prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import numpy as np import pytest import pandas as pd from pandas import DataFrame, Series, date_range, timedelta_range import pandas._testing as tm class TestTimeSeries: def test_contiguous_boolean_preserve_freq(self): rng = date_range("1/1/2000", "3/1/2000", freq="B") mask = np.zeros(len(rng), dtype=bool) mask[10:20] = True masked = rng[mask] expected = rng[10:20] assert expected.freq == rng.freq tm.assert_index_equal(masked, expected) mask[22] = True masked = rng[mask] assert masked.freq is None def test_promote_datetime_date(self): rng = date_range("1/1/2000", periods=20) ts = Series(np.random.randn(20), index=rng) ts_slice = ts[5:] ts2 = ts_slice.copy() ts2.index = [x.date() for x in ts2.index] result = ts + ts2 result2 = ts2 + ts expected = ts + ts[5:] expected.index = expected.index._with_freq(None) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) # test asfreq result = ts2.asfreq("4H", method="ffill") expected = ts[5:].asfreq("4H", method="ffill") tm.assert_series_equal(result, expected) result = rng.get_indexer(ts2.index) expected = rng.get_indexer(ts_slice.index) tm.assert_numpy_array_equal(result, expected) def test_series_map_box_timedelta(self): # GH 11349 s = Series(timedelta_range("1 day 1 s", periods=5, freq="h")) def f(x): return x.total_seconds() s.map(f) s.apply(f) DataFrame(s).applymap(f) def test_view_tz(self): # GH#24024 ser = Series(pd.date_range("2000", periods=4, tz="US/Central")) result = ser.view("i8") expected = Series( [ 946706400000000000, 946792800000000000, 946879200000000000, 946965600000000000, ] ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("tz", [None, "US/Central"]) def test_asarray_object_dt64(self, tz): ser = Series(pd.date_range("2000", periods=2, tz=tz)) with tm.assert_produces_warning(None): # Future behavior (for tzaware case) with no warning result = np.asarray(ser, dtype=object) expected = np.array( [pd.Timestamp("2000-01-01", tz=tz), pd.Timestamp("2000-01-02", tz=tz)] ) tm.assert_numpy_array_equal(result, expected) def test_asarray_tz_naive(self): # This shouldn't produce a warning. ser = Series(
pd.date_range("2000", periods=2)
pandas.date_range
import os import warnings import pandas import numpy as np IDR_PATH = os.getenv("ZTFIDRPATH", "./dr2") __all__ = ["get_targets_data", "get_host_data", "get_autotyping"] # ================== # # # # TOP LEVEL # # # # ================== # def get_targets_data(): """ """ redshifts = get_redshif_data()[["redshift","redshift_err", "redshift_source"]] salt2params = get_salt2params() coords = get_coords_data() # merging data_ = pandas.merge(redshifts,salt2params, left_index=True, right_index=True, suffixes=("","_salt"), how="outer") data_ = pandas.merge(data_, coords, left_index=True, right_index=True, how="outer") # set index return data_ def get_host_data(): """ """ hostmags = get_host_mags() hostcoords = get_host_coords() return pandas.merge( pandas.concat([hostcoords], keys=["global"], axis=1), # multi index hostmags, left_index=True, right_index=True, how="outer") # ================== # # # # BASICS # # # # ================== # # Master List def get_masterlist(load=True, **kwargs): """ """ filepath = os.path.join(IDR_PATH, "tables", "ztfdr2_masterlist.csv") if not load: return filepath return pandas.read_csv(filepath, **kwargs) # Redshifts def get_redshif_data(load=True, index_col=0, **kwargs): """ """ filepath = os.path.join(IDR_PATH, "tables", "ztfdr2_redshifts.csv") if not load: return filepath data = pandas.read_csv(filepath, index_col=index_col, **kwargs) data.index.name = 'ztfname' return data def get_snidauto_redshift(load=True, **kwargs): """ """ filepath = os.path.join(IDR_PATH,"tables", "ancilliary_info","snidauto_redshift.csv") if not load: return filepath return pandas.read_csv(filepath, index_col=0, **kwargs) # Coordinates def get_coords_data(load=True, index_col=0, **kwargs): """ """ filepath = os.path.join(IDR_PATH, "tables", "ztfdr2_coordinates.csv") if not load: return filepath return pandas.read_csv(filepath, index_col=index_col, **kwargs) # SALT def get_salt2params(load=True, default=True, **kwargs): """ """ filename = "ztfdr2_salt2_params.csv" if default else "ztfdr2_salt2_params_phase-15to30_color-0.4to0.8.csv" filepath = os.path.join(IDR_PATH, "tables", filename) if not load: return filepath return pandas.read_csv(filepath, **kwargs ).rename({"z":"redshift"}, axis=1 ).set_index("ztfname") # ================== # # # # HOST # # # # ================== # def get_host_coords(load=True, **kwargs): """ """ filepath = os.path.join(IDR_PATH, "tables", "ancilliary_info/host_photometry/ztfdr2_hostcoords.csv") if not load: return filepath return pandas.read_csv(filepath, **{**dict(sep=" "),**kwargs}).set_index("ztfname") def get_host_mags(load=True, index_col=0, raw=False, **kwargs): """ """ filepath = os.path.join(IDR_PATH, "tables", "ancilliary_info/host_photometry/ztfdr2_hostmags.csv") if not load: return filepath host_alldata = pandas.read_csv(filepath, index_col=index_col, **kwargs) if raw: return host_alldata def _get_split_(which): requested = f"{which}_mag" if requested not in host_alldata: raise ValueError(f"Unknown entry: {requested} (which={which})") host_data = host_alldata[requested].astype(str).str.replace("nan", "np.nan").str.replace("inf", "np.nan").apply(eval) host_err = host_alldata[requested+"_err"].astype(str).str.replace("nan", "np.nan").str.replace("inf", "np.nan").apply(eval) flagna = host_data.isna() + host_err.isna() data = pandas.DataFrame(list(host_data[~flagna]), index=host_data[~flagna].index) error = pandas.DataFrame(list(host_err[~flagna]), index=host_err[~flagna].index) error.columns += "_err" return pandas.merge(data, error, left_index=True, right_index=True) kpc2 = _get_split_(which="local_2kpc") kpc4 = _get_split_(which="local_4kpc") host_cat = _get_split_(which="host_cat") hglobal = pandas.merge(host_cat, host_alldata[["z","host_dlr"]].rename({"z":"redshift"}, axis=1), left_index=True, right_index=True, how="outer") return pandas.concat([kpc2, kpc4, hglobal], axis=1, keys=["2kpc", "4kpc", "global"]) # ================== # # # # LIGHTCURVES # # # # ================== # def get_target_lc(target, test_exist=True): """ """ fullpath = os.path.join(IDR_PATH, "lightcurves", f"{target}_LC.csv") if test_exist: if not os.path.isfile(fullpath): warnings.warn(f"No lc file for {target} ; {fullpath}") return None return fullpath def get_phase_coverage(load=True, warn=True, **kwargs): """ """ filepath = os.path.join(IDR_PATH, "tables", "phase_coverage.csv") if not load: return filepath if not os.path.isfile(filepath): if warn: warnings.warn( "No phase_coverage file. build one using ztfidr.Sample().build_phase_coverage(store=True)") return None return pandas.read_csv(filepath, index_col=0, **kwargs ).reset_index().rename({"index": "name"}, axis=1 ).set_index(["name", "filter"])["phase"] # ================== # # # # Spectra # # # # ================== # def get_autotyping(load=True, index_col=0, **kwargs): """ """ filepath = os.path.join(IDR_PATH, "tables", "autotyping.csv") if not load: return filepath return pandas.read_csv(filepath, index_col=index_col, **kwargs) def get_spectra_datafile(contains=None, startswith=None, snidres=False, extension=None, use_dask=False): """ """ from glob import glob glob_format = "*" if not startswith else f"{startswith}*" if snidres and extension is None: extension = "_snid.h5" elif extension is None: extension = ".ascii" if contains is not None: glob_format += f"{contains}*" if extension is not None: glob_format += f"{extension}" specfiles = glob(os.path.join(IDR_PATH, "spectra", glob_format)) datafile = pandas.DataFrame(specfiles, columns=["fullpath"]) datafile["basename"] = datafile["fullpath"].str.split( "/", expand=True).iloc[:, -1] return pandas.concat([datafile, parse_filename(datafile["basename"], snidres=snidres)], axis=1) def parse_filename(file_s, snidres=False): """ file or list of files. Returns ------- Serie if single file, DataFrame otherwise """ index = ["ztfname", "date", "telescope", "version"] fdata = [] for file_ in np.atleast_1d(file_s): file_ = os.path.basename(file_).split(".ascii")[0] if snidres: #print(file_) name, date, *telescope, origin, snid_ = file_.split("_") else: try: name, date, *telescope, origin = file_.split("_") except: print(f"failed parsing filename for {file_}") continue telescope = "_".join(telescope) fdata.append([name, date, telescope, origin]) if len(fdata) == 1: return pandas.Series(fdata[0], index=index) return
pandas.DataFrame(fdata, columns=index)
pandas.DataFrame
#program to turn list of unzipped folders of templates etc from the NDA into something that more closely resembles a crosswalk import os import pandas as pd from openpyxl import load_workbook #specify path to the folder that contains the unzipped folders from the NDA - end path in '/' or # tell me how I can make this code robust to variations #inout='/yourpath/NIH_toolbox_crosswalk_docs/' inout='/home/petra/UbWinSharedSpace1/redcap2nda_Lifespan2019/NIH_toolbox_crosswalk_docs/HCPD/' #open one of the folders that the NDA sent and find the file that contains the list of vars in #your file and the list of vars in the NDA as one-to-one pairs #for example, we have files with the column headers "NDA Element" and "HCP-D Element" #we also have files with the column headers "NDA Element" and "HCP-A Element" #provide the name of local variable: localvar="HCP-D Element" # get list of files and folders in the inout directory # The string containing the name of the new folders from the NDA will be assigned to # variable called 'Instrument_Short' because after filtering out all the other # files/folders (list1 and list2 below) thats what you'll have: # the NDAs shorthand name for the NIH Toolbox Instrument dirs=pd.DataFrame(os.listdir(inout),columns=['Instrument_Short']) #initialize an empty crosswalk crosswalk_meta=pd.DataFrame(columns=['Inst','Instrument_Short','key','template','requestfile','varmapfile']) #create two lists of for file extensions and/or folders in inout that you don't want to be treated # as something to be added to a crosswalk list1=['zip','csv','xlsx','pptx'] #file extensions in this folder of folders from Leo that you want to ignore list2=['drafts','HCPD','temp','added_tocrosswalk','dummypass','almost trash','prepped_structures'] #identify folders you want to ignore # for the items not in list1 or list2, read the folder contents and turn them into something appendable/mergeable # four possible files: # Mapping Key has the Full Name of the NDA structure to which this stuff will be mapped, the short name, # and the name on the Form as we will be uploading it (Inst) # One file in this folder has an Instrument_short.structure name format # Occasionally you'll get a formRequest file which will contains NDA verbal instructions that # ultimately need to be translated into executable python code (more on this later). # The template file is not used in the crosswalk, but may come in handy for debugging (i.e. if someone # on either end of this process accidentally assigned the wrong aliases). for i in dirs.Instrument_Short: for j in list1: if j in i: print('skipping file '+i) i='dummypass' if i in list2: if i not in 'dummypass': print('skipping folder '+i) else: requestfile='' #need to initialize this particular var becaus some folders dont have requests cw = pd.DataFrame(columns=['Instrument_Short', 'key', 'template', 'requestfile', 'varmapfile']) haystack=os.listdir(inout+i) for j, element in enumerate(haystack): if "Key" in element: key=element elif "template" in element: template=element elif "01.xlsx" in element: varmapfile=element elif 'equest' in element: requestfile=element cw.loc[0, ['Instrument_Short', 'key','template','varmapfile','requestfile']] = [i, key,template,varmapfile,requestfile] wb = load_workbook(inout + cw.Instrument_Short[0] + '/' + cw.varmapfile[0]) ws = wb.active df =
pd.DataFrame(ws.values)
pandas.DataFrame
from flask import Flask, request, Response from flask_restful import Resource import pandas as pd class GlobalFunctions(): global readCsv def readCsv(fileName): chunk = pd.read_csv(f'./unprocessedFiles/{fileName}',chunksize=100000) df = pd.concat(chunk) return df class ReadCsvByName(Resource): def post(self): #Retrieve Parameters json_data = request.get_json(force=True) fileName = json_data['fileName'] pdDf = readCsv(fileName) #Reads CSV pdDf.sort_values(by='Name',inplace=True,ascending=True) #Sorting Value by Name pdDf.to_csv(path_or_buf=f'./processedFiles/processed_{fileName}_readCsvByName.csv') #Saving the file in local storage temporarily return Response(pdDf.to_json(orient='records', lines=True).splitlines(),mimetype='application/json',status=200) class RearrangeByOrder(Resource): def post(self): json_data = request.get_json(force=True) fileName = json_data['fileName'] sortBy = json_data['sortBy'] order = True if json_data['orderBy']=='desc': order = False pdDf = readCsv(fileName) pdDf.sort_values(by=sortBy,inplace=True,ascending=order) pdDf.to_csv(path_or_buf=f'./processedFiles/processed_{fileName}_rearrangeByOrder_{sortBy}.csv') #Saving the file in local storage temporarily return Response(pdDf.to_json(orient='records', lines=True).splitlines(),mimetype='application/json',status=200) class HighestClosingPrice(Resource): def post(self): json_data = request.get_json(force=True) fileName = json_data['fileName'] fromDate = json_data['fromDate'] toDate = json_data['toDate'] stockName = json_data['name'] pdDf = readCsv(fileName) pdDf['date'] =
pd.to_datetime(pdDf['date'])
pandas.to_datetime
import itertools import os import random import tempfile from unittest import mock import pandas as pd import pytest import pickle import numpy as np import string import multiprocessing as mp from copy import copy import dask import dask.dataframe as dd from dask.dataframe._compat import tm, assert_categorical_equal from dask import delayed from dask.base import compute_as_if_collection from dask.optimization import cull from dask.dataframe.shuffle import ( shuffle, partitioning_index, rearrange_by_column, rearrange_by_divisions, maybe_buffered_partd, remove_nans, ) from dask.dataframe.utils import assert_eq, make_meta from dask.dataframe._compat import PANDAS_GT_120 dsk = { ("x", 0): pd.DataFrame({"a": [1, 2, 3], "b": [1, 4, 7]}, index=[0, 1, 3]), ("x", 1): pd.DataFrame({"a": [4, 5, 6], "b": [2, 5, 8]}, index=[5, 6, 8]), ("x", 2): pd.DataFrame({"a": [7, 8, 9], "b": [3, 6, 9]}, index=[9, 9, 9]), } meta = make_meta({"a": "i8", "b": "i8"}, index=pd.Index([], "i8")) d = dd.DataFrame(dsk, "x", meta, [0, 4, 9, 9]) full = d.compute() CHECK_FREQ = {} if dd._compat.PANDAS_GT_110: CHECK_FREQ["check_freq"] = False shuffle_func = shuffle # conflicts with keyword argument @pytest.mark.parametrize("shuffle", ["disk", "tasks"]) def test_shuffle(shuffle): s = shuffle_func(d, d.b, shuffle=shuffle) assert isinstance(s, dd.DataFrame) assert s.npartitions == d.npartitions x = dask.get(s.dask, (s._name, 0)) y = dask.get(s.dask, (s._name, 1)) assert not (set(x.b) & set(y.b)) # disjoint assert set(s.dask).issuperset(d.dask) assert shuffle_func(d, d.b)._name == shuffle_func(d, d.b)._name def test_default_partitions(): assert shuffle(d, d.b).npartitions == d.npartitions def test_shuffle_npartitions_task(): df = pd.DataFrame({"x": np.random.random(100)}) ddf = dd.from_pandas(df, npartitions=10) s = shuffle(ddf, ddf.x, shuffle="tasks", npartitions=17, max_branch=4) sc = s.compute(scheduler="sync") assert s.npartitions == 17 assert set(s.dask).issuperset(set(ddf.dask)) assert len(sc) == len(df) assert list(s.columns) == list(df.columns) assert set(map(tuple, sc.values.tolist())) == set(map(tuple, df.values.tolist())) @pytest.mark.parametrize("method", ["disk", "tasks"]) def test_index_with_non_series(method): from dask.dataframe.tests.test_multi import list_eq list_eq(shuffle(d, d.b, shuffle=method), shuffle(d, "b", shuffle=method)) @pytest.mark.parametrize("method", ["disk", "tasks"]) def test_index_with_dataframe(method): res1 = shuffle(d, d[["b"]], shuffle=method).compute() res2 = shuffle(d, ["b"], shuffle=method).compute() res3 = shuffle(d, "b", shuffle=method).compute() assert sorted(res1.values.tolist()) == sorted(res2.values.tolist()) assert sorted(res1.values.tolist()) == sorted(res3.values.tolist()) @pytest.mark.parametrize("method", ["disk", "tasks"]) def test_shuffle_from_one_partition_to_one_other(method): df = pd.DataFrame({"x": [1, 2, 3]}) a = dd.from_pandas(df, 1) for i in [1, 2]: b = shuffle(a, "x", npartitions=i, shuffle=method) assert len(a.compute(scheduler="sync")) == len(b.compute(scheduler="sync")) @pytest.mark.parametrize("method", ["disk", "tasks"]) def test_shuffle_empty_partitions(method): df = pd.DataFrame({"x": [1, 2, 3] * 10}) ddf = dd.from_pandas(df, npartitions=3) s = shuffle(ddf, ddf.x, npartitions=6, shuffle=method) parts = compute_as_if_collection(dd.DataFrame, s.dask, s.__dask_keys__()) for p in parts: assert s.columns == p.columns df2 = pd.DataFrame( { "i32": np.array([1, 2, 3] * 3, dtype="int32"), "f32": np.array([None, 2.5, 3.5] * 3, dtype="float32"), "cat": pd.Series(["a", "b", "c"] * 3).astype("category"), "obj": pd.Series(["d", "e", "f"] * 3), "bool": np.array([True, False, True] * 3), "dt": pd.Series(pd.date_range("20130101", periods=9)), "dt_tz": pd.Series(pd.date_range("20130101", periods=9, tz="US/Eastern")), "td": pd.Series(pd.timedelta_range("2000", periods=9)), } ) def test_partitioning_index(): res = partitioning_index(df2.i32, 3) assert ((res < 3) & (res >= 0)).all() assert len(np.unique(res)) > 1 assert (partitioning_index(df2.i32, 3) == partitioning_index(df2.i32, 3)).all() res = partitioning_index(df2[["i32"]], 3) assert ((res < 3) & (res >= 0)).all() assert len(np.unique(res)) > 1 res = partitioning_index(df2[["cat", "bool", "f32"]], 2) assert ((0 <= res) & (res < 2)).all() res = partitioning_index(df2.index, 4) assert ((res < 4) & (res >= 0)).all() assert len(np.unique(res)) > 1 def test_partitioning_index_categorical_on_values(): df = pd.DataFrame({"a": list(string.ascii_letters), "b": [1, 2, 3, 4] * 13}) df.a = df.a.astype("category") df2 = df.copy() df2.a = df2.a.cat.set_categories(list(reversed(df2.a.cat.categories))) res = partitioning_index(df.a, 5) res2 = partitioning_index(df2.a, 5) assert (res == res2).all() res = partitioning_index(df, 5) res2 = partitioning_index(df2, 5) assert (res == res2).all() @pytest.mark.parametrize( "npartitions", [1, 4, 7, pytest.param(23, marks=pytest.mark.slow)] ) def test_set_index_tasks(npartitions): df = pd.DataFrame( {"x": np.random.random(100), "y": np.random.random(100) // 0.2}, index=np.random.random(100), ) ddf = dd.from_pandas(df, npartitions=npartitions) assert_eq(df.set_index("x"), ddf.set_index("x", shuffle="tasks")) assert_eq(df.set_index("y"), ddf.set_index("y", shuffle="tasks")) assert_eq(df.set_index(df.x), ddf.set_index(ddf.x, shuffle="tasks")) assert_eq(df.set_index(df.x + df.y), ddf.set_index(ddf.x + ddf.y, shuffle="tasks")) assert_eq(df.set_index(df.x + 1), ddf.set_index(ddf.x + 1, shuffle="tasks")) assert_eq(df.set_index(df.index), ddf.set_index(ddf.index, shuffle="tasks")) @pytest.mark.parametrize("shuffle", ["disk", "tasks"]) def test_set_index_self_index(shuffle): df = pd.DataFrame( {"x": np.random.random(100), "y": np.random.random(100) // 0.2}, index=np.random.random(100), ) a = dd.from_pandas(df, npartitions=4) b = a.set_index(a.index, shuffle=shuffle) assert a is b assert_eq(b, df.set_index(df.index)) @pytest.mark.parametrize("shuffle", ["tasks"]) def test_set_index_names(shuffle): df = pd.DataFrame( {"x": np.random.random(100), "y": np.random.random(100) // 0.2}, index=np.random.random(100), ) ddf = dd.from_pandas(df, npartitions=4) assert set(ddf.set_index("x", shuffle=shuffle).dask) == set( ddf.set_index("x", shuffle=shuffle).dask ) assert set(ddf.set_index("x", shuffle=shuffle).dask) != set( ddf.set_index("y", shuffle=shuffle).dask ) assert set(ddf.set_index("x", max_branch=4, shuffle=shuffle).dask) != set( ddf.set_index("x", max_branch=3, shuffle=shuffle).dask ) assert set(ddf.set_index("x", drop=True, shuffle=shuffle).dask) != set( ddf.set_index("x", drop=False, shuffle=shuffle).dask ) @pytest.mark.parametrize("shuffle", ["disk", "tasks"]) def test_set_index_tasks_2(shuffle): df = dd.demo.make_timeseries( "2000", "2004", {"value": float, "name": str, "id": int}, freq="2H", partition_freq="1M", seed=1, ) df2 = df.set_index("name", shuffle=shuffle) df2.value.sum().compute(scheduler="sync") @pytest.mark.parametrize("shuffle", ["disk", "tasks"]) def test_set_index_tasks_3(shuffle): df = pd.DataFrame(np.random.random((10, 2)), columns=["x", "y"]) ddf = dd.from_pandas(df, npartitions=5) ddf2 = ddf.set_index( "x", shuffle=shuffle, max_branch=2, npartitions=ddf.npartitions ) df2 = df.set_index("x") assert_eq(df2, ddf2) assert ddf2.npartitions == ddf.npartitions @pytest.mark.parametrize("shuffle", ["tasks", "disk"]) def test_shuffle_sort(shuffle): df = pd.DataFrame({"x": [1, 2, 3, 2, 1], "y": [9, 8, 7, 1, 5]}) ddf = dd.from_pandas(df, npartitions=3) df2 = df.set_index("x").sort_index() ddf2 = ddf.set_index("x", shuffle=shuffle) assert_eq(ddf2.loc[2:3], df2.loc[2:3]) @pytest.mark.parametrize("shuffle", ["tasks", "disk"]) @pytest.mark.parametrize("scheduler", ["threads", "processes"]) def test_rearrange(shuffle, scheduler): df = pd.DataFrame({"x": np.random.random(10)}) ddf = dd.from_pandas(df, npartitions=4) ddf2 = ddf.assign(_partitions=ddf.x % 4) result = rearrange_by_column(ddf2, "_partitions", max_branch=32, shuffle=shuffle) assert result.npartitions == ddf.npartitions assert set(ddf.dask).issubset(result.dask) # Every value in exactly one partition a = result.compute(scheduler=scheduler) get = dask.base.get_scheduler(scheduler=scheduler) parts = get(result.dask, result.__dask_keys__()) for i in a._partitions.drop_duplicates(): assert sum(i in set(part._partitions) for part in parts) == 1 def test_rearrange_cleanup(): df = pd.DataFrame({"x": np.random.random(10)}) ddf = dd.from_pandas(df, npartitions=4) ddf2 = ddf.assign(_partitions=ddf.x % 4) tmpdir = tempfile.mkdtemp() with dask.config.set(temporay_directory=str(tmpdir)): result = rearrange_by_column(ddf2, "_partitions", max_branch=32, shuffle="disk") result.compute(scheduler="processes") assert len(os.listdir(tmpdir)) == 0 def mock_shuffle_group_3(df, col, npartitions, p): raise ValueError("Mock exception!") def test_rearrange_disk_cleanup_with_exception(): # ensure temporary files are cleaned up when there's an internal exception. with mock.patch("dask.dataframe.shuffle.shuffle_group_3", new=mock_shuffle_group_3): df = pd.DataFrame({"x": np.random.random(10)}) ddf = dd.from_pandas(df, npartitions=4) ddf2 = ddf.assign(_partitions=ddf.x % 4) tmpdir = tempfile.mkdtemp() with dask.config.set(temporay_directory=str(tmpdir)): with pytest.raises(ValueError, match="Mock exception!"): result = rearrange_by_column( ddf2, "_partitions", max_branch=32, shuffle="disk" ) result.compute(scheduler="processes") assert len(os.listdir(tmpdir)) == 0 def test_rearrange_by_column_with_narrow_divisions(): from dask.dataframe.tests.test_multi import list_eq A = pd.DataFrame({"x": [1, 2, 3, 4, 5, 6], "y": [1, 1, 2, 2, 3, 4]}) a = dd.repartition(A, [0, 4, 5]) df = rearrange_by_divisions(a, "x", (0, 2, 5)) list_eq(df, a) def test_maybe_buffered_partd(): import partd f = maybe_buffered_partd() p1 = f() assert isinstance(p1.partd, partd.Buffer) f2 = pickle.loads(pickle.dumps(f)) assert not f2.buffer p2 = f2() assert isinstance(p2.partd, partd.File) def test_set_index_with_explicit_divisions(): df = pd.DataFrame({"x": [4, 1, 2, 5]}, index=[10, 20, 30, 40]) ddf = dd.from_pandas(df, npartitions=2) def throw(*args, **kwargs): raise Exception() with dask.config.set(get=throw): ddf2 = ddf.set_index("x", divisions=[1, 3, 5]) assert ddf2.divisions == (1, 3, 5) df2 = df.set_index("x") assert_eq(ddf2, df2) # Divisions must be sorted with pytest.raises(ValueError): ddf.set_index("x", divisions=[3, 1, 5]) def test_set_index_divisions_2(): df = pd.DataFrame({"x": [1, 2, 3, 4, 5, 6], "y": list("abdabd")}) ddf = dd.from_pandas(df, 2) result = ddf.set_index("y", divisions=["a", "c", "d"]) assert result.divisions == ("a", "c", "d") assert list(result.compute(scheduler="sync").index[-2:]) == ["d", "d"] def test_set_index_divisions_compute(): d2 = d.set_index("b", divisions=[0, 2, 9], compute=False) d3 = d.set_index("b", divisions=[0, 2, 9], compute=True) assert_eq(d2, d3) assert_eq(d2, full.set_index("b")) assert_eq(d3, full.set_index("b")) assert len(d2.dask) > len(d3.dask) d4 = d.set_index(d.b, divisions=[0, 2, 9], compute=False) d5 = d.set_index(d.b, divisions=[0, 2, 9], compute=True) exp = full.copy() exp.index = exp.b assert_eq(d4, d5) assert_eq(d4, exp) assert_eq(d5, exp) assert len(d4.dask) > len(d5.dask) def test_set_index_divisions_sorted(): p1 = pd.DataFrame({"x": [10, 11, 12], "y": ["a", "a", "a"]}) p2 = pd.DataFrame({"x": [13, 14, 15], "y": ["b", "b", "c"]}) p3 = pd.DataFrame({"x": [16, 17, 18], "y": ["d", "e", "e"]}) ddf = dd.DataFrame( {("x", 0): p1, ("x", 1): p2, ("x", 2): p3}, "x", p1, [None, None, None, None] ) df = ddf.compute() def throw(*args, **kwargs): raise Exception("Shouldn't have computed") with dask.config.set(get=throw): res = ddf.set_index("x", divisions=[10, 13, 16, 18], sorted=True) assert_eq(res, df.set_index("x")) with dask.config.set(get=throw): res = ddf.set_index("y", divisions=["a", "b", "d", "e"], sorted=True) assert_eq(res, df.set_index("y")) # with sorted=True, divisions must be same length as df.divisions with pytest.raises(ValueError): ddf.set_index("y", divisions=["a", "b", "c", "d", "e"], sorted=True) # Divisions must be sorted with pytest.raises(ValueError): ddf.set_index("y", divisions=["a", "b", "d", "c"], sorted=True) @pytest.mark.slow def test_set_index_consistent_divisions(): # See https://github.com/dask/dask/issues/3867 df = pd.DataFrame( {"x": np.random.random(100), "y": np.random.random(100) // 0.2}, index=np.random.random(100), ) ddf = dd.from_pandas(df, npartitions=4) ddf = ddf.clear_divisions() ctx = mp.get_context("spawn") pool = ctx.Pool(processes=8) with pool: results = [pool.apply_async(_set_index, (ddf, "x")) for _ in range(100)] divisions_set = set(result.get() for result in results) assert len(divisions_set) == 1 def _set_index(df, *args, **kwargs): return df.set_index(*args, **kwargs).divisions @pytest.mark.parametrize("shuffle", ["disk", "tasks"]) def test_set_index_reduces_partitions_small(shuffle): df = pd.DataFrame({"x": np.random.random(100)}) ddf = dd.from_pandas(df, npartitions=50) ddf2 = ddf.set_index("x", shuffle=shuffle, npartitions="auto") assert ddf2.npartitions < 10 def make_part(n): return pd.DataFrame({"x": np.random.random(n), "y": np.random.random(n)}) @pytest.mark.parametrize("shuffle", ["disk", "tasks"]) def test_set_index_reduces_partitions_large(shuffle): nbytes = 1e6 nparts = 50 n = int(nbytes / (nparts * 8)) ddf = dd.DataFrame( {("x", i): (make_part, n) for i in range(nparts)}, "x", make_part(1), [None] * (nparts + 1), ) ddf2 = ddf.set_index( "x", shuffle=shuffle, npartitions="auto", partition_size=nbytes ) assert 1 < ddf2.npartitions < 20 @pytest.mark.parametrize("shuffle", ["disk", "tasks"]) def test_set_index_doesnt_increase_partitions(shuffle): nparts = 2 nbytes = 1e6 n = int(nbytes / (nparts * 8)) ddf = dd.DataFrame( {("x", i): (make_part, n) for i in range(nparts)}, "x", make_part(1), [None] * (nparts + 1), ) ddf2 = ddf.set_index( "x", shuffle=shuffle, npartitions="auto", partition_size=nbytes ) assert ddf2.npartitions <= ddf.npartitions @pytest.mark.parametrize("shuffle", ["disk", "tasks"]) def test_set_index_detects_sorted_data(shuffle): df = pd.DataFrame({"x": range(100), "y": range(100)}) ddf = dd.from_pandas(df, npartitions=10, name="x", sort=False) ddf2 = ddf.set_index("x", shuffle=shuffle) assert len(ddf2.dask) < ddf.npartitions * 4 def test_set_index_sorts(): # https://github.com/dask/dask/issues/2288 vals = np.array( [ 1348550149000000000, 1348550149000000000, 1348558142000000000, 1348558142000000000, 1348585928000000000, 1348585928000000000, 1348600739000000000, 1348601706000000000, 1348600739000000000, 1348601706000000000, 1348614789000000000, 1348614789000000000, 1348621037000000000, 1348621038000000000, 1348621040000000000, 1348621037000000000, 1348621038000000000, 1348621040000000000, 1348637628000000000, 1348638159000000000, 1348638160000000000, 1348638159000000000, 1348638160000000000, 1348637628000000000, 1348646354000000000, 1348646354000000000, 1348659107000000000, 1348657111000000000, 1348659107000000000, 1348657111000000000, 1348672876000000000, 1348672876000000000, 1348682787000000000, 1348681985000000000, 1348682787000000000, 1348681985000000000, 1348728167000000000, 1348728167000000000, 1348730745000000000, 1348730745000000000, 1348750198000000000, 1348750198000000000, 1348750198000000000, 1348753539000000000, 1348753539000000000, 1348753539000000000, 1348754449000000000, 1348754449000000000, 1348761333000000000, 1348761554000000000, 1348761610000000000, 1348761333000000000, 1348761554000000000, 1348761610000000000, 1348782624000000000, 1348782624000000000, 1348782624000000000, 1348782624000000000, ] ) vals = pd.to_datetime(vals, unit="ns") breaks = [10, 36, 58] dfs = [] for i in range(len(breaks)): lo = sum(breaks[:i]) hi = sum(breaks[i : i + 1]) dfs.append(pd.DataFrame({"timestamp": vals[lo:hi]}, index=range(lo, hi))) ddf = dd.concat(dfs).clear_divisions() assert ddf.set_index("timestamp").index.compute().is_monotonic is True def test_set_index(): dsk = { ("x", 0): pd.DataFrame({"a": [1, 2, 3], "b": [4, 2, 6]}, index=[0, 1, 3]), ("x", 1): pd.DataFrame({"a": [4, 5, 6], "b": [3, 5, 8]}, index=[5, 6, 8]), ("x", 2): pd.DataFrame({"a": [7, 8, 9], "b": [9, 1, 8]}, index=[9, 9, 9]), } d = dd.DataFrame(dsk, "x", meta, [0, 4, 9, 9]) full = d.compute() d2 = d.set_index("b", npartitions=3) assert d2.npartitions == 3 assert d2.index.name == "b" assert_eq(d2, full.set_index("b")) d3 = d.set_index(d.b, npartitions=3) assert d3.npartitions == 3 assert d3.index.name == "b" assert_eq(d3, full.set_index(full.b)) d4 = d.set_index("b") assert d4.index.name == "b" assert_eq(d4, full.set_index("b")) d5 = d.set_index(["b"]) assert d5.index.name == "b" assert_eq(d5, full.set_index(["b"])) @pytest.mark.parametrize("engine", ["pandas", "cudf"]) def test_set_index_interpolate(engine): if engine == "cudf": # NOTE: engine == "cudf" requires cudf/dask_cudf, # will be skipped by non-GPU CI. cudf = pytest.importorskip("cudf") dask_cudf = pytest.importorskip("dask_cudf") df = pd.DataFrame({"x": [4, 1, 1, 3, 3], "y": [1.0, 1, 1, 1, 2]}) if engine == "cudf": gdf = cudf.from_pandas(df) d = dask_cudf.from_cudf(gdf, npartitions=3) else: d = dd.from_pandas(df, 2) d1 = d.set_index("x", npartitions=3) assert d1.npartitions == 3 assert set(d1.divisions) == set([1, 2, 4]) d2 = d.set_index("y", npartitions=3) assert d2.divisions[0] == 1.0 assert 1.0 < d2.divisions[1] < d2.divisions[2] < 2.0 assert d2.divisions[3] == 2.0 @pytest.mark.parametrize("engine", ["pandas", "cudf"]) def test_set_index_interpolate_int(engine): if engine == "cudf": # NOTE: engine == "cudf" requires cudf/dask_cudf, # will be skipped by non-GPU CI. cudf = pytest.importorskip("cudf") dask_cudf = pytest.importorskip("dask_cudf") L = sorted(list(range(0, 200, 10)) * 2) df = pd.DataFrame({"x": 2 * L}) if engine == "cudf": gdf = cudf.from_pandas(df) d = dask_cudf.from_cudf(gdf, npartitions=2) else: d = dd.from_pandas(df, 2) d1 = d.set_index("x", npartitions=10) assert all(np.issubdtype(type(x), np.integer) for x in d1.divisions) @pytest.mark.parametrize("engine", ["pandas", "cudf"]) def test_set_index_interpolate_large_uint(engine): if engine == "cudf": # NOTE: engine == "cudf" requires cudf/dask_cudf, # will be skipped by non-GPU CI. cudf = pytest.importorskip("cudf") dask_cudf = pytest.importorskip("dask_cudf") """This test is for #7304""" df = pd.DataFrame( {"x": np.array([612509347682975743, 616762138058293247], dtype=np.uint64)} ) if engine == "cudf": gdf = cudf.from_pandas(df) d = dask_cudf.from_cudf(gdf, npartitions=2) else: d = dd.from_pandas(df, 1) d1 = d.set_index("x", npartitions=1) assert d1.npartitions == 1 assert set(d1.divisions) == set([612509347682975743, 616762138058293247]) def test_set_index_timezone(): s_naive = pd.Series(pd.date_range("20130101", periods=3)) s_aware = pd.Series(pd.date_range("20130101", periods=3, tz="US/Eastern")) df = pd.DataFrame({"tz": s_aware, "notz": s_naive}) d = dd.from_pandas(df, 2) d1 = d.set_index("notz", npartitions=1) s1 = pd.DatetimeIndex(s_naive.values, dtype=s_naive.dtype) assert d1.divisions[0] == s_naive[0] == s1[0] assert d1.divisions[-1] == s_naive[2] == s1[2] # We currently lose "freq". Converting data with pandas-defined dtypes # to numpy or pure Python can be lossy like this. d2 = d.set_index("tz", npartitions=1) s2 = pd.DatetimeIndex(s_aware, dtype=s_aware.dtype) assert d2.divisions[0] == s2[0] assert d2.divisions[-1] == s2[2] assert d2.divisions[0].tz == s2[0].tz assert d2.divisions[0].tz is not None s2badtype = pd.DatetimeIndex(s_aware.values, dtype=s_naive.dtype) if PANDAS_GT_120: # starting with pandas 1.2.0, comparing equality of timestamps with different # timezones returns False instead of raising an error assert not d2.divisions[0] == s2badtype[0] else: with pytest.raises(TypeError): d2.divisions[0] == s2badtype[0] def test_set_index_npartitions(): # https://github.com/dask/dask/issues/6974 data = pd.DataFrame( index=pd.Index( ["A", "A", "A", "A", "A", "A", "A", "A", "A", "B", "B", "B", "C"] ) ) data = dd.from_pandas(data, npartitions=2) output = data.reset_index().set_index("index", npartitions=1) assert output.npartitions == 1 @pytest.mark.parametrize("unit", ["ns", "us"]) def test_set_index_datetime_precision(unit): # https://github.com/dask/dask/issues/6864 df = pd.DataFrame( [ [1567703791155681, 1], [1567703792155681, 2], [1567703790155681, 0], [1567703793155681, 3], ], columns=["ts", "rank"], ) df.ts = pd.to_datetime(df.ts, unit=unit) ddf = dd.from_pandas(df, npartitions=2) ddf = ddf.set_index("ts") assert_eq(ddf, df.set_index("ts")) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_drop(drop): pdf = pd.DataFrame( { "A": list("ABAABBABAA"), "B": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "C": [1, 2, 3, 2, 1, 3, 2, 4, 2, 3], } ) ddf = dd.from_pandas(pdf, 3) assert_eq(ddf.set_index("A", drop=drop), pdf.set_index("A", drop=drop)) assert_eq(ddf.set_index("B", drop=drop), pdf.set_index("B", drop=drop)) assert_eq(ddf.set_index("C", drop=drop), pdf.set_index("C", drop=drop)) assert_eq(ddf.set_index(ddf.A, drop=drop), pdf.set_index(pdf.A, drop=drop)) assert_eq(ddf.set_index(ddf.B, drop=drop), pdf.set_index(pdf.B, drop=drop)) assert_eq(ddf.set_index(ddf.C, drop=drop), pdf.set_index(pdf.C, drop=drop)) # numeric columns pdf = pd.DataFrame( { 0: list("ABAABBABAA"), 1: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 2: [1, 2, 3, 2, 1, 3, 2, 4, 2, 3], } ) ddf = dd.from_pandas(pdf, 3) assert_eq(ddf.set_index(0, drop=drop), pdf.set_index(0, drop=drop)) assert_eq(ddf.set_index(2, drop=drop), pdf.set_index(2, drop=drop)) def test_set_index_raises_error_on_bad_input(): df = pd.DataFrame({"a": [1, 2, 3, 4, 5, 6, 7], "b": [7, 6, 5, 4, 3, 2, 1]}) ddf = dd.from_pandas(df, 2) msg = r"Dask dataframe does not yet support multi-indexes" with pytest.raises(NotImplementedError) as err: ddf.set_index(["a", "b"]) assert msg in str(err.value) with pytest.raises(NotImplementedError) as err: ddf.set_index([["a", "b"]]) assert msg in str(err.value) with pytest.raises(NotImplementedError) as err: ddf.set_index([["a"]]) assert msg in str(err.value) def test_set_index_sorted_true(): df = pd.DataFrame({"x": [1, 2, 3, 4], "y": [10, 20, 20, 40], "z": [4, 3, 2, 1]}) a = dd.from_pandas(df, 2, sort=False) assert not a.known_divisions b = a.set_index("x", sorted=True) assert b.known_divisions assert set(a.dask).issubset(set(b.dask)) for drop in [True, False]: assert_eq(a.set_index("x", drop=drop), df.set_index("x", drop=drop)) assert_eq( a.set_index(a.x, sorted=True, drop=drop), df.set_index(df.x, drop=drop) ) assert_eq( a.set_index(a.x + 1, sorted=True, drop=drop), df.set_index(df.x + 1, drop=drop), ) with pytest.raises(ValueError): a.set_index(a.z, sorted=True) def test_set_index_sorted_single_partition(): df = pd.DataFrame({"x": [1, 2, 3, 4], "y": [1, 0, 1, 0]}) ddf = dd.from_pandas(df, npartitions=1) assert_eq(ddf.set_index("x", sorted=True), df.set_index("x")) def test_set_index_sorted_min_max_same(): a = pd.DataFrame({"x": [1, 2, 3], "y": [0, 0, 0]}) b = pd.DataFrame({"x": [1, 2, 3], "y": [1, 1, 1]}) aa = delayed(a) bb = delayed(b) df = dd.from_delayed([aa, bb], meta=a) assert not df.known_divisions df2 = df.set_index("y", sorted=True) assert df2.divisions == (0, 1, 1) def test_set_index_empty_partition(): test_vals = [1, 2, 3] converters = [int, float, str, lambda x: pd.to_datetime(x, unit="ns")] for conv in converters: df = pd.DataFrame( [{"x": conv(i), "y": i} for i in test_vals], columns=["x", "y"] ) ddf = dd.concat( [ dd.from_pandas(df, npartitions=1), dd.from_pandas(df[df.y > df.y.max()], npartitions=1), ] ) assert any(ddf.get_partition(p).compute().empty for p in range(ddf.npartitions)) assert assert_eq(ddf.set_index("x"), df.set_index("x")) def test_set_index_on_empty(): test_vals = [1, 2, 3, 4] converters = [int, float, str, lambda x: pd.to_datetime(x, unit="ns")] for converter in converters: df = pd.DataFrame([{"x": converter(x), "y": x} for x in test_vals]) ddf = dd.from_pandas(df, npartitions=4) assert ddf.npartitions > 1 ddf = ddf[ddf.y > df.y.max()].set_index("x") expected_df = df[df.y > df.y.max()].set_index("x") assert assert_eq(ddf, expected_df, **CHECK_FREQ) assert ddf.npartitions == 1 def test_set_index_categorical(): # https://github.com/dask/dask/issues/5671 order = list(reversed(string.ascii_letters)) values = list(string.ascii_letters) random.shuffle(values) dtype = pd.api.types.CategoricalDtype(order, ordered=True) df = pd.DataFrame({"A": pd.Categorical(values, dtype=dtype), "B": 1}) result = dd.from_pandas(df, npartitions=2).set_index("A") assert len(result) == len(df) # sorted with the metric defined by the Categorical divisions = pd.Categorical(result.divisions, dtype=dtype) assert_categorical_equal(divisions, divisions.sort_values()) def test_compute_divisions(): from dask.dataframe.shuffle import compute_and_set_divisions df = pd.DataFrame( {"x": [1, 2, 3, 4], "y": [10, 20, 20, 40], "z": [4, 3, 2, 1]}, index=[1, 3, 10, 20], ) a = dd.from_pandas(df, 2, sort=False) assert not a.known_divisions b = compute_and_set_divisions(copy(a)) assert_eq(a, b, check_divisions=False) assert b.known_divisions def test_empty_partitions(): # See https://github.com/dask/dask/issues/2408 df = pd.DataFrame({"a": list(range(10))}) df["b"] = df["a"] % 3 df["c"] = df["b"].astype(str) ddf = dd.from_pandas(df, npartitions=3) ddf = ddf.set_index("b") ddf = ddf.repartition(npartitions=3) ddf.get_partition(0).compute() assert_eq(ddf, df.set_index("b")) ddf = ddf.set_index("c") assert_eq(ddf, df.set_index("b").set_index("c")) def test_remove_nans(): tests = [ ((1, 1, 2), (1, 1, 2)), ((None, 1, 2), (1, 1, 2)), ((1, None, 2), (1, 2, 2)), ((1, 2, None), (1, 2, 2)), ((1, 2, None, None), (1, 2, 2, 2)), ((None, None, 1, 2), (1, 1, 1, 2)), ((1, None, None, 2), (1, 2, 2, 2)), ((None, 1, None, 2, None, 3, None), (1, 1, 2, 2, 3, 3, 3)), ] converters = [ (int, np.nan), (float, np.nan), (str, np.nan), (lambda x: pd.to_datetime(x, unit="ns"), np.datetime64("NaT")), ] for conv, none_val in converters: for inputs, expected in tests: params = [none_val if x is None else conv(x) for x in inputs] expected = [conv(x) for x in expected] assert remove_nans(params) == expected @pytest.mark.slow def test_gh_2730(): large = pd.DataFrame({"KEY": np.arange(0, 50000)}) small = pd.DataFrame({"KEY": np.arange(25, 500)}) dd_left = dd.from_pandas(small, npartitions=3) dd_right = dd.from_pandas(large, npartitions=257) with dask.config.set(shuffle="tasks", scheduler="sync"): dd_merged = dd_left.merge(dd_right, how="inner", on="KEY") result = dd_merged.compute() expected = large.merge(small, how="inner", on="KEY") tm.assert_frame_equal(result.sort_values("KEY").reset_index(drop=True), expected) @pytest.mark.parametrize("npartitions", [None, "auto"]) def test_set_index_does_not_repeat_work_due_to_optimizations(npartitions): # Atomic counter count = itertools.count() def increment(): next(count) def make_part(dummy, n): return pd.DataFrame({"x": np.random.random(n), "y": np.random.random(n)}) nbytes = 1e6 nparts = 50 n = int(nbytes / (nparts * 8)) dsk = {("inc", i): (increment,) for i in range(nparts)} dsk.update({("x", i): (make_part, ("inc", i), n) for i in range(nparts)}) ddf = dd.DataFrame(dsk, "x", make_part(None, 1), [None] * (nparts + 1)) ddf.set_index("x", npartitions=npartitions) ntimes = next(count) assert ntimes == nparts def test_set_index_errors_with_inplace_kwarg(): df = pd.DataFrame({"a": [9, 8, 7], "b": [6, 5, 4], "c": [3, 2, 1]}) ddf = dd.from_pandas(df, npartitions=1) ddf.set_index("a") with pytest.raises(NotImplementedError): ddf.set_index("a", inplace=True) def test_set_index_timestamp(): df = pd.DataFrame({"A": pd.date_range("2000", periods=12, tz="US/Central"), "B": 1}) ddf = dd.from_pandas(df, 2) divisions = ( pd.Timestamp("2000-01-01 00:00:00-0600", tz="US/Central", freq="D"),
pd.Timestamp("2000-01-12 00:00:00-0600", tz="US/Central", freq="D")
pandas.Timestamp
import abc import time, random import pandas as pd import os import numpy as np import benchutils as utils import knowledgebases from sklearn.feature_selection import SelectKBest, f_classif from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from mlxtend.feature_selection import SequentialFeatureSelector as SFS from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LinearRegression, Lasso from sklearn.svm import LinearSVC from sklearn.naive_bayes import MultinomialNB from sklearn.feature_selection import RFE, VarianceThreshold from sklearn import preprocessing class FeatureSelectorFactory(): """Singleton class. Python code encapsulates it in a way that is not shown in Sphinx, so have a look at the descriptions in the source code. Creates feature selector object based on a given name. New feature selection approaches must be registered here. Names for feature selectors must follow to a particular scheme, with keywords separated by _: - first keyword is the actual selector name - if needed, second keyword is the knowledge base - if needed, third keyword is the (traditional) approach to be combined Examples: - Traditional Approaches have only one keyword, e.g. InfoGain or ANOVA - LassoPenalty_KEGG provides KEGG information to the LassoPenalty feature selection approach - Weighted_KEGG_InfoGain --> Factory creates an instance of KBweightedSelector which uses KEGG as knowledge base and InfoGain as traditional selector. While the focus here lies on the combination of traditional approaches with prior biological knowledge, it is theoretically possible to use ANY selector object for combination that inherits from :class:`FeatureSelector`. :param config: configuration parameters for UMLS web service as specified in config file. :type config: dict """ class __FeatureSelectorFactory(): def createFeatureSelector(self, name): """Create selector from a given name. Separates creation process into (traditional) approaches (only one keyword), approaches requiring a knowledge base, and approaches requiring both a knowledge base and another selector, e.g. a traditional one. :param name: selector name following the naming conventions: first keyword is the actual selector name, second keyword is the knowledge base, third keyword another selector to combine. Keywords must be separated by "_". Example: Weighted_KEGG_InfoGain :type name: str :return: instance of a feature selector implementation. :rtype: :class:`FeatureSelector` or inheriting class """ parts = name.split("_") if len(parts) == 1: return self.createTraditionalSelector(name) elif len(parts) == 2: return self.createIntegrativeSelector(parts[0], parts[1]) elif len(parts) == 3: return self.createCombinedSelector(parts[0], parts[1], parts[2]) utils.logError("ERROR: The provided selector name does not correspond to the expected format. " "A selector name should consist of one or more keywords separated by _. " "The first keyword is the actual approach (e.g. weighted, or a traditional approach), " "the second keyword corresponds to a knowledge base to use (e.g. KEGG)," "the third keyword corresponds to a traditional selector to use (e.g. when using a modifying or combining approach") exit() def createTraditionalSelector(self, selectorName): """Creates a (traditional) selector (without a knowledge base) from a given name. Register new implementations of a (traditional) selector here. Stops processing if the selector could not be found. :param selectorName: selector name :type selectorName: str :return: instance of a feature selector implementation. :rtype: :class:`FeatureSelector` or inheriting class """ if selectorName == "Random": return RandomSelector() if selectorName == "VB-FS": return VarianceSelector() if selectorName == "Variance": return Variance2Selector() if selectorName == "ANOVA": return AnovaSelector() if selectorName == "mRMR": return MRMRSelector() if selectorName == "SVMpRFE": return SVMRFESelector() # RUN WEKA FEATURE SELECTION AS SELECTED if selectorName == "InfoGain": return InfoGainSelector() if selectorName == "ReliefF": return ReliefFSelector() #if "-RFE" in selectorName or "-SFS" in selectorName: -- SFS is currently disabled because sometimes the coef_ param is missing and error is thrown if "-RFE" in selectorName: return WrapperSelector(selectorName) if selectorName == "Lasso": return LassoSelector() if selectorName == "RandomForest": return RandomForestSelector() utils.logError("ERROR: The listed selector " + selectorName + " is not available. See the documentation for available selectors. Stop execution.") exit() def createIntegrativeSelector(self, selectorName, kb): """Creates a feature selector using a knowledge base from the given selector and knowledge base names. Register new implementations of a prior knowledge selector here that does not requires a (traditional) selector. Stops processing if the selector could not be found. :param selectorName: selector name :type selectorName: str :param kb: knowledge base name :type kb: str :return: instance of a feature selector implementation. :rtype: :class:`FeatureSelector` or inheriting class """ kbfactory = knowledgebases.KnowledgeBaseFactory() knowledgebase = kbfactory.createKnowledgeBase(kb) if selectorName == "NetworkActivity": featuremapper = PathwayActivityMapper() return NetworkActivitySelector(knowledgebase, featuremapper) if selectorName == "CorgsNetworkActivity": featuremapper = CORGSActivityMapper() return NetworkActivitySelector(knowledgebase, featuremapper) if selectorName == "LassoPenalty": return LassoPenalty(knowledgebase) if selectorName == "KBonly": return KbSelector(knowledgebase) utils.logError("ERROR: The listed selector " + selectorName + " is not available. See the documentation for available selectors. Stop execution.") exit() def createCombinedSelector(self, selectorName, trad, kb): """Creates a feature selector that combines a knowledge base and another feature selector based on the given names. Register new implementations of a prior knowledge selector that requires another selector here. Stops processing if the selector could not be found. :param selectorName: selector name :type selectorName: str :param trad: name of the (traditional) feature selector. :type trad: str :param kb: knowledge base name :type kb: str :return: instance of a feature selector implementation. :rtype: :class:`FeatureSelector` or inheriting class """ tradSelector = self.createTraditionalSelector(trad) kbfactory = knowledgebases.KnowledgeBaseFactory() knowledgebase = kbfactory.createKnowledgeBase(kb) if selectorName == "Postfilter": return PostFilterSelector(knowledgebase, tradSelector) if selectorName == "Prefilter": return PreFilterSelector(knowledgebase, tradSelector) if selectorName == "Extension": return ExtensionSelector(knowledgebase, tradSelector) if selectorName == "Weighted": return KBweightedSelector(knowledgebase, tradSelector) utils.logError("ERROR: The listed selector " + selectorName + " is not available. See the documentation for available selectors. Stop execution.") exit() instance = None def __init__(self): if not FeatureSelectorFactory.instance: FeatureSelectorFactory.instance = FeatureSelectorFactory.__FeatureSelectorFactory() def __getattr__(self, name): return getattr(self.instance, name) class FeatureSelector: """Abstract super class for feature selection functionality. Every feature selection class has to inherit from this class and implement its :meth:`FeatureSelector.selectFeatures` method and - if necessary - its :meth:`FeatureSelector.setParams` method. Once created, feature selection can be triggered by first setting parameters (input, output, etc) as needed with :meth:`FeatureSelector.setParams`. The actual feature selection is triggered by invoking :meth:`FeatureSelector.selectFeatures`. :param input: absolute path to input dataset. :type input: str :param output: absolute path to output directory (where the ranking will be stored). :type output: str :param dataset: the dataset for which to select features. Will be loaded dynamically based on self.input at first usage. :type dataset: :class:`pandas.DataFrame` :param dataConfig: config parameters for input data set. :type dataConfig: dict :param name: selector name :type name: str """ def __init__(self, name): self.input = None self.output = None self.dataset = None self.loggingDir = None self.dataConfig = utils.getConfig("Dataset") self.setTimeLogs(utils.createTimeLog()) self.enableLogFlush() self.name = name super().__init__() @abc.abstractmethod def selectFeatures(self): """Abstract. Invoke feature selection functionality in this method when implementing a new selector :return: absolute path to the output ranking file. :rtype: str """ pass def getTimeLogs(self): """Gets all logs for this selector. :return: dataframe of logged events containing start/end time, duration, and a short description. :rtype: :class:`pandas.DataFrame` """ return self.timeLogs def setTimeLogs(self, newTimeLogs): """Overwrites the current logs with new ones. :param newTimeLogs: new dataframe of logged events containing start/end time, duration, and a short description. :type newTimeLogs: :class:`pandas.DataFrame` """ self.timeLogs = newTimeLogs def disableLogFlush(self): """Disables log flushing (i.e., writing the log to a separate file) of the selector at the end of feature selection. This is needed when a :class:`CombiningSelector` uses a second selector and wants to avoid that its log messages are written, potentially overwriting logs from another selector of the same name. """ self.enableLogFlush = False def enableLogFlush(self): """Enables log flushing, i.e. writing the logs to a separate file at the end of feature selection. """ self.enableLogFlush = True def getName(self): """Gets the selector's name. :return: selector name. :rtype: str """ return self.name def getData(self): """Gets the labeled dataset from which to select features. :return: dataframe containing the dataset with class labels. :rtype: :class:`pandas.DataFrame` """ if self.dataset is None: self.dataset = pd.read_csv(self.input, index_col=0) return self.dataset def getUnlabeledData(self): """Gets the dataset without labels. :return: dataframe containing the dataset without class labels. :rtype: :class:`pandas.DataFrame` """ dataset = self.getData() return dataset.loc[:, dataset.columns != "classLabel"] def getFeatures(self): """Gets features from the dataset. :return: list of features. :rtype: list of str """ return self.getData().columns[1:] def getUniqueLabels(self): """Gets the unique class labels available in the dataset. :return: list of distinct class labels. :rtype: list of str """ return list(set(self.getLabels())) def getLabels(self): """Gets the labels in the data set. :return: all labels from the dataset. :rtype: list of str """ return list(self.getData()["classLabel"]) def setParams(self, inputPath, outputDir, loggingDir): """Sets parameters for the feature selection run: path to the input datast and path to the output directory. :param inputPath: absolute path to the input file containing the dataset for analysis. :type inputPath: str :param outputDir: absolute path to the output directory (where to store the ranking) :type outputDir: str :param loggingDir: absolute path to the logging directory (where to store log files) :type loggingDir: str """ self.input = inputPath self.output = outputDir self.loggingDir = loggingDir def writeRankingToFile(self, ranking, outputFile, index = False): """Writes a given ranking to a specified file. :param ranking: dataframe with the ranking. :type ranking: :class:`pandas.DataFrame` :param outputFile: absolute path of the file where ranking will be stored. :type outputFile: str :param index: whether to write the dataframe's index or not. :type index: bool, default False """ if not ranking.empty: ranking.to_csv(outputFile, index = index, sep = "\t") else: #make sure to write at least the header if the dataframe is empty with open(outputFile, 'w') as outfile: header_line = "\"attributeName\"\t\"score\"\n" outfile.write(header_line) class PythonSelector(FeatureSelector): """Abstract. Inherit from this class when implementing a feature selector using any of scikit-learn's functionality. As functionality invocation, input preprocessing and output postprocessing are typically very similar/the same for such implementations, this class already encapsulates it. Instead of implementing :meth:`PythonSelector.selectFeatures`, implement :meth:`PythonSelector.runSelector`. """ def __init__(self, name): super().__init__(name) @abc.abstractmethod def runSelector(self, data, labels): """Abstract - implement this method when inheriting from this class. Runs the actual feature selector of scikit-learn. Is invoked by :meth:`PythonSelector.selectFeatures`. :param data: dataframe containing the unlabeled dataset. :type data: :class:`pandas.DataFrame` :param labels: numerically encoded class labels. :type labels: list of int :return: sklearn/mlxtend selector that ran the selection (containing coefficients etc.). """ pass def selectFeatures(self): """Executes the feature selection procedure. Prepares the input data set to match scikit-learn's expected formats and postprocesses the output to create a ranking. :return: absolute path to the output ranking file. :rtype: str """ utils.logInfo("######################## " + self.getName() + "... ########################") start = time.time() filename = self.getName() + ".csv" outputFile = self.output + filename data, labels = self.prepareInput() selector = self.runSelector(data, labels) self.prepareOutput(outputFile, data, selector) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Feature Selection") if self.enableLogFlush: utils.flushTimeLog(self.timeLogs, self.loggingDir + self.getName() + ".csv") utils.logInfo("######################## " + self.getName() + " finished ########################") return outputFile def prepareInput(self): """Prepares the input data set before running any of scikit-learn's selectors. Removes the labels from the input data set and encodes the labels in numbers. :return: dataset (without labels) and labels encoded in numbers. :rtype: :class:`pandas.DataFrame` and list of int """ start = time.time() labels = self.getLabels() data = self.getUnlabeledData() le = preprocessing.LabelEncoder() numeric_labels = le.fit_transform(labels) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Input Preparation") return data, numeric_labels def prepareOutput(self, outputFile, data, selector): """Transforms the selector output to a valid ranking and stores it into the specified file. :param outputFile: absolute path of the file to which to write the ranking. :type outputFile: str :param data: input dataset. :type data: :class:`pandas.DataFrame` :param selector: selector object from scikit-learn. """ start = time.time() ranking = pd.DataFrame() ranking["attributeName"] = data.columns ranking["score"] = selector.scores_ ranking = ranking.sort_values(by='score', ascending=False) self.writeRankingToFile(ranking, outputFile) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Output Preparation") class RSelector(FeatureSelector,metaclass=abc.ABCMeta): """Selector class for invoking R code for feature selection. Inherit from this class if you want to use R code, implement :meth:`RSelector.createParams` with what your script requires, and set self.scriptName accordingly. :param rConfig: config parameters to execute R code. :type rConfig: dict """ def __init__(self, name): self.rConfig = utils.getConfig("R") self.scriptName = "FS_" + name + ".R" super().__init__(name) @abc.abstractmethod def createParams(self, filename): """Abstract. Implement this method to set the parameters your R script requires. :param filename: absolute path of the output file. :type filename: str :return: list of parameters to use for R code execution, e.g. input and output filenames. :rtype: list of str """ pass def selectFeatures(self): """Triggers the feature selection. Actually a wrapper method that invokes external R code. :return: absolute path to the result file containing the ranking. :rtype: str """ utils.logInfo("######################## " + self.getName() + "... ########################") start = time.time() filename = self.getName() + ".csv" outputFile = self.output + filename params = self.createParams(outputFile) utils.runRCommand(self.rConfig, self.scriptName , params) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Feature Selection") if self.enableLogFlush: utils.flushTimeLog(self.timeLogs, self.loggingDir + self.getName() + ".csv") utils.logInfo("######################## " + self.getName() + " finished ########################") return filename class JavaSelector(FeatureSelector): """Selector class for invoking R code for feature selection. Inherit from this class if you want to use R code, implement :meth:`RSelector.createParams` with what your script requires, and set self.scriptName accordingly. :param javaConfig: config parameters to execute java code. :type javaConfig: dict """ def __init__(self, name): self.javaConfig = utils.getConfig("Java") super().__init__(name) @abc.abstractmethod def createParams(self): """Abstract. Implement this method to set the parameters your java code requires. :return: list of parameters to use for java code execution, e.g. input and output filenames. :rtype: list of str """ pass def selectFeatures(self): """Triggers the feature selection. Actually a wrapper method that invokes external java code. :return: absolute path to the result file containing the ranking. :rtype: str """ utils.logInfo("######################## " + self.getName() + "... ########################") start = time.time() filename = self.name + ".csv" params = self.createParams() utils.runJavaCommand(self.javaConfig, "/WEKA_FeatureSelector.jar", params) output_filepath = self.output + filename end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Feature Selection") if self.enableLogFlush: utils.flushTimeLog(self.timeLogs, self.loggingDir + self.getName() + ".csv") utils.logInfo("######################## " + self.getName() + " finished ########################") return output_filepath ############################### PRIOR KNOWLEDGE SELECTORS ############################### class PriorKnowledgeSelector(FeatureSelector,metaclass=abc.ABCMeta): """Super class for all prior knowledge approaches. If you want to implement an own prior knowledge approach that uses a knowledge base (but not a second selector and no network approaches), inherit from this class. :param knowledgebase: instance of a knowledge base. :type knowledgebase: :class:`knowledgebases.KnowledgeBase` or inheriting class :param alternativeSearchTerms: list of alternative search terms to use for querying the knowledge base. :type alternativeSearchTerms: list of str """ def __init__(self, name, knowledgebase): self.knowledgebase = knowledgebase super().__init__(name) self.alternativeSearchTerms = self.collectAlternativeSearchTerms() @abc.abstractmethod def selectFeatures(self): """Abstract. Implement this method when inheriting from this class. :return: absolute path to the output ranking file. :rtype: str """ pass def collectAlternativeSearchTerms(self): """Gets all alternative search terms that were specified in the config file and put them into a list. :return: list of alternative search terms to use for querying the knowledge base. :rtype: list of str """ alternativeTerms = self.dataConfig["alternativeSearchTerms"].split(" ") searchTerms = [] for term in alternativeTerms: searchTerms.append(term.replace("_", " ")) return searchTerms def getSearchTerms(self): """Gets all search terms to use for querying a knowledge base. Search terms that will be used are a) the class labels in the dataset, and b) the alternative search terms that were specified in the config file. :return: list of search terms to use for querying the knowledge base. :rtype: list of str """ searchTerms = list(self.getUniqueLabels()) searchTerms.extend(self.alternativeSearchTerms) return searchTerms def getName(self): """Returns the full name (including applied knowledge base) of this selector. :return: selector name. :rtype: str """ return self.name + "_" + self.knowledgebase.getName() #selector class for modifying integrative approaches class CombiningSelector(PriorKnowledgeSelector): """Super class for prior knoweldge approaches that use a knowledge base AND combine it with any kind of selector, e.g. a traditional approach. Inherit from this class if you want to implement a feature selector that requires both a knowledge base and another selector, e.g. because it combines information from both. :param knowledgebase: instance of a knowledge base. :type knowledgebase: :class:`knowledgebases.KnowledgeBase` or inheriting class :param tradApproach: any feature selector implementation to use internally, e.g. a traditional approach like ANOVA :type tradApproach: :class:`FeatureSelector` """ def __init__(self, name, knowledgebase, tradApproach): self.tradSelector = tradApproach self.tradSelector.disableLogFlush() super().__init__(name, knowledgebase) self.tradSelector.setTimeLogs(self.timeLogs) @abc.abstractmethod def selectFeatures(self): """Abstract. Implement this method as desired when inheriting from this class. :return: absolute path to the output ranking file. :rtype: str """ pass def getName(self): """Returns the full name (including applied knowledge base and feature selector) of this selector. :returns: selector name. :rtype: str """ return self.name + "_" + self.tradSelector.getName() + "_" + self.knowledgebase.getName() def getExternalGenes(self): """Gets all genes related to the provided search terms from the knowledge base. :returns: list of gene names. :rtype: list of str """ start = time.time() externalGenes = self.knowledgebase.getRelevantGenes(self.getSearchTerms()) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Getting External Genes") return externalGenes class NetworkSelector(PriorKnowledgeSelector): """Abstract. Inherit from this method if you want to implement a new network approach that actually conducts feature EXTRACTION, i.e. maps the original data set to have pathway/subnetworks. Instead of :meth:`FeatureSelector.selectFeatures` implement :meth:`NetworkSelector.selectPathways` when inheriting from this class. Instances of :class:`NetworkSelector` and inheriting classes also require a :class:`PathwayMapper` object that transfers the dataset to the new feature space. Custom implementations thus need to implement a) a selection strategy to select pathways and b) a mapping strategy to compute new feature values for the selected pathways. :param featureMapper: feature mapping object that transfers the feature space. :type featureMapper: :class:`FeatureMapper` or inheriting class """ def __init__(self, name, knowledgebase, featuremapper): self.featureMapper = featuremapper super().__init__(name, knowledgebase) @abc.abstractmethod def selectPathways(self, pathways): """Selects the pathways that will become the new features of the data set. Implement this method (instead of :meth:`FeatureSelector.selectFeatures` when inheriting from this class. :param pathways: dict of pathways (pathway names as keys) to select from. :type pathways: dict :returns: pathway ranking as dataframe :rtype: :class:`pandas.DataFrame` """ pass def writeMappedFile(self, mapped_data, fileprefix): """Writes the mapped dataset with new feature values to the same directory as the original file is located (it will be automatically processed then). :param mapped_data: dataframe containing the dataset with mapped feature space. :type mapped_data: :class:`pandas.DataFrame` :param fileprefix: prefix of the file name, e.g. the directory path :type fileprefix: str :return: absolute path of the file name to store the mapped data set. :rtype: str """ mapped_filepath = fileprefix + "_" + self.getName() + ".csv" mapped_data.to_csv(mapped_filepath) return mapped_filepath def getName(self): """Gets the selector name (including the knowledge base). :returns: selector name. :rtype: str """ return self.name + "_" + self.knowledgebase.getName() def filterPathways(self, pathways): filtered_pathways = {} for pathwayName in pathways: genes = pathways[pathwayName].nodes_by_label.keys() #check if there is an overlap between the pathway and data set genes existingGenes = list(set(self.getFeatures()) & set(genes)) if len(existingGenes) > 0: filtered_pathways[pathwayName] = pathways[pathwayName] else: utils.logWarning("WARNING: No genes of pathway " + pathwayName + " found in dataset. Pathway will not be considered") return filtered_pathways def selectFeatures(self): """Instead of selecting existing features, instances of :class:`NetworkSelector` select pathways or submodules as features. For that, it first queries its knowledge base for pathways. It then selects the top k pathways (strategy to be implemented in :meth:`NetworkSelector.selectPathways`) and subsequently maps the dataset to its new feature space. The mapping will be conducted by an object of :class:`PathwayMapper` or inheriting classes. If a second dataset for cross-validation is available, the feature space of this dataset will also be transformed. :returns: absolute path to the pathway ranking. :rtype: str """ utils.logInfo("######################## " + self.getName() + "... ########################") overallstart = time.time() pathways = self.knowledgebase.getRelevantPathways(self.getSearchTerms()) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, overallstart, end, "Get Pathways") #filter pathways to only those that contain at least one gene from the data set pathways = self.filterPathways(pathways) start = time.time() pathwayRanking = self.selectPathways(pathways) outputFile = self.output + self.getName() + ".csv" self.writeRankingToFile(pathwayRanking, outputFile) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Pathway Selection") pathwayNames = pathwayRanking["attributeName"] start = time.time() mapped_data = self.featureMapper.mapFeatures(self.getData(), pathways) fileprefix = os.path.splitext(self.input)[0] mapped_filepath = self.writeMappedFile(mapped_data, fileprefix) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Feature Mapping") #if crossvalidation is enabled, we also have to map the crossvalidation file if (utils.getConfigBoolean("Evaluation", "enableCrossEvaluation")): start = time.time() #we need to get the cross validation file that had been moved into the intermediate folder crossValidationPath = utils.getConfigValue("General", "crossVal_preprocessing") + "ready/" crossValidationFile = utils.getConfigValue("Evaluation", "crossEvaluationData") crossValFilename = os.path.basename(crossValidationFile) crossValFilepath = crossValidationPath + crossValFilename crossValData = pd.read_csv(crossValFilepath, index_col=0) mapped_crossValData = self.featureMapper.mapFeatures(crossValData, pathways) crossvalFileprefix = os.path.splitext(crossValFilepath)[0] crossval_mapped_filepath = self.writeMappedFile(mapped_crossValData, crossvalFileprefix) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "CrossValidation Feature Mapping") overallend = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, overallstart, overallend, "Feature Selection") if self.enableLogFlush: utils.flushTimeLog(self.timeLogs, self.loggingDir + self.getName() + ".csv") utils.logInfo("######################## " + self.getName() + " finished ########################") return outputFile ############################### FILTER ############################### class RandomSelector(FeatureSelector): """Baseline Selector: Randomly selects any features. """ def __init__(self): super().__init__("Random") def selectFeatures(self): """Randomly select any features from the feature space. Assigns a score of 0.0 to every feature :returns: absolute path to the ranking file. :rtype: str """ utils.logInfo("######################## " + self.getName() + "... ########################") start = time.time() filename = self.getName() + ".csv" outFilename = self.output + filename #randomly pick any features with open(self.input, 'r') as infile: header = infile.readline().rstrip().split(",") max_index = len(header) min_index = 2 shuffled_indices = random.sample(range(min_index, max_index), max_index - 2) with open(outFilename, 'w') as outfile: header_line = "\"attributeName\"\t\"score\"\n" outfile.write(header_line) for i in shuffled_indices: line = "\"" + header[i] + "\"\t\"0.0000\"\n" outfile.write(line) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Feature Selection") if self.enableLogFlush: utils.flushTimeLog(self.timeLogs, self.loggingDir + self.getName() + ".csv") utils.logInfo("######################## " + self.getName() + " finished ########################") return outFilename class AnovaSelector(PythonSelector): """Runs ANOVA feature selection using scikit-learn implementation """ def __init__(self): super().__init__("ANOVA") def runSelector(self, data, labels): """Runs the ANOVA feature selector of scikit-learn. Is invoked by :meth:`PythonSelector.selectFeatures`. :param data: dataframe containing the unlabeled dataset. :type data: :class:`pandas.DataFrame` :param labels: numerically encoded class labels. :type labels: list of int :return: sklearn/mlxtend selector that ran the selection (containing coefficients etc.). """ start = time.time() #setting k to "all" returns all features selector = SelectKBest(f_classif, k="all") selector.fit_transform(data, labels) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "ANOVA") return selector class Variance2Selector(PythonSelector): """Runs variance-based feature selection using scikit-learn. """ def __init__(self): super().__init__("Variance") def prepareOutput(self, outputFile, data, selector): """Transforms the selector output to a valid ranking and stores it into the specified file. We need to override this method because variance selector has no attribute scores but variances. :param outputFile: absolute path of the file to which to write the ranking. :type outputFile: str :param data: input dataset. :type data: :class:`pandas.DataFrame` :param selector: selector object from scikit-learn. """ start = time.time() ranking = pd.DataFrame() ranking["attributeName"] = data.columns ranking["score"] = selector.variances_ ranking = ranking.sort_values(by='score', ascending=False) self.writeRankingToFile(ranking, outputFile) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Output Preparation") def runSelector(self, data, labels): """Runs the actual variance-based feature selector of scikit-learn. Is invoked by :meth:`PythonSelector.selectFeatures`. :param data: dataframe containing the unlabeled dataset. :type data: :class:`pandas.DataFrame` :param labels: numerically encoded class labels. :type labels: list of int :return: sklearn/mlxtend selector that ran the selection (containing coefficients etc.). """ start = time.time() selector = VarianceThreshold() selector.fit_transform(data) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Variance_p") return selector class MRMRSelector(RSelector): """Runs maximum Relevance minimum Redundancy (mRMR) feature selection using the mRMRe R implementation: https://cran.r-project.org/web/packages/mRMRe/index.html Actually a wrapper class for invoking the R code. :param scriptName: name of the R script to invoke. :type scriptName: str :param maxFeatures: maximum number of features to select. Currently all features (=0) are ranked.. :type maxFeatures: int """ def __init__(self): self.maxFeatures = 0 super().__init__("mRMR") def createParams(self, outputFile): """Sets the parameters the R script requires (input file, output file, maximum number of features). :return: list of parameters to use for mRMR execution in R. :rtype: list of str """ params = [self.input, outputFile, str(self.maxFeatures)] return params class VarianceSelector(RSelector): """Runs variance-based feature selection using R genefilter library. Actually a wrapper class for invoking the R code. :param scriptName: name of the R script to invoke. :type scriptName: str """ def __init__(self): super().__init__("VB-FS") def createParams(self, outputFile): """Sets the parameters the R script requires (input file, output file). :param outputFile: absolute path to the output file that will contain the ranking. :type outputFile: str :return: list of parameters to use for mRMR execution in R. :rtype: list of str """ params = [self.input, outputFile] return params class InfoGainSelector(JavaSelector): """Runs InfoGain feature selection as provided by WEKA: https://www.cs.waikato.ac.nz/ml/weka/ Actually a wrapper class for invoking java code. """ def __init__(self): super().__init__("InfoGain") def createParams(self): """Sets the parameters the java program requires (input file, output file, selector name). :return: list of parameters to use for InfoGain execution in java. :rtype: list of str """ params = [self.input, self.output, "InfoGain"] return params class ReliefFSelector(JavaSelector): """Runs ReliefF feature selection as provided by WEKA: https://www.cs.waikato.ac.nz/ml/weka/ Actually a wrapper class for invoking java code. """ def __init__(self): super().__init__("ReliefF") def createParams(self): """Sets the parameters the java program requires (input file, output file, selector name). :return: list of parameters to use for InfoGain execution in java. :rtype: list of str """ params = [self.input, self.output, "ReliefF"] return params ############################### FILTER - COMBINED ############################### class KbSelector(PriorKnowledgeSelector): """Knowledge base selector. Selects features exclusively based the information retrieved from a knowledge base. :param knowledgebase: instance of a knowledge base. :type knowledgebase: :class:`knowledgebases.KnowledgeBase` """ def __init__(self, knowledgebase): super().__init__("KBonly", knowledgebase) def updateScores(self, entry, newGeneScores): """Updates a score entry with the new score retrieved from the knowledge base. Used by apply function. :param entry: a gene score entry consisting of the gene name and its score :type entry: :class:`pandas.Series` :param newGeneScores: dataframe containing gene scores retrieved from the knowledge base. :type newGeneScores: :class:`pandas.DataFrame` :returns: updated series element. :rtype: :class:`pandas.Series` """ gene = entry["attributeName"] updatedGenes = newGeneScores.iloc[:,0] #if the gene has a new score, update the entry if gene in updatedGenes.values: x = newGeneScores.loc[(newGeneScores["gene_symbol"] == gene), "score"] #necessary because we want to get the scalar value, not a series entry["score"] = x.iloc[0] return entry def selectFeatures(self): """Does the actual feature selection. Retrieves association scores for genes from the knowledge base based on the given search terms. :returns: absolute path to the resulting ranking file. :rtype: str """ utils.logInfo("######################## " + self.getName() + "... ########################") start = time.time() outputFile = self.output + self.getName() + ".csv" genes = self.getFeatures() # assign a minimal default score (0.000001) to all genes attributeNames = genes scores = [0.00001] * len(genes) ranking = pd.DataFrame({"attributeName": attributeNames, "score": scores}) kb_start = time.time() associatedGenes = self.knowledgebase.getGeneScores(self.getSearchTerms()) kb_end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, kb_start, kb_end, "Getting External Gene Scores") # assign association score to all genes in data updated_ranking = ranking.apply(self.updateScores, axis = 1, newGeneScores = associatedGenes) #sort by score, with highest on top updated_ranking = updated_ranking.sort_values("score", ascending=False) #save final rankings to file self.writeRankingToFile(updated_ranking, outputFile) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Feature Selection") if self.enableLogFlush: utils.flushTimeLog(self.timeLogs, self.loggingDir + self.getName() + ".csv") utils.logInfo("######################## " + self.getName() + " finished. ########################") return outputFile class KBweightedSelector(CombiningSelector): """Selects features based on association scores retrieved from the knowledge base and the relevance score retrieved by the (traditional) approach. Computes the final score via tradScore * assocScore. :param knowledgebase: instance of a knowledge base. :type knowledgebase: :class:`knowledgebases.KnowledgeBase` or inheriting class :param tradApproach: any feature selector implementation to use internally, e.g. a traditional approach like ANOVA :type tradApproach: :class:`FeatureSelector` """ def __init__(self, knowledgebase, tradApproach): super().__init__("Weighted", knowledgebase, tradApproach) def updateScores(self, entry, newGeneScores): """Updates a score entry with the new score retrieved from the knowledge base. Used by apply function. :param entry: a gene score entry consisting of the gene name and its score :type entry: :class:`pandas.Series` :param newGeneScores: dataframe containing gene scores retrieved from the knowledge base. :type newGeneScores: :class:`pandas.DataFrame` :returns: updated series element. :rtype: :class:`pandas.Series` """ gene = entry["attributeName"] updatedGenes = newGeneScores.iloc[:,0] #if the gene has a new score, update the entry if gene in updatedGenes.values: x = newGeneScores.loc[(newGeneScores["gene_symbol"] == gene), "score"] #necessary because we want to get the scalar value, not a series entry["score"] = x.iloc[0] return entry def getName(self): """Gets the selector name (including the knowledge base and (traditional) selector). :returns: selector name. :rtype: str """ return self.name + "_" + self.tradSelector.getName() + "_" + self.knowledgebase.getName() def computeStatisticalRankings(self, intermediateDir): """Computes the statistical relevance score of all features using the (traditional) selector. :param intermediateDir: absolute path to output directory for (traditional) selector (where to write the statistical rankings). :type intermediateDir: str :returns: dataframe with statistical ranking. :rtype: :class:`pandas.DataFrame` """ start = time.time() self.tradSelector.setParams(self.input, intermediateDir, self.loggingDir) statsRankings = self.tradSelector.selectFeatures() #load data frame from file statisticalRankings = pd.read_csv(statsRankings, index_col = 0, sep = "\t", engine = "python") self.timeLogs = pd.concat([self.timeLogs, self.tradSelector.getTimeLogs()]) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Statistical Ranking") return statisticalRankings def computeExternalRankings(self): """Computes the association scores for every gene using the knowledge base. Genes for which no entry could be found receive a default score of 0.000001. :return: dataframe with statistical ranking. :rtype: :class:`pandas.DataFrame` """ start = time.time() genes = self.getFeatures() # assign a minimal default score (0.000001) to all genes geneScores = dict.fromkeys(genes, 0.000001) associatedGenes = self.knowledgebase.getGeneScores(self.getSearchTerms()) #assign association score to all genes in data # assign association score to all genes in data for gene in geneScores.keys(): # check if score for gene was found in knowledge base if gene in list(associatedGenes.iloc[:, 0]): gene_entry = associatedGenes[associatedGenes["gene_symbol"] == gene] geneScores[gene] = gene_entry.iloc[0, 1] end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "External Ranking") return geneScores def combineRankings(self, externalRankings, statisticalRankings): """Combines score rankings from both the knowledge base and the (traditional) selector (kb_score * trad_score) to retrieve a final score for every gene. :param externalRankings: dataframe with ranking from knowledge base. :type externalRankings: :class:`pandas.DataFrame` :param statisticalRankings: dataframe with statistical ranking. :type statisticalRankings: :class:`pandas.DataFrame` :returns: dataframe with final combined ranking. :rtype: :class:`pandas.DataFrame` """ start = time.time() #just take over the statistical rankings and alter the scores accordingly combinedRankings = statisticalRankings.copy() features = statisticalRankings.index #go trough every item and combine by weighting for feature in features: #update scores - external rankings only provide feature scores, no indices if feature in externalRankings.keys(): externalScore = externalRankings[feature] else: #if no entry exists, set the score to be minimal to not zero up the whole equation in the end externalScore = 0.00001 if externalScore == 0: # if no entry exists, set the score to be minimal to not zero up the whole equation in the end externalScore = 0.00001 statsScore = statisticalRankings.at[feature, "score"] combinedRankings.at[feature, "score"] = externalScore * statsScore #reorder genes based on new score combinedRankings = combinedRankings.sort_values('score', ascending=False) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Ranking Combination") return combinedRankings def selectFeatures(self): """Runs the feature selection process. Retrieves scores from knowledge base and (traditional) selector and combines these to a single score. :returns: absolute path to final output file containing the ranking. :rtype: str """ utils.logInfo("######################## " + self.getName() + "... ########################") start = time.time() intermediateDir = utils.getConfigValue("General", "intermediateDir") + self.getName() + "/" utils.createDirectory(intermediateDir) outputFile = self.output + self.getName() + ".csv" #compute gene rankings with traditional approaches statisticalRankings = self.computeStatisticalRankings(intermediateDir) #compute gene rankings/associations with external knowledge base externalRankings = self.computeExternalRankings() #combine ranking scores combinedRankings = self.combineRankings(externalRankings, statisticalRankings) #save final rankings to file #note: here the gene ids are the index, so write it to file self.writeRankingToFile(combinedRankings, outputFile, True) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Feature Selection") if self.enableLogFlush: utils.flushTimeLog(self.timeLogs, self.loggingDir + self.getName() + ".csv") utils.logInfo("######################## " + self.getName() + " finished. ########################") return outputFile class LassoPenalty(PriorKnowledgeSelector, RSelector): """Runs feature selection by invoking xtune R package: https://cran.r-project.org/web/packages/xtune/index.html xtune is a Lasso selector that uses feature-individual penalty scores. These penalty scores are retrieved from the knowledge base. """ selectFeatures = RSelector.selectFeatures #make sure the right selectFeatures method will be invoked getName = PriorKnowledgeSelector.getName def __init__(self, knowledgebase): super().__init__("LassoPenalty", knowledgebase) self.scriptName = "FS_LassoPenalty.R" def createParams(self, outputFile): """Sets the parameters the xtune R script requires (input file, output file, filename containing rankings from knowledge base). :return: list of parameters to use for xtune execution in R. :rtype: list of str """ externalScore_filename = self.computeExternalRankings() params = [self.input, outputFile, externalScore_filename] return params def computeExternalRankings(self): """Computes the association scores for each feature based on the scores retrieved from the knowledge base. Features that could not be found in the knowledge base receive a default score of 0.000001. :return: absolute path to the file containing the external rankings. :rtype: str """ start = time.time() intermediateOutput = utils.getConfigValue("General", "intermediateDir") + self.getName() + "/" utils.createDirectory(intermediateOutput) genes = self.getFeatures() # assign a minimal default score (0.000001) to all genes geneScores = dict.fromkeys(genes, 0.000001) associatedGenes = self.knowledgebase.getGeneScores(self.getSearchTerms()) #assign association score to all genes in data for gene in geneScores.keys(): #check if score for gene was found in knowledge base if gene in list(associatedGenes.iloc[:,0]): gene_entry = associatedGenes[associatedGenes["gene_symbol"] == gene] geneScores[gene] = gene_entry.iloc[0,1] #write gene scores to file scores_filename = intermediateOutput + self.knowledgebase.getName() + "_scores.csv" scores_df = pd.DataFrame.from_dict(geneScores, orient = "index", columns = ["score"]) scores_df = scores_df.sort_values('score', ascending=False) scores_df.to_csv(scores_filename, index=True) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "External Ranking") return scores_filename ############################### WRAPPER ############################### class WrapperSelector(PythonSelector): """Selector implementation for wrapper selectors using scikit-learn. Currently implements recursive feature eliminatin (RFE) and sequential forward selection (SFS) strategies, which can be combined with nearly any classifier offered by scikit-learn, e.g. SVM. :param selector: scikit-learn selector strategy (currently RFE and SFS) :param classifier: scikit-learn classifier to use for wrapper selection. """ def __init__(self, name): super().