils.observation_df_to_json_payload(data) return text.encode() @pytest.fixture def session(requests_mock, observation_values_text): session = api.APISession('') matcher = re.compile(f'{session.base_url}/observations/.*/values') requests_mock.register_uri('GET', matcher, content=observation_values_text) return session @pytest.mark.parametrize('interval_label', ['beginning', 'ending']) def test_run_persistence_scalar(session, site_metadata, obs_5min_begin, interval_label, mocker): run_time = pd.Timestamp('20190101T1945Z') # intraday, index=False forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('1h'), interval_label=interval_label) issue_time = pd.Timestamp('20190101T2300Z') mocker.spy(main.persistence, 'persistence_scalar') out = main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time) assert isinstance(out, pd.Series) assert len(out) == 1 assert main.persistence.persistence_scalar.call_count == 1 @pytest.mark.parametrize('interval_label', ['beginning', 'ending']) def test_run_persistence_scalar_index(session, site_metadata, obs_5min_begin, interval_label, mocker): run_time = pd.Timestamp('20190101T1945Z') forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('1h'), interval_label=interval_label) issue_time = pd.Timestamp('20190101T2300Z') # intraday, index=True mocker.spy(main.persistence, 'persistence_scalar_index') out = main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time, index=True) assert isinstance(out, pd.Series) assert len(out) == 1 assert main.persistence.persistence_scalar_index.call_count == 1 def test_run_persistence_interval(session, site_metadata, obs_5min_begin, mocker): run_time = pd.Timestamp('20190102T1945Z') # day ahead, index = False forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('24h'), interval_label='beginning') issue_time = pd.Timestamp('20190102T2300Z') mocker.spy(main.persistence, 'persistence_interval') out = main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time) assert isinstance(out, pd.Series) assert len(out) == 24 assert main.persistence.persistence_interval.call_count == 1 def test_run_persistence_weekahead(session, site_metadata, mocker): variable = 'net_load' observation = default_observation( site_metadata, variable=variable, interval_length=pd.Timedelta('5min'), interval_label='beginning') run_time = pd.Timestamp('20190110T1945Z') forecast = default_forecast( site_metadata, variable=variable, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('1d'), interval_label='beginning') issue_time = pd.Timestamp('20190111T2300Z') mocker.spy(main.persistence, 'persistence_interval') out = main.run_persistence(session, observation, forecast, run_time, issue_time) assert isinstance(out, pd.Series) assert len(out) == 24 assert main.persistence.persistence_interval.call_count == 1 def test_run_persistence_interval_index(session, site_metadata, obs_5min_begin): # index=True not supported for day ahead forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('24h'), interval_label='beginning') issue_time = pd.Timestamp('20190423T2300Z') run_time = pd.Timestamp('20190422T1945Z') with pytest.raises(ValueError) as excinfo: main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time, index=True) assert 'index=True not supported' in str(excinfo.value) def test_run_persistence_interval_too_long(session, site_metadata, obs_5min_begin): forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('48h'), # too long interval_label='beginning') issue_time = pd.Timestamp('20190423T2300Z') run_time = pd.Timestamp('20190422T1945Z') with pytest.raises(ValueError) as excinfo: main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time) assert 'midnight to midnight' in str(excinfo.value) def test_run_persistence_interval_not_midnight_to_midnight(session, site_metadata, obs_5min_begin): # not midnight to midnight forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=22), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('24h'), interval_label='beginning') issue_time = pd.Timestamp('20190423T2200Z') run_time = pd.Timestamp('20190422T1945Z') with pytest.raises(ValueError) as excinfo: main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time) assert 'midnight to midnight' in str(excinfo.value) def test_run_persistence_incompatible_issue(session, site_metadata, obs_5min_begin): forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('1h'), interval_label='beginning') issue_time = pd.Timestamp('20190423T2330Z') run_time = pd.Timestamp('20190422T1945Z') with pytest.raises(ValueError) as excinfo: main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time) assert 'incompatible' in str(excinfo.value).lower() def test_run_persistence_fx_too_short(session, site_metadata, obs_5min_begin): forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1min'), run_length=pd.Timedelta('3min'), interval_label='beginning') issue_time = pd.Timestamp('20190423T2300Z') run_time = pd.Timestamp('20190422T1945Z') with pytest.raises(ValueError) as excinfo: main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time) assert 'requires observation.interval_length' in str(excinfo.value) def test_run_persistence_incompatible_instant_fx(session, site_metadata, obs_5min_begin): forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('1h'), interval_label='instantaneous') issue_time = pd.Timestamp('20190423T2300Z') run_time = pd.Timestamp('20190422T1945Z') with pytest.raises(ValueError) as excinfo: main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time) assert 'instantaneous forecast' in str(excinfo.value).lower() def test_run_persistence_incompatible_instant_interval(session, site_metadata, obs_5min_begin): forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('1h'), interval_label='instantaneous') obs = obs_5min_begin.replace(interval_label='instantaneous', interval_length=pd.Timedelta('10min')) issue_time = pd.Timestamp('20190423T2300Z') run_time = pd.Timestamp('20190422T1945Z') with pytest.raises(ValueError) as excinfo: main.run_persistence(session, obs, forecast, run_time, issue_time) assert 'identical interval length' in str(excinfo.value) def test_verify_nwp_forecasts_compatible(ac_power_forecast_metadata): fx0 = ac_power_forecast_metadata fx1 = replace(fx0, run_length=pd.Timedelta('10h'), interval_label='ending') df = pd.DataFrame({'forecast': [fx0, fx1], 'model': ['a', 'b']}) errs = main._verify_nwp_forecasts_compatible(df) assert set(errs) == {'model', 'run_length', 'interval_label'} @pytest.mark.parametrize('string,expected', [ ('{"is_reference_forecast": true}', True), ('{"is_reference_persistence_forecast": true}', False), ('{"is_reference_forecast": "True"}', True), ('{"is_reference_forecast":"True"}', True), ('is_reference_forecast" : "True"}', True), ('{"is_reference_forecast" : true, "otherkey": badjson, 9}', True), ('reference_forecast": true', False), ('{"is_reference_forecast": false}', False), ("is_reference_forecast", False) ]) def test_is_reference_forecast(string, expected): assert main._is_reference_forecast(string) == expected def test_find_reference_nwp_forecasts_json_err(ac_power_forecast_metadata, mocker): logger = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.logger') extra_params = '{"model": "themodel", "is_reference_forecast": true}' fxs = [replace(ac_power_forecast_metadata, extra_parameters=extra_params), replace(ac_power_forecast_metadata, extra_parameters='{"model": "yes"}'), replace(ac_power_forecast_metadata, extra_parameters='{"is_reference_forecast": true'), # NOQA replace(ac_power_forecast_metadata, extra_parameters='')] out = main.find_reference_nwp_forecasts(fxs) assert logger.warning.called assert len(out) == 1 def test_find_reference_nwp_forecasts_no_model(ac_power_forecast_metadata, mocker): logger = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.logger') fxs = [replace(ac_power_forecast_metadata, extra_parameters='{}', forecast_id='0'), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "0", "is_reference_forecast": true}', # NOQA forecast_id='1')] out = main.find_reference_nwp_forecasts(fxs) assert len(out) == 0 assert logger.debug.called assert logger.error.called def test_find_reference_nwp_forecasts_no_init(ac_power_forecast_metadata): fxs = [replace(ac_power_forecast_metadata, extra_parameters='{"model": "am", "is_reference_forecast": true}', # NOQA forecast_id='0'), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "0", "model": "am", "is_reference_forecast": true}', # NOQA forecast_id='1')] out = main.find_reference_nwp_forecasts(fxs) assert len(out) == 2 assert out.next_issue_time.unique() == [None] assert out.piggyback_on.unique() == ['0'] def test_find_reference_nwp_forecasts(ac_power_forecast_metadata): fxs = [replace(ac_power_forecast_metadata, extra_parameters='{"model": "am", "is_reference_forecast": true}', # NOQA forecast_id='0'), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "0", "model": "am", "is_reference_forecast": true}', # NOQA forecast_id='1')] out = main.find_reference_nwp_forecasts( fxs, pd.Timestamp('20190501T0000Z')) assert len(out) == 2 assert out.next_issue_time.unique()[0] == pd.Timestamp('20190501T0500Z') assert out.piggyback_on.unique() == ['0'] @pytest.fixture() def forecast_list(ac_power_forecast_metadata): model = 'nam_12km_cloud_cover_to_hourly_mean' prob_dict = ac_power_forecast_metadata.to_dict() prob_dict['constant_values'] = (0, 50, 100) prob_dict['axis'] = 'y' prob_dict['extra_parameters'] = '{"model": "gefs_half_deg_to_hourly_mean", "is_reference_forecast": true}' # NOQA return [replace(ac_power_forecast_metadata, extra_parameters=( '{"model": "%s", "is_reference_forecast": true}' % model), forecast_id='0'), replace(ac_power_forecast_metadata, extra_parameters='{"model": "gfs_quarter_deg_hourly_to_hourly_mean", "is_reference_forecast": true}', # NOQA forecast_id='1'), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "0", "model": "%s", "is_reference_forecast": true}' % model, # NOQA forecast_id='2', variable='ghi'), datamodel.ProbabilisticForecast.from_dict(prob_dict), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "0", "model": "%s", "is_reference_forecast": true}' % model, # NOQA forecast_id='3', variable='dni', provider='Organization 2' ), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "0", "model": "badmodel", "is_reference_forecast": true}', # NOQA forecast_id='4'), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "6", "model": "%s", "is_reference_forecast": true}' % model, # NOQA forecast_id='5', variable='ghi'), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "0", "model": "%s", "is_reference_forecast": false}' % model, # NOQA forecast_id='7', variable='ghi'), ] def test_process_nwp_forecast_groups(mocker, forecast_list): api = mocker.MagicMock() run_nwp = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.run_nwp') post_vals = mocker.patch( 'solarforecastarbiter.reference_forecasts.main._post_forecast_values') class res: ac_power = [0] ghi = [0] run_nwp.return_value = res fxs = main.find_reference_nwp_forecasts(forecast_list[:-4]) logger = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.logger') main.process_nwp_forecast_groups(api, pd.Timestamp('20190501T0000Z'), fxs) assert not logger.error.called assert not logger.warning.called assert post_vals.call_count == 4 @pytest.mark.parametrize('run_time', [None, pd.Timestamp('20190501T0000Z')]) def test_process_nwp_forecast_groups_issue_time(mocker, forecast_list, run_time): api = mocker.MagicMock() run_nwp = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.run_nwp') post_vals = mocker.patch( 'solarforecastarbiter.reference_forecasts.main._post_forecast_values') class res: ac_power = [0] ghi = [0] run_nwp.return_value = res fxs = main.find_reference_nwp_forecasts(forecast_list[:-4], run_time) main.process_nwp_forecast_groups(api, pd.Timestamp('20190501T0000Z'), fxs) assert post_vals.call_count == 4 run_nwp.assert_called_with(mocker.ANY, mocker.ANY, mocker.ANY, pd.Timestamp('20190501T0500Z')) def test_process_nwp_forecast_groups_missing_var(mocker, forecast_list): api = mocker.MagicMock() run_nwp = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.run_nwp') post_vals = mocker.patch( 'solarforecastarbiter.reference_forecasts.main._post_forecast_values') class res: ac_power = [0] ghi = [0] dni = None run_nwp.return_value = res fxs = main.find_reference_nwp_forecasts(forecast_list[:-3]) logger = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.logger') main.process_nwp_forecast_groups(api, pd.Timestamp('20190501T0000Z'), fxs) assert not logger.error.called assert logger.warning.called assert post_vals.call_count == 4 def test_process_nwp_forecast_groups_bad_model(mocker, forecast_list): api = mocker.MagicMock() run_nwp = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.run_nwp') post_vals = mocker.patch( 'solarforecastarbiter.reference_forecasts.main._post_forecast_values') class res: ac_power = [0] ghi = [0] dni = None run_nwp.return_value = res fxs = main.find_reference_nwp_forecasts(forecast_list[4:-1]) logger = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.logger') main.process_nwp_forecast_groups(api, pd.Timestamp('20190501T0000Z'), fxs) assert logger.error.called assert not logger.warning.called assert post_vals.call_count == 0 def test_process_nwp_forecast_groups_missing_runfor(mocker, forecast_list): api = mocker.MagicMock() run_nwp = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.run_nwp') class res: ac_power = [0] ghi = [0] dni = None run_nwp.return_value = res fxs = main.find_reference_nwp_forecasts(forecast_list[-2:]) logger = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.logger') main.process_nwp_forecast_groups(api, pd.Timestamp('20190501T0000Z'), fxs) assert logger.error.called assert not logger.warning.called assert api.post_forecast_values.call_count == 0 @pytest.mark.parametrize('ind', [0, 1, 2]) def test__post_forecast_values_regular(mocker, forecast_list, ind): api = mocker.MagicMock() fx = forecast_list[ind] main._post_forecast_values(api, fx, [0], 'whatever') assert api.post_forecast_values.call_count == 1 def test__post_forecast_values_cdf(mocker, forecast_list): api = mocker.MagicMock() fx = forecast_list[3] ser = pd.Series([0, 1]) vals = pd.DataFrame({i: ser for i in range(21)}) main._post_forecast_values(api, fx, vals, 'gefs') assert api.post_probabilistic_forecast_constant_value_values.call_count == 3 # NOQA def test__post_forecast_values_cdf_not_gefs(mocker, forecast_list): api = mocker.MagicMock() fx = forecast_list[3] ser = pd.Series([0, 1]) vals = pd.DataFrame({i: ser for i in range(21)}) with pytest.raises(ValueError): main._post_forecast_values(api, fx, vals, 'gfs') def test__post_forecast_values_cdf_less_cols(mocker, forecast_list): api = mocker.MagicMock() fx = forecast_list[3] ser = pd.Series([0, 1]) vals = pd.DataFrame({i: ser for i in range(10)}) with pytest.raises(TypeError): main._post_forecast_values(api, fx, vals, 'gefs') def test__post_forecast_values_cdf_not_df(mocker, forecast_list): api = mocker.MagicMock() fx = forecast_list[3] ser = pd.Series([0, 1]) with pytest.raises(TypeError): main._post_forecast_values(api, fx, ser, 'gefs') def test__post_forecast_values_cdf_no_cv_match(mocker, forecast_list): api = mocker.MagicMock() fx = replace(forecast_list[3], constant_values=( replace(forecast_list[3].constant_values[0], constant_value=3.0 ),)) ser = pd.Series([0, 1]) vals = pd.DataFrame({i: ser for i in range(21)}) with pytest.raises(KeyError): main._post_forecast_values(api, fx, vals, 'gefs') @pytest.mark.parametrize('issue_buffer,empty', [ (pd.Timedelta('10h'), False), (pd.Timedelta('1h'), True), (pd.Timedelta('5h'), False) ]) def test_make_latest_nwp_forecasts(forecast_list, mocker, issue_buffer, empty): session = mocker.patch('solarforecastarbiter.io.api.APISession') session.return_value.get_user_info.return_value = {'organization': ''} session.return_value.list_forecasts.return_value = forecast_list[:-3] session.return_value.list_probabilistic_forecasts.return_value = [] run_time = pd.Timestamp('20190501T0000Z') # last fx has different org fxdf = main.find_reference_nwp_forecasts(forecast_list[:-4], run_time) process = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.process_nwp_forecast_groups') # NOQA main.make_latest_nwp_forecasts('', run_time, issue_buffer) if empty: process.assert_not_called() else: assert_frame_equal(process.call_args[0][-1], fxdf) @pytest.mark.parametrize('string,expected', [ ('{"is_reference_forecast": true}', False), ('{"is_reference_persistence_forecast": true}', True), ('{"is_reference_persistence_forecast": "True"}', True), ('{"is_reference_persistence_forecast":"True"}', True), ('is_reference_persistence_forecast" : "True"}', True), ('{"is_reference_persistence_forecast" : true, "otherkey": badjson, 9}', True), ('reference_persistence_forecast": true', False), ('{"is_reference_persistence_forecast": false}', False), ("is_reference_persistence_forecast", False) ]) def test_is_reference_persistence_forecast(string, expected): assert main._is_reference_persistence_forecast(string) == expected @pytest.fixture def perst_fx_obs(mocker, ac_power_observation_metadata, ac_power_forecast_metadata): observations = [ ac_power_observation_metadata.replace( observation_id=str(uuid.uuid1()) ), ac_power_observation_metadata.replace( observation_id=str(uuid.uuid1()) ), ac_power_observation_metadata.replace( observation_id=str(uuid.uuid1()) ) ] def make_extra(obs): extra = ( '{"is_reference_persistence_forecast": true,' f'"observation_id": "{obs.observation_id}"' '}' ) return extra forecasts = [ ac_power_forecast_metadata.replace( name='FX0', extra_parameters=make_extra(observations[0]), run_length=pd.Timedelta('1h'), forecast_id=str(uuid.uuid1()) ), ac_power_forecast_metadata.replace( name='FX no persist', run_length=pd.Timedelta('1h'), forecast_id=str(uuid.uuid1()) ), ac_power_forecast_metadata.replace( name='FX bad js', extra_parameters='is_reference_persistence_forecast": true other', run_length=pd.Timedelta('1h'), forecast_id=str(uuid.uuid1()) ) ] return forecasts, observations def test_generate_reference_persistence_forecast_parameters( mocker, perst_fx_obs): forecasts, observations = perst_fx_obs session = mocker.MagicMock() session.get_user_info.return_value = {'organization': ''} session.get_observation_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T15:33Z')) session.get_forecast_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T14:00Z')) max_run_time = pd.Timestamp('2020-05-20T16:00Z') # one hour ahead forecast, so 14Z was made at 13Z # enough data to do 14Z and 15Z issue times but not 16Z param_gen = main.generate_reference_persistence_forecast_parameters( session, forecasts, observations, max_run_time ) assert isinstance(param_gen, types.GeneratorType) param_list = list(param_gen) assert len(param_list) == 2 assert param_list[0] == ( forecasts[0], observations[0], pd.Timestamp('2020-05-20T14:00Z'), False ) assert param_list[1] == ( forecasts[0], observations[0], pd.Timestamp('2020-05-20T15:00Z'), False ) def test_generate_reference_persistence_forecast_parameters_no_forecast_yet( mocker, perst_fx_obs): forecasts, observations = perst_fx_obs session = mocker.MagicMock() session.get_user_info.return_value = {'organization': ''} session.get_observation_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T15:33Z')) session.get_forecast_time_range.return_value = ( pd.NaT, pd.NaT) max_run_time = pd.Timestamp('2020-05-20T16:00Z') param_gen = main.generate_reference_persistence_forecast_parameters( session, forecasts, observations, max_run_time ) assert isinstance(param_gen, types.GeneratorType) param_list = list(param_gen) assert len(param_list) == 1 assert param_list[0] == ( forecasts[0], observations[0], pd.Timestamp('2020-05-20T15:00Z'), False ) def test_generate_reference_persistence_forecast_parameters_no_data( mocker, perst_fx_obs): forecasts, observations = perst_fx_obs session = mocker.MagicMock() session.get_user_info.return_value = {'organization': ''} session.get_observation_time_range.return_value = ( pd.NaT, pd.NaT) session.get_forecast_time_range.return_value = ( pd.NaT, pd.NaT) max_run_time = pd.Timestamp('2020-05-20T16:00Z') param_gen = main.generate_reference_persistence_forecast_parameters( session, forecasts, observations, max_run_time ) assert isinstance(param_gen, types.GeneratorType) param_list = list(param_gen) assert len(param_list) == 0 def test_generate_reference_persistence_forecast_parameters_diff_org( mocker, perst_fx_obs): forecasts, observations = perst_fx_obs session = mocker.MagicMock() session.get_user_info.return_value = {'organization': 'a new one'} session.get_observation_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T15:33Z')) session.get_forecast_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T14:00Z')) max_run_time = pd.Timestamp('2020-05-20T16:00Z') param_gen = main.generate_reference_persistence_forecast_parameters( session, forecasts, observations, max_run_time ) assert isinstance(param_gen, types.GeneratorType) param_list = list(param_gen) assert len(param_list) == 0 def test_generate_reference_persistence_forecast_parameters_not_reference_fx( mocker, perst_fx_obs): forecasts, observations = perst_fx_obs forecasts = [fx.replace(extra_parameters='') for fx in forecasts] session = mocker.MagicMock() session.get_user_info.return_value = {'organization': ''} session.get_observation_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T15:33Z')) session.get_forecast_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T14:00Z')) max_run_time = pd.Timestamp('2020-05-20T16:00Z') param_gen = main.generate_reference_persistence_forecast_parameters( session, forecasts, observations, max_run_time ) assert isinstance(param_gen, types.GeneratorType) param_list = list(param_gen) assert len(param_list) == 0 def test_generate_reference_persistence_forecast_parameters_no_obs_id( mocker, perst_fx_obs): forecasts, observations = perst_fx_obs forecasts[0] = forecasts[0].replace( extra_parameters='{"is_reference_persistence_forecast": true}') forecasts[1] = forecasts[1].replace( extra_parameters='{"is_reference_persistence_forecast": true, "observation_id": "idnotinobs"}') # NOQA session = mocker.MagicMock() session.get_user_info.return_value = {'organization': ''} session.get_observation_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T15:33Z')) session.get_forecast_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T14:00Z')) max_run_time = pd.Timestamp('2020-05-20T16:00Z') param_gen = main.generate_reference_persistence_forecast_parameters( session, forecasts, observations, max_run_time ) assert isinstance(param_gen, types.GeneratorType) param_list = list(param_gen) assert len(param_list) == 0 def test_generate_reference_persistence_forecast_parameters_ending_label( mocker, perst_fx_obs): forecasts, observations = perst_fx_obs forecasts = [fx.replace( interval_label='ending', lead_time_to_start=pd.Timedelta('0h')) for fx in forecasts] session = mocker.MagicMock() session.get_user_info.return_value = {'organization': ''} session.get_observation_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T16:00Z')) session.get_forecast_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T14:00Z')) max_run_time = pd.Timestamp('2020-05-20T16:00Z') param_gen = main.generate_reference_persistence_forecast_parameters( session, forecasts, observations, max_run_time ) assert isinstance(param_gen, types.GeneratorType) param_list = list(param_gen) assert len(param_list) == 3 assert param_list == [ ( forecasts[0], observations[0], pd.Timestamp('2020-05-20T14:00Z'), False ), ( forecasts[0], observations[0], pd.Timestamp('2020-05-20T15:00Z'), False ), ( forecasts[0], observations[0], pd.Timestamp('2020-05-20T16:00Z'), False ) ] def test_generate_reference_persistence_forecast_parameters_no_lead( mocker, perst_fx_obs): forecasts, observations = perst_fx_obs forecasts = [fx.replace( lead_time_to_start=pd.Timedelta('0h')) for fx in forecasts] session = mocker.MagicMock() session.get_user_info.return_value = {'organization': ''} session.get_observation_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T16:00Z')) session.get_forecast_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T14:00Z')) max_run_time = pd.Timestamp('2020-05-20T16:00Z') param_gen = main.generate_reference_persistence_forecast_parameters( session, forecasts, observations, max_run_time ) assert isinstance(param_gen, types.GeneratorType) param_list = list(param_gen) assert len(param_list) == 2 assert param_list == [ ( forecasts[0], observations[0], pd.Timestamp('2020-05-20T15:00Z'), False ), ( forecasts[0], observations[0], pd.Timestamp('2020-05-20T16:00Z'), False ) ] def test_generate_reference_persistence_forecast_parameters_off_time( mocker, perst_fx_obs): forecasts, observations = perst_fx_obs session = mocker.MagicMock() session.get_user_info.return_value = {'organization': ''} session.get_observation_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T15:33Z')) session.get_forecast_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T14:10Z')) max_run_time = pd.Timestamp('2020-05-20T16:00Z') # one hour ahead forecast, so 14Z was made at 13Z # enough data to do 14Z and 15Z issue times but not 16Z param_gen = main.generate_reference_persistence_forecast_parameters( session, forecasts, observations, max_run_time ) assert isinstance(param_gen, types.GeneratorType) param_list = list(param_gen) assert len(param_list) == 2 assert param_list == [ ( forecasts[0], observations[0], pd.Timestamp('2020-05-20T14:00Z'), False ), ( forecasts[0], observations[0], pd.Timestamp('2020-05-20T15:00Z'), False ), ] def test_generate_reference_persistence_forecast_parameters_multiple( mocker, perst_fx_obs): forecasts, observations = perst_fx_obs forecasts[0] = forecasts[0].replace( extra_parameters=(forecasts[0].extra_parameters[:-1] + ', "index_persistence": true}') ) forecasts[1] = forecasts[1].replace( extra_parameters=( '{"is_reference_persistence_forecast": true, "observation_id": "' + observations[1].observation_id + '"}')) session = mocker.MagicMock() session.get_user_info.return_value = {'organization': ''} session.get_observation_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T14:33Z')) session.get_forecast_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T14:00Z')) max_run_time = pd.Timestamp('2020-05-20T16:00Z') param_gen = main.generate_reference_persistence_forecast_parameters( session, forecasts, observations, max_run_time ) assert isinstance(param_gen, types.GeneratorType) param_list = list(param_gen) assert len(param_list) == 2 assert param_list == [ ( forecasts[0], observations[0], pd.Timestamp('2020-05-20T14:00Z'), True ), ( forecasts[1], observations[1], pd.Timestamp('2020-05-20T14:00Z'), False ) ] def test_generate_reference_persistence_forecast_parameters_up_to_date( mocker, perst_fx_obs): forecasts, observations = perst_fx_obs session = mocker.MagicMock() session.get_user_info.return_value = {'organization': ''} session.get_observation_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T13:59Z')) session.get_forecast_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T14:00Z')) # next would be at 14 and use data incl 13:59:59 max_run_time = pd.Timestamp('2020-05-20T16:00Z') param_gen = main.generate_reference_persistence_forecast_parameters( session, forecasts, observations, max_run_time ) assert isinstance(param_gen, types.GeneratorType) param_list = list(param_gen) assert len(param_list) == 0 def test_make_latest_persistence_forecasts(mocker, perst_fx_obs): forecasts, observations = perst_fx_obs forecasts += [forecasts[0].replace( extra_parameters=(forecasts[0].extra_parameters[:-1] + ', "index_persistence": true}'))] session = mocker.MagicMock() session.get_user_info.return_value = {'organization': ''} session.get_observation_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T15:33Z')) session.get_forecast_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T14:00Z')) session.list_forecasts.return_value = forecasts session.list_observations.return_value = observations max_run_time = pd.Timestamp('2020-05-20T16:00Z') mocker.patch( 'solarforecastarbiter.reference_forecasts.main.api.APISession', return_value=session) run_pers = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.run_persistence') main.make_latest_persistence_forecasts('', max_run_time) assert run_pers.call_count == 4 assert session.post_forecast_values.call_count == 4 assert [l[1]['index'] for l in run_pers.call_args_list] == [ False, False, True, True] def test_make_latest_persistence_forecasts_some_errors(mocker, perst_fx_obs): # test that some persistence forecast parameters are invalid for the # observation and that no peristence values are posted # and that the failure doesn't interrupt other posts forecasts, observations = perst_fx_obs forecasts += [forecasts[0].replace( extra_parameters=(forecasts[0].extra_parameters[:-1] + ', "index_persistence": true}'))] session = mocker.MagicMock() session.get_user_info.return_value = {'organization': ''} session.get_observation_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T15:33Z')) session.get_forecast_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'),
pd.Timestamp('2020-05-20T14:00Z')
pandas.Timestamp
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for gps_building_blocks.ml.statistical_inference.inference.""" from unittest import mock from absl.testing import parameterized import numpy as np import pandas as pd from scipy import stats from sklearn import datasets from sklearn import model_selection from absl.testing import absltest from gps_building_blocks.ml.statistical_inference import data_preparation class InferenceTest(parameterized.TestCase): _missing_data = pd.DataFrame( data=[[np.nan, 0.0000], [0.6000, 0.0000], [0.4000, 3.0000], [0.2000, np.nan]], columns=['first', 'second']) def test_missing_value_emits_warning_twice(self): with self.assertWarns(data_preparation.MissingValueWarning): data_preparation.InferenceData(self._missing_data) with self.assertWarns(data_preparation.MissingValueWarning): data_preparation.InferenceData(self._missing_data) def test_check_data_raises_exception_on_missing_data(self): inference_data = data_preparation.InferenceData(self._missing_data) with self.assertRaises(data_preparation.MissingValueError): inference_data.data_check(raise_on_error=True) def test_invalid_target_column_raise_exception(self): with self.assertRaises(KeyError): data_preparation.InferenceData( initial_data=self._missing_data, target_column='non_ci_sono') def test_impute_missing_values_replaced_with_mean(self): inference_data = data_preparation.InferenceData(self._missing_data) expected_result = pd.DataFrame( data=[[0.4000, 0.0000], [0.6000, 0.0000], [0.4000, 3.0000], [0.2000, 1.0000]], columns=['first', 'second']) result = inference_data.impute_missing_values(strategy='mean') pd.testing.assert_frame_equal(result, expected_result) def test_fixed_effect_raise_exception_on_categorical_covariate(self): data = pd.DataFrame( data=[['0', 0.0, '1', 3.0], ['1', 0.0, '2', 2.0], ['1', 1.0, '3', 2.0], ['1', 1.0, '4', 1.0]], columns=['control_1', 'control_2', 'variable_1', 'variable_2'], index=['group1', 'group2', 'group3', 'group3']) inference_data = data_preparation.InferenceData(data) with self.assertRaises(data_preparation.CategoricalCovariateError): inference_data.control_with_fixed_effect( strategy='quick', control_columns=['control_1', 'control_2'], min_frequency=1) def test_fixed_effect_demeaning_subtract_mean_in_groups(self): data = pd.DataFrame( data=[['0', 0.0, 1, 3.0], ['1', 0.0, 2, 2.0], ['1', 1.0, 3, 2.0], ['1', 1.0, 4, 1.0]], columns=['control_1', 'control_2', 'variable_1', 'variable_2'], index=['group1', 'group2', 'group3', 'group3']) expected_result = pd.DataFrame( data=[['0', 0.0, 2.5, 2.0], ['1', 0.0, 2.5, 2.0], ['1', 1.0, 2.0, 2.5], ['1', 1.0, 3.0, 1.5]], columns=data.columns, index=data.index).set_index(['control_1', 'control_2'], append=True) inference_data = data_preparation.InferenceData(data) result = inference_data.control_with_fixed_effect( strategy='quick', control_columns=['control_1', 'control_2'], min_frequency=1) pd.testing.assert_frame_equal(result, expected_result) def test_address_low_variance_removes_column(self): data = pd.DataFrame( data=[[0.0, 1.0, 0.0, 10.0], [0.0, 1.0, 0.0, 10.0], [1.0, 1.0, 0.0, 5.00], [1.0, 0.0, 0.0, 0.00]], columns=['control', 'variable', 'variable_1', 'outcome']) expected_result = pd.DataFrame( data=[[0.0, 1.0, 10.0], [0.0, 1.0, 10.0], [1.0, 1.0, 5.00], [1.0, 0.0, 0.00]], columns=['control', 'variable', 'outcome']) inference_data = data_preparation.InferenceData( data, target_column='outcome') result = inference_data.address_low_variance(drop=True) pd.testing.assert_frame_equal(result, expected_result) def test_vif_raises_error_on_singular_correlation_matrix(self): singular_correlation_matrix_df = pd.DataFrame( data=[[1.1, 2.1, 3.1, 4.1, 1.0], [1.0, 2.0, 3.0, 4.0, 1.0], [1.0, 2.0, 3.0, 4.0, 1.0], [1.0, 2.0, 3.0, 4.0, 1.0]], columns=['control', 'variable_1', 'variable_2', 'variable_3', 'outcome']) inference_data = data_preparation.InferenceData( singular_correlation_matrix_df, target_column='outcome') with self.assertRaises(data_preparation.SingularDataError): inference_data.address_collinearity_with_vif( handle_singular_data_errors_automatically=False) def test_vif_raises_error_on_ill_conditioned_correlation_matrix(self): ill_conditioned_correlation_matrix_df = pd.DataFrame( data=[[1.0, 2.0, 3.0, 4.0, 1.0], [0.0, 2.0, 0.0, 1.0, 1.0], [1.0, 1.0, 2.0, 5.0, 1.0], [0.0, 2.0, 3.0, 0.0, 1.0]], columns=['control', 'variable_1', 'variable_2', 'variable_3', 'outcome']) inference_data = data_preparation.InferenceData( ill_conditioned_correlation_matrix_df, target_column='outcome') with self.assertRaises(data_preparation.SingularDataError): inference_data.address_collinearity_with_vif( handle_singular_data_errors_automatically=False) def test_vif_error_has_correct_message(self): ill_conditioned_correlation_matrix_df = pd.DataFrame( data=[[1.0, 2.0, 3.0, 4.0, 1.0], [0.0, 2.0, 0.0, 1.0, 1.0], [1.0, 1.0, 2.0, 5.0, 1.0], [0.0, 2.0, 3.0, 0.0, 1.0]], columns=['control', 'variable_1', 'variable_2', 'variable_3', 'outcome']) inference_data = data_preparation.InferenceData( ill_conditioned_correlation_matrix_df, target_column='outcome') expected_message = ( 'Inference Data has a singular or nearly singular correlation matrix. ' 'This could be caused by extremely correlated or collinear columns. ' 'The three pairs of columns with the highest absolute correlation ' 'coefficients are: (control,variable_3): 0.970, (variable_1,variable_3)' ': -0.700, (control,variable_1): -0.577. This could also be caused by ' 'columns with extremiely low variance. Recommend running the ' 'address_low_variance() method before VIF. Alternatively, consider ' 'running address_collinearity_with_vif() with ' 'use_correlation_matrix_inversion=False to avoid this error.' ) with self.assertRaises( data_preparation.SingularDataError, msg=expected_message): inference_data.address_collinearity_with_vif( handle_singular_data_errors_automatically=False) def test_vif_noise_injection_catches_perfect_correlation(self): iris = datasets.load_iris() iris_data = pd.DataFrame( data=np.c_[iris['data'], iris['target']], columns=iris['feature_names'] + ['target']) iris_data['perfectly_correlated_column'] = iris_data['petal length (cm)'] expected_result = iris_data.drop( columns=['petal length (cm)', 'perfectly_correlated_column']) inference_data = data_preparation.InferenceData( iris_data, target_column='target') result = inference_data.address_collinearity_with_vif( vif_method='quick', drop=True, handle_singular_data_errors_automatically=True, vif_threshold=50.0) pd.testing.assert_frame_equal(result, expected_result) def test_vif_noise_injection_catches_perfect_collinearity(self): iris = datasets.load_iris() iris_data = pd.DataFrame( data=np.c_[iris['data'], iris['target']], columns=iris['feature_names'] + ['target']) iris_data['perfectly_collinear_column'] = iris_data[ 'petal length (cm)'] + iris_data['petal width (cm)'] expected_result = iris_data.drop(columns=[ 'petal length (cm)', 'petal width (cm)', 'perfectly_collinear_column' ]) inference_data = data_preparation.InferenceData( iris_data, target_column='target') result = inference_data.address_collinearity_with_vif( vif_method='quick', drop=True, handle_singular_data_errors_automatically=True, vif_threshold=50.0) pd.testing.assert_frame_equal(result, expected_result) def test_vif_noise_injection_fails_correctly_when_too_few_samples(self): too_few_samples_df = pd.DataFrame( data=[[1.0, 2.0, 3.0, 4.0, 1.0], [0.0, 2.0, 0.0, 1.0, 1.0], [1.0, 1.0, 2.0, 5.0, 1.0]], columns=['control', 'variable_1', 'variable_2', 'variable_3', 'outcome']) inference_data = data_preparation.InferenceData( too_few_samples_df, target_column='outcome') expected_regex = ( 'Automatic attempt to resolve SingularDataError by ' 'injecting artifical noise to the data has failed. This ' 'probably means the dataset has too many features relative ' 'to the number of samples.') with self.assertRaisesRegex(data_preparation.SingularDataError, expected_regex): inference_data.address_collinearity_with_vif( handle_singular_data_errors_automatically=True) def test_vif_method_fails_correctly_with_unknown_value(self): inference_data = data_preparation.InferenceData(self._missing_data) with self.assertRaises(ValueError): inference_data.address_collinearity_with_vif( vif_method='incorrect_value') @parameterized.named_parameters({ 'testcase_name': 'scale_10', 'scaling': 10, }, { 'testcase_name': 'scale_50', 'scaling': 50, }, { 'testcase_name': 'scale_-50', 'scaling': -50, }) def test_minmaxscaling_drops_appropriate_variables(self, scaling): data = pd.DataFrame( data=[[0.0, 1.0, 0.0, 10.0], [-0.5, 1.0, 0.0, 10.0], [0.1, 1.0, 0.0, 5.00], [0.2, 0.0, 0.0, 0.00]], columns=['variable_0', 'variable_1', 'variable_2', 'outcome']) data = data * scaling expected_result = data[['variable_1', 'outcome']] inference_data = data_preparation.InferenceData( data) result = inference_data.address_low_variance( threshold=.15, drop=True, minmax_scaling=True, ) pd.testing.assert_frame_equal(result, expected_result) def test_zscored_input_raises_warning(self): data = pd.DataFrame( data=[[0.0, 1.0, 0.0, 10.0], [-0.5, 1.0, 0.0, 10.0], [0.1, 1.0, 0.0, 5.00], [0.2, 0.0, 0.0, 0.00]], columns=['variable_0', 'variable_1', 'variable_2', 'variable_3']) data = data.apply(stats.zscore).fillna(0) inference_data = data_preparation.InferenceData(data) with self.assertWarns(Warning): _ = inference_data.address_low_variance() def test_minmaxscaling_with_invalid_threshold_raises_warning(self): data = pd.DataFrame( data=[[0.0, 1.0, 0.0, 10.0], [-0.5, 1.0, 0.0, 10.0], [0.1, 1.0, 0.0, 5.00], [0.2, 0.0, 0.0, 0.00]], columns=['variable_0', 'variable_1', 'variable_2', 'variable_3']) inference_data = data_preparation.InferenceData(data) with self.assertWarns(Warning): _ = inference_data.address_low_variance(minmax_scaling=True, threshold=.5) def test_address_collinearity_with_vif_removes_column(self): iris = datasets.load_iris() iris_data = pd.DataFrame( data=np.c_[iris['data'], iris['target']], columns=iris['feature_names'] + ['target']) expected_result = iris_data.drop(columns='petal length (cm)') inference_data = data_preparation.InferenceData( iris_data, target_column='target') result = inference_data.address_collinearity_with_vif( vif_method='sequential', drop=True) pd.testing.assert_frame_equal(result, expected_result) def test_encode_categorical_covariate_dummy_variable_2(self): data = pd.DataFrame( data=[[0.0, 1.0, 'a', 10.0], [0.0, 1.0, 'b', 10.0], [1.0, 1.0, 'c', 5.00], [1.0, 0.0, 'a', 0.00]], columns=['control', 'variable_1', 'variable_2', 'outcome']) expected_result = pd.DataFrame( data=[[0.0, 1.0, 10.0, 1, 0, 0], [0.0, 1.0, 10.0, 0, 1, 0], [1.0, 1.0, 5.00, 0, 0, 1], [1.0, 0.0, 0.00, 1, 0, 0]], columns=[ 'control', 'variable_1', 'outcome', 'variable_2_a', 'variable_2_b', 'variable_2_c' ]) inference_data = data_preparation.InferenceData( data, target_column='outcome') result = inference_data.encode_categorical_covariates( columns=['variable_2']) pd.testing.assert_frame_equal(result, expected_result) @parameterized.named_parameters( ('single_selections', ['1', '2', '3'], ['1', '2', '3']), ('double_selection', ['1,2', '3'], ['1', '2', '3']), ('early_stopping', ['1', ''], ['1']), ('all_at_once', ['1,2,3'], ['1', '2', '3']), ) def test_address_collinearity_with_vif_interactive( self, user_inputs, expected_dropped): dataframe = pd.DataFrame( data=[[1.1, 2.1, 3.1, 4.1, 0], [1.0, 2.0, 3.0, 4.0, 0], [1.0, 2.0, 3.0, 4.0, 0], [1.0, 2.0, 3.0, 4.0, 1]], columns=['1', '2', '3', '4', 'target']) data = data_preparation.InferenceData(dataframe, target_column='target') with mock.patch.object(data_preparation, '_input_mock') as input_mock: # Avoid Colab\Notebook prints in tests output with mock.patch.object(data_preparation, '_print_mock') as _: user_inputs = list(reversed(user_inputs)) input_mock.side_effect = lambda x: user_inputs.pop() result = data.address_collinearity_with_vif( vif_method='interactive', drop=True, use_correlation_matrix_inversion=False ) pd.testing.assert_frame_equal( result, dataframe.drop(expected_dropped, axis=1)) @parameterized.named_parameters( ('onehot_returns_expected_bins', False, False, pd.DataFrame( [[1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 1, 0, 0, 0], [0, 1, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 1]], columns=['variable_(-0.02, 4.0]', 'variable_(4.0, 8.0]', 'variable_(8.0, 12.0]', 'variable_(12.0, 16.0]', 'variable_(16.0, 20.0]'])), ('equal_sized_onehot_returns_expected_bins', True, False, pd.DataFrame( [[1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1], [0, 0, 0, 0, 1]], columns=['variable_(-0.001, 2.0]', 'variable_(2.0, 4.0]', 'variable_(4.0, 6.0]', 'variable_(6.0, 8.0]', 'variable_(8.0, 20.0]'])), ('scalar_numeric_returns_expected_bins', False, True, pd.DataFrame( [0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 4], columns=['variable'])), ('equal_sized_numeric_expected_bins', True, True, pd.DataFrame( [0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4], columns=['variable'])), ) def test_descretize(self, equal_sized_bins, numeric, expected_result): data = data_preparation.InferenceData(pd.DataFrame( data=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 20], columns=['variable'])) result = data.discretize_numeric_covariate( 'variable', equal_sized_bins=equal_sized_bins, bins=5, numeric=numeric) pd.testing.assert_frame_equal(result, expected_result, check_dtype=False) @parameterized.named_parameters( ('with_groups_kfold_as_int', 3, np.array([0, 0, 1, 1, 2, 2, 3, 3, 3, 3]), [pd.DataFrame({'variable': [0, 1, 2, 3, 4, 5]}), pd.DataFrame({'variable': [2, 3, 6, 7, 8, 9]}, index=[2, 3, 6, 7, 8, 9]), pd.DataFrame({'variable': [0, 1, 4, 5, 6, 7, 8, 9]}, index=[0, 1, 4, 5, 6, 7, 8, 9])], [pd.DataFrame({'variable': [6, 7, 8, 9]}, index=[6, 7, 8, 9]), pd.DataFrame({'variable': [0, 1, 4, 5]}, index=[0, 1, 4, 5]), pd.DataFrame({'variable': [2, 3]}, index=[2, 3])]), ('with_groups_kfold_as_object', model_selection.GroupKFold(n_splits=3), np.array([0, 0, 1, 1, 2, 2, 3, 3, 3, 3]), [pd.DataFrame({'variable': [0, 1, 2, 3, 4, 5]}), pd.DataFrame({'variable': [2, 3, 6, 7, 8, 9]}, index=[2, 3, 6, 7, 8, 9]), pd.DataFrame({'variable': [0, 1, 4, 5, 6, 7, 8, 9]}, index=[0, 1, 4, 5, 6, 7, 8, 9])], [pd.DataFrame({'variable': [6, 7, 8, 9]}, index=[6, 7, 8, 9]), pd.DataFrame({'variable': [0, 1, 4, 5]}, index=[0, 1, 4, 5]), pd.DataFrame({'variable': [2, 3]}, index=[2, 3])]), ) def test_split_with_groups_yields_expected_folds_with_non_overlaping_groups( self, cross_validation, groups, expected_trains, expected_tests): data = data_preparation.InferenceData( pd.DataFrame({ 'variable': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], })) iterator = zip(data.split(cross_validation=cross_validation, groups=groups), expected_trains, expected_tests) for (train_data, test_data), expected_train, expected_test in iterator: train_groups = set(groups[train_data.data.index.tolist()]) test_groups = set(groups[test_data.data.index.tolist()]) pd.testing.assert_frame_equal( train_data.data, expected_train, check_dtype=False) pd.testing.assert_frame_equal( test_data.data, expected_test, check_dtype=False) self.assertEmpty(train_groups.intersection(test_groups)) @parameterized.named_parameters( ('without_groups_kfold_as_int', 3, [pd.DataFrame({'variable': [4, 5, 6, 7, 8, 9]}, index=[4, 5, 6, 7, 8, 9]), pd.DataFrame({'variable': [0, 1, 2, 3, 7, 8, 9]}, index=[0, 1, 2, 3, 7, 8, 9]), pd.DataFrame({'variable': [0, 1, 2, 3, 4, 5, 6]}, index=[0, 1, 2, 3, 4, 5, 6])], [pd.DataFrame({'variable': [0, 1, 2, 3]}, index=[0, 1, 2, 3]), pd.DataFrame({'variable': [4, 5, 6]}, index=[4, 5, 6]), pd.DataFrame({'variable': [7, 8, 9]}, index=[7, 8, 9])]), ('without_groups_kfold_as_object', model_selection.KFold(n_splits=3), [pd.DataFrame({'variable': [4, 5, 6, 7, 8, 9]}, index=[4, 5, 6, 7, 8, 9]), pd.DataFrame({'variable': [0, 1, 2, 3, 7, 8, 9]}, index=[0, 1, 2, 3, 7, 8, 9]), pd.DataFrame({'variable': [0, 1, 2, 3, 4, 5, 6]}, index=[0, 1, 2, 3, 4, 5, 6])], [pd.DataFrame({'variable': [0, 1, 2, 3]}, index=[0, 1, 2, 3]),
pd.DataFrame({'variable': [4, 5, 6]}, index=[4, 5, 6])
pandas.DataFrame
from datetime import date, timedelta import numpy as np import pandas as pd IDENT_BASE = "ABC" def gen_identifiers(n=3000): return [IDENT_BASE + str(x).zfill(6) for x in range(n)] def gen_dates(n=3000): today = date.today() start = today - timedelta(days=n) return pd.date_range(start, today) def gen_data(): ids = gen_identifiers() dates = gen_dates() data = np.random.random(len(ids)) results = [] for date in dates: df = pd.DataFrame({ 'identifier': ids, 'value': data }) df['date'] = date results.append(df) return
pd.concat(results)
pandas.concat
import pybullet as p import time import pybullet_data import math as m import random as r import pandas as pd physicsClient = p.connect(p.DIRECT) p.setAdditionalSearchPath(pybullet_data.getDataPath()) p.setGravity(0,0,-10) planeId = p.loadURDF("../plane/plane.urdf") robotStartPos = [0,0,0.2] robotStartOrientation = p.getQuaternionFromEuler([0,0,0]) robotId = p.loadURDF("../../robot/PP/urdf/PP.urdf", robotStartPos, robotStartOrientation) mode = p.POSITION_CONTROL number_of_joints = p.getNumJoints(robotId) print("Running...") for i in range (100): p.stepSimulation() robotPos1, robotOrn1 = p.getBasePositionAndOrientation(robotId) id_revolute_joints = [0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11] speeds = [] best_speeds = [] evals = [] s_max = 0 time_diff, t_0, t = 0, 0, 0 for i in range(1000): # a = a_i + b_i*m.sin(i*w + c_i) a_i_armpit, a_i_elbow, a_i_knee = r.uniform(0.01,0.4), r.uniform(0.01,0.4), r.uniform(0.01,0.4) b_armpit = r.uniform(0.01, 0.6) b_elbow = r.uniform(0.01, 1.2) b_knee = r.uniform(0.01, 1) c_i_armpit, c_i_elbow, c_i_knee = r.uniform(0.01,1), r.uniform(0.01,1), r.uniform(0.01,1) w_i = r.uniform(0.001,0.1) for x in range(1000): p.stepSimulation() armpit = a_i_armpit + b_armpit*m.sin(x*w_i + c_i_armpit) elbow = a_i_elbow + b_elbow*m.sin(x*w_i + c_i_elbow) knee = a_i_knee + b_knee*m.sin(x*w_i + c_i_knee) p.setJointMotorControlArray(robotId, id_revolute_joints, controlMode=mode, targetPositions=[-armpit, -armpit, armpit, armpit, elbow, -elbow, -elbow, elbow, knee, -knee, -knee, knee]) if (x==0): t_0 = time.time() if (x==999): t = time.time() robotPos2, robotOrn2 = p.getBasePositionAndOrientation(robotId) # Calculate distance travelled x = robotPos2[0]-robotPos1[0] y = robotPos2[1]-robotPos1[1] dis = (x**2 + y**2)**0.5 # Calculate time passed time_diff = t-t_0 # Calculate speed s = dis/time_diff print(s) if (s>s_max): s_max = s best_speeds.append(s_max) speeds.append(s_max) evals.append(i) print(a_i_armpit, a_i_elbow, a_i_knee, b_armpit, b_elbow, b_knee, c_i_armpit, c_i_elbow, c_i_knee, w_i) else: speeds.append(s) best_speeds.append(s_max) evals.append(i) p.resetBasePositionAndOrientation(robotId, robotPos1, robotOrn1) df =
pd.DataFrame({"Best Overall Speed" : best_speeds, "Number of Evaluations" : evals, "Speed": speeds})
pandas.DataFrame
# %% import os import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from catboost import CatBoostClassifier, CatBoostRegressor from IPython.core.interactiveshell import InteractiveShell from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import # Setting styles InteractiveShell.ast_node_interactivity = "all" sns.set(style="whitegrid", color_codes=True, rc={"figure.figsize": (12.7, 9.27)}) random_state = 123 # %% df = pd.read_csv(os.path.join("data", "processed", "train.csv")) df = df.drop(columns=["train", "relativeposition", "spaceid"]) df_valid = pd.read_csv(os.path.join("data", "processed", "test.csv")) df_valid = df_valid.drop(columns=["train", "relativeposition", "spaceid"]) # %% X = df.drop(columns=["longitude", "latitude", "floor", "buildingid"]) y = pd.DataFrame( { "lon": df.longitude, "lat": df.latitude, "floor": df.floor, "building": df.buildingid, } ) X_valid = df_valid.drop(columns=["longitude", "latitude", "floor", "buildingid"]) y_valid = pd.DataFrame( { "lon": df_valid.longitude, "lat": df_valid.latitude, "floor": df_valid.floor, "building": df_valid.buildingid, } ) # %% level 1 models catboost_lon_level1 = CatBoostRegressor( loss_function="RMSE", eval_metric="RMSE", random_state=random_state ) catboost_lat_level1 = CatBoostRegressor( loss_function="RMSE", eval_metric="RMSE", random_state=random_state ) catboost_building_level1 = CatBoostClassifier( loss_function="MultiClass", eval_metric="MultiClass", random_state=random_state ) catboost_floor_level1 = CatBoostClassifier( loss_function="MultiClass", eval_metric="MultiClass", random_state=random_state ) # %% Longitude catboost_lon_level1.fit(X, y.lon) # %% Latitude catboost_lat_level1.fit(X, y.lat) # %% Buildings catboost_building_level1.fit(X, y.building) # %% Floors catboost_floor_level1.fit(X, y.floor) # %% Predicting with models pred_lon = catboost_lon_level1.predict(X) pred_lat = catboost_lat_level1.predict(X) pred_buildings = catboost_building_level1.predict_proba(X) pred_floors = catboost_floor_level1.predict_proba(X) # untangling predictions for different classes # not sure which predictions refers to which building and floor pred_building0 = pred_buildings[:, 0] pred_building1 = pred_buildings[:, 1] pred_building2 = pred_buildings[:, 2] pred_floor0 = pred_floors[:, 0] pred_floor1 = pred_floors[:, 1] pred_floor2 = pred_floors[:, 2] pred_floor3 = pred_floors[:, 3] pred_floor4 = pred_floors[:, 4] pred_valid_lon = catboost_lon_level1.predict(X_valid) pred_valid_lat = catboost_lat_level1.predict(X_valid) pred_valid_buildings = catboost_building_level1.predict_proba(X_valid) pred_valid_floors = catboost_floor_level1.predict_proba(X_valid) # untangling predictions for different classes # not sure which predictions refers to which building and floor pred_valid_building0 = pred_valid_buildings[:, 0] pred_valid_building1 = pred_valid_buildings[:, 1] pred_valid_building2 = pred_valid_buildings[:, 2] pred_valid_floor0 = pred_valid_floors[:, 0] pred_valid_floor1 = pred_valid_floors[:, 1] pred_valid_floor2 = pred_valid_floors[:, 2] pred_valid_floor3 = pred_valid_floors[:, 3] pred_valid_floor4 = pred_valid_floors[:, 4] # %% Creating a new training sets from the predictions X_comb = pd.DataFrame( { "lon": pred_lon, "lat": pred_lat, "building0": pred_building0, "building1": pred_building1, "building2": pred_building2, "floor0": pred_floor0, "floor1": pred_floor1, "floor2": pred_floor2, "floor3": pred_floor3, "floor4": pred_floor4, } ) # giving the second level models the predictions of other models X_lon = pd.concat([X, X_comb], axis="columns").drop(columns=["lon"]) X_lat =
pd.concat([X, X_comb], axis="columns")
pandas.concat
import glob from pathlib import Path from random import random from typing import List import matplotlib.pyplot as plt import pandas as pd from PIL import Image, ImageStat def replace_white(im_file): directory = im_file.split("/")[1] file = im_file.split("/")[2] im = Image.open(im_file) width, height = im.size pixels = im.load() mean = 119 std = 20 # cnt = 0 # white_cnt = 0 # brightness = 140 # # darkness_factor = 0.9 mode = im.mode new_img = Image.new(mode, (width, height)) new_pixels = new_img.load() print(pixels) print(pixels[0, 0]) print(im_file) for x in range(width): for y in range(height): (r, g, b, *a) = pixels[x, y] l = luminocity(r, g, b) if random() > 0.0: if l < mean: if len(a) == 1: new_pixels[x, y] = ( r + r_component(std), g + g_component(std), b + b_component(std), a[0] ) else: new_pixels[x, y] = ( r + r_component(std), g + g_component(std), b + b_component(std), ) else: if len(a) == 1: new_pixels[x, y] = ( r - r_component(std), g - g_component(std), b - b_component(std), a[0], ) else: new_pixels[x, y] = ( r - r_component(std), g - g_component(std), b - b_component(std), ) else: new_pixels[x, y] = pixels[x, y] # if r >= 250 and g >= 250 and b >= 250: # white_cnt += 1 # new_pixels[x, y] = (r, g, b, 0) # if r > brightness or g > brightness or b > brightness and len(a) == 1 and a[0] != 0: # # print("{} {}".format(x, y)) # cnt += 1 # new_pixels[x, y] = (int(r * darkness_factor), int(g * darkness_factor), int(b * darkness_factor), a[0]) # else: # new_pixels[x, y] = pixels[x, y] # print(white_cnt) # stat = ImageStat.Stat(new_img) # print("{},{}".format(directory + "/" + file, (stat.mean[0], stat.rms[0]))) Path("targets/" + directory + "/").mkdir(parents=True, exist_ok=True) new_img.save("targets/" + directory + "/" + file) # new_img.show() # width, height = (1200, 800) # mode = 'RGB' # my_image = Image.new(mode, (width, height)) # # # Load all the pixels. # my_pixels = my_image.load() # # # Loop through all the pixels, and set each color randomly. # for x in range(width): # for y in range(height): # r = randint(0, 255) # g = randint(0, 255) # b = randint(0, 255) # pixel = (r, g, b) # my_pixels[x, y] = pixel # # my_image.show() def stats_report(files: List[str]): list = [] for f in files: data = distribution_of_luminocity(f) data_df = pd.DataFrame(data) dict = data_df.describe().to_dict() dict = dict[0] dict["name"] = f list.append(pd.Series(dict)) df = pd.DataFrame(list) df.to_csv("result.csv") def replace_white_with_alpha(im_file): directory = im_file.split("/")[1] file = im_file.split("/")[2] im = Image.open(im_file) width, height = im.size pixels = im.load() image = Image.new("RGBA", im.size) new_pixels = image.load() for x in range(width): for y in range(height): (r, g, b, *a) = pixels[x, y] if r >= 240 and g >= 240 and b >= 240: new_pixels[x, y] = (255, 255, 255, 0) else: new_pixels[x, y] = pixels[x, y] Path("targets/" + directory + "/").mkdir(parents=True, exist_ok=True) image.save("targets/" + directory + "/" + file) def replace_alpha_with_white(file): directory = file.split("/")[1] file_name = file.split("/")[2] im = Image.open(file) image = Image.new("RGB", im.size, "WHITE") image.paste(im, (0, 0), im) Path("targets/" + directory + "/").mkdir(parents=True, exist_ok=True) image.save("targets/" + directory + "/" + file_name) def luminocity(r: int, g: int, b: int) -> float: return (0.21 * r) + (0.72 * g) + (0.07 * b) def r_component(value: int) -> int: # return int(0.21 * value) return value def g_component(value: int) -> int: # return int(0.72 * value) return value def b_component(value: int) -> int: # return int(0.07 * value) return value def distribution_for_files(files: List[str]): total_lumi = [] for f in files: total_lumi.extend(distribution_of_luminocity(f)) df =
pd.DataFrame(total_lumi)
pandas.DataFrame
# Copyright 2020 (c) Cognizant Digital Business, Evolutionary AI. All rights reserved. Issued under the Apache 2.0 License. import os import argparse import numpy as np import pandas as pd from copy import deepcopy import neat # Path to file containing neat prescriptors. Here we simply use a # recent checkpoint of the population from train_prescriptor.py, # but this is likely not the most complementary set of prescriptors. # Many approaches can be taken to generate/collect more diverse sets. # Note: this set can contain up to 10 prescriptors for evaluation. from covid_xprize.examples.prescriptors.neat.utils import prepare_historical_df, CASES_COL, IP_COLS, IP_MAX_VALUES, \ add_geo_id, get_predictions, PRED_CASES_COL PRESCRIPTORS_FILE = 'neat-checkpoint-0' # Number of days the prescriptors look at in the past. NB_LOOKBACK_DAYS = 14 def prescribe(start_date_str: str, end_date_str: str, path_to_prior_ips_file: str, path_to_cost_file: str, output_file_path) -> None: start_date =
pd.to_datetime(start_date_str, format='%Y-%m-%d')
pandas.to_datetime
# !/usr/bin/env python # coding: utf-8 ''' @File : boost.py @Time : 2020/04/13 13:46:21 @Author : <NAME> @Version : 1.0 @Contact : <EMAIL> ''' # This is used to build catboost model using extracted features import argparse import gc import time import os import math import catboost import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy import stats from scipy.stats import spearmanr from sklearn.cluster import KMeans from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split random_seed = 2020 num_class = 50 os.environ["CUDA_VISIBLE_DEVICES"] = "2" all_popularity_filepath = "/home/wangkai/ICIP/feature/label/popularity_TRAIN_20337.csv" cluster_center_filepath = "/home/wangkai/ICIP/feature/label/cluster_center.csv" cluser_label_filepath = "/home/wangkai/ICIP/feature/label/cluster_label_20337.csv" # random train_popularity_filepath = "/home/wangkai/ICIP/feature/label/train_label_random.csv" validate_popularity_filepath = "/home/wangkai/ICIP/feature/label/validate_label_random.csv" # # postdate train_popularity_filepath="/home/wangkai/ICIP/feature/label/train_label_datetaken.csv" validate_popularity_filepath="/home/wangkai/ICIP/feature/label/validate_label_datetaken.csv" number_columns = ["PhotoCount", "MeanViews", "Contacts", "GroupsCount", "NumSets", "GroupsAvgPictures", "GroupsAvgMembers", "Ispro", "HasStats", "AvgGroupsMemb", "AvgGroupPhotos", "NumGroups"] # 12 text_columns = ["Tags", "Title", "Description"] # 3 first_columns = ["FlickrId", "UserId"] # 2 train_feature_filepath = { "original": "/home/wangkai/ICIP/feature/train/train_feature_20337.csv", "fasttext": "/home/wangkai/ICIP/feature/train/FastText_tags+des_20337.csv", "tfidf": "/home/wangkai/ICIP/feature/train/Tfidf_tags+des_20337.csv", "lsa": "/home/wangkai/ICIP/feature/train/LSA_tags+title+des_20337.csv", "lda": "/home/wangkai/ICIP/feature/train/LDA_tags+title+des_20337.csv", "wordchar": "/home/wangkai/ICIP/feature/train/wordchar_tags+title+des_20337.csv", "userid": "/home/wangkai/ICIP/feature/train/UserId256_20337.csv", "image": "/home/wangkai/ICIP/feature/train/ResNext101_image_20337.csv" } test_feature_filepath = { "original": "/home/wangkai/ICIP/feature/test/test_feature_7693.csv", "fasttext": "/home/wangkai/ICIP/feature/test/FastText_tags+des_7693.csv", "tfidf": "/home/wangkai/ICIP/feature/test/Tfidf_tags+des_7693.csv", "lsa": "/home/wangkai/ICIP/feature/test/LSA_tags+title+des_7693.csv", "lda": "/home/wangkai/ICIP/feature/test/LDA_tags+title+des_7693.csv", "wordchar": "/home/wangkai/ICIP/feature/test/wordchar_tags+title+des_7693.csv", "userid": "/home/wangkai/ICIP/feature/test/UserId256_7693.csv", "image": "/home/wangkai/ICIP/feature/test/ResNext101_image_7693.csv" } def clutser(num_class=num_class): df_popularity = pd.read_csv(all_popularity_filepath) # 归一化 normalized_popularity = df_popularity.iloc[:, 1:].div( df_popularity["Day30"], axis=0) # 聚类的label kmeans = KMeans(n_clusters=num_class, init="k-means++", n_init=100, max_iter=10000, random_state=random_seed, n_jobs=-1, algorithm="auto").fit(normalized_popularity) df_label = pd.DataFrame( {"FlickrId": df_popularity["FlickrId"], "label": kmeans.labels_}) df_label.to_csv(cluser_label_filepath, index=False) # 聚类中心 df_cluster_center = pd.DataFrame(kmeans.cluster_centers_) df_cluster_center.columns = ["day"+str(i+1) for i in range(30)] df_cluster_center.insert(0, column="label", value=np.arange(num_class)) df_cluster_center.to_csv(cluster_center_filepath, index=False) def load_feature(feature_list, flag="train"): feature_path = train_feature_filepath if flag == "train" else test_feature_filepath for i, feature_name in enumerate(feature_list): print("Loading {} ...".format(feature_name)) feature = pd.read_csv(feature_path[feature_name]) print("feature: {}, len:{}".format( feature_name, len(feature.columns)-1)) if i == 0: all_feature = feature else: all_feature = pd.merge(all_feature, feature) useless = text_columns all_feature.drop(useless, axis=1, inplace=True) print(all_feature) return all_feature def calssify_catboost(train, validate): cat_features = ["UserId"] # cat_features=[] train_data = catboost.Pool( train.iloc[:, 1:-31], train["label"], cat_features=cat_features) validata_data = catboost.Pool( validate.iloc[:, 1:-31], validate["label"], cat_features=cat_features) model = catboost.CatBoostClassifier(iterations=10000, learning_rate=0.01, depth=6, objective="MultiClass", classes_count=num_class, eval_metric="Accuracy", l2_leaf_reg=3.0, min_data_in_leaf=1, boosting_type="Plain", use_best_model=False, thread_count=-1, task_type="GPU", devices="0", random_state=random_seed, verbose=300, early_stopping_rounds=1000) model = model.fit(train_data, eval_set=validata_data, plot=False) # predict label preds = model.predict(validata_data) preds = preds.flatten() print("\nValidate\nACC: {}\tTotal right: {}".format( np.sum(preds == validate["label"])/len(preds), np.sum(preds == validate["label"]))) # feature importance df_important = pd.DataFrame( {"feature_name": model.feature_names_, "importance": model.feature_importances_}) df_important = df_important.sort_values(by=["importance"], ascending=False) print(df_important) df_predict_label = pd.DataFrame( {"FlickrId": validate["FlickrId"], "preds_label": preds}) return model, df_predict_label def regression_catboost(train, validate): cat_features = ["UserId"] # cat_features=[] p_train, p_validate = np.log( train["Day30"]/4+1), np.log(validate["Day30"]/4+1) # p_train,p_validate=train["Day30"],validate["Day30"] train_data = catboost.Pool( train.iloc[:, 1:-31], p_train, cat_features=cat_features) validata_data = catboost.Pool( validate.iloc[:, 1:-31], p_validate, cat_features=cat_features) model = catboost.CatBoostRegressor(iterations=35000, learning_rate=0.003, depth=6, objective="MAPE", eval_metric="MAPE", custom_metric=["RMSE", "MAE", "MAPE"], l2_leaf_reg=3.0, min_data_in_leaf=1, boosting_type="Plain", use_best_model=True, thread_count=-1, task_type="GPU", devices="0", random_state=random_seed, verbose=300, early_stopping_rounds=1000, fold_permutation_block=1, bagging_temperature=0) # model=catboost.CatBoostRegressor(iterations=100000, learning_rate=0.1, depth=6, objective="RMSE", eval_metric="RMSE",custom_metric=["RMSE","MAE","MAPE"], l2_leaf_reg=3.0, min_data_in_leaf=1, boosting_type="Plain", use_best_model=True, thread_count=-1, task_type="CPU",devices="0", random_state=random_seed, verbose=300, early_stopping_rounds=500) model.fit(train_data, eval_set=validata_data, plot=False) preds_p_validate = model.predict(validata_data) preds_day30 = (np.exp(preds_p_validate)-1)*4 src, _ = spearmanr(validate["Day30"], preds_day30) df_important = pd.DataFrame( {"feature_name": model.feature_names_, "importance": model.feature_importances_}) df_important = df_important.sort_values(by=["importance"], ascending=False) print(df_important) df_predict_day30 = pd.DataFrame( {"FlickrId": validate["FlickrId"], "Day30": validate["Day30"], "preds_day30": preds_day30}) return model, df_predict_day30 def train(classify_feature_list, regression_feature_list): df_label = pd.read_csv(cluser_label_filepath) df_train_popularity = pd.read_csv(train_popularity_filepath) df_validate_popularity = pd.read_csv(validate_popularity_filepath) train_label = pd.merge(df_label, df_train_popularity, on="FlickrId", how="inner") validate_label = pd.merge( df_label, df_validate_popularity, on="FlickrId", how="inner") # Classify classify_feature = load_feature(classify_feature_list, flag="train") train = pd.merge(classify_feature, train_label, on="FlickrId", how="inner") validate = pd.merge(classify_feature, validate_label, on="FlickrId", how="inner") classify_model, df_predict_label = calssify_catboost(train, validate) df_predict_label.to_csv( "/home/wangkai/ICIP/predict_label.csv", index=False) df_predict_label = pd.read_csv("/home/wangkai/ICIP/predict_label.csv") regression_feature = load_feature(regression_feature_list, flag="train") train = pd.merge(regression_feature, train_label, on="FlickrId", how="inner") validate = pd.merge(regression_feature, validate_label, on="FlickrId", how="inner") regression_model, df_predict_day30 = regression_catboost(train, validate) df_predict_day30.to_csv("/home/wangkai/ICIP/temp/predict_day30.csv",index=False) df_predict_day30=pd.read_csv("/home/wangkai/ICIP/temp/predict_day30.csv") df_preds = pd.merge(df_predict_label, df_predict_day30, on="FlickrId", how="inner") df_cluster_center = pd.read_csv(cluster_center_filepath) df_temp = pd.merge(df_preds, df_cluster_center, how="left", left_on="preds_label", right_on="label") # FlickrId,preds,回归对时,真相 df_preds_result = pd.concat([df_temp["FlickrId"], df_temp.iloc[:, -30:].mul(df_temp["preds_day30"], axis=0), df_temp.iloc[:, -30:].mul(df_temp["Day30"], axis=0), validate.iloc[:, -30:]], axis=1) columns = ["FlickrId"]+["preds_day"+str(i+1) for i in range(30)]+[ "regression_truth"+str(i+1) for i in range(30)]+["truth"+str(i+1) for i in range(30)] df_preds_result.columns = columns # analysis y_preds = np.array(df_preds_result.iloc[:, 1:31]) y_regression_true = np.array(df_preds_result.iloc[:, 31:61]) y_true = np.array(df_preds_result.iloc[:, 61:]) # 对于预测结果 rmse_errors = np.sqrt([mean_squared_error(y_true[i], y_preds[i]) for i in range(y_true.shape[0])]) trmse = stats.trim_mean(rmse_errors, 0.25) median_rmse = np.median(rmse_errors) src, _ = spearmanr(y_true[:, -1], y_preds[:, -1]) print("\n Predict:") print("RMSE(trimmed 0.25): {}".format(trmse)) print("RMSE(median): {}".format(median_rmse)) print("SRC: {}".format(src)) # 对于回归为真 rmse_errors = np.sqrt([mean_squared_error( y_true[i], y_regression_true[i]) for i in range(y_true.shape[0])]) trmse = stats.trim_mean(rmse_errors, 0.25) median_rmse = np.median(rmse_errors) src, _ = spearmanr(y_true[:, -1], y_regression_true[:, -1]) print("\n for regression is true:") print("RMSE(trimmed 0.25): {}".format(trmse)) print("RMSE(median): {}".format(median_rmse)) print("SRC: {}".format(src)) # classify_model = 1 return classify_model, regression_model def parse_arguments(): parser = argparse.ArgumentParser(description=" ICIP Catboost model") parser.add_argument("-classify_f", "--classify_feature", type=str, choices=["original", "fasttext", "tfidf", "lsa", "lda", "wordchar", "userid", "image"], nargs="?", const=["original"], default=["original", "userid"], help="which feature will be used for classify") parser.add_argument("-reg_f", "--regression_feature", type=str, choices=["original", "fasttext", "tfidf", "lsa", "lda", "wordchar", "userid", "image"], nargs="?", const=["original"], default=["original", "userid", "lda", "wordchar"], help="which feature will be used for regression") parser.add_argument("-output", "--submission_path", type=str, default="/home/wangkai/ICIP/submission", help="ICIP file(.csv) will be submit path") args = parser.parse_args() return args if __name__ == "__main__": args = parse_arguments() # clutser(num_class=num_class) calssify_model, regression_model = train( args.classify_feature, args.regression_feature) test_classify_feature=load_feature(args.classify_feature,flag="test") predict_label=calssify_model.predict(test_classify_feature.iloc[:,1:]) df_predict_label=pd.DataFrame({"FlickrId":test_classify_feature["FlickrId"],"preds_label":predict_label.flatten()}) # predict Day30 test_regression_feature=load_feature(args.regression_feature,flag="test") preds_p_test=regression_model.predict(test_regression_feature.iloc[:,1:]) preds_day30=(np.exp(preds_p_test)-1)*4 df_predict_day30=pd.DataFrame({"FlickrId":test_regression_feature["FlickrId"],"preds_day30":preds_day30}) df_preds=pd.merge(df_predict_label,df_predict_day30,on="FlickrId",how="inner") df_cluster_center=
pd.read_csv(cluster_center_filepath)
pandas.read_csv
from http.server import BaseHTTPRequestHandler, HTTPServer import socketserver import pickle import urllib.request import json from pprint import pprint from pandas.io.json import json_normalize import pandas as pd from sklearn import preprocessing from sklearn.preprocessing import PolynomialFeatures from sklearn import datasets, linear_model from sklearn.metrics import mean_squared_error, r2_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import scale from sklearn.preprocessing import PolynomialFeatures import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline from sklearn.metrics import mean_squared_error from sklearn.linear_model import Ridge from math import sqrt import os import errno from pymongo import MongoClient import urllib.parse as urlparse from influxdb import InfluxDBClient from pymongo import MongoClient import pandas as pd from pandas.io.json import json_normalize from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline from sklearn.linear_model import TheilSenRegressor from sklearn.datasets import make_regression class Terminus(BaseHTTPRequestHandler): def getAllNodeNames(self,client): queryResult = client.query("SHOW TAG VALUES FROM uptime WITH KEY=nodename;") nodeNames_temp = list(queryResult.get_points()) dfnodeNames = pd.DataFrame(nodeNames_temp) allNodeNames = dfnodeNames[:]["value"] return allNodeNames def getNamespaceNames(self,client,node): nsQuery = client.query("SHOW TAG VALUES FROM uptime WITH KEY=namespace_name WHERE nodename = '"+node+"';") nsQuery_temp = list(nsQuery.get_points()) dfnsNames = pd.DataFrame(nsQuery_temp) allnsNames = dfnsNames[:]["value"] return allnsNames def getAllPodNames(self,client,node,ns_name): queryResult = client.query("SHOW TAG VALUES FROM uptime WITH KEY = pod_name WHERE namespace_name = '"+ns_name+"' AND nodename = '"+node+"';") podNames_temp = list(queryResult.get_points()) dfpodNames = pd.DataFrame(podNames_temp) if dfpodNames.empty: return dfpodNames else: allpodNames = dfpodNames[:]["value"] return allpodNames def getCPUUtilizationNode(self,client, node): queryResult = client.query('SELECT * FROM "cpu/node_utilization" where nodename = \''+node+'\' AND type=\'node\';') dfcpuUtilization = pd.DataFrame(queryResult['cpu/node_utilization']) return dfcpuUtilization def getCPUUtilizationPod(self,client, node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "cpu/usage_rate" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\';') dfcpuUtilization = pd.DataFrame(queryResult['cpu/usage_rate']) return dfcpuUtilization def getCPUUtilizationPodContainer(self,client,node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "cpu/usage_rate" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod_container\';') dfcpuUtilization = pd.DataFrame(queryResult['cpu/usage_rate']) return dfcpuUtilization def prepareCpuUtilization(self,client,node,ns_name, pod_name): cpuUtilization = self.getCPUUtilizationNode(client,node) podCpuUtilization = self.getCPUUtilizationPod(client,node,ns_name, pod_name) containercpuUtilization = self.getCPUUtilizationPodContainer(client,node,ns_name, pod_name) plt.plot(cpuUtilization.index, cpuUtilization['value'] *1000, 'r', label="node") # plotting t, a separately plt.plot(podCpuUtilization.index, podCpuUtilization['value'], 'b', label="pod") # plotting t, b separately plt.plot(containercpuUtilization.index, containercpuUtilization['value'], 'g', label="container") # plotting t, c separately plt.legend(loc='upper left') plt.show() def getMemoryUtilizationNode(self,client,node): queryResult = client.query('SELECT * FROM "memory/node_utilization" where nodename = \''+node+'\' AND type=\'node\';') dfmemUtilization = pd.DataFrame(queryResult['memory/node_utilization']) return dfmemUtilization def getMemoryUtilizationPod(self,client,node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "memory/usage" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\';') dfmemUtilization = pd.DataFrame(queryResult['memory/usage']) return dfmemUtilization def getMemoryUtilizationPodContainer(self,client,node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "memory/usage" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod_container\';') dfmemUtilization = pd.DataFrame(queryResult['memory/usage']) return dfmemUtilization def prepareMemoryUtilization(self,client,node,ns_name, pod_name): memoryUtilization = self.getMemoryUtilizationNode(client,node) podMemoryUtilization = self.getMemoryUtilizationPod(client,node,ns_name, pod_name) containerMemoryUtilization = self.getMemoryUtilizationPodContainer(client,node,ns_name, pod_name) plt.plot(memoryUtilization.index, memoryUtilization['value'], 'r', label="node") # plotting t, a separately plt.plot(podMemoryUtilization.index, podMemoryUtilization['value'], 'b', label="pod") # plotting t, b separately plt.plot(containerMemoryUtilization.index, containerMemoryUtilization['value'], 'g', label="container") # plotting t, c separately plt.legend(loc='upper left') plt.show() def getNetworkTxRatePod(self,client,node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "network/tx_rate" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\';') dfmemUtilization = pd.DataFrame(queryResult['network/tx_rate']) return dfmemUtilization def getNetworkTxPod(self,client,node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "network/tx" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\';') dfmemUtilization = pd.DataFrame(queryResult['network/tx']) return dfmemUtilization def getNetworkTxErrorsPod(self,client,node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "network/tx_errors" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\';') dfmemUtilization = pd.DataFrame(queryResult['network/tx_errors']) return dfmemUtilization def getNetworkTxErrorsRatePod(self,client,node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "network/tx_errors_rate" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\';') dfmemUtilization = pd.DataFrame(queryResult['network/tx_errors_rate']) return dfmemUtilization def prepareNetworkTxRateUtilization(self,client,node,ns_name, pod_name): podNetworTxRate = self.getNetworkTxRatePod(client,node,ns_name, pod_name) podNetworTx = self.getNetworkTxPod(client,node,ns_name, pod_name) podNetworkError = self.getNetworkTxErrorsPod(client,node,ns_name, pod_name) podNetworkErrorRate = self.getNetworkTxErrorsRatePod(client,node,ns_name, pod_name) plt.plot(podNetworTxRate.index, podNetworTxRate['value'], 'b') # plotting t, b separately #plt.plot(podNetworTx.index, podNetworTx['value'], 'g') # plotting t, b separately #plt.plot(podNetworkError.index, podNetworkError['value'], 'y') # plotting t, b separately plt.plot(podNetworkErrorRate.index, podNetworkErrorRate['value'], 'r') # plotting t, b separately plt.show() def getNetworkRxRatePod(self,client,node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "network/rx_rate" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\';') dfmemUtilization = pd.DataFrame(queryResult['network/rx_rate']) return dfmemUtilization def getNetworkRxPod(self,client,node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "network/rx" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\';') dfmemUtilization = pd.DataFrame(queryResult['network/rx']) return dfmemUtilization def getNetworkRxErrorsPod(self,client,node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "network/rx_errors" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\';') dfmemUtilization = pd.DataFrame(queryResult['network/rx_errors']) return dfmemUtilization def getNetworkRxErrorsRatePod(self,client,node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "network/rx_errors_rate" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\';') dfmemUtilization = pd.DataFrame(queryResult['network/rx_errors_rate']) return dfmemUtilization def prepareNetworkRxRateUtilization(self,client,node,ns_name, pod_name): podNetworRxRate = self.getNetworkRxRatePod(client,node,ns_name, pod_name) podNetworRx = self.getNetworkRxPod(client,node,ns_name, pod_name) podNetworkError = self.getNetworkRxErrorsPod(client,node,ns_name, pod_name) podNetworkErrorRate = self.getNetworkRxErrorsRatePod(client,node,ns_name, pod_name) plt.plot(podNetworRxRate.index, podNetworRxRate['value'], 'b') # plotting t, b separately #plt.plot(podNetworRx.index, podNetworRx['value'], 'g') # plotting t, b separately #plt.plot(podNetworkError.index, podNetworkError['value'], 'y') # plotting t, b separately plt.plot(podNetworkErrorRate.index, podNetworkErrorRate['value'], 'r') # plotting t, b separately plt.show() def getRelevantNodeName(self,client,ns_name): allNodeNames = self.getAllNodeNames(client) #nsNames = getNamespaceNames(allNodeNames[0]) relevantNodes = [] for node in allNodeNames: allPodNamesNode = self.getAllPodNames(client,node,'default') if(not allPodNamesNode.empty): relevantNodes.append(node) return relevantNodes def getNodeResourceUtilizationDf(self,client, nodeName): Result_node_CPU = client.query("SELECT value from \"cpu/node_utilization\" where nodename = '"+nodeName+"' AND type = 'node' ") Result_node_MEM = client.query("SELECT value from \"memory/node_utilization\" where nodename = '"+nodeName+"' AND type = 'node' ") Result_node_CPU_Cores = client.query("SELECT mean(\"value\") FROM \"cpu/node_capacity\" where nodename = '"+nodeName+ "' AND type = 'node' GROUP BY time(1m)") Result_node_mem_node = client.query("SELECT mean(\"value\")FROM \"memory/node_capacity\" where nodename = '"+ nodeName+"' AND type = 'node' GROUP BY time(1m)") cpu_points = pd.DataFrame(Result_node_CPU.get_points()) cpu_points['time'] = pd.to_datetime(cpu_points['time']) cpu_points = cpu_points.set_index('time') cpu_points.columns = ['node_cpu_util'] mem_points = pd.DataFrame(Result_node_MEM.get_points()) mem_points['time'] = pd.to_datetime(mem_points['time']) mem_points = mem_points.set_index('time') mem_points.columns = ['node_mem_util'] cores_points = pd.DataFrame(Result_node_CPU_Cores.get_points()) cores_points['time'] = pd.to_datetime(cores_points['time']) cores_points = cores_points.set_index('time') cores_points.columns = ['node_cores'] mem_node_points = pd.DataFrame(Result_node_mem_node.get_points()) mem_node_points['time'] = pd.to_datetime(mem_node_points['time']) mem_node_points = mem_node_points.set_index('time') mem_node_points.columns = ['node_mem'] df_node =pd.concat([cpu_points, mem_points,cores_points,mem_node_points], axis=1) return df_node def getPodResourceUtilizationDf(self,client, node, ns_name, pod_name): Result_Pod_CPU_usage = client.query('SELECT value FROM "cpu/usage_rate" where nodename = \''+node+ '\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+ '\' AND type=\'pod\';') Result_Pod_MEM_usage = client.query('SELECT value from \"memory/usage\" where nodename = \''+node+ '\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+ '\' AND type=\'pod\';') Result_Pod_CPU_limit = client.query('SELECT mean(\"value\") FROM "cpu/limit" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\' group by time(1m);') Result_Pod_MEM_limit = client.query('SELECT mean(\"value\") from \"memory/limit\" where nodename = \''+node+ '\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+ '\' AND type=\'pod\' group by time(1m);') Result_Pod_CPU_requests = client.query('SELECT mean(\"value\") FROM "cpu/request" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\' group by time(1m);') Result_Pod_MEM_requests = client.query('SELECT mean(\"value\") from \"memory/request\" where nodename = \''+node+ '\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+ '\' AND type=\'pod\' group by time(1m);') cpu_points_usage = pd.DataFrame(Result_Pod_CPU_usage.get_points()) cpu_points_usage['time'] = pd.to_datetime(cpu_points_usage['time']) cpu_points_usage = cpu_points_usage.set_index('time') cpu_points_usage.columns = ['pod_cpu_usage'] mem_points_usage = pd.DataFrame(Result_Pod_MEM_usage.get_points()) mem_points_usage['time'] = pd.to_datetime(mem_points_usage['time']) mem_points_usage = mem_points_usage.set_index('time') mem_points_usage.columns = ['pod_mem_usage'] cpu_points_limits = pd.DataFrame(Result_Pod_CPU_limit.get_points()) cpu_points_limits['time'] = pd.to_datetime(cpu_points_limits['time']) cpu_points_limits = cpu_points_limits.set_index('time') cpu_points_limits.columns = ['pod_cpu_limit'] mem_points_limits = pd.DataFrame(Result_Pod_MEM_limit.get_points()) mem_points_limits['time'] = pd.to_datetime(mem_points_limits['time']) mem_points_limits = mem_points_limits.set_index('time') mem_points_limits.columns = ['pod_mem_limit'] cpu_points_request = pd.DataFrame(Result_Pod_CPU_requests.get_points()) cpu_points_request['time'] = pd.to_datetime(cpu_points_request['time']) cpu_points_request = cpu_points_request.set_index('time') cpu_points_request.columns = ['pod_cpu_request'] mem_points_request = pd.DataFrame(Result_Pod_MEM_requests.get_points()) mem_points_request['time'] = pd.to_datetime(mem_points_request['time']) mem_points_request = mem_points_request.set_index('time') mem_points_request.columns = ['pod_mem_request'] df_pod =pd.concat([cpu_points_usage, mem_points_usage,cpu_points_limits,mem_points_limits,cpu_points_request,mem_points_request ], axis=1) return df_pod def getRequestsDf(self,clientK6): queryResult = clientK6.query('SELECT sum("value") FROM "vus" group by time(1m);') vus = pd.DataFrame(queryResult['vus']) vus.columns = ['vus','time'] vus = vus.set_index('time') queryResultReqs = clientK6.query('SELECT sum("value") FROM "http_reqs" group by time(1m);') reqs = pd.DataFrame(queryResultReqs['http_reqs']) reqs.columns = ['requests','time'] reqs = reqs.set_index('time') queryResultReqsDuration95 = clientK6.query('SELECT percentile("value", 95) FROM "http_req_duration" group by time(1m) ;') reqs_duration95 = pd.DataFrame(queryResultReqsDuration95['http_req_duration']) reqs_duration95.columns = [ 'requests_duration_percentile_95','time'] reqs_duration95 = reqs_duration95.set_index('time') queryResultReqsDuration90 = clientK6.query('SELECT percentile("value", 90) FROM "http_req_duration" group by time(1m) ;') reqs_duration90 = pd.DataFrame(queryResultReqsDuration90['http_req_duration']) reqs_duration90.columns = ['requests_duration_percentile_90','time'] reqs_duration90 = reqs_duration90.set_index('time') queryResultMaxDuration = clientK6.query('SELECT max("value") FROM "http_req_duration" group by time(1m);') reqs_duration_max = pd.DataFrame(queryResultMaxDuration['http_req_duration']) reqs_duration_max.columns = ['requests_duration_max','time'] reqs_duration_max = reqs_duration_max.set_index('time') queryResultMinDuration = clientK6.query('SELECT min("value") FROM "http_req_duration" group by time(1m);') reqs_duration_min = pd.DataFrame(queryResultMinDuration['http_req_duration']) reqs_duration_min.columns = ['requests_duration_min','time'] reqs_duration_min = reqs_duration_min.set_index('time') queryResultMeanDuration = clientK6.query('SELECT mean("value") FROM "http_req_duration" group by time(1m);') reqs_duration_mean = pd.DataFrame(queryResultMeanDuration['http_req_duration']) reqs_duration_mean.columns = ['requests_duration_mean','time'] reqs_duration_mean = reqs_duration_mean.set_index('time') queryResultMedianDuration = clientK6.query('SELECT median("value") FROM "http_req_duration" group by time(1m);') reqs_duration_median = pd.DataFrame(queryResultMedianDuration['http_req_duration']) reqs_duration_median.columns = ['requests_duration_median','time'] reqs_duration_median = reqs_duration_median.set_index('time') finalDF = pd.merge(vus, reqs, left_index=True, right_index=True) finalDF =
pd.merge(finalDF, reqs_duration95, left_index=True, right_index=True)
pandas.merge
from pymatreader import read_mat from scipy import sparse import numpy as np import os from datetime import datetime, timedelta import pandas from amftrack.pipeline.functions.image_processing.extract_graph import from_sparse_to_graph, generate_nx_graph, sparse_to_doc import cv2 import json import pandas as pd from amftrack.transfer.functions.transfer import download, zip_file,unzip_file,upload from tqdm.autonotebook import tqdm import dropbox #test_remote #zfjn #fjzz path_code = os.getenv('HOME')+"/pycode/MscThesis/" # path_code = r'C:\Users\coren\Documents\PhD\Code\AMFtrack' # plate_info = pandas.read_excel(path_code+r'/plate_info/SummaryAnalizedPlates.xlsx',engine='openpyxl',header=3,) API = str(np.load(os.getenv('HOME')+'/pycode/API_drop.npy')) target = os.getenv('HOME')+'/pycode/data_info.json' def get_path(date, plate, skeleton, row=None, column=None, extension=".mat"): def get_number(number): if number < 10: return f"0{number}" else: return str(number) root_path = ( r"//sun.amolf.nl/shimizu-data/home-folder/oyartegalvez/Drive_AMFtopology/PRINCE" ) date_plate = f"/2020{date}" plate = f"_Plate{plate}" if skeleton: end = "/Analysis/Skeleton" + extension else: end = "/Img" + f"/Img_r{get_number(row)}_c{get_number(column)}.tif" return root_path + date_plate + plate + end def get_dates_datetime(directory, plate): listdir = os.listdir(directory) list_dir_interest = [ name for name in listdir if name.split("_")[-1] == f'Plate{0 if plate<10 else ""}{plate}' ] ss = [name.split("_")[0] for name in list_dir_interest] ff = [name.split("_")[1] for name in list_dir_interest] dates_datetime = [ datetime( year=int(ss[i][:4]), month=int(ss[i][4:6]), day=int(ss[i][6:8]), hour=int(ff[i][0:2]), minute=int(ff[i][2:4]), ) for i in range(len(list_dir_interest)) ] dates_datetime.sort() return dates_datetime def get_dirname(date,plate): return(f'{date.year}{0 if date.month<10 else ""}{date.month}{0 if date.day<10 else ""}{date.day}_{0 if date.hour<10 else ""}{date.hour}{0 if date.minute<10 else ""}{date.minute}_Plate{0 if plate<10 else ""}{plate}') # def get_plate_number(position_number,date): # for index,row in plate_info.loc[plate_info['Position #']==position_number].iterrows(): # if type(row['crossed date'])==datetime: # date_crossed = row['crossed date'] # date_harvest = row['harvest date']+timedelta(days=1) # else: # date_crossed = datetime.strptime(row['crossed date'], "%d.%m.%Y") # date_harvest = datetime.strptime(row['harvest date'], "%d.%m.%Y")+timedelta(days=1) # if date>= date_crossed and date<= date_harvest: # return(row['Plate #']) # def get_postion_number(plate_number): # for index,row in plate_info.loc[plate_info['Plate #']==plate_number].iterrows(): # return(row['Position #']) # def get_begin_index(plate_number,directory): # plate = get_postion_number(plate_number) # dates_datetime = get_dates_datetime(directory,plate) # plate_number_found = get_plate_number(plate,dates_datetime[0]) # print(0,plate_number) # for i in range(len(dates_datetime)): # new_plate_number = get_plate_number(plate,dates_datetime[i]) # if plate_number_found!=new_plate_number: # plate_number_found=new_plate_number # print(i,plate_number_found) # if plate_number_found == plate_number: # return(i,dates_datetime[i]) def shift_skeleton(skeleton, shift): shifted_skeleton = sparse.dok_matrix(skeleton.shape, dtype=bool) for pixel in skeleton.keys(): # print(pixel[0]+shift[0],pixel[1]+shift[1]) if ( skeleton.shape[0] > np.ceil(pixel[0] + shift[0]) > 0 and skeleton.shape[1] > np.ceil(pixel[1] + shift[1]) > 0 ): shifted_pixel = ( np.round(pixel[0] + shift[0]), np.round(pixel[1] + shift[1]), ) shifted_skeleton[shifted_pixel] = 1 return shifted_skeleton def transform_skeleton_final_for_show(skeleton_doc,Rot,trans): skeleton_transformed={} transformed_keys = np.round(np.transpose(np.dot(Rot,np.transpose(np.array(list(skeleton_doc.keys())))))+trans).astype(np.int) i=0 for pixel in list(transformed_keys): i+=1 skeleton_transformed[(pixel[0],pixel[1])]=1 skeleton_transformed_sparse=sparse.lil_matrix((27000, 60000)) for pixel in list(skeleton_transformed.keys()): i+=1 skeleton_transformed_sparse[(pixel[0],pixel[1])]=1 return(skeleton_transformed_sparse) def get_skeleton(exp,boundaries,t,directory): i = t plate = exp.plate listdir=os.listdir(directory) dates = exp.dates date =dates [i] directory_name = get_dirname(date, plate) path_snap=directory+directory_name skel = read_mat(path_snap+'/Analysis/skeleton_pruned_realigned.mat') skelet = skel['skeleton'] skelet = sparse_to_doc(skelet) Rot= skel['R'] trans = skel['t'] skel_aligned = transform_skeleton_final_for_show(skelet,np.array([[1,0],[0,1]]),np.array([0,0])) output = skel_aligned[boundaries[2]:boundaries[3],boundaries[0]:boundaries[1]].todense() kernel = np.ones((5,5),np.uint8) output = cv2.dilate(output.astype(np.uint8),kernel,iterations = 2) return(output,Rot,trans) def get_param(folder,directory): #Very ugly but because interfacing with Matlab so most elegant solution. path_snap=directory+folder file1 = open(path_snap + "/param.m", 'r') Lines = file1.readlines() ldict = {} for line in Lines: exec(line.split(';')[0],globals(),ldict) files = [ '/Img/TileConfiguration.txt.registered', '/Analysis/skeleton_compressed.mat', '/Analysis/skeleton_masked_compressed.mat', '/Analysis/skeleton_pruned_compressed.mat', '/Analysis/transform.mat', '/Analysis/transform_corrupt.mat', '/Analysis/skeleton_realigned_compressed.mat','/Analysis/nx_graph_pruned.p', '/Analysis/nx_graph_pruned_width.p','/Analysis/nx_graph_pruned_labeled.p'] for file in files: ldict[file] = os.path.isfile(path_snap + file) return(ldict) def update_plate_info(directory): listdir = os.listdir(directory) source = f'/data_info.json' download(API,source,target,end='') plate_info = json.load(open(target, 'r')) with tqdm(total=len(listdir), desc="analysed") as pbar: for folder in listdir: path_snap=directory+folder if os.path.isfile(path_snap + "/param.m"): params = get_param(folder,directory) ss = folder.split("_")[0] ff = folder.split("_")[1] date = datetime( year=int(ss[:4]), month=int(ss[4:6]), day=int(ss[6:8]), hour=int(ff[0:2]), minute=int(ff[2:4]), ) params['date'] = datetime.strftime(date, "%d.%m.%Y, %H:%M:") params['folder'] = folder total_path = directory+folder plate_info[total_path] = params pbar.update(1) with open(target, 'w') as jsonf: json.dump(plate_info, jsonf, indent=4) upload(API,target,f"{source}", chunk_size=256 * 1024 * 1024, ) def get_data_info(): source = f'/data_info.json' download(API,source,target,end='') data_info = pd.read_json(target, convert_dates=True).transpose() data_info.index.name = 'total_path' data_info.reset_index(inplace=True) return(data_info) def get_current_folders(directory): if directory == 'dropbox': data = [] dbx = dropbox.Dropbox(API) response = dbx.files_list_folder("",recursive = True) # for fil in response.entries: listfiles = [file for file in response.entries if file.name.split(".")[-1]=="zip"] with tqdm(total=len(listfiles), desc="analysed") as pbar: for file in listfiles: source = (file.path_lower.split(".")[0])+"_info.json" target = f'{os.getenv("TEMP")}{file.name.split(".")[0]}.json' download(API,source,target) data.append(
pd.read_json(target)
pandas.read_json
""" Copyright (c) 2018, <NAME> All rights reserved. Licensed under the Modified BSD License. For full license terms see LICENSE.txt """ import pandas as pd class MothurIO(object): @staticmethod def read_shared_file(filepath): """Reads in and formats mothur shared file.""" data = pd.read_table(filepath) data = data.drop(['label', 'numOtus'], axis=1) data = data.set_index('Group').transpose() # format the index for better consistency data.index = data.index.rename(None) data = data.sort_index() return data @staticmethod def read_count_file(filepath): """Reads in and formats mothur count_file.""" data = pd.read_table(filepath, index_col=0) data = data.drop(['total'], axis=1) # format the index for better consistency data.index = data.index.rename(None) data = data.sort_index() return data @staticmethod def read_taxonomy_file(filepath): """Reads in and formats mothur taxonomy file.""" data = pd.read_table(filepath, names=['OTU', 'Taxonomy']) classifications = data['Taxonomy'] classifications = classifications.str.split(';', expand=True).drop(6, axis=1) classifications.columns = list(range(1, 7)) features_names = data['OTU'] data = pd.concat([features_names, classifications], axis=1) data = data.set_index('OTU') # format the index for better consistency data.index = data.index.rename(None) data = data.sort_index() return data @staticmethod def read_constaxonomy_file(filepath): """Reads in and formats mothur cons.taxonomy file.""" data = pd.read_table(filepath) classifications = data['Taxonomy'] classifications = classifications.str.split(';', expand=True).drop(6, axis=1) classifications.columns = list(range(1, 7)) features_names = data['OTU'] data = pd.concat([features_names, classifications], axis=1) data = data.set_index('OTU') # format the index for better consistency data.index = data.index.rename(None) data = data.sort_index() return data @staticmethod def read_fasta_file(filepath): """Reads in and formats mothur fasta file.""" # the data is in the fasta file format with alternating lines of sequence name and sequence data # we can read the data in as a single column and reshape it to separate out names from the sequences data = pd.read_table(filepath, header=None) data = pd.DataFrame(data.values.reshape(len(data) // 2, 2)) data.columns = ['seqName', 'seq'] # sequence names are in the fasta format and preceeded with '>' which we must remove data.index = data['seqName'].str.split('>', 1, expand=True)[1] data = data.drop('seqName', axis=1) data.index = data.index.rename(None) return data @staticmethod def read_repfasta_file(filepath): """Reads in and formats mothur fasta file.""" # the data is in the fasta file format with alternating lines of sequence name and sequence data # we can read the data in as a single column and reshape it to separate out names from the sequences data =
pd.read_table(filepath, header=None, sep=',')
pandas.read_table
""" test the scalar Timedelta """ import numpy as np from datetime import timedelta import pandas as pd import pandas.util.testing as tm from pandas.tseries.timedeltas import _coerce_scalar_to_timedelta_type as ct from pandas import (Timedelta, TimedeltaIndex, timedelta_range, Series, to_timedelta, compat, isnull) from pandas._libs.tslib import iNaT, NaTType class TestTimedeltas(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): pass def test_construction(self): expected = np.timedelta64(10, 'D').astype('m8[ns]').view('i8') self.assertEqual(Timedelta(10, unit='d').value, expected) self.assertEqual(Timedelta(10.0, unit='d').value, expected) self.assertEqual(Timedelta('10 days').value, expected) self.assertEqual(Timedelta(days=10).value, expected) self.assertEqual(Timedelta(days=10.0).value, expected) expected += np.timedelta64(10, 's').astype('m8[ns]').view('i8') self.assertEqual(Timedelta('10 days 00:00:10').value, expected) self.assertEqual(Timedelta(days=10, seconds=10).value, expected) self.assertEqual( Timedelta(days=10, milliseconds=10 * 1000).value, expected) self.assertEqual( Timedelta(days=10, microseconds=10 * 1000 * 1000).value, expected) # test construction with np dtypes # GH 8757 timedelta_kwargs = {'days': 'D', 'seconds': 's', 'microseconds': 'us', 'milliseconds': 'ms', 'minutes': 'm', 'hours': 'h', 'weeks': 'W'} npdtypes = [np.int64, np.int32, np.int16, np.float64, np.float32, np.float16] for npdtype in npdtypes: for pykwarg, npkwarg in timedelta_kwargs.items(): expected = np.timedelta64(1, npkwarg).astype('m8[ns]').view('i8') self.assertEqual( Timedelta(**{pykwarg: npdtype(1)}).value, expected) # rounding cases self.assertEqual(Timedelta(82739999850000).value, 82739999850000) self.assertTrue('0 days 22:58:59.999850' in str(Timedelta( 82739999850000))) self.assertEqual(Timedelta(123072001000000).value, 123072001000000) self.assertTrue('1 days 10:11:12.001' in str(Timedelta( 123072001000000))) # string conversion with/without leading zero # GH 9570 self.assertEqual(Timedelta('0:00:00'), timedelta(hours=0)) self.assertEqual(Timedelta('00:00:00'), timedelta(hours=0)) self.assertEqual(Timedelta('-1:00:00'), -timedelta(hours=1)) self.assertEqual(Timedelta('-01:00:00'), -timedelta(hours=1)) # more strings & abbrevs # GH 8190 self.assertEqual(Timedelta('1 h'), timedelta(hours=1)) self.assertEqual(Timedelta('1 hour'), timedelta(hours=1)) self.assertEqual(Timedelta('1 hr'), timedelta(hours=1)) self.assertEqual(Timedelta('1 hours'), timedelta(hours=1)) self.assertEqual(Timedelta('-1 hours'), -timedelta(hours=1)) self.assertEqual(Timedelta('1 m'), timedelta(minutes=1)) self.assertEqual(Timedelta('1.5 m'), timedelta(seconds=90)) self.assertEqual(Timedelta('1 minute'), timedelta(minutes=1)) self.assertEqual(Timedelta('1 minutes'), timedelta(minutes=1)) self.assertEqual(Timedelta('1 s'), timedelta(seconds=1)) self.assertEqual(Timedelta('1 second'), timedelta(seconds=1)) self.assertEqual(Timedelta('1 seconds'), timedelta(seconds=1)) self.assertEqual(Timedelta('1 ms'), timedelta(milliseconds=1)) self.assertEqual(Timedelta('1 milli'), timedelta(milliseconds=1)) self.assertEqual(Timedelta('1 millisecond'), timedelta(milliseconds=1)) self.assertEqual(Timedelta('1 us'), timedelta(microseconds=1)) self.assertEqual(Timedelta('1 micros'), timedelta(microseconds=1)) self.assertEqual(Timedelta('1 microsecond'), timedelta(microseconds=1)) self.assertEqual(Timedelta('1.5 microsecond'), Timedelta('00:00:00.000001500')) self.assertEqual(Timedelta('1 ns'), Timedelta('00:00:00.000000001')) self.assertEqual(Timedelta('1 nano'), Timedelta('00:00:00.000000001')) self.assertEqual(Timedelta('1 nanosecond'), Timedelta('00:00:00.000000001')) # combos self.assertEqual(Timedelta('10 days 1 hour'), timedelta(days=10, hours=1)) self.assertEqual(Timedelta('10 days 1 h'), timedelta(days=10, hours=1)) self.assertEqual(Timedelta('10 days 1 h 1m 1s'), timedelta( days=10, hours=1, minutes=1, seconds=1)) self.assertEqual(Timedelta('-10 days 1 h 1m 1s'), - timedelta(days=10, hours=1, minutes=1, seconds=1)) self.assertEqual(Timedelta('-10 days 1 h 1m 1s'), - timedelta(days=10, hours=1, minutes=1, seconds=1)) self.assertEqual(Timedelta('-10 days 1 h 1m 1s 3us'), - timedelta(days=10, hours=1, minutes=1, seconds=1, microseconds=3)) self.assertEqual(Timedelta('-10 days 1 h 1.5m 1s 3us'), - timedelta(days=10, hours=1, minutes=1, seconds=31, microseconds=3)) # currently invalid as it has a - on the hhmmdd part (only allowed on # the days) self.assertRaises(ValueError, lambda: Timedelta('-10 days -1 h 1.5m 1s 3us')) # only leading neg signs are allowed self.assertRaises(ValueError, lambda: Timedelta('10 days -1 h 1.5m 1s 3us')) # no units specified self.assertRaises(ValueError, lambda: Timedelta('3.1415')) # invalid construction tm.assertRaisesRegexp(ValueError, "cannot construct a Timedelta", lambda: Timedelta()) tm.assertRaisesRegexp(ValueError, "unit abbreviation w/o a number", lambda: Timedelta('foo')) tm.assertRaisesRegexp(ValueError, "cannot construct a Timedelta from the passed " "arguments, allowed keywords are ", lambda: Timedelta(day=10)) # roundtripping both for string and value for v in ['1s', '-1s', '1us', '-1us', '1 day', '-1 day', '-23:59:59.999999', '-1 days +23:59:59.999999', '-1ns', '1ns', '-23:59:59.999999999']: td = Timedelta(v) self.assertEqual(Timedelta(td.value), td) # str does not normally display nanos if not td.nanoseconds: self.assertEqual(Timedelta(str(td)), td) self.assertEqual(Timedelta(td._repr_base(format='all')), td) # floats expected = np.timedelta64( 10, 's').astype('m8[ns]').view('i8') + np.timedelta64( 500, 'ms').astype('m8[ns]').view('i8') self.assertEqual(Timedelta(10.5, unit='s').value, expected) # nat self.assertEqual(Timedelta('').value, iNaT) self.assertEqual(Timedelta('nat').value, iNaT) self.assertEqual(Timedelta('NAT').value, iNaT) self.assertEqual(Timedelta(None).value, iNaT) self.assertEqual(Timedelta(np.nan).value, iNaT) self.assertTrue(isnull(Timedelta('nat'))) # offset self.assertEqual(to_timedelta(pd.offsets.Hour(2)), Timedelta('0 days, 02:00:00')) self.assertEqual(Timedelta(pd.offsets.Hour(2)), Timedelta('0 days, 02:00:00')) self.assertEqual(Timedelta(pd.offsets.Second(2)), Timedelta('0 days, 00:00:02')) # unicode # GH 11995 expected = Timedelta('1H') result = pd.Timedelta(u'1H') self.assertEqual(result, expected) self.assertEqual(to_timedelta(pd.offsets.Hour(2)), Timedelta(u'0 days, 02:00:00')) self.assertRaises(ValueError, lambda: Timedelta(u'foo bar')) def test_overflow_on_construction(self): # xref https://github.com/statsmodels/statsmodels/issues/3374 value = pd.Timedelta('1day').value * 20169940 self.assertRaises(OverflowError, pd.Timedelta, value) def test_total_seconds_scalar(self): # GH 10939 rng = Timedelta('1 days, 10:11:12.100123456') expt = 1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456. / 1e9 tm.assert_almost_equal(rng.total_seconds(), expt) rng = Timedelta(np.nan) self.assertTrue(np.isnan(rng.total_seconds())) def test_repr(self): self.assertEqual(repr(Timedelta(10, unit='d')), "Timedelta('10 days 00:00:00')") self.assertEqual(repr(Timedelta(10, unit='s')), "Timedelta('0 days 00:00:10')") self.assertEqual(repr(Timedelta(10, unit='ms')), "Timedelta('0 days 00:00:00.010000')") self.assertEqual(repr(Timedelta(-10, unit='ms')), "Timedelta('-1 days +23:59:59.990000')") def test_conversion(self): for td in [Timedelta(10, unit='d'), Timedelta('1 days, 10:11:12.012345')]: pydt = td.to_pytimedelta() self.assertTrue(td == Timedelta(pydt)) self.assertEqual(td, pydt) self.assertTrue(isinstance(pydt, timedelta) and not isinstance( pydt, Timedelta)) self.assertEqual(td, np.timedelta64(td.value, 'ns')) td64 = td.to_timedelta64() self.assertEqual(td64, np.timedelta64(td.value, 'ns')) self.assertEqual(td, td64) self.assertTrue(isinstance(td64, np.timedelta64)) # this is NOT equal and cannot be roundtriped (because of the nanos) td = Timedelta('1 days, 10:11:12.012345678') self.assertTrue(td != td.to_pytimedelta()) def test_freq_conversion(self): td = Timedelta('1 days 2 hours 3 ns') result = td / np.timedelta64(1, 'D') self.assertEqual(result, td.value / float(86400 * 1e9)) result = td / np.timedelta64(1, 's') self.assertEqual(result, td.value / float(1e9)) result = td / np.timedelta64(1, 'ns') self.assertEqual(result, td.value) def test_fields(self): def check(value): # that we are int/long like self.assertTrue(isinstance(value, (int, compat.long))) # compat to datetime.timedelta rng = to_timedelta('1 days, 10:11:12') self.assertEqual(rng.days, 1) self.assertEqual(rng.seconds, 10 * 3600 + 11 * 60 + 12) self.assertEqual(rng.microseconds, 0) self.assertEqual(rng.nanoseconds, 0) self.assertRaises(AttributeError, lambda: rng.hours) self.assertRaises(AttributeError, lambda: rng.minutes) self.assertRaises(AttributeError, lambda: rng.milliseconds) # GH 10050 check(rng.days) check(rng.seconds) check(rng.microseconds) check(rng.nanoseconds) td = Timedelta('-1 days, 10:11:12') self.assertEqual(abs(td), Timedelta('13:48:48')) self.assertTrue(str(td) == "-1 days +10:11:12") self.assertEqual(-td, Timedelta('0 days 13:48:48')) self.assertEqual(-Timedelta('-1 days, 10:11:12').value, 49728000000000) self.assertEqual(Timedelta('-1 days, 10:11:12').value, -49728000000000) rng = to_timedelta('-1 days, 10:11:12.100123456') self.assertEqual(rng.days, -1) self.assertEqual(rng.seconds, 10 * 3600 + 11 * 60 + 12) self.assertEqual(rng.microseconds, 100 * 1000 + 123) self.assertEqual(rng.nanoseconds, 456) self.assertRaises(AttributeError, lambda: rng.hours) self.assertRaises(AttributeError, lambda: rng.minutes) self.assertRaises(AttributeError, lambda: rng.milliseconds) # components tup = pd.to_timedelta(-1, 'us').components self.assertEqual(tup.days, -1) self.assertEqual(tup.hours, 23) self.assertEqual(tup.minutes, 59) self.assertEqual(tup.seconds, 59) self.assertEqual(tup.milliseconds, 999) self.assertEqual(tup.microseconds, 999) self.assertEqual(tup.nanoseconds, 0) # GH 10050 check(tup.days) check(tup.hours) check(tup.minutes) check(tup.seconds) check(tup.milliseconds) check(tup.microseconds) check(tup.nanoseconds) tup = Timedelta('-1 days 1 us').components self.assertEqual(tup.days, -2) self.assertEqual(tup.hours, 23) self.assertEqual(tup.minutes, 59) self.assertEqual(tup.seconds, 59) self.assertEqual(tup.milliseconds, 999) self.assertEqual(tup.microseconds, 999) self.assertEqual(tup.nanoseconds, 0) def test_nat_converters(self): self.assertEqual(to_timedelta( 'nat', box=False).astype('int64'), iNaT) self.assertEqual(to_timedelta( 'nan', box=False).astype('int64'), iNaT) def testit(unit, transform): # array result = to_timedelta(np.arange(5), unit=unit) expected = TimedeltaIndex([np.timedelta64(i, transform(unit)) for i in np.arange(5).tolist()]) tm.assert_index_equal(result, expected) # scalar result = to_timedelta(2, unit=unit) expected = Timedelta(np.timedelta64(2, transform(unit)).astype( 'timedelta64[ns]')) self.assertEqual(result, expected) # validate all units # GH 6855 for unit in ['Y', 'M', 'W', 'D', 'y', 'w', 'd']: testit(unit, lambda x: x.upper()) for unit in ['days', 'day', 'Day', 'Days']: testit(unit, lambda x: 'D') for unit in ['h', 'm', 's', 'ms', 'us', 'ns', 'H', 'S', 'MS', 'US', 'NS']: testit(unit, lambda x: x.lower()) # offsets # m testit('T', lambda x: 'm') # ms testit('L', lambda x: 'ms') def test_numeric_conversions(self): self.assertEqual(ct(0), np.timedelta64(0, 'ns')) self.assertEqual(ct(10), np.timedelta64(10, 'ns')) self.assertEqual(ct(10, unit='ns'), np.timedelta64( 10, 'ns').astype('m8[ns]')) self.assertEqual(ct(10, unit='us'), np.timedelta64( 10, 'us').astype('m8[ns]')) self.assertEqual(ct(10, unit='ms'), np.timedelta64( 10, 'ms').astype('m8[ns]')) self.assertEqual(ct(10, unit='s'), np.timedelta64( 10, 's').astype('m8[ns]')) self.assertEqual(ct(10, unit='d'), np.timedelta64( 10, 'D').astype('m8[ns]')) def test_timedelta_conversions(self): self.assertEqual(ct(timedelta(seconds=1)), np.timedelta64(1, 's').astype('m8[ns]')) self.assertEqual(ct(timedelta(microseconds=1)), np.timedelta64(1, 'us').astype('m8[ns]')) self.assertEqual(ct(timedelta(days=1)), np.timedelta64(1, 'D').astype('m8[ns]')) def test_round(self): t1 = Timedelta('1 days 02:34:56.789123456') t2 = Timedelta('-1 days 02:34:56.789123456') for (freq, s1, s2) in [('N', t1, t2), ('U', Timedelta('1 days 02:34:56.789123000'), Timedelta('-1 days 02:34:56.789123000')), ('L', Timedelta('1 days 02:34:56.789000000'), Timedelta('-1 days 02:34:56.789000000')), ('S', Timedelta('1 days 02:34:57'), Timedelta('-1 days 02:34:57')), ('2S', Timedelta('1 days 02:34:56'), Timedelta('-1 days 02:34:56')), ('5S', Timedelta('1 days 02:34:55'), Timedelta('-1 days 02:34:55')), ('T', Timedelta('1 days 02:35:00'), Timedelta('-1 days 02:35:00')), ('12T', Timedelta('1 days 02:36:00'), Timedelta('-1 days 02:36:00')), ('H', Timedelta('1 days 03:00:00'), Timedelta('-1 days 03:00:00')), ('d', Timedelta('1 days'), Timedelta('-1 days'))]: r1 = t1.round(freq) self.assertEqual(r1, s1) r2 = t2.round(freq) self.assertEqual(r2, s2) # invalid for freq in ['Y', 'M', 'foobar']: self.assertRaises(ValueError, lambda: t1.round(freq)) t1 = timedelta_range('1 days', periods=3, freq='1 min 2 s 3 us') t2 = -1 * t1 t1a = timedelta_range('1 days', periods=3, freq='1 min 2 s') t1c = pd.TimedeltaIndex([1, 1, 1], unit='D') # note that negative times round DOWN! so don't give whole numbers for (freq, s1, s2) in [('N', t1, t2), ('U', t1, t2), ('L', t1a, TimedeltaIndex(['-1 days +00:00:00', '-2 days +23:58:58', '-2 days +23:57:56'], dtype='timedelta64[ns]', freq=None) ), ('S', t1a, TimedeltaIndex(['-1 days +00:00:00', '-2 days +23:58:58', '-2 days +23:57:56'], dtype='timedelta64[ns]', freq=None) ), ('12T', t1c, TimedeltaIndex(['-1 days', '-1 days', '-1 days'], dtype='timedelta64[ns]', freq=None) ), ('H', t1c, TimedeltaIndex(['-1 days', '-1 days', '-1 days'], dtype='timedelta64[ns]', freq=None) ), ('d', t1c, pd.TimedeltaIndex([-1, -1, -1], unit='D') )]: r1 = t1.round(freq) tm.assert_index_equal(r1, s1) r2 = t2.round(freq) tm.assert_index_equal(r2, s2) # invalid for freq in ['Y', 'M', 'foobar']: self.assertRaises(ValueError, lambda: t1.round(freq)) def test_contains(self): # Checking for any NaT-like objects # GH 13603 td = to_timedelta(range(5), unit='d') + pd.offsets.Hour(1) for v in [pd.NaT, None, float('nan'), np.nan]: self.assertFalse((v in td)) td = to_timedelta([pd.NaT]) for v in [pd.NaT, None, float('nan'), np.nan]: self.assertTrue((v in td)) def test_identity(self): td = Timedelta(10, unit='d') self.assertTrue(isinstance(td, Timedelta)) self.assertTrue(isinstance(td, timedelta)) def test_short_format_converters(self): def conv(v): return v.astype('m8[ns]') self.assertEqual(ct('10'), np.timedelta64(10, 'ns')) self.assertEqual(ct('10ns'), np.timedelta64(10, 'ns')) self.assertEqual(ct('100'), np.timedelta64(100, 'ns')) self.assertEqual(ct('100ns'), np.timedelta64(100, 'ns')) self.assertEqual(ct('1000'), np.timedelta64(1000, 'ns')) self.assertEqual(ct('1000ns'), np.timedelta64(1000, 'ns')) self.assertEqual(ct('1000NS'), np.timedelta64(1000, 'ns')) self.assertEqual(ct('10us'), np.timedelta64(10000, 'ns')) self.assertEqual(ct('100us'), np.timedelta64(100000, 'ns')) self.assertEqual(ct('1000us'), np.timedelta64(1000000, 'ns')) self.assertEqual(ct('1000Us'), np.timedelta64(1000000, 'ns')) self.assertEqual(ct('1000uS'), np.timedelta64(1000000, 'ns')) self.assertEqual(ct('1ms'), np.timedelta64(1000000, 'ns')) self.assertEqual(ct('10ms'), np.timedelta64(10000000, 'ns')) self.assertEqual(ct('100ms'), np.timedelta64(100000000, 'ns')) self.assertEqual(ct('1000ms'), np.timedelta64(1000000000, 'ns')) self.assertEqual(ct('-1s'), -np.timedelta64(1000000000, 'ns')) self.assertEqual(ct('1s'), np.timedelta64(1000000000, 'ns')) self.assertEqual(ct('10s'), np.timedelta64(10000000000, 'ns')) self.assertEqual(ct('100s'), np.timedelta64(100000000000, 'ns')) self.assertEqual(ct('1000s'), np.timedelta64(1000000000000, 'ns')) self.assertEqual(ct('1d'), conv(np.timedelta64(1, 'D'))) self.assertEqual(ct('-1d'), -conv(np.timedelta64(1, 'D'))) self.assertEqual(ct('1D'), conv(np.timedelta64(1, 'D'))) self.assertEqual(ct('10D'), conv(np.timedelta64(10, 'D'))) self.assertEqual(ct('100D'), conv(np.timedelta64(100, 'D'))) self.assertEqual(ct('1000D'), conv(np.timedelta64(1000, 'D'))) self.assertEqual(ct('10000D'), conv(np.timedelta64(10000, 'D'))) # space self.assertEqual(ct(' 10000D '), conv(np.timedelta64(10000, 'D'))) self.assertEqual(ct(' - 10000D '), -conv(np.timedelta64(10000, 'D'))) # invalid self.assertRaises(ValueError, ct, '1foo') self.assertRaises(ValueError, ct, 'foo') def test_full_format_converters(self): def conv(v): return v.astype('m8[ns]') d1 = np.timedelta64(1, 'D') self.assertEqual(ct('1days'), conv(d1)) self.assertEqual(ct('1days,'), conv(d1)) self.assertEqual(ct('- 1days,'), -conv(d1)) self.assertEqual(ct('00:00:01'), conv(np.timedelta64(1, 's'))) self.assertEqual(ct('06:00:01'), conv( np.timedelta64(6 * 3600 + 1, 's'))) self.assertEqual(ct('06:00:01.0'), conv( np.timedelta64(6 * 3600 + 1, 's'))) self.assertEqual(ct('06:00:01.01'), conv( np.timedelta64(1000 * (6 * 3600 + 1) + 10, 'ms'))) self.assertEqual(ct('- 1days, 00:00:01'), conv(-d1 + np.timedelta64(1, 's'))) self.assertEqual(ct('1days, 06:00:01'), conv( d1 + np.timedelta64(6 * 3600 + 1, 's'))) self.assertEqual(ct('1days, 06:00:01.01'), conv( d1 + np.timedelta64(1000 * (6 * 3600 + 1) + 10, 'ms'))) # invalid self.assertRaises(ValueError, ct, '- 1days, 00') def test_overflow(self): # GH 9442 s = Series(pd.date_range('20130101', periods=100000, freq='H')) s[0] += pd.Timedelta('1s 1ms') # mean result = (s - s.min()).mean() expected = pd.Timedelta((pd.DatetimeIndex((s - s.min())).asi8 / len(s) ).sum()) # the computation is converted to float so might be some loss of # precision self.assertTrue(np.allclose(result.value / 1000, expected.value / 1000)) # sum self.assertRaises(ValueError, lambda: (s - s.min()).sum()) s1 = s[0:10000] self.assertRaises(ValueError, lambda: (s1 - s1.min()).sum()) s2 = s[0:1000] result = (s2 - s2.min()).sum() def test_pickle(self): v = Timedelta('1 days 10:11:12.0123456') v_p = self.round_trip_pickle(v) self.assertEqual(v, v_p) def test_timedelta_hash_equality(self): # GH 11129 v = Timedelta(1, 'D') td = timedelta(days=1) self.assertEqual(hash(v), hash(td)) d = {td: 2} self.assertEqual(d[v], 2) tds = timedelta_range('1 second', periods=20) self.assertTrue(all(hash(td) == hash(td.to_pytimedelta()) for td in tds)) # python timedeltas drop ns resolution ns_td = Timedelta(1, 'ns') self.assertNotEqual(hash(ns_td), hash(ns_td.to_pytimedelta())) def test_implementation_limits(self): min_td = Timedelta(Timedelta.min) max_td = Timedelta(Timedelta.max) # GH 12727 # timedelta limits correspond to int64 boundaries self.assertTrue(min_td.value == np.iinfo(np.int64).min + 1) self.assertTrue(max_td.value == np.iinfo(np.int64).max) # Beyond lower limit, a NAT before the Overflow self.assertIsInstance(min_td - Timedelta(1, 'ns'), NaTType) with tm.assertRaises(OverflowError): min_td - Timedelta(2, 'ns') with tm.assertRaises(OverflowError): max_td + Timedelta(1, 'ns') # Same tests using the internal nanosecond values td = Timedelta(min_td.value - 1, 'ns') self.assertIsInstance(td, NaTType) with tm.assertRaises(OverflowError): Timedelta(min_td.value - 2, 'ns') with tm.assertRaises(OverflowError): Timedelta(max_td.value + 1, 'ns') def test_timedelta_arithmetic(self): data = pd.Series(['nat', '32 days'], dtype='timedelta64[ns]') deltas = [timedelta(days=1), Timedelta(1, unit='D')] for delta in deltas: result_method = data.add(delta) result_operator = data + delta expected =
pd.Series(['nat', '33 days'], dtype='timedelta64[ns]')
pandas.Series
import os import pickle import pandas as pd import prettytable as pt from tqdm import tqdm from .baseloader import BaseLoader from ..lut import LookUpTable from ..vocabulary import Vocabulary class EVENTKG240KLoader(BaseLoader): def __init__(self, dataset_path, download=False): super().__init__(dataset_path, download, raw_data_path="EVENTKG240K/raw_data", processed_data_path="EVENTKG240K/processed_data", train_name="eventkg240k_train.txt", valid_name="eventkg240k_valid.txt", test_name="eventkg240k_test.txt", data_name="EVENTKG240K") self.time_vocab = Vocabulary() self.entity_lut_name = "eventkg240k_entities_lut.json" self.event_lut_name = "eventkg240k_events_lut.json" self.relation_lut_name = "eventkg240k_relations_lut.json" def _load_data(self, path, data_type): return BaseLoader._load_data(self, path=path, data_type=data_type, column_names=["head", "relation", "tail", "start", "end"]) def download_action(self): self.downloader.EVENTKG240K() def _build_vocabs(self, train_data, valid_data, test_data): BaseLoader._build_vocabs(self, train_data, valid_data, test_data) self.time_vocab.buildVocab(train_data['start'].tolist(), train_data['end'].tolist(), valid_data['start'].tolist(), valid_data['end'].tolist(), test_data['start'].tolist(), test_data['end'].tolist()) def load_all_vocabs(self, ): return self.node_vocab, self.relation_vocab, self.time_vocab def save_vocabs_to_pickle(self, file_name): with open(file_name, "wb") as file: pickle.dump([self.node_vocab, self.relation_vocab, self.time_vocab], file, pickle.HIGHEST_PROTOCOL) def load_vocabs_from_pickle(self, file_name): with open(file_name, "rb") as file: self.node_vocab, self.relation_vocab, self.time_vocab = pickle.load(file) def _load_lut(self, path): total_path = os.path.join(self.raw_data_path, path) lut = LookUpTable() lut.read_json(total_path) lut.transpose() return lut def load_node_lut(self): preprocessed_file = os.path.join(self.processed_data_path, "node_lut.pkl") if os.path.exists(preprocessed_file): node_lut = LookUpTable() node_lut.read_from_pickle(preprocessed_file) else: entity_lut = self._load_lut(self.entity_lut_name) entity_lut.add_column(['entity'] * len(entity_lut.data), "node_type") event_lut = self._load_lut(self.event_lut_name) event_lut.add_column(['event'] * len(event_lut.data), "node_type") node_lut = entity_lut.append(event_lut) node_lut.add_vocab(self.node_vocab) df = pd.DataFrame([self.node_vocab.word2idx]).T df = df.rename({0: "name_id"}, axis=1) node_lut.data = pd.merge(df, node_lut.data, left_index=True, right_index=True, how='outer') node_lut.data = node_lut.data.sort_values(by="name_id") node_lut.save_to_pickle(preprocessed_file) return node_lut def load_relation_lut(self): preprocessed_file = os.path.join(self.processed_data_path, "relation_lut.pkl") if os.path.exists(preprocessed_file): relation_lut = LookUpTable() relation_lut.read_from_pickle(preprocessed_file) else: relation_lut = self._load_lut(self.relation_lut_name) relation_lut.add_vocab(self.relation_vocab) df = pd.DataFrame([self.relation_vocab.word2idx]).T df = df.rename({0: "name_id"}, axis=1) relation_lut.data =
pd.merge(df, relation_lut.data, left_index=True, right_index=True, how='outer')
pandas.merge
import requests import json import pandas as pd from pandas import json_normalize import matplotlib.pyplot as plt import seaborn as sns import networkx as nx from bokeh.io import show, output_file from bokeh.models import Plot, Range1d, MultiLine, Circle, HoverTool, TapTool, BoxSelectTool, WheelZoomTool from bokeh.models.graphs import from_networkx, NodesAndLinkedEdges, EdgesAndLinkedNodes from bokeh.palettes import Spectral4 import warnings warnings.filterwarnings('ignore') class Issues: def __init__(self, repos): self.repos = repos token = 'my<PASSWORD>' self.headers = {'Authorization': f'token {token}'} self.configure_pandas() self.df = self.init_df() def init_df(self): try: dfs = [] for repo in self.repos: url = f'https://api.github.com/repos/filetrust/{repo}/issues' res = requests.get(url, headers=self.headers, params={'state': 'all'}).json() data = json_normalize(res, max_level=1) temp_df = pd.DataFrame(data) temp_df['repo'] = repo dfs.append(temp_df) df = pd.concat(dfs, ignore_index=True) return df except requests.exceptions.RequestException as e: raise SystemExit(e) def get_df(self): return self.df def configure_pandas(self): pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) pd.set_option('display.width', None)
pd.set_option('display.max_colwidth', None)
pandas.set_option
import sys import pandas as pd import os import argparse seeds = [1, 2, 3, 4, 5] #langs = ['ar', 'bg', 'de', 'el', 'en', 'es', 'fr', 'hi', 'ru', 'tr', 'ur', 'vi', 'zh'] def tag_results(filename): seeded_results = [] for seed in seeds: results = {} c_f = filename + "_s{}/test_results.txt".format(seed) if os.path.exists(c_f): with open(c_f, 'r') as f: for line in f: line = line.strip() if line.startswith("language"): lan = line.split("=")[1] elif line.startswith("f1"): f1 = line.split(" = ")[1] results[lan] = float(f1) * 100 #print(results) #print(sum(results.values()) / len(results)) seeded_results.append(results) df = pd.DataFrame(seeded_results) print(df) print(df.mean(axis=0)) print("ave over random seeds:", df.mean(axis=1).mean()) #print(df.mean(axis=1)) #print(pd.DataFrame(df, columns=langs).mean(axis=0).mean()) #df.to_csv(filename + ".csv") def classify_results(filename): seeded_results = [] for seed in seeds: results = {} c_f = filename + "_s{}/test_results.txt".format(seed) if os.path.exists(c_f): with open(c_f, 'r') as f: for i, line in enumerate(f): line = line.strip() if i == 0: continue if line.startswith("total") or line.startswith("=="): continue else: toks = line.split("=") lan = toks[0] acc = toks[1] results[lan] = float(acc) * 100 #print(results) #print(sum(results.values()) / len(results)) seeded_results.append(results) df = pd.DataFrame(seeded_results) print(df) print(df.mean(axis=1)) print("ave over random seeds:", df.mean(axis=1).mean()) #print(df.mean(axis=1)) #print(pd.DataFrame(df, columns=langs).mean(axis=0).mean()) df.to_csv(filename + ".csv") def qa_results(filename, do_final=1): seeded_results = [] seeded_exact_results = [] for seed in seeds: results = {} exact_results = {} c_f = filename + "_s{}/predictions/xquad/xquad_test_results_{}.txt".format( seed, do_final) if os.path.exists(c_f): with open(c_f, 'r') as f: for line in f: line = line.strip() if line.startswith("language"): lan = line.split(" = ")[1] elif line.startswith("f1"): f1 = line.split(" = ")[1] results[lan] = float(f1) elif line.startswith("exact"): f1 = line.split(" = ")[1] exact_results[lan] = float(f1) #print(results) #print(sum(results.values()) / len(results)) seeded_results.append(results) seeded_exact_results.append(exact_results) df = pd.DataFrame(seeded_results) exact_df = pd.DataFrame(seeded_exact_results) combined_df =
pd.concat([df, exact_df], keys=('f1', 'exact f1'))
pandas.concat
#T3-T4.py #!/usr/bin/python3 import pandas as pd #Lataa Titanic csv tiedostot pythoniin pandas dataframeen (Titanic_data.csv, Titanic_names.csv) df_data = pd.read_csv('./Titanic_data.csv', header=0) df_names = pd.read_csv('./Titanic_names.csv', header=0) #Tulosta ipyhon consoliin dataframien info ja describe. Tee histogrammi df_titanic_data ( bins=4) dataframesta. #https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.info.html?highlight=info#pandas.DataFrame.info #https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.describe.html?highlight=describe#pandas.DataFrame.describe #https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.hist.html?highlight=hist#pandas.DataFrame.hist #Yhdistä dataframet (df_titanic_data, df_titanic_names) uudeksi dataframeksi df. Käytä how='inner' on='id'. df =
pd.merge(df_data, df_names, how='inner', on='id')
pandas.merge