__init__(name) self.classifier = self.createClassifier() self.selector = self.createSelector() def createClassifier(self): """Creates a classifier instance (from scikit-learn) to be used during the selection process. To enable the framework to use a new classifier, extend this method accordingly. :returns: scikit-learn classifier instance. """ classifier = None classifierType = self.name.split("-")[0] if "KNN" in classifierType: #attention: assumes that KNN is followed by a number! k = int(classifierType.replace("KNN", "")) classifier = KNeighborsClassifier(n_neighbors=k) elif classifierType == "SVMl":#SVM with linear kernel classifier = LinearSVC(max_iter=10000) #elif classifierType == "SVMp": # SVM with polynomial kernel, but it does not have coef component # classifier = SVC(kernel="poly") elif classifierType == "LR": classifier = LinearRegression() elif classifierType == "NB": #use MultinomialNB because we cannot assume feature likelihood to be gaussian by default classifier = MultinomialNB() elif classifierType == "ANOVA": classifier = f_classif else: raise BaseException("No suitable classifier found for " + classifierType + ". Choose between KNNx, SVMl (SVM with linear kernel), SVMp (SVM with polynomial kernel), LR, NB, ANOVA.") return classifier def createSelector(self): """Creates a selector instance that leads the selection process. Currently, sequential forward selection (SFS) and recursive feature elimination (RFE) are implemented. Extend this method if you want to add another selection strategy. :returns: scikit-learn selector instance. """ selector = None k = utils.getConfigValue("Gene Selection - General", "selectKgenes") selectorType = self.name.split("-")[1] if selectorType == "RFE": selector = RFE(self.classifier, int(k)) elif selectorType == "SFS": selector = SFS(self.classifier, k_features=int(k), forward=True, floating=False, scoring='accuracy', verbose = 2, n_jobs = int(utils.getConfigValue("General", "numCores"))/2, #use half of the available cores cv=0) return selector def prepareOutput(self, outputFile, data, selector): """Overwrites the inherited prepareOutput method because we need to access the particular selector's coefficients. The coefficients are extracted as feature scores and will be written to the rankings file. :param outputFile: selector name :type outputFile: str :param data: input dataset to get the feature names. :type data: :class:`pandas.DataFrame` :param selector: selector instance that is used during feature selection. """ start = time.time() ranking = pd.DataFrame() try: x = selector.estimator_.coef_ except: try: x = selector.estimator.coef_ except: x = selector.est_.coef_ selected_columnIDs = selector.ranking[selector.ranking_ == 1] selected_features = data.columns[selected_columnIDs] ranking["attributeName"] = selected_features ranking["score"] = x[0] ranking = ranking.sort_values('score', ascending=False) self.writeRankingToFile(ranking, outputFile) end = time.time() self.timeLogs = utils.logRuntime(start, end, "Prepare Output") def runSelector(self, data, labels): """Runs the actual feature selector of scikit-learn. Is invoked by :meth:`PythonSelector.selectFeatures`. :param data: dataframe containing the unlabeled dataset. :type data: :class:`pandas.DataFrame` :param labels: numerically encoded class labels. :type labels: list of int :return: sklearn/mlxtend selector that ran the selection (containing coefficients etc.). """ # do gene selection start = time.time() #adjust k to not exceed data columns k = int(utils.getConfigValue("Gene Selection - General", "selectKgenes")) if k > data.columns.size: self.selector.n_features_to_select_ = data.columns.size self.selector.k_features = data.columns.size # do data scaling scaling = StandardScaler().fit(data) scaled_data = scaling.transform(data) data = scaled_data self.selector = self.selector.fit(data, labels) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Wrapper Selector") return self.selector class SVMRFESelector(JavaSelector): """Executes SVM-RFE with poly-kernel. Uses an efficient java implementation from WEKA and is thus just a wrapper class to invoke the corresponding jars. """ def __init__(self): super().__init__("SVMpRFE") def createParams(self): """Sets the parameters the java program requires (input file, output file, selector name). :return: list of parameters to use for InfoGain execution in java. :rtype: list of str """ params = [self.input, self.output, "SVMpRFE"] return params ############################### EMBEDDED ############################### class RandomForestSelector(PythonSelector): """Selector class that implements RandomForest as provided by scikit-learn. """ def __init__(self): super().__init__("RandomForest") #override method because there is no scores_ attribute but instead feature_importances_ def prepareOutput(self, outputFile, data, selector): """Overwrites the inherited prepareOutput method because we need to access the RandomForest selector's feature importances. These feature importances are extracted as feature scores and will be written to the rankings file. :param outputFile: selector name :type outputFile: str :param data: input dataset to get the feature names. :type data: :class:`pandas.DataFrame` :param selector: RandomForest selector instance that is used during feature selection. """ start = time.time() ranking = pd.DataFrame() ranking["attributeName"] = data.columns ranking["score"] = selector.feature_importances_ ranking = ranking.sort_values('score', ascending=False) self.writeRankingToFile(ranking, outputFile) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Prepare Output") def runSelector(self, data, labels): """Runs the actual feature selection using scikit-learn's RandomForest classifier. Is invoked by :meth:`PythonSelector.selectFeatures`. :param data: dataframe containing the unlabeled dataset. :type data: :class:`pandas.DataFrame` :param labels: numerically encoded class labels. :type labels: list of int :return: scikit-learn RandomForestClassifier that ran the selection. """ # setting k to "all" returns all features start = time.time() clf = RandomForestClassifier(random_state = 0) # Train the classifier clf.fit(data, labels) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Random Forest") return clf class LassoSelector(PythonSelector): """Selector class that implements Lasso feature selection using scikit-learn. """ def __init__(self): super().__init__("Lasso") # override method because there is no scores_ attribute but instead feature_importances_ def prepareOutput(self, outputFile, data, selector): """Overwrites the inherited prepareOutput method because we need to access Lasso's coefficients. These coefficients are extracted as feature scores and will be written to the rankings file. :param outputFile: selector name :type outputFile: str :param data: input dataset to get the feature names. :type data: :class:`pandas.DataFrame` :param selector: RandomForest selector instance that is used during feature selection. """ start = time.time() ranking = pd.DataFrame() ranking["attributeName"] = data.columns ranking["score"] = selector.coef_ ranking = ranking.sort_values('score', ascending=False) self.writeRankingToFile(ranking, outputFile) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Prepare Output") def runSelector(self, data, labels): """Runs the actual Lasso feature selector using scikit-learn. Is invoked by :meth:`PythonSelector.selectFeatures`. :param data: dataframe containing the unlabeled dataset. :type data: :class:`pandas.DataFrame` :param labels: numerically encoded class labels. :type labels: list of int :return: Lasso selector that ran the selection. """ # setting k to "all" returns all features start = time.time() clf = Lasso() clf.fit(data, labels) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Lasso") return clf ############################### INTEGRATIVE ############################### class PreFilterSelector(CombiningSelector): """Applies a two-level prefiltering strategy for feature selection. Filters all features that were not retrieved by a knowledge base based on the search terms provided in the config file. Applies a (traditional) feature selector on the remaining features afterwards. For traditional univariate filter approaches, the results retrieved by this class and :class:`PostFilterSelector` will be the same. """ def __init__(self, knowledgebase, tradApproach): super().__init__("Prefilter", knowledgebase, tradApproach) def selectFeatures(self): """Carries out feature selection. First queries the assigned knowledge base to get genes that are associated to the given search terms. Filter feature set of input data set to contain only features that are in the retrieved gene set. Apply (traditional) selector on the filtered data set. :returns: absolute path to rankings file. :rtype: str """ utils.logInfo("######################## " + self.getName() + "... ########################") intermediateOutput = utils.getConfigValue("General", "intermediateDir") + self.getName() + "/" utils.createDirectory(intermediateOutput) start = time.time() externalGenes = self.knowledgebase.getRelevantGenes(self.getSearchTerms()) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Getting Relevant Genes") outputFilename = self.output + self.getName() + ".csv" #stop if no genes could be found for filtering if len(externalGenes) == 0: return outputFilename #filter input by externalGenes, keep classLabel and sampleID matrix = pd.read_csv(self.input) finalCols = matrix.columns.to_list()[0:2] # filter externalGenes by genes available in the rankings dataGenes = set(matrix.columns.to_list()) sharedGenes = list(dataGenes & set(externalGenes)) finalCols.extend(sharedGenes) filteredMatrix = matrix[finalCols] #write to file and set this as new input filtered_input = intermediateOutput + self.getName() + ".csv" filteredMatrix.to_csv(filtered_input, index = False) self.tradSelector.setParams(filtered_input, intermediateOutput, self.loggingDir) rankingFile = self.tradSelector.selectFeatures() self.timeLogs = pd.concat([self.timeLogs, self.tradSelector.getTimeLogs()]) #rename ranking file so that we can recognize it in the output files os.rename(rankingFile, outputFilename) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Feature Selection") if self.enableLogFlush: utils.flushTimeLog(self.timeLogs, self.loggingDir + self.getName() + ".csv") utils.logInfo("######################## " + self.getName() + " finished. ########################") return outputFilename class PostFilterSelector(CombiningSelector): """Applies a two-level postfiltering strategy for feature selection. Applies (traditional) feature selection to the input data set. Afterwards, removes all genes for which no information in the corresponding knowledge base was found based on the search terms provided in the config file. For traditional univariate filter approaches, the results retrieved by this class and :class:`PreFilterSelector` will be the same. """ def __init__(self, knowledgebase, tradApproach): super().__init__("Postfilter", knowledgebase, tradApproach) def selectFeatures(self): """Carries out feature selection. First executes (traditional) selector. Then queries the assigned knowledge base to get genes that are associated to the given search terms. Finally filters feature set to contain only features that are in the retrieved gene set. :returns: absolute path to rankings file. :rtype: str """ utils.logInfo("######################## " + self.getName() + "... ########################") start = time.time() intermediateOutput = utils.getConfigValue("General", "intermediateDir") + self.getName() + "/" utils.createDirectory(intermediateOutput) outputFile = self.output + self.getName() + ".csv" self.tradSelector.setParams(self.input, intermediateOutput, self.loggingDir) rankingFile = self.tradSelector.selectFeatures() self.timeLogs = pd.concat([self.timeLogs, self.tradSelector.getTimeLogs()]) ranking = utils.loadRanking(rankingFile) kb_start = time.time() #filter ranking by genes from knowledge base externalGenes = self.knowledgebase.getRelevantGenes(self.getSearchTerms()) kb_end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, kb_start, kb_end, "Getting Relevant Genes") #filter externalGenes by genes available in the rankings dataGenes = set(ranking["attributeName"]) sharedGenes = list(dataGenes & set(externalGenes)) filteredRanking = ranking[ranking["attributeName"].isin(sharedGenes)] self.writeRankingToFile(filteredRanking, outputFile) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Feature Selection") if self.enableLogFlush: utils.flushTimeLog(self.timeLogs, self.loggingDir + self.getName() +".csv") utils.logInfo("######################## " + self.getName() + " finished. ########################") return outputFile class ExtensionSelector(CombiningSelector): """Selector implementation inspired by SOFOCLES: "SoFoCles: Feature filtering for microarray classification based on Gene Ontology", Papachristoudis et al., Journal of Biomedical Informatics, 2010 This selector carries out (traditional) feature selection and in parallel retrieves relevant genes from a knowledge base based on the provided search terms. The ranking is then adapted by alternating the feature ranking retrieved by the (traditiona) selection approach and the externally retrieved genes. This is kind of related to an extension approach, where a feature ranking that was retrieved by a traditional approach is extended by such external genes. """ def __init__(self, knowledgebase, tradApproach): super().__init__("Extension", knowledgebase, tradApproach) def selectFeatures(self): """Carries out feature selection. Executes (traditional) selector and separately retrieves genes from the assigned knowledge base based on the search terms specified in the config. Finally merges the two feature lists alternating to form an "extended" feature ranking. :returns: absolute path to rankings file. :rtype: str """ utils.logInfo("######################## " + self.getName() + "... ########################") start = time.time() intermediateOutput = utils.getConfigValue("General", "intermediateDir") + self.getName() + "/" utils.createDirectory(intermediateOutput) outputFile = self.output + self.getName() + ".csv" self.tradSelector.setParams(self.input, intermediateOutput, self.loggingDir) rankingFile = self.tradSelector.selectFeatures() self.timeLogs = pd.concat([self.timeLogs, self.tradSelector.getTimeLogs()]) trad_ranking = utils.loadRanking(rankingFile) # extend ranking by genes from knowledge base kb_start = time.time() ext_ranking = self.knowledgebase.getGeneScores(self.getSearchTerms()) kb_end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, kb_start, kb_end, "Getting External Gene Scores") #select top k genes from ext_ranking #topK = int(utils.getConfigValue("Evaluation", "topKmax")) #rename columns ext_ranking.columns = ["attributeName", "score_ext"] #select only genes from dataset from external ranking ext_ranking_genes = trad_ranking[trad_ranking["attributeName"].isin(ext_ranking["attributeName"])] #join gene indices with external ranking to get index column x = ext_ranking_genes.reindex(columns =["attributeName"]) merged_ranking = x.merge(ext_ranking, on= "attributeName") merged_ranking = merged_ranking.loc[:,["attributeName", "score_ext"]] #rename score column merged_ranking.columns = ["attributeName", "score"] # sort by scores merged_ranking.sort_values('score', ascending=False, inplace=True) ext_ranking = merged_ranking #ext_len = topK #if len(merged_ranking.index) < topK: # ext_len = len(merged_ranking.index) #topK_ext = merged_ranking.head(ext_len) #reset index of topK_ext (needed for interleaving) ext_ranking.index = list(range(1,2 * len(ext_ranking.index) + 1 , 2)) trad_ranking.index = list(range(0, 2 * len(trad_ranking.index), 2)) #interleave both dataframes interleaved_ranking = pd.concat([trad_ranking, ext_ranking]).sort_index() #remove duplicate entries and keep first occurrences interleaved_ranking.drop_duplicates(subset=interleaved_ranking.columns[0], keep="first", inplace=True) #if len(interleaved_ranking) < topK: # topK = len(interleaved_ranking) #cut ranking to topK #final_ranking = interleaved_ranking.head(topK) #adjust relevance scores of external genes so that sorting stays the same (assign score between scores of #gene before and after own rank indices_to_change = range(1, len(interleaved_ranking)-1, 2) for index in indices_to_change: pregene_entry = interleaved_ranking.iloc[index - 1,] pre_score = pregene_entry.iloc[1] postgene_entry = interleaved_ranking.iloc[index + 1,] post_score = postgene_entry.iloc[1] #set new score to something between scores of gene before and after in this ranking gene_entry = interleaved_ranking.iloc[index,] gene_entry["score"] = random.uniform(pre_score, post_score) self.writeRankingToFile(interleaved_ranking, outputFile) end = time.time() self.timeLogs = utils.logRuntime(self.timeLogs, start, end, "Feature Selection") if self.enableLogFlush: utils.flushTimeLog(self.timeLogs, self.loggingDir + self.getName() + ".csv") utils.logInfo("######################## " + self.getName() + " finished. ########################") return outputFile class NetworkActivitySelector(NetworkSelector): """Selector implementation that selects a set of pathways from the knowledge base and maps the feature space to the pathways. Pathway ranking scores are computed based on the average ANOVA p-value of its member genes and the sample classes. This method is also used by Chuang et al. and Tian et al. (Discovering statistically significant pathways in expression profiling studies) Pathway feature values are computed with an instance of :class:`FeatureMapper` or inheriting classes, whose mapping strategies can vary. If pathways should be selected according to another strategy, use this class as an example implementation to implement a new class that inherits from :class:`NetworkSelector`. """ def __init__(self, knowledgebase, featuremapper): if isinstance(featuremapper, CORGSActivityMapper): name = "CorgsNetworkActivity" elif isinstance(featuremapper, PathwayActivityMapper): name = "NetworkActivity" else: name = "NetworkActivity" super().__init__(name, knowledgebase, featuremapper) def selectPathways(self, pathways): """Computes a pathway ranking for the input pathways. Computes a pathway score based on the average ANOVA's f-test p-values of a pathway's member genes and the sample classes. :param pathways: selector name :type pathways: str :returns: pathway ranking with pathway scores :rtype: :class:`pandas.DataFrame` """ #this selector selects the most significant pathways according to the average t-test of its member genes and the sample classes #method used by Chuang et al. and Tian et al. (Discovering statistically significant pathways in expression profiling studies) #as we can have > 2 classes, we just use ANOVA instead of t-test dataset = self.getUnlabeledData() # define input params # load data labels = self.getLabels() le = preprocessing.LabelEncoder() numeric_labels = le.fit_transform(labels) #run ANOVA (if we have just 2 classes, ANOVA is equivalent to the t-test) selector = SelectKBest(f_classif, k="all") selector.fit_transform(dataset, numeric_labels) pvals = pd.Series(selector.pvalues_, index = dataset.columns) #for every pathway, get the average score from its member genes pathway_scores = {} for pathwayName in pathways: genes = pathways[pathwayName].nodes_by_label.keys() #check if all genes in genes are in the pvals matrix existingGenes = list(set(pvals.index) & set(genes)) score = pvals.loc[existingGenes].mean() pathway_scores[pathwayName] = score # if we do not have any pathways, stop here if not pathway_scores: ranking = pd.DataFrame(columns=["attributeName", "score"]) else: # sort pathways by score in ascending order sorted_pathways = sorted(pathway_scores.items(), key=lambda x: x[1]) #create output: a file with: feature, score, and file index feature_ranking_list = list() for pathway in sorted_pathways: feature_ranking_list.append([pathway[0], pathway[1]]) ranking = pd.DataFrame(data = np.array(feature_ranking_list), columns = ["attributeName", "score"]) return ranking ############################### FEATURE MAPPERS ############################### class FeatureMapper(): """Abstract. Inherit from this class and implement :meth:`FeatureMapper.mapFeatures` to implement a new mapping strategy. Maps the feature space of the given input data to a given set of pathways. Computes a new feature value for every feature and sample based on the implemented strategy. """ def __init__(self, ): super().__init__() @abc.abstractmethod def mapFeatures(self, original_data, pathways): """Abstract method. Implement this method when inheriting from this class. Carries out the actual feature mapping. :param original_data: the original data set of which to map the feature space. :type original_data: :class:`pandas.DataFrame` :param pathways: dict of pathway names as keys and corresponding pathway :class:`pypath.Network` objects as values :type pathways: dict :returns: the transformed data set with new feature values :rtype: :class:`pandas.DataFrame` """ pass def getUnlabeledData(self, dataset): """Removes the labels from the data set. :param dataset: data set from which to remove the labels. :type dataset: :class:`pandas.DataFrame` :returns: data set without labels. :rtype: :class:`pandas.DataFrame` """ return dataset.loc[:, dataset.columns != "classLabel"] def getLabels(self, dataset): """Gets the dataset labels. :param dataset: data set from which to extract the labels. :type dataset: :class:`pandas.DataFrame` :returns: label vector of the data set. :rtype: :class:`pandas.Series` """ return dataset.iloc[:,0] def getFeatures(self, dataset): """Gets the features of a data set. :param dataset: data set from which to extract the features. :type dataset: :class:`pandas.DataFrame` :returns: feature vector of the data set. :rtype: :class:`pandas.Series` """ return dataset.columns[1:] def getSamples(self, dataset): """Gets all samples in a data set. :param dataset: data set from which to extract the samples. :type dataset: :class:`pandas.DataFrame` :returns: list of samples from the data set. :rtype: list """ return dataset.index.tolist() def getPathwayGenes(self, pathway, genes): """Returns the intersection of a given set of genes and the genes contained in a given pathway. :param pathway: pathway object from which to get the genes. :type pathway: :class:`pypath.Network` :param genes: list of gene names. :type genes: list of str :returns: list of genes that are contained in both the pathway and the gene list. :rtype: list of str """ pathway_genes = pathway.nodes_by_label contained_pathway_genes = list(set(pathway_genes.keys()) & set(genes)) return contained_pathway_genes class CORGSActivityMapper(FeatureMapper): """Pathway mapper that implements the strategy described by Lee et al.: "Inferring Pathway Activity toward Precise Disease Classification" Identifies CORGS genes for every pathway: uses random search to find the minimal set of genes for which the pathway activity score is maximal. First, every sample receives an activity score, which is the average expression level of the (CORGS) genes / number of genes. The computed activity scores are then used for f-testing with the class labels, and the p-values are the new pathway feature values. These steps are executed again and again until the p-values are not decreasing anymore. """ def __init__(self, ): super().__init__() def getANOVAscores(self, data, labels): """Applies ANOVA f-test to test the association/correlation of a feature (pathway) with a given label. The feature has activity scores (computed from CORGS genes) for every sample, which are to be tested for the labels. :param data: the data set which to test for correlation with the labels (typically feature scores of a pathway for samples). :type data: :class:`pandas.DataFrame` :param labels: class labels to use for f-test. :type labels: :class:`pandas.Series` :returns: series of p-values for every sample. :rtype: :class:`pandas.Series` """ le = preprocessing.LabelEncoder() numeric_labels = le.fit_transform(labels) # run ANOVA (if we have just 2 classes, ANOVA is equivalent to the t-test) selector = SelectKBest(f_classif, k="all") if (isinstance(data, pd.Series)): genes = data.name data = data.values.reshape(-1, 1) else: genes = data.columns selector.fit_transform(data, numeric_labels) pvals = pd.Series(selector.pvalues_, index=genes) return pvals def computeActivityScore(self, sampleExpressionLevels): """Computes the activity score of a given set of genes for a specific sample. The activity score of a sample is the mean expression value of the given genes divided by the overall number of given genes. :param sampleExpressionLevels: data set containing expression levels from a given set of genes for samples. :type sampleExpressionLevels: :class:`pandas.DataFrame` :returns: activity scores for the given samples. :rtype: :class:`pandas.Series` """ #activityScore for a sample is the average expression level of the genes / number of genes x = sampleExpressionLevels.mean() / len(sampleExpressionLevels) return x def computeActivityVector(self, expressionLevels): """Computes the activity score of a given set of genes for a all samples. :param expressionLevels: input data set of expression levels for a given set of (CORGS) genes. :type expressionLevels: :class:`pandas.DataFrame` :returns: instance of a feature selector implementation. :rtype: :class:`pandas.DataFrame` or inheriting class """ activityVector = expressionLevels.apply(self.computeActivityScore, axis = 1) return activityVector def mapFeatures(self, original_data, pathways): """Carries out the actual feature mapping. Follows the strategy described by Lee et al.: "Inferring Pathway Activity toward Precise Disease Classification" Identifies CORGS genes for every pathway: uses random search to find the minimal set of genes for which the pathway activity score is maximal. First, every sample receives an activity score, which is the average expression level of the (CORGS) genes / number of genes. The computed activity scores are then used for f-testing with the class labels, and the p-values are the new pathway feature values. These steps are executed again and again until the p-values are not decreasing anymore. :param original_data: the original data set of which to map the feature space. :type original_data: :class:`pandas.DataFrame` :param pathways: dict of pathway names as keys and corresponding pathway :class:`pypath.Network` objects as values :type pathways: dict :returns: the transformed data set with new feature values :rtype: :class:`pandas.DataFrame` """ # create pathway activity score S(G) for pathway x and sample y: # find minimal set of genes G so that S(G) is locally maximal unlabeledData = self.getUnlabeledData(original_data) genes = self.getFeatures(original_data) samples = self.getSamples(original_data) labels = self.getLabels(original_data) # create a new dataframe that has pathways as features pathways_scores = {} pathways_scores["Unnamed: 0"] = samples classLabels = pd.DataFrame(original_data.loc[:, "classLabel"]) # for every pathway, compute activity score for every sample for pathwayname in pathways.keys(): # 1. map genes to network pathway = pathways[pathwayname] pathwaygenes = self.getPathwayGenes(pathway, genes) if (len(pathwaygenes) == 0): # if none of the genes in the pathway are in the data, just set the pathwayscore to 0 utils.logWarning( "WARNING: No genes of pathway " + pathwayname + " found in dataset for feature mapping. Assign activity score of 0.0 to all samples.") corgs_activities = [0.0] * len(samples) continue #2. take top scored gene as seed gene and compute S(gene) k = 0 #set initial scores to make sure we get at least one run score_k1 = 0 score_k = -1 max_k = len(pathwaygenes) #repeat while S(k+1) > S(k), k = #corgs genes # stop if we have already included all genes of pathway while (score_k1 > score_k) and (k <= max_k): #former k+1 score is now our k score score_k = score_k1 corgs_genes = pathwaygenes[:k+1] corgs_activities = self.computeActivityVector(unlabeledData.loc[:,corgs_genes]) score_k1 = self.getANOVAscores(corgs_activities, labels)[0] k += 1 # once greedy search has finished, collect activity scores as new pathway feature values pathways_scores[pathwayname] = corgs_activities # create final dataframe with pathways as features pathwaydata = pd.DataFrame.from_dict(data=pathways_scores) pathwaydata = pathwaydata.set_index("Unnamed: 0") # add class labels to dataset mappedData = classLabels.merge(pathwaydata, right_index = True, left_index = True) # 4. return new features return mappedData class PathwayActivityMapper(FeatureMapper): """Pathway mapper that implements a strategy that is related to Vert and Kanehisa's strategy: Vert, Jean-Philippe, and <NAME>. "Graph-driven feature extraction from microarray data using diffusion kernels and kernel CCA." NIPS. 2002. Computes pathway activity scores for every sample and pathway as new feature values. The feature value is the average of: expression level weighted by gene variance and neighbor correlation score) """ def __init__(self, ): super().__init__() def getAverageCorrelation(self, correlations, gene, neighbors): """Computes the average correlation from the correlations of a given gene and its neighbors. :param correlations: correlation matrix of all genes. :type correlations: :class:`pandas.DataFrame` :param gene: gene name whose average neighbor correlation to compute. :type gene: str :param neighbors: list of gene names that are neighbors of the given gene. :type neighbors: list of str :returns: average correlation value. :rtype: float """ containedNeighbors = list(set(neighbors) & set(correlations.columns)) if len(containedNeighbors) == 0: return 0 else: entries = correlations.loc[gene, containedNeighbors] return entries.mean() def computeGeneVariances(self, data): """Computes the variances for every gene across all samples. :param data: data set with expression values. :type data: :class:`pandas.DataFrame` :returns: variance for every gene. :rtype: :class:`pandas.Series` """ selector = VarianceThreshold() selector.fit_transform(data) return selector.variances_ def mapFeatures(self, original_data, pathways): """Executes the actual feature mapping procedure. A feature value is the average of (for every gene in a pathway): (expression level weighted by gene variance and neighbor correlation score) :param original_data: the original data set of which to map the feature space. :type original_data: :class:`pandas.DataFrame` :param pathways: dict of pathway names as keys and corresponding pathway :class:`pypath.Network` objects as values :type pathways: dict :returns: the transformed data set with new feature values :rtype: :class:`pandas.DataFrame` """ #create pathway activity score for pathway x and sample y: average of all (gene expressions weighted by gene variance and neighbor correlations) # compute gene variances unlabeledData = self.getUnlabeledData(original_data) genes = self.getFeatures(original_data) samples = self.getSamples(original_data) variances = self.computeGeneVariances(unlabeledData) vars = pd.Series(variances, genes) # compute correlation scores for genes correlations = unlabeledData.corr(method="pearson") # create a new dataframe that has pathways as features pathways_scores = {} pathways_scores["Unnamed: 0"] = samples classLabels = pd.DataFrame(original_data.loc[:,"classLabel"]) # for every pathway, compute activity score for every sample # set pathways to the correct index as provided in the ranking for pathwayname in pathways.keys(): # 2. map genes to network pathway = pathways[pathwayname] pathwaygenes = self.getPathwayGenes(pathway, genes) #3. precompute variance and average correlations for every gene in the pathway scoreparts = {} for gene in pathwaygenes: variance = vars.loc[gene] geneNeighbors = pathway.partners(gene) neighborNames = [neighbor.label for neighbor in geneNeighbors] average_correlations = self.getAverageCorrelation(correlations, gene, neighborNames) scoreparts[gene] = variance * average_correlations # 4. compute pathway activity score for every sample prescores = pd.Series(scoreparts) pathwayscores = [] if (len(pathwaygenes) == 0): # if none of the genes in the pathway are in the data, just set the pathwayscore to 0 utils.logWarning("WARNING: No genes of pathway " + pathwayname + " found in dataset. Assign activity score of 0.0 to all samples.") pathwayscores = [0.0] * len(samples) else: for sample in samples: expression_values = original_data.loc[sample, pathwaygenes] score = expression_values * prescores.loc[pathwaygenes] # activity score for pathway x and sample y: average of all (gene expressions weighted by gene variance and neighbor correlations) activityScore = score.mean() pathwayscores.append(activityScore) pathways_scores[pathwayname] = pathwayscores # create final dataframe with pathways as features pathwaydata =
pd.DataFrame.from_dict(data=pathways_scores)
pandas.DataFrame.from_dict
import numpy as np import matplotlib.pyplot as plt from matplotlib import colors as mcolors from matplotlib.lines import Line2D import scipy import random import os import glob import sklearn from sklearn.preprocessing import MinMaxScaler from __future__ import division #so 1/2 = 0.5, not 1/2=0 import pandas as pd def extract_ansl_data(file, outpath): """ function to extract data from ansl output csv takes path to directory as input""" # necessary lists for data extraction conditions = [] items = [] volumes = [] frequencies = [] orders = [] settings = [] subjects = [] for filename in glob.iglob(file): # all specified files in directory df = pd.read_csv(filename) for i in df.columns: for item in df[i]: # get subject info subject = filename.split('/') subject = subject[6] subject = subject[:5] subjects.append(subject) item= item.split('/') item= item[2] items.append(item) # get info on setting setting = filename.split('/') if 'baseline' in filename: settings.append('baseline') elif 'epi_fast(TR1s)' in filename: settings.append('epi_fast(TR1s)') elif 'epi_standard(TR2s)' in filename: settings.append('epi_standard(TR2s)') else: settings.append('structural(T1w)') # get info on stimuli order if 'order1' in i: orders.append('1') elif 'order2' in i: orders.append('2') # get info on volume condition if 'decrease' in i: conditions.append('decrease') elif 'increase' in i: conditions.append('increase') # extract discovered volume if '10dBFS' in item: volumes.append(-10) elif '20dBFS' in item: volumes.append(-20) elif '30dBFS' in item: volumes.append(-30) elif '40dBFS' in item: volumes.append(-40) elif '50dBFS' in item: volumes.append(-50) elif '60dBFS' in item: volumes.append(-60) elif '70dBFS' in item: volumes.append(-70) elif '80dBFS' in item: volumes.append(-80) elif '90dBFS' in item: volumes.append(-90) elif '100dBFS' in item: volumes.append(-100) elif 'not_discovered' in item: volumes.append('0') if '150hz' in item: frequencies.append(150) elif '250hz' in item: frequencies.append(250) elif '500hz' in item: frequencies.append(500) elif '1000hz' in item: frequencies.append(1000) elif '1500hz' in item: frequencies.append(1500) elif '2000hz' in item: frequencies.append(2000) elif '2250hz' in item: frequencies.append(2250) elif '2500hz' in item: frequencies.append(2500) elif '2750hz' in item: frequencies.append(2750) elif '3000hz' in item: frequencies.append(3000) elif '4000hz' in item: frequencies.append(4000) elif '6000hz' in item: frequencies.append(6000) elif '8000hz' in item: frequencies.append(8000) # write to dataframe df= pd.DataFrame({'subject': subjects, 'setting': settings, 'condition': conditions, 'order': orders, 'item' : items, 'Level (dBFS)' : volumes, 'Frequency (Hz)': frequencies}) df.to_csv(opj(path, 'ansl_output.csv'), index=False) return df def convert_ansl_data_dbfs(file, outpath): df =
pd.read_csv(file)
pandas.read_csv
#!/usr/bin/env python3 import argparse import collections import copy import datetime import functools import glob import json import logging import math import operator import os import os.path import re import sys import typing import warnings import matplotlib import matplotlib.cm import matplotlib.dates import matplotlib.pyplot import matplotlib.ticker import networkx import numpy import pandas import tabulate import tqdm import rows.console import rows.load import rows.location_finder import rows.model.area import rows.model.carer import rows.model.datetime import rows.model.historical_visit import rows.model.history import rows.model.json import rows.model.location import rows.model.metadata import rows.model.past_visit import rows.model.problem import rows.model.rest import rows.model.schedule import rows.model.service_user import rows.model.visit import rows.parser import rows.plot import rows.routing_server import rows.settings import rows.sql_data_source def handle_exception(exc_type, exc_value, exc_traceback): """Logs uncaught exceptions""" if issubclass(exc_type, KeyboardInterrupt): sys.__excepthook__(exc_type, exc_value, exc_traceback) else: logging.error("Uncaught exception", exc_info=(exc_type, exc_value, exc_traceback)) __COMMAND = 'command' __PULL_COMMAND = 'pull' __INFO_COMMAND = 'info' __SHOW_WORKING_HOURS_COMMAND = 'show-working-hours' __COMPARE_BOX_PLOTS_COMMAND = 'compare-box-plots' __COMPARE_DISTANCE_COMMAND = 'compare-distance' __COMPARE_WORKLOAD_COMMAND = 'compare-workload' __COMPARE_QUALITY_COMMAND = 'compare-quality' __COMPARE_COST_COMMAND = 'compare-cost' __CONTRAST_WORKLOAD_COMMAND = 'contrast-workload' __COMPARE_PREDICTION_ERROR_COMMAND = 'compare-prediction-error' __COMPARE_BENCHMARK_COMMAND = 'compare-benchmark' __COMPARE_BENCHMARK_TABLE_COMMAND = 'compare-benchmark-table' __COMPARE_LITERATURE_TABLE_COMMAND = 'compare-literature-table' __COMPARE_THIRD_STAGE_PLOT_COMMAND = 'compare-third-stage-plot' __COMPARE_THIRD_STAGE_TABLE_COMMAND = 'compare-third-stage-table' __COMPARE_THIRD_STAGE_SUMMARY_COMMAND = 'compare-third-stage-summary' __COMPARE_QUALITY_OPTIMIZER_COMMAND = 'compare-quality-optimizer' __COMPUTE_RISKINESS_COMMAND = 'compute-riskiness' __COMPARE_DELAY_COMMAND = 'compare-delay' __TYPE_ARG = 'type' __ACTIVITY_TYPE = 'activity' __VISITS_TYPE = 'visits' __COMPARE_TRACE_COMMAND = 'compare-trace' __CONTRAST_TRACE_COMMAND = 'contrast-trace' __COST_FUNCTION_TYPE = 'cost_function' __DEBUG_COMMAND = 'debug' __AREA_ARG = 'area' __FROM_ARG = 'from' __TO_ARG = 'to' __FILE_ARG = 'file' __DATE_ARG = 'date' __BASE_FILE_ARG = 'base-file' __CANDIDATE_FILE_ARG = 'candidate-file' __SOLUTION_FILE_ARG = 'solution' __PROBLEM_FILE_ARG = 'problem' __OUTPUT_PREFIX_ARG = 'output_prefix' __OPTIONAL_ARG_PREFIX = '--' __BASE_SCHEDULE_PATTERN = 'base_schedule_pattern' __CANDIDATE_SCHEDULE_PATTERN = 'candidate_schedule_pattern' __SCHEDULE_PATTERNS = 'schedule_patterns' __LABELS = 'labels' __OUTPUT = 'output' __ARROWS = 'arrows' __FILE_FORMAT_ARG = 'output_format' __color_map = matplotlib.pyplot.get_cmap('tab20c') FOREGROUND_COLOR = __color_map.colors[0] FOREGROUND_COLOR2 = 'black' def get_or_raise(obj, prop): value = getattr(obj, prop) if not value: raise ValueError('{0} not set'.format(prop)) return value def get_date_time(value): date_time = datetime.datetime.strptime(value, '%Y-%m-%d') return date_time def get_date(value): value_to_use = get_date_time(value) return value_to_use.date() def configure_parser(): parser = argparse.ArgumentParser(prog=sys.argv[0], description='Robust Optimization ' 'for Workforce Scheduling command line utility') subparsers = parser.add_subparsers(dest=__COMMAND) pull_parser = subparsers.add_parser(__PULL_COMMAND) pull_parser.add_argument(__AREA_ARG) pull_parser.add_argument(__OPTIONAL_ARG_PREFIX + __FROM_ARG) pull_parser.add_argument(__OPTIONAL_ARG_PREFIX + __TO_ARG) pull_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT_PREFIX_ARG) info_parser = subparsers.add_parser(__INFO_COMMAND) info_parser.add_argument(__FILE_ARG) compare_distance_parser = subparsers.add_parser(__COMPARE_DISTANCE_COMMAND) compare_distance_parser.add_argument(__OPTIONAL_ARG_PREFIX + __PROBLEM_FILE_ARG, required=True) compare_distance_parser.add_argument(__OPTIONAL_ARG_PREFIX + __SCHEDULE_PATTERNS, nargs='+', required=True) compare_distance_parser.add_argument(__OPTIONAL_ARG_PREFIX + __LABELS, nargs='+', required=True) compare_distance_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) compare_distance_parser.add_argument(__OPTIONAL_ARG_PREFIX + __FILE_FORMAT_ARG, default=rows.plot.FILE_FORMAT) compare_workload_parser = subparsers.add_parser(__COMPARE_WORKLOAD_COMMAND) compare_workload_parser.add_argument(__PROBLEM_FILE_ARG) compare_workload_parser.add_argument(__BASE_SCHEDULE_PATTERN) compare_workload_parser.add_argument(__CANDIDATE_SCHEDULE_PATTERN) compare_workload_parser.add_argument(__OPTIONAL_ARG_PREFIX + __FILE_FORMAT_ARG, default=rows.plot.FILE_FORMAT) debug_parser = subparsers.add_parser(__DEBUG_COMMAND) # debug_parser.add_argument(__PROBLEM_FILE_ARG) # debug_parser.add_argument(__SOLUTION_FILE_ARG) compare_trace_parser = subparsers.add_parser(__COMPARE_TRACE_COMMAND) compare_trace_parser.add_argument(__PROBLEM_FILE_ARG) compare_trace_parser.add_argument(__FILE_ARG) compare_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __COST_FUNCTION_TYPE, required=True) compare_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __DATE_ARG, type=get_date) compare_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) compare_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __ARROWS, type=bool, default=False) contrast_workload_parser = subparsers.add_parser(__CONTRAST_WORKLOAD_COMMAND) contrast_workload_parser.add_argument(__PROBLEM_FILE_ARG) contrast_workload_parser.add_argument(__BASE_FILE_ARG) contrast_workload_parser.add_argument(__CANDIDATE_FILE_ARG) contrast_workload_parser.add_argument(__OPTIONAL_ARG_PREFIX + __TYPE_ARG) compare_prediction_error_parser = subparsers.add_parser(__COMPARE_PREDICTION_ERROR_COMMAND) compare_prediction_error_parser.add_argument(__BASE_FILE_ARG) compare_prediction_error_parser.add_argument(__CANDIDATE_FILE_ARG) contrast_trace_parser = subparsers.add_parser(__CONTRAST_TRACE_COMMAND) contrast_trace_parser.add_argument(__PROBLEM_FILE_ARG) contrast_trace_parser.add_argument(__BASE_FILE_ARG) contrast_trace_parser.add_argument(__CANDIDATE_FILE_ARG) contrast_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __DATE_ARG, type=get_date, required=True) contrast_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __COST_FUNCTION_TYPE, required=True) contrast_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) show_working_hours_parser = subparsers.add_parser(__SHOW_WORKING_HOURS_COMMAND) show_working_hours_parser.add_argument(__FILE_ARG) show_working_hours_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) compare_quality_parser = subparsers.add_parser(__COMPARE_QUALITY_COMMAND) compare_quality_optimizer_parser = subparsers.add_parser(__COMPARE_QUALITY_OPTIMIZER_COMMAND) compare_quality_optimizer_parser.add_argument(__FILE_ARG) subparsers.add_parser(__COMPARE_COST_COMMAND) compare_benchmark_parser = subparsers.add_parser(__COMPARE_BENCHMARK_COMMAND) compare_benchmark_parser.add_argument(__FILE_ARG) subparsers.add_parser(__COMPARE_LITERATURE_TABLE_COMMAND) subparsers.add_parser(__COMPARE_BENCHMARK_TABLE_COMMAND) subparsers.add_parser(__COMPUTE_RISKINESS_COMMAND) subparsers.add_parser(__COMPARE_DELAY_COMMAND) subparsers.add_parser(__COMPARE_THIRD_STAGE_TABLE_COMMAND) subparsers.add_parser(__COMPARE_THIRD_STAGE_PLOT_COMMAND) compare_box_parser = subparsers.add_parser(__COMPARE_BOX_PLOTS_COMMAND) compare_box_parser.add_argument(__PROBLEM_FILE_ARG) compare_box_parser.add_argument(__BASE_FILE_ARG) compare_box_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) third_stage_summary_parser = subparsers.add_parser(__COMPARE_THIRD_STAGE_SUMMARY_COMMAND) third_stage_summary_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) return parser def split_delta(delta: datetime.timedelta) -> typing.Tuple[int, int, int, int]: days = int(delta.days) hours = int((delta.total_seconds() - 24 * 3600 * days) // 3600) minutes = int((delta.total_seconds() - 24 * 3600 * days - 3600 * hours) // 60) seconds = int(delta.total_seconds() - 24 * 3600 * days - 3600 * hours - 60 * minutes) assert hours < 24 assert minutes < 60 assert seconds < 60 return days, hours, minutes, seconds def get_time_delta_label(total_travel_time: datetime.timedelta) -> str: days, hours, minutes, seconds = split_delta(total_travel_time) time = '{0:02d}:{1:02d}:{2:02d}'.format(hours, minutes, seconds) if days == 0: return time elif days == 1: return '1 day ' + time else: return '{0} days '.format(days) + time def pull(args, settings): area_code = get_or_raise(args, __AREA_ARG) from_raw_date = get_or_raise(args, __FROM_ARG) to_raw_date = get_or_raise(args, __TO_ARG) output_prefix = get_or_raise(args, __OUTPUT_PREFIX_ARG) console = rows.console.Console() user_tag_finder = rows.location_finder.UserLocationFinder(settings) location_cache = rows.location_finder.FileSystemCache(settings) location_finder = rows.location_finder.MultiModeLocationFinder(location_cache, user_tag_finder, timeout=5.0) data_source = rows.sql_data_source.SqlDataSource(settings, console, location_finder) from_date_time = get_date_time(from_raw_date) to_date_time = get_date_time(to_raw_date) current_date_time = from_date_time while current_date_time <= to_date_time: schedule = data_source.get_past_schedule(rows.model.area.Area(code=area_code), current_date_time.date()) for visit in schedule.visits: visit.visit.address = None output_file = '{0}_{1}.json'.format(output_prefix, current_date_time.date().strftime('%Y%m%d')) with open(output_file, 'w') as output_stream: json.dump(schedule, output_stream, cls=rows.model.json.JSONEncoder) current_date_time += datetime.timedelta(days=1) def get_travel_time(schedule, user_tag_finder): routes = schedule.routes() total_travel_time = datetime.timedelta() with rows.plot.create_routing_session() as session: for route in routes: visit_it = iter(route.visits) current_visit = next(visit_it, None) current_location = user_tag_finder.find(int(current_visit.visit.service_user)) while current_visit: prev_location = current_location current_visit = next(visit_it, None) if not current_visit: break current_location = user_tag_finder.find(int(current_visit.visit.service_user)) travel_time_sec = session.distance(prev_location, current_location) if travel_time_sec: total_travel_time += datetime.timedelta(seconds=travel_time_sec) return total_travel_time def info(args, settings): user_tag_finder = rows.location_finder.UserLocationFinder(settings) user_tag_finder.reload() schedule_file = get_or_raise(args, __FILE_ARG) schedule_file_to_use = os.path.realpath(os.path.expandvars(schedule_file)) schedule = rows.load.load_schedule(schedule_file_to_use) carers = {visit.carer for visit in schedule.visits} print(get_travel_time(schedule, user_tag_finder), len(carers), len(schedule.visits)) def compare_distance(args, settings): schedule_patterns = getattr(args, __SCHEDULE_PATTERNS) labels = getattr(args, __LABELS) output_file = getattr(args, __OUTPUT, 'distance') output_file_format = getattr(args, __FILE_FORMAT_ARG) data_frame_file = 'data_frame_cache.bin' if os.path.isfile(data_frame_file): data_frame = pandas.read_pickle(data_frame_file) else: problem = rows.load.load_problem(get_or_raise(args, __PROBLEM_FILE_ARG)) store = [] with rows.plot.create_routing_session() as routing_session: distance_estimator = rows.plot.DistanceEstimator(settings, routing_session) for label, schedule_pattern in zip(labels, schedule_patterns): for schedule_path in glob.glob(schedule_pattern): schedule = rows.load.load_schedule(schedule_path) duration_estimator = rows.plot.DurationEstimator.create_expected_visit_duration(schedule) frame = rows.plot.get_schedule_data_frame(schedule, problem, duration_estimator, distance_estimator) visits = frame['Visits'].sum() carers = len(frame.where(frame['Visits'] > 0)) idle_time = frame['Availability'] - frame['Travel'] - frame['Service'] idle_time[idle_time < pandas.Timedelta(0)] = pandas.Timedelta(0) overtime = frame['Travel'] + frame['Service'] - frame['Availability'] overtime[overtime < pandas.Timedelta(0)] = pandas.Timedelta(0) store.append({'Label': label, 'Date': schedule.metadata.begin, 'Availability': frame['Availability'].sum(), 'Travel': frame['Travel'].sum(), 'Service': frame['Service'].sum(), 'Idle': idle_time.sum(), 'Overtime': overtime.sum(), 'Carers': carers, 'Visits': visits}) data_frame = pandas.DataFrame(store) data_frame.sort_values(by=['Date'], inplace=True) data_frame.to_pickle(data_frame_file) condensed_frame = pandas.pivot(data_frame, columns='Label', values='Travel', index='Date') condensed_frame['Improvement'] = condensed_frame['2nd Stage'] - condensed_frame['3rd Stage'] condensed_frame['RelativeImprovement'] = condensed_frame['Improvement'] / condensed_frame['2nd Stage'] color_map = matplotlib.cm.get_cmap('Set1') matplotlib.pyplot.set_cmap(color_map) figure, ax = matplotlib.pyplot.subplots(1, 1, sharex=True) try: width = 0.20 dates = data_frame['Date'].unique() time_delta_convert = rows.plot.TimeDeltaConverter() indices = numpy.arange(1, len(dates) + 1, 1) handles = [] position = 0 for color_number, label in enumerate(labels): data_frame_to_use = data_frame[data_frame['Label'] == label] handle = ax.bar(indices + position * width, time_delta_convert(data_frame_to_use['Travel']), width, color=color_map.colors[color_number], bottom=time_delta_convert.zero) handles.append(handle) position += 1 ax.yaxis_date() yaxis_converter = rows.plot.CumulativeHourMinuteConverter() ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(yaxis_converter)) ax.set_ylabel('Total Travel Time [hh:mm:ss]') ax.set_yticks([time_delta_convert.zero + datetime.timedelta(seconds=seconds) for seconds in range(0, 30 * 3600, 4 * 3600 + 1)]) ax.set_xlabel('Day of October 2017') translate_labels = { '3rd Stage': '3rd Stage', 'Human Planners': 'Human Planners' } labels_to_use = [translate_labels[label] if label in translate_labels else label for label in labels] rows.plot.add_legend(ax, handles, labels_to_use, ncol=3, loc='lower center', bbox_to_anchor=(0.5, -0.25)) # , bbox_to_anchor=(0.5, -1.1) figure.tight_layout() figure.subplots_adjust(bottom=0.20) rows.plot.save_figure(output_file, output_file_format) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) # figure, (ax1, ax2, ax3) = matplotlib.pyplot.subplots(3, 1, sharex=True) # try: # width = 0.20 # dates = data_frame['Date'].unique() # time_delta_convert = rows.plot.TimeDeltaConverter() # indices = numpy.arange(1, len(dates) + 1, 1) # # handles = [] # position = 0 # for label in labels: # data_frame_to_use = data_frame[data_frame['Label'] == label] # # handle = ax1.bar(indices + position * width, # time_delta_convert(data_frame_to_use['Travel']), # width, # bottom=time_delta_convert.zero) # # ax2.bar(indices + position * width, # time_delta_convert(data_frame_to_use['Idle']), # width, # bottom=time_delta_convert.zero) # # ax3.bar(indices + position * width, # time_delta_convert(data_frame_to_use['Overtime']), # width, # bottom=time_delta_convert.zero) # # handles.append(handle) # position += 1 # # ax1.yaxis_date() # ax1.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(rows.plot.CumulativeHourMinuteConverter())) # ax1.set_ylabel('Travel Time') # # ax2.yaxis_date() # ax2.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(rows.plot.CumulativeHourMinuteConverter())) # ax2.set_ylabel('Idle Time') # # ax3.yaxis_date() # ax3.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(rows.plot.CumulativeHourMinuteConverter())) # ax3.set_ylabel('Total Overtime') # ax3.set_xlabel('Day of October 2017') # # translate_labels = { # '3rd Stage': 'Optimizer', # 'Human Planners': 'Human Planners' # } # labels_to_use = [translate_labels[label] if label in translate_labels else label for label in labels] # # rows.plot.add_legend(ax3, handles, labels_to_use, ncol=3, loc='lower center', bbox_to_anchor=(0.5, -1.1)) # figure.tight_layout() # figure.subplots_adjust(bottom=0.20) # # rows.plot.save_figure(output_file, output_file_format) # finally: # matplotlib.pyplot.cla() # matplotlib.pyplot.close(figure) def calculate_forecast_visit_duration(problem): forecast_visit_duration = rows.plot.VisitDict() for recurring_visits in problem.visits: for local_visit in recurring_visits.visits: forecast_visit_duration[local_visit] = local_visit.duration return forecast_visit_duration def compare_workload(args, settings): problem = rows.load.load_problem(get_or_raise(args, __PROBLEM_FILE_ARG)) diary_by_date_by_carer = collections.defaultdict(dict) for carer_shift in problem.carers: for diary in carer_shift.diaries: diary_by_date_by_carer[diary.date][carer_shift.carer.sap_number] = diary base_schedules = {rows.load.load_schedule(file_path): file_path for file_path in glob.glob(getattr(args, __BASE_SCHEDULE_PATTERN))} base_schedule_by_date = {schedule.metadata.begin: schedule for schedule in base_schedules} candidate_schedules = {rows.load.load_schedule(file_path): file_path for file_path in glob.glob(getattr(args, __CANDIDATE_SCHEDULE_PATTERN))} candidate_schedule_by_date = {schedule.metadata.begin: schedule for schedule in candidate_schedules} location_finder = rows.location_finder.UserLocationFinder(settings) location_finder.reload() output_file_format = getattr(args, __FILE_FORMAT_ARG) dates = set(candidate_schedule_by_date.keys()) for date in base_schedule_by_date.keys(): dates.add(date) dates = list(dates) dates.sort() with rows.plot.create_routing_session() as routing_session: distance_estimator = rows.plot.DistanceEstimator(settings, routing_session) for date in dates: base_schedule = base_schedule_by_date.get(date, None) if not base_schedule: logging.error('No base schedule is available for %s', date) continue duration_estimator = rows.plot.DurationEstimator.create_expected_visit_duration(base_schedule) candidate_schedule = candidate_schedule_by_date.get(date, None) if not candidate_schedule: logging.error('No candidate schedule is available for %s', date) continue base_schedule_file = base_schedules[base_schedule] base_schedule_data_frame = rows.plot.get_schedule_data_frame(base_schedule, problem, duration_estimator, distance_estimator) base_schedule_stem, base_schedule_ext = os.path.splitext(os.path.basename(base_schedule_file)) rows.plot.save_workforce_histogram(base_schedule_data_frame, base_schedule_stem, output_file_format) candidate_schedule_file = candidate_schedules[candidate_schedule] candidate_schedule_data_frame = rows.plot.get_schedule_data_frame(candidate_schedule, problem, duration_estimator, distance_estimator) candidate_schedule_stem, candidate_schedule_ext \ = os.path.splitext(os.path.basename(candidate_schedule_file)) rows.plot.save_workforce_histogram(candidate_schedule_data_frame, candidate_schedule_stem, output_file_format) rows.plot.save_combined_histogram(candidate_schedule_data_frame, base_schedule_data_frame, ['2nd Stage', '3rd Stage'], 'contrast_workforce_{0}_combined'.format(date), output_file_format) def contrast_workload(args, settings): __WIDTH = 0.35 __FORMAT = 'svg' plot_type = getattr(args, __TYPE_ARG, None) if plot_type != __ACTIVITY_TYPE and plot_type != __VISITS_TYPE: raise ValueError( 'Unknown plot type: {0}. Use either {1} or {2}.'.format(plot_type, __ACTIVITY_TYPE, __VISITS_TYPE)) problem_file = get_or_raise(args, __PROBLEM_FILE_ARG) problem = rows.load.load_problem(problem_file) base_schedule = rows.load.load_schedule(get_or_raise(args, __BASE_FILE_ARG)) candidate_schedule = rows.load.load_schedule(get_or_raise(args, __CANDIDATE_FILE_ARG)) if base_schedule.metadata.begin != candidate_schedule.metadata.begin: raise ValueError('Schedules begin at a different date: {0} vs {1}' .format(base_schedule.metadata.begin, candidate_schedule.metadata.begin)) if base_schedule.metadata.end != candidate_schedule.metadata.end: raise ValueError('Schedules end at a different date: {0} vs {1}' .format(base_schedule.metadata.end, candidate_schedule.metadata.end)) location_finder = rows.location_finder.UserLocationFinder(settings) location_finder.reload() diary_by_date_by_carer = collections.defaultdict(dict) for carer_shift in problem.carers: for diary in carer_shift.diaries: diary_by_date_by_carer[diary.date][carer_shift.carer.sap_number] = diary date = base_schedule.metadata.begin problem_file_base = os.path.basename(problem_file) problem_file_name, problem_file_ext = os.path.splitext(problem_file_base) with rows.plot.create_routing_session() as routing_session: observed_duration_by_visit = calculate_expected_visit_duration(candidate_schedule) base_schedule_frame = rows.plot.get_schedule_data_frame(base_schedule, routing_session, location_finder, diary_by_date_by_carer[date], observed_duration_by_visit) candidate_schedule_frame = rows.plot.get_schedule_data_frame(candidate_schedule, routing_session, location_finder, diary_by_date_by_carer[date], observed_duration_by_visit) color_map = matplotlib.cm.get_cmap('tab20') matplotlib.pyplot.set_cmap(color_map) figure, axis = matplotlib.pyplot.subplots() matplotlib.pyplot.tight_layout() try: contrast_frame = pandas.DataFrame.merge(base_schedule_frame, candidate_schedule_frame, on='Carer', how='left', suffixes=['_Base', '_Candidate']) contrast_frame['Visits_Candidate'] = contrast_frame['Visits_Candidate'].fillna(0) contrast_frame['Availability_Candidate'] \ = contrast_frame['Availability_Candidate'].mask(pandas.isnull, contrast_frame['Availability_Base']) contrast_frame['Travel_Candidate'] \ = contrast_frame['Travel_Candidate'].mask(pandas.isnull, datetime.timedelta()) contrast_frame['Service_Candidate'] \ = contrast_frame['Service_Candidate'].mask(pandas.isnull, datetime.timedelta()) contrast_frame = contrast_frame.sort_values( by=['Availability_Candidate', 'Service_Candidate', 'Travel_Candidate'], ascending=False) if plot_type == __VISITS_TYPE: indices = numpy.arange(len(contrast_frame.index)) base_handle = axis.bar(indices, contrast_frame['Visits_Base'], __WIDTH) candidate_handle = axis.bar(indices + __WIDTH, contrast_frame['Visits_Candidate'], __WIDTH) axis.legend((base_handle, candidate_handle), ('Human Planners', 'Constraint Programming'), loc='best') output_file = problem_file_name + '_contrast_visits_' + date.isoformat() + '.' + __FORMAT elif plot_type == __ACTIVITY_TYPE: indices = numpy.arange(len(base_schedule_frame.index)) def plot_activity_stacked_histogram(availability, travel, service, axis, width=0.35, initial_width=0.0, color_offset=0): time_delta_converter = rows.plot.TimeDeltaConverter() travel_series = numpy.array(time_delta_converter(travel)) service_series = numpy.array(time_delta_converter(service)) idle_overtime_series = list(availability - travel - service) idle_series = numpy.array(time_delta_converter( map(lambda value: value if value.days >= 0 else datetime.timedelta(), idle_overtime_series))) overtime_series = numpy.array(time_delta_converter( map(lambda value: datetime.timedelta( seconds=abs(value.total_seconds())) if value.days < 0 else datetime.timedelta(), idle_overtime_series))) service_handle = axis.bar(indices + initial_width, service_series, width, bottom=time_delta_converter.zero, color=color_map.colors[0 + color_offset]) travel_handle = axis.bar(indices + initial_width, travel_series, width, bottom=service_series + time_delta_converter.zero_num, color=color_map.colors[2 + color_offset]) idle_handle = axis.bar(indices + initial_width, idle_series, width, bottom=service_series + travel_series + time_delta_converter.zero_num, color=color_map.colors[4 + color_offset]) overtime_handle = axis.bar(indices + initial_width, overtime_series, width, bottom=idle_series + service_series + travel_series + time_delta_converter.zero_num, color=color_map.colors[6 + color_offset]) return service_handle, travel_handle, idle_handle, overtime_handle travel_candidate_handle, service_candidate_handle, idle_candidate_handle, overtime_candidate_handle \ = plot_activity_stacked_histogram(contrast_frame.Availability_Candidate, contrast_frame.Travel_Candidate, contrast_frame.Service_Candidate, axis, __WIDTH) travel_base_handle, service_base_handle, idle_base_handle, overtime_base_handle \ = plot_activity_stacked_histogram(contrast_frame.Availability_Base, contrast_frame.Travel_Base, contrast_frame.Service_Base, axis, __WIDTH, __WIDTH, 1) axis.yaxis_date() axis.yaxis.set_major_formatter(matplotlib.dates.DateFormatter("%H:%M:%S")) axis.legend( (travel_candidate_handle, service_candidate_handle, idle_candidate_handle, overtime_candidate_handle, travel_base_handle, service_base_handle, idle_base_handle, overtime_base_handle), ('', '', '', '', 'Service', 'Travel', 'Idle', 'Overtime'), loc='best', ncol=2, columnspacing=0) output_file = problem_file_name + '_contrast_activity_' + date.isoformat() + '.' + __FORMAT bottom, top = axis.get_ylim() axis.set_ylim(bottom, top + 0.025) else: raise ValueError('Unknown plot type {0}'.format(plot_type)) matplotlib.pyplot.subplots_adjust(left=0.125) matplotlib.pyplot.savefig(output_file, format=__FORMAT, dpi=300) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def parse_time_delta(text): if text: time = datetime.datetime.strptime(text, '%H:%M:%S').time() return datetime.timedelta(hours=time.hour, minutes=time.minute, seconds=time.second) return None class TraceLog: __STAGE_PATTERN = re.compile('^\w+(?P<number>\d+)(:?\-Patch)?$') __PENALTY_PATTERN = re.compile('^MissedVisitPenalty:\s+(?P<penalty>\d+)$') __CARER_USED_PATTERN = re.compile('^CarerUsedPenalty:\s+(?P<penalty>\d+)$') class ProgressMessage: def __init__(self, **kwargs): self.__branches = kwargs.get('branches', None) self.__cost = kwargs.get('cost', None) self.__dropped_visits = kwargs.get('dropped_visits', None) self.__memory_usage = kwargs.get('memory_usage', None) self.__solutions = kwargs.get('solutions', None) self.__wall_time = parse_time_delta(kwargs.get('wall_time', None)) @property def cost(self): return self.__cost @property def solutions(self): return self.__solutions @property def dropped_visits(self): return self.__dropped_visits class ProblemMessage: def __init__(self, **kwargs): self.__carers = kwargs.get('carers', None) self.__visits = kwargs.get('visits', None) self.__date = kwargs.get('date', None) if self.__date: self.__date = datetime.datetime.strptime(self.__date, '%Y-%b-%d').date() self.__visit_time_windows = parse_time_delta(kwargs.get('visit_time_windows', None)) self.__break_time_windows = parse_time_delta(kwargs.get('break_time_windows', None)) self.__shift_adjustment = parse_time_delta(kwargs.get('shift_adjustment', None)) self.__area = kwargs.get('area', None) self.__missed_visit_penalty = kwargs.get('missed_visit_penalty', None) self.__carer_used_penalty = kwargs.get('carer_used_penalty', None) @property def date(self): return self.__date @property def carers(self): return self.__carers @property def visits(self): return self.__visits @property def visit_time_window(self): return self.__visit_time_windows @property def carer_used_penalty(self): return self.__carer_used_penalty @carer_used_penalty.setter def carer_used_penalty(self, value): self.__carer_used_penalty = value @property def missed_visit_penalty(self): return self.__missed_visit_penalty @missed_visit_penalty.setter def missed_visit_penalty(self, value): self.__missed_visit_penalty = value @property def shift_adjustment(self): return self.__shift_adjustment StageSummary = collections.namedtuple('StageSummary', ['duration', 'final_cost', 'final_dropped_visits']) def __init__(self, time_point): self.__start = time_point self.__events = [] self.__current_stage = None self.__current_strategy = None self.__problem = TraceLog.ProblemMessage() @staticmethod def __parse_stage_number(body): comment = body.get('comment', None) if comment: match = TraceLog.__STAGE_PATTERN.match(comment) if match: return int(match.group('number')) return None def append(self, time_point, body): if 'branches' in body: body_to_use = TraceLog.ProgressMessage(**body) elif 'type' in body: if body['type'] == 'started': self.__current_stage = self.__parse_stage_number(body) elif body['type'] == 'finished': self.__current_stage = None self.__current_strategy = None elif body['type'] == 'unknown': if 'comment' in body: if 'MissedVisitPenalty' in body['comment']: match = re.match(self.__PENALTY_PATTERN, body['comment']) assert match is not None missed_visit_penalty = int(match.group('penalty')) self.__problem.missed_visit_penalty = missed_visit_penalty elif 'CarerUsedPenalty' in body['comment']: match = re.match(self.__CARER_USED_PATTERN, body['comment']) assert match is not None carer_used_penalty = int(match.group('penalty')) self.__problem.carer_used_penalty = carer_used_penalty body_to_use = body elif 'area' in body: body_to_use = TraceLog.ProblemMessage(**body) if body_to_use.missed_visit_penalty is None and self.__problem.missed_visit_penalty is not None: body_to_use.missed_visit_penalty = self.__problem.missed_visit_penalty if body_to_use.carer_used_penalty is None and self.__problem.carer_used_penalty is not None: body_to_use.carer_used_penalty = self.__problem.carer_used_penalty self.__problem = body_to_use else: body_to_use = body # quick fix to prevent negative computation time if the time frame crosses midnight if self.__start < time_point: computation_time = time_point - self.__start else: computation_time = time_point + datetime.timedelta(hours=24) - self.__start self.__events.append([computation_time, self.__current_stage, self.__current_strategy, time_point, body_to_use]) def compute_stages(self) -> typing.List[StageSummary]: groups = dict() for delta, stage, topic, time, message in self.__events: if isinstance(message, TraceLog.ProgressMessage): if stage not in groups: groups[stage] = [] groups[stage].append([delta, topic, message]) result = [] def create_stage_summary(group): duration = group[-1][0] - group[0][0] cost = group[-1][2].cost dropped_visits = group[-1][2].dropped_visits return TraceLog.StageSummary(duration=duration, final_cost=cost, final_dropped_visits=dropped_visits) if len(groups) == 1: result.append(create_stage_summary(groups[None])) else: for stage in range(1, max(filter(lambda s: s is not None, groups)) + 1): result.append(create_stage_summary(groups[stage])) return result def has_stages(self): for relative_time, stage, strategy, absolute_time, event in self.__events: if isinstance(event, TraceLog.ProblemMessage) or isinstance(event, TraceLog.ProgressMessage): continue if 'type' in event and event['type'] == 'started': return True return False def best_cost(self, stage: int): best_cost, _ = self.__best_cost_and_time(stage) return best_cost def best_cost_time(self, stage: int): _, best_cost_time = self.__best_cost_and_time(stage) return best_cost_time def last_cost(self): last_cost, _ = self.__last_cost_and_time() return last_cost def last_cost_time(self): _, last_cost_time = self.__last_cost_and_time() return last_cost_time def computation_time(self): computation_time = datetime.timedelta.max for relative_time, stage, strategy, absolute_time, event in self.__events: computation_time = relative_time return computation_time def __best_cost_and_time(self, stage: int): best_cost = float('inf') best_time = datetime.timedelta.max for relative_time, event_stage, strategy, absolute_time, event in self.__filtered_events(): if event_stage > stage: continue if best_cost > event.cost: best_cost = event.cost best_time = relative_time return best_cost, best_time def __last_cost_and_time(self): last_cost = float('inf') last_time = datetime.timedelta.max for relative_time, stage, strategy, absolute_time, event in self.__filtered_events(): last_cost = event.cost last_time = relative_time return last_cost, last_time def __filtered_events(self): for relative_time, stage, strategy, absolute_time, event in self.__events: if stage != 2 and stage != 3: continue if strategy == 'DELAY_RISKINESS_REDUCTION': continue if not isinstance(event, TraceLog.ProgressMessage): continue yield relative_time, stage, strategy, absolute_time, event @property def strategy(self): return self.__current_strategy @strategy.setter def strategy(self, value): self.__current_strategy = value @property def visits(self): return self.__problem.visits @property def carers(self): return self.__problem.carers @property def date(self): return self.__problem.date @property def visit_time_window(self): return self.__problem.visit_time_window @property def carer_used_penalty(self): return self.__problem.carer_used_penalty @property def missed_visit_penalty(self): return self.__problem.missed_visit_penalty @property def shift_adjustment(self): return self.__problem.shift_adjustment @property def events(self): return self.__events def read_traces(trace_file) -> typing.List[TraceLog]: log_line_pattern = re.compile('^\w+\s+(?P<time>\d+:\d+:\d+\.\d+).*?]\s+(?P<body>.*)$') other_line_pattern = re.compile('^.*?\[\w+\s+(?P<time>\d+:\d+:\d+\.\d+).*?\]\s+(?P<body>.*)$') strategy_line_pattern = re.compile('^Solving the (?P<stage_name>\w+) stage using (?P<strategy_name>\w+) strategy$') loaded_visits_pattern = re.compile('^Loaded past visits in \d+ seconds$') trace_logs = [] has_preambule = False with open(trace_file, 'r') as input_stream: current_log = None for line in input_stream: match = log_line_pattern.match(line) if not match: match = other_line_pattern.match(line) if match: raw_time = match.group('time') time = datetime.datetime.strptime(raw_time, '%H:%M:%S.%f') try: raw_body = match.group('body') body = json.loads(raw_body) if 'comment' in body and (body['comment'] == 'All' or 'MissedVisitPenalty' in body['comment'] or 'CarerUsedPenalty' in body['comment']): if body['comment'] == 'All': if 'type' in body: if body['type'] == 'finished': has_preambule = False current_log.strategy = None elif body['type'] == 'started': has_preambule = True current_log = TraceLog(time) current_log.append(time, body) trace_logs.append(current_log) else: current_log.append(time, body) elif 'area' in body and not has_preambule: current_log = TraceLog(time) current_log.append(time, body) trace_logs.append(current_log) else: current_log.append(time, body) except json.decoder.JSONDecodeError: strategy_match = strategy_line_pattern.match(match.group('body')) if strategy_match: current_log.strategy = strategy_match.group('strategy_name') continue loaded_visits_match = loaded_visits_pattern.match(match.group('body')) if loaded_visits_match: continue warnings.warn('Failed to parse line: ' + line) elif 'GUIDED_LOCAL_SEARCH specified without sane timeout: solve may run forever.' in line: continue else: warnings.warn('Failed to match line: ' + line) return trace_logs def traces_to_data_frame(trace_logs): columns = ['relative_time', 'cost', 'dropped_visits', 'solutions', 'stage', 'stage_started', 'date', 'carers', 'visits'] has_stages = [trace.has_stages() for trace in trace_logs] if all(has_stages) != any(has_stages): raise ValueError('Some traces have stages while others do not') has_stages = all(has_stages) data = [] if has_stages: for trace in trace_logs: current_carers = None current_visits = None current_stage_started = None current_stage_name = None for rel_time, stage, strategy, abs_time, event in trace.events: if isinstance(event, TraceLog.ProblemMessage): current_carers = event.carers current_visits = event.visits elif isinstance(event, TraceLog.ProgressMessage): if not current_stage_name: continue data.append([rel_time, event.cost, event.dropped_visits, event.solutions, current_stage_name, current_stage_started, trace.date, current_carers, current_visits]) elif 'type' in event: if 'comment' in event and event['type'] == 'unknown': continue if event['type'] == 'finished': current_carers = None current_visits = None current_stage_started = None current_stage_name = None continue if event['type'] == 'started': current_stage_started = rel_time current_stage_name = event['comment'] else: for trace in trace_logs: current_carers = None current_visits = None for rel_time, stage, strategy, abs_time, event in trace.events: if isinstance(event, TraceLog.ProblemMessage): current_carers = event.carers current_visits = event.visits elif isinstance(event, TraceLog.ProgressMessage): data.append([rel_time, event.cost, event.dropped_visits, event.solutions, None, None, trace.date, current_carers, current_visits]) return pandas.DataFrame(data=data, columns=columns) def parse_pandas_duration(value): raw_hours, raw_minutes, raw_seconds = value.split(':') return datetime.timedelta(hours=int(raw_hours), minutes=int(raw_minutes), seconds=int(raw_seconds)) class DateTimeFormatter: def __init__(self, format): self.__format = format def __call__(self, x, pos=None): if x < 0: return None x_to_use = x if isinstance(x, numpy.int64): x_to_use = x.item() delta = datetime.timedelta(seconds=x_to_use) time_point = datetime.datetime(2017, 1, 1) + delta return time_point.strftime(self.__format) class AxisSettings: def __init__(self, minutes_per_step, format_pattern, units_label, right_xlimit, xticks): self.__minutes_per_step = minutes_per_step self.__format_pattern = format_pattern self.__formatter = matplotlib.ticker.FuncFormatter(DateTimeFormatter(self.__format_pattern)) self.__units_label = units_label self.__right_xlimit = right_xlimit self.__xticks = xticks @property def formatter(self): return self.__formatter @property def units_label(self): return self.__units_label @property def right_xlimit(self): return self.__right_xlimit @property def xticks(self): return self.__xticks @staticmethod def infer(max_relative_time): if datetime.timedelta(minutes=30) < max_relative_time < datetime.timedelta(hours=1): minutes_step = 10 format = '%H:%M' units = '[hh:mm]' elif datetime.timedelta(hours=1) <= max_relative_time: minutes_step = 60 format = '%H:%M' units = '[hh:mm]' else: assert max_relative_time <= datetime.timedelta(minutes=30) minutes_step = 5 format = '%M:%S' units = '[mm:ss]' right_xlimit = (max_relative_time + datetime.timedelta(minutes=1)).total_seconds() // 60 * 60 xticks = numpy.arange(0, max_relative_time.total_seconds() + minutes_step * 60, minutes_step * 60) return AxisSettings(minutes_step, format, units, right_xlimit, xticks) def format_timedelta_pandas(x, pos=None): if x < 0: return None time_delta = pandas.to_timedelta(x) hours = int(time_delta.total_seconds() / matplotlib.dates.SEC_PER_HOUR) minutes = int(time_delta.total_seconds() / matplotlib.dates.SEC_PER_MIN) - 60 * hours return '{0:02d}:{1:02d}'.format(hours, minutes) def format_time(x, pos=None): if isinstance(x, numpy.int64): x = x.item() delta = datetime.timedelta(seconds=x) time_point = datetime.datetime(2017, 1, 1) + delta return time_point.strftime('%H:%M') __SCATTER_POINT_SIZE = 1 __Y_AXIS_EXTENSION = 1.2 def add_trace_legend(axis, handles, bbox_to_anchor=(0.5, -0.23), ncol=3): first_row = handles[0] def legend_single_stage(row): handle, multi_visits, visits, carers, cost_function, date = row date_time = datetime.datetime.combine(date, datetime.time()) return 'V{0:02}/{1:03} C{2:02} {3} {4}'.format(multi_visits, visits, carers, cost_function, date_time.strftime('%d-%m')) def legend_multi_stage(row): handle, multi_visits, visits, multi_carers, carers, cost_function, date = row date_time = datetime.datetime.combine(date, datetime.time()) return 'V{0:02}/{1:03} C{2:02}/{3:02} {4} {5}' \ .format(multi_visits, visits, multi_carers, carers, cost_function, date_time.strftime('%d-%m')) if len(first_row) == 6: legend_formatter = legend_single_stage elif len(first_row) == 7: legend_formatter = legend_multi_stage else: raise ValueError('Expecting row of either 6 or 7 elements') return rows.plot.add_legend(axis, list(map(operator.itemgetter(0), handles)), list(map(legend_formatter, handles)), ncol, bbox_to_anchor) def scatter_cost(axis, data_frame, color): return axis.scatter( [time_delta.total_seconds() for time_delta in data_frame['relative_time']], data_frame['cost'], s=__SCATTER_POINT_SIZE, c=color) def scatter_dropped_visits(axis, data_frame, color): axis.scatter( [time_delta.total_seconds() for time_delta in data_frame['relative_time']], data_frame['dropped_visits'], s=__SCATTER_POINT_SIZE, c=color) def draw_avline(axis, point, color='lightgrey', linestyle='--'): axis.axvline(point, color=color, linestyle=linestyle, linewidth=0.8, alpha=0.8) def get_problem_stats(problem, date): problem_visits = [visit for carer_visits in problem.visits for visit in carer_visits.visits if visit.date == date] return len(problem_visits), len([visit for visit in problem_visits if visit.carer_count > 1]) def compare_trace(args, settings): problem = rows.load.load_problem(get_or_raise(args, __PROBLEM_FILE_ARG)) cost_function = get_or_raise(args, __COST_FUNCTION_TYPE) trace_file = get_or_raise(args, __FILE_ARG) trace_file_base_name = os.path.basename(trace_file) trace_file_stem, trace_file_ext = os.path.splitext(trace_file_base_name) output_file_stem = getattr(args, __OUTPUT, trace_file_stem) trace_logs = read_traces(trace_file) data_frame = traces_to_data_frame(trace_logs) current_date = getattr(args, __DATE_ARG, None) dates = data_frame['date'].unique() if current_date and current_date not in dates: raise ValueError('Date {0} is not present in the data set'.format(current_date)) color_numbers = [0, 2, 4, 6, 8, 10, 12, 1, 3, 5, 7, 9, 11, 13] color_number_it = iter(color_numbers) color_map = matplotlib.cm.get_cmap('tab20') matplotlib.pyplot.set_cmap(color_map) figure, (ax1, ax2) = matplotlib.pyplot.subplots(2, 1, sharex=True) max_relative_time = datetime.timedelta() try: if current_date: current_color = color_map.colors[next(color_number_it)] total_problem_visits, total_multiple_carer_visits = get_problem_stats(problem, current_date) current_date_frame = data_frame[data_frame['date'] == current_date] max_relative_time = max(current_date_frame['relative_time'].max(), max_relative_time) ax_settings = AxisSettings.infer(max_relative_time) stages = current_date_frame['stage'].unique() if len(stages) > 1: handles = [] for stage in stages: time_delta = current_date_frame[current_date_frame['stage'] == stage]['stage_started'].iloc[0] current_stage_data_frame = current_date_frame[current_date_frame['stage'] == stage] draw_avline(ax1, time_delta.total_seconds()) draw_avline(ax2, time_delta.total_seconds()) total_stage_visits = current_stage_data_frame['visits'].iloc[0] carers = current_stage_data_frame['carers'].iloc[0] handle = scatter_cost(ax1, current_date_frame, current_color) scatter_dropped_visits(ax2, current_stage_data_frame, current_color) handles.append([handle, total_multiple_carer_visits, total_stage_visits, carers, cost_function, current_date]) ax2.set_xlim(left=0) ax2.set_ylim(bottom=-10) ax2.xaxis.set_major_formatter(ax_settings.formatter) else: total_visits = current_date_frame['visits'].iloc[0] if total_visits != (total_problem_visits + total_multiple_carer_visits): raise ValueError('Number of visits in problem and solution does not match: {0} vs {1}' .format(total_visits, (total_problem_visits + total_multiple_carer_visits))) carers = current_date_frame['carers'].iloc[0] handle = ax1.scatter( [time_delta.total_seconds() for time_delta in current_date_frame['relative_time']], current_date_frame['cost'], s=1) add_trace_legend(ax1, [[handle, total_multiple_carer_visits, total_problem_visits, carers, cost_function]]) scatter_dropped_visits(ax2, current_date_frame, current_color) ax1_y_bottom, ax1_y_top = ax1.get_ylim() ax1.set_ylim(bottom=0, top=ax1_y_top * __Y_AXIS_EXTENSION) ax1.set_ylabel('Cost Function [s]') ax2_y_bottom, ax2_y_top = ax2.get_ylim() ax2.set_ylim(bottom=-10, top=ax2_y_top * __Y_AXIS_EXTENSION) ax2.xaxis.set_major_formatter(ax_settings.formatter) ax2.set_ylabel('Declined Visits') ax2.set_xlabel('Computation Time ' + ax_settings.units_label) rows.plot.save_figure(output_file_stem + '_' + current_date.isoformat()) else: handles = [] for current_date in dates: current_color = color_map.colors[next(color_number_it)] current_date_frame = data_frame[data_frame['date'] == current_date] max_relative_time = max(current_date_frame['relative_time'].max(), max_relative_time) total_problem_visits, total_multiple_carer_visits = get_problem_stats(problem, current_date) stages = current_date_frame['stage'].unique() if len(stages) > 1: stage_linestyles = [None, 'dotted', 'dashed'] for stage, linestyle in zip(stages, stage_linestyles): time_delta = current_date_frame[current_date_frame['stage'] == stage]['stage_started'].iloc[0] draw_avline(ax1, time_delta.total_seconds(), color=current_color, linestyle=linestyle) draw_avline(ax2, time_delta.total_seconds(), color=current_color, linestyle=linestyle) total_carers = current_date_frame['carers'].max() multi_carers = current_date_frame['carers'].min() if multi_carers == total_carers: multi_carers = 0 total_visits = current_date_frame['visits'].max() multi_visits = current_date_frame['visits'].min() if multi_visits == total_visits: multi_visits = 0 handle = scatter_cost(ax1, current_date_frame, current_color) scatter_dropped_visits(ax2, current_date_frame, current_color) handles.append([handle, multi_visits, total_visits, multi_carers, total_carers, cost_function, current_date]) else: total_visits = current_date_frame['visits'].iloc[0] if total_visits != (total_problem_visits + total_multiple_carer_visits): raise ValueError('Number of visits in problem and solution does not match: {0} vs {1}' .format(total_visits, (total_problem_visits + total_multiple_carer_visits))) carers = current_date_frame['carers'].iloc[0] handle = scatter_cost(ax1, current_date_frame, current_color) handles.append([handle, total_multiple_carer_visits, total_problem_visits, carers, cost_function, current_date]) scatter_dropped_visits(ax2, current_date_frame, current_color) ax_settings = AxisSettings.infer(max_relative_time) ax1.ticklabel_format(style='sci', axis='y', scilimits=(-2, 2)) ax1.xaxis.set_major_formatter(ax_settings.formatter) # if add_arrows: # ax1.arrow(950, 200000, 40, -110000, head_width=10, head_length=20000, fc='k', ec='k') # ax2.arrow(950, 60, 40, -40, head_width=10, head_length=10, fc='k', ec='k') ax1_y_bottom, ax1_y_top = ax1.get_ylim() ax1.set_ylim(bottom=0, top=ax1_y_top * __Y_AXIS_EXTENSION) ax1.set_xlim(left=0, right=ax_settings.right_xlimit) ax1.set_ylabel('Cost Function [s]') ax2_y_bottom, ax2_y_top = ax2.get_ylim() ax2.set_ylim(bottom=-10, top=ax2_y_top * __Y_AXIS_EXTENSION) ax2.set_xlim(left=0, right=ax_settings.right_xlimit) ax2.set_ylabel('Declined Visits') ax2.set_xlabel('Computation Time ' + ax_settings.units_label) ax2.set_xticks(ax_settings.xticks) ax2.xaxis.set_major_formatter(ax_settings.formatter) matplotlib.pyplot.tight_layout() rows.plot.save_figure(output_file_stem) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def get_schedule_stats(data_frame): def get_stage_stats(stage): if stage and (isinstance(stage, str) or (isinstance(stage, float) and not numpy.isnan(stage))): stage_frame = data_frame[data_frame['stage'] == stage] else: stage_frame = data_frame[data_frame['stage'].isnull()] min_carers, max_carers = stage_frame['carers'].min(), stage_frame['carers'].max() if min_carers != max_carers: raise ValueError( 'Numbers of carer differs within stage in range [{0}, {1}]'.format(min_carers, max_carers)) min_visits, max_visits = stage_frame['visits'].min(), stage_frame['visits'].max() if min_visits != max_visits: raise ValueError( 'Numbers of carer differs within stage in range [{0}, {1}]'.format(min_visits, max_visits)) return min_carers, min_visits stages = data_frame['stage'].unique() if len(stages) > 1: data = [] for stage in stages: carers, visits = get_stage_stats(stage) data.append([stage, carers, visits]) return data else: stage_to_use = None if len(stages) == 1: stage_to_use = stages[0] carers, visits = get_stage_stats(stage_to_use) return [[None, carers, visits]] def contrast_trace(args, settings): problem_file = get_or_raise(args, __PROBLEM_FILE_ARG) problem = rows.load.load_problem(problem_file) problem_file_base = os.path.basename(problem_file) problem_file_name, problem_file_ext = os.path.splitext(problem_file_base) output_file_stem = getattr(args, __OUTPUT, problem_file_name + '_contrast_traces') cost_function = get_or_raise(args, __COST_FUNCTION_TYPE) base_trace_file = get_or_raise(args, __BASE_FILE_ARG) candidate_trace_file = get_or_raise(args, __CANDIDATE_FILE_ARG) base_frame = traces_to_data_frame(read_traces(base_trace_file)) candidate_frame = traces_to_data_frame(read_traces(candidate_trace_file)) current_date = get_or_raise(args, __DATE_ARG) if current_date not in base_frame['date'].unique(): raise ValueError('Date {0} is not present in the base data set'.format(current_date)) if current_date not in candidate_frame['date'].unique(): raise ValueError('Date {0} is not present in the candidate data set'.format(current_date)) max_relative_time = datetime.timedelta() max_relative_time = max(base_frame[base_frame['date'] == current_date]['relative_time'].max(), max_relative_time) max_relative_time = max(candidate_frame[candidate_frame['date'] == current_date]['relative_time'].max(), max_relative_time) max_relative_time = datetime.timedelta(minutes=20) ax_settings = AxisSettings.infer(max_relative_time) color_map = matplotlib.cm.get_cmap('Set1') matplotlib.pyplot.set_cmap(color_map) figure, (ax1, ax2) = matplotlib.pyplot.subplots(2, 1, sharex=True) try: def plot(data_frame, color): stages = data_frame['stage'].unique() if len(stages) > 1: for stage, linestyle in zip(stages, [None, 'dotted', 'dashed']): time_delta = data_frame[data_frame['stage'] == stage]['stage_started'].iloc[0] draw_avline(ax1, time_delta.total_seconds(), linestyle=linestyle) draw_avline(ax2, time_delta.total_seconds(), linestyle=linestyle) scatter_dropped_visits(ax2, data_frame, color=color) return scatter_cost(ax1, data_frame, color=color) base_current_data_frame = base_frame[base_frame['date'] == current_date] base_handle = plot(base_current_data_frame, color_map.colors[0]) base_stats = get_schedule_stats(base_current_data_frame) candidate_current_data_frame = candidate_frame[candidate_frame['date'] == current_date] candidate_handle = plot(candidate_current_data_frame, color_map.colors[1]) candidate_stats = get_schedule_stats(candidate_current_data_frame) labels = [] for stages in [base_stats, candidate_stats]: if len(stages) == 1: labels.append('Direct') elif len(stages) > 1: labels.append('Multistage') else: raise ValueError() ax1.set_ylim(bottom=0.0) ax1.set_ylabel('Cost Function [s]') ax1.ticklabel_format(style='sci', axis='y', scilimits=(-2, 2)) ax1.xaxis.set_major_formatter(ax_settings.formatter) ax1.set_xlim(left=0.0, right=max_relative_time.total_seconds()) legend1 = ax1.legend([base_handle, candidate_handle], labels) for handle in legend1.legendHandles: handle._sizes = [25] ax2.set_xlim(left=0.0, right=max_relative_time.total_seconds()) ax2.set_ylim(bottom=0.0) ax2.set_ylabel('Declined Visits') ax2.set_xlabel('Computation Time ' + ax_settings.units_label) ax1.set_xticks(ax_settings.xticks) ax2.set_xticks(ax_settings.xticks) ax2.xaxis.set_major_formatter(ax_settings.formatter) legend2 = ax2.legend([base_handle, candidate_handle], labels) for handle in legend2.legendHandles: handle._sizes = [25] figure.tight_layout() matplotlib.pyplot.tight_layout() rows.plot.save_figure(output_file_stem + '_' + current_date.isoformat()) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) figure, (ax1, ax2) = matplotlib.pyplot.subplots(2, 1, sharex=True) try: candidate_current_data_frame = candidate_frame[candidate_frame['date'] == current_date] scatter_dropped_visits(ax2, candidate_current_data_frame, color=color_map.colors[1]) scatter_cost(ax1, candidate_current_data_frame, color=color_map.colors[1]) stage2_started = \ candidate_current_data_frame[candidate_current_data_frame['stage'] == 'Stage2']['stage_started'].iloc[0] ax1.set_ylim(bottom=0, top=6 * 10 ** 4) ax1.set_ylabel('Cost Function [s]') ax1.ticklabel_format(style='sci', axis='y', scilimits=(-2, 2)) ax1.xaxis.set_major_formatter(ax_settings.formatter) ax1.set_xlim(left=0, right=12) ax2.set_xlim(left=0, right=12) x_ticks_positions = range(0, 12 + 1, 2) # matplotlib.pyplot.locator_params(axis='x', nbins=6) ax2.set_ylim(bottom=-10.0, top=120) ax2.set_ylabel('Declined Visits') ax2.set_xlabel('Computation Time ' + ax_settings.units_label) ax2.set_xticks(x_ticks_positions) ax2.xaxis.set_major_formatter(ax_settings.formatter) matplotlib.pyplot.tight_layout() # rows.plot.save_figure(output_file_stem + '_first_stage_' + current_date.isoformat()) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def compare_box_plots(args, settings): problem_file = get_or_raise(args, __PROBLEM_FILE_ARG) problem = rows.load.load_problem(problem_file) problem_file_base = os.path.basename(problem_file) problem_file_name, problem_file_ext = os.path.splitext(problem_file_base) base_trace_file = get_or_raise(args, __BASE_FILE_ARG) output_file_stem = getattr(args, __OUTPUT, problem_file_name) traces = read_traces(base_trace_file) figure, (ax1, ax2, ax3) = matplotlib.pyplot.subplots(1, 3) stages = [trace.compute_stages() for trace in traces] num_stages = max(len(s) for s in stages) durations = [[getattr(local_stage[num_stage], 'duration').total_seconds() for local_stage in stages] for num_stage in range(num_stages)] max_duration = max(max(stage_durations) for stage_durations in durations) axis_settings = AxisSettings.infer(datetime.timedelta(seconds=max_duration)) try: ax1.boxplot(durations, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax1.set_yticks(axis_settings.xticks) ax1.yaxis.set_major_formatter(axis_settings.formatter) ax1.set_xlabel('Stage') ax1.set_ylabel('Duration [hh:mm]') costs = [[getattr(local_stage[num_stage], 'final_cost') for local_stage in stages] for num_stage in range(num_stages)] ax2.boxplot(costs, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) formatter = matplotlib.ticker.ScalarFormatter() formatter.set_scientific(True) formatter.set_powerlimits((-3, 3)) ax2.yaxis.set_major_formatter(formatter) ax2.set_xlabel('Stage') ax2.set_ylabel('Cost') declined_visits = [[getattr(local_stage[num_stage], 'final_dropped_visits') for local_stage in stages] for num_stage in range(num_stages)] ax3.boxplot(declined_visits, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) max_declined_visits = max(max(declined_visits)) ax3.set_xlabel('Stage') ax3.set_ylabel('Declined Visits') dropped_visit_ticks = None if max_declined_visits < 100: dropped_visit_ticks = range(0, max_declined_visits + 1) else: dropped_visit_ticks = range(0, max_declined_visits + 100, 100) ax3.set_yticks(dropped_visit_ticks) figure.tight_layout() rows.plot.save_figure(output_file_stem) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def compare_prediction_error(args, settings): base_schedule = rows.plot.load_schedule(get_or_raise(args, __BASE_FILE_ARG)) candidate_schedule = rows.plot.load_schedule(get_or_raise(args, __CANDIDATE_FILE_ARG)) observed_duration_by_visit = rows.plot.calculate_observed_visit_duration(base_schedule) expected_duration_by_visit = calculate_expected_visit_duration(candidate_schedule) data = [] for visit in base_schedule.visits: observed_duration = observed_duration_by_visit[visit.visit] expected_duration = expected_duration_by_visit[visit.visit] data.append([visit.key, observed_duration.total_seconds(), expected_duration.total_seconds()]) frame = pandas.DataFrame(columns=['Visit', 'ObservedDuration', 'ExpectedDuration'], data=data) frame['Error'] = (frame.ObservedDuration - frame.ExpectedDuration) / frame.ObservedDuration figure, axis = matplotlib.pyplot.subplots() try: axis.plot(frame['Error'], label='(Observed - Expected)/Observed)') axis.legend() axis.set_ylim(-20, 2) axis.grid() matplotlib.pyplot.show() finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def remove_violated_visits(rough_schedule: rows.model.schedule.Schedule, metadata: TraceLog, problem: rows.model.problem.Problem, duration_estimator: rows.plot.DurationEstimator, distance_estimator: rows.plot.DistanceEstimator) -> rows.model.schedule.Schedule: max_delay = metadata.visit_time_window min_delay = -metadata.visit_time_window dropped_visits = 0 allowed_visits = [] for route in rough_schedule.routes: carer_diary = problem.get_diary(route.carer, metadata.date) if not carer_diary: continue for visit in route.visits: if visit.check_in is not None: check_in_delay = visit.check_in - datetime.datetime.combine(metadata.date, visit.time) if check_in_delay > max_delay: # or check_in_delay < min_delay: dropped_visits += 1 continue allowed_visits.append(visit) # schedule does not have visits which exceed time windows first_improved_schedule = rows.model.schedule.Schedule(carers=rough_schedule.carers, visits=allowed_visits) allowed_visits = [] for route in first_improved_schedule.routes: if not route.visits: continue diary = problem.get_diary(route.carer, metadata.date) assert diary is not None # shift adjustment is added twice because it is allowed to extend the time before and after the working hours max_shift_end = max(event.end for event in diary.events) + metadata.shift_adjustment + metadata.shift_adjustment first_visit = route.visits[0] current_time = datetime.datetime.combine(metadata.date, first_visit.time) if current_time <= max_shift_end: allowed_visits.append(first_visit) visits_made = [] total_slack = datetime.timedelta() if len(route.visits) == 1: visit = route.visits[0] visit_duration = duration_estimator(visit.visit) if visit_duration is None: visit_duration = visit.duration current_time += visit_duration if current_time <= max_shift_end: visits_made.append(visit) else: dropped_visits += 1 else: for prev_visit, next_visit in route.edges(): visit_duration = duration_estimator(prev_visit.visit) if visit_duration is None: visit_duration = prev_visit.duration current_time += visit_duration current_time += distance_estimator(prev_visit, next_visit) start_time = max(current_time, datetime.datetime.combine(metadata.date, next_visit.time) - max_delay) total_slack += start_time - current_time current_time = start_time if current_time <= max_shift_end: visits_made.append(next_visit) else: dropped_visits += 1 if current_time <= max_shift_end: total_slack += max_shift_end - current_time total_break_duration = datetime.timedelta() for carer_break in diary.breaks: total_break_duration += carer_break.duration if total_slack + datetime.timedelta(hours=2) < total_break_duration: # route is not respecting contractual breaks visits_made.pop() for visit in visits_made: allowed_visits.append(visit) # schedule does not contain visits which exceed overtime of the carer return rows.model.schedule.Schedule(carers=rough_schedule.carers, visits=allowed_visits) class ScheduleCost: CARER_COST = datetime.timedelta(seconds=60 * 60 * 4) def __init__(self, travel_time: datetime.timedelta, carers_used: int, visits_missed: int, missed_visit_penalty: int): self.