#!/usr/bin/env python import os, numpy as np import plot_utils class Attack(): """ TODO: Write Comment """ def __init__(self, args): """ TODO: Write Comment """ self.args = args self.VERBOSE = self.args.verbose self.FAMILY_DATASET = self.args.family_dataset self.NUM_MODEL = self.args.model self.NUM_SAMPLES = self.args.samples self.TARGETED = self.args.targeted self.PLOT_IMAGE = self.args.plot_image self.set_attack_name() self.model = self.set_model() self.columns = ['attack', 'model', 'threshold', 'image', 'true', 'predicted', 'success', 'cdiff', 'prior_probs', 'predicted_probs', 'perturbation', 'attacked_image', 'l2_distance'] def set_model(self): """ TODO: Write Comment """ if self.FAMILY_DATASET == 0: from networks import mnist if self.NUM_MODEL == 0: model = mnist.mlp.MLP(self.args) elif self.NUM_MODEL == 1: model = mnist.conv.Conv(self.args) elif self.FAMILY_DATASET == 1: from networks import cifar if self.NUM_MODEL == 0: model = cifar.custom_model.Custom(self.args) elif self.NUM_MODEL == 1: model = cifar.lenet.LeNet(self.args) elif self.NUM_MODEL == 2: model = cifar.all_conv.AllConv(self.args) elif self.NUM_MODEL == 3: model = cifar.network_in_network.NetworkInNetwork(self.args) elif self.NUM_MODEL == 4: model = cifar.resnet.ResNet(self.args) elif self.NUM_MODEL == 5: model = cifar.densenet.DenseNet(self.args) elif self.NUM_MODEL == 6: model = cifar.wide_resnet.WideResNet(self.args) elif self.NUM_MODEL == 7: model = cifar.vgg.VGG16(self.args) elif self.NUM_MODEL == 8: model = cifar.capsnet.CapsNet(self.args) elif self.NUM_MODEL == 9: model = cifar.vgg.VGG19(self.args) elif self.FAMILY_DATASET == 2: from networks import imagenet if self.NUM_MODEL == 0: model = imagenet.keras_applications.InceptionV3(self.args) elif self.NUM_MODEL == 1: model = imagenet.keras_applications.InceptionResNetV2(self.args) elif self.NUM_MODEL == 2: model = imagenet.keras_applications.Xception(self.args) elif self.NUM_MODEL == 3: model = imagenet.keras_applications.ResNet50(self.args) elif self.NUM_MODEL == 4: model = imagenet.keras_applications.ResNet101(self.args) elif self.NUM_MODEL == 5: model = imagenet.keras_applications.Resnet152(self.args) elif self.NUM_MODEL == 6: model = imagenet.keras_applications.ResnetV250(self.args) elif self.NUM_MODEL == 7: model = imagenet.keras_applications.ResNetV2101(self.args) elif self.NUM_MODEL == 8: model = imagenet.keras_applications.ResnetV2152(self.args) elif self.NUM_MODEL == 9: model = imagenet.keras_applications.DenseNet121(self.args) elif self.NUM_MODEL == 10: model = imagenet.keras_applications.DenseNet169(self.args) elif self.NUM_MODEL == 11: model = imagenet.keras_applications.DenseNet201(self.args) elif self.NUM_MODEL == 12: model = imagenet.keras_applications.MobileNet(self.args) elif self.NUM_MODEL == 13: model = imagenet.keras_applications.MobileNetV2(self.args) elif self.NUM_MODEL == 14: model = imagenet.keras_applications.NASNetMobile(self.args) elif self.NUM_MODEL == 15: model = imagenet.keras_applications.NASNetLarge(self.args) elif self.NUM_MODEL == 16: model = imagenet.keras_applications.VGG16(self.args) elif self.NUM_MODEL == 17: model = imagenet.keras_applications.VGG19(self.args) model.load() return model def start_attack(self, target_class, limit=0): """ TODO: Write Comment """ attack_result = self.attack(target_class, limit) original_image = self.x attacked_image = self.perturb_image(attack_result)[0] prior_probs = self.model.predict(original_image)[0] predicted_probs = self.model.predict(attacked_image)[0] actual_class = self.y # Or, np.argmax(prior_probs) predicted_class = np.argmax(predicted_probs) success = predicted_class != actual_class cdiff = prior_probs[actual_class] - predicted_probs[actual_class] l2_distance = np.linalg.norm(original_image.astype(np.float64)-attacked_image.astype(np.float64)) if self.PLOT_IMAGE: if not os.path.exists(f"./logs/images/{self.dir_path}"): os.makedirs(f"./logs/images/{self.dir_path}") plot_utils.plot_image(f"./logs/images/{self.dir_path}", self.img, attacked_image, self.x, self.model.class_names[actual_class], self.model.class_names[predicted_class], limit, l2_distance) return [[self.attack_name, self.model.name, limit, self.img, actual_class, predicted_class, success, cdiff, prior_probs, predicted_probs, attack_result, attacked_image, l2_distance]], success def start(self): """ TODO: Write Comment """ # return None import os, pickle, pandas as pd self.dir_path = f"{self.attack_name}/{self.model.dataset_name}/{self.model.name}" if not os.path.exists(f"./logs/results/{self.dir_path}"): os.makedirs(f"./logs/results/{self.dir_path}") image_results = [] imgs, xs, ys = self.model.get(self.NUM_SAMPLES) targets = [None] if not self.TARGETED else range(self.dataset_label_size) for i in range(self.NUM_SAMPLES): self.img, self.x, self.y = imgs[i], xs[i], ys[i] if self.VERBOSE == True: print(f"[#]Attacking {self.model.name} with {self.attack_name} -- image {self.img}- {i+1}/{self.NUM_SAMPLES}") for target in targets: if (self.TARGETED) and (target == self.y): continue target_class = target if self.TARGETED else self.y image_results += self.attack_image(target_class) with open(f"./logs/results/{self.dir_path}/results.pkl", 'wb') as file: pickle.dump(image_results, file) return
pd.DataFrame(image_results, columns=self.columns)
pandas.DataFrame
# Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import pandas as pd import numpy as np from mars.tests.core import TestBase, parameterized, ExecutorForTest from mars.dataframe.datasource.series import from_pandas as from_pandas_series from mars.dataframe.datasource.dataframe import from_pandas as from_pandas_df reduction_functions = dict( sum=dict(func_name='sum', has_min_count=True), prod=dict(func_name='prod', has_min_count=True), min=dict(func_name='min', has_min_count=False), max=dict(func_name='max', has_min_count=False), mean=dict(func_name='mean', has_min_count=False), var=dict(func_name='var', has_min_count=False), std=dict(func_name='std', has_min_count=False), ) @parameterized(**reduction_functions) class TestReduction(TestBase): def setUp(self): self.executor = ExecutorForTest() def compute(self, data, **kwargs): return getattr(data, self.func_name)(**kwargs) def testSeriesReduction(self): data = pd.Series(np.random.randint(0, 8, (10,)), index=[str(i) for i in range(10)], name='a') reduction_df1 = self.compute(from_pandas_series(data)) self.assertEqual( self.compute(data), self.executor.execute_dataframe(reduction_df1, concat=True)[0]) reduction_df2 = self.compute(from_pandas_series(data, chunk_size=6)) self.assertAlmostEqual( self.compute(data), self.executor.execute_dataframe(reduction_df2, concat=True)[0]) reduction_df3 = self.compute(from_pandas_series(data, chunk_size=3)) self.assertAlmostEqual( self.compute(data), self.executor.execute_dataframe(reduction_df3, concat=True)[0]) reduction_df4 = self.compute(from_pandas_series(data, chunk_size=4), axis='index') self.assertAlmostEqual( self.compute(data, axis='index'), self.executor.execute_dataframe(reduction_df4, concat=True)[0]) data = pd.Series(np.random.rand(20), name='a') data[0] = 0.1 # make sure not all elements are NAN data[data > 0.5] = np.nan reduction_df1 = self.compute(from_pandas_series(data, chunk_size=3)) self.assertAlmostEqual( self.compute(data), self.executor.execute_dataframe(reduction_df1, concat=True)[0]) reduction_df2 = self.compute(from_pandas_series(data, chunk_size=3), skipna=False) self.assertTrue( np.isnan(self.executor.execute_dataframe(reduction_df2, concat=True)[0])) if self.has_min_count: reduction_df3 = self.compute(from_pandas_series(data, chunk_size=3), skipna=False, min_count=2) self.assertTrue( np.isnan(self.executor.execute_dataframe(reduction_df3, concat=True)[0])) reduction_df4 = self.compute(from_pandas_series(data, chunk_size=3), min_count=1) self.assertAlmostEqual( self.compute(data, min_count=1), self.executor.execute_dataframe(reduction_df4, concat=True)[0]) reduction_df5 = self.compute(from_pandas_series(data, chunk_size=3), min_count=21) self.assertTrue( np.isnan(self.executor.execute_dataframe(reduction_df5, concat=True)[0])) def testDataFrameReduction(self): data = pd.DataFrame(np.random.rand(20, 10)) reduction_df1 = self.compute(from_pandas_df(data)) pd.testing.assert_series_equal( self.compute(data), self.executor.execute_dataframe(reduction_df1, concat=True)[0]) reduction_df2 = self.compute(from_pandas_df(data, chunk_size=3)) pd.testing.assert_series_equal( self.compute(data), self.executor.execute_dataframe(reduction_df2, concat=True)[0]) reduction_df3 = self.compute(from_pandas_df(data, chunk_size=6), axis='index', numeric_only=True) pd.testing.assert_series_equal( self.compute(data, axis='index', numeric_only=True), self.executor.execute_dataframe(reduction_df3, concat=True)[0]) reduction_df4 = self.compute(from_pandas_df(data, chunk_size=3), axis=1) pd.testing.assert_series_equal( self.compute(data, axis=1), self.executor.execute_dataframe(reduction_df4, concat=True)[0]) # test null np_data = np.random.rand(20, 10) np_data[np_data > 0.6] = np.nan data = pd.DataFrame(np_data) reduction_df1 = self.compute(from_pandas_df(data, chunk_size=3)) pd.testing.assert_series_equal( self.compute(data), self.executor.execute_dataframe(reduction_df1, concat=True)[0]) reduction_df2 = self.compute(from_pandas_df(data, chunk_size=3), skipna=False) pd.testing.assert_series_equal( self.compute(data, skipna=False), self.executor.execute_dataframe(reduction_df2, concat=True)[0]) reduction_df2 = self.compute(from_pandas_df(data, chunk_size=3), skipna=False) pd.testing.assert_series_equal( self.compute(data, skipna=False), self.executor.execute_dataframe(reduction_df2, concat=True)[0]) if self.has_min_count: reduction_df3 = self.compute(from_pandas_df(data, chunk_size=3), min_count=15) pd.testing.assert_series_equal( self.compute(data, min_count=15), self.executor.execute_dataframe(reduction_df3, concat=True)[0]) reduction_df4 = self.compute(from_pandas_df(data, chunk_size=3), min_count=3) pd.testing.assert_series_equal( self.compute(data, min_count=3), self.executor.execute_dataframe(reduction_df4, concat=True)[0]) reduction_df5 = self.compute(from_pandas_df(data, chunk_size=3), axis=1, min_count=3) pd.testing.assert_series_equal( self.compute(data, axis=1, min_count=3), self.executor.execute_dataframe(reduction_df5, concat=True)[0]) reduction_df5 = self.compute(from_pandas_df(data, chunk_size=3), axis=1, min_count=8) pd.testing.assert_series_equal( self.compute(data, axis=1, min_count=8), self.executor.execute_dataframe(reduction_df5, concat=True)[0]) # test numeric_only data = pd.DataFrame(np.random.rand(10, 10), index=np.random.randint(-100, 100, size=(10,)), columns=[np.random.bytes(10) for _ in range(10)]) reduction_df1 = self.compute(from_pandas_df(data, chunk_size=2)) pd.testing.assert_series_equal( self.compute(data), self.executor.execute_dataframe(reduction_df1, concat=True)[0]) reduction_df2 = self.compute(from_pandas_df(data, chunk_size=6), axis='index', numeric_only=True) pd.testing.assert_series_equal( self.compute(data, axis='index', numeric_only=True), self.executor.execute_dataframe(reduction_df2, concat=True)[0]) reduction_df3 = self.compute(from_pandas_df(data, chunk_size=3), axis='columns') pd.testing.assert_series_equal( self.compute(data, axis='columns'), self.executor.execute_dataframe(reduction_df3, concat=True)[0]) data_dict = dict((str(i), np.random.rand(10)) for i in range(10)) data_dict['string'] = [str(i) for i in range(10)] data_dict['bool'] = np.random.choice([True, False], (10,)) data = pd.DataFrame(data_dict) reduction_df = self.compute(from_pandas_df(data, chunk_size=3), axis='index', numeric_only=True) pd.testing.assert_series_equal( self.compute(data, axis='index', numeric_only=True), self.executor.execute_dataframe(reduction_df, concat=True)[0]) class TestCount(TestBase): def setUp(self): self.executor = ExecutorForTest() def testSeriesCount(self): array = np.random.rand(10) array[[2, 7, 9]] = np.nan data =
pd.Series(array)
pandas.Series
from os import replace import re from numpy import product from numpy.linalg import norm import pandas as pd from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import roc_curve, roc_auc_score, accuracy_score from shared.data_utility import * from matplotlib.pyplot import * from itertools import product data = pd.read_csv('data/study/movie_reviews.tsv', sep='\t') data = data.drop('id', axis=1) train_data, test_data = build_train_test_data(data, factor=0.8) target_train_data = train_data.sentiment target_test_data = test_data.sentiment train_data = train_data.drop('sentiment', axis=1) test_data = test_data.drop('sentiment', axis=1) def build_nb_model(max_features=None, min_df=1, nb_alpha=1.0, vectorizer_type='Counter', return_pred=True): vectorizer = CountVectorizer(max_features=max_features, min_df=min_df) if vectorizer_type == 'Tfidf': vectorizer = TfidfVectorizer(max_features=max_features, min_df=min_df) features = vectorizer.fit_transform(train_data.review) test_features = vectorizer.transform(test_data.review) model = MultinomialNB(alpha=nb_alpha) model.fit(features, target_train_data) pred = model.predict_proba(test_features) return model, vectorizer, { 'max_features': max_features, 'min_df': min_df, 'nb_alpha': nb_alpha, 'auc': roc_auc_score(target_test_data, pred[:,1]), 'pred': pred if return_pred else None, } def build_rf_model(max_features=None, min_df=1): vectorizer = TfidfVectorizer(stop_words='english', strip_accents='unicode', min_df=min_df, max_features=max_features, norm='l2') features = vectorizer.fit_transform(train_data.review) test_features = vectorizer.transform(test_data.review) model = RandomForestClassifier(n_estimators=100, n_jobs=-1, verbose=True) model.fit(features, target_train_data) pred = model.predict_proba(test_features) params = { 'max_features': max_features, 'min_df': min_df } return model, vectorizer, pred, params param_values = { 'max_features': [None], 'min_df': [1,2,3], 'nb_alpha': [0.01, 0.1, 1.0], 'vectorizer_type': ['Counter', 'Tfidf'] } #The best setup found by bruteforce #29 NaN 1 1.0 0.933601 def bruteforce_hyperparams(): results = [] for p in product(*param_values.values()): params = zip(param_values.keys(), p) params = dict(params) res = build_nb_model(**params) results.append(res) print(res) return
pd.DataFrame(results)
pandas.DataFrame
import unittest import import_ipynb import pandas as pd import pandas.testing as pd_testing import numpy.testing as np_testing from sklearn.cluster import KMeans class Test(unittest.TestCase): def setUp(self): import Exercise12_04 self.exercises = Exercise12_04 self.file_url = 'https://raw.githubusercontent.com/PacktWorkshops/The-Data-Science-Workshop/master/Chapter12/Dataset/ames_iowa_housing.csv' self.df = pd.read_csv(self.file_url) self.df_agg = self.df.groupby(['Neighborhood', 'YrSold']).agg({'SalePrice': 'max'}).reset_index() self.df_agg.columns = ['Neighborhood', 'YrSold', 'SalePriceMax'] self.df_new = pd.merge(self.df, self.df_agg, how='left', on=['Neighborhood', 'YrSold']) self.df_new['SalePriceRatio'] = self.df_new['SalePrice'] / self.df_new['SalePriceMax'] self.df_agg2 = self.df.groupby(['Neighborhood', 'YrSold']).agg({'LotArea': 'max'}).reset_index() self.df_agg2.columns = ['Neighborhood', 'YrSold', 'LotAreaMax'] self.df_final = pd.merge(self.df_new, self.df_agg2, how='left', on=['Neighborhood', 'YrSold']) self.df_final['LotAreaRatio'] = self.df_final['LotArea'] / self.df_final['LotAreaMax'] def test_file_url(self): self.assertEqual(self.exercises.file_url, self.file_url) def test_df(self): pd_testing.assert_frame_equal(self.exercises.df, self.df) def test_df_agg(self):
pd_testing.assert_frame_equal(self.exercises.df_agg, self.df_agg)
pandas.testing.assert_frame_equal
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Oct 6 15:08:25 2021 @author: ccamargo """ import pandas as pd import xarray as xr import numpy as np #%% find closest points of our TG, make sure that they are water def harvedist(lats,lons,qlats,qlons): # https://www.movable-type.co.uk/scripts/latlong.html #calculate angular distances between query coordinates (qlats,qlons) and data array grid (lats,lons) lat0,lat = np.meshgrid(np.radians(lats),np.radians(qlats)) lon0,lon = np.meshgrid(np.radians(lons),np.radians(qlons)) # lat0,lat = np.meshgrid(lats,qlats) # lon0,lon = np.meshgrid(lons,qlons) lat=np.radians(lat);lat0=np.radians(lat0) lon=np.radians(lon);lon0=np.radians(lon0) delta_lat = np.array(lat-lat0) delta_lon = np.array(lon-lon0) R =6373 # km a = np.sin(delta_lat / 2)**2 + np.cos(lat) * np.cos(lat0) * np.sin(delta_lon / 2)**2 c = 2 * np.arctan2(np.sqrt(a),np.sqrt(1-a)) # d = R * c # print(d) return(np.degrees(c)) # def find_nearest(lats,lons,qlats,qlons): # #finds nearest coordinates to query latitude # #and longitude pairs based on minimum angular distance [deg] # #calculate angular distances between query coordinates and data array grid # dists,dist_km =harvedist(lats,lons,qlats,qlons) # min_dists = np.nanmin(dists,axis=1) #find minimum angular distances in grid to query points # min_idx = np.nanargmin(dists,axis=1) #indices # # min_dist_km = dist_km[min_idx] # out_lat = lats.flatten()[min_idx] # out_lon = lons.flatten()[min_idx] # return min_dists, min_idx, out_lat, out_lon #% % def angdist(lats,lons,qlats,qlons): lat0,lat = np.meshgrid(np.radians(lats),np.radians(qlats)) lon0,lon = np.meshgrid(np.radians(lons),np.radians(qlons)) temp = np.arctan2(np.sqrt((np.cos(lat)*np.sin(lon-lon0))**2 + (np.cos(lat0)*np.sin(lat) - np.sin(lat0)*np.cos(lat) * np.cos(lon-lon0))**2), (np.sin(lat0)*np.sin(lat) + np.cos(lat0)*np.cos(lat)*np.cos(lon-lon0))) return(np.degrees(temp)) def find_nearest(da,qlats,qlons): #finds nearest unmasked ocean grid cell in xarray dataarray to query latitude #and longitude pairs based on minimum angular distance [deg] #fetch coordinate names lonname = np.array(da.coords)[['lon' in x for x in da.coords]][0] latname = np.array(da.coords)[['lat' in x for x in da.coords]][0] #get lats & lons lats = np.array(da[latname]) lons = np.array(da[lonname]) if lats.shape!=lons.shape: lats,lons = np.meshgrid(lats,lons) #calculate angular distances between query coordinates and data array grid dists=angdist(lats,lons,qlats,qlons) #mask land out if 'time' in da.dims: dists[0,~np.isfinite(da.isel(time=0).values.flatten())] = np.nan else: dists[0,~np.isfinite(da.values.flatten())] = np.nan min_dists = np.nanmin(dists,axis=1) #find minimum angular distances in grid to query points min_idx = np.nanargmin(dists,axis=1) #indices out_lat = lats.flatten()[min_idx] out_lon = lons.flatten()[min_idx] #potentially build in a filter here if unreasonably large distances return min_dists, min_idx, out_lat, out_lon #% % sel 10 coastal location cat =
pd.read_pickle('/Volumes/LaCie_NIOZ/data/barystatic/coastal_locations.p')
pandas.read_pickle
import random import pandas as pd import math import copy from util import order,weight,maze,check_maze def insert(block, map1, flag, count, area, df): minsize = 50 maxsize = 255 ran_num = random.randint(minsize, maxsize) # 블록 색깔 no_insert = 0 # print(block) # print("반입 함수") pos_loc = [] # 가능 위치 h_yard = block.width # 가로 길이 v_yard = block.height # 세로 길이 num = block.block_number s = maze.Maze(map1.map, h_yard, v_yard) start = s.find_start(flag) for i in start: pos_loc.extend(s.bfs(i)) if len(pos_loc) == 0: # 들어갈 공간 X ,pos_loc 과 start count += 1 area += h_yard * v_yard df.loc[df.block_number == num, 'position_x'] = None df.loc[df.block_number == num, 'position_y'] = None return count, area # print(pos_loc) # print(len(pos_loc)) insert_loc = random.choice(pos_loc) df.loc[df.block_number == num, 'position_x'] = insert_loc[1] df.loc[df.block_number == num, 'position_y'] = insert_loc[0] map1.map[insert_loc[0]:insert_loc[0]+v_yard, insert_loc[1]:insert_loc[1]+h_yard] = 1 map1.map_color[insert_loc[0]:insert_loc[0]+v_yard, insert_loc[1]:insert_loc[1]+h_yard] = ran_num block_data = block.to_dict() # 블록 데이터 가공 block_data['position_x'] = insert_loc[1] block_data['position_y'] = insert_loc[0] map1.block_data(block_data) # 맵 객체에 블록 데이터 추가 return count, area def out(block, map1, count, flag, df, curr): test_map = copy.deepcopy(map1) if math.isnan(block.position_x): # print("문제 발생!!!") # print("반입 금지로 인한 반출X") # print(df) # print(block) # input() return count, df curr_block_index = None num_map = test_map.block_num_map() for index, j in enumerate(test_map.data): # 블록 데이터 pop if j['block_number'] == block.block_number: curr_block_index = index # print(block) # print(num_map) # print(df) map1.data.pop(curr_block_index) test_map.data.pop(curr_block_index) # 밑에 계산 때문에 잠시 제외 # width, height, x, y = trans_data(block) no_out = out_check(block, test_map, flag, 1) # 비용증가 if no_out: # print("드가자 ") # print(num_map) # before = test_map.cv2_map() # before = cv2.resize(before, (600, 600), interpolation=cv2.INTER_NEAREST) # cv2.namedWindow('before', cv2.WINDOW_NORMAL) # cv2.imshow('before', before) # cv2.waitKey(0) obstruct_block_index = None obstruct_block = find_out(test_map.data, block, flag, test_map, num_map) if block.block_number in obstruct_block: obstruct_block.remove(block.block_number) # TODO 간섭 블록 어떻게 할지만 정해주면 됨 for x in obstruct_block: # # 데이터 프레임 추가 # print('현재 인덱스{}'.format(curr)) # print('간섭블록{}'.format(x)) # print(df) # temp = df.loc[df.block_number == x] # print(temp) # temp = temp.iloc[-1] # temp['date'] = df.loc[curr]['date'] # temp['type'] = 1 # temp1 = df[df.index <= curr] # temp2 = df[df.index > curr] # df = temp1.append(temp, ignore_index=True).append(temp2, ignore_index=True) # df.loc[curr + 1] = temp # print(df) # print("자 드가자", x) # print('현재 인덱스{}'.format(curr)) # print('간섭블록{}'.format(x)) # order.order(df) # 데이터 삭제 for index, j in enumerate(map1.data): # 블록 데이터 pop if j['block_number'] == x: obstruct_block_index = index # print('현재 인덱스{}'.format(curr)) # print('간섭블록{}'.format(x)) temp = pd.DataFrame(map1.data[obstruct_block_index], index=[0]) erase =
pd.Series(map1.data[obstruct_block_index])
pandas.Series
import sys import h5py import numpy as np import pandas as pd import numba as nb def readDataset(group, datasetname): ds = group[datasetname][:] if ds.shape[1] == 1: ds = ds.flatten() return ds def create_reference(f): # Gather all index information cols = ['run','subrun','cycle','batch'] dic = {col:readDataset(f['rec.hdr'],col) for col in cols} assert dic['run'].shape[0] # Group together to just the index information df =
pd.DataFrame(dic)
pandas.DataFrame
import os import numpy import pandas as pd import scipy.stats as st os.chdir('/Users/jarvis/Dropbox/Apps/HypertensionOutputs') def summary_cost(int_details,ctrl_m,ctrl_f,trt_m,trt_f, text): int_dwc = 1 / (1 + discount_rate) ** numpy.array(range(time_horizon)) int_c = numpy.array([[prog_cost] * time_horizon for i in range(1)]) int_cost = numpy.sum(numpy.dot(int_c, int_dwc)) female_pop = 188340000 male_pop = 196604000 pop = female_pop + male_pop f_prop = female_pop / pop m_prop = male_pop / pop samples = ctrl_m.shape[0] cs = 0 nq = 0 ic = [0.00 for i in range(samples)] q_gained = [0.00 for i in range(samples)] q_inc_percent = [0.00 for i in range(samples)] htn_cost = [0.00 for i in range(samples)] cvd_cost = [0.00 for i in range(samples)] net_cost = [0.00 for i in range(samples)] exp_inc_per = [0.00 for i in range(samples)] for i in range(samples): q_gained[i] = (((ctrl_m.loc[i, "Average DALYs"] - trt_m.loc[i, "Average DALYs"])* m_prop) + ((ctrl_f.loc[i, "Average DALYs"] - trt_f.loc[i, "Average DALYs"])* f_prop)) q_inc_percent[i] = q_gained[i] * 100/((ctrl_m.loc[i, "Average DALYs"] * m_prop) + (ctrl_f.loc[i, "Average DALYs"] *f_prop)) htn_cost[i] = int_cost + ((trt_m.loc[i, "Average HTN Cost"] - ctrl_m.loc[i, "Average HTN Cost"]) * m_prop) + ((trt_f.loc[i, "Average HTN Cost"] - ctrl_f.loc[i, "Average HTN Cost"]) * f_prop) cvd_cost[i] = ((trt_m.loc[i, "Average CVD Cost"] - ctrl_m.loc[i, "Average CVD Cost"] + trt_m.loc[i, "Average Chronic Cost"] - ctrl_m.loc[i, "Average Chronic Cost"]) * m_prop) + ((trt_f.loc[i, "Average CVD Cost"] - ctrl_f.loc[i, "Average CVD Cost"] + trt_f.loc[i, "Average Chronic Cost"] - ctrl_f.loc[i, "Average Chronic Cost"]) * f_prop) exp_inc_per[i] = (((trt_m.loc[i, "Average Cost"] - ctrl_m.loc[i, "Average Cost"] + int_cost) * m_prop) + ((trt_f.loc[i, "Average Cost"] - ctrl_f.loc[i, "Average Cost"] + int_cost) * f_prop)) * 100 / ((ctrl_m.loc[i, "Average Cost"] * m_prop ) + (ctrl_f.loc[i, "Average Cost"] * f_prop)) net_cost[i] = htn_cost[i] + cvd_cost[i] ic[i] = net_cost[i] / q_gained[i] if net_cost[i] < 0: cs = cs + 1 if q_gained[i] < 0: nq = nq + 1 budget_impact = numpy.mean(net_cost) * pop / time_horizon htn_percap = numpy.mean(htn_cost) / time_horizon cvd_percap = numpy.mean(cvd_cost) / time_horizon htn_annual = numpy.mean(htn_cost) * pop / time_horizon cvd_annual = numpy.mean(cvd_cost) * pop / time_horizon cost_inc = numpy.mean(exp_inc_per) ICER = numpy.mean(ic) QALY = numpy.mean(q_inc_percent) HTN = numpy.mean(htn_cost) CVD = numpy.mean(cvd_cost) icer_95 = st.t.interval(0.95, samples - 1, loc=numpy.mean(ic), scale=st.sem(ic)) qaly_95 = st.t.interval(0.95, samples - 1, loc=numpy.mean(q_inc_percent), scale=st.sem(q_inc_percent)) htn = st.t.interval(0.95, samples - 1, loc=numpy.mean(htn_cost), scale=st.sem(htn_cost)) cvd = st.t.interval(0.95, samples - 1, loc=numpy.mean(cvd_cost), scale=st.sem(cvd_cost)) cost_inc_95 = st.t.interval(0.95, samples - 1, loc=numpy.mean(exp_inc_per), scale=st.sem(exp_inc_per)) if budget_impact < 0: m_icer = 'Cost Saving' s_icer = 'CS' else: m_icer = numpy.mean(net_cost) / numpy.mean(q_gained) s_icer = str(numpy.round(m_icer,1)) m_daly = str(numpy.round(QALY,3)) + "\n(" + str(numpy.round(qaly_95[0],3)) + " to " + str(numpy.round(qaly_95[1],3)) + ")" m_htn = str(numpy.round(HTN,2)) + "\n(" + str(numpy.round(htn[0],2)) + " to " + str(numpy.round(htn[1],2)) + ")" m_cvd = str(numpy.round(CVD,2)) + "\n(" + str(numpy.round(cvd[0],2)) + " to " + str(numpy.round(cvd[1],2)) + ")" m_costinc = str(numpy.round(cost_inc, 2)) + "\n(" + str(numpy.round(cost_inc_95[0], 2)) + " to " + str(numpy.round(cost_inc_95[1], 2)) + ")" m_budget = str(numpy.round(budget_impact,0)/1000) err_cost = 1.96 * st.sem(exp_inc_per) err_daly = 1.96 * st.sem(q_inc_percent) str_icer = text + " (" + s_icer + ")" detailed = [int_details[2], int_details[0], int_details[1], int_details[3], int_details[4], ICER, icer_95[0],icer_95[1], QALY, qaly_95[0], qaly_95[1], htn[0], htn[1], cvd[0], cvd[1], budget_impact, htn_annual, cvd_annual, htn_percap, cvd_percap, cs, nq] manuscript = [int_details[2], int_details[0], int_details[1], int_details[3], int_details[4], m_icer, m_daly, m_costinc, m_htn, m_cvd, m_budget, cs] plot = [text, str_icer, cost_inc, QALY, err_cost, err_daly] return detailed, manuscript, plot summary_output = [] appendix_output = [] plot_output = [] '''Analysis 0: Baseline''' time_horizon = 20 prog_cost = 0.13 discount_rate = 0.03 os.chdir('/Users/jarvis/Dropbox/Apps/HypertensionOutputs/15Aug_AWS3') fname = [0.4, 0.3, 0, 0.8, 0.6] file_name_m = ("Aspire_Male_Cov_" + str(fname[0]) + "_Comp_" + str(fname[1]) + "_Pro_" + str(round(fname[2])) + "_Ini_" + str(fname[3]) + "_Per_" + str( fname[4]) + ".csv") file_name_f = ("Aspire_Female_Cov_" + str(fname[0]) + "_Comp_" + str(fname[1]) + "_Pro_" + str(round(fname[2])) + "_Ini_" + str(fname[3]) + "_Per_" + str( fname[4]) + ".csv") control_m = pd.read_csv(file_name_m) control_f = pd.read_csv(file_name_f) fname = [0.7, 0.7, 1, 0.8, 0.8] file_name_m = ("Aspire_Male_Cov_" + str(fname[0]) + "_Comp_" + str(fname[1]) + "_Pro_" + str(round(fname[2])) + "_Ini_" + str(fname[3]) + "_Per_" + str( fname[4]) + ".csv") file_name_f = ("Aspire_Female_Cov_" + str(fname[0]) + "_Comp_" + str(fname[1]) + "_Pro_" + str(round(fname[2])) + "_Ini_" + str(fname[3]) + "_Per_" + str( fname[4]) + ".csv") treatment_f = pd.read_csv(file_name_f) treatment_m = pd.read_csv(file_name_m) res = summary_cost(fname, control_m, control_f, treatment_m, treatment_f,'Base Case') summary_output.append(res[0]) appendix_output.append(res[1]) plot_output.append(res[2]) '''Analysis 1: Doubled Medication Cost''' time_horizon = 20 prog_cost = 0.13 discount_rate = 0.03 os.chdir('/Users/jarvis/Dropbox/Apps/HypertensionOutputs/PSAFinal') fname = [0.4, 0.3, 0, 0.8, 0.6, 2, 0, 20] file_name_m = ("Aspire_Male_Cov_" + str(fname[0]) + "_Comp_" + str(fname[1]) + "_Pro_" + str(round(fname[2])) + "_Ini_" + str(fname[3]) + "_Per_" + str( fname[4]) +"_CF_"+ str(fname[5]) + "_RR_"+ str(fname[6]) + "_TH_"+ str(fname[7]) + ".csv") file_name_f = ("Aspire_Female_Cov_" + str(fname[0]) + "_Comp_" + str(fname[1]) + "_Pro_" + str(round(fname[2])) + "_Ini_" + str(fname[3]) + "_Per_" + str( fname[4]) +"_CF_"+ str(fname[5]) + "_RR_"+ str(fname[6]) + "_TH_"+ str(fname[7]) + ".csv") control_m = pd.read_csv(file_name_m) control_f = pd.read_csv(file_name_f) fname = [0.7, 0.7, 1, 0.8, 0.8, 2, 0, 20] file_name_f = ("Aspire_Female_Cov_" + str(fname[0]) + "_Comp_" + str(fname[1]) + "_Pro_" + str(round(fname[2])) + "_Ini_" + str(fname[3]) + "_Per_" + str( fname[4]) +"_CF_"+ str(fname[5]) + "_RR_"+ str(fname[6]) + "_TH_"+ str(fname[7]) + ".csv") file_name_m = ("Aspire_Male_Cov_" + str(fname[0]) + "_Comp_" + str(fname[1]) + "_Pro_" + str(round(fname[2])) + "_Ini_" + str(fname[3]) + "_Per_" + str( fname[4]) +"_CF_"+ str(fname[5]) + "_RR_"+ str(fname[6]) + "_TH_"+ str(fname[7]) + ".csv") treatment_f = pd.read_csv(file_name_f) treatment_m = pd.read_csv(file_name_m) res = summary_cost(fname, control_m, control_f, treatment_m, treatment_f,'2X Medication Cost') summary_output.append(res[0]) appendix_output.append(res[1]) plot_output.append(res[2]) '''Analysis 2: Increased Programmatic Cost''' time_horizon = 20 prog_cost = 0.13*4 discount_rate = 0.03 os.chdir('/Users/jarvis/Dropbox/Apps/HypertensionOutputs/15Aug_AWS3') fname = [0.4, 0.3, 0, 0.8, 0.6] file_name_m = ("Aspire_Male_Cov_" + str(fname[0]) + "_Comp_" + str(fname[1]) + "_Pro_" + str(round(fname[2])) + "_Ini_" + str(fname[3]) + "_Per_" + str( fname[4]) + ".csv") file_name_f = ("Aspire_Female_Cov_" + str(fname[0]) + "_Comp_" + str(fname[1]) + "_Pro_" + str(round(fname[2])) + "_Ini_" + str(fname[3]) + "_Per_" + str( fname[4]) + ".csv") control_m = pd.read_csv(file_name_m) control_f = pd.read_csv(file_name_f) fname = [0.7, 0.7, 1, 0.8, 0.8] file_name_m = ("Aspire_Male_Cov_" + str(fname[0]) + "_Comp_" + str(fname[1]) + "_Pro_" + str(round(fname[2])) + "_Ini_" + str(fname[3]) + "_Per_" + str( fname[4]) + ".csv") file_name_f = ("Aspire_Female_Cov_" + str(fname[0]) + "_Comp_" + str(fname[1]) + "_Pro_" + str(round(fname[2])) + "_Ini_" + str(fname[3]) + "_Per_" + str( fname[4]) + ".csv") treatment_f = pd.read_csv(file_name_f) treatment_m = pd.read_csv(file_name_m) res = summary_cost(fname, control_m, control_f, treatment_m, treatment_f,'4X Programmatic Cost') summary_output.append(res[0]) appendix_output.append(res[1]) plot_output.append(res[2]) '''Analysis 3: 20% reduction in baseline CVD risk''' time_horizon = 20 prog_cost = 0.13 discount_rate = 0.03 os.chdir('/Users/jarvis/Dropbox/Apps/HypertensionOutputs/PSAFinal') fname = [0.4, 0.3, 0, 0.8, 0.6, 1, 0.2, 20] file_name_m = ("Aspire_Male_Cov_" + str(fname[0]) + "_Comp_" + str(fname[1]) + "_Pro_" + str(round(fname[2])) + "_Ini_" + str(fname[3]) + "_Per_" + str( fname[4]) +"_CF_"+ str(fname[5]) + "_RR_"+ str(fname[6]) + "_TH_"+ str(fname[7]) + ".csv") file_name_f = ("Aspire_Female_Cov_" + str(fname[0]) + "_Comp_" + str(fname[1]) + "_Pro_" + str(round(fname[2])) + "_Ini_" + str(fname[3]) + "_Per_" + str( fname[4]) +"_CF_"+ str(fname[5]) + "_RR_"+ str(fname[6]) + "_TH_"+ str(fname[7]) + ".csv") control_m = pd.read_csv(file_name_m) control_f = pd.read_csv(file_name_f) fname = [0.7, 0.7, 1, 0.8, 0.8, 1, 0.2, 20] file_name_f = ("Aspire_Female_Cov_" + str(fname[0]) + "_Comp_" + str(fname[1]) + "_Pro_" + str(round(fname[2])) + "_Ini_" + str(fname[3]) + "_Per_" + str( fname[4]) +"_CF_"+ str(fname[5]) + "_RR_"+ str(fname[6]) + "_TH_"+ str(fname[7]) + ".csv") file_name_m = ("Aspire_Male_Cov_" + str(fname[0]) + "_Comp_" + str(fname[1]) + "_Pro_" + str(round(fname[2])) + "_Ini_" + str(fname[3]) + "_Per_" + str( fname[4]) +"_CF_"+ str(fname[5]) + "_RR_"+ str(fname[6]) + "_TH_"+ str(fname[7]) + ".csv") treatment_f =
pd.read_csv(file_name_f)
pandas.read_csv
#!/usr/bin/env python r"""Test :py:class:`~solarwindpy.core.vector.Vector` and :py:class:`~solarwindpy.core.tensor.Tensor`. """ import pdb # import re as re import numpy as np import pandas as pd import unittest import sys import pandas.testing as pdt from unittest import TestCase from abc import ABC, abstractproperty from scipy import constants # import test_base as base from solarwindpy.tests import test_base as base from solarwindpy import vector from solarwindpy import tensor pd.set_option("mode.chained_assignment", "raise") class QuantityTestBase(ABC): def test_data(self): data = self.data if isinstance(data, pd.Series): pdt.assert_series_equal(data, self.object_testing.data) else: pdt.assert_frame_equal(data, self.object_testing.data) def test_eq(self): print_inline_debug = False object_testing = self.object_testing # ID should be equal. self.assertEqual(object_testing, object_testing) # Data and type should be equal. new_object = object_testing.__class__(object_testing.data) if print_inline_debug: print( "<Test>", "<object_testing>", type(object_testing), object_testing, object_testing.data, "<new_object>", type(new_object), new_object, new_object.data, "", sep="\n", ) self.assertEqual(object_testing, new_object) def test_neq(self): object_testing = self.object_testing # Data isn't equal self.assertNotEqual( object_testing, object_testing.__class__(object_testing.data * 4) ) # Type isn't equal for other in ( [], tuple(), np.array([]), pd.Series(dtype=np.float64), pd.DataFrame(dtype=np.float64), ): self.assertNotEqual(object_testing, other) def test_empty_data_catch(self): with self.assertRaisesRegex( ValueError, "You can't set an object with empty data." ): self.object_testing.__class__(pd.DataFrame()) ##### # Vectors ##### class VectorTestBase(QuantityTestBase): def test_components(self): # print("test_components") # print(self.data.iloc[:, :7], flush=True) v = self.data # print(v, file=sys.stdout) pdt.assert_series_equal(v.x, self.object_testing.x) pdt.assert_series_equal(v.y, self.object_testing.y) pdt.assert_series_equal(v.z, self.object_testing.z) def test_mag(self): # print("test_mag") # print(self.data.iloc[:, :7], flush=True) x = self.data.x y = self.data.y z = self.data.z # print(v, file=sys.stdout) mag = np.sqrt(x.pow(2) + y.pow(2) + z.pow(2)) # mag = self.data.loc[:, ["x", "y", "z"]].pow(2).sum(axis=1).pipe(np.sqrt) mag.name = "mag" # print("", self.data, mag, self.object_testing.mag, sep="\n") pdt.assert_series_equal(mag, self.object_testing.mag) pdt.assert_series_equal(mag, self.object_testing.magnitude) pdt.assert_series_equal(self.object_testing.mag, self.object_testing.magnitude) def test_rho(self): # print("test_rho") x = self.data.x y = self.data.y rho = np.sqrt(x.pow(2) + y.pow(2)) rho.name = "rho" pdt.assert_series_equal(rho, self.object_testing.rho) def test_colat(self): # print("test_colat") x = self.data.x y = self.data.y z = self.data.z colat = np.arctan2(z, np.sqrt(x.pow(2) + y.pow(2))) colat = np.rad2deg(colat) colat.name = "colat" pdt.assert_series_equal(colat, self.object_testing.colat) def test_longitude(self): # print("test_longitude") x = self.data.x y = self.data.y lon = np.arctan2(y, x) lon = np.rad2deg(lon) lon.name = "longitude" pdt.assert_series_equal(lon, self.object_testing.lon) pdt.assert_series_equal(lon, self.object_testing.longitude) pdt.assert_series_equal(self.object_testing.lon, self.object_testing.longitude) def test_r(self): # print("test_r") x = self.data.x y = self.data.y z = self.data.z r = np.sqrt(x.pow(2) + y.pow(2) + z.pow(2)) r.name = "r" pdt.assert_series_equal(r, self.object_testing.r) pdt.assert_series_equal(r, self.object_testing.mag, check_names=False) pdt.assert_series_equal( self.object_testing.r, self.object_testing.mag, check_names=False ) def test_cartesian(self): v = self.data.loc[:, ["x", "y", "z"]] pdt.assert_frame_equal(v, self.object_testing.cartesian) def test_unit_vector(self): v = self.data.loc[:, ["x", "y", "z"]] mag = v.pow(2).sum(axis=1).pipe(np.sqrt) uv = v.divide(mag, axis=0) uv.name = "uv" uv = vector.Vector(uv) pdt.assert_frame_equal(uv.data, self.object_testing.unit_vector.data) pdt.assert_frame_equal(uv.data, self.object_testing.uv.data) pdt.assert_frame_equal( self.object_testing.uv.data, self.object_testing.unit_vector.data ) self.assertEqual(uv, self.object_testing.unit_vector) self.assertEqual(uv, self.object_testing.uv) self.assertEqual(self.object_testing.unit_vector, self.object_testing.uv) def test_project(self): b = ( base.TestData() .plasma_data.xs("b", axis=1, level="M") .xs("", axis=1, level="S") .loc[:, ["x", "y", "z"]] ) # b.setUpClass() # b = ( # b.data.b.loc[:, ["x", "y", "z"]] # .xs("", axis=1, level="S") # .xs("", axis=1, level="N") # ) bmag = b.pow(2).sum(axis=1).pipe(np.sqrt) buv = b.divide(bmag, axis=0) v = self.data.loc[:, ["x", "y", "z"]] vmag = v.pow(2).sum(axis=1).pipe(np.sqrt) # vuv = v.divide(vmag, axis=0) par = v.multiply(buv, axis=1).sum(axis=1) per = ( v.subtract(buv.multiply(par, axis=0), axis=1) .pow(2) .sum(axis=1) .pipe(np.sqrt) ) projected = pd.concat([par, per], axis=1, keys=["par", "per"], sort=True) # print("", # "<Test>", # "<buv>", type(buv), buv, # "<v>", type(v), v, # "<vmag>", type(vmag), vmag, # "<vuv>", type(vuv), vuv, # "<projected>", type(projected), projected, # "", # sep="\n") b = vector.Vector(b) pdt.assert_frame_equal(projected, self.object_testing.project(b)) # Projecting a thing onto itself should return 1 for parallel # and 0 for perp. per = pd.Series(0.0, index=per.index) projected = pd.concat([vmag, per], axis=1, keys=["par", "per"], sort=True) pdt.assert_frame_equal( projected, self.object_testing.project(self.object_testing) ) msg = "`project` method needs" with self.assertRaisesRegex(NotImplementedError, msg): self.object_testing.project(b.data) def test_cos_theta(self): # b = base.TestData() # b.setUpClass() # b = ( # b.data.b.loc[:, ["x", "y", "z"]] # .xs("", axis=1, level="S") # .xs("", axis=1, level="N") # ) b = ( base.TestData() .plasma_data.xs("b", axis=1, level="M") .xs("", axis=1, level="S") .loc[:, ["x", "y", "z"]] ) bmag = b.pow(2).sum(axis=1).pipe(np.sqrt) buv = b.divide(bmag, axis=0) v = self.data.loc[:, ["x", "y", "z"]] vmag = v.pow(2).sum(axis=1).pipe(np.sqrt) vuv = v.divide(vmag, axis=0) cos_theta = vuv.multiply(buv, axis=1).sum(axis=1) # print("", # "<Test>", # "<buv>", type(buv), buv, # "<v>", type(v), v, # "<vmag>", type(vmag), vmag, # "<vuv>", type(vuv), vuv, # "<cos_theta>", type(cos_theta), cos_theta, # "", # sep="\n") b = vector.BField(b) pdt.assert_series_equal(cos_theta, self.object_testing.cos_theta(b)) # Projecting a thing onto itself should return 1 for parallel # and 0 for perp. v = vector.Vector(v) vuv = vector.Vector(vuv) par = pd.Series(1.0, index=vmag.index) pdt.assert_series_equal(par, self.object_testing.cos_theta(v)) pdt.assert_series_equal(par, self.object_testing.cos_theta(vuv)) msg = "`project` method needs" with self.assertRaisesRegex(NotImplementedError, msg): self.object_testing.project(b.data) # class TestGSE(VectorTestBase, base.SWEData): # @classmethod # def set_object_testing(cls): # # print("TestGSE.set_object_testing", flush=True) # data = cls.data.gse.xs("", axis=1, level="S") # gse = vector.Vector(data) # cls.object_testing = gse # cls.data = data # # print("Done with TestGSE.set_object_testing", flush=True) class TestBField(VectorTestBase, base.SWEData): @classmethod def set_object_testing(cls): # print("BField.set_object_testing", flush=True) data = cls.data.b.xs("", axis=1, level="S") # b = vector.Vector(data) b = vector.BField(data) cls.object_testing = b cls.data = data # print("Done with BField.set_object_testing", flush=True) def test_pressure(self): print_inline_debug = False bsq = self.data.loc[:, ["x", "y", "z"]].pow(2.0).sum(axis=1) const = 1e-18 / (2.0 * constants.mu_0 * 1e-12) # ([b]**2 / 2.0 * \mu_0 * [p]) pb = bsq * const pb.name = "pb" # ot = self.object_testing # pdb.set_trace() if print_inline_debug: print( "", "<Test>", "<bsq>", type(bsq), bsq, "<const>: %s" % const, "<pb>", type(pb), pb, sep="\n", end="\n\n", ) print( "<Module>", "<object testing>", type(self.object_testing), self.object_testing, "<dir(ot)>", *dir(self.object_testing), sep="\n", end="\n\n" ) pdt.assert_series_equal(pb, self.object_testing.pressure) pdt.assert_series_equal(pb, self.object_testing.pb)
pdt.assert_series_equal(self.object_testing.pressure, self.object_testing.pb)
pandas.testing.assert_series_equal
#primer ''' __author__ = "<NAME>" __Copyright__ "Copyright September 2019, <NAME>" __License__ = "GPL" __email__ "<EMAIL>" ''' import os, glob import numpy as np import pandas as pd import Bio from Bio.Seq import MutableSeq, Seq from Bio import SeqIO from Bio.SeqUtils import GC from typing import Tuple def degenerate_primer(primer:'Bio.Seq.MutableSeq') -> str: forward = (str(primer),) for i in range(0, len(primer)): for j in range(0, len(forward)): primer = MutableSeq(forward[j]) if (primer[i] == 'A') or (primer[i] == 'C') or (primer[i] == 'G') or (primer[i] == 'T'): pass else: forward = degenerate_primer_list(forward, primer, i, primer[i]) return forward def degenerate_primer_list(forward:'str', primer:'Bio.Seq.MutableSeq', i:'int', letter:'str') -> str: R = ['A', 'G', 'R'] M = ['A', 'C', 'M'] S = ['C', 'G', 'S'] B = ['C', 'G', 'T', 'B'] H = ['A', 'C', 'T', 'H'] N = ['A', 'C', 'G', 'T', 'N'] Y = ['C', 'T', 'Y'] K = ['G', 'T', 'K'] W = ['A', 'T', 'W'] D = ['A', 'G', 'T', 'D'] V = ['A', 'C', 'G', 'V'] mixed_nucleotides = [R, M, S, B, H, N, Y, K, W, D, V] mixed_strings = ['R', 'M', 'S', 'B', 'H', 'N', 'Y', 'K', 'W', 'D', 'V'] k = 0 for string in mixed_strings: if letter == string: break else: k = k+1 for basepair in mixed_nucleotides[k]: primer[i] = basepair forward = forward + (str(primer),) return forward def forward_primer_search(species:'str', forward_primer:'tuple') -> Tuple[str, str, str]: primer_match_query = [] fwd_primer_set = [] init_len = len(species) for i in range(0,len(forward_primer)): primer_match_query.append(species.find(forward_primer[i])) fwd_primer_set.append(forward_primer[i]) if all(item == -1 for item in primer_match_query): return str(''), str('N/a'), str('N/a') else: for k in range(0, len(primer_match_query)): if primer_match_query[k] != -1: forward_amplicon_segment = species[primer_match_query[k]:len(species)] fwd_primer_used = forward_primer[k] foward_primer_position = len(species) - len(forward_amplicon_segment) else: pass return forward_amplicon_segment, fwd_primer_used, foward_primer_position def reverse_primer_search(species:'str', reverse_primer_set:'tuple') -> Tuple[str, str, str]: primer_match_query = [] rev_primer_set = [] for i in range(0,len(reverse_primer_set)): reverse_primer = Seq(reverse_primer_set[i]) reverse_primer_complement = str(reverse_primer.reverse_complement()) primer_match_query.append(species.find(reverse_primer_complement)) rev_primer_set.append(reverse_primer_complement) if all(item == -1 for item in primer_match_query): return str(''), str('N/a'), str('N/a') else: for j in range(0,len(primer_match_query)): if primer_match_query[j] != -1: amplicon_segment = species[0:primer_match_query[j]+len(reverse_primer_complement)] rev_primer_used = rev_primer_set[j] reverse_primer_position = len(amplicon_segment)-len(reverse_primer_complement) else: pass return amplicon_segment, rev_primer_used, reverse_primer_position def create_PCR_amplicon(core_data:'pd.DataFrame', rev_tup:'tuple', fwd_tup:'tuple') -> pd.DataFrame: add_on_data = [] all_sequnces = [] for item in core_data['Record id']: [item_rev, rev_primer_used, reverse_primer_position] = reverse_primer_search(core_data.loc[(core_data['Record id'] == item)]['16S Sequence'].item(), rev_tup) [item_amplicon, fwd_primer_used, forward_primer_position] = forward_primer_search(item_rev, fwd_tup) add_on_data.append([core_data.loc[(core_data['Record id'] == item)]['Species'].item(), item, fwd_primer_used, forward_primer_position, rev_primer_used, reverse_primer_position, round(GC(item_amplicon), 1), len(item_amplicon), item_amplicon]) columns = ['Species', 'Record id', 'Forward Primer', 'forward_primer_position', 'Reverse Primer', 'reverse_primer_position', 'GC Content', 'Length of Amplicon', 'Amplicon',] calculated_data =
pd.DataFrame(add_on_data, columns=columns)
pandas.DataFrame
import glob import pandas as pd import os import folium import dataretrieval.nwis as nwis import requests import geopandas as gpd import rioxarray def catalogue_csv(input_fold): os.chdir(input_fold) band=input_fold.split("/")[len(input_fold.split("/"))-1] path_parent = os.path.dirname(input_fold) csv_fold=path_parent+'/coastcorr_csv' res_out=csv_fold+'/'+band+"_combined_csv.csv" if not os.path.exists(csv_fold): os.makedirs(csv_fold) if not os.path.exists(res_out): print('combined csv not located, combining csv files') #create list of files in folder extension = 'csv' all_filenames = [i for i in glob.glob('*.{}'.format(extension))] #combine all files in the list combined_csv = pd.concat([pd.read_csv(f) for f in all_filenames ]) res = combined_csv.pivot_table(index=['Date'], columns='geometry', values='data', aggfunc='first').reset_index() print('csv files combined') res.to_csv(res_out) print('saved to file') print('Done') def get_data(envin,station_name,csv_folder): if envin == 'River Discharge': collector='USGS' site_path=os.path.dirname(os.path.dirname(os.path.dirname(csv_folder))) env_fold=site_path+'/environmental_data_csv' collec_fold=env_fold+'/'+collector file_out= collec_fold+"/"+station_name+'.csv' print('checking to see if data already downloaded') if not os.path.exists(env_fold): os.makedirs(env_fold) if not os.path.exists(collec_fold): os.makedirs(collec_fold) if not os.path.exists(file_out): print('data not downloaded, downloading data') files = os.listdir(csv_folder) sorted_files = sorted(files) start=sorted_files[0].split(".")[0] end=sorted_files[(len(sorted_files)-1)].split(".")[0] env_df=nwis.get_record(sites=station_name, service='iv', start=start, end=end) env_df= env_df.reset_index() env_df.to_csv(file_out) print('USGS Gauge:', station_name, 'Data Pulled') if envin == 'Modeled Wave Energy': collector='CDIP' site_path=os.path.dirname(os.path.dirname(os.path.dirname(csv_folder))) env_fold=site_path+'/environmental_data_csv' collec_fold=env_fold+'/'+collector file_out= collec_fold+"/"+station_name+'.csv' print('checking to see if data already downloaded') if not os.path.exists(env_fold): os.makedirs(env_fold) if not os.path.exists(collec_fold): os.makedirs(collec_fold) if not os.path.exists(file_out): print('data not downloaded, downloading data') files = os.listdir(csv_folder) sorted_files = sorted(files) start=sorted_files[0] end=sorted_files[(len(sorted_files)-1)] env_df=nwis.get_record(sites=station_name, service='iv', start=start, end=end) env_df= env_df.reset_index() env_df.to_csv(file_out) print('USGS Gauge:', station_name, 'Data Pulled') def data_binner(env_df, sr_df, binval, station_name, csv_folder, sat, envin): if envin == 'River Discharge': if sat in ['MODIS Aqua','MODIS Terra']: freq=binval+'h' collector='USGS' site_path=os.path.dirname(os.path.dirname(os.path.dirname(csv_folder))) env_fold=site_path+'/environmental_data_csv' collec_fold=env_fold+'/'+collector file_out= collec_fold+"/"+station_name+'_'+freq+'.csv' if not os.path.exists(file_out): df_sr=sr_df df_env=env_df df_env['datetime']=pd.to_datetime(df_env['datetime'], utc=True) #convert usgs data from pdt and pst to utc df_env['datetime']=df_env['datetime'].dt.tz_convert('ETC/UTC') df_env['datetime'] = pd.to_datetime(df_env['datetime'], errors='coerce', format='%Y-%m-%d %H:%M:%S') df_env['Time'] = pd.to_datetime(df_env['datetime'], format='%H:%M:%S') df_env['Hour'] = df_env['Time'].dt.hour print('Data Time Zone Converted') #convert discharge to cms df_env['Q']=df_env['00060']*0.028316847 df_env=df_env.drop(columns='Time') df_env=df_env.drop(columns='00060') df_env=df_env.drop(columns='00060_cd') df_env=df_env.drop(columns='site_no') df_env=df_env.drop(columns='00065') df_env=df_env.drop(columns='00065_cd') df_env.index=df_env['datetime'] df_env=df_env.resample('H').mean() #convert to hourly averages df_env=df_env.resample('H').mean() df_env=df_env.groupby(pd.Grouper(level=0, base=20, freq=freq)).mean() df_env=df_env.reset_index() df_env['Date']=df_env['datetime'].dt.date df_env=df_env.drop(columns='datetime') df_env['Q'] = df_env.Q.shift(1) print('Data Binned to Overpass Time') lwrbnd=df_env['Q'].quantile(float(int0.value)) upperbnd=df_env['Q'].quantile(float(int1.value)) #subset environmental dataframe with percentiles df_env=df_env[df_env['Q']>lwrbnd] df_env=df_env[df_env['Q']<=upperbnd] #merge sr dataframe and environmental dataframe df_sr['Date']=pd.to_datetime(df_sr['Date'], errors='coerce', format='%Y-%m-%d') df_env['Date']=
pd.to_datetime(df_sr['Date'], errors='coerce', format='%Y-%m-%d')
pandas.to_datetime
import pandas as pd import numpy as np import math import os from scipy.interpolate import interp1d import time from sklearn.ensemble import RandomForestRegressor import xgboost as xgb from lightgbm import LGBMRegressor from catboost import CatBoostRegressor from information_measures import * from joblib import Parallel, delayed #from arch import arch_model def rmspe(y_true, y_pred): return (np.sqrt(np.mean(np.square((y_true - y_pred) / y_true)))) def log_return(list_stock_prices): # Stock prices are estimated through wap values return np.log(list_stock_prices).diff() def realized_volatility(series_log_return): return np.sqrt(np.sum(series_log_return**2)) def compute_wap(book_pd): wap = (book_pd['bid_price1'] * book_pd['ask_size1'] + book_pd['ask_price1'] * book_pd['bid_size1']) / (book_pd['bid_size1']+ book_pd['ask_size1']) return wap def realized_volatility_from_book_pd(book_stock_time): wap = compute_wap(book_stock_time) returns = log_return(wap) volatility = realized_volatility(returns) return volatility def realized_volatility_per_time_id(file_path, prediction_column_name): df_book_data = pd.read_parquet(file_path) # Estimate stock price per time point df_book_data['wap'] = compute_wap(df_book_data) # Compute log return from wap values per time_id df_book_data['log_return'] = df_book_data.groupby(['time_id'])['wap'].apply(log_return) df_book_data = df_book_data[~df_book_data['log_return'].isnull()] # Compute the square root of the sum of log return squared to get realized volatility df_realized_vol_per_stock = pd.DataFrame(df_book_data.groupby(['time_id'])['log_return'].agg(realized_volatility)).reset_index() # Formatting df_realized_vol_per_stock = df_realized_vol_per_stock.rename(columns = {'log_return':prediction_column_name}) stock_id = file_path.split('=')[1] df_realized_vol_per_stock['row_id'] = df_realized_vol_per_stock['time_id'].apply(lambda x:f'{stock_id}-{x}') return df_realized_vol_per_stock[['row_id',prediction_column_name]] def past_realized_volatility_per_stock(list_file,prediction_column_name): df_past_realized = pd.DataFrame() for file in list_file: df_past_realized = pd.concat([df_past_realized, realized_volatility_per_time_id(file,prediction_column_name)]) return df_past_realized def stupidForestPrediction(book_path_train,prediction_column_name,train_targets_pd,book_path_test): naive_predictions_train = past_realized_volatility_per_stock(list_file=book_path_train,prediction_column_name=prediction_column_name) df_joined_train = train_targets_pd.merge(naive_predictions_train[['row_id','pred']], on = ['row_id'], how = 'left') X = np.array(df_joined_train['pred']).reshape(-1,1) y = np.array(df_joined_train['target']).reshape(-1,) regr = RandomForestRegressor(random_state=0) regr.fit(X, y) naive_predictions_test = past_realized_volatility_per_stock(list_file=book_path_test,prediction_column_name='target') yhat = regr.predict(np.array(naive_predictions_test['target']).reshape(-1,1)) updated_predictions = naive_predictions_test.copy() updated_predictions['target'] = yhat return updated_predictions def garch_fit_predict_volatility(returns_series, N=10000): model = arch_model(returns_series * N, p=1, q=1) model_fit = model.fit(update_freq=0, disp='off') yhat = model_fit.forecast(horizon=600, reindex=False) pred_volatility = np.sqrt(np.sum(yhat.variance.values)) / N return pred_volatility def garch_volatility_per_time_id(file_path, prediction_column_name): # read the data df_book_data = pd.read_parquet(file_path) # calculate the midprice (not the WAP) df_book_data['midprice'] =(df_book_data['bid_price1'] + df_book_data['ask_price1'])/2 # leave only WAP for now df_book_data = df_book_data[['time_id', 'seconds_in_bucket', 'midprice']] df_book_data = df_book_data.sort_values('seconds_in_bucket') # make the book updates evenly spaced df_book_data_evenly = pd.DataFrame({'time_id':np.repeat(df_book_data['time_id'].unique(), 600), 'second':np.tile(range(0,600), df_book_data['time_id'].nunique())}) df_book_data_evenly['second'] = df_book_data_evenly['second'].astype(np.int16) df_book_data_evenly = df_book_data_evenly.sort_values('second') df_book_data_evenly = pd.merge_asof(df_book_data_evenly, df_book_data, left_on='second',right_on='seconds_in_bucket', by = 'time_id') # Ordering for easier use df_book_data_evenly = df_book_data_evenly[['time_id', 'second', 'midprice']] df_book_data_evenly = df_book_data_evenly.sort_values(['time_id','second']).reset_index(drop=True) # calculate log returns df_book_data_evenly['log_return'] = df_book_data_evenly.groupby(['time_id'])['midprice'].apply(log_return) df_book_data_evenly = df_book_data_evenly[~df_book_data_evenly['log_return'].isnull()] # fit GARCH(1, 1) and predict the volatility of returns df_garch_vol_per_stock = \ pd.DataFrame(df_book_data_evenly.groupby(['time_id'])['log_return'].agg(garch_fit_predict_volatility)).reset_index() df_garch_vol_per_stock = df_garch_vol_per_stock.rename(columns = {'log_return':prediction_column_name}) # add row_id column to the data stock_id = file_path.split('=')[1] df_garch_vol_per_stock['row_id'] = df_garch_vol_per_stock['time_id'].apply(lambda x:f'{stock_id}-{x}') # return the result return df_garch_vol_per_stock[['row_id', prediction_column_name]] def garch_volatility_per_stock(list_file, prediction_column_name): df_garch_predicted = pd.DataFrame() for file in list_file: df_garch_predicted = pd.concat([df_garch_predicted, garch_volatility_per_time_id(file, prediction_column_name)]) return df_garch_predicted def entropy_from_book(book_stock_time,last_min): if last_min < 10: book_stock_time = book_stock_time[book_stock_time['seconds_in_bucket'] >= (600-last_min*60)] if book_stock_time.empty == True or book_stock_time.shape[0] < 3: return 0 wap = compute_wap(book_stock_time) t_init = book_stock_time['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, wap, kind='nearest') resampled_wap = nearest(t_new) # Compute sample entropy # sampleEntropy = nolds.sampen(resampled_wap) sampleEntropy = sampen(resampled_wap) return sampleEntropy def entropy_from_wap(wap,seconds,last_seconds): if last_seconds < 600: idx = np.where(seconds >= last_seconds)[0] if len(idx) < 3: return 0 else: wap = wap[idx] seconds = seconds[idx] # Closest neighbour interpolation (no changes in wap between lines) t_new = np.arange(np.min(seconds),np.max(seconds)) nearest = interp1d(seconds, wap, kind='nearest') resampled_wap = nearest(t_new) # Compute sample entropy # sampleEntropy = nolds.sampen(resampled_wap) sampleEntropy = sampen(resampled_wap) # sampleEntropy = ApEn_new(resampled_wap,3,0.001) return sampleEntropy def linearFit(book_stock_time, last_min): if last_min < 10: book_stock_time = book_stock_time[book_stock_time['seconds_in_bucket'] >= (600-last_min*60)] if book_stock_time.empty == True or book_stock_time.shape[0] < 2: return 0 wap = np.array(compute_wap(book_stock_time)) t_init = book_stock_time['seconds_in_bucket'] return (wap[-1] - wap[0])/(np.max(t_init) - np.min(t_init)) def wapStat(book_stock_time, last_min): if last_min < 10: book_stock_time = book_stock_time[book_stock_time['seconds_in_bucket'] >= (600-last_min*60)] if book_stock_time.empty == True or book_stock_time.shape[0] < 2: return 0 wap = compute_wap(book_stock_time) t_init = book_stock_time['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, wap, kind='nearest') resampled_wap = nearest(t_new) return np.std(resampled_wap) def entropy_Prediction(book_path_train,prediction_column_name,train_targets_pd,book_path_test,all_stocks_ids,test_file): # Compute features book_features_encoded_test = computeFeatures_1(book_path_test,'test',test_file,all_stocks_ids) book_features_encoded_train = computeFeatures_1(book_path_train,'train',train_targets_pd,all_stocks_ids) X = book_features_encoded_train.drop(['row_id','target','stock_id'],axis=1) y = book_features_encoded_train['target'] # Modeling catboost_default = CatBoostRegressor(verbose=0) catboost_default.fit(X,y) # Predict X_test = book_features_encoded_test.drop(['row_id','stock_id'],axis=1) yhat = catboost_default.predict(X_test) # Formatting yhat_pd = pd.DataFrame(yhat,columns=['target']) predictions = pd.concat([test_file,yhat_pd],axis=1) return predictions def computeFeatures_1(book_path,prediction_column_name,train_targets_pd,all_stocks_ids): book_all_features = pd.DataFrame() encoder = np.eye(len(all_stocks_ids)) stocks_id_list, row_id_list = [], [] volatility_list, entropy2_list = [], [] linearFit_list, linearFit5_list, linearFit2_list = [], [], [] wap_std_list, wap_std5_list, wap_std2_list = [], [], [] for file in book_path: start = time.time() book_stock = pd.read_parquet(file) stock_id = file.split('=')[1] print('stock id computing = ' + str(stock_id)) stock_time_ids = book_stock['time_id'].unique() for time_id in stock_time_ids: # Access book data at this time + stock book_stock_time = book_stock[book_stock['time_id'] == time_id] # Create feature matrix stocks_id_list.append(stock_id) row_id_list.append(str(f'{stock_id}-{time_id}')) volatility_list.append(realized_volatility_from_book_pd(book_stock_time=book_stock_time)) entropy2_list.append(entropy_from_book(book_stock_time=book_stock_time,last_min=2)) linearFit_list.append(linearFit(book_stock_time=book_stock_time,last_min=10)) linearFit5_list.append(linearFit(book_stock_time=book_stock_time,last_min=5)) linearFit2_list.append(linearFit(book_stock_time=book_stock_time,last_min=2)) wap_std_list.append(wapStat(book_stock_time=book_stock_time,last_min=10)) wap_std5_list.append(wapStat(book_stock_time=book_stock_time,last_min=5)) wap_std2_list.append(wapStat(book_stock_time=book_stock_time,last_min=2)) print('Computing one stock entropy took', time.time() - start, 'seconds for stock ', stock_id) # Merge targets stocks_id_pd = pd.DataFrame(stocks_id_list,columns=['stock_id']) row_id_pd = pd.DataFrame(row_id_list,columns=['row_id']) volatility_pd = pd.DataFrame(volatility_list,columns=['volatility']) entropy2_pd = pd.DataFrame(entropy2_list,columns=['entropy2']) linearFit_pd = pd.DataFrame(linearFit_list,columns=['linearFit_coef']) linearFit5_pd = pd.DataFrame(linearFit5_list,columns=['linearFit_coef5']) linearFit2_pd = pd.DataFrame(linearFit2_list,columns=['linearFit_coef2']) wap_std_pd = pd.DataFrame(wap_std_list,columns=['wap_std']) wap_std5_pd = pd.DataFrame(wap_std5_list,columns=['wap_std5']) wap_std2_pd = pd.DataFrame(wap_std2_list,columns=['wap_std2']) book_all_features = pd.concat([stocks_id_pd,row_id_pd,volatility_pd,entropy2_pd,linearFit_pd,linearFit5_pd,linearFit2_pd, wap_std_pd,wap_std5_pd,wap_std2_pd],axis=1) # This line makes sure the predictions are aligned with the row_id in the submission file book_all_features = train_targets_pd.merge(book_all_features, on = ['row_id']) # Add encoded stock encoded = list() for i in range(book_all_features.shape[0]): stock_id = book_all_features['stock_id'][i] encoded_stock = encoder[np.where(all_stocks_ids == int(stock_id))[0],:] encoded.append(encoded_stock) encoded_pd = pd.DataFrame(np.array(encoded).reshape(book_all_features.shape[0],np.array(all_stocks_ids).shape[0])) book_all_features_encoded = pd.concat([book_all_features, encoded_pd],axis=1) return book_all_features_encoded def calc_wap(df): return (df['bid_price1'] * df['ask_size1'] + df['ask_price1'] * df['bid_size1']) / (df['bid_size1'] + df['ask_size1']) def calc_wap2(df): return (df['bid_price2'] * df['ask_size2'] + df['ask_price2'] * df['bid_size2']) / (df['bid_size2'] + df['ask_size2']) def calc_wap3(df): return (df['bid_price2'] * df['bid_size2'] + df['ask_price2'] * df['ask_size2']) / (df['bid_size2'] + df['ask_size2']) def calc_wap4(df): return (df['bid_price1'] * df['bid_size1'] + df['ask_price1'] * df['ask_size1']) / (df['bid_size1'] + df['ask_size1']) def mid_price(df): return df['bid_price1'] /2 + df['ask_price1'] / 2 def calc_rv_from_wap_numba(values, index): log_return = np.diff(np.log(values)) realized_vol = np.sqrt(np.sum(np.square(log_return[1:]))) return realized_vol def load_book_data_by_id(stock_id,datapath,train_test): file_to_read = os.path.join(datapath,'book_' + str(train_test) + str('.parquet'),'stock_id=' + str(stock_id)) df = pd.read_parquet(file_to_read) return df def load_trades_data_by_id(stock_id,datapath,train_test): file_to_read = os.path.join(datapath,'trade_' + str(train_test) + str('.parquet'),'stock_id=' + str(stock_id)) df = pd.read_parquet(file_to_read) return df def entropy_from_df(df): if df.shape[0] < 3: return 0 t_init = df['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, df['wap'], kind='nearest') resampled_wap = nearest(t_new) # Compute sample entropy # sampleEntropy = nolds.sampen(resampled_wap) sampleEntropy = sampen(resampled_wap) return sampleEntropy def entropy_from_df2(df): if df.shape[0] < 3: return 0 t_init = df['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, df['wap2'], kind='nearest') resampled_wap = nearest(t_new) # Compute sample entropy # sampleEntropy = nolds.sampen(resampled_wap) sampleEntropy = sampen(resampled_wap) return sampleEntropy def entropy_from_df3(df): if df.shape[0] < 3: return 0 t_init = df['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, df['wap3'], kind='nearest') resampled_wap = nearest(t_new) # Compute sample entropy sampleEntropy = sampen(resampled_wap) return sampleEntropy def financial_metrics(df): wap_imbalance = np.mean(df['wap'] - df['wap2']) price_spread = np.mean((df['ask_price1'] - df['bid_price1']) / ((df['ask_price1'] + df['bid_price1'])/2)) bid_spread = np.mean(df['bid_price1'] - df['bid_price2']) ask_spread = np.mean(df['ask_price1'] - df['ask_price2']) # Abs to take total_volume = np.mean((df['ask_size1'] + df['ask_size2']) + (df['bid_size1'] + df['bid_size2'])) volume_imbalance = np.mean(abs((df['ask_size1'] + df['ask_size2']) - (df['bid_size1'] + df['bid_size2']))) return [wap_imbalance,price_spread,bid_spread,ask_spread,total_volume,volume_imbalance] def financial_metrics_2(df): wap_imbalance = df['wap'] - df['wap2'] price_spread = (df['ask_price1'] - df['bid_price1']) / ((df['ask_price1'] + df['bid_price1'])/2) bid_spread = df['bid_price1'] - df['bid_price2'] ask_spread = df['ask_price1'] - df['ask_price2'] # Abs to take total_volume = (df['ask_size1'] + df['ask_size2']) + (df['bid_size1'] + df['bid_size2']) volume_imbalance = abs((df['ask_size1'] + df['ask_size2']) - (df['bid_size1'] + df['bid_size2'])) # New features here wap_imbalance_mean = np.mean(wap_imbalance) wap_imbalance_sum = np.sum(wap_imbalance) wap_imbalance_std = np.std(wap_imbalance) wap_imbalance_max = np.max(wap_imbalance) wap_imbalance_min = np.min(wap_imbalance) price_spread_mean = np.mean(price_spread) price_spread_sum = np.sum(price_spread) price_spread_std = np.std(price_spread) price_spread_max = np.max(price_spread) price_spread_min = np.min(price_spread) bid_spread_mean = np.mean(bid_spread) bid_spread_sum = np.sum(bid_spread) bid_spread_std = np.std(bid_spread) bid_spread_max = np.max(bid_spread) bid_spread_min = np.min(bid_spread) ask_spread_mean = np.mean(ask_spread) ask_spread_sum = np.sum(ask_spread) ask_spread_std = np.std(ask_spread) ask_spread_max = np.max(ask_spread) ask_spread_min = np.min(ask_spread) total_volume_mean = np.mean(total_volume) total_volume_sum = np.sum(total_volume) total_volume_std = np.std(total_volume) total_volume_max = np.max(total_volume) total_volume_min = np.min(total_volume) volume_imbalance_mean = np.mean(volume_imbalance) volume_imbalance_sum = np.sum(volume_imbalance) volume_imbalance_std = np.std(volume_imbalance) volume_imbalance_max = np.max(volume_imbalance) volume_imbalance_min = np.min(volume_imbalance) return [wap_imbalance_mean,price_spread_mean,bid_spread_mean,ask_spread_mean,total_volume_mean,volume_imbalance_mean, wap_imbalance_sum,price_spread_sum,bid_spread_sum,ask_spread_sum,total_volume_sum,volume_imbalance_sum, wap_imbalance_std,price_spread_std,bid_spread_std,ask_spread_std,total_volume_std,volume_imbalance_std, wap_imbalance_max,price_spread_max,bid_spread_max,ask_spread_max,total_volume_max,volume_imbalance_max, wap_imbalance_min,price_spread_min,bid_spread_min,ask_spread_min,total_volume_min,volume_imbalance_min] def other_metrics(df): if df.shape[0] < 2: linearFit = 0 linearFit2 = 0 linearFit3 = 0 std_1 = 0 std_2 = 0 std_3 = 0 else: linearFit = (df['wap'].iloc[-1] - df['wap'].iloc[0]) / ((np.max(df['seconds_in_bucket']) - np.min(df['seconds_in_bucket']))) linearFit2 = (df['wap2'].iloc[-1] - df['wap2'].iloc[0]) / ((np.max(df['seconds_in_bucket']) - np.min(df['seconds_in_bucket']))) linearFit3 = (df['wap3'].iloc[-1] - df['wap3'].iloc[0]) / ((np.max(df['seconds_in_bucket']) - np.min(df['seconds_in_bucket']))) # Resampling t_init = df['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, df['wap'], kind='nearest') nearest2 = interp1d(t_init, df['wap2'], kind='nearest') nearest3 = interp1d(t_init, df['wap3'], kind='nearest') std_1 = np.std(nearest(t_new)) std_2 = np.std(nearest2(t_new)) std_3 = np.std(nearest3(t_new)) return [linearFit, linearFit2, linearFit3, std_1, std_2, std_3] def load_book_data_by_id_kaggle(stock_id,train_test): df = pd.read_parquet(f'../input/optiver-realized-volatility-prediction/book_{train_test}.parquet/stock_id={stock_id}') return df def load_trades_data_by_id_kaggle(stock_id,train_test): df = pd.read_parquet(f'../input/optiver-realized-volatility-prediction/trade_{train_test}.parquet/stock_id={stock_id}') return df def computeFeatures_wEntropy(machine, dataset, all_stocks_ids, datapath): list_rv, list_rv2, list_rv3 = [], [], [] list_ent, list_fin, list_fin2 = [], [], [] list_others, list_others2, list_others3 = [], [], [] for stock_id in range(127): start = time.time() if machine == 'local': try: book_stock = load_book_data_by_id(stock_id,datapath,dataset) except: continue elif machine == 'kaggle': try: book_stock = load_book_data_by_id_kaggle(stock_id,dataset) except: continue # Useful all_time_ids_byStock = book_stock['time_id'].unique() # Calculate wap for the book book_stock['wap'] = calc_wap(book_stock) book_stock['wap2'] = calc_wap2(book_stock) book_stock['wap3'] = calc_wap3(book_stock) # Calculate realized volatility df_sub = book_stock.groupby('time_id')['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2 = book_stock.groupby('time_id')['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3 = book_stock.groupby('time_id')['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub['time_id']] df_sub = pd.concat([df_sub,df_sub2['wap2'],df_sub3['wap3']],axis=1) df_sub = df_sub.rename(columns={'time_id':'row_id','wap': 'rv', 'wap2': 'rv2', 'wap3': 'rv3'}) # Calculate realized volatility last 5 min isEmpty = book_stock.query(f'seconds_in_bucket >= 300').empty if isEmpty == False: df_sub_5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id'])['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2_5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id'])['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3_5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id'])['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub_5['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_5['time_id']] df_sub_5 = pd.concat([df_sub_5,df_sub2_5['wap2'],df_sub3_5['wap3']],axis=1) df_sub_5 = df_sub_5.rename(columns={'time_id':'row_id','wap': 'rv_5', 'wap2': 'rv2_5', 'wap3': 'rv3_5'}) else: # 0 volatility times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) zero_rv = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv_5']) zero_rv2 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv2_5']) zero_rv3 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv3_5']) df_sub_5 = pd.concat([times_pd,zero_rv,zero_rv2,zero_rv3],axis=1) # Calculate realized volatility last 2 min isEmpty = book_stock.query(f'seconds_in_bucket >= 480').empty if isEmpty == False: df_sub_2 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id'])['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2_2 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id'])['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3_2 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id'])['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub_2['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_2['time_id']] df_sub_2 = pd.concat([df_sub_2,df_sub2_2['wap2'],df_sub3_2['wap3']],axis=1) df_sub_2 = df_sub_2.rename(columns={'time_id':'row_id','wap': 'rv_2', 'wap2': 'rv2_2', 'wap3': 'rv3_2'}) else: # 0 volatility times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) zero_rv = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv_2']) zero_rv2 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv2_2']) zero_rv3 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv3_2']) df_sub_2 = pd.concat([times_pd,zero_rv,zero_rv2,zero_rv3],axis=1) list_rv.append(df_sub) list_rv2.append(df_sub_5) list_rv3.append(df_sub_2) # Calculate other financial metrics from book df_sub_book_feats = book_stock.groupby(['time_id']).apply(financial_metrics).to_frame().reset_index() df_sub_book_feats = df_sub_book_feats.rename(columns={0:'embedding'}) df_sub_book_feats[['wap_imbalance','price_spread','bid_spread','ask_spread','total_vol','vol_imbalance']] = pd.DataFrame(df_sub_book_feats.embedding.tolist(), index=df_sub_book_feats.index) df_sub_book_feats['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_book_feats['time_id']] df_sub_book_feats = df_sub_book_feats.