__travel_time = travel_time self.__carers_used = carers_used self.__visits_missed = visits_missed self.__missed_visit_penalty = missed_visit_penalty @property def travel_time(self) -> datetime.timedelta: return self.__travel_time @property def visits_missed(self) -> int: return self.__visits_missed @property def missed_visit_penalty(self) -> int: return self.__missed_visit_penalty @property def carers_used(self) -> int: return self.__carers_used def total_cost(self, include_vehicle_cost: bool) -> datetime.timedelta: cost = self.__travel_time.total_seconds() + self.__missed_visit_penalty * self.__visits_missed if include_vehicle_cost: cost += self.CARER_COST.total_seconds() * self.__carers_used return cost def get_schedule_cost(schedule: rows.model.schedule.Schedule, metadata: TraceLog, problem: rows.model.problem.Problem, distance_estimator: rows.plot.DistanceEstimator) -> ScheduleCost: carer_used_ids = set() visit_made_ids = set() travel_time = datetime.timedelta() for route in schedule.routes: if not route.visits: continue carer_used_ids.add(route.carer.sap_number) for visit in route.visits: visit_made_ids.add(visit.visit.key) for source, destination in route.edges(): travel_time += distance_estimator(source, destination) available_visit_ids = {visit.key for visit in problem.requested_visits(schedule.date)} return ScheduleCost(travel_time, len(carer_used_ids), len(available_visit_ids.difference(visit_made_ids)), metadata.missed_visit_penalty) def compare_schedule_cost(args, settings): ProblemConfig = collections.namedtuple('ProblemConfig', ['ProblemPath', 'HumanSolutionPath', 'SolverSecondSolutionPath', 'SolverThirdSolutionPath']) simulation_dir = '/home/pmateusz/dev/cordia/simulations/current_review_simulations' solver_log_file = os.path.join(simulation_dir, 'solutions/c350past_distv90b90e30m1m1m5.err.log') problem_data = [ProblemConfig(os.path.join(simulation_dir, 'problems/C350_past.json'), os.path.join(simulation_dir, 'planner_schedules/C350_planners_201710{0:02d}.json'.format(day)), os.path.join(simulation_dir, 'solutions/second_stage_c350past_distv90b90e30m1m1m5_201710{0:02d}.gexf'.format(day)), os.path.join(simulation_dir, 'solutions/c350past_distv90b90e30m1m1m5_201710{0:02d}.gexf'.format(day))) for day in range(1, 15, 1)] solver_traces = read_traces(solver_log_file) assert len(solver_traces) == len(problem_data) results = [] include_vehicle_cost = False with rows.plot.create_routing_session() as routing_session: distance_estimator = rows.plot.DistanceEstimator(settings, routing_session) def normalize_cost(value) -> float: if isinstance(value, datetime.timedelta): value_to_use = value.total_seconds() elif isinstance(value, float) or isinstance(value, int): value_to_use = value else: return float('inf') return round(value_to_use / 3600, 2) for solver_trace, problem_data in list(zip(solver_traces, problem_data)): problem = rows.load.load_problem(os.path.join(simulation_dir, problem_data.ProblemPath)) human_schedule = rows.load.load_schedule(os.path.join(simulation_dir, problem_data.HumanSolutionPath)) solver_second_schedule = rows.load.load_schedule(os.path.join(simulation_dir, problem_data.SolverSecondSolutionPath)) solver_third_schedule = rows.load.load_schedule(os.path.join(simulation_dir, problem_data.SolverThirdSolutionPath)) assert solver_second_schedule.date == human_schedule.date assert solver_third_schedule.date == human_schedule.date available_carers = problem.available_carers(human_schedule.date) requested_visits = problem.requested_visits(human_schedule.date) one_carer_visits = [visit for visit in requested_visits if visit.carer_count == 1] two_carer_visits = [visit for visit in requested_visits if visit.carer_count == 2] duration_estimator = rows.plot.DurationEstimator.create_expected_visit_duration(solver_third_schedule) human_schedule_to_use = remove_violated_visits(human_schedule, solver_trace, problem, duration_estimator, distance_estimator) solver_second_schedule_to_use = remove_violated_visits(solver_second_schedule, solver_trace, problem, duration_estimator, distance_estimator) solver_third_schedule_to_use = remove_violated_visits(solver_third_schedule, solver_trace, problem, duration_estimator, distance_estimator) human_cost = get_schedule_cost(human_schedule_to_use, solver_trace, problem, distance_estimator) solver_second_cost = get_schedule_cost(solver_second_schedule_to_use, solver_trace, problem, distance_estimator) solver_third_cost = get_schedule_cost(solver_third_schedule_to_use, solver_trace, problem, distance_estimator) results.append(collections.OrderedDict(date=solver_trace.date, day=solver_trace.date.day, carers=len(available_carers), one_carer_visits=len(one_carer_visits), two_carer_visits=2 * len(two_carer_visits), missed_visit_penalty=normalize_cost(solver_trace.missed_visit_penalty), carer_used_penalty=normalize_cost(solver_trace.carer_used_penalty), planner_missed_visits=human_cost.visits_missed, solver_second_missed_visits=solver_second_cost.visits_missed, solver_third_missed_visits=solver_third_cost.visits_missed, planner_travel_time=normalize_cost(human_cost.travel_time), solver_second_travel_time=normalize_cost(solver_second_cost.travel_time), solver_third_travel_time=normalize_cost(solver_third_cost.travel_time), planner_carers_used=human_cost.carers_used, solver_second_carers_used=solver_second_cost.carers_used, solver_third_carers_used=solver_third_cost.carers_used, planner_total_cost=normalize_cost(human_cost.total_cost(include_vehicle_cost)), solver_second_total_cost=normalize_cost(solver_second_cost.total_cost(include_vehicle_cost)), solver_third_total_cost=normalize_cost(solver_third_cost.total_cost(include_vehicle_cost)), solver_second_time=int(math.ceil(solver_trace.best_cost_time(2).total_seconds())), solver_third_time=int(math.ceil(solver_trace.best_cost_time(3).total_seconds())))) data_frame = pandas.DataFrame(data=results) print(tabulate.tabulate(data_frame, tablefmt='psql', headers='keys')) print(tabulate.tabulate(data_frame[['day', 'carers', 'one_carer_visits', 'two_carer_visits', 'missed_visit_penalty', 'planner_total_cost', 'solver_second_total_cost', 'solver_third_total_cost', 'planner_missed_visits', 'solver_second_missed_visits', 'solver_third_missed_visits', 'planner_travel_time', 'solver_second_travel_time', 'solver_third_travel_time', 'solver_second_time', 'solver_third_time']], tablefmt='latex', headers='keys', showindex=False)) def get_consecutive_visit_time_span(schedule: rows.model.schedule.Schedule, start_time_estimator): client_visits = collections.defaultdict(list) for visit in schedule.visits: client_visits[visit.visit.service_user].append(visit) for client in client_visits: visits = client_visits[client] used_keys = set() unique_visits = [] for visit in visits: date_time = start_time_estimator(visit) if date_time.hour == 0 and date_time.minute == 0: continue if visit.visit.key not in used_keys: used_keys.add(visit.visit.key) unique_visits.append(visit) unique_visits.sort(key=start_time_estimator) client_visits[client] = unique_visits client_span = collections.defaultdict(datetime.timedelta) for client in client_visits: if len(client_visits[client]) < 2: continue last_visit = client_visits[client][0] total_span = datetime.timedelta() for next_visit in client_visits[client][1:]: total_span += start_time_estimator(next_visit) - start_time_estimator(last_visit) last_visit = next_visit client_span[client] = total_span return client_span def get_carer_client_frequency(schedule: rows.model.schedule.Schedule): client_assigned_carers = collections.defaultdict(collections.Counter) for visit in schedule.visits: client_assigned_carers[int(visit.visit.service_user)][int(visit.carer.sap_number)] += 1 return client_assigned_carers def get_visits(problem: rows.model.problem.Problem, date: datetime.date): visits = set() for local_visits in problem.visits: for visit in local_visits.visits: if date != visit.date: continue visit.service_user = local_visits.service_user visits.add(visit) return visits def get_teams(problem: rows.model.problem.Problem, schedule: rows.model.schedule.Schedule): multiple_carer_visit_keys = set() for visit in get_visits(problem, schedule.date): if visit.carer_count > 1: multiple_carer_visit_keys.add(visit.key) client_visit_carers = collections.defaultdict(lambda: collections.defaultdict(list)) for visit in schedule.visits: if visit.visit.key not in multiple_carer_visit_keys: continue client_visit_carers[visit.visit.service_user][visit.visit.key].append(int(visit.carer.sap_number)) for client in client_visit_carers: for visit_key in client_visit_carers[client]: client_visit_carers[client][visit_key].sort() teams = set() for client in client_visit_carers: for visit_key in client_visit_carers[client]: teams.add(tuple(client_visit_carers[client][visit_key])) return teams def compare_schedule_quality(args, settings): ProblemConfig = collections.namedtuple('ProblemConfig', ['ProblemPath', 'HumanSolutionPath', 'SolverSolutionPath']) def compare_quality(solver_trace, problem, human_schedule, solver_schedule, duration_estimator, distance_estimator): visits = get_visits(problem, solver_trace.date) multiple_carer_visit_keys = {visit.key for visit in visits if visit.carer_count > 1} clients = list({int(visit.service_user) for visit in visits}) # number of different carers assigned throughout the day human_carer_frequency = get_carer_client_frequency(human_schedule) solver_carer_frequency = get_carer_client_frequency(solver_schedule) def median_carer_frequency(client_counters): total_counters = [] for client in client_counters: # total_counters += len(client_counters[client]) total_counters.append(len(client_counters[client])) # return total_counters / len(client_counters) return numpy.median(total_counters) human_schedule_squared = [] solver_schedule_squared = [] for client in clients: if client in human_carer_frequency: human_schedule_squared.append(sum(human_carer_frequency[client][carer] ** 2 for carer in human_carer_frequency[client])) else: human_schedule_squared.append(0) if client in solver_carer_frequency: solver_schedule_squared.append(sum(solver_carer_frequency[client][carer] ** 2 for carer in solver_carer_frequency[client])) else: solver_schedule_squared.append(0) human_matching_dominates = 0 solver_matching_dominates = 0 for index in range(len(clients)): if human_schedule_squared[index] > solver_schedule_squared[index]: human_matching_dominates += 1 elif human_schedule_squared[index] < solver_schedule_squared[index]: solver_matching_dominates += 1 matching_no_diff = len(clients) - human_matching_dominates - solver_matching_dominates assert matching_no_diff >= 0 human_schedule_span = get_consecutive_visit_time_span(human_schedule, lambda visit: visit.check_in) solver_schedule_span = get_consecutive_visit_time_span(solver_schedule, lambda visit: datetime.datetime.combine(visit.date, visit.time)) human_span_dominates = 0 solver_span_dominates = 0 for client in clients: if human_schedule_span[client] > solver_schedule_span[client]: human_span_dominates += 1 elif human_schedule_span[client] < solver_schedule_span[client]: solver_span_dominates += 1 span_no_diff = len(clients) - human_span_dominates - solver_span_dominates assert span_no_diff > 0 human_teams = get_teams(problem, human_schedule) solver_teams = get_teams(problem, solver_schedule) human_schedule_frame = rows.plot.get_schedule_data_frame(human_schedule, problem, duration_estimator, distance_estimator) solver_schedule_frame = rows.plot.get_schedule_data_frame(solver_schedule, problem, duration_estimator, distance_estimator) human_visits = human_schedule_frame['Visits'].median() solver_visits = solver_schedule_frame['Visits'].median() human_total_overtime = compute_overtime(human_schedule_frame).sum() solver_total_overtime = compute_overtime(solver_schedule_frame).sum() return {'problem': str(human_schedule.date), 'visits': len(visits), 'clients': len(clients), 'human_overtime': human_total_overtime, 'solver_overtime': solver_total_overtime, 'human_visits_median': human_visits, 'solver_visits_median': solver_visits, 'human_visit_span_dominates': human_span_dominates, 'solver_visit_span_dominates': solver_span_dominates, 'visit_span_indifferent': span_no_diff, 'human_matching_dominates': human_matching_dominates, 'solver_matching_dominates': solver_matching_dominates, 'human_carer_frequency': median_carer_frequency(human_carer_frequency), 'solver_carer_frequency': median_carer_frequency(solver_carer_frequency), 'matching_indifferent': matching_no_diff, 'human_teams': len(human_teams), 'solver_teams': len(solver_teams)} simulation_dir = '/home/pmateusz/dev/cordia/simulations/current_review_simulations' solver_log_file = os.path.join(simulation_dir, 'solutions/c350past_distv90b90e30m1m1m5.err.log') problem_data = [ProblemConfig(os.path.join(simulation_dir, 'problems/C350_past.json'), os.path.join(simulation_dir, 'planner_schedules/C350_planners_201710{0:02d}.json'.format(day)), os.path.join(simulation_dir, 'solutions/c350past_distv90b90e30m1m1m5_201710{0:02d}.gexf'.format(day))) for day in range(1, 15, 1)] solver_traces = read_traces(solver_log_file) assert len(solver_traces) == len(problem_data) results = [] with rows.plot.create_routing_session() as routing_session: distance_estimator = rows.plot.DistanceEstimator(settings, routing_session) for solver_trace, problem_data in zip(solver_traces, problem_data): problem = rows.load.load_problem(os.path.join(simulation_dir, problem_data.ProblemPath)) human_schedule = rows.load.load_schedule(os.path.join(simulation_dir, problem_data.HumanSolutionPath)) solver_schedule = rows.load.load_schedule(os.path.join(simulation_dir, problem_data.SolverSolutionPath)) assert solver_trace.date == human_schedule.date assert solver_trace.date == solver_schedule.date duration_estimator = rows.plot.DurationEstimator.create_expected_visit_duration(solver_schedule) human_schedule_to_use = remove_violated_visits(human_schedule, solver_trace, problem, duration_estimator, distance_estimator) solver_schedule_to_use = remove_violated_visits(solver_schedule, solver_trace, problem, duration_estimator, distance_estimator) row = compare_quality(solver_trace, problem, human_schedule_to_use, solver_schedule_to_use, duration_estimator, distance_estimator) results.append(row) data_frame = pandas.DataFrame(data=results) data_frame['human_visit_span_dominates_rel'] = data_frame['human_visit_span_dominates'] / data_frame['clients'] data_frame['human_visit_span_dominates_rel_label'] = data_frame['human_visit_span_dominates_rel'].apply(lambda v: '{0:.2f}'.format(v * 100.0)) data_frame['solver_visit_span_dominates_rel'] = data_frame['solver_visit_span_dominates'] / data_frame['clients'] data_frame['solver_visit_span_dominates_rel_label'] = data_frame['solver_visit_span_dominates_rel'].apply(lambda v: '{0:.2f}'.format(v * 100.0)) data_frame['visit_span_indifferent_rel'] = data_frame['visit_span_indifferent'] / data_frame['clients'] data_frame['human_matching_dominates_rel'] = data_frame['human_matching_dominates'] / data_frame['clients'] data_frame['human_matching_dominates_rel_label'] = data_frame['human_matching_dominates_rel'].apply(lambda v: '{0:.2f}'.format(v * 100.0)) data_frame['solver_matching_dominates_rel'] = data_frame['solver_matching_dominates'] / data_frame['clients'] data_frame['solver_matching_dominates_rel_label'] = data_frame['solver_matching_dominates_rel'].apply(lambda v: '{0:.2f}'.format(v * 100.0)) data_frame['matching_indifferent_rel'] = data_frame['matching_indifferent'] / data_frame['clients'] data_frame['day'] = data_frame['problem'].apply(lambda label: datetime.datetime.strptime(label, '%Y-%m-%d').date().day) data_frame['human_overtime_label'] = data_frame['human_overtime'].apply(get_time_delta_label) data_frame['solver_overtime_label'] = data_frame['solver_overtime'].apply(get_time_delta_label) print(tabulate.tabulate(data_frame, tablefmt='psql', headers='keys')) print(tabulate.tabulate(data_frame[['day', 'human_visits_median', 'solver_visits_median', 'human_overtime_label', 'solver_overtime_label', 'human_carer_frequency', 'solver_carer_frequency', 'human_matching_dominates_rel_label', 'solver_matching_dominates_rel_label', 'human_teams', 'solver_teams']], tablefmt='latex', showindex=False, headers='keys')) BenchmarkData = collections.namedtuple('BenchmarkData', ['BestCost', 'BestCostTime', 'BestBound', 'ComputationTime']) class MipTrace: __MIP_HEADER_PATTERN = re.compile('^\s*Expl\s+Unexpl\s+|\s+Obj\s+Depth\s+IntInf\s+|\s+Incumbent\s+BestBd\s+Gap\s+|\s+It/Node\s+Time\s*$') __MIP_LINE_PATTERN = re.compile('^(?P<solution_flag>[\w\*]?)\s*' '(?P<explored_nodes>\d+)\s+' '(?P<nodes_to_explore>\d+)\s+' '(?P<node_relaxation>[\w\.]*)\s+' '(?P<node_depth>\d*)\s+' '(?P<fractional_variables>\w*)\s+' '(?P<incumbent>[\d\.\-]*)\s+' '(?P<lower_bound>[\d\.\-]*)\s+' '(?P<gap>[\d\.\%\-]*)\s+' '(?P<simplex_it_per_node>[\d\.\-]*)\s+' '(?P<elapsed_time>\d+)s$') __SUMMARY_PATTERN = re.compile('^Best\sobjective\s(?P<objective>[e\d\.\+]+),\s' 'best\sbound\s(?P<bound>[e\d\.\+]+),\s' 'gap\s(?P<gap>[e\d\.\+]+)\%$') class MipProgressMessage: def __init__(self, has_solution, best_cost, lower_bound, elapsed_time): self.__has_solution = has_solution self.__best_cost = best_cost self.__lower_bound = lower_bound self.__elapsed_time = elapsed_time @property def has_solution(self): return self.__has_solution @property def best_cost(self): return self.__best_cost @property def lower_bound(self): return self.__lower_bound @property def elapsed_time(self): return self.__elapsed_time def __init__(self, best_objective: float, best_bound: float, events: typing.List[MipProgressMessage]): self.__best_objective = best_objective self.__best_bound = best_bound self.__events = events @staticmethod def read_from_file(path) -> 'MipTrace': events = [] best_objective = float('inf') best_bound = float('-inf') with open(path, 'r') as fp: lines = fp.readlines() lines_it = iter(lines) for line in lines_it: if re.match(MipTrace.__MIP_HEADER_PATTERN, line): break next(lines_it, None) # read the empty line for line in lines_it: line_match = re.match(MipTrace.__MIP_LINE_PATTERN, line) if not line_match: break raw_solution_flag = line_match.group('solution_flag') raw_incumbent = line_match.group('incumbent') raw_lower_bound = line_match.group('lower_bound') raw_elapsed_time = line_match.group('elapsed_time') has_solution = raw_solution_flag == 'H' or raw_solution_flag == '*' incumbent = float(raw_incumbent) if raw_incumbent and raw_incumbent != '-' else float('inf') lower_bound = float(raw_lower_bound) if raw_lower_bound else float('-inf') elapsed_time = datetime.timedelta(seconds=int(raw_elapsed_time)) if raw_elapsed_time else datetime.timedelta() events.append(MipTrace.MipProgressMessage(has_solution, incumbent, lower_bound, elapsed_time)) next(lines_it, None) for line in lines_it: line_match = re.match(MipTrace.__SUMMARY_PATTERN, line) if line_match: raw_objective = line_match.group('objective') if raw_objective: best_objective = float(raw_objective) raw_bound = line_match.group('bound') if raw_bound: best_bound = float(raw_bound) return MipTrace(best_objective, best_bound, events) def best_cost(self): return self.__best_objective def best_cost_time(self): for event in reversed(self.__events): if event.has_solution: return event.elapsed_time return datetime.timedelta.max def best_bound(self): return self.__best_bound def computation_time(self): if self.__events: return self.__events[-1].elapsed_time return datetime.timedelta.max class DummyTrace: def __init__(self): pass def best_cost(self): return float('inf') def best_bound(self): return 0 def best_cost_time(self): return datetime.timedelta(hours=23, minutes=59, seconds=59) def compare_benchmark_table(args, settings): ProblemConfig = collections.namedtuple('ProblemConfig', ['ProblemPath', 'Carers', 'Visits', 'Visits2', 'MipSolutionLog', 'CpTeamSolutionLog', 'CpWindowsSolutionLog']) simulation_dir = '/home/pmateusz/dev/cordia/simulations/current_review_simulations' old_simulation_dir = '/home/pmateusz/dev/cordia/simulations/review_simulations_old' dummy_log = DummyTrace() problem_configs = [ProblemConfig(os.path.join(simulation_dir, 'benchmark/25/problem_201710{0:02d}_v25m0c3.json'.format(day_number)), 3, 25, 0, os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_v25m0c3_mip.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_v25m0c3.err.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_v25m0c3.err.log'.format(day_number))) for day_number in range(1, 15, 1)] problem_configs.extend( [ProblemConfig(os.path.join(simulation_dir, 'benchmark/25/problem_201710{0:02d}_v25m5c3.json'.format(day_number)), 3, 20, 5, os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_v25m5c3_mip.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_teams_v25m5c3.err.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_windows_v25m5c3.err.log'.format(day_number))) for day_number in range(1, 15, 1)]) problem_configs.extend( [ProblemConfig(os.path.join(simulation_dir, 'benchmark/50/problem_201710{0:02d}_v50m0c5.json'.format(day_number)), 5, 50, 0, os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_v50m0c5_mip.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_v50m0c5.err.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_v50m0c5.err.log'.format(day_number))) for day_number in range(1, 15, 1)]) problem_configs.extend( [ProblemConfig(os.path.join(simulation_dir, 'benchmark/50/problem_201710{0:02d}_v50m10c5.json'.format(day_number)), 5, 40, 10, os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_v50m10c5_mip.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_teams_v50m10c5.err.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_windows_v50m10c5.err.log'.format(day_number))) for day_number in range(1, 15, 1)]) logs = [] for problem_config in problem_configs: with warnings.catch_warnings(): warnings.simplefilter('ignore') if os.path.exists(problem_config.CpTeamSolutionLog): cp_team_logs = read_traces(problem_config.CpTeamSolutionLog) if not cp_team_logs: warnings.warn('File {0} is empty'.format(problem_config.CpTeamSolutionLog)) cp_team_logs = dummy_log else: cp_team_log = cp_team_logs[0] else: cp_team_logs = dummy_log if os.path.exists(problem_config.CpWindowsSolutionLog): cp_window_logs = read_traces(problem_config.CpWindowsSolutionLog) if not cp_window_logs: warnings.warn('File {0} is empty'.format(problem_config.CpWindowsSolutionLog)) cp_window_logs = dummy_log else: cp_window_log = cp_window_logs[0] else: cp_window_logs = dummy_log if os.path.exists(problem_config.MipSolutionLog): mip_log = MipTrace.read_from_file(problem_config.MipSolutionLog) if not mip_log: warnings.warn('File {0} is empty'.format(problem_config.MipSolutionLog)) mip_log = dummy_log else: mip_log = dummy_log logs.append([problem_config, mip_log, cp_team_log, cp_window_log]) def get_gap(cost: float, lower_bound: float) -> float: if lower_bound == 0.0: return float('inf') return (cost - lower_bound) * 100.0 / lower_bound def get_delta(cost, cost_to_compare): return (cost - cost_to_compare) * 100.0 / cost_to_compare def get_computation_time_label(time: datetime.timedelta) -> str: return str(time.total_seconds()) data = [] for problem_config, mip_log, cp_team_log, cp_window_log in logs: data.append(collections.OrderedDict( date=cp_team_log.date, visits=problem_config.Visits, visits_of_two=problem_config.Visits2, carers=cp_team_log.carers, penalty=cp_team_log.missed_visit_penalty, lower_bound=mip_log.best_bound(), mip_best_cost=mip_log.best_cost(), mip_best_gap=get_gap(mip_log.best_cost(), mip_log.best_bound()), mip_best_time=get_computation_time_label(mip_log.best_cost_time()), team_best_cost=cp_team_log.best_cost(), team_best_gap=get_gap(cp_team_log.best_cost(), mip_log.best_bound()), team_best_delta=get_gap(cp_team_log.best_cost(), mip_log.best_cost()), team_best_time=get_computation_time_label(cp_team_log.best_cost_time()), windows_best_cost=cp_window_log.best_cost(), windows_best_gap=get_gap(cp_window_log.best_cost(), mip_log.best_bound()), windows_best_delta=get_gap(cp_window_log.best_cost(), mip_log.best_cost()), windows_best_time=get_computation_time_label(cp_window_log.best_cost_time()))) data_frame = pandas.DataFrame(data=data) def get_duration_label(time_delta: datetime.timedelta) -> str: assert time_delta.days == 0 hours = int(time_delta.total_seconds() / 3600) minutes = int(time_delta.total_seconds() / 60 - hours * 60) seconds = int(time_delta.total_seconds() - 3600 * hours - 60 * minutes) # return '{0:02d}:{1:02d}:{2:02d}'.format(hours, minutes, seconds) return '{0:,.0f}'.format(time_delta.total_seconds()) def get_cost_label(cost: float) -> str: return '{0:,.0f}'.format(cost) def get_gap_label(gap: float) -> str: return '{0:,.2f}'.format(gap) def get_problem_label(problem, date: datetime.date): label = '{0:2d} {1}'.format(date.day, problem.Visits) if problem.Visits2 == 0: return label return label + '/' + str(problem.Visits2) print_data = [] for problem_config, mip_log, cp_team_log, cp_window_log in logs: best_cost = min([mip_log.best_cost(), cp_team_log.best_cost(), cp_window_log.best_cost()]) print_data.append(collections.OrderedDict(Problem=get_problem_label(problem_config, cp_team_log.date), Penalty=get_cost_label(cp_team_log.missed_visit_penalty), LB=get_cost_label(mip_log.best_bound()), MIP_COST=get_cost_label(mip_log.best_cost()), MIP_GAP=get_gap_label(get_gap(mip_log.best_cost(), mip_log.best_bound())), MIP_DELTA=get_gap_label(get_delta(mip_log.best_cost(), best_cost)), MIP_TIME=get_duration_label(mip_log.best_cost_time()), TEAMS_GAP=get_gap_label(get_gap(cp_team_log.best_cost(), mip_log.best_bound())), TEAMS_DELTA=get_gap_label(get_delta(cp_team_log.best_cost(), best_cost)), TEAMS_COST=get_cost_label(cp_team_log.best_cost()), TEAMS_Time=get_duration_label(cp_team_log.best_cost_time()), WINDOWS_COST=get_cost_label(cp_window_log.best_cost()), WINDOWS_GAP=get_gap_label(get_gap(cp_window_log.best_cost(), mip_log.best_bound())), WINDOWS_DELTA=get_gap_label(get_delta(cp_window_log.best_cost(), best_cost)), WINDOWS_TIME=get_duration_label(cp_window_log.best_cost_time()) )) data_frame = pandas.DataFrame(data=print_data) print(tabulate.tabulate( data_frame[['Problem', 'Penalty', 'LB', 'MIP_COST', 'MIP_TIME', 'TEAMS_COST', 'TEAMS_Time', 'WINDOWS_COST', 'WINDOWS_TIME']], tablefmt='latex', headers='keys', showindex=False)) print(tabulate.tabulate( data_frame[['Problem', 'MIP_GAP', 'MIP_DELTA', 'MIP_TIME', 'TEAMS_GAP', 'TEAMS_DELTA', 'TEAMS_Time', 'WINDOWS_GAP', 'WINDOWS_DELTA', 'WINDOWS_TIME']], tablefmt='latex', headers='keys', showindex=False)) @functools.total_ordering class ProblemMetadata: WINDOW_LABELS = ['', 'F', 'S', 'M', 'L', 'A'] def __init__(self, case: int, visits: int, windows: int): assert visits == 20 or visits == 50 or visits == 80 assert 0 <= windows < len(ProblemMetadata.WINDOW_LABELS) self.__case = case self.__visits = visits self.__windows = windows def __eq__(self, other) -> bool: if isinstance(other, ProblemMetadata): return self.case == other.case and self.visits == other.visits and self.__windows == other.windows return False def __neq__(self, other) -> bool: return not (self == other) def __lt__(self, other) -> bool: assert isinstance(other, ProblemMetadata) if self.windows != other.windows: return self.windows < other.windows if self.visits != other.visits: return self.visits < other.visits if self.case != other.case: return self.case < other.case return False @property def label(self) -> str: return '{0:>2}{1}'.format(self.instance_number, self.windows_label) @property def windows(self) -> int: return self.__windows @property def windows_label(self) -> str: return ProblemMetadata.WINDOW_LABELS[self.__windows] @property def visits(self) -> int: return self.__visits @property def case(self) -> int: return self.__case @property def instance_number(self) -> int: if self.__visits == 20: return self.__case if self.__visits == 50: return 5 + self.__case return 8 + self.__case def compare_literature_table(args, settings): LIU2019 = 'liu2019' AFIFI2016 = 'afifi2016' DECERLE2018 = 'decerle2018' GAYRAUD2015 = 'gayraud2015' PARRAGH2018 = 'parragh2018' BREDSTROM2008 = 'bredstrom2008combined' BREDSTROM2007 = 'bredstrom2007branchandprice' InstanceConfig = collections.namedtuple('InstanceConfig', ['name', 'nickname', 'result', 'who', 'is_optimal']) instance_data = [ InstanceConfig(name='case_1_20_4_2_1', nickname='1N', result=5.13, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_2_20_4_2_1', nickname='2N', result=4.98, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_3_20_4_2_1', nickname='3N', result=5.19, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_4_20_4_2_1', nickname='4N', result=7.21, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_5_20_4_2_1', nickname='5N', result=5.37, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_1_50_10_5_1', nickname='6N', result=14.45, who=DECERLE2018, is_optimal=True), InstanceConfig(name='case_2_50_10_5_1', nickname='7N', result=13.02, who=DECERLE2018, is_optimal=True), InstanceConfig(name='case_3_50_10_5_1', nickname='8N', result=34.94, who=PARRAGH2018, is_optimal=True), InstanceConfig(name='case_1_80_16_8_1', nickname='9N', result=43.48, who=PARRAGH2018, is_optimal=True), InstanceConfig(name='case_2_80_16_8_1', nickname='10N', result=12.08, who=PARRAGH2018, is_optimal=True), InstanceConfig(name='case_1_20_4_2_2', nickname='1S', result=3.55, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_2_20_4_2_2', nickname='2S', result=4.27, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_3_20_4_2_2', nickname='3S', result=3.63, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_4_20_4_2_2', nickname='4S', result=6.14, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_5_20_4_2_2', nickname='5S', result=3.93, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_1_50_10_5_2', nickname='6S', result=8.14, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_2_50_10_5_2', nickname='7S', result=8.39, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_3_50_10_5_2', nickname='8S', result=9.54, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_1_80_16_8_2', nickname='9S', result=11.93, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_2_80_16_8_2', nickname='10S', result=8.54, who=LIU2019, is_optimal=False), InstanceConfig(name='case_1_20_4_2_3', nickname='1M', result=3.55, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_2_20_4_2_3', nickname='2M', result=3.58, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_3_20_4_2_3', nickname='3M', result=3.33, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_4_20_4_2_3', nickname='4M', result=5.67, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_5_20_4_2_3', nickname='5M', result=3.53, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_1_50_10_5_3', nickname='6M', result=7.7, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_2_50_10_5_3', nickname='7M', result=7.48, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_3_50_10_5_3', nickname='8M', result=8.54, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_1_80_16_8_3', nickname='9M', result=10.92, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_2_80_16_8_3', nickname='10M', result=7.62, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_1_20_4_2_4', nickname='1L', result=3.39, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_2_20_4_2_4', nickname='2L', result=3.42, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_3_20_4_2_4', nickname='3L', result=3.29, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_4_20_4_2_4', nickname='4L', result=5.13, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_5_20_4_2_4', nickname='5L', result=3.34, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_1_50_10_5_4', nickname='6L', result=7.14, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_2_50_10_5_4', nickname='7L', result=6.88, who=BREDSTROM2007, is_optimal=False), InstanceConfig(name='case_3_50_10_5_4', nickname='8L', result=8, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_1_80_16_8_4', nickname='9L', result=10.43, who=LIU2019, is_optimal=False), InstanceConfig(name='case_2_80_16_8_4', nickname='10L', result=7.36, who=LIU2019, is_optimal=False), InstanceConfig(name='case_1_20_4_2_5', nickname='1H', result=2.95, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_2_20_4_2_5', nickname='2H', result=2.88, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_3_20_4_2_5', nickname='3H', result=2.74, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_4_20_4_2_5', nickname='4H', result=4.29, who=GAYRAUD2015, is_optimal=False), InstanceConfig(name='case_5_20_4_2_5', nickname='5H', result=2.81, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_1_50_10_5_5', nickname='6H', result=6.48, who=DECERLE2018, is_optimal=False), InstanceConfig(name='case_2_50_10_5_5', nickname='7H', result=5.71, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_3_50_10_5_5', nickname='8H', result=6.52, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_1_80_16_8_5', nickname='9H', result=8.51, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_2_80_16_8_5', nickname='10H', result=6.31, who=PARRAGH2018, is_optimal=False) ] instance_dirs = ['/home/pmateusz/dev/cordia/simulations/current_review_simulations/hc/solutions/case20', '/home/pmateusz/dev/cordia/simulations/current_review_simulations/hc/solutions/case50', '/home/pmateusz/dev/cordia/simulations/current_review_simulations/hc/solutions/case80'] instance_dict = {instance.name: instance for instance in instance_data} print_data = [] instance_pattern = re.compile(r'case_(?P<case>\d+)_(?P<visits>\d+)_(?P<carers>\d+)_(?P<synchronized_visits>\d+)_(?P<windows>\d+)') instance_counter = 1 last_visits = None with warnings.catch_warnings(): warnings.filterwarnings('ignore') for instance_dir in instance_dirs: for instance in instance_data: instance_log_path = os.path.join(instance_dir, instance.name + '.dat.err.log') if not os.path.exists(instance_log_path): continue solver_logs = read_traces(instance_log_path) if not solver_logs: continue instance = instance_dict[instance.name] name_match = instance_pattern.match(instance.name) if not name_match: continue first_solver_logs = solver_logs[0] case = int(name_match.group('case')) visits = int(name_match.group('visits')) carers = int(name_match.group('carers')) synchronized_visits = int(name_match.group('synchronized_visits')) windows_configuration = int(name_match.group('windows')) problem_meta = ProblemMetadata(case, visits, windows_configuration) if last_visits and last_visits != visits: instance_counter = 1 normalized_result = float('inf') if first_solver_logs.best_cost(3) < 100: normalized_result = round(first_solver_logs.best_cost(3), 2) delta = round((instance.result - normalized_result) / instance.result * 100, 2) printable_literature_result = str(instance.result) if instance.is_optimal: printable_literature_result += '*' printable_literature_result += 'cite{{{0}}}'.format(instance.who) print_data.append(collections.OrderedDict( metadata=problem_meta, problem=problem_meta.label, case=instance_counter, v1=visits - 2 * synchronized_visits, v2=synchronized_visits, carers=carers, time_windows=problem_meta.windows_label, literature_result=printable_literature_result, result=normalized_result, delta=delta, time=round(first_solver_logs.best_cost_time(3).total_seconds(), 2) if normalized_result != float('inf') else float('inf') )) last_visits = visits instance_counter += 1 print_data.sort(key=lambda dict_obj: dict_obj['metadata']) print(tabulate.tabulate( pandas.DataFrame(data=print_data)[['problem', 'carers', 'v1', 'v2', 'literature_result', 'result', 'time', 'delta']], showindex=False, tablefmt='latex', headers='keys')) def compare_planner_optimizer_quality(args, settings): data_file = getattr(args, __FILE_ARG) data_frame = pandas.read_csv(data_file) figsize = (2.5, 5) labels = ['Planners', 'Algorithm'] data_frame['travel_time'] = data_frame['Travel Time'].apply(parse_pandas_duration) data_frame['span'] = data_frame['Span'].apply(parse_pandas_duration) data_frame['overtime'] = data_frame['Overtime'].apply(parse_pandas_duration) data_frame_planners = data_frame[data_frame['Type'] == 'Planners'] data_frame_solver = data_frame[data_frame['Type'] == 'Solver'] overtime_per_carer = [list((data_frame_planners['overtime'] / data_frame_planners['Carers']).values), list((data_frame_solver['overtime'] / data_frame_solver['Carers']).values)] def to_matplotlib_minutes(value): return value * 60 * 1000000000 fig, ax = matplotlib.pyplot.subplots(1, 1, figsize=figsize) ax.boxplot(overtime_per_carer, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax.set_xticklabels(labels, rotation=45) ax.set_ylabel('Overtime per Carer [HH:MM]') ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_timedelta_pandas)) ax.set_yticks([0, to_matplotlib_minutes(10), to_matplotlib_minutes(20), to_matplotlib_minutes(30)]) fig.tight_layout() rows.plot.save_figure('quality_boxplot_overtime') travel_time_per_carer = [list((data_frame_planners['travel_time'] / data_frame_planners['Carers']).values), list((data_frame_solver['travel_time'] / data_frame_solver['Carers']).values)] fig, ax = matplotlib.pyplot.subplots(1, 1, figsize=figsize) ax.boxplot(travel_time_per_carer, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax.set_xticklabels(labels, rotation=45) ax.set_ylabel('Travel Time per Carer [HH:MM]') ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_timedelta_pandas)) ax.set_yticks([0, to_matplotlib_minutes(30), to_matplotlib_minutes(60), to_matplotlib_minutes(90), to_matplotlib_minutes(120)]) fig.tight_layout() rows.plot.save_figure('quality_boxplot_travel_time') span_per_client = [list((data_frame_planners['span'] / data_frame_planners['Clients']).values), list((data_frame_solver['span'] / data_frame_solver['Clients']).values)] fig, ax = matplotlib.pyplot.subplots(1, 1, figsize=figsize) ax.boxplot(span_per_client, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax.set_xticklabels(labels, rotation=45) ax.set_ylabel('Visit Span per Client [HH:MM]') ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_timedelta_pandas)) ax.set_yticks([0, to_matplotlib_minutes(6 * 60), to_matplotlib_minutes(7 * 60), to_matplotlib_minutes(8 * 60), to_matplotlib_minutes(9 * 60)]) ax.set_ylim(bottom=6 * 60 * 60 * 1000000000) fig.tight_layout() rows.plot.save_figure('quality_span') teams = [list(data_frame_planners['Teams'].values), list(data_frame_solver['Teams'].values)] fig, ax = matplotlib.pyplot.subplots(1, 1, figsize=figsize) ax.boxplot(teams, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax.set_xticklabels(labels, rotation=45) ax.set_ylabel('Teams of 2 Carers') fig.tight_layout() rows.plot.save_figure('quality_teams') better_matching = [list(data_frame_planners['Better Matching'].values), list(data_frame_solver['Better Matching'].values)] fig, ax = matplotlib.pyplot.subplots(1, 1, figsize=figsize) ax.boxplot(better_matching, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax.set_xticklabels(labels, rotation=45) ax.set_ylabel('Better Client-Carer Matching') fig.tight_layout() rows.plot.save_figure('quality_matching') def parse_percent(value): value_to_use = value.replace('%', '') return float(value_to_use) / 100.0 def parse_duration_seconds(value): return datetime.timedelta(seconds=value) def compare_benchmark(args, settings): data_file_path = getattr(args, __FILE_ARG) data_frame = pandas.read_csv(data_file_path) data_frame['relative_cost_difference'] = data_frame['Relative Cost Difference'].apply(parse_percent) data_frame['relative_gap'] = data_frame['Relative Gap'].apply(parse_percent) data_frame['time'] = data_frame['Time'].apply(parse_duration_seconds) matplotlib.rcParams.update({'font.size': 18}) labels = ['MS', 'IP'] low_labels = ['Gap', 'Delta', 'Time'] cp_frame = data_frame[data_frame['Solver'] == 'CP'] mip_frame = data_frame[data_frame['Solver'] == 'MIP'] def get_series(frame, configuration): num_visits, num_visits_of_2 = configuration filtered_frame = frame[(frame['Visits'] == num_visits) & (frame['Synchronized Visits'] == num_visits_of_2)] return [filtered_frame['relative_gap'].values, filtered_frame['relative_cost_difference'].values, filtered_frame['time'].values] def seconds(value): return value * 1000000000 def minutes(value): return 60 * seconds(value) def hours(value): return 3600 * seconds(value) limit_configurations = [[[None, minutes(1) + seconds(15)], [0, minutes(9)]], [[None, minutes(1) + seconds(30)], [0, hours(4) + minutes(30)]], [[0, minutes(3) + seconds(30)], [0, hours(4) + minutes(30)]], [[0, minutes(3) + seconds(30)], [0, hours(4) + minutes(30)]]] yticks_configurations = [ [[0, seconds(15), seconds(30), seconds(45), minutes(1)], [0, minutes(1), minutes(2), minutes(4), minutes(8)]], [[0, seconds(15), seconds(30), seconds(45), minutes(1), minutes(1) + seconds(15)], [0, hours(1), hours(2), hours(3), hours(4)]], [[0, minutes(1), minutes(2), minutes(3)], [0, hours(1), hours(2), hours(3), hours(4)]], [[0, minutes(1), minutes(2), minutes(3)], [0, hours(1), hours(2), hours(3), hours(4)]]] problem_configurations = [(25, 0), (25, 5), (50, 0), (50, 10)] def format_timedelta_pandas(x, pos=None): if x < 0: return None time_delta = pandas.to_timedelta(x) hours = int(time_delta.total_seconds() / matplotlib.dates.SEC_PER_HOUR) minutes = int(time_delta.total_seconds() / matplotlib.dates.SEC_PER_MIN) - 60 * hours seconds = int(time_delta.total_seconds() - 3600 * hours - 60 * minutes) return '{0:01d}:{1:02d}:{2:02d}'.format(hours, minutes, seconds) def format_percent(x, pox=None): return int(x * 100.0) for index, problem_config in enumerate(problem_configurations): fig, axes = matplotlib.pyplot.subplots(1, 2) cp_gap, cp_delta, cp_time = get_series(cp_frame, problem_config) mip_gap, mip_delta, mip_time = get_series(mip_frame, problem_config) cp_time_limit, mip_time_limit = limit_configurations[index] cp_yticks, mip_yticks = yticks_configurations[index] cp_ax, mip_ax = axes first_color_config = dict(flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR), boxprops=dict(color=FOREGROUND_COLOR), whiskerprops=dict(color=FOREGROUND_COLOR), capprops=dict(color=FOREGROUND_COLOR)) second_color_config = dict(flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR2), boxprops=dict(color=FOREGROUND_COLOR2), whiskerprops=dict(color=FOREGROUND_COLOR2), capprops=dict(color=FOREGROUND_COLOR2)) cp_ax.boxplot([cp_gap, cp_delta, []], **second_color_config) cp_twinx = cp_ax.twinx() cp_twinx.boxplot([[], [], cp_time], **first_color_config) cp_twinx.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_timedelta_pandas)) cp_ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_percent)) cp_twinx.tick_params(axis='y', labelcolor=FOREGROUND_COLOR) cp_ax.set_xlabel('Multistage') cp_ax.set_xticklabels(low_labels, rotation=45) cp_ax.set_ylim(bottom=-0.05, top=1) cp_ax.set_ylabel('Delta, Gap [%]') cp_twinx.set_ylim(bottom=cp_time_limit[0], top=cp_time_limit[1]) if cp_yticks: cp_twinx.set_yticks(cp_yticks) mip_ax.boxplot([mip_gap, mip_delta, []], **second_color_config) mip_twinx = mip_ax.twinx() mip_twinx.boxplot([[], [], mip_time], **first_color_config) mip_twinx.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_timedelta_pandas)) mip_twinx.tick_params(axis='y', labelcolor=FOREGROUND_COLOR) mip_ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_percent)) mip_ax.set_xlabel('IP') mip_ax.set_xticklabels(low_labels, rotation=45) mip_ax.set_ylim(bottom=-0.05, top=1) mip_twinx.set_ylabel('Computation Time [H:MM:SS]', color=FOREGROUND_COLOR) mip_twinx.set_ylim(bottom=mip_time_limit[0], top=mip_time_limit[1]) if mip_yticks: mip_twinx.set_yticks(mip_yticks) fig.tight_layout(w_pad=0.0) rows.plot.save_figure('benchmark_boxplot_{0}_{1}'.format(problem_config[0], problem_config[1])) matplotlib.pyplot.cla() matplotlib.pyplot.close(fig) def old_debug(args, settings): problem = rows.plot.load_problem(get_or_raise(args, __PROBLEM_FILE_ARG)) solution_file = get_or_raise(args, __SOLUTION_FILE_ARG) schedule = rows.plot.load_schedule(solution_file) schedule_date = schedule.metadata.begin carer_dairies = { carer_shift.carer.sap_number: next((diary for diary in carer_shift.diaries if diary.date == schedule_date), None) for carer_shift in problem.carers} location_finder = rows.location_finder.UserLocationFinder(settings) location_finder.reload() data_set = [] with rows.plot.create_routing_session() as session: for route in schedule.routes(): travel_time = datetime.timedelta() for source, destination in route.edges(): source_loc = location_finder.find(source.visit.service_user) if not source_loc: logging.error('Failed to resolve location of %s', source.visit.service_user) continue destination_loc = location_finder.find(destination.visit.service_user) if not destination_loc: logging.error('Failed to resolve location of %s', destination.visit.service_user) continue distance = session.distance(source_loc, destination_loc) if distance is None: logging.error('Distance cannot be estimated between %s and %s', source_loc, destination_loc) continue travel_time += datetime.timedelta(seconds=distance) service_time = datetime.timedelta() for visit in route.visits: if visit.check_in and visit.check_out: observed_duration = visit.check_out - visit.check_in if observed_duration.days < 0: logging.error('Observed duration %s is negative', observed_duration) service_time += observed_duration else: logging.warning( 'Visit %s is not supplied with information on check-in and check-out information', visit.key) service_time += visit.duration available_time = functools.reduce(operator.add, (event.duration for event in carer_dairies[route.carer.sap_number].events)) data_set.append([route.carer.sap_number, available_time, service_time, travel_time, float(service_time.total_seconds() + travel_time.total_seconds()) / available_time.total_seconds()]) data_set.sort(key=operator.itemgetter(4)) data_frame = pandas.DataFrame(columns=['Carer', 'Availability', 'Service', 'Travel', 'Usage'], data=data_set) figure, axis = matplotlib.pyplot.subplots() indices = numpy.arange(len(data_frame.index)) time_delta_converter = rows.plot.TimeDeltaConverter() width = 0.35 travel_series = numpy.array(time_delta_converter(data_frame.Travel)) service_series = numpy.array(time_delta_converter(data_frame.Service)) idle_overtime_series = list(data_frame.Availability - data_frame.Travel - data_frame.Service) idle_series = numpy.array(time_delta_converter( map(lambda value: value if value.days >= 0 else datetime.timedelta(), idle_overtime_series))) overtime_series = numpy.array(time_delta_converter( map(lambda value: datetime.timedelta( seconds=abs(value.total_seconds())) if value.days < 0 else datetime.timedelta(), idle_overtime_series))) service_handle = axis.bar(indices, service_series, width, bottom=time_delta_converter.zero) travel_handle = axis.bar(indices, travel_series, width, bottom=service_series + time_delta_converter.zero_num) idle_handle = axis.bar(indices, idle_series, width, bottom=service_series + travel_series + time_delta_converter.zero_num) overtime_handle = axis.bar(indices, overtime_series, width, bottom=idle_series + service_series + travel_series + time_delta_converter.zero_num) axis.yaxis_date() axis.yaxis.set_major_formatter(matplotlib.dates.DateFormatter("%H:%M:%S")) axis.legend((travel_handle, service_handle, idle_handle, overtime_handle), ('Travel', 'Service', 'Idle', 'Overtime'), loc='upper right') matplotlib.pyplot.show() def show_working_hours(args, settings): __WIDTH = 0.25 color_map = matplotlib.cm.get_cmap('tab20') matplotlib.pyplot.set_cmap(color_map) shift_file = get_or_raise(args, __FILE_ARG) shift_file_base_name, shift_file_ext = os.path.splitext(os.path.basename(shift_file)) output_file_base_name = getattr(args, __OUTPUT, shift_file_base_name) __EVENT_TYPE_OFFSET = {'assumed': 2, 'contract': 1, 'work': 0} __EVENT_TYPE_COLOR = {'assumed': color_map.colors[0], 'contract': color_map.colors[4], 'work': color_map.colors[2]} handles = {} frame = pandas.read_csv(shift_file) dates = frame['day'].unique() for current_date in dates: frame_to_use = frame[frame['day'] == current_date] carers = frame_to_use['carer'].unique() figure, axis = matplotlib.pyplot.subplots() try: current_date_to_use = datetime.datetime.strptime(current_date, '%Y-%m-%d') carer_index = 0 for carer in carers: carer_frame = frame_to_use[frame_to_use['carer'] == carer] axis.bar(carer_index + 0.25, 24 * 3600, 0.75, bottom=0, color='grey', alpha=0.3) for index, row in carer_frame.iterrows(): event_begin = datetime.datetime.strptime(row['begin'], '%Y-%m-%d %H:%M:%S') event_end = datetime.datetime.strptime(row['end'], '%Y-%m-%d %H:%M:%S') handle = axis.bar(carer_index + __EVENT_TYPE_OFFSET[row['event type']] * __WIDTH, (event_end - event_begin).total_seconds(), __WIDTH, bottom=(event_begin - current_date_to_use).total_seconds(), color=__EVENT_TYPE_COLOR[row['event type']]) handles[row['event type']] = handle carer_index += 1 axis.legend([handles['work'], handles['contract'], handles['assumed']], ['Worked', 'Available', 'Forecast'], loc='upper right') axis.grid(linestyle='dashed') axis.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_time)) axis.yaxis.set_ticks(numpy.arange(0, 24 * 3600, 2 * 3600)) axis.set_ylim(6 * 3600, 24 * 60 * 60) rows.plot.save_figure(output_file_base_name + '_' + current_date) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def compute_overtime(frame): idle_overtime_series = list(frame.Availability - frame.Travel - frame.Service) idle_series = numpy.array( list(map(lambda value: value if value.days >= 0 else datetime.timedelta(), idle_overtime_series))) overtime_series = numpy.array(list(map(lambda value: datetime.timedelta( seconds=abs(value.total_seconds())) if value.days < 0 else datetime.timedelta(), idle_overtime_series))) return overtime_series class Node: def __init__(self, index: int, next: int, visit: rows.model.visit.Visit, visit_start_min: datetime.datetime, visit_start_max: datetime.datetime, break_start: typing.Optional[datetime.datetime], break_duration: datetime.timedelta, travel_duration: datetime.timedelta): self.__index = index self.__next = next self.__visit = visit self.__visit_start_min = visit_start_min self.__visit_start_max = visit_start_max self.__break_start = break_start self.__break_duration = break_duration self.__travel_duration = travel_duration @property def index(self) -> int: return self.__index @property def next(self) -> int: return self.__next @property def visit_key(self) -> int: return self.__visit.key @property def visit_start(self) -> datetime.datetime: return datetime.datetime.combine(self.__visit.date, self.__visit.time) @property def visit_start_min(self) -> datetime.datetime: return self.__visit_start_min @property def visit_start_max(self) -> datetime.datetime: return self.__visit_start_max @property def carer_count(self) -> int: return self.__visit.carer_count @property def visit_duration(self) -> datetime.timedelta: return self.__visit.duration @property def break_start(self) -> datetime.datetime: return self.__break_start @property def break_duration(self) -> datetime.timedelta: return self.__break_duration @property def travel_duration(self) -> datetime.timedelta: return self.__travel_duration @property def service_user(self) -> str: return self.__visit.service_user class Mapping: def __init__(self, routes, problem, settings, time_window_span): self.__index_to_node = {} user_tag_finder = rows.location_finder.UserLocationFinder(settings) user_tag_finder.reload() local_routes = {} current_index = 0 def find_visit(item) -> rows.model.visit.Visit: current_diff = sys.maxsize visit_match = None for visit_batch in problem.visits: if visit_batch.service_user != item.service_user: continue for visit in visit_batch.visits: if visit.date != item.date or visit.tasks != item.tasks: continue if item.key == visit.key: # exact match return visit visit_total_time = visit.time.hour * 3600 + visit.time.minute * 60 item_total_time = item.time.hour * 3600 + item.time.minute * 60 diff_total_time = abs(visit_total_time - item_total_time) if diff_total_time <= time_window_span.total_seconds() and diff_total_time < current_diff: visit_match = visit current_diff = diff_total_time assert visit_match is not None return visit_match current_index = 0 with rows.plot.create_routing_session() as routing_session: for route in routes: local_route = [] previous_visit = None previous_index = None current_visit = None break_start = None break_duration = datetime.timedelta() for item in route.nodes: if isinstance(item, rows.model.past_visit.PastVisit): current_visit = item.visit if previous_visit is None: if break_start is None: diary = problem.get_diary(route.carer, current_visit.date) break_start = diary.events[0].begin - datetime.timedelta(minutes=30) node = Node(current_index, current_index + 1, rows.model.visit.Visit(date=current_visit.date, time=break_start, duration=datetime.timedelta(), service_user=current_visit.service_user), break_start, break_start, break_start, break_duration, datetime.timedelta()) self.__index_to_node[current_index] = node local_route.append(node) current_index += 1 previous_visit = current_visit previous_index = current_index break_start = None break_duration = datetime.timedelta() current_index += 1 continue previous_location = user_tag_finder.find(previous_visit.service_user) current_location = user_tag_finder.find(current_visit.service_user) travel_time = datetime.timedelta(seconds=routing_session.distance(previous_location, current_location)) previous_visit_match = find_visit(previous_visit) node = Node(previous_index, current_index, previous_visit, previous_visit_match.datetime - time_window_span, previous_visit_match.datetime + time_window_span, break_start, break_duration, travel_time) self.__index_to_node[previous_index] = node local_route.append(node) break_start = None break_duration = datetime.timedelta() previous_visit = current_visit previous_index = current_index current_index += 1 if isinstance(item, rows.model.rest.Rest): if break_start is None: break_start = item.start_time else: break_start = item.start_time - break_duration break_duration += item.duration visit_match = find_visit(previous_visit) node = Node(previous_index, -1, previous_visit, visit_match.datetime - time_window_span, visit_match.datetime + time_window_span, break_start, break_duration, datetime.timedelta()) self.__index_to_node[previous_index] = node local_route.append(node) local_routes[route.carer] = local_route self.__routes = local_routes service_user_to_index = collections.defaultdict(list) for index in self.__index_to_node: node = self.__index_to_node[index] service_user_to_index[node.service_user].append(index) self.__siblings = {} for service_user in service_user_to_index: num_indices = len(service_user_to_index[service_user]) for left_pos in range(num_indices): left_index = service_user_to_index[service_user][left_pos] left_visit = self.__index_to_node[left_index] if left_visit.carer_count == 1: continue for right_pos in range(left_pos + 1, num_indices): right_index = service_user_to_index[service_user][right_pos] right_visit = self.__index_to_node[right_index] if right_visit.carer_count == 1: continue if left_visit.visit_start_min == right_visit.visit_start_min and left_visit.visit_start_max == right_visit.visit_start_max: assert left_index != right_index self.__siblings[left_index] = right_index self.__siblings[right_index] = left_index def indices(self): return list(self.__index_to_node.keys()) def routes(self) -> typing.Dict[rows.model.carer.Carer, typing.List[Node]]: return self.__routes def node(self, index: int) -> Node: return self.__index_to_node[index] def find_index(self, visit_key: int) -> int: for index in self.__index_to_node: if self.__index_to_node[index].visit_key == visit_key: return index return None def sibling(self, index: int) -> typing.Optional[Node]: if index in self.__siblings: sibling_index = self.__siblings[index] return self.__index_to_node[sibling_index] return None def graph(self) -> networkx.DiGraph: edges = [] for carer in self.__routes: for node in self.__routes[carer]: if node.next != -1: assert node.index != node.next edges.append([node.index, node.next]) sibling_node = self.sibling(node.index) if sibling_node is not None: if node.index < sibling_node.index: assert node.index != sibling_node.index edges.append([node.index, sibling_node.index]) if node.next != -1: assert sibling_node.index != node.next edges.append([sibling_node.index, node.next]) return networkx.DiGraph(edges) def create_mapping(settings, problem, schedule) -> Mapping: mapping_time_windows_span = datetime.timedelta(minutes=90) return Mapping(schedule.routes, problem, settings, mapping_time_windows_span) class StartTimeEvaluator: def __init__(self, mapping: Mapping, problem: rows.model.problem.Problem, schedule: rows.model.schedule.Schedule): self.__mapping = mapping self.__problem = problem self.__schedule = schedule self.__sorted_indices = list(networkx.topological_sort(self.__mapping.graph())) self.__initial_start_times = self.__get_initial_start_times() def get_start_times(self, duration_callback) -> typing.List[datetime.datetime]: start_times = copy.copy(self.__initial_start_times) for index in self.__sorted_indices: node = self.__mapping.node(index) current_sibling_node = self.__mapping.sibling(node.index) if current_sibling_node: max_start_time = max(start_times[node.index], start_times[current_sibling_node.index]) start_times[node.index] = max_start_time if max_start_time > start_times[current_sibling_node.index]: start_times[current_sibling_node.index] = max_start_time if current_sibling_node.next is not None and current_sibling_node.next != -1: start_times[current_sibling_node.next] = self.__get_next_arrival(current_sibling_node, start_times, duration_callback) if node.next is None or node.next == -1: continue next_arrival = self.__get_next_arrival(node, start_times, duration_callback) if next_arrival > start_times[node.next]: start_times[node.next] = next_arrival return start_times def get_delays(self, start_times: typing.List[datetime.datetime]) -> typing.List[datetime.timedelta]: return [start_times[index] - self.__mapping.node(index).visit_start_max for index in self.__mapping.indices()] def __get_next_arrival(self, local_node: Node, start_times, duration_callback) -> datetime.datetime: break_done = False if local_node.break_duration is not None \ and local_node.break_start is not None \ and local_node.break_start + local_node.break_duration <= start_times[local_node.index]: break_done = True local_visit_key = self.__mapping.node(local_node.index).visit_key local_next_arrival = start_times[local_node.index] + duration_callback(local_visit_key) + local_node.travel_duration if not break_done and local_node.break_start is not None: if local_next_arrival >= local_node.break_start: local_next_arrival += local_node.break_duration else: local_next_arrival = local_node.break_start + local_node.break_duration return local_next_arrival def __get_initial_start_times(self) -> typing.List[datetime.datetime]: start_times = [self.__mapping.node(index).visit_start_min for index in self.__mapping.indices()] carer_routes = self.__mapping.routes() for carer in carer_routes: diary = self.__problem.get_diary(carer, self.__schedule.date) assert diary is not None nodes = carer_routes[carer] nodes_it = iter(nodes) first_visit_node = next(nodes_it) start_min = max(first_visit_node.visit_start_min, diary.events[0].begin - datetime.timedelta(minutes=30)) start_times[first_visit_node.index] = start_min for node in nodes_it: start_min = max(node.visit_start_min, diary.events[0].begin - datetime.timedelta(minutes=30)) start_times[node.index] = start_min return start_times class EssentialRiskinessEvaluator: def __init__(self, settings, history, problem, schedule): self.__settings = settings self.__history = history self.__problem = problem self.__schedule = schedule self.__schedule_start = datetime.datetime.combine(self.__schedule.date, datetime.time()) self.__mapping = None self.__sample = None self.__start_times = None self.__delay = None def run(self): self.__mapping = create_mapping(self.__settings, self.__problem, self.__schedule) history_time_windows_span = datetime.timedelta(hours=2) self.__sample = self.__history.build_sample(self.__problem, self.__schedule.date, history_time_windows_span) self.__start_times = [[datetime.datetime.max for _ in range(self.__sample.size)] for _ in self.__mapping.indices()] self.__delay = [[datetime.timedelta.max for _ in range(self.__sample.size)] for _ in self.__mapping.indices()] start_time_evaluator = StartTimeEvaluator(self.__mapping, self.__problem, self.__schedule) for scenario in range(self.__sample.size): def get_visit_duration(visit_key: int) -> datetime.timedelta: if visit_key is None: return datetime.timedelta() return self.__sample.visit_duration(visit_key, scenario) scenario_start_times = start_time_evaluator.get_start_times(get_visit_duration) delay = start_time_evaluator.get_delays(scenario_start_times) for index in range(len(scenario_start_times)): self.__start_times[index][scenario] = scenario_start_times[index] self.__delay[index][scenario] = delay[index] def calculate_index(self, visit_key: int) -> float: visit_index = self.__find_index(visit_key) records = [local_delay.total_seconds() for local_delay in self.__delay[visit_index]] records.sort() num_records = len(records) if records[num_records - 1] <= 0: return 0.0 total_delay = 0.0 position = num_records - 1 while position >= 0 and records[position] >= 0: total_delay += records[position] position -= 1 if position == -1: return float('inf') delay_budget = 0 while position > 0 and delay_budget + float(position + 1) * records[position] + total_delay > 0: delay_budget += records[position] position -= 1 delay_balance = delay_budget + float(position + 1) * records[position] + total_delay if delay_balance < 0: riskiness_index = min(0.0, records[position + 1]) assert riskiness_index <= 0.0 remaining_balance = total_delay + delay_budget + float(position + 1) * riskiness_index assert remaining_balance >= 0.0 riskiness_index -= math.ceil(remaining_balance / float(position + 1)) assert riskiness_index * float(position + 1) + delay_budget + total_delay <= 0.0 return -riskiness_index elif delay_balance > 0: return float('inf') else: return records[position] def get_delays(self, visit_key) -> typing.List[datetime.timedelta]: index = self.__find_index(visit_key) return self.__delay[index] def find_carer(self, visit_key: int) -> typing.Optional[rows.model.carer.Carer]: for carer in self.__mapping.routes(): for node in self.__mapping.routes()[carer]: if node.visit_key == visit_key: return carer return None def find_route(self, index: int) -> typing.Optional[typing.List[Node]]: routes = self.__mapping.routes() for carer in routes: for node in routes[carer]: if node.index == index: return routes[carer] return None def print_route_for_visit(self, visit_key): carer = self.find_carer(visit_key) self.print_route(carer) def print_route(self, carer): route = self.__mapping.routes()[carer] data = [['index', 'key', 'visit_start', 'visit_duration', 'travel_duration', 'break_start', 'break_duration']] for node in route: if node.visit_key is None: duration = 0 else: duration = int(self.__sample.visit_duration(node.visit_key, 0).total_seconds()) data.append([node.index, node.visit_key, int(self.__datetime_to_delta(self.__start_times[node.index][0]).total_seconds()), duration, int(node.travel_duration.total_seconds()), int(self.__datetime_to_delta(node.break_start).total_seconds()) if node.break_start is not None else 0, int(node.break_duration.total_seconds())]) print(tabulate.tabulate(data)) def print_start_times(self, visit_key: int): print('Start Times - Visit {0}:'.format(visit_key)) selected_index = self.__find_index(visit_key) for scenario_number in range(self.__sample.size): print('{0:<4}{1}'.format(scenario_number, int(self.__datetime_to_delta(self.__start_times[selected_index][scenario_number]).total_seconds()))) def print_delays(self, visit_key: int): print('Delays - Visit {0}:'.format(visit_key)) selected_index = self.__find_index(visit_key) for scenario_number in range(self.__sample.size): print('{0:<4}{1}'.format(scenario_number, int(self.__delay[selected_index][scenario_number].total_seconds()))) def visit_keys(self) -> typing.List[int]: visit_keys = [self.__mapping.node(index).visit_key for index in self.__mapping.indices() if self.__mapping.node(index).visit_key is not None] visit_keys.sort() return visit_keys def __find_index(self, visit_key: int) -> typing.Optional[int]: for index in self.__mapping.indices(): if self.__mapping.node(index).visit_key == visit_key: return index return None def __datetime_to_delta(self, value: datetime.datetime) -> datetime.timedelta: return value - self.__schedule_start def to_frame(self): records = [] for visit_index in self.__mapping.indices(): visit_key = self.__mapping.node(visit_index).visit_key if visit_key is None: continue for scenario_number in range(self.__sample.size): records.append({'visit': visit_key, 'scenario': scenario_number, 'delay': self.__delay[visit_index][scenario_number]}) return pandas.DataFrame(data=records) @property def mapping(self): return self.__mapping @property def start_times(self): return self.__start_times @property def delay(self): return self.__delay @staticmethod def time_to_delta(time: datetime.time) -> datetime.timedelta: seconds = time.hour * 3600 + time.minute * 60 + time.second return datetime.timedelta(seconds=seconds) def load_history(): root_dir = '/home/pmateusz/dev/cordia/simulations/current_review_simulations/problems' cached_path = os.path.join(root_dir, 'C350_history.pickle') path = os.path.join(root_dir, 'C350_history.json') import pickle if os.path.exists(cached_path): with open(cached_path, 'rb') as input_stream: return pickle.load(input_stream) with open(path, 'r') as input_stream: history = rows.model.history.History.load(input_stream) with open(cached_path, 'wb') as output_stream: pickle.dump(history, output_stream) return history def compare_delay(args, settings): compare_delay_visits_path = 'compare_delay_visits.hdf' compare_instances_path = 'compare_instances.hdf' def load_data(): root_problem_dir = '/home/pmateusz/dev/cordia/simulations/current_review_simulations/solutions' problem = rows.load.load_problem('/home/pmateusz/dev/cordia/simulations/current_review_simulations/problems/C350_past.json') history = load_history() cost_schedules \ = [rows.load.load_schedule(os.path.join(root_problem_dir, 'c350past_distv90b90e30m1m1m5_201710{0:02d}.gexf'.format(day))) for day in range(1, 15)] cost_traces = read_traces(os.path.join(root_problem_dir, 'c350past_distv90b90e30m1m1m5.err.log')) risk_schedules = [rows.load.load_schedule(os.path.join(root_problem_dir, 'c350past_riskv90b90e30m1m1m5_201710{0:02d}.gexf'.format(day))) for day in range(1, 15)] risk_traces = read_traces(os.path.join(root_problem_dir, 'c350past_riskv90b90e30m1m1m5.err.log')) return problem, history, cost_schedules, cost_traces, risk_schedules, risk_traces def get_visit_duration(visit_key: int) -> datetime.timedelta: if visit_key is None: return datetime.timedelta() visit = history.get_visit(visit_key) assert visit is not None return visit.real_duration def get_visit_delays(schedule: rows.model.schedule.Schedule) -> typing.Dict[int, datetime.timedelta]: mapping = create_mapping(settings, problem, schedule) delay_evaluator = StartTimeEvaluator(mapping, problem, schedule) start_times = delay_evaluator.get_start_times(get_visit_duration) delays = delay_evaluator.get_delays(start_times) return {mapping.node(index).visit_key: delays[index] for index in range(len(delays))} problem = None if os.path.exists(compare_delay_visits_path): visits_frame = pandas.read_hdf(compare_delay_visits_path) else: problem, history, cost_schedules, cost_traces, risk_schedules, risk_traces = load_data() visit_data_set = [] for index in range(len(cost_schedules)): cost_schedule = cost_schedules[index] risk_schedule = risk_schedules[index] schedule_date = cost_schedule.date assert schedule_date == risk_schedule.date cost_visit_delays = get_visit_delays(cost_schedule) risk_visit_delays = get_visit_delays(risk_schedule) visit_keys = set(cost_visit_delays.keys()) for visit_key in risk_visit_delays: visit_keys.add(visit_key) for visit_key in visit_keys: record = collections.OrderedDict(visit_key=visit_key, date=schedule_date) if visit_key in cost_visit_delays: record['cost_delay'] = cost_visit_delays[visit_key] if visit_key in risk_visit_delays: record['risk_delay'] = risk_visit_delays[visit_key] visit_data_set.append(record) visits_frame = pandas.DataFrame(data=visit_data_set) visits_frame.to_hdf(compare_delay_visits_path, key='a') if os.path.exists(compare_instances_path): instances_frame = pandas.read_hdf(compare_instances_path) else: if problem is None: problem, history, cost_schedules, cost_traces, risk_schedules, risk_traces = load_data() instances_data_set = [] for index in range(len(cost_schedules)): cost_schedule = cost_schedules[index] cost_trace = cost_traces[index] risk_schedule = risk_schedules[index] risk_trace = risk_traces[index] schedule_date = cost_schedule.date local_visits_delay_frame = (visits_frame[visits_frame['date'] == schedule_date])[['risk_delay', 'cost_delay']] instances_data_set.append(collections.OrderedDict(date=schedule_date, cost_cost=cost_trace.best_cost(), cost_num_visits=len(cost_schedule.visits), cost_mean_delay=local_visits_delay_frame.mean().loc['cost_delay'], risk_cost=risk_trace.last_cost(), risk_num_visits=len(risk_schedule.visits), risk_mean_delay=local_visits_delay_frame.mean().loc['risk_delay'])) instances_frame = pandas.DataFrame(data=instances_data_set) instances_frame.to_hdf(compare_instances_path, key='a') def compute_riskiness(args, settings): # load optimised schedules # load riskiness schedules schedule = rows.load.load_schedule('/home/pmateusz/dev/cordia/simulations/current_review_simulations/cp_schedules/riskiness/2017-10-01.gexf') problem = rows.load.load_problem('/home/pmateusz/dev/cordia/simulations/current_review_simulations/problems/C350_past.json') with open('/home/pmateusz/dev/cordia/simulations/current_review_simulations/problems/C350_history.json', 'r') as input_stream: history = rows.model.history.History.load(input_stream) riskiness_evaluator = EssentialRiskinessEvaluator(settings, history, problem, schedule) riskiness_evaluator.run() selected_carers = {riskiness_evaluator.find_carer(8582722)} for carer in selected_carers: riskiness_evaluator.print_route(carer) class DelayRecords: def __init__(self, objective, instance, delays): self.__objective = objective self.__instance = instance self.__delays = delays def load_third_stage_records(settings): root_problem_dir = '/home/pmateusz/dev/cordia/simulations/current_review_simulations/solutions' frame_path = os.path.join(root_problem_dir, 'delay_results.hdf') if os.path.exists(frame_path): return pandas.read_hdf(frame_path) else: objective_pattern = [['cost', 'c350past_distv90b90e30m1m1m5_201710{0:02d}.gexf'], ['reduction', 'c350past_redv90b90e30m1m1m5_201710{0:02d}.gexf'], ['risk', 'c350past_riskv90b90e30m1m1m5_201710{0:02d}.gexf']] problem = rows.load.load_problem('/home/pmateusz/dev/cordia/simulations/current_review_simulations/problems/C350_past.json') history = load_history() configurations = [(objective, instance, os.path.join(root_problem_dir, pattern.format(instance))) for objective, pattern in objective_pattern for instance in range(1, 15)] solver_traces = {'cost': read_traces(os.path.join(root_problem_dir, 'c350past_distv90b90e30m1m1m5.err.log')), 'reduction': read_traces(os.path.join(root_problem_dir, 'c350past_redv90b90e30m1m1m5.err.log')), 'risk': read_traces(os.path.join(root_problem_dir, 'c350past_riskv90b90e30m1m1m5.err.log'))} with rows.plot.create_routing_session() as routing_session: distance_estimator = rows.plot.DistanceEstimator(settings, routing_session) frames = [] for objective, instance, schedule_file in tqdm.tqdm(configurations): schedule = rows.load.load_schedule(schedule_file) solver_trace = solver_traces[objective][instance - 1] schedule_cost = get_schedule_cost(schedule, solver_trace, problem, distance_estimator) riskiness_evaluator = EssentialRiskinessEvaluator(settings, history, problem, schedule) riskiness_evaluator.run() frame = riskiness_evaluator.to_frame() frame['objective'] = objective frame['instance'] = instance frame['travel_time'] = schedule_cost.travel_time frame['carers_used'] = schedule_cost.carers_used frame['visits_missed'] = schedule_cost.visits_missed frames.append(frame) frame = pandas.concat(frames) frame.to_hdf(frame_path, key='a') return frame def get_max_average_delays(frame): delays = [] visits = frame['visit'].unique() for visit in visits: delays.append(frame[frame['visit'] == visit]['delay'].mean().to_timedelta64()) delays.sort() return delays def compare_third_stage_table(args, settings): frame = load_third_stage_records(settings) instances = frame['instance'].unique() instances.sort() objectives = frame['objective'].unique() objectives.sort() data_set = [] for instance in instances: for objective in objectives: instance_frame = frame[(frame['instance'] == instance) & (frame['objective'] == objective)] delays = get_max_average_delays(instance_frame) max_delay = max(delays) / numpy.timedelta64(1, 'm') travel_time = instance_frame['travel_time'].max() carer_used = instance_frame['carers_used'].max() visits_missed = instance_frame['visits_missed'].max() data_set.append({'instance': instance, 'objective': objective, 'max_delay': max_delay, 'travel_time': travel_time / numpy.timedelta64(1, 'h'), 'carer_used': carer_used, 'visits_missed': visits_missed}) result_set = pandas.DataFrame(data=data_set) del frame records = [] for instance in instances: record = collections.OrderedDict() record['instance'] = instance for metric in ['travel_time', 'carer_used', 'max_delay', 'visits_missed']: for objective in objectives: label = '{0}_{1}'.format(metric, objective) record[label] = result_set[(result_set['instance'] == instance) & (result_set['objective'] == objective)][metric].min() records.append(record) data_set = pandas.DataFrame(data=records) print(tabulate.tabulate(
pandas.DataFrame(data=data_set)
pandas.DataFrame
import streamlit as st import pandas as pd import joblib # In this section I read the static and real-time data from cibike API @st.cache def load_stations(): # This read citibike static information: capacity, name, id, lat and lon of each station and name of the station df_station_information = pd.read_json('https://gbfs.citibikenyc.com/gbfs/en/station_information.json') # read all the stations and store in data frame : stations station_iter = len(df_station_information['data'][0]) station = [] for j in range(station_iter): zipped = zip(['station_name', 'station_id', 'lat', 'lon', 'capacity'], [df_station_information['data'][0][j]['name'], df_station_information['data'][0][j]['station_id'], df_station_information['data'][0][j]['lat'], df_station_information['data'][0][j]['lon'], df_station_information['data'][0][j]['capacity'] ]) station.append(dict(zipped)) station = pd.DataFrame.from_dict(station) return station @st.cache def load_distances(): df_dist = pd.read_csv('distances.csv') return df_dist @st.cache def load_station_realtime(): df_st_status = pd.read_json('https://gbfs.citibikenyc.com/gbfs/en/station_status.json') # online # available return df_st_status @st.cache def realtime_weather(): request = 'https://mesonet.agron.iastate.edu/cgi-bin/request/' \ 'asos.py?station=NYC&data=tmpf&data=relh&data=feel&data=' \ 'sped&data=p01i&data=vsby&year1=2020&month1=9&day1=28&year2=' \ '2020&month2=9&day2=28&tz=America%2FNew_York&format=onlycomma&latlon=' \ 'no&missing=M&trace=T&direct=no&report_type=1&report_type=2' df_weather = pd.read_csv(f'{request}', na_values=['M', 'T']) df_weather['p01i'] = df_weather['p01i'].astype(float) df_weather.fillna(method='ffill') df_weather['datetime'] = pd.to_datetime(df_weather['valid']) df_weather['Month'] = df_weather['datetime'].dt.month df_weather['Day'] = df_weather['datetime'].dt.day df_weather['Hour'] = df_weather['datetime'].dt.hour df_weather['Weekday'] = ((df_weather['datetime'].dt.dayofweek) // 5 == 0).astype(float) df_weather = df_weather.groupby(['Month', 'Day', 'Hour', 'Weekday']).mean().reset_index() weather = df_weather.tail(1) weather = weather.fillna(0) return weather def id_to_name(ids, station): return station[station.station_id == ids].station_name.to_list()[0] def find_realtime_status(all_stations, selected_station): status = all_stations['data'][0] status = next(item for item in status if item['station_id'] == selected_station) return status def nearby_stations(distances, all_stations, selected_station): nearby_ids = distances.sort_values(by=selected_station)['station_id'].astype(str)[1:6].to_list() nearby_dis = distances.sort_values(by=selected_station)[selected_station][1:6].to_list() nearby_names = [id_to_name(ids, all_stations) for ids in nearby_ids] return nearby_ids, nearby_names, nearby_dis def make_prediction(weather, all_stations, selected_station): station = all_stations.loc[all_stations['station_name'] == selected_station] station = station.astype({'station_id': int}) result = pd.concat([weather.reset_index(), station.reset_index()], axis=1) result = result.drop(['index', 'station_name', 'lat', 'lon', 'capacity'], axis=1) result = result.fillna(0) model_input = result.reindex( ['Month', 'Day', 'Hour', 'Weekday', 'station_id', 'tmpf', 'relh', 'feel', 'sped', 'p01i', 'vsby'], axis=1).values filename = 'rfc_2020.joblib' model = joblib.load(filename) model_output = model.predict(model_input) return model_output def station_reliability_start(free_units, flow): if (flow < 0 and abs(flow) <= 0.5 * free_units): reliability = 'good to pick up bikes' elif (flow < 0 and abs(flow) > .5 * free_units and abs(flow) <= .8 * free_units): reliability = 'running out of bikes' elif (flow < 0 and abs(flow) > .8 * free_units) or (free_units < 2): reliability = 'running out fast' else: reliability = 'good to pick up bikes' return reliability def station_reliability_stop(free_units, flow): if (flow > 0 and abs(flow) <= .5 * free_units): reliability = 'good to dock in' elif (flow > 0 and abs(flow) > .5 * free_units and abs(flow) <= .8 * free_units): reliability = 'docks filling up' elif (flow > 0 and abs(flow) > .8 ) or (free_units < 1): reliability = 'filling up fast' else: reliability = 'good to dock in' return reliability # streamlit web app title st.write("""# Dock Right NY!""") # load the stations names, capacity, lat and lon stations = load_stations() # , df_station_status, df_dist # streamlit web app: create a crop down menu with list of the stations to select start_station_name = st.selectbox('Select Pick Up Station', stations['station_name']) # The user selects station name now I need to obtain station_id start_station = stations.loc[stations['station_name'] == start_station_name] start_station_id = str(start_station['station_id'].to_list()[0]) # Now that I have tne station ID I can find the real-time number of available bikes and docks df_station_status = load_station_realtime() start_status = find_realtime_status(df_station_status, start_station_id) 'Pick up station has: ', start_status['num_bikes_available'], 'free bikes.' # Now estimate flow and calculate reliability current_weather = realtime_weather() pred_sel_start = make_prediction(current_weather, stations, start_station_name) start_reliablity = station_reliability_start(start_status['num_bikes_available'], pred_sel_start) 'This station is:', start_reliablity, 'within the next hour' if start_reliablity != 'good to pick up bikes': # Now find available bikes and docks in 5 nearby stations df_distances = load_distances() start_near_ids, start_near_names, start_near_dist = nearby_stations(df_distances, stations, start_station_id) start_near_status = [find_realtime_status(df_station_status, ind_st)['num_bikes_available'] for ind_st in start_near_ids] # Now estimate the inflow based on historic data and current weather pred = [make_prediction(current_weather, stations, station_name) for station_name in start_near_names] reliab = [] for i in range(len(pred)): reliab.append(station_reliability_start(pred[i], start_near_status[i])) show = pd.DataFrame() show['station'] = start_near_names show['Distance (m)'] = [round(x * 1000) for x in start_near_dist] show['Realtime Free Bikes'] = start_near_status show['Reliability'] = reliab#pred st.write('Alternative Pick up Stations:', show) # streamlit web app get the stop station from user stop_station_name = st.selectbox('Select Drop Off Station', stations['station_name']) # The user selects station name now I need to obtain station_id stop_station = stations.loc[stations['station_name'] == stop_station_name] stop_station_id = str(stop_station['station_id'].to_list()[0]) # Now that I have tne station ID I can find the real-time number of available bikes and docks stop_status = find_realtime_status(df_station_status, stop_station_id) 'Drop off station has: ', stop_status['num_docks_available'], 'free docks.' \ # Now estimate flow and calculate reliability pred_sel_stop = make_prediction(current_weather, stations, stop_station_name) stop_reliability = station_reliability_stop(stop_status['num_docks_available'], pred_sel_stop) 'This station is:', stop_reliability, 'within the next hour' if stop_reliability != 'good to dock in': df_distances = load_distances() # Now find available bikes and docks in 5 nearby stations stop_near_ids, stop_near_names, stop_near_dist = nearby_stations(df_distances, stations, stop_station_id) stop_near_status = [find_realtime_status(df_station_status, ind_st)['num_docks_available'] for ind_st in stop_near_ids] # Now estimate the inflow based on historic data and current weather pred_stop = [make_prediction(current_weather, stations, station_name) for station_name in stop_near_names] reliab_stop = [] for i in range(len(pred_stop)): reliab_stop.append(station_reliability_stop(pred_stop[i], stop_near_status[i])) show2 = pd.DataFrame() show2['station'] = stop_near_names show2['Distance (m)'] = [round(x * 1000) for x in stop_near_dist] show2['Realtime Free Docks'] = stop_near_status show2['Reliability'] = reliab_stop#pred_stop st.write('Alternative Drop off Stations:', show2) map_data =
pd.concat([start_station[['lat', 'lon']], stop_station[['lat', 'lon']]])
pandas.concat