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) isEmpty = book_stock.query(f'seconds_in_bucket >= 300').empty if isEmpty == False: df_sub_book_feats5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id']).apply(financial_metrics).to_frame().reset_index() df_sub_book_feats5 = df_sub_book_feats5.rename(columns={0:'embedding'}) df_sub_book_feats5[['wap_imbalance5','price_spread5','bid_spread5','ask_spread5','total_vol5','vol_imbalance5']] = pd.DataFrame(df_sub_book_feats5.embedding.tolist(), index=df_sub_book_feats5.index) df_sub_book_feats5['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_book_feats5['time_id']] df_sub_book_feats5 = df_sub_book_feats5.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp = pd.DataFrame([0],columns=['wap_imbalance5']) temp2 = pd.DataFrame([0],columns=['price_spread5']) temp3 = pd.DataFrame([0],columns=['bid_spread5']) temp4 = pd.DataFrame([0],columns=['ask_spread5']) temp5 = pd.DataFrame([0],columns=['total_vol5']) temp6 = pd.DataFrame([0],columns=['vol_imbalance5']) df_sub_book_feats5 = pd.concat([times_pd,temp,temp2,temp3,temp4,temp5,temp6],axis=1) list_fin.append(df_sub_book_feats) list_fin2.append(df_sub_book_feats5) # Compute entropy isEmpty = book_stock.query(f'seconds_in_bucket >= 480').empty if isEmpty == False: df_ent = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id']).apply(entropy_from_df).to_frame().reset_index().fillna(0) df_ent2 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id']).apply(entropy_from_df2).to_frame().reset_index().fillna(0) df_ent3 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id']).apply(entropy_from_df3).to_frame().reset_index().fillna(0) df_ent['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_ent['time_id']] df_ent = df_ent.rename(columns={'time_id':'row_id',0:'entropy'}) df_ent2 = df_ent2.rename(columns={0:'entropy2'}).drop(['time_id'],axis=1) df_ent3 = df_ent3.rename(columns={0:'entropy3'}).drop(['time_id'],axis=1) df_ent = pd.concat([df_ent,df_ent2,df_ent3],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp = pd.DataFrame([0],columns=['entropy']) temp2 = pd.DataFrame([0],columns=['entropy2']) temp3 = pd.DataFrame([0],columns=['entropy3']) df_ent = pd.concat([times_pd,temp,temp2,temp3],axis=1) list_ent.append(df_ent) # Compute other metrics df_others = book_stock.groupby(['time_id']).apply(other_metrics).to_frame().reset_index().fillna(0) df_others = df_others.rename(columns={0:'embedding'}) df_others[['linearFit1_1','linearFit1_2','linearFit1_3','wap_std1_1','wap_std1_2','wap_std1_3']] = pd.DataFrame(df_others.embedding.tolist(), index=df_others.index) df_others['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_others['time_id']] df_others = df_others.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) list_others.append(df_others) isEmpty = book_stock.query(f'seconds_in_bucket >= 300').empty if isEmpty == False: df_others2 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id']).apply(other_metrics).to_frame().reset_index().fillna(0) df_others2 = df_others2.rename(columns={0:'embedding'}) df_others2[['linearFit2_1','linearFit2_2','linearFit2_3','wap_std2_1','wap_std2_2','wap_std2_3']] = pd.DataFrame(df_others2.embedding.tolist(), index=df_others2.index) df_others2['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_others2['time_id']] df_others2 = df_others2.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp = pd.DataFrame([0],columns=['linearFit2_1']) temp2 = pd.DataFrame([0],columns=['linearFit2_2']) temp3 = pd.DataFrame([0],columns=['linearFit2_3']) temp4 = pd.DataFrame([0],columns=['wap_std2_1']) temp5 = pd.DataFrame([0],columns=['wap_std2_2']) temp6 = pd.DataFrame([0],columns=['wap_std2_3']) df_others2 = pd.concat([times_pd,temp,temp2,temp3,temp4,temp5,temp6],axis=1) list_others2.append(df_others2) isEmpty = book_stock.query(f'seconds_in_bucket >= 480').empty if isEmpty == False: df_others3 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id']).apply(other_metrics).to_frame().reset_index().fillna(0) df_others3 = df_others3.rename(columns={0:'embedding'}) df_others3[['linearFit3_1','linearFit3_2','linearFit3_3','wap_std3_1','wap_std3_2','wap_std3_3']] = pd.DataFrame(df_others3.embedding.tolist(), index=df_others3.index) df_others3['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_others3['time_id']] df_others3 = df_others3.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp = pd.DataFrame([0],columns=['linearFit3_1']) temp2 = pd.DataFrame([0],columns=['linearFit3_2']) temp3 = pd.DataFrame([0],columns=['linearFit3_3']) temp4 = pd.DataFrame([0],columns=['wap_std3_1']) temp5 = pd.DataFrame([0],columns=['wap_std3_2']) temp6 = pd.DataFrame([0],columns=['wap_std3_3']) df_others3 = pd.concat([times_pd,temp,temp2,temp3,temp4,temp5,temp6],axis=1) list_others3.append(df_others3) print('Computing one stock took', time.time() - start, 'seconds for stock ', stock_id) # Create features dataframe df_submission = pd.concat(list_rv) df_submission2 = pd.concat(list_rv2) df_submission3 = pd.concat(list_rv3) df_ent_concat = pd.concat(list_ent) df_fin_concat = pd.concat(list_fin) df_fin2_concat = pd.concat(list_fin2) df_others = pd.concat(list_others) df_others2 = pd.concat(list_others2) df_others3 = pd.concat(list_others3) df_book_features = df_submission.merge(df_submission2, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_submission3, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_ent_concat, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_fin_concat, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_fin2_concat, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_others, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_others2, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_others3, on = ['row_id'], how='left').fillna(0) # Add encoded stock encoder = np.eye(len(all_stocks_ids)) encoded = list() for i in range(df_book_features.shape[0]): stock_id = int(df_book_features['row_id'][i].split('-')[0]) encoded_stock = encoder[np.where(all_stocks_ids == int(stock_id))[0],:] encoded.append(encoded_stock) encoded_pd = pd.DataFrame(np.array(encoded).reshape(df_book_features.shape[0],np.array(all_stocks_ids).shape[0])) df_book_features_encoded = pd.concat([df_book_features, encoded_pd],axis=1) return df_book_features_encoded def computeFeatures_july(machine, dataset, all_stocks_ids, datapath): list_rv, list_rv2, list_rv3 = [], [], [] list_ent, list_fin, list_fin2 = [], [], [] list_others, list_others2, list_others3 = [], [], [] for stock_id in range(127): start = time.time() if machine == 'local': try: book_stock = load_book_data_by_id(stock_id,datapath,dataset) except: continue elif machine == 'kaggle': try: book_stock = load_book_data_by_id_kaggle(stock_id,dataset) except: continue # Useful all_time_ids_byStock = book_stock['time_id'].unique() # Calculate wap for the book book_stock['wap'] = calc_wap(book_stock) book_stock['wap2'] = calc_wap2(book_stock) book_stock['wap3'] = calc_wap3(book_stock) # Calculate realized volatility df_sub = book_stock.groupby('time_id')['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2 = book_stock.groupby('time_id')['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3 = book_stock.groupby('time_id')['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub['time_id']] df_sub = pd.concat([df_sub,df_sub2['wap2'],df_sub3['wap3']],axis=1) df_sub = df_sub.rename(columns={'time_id':'row_id','wap': 'rv', 'wap2': 'rv2', 'wap3': 'rv3'}) # Calculate realized volatility last 5 min isEmpty = book_stock.query(f'seconds_in_bucket >= 300').empty if isEmpty == False: df_sub_5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id'])['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2_5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id'])['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3_5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id'])['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub_5['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_5['time_id']] df_sub_5 = pd.concat([df_sub_5,df_sub2_5['wap2'],df_sub3_5['wap3']],axis=1) df_sub_5 = df_sub_5.rename(columns={'time_id':'row_id','wap': 'rv_5', 'wap2': 'rv2_5', 'wap3': 'rv3_5'}) else: # 0 volatility times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) zero_rv = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv_5']) zero_rv2 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv2_5']) zero_rv3 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv3_5']) df_sub_5 = pd.concat([times_pd,zero_rv,zero_rv2,zero_rv3],axis=1) # Calculate realized volatility last 2 min isEmpty = book_stock.query(f'seconds_in_bucket >= 480').empty if isEmpty == False: df_sub_2 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id'])['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2_2 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id'])['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3_2 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id'])['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub_2['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_2['time_id']] df_sub_2 = pd.concat([df_sub_2,df_sub2_2['wap2'],df_sub3_2['wap3']],axis=1) df_sub_2 = df_sub_2.rename(columns={'time_id':'row_id','wap': 'rv_2', 'wap2': 'rv2_2', 'wap3': 'rv3_2'}) else: # 0 volatility times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) zero_rv = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv_2']) zero_rv2 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv2_2']) zero_rv3 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv3_2']) df_sub_2 = pd.concat([times_pd,zero_rv,zero_rv2,zero_rv3],axis=1) list_rv.append(df_sub) list_rv2.append(df_sub_5) list_rv3.append(df_sub_2) # Calculate other financial metrics from book df_sub_book_feats = book_stock.groupby(['time_id']).apply(financial_metrics_2).to_frame().reset_index() df_sub_book_feats = df_sub_book_feats.rename(columns={0:'embedding'}) df_sub_book_feats[['wap_imbalance','price_spread','bid_spread','ask_spread','total_vol','vol_imbalance']] = pd.DataFrame(df_sub_book_feats.embedding.tolist(), index=df_sub_book_feats.index) df_sub_book_feats['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_book_feats['time_id']] df_sub_book_feats = df_sub_book_feats.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) isEmpty = book_stock.query(f'seconds_in_bucket >= 300').empty if isEmpty == False: df_sub_book_feats5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id']).apply(financial_metrics_2).to_frame().reset_index() df_sub_book_feats5 = df_sub_book_feats5.rename(columns={0:'embedding'}) df_sub_book_feats5[['wap_imbalance5','price_spread5','bid_spread5','ask_spread5','total_vol5','vol_imbalance5']] = pd.DataFrame(df_sub_book_feats5.embedding.tolist(), index=df_sub_book_feats5.index) df_sub_book_feats5['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_book_feats5['time_id']] df_sub_book_feats5 = df_sub_book_feats5.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp = pd.DataFrame([0],columns=['wap_imbalance5']) temp2 = pd.DataFrame([0],columns=['price_spread5']) temp3 = pd.DataFrame([0],columns=['bid_spread5']) temp4 = pd.DataFrame([0],columns=['ask_spread5']) temp5 = pd.DataFrame([0],columns=['total_vol5']) temp6 = pd.DataFrame([0],columns=['vol_imbalance5']) df_sub_book_feats5 = pd.concat([times_pd,temp,temp2,temp3,temp4,temp5,temp6],axis=1) list_fin.append(df_sub_book_feats) list_fin2.append(df_sub_book_feats5) # Compute other metrics df_others = book_stock.groupby(['time_id']).apply(other_metrics).to_frame().reset_index().fillna(0) df_others = df_others.rename(columns={0:'embedding'}) df_others[['linearFit1_1','linearFit1_2','linearFit1_3','wap_std1_1','wap_std1_2','wap_std1_3']] = pd.DataFrame(df_others.embedding.tolist(), index=df_others.index) df_others['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_others['time_id']] df_others = df_others.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) list_others.append(df_others) isEmpty = book_stock.query(f'seconds_in_bucket >= 300').empty if isEmpty == False: df_others2 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id']).apply(other_metrics).to_frame().reset_index().fillna(0) df_others2 = df_others2.rename(columns={0:'embedding'}) df_others2[['linearFit2_1','linearFit2_2','linearFit2_3','wap_std2_1','wap_std2_2','wap_std2_3']] = pd.DataFrame(df_others2.embedding.tolist(), index=df_others2.index) df_others2['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_others2['time_id']] df_others2 = df_others2.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp = pd.DataFrame([0],columns=['linearFit2_1']) temp2 = pd.DataFrame([0],columns=['linearFit2_2']) temp3 = pd.DataFrame([0],columns=['linearFit2_3']) temp4 = pd.DataFrame([0],columns=['wap_std2_1']) temp5 = pd.DataFrame([0],columns=['wap_std2_2']) temp6 = pd.DataFrame([0],columns=['wap_std2_3']) df_others2 = pd.concat([times_pd,temp,temp2,temp3,temp4,temp5,temp6],axis=1) list_others2.append(df_others2) isEmpty = book_stock.query(f'seconds_in_bucket >= 480').empty if isEmpty == False: df_others3 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id']).apply(other_metrics).to_frame().reset_index().fillna(0) df_others3 = df_others3.rename(columns={0:'embedding'}) df_others3[['linearFit3_1','linearFit3_2','linearFit3_3','wap_std3_1','wap_std3_2','wap_std3_3']] = pd.DataFrame(df_others3.embedding.tolist(), index=df_others3.index) df_others3['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_others3['time_id']] df_others3 = df_others3.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp = pd.DataFrame([0],columns=['linearFit3_1']) temp2 = pd.DataFrame([0],columns=['linearFit3_2']) temp3 = pd.DataFrame([0],columns=['linearFit3_3']) temp4 = pd.DataFrame([0],columns=['wap_std3_1']) temp5 = pd.DataFrame([0],columns=['wap_std3_2']) temp6 = pd.DataFrame([0],columns=['wap_std3_3']) df_others3 = pd.concat([times_pd,temp,temp2,temp3,temp4,temp5,temp6],axis=1) list_others3.append(df_others3) print('Computing one stock took', time.time() - start, 'seconds for stock ', stock_id) # Create features dataframe df_submission = pd.concat(list_rv) df_submission2 = pd.concat(list_rv2) df_submission3 = pd.concat(list_rv3) df_ent_concat = pd.concat(list_ent) df_fin_concat = pd.concat(list_fin) df_fin2_concat = pd.concat(list_fin2) df_others = pd.concat(list_others) df_others2 = pd.concat(list_others2) df_others3 = pd.concat(list_others3) df_book_features = df_submission.merge(df_submission2, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_submission3, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_ent_concat, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_fin_concat, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_fin2_concat, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_others, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_others2, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_others3, on = ['row_id'], how='left').fillna(0) # Add encoded stock encoder = np.eye(len(all_stocks_ids)) encoded = list() for i in range(df_book_features.shape[0]): stock_id = int(df_book_features['row_id'][i].split('-')[0]) encoded_stock = encoder[np.where(all_stocks_ids == int(stock_id))[0],:] encoded.append(encoded_stock) encoded_pd = pd.DataFrame(np.array(encoded).reshape(df_book_features.shape[0],np.array(all_stocks_ids).shape[0])) df_book_features_encoded = pd.concat([df_book_features, encoded_pd],axis=1) return df_book_features_encoded def computeFeatures_newTest_Laurent(machine, dataset, all_stocks_ids, datapath): list_rv, list_rv2, list_rv3 = [], [], [] list_ent, list_fin, list_fin2 = [], [], [] list_others, list_others2, list_others3 = [], [], [] for stock_id in range(127): start = time.time() if machine == 'local': try: book_stock = load_book_data_by_id(stock_id,datapath,dataset) except: continue elif machine == 'kaggle': try: book_stock = load_book_data_by_id_kaggle(stock_id,dataset) except: continue # Useful all_time_ids_byStock = book_stock['time_id'].unique() # Calculate wap for the entire book book_stock['wap'] = calc_wap(book_stock) book_stock['wap2'] = calc_wap2(book_stock) book_stock['wap3'] = calc_wap3(book_stock) book_stock['wap4'] = calc_wap2(book_stock) book_stock['mid_price'] = calc_wap3(book_stock) # Calculate past realized volatility per time_id df_sub = book_stock.groupby('time_id')['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2 = book_stock.groupby('time_id')['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3 = book_stock.groupby('time_id')['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub4 = book_stock.groupby('time_id')['wap4'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub5 = book_stock.groupby('time_id')['mid_price'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub['time_id']] df_sub = df_sub.rename(columns={'time_id':'row_id'}) df_sub = pd.concat([df_sub,df_sub2['wap2'],df_sub3['wap3'], df_sub4['wap4'], df_sub5['mid_price']],axis=1) df_sub = df_sub.rename(columns={'wap': 'rv', 'wap2': 'rv2', 'wap3': 'rv3', 'wap4':'rv4','mid_price':'rv5'}) list_rv.append(df_sub) # Query segments bucketQuery480 = book_stock.query(f'seconds_in_bucket >= 480') isEmpty480 = bucketQuery480.empty bucketQuery300 = book_stock.query(f'seconds_in_bucket >= 300') isEmpty300 = bucketQuery300.empty times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) # Calculate past realized volatility per time_id and query subset if isEmpty300 == False: df_sub_300 = bucketQuery300.groupby(['time_id'])['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2_300 = bucketQuery300.groupby(['time_id'])['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3_300 = bucketQuery300.groupby(['time_id'])['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub4_300 = bucketQuery300.groupby(['time_id'])['wap4'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub5_300 = bucketQuery300.groupby(['time_id'])['mid_price'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub_300 = pd.concat([times_pd,df_sub_300['wap'],df_sub2_300['wap2'],df_sub3_300['wap3'],df_sub4_300['wap4'],df_sub5_300['mid_price']],axis=1) df_sub_300 = df_sub_300.rename(columns={'wap': 'rv_300', 'wap2_300': 'rv2', 'wap3_300': 'rv3', 'wap4':'rv4_300','mid_price':'rv5_300'}) else: # 0 volatility zero_rv = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv_300']) zero_rv2 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv2_300']) zero_rv3 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv3_300']) zero_rv4 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv4_300']) zero_rv5 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv5_300']) df_sub_300 = pd.concat([times_pd,zero_rv,zero_rv2,zero_rv3,zero_rv4,zero_rv5],axis=1) list_rv2.append(df_sub_300) # Calculate realized volatility last 2 min if isEmpty480 == False: df_sub_480 = bucketQuery480.groupby(['time_id'])['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2_480 = bucketQuery480.groupby(['time_id'])['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3_480 = bucketQuery480.groupby(['time_id'])['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub4_480 = bucketQuery480.groupby(['time_id'])['wap4'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub5_480 = bucketQuery480.groupby(['time_id'])['mid_price'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub_480 = pd.concat([times_pd,df_sub_480['wap'],df_sub2_480['wap2'],df_sub3_480['wap3'],df_sub4_480['wap4'],df_sub5_480['mid_price']],axis=1) df_sub_480 = df_sub_480.rename(columns={'wap': 'rv_480', 'wap2_480': 'rv2', 'wap3_480': 'rv3', 'wap4':'rv4_480','mid_price':'rv5_480'}) else: # 0 volatility zero_rv = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv_480']) zero_rv2 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv2_480']) zero_rv3 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv3_480']) zero_rv4 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv4_480']) zero_rv5 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv5_480']) df_sub_480 = pd.concat([times_pd,zero_rv,zero_rv2,zero_rv3,zero_rv4,zero_rv5],axis=1) list_rv3.append(df_sub_480) # Calculate other financial metrics from book df_sub_book_feats = book_stock.groupby(['time_id']).apply(financial_metrics).to_frame().reset_index() df_sub_book_feats = df_sub_book_feats.rename(columns={0:'embedding'}) df_sub_book_feats[['wap_imbalance','price_spread','bid_spread','ask_spread','total_vol','vol_imbalance']] = pd.DataFrame(df_sub_book_feats.embedding.tolist(), index=df_sub_book_feats.index) df_sub_book_feats['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_book_feats['time_id']] df_sub_book_feats = df_sub_book_feats.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) list_fin.append(df_sub_book_feats) if isEmpty300 == False: df_sub_book_feats_300 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id']).apply(financial_metrics).to_frame().reset_index() df_sub_book_feats_300 = df_sub_book_feats_300.rename(columns={0:'embedding'}) df_sub_book_feats_300[['wap_imbalance5','price_spread5','bid_spread5','ask_spread5','total_vol5','vol_imbalance5']] = pd.DataFrame(df_sub_book_feats_300.embedding.tolist(), index=df_sub_book_feats_300.index) df_sub_book_feats_300['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_book_feats_300['time_id']] df_sub_book_feats_300 = df_sub_book_feats_300.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp = pd.DataFrame([0],columns=['wap_imbalance5']) temp2 = pd.DataFrame([0],columns=['price_spread5']) temp3 = pd.DataFrame([0],columns=['bid_spread5']) temp4 = pd.DataFrame([0],columns=['ask_spread5']) temp5 = pd.DataFrame([0],columns=['total_vol5']) temp6 = pd.DataFrame([0],columns=['vol_imbalance5']) df_sub_book_feats_300 = pd.concat([times_pd,temp,temp2,temp3,temp4,temp5,temp6],axis=1) list_fin2.append(df_sub_book_feats_300) print('Computing one stock took', time.time() - start, 'seconds for stock ', stock_id) # Create features dataframe df_submission = pd.concat(list_rv) df_submission2 = pd.concat(list_rv2) df_submission3 = pd.concat(list_rv3) df_fin_concat = pd.concat(list_fin) df_fin2_concat = pd.concat(list_fin2) df_book_features = df_submission.merge(df_submission2, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_submission3, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_fin_concat, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_fin2_concat, on = ['row_id'], how='left').fillna(0) # Add encoded stock encoder = np.eye(len(all_stocks_ids)) encoded = list() for i in range(df_book_features.shape[0]): stock_id = int(df_book_features['row_id'][i].split('-')[0]) encoded_stock = encoder[np.where(all_stocks_ids == int(stock_id))[0],:] encoded.append(encoded_stock) encoded_pd = pd.DataFrame(np.array(encoded).reshape(df_book_features.shape[0],np.array(all_stocks_ids).shape[0])) df_book_features_encoded = pd.concat([df_book_features, encoded_pd],axis=1) return df_book_features_encoded def computeFeatures_newTest_Laurent_noCode(machine, dataset, all_stocks_ids, datapath): list_rv, list_rv2, list_rv3 = [], [], [] list_ent, list_fin, list_fin2 = [], [], [] list_others, list_others2, list_others3 = [], [], [] for stock_id in range(127): start = time.time() if machine == 'local': try: book_stock = load_book_data_by_id(stock_id,datapath,dataset) except: continue elif machine == 'kaggle': try: book_stock = load_book_data_by_id_kaggle(stock_id,dataset) except: continue # Useful all_time_ids_byStock = book_stock['time_id'].unique() # Calculate wap for the entire book book_stock['wap'] = calc_wap(book_stock) book_stock['wap2'] = calc_wap2(book_stock) book_stock['wap3'] = calc_wap3(book_stock) book_stock['wap4'] = calc_wap2(book_stock) book_stock['mid_price'] = calc_wap3(book_stock) # Calculate past realized volatility per time_id df_sub = book_stock.groupby('time_id')['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2 = book_stock.groupby('time_id')['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3 = book_stock.groupby('time_id')['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub4 = book_stock.groupby('time_id')['wap4'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub5 = book_stock.groupby('time_id')['mid_price'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub['time_id']] df_sub = df_sub.rename(columns={'time_id':'row_id'}) df_sub = pd.concat([df_sub,df_sub2['wap2'],df_sub3['wap3'], df_sub4['wap4'], df_sub5['mid_price']],axis=1) df_sub = df_sub.rename(columns={'wap': 'rv', 'wap2': 'rv2', 'wap3': 'rv3', 'wap4':'rv4','mid_price':'rv5'}) list_rv.append(df_sub) # Query segments bucketQuery480 = book_stock.query(f'seconds_in_bucket >= 480') isEmpty480 = bucketQuery480.empty bucketQuery300 = book_stock.query(f'seconds_in_bucket >= 300') isEmpty300 = bucketQuery300.empty times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) # Calculate past realized volatility per time_id and query subset if isEmpty300 == False: df_sub_300 = bucketQuery300.groupby(['time_id'])['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2_300 = bucketQuery300.groupby(['time_id'])['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3_300 = bucketQuery300.groupby(['time_id'])['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub4_300 = bucketQuery300.groupby(['time_id'])['wap4'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub5_300 = bucketQuery300.groupby(['time_id'])['mid_price'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub_300 = pd.concat([times_pd,df_sub_300['wap'],df_sub2_300['wap2'],df_sub3_300['wap3'],df_sub4_300['wap4'],df_sub5_300['mid_price']],axis=1) df_sub_300 = df_sub_300.rename(columns={'wap': 'rv_300', 'wap2_300': 'rv2', 'wap3_300': 'rv3', 'wap4':'rv4_300','mid_price':'rv5_300'}) else: # 0 volatility zero_rv = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv_300']) zero_rv2 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv2_300']) zero_rv3 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv3_300']) zero_rv4 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv4_300']) zero_rv5 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv5_300']) df_sub_300 = pd.concat([times_pd,zero_rv,zero_rv2,zero_rv3,zero_rv4,zero_rv5],axis=1) list_rv2.append(df_sub_300) # Calculate realized volatility last 2 min if isEmpty480 == False: df_sub_480 = bucketQuery480.groupby(['time_id'])['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2_480 = bucketQuery480.groupby(['time_id'])['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3_480 = bucketQuery480.groupby(['time_id'])['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub4_480 = bucketQuery480.groupby(['time_id'])['wap4'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub5_480 = bucketQuery480.groupby(['time_id'])['mid_price'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub_480 = pd.concat([times_pd,df_sub_480['wap'],df_sub2_480['wap2'],df_sub3_480['wap3'],df_sub4_480['wap4'],df_sub5_480['mid_price']],axis=1) df_sub_480 = df_sub_480.rename(columns={'wap': 'rv_480', 'wap2_480': 'rv2', 'wap3_480': 'rv3', 'wap4':'rv4_480','mid_price':'rv5_480'}) else: # 0 volatility zero_rv = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv_480']) zero_rv2 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv2_480']) zero_rv3 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv3_480']) zero_rv4 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv4_480']) zero_rv5 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv5_480']) df_sub_480 = pd.concat([times_pd,zero_rv,zero_rv2,zero_rv3,zero_rv4,zero_rv5],axis=1) list_rv3.append(df_sub_480) # Calculate other financial metrics from book df_sub_book_feats = book_stock.groupby(['time_id']).apply(financial_metrics).to_frame().reset_index() df_sub_book_feats = df_sub_book_feats.rename(columns={0:'embedding'}) df_sub_book_feats[['wap_imbalance','price_spread','bid_spread','ask_spread','total_vol','vol_imbalance']] = pd.DataFrame(df_sub_book_feats.embedding.tolist(), index=df_sub_book_feats.index) df_sub_book_feats['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_book_feats['time_id']] df_sub_book_feats = df_sub_book_feats.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) list_fin.append(df_sub_book_feats) if isEmpty300 == False: df_sub_book_feats_300 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id']).apply(financial_metrics).to_frame().reset_index() df_sub_book_feats_300 = df_sub_book_feats_300.rename(columns={0:'embedding'}) df_sub_book_feats_300[['wap_imbalance5','price_spread5','bid_spread5','ask_spread5','total_vol5','vol_imbalance5']] = pd.DataFrame(df_sub_book_feats_300.embedding.tolist(), index=df_sub_book_feats_300.index) df_sub_book_feats_300['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_book_feats_300['time_id']] df_sub_book_feats_300 = df_sub_book_feats_300.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp = pd.DataFrame([0],columns=['wap_imbalance5']) temp2 = pd.DataFrame([0],columns=['price_spread5']) temp3 = pd.DataFrame([0],columns=['bid_spread5']) temp4 = pd.DataFrame([0],columns=['ask_spread5']) temp5 = pd.DataFrame([0],columns=['total_vol5']) temp6 = pd.DataFrame([0],columns=['vol_imbalance5']) df_sub_book_feats_300 = pd.concat([times_pd,temp,temp2,temp3,temp4,temp5,temp6],axis=1) list_fin2.append(df_sub_book_feats_300) print('Computing one stock took', time.time() - start, 'seconds for stock ', stock_id) # Create features dataframe df_submission = pd.concat(list_rv) df_submission2 = pd.concat(list_rv2) df_submission3 = pd.concat(list_rv3) df_fin_concat = pd.concat(list_fin) df_fin2_concat = pd.concat(list_fin2) df_book_features = df_submission.merge(df_submission2, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_submission3, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_fin_concat, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_fin2_concat, on = ['row_id'], how='left').fillna(0) return df_book_features def computeFeatures_newTest_Laurent_wTrades(machine, dataset, all_stocks_ids, datapath): list_rv, list_rv2, list_rv3 = [], [], [] list_ent, list_fin, list_fin2 = [], [], [] list_others, list_others2, list_others3 = [], [], [] list_trades1, list_trades2 = [], [] list_vlad_book, list_vlad_trades = [], [] for stock_id in range(127): start = time.time() if machine == 'local': try: book_stock = load_book_data_by_id(stock_id,datapath,dataset) trades_stock = load_trades_data_by_id(stock_id,datapath,dataset) except: continue elif machine == 'kaggle': try: book_stock = load_book_data_by_id_kaggle(stock_id,dataset) trades_stock = load_trades_data_by_id_kaggle(stock_id,dataset) except: continue # Useful all_time_ids_byStock = book_stock['time_id'].unique() # Calculate wap for the entire book book_stock['wap'] = calc_wap(book_stock) book_stock['wap2'] = calc_wap2(book_stock) book_stock['wap3'] = calc_wap3(book_stock) book_stock['wap4'] = calc_wap4(book_stock) book_stock['mid_price'] = mid_price(book_stock) # Calculate past realized volatility per time_id df_sub = book_stock.groupby('time_id')['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2 = book_stock.groupby('time_id')['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3 = book_stock.groupby('time_id')['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub4 = book_stock.groupby('time_id')['wap4'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub5 = book_stock.groupby('time_id')['mid_price'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub['time_id']] df_sub = df_sub.rename(columns={'time_id':'row_id'}) df_sub = pd.concat([df_sub,df_sub2['wap2'],df_sub3['wap3'], df_sub4['wap4'], df_sub5['mid_price']],axis=1) df_sub = df_sub.rename(columns={'wap': 'rv', 'wap2': 'rv2', 'wap3': 'rv3', 'wap4':'rv4','mid_price':'rv5'}) list_rv.append(df_sub) # Query segments bucketQuery480 = book_stock.query(f'seconds_in_bucket >= 480') isEmpty480 = bucketQuery480.empty bucketQuery300 = book_stock.query(f'seconds_in_bucket >= 300') isEmpty300 = bucketQuery300.empty times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) # Calculate past realized volatility per time_id and query subset if isEmpty300 == False: df_sub_300 = bucketQuery300.groupby(['time_id'])['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2_300 = bucketQuery300.groupby(['time_id'])['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3_300 = bucketQuery300.groupby(['time_id'])['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub4_300 = bucketQuery300.groupby(['time_id'])['wap4'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub5_300 = bucketQuery300.groupby(['time_id'])['mid_price'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub_300 = pd.concat([times_pd,df_sub_300['wap'],df_sub2_300['wap2'],df_sub3_300['wap3'],df_sub4_300['wap4'],df_sub5_300['mid_price']],axis=1) df_sub_300 = df_sub_300.rename(columns={'wap': 'rv_300', 'wap2': 'rv2_300', 'wap3': 'rv3_300', 'wap4':'rv4_300','mid_price':'rv5_300'}) else: # 0 volatility zero_rv = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv_300']) zero_rv2 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv2_300']) zero_rv3 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv3_300']) zero_rv4 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv4_300']) zero_rv5 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv5_300']) df_sub_300 = pd.concat([times_pd,zero_rv,zero_rv2,zero_rv3,zero_rv4,zero_rv5],axis=1) list_rv2.append(df_sub_300) # Calculate realized volatility last 2 min if isEmpty480 == False: df_sub_480 = bucketQuery480.groupby(['time_id'])['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2_480 = bucketQuery480.groupby(['time_id'])['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3_480 = bucketQuery480.groupby(['time_id'])['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub4_480 = bucketQuery480.groupby(['time_id'])['wap4'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub5_480 = bucketQuery480.groupby(['time_id'])['mid_price'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub_480 = pd.concat([times_pd,df_sub_480['wap'],df_sub2_480['wap2'],df_sub3_480['wap3'],df_sub4_480['wap4'],df_sub5_480['mid_price']],axis=1) df_sub_480 = df_sub_480.rename(columns={'wap': 'rv_480', 'wap2': 'rv2_480', 'wap3': 'rv3_480', 'wap4':'rv4_480','mid_price':'rv5_480'}) else: # 0 volatility zero_rv = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv_480']) zero_rv2 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv2_480']) zero_rv3 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv3_480']) zero_rv4 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv4_480']) zero_rv5 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv5_480']) df_sub_480 = pd.concat([times_pd,zero_rv,zero_rv2,zero_rv3,zero_rv4,zero_rv5],axis=1) list_rv3.append(df_sub_480) # Calculate other financial metrics from book df_sub_book_feats = book_stock.groupby(['time_id']).apply(financial_metrics_2).to_frame().reset_index() df_sub_book_feats = df_sub_book_feats.rename(columns={0:'embedding'}) df_sub_book_feats[['wap_imbalance_mean','price_spread_mean','bid_spread_mean','ask_spread_mean','total_vol_mean','vol_imbalance_mean','wap_imbalance_sum','price_spread_sum','bid_spread_sum','ask_spread_sum','total_vol_sum','vol_imbalance_sum','wap_imbalance_std','price_spread_std','bid_spread_std','ask_spread_std','total_vol_std','vol_imbalance_std','wap_imbalance_max','price_spread_max','bid_spread_max','ask_spread_max','total_vol_max','vol_imbalance_max','wap_imbalance_min','price_spread_min','bid_spread_min','ask_spread_min','total_vol_min','vol_imbalance_min']] = pd.DataFrame(df_sub_book_feats.embedding.tolist(), index=df_sub_book_feats.index) df_sub_book_feats['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_book_feats['time_id']] df_sub_book_feats = df_sub_book_feats.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) list_fin.append(df_sub_book_feats) if isEmpty300 == False: df_sub_book_feats_300 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id']).apply(financial_metrics_2).to_frame().reset_index() df_sub_book_feats_300 = df_sub_book_feats_300.rename(columns={0:'embedding'}) df_sub_book_feats_300[['wap_imbalance_mean','price_spread_mean','bid_spread_mean','ask_spread_mean','total_vol_mean','vol_imbalance_mean','wap_imbalance_sum','price_spread_sum','bid_spread_sum','ask_spread_sum','total_vol_sum','vol_imbalance_sum','wap_imbalance_std','price_spread_std','bid_spread_std','ask_spread_std','total_vol_std','vol_imbalance_std','wap_imbalance_max','price_spread_max','bid_spread_max','ask_spread_max','total_vol_max','vol_imbalance_max','wap_imbalance_min','price_spread_min','bid_spread_min','ask_spread_min','total_vol_min','vol_imbalance_min']] = pd.DataFrame(df_sub_book_feats_300.embedding.tolist(), index=df_sub_book_feats_300.index) df_sub_book_feats_300['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_book_feats_300['time_id']] df_sub_book_feats_300 = df_sub_book_feats_300.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) else: df_sub_book_feats_300 = df_sub_book_feats.copy() for col in df_sub_book_feats_300.columns: df_sub_book_feats_300[col].values[:] = 0 list_fin2.append(df_sub_book_feats_300) # Trades features (sum, mean, std, max, min) df_sub_trades_feats = trades_stock.groupby(['time_id'])['price','size','order_count'].agg(['sum','mean','std','max','min']).reset_index() df_sub_trades_feats['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_trades_feats['time_id']] df_sub_trades_feats = df_sub_trades_feats.rename(columns={'time_id':'row_id'}) list_trades1.append(df_sub_trades_feats) # Query segments bucketQuery300_trades = trades_stock.query(f'seconds_in_bucket >= 300') isEmpty300_trades = bucketQuery300_trades.empty if isEmpty300_trades == False: df_sub_trades_300 = bucketQuery300_trades.groupby(['time_id'])['price','size','order_count'].agg(['sum','mean','std','max','min']).reset_index() df_sub_trades_300['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_trades_300['time_id']] df_sub_trades_300 = df_sub_trades_300.rename(columns={'time_id':'row_id'}) else: df_sub_trades_300 = df_sub_trades_feats.copy() for col in df_sub_trades_300.columns: df_sub_trades_300[col].values[:] = 0 list_trades2.append(df_sub_trades_300) # Fin metrics book df_fin_metrics_book = book_stock.groupby(['time_id']).apply(fin_metrics_book_data).to_frame().reset_index() df_fin_metrics_book = df_fin_metrics_book.rename(columns={0:'embedding'}) df_fin_metrics_book[['spread','depth_imb']] = pd.DataFrame(df_fin_metrics_book.embedding.tolist(), index=df_fin_metrics_book.index) df_fin_metrics_book['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_fin_metrics_book['time_id']] df_fin_metrics_book = df_fin_metrics_book.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) list_vlad_book.append(df_fin_metrics_book) # Fin metrics trades df_fin_metrics_trades = trades_stock.groupby(['time_id']).apply(fin_metrics_trades_data).to_frame().reset_index() df_fin_metrics_trades = df_fin_metrics_trades.rename(columns={0:'embedding'}) df_fin_metrics_trades[['roll_measure', 'roll_impact', 'mkt_impact', 'amihud']] = pd.DataFrame(df_fin_metrics_trades.embedding.tolist(), index=df_fin_metrics_trades.index) df_fin_metrics_trades['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_fin_metrics_trades['time_id']] df_fin_metrics_trades = df_fin_metrics_trades.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) list_vlad_trades.append(df_fin_metrics_trades) print('Computing one stock took', time.time() - start, 'seconds for stock ', stock_id) # Create features dataframe df_submission = pd.concat(list_rv) df_submission2 =
pd.concat(list_rv2)
pandas.concat
import requests import pandas as pd import json from string import Template from messari.defillama import DeFiLlama dl = DeFiLlama() CHAIN_URL = Template('https://defillama.com/_next/data/mDaYGJz3iJDOSw9H7xWVG/chain/$chain.json') ###### specify chain and number of top N protocols on chain chain = 'Solana' N = 3 endpoint_url = CHAIN_URL.substitute(chain=chain) ###### ohhhh boy this is goooood # this gets a tvl breakdown by protocol on specific chain # data is localized to chain page_props = requests.get(endpoint_url).json()['pageProps'] protocols_df =
pd.DataFrame(page_props['filteredProtocols'])
pandas.DataFrame
import numpy as np import pandas as pd import scanpy as sc from termcolor import colored import time import matplotlib import matplotlib.pyplot as plt from sklearn.metrics.pairwise import euclidean_distances import umap import phate import seaborn as sns from pyVIA.core import * def cellrank_Human(ncomps=80, knn=30, v0_random_seed=7): import scvelo as scv dict_abb = {'Basophils': 'BASO1', 'CD4+ Effector Memory': 'TCEL7', 'Colony Forming Unit-Granulocytes': 'GRAN1', 'Colony Forming Unit-Megakaryocytic': 'MEGA1', 'Colony Forming Unit-Monocytes': 'MONO1', 'Common myeloid progenitors': "CMP", 'Early B cells': "PRE_B2", 'Eosinophils': "EOS2", 'Erythroid_CD34- CD71+ GlyA-': "ERY2", 'Erythroid_CD34- CD71+ GlyA+': "ERY3", 'Erythroid_CD34+ CD71+ GlyA-': "ERY1", 'Erythroid_CD34- CD71lo GlyA+': 'ERY4', 'Granulocyte/monocyte progenitors': "GMP", 'Hematopoietic stem cells_CD133+ CD34dim': "HSC1", 'Hematopoietic stem cells_CD38- CD34+': "HSC2", 'Mature B cells class able to switch': "B_a2", 'Mature B cells class switched': "B_a4", 'Mature NK cells_CD56- CD16- CD3-': "Nka3", 'Monocytes': "MONO2", 'Megakaryocyte/erythroid progenitors': "MEP", 'Myeloid Dendritic Cells': 'mDC', 'Naïve B cells': "B_a1", 'Plasmacytoid Dendritic Cells': "pDC", 'Pro B cells': 'PRE_B3'} string_ = 'ncomp =' + str(ncomps) + ' knn=' + str(knn) + ' randseed=' + str(v0_random_seed) # print('ncomp =', ncomps, ' knn=', knn, ' randseed=', v0_random_seed) print(colored(string_, 'blue')) nover_labels = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/Nover_Cor_PredFine_notLogNorm.csv')[ 'x'].values.tolist() nover_labels = [dict_abb[i] for i in nover_labels] for i in list(set(nover_labels)): print('the population of ', i, 'is ', nover_labels.count(i)) ad = scv.read_loom('/home/shobi/Downloads/Human Hematopoietic Profiling homo_sapiens 2019-11-08 16.12.loom') print(ad) # ad = sc.read('/home/shobi/Trajectory/Datasets/HumanCD34/human_cd34_bm_rep1.h5ad') # ad.obs['nover_label'] = nover_labels print('start cellrank pipeline', time.ctime()) # scv.utils.show_proportions(ad) scv.pl.proportions(ad) scv.pp.filter_and_normalize(ad, min_shared_counts=20, n_top_genes=2000) sc.tl.pca(ad, n_comps=ncomps) n_pcs = ncomps print('npcs', n_pcs, 'knn', knn) sc.pp.neighbors(ad, n_pcs=n_pcs, n_neighbors=knn) sc.tl.louvain(ad, key_added='clusters', resolution=1) scv.pp.moments(ad, n_pcs=n_pcs, n_neighbors=knn) scv.tl.velocity(ad) scv.tl.velocity_graph(ad) scv.pl.velocity_embedding_stream(ad, basis='umap', color='nover_label') def adata_preprocess(adata, n_top_genes=1000, log=True): # this is a lot like the steps for scvelo.pp.filter_and_normalize() which also allows selection of top genes (see Pancreas) sc.pp.filter_genes(adata, min_counts=1) # only consider genes with more than 1 count#1 # print(adata) sc.pp.normalize_per_cell( # normalize with total UMI count per cell #same as normalize_total() adata, key_n_counts='n_counts_all' ) # select highly-variable genes filter_result = sc.pp.filter_genes_dispersion(adata.X, flavor='cell_ranger', n_top_genes=n_top_genes, log=False) adata = adata[:, filter_result.gene_subset] # subset the genes sc.pp.normalize_per_cell(adata) # renormalize after filtering if log: sc.pp.log1p(adata) # log transform: adata.X = log(adata.X + 1) ''' total = adata.X total = total.sum(axis=0).transpose() total = pd.DataFrame(total.transpose()) print('total') print(total.shape) #total = total.sum(axis=0).transpose() total.columns = [i for i in adata.var_names] print(total) total.to_csv('/home/shobi/Trajectory/Datasets/HumanCD34/library_counts_500hvg.csv') sc.pp.scale(adata, max_value=10) from sklearn.decomposition import PCA pca = PCA(n_components=499) # estimate only 2 PCs X_new = pca.fit_transform(adata.X) print('variance explained') print(pca.explained_variance_ratio_) print('pca.components_ shape ncomp x nfeat') print() df = pd.DataFrame(abs(pca.components_)) df.to_csv('/home/shobi/Trajectory/Datasets/HumanCD34/pca_components_importance_500hvg.csv') print('done saving') ''' # sc.pp.scale(adata, max_value=10)zheng scales after the log, but this doesnt work well and is also not used in scvelo.pp.filter_and_normalize return adata def main_Human(ncomps=80, knn=30, v0_random_seed=7, run_palantir_func=False): ''' df = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/pca_components_importance_500hvg.csv') print(df) df = df.set_index('Unnamed: 0') print(df) df = df.sort_values(by='totals', axis=1, ascending = False) df.to_csv('/home/shobi/Trajectory/Datasets/HumanCD34/pca_components_importance_sorted_500hvg.csv') print('saved') ''' import random random.seed(100) dict_abb = {'Basophils': 'BASO1', 'CD4+ Effector Memory': 'TCEL7', 'Colony Forming Unit-Granulocytes': 'GRAN1', 'Colony Forming Unit-Megakaryocytic': 'MEGA1', 'Colony Forming Unit-Monocytes': 'MONO1', 'Common myeloid progenitors': "CMP", 'Early B cells': "PRE_B2", 'Eosinophils': "EOS2", 'Erythroid_CD34- CD71+ GlyA-': "ERY2", 'Erythroid_CD34- CD71+ GlyA+': "ERY3", 'Erythroid_CD34+ CD71+ GlyA-': "ERY1", 'Erythroid_CD34- CD71lo GlyA+': 'ERY4', 'Granulocyte/monocyte progenitors': "GMP", 'Hematopoietic stem cells_CD133+ CD34dim': "HSC1", 'Hematopoietic stem cells_CD38- CD34+': "HSC2", 'Mature B cells class able to switch': "B_a2", 'Mature B cells class switched': "B_a4", 'Mature NK cells_CD56- CD16- CD3-': "Nka3", 'Monocytes': "MONO2", 'Megakaryocyte/erythroid progenitors': "MEP", 'Myeloid Dendritic Cells': 'mDC (cDC)', 'Naïve B cells': "B_a1", 'Plasmacytoid Dendritic Cells': "pDC", 'Pro B cells': 'PRE_B3'} # NOTE: Myeloid DCs are now called Conventional Dendritic Cells cDCs string_ = 'ncomp =' + str(ncomps) + ' knn=' + str(knn) + ' randseed=' + str(v0_random_seed) # print('ncomp =', ncomps, ' knn=', knn, ' randseed=', v0_random_seed) print(colored(string_, 'blue')) nover_labels = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/Nover_Cor_PredFine_notLogNorm.csv')[ 'x'].values.tolist() nover_labels = [dict_abb[i] for i in nover_labels] df_nover = pd.DataFrame(nover_labels) # df_nover.to_csv('/home/shobi/Trajectory/Datasets/HumanCD34/noverLabelsforMonocle.csv') print('save nover') for i in list(set(nover_labels)): print('the population of ', i, 'is ', nover_labels.count(i)) parc53_labels = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/Nover_Cor_Parc53_set1.csv')[ 'x'].values.tolist() parclabels_all = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/parclabels_all_set1.csv')[ 'parc'].values.tolist() parc_dict_nover = {} for i, c in enumerate(parc53_labels): parc_dict_nover[i] = dict_abb[c] parclabels_all = [parc_dict_nover[ll] for ll in parclabels_all] # print('all', len(parclabels_all)) ad = sc.read( '/home/shobi/Trajectory/Datasets/HumanCD34/human_cd34_bm_rep1.h5ad') # 5780 cells x 14651 genes Human Replicate 1. Male african american, 38 years print('h5ad ad size', ad) colors = pd.Series(ad.uns['cluster_colors']) colors['10'] = '#0b128f' ct_colors = pd.Series(ad.uns['ct_colors']) list_var_names = ad.var_names # print(list_var_names) ad.uns['iroot'] = np.flatnonzero(ad.obs_names == ad.obs['palantir_pseudotime'].idxmin())[0] print('iroot', np.flatnonzero(ad.obs_names == ad.obs['palantir_pseudotime'].idxmin())[0]) tsne = pd.DataFrame(ad.obsm['tsne'], index=ad.obs_names, columns=['x', 'y']) tsnem = ad.obsm['tsne'] palantir_tsne_df = pd.DataFrame(tsnem) # palantir_tsne_df.to_csv('/home/shobi/Trajectory/Datasets/HumanCD34/palantir_tsne.csv') revised_clus = ad.obs['clusters'].values.tolist().copy() loc_DCs = [i for i in range(5780) if ad.obs['clusters'].values.tolist()[i] == '7'] for loc_i in loc_DCs: if ad.obsm['palantir_branch_probs'][loc_i, 5] > ad.obsm['palantir_branch_probs'][ loc_i, 2]: # if prob that cDC > pDC, then relabel as cDC revised_clus[loc_i] = '10' revised_clus = [int(i) for i in revised_clus] # magic_df = ad.obsm['MAGIC_imputed_data'] # ad.X: Filtered, normalized and log transformed count matrix # ad.raw.X: Filtered raw count matrix # print('before extra filtering' ,ad.shape) # sc.pp.filter_genes(ad, min_cells=10) # print('after extra filtering', ad.shape) adata_counts = sc.AnnData(ad.X) print(ad.raw.X.shape) # df_X = pd.DataFrame(ad.raw.X.todense(), columns = ad.var_names) # df_X.columns = [i for i in ad.var_names] # print('starting to save .X') # df_X.to_csv("/home/shobi/Trajectory/Datasets/HumanCD34/expression_matrix_raw.csv") print('finished save .X') # (ad.X) # ad.X is filtered, lognormalized,scaled// ad.raw.X is the filtered but not pre-processed adata_counts.obs_names = ad.obs_names adata_counts.var_names = ad.var_names adata_counts_raw = sc.AnnData(ad.raw.X) adata_counts_raw.var_names = [i for i in ad.var_names] # adata_counts_raw = adata_preprocess(adata_counts_raw, n_top_genes=500, log=True) # when using HVG and no PCA # sc.tl.pca(adata_counts_raw,svd_solver='arpack', n_comps=ncomps) sc.tl.pca(adata_counts, svd_solver='arpack', n_comps=ncomps) marker = ['x', '+', (5, 0), '>', 'o', (5, 2)] import colorcet as cc # tsnem = TSNE().fit_transform(adata_counts.obsm['X_pca']) ''' f, (ax1, ax2, ax3) = plt.subplots(1, 3, sharey=True) line = np.linspace(0, 1, len(set(revised_clus))) for color, group in zip(line, set(revised_clus)): where = np.where(np.array(revised_clus) == group)[0] ax1.scatter(tsnem[where, 0], tsnem[where, 1], label=group, c=np.asarray(plt.cm.jet(color)).reshape(-1, 4)) ax1.legend() ax1.set_title('Palantir Phenograph Labels') import colorcet as cc marker = ['x', '+', (5, 0), '>', 'o', (5, 2)] line_nover = np.linspace(0, 1, len(set(nover_labels))) col_i = 0 for color, group in zip(line_nover, set(nover_labels)): where = np.where(np.array(nover_labels) == group)[0] marker_x = marker[random.randint(0, 5)] # ax2.scatter(tsnem[where, 0],tsnem[where, 1], label=group, c=plt.cm.nipy_spectral(color), marker = marker_x, alpha=0.5) ax2.scatter(tsnem[where, 0], tsnem[where, 1], label=group, c=cc.glasbey_dark[col_i], marker=marker_x, alpha=0.5) col_i = col_i + 1 ax2.legend(fontsize=6) ax2.set_title('Novershtern Corr. Labels') line = np.linspace(0, 1, len(set(parclabels_all))) col_i = 0 for color, group in zip(line, set(parclabels_all)): where = np.where(np.array(parclabels_all) == group)[0] ax3.scatter(tsnem[where, 0], tsnem[where, 1], label=group, c=cc.glasbey_dark[col_i], alpha=0.5) col_i = col_i + 1 ax3.legend() ax3.set_title('Parc53 Nover Labels') # plt.show() ''' ''' plt.figure(figsize=[5, 5]) plt.title('palantir, ncomps = ' + str(ncomps) + ' knn' + str(knn)) for group in set(revised_clus): loc_group = np.where(np.asarray(revised_clus) == group)[0] plt.scatter(tsnem[loc_group, 0], tsnem[loc_group, 1], s=5, color=colors[group], label=group) ax = plt.gca() ax.set_axis_off() ax.legend(fontsize=6) ''' gene_list = [ 'ITGAX'] # ['GATA1', 'GATA2', 'ITGA2B', 'CSF1R', 'MPO', 'CD79B', 'SPI1', 'IRF8', 'CD34', 'IL3RA', 'ITGAX', 'IGHD', # 'CD27', 'CD14', 'CD22', 'ITGAM', 'CLC', 'MS4A3', 'FCGR3A', 'CSF1R'] true_label = nover_labels # revised_clus root_user = [4823] print('v0 random seed', v0_random_seed) # df_temp_write = pd.DataFrame(adata_counts.obsm['X_pca'][:, 0:200]) # df_temp_write.to_csv("/home/shobi/Trajectory/Datasets/HumanCD34/Human_CD34_200PCA.csv") Xin = adata_counts.obsm['X_pca'][:, 0:ncomps] # Xin = adata_counts_raw.obsm['X_pca'][:, 0:ncomps] # Xin = adata_counts_raw.X.todense() print(time.ctime()) print(time.ctime()) v0 = VIA(Xin, true_label, jac_std_global=0.15, dist_std_local=1, knn=knn, too_big_factor=0.2, root_user=root_user, dataset='humanCD34', preserve_disconnected=True, random_seed=v0_random_seed, do_impute_bool=True, is_coarse=True, pseudotime_threshold_TS=10, neighboring_terminal_states_threshold=3) # *.4 root=1, v0.run_VIA() v0.make_JSON(filename='scRNA_Hema_temp.js') super_labels = v0.labels print('starting to save selected genes') genes_save = ['ITGAX', 'GATA1', 'GATA2', 'ITGA2B', 'CSF1R', 'MPO', 'CD79B', 'SPI1', 'IRF8', 'CD34', 'IL3RA', 'ITGAX', 'IGHD', 'CD27', 'CD14', 'CD22', 'ITGAM', 'CLC', 'MS4A3', 'FCGR3A', 'CSF1R'] df_selected_genes = pd.DataFrame(adata_counts.X, columns=[cc for cc in adata_counts.var_names]) df_selected_genes = df_selected_genes[genes_save] # df_selected_genes.to_csv("/home/shobi/Trajectory/Datasets/HumanCD34/selected_genes.csv") df_ = pd.DataFrame(ad.X) df_.columns = [i for i in ad.var_names] print('start magic') gene_list_magic = ['IL3RA', 'IRF8', 'GATA1', 'GATA2', 'ITGA2B', 'MPO', 'CD79B', 'SPI1', 'CD34', 'CSF1R', 'ITGAX'] df_magic = v0.do_impute(df_, magic_steps=3, gene_list=gene_list_magic) df_magic_cluster = df_magic.copy() df_magic_cluster['parc'] = v0.labels df_magic_cluster = df_magic_cluster.groupby('parc', as_index=True).mean() print('end magic', df_magic.shape) f, ((ax, ax1)) = plt.subplots(1, 2, sharey=True) v0.draw_piechart_graph(ax, ax1, type_pt='gene', gene_exp=df_magic_cluster['GATA1'].values, title='GATA1') plt.show() super_clus_ds_PCA_loc = sc_loc_ofsuperCluster_PCAspace(v0, v0, np.arange(0, len(true_label))) draw_trajectory_gams(tsnem, super_clus_ds_PCA_loc, super_labels, super_labels, v0.edgelist_maxout, v0.x_lazy, v0.alpha_teleport, v0.single_cell_pt_markov, true_label, knn=v0.knn, final_super_terminal=v0.terminal_clusters, sub_terminal_clusters=v0.terminal_clusters, title_str='Markov Hitting Times (Gams)', ncomp=str(Xin.shape[1])) plt.show() print('super labels', set(super_labels)) ad.obs['via0_label'] = [str(i) for i in super_labels] magic_ad = ad.obsm['MAGIC_imputed_data'] magic_ad = sc.AnnData(magic_ad) magic_ad.obs_names = ad.obs_names magic_ad.var_names = ad.var_names magic_ad.obs['via0_label'] = [str(i) for i in super_labels] marker_genes = {"ERY": ['GATA1', 'GATA2', 'ITGA2B'], "BCell": ['IGHD', 'CD22'], "DC": ['IRF8', 'IL3RA', 'IRF4', 'CSF2RA', 'ITGAX'], "MONO": ['CD14', 'SPI1', 'MPO', 'IL12RB1', 'IL13RA1', 'C3AR1', 'FCGR3A'], 'HSC': ['CD34']} sc.pl.matrixplot(magic_ad, marker_genes, groupby='via0_label', dendrogram=True) ''' sc.tl.rank_genes_groups(ad, groupby='via0_label', use_raw=True, method='wilcoxon', n_genes=10) # compute differential expression sc.pl.rank_genes_groups_heatmap(ad, n_genes=10, groupby="via0_label", show_gene_labels=True, use_raw=False) sc.pl.rank_genes_groups_tracksplot(ad, groupby='via0_label', n_genes = 3) # plot the result ''' loaded_magic_df = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/MAGIC_palantir_knn30ncomp100_subset.csv') # loaded_magic_df.head() for gene_name in ['ITGA2B', 'IL3RA', 'IRF8', 'MPO', 'CSF1R', 'GATA2', 'CD79B', 'CD34', 'GATA1', 'IL3RA']: # ,'SPI1', 'CD34','CSF1R','IL3RA','IRF4', 'CSF2RA','ITGAX']: print('gene name', gene_name) # DC markers https://www.cell.com/pb-assets/products/nucleus/nucleus-phagocytes/rnd-systems-dendritic-cells-br.pdf gene_name_dict = {'GATA1': 'GATA1', 'GATA2': 'GATA2', 'ITGA2B': 'CD41 (Mega)', 'MPO': 'MPO (Mono)', 'CD79B': 'CD79B (B)', 'IRF8': 'IRF8 (DC)', 'SPI1': 'PU.1', 'CD34': 'CD34', 'CSF1R': 'CSF1R (cDC Up. Up then Down in pDC)', 'IL3RA': 'CD123 (pDC)', 'IRF4': 'IRF4 (pDC)', 'ITGAX': 'ITGAX (cDCs)', 'CSF2RA': 'CSF2RA (cDC)'} loc_gata = np.where(np.asarray(ad.var_names) == gene_name)[0][0] magic_ad = ad.obsm['MAGIC_imputed_data'][:, loc_gata] magic_ad = loaded_magic_df[gene_name] # subset_ = magic_ad subset_ = df_magic[gene_name].values print(subset_.shape) # print('shapes of magic_ad 1 and 2', magic_ad.shape,subset_.shape) # v1.get_gene_expression(magic_ad,title_gene = gene_name_dict[gene_name]) v0.get_gene_expression(subset_, title_gene=gene_name_dict[gene_name]) plt.show() super_edges = v0.edgelist_maxout # v0.edgelist tsi_list = get_loc_terminal_states(v0, Xin) v1 = VIA(Xin, true_label, jac_std_global=0.15, dist_std_local=1, knn=knn, too_big_factor=0.05, super_cluster_labels=super_labels, super_node_degree_list=v0.node_degree_list, super_terminal_cells=tsi_list, root_user=root_user, x_lazy=0.95, alpha_teleport=0.99, dataset='humanCD34', preserve_disconnected=True, super_terminal_clusters=v0.terminal_clusters, is_coarse=False, full_neighbor_array=v0.full_neighbor_array, ig_full_graph=v0.ig_full_graph, full_distance_array=v0.full_distance_array, csr_array_locally_pruned=v0.csr_array_locally_pruned, random_seed=v0_random_seed, pseudotime_threshold_TS=10) # *.4super_terminal_cells = tsi_list #3root=1, v1.run_VIA() labels = v1.labels v1.make_JSON(filename='scRNA_Hema_via1_temp.js') df_magic_cluster = df_magic.copy() df_magic_cluster['via1'] = v1.labels df_magic_cluster = df_magic_cluster.groupby('via1', as_index=True).mean() # print('df_magic_cluster', df_magic_cluster) ''' #Get the clustsergraph gene expression on topology for gene_i in gene_list_magic: f, ((ax, ax1)) = plt.subplots(1, 2, sharey=True) v1.draw_piechart_graph(ax,ax1,type_pt='gene', gene_exp = df_magic_cluster[gene_i].values, title = gene_i) plt.show() ''' ad.obs['parc1_label'] = [str(i) for i in labels] ''' tsi_list = [] # find the single-cell which is nearest to the average-location of a terminal cluster for tsi in v1.revised_super_terminal_clusters: loc_i = np.where(super_labels == tsi)[0] temp = np.mean(adata_counts.obsm['X_pca'][:, 0:ncomps][loc_i], axis=0) labelsq, distances = v0.knn_struct.knn_query(temp, k=1) tsi_list.append(labelsq[0][0]) sc.tl.rank_genes_groups(ad, groupby='parc1_label', use_raw=True, method='wilcoxon', n_genes=10) # compute differential expression sc.pl.matrixplot(ad, marker_genes, groupby='parc1_label', use_raw=False) sc.pl.rank_genes_groups_heatmap(ad, n_genes=3, groupby="parc1_label", show_gene_labels=True, use_raw=False) ''' label_df = pd.DataFrame(labels, columns=['parc']) # label_df.to_csv('/home/shobi/Trajectory/Datasets/HumanCD34/parclabels.csv', index=False) gene_ids = adata_counts.var_names obs = ad.raw.X.toarray() print('shape obs', obs.shape) obs = pd.DataFrame(obs, columns=gene_ids) # obs['parc']=v1.labels obs['louvain'] = revised_clus # obs_average = obs.groupby('parc', as_index=True).mean() obs_average = obs.groupby('louvain', as_index=True).mean() # print(obs_average.head()) # obs_average.to_csv('/home/shobi/Trajectory/Datasets/HumanCD34/louvain_palantir_average.csv', index=False) ad_obs = sc.AnnData(obs_average) ad_obs.var_names = gene_ids ad_obs.obs['parc'] = [i for i in range(len(set(revised_clus)))] # v1.labels instaed of revised_clus # sc.write('/home/shobi/Trajectory/Datasets/HumanCD34/louvain_palantir_average.h5ad',ad_obs) # fig_0, ax_0 = plt.subplots() loaded_magic_df = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/MAGIC_palantir_knn30ncomp100_subset.csv') # loaded_magic_df.head() for gene_name in ['ITGA2B', 'IL3RA', 'IRF8', 'MPO', 'CSF1R', 'GATA2', 'CD79B', 'CD34']: # ['GATA1', 'GATA2', 'ITGA2B', 'MPO', 'CD79B','IRF8','SPI1', 'CD34','CSF1R','IL3RA','IRF4', 'CSF2RA','ITGAX']: print('gene name', gene_name) # DC markers https://www.cell.com/pb-assets/products/nucleus/nucleus-phagocytes/rnd-systems-dendritic-cells-br.pdf gene_name_dict = {'GATA1': 'GATA1', 'GATA2': 'GATA2', 'ITGA2B': 'CD41 (Mega)', 'MPO': 'MPO (Mono)', 'CD79B': 'CD79B (B)', 'IRF8': 'IRF8 (DC)', 'SPI1': 'PU.1', 'CD34': 'CD34', 'CSF1R': 'CSF1R (cDC Up. Up then Down in pDC)', 'IL3RA': 'CD123 (pDC)', 'IRF4': 'IRF4 (pDC)', 'ITGAX': 'ITGAX (cDCs)', 'CSF2RA': 'CSF2RA (cDC)'} loc_gata = np.where(np.asarray(ad.var_names) == gene_name)[0][0] magic_ad = ad.obsm['MAGIC_imputed_data'][:, loc_gata] magic_ad = loaded_magic_df[gene_name] # subset_ = magic_ad subset_ = df_magic[gene_name].values print(subset_.shape) # print('shapes of magic_ad 1 and 2', magic_ad.shape,subset_.shape) # v1.get_gene_expression(magic_ad,title_gene = gene_name_dict[gene_name]) v1.get_gene_expression(subset_, title_gene=gene_name_dict[gene_name]) # v0.get_gene_expression(subset_, title_gene=gene_name_dict[gene_name] + 'VIA MAGIC') print('start tsne') n_downsample = 4000 if len(labels) > n_downsample: # idx = np.random.randint(len(labels), size=4000) np.random.seed(2357) idx = np.random.choice(a=np.arange(0, len(labels)), size=5780, replace=False, p=None) super_labels = np.asarray(super_labels)[idx] labels = list(np.asarray(labels)[idx]) print('labels p1', len(labels), set(labels)) true_label = list(np.asarray(true_label)[idx]) sc_pt_markov = list(np.asarray(v1.single_cell_pt_markov)[idx]) # graph_hnsw = v0.knngraph_visual() embedding = tsnem[idx, :] # TSNE().fit_transform(adata_counts.obsm['X_pca'][idx, :]) # phate_op = phate.PHATE() # embedding = phate_op.fit_transform(adata_counts.obsm['X_pca'][:, 0:20]) # embedding = embedding[idx, :] # embedding = umap.UMAP().fit_transform(adata_counts.obsm['X_pca'][idx, 0:20]) print('size of downsampled embedding', embedding.shape) else: embedding = tsnem # umap.UMAP().fit_transform(adata_counts.obsm['X_pca'][:,0:20]) idx = np.random.randint(len(labels), size=len(labels)) print('end tsne') super_clus_ds_PCA_loc = sc_loc_ofsuperCluster_PCAspace(v0, v1, idx) draw_trajectory_gams(embedding, super_clus_ds_PCA_loc, labels, super_labels, super_edges, v1.x_lazy, v1.alpha_teleport, sc_pt_markov, true_label, knn=v0.knn, final_super_terminal=v1.revised_super_terminal_clusters, sub_terminal_clusters=v1.terminal_clusters, title_str='Hitting times: Markov Simulation on biased edges', ncomp=ncomps) plt.show() # DRAW EVOLUTION PATHS knn_hnsw = make_knn_embeddedspace(embedding) draw_sc_evolution_trajectory_dijkstra(v1, embedding, knn_hnsw, v0.full_graph_shortpath, idx) plt.show() def main_Toy_comparisons(ncomps=10, knn=30, random_seed=42, dataset='Toy3', root_user='M1', foldername="/home/shobi/Trajectory/Datasets/Toy3/"): print('dataset, ncomps, knn, seed', dataset, ncomps, knn, random_seed) # root_user = ["T1_M1", "T2_M1"] # "M1" # #'M1' # "T1_M1", "T2_M1"] #"T1_M1" if dataset == "Toy3": print('dataset Toy3') df_counts = pd.read_csv(foldername + "toy_multifurcating_M8_n1000d1000.csv", delimiter=",") #df_counts = pd.read_csv(foldername + "Toy3_noise_100genes_thinfactor8.csv", delimiter=",") df_ids = pd.read_csv(foldername + "toy_multifurcating_M8_n1000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/Toy3/toy_multifurcating_M8_n1000d1000.csv") print('df_ids', df_ids.columns) root_user = ['M1'] paga_root = "M1" palantir_root = 'C107' if dataset == "Toy4": # 2 disconnected components df_counts = pd.read_csv(foldername + "toy_disconnected_M9_n1000d1000.csv", delimiter=",") # df_counts = pd.read_csv(foldername + "Toy4_noise_500genes.csv", delimiter=",") df_ids = pd.read_csv(foldername + "toy_disconnected_M9_n1000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/Toy4/toy_disconnected_M9_n1000d1000.csv") print(df_counts.shape, 'df_counts shape') root_user = ['T1_M1', 'T2_M1'] # 'T1_M1' paga_root = 'T2_M1' palantir_root = 'C107' if dataset == "Connected": df_counts = pd.read_csv(foldername + "ToyConnected_M9_n2000d1000.csv", delimiter=",") # df_counts = pd.read_csv(foldername + "ToyConnected_noise_500genes.csv", delimiter=",") df_ids = pd.read_csv(foldername + "ToyConnected_M9_n2000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/ToyConnected/ToyConnected_M9_n2000d1000.csv") root_user = ['M1'] paga_root = "M1" palantir_root = 'C1' if dataset == "Connected2": df_counts = pd.read_csv(foldername + "Connected2_n1000d1000.csv", delimiter=",") # df_counts = pd.read_csv(foldername + "ToyConnected2_noise_500genes.csv", 'rt',delimiter=",") df_ids = pd.read_csv(foldername + "Connected2_n1000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/ToyConnected2/Connected2_n1000d1000.csv") root_user = ['M1'] paga_root = "M1" palantir_root = 'C11' # suggest to use visual jaccard pruning of 1 (this doesnt alter underlying graph, just the display. can also use "M2" as the starting root, if dataset == "ToyMultiM11": df_counts = pd.read_csv(foldername + "Toymulti_M11_n3000d1000.csv", delimiter=",") # df_counts = pd.read_csv(foldername + "ToyMulti_M11_noised.csv", delimiter=",") df_ids = pd.read_csv(foldername + "Toymulti_M11_n3000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv( "/home/shobi/Trajectory/Datasets/ToyMultifurcating_M11/Toymulti_M11_n3000d1000.csv") root_user = ['M1'] paga_root = "M1" palantir_root = 'C1005' if dataset == "Cyclic": # 4 milestones df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyCyclic/ToyCyclic_M4_n1000d1000.csv", delimiter=",") df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyCyclic/ToyCyclic_noise_100genes_thinfactor3.csv", delimiter=",") df_ids = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyCyclic/ToyCyclic_M4_n1000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/ToyCyclic/ToyCyclic_M4_n1000d1000.csv") root_user = ['M1'] # 'T1_M1' paga_root = 'M1' palantir_root = 'C1' if dataset == "Cyclic2": # 4 milestones df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyCyclic2/Cyclic2_n1000d1000.csv", delimiter=",") # df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyCyclic2/ToyCyclic2_noise_500genes.csv", delimiter=",") df_ids = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyCyclic2/Cyclic2_n1000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/ToyCyclic2/Cyclic2_n1000d1000.csv") root_user = ['M1'] # 'T1_M1' paga_root = 'M1' palantir_root = 'C107' if dataset == 'Bifurc2': df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyBifurcating2/Bifurc2_M4_n2000d1000.csv", delimiter=",") df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyBifurcating2/ToyBifurc2_noised.csv", delimiter=",") df_ids = pd.read_csv( "/home/shobi/Trajectory/Datasets/ToyBifurcating2/Bifurc2_M4_n2000d1000_ids_with_truetime.csv",delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/ToyBifurcating2/Bifurc2_M4_n2000d1000.csv") root_user = ['M1'] # 'T1_M1' paga_root = 'M1' palantir_root = 'C1006' if dataset == 'Disconnected2': df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyDisconnected2/Disconnected2_n1000d1000.csv", delimiter=",") df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyDisconnected2/ToyDisconnected2_noise_500genes.csv", delimiter=",") df_ids = pd.read_csv( "/home/shobi/Trajectory/Datasets/ToyDisconnected2/Disconnected2_n1000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/ToyDisconnected2/Disconnected2_n1000d1000.csv") root_user = ['T1_M1', 'T1_M2', 'T1_M3'] # 'T1_M1' paga_root = 'T1_M1' palantir_root = 'C125' df_ids['cell_id_num'] = [int(s[1::]) for s in df_ids['cell_id']] print("shape", df_counts.shape, df_ids.shape) df_counts = df_counts.drop('Unnamed: 0', 1) df_ids = df_ids.sort_values(by=['cell_id_num']) df_ids = df_ids.reset_index(drop=True) # df_ids.to_csv("/home/shobi/Trajectory/Datasets/ToyConnected2/Connected2_n1000d1000_ids_sorted_with_truetime.csv") # df_counts['group_id'] = df_ids['group_id']#to split Toy4 # df_counts['main_Traj'] = [i[0:2] for i in df_ids['group_id']]#to split Toy4 # df_ids['main_Traj'] = [i[0:2] for i in df_ids['group_id']]#to split Toy4 # df_counts = df_counts[df_counts['main_Traj']=='T2']#to split Toy4 # df_ids = df_ids[df_ids['main_Traj'] == 'T2']#to split Toy4 #true_time = df_ids['true_time'] true_label = df_ids['group_id'].tolist() # df_counts = df_counts.drop('main_Traj', 1)#to split Toy4 # df_counts = df_counts.drop('group_id', 1)#to split Toy4 # df_ids = df_ids.reset_index(drop=True)#to split Toy4 # df_counts = df_counts.reset_index(drop=True)#to split Toy4 # true_label = df_ids['group_id'] #to split Toy4 print("shape", df_counts.index, df_ids.index) adata_counts = sc.AnnData(df_counts, obs=df_ids) sc.tl.pca(adata_counts, svd_solver='arpack', n_comps=ncomps) # comparisons adata_counts.uns['iroot'] = np.flatnonzero(adata_counts.obs['group_id'] == paga_root)[0] # 'T1_M1'#'M1' do_paga = False # do_palantir = False # # comparisons if do_paga == True: sc.pp.neighbors(adata_counts, n_neighbors=knn, use_rep='X', ) # n_pcs=ncomps) # 4 sc.tl.draw_graph(adata_counts) # sc.pl.draw_graph(adata_counts, color='group_id', legend_loc='on data') # force-directed layout start_dfmap = time.time() # sc.tl.diffmap(adata_counts, n_comps=ncomps) sc.tl.diffmap(adata_counts, n_comps=200) # default retains n_comps = 15 print('time taken to get diffmap given knn', time.time() - start_dfmap) sc.pp.neighbors(adata_counts, n_neighbors=knn, use_rep='X_diffmap') # 4 sc.tl.draw_graph(adata_counts) sc.pl.draw_graph(adata_counts, color='group_id', legend_loc='on data') sc.tl.leiden(adata_counts, resolution=1.0, random_state=10) sc.tl.paga(adata_counts, groups='leiden') # sc.pl.paga(adata_counts, color=['leiden','group_id']) sc.tl.dpt(adata_counts, n_dcs=ncomps) df_paga = pd.DataFrame() df_paga['paga_dpt'] = adata_counts.obs['dpt_pseudotime'].values correlation = df_paga['paga_dpt'].corr(df_ids['true_time']) print('corr paga knn', knn, correlation) sc.pl.paga(adata_counts, color=['leiden', 'group_id', 'dpt_pseudotime'], title=['leiden (knn:' + str(knn) + ' ncomps:' + str(ncomps) + ')', 'group_id (ncomps:' + str(ncomps) + ')', 'pseudotime (ncomps:' + str(ncomps) + ')']) # X = df_counts.values ''' # palantir if do_palantir == True: print(palantir.__file__) # location of palantir source code str_true_label = true_label.tolist() str_true_label = [(i[1:]) for i in str_true_label] str_true_label = pd.Series(str_true_label, index=counts.index) norm_df = counts # palantir.preprocess.normalize_counts(counts) # pca_projections, _ = palantir.utils.run_pca(norm_df, n_components=ncomps) #normally use pca_projections = counts dm_res = palantir.utils.run_diffusion_maps(pca_projections, knn=knn, n_components=300) ## n_components=ncomps, knn=knn) ms_data = palantir.utils.determine_multiscale_space(dm_res) # n_eigs is determined using eigengap tsne = palantir.utils.run_tsne(ms_data) palantir.plot.plot_cell_clusters(tsne, str_true_label) # C108 for M12 connected' #M8n1000d1000 start - c107 #c1001 for bifurc n2000d1000 #disconnected n1000 c108, "C1 for M10 connected" # c10 for bifurcating_m4_n2000d1000 # c107 for T1_M1, C42 for T2_M1 disconnected # C1 for M8_connected, C1005 for multi_M11 , 'C1006 for bifurc2' pr_res = palantir.core.run_palantir(ms_data, early_cell=palantir_root, num_waypoints=500, knn=knn) df_palantir = pd.read_csv( '/home/shobi/Trajectory/Datasets/Toy3/palantir_pt.csv') # /home/shobi/anaconda3/envs/ViaEnv/lib/python3.7/site-packages/palantir pt = df_palantir['pt'] correlation = pt.corr(true_time) print('corr Palantir', correlation) print('') palantir.plot.plot_palantir_results(pr_res, tsne, n_knn=knn, n_comps=pca_projections.shape[1]) plt.show() ''' # from sklearn.decomposition import PCA # pca = PCA(n_components=ncomps) # pc = pca.fit_transform(df_counts) Xin = adata_counts.obsm['X_pca'][:, 0:ncomps] # Xin = adata_counts.X if dataset == 'Toy4': jac_std_global = .15 # .15 else: jac_std_global = 0.15 # .15#0.15 #bruge 1 til cyclic2, ellers 0.15 # v0 = VIA(Xin, true_label, jac_std_global=jac_std_global, dist_std_local=1, knn=knn, too_big_factor=0.3, root_user=root_user, preserve_disconnected=True, dataset='toy', visual_cluster_graph_pruning=1, max_visual_outgoing_edges=2, random_seed=random_seed) # *.4 root=2, v0.run_VIA() super_labels = v0.labels df_ids['pt'] = v0.single_cell_pt_markov correlation = df_ids['pt'].corr(df_ids['true_time']) print('corr via knn', knn, correlation) super_edges = v0.edgelist # v0.make_JSON(filename = 'Toy3_ViaOut_temp.js') p = hnswlib.Index(space='l2', dim=adata_counts.obsm['X_pca'][:, 0:ncomps].shape[1]) p.init_index(max_elements=adata_counts.obsm['X_pca'][:, 0:ncomps].shape[0], ef_construction=200, M=16) p.add_items(adata_counts.obsm['X_pca'][:, 0:ncomps]) p.set_ef(50) tsi_list = [] # find the single-cell which is nearest to the average-location of a terminal cluster in PCA space ( for tsi in v0.terminal_clusters: loc_i = np.where(np.asarray(v0.labels) == tsi)[0] val_pt = [v0.single_cell_pt_markov[i] for i in loc_i] th_pt = np.percentile(val_pt, 50) # 50 loc_i = [loc_i[i] for i in range(len(val_pt)) if val_pt[i] >= th_pt] temp = np.mean(adata_counts.obsm['X_pca'][:, 0:ncomps][loc_i], axis=0) labelsq, distances = p.knn_query(temp, k=1) tsi_list.append(labelsq[0][0]) print('Granular VIA iteration') v1 = VIA(Xin, true_label, jac_std_global=jac_std_global, dist_std_local=1, knn=knn, too_big_factor=0.1, super_cluster_labels=super_labels, super_node_degree_list=v0.node_degree_list, super_terminal_cells=tsi_list, root_user=root_user, is_coarse=False, x_lazy=0.95, alpha_teleport=0.99, preserve_disconnected=True, dataset='toy', visual_cluster_graph_pruning=1, max_visual_outgoing_edges=2, super_terminal_clusters=v0.terminal_clusters, full_neighbor_array=v0.full_neighbor_array, ig_full_graph=v0.ig_full_graph, full_distance_array=v0.full_distance_array, csr_array_locally_pruned=v0.csr_array_locally_pruned, random_seed=random_seed) # root=1, v1.run_VIA() df_ids['pt1'] = v1.single_cell_pt_markov correlation = df_ids['pt1'].corr(df_ids['true_time']) print('corr via1 knn', knn, correlation) labels = v1.labels # v1 = PARC(adata_counts.obsm['X_pca'], true_label, jac_std_global=1, knn=5, too_big_factor=0.05, anndata= adata_counts, small_pop=2) # v1.run_VIA() # labels = v1.labels print('start tsne') n_downsample = 500 if len(labels) > n_downsample: # idx = np.random.randint(len(labels), size=900) np.random.seed(2357) idx = np.random.choice(a=np.arange(0, len(labels)), size=len(labels), replace=False, p=None) print('len idx', len(idx)) super_labels = np.asarray(super_labels)[idx] labels = list(np.asarray(labels)[idx]) true_label = list(np.asarray(true_label)[idx]) sc_pt_markov = list(np.asarray(v1.single_cell_pt_markov[idx])) # embedding = v0.run_umap_hnsw(adata_counts.obsm['X_pca'][idx, :], graph) embedding = adata_counts.obsm['X_pca'][idx, 0:2] # umap.UMAP().fit_transform(adata_counts.obsm['X_pca'][idx, 0:5]) # embedding = TSNE().fit_transform(adata_counts.obsm['X_pca'][idx, :]) print('tsne downsampled size', embedding.shape) else: embedding = umap.UMAP().fit_transform(Xin) # (adata_counts.obsm['X_pca']) print('tsne input size', adata_counts.obsm['X_pca'].shape) # embedding = umap.UMAP().fit_transform(adata_counts.obsm['X_pca']) idx = np.random.randint(len(labels), size=len(labels)) print('end tsne') super_clus_ds_PCA_loc = sc_loc_ofsuperCluster_PCAspace(v0, v1, idx) print('super terminal and sub terminal', v0.super_terminal_cells, v1.terminal_clusters) knn_hnsw, ci_list = sc_loc_ofsuperCluster_embeddedspace(embedding, v0, v1, idx) draw_trajectory_gams(embedding, super_clus_ds_PCA_loc, labels, super_labels, super_edges, v1.x_lazy, v1.alpha_teleport, sc_pt_markov, true_label, knn=v0.knn, final_super_terminal=v1.revised_super_terminal_clusters, sub_terminal_clusters=v1.terminal_clusters, title_str='Hitting times: Markov Simulation on biased edges', ncomp=ncomps) plt.show() ''' draw_trajectory_dimred(embedding, ci_list, labels, super_labels, super_edges, v1.x_lazy, v1.alpha_teleport, sc_pt_markov, true_label, knn=v0.knn, final_super_terminal=v0.terminal_clusters, title_str='Hitting times: Markov Simulation on biased edges', ncomp=ncomps) ''' plt.show() num_group = len(set(true_label)) line = np.linspace(0, 1, num_group) f, (ax1, ax3) = plt.subplots(1, 2, sharey=True) for color, group in zip(line, set(true_label)): where = np.where(np.asarray(true_label) == group)[0] ax1.scatter(embedding[where, 0], embedding[where, 1], label=group, c=np.asarray(plt.cm.jet(color)).reshape(-1, 4)) ax1.legend(fontsize=6) ax1.set_title('true labels') ax3.set_title("Markov Sim PT ncomps:" + str(Xin.shape[1]) + '. knn:' + str(knn)) ax3.scatter(embedding[:, 0], embedding[:, 1], c=sc_pt_markov, cmap='viridis_r') plt.show() df_subset = pd.DataFrame(adata_counts.obsm['X_pca'][:, 0:5], columns=['Gene0', 'Gene1', 'Gene2', 'Gene3', 'Gene4']) for gene_i in ['Gene0', 'Gene1', 'Gene2']: # , 'Gene3', 'Gene4']: subset_ = df_subset[gene_i].values print(subset_.shape) # print('shapes of magic_ad 1 and 2', magic_ad.shape,subset_.shape) # v1.get_gene_expression(magic_ad,title_gene = gene_name_dict[gene_name]) v1.get_gene_expression(subset_, title_gene=gene_i) # knn_hnsw = make_knn_embeddedspace(embedding) draw_sc_evolution_trajectory_dijkstra(v1, embedding, knn_hnsw, v0.full_graph_shortpath, idx, adata_counts.obsm['X_pca'][:, 0:ncomps]) plt.show() def main_Toy(ncomps=10, knn=30, random_seed=41, dataset='Toy3', root_user=['M1'], cluster_graph_pruning_std=1., foldername="/home/shobi/Trajectory/Datasets/"): print('dataset, ncomps, knn, seed', dataset, ncomps, knn, random_seed) if dataset == "Toy3": df_counts = pd.read_csv(foldername + "toy_multifurcating_M8_n1000d1000.csv", delimiter=",") df_ids = pd.read_csv(foldername + "toy_multifurcating_M8_n1000d1000_ids_with_truetime.csv", delimiter=",") root_user = ['M1'] paga_root = "M1" if dataset == "Toy4": # 2 disconnected components print('inside toy4') df_counts = pd.read_csv(foldername + "toy_disconnected_M9_n1000d1000.csv", delimiter=",") df_ids = pd.read_csv(foldername + "toy_disconnected_M9_n1000d1000_ids_with_truetime.csv", delimiter=",") root_user = ['T1_M1', 'T2_M1'] # 'T1_M1' paga_root = 'T1_M1' df_ids['cell_id_num'] = [int(s[1::]) for s in df_ids['cell_id']] # print("shape", df_counts.shape, df_ids.shape) df_counts = df_counts.drop('Unnamed: 0', 1) df_ids = df_ids.sort_values(by=['cell_id_num']) df_ids = df_ids.reset_index(drop=True) true_label = df_ids['group_id'].tolist() #true_time = df_ids['true_time'] adata_counts = sc.AnnData(df_counts, obs=df_ids) sc.tl.pca(adata_counts, svd_solver='arpack', n_comps=ncomps) # true_label =['a' for i in true_label] #testing dummy true_label adata_counts.uns['iroot'] = np.flatnonzero(adata_counts.obs['group_id'] == paga_root)[0] # 'T1_M1'#'M1' # via_wrapper(adata_counts, true_label, embedding= adata_counts.obsm['X_pca'][:,0:2], root=[1], knn=30, ncomps=10,cluster_graph_pruning_std = 1) # print('starting via wrapper disconn') # via_wrapper_disconnected(adata_counts, true_label, embedding=adata_counts.obsm['X_pca'][:, 0:2], root=[23,902], preserve_disconnected=True, knn=10, ncomps=10, cluster_graph_pruning_std=1 ,random_seed=41) # print('end via wrapper disconn') if dataset == 'Toy4': jac_std_global = 0.15 # 1 else: jac_std_global = 0.15 import umap embedding = umap.UMAP().fit_transform(adata_counts.obsm['X_pca'][:, 0:10]) # 50 # embedding = adata_counts.obsm['X_pca'][:, 0:2] # plt.scatter(embedding[:,0],embedding[:,1]) # plt.show() print('root user', root_user) v0 = VIA(adata_counts.obsm['X_pca'][:, 0:ncomps], true_label, jac_std_global=jac_std_global, dist_std_local=1, knn=knn, cluster_graph_pruning_std=cluster_graph_pruning_std, too_big_factor=0.3, root_user=root_user, preserve_disconnected=True, dataset='toy', visual_cluster_graph_pruning=1, max_visual_outgoing_edges=2, random_seed=random_seed, piegraph_arrow_head_width=0.4, piegraph_edgeweight_scalingfactor=1.0) # *.4 root=2, v0.run_VIA() super_labels = v0.labels print('super labels', type(super_labels)) df_ids['pt'] = v0.single_cell_pt_markov correlation = df_ids['pt'].corr(df_ids['true_time']) print('corr via knn', knn, correlation) super_edges = v0.edgelist # v0.make_JSON(filename = 'Toy3_ViaOut_temp.js') p = hnswlib.Index(space='l2', dim=adata_counts.obsm['X_pca'][:, 0:ncomps].shape[1]) p.init_index(max_elements=adata_counts.obsm['X_pca'][:, 0:ncomps].shape[0], ef_construction=200, M=16) p.add_items(adata_counts.obsm['X_pca'][:, 0:ncomps]) p.set_ef(50) tsi_list = [] # find the single-cell which is nearest to the average-location of a terminal cluster in PCA space ( for tsi in v0.terminal_clusters: loc_i = np.where(np.asarray(v0.labels) == tsi)[0] val_pt = [v0.single_cell_pt_markov[i] for i in loc_i] th_pt = np.percentile(val_pt, 50) # 50 loc_i = [loc_i[i] for i in range(len(val_pt)) if val_pt[i] >= th_pt] temp = np.mean(adata_counts.obsm['X_pca'][:, 0:ncomps][loc_i], axis=0) labelsq, distances = p.knn_query(temp, k=1) tsi_list.append(labelsq[0][0]) print('Granular VIA iteration') v1 = VIA(adata_counts.obsm['X_pca'][:, 0:ncomps], true_label, jac_std_global=jac_std_global, dist_std_local=1, knn=knn, too_big_factor=0.1, cluster_graph_pruning_std=cluster_graph_pruning_std, super_cluster_labels=super_labels, super_node_degree_list=v0.node_degree_list, super_terminal_cells=tsi_list, root_user=root_user, is_coarse=False, x_lazy=0.95, alpha_teleport=0.99, preserve_disconnected=True, dataset='toy', visual_cluster_graph_pruning=1, max_visual_outgoing_edges=2, super_terminal_clusters=v0.terminal_clusters, full_neighbor_array=v0.full_neighbor_array, ig_full_graph=v0.ig_full_graph, full_distance_array=v0.full_distance_array, csr_array_locally_pruned=v0.csr_array_locally_pruned, random_seed=random_seed) # root=1, v1.run_VIA() labels = v1.labels df_ids['pt1'] = v1.single_cell_pt_markov correlation = df_ids['pt1'].corr(df_ids['true_time']) print('corr via knn', knn, correlation) n_downsample = 50 if len(labels) > n_downsample: # just testing the downsampling and indices. Not actually downsampling # idx = np.random.randint(len(labels), size=900) np.random.seed(2357) idx = np.random.choice(a=np.arange(0, len(labels)), size=len(labels), replace=False, p=None) print('len idx', len(idx)) super_labels = np.asarray(super_labels)[idx] labels = list(np.asarray(labels)[idx]) true_label = list(np.asarray(true_label)[idx]) sc_pt_markov = list(np.asarray(v1.single_cell_pt_markov[idx])) embedding = embedding[idx, :] # embedding = v0.run_umap_hnsw(adata_counts.obsm['X_pca'][idx, :], graph) # embedding = adata_counts.obsm['X_pca'][idx, 0:2] # umap.UMAP().fit_transform(adata_counts.obsm['X_pca'][idx, 0:5]) super_clus_ds_PCA_loc = sc_loc_ofsuperCluster_PCAspace(v0, v1, idx) print('super terminal and sub terminal', v0.super_terminal_cells, v1.terminal_clusters) draw_trajectory_gams(embedding, super_clus_ds_PCA_loc, labels, super_labels, super_edges, v1.x_lazy, v1.alpha_teleport, sc_pt_markov, true_label, knn=v0.knn, final_super_terminal=v1.revised_super_terminal_clusters, sub_terminal_clusters=v1.terminal_clusters, title_str='Hitting times: Markov Simulation on biased edges', ncomp=ncomps) plt.show() num_group = len(set(true_label)) line = np.linspace(0, 1, num_group) ''' f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) for color, group in zip(line, set(true_label)): where = np.where(np.asarray(true_label) == group)[0] ax1.scatter(embedding[where, 0], embedding[where, 1], label=group, c=np.asarray(plt.cm.jet(color)).reshape(-1, 4)) ax1.legend(fontsize=6) ax1.set_title('true labels') ax2.set_title("Markov Sim PT ncomps:" + str(ncomps) + '. knn:' + str(knn)) ax2.scatter(embedding[:, 0], embedding[:, 1], c=sc_pt_markov, cmap='viridis_r') plt.show() ''' df_subset = pd.DataFrame(adata_counts.obsm['X_pca'][:, 0:5], columns=['Gene0', 'Gene1', 'Gene2', 'Gene3', 'Gene4']) for gene_i in ['Gene0', 'Gene1', 'Gene2']: # , 'Gene3', 'Gene4']: subset_ = df_subset[gene_i].values v1.get_gene_expression(subset_, title_gene=gene_i) knn_hnsw = make_knn_embeddedspace(embedding) draw_sc_evolution_trajectory_dijkstra(v1, embedding, knn_hnsw, v0.full_graph_shortpath, idx) plt.show() def main_Bcell(ncomps=50, knn=20, random_seed=0, cluster_graph_pruning_std=.15,path='/home/shobi/Trajectory/Datasets/Bcell/'): print('Input params: ncomp, knn, random seed', ncomps, knn, random_seed) # https://github.com/STATegraData/STATegraData def run_zheng_Bcell(adata, min_counts=3, n_top_genes=500, do_HVG=True): sc.pp.filter_genes(adata, min_counts=min_counts) # sc.pp.filter_genes(adata, min_cells=3)# only consider genes with more than 1 count ''' sc.pp.normalize_per_cell( # normalize with total UMI count per cell adata, key_n_counts='n_counts_all') ''' sc.pp.normalize_total(adata, target_sum=1e4) if do_HVG == True: sc.pp.log1p(adata) ''' filter_result = sc.pp.filter_genes_dispersion( # select highly-variable genes adata.X, flavor='cell_ranger', n_top_genes=n_top_genes, log=False ) adata = adata[:, filter_result.gene_subset] # subset the genes ''' sc.pp.highly_variable_genes(adata, n_top_genes=n_top_genes, min_mean=0.0125, max_mean=3, min_disp=0.5) # this function expects logarithmized data print('len hvg ', sum(adata.var.highly_variable)) adata = adata[:, adata.var.highly_variable] sc.pp.normalize_per_cell(adata) # renormalize after filtering # if do_log: sc.pp.log1p(adata) # log transform: adata.X = log(adata.X + 1) if do_HVG == False: sc.pp.log1p(adata) sc.pp.scale(adata, max_value=10) # scale to unit variance and shift to zero mean return adata ''' def run_palantir_func_Bcell(ad1, ncomps, knn, tsne_X, true_label): ad = ad1.copy() tsne = pd.DataFrame(tsne_X, index=ad.obs_names, columns=['x', 'y']) norm_df_pal = pd.DataFrame(ad.X) new = ['c' + str(i) for i in norm_df_pal.index] norm_df_pal.columns = [i for i in ad.var_names] # print('norm df', norm_df_pal) norm_df_pal.index = new pca_projections, _ = palantir.utils.run_pca(norm_df_pal, n_components=ncomps) sc.tl.pca(ad, svd_solver='arpack') dm_res = palantir.utils.run_diffusion_maps(pca_projections, n_components=ncomps, knn=knn) ms_data = palantir.utils.determine_multiscale_space(dm_res) # n_eigs is determined using eigengap print('ms data shape: determined using eigengap', ms_data.shape) # tsne = pd.DataFrame(tsnem)#palantir.utils.run_tsne(ms_data) tsne.index = new # print(type(tsne)) str_true_label = pd.Series(true_label, index=norm_df_pal.index) palantir.plot.plot_cell_clusters(tsne, str_true_label) start_cell = 'c42' # '#C108 for M12 connected' #M8n1000d1000 start - c107 #c1001 for bifurc n2000d1000 #disconnected n1000 c108, "C1 for M10 connected" # c10 for bifurcating_m4_n2000d1000 pr_res = palantir.core.run_palantir(ms_data, early_cell=start_cell, num_waypoints=1200, knn=knn) palantir.plot.plot_palantir_results(pr_res, tsne, n_knn=knn, n_comps=ncomps) imp_df = palantir.utils.run_magic_imputation(norm_df_pal, dm_res) Bcell_marker_gene_list = ['Igll1', 'Myc', 'Ldha', 'Foxo1', 'Lig4'] # , 'Slc7a5']#,'Slc7a5']#,'Sp7','Zfp629'] gene_trends = palantir.presults.compute_gene_trends(pr_res, imp_df.loc[:, Bcell_marker_gene_list]) palantir.plot.plot_gene_trends(gene_trends) plt.show() ''' def run_paga_func_Bcell(adata_counts1, ncomps, knn, embedding): # print('npwhere',np.where(np.asarray(adata_counts.obs['group_id']) == '0')[0][0]) adata_counts = adata_counts1.copy() sc.tl.pca(adata_counts, svd_solver='arpack', n_comps=ncomps) adata_counts.uns['iroot'] = 33 # np.where(np.asarray(adata_counts.obs['group_id']) == '0')[0][0] sc.pp.neighbors(adata_counts, n_neighbors=knn, n_pcs=ncomps) # 4 sc.tl.draw_graph(adata_counts) sc.pl.draw_graph(adata_counts, color='group_id', legend_loc='on data') # force-directed layout start_dfmap = time.time() sc.tl.diffmap(adata_counts, n_comps=ncomps) print('time taken to get diffmap given knn', time.time() - start_dfmap) sc.pp.neighbors(adata_counts, n_neighbors=knn, use_rep='X_diffmap') # 4 sc.tl.draw_graph(adata_counts) sc.pl.draw_graph(adata_counts, color='group_id', legend_loc='on data') sc.tl.leiden(adata_counts, resolution=1.0) sc.tl.paga(adata_counts, groups='leiden') # sc.pl.paga(adata_counts, color=['louvain','group_id']) sc.tl.dpt(adata_counts, n_dcs=ncomps) sc.pl.paga(adata_counts, color=['leiden', 'group_id', 'dpt_pseudotime'], title=['leiden (knn:' + str(knn) + ' ncomps:' + str(ncomps) + ')', 'group_id (ncomps:' + str(ncomps) + ')', 'pseudotime (ncomps:' + str(ncomps) + ')']) sc.pl.draw_graph(adata_counts, color='dpt_pseudotime', legend_loc='on data') print('dpt format', adata_counts.obs['dpt_pseudotime']) plt.scatter(embedding[:, 0], embedding[:, 1], c=adata_counts.obs['dpt_pseudotime'].values, cmap='viridis') plt.title('PAGA DPT') plt.show() def find_time_Bcell(s): start = s.find("Ik") + len("Ik") end = s.find("h") return int(s[start:end]) def find_cellID_Bcell(s): start = s.find("h") + len("h") end = s.find("_") return s[start:end] Bcell = pd.read_csv(path + 'genes_count_table.txt', sep='\t') gene_name = pd.read_csv(path + 'genes_attr_table.txt', sep='\t') Bcell_columns = [i for i in Bcell.columns] adata_counts = sc.AnnData(Bcell.values[:, 1:].T) Bcell_columns.remove('tracking_id') print(gene_name.shape, gene_name.columns) Bcell['gene_short_name'] = gene_name['gene_short_name'] adata_counts.var_names = gene_name['gene_short_name'] adata_counts.obs['TimeCellID'] = Bcell_columns time_list = [find_time_Bcell(s) for s in Bcell_columns] print('time list set', set(time_list)) adata_counts.obs['TimeStamp'] = [str(tt) for tt in time_list] ID_list = [find_cellID_Bcell(s) for s in Bcell_columns] adata_counts.obs['group_id'] = [str(i) for i in time_list] ID_dict = {} color_dict = {} for j, i in enumerate(list(set(ID_list))): ID_dict.update({i: j}) print('timelist', list(set(time_list))) for j, i in enumerate(list(set(time_list))): color_dict.update({i: j}) print('shape of raw data', adata_counts.shape) adata_counts_unfiltered = adata_counts.copy() Bcell_marker_gene_list = ['Myc', 'Igll1', 'Slc7a5', 'Ldha', 'Foxo1', 'Lig4'] small_large_gene_list = ['Kit', 'Pcna', 'Ptprc', 'Il2ra', 'Vpreb1', 'Cd24a', 'Igll1', 'Cd79a', 'Cd79b', 'Mme', 'Spn'] list_var_names = [s for s in adata_counts_unfiltered.var_names] matching = [s for s in list_var_names if "IgG" in s] for gene_name in Bcell_marker_gene_list: print('gene name', gene_name) loc_gata = np.where(np.asarray(adata_counts_unfiltered.var_names) == gene_name)[0][0] for gene_name in small_large_gene_list: print('looking at small-big list') print('gene name', gene_name) loc_gata = np.where(np.asarray(adata_counts_unfiltered.var_names) == gene_name)[0][0] # diff_list = [i for i in diff_list if i in list_var_names] #based on paper STable1 https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2006506#pbio.2006506.s007 # adata_counts = adata_counts[:,diff_list] #if using these, then set do-HVG to False print('adata counts difflisted', adata_counts.shape) adata_counts = run_zheng_Bcell(adata_counts, n_top_genes=5000, min_counts=30, do_HVG=True) # 5000 for better ordering print('adata counts shape', adata_counts.shape) # sc.pp.recipe_zheng17(adata_counts) # (ncomp=50, knn=20 gives nice results. use 10PCs for visualizing) marker_genes = {"small": ['Rag2', 'Rag1', 'Pcna', 'Myc', 'Ccnd2', 'Cdkn1a', 'Smad4', 'Smad3', 'Cdkn2a'], # B220 = Ptprc, PCNA negative for non cycling "large": ['Ighm', 'Kit', 'Ptprc', 'Cd19', 'Il2ra', 'Vpreb1', 'Cd24a', 'Igll1', 'Cd79a', 'Cd79b'], "Pre-B2": ['Mme', 'Spn']} # 'Cd19','Cxcl13',,'Kit' print('make the v0 matrix plot') mplot_adata = adata_counts_unfiltered.copy() # mplot_adata is for heatmaps so that we keep all genes mplot_adata = run_zheng_Bcell(mplot_adata, n_top_genes=25000, min_counts=1, do_HVG=False) # mplot_adata.X[mplot_adata.X>10] =10 # mplot_adata.X[mplot_adata.X< -1] = -1 # sc.pl.matrixplot(mplot_adata, marker_genes, groupby='TimeStamp', dendrogram=True) sc.tl.pca(adata_counts, svd_solver='arpack', n_comps=200) # ncomps # df_bcell_pc = pd.DataFrame(adata_counts.obsm['X_pca']) # print('df_bcell_pc.shape',df_bcell_pc.shape) # df_bcell_pc['time'] = [str(i) for i in time_list] # df_bcell_pc.to_csv('/home/shobi/Trajectory/Datasets/Bcell/Bcell_200PCs.csv') # sc.pl.pca_variance_ratio(adata_counts, log=True) jet = cm.get_cmap('viridis', len(set(time_list))) cmap_ = jet(range(len(set(time_list)))) jet2 = cm.get_cmap('jet', len(set(ID_list))) cmap2_ = jet2(range(len(set(ID_list)))) # color_dict = {"0": [0], "2": [1], "6": [2], "12": [3], "18": [4], "24": [5]} # sc.pl.heatmap(mplot_adata, var_names = small_large_gene_list,groupby = 'TimeStamp', dendrogram = True) embedding = umap.UMAP(random_state=42, n_neighbors=15, init='random').fit_transform( adata_counts.obsm['X_pca'][:, 0:5]) df_umap = pd.DataFrame(embedding) # df_umap.to_csv('/home/shobi/Trajectory/Datasets/Bcell/Bcell_umap.csv') f, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4, sharey=True) for i in list(set(time_list)): loc = np.where(np.asarray(time_list) == i)[0] ax4.scatter(embedding[loc, 0], embedding[loc, 1], c=cmap_[color_dict[i]], alpha=1, label=str(i)) if i == 0: for xx in range(len(loc)): poss = loc[xx] ax4.text(embedding[poss, 0], embedding[poss, 1], 'c' + str(xx)) ax4.legend() ax1.scatter(embedding[:, 0], embedding[:, 1], c=mplot_adata[:, 'Pcna'].X.flatten(), alpha=1) ax1.set_title('Pcna, cycling') ax2.scatter(embedding[:, 0], embedding[:, 1], c=mplot_adata[:, 'Vpreb1'].X.flatten(), alpha=1) ax2.set_title('Vpreb1') ax3.scatter(embedding[:, 0], embedding[:, 1], c=mplot_adata[:, 'Cd24a'].X.flatten(), alpha=1) ax3.set_title('Cd24a') # ax2.text(embedding[i, 0], embedding[i, 1], str(i)) ''' for i, j in enumerate(list(set(ID_list))): loc = np.where(np.asarray(ID_list) == j) if 'r'in j: ax2.scatter(embedding[loc, 0], embedding[loc, 1], c=cmap2_[i], alpha=1, label=str(j), edgecolors = 'black' ) else: ax2.scatter(embedding[loc, 0], embedding[loc, 1], c=cmap2_[i], alpha=1, label=str(j)) ''' # plt.show() true_label = time_list # run_paga_func_Bcell(adata_counts, ncomps, knn, embedding) #run_palantir_func_Bcell(adata_counts, ncomps, knn, embedding, true_label) print('input has shape', adata_counts.obsm['X_pca'].shape) input_via = adata_counts.obsm['X_pca'][:, 0:ncomps] df_input = pd.DataFrame(adata_counts.obsm['X_pca'][:, 0:200]) df_annot = pd.DataFrame(['t' + str(i) for i in true_label]) # df_input.to_csv('/home/shobi/Trajectory/Datasets/Bcell/Bcell_200PC_5000HVG.csv') # df_annot.to_csv('/home/shobi/Trajectory/Datasets/Bcell/Bcell_annots.csv') root_user = [42] v0 = VIA(input_via, true_label, jac_std_global=0.15, dist_std_local=1, knn=knn, too_big_factor=0.3, dataset='bcell', cluster_graph_pruning_std=cluster_graph_pruning_std, root_user=root_user, preserve_disconnected=True, random_seed=random_seed, do_impute_bool=True) # *.4#root_user = 34 v0.run_VIA() super_labels = v0.labels tsi_list = get_loc_terminal_states(via0=v0, X_input=adata_counts.obsm['X_pca'][:, 0:ncomps]) v1 = VIA(adata_counts.obsm['X_pca'][:, 0:ncomps], true_label, jac_std_global=0.15, dist_std_local=1, knn=knn, too_big_factor=0.05, is_coarse=False, cluster_graph_pruning_std=cluster_graph_pruning_std, super_cluster_labels=super_labels, super_node_degree_list=v0.node_degree_list, super_terminal_cells=tsi_list, root_user=root_user, full_neighbor_array=v0.full_neighbor_array, full_distance_array=v0.full_distance_array, ig_full_graph=v0.ig_full_graph, csr_array_locally_pruned=v0.csr_array_locally_pruned, x_lazy=0.99, alpha_teleport=0.99, preserve_disconnected=True, dataset='bcell', super_terminal_clusters=v0.terminal_clusters, random_seed=random_seed) v1.run_VIA() labels = v1.labels super_edges = v0.edgelist # plot gene expression vs. pseudotime Bcell_marker_gene_list = ['Igll1', 'Myc', 'Slc7a5', 'Ldha', 'Foxo1', 'Lig4', 'Sp7', 'Zfp629'] # irf4 down-up df_ = pd.DataFrame(adata_counts_unfiltered.X) # no normalization, or scaling of the gene count values df_.columns = [i for i in adata_counts_unfiltered.var_names] df_Bcell_marker = df_[Bcell_marker_gene_list] print(df_Bcell_marker.shape, 'df_Bcell_marker.shape') df_Bcell_marker.to_csv('/home/shobi/Trajectory/Datasets/Bcell/Bcell_markergenes.csv') # v0 is run with "do_impute" = true, hence it stores the full graph (in subsequent iterations we dont recompute and store the full unpruned knn graph) df_magic = v0.do_impute(df_, magic_steps=3, gene_list=Bcell_marker_gene_list) for gene_name in Bcell_marker_gene_list: # loc_gata = np.where(np.asarray(adata_counts_unfiltered.var_names) == gene_name)[0][0] subset_ = df_magic[gene_name].values v1.get_gene_expression(subset_, title_gene=gene_name) # magic_ad = adata_counts_unfiltered.X[:, loc_gata] # v1.get_gene_expression(magic_ad, gene_name) n_downsample = 100 if len(labels) > n_downsample: # idx = np.random.randint(len(labels), size=900) np.random.seed(2357) # idx = np.random.choice(a=np.arange(0, len(labels)), size=len(labels), replace=False, p=None) idx = np.arange(0, len(labels)) super_labels = np.asarray(super_labels)[idx] labels = list(np.asarray(labels)[idx]) true_label = list((np.asarray(true_label)[idx])) sc_pt_markov = list(np.asarray(v1.single_cell_pt_markov[idx])) # embedding = TSNE().fit_transform(adata_counts.obsm['X_pca'][idx, :]) graph_embedding = v0.knngraph_visual(input_via[idx, 0:5], knn_umap=10, downsampled=True) embedding_hnsw = v0.run_umap_hnsw(input_via[idx, 0:5], graph_embedding) # embedding = embedding_hnsw # loc0 = np.where(np.asarray(true_label)==0)[0] # for item in loc0: # print(item, 'at', embedding[item,:]) embedding = embedding[idx, :] print('tsne downsampled size', embedding.shape) else: # embedding = TSNE().fit_transform(adata_counts.obsm['X_pca'][:,0:5]) # (adata_counts.obsm['X_pca']) print('tsne input size', adata_counts.obsm['X_pca'].shape) # embedding = umap.UMAP().fit_transform(adata_counts.obsm['X_pca']) idx = np.arange(0, len(labels)) # np.random.randint(len(labels), size=len(labels)) sc_pt_markov = v1.single_cell_pt_markov # embedding = umap.UMAP(random_state=42, n_neighbors=15, init=umap_init).fit_transform( adata_counts.obsm['X_pca'][:, 0:5]) super_clus_ds_PCA_loc = sc_loc_ofsuperCluster_PCAspace(v0, v1, idx) draw_trajectory_gams(embedding, super_clus_ds_PCA_loc, labels, super_labels, super_edges, v1.x_lazy, v1.alpha_teleport, sc_pt_markov, true_label, knn=v0.knn, final_super_terminal=v1.revised_super_terminal_clusters, sub_terminal_clusters=v1.terminal_clusters, title_str='Markov Hitting Times (Gams)', ncomp=ncomps) plt.show() knn_hnsw = make_knn_embeddedspace(embedding) draw_sc_evolution_trajectory_dijkstra(v1, embedding, knn_hnsw, v0.full_graph_shortpath, idx, adata_counts.obsm['X_pca'][:, 0:ncomps]) plt.show() def plot_EB(): # genes along lineage cluster path df_groupby_p1 = pd.read_csv( '/home/shobi/Trajectory/Datasets/EB_Phate/df_groupbyParc1_knn20_pc100_seed20_allgenes.csv') path_clusters = [43, 38, 42, 56, 7, 3] # NC[43,41,16,2,3,6]#SMP[43,41,16,14,11,18]#C[43,41,16,14,12,15]#NS3[43,38,42,56,7,3] target = "NS 3" # 'NC 6' #'SMP 18'#' Cardiac 15' marker_genes_dict = {'Hermang': ['TAL1', 'HOXB4', 'SOX17', 'CD34', 'PECAM1'], 'NP': ['NES', 'MAP2'], 'NS': ['LHX2', 'NR2F1', 'DMRT3', 'LMX1A', # 'KLF7', 'ISL1', 'DLX1', 'ONECUT1', 'ONECUT2', 'OLIG1','PAX6', 'ZBTB16','NPAS1', 'SOX1' 'NKX2-8', 'EN2'], 'NC': ['PAX3', 'FOXD3', 'SOX9', 'SOX10'], 'PostEn': ['CDX2', 'ASCL2', 'KLF5', 'NKX2-1'], 'EN': ['ARID3A', 'GATA3', 'SATB1', 'SOX15', 'SOX17', 'FOXA2'], 'Pre-NE': ['POU5F1', 'OTX2'], 'SMP': ['TBX18', 'SIX2', 'TBX15', 'PDGFRA'], 'Cardiac': ['TNNT2', 'HAND1', 'F3', 'CD82', 'LIFR'], 'EpiCard': ['WT1', 'TBX5', 'HOXD9', 'MYC', 'LOX'], 'PS/ME': ['T', 'EOMES', 'MIXL1', 'CER1', 'SATB1'], 'NE': ['GBX2', 'GLI3', 'LHX2', 'LHX5', 'SIX3', 'SIX6'], # 'OLIG3','HOXD1', 'ZIC2', 'ZIC5','HOXA2','HOXB2' 'ESC': ['NANOG', 'POU5F1'], 'Pre-NE': ['POU5F1', 'OTX2'], 'Lat-ME': ['TBX5', 'HOXD9', 'MYC']} relevant_genes = [] relevant_keys = ['ESC', 'Pre-NE', 'NE', 'NP', 'NS'] # NC['ESC', 'Pre-NE', 'NE', 'NC']#SMP['ESC','PS/ME','Lat-ME','SMP']#NS['ESC', 'Pre-NE', 'NE', 'NP', 'NS'] dict_subset = {key: value for key, value in marker_genes_dict.items() if key in relevant_keys} print('dict subset', dict_subset) for key in relevant_keys: relevant_genes.append(marker_genes_dict[key]) relevant_genes = [item for sublist in relevant_genes for item in sublist] print(relevant_genes) df_groupby_p1 = df_groupby_p1.set_index('parc1') df_groupby_p1 = df_groupby_p1.loc[path_clusters] df_groupby_p1 = df_groupby_p1[relevant_genes] df_groupby_p1 = df_groupby_p1.transpose() # print( df_groupby_p1.head) # print(df_groupby_p1) ax = sns.heatmap(df_groupby_p1, vmin=-1, vmax=1, yticklabels=True) ax.set_title('target ' + str(target)) plt.show() # df_groupby_p1 = pd.concat([df_groupby_p1,df_groupby_p1]) # adata = sc.AnnData(df_groupby_p1) # adata.var_names = df_groupby_p1.columns # print(adata.var_names) # adata.obs['parc1'] = ['43','38','42','56','7','3','43','38','42','56','7','3'] # print(adata.obs['parc1']) # sc.pl.matrixplot(adata, dict_subset, groupby='parc1', vmax=1, vmin=-1, dendrogram=False) def main_EB_clean(ncomps=30, knn=20, v0_random_seed=24, cluster_graph_pruning_std=.15, foldername='/home/shobi/Trajectory/Datasets/EB_Phate/'): marker_genes_dict = {'Hermang': ['TAL1', 'HOXB4', 'SOX17', 'CD34', 'PECAM1'], 'NP': ['NES', 'MAP2'], 'NS': ['KLF7', 'ISL1', 'DLX1', 'ONECUT1', 'ONECUT2', 'OLIG1', 'NPAS1', 'LHX2', 'NR2F1', 'NPAS1', 'DMRT3', 'LMX1A', 'NKX2-8', 'EN2', 'SOX1', 'PAX6', 'ZBTB16'], 'NC': ['PAX3', 'FOXD3', 'SOX9', 'SOX10'], 'PostEn': ['CDX2', 'ASCL2', 'KLF5', 'NKX2-1'], 'EN': ['ARID3A', 'GATA3', 'SATB1', 'SOX15', 'SOX17', 'FOXA2'], 'Pre-NE': ['POU5F1', 'OTX2'], 'SMP': ['TBX18', 'SIX2', 'TBX15', 'PDGFRA'], 'Cardiac': ['TNNT2', 'HAND1', 'F3', 'CD82', 'LIFR'], 'EpiCard': ['WT1', 'TBX5', 'HOXD9', 'MYC', 'LOX'], 'PS/ME': ['T', 'EOMES', 'MIXL1', 'CER1', 'SATB1'], 'NE': ['GBX2', 'OLIG3', 'HOXD1', 'ZIC2', 'ZIC5', 'GLI3', 'LHX2', 'LHX5', 'SIX3', 'SIX6', 'HOXA2', 'HOXB2'], 'ESC': ['NANOG', 'POU5F1', 'OTX2'], 'Pre-NE': ['POU5F1', 'OTX2']} marker_genes_list = [] for key in marker_genes_dict: for item in marker_genes_dict[key]: marker_genes_list.append(item) v0_too_big = 0.3 v1_too_big = 0.05 n_var_genes = 'no filtering for HVG' # 15000 print('ncomps, knn, n_var_genes, v0big, p1big, randomseed, time', ncomps, knn, n_var_genes, v0_too_big, v1_too_big, v0_random_seed, time.ctime()) # TI_pcs = pd.read_csv(foldername+'PCA_TI_200_final.csv') # TI_pcs is PCA run on data that has been: filtered (remove cells with too large or small library count - can directly use all cells in EBdata.mat), library normed, sqrt transform, scaled to unit variance/zero mean # TI_pcs = TI_pcs.values[:, 1:] from scipy.io import loadmat annots = loadmat( foldername + 'EBdata.mat') # has been filtered but not yet normed (by library size) nor other subsequent pre-processing steps # print('annots', annots) data = annots['data'].toarray() # (16825, 17580) (cells and genes have been filtered) # print('data min max', np.max(data), np.min(data), data[1, 0:20], data[5, 250:270], data[1000, 15000:15050]) loc_ = np.where((data < 1) & (data > 0)) temp = data[(data < 1) & (data > 0)] # print('temp non int', temp) time_labels = annots['cells'].flatten().tolist() # df_timelabels = pd.DataFrame(time_labels, columns=['true_time_labels']) # df_timelabels.to_csv(foldername+'EB_true_time_labels.csv') gene_names_raw = annots['EBgenes_name'] # (17580, 1) genes adata = sc.AnnData(data) gene_names = [] for i in gene_names_raw: gene_names.append(i[0][0]) adata.var_names = gene_names adata.obs['time'] = ['Day' + str(i) for i in time_labels] adata.X = sc.pp.normalize_total(adata, inplace=False)['X'] # normalize by library after filtering adata.X = np.sqrt(adata.X) # follow Phate paper which doesnt take log1() but instead does sqrt() transformation Y_phate = pd.read_csv(foldername + 'EB_phate_embedding.csv') Y_phate = Y_phate.values # phate_operator = phate.PHATE(n_jobs=-1) # Y_phate = phate_operator.fit_transform(adata.X) # before scaling. as done in PHATE scale = False # scaling mostly improves the cluster-graph heatmap of genes vs clusters. doesnt sway VIA performance if scale == True: # we scale before VIA. scaling not needed for PHATE print('pp scaled') adata.X = (adata.X - np.mean(adata.X, axis=0)) / np.std(adata.X, axis=0) print('data max min after SCALED', np.max(adata.X), np.min(adata.X)) else: print('not pp scaled') sc.tl.pca(adata, svd_solver='arpack', n_comps=200, random_state=0) # adata.obsm['X_pca'] = TI_pcs input_data = adata.obsm['X_pca'][:, 0:ncomps] print('do v0') root_user = [1] v0 = VIA(input_data, time_labels, jac_std_global=0.15, dist_std_local=1, knn=knn, cluster_graph_pruning_std=cluster_graph_pruning_std, too_big_factor=v0_too_big, root_user=root_user, dataset='EB', random_seed=v0_random_seed, do_impute_bool=True, is_coarse=True, preserve_disconnected=True) # *.4 root=1, v0.run_VIA() tsi_list = get_loc_terminal_states(v0, input_data) v1 = VIA(input_data, time_labels, jac_std_global=0.15, dist_std_local=1, knn=knn, cluster_graph_pruning_std=cluster_graph_pruning_std, too_big_factor=v1_too_big, super_cluster_labels=v0.labels, super_node_degree_list=v0.node_degree_list, super_terminal_cells=tsi_list, root_user=root_user, is_coarse=False, full_neighbor_array=v0.full_neighbor_array, full_distance_array=v0.full_distance_array, ig_full_graph=v0.ig_full_graph, csr_array_locally_pruned=v0.csr_array_locally_pruned, x_lazy=0.95, alpha_teleport=0.99, preserve_disconnected=True, dataset='EB', super_terminal_clusters=v0.terminal_clusters, random_seed=21) v1.run_VIA() f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) ax1.scatter(Y_phate[:, 0], Y_phate[:, 1], c=time_labels, s=5, cmap='viridis', alpha=0.5) ax2.scatter(Y_phate[:, 0], Y_phate[:, 1], c=v1.single_cell_pt_markov, s=5, cmap='viridis', alpha=0.5) ax1.set_title('Embryoid: Annotated Days') ax2.set_title('Embryoid VIA Pseudotime (Randomseed' + str(v0_random_seed) + ')') plt.show() super_clus_ds_PCA_loc = sc_loc_ofsuperCluster_PCAspace(v0, v1, np.arange(0, len(v1.labels))) draw_trajectory_gams(Y_phate, super_clus_ds_PCA_loc, v1.labels, v0.labels, v0.edgelist_maxout, v1.x_lazy, v1.alpha_teleport, v1.single_cell_pt_markov, time_labels, knn=v0.knn, final_super_terminal=v1.revised_super_terminal_clusters, sub_terminal_clusters=v1.terminal_clusters, title_str='Markov Hitting Times and Paths', ncomp=ncomps) knn_hnsw = make_knn_embeddedspace(Y_phate) draw_sc_evolution_trajectory_dijkstra(v1, Y_phate, knn_hnsw, v0.full_graph_shortpath, idx=np.arange(0, input_data.shape[0])) plt.show() adata.obs['via0'] = [str(i) for i in v0.labels] adata.obs['parc1'] = [str(i) for i in v1.labels] adata.obs['terminal_state'] = ['True' if i in v1.terminal_clusters else 'False' for i in v1.labels] adata.X = (adata.X - np.mean(adata.X, axis=0)) / np.std(adata.X, axis=0) # to improve scale of the matrix plot we will scale sc.pl.matrixplot(adata, marker_genes_dict, groupby='parc1', vmax=1, vmin=-1, dendrogram=True, figsize=[20, 10]) def main_EB(ncomps=30, knn=20, v0_random_seed=24): marker_genes_dict = {'Hermang': ['TAL1', 'HOXB4', 'SOX17', 'CD34', 'PECAM1'], 'NP': ['NES', 'MAP2'], 'NS': ['KLF7', 'ISL1', 'DLX1', 'ONECUT1', 'ONECUT2', 'OLIG1', 'NPAS1', 'LHX2', 'NR2F1', 'NPAS1', 'DMRT3', 'LMX1A', 'NKX2-8', 'EN2', 'SOX1', 'PAX6', 'ZBTB16'], 'NC': ['PAX3', 'FOXD3', 'SOX9', 'SOX10'], 'PostEn': ['CDX2', 'ASCL2', 'KLF5', 'NKX2-1'], 'EN': ['ARID3A', 'GATA3', 'SATB1', 'SOX15', 'SOX17', 'FOXA2'], 'Pre-NE': ['POU5F1', 'OTX2'], 'SMP': ['TBX18', 'SIX2', 'TBX15', 'PDGFRA'], 'Cardiac': ['TNNT2', 'HAND1', 'F3', 'CD82', 'LIFR'], 'EpiCard': ['WT1', 'TBX5', 'HOXD9', 'MYC', 'LOX'], 'PS/ME': ['T', 'EOMES', 'MIXL1', 'CER1', 'SATB1'], 'NE': ['GBX2', 'OLIG3', 'HOXD1', 'ZIC2', 'ZIC5', 'GLI3', 'LHX2', 'LHX5', 'SIX3', 'SIX6', 'HOXA2', 'HOXB2'], 'ESC': ['NANOG', 'POU5F1', 'OTX2'], 'Pre-NE': ['POU5F1', 'OTX2']} marker_genes_list = [] for key in marker_genes_dict: for item in marker_genes_dict[key]: marker_genes_list.append(item) v0_too_big = 0.3 v1_too_big = 0.05 root_user = 1 n_var_genes = 'no filtering for HVG' # 15000 print('ncomps, knn, n_var_genes, v0big, p1big, randomseed, time', ncomps, knn, n_var_genes, v0_too_big, v1_too_big, v0_random_seed, time.ctime()) # data = data.drop(['Unnamed: 0'], axis=1) TI_pcs = pd.read_csv( '/home/shobi/Trajectory/Datasets/EB_Phate/PCA_TI_200_final.csv') # filtered, library normed, sqrt transform, scaled to unit variance/zero mean TI_pcs = TI_pcs.values[:, 1:] umap_pcs = pd.read_csv('/home/shobi/Trajectory/Datasets/EB_Phate/PCA_umap_200_TuesAM.csv') umap_pcs = umap_pcs.values[:, 1:] # print('TI PC shape', TI_pcs.shape) from scipy.io import loadmat annots = loadmat( '/home/shobi/Trajectory/Datasets/EB_Phate/EBdata.mat') # has been filtered but not yet normed (by library s data = annots['data'].toarray() # (16825, 17580) (cells and genes have been filtered) # print('data min max', np.max(data), np.min(data), data[1, 0:20], data[5, 250:270], data[1000, 15000:15050]) # loc_ = np.where((data < 1) & (data > 0)) temp = data[(data < 1) & (data > 0)] # print('temp non int', temp) time_labels = annots['cells'].flatten().tolist() import scprep dict_labels = {'Day 00-03': 0, 'Day 06-09': 2, 'Day 12-15': 4, 'Day 18-21': 6, 'Day 24-27': 8} # print(annots.keys()) # (['__header__', '__version__', '__globals__', 'EBgenes_name', 'cells', 'data']) gene_names_raw = annots['EBgenes_name'] # (17580, 1) genes print(data.shape) adata = sc.AnnData(data) # time_labels = pd.read_csv('/home/shobi/Trajectory/Datasets/EB_Phate/labels_1.csv') # time_labels = time_labels.drop(['Unnamed: 0'], axis=1) # time_labels = time_labels['time'] # adata.obs['time'] = [str(i) for i in time_labels] gene_names = [] for i in gene_names_raw: gene_names.append(i[0][0]) adata.var_names = gene_names adata.obs['time'] = [str(i) for i in time_labels] # filter_result = sc.pp.filter_genes_dispersion(adata.X, flavor='cell_ranger', n_top_genes=5000, log=False) #dont take log adata_umap = adata.copy() # adata = adata[:, filter_result.gene_subset] # subset the genes # sc.pp.normalize_per_cell(adata, min_counts=2) # renormalize after filtering print('data max min BEFORE NORM', np.max(adata.X), np.min(adata.X), adata.X[1, 0:20]) rowsums = adata.X.sum(axis=1) # adata.X = adata.X / rowsums[:, np.newaxis] # adata.X = sc.pp.normalize_total(adata, exclude_highly_expressed=True, max_fraction=0.05, inplace=False)['X'] #normalize after filtering adata.X = sc.pp.normalize_total(adata, inplace=False)['X'] # normalize after filtering print('data max min after NORM', np.max(adata.X), np.min(adata.X), adata.X[1, 0:20]) adata.X = np.sqrt(adata.X) # follow Phate paper which doesnt take log1() but instead does sqrt() transformation adata_umap.X = np.sqrt(adata_umap.X) print('data max min after SQRT', np.max(adata.X), np.min(adata.X), adata.X[1, 0:20]) # sc.pp.log1p(adata) # log transform: adata.X = log(adata.X + 1) ''' phate_operator = phate.PHATE(n_jobs=-1) Y_phate = phate_operator.fit_transform(adata.X) scprep.plot.scatter2d(Y_phate, c=time_labels, figsize=(12, 8), cmap="Spectral", ticks=False, label_prefix="PHATE") plt.show() ''' Y_phate = pd.read_csv('/home/shobi/Trajectory/Datasets/EB_Phate/EB_phate_embedding.csv') Y_phate = Y_phate.values scale = True if scale == True: print('pp scaled') # sc.pp.scale(adata) adata.X = (adata.X - np.mean(adata.X, axis=0)) / np.std(adata.X, axis=0) sc.pp.scale(adata_umap) print('data max min after SCALED', np.max(adata.X), np.min(adata.X)) else: print('not pp scaled') print('sqrt transformed') # sc.pp.recipe_zheng17(adata, n_top_genes=15000) #expects non-log data # g = sc.tl.rank_genes_groups(adata, groupby='time', use_raw=True, n_genes=10)#method='t-test_overestim_var' # sc.pl.rank_genes_groups_heatmap(adata, n_genes=3, standard_scale='var') ''' pcs = pd.read_csv('/home/shobi/Trajectory/Datasets/EB_Phate/umap_200_matlab.csv') pcs = pcs.drop(['Unnamed: 0'], axis=1) pcs = pcs.values print(time.ctime()) ncomps = 50 input_data =pcs[:, 0:ncomps] ''' print('v0_toobig, p1_toobig, v0randomseed', v0_too_big, v1_too_big, v0_random_seed) print('do pca') # sc.tl.pca(adata, svd_solver='arpack', n_comps=200, random_state = 0) # sc.tl.pca(adata_umap, svd_solver='arpack', n_comps=200) # df_pca_TI_200 = pd.DataFrame(adata.obsm['X_pca']) # df_pca_TI_200.to_csv('/home/shobi/Trajectory/Datasets/EB_Phate/PCA_TI_200_TuesAM.csv') # df_pca_umap_200 = pd.DataFrame(adata_umap.obsm['X_pca']) # df_pca_umap_200.to_csv('/home/shobi/Trajectory/Datasets/EB_Phate/PCA_umap_200_TuesAM.csv') adata.obsm['X_pca'] = TI_pcs adata_umap.obsm['X_pca'] = umap_pcs input_data = adata.obsm['X_pca'][:, 0:ncomps] ''' #plot genes vs clusters for each trajectory df_plot_gene = pd.DataFrame(adata.X, columns=[i for i in adata.var_names]) df_plot_gene = df_plot_gene[marker_genes_list] previous_p1_labels = pd.read_csv('/home/shobi/Trajectory/Datasets/EB_Phate/df_labels_knn20_pc100_seed20.csv') title_str = 'Terminal state 27 (Cardiac)' gene_groups = ['ESC', 'PS/ME','EN','Cardiac'] clusters = [43,41,16,14,12,27] ''' u_knn = 15 repulsion_strength = 1 n_pcs = 10 print('knn and repel', u_knn, repulsion_strength) U = pd.read_csv('/home/shobi/Trajectory/Datasets/EB_Phate/umap_pc10_knn15.csv') U = U.values[:, 1:] U = Y_phate # U = umap.UMAP(n_neighbors=u_knn, random_state=1, repulsion_strength=repulsion_strength).fit_transform(adata_umap.obsm['X_pca'][:, 0:n_pcs]) #print('start palantir', time.ctime()) # run_palantir_EB(adata, knn=knn, ncomps=ncomps, tsne=U, str_true_label=[str(i) for i in time_labels]) #print('end palantir', time.ctime()) # df_U = pd.DataFrame(U) # df_U.to_csv('/home/shobi/Trajectory/Datasets/EB_Phate/umap_pc10_knn15.csv') print('do v0') v0 = VIA(input_data, time_labels, jac_std_global=0.15, dist_std_local=1, knn=knn, too_big_factor=v0_too_big, root_user=root_user, dataset='EB', random_seed=v0_random_seed, do_impute_bool=True, is_coarse=True, preserve_disconnected=True) # *.4 root=1, v0.run_VIA() super_labels = v0.labels v0_labels_df = pd.DataFrame(super_labels, columns=['v0_labels']) v0_labels_df.to_csv('/home/shobi/Trajectory/Datasets/EB_Phate/p0_labels.csv') adata.obs['via0'] = [str(i) for i in super_labels] ''' df_temp1 = pd.DataFrame(adata.X, columns = [i for i in adata.var_names]) df_temp1 = df_temp1[marker_genes_list] df_temp1['via0']=[str(i) for i in super_labels] df_temp1 = df_temp1.groupby('via0').mean() ''' # sns.clustermap(df_temp1, vmin=-1, vmax=1,xticklabels=True, yticklabels=True, row_cluster= False, col_cluster=True) # sc.pl.matrixplot(adata, marker_genes_dict, groupby='via0', vmax=1, vmin =-1, dendrogram=True) ''' sc.tl.rank_genes_groups(adata, groupby='via0', use_raw=True, method='t-test_overestim_var', n_genes=5) # compute differential expression sc.pl.rank_genes_groups_heatmap(adata, groupby='via0',vmin=-3, vmax=3) # plot the result ''' p = hnswlib.Index(space='l2', dim=input_data.shape[1]) p.init_index(max_elements=input_data.shape[0], ef_construction=100, M=16) p.add_items(input_data) p.set_ef(30) tsi_list = get_loc_terminal_states(v0, input_data) v1 = VIA(input_data, time_labels, jac_std_global=0.15, dist_std_local=1, knn=knn, too_big_factor=v1_too_big, is_coarse=False, super_cluster_labels=super_labels, super_node_degree_list=v0.node_degree_list, super_terminal_cells=tsi_list, root_user=root_user, ig_full_graph=v0.ig_full_graph, csr_array_locally_pruned=v0.csr_array_locally_pruned, full_distance_array=v0.full_distance_array, full_neighbor_array=v0.full_neighbor_array, x_lazy=0.95, alpha_teleport=0.99, preserve_disconnected=True, dataset='EB', super_terminal_clusters=v0.terminal_clusters, random_seed=v0_random_seed) v1.run_VIA() # adata.obs['parc1'] = [str(i) for i in v1.labels] # sc.pl.matrixplot(adata, marker_genes, groupby='parc1', dendrogram=True) labels = v1.labels ''' df_labels = pd.DataFrame({'v0_labels':v0.labels,'p1_labels':v1.labels}) df_labels['sub_TS'] = [1 if i in v1.terminal_clusters else 0 for i in v1.labels] df_labels['super_TS'] = [1 if i in v0.terminal_clusters else 0 for i in v0.labels] df_labels.to_csv('/home/shobi/Trajectory/Datasets/EB_Phate/df_labels_knn20_pc100_seed20.csv') df_temp2 = pd.DataFrame(adata.X, columns=[i for i in adata.var_names]) df_temp2 = df_temp2[marker_genes_list] df_temp2['parc1'] = [str(i) for i in labels] df_temp2 = df_temp2.groupby('parc1').mean() df_temp2.to_csv('/home/shobi/Trajectory/Datasets/EB_Phate/df_groupbyParc1_knn20_pc100_seed20.csv') ''' adata.obs['parc1'] = [str(i) for i in labels] # df_ts = pd.DataFrame(adata.X, columns = [i for i in adata.var_names]) # df_ts = df_ts[marker_genes_list] # df_ts['parc1'] = [str(i) for i in labels] adata.obs['terminal_state'] = ['True' if i in v1.terminal_clusters else 'False' for i in labels] # df_ts = df_ts[df_ts['terminal_state']=='True'] adata_TS = adata[adata.obs['terminal_state'] == 'True'] # sns.clustermap(df_temp1, vmin=-1, vmax=1, xticklabels=True, yticklabels=True, row_cluster=False, col_cluster=True) sc.pl.matrixplot(adata, marker_genes_dict, groupby='parc1', vmax=1, vmin=-1, dendrogram=True) # sc.pl.matrixplot(adata_TS, marker_genes_dict, groupby='parc1', vmax=1, vmin=-1, dendrogram=True) # U = umap.UMAP(n_neighbors=10, random_state=0, repulsion_strength=repulsion_strength).fit_transform(input_data[:, 0:n_pcs]) f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) ax1.scatter(U[:, 0], U[:, 1], c=time_labels, s=5, cmap='viridis', alpha=0.5) ax2.scatter(U[:, 0], U[:, 1], c=v1.single_cell_pt_markov, s=5, cmap='viridis', alpha=0.5) plt.title('repulsion and knn and pcs ' + str(repulsion_strength) + ' ' + str(u_knn) + ' ' + str( n_pcs) + ' randseed' + str(v0_random_seed)) plt.show() super_clus_ds_PCA_loc = sc_loc_ofsuperCluster_PCAspace(v0, v1, np.arange(0, len(labels))) draw_trajectory_gams(U, super_clus_ds_PCA_loc, labels, super_labels, v0.edgelist_maxout, v1.x_lazy, v1.alpha_teleport, v1.single_cell_pt_markov, time_labels, knn=v0.knn, final_super_terminal=v1.revised_super_terminal_clusters, sub_terminal_clusters=v1.terminal_clusters, title_str='Markov Hitting Times (Gams)', ncomp=ncomps) plt.show() knn_hnsw = make_knn_embeddedspace(U) draw_sc_evolution_trajectory_dijkstra(v1, U, knn_hnsw, v0.full_graph_shortpath, idx=np.arange(0, input_data.shape[0])) plt.show() def main_mESC(knn=30, v0_random_seed=42, cluster_graph_pruning_std=.0, run_palantir_func=False): import random rand_str = 950 # random.randint(1, 999) print('rand string', rand_str) print('knn', knn) data_random_seed = 20 root = '0.0' type_germ = 'Meso' normalize = True data = pd.read_csv('/home/shobi/Trajectory/Datasets/mESC/mESC_' + type_germ + '_markers.csv') print('counts', data.groupby('day').count()) # print(data.head()) print(data.shape) n_sub = 7000 print('type,', type_germ, 'nelements', n_sub, 'v0 randseed', v0_random_seed) title_string = 'randstr:' + str(rand_str) + ' Knn' + str(knn) + ' nelements:' + str(n_sub) + ' ' + 'meso' # data = data[data['day']!