"""Preparation of a demo dataset for the study with synthetic constraints Script which saves one demo dataset in a format suitable for the synthetic-constraints pipeline. Usage: python -m cffs.synthetic_constraints.prepare_demo_dataset --help """ import argparse import pathlib import pandas as pd import sklearn.datasets from cffs.utilities import data_utility # Store a sklearn demo dataset as prediction-ready (X-y format) CSVs. def prepare_demo_dataset(data_dir: pathlib.Path) -> None: if not data_dir.is_dir(): print('Data directory does not exist. We create it.') data_dir.mkdir(parents=True) if len(data_utility.list_datasets(data_dir)) > 0: print('Data directory already contains prediction-ready datasets. ' + 'Files might be overwritten, but not deleted.') dataset = sklearn.datasets.load_boston() features = dataset['feature_names'] X =
pd.DataFrame(data=dataset['data'], columns=features)
pandas.DataFrame
import numpy as np import pandas as pd import xgboost as xgb from sklearn.base import BaseEstimator from sklearn.neighbors import BallTree class XGBSEBaseEstimator(BaseEstimator): """ Base class for all estimators in xgbse. Implements explainability through prototypes. """ def __init__(self): self.persist_train = False self.index_id = None self.tree = None self.bst = None def get_neighbors( self, query_data, index_data=None, query_id=None, index_id=None, n_neighbors=30 ): """ Search for portotypes (size: n_neighbors) for each unit in a dataframe X. If units array is specified, comparables will be returned using its identifiers. If not, a dataframe of comparables indexes for each sample in X is returned. Args: query_data (pd.DataFrame): Dataframe of features to be used as input query_id ([pd.Series, np.array]): Series or array of identification for each sample of query_data. Will be used in set_index if specified. index_id ([pd.Series, np.array]): Series or array of identification for each sample of index_id. If specified, comparables will be returned using this identifier. n_neighbors (int): Number of neighbors/comparables to be considered. Returns: comps_df (pd.DataFrame): A dataframe of comparables/neighbors for each evaluated sample. If units identifier is specified, the output dataframe is converted to use units the proper identifier for each sample. The reference sample is considered to be the index of the dataframe and its comparables are its specific row values. """ if index_data is None and not self.persist_train: raise ValueError("please specify the index_data") if index_id is None and not self.persist_train: index_id = index_data.index.copy() if query_id is None: query_id = query_data.index.copy() if self.persist_train: index_id = self.index_id index = self.tree else: index_matrix = xgb.DMatrix(index_data) index_leaves = self.bst.predict( index_matrix, pred_leaf=True, iteration_range=(0, self.bst.best_iteration + 1), ) if len(index_leaves.shape) == 1: index_leaves = index_leaves.reshape(-1, 1) index = BallTree(index_leaves, metric="hamming") query_matrix = xgb.DMatrix(query_data) query_leaves = self.bst.predict( query_matrix, pred_leaf=True, iteration_range=(0, self.bst.best_iteration + 1), ) if len(query_leaves.shape) == 1: query_leaves = query_leaves.reshape(-1, 1) compset = index.query(query_leaves, k=n_neighbors + 1, return_distance=False) map_to_id = np.vectorize(lambda x: index_id[x]) comparables = map_to_id(compset) comps_df =
pd.DataFrame(comparables[:, 1:])
pandas.DataFrame
import numpy as np from scipy.interpolate.interpolate import interp1d import matplotlib.pyplot as plt import os import fdasrsf as fs import pyBASS as pb #################################################################################################################################################################################### ## flyer plates def movingaverage(interval, window_size=3): window = np.ones(int(window_size))/float(window_size) return np.convolve(interval, window, 'same') ## read in sims - may be faster ways, but this is general def read_church_sims(path_sims): files_unsorted = os.listdir(path_sims) order = [int(str.split(ff, "_")[-1][0:4]) for ff in files_unsorted] # get first four characters after last underscore files = [x for _, x in sorted(zip(order, files_unsorted))] # sorted list of files nsims = len(files) files_full = [path_sims + '/' + files[i] for i in range(len(files))] dat_sims = [None] * nsims for i in range(nsims): with open(files_full[i]) as file: temp = file.readlines() dat_sims[i] = np.vstack([np.float_(str.split(temp[j], ',')) for j in range(2,len(temp))]) return dat_sims ## read in obs def read_church_obs(path_obs): with open(path_obs) as file: temp = file.readlines() char0 = [temp[i][0] for i in range(len(temp))] # get first character of each line start_line = np.where([(char0[i] != '#') for i in range(len(temp))])[0][0] + 1 # find first line of data (last line that starts with # plus 2) dat_obs = np.vstack([np.float_(str.split(temp[j], ',')) for j in range(start_line,len(temp))]) return dat_obs ## interpolate sims and obs to a grid, and possibly shift sims, smooth sims, scale obs def snap2it(time_range, dat_sims, dat_obs, ntimes=200, move_start=False, start_cutoff=1e-4, start_exclude=0, smooth_avg_sims = 1, obs_scale=1.): ## new grid of times #time_range = [0.0, 0.9] #ntimes = 200 time_grid = np.linspace(time_range[0], time_range[1], ntimes) nsims = len(dat_sims) if move_start: ## get jump off time for each sim (first time with smoothed vel > start_cutoff, excluding first start_exclude points), smoothed to make consistent with smoothing later #start_exclude = 200 #start_cutoff = 1e-4 sim_start_times = [0] * nsims for i in range(nsims): xx = movingaverage(dat_sims[i][:, 1], smooth_avg_sims) idx = np.where(xx[start_exclude:] > start_cutoff)[0][0] + start_exclude sim_start_times[i] = dat_sims[i][idx, 0] ## interpolate sims to be on new grid of times, and smooth sims_grid = np.empty([nsims, ntimes]) for i in range(nsims): ifunc = interp1d(dat_sims[i][:,0] - sim_start_times[i], movingaverage(dat_sims[i][:,1], smooth_avg_sims), kind = 'cubic') sims_grid[i, :] = ifunc(time_grid) ## interpolate obs to be on new grid of times, transform units, and possibly smooth ifunc = interp1d(dat_obs[:,0], movingaverage(dat_obs[:,1]/obs_scale, 1), kind = 'cubic', bounds_error=False, fill_value=0.) obs_grid = ifunc(time_grid) return {"sims": sims_grid, "obs": obs_grid, "time": time_grid} ## do warping def warp(grid_dat, lam=0.01): out = fs.fdawarp(grid_dat['sims'].T, grid_dat['time']) out.multiple_align_functions(grid_dat['sims'][0], parallel=True, lam=lam) #out.multiple_align_functions(obs_all_list[j], parallel=True, lam=.001) gam_sim = out.gam vv_sim = fs.geometry.gam_to_v(out.gam) ftilde_sim = out.fn out2 = fs.pairwise_align_functions(grid_dat['sims'][0], grid_dat['obs'], grid_dat['time'], lam=lam) #out2 = fs.pairwise_align_functions(obs_all_list[j], obs_all_list[j], xx_all_list[j], lam=.01) gam_obs = out2[1] vv_obs = fs.geometry.gam_to_v(out2[1]) ftilde_obs = out2[0] return {'gam_sim':gam_sim, 'vv_sim':vv_sim, 'ftilde_sim':ftilde_sim, 'gam_obs':gam_obs, 'vv_obs':vv_obs, 'ftilde_obs':ftilde_obs} path_sims = os.path.abspath('../../../Desktop/impala_data/Ti64.Flyer.NewAlpha/Ti64_Church2002_Manganin_591_612/Results/') path_obs = os.path.abspath('../../../git/impala/data/ti-6al-4v/Data/FlyerPlate/Church2002/Church2002_Fig2-300k-591m_s-12mm.csv') dat_sims = read_church_sims(path_sims) dat_obs = read_church_obs(path_obs) ## plot, shows time discrepancy, velocity unit differences for i in range(len(dat_sims)): plt.plot(dat_sims[i][:,0],dat_sims[i][:,1]) plt.plot(dat_obs[:,0], dat_obs[:,1]/100) plt.show() # put on same grid dat_grid = snap2it([0.0, 0.4], dat_sims, dat_obs, move_start=True, start_cutoff=1e-4, start_exclude=200, smooth_avg_sims = 3, obs_scale=100) plt.plot(dat_grid['time'], dat_grid['sims'].T) plt.plot(dat_grid['time'], dat_grid['obs'], color='black') plt.show() # warp dat_warp = warp(dat_grid, lam=.001) plt.plot(dat_warp['ftilde_sim'],'black') plt.plot(dat_warp['ftilde_sim'][:,0],'blue') plt.plot(dat_warp['ftilde_obs'],'red') plt.show() plt.plot(dat_warp['gam_sim']) plt.plot(dat_warp['gam_obs'],color='black') plt.show() plt.plot(dat_warp['vv_sim']) plt.plot(dat_warp['vv_obs'],color='black') plt.show() def emu(inputs, dat_warp, ntest=20): ho = np.random.choice(dat_warp['ftilde_sim'].shape[1], ntest, replace=False) Xtrain = np.delete(inputs, ho, axis=0) Xtest = inputs[ho] ftilde_train = np.delete(dat_warp['ftilde_sim'], ho, axis=1) ftilde_test = dat_warp['ftilde_sim'][:,ho] vv_train = np.delete(dat_warp['vv_sim'], ho, axis=1) vv_test = dat_warp['vv_sim'][:,ho] gam_train = np.delete(dat_warp['gam_sim'], ho, axis=1) gam_test = dat_warp['gam_sim'][:,ho] emu_ftilde = pb.bassPCA(Xtrain, ftilde_train.T, ncores=15, npc=15, nmcmc=50000, nburn=40000, thin=10) emu_vv = pb.bassPCA(Xtrain, vv_train.T, ncores=15, npc=9, nmcmc=50000, nburn=40000, thin=10) # emu_ftilde.plot() # emu_vv.plot() pred_ftilde = emu_ftilde.predict(Xtrain) predtest_ftilde = emu_ftilde.predict(Xtest) pred_vv = emu_vv.predict(Xtrain) pred_gam = fs.geometry.v_to_gam(pred_vv.mean(0).T) predtest_vv = emu_vv.predict(Xtest) predtest_gam = fs.geometry.v_to_gam(predtest_vv.mean(0).T) ftilde_resids = pred_ftilde.mean(0).T - ftilde_train ftilde_resids_test = predtest_ftilde.mean(0).T - ftilde_test gam_resids = pred_gam.mean(0).T - gam_train gam_resids_test = predtest_gam.mean(0).T - gam_test vv_resids = pred_vv.mean(0).T - vv_train vv_resids_test = predtest_vv.mean(0).T - vv_test return {'emu_ftilde':emu_ftilde, 'emu_vv':emu_vv, 'pred_ftilde':pred_ftilde, 'predtest_ftilde':predtest_ftilde, 'pred_vv':pred_vv, 'pred_gam':pred_gam, 'predtest_vv':predtest_vv, 'predtest_gam':predtest_gam, 'ftilde_resids':ftilde_resids, 'ftilde_resids_test':ftilde_resids_test, 'gam_resids':gam_resids, 'gam_resids_test':gam_resids_test, 'vv_resids':vv_resids, 'vv_resids_test':vv_resids_test} sim_inputs = np.genfromtxt('../../../Desktop/impala_data/Ti64.Flyer.NewAlpha/Ti64.design.ptw.1000.txt', skip_header=1) in2 = pb.normalize(sim_inputs, np.array([np.min(sim_inputs,0),np.max(sim_inputs,0)]).T) emus = emu(in2, dat_warp, 100) emus['emu_ftilde'].plot() emus['emu_vv'].plot() plt.plot(emus['ftilde_resids_test'],'r.') plt.plot(emus['ftilde_resids'],color='black') plt.show() plt.plot(emus['vv_resids_test'],'r.') plt.plot(emus['vv_resids'],'black') plt.show() ntest = 200 inputs = in2 ho = np.random.choice(dat_warp['ftilde_sim'].shape[1], ntest, replace=False) Xtrain = np.delete(inputs, ho, axis=0) Xtest = inputs[ho] ftilde_train = np.delete(dat_warp['ftilde_sim'], ho, axis=1) ftilde_test = dat_warp['ftilde_sim'][:,ho] vv_train = np.delete(dat_warp['vv_sim'], ho, axis=1) vv_test = dat_warp['vv_sim'][:,ho] gam_train = np.delete(dat_warp['gam_sim'], ho, axis=1) gam_test = dat_warp['gam_sim'][:,ho] emu_ftilde = pb.bassPCA(in2, dat_warp['ftilde_sim'].T, ncores=15, npc=15, nmcmc=50000, nburn=40000, thin=10) emu_ftilde.bm_list[0].plot() yy = emu_ftilde.newy[0] bmod = pb.bass(Xtrain,np.delete(yy, ho), nmcmc=50000, nburn=40000, thin=10) bmod.plot() plt.scatter(bmod.predict(Xtrain).mean(0), np.delete(yy, ho)) plt.show() plt.scatter(bmod.predict(Xtest).mean(0), yy[ho]) plt.show() bad = np.hstack((np.where(bmod.predict(Xtest).mean(0)>0.1)[0], np.where(bmod.predict(Xtest).mean(0)< -.07)[0])) plt.plot(ftilde_test,'black') plt.plot(ftilde_test[:,bad],'red') plt.show() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # this produces obs, sims, warped obs, warped sims, warping function obs, warping function sims, aligned emu, vv emu # model will need obs and emus...do I need to save the rest of this? If not, lets just dill the emus and obs (pretty sure you cant put them in sql table) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ######################################################################################################################## ## Taylor cylinder data def read_sims(path_sims): files_unsorted = os.listdir(path_sims) order = [int(str.split(ff, "_")[-1][0:4]) for ff in files_unsorted] # get first four characters after last underscore files = [x for _, x in sorted(zip(order, files_unsorted))] # sorted list of files nsims = len(files) files_full = [path_sims + '/' + files[i] for i in range(len(files))] dat_sims = [None] * nsims for i in range(nsims): with open(files_full[i]) as file: temp = file.readlines() dat_sims[i] = np.vstack([np.float_(str.split(temp[j], ',')) for j in range(2,len(temp))]) return dat_sims ## read in obs def read_obs(path_obs): with open(path_obs) as file: temp = file.readlines() char0 = [temp[i][0] for i in range(len(temp))] # get first character of each line start_line = np.where([(char0[i] != '#') for i in range(len(temp))])[0][0] + 1 # find first line of data (last line that starts with # plus 2) dat_obs = np.vstack([np.float_(str.split(temp[j], ',')) for j in range(start_line,len(temp))]) return dat_obs def snap2it(dat_sims, dat_obs, nt=200, mm=0): #time_range = [0.0, 0.9] #ntimes = 200 t_grid = np.linspace(0, 1, nt) nsims = len(dat_sims) height = [dat_sims[i][:, 1].max() for i in range(nsims)] ## interpolate sims to be on new grid of times, and smooth sims_grid = np.empty([nsims, nt]) for i in range(nsims): idx = np.where(dat_sims[i][:,0] > mm)[0] t_grid = np.linspace(dat_sims[i][idx,1][0], dat_sims[i][idx,1][-1], nt) ifunc = interp1d(dat_sims[i][idx,1], dat_sims[i][idx,0], kind = 'linear') sims_grid[i, :] = ifunc(t_grid) ## interpolate obs to be on new grid of times, transform units, and possibly smooth ifunc = interp1d(dat_obs[:,0], dat_obs[:,1], kind = 'linear', bounds_error=False, fill_value=0.) t_grid = np.linspace(dat_obs[0,0], dat_obs[-1,0], nt) obs_grid = ifunc(t_grid) obs_height = dat_obs[:,0].max() return {"sims": sims_grid, "obs": obs_grid, 'length_sims': height, 'length_obs': obs_height} def warp(grid_dat, t_grid = np.linspace(0, 1, 400), lam=0.01): out = fs.fdawarp(grid_dat['sims'].T, t_grid) out.multiple_align_functions(grid_dat['sims'][0], parallel=True, lam=lam) #out.multiple_align_functions(obs_all_list[j], parallel=True, lam=.001) gam_sim = out.gam vv_sim = fs.geometry.gam_to_v(out.gam) ftilde_sim = out.fn out2 = fs.pairwise_align_functions(grid_dat['sims'][0], grid_dat['obs'], t_grid, lam=lam) #out2 = fs.pairwise_align_functions(obs_all_list[j], obs_all_list[j], xx_all_list[j], lam=.01) gam_obs = out2[1] vv_obs = fs.geometry.gam_to_v(out2[1]) ftilde_obs = out2[0] return {'gam_sim':gam_sim, 'vv_sim':vv_sim, 'ftilde_sim':ftilde_sim, 'gam_obs':gam_obs, 'vv_obs':vv_obs, 'ftilde_obs':ftilde_obs} sim_inputs = np.genfromtxt('../../../Desktop/impala_data/Ti64.TaylorCyl.NewAlpha/Ti64.design.ptw.1000.txt', skip_header=1) path_sims = os.path.abspath('../../../Desktop/impala_data/Ti64.TaylorCyl.NewAlpha/taylor_mcd2007_fig4/Results/') path_obs = os.path.abspath('../../../git/impala/data/ti-6al-4v/Data/TaylorCyl/McDonald2007/McDonald2007_Fig4_Taylor.csv') path_sims = os.path.abspath('../../../Desktop/impala_data/Ti64.TaylorCyl.NewAlpha/taylor_mcd2007_fig5/Results/') path_obs = os.path.abspath('../../../git/impala/data/ti-6al-4v/Data/TaylorCyl/McDonald2007/McDonald2007_Fig5_Taylor.csv') dat_sims = read_sims(path_sims) dat_obs = read_obs(path_obs)/10 for i in range(len(dat_sims)): plt.plot(dat_sims[i][:,0], dat_sims[i][:,1],'grey') plt.plot(dat_obs[:,1], dat_obs[:,0],'black') plt.show() dat_snap = snap2it(dat_sims, dat_obs, 400, mm = dat_obs[-1,1]) plt.plot(dat_snap['sims'].T) plt.show() #dat_warp = warp(dat_prep) #plt.plot(dat_warp['ftilde_sim']) #plt.show() files_unsorted = os.listdir(path_sims) run = [int(str.split(ff, "_")[-1][0:4]) for ff in files_unsorted] inputs = sim_inputs[np.sort(run)-1,:] # exclude failed runs ntest = 20 ho = np.random.choice(len(run), ntest, replace=False) Xtrain = np.delete(inputs, ho, axis=0) Xtest = inputs[ho] mod_length = pb.bass(Xtrain, np.delete(dat_snap['length_sims'], ho)) mod_length.plot() plt.scatter(mod_length.predict(Xtest).mean(0), np.array(dat_snap['length_sims'])[ho]) pb.abline(1,0) plt.show() mod_profile = pb.bassPCA(Xtrain, np.delete(dat_snap['sims'], ho, axis=0), npc=15, ncores=10) mod_profile.plot() pred_train = mod_profile.predict(Xtrain) pred_test = mod_profile.predict(Xtest) plt.plot(pred_train.mean(0).T - np.delete(dat_snap['sims'], ho, axis=0).T,'black') plt.plot(pred_test.mean(0).T - dat_snap['sims'][ho].T,'red') plt.show() plt.scatter(mod_profile.predict(Xtest).mean(0), np.array(dat_snap['sims'])[ho]) pb.abline(1,0) plt.show() ########################## path_sims = os.path.abspath('../../../Desktop/impala_data/Ti64.TaylorCyl.NewAlpha/taylor_yu2011_T4/Results/') dat_sims = read_sims(path_sims) for i in range(len(dat_sims)): plt.plot(dat_sims[i][:,0],dat_sims[i][:,1]) plt.show() length_sims = np.array([max(dat_sims[i][:,1]) for i in range(len(dat_sims))]) files_unsorted = os.listdir(path_sims) run = [int(str.split(ff, "_")[-1][0:4]) for ff in files_unsorted] inputs = sim_inputs[np.sort(run)-1,:] # exclude failed runs ntest = 20 ho = np.random.choice(len(run), ntest, replace=False) Xtrain = np.delete(inputs, ho, axis=0) Xtest = inputs[ho] mod_length = pb.bass(Xtrain, np.delete(length_sims, ho)) mod_length.plot() plt.scatter(mod_length.predict(Xtest).mean(0), length_sims[ho]) pb.abline(1,0) plt.show() # Test | Deformed length (y-coordinate, cm) # Yu2011_T1 | 2.4493 # Yu2011_T2 | 2.4095 # Yu2011_T3 | 2.3901 # Yu2011_T4 | 2.3702 ############################################################################################################################## def add_tc(path_sims, path_obs, xps): dat_sims = read_sims(path_sims) dat_obs = read_obs(path_obs)/10 dat_snap = snap2it(dat_sims, dat_obs, 400, mm = dat_obs[-1,1]) files_unsorted = os.listdir(path_sims) run = [int(str.split(ff, "_")[-1][0:4]) for ff in files_unsorted] inputs = pd.DataFrame(sim_inputs[np.sort(run)-1,:]) # exclude failed runs xps.append({'obs': pd.DataFrame(np.array(dat_snap['length_obs']).reshape([1,1])), 'sim_inputs': inputs, 'sim_outputs': pd.DataFrame(dat_snap['length_sims']), 'fname': path_sims}) xps.append({'obs': pd.DataFrame(dat_snap['obs']), 'sim_inputs': inputs, 'sim_outputs': pd.DataFrame(dat_snap['sims']), 'fname': path_sims}) #return xps def add_tc_length(path_sims, obs, xps): dat_sims = read_sims(path_sims) length_sims = np.array([max(dat_sims[i][:,1]) for i in range(len(dat_sims))]) files_unsorted = os.listdir(path_sims) run = [int(str.split(ff, "_")[-1][0:4]) for ff in files_unsorted] inputs = sim_inputs[np.sort(run)-1,:] # exclude failed runs xps.append({'obs': pd.DataFrame(np.array(obs).reshape([1,1])), 'sim_inputs':
pd.DataFrame(inputs)
pandas.DataFrame
import numpy as np import pytest from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.core.dtypes.dtypes import PeriodDtype import pandas as pd from pandas import Index, Period, PeriodIndex, Series, date_range, offsets, period_range import pandas.core.indexes.period as period import pandas.util.testing as tm class TestPeriodIndex: def setup_method(self, method): pass def test_construction_base_constructor(self): # GH 13664 arr = [pd.Period("2011-01", freq="M"), pd.NaT, pd.Period("2011-03", freq="M")] tm.assert_index_equal(pd.Index(arr), pd.PeriodIndex(arr)) tm.assert_index_equal(pd.Index(np.array(arr)), pd.PeriodIndex(np.array(arr))) arr = [np.nan, pd.NaT, pd.Period("2011-03", freq="M")] tm.assert_index_equal(pd.Index(arr), pd.PeriodIndex(arr)) tm.assert_index_equal(pd.Index(np.array(arr)), pd.PeriodIndex(np.array(arr))) arr = [pd.Period("2011-01", freq="M"), pd.NaT, pd.Period("2011-03", freq="D")] tm.assert_index_equal(pd.Index(arr), pd.Index(arr, dtype=object)) tm.assert_index_equal( pd.Index(np.array(arr)), pd.Index(np.array(arr), dtype=object) ) def test_constructor_use_start_freq(self): # GH #1118 p = Period("4/2/2012", freq="B") with tm.assert_produces_warning(FutureWarning): index = PeriodIndex(start=p, periods=10) expected = period_range(start="4/2/2012", periods=10, freq="B") tm.assert_index_equal(index, expected) index = period_range(start=p, periods=10) tm.assert_index_equal(index, expected) def test_constructor_field_arrays(self): # GH #1264 years = np.arange(1990, 2010).repeat(4)[2:-2] quarters = np.tile(np.arange(1, 5), 20)[2:-2] index = PeriodIndex(year=years, quarter=quarters, freq="Q-DEC") expected = period_range("1990Q3", "2009Q2", freq="Q-DEC") tm.assert_index_equal(index, expected) index2 = PeriodIndex(year=years, quarter=quarters, freq="2Q-DEC") tm.assert_numpy_array_equal(index.asi8, index2.asi8) index = PeriodIndex(year=years, quarter=quarters) tm.assert_index_equal(index, expected) years = [2007, 2007, 2007] months = [1, 2] msg = "Mismatched Period array lengths" with pytest.raises(ValueError, match=msg): PeriodIndex(year=years, month=months, freq="M") with pytest.raises(ValueError, match=msg): PeriodIndex(year=years, month=months, freq="2M") msg = "Can either instantiate from fields or endpoints, but not both" with pytest.raises(ValueError, match=msg): PeriodIndex( year=years, month=months, freq="M", start=Period("2007-01", freq="M") ) years = [2007, 2007, 2007] months = [1, 2, 3] idx = PeriodIndex(year=years, month=months, freq="M") exp = period_range("2007-01", periods=3, freq="M") tm.assert_index_equal(idx, exp) def test_constructor_U(self): # U was used as undefined period with pytest.raises(ValueError, match="Invalid frequency: X"): period_range("2007-1-1", periods=500, freq="X") def test_constructor_nano(self): idx = period_range( start=Period(ordinal=1, freq="N"), end=Period(ordinal=4, freq="N"), freq="N" ) exp = PeriodIndex( [ Period(ordinal=1, freq="N"), Period(ordinal=2, freq="N"), Period(ordinal=3, freq="N"), Period(ordinal=4, freq="N"), ], freq="N", ) tm.assert_index_equal(idx, exp) def test_constructor_arrays_negative_year(self): years = np.arange(1960, 2000, dtype=np.int64).repeat(4) quarters = np.tile(np.array([1, 2, 3, 4], dtype=np.int64), 40) pindex = PeriodIndex(year=years, quarter=quarters) tm.assert_index_equal(pindex.year, pd.Index(years)) tm.assert_index_equal(pindex.quarter, pd.Index(quarters)) def test_constructor_invalid_quarters(self): msg = "Quarter must be 1 <= q <= 4" with pytest.raises(ValueError, match=msg): PeriodIndex(year=range(2000, 2004), quarter=list(range(4)), freq="Q-DEC") def test_constructor_corner(self): msg = "Not enough parameters to construct Period range" with pytest.raises(ValueError, match=msg): PeriodIndex(periods=10, freq="A") start = Period("2007", freq="A-JUN") end = Period("2010", freq="A-DEC") msg = "start and end must have same freq" with pytest.raises(ValueError, match=msg): PeriodIndex(start=start, end=end) msg = ( "Of the three parameters: start, end, and periods, exactly two" " must be specified" ) with pytest.raises(ValueError, match=msg): PeriodIndex(start=start) with pytest.raises(ValueError, match=msg): PeriodIndex(end=end) result = period_range("2007-01", periods=10.5, freq="M") exp = period_range("2007-01", periods=10, freq="M") tm.assert_index_equal(result, exp) def test_constructor_fromarraylike(self): idx =
period_range("2007-01", periods=20, freq="M")
pandas.period_range
import tkinter as tk import pandas as pd import numpy as np from sklearn import tree from sklearn.tree import DecisionTreeClassifier # Import Decision Tree Classifier from sklearn.model_selection import train_test_split # Import train_test_split function from sklearn import metrics #Import scikit-learn metrics module for accuracy calculation import csv import ipython_genutils as ip import matplotlib as mpl from matplotlib import pyplot as plt import seaborn as sns import warnings from collections import Counter import datetime import wordcloud import program as p1 import program2 as p2 PLOT_COLORS = ["#268bd2", "#0052CC", "#FF5722", "#b58900", "#003f5c"] pd.options.display.float_format = '{:.2f}'.format sns.set(style="ticks") plt.rc('figure', figsize=(8, 5), dpi=100) plt.rc('axes', labelpad=20, facecolor="#ffffff", linewidth=0.4, grid=True, labelsize=14) plt.rc('patch', linewidth=0) plt.rc('xtick.major', width=0.2) plt.rc('ytick.major', width=0.2) plt.rc('grid', color='#9E9E9E', linewidth=0.4) plt.rc('font', family='Arial', weight='400', size=10) plt.rc('text', color='#282828') plt.rc('savefig', pad_inches=0.3, dpi=300) #process Decision tree df = pd.read_csv(r"./TrendingJoTrending.csv", header=None) df[0] = pd.to_numeric(df[0], errors='coerce') df = df.replace(np.nan, 0, regex=True) df[1] = pd.to_numeric(df[1], errors='coerce') df = df.replace(np.nan, 1, regex=True) df[2] =
pd.to_numeric(df[2], errors='coerce')
pandas.to_numeric
from svd.path_config import build_localized_explanations_path, build_figure_perturbation_path from svd.utils.io import pickle_load from svd.explanations.explanation_utils import THRESHOLD import matplotlib.pyplot as plt import seaborn as sns sns.set_theme(style="whitegrid") import pandas as pd import numpy as np from argparse import ArgumentParser font = {'size': 22} plt.rc('font', **font) if __name__ == '__main__': # This script is used to create Figure 3 of the paper. parser = ArgumentParser() parser.add_argument("--attack_type", required=True, choices=["wave", "spec"]) parser.add_argument("--subset", required=True, choices=["valid", "test"]) parser.add_argument("--baseline", default="min", choices=["min", "zero", "mean"]) parser.add_argument("--target", required=True, type=int, choices=[0, 1]) parser.add_argument("--cumulative", action='store_true', default=False) args = parser.parse_args() first_layer = "0mean" attack_type = args.attack_type subset = args.subset baseline = args.baseline target = args.target cumulative = args.cumulative model_name = 'model_log_{}'.format(first_layer) predictions = { 1: [], 3: [], 5: [] } components_collected_k = {} for k in [1, 3, 5]: storage_path = build_localized_explanations_path(model_name, baseline, attack_type, target, subset, k) components_collected_k[k] = pickle_load(storage_path) predictions[k] = pickle_load(storage_path.replace("components_localized_", "predictions_localized_")) print(components_collected_k[5][0]) print(components_collected_k[3][0]) components_aggregated = { 1: [], 3: [], 5: [] } for k in [1, 3, 5]: components_current_k = components_collected_k[k] for comp_row in components_current_k: explanation_indeces = comp_row[1] if target == 0: explanation_indeces = explanation_indeces[::-1] explained_weights = [w[0] for w in explanation_indeces[:k]] components_aggregated[k].append(len(set(comp_row[0]).intersection(explained_weights))) df_ = pd.concat([pd.DataFrame({"components": components_aggregated[1], "predictions": predictions[1], "k": 1}),
pd.DataFrame({"components": components_aggregated[3], "predictions": predictions[3], "k": 3})
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # Diff DFs # Compute various diffs between two Pandas DataFrames # # See [examples](#examples) / [usage](#diff) below. # In[1]: from IPython.display import HTML from numpy import nan from pandas import concat, Index, IndexSlice as idx, isna, MultiIndex from re import sub def neq(l, r): return l!=r and not (isna(l) and
isna(r)
pandas.isna
''' Feature Engineering and model training ''' import pickle import pandas as pd import numpy as np from sklearn.decomposition import NMF from sklearn.impute import KNNImputer links = pd.DataFrame(pd.read_csv('links.csv')) movies_ = pd.DataFrame(pd.read_csv('movies.csv')) ratings = pd.DataFrame(pd.read_csv('ratings.csv')) tags = pd.DataFrame(pd.read_csv('tags.csv')) # Take columns from movies into links links['title'] = movies_['title'] links['genres'] = movies_['genres'] # Set Indexes links.set_index('movieId', inplace=True) ratings.set_index(['movieId', 'userId'], inplace=True) tags.set_index(['movieId', 'userId'], inplace=True) # Merge links, ratings and tags into "df" links_ratings = pd.merge(left=links, right=ratings, left_index=True, right_index=True) df =
pd.merge(left=links_ratings, right=tags, how='left', left_on=['movieId', 'userId'], right_on=['movieId', 'userId'])
pandas.merge
from sklearn.datasets import load_breast_cancer, fetch_california_housing import pandas as pd import numpy as np import pickle import os import collections from sklearn.model_selection import StratifiedShuffleSplit, ShuffleSplit def handle_categorical_feat(X_df): ''' It moves the categorical features to the last ''' original_columns = [] one_hot_columns = [] for col_name, dtype in zip(X_df.dtypes.index, X_df.dtypes): if dtype == object: one_hot_columns.append(col_name) else: original_columns.append(col_name) X_df = X_df[original_columns + one_hot_columns] return X_df, one_hot_columns def load_breast_data(): breast = load_breast_cancer() feature_names = list(breast.feature_names) X, y = pd.DataFrame(breast.data, columns=feature_names), pd.Series(breast.target) dataset = { 'problem': 'classification', 'full': { 'X': X, 'y': y, }, 'd_name': 'breast', 'search_lam': np.logspace(-1, 2.5, 15), } return dataset def load_adult_data(): # https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data df = pd.read_csv("./datasets/adult.data", header=None) df.columns = [ "Age", "WorkClass", "fnlwgt", "Education", "EducationNum", "MaritalStatus", "Occupation", "Relationship", "Race", "Gender", "CapitalGain", "CapitalLoss", "HoursPerWeek", "NativeCountry", "Income" ] train_cols = df.columns[0:-1] label = df.columns[-1] X_df = df[train_cols].copy() # X_df = pd.get_dummies(X_df) X_df, onehot_columns = handle_categorical_feat(X_df) y_df = df[label].copy() # Make it as 0 or 1 y_df.loc[y_df == ' >50K'] = 1. y_df.loc[y_df == ' <=50K'] = 0. y_df = y_df.astype(int) dataset = { 'problem': 'classification', 'full': { 'X': X_df, 'y': y_df, }, 'd_name': 'adult', 'search_lam': np.logspace(-2, 2, 15), 'n_splines': 50, 'onehot_columns': onehot_columns, } return dataset def load_credit_data(): # https://www.kaggle.com/mlg-ulb/creditcardfraud df = pd.read_csv(r'./datasets/creditcard.csv') train_cols = df.columns[0:-1] label = df.columns[-1] X_df = df[train_cols] y_df = df[label] dataset = { 'problem': 'classification', 'full': { 'X': X_df, 'y': y_df, }, 'd_name': 'credit', 'search_lam': np.logspace(-0.5, 2.5, 8), } return dataset def load_churn_data(): # https://www.kaggle.com/blastchar/telco-customer-churn/downloads/WA_Fn-UseC_-Telco-Customer-Churn.csv/1 df = pd.read_csv(r'./datasets/WA_Fn-UseC_-Telco-Customer-Churn.csv') train_cols = df.columns[1:-1] # First column is an ID label = df.columns[-1] X_df = df[train_cols].copy() # Handle special case of TotalCharges wronly assinged as object X_df['TotalCharges'][X_df['TotalCharges'] == ' '] = 0. X_df.loc[:, 'TotalCharges'] = pd.to_numeric(X_df['TotalCharges']) # X_df = pd.get_dummies(X_df) X_df, onehot_columns = handle_categorical_feat(X_df) y_df = df[label].copy() # 'Yes, No' # Make it as 0 or 1 y_df[y_df == 'Yes'] = 1. y_df[y_df == 'No'] = 0. y_df = y_df.astype(int) dataset = { 'problem': 'classification', 'full': { 'X': X_df, 'y': y_df, }, 'd_name': 'churn', 'search_lam': np.logspace(0, 3, 15), 'onehot_columns': onehot_columns, } return dataset def load_pneumonia_data(folder='/media/intdisk/medical/RaniHasPneumonia/'): featurename_file = os.path.join(folder, 'featureNames.txt') col_names = pd.read_csv(featurename_file, delimiter='\t', header=None, index_col=0).iloc[:, 0].values def read_data(file_path='pneumonia/RaniHasPneumonia/medis9847c.data'): df = pd.read_csv(file_path, delimiter='\t', header=None) df = df.iloc[:, :-1] # Remove the last empty wierd column df.columns = col_names return df df_train = read_data(os.path.join(folder, 'medis9847c.data')) df_test = read_data(os.path.join(folder, 'medis9847c.test')) df = pd.concat([df_train, df_test], axis=0).reset_index(drop=True) X_df = df.iloc[:, :-1] y_df = df.iloc[:, -1] dataset = { 'problem': 'classification', 'full': { 'X': X_df, 'y': y_df, }, 'test_size': 4352 / 14199, 'd_name': 'pneumonia', 'search_lam': np.logspace(0, 3, 15), } return dataset def load_heart_data(): # https://www.kaggle.com/sonumj/heart-disease-dataset-from-uci df = pd.read_csv('./datasets/HeartDisease.csv') label = df.columns[-2] train_cols = list(df.columns[1:-2]) + [df.columns[-1]] X_df = df[train_cols] y_df = df[label] # X_df = pd.get_dummies(X_df) X_df, onehot_columns = handle_categorical_feat(X_df) # Impute the missingness as 0 X_df = X_df.apply(lambda col: col if col.dtype == object else col.fillna(0.), axis=0) dataset = { 'problem': 'classification', 'full': { 'X': X_df, 'y': y_df, }, 'd_name': 'heart', 'search_lam': np.logspace(0, 3, 15), 'onehot_columns': onehot_columns, } return dataset def load_mimiciii_data(): df_adult = pd.read_csv('./datasets/adult_icu.gz', compression='gzip') train_cols = [ 'age', 'first_hosp_stay', 'first_icu_stay', 'adult_icu', 'eth_asian', 'eth_black', 'eth_hispanic', 'eth_other', 'eth_white', 'admType_ELECTIVE', 'admType_EMERGENCY', 'admType_NEWBORN', 'admType_URGENT', 'heartrate_min', 'heartrate_max', 'heartrate_mean', 'sysbp_min', 'sysbp_max', 'sysbp_mean', 'diasbp_min', 'diasbp_max', 'diasbp_mean', 'meanbp_min', 'meanbp_max', 'meanbp_mean', 'resprate_min', 'resprate_max', 'resprate_mean', 'tempc_min', 'tempc_max', 'tempc_mean', 'spo2_min', 'spo2_max', 'spo2_mean', 'glucose_min', 'glucose_max', 'glucose_mean', 'aniongap', 'albumin', 'bicarbonate', 'bilirubin', 'creatinine', 'chloride', 'glucose', 'hematocrit', 'hemoglobin', 'lactate', 'magnesium', 'phosphate', 'platelet', 'potassium', 'ptt', 'inr', 'pt', 'sodium', 'bun', 'wbc'] label = 'mort_icu' X_df = df_adult[train_cols] y_df = df_adult[label] dataset = { 'problem': 'classification', 'full': { 'X': X_df, 'y': y_df, }, 'd_name': 'mimiciii', 'search_lam': np.logspace(0, 3, 15), } return dataset def load_mimicii_data(): cols = ['Age', 'GCS', 'SBP', 'HR', 'Temperature', 'PFratio', 'Renal', 'Urea', 'WBC', 'CO2', 'Na', 'K', 'Bilirubin', 'AdmissionType', 'AIDS', 'MetastaticCancer', 'Lymphoma', 'HospitalMortality'] table = pd.read_csv('./datasets/mimic2.data', delimiter=' ', header=None) table.columns = cols X_df = table.iloc[:, :-1] y_df = table.iloc[:, -1] dataset = { 'problem': 'classification', 'full': { 'X': X_df, 'y': y_df, }, 'd_name': 'mimicii', 'search_lam': np.logspace(-2, 3.5, 15), } return dataset def load_diabetes2_data(load_cache=False): cache_dataset_path = './datasets/diabetes_cache.pkl' if load_cache and os.path.exists(cache_dataset_path): print('Find the diabetes dataset. Load from cache.') with open(cache_dataset_path, 'rb') as fp: dataset = pickle.load(fp) return dataset df = pd.read_csv('./datasets/dataset_diabetes/diabetic_data.csv') x_cols = df.columns[2:-1] y_col = df.columns[-1] X_df = df[x_cols].copy() y_df = df[y_col].copy() y_df.loc[(y_df == 'NO') | (y_df == '>30')] = 0 y_df.loc[y_df == '<30'] = 1 # is_false = (y_df == 'NO') # y_df.loc[is_false] = 0 # y_df.loc[~is_false] = 1 y_df = y_df.astype(int) # Preprocess X X_df.loc[:, 'age'] = X_df.age.apply(lambda s: (int(s[1:s.index('-')]) + int(s[(s.index('-') + 1):-1])) / 2).astype(int) X_df.loc[:, 'weight'] = X_df.weight.apply(lambda s: 0. if s == '?' else ((float(s[1:s.index('-')]) + float(s[(s.index('-') + 1):-1])) / 2 if '-' in s else float(s[1:]))) X_df.loc[:, 'admission_source_id'] = X_df.admission_source_id.astype('object') X_df.loc[:, 'admission_type_id'] = X_df.admission_type_id.astype('object') X_df.loc[:, 'discharge_disposition_id'] = X_df.discharge_disposition_id.astype('object') X_df.loc[:, 'change'] = X_df.change.apply(lambda s: 0 if s == 'No' else 1).astype(np.uint8) X_df.loc[:, 'diabetesMed'] = X_df.diabetesMed.apply(lambda s: 0 if s == 'No' else 1).astype(np.uint8) X_df.loc[:, 'metformin-pioglitazone'] = X_df['metformin-pioglitazone'].apply(lambda s: 0 if s == 'No' else 1).astype(np.uint8) X_df.loc[:, 'metformin-rosiglitazone'] = X_df['metformin-rosiglitazone'].apply(lambda s: 0 if s == 'No' else 1).astype(np.uint8) X_df.loc[:, 'glipizide-metformin'] = X_df['glipizide-metformin'].apply(lambda s: 0 if s == 'No' else 1).astype(np.uint8) X_df.loc[:, 'troglitazone'] = X_df['troglitazone'].apply(lambda s: 0 if s == 'No' else 1).astype(np.uint8) X_df.loc[:, 'tolbutamide'] = X_df['tolbutamide'].apply(lambda s: 0 if s == 'No' else 1).astype(np.uint8) X_df.loc[:, 'acetohexamide'] = X_df['acetohexamide'].apply(lambda s: 0 if s == 'No' else 1).astype(np.uint8) X_df = X_df.drop(['citoglipton', 'examide'], axis=1) # Only have NO in the data # diag_combined = X_df.apply(lambda x: set( # [x.diag_1 for i in range(1) if x.diag_1 != '?'] + [x.diag_2 for i in range(1) if x.diag_2 != '?'] + [x.diag_3 for i in range(1) if x.diag_3 != '?'] # ), axis=1) # diag_combined = diag_combined.apply(collections.Counter) # diag_multihot_encode = pd.DataFrame.from_records(diag_combined).fillna(value=0).astype(np.uint8) # diag_multihot_encode.columns = ['diag_%s' % str(c) for c in diag_multihot_encode.columns] X_df = X_df.drop(['diag_1', 'diag_2', 'diag_3'], axis=1) # X_df = pd.concat([X_df, diag_multihot_encode], axis=1) # X_df = pd.get_dummies(X_df) X_df, onehot_columns = handle_categorical_feat(X_df) dataset = { 'problem': 'classification', 'full': { 'X': X_df, 'y': y_df, }, 'd_name': 'diabetes2', 'search_lam': np.logspace(-3, 2, 8), 'n_splines': 50, 'onehot_columns': onehot_columns, } with open(cache_dataset_path, 'wb') as op: pickle.dump(dataset, op) return dataset def load_TCGA_data(test_split=0.33, n_splits=20, cosmic=True, random_state=1377, **kwargs): np.random.seed(random_state) filename = 'pancancer_cosmic.npz' if cosmic else 'pancancer_parsed.npz' x = np.load('datasets/TCGA/%s' % filename)['arr_0'] # log transform x_df = pd.DataFrame(np.log10(x + 1)) # append the column name transcript_names_path = 'transcript_names_cosmic' if cosmic else 'transcript_names' x_df.columns = np.load('datasets/TCGA/%s.npy' % transcript_names_path) # remove the columns with std as 0 x_df = x_df.loc[:, (x.std(axis=0) > 0.)] covars = pd.read_csv('datasets/TCGA/potential_covariates.tsv', delimiter='\t') covars['label'] = np.logical_or(covars[['sample_type']] == 'Primary Blood Derived Cancer - Peripheral Blood', np.logical_or(covars[['sample_type']] == 'Additional Metastatic', np.logical_or(covars[['sample_type']] == 'Recurrent Tumor', np.logical_or(covars[['sample_type']] == 'Additional - New Primary', np.logical_or(covars[['sample_type']] == 'Metastatic', covars[['sample_type']] == 'Primary Tumor'))))) stratify_lookup = covars.groupby('submitter_id').label.apply(lambda x: len(x)) covars['stratify'] = covars.submitter_id.apply(lambda x: stratify_lookup[x]) covars = covars[['submitter_id', 'label', 'stratify']] covars['patient_idxes'] = list(range(covars.shape[0])) def group_shuffle_split(): for _ in range(n_splits): train_lookups = [] for num_record, df2 in covars.groupby('stratify'): train_lookup = df2.groupby('submitter_id').apply(lambda x: True) # randomly change them to be 0 all_idxes = np.arange(len(train_lookup)) np.random.shuffle(all_idxes) is_test_idxes = all_idxes[:int(len(train_lookup) * test_split)] train_lookup[is_test_idxes] = False train_lookups.append(train_lookup) train_lookups = pd.concat(train_lookups) covars['is_train'] = covars.submitter_id.apply(lambda x: train_lookups[x]) train_idxes = covars.patient_idxes[covars.is_train].values test_idxes = covars.patient_idxes[~covars.is_train].values yield train_idxes, test_idxes y = covars['label'].astype(float) stratify = covars['stratify'] dataset = { 'problem': 'classification', 'full': { 'X': x_df, 'y': y, 'ss': group_shuffle_split(), }, 'd_name': 'TCGA-cosmic' if cosmic else 'TCGA-full', } return dataset def load_support2cls2_data(): # http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets df = pd.read_csv('./datasets/support2/support2.csv') one_hot_encode_cols = ['sex', 'dzclass', 'race' , 'ca', 'income'] target_variables = ['hospdead'] remove_features = ['death', 'slos', 'd.time', 'dzgroup', 'charges', 'totcst', 'totmcst', 'aps', 'sps', 'surv2m', 'surv6m', 'prg2m', 'prg6m', 'dnr', 'dnrday', 'avtisst', 'sfdm2'] df = df.drop(remove_features, axis=1) rest_colmns = [c for c in df.columns if c not in (one_hot_encode_cols + target_variables)] # Impute the missing values for 0. df[rest_colmns] = df[rest_colmns].fillna(0.) # df = pd.get_dummies(df) df, onehot_columns = handle_categorical_feat(df) df['income'][df['income'].isna()] = 'NaN' df['income'][df['income'] == 'under $11k'] = ' <$11k' df['race'][df['race'].isna()] = 'NaN' X_df = df.drop(target_variables, axis=1) y_df = df[target_variables[0]] dataset = { 'problem': 'classification', 'full': { 'X': X_df, 'y': y_df, }, 'd_name': 'support2cls2', 'search_lam': np.logspace(1.5, 4, 15), 'onehot_columns': onehot_columns, } return dataset def load_onlinenewscls_data(): dataset = load_onlinenews_data() y_df = dataset['full']['y'] y_df[y_df < 1400] = 0 y_df[y_df >= 1400] = 1 X_df = dataset['full']['X'] dataset = { 'problem': 'classification', 'full': { 'X': X_df, 'y': y_df, }, 'd_name': 'onlinenewscls', 'search_lam': np.logspace(0, 4, 15), } return dataset def load_compass_data(): df = pd.read_csv('./datasets/recid.csv', delimiter=',') target_variables = ['two_year_recid'] # df = pd.get_dummies(df, prefix=one_hot_encode_cols) df, onehot_columns = handle_categorical_feat(df) X_df = df.drop(target_variables, axis=1) # X_df = X_df.astype('float64') y_df = df[target_variables[0]] dataset = { 'problem': 'classification', 'full': { 'X': X_df, 'y': y_df, }, 'd_name': 'compass', 'onehot_columns': onehot_columns, } return dataset def load_compas2_data(): df = pd.read_csv('./datasets/recid_score.csv', delimiter=',') target_variables = ['decile_score'] # df = pd.get_dummies(df, prefix=one_hot_encode_cols) df, onehot_columns = handle_categorical_feat(df) X_df = df.drop(target_variables, axis=1) y_df = df[target_variables[0]] dataset = { 'problem': 'regression', 'full': { 'X': X_df, 'y': y_df, }, 'd_name': 'compas2', 'onehot_columns': onehot_columns, } return dataset def load_gcredit_data(): ''' Load German Credit dataset ''' df = pd.read_csv('./datasets/german_credit/credit.data', delimiter='\t', header=None) df.columns = [ 'checking_balance', 'months_loan_duration', 'credit_history', 'purpose', 'amount', 'savings_balance', 'employment_length', 'installment_rate', 'personal_status', 'other_debtors', 'residence_history', 'property', 'age', 'installment_plan', 'housing', 'existing_credits', 'dependents', 'telephone', 'foreign_worker', 'job', 'class'] target_variables = ['class'] # df, onehot_columns = handle_categorical_feat(df) X_df = df.drop(target_variables, axis=1) y_df = df[target_variables[0]] dataset = { 'problem': 'classification', 'full': { 'X': X_df, 'y': y_df, }, 'd_name': 'gcredit', } return dataset ''' =================== Regression Datasets ==================== ''' def load_bikeshare_data(): df = pd.read_csv('./datasets/bikeshare/hour.csv').set_index('instant') train_cols = ['season', 'yr', 'mnth', 'hr', 'holiday', 'weekday', 'workingday', 'weathersit', 'temp', 'atemp', 'hum', 'windspeed'] label = 'cnt' X_df = df[train_cols] y_df = df[label] dataset = { 'problem': 'regression', 'full': { 'X': X_df, 'y': y_df, }, 'd_name': 'bikeshare', 'search_lam': np.logspace(-0.5, 2, 15), } return dataset def load_calhousing_data(): X, y = fetch_california_housing(data_home='./datasets/', download_if_missing=True, return_X_y=True) columns = ['MedInc', 'HouseAge', 'AveRooms', 'AveBedrms', 'Population', 'AveOccup', 'Latitude', 'Longitude'] dataset = { 'problem': 'regression', 'full': { 'X': pd.DataFrame(X, columns=columns), 'y':
pd.Series(y)
pandas.Series
''' Pull movie metadata from `The Open Movie Database` API for films that were scraped from `The Numbers` website ''' import time import json import requests import pandas as pd from src.my_aws import S3 KEY_OMDB = 'OMDB_API.csv' KEY_NUM = 'TheNumbers_budgets.csv' BUCKET = 'movie-torrents' class OMDBApi(): ''' Pull movie metadata from `The Open Movie Database` API for films that were scraped from `The Numbers` website ''' def __init__(self): ''' Get an S3 connection object, set website base address, and get the numbers data to create the query parameters ''' self.s3_connect = S3() self.base_address = 'http://www.omdbapi.com' self.the_numbers_data = self.get_thenumbers_data() self.query_params = self.get_query_params() self.api_data = None def get_thenumbers_data(self): ''' Pull down movie data previously scraped from `The Numbers` website from S3 storage Args: none Returns: pd.dataframe: Dataframe of data from `The Numbers` website ''' the_numbers_data = self.s3_connect.get_data(KEY_NUM, BUCKET) return the_numbers_data def get_query_params(self): ''' Create a list of query tuple parameters to be used for querying the OMDB API Args: none Returns: List(tuples): List of query value tuples for ODMB API ''' numbers_title = self.the_numbers_data['title'] numbers_year = [year[:4] for year in self.the_numbers_data['release_date']] query_params = [(title, year) for title, year in zip(numbers_title, numbers_year)] return query_params def get_omdb_metadata(self, omdb_api_key): ''' Poll OMDB API to get metadata for the movie title and year provided from the scraped `The Numbers` data Args: omdb_api_key (str): API key required to use OMDB API Returns: pd.dataframe: Pandas dataframe of data with OMDB metadata appended ''' polled_records = [] for title, year in self.query_params: time.sleep(0.5) payload = {'t': title, 'y': year, 'apikey': omdb_api_key} html = requests.get(self.base_address, params=payload) resp = json.loads(html.text) if html.status_code != 200 or 'Error' in resp.keys(): continue html_text = html.text html_json = json.loads(html_text) polled_records.append(html_json) api_data =
pd.DataFrame.from_dict(polled_records, orient='columns')
pandas.DataFrame.from_dict
#!/opt/conda/bin/python import click import os import os.path as op import pandas as pd from sklearn.ensemble import VotingClassifier from sklearn.preprocessing import LabelEncoder from xgboost import XGBClassifier def get_voting_classifier(): dir_path = os.path.dirname(os.path.realpath(__file__)) xgb_model_dir = op.join(dir_path, "saved_models") models = {} xgb_model_files = sorted( [fname for fname in os.listdir(xgb_model_dir) if fname.endswith(".json")] ) for fname in xgb_model_files: xgb = XGBClassifier() xgb.load_model(op.join(xgb_model_dir, fname)) cv_idx = int(fname.split(".json")[0][-1]) models[cv_idx] = xgb weights = { 0: 0.9439393939393939, 1: 0.9237373737373737, 2: 0.8603174603174604, 3: 0.8818181818181818, 4: 0.907070707070707, 5: 0.9312169312169312, } estimators = {f"cv{i}": models[i] for i in weights.keys()} voter = VotingClassifier( estimators=estimators, weights=list(weights.values()), voting="soft" ) voter.estimators_ = list(estimators.values()) voter.le_ = LabelEncoder().fit([0, 1]) voter.classes_ = voter.le_.classes_ return voter def predict_ratings(input_df): expected_columns = [ "raw_dimension_x", "raw_dimension_y", "raw_dimension_z", "raw_voxel_size_x", "raw_voxel_size_y", "raw_voxel_size_z", "raw_max_b", "raw_neighbor_corr", "raw_num_bad_slices", "raw_num_directions", "raw_coherence_index", "raw_incoherence_index", "t1_dimension_x", "t1_dimension_y", "t1_dimension_z", "t1_voxel_size_x", "t1_voxel_size_y", "t1_voxel_size_z", "t1_max_b", "t1_neighbor_corr", "t1_num_bad_slices", "t1_num_directions", "t1_coherence_index", "t1_incoherence_index", "mean_fd", "max_fd", "max_rotation", "max_translation", "max_rel_rotation", "max_rel_translation", "t1_dice_distance", ] try: df_qc = input_df[expected_columns] except KeyError: raise ValueError( "Columns in input file do not match expected columns." f"Expected: {expected_columns}, " f"but got: {df_qc.columns.tolist()}" ) voter = get_voting_classifier() ratings = voter.predict_proba(df_qc)[:, 1] df_ratings =
pd.DataFrame(index=df_qc.index)
pandas.DataFrame
# being a bit too dynamic # pylint: disable=E1101 import datetime import warnings import re from math import ceil from collections import namedtuple from contextlib import contextmanager from distutils.version import LooseVersion import numpy as np from pandas.util.decorators import cache_readonly, deprecate_kwarg import pandas.core.common as com from pandas.core.common import AbstractMethodError from pandas.core.generic import _shared_docs, _shared_doc_kwargs from pandas.core.index import Index, MultiIndex from pandas.core.series import Series, remove_na from pandas.tseries.index import DatetimeIndex from pandas.tseries.period import PeriodIndex, Period import pandas.tseries.frequencies as frequencies from pandas.tseries.offsets import DateOffset from pandas.compat import range, lrange, lmap, map, zip, string_types import pandas.compat as compat from pandas.util.decorators import Appender try: # mpl optional import pandas.tseries.converter as conv conv.register() # needs to override so set_xlim works with str/number except ImportError: pass # Extracted from https://gist.github.com/huyng/816622 # this is the rcParams set when setting display.with_mpl_style # to True. mpl_stylesheet = { 'axes.axisbelow': True, 'axes.color_cycle': ['#348ABD', '#7A68A6', '#A60628', '#467821', '#CF4457', '#188487', '#E24A33'], 'axes.edgecolor': '#bcbcbc', 'axes.facecolor': '#eeeeee', 'axes.grid': True, 'axes.labelcolor': '#555555', 'axes.labelsize': 'large', 'axes.linewidth': 1.0, 'axes.titlesize': 'x-large', 'figure.edgecolor': 'white', 'figure.facecolor': 'white', 'figure.figsize': (6.0, 4.0), 'figure.subplot.hspace': 0.5, 'font.family': 'monospace', 'font.monospace': ['Andale Mono', 'Nimbus Mono L', 'Courier New', 'Courier', 'Fixed', 'Terminal', 'monospace'], 'font.size': 10, 'interactive': True, 'keymap.all_axes': ['a'], 'keymap.back': ['left', 'c', 'backspace'], 'keymap.forward': ['right', 'v'], 'keymap.fullscreen': ['f'], 'keymap.grid': ['g'], 'keymap.home': ['h', 'r', 'home'], 'keymap.pan': ['p'], 'keymap.save': ['s'], 'keymap.xscale': ['L', 'k'], 'keymap.yscale': ['l'], 'keymap.zoom': ['o'], 'legend.fancybox': True, 'lines.antialiased': True, 'lines.linewidth': 1.0, 'patch.antialiased': True, 'patch.edgecolor': '#EEEEEE', 'patch.facecolor': '#348ABD', 'patch.linewidth': 0.5, 'toolbar': 'toolbar2', 'xtick.color': '#555555', 'xtick.direction': 'in', 'xtick.major.pad': 6.0, 'xtick.major.size': 0.0, 'xtick.minor.pad': 6.0, 'xtick.minor.size': 0.0, 'ytick.color': '#555555', 'ytick.direction': 'in', 'ytick.major.pad': 6.0, 'ytick.major.size': 0.0, 'ytick.minor.pad': 6.0, 'ytick.minor.size': 0.0 } def _get_standard_kind(kind): return {'density': 'kde'}.get(kind, kind) def _get_standard_colors(num_colors=None, colormap=None, color_type='default', color=None): import matplotlib.pyplot as plt if color is None and colormap is not None: if isinstance(colormap, compat.string_types): import matplotlib.cm as cm cmap = colormap colormap = cm.get_cmap(colormap) if colormap is None: raise ValueError("Colormap {0} is not recognized".format(cmap)) colors = lmap(colormap, np.linspace(0, 1, num=num_colors)) elif color is not None: if colormap is not None: warnings.warn("'color' and 'colormap' cannot be used " "simultaneously. Using 'color'") colors = color else: if color_type == 'default': # need to call list() on the result to copy so we don't # modify the global rcParams below colors = list(plt.rcParams.get('axes.color_cycle', list('bgrcmyk'))) if isinstance(colors, compat.string_types): colors = list(colors) elif color_type == 'random': import random def random_color(column): random.seed(column) return [random.random() for _ in range(3)] colors = lmap(random_color, lrange(num_colors)) else: raise ValueError("color_type must be either 'default' or 'random'") if isinstance(colors, compat.string_types): import matplotlib.colors conv = matplotlib.colors.ColorConverter() def _maybe_valid_colors(colors): try: [conv.to_rgba(c) for c in colors] return True except ValueError: return False # check whether the string can be convertable to single color maybe_single_color = _maybe_valid_colors([colors]) # check whether each character can be convertable to colors maybe_color_cycle = _maybe_valid_colors(list(colors)) if maybe_single_color and maybe_color_cycle and len(colors) > 1: msg = ("'{0}' can be parsed as both single color and " "color cycle. Specify each color using a list " "like ['{0}'] or {1}") raise ValueError(msg.format(colors, list(colors))) elif maybe_single_color: colors = [colors] else: # ``colors`` is regarded as color cycle. # mpl will raise error any of them is invalid pass if len(colors) != num_colors: multiple = num_colors//len(colors) - 1 mod = num_colors % len(colors) colors += multiple * colors colors += colors[:mod] return colors class _Options(dict): """ Stores pandas plotting options. Allows for parameter aliasing so you can just use parameter names that are the same as the plot function parameters, but is stored in a canonical format that makes it easy to breakdown into groups later """ # alias so the names are same as plotting method parameter names _ALIASES = {'x_compat': 'xaxis.compat'} _DEFAULT_KEYS = ['xaxis.compat'] def __init__(self): self['xaxis.compat'] = False def __getitem__(self, key): key = self._get_canonical_key(key) if key not in self: raise ValueError('%s is not a valid pandas plotting option' % key) return super(_Options, self).__getitem__(key) def __setitem__(self, key, value): key = self._get_canonical_key(key) return super(_Options, self).__setitem__(key, value) def __delitem__(self, key): key = self._get_canonical_key(key) if key in self._DEFAULT_KEYS: raise ValueError('Cannot remove default parameter %s' % key) return super(_Options, self).__delitem__(key) def __contains__(self, key): key = self._get_canonical_key(key) return super(_Options, self).__contains__(key) def reset(self): """ Reset the option store to its initial state Returns ------- None """ self.__init__() def _get_canonical_key(self, key): return self._ALIASES.get(key, key) @contextmanager def use(self, key, value): """ Temporarily set a parameter value using the with statement. Aliasing allowed. """ old_value = self[key] try: self[key] = value yield self finally: self[key] = old_value plot_params = _Options() def scatter_matrix(frame, alpha=0.5, figsize=None, ax=None, grid=False, diagonal='hist', marker='.', density_kwds=None, hist_kwds=None, range_padding=0.05, **kwds): """ Draw a matrix of scatter plots. Parameters ---------- frame : DataFrame alpha : float, optional amount of transparency applied figsize : (float,float), optional a tuple (width, height) in inches ax : Matplotlib axis object, optional grid : bool, optional setting this to True will show the grid diagonal : {'hist', 'kde'} pick between 'kde' and 'hist' for either Kernel Density Estimation or Histogram plot in the diagonal marker : str, optional Matplotlib marker type, default '.' hist_kwds : other plotting keyword arguments To be passed to hist function density_kwds : other plotting keyword arguments To be passed to kernel density estimate plot range_padding : float, optional relative extension of axis range in x and y with respect to (x_max - x_min) or (y_max - y_min), default 0.05 kwds : other plotting keyword arguments To be passed to scatter function Examples -------- >>> df = DataFrame(np.random.randn(1000, 4), columns=['A','B','C','D']) >>> scatter_matrix(df, alpha=0.2) """ import matplotlib.pyplot as plt from matplotlib.artist import setp df = frame._get_numeric_data() n = df.columns.size naxes = n * n fig, axes = _subplots(naxes=naxes, figsize=figsize, ax=ax, squeeze=False) # no gaps between subplots fig.subplots_adjust(wspace=0, hspace=0) mask = com.notnull(df) marker = _get_marker_compat(marker) hist_kwds = hist_kwds or {} density_kwds = density_kwds or {} # workaround because `c='b'` is hardcoded in matplotlibs scatter method kwds.setdefault('c', plt.rcParams['patch.facecolor']) boundaries_list = [] for a in df.columns: values = df[a].values[mask[a].values] rmin_, rmax_ = np.min(values), np.max(values) rdelta_ext = (rmax_ - rmin_) * range_padding / 2. boundaries_list.append((rmin_ - rdelta_ext, rmax_+ rdelta_ext)) for i, a in zip(lrange(n), df.columns): for j, b in zip(lrange(n), df.columns): ax = axes[i, j] if i == j: values = df[a].values[mask[a].values] # Deal with the diagonal by drawing a histogram there. if diagonal == 'hist': ax.hist(values, **hist_kwds) elif diagonal in ('kde', 'density'): from scipy.stats import gaussian_kde y = values gkde = gaussian_kde(y) ind = np.linspace(y.min(), y.max(), 1000) ax.plot(ind, gkde.evaluate(ind), **density_kwds) ax.set_xlim(boundaries_list[i]) else: common = (mask[a] & mask[b]).values ax.scatter(df[b][common], df[a][common], marker=marker, alpha=alpha, **kwds) ax.set_xlim(boundaries_list[j]) ax.set_ylim(boundaries_list[i]) ax.set_xlabel(b) ax.set_ylabel(a) if j!= 0: ax.yaxis.set_visible(False) if i != n-1: ax.xaxis.set_visible(False) if len(df.columns) > 1: lim1 = boundaries_list[0] locs = axes[0][1].yaxis.get_majorticklocs() locs = locs[(lim1[0] <= locs) & (locs <= lim1[1])] adj = (locs - lim1[0]) / (lim1[1] - lim1[0]) lim0 = axes[0][0].get_ylim() adj = adj * (lim0[1] - lim0[0]) + lim0[0] axes[0][0].yaxis.set_ticks(adj) if np.all(locs == locs.astype(int)): # if all ticks are int locs = locs.astype(int) axes[0][0].yaxis.set_ticklabels(locs) _set_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0) return axes def _gca(): import matplotlib.pyplot as plt return plt.gca() def _gcf(): import matplotlib.pyplot as plt return plt.gcf() def _get_marker_compat(marker): import matplotlib.lines as mlines import matplotlib as mpl if mpl.__version__ < '1.1.0' and marker == '.': return 'o' if marker not in mlines.lineMarkers: return 'o' return marker def radviz(frame, class_column, ax=None, color=None, colormap=None, **kwds): """RadViz - a multivariate data visualization algorithm Parameters: ----------- frame: DataFrame class_column: str Column name containing class names ax: Matplotlib axis object, optional color: list or tuple, optional Colors to use for the different classes colormap : str or matplotlib colormap object, default None Colormap to select colors from. If string, load colormap with that name from matplotlib. kwds: keywords Options to pass to matplotlib scatter plotting method Returns: -------- ax: Matplotlib axis object """ import matplotlib.pyplot as plt import matplotlib.patches as patches def normalize(series): a = min(series) b = max(series) return (series - a) / (b - a) n = len(frame) classes = frame[class_column].drop_duplicates() class_col = frame[class_column] df = frame.drop(class_column, axis=1).apply(normalize) if ax is None: ax = plt.gca(xlim=[-1, 1], ylim=[-1, 1]) to_plot = {} colors = _get_standard_colors(num_colors=len(classes), colormap=colormap, color_type='random', color=color) for kls in classes: to_plot[kls] = [[], []] m = len(frame.columns) - 1 s = np.array([(np.cos(t), np.sin(t)) for t in [2.0 * np.pi * (i / float(m)) for i in range(m)]]) for i in range(n): row = df.iloc[i].values row_ = np.repeat(np.expand_dims(row, axis=1), 2, axis=1) y = (s * row_).sum(axis=0) / row.sum() kls = class_col.iat[i] to_plot[kls][0].append(y[0]) to_plot[kls][1].append(y[1]) for i, kls in enumerate(classes): ax.scatter(to_plot[kls][0], to_plot[kls][1], color=colors[i], label=com.pprint_thing(kls), **kwds) ax.legend() ax.add_patch(patches.Circle((0.0, 0.0), radius=1.0, facecolor='none')) for xy, name in zip(s, df.columns): ax.add_patch(patches.Circle(xy, radius=0.025, facecolor='gray')) if xy[0] < 0.0 and xy[1] < 0.0: ax.text(xy[0] - 0.025, xy[1] - 0.025, name, ha='right', va='top', size='small') elif xy[0] < 0.0 and xy[1] >= 0.0: ax.text(xy[0] - 0.025, xy[1] + 0.025, name, ha='right', va='bottom', size='small') elif xy[0] >= 0.0 and xy[1] < 0.0: ax.text(xy[0] + 0.025, xy[1] - 0.025, name, ha='left', va='top', size='small') elif xy[0] >= 0.0 and xy[1] >= 0.0: ax.text(xy[0] + 0.025, xy[1] + 0.025, name, ha='left', va='bottom', size='small') ax.axis('equal') return ax @deprecate_kwarg(old_arg_name='data', new_arg_name='frame') def andrews_curves(frame, class_column, ax=None, samples=200, color=None, colormap=None, **kwds): """ Parameters: ----------- frame : DataFrame Data to be plotted, preferably normalized to (0.0, 1.0) class_column : Name of the column containing class names ax : matplotlib axes object, default None samples : Number of points to plot in each curve color: list or tuple, optional Colors to use for the different classes colormap : str or matplotlib colormap object, default None Colormap to select colors from. If string, load colormap with that name from matplotlib. kwds: keywords Options to pass to matplotlib plotting method Returns: -------- ax: Matplotlib axis object """ from math import sqrt, pi, sin, cos import matplotlib.pyplot as plt def function(amplitudes): def f(x): x1 = amplitudes[0] result = x1 / sqrt(2.0) harmonic = 1.0 for x_even, x_odd in zip(amplitudes[1::2], amplitudes[2::2]): result += (x_even * sin(harmonic * x) + x_odd * cos(harmonic * x)) harmonic += 1.0 if len(amplitudes) % 2 != 0: result += amplitudes[-1] * sin(harmonic * x) return result return f n = len(frame) class_col = frame[class_column] classes = frame[class_column].drop_duplicates() df = frame.drop(class_column, axis=1) x = [-pi + 2.0 * pi * (t / float(samples)) for t in range(samples)] used_legends = set([]) color_values = _get_standard_colors(num_colors=len(classes), colormap=colormap, color_type='random', color=color) colors = dict(zip(classes, color_values)) if ax is None: ax = plt.gca(xlim=(-pi, pi)) for i in range(n): row = df.iloc[i].values f = function(row) y = [f(t) for t in x] kls = class_col.iat[i] label = com.pprint_thing(kls) if label not in used_legends: used_legends.add(label) ax.plot(x, y, color=colors[kls], label=label, **kwds) else: ax.plot(x, y, color=colors[kls], **kwds) ax.legend(loc='upper right') ax.grid() return ax def bootstrap_plot(series, fig=None, size=50, samples=500, **kwds): """Bootstrap plot. Parameters: ----------- series: Time series fig: matplotlib figure object, optional size: number of data points to consider during each sampling samples: number of times the bootstrap procedure is performed kwds: optional keyword arguments for plotting commands, must be accepted by both hist and plot Returns: -------- fig: matplotlib figure """ import random import matplotlib.pyplot as plt # random.sample(ndarray, int) fails on python 3.3, sigh data = list(series.values) samplings = [random.sample(data, size) for _ in range(samples)] means = np.array([np.mean(sampling) for sampling in samplings]) medians = np.array([np.median(sampling) for sampling in samplings]) midranges = np.array([(min(sampling) + max(sampling)) * 0.5 for sampling in samplings]) if fig is None: fig = plt.figure() x = lrange(samples) axes = [] ax1 = fig.add_subplot(2, 3, 1) ax1.set_xlabel("Sample") axes.append(ax1) ax1.plot(x, means, **kwds) ax2 = fig.add_subplot(2, 3, 2) ax2.set_xlabel("Sample") axes.append(ax2) ax2.plot(x, medians, **kwds) ax3 = fig.add_subplot(2, 3, 3) ax3.set_xlabel("Sample") axes.append(ax3) ax3.plot(x, midranges, **kwds) ax4 = fig.add_subplot(2, 3, 4) ax4.set_xlabel("Mean") axes.append(ax4) ax4.hist(means, **kwds) ax5 = fig.add_subplot(2, 3, 5) ax5.set_xlabel("Median") axes.append(ax5) ax5.hist(medians, **kwds) ax6 = fig.add_subplot(2, 3, 6) ax6.set_xlabel("Midrange") axes.append(ax6) ax6.hist(midranges, **kwds) for axis in axes: plt.setp(axis.get_xticklabels(), fontsize=8) plt.setp(axis.get_yticklabels(), fontsize=8) return fig @deprecate_kwarg(old_arg_name='colors', new_arg_name='color') @deprecate_kwarg(old_arg_name='data', new_arg_name='frame') def parallel_coordinates(frame, class_column, cols=None, ax=None, color=None, use_columns=False, xticks=None, colormap=None, axvlines=True, **kwds): """Parallel coordinates plotting. Parameters ---------- frame: DataFrame class_column: str Column name containing class names cols: list, optional A list of column names to use ax: matplotlib.axis, optional matplotlib axis object color: list or tuple, optional Colors to use for the different classes use_columns: bool, optional If true, columns will be used as xticks xticks: list or tuple, optional A list of values to use for xticks colormap: str or matplotlib colormap, default None Colormap to use for line colors. axvlines: bool, optional If true, vertical lines will be added at each xtick kwds: keywords Options to pass to matplotlib plotting method Returns ------- ax: matplotlib axis object Examples -------- >>> from pandas import read_csv >>> from pandas.tools.plotting import parallel_coordinates >>> from matplotlib import pyplot as plt >>> df = read_csv('https://raw.github.com/pydata/pandas/master/pandas/tests/data/iris.csv') >>> parallel_coordinates(df, 'Name', color=('#556270', '#4ECDC4', '#C7F464')) >>> plt.show() """ import matplotlib.pyplot as plt n = len(frame) classes = frame[class_column].drop_duplicates() class_col = frame[class_column] if cols is None: df = frame.drop(class_column, axis=1) else: df = frame[cols] used_legends = set([]) ncols = len(df.columns) # determine values to use for xticks if use_columns is True: if not np.all(np.isreal(list(df.columns))): raise ValueError('Columns must be numeric to be used as xticks') x = df.columns elif xticks is not None: if not np.all(np.isreal(xticks)): raise ValueError('xticks specified must be numeric') elif len(xticks) != ncols: raise ValueError('Length of xticks must match number of columns') x = xticks else: x = lrange(ncols) if ax is None: ax = plt.gca() color_values = _get_standard_colors(num_colors=len(classes), colormap=colormap, color_type='random', color=color) colors = dict(zip(classes, color_values)) for i in range(n): y = df.iloc[i].values kls = class_col.iat[i] label = com.pprint_thing(kls) if label not in used_legends: used_legends.add(label) ax.plot(x, y, color=colors[kls], label=label, **kwds) else: ax.plot(x, y, color=colors[kls], **kwds) if axvlines: for i in x: ax.axvline(i, linewidth=1, color='black') ax.set_xticks(x) ax.set_xticklabels(df.columns) ax.set_xlim(x[0], x[-1]) ax.legend(loc='upper right') ax.grid() return ax def lag_plot(series, lag=1, ax=None, **kwds): """Lag plot for time series. Parameters: ----------- series: Time series lag: lag of the scatter plot, default 1 ax: Matplotlib axis object, optional kwds: Matplotlib scatter method keyword arguments, optional Returns: -------- ax: Matplotlib axis object """ import matplotlib.pyplot as plt # workaround because `c='b'` is hardcoded in matplotlibs scatter method kwds.setdefault('c', plt.rcParams['patch.facecolor']) data = series.values y1 = data[:-lag] y2 = data[lag:] if ax is None: ax = plt.gca() ax.set_xlabel("y(t)") ax.set_ylabel("y(t + %s)" % lag) ax.scatter(y1, y2, **kwds) return ax def autocorrelation_plot(series, ax=None, **kwds): """Autocorrelation plot for time series. Parameters: ----------- series: Time series ax: Matplotlib axis object, optional kwds : keywords Options to pass to matplotlib plotting method Returns: ----------- ax: Matplotlib axis object """ import matplotlib.pyplot as plt n = len(series) data = np.asarray(series) if ax is None: ax = plt.gca(xlim=(1, n), ylim=(-1.0, 1.0)) mean = np.mean(data) c0 = np.sum((data - mean) ** 2) / float(n) def r(h): return ((data[:n - h] - mean) * (data[h:] - mean)).sum() / float(n) / c0 x = np.arange(n) + 1 y = lmap(r, x) z95 = 1.959963984540054 z99 = 2.5758293035489004 ax.axhline(y=z99 / np.sqrt(n), linestyle='--', color='grey') ax.axhline(y=z95 / np.sqrt(n), color='grey') ax.axhline(y=0.0, color='black') ax.axhline(y=-z95 / np.sqrt(n), color='grey') ax.axhline(y=-z99 / np.sqrt(n), linestyle='--', color='grey') ax.set_xlabel("Lag") ax.set_ylabel("Autocorrelation") ax.plot(x, y, **kwds) if 'label' in kwds: ax.legend() ax.grid() return ax class MPLPlot(object): """ Base class for assembling a pandas plot using matplotlib Parameters ---------- data : """ _layout_type = 'vertical' _default_rot = 0 orientation = None _pop_attributes = ['label', 'style', 'logy', 'logx', 'loglog', 'mark_right', 'stacked'] _attr_defaults = {'logy': False, 'logx': False, 'loglog': False, 'mark_right': True, 'stacked': False} def __init__(self, data, kind=None, by=None, subplots=False, sharex=None, sharey=False, use_index=True, figsize=None, grid=None, legend=True, rot=None, ax=None, fig=None, title=None, xlim=None, ylim=None, xticks=None, yticks=None, sort_columns=False, fontsize=None, secondary_y=False, colormap=None, table=False, layout=None, **kwds): self.data = data self.by = by self.kind = kind self.sort_columns = sort_columns self.subplots = subplots if sharex is None: if ax is None: self.sharex = True else: # if we get an axis, the users should do the visibility setting... self.sharex = False else: self.sharex = sharex self.sharey = sharey self.figsize = figsize self.layout = layout self.xticks = xticks self.yticks = yticks self.xlim = xlim self.ylim = ylim self.title = title self.use_index = use_index self.fontsize = fontsize if rot is not None: self.rot = rot # need to know for format_date_labels since it's rotated to 30 by # default self._rot_set = True else: self._rot_set = False if isinstance(self._default_rot, dict): self.rot = self._default_rot[self.kind] else: self.rot = self._default_rot if grid is None: grid = False if secondary_y else self.plt.rcParams['axes.grid'] self.grid = grid self.legend = legend self.legend_handles = [] self.legend_labels = [] for attr in self._pop_attributes: value = kwds.pop(attr, self._attr_defaults.get(attr, None)) setattr(self, attr, value) self.ax = ax self.fig = fig self.axes = None # parse errorbar input if given xerr = kwds.pop('xerr', None) yerr = kwds.pop('yerr', None) self.errors = {} for kw, err in zip(['xerr', 'yerr'], [xerr, yerr]): self.errors[kw] = self._parse_errorbars(kw, err) if not isinstance(secondary_y, (bool, tuple, list, np.ndarray, Index)): secondary_y = [secondary_y] self.secondary_y = secondary_y # ugly TypeError if user passes matplotlib's `cmap` name. # Probably better to accept either. if 'cmap' in kwds and colormap: raise TypeError("Only specify one of `cmap` and `colormap`.") elif 'cmap' in kwds: self.colormap = kwds.pop('cmap') else: self.colormap = colormap self.table = table self.kwds = kwds self._validate_color_args() def _validate_color_args(self): if 'color' not in self.kwds and 'colors' in self.kwds: warnings.warn(("'colors' is being deprecated. Please use 'color'" "instead of 'colors'")) colors = self.kwds.pop('colors') self.kwds['color'] = colors if ('color' in self.kwds and self.nseries == 1): # support series.plot(color='green') self.kwds['color'] = [self.kwds['color']] if ('color' in self.kwds or 'colors' in self.kwds) and \ self.colormap is not None: warnings.warn("'color' and 'colormap' cannot be used " "simultaneously. Using 'color'") if 'color' in self.kwds and self.style is not None: if com.is_list_like(self.style): styles = self.style else: styles = [self.style] # need only a single match for s in styles: if re.match('^[a-z]+?', s) is not None: raise ValueError("Cannot pass 'style' string with a color " "symbol and 'color' keyword argument. Please" " use one or the other or pass 'style' " "without a color symbol") def _iter_data(self, data=None, keep_index=False, fillna=None): if data is None: data = self.data if fillna is not None: data = data.fillna(fillna) if self.sort_columns: columns = com._try_sort(data.columns) else: columns = data.columns for col in columns: if keep_index is True: yield col, data[col] else: yield col, data[col].values @property def nseries(self): if self.data.ndim == 1: return 1 else: return self.data.shape[1] def draw(self): self.plt.draw_if_interactive() def generate(self): self._args_adjust() self._compute_plot_data() self._setup_subplots() self._make_plot() self._add_table() self._make_legend() self._post_plot_logic() self._adorn_subplots() def _args_adjust(self): pass def _has_plotted_object(self, ax): """check whether ax has data""" return (len(ax.lines) != 0 or len(ax.artists) != 0 or len(ax.containers) != 0) def _maybe_right_yaxis(self, ax, axes_num): if not self.on_right(axes_num): # secondary axes may be passed via ax kw return self._get_ax_layer(ax) if hasattr(ax, 'right_ax'): # if it has right_ax proparty, ``ax`` must be left axes return ax.right_ax elif hasattr(ax, 'left_ax'): # if it has left_ax proparty, ``ax`` must be right axes return ax else: # otherwise, create twin axes orig_ax, new_ax = ax, ax.twinx() new_ax._get_lines.color_cycle = orig_ax._get_lines.color_cycle orig_ax.right_ax, new_ax.left_ax = new_ax, orig_ax if not self._has_plotted_object(orig_ax): # no data on left y orig_ax.get_yaxis().set_visible(False) return new_ax def _setup_subplots(self): if self.subplots: fig, axes = _subplots(naxes=self.nseries, sharex=self.sharex, sharey=self.sharey, figsize=self.figsize, ax=self.ax, layout=self.layout, layout_type=self._layout_type) else: if self.ax is None: fig = self.plt.figure(figsize=self.figsize) axes = fig.add_subplot(111) else: fig = self.ax.get_figure() if self.figsize is not None: fig.set_size_inches(self.figsize) axes = self.ax axes = _flatten(axes) if self.logx or self.loglog: [a.set_xscale('log') for a in axes] if self.logy or self.loglog: [a.set_yscale('log') for a in axes] self.fig = fig self.axes = axes @property def result(self): """ Return result axes """ if self.subplots: if self.layout is not None and not com.is_list_like(self.ax): return self.axes.reshape(*self.layout) else: return self.axes else: sec_true = isinstance(self.secondary_y, bool) and self.secondary_y all_sec = (com.is_list_like(self.secondary_y) and len(self.secondary_y) == self.nseries) if (sec_true or all_sec): # if all data is plotted on secondary, return right axes return self._get_ax_layer(self.axes[0], primary=False) else: return self.axes[0] def _compute_plot_data(self): data = self.data if isinstance(data, Series): label = self.label if label is None and data.name is None: label = 'None' data = data.to_frame(name=label) numeric_data = data.convert_objects()._get_numeric_data() try: is_empty = numeric_data.empty except AttributeError: is_empty = not len(numeric_data) # no empty frames or series allowed if is_empty: raise TypeError('Empty {0!r}: no numeric data to ' 'plot'.format(numeric_data.__class__.__name__)) self.data = numeric_data def _make_plot(self): raise AbstractMethodError(self) def _add_table(self): if self.table is False: return elif self.table is True: data = self.data.transpose() else: data = self.table ax = self._get_ax(0) table(ax, data) def _post_plot_logic(self): pass def _adorn_subplots(self): to_adorn = self.axes if len(self.axes) > 0: all_axes = self._get_axes() nrows, ncols = self._get_axes_layout() _handle_shared_axes(axarr=all_axes, nplots=len(all_axes), naxes=nrows * ncols, nrows=nrows, ncols=ncols, sharex=self.sharex, sharey=self.sharey) for ax in to_adorn: if self.yticks is not None: ax.set_yticks(self.yticks) if self.xticks is not None: ax.set_xticks(self.xticks) if self.ylim is not None: ax.set_ylim(self.ylim) if self.xlim is not None: ax.set_xlim(self.xlim) ax.grid(self.grid) if self.title: if self.subplots: self.fig.suptitle(self.title) else: self.axes[0].set_title(self.title) labels = [com.pprint_thing(key) for key in self.data.index] labels = dict(zip(range(len(self.data.index)), labels)) for ax in self.axes: if self.orientation == 'vertical' or self.orientation is None: if self._need_to_set_index: xticklabels = [labels.get(x, '') for x in ax.get_xticks()] ax.set_xticklabels(xticklabels) self._apply_axis_properties(ax.xaxis, rot=self.rot, fontsize=self.fontsize) self._apply_axis_properties(ax.yaxis, fontsize=self.fontsize) elif self.orientation == 'horizontal': if self._need_to_set_index: yticklabels = [labels.get(y, '') for y in ax.get_yticks()] ax.set_yticklabels(yticklabels) self._apply_axis_properties(ax.yaxis, rot=self.rot, fontsize=self.fontsize) self._apply_axis_properties(ax.xaxis, fontsize=self.fontsize) def _apply_axis_properties(self, axis, rot=None, fontsize=None): labels = axis.get_majorticklabels() + axis.get_minorticklabels() for label in labels: if rot is not None: label.set_rotation(rot) if fontsize is not None: label.set_fontsize(fontsize) @property def legend_title(self): if not isinstance(self.data.columns, MultiIndex): name = self.data.columns.name if name is not None: name = com.pprint_thing(name) return name else: stringified = map(com.pprint_thing, self.data.columns.names) return ','.join(stringified) def _add_legend_handle(self, handle, label, index=None): if not label is None: if self.mark_right and index is not None: if self.on_right(index): label = label + ' (right)' self.legend_handles.append(handle) self.legend_labels.append(label) def _make_legend(self): ax, leg = self._get_ax_legend(self.axes[0]) handles = [] labels = [] title = '' if not self.subplots: if not leg is None: title = leg.get_title().get_text() handles = leg.legendHandles labels = [x.get_text() for x in leg.get_texts()] if self.legend: if self.legend == 'reverse': self.legend_handles = reversed(self.legend_handles) self.legend_labels = reversed(self.legend_labels) handles += self.legend_handles labels += self.legend_labels if not self.legend_title is None: title = self.legend_title if len(handles) > 0: ax.legend(handles, labels, loc='best', title=title) elif self.subplots and self.legend: for ax in self.axes: if ax.get_visible(): ax.legend(loc='best') def _get_ax_legend(self, ax): leg = ax.get_legend() other_ax = (getattr(ax, 'left_ax', None) or getattr(ax, 'right_ax', None)) other_leg = None if other_ax is not None: other_leg = other_ax.get_legend() if leg is None and other_leg is not None: leg = other_leg ax = other_ax return ax, leg @cache_readonly def plt(self): import matplotlib.pyplot as plt return plt _need_to_set_index = False def _get_xticks(self, convert_period=False): index = self.data.index is_datetype = index.inferred_type in ('datetime', 'date', 'datetime64', 'time') if self.use_index: if convert_period and isinstance(index, PeriodIndex): self.data = self.data.reindex(index=index.order()) x = self.data.index.to_timestamp()._mpl_repr() elif index.is_numeric(): """ Matplotlib supports numeric values or datetime objects as xaxis values. Taking LBYL approach here, by the time matplotlib raises exception when using non numeric/datetime values for xaxis, several actions are already taken by plt. """ x = index._mpl_repr() elif is_datetype: self.data = self.data.sort_index() x = self.data.index._mpl_repr() else: self._need_to_set_index = True x = lrange(len(index)) else: x = lrange(len(index)) return x def _is_datetype(self): index = self.data.index return (isinstance(index, (PeriodIndex, DatetimeIndex)) or index.inferred_type in ('datetime', 'date', 'datetime64', 'time')) def _get_plot_function(self): ''' Returns the matplotlib plotting function (plot or errorbar) based on the presence of errorbar keywords. ''' errorbar = any(e is not None for e in self.errors.values()) def plotf(ax, x, y, style=None, **kwds): mask = com.isnull(y) if mask.any(): y = np.ma.array(y) y = np.ma.masked_where(mask, y) if errorbar: return self.plt.Axes.errorbar(ax, x, y, **kwds) else: # prevent style kwarg from going to errorbar, where it is unsupported if style is not None: args = (ax, x, y, style) else: args = (ax, x, y) return self.plt.Axes.plot(*args, **kwds) return plotf def _get_index_name(self): if isinstance(self.data.index, MultiIndex): name = self.data.index.names if any(x is not None for x in name): name = ','.join([com.pprint_thing(x) for x in name]) else: name = None else: name = self.data.index.name if name is not None: name = com.pprint_thing(name) return name @classmethod def _get_ax_layer(cls, ax, primary=True): """get left (primary) or right (secondary) axes""" if primary: return getattr(ax, 'left_ax', ax) else: return getattr(ax, 'right_ax', ax) def _get_ax(self, i): # get the twinx ax if appropriate if self.subplots: ax = self.axes[i] ax = self._maybe_right_yaxis(ax, i) self.axes[i] = ax else: ax = self.axes[0] ax = self._maybe_right_yaxis(ax, i) ax.get_yaxis().set_visible(True) return ax def on_right(self, i): if isinstance(self.secondary_y, bool): return self.secondary_y if isinstance(self.secondary_y, (tuple, list, np.ndarray, Index)): return self.data.columns[i] in self.secondary_y def _get_style(self, i, col_name): style = '' if self.subplots: style = 'k' if self.style is not None: if isinstance(self.style, list): try: style = self.style[i] except IndexError: pass elif isinstance(self.style, dict): style = self.style.get(col_name, style) else: style = self.style return style or None def _get_colors(self, num_colors=None, color_kwds='color'): if num_colors is None: num_colors = self.nseries return _get_standard_colors(num_colors=num_colors, colormap=self.colormap, color=self.kwds.get(color_kwds)) def _maybe_add_color(self, colors, kwds, style, i): has_color = 'color' in kwds or self.colormap is not None if has_color and (style is None or re.match('[a-z]+', style) is None): kwds['color'] = colors[i % len(colors)] def _parse_errorbars(self, label, err): ''' Look for error keyword arguments and return the actual errorbar data or return the error DataFrame/dict Error bars can be specified in several ways: Series: the user provides a pandas.Series object of the same length as the data ndarray: provides a np.ndarray of the same length as the data DataFrame/dict: error values are paired with keys matching the key in the plotted DataFrame str: the name of the column within the plotted DataFrame ''' if err is None: return None from pandas import DataFrame, Series def match_labels(data, e): e = e.reindex_axis(data.index) return e # key-matched DataFrame if isinstance(err, DataFrame): err = match_labels(self.data, err) # key-matched dict elif isinstance(err, dict): pass # Series of error values elif isinstance(err, Series): # broadcast error series across data err = match_labels(self.data, err) err = np.atleast_2d(err) err = np.tile(err, (self.nseries, 1)) # errors are a column in the dataframe elif isinstance(err, string_types): evalues = self.data[err].values self.data = self.data[self.data.columns.drop(err)] err = np.atleast_2d(evalues) err = np.tile(err, (self.nseries, 1)) elif com.is_list_like(err): if com.is_iterator(err): err = np.atleast_2d(list(err)) else: # raw error values err = np.atleast_2d(err) err_shape = err.shape # asymmetrical error bars if err.ndim == 3: if (err_shape[0] != self.nseries) or \ (err_shape[1] != 2) or \ (err_shape[2] != len(self.data)): msg = "Asymmetrical error bars should be provided " + \ "with the shape (%u, 2, %u)" % \ (self.nseries, len(self.data)) raise ValueError(msg) # broadcast errors to each data series if len(err) == 1: err = np.tile(err, (self.nseries, 1)) elif com.is_number(err): err = np.tile([err], (self.nseries, len(self.data))) else: msg = "No valid %s detected" % label raise ValueError(msg) return err def _get_errorbars(self, label=None, index=None, xerr=True, yerr=True): from pandas import DataFrame errors = {} for kw, flag in zip(['xerr', 'yerr'], [xerr, yerr]): if flag: err = self.errors[kw] # user provided label-matched dataframe of errors if isinstance(err, (DataFrame, dict)): if label is not None and label in err.keys(): err = err[label] else: err = None elif index is not None and err is not None: err = err[index] if err is not None: errors[kw] = err return errors def _get_axes(self): return self.axes[0].get_figure().get_axes() def _get_axes_layout(self): axes = self._get_axes() x_set = set() y_set = set() for ax in axes: # check axes coordinates to estimate layout points = ax.get_position().get_points() x_set.add(points[0][0]) y_set.add(points[0][1]) return (len(y_set), len(x_set)) class ScatterPlot(MPLPlot): _layout_type = 'single' def __init__(self, data, x, y, c=None, **kwargs): MPLPlot.__init__(self, data, **kwargs) if x is None or y is None: raise ValueError( 'scatter requires and x and y column') if com.is_integer(x) and not self.data.columns.holds_integer(): x = self.data.columns[x] if com.is_integer(y) and not self.data.columns.holds_integer(): y = self.data.columns[y] if com.is_integer(c) and not self.data.columns.holds_integer(): c = self.data.columns[c] self.x = x self.y = y self.c = c @property def nseries(self): return 1 def _make_plot(self): import matplotlib as mpl mpl_ge_1_3_1 = str(mpl.__version__) >= LooseVersion('1.3.1') import matplotlib.pyplot as plt x, y, c, data = self.x, self.y, self.c, self.data ax = self.axes[0] c_is_column = com.is_hashable(c) and c in self.data.columns # plot a colorbar only if a colormap is provided or necessary cb = self.kwds.pop('colorbar', self.colormap or c_is_column) # pandas uses colormap, matplotlib uses cmap. cmap = self.colormap or 'Greys' cmap = plt.cm.get_cmap(cmap) if c is None: c_values = self.plt.rcParams['patch.facecolor'] elif c_is_column: c_values = self.data[c].values else: c_values = c if self.legend and hasattr(self, 'label'): label = self.label else: label = None scatter = ax.scatter(data[x].values, data[y].values, c=c_values, label=label, cmap=cmap, **self.kwds) if cb: img = ax.collections[0] kws = dict(ax=ax) if mpl_ge_1_3_1: kws['label'] = c if c_is_column else '' self.fig.colorbar(img, **kws) if label is not None: self._add_legend_handle(scatter, label) else: self.legend = False errors_x = self._get_errorbars(label=x, index=0, yerr=False) errors_y = self._get_errorbars(label=y, index=0, xerr=False) if len(errors_x) > 0 or len(errors_y) > 0: err_kwds = dict(errors_x, **errors_y) err_kwds['ecolor'] = scatter.get_facecolor()[0] ax.errorbar(data[x].values, data[y].values, linestyle='none', **err_kwds) def _post_plot_logic(self): ax = self.axes[0] x, y = self.x, self.y ax.set_ylabel(com.pprint_thing(y)) ax.set_xlabel(com.pprint_thing(x)) class HexBinPlot(MPLPlot): _layout_type = 'single' def __init__(self, data, x, y, C=None, **kwargs): MPLPlot.__init__(self, data, **kwargs) if x is None or y is None: raise ValueError('hexbin requires and x and y column') if com.is_integer(x) and not self.data.columns.holds_integer(): x = self.data.columns[x] if com.is_integer(y) and not self.data.columns.holds_integer(): y = self.data.columns[y] if com.is_integer(C) and not self.data.columns.holds_integer(): C = self.data.columns[C] self.x = x self.y = y self.C = C @property def nseries(self): return 1 def _make_plot(self): import matplotlib.pyplot as plt x, y, data, C = self.x, self.y, self.data, self.C ax = self.axes[0] # pandas uses colormap, matplotlib uses cmap. cmap = self.colormap or 'BuGn' cmap = plt.cm.get_cmap(cmap) cb = self.kwds.pop('colorbar', True) if C is None: c_values = None else: c_values = data[C].values ax.hexbin(data[x].values, data[y].values, C=c_values, cmap=cmap, **self.kwds) if cb: img = ax.collections[0] self.fig.colorbar(img, ax=ax) def _make_legend(self): pass def _post_plot_logic(self): ax = self.axes[0] x, y = self.x, self.y ax.set_ylabel(com.pprint_thing(y)) ax.set_xlabel(com.pprint_thing(x)) class LinePlot(MPLPlot): _default_rot = 0 orientation = 'vertical' def __init__(self, data, **kwargs): MPLPlot.