=0] v0_too_big = 0.3 p1_too_big = 0.15 # .15 print('v0 and p1 too big', v0_too_big, p1_too_big) data_sub = data[data['day'] == 0.0] np.random.seed(data_random_seed) idx_sub = np.random.choice(a=np.arange(0, data_sub.shape[0]), size=min(n_sub, data_sub.shape[0]), replace=False, p=None) # len(true_label) data_sub = data_sub.values[idx_sub, :] data_sub = pd.DataFrame(data_sub, columns=data.columns) for i in [1.0, 2, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0]: sub = data[data['day'] == i] print(sub.shape[0]) np.random.seed(data_random_seed) idx_sub = np.random.choice(a=np.arange(0, sub.shape[0]), size=min(n_sub, sub.shape[0]), replace=False, p=None) # len(true_label) sub = sub.values[idx_sub, :] print('size of sub', sub.shape) sub = pd.DataFrame(sub, columns=data.columns) data_sub = pd.concat([data_sub, sub], axis=0, ignore_index=True, sort=True) true_label = data_sub['day'] true_type = data_sub['type'] data = data_sub.drop(['day', 'Unnamed: 0', 'type'], axis=1) # print('after subbing', data.head) cols = ['Sca-1', 'CD41', 'Nestin', 'Desmin', 'CD24', 'FoxA2', 'Oct4', 'CD45', 'Ki67', 'Vimentin', 'Nanog', 'pStat3-705', 'Sox2', 'Flk-1', 'Tuj1', 'H3K9ac', 'Lin28', 'PDGFRa', 'EpCAM', 'CD44', 'GATA4', 'Klf4', 'CCR9', 'p53', 'SSEA1', 'IdU', 'Cdx2'] # 'bCatenin' meso_good = ['CD24', 'FoxA2', 'Oct4', 'CD45', 'Ki67', 'Vimentin', 'Cdx2', 'CD54', 'pStat3-705', 'Sox2', 'Flk-1', 'Tuj1', 'SSEA1', 'H3K9ac', 'Lin28', 'PDGFRa', 'bCatenin', 'EpCAM', 'CD44', 'GATA4', 'Klf4', 'CCR9', 'p53'] marker_genes_ecto = ['Oct4', 'Nestin', 'CD45', 'Vimentin', 'Cdx2', 'Flk-1', 'PDGFRa', 'CD44', 'GATA4', 'CCR9', 'CD54', 'CD24', 'CD41', 'Tuji'] marker_genes_meso_paper_sub = ['Oct4', 'CD54', 'SSEA1', 'Lin28', 'Cdx2', 'CD45', 'Nanog', 'Sox2', 'Flk-1', 'Tuj1', 'PDGFRa', 'EpCAM', 'CD44', 'CCR9', 'GATA4'] marker_genes_meso_paper = ['Nestin', 'FoxA2', 'Oct4', 'CD45', 'Sox2', 'Flk-1', 'Tuj1', 'PDGFRa', 'EpCAM', 'CD44', 'GATA4', 'CCR9', 'Nanog', 'Cdx2', 'Vimentin'] # 'Nanog''Cdx2','Vimentin' marker_genes_endo = ['Sca-1''Nestin', 'CD45', 'Vimentin', 'Cdx2', 'Flk-1', 'PDGFRa', 'CD44', 'GATA4', 'CCR9', 'CD54', 'CD24', 'CD41', 'Oct4'] marker_genes_meso = ['Sca-1', 'CD41', 'Nestin', 'Desmin', 'CD24', 'FoxA2', 'Oct4', 'CD45', 'Ki67', 'Vimentin', 'Cdx2', 'Nanog', 'pStat3-705', 'Sox2', 'Flk-1', 'Tuj1', 'H3K9ac', 'Lin28', 'PDGFRa', 'EpCAM', 'CD44', 'GATA4', 'Klf4', 'CCR9', 'p53', 'SSEA1', 'bCatenin', 'IdU'] # ,'c-Myc' marker_dict = {'Ecto': marker_genes_ecto, 'Meso': marker_genes_meso, 'Endo': marker_genes_meso} marker_genes = marker_dict[type_germ] data = data[marker_genes] print('marker genes ', marker_genes) pre_fac_scale = [4, 1, 1] # 4,1,1 (4,1,1 is used in the paper but actually no scaling factor is really required, the results are unperturbed pre_fac_scale_genes = ['H3K9ac', 'Lin28', 'Oct4'] for pre_scale_i, pre_gene_i in zip(pre_fac_scale, pre_fac_scale_genes): data[pre_gene_i] = data[pre_gene_i] / pre_scale_i print('prescaled gene', pre_gene_i, 'by factor', pre_scale_i) scale_arcsinh = 5 raw = data.values raw = raw.astype(np.float) raw_df = pd.DataFrame(raw, columns=data.columns) raw = raw / scale_arcsinh raw = np.arcsinh(raw) # print(data.shape, raw.shape) adata = sc.AnnData(raw) adata.var_names = data.columns # print(adata.shape, len(data.columns)) true_label_int = [i for i in true_label] adata.obs['day'] = ['0' + str(i) if i < 10 else str(i) for i in true_label_int] true_label_str = [str(i) for i in true_label_int] # the way find_root works is to match any part of root-user to majority truth print(adata.obs['day']) if normalize == True: sc.pp.scale(adata, max_value=5) print(colored('normalized', 'blue')) else: print(colored('NOT normalized', 'blue')) print('adata', adata.shape) # ncomps = 30 # sc.tl.pca(adata, svd_solver='arpack', n_comps=ncomps) n_umap = adata.shape[0] np.random.seed(data_random_seed) udata = adata.X[:, :][0:n_umap] # U = umap.UMAP().fit_transform(udata) # U_df = pd.DataFrame(U, columns=['x', 'y']) # U_df.to_csv('/home/shobi/Trajectory/Datasets/mESC/umap_89782cells_meso.csv') idx = np.arange(0, adata.shape[ 0]) # np.random.choice(a=np.arange(0, adata.shape[0]), size=adata.shape[0], replace=False, p=None) # len(true_label) # idx=np.arange(0, len(true_label_int)) U = pd.read_csv( '/home/shobi/Trajectory/Datasets/mESC/umap_89782cells_meso.csv') # umap_89782cells_7000each_Randseed20_meso.csv') # U = pd.read_csv('/home/shobi/Trajectory/Datasets/mESC/phate_89782cells_mESC.csv') U = U.values[0:len(true_label), 1:] plt.scatter(U[:, 0], U[:, 1], c=true_label, cmap='jet', s=4, alpha=0.7) plt.show() ''' for gene_i in ['CD44', 'GATA4', 'PDGFRa', 'EpCAM']: # subset = adata[[gene_i]].values #scale is not great so hard to visualize on the raw data expression subset = adata[:, gene_i].X.flatten() plt.scatter(U[:, 0], U[:, 1], c=subset, cmap='viridis', s=4, alpha=0.7) plt.title(gene_i) plt.show() ''' print(U.shape) # U_df = pd.read_csv('/home/shobi/Trajectory/Datasets/mESC/phate_89782cells_mESC.csv') # U = U_df.drop('Unnamed: 0', 1) U = U[idx, :] # subsample start n_subsample = len(true_label_int) # 50000 #palantir wont scale U = U[0:n_subsample, :] # phate_operator = phate.PHATE(n_jobs=-1) # Y_phate = phate_operator.fit_transform(adata.X) # phate_df = pd.DataFrame(Y_phate) # phate_df.to_csv('/home/shobi/Trajectory/Datasets/mESC/phate_89782cells_mESC.csv') true_label_int0 = list(np.asarray(true_label_int)) # Start Slingshot data prep ''' slingshot_annots = true_label_int0[0:n_umap] slingshot_annots = [int(i) for i in slingshot_annots] Slingshot_annots = pd.DataFrame(slingshot_annots,columns = ['label']) Slingshot_annots.to_csv('/home/shobi/Trajectory/Datasets/mESC/Slingshot_annots_int_10K_sep.csv') Slingshot_data = pd.DataFrame(adata.X[0:n_umap], columns=marker_genes) Slingshot_data.to_csv('/home/shobi/Trajectory/Datasets/mESC/Slingshot_input_data_10K_sep.csv') # print('head sling shot data', Slingshot_data.head) # print('head sling shot annots', Slingshot_annots.head) print('slingshot data shape', Slingshot_data.shape) # sling_adata =sc.AnnData(Slingshot_data) ''' # end Slingshot data prep adata = adata[idx] true_label_int = list(np.asarray(true_label_int)[idx]) true_label_int = true_label_int[0:n_subsample] true_label_str = list(np.asarray(true_label_str)[idx]) true_label_str = true_label_str[0:n_subsample] true_type = list(np.asarray(true_type)[idx]) true_type = list(np.asarray(true_type)[idx])[0:n_subsample] sc.tl.pca(adata, svd_solver='arpack', n_comps=20) # plt.scatter(sling_adata.obsm['X_pca'][:,0],sling_adata.obsm['X_pca'][:,1], c = Slingshot_annots['label']) plt.show() print('time', time.ctime()) loc_start = np.where(np.asarray(true_label_int) == 0)[0][0] adata.uns['iroot'] = loc_start print('iroot', loc_start) # Start PAGA ''' sc.pp.neighbors(adata, n_neighbors=knn, n_pcs=28) # 4 sc.tl.draw_graph(adata) # sc.pl.draw_graph(adata_counts, color='group_id', legend_loc='on data') # force-directed layout start_dfmap = time.time() sc.tl.diffmap(adata, n_comps=28) print('time taken to get diffmap given knn', time.time() - start_dfmap) #sc.pp.neighbors(adata, n_neighbors=knn, use_rep='X_diffmap') # 4 #sc.tl.draw_graph(adata) sc.tl.leiden(adata, resolution=1.0, random_state=10) sc.tl.paga(adata, groups='leiden') adata.obs['group_id'] = true_label_int # sc.pl.paga(adata_counts, color=['louvain','group_id']) sc.tl.dpt(adata, n_dcs=28) print('time paga end', time.ctime()) plt.show() df_paga_dpt = pd.DataFrame() df_paga_dpt['paga_dpt'] = adata.obs['dpt_pseudotime'].values df_paga_dpt['days'] = true_label_int df_paga_dpt.to_csv('/home/shobi/Trajectory/Datasets/mESC/paga_dpt_knn' + str(knn) + '.csv') sc.pl.paga(adata, color=['leiden', 'group_id', 'dpt_pseudotime'], title=['leiden', 'group_id', 'pseudotime']) plt.show() # sc.pl.matrixplot(adata, marker_genes_meso, groupby='day', dendrogram=True) ''' # end PAGA ''' #start palantir run t_pal_start = time.time() run_palantir_mESC(adata[0:n_subsample:], knn=knn, tsne=U, str_true_label = true_label_str) print('palantir run time', round(time.time() - t_pal_start)) df_palantir = pd.read_csv('/home/shobi/Trajectory/Datasets/mESC/palantir_pt.csv') df_palantir['days'] = true_label_int df_palantir.to_csv('/home/shobi/Trajectory/Datasets/mESC/palantir_pt.csv') ''' # df_ = pd.DataFrame(adata.X) # df_.columns = [i for i in adata.var_names] # df_.to_csv('/home/shobi/Trajectory/Datasets/mESC/transformed_normalized_input.csv') df_ = pd.DataFrame(true_label_int, columns=['days']) # df_.to_csv('/home/shobi/Trajectory/Datasets/mESC/annots_days.csv') print('finished saving for monocle3') v0 = VIA(adata.X, true_label_int, jac_std_global=0.3, dist_std_local=1, knn=knn, cluster_graph_pruning_std=cluster_graph_pruning_std, too_big_factor=v0_too_big, resolution_parameter=2, root_user=root, dataset='mESC', random_seed=v0_random_seed, visual_cluster_graph_pruning=1, max_visual_outgoing_edges=3, do_impute_bool=True, is_coarse=True, preserve_disconnected=False, pseudotime_threshold_TS=40, x_lazy=0.99, alpha_teleport=0.99) # *.4 root=1, v0.run_VIA() df_pt = v0.single_cell_pt_markov f, (ax1, ax2,) = plt.subplots(1, 2, sharey=True) s_genes = '' for s in marker_genes: s_genes = s_genes + ' ' + s plt.title(str(len(true_label)) + 'cells ' + str(title_string) + '\n marker genes:' + s_genes, loc='left') ax1.scatter(U[:, 0], U[:, 1], c=true_label_int, cmap='jet', s=4, alpha=0.7) ax2.scatter(U[:, 0], U[:, 1], c=df_pt, cmap='jet', s=4, alpha=0.7) print('SAVED TRUE') df_pt = pd.DataFrame() df_pt['via_knn'] = v0.single_cell_pt_markov df_pt['days'] = true_label_int df_pt.to_csv('/home/shobi/Trajectory/Datasets/mESC/noMCMC_nolazynotele_via_pt_knn_Feb2021' + str( knn) + 'resolution2jacp15.csv') adata.obs['via0'] = [str(i) for i in v0.labels] # show geneplot # sc.pl.matrixplot(adata, marker_genes, groupby='via0', dendrogram=True) super_labels = v0.labels super_clus_ds_PCA_loc = sc_loc_ofsuperCluster_PCAspace(v0, v0, np.arange(0, len(true_label))) c_pt = v0.single_cell_pt_markov[0:n_umap] print('draw trajectory for v0') draw_trajectory_gams(U, super_clus_ds_PCA_loc, super_labels, super_labels, v0.edgelist_maxout, v0.x_lazy, v0.alpha_teleport, c_pt, true_label_int, knn=v0.knn, final_super_terminal=v0.terminal_clusters, sub_terminal_clusters=v0.terminal_clusters, title_str='Markov Hitting Times (Gams)', ncomp=28) ''' #show geneplot for gene_i in ['CD44', 'GATA4', 'PDGFRa', 'EpCAM']: # subset = data[[gene_i]].values subset = adata[:, gene_i].X.flatten() print('gene expression for', gene_i) v0.get_gene_expression(subset, gene_i) plt.show() ''' tsi_list = get_loc_terminal_states(v0, adata.X) v1 = VIA(adata.X, true_label_int, jac_std_global=0.15, dist_std_local=1, knn=knn, cluster_graph_pruning_std=cluster_graph_pruning_std, too_big_factor=p1_too_big, super_cluster_labels=super_labels, super_node_degree_list=v0.node_degree_list, super_terminal_cells=tsi_list, root_user=root, is_coarse=False, x_lazy=0.99, alpha_teleport=0.99, preserve_disconnected=True, dataset='mESC', visual_cluster_graph_pruning=1, max_visual_outgoing_edges=3, super_terminal_clusters=v0.terminal_clusters, random_seed=v0_random_seed, full_neighbor_array=v0.full_neighbor_array, full_distance_array=v0.full_distance_array, ig_full_graph=v0.ig_full_graph, csr_array_locally_pruned=v0.csr_array_locally_pruned, pseudotime_threshold_TS=40) v1.run_VIA() df_pt['via_v1'] = v1.single_cell_pt_markov df_pt.to_csv('/home/shobi/Trajectory/Datasets/mESC/noMCMC_nolazynotele_via_pt_knn_Feb2021' + str( knn) + 'resolution2jacp15.csv') adata.obs['parc1'] = [str(i) for i in v1.labels] sc.pl.matrixplot(adata, marker_genes, groupby='parc1', dendrogram=True) labels = v1.labels for gene_i in ['CD44', 'GATA4', 'PDGFRa', 'EpCAM']: # subset = data[[gene_i]].values subset = adata[:, gene_i].X.flatten() print('gene expression for', gene_i) v1.get_gene_expression(subset, gene_i) # X = adata.obsm['X_pca'][:,0:2] # print(X.shape) c_pt = v1.single_cell_pt_markov[0:n_umap] c_type = true_type[0:n_umap] dict_type = {'EB': 0, 'Endo': 5, "Meso": 10, 'Ecto': 15} c_type = [dict_type[i] for i in c_type] u_truelabel = true_label_int[0:n_umap] # U = umap.UMAP().fit_transform(adata.obsm['X_pca'][idx, 0:ncomps]) # U = Y_phate[idx,:] print('umap done', rand_str, time.ctime()) f, (ax1, ax2, ax3) = plt.subplots(1, 3, sharey=True) s_genes = '' for s in marker_genes: s_genes = s_genes + ' ' + s plt.title(str(len(true_label)) + 'cells ' + str(title_string) + '\n marker genes:' + s_genes, loc='left') ax1.scatter(U[:, 0], U[:, 1], c=true_label_int, cmap='jet', s=4, alpha=0.7) ax2.scatter(U[:, 0], U[:, 1], c=c_pt, cmap='jet', s=4, alpha=0.7) ax3.scatter(U[:, 0], U[:, 1], c=c_type, cmap='jet', s=4, alpha=0.7) plt.show() knn_hnsw = make_knn_embeddedspace(U) super_clus_ds_PCA_loc = sc_loc_ofsuperCluster_PCAspace(v0, v1, np.arange(0, len(labels))) true_label_formatted = [int(10 * i) for i in u_truelabel] draw_trajectory_gams(U, super_clus_ds_PCA_loc, labels, super_labels, v0.edgelist_maxout, v1.x_lazy, v1.alpha_teleport, c_pt, true_label_int, knn=v0.knn, final_super_terminal=v1.revised_super_terminal_clusters, sub_terminal_clusters=v1.terminal_clusters, title_str='Markov Hitting Times (Gams)', ncomp=28) # draw_sc_evolution_trajectory_dijkstra(v1, U, knn_hnsw, v0.full_graph_shortpath, np.arange(0, n_umap)) plt.show() def main_scATAC_zscores(knn=20, ncomps=30, cluster_graph_pruning_std=.15): # datasets can be downloaded from the link below # https://nbviewer.jupyter.org/github/pinellolab/STREAM/blob/master/tutorial/archives/v0.4.1_and_earlier_versions/4.STREAM_scATAC-seq_k-mers.ipynb?flush_cache=true # these are the kmers based feature matrix # https://www.dropbox.com/sh/zv6z7f3kzrafwmq/AACAlU8akbO_a-JOeJkiWT1za?dl=0 # https://github.com/pinellolab/STREAM_atac ##KMER START df = pd.read_csv("/home/shobi/Trajectory/Datasets/scATAC_Hemato/zscore_scaled_kmer.tsv", sep='\t') # TF Zcores from STREAM NOT the original buenrostro corrected PCs df = df.transpose() print('df kmer size', df.shape) new_header = df.iloc[0] # grab the first row for the header df = df[1:] # take the data less the header row df.columns = new_header # set the header row as the df header df = df.apply(pd.to_numeric) # CONVERT ALL COLUMNS true_label = pd.read_csv("/home/shobi/Trajectory/Datasets/scATAC_Hemato/cell_label.csv", sep='\t') true_label = true_label['cell_type'].values cell_types = ['GMP', 'HSC', 'MEP', 'CLP', 'CMP', 'LMPP', 'MPP', 'pDC', 'mono'] cell_dict = {'pDC': 'purple', 'mono': 'yellow', 'GMP': 'orange', 'MEP': 'red', 'CLP': 'aqua', 'HSC': 'black', 'CMP': 'moccasin', 'MPP': 'darkgreen', 'LMPP': 'limegreen'} ### KMER end ### for MOTIFS start ''' df = pd.read_csv("/home/shobi/Trajectory/Datasets/scATAC_Hemato/pinellolab_chromVAR_buenrostro_motifs_noHSC0828.csv",sep=',') # TF Zcores from STREAM NOT the original buenrostro corrected PCs cell_annot = df["Unnamed: 0"].values df = df.drop('Unnamed: 0', 1) print('nans', np.sum(df.isna().sum())) df = df.interpolate() print('nans', df.isna().sum()) #df = pd.read_csv("/home/shobi/Trajectory/Datasets/scATAC_Hemato/zscore_scaled_transpose.csv",sep=',') print(df.head, df.shape) cell_types = ['GMP', 'HSC', 'MEP', 'CLP', 'CMP', 'LMuPP', 'MPP', 'pDC', 'mono', 'UNK'] cell_dict = {'pDC': 'purple', 'mono': 'yellow', 'GMP': 'orange', 'MEP': 'red', 'CLP': 'aqua', 'HSC': 'black', 'CMP': 'moccasin', 'MPP': 'darkgreen', 'LMuPP': 'limegreen','UNK':'gray'} true_label = [] found_annot=False count = 0 for annot in cell_annot: for cell_type_i in cell_types: if cell_type_i in annot: true_label.append(cell_type_i) if found_annot== True: print('double count', annot) found_annot = True if found_annot ==False: true_label.append('unknown') print('annot is unknown', annot) count = count+1 found_annot=False ''' ## FOR MOTIFS end print('true label', true_label) print('len true label', len(true_label)) df_Buen = pd.read_csv('/home/shobi/Trajectory/Datasets/scATAC_Hemato/scATAC_hemato_Buenrostro.csv', sep=',') # df.to_csv("/home/shobi/Trajectory/Datasets/scATAC_Hemato/zscore_scaled_transpose.csv") df = df.reset_index(drop=True) df_num = df.values df_num = pd.DataFrame(df_num, columns=new_header) print('df_num', df_num.head) df_num = df_num.apply(pd.to_numeric) df_num['true'] = true_label print(df_num.groupby('true', as_index=False).mean()) print('df', df.head(), df.shape) print(df.columns.tolist()[0:10]) for i in ['AGATAAG', 'CCTTATC']: if i in df.columns: print(i, ' is here') ad = sc.AnnData(df) ad.var_names = df.columns ad.obs['cell_type'] = true_label sc.tl.pca(ad, svd_solver='arpack', n_comps=300) color = [] for i in true_label: color.append(cell_dict[i]) # PCcol = ['PC1', 'PC2', 'PC3', 'PC4', 'PC5'] # embedding = umap.UMAP(n_neighbors=15, random_state=2, repulsion_strength=0.5).fit_transform(ad.obsm['X_pca'][:, 1:5]) # embedding = umap.UMAP(n_neighbors=20, random_state=2, repulsion_strength=0.5).fit_transform(df_Buen[PCcol]) # df_umap = pd.DataFrame(embedding) # df_umap.to_csv('/home/shobi/Trajectory/Datasets/scATAC_Hemato/embedding_5PC.csv') embedding =
pd.read_csv('/home/shobi/Trajectory/Datasets/scATAC_Hemato/embedding_5PC.csv')
pandas.read_csv
from fctest.__EISData__ import EISData import pandas as pd import os class G20EISData(EISData): ENCODING = "ISO-8859-1" def __init__(self, data_path): path = os.path.normpath(data_path) raw_data = pd.read_csv(path, sep='\t', encoding=self.ENCODING) # split the relevant sections of the data data_section = raw_data.iloc[48:, 2:].reset_index(drop=True) col_names = raw_data.iloc[46, 2:].values units_section = raw_data.iloc[47, 2:].values data_section.columns = col_names test_date = pd.to_datetime(raw_data.iloc[2, 2] + ' ' + raw_data.iloc[3, 2]) mea_area = float(raw_data.iloc[12, 2]) initial_freq = float(raw_data.iloc[8, 2]) final_freq = float(raw_data.iloc[9, 2]) pts_per_decade = float(raw_data.iloc[10, 2]) # relevant parameters freqs = pd.to_numeric(data_section.Freq).values z_mod = pd.to_numeric(data_section.Zmod).values z_real =
pd.to_numeric(data_section.Zreal)
pandas.to_numeric
import numpy as np import yt import trident import pandas as pd from salsa.absorber_extractor import AbsorberExtractor from salsa.utils.collect_files import collect_files, check_rays from salsa.utils.functions import ion_p_num from salsa.generate_light_rays import generate_lrays from mpi4py import MPI from yt.data_objects.static_output import \ Dataset def generate_catalog(ds_file, n_rays, ray_directory, ion_list, method="spice", center=None, impact_param_lims=(0, 200), ray_length=200, field_parameters={}, fields=[], ftype='gas', cut_region_filters=[], extractor_kwargs={}, units_dict={}): """ Generates a catalog of absorber properties from a given number of lightrays through a dataset. Will look if lrays have already been made, otherwise will create them by uniform randomly sampling impact parameter. Uses OpenMPI to split up light ray creation and absorber extraction among processors. Parameters ---------- ds_file: str or dataset either path to a dataset or a loaded dataset n_rays: int number of rays to sample ray_directory: str path to directory where rays loaded from or will be saved if they haven't been constructed ion_list: list str list of ions to find absorbers from. method: "spice" or "spectacle", optional Choose which method to use to extract absorbers. center: list or array, optional The center of the galaxy in units 'code_length'. If None, defaults to domain_center. Default: None impact_param_lims: tuple or list, optional The range on which to sample impact parameter when constructing lightrays Default: (0, 200) ray_length: float, optional The length of each light ray in units kpc. Default: 200 field_parameters: dict, optional The parameters that will be passed to trident during ray construction. This can be something like "bulk_velocity" so that a radial velocity can be saved. fields: list of str YT fields to add to lightrays. Will be included in catalog if "spice" method is selected ftype : str The field to be passed to trident that ion fields will be added to, i.e. ``('gas', 'H_p0_number_density')``. ``'gas'`` should work for most grid-based simulations. For particle-based simulations this will not work and needs to be changed. ``'PartType0'`` often works though it varies. See ``trident.add_ion_fields()`` for more information cut_region_filters: list of strings, optional a list of filters defined by the way you use Cut Regions in YT Default: None extractor_kwargs: dict, optional Additional key word arguments to pass to the absorber_extractor to modify default extraction parameters. Either a single dict that will be passed for each ion. Or a dict of ions pointing toward individual extractor kwargs. Examples: ``extractor_kwargs={'H I':{'absorber_min':14}, 'C IV':{'absorber_min':13}, 'O VI':{}}`` ``extractor_kwargs={'absorber_min':13.5}`` The first will set different absober mins for each ion, with O VI taking default as specified by ``salsa.utils.defaults.default_cloud_dict``. The second example will set the minimum absorber as 13.5 for every ion. **NOTE** you cannot mix the two formats. If one ion is specified then all ions must be specified (see 'O VI' included even though it's dictionary is empty) Default: {} units_dict: dict, optional dictionary of units to use for the fields when extracting properties (only relevant for 'spice' method) Default: None Returns ------- full_catalog: pandas.DataFrame pandas dataframe containing all of the absorbers extracted from all the lightrays. If no absorbers are found, None is returned """ comm = MPI.COMM_WORLD # check ds_file is need to load if isinstance(ds_file, str): ds = yt.load(ds_file) elif isinstance(ds_file, Dataset): ds = ds_file # add ion number density to fields to check check_fields = fields.copy() for i in ion_list: check_fields.append(ion_p_num(i)) #check if rays already made check =check_rays(ray_directory, n_rays, check_fields) my_ray_bool= np.array([check], dtype=int) ray_bool = np.array([0], dtype=int) # share if rays made already or not comm.Barrier() comm.Allreduce([my_ray_bool, MPI.INT],[ray_bool, MPI.INT], op=MPI.LAND) #generate rays randomly if not ray_bool[0]: #set a center if center is None: center=ds.domain_center #construct random rays in ray_directory generate_lrays(ds, center, n_rays, impact_param_lims[1], min_impact_param=impact_param_lims[0], length=ray_length, fld_params=field_parameters, ion_list=ion_list, fields=fields, ftype=ftype, out_dir=ray_directory) comm.Barrier() #Extract Absorbers #collect and split up ray files ray_files = np.array(collect_files(ray_directory, key_words=['ray']), dtype=str) ray_files_split = np.array_split(ray_files, comm.size) my_rays = ray_files_split[ comm.rank ] #add directory path to rays my_ray_files=[ ray_directory+'/'+r for r in my_rays ] #create catalog for each ion df_list=[] for ion in ion_list: #check if extractor kwargs has ion specific information if ion in extractor_kwargs.keys(): curr_kwargs = extractor_kwargs[ion] else: curr_kwargs=extractor_kwargs.copy() # setup absorber extractor abs_ext = AbsorberExtractor(ds, my_ray_files[0], ion_name=ion, cut_region_filters=cut_region_filters, **curr_kwargs) # get catalogs my_df = get_absorbers(abs_ext, my_ray_files, method, fields=fields, units_dict=units_dict) if my_df is not None: df_list.append(my_df) # Return Nonetype if no absorbers found if df_list == []: my_catalog = None else: my_catalog=
pd.concat(df_list, ignore_index=True)
pandas.concat
#!/usr/bin/env python # -*- coding: utf-8 -*- from pathlib import Path import numpy as np import pandas as pd from imctools.io.mcdparser import McdParser from imctools.io.abstractparserbase import AcquisitionError from imctools.io.imcfolderwriter import ImcFolderWriter from xml.etree import cElementTree as ElementTree from .logger import logger class MCD: def __init__(self, mcdpath: Path): self.mcdpath = mcdpath self.imc_name = mcdpath.stem self.acquisitions = {} @staticmethod def _get_acquisition(mcd, ac_id): try: imc_ac = mcd.get_imc_acquisition(ac_id) except AcquisitionError as e: imc_ac = None return imc_ac def load_acquisitions(self): logger.debug("Loading acquisitions. Make take some time...") for ac_id in self.mcd.acquisition_ids: imc_ac = self._get_acquisition(self.mcd, ac_id) if imc_ac is None: continue #imc_ac.original_metadata = ElementTree.fromstring(imc_ac.original_metadata) #imc_ac.original_metadata = imc_ac.original_metadata.decode("ascii") self.acquisitions[ac_id] = imc_ac logger.info(f"{len(self.acquisitions)} acquisitions loaded.") def peek(self): logger.info(f"Going to peek inside MCD file {self.mcdpath}") logger.debug("Loading MCD.") self.mcd = McdParser(str(self.mcdpath)) logger.debug("MCD loaded. Peeking started.") acquisition_ids = self.mcd.acquisition_ids self.acquisition_ids = [] self.offsets = {} self.n_channels = {} self.channel_metals = {} self.channel_labels = {} for ac_id in acquisition_ids: ac = self.mcd.meta.get_acquisitions()[ac_id] if ac.data_offset_end - ac.data_offset_start < 1e5: logger.warn(f"Acquisition {ac_id} appears empty. Skipping.") continue metals, labels = list(zip(*self.mcd.get_acquisition_channels(ac_id).values())) metals = [m.replace("(", "").replace(")", "") for m in metals] offset = len(metals) - len(set(metals) - set("XYZ")) self.offsets[ac_id] = offset self.channel_labels[ac_id] = labels[offset:] self.channel_metals[ac_id] = metals[offset:] self.n_channels[ac_id] = len(metals[offset:]) self.acquisition_ids.append(ac_id) logger.debug("Peeking finished.") def load_mcd(self): self.fileprefix = self.mcdpath.stem self.peek() self.load_acquisitions() self.n_acquisitions = len(self.acquisitions) def get_xyz_data(self, ac_id): imc_ac = self.acquisitions.get(ac_id) return imc_ac._data[:3] def get_data(self, ac_id, ch_int=None): imc_ac = self.acquisitions.get(ac_id) offset = imc_ac._offset if ch_int is not None: return imc_ac._data[offset + ch_int] return imc_ac._data[offset:] def set_data(self, new_data, ac_id, ch_int=None): imc_ac = self.acquisitions.get(ac_id) offset = imc_ac._offset if ch_int is not None: imc_ac._data[offset + ch_int] = new_data else: assert len(new_data.shape) == 3 imc_ac._data[offset:] = new_data def _write_imcfolder(self, acquisitions, prefix, suffix): raise NotImplementedError("This is broken") logger.debug(f"Saving IMCfolder with prefix:[{prefix}] and suffix:[{suffix}]") # TODO:This doesn't utilize acquisitions yet outpath = Path(prefix + suffix) if not outpath.exists(): outpath.mkdir(exist_ok=True) self.mcd.save_meta_xml(str(outpath)) ifw = ImcFolderWriter(str(outpath), mcddata=self.mcd) ifw.write_imc_folder() logger.info(f"IMC-Folder written to {str(outpath)}") def _write_tiff(self, acquisitions, prefix, suffix): logger.debug(f"Saving tiffs with prefix:[{prefix}] and suffix:[{suffix}]") outpath = Path(prefix + suffix) if not outpath.exists(): outpath.mkdir(exist_ok=True) for ac_id in acquisitions.keys(): subdir = outpath / f"{prefix}{suffix}.a{ac_id}" if not subdir.exists(): subdir.mkdir(exist_ok=True) fmt = "{0}/{1}{2}.a{3}/{1}{2}.a{3}.{4}.{5}.ome.tiff" for ac_id, channel_list in acquisitions.items(): imc_ac = self.acquisitions.get(ac_id) for ch_id, metal, label in channel_list: tiff = fmt.format(outpath, prefix, suffix, ac_id, metal, label) iw = imc_ac.get_image_writer(filename=str(tiff), metals=[metal]) iw.save_image(mode="ome", compression=0, dtype=None, bigtiff=False) logger.debug(f"{tiff} saved.") logger.info(f"All tiffs saved.") def _write_tiffstack(self, acquisitions, prefix, suffix): logger.debug(f"Saving tiffstack with prefix:[{prefix}] and suffix:[{suffix}]") fmt = "{}{}.a{}.ome.tiff" for ac_id in acquisitions.keys(): tiff = fmt.format(prefix, suffix, ac_id) imc_ac = self.acquisitions.get(ac_id) iw = imc_ac.get_image_writer(filename=str(tiff)) iw.save_image(mode="ome", compression=0, dtype=None, bigtiff=False) logger.debug(f"{tiff} saved.") logger.info(f"All tiffstacks saved.") def _write_text(self, acquisitions, prefix, suffix): logger.debug(f"Saving text data with prefix:[{prefix}] and suffix:[{suffix}]") fmt = "{}{}.a{}.txt" for ac_id, channel_list in acquisitions.items(): logger.debug(f"Creating text data for acquisition {ac_id}...") outfile = fmt.format(prefix, suffix, ac_id) ch_ids, ch_metals, ch_labels = map(list, zip(*channel_list)) xyz = self.get_xyz_data(ac_id) xyz = xyz[:].reshape(3, -1).T logger.debug(f"XYZ data size for {ac_id}: {xyz.shape}") data = self.get_data(ac_id)[ch_ids] _n = data.shape[0] data = data[:].reshape(_n, -1).T logger.debug(f"Channel data size for {ac_id}: {data.shape}") logger.debug(f"Merging XYZ data with channel data.") data = np.column_stack((xyz, data)) size = data.nbytes metals = [f"{metal}({label})" for _, metal, label in channel_list] data =
pd.DataFrame(data, columns=["X", "Y", "Z"] + metals)
pandas.DataFrame
# -*- coding: utf-8 -*- import io import os import pickle import math import numpy as np import pandas as pd import lightgbm as lgb from tqdm.auto import tqdm class ScoringService(object): # 訓練期間終了日 TRAIN_END_HIGH = '2019-12-01' TRAIN_END_LOW = '2018-12-31' TRAIN_END = '2018-12-31' # 評価期間開始日 VAL_START = '2019-02-01' # 評価期間終了日 VAL_END = '2019-12-01' # テスト期間開始日 TEST_START = '2020-01-01' # 目的変数 TARGET_LABELS = ['label_high_20', 'label_low_20'] # データをこの変数に読み込む dfs = None # モデルをこの変数に読み込む models = None # 対象の銘柄コードをこの変数に読み込む codes = None @classmethod def getCodes(cls): return cls.codes @classmethod def get_inputs(cls, dataset_dir): """ Args: dataset_dir (str) : path to dataset directory Returns: dict[str]: path to dataset files """ inputs = { 'stock_list': f'{dataset_dir}/stock_list.csv.gz', 'stock_price': f'{dataset_dir}/stock_price.csv.gz', 'stock_fin': f'{dataset_dir}/stock_fin.csv.gz', # 'stock_fin_price': f'{dataset_dir}/stock_fin_price.csv.gz', 'stock_labels': f'{dataset_dir}/stock_labels.csv.gz', } return inputs @classmethod def get_dataset(cls, inputs): """ Args: inputs (list[str]): path to dataset files Returns: dict[pd.DataFrame]: loaded data """ if cls.dfs is None: cls.dfs = {} for k, v in inputs.items(): cls.dfs[k] = pd.read_csv(v) # DataFrameのindexを設定します。 if k == "stock_price": cls.dfs[k].loc[:, "datetime"] = pd.to_datetime(cls.dfs[k].loc[:, "EndOfDayQuote Date"]) cls.dfs[k].set_index("datetime", inplace=True) elif k in ["stock_fin", "stock_fin_price", "stock_labels"]: cls.dfs[k].loc[:, "datetime"] = pd.to_datetime(cls.dfs[k].loc[:, "base_date"]) cls.dfs[k].set_index("datetime", inplace=True) return cls.dfs @classmethod def get_codes(cls, dfs): """ Args: dfs (dict[pd.DataFrame]): loaded data Returns: array: list of stock codes """ stock_list = dfs['stock_list'].copy() # 予測対象の銘柄コードを取得 cls.codes = stock_list[stock_list['prediction_target'] == True]['Local Code'].values @classmethod def get_features_and_label(cls, dfs, codes, feature, label): """ Args: dfs (dict[pd.DataFrame]): loaded data codes (array) : target codes feature (pd.DataFrame): features label (str) : label column name Returns: train_X (pd.DataFrame): training data train_y (pd.DataFrame): label for train_X val_X (pd.DataFrame): validation data val_y (pd.DataFrame): label for val_X test_X (pd.DataFrame): test data test_y (pd.DataFrame): label for test_X """ # 分割データ用の変数を定義 trains_X, vals_X, tests_X = [], [], [] trains_y, vals_y, tests_y = [], [], [] # 銘柄コード毎に特徴量を作成 print(label,' Create Feature value') for code in tqdm(codes): # 特徴量取得 feats = feature[feature['code'] == code] # 特定の銘柄コードのデータに絞る stock_labels = dfs['stock_labels'][dfs['stock_labels']['Local Code'] == code].copy() # 特定の目的変数に絞る labels = stock_labels[label] # nanを削除 labels.dropna(inplace=True) if feats.shape[0] > 0 and labels.shape[0] > 0: # 特徴量と目的変数のインデックスを合わせる labels = labels.loc[labels.index.isin(feats.index)] feats = feats.loc[feats.index.isin(labels.index)] labels.index = feats.index # データを分割 _train_X = {} _val_X = {} _test_X = {} _train_y = {} _val_y = {} _test_y = {} if label == 'label_high_20': _train_X = feats[: cls.TRAIN_END_HIGH].copy() _val_X = feats[cls.VAL_START : cls.VAL_END].copy() _test_X = feats[cls.TEST_START :].copy() _train_y = labels[: cls.TRAIN_END_HIGH].copy() _val_y = labels[cls.VAL_START : cls.VAL_END].copy() _test_y = labels[cls.TEST_START :].copy() elif label == 'label_low_20': _train_X = feats[: cls.TRAIN_END_LOW].copy() _val_X = feats[cls.VAL_START : cls.VAL_END].copy() _test_X = feats[cls.TEST_START :].copy() _train_y = labels[: cls.TRAIN_END_LOW].copy() _val_y = labels[cls.VAL_START : cls.VAL_END].copy() _test_y = labels[cls.TEST_START :].copy() else: _train_X = feats[: cls.TRAIN_END].copy() _val_X = feats[cls.VAL_START : cls.VAL_END].copy() _test_X = feats[cls.TEST_START :].copy() _train_y = labels[: cls.TRAIN_END].copy() _val_y = labels[cls.VAL_START : cls.VAL_END].copy() _test_y = labels[cls.TEST_START :].copy() # データを配列に格納 (後ほど結合するため) trains_X.append(_train_X) vals_X.append(_val_X) tests_X.append(_test_X) trains_y.append(_train_y) vals_y.append(_val_y) tests_y.append(_test_y) # 銘柄毎に作成した説明変数データを結合します。 train_X = pd.concat(trains_X) val_X = pd.concat(vals_X) test_X = pd.concat(tests_X) # 銘柄毎に作成した目的変数データを結合します。 train_y = pd.concat(trains_y) val_y = pd.concat(vals_y) test_y = pd.concat(tests_y) return train_X, train_y, val_X, val_y, test_X, test_y #増加率の計算 @classmethod def get_Rate_of_increase(cls, df): df_return_1 = df.shift(1) return (df - df_return_1) / df_return_1 @classmethod def get_features_for_predict(cls, dfs, code, label, start_dt='2016-01-01'): """ Args: dfs (dict) : dict of pd.DataFrame include stock_fin, stock_price code (int) : A local code for a listed company start_dt (str): specify date range Returns: feature DataFrame (pd.DataFrame) """ # 特徴量の作成には過去60営業日のデータを使用しているため、 # 予測対象日からバッファ含めて土日を除く過去90日遡った時点から特徴量を生成します n = 90 # 特定の銘柄コードのデータに絞る fin_data = dfs['stock_fin'][dfs['stock_fin']['Local Code'] == code] # 特徴量の生成対象期間を指定 fin_data = fin_data.loc[pd.Timestamp(start_dt) - pd.offsets.BDay(n) :] #データを取得 fin_feats = fin_data[['Result_FinancialStatement FiscalYear']].copy() fin_feats['Result_FinancialStatement NetSales'] = fin_data['Result_FinancialStatement NetSales'] fin_feats['Result_FinancialStatement OperatingIncome'] = fin_data['Result_FinancialStatement OperatingIncome'] fin_feats['Result_FinancialStatement OrdinaryIncome'] = fin_data['Result_FinancialStatement OrdinaryIncome'] fin_feats['Result_FinancialStatement NetIncome'] = fin_data['Result_FinancialStatement NetIncome'] fin_feats['Result_FinancialStatement TotalAssets'] = fin_data['Result_FinancialStatement TotalAssets'] fin_feats['Result_FinancialStatement NetAssets'] = fin_data['Result_FinancialStatement NetAssets'] fin_feats['Result_FinancialStatement CashFlowsFromOperatingActivities'] = fin_data['Result_FinancialStatement CashFlowsFromOperatingActivities'] fin_feats['Result_FinancialStatement CashFlowsFromFinancingActivities'] = fin_data['Result_FinancialStatement CashFlowsFromFinancingActivities'] fin_feats['Result_FinancialStatement CashFlowsFromInvestingActivities'] = fin_data['Result_FinancialStatement CashFlowsFromInvestingActivities'] fin_feats['Forecast_FinancialStatement FiscalYear'] = fin_data['Forecast_FinancialStatement FiscalYear'] fin_feats['Forecast_FinancialStatement NetSales'] = fin_data['Forecast_FinancialStatement NetSales'] fin_feats['Forecast_FinancialStatement OperatingIncome'] = fin_data['Forecast_FinancialStatement OperatingIncome'] fin_feats['Forecast_FinancialStatement OrdinaryIncome'] = fin_data['Forecast_FinancialStatement OrdinaryIncome'] fin_feats['Forecast_FinancialStatement NetIncome'] = fin_data['Forecast_FinancialStatement NetIncome'] fin_feats['Result_Dividend FiscalYear'] = fin_data['Result_Dividend FiscalYear'] fin_feats['Result_Dividend QuarterlyDividendPerShare'] = fin_data['Result_Dividend QuarterlyDividendPerShare'] fin_feats['Forecast_Dividend FiscalYear'] = fin_data['Forecast_Dividend FiscalYear'] fin_feats['Forecast_Dividend QuarterlyDividendPerShare'] = fin_data['Forecast_Dividend QuarterlyDividendPerShare'] fin_feats['Forecast_Dividend AnnualDividendPerShare'] = fin_data['Forecast_Dividend AnnualDividendPerShare'] fin_feats['Result_FinancialStatement ReportType'] = fin_data['Result_FinancialStatement ReportType'] fin_feats['Result_FinancialStatement ReportType'].replace(['Q1','Q2','Q3','Annual',],[0,1,2,3],inplace=True) # 欠損値処理 fin_feats = fin_feats.fillna(0) # 特定の銘柄コードのデータに絞る price_data = dfs['stock_price'][dfs['stock_price']['Local Code'] == code] # 特徴量の生成対象期間を指定 price_data = price_data.loc[pd.Timestamp(start_dt) - pd.offsets.BDay(n) :] # 終値のみに絞る feats = price_data[['EndOfDayQuote ExchangeOfficialClose']].copy() #高値と安値の差額 price_data['Stock price difference'] = price_data['EndOfDayQuote High'] - price_data['EndOfDayQuote Low'] #騰落幅。前回終値と直近約定値の価格差 feats['EndOfDayQuote ChangeFromPreviousClose'] = price_data['EndOfDayQuote ChangeFromPreviousClose'] #騰落値 feats['EndOfDayQuote RisingAndFallingPrices'] = price_data['EndOfDayQuote PreviousClose'] + price_data['EndOfDayQuote ChangeFromPreviousClose'] #累積調整係数 feats['EndOfDayQuote CumulativeAdjustmentFactor'] = price_data['EndOfDayQuote CumulativeAdjustmentFactor'] #過去0,5,10,15,20日前の株価、出来高 for nn in range(0, 21, 5): nn_str = str(nn) #高値 feats['EndOfDayQuote High Return' + nn_str] = price_data['EndOfDayQuote High'].shift(nn) #安値 feats['EndOfDayQuote Low Return' + nn_str] = price_data['EndOfDayQuote Low'].shift(nn) #始値 feats['EndOfDayQuote Open Return' + nn_str] = price_data['EndOfDayQuote Open'].shift(nn) #終値 feats['EndOfDayQuote Close Return' + nn_str] = price_data['EndOfDayQuote Close'].shift(nn) #売買高 feats['EndOfDayQuote Volume Return' + nn_str] = price_data['EndOfDayQuote Volume'].shift(nn) #銘柄情報 list_data = dfs['stock_list'][dfs['stock_list']['Local Code'] == code].copy() #銘柄の33業種区分(コード) feats['33 Sector(Code)'] = list_data['33 Sector(Code)'].values[0] #銘柄の17業種区分(コード) feats['17 Sector(Code)'] = list_data['17 Sector(Code)'].values[0] #発行済株式数 feats['IssuedShareEquityQuote IssuedShare'] = list_data['IssuedShareEquityQuote IssuedShare'].values[0] #Size Code (New Index Series) list_data['Size Code (New Index Series)'] = list_data['Size Code (New Index Series)'].replace('-', 0).astype(int) million = 1000000 #来期の予測EPS(1株あたりの利益) forecast_EPS = (fin_feats['Forecast_FinancialStatement NetIncome'] * million) / feats['IssuedShareEquityQuote IssuedShare'] #feats['Forecast EPS'] = forecast_EPS #来期の予測PER(株価収益率) feats['Forecast PER ExchangeOfficialClose'] = price_data['EndOfDayQuote ExchangeOfficialClose'] / forecast_EPS #売買高加重平均価格(VWAP) feats['EndOfDayQuote VWAP'] = price_data['EndOfDayQuote VWAP'] # 財務データの特徴量とマーケットデータの特徴量のインデックスを合わせる feats = feats.loc[feats.index.isin(fin_feats.index)] fin_feats = fin_feats.loc[fin_feats.index.isin(feats.index)] # データを結合 feats = pd.concat([feats, fin_feats], axis=1).dropna() #決算種別gごとに分ける #Q1 q1 = feats.loc[feats['Result_FinancialStatement ReportType'] == 0].copy() #Q2 q2 = feats.loc[feats['Result_FinancialStatement ReportType'] == 1].copy() #Q3 q3 = feats.loc[feats['Result_FinancialStatement ReportType'] == 2].copy() #Annual annual = feats.loc[feats['Result_FinancialStatement ReportType'] == 3].copy() #決算 settlement = fin_data[['Forecast_FinancialStatement ReportType']].copy() settlement['Forecast_FinancialStatement ReportType'].replace(['Q1','Q2','Q3','Annual',],[0,1,2,3],inplace=True) settlement['Forecast_FinancialStatement FiscalYear'] = fin_data['Forecast_FinancialStatement FiscalYear'] settlement['Forecast_FinancialStatement NetSales'] = fin_data['Forecast_FinancialStatement NetSales'] settlement['Forecast_FinancialStatement OperatingIncome'] = fin_data['Forecast_FinancialStatement OperatingIncome'] settlement['Result_FinancialStatement OperatingIncome'] = fin_data['Result_FinancialStatement OperatingIncome'] #前の行と値が同じかどうか、同じならTrueを格納 settlement['Forecast_FinancialStatement ReportType Flag'] = settlement['Forecast_FinancialStatement ReportType'].eq(settlement['Forecast_FinancialStatement ReportType'].shift(1)) settlement['Forecast_FinancialStatement FiscalYear Flag'] = settlement['Forecast_FinancialStatement FiscalYear'].eq(settlement['Forecast_FinancialStatement FiscalYear'].shift(1)) #0,1に変換 settlement['Forecast_FinancialStatement ReportType Flag'] = settlement['Forecast_FinancialStatement ReportType Flag'] * 1 settlement['Forecast_FinancialStatement FiscalYear Flag'] = settlement['Forecast_FinancialStatement FiscalYear Flag'] * 1 #実行フラグを立てる settlement['Execution flag'] = ((settlement['Forecast_FinancialStatement ReportType Flag'] == 1) & (settlement['Forecast_FinancialStatement FiscalYear Flag'] == 1)) #実行フラグがTrueなら値を格納 settlement['Forecast_FinancialStatement NetSales Shift'] = 0 settlement['Forecast_FinancialStatement NetSales Shift'].where(settlement['Execution flag'] != True, settlement['Forecast_FinancialStatement NetSales'].shift(1), inplace=True) settlement['Forecast_FinancialStatement OperatingIncome Shift'] = 0 settlement['Forecast_FinancialStatement OperatingIncome Shift'].where(settlement['Execution flag'] != True, settlement['Forecast_FinancialStatement OperatingIncome'].shift(1), inplace=True) settlement['Result_FinancialStatement OperatingIncome Shift'] = 0 settlement['Result_FinancialStatement OperatingIncome Shift'].where(settlement['Execution flag'] != True, settlement['Result_FinancialStatement OperatingIncome'].shift(1), inplace=True) #負債 liabilities = feats['Result_FinancialStatement TotalAssets'] - feats['Result_FinancialStatement NetAssets'] #AnnualのEPS(1株当たり利益) annual_EPS = (annual['Result_FinancialStatement NetIncome'] * million) / list_data['IssuedShareEquityQuote IssuedShare'].values[0] if label == 'label_high_20': #Size Code (New Index Series) feats['Size Code (New Index Series)'] = list_data['Size Code (New Index Series)'].values[0] #Annual純利益増加率 annual['Annual Net income increase rate'] = cls.get_Rate_of_increase(annual['Result_FinancialStatement NetIncome']) #欠損値処理を行います。 annual = annual.replace([np.nan], 0) feats['Annual Net income increase rate'] = annual['Annual Net income increase rate'] #Q1,Q2,Q3,Annualの営業利益増加率 q1['Q1 Operating income increase rate'] = cls.get_Rate_of_increase(q1['Result_FinancialStatement OperatingIncome']) q2['Q2 Operating income increase rate'] = cls.get_Rate_of_increase(q2['Result_FinancialStatement OperatingIncome']) q3['Q3 Operating income increase rate'] = cls.get_Rate_of_increase(q3['Result_FinancialStatement OperatingIncome']) annual['Annual Operating income increase rate'] = cls.get_Rate_of_increase(annual['Result_FinancialStatement OperatingIncome']) #欠損値処理を行います。 q1 = q1.replace([np.nan], 0) q2 = q2.replace([np.nan], 0) q3 = q3.replace([np.nan], 0) annual = annual.replace([np.nan], 0) feats['Q1 Operating income increase rate'] = q1['Q1 Operating income increase rate'] feats['Q2 Operating income increase rate'] = q2['Q2 Operating income increase rate'] feats['Q3 Operating income increase rate'] = q3['Q3 Operating income increase rate'] feats['Annual Operating income increase rate'] = annual['Annual Operating income increase rate'] #Q1,Q2,Q3,Annualの当期純利益増加率 q1['Q1 Net income increase rate'] = cls.get_Rate_of_increase(q1['Result_FinancialStatement NetIncome']) q2['Q2 Net income increase rate'] = cls.get_Rate_of_increase(q2['Result_FinancialStatement NetIncome']) q3['Q3 Net income increase rate'] = cls.get_Rate_of_increase(q3['Result_FinancialStatement NetIncome']) annual['Annual Net income increase rate'] = cls.get_Rate_of_increase(annual['Result_FinancialStatement NetIncome']) #欠損値処理を行います。 q1 = q1.replace([np.nan], 0) q2 = q2.replace([np.nan], 0) q3 = q3.replace([np.nan], 0) annual = annual.replace([np.nan], 0) feats['Q1 Net income increase rate'] = q1['Q1 Net income increase rate'] feats['Q2 Net income increase rate'] = q2['Q2 Net income increase rate'] feats['Q3 Net income increase rate'] = q3['Q3 Net income increase rate'] feats['Annual Net income increase rate'] = annual['Annual Net income increase rate'] #PER(株価収益率) feats['Annual PER'] = price_data['EndOfDayQuote ExchangeOfficialClose'] / annual_EPS #決算営業利益増加率 feats['Settlement operating income increase rate'] = (settlement['Result_FinancialStatement OperatingIncome'] - settlement['Result_FinancialStatement OperatingIncome Shift']) / settlement['Result_FinancialStatement OperatingIncome Shift'] #欠損値処理を行います。 feats = feats.replace([np.nan], -99999) #来期決算種別 feats['Forecast_FinancialStatement ReportType'] = settlement['Forecast_FinancialStatement ReportType'] #来期の予想決算売上高増加率 feats['Expected settlement of accounts for the next fiscal year Sales increase rate'] = (settlement['Forecast_FinancialStatement NetSales'] - settlement['Forecast_FinancialStatement NetSales Shift']) / settlement['Forecast_FinancialStatement NetSales Shift'] #売上高増加率 feats['Sales growth rate'] = cls.get_Rate_of_increase(feats['Result_FinancialStatement NetSales']) #営業利益増加率 feats['Operating income increase rate'] = cls.get_Rate_of_increase(feats['Result_FinancialStatement OperatingIncome']) #経常利益増加率 feats['Ordinary income increase rate'] = cls.get_Rate_of_increase(feats['Result_FinancialStatement OrdinaryIncome']) #BPS(1株あたりの純資産) BPS = (feats['Result_FinancialStatement NetAssets'] * million) / feats['IssuedShareEquityQuote IssuedShare'] #PBR(株価純資産倍率) feats['PBR'] = feats['EndOfDayQuote ExchangeOfficialClose'] / BPS #CFPS(1株あたりのキャッシュフロー) CFPS = (feats['Result_FinancialStatement CashFlowsFromOperatingActivities'] * million) / feats['IssuedShareEquityQuote IssuedShare'] #PCFR(株価キャッシュフロー倍率) feats['PCFR'] = feats['EndOfDayQuote ExchangeOfficialClose'] / CFPS #来期の予測配当利回り feats['Forecast Dividend yield'] = feats['Forecast_Dividend AnnualDividendPerShare'] / feats['EndOfDayQuote ExchangeOfficialClose'] #時価総額 feats['Market capitalization'] = (feats['EndOfDayQuote ExchangeOfficialClose'] * million) * feats['IssuedShareEquityQuote IssuedShare'] #キャッシュフローマージン feats['Forecast Cash flow margin'] = feats['Result_FinancialStatement CashFlowsFromOperatingActivities'] / feats['Forecast_FinancialStatement NetSales'] #高値と安値の5日間の差額の平均 feats['Stock price difference Mean 5'] = price_data['Stock price difference'].rolling(5).mean() #5日間平均から当日株価を引く EndOfDayQuote_ExchangeOfficialClose_Mean_5 = price_data['EndOfDayQuote ExchangeOfficialClose'].rolling(5).mean() feats['Subtract the current days stock price from the 5-day average'] = EndOfDayQuote_ExchangeOfficialClose_Mean_5 - feats['EndOfDayQuote ExchangeOfficialClose'] #売上高に対しての負債割合 feats['Ratio of sales to liabilities'] = liabilities / feats['Result_FinancialStatement NetSales'] #負債増加率 feats['Debt growth rate'] = cls.get_Rate_of_increase(liabilities) #終値の20営業日ボラティリティ feats['20 business days volatility'] = (np.log(price_data['EndOfDayQuote ExchangeOfficialClose']).diff().rolling(20).std()) #終値の40営業日ボラティリティ feats['40 business days volatility'] = (np.log(price_data['EndOfDayQuote ExchangeOfficialClose']).diff().rolling(40).std()) #終値の60営業日ボラティリティ feats['60 business days volatility'] = (np.log(price_data['EndOfDayQuote ExchangeOfficialClose']).diff().rolling(60).std()) #終値の20営業日リターン feats['20 business day return'] = price_data['EndOfDayQuote ExchangeOfficialClose'].pct_change(20) #ドロップ for nn in range(0, 21, 5): nn_str = str(nn) feats = feats.drop(['EndOfDayQuote High Return' + nn_str], axis=1) feats = feats.drop(['EndOfDayQuote Low Return' + nn_str], axis=1) feats = feats.drop(['EndOfDayQuote Open Return' + nn_str], axis=1) feats = feats.drop(['EndOfDayQuote Close Return' + nn_str], axis=1) elif label == 'label_low_20': #Q1,Q2,Q3,Annualの売上高増加率 q1['Q1 Sales growth rate'] = cls.get_Rate_of_increase(q1['Result_FinancialStatement NetSales']) q2['Q2 Sales growth rate'] = cls.get_Rate_of_increase(q2['Result_FinancialStatement NetSales']) q3['Q3 Sales growth rate'] = cls.get_Rate_of_increase(q3['Result_FinancialStatement NetSales']) annual['Annual Sales growth rate'] = cls.get_Rate_of_increase(annual['Result_FinancialStatement NetSales']) #欠損値処理を行います。 q1 = q1.replace([np.nan], 0) q2 = q2.replace([np.nan], 0) q3 = q3.replace([np.nan], 0) annual = annual.replace([np.nan], 0) feats['Q1 Sales growth rate'] = q1['Q1 Sales growth rate'] feats['Q2 Sales growth rate'] = q2['Q2 Sales growth rate'] feats['Q3 Sales growth rate'] = q3['Q3 Sales growth rate'] feats['Annual Sales growth rate'] = annual['Annual Sales growth rate'] #Annual財務キャッシュフロー増加率 annual['Annual Rate of increase in financial cash flow'] = cls.get_Rate_of_increase(annual['Result_FinancialStatement CashFlowsFromFinancingActivities']) #欠損値処理を行います。 annual = annual.replace([np.nan], 0) feats['Annual Rate of increase in financial cash flow'] = annual['Annual Rate of increase in financial cash flow'] #Annual EPS(1株当たり利益) feats['Annual EPS'] = annual_EPS #欠損値処理を行います。 feats = feats.replace([np.nan], -99999) #来期の予想決算営業利益増加率 feats['Expected settlement of accounts for the next fiscal year Operating income increase rate'] = (settlement['Forecast_FinancialStatement OperatingIncome'] - settlement['Forecast_FinancialStatement OperatingIncome Shift']) / settlement['Forecast_FinancialStatement OperatingIncome Shift'] #負債比率 feats['Debt ratio'] = liabilities / feats['Result_FinancialStatement NetAssets'] #利益率 Profit_rate = feats['Result_FinancialStatement NetIncome'] / feats['Result_FinancialStatement NetSales'] #利益率増加率 feats['Profit margin increase rate'] = cls.get_Rate_of_increase(Profit_rate) #自己資本比率 feats['equity_ratio'] = feats['Result_FinancialStatement NetAssets'] / feats['Result_FinancialStatement TotalAssets'] #純利益増加率 feats['Net income increase rate'] = cls.get_Rate_of_increase(feats['Result_FinancialStatement NetIncome']) #EPS(1株当たり利益) EPS = feats['Result_FinancialStatement NetIncome'] / feats['IssuedShareEquityQuote IssuedShare'] #PER(株価収益率) PER = price_data['EndOfDayQuote ExchangeOfficialClose'] / EPS #目標株価 feats['Target stock price'] = EPS * PER #ドロップ feats = feats.drop(['EndOfDayQuote RisingAndFallingPrices','Result_FinancialStatement TotalAssets', 'Result_FinancialStatement CashFlowsFromOperatingActivities', 'Forecast_Dividend QuarterlyDividendPerShare','Result_FinancialStatement CashFlowsFromFinancingActivities', 'Forecast_FinancialStatement FiscalYear','Result_Dividend FiscalYear', 'Forecast_FinancialStatement NetIncome', 'Forecast_FinancialStatement OperatingIncome', 'Forecast_FinancialStatement NetSales','Result_FinancialStatement OrdinaryIncome',], axis=1) feats = feats.drop(['EndOfDayQuote ExchangeOfficialClose',], axis=1) # 欠損値処理を行います。 feats = feats.replace([np.inf, -np.inf, np.nan], 0) # 銘柄コードを設定 feats['code'] = code # 生成対象日以降の特徴量に絞る feats = feats.loc[
pd.Timestamp(start_dt)
pandas.Timestamp
""" author : <NAME> (email: <EMAIL>) visit: (https://jfayaz.github.io) ------------------------------ Instructions ------------------------------------- This code downloads the Hazard Curves and Deaggregation information of a given the Site Location provided with other inputs. You may run this code in python IDE: 'Spyder' or any other similar IDE Make sure you have the following python libraries installed: pandas numpy urllib.request string openpyxl xlsxwriter requests json INPUT: The input data must be provided in form of Excel file as per the given 'Input Data.xlsx' file The name of the excel file must be kept as 'Input Data.xlsx' Row 1 of the file must contain the titles as follows: Edition Region Longitude Latitude Period vs30 Return Period The input data must be provided starting from row 2 of the sheet with the required values under each title. More than 1 rows can be provided as the data E.g. the example file 'Input Data.xlsx' contains input for 2 sites Following are the options that can be provided under each title: Edition (USGS edition) : '2008' , '2014' Region : 'COUS', 'WUS', 'CEUS' ; {WUS: Western US, CEUS: Central Eastern US} Longitude : Longitude of the Site Latitude : Latitude of the Site Period : First Mode Period of the Structure (sec) (Downloads PGA if Period = 0) Note: Closest results to the available USGS periods will be provided. USGS has results only for PGA, SA @ 0.2 sec, SA @ 1.0 sec, SA @ 2 sec vs30 (Shear-Wave Velocity) : Shear wave velocity at 30 meters at the site (m/s) Note: Closest results to the available USGS vs30s will be provided. USGS has results only for '180', '259', '360', '537', '760', '1150' ; {in m/s , restricted to only these values} Return Period (Hazard) : Return Period Hazard (in years) Note: Closest results to the available USGS Hazard Levels will be provided. USGS has results only for '475', '975', '2475' OUTPUT: The output will be provided in a saperate Excel file 'Output Data.xlsx' for each input The file will contain 2 sheets: 1) 'Hazard Curves' sheet will contain information about the Hazard Curves at 0.2 sec, 1 sec and 2 secs The output will have titles: Acceleration (g) lambda PGA lambda Sa at 0.2 sec lambda Sa at 1 sec lambda Sa at 2 sec 2) 'Deaggregation' sheet will contain information about the deaggregation of the site at given imt level The output will have two saparate tables showing the deaggregation of faults from 'Gutenberg-Richter (gr)' and 'Characteristic (ch)' branches of the USGS logic tree. They both must be added weightedly to attain total deaggregation Each table will have titles: source r m ε longitude latitude azimuth % contribution Note: If a USGS branch other than 'afault' and 'bfault' is used in deaggregation, the results wont be provided for now! You are welcome to make the additions to the code to make it more exhaustive %%%%% ========================================================================================================================================================================= %%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% """ ##### ================== INPUTS ================== ##### Plot_Hazard_Curves = 'Yes' ##### ============ END OF USER INPUTS ============ ##### ######################################################### ###%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%##### ## Importing Libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import warnings import matplotlib.cbook warnings.filterwarnings("ignore",category=matplotlib.cbook.mplDeprecation) warnings.filterwarnings('error') import warnings warnings.simplefilter('once')#"error", "ignore", "always", "default", "module" import process_hazard as haz import process_deag as deag # Reading given data data = pd.read_excel('Input Data.xlsx', converters={'Edition':str,'Region':str,'imt':str},engine="openpyxl") data = data.dropna() print('\n\n'+str(len(data))+' sites identified in the input excel file.') sfmt = '{Edition}/{Region}/{Longitude}/{Latitude}/{imt}/{vs30}/{Return Period}'.format sfmt_2 = 'edition={Edition}&region={Region}&longitude={Longitude}&latitude={Latitude}&imt={imt}&vs30={vs30}&returnperiod={Return Period}'.format imt_list = ['PGA','SA0P1', 'SA0P2','SA0P5', 'SA0P75', 'SA1P0','SA2P0','SA3P0','SA4P0','SA5P0'] DF_Cols = ['λ_PGA', 'λ_Sa(T=0.1s)', 'λ_Sa(T=0.2s)','λ_Sa(T=0.5s)','λ_Sa(T=0.75s)','λ_Sa(T=1s)','λ_Sa(T=2s)','λ_Sa(T=3s)','λ_Sa(T=4s)','λ_Sa(T=5s)'] USGS_Sa_T = pd.DataFrame(columns=['T','imt']) USGS_Sa_T['T'] = np.array([0, 0.10001, 0.20002, 0.50001, 0.750001, 1.0002, 2.0001, 3.0002, 4.0002, 5.0002]) USGS_Sa_T['imt'] = imt_list USGS_RP = np.array([475,975,2475]) USGS_Vs30 = np.array([180.0001,259.0001,360.0001,537.0001,760.0001,1150.0001]) df = pd.DataFrame(columns=['Edition','Region','Longitude','Latitude','imt','vs30','Return Period']) df['Edition'] = data['Edition'].apply(lambda x: 'E'+str(x)) df['Longitude'] = data['Longitude'] df['Latitude'] = data['Latitude'] diff_periods = data['Period'].apply(lambda x: abs(x-np.array(USGS_Sa_T['T']))) diff_vs30 = data['vs30'].apply(lambda x: abs(x-USGS_Vs30)) diff_hazards = data['Return Period'].apply(lambda x: abs(x-USGS_RP)) df['Return Period'] = USGS_RP[diff_hazards.apply(lambda x: np.argmin(x))] df['vs30'] = USGS_Vs30[diff_vs30.apply(lambda x: np.argmin(x))] df['Region'] = data['Region'] Plot_Hazard_Curves = 'No' Deag_data_avaliable = 'No' for i in range(0,len(diff_periods)): df.loc[i,'imt'] = USGS_Sa_T['imt'][np.argmin(diff_periods[i])] #df['imt'].loc[i] = USGS_Sa_T['imt'][np.argmin(diff_periods[i])] print('\n\n') for ii in range(0,len(df)): ### ---------- HAZARD CURVES ---------- ### print('\n\nChecking Hazard urls for Site Input {}...\n'.format(np.round(ii+1,0))) lm=df[ii:ii+1].reset_index(drop=True) Plot_Hazard_Curves,DF_HAZARD_CURVES = haz.url_haz_process(df,lm,imt_list,sfmt,sfmt_2,DF_Cols) # Plotting Hazard Curves if Plot_Hazard_Curves == 'Yes': print('Downloading Hazard Curves for Site Input {}...\n'.format(np.round(ii+1,0))) writer = pd.ExcelWriter('OutputData_Site'+str(ii+1)+'.xlsx',engine='xlsxwriter') DF_HAZARD_CURVES.to_excel(writer,'Hazard Curves',startrow=4) worksheet = writer.sheets['Hazard Curves'] worksheet.write('A1', 'Latitude') worksheet.write('B1', lm['Latitude'][0]) worksheet.write('A2', 'Longitude') worksheet.write('B2', lm['Longitude'][0]) worksheet.write('A3', 'Vs30 (m/s)') worksheet.write('B3', lm['vs30'][0]) def plot_hazard(DF_HAZARD_CURVES,PlotTitle,lambdaType): axes.plot(DF_HAZARD_CURVES['Acceleration (g)'], DF_HAZARD_CURVES[lambdaType] , '.-',lw=6,markersize=8) axes.set_xlabel('Acceleration (g)',fontsize=30,fontweight='bold') axes.set_ylabel('Rate of Exceedance',fontsize=30,fontweight='bold') axes.set_yscale('log') axes.set_title(PlotTitle,fontsize=40,fontweight='bold') axes.tick_params(labelsize= 25) axes.grid(True) axes.set_xlim(0, np.ceil(max(DF_HAZARD_CURVES['Acceleration (g)']))) axes.set_ylim(1/10**10,1) axes.axhline(linewidth=10,color='black') axes.axvline(linewidth=10,color='black') #axes.hold(True) #axes.legend(fontsize =30) fig = plt.figure(ii+1,figsize=(18,12)) axes = fig.add_subplot(1, 1, 1) for k in range(1,len(DF_HAZARD_CURVES.columns)): plot_hazard(DF_HAZARD_CURVES,'Hazard Curve for Site ' + str(ii+1), DF_HAZARD_CURVES.columns[k]) savefigtext="./HazardCurves_Site"+str(ii+1)+".jpeg" fig.savefig(savefigtext) ### ---------- DEAGGREGATION ---------- ### print('\n\nChecking Deaggregation urls for Site Input {}...\n'.format(np.round(ii+1,0))) lm=df[ii:ii+1].reset_index(drop=True) # # Extracting sources from response Deag_data_avaliable,data = deag.url_deag_process(lm,sfmt,sfmt_2) if Plot_Hazard_Curves == 'Yes' and Deag_data_avaliable == 'Yes': print('Downloading Deaggregation Results for Site Input {}...\n'.format(np.round(ii+1,0))) # json data starts with response->data->sources lx = pd.DataFrame.from_dict(data['response'][0]['data'][0]['sources']) # Removing if contains pointsourcefinite lx = lx[~lx['name'].str.contains("PointSourceFinite")] epsilon = lx.columns[10] # Rearrange columns lx = lx[['name','source','r','m',epsilon,'longitude','latitude','azimuth','contribution']] # Deleting source column del lx['source'] lx = lx.reset_index(drop=True) # Renaming column to source lx = lx.rename(columns={'name':'source'}) #Getting indexes of faults Fault_Name_idx = np.asarray(lx[lx.isnull().any(axis=1)].index) Fault_Name_idx = np.append(Fault_Name_idx,[len(lx)],axis=0) position1 = 0 position2 = 2 #Fault_Types = Fault_Types.dropna() Fault_Types = pd.Series(dtype=
pd.StringDtype()
pandas.StringDtype
import numpy as np import pytest from pandas import DataFrame, Index, MultiIndex, Series, concat, date_range import pandas._testing as tm import pandas.core.common as com @pytest.fixture def four_level_index_dataframe(): arr = np.array( [ [-0.5109, -2.3358, -0.4645, 0.05076, 0.364], [0.4473, 1.4152, 0.2834, 1.00661, 0.1744], [-0.6662, -0.5243, -0.358, 0.89145, 2.5838], ] ) index = MultiIndex( levels=[["a", "x"], ["b", "q"], [10.0032, 20.0, 30.0], [3, 4, 5]], codes=[[0, 0, 1], [0, 1, 1], [0, 1, 2], [2, 1, 0]], names=["one", "two", "three", "four"], ) return DataFrame(arr, index=index, columns=list("ABCDE")) @pytest.mark.parametrize( "key, level, exp_arr, exp_index", [ ("a", "lvl0", lambda x: x[:, 0:2], Index(["bar", "foo"], name="lvl1")), ("foo", "lvl1", lambda x: x[:, 1:2], Index(["a"], name="lvl0")), ], ) def test_xs_named_levels_axis_eq_1(key, level, exp_arr, exp_index): # see gh-2903 arr = np.random.randn(4, 4) index = MultiIndex( levels=[["a", "b"], ["bar", "foo", "hello", "world"]], codes=[[0, 0, 1, 1], [0, 1, 2, 3]], names=["lvl0", "lvl1"], ) df = DataFrame(arr, columns=index) result = df.xs(key, level=level, axis=1) expected = DataFrame(exp_arr(arr), columns=exp_index) tm.assert_frame_equal(result, expected) def test_xs_values(multiindex_dataframe_random_data): df = multiindex_dataframe_random_data result = df.xs(("bar", "two")).values expected = df.values[4] tm.assert_almost_equal(result, expected) def test_xs_loc_equality(multiindex_dataframe_random_data): df = multiindex_dataframe_random_data result = df.xs(("bar", "two")) expected = df.loc[("bar", "two")] tm.assert_series_equal(result, expected) def test_xs_missing_values_in_index(): # see gh-6574 # missing values in returned index should be preserved acc = [ ("a", "abcde", 1), ("b", "bbcde", 2), ("y", "yzcde", 25), ("z", "xbcde", 24), ("z", None, 26), ("z", "zbcde", 25), ("z", "ybcde", 26), ] df = DataFrame(acc, columns=["a1", "a2", "cnt"]).set_index(["a1", "a2"]) expected = DataFrame( {"cnt": [24, 26, 25, 26]}, index=Index(["xbcde", np.nan, "zbcde", "ybcde"], name="a2"), ) result = df.xs("z", level="a1") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("key, level", [("one", "second"), (["one"], ["second"])]) def test_xs_with_duplicates(key, level, multiindex_dataframe_random_data): # see gh-13719 frame = multiindex_dataframe_random_data df = concat([frame] * 2) assert df.index.is_unique is False expected = concat([frame.xs("one", level="second")] * 2) result = df.xs(key, level=level) tm.assert_frame_equal(result, expected) def test_xs_level(multiindex_dataframe_random_data): df = multiindex_dataframe_random_data result = df.xs("two", level="second") expected = df[df.index.get_level_values(1) == "two"] expected.index = Index(["foo", "bar", "baz", "qux"], name="first") tm.assert_frame_equal(result, expected) def test_xs_level_eq_2(): arr = np.random.randn(3, 5) index = MultiIndex( levels=[["a", "p", "x"], ["b", "q", "y"], ["c", "r", "z"]], codes=[[2, 0, 1], [2, 0, 1], [2, 0, 1]], ) df = DataFrame(arr, index=index) expected = DataFrame(arr[1:2], index=[["a"], ["b"]]) result = df.xs("c", level=2) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "indexer", [ lambda df: df.xs(("a", 4), level=["one", "four"]), lambda df: df.xs("a").xs(4, level="four"), ], ) def test_xs_level_multiple(indexer, four_level_index_dataframe): df = four_level_index_dataframe expected_values = [[0.4473, 1.4152, 0.2834, 1.00661, 0.1744]] expected_index = MultiIndex( levels=[["q"], [20.0]], codes=[[0], [0]], names=["two", "three"] ) expected = DataFrame(expected_values, index=expected_index, columns=list("ABCDE")) result = indexer(df) tm.assert_frame_equal(result, expected) def test_xs_setting_with_copy_error(multiindex_dataframe_random_data): # this is a copy in 0.14 df = multiindex_dataframe_random_data result = df.xs("two", level="second") # setting this will give a SettingWithCopyError # as we are trying to write a view msg = "A value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): result[:] = 10 def test_xs_setting_with_copy_error_multiple(four_level_index_dataframe): # this is a copy in 0.14 df = four_level_index_dataframe result = df.xs(("a", 4), level=["one", "four"]) # setting this will give a SettingWithCopyError # as we are trying to write a view msg = "A value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): result[:] = 10 def test_xs_integer_key(): # see gh-2107 dates = range(20111201, 20111205) ids = list("abcde") index = MultiIndex.from_product([dates, ids], names=["date", "secid"]) df = DataFrame(np.random.randn(len(index), 3), index, ["X", "Y", "Z"]) result = df.xs(20111201, level="date") expected = df.loc[20111201, :] tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "indexer", [lambda df: df.xs("a", level=0), lambda df: df.xs("a")] ) def test_xs_level0(indexer, four_level_index_dataframe): df = four_level_index_dataframe expected_values = [ [-0.5109, -2.3358, -0.4645, 0.05076, 0.364], [0.4473, 1.4152, 0.2834, 1.00661, 0.1744], ] expected_index = MultiIndex( levels=[["b", "q"], [10.0032, 20.0], [4, 5]], codes=[[0, 1], [0, 1], [1, 0]], names=["two", "three", "four"], ) expected = DataFrame(expected_values, index=expected_index, columns=list("ABCDE")) result = indexer(df)
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
import numpy as np import torch import torch.nn as nn from src.models.loss import RMSELoss, RMSLELoss from sklearn.metrics import r2_score import pandas as pd ######################### # EARLY STOPPING ######################### class EarlyStopping: """Early stops the training if validation loss doesn't improve after a given patience.""" def __init__( self, patience=7, verbose=False, delta=0.005, path="checkpoint.pt", trace_func=print, early_stop_delay=20, ): """ Args: patience (int): How long to wait after last time validation loss improved. Default: 7 verbose (bool): If True, prints a message for each validation loss improvement. Default: False delta (float): Minimum change in the monitored quantity to qualify as an improvement. Default: 0 path (str): Path for the checkpoint to be saved to. Default: 'checkpoint.pt' trace_func (function): trace print function. Default: print From https://github.com/Bjarten/early-stopping-pytorch License: MIT """ self.patience = patience self.verbose = verbose self.early_stop_delay = early_stop_delay self.counter = 0 self.epoch = 0 self.best_score = None self.early_stop = False self.val_loss_min = np.Inf self.delta = delta self.path = path self.trace_func = trace_func def __call__(self, val_loss, model): score = -val_loss # print(type(score), 'SCORE ####,', score) if self.epoch < self.early_stop_delay: self.epoch += 1 pass else: if self.best_score is None: self.best_score = score self.save_checkpoint(val_loss, model) elif score < self.best_score + self.delta: self.counter += 1 if self.verbose: self.trace_func( f"EarlyStopping counter: {self.counter} out of {self.patience}" ) if self.counter >= self.patience: self.early_stop = True elif torch.isnan(score).item(): self.counter += 1 if self.counter >= self.patience: self.early_stop = True # print('########## IS NAN #######') else: self.best_score = score self.save_checkpoint(val_loss, model) self.counter = 0 self.epoch += 1 def save_checkpoint(self, val_loss, model): """Saves model when validation loss decrease.""" if self.verbose: self.trace_func( f"Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ..." ) torch.save(model, self.path) # torch.save(model.state_dict(), self.path) self.val_loss_min = val_loss ######################### # TESTING ######################### def test(net, x_test, device, batch_size=100, ): with torch.no_grad(): y_hats = [] for i in range(0, len(x_test), batch_size): batch_x = x_test[i:i+batch_size].to(device) outputs = net(batch_x) y_hats.append(np.array(outputs.cpu()).reshape(-1,1)) return torch.tensor(np.concatenate(y_hats)) def calc_r2_avg(y_hats, y_val, index_sorted, window_size): y_hats_rolling_avg = np.convolve(np.array(y_hats[index_sorted]).reshape(-1), np.ones(window_size), 'valid') / window_size r2_val_avg = r2_score(np.array(y_val)[index_sorted][window_size-1:], y_hats_rolling_avg) return r2_val_avg, y_hats_rolling_avg # function to create metrics from the test set on an already trained model def model_metrics_test(net, model_path, x_test, y_test, device, window_size=12): net.eval() criterion_mae = nn.L1Loss() criterion_rmse = RMSELoss() criterion_rmsle = RMSLELoss() results_dict = {} try: y_hats = test(net, x_test, device, 100) index_sorted = np.array(np.argsort(y_test, 0).reshape(-1)) r2_test = r2_score(y_test, y_hats) results_dict['r2_test'] = r2_test r2_test_avg, y_hats_rolling_avg = calc_r2_avg(y_hats, y_test, index_sorted, window_size) results_dict['r2_test_avg'] = r2_test_avg loss_mae_test = criterion_mae(y_hats, y_test) results_dict['loss_mae_test'] = loss_mae_test.item() loss_rmse_test = criterion_rmse(y_hats, y_test) results_dict['loss_rmse_test'] = loss_rmse_test.item() loss_rmsle_test = criterion_rmsle(y_hats, y_test) results_dict['loss_rmsle_test'] = loss_rmsle_test.item() except: results_dict['r2_test'] = 99999 results_dict['r2_test_avg'] = 99999 results_dict['loss_mae_test'] = 99999 results_dict['loss_rmse_test'] = 99999 results_dict['loss_rmsle_test'] = 99999 return results_dict def test_metrics_to_results_df(model_folder, df_results, x_test, y_test, ): '''Function that takes the results datafram and appends the results from the test data to it. Parameters =========== model_folder : pathlib position Folder holding all the saved checkpoint files of saved models ''' # select device to run neural net on if torch.cuda.is_available(): device = torch.device("cuda:0") print("Running on GPU") else: device = torch.device("cpu") print("Running on CPU") df_temp =
pd.DataFrame()
pandas.DataFrame
from collections import OrderedDict from datetime import datetime, timedelta import numpy as np import numpy.ma as ma import pytest from pandas._libs import iNaT, lib from pandas.core.dtypes.common import is_categorical_dtype, is_datetime64tz_dtype from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, IntervalDtype, PeriodDtype, ) import pandas as pd from pandas import ( Categorical, DataFrame, Index, Interval, IntervalIndex, MultiIndex, NaT, Period, Series, Timestamp, date_range, isna, period_range, timedelta_range, ) import pandas._testing as tm from pandas.core.arrays import IntervalArray, period_array class TestSeriesConstructors: @pytest.mark.parametrize( "constructor,check_index_type", [ # NOTE: some overlap with test_constructor_empty but that test does not # test for None or an empty generator. # test_constructor_pass_none tests None but only with the index also # passed. (lambda: Series(), True), (lambda: Series(None), True), (lambda: Series({}), True), (lambda: Series(()), False), # creates a RangeIndex (lambda: Series([]), False), # creates a RangeIndex (lambda: Series((_ for _ in [])), False), # creates a RangeIndex (lambda: Series(data=None), True), (lambda: Series(data={}), True), (lambda: Series(data=()), False), # creates a RangeIndex (lambda: Series(data=[]), False), # creates a RangeIndex (lambda: Series(data=(_ for _ in [])), False), # creates a RangeIndex ], ) def test_empty_constructor(self, constructor, check_index_type): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): expected = Series() result = constructor() assert len(result.index) == 0 tm.assert_series_equal(result, expected, check_index_type=check_index_type) def test_invalid_dtype(self): # GH15520 msg = "not understood" invalid_list = [pd.Timestamp, "pd.Timestamp", list] for dtype in invalid_list: with pytest.raises(TypeError, match=msg): Series([], name="time", dtype=dtype) def test_invalid_compound_dtype(self): # GH#13296 c_dtype = np.dtype([("a", "i8"), ("b", "f4")]) cdt_arr = np.array([(1, 0.4), (256, -13)], dtype=c_dtype) with pytest.raises(ValueError, match="Use DataFrame instead"): Series(cdt_arr, index=["A", "B"]) def test_scalar_conversion(self): # Pass in scalar is disabled scalar = Series(0.5) assert not isinstance(scalar, float) # Coercion assert float(Series([1.0])) == 1.0 assert int(Series([1.0])) == 1 def test_constructor(self, datetime_series): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty_series = Series() assert datetime_series.index.is_all_dates # Pass in Series derived = Series(datetime_series) assert derived.index.is_all_dates assert tm.equalContents(derived.index, datetime_series.index) # Ensure new index is not created assert id(datetime_series.index) == id(derived.index) # Mixed type Series mixed = Series(["hello", np.NaN], index=[0, 1]) assert mixed.dtype == np.object_ assert mixed[1] is np.NaN assert not empty_series.index.is_all_dates with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): assert not Series().index.is_all_dates # exception raised is of type Exception with pytest.raises(Exception, match="Data must be 1-dimensional"): Series(np.random.randn(3, 3), index=np.arange(3)) mixed.name = "Series" rs = Series(mixed).name xp = "Series" assert rs == xp # raise on MultiIndex GH4187 m = MultiIndex.from_arrays([[1, 2], [3, 4]]) msg = "initializing a Series from a MultiIndex is not supported" with pytest.raises(NotImplementedError, match=msg): Series(m) @pytest.mark.parametrize("input_class", [list, dict, OrderedDict]) def test_constructor_empty(self, input_class): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty = Series() empty2 = Series(input_class()) # these are Index() and RangeIndex() which don't compare type equal # but are just .equals tm.assert_series_equal(empty, empty2, check_index_type=False) # With explicit dtype: empty = Series(dtype="float64") empty2 = Series(input_class(), dtype="float64") tm.assert_series_equal(empty, empty2, check_index_type=False) # GH 18515 : with dtype=category: empty = Series(dtype="category") empty2 = Series(input_class(), dtype="category") tm.assert_series_equal(empty, empty2, check_index_type=False) if input_class is not list: # With index: with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty = Series(index=range(10)) empty2 = Series(input_class(), index=range(10)) tm.assert_series_equal(empty, empty2) # With index and dtype float64: empty = Series(np.nan, index=range(10)) empty2 = Series(input_class(), index=range(10), dtype="float64") tm.assert_series_equal(empty, empty2) # GH 19853 : with empty string, index and dtype str empty = Series("", dtype=str, index=range(3)) empty2 = Series("", index=range(3)) tm.assert_series_equal(empty, empty2) @pytest.mark.parametrize("input_arg", [np.nan, float("nan")]) def test_constructor_nan(self, input_arg): empty = Series(dtype="float64", index=range(10)) empty2 = Series(input_arg, index=range(10)) tm.assert_series_equal(empty, empty2, check_index_type=False) @pytest.mark.parametrize( "dtype", ["f8", "i8", "M8[ns]", "m8[ns]", "category", "object", "datetime64[ns, UTC]"], ) @pytest.mark.parametrize("index", [None, pd.Index([])]) def test_constructor_dtype_only(self, dtype, index): # GH-20865 result = pd.Series(dtype=dtype, index=index) assert result.dtype == dtype assert len(result) == 0 def test_constructor_no_data_index_order(self): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): result = pd.Series(index=["b", "a", "c"]) assert result.index.tolist() == ["b", "a", "c"] def test_constructor_no_data_string_type(self): # GH 22477 result = pd.Series(index=[1], dtype=str) assert np.isnan(result.iloc[0]) @pytest.mark.parametrize("item", ["entry", "ѐ", 13]) def test_constructor_string_element_string_type(self, item): # GH 22477 result = pd.Series(item, index=[1], dtype=str) assert result.iloc[0] == str(item) def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 ser = Series(["x", None], dtype=string_dtype) result = ser.isna() expected = Series([False, True]) tm.assert_series_equal(result, expected) assert ser.iloc[1] is None ser = Series(["x", np.nan], dtype=string_dtype) assert np.isnan(ser.iloc[1]) def test_constructor_series(self): index1 = ["d", "b", "a", "c"] index2 = sorted(index1) s1 = Series([4, 7, -5, 3], index=index1) s2 = Series(s1, index=index2) tm.assert_series_equal(s2, s1.sort_index()) def test_constructor_iterable(self): # GH 21987 class Iter: def __iter__(self): for i in range(10): yield i expected = Series(list(range(10)), dtype="int64") result = Series(Iter(), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_sequence(self): # GH 21987 expected = Series(list(range(10)), dtype="int64") result = Series(range(10), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_single_str(self): # GH 21987 expected = Series(["abc"]) result = Series("abc") tm.assert_series_equal(result, expected) def test_constructor_list_like(self): # make sure that we are coercing different # list-likes to standard dtypes and not # platform specific expected = Series([1, 2, 3], dtype="int64") for obj in [[1, 2, 3], (1, 2, 3), np.array([1, 2, 3], dtype="int64")]: result = Series(obj, index=[0, 1, 2]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["bool", "int32", "int64", "float64"]) def test_constructor_index_dtype(self, dtype): # GH 17088 s = Series(Index([0, 2, 4]), dtype=dtype) assert s.dtype == dtype @pytest.mark.parametrize( "input_vals", [ ([1, 2]), (["1", "2"]), (list(pd.date_range("1/1/2011", periods=2, freq="H"))), (list(
pd.date_range("1/1/2011", periods=2, freq="H", tz="US/Eastern")
pandas.date_range
import glob import pandas as pd from pathlib import Path import os import numpy as np ##################################################### # Original method # ##################################################### def create_dataset_original(data_folder): path = Path(data_folder) df_cancer = pd.concat( [pd.read_csv(f, sep='\t', header=None, index_col=0) for f in glob.glob(rf'{path}/cancer/*.breakage')], axis=1 ).dropna() df_control = pd.concat( [pd.read_csv(f, sep='\t', header=None, index_col=0) for f in glob.glob(rf'{path}/control/*.breakage')], axis=1 ).dropna() df = pd.concat([df_cancer, df_control], axis=1).dropna() # df.columns = [i for i in range(df.shape[1])] dataframes = [df, df_cancer, df_control] return dataframes ##################################################### # Custom methods # ##################################################### def create_dataset_all_cpgs(data_folder): path = Path(data_folder) df_cancer = pd.concat( [pd.read_csv(f, sep='\t', header=None, index_col=0) for f in glob.glob(rf'{path}/cancer/*.breakage')], axis=1 ) df_control = pd.concat( [pd.read_csv(f, sep='\t', header=None, index_col=0) for f in glob.glob(rf'{path}/control/*.breakage')], axis=1 ) df = pd.concat([df_cancer, df_control], axis=1) dataframes = [df, df_cancer, df_control] return dataframes def filter_nans(dataframe): df = dataframe nans = df.isnull().sum(axis=1).tolist() index = [index for index, value in enumerate(nans) if value <= int(dataframe.shape[1]*0.3)] filtered_df = df.iloc[index] return filtered_df def create_dataset_filtered(data_folder): path = Path(data_folder) df_cancer = pd.concat( [pd.read_csv(f, sep='\t', header=None, index_col=0) for f in glob.glob(rf'{path}/cancer/*.breakage')], axis=1 ) df_control = pd.concat( [pd.read_csv(f, sep='\t', header=None, index_col=0) for f in glob.glob(rf'{path}/control/*.breakage')], axis=1 ) df_cancer_filtered = filter_nans(df_cancer) df_control_filtered = filter_nans(df_control) df_filtered =
pd.concat([df_cancer_filtered, df_control_filtered], axis=1)
pandas.concat
from lifelines.fitters.coxph_fitter import CoxPHFitter from lifelines.utils import _get_index, k_fold_cross_validation __author__ = "KOLANICH" __license__ = "MIT" __copyright__ = """MIT License Copyright (c) 2017 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import typing import numpy as np import pandas from AutoXGBoost import AutoXGBoost from Chassis import Chassis class XGBoostCoxPHFitter(CoxPHFitter): """ This class implements fitting Cox's proportional hazard model using XGBoost `cox:survival` objective contributed by @slundberg. This module uses some libraries like Chassis and AutoXGBoost""" def __init__(self, spec, hyperparams=None, alpha=0.95, durationColPostfix="_prep", prefix=None): if not (0.0 < alpha <= 1.0): raise ValueError("alpha parameter must be between 0 and 1.") self.alpha = alpha self.initialSpec = spec self.hyperparams = hyperparams self._defaultDurationCol = None self._SHAPExplaination = None # a workaround of missing argument self.explainations = None self.strata = None # to make CoxPHFitter happy self.prefix = prefix for k, v in spec.items(): if v == "survival": self._defaultDurationCol = k break def prepareFitting(self, df, duration_col=None, event_col=None, weights_col=None): self.spec = type(self.initialSpec)(self.initialSpec) df = df.copy() if duration_col: #df = df.sort_values(by=duration_col) pass duration_col_transformed = None #print("\x1b[31m", "event_col", event_col, "\x1b[0m") if event_col is not None: #print("\x1b[31m", "duration_col", duration_col, "\x1b[0m") if duration_col is None: if self._defaultDurationCol: duration_col_transformed = self._defaultDurationCol else: if self.spec[duration_col] == "survival": # the shit is already supplied transformed duration_col_transformed = duration_col elif self.spec[duration_col] in {"numerical", "stop"}: duration_col_transformed = duration_col + "_prep" #print("\x1b[31m", "duration_col_transformed not in df.columns", duration_col_transformed not in df.columns, "\x1b[0m") if duration_col_transformed not in df.columns: df.loc[:, duration_col_transformed] = df.loc[:, duration_col] * (df.loc[:, event_col] * 2 - 1) #print("\x1b[31m", "df.loc[:, duration_col_transformed]", df.loc[:, duration_col_transformed], "\x1b[0m") self.spec[duration_col] = "stop" self.spec[event_col] = "stop" else: assert duration_col is not None duration_col_transformed = duration_col self.duration_col_transformed = duration_col_transformed self.spec[self.duration_col_transformed] = "survival" if weights_col: self.spec[weights_col] = "weight" #print(df) return AutoXGBoost(self.spec, df, prefix=self.prefix) def optimizeHyperparams(self, df, duration_col=None, event_col=None, weights_col=None, show_progress=False, autoSave: bool = True, folds: int = 10, iters: int = 1000, jobs: int = None, optimizer: "UniOpt.core.Optimizer" = None, force: typing.Optional[bool] = None, *args, **kwargs): print(df) self.axg = self.prepareFitting(df, duration_col=duration_col, event_col=event_col, weights_col=weights_col) self.axg.optimizeHyperparams(columns={self.duration_col_transformed}, autoSave=autoSave, folds=folds, iters=iters, jobs=jobs, optimizer=optimizer, force=force, *args, **kwargs) def _preprocess_dataframe(self, duration_col, event_col, weights_col): E = self.axg.select(columns={event_col})[event_col] T = self.axg.select(columns={duration_col})[duration_col] X = self.axg.prepareCovariates(self.duration_col_transformed) W = self.axg.weights if weights_col is not None else pandas.Series(np.ones((len(X),)), index=X.index, name="$aggregateWeight") return X, T, E, W, None, None def fit(self, df, duration_col=None, event_col=None, show_progress=True, initial_point=None, weights_col=None, saveLoadModel=None, format="binary"): """ Fit the XGBoost Cox Propertional Hazard model to a dataset. Parameters ---------- df: DataFrame a Pandas DataFrame with necessary columns `duration_col` and `event_col` (see below), covariates columns, and special columns (weights, strata). `duration_col` refers to the lifetimes of the subjects. `event_col` refers to whether the 'death' events was observed: 1 if observed, 0 else (censored). duration_col: string the name of the column in DataFrame that contains the subjects' lifetimes. event_col: string, optional the name of thecolumn in DataFrame that contains the subjects' death observation. If left as None, assume all individuals are uncensored. weights_col: string, optional an optional column in the DataFrame, df, that denotes the weight per subject. This column is expelled and not used as a covariate, but as a weight in the final regression. Default weight is 1. This can be used for case-weights. For example, a weight of 2 means there were two subjects with identical observations. This can be used for sampling weights. In that case, use `robust=True` to get more accurate standard errors. show_progress: boolean, optional (default=False) since the fitter is iterative, show convergence diagnostics. Useful if convergence is failing. initial_point: (d,) numpy array, optional initialize the starting point of the iterative algorithm. Default is the zero vector. Returns ------- self: CoxPHFitter self with additional new properties: ``print_summary``, ``hazards_``, ``confidence_intervals_``, ``baseline_survival_``, etc.""" self.axg = self.prepareFitting(df, duration_col=duration_col, event_col=event_col, weights_col=weights_col) assert self.duration_col_transformed if self.hyperparams is not None: self.axg.bestHyperparams = self.hyperparams else: self.axg.loadHyperparams() if saveLoadModel is True: self.axg.loadModel(cn=self.duration_col_transformed, format=format) else: #print(df[self.duration_col_transformed]) self.axg.trainModels((self.duration_col_transformed,)) if saveLoadModel is False: self.axg.models[self.duration_col_transformed].save(format=format) #self.confidence_intervals_ = self._compute_confidence_intervals() X, T, E, W, original_index, _clusters = self._preprocess_dataframe(duration_col, event_col, weights_col) self._predicted_partial_hazards_ = ( self.predict_partial_hazard(X) .rename(columns={0: "P"}) .assign(T=T, E=E, W=W) .set_index(X.index) ) self.baseline_hazard_ = self._compute_baseline_hazards() self.baseline_cumulative_hazard_ = self._compute_baseline_cumulative_hazard() #self.baseline_survival_ = self._compute_baseline_survival() #self.score_ = concordance_index(self.durations, -self.baseline_survival_, self.event_observed) return self def _SHAPExplainationMissingArgumentWorkaround(self, SHAPInteractions): if SHAPInteractions is not None: assert self._SHAPExplaination is None self._SHAPExplaination = SHAPInteractions def predict_partial_hazard(self, X, SHAPInteractions=None): self._SHAPExplainationMissingArgumentWorkaround(SHAPInteractions) return super().predict_partial_hazard(X) def predict_log_hazard_relative_to_mean(self, X, SHAPInteractions=None): self._SHAPExplainationMissingArgumentWorkaround(SHAPInteractions) return super().predict_log_hazard_relative_to_mean(X) def predict_expectation(self, X, SHAPInteractions=None): """lifelines-expected function to predict expectation""" self._SHAPExplainationMissingArgumentWorkaround(SHAPInteractions) return super().predict_expectation(X) def predictExpectation(self, X, SHAPInteractions=None): """our function to predict expectation""" res = self.predict_expectation(X, SHAPInteractions)[0] res.name = "predicted_survival" return pandas.DataFrame(res) def crossvalidate(self, pds, folds: int): return k_fold_cross_validation(self, pds, duration_col="duration_worked", event_col="failed", k=folds) def predict_log_partial_hazard(self, X, SHAPInteractions=None): if not isinstance(X, Chassis): dmat = AutoXGBoost(self.spec, X) else: dmat = X shouldDelete = self.duration_col_transformed not in X #print("\x1b[31m", "shouldDelete", shouldDelete, "\x1b[0m") #print("\x1b[31m", "dmat.pds.loc[:, self.duration_col_transformed]", dmat.pds.loc[:, self.duration_col_transformed], "\x1b[0m") #from traceback import print_stack #print_stack() if SHAPInteractions is not None: assert self._SHAPExplaination is None else: SHAPInteractions = self._SHAPExplaination self._SHAPExplaination = None res = self.axg.predict(self.duration_col_transformed, dmat, returnPandas=True, SHAPInteractions=SHAPInteractions) if SHAPInteractions is None: self.explainations = None else: res, self.explainations = res if shouldDelete and self.duration_col_transformed in X: del X[self.duration_col_transformed] res.name = 0 fRes =
pandas.DataFrame(res)
pandas.DataFrame
from utilities import services from utilities import graph_helpers import pandas as pd from matplotlib import pyplot as plt import datetime from datetime import timezone import json #TODO: #Add button to switch between graphs or split into separate figs #Add total numbers on graph as key #Extend to add year totals try: services.get_environmental_var('StarlingPersonalAccessToken') except: raise('Get personal access token failed') items_to_ignore = json.loads(services.get_config_var('feed_items_to_ignore')) items_to_divide = json.loads(services.get_config_var('feed_items_to_divide')) def get_transactions() -> list: today = datetime.datetime.now().replace(microsecond=0).isoformat() + 'Z' transactions = services.get_transactions(services.get_config_var('transactions_start_date'), today) return transactions def get_outbound_transactions(transactions: list) -> pd.DataFrame: df = pd.DataFrame(transactions) df['transactionTime'] =
pd.to_datetime(df['transactionTime'])
pandas.to_datetime
""" Writer for amber """ import time import pandas as pd import math import re import numpy as np from collections import Counter # Python 2/3 compat try: from StringIO import StringIO except ImportError: from io import StringIO import eex import logging # AMBER local imports from . import amber_metadata as amd logger = logging.getLogger(__name__) def _write_1d(file_handle, data, ncols, fmt): data = data.ravel() remainder_size = data.size % ncols if data.size == 0: file_handle.write("\n".encode()) elif remainder_size == 0: np.savetxt(file_handle, data.reshape(-1, ncols), fmt=fmt, delimiter="") else: rem_data = data[-remainder_size:].reshape(1, -1) data = data[:-remainder_size].reshape(-1, ncols) np.savetxt(file_handle, data, fmt=fmt, delimiter="") np.savetxt(file_handle, rem_data, fmt=fmt, delimiter="") # print(data.shape, rem_data.shape) # Write data to file file_handle.flush() def _write_amber_data(file_handle, data, category): fmt_string = amd.data_labels[category][1] fmt_data = amd.parse_format(fmt_string) file_handle.write(("%%FLAG %s\n" % category).encode()) file_handle.write((fmt_string + "\n").encode()) ncols = fmt_data[0] fmt = amd.build_format(fmt_data) _write_1d(file_handle, np.array(data), ncols, fmt) def _check_dl_compatibility(dl): """ This function examines a datalayer to determine if it is compatible with Amber. Conversions between functional forms and pairwise interaction mixing are performed (if possible). """ # Loop over force field information - check functional form compatibility for k, v in amd.forcefield_parameters.items(): if k != "nonbond": terms = dl.list_term_parameters(v["order"]) for j in terms.values(): if j[0] != v["form"]: # Will need to insert check to see if these can be easily converted (ex OPLS dihedral <-> charmmfsw) raise TypeError("Functional form %s stored in datalayer is not compatible with Amber.\n" %(j[0]) ) else: # handle non bonds here pass stored_properties = dl.list_atom_properties() required_properties = list(amd.atom_property_names.values()) diff = np.setdiff1d(required_properties, stored_properties) natoms = dl.get_atom_count() index = np.arange(1, natoms + 1) # Build and curate the data df =
pd.DataFrame({'atom_index': index})
pandas.DataFrame
import numpy as np import pandas as pd import pytest from etna.datasets.tsdataset import TSDataset from etna.models.linear import ElasticMultiSegmentModel from etna.models.linear import ElasticPerSegmentModel from etna.models.linear import LinearMultiSegmentModel from etna.models.linear import LinearPerSegmentModel from etna.transforms.datetime_flags import DateFlagsTransform from etna.transforms.lags import LagTransform @pytest.fixture def ts_with_categoricals(random_seed) -> TSDataset: periods = 100 df1 = pd.DataFrame({"timestamp": pd.date_range("2020-01-01", periods=periods)}) df1["segment"] = "segment_1" df1["target"] = np.random.uniform(10, 20, size=periods) df1["cat_feature"] = "x" df2 = pd.DataFrame({"timestamp": pd.date_range("2020-01-01", periods=periods)}) df2["segment"] = "segment_2" df2["target"] = np.random.uniform(-15, 5, size=periods) df1["cat_feature"] = "y" df = pd.concat([df1, df2]).reset_index(drop=True) df = TSDataset.to_dataset(df) ts = TSDataset(df, freq="D") return ts def linear_segments_by_parameters(alpha_values, intercept_values): dates =
pd.date_range(start="2020-02-01", freq="D", periods=210)
pandas.date_range
""" This module plots test results. """ import pandas as pd from matplotlib.backends.backend_pdf import PdfPages import seaborn as sns import matplotlib.pyplot as plt from sklearn.metrics import log_loss import RecessionPredictor_paths as path class TestResultPlots: """ The manager class for this module. """ def __init__(self): """ prediction_names: used to re-label chart data """ self.pdf_object = '' self.prediction_names = {'Pred_Recession_within_6mo': 'Within 6 Months', 'Pred_Recession_within_12mo': 'Within 12 Months', 'Pred_Recession_within_24mo': 'Within 24 Months', 'True_Recession': 'Recession'} self.average_model = pd.DataFrame() def calculate_log_loss_weights(self, y_true): """ Calculates weight adjustments for class outputs, such that each class receives the same weight in log loss calculations. y_true: an iterable of class outputs to be weighted. """ log_loss_weights = [] true_output_labels = y_true.unique() desired_weight = 1 / len(true_output_labels) class_weights = {} for label in true_output_labels: training_frequency = (len(y_true[y_true == label]) / len(y_true)) multiplier = desired_weight / training_frequency class_weights[str(label)] = multiplier for sample in y_true: log_loss_weights.append(class_weights[str(sample)]) return(log_loss_weights) def exponential_smoother(self, raw_data, half_life): """ Purpose: performs exponential smoothing on "raw_data". Begins recursion with the first data item (i.e. assumes that data in "raw_data" is listed in chronological order). raw_data: iterable, the data to be smoothed half_life: float, the half-life for the smoother. The smoothing factor (alpha) is calculated as alpha = 1 - exp(ln(0.5) / half_life) """ import math raw_data = list(raw_data) half_life = float(half_life) smoothing_factor = 1 - math.exp(math.log(0.5) / half_life) smoothed_values = [raw_data[0]] for index in range(1, len(raw_data)): previous_smooth_value = smoothed_values[-1] new_unsmooth_value = raw_data[index] new_smooth_value = ((smoothing_factor * new_unsmooth_value) + ((1 - smoothing_factor) * previous_smooth_value)) smoothed_values.append(new_smooth_value) return(smoothed_values) def exponential_conversion(self, dataframe): """ Performs exponential smoothing on specific columns of the dataframe. """ dataframe['Within 6 Months'] = self.exponential_smoother(raw_data=dataframe['Within 6 Months'], half_life=3) dataframe['Within 12 Months'] = self.exponential_smoother(raw_data=dataframe['Within 12 Months'], half_life=3) dataframe['Within 24 Months'] = self.exponential_smoother(raw_data=dataframe['Within 24 Months'], half_life=3) return(dataframe) def plot_probabilities(self, dataframe, name, exponential): """ Sets chart parameters, generates the chart, and saves it. dataframe: dataframe, the dataframe to be plotted name: sting, chart title exponential: boolean, whether to plot exponentially weighted output data or not """ dataframe = pd.DataFrame(dataframe) name = str(name) exponential = bool(exponential) dataframe.rename(columns=self.prediction_names, inplace=True) if exponential == True: dataframe = self.exponential_conversion(dataframe=dataframe) is_recession = dataframe['Recession'] == 1 is_not_recession = dataframe['Recession'] == 0 dataframe.loc[is_recession, 'Recession'] = 100 dataframe.loc[is_not_recession, 'Recession'] = -1 log_loss_weights_6mo = self.calculate_log_loss_weights(y_true=dataframe['True_Recession_within_6mo']) log_loss_weights_12mo = self.calculate_log_loss_weights(y_true=dataframe['True_Recession_within_12mo']) log_loss_weights_24mo = self.calculate_log_loss_weights(y_true=dataframe['True_Recession_within_24mo']) loss_6mo = log_loss(y_true=dataframe['True_Recession_within_6mo'], y_pred=dataframe['Within 6 Months'], sample_weight=log_loss_weights_6mo) loss_12mo = log_loss(y_true=dataframe['True_Recession_within_12mo'], y_pred=dataframe['Within 12 Months'], sample_weight=log_loss_weights_12mo) loss_24mo = log_loss(y_true=dataframe['True_Recession_within_24mo'], y_pred=dataframe['Within 24 Months'], sample_weight=log_loss_weights_24mo) dataframe = dataframe[['Dates'] + list(self.prediction_names.values())] chart_title = '{} | 6mo: {} | 12mo: {} | 24mo: {}'.format(name, round(loss_6mo, 3), round(loss_12mo, 3), round(loss_24mo, 3)) plt.figure(figsize=(15, 5)) plot = sns.lineplot(x='Dates', y='value', hue='variable', data=pd.melt(dataframe, ['Dates'])) plot.set_ylabel('Probability') plot.set_title(chart_title, fontsize = 20) plot.set_ylim((0, 1)) self.pdf_object.savefig() def average_model_outputs(self): """ Creates outputs for a Grand Average model by averaging across all model outputs. """ from statistics import mean self.average_model['Dates'] = self.knn_test_results['Dates'] self.average_model['Recession'] = self.knn_test_results['True_Recession'] self.average_model['True_Recession_within_6mo'] = self.knn_test_results['True_Recession_within_6mo'] self.average_model['True_Recession_within_12mo'] = self.knn_test_results['True_Recession_within_12mo'] self.average_model['True_Recession_within_24mo'] = self.knn_test_results['True_Recession_within_24mo'] model_outputs = [self.knn_test_results, self.elastic_net_test_results, self.naive_bayes_test_results, self.svm_test_results, self.gauss_test_results, self.xgboost_test_results] average_6mo = [] average_12mo = [] average_24mo = [] for index in range(0, len(self.knn_test_results)): outputs_6mo = [] outputs_12mo = [] outputs_24mo = [] for model in model_outputs: outputs_6mo.append(model['Pred_Recession_within_6mo'][index]) outputs_12mo.append(model['Pred_Recession_within_12mo'][index]) outputs_24mo.append(model['Pred_Recession_within_24mo'][index]) average_6mo.append(mean(outputs_6mo)) average_12mo.append(mean(outputs_12mo)) average_24mo.append(mean(outputs_24mo)) self.average_model['Within 6 Months'] = average_6mo self.average_model['Within 12 Months'] = average_12mo self.average_model['Within 24 Months'] = average_24mo def plot_test_results(self): """ Loads test results for each model, and plots them all into a single PDF. """ self.knn_test_results = pd.read_json(path.knn_test_results) self.knn_test_results.sort_index(inplace=True) self.elastic_net_test_results = pd.read_json(path.elastic_net_test_results) self.elastic_net_test_results.sort_index(inplace=True) self.naive_bayes_test_results = pd.read_json(path.naive_bayes_test_results) self.naive_bayes_test_results.sort_index(inplace=True) self.svm_test_results = pd.read_json(path.svm_test_results) self.svm_test_results.sort_index(inplace=True) self.gauss_test_results = pd.read_json(path.gauss_test_results) self.gauss_test_results.sort_index(inplace=True) self.xgboost_test_results = pd.read_json(path.xgboost_test_results) self.xgboost_test_results.sort_index(inplace=True) self.weighted_average_test_results =
pd.read_json(path.weighted_average_test_results)
pandas.read_json
# %% import pandas import altair from plot_shared import plot_points_average_and_trend from data_shared import get_ni_pop_pyramid import datetime # %% def load_grouped_time_series(df, date_col, group_col, series_col, new_name, model=True): df = df.pivot(index=date_col,columns=group_col,values=series_col) newind = pandas.date_range(start=df.index.min(), end=df.index.max()) df = df.reindex(newind) df = df.fillna(0) df = df.reset_index().melt(id_vars='index', var_name=group_col, value_name=series_col) df = df.rename(columns={'index': 'Date'}).sort_values('Date') df['%s 7-day rolling mean' %new_name] = df.groupby(group_col).rolling(7).mean().droplevel(0) if model is True: df = create_models(df, group_col, '%s 7-day rolling mean' %new_name) return df # %% adm_band_mapping =
pandas.DataFrame({'Age Band': ['Aged 0 - 19', 'Aged 40 - 49', 'Aged 50 - 59', 'Aged 60 - 69', 'Aged 70 - 79', 'Aged 80 & Over', 'Unknown', 'Aged 20 - 39'], 'Group': ['0 - 19', '20+', '20+', '20+', '20+', '20+', 'Unknown', '20+']})
pandas.DataFrame
""" MergeConcat ----------- A class to merge or concat dataframes """ from typing import List, Union import pandas as pd from pandas.core.common import maybe_make_list from soam.core import Step class MergeConcat(Step): def __init__( self, keys: Union[str, List[str], None] = None, **kwargs, ): """ Merge on concat dataframes dependending on the keys Parameters ---------- keys: str or list of str labels of columns to merge on """ super().__init__(**kwargs) if keys is None: keys = [] self.keys = maybe_make_list(keys) self.complete_df =
pd.DataFrame(columns=self.keys)
pandas.DataFrame
import torch import pandas as pd from pathlib import Path import logging import matplotlib.pyplot as plt import numpy as np from tqdm import tqdm from imutils.paths import list_images import cv2 from enum import IntEnum from collections import namedtuple import sys _cur=Path(__file__).absolute().parent sys.path.insert(0,str(_cur)) #print(sys.path) from to_onnx import export2onnx from general import set_dir def get_labels(label_path): df=pd.read_csv(label_path,header=None) if len(df.columns)==1: df.columns='label' elif len(df.columns)==2: df.columns=['label','index'] else: raise RuntimeError('Unknow csv file') label=df.label.values classes=IntEnum('classLabels',tuple(label),start=0) return classes class Meter(object): def __init__(self,device='cpu'): self.preds=torch.tensor([]).to(device) self.gts=torch.tensor([]).to(device) #self.criterion=criterion self.value=0 self.length=0 def collect(self,value,batch_size): self.value+=value self.length+=batch_size @property def average(self): return self.value/self.length @torch.no_grad() def update(self, preds,gts,ids=None): preds=self.avoid_zero_dim(preds) gts=self.avoid_zero_dim(gts) self.preds=torch.cat([self.preds,preds]) self.gts=torch.cat([self.gts,gts.long()]) if ids is not None: ids=self.avoid_zero_dim(ids) self.ids=torch.cat([self.ids,ids]) @staticmethod def avoid_zero_dim(tensor): tensor=torch.as_tensor(tensor) if not tensor.size(): tensor=tensor[None] return tensor @staticmethod def message(msg,epoch,print_freq): logging.info(msg) if epoch%print_freq==0: print(msg) @property def acc(self): return torch.mean((self.preds==self.gts)*1.0).item() class Model_Saver(): def __init__(self,mname,timestamp, val_thres=0.8,saved_model_number=2,direction='max',save_info=None): if direction=='min': self.val_thres=val_thres*-1 elif direction=='max': self.val_thres=val_thres else: raise ValueError(dirction) self.saved_model_number=saved_model_number self.df=
pd.DataFrame(columns=['fpath','epoch','val'])
pandas.DataFrame
#%% import jieba from gensim.models import word2vec import pandas as pd import numpy as np df = pd.read_csv('train_data.csv') df = df.fillna('') df1 = pd.read_csv('test_data.csv') df1 = df1.fillna('') gg = pd.read_excel('e04.xlsx') gg = list(gg.e04.values) y_train = df['label'] df = df.drop(['ID','label_name','label'],axis = 1) df1 = df1.drop(['id'],axis = 1) data =
pd.concat([df,df1],axis = 0)
pandas.concat
# # Author: <NAME>, April 26.2018 # import pandas as pd import os import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler os.getcwd() # Get and place .py in same directory as .xls initially os.chdir('./') # Path to .xls file from pandas import read_excel df =
read_excel('rssi_data_challenge2.xls')
pandas.read_excel
import sys import re import pandas as pd import lxml.html year_week_re = re.compile('year/(\d{4})/week/(\d{1,2})') week_re = re.compile('week/(\d{1,2})') team_score_re = re.compile('([.\w\s]+)\s(\d{1,2}),\s([.\w\s]+)\s(\d{1,2})') def main(html): root = lxml.html.fromstring(html) url = root.xpath("//link[@rel='canonical']")[0].get('href') year_week = year_week_re.search(url) if year_week: year, week = map(int, year_week.groups()) else: year, week = 2014, int(week_re.search(url).group(1)) rows = [] for a in root.xpath("//a[starts-with(@href, '/nfl/boxscore?gameId')]"): team1, score1, team2, score2 = team_score_re.search(a.text).groups() game_id = a.get('href').split('=')[-1] rows.append({ 'year': year, 'week': week, 'game_id': game_id, 'team1': team1, 'team2': team2, 'score1': score1, 'score2': score2, }) return
pd.DataFrame(rows)
pandas.DataFrame
""" Tests for Series cumulative operations. See also -------- tests.frame.test_cumulative """ import numpy as np import pytest import pandas as pd import pandas._testing as tm methods = { "cumsum": np.cumsum, "cumprod": np.cumprod, "cummin": np.minimum.accumulate, "cummax": np.maximum.accumulate, } class TestSeriesCumulativeOps: @pytest.mark.parametrize("func", [np.cumsum, np.cumprod]) def test_datetime_series(self, datetime_series, func): tm.assert_numpy_array_equal( func(datetime_series).values, func(np.array(datetime_series)), check_dtype=True, ) # with missing values ts = datetime_series.copy() ts[::2] = np.NaN result = func(ts)[1::2] expected = func(np.array(ts.dropna())) tm.assert_numpy_array_equal(result.values, expected, check_dtype=False) @pytest.mark.parametrize("method", ["cummin", "cummax"]) def test_cummin_cummax(self, datetime_series, method): ufunc = methods[method] result = getattr(datetime_series, method)().values expected = ufunc(np.array(datetime_series)) tm.assert_numpy_array_equal(result, expected) ts = datetime_series.copy() ts[::2] = np.NaN result = getattr(ts, method)()[1::2] expected = ufunc(ts.dropna()) result.index = result.index._with_freq(None) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "ts", [ pd.Timedelta(0), pd.Timestamp("1999-12-31"), pd.Timestamp("1999-12-31").tz_localize("US/Pacific"), ], ) @pytest.mark.parametrize( "method, skipna, exp_tdi", [ ["cummax", True, ["NaT", "2 days", "NaT", "2 days", "NaT", "3 days"]], ["cummin", True, ["NaT", "2 days", "NaT", "1 days", "NaT", "1 days"]], [ "cummax", False, ["NaT", "2 days", "2 days", "2 days", "2 days", "3 days"], ], [ "cummin", False, ["NaT", "2 days", "2 days", "1 days", "1 days", "1 days"], ], ], ) def test_cummin_cummax_datetimelike(self, ts, method, skipna, exp_tdi): # with ts==pd.Timedelta(0), we are testing td64; with naive Timestamp # we are testing datetime64[ns]; with Timestamp[US/Pacific] # we are testing dt64tz tdi = pd.to_timedelta(["NaT", "2 days", "NaT", "1 days", "NaT", "3 days"]) ser = pd.Series(tdi + ts) exp_tdi = pd.to_timedelta(exp_tdi) expected = pd.Series(exp_tdi + ts) result = getattr(ser, method)(skipna=skipna) tm.assert_series_equal(expected, result) @pytest.mark.parametrize( "arg", [ [False, False, False, True, True, False, False], [False, False, False, False, False, False, False], ], ) @pytest.mark.parametrize( "func", [lambda x: x, lambda x: ~x], ids=["identity", "inverse"] ) @pytest.mark.parametrize("method", methods.keys()) def test_cummethods_bool(self, arg, func, method): # GH#6270 # checking Series method vs the ufunc applied to the values ser = func(pd.Series(arg)) ufunc = methods[method] exp_vals = ufunc(ser.values) expected = pd.Series(exp_vals) result = getattr(ser, method)() tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "method, expected", [ ["cumsum",
pd.Series([0, 1, np.nan, 1], dtype=object)
pandas.Series
import unittest import platform import random import string import platform import pandas as pd import numpy as np import numba import hpat from hpat.tests.test_utils import (count_array_REPs, count_parfor_REPs, count_parfor_OneDs, count_array_OneDs, dist_IR_contains, get_start_end) from hpat.tests.gen_test_data import ParquetGenerator from numba.config import IS_32BITS @hpat.jit def inner_get_column(df): # df2 = df[['A', 'C']] # df2['D'] = np.ones(3) return df.A COL_IND = 0 class TestDataFrame(unittest.TestCase): def test_create1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) return df.A hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_create_cond1(self): def test_impl(A, B, c): if c: df = pd.DataFrame({'A': A}) else: df = pd.DataFrame({'A': B}) return df.A hpat_func = hpat.jit(test_impl) n = 11 A = np.ones(n) B = np.arange(n) + 1.0 c = 0 pd.testing.assert_series_equal(hpat_func(A, B, c), test_impl(A, B, c)) c = 2 pd.testing.assert_series_equal(hpat_func(A, B, c), test_impl(A, B, c)) @unittest.skip('Implement feature to create DataFrame without column names') def test_create_without_column_names(self): def test_impl(): df = pd.DataFrame([100, 200, 300, 400, 200, 100]) return df hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(), test_impl()) def test_unbox1(self): def test_impl(df): return df.A hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.random.ranf(n)}) pd.testing.assert_series_equal(hpat_func(df), test_impl(df)) @unittest.skip("needs properly refcounted dataframes") def test_unbox2(self): def test_impl(df, cond): n = len(df) if cond: df['A'] = np.arange(n) + 2.0 return df.A hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) pd.testing.assert_series_equal(hpat_func(df.copy(), True), test_impl(df.copy(), True)) pd.testing.assert_series_equal(hpat_func(df.copy(), False), test_impl(df.copy(), False)) @unittest.skip('Implement feature to create DataFrame without column names') def test_unbox_without_column_names(self): def test_impl(df): return df df = pd.DataFrame([100, 200, 300, 400, 200, 100]) hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_box1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n)}) return df hpat_func = hpat.jit(test_impl) n = 11 do_check = False if platform.system() == 'Windows' and not IS_32BITS else True pd.testing.assert_frame_equal(hpat_func(n), test_impl(n), check_dtype=do_check) def test_box2(self): def test_impl(): df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'bb', 'ccc']}) return df hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(), test_impl()) @unittest.skip("pending df filter support") def test_box3(self): def test_impl(df): df = df[df.A != 'dd'] return df hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['aa', 'bb', 'cc']}) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_box_categorical(self): def test_impl(df): df['A'] = df['A'] + 1 return df hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': [1, 2, 3], 'B': pd.Series(['N', 'Y', 'Y'], dtype=pd.api.types.CategoricalDtype(['N', 'Y']))}) pd.testing.assert_frame_equal(hpat_func(df.copy(deep=True)), test_impl(df)) def test_box_dist_return(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n)}) return df hpat_func = hpat.jit(distributed={'df'})(test_impl) n = 11 hres, res = hpat_func(n), test_impl(n) self.assertEqual(count_array_OneDs(), 3) self.assertEqual(count_parfor_OneDs(), 2) dist_sum = hpat.jit( lambda a: hpat.distributed_api.dist_reduce( a, np.int32(hpat.distributed_api.Reduce_Type.Sum.value))) dist_sum(1) # run to compile np.testing.assert_allclose(dist_sum(hres.A.sum()), res.A.sum()) np.testing.assert_allclose(dist_sum(hres.B.sum()), res.B.sum()) def test_len1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n, np.int64), 'B': np.random.ranf(n)}) return len(df) hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_shape1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n, np.int64), 'B': np.random.ranf(n)}) return df.shape hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_column_getitem1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) Ac = df['A'].values return Ac.sum() hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) self.assertEqual(count_parfor_OneDs(), 1) def test_column_list_getitem1(self): def test_impl(df): return df[['A', 'C']] hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame( {'A': np.arange(n), 'B': np.ones(n), 'C': np.random.ranf(n)}) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_filter1(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + n, 'B': np.arange(n)**2}) df1 = df[df.A > .5] return df1.B.sum() hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_filter2(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + n, 'B': np.arange(n)**2}) df1 = df.loc[df.A > .5] return np.sum(df1.B) hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_filter3(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + n, 'B': np.arange(n)**2}) df1 = df.iloc[(df.A > .5).values] return np.sum(df1.B) hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_iloc1(self): def test_impl(df, n): return df.iloc[1:n].B.values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) np.testing.assert_array_equal(hpat_func(df, n), test_impl(df, n)) def test_iloc2(self): def test_impl(df, n): return df.iloc[np.array([1, 4, 9])].B.values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) np.testing.assert_array_equal(hpat_func(df, n), test_impl(df, n)) def test_iloc3(self): def test_impl(df): return df.iloc[:, 1].values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) np.testing.assert_array_equal(hpat_func(df), test_impl(df)) @unittest.skip("TODO: support A[[1,2,3]] in Numba") def test_iloc4(self): def test_impl(df, n): return df.iloc[[1, 4, 9]].B.values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) np.testing.assert_array_equal(hpat_func(df, n), test_impl(df, n)) def test_iloc5(self): # test iloc with global value def test_impl(df): return df.iloc[:, COL_IND].values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_loc1(self): def test_impl(df): return df.loc[:, 'B'].values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_iat1(self): def test_impl(n): df = pd.DataFrame({'B': np.ones(n), 'A': np.arange(n) + n}) return df.iat[3, 1] hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) def test_iat2(self): def test_impl(df): return df.iat[3, 1] hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'B': np.ones(n), 'A': np.arange(n) + n}) self.assertEqual(hpat_func(df), test_impl(df)) def test_iat3(self): def test_impl(df, n): return df.iat[n - 1, 1] hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'B': np.ones(n), 'A': np.arange(n) + n}) self.assertEqual(hpat_func(df, n), test_impl(df, n)) def test_iat_set1(self): def test_impl(df, n): df.iat[n - 1, 1] = n**2 return df.A # return the column to check column aliasing hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'B': np.ones(n), 'A': np.arange(n) + n}) df2 = df.copy() pd.testing.assert_series_equal(hpat_func(df, n), test_impl(df2, n)) def test_iat_set2(self): def test_impl(df, n): df.iat[n - 1, 1] = n**2 return df # check df aliasing/boxing hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'B': np.ones(n), 'A': np.arange(n) + n}) df2 = df.copy() pd.testing.assert_frame_equal(hpat_func(df, n), test_impl(df2, n)) def test_set_column1(self): # set existing column def test_impl(n): df = pd.DataFrame({'A': np.ones(n, np.int64), 'B': np.arange(n) + 3.0}) df['A'] = np.arange(n) return df hpat_func = hpat.jit(test_impl) n = 11 do_check = False if platform.system() == 'Windows' and not IS_32BITS else True pd.testing.assert_frame_equal(hpat_func(n), test_impl(n), check_dtype=do_check) def test_set_column_reflect4(self): # set existing column def test_impl(df, n): df['A'] = np.arange(n) hpat_func = hpat.jit(test_impl) n = 11 df1 = pd.DataFrame({'A': np.ones(n, np.int64), 'B': np.arange(n) + 3.0}) df2 = df1.copy() hpat_func(df1, n) test_impl(df2, n) do_check = False if platform.system() == 'Windows' and not IS_32BITS else True pd.testing.assert_frame_equal(df1, df2, check_dtype=do_check) def test_set_column_new_type1(self): # set existing column with a new type def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n) + 3.0}) df['A'] = np.arange(n) return df hpat_func = hpat.jit(test_impl) n = 11 do_check = False if platform.system() == 'Windows' and not IS_32BITS else True pd.testing.assert_frame_equal(hpat_func(n), test_impl(n), check_dtype=do_check) def test_set_column2(self): # create new column def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n) + 1.0}) df['C'] = np.arange(n) return df hpat_func = hpat.jit(test_impl) n = 11 do_check = False if platform.system() == 'Windows' and not IS_32BITS else True pd.testing.assert_frame_equal(hpat_func(n), test_impl(n), check_dtype=do_check) def test_set_column_reflect3(self): # create new column def test_impl(df, n): df['C'] = np.arange(n) hpat_func = hpat.jit(test_impl) n = 11 df1 = pd.DataFrame({'A': np.ones(n, np.int64), 'B': np.arange(n) + 3.0}) df2 = df1.copy() hpat_func(df1, n) test_impl(df2, n) do_check = False if platform.system() == 'Windows' and not IS_32BITS else True pd.testing.assert_frame_equal(df1, df2, check_dtype=do_check) def test_set_column_bool1(self): def test_impl(df): df['C'] = df['A'][df['B']] hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': [1, 2, 3], 'B': [True, False, True]}) df2 = df.copy() test_impl(df2) hpat_func(df) pd.testing.assert_series_equal(df.C, df2.C) def test_set_column_reflect1(self): def test_impl(df, arr): df['C'] = arr return df.C.sum() hpat_func = hpat.jit(test_impl) n = 11 arr = np.random.ranf(n) df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) hpat_func(df, arr) self.assertIn('C', df) np.testing.assert_almost_equal(df.C.values, arr) def test_set_column_reflect2(self): def test_impl(df, arr): df['C'] = arr return df.C.sum() hpat_func = hpat.jit(test_impl) n = 11 arr = np.random.ranf(n) df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) df2 = df.copy() np.testing.assert_almost_equal(hpat_func(df, arr), test_impl(df2, arr)) def test_df_values1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n)}) return df.values hpat_func = hpat.jit(test_impl) n = 11 np.testing.assert_array_equal(hpat_func(n), test_impl(n)) def test_df_values2(self): def test_impl(df): return df.values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_df_values_parallel1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n)}) return df.values.sum() hpat_func = hpat.jit(test_impl) n = 11 np.testing.assert_array_equal(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_df_apply(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)}) B = df.apply(lambda r: r.A + r.B, axis=1) return df.B.sum() n = 121 hpat_func = hpat.jit(test_impl) np.testing.assert_almost_equal(hpat_func(n), test_impl(n)) def test_df_apply_branch(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)}) B = df.apply(lambda r: r.A < 10 and r.B > 20, axis=1) return df.B.sum() n = 121 hpat_func = hpat.jit(test_impl) np.testing.assert_almost_equal(hpat_func(n), test_impl(n)) def test_df_describe(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(0, n, 1, np.float32), 'B': np.arange(n)}) #df.A[0:1] = np.nan return df.describe() hpat_func = hpat.jit(test_impl) n = 1001 hpat_func(n) # XXX: test actual output self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_sort_values(self): def test_impl(df): df.sort_values('A', inplace=True) return df.B.values n = 1211 np.random.seed(2) df = pd.DataFrame({'A': np.random.ranf(n), 'B': np.arange(n), 'C': np.random.ranf(n)}) hpat_func = hpat.jit(test_impl) np.testing.assert_almost_equal(hpat_func(df.copy()), test_impl(df)) def test_sort_values_copy(self): def test_impl(df): df2 = df.sort_values('A') return df2.B.values n = 1211 np.random.seed(2) df = pd.DataFrame({'A': np.random.ranf(n), 'B': np.arange(n), 'C': np.random.ranf(n)}) hpat_func = hpat.jit(test_impl) np.testing.assert_almost_equal(hpat_func(df.copy()), test_impl(df)) def test_sort_values_single_col(self): def test_impl(df): df.sort_values('A', inplace=True) return df.A.values n = 1211 np.random.seed(2) df = pd.DataFrame({'A': np.random.ranf(n)}) hpat_func = hpat.jit(test_impl) np.testing.assert_almost_equal(hpat_func(df.copy()), test_impl(df)) def test_sort_values_single_col_str(self): def test_impl(df): df.sort_values('A', inplace=True) return df.A.values n = 1211 random.seed(2) str_vals = [] for _ in range(n): k = random.randint(1, 30) val = ''.join(random.choices(string.ascii_uppercase + string.digits, k=k)) str_vals.append(val) df = pd.DataFrame({'A': str_vals}) hpat_func = hpat.jit(test_impl) self.assertTrue((hpat_func(df.copy()) == test_impl(df)).all()) def test_sort_values_str(self): def test_impl(df): df.sort_values('A', inplace=True) return df.B.values n = 1211 random.seed(2) str_vals = [] str_vals2 = [] for i in range(n): k = random.randint(1, 30) val = ''.join(random.choices(string.ascii_uppercase + string.digits, k=k)) str_vals.append(val) val = ''.join(random.choices(string.ascii_uppercase + string.digits, k=k)) str_vals2.append(val) df = pd.DataFrame({'A': str_vals, 'B': str_vals2}) # use mergesort for stability, in str generation equal keys are more probable sorted_df = df.sort_values('A', inplace=False, kind='mergesort') hpat_func = hpat.jit(test_impl) self.assertTrue((hpat_func(df) == sorted_df.B.values).all()) def test_sort_parallel_single_col(self): # create `kde.parquet` file ParquetGenerator.gen_kde_pq() # TODO: better parallel sort test def test_impl(): df = pd.read_parquet('kde.parquet') df.sort_values('points', inplace=True) res = df.points.values return res hpat_func = hpat.jit(locals={'res:return': 'distributed'})(test_impl) save_min_samples = hpat.hiframes.sort.MIN_SAMPLES try: hpat.hiframes.sort.MIN_SAMPLES = 10 res = hpat_func() self.assertTrue((np.diff(res) >= 0).all()) finally: # restore global val hpat.hiframes.sort.MIN_SAMPLES = save_min_samples def test_df_isna1(self): '''Verify DataFrame.isna implementation for various types of data''' def test_impl(df): return df.isna() hpat_func = hpat.jit(test_impl) # TODO: add column with datetime values when test_series_datetime_isna1 is fixed df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0], 'B': [np.inf, 5, np.nan, 6], 'C': ['aa', 'b', None, 'ccc'], 'D': [None, 'dd', '', None]}) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_df_astype_str1(self): '''Verifies DataFrame.astype implementation converting various types to string''' def test_impl(df): return df.astype(str) hpat_func = hpat.jit(test_impl) # TODO: add column with float values when test_series_astype_float_to_str1 is fixed df = pd.DataFrame({'A': [-1, 2, 11, 5, 0, -7], 'B': ['aa', 'bb', 'cc', 'dd', '', 'fff'] }) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_df_astype_float1(self): '''Verifies DataFrame.astype implementation converting various types to float''' def test_impl(df): return df.astype(np.float64) hpat_func = hpat.jit(test_impl) # TODO: uncomment column with string values when test_series_astype_str_to_float64 is fixed df = pd.DataFrame({'A': [-1, 2, 11, 5, 0, -7], # 'B': ['3.24', '1E+05', '-1', '-1.3E-01', 'nan', 'inf'], 'C': [3.24, 1E+05, -1, -1.3E-01, np.nan, np.inf] }) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_df_astype_int1(self): '''Verifies DataFrame.astype implementation converting various types to int''' def test_impl(df): return df.astype(np.int32) hpat_func = hpat.jit(test_impl) n = 6 # TODO: uncomment column with string values when test_series_astype_str_to_int32 is fixed df = pd.DataFrame({'A': np.ones(n, dtype=np.int64), 'B': np.arange(n, dtype=np.int32), # 'C': ['-1', '2', '3', '0', '-7', '99'], 'D': np.arange(float(n), dtype=np.float32) }) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_sort_parallel(self): # create `kde.parquet` file ParquetGenerator.gen_kde_pq() # TODO: better parallel sort test def test_impl(): df = pd.read_parquet('kde.parquet') df['A'] = df.points.astype(np.float64) df.sort_values('points', inplace=True) res = df.A.values return res hpat_func = hpat.jit(locals={'res:return': 'distributed'})(test_impl) save_min_samples = hpat.hiframes.sort.MIN_SAMPLES try: hpat.hiframes.sort.MIN_SAMPLES = 10 res = hpat_func() self.assertTrue((np.diff(res) >= 0).all()) finally: # restore global val hpat.hiframes.sort.MIN_SAMPLES = save_min_samples def test_itertuples(self): def test_impl(df): res = 0.0 for r in df.itertuples(): res += r[1] return res hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.ones(n, np.int64)}) self.assertEqual(hpat_func(df), test_impl(df)) def test_itertuples_str(self): def test_impl(df): res = "" for r in df.itertuples(): res += r[1] return res hpat_func = hpat.jit(test_impl) n = 3 df = pd.DataFrame({'A': ['aa', 'bb', 'cc'], 'B': np.ones(n, np.int64)}) self.assertEqual(hpat_func(df), test_impl(df)) def test_itertuples_order(self): def test_impl(n): res = 0.0 df = pd.DataFrame({'B': np.arange(n), 'A': np.ones(n, np.int64)}) for r in df.itertuples(): res += r[1] return res hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) def test_itertuples_analysis(self): """tests array analysis handling of generated tuples, shapes going through blocks and getting used in an array dimension """ def test_impl(n): res = 0 df = pd.DataFrame({'B': np.arange(n), 'A': np.ones(n, np.int64)}) for r in df.itertuples(): if r[1] == 2: A = np.ones(r[1]) res += len(A) return res hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) @unittest.skipIf(platform.system() == 'Windows', "Attribute 'dtype' are different int64 and int32") def test_df_head1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n)}) return df.head(3) hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_frame_equal(hpat_func(n), test_impl(n)) def test_pct_change1(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.pct_change(3) hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_frame_equal(hpat_func(n), test_impl(n)) def test_mean1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.mean() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_median1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': 2 ** np.arange(n), 'B': np.arange(n) + 1.0}) return df.median() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_std1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.std() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_var1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.var() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_max1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.max() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_min1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.min() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_sum1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.sum() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_prod1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.prod() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_count1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.count() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_df_fillna1(self): def test_impl(df): return df.fillna(5.0) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_df_fillna_str1(self): def test_impl(df): return df.fillna("dd") df = pd.DataFrame({'A': ['aa', 'b', None, 'ccc']}) hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_df_fillna_inplace1(self): def test_impl(A): A.fillna(11.0, inplace=True) return A df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) df2 = df.copy() hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df2)) def test_df_reset_index1(self): def test_impl(df): return df.reset_index(drop=True) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_df_reset_index_inplace1(self): def test_impl(): df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) df.reset_index(drop=True, inplace=True) return df hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(), test_impl()) def test_df_dropna1(self): def test_impl(df): return df.dropna() df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0], 'B': [4, 5, 6, 7]}) hpat_func = hpat.jit(test_impl) out = test_impl(df).reset_index(drop=True) h_out = hpat_func(df) pd.testing.assert_frame_equal(out, h_out) def test_df_dropna2(self): def test_impl(df): return df.dropna() df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) hpat_func = hpat.jit(test_impl) out = test_impl(df).reset_index(drop=True) h_out = hpat_func(df) pd.testing.assert_frame_equal(out, h_out) def test_df_dropna_inplace1(self): # TODO: fix error when no df is returned def test_impl(df): df.dropna(inplace=True) return df df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0], 'B': [4, 5, 6, 7]}) df2 = df.copy() hpat_func = hpat.jit(test_impl) out = test_impl(df).reset_index(drop=True) h_out = hpat_func(df2) pd.testing.assert_frame_equal(out, h_out) def test_df_dropna_str1(self): def test_impl(df): return df.dropna() df = pd.DataFrame({'A': [1.0, 2.0, 4.0, 1.0], 'B': ['aa', 'b', None, 'ccc']}) hpat_func = hpat.jit(test_impl) out = test_impl(df).reset_index(drop=True) h_out = hpat_func(df) pd.testing.assert_frame_equal(out, h_out) def test_df_drop1(self): def test_impl(df): return df.drop(columns=['A']) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0], 'B': [4, 5, 6, 7]}) hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_df_drop_inplace2(self): # test droping after setting the column def test_impl(df): df2 = df[['A', 'B']] df2['D'] = np.ones(3) df2.drop(columns=['D'], inplace=True) return df2 df = pd.DataFrame({'A': [1, 2, 3], 'B': [2, 3, 4]}) hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_df_drop_inplace1(self): def test_impl(df): df.drop('A', axis=1, inplace=True) return df df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0], 'B': [4, 5, 6, 7]}) df2 = df.copy() hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df2)) def test_isin_df1(self): def test_impl(df, df2): return df.isin(df2) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) df2 = pd.DataFrame({'A': np.arange(n), 'C': np.arange(n)**2}) df2.A[n // 2:] = n pd.testing.assert_frame_equal(hpat_func(df, df2), test_impl(df, df2)) @unittest.skip("needs dict typing in Numba") def test_isin_dict1(self): def test_impl(df): vals = {'A': [2, 3, 4], 'C': [4, 5, 6]} return df.isin(vals) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_isin_list1(self): def test_impl(df): vals = [2, 3, 4] return df.isin(vals) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_append1(self): def test_impl(df, df2): return df.append(df2, ignore_index=True) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) df2 = pd.DataFrame({'A': np.arange(n), 'C': np.arange(n)**2}) df2.A[n // 2:] = n pd.testing.assert_frame_equal(hpat_func(df, df2), test_impl(df, df2)) def test_append2(self): def test_impl(df, df2, df3): return df.append([df2, df3], ignore_index=True) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) df2 = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) df2.A[n // 2:] = n df3 = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) pd.testing.assert_frame_equal( hpat_func(df, df2, df3), test_impl(df, df2, df3)) def test_concat_columns1(self): def test_impl(S1, S2): return pd.concat([S1, S2], axis=1) hpat_func = hpat.jit(test_impl) S1 =