__init__(self, data, **kwargs) if self.stacked: self.data = self.data.fillna(value=0) self.x_compat = plot_params['x_compat'] if 'x_compat' in self.kwds: self.x_compat = bool(self.kwds.pop('x_compat')) def _index_freq(self): freq = getattr(self.data.index, 'freq', None) if freq is None: freq = getattr(self.data.index, 'inferred_freq', None) if freq == 'B': weekdays = np.unique(self.data.index.dayofweek) if (5 in weekdays) or (6 in weekdays): freq = None return freq def _is_dynamic_freq(self, freq): if isinstance(freq, DateOffset): freq = freq.rule_code else: freq = frequencies.get_base_alias(freq) freq = frequencies.get_period_alias(freq) return freq is not None and self._no_base(freq) def _no_base(self, freq): # hack this for 0.10.1, creating more technical debt...sigh if isinstance(self.data.index, DatetimeIndex): base = frequencies.get_freq(freq) x = self.data.index if (base <= frequencies.FreqGroup.FR_DAY): return x[:1].is_normalized return Period(x[0], freq).to_timestamp(tz=x.tz) == x[0] return True def _use_dynamic_x(self): freq = self._index_freq() ax = self._get_ax(0) ax_freq = getattr(ax, 'freq', None) if freq is None: # convert irregular if axes has freq info freq = ax_freq else: # do not use tsplot if irregular was plotted first if (ax_freq is None) and (len(ax.get_lines()) > 0): return False return (freq is not None) and self._is_dynamic_freq(freq) def _is_ts_plot(self): # this is slightly deceptive return not self.x_compat and self.use_index and self._use_dynamic_x() def _make_plot(self): self._initialize_prior(len(self.data)) if self._is_ts_plot(): data = self._maybe_convert_index(self.data) x = data.index # dummy, not used plotf = self._get_ts_plot_function() it = self._iter_data(data=data, keep_index=True) else: x = self._get_xticks(convert_period=True) plotf = self._get_plot_function() it = self._iter_data() colors = self._get_colors() for i, (label, y) in enumerate(it): ax = self._get_ax(i) style = self._get_style(i, label) kwds = self.kwds.copy() self._maybe_add_color(colors, kwds, style, i) errors = self._get_errorbars(label=label, index=i) kwds = dict(kwds, **errors) label = com.pprint_thing(label) # .encode('utf-8') kwds['label'] = label newlines = plotf(ax, x, y, style=style, column_num=i, **kwds) self._add_legend_handle(newlines[0], label, index=i) lines = _get_all_lines(ax) left, right = _get_xlim(lines) ax.set_xlim(left, right) def _get_stacked_values(self, y, label): if self.stacked: if (y >= 0).all(): return self._pos_prior + y elif (y <= 0).all(): return self._neg_prior + y else: raise ValueError('When stacked is True, each column must be either all positive or negative.' '{0} contains both positive and negative values'.format(label)) else: return y def _get_plot_function(self): f = MPLPlot._get_plot_function(self) def plotf(ax, x, y, style=None, column_num=None, **kwds): # column_num is used to get the target column from protf in line and area plots if column_num == 0: self._initialize_prior(len(self.data)) y_values = self._get_stacked_values(y, kwds['label']) lines = f(ax, x, y_values, style=style, **kwds) self._update_prior(y) return lines return plotf def _get_ts_plot_function(self): from pandas.tseries.plotting import tsplot plotf = self._get_plot_function() def _plot(ax, x, data, style=None, **kwds): # accept x to be consistent with normal plot func, # x is not passed to tsplot as it uses data.index as x coordinate lines = tsplot(data, plotf, ax=ax, style=style, **kwds) return lines return _plot def _initialize_prior(self, n): self._pos_prior = np.zeros(n) self._neg_prior = np.zeros(n) def _update_prior(self, y): if self.stacked and not self.subplots: # tsplot resample may changedata length if len(self._pos_prior) != len(y): self._initialize_prior(len(y)) if (y >= 0).all(): self._pos_prior += y elif (y <= 0).all(): self._neg_prior += y def _maybe_convert_index(self, data): # tsplot converts automatically, but don't want to convert index # over and over for DataFrames if isinstance(data.index, DatetimeIndex): freq = getattr(data.index, 'freq', None) if freq is None: freq = getattr(data.index, 'inferred_freq', None) if isinstance(freq, DateOffset): freq = freq.rule_code if freq is None: ax = self._get_ax(0) freq = getattr(ax, 'freq', None) if freq is None: raise ValueError('Could not get frequency alias for plotting') freq = frequencies.get_base_alias(freq) freq = frequencies.get_period_alias(freq) data.index = data.index.to_period(freq=freq) return data def _post_plot_logic(self): df = self.data condition = (not self._use_dynamic_x() and df.index.is_all_dates and not self.subplots or (self.subplots and self.sharex)) index_name = self._get_index_name() for ax in self.axes: if condition: # irregular TS rotated 30 deg. by default # probably a better place to check / set this. if not self._rot_set: self.rot = 30 format_date_labels(ax, rot=self.rot) if index_name is not None and self.use_index: ax.set_xlabel(index_name) class AreaPlot(LinePlot): def __init__(self, data, **kwargs): kwargs.setdefault('stacked', True) data = data.fillna(value=0) LinePlot.__init__(self, data, **kwargs) if not self.stacked: # use smaller alpha to distinguish overlap self.kwds.setdefault('alpha', 0.5) def _get_plot_function(self): if self.logy or self.loglog: raise ValueError("Log-y scales are not supported in area plot") else: f = MPLPlot._get_plot_function(self) def plotf(ax, x, y, style=None, column_num=None, **kwds): if column_num == 0: self._initialize_prior(len(self.data)) y_values = self._get_stacked_values(y, kwds['label']) lines = f(ax, x, y_values, style=style, **kwds) # get data from the line to get coordinates for fill_between xdata, y_values = lines[0].get_data(orig=False) if (y >= 0).all(): start = self._pos_prior elif (y <= 0).all(): start = self._neg_prior else: start = np.zeros(len(y)) if not 'color' in kwds: kwds['color'] = lines[0].get_color() self.plt.Axes.fill_between(ax, xdata, start, y_values, **kwds) self._update_prior(y) return lines return plotf def _add_legend_handle(self, handle, label, index=None): from matplotlib.patches import Rectangle # Because fill_between isn't supported in legend, # specifically add Rectangle handle here alpha = self.kwds.get('alpha', None) handle = Rectangle((0, 0), 1, 1, fc=handle.get_color(), alpha=alpha) LinePlot._add_legend_handle(self, handle, label, index=index) def _post_plot_logic(self): LinePlot._post_plot_logic(self) if self.ylim is None: if (self.data >= 0).all().all(): for ax in self.axes: ax.set_ylim(0, None) elif (self.data <= 0).all().all(): for ax in self.axes: ax.set_ylim(None, 0) class BarPlot(MPLPlot): _default_rot = {'bar': 90, 'barh': 0} def __init__(self, data, **kwargs): self.bar_width = kwargs.pop('width', 0.5) pos = kwargs.pop('position', 0.5) kwargs.setdefault('align', 'center') self.tick_pos = np.arange(len(data)) self.bottom = kwargs.pop('bottom', 0) self.left = kwargs.pop('left', 0) self.log = kwargs.pop('log',False) MPLPlot.__init__(self, data, **kwargs) if self.stacked or self.subplots: self.tickoffset = self.bar_width * pos if kwargs['align'] == 'edge': self.lim_offset = self.bar_width / 2 else: self.lim_offset = 0 else: if kwargs['align'] == 'edge': w = self.bar_width / self.nseries self.tickoffset = self.bar_width * (pos - 0.5) + w * 0.5 self.lim_offset = w * 0.5 else: self.tickoffset = self.bar_width * pos self.lim_offset = 0 self.ax_pos = self.tick_pos - self.tickoffset def _args_adjust(self): if com.is_list_like(self.bottom): self.bottom = np.array(self.bottom) if com.is_list_like(self.left): self.left = np.array(self.left) def _get_plot_function(self): if self.kind == 'bar': def f(ax, x, y, w, start=None, **kwds): start = start + self.bottom return ax.bar(x, y, w, bottom=start, log=self.log, **kwds) elif self.kind == 'barh': def f(ax, x, y, w, start=None, log=self.log, **kwds): start = start + self.left return ax.barh(x, y, w, left=start, log=self.log, **kwds) else: raise ValueError("BarPlot kind must be either 'bar' or 'barh'") return f def _make_plot(self): import matplotlib as mpl colors = self._get_colors() ncolors = len(colors) bar_f = self._get_plot_function() pos_prior = neg_prior = np.zeros(len(self.data)) K = self.nseries for i, (label, y) in enumerate(self._iter_data(fillna=0)): ax = self._get_ax(i) kwds = self.kwds.copy() kwds['color'] = colors[i % ncolors] errors = self._get_errorbars(label=label, index=i) kwds = dict(kwds, **errors) label = com.pprint_thing(label) if (('yerr' in kwds) or ('xerr' in kwds)) \ and (kwds.get('ecolor') is None): kwds['ecolor'] = mpl.rcParams['xtick.color'] start = 0 if self.log and (y >= 1).all(): start = 1 if self.subplots: w = self.bar_width / 2 rect = bar_f(ax, self.ax_pos + w, y, self.bar_width, start=start, label=label, **kwds) ax.set_title(label) elif self.stacked: mask = y > 0 start = np.where(mask, pos_prior, neg_prior) w = self.bar_width / 2 rect = bar_f(ax, self.ax_pos + w, y, self.bar_width, start=start, label=label, **kwds) pos_prior = pos_prior + np.where(mask, y, 0) neg_prior = neg_prior + np.where(mask, 0, y) else: w = self.bar_width / K rect = bar_f(ax, self.ax_pos + (i + 0.5) * w, y, w, start=start, label=label, **kwds) self._add_legend_handle(rect, label, index=i) def _post_plot_logic(self): for ax in self.axes: if self.use_index: str_index = [com.pprint_thing(key) for key in self.data.index] else: str_index = [com.pprint_thing(key) for key in range(self.data.shape[0])] name = self._get_index_name() s_edge = self.ax_pos[0] - 0.25 + self.lim_offset e_edge = self.ax_pos[-1] + 0.25 + self.bar_width + self.lim_offset if self.kind == 'bar': ax.set_xlim((s_edge, e_edge)) ax.set_xticks(self.tick_pos) ax.set_xticklabels(str_index) if name is not None and self.use_index: ax.set_xlabel(name) elif self.kind == 'barh': # horizontal bars ax.set_ylim((s_edge, e_edge)) ax.set_yticks(self.tick_pos) ax.set_yticklabels(str_index) if name is not None and self.use_index: ax.set_ylabel(name) else: raise NotImplementedError(self.kind) @property def orientation(self): if self.kind == 'bar': return 'vertical' elif self.kind == 'barh': return 'horizontal' else: raise NotImplementedError(self.kind) class HistPlot(LinePlot): def __init__(self, data, bins=10, bottom=0, **kwargs): self.bins = bins # use mpl default self.bottom = bottom # Do not call LinePlot.__init__ which may fill nan MPLPlot.__init__(self, data, **kwargs) def _args_adjust(self): if com.is_integer(self.bins): # create common bin edge values = self.data.convert_objects()._get_numeric_data() values = np.ravel(values) values = values[~com.isnull(values)] hist, self.bins = np.histogram(values, bins=self.bins, range=self.kwds.get('range', None), weights=self.kwds.get('weights', None)) if com.is_list_like(self.bottom): self.bottom = np.array(self.bottom) def _get_plot_function(self): def plotf(ax, y, style=None, column_num=None, **kwds): if column_num == 0: self._initialize_prior(len(self.bins) - 1) y = y[~com.isnull(y)] bottom = self._pos_prior + self.bottom # ignore style n, bins, patches = self.plt.Axes.hist(ax, y, bins=self.bins, bottom=bottom, **kwds) self._update_prior(n) return patches return plotf def _make_plot(self): plotf = self._get_plot_function() colors = self._get_colors() for i, (label, y) in enumerate(self._iter_data()): ax = self._get_ax(i) style = self._get_style(i, label) label = com.pprint_thing(label) kwds = self.kwds.copy() kwds['label'] = label self._maybe_add_color(colors, kwds, style, i) if style is not None: kwds['style'] = style artists = plotf(ax, y, column_num=i, **kwds) self._add_legend_handle(artists[0], label, index=i) def _post_plot_logic(self): if self.orientation == 'horizontal': for ax in self.axes: ax.set_xlabel('Frequency') else: for ax in self.axes: ax.set_ylabel('Frequency') @property def orientation(self): if self.kwds.get('orientation', None) == 'horizontal': return 'horizontal' else: return 'vertical' class KdePlot(HistPlot): orientation = 'vertical' def __init__(self, data, bw_method=None, ind=None, **kwargs): MPLPlot.__init__(self, data, **kwargs) self.bw_method = bw_method self.ind = ind def _args_adjust(self): pass def _get_ind(self, y): if self.ind is None: sample_range = max(y) - min(y) ind = np.linspace(min(y) - 0.5 * sample_range, max(y) + 0.5 * sample_range, 1000) else: ind = self.ind return ind def _get_plot_function(self): from scipy.stats import gaussian_kde from scipy import __version__ as spv f = MPLPlot._get_plot_function(self) def plotf(ax, y, style=None, column_num=None, **kwds): y = remove_na(y) if LooseVersion(spv) >= '0.11.0': gkde = gaussian_kde(y, bw_method=self.bw_method) else: gkde = gaussian_kde(y) if self.bw_method is not None: msg = ('bw_method was added in Scipy 0.11.0.' + ' Scipy version in use is %s.' % spv) warnings.warn(msg) ind = self._get_ind(y) y = gkde.evaluate(ind) lines = f(ax, ind, y, style=style, **kwds) return lines return plotf def _post_plot_logic(self): for ax in self.axes: ax.set_ylabel('Density') class PiePlot(MPLPlot): _layout_type = 'horizontal' def __init__(self, data, kind=None, **kwargs): data = data.fillna(value=0) if (data < 0).any().any(): raise ValueError("{0} doesn't allow negative values".format(kind)) MPLPlot.__init__(self, data, kind=kind, **kwargs) def _args_adjust(self): self.grid = False self.logy = False self.logx = False self.loglog = False def _validate_color_args(self): pass def _make_plot(self): self.kwds.setdefault('colors', self._get_colors(num_colors=len(self.data), color_kwds='colors')) for i, (label, y) in enumerate(self._iter_data()): ax = self._get_ax(i) if label is not None: label = com.pprint_thing(label) ax.set_ylabel(label) kwds = self.kwds.copy() def blank_labeler(label, value): if value == 0: return '' else: return label idx = [com.pprint_thing(v) for v in self.data.index] labels = kwds.pop('labels', idx) # labels is used for each wedge's labels # Blank out labels for values of 0 so they don't overlap # with nonzero wedges if labels is not None: blabels = [blank_labeler(label, value) for label, value in zip(labels, y)] else: blabels = None results = ax.pie(y, labels=blabels, **kwds) if kwds.get('autopct', None) is not None: patches, texts, autotexts = results else: patches, texts = results autotexts = [] if self.fontsize is not None: for t in texts + autotexts: t.set_fontsize(self.fontsize) # leglabels is used for legend labels leglabels = labels if labels is not None else idx for p, l in zip(patches, leglabels): self._add_legend_handle(p, l) class BoxPlot(LinePlot): _layout_type = 'horizontal' _valid_return_types = (None, 'axes', 'dict', 'both') # namedtuple to hold results BP = namedtuple("Boxplot", ['ax', 'lines']) def __init__(self, data, return_type=None, **kwargs): # Do not call LinePlot.__init__ which may fill nan if return_type not in self._valid_return_types: raise ValueError("return_type must be {None, 'axes', 'dict', 'both'}") self.return_type = return_type MPLPlot.__init__(self, data, **kwargs) def _args_adjust(self): if self.subplots: # Disable label ax sharing. Otherwise, all subplots shows last column label if self.orientation == 'vertical': self.sharex = False else: self.sharey = False def _get_plot_function(self): def plotf(ax, y, column_num=None, **kwds): if y.ndim == 2: y = [remove_na(v) for v in y] # Boxplot fails with empty arrays, so need to add a NaN # if any cols are empty # GH 8181 y = [v if v.size > 0 else np.array([np.nan]) for v in y] else: y = remove_na(y) bp = ax.boxplot(y, **kwds) if self.return_type == 'dict': return bp, bp elif self.return_type == 'both': return self.BP(ax=ax, lines=bp), bp else: return ax, bp return plotf def _validate_color_args(self): if 'color' in self.kwds: if self.colormap is not None: warnings.warn("'color' and 'colormap' cannot be used " "simultaneously. Using 'color'") self.color = self.kwds.pop('color') if isinstance(self.color, dict): valid_keys = ['boxes', 'whiskers', 'medians', 'caps'] for key, values in compat.iteritems(self.color): if key not in valid_keys: raise ValueError("color dict contains invalid key '{0}' " "The key must be either {1}".format(key, valid_keys)) else: self.color = None # get standard colors for default colors = _get_standard_colors(num_colors=3, colormap=self.colormap, color=None) # use 2 colors by default, for box/whisker and median # flier colors isn't needed here # because it can be specified by ``sym`` kw self._boxes_c = colors[0] self._whiskers_c = colors[0] self._medians_c = colors[2] self._caps_c = 'k' # mpl default def _get_colors(self, num_colors=None, color_kwds='color'): pass def maybe_color_bp(self, bp): if isinstance(self.color, dict): boxes = self.color.get('boxes', self._boxes_c) whiskers = self.color.get('whiskers', self._whiskers_c) medians = self.color.get('medians', self._medians_c) caps = self.color.get('caps', self._caps_c) else: # Other types are forwarded to matplotlib # If None, use default colors boxes = self.color or self._boxes_c whiskers = self.color or self._whiskers_c medians = self.color or self._medians_c caps = self.color or self._caps_c from matplotlib.artist import setp setp(bp['boxes'], color=boxes, alpha=1) setp(bp['whiskers'], color=whiskers, alpha=1) setp(bp['medians'], color=medians, alpha=1) setp(bp['caps'], color=caps, alpha=1) def _make_plot(self): plotf = self._get_plot_function() if self.subplots: self._return_obj = compat.OrderedDict() for i, (label, y) in enumerate(self._iter_data()): ax = self._get_ax(i) kwds = self.kwds.copy() ret, bp = plotf(ax, y, column_num=i, **kwds) self.maybe_color_bp(bp) self._return_obj[label] = ret label = [
com.pprint_thing(label)
pandas.core.common.pprint_thing
import os import itertools import numpy as np import pandas as pd import xarray as xr from pylab import * import torch from torch.autograd import Variable """ Functions for use with Pytorch. This module contains utility functions for the S2S machine learning project. Author: <NAME>, NCAR (<EMAIL>) """ def pacific_lon(array): """ Help converting pacific 360 longitudes to 180. Args: array: longitude array. Returns: converted longitudes array. """ return xr.where(array > 180, array - 360, array) def compute_lat_weights(ds): """ Computation of weights for latitude/longitude grid mean. Weights are cosine of the latitude. Args: ds: xarray dataset. Returns: latitude weights. """ weights = np.cos(np.deg2rad(ds.lat)) _, weights = xr.broadcast(ds, weights) weights = weights.isel(time=0) return weights def matlab_to_python_time(ds): """ Conversion of matlab time to python time (human understandable). Args: ds: xarray dataset. Returns: pandas datetime timestamps. """ datenums = ds.coords['time'].values timestamps =
pd.to_datetime(datenums-719529, unit='D')
pandas.to_datetime
from typing import List from decimal import Decimal from yayFinPy.stock import Stock import pandas as pd def test_constructor(): try: stock = Stock("AAPL") assert(stock != None) return 1 except Exception as e: print("Test Failed: test_constructor: ", e) return 0 def test_constructor_failure(): try: stock = Stock("INVALID") except: return 1 print("Test Failed: test_constructor_failure") return 0 def test_stock_attributes(): try: stock = Stock("AAPL") assert(stock != None) assert(type(stock.bid) == Decimal) assert(type(stock.ask) == Decimal) assert(type(stock.bid_size) == Decimal) assert(type(stock.ask_size) == Decimal) assert(type(stock.name) == str) assert(type(stock.pe_ratio) == Decimal) assert(type(stock.peg_ratio) == Decimal) assert(type(stock.market_cap) == Decimal) assert(stock.name == "Apple Inc.") return 1 except Exception as e: print("Test Failed: test_stock_attributes", e) return 0 def test_stock_splits(): try: stock = Stock("AAPL") splits = stock.splits assert(type(splits) == type(pd.Series(dtype='float64'))) return 1 except Exception as e: print("Test Failed: test_stock_splits", e) return 0 def test_stock_dividends(): try: stock = Stock("AAPL") dividends = stock.dividends assert(type(dividends) == type(
pd.Series(dtype='float64')
pandas.Series
import pandas as pd from datetime import datetime import time import matplotlib.pyplot as plt from sklearn.preprocessing import Normalizer,MinMaxScaler from imblearn.over_sampling import SMOTE from sklearn.utils import shuffle from sklearn.metrics import mean_absolute_error from sklearn.metrics import classification_report import numpy as np import seaborn as sns import plotly.graph_objs as go import plotly.plotly as py import plotly from sklearn.externals import joblib import warnings warnings.filterwarnings("ignore") #get_ipython().run_line_magic('matplotlib', 'inline') #fd-future data set #validating-0 or 1 (0-tetsing ,1= future prediction) def flood_classifier(filename,fd,validating=0): data1=
pd.read_excel('data/'+filename+'.xlsx')
pandas.read_excel
def initcap(m): return m[:1].upper()+m[1:].lower() def instr(a,b): ls=[] for i in range(len(a)): ls.append(a[i]) if ls[i]==b: return i+1 return 0 def connect(data) : import cx_Oracle import pandas as pd dsn = cx_Oracle.makedsn('localhost',1521,'orcl') # ์˜ค๋ผํด์— ๋Œ€ํ•œ ์ฃผ์†Œ์ •๋ณด db = cx_Oracle.connect('scott','tiger',dsn) # ์˜ค๋ผํด ์ ‘์† ์œ ์ € ์ •๋ณด (์ด๋ฆ„, ๋น„๋ฐ€๋ฒˆํ˜ธ, ์ฃผ์†Œ) cursor = db.cursor() # ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ด์„ ๋ฉ”๋ชจ๋ฆฌ ์ด๋ฆ„์„ cursor๋กœ ์„ ์–ธ cursor.execute("""select * from %s""" %data) # """SQL Query์ž‘์„ฑ""" ํ•œ ๊ฒฐ๊ณผ๊ฐ€ cursor ๋ฉ”๋ชจ๋ฆฌ์— ๋‹ด๊น€ row = cursor.fetchall() # cursor ๋ฉ”๋ชจ๋ฆฌ์— ๋‹ด๊ธด ๋ฐ์ดํ„ฐ๋ฅผ ํ•œ ํ–‰์”ฉ ๊ฐ€์ ธ์˜ด colname = cursor.description # ์œ„์—์„œ SELECTํ•œ ํ…Œ์ด๋ธ”์˜ ์ปฌ๋Ÿผ๋ช…์„ ๊ฐ€์ ธ์˜ด cursor.close() # cursor ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ๋‹ซ์Œ col = [] # list ์ƒ์„ฑ for i in colname : col.append(i[0]) # ํ…Œ์ด๋ธ” ์ปฌ๋Ÿผ๋ช…์„ ์ฑ„์›Œ๋„ฃ์Œ select_data = pd.DataFrame(row) # ๋ฐ์ดํ„ฐ๋ฅผ ํ…Œ์ด๋ธ”ํ™”(Data Frame)ํ•จ select_data =
pd.DataFrame(row,columns=col)
pandas.DataFrame
#!/usr/bin/env python """ Parses SPINS' EA log files into BIDS tsvs. Usage: dm_parse_ea.py [options] <study> Arguments: <study> A datman study to parse task data for. Options: --experiment <experiment> Single datman session to generate TSVs for --timings <timing_path> The full path to the EA timings file. Defaults to the 'EA-timing.csv' file in the assets folder. --lengths <lengths_path> The full path to the file containing the EA vid lengths. Defaults to the 'EA-vid-lengths.csv' in the assets folder. --regex <regex> The regex to use to find the log files to parse. [default: *UCLAEmpAcc*] --debug Set log level to debug """ import re import os import glob import logging import pandas as pd import numpy as np from docopt import docopt import datman.config import datman.scanid logging.basicConfig( level=logging.WARN, format="[%(name)s] %(levelname)s: %(message)s" ) logger = logging.getLogger(os.path.basename(__file__)) # reads in log file and subtracts the initial TRs/MRI startup time def read_in_logfile(path): log_file = pd.read_csv(path, sep="\t", skiprows=3) time_to_subtract = int(log_file.Duration[log_file.Code == "MRI_start"]) log_file.Time = log_file.Time - time_to_subtract return log_file # Remove the rating when there is a scanner response during the task instead of just at the start def clean_logfile(log_file): scan_response = ["101", "104"] # 1st list of indexes to remove scan responses and ratings in the dataframe indexes_to_drop = [] # Remove the rating that come after the scan response when there is a 102/103 response right before or after # Also remove the rating that come after scan response and carry over to the next video # The rating is always registered two indexes after the scan response for index, row in log_file.iterrows(): if ("rating" in log_file["Code"][index]) and any( resp in log_file["Code"][index - 2] for resp in scan_response ): # index to select the rating to drop indexes_to_drop.append(index) # index - 2 to select the scan response to drop indexes_to_drop.append(index - 2) if len(indexes_to_drop) == 0: log_file_cleaned = log_file else: log_file_cleaned = log_file.drop(log_file.index[indexes_to_drop]) log_file_cleaned = log_file_cleaned.reset_index(drop=True) logger.warning( f"Removed {len(indexes_to_drop)/2} registered rating occurred before or after actual rating" ) # 2nd list of indexes to drop the remaining scan responses and ratings indexes_to_drop_1 = [] # Remove the remaining rating response come right after scan response # The rating is registered one index after the scan response for index, row in log_file_cleaned.iterrows(): if ("rating" in log_file_cleaned["Code"][index]) and any( resp in log_file_cleaned["Code"][index - 1] for resp in scan_response ): # index to select the remaining rating to drop indexes_to_drop_1.append(index) # index - 1 select the remaing scan response to drop indexes_to_drop_1.append(index - 1) if len(indexes_to_drop_1) == 0: final_log_file = log_file_cleaned else: final_log_file = log_file_cleaned.drop( log_file_cleaned.index[indexes_to_drop_1] ) final_log_file = final_log_file.reset_index(drop=True) logger.warning( f"Removed {len(indexes_to_drop_1)/2} rating registered followed scanner responses" ) return final_log_file # Grabs the starts of blocks and returns rows for them def get_blocks(log, vid_info): # identifies the video trial types (as opposed to button press events etc) mask = ["vid" in log["Code"][i] for i in range(0, log.shape[0])] df = pd.DataFrame( { "onset": log.loc[mask]["Time"], "trial_type": log.loc[mask]["Event Type"], "movie_name": log.loc[mask]["Code"], } ) df["trial_type"] = df["movie_name"].apply( lambda x: "circle_block" if "cvid" in x else "EA_block" ) df["duration"] = df["movie_name"].apply( lambda x: int(vid_info[x]["duration"]) * 10000 if x in vid_info else pd.NA ) df["stim_file"] = df["movie_name"].apply( lambda x: vid_info[x]["stim_file"] if x in vid_info else pd.NA ) df["end"] = df["onset"] + df["duration"] return df def format_vid_info(vid): vid.columns = [c.lower() for c in vid.columns] vid = vid.rename(index={0: "stim_file", 1: "duration"}) vid = vid.to_dict() return vid def read_in_standard(timing_path): df = pd.read_csv(timing_path).astype(str) df.columns = [c.lower() for c in df.columns] df_dict = df.drop([0, 0]).reset_index(drop=True).to_dict(orient="list") return df_dict def get_series_standard(gold_standard, block_name): return [float(x) for x in gold_standard[block_name] if x != "nan"] def get_ratings(log): rating_mask = ["rating" in log["Code"][i] for i in range(0, log.shape[0])] df = pd.DataFrame( { "onset": log["Time"].loc[rating_mask].values, "participant_value": log.loc[rating_mask]["Code"].values, "event_type": "button_press", "duration": 0, } ) # Pull rating value from formatted string df["participant_value"] = df["participant_value"].str.strip().str[-1] return df def combine_dfs(blocks, ratings): # combines the block rows with the ratings rows and sorts them combo = blocks.append(ratings).sort_values("onset").reset_index(drop=True) mask = pd.notnull(combo["trial_type"]) combo["space_b4_prev"] = combo["onset"].diff(periods=1) combo["first_button_press"] = combo["duration"].shift() > 0 combo2 = combo.drop( combo[ (combo["space_b4_prev"] < 1000) & (combo["first_button_press"] == True) ].index ).reset_index(drop=True) mask = pd.notnull(combo2["trial_type"]) block_start_locs = combo2[mask].index.values last_block = combo2.iloc[block_start_locs[len(block_start_locs) - 1]] end_row = { "onset": last_block.end, "rating_duration": 0, "event_type": "last_row", "duration": 0, "participant_value": last_block.participant_value, } combo2 = combo2.append(end_row, ignore_index=True).reset_index(drop=True) mask = pd.notnull(combo2["trial_type"]) block_start_locs = combo2[mask].index.values combo2["rating_duration"] = combo2["onset"].shift(-1) - combo2[ "onset" ].where( mask == False ) # noqa: E712 for i in range(len(block_start_locs)): if block_start_locs[i] != 0: combo2.rating_duration[block_start_locs[i - 1]] = ( combo2.end[block_start_locs[i - 1]] - combo2.onset[block_start_locs[i - 1]] ) for i in block_start_locs: new_row = { "onset": combo2.onset[i], "rating_duration": combo2.onset[i + 1] - combo2.onset[i], "event_type": "default_rating", "duration": 0, "participant_value": 5, } combo2 = combo2.append(new_row, ignore_index=True) combo2 = combo2.sort_values( by=["onset", "event_type"], na_position="first" ).reset_index(drop=True) return combo2 def block_scores(ratings_dict, combo): """ Compute Pearson correlation between gold standard ratings and participant ratings """ list_of_rows = [] summary_vals = {} mask = pd.notnull(combo["trial_type"]) block_start_locs = combo[mask].index.values block_start_locs = np.append( block_start_locs, combo.tail(1).index.values, axis=None ) for idx in range(1, len(block_start_locs)): block_start = combo.onset[block_start_locs[idx - 1]] block_end = combo.end[block_start_locs[idx - 1]] block = combo.iloc[block_start_locs[idx - 1] : block_start_locs[idx]][ pd.notnull(combo.event_type) ] block_name = ( combo.movie_name.iloc[ block_start_locs[idx - 1] : block_start_locs[idx] ][pd.notnull(combo.movie_name)] .reset_index(drop=True) .astype(str) .get(0) ) gold = get_series_standard(ratings_dict, block_name) if "cvid" in block_name: interval = np.arange( combo.onset[block_start_locs[idx - 1]], combo.end[block_start_locs[idx - 1]], step=40000, ) else: interval = np.arange( combo.onset[block_start_locs[idx - 1]], combo.end[block_start_locs[idx - 1]], step=20000, ) if len(gold) < len(interval): interval = interval[: len(gold)] logger.warning( "gold standard is shorter than the number of pt " f"ratings. pt ratings truncated, block: {block_name}", ) if len(interval) < len(gold): gold = gold[: len(interval)] logger.warning( "number of pt ratings is shorter than the number " f"of gold std, gold std truncated, block: {block_name}", ) # this is to append for the remaining fraction of a second (so that # the loop goes to the end i guess...)- maybe i dont need to do this interval = np.append(interval, block_end) two_s_avg = [] for x in range(len(interval) - 1): start = interval[x] end = interval[x + 1] sub_block = block[ block["onset"].between(start, end) | block["onset"].between(start, end).shift(-1) ] block_length = end - start if len(sub_block) != 0: ratings = [] for index, row in sub_block.iterrows(): if row.onset < start: numerator = (row.onset + row.rating_duration) - start else: if (row.onset + row.rating_duration) <= end: numerator = row.rating_duration elif (row.onset + row.rating_duration) > end: numerator = end - row.onset else: numerator = 999999 # add error here if row.event_type != "last_row": ratings.append( { "start": start, "end": end, "row_time": row.rating_duration, "row_start": row.onset, "block_length": block_length, "rating": row.participant_value, "time_held": numerator, } ) nums = [float(d["rating"]) for d in ratings] times = [ float(d["time_held"]) / block_length for d in ratings ] avg = np.sum(np.multiply(nums, times)) last_row = row.participant_value else: avg = last_row two_s_avg.append(float(avg)) list_of_rows.append( { "event_type": "running_avg", "participant_value": float(avg), "onset": start, "duration": end - start, "gold_std": gold[x], } ) n_button_press = len(block[block.event_type == "button_press"].index) block_score = np.corrcoef(gold, two_s_avg)[1][0] key = str(block_name) summary_vals.update( { key: { "n_button_press": int(n_button_press), "block_score": block_score, "onset": block_start, "duration": block_end - block_start, } } ) return list_of_rows, summary_vals def outputs_exist(log_file, output_path): if not os.path.exists(output_path): return False if os.path.getmtime(output_path) < os.path.getmtime(log_file): logger.error( "Output file is less recently modified than its task file" f" {log_file}. Output will be deleted and regenerated." ) try: os.remove(output_path) except Exception as e: logger.error( f"Failed to remove output file {output_path}, cannot " f"regenerate. Reason - {e}" ) return True return False return True def get_output_path(ident, log_file, dest_dir): try: os.makedirs(dest_dir) except FileExistsError: pass part = re.findall(r"((?:part|RUN)\d).log", log_file) if not part: logger.error( f"Can't detect which part task file {log_file} " "corresponds to. Ignoring file." ) return else: part = part[0] return os.path.join(dest_dir, f"{ident}_EAtask_{part}.tsv") def parse_task(ident, log_file, dest_dir, length_file, timing_file): output_path = get_output_path(ident, log_file, dest_dir) if outputs_exist(log_file, output_path): return # Reads in and clean the log, skipping the first three preamble lines try: log = read_in_logfile(log_file) log_cleaned = clean_logfile(log) except Exception as e: logger.error( f"Cannot parse {log_file}! File maybe corrupted! Skipping" ) return vid_in = pd.read_csv(length_file) vid_info = format_vid_info(vid_in) blocks = get_blocks(log_cleaned, vid_info) ratings = get_ratings(log_cleaned) combo = combine_dfs(blocks, ratings) ratings_dict = read_in_standard(timing_file) two_s_chunks, scores = block_scores(ratings_dict, combo) combo["block_score"] = np.nan combo["n_button_press"] = np.nan combo = ( combo.append(two_s_chunks).sort_values("onset").reset_index(drop=True) ) test = combo.loc[
pd.notnull(combo["stim_file"])
pandas.notnull
#!/usr/bin/env python import pandas # From SF/Dataloader export a CSV in this format: # "Account ID","<NAME>","<NAME>","Consumer Email","Alternate Email","Alternate EMail 2","Alternate EMail 3","Personal Email","Corporate Email","Preferred Email" contacts = pandas.read_csv('contacts.csv', usecols=['Account ID', 'Consumer Email']) contacts = contacts.drop_duplicates(subset='Consumer Email') contacts.rename(columns={'Consumer Email': 'Email'}, inplace=True) contacts['Email'] = contacts['Email'].str.lower() # the tw.csv comes this format: # "Email Address","First Name","<NAME>",user__pk,"subscription starts","subscription ends","Texas Weekly",EMAIL_TYPE,MEMBER_RATING,OPTIN_TIME,OPTIN_IP,CONFIRM_TIME,CONFIRM_IP,LATITUDE,LONGITUDE,GMTOFF,DSTOFF,TIMEZONE,CC,REGION,LAST_CHANGED,LEID,EUID,NOTES tw = pandas.read_csv('tw.csv', usecols=['Email Address', '<NAME>', '<NAME>', 'EUID']) tw.rename(columns={'Email Address': 'Email', 'EUID': 'Legacy ID'}, inplace=True) tw['Email'] = tw['Email'].str.lower() result =
pandas.merge(tw, contacts, on='Email', how='left')
pandas.merge
import numpy as np import pandas as pd import pyEDM as edm from sklearn.cross_decomposition import PLSCanonical, CCA from tqdm import tqdm from utils.constants import * def read_corr_mat(filename): corr_mat = np.array([]) with open(filename, "r") as file_obj: for line in file_obj.readlines(): line = [float(num) for num in line.split(' ')] corr_mat = np.append(corr_mat, line) corr_mat = corr_mat.reshape(TARGET_SIZE, -1) return corr_mat def ccm_feat_selection(libsize, k_feat_to_select, devices_data, video_data, read_result=False, save_result=False, filename=""): assert (not read_result or not save_result) if read_result: corr_mat = read_corr_mat(filename) return corr_mat.argsort(axis=1)[:, -k_feat_to_select:] libsize = str(libsize) corr_mat = np.zeros((video_data.shape[1], devices_data.shape[1]-1)) multi_data =
pd.concat([devices_data, video_data], axis=1, copy=False)
pandas.concat
# -*- coding: utf-8 -*- """ Created on Mon May 14 17:29:16 2018 @author: jdkern """ from __future__ import division import pandas as pd import matplotlib.pyplot as plt import numpy as np def exchange(year): df_data = pd.read_csv('../Stochastic_engine/Synthetic_demand_pathflows/Load_Path_Sim.csv',header=0) c = ['Path3_sim','Path8_sim','Path14_sim','Path65_sim','Path66_sim'] df_data = df_data[c] paths = ['Path3','Path8','Path14','Path65','Path66'] df_data.columns = paths df_data = df_data.loc[year*365:year*365+364,:] # select dispatchable imports imports = df_data imports = imports.reset_index() for p in paths: for i in range(0,len(imports)): if p=='Path3' or p=='Path65' or p=='Path66': #SCRIPT ASSUMPTION: NEGATIVE = EXPORT. revert sign when needed if imports.loc[i,p] >= 0: imports.loc[i,p] = 0 else: imports.loc[i,p] = -imports.loc[i,p] else: if imports.loc[i,p] < 0: imports.loc[i,p] = 0 imports.to_csv('Path_setup/PNW_imports.csv') # convert to minimum flow time series and dispatchable (daily) df_mins = pd.read_excel('Path_setup/PNW_imports_minflow_profiles.xlsx',header=0) lines = ['Path3','Path8','Path14','Path65','Path66'] for i in range(0,len(df_data)): for L in lines: if df_mins.loc[i,L] >= imports.loc[i,L]: df_mins.loc[i,L] = imports.loc[i,L] imports.loc[i,L] = 0 else: imports.loc[i,L] = np.max((0,imports.loc[i,L]-df_mins.loc[i,L])) dispatchable_imports = imports*24 dispatchable_imports.to_csv('Path_setup/PNW_dispatchable_imports.csv') df_data = pd.read_csv('Path_setup/PNW_imports.csv',header=0) # hourly minimum flow for paths hourly = np.zeros((8760,len(lines))) for i in range(0,365): for L in lines: index = lines.index(L) hourly[i*24:i*24+24,index] = np.min((df_mins.loc[i,L], df_data.loc[i,L])) H =
pd.DataFrame(hourly)
pandas.DataFrame
import dateutil import pandas as pd """ ๅˆคๆ–ญ้€ป่พ‘๏ผš้€ๆกๅˆคๆ–ญๆ ‡่ฎฐ 1.ๅ–ไธ€ๆก่ฎฐๅฝ•๏ผŒๆ‰พๅ‡บๆ—ถ้—ด๏ผŒ้‡‘้ข๏ผŒๅค‡ๆณจ 2.่‹ฅ้‡‘้ขไธบๆญฃ๏ผŒ็ญ›้€‰ๅ‡บๅ‰ๅŽไธ€ๅฐๆ—ถๅ†…้‡‘้ขไธบ่ดŸ็š„่ฎฐๅฝ•๏ผŒๅไน‹๏ผŒ็›ธไผผ 3.ไปŽ็ญ›้€‰ๅ‡บ็š„่ฎฐๅฝ•้‡Œๆ‰พๅ‡บไธŽๅฝ“ๅ‰ๅค‡ๆณจไธ€ๆ ท็š„่ฎฐๅฝ• 4.่‹ฅๆœ€ๅŽ็ญ›้€‰ๅ‡บ็š„df่ฎฐๅฝ•ๆ•ฐ>=1,่ฏฅๆกๆตๆฐดๆ— ๆ•ˆ """ def exclude_same_in_out(df): df['nameOnOppositeCard'].fillna("', inplace=True") df['remark'].fillna("', inplace=True") """ :param df: ็ฝ‘้“ถๆตๆฐดdf :param item_lst: ๆŽ’้™ค้กนๅˆ—่กจ :return: keep_df, drop_df """ """ ๅ‰ๅŽไธ€ๅฐๆ—ถๅ†…๏ผŒremarkๅˆ—ๆˆ–่€…nameOnOppositeCardๅˆ—ไธญ่ฟ›้กน่ดฆๆˆทไธŽๅ‡บ้กน่ดฆๆˆทไธ่ƒฝไธบๅŒไธ€ไธปไฝ“ใ€‚ ๅœจ่ฏฅๆ—ถ้—ดๅ†…๏ผŒๅฆ‚ๆžœ่ฟ›้กน่ดฆๆˆทไธŽๅ‡บ้กน่ดฆๆˆทไธบๅŒไธ€ไธปไฝ“๏ผŒๅˆ™่ฟ›้กนๆตๆฐดไธ็ฎ—ๅ…ฅๆœ‰ๆ•ˆๆตๆฐดใ€‚ ๆณจๆ„๏ผš 1 ่‹ฅremarkไธบ็ฉบ, ๅฏนremarkไธๅšๅˆคๆ–ญใ€‚ 2 ่‹ฅnameOnOppositeCardไธบ็ฉบ, ๅฏนnameOnOppositeCardไธๅšๅˆคๆ–ญใ€‚ """ df['transDate'] = pd.to_datetime(df['transDate']) keep_row_lst = [] drop_row_lst = [] print('ๅฝ“ๅ‰ๆœ‰ๆ•ˆdfไธ€ๅ…ฑๆœ‰ใ€%sใ€‘่กŒ' % df.shape[0]) for index, row in df.iterrows(): id = row['id'] is_valid = 1 name_on_oppsite = row['nameOnOppositeCard'] # ้€ๆกๅˆคๆ–ญ time = row['transDate'] amout_money = row['amountMoney'] remark = row['remark'] description = row['description'] if remark == "" and name_on_oppsite == "": pass else: if amout_money > 0: select_df = df[df['amountMoney'] < 0] else: select_df = df[df['amountMoney'] > 0] # ๅ‰ๅŽไธ€ๅฐๆ—ถ start_time = time - dateutil.relativedelta.relativedelta(hours=1) end_time = time + dateutil.relativedelta.relativedelta(hours=1) # tmp_df = select_df[(select_df['transDate'] >= start_time) & (select_df['transDate'] <= end_time)] if tmp_df.shape[0] >= 1: if remark != "": tmp_df1 = tmp_df[tmp_df['remark'] == remark] if tmp_df1.shape[0] >= 1: is_valid = 0 if name_on_oppsite != "": tmp_df2 = tmp_df[tmp_df['nameOnOppositeCard'] == name_on_oppsite] if tmp_df2.shape[0] >= 1: is_valid = 0 if is_valid == 0: drop_row_lst.append(row) else: keep_row_lst.append(row) keep_df = pd.DataFrame(keep_row_lst) drop_df =
pd.DataFrame(drop_row_lst)
pandas.DataFrame
import os import numpy as np import pytest from pandas.compat import is_platform_little_endian import pandas as pd from pandas import DataFrame, HDFStore, Series, _testing as tm, read_hdf from pandas.tests.io.pytables.common import ( _maybe_remove, ensure_clean_path, ensure_clean_store, tables, ) from pandas.io import pytables as pytables from pandas.io.pytables import ClosedFileError, PossibleDataLossError, Term pytestmark = pytest.mark.single def test_mode(setup_path): df = tm.makeTimeDataFrame() def check(mode): msg = r"[\S]* does not exist" with ensure_clean_path(setup_path) as path: # constructor if mode in ["r", "r+"]: with pytest.raises(IOError, match=msg): HDFStore(path, mode=mode) else: store = HDFStore(path, mode=mode) assert store._handle.mode == mode store.close() with ensure_clean_path(setup_path) as path: # context if mode in ["r", "r+"]: with pytest.raises(IOError, match=msg): with HDFStore(path, mode=mode) as store: pass else: with HDFStore(path, mode=mode) as store: assert store._handle.mode == mode with ensure_clean_path(setup_path) as path: # conv write if mode in ["r", "r+"]: with pytest.raises(IOError, match=msg): df.to_hdf(path, "df", mode=mode) df.to_hdf(path, "df", mode="w") else: df.to_hdf(path, "df", mode=mode) # conv read if mode in ["w"]: msg = ( "mode w is not allowed while performing a read. " r"Allowed modes are r, r\+ and a." ) with pytest.raises(ValueError, match=msg): read_hdf(path, "df", mode=mode) else: result = read_hdf(path, "df", mode=mode) tm.assert_frame_equal(result, df) def check_default_mode(): # read_hdf uses default mode with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", mode="w") result = read_hdf(path, "df") tm.assert_frame_equal(result, df) check("r") check("r+") check("a") check("w") check_default_mode() def test_reopen_handle(setup_path): with ensure_clean_path(setup_path) as path: store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() msg = ( r"Re-opening the file \[[\S]*\] with mode \[a\] will delete the " "current file!" ) # invalid mode change with pytest.raises(PossibleDataLossError, match=msg): store.open("w") store.close() assert not store.is_open # truncation ok here store.open("w") assert store.is_open assert len(store) == 0 store.close() assert not store.is_open store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # reopen as read store.open("r") assert store.is_open assert len(store) == 1 assert store._mode == "r" store.close() assert not store.is_open # reopen as append store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open # reopen as append (again) store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open def test_open_args(setup_path): with tm.ensure_clean(setup_path) as path: df = tm.makeDataFrame() # create an in memory store store = HDFStore( path, mode="a", driver="H5FD_CORE", driver_core_backing_store=0 ) store["df"] = df store.append("df2", df) tm.assert_frame_equal(store["df"], df) tm.assert_frame_equal(store["df2"], df) store.close() # the file should not have actually been written assert not os.path.exists(path) def test_flush(setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store.flush() store.flush(fsync=True) def test_complibs_default_settings(setup_path): # GH15943 df = tm.makeDataFrame() # Set complevel and check if complib is automatically set to # default value with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complevel=9) result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "zlib" # Set complib and check to see if compression is disabled with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complib="zlib") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if not setting complib or complevel results in no compression with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if file-defaults can be overridden on a per table basis with ensure_clean_path(setup_path) as tmpfile: store = HDFStore(tmpfile) store.append("dfc", df, complevel=9, complib="blosc") store.append("df", df) store.close() with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None for node in h5file.walk_nodes(where="/dfc", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "blosc" def test_complibs(setup_path): # GH14478 df = tm.makeDataFrame() # Building list of all complibs and complevels tuples all_complibs = tables.filters.all_complibs # Remove lzo if its not available on this platform if not tables.which_lib_version("lzo"): all_complibs.remove("lzo") # Remove bzip2 if its not available on this platform if not tables.which_lib_version("bzip2"): all_complibs.remove("bzip2") all_levels = range(0, 10) all_tests = [(lib, lvl) for lib in all_complibs for lvl in all_levels] for (lib, lvl) in all_tests: with ensure_clean_path(setup_path) as tmpfile: gname = "foo" # Write and read file to see if data is consistent df.to_hdf(tmpfile, gname, complib=lib, complevel=lvl) result = pd.read_hdf(tmpfile, gname) tm.assert_frame_equal(result, df) # Open file and check metadata # for correct amount of compression h5table = tables.open_file(tmpfile, mode="r") for node in h5table.walk_nodes(where="/" + gname, classname="Leaf"): assert node.filters.complevel == lvl if lvl == 0: assert node.filters.complib is None else: assert node.filters.complib == lib h5table.close() @pytest.mark.skipif( not is_platform_little_endian(), reason="reason platform is not little endian" ) def test_encoding(setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame({"A": "foo", "B": "bar"}, index=range(5)) df.loc[2, "A"] = np.nan df.loc[3, "B"] = np.nan _maybe_remove(store, "df") store.append("df", df, encoding="ascii") tm.assert_frame_equal(store["df"], df) expected = df.reindex(columns=["A"]) result = store.select("df", Term("columns=A", encoding="ascii")) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "val", [ [b"E\xc9, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"a", b"b", b"c"], [b"EE, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"\xf8\xfc", b"a", b"b", b"c"], [b"", b"a", b"b", b"c"], [b"\xf8\xfc", b"a", b"b", b"c"], [b"A\xf8\xfc", b"", b"a", b"b", b"c"], [np.nan, b"", b"b", b"c"], [b"A\xf8\xfc", np.nan, b"", b"b", b"c"], ], ) @pytest.mark.parametrize("dtype", ["category", object]) def test_latin_encoding(setup_path, dtype, val): enc = "latin-1" nan_rep = "" key = "data" val = [x.decode(enc) if isinstance(x, bytes) else x for x in val] ser = Series(val, dtype=dtype) with ensure_clean_path(setup_path) as store: ser.to_hdf(store, key, format="table", encoding=enc, nan_rep=nan_rep) retr = read_hdf(store, key) s_nan = ser.replace(nan_rep, np.nan) tm.assert_series_equal(s_nan, retr) def test_multiple_open_close(setup_path): # gh-4409: open & close multiple times with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", mode="w", format="table") # single store = HDFStore(path) assert "CLOSED" not in store.info() assert store.is_open store.close() assert "CLOSED" in store.info() assert not store.is_open with ensure_clean_path(setup_path) as path: if pytables._table_file_open_policy_is_strict: # multiples store1 = HDFStore(path) msg = ( r"The file [\S]* is already opened\. Please close it before " r"reopening in write mode\." ) with pytest.raises(ValueError, match=msg): HDFStore(path) store1.close() else: # multiples store1 = HDFStore(path) store2 = HDFStore(path) assert "CLOSED" not in store1.info() assert "CLOSED" not in store2.info() assert store1.is_open assert store2.is_open store1.close() assert "CLOSED" in store1.info() assert not store1.is_open assert "CLOSED" not in store2.info() assert store2.is_open store2.close() assert "CLOSED" in store1.info() assert "CLOSED" in store2.info() assert not store1.is_open assert not store2.is_open # nested close store = HDFStore(path, mode="w") store.append("df", df) store2 = HDFStore(path) store2.append("df2", df) store2.close() assert "CLOSED" in store2.info() assert not store2.is_open store.close() assert "CLOSED" in store.info() assert not store.is_open # double closing store = HDFStore(path, mode="w") store.append("df", df) store2 = HDFStore(path) store.close() assert "CLOSED" in store.info() assert not store.is_open store2.close() assert "CLOSED" in store2.info() assert not store2.is_open # ops on a closed store with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", mode="w", format="table") store = HDFStore(path) store.close() msg = r"[\S]* file is not open!" with pytest.raises(ClosedFileError, match=msg): store.keys() with pytest.raises(ClosedFileError, match=msg): "df" in store with pytest.raises(ClosedFileError, match=msg): len(store) with pytest.raises(ClosedFileError, match=msg): store["df"] with pytest.raises(ClosedFileError, match=msg): store.select("df") with pytest.raises(ClosedFileError, match=msg): store.get("df") with pytest.raises(ClosedFileError, match=msg): store.append("df2", df) with pytest.raises(ClosedFileError, match=msg): store.put("df3", df) with pytest.raises(ClosedFileError, match=msg): store.get_storer("df2") with pytest.raises(ClosedFileError, match=msg): store.remove("df2") with pytest.raises(ClosedFileError, match=msg): store.select("df") msg = "'HDFStore' object has no attribute 'df'" with pytest.raises(AttributeError, match=msg): store.df def test_fspath(): with tm.ensure_clean("foo.h5") as path: with
HDFStore(path)
pandas.HDFStore
import errno import json import logging import os import shutil import traceback import uuid import math import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objs as go from plotly.subplots import make_subplots from matplotlib import pyplot as plt from plotly.offline import plot from scipy import stats from natsort import natsorted from sklearn import metrics from sklearn.linear_model import LinearRegression from installed_clients.DataFileUtilClient import DataFileUtil from installed_clients.kb_GenericsReportClient import kb_GenericsReport from GenericsAPI.Utils.DataUtil import DataUtil from installed_clients.KBaseReportClient import KBaseReport CORR_METHOD = ['pearson', 'kendall', 'spearman', 'mutual_info'] # correlation method HIDDEN_SEARCH_THRESHOLD = 1500 class CorrelationUtil: def _mkdir_p(self, path): """ _mkdir_p: make directory for given path """ if not path: return try: os.makedirs(path) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise def _validate_compute_corr_matrix_params(self, params): """ _validate_compute_corr_matrix_params: validates params passed to compute_correlation_matrix method """ logging.info('start validating compute_corrrelation_matrix params') # check for required parameters for p in ['input_obj_ref', 'workspace_name', 'corr_matrix_name']: if p not in params: raise ValueError('"{}" parameter is required, but missing'.format(p)) def _validate_compute_correlation_across_matrices_params(self, params): """ _validate_compute_correlation_across_matrices_params: validates params passed to compute_correlation_across_matrices method """ logging.info('start validating compute_correlation_across_matrices params') # check for required parameters for p in ['workspace_name', 'corr_matrix_name', 'matrix_ref_1', 'matrix_ref_2']: if p not in params: raise ValueError('"{}" parameter is required, but missing'.format(p)) def _fetch_taxon(self, amplicon_set_ref, amplicon_ids): logging.info('start fetching taxon info from AmpliconSet') taxons = dict() taxons_level = dict() amplicon_set_data = self.dfu.get_objects( {'object_refs': [amplicon_set_ref]})['data'][0]['data'] amplicons = amplicon_set_data.get('amplicons') for amplicon_id in amplicon_ids: scientific_name = 'None' level = 'Unknown' try: scientific_name = amplicons.get(amplicon_id).get('taxonomy').get('scientific_name') except Exception: pass try: level = amplicons.get(amplicon_id).get('taxonomy').get('taxon_level') except Exception: pass taxons.update({amplicon_id: scientific_name}) taxons_level.update({amplicon_id: level}) # default empty taxons and taxons_level if set(taxons.values()) == {'None'}: taxons = None if set(taxons_level.values()) == {'Unknown'}: taxons_level = None return taxons, taxons_level def _build_top_corr_table(self, matrix_2D, output_directory, original_matrix_ref=[], sig_matrix_2D=None): row_ids = matrix_2D.get('row_ids') col_ids = matrix_2D.get('col_ids') values = matrix_2D.get('values') data_df = pd.DataFrame(values, index=row_ids, columns=col_ids) data_df.fillna(0, inplace=True) sig_df = None if sig_matrix_2D is not None: sig_df = pd.DataFrame(sig_matrix_2D.get('values'), index=sig_matrix_2D.get('row_ids'), columns=sig_matrix_2D.get('col_ids')) sig_df.fillna(0, inplace=True) columns = list() if len(original_matrix_ref) == 1: data_df = data_df.mask(np.tril(np.ones(data_df.shape)).astype(np.bool)) # remove duplicate entries res = self.dfu.get_objects({'object_refs': [original_matrix_ref[0]]})['data'][0] obj_type = res['info'][2] matrix_type = obj_type.split('-')[0].split('Matrix')[0].split('.')[-1] columns.extend(['{} 1'.format(matrix_type), '{} 2'.format(matrix_type)]) elif len(original_matrix_ref) == 2: for matrix_ref in original_matrix_ref: res = self.dfu.get_objects({'object_refs': [matrix_ref]})['data'][0] obj_type = res['info'][2] matrix_type = obj_type.split('-')[0].split('Matrix')[0].split('.')[-1] columns.append(matrix_type) else: columns = ['Variable 1', 'Variable 2'] value_col_name = 'Correlation Coefficient' columns.append(value_col_name) links = data_df.stack().reset_index() # links = links[links.iloc[:, 0] != links.iloc[:, 1]] # remove self-comparison links.columns = columns # sort by absolute value links = links.iloc[(-links[value_col_name].abs()).argsort()].reset_index(drop=True) top_corr_limit = 200 top_corr = links[:top_corr_limit] top_corr_size = top_corr.index.size if sig_df is not None: sig_values = list() for i in range(top_corr_size): corr_pair = top_corr.iloc[i] first_item = corr_pair[0] second_item = corr_pair[1] sig_value = sig_df.loc[first_item, second_item] sig_values.append(sig_value) top_corr['P-Value'] = sig_values headerColor = 'grey' rowEvenColor = 'lightgrey' rowOddColor = 'white' # color codes from px.colors.diverging.RdBu colors = ['rgb(247,247,247)', 'rgb(253,219,199)', 'rgb(244,165,130)', 'rgb(214,96,77)', 'rgb(67,147,195)', 'rgb(146,197,222)', 'rgb(209,229,240)'] interval = 0.3 corr_color_idx = (top_corr[value_col_name]/interval).apply(int) # divid coefficient by interval and round to int fig = go.Figure(data=[go.Table( header=dict(values=list(top_corr.columns), line_color='darkslategray', fill_color=headerColor, align='left', font=dict(color='white', size=12)), cells=dict(values=top_corr.T.values, line_color='darkslategray', fill_color=[[rowOddColor, rowEvenColor]*top_corr_limit, [rowOddColor, rowEvenColor]*top_corr_limit, np.array(colors)[corr_color_idx], [rowOddColor, rowEvenColor]*top_corr_limit], align='left', font=dict(color='darkslategray', size=11))) ]) if top_corr_size < top_corr_limit: fig_title = 'All {} Coefficient Pairs'.format(top_corr_size) else: fig_title = 'Top {} Coefficient Pairs'.format(top_corr_limit) fig.update_layout( width=1200, height=2000, title=dict(text=fig_title, x=0.5, font=dict(family='Times New Roman', size=30, color='Purple'))) table_file_name = 'top_corr_table.html' table_file_path = os.path.join(output_directory, table_file_name) fig.write_html(table_file_path) tab_content = '' tab_content += '\n<iframe height="1300px" width="100%" ' tab_content += 'src="{}" '.format(table_file_name) tab_content += 'style="border:none;"></iframe>' return tab_content def _build_top_scatter_plot(self, matrix_2D, output_directory, df1, df2, original_matrix_ref=[], sig_matrix_2D=None): row_ids = matrix_2D.get('row_ids') col_ids = matrix_2D.get('col_ids') values = matrix_2D.get('values') data_df = pd.DataFrame(values, index=row_ids, columns=col_ids) data_df.fillna(0, inplace=True) sig_df = None if sig_matrix_2D is not None: sig_df = pd.DataFrame(sig_matrix_2D.get('values'), index=sig_matrix_2D.get('row_ids'), columns=sig_matrix_2D.get('col_ids')) sig_df.fillna(0, inplace=True) columns = list() if len(original_matrix_ref) == 1: data_df = data_df.mask(np.tril(np.ones(data_df.shape)).astype(np.bool)) res = self.dfu.get_objects({'object_refs': [original_matrix_ref[0]]})['data'][0] obj_type = res['info'][2] matrix_type = obj_type.split('-')[0].split('Matrix')[0].split('.')[-1] columns.extend(['{} 1'.format(matrix_type), '{} 2'.format(matrix_type)]) elif len(original_matrix_ref) == 2: for matrix_ref in original_matrix_ref: res = self.dfu.get_objects({'object_refs': [matrix_ref]})['data'][0] obj_type = res['info'][2] matrix_type = obj_type.split('-')[0].split('Matrix')[0].split('.')[-1] columns.append(matrix_type) else: columns = ['Variable 1', 'Variable 2'] value_col_name = 'Correlation Coefficient' columns.append(value_col_name) links = data_df.stack().reset_index() # links = links[links.iloc[:, 0] != links.iloc[:, 1]] # remove self-comparison links.columns = columns # sort by absolute value links = links.iloc[(-links[value_col_name].abs()).argsort()].reset_index(drop=True) top_corr_limit = 20 top_corr = links[:top_corr_limit] num_plots = top_corr.index.size warnings = '' if top_corr_limit < links.index.size: warnings += 'Note: Limiting to top {} plots'.format(top_corr_limit) num_cols = 3 num_rows = math.ceil(num_plots/num_cols) fig = make_subplots(rows=num_rows, cols=num_cols) colors = px.colors.qualitative.Plotly colors_size = len(colors) for i in range(num_plots): corr_pair = top_corr.iloc[i] first_item = corr_pair[0] second_item = corr_pair[1] corr_r = corr_pair[2] first_item_matrix_value = list(df1.loc[first_item].values) second_item_matrix_value = list(df2.loc[second_item].values) sub_fig = go.Scatter( x=first_item_matrix_value, y=second_item_matrix_value, mode='markers', showlegend=False, opacity=0.65, marker_color=colors[i % colors_size], marker=dict(size=8,) ) X = df1.loc[first_item].values.reshape(-1, 1) model = LinearRegression() model.fit(X, df2.loc[second_item].values) x_range = np.linspace(X.min(), X.max(), 100) y_range = model.predict(x_range.reshape(-1, 1)) sub_fig_trend = go.Scatter( x=x_range, y=y_range, showlegend=False, marker_color=colors[i % colors_size], ) fig.add_trace(sub_fig, row=i//num_cols + 1, col=i % num_cols + 1) fig.add_trace(sub_fig_trend, row=i//num_cols + 1, col=i % num_cols + 1) anno_text = 'correlation coefficient={}'.format(corr_r) if i == 0: fig.update_layout({'xaxis': {'title': '{} ({})'.format(first_item[:10], links.columns[0])}}) fig.update_layout({'yaxis': {'title': '{} ({})'.format(second_item[:10], links.columns[1])}}) x_start = fig['layout']['xaxis']['domain'][0] x_end = fig['layout']['xaxis']['domain'][1] fig.add_annotation( text=anno_text, x=(x_end - x_start) / 2 + x_start, y=fig['layout']['yaxis']['domain'][1], xref='paper', yref='paper', xanchor='center', yanchor='top', showarrow=False ) if sig_df is not None: sig_value = sig_df.loc[first_item, second_item] anno_text = 'p-value={}'.format(sig_value) fig.add_annotation( text=anno_text, x=(x_end - x_start) / 2 + x_start, y=fig['layout']['yaxis']['domain'][1] - 0.007, xref='paper', yref='paper', xanchor='center', yanchor='top', showarrow=False ) else: fig.update_layout({'xaxis{}'.format(i+1): {'title': '{} ({})'.format(first_item[:10], links.columns[0])}}) fig.update_layout({'yaxis{}'.format(i+1): {'title': '{} ({})'.format(second_item[:10], links.columns[1])}}) x_start = fig['layout']['xaxis{}'.format(i+1)]['domain'][0] x_end = fig['layout']['xaxis{}'.format(i+1)]['domain'][1] fig.add_annotation( text=anno_text, x=(x_end - x_start) / 2 + x_start, y=fig['layout']['yaxis{}'.format(i+1)]['domain'][1], xref='paper', yref='paper', xanchor='center', yanchor='top', showarrow=False ) if sig_df is not None: sig_value = sig_df.loc[first_item, second_item] anno_text = 'p-value={}'.format(sig_value) fig.add_annotation( text=anno_text, x=(x_end - x_start) / 2 + x_start, y=fig['layout']['yaxis{}'.format(i+1)]['domain'][1] - 0.007, xref='paper', yref='paper', xanchor='center', yanchor='top', showarrow=False ) fig_title = 'Scatter Plot For Top {} Coefficient Pairs'.format(num_plots) fig.update_layout( width=1200, height=2000, title=dict(text=fig_title, x=0.5, font=dict(family='Times New Roman', size=30, color='Purple')), font=dict(family="Courier New, monospace", size=10, color="RebeccaPurple")) plot_file_name = 'top_scatter_plot.html' plot_file_path = os.path.join(output_directory, plot_file_name) fig.write_html(plot_file_path) tab_content = '' tab_content += '\n<iframe height="1300px" width="100%" ' tab_content += 'src="{}" '.format(plot_file_name) tab_content += 'style="border:none;"></iframe>' return tab_content def _build_heatmap_content(self, matrix_2D, output_directory, centered_by=None): row_ids = matrix_2D.get('row_ids') col_ids = matrix_2D.get('col_ids') values = matrix_2D.get('values') data_df = pd.DataFrame(values, index=row_ids, columns=col_ids) data_df.fillna(0, inplace=True) tsv_file_path = os.path.join(output_directory, 'heatmap_data_{}.tsv'.format( str(uuid.uuid4()))) data_df.to_csv(tsv_file_path) heatmap_dir = self.report_util.build_heatmap_html({ 'tsv_file_path': tsv_file_path, 'cluster_data': True, 'centered_by': centered_by})['html_dir'] heatmap_report_files = os.listdir(heatmap_dir) heatmap_index_page = None for heatmap_report_file in heatmap_report_files: if heatmap_report_file.endswith('.html'): heatmap_index_page = heatmap_report_file shutil.copy2(os.path.join(heatmap_dir, heatmap_report_file), output_directory) tab_content = '\n' if heatmap_index_page: tab_content += '\n<iframe height="1300px" width="100%" ' tab_content += 'src="{}" '.format(heatmap_index_page) tab_content += 'style="border:none;"></iframe>' else: tab_content += '''\n<p style="color:red;" >''' tab_content += '''Heatmap is too large to be displayed.</p>\n''' return tab_content def _build_table_content(self, matrix_2D, output_directory, original_matrix_ref=[], type='corr'): """ _build_table_content: generate HTML table content for FloatMatrix2D object """ page_content = """\n""" table_file_name = '{}_table.html'.format(type) data_file_name = '{}_data.json'.format(type) page_content += """<iframe height="1300px" width="100%" """ page_content += """src="{}" """.format(table_file_name) page_content += """style="border:none;"></iframe>\n""" row_ids = matrix_2D.get('row_ids') col_ids = matrix_2D.get('col_ids') values = matrix_2D.get('values') df = pd.DataFrame(values, index=row_ids, columns=col_ids) columns = list() taxons = None taxons_level = None if len(original_matrix_ref) == 1: df = df.mask(np.tril(np.ones(df.shape)).astype(np.bool)) res = self.dfu.get_objects({'object_refs': [original_matrix_ref[0]]})['data'][0] obj_type = res['info'][2] matrix_type = obj_type.split('-')[0].split('Matrix')[0].split('.')[-1] # if matrix_type == 'Amplicon': # amplicon_set_ref = res['data'].get('amplicon_set_ref') # if amplicon_set_ref: # taxons, taxons_level = self._fetch_taxon(amplicon_set_ref, col_ids) columns.extend(['{} 1'.format(matrix_type), '{} 2'.format(matrix_type)]) elif len(original_matrix_ref) == 2: for matrix_ref in original_matrix_ref[::-1]: res = self.dfu.get_objects({'object_refs': [matrix_ref]})['data'][0] obj_type = res['info'][2] matrix_type = obj_type.split('-')[0].split('Matrix')[0].split('.')[-1] # if matrix_type == 'Amplicon': # amplicon_set_ref = res['data'].get('amplicon_set_ref') # if amplicon_set_ref: # taxons, taxons_level = self._fetch_taxon(amplicon_set_ref, col_ids) columns.append(matrix_type) else: columns = ['Variable 1', 'Variable 2'] links = df.stack().reset_index() # remove self-comparison links = links[links.iloc[:, 0] != links.iloc[:, 1]] if type == 'corr': columns.append('Correlation') elif type == 'sig': columns.append('Significance') else: columns.append('Value') links.columns = columns if taxons: links['Taxon'] = links.iloc[:, 0].map(taxons) if taxons_level: links['Taxon Level'] = links.iloc[:, 0].map(taxons_level) table_headers = links.columns.tolist() table_content = """\n""" # build header and footer table_content += """\n<thead>\n<tr>\n""" for table_header in table_headers: table_content += """\n <th>{}</th>\n""".format(table_header) table_content += """\n</tr>\n</thead>\n""" table_content += """\n<tfoot>\n<tr>\n""" for table_header in table_headers: table_content += """\n <th>{}</th>\n""".format(table_header) table_content += """\n</tr>\n</tfoot>\n""" logging.info('start generating table json file') data_array = links.values.tolist() total_rec = len(data_array) json_dict = {'draw': 1, 'recordsTotal': total_rec, 'recordsFiltered': total_rec, 'data': data_array} with open(os.path.join(output_directory, data_file_name), 'w') as fp: json.dump(json_dict, fp) logging.info('start generating table html') with open(os.path.join(output_directory, table_file_name), 'w') as result_file: with open(os.path.join(os.path.dirname(__file__), 'templates', 'table_template.html'), 'r') as report_template_file: report_template = report_template_file.read() report_template = report_template.replace('<p>table_header</p>', table_content) report_template = report_template.replace('ajax_file_path', data_file_name) report_template = report_template.replace('deferLoading_size', str(total_rec)) result_file.write(report_template) return page_content def _generate_visualization_content(self, output_directory, corr_matrix_obj_ref, corr_matrix_plot_path, scatter_plot_path, df1, df2): """ <div class="tab"> <button class="tablinks" onclick="openTab(event, 'CorrelationMatrix')" id="defaultOpen">Correlation Matrix</button> </div> <div id="CorrelationMatrix" class="tabcontent"> <p>CorrelationMatrix_Content</p> </div>""" tab_def_content = '' tab_content = '' corr_data = self.dfu.get_objects({'object_refs': [corr_matrix_obj_ref]})['data'][0]['data'] coefficient_data = corr_data.get('coefficient_data') significance_data = corr_data.get('significance_data') original_matrix_ref = corr_data.get('original_matrix_ref') tab_def_content += """ <div class="tab"> <button class="tablinks" onclick="openTab(event, 'CorrelationTable')" id="defaultOpen">Coefficient Table</button> """ corr_table_content = self._build_top_corr_table(coefficient_data, output_directory, original_matrix_ref=original_matrix_ref, sig_matrix_2D=significance_data) tab_content += """ <div id="CorrelationTable" class="tabcontent">{}</div>""".format(corr_table_content) tab_def_content += """ <button class="tablinks" onclick="openTab(event, 'ScatterTopMatrix')">Plot Top Coefficient Pairs</button> """ scatter_top_content = self._build_top_scatter_plot(coefficient_data, output_directory, df1, df2, original_matrix_ref=original_matrix_ref, sig_matrix_2D=significance_data) tab_content += """ <div id="ScatterTopMatrix" class="tabcontent">{}</div>""".format(scatter_top_content) tab_def_content += """ <div class="tab"> <button class="tablinks" onclick="openTab(event, 'CorrelationMatrix')">Correlation Matrix Heatmap</button> """ corr_heatmap_content = self._build_heatmap_content(coefficient_data, output_directory, centered_by=0) tab_content += """ <div id="CorrelationMatrix" class="tabcontent">{}</div>""".format(corr_heatmap_content) if significance_data: tab_def_content += """ <button class="tablinks" onclick="openTab(event, 'SignificanceMatrix')">Significance Matrix Heatmap</button> """ sig_heatmap_content = self._build_heatmap_content(significance_data, output_directory) tab_content += """ <div id="SignificanceMatrix" class="tabcontent">{}</div>""".format(sig_heatmap_content) if corr_matrix_plot_path: tab_def_content += """ <button class="tablinks" onclick="openTab(event, 'CorrelationMatrixPlot')">Correlation Matrix Heatmap</button> """ tab_content += """ <div id="CorrelationMatrixPlot" class="tabcontent"> """ if corr_matrix_plot_path.endswith('.png'): corr_matrix_plot_name = 'CorrelationMatrixPlot.png' corr_matrix_plot_display_name = 'Correlation Matrix Plot' shutil.copy2(corr_matrix_plot_path, os.path.join(output_directory, corr_matrix_plot_name)) tab_content += '<div class="gallery">' tab_content += '<a target="_blank" href="{}">'.format(corr_matrix_plot_name) tab_content += '<img src="{}" '.format(corr_matrix_plot_name) tab_content += 'alt="{}" width="600" height="400">'.format( corr_matrix_plot_display_name) tab_content += '</a><div class="desc">{}</div></div>'.format( corr_matrix_plot_display_name) elif corr_matrix_plot_path.endswith('.html'): corr_matrix_plot_name = 'CorrelationMatrixPlot.html' shutil.copy2(corr_matrix_plot_path, os.path.join(output_directory, corr_matrix_plot_name)) tab_content += '<iframe height="1300px" width="100%" ' tab_content += 'src="{}" '.format(corr_matrix_plot_name) tab_content += 'style="border:none;"></iframe>\n<p></p>\n' else: raise ValueError('unexpected correlation matrix plot format:\n{}'.format( corr_matrix_plot_path)) tab_content += """</div>""" if scatter_plot_path: tab_def_content += """ <button class="tablinks" onclick="openTab(event, 'ScatterMatrixPlot')">Scatter Matrix Plot</button> """ tab_content += """ <div id="ScatterMatrixPlot" class="tabcontent"> """ scatter_plot_name = 'ScatterMatrixPlot.png' scatter_plot_display_name = 'Scatter Matrix Plot' shutil.copy2(scatter_plot_path, os.path.join(output_directory, scatter_plot_name)) tab_content += '<div class="gallery">' tab_content += '<a target="_blank" href="{}">'.format(scatter_plot_name) tab_content += '<img src="{}" '.format(scatter_plot_name) tab_content += 'alt="{}" width="600" height="400">'.format( scatter_plot_display_name) tab_content += '</a><div class="desc">{}</div></div>'.format( scatter_plot_display_name) tab_content += """</div>""" tab_def_content += """</div>""" return tab_def_content + tab_content def _generate_corr_html_report(self, corr_matrix_obj_ref, corr_matrix_plot_path, scatter_plot_path, df1, df2): """ _generate_corr_html_report: generate html summary report for correlation """ logging.info('Start generating html report') html_report = list() output_directory = os.path.join(self.scratch, str(uuid.uuid4())) self._mkdir_p(output_directory) result_file_path = os.path.join(output_directory, 'compute_correlation_report.html') visualization_content = self._generate_visualization_content( output_directory, corr_matrix_obj_ref, corr_matrix_plot_path, scatter_plot_path, df1, df2) with open(result_file_path, 'w') as result_file: with open(os.path.join(os.path.dirname(__file__), 'templates', 'corr_template.html'), 'r') as report_template_file: report_template = report_template_file.read() report_template = report_template.replace('<p>Visualization_Content</p>', visualization_content) result_file.write(report_template) report_shock_id = self.dfu.file_to_shock({'file_path': output_directory, 'pack': 'zip'})['shock_id'] html_report.append({'shock_id': report_shock_id, 'name': os.path.basename(result_file_path), 'label': os.path.basename(result_file_path), 'description': 'HTML summary report for Compute Correlation App' }) return html_report def _generate_corr_report(self, corr_matrix_obj_ref, workspace_name, corr_matrix_plot_path, scatter_plot_path=None, df1=None, df2=None): """ _generate_report: generate summary report """ logging.info('Start creating report') output_html_files = self._generate_corr_html_report(corr_matrix_obj_ref, corr_matrix_plot_path, scatter_plot_path, df1, df2) report_params = {'message': '', 'objects_created': [{'ref': corr_matrix_obj_ref, 'description': 'Correlation Matrix'}], 'workspace_name': workspace_name, 'html_links': output_html_files, 'direct_html_link_index': 0, 'html_window_height': 1400, 'report_object_name': 'compute_correlation_matrix_' + str(uuid.uuid4())} kbase_report_client = KBaseReport(self.callback_url, token=self.token) output = kbase_report_client.create_extended_report(report_params) report_output = {'report_name': output['name'], 'report_ref': output['ref']} return report_output def _corr_for_matrix(self, input_obj_ref, method, dimension): """ _corr_for_matrix: compute correlation matrix df for KBaseMatrices object """ data_matrix = self.data_util.fetch_data({'obj_ref': input_obj_ref}).get('data_matrix') data_df = pd.read_json(data_matrix) data_df = data_df.reindex(index=natsorted(data_df.index)) data_df = data_df.reindex(columns=natsorted(data_df.columns)) data_df.fillna(0, inplace=True) corr_df = self.df_to_corr(data_df, method=method, dimension=dimension) return corr_df, data_df def _compute_significance(self, data_df, dimension): """ _compute_significance: compute pairwsie significance dataframe two-sided p-value for a hypothesis test """ logging.info('Start computing significance matrix') if dimension == 'row': data_df = data_df.T data_df = data_df.dropna()._get_numeric_data() dfcols = pd.DataFrame(columns=data_df.columns) sig_df = dfcols.transpose().join(dfcols, how='outer') for r in data_df.columns: for c in data_df.columns: pvalue = stats.linregress(data_df[r], data_df[c])[3] sig_df[r][c] = round(pvalue, 4) return sig_df def _df_to_list(self, df, threshold=None): """ _df_to_list: convert Dataframe to FloatMatrix2D matrix data """ df.fillna(0, inplace=True) if threshold: drop_cols = list() for col in df.columns: if all(df[col] < threshold) and all(df[col] > -threshold): drop_cols.append(col) df.drop(columns=drop_cols, inplace=True, errors='ignore') drop_idx = list() for idx in df.index: if all(df.loc[idx] < threshold) and all(df.loc[idx] > -threshold): drop_idx.append(idx) df.drop(index=drop_idx, inplace=True, errors='ignore') matrix_data = {'row_ids': df.index.astype(str).tolist(), 'col_ids': df.columns.astype(str).tolist(), 'values': df.values.tolist()} return matrix_data def _save_corr_matrix(self, workspace_name, corr_matrix_name, corr_df, sig_df, method, matrix_ref=None, corr_threshold=None): """ _save_corr_matrix: save KBaseExperiments.CorrelationMatrix object """ logging.info('Start saving CorrelationMatrix') if not isinstance(workspace_name, int): ws_name_id = self.dfu.ws_name_to_id(workspace_name) else: ws_name_id = workspace_name corr_data = {} corr_data.update({'coefficient_data': self._df_to_list(corr_df, threshold=corr_threshold)}) corr_data.update({'correlation_parameters': {'method': method}}) if matrix_ref: corr_data.update({'original_matrix_ref': matrix_ref}) if sig_df is not None: corr_data.update({'significance_data': self._df_to_list(sig_df)}) obj_type = 'KBaseExperiments.CorrelationMatrix' info = self.dfu.save_objects({ "id": ws_name_id, "objects": [{ "type": obj_type, "data": corr_data, "name": corr_matrix_name }] })[0] return "%s/%s/%s" % (info[6], info[0], info[4]) def _Matrix2D_to_df(self, Matrix2D): """ _Matrix2D_to_df: transform a FloatMatrix2D to data frame """ index = Matrix2D.get('row_ids') columns = Matrix2D.get('col_ids') values = Matrix2D.get('values') df = pd.DataFrame(values, index=index, columns=columns) return df def _corr_to_df(self, corr_matrix_ref): """ retrieve correlation matrix ws object to coefficient_df and significance_df """ corr_data = self.dfu.get_objects({'object_refs': [corr_matrix_ref]})['data'][0]['data'] coefficient_data = corr_data.get('coefficient_data') significance_data = corr_data.get('significance_data') coefficient_df = self._Matrix2D_to_df(coefficient_data) significance_df = None if significance_data: significance_df = self._Matrix2D_to_df(significance_data) return coefficient_df, significance_df def _corr_df_to_excel(self, coefficient_df, significance_df, result_dir, corr_matrix_ref): """ write correlation matrix dfs into excel """ corr_info = self.dfu.get_objects({'object_refs': [corr_matrix_ref]})['data'][0]['info'] corr_name = corr_info[1] file_path = os.path.join(result_dir, corr_name + ".xlsx") writer = pd.ExcelWriter(file_path) coefficient_df.to_excel(writer, "coefficient_data", index=True) if significance_df is not None: significance_df.to_excel(writer, "significance_data", index=True) writer.close() def _update_taxonomy_index(self, data_df, amplicon_set_ref): logging.info('start updating index with taxonomy info from AmpliconSet') amplicon_set_data = self.dfu.get_objects( {'object_refs': [amplicon_set_ref]})['data'][0]['data'] amplicons = amplicon_set_data.get('amplicons') index = data_df.index.values replace_index = list() for idx in index: scientific_name = None try: scientific_name = amplicons.get(idx).get('taxonomy').get('scientific_name') except Exception: pass if scientific_name: replace_index.append(scientific_name + '_' + idx) else: replace_index.append(idx) for idx, val in enumerate(replace_index): index[idx] = val return data_df def _fetch_matrix_data(self, matrix_ref): logging.info('start fectching matrix data') res = self.dfu.get_objects({'object_refs': [matrix_ref]})['data'][0] obj_type = res['info'][2] if "KBaseMatrices" in obj_type or 'KBaseProfile' in obj_type: data_matrix = self.data_util.fetch_data({'obj_ref': matrix_ref}).get('data_matrix') data_df = pd.read_json(data_matrix) data_df = data_df.reindex(index=natsorted(data_df.index)) data_df = data_df.reindex(columns=natsorted(data_df.columns)) return data_df else: err_msg = 'Ooops! [{}] is not supported.\n'.format(obj_type) err_msg += 'Please supply KBaseMatrices or KBaseProfile object' raise ValueError(err_msg) def _compute_metrices_corr(self, df1, df2, method, compute_significance): df1.fillna(0, inplace=True) df2.fillna(0, inplace=True) col_1 = df1.columns col_2 = df2.columns idx_1 = df1.index idx_2 = df2.index common_col = col_1.intersection(col_2) logging.info('matrices share [{}] common columns'.format(common_col.size)) if common_col.empty: raise ValueError('Matrices share no common columns') logging.info('start trimming original matrix') df1 = df1.loc[:][common_col] df2 = df2.loc[:][common_col] corr_df = pd.DataFrame(index=idx_1, columns=idx_2) sig_df = pd.DataFrame(index=idx_1, columns=idx_2) logging.info('start calculating correlation matrix') logging.info('sizing {} x {}'.format(idx_1.size, idx_2.size)) counter = 0 for idx_value in idx_1: for col_value in idx_2: if counter % 100000 == 0: logging.info('computed {} corr/sig values'.format(counter)) value_array_1 = df1.loc[idx_value].tolist() value_array_2 = df2.loc[col_value].tolist() if method == 'pearson': corr_value, p_value = stats.pearsonr(value_array_1, value_array_2) elif method == 'spearman': corr_value, p_value = stats.spearmanr(value_array_1, value_array_2) elif method == 'kendall': corr_value, p_value = stats.kendalltau(value_array_1, value_array_2) elif method == 'mutual_info': corr_value = metrics.adjusted_mutual_info_score(value_array_1, value_array_2) # p_value = stats.linregress(value_array_1, value_array_2)[3] p_value = 0 else: err_msg = 'Input correlation method [{}] is not available.\n'.format(method) err_msg += 'Please choose one of {}'.format(CORR_METHOD) raise ValueError(err_msg) corr_df.at[idx_value, col_value] = round(corr_value, 4) if compute_significance: sig_df.at[idx_value, col_value] = round(p_value, 4) counter += 1 if not compute_significance: sig_df = None return corr_df, sig_df, df1, df2 def __init__(self, config): self.ws_url = config["workspace-url"] self.callback_url = config['SDK_CALLBACK_URL'] self.token = config['KB_AUTH_TOKEN'] self.scratch = config['scratch'] self.data_util = DataUtil(config) self.dfu = DataFileUtil(self.callback_url) self.report_util = kb_GenericsReport(self.callback_url) plt.switch_backend('agg') def df_to_corr(self, df, method='pearson', dimension='col'): """ Compute pairwise correlation of dimension (col or row) method: one of ['pearson', 'kendall', 'spearman'] """ logging.info('Computing correlation matrix') if method not in CORR_METHOD: err_msg = 'Input correlation method [{}] is not available.\n'.format(method) err_msg += 'Please choose one of {}'.format(CORR_METHOD) raise ValueError(err_msg) if dimension == 'row': df = df.T elif dimension != 'col': err_msg = 'Input dimension [{}] is not available.\n'.format(dimension) err_msg += 'Please choose either "col" or "row"' raise ValueError(err_msg) corr_df = df.corr(method=method).round(4) return corr_df def plotly_corr_matrix(self, corr_df): logging.info('Plotting matrix of correlation') result_dir = os.path.join(self.scratch, str(uuid.uuid4()) + '_corr_matrix_plots') self._mkdir_p(result_dir) try: trace = go.Heatmap(z=corr_df.values, x=corr_df.columns, y=corr_df.index) data = [trace] except Exception: err_msg = 'Running plotly_corr_matrix returned an error:\n{}\n'.format( traceback.format_exc()) raise ValueError(err_msg) else: corr_matrix_plot_path = os.path.join(result_dir, 'corr_matrix_plots.html') logging.info('Saving plot to:\n{}'.format(corr_matrix_plot_path)) plot(data, filename=corr_matrix_plot_path) return corr_matrix_plot_path def plot_corr_matrix(self, corr_df): """ plot_corr_matrix: genreate correlation matrix plot """ logging.info('Plotting matrix of correlation') result_dir = os.path.join(self.scratch, str(uuid.uuid4()) + '_corr_matrix_plots') self._mkdir_p(result_dir) try: plt.clf() matrix_size = corr_df.index.size figsize = 10 if matrix_size / 5 < 10 else matrix_size / 5 fig, ax = plt.subplots(figsize=(figsize, figsize)) cax = ax.matshow(corr_df) plt.xticks(list(range(len(corr_df.columns))), corr_df.columns, rotation='vertical', fontstyle='italic') plt.yticks(list(range(len(corr_df.columns))), corr_df.columns, fontstyle='italic') plt.colorbar(cax) except Exception: err_msg = 'Running plot_corr_matrix returned an error:\n{}\n'.format( traceback.format_exc()) raise ValueError(err_msg) else: corr_matrix_plot_path = os.path.join(result_dir, 'corr_matrix_plots.png') logging.info('Saving plot to:\n{}'.format(corr_matrix_plot_path)) plt.savefig(corr_matrix_plot_path) return corr_matrix_plot_path def plot_scatter_matrix(self, df, dimension='col', alpha=0.2, diagonal='kde', figsize=(10, 10)): """ plot_scatter_matrix: generate scatter plot for dimension (col or row) ref: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.plotting.scatter_matrix.html """ logging.info('Plotting matrix of scatter') result_dir = os.path.join(self.scratch, str(uuid.uuid4()) + '_scatter_plots') self._mkdir_p(result_dir) if dimension == 'row': df = df.T elif dimension != 'col': err_msg = 'Input dimension [{}] is not available.\n'.format(dimension) err_msg += 'Please choose either "col" or "row"' raise ValueError(err_msg) try: plt.clf() sm =
pd.plotting.scatter_matrix(df, alpha=alpha, diagonal=diagonal, figsize=figsize)
pandas.plotting.scatter_matrix
#!/usr/bin/env python # Copyright (c) <NAME>. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import pandas as pd import os with open("data/pwkp.test.orig") as f: original_content = f.readlines() original_content = [t.strip() for t in original_content] # original_content_low = [sent.lower() for sent in original_content] # PWKP dataframe = pd.read_excel("data/pwkp_data.ods", engine="odf",header=[0, 1],) #print(dataframe.columns) current_system = "" for i,row in dataframe.iterrows(): system = row["System", "Unnamed: 0_level_1"] if type(system) == str: current_system = system.strip().split(" (")[0] dataframe.loc[i, [["System", "Unnamed: 0_level_1"]]] = current_system n = 0 m = 0 dataframe["original"] = "" dataframe["simplification"] = "" systems = sorted(list(set(dataframe["System", "Unnamed: 0_level_1"]))) for system in systems: if os.path.exists("data/"+system+".tok"): with open("data/"+system+".tok") as f: content = f.readlines() current_original_content = original_content elif os.path.exists("data/"+system+".tok.low"): with open("data/"+system+".tok.low") as f: content = f.readlines() current_original_content = original_content # todo: _low add lowered sentences else: current_original_content = None print("no data found for system", system) continue content = [t.strip() for t in content if t != "\n"] if len(content) != len(dataframe[dataframe["System", "Unnamed: 0_level_1"] == system]): print(system, len(content),len(dataframe[dataframe["System", "Unnamed: 0_level_1"] == system])) for i, index in enumerate(dataframe[dataframe["System", "Unnamed: 0_level_1"] == system].index): dataframe.loc[index, "simplification"] = content[i].strip() dataframe.loc[index, "original"] = current_original_content[i].strip() dataframe.to_csv("data/pwkp_with_text.csv") def invert_rating(rating): if rating == 3: return 1 elif rating == 2: return 2 elif rating == 1: return 3 else: return None dataframe =
pd.read_csv("data/pwkp_with_text.csv", header=[0,1])
pandas.read_csv
# pylint: disable-msg=E1101,W0612 from datetime import datetime, time, timedelta, date import sys import os import operator from distutils.version import LooseVersion import nose import numpy as np randn = np.random.randn from pandas import (Index, Series, TimeSeries, DataFrame, isnull, date_range, Timestamp, Period, DatetimeIndex, Int64Index, to_datetime, bdate_range, Float64Index) import pandas.core.datetools as datetools import pandas.tseries.offsets as offsets import pandas.tseries.tools as tools import pandas.tseries.frequencies as fmod import pandas as pd from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tslib import NaT, iNaT import pandas.lib as lib import pandas.tslib as tslib import pandas.index as _index from pandas.compat import range, long, StringIO, lrange, lmap, zip, product import pandas.core.datetools as dt from numpy.random import rand from numpy.testing import assert_array_equal from pandas.util.testing import assert_frame_equal import pandas.compat as compat import pandas.core.common as com from pandas import concat from pandas import _np_version_under1p7 from numpy.testing.decorators import slow def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest("pytz not installed") def _skip_if_has_locale(): import locale lang, _ = locale.getlocale() if lang is not None: raise nose.SkipTest("Specific locale is set {0}".format(lang)) class TestTimeSeriesDuplicates(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): dates = [datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 5)] self.dups = Series(np.random.randn(len(dates)), index=dates) def test_constructor(self): tm.assert_isinstance(self.dups, TimeSeries) tm.assert_isinstance(self.dups.index, DatetimeIndex) def test_is_unique_monotonic(self): self.assertFalse(self.dups.index.is_unique) def test_index_unique(self): uniques = self.dups.index.unique() expected = DatetimeIndex([datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5)]) self.assertEqual(uniques.dtype, 'M8[ns]') # sanity self.assertTrue(uniques.equals(expected)) self.assertEqual(self.dups.index.nunique(), 4) # #2563 self.assertTrue(isinstance(uniques, DatetimeIndex)) dups_local = self.dups.index.tz_localize('US/Eastern') dups_local.name = 'foo' result = dups_local.unique() expected = DatetimeIndex(expected, tz='US/Eastern') self.assertTrue(result.tz is not None) self.assertEqual(result.name, 'foo') self.assertTrue(result.equals(expected)) # NaT arr = [ 1370745748 + t for t in range(20) ] + [iNaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) arr = [ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) def test_index_dupes_contains(self): d = datetime(2011, 12, 5, 20, 30) ix = DatetimeIndex([d, d]) self.assertTrue(d in ix) def test_duplicate_dates_indexing(self): ts = self.dups uniques = ts.index.unique() for date in uniques: result = ts[date] mask = ts.index == date total = (ts.index == date).sum() expected = ts[mask] if total > 1: assert_series_equal(result, expected) else: assert_almost_equal(result, expected[0]) cp = ts.copy() cp[date] = 0 expected = Series(np.where(mask, 0, ts), index=ts.index) assert_series_equal(cp, expected) self.assertRaises(KeyError, ts.__getitem__, datetime(2000, 1, 6)) # new index ts[datetime(2000,1,6)] = 0 self.assertEqual(ts[datetime(2000,1,6)], 0) def test_range_slice(self): idx = DatetimeIndex(['1/1/2000', '1/2/2000', '1/2/2000', '1/3/2000', '1/4/2000']) ts = Series(np.random.randn(len(idx)), index=idx) result = ts['1/2/2000':] expected = ts[1:] assert_series_equal(result, expected) result = ts['1/2/2000':'1/3/2000'] expected = ts[1:4] assert_series_equal(result, expected) def test_groupby_average_dup_values(self): result = self.dups.groupby(level=0).mean() expected = self.dups.groupby(self.dups.index).mean() assert_series_equal(result, expected) def test_indexing_over_size_cutoff(self): import datetime # #1821 old_cutoff = _index._SIZE_CUTOFF try: _index._SIZE_CUTOFF = 1000 # create large list of non periodic datetime dates = [] sec = datetime.timedelta(seconds=1) half_sec = datetime.timedelta(microseconds=500000) d = datetime.datetime(2011, 12, 5, 20, 30) n = 1100 for i in range(n): dates.append(d) dates.append(d + sec) dates.append(d + sec + half_sec) dates.append(d + sec + sec + half_sec) d += 3 * sec # duplicate some values in the list duplicate_positions = np.random.randint(0, len(dates) - 1, 20) for p in duplicate_positions: dates[p + 1] = dates[p] df = DataFrame(np.random.randn(len(dates), 4), index=dates, columns=list('ABCD')) pos = n * 3 timestamp = df.index[pos] self.assertIn(timestamp, df.index) # it works! df.ix[timestamp] self.assertTrue(len(df.ix[[timestamp]]) > 0) finally: _index._SIZE_CUTOFF = old_cutoff def test_indexing_unordered(self): # GH 2437 rng = date_range(start='2011-01-01', end='2011-01-15') ts = Series(randn(len(rng)), index=rng) ts2 = concat([ts[0:4],ts[-4:],ts[4:-4]]) for t in ts.index: s = str(t) expected = ts[t] result = ts2[t] self.assertTrue(expected == result) # GH 3448 (ranges) def compare(slobj): result = ts2[slobj].copy() result = result.sort_index() expected = ts[slobj] assert_series_equal(result,expected) compare(slice('2011-01-01','2011-01-15')) compare(slice('2010-12-30','2011-01-15')) compare(slice('2011-01-01','2011-01-16')) # partial ranges compare(slice('2011-01-01','2011-01-6')) compare(slice('2011-01-06','2011-01-8')) compare(slice('2011-01-06','2011-01-12')) # single values result = ts2['2011'].sort_index() expected = ts['2011'] assert_series_equal(result,expected) # diff freq rng = date_range(datetime(2005, 1, 1), periods=20, freq='M') ts = Series(np.arange(len(rng)), index=rng) ts = ts.take(np.random.permutation(20)) result = ts['2005'] for t in result.index: self.assertTrue(t.year == 2005) def test_indexing(self): idx = date_range("2001-1-1", periods=20, freq='M') ts = Series(np.random.rand(len(idx)),index=idx) # getting # GH 3070, make sure semantics work on Series/Frame expected = ts['2001'] df = DataFrame(dict(A = ts)) result = df['2001']['A'] assert_series_equal(expected,result) # setting ts['2001'] = 1 expected = ts['2001'] df.loc['2001','A'] = 1 result = df['2001']['A'] assert_series_equal(expected,result) # GH3546 (not including times on the last day) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:00', freq='H') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:59', freq='S') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = [ Timestamp('2013-05-31 00:00'), Timestamp(datetime(2013,5,31,23,59,59,999999))] ts = Series(lrange(len(idx)), index=idx) expected = ts['2013'] assert_series_equal(expected,ts) # GH 3925, indexing with a seconds resolution string / datetime object df = DataFrame(randn(5,5),columns=['open','high','low','close','volume'],index=date_range('2012-01-02 18:01:00',periods=5,tz='US/Central',freq='s')) expected = df.loc[[df.index[2]]] result = df['2012-01-02 18:01:02'] assert_frame_equal(result,expected) # this is a single date, so will raise self.assertRaises(KeyError, df.__getitem__, df.index[2],) def test_recreate_from_data(self): if _np_version_under1p7: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N', 'C'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, periods=1) idx = DatetimeIndex(org, freq=f) self.assertTrue(idx.equals(org)) # unbale to create tz-aware 'A' and 'C' freq if _np_version_under1p7: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, tz='US/Pacific', periods=1) idx = DatetimeIndex(org, freq=f, tz='US/Pacific') self.assertTrue(idx.equals(org)) def assert_range_equal(left, right): assert(left.equals(right)) assert(left.freq == right.freq) assert(left.tz == right.tz) class TestTimeSeries(tm.TestCase): _multiprocess_can_split_ = True def test_is_(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') self.assertTrue(dti.is_(dti)) self.assertTrue(dti.is_(dti.view())) self.assertFalse(dti.is_(dti.copy())) def test_dti_slicing(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') dti2 = dti[[1, 3, 5]] v1 = dti2[0] v2 = dti2[1] v3 = dti2[2] self.assertEqual(v1, Timestamp('2/28/2005')) self.assertEqual(v2, Timestamp('4/30/2005')) self.assertEqual(v3, Timestamp('6/30/2005')) # don't carry freq through irregular slicing self.assertIsNone(dti2.freq) def test_pass_datetimeindex_to_index(self): # Bugs in #1396 rng = date_range('1/1/2000', '3/1/2000') idx = Index(rng, dtype=object) expected = Index(rng.to_pydatetime(), dtype=object) self.assert_numpy_array_equal(idx.values, expected.values) def test_contiguous_boolean_preserve_freq(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') mask = np.zeros(len(rng), dtype=bool) mask[10:20] = True masked = rng[mask] expected = rng[10:20] self.assertIsNotNone(expected.freq) assert_range_equal(masked, expected) mask[22] = True masked = rng[mask] self.assertIsNone(masked.freq) def test_getitem_median_slice_bug(self): index = date_range('20090415', '20090519', freq='2B') s = Series(np.random.randn(13), index=index) indexer = [slice(6, 7, None)] result = s[indexer] expected = s[indexer[0]] assert_series_equal(result, expected) def test_series_box_timestamp(self): rng = date_range('20090415', '20090519', freq='B') s = Series(rng) tm.assert_isinstance(s[5], Timestamp) rng = date_range('20090415', '20090519', freq='B') s = Series(rng, index=rng) tm.assert_isinstance(s[5], Timestamp) tm.assert_isinstance(s.iget_value(5), Timestamp) def test_date_range_ambiguous_arguments(self): # #2538 start = datetime(2011, 1, 1, 5, 3, 40) end = datetime(2011, 1, 1, 8, 9, 40) self.assertRaises(ValueError, date_range, start, end, freq='s', periods=10) def test_timestamp_to_datetime(self): _skip_if_no_pytz() rng = date_range('20090415', '20090519', tz='US/Eastern') stamp = rng[0] dtval = stamp.to_pydatetime() self.assertEqual(stamp, dtval) self.assertEqual(stamp.tzinfo, dtval.tzinfo) def test_index_convert_to_datetime_array(self): _skip_if_no_pytz() def _check_rng(rng): converted = rng.to_pydatetime() tm.assert_isinstance(converted, np.ndarray) for x, stamp in zip(converted, rng): tm.assert_isinstance(x, datetime) self.assertEqual(x, stamp.to_pydatetime()) self.assertEqual(x.tzinfo, stamp.tzinfo) rng = date_range('20090415', '20090519') rng_eastern = date_range('20090415', '20090519', tz='US/Eastern') rng_utc = date_range('20090415', '20090519', tz='utc') _check_rng(rng) _check_rng(rng_eastern) _check_rng(rng_utc) def test_ctor_str_intraday(self): rng = DatetimeIndex(['1-1-2000 00:00:01']) self.assertEqual(rng[0].second, 1) def test_series_ctor_plus_datetimeindex(self): rng = date_range('20090415', '20090519', freq='B') data = dict((k, 1) for k in rng) result = Series(data, index=rng) self.assertIs(result.index, rng) def test_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index) result = result.fillna(method='bfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index, method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index, method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_setitem_timestamp(self): # 2155 columns = DatetimeIndex(start='1/1/2012', end='2/1/2012', freq=datetools.bday) index = lrange(10) data = DataFrame(columns=columns, index=index) t = datetime(2012, 11, 1) ts = Timestamp(t) data[ts] = np.nan # works def test_sparse_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) ss = s[:2].reindex(index).to_sparse() result = ss.fillna(method='pad', limit=5) expected = ss.fillna(method='pad', limit=5) expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) ss = s[-2:].reindex(index).to_sparse() result = ss.fillna(method='backfill', limit=5) expected = ss.fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) s = s.to_sparse() result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index, method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index, method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_sparse_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_pad_require_monotonicity(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') rng2 = rng[::2][::-1] self.assertRaises(ValueError, rng2.get_indexer, rng, method='pad') def test_frame_ctor_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) df = DataFrame({'A': np.random.randn(len(rng)), 'B': dates}) self.assertTrue(np.issubdtype(df['B'].dtype, np.dtype('M8[ns]'))) def test_frame_add_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') df = DataFrame(index=np.arange(len(rng))) df['A'] = rng self.assertTrue(np.issubdtype(df['A'].dtype, np.dtype('M8[ns]'))) def test_frame_datetime64_pre1900_repr(self): df = DataFrame({'year': date_range('1/1/1700', periods=50, freq='A-DEC')}) # it works! repr(df) def test_frame_add_datetime64_col_other_units(self): n = 100 units = ['h', 'm', 's', 'ms', 'D', 'M', 'Y'] ns_dtype = np.dtype('M8[ns]') for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df[unit] = vals ex_vals = to_datetime(vals.astype('O')) self.assertEqual(df[unit].dtype, ns_dtype) self.assertTrue((df[unit].values == ex_vals).all()) # Test insertion into existing datetime64 column df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df['dates'] = np.arange(n, dtype=np.int64).view(ns_dtype) for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) tmp = df.copy() tmp['dates'] = vals ex_vals = to_datetime(vals.astype('O')) self.assertTrue((tmp['dates'].values == ex_vals).all()) def test_to_datetime_unit(self): epoch = 1370745748 s = Series([ epoch + t for t in range(20) ]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = concat([Series([ epoch + t for t in range(20) ]).astype(float),Series([np.nan])],ignore_index=True) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) def test_series_ctor_datetime64(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) series = Series(dates) self.assertTrue(np.issubdtype(series.dtype, np.dtype('M8[ns]'))) def test_index_cast_datetime64_other_units(self): arr = np.arange(0, 100, 10, dtype=np.int64).view('M8[D]') idx = Index(arr) self.assertTrue((idx.values == tslib.cast_to_nanoseconds(arr)).all()) def test_index_astype_datetime64(self): idx = Index([datetime(2012, 1, 1)], dtype=object) if not _np_version_under1p7: raise nose.SkipTest("test only valid in numpy < 1.7") casted = idx.astype(np.dtype('M8[D]')) expected = DatetimeIndex(idx.values) tm.assert_isinstance(casted, DatetimeIndex) self.assertTrue(casted.equals(expected)) def test_reindex_series_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') series = Series(rng) result = series.reindex(lrange(15)) self.assertTrue(np.issubdtype(result.dtype, np.dtype('M8[ns]'))) mask = result.isnull() self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_reindex_frame_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') df = DataFrame({'A': np.random.randn(len(rng)), 'B': rng}) result = df.reindex(lrange(15)) self.assertTrue(np.issubdtype(result['B'].dtype, np.dtype('M8[ns]'))) mask = com.isnull(result)['B'] self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_series_repr_nat(self): series = Series([0, 1000, 2000, iNaT], dtype='M8[ns]') result = repr(series) expected = ('0 1970-01-01 00:00:00\n' '1 1970-01-01 00:00:00.000001\n' '2 1970-01-01 00:00:00.000002\n' '3 NaT\n' 'dtype: datetime64[ns]') self.assertEqual(result, expected) def test_fillna_nat(self): series = Series([0, 1, 2, iNaT], dtype='M8[ns]') filled = series.fillna(method='pad') filled2 = series.fillna(value=series.values[2]) expected = series.copy() expected.values[3] = expected.values[2] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='pad') filled2 = df.fillna(value=series.values[2]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) series = Series([iNaT, 0, 1, 2], dtype='M8[ns]') filled = series.fillna(method='bfill') filled2 = series.fillna(value=series[1]) expected = series.copy() expected[0] = expected[1] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='bfill') filled2 = df.fillna(value=series[1]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) def test_string_na_nat_conversion(self): # GH #999, #858 from pandas.compat import parse_date strings = np.array(['1/1/2000', '1/2/2000', np.nan, '1/4/2000, 12:34:56'], dtype=object) expected = np.empty(4, dtype='M8[ns]') for i, val in enumerate(strings): if com.isnull(val): expected[i] = iNaT else: expected[i] = parse_date(val) result = tslib.array_to_datetime(strings) assert_almost_equal(result, expected) result2 = to_datetime(strings) tm.assert_isinstance(result2, DatetimeIndex) assert_almost_equal(result, result2) malformed = np.array(['1/100/2000', np.nan], dtype=object) result = to_datetime(malformed) assert_almost_equal(result, malformed) self.assertRaises(ValueError, to_datetime, malformed, errors='raise') idx = ['a', 'b', 'c', 'd', 'e'] series = Series(['1/1/2000', np.nan, '1/3/2000', np.nan, '1/5/2000'], index=idx, name='foo') dseries = Series([to_datetime('1/1/2000'), np.nan, to_datetime('1/3/2000'), np.nan, to_datetime('1/5/2000')], index=idx, name='foo') result = to_datetime(series) dresult = to_datetime(dseries) expected = Series(np.empty(5, dtype='M8[ns]'), index=idx) for i in range(5): x = series[i] if isnull(x): expected[i] = iNaT else: expected[i] = to_datetime(x) assert_series_equal(result, expected) self.assertEqual(result.name, 'foo') assert_series_equal(dresult, expected) self.assertEqual(dresult.name, 'foo') def test_to_datetime_iso8601(self): result = to_datetime(["2012-01-01 00:00:00"]) exp = Timestamp("2012-01-01 00:00:00") self.assertEqual(result[0], exp) result = to_datetime(['20121001']) # bad iso 8601 exp = Timestamp('2012-10-01') self.assertEqual(result[0], exp) def test_to_datetime_default(self): rs = to_datetime('2001') xp = datetime(2001, 1, 1) self.assertTrue(rs, xp) #### dayfirst is essentially broken #### to_datetime('01-13-2012', dayfirst=True) #### self.assertRaises(ValueError, to_datetime('01-13-2012', dayfirst=True)) def test_to_datetime_on_datetime64_series(self): # #2699 s = Series(date_range('1/1/2000', periods=10)) result = to_datetime(s) self.assertEqual(result[0], s[0]) def test_to_datetime_with_apply(self): # this is only locale tested with US/None locales _skip_if_has_locale() # GH 5195 # with a format and coerce a single item to_datetime fails td = Series(['May 04', 'Jun 02', 'Dec 11'], index=[1,2,3]) expected = pd.to_datetime(td, format='%b %y') result = td.apply(pd.to_datetime, format='%b %y') assert_series_equal(result, expected) td = pd.Series(['May 04', 'Jun 02', ''], index=[1,2,3]) self.assertRaises(ValueError, lambda : pd.to_datetime(td,format='%b %y')) self.assertRaises(ValueError, lambda : td.apply(pd.to_datetime, format='%b %y')) expected = pd.to_datetime(td, format='%b %y', coerce=True) result = td.apply(lambda x: pd.to_datetime(x, format='%b %y', coerce=True)) assert_series_equal(result, expected) def test_nat_vector_field_access(self): idx = DatetimeIndex(['1/1/2000', None, None, '1/4/2000']) fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(idx, field) expected = [getattr(x, field) if x is not NaT else -1 for x in idx] self.assert_numpy_array_equal(result, expected) def test_nat_scalar_field_access(self): fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(NaT, field) self.assertEqual(result, -1) self.assertEqual(NaT.weekday(), -1) def test_to_datetime_types(self): # empty string result = to_datetime('') self.assertIs(result, NaT) result = to_datetime(['', '']) self.assertTrue(isnull(result).all()) # ints result = Timestamp(0) expected = to_datetime(0) self.assertEqual(result, expected) # GH 3888 (strings) expected = to_datetime(['2012'])[0] result = to_datetime('2012') self.assertEqual(result, expected) ### array = ['2012','20120101','20120101 12:01:01'] array = ['20120101','20120101 12:01:01'] expected = list(to_datetime(array)) result = lmap(Timestamp,array) tm.assert_almost_equal(result,expected) ### currently fails ### ### result = Timestamp('2012') ### expected = to_datetime('2012') ### self.assertEqual(result, expected) def test_to_datetime_unprocessable_input(self): # GH 4928 self.assert_numpy_array_equal( to_datetime([1, '1']), np.array([1, '1'], dtype='O') ) self.assertRaises(TypeError, to_datetime, [1, '1'], errors='raise') def test_to_datetime_other_datetime64_units(self): # 5/25/2012 scalar = np.int64(1337904000000000).view('M8[us]') as_obj = scalar.astype('O') index = DatetimeIndex([scalar]) self.assertEqual(index[0], scalar.astype('O')) value = Timestamp(scalar) self.assertEqual(value, as_obj) def test_to_datetime_list_of_integers(self): rng = date_range('1/1/2000', periods=20) rng = DatetimeIndex(rng.values) ints = list(rng.asi8) result = DatetimeIndex(ints) self.assertTrue(rng.equals(result)) def test_to_datetime_dt64s(self): in_bound_dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] for dt in in_bound_dts: self.assertEqual( pd.to_datetime(dt), Timestamp(dt) ) oob_dts = [ np.datetime64('1000-01-01'), np.datetime64('5000-01-02'), ] for dt in oob_dts: self.assertRaises(ValueError, pd.to_datetime, dt, errors='raise') self.assertRaises(ValueError, tslib.Timestamp, dt) self.assertIs(pd.to_datetime(dt, coerce=True), NaT) def test_to_datetime_array_of_dt64s(self): dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] # Assuming all datetimes are in bounds, to_datetime() returns # an array that is equal to Timestamp() parsing self.assert_numpy_array_equal( pd.to_datetime(dts, box=False), np.array([Timestamp(x).asm8 for x in dts]) ) # A list of datetimes where the last one is out of bounds dts_with_oob = dts + [np.datetime64('9999-01-01')] self.assertRaises( ValueError, pd.to_datetime, dts_with_oob, coerce=False, errors='raise' ) self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=True), np.array( [ Timestamp(dts_with_oob[0]).asm8, Timestamp(dts_with_oob[1]).asm8, iNaT, ], dtype='M8' ) ) # With coerce=False and errors='ignore', out of bounds datetime64s # are converted to their .item(), which depending on the version of # numpy is either a python datetime.datetime or datetime.date self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=False), np.array( [dt.item() for dt in dts_with_oob], dtype='O' ) ) def test_index_to_datetime(self): idx = Index(['1/1/2000', '1/2/2000', '1/3/2000']) result = idx.to_datetime() expected = DatetimeIndex(datetools.to_datetime(idx.values)) self.assertTrue(result.equals(expected)) today = datetime.today() idx = Index([today], dtype=object) result = idx.to_datetime() expected = DatetimeIndex([today]) self.assertTrue(result.equals(expected)) def test_to_datetime_freq(self): xp = bdate_range('2000-1-1', periods=10, tz='UTC') rs = xp.to_datetime() self.assertEqual(xp.freq, rs.freq) self.assertEqual(xp.tzinfo, rs.tzinfo) def test_range_misspecified(self): # GH #1095 self.assertRaises(ValueError, date_range, '1/1/2000') self.assertRaises(ValueError, date_range, end='1/1/2000') self.assertRaises(ValueError, date_range, periods=10) self.assertRaises(ValueError, date_range, '1/1/2000', freq='H') self.assertRaises(ValueError, date_range, end='1/1/2000', freq='H') self.assertRaises(ValueError, date_range, periods=10, freq='H') def test_reasonable_keyerror(self): # GH #1062 index = DatetimeIndex(['1/3/2000']) try: index.get_loc('1/1/2000') except KeyError as e: self.assertIn('2000', str(e)) def test_reindex_with_datetimes(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) result = ts.reindex(list(ts.index[5:10])) expected = ts[5:10] tm.assert_series_equal(result, expected) result = ts[list(ts.index[5:10])] tm.assert_series_equal(result, expected) def test_promote_datetime_date(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) ts_slice = ts[5:] ts2 = ts_slice.copy() ts2.index = [x.date() for x in ts2.index] result = ts + ts2 result2 = ts2 + ts expected = ts + ts[5:] assert_series_equal(result, expected) assert_series_equal(result2, expected) # test asfreq result = ts2.asfreq('4H', method='ffill') expected = ts[5:].asfreq('4H', method='ffill') assert_series_equal(result, expected) result = rng.get_indexer(ts2.index) expected = rng.get_indexer(ts_slice.index) self.assert_numpy_array_equal(result, expected) def test_asfreq_normalize(self): rng = date_range('1/1/2000 09:30', periods=20) norm = date_range('1/1/2000', periods=20) vals = np.random.randn(20) ts = Series(vals, index=rng) result = ts.asfreq('D', normalize=True) norm = date_range('1/1/2000', periods=20) expected = Series(vals, index=norm) assert_series_equal(result, expected) vals = np.random.randn(20, 3) ts = DataFrame(vals, index=rng) result = ts.asfreq('D', normalize=True) expected = DataFrame(vals, index=norm) assert_frame_equal(result, expected) def test_date_range_gen_error(self): rng = date_range('1/1/2000 00:00', '1/1/2000 00:18', freq='5min') self.assertEqual(len(rng), 4) def test_first_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.first('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.first('10d') self.assertEqual(len(result), 10) result = ts.first('3M') expected = ts[:'3/31/2000'] assert_series_equal(result, expected) result = ts.first('21D') expected = ts[:21] assert_series_equal(result, expected) result = ts[:0].first('3M') assert_series_equal(result, ts[:0]) def test_last_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.last('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.last('10d') self.assertEqual(len(result), 10) result = ts.last('21D') expected = ts['12/12/2009':] assert_series_equal(result, expected) result = ts.last('21D') expected = ts[-21:] assert_series_equal(result, expected) result = ts[:0].last('3M') assert_series_equal(result, ts[:0]) def test_add_offset(self): rng = date_range('1/1/2000', '2/1/2000') result = rng + offsets.Hour(2) expected = date_range('1/1/2000 02:00', '2/1/2000 02:00') self.assertTrue(result.equals(expected)) def test_format_pre_1900_dates(self): rng = date_range('1/1/1850', '1/1/1950', freq='A-DEC') rng.format() ts = Series(1, index=rng) repr(ts) def test_repeat(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) def test_at_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_series_equal(result, expected) df = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts[time(9, 30)] result_df = df.ix[time(9, 30)] expected = ts[(rng.hour == 9) & (rng.minute == 30)] exp_df = df[(rng.hour == 9) & (rng.minute == 30)] # expected.index = date_range('1/1/2000', '1/4/2000') assert_series_equal(result, expected) tm.assert_frame_equal(result_df, exp_df) chunk = df.ix['1/4/2000':] result = chunk.ix[time(9, 30)] expected = result_df[-1:] tm.assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = Series(np.random.randn(len(rng)), index=rng) result = ts.at_time(time(0, 0)) assert_series_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = Series(np.random.randn(len(rng)), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_at_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_frame_equal(result, expected) result = ts.ix[time(9, 30)] expected = ts.ix[(rng.hour == 9) & (rng.minute == 30)] assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts.at_time(time(0, 0)) assert_frame_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = DataFrame(np.random.randn(len(rng), 2), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_between_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_series_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_between_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_frame_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_dti_constructor_preserve_dti_freq(self): rng = date_range('1/1/2000', '1/2/2000', freq='5min') rng2 = DatetimeIndex(rng) self.assertEqual(rng.freq, rng2.freq) def test_normalize(self): rng = date_range('1/1/2000 9:30', periods=10, freq='D') result = rng.normalize() expected = date_range('1/1/2000', periods=10, freq='D') self.assertTrue(result.equals(expected)) rng_ns = pd.DatetimeIndex(np.array([1380585623454345752, 1380585612343234312]).astype("datetime64[ns]")) rng_ns_normalized = rng_ns.normalize() expected = pd.DatetimeIndex(np.array([1380585600000000000, 1380585600000000000]).astype("datetime64[ns]")) self.assertTrue(rng_ns_normalized.equals(expected)) self.assertTrue(result.is_normalized) self.assertFalse(rng.is_normalized) def test_to_period(self): from pandas.tseries.period import period_range ts = _simple_ts('1/1/2000', '1/1/2001') pts = ts.to_period() exp = ts.copy() exp.index = period_range('1/1/2000', '1/1/2001') assert_series_equal(pts, exp) pts = ts.to_period('M') self.assertTrue(pts.index.equals(exp.index.asfreq('M'))) def create_dt64_based_index(self): data = [Timestamp('2007-01-01 10:11:12.123456Z'), Timestamp('2007-01-01 10:11:13.789123Z')] index = DatetimeIndex(data) return index def test_to_period_millisecond(self): index = self.create_dt64_based_index() period = index.to_period(freq='L') self.assertEqual(2, len(period)) self.assertEqual(period[0], Period('2007-01-01 10:11:12.123Z', 'L')) self.assertEqual(period[1], Period('2007-01-01 10:11:13.789Z', 'L')) def test_to_period_microsecond(self): index = self.create_dt64_based_index() period = index.to_period(freq='U') self.assertEqual(2, len(period)) self.assertEqual(period[0], Period('2007-01-01 10:11:12.123456Z', 'U')) self.assertEqual(period[1], Period('2007-01-01 10:11:13.789123Z', 'U')) def test_to_period_tz(self): _skip_if_no_pytz() from dateutil.tz import tzlocal from pytz import utc as UTC xp = date_range('1/1/2000', '4/1/2000').to_period() ts = date_range('1/1/2000', '4/1/2000', tz='US/Eastern') result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) ts = date_range('1/1/2000', '4/1/2000', tz=UTC) result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) ts = date_range('1/1/2000', '4/1/2000', tz=tzlocal()) result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) def test_frame_to_period(self): K = 5 from pandas.tseries.period import period_range dr = date_range('1/1/2000', '1/1/2001') pr = period_range('1/1/2000', '1/1/2001') df = DataFrame(randn(len(dr), K), index=dr) df['mix'] = 'a' pts = df.to_period() exp = df.copy() exp.index = pr assert_frame_equal(pts, exp) pts = df.to_period('M') self.assertTrue(pts.index.equals(exp.index.asfreq('M'))) df = df.T pts = df.to_period(axis=1) exp = df.copy() exp.columns = pr assert_frame_equal(pts, exp) pts = df.to_period('M', axis=1) self.assertTrue(pts.columns.equals(exp.columns.asfreq('M'))) self.assertRaises(ValueError, df.to_period, axis=2) def test_timestamp_fields(self): # extra fields from DatetimeIndex like quarter and week idx = tm.makeDateIndex(100) fields = ['dayofweek', 'dayofyear', 'week', 'weekofyear', 'quarter', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end'] for f in fields: expected = getattr(idx, f)[-1] result = getattr(Timestamp(idx[-1]), f) self.assertEqual(result, expected) self.assertEqual(idx.freq, Timestamp(idx[-1], idx.freq).freq) self.assertEqual(idx.freqstr, Timestamp(idx[-1], idx.freq).freqstr) def test_woy_boundary(self): # make sure weeks at year boundaries are correct d = datetime(2013,12,31) result = Timestamp(d).week expected = 1 # ISO standard self.assertEqual(result, expected) d = datetime(2008,12,28) result = Timestamp(d).week expected = 52 # ISO standard self.assertEqual(result, expected) d = datetime(2009,12,31) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) d = datetime(2010,1,1) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) d = datetime(2010,1,3) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) result = np.array([Timestamp(datetime(*args)).week for args in [(2000,1,1),(2000,1,2),(2005,1,1),(2005,1,2)]]) self.assertTrue((result == [52, 52, 53, 53]).all()) def test_timestamp_date_out_of_range(self): self.assertRaises(ValueError, Timestamp, '1676-01-01') self.assertRaises(ValueError, Timestamp, '2263-01-01') # 1475 self.assertRaises(ValueError, DatetimeIndex, ['1400-01-01']) self.assertRaises(ValueError, DatetimeIndex, [datetime(1400, 1, 1)]) def test_timestamp_repr(self): # pre-1900 stamp = Timestamp('1850-01-01', tz='US/Eastern') repr(stamp) iso8601 = '1850-01-01 01:23:45.012345' stamp = Timestamp(iso8601, tz='US/Eastern') result = repr(stamp) self.assertIn(iso8601, result) def test_timestamp_from_ordinal(self): # GH 3042 dt = datetime(2011, 4, 16, 0, 0) ts = Timestamp.fromordinal(dt.toordinal()) self.assertEqual(ts.to_pydatetime(), dt) # with a tzinfo stamp = Timestamp('2011-4-16', tz='US/Eastern') dt_tz = stamp.to_pydatetime() ts = Timestamp.fromordinal(dt_tz.toordinal(),tz='US/Eastern') self.assertEqual(ts.to_pydatetime(), dt_tz) def test_datetimeindex_integers_shift(self): rng = date_range('1/1/2000', periods=20) result = rng + 5 expected = rng.shift(5) self.assertTrue(result.equals(expected)) result = rng - 5 expected = rng.shift(-5) self.assertTrue(result.equals(expected)) def test_astype_object(self): # NumPy 1.6.1 weak ns support rng = date_range('1/1/2000', periods=20) casted = rng.astype('O') exp_values = list(rng) self.assert_numpy_array_equal(casted, exp_values) def test_catch_infinite_loop(self): offset = datetools.DateOffset(minute=5) # blow up, don't loop forever self.assertRaises(Exception, date_range, datetime(2011, 11, 11), datetime(2011, 11, 12), freq=offset) def test_append_concat(self): rng = date_range('5/8/2012 1:45', periods=10, freq='5T') ts = Series(np.random.randn(len(rng)), rng) df = DataFrame(np.random.randn(len(rng), 4), index=rng) result = ts.append(ts) result_df = df.append(df) ex_index = DatetimeIndex(np.tile(rng.values, 2)) self.assertTrue(result.index.equals(ex_index)) self.assertTrue(result_df.index.equals(ex_index)) appended = rng.append(rng) self.assertTrue(appended.equals(ex_index)) appended = rng.append([rng, rng]) ex_index = DatetimeIndex(np.tile(rng.values, 3)) self.assertTrue(appended.equals(ex_index)) # different index names rng1 = rng.copy() rng2 = rng.copy() rng1.name = 'foo' rng2.name = 'bar' self.assertEqual(rng1.append(rng1).name, 'foo') self.assertIsNone(rng1.append(rng2).name) def test_append_concat_tz(self): #GH 2938 _skip_if_no_pytz() rng = date_range('5/8/2012 1:45', periods=10, freq='5T', tz='US/Eastern') rng2 = date_range('5/8/2012 2:35', periods=10, freq='5T', tz='US/Eastern') rng3 = date_range('5/8/2012 1:45', periods=20, freq='5T', tz='US/Eastern') ts = Series(np.random.randn(len(rng)), rng) df = DataFrame(np.random.randn(len(rng), 4), index=rng) ts2 = Series(np.random.randn(len(rng2)), rng2) df2 = DataFrame(np.random.randn(len(rng2), 4), index=rng2) result = ts.append(ts2) result_df = df.append(df2) self.assertTrue(result.index.equals(rng3)) self.assertTrue(result_df.index.equals(rng3)) appended = rng.append(rng2) self.assertTrue(appended.equals(rng3)) def test_set_dataframe_column_ns_dtype(self): x = DataFrame([datetime.now(), datetime.now()]) self.assertEqual(x[0].dtype, np.dtype('M8[ns]')) def test_groupby_count_dateparseerror(self): dr = date_range(start='1/1/2012', freq='5min', periods=10) # BAD Example, datetimes first s = Series(np.arange(10), index=[dr, lrange(10)]) grouped = s.groupby(lambda x: x[1] % 2 == 0) result = grouped.count() s = Series(np.arange(10), index=[lrange(10), dr]) grouped = s.groupby(lambda x: x[0] % 2 == 0) expected = grouped.count() assert_series_equal(result, expected) def test_datetimeindex_repr_short(self): dr = date_range(start='1/1/2012', periods=1) repr(dr) dr = date_range(start='1/1/2012', periods=2) repr(dr) dr = date_range(start='1/1/2012', periods=3) repr(dr) def test_constructor_int64_nocopy(self): # #1624 arr = np.arange(1000, dtype=np.int64) index = DatetimeIndex(arr) arr[50:100] = -1 self.assertTrue((index.asi8[50:100] == -1).all()) arr = np.arange(1000, dtype=np.int64) index = DatetimeIndex(arr, copy=True) arr[50:100] = -1 self.assertTrue((index.asi8[50:100] != -1).all()) def test_series_interpolate_method_values(self): # #1646 ts = _simple_ts('1/1/2000', '1/20/2000') ts[::2] = np.nan result = ts.interpolate(method='values') exp = ts.interpolate() assert_series_equal(result, exp) def test_frame_datetime64_handling_groupby(self): # it works! df = DataFrame([(3, np.datetime64('2012-07-03')), (3, np.datetime64('2012-07-04'))], columns=['a', 'date']) result = df.groupby('a').first() self.assertEqual(result['date'][3], Timestamp('2012-07-03')) def test_series_interpolate_intraday(self): # #1698 index = pd.date_range('1/1/2012', periods=4, freq='12D') ts = pd.Series([0, 12, 24, 36], index) new_index = index.append(index + pd.DateOffset(days=1)).order() exp = ts.reindex(new_index).interpolate(method='time') index = pd.date_range('1/1/2012', periods=4, freq='12H') ts = pd.Series([0, 12, 24, 36], index) new_index = index.append(index + pd.DateOffset(hours=1)).order() result = ts.reindex(new_index).interpolate(method='time') self.assert_numpy_array_equal(result.values, exp.values) def test_frame_dict_constructor_datetime64_1680(self): dr = date_range('1/1/2012', periods=10) s = Series(dr, index=dr) # it works! DataFrame({'a': 'foo', 'b': s}, index=dr) DataFrame({'a': 'foo', 'b': s.values}, index=dr) def test_frame_datetime64_mixed_index_ctor_1681(self): dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI') ts = Series(dr) # it works! d = DataFrame({'A': 'foo', 'B': ts}, index=dr) self.assertTrue(d['B'].isnull().all()) def test_frame_timeseries_to_records(self): index = date_range('1/1/2000', periods=10) df = DataFrame(np.random.randn(10, 3), index=index, columns=['a', 'b', 'c']) result = df.to_records() result['index'].dtype == 'M8[ns]' result = df.to_records(index=False) def test_frame_datetime64_duplicated(self): dates = date_range('2010-07-01', end='2010-08-05') tst = DataFrame({'symbol': 'AAA', 'date': dates}) result = tst.duplicated(['date', 'symbol']) self.assertTrue((-result).all()) tst = DataFrame({'date': dates}) result = tst.duplicated() self.assertTrue((-result).all()) def test_timestamp_compare_with_early_datetime(self): # e.g. datetime.min stamp = Timestamp('2012-01-01') self.assertFalse(stamp == datetime.min) self.assertFalse(stamp == datetime(1600, 1, 1)) self.assertFalse(stamp == datetime(2700, 1, 1)) self.assertNotEqual(stamp, datetime.min) self.assertNotEqual(stamp, datetime(1600, 1, 1)) self.assertNotEqual(stamp, datetime(2700, 1, 1)) self.assertTrue(stamp > datetime(1600, 1, 1)) self.assertTrue(stamp >= datetime(1600, 1, 1)) self.assertTrue(stamp < datetime(2700, 1, 1)) self.assertTrue(stamp <= datetime(2700, 1, 1)) def test_to_html_timestamp(self): rng = date_range('2000-01-01', periods=10) df = DataFrame(np.random.randn(10, 4), index=rng) result = df.to_html() self.assertIn('2000-01-01', result) def test_to_csv_numpy_16_bug(self): frame = DataFrame({'a': date_range('1/1/2000', periods=10)}) buf = StringIO() frame.to_csv(buf) result = buf.getvalue() self.assertIn('2000-01-01', result) def test_series_map_box_timestamps(self): # #2689, #2627 s = Series(date_range('1/1/2000', periods=10)) def f(x): return (x.hour, x.day, x.month) # it works! s.map(f) s.apply(f) DataFrame(s).applymap(f) def test_concat_datetime_datetime64_frame(self): # #2624 rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 'hi']) df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) ind = date_range(start="2000/1/1", freq="D", periods=10) df1 = DataFrame({'date': ind, 'test':lrange(10)}) # it works! pd.concat([df1, df2_obj]) def test_period_resample(self): # GH3609 s = Series(range(100),index=date_range('20130101', freq='s', periods=100), dtype='float') s[10:30] = np.nan expected = Series([34.5, 79.5], index=[Period('2013-01-01 00:00', 'T'), Period('2013-01-01 00:01', 'T')]) result = s.to_period().resample('T', kind='period') assert_series_equal(result, expected) result2 = s.resample('T', kind='period') assert_series_equal(result2, expected) def test_period_resample_with_local_timezone(self): # GH5430 _skip_if_no_pytz() import pytz local_timezone = pytz.timezone('America/Los_Angeles') start = datetime(year=2013, month=11, day=1, hour=0, minute=0, tzinfo=pytz.utc) # 1 day later end = datetime(year=2013, month=11, day=2, hour=0, minute=0, tzinfo=pytz.utc) index = pd.date_range(start, end, freq='H') series = pd.Series(1, index=index) series = series.tz_convert(local_timezone) result = series.resample('D', kind='period') # Create the expected series expected_index = (pd.period_range(start=start, end=end, freq='D') - 1) # Index is moved back a day with the timezone conversion from UTC to Pacific expected = pd.Series(1, index=expected_index) assert_series_equal(result, expected) def test_pickle(self): #GH4606 from pandas.compat import cPickle import pickle for pick in [pickle, cPickle]: p = pick.loads(pick.dumps(NaT)) self.assertTrue(p is NaT) idx = pd.to_datetime(['2013-01-01', NaT, '2014-01-06']) idx_p = pick.loads(pick.dumps(idx)) self.assertTrue(idx_p[0] == idx[0]) self.assertTrue(idx_p[1] is NaT) self.assertTrue(idx_p[2] == idx[2]) def _simple_ts(start, end, freq='D'): rng = date_range(start, end, freq=freq) return Series(np.random.randn(len(rng)), index=rng) class TestDatetimeIndex(tm.TestCase): _multiprocess_can_split_ = True def test_hash_error(self): index = date_range('20010101', periods=10) with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(index).__name__): hash(index) def test_stringified_slice_with_tz(self): #GH2658 import datetime start=datetime.datetime.now() idx=DatetimeIndex(start=start,freq="1d",periods=10) df=DataFrame(lrange(10),index=idx) df["2013-01-14 23:44:34.437768-05:00":] # no exception here def test_append_join_nondatetimeindex(self): rng = date_range('1/1/2000', periods=10) idx = Index(['a', 'b', 'c', 'd']) result = rng.append(idx) tm.assert_isinstance(result[0], Timestamp) # it works rng.join(idx, how='outer') def test_astype(self): rng = date_range('1/1/2000', periods=10) result = rng.astype('i8') self.assert_numpy_array_equal(result, rng.asi8) def test_to_period_nofreq(self): idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-04']) self.assertRaises(ValueError, idx.to_period) idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03'], freq='infer') idx.to_period() def test_000constructor_resolution(self): # 2252 t1 = Timestamp((1352934390 * 1000000000) + 1000000 + 1000 + 1) idx = DatetimeIndex([t1]) self.assertEqual(idx.nanosecond[0], t1.nanosecond) def test_constructor_coverage(self): rng = date_range('1/1/2000', periods=10.5) exp = date_range('1/1/2000', periods=10) self.assertTrue(rng.equals(exp)) self.assertRaises(ValueError, DatetimeIndex, start='1/1/2000', periods='foo', freq='D') self.assertRaises(ValueError, DatetimeIndex, start='1/1/2000', end='1/10/2000') self.assertRaises(ValueError, DatetimeIndex, '1/1/2000') # generator expression gen = (datetime(2000, 1, 1) + timedelta(i) for i in range(10)) result = DatetimeIndex(gen) expected = DatetimeIndex([datetime(2000, 1, 1) + timedelta(i) for i in range(10)]) self.assertTrue(result.equals(expected)) # NumPy string array strings = np.array(['2000-01-01', '2000-01-02', '2000-01-03']) result = DatetimeIndex(strings) expected = DatetimeIndex(strings.astype('O')) self.assertTrue(result.equals(expected)) from_ints = DatetimeIndex(expected.asi8) self.assertTrue(from_ints.equals(expected)) # non-conforming self.assertRaises(ValueError, DatetimeIndex, ['2000-01-01', '2000-01-02', '2000-01-04'], freq='D') self.assertRaises(ValueError, DatetimeIndex, start='2011-01-01', freq='b') self.assertRaises(ValueError, DatetimeIndex, end='2011-01-01', freq='B') self.assertRaises(ValueError, DatetimeIndex, periods=10, freq='D') def test_constructor_name(self): idx = DatetimeIndex(start='2000-01-01', periods=1, freq='A', name='TEST') self.assertEqual(idx.name, 'TEST') def test_comparisons_coverage(self): rng = date_range('1/1/2000', periods=10) # raise TypeError for now self.assertRaises(TypeError, rng.__lt__, rng[3].value) result = rng == list(rng) exp = rng == rng self.assert_numpy_array_equal(result, exp) def test_map(self): rng = date_range('1/1/2000', periods=10) f = lambda x: x.strftime('%Y%m%d') result = rng.map(f) exp = [f(x) for x in rng] self.assert_numpy_array_equal(result, exp) def test_add_union(self): rng = date_range('1/1/2000', periods=5) rng2 = date_range('1/6/2000', periods=5) result = rng + rng2 expected = rng.union(rng2) self.assertTrue(result.equals(expected)) def test_misc_coverage(self): rng = date_range('1/1/2000', periods=5) result = rng.groupby(rng.day) tm.assert_isinstance(list(result.values())[0][0], Timestamp) idx = DatetimeIndex(['2000-01-03', '2000-01-01', '2000-01-02']) self.assertTrue(idx.equals(list(idx))) non_datetime = Index(list('abc')) self.assertFalse(idx.equals(list(non_datetime))) def test_union_coverage(self): idx = DatetimeIndex(['2000-01-03', '2000-01-01', '2000-01-02']) ordered = DatetimeIndex(idx.order(), freq='infer') result = ordered.union(idx) self.assertTrue(result.equals(ordered)) result = ordered[:0].union(ordered) self.assertTrue(result.equals(ordered)) self.assertEqual(result.freq, ordered.freq) def test_union_bug_1730(self): rng_a = date_range('1/1/2012', periods=4, freq='3H') rng_b = date_range('1/1/2012', periods=4, freq='4H') result = rng_a.union(rng_b) exp = DatetimeIndex(sorted(set(list(rng_a)) | set(list(rng_b)))) self.assertTrue(result.equals(exp)) def test_union_bug_1745(self): left = DatetimeIndex(['2012-05-11 15:19:49.695000']) right = DatetimeIndex(['2012-05-29 13:04:21.322000', '2012-05-11 15:27:24.873000', '2012-05-11 15:31:05.350000']) result = left.union(right) exp = DatetimeIndex(sorted(set(list(left)) | set(list(right)))) self.assertTrue(result.equals(exp)) def test_union_bug_4564(self): from pandas import DateOffset left = date_range("2013-01-01", "2013-02-01") right = left + DateOffset(minutes=15) result = left.union(right) exp = DatetimeIndex(sorted(set(list(left)) | set(list(right)))) self.assertTrue(result.equals(exp)) def test_intersection_bug_1708(self): from pandas import DateOffset index_1 = date_range('1/1/2012', periods=4, freq='12H') index_2 = index_1 + DateOffset(hours=1) result = index_1 & index_2 self.assertEqual(len(result), 0) # def test_add_timedelta64(self): # rng = date_range('1/1/2000', periods=5) # delta = rng.values[3] - rng.values[1] # result = rng + delta # expected = rng + timedelta(2) # self.assertTrue(result.equals(expected)) def test_get_duplicates(self): idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-02', '2000-01-03', '2000-01-03', '2000-01-04']) result = idx.get_duplicates() ex = DatetimeIndex(['2000-01-02', '2000-01-03']) self.assertTrue(result.equals(ex)) def test_argmin_argmax(self): idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02']) self.assertEqual(idx.argmin(), 1) self.assertEqual(idx.argmax(), 0) def test_order(self): idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02']) ordered = idx.order() self.assertTrue(ordered.is_monotonic) ordered = idx.order(ascending=False) self.assertTrue(ordered[::-1].is_monotonic) ordered, dexer = idx.order(return_indexer=True) self.assertTrue(ordered.is_monotonic) self.assert_numpy_array_equal(dexer, [1, 2, 0]) ordered, dexer = idx.order(return_indexer=True, ascending=False) self.assertTrue(ordered[::-1].is_monotonic) self.assert_numpy_array_equal(dexer, [0, 2, 1]) def test_insert(self): idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02']) result = idx.insert(2, datetime(2000, 1, 5)) exp = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-05', '2000-01-02']) self.assertTrue(result.equals(exp)) # insertion of non-datetime should coerce to object index result = idx.insert(1, 'inserted') expected = Index([datetime(2000, 1, 4), 'inserted', datetime(2000, 1, 1), datetime(2000, 1, 2)]) self.assertNotIsInstance(result, DatetimeIndex) tm.assert_index_equal(result, expected) idx = date_range('1/1/2000', periods=3, freq='M') result = idx.insert(3, datetime(2000, 4, 30)) self.assertEqual(result.freqstr, 'M') def test_map_bug_1677(self): index = DatetimeIndex(['2012-04-25 09:30:00.393000']) f = index.asof result = index.map(f) expected = np.array([f(index[0])]) self.assert_numpy_array_equal(result, expected) def test_groupby_function_tuple_1677(self): df = DataFrame(np.random.rand(100), index=date_range("1/1/2000", periods=100)) monthly_group = df.groupby(lambda x: (x.year, x.month)) result = monthly_group.mean() tm.assert_isinstance(result.index[0], tuple) def test_append_numpy_bug_1681(self): # another datetime64 bug dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI') a = DataFrame() c = DataFrame({'A': 'foo', 'B': dr}, index=dr) result = a.append(c) self.assertTrue((result['B'] == dr).all()) def test_isin(self): index = tm.makeDateIndex(4) result = index.isin(index) self.assertTrue(result.all()) result = index.isin(list(index)) self.assertTrue(result.all()) assert_almost_equal(index.isin([index[2], 5]), [False, False, True, False]) def test_union(self): i1 = Int64Index(np.arange(0, 20, 2)) i2 = Int64Index(np.arange(10, 30, 2)) result = i1.union(i2) expected = Int64Index(np.arange(0, 30, 2)) self.assert_numpy_array_equal(result, expected) def test_union_with_DatetimeIndex(self): i1 = Int64Index(np.arange(0, 20, 2)) i2 = DatetimeIndex(start='2012-01-03 00:00:00', periods=10, freq='D') i1.union(i2) # Works i2.union(i1) # Fails with "AttributeError: can't set attribute" def test_time(self): rng = pd.date_range('1/1/2000', freq='12min', periods=10) result = pd.Index(rng).time expected = [t.time() for t in rng] self.assertTrue((result == expected).all()) def test_date(self): rng = pd.date_range('1/1/2000', freq='12H', periods=10) result = pd.Index(rng).date expected = [t.date() for t in rng] self.assertTrue((result == expected).all()) def test_does_not_convert_mixed_integer(self): df = tm.makeCustomDataframe(10, 10, data_gen_f=lambda *args, **kwargs: randn(), r_idx_type='i', c_idx_type='dt') cols = df.columns.join(df.index, how='outer') joined = cols.join(df.columns) self.assertEqual(cols.dtype, np.dtype('O')) self.assertEqual(cols.dtype, joined.dtype) assert_array_equal(cols.values, joined.values) def test_slice_keeps_name(self): # GH4226 st = pd.Timestamp('2013-07-01 00:00:00', tz='America/Los_Angeles') et = pd.Timestamp('2013-07-02 00:00:00', tz='America/Los_Angeles') dr = pd.date_range(st, et, freq='H', name='timebucket') self.assertEqual(dr[1:].name, dr.name) def test_join_self(self): index = date_range('1/1/2000', periods=10) kinds = 'outer', 'inner', 'left', 'right' for kind in kinds: joined = index.join(index, how=kind) self.assertIs(index, joined) def assert_index_parameters(self, index): assert index.freq == '40960N' assert index.inferred_freq == '40960N' def test_ns_index(self): if _np_version_under1p7: raise nose.SkipTest nsamples = 400 ns = int(1e9 / 24414) dtstart = np.datetime64('2012-09-20T00:00:00') dt = dtstart + np.arange(nsamples) * np.timedelta64(ns, 'ns') freq = ns * pd.datetools.Nano() index = pd.DatetimeIndex(dt, freq=freq, name='time') self.assert_index_parameters(index) new_index = pd.DatetimeIndex(start=index[0], end=index[-1], freq=index.freq) self.assert_index_parameters(new_index) def test_join_with_period_index(self): df = tm.makeCustomDataframe(10, 10, data_gen_f=lambda *args: np.random.randint(2), c_idx_type='p', r_idx_type='dt') s = df.iloc[:5, 0] joins = 'left', 'right', 'inner', 'outer' for join in joins: with tm.assertRaisesRegexp(ValueError, 'can only call with other ' 'PeriodIndex-ed objects'): df.columns.join(s.index, how=join) def test_factorize(self): idx1 = DatetimeIndex(['2014-01', '2014-01', '2014-02', '2014-02', '2014-03', '2014-03']) exp_arr = np.array([0, 0, 1, 1, 2, 2]) exp_idx = DatetimeIndex(['2014-01', '2014-02', '2014-03']) arr, idx = idx1.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) arr, idx = idx1.factorize(sort=True) self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) # tz must be preserved idx1 = idx1.tz_localize('Asia/Tokyo') exp_idx = exp_idx.tz_localize('Asia/Tokyo') arr, idx = idx1.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) idx2 = pd.DatetimeIndex(['2014-03', '2014-03', '2014-02', '2014-01', '2014-03', '2014-01']) exp_arr = np.array([2, 2, 1, 0, 2, 0]) exp_idx = DatetimeIndex(['2014-01', '2014-02', '2014-03']) arr, idx = idx2.factorize(sort=True) self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) exp_arr = np.array([0, 0, 1, 2, 0, 2]) exp_idx = DatetimeIndex(['2014-03', '2014-02', '2014-01']) arr, idx = idx2.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) # freq must be preserved idx3 = date_range('2000-01', periods=4, freq='M', tz='Asia/Tokyo') exp_arr = np.array([0, 1, 2, 3]) arr, idx = idx3.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(idx3)) class TestDatetime64(tm.TestCase): """ Also test support for datetime64[ns] in Series / DataFrame """ def setUp(self): dti = DatetimeIndex(start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='Min') self.series = Series(rand(len(dti)), dti) def test_datetimeindex_accessors(self): dti = DatetimeIndex( freq='D', start=datetime(1998, 1, 1), periods=365) self.assertEqual(dti.year[0], 1998) self.assertEqual(dti.month[0], 1) self.assertEqual(dti.day[0], 1) self.assertEqual(dti.hour[0], 0) self.assertEqual(dti.minute[0], 0) self.assertEqual(dti.second[0], 0) self.assertEqual(dti.microsecond[0], 0) self.assertEqual(dti.dayofweek[0], 3) self.assertEqual(dti.dayofyear[0], 1) self.assertEqual(dti.dayofyear[120], 121) self.assertEqual(dti.weekofyear[0], 1) self.assertEqual(dti.weekofyear[120], 18) self.assertEqual(dti.quarter[0], 1) self.assertEqual(dti.quarter[120], 2) self.assertEqual(dti.is_month_start[0], True) self.assertEqual(dti.is_month_start[1], False) self.assertEqual(dti.is_month_start[31], True) self.assertEqual(dti.is_quarter_start[0], True) self.assertEqual(dti.is_quarter_start[90], True) self.assertEqual(dti.is_year_start[0], True) self.assertEqual(dti.is_year_start[364], False) self.assertEqual(dti.is_month_end[0], False) self.assertEqual(dti.is_month_end[30], True) self.assertEqual(dti.is_month_end[31], False) self.assertEqual(dti.is_month_end[364], True) self.assertEqual(dti.is_quarter_end[0], False) self.assertEqual(dti.is_quarter_end[30], False) self.assertEqual(dti.is_quarter_end[89], True) self.assertEqual(dti.is_quarter_end[364], True) self.assertEqual(dti.is_year_end[0], False) self.assertEqual(dti.is_year_end[364], True) self.assertEqual(len(dti.year), 365) self.assertEqual(len(dti.month), 365) self.assertEqual(len(dti.day), 365) self.assertEqual(len(dti.hour), 365) self.assertEqual(len(dti.minute), 365) self.assertEqual(len(dti.second), 365) self.assertEqual(len(dti.microsecond), 365) self.assertEqual(len(dti.dayofweek), 365) self.assertEqual(len(dti.dayofyear), 365) self.assertEqual(len(dti.weekofyear), 365) self.assertEqual(len(dti.quarter), 365) self.assertEqual(len(dti.is_month_start), 365) self.assertEqual(len(dti.is_month_end), 365) self.assertEqual(len(dti.is_quarter_start), 365) self.assertEqual(len(dti.is_quarter_end), 365) self.assertEqual(len(dti.is_year_start), 365) self.assertEqual(len(dti.is_year_end), 365) dti = DatetimeIndex( freq='BQ-FEB', start=datetime(1998, 1, 1), periods=4) self.assertEqual(sum(dti.is_quarter_start), 0) self.assertEqual(sum(dti.is_quarter_end), 4) self.assertEqual(sum(dti.is_year_start), 0) self.assertEqual(sum(dti.is_year_end), 1) # Ensure is_start/end accessors throw ValueError for CustomBusinessDay, CBD requires np >= 1.7 if not _np_version_under1p7: bday_egypt = offsets.CustomBusinessDay(weekmask='Sun Mon Tue Wed Thu') dti = date_range(datetime(2013, 4, 30), periods=5, freq=bday_egypt) self.assertRaises(ValueError, lambda: dti.is_month_start) dti = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03']) self.assertEqual(dti.is_month_start[0], 1) tests = [ (Timestamp('2013-06-01', offset='M').is_month_start, 1), (Timestamp('2013-06-01', offset='BM').is_month_start, 0), (Timestamp('2013-06-03', offset='M').is_month_start, 0), (Timestamp('2013-06-03', offset='BM').is_month_start, 1), (Timestamp('2013-02-28', offset='Q-FEB').is_month_end, 1), (Timestamp('2013-02-28', offset='Q-FEB').is_quarter_end, 1), (Timestamp('2013-02-28', offset='Q-FEB').is_year_end, 1), (Timestamp('2013-03-01', offset='Q-FEB').is_month_start, 1), (Timestamp('2013-03-01', offset='Q-FEB').is_quarter_start, 1), (Timestamp('2013-03-01', offset='Q-FEB').is_year_start, 1), (Timestamp('2013-03-31', offset='QS-FEB').is_month_end, 1), (Timestamp('2013-03-31', offset='QS-FEB').is_quarter_end, 0), (Timestamp('2013-03-31', offset='QS-FEB').is_year_end, 0), (Timestamp('2013-02-01', offset='QS-FEB').is_month_start, 1), (Timestamp('2013-02-01', offset='QS-FEB').is_quarter_start, 1), (Timestamp('2013-02-01', offset='QS-FEB').is_year_start, 1), (Timestamp('2013-06-30', offset='BQ').is_month_end, 0), (Timestamp('2013-06-30', offset='BQ').is_quarter_end, 0), (Timestamp('2013-06-30', offset='BQ').is_year_end, 0), (Timestamp('2013-06-28', offset='BQ').is_month_end, 1), (Timestamp('2013-06-28', offset='BQ').is_quarter_end, 1), (Timestamp('2013-06-28', offset='BQ').is_year_end, 0), (Timestamp('2013-06-30', offset='BQS-APR').is_month_end, 0), (Timestamp('2013-06-30', offset='BQS-APR').is_quarter_end, 0), (Timestamp('2013-06-30', offset='BQS-APR').is_year_end, 0), (Timestamp('2013-06-28', offset='BQS-APR').is_month_end, 1), (Timestamp('2013-06-28', offset='BQS-APR').is_quarter_end, 1), (Timestamp('2013-03-29', offset='BQS-APR').is_year_end, 1), (Timestamp('2013-11-01', offset='AS-NOV').is_year_start, 1), (Timestamp('2013-10-31', offset='AS-NOV').is_year_end, 1)] for ts, value in tests: self.assertEqual(ts, value) def test_nanosecond_field(self): dti = DatetimeIndex(np.arange(10)) self.assert_numpy_array_equal(dti.nanosecond, np.arange(10)) def test_datetimeindex_diff(self): dti1 = DatetimeIndex(freq='Q-JAN', start=datetime(1997, 12, 31), periods=100) dti2 = DatetimeIndex(freq='Q-JAN', start=datetime(1997, 12, 31), periods=98) self.assertEqual(len(dti1.diff(dti2)), 2) def test_fancy_getitem(self): dti = DatetimeIndex(freq='WOM-1FRI', start=datetime(2005, 1, 1), end=datetime(2010, 1, 1)) s = Series(np.arange(len(dti)), index=dti) self.assertEqual(s[48], 48) self.assertEqual(s['1/2/2009'], 48) self.assertEqual(s['2009-1-2'], 48) self.assertEqual(s[datetime(2009, 1, 2)], 48) self.assertEqual(s[lib.Timestamp(datetime(2009, 1, 2))], 48) self.assertRaises(KeyError, s.__getitem__, '2009-1-3') assert_series_equal(s['3/6/2009':'2009-06-05'], s[datetime(2009, 3, 6):datetime(2009, 6, 5)]) def test_fancy_setitem(self): dti = DatetimeIndex(freq='WOM-1FRI', start=datetime(2005, 1, 1), end=datetime(2010, 1, 1)) s = Series(np.arange(len(dti)), index=dti) s[48] = -1 self.assertEqual(s[48], -1) s['1/2/2009'] = -2 self.assertEqual(s[48], -2) s['1/2/2009':'2009-06-05'] = -3 self.assertTrue((s[48:54] == -3).all()) def test_datetimeindex_constructor(self): arr = ['1/1/2005', '1/2/2005', 'Jn 3, 2005', '2005-01-04'] self.assertRaises(Exception, DatetimeIndex, arr) arr = ['1/1/2005', '1/2/2005', '1/3/2005', '2005-01-04'] idx1 = DatetimeIndex(arr) arr = [datetime(2005, 1, 1), '1/2/2005', '1/3/2005', '2005-01-04'] idx2 = DatetimeIndex(arr) arr = [lib.Timestamp(datetime(2005, 1, 1)), '1/2/2005', '1/3/2005', '2005-01-04'] idx3 = DatetimeIndex(arr) arr = np.array(['1/1/2005', '1/2/2005', '1/3/2005', '2005-01-04'], dtype='O') idx4 = DatetimeIndex(arr) arr = to_datetime(['1/1/2005', '1/2/2005', '1/3/2005', '2005-01-04']) idx5 = DatetimeIndex(arr) arr = to_datetime( ['1/1/2005', '1/2/2005', 'Jan 3, 2005', '2005-01-04']) idx6 = DatetimeIndex(arr) idx7 = DatetimeIndex(['12/05/2007', '25/01/2008'], dayfirst=True) idx8 = DatetimeIndex(['2007/05/12', '2008/01/25'], dayfirst=False, yearfirst=True) self.assertTrue(idx7.equals(idx8)) for other in [idx2, idx3, idx4, idx5, idx6]: self.assertTrue((idx1.values == other.values).all()) sdate = datetime(1999, 12, 25) edate = datetime(2000, 1, 1) idx = DatetimeIndex(start=sdate, freq='1B', periods=20) self.assertEqual(len(idx), 20) self.assertEqual(idx[0], sdate + 0 * dt.bday) self.assertEqual(idx.freq, 'B') idx = DatetimeIndex(end=edate, freq=('D', 5), periods=20) self.assertEqual(len(idx), 20) self.assertEqual(idx[-1], edate) self.assertEqual(idx.freq, '5D') idx1 = DatetimeIndex(start=sdate, end=edate, freq='W-SUN') idx2 = DatetimeIndex(start=sdate, end=edate, freq=dt.Week(weekday=6)) self.assertEqual(len(idx1), len(idx2)) self.assertEqual(idx1.offset, idx2.offset) idx1 = DatetimeIndex(start=sdate, end=edate, freq='QS') idx2 = DatetimeIndex(start=sdate, end=edate, freq=dt.QuarterBegin(startingMonth=1)) self.assertEqual(len(idx1), len(idx2)) self.assertEqual(idx1.offset, idx2.offset) idx1 = DatetimeIndex(start=sdate, end=edate, freq='BQ') idx2 = DatetimeIndex(start=sdate, end=edate, freq=dt.BQuarterEnd(startingMonth=12)) self.assertEqual(len(idx1), len(idx2)) self.assertEqual(idx1.offset, idx2.offset) def test_dayfirst(self): # GH 5917 arr = ['10/02/2014', '11/02/2014', '12/02/2014'] expected = DatetimeIndex([datetime(2014, 2, 10), datetime(2014, 2, 11), datetime(2014, 2, 12)]) idx1 = DatetimeIndex(arr, dayfirst=True) idx2 = DatetimeIndex(np.array(arr), dayfirst=True) idx3 = to_datetime(arr, dayfirst=True) idx4 = to_datetime(np.array(arr), dayfirst=True) idx5 = DatetimeIndex(Index(arr), dayfirst=True) idx6 = DatetimeIndex(Series(arr), dayfirst=True) self.assertTrue(expected.equals(idx1)) self.assertTrue(expected.equals(idx2)) self.assertTrue(expected.equals(idx3)) self.assertTrue(expected.equals(idx4)) self.assertTrue(expected.equals(idx5)) self.assertTrue(expected.equals(idx6)) def test_dti_snap(self): dti = DatetimeIndex(['1/1/2002', '1/2/2002', '1/3/2002', '1/4/2002', '1/5/2002', '1/6/2002', '1/7/2002'], freq='D') res = dti.snap(freq='W-MON') exp = date_range('12/31/2001', '1/7/2002', freq='w-mon') exp = exp.repeat([3, 4]) self.assertTrue((res == exp).all()) res = dti.snap(freq='B') exp = date_range('1/1/2002', '1/7/2002', freq='b') exp = exp.repeat([1, 1, 1, 2, 2]) self.assertTrue((res == exp).all()) def test_dti_reset_index_round_trip(self): dti = DatetimeIndex(start='1/1/2001', end='6/1/2001', freq='D') d1 = DataFrame({'v': np.random.rand(len(dti))}, index=dti) d2 = d1.reset_index() self.assertEqual(d2.dtypes[0], np.dtype('M8[ns]')) d3 = d2.set_index('index') assert_frame_equal(d1, d3, check_names=False) # #2329 stamp = datetime(2012, 11, 22) df = DataFrame([[stamp, 12.1]], columns=['Date', 'Value']) df = df.set_index('Date') self.assertEqual(df.index[0], stamp) self.assertEqual(df.reset_index()['Date'][0], stamp) def test_dti_set_index_reindex(self): # GH 6631 df = DataFrame(np.random.random(6)) idx1 = date_range('2011/01/01', periods=6, freq='M', tz='US/Eastern') idx2 = date_range('2013', periods=6, freq='A', tz='Asia/Tokyo') df = df.set_index(idx1) self.assertTrue(df.index.equals(idx1)) df = df.reindex(idx2) self.assertTrue(df.index.equals(idx2)) def test_datetimeindex_union_join_empty(self): dti = DatetimeIndex(start='1/1/2001', end='2/1/2001', freq='D') empty = Index([]) result = dti.union(empty) tm.assert_isinstance(result, DatetimeIndex) self.assertIs(result, result) result = dti.join(empty) tm.assert_isinstance(result, DatetimeIndex) def test_series_set_value(self): # #1561 dates = [datetime(2001, 1, 1), datetime(2001, 1, 2)] index = DatetimeIndex(dates) s = Series().set_value(dates[0], 1.) s2 = s.set_value(dates[1], np.nan) exp = Series([1., np.nan], index=index) assert_series_equal(s2, exp) # s = Series(index[:1], index[:1]) # s2 = s.set_value(dates[1], index[1]) # self.assertEqual(s2.values.dtype, 'M8[ns]') @slow def test_slice_locs_indexerror(self): times = [datetime(2000, 1, 1) + timedelta(minutes=i * 10) for i in range(100000)] s = Series(lrange(100000), times) s.ix[datetime(1900, 1, 1):datetime(2100, 1, 1)] class TestSeriesDatetime64(tm.TestCase): def setUp(self): self.series = Series(date_range('1/1/2000', periods=10)) def test_auto_conversion(self): series = Series(list(date_range('1/1/2000', periods=10))) self.assertEqual(series.dtype, 'M8[ns]') def test_constructor_cant_cast_datetime64(self): self.assertRaises(TypeError, Series, date_range('1/1/2000', periods=10), dtype=float) def test_series_comparison_scalars(self): val = datetime(2000, 1, 4) result = self.series > val expected = np.array([x > val for x in self.series]) self.assert_numpy_array_equal(result, expected) val = self.series[5] result = self.series > val expected = np.array([x > val for x in self.series]) self.assert_numpy_array_equal(result, expected) def test_between(self): left, right = self.series[[2, 7]] result = self.series.between(left, right) expected = (self.series >= left) & (self.series <= right) assert_series_equal(result, expected) #---------------------------------------------------------------------- # NaT support def test_NaT_scalar(self): series = Series([0, 1000, 2000, iNaT], dtype='M8[ns]') val = series[3] self.assertTrue(com.isnull(val)) series[2] = val self.assertTrue(com.isnull(series[2])) def test_set_none_nan(self): self.series[3] = None self.assertIs(self.series[3], NaT) self.series[3:5] = None self.assertIs(self.series[4], NaT) self.series[5] = np.nan self.assertIs(self.series[5], NaT) self.series[5:7] = np.nan self.assertIs(self.series[6], NaT) def test_intercept_astype_object(self): # this test no longer makes sense as series is by default already M8[ns] expected = self.series.astype('object') df = DataFrame({'a': self.series, 'b': np.random.randn(len(self.series))}) result = df.values.squeeze() self.assertTrue((result[:, 0] == expected.values).all()) df = DataFrame({'a': self.series, 'b': ['foo'] * len(self.series)}) result = df.values.squeeze() self.assertTrue((result[:, 0] == expected.values).all()) def test_union(self): rng1 = date_range('1/1/1999', '1/1/2012', freq='MS') s1 = Series(np.random.randn(len(rng1)), rng1) rng2 = date_range('1/1/1980', '12/1/2001', freq='MS') s2 = Series(np.random.randn(len(rng2)), rng2) df = DataFrame({'s1': s1, 's2': s2}) self.assertEqual(df.index.values.dtype, np.dtype('M8[ns]')) def test_intersection(self): rng = date_range('6/1/2000', '6/15/2000', freq='D') rng = rng.delete(5) rng2 = date_range('5/15/2000', '6/20/2000', freq='D') rng2 = DatetimeIndex(rng2.values) result = rng.intersection(rng2) self.assertTrue(result.equals(rng)) # empty same freq GH2129 rng = date_range('6/1/2000', '6/15/2000', freq='T') result = rng[0:0].intersection(rng) self.assertEqual(len(result), 0) result = rng.intersection(rng[0:0]) self.assertEqual(len(result), 0) def test_date_range_bms_bug(self): # #1645 rng = date_range('1/1/2000', periods=10, freq='BMS') ex_first = Timestamp('2000-01-03') self.assertEqual(rng[0], ex_first) def test_string_index_series_name_converted(self): # #1644 df = DataFrame(np.random.randn(10, 4), index=
date_range('1/1/2000', periods=10)
pandas.date_range
import configparser import json import os import time from datetime import datetime, timedelta import finnhub import pandas as pd from kafka import KafkaProducer import numpy as np # Finnhub API config AUTH_TOKEN = os.environ.get("FINNHUB_AUTH_TOKEN") if AUTH_TOKEN is None: config = configparser.ConfigParser() config.read("foobar/data_loader/conf/finnhub.cfg") api_credential = config["api_credential"] SLEEP_TIME = int(os.environ.get("SLEEP_TIME", 300)) # Kafka producer KAFKA_BROKER_URL = ( os.environ.get("KAFKA_BROKER_URL") if os.environ.get("KAFKA_BROKER_URL") else "localhost:9092" ) TOPIC_NAME = ( os.environ.get("TOPIC_NAME") if os.environ.get("TOPIC_NAME") else "from_finnhub" ) class finnhub_producer: def __init__(self, api_token): self.last_poll_datetime = datetime.utcnow() - timedelta(minutes=500) self.api_client = finnhub.Client(api_key=api_token) self.producer = KafkaProducer( bootstrap_servers=KAFKA_BROKER_URL, value_serializer=lambda x: x.encode("utf8"), api_version=(0, 11, 5), ) def query_stock_candles(self, symbol, date_from, date_to): from_ts = int(datetime.timestamp(date_from)) to_ts = int(datetime.timestamp(date_to)) out = self.api_client.stock_candles( symbol=symbol, resolution="5", _from=from_ts, to=to_ts ) if out["s"] == "no_data": print("no data") return else: df = pd.DataFrame(out) df = df.rename( columns={ "c": "close_price", "o": "open_price", "h": "high_price", "l": "low_price", "v": "volume", "t": "hour", "s": "status", } ) stock_candle_timeseries = df.reset_index()#.set_index("timestamp") return stock_candle_timeseries def run(self): date_from = self.last_poll_datetime date_to = datetime.utcnow() print(f'Getting stock price from {date_from} to {date_to}') ts = self.query_stock_candles( symbol="GME", date_from=date_from, date_to=date_to ) if ts is not None: print('Sending financial data to Kafka queue...') ts['hour'] =
pd.to_datetime(ts['hour'], unit="s")
pandas.to_datetime
""" Module contains tools for collecting data from various remote sources """ import warnings import tempfile import datetime as dt import time from collections import defaultdict import numpy as np from pandas.compat import( StringIO, bytes_to_str, range, lmap, zip ) import pandas.compat as compat from pandas import Panel, DataFrame, Series, read_csv, concat, to_datetime, DatetimeIndex, DateOffset from pandas.core.common import is_list_like, PandasError from pandas.io.common import urlopen, ZipFile, urlencode from pandas.tseries.offsets import MonthEnd from pandas.util.testing import _network_error_classes from pandas.io.html import read_html warnings.warn("\n" "The pandas.io.data module is moved to a separate package " "(pandas-datareader) and will be removed from pandas in a " "future version.\nAfter installing the pandas-datareader package " "(https://github.com/pydata/pandas-datareader), you can change " "the import ``from pandas.io import data, wb`` to " "``from pandas_datareader import data, wb``.", FutureWarning) class SymbolWarning(UserWarning): pass class RemoteDataError(PandasError, IOError): pass def DataReader(name, data_source=None, start=None, end=None, retry_count=3, pause=0.001): """ Imports data from a number of online sources. Currently supports Yahoo! Finance, Google Finance, St. Louis FED (FRED) and Kenneth French's data library. Parameters ---------- name : str or list of strs the name of the dataset. Some data sources (yahoo, google, fred) will accept a list of names. data_source: str, default: None the data source ("yahoo", "google", "fred", or "ff") start : datetime, default: None left boundary for range (defaults to 1/1/2010) end : datetime, default: None right boundary for range (defaults to today) retry_count : int, default 3 Number of times to retry query request. pause : numeric, default 0.001 Time, in seconds, to pause between consecutive queries of chunks. If single value given for symbol, represents the pause between retries. Examples ---------- # Data from Yahoo! Finance gs = DataReader("GS", "yahoo") # Data from Google Finance aapl = DataReader("AAPL", "google") # Data from FRED vix = DataReader("VIXCLS", "fred") # Data from Fama/French ff = DataReader("F-F_Research_Data_Factors", "famafrench") ff = DataReader("F-F_Research_Data_Factors_weekly", "famafrench") ff = DataReader("6_Portfolios_2x3", "famafrench") ff = DataReader("F-F_ST_Reversal_Factor", "famafrench") """ start, end = _sanitize_dates(start, end) if data_source == "yahoo": return get_data_yahoo(symbols=name, start=start, end=end, adjust_price=False, chunksize=25, retry_count=retry_count, pause=pause) elif data_source == "google": return get_data_google(symbols=name, start=start, end=end, adjust_price=False, chunksize=25, retry_count=retry_count, pause=pause) elif data_source == "fred": return get_data_fred(name, start, end) elif data_source == "famafrench": return get_data_famafrench(name) def _sanitize_dates(start, end): from pandas.core.datetools import to_datetime start = to_datetime(start) end = to_datetime(end) if start is None: start = dt.datetime(2010, 1, 1) if end is None: end = dt.datetime.today() return start, end def _in_chunks(seq, size): """ Return sequence in 'chunks' of size defined by size """ return (seq[pos:pos + size] for pos in range(0, len(seq), size)) _yahoo_codes = {'symbol': 's', 'last': 'l1', 'change_pct': 'p2', 'PE': 'r', 'time': 't1', 'short_ratio': 's7'} _YAHOO_QUOTE_URL = 'http://finance.yahoo.com/d/quotes.csv?' def get_quote_yahoo(symbols): """ Get current yahoo quote Returns a DataFrame """ if isinstance(symbols, compat.string_types): sym_list = symbols else: sym_list = '+'.join(symbols) # for codes see: http://www.gummy-stuff.org/Yahoo-data.htm request = ''.join(compat.itervalues(_yahoo_codes)) # code request string header = list(_yahoo_codes.keys()) data = defaultdict(list) url_str = _YAHOO_QUOTE_URL + 's=%s&f=%s' % (sym_list, request) with urlopen(url_str) as url: lines = url.readlines() for line in lines: fields = line.decode('utf-8').strip().split(',') for i, field in enumerate(fields): if field[-2:] == '%"': v = float(field.strip('"%')) elif field[0] == '"': v = field.strip('"') else: try: v = float(field) except ValueError: v = field data[header[i]].append(v) idx = data.pop('symbol') return DataFrame(data, index=idx) def get_quote_google(symbols): raise NotImplementedError("Google Finance doesn't have this functionality") def _retry_read_url(url, retry_count, pause, name): for _ in range(retry_count): time.sleep(pause) # kludge to close the socket ASAP try: with
urlopen(url)
pandas.io.common.urlopen
import numpy as np import pytest import pandas as pd from pandas import ( Categorical, DataFrame, Index, Series, ) import pandas._testing as tm dt_data = [ pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02"), pd.Timestamp("2011-01-03"), ] tz_data = [ pd.Timestamp("2011-01-01", tz="US/Eastern"), pd.Timestamp("2011-01-02", tz="US/Eastern"), pd.Timestamp("2011-01-03", tz="US/Eastern"), ] td_data = [ pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Timedelta("3 days"), ] period_data = [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Period("2011-03", freq="M"), ] data_dict = { "bool": [True, False, True], "int64": [1, 2, 3], "float64": [1.1, np.nan, 3.3], "category": Categorical(["X", "Y", "Z"]), "object": ["a", "b", "c"], "datetime64[ns]": dt_data, "datetime64[ns, US/Eastern]": tz_data, "timedelta64[ns]": td_data, "period[M]": period_data, } class TestConcatAppendCommon: """ Test common dtype coercion rules between concat and append. """ @pytest.fixture(params=sorted(data_dict.keys())) def item(self, request): key = request.param return key, data_dict[key] item2 = item def _check_expected_dtype(self, obj, label): """ Check whether obj has expected dtype depending on label considering not-supported dtypes """ if isinstance(obj, Index): assert obj.dtype == label elif isinstance(obj, Series): if label.startswith("period"): assert obj.dtype == "Period[M]" else: assert obj.dtype == label else: raise ValueError def test_dtypes(self, item): # to confirm test case covers intended dtypes typ, vals = item self._check_expected_dtype(Index(vals), typ) self._check_expected_dtype(Series(vals), typ) def test_concatlike_same_dtypes(self, item): # GH 13660 typ1, vals1 = item vals2 = vals1 vals3 = vals1 if typ1 == "category": exp_data = Categorical(list(vals1) + list(vals2)) exp_data3 = Categorical(list(vals1) + list(vals2) + list(vals3)) else: exp_data = vals1 + vals2 exp_data3 = vals1 + vals2 + vals3 # ----- Index ----- # # index.append res = Index(vals1).append(Index(vals2)) exp = Index(exp_data) tm.assert_index_equal(res, exp) # 3 elements res = Index(vals1).append([Index(vals2), Index(vals3)]) exp = Index(exp_data3) tm.assert_index_equal(res, exp) # index.append name mismatch i1 = Index(vals1, name="x") i2 = Index(vals2, name="y") res = i1.append(i2) exp = Index(exp_data) tm.assert_index_equal(res, exp) # index.append name match i1 = Index(vals1, name="x") i2 = Index(vals2, name="x") res = i1.append(i2) exp = Index(exp_data, name="x") tm.assert_index_equal(res, exp) # cannot append non-index with pytest.raises(TypeError, match="all inputs must be Index"): Index(vals1).append(vals2) with pytest.raises(TypeError, match="all inputs must be Index"): Index(vals1).append([Index(vals2), vals3]) # ----- Series ----- # # series.append res = Series(vals1)._append(Series(vals2), ignore_index=True) exp = Series(exp_data) tm.assert_series_equal(res, exp, check_index_type=True) # concat res = pd.concat([Series(vals1), Series(vals2)], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # 3 elements res = Series(vals1)._append([Series(vals2), Series(vals3)], ignore_index=True) exp = Series(exp_data3) tm.assert_series_equal(res, exp) res = pd.concat( [Series(vals1), Series(vals2), Series(vals3)], ignore_index=True, ) tm.assert_series_equal(res, exp) # name mismatch s1 = Series(vals1, name="x") s2 = Series(vals2, name="y") res = s1._append(s2, ignore_index=True) exp = Series(exp_data) tm.assert_series_equal(res, exp, check_index_type=True) res = pd.concat([s1, s2], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # name match s1 = Series(vals1, name="x") s2 = Series(vals2, name="x") res = s1._append(s2, ignore_index=True) exp = Series(exp_data, name="x") tm.assert_series_equal(res, exp, check_index_type=True) res = pd.concat([s1, s2], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # cannot append non-index msg = ( r"cannot concatenate object of type '.+'; " "only Series and DataFrame objs are valid" ) with pytest.raises(TypeError, match=msg): Series(vals1)._append(vals2) with pytest.raises(TypeError, match=msg): Series(vals1)._append([Series(vals2), vals3]) with pytest.raises(TypeError, match=msg): pd.concat([Series(vals1), vals2]) with pytest.raises(TypeError, match=msg): pd.concat([Series(vals1), Series(vals2), vals3]) def test_concatlike_dtypes_coercion(self, item, item2, request): # GH 13660 typ1, vals1 = item typ2, vals2 = item2 vals3 = vals2 # basically infer exp_index_dtype = None exp_series_dtype = None if typ1 == typ2: # same dtype is tested in test_concatlike_same_dtypes return elif typ1 == "category" or typ2 == "category": # The `vals1 + vals2` below fails bc one of these is a Categorical # instead of a list; we have separate dedicated tests for categorical return warn = None # specify expected dtype if typ1 == "bool" and typ2 in ("int64", "float64"): # series coerces to numeric based on numpy rule # index doesn't because bool is object dtype exp_series_dtype = typ2 mark = pytest.mark.xfail(reason="GH#39187 casting to object") request.node.add_marker(mark) warn = FutureWarning elif typ2 == "bool" and typ1 in ("int64", "float64"): exp_series_dtype = typ1 mark = pytest.mark.xfail(reason="GH#39187 casting to object") request.node.add_marker(mark) warn = FutureWarning elif ( typ1 == "datetime64[ns, US/Eastern]" or typ2 == "datetime64[ns, US/Eastern]" or typ1 == "timedelta64[ns]" or typ2 == "timedelta64[ns]" ): exp_index_dtype = object exp_series_dtype = object exp_data = vals1 + vals2 exp_data3 = vals1 + vals2 + vals3 # ----- Index ----- # # index.append with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Index(vals1).append(Index(vals2)) exp = Index(exp_data, dtype=exp_index_dtype) tm.assert_index_equal(res, exp) # 3 elements res = Index(vals1).append([Index(vals2), Index(vals3)]) exp = Index(exp_data3, dtype=exp_index_dtype) tm.assert_index_equal(res, exp) # ----- Series ----- # # series._append with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Series(vals1)._append(Series(vals2), ignore_index=True) exp = Series(exp_data, dtype=exp_series_dtype) tm.assert_series_equal(res, exp, check_index_type=True) # concat with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = pd.concat([Series(vals1), Series(vals2)], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # 3 elements with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Series(vals1)._append( [Series(vals2), Series(vals3)], ignore_index=True ) exp = Series(exp_data3, dtype=exp_series_dtype) tm.assert_series_equal(res, exp) with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = pd.concat( [Series(vals1), Series(vals2), Series(vals3)], ignore_index=True, ) tm.assert_series_equal(res, exp) def test_concatlike_common_coerce_to_pandas_object(self): # GH 13626 # result must be Timestamp/Timedelta, not datetime.datetime/timedelta dti = pd.DatetimeIndex(["2011-01-01", "2011-01-02"]) tdi = pd.TimedeltaIndex(["1 days", "2 days"]) exp = Index( [ pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02"), pd.Timedelta("1 days"), pd.Timedelta("2 days"), ] ) res = dti.append(tdi) tm.assert_index_equal(res, exp) assert isinstance(res[0], pd.Timestamp) assert isinstance(res[-1], pd.Timedelta) dts = Series(dti) tds = Series(tdi) res = dts._append(tds) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) assert isinstance(res.iloc[0], pd.Timestamp) assert isinstance(res.iloc[-1], pd.Timedelta) res = pd.concat([dts, tds]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) assert isinstance(res.iloc[0], pd.Timestamp) assert isinstance(res.iloc[-1], pd.Timedelta) def test_concatlike_datetimetz(self, tz_aware_fixture): tz = tz_aware_fixture # GH 7795 dti1 = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz) dti2 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"], tz=tz) exp = pd.DatetimeIndex( ["2011-01-01", "2011-01-02", "2012-01-01", "2012-01-02"], tz=tz ) res = dti1.append(dti2) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts2 = Series(dti2) res = dts1._append(dts2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) @pytest.mark.parametrize("tz", ["UTC", "US/Eastern", "Asia/Tokyo", "EST5EDT"]) def test_concatlike_datetimetz_short(self, tz): # GH#7795 ix1 = pd.date_range(start="2014-07-15", end="2014-07-17", freq="D", tz=tz) ix2 = pd.DatetimeIndex(["2014-07-11", "2014-07-21"], tz=tz) df1 = DataFrame(0, index=ix1, columns=["A", "B"]) df2 = DataFrame(0, index=ix2, columns=["A", "B"]) exp_idx = pd.DatetimeIndex( ["2014-07-15", "2014-07-16", "2014-07-17", "2014-07-11", "2014-07-21"], tz=tz, ) exp = DataFrame(0, index=exp_idx, columns=["A", "B"]) tm.assert_frame_equal(df1._append(df2), exp) tm.assert_frame_equal(pd.concat([df1, df2]), exp) def test_concatlike_datetimetz_to_object(self, tz_aware_fixture): tz = tz_aware_fixture # GH 13660 # different tz coerces to object dti1 = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz) dti2 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"]) exp = Index( [ pd.Timestamp("2011-01-01", tz=tz), pd.Timestamp("2011-01-02", tz=tz), pd.Timestamp("2012-01-01"), pd.Timestamp("2012-01-02"), ], dtype=object, ) res = dti1.append(dti2) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts2 = Series(dti2) res = dts1._append(dts2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) # different tz dti3 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"], tz="US/Pacific") exp = Index( [ pd.Timestamp("2011-01-01", tz=tz), pd.Timestamp("2011-01-02", tz=tz), pd.Timestamp("2012-01-01", tz="US/Pacific"), pd.Timestamp("2012-01-02", tz="US/Pacific"), ], dtype=object, ) res = dti1.append(dti3) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts3 = Series(dti3) res = dts1._append(dts3) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts3]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period(self): # GH 13660 pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") pi2 = pd.PeriodIndex(["2012-01", "2012-02"], freq="M") exp = pd.PeriodIndex(["2011-01", "2011-02", "2012-01", "2012-02"], freq="M") res = pi1.append(pi2) tm.assert_index_equal(res, exp) ps1 = Series(pi1) ps2 = Series(pi2) res = ps1._append(ps2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([ps1, ps2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period_diff_freq_to_object(self): # GH 13221 pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") pi2 = pd.PeriodIndex(["2012-01-01", "2012-02-01"], freq="D") exp = Index( [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Period("2012-01-01", freq="D"), pd.Period("2012-02-01", freq="D"), ], dtype=object, ) res = pi1.append(pi2) tm.assert_index_equal(res, exp) ps1 = Series(pi1) ps2 = Series(pi2) res = ps1._append(ps2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([ps1, ps2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period_mixed_dt_to_object(self): # GH 13221 # different datetimelike pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") tdi = pd.TimedeltaIndex(["1 days", "2 days"]) exp = Index( [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Timedelta("1 days"), pd.Timedelta("2 days"), ], dtype=object, ) res = pi1.append(tdi) tm.assert_index_equal(res, exp) ps1 = Series(pi1) tds = Series(tdi) res = ps1._append(tds) tm.assert_series_equal(res,
Series(exp, index=[0, 1, 0, 1])
pandas.Series
import datetime import logging import os import random import numpy as np import pandas as pd import pytest import great_expectations.exceptions as ge_exceptions from great_expectations.core.batch_spec import ( AzureBatchSpec, GCSBatchSpec, PathBatchSpec, RuntimeDataBatchSpec, S3BatchSpec, ) from great_expectations.execution_engine import SparkDFExecutionEngine from great_expectations.execution_engine.execution_engine import MetricDomainTypes from great_expectations.self_check.util import build_spark_engine from great_expectations.validator.metric_configuration import MetricConfiguration from tests.expectations.test_util import get_table_columns_metric from tests.test_utils import create_files_in_directory try: pyspark = pytest.importorskip("pyspark") # noinspection PyPep8Naming import pyspark.sql.functions as F from pyspark.sql.types import IntegerType, LongType, Row, StringType except ImportError: pyspark = None F = None IntegerType = None LongType = None StringType = None Row = None @pytest.fixture def test_sparkdf(spark_session): def generate_ascending_list_of_datetimes( n, start_date=datetime.date(2020, 1, 1), end_date=datetime.date(2020, 12, 31) ): start_time = datetime.datetime( start_date.year, start_date.month, start_date.day ) seconds_between_dates = (end_date - start_date).total_seconds() # noinspection PyUnusedLocal datetime_list = [ start_time + datetime.timedelta(seconds=random.randrange(int(seconds_between_dates))) for i in range(n) ] datetime_list.sort() return datetime_list k = 120 random.seed(1) timestamp_list = generate_ascending_list_of_datetimes( n=k, end_date=datetime.date(2020, 1, 31) ) date_list = [datetime.date(ts.year, ts.month, ts.day) for ts in timestamp_list] # noinspection PyUnusedLocal batch_ids = [random.randint(0, 10) for i in range(k)] batch_ids.sort() # noinspection PyUnusedLocal session_ids = [random.randint(2, 60) for i in range(k)] session_ids = [i - random.randint(0, 2) for i in session_ids] session_ids.sort() # noinspection PyUnusedLocal spark_df = spark_session.createDataFrame( data=pd.DataFrame( { "id": range(k), "batch_id": batch_ids, "date": date_list, "y": [d.year for d in date_list], "m": [d.month for d in date_list], "d": [d.day for d in date_list], "timestamp": timestamp_list, "session_ids": session_ids, "event_type": [ random.choice(["start", "stop", "continue"]) for i in range(k) ], "favorite_color": [ "#" + "".join( [random.choice(list("0123456789ABCDEF")) for j in range(6)] ) for i in range(k) ], } ) ) spark_df = spark_df.withColumn( "timestamp", F.col("timestamp").cast(IntegerType()).cast(StringType()) ) return spark_df def test_reader_fn(spark_session, basic_spark_df_execution_engine): engine = basic_spark_df_execution_engine # Testing that can recognize basic csv file fn = engine._get_reader_fn(reader=spark_session.read, path="myfile.csv") assert "<bound method DataFrameReader.csv" in str(fn) # Ensuring that other way around works as well - reader_method should always override path fn_new = engine._get_reader_fn(reader=spark_session.read, reader_method="csv") assert "<bound method DataFrameReader.csv" in str(fn_new) def test_reader_fn_parameters( spark_session, basic_spark_df_execution_engine, tmp_path_factory ): base_directory = str(tmp_path_factory.mktemp("test_csv")) create_files_in_directory( directory=base_directory, file_name_list=[ "test-A.csv", ], ) test_df_small_csv_path = base_directory + "/test-A.csv" engine = basic_spark_df_execution_engine fn = engine._get_reader_fn(reader=spark_session.read, path=test_df_small_csv_path) assert "<bound method DataFrameReader.csv" in str(fn) test_sparkdf_with_header_param = basic_spark_df_execution_engine.get_batch_data( PathBatchSpec( path=test_df_small_csv_path, data_asset_name="DATA_ASSET", reader_options={"header": True}, ) ).dataframe assert test_sparkdf_with_header_param.head() == Row(x="1", y="2") test_sparkdf_with_no_header_param = basic_spark_df_execution_engine.get_batch_data( PathBatchSpec(path=test_df_small_csv_path, data_asset_name="DATA_ASSET") ).dataframe assert test_sparkdf_with_no_header_param.head() == Row(_c0="x", _c1="y") def test_get_domain_records_with_column_domain( spark_session, basic_spark_df_execution_engine ): pd_df = pd.DataFrame( {"a": [1, 2, 3, 4, 5], "b": [2, 3, 4, 5, None], "c": [1, 2, 3, 4, None]} ) df = spark_session.createDataFrame( [ tuple( None if isinstance(x, (float, int)) and np.isnan(x) else x for x in record.tolist() ) for record in pd_df.to_records(index=False) ], pd_df.columns.tolist(), ) engine = basic_spark_df_execution_engine engine.load_batch_data(batch_id="1234", batch_data=df) data = engine.get_domain_records( domain_kwargs={ "column": "a", "row_condition": 'col("b")<5', "condition_parser": "great_expectations__experimental__", } ) expected_column_pd_df = pd_df.iloc[:3] expected_column_df = spark_session.createDataFrame( [ tuple( None if isinstance(x, (float, int)) and np.isnan(x) else x for x in record.tolist() ) for record in expected_column_pd_df.to_records(index=False) ], expected_column_pd_df.columns.tolist(), ) assert dataframes_equal( data, expected_column_df ), "Data does not match after getting full access compute domain" def test_get_domain_records_with_column_pair_domain( spark_session, basic_spark_df_execution_engine ): pd_df = pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [2, 3, 4, 5, None, 6], "c": [1, 2, 3, 4, 5, None], } ) df = spark_session.createDataFrame( [ tuple( None if isinstance(x, (float, int)) and np.isnan(x) else x for x in record.tolist() ) for record in pd_df.to_records(index=False) ], pd_df.columns.tolist(), ) engine = basic_spark_df_execution_engine engine.load_batch_data(batch_id="1234", batch_data=df) data = engine.get_domain_records( domain_kwargs={ "column_A": "a", "column_B": "b", "row_condition": 'col("b")>2', "condition_parser": "great_expectations__experimental__", "ignore_row_if": "both_values_are_missing", } ) expected_column_pair_pd_df = pd.DataFrame( {"a": [2, 3, 4, 6], "b": [3.0, 4.0, 5.0, 6.0], "c": [2.0, 3.0, 4.0, None]} ) expected_column_pair_df = spark_session.createDataFrame( [ tuple( None if isinstance(x, (float, int)) and np.isnan(x) else x for x in record.tolist() ) for record in expected_column_pair_pd_df.to_records(index=False) ], expected_column_pair_pd_df.columns.tolist(), ) assert dataframes_equal( data, expected_column_pair_df ), "Data does not match after getting full access compute domain" pd_df = pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [2, 3, 4, 5, None, 6], "c": [1, 2, 3, 4, 5, None], } ) df = spark_session.createDataFrame( [ tuple( None if isinstance(x, (float, int)) and np.isnan(x) else x for x in record.tolist() ) for record in pd_df.to_records(index=False) ], pd_df.columns.tolist(), ) engine = basic_spark_df_execution_engine engine.load_batch_data(batch_id="1234", batch_data=df) data = engine.get_domain_records( domain_kwargs={ "column_A": "b", "column_B": "c", "row_condition": 'col("b")>2', "condition_parser": "great_expectations__experimental__", "ignore_row_if": "either_value_is_missing", } ) for column_name in data.columns: data = data.withColumn(column_name, data[column_name].cast(LongType())) expected_column_pair_pd_df = pd.DataFrame( {"a": [2, 3, 4], "b": [3, 4, 5], "c": [2, 3, 4]} ) expected_column_pair_df = spark_session.createDataFrame( [ tuple( None if isinstance(x, (float, int)) and np.isnan(x) else x for x in record.tolist() ) for record in expected_column_pair_pd_df.to_records(index=False) ], expected_column_pair_pd_df.columns.tolist(), ) assert dataframes_equal( data, expected_column_pair_df ), "Data does not match after getting full access compute domain" pd_df = pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [2, 3, 4, 5, None, 6], "c": [1, 2, 3, 4, 5, None], } ) df = spark_session.createDataFrame( [ tuple( None if isinstance(x, (float, int)) and np.isnan(x) else x for x in record.tolist() ) for record in pd_df.to_records(index=False) ], pd_df.columns.tolist(), ) engine = basic_spark_df_execution_engine engine.load_batch_data(batch_id="1234", batch_data=df) data = engine.get_domain_records( domain_kwargs={ "column_A": "b", "column_B": "c", "row_condition": 'col("a")<6', "condition_parser": "great_expectations__experimental__", "ignore_row_if": "neither", } ) expected_column_pair_pd_df = pd.DataFrame( { "a": [1, 2, 3, 4, 5], "b": [2.0, 3.0, 4.0, 5.0, None], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ) expected_column_pair_df = spark_session.createDataFrame( [ tuple( None if isinstance(x, (float, int)) and np.isnan(x) else x for x in record.tolist() ) for record in expected_column_pair_pd_df.to_records(index=False) ], expected_column_pair_pd_df.columns.tolist(), ) assert dataframes_equal( data, expected_column_pair_df ), "Data does not match after getting full access compute domain" def test_get_domain_records_with_multicolumn_domain( spark_session, basic_spark_df_execution_engine ): pd_df = pd.DataFrame( { "a": [1, 2, 3, 4, None, 5], "b": [2, 3, 4, 5, 6, 7], "c": [1, 2, 3, 4, None, 6], } ) df = spark_session.createDataFrame( [ tuple( None if isinstance(x, (float, int)) and np.isnan(x) else x for x in record.tolist() ) for record in pd_df.to_records(index=False) ], pd_df.columns.tolist(), ) engine = basic_spark_df_execution_engine engine.load_batch_data(batch_id="1234", batch_data=df) data = engine.get_domain_records( domain_kwargs={ "column_list": ["a", "c"], "row_condition": 'col("b")>2', "condition_parser": "great_expectations__experimental__", "ignore_row_if": "all_values_are_missing", } ) for column_name in data.columns: data = data.withColumn(column_name, data[column_name].cast(LongType())) expected_multicolumn_pd_df = pd.DataFrame( {"a": [2, 3, 4, 5], "b": [3, 4, 5, 7], "c": [2, 3, 4, 6]}, index=[0, 1, 2, 4] ) expected_multicolumn_df = spark_session.createDataFrame( [ tuple( None if isinstance(x, (float, int)) and np.isnan(x) else x for x in record.tolist() ) for record in expected_multicolumn_pd_df.to_records(index=False) ], expected_multicolumn_pd_df.columns.tolist(), ) engine = basic_spark_df_execution_engine engine.load_batch_data(batch_id="1234", batch_data=expected_multicolumn_df) assert dataframes_equal( data, expected_multicolumn_df ), "Data does not match after getting full access compute domain" pd_df = pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [2, 3, 4, 5, None, 6], "c": [1, 2, 3, 4, 5, None], } ) df = spark_session.createDataFrame( [ tuple( None if isinstance(x, (float, int)) and np.isnan(x) else x for x in record.tolist() ) for record in pd_df.to_records(index=False) ], pd_df.columns.tolist(), ) engine = basic_spark_df_execution_engine engine.load_batch_data(batch_id="1234", batch_data=df) data = engine.get_domain_records( domain_kwargs={ "column_list": ["b", "c"], "row_condition": 'col("a")<5', "condition_parser": "great_expectations__experimental__", "ignore_row_if": "any_value_is_missing", } ) for column_name in data.columns: data = data.withColumn(column_name, data[column_name].cast(LongType())) expected_multicolumn_pd_df = pd.DataFrame( {"a": [1, 2, 3, 4], "b": [2, 3, 4, 5], "c": [1, 2, 3, 4]}, index=[0, 1, 2, 3] ) expected_multicolumn_df = spark_session.createDataFrame( [ tuple( None if isinstance(x, (float, int)) and np.isnan(x) else x for x in record.tolist() ) for record in expected_multicolumn_pd_df.to_records(index=False) ], expected_multicolumn_pd_df.columns.tolist(), ) assert dataframes_equal( data, expected_multicolumn_df ), "Data does not match after getting full access compute domain" pd_df = pd.DataFrame( { "a": [1, 2, 3, 4, None, 5], "b": [2, 3, 4, 5, 6, 7], "c": [1, 2, 3, 4, None, 6], } ) df = spark_session.createDataFrame( [ tuple( None if isinstance(x, (float, int)) and np.isnan(x) else x for x in record.tolist() ) for record in pd_df.to_records(index=False) ], pd_df.columns.tolist(), ) engine = basic_spark_df_execution_engine engine.load_batch_data(batch_id="1234", batch_data=df) data = engine.get_domain_records( domain_kwargs={ "column_list": ["b", "c"], "ignore_row_if": "never", } ) expected_multicolumn_pd_df = pd.DataFrame( { "a": [1, 2, 3, 4, None, 5], "b": [2, 3, 4, 5, 6, 7], "c": [1, 2, 3, 4, None, 6], }, index=[0, 1, 2, 3, 4, 5], ) expected_multicolumn_df = spark_session.createDataFrame( [ tuple( None if isinstance(x, (float, int)) and np.isnan(x) else x for x in record.tolist() ) for record in expected_multicolumn_pd_df.to_records(index=False) ], expected_multicolumn_pd_df.columns.tolist(), ) assert dataframes_equal( data, expected_multicolumn_df ), "Data does not match after getting full access compute domain" def test_get_compute_domain_with_no_domain_kwargs( spark_session, basic_spark_df_execution_engine ): pd_df = pd.DataFrame({"a": [1, 2, 3, 4], "b": [2, 3, 4, None]}) df = spark_session.createDataFrame( [ tuple( None if isinstance(x, (float, int)) and np.isnan(x) else x for x in record.tolist() ) for record in pd_df.to_records(index=False) ], pd_df.columns.tolist(), ) engine = basic_spark_df_execution_engine engine.load_batch_data(batch_id="1234", batch_data=df) data, compute_kwargs, accessor_kwargs = engine.get_compute_domain( domain_kwargs={}, domain_type=MetricDomainTypes.TABLE ) assert compute_kwargs is not None, "Compute domain kwargs should be existent" assert accessor_kwargs == {} assert data.schema == df.schema assert data.collect() == df.collect() def test_get_compute_domain_with_column_domain( spark_session, basic_spark_df_execution_engine ): pd_df =
pd.DataFrame({"a": [1, 2, 3, 4], "b": [2, 3, 4, None]})
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Fri May 14 14:11:23 2021 @author: freeridingeo """ import numpy as np import xarray as xr import pandas as pd from eolearn.core import FeatureParser import sys sys.path.append("D:/Code/eotopia/metadata") from metadata_geographical import (get_eopatch_coordinates) from metadata_eopatch import get_feature_dimensions sys.path.append("D:/Code/eotopia/utils") from string_utils import string_to_variable import matplotlib.pyplot as plt def filter_nan(s,o): data = np.transpose(np.array([s.flatten(),o.flatten()])) data = data[~np.isnan(data).any(1)] return data[:,0], data[:,1] def extract_difference_between_columns(df1, df2, col1, col2): common = df1.merge(df2,on=[col1,col2]) diff = df1[(~df1[col1].isin(common[col1])) & (~df1[col2].isin(common[col2]))] return diff def df_grouby_and_count(df, col): group_by = df.groupby(by=[col]) col_avg = group_by.mean() col_count = group_by.count() print("Mean value of " + str(col) + " is ", col_avg) print("Number of " + str(col) + " is ", col_count) def concatenate_dfs(list_of_dfs, kind="by_append"): if kind == "by_append": df_conc = pd.concat(list_of_dfs) elif kind == "matrixed": df_conc = pd.concat(list_of_dfs, axis=1) return df_conc def merge_dfs(df1, df2, colname, kind="inner"): """ how: Options: "inner": print for common rows "outer": print for all rows, not just common rows "df1/df2" """ merged_df = pd.merge(df1, df2, how=kind, on=colname) return merged_df def join_dfs(df1, df2, kind="inner"): """ Joining is a convenient method for combining the columns of two potentially differently-indexed DataFrames into a single result DataFrame. how: Options: "inner": print for common rows "outer": print for all rows, not just common rows """ join_df = pd.merge(df1, df2, how=kind) return join_df def identify_unique(dataframe): unique_counts = dataframe.nunique() unique_stats =
pd.DataFrame(unique_counts)
pandas.DataFrame
import argparse import torch import numpy as np import pandas as pd import pickle as pkl from tqdm import tqdm from torch.utils.data import DataLoader from sklearn import metrics from sklearn.model_selection import train_test_split from dataset_node import construct_dataset, mol_collate_func from transformer_node import make_model from utils import ScheduledOptim, get_options def loss_function(y_true, y_pred): y_true, y_pred = y_true.flatten(), y_pred.flatten() y_mask = torch.where(y_true != 0., torch.full_like(y_true, 1), torch.full_like(y_true, 0)) loss = torch.sum(torch.abs(y_true - y_pred * y_mask)) / torch.sum(y_mask) return loss def model_train(model, train_dataset, valid_dataset, model_params, train_params, dataset_name, element): train_loader = DataLoader(dataset=train_dataset, batch_size=train_params['batch_size'], collate_fn=mol_collate_func, shuffle=True, drop_last=True, num_workers=4, pin_memory=True) valid_loader = DataLoader(dataset=valid_dataset, batch_size=train_params['batch_size'], collate_fn=mol_collate_func, shuffle=True, drop_last=True, num_workers=4, pin_memory=True) # build optimizer optimizer = ScheduledOptim(torch.optim.Adam(model.parameters(), lr=0), train_params['warmup_factor'], model_params['d_model'], train_params['total_warmup_steps']) best_valid_loss = float('inf') best_epoch = -1 best_valid_result = dict() for epoch in range(train_params['total_epochs']): # train train_loss = list() model.train() for batch in tqdm(train_loader): adjacency_matrix, node_features, edge_features, y_true = batch adjacency_matrix = adjacency_matrix.to(train_params['device']) # (batch_size, max_length, max_length) node_features = node_features.to(train_params['device']) # (batch_size, max_length, d_node) edge_features = edge_features.to(train_params['device']) # (batch_size, max_length, max_length, d_edge) y_true = y_true.to(train_params['device']) # (batch_size, max_length, 1) batch_mask = torch.sum(torch.abs(node_features), dim=-1) != 0 # (batch_size, max_length) # (batch_size, max_length, 1) y_pred = model(node_features, batch_mask, adjacency_matrix, edge_features) loss = loss_function(y_true, y_pred) optimizer.zero_grad() loss.backward() optimizer.step_and_update_lr() train_loss.append(loss.detach().item()) # valid model.eval() with torch.no_grad(): valid_result = dict() valid_result['label'], valid_result['prediction'], valid_result['loss'] = list(), list(), list() for batch in tqdm(valid_loader): adjacency_matrix, node_features, edge_features, y_true = batch adjacency_matrix = adjacency_matrix.to(train_params['device']) # (batch_size, max_length, max_length) node_features = node_features.to(train_params['device']) # (batch_size, max_length, d_node) edge_features = edge_features.to(train_params['device']) # (batch_size, max_length, max_length, d_edge) batch_mask = torch.sum(torch.abs(node_features), dim=-1) != 0 # (batch_size, max_length) # (batch_size, max_length, 1) y_pred = model(node_features, batch_mask, adjacency_matrix, edge_features) y_true = y_true.numpy().flatten() y_pred = y_pred.cpu().detach().numpy().flatten() y_mask = np.where(y_true != 0., 1, 0) times = 0 for true, pred in zip(y_true, y_pred): if true != 0.: times += 1 valid_result['label'].append(true) valid_result['prediction'].append(pred) valid_result['loss'].append(np.abs(true - pred)) assert times == np.sum(y_mask) valid_result['r2'] = metrics.r2_score(valid_result['label'], valid_result['prediction']) print('Epoch {}, learning rate {:.6f}, train loss: {:.4f}, valid loss: {:.4f}, valid r2: {:.4f}'.format( epoch + 1, optimizer.view_lr(), np.mean(train_loss), np.mean(valid_result['loss']), valid_result['r2'] )) # save the model and valid result if np.mean(valid_result['loss']) < best_valid_loss: best_valid_loss = np.mean(valid_result['loss']) best_epoch = epoch + 1 best_valid_result = valid_result torch.save({'state_dict': model.state_dict(), 'best_epoch': best_epoch, 'best_valid_loss': best_valid_loss}, f'./Model/{dataset_name}/best_model_{dataset_name}_{element}.pt') # temp test if (epoch + 1) % 10 == 0: checkpoint = torch.load(f'./Model/{dataset_name}/best_model_{dataset_name}_{element}.pt') print('=' * 20 + ' middle test ' + '=' * 20) test_result = model_test(checkpoint, test_dataset, model_params, train_params) print("best epoch: {}, best valid loss: {:.4f}, test loss: {:.4f}, test r2: {:.4f}".format( checkpoint['best_epoch'], checkpoint['best_valid_loss'], np.mean(test_result['loss']), test_result['r2'] )) print('=' * 40) # early stop if abs(best_epoch - epoch) >= 20: print("=" * 20 + ' early stop ' + "=" * 20) break return best_valid_result def model_test(checkpoint, test_dataset, model_params, train_params): # build loader test_loader = DataLoader(dataset=test_dataset, batch_size=train_params['batch_size'], collate_fn=mol_collate_func, shuffle=False, drop_last=True, num_workers=4, pin_memory=True) # build model model = make_model(**model_params) model.to(train_params['device']) model.load_state_dict(checkpoint['state_dict']) # test model.eval() with torch.no_grad(): test_result = dict() test_result['label'], test_result['prediction'], test_result['loss'] = list(), list(), list() for batch in tqdm(test_loader): adjacency_matrix, node_features, edge_features, y_true = batch adjacency_matrix = adjacency_matrix.to(train_params['device']) # (batch_size, max_length, max_length) node_features = node_features.to(train_params['device']) # (batch_size, max_length, d_node) edge_features = edge_features.to(train_params['device']) # (batch_size, max_length, max_length, d_edge) batch_mask = torch.sum(torch.abs(node_features), dim=-1) != 0 # (batch_size, max_length) # (batch_size, max_length, 1) y_pred = model(node_features, batch_mask, adjacency_matrix, edge_features) y_true = y_true.numpy().flatten() y_pred = y_pred.cpu().detach().numpy().flatten() y_mask = np.where(y_true != 0., 1, 0) times = 0 for true, pred in zip(y_true, y_pred): if true != 0.: times += 1 test_result['label'].append(true) test_result['prediction'].append(pred) test_result['loss'].append(np.abs(true - pred)) assert times == np.sum(y_mask) test_result['r2'] = metrics.r2_score(test_result['label'], test_result['prediction']) test_result['best_valid_loss'] = checkpoint['best_valid_loss'] return test_result if __name__ == '__main__': # init args parser = argparse.ArgumentParser() parser.add_argument("--seed", type=int, help="random seeds", default=np.random.randint(10000)) parser.add_argument("--gpu", type=str, help='gpu', default=-1) parser.add_argument("--dataset", type=str, help='nmrshiftdb/DFT8K_DFT/DFT8K_FF/Exp5K_DFT/Exp5K_FF', default='nmrshiftdb') parser.add_argument("--element", type=str, help="1H/13C", default='1H') args = parser.parse_args() # load options model_params, train_params = get_options(args.dataset) # init device and seed print(f"Seed: {args.seed}") np.random.seed(args.seed) torch.manual_seed(args.seed) if torch.cuda.is_available(): train_params['device'] = torch.device(f'cuda:{args.gpu}') torch.cuda.manual_seed(args.seed) else: train_params['device'] = torch.device('cpu') # load data with open(f'./Data/{args.dataset}/preprocess/graph_{args.element}_train.pickle', 'rb') as f: [train_all_mol, train_all_cs] = pkl.load(f) with open(f'./Data/{args.dataset}/preprocess/graph_{args.element}_test.pickle', 'rb') as f: [test_mol, test_cs] = pkl.load(f) print('=' * 20 + ' begin train ' + '=' * 20) # calculate the padding model_params['max_length'] = max(max([data.GetNumAtoms() for data in train_all_mol]), max([data.GetNumAtoms() for data in test_mol])) print(f"Max padding length is: {model_params['max_length']}") # split dataset if args.dataset == 'nmrshiftdb': train_mol, valid_mol, train_cs, valid_cs = train_test_split( train_all_mol, train_all_cs, test_size=0.05, random_state=args.seed) else: train_mol, valid_mol, train_cs, valid_cs = train_test_split( train_all_mol, train_all_cs, test_size=500, random_state=args.seed) # load dataset, data_mean=0, data_std=1 for no use train_dataset = construct_dataset(train_mol, train_cs, model_params['d_atom'], model_params['d_edge'], model_params['max_length']) valid_dataset = construct_dataset(valid_mol, valid_cs, model_params['d_atom'], model_params['d_edge'], model_params['max_length']) test_dataset = construct_dataset(test_mol, test_cs, model_params['d_atom'], model_params['d_edge'], model_params['max_length']) # calculate total warmup factor and steps train_params['warmup_factor'] = 0.2 if args.element == '1H' else 1.0 train_params['total_warmup_steps'] = \ int(len(train_dataset) / train_params['batch_size']) * train_params['total_warmup_epochs'] print('train warmup step is: {}'.format(train_params['total_warmup_steps'])) # define a model model = make_model(**model_params) model = model.to(train_params['device']) # train and valid print(f"train size: {len(train_dataset)}, valid size: {len(valid_dataset)}, test size: {len(test_dataset)}") best_valid_result = model_train(model, train_dataset, valid_dataset, model_params, train_params, args.dataset, args.element) best_valid_csv =
pd.DataFrame.from_dict({'actual': best_valid_result['label'], 'predict': best_valid_result['prediction'], 'loss': best_valid_result['loss']})
pandas.DataFrame.from_dict
# %% import os import pandas as pd import numpy as np import datetime # %% BBDD500000 = pd.read_csv(r'D:\Basededatos\Origen\BBDD AUTOMร“VILES 9 MILLONES\CSV\BBDD AUTOMร“VIES 500.000.csv') BBDD1xls = pd.read_csv(r'D:\Basededatos\Origen\BBDD AUTOMร“VILES 9 MILLONES\CSV\BBDD AUTOMร“VILES 1xls.csv') BBDD1xlsx = pd.read_csv(r'D:\Basededatos\Origen\BBDD AUTOMร“VILES 9 MILLONES\CSV\BBDD AUTOMร“VILES 1xlsx.csv') BBDD2xls = pd.read_csv(r'D:\Basededatos\Origen\BBDD AUTOMร“VILES 9 MILLONES\CSV\BBDD AUTOMร“VILES 2xls.csv') BBDD2xlsx = pd.read_csv(r'D:\Basededatos\Origen\BBDD AUTOMร“VILES 9 MILLONES\CSV\BBDD AUTOMร“VILES 2xlsx.csv') BBDD3 = pd.read_csv(r'D:\Basededatos\Origen\BBDD AUTOMร“VILES 9 MILLONES\CSV\BBDD AUTOMร“VILES 3.csv') BBDD4xls = pd.read_csv(r'D:\Basededatos\Origen\BBDD AUTOMร“VILES 9 MILLONES\CSV\BBDD AUTOMร“VILES 4xls.csv') BBDD4xlsx = pd.read_csv(r'D:\Basededatos\Origen\BBDD AUTOMร“VILES 9 MILLONES\CSV\BBDD AUTOMร“VILES 4xlsx.csv') BBDD5 = pd.read_csv(r'D:\Basededatos\Origen\BBDD AUTOMร“VILES 9 MILLONES\CSV\BBDD AUTOMร“VILES 5.csv') BBDD6 = pd.read_csv(r'D:\Basededatos\Origen\BBDD AUTOMร“VILES 9 MILLONES\CSV\BBDD AUTOMร“VILES 6.csv') BBDD7 = pd.read_csv(r'D:\Basededatos\Origen\BBDD AUTOMร“VILES 9 MILLONES\CSV\BBDD AUTOMร“VILES 7.csv') BBDD8 = pd.read_csv(r'D:\Basededatos\Origen\BBDD AUTOMร“VILES 9 MILLONES\CSV\BBDD AUTOMร“VILES 8.csv') BBDD9 = pd.read_csv(r'D:\Basededatos\Origen\BBDD AUTOMร“VILES 9 MILLONES\CSV\BBDD AUTOMร“VILES 9.csv') BBDD10 = pd.read_csv(r'D:\Basededatos\Origen\BBDD AUTOMร“VILES 9 MILLONES\CSV\BBDD AUTOMร“VILES 10.csv') BBDD11 =
pd.read_csv(r'D:\Basededatos\Origen\BBDD AUTOMร“VILES 9 MILLONES\CSV\BBDD AUTOMร“VILES 11.csv')
pandas.read_csv
#!/usr/bin/env python # -*- coding: utf-8 -*- import copy from six import string_types import pandas as pd import numpy as np import gmeterpy.units as u __all__ = ["Readings"] class Readings: def __init__(self, data=None, meta=None, units=None, corrections=None, **kwargs): if data is not None: self._data = data else: self._data = pd.DataFrame() if meta is None: self._meta = {} else: self._meta = meta self._corrections = corrections if corrections is None: self._corrections = {key: (key, {}) for key in self._data.columns if 'c_' in key} else: self._corrections = corrections self._proc = kwargs.pop('proc', {}) if units is None: self.units = {} else: self.units = units if not self._data.empty: self._update_g_result() self._data['jd'] = self._data.index.to_julian_date() @property def data(self): return self._data @data.setter def data(self, d): self._data = d @property def meta(self): return self._meta @property def corrections(self): return self._corrections @property def columns(self): """Return all column labels in the data. """ return list(self._data.columns.values) @property def index(self): """Return index of the data. """ return self._data.index def copy(self): return copy.deepcopy(self) def quantity(self, column, **kwargs): """Return a `~astropy.units.Quantity` for the given column. Parameters ---------- column : str The column name to return as Quantity. """ # TODO: multiple columns # TODO: add error handling (no units) values = self._data[column].values unit = self.units[column] return u.Quantity(values, unit) def add_quantity_column(self, column, quantity): """Add values and units from `~astropy.units.Quantity`. Parameters ---------- column : str The column name to store values. quantity : `~astropy.units.Quantity` The column name to store values. """ self._data[column] = quantity.value self.units[column] = quantity.unit def mask(self, column, minv, maxv): cc = self._data[column] c = ((cc <= minv) & (cc >= maxv)) self._data = self._data.mask(c) return self def filter(self, minv, maxv, column='g_result', groupby=None): cc = self._data[column] c = ((cc >= minv) & (cc <= maxv)) self._data = self._data[c] return self def split(self, *args, **kwargs): splitted = [] for n, group in self._data.groupby(*args, **kwargs): group_n = self.__class__(group.copy(), meta=self.meta) splitted.append(group_n) return splitted def truncate(self, by=None, before=0, after=0): data = self._data.reset_index() data = data.groupby(by).apply(lambda x: x.iloc[before:(len(x) - after)]).reset_index(drop=True) self._data = data.set_index('time') self._proc['truncate_before'] = before self._proc['truncate_after'] = after return self # start corrections def set_correction(self, name, value=0.0, **kwargs): self._corrections[name] = (value, kwargs) self._update_g_result() def _update_correction(self, name): value, kwargs = copy.deepcopy(self._corrections[name]) if hasattr(value, '__call__'): for key in kwargs: if isinstance(kwargs[key], string_types) and hasattr(self.data, kwargs[key]): #kwargs[key] = getattr(self.data, kwargs[key]).copy() kwargs[key] = self.quantity(kwargs[key]) value = value(**kwargs) if isinstance(value, (int, float, list, np.ndarray)): self._data[name] = value elif isinstance(value, pd.Series): if isinstance(value.index, pd.DatetimeIndex): self._data[name] = self.interpolate_from_ts(value).values else: self._data[name] = value.values else: self._data[name] = getattr(self._data, value) def del_correction(self, name, drop=True): if drop: del self._data[name] del self._corrections[name] self._update_g_result() def _update_g_result(self): self._data['g_result'] = self._data.g for key in self._corrections: self._update_correction(key) self._data.g_result += self.data[key] def interpolate_from_ts(self, ts): idx =
pd.Series(index=self._data.index)
pandas.Series
import os import errno import joblib import pandas as pd import numpy as np import matplotlib.pyplot as plt from pandas.plotting import table from sklearn.model_selection import train_test_split from sklearn.metrics import ( accuracy_score, precision_score, recall_score, r2_score, mean_squared_error, ) from time import time from calculate_stats import CalculateStats from linear_regression import LinearRegression from multilayer_perceptron import MultilayerPerceptron from random_forest import RandomForest DATASET_PATH = "../datasets/train.csv" MODELS_DIR = "../models" RESOURCES_PATH = "../resources/" def clean_data(path): data_frame = pd.read_csv(path) # fill missing data for numeric features numeric_features = data_frame.select_dtypes(include=[np.number]) for feature in numeric_features: data_frame[feature].fillna(data_frame[feature].mean(), inplace=True) # convert to numeric non_numeric_features = data_frame.select_dtypes(exclude=[np.number]) for feature in non_numeric_features: mapping = {value: i for i, value in enumerate(data_frame[feature].unique())} data_frame[feature] = data_frame[feature].replace( mapping.keys(), mapping.values() ) # dissregard unimportant features data_frame.drop(["Id"], axis=1, inplace=True) save_file_name = os.path.dirname(path) + os.sep + "house_prices_cleaned.csv" data_frame.to_csv(save_file_name, encoding="utf-8", index=False) return save_file_name def split_data(path): data_frame = pd.read_csv(path) x = data_frame.loc[:, data_frame.columns != "SalePrice"] y = data_frame.loc[:, data_frame.columns == "SalePrice"] train_test_data = train_test_split(x, y, test_size=1 / 3, random_state=85) dir_path = os.path.dirname(path) + os.sep paths = [ dir_path + file_name for file_name in [ "train_features.csv", "test_features.csv", "train_labels.csv", "test_labels.csv", ] ] for data, path in zip(train_test_data, paths): data.to_csv(path, index=False) return paths def train_models(models, path, features_path, labels_path): return [model(path, features_path, labels_path).get_path() for model in models] def compare_results(models_paths, save_path, features_path, labels_path): features = pd.read_csv(features_path) labels = pd.read_csv(labels_path) results = { "Model": [], "R^2": [], "NRMSE": [], "Latency": [], } for path in models_paths: model = joblib.load(path) start = time() prediction = model.predict(features) end = time() results["Model"].append(os.path.splitext(os.path.basename(path))[0]) results["R^2"].append(round(r2_score(labels, prediction.round()), 3)) results["NRMSE"].append( round( np.sqrt(mean_squared_error(labels, prediction.round())) / np.std(prediction.round()), 3, ) ) results["Latency"].append(round((end - start) * 1000, 1)) df =
pd.DataFrame(results)
pandas.DataFrame
from collections import Counter, deque, namedtuple import os import itertools import warnings import copy from operator import itemgetter import math import pandas as pd from pandas.api.types import is_numeric_dtype, is_string_dtype import sklearn.datasets from sklearn.metrics import f1_score import numpy as np import scripts.vars as my_vars class MyException(Exception): pass # (ID of rule, distance of rule to the closest example) is stored per example in a named tuple Data = namedtuple("Data", ["rule_id", "dist"]) Bounds = namedtuple("Bounds", ["lower", "upper"]) Support = namedtuple("Support", ["minority", "majority"]) Predictions = namedtuple("Predictions", ["label", "confidence"]) # Keep original rule and delete the corresponding duplicate rule which is at duplicate_idx in the list of rules Duplicates = namedtuple("Duplicates", ["original", "duplicate", "duplicate_idx"]) def read_dataset(src, positive_class, excluded=[], skip_rows=0, na_values=[], normalize=False, class_index=-1, header=True): """ Reads in a dataset in csv format and stores it in a dataFrame. Parameters ---------- src: str - path to input dataset positive_class: str - name of the minority class. The rest is treated as negative. excluded: list of int - 0-based indices of columns/features to be ignored skip_rows: int - number of rows to skip at the beginning of <src> na_values: list of str - values encoding missing values - these are represented by NaN normalize: bool - True if numeric values should be in range between 0 and 1 class_index: int - 0-based index where class label is stored in dataset. -1 = last column header: bool - True if header row is included in the dataset else False Returns ------- pd.DataFrame, dict, pd.DataFrame, pd.DataFrame - dataset, SVDM lookup matrix which contains for nominal classes how often the value of a feature co-occurs with each class label, initial rule set, min/max values per numeric column """ my_vars.minority_class = positive_class # Add column names if header: df = pd.read_csv(src, skiprows=skip_rows, na_values=na_values) else: df = pd.read_csv(src, skiprows=skip_rows, na_values=na_values, header=None) df.columns = [i for i in range(len(df.columns))] lookup = {} # Convert fancy index to regular index - otherwise the loop below won't skip the column with class labels if class_index < 0: class_index = len(df.columns) + class_index my_vars.CLASSES = df.iloc[:, class_index].unique() class_col_name = df.columns[class_index] rules = extract_initial_rules(df, class_col_name) minmax = {} # Create lookup matrix for nominal features for SVDM + normalize numerical features columnwise, but ignore labels for col_name in df: if col_name == class_col_name: continue col = df[col_name] if is_numeric_dtype(col): if normalize: df[col_name] = normalize_series(col) minmax[col_name] = {"min": col.min(), "max": col.max()} else: lookup[col_name] = create_svdm_lookup_column(df, col, class_col_name) min_max = pd.DataFrame(minmax) return df, lookup, rules, min_max def extract_initial_rules(df, class_col_name): """ Creates the initial rule set for a given dataset, which corresponds to the examples in the dataset, i.e. lower and upper bound (of numeric) features are the same. Note that for every feature in the dataset, two values are stored per rule, namely lower and upper bound. For example, if we have A B ... A B ... ---------- in the dataset, the corresponding rule stores: ---------------------------------- 1.0 x ... Bounds(lower=1.0, upper=1.0) x Parameters ---------- df: pd.DataFrame - dataset class_col_name: str - name of the column holding the class labels Returns ------- pd.DataFrame. Rule set """ rules = df.copy() for col_name in df: if col_name == class_col_name: continue col = df[col_name] if is_numeric_dtype(col): # Assuming the value is x, we now store named tuples of Bounds(lower=x, upper=x) per row # rules[col_name] = [tuple([row[col_name], row[col_name]]) for _, row in df.iterrows()] rules[col_name] = [Bounds(lower=row[col_name], upper=row[col_name]) for _, row in df.iterrows()] return rules def add_tags_and_extract_rules(df, k, class_col_name, counts, min_max, classes): """ Extracts initial rules and assigns each example in the dataset a tag, either "SAFE" or "UNSAFE", "NOISY", "BORDERLINE". Parameters ---------- df: pd.DataFrame - dataset k: int - number of neighbors to consider class_col_name: str - name of class label counts: dict - lookup table for SVDM min_max: pd:DataFrame - contains min/max values per numeric feature classes: list of str - class labels in the dataset. Returns ------- pd.DataFrame, list of pd.Series. Dataset with an additional column containing the tag, initially extracted rules. """ rules_df = extract_initial_rules(df, class_col_name) # my_vars.latest_rule_id = rules_df.shape[0] - 1 # 1 rule per example # assert(rules_df.shape[0] == df.shape[0]) # The next 2 lines assume that the 1st example starts with ID 0 which isn't necessarily true # my_vars.seed_example_rule = dict((x, {x}) for x in range(rules_df.shape[0])) # my_vars.seed_rule_example = dict((x, x) for x in range(rules_df.shape[0])) for rule_id, _ in rules_df.iterrows(): my_vars.seed_rule_example[rule_id] = rule_id my_vars.seed_example_rule[rule_id] = {rule_id} # Don't store that seeds are covered by initial rules - that's given implicitly # my_vars.examples_covered_by_rule = dict((x, {x}) for x in range(rules_df.shape[0])) rules = [] for rule_id, rule in rules_df.iterrows(): # TODO: convert tuples into Bounds # converted_rule = pd.Series(name=rule_id) # for feat_name, val in rule.iteritems(): # if isinstance(val, Bounds): # print("convert {} to Bounds".format(val)) # lower, upper = val # converted_rule[feat_name] = Bounds(lower=lower, upper=upper) # print(converted_rule[feat_name]) # print(isinstance(converted_rule[feat_name], Bounds)) # else: # converted_rule[feat_name] = val # print("converted rule") # print(converted_rule) rules.append(rule) my_vars.all_rules[rule_id] = rule tagged = add_tags(df, k, rules, class_col_name, counts, min_max, classes) rules = deque(rules) return tagged, rules def add_tags(df, k, rules, class_col_name, counts, min_max, classes): """ Assigns each example in the dataset a tag, either "SAFE" or "UNSAFE", "NOISY", "BORDERLINE". SAFE: example is classified correctly when looking at its k neighbors UNSAFE: example is misclassified when looking at its k neighbors NOISY: example is UNSAFE and all its k neighbors belong to the opposite class BORDERLINE: example is UNSAFE and it's not NOISY. Assumes that <df> contains at least 2 rows. Parameters ---------- df: pd.DataFrame - dataset k: int - number of neighbors to consider rules: list of pd.Series - list of rules class_col_name: str - name of class label counts: dict - lookup table for SVDM min_max: pd:DataFrame - contains min/max values per numeric feature classes: list of str - class labels in the dataset. Returns ------- pd.DataFrame. Dataset with an additional column containing the tag. """ tags = [] for rule in rules: print(rule) rule_id = rule.name # Ignore current row examples_for_pairwise_distance = df.loc[df.index != rule_id] if examples_for_pairwise_distance.shape[0] > 0: # print("pairwise distances for rule {}:".format(rule.name)) # print("compute distance to:\n{}".format(examples_for_pairwise_distance)) neighbors, _, _ = find_nearest_examples(examples_for_pairwise_distance, k, rule, class_col_name, counts, min_max, classes, label_type=my_vars.ALL_LABELS, only_uncovered_neighbors=False) # print("neighbors:\n{}".format(neighbors)) labels = Counter(neighbors[class_col_name].values) tag = assign_tag(labels, rule[class_col_name]) # print("=>", tag) tags.append(tag) df[my_vars.TAG] = pd.Series(tags) return df def assign_tag(labels, label): """ Assigns a tag to an example ("safe", "noisy" or "borderline"). Parameters ---------- labels: collections.Counter - frequency of labels label: str - label of the example Returns ------- string. Tag, either "safe", "noisy" or "borderline". """ total_labels = sum(labels.values()) frequencies = labels.most_common(2) # print(frequencies) most_common = frequencies[0] tag = my_vars.SAFE if most_common[1] == total_labels and most_common[0] != label: tag = my_vars.NOISY elif most_common[1] < total_labels: second_most_common = frequencies[1] # print("most common: {} 2nd most common: {}".format(most_common, second_most_common)) # Tie if most_common[1] == second_most_common[1] or most_common[0] != label: tag = my_vars.BORDERLINE # print("neighbor labels: {} vs. {}".format(labels, label)) # print("tag:", tag) return tag def normalize_dataframe(df): """Normalize numeric features (=columns) using min-max normalization""" for col_name in df.columns: col = df[col_name] if is_numeric_dtype(col): min_val = col.min() max_val = col.max() df[col_name] = (col - min_val) / (max_val - min_val) return df def normalize_series(col): """Normalizes a given series assuming it's data type is numeric""" if is_numeric_dtype(col): min_val = col.min() max_val = col.max() col = (col - min_val) / (max_val - min_val) return col def create_svdm_lookup_column(df, coli, class_col_name): """ Create sparse lookup table for the feature representing the current column i. N(xi), N(yi), N(xi, Kj), N(yi, Kj), is stored per nominal feature, where N(xi) and N(yi) are the numbers of examples for which the value on i-th feature (coli) is equal to xi and yi respectively, N(xi , Kj) and N(yi, Kj) are the numbers of examples from the decision class Kj , which belong to N(xi) and N(yi), respectively Parameters ---------- df: pd.DataFrame - dataset. coli: pd.Series - i-th column (= feature) of the dataset class_col_name: str - name of class label in <df>. Returns ------- dict - sparse dictionary holding the non-zero counts of all values of <coli> with the class labels """ c = {} nxiyi = Counter(coli.values) c.update(nxiyi) c[my_vars.CONDITIONAL] = {} # print("N(xi/yi)\n", nxiyi) unique_xiyi = nxiyi.keys() # Create all pairwise combinations of two values combinations = itertools.combinations(unique_xiyi, 2) for combo in combinations: for val in combo: # print("current value:\n", val) rows_with_val = df.loc[coli == val] # print("rows with value:\n", rows_with_val) # nxiyikj = Counter(rows_with_val.iloc[:, class_idx].values) nxiyikj = Counter(rows_with_val[class_col_name].values) # print("counts:\n", nxiyikj) c[my_vars.CONDITIONAL][val] = nxiyikj return c def does_rule_cover_example(example, rule, dtypes): """ Tests if a rule covers a given example. Parameters ---------- example: pd.Series - example rule: pd.Series - rule dtypes: pd.Series - data types of the respective columns in the dataset Returns ------- bool. True if the rule covers the example else False. """ is_covered = True for (col_name, example_val), dtype in zip(example.iteritems(), dtypes): example_dtype = dtype if col_name in rule: # Cast object to tuple datatype -> this is only automatically done if it's not a string rule_val = (rule[col_name]) # print("rule_val", rule_val, "\nrule type:", type(rule_val)) if is_string_dtype(example_dtype) and example_val != rule_val: is_covered = False break elif is_numeric_dtype(example_dtype): if rule_val[0] > example_val or rule_val[1] < example_val: is_covered = False break return is_covered def does_rule_cover_example_without_label(example, rule, dtypes, class_col_name): """ Tests if a rule covers a given example. In contrast to does_rule_cover_example(), the class label is ignored. Parameters ---------- example: pd.Series - example rule: pd.Series - rule dtypes: pd.Series - data types of the respective columns in the dataset class_col_name: str - name of the column in <example> that holds the class label of the example Returns ------- bool. True if the rule covers the example else False. """ is_covered = True for (col_name, example_val), dtype in zip(example.iteritems(), dtypes): example_dtype = dtype if col_name in rule and col_name != class_col_name: # Cast object to tuple datatype -> this is only automatically done if it's not a string rule_val = (rule[col_name]) # print("rule_val", rule_val, "\nrule type:", type(rule_val)) if
is_string_dtype(example_dtype)
pandas.api.types.is_string_dtype
from datetime import datetime import numpy as np import pytest import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, Index, MultiIndex, Series, qcut, ) import pandas._testing as tm def cartesian_product_for_groupers(result, args, names, fill_value=np.NaN): """Reindex to a cartesian production for the groupers, preserving the nature (Categorical) of each grouper """ def f(a): if isinstance(a, (CategoricalIndex, Categorical)): categories = a.categories a = Categorical.from_codes( np.arange(len(categories)), categories=categories, ordered=a.ordered ) return a index = MultiIndex.from_product(map(f, args), names=names) return result.reindex(index, fill_value=fill_value).sort_index() _results_for_groupbys_with_missing_categories = { # This maps the builtin groupby functions to their expected outputs for # missing categories when they are called on a categorical grouper with # observed=False. Some functions are expected to return NaN, some zero. # These expected values can be used across several tests (i.e. they are # the same for SeriesGroupBy and DataFrameGroupBy) but they should only be # hardcoded in one place. "all": np.NaN, "any": np.NaN, "count": 0, "corrwith": np.NaN, "first": np.NaN, "idxmax": np.NaN, "idxmin": np.NaN, "last": np.NaN, "mad": np.NaN, "max": np.NaN, "mean": np.NaN, "median": np.NaN, "min": np.NaN, "nth": np.NaN, "nunique": 0, "prod": np.NaN, "quantile": np.NaN, "sem": np.NaN, "size": 0, "skew": np.NaN, "std": np.NaN, "sum": 0, "var": np.NaN, } def test_apply_use_categorical_name(df): cats = qcut(df.C, 4) def get_stats(group): return { "min": group.min(), "max": group.max(), "count": group.count(), "mean": group.mean(), } result = df.groupby(cats, observed=False).D.apply(get_stats) assert result.index.names[0] == "C" def test_basic(): cats = Categorical( ["a", "a", "a", "b", "b", "b", "c", "c", "c"], categories=["a", "b", "c", "d"], ordered=True, ) data = DataFrame({"a": [1, 1, 1, 2, 2, 2, 3, 4, 5], "b": cats}) exp_index = CategoricalIndex(list("abcd"), name="b", ordered=True) expected = DataFrame({"a": [1, 2, 4, np.nan]}, index=exp_index) result = data.groupby("b", observed=False).mean() tm.assert_frame_equal(result, expected) cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]}) # single grouper gb = df.groupby("A", observed=False) exp_idx = CategoricalIndex(["a", "b", "z"], name="A", ordered=True) expected = DataFrame({"values": Series([3, 7, 0], index=exp_idx)}) result = gb.sum() tm.assert_frame_equal(result, expected) # GH 8623 x = DataFrame( [[1, "<NAME>"], [2, "<NAME>"], [1, "<NAME>"]], columns=["person_id", "person_name"], ) x["person_name"] = Categorical(x.person_name) g = x.groupby(["person_id"], observed=False) result = g.transform(lambda x: x) tm.assert_frame_equal(result, x[["person_name"]]) result = x.drop_duplicates("person_name") expected = x.iloc[[0, 1]] tm.assert_frame_equal(result, expected) def f(x): return x.drop_duplicates("person_name").iloc[0] result = g.apply(f) expected = x.iloc[[0, 1]].copy() expected.index = Index([1, 2], name="person_id") expected["person_name"] = expected["person_name"].astype("object") tm.assert_frame_equal(result, expected) # GH 9921 # Monotonic df = DataFrame({"a": [5, 15, 25]}) c = pd.cut(df.a, bins=[0, 10, 20, 30, 40]) result = df.a.groupby(c, observed=False).transform(sum) tm.assert_series_equal(result, df["a"]) tm.assert_series_equal( df.a.groupby(c, observed=False).transform(lambda xs: np.sum(xs)), df["a"] ) tm.assert_frame_equal(df.groupby(c, observed=False).transform(sum), df[["a"]]) tm.assert_frame_equal( df.groupby(c, observed=False).transform(lambda xs: np.max(xs)), df[["a"]] ) # Filter tm.assert_series_equal(df.a.groupby(c, observed=False).filter(np.all), df["a"]) tm.assert_frame_equal(df.groupby(c, observed=False).filter(np.all), df) # Non-monotonic df = DataFrame({"a": [5, 15, 25, -5]}) c = pd.cut(df.a, bins=[-10, 0, 10, 20, 30, 40]) result = df.a.groupby(c, observed=False).transform(sum) tm.assert_series_equal(result, df["a"]) tm.assert_series_equal( df.a.groupby(c, observed=False).transform(lambda xs: np.sum(xs)), df["a"] ) tm.assert_frame_equal(df.groupby(c, observed=False).transform(sum), df[["a"]]) tm.assert_frame_equal( df.groupby(c, observed=False).transform(lambda xs: np.sum(xs)), df[["a"]] ) # GH 9603 df = DataFrame({"a": [1, 0, 0, 0]}) c = pd.cut(df.a, [0, 1, 2, 3, 4], labels=Categorical(list("abcd"))) result = df.groupby(c, observed=False).apply(len) exp_index = CategoricalIndex(c.values.categories, ordered=c.values.ordered) expected = Series([1, 0, 0, 0], index=exp_index) expected.index.name = "a" tm.assert_series_equal(result, expected) # more basic levels = ["foo", "bar", "baz", "qux"] codes = np.random.randint(0, 4, size=100) cats = Categorical.from_codes(codes, levels, ordered=True) data = DataFrame(np.random.randn(100, 4)) result = data.groupby(cats, observed=False).mean() expected = data.groupby(np.asarray(cats), observed=False).mean() exp_idx = CategoricalIndex(levels, categories=cats.categories, ordered=True) expected = expected.reindex(exp_idx) tm.assert_frame_equal(result, expected) grouped = data.groupby(cats, observed=False) desc_result = grouped.describe() idx = cats.codes.argsort() ord_labels = np.asarray(cats).take(idx) ord_data = data.take(idx) exp_cats = Categorical( ord_labels, ordered=True, categories=["foo", "bar", "baz", "qux"] ) expected = ord_data.groupby(exp_cats, sort=False, observed=False).describe() tm.assert_frame_equal(desc_result, expected) # GH 10460 expc = Categorical.from_codes(np.arange(4).repeat(8), levels, ordered=True) exp = CategoricalIndex(expc) tm.assert_index_equal((desc_result.stack().index.get_level_values(0)), exp) exp = Index(["count", "mean", "std", "min", "25%", "50%", "75%", "max"] * 4) tm.assert_index_equal((desc_result.stack().index.get_level_values(1)), exp) def test_level_get_group(observed): # GH15155 df = DataFrame( data=np.arange(2, 22, 2), index=MultiIndex( levels=[CategoricalIndex(["a", "b"]), range(10)], codes=[[0] * 5 + [1] * 5, range(10)], names=["Index1", "Index2"], ), ) g = df.groupby(level=["Index1"], observed=observed) # expected should equal test.loc[["a"]] # GH15166 expected = DataFrame( data=np.arange(2, 12, 2), index=MultiIndex( levels=[CategoricalIndex(["a", "b"]), range(5)], codes=[[0] * 5, range(5)], names=["Index1", "Index2"], ), ) result = g.get_group("a") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("ordered", [True, False]) def test_apply(ordered): # GH 10138 dense = Categorical(list("abc"), ordered=ordered) # 'b' is in the categories but not in the list missing = Categorical(list("aaa"), categories=["a", "b"], ordered=ordered) values = np.arange(len(dense)) df = DataFrame({"missing": missing, "dense": dense, "values": values}) grouped = df.groupby(["missing", "dense"], observed=True) # missing category 'b' should still exist in the output index idx = MultiIndex.from_arrays([missing, dense], names=["missing", "dense"]) expected = DataFrame([0, 1, 2.0], index=idx, columns=["values"]) # GH#21636 tracking down the xfail, in some builds np.mean(df.loc[[0]]) # is coming back as Series([0., 1., 0.], index=["missing", "dense", "values"]) # when we expect Series(0., index=["values"]) result = grouped.apply(lambda x: np.mean(x)) tm.assert_frame_equal(result, expected) # we coerce back to ints expected = expected.astype("int") result = grouped.mean() tm.assert_frame_equal(result, expected) result = grouped.agg(np.mean) tm.assert_frame_equal(result, expected) # but for transform we should still get back the original index idx = MultiIndex.from_arrays([missing, dense], names=["missing", "dense"]) expected = Series(1, index=idx) result = grouped.apply(lambda x: 1) tm.assert_series_equal(result, expected) def test_observed(observed): # multiple groupers, don't re-expand the output space # of the grouper # gh-14942 (implement) # gh-10132 (back-compat) # gh-8138 (back-compat) # gh-8869 cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]}) df["C"] = ["foo", "bar"] * 2 # multiple groupers with a non-cat gb = df.groupby(["A", "B", "C"], observed=observed) exp_index = MultiIndex.from_arrays( [cat1, cat2, ["foo", "bar"] * 2], names=["A", "B", "C"] ) expected = DataFrame({"values": Series([1, 2, 3, 4], index=exp_index)}).sort_index() result = gb.sum() if not observed: expected = cartesian_product_for_groupers( expected, [cat1, cat2, ["foo", "bar"]], list("ABC"), fill_value=0 ) tm.assert_frame_equal(result, expected) gb = df.groupby(["A", "B"], observed=observed) exp_index = MultiIndex.from_arrays([cat1, cat2], names=["A", "B"]) expected = DataFrame({"values": [1, 2, 3, 4]}, index=exp_index) result = gb.sum() if not observed: expected = cartesian_product_for_groupers( expected, [cat1, cat2], list("AB"), fill_value=0 ) tm.assert_frame_equal(result, expected) # https://github.com/pandas-dev/pandas/issues/8138 d = { "cat": Categorical( ["a", "b", "a", "b"], categories=["a", "b", "c"], ordered=True ), "ints": [1, 1, 2, 2], "val": [10, 20, 30, 40], } df = DataFrame(d) # Grouping on a single column groups_single_key = df.groupby("cat", observed=observed) result = groups_single_key.mean() exp_index = CategoricalIndex( list("ab"), name="cat", categories=list("abc"), ordered=True ) expected = DataFrame({"ints": [1.5, 1.5], "val": [20.0, 30]}, index=exp_index) if not observed: index = CategoricalIndex( list("abc"), name="cat", categories=list("abc"), ordered=True ) expected = expected.reindex(index) tm.assert_frame_equal(result, expected) # Grouping on two columns groups_double_key = df.groupby(["cat", "ints"], observed=observed) result = groups_double_key.agg("mean") expected = DataFrame( { "val": [10, 30, 20, 40], "cat": Categorical( ["a", "a", "b", "b"], categories=["a", "b", "c"], ordered=True ), "ints": [1, 2, 1, 2], } ).set_index(["cat", "ints"]) if not observed: expected = cartesian_product_for_groupers( expected, [df.cat.values, [1, 2]], ["cat", "ints"] ) tm.assert_frame_equal(result, expected) # GH 10132 for key in [("a", 1), ("b", 2), ("b", 1), ("a", 2)]: c, i = key result = groups_double_key.get_group(key) expected = df[(df.cat == c) & (df.ints == i)] tm.assert_frame_equal(result, expected) # gh-8869 # with as_index d = { "foo": [10, 8, 4, 8, 4, 1, 1], "bar": [10, 20, 30, 40, 50, 60, 70], "baz": ["d", "c", "e", "a", "a", "d", "c"], } df = DataFrame(d) cat = pd.cut(df["foo"], np.linspace(0, 10, 3)) df["range"] = cat groups = df.groupby(["range", "baz"], as_index=False, observed=observed) result = groups.agg("mean") groups2 = df.groupby(["range", "baz"], as_index=True, observed=observed) expected = groups2.agg("mean").reset_index() tm.assert_frame_equal(result, expected) def test_observed_codes_remap(observed): d = {"C1": [3, 3, 4, 5], "C2": [1, 2, 3, 4], "C3": [10, 100, 200, 34]} df = DataFrame(d) values = pd.cut(df["C1"], [1, 2, 3, 6]) values.name = "cat" groups_double_key = df.groupby([values, "C2"], observed=observed) idx = MultiIndex.from_arrays([values, [1, 2, 3, 4]], names=["cat", "C2"]) expected = DataFrame({"C1": [3, 3, 4, 5], "C3": [10, 100, 200, 34]}, index=idx) if not observed: expected = cartesian_product_for_groupers( expected, [values.values, [1, 2, 3, 4]], ["cat", "C2"] ) result = groups_double_key.agg("mean") tm.assert_frame_equal(result, expected) def test_observed_perf(): # we create a cartesian product, so this is # non-performant if we don't use observed values # gh-14942 df = DataFrame( { "cat": np.random.randint(0, 255, size=30000), "int_id": np.random.randint(0, 255, size=30000), "other_id": np.random.randint(0, 10000, size=30000), "foo": 0, } ) df["cat"] = df.cat.astype(str).astype("category") grouped = df.groupby(["cat", "int_id", "other_id"], observed=True) result = grouped.count() assert result.index.levels[0].nunique() == df.cat.nunique() assert result.index.levels[1].nunique() == df.int_id.nunique() assert result.index.levels[2].nunique() == df.other_id.nunique() def test_observed_groups(observed): # gh-20583 # test that we have the appropriate groups cat = Categorical(["a", "c", "a"], categories=["a", "b", "c"]) df = DataFrame({"cat": cat, "vals": [1, 2, 3]}) g = df.groupby("cat", observed=observed) result = g.groups if observed: expected = {"a": Index([0, 2], dtype="int64"), "c": Index([1], dtype="int64")} else: expected = { "a": Index([0, 2], dtype="int64"), "b": Index([], dtype="int64"), "c": Index([1], dtype="int64"), } tm.assert_dict_equal(result, expected) def test_observed_groups_with_nan(observed): # GH 24740 df = DataFrame( { "cat": Categorical(["a", np.nan, "a"], categories=["a", "b", "d"]), "vals": [1, 2, 3], } ) g = df.groupby("cat", observed=observed) result = g.groups if observed: expected = {"a": Index([0, 2], dtype="int64")} else: expected = { "a": Index([0, 2], dtype="int64"), "b": Index([], dtype="int64"), "d": Index([], dtype="int64"), } tm.assert_dict_equal(result, expected) def test_observed_nth(): # GH 26385 cat = Categorical(["a", np.nan, np.nan], categories=["a", "b", "c"]) ser = Series([1, 2, 3]) df = DataFrame({"cat": cat, "ser": ser}) result = df.groupby("cat", observed=False)["ser"].nth(0) index = Categorical(["a", "b", "c"], categories=["a", "b", "c"]) expected = Series([1, np.nan, np.nan], index=index, name="ser") expected.index.name = "cat" tm.assert_series_equal(result, expected) def test_dataframe_categorical_with_nan(observed): # GH 21151 s1 = Categorical([np.nan, "a", np.nan, "a"], categories=["a", "b", "c"]) s2 = Series([1, 2, 3, 4]) df = DataFrame({"s1": s1, "s2": s2}) result = df.groupby("s1", observed=observed).first().reset_index() if observed: expected = DataFrame( {"s1": Categorical(["a"], categories=["a", "b", "c"]), "s2": [2]} ) else: expected = DataFrame( { "s1": Categorical(["a", "b", "c"], categories=["a", "b", "c"]), "s2": [2, np.nan, np.nan], } ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("ordered", [True, False]) @pytest.mark.parametrize("observed", [True, False]) @pytest.mark.parametrize("sort", [True, False]) def test_dataframe_categorical_ordered_observed_sort(ordered, observed, sort): # GH 25871: Fix groupby sorting on ordered Categoricals # GH 25167: Groupby with observed=True doesn't sort # Build a dataframe with cat having one unobserved category ('missing'), # and a Series with identical values label = Categorical( ["d", "a", "b", "a", "d", "b"], categories=["a", "b", "missing", "d"], ordered=ordered, ) val = Series(["d", "a", "b", "a", "d", "b"]) df = DataFrame({"label": label, "val": val}) # aggregate on the Categorical result = df.groupby("label", observed=observed, sort=sort)["val"].aggregate("first") # If ordering works, we expect index labels equal to aggregation results, # except for 'observed=False': label 'missing' has aggregation None label = Series(result.index.array, dtype="object") aggr = Series(result.array) if not observed: aggr[aggr.isna()] = "missing" if not all(label == aggr): msg = ( "Labels and aggregation results not consistently sorted\n" f"for (ordered={ordered}, observed={observed}, sort={sort})\n" f"Result:\n{result}" ) assert False, msg def test_datetime(): # GH9049: ensure backward compatibility levels = pd.date_range("2014-01-01", periods=4) codes = np.random.randint(0, 4, size=100) cats = Categorical.from_codes(codes, levels, ordered=True) data = DataFrame(np.random.randn(100, 4)) result = data.groupby(cats, observed=False).mean() expected = data.groupby(np.asarray(cats), observed=False).mean() expected = expected.reindex(levels) expected.index = CategoricalIndex( expected.index, categories=expected.index, ordered=True ) tm.assert_frame_equal(result, expected) grouped = data.groupby(cats, observed=False) desc_result = grouped.describe() idx = cats.codes.argsort() ord_labels = cats.take(idx) ord_data = data.take(idx) expected = ord_data.groupby(ord_labels, observed=False).describe() tm.assert_frame_equal(desc_result, expected) tm.assert_index_equal(desc_result.index, expected.index) tm.assert_index_equal( desc_result.index.get_level_values(0), expected.index.get_level_values(0) ) # GH 10460 expc = Categorical.from_codes(np.arange(4).repeat(8), levels, ordered=True) exp = CategoricalIndex(expc) tm.assert_index_equal((desc_result.stack().index.get_level_values(0)), exp) exp = Index(["count", "mean", "std", "min", "25%", "50%", "75%", "max"] * 4) tm.assert_index_equal((desc_result.stack().index.get_level_values(1)), exp) def test_categorical_index(): s = np.random.RandomState(12345) levels = ["foo", "bar", "baz", "qux"] codes = s.randint(0, 4, size=20) cats = Categorical.from_codes(codes, levels, ordered=True) df = DataFrame(np.repeat(np.arange(20), 4).reshape(-1, 4), columns=list("abcd")) df["cats"] = cats # with a cat index result = df.set_index("cats").groupby(level=0, observed=False).sum() expected = df[list("abcd")].groupby(cats.codes, observed=False).sum() expected.index = CategoricalIndex( Categorical.from_codes([0, 1, 2, 3], levels, ordered=True), name="cats" ) tm.assert_frame_equal(result, expected) # with a cat column, should produce a cat index result = df.groupby("cats", observed=False).sum() expected = df[list("abcd")].groupby(cats.codes, observed=False).sum() expected.index = CategoricalIndex( Categorical.from_codes([0, 1, 2, 3], levels, ordered=True), name="cats" ) tm.assert_frame_equal(result, expected) def test_describe_categorical_columns(): # GH 11558 cats = CategoricalIndex( ["qux", "foo", "baz", "bar"], categories=["foo", "bar", "baz", "qux"], ordered=True, ) df = DataFrame(np.random.randn(20, 4), columns=cats) result = df.groupby([1, 2, 3, 4] * 5).describe() tm.assert_index_equal(result.stack().columns, cats) tm.assert_categorical_equal(result.stack().columns.values, cats.values) def test_unstack_categorical(): # GH11558 (example is taken from the original issue) df = DataFrame( {"a": range(10), "medium": ["A", "B"] * 5, "artist": list("XYXXY") * 2} ) df["medium"] = df["medium"].astype("category") gcat = df.groupby(["artist", "medium"], observed=False)["a"].count().unstack() result = gcat.describe() exp_columns = CategoricalIndex(["A", "B"], ordered=False, name="medium") tm.assert_index_equal(result.columns, exp_columns) tm.assert_categorical_equal(result.columns.values, exp_columns.values) result = gcat["A"] + gcat["B"] expected = Series([6, 4], index=Index(["X", "Y"], name="artist")) tm.assert_series_equal(result, expected) def test_bins_unequal_len(): # GH3011 series = Series([np.nan, np.nan, 1, 1, 2, 2, 3, 3, 4, 4]) bins = pd.cut(series.dropna().values, 4) # len(bins) != len(series) here msg = r"Length of grouper \(8\) and axis \(10\) must be same length" with pytest.raises(ValueError, match=msg): series.groupby(bins).mean() def test_as_index(): # GH13204 df = DataFrame( { "cat": Categorical([1, 2, 2], [1, 2, 3]), "A": [10, 11, 11], "B": [101, 102, 103], } ) result = df.groupby(["cat", "A"], as_index=False, observed=True).sum() expected = DataFrame( { "cat": Categorical([1, 2], categories=df.cat.cat.categories), "A": [10, 11], "B": [101, 205], }, columns=["cat", "A", "B"], ) tm.assert_frame_equal(result, expected) # function grouper f = lambda r: df.loc[r, "A"] result = df.groupby(["cat", f], as_index=False, observed=True).sum() expected = DataFrame( { "cat": Categorical([1, 2], categories=df.cat.cat.categories), "A": [10, 22], "B": [101, 205], }, columns=["cat", "A", "B"], ) tm.assert_frame_equal(result, expected) # another not in-axis grouper (conflicting names in index) s = Series(["a", "b", "b"], name="cat") result = df.groupby(["cat", s], as_index=False, observed=True).sum() tm.assert_frame_equal(result, expected) # is original index dropped? group_columns = ["cat", "A"] expected = DataFrame( { "cat": Categorical([1, 2], categories=df.cat.cat.categories), "A": [10, 11], "B": [101, 205], }, columns=["cat", "A", "B"], ) for name in [None, "X", "B"]: df.index = Index(list("abc"), name=name) result = df.groupby(group_columns, as_index=False, observed=True).sum() tm.assert_frame_equal(result, expected) def test_preserve_categories(): # GH-13179 categories = list("abc") # ordered=True df = DataFrame({"A": Categorical(list("ba"), categories=categories, ordered=True)}) index = CategoricalIndex(categories, categories, ordered=True, name="A") tm.assert_index_equal( df.groupby("A", sort=True, observed=False).first().index, index ) tm.assert_index_equal( df.groupby("A", sort=False, observed=False).first().index, index ) # ordered=False df = DataFrame({"A": Categorical(list("ba"), categories=categories, ordered=False)}) sort_index = CategoricalIndex(categories, categories, ordered=False, name="A") nosort_index = CategoricalIndex(list("bac"), list("bac"), ordered=False, name="A") tm.assert_index_equal( df.groupby("A", sort=True, observed=False).first().index, sort_index ) tm.assert_index_equal( df.groupby("A", sort=False, observed=False).first().index, nosort_index ) def test_preserve_categorical_dtype(): # GH13743, GH13854 df = DataFrame( { "A": [1, 2, 1, 1, 2], "B": [10, 16, 22, 28, 34], "C1": Categorical(list("abaab"), categories=list("bac"), ordered=False), "C2": Categorical(list("abaab"), categories=list("bac"), ordered=True), } ) # single grouper exp_full = DataFrame( { "A": [2.0, 1.0, np.nan], "B": [25.0, 20.0, np.nan], "C1": Categorical(list("bac"), categories=list("bac"), ordered=False), "C2": Categorical(list("bac"), categories=list("bac"), ordered=True), } ) for col in ["C1", "C2"]: result1 = df.groupby(by=col, as_index=False, observed=False).mean() result2 = df.groupby(by=col, as_index=True, observed=False).mean().reset_index() expected = exp_full.reindex(columns=result1.columns) tm.assert_frame_equal(result1, expected) tm.assert_frame_equal(result2, expected) @pytest.mark.parametrize( "func, values", [ ("first", ["second", "first"]), ("last", ["fourth", "third"]), ("min", ["fourth", "first"]), ("max", ["second", "third"]), ], ) def test_preserve_on_ordered_ops(func, values): # gh-18502 # preserve the categoricals on ops c = Categorical(["first", "second", "third", "fourth"], ordered=True) df = DataFrame({"payload": [-1, -2, -1, -2], "col": c}) g = df.groupby("payload") result = getattr(g, func)() expected = DataFrame( {"payload": [-2, -1], "col": Series(values, dtype=c.dtype)} ).set_index("payload") tm.assert_frame_equal(result, expected) def test_categorical_no_compress(): data = Series(np.random.randn(9)) codes = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) cats = Categorical.from_codes(codes, [0, 1, 2], ordered=True) result = data.groupby(cats, observed=False).mean() exp = data.groupby(codes, observed=False).mean() exp.index = CategoricalIndex( exp.index, categories=cats.categories, ordered=cats.ordered ) tm.assert_series_equal(result, exp) codes = np.array([0, 0, 0, 1, 1, 1, 3, 3, 3]) cats = Categorical.from_codes(codes, [0, 1, 2, 3], ordered=True) result = data.groupby(cats, observed=False).mean() exp = data.groupby(codes, observed=False).mean().reindex(cats.categories) exp.index = CategoricalIndex( exp.index, categories=cats.categories, ordered=cats.ordered ) tm.assert_series_equal(result, exp) cats = Categorical( ["a", "a", "a", "b", "b", "b", "c", "c", "c"], categories=["a", "b", "c", "d"], ordered=True, ) data = DataFrame({"a": [1, 1, 1, 2, 2, 2, 3, 4, 5], "b": cats}) result = data.groupby("b", observed=False).mean() result = result["a"].values exp = np.array([1, 2, 4, np.nan]) tm.assert_numpy_array_equal(result, exp) def test_groupby_empty_with_category(): # GH-9614 # test fix for when group by on None resulted in # coercion of dtype categorical -> float df = DataFrame({"A": [None] * 3, "B": Categorical(["train", "train", "test"])}) result = df.groupby("A").first()["B"] expected = Series( Categorical([], categories=["test", "train"]), index=Series([], dtype="object", name="A"), name="B", ) tm.assert_series_equal(result, expected) def test_sort(): # https://stackoverflow.com/questions/23814368/sorting-pandas- # categorical-labels-after-groupby # This should result in a properly sorted Series so that the plot # has a sorted x axis # self.cat.groupby(['value_group'])['value_group'].count().plot(kind='bar') df = DataFrame({"value": np.random.randint(0, 10000, 100)}) labels = [f"{i} - {i+499}" for i in range(0, 10000, 500)] cat_labels = Categorical(labels, labels) df = df.sort_values(by=["value"], ascending=True) df["value_group"] = pd.cut( df.value, range(0, 10500, 500), right=False, labels=cat_labels ) res = df.groupby(["value_group"], observed=False)["value_group"].count() exp = res[sorted(res.index, key=lambda x: float(x.split()[0]))] exp.index = CategoricalIndex(exp.index, name=exp.index.name) tm.assert_series_equal(res, exp) def test_sort2(): # dataframe groupby sort was being ignored # GH 8868 df = DataFrame( [ ["(7.5, 10]", 10, 10], ["(7.5, 10]", 8, 20], ["(2.5, 5]", 5, 30], ["(5, 7.5]", 6, 40], ["(2.5, 5]", 4, 50], ["(0, 2.5]", 1, 60], ["(5, 7.5]", 7, 70], ], columns=["range", "foo", "bar"], ) df["range"] = Categorical(df["range"], ordered=True) index = CategoricalIndex( ["(0, 2.5]", "(2.5, 5]", "(5, 7.5]", "(7.5, 10]"], name="range", ordered=True ) expected_sort = DataFrame( [[1, 60], [5, 30], [6, 40], [10, 10]], columns=["foo", "bar"], index=index ) col = "range" result_sort = df.groupby(col, sort=True, observed=False).first() tm.assert_frame_equal(result_sort, expected_sort) # when categories is ordered, group is ordered by category's order expected_sort = result_sort result_sort = df.groupby(col, sort=False, observed=False).first() tm.assert_frame_equal(result_sort, expected_sort) df["range"] = Categorical(df["range"], ordered=False) index = CategoricalIndex( ["(0, 2.5]", "(2.5, 5]", "(5, 7.5]", "(7.5, 10]"], name="range" ) expected_sort = DataFrame( [[1, 60], [5, 30], [6, 40], [10, 10]], columns=["foo", "bar"], index=index ) index = CategoricalIndex( ["(7.5, 10]", "(2.5, 5]", "(5, 7.5]", "(0, 2.5]"], categories=["(7.5, 10]", "(2.5, 5]", "(5, 7.5]", "(0, 2.5]"], name="range", ) expected_nosort = DataFrame( [[10, 10], [5, 30], [6, 40], [1, 60]], index=index, columns=["foo", "bar"] ) col = "range" # this is an unordered categorical, but we allow this #### result_sort = df.groupby(col, sort=True, observed=False).first() tm.assert_frame_equal(result_sort, expected_sort) result_nosort = df.groupby(col, sort=False, observed=False).first() tm.assert_frame_equal(result_nosort, expected_nosort) def test_sort_datetimelike(): # GH10505 # use same data as test_groupby_sort_categorical, which category is # corresponding to datetime.month df = DataFrame( { "dt": [ datetime(2011, 7, 1), datetime(2011, 7, 1), datetime(2011, 2, 1), datetime(2011, 5, 1), datetime(2011, 2, 1), datetime(2011, 1, 1), datetime(2011, 5, 1), ], "foo": [10, 8, 5, 6, 4, 1, 7], "bar": [10, 20, 30, 40, 50, 60, 70], }, columns=["dt", "foo", "bar"], ) # ordered=True df["dt"] = Categorical(df["dt"], ordered=True) index = [ datetime(2011, 1, 1), datetime(2011, 2, 1), datetime(2011, 5, 1), datetime(2011, 7, 1), ] result_sort = DataFrame( [[1, 60], [5, 30], [6, 40], [10, 10]], columns=["foo", "bar"] ) result_sort.index = CategoricalIndex(index, name="dt", ordered=True) index = [ datetime(2011, 7, 1), datetime(2011, 2, 1), datetime(2011, 5, 1), datetime(2011, 1, 1), ] result_nosort = DataFrame( [[10, 10], [5, 30], [6, 40], [1, 60]], columns=["foo", "bar"] ) result_nosort.index = CategoricalIndex( index, categories=index, name="dt", ordered=True ) col = "dt" tm.assert_frame_equal( result_sort, df.groupby(col, sort=True, observed=False).first() ) # when categories is ordered, group is ordered by category's order tm.assert_frame_equal( result_sort, df.groupby(col, sort=False, observed=False).first() ) # ordered = False df["dt"] = Categorical(df["dt"], ordered=False) index = [ datetime(2011, 1, 1), datetime(2011, 2, 1), datetime(2011, 5, 1), datetime(2011, 7, 1), ] result_sort = DataFrame( [[1, 60], [5, 30], [6, 40], [10, 10]], columns=["foo", "bar"] ) result_sort.index = CategoricalIndex(index, name="dt") index = [ datetime(2011, 7, 1), datetime(2011, 2, 1), datetime(2011, 5, 1), datetime(2011, 1, 1), ] result_nosort = DataFrame( [[10, 10], [5, 30], [6, 40], [1, 60]], columns=["foo", "bar"] ) result_nosort.index = CategoricalIndex(index, categories=index, name="dt") col = "dt" tm.assert_frame_equal( result_sort, df.groupby(col, sort=True, observed=False).first() ) tm.assert_frame_equal( result_nosort, df.groupby(col, sort=False, observed=False).first() ) def test_empty_sum(): # https://github.com/pandas-dev/pandas/issues/18678 df = DataFrame( {"A": Categorical(["a", "a", "b"], categories=["a", "b", "c"]), "B": [1, 2, 1]} ) expected_idx = CategoricalIndex(["a", "b", "c"], name="A") # 0 by default result = df.groupby("A", observed=False).B.sum() expected = Series([3, 1, 0], expected_idx, name="B") tm.assert_series_equal(result, expected) # min_count=0 result = df.groupby("A", observed=False).B.sum(min_count=0) expected = Series([3, 1, 0], expected_idx, name="B") tm.assert_series_equal(result, expected) # min_count=1 result = df.groupby("A", observed=False).B.sum(min_count=1) expected = Series([3, 1, np.nan], expected_idx, name="B")
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
import os import numpy as np import pandas as pd import requests import json import codecs import matplotlib.pyplot as plt from legcop import LegiScan import nltk import base64 from bs4 import BeautifulSoup from collections import Counter from matplotlib.ticker import FormatStrFormatter import re api_key = "<KEY>" legis = LegiScan(api_key) ### create text documents def import_text(num, path): mylink2="https://api.legiscan.com/?key="+api_key+"&op=getBillText&id="+num r = requests.get(mylink2) json_response=r.json() json_response mydataframe=pd.DataFrame(json_response) mynew=mydataframe['text'] mynew.to_frame() base64_message = mynew['doc'] mydecoded = base64.b64decode(base64_message) html = mydecoded soup = BeautifulSoup(html, features="html.parser") #base64_bytes = base64_message.encode('ascii') #message_bytes = base64.b64decode(base64_bytes) #message = message_bytes.decode('ascii') raw = soup.get_text() output_file = open(path+'\Output_'+num+'.txt', 'w', encoding="utf-8") output_file.write(raw) output_file.close() # get the list of datasets available def get_session_list(state): mylink2='https://api.legiscan.com/?key="+api_key+"&op=getDatasetList&state='+state r = requests.get(mylink2) json_response=r.json() json_response global mylist mylist=
pd.DataFrame.from_dict(json_response['datasetlist'])
pandas.DataFrame.from_dict
import numpy as np import matplotlib import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import itertools from pathlib import Path def reject_outliers(data, m=2): mean = np.mean(data) std = np.std(data) distance = abs(data - mean) not_outlier = distance < m * std return data[not_outlier] def plot_visuals(agent, scores, safety, loc="./results/"): name = agent.__class__.__name__ + "#" + str(len(scores)) Path(loc).mkdir(parents=True, exist_ok=True) sns.set_theme(style="darkgrid") fig, axs = plt.subplots(ncols=2, figsize=(15, 5)) scores = reject_outliers(np.array(scores)) scoredf = pd.DataFrame( [(i, v) for i, v in enumerate(scores)], columns=["episode", "score"] ) sns.regplot( x="episode", y="score", data=scoredf, robust=True, ci=None, scatter_kws={"s": 10}, ax=axs[0], ) sns.boxplot(scores, showfliers=False, ax=axs[1]) fig.savefig(loc + name + "-Scores.png", dpi=400) fig, ax = plt.subplots(ncols=1) risk_rates = [] for j in safety: safe = j.count(1) unsafe = j.count(0) r = 0 if unsafe == 0 else (unsafe / (safe + unsafe)) risk_rates.append(r) ax.plot(risk_rates) plt.savefig(loc + name + "-Safety.png", dpi=400) def plot_comparisson(data, episodes, loc="./results/"): df = pd.concat([
pd.DataFrame(d)
pandas.DataFrame
# -*- coding: utf-8 -*- ''' This code generates Fig. 1 Trend of global mean surface temperature and anthropogenic aerosol emissions by <NAME> (<EMAIL>) ''' import numpy as np import pandas as pd import matplotlib.pyplot as plt import _env import seaborn.apionly as sns import matplotlib from scipy import stats from statsmodels.tsa.stattools import adfuller as ADF from statsmodels.tsa.stattools import acf matplotlib.rcParams['font.family'] = 'sans-serif' matplotlib.rcParams['font.sans-serif'] = 'Helvetica' #import matplotlib nens = _env.nens parameters_info = _env.parameters_info scenarios = _env.scenarios par = 'TREFHT' scen_aero = scenarios[1] scen_base = scenarios[0] if_temp = _env.odir_root + '/' + parameters_info[par]['dir']+ '/Global_Mean_' + par + '_1850-2019_ensembles' + '.xls' if_temp_pi = _env.odir_root + '/' + parameters_info[par]['dir']+ '/Global_Mean_Temperature_pre-industrial_110yrs.xls' odir_plot = _env.odir_root + '/plot/' _env.mkdirs(odir_plot) of_plot = odir_plot + 'F1.Trend_Temp_Emission.png' itbl_temp = pd.read_excel(if_temp,index_col=0) itbl_temp_pi = pd.read_excel(if_temp_pi,index_col=0) itbl_temp = itbl_temp - float(itbl_temp_pi.mean()) #itbl_temp.iloc[0]#float(itbl_temp_pi.mean()) #273.15 #add results for differences in temeprature between two scenarios for ens in np.arange(1,nens+1): itbl_temp['Diff%d' % ens] = itbl_temp[scen_base + '%d' % ens] - itbl_temp[scen_aero + '%d' % ens] #statistics itbls_temp_20_sam = {} itbl_temp_20_avg = pd.DataFrame(index=itbl_temp.index,columns=[scen_base,scen_aero,'Diff']) itbl_temp_20_ste =
pd.DataFrame(index=itbl_temp.index,columns=[scen_base,scen_aero,'Diff'])
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Apr 25 21:48:04 2021 @author: raymondlei """ _version='20210515' import pandas as pd import numpy as np from sklearn.model_selection import train_test_split, RepeatedKFold from sklearn.metrics import roc_auc_score import lightgbm as lgb from pandas.api.types import is_numeric_dtype import pickle import os def drop_high_corr(df,col,threshold=0.95): num_f=[i for i in col if is_numeric_dtype(df[i])==True ] corr_matrix = df.loc[:,num_f].corr().abs() upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool)) to_drop = set([column for column in upper.columns if any(upper[column] > threshold)]) print('dropped '+str(len(to_drop))+' highly correlated features out of '+str(len(col))+'!') return to_drop class vaccine_classifier: ''' A class designed specifically for this competition, starting from data load to create submission file. ''' def __init__ (self ,file_name ,submit ,top_k ,run_from_beginning ,show_n=20 ,repeat=5 ,nfold=5 ,concervative=True ,drop_corr=True ,root='/Users/raymondlei/Downloads/project/' ,debug=True ): self.root=root self.file_name=file_name self.submit=submit self.show_n=show_n self.repeat=repeat self.nfold=nfold self.concervative=concervative self.drop_corr=drop_corr self.top_k=top_k self.run_from_beginning=run_from_beginning self.cur_check_name=root+'checkpoint.p' self.new_check_name=root+'checkpoint_sucess.p' self.debug=debug def parameter_qc(self): ''' A QC runs prior everything to make sure all parameters are defined as expected ''' assert isinstance(self.root, str) assert isinstance(self.file_name, str) assert isinstance(self.submit, bool) assert isinstance(self.top_k, int) assert isinstance(self.show_n, int) assert isinstance(self.repeat, int) assert isinstance(self.nfold, int) assert isinstance(self.concervative, bool) assert isinstance(self.drop_corr, bool) assert isinstance(self.run_from_beginning, bool) assert isinstance(self.debug, bool) def checkpoint(self): with open(self.cur_check_name, 'wb') as f: pickle.dump(self, f) #double check to make sure saving sucessfully os.rename(self.cur_check_name ,self.new_check_name) print('saved!') def resume(self): self = pickle.load( open( self.new_check_name, "rb" ) ) print('resumed from {}'.format(self.step_log[self.log_step])) return self def execute(self): ''' Execute the pipeline in sequence with check point to save a state of each step ''' self.step_log={ #1st step 0:'self.load(step=1)' ,1:'self.create_label(step=1)' ,2:'self.cast()' ,3:'self.split()' ,4:'self.create_combination()' ,5:'self.create_num_trans()' ,6:'self.create_index(step=1)' ,7:'self.create_agg()' ,8:'self.drop_unused()' ,9:'self.feature_selection(step=1)' ,10:'self.model_train(step=1)' #2nd step ,11:'self.load(step=2)' ,12:'self.create_label(step=2)' ,13:'self.cast()' ,14:'self.split()' #it will be the same split as 1st step #following step will be identical to 1st step, however, the feature created will be different because of using different data ,15:'self.create_combination()' ,16:'self.create_num_trans()' ,17:'self.create_index(step=2)' ,18:'self.create_agg()' ,19:'self.drop_unused()' #train model for 2nd step ,20:'self.feature_selection(step=2)' ,21:'self.model_train(step=2)' } self.log_step=1 if self.run_from_beginning==False and os.path.exists(self.new_check_name): if self.log_step<21: self=self.resume() while self.log_step<max(self.step_log.keys()): exec(self.step_log[self.log_step]) self.log_step+=1 self.checkpoint() else: print("Last run is a complete end-to-end run. Nothing to rerun.") else: if os.path.exists(self.new_check_name): os.remove(self.new_check_name) for k, v in self.step_log.items(): exec(v) if k<21: self.log_step+=1 self.checkpoint() else: self.checkpoint() print("This is the end of process!") def load (self,step): if self.debug: self.train_x=pd.read_csv(self.root+'train_x.csv',index_col='respondent_id').sample(frac=0.1, random_state=1) self.test_x=pd.read_csv(self.root+'test_x.csv').sample(frac=0.1, random_state=1) else: self.train_x=pd.read_csv(self.root+'train_x.csv',index_col='respondent_id') self.test_x=pd.read_csv(self.root+'test_x.csv') self.train_y=pd.read_csv(self.root+'train_y.csv',index_col='respondent_id') self.train=
pd.merge(left=self.train_x, right=self.train_y,how='inner',left_index=True,right_index=True)
pandas.merge
#!/usr/bin/python # encoding: utf-8 """ @author: Ian @file: abnormal_detection_gaussian.py @time: 2019-04-18 18:03 """ import pandas as pd from mayiutils.file_io.pickle_wrapper import PickleWrapper as picklew from feature_selector import FeatureSelector if __name__ == '__main__': mode = 4 if mode == 4: """ feature selector """ # df1 = pd.read_excel('data.xlsx').iloc[:, 1:] # print(df1.info()) df = pd.read_excel('/Users/luoyonggui/Documents/work/dataset/0/data.xlsx') # print(df.info())# ๆŸฅ็œ‹dfๅญ—ๆฎตๅ’Œ็ผบๅคฑๅ€ผไฟกๆฏ label = df['็†่ต”็ป“่ฎบ'] df = df.drop(columns=['็†่ต”็ป“่ฎบ']) fs = FeatureSelector(data=df, labels=label) # ็ผบๅคฑๅ€ผๅค„็† fs.identify_missing(missing_threshold=0.6) if mode == 3: """ ๅˆๅนถๅ‚ไฟไบบๅŸบๆœฌไฟกๆฏ """ df1 = pd.read_excel('data.xlsx', 'Sheet2').dropna(axis=1, how='all') # print(df1.info()) """ ๅฝ’ๅนถๅฎขๆˆทๅท 528 non-null int64 ๆ€งๅˆซ 528 non-null object ๅ‡บ็”Ÿๅนดๆœˆๆ—ฅ 528 non-null datetime64[ns] ๅฉšๅงป็Šถๅ†ต 432 non-null object ่Œไธš 484 non-null float64 ่Œไธšๅฑ้™ฉ็ญ‰็บง 484 non-null float64 ๅนดๆ”ถๅ…ฅ 528 non-null int64 ๅนดไบคไฟ่ดน 528 non-null float64 ็Šน่ฑซๆœŸๆ’คๅ•ๆฌกๆ•ฐ 528 non-null int64 ๆ—ขๅพ€็†่ต”ๆฌกๆ•ฐ 528 non-null int64 ๆ—ขๅพ€ๆ‹’ไฟๆฌกๆ•ฐ 528 non-null int64 ๆ—ขๅพ€ๅปถๆœŸๆ‰ฟไฟๆฌกๆ•ฐ 528 non-null int64 ้žๆ ‡ๅ‡†ไฝ“ๆ‰ฟไฟๆฌกๆ•ฐ 528 non-null int64 ๆ—ขๅพ€่ฐƒๆŸฅๆ ‡่ฏ† 528 non-null object ๆ—ขๅพ€ไฝ“ๆฃ€ๆ ‡่ฏ† 528 non-null object ็ดฏ็งฏๅฏฟ้™ฉๅ‡€้ฃŽ้™ฉไฟ้ข 528 non-null float64 ็ดฏ็งฏ้‡็–พๅ‡€้ฃŽ้™ฉไฟ้ข 528 non-null float64 ๆŠ•ไฟไบบๅนดๆ”ถๅ…ฅไธŽๅนดไบคไฟ่ดนๆฏ”ๅ€ผ 437 non-null float64 ่ขซไฟ้™ฉไบบๆœ‰ๆ•ˆ้‡็–พ้˜ฒ็™Œ้™ฉไฟๅ•ไปถๆ•ฐ 528 non-null int64 ่ขซไฟ้™ฉไบบๆœ‰ๆ•ˆ็ŸญๆœŸๆ„ๅค–้™ฉไฟๅ•ไปถๆ•ฐ 528 non-null int64 ่ขซไฟ้™ฉไบบๆœ‰ๆ•ˆ็ŸญๆœŸๅฅๅบท้™ฉไฟๅ•ไปถๆ•ฐ 528 non-null int64 ่ขซไฟ้™ฉไบบ90ๅคฉๅ†…็”Ÿๆ•ˆไฟๅ•ไปถๆ•ฐ 528 non-null int64 ่ขซไฟ้™ฉไบบ180ๅคฉๅ†…็”Ÿๆ•ˆไฟๅ•ไปถๆ•ฐ 528 non-null int64 ่ขซไฟ้™ฉไบบ365ๅคฉๅ†…็”Ÿๆ•ˆไฟๅ•ไปถๆ•ฐ 528 non-null int64 ่ขซไฟ้™ฉไบบ730ๅคฉๅ†…็”Ÿๆ•ˆไฟๅ•ไปถๆ•ฐ 528 non-null int64 ๅฎขๆˆท้ป‘ๅๅ•ๆ ‡่ฏ† 528 non-null object ไฟๅ•ๅคฑๆ•ˆๆ—ฅๆœŸ 11 non-null datetime64[ns] ไฟๅ•ๅคๆ•ˆๆ—ฅๆœŸ 7 non-null datetime64[ns] ๅ—็›Šไบบๅ˜ๆ›ดๆ—ฅๆœŸ 12 non-null datetime64[ns] """ cols = list(df1.columns) cols.remove('ไฟๅ•ๅคฑๆ•ˆๆ—ฅๆœŸ') cols.remove('ไฟๅ•ๅคๆ•ˆๆ—ฅๆœŸ') cols.remove('ๅ—็›Šไบบๅ˜ๆ›ดๆ—ฅๆœŸ') cols.remove('ๅฎขๆˆท้ป‘ๅๅ•ๆ ‡่ฏ†')#ๅชๆœ‰ไธ€ไธชๅ€ผ df1['ๅ‡บ็”Ÿๅนด'] = df1['ๅ‡บ็”Ÿๅนดๆœˆๆ—ฅ'].apply(lambda x: int(str(x)[:4])) cols.append('ๅ‡บ็”Ÿๅนด') cols.remove('ๅ‡บ็”Ÿๅนดๆœˆๆ—ฅ') t = pd.get_dummies(df1['ๅฉšๅงป็Šถๅ†ต'], prefix='ๅฉšๅงป็Šถๅ†ต') df2 = pd.concat([df1, t], axis=1) print(df2.shape) cols.extend(list(t.columns)) cols.remove('ๅฉšๅงป็Šถๅ†ต') t = pd.get_dummies(df2['ๆ€งๅˆซ'], prefix='ๆ€งๅˆซ') df2 = pd.concat([df2, t], axis=1) print(df2.shape) cols.extend(list(t.columns)) cols.remove('ๆ€งๅˆซ') t = pd.get_dummies(df2['ๆ—ขๅพ€่ฐƒๆŸฅๆ ‡่ฏ†'], prefix='ๆ—ขๅพ€่ฐƒๆŸฅๆ ‡่ฏ†') df2 = pd.concat([df2, t], axis=1) print(df2.shape) cols.extend(list(t.columns)) cols.remove('ๆ—ขๅพ€่ฐƒๆŸฅๆ ‡่ฏ†') t = pd.get_dummies(df2['ๆ—ขๅพ€ไฝ“ๆฃ€ๆ ‡่ฏ†'], prefix='ๆ—ขๅพ€ไฝ“ๆฃ€ๆ ‡่ฏ†') df2 = pd.concat([df2, t], axis=1) print(df2.shape) cols.extend(list(t.columns)) cols.remove('ๆ—ขๅพ€ไฝ“ๆฃ€ๆ ‡่ฏ†') # print(df2['่Œไธš'].value_counts()) """ ๅ–ๅ‰ๅ››ไฝ ๅˆ†็ฑป """ df2['่Œไธš'] = df2['่Œไธš'].apply(lambda x: str(x)[:1]) # print(df2['่Œไธš'].value_counts()) t = pd.get_dummies(df2['่Œไธš'], prefix='่Œไธš') df2 =
pd.concat([df2, t], axis=1)
pandas.concat
# pylint: disable=broad-except # Imports: standard library import os import math import time import shutil import logging import multiprocessing from typing import Dict, List # Imports: third party import pandas as pd # Imports: first party from definitions.icu import ICU_SCALE_UNITS from tensorize.utils import save_mrns_and_csns_csv from tensorize.bedmaster.readers import BedmasterReader, CrossReferencer from tensorize.bedmaster.writers import Writer from tensorize.bedmaster.match_patient_bedmaster import PatientBedmasterMatcher class Tensorizer: """ Main class to tensorize the Bedmaster data. """ def __init__( self, bedmaster: str, xref: str, adt: str, ): """ Initialize Tensorizer object. :param bedmaster: <str> Directory containing all the Bedmaster data. :param xref: <str> Full path of the file containing cross reference between EDW and Bedmaster. :param adt: <str> Full path of the file containing the adt patients' info to be tensorized. """ self.bedmaster = bedmaster self.xref = xref self.adt = adt self.untensorized_files: Dict[str, List[str]] = {"file": [], "error": []} def tensorize( self, tensors: str, mrns: List[str] = None, starting_time: int = None, ending_time: int = None, overwrite_hd5: bool = True, n_patients: int = None, num_workers: int = None, ): """ Tensorizes Bedmaster data. It will create a new HD5 for each MRN with the integrated data from both sources according to the following structure: <BedMaster> <visitID>/ <signal name>/ data and metadata ... ... :param tensors: <str> Directory where the output HD5 will be saved. :param mrns: <List[str]> MGH MRNs. The rest will be filtered out. If None, all the MRN are taken :param starting_time: <int> Start time in Unix format. If None, timestamps will be taken from the first one. :param ending_time: <int> End time in Unix format. If None, timestamps will be taken until the last one. :param overwrite_hd5: <bool> Overwrite existing HD5 files during tensorization should be overwritten. :param n_patients: <int> Max number of patients to tensorize. :param num_workers: <int> Number of cores used to parallelize tensorization """ # No options specified: get all the cross-referenced files files_per_mrn = CrossReferencer( self.bedmaster, self.xref, self.adt, ).get_xref_files( mrns=mrns, starting_time=starting_time, ending_time=ending_time, overwrite_hd5=overwrite_hd5, n_patients=n_patients, tensors=tensors, ) os.makedirs(tensors, exist_ok=True) with multiprocessing.Pool(processes=num_workers) as pool: pool.starmap( self._main_write, [ (tensors, mrn, visits, ICU_SCALE_UNITS) for mrn, visits in files_per_mrn.items() ], ) df = pd.DataFrame.from_dict(self.untensorized_files) df.to_csv( os.path.join(tensors, "untensorized_bedmaster_files.csv"), index=False, ) def _main_write( self, tensors: str, mrn: str, visits: Dict, scaling_and_units: Dict, ): try: # Open the writer: one file per MRN output_file = os.path.join(tensors, f"{mrn}.hd5") with Writer(output_file) as writer: writer.write_completed_flag(False) for visit_id, bedmaster_files in visits.items(): # Set the visit ID writer.set_visit_id(visit_id) # Write Bedmaster data all_files, untensorized_files = self._write_bedmaster_data( bedmaster_files, writer=writer, scaling_and_units=scaling_and_units, ) self.untensorized_files["file"].append(untensorized_files["file"]) self.untensorized_files["error"].append(untensorized_files["error"]) writer.write_completed_flag(all_files) logging.info( f"Tensorized data from MRN {mrn}, CSN {visit_id} into " f"{output_file}.", ) except Exception as error: logging.exception(f"Tensorization failed for MRN {mrn} with CSNs {visits}") raise error @staticmethod def _write_bedmaster_data( bedmaster_files: List[str], writer: Writer, scaling_and_units: Dict, ): all_files = True previous_max = None untensorized_files: Dict[str, List[str]] = {"file": [], "error": []} for bedmaster_file in bedmaster_files: try: with BedmasterReader(bedmaster_file, scaling_and_units) as reader: if previous_max: reader.get_interbundle_correction(previous_max) # These blocks can be easily parallelized with MPI: # >>> rank = MPI.COMM_WORLD.rank # >>> if rank == 1: vs_signals = reader.list_vs() for vs_signal_name in vs_signals: vs_signal = reader.get_vs(vs_signal_name) if vs_signal: writer.write_signal(vs_signal) # >>> if rank == 2 wv_signals = reader.list_wv() for wv_signal_name, channel in wv_signals.items(): wv_signal = reader.get_wv(channel, wv_signal_name) if wv_signal: writer.write_signal(wv_signal) previous_max = reader.max_segment except Exception as error: untensorized_files["file"].append(bedmaster_file) untensorized_files["error"].append(repr(error)) if len(untensorized_files["file"]) > 0: all_files = False return all_files, untensorized_files def create_folders(staging_dir: str): """ Create temp folders for tensorization. :param staging_dir: <str> Path to temporary local directory. """ os.makedirs(staging_dir, exist_ok=True) os.makedirs(os.path.join(staging_dir, "bedmaster_temp"), exist_ok=True) def stage_bedmaster_files( staging_dir: str, adt: str, xref: str, ): """ Find Bedmaster files and copy them to local folder. :param staging_dir: <str> Path to temporary staging directory. :param adt: <str> Path to CSN containing ADT table. :param xref: <str> Path to xref.csv with Bedmaster metadata. """ path_patients = os.path.join(staging_dir, "patients.csv") mrns_and_csns = pd.read_csv(path_patients) mrns = mrns_and_csns["MRN"].drop_duplicates() # Copy ADT table adt_df = pd.read_csv(adt) adt_subset = adt_df[adt_df["MRN"].isin(mrns)] path_adt_new = os.path.join(staging_dir, "bedmaster_temp", "adt.csv") adt_subset.to_csv(path_adt_new, index=False) # Copy xref table xref_df = pd.read_csv(xref).sort_values(by=["MRN"], ascending=True) xref_subset = xref_df[xref_df["MRN"].isin(mrns)] path_xref_new = os.path.join(staging_dir, "bedmaster_temp", "xref.csv") xref_subset.to_csv(path_xref_new, index=False) # Iterate over all Bedmaster file paths to copy to staging directory path_destination_dir = os.path.join(staging_dir, "bedmaster_temp") for path_source_file in xref_subset["path"]: if os.path.exists(path_source_file): try: shutil.copy(path_source_file, path_destination_dir) except FileNotFoundError as e: logging.warning(f"{path_source_file} not found. Error given: {e}") else: logging.warning(f"{path_source_file} not found.") def cleanup_staging_files(staging_dir: str): """ Remove temp folders used for tensorization. :param staging_dir: <str> Path to temporary local directory. """ shutil.rmtree(os.path.join(staging_dir, "bedmaster_temp")) shutil.rmtree(os.path.join(staging_dir, "results_temp")) os.remove(os.path.join(staging_dir, "patients.csv")) def copy_hd5(staging_dir: str, destination_tensors: str, num_workers: int): """ Copy tensorized files to MAD3. :param staging_dir: <str> Path to temporary local directory. :param destination_tensors: <str> Path to MAD3 directory. :param num_workers: <int> Number of workers to use. """ init_time = time.time() list_files = os.listdir(staging_dir) with multiprocessing.Pool(processes=num_workers) as pool: pool.starmap( _copy_hd5, [(staging_dir, destination_tensors, file) for file in list_files], ) elapsed_time = time.time() - init_time logging.info( f"HD5 files copied to {destination_tensors}. " f"Process took {elapsed_time:.2f} sec", ) def _copy_hd5(staging_dir, destination_dir, file): source_path = os.path.join(staging_dir, file) shutil.copy(source_path, destination_dir) def tensorize(args): # Cross reference ADT table against Bedmaster metadata; # this results in the creation of xref.csv if not os.path.isfile(args.xref): matcher = PatientBedmasterMatcher( bedmaster=args.bedmaster, adt=args.adt, ) matcher.match_files(xref=args.xref) # Iterate over batch of patients missed_patients = [] num_mrns_tensorized = [] # If user does not set the end index, if args.mrn_end_index is None: adt_df =
pd.read_csv(args.adt)
pandas.read_csv
import numpy as np import pandas as pd import pytest from dask.dataframe.hashing import hash_pandas_object from dask.dataframe.utils import assert_eq @pytest.mark.parametrize('obj', [ pd.Series([1, 2, 3]), pd.Series([1.0, 1.5, 3.2]), pd.Series([1.0, 1.5, 3.2], index=[1.5, 1.1, 3.3]), pd.Series(['a', 'b', 'c']),
pd.Series([True, False, True])
pandas.Series
import warnings from functools import reduce import os import json import numpy as np import pandas as pd from tqdm import tqdm from qualipy.project import Project from qualipy.util import set_value_type, set_metric_id from qualipy.anomaly._isolation_forest import IsolationForestModel from qualipy.anomaly._prophet import ProphetModel from qualipy.anomaly._std import STDCheck from qualipy.anomaly.base import LoadedModel from qualipy.anomaly.trend_rules import trend_rules anomaly_columns = [ "column_name", "date", "metric", "arguments", "return_format", "value", "severity", "batch_name", "insert_time", "trend_function_name", ] MODS = { "IsolationForest": IsolationForestModel, "prophet": ProphetModel, "std": STDCheck, } class GenerateAnomalies: def __init__(self, project_name, config_dir): self.config_dir = config_dir with open(os.path.join(config_dir, "config.json"), "r") as conf_file: config = json.load(conf_file) self.model_type = config[project_name].get("ANOMALY_MODEL", "std") self.anom_args = config[project_name].get("ANOMALY_ARGS", {}) self.specific = self.anom_args.pop("specific", {}) self.project_name = project_name self.project = Project(project_name, config_dir=config_dir, re_init=True) df = self.project.get_project_table() df["floored_datetime"] = df.date.dt.floor("T") df = ( df.groupby("floored_datetime", as_index=False) .apply(lambda g: g[g.insert_time == g.insert_time.max()]) .reset_index(drop=True) ) df = df.drop("floored_datetime", axis=1) df.column_name = df.column_name + "_" + df.run_name df["metric_name"] = ( df.column_name + "_" + df.metric.astype(str) + "_" + np.where(df.arguments.isnull(), "", df.arguments) ) df = set_metric_id(df) df = df.sort_values("date") self.df = df def _num_train_and_save(self, data, all_rows, metric_name): try: metric_id = data.metric_id.iloc[0] mod = MODS[self.model_type]( config_dir=self.config_dir, metric_name=metric_id, project_name=self.project_name, ) mod.fit(data) mod.save() preds = mod.predict(data) if isinstance(preds, tuple): severity = preds[1] preds = preds[0] outlier_rows = data[preds == -1].copy() outlier_rows["severity"] = severity[preds == -1] else: outlier_rows = data[preds == -1] outlier_rows["severity"] = np.NaN if outlier_rows.shape[0] > 0: all_rows.append(outlier_rows) except Exception as e: print(str(e)) warnings.warn(f"Unable to create anomaly model for {metric_name}") return all_rows def _num_from_loaded_model(self, data, all_rows): mod = LoadedModel(config_dir=self.config_dir) mod.load(data.metric_id.iloc[0]) preds = mod.predict(data) if isinstance(preds, tuple): severity = preds[1] preds = preds[0] outlier_rows = data[preds == -1].copy() outlier_rows["severity"] = severity[preds == -1] else: outlier_rows = data[preds == -1] outlier_rows["severity"] = np.NaN if outlier_rows.shape[0] > 0: all_rows.append(outlier_rows) return all_rows def create_anom_num_table(self, retrain=False): df = self.df.copy() df = df[ (df["type"] == "numerical") | (df["column_name"].isin(["rows", "columns"])) | (df["metric"].isin(["perc_missing", "count"])) ] df.value = df.value.astype(float) all_rows = [] if self.model_type != "ignore": for metric_name, data in tqdm(df.groupby("metric_name")): if not retrain: try: all_rows = self._num_from_loaded_model(data, all_rows) except ValueError: warnings.warn(f"Unable to load anomaly model for {metric_name}") except FileNotFoundError: all_rows = self._num_train_and_save(data, all_rows, metric_name) else: all_rows = self._num_train_and_save(data, all_rows, metric_name) try: data = pd.concat(all_rows).sort_values("date", ascending=False) data["trend_function_name"] = np.NaN data = data[anomaly_columns] data.value = data.value.astype(str) except: data = pd.DataFrame([], columns=anomaly_columns) return data def create_anom_cat_table(self, retrain=False): df = self.df df = df[df["type"] == "categorical"] all_rows = [] if self.model_type != "ignore": for metric_id, data in tqdm(df.groupby("metric_id")): data = set_value_type(data.copy()) try: data_values = [ (pd.Series(c) / pd.Series(c).sum()).to_dict() for c in data["value"] ] unique_vals = reduce( lambda x, y: x.union(y), [set(i.keys()) for i in data_values] ) non_diff_lines = [] potential_lines = [] for cat in unique_vals: values = pd.Series([i.get(cat, 0) for i in data_values]) running_means = values.rolling(window=5).mean() differences = values - running_means sum_abs = np.abs(differences).sum() potential_lines.append((cat, differences, sum_abs)) non_diff_lines.append((cat, values)) potential_lines = sorted( potential_lines, key=lambda v: v[2], reverse=True ) diffs_df = pd.DataFrame({i[0]: i[1] for i in potential_lines}) diffs_df["sum_of_changes"] = diffs_df.abs().sum(axis=1) all_non_diff_lines = pd.DataFrame( {i[0]: i[1] for i in non_diff_lines} ) for col in all_non_diff_lines.columns: mean = all_non_diff_lines[col].mean() std = all_non_diff_lines[col].std() if std > 0.05: all_non_diff_lines[f"{col}_below"] = np.where( all_non_diff_lines[col] < (mean - (4 * std)), 1, 0 ) all_non_diff_lines[f"{col}_above"] = np.where( all_non_diff_lines[col] > (mean + (4 * std)), 1, 0 ) else: all_non_diff_lines[f"{col}_below"] = 0 all_non_diff_lines[f"{col}_above"] = 0 std_sums = all_non_diff_lines[ [ col for col in all_non_diff_lines.columns if "_below" in str(col) or "_above" in str(col) ] ].sum(axis=1) mod = IsolationForestModel( config_dir=self.config_dir, metric_name=metric_id, arguments={ "contamination": 0.01, "n_estimators": 50, "multivariate": True, "check_for_std": True, }, ) outliers = mod.train_predict(all_non_diff_lines) all_non_diff_lines["iso_outlier"] = outliers data["severity"] = diffs_df.sum_of_changes.values sample_size = data.value.apply(lambda v: sum(v.values())) outlier_rows = data[ (outliers == -1) & (std_sums.values > 0) & (sample_size > 10) ] if outlier_rows.shape[0] > 0: all_rows.append(outlier_rows) except ValueError: pass try: data = pd.concat(all_rows).sort_values("date", ascending=False) data["trend_function_name"] = np.NaN data = data[anomaly_columns] data.value = data.value.astype(str) except: data = pd.DataFrame([], columns=anomaly_columns) return data def create_error_check_table(self): # obv only need to do this once df = self.df df = df[df["type"] == "boolean"] if df.shape[0] > 0: df = set_value_type(df) df = df[~df.value] df["severity"] = np.NaN df["trend_function_name"] = np.NaN df = df[anomaly_columns] else: df = pd.DataFrame([], columns=anomaly_columns) return df def create_trend_rule_table(self): # obv only need to do this once df = self.df if len(self.specific) > 0: all_rows = [] df = df[df.metric_id.isin(self.specific)] for metric_id, group in df.groupby("metric_id"): trend_functions = self.specific[metric_id] group = set_value_type(group) for fun, items in trend_functions.items(): outlier_data = trend_rules[fun]["function"](group.copy()) if outlier_data.shape[0] > 0: outlier_data["severity"] = items.get("severity", np.NaN) outlier_data["trend_function_name"] = fun all_rows.append(outlier_data) if len(all_rows) > 0: data =
pd.concat(all_rows)
pandas.concat
import pytest import os from mapping import util from pandas.util.testing import assert_frame_equal, assert_series_equal import pandas as pd from pandas import Timestamp as TS import numpy as np @pytest.fixture def price_files(): cdir = os.path.dirname(__file__) path = os.path.join(cdir, 'data/') files = ["CME-FVU2014.csv", "CME-FVZ2014.csv"] return [os.path.join(path, f) for f in files] def assert_dict_of_frames(dict1, dict2): assert dict1.keys() == dict2.keys() for key in dict1: assert_frame_equal(dict1[key], dict2[key]) def test_read_price_data(price_files): # using default name_func in read_price_data() df = util.read_price_data(price_files) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "CME-FVU2014"), (dt1, "CME-FVZ2014"), (dt2, "CME-FVZ2014")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def name_func(fstr): file_name = os.path.split(fstr)[-1] name = file_name.split('-')[1].split('.')[0] return name[-4:] + name[:3] df = util.read_price_data(price_files, name_func) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "2014FVU"), (dt1, "2014FVZ"), (dt2, "2014FVZ")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def test_calc_rets_one_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) rets = pd.Series([0.1, 0.05, 0.1, 0.8], index=idx) vals = [1, 0.5, 0.5, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([0.1, 0.075, 0.8], index=weights.index.levels[0], columns=['CL1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, 0.15], [0.075, 0.45], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_nans_in_second_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, np.NaN, 0.05, 0.1, np.NaN, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, np.NaN], [0.075, np.NaN], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_non_unique_columns(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL1']) with pytest.raises(ValueError): util.calc_rets(rets, weights) def test_calc_rets_two_generics_two_asts(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets1 = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5'), (TS('2015-01-03'), 'COG5'), (TS('2015-01-04'), 'COF5'), (TS('2015-01-04'), 'COG5'), (TS('2015-01-04'), 'COH5')]) rets2 = pd.Series([0.1, 0.15, 0.05, 0.1, 0.4], index=idx) rets = {"CL": rets1, "CO": rets2} vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights1 = pd.DataFrame(vals, index=widx, columns=["CL0", "CL1"]) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5'), (TS('2015-01-03'), 'COG5'), (TS('2015-01-04'), 'COF5'), (TS('2015-01-04'), 'COG5'), (TS('2015-01-04'), 'COH5') ]) weights2 = pd.DataFrame(vals, index=widx, columns=["CO0", "CO1"]) weights = {"CL": weights1, "CO": weights2} wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, 0.15, 0.1, 0.15], [0.075, 0.45, 0.075, 0.25], [-0.5, 0.2, pd.np.NaN, pd.np.NaN]], index=weights["CL"].index.levels[0], columns=['CL0', 'CL1', 'CO0', 'CO1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_missing_instr_rets_key_error(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5')]) irets = pd.Series([0.02, 0.01, 0.012], index=idx) vals = [1, 1/2, 1/2, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) weights = pd.DataFrame(vals, index=widx, columns=["CL1"]) with pytest.raises(KeyError): util.calc_rets(irets, weights) def test_calc_rets_nan_instr_rets(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) rets = pd.Series([pd.np.NaN, pd.np.NaN, 0.1, 0.8], index=idx) vals = [1, 0.5, 0.5, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([pd.np.NaN, pd.np.NaN, 0.8], index=weights.index.levels[0], columns=['CL1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_missing_weight(): # see https://github.com/matthewgilbert/mapping/issues/8 # missing weight for return idx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5') ]) rets = pd.Series([0.02, -0.03, 0.06], index=idx) vals = [1, 1] widx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5') ]) weights = pd.DataFrame(vals, index=widx, columns=["CL1"]) with pytest.raises(ValueError): util.calc_rets(rets, weights) # extra instrument idx = pd.MultiIndex.from_tuples([(TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5')]) weights1 = pd.DataFrame(1, index=idx, columns=["CL1"]) idx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-02'), 'CLH5'), (TS('2015-01-03'), 'CLH5'), # extra day for no weight instrument (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLH5') ]) rets = pd.Series([0.02, -0.03, 0.06, 0.05, 0.01], index=idx) with pytest.raises(ValueError): util.calc_rets(rets, weights1) # leading / trailing returns idx = pd.MultiIndex.from_tuples([(TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5')]) weights2 = pd.DataFrame(1, index=idx, columns=["CL1"]) idx = pd.MultiIndex.from_tuples([(TS('2015-01-01'), 'CLF5'), (TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-05'), 'CLF5')]) rets = pd.Series([0.02, -0.03, 0.06, 0.05], index=idx) with pytest.raises(ValueError): util.calc_rets(rets, weights2) def test_to_notional_empty(): instrs = pd.Series() prices = pd.Series() multipliers = pd.Series() res_exp = pd.Series() res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_same_fx(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) res_exp = pd.Series([-30.20, 2 * 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_extra_prices(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2, 13.1], index=['CLZ6', 'COZ6', 'GCZ6', 'extra']) res_exp = pd.Series([-30.20, 2 * 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_missing_prices(): instrs =
pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6'])
pandas.Series
import os import cv2 import torch import pydicom import numpy as np import pandas as pd from PIL import Image from torch.utils.data import Dataset from albumentations import ShiftScaleRotate, Normalize, Resize, Compose from albumentations.pytorch import ToTensor from gloria.constants import * class ImageBaseDataset(Dataset): def __init__( self, cfg, split="train", transform=None, ): self.cfg = cfg self.transform = transform self.split = split def __getitem__(self, index): raise NotImplementedError def __len__(self): raise NotImplementedError def read_from_jpg(self, img_path): x = cv2.imread(str(img_path), 0) # tranform images x = self._resize_img(x, self.cfg.data.image.imsize) img = Image.fromarray(x).convert("RGB") if self.transform is not None: img = self.transform(img) return img def read_from_dicom(self, img_path): raise NotImplementedError def _resize_img(self, img, scale): """ Args: img - image as numpy array (cv2) scale - desired output image-size as scale x scale Return: image resized to scale x scale with shortest dimension 0-padded """ size = img.shape max_dim = max(size) max_ind = size.index(max_dim) # Resizing if max_ind == 0: # image is heigher wpercent = scale / float(size[0]) hsize = int((float(size[1]) * float(wpercent))) desireable_size = (scale, hsize) else: # image is wider hpercent = scale / float(size[1]) wsize = int((float(size[0]) * float(hpercent))) desireable_size = (wsize, scale) resized_img = cv2.resize( img, desireable_size[::-1], interpolation=cv2.INTER_AREA ) # this flips the desireable_size vector # Padding if max_ind == 0: # height fixed at scale, pad the width pad_size = scale - resized_img.shape[1] left = int(np.floor(pad_size / 2)) right = int(np.ceil(pad_size / 2)) top = int(0) bottom = int(0) else: # width fixed at scale, pad the height pad_size = scale - resized_img.shape[0] top = int(np.floor(pad_size / 2)) bottom = int(np.ceil(pad_size / 2)) left = int(0) right = int(0) resized_img = np.pad( resized_img, [(top, bottom), (left, right)], "constant", constant_values=0 ) return resized_img class CheXpertImageDataset(ImageBaseDataset): def __init__(self, cfg, split="train", transform=None, img_type="Frontal"): if CHEXPERT_DATA_DIR is None: raise RuntimeError( "CheXpert data path empty\n" + "Make sure to download data from:\n" + " https://stanfordmlgroup.github.io/competitions/chexpert/" + f" and update CHEXPERT_DATA_DIR in ./gloria/constants.py" ) self.cfg = cfg # read in csv file if split == "train": self.df = pd.read_csv(CHEXPERT_TRAIN_CSV) elif split == "valid": self.df = pd.read_csv(CHEXPERT_VALID_CSV) else: self.df =
pd.read_csv(CHEXPERT_TEST_CSV)
pandas.read_csv
""" Script to get the distribution of defined percentage of most important ingredients according to their categories. Needs a working MongoDB server containing the Open Food Facts database. """ import pandas as pd import pymongo import tqdm from data import INGREDIENTS_DISTRIBUTION_FILEPATH # Minimum number of defined percentage per ingredient MIN_VALUE_NB = 30 df =
pd.DataFrame(columns=['id', 'percent', 'categories_tags'])
pandas.DataFrame
from concurrent import futures import time import grpc import logging logging.basicConfig(format='%(asctime)s,%(msecs)d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d:%H:%M:%S', level=logging.DEBUG) import temperature_bands_pb2 import temperature_bands_pb2_grpc _ONE_DAY_IN_SECONDS = 60 * 60 * 24 # getting the utils file here import os, sys import xbos_services_utils3 as utils import datetime import pytz import numpy as np import pandas as pd import yaml import traceback from pathlib import Path DAYS_IN_WEEK = 7 TEMPERATURE_BANDS_DATA_PATH = Path(os.environ["TEMPERATURE_BANDS_DATA_PATH"]) TEMPERATURE_BANDS_HOST_ADDRESS = os.environ["TEMPERATURE_BANDS_HOST_ADDRESS"] def _get_temperature_band_config(building, zone): band_path = str(TEMPERATURE_BANDS_DATA_PATH / building / (zone + ".yml")) if os.path.exists(band_path): with open(band_path, "r") as f: try: config = yaml.load(f) except yaml.YAMLError: return None, "yaml could not read file at: %s" % band_path else: return None, "consumption file could not be found. path: %s." % band_path return config, None def _get_week_comfortband(building, zone, date, interval): """ Gets the whole comfortband from the zone configuration file. Correctly Resamples the data according to interval :param date: The date for which we want to start the week. Timezone aware. :param interval: int:seconds. The interval/frequency of resampling. Has to be such that 60 % interval == 0 :return: pd.df (col = "t_low", "t_high") with time_series index for the date provided and in timezone aware and in timezone of data input. """ config, err = _get_temperature_band_config(building, zone) if config is None: return None, err # Set the date to the controller timezone. building_date = date.astimezone(tz=pytz.timezone(config["tz"])) weekday = building_date.weekday() list_data = [] comfortband_data = config["comfortband"] df_do_not_exceed, err = _get_week_do_not_exceed(building, zone, building_date, interval) if df_do_not_exceed is None: return None, err # Note, we need to get a day before the start and after the end of the week to correctly resample due to timezones. for i in range(DAYS_IN_WEEK + 2): curr_weekday = (weekday + i - 1) % DAYS_IN_WEEK curr_day = building_date + datetime.timedelta(days=i - 1) curr_idx = [] curr_comfortband = [] weekday_comfortband = np.array(comfortband_data[curr_weekday]) for interval_comfortband in weekday_comfortband: start, end, t_low, t_high = interval_comfortband start = utils.combine_date_time(start, curr_day) if t_low is None or t_low == "None": interval_safety = df_do_not_exceed[start-datetime.timedelta(seconds=interval):start] t_low = interval_safety["t_low"].mean() # TODO We want mean weighter by duration. Fine approximation for now if t_high is None or t_high == "None": interval_safety = df_do_not_exceed[start-datetime.timedelta(seconds=interval):start] t_high = interval_safety["t_high"].mean() curr_idx.append(start) curr_comfortband.append({"t_low": float(t_low), "t_high": float(t_high)}) list_data.append(pd.DataFrame(index=curr_idx, data=curr_comfortband)) df_comfortband =
pd.concat(list_data)
pandas.concat
#!/usr/bin/python #Configuration items import numpy as np import pandas as pd ###################### #Character Sheet Items class Ab_Sco: def __init__(self, Str, Dex, Con, Int, Wis, Cha): self.Str = Str self.Dex = Dex self.Con = Con self.Int = Int self.Wis = Wis self.Cha = Cha Ability_Scores = Ab_Sco(0, 0, 0, 0, 0, 0) Size = "" Level = 1 Class = "" Race = "" class Background: def __init__(self, trait, ideal, bond, flaw): self.trait = trait self.ideal = ideal self.bond = bond self.flaw = flaw bg = Background("", "", "", "") Alignment = "" Exp = 0 Prof_Bonus = 0 #Format: [IsProficient, Score] SaveThrow = [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]] #Format: [Name, IsProficient, Score] Skills = [["Acrobatics", 0, 0],["Animal Handling", 0, 0],["Arcana", 0, 0],["Athletics", 0, 0],["Deception", 0, 0],["History", 0, 0],["Insight", 0, 0],["Intimidation", 0, 0],["Investigation", 0, 0],["Medicine", 0, 0],["Nature", 0, 0],["Perception", 0, 0],["Performance", 0, 0],["Persuasion", 0, 0],["Religion", 0, 0],["Sleight of Hand", 0, 0],["Stealth", 0, 0],["Survival", 0, 0]] #Passive_Percept = 0 #Passive Perception is just 10 + perception mod --> can be calculated on the fly AC = 0 Initiative = 0 Speed = 0 Max_HP = 0 #No need to calculate current/temp --> generating characters default to max hp Hit_Die_Type = "" Hit_Die_Num = 0 Equipment = pd.DataFrame(columns=['Name']) class Currency: def __init__(self, cp, sp, ep, gp, pp): self.cp = cp self.sp = sp self.ep = ep self.gp = gp self.pp = pp Money = Currency(0, 0, 0, 0, 0) class Proficiencies: def __init__(self, armor, weapon, language, tool): self.armor = armor self.weapon = weapon self.language = language self.tool = tool Prof = Proficiencies([], [], [], []) Features = pd.DataFrame(columns=['Name', 'Desc']) Spells0 = pd.DataFrame(columns=['Prep', 'Name']) Spells1 = pd.DataFrame(columns=['Prep', 'Name']) Spells2 = pd.DataFrame(columns=['Prep', 'Name']) Spells3 = pd.DataFrame(columns=['Prep', 'Name']) Spells4 = pd.DataFrame(columns=['Prep', 'Name']) Spells5 = pd.DataFrame(columns=['Prep', 'Name']) Spells6 = pd.DataFrame(columns=['Prep', 'Name']) Spells7 = pd.DataFrame(columns=['Prep', 'Name']) Spells8 =
pd.DataFrame(columns=['Prep', 'Name'])
pandas.DataFrame
#!/usr/bin/env python # -*- coding:utf-8 -*- import numpy as np import pandas as pd def getcount(x): return x.count() def getset(x): return len(set(x)) def FeatSection(data,label): 'FeatureๅŒบ้—ด็‰นๅพ' '็”จๆˆท้ข†ๅ–ไผ˜ๆƒ ๅˆธๆฌกๆ•ฐๅŠ็ง็ฑป' uc_cnt_set = pd.pivot_table(data,index='user_id',values='coupon_id',aggfunc=[getcount,getset]).reset_index() uc_cnt_set.columns = ['user_id','uc_cnt','uc_set'] label = pd.merge(label,uc_cnt_set,on='user_id',how='left') usecp = data[data['date'].isnull() == False] # ๆ ธ้”€ไผ˜ๆƒ ๅˆธ็š„ๆ•ฐๆฎ dropcp = data[data['date'].isnull() == True] # ไธๆ ธ้”€ไผ˜ๆƒ ๅˆธ็š„ๆ•ฐๆฎ '็”จๆˆทๆ ธ้”€ไผ˜ๆƒ ๅˆธๆฌกๆ•ฐๅŠ็ง็ฑป' uusec_cnt_set = pd.pivot_table(usecp,index='user_id',values='coupon_id',aggfunc=[getcount,getset]).reset_index() uusec_cnt_set.columns = ['user_id','uusec_cnt','uusec_set'] label = pd.merge(label,uusec_cnt_set,on='user_id',how='left') '็”จๆˆท้ข†ๅ–ๅ•†ๅฎถ็š„็ง็ฑป' um_set =
pd.pivot_table(data,index='user_id',values='merchant_id',aggfunc=getset)
pandas.pivot_table
import pandas as pd import os def prepare_legends(mean_models, models, interpretability_name): bars = [] y_pos = [] index_bars = 0 for nb, i in enumerate(mean_models): if nb % len(models) == int(len(models)/2): bars.append(interpretability_name[index_bars]) index_bars += 1 else: bars.append('') if nb < len(mean_models)/len(interpretability_name): y_pos.append(nb) elif nb < 2*len(mean_models)/len(interpretability_name): y_pos.append(nb+1) elif nb < 3*len(mean_models)/len(interpretability_name): y_pos.append(nb+2) elif nb < 4*len(mean_models)/len(interpretability_name): y_pos.append(nb+3) elif nb < 5*len(mean_models)/len(interpretability_name): y_pos.append(nb+4) else: y_pos.append(nb+5) colors = ['black', 'red', 'green', 'blue', 'yellow', 'grey', 'purple', 'cyan', 'gold', 'brown'] color= [] for nb, model in enumerate(models): color.append(colors[nb]) return color, bars, y_pos class store_experimental_informations(object): """ Class to store the experimental results of precision, coverage and F1 score for graph representation """ def __init__(self, len_models, len_interpretability_name, columns_name_file1, nb_models, columns_name_file2=None, columns_name_file3=None, columns_multimodal=None): """ Initialize all the variable that will be used to store experimental results Args: len_models: Number of black box models that we are explaining during experiments len_interpretability_name: Number of explanation methods used to explain each model interpretability_name: List of the name of the explanation methods used to explain each model """ columns_name_file2 = columns_name_file1 if columns_name_file2 is None else columns_name_file2 columns_name_file3 = columns_name_file1 if columns_name_file3 is None else columns_name_file3 columns_name_file4 = columns_name_file1 self.multimodal_columns = ["LS", "LSe log", "LSe lin", "Anchors", 'APE SI', 'APE CF', 'APE FOLD', 'APE FULL', 'APE FULL pvalue', "DT", "Multimodal", "radius", "fr pvalue", "cf pvalue", "separability", "fr fold", "cf fold", "SI bon", "CF bon", "fold bon", "ape bon", "ape pvalue bon", "bb"] if columns_multimodal == None else columns_multimodal self.columns_name_file1 = columns_name_file1 self.columns_name_file2 = columns_name_file2 self.columns_name_file3 = columns_name_file3 self.columns_name_file4 = columns_name_file4 self.len_interpretability_name, self.len_models, = len_interpretability_name, len_models self.nb_models = nb_models - 1 self.pd_all_models_results1 = pd.DataFrame(columns=columns_name_file1) self.pd_all_models_results2 = pd.DataFrame(columns=columns_name_file2) self.pd_all_models_results3 = pd.DataFrame(columns=columns_name_file3) self.pd_all_models_results4 = pd.DataFrame(columns=columns_name_file4) self.pd_all_models_multimodal = pd.DataFrame(columns=self.multimodal_columns) def initialize_per_models(self, filename): self.filename = filename os.makedirs(os.path.dirname(self.filename), exist_ok=True) self.pd_results1 = pd.DataFrame(columns=self.columns_name_file1) self.pd_results2 = pd.DataFrame(columns=self.columns_name_file2) self.pd_results3 = pd.DataFrame(columns=self.columns_name_file3) self.pd_results4 = pd.DataFrame(columns=self.columns_name_file4) self.pd_multimodal = pd.DataFrame(columns=self.multimodal_columns) def store_experiments_information_instance(self, results1, filename1, results2=None, filename2=None, results3=None, filename3=None, results4=None, filename4=None, multimodal=None, multimodal_filename="multimodal.csv"): """ Store precisions, coverages, f2s and multimodal results inside dictionary Args: precisions: list of precision result for each explanation method on a single instance coverages: list of coverage result for each explanation method on a single instance f2s: list of f2 score for each explanation method on a single instance multimodal: 1 if APE selected a multimodal distribution, otherwise 0 """ self.pd_results1 = self.pd_results1.append(
pd.DataFrame([results1], columns=self.columns_name_file1)
pandas.DataFrame
import warnings from datetime import datetime, timedelta import pandas as pd import psycopg2 class MarketDataCleaner(object): """Get data from main_market table and preprocess it into pandas.Dataframe""" def __init__(self): # DB connection and cursor instances. self.conn = psycopg2.connect() def clean(self): # Load all rows from the main_price. market_df = self._get_df() # Convert all the datetimes to UTC time zone. market_df['date'] = pd.to_datetime(market_df['date'], utc=True) # Add day and hour columns for better work with date. market_df['daycol'] = market_df['date'].dt.date market_df['hourcol'] = market_df['date'].dt.hour # Remove data points which share the same date&hour. print('Start removing data points with same date and hour') ids_to_drop = [] grouped_by_dayhour = market_df.groupby(['daycol', 'hourcol']) for _, df in grouped_by_dayhour: if df.shape[0] != 1: for value in df.index.values[1:]: ids_to_drop.append(value) market_df = market_df.drop(ids_to_drop) # Check if there are Null values. print('There are {0} NA values main_market'.format( market_df.isnull().sum().sum())) # Compare with real hourly data points - fill missing values. cur_date = datetime.now() finish_date = datetime(2016, 1, 1) hour_timedelta = timedelta(hours=1) while cur_date > finish_date: filter_day = market_df['daycol'] == cur_date.date() filter_hour = market_df['hourcol'] == cur_date.hour if market_df[filter_day & filter_hour].empty: print( 'Found empty value from market_data at {0}'.format(cur_date)) df_to_add_data = { 'date': [cur_date], 'globalmarketcap': [market_df[filter_day].mean()['globalmarketcap']], 'mchoursentiment': [market_df[filter_day].mean()['mchoursentiment']], 'mchourprediction': [market_df[filter_day].mean()['mchourprediction']], 'mchourtrend': [market_df[filter_day].mean()['mchourtrend']], 'globalvolume': [market_df[filter_day].mean()['globalvolume']], 'daycol': [cur_date.date()], 'hourcol': [cur_date.hour] } df_to_add = pd.DataFrame(df_to_add_data) market_df.append(df_to_add, ignore_index=True) cur_date -= hour_timedelta # Return cleaned data. return market_df def _get_df(self): select_query = """select * from main_market;""" data_df = pd.read_sql_query(select_query, self.conn, index_col='id') return data_df class PriceDataCleaner(object): """Get data from main_market table and preprocess it into pandas.Dataframe""" def __init__(self): # DB connection and cursor instances. self.conn = psycopg2.connect( user="sentimentappadmin", password="<PASSWORD>", host="127.0.0.1", database="sentimentappdb") def clean(self): # Load all rows from the main_price. prices_df = self._get_df() # Convert all the datetimes to UTC time zone. prices_df['date'] =
pd.to_datetime(prices_df['date'], utc=True)
pandas.to_datetime
# Objective function to optimize # sklearn import math import os import time import matplotlib.pyplot as plt import numpy as np # Various import pandas as pd import json import sys # tensorflow import tensorflow as tf # fix for reproducibility tf.random.set_seed(42) # sklearn from sklearn import pipeline from sklearn.feature_selection import VarianceThreshold from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score from sklearn.preprocessing import MinMaxScaler from tensorflow.keras import backend as k # utilities from data import load_data from modeling import network from preprocessing import build_data def weibull_mean(alpha, beta): return alpha * math.gamma(1 + 1 / beta) model = None def obj_function(net_cfg, cfg=None): if cfg == None: cfg = { "shuffle": True, "random_state": 21, "mask_value": -99, "reps": 30, "epochs": 100, "batches": 64, } # deleting model if it exists k.clear_session() ( train_x_orig, feature_cols, vld_trunc, vld_x_orig, original_len, test_x_orig, test_y_orig, ) = load_data() # Uncomment for debugging # print(train_x_orig.shape) # print(vld_trunc.shape) # print(original_len.shape) rmse_train = [] r2_train = [] mae_train = [] std_train = [] rmse_test = [] r2_test = [] mae_test = [] std_test = [] train_all = [] test_all = [] file = "results_no_cv_HO_28_1" columns = [ "rmse_train", "mae_train", "r2_train", "uncertainty_train", "rmse_test", "mae_test", "r2_test", "uncertainty_test", "net_cfg", ] results =
pd.DataFrame(columns=columns)
pandas.DataFrame
import sys import re import json import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.preprocessing import MultiLabelBinarizer from scipy.spatial.distance import cdist from colorama import Fore, Style from kneed import KneeLocator import copy import time import pickle import os def error_msg(error_msg, arg): """ Helper function to display error message on the screen. Input: The error message along with its respective argument. (Values include - filename, selected action). Output: The formatted error message on the screen along with the argument. """ print("****************************") print(Fore.RED, end='') print(error_msg,":", arg) print(Style.RESET_ALL, end='') print("****************************") sys.exit(0) def printINFO(info): """ Helper function to ask the user for Input. Input: The message that is to be displayed. Output: The formatted message on the screen. """ print(Fore.BLUE, end='') print(info) print(Style.RESET_ALL, end='') # ***************************************************************************** # ***************************************************************************** # Helper Methods Start def calculate_num_clusters(df, acl_weights): """ Calculates the optimal number of clusters using the elbow_graph approach. Input: The Pandas dataframe of the input file (ACL.json) output: The value of k that provides the least MSE. """ files = ['IP_Access_List', 'Route_Filter_List', 'VRF', 'AS_Path_Access_List', 'IKE_Phase1_Keys', 'IPsec_Phase2_Proposals', 'Routing_Policy'] k_select_vals = [41, 17, 42, 5, 3, 2, 58] curr_file = file_name.split(".")[0] file_index = files.index(curr_file) return k_select_vals[file_index] features = df[df.columns] ran = min(len(df.columns), len(discrete_namedstructure)) if ran > 50: k_range = range(1, 587) else: k_range = range(1, ran) print(k_range) k_range = range(1, 580) distortions = [] np.seed = 0 clusters_list = [] f = open('distortions.txt', 'w') for k in k_range: print(k) kmeans = KMeans(n_clusters=k).fit(features, None, sample_weight=acl_weights) clusters_list.append(kmeans) cluster_centers = kmeans.cluster_centers_ k_distance = cdist(features, cluster_centers, "euclidean") distance = np.min(k_distance, axis=1) distortion = np.sum(distance)/features.shape[0] distortions.append(distortion) f.write(str(distortion)) f.write("\n") kn = KneeLocator(list(k_range), distortions, S=3.0, curve='convex', direction='decreasing') print("Knee is: ", kn.knee) plt.xlabel('k') plt.ylabel('Distortion') plt.title('The Elbow Method showing the optimal k') plt.plot(k_range, distortions, 'bx-') plt.vlines(kn.knee, plt.ylim()[0], plt.ylim()[1], linestyles='dashed') plt.show() if kn.knee is None: if ran < 5: return ran - 1 else: return 5 return kn.knee ''' for i in range(1, len(avg_within)): if (avg_within[i-1] - avg_within[i]) < 1: break # return i-1 if len(avg_within) > 1 else 1 # return i - 1 if i > 1 else 1 ''' def perform_kmeans_clustering(df, ns_weights): """ To get a mapping of the rows into respective clusters generated using the K-means algorithm. Input: df:The Pandas data-frame of the input file (ACL.json) ns_weights: The weights of each name structure which allows the weighted k-means algorithm to work. Output: Adding respective K-means cluster label to the input dataframe. Example: Row1 - Label 0 //Belongs to Cluster 0 Row2 - Label 0 //Belongs to Cluster 0 Row3 - Label 1 //Belongs to Cluster 1 """ global k_select k_select = calculate_num_clusters(df, ns_weights) features = df[df.columns] kmeans = KMeans(n_clusters=k_select) kmeans.fit(features, None, sample_weight=ns_weights) labels = kmeans.labels_ df["kmeans_cluster_number"] = pd.Series(labels) def extract_keys(the_dict, prefix=''): """ Recursive approach to gather all the keys that have nested keys in the input file. Input: The dictionary file to find all the keys in. Output: All the keys found in the nested dictionary. Example: Consider {key1:value1, key2:{key3:value3}, key4:[value4], key5:[key6:{key7:value7}]} The function returns key2, key5=key6 """ key_list = [] for key, value in the_dict.items(): if len(prefix) == 0: new_prefix = key else: new_prefix = prefix + '=' + key try: if type(value) == dict: key_list.extend(extract_keys(value, new_prefix)) elif type(value) == list and type(value[0]) == dict: key_list.extend(extract_keys(value[0], new_prefix)) elif type(value) == list and type(value[0]) != dict: key_list.append(new_prefix) else: key_list.append(new_prefix) except: key_list.append(new_prefix) return key_list def get_uniques(data): """ A helper function to get unique elements in a List. Input: A list that we need to capture uniques from. Output: A dictionary with unique entries and count of occurrences. """ acl_count_dict = {} for acl in data: acl = json.dumps(acl) if acl not in acl_count_dict: acl_count_dict[acl] = 1 else: value = acl_count_dict[acl] value += 1 acl_count_dict[acl] = value keys = [] values = [] for key, value in acl_count_dict.items(): keys.append(key) values.append(value) return keys, values def overall_dict(data_final): """ Parses through the dictionary and appends the frequency with which the keys occur. Input: A nested dictionary. Example: {key1:{key2:value1, key3:value2, key4:{key5:value3}} {key6:{key7:value2} {key8:{key3:value3, key4:value5, key6:value3}} Output: Returns a new array with the nested keys appended along with a tuple containing the un-nested value along with the frequency count. [{ key1=key2:{'value1':1}, key1=key3:{'value2':2}, key1=key4=key5:{'value3':3}, key6=key7:{'value2':2}, key8=key3:{'value3':3}, key8=key4:{'value5':1}, key8=key6:{'value3':1} }] """ overall_array = [] for data in data_final: overall = {} for item in data: if item[0] is None: continue result = extract_keys(item[0]) for element in result: value = item[0] for key in element.split("="): new_value = value[key] if type(new_value) == list: if len(new_value) != 0: new_value = new_value[0] else: new_value = "#BUG#" value = new_value if element not in overall: overall[element] = {} if value not in overall[element]: overall[element][value] = 1 else: overall[element][value] += 1 overall_array.append(overall) return overall_array def get_overall_dict(data_final): """ Parses through the dictionary and appends the frequency with which the keys occur. Input: A nested dictionary. Example: {key1:{key2:value1, key3:value2, key4:{key5:value3}} {key6:{key7:value2} {key8:{key3:value3, key4:value5, key6:value3}} Output: Returns a new array with the nested keys appended along with a tuple containing the unnested value along with the frequency count. [{ key1=key2:{'value1':1}, key1=key3:{'value2':2}, key1=key4=key5:{'value3':3}, key6=key7:{'value2':2}, key8=key3:{'value3':3}, key8=key4:{'value5':1}, key8=key6:{'value3':1} }] """ overall_array = [] for data in data_final: overall = {} new_value = None flag = 0 for item in data: visited = {"lines=name":1} if item[0] is None: continue result = extract_keys(item[0]) for element in result: value = item[0] for key in element.split("="): if element not in visited: visited[element] = 1 new_value = value[key] flag = 0 if type(new_value) == list: if len(new_value) > 0: for list_data in new_value: if element not in overall: overall[element] = {} temp = element temp_val = list_data temp = temp.split("=", 1)[-1] while len(temp.split("=")) > 1: temp_val = temp_val[temp.split("=")[0]] temp = temp.split("=", 1)[-1] list_key = temp check = 0 try: if type(temp_val[list_key]) == list: if temp_val[list_key][0] not in overall[element]: overall[element][temp_val[list_key][0]] = 1 check = 1 else: if temp_val[list_key] not in overall[element]: overall[element][temp_val[list_key]] = 1 check = 1 except: dummy=0 ''' do nothing ''' try: if check == 0: if type(temp_val[list_key]) == list: if temp_val[list_key][0] in overall[element]: overall[element][temp_val[list_key][0]] += 1 else: if temp_val[list_key] in overall[element]: overall[element][temp_val[list_key]] += 1 except: dummy=0 flag = 1 value = new_value else: ''' Type is not list ''' value = new_value else: if flag == 0: if element not in overall: overall[element] = {} if new_value not in overall[element]: overall[element][new_value] = 1 else: overall[element][new_value] += 1 if flag == 0: if element not in overall: overall[element] = {} if new_value not in overall[element]: overall[element][new_value] = 1 else: overall[element][new_value] += 1 overall_array.append(overall) return overall_array def calculate_z_score(arr): """ Calculates the Z-score (uses mean) (or) Modified Z-score (uses median) of data-points Input: Data points generated from parsing through the input file. Also considers the Z_SCORE_FLAG that is set previously with 0 (default) using the Modified Z-score and 1 using Z-score. Output: The Z-score of given data-points array. """ if len(arr) == 1: return arr z_score = [] ''' Calculates the Z-score using mean. Generally used if distribution is normal (Bell curve). ''' if Z_SCORE_FLAG: mean = np.mean(arr) std = np.std(arr) if std == 0: return np.ones(len(arr)) * 1000 for val in arr: z_score.append((val - mean) / std) ''' Modified Z-score approach. Calculates the Z-score using median. Generally used if distribution is skewed. ''' else: median_y = np.median(arr) medians = [np.abs(y - median_y) for y in arr] med = np.median(medians) median_absolute_deviation_y = np.median([np.abs(y - median_y) for y in arr]) if median_absolute_deviation_y == 0: return np.ones(len(arr)) * 1000 z_score = [0.6745 * (y - median_y) / median_absolute_deviation_y for y in arr] return z_score def calculate_signature_d(overall_arr): """ Uses Z-score to generate the signatures of data-points and also maps points on level of significance (include for signature calculation, include for bug calculation, no significance). If Z-score is equal to 1000.0 or in between sig_threshold and bug_threshold, no-significance. If Z-score is >= sig_threshold, include for signature calculation. If Z-score is <= bug_threshold, include for bug calculation. Input: The individual master-signature generated for each Cluster. Output: An array containing dictionaries marked with tags that represent the action that needs to be performed on them. """ signature = {} for key, value in overall_arr.items(): sig_threshold = 0.5 bug_threshold = -0.1 key_points = [] data_points = [] sig_values = [] for k, v in value.items(): key_points.append(k) data_points.append(v) if len(data_points) == 1: sig_values.append((key_points[0], (data_points[0]))) ''' Check for two data points case ''' else: z_score = calculate_z_score(data_points) if len(z_score) > 0: avg_z_score = sum(z_score)/len(z_score) bug_threshold = bug_threshold + (avg_z_score - sig_threshold) for i in range(len(z_score)): present_zscore = z_score[i] if present_zscore == 1000.0: sig_values.append((key_points[i], "*", (data_points[i]))) elif present_zscore >= sig_threshold: sig_values.append((key_points[i], (data_points[i]))) elif present_zscore <= bug_threshold: sig_values.append((key_points[i], "!", (data_points[i]))) elif (present_zscore < sig_threshold) and (present_zscore > bug_threshold): sig_values.append((key_points[i], "*", (data_points[i]))) if key in signature: signature[key].append(sig_values) else: signature[key] = [] signature[key] += sig_values return signature def results(data, signatures): title = file_name.split(".")[0] + "_Results.txt" if not os.path.exists(os.path.dirname(title)): os.makedirs(os.path.dirname(title)) f = open(title, "w") f.write(title + "\n") f.write("\n") totalBugs = 0 totalConformers = 0 for cluster_index, clustered_namedStructure in enumerate(data): numBugs = 0 numConformers = 0 cluster_signature = signatures[cluster_index] for namedStructure in clustered_namedStructure: keys = extract_keys(namedStructure[0]) namedStructure = flatten_json((namedStructure[0]), '=') isNamedStructureABug = False newNamedStructure = {} for key, value in namedStructure.items(): flag = 0 for index, char in enumerate(key): if char == '0' or char == '1' or char == '2' or char == '3' or char == '4' or char == '5' or char == '6' or char == '7' or char == '8' or char == '9': flag = 1 if index == len(key)-1: new_key = str(key[0:index-1]) newNamedStructure[new_key] = value else: new_key = str(key[0:index-1]) + str(key[index+1:len(key)]) newNamedStructure[new_key] = value if not flag: newNamedStructure[key] = value flag = 0 for propertyKey, propertyValue in newNamedStructure.items(): try: propValues = cluster_signature[propertyKey] except: print("EXCEPTION OCCURRED!") print(propertyKey) for value in propValues: if value[0] == propertyValue and value[1] == '!': numBugs += 1 isNamedStructureABug = True if isNamedStructureABug: numBugs += 1 else: numConformers += 1 numBugs = len(clustered_namedStructure) - numConformers f.write("Cluster Index: " + str(cluster_index) + "\n") f.write(" Number of elements in Cluster = " + str(len(clustered_namedStructure)) + "\n") f.write(" Number of Bugs using Z-score: " + str(len(clustered_namedStructure) - numConformers) + "\n") f.write(" Number of Conformers using Z-score: " + str(numConformers) + "\n") f.write("\n") totalBugs += numBugs totalConformers += numConformers print("Total Bugs = ", totalBugs) print("Total Confomers = ", totalConformers) f.write("\n") f.write("\n") f.write("Total Bugs using Z-score: " + str(totalBugs) + "\n") f.write("Total Conformers using Z-score: " + str(totalConformers)) def transform_data(data): """ A helper function to extract nested keys from the ACL and to add the frequency of the repeated value. Helps score data. Input: An ACL in the form {key1:value1, key2:{key3:value3}, key4:[value4], key5:[key6:{key7:value7}]}. Output: Extracted nested keys from the extract_keys function along with the frequency count. Example: [ {key1:{key2:value1, key3:value2, key4:{key5:value3}} {key6:{key7:value2} {key8:{key3:value3, key4:value5, key6:value3}} ] Returns a new array with the nested keys appended along with a tuple containing the unnested value along with the frequency count. [{ key1=key2:{'value1':1}, key1=key3:{'value2':2}, key1=key4=key5:{'value3':3}, key6=key7:{'value2':2}, key8=key3:{'value3':3}, key8=key4:{'value5':1}, key8=key6:{'value3':3} }] """ count = 1 overall = {} flag = 0 i = 0 while i < count: value = None result = None new_value = None for item in data: result = extract_keys(item) for element in result: value = item for key in element.split("="): if key in value: new_value = value[key] if (type(new_value) == list) and (len(new_value) > 1): if flag == 0: count = len(new_value) flag = 1 try: new_value = new_value[i] except: new_value = new_value[-1] elif (type(new_value) == list) and (len(new_value) == 1): new_value = new_value[0] value = new_value if element not in overall: overall[element] = {} if type(value) != dict and type(value) != list: if value not in overall[element]: overall[element][value] = 1 i += 1 return overall def calculate_signature_score(signature): """ Calculates the signature score for each signature as the sum of all the weights in it but ignoring the weights marked with "*". Input: A signature that contains tags of whether or not the weight should be included in calculating the signature. Output: An array containing the weights of all the signatures that should be considered. Example: Consider [ {'key1=key2':['val1', 40], 'key3=key4':['val2':90]}, //40 + 90 {'key5=key6=key7':['val3', *, 20], 'key8=key9':['val4':80]}, //80 {'key10=key11':['val5', 40]} //40 Returns [130, 80, 40]. """ score_arr = [] for sig in signature: score = 0 for key, value in sig.items(): for val in value: if (val[1] != "!") and (val[1] != "*"): score += val[1] elif val[1] == "!": score += val[2] score_arr.append(score) return score_arr def calculate_namedstructure_scores(data_final, all_signatures): """ Calculate the individual scores for each discrete-ACL. This includes calculating human_error scores, signature_scores, and deviant scores. Input: data_final: List of ACLs grouped into a Cluster. Example: [ [acl-1, acl-4, acl-5, acl-9], //Cluster-0 [acl-2, acl-3], //Cluster-1 [acl-7], //Cluster-2 [acl-6, acl-8] //Cluster-3 ] all_signatures: Consolidated signature for each Cluster. Output: deviant_arr: Returns all deviant properties for the ACL. Empty list is returned if no deviant property in the ACL. count_arr: [[TODO]] dev_score: Returns the deviant score for the deviant properties found. 0 if no deviant property. acls_arr: [[TODO]] sig_score: Returns the signature score of the ACL. cluster_num: Returns the cluster number that the ACL belongs to. acls_score: The score that is generated for each acl human_errors_arr: Returns the human_error properties (IPValidity, DigitRepetition, PortRange) for each ACL and empty list if no human_error properties present in the ACL. human_error_score: Returns the score of the human error property calculated for the ACL. 0 is returned if no human_error property exists in the ACL. """ deviant_arr = [] count_arr = [] acls_dict = {} acls_arr = [] acls_score = [] sig_score = [] dev_score = [] cluster_num = [] human_errors_arr = [] human_errors_score = [] i = 0 for acl_list in data_final: bug_count = 0 conformer_count = 0 signature = all_signatures[i] for acl in acl_list: flag = 0 if str(acl[0]) not in acls_dict: acls_dict[str(acl[0])] = 1 acls_arr.append(acl[0]) cluster_num.append(i) flag = 1 else: print(acl[0]) print(acls_dict) continue sig_score.append(signature_scores[i]) deviant = [] count = 0 dev_c = 0 acl_c = 0 human_errors = [] human_error_category = {} data = transform_data(acl) for data_key, data_val in data.items(): if data_key in signature: ''' Key Valid. Now check for actual Value ''' for val in data_val.items(): (error_key, error_value), error_category = calculateHumanErrors(data_key, val[0], signature[data_key], file_name.split(".")[0]) if error_category: human_errors.append((error_key, error_value)) if error_category not in human_error_category: human_error_category[error_category] = 0 human_error_category[error_category] += 1 for sig_val in signature[data_key]: if val[0] == sig_val[0]: ''' value also present. Now check if value part of bug/sig/skip ''' if sig_val[1] == "!": dev_c += sig_val[2] acl_c += sig_val[2] deviant.append((data_key, sig_val[0])) bug_count += 1 elif sig_val[1] == "*": conformer_count += 1 continue else: conformer_count += 1 count += sig_val[1] acl_c += sig_val[1] else: ''' Deviant Key ''' if data_key != "lines=name": deviant.append(data_key) dev_c += data_val acl_c += data_val if flag == 1: count_arr.append(count) deviant_arr.append(deviant) dev_score.append(dev_c) acls_score.append(acl_c) human_errors_arr.append(human_errors) human_errors_score.append(calculate_human_error_score(human_error_category)) i += 1 return deviant_arr, count_arr, dev_score, acls_arr, sig_score, cluster_num, acls_score, human_errors_arr, human_errors_score def checkIPValidity(ip_address): """ A reg-ex check to verify the validity of an IP address. Input: A list of IP addresses Output: A boolean representing the validity of the IP address. Returns 'True' if all the IPs are valid and 'False' if any of the IP is invalid. """ try: ip_address = ip_address.split(":") for ip in ip_address: IP_check = "^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])?(\/)?((3[01]|3[02]|[12][0-9]|[0-9])?)$" match = re.match(IP_check, ip) if not match: return False return True except e: print(e) return True def checkPortRange(port_range): """ A check to verify that the port range is specified correctly (elem0 <= elem1). Input: A string that contains two numbers separated by a '-'. Output: A boolean representing the validity of the range (elem0 <= elem1). Example: 52108-52109 (True) 466 - 466 (True) 466 - 465 (False) """ try: port_split = port_range.split("-") if port_split[-1] < port_split[0]: return False return True except: return True def checkDigitRepetition(digit, signature): """ Checks for Digit repetition. Input: The value for the following keys: srcPorts, dstPorts, lengthRange Output: Returns True if there is any Human Error and the digit is repeated twice. """ try: if type(digit) == str: digit = float(digit.split(":")[0]) if digit == 0: return False for item in signature: if type(item) == str: item = int(item.split(":")[0]) if digit == (item*10+item%10): print("--------", digit, item*10 + item%10) return True return False except: return False def calculateHumanErrors(data_key, data, signature, namedStructure): """ Checks for simple human errors like entering invalid IP Addresses, incorrect port-ranges, and digit repetitions. Input: data_key: The nested keys calculated in the overall_dict and get_overall_dict methods. Example: key1=key2=key4 data: The data value for the keys. signature: The signature for the keys that was calculated in the calculate_signature_d method. namedStructure: The type of the IP file. Possible values: IP_Access_List, Route_Filter_List, Routing_Policy, VRF, others. Output: Returns the error and the category it belongs to. Example: key1=key2=key3 [1333.0.0.13] [13172.16.31.10] IP_Access_List Returns: key1=key2=key3 [1333.0.0.13] IP """ human_error = (None, None) category = None data_key = data_key.split("=")[-1] signature_items = [] for sig_item in signature: signature_items.append(sig_item[0]) if namedStructure == "IP_Access_List": if data_key == "ipWildcard": if not checkIPValidity(data): ''' Invalid IP ''' human_error = (data_key, data) category = "IP" elif data_key in ["dstPorts", "srcPorts"]: if not checkPortRange(data): ''' Invalid Ports Range ''' human_error = (data_key, data) category = "RANGE" elif namedStructure == "Route_Filter_List": if data_key == "ipWildcard": if not checkIPValidity(data): ''' Invalid IP ''' human_error = (data_key, data) category = "IP" elif data_key == "lengthRange": if not checkPortRange(data): ''' Invalid Ports Range ''' human_error = (data_key, data) category = "RANGE" elif namedStructure == "Routing_Policy": if data_key == "communities": if checkDigitRepetition(data, signature_items): ''' Error Copying digits ''' human_error = (data_key, data) category = "DIGIT" elif data_key == "ips": if not checkIPValidity(data): ''' Invalid IP ''' human_error = (data_key, data) category = "IP" elif namedStructure == "VRF": if data_key in ["administrativeCost", "remoteAs", "metric", "localAs", "referenceBandwidth", ]: if checkDigitRepetition(data, signature_items): ''' Error Copying digits ''' human_error = (data_key, data) category = "DIGIT" elif data_key in ["peerAddress", "localIp", "routerId", "network"]: if not checkIPValidity(data): ''' Invalid IP ''' human_error = (data_key, data) category = "IP" ''' Any Other namedStructure ''' else: try: if re.search('IP|ip', data_key) and not re.search('[a-zA-Z]', data): if not checkIPValidity(data): ''' Invalid IP ''' human_error = (data_key, data) category = "IP" elif not re.search("[a-zA-Z]", data): if checkDigitRepetition(data, signature_items): ''' Error Copying digits ''' human_error = (data_key, data) category = "DIGIT" except: pass return human_error, category def calculate_human_error_score(category_dict): """ Scores the human_errors that have been found with IPValidity and DigitRepetition errors weighed as 'high,' i.e, 0.8 and PortRange errors weighed 'medium,' i.e., 0.5. Input: A dictionary containing the count of the error occurrences. Output: A weighted sum of all the errors found. """ total_score = 0 low = 0.2 medium = 0.5 high = 0.8 weightage_dict = {"IP": high, "RANGE": medium, "DIGIT": high} for category, count in category_dict.items(): if count != 0: #print("* Human Error Found *") total_score += weightage_dict[category]/np.log(1+count) return round(total_score/len(category_dict), 2) if category_dict else total_score def flatten_json(data, delimiter): """ Flattens a JSON file. Input: data: A JSON dictionary of hierarchical format. {key1: {key2: value2, key3: value3}, key4: {key5: value5, key6: [value6, value7, value8]}} delimiter: A parameter to separate the keys in order to facilitate easy splitting. Output: A flattened dictionary with keys separated by the delimiter parameter. key1_key2:value2, key1_key3:value3, key4_key5:value5, key4_key6:value6, key4_key6:value7, key4_key6:value8 """ out = {} def flatten(data, name=''): if type(data) is dict: for key in data: flatten(data[key], name + key + delimiter) elif type(data) is list: i = 0 for elem in data: flatten(elem, name + str(i) + delimiter) i += 1 else: out[name[:-1]] = data flatten(data) return out def encode_data(data): """ Converts categorical values into numeric values. We use MultiLabelBinarizer to encode categorical data. This is done in order to pass the data into clustering and other similar algorithms that can only handle numerical data. Flattens each ACL list and then encodes them. Input: A Python list that contains all discrete-ACLs. Output: A Python list after encoding. """ flattenedData = [] allKeys = [] for NS in data: flattenedNamedStructure = flatten_json(NS, '_') flattenedData.append(flattenedNamedStructure) for key in flattenedNamedStructure.keys(): if key not in allKeys: allKeys.append(key) mergedData = [] for NS in flattenedData: mergedNS = [] for key, value in NS.items(): mergedNS.append(str(value)) mergedData.append(mergedNS) mlb = MultiLabelBinarizer() data_T = mlb.fit_transform(mergedData) print("MLb classes=") print(mlb.classes_) return data_T, mlb.classes_ def export_clusters(data, acl_weight_mapper): """ Helper Method to verify authenticity of Clusters being formed. Input: The data that is sorted into list of Clusters. Example: [ [acl-1, acl-4, acl-5, acl-9], //Cluster-0 [acl-2, acl-3], //Cluster-1 [acl-7], //Cluster-2 [acl-6, acl-8] //Cluster-3 ] We also make use of acl_dict and node_name_dict dictionaries by searching for the ACL and then getting the appropriate ACL_name and the nodes that the ACL is present in. Output: A csv file by the name of Generated_Clusters is written in the format: Cluster-0 |||| Cluster-0 Names |||| Cluster-0 Nodes |||| Cluster-1 |||| Cluster-1 Names |||| Cluster-1 Nodes acl-1 |||| permit tcp eq 51107 |||| st55in15hras |||| acl-2 |||| permit udp any eq 1200 |||| rt73ve11m5ar acl-4 |||| permit tcp eq 51102 |||| st55in15hras, st55in17hras |||| acl-3 |||| permit udp any eq 120002 |||| rt73ve10m4ar acl-5 |||| permit tcp eq 51100 |||| st55in17hras |||| acl-9 |||| permit tcp eq 51109 |||| st55in17hras |||| """ column_labels = [] for index in range(len(data)): column_labels.append("Cluster " + str(index)) column_labels.append("Cluster " + str(index) + " ACL Weights") column_labels.append("Cluster " + str(index) + " Nodes") data_to_export = pd.DataFrame(columns=column_labels) for cluster_index, cluster_data in enumerate(data): discrete_ACL_nodes = [] cluster_weights = [] for discrete_ACL in cluster_data: temp = json.dumps(discrete_ACL[0], sort_keys=True) temp_arr = [] try: for node in namedstructure_node_mapper[temp]: temp_arr.append(node) discrete_ACL_nodes.append(temp_arr) except: discrete_ACL_nodes.append(None) cluster_weights.append(acl_weight_mapper[temp]) cluster_data = pd.Series(cluster_data) cluster_weights_series = pd.Series(cluster_weights) discrete_ACL_nodes =
pd.Series(discrete_ACL_nodes)
pandas.Series
#pylint: disable=too-many-lines """Wells and WellSegment components.""" from copy import deepcopy import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import h5py from anytree import (RenderTree, AsciiStyle, Resolver, PreOrderIter, PostOrderIter, find_by_attr) from .well_segment import WellSegment from .rates import calculate_cf, show_rates, show_rates2, show_blocks_dynamics from .grids import OrthogonalUniformGrid from .base_component import BaseComponent from .utils import full_ind_to_active_ind, active_ind_to_full_ind from .getting_wellblocks import defining_wellblocks_vtk, find_first_entering_point, defining_wellblocks_compdat from .wells_dump_utils import write_perf, write_events, write_schedule, write_welspecs from .wells_load_utils import (load_rsm, load_ecl_binary, load_group, load_grouptree, load_welspecs, load_compdat, load_wconprod, load_wconinje, load_welltracks, load_events, load_history, DEFAULTS, VALUE_CONTROL) from .decorators import apply_to_each_segment, state_check class IterableWells: """Wells iterator.""" def __init__(self, root): self.iter = PreOrderIter(root) def __next__(self): x = next(self.iter) if x.is_group: return next(self) return x class Wells(BaseComponent): """Wells component. Contains wells and groups in a single tree structure, wells attributes and preprocessing actions. Parameters ---------- node : WellSegment, optional Root node for well's tree. """ def __init__(self, node=None, **kwargs): super().__init__(**kwargs) self._root = WellSegment(name='FIELD', is_group=True) if node is None else node self._resolver = Resolver() self.init_state(has_blocks=False, has_cf=False, spatial=True, all_tracks_complete=False, all_tracks_inside=False, full_perforation=False) def copy(self): """Returns a deepcopy. Cached properties are not copied.""" copy = self.__class__(self.root.copy()) copy._state = deepcopy(self.state) #pylint: disable=protected-access for node in PreOrderIter(self.root): if node.is_root: continue node_copy = node.copy() node_copy.parent = copy[node.parent.name] return copy @property def root(self): """Tree root.""" return self._root @property def resolver(self): """Tree resolver.""" return self._resolver @property def main_branches(self): """List of main branches names.""" return [node.name for node in self if node.is_main_branch] @property def names(self): """List of well names.""" return [node.name for node in self] @property def event_dates(self): """List of dates with any event in main branches.""" return self._collect_dates('EVENTS') @property def result_dates(self): """List of dates with any result in main branches.""" return self._collect_dates('RESULTS') @property def history_dates(self): """List of dates with any history in main branches.""" return self._collect_dates('HISTORY') def _collect_dates(self, attr): """List of common dates given in the attribute of main branches.""" agg = [getattr(node, attr).DATE for node in self if node and attr in node] if not agg: return pd.to_datetime([]) dates = sorted(pd.concat(agg).unique()) return
pd.to_datetime(dates)
pandas.to_datetime
"""Tests suite for Period handling. Parts derived from scikits.timeseries code, original authors: - <NAME> & <NAME> - pierregm_at_uga_dot_edu - mattknow_ca_at_hotmail_dot_com """ from unittest import TestCase from datetime import datetime, timedelta from numpy.ma.testutils import assert_equal from pandas.tseries.period import Period, PeriodIndex from pandas.tseries.index import DatetimeIndex, date_range from pandas.tseries.tools import to_datetime import pandas.core.datetools as datetools import numpy as np from pandas import Series, TimeSeries from pandas.util.testing import assert_series_equal class TestPeriodProperties(TestCase): "Test properties such as year, month, weekday, etc...." # def __init__(self, *args, **kwds): TestCase.__init__(self, *args, **kwds) def test_interval_constructor(self): i1 = Period('1/1/2005', freq='M') i2 = Period('Jan 2005') self.assertEquals(i1, i2) i1 = Period('2005', freq='A') i2 = Period('2005') i3 = Period('2005', freq='a') self.assertEquals(i1, i2) self.assertEquals(i1, i3) i4 = Period('2005', freq='M') i5 = Period('2005', freq='m') self.assert_(i1 != i4) self.assertEquals(i4, i5) i1 = Period.now('Q') i2 = Period(datetime.now(), freq='Q') i3 = Period.now('q') self.assertEquals(i1, i2) self.assertEquals(i1, i3) # Biz day construction, roll forward if non-weekday i1 = Period('3/10/12', freq='B') i2 = Period('3/12/12', freq='D') self.assertEquals(i1, i2.asfreq('B')) i3 = Period('3/10/12', freq='b') self.assertEquals(i1, i3) i1 = Period(year=2005, quarter=1, freq='Q') i2 = Period('1/1/2005', freq='Q') self.assertEquals(i1, i2) i1 = Period(year=2005, quarter=3, freq='Q') i2 = Period('9/1/2005', freq='Q') self.assertEquals(i1, i2) i1 = Period(year=2005, month=3, day=1, freq='D') i2 = Period('3/1/2005', freq='D') self.assertEquals(i1, i2) i3 = Period(year=2005, month=3, day=1, freq='d') self.assertEquals(i1, i3) i1 = Period(year=2012, month=3, day=10, freq='B') i2 = Period('3/12/12', freq='B') self.assertEquals(i1, i2) i1 = Period('2005Q1') i2 = Period(year=2005, quarter=1, freq='Q') i3 = Period('2005q1') self.assertEquals(i1, i2) self.assertEquals(i1, i3) i1 = Period('05Q1') self.assertEquals(i1, i2) lower = Period('05q1') self.assertEquals(i1, lower) i1 = Period('1Q2005') self.assertEquals(i1, i2) lower = Period('1q2005') self.assertEquals(i1, lower) i1 =
Period('1Q05')
pandas.tseries.period.Period
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory import os # from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import linear_kernel books = pd.read_csv('data/books.csv', encoding = "ISO-8859-1") books.head() ratings = pd.read_csv('data/ratings.csv', encoding = "ISO-8859-1") ratings.head() book_tags = pd.read_csv('data/book_tags.csv', encoding = "ISO-8859-1") book_tags.head() tags = pd.read_csv('data/tags.csv') tags.tail() tags_join_DF =
pd.merge(book_tags, tags, left_on='tag_id', right_on='tag_id', how='inner')
pandas.merge
import matplotlib.pyplot as plt import datetime as datetime import numpy as np import pandas as pd import talib import seaborn as sns from time import time from sklearn import preprocessing from pandas.plotting import register_matplotlib_converters from .factorize import FactorManagement import scipy.stats as stats import cvxpy as cvx import zipfile import os from sklearn import linear_model, decomposition, ensemble, preprocessing, isotonic, metrics from sklearn.impute import SimpleImputer import xgboost register_matplotlib_converters() class Learner: def __init__(self): pass @staticmethod def shift_mask_data(X, Y, upper_percentile, lower_percentile, n_fwd_days): # Shift X to match factors at t to returns at t+n_fwd_days (we want to predict future returns after all) shifted_X = np.roll(X, n_fwd_days + 1, axis=0) # Slice off rolled elements X = shifted_X[n_fwd_days + 1:] Y = Y[n_fwd_days + 1:] n_time, n_stocks, n_factors = X.shape # Look for biggest up and down movers upper = np.nanpercentile(Y, upper_percentile, axis=1)[:, np.newaxis] lower = np.nanpercentile(Y, lower_percentile, axis=1)[:, np.newaxis] upper_mask = (Y >= upper) lower_mask = (Y <= lower) mask = upper_mask | lower_mask # This also drops nans mask = mask.flatten() # Only try to predict whether a stock moved up/down relative to other stocks Y_binary = np.zeros(n_time * n_stocks) Y_binary[upper_mask.flatten()] = 1 Y_binary[lower_mask.flatten()] = -1 # Flatten X X = X.reshape((n_time * n_stocks, n_factors)) # Drop stocks that did not move much (i.e. are in the 30th to 70th percentile) X = X[mask] Y_binary = Y_binary[mask] return X, Y_binary def feature_importance_adaboost(self, n_fwd_days, close, all_factors, n_estimators, train_size, upper_percentile, lower_percentile): pipe = all_factors pipe.index = pipe.index.set_levels([pd.to_datetime(pipe.index.levels[0]), pipe.index.levels[1]]) close = close[pipe.index.levels[1]] close.index = pd.to_datetime(close.index) chunk_start = pipe.index.levels[0][0] chunk_end = pipe.index.levels[0][-1] returns = FactorManagement().log_Returns(close, 1).loc[slice(chunk_start, chunk_end), :] returns_stacked = returns.stack().to_frame('Returns') results = pd.concat([pipe, returns_stacked], axis=1) results.index.set_names(['date', 'asset'], inplace=True) results_wo_returns = results.copy() returns = results_wo_returns.pop('Returns') Y = returns.unstack().values X = results_wo_returns.to_xarray().to_array() X = np.array(X) X = X.swapaxes(2, 0).swapaxes(0, 1) # (factors, time, stocks) -> (time, stocks, factors) # Train-test split train_size_perc = train_size n_time, n_stocks, n_factors = X.shape train_size = np.int16(np.round(train_size_perc * n_time)) X_train, Y_train = X[:train_size], Y[:train_size] X_test, Y_test = X[(train_size + n_fwd_days):], Y[(train_size + n_fwd_days):] X_train_shift, Y_train_shift = self.shift_mask_data(X_train, Y_train, n_fwd_days=n_fwd_days, lower_percentile=lower_percentile, upper_percentile=upper_percentile) X_test_shift, Y_test_shift = self.shift_mask_data(X_test, Y_test, n_fwd_days=n_fwd_days, lower_percentile=lower_percentile, upper_percentile=upper_percentile) start_timer = time() # Train classifier imputer = SimpleImputer() scaler = preprocessing.MinMaxScaler() clf = ensemble.AdaBoostClassifier( n_estimators=n_estimators) # n_estimators controls how many weak classifiers are fi X_train_trans = imputer.fit_transform(X_train_shift) X_train_trans = scaler.fit_transform(X_train_trans) clf.fit(X_train_trans, Y_train_shift) end_timer = time() print('Time to train full ML pipline: {} secs'.format(end_timer - start_timer)) Y_pred = clf.predict(X_train_trans) print('Accuracy on train set = {:.2f}%'.format(metrics.accuracy_score(Y_train_shift, Y_pred) * 100)) # Transform test data X_test_trans = imputer.transform(X_test_shift) X_test_trans = scaler.transform(X_test_trans) # Predict! Y_pred = clf.predict(X_test_trans) Y_pred_prob = clf.predict_proba(X_test_trans) print('Predictions:', Y_pred) print('Probabilities of class == 1:', Y_pred_prob[:, 1] * 100) print('Accuracy on test set = {:.2f}%'.format(metrics.accuracy_score(Y_test_shift, Y_pred) * 100)) print('Log-loss = {:.5f}'.format(metrics.log_loss(Y_test_shift, Y_pred_prob))) feature_importances = pd.Series(clf.feature_importances_, index=results_wo_returns.columns) feature_importances.sort_values(ascending=False) ax = feature_importances.plot(kind='bar') ax.set(ylabel='Importance (Gini Coefficient)', title='Feature importances') feature_importances = pd.DataFrame(data=feature_importances.values, columns=['weights'], index=feature_importances.index) feature_importances.index.name = 'factors' return feature_importances def feature_importance_xgb(self, n_fwd_days, close, all_factors, n_estimators, train_size, upper_percentile, lower_percentile): pipe = all_factors pipe.index = pipe.index.set_levels([pd.to_datetime(pipe.index.levels[0]), pipe.index.levels[1]]) close = close[pipe.index.levels[1]] close.index =
pd.to_datetime(close.index)
pandas.to_datetime
# pylint: disable=E1101,E1103,W0232 from datetime import datetime, timedelta from pandas.compat import range, lrange, lzip, u, zip import operator import re import nose import warnings import os import numpy as np from numpy.testing import assert_array_equal from pandas import period_range, date_range from pandas.core.index import (Index, Float64Index, Int64Index, MultiIndex, InvalidIndexError, NumericIndex) from pandas.tseries.index import DatetimeIndex from pandas.tseries.tdi import TimedeltaIndex from pandas.tseries.period import PeriodIndex from pandas.core.series import Series from pandas.util.testing import (assert_almost_equal, assertRaisesRegexp, assert_copy) from pandas import compat from pandas.compat import long import pandas.util.testing as tm import pandas.core.config as cf from pandas.tseries.index import _to_m8 import pandas.tseries.offsets as offsets import pandas as pd from pandas.lib import Timestamp class Base(object): """ base class for index sub-class tests """ _holder = None _compat_props = ['shape', 'ndim', 'size', 'itemsize', 'nbytes'] def verify_pickle(self,index): unpickled = self.round_trip_pickle(index) self.assertTrue(index.equals(unpickled)) def test_pickle_compat_construction(self): # this is testing for pickle compat if self._holder is None: return # need an object to create with self.assertRaises(TypeError, self._holder) def test_numeric_compat(self): idx = self.create_index() tm.assertRaisesRegexp(TypeError, "cannot perform __mul__", lambda : idx * 1) tm.assertRaisesRegexp(TypeError, "cannot perform __mul__", lambda : 1 * idx) div_err = "cannot perform __truediv__" if compat.PY3 else "cannot perform __div__" tm.assertRaisesRegexp(TypeError, div_err, lambda : idx / 1) tm.assertRaisesRegexp(TypeError, div_err, lambda : 1 / idx) tm.assertRaisesRegexp(TypeError, "cannot perform __floordiv__", lambda : idx // 1) tm.assertRaisesRegexp(TypeError, "cannot perform __floordiv__", lambda : 1 // idx) def test_boolean_context_compat(self): # boolean context compat idx = self.create_index() def f(): if idx: pass tm.assertRaisesRegexp(ValueError,'The truth value of a',f) def test_ndarray_compat_properties(self): idx = self.create_index() self.assertTrue(idx.T.equals(idx)) self.assertTrue(idx.transpose().equals(idx)) values = idx.values for prop in self._compat_props: self.assertEqual(getattr(idx, prop), getattr(values, prop)) # test for validity idx.nbytes idx.values.nbytes class TestIndex(Base, tm.TestCase): _holder = Index _multiprocess_can_split_ = True def setUp(self): self.indices = dict( unicodeIndex = tm.makeUnicodeIndex(100), strIndex = tm.makeStringIndex(100), dateIndex = tm.makeDateIndex(100), intIndex = tm.makeIntIndex(100), floatIndex = tm.makeFloatIndex(100), boolIndex = Index([True,False]), empty = Index([]), tuples = MultiIndex.from_tuples(lzip(['foo', 'bar', 'baz'], [1, 2, 3])) ) for name, ind in self.indices.items(): setattr(self, name, ind) def create_index(self): return Index(list('abcde')) def test_wrong_number_names(self): def testit(ind): ind.names = ["apple", "banana", "carrot"] for ind in self.indices.values(): assertRaisesRegexp(ValueError, "^Length", testit, ind) def test_set_name_methods(self): new_name = "This is the new name for this index" indices = (self.dateIndex, self.intIndex, self.unicodeIndex, self.empty) for ind in indices: original_name = ind.name new_ind = ind.set_names([new_name]) self.assertEqual(new_ind.name, new_name) self.assertEqual(ind.name, original_name) res = ind.rename(new_name, inplace=True) # should return None self.assertIsNone(res) self.assertEqual(ind.name, new_name) self.assertEqual(ind.names, [new_name]) #with assertRaisesRegexp(TypeError, "list-like"): # # should still fail even if it would be the right length # ind.set_names("a") with assertRaisesRegexp(ValueError, "Level must be None"): ind.set_names("a", level=0) # rename in place just leaves tuples and other containers alone name = ('A', 'B') ind = self.intIndex ind.rename(name, inplace=True) self.assertEqual(ind.name, name) self.assertEqual(ind.names, [name]) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.strIndex).__name__): hash(self.strIndex) def test_new_axis(self): new_index = self.dateIndex[None, :] self.assertEqual(new_index.ndim, 2) tm.assert_isinstance(new_index, np.ndarray) def test_copy_and_deepcopy(self): from copy import copy, deepcopy for func in (copy, deepcopy): idx_copy = func(self.strIndex) self.assertIsNot(idx_copy, self.strIndex) self.assertTrue(idx_copy.equals(self.strIndex)) new_copy = self.strIndex.copy(deep=True, name="banana") self.assertEqual(new_copy.name, "banana") new_copy2 = self.intIndex.copy(dtype=int) self.assertEqual(new_copy2.dtype.kind, 'i') def test_duplicates(self): idx = Index([0, 0, 0]) self.assertFalse(idx.is_unique) def test_sort(self): self.assertRaises(TypeError, self.strIndex.sort) def test_mutability(self): self.assertRaises(TypeError, self.strIndex.__setitem__, 0, 'foo') def test_constructor(self): # regular instance creation tm.assert_contains_all(self.strIndex, self.strIndex) tm.assert_contains_all(self.dateIndex, self.dateIndex) # casting arr = np.array(self.strIndex) index = Index(arr) tm.assert_contains_all(arr, index) self.assert_numpy_array_equal(self.strIndex, index) # copy arr = np.array(self.strIndex) index = Index(arr, copy=True, name='name') tm.assert_isinstance(index, Index) self.assertEqual(index.name, 'name') assert_array_equal(arr, index) arr[0] = "SOMEBIGLONGSTRING" self.assertNotEqual(index[0], "SOMEBIGLONGSTRING") # what to do here? # arr = np.array(5.) # self.assertRaises(Exception, arr.view, Index) def test_constructor_corner(self): # corner case self.assertRaises(TypeError, Index, 0) def test_constructor_from_series(self): expected = DatetimeIndex([Timestamp('20110101'),Timestamp('20120101'),Timestamp('20130101')]) s = Series([Timestamp('20110101'),Timestamp('20120101'),Timestamp('20130101')]) result = Index(s) self.assertTrue(result.equals(expected)) result = DatetimeIndex(s) self.assertTrue(result.equals(expected)) # GH 6273 # create from a series, passing a freq s = Series(pd.to_datetime(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'])) result = DatetimeIndex(s, freq='MS') expected = DatetimeIndex(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'],freq='MS') self.assertTrue(result.equals(expected)) df = pd.DataFrame(np.random.rand(5,3)) df['date'] = ['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'] result = DatetimeIndex(df['date'], freq='MS') # GH 6274 # infer freq of same result = pd.infer_freq(df['date']) self.assertEqual(result,'MS') def test_constructor_ndarray_like(self): # GH 5460#issuecomment-44474502 # it should be possible to convert any object that satisfies the numpy # ndarray interface directly into an Index class ArrayLike(object): def __init__(self, array): self.array = array def __array__(self, dtype=None): return self.array for array in [np.arange(5), np.array(['a', 'b', 'c']), date_range('2000-01-01', periods=3).values]: expected = pd.Index(array) result = pd.Index(ArrayLike(array)) self.assertTrue(result.equals(expected)) def test_index_ctor_infer_periodindex(self): xp = period_range('2012-1-1', freq='M', periods=3) rs = Index(xp) assert_array_equal(rs, xp) tm.assert_isinstance(rs, PeriodIndex) def test_constructor_simple_new(self): idx = Index([1, 2, 3, 4, 5], name='int') result = idx._simple_new(idx, 'int') self.assertTrue(result.equals(idx)) idx = Index([1.1, np.nan, 2.2, 3.0], name='float') result = idx._simple_new(idx, 'float') self.assertTrue(result.equals(idx)) idx = Index(['A', 'B', 'C', np.nan], name='obj') result = idx._simple_new(idx, 'obj') self.assertTrue(result.equals(idx)) def test_copy(self): i = Index([], name='Foo') i_copy = i.copy() self.assertEqual(i_copy.name, 'Foo') def test_view(self): i = Index([], name='Foo') i_view = i.view() self.assertEqual(i_view.name, 'Foo') def test_legacy_pickle_identity(self): # GH 8431 pth = tm.get_data_path() s1 = pd.read_pickle(os.path.join(pth,'s1-0.12.0.pickle')) s2 = pd.read_pickle(os.path.join(pth,'s2-0.12.0.pickle')) self.assertFalse(s1.index.identical(s2.index)) self.assertFalse(s1.index.equals(s2.index)) def test_astype(self): casted = self.intIndex.astype('i8') # it works! casted.get_loc(5) # pass on name self.intIndex.name = 'foobar' casted = self.intIndex.astype('i8') self.assertEqual(casted.name, 'foobar') def test_compat(self): self.strIndex.tolist() def test_equals(self): # same self.assertTrue(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'c']))) # different length self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b']))) # same length, different values self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'd']))) # Must also be an Index self.assertFalse(Index(['a', 'b', 'c']).equals(['a', 'b', 'c'])) def test_insert(self): # GH 7256 # validate neg/pos inserts result = Index(['b', 'c', 'd']) #test 0th element self.assertTrue(Index(['a', 'b', 'c', 'd']).equals( result.insert(0, 'a'))) #test Nth element that follows Python list behavior self.assertTrue(Index(['b', 'c', 'e', 'd']).equals( result.insert(-1, 'e'))) #test loc +/- neq (0, -1) self.assertTrue(result.insert(1, 'z').equals( result.insert(-2, 'z'))) #test empty null_index = Index([]) self.assertTrue(Index(['a']).equals( null_index.insert(0, 'a'))) def test_delete(self): idx = Index(['a', 'b', 'c', 'd'], name='idx') expected = Index(['b', 'c', 'd'], name='idx') result = idx.delete(0) self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) expected = Index(['a', 'b', 'c'], name='idx') result = idx.delete(-1) self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) with tm.assertRaises((IndexError, ValueError)): # either depeidnig on numpy version result = idx.delete(5) def test_identical(self): # index i1 = Index(['a', 'b', 'c']) i2 = Index(['a', 'b', 'c']) self.assertTrue(i1.identical(i2)) i1 = i1.rename('foo') self.assertTrue(i1.equals(i2)) self.assertFalse(i1.identical(i2)) i2 = i2.rename('foo') self.assertTrue(i1.identical(i2)) i3 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')]) i4 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')], tupleize_cols=False) self.assertFalse(i3.identical(i4)) def test_is_(self): ind = Index(range(10)) self.assertTrue(ind.is_(ind)) self.assertTrue(ind.is_(ind.view().view().view().view())) self.assertFalse(ind.is_(Index(range(10)))) self.assertFalse(ind.is_(ind.copy())) self.assertFalse(ind.is_(ind.copy(deep=False))) self.assertFalse(ind.is_(ind[:])) self.assertFalse(ind.is_(ind.view(np.ndarray).view(Index))) self.assertFalse(ind.is_(np.array(range(10)))) # quasi-implementation dependent self.assertTrue(ind.is_(ind.view())) ind2 = ind.view() ind2.name = 'bob' self.assertTrue(ind.is_(ind2)) self.assertTrue(ind2.is_(ind)) # doesn't matter if Indices are *actually* views of underlying data, self.assertFalse(ind.is_(Index(ind.values))) arr = np.array(range(1, 11)) ind1 = Index(arr, copy=False) ind2 = Index(arr, copy=False) self.assertFalse(ind1.is_(ind2)) def test_asof(self): d = self.dateIndex[0] self.assertIs(self.dateIndex.asof(d), d) self.assertTrue(np.isnan(self.dateIndex.asof(d - timedelta(1)))) d = self.dateIndex[-1] self.assertEqual(self.dateIndex.asof(d + timedelta(1)), d) d = self.dateIndex[0].to_datetime() tm.assert_isinstance(self.dateIndex.asof(d), Timestamp) def test_asof_datetime_partial(self): idx = pd.date_range('2010-01-01', periods=2, freq='m') expected = Timestamp('2010-01-31') result = idx.asof('2010-02') self.assertEqual(result, expected) def test_nanosecond_index_access(self): s = Series([Timestamp('20130101')]).values.view('i8')[0] r = DatetimeIndex([s + 50 + i for i in range(100)]) x = Series(np.random.randn(100), index=r) first_value = x.asof(x.index[0]) # this does not yet work, as parsing strings is done via dateutil #self.assertEqual(first_value, x['2013-01-01 00:00:00.000000050+0000']) self.assertEqual(first_value, x[Timestamp(np.datetime64('2013-01-01 00:00:00.000000050+0000', 'ns'))]) def test_argsort(self): result = self.strIndex.argsort() expected = np.array(self.strIndex).argsort() self.assert_numpy_array_equal(result, expected) def test_comparators(self): index = self.dateIndex element = index[len(index) // 2] element = _to_m8(element) arr = np.array(index) def _check(op): arr_result = op(arr, element) index_result = op(index, element) self.assertIsInstance(index_result, np.ndarray) self.assert_numpy_array_equal(arr_result, index_result) _check(operator.eq) _check(operator.ne) _check(operator.gt) _check(operator.lt) _check(operator.ge) _check(operator.le) def test_booleanindex(self): boolIdx = np.repeat(True, len(self.strIndex)).astype(bool) boolIdx[5:30:2] = False subIndex = self.strIndex[boolIdx] for i, val in enumerate(subIndex): self.assertEqual(subIndex.get_loc(val), i) subIndex = self.strIndex[list(boolIdx)] for i, val in enumerate(subIndex): self.assertEqual(subIndex.get_loc(val), i) def test_fancy(self): sl = self.strIndex[[1, 2, 3]] for i in sl: self.assertEqual(i, sl[sl.get_loc(i)]) def test_empty_fancy(self): empty_farr = np.array([], dtype=np.float_) empty_iarr = np.array([], dtype=np.int_) empty_barr = np.array([], dtype=np.bool_) # pd.DatetimeIndex is excluded, because it overrides getitem and should # be tested separately. for idx in [self.strIndex, self.intIndex, self.floatIndex]: empty_idx = idx.__class__([]) values = idx.values self.assertTrue(idx[[]].identical(empty_idx)) self.assertTrue(idx[empty_iarr].identical(empty_idx)) self.assertTrue(idx[empty_barr].identical(empty_idx)) # np.ndarray only accepts ndarray of int & bool dtypes, so should # Index. self.assertRaises(IndexError, idx.__getitem__, empty_farr) def test_getitem(self): arr = np.array(self.dateIndex) exp = self.dateIndex[5] exp = _to_m8(exp) self.assertEqual(exp, arr[5]) def test_shift(self): shifted = self.dateIndex.shift(0, timedelta(1)) self.assertIs(shifted, self.dateIndex) shifted = self.dateIndex.shift(5, timedelta(1)) self.assert_numpy_array_equal(shifted, self.dateIndex + timedelta(5)) shifted = self.dateIndex.shift(1, 'B') self.assert_numpy_array_equal(shifted, self.dateIndex + offsets.BDay()) shifted.name = 'shifted' self.assertEqual(shifted.name, shifted.shift(1, 'D').name) def test_intersection(self): first = self.strIndex[:20] second = self.strIndex[:10] intersect = first.intersection(second) self.assertTrue(tm.equalContents(intersect, second)) # Corner cases inter = first.intersection(first) self.assertIs(inter, first) # non-iterable input assertRaisesRegexp(TypeError, "iterable", first.intersection, 0.5) idx1 = Index([1, 2, 3, 4, 5], name='idx') # if target has the same name, it is preserved idx2 = Index([3, 4, 5, 6, 7], name='idx') expected2 = Index([3, 4, 5], name='idx') result2 = idx1.intersection(idx2) self.assertTrue(result2.equals(expected2)) self.assertEqual(result2.name, expected2.name) # if target name is different, it will be reset idx3 = Index([3, 4, 5, 6, 7], name='other') expected3 = Index([3, 4, 5], name=None) result3 = idx1.intersection(idx3) self.assertTrue(result3.equals(expected3)) self.assertEqual(result3.name, expected3.name) # non monotonic idx1 = Index([5, 3, 2, 4, 1], name='idx') idx2 = Index([4, 7, 6, 5, 3], name='idx') result2 = idx1.intersection(idx2) self.assertTrue(tm.equalContents(result2, expected2)) self.assertEqual(result2.name, expected2.name) idx3 = Index([4, 7, 6, 5, 3], name='other') result3 = idx1.intersection(idx3) self.assertTrue(tm.equalContents(result3, expected3)) self.assertEqual(result3.name, expected3.name) # non-monotonic non-unique idx1 = Index(['A','B','A','C']) idx2 = Index(['B','D']) expected = Index(['B'], dtype='object') result = idx1.intersection(idx2) self.assertTrue(result.equals(expected)) def test_union(self): first = self.strIndex[5:20] second = self.strIndex[:10] everything = self.strIndex[:20] union = first.union(second) self.assertTrue(tm.equalContents(union, everything)) # Corner cases union = first.union(first) self.assertIs(union, first) union = first.union([]) self.assertIs(union, first) union = Index([]).union(first) self.assertIs(union, first) # non-iterable input assertRaisesRegexp(TypeError, "iterable", first.union, 0.5) # preserve names first.name = 'A' second.name = 'A' union = first.union(second) self.assertEqual(union.name, 'A') second.name = 'B' union = first.union(second) self.assertIsNone(union.name) def test_add(self): # - API change GH 8226 with tm.assert_produces_warning(): self.strIndex + self.strIndex firstCat = self.strIndex.union(self.dateIndex) secondCat = self.strIndex.union(self.strIndex) if self.dateIndex.dtype == np.object_: appended = np.append(self.strIndex, self.dateIndex) else: appended = np.append(self.strIndex, self.dateIndex.astype('O')) self.assertTrue(tm.equalContents(firstCat, appended)) self.assertTrue(tm.equalContents(secondCat, self.strIndex)) tm.assert_contains_all(self.strIndex, firstCat) tm.assert_contains_all(self.strIndex, secondCat) tm.assert_contains_all(self.dateIndex, firstCat) def test_append_multiple(self): index = Index(['a', 'b', 'c', 'd', 'e', 'f']) foos = [index[:2], index[2:4], index[4:]] result = foos[0].append(foos[1:]) self.assertTrue(result.equals(index)) # empty result = index.append([]) self.assertTrue(result.equals(index)) def test_append_empty_preserve_name(self): left = Index([], name='foo') right = Index([1, 2, 3], name='foo') result = left.append(right) self.assertEqual(result.name, 'foo') left = Index([], name='foo') right = Index([1, 2, 3], name='bar') result = left.append(right) self.assertIsNone(result.name) def test_add_string(self): # from bug report index = Index(['a', 'b', 'c']) index2 = index + 'foo' self.assertNotIn('a', index2) self.assertIn('afoo', index2) def test_iadd_string(self): index = pd.Index(['a', 'b', 'c']) # doesn't fail test unless there is a check before `+=` self.assertIn('a', index) index += '_x' self.assertIn('a_x', index) def test_difference(self): first = self.strIndex[5:20] second = self.strIndex[:10] answer = self.strIndex[10:20] first.name = 'name' # different names result = first.difference(second) self.assertTrue(tm.equalContents(result, answer)) self.assertEqual(result.name, None) # same names second.name = 'name' result = first.difference(second) self.assertEqual(result.name, 'name') # with empty result = first.difference([]) self.assertTrue(tm.equalContents(result, first)) self.assertEqual(result.name, first.name) # with everythin result = first.difference(first) self.assertEqual(len(result), 0) self.assertEqual(result.name, first.name) # non-iterable input assertRaisesRegexp(TypeError, "iterable", first.diff, 0.5) def test_symmetric_diff(self): # smoke idx1 = Index([1, 2, 3, 4], name='idx1') idx2 = Index([2, 3, 4, 5]) result = idx1.sym_diff(idx2) expected = Index([1, 5]) self.assertTrue(tm.equalContents(result, expected)) self.assertIsNone(result.name) # __xor__ syntax expected = idx1 ^ idx2 self.assertTrue(tm.equalContents(result, expected)) self.assertIsNone(result.name) # multiIndex idx1 = MultiIndex.from_tuples(self.tuples) idx2 = MultiIndex.from_tuples([('foo', 1), ('bar', 3)]) result = idx1.sym_diff(idx2) expected = MultiIndex.from_tuples([('bar', 2), ('baz', 3), ('bar', 3)]) self.assertTrue(tm.equalContents(result, expected)) # nans: # GH #6444, sorting of nans. Make sure the number of nans is right # and the correct non-nan values are there. punt on sorting. idx1 = Index([1, 2, 3, np.nan]) idx2 = Index([0, 1, np.nan]) result = idx1.sym_diff(idx2) # expected = Index([0.0, np.nan, 2.0, 3.0, np.nan]) nans = pd.isnull(result) self.assertEqual(nans.sum(), 2) self.assertEqual((~nans).sum(), 3) [self.assertIn(x, result) for x in [0.0, 2.0, 3.0]] # other not an Index: idx1 = Index([1, 2, 3, 4], name='idx1') idx2 = np.array([2, 3, 4, 5]) expected = Index([1, 5]) result = idx1.sym_diff(idx2) self.assertTrue(tm.equalContents(result, expected)) self.assertEqual(result.name, 'idx1') result = idx1.sym_diff(idx2, result_name='new_name') self.assertTrue(tm.equalContents(result, expected)) self.assertEqual(result.name, 'new_name') # other isn't iterable with tm.assertRaises(TypeError): Index(idx1,dtype='object') - 1 def test_pickle(self): self.verify_pickle(self.strIndex) self.strIndex.name = 'foo' self.verify_pickle(self.strIndex) self.verify_pickle(self.dateIndex) def test_is_numeric(self): self.assertFalse(self.dateIndex.is_numeric()) self.assertFalse(self.strIndex.is_numeric()) self.assertTrue(self.intIndex.is_numeric()) self.assertTrue(self.floatIndex.is_numeric()) def test_is_object(self): self.assertTrue(self.strIndex.is_object()) self.assertTrue(self.boolIndex.is_object()) self.assertFalse(self.intIndex.is_object()) self.assertFalse(self.dateIndex.is_object()) self.assertFalse(self.floatIndex.is_object()) def test_is_all_dates(self): self.assertTrue(self.dateIndex.is_all_dates) self.assertFalse(self.strIndex.is_all_dates) self.assertFalse(self.intIndex.is_all_dates) def test_summary(self): self._check_method_works(Index.summary) # GH3869 ind = Index(['{other}%s', "~:{range}:0"], name='A') result = ind.summary() # shouldn't be formatted accidentally. self.assertIn('~:{range}:0', result) self.assertIn('{other}%s', result) def test_format(self): self._check_method_works(Index.format) index = Index([datetime.now()]) formatted = index.format() expected = [str(index[0])] self.assertEqual(formatted, expected) # 2845 index = Index([1, 2.0+3.0j, np.nan]) formatted = index.format() expected = [str(index[0]), str(index[1]), u('NaN')] self.assertEqual(formatted, expected) # is this really allowed? index = Index([1, 2.0+3.0j, None]) formatted = index.format() expected = [str(index[0]), str(index[1]), u('NaN')] self.assertEqual(formatted, expected) self.strIndex[:0].format() def test_format_with_name_time_info(self): # bug I fixed 12/20/2011 inc = timedelta(hours=4) dates = Index([dt + inc for dt in self.dateIndex], name='something') formatted = dates.format(name=True) self.assertEqual(formatted[0], 'something') def test_format_datetime_with_time(self): t = Index([datetime(2012, 2, 7), datetime(2012, 2, 7, 23)]) result = t.format() expected = ['2012-02-07 00:00:00', '2012-02-07 23:00:00'] self.assertEqual(len(result), 2) self.assertEqual(result, expected) def test_format_none(self): values = ['a', 'b', 'c', None] idx = Index(values) idx.format() self.assertIsNone(idx[3]) def test_take(self): indexer = [4, 3, 0, 2] result = self.dateIndex.take(indexer) expected = self.dateIndex[indexer] self.assertTrue(result.equals(expected)) def _check_method_works(self, method): method(self.empty) method(self.dateIndex) method(self.unicodeIndex) method(self.strIndex) method(self.intIndex) method(self.tuples) def test_get_indexer(self): idx1 = Index([1, 2, 3, 4, 5]) idx2 = Index([2, 4, 6]) r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, [1, 3, -1]) r1 = idx2.get_indexer(idx1, method='pad') assert_almost_equal(r1, [-1, 0, 0, 1, 1]) rffill1 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method='backfill') assert_almost_equal(r1, [0, 0, 1, 1, 2]) rbfill1 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) def test_slice_locs(self): for dtype in [int, float]: idx = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=dtype)) n = len(idx) self.assertEqual(idx.slice_locs(start=2), (2, n)) self.assertEqual(idx.slice_locs(start=3), (3, n)) self.assertEqual(idx.slice_locs(3, 8), (3, 6)) self.assertEqual(idx.slice_locs(5, 10), (3, n)) self.assertEqual(idx.slice_locs(5.0, 10.0), (3, n)) self.assertEqual(idx.slice_locs(4.5, 10.5), (3, 8)) self.assertEqual(idx.slice_locs(end=8), (0, 6)) self.assertEqual(idx.slice_locs(end=9), (0, 7)) idx2 = idx[::-1] self.assertEqual(idx2.slice_locs(8, 2), (2, 6)) self.assertEqual(idx2.slice_locs(8.5, 1.5), (2, 6)) self.assertEqual(idx2.slice_locs(7, 3), (2, 5)) self.assertEqual(idx2.slice_locs(10.5, -1), (0, n)) def test_slice_locs_dup(self): idx = Index(['a', 'a', 'b', 'c', 'd', 'd']) self.assertEqual(idx.slice_locs('a', 'd'), (0, 6)) self.assertEqual(idx.slice_locs(end='d'), (0, 6)) self.assertEqual(idx.slice_locs('a', 'c'), (0, 4)) self.assertEqual(idx.slice_locs('b', 'd'), (2, 6)) idx2 = idx[::-1] self.assertEqual(idx2.slice_locs('d', 'a'), (0