pd.Series([4, 5])
pandas.Series
from __future__ import absolute_import from __future__ import print_function import sys import glob import time import numpy as np import pandas as pd import os.path import time import datetime import re from keras.preprocessing import sequence from keras.optimizers import SGD, RMSprop, Adagrad from keras.utils import np_utils from keras.models import Sequential, Graph, Model from keras.models import model_from_json from keras.layers import Input, merge, Flatten, Dense, Activation, Convolution1D, ZeroPadding1D #from keras.layers.core import Dense, Dropout, Activation, TimeDistributedDense, Flatten, Reshape, Permute, Merge, Lambda #from keras.layers.convolutional import Convolution1D, MaxPooling1D, Convolution2D, MaxPooling2D, UpSampling1D, UpSampling2D, ZeroPadding1D from keras.layers.advanced_activations import ParametricSoftplus, SReLU from keras.callbacks import ModelCheckpoint, Callback import matplotlib.pyplot as plt path = "./training_data_large/" # to make sure signal files are written in same directory as data files def draw_model(model): from IPython.display import SVG from keras.utils.visualize_util import model_to_dot from keras.utils.visualize_util import plot #graph = to_graph(model, show_shape=True) #graph.write_png("UFCNN_1.png") SVG(model_to_dot(model).create(prog='dot', format='svg')) plot(model, to_file='UFCNN_1.png') def print_nodes_shapes(model): for k, v in model.inputs.items(): print("{} : {} : {} : {}".format(k, type(v), v.input_shape, v.output_shape)) for k, v in model.nodes.items(): print("{} : {} : {} : {}".format(k, type(v), v.input_shape, v.output_shape)) for k, v in model.outputs.items(): print("{} : {} : {} : {}".format(k, type(v), v.input_shape, v.output_shape)) def print_layers_shapes(model): for l in model.layers: print("{} : {} : {}".format(type(l), l.input_shape, l.output_shape)) def save_neuralnet (model, model_name): json_string = model.to_json() open(path + model_name + '_architecture.json', 'w').write(json_string) model.save_weights(path + model_name + '_weights.h5', overwrite=True) yaml_string = model.to_yaml() with open(path + model_name + '_data.yml', 'w') as outfile: outfile.write( yaml_string) def load_neuralnet(model_name): """ reading the model from disk - including all the trained weights and the complete model design (hyperparams, planes,..) """ arch_name = path + model_name + '_architecture.json' weight_name = path + model_name + '_weights.h5' if not os.path.isfile(arch_name) or not os.path.isfile(weight_name): print("model_name given and file %s and/or %s not existing. Aborting." % (arch_name, weight_name)) sys.exit() print("Loaded model: ",model_name) model = model_from_json(open(arch_name).read()) model.load_weights(weight_name) return model def ufcnn_model_concat(sequence_length=5000, features=1, nb_filter=150, filter_length=5, output_dim=1, optimizer='adagrad', loss='mse', regression = True, class_mode=None, activation="softplus", init="lecun_uniform"): #model = Graph() #model.add_input(name='input', input_shape=(None, features)) main_input = Input(name='input', shape=(None, features)) ######################################################### #model.add_node(ZeroPadding1D(2), name='input_padding', input='input') # to avoid lookahead bias input_padding = (ZeroPadding1D(2))(main_input) # to avoid lookahead bias ######################################################### #model.add_node(Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='valid', init=init, input_shape=(sequence_length, features)), name='conv1', input='input_padding') #model.add_node(Activation(activation), name='relu1', input='conv1') conv1 = Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='valid', init=init, input_shape=(sequence_length, features))(input_padding) relu1 = (Activation(activation))(conv1) ######################################################### #model.add_node(Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='same', init=init), name='conv2', input='relu1') #model.add_node(Activation(activation), name='relu2', input='conv2') conv2 = (Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='same', init=init))(relu1) relu2 = (Activation(activation))(conv2) ######################################################### #model.add_node(Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='same', init=init), name='conv3', input='relu2') #model.add_node(Activation(activation), name='relu3', input='conv3') conv3 = (Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='same', init=init))(relu2) relu3 = (Activation(activation))(conv3) ######################################################### #model.add_node(Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='same', init=init), name='conv4', input='relu3') #model.add_node(Activation(activation), name='relu4', input='conv4') conv4 = (Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='same', init=init))(relu3) relu4 = (Activation(activation))(conv4) ######################################################### #model.add_node(Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='same', init=init), name='conv5', input='relu4') #model.add_node(Activation(activation), name='relu5', input='conv5') conv5 = (Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='same', init=init))(relu4) relu5 = (Activation(activation))(conv5) ######################################################### #model.add_node(Convolution1D(nb_filter=nb_filter,filter_length=filter_length, border_mode='same', init=init), # name='conv6', # inputs=['relu3', 'relu5'], # merge_mode='concat', concat_axis=-1) #model.add_node(Activation(activation), name='relu6', input='conv6') conv6 = merge([relu3, relu5], mode='concat', concat_axis=1) relu6 = (Activation(activation))(conv6) ######################################################### #model.add_node(Convolution1D(nb_filter=nb_filter,filter_length=filter_length, border_mode='same', init=init), # name='conv7', # inputs=['relu2', 'relu6'], # merge_mode='concat', concat_axis=-1) #model.add_node(Activation(activation), name='relu7', input='conv7') conv7 = merge([relu2, relu6], mode='concat', concat_axis=1) relu7 = (Activation(activation))(conv7) ######################################################### #model.add_node(Convolution1D(nb_filter=nb_filter,filter_length=filter_length, border_mode='same', init=init), # name='conv8', # inputs=['relu1', 'relu7'], # merge_mode='concat', concat_axis=-1) #model.add_node(Activation(activation), name='relu8', input='conv8') conv8 = merge([relu1, relu7], mode='concat', concat_axis=1) relu8 = (Activation(activation))(conv8) ######################################################### if regression: ######################################################### #model.add_node(Convolution1D(nb_filter=output_dim, filter_length=sequence_length, border_mode='same', init=init), name='conv9', input='relu8') #model.add_output(name='output', input='conv9') conv9 = Convolution1D(nb_filter=output_dim, filter_length=sequence_length, border_mode='same', init=init)(relu8) output = conv9 #main_output = conv9.output else: #model.add_node(Convolution1D(nb_filter=output_dim, filter_length=sequence_length, border_mode='same', init=init), name='conv9', input='relu8') #model.add_node(Activation('softmax'), name='activation', input='conv9') #model.add_output(name='output', input='activation') conv9 = Convolution1D(nb_filter=output_dim, filter_length=sequence_length, border_mode='same', init=init)(relu8) activation = (Activation('softmax'))(conv9) #main_output = activation.output output = activation #model.compile(optimizer=optimizer, loss={'output': loss}) model = Model(input=main_input, output=output) model.compile(optimizer=optimizer, loss=loss) return model def ufcnn_model_deconv(sequence_length=5000, features=4, nb_filter=150, filter_length=5, output_dim=1, optimizer='adagrad', loss='mse', regression = False, class_mode=None, activation="softplus", init="lecun_uniform"): #model = Graph() #model.add_input(name='input', input_shape=(None, features)) main_input = Input(name='input', shape=(None, features)) ######################################################### #model.add_node(ZeroPadding1D(2), name='input_padding', input='input') # to avoid lookahead bias input_padding = (ZeroPadding1D(2))(main_input) # to avoid lookahead bias ######################################################### #model.add_node(Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='valid', init=init, input_shape=(sequence_length, features)), name='conv1', input='input_padding') #model.add_node(Activation(activation), name='relu1', input='conv1') conv1 = Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='valid', init=init, input_shape=(sequence_length, features))(input_padding) relu1 = (Activation(activation))(conv1) ######################################################### #model.add_node(Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='same', init=init), name='conv2', input='relu1') #model.add_node(Activation(activation), name='relu2', input='conv2') conv2 = (Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='same', init=init))(relu1) relu2 = (Activation(activation))(conv2) ######################################################### #model.add_node(Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='same', init=init), name='conv3', input='relu2') #model.add_node(Activation(activation), name='relu3', input='conv3') conv3 = (Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='same', init=init))(relu2) relu3 = (Activation(activation))(conv3) ######################################################### #model.add_node(Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='same', init=init), name='conv4', input='relu3') #model.add_node(Activation(activation), name='relu4', input='conv4') conv4 = (Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='same', init=init))(relu3) relu4 = (Activation(activation))(conv4) ######################################################### #model.add_node(Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='same', init=init), name='conv5', input='relu4') #model.add_node(Activation(activation), name='relu5', input='conv5') conv5 = (Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='same', init=init))(relu4) relu5 = (Activation(activation))(conv5) ######################################################### #model.add_node(Convolution1D(nb_filter=nb_filter,filter_length=filter_length, border_mode='same', init=init), # name='conv6', # inputs=['relu3', 'relu5'], # merge_mode='concat', concat_axis=-1) #model.add_node(Activation(activation), name='relu6', input='conv6') conv6 = merge([relu3, relu5], mode='concat', concat_axis=1) relu6 = (Activation(activation))(conv6) ######################################################### #model.add_node(Convolution1D(nb_filter=nb_filter,filter_length=filter_length, border_mode='same', init=init), # name='conv7', # inputs=['relu2', 'relu6'], # merge_mode='concat', concat_axis=-1) #model.add_node(Activation(activation), name='relu7', input='conv7') conv7 = merge([relu2, relu6], mode='concat', concat_axis=1) relu7 = (Activation(activation))(conv7) ######################################################### #model.add_node(Convolution1D(nb_filter=nb_filter,filter_length=filter_length, border_mode='same', init=init), # name='conv8', # inputs=['relu1', 'relu7'], # merge_mode='concat', concat_axis=-1) #model.add_node(Activation(activation), name='relu8', input='conv8') conv8 = merge([relu1, relu7], mode='concat', concat_axis=1) relu8 = (Activation(activation))(conv8) ######################################################### if regression: ######################################################### #model.add_node(Convolution1D(nb_filter=output_dim, filter_length=sequence_length, border_mode='same', init=init), name='conv9', input='relu8') #model.add_output(name='output', input='conv9') conv9 = Convolution1D(nb_filter=output_dim, filter_length=sequence_length, border_mode='same', init=init)(relu8) output = conv9 #main_output = conv9.output else: #model.add_node(Convolution1D(nb_filter=output_dim, filter_length=sequence_length, border_mode='same', init=init), name='conv9', input='relu8') #model.add_node(Activation('softmax'), name='activation', input='conv9') #model.add_output(name='output', input='activation') conv9 = Convolution1D(nb_filter=output_dim, filter_length=sequence_length, border_mode='same', init=init)(relu8) activation = (Activation('softmax'))(conv9) #main_output = activation.output output = activation #model.compile(optimizer=optimizer, loss={'output': loss}) model = Model(input=main_input, output=output) model.compile(optimizer=optimizer, loss=loss) return model def ufcnn_model_seq(sequence_length=5000, features=1, nb_filter=150, filter_length=5, output_dim=1, optimizer='adagrad', loss='mse', regression = True, class_mode=None, init="lecun_uniform"): model = Sequential() model.add(ZeroPadding1D(2, input_shape=(None, features))) ######################################################### model.add(Convolution1D(nb_filter=nb_filter, filter_length=filter_length, border_mode='valid', init=init)) model.add(Activation('relu')) model.add(Convolution1D(nb_filter=output_dim, filter_length=sequence_length, border_mode='same', init=init)) model.add(Activation('sigmoid')) model.compile(optimizer=optimizer, loss=loss) return model def ufcnn_model(sequence_length=5000, features=1, nb_filter=150, filter_length=5, output_dim=1, optimizer='adagrad', loss='mse', regression = True, class_mode=None, init="lecun_uniform", mode='concat'): if mode == 'concat': return ufcnn_model_concat(sequence_length, features, nb_filter, filter_length, output_dim, optimizer, loss, regression, class_mode, init) else: raise NotImplemented def gen_cosine_amp(amp=100, period=25, x0=0, xn=50000, step=1, k=0.0001): """Generates an absolute cosine time series with the amplitude exponentially decreasing Arguments: amp: amplitude of the cosine function period: period of the cosine function x0: initial x of the time series xn: final x of the time series step: step of the time series discretization k: exponential rate Ernst 20160301 from https://github.com/fchollet/keras/blob/master/examples/stateful_lstm.py as a first test for the ufcnn """ cos = np.zeros(((xn - x0) * step, 1, 1)) print("Cos. Shape",cos.shape) for i in range(len(cos)): idx = x0 + i * step cos[i, 0, 0] = amp * np.cos(idx / (2 * np.pi * period)) cos[i, 0, 0] = cos[i, 0, 0] * np.exp(-k * idx) return cos def train_and_predict_regression(model, sequence_length=5000, batch_size=128, epochs=5): lahead = 1 cos = gen_cosine_amp(xn = sequence_length * 100) expected_output = np.zeros((len(cos), 1, 1)) for i in range(len(cos) - lahead): expected_output[i, 0] = np.mean(cos[i + 1:i + lahead + 1]) print('Training') for i in range(epochs): print('Epoch', i, '/', epochs) model.fit({'input': cos, 'output': expected_output}, verbose=1, nb_epoch=1, shuffle=False, batch_size=batch_size) print('Predicting') predicted_output = model.predict({'input': cos,}, batch_size=batch_size) return {'model': model, 'predicted_output': predicted_output, 'expected_output': expected_output} def treat_X_tradcom(mean): """ treat some columns of the dataframe together when normalizing the dataframe: col. 1, 2, 4 ... Mkt Price, Bid price, Ask Price col 3 and 5 ... Ask & Bid price """ result = mean.copy() #print("Result before max",result) mkt = mean[1] bid_px = mean[2] ask_px = mean[4] px_max=max(mkt,bid_px,ask_px) result[1] = px_max result[2] = px_max result[4] = px_max bid = mean[3] ask = mean[5] ba_max=max(bid,ask) result[3] = ba_max result[5] = ba_max print("Result after max",result) return result def standardize_inputs(source, colgroups=None, mean=None, std=None): """ Standardize input features. Groups of features could be listed in order to be standardized together. source: Pandas.DataFrame or filename of csv file with features colgroups: list of lists of groups of features to be standardized together (e.g. bid/ask price, bid/ask size) returns Xdf ...Pandas.DataFrame, mean ...Pandas.DataFrame, std ...Pandas.DataFrame """ import itertools import types #if isinstance(source, types.StringTypes): if isinstance(source, str): Xdf = pd.read_csv(source, sep=" ", index_col = 0, header = None) elif isinstance(source, pd.DataFrame): Xdf = source else: raise TypeError df = pd.DataFrame() me = pd.DataFrame() st = pd.DataFrame() for colgroup in colgroups: _df,_me,_st = standardize_columns(Xdf[colgroup]) # if mean & std are given, do not multiply with colgroup mean if mean is not None and std is not None: _df = Xdf[colgroup] df = pd.concat([df, _df], axis=1) me = pd.concat([me, _me]) st = pd.concat([st, _st]) print("In Group me") print(me) # _temp_list = list(itertools.chain.from_iterable(colgroups)) separate_features = [col for col in Xdf.columns if col not in list(itertools.chain.from_iterable(colgroups))] if mean is None and std is None: _me = Xdf[separate_features].mean() _df = Xdf[separate_features].sub(_me) _st = Xdf[separate_features].std() _df = _df[separate_features].div(_st) else: _df = Xdf[separate_features] df = pd.concat([df, _df], axis=1) me = pd.concat([me, _me]) st = pd.concat([st, _st]) me = pd.Series(me[0]) st = pd.Series(st[0]) if mean is not None and std is not None: df = df.sub(mean) df = df.div(std) return df, me, st def standardize_columns(colgroup): """ Standardize group of columns together colgroup: Pandas.DataFrame returns: Pandas.DataFrames: Colum Group standardized, Mean of the colgroup, stddeviation of the colgroup """ _me = np.mean(colgroup.values.flatten()) centered = colgroup.sub(_me) me = pd.DataFrame(np.full(len(colgroup.columns),_me), index=colgroup.columns) _st = np.std(colgroup.values.flatten()) standardized = centered.div(_st) st = pd.DataFrame(np.full(len(colgroup.columns),_st), index=colgroup.columns) return standardized, me, st def get_tradcom_normalization(filename, mean=None, std=None): """ read in all X Data Frames and find mean and std of all columns... """ Xdf = pd.read_csv(filename, sep=" ", index_col = 0, header = None) meanLoc = treat_X_tradcom(Xdf.mean()) print("Mean Loc") print (meanLoc) sys.stdout.flush() if mean is None: mean = meanLoc mean = mean.to_frame().transpose() meanDf=pd.concat([mean, meanLoc.to_frame().transpose()]) mean = meanDf.max() print("Mean") print (mean) sys.stdout.flush() stdLoc = treat_X_tradcom(Xdf.std()) print("Std Loc") print (stdLoc) sys.stdout.flush() if std is None: std = stdLoc std = std.to_frame().transpose() stdDf=pd.concat([std, stdLoc.to_frame().transpose()]) std = stdDf.max() print("Std") print (std) sys.stdout.flush() return(mean, std) def prepare_tradcom_classification(training=True, ret_type='df', sequence_length=5000, features_list=[1,2,3,4], output_dim=3, file_list=None, mean=None, std=None, training_count=None): """ prepare the datasets for the trading competition. training determines which datasets will be read returns: X and y: Pandas.DataFrames or np-Arrays storing the X - and y values for the fitting. TODO: refactor - move file operations to separate functions, move stacking to function, remove commented blocks and undesired print statements """ load_file = {'df': pd.read_pickle, 'stack': np.load, 'flat': np.load} save_file = {'df': lambda filename, obj: obj.to_pickle(filename), 'stack': lambda filename, obj: np.save(filename, obj), 'flat': lambda filename, obj: np.save(filename, obj)} print("Features_list",features_list) Xdf = pd.DataFrame() ydf = pd.DataFrame() outfile = "training_data_large/save_"+str(len(file_list)) if training: outfile += "_train" else: if training_count is None: print("Training count needs to be given for testing") raise ValueError if mean is None or std is None: print("Mean & std to be given for testing") raise ValueError outfile += "_"+str(training_count)+"_test" filetype = '.pickle' if ret_type == 'df' else '.npy' outfile_X = outfile+"_X" + filetype outfile_y = outfile+"_y" + filetype outfile_m = outfile+"_m" + filetype outfile_s = outfile+"_s" + filetype if os.path.isfile(outfile_X) and os.path.isfile(outfile_y): X = load_file[ret_type](outfile_X) y = load_file[ret_type](outfile_y) #X = np.load(outfile_X) #y = np.load(outfile_y) if training: mean = pd.Series(np.load(outfile_m)) std = pd.Series(np.load(outfile_s)) print("Found files ", outfile_X , " and ", outfile_y) return (X,y,mean,std) for filename in file_list: signalfile = filename.replace('prod_data','signal') signalfile = signalfile.replace('txt','csv') print("Working on Input files: ",filename, ", ",signalfile) if not os.path.isfile(signalfile): print("File ",signalfile," is not existing. Aborting.") sys.exit() # get the date... r = re.compile('^\D*(\d*)\D*', re.UNICODE) date = re.search(r, filename).group(1) print("Date is ",date) date_ux = time.mktime(datetime.datetime.strptime(date,"%Y%m%d").timetuple()) # load dataframes and reindex Xdf_loc = pd.read_csv(filename, sep=" ", header = None,) # print(Xdf_loc.iloc[:3]) Xdf_loc['Milliseconds'] = Xdf_loc[0] Xdf_loc['Date'] =
pd.to_datetime(date_ux*1000*1000*1000)
pandas.to_datetime
# <NAME> Python 3.8 2020-08-18 - 2020-09-01 # # zipgeo.py takes a .csv file with 6 fields and geocodes it # *by zipcode* first; then via api and address. # ("AnyID","address","city","state","zip","country") import pandas as pd from uszipcode import SearchEngine import os import sys from keys import n_user, bing_key, oc_key # import geocoding services / # NOMINATIM requires no key from geopy.geocoders import ArcGIS, Bing, Nominatim, OpenCage # initialize everything arcgis = ArcGIS(timeout=100) bing = Bing(bing_key,timeout=100) nominatim = Nominatim(user_agent=n_user, timeout=100) opencage = OpenCage(oc_key, timeout=100) # choose and order your geocoders in preference order geocoders = [bing, nominatim, arcgis] search = SearchEngine(simple_zipcode=True) # set input directory and filename currentdir = os.getcwd() filename = 'fibrtest.csv' if len(sys.argv) - 1 >= 1: filename = str(sys.argv[1]) in_file = currentdir + '/data/' + filename timeout = 100 def zipgeo(): anydata =
pd.io.parsers.read_csv(in_file, dtype={'zip': 'str'})
pandas.io.parsers.read_csv
import pandas as pd from joblib import Parallel, delayed from epic.bigwig.create_bigwigs import _create_bigwig def _trunks_flanks_valleys(cdf, trunk_diff, bin_size, distance_allowed): dfs = [] for cid, cdf in cdf.groupby(((cdf.Bin - cdf.Bin.shift()).abs() > distance_allowed).cumsum()): enriched_diff = cdf.TotalEnriched >= (cdf.TotalEnriched.max() - trunk_diff) enriched_sum = (enriched_diff.shift(1) != enriched_diff).cumsum() grpby = cdf.groupby(enriched_sum) nb_groups = len(grpby) max_value = cdf.TotalEnriched.max() chromosome = cdf.Chromosome.head(1).iloc[0] cluster_start = str(cdf.head(1).Bin.iloc[0]) cluster_end = str(cdf.tail(1).Bin.iloc[0] + bin_size - 1) dfs2 = [] # group islands into trunks/flanks/valleys for (i, rdf) in grpby: is_trunk = rdf.head(1).TotalEnriched.iloc[0] >= (max_value - trunk_diff) if not is_trunk and (i == 1 or i == (nb_groups)): # first or last, i.e. flank status = "flank" elif not is_trunk: status = "valley" else: status = "trunk" start = str(rdf.head(1).Bin.iloc[0]) end = str(rdf.tail(1).Bin.iloc[0] + bin_size - 1) region_id = start + ":" + end total_enriched = ",".join(rdf.TotalEnriched.astype(str)) bins = ",".join(rdf.Bin.astype(str)) # min_enriched = rdf.TotalEnriched.min() # median_enriched = rdf.TotalEnriched.median() gdf3 = pd.DataFrame(rdf.drop("TotalEnriched Chromosome Bin".split(), 1).sum()).T gdf3.insert(0, "TotalEnriched", total_enriched) gdf3.insert(0, "Bins", bins) gdf3.insert(0, "MaxEnrichedCluster", max_value) # gdf3.insert(0, "MinEnrichedRegion", min_enriched) # gdf3.insert(0, "MedianEnrichedRegion", median_enriched) gdf3.insert(0, "Start", int(start)) gdf3.insert(0, "End", int(end)) gdf3.insert(0, "RegionKind", status) gdf3.insert(0, "RegionID", region_id) gdf3.insert(0, "ClusterID", "_".join([chromosome, str(cid)])) gdf3.insert(0, "Chromosome", chromosome) dfs2.append(gdf3) df2 =
pd.concat(dfs2, axis=0)
pandas.concat
import pandas import numpy as np from cornellGrading import cornellQualtrics import os def genReadingAssignments(infile, outfile): # generate reading assignments # infile must be xlsx with two sheets (Readers & Canddiates) # grab all input data if isinstance(infile, str): tmp = pandas.ExcelFile(infile, engine="openpyxl") readers = tmp.parse("Readers") candidates = tmp.parse("Candidates") tmp.close() readers = readers["Reader Names"].values candidates = candidates["Candidate Names"].values else: readers = infile[0] candidates = infile[1] # Each person needs to be read by 2 readers nperreader = int(np.round(len(candidates) * 2 / len(readers))) # shuffle candidates and split by readers clist = np.hstack((candidates.copy(), candidates.copy())) np.random.shuffle(clist) out = {} for reader in readers: tmp = clist[:nperreader] while np.unique(tmp).size != tmp.size: np.random.shuffle(clist) tmp = clist[:nperreader] out[reader] = tmp clist = clist[nperreader:] # check for unassigned if len(clist) > 0: for c in clist: r = np.random.choice(readers, size=1)[0] while c in out[r]: r = np.random.choice(readers, size=1)[0] out[r] = np.hstack((out[r], c)) # final consistency check asslist = [] for key, val in out.items(): assert np.unique(val).size == val.size, "{} has non-unique list.".format(key) asslist = np.hstack((asslist, val)) assert np.all( np.unique(asslist) == np.sort(candidates) ), "Not all candidates assigned." for c in candidates: assert np.where(asslist == c)[0].size == 2, "{} not assigned twice.".format(c) # write assignemnts out to disk outdf = pandas.DataFrame() for key, val in out.items(): outdf = pandas.concat([outdf, pandas.DataFrame({key: val})], axis=1) ew =
pandas.ExcelWriter(outfile, options={"encoding": "utf-8"})
pandas.ExcelWriter
#!/usr/bin/env python import json import numpy as np import pandas as pd import os import sys import tarfile import tempfile import rdkit.Chem as rdC import rdkit.Chem.Descriptors as rdCD import atomsci.ddm.pipeline.model_pipeline as mp import atomsci.ddm.pipeline.predict_from_model as pfm import atomsci.ddm.pipeline.parameter_parser as parse import atomsci.ddm.utils.model_retrain as mr from atomsci.ddm.utils import llnl_utils sys.path.append(os.path.join(os.path.dirname(__file__), '..')) import integrative_utilities def clean(prefix='delaney-processed'): """ Clean test files """ for f in ['%s_curated.csv'%prefix, '%s_curated_fit.csv'%prefix, '%s_curated_external.csv'%prefix, '%s_curated_predict.csv'%prefix]: if os.path.isfile(f): os.remove(f) def exact_mol_weight(x): ''' Given SMILES, return exact mol weight ''' return rdCD.ExactMolWt(rdC.MolFromSmiles(x)) def num_atoms(x): ''' Given SMILES, return the number of atoms ''' return len(rdC.MolFromSmiles(x).GetAtoms()) def H1_curate(): """ Curate dataset for model fitting """ if (not os.path.isfile('H1_curated.csv') and not os.path.isfile('H1_curated_fit.csv') and not os.path.isfile('H1_curated_external.csv')): curated_df =
pd.read_csv('../../test_datasets/H1_std.csv')
pandas.read_csv
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, timedelta import functools import itertools import numpy as np import numpy.ma as ma import numpy.ma.mrecords as mrecords from numpy.random import randn import pytest from pandas.compat import ( PY3, PY36, OrderedDict, is_platform_little_endian, lmap, long, lrange, lzip, range, zip) from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas.core.dtypes.common import is_integer_dtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, MultiIndex, Series, Timedelta, Timestamp, compat, date_range, isna) from pandas.tests.frame.common import TestData import pandas.util.testing as tm MIXED_FLOAT_DTYPES = ['float16', 'float32', 'float64'] MIXED_INT_DTYPES = ['uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64'] class TestDataFrameConstructors(TestData): def test_constructor(self): df = DataFrame() assert len(df.index) == 0 df = DataFrame(data={}) assert len(df.index) == 0 def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert self.mixed_frame['foo'].dtype == np.object_ def test_constructor_cast_failure(self): foo = DataFrame({'a': ['a', 'b', 'c']}, dtype=np.float64) assert foo['a'].dtype == object # GH 3010, constructing with odd arrays df = DataFrame(np.ones((4, 2))) # this is ok df['foo'] = np.ones((4, 2)).tolist() # this is not ok pytest.raises(ValueError, df.__setitem__, tuple(['test']), np.ones((4, 2))) # this is ok df['foo2'] = np.ones((4, 2)).tolist() def test_constructor_dtype_copy(self): orig_df = DataFrame({ 'col1': [1.], 'col2': [2.], 'col3': [3.]}) new_df = pd.DataFrame(orig_df, dtype=float, copy=True) new_df['col1'] = 200. assert orig_df['col1'][0] == 1. def test_constructor_dtype_nocast_view(self): df = DataFrame([[1, 2]]) should_be_view = DataFrame(df, dtype=df[0].dtype) should_be_view[0][0] = 99 assert df.values[0, 0] == 99 should_be_view = DataFrame(df.values, dtype=df[0].dtype) should_be_view[0][0] = 97 assert df.values[0, 0] == 97 def test_constructor_dtype_list_data(self): df = DataFrame([[1, '2'], [None, 'a']], dtype=object) assert df.loc[1, 0] is None assert df.loc[0, 1] == '2' def test_constructor_list_frames(self): # see gh-3243 result = DataFrame([DataFrame([])]) assert result.shape == (1, 0) result = DataFrame([DataFrame(dict(A=lrange(5)))]) assert isinstance(result.iloc[0, 0], DataFrame) def test_constructor_mixed_dtypes(self): def _make_mixed_dtypes_df(typ, ad=None): if typ == 'int': dtypes = MIXED_INT_DTYPES arrays = [np.array(np.random.rand(10), dtype=d) for d in dtypes] elif typ == 'float': dtypes = MIXED_FLOAT_DTYPES arrays = [np.array(np.random.randint( 10, size=10), dtype=d) for d in dtypes] zipper = lzip(dtypes, arrays) for d, a in zipper: assert(a.dtype == d) if ad is None: ad = dict() ad.update({d: a for d, a in zipper}) return DataFrame(ad) def _check_mixed_dtypes(df, dtypes=None): if dtypes is None: dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES for d in dtypes: if d in df: assert(df.dtypes[d] == d) # mixed floating and integer coexinst in the same frame df = _make_mixed_dtypes_df('float') _check_mixed_dtypes(df) # add lots of types df = _make_mixed_dtypes_df('float', dict(A=1, B='foo', C='bar')) _check_mixed_dtypes(df) # GH 622 df = _make_mixed_dtypes_df('int') _check_mixed_dtypes(df) def test_constructor_complex_dtypes(self): # GH10952 a = np.random.rand(10).astype(np.complex64) b = np.random.rand(10).astype(np.complex128) df = DataFrame({'a': a, 'b': b}) assert a.dtype == df.a.dtype assert b.dtype == df.b.dtype def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 df = DataFrame({'A': ['x', None]}, dtype=string_dtype) result = df.isna() expected = DataFrame({"A": [False, True]}) tm.assert_frame_equal(result, expected) assert df.iloc[1, 0] is None df = DataFrame({'A': ['x', np.nan]}, dtype=string_dtype) assert np.isnan(df.iloc[1, 0]) def test_constructor_rec(self): rec = self.frame.to_records(index=False) if PY3: # unicode error under PY2 rec.dtype.names = list(rec.dtype.names)[::-1] index = self.frame.index df = DataFrame(rec) tm.assert_index_equal(df.columns, pd.Index(rec.dtype.names)) df2 = DataFrame(rec, index=index) tm.assert_index_equal(df2.columns, pd.Index(rec.dtype.names)) tm.assert_index_equal(df2.index, index) rng = np.arange(len(rec))[::-1] df3 = DataFrame(rec, index=rng, columns=['C', 'B']) expected = DataFrame(rec, index=rng).reindex(columns=['C', 'B']) tm.assert_frame_equal(df3, expected) def test_constructor_bool(self): df = DataFrame({0: np.ones(10, dtype=bool), 1: np.zeros(10, dtype=bool)}) assert df.values.dtype == np.bool_ def test_constructor_overflow_int64(self): # see gh-14881 values = np.array([2 ** 64 - i for i in range(1, 10)], dtype=np.uint64) result = DataFrame({'a': values}) assert result['a'].dtype == np.uint64 # see gh-2355 data_scores = [(6311132704823138710, 273), (2685045978526272070, 23), (8921811264899370420, 45), (long(17019687244989530680), 270), (long(9930107427299601010), 273)] dtype = [('uid', 'u8'), ('score', 'u8')] data = np.zeros((len(data_scores),), dtype=dtype) data[:] = data_scores df_crawls = DataFrame(data) assert df_crawls['uid'].dtype == np.uint64 @pytest.mark.parametrize("values", [np.array([2**64], dtype=object), np.array([2**65]), [2**64 + 1], np.array([-2**63 - 4], dtype=object), np.array([-2**64 - 1]), [-2**65 - 2]]) def test_constructor_int_overflow(self, values): # see gh-18584 value = values[0] result = DataFrame(values) assert result[0].dtype == object assert result[0][0] == value def test_constructor_ordereddict(self): import random nitems = 100 nums = lrange(nitems) random.shuffle(nums) expected = ['A%d' % i for i in nums] df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems))) assert expected == list(df.columns) def test_constructor_dict(self): frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}) # col2 is padded with NaN assert len(self.ts1) == 30 assert len(self.ts2) == 25 tm.assert_series_equal(self.ts1, frame['col1'], check_names=False) exp = pd.Series(np.concatenate([[np.nan] * 5, self.ts2.values]), index=self.ts1.index, name='col2') tm.assert_series_equal(exp, frame['col2']) frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}, columns=['col2', 'col3', 'col4']) assert len(frame) == len(self.ts2) assert 'col1' not in frame assert isna(frame['col3']).all() # Corner cases assert len(DataFrame({})) == 0 # mix dict and array, wrong size - no spec for which error should raise # first with pytest.raises(ValueError): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # Length-one dict micro-optimization frame = DataFrame({'A': {'1': 1, '2': 2}}) tm.assert_index_equal(frame.index, pd.Index(['1', '2'])) # empty dict plus index idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx) assert frame.index is idx # empty with index and columns idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx, columns=idx) assert frame.index is idx assert frame.columns is idx assert len(frame._series) == 3 # with dict of empty list and Series frame = DataFrame({'A': [], 'B': []}, columns=['A', 'B']) tm.assert_index_equal(frame.index, Index([], dtype=np.int64)) # GH 14381 # Dict with None value frame_none = DataFrame(dict(a=None), index=[0]) frame_none_list = DataFrame(dict(a=[None]), index=[0]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none.get_value(0, 'a') is None with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none_list.get_value(0, 'a') is None tm.assert_frame_equal(frame_none, frame_none_list) # GH10856 # dict with scalar values should raise error, even if columns passed msg = 'If using all scalar values, you must pass an index' with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}) with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}, columns=['a']) @pytest.mark.parametrize("scalar", [2, np.nan, None, 'D']) def test_constructor_invalid_items_unused(self, scalar): # No error if invalid (scalar) value is in fact not used: result = DataFrame({'a': scalar}, columns=['b']) expected = DataFrame(columns=['b']) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [2, np.nan, None, float('nan')]) def test_constructor_dict_nan_key(self, value): # GH 18455 cols = [1, value, 3] idx = ['a', value] values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = DataFrame(data).sort_values(1).sort_values('a', axis=1) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values('a', axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [np.nan, None, float('nan')]) def test_constructor_dict_nan_tuple_key(self, value): # GH 18455 cols = Index([(11, 21), (value, 22), (13, value)]) idx = Index([('a', value), (value, 2)]) values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = (DataFrame(data) .sort_values((11, 21)) .sort_values(('a', value), axis=1)) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values(('a', value), axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.skipif(not PY36, reason='Insertion order for Python>=3.6') def test_constructor_dict_order_insertion(self): # GH19018 # initialization ordering: by insertion order if python>= 3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ba')) tm.assert_frame_equal(frame, expected) @pytest.mark.skipif(PY36, reason='order by value for Python<3.6') def test_constructor_dict_order_by_values(self): # GH19018 # initialization ordering: by value if python<3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ab')) tm.assert_frame_equal(frame, expected) def test_constructor_multi_index(self): # GH 4078 # construction error with mi and all-nan frame tuples = [(2, 3), (3, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() tuples = [(3, 3), (2, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() def test_constructor_error_msgs(self): msg = "Empty data passed with indices specified." # passing an empty array with columns specified. with pytest.raises(ValueError, match=msg): DataFrame(np.empty(0), columns=list('abc')) msg = "Mixing dicts with non-Series may lead to ambiguous ordering." # mix dict and array, wrong size with pytest.raises(ValueError, match=msg): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # wrong size ndarray, GH 3105 msg = r"Shape of passed values is \(3, 4\), indices imply \(3, 3\)" with pytest.raises(ValueError, match=msg): DataFrame(np.arange(12).reshape((4, 3)), columns=['foo', 'bar', 'baz'], index=pd.date_range('2000-01-01', periods=3)) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(np.zeros((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # wrong size axis labels msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(3, 1\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B', 'C'], index=[1]) msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(2, 2\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B'], index=[1, 2]) msg = ("If using all scalar " "values, you must pass " "an index") with pytest.raises(ValueError, match=msg): DataFrame({'a': False, 'b': True}) def test_constructor_with_embedded_frames(self): # embedded data frames df1 = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) df2 = DataFrame([df1, df1 + 10]) df2.dtypes str(df2) result = df2.loc[0, 0] tm.assert_frame_equal(result, df1) result = df2.loc[1, 0] tm.assert_frame_equal(result, df1 + 10) def test_constructor_subclass_dict(self): # Test for passing dict subclass to constructor data = {'col1': tm.TestSubDict((x, 10.0 * x) for x in range(10)), 'col2': tm.TestSubDict((x, 20.0 * x) for x in range(10))} df = DataFrame(data) refdf = DataFrame({col: dict(compat.iteritems(val)) for col, val in compat.iteritems(data)}) tm.assert_frame_equal(refdf, df) data = tm.TestSubDict(compat.iteritems(data)) df = DataFrame(data) tm.assert_frame_equal(refdf, df) # try with defaultdict from collections import defaultdict data = {} self.frame['B'][:10] = np.nan for k, v in compat.iteritems(self.frame): dct = defaultdict(dict) dct.update(v.to_dict()) data[k] = dct frame = DataFrame(data) tm.assert_frame_equal(self.frame.sort_index(), frame) def test_constructor_dict_block(self): expected = np.array([[4., 3., 2., 1.]]) df = DataFrame({'d': [4.], 'c': [3.], 'b': [2.], 'a': [1.]}, columns=['d', 'c', 'b', 'a']) tm.assert_numpy_array_equal(df.values, expected) def test_constructor_dict_cast(self): # cast float tests test_data = { 'A': {'1': 1, '2': 2}, 'B': {'1': '1', '2': '2', '3': '3'}, } frame = DataFrame(test_data, dtype=float) assert len(frame) == 3 assert frame['B'].dtype == np.float64 assert frame['A'].dtype == np.float64 frame = DataFrame(test_data) assert len(frame) == 3 assert frame['B'].dtype == np.object_ assert frame['A'].dtype == np.float64 # can't cast to float test_data = { 'A': dict(zip(range(20), tm.makeStringIndex(20))), 'B': dict(zip(range(15), randn(15))) } frame = DataFrame(test_data, dtype=float) assert len(frame) == 20 assert frame['A'].dtype == np.object_ assert frame['B'].dtype == np.float64 def test_constructor_dict_dont_upcast(self): d = {'Col1': {'Row1': 'A String', 'Row2': np.nan}} df = DataFrame(d) assert isinstance(df['Col1']['Row2'], float) dm = DataFrame([[1, 2], ['a', 'b']], index=[1, 2], columns=[1, 2]) assert isinstance(dm[1][1], int) def test_constructor_dict_of_tuples(self): # GH #1491 data = {'a': (1, 2, 3), 'b': (4, 5, 6)} result = DataFrame(data) expected = DataFrame({k: list(v) for k, v in compat.iteritems(data)}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_dict_multiindex(self): def check(result, expected): return tm.assert_frame_equal(result, expected, check_dtype=True, check_index_type=True, check_column_type=True, check_names=True) d = {('a', 'a'): {('i', 'i'): 0, ('i', 'j'): 1, ('j', 'i'): 2}, ('b', 'a'): {('i', 'i'): 6, ('i', 'j'): 5, ('j', 'i'): 4}, ('b', 'c'): {('i', 'i'): 7, ('i', 'j'): 8, ('j', 'i'): 9}} _d = sorted(d.items()) df = DataFrame(d) expected = DataFrame( [x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d])).T expected.index = MultiIndex.from_tuples(expected.index) check(df, expected) d['z'] = {'y': 123., ('i', 'i'): 111, ('i', 'j'): 111, ('j', 'i'): 111} _d.insert(0, ('z', d['z'])) expected = DataFrame( [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False)).T expected.index = Index(expected.index, tupleize_cols=False) df = DataFrame(d) df = df.reindex(columns=expected.columns, index=expected.index) check(df, expected) def test_constructor_dict_datetime64_index(self): # GH 10160 dates_as_str = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15'] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(dates_as_str)} data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, '%Y-%m-%d')) data_Timestamp = create_data(Timestamp) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timestamp(dt) for dt in dates_as_str]) result_datetime64 = DataFrame(data_datetime64) result_datetime = DataFrame(data_datetime) result_Timestamp = DataFrame(data_Timestamp) tm.assert_frame_equal(result_datetime64, expected) tm.assert_frame_equal(result_datetime, expected) tm.assert_frame_equal(result_Timestamp, expected) def test_constructor_dict_timedelta64_index(self): # GH 10160 td_as_int = [1, 2, 3, 4] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(td_as_int)} data_timedelta64 = create_data(lambda x: np.timedelta64(x, 'D')) data_timedelta = create_data(lambda x: timedelta(days=x)) data_Timedelta = create_data(lambda x: Timedelta(x, 'D')) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timedelta(td, 'D') for td in td_as_int]) result_timedelta64 = DataFrame(data_timedelta64) result_timedelta = DataFrame(data_timedelta) result_Timedelta = DataFrame(data_Timedelta) tm.assert_frame_equal(result_timedelta64, expected) tm.assert_frame_equal(result_timedelta, expected) tm.assert_frame_equal(result_Timedelta, expected) def test_constructor_period(self): # PeriodIndex a = pd.PeriodIndex(['2012-01', 'NaT', '2012-04'], freq='M') b = pd.PeriodIndex(['2012-02-01', '2012-03-01', 'NaT'], freq='D') df = pd.DataFrame({'a': a, 'b': b}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype # list of periods df = pd.DataFrame({'a': a.astype(object).tolist(), 'b': b.astype(object).tolist()}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype def test_nested_dict_frame_constructor(self): rng = pd.period_range('1/1/2000', periods=5) df = DataFrame(randn(10, 5), columns=rng) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(col, {})[row] = df.get_value(row, col) result = DataFrame(data, columns=rng) tm.assert_frame_equal(result, df) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(row, {})[col] = df.get_value(row, col) result = DataFrame(data, index=rng).T tm.assert_frame_equal(result, df) def _check_basic_constructor(self, empty): # mat: 2d matrix with shape (3, 2) to input. empty - makes sized # objects mat = empty((2, 3), dtype=float) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 # 1-D input frame = DataFrame(empty((3,)), columns=['A'], index=[1, 2, 3]) assert len(frame.index) == 3 assert len(frame.columns) == 1 # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # wrong size axis labels msg = r'Shape of passed values is \(3, 2\), indices imply \(3, 1\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B', 'C'], index=[1]) msg = r'Shape of passed values is \(3, 2\), indices imply \(2, 2\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B'], index=[1, 2]) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(empty((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # automatic labeling frame = DataFrame(mat) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, index=[1, 2]) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, columns=['A', 'B', 'C']) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) # 0-length axis frame = DataFrame(empty((0, 3))) assert len(frame.index) == 0 frame = DataFrame(empty((3, 0))) assert len(frame.columns) == 0 def test_constructor_ndarray(self): self._check_basic_constructor(np.ones) frame = DataFrame(['foo', 'bar'], index=[0, 1], columns=['A']) assert len(frame) == 2 def test_constructor_maskedarray(self): self._check_basic_constructor(ma.masked_all) # Check non-masked values mat = ma.masked_all((2, 3), dtype=float) mat[0, 0] = 1.0 mat[1, 2] = 2.0 frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert 1.0 == frame['A'][1] assert 2.0 == frame['C'][2] # what is this even checking?? mat = ma.masked_all((2, 3), dtype=float) frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert np.all(~np.asarray(frame == frame)) def test_constructor_maskedarray_nonfloat(self): # masked int promoted to float mat = ma.masked_all((2, 3), dtype=int) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.float64) assert frame.values.dtype == np.float64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'][1] assert 2 == frame['C'][2] # masked np.datetime64 stays (use NaT as null) mat = ma.masked_all((2, 3), dtype='M8[ns]') # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert isna(frame).values.all() # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'].view('i8')[1] assert 2 == frame['C'].view('i8')[2] # masked bool promoted to object mat = ma.masked_all((2, 3), dtype=bool) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=object) assert frame.values.dtype == object # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = True mat2[1, 2] = False frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert frame['A'][1] is True assert frame['C'][2] is False def test_constructor_mrecarray(self): # Ensure mrecarray produces frame identical to dict of masked arrays # from GH3479 assert_fr_equal = functools.partial(tm.assert_frame_equal, check_index_type=True, check_column_type=True, check_frame_type=True) arrays = [ ('float', np.array([1.5, 2.0])), ('int', np.array([1, 2])), ('str', np.array(['abc', 'def'])), ] for name, arr in arrays[:]: arrays.append(('masked1_' + name, np.ma.masked_array(arr, mask=[False, True]))) arrays.append(('masked_all', np.ma.masked_all((2,)))) arrays.append(('masked_none', np.ma.masked_array([1.0, 2.5], mask=False))) # call assert_frame_equal for all selections of 3 arrays for comb in itertools.combinations(arrays, 3): names, data = zip(*comb) mrecs = mrecords.fromarrays(data, names=names) # fill the comb comb = {k: (v.filled() if hasattr(v, 'filled') else v) for k, v in comb} expected = DataFrame(comb, columns=names) result = DataFrame(mrecs) assert_fr_equal(result, expected) # specify columns expected = DataFrame(comb, columns=names[::-1]) result = DataFrame(mrecs, columns=names[::-1]) assert_fr_equal(result, expected) # specify index expected = DataFrame(comb, columns=names, index=[1, 2]) result = DataFrame(mrecs, index=[1, 2]) assert_fr_equal(result, expected) def test_constructor_corner_shape(self): df = DataFrame(index=[]) assert df.values.shape == (0, 0) @pytest.mark.parametrize("data, index, columns, dtype, expected", [ (None, lrange(10), ['a', 'b'], object, np.object_), (None, None, ['a', 'b'], 'int64', np.dtype('int64')), (None, lrange(10), ['a', 'b'], int, np.dtype('float64')), ({}, None, ['foo', 'bar'], None, np.object_), ({'b': 1}, lrange(10), list('abc'), int, np.dtype('float64')) ]) def test_constructor_dtype(self, data, index, columns, dtype, expected): df = DataFrame(data, index, columns, dtype) assert df.values.dtype == expected def test_constructor_scalar_inference(self): data = {'int': 1, 'bool': True, 'float': 3., 'complex': 4j, 'object': 'foo'} df = DataFrame(data, index=np.arange(10)) assert df['int'].dtype == np.int64 assert df['bool'].dtype == np.bool_ assert df['float'].dtype == np.float64 assert df['complex'].dtype == np.complex128 assert df['object'].dtype == np.object_ def test_constructor_arrays_and_scalars(self): df = DataFrame({'a': randn(10), 'b': True}) exp = DataFrame({'a': df['a'].values, 'b': [True] * 10}) tm.assert_frame_equal(df, exp) with pytest.raises(ValueError, match='must pass an index'): DataFrame({'a': False, 'b': True}) def test_constructor_DataFrame(self): df = DataFrame(self.frame) tm.assert_frame_equal(df, self.frame) df_casted = DataFrame(self.frame, dtype=np.int64) assert df_casted.values.dtype == np.int64 def test_constructor_more(self): # used to be in test_matrix.py arr = randn(10) dm = DataFrame(arr, columns=['A'], index=np.arange(10)) assert dm.values.ndim == 2 arr = randn(0) dm = DataFrame(arr) assert dm.values.ndim == 2 assert dm.values.ndim == 2 # no data specified dm = DataFrame(columns=['A', 'B'], index=np.arange(10)) assert dm.values.shape == (10, 2) dm = DataFrame(columns=['A', 'B']) assert dm.values.shape == (0, 2) dm = DataFrame(index=np.arange(10)) assert dm.values.shape == (10, 0) # can't cast mat = np.array(['foo', 'bar'], dtype=object).reshape(2, 1) with pytest.raises(ValueError, match='cast'): DataFrame(mat, index=[0, 1], columns=[0], dtype=float) dm = DataFrame(DataFrame(self.frame._series)) tm.assert_frame_equal(dm, self.frame) # int cast dm = DataFrame({'A': np.ones(10, dtype=int), 'B': np.ones(10, dtype=np.float64)}, index=np.arange(10)) assert len(dm.columns) == 2 assert dm.values.dtype == np.float64 def test_constructor_empty_list(self): df = DataFrame([], index=[]) expected = DataFrame(index=[]) tm.assert_frame_equal(df, expected) # GH 9939 df = DataFrame([], columns=['A', 'B']) expected = DataFrame({}, columns=['A', 'B']) tm.assert_frame_equal(df, expected) # Empty generator: list(empty_gen()) == [] def empty_gen(): return yield df = DataFrame(empty_gen(), columns=['A', 'B']) tm.assert_frame_equal(df, expected) def test_constructor_list_of_lists(self): # GH #484 df = DataFrame(data=[[1, 'a'], [2, 'b']], columns=["num", "str"]) assert is_integer_dtype(df['num']) assert df['str'].dtype == np.object_ # GH 4851 # list of 0-dim ndarrays expected = DataFrame({0: np.arange(10)}) data = [np.array(x) for x in range(10)] result = DataFrame(data) tm.assert_frame_equal(result, expected) def test_constructor_sequence_like(self): # GH 3783 # collections.Squence like class DummyContainer(compat.Sequence): def __init__(self, lst): self._lst = lst def __getitem__(self, n): return self._lst.__getitem__(n) def __len__(self, n): return self._lst.__len__() lst_containers = [DummyContainer([1, 'a']), DummyContainer([2, 'b'])] columns = ["num", "str"] result = DataFrame(lst_containers, columns=columns) expected = DataFrame([[1, 'a'], [2, 'b']], columns=columns) tm.assert_frame_equal(result, expected, check_dtype=False) # GH 4297 # support Array import array result = DataFrame({'A': array.array('i', range(10))}) expected = DataFrame({'A': list(range(10))}) tm.assert_frame_equal(result, expected, check_dtype=False) expected = DataFrame([list(
range(10)
pandas.compat.range
import streamlit as st import pandas as pd import numpy as np import plotly.express as px from wordcloud import WordCloud, STOPWORDS import matplotlib.pyplot as plt st.title("Sentiment Analysis of Tweets about US Airlines") st.sidebar.title("Sentiment Analysis of Tweets about US Airlines") st.markdown("This application is a Streamlit dashboard to analyze the sentiment of Tweets 🐦🐦") st.sidebar.markdown("This application is a Streamlit dashboard to analyze the sentiment of Tweets 🐦🐦") #Hide Footer hide_footer_style = """ <style> .reportview-container .main footer {visibility: hidden;} """ st.markdown(hide_footer_style, unsafe_allow_html=True) #Hide Developer Options hide_menu_style = """ <style> #MainMenu {visibility: hidden;} </style> """ st.markdown(hide_menu_style, unsafe_allow_html=True) DATA_URL = ('Tweets.csv') @st.cache(persist=True) def load_data(): data =
pd.read_csv(DATA_URL)
pandas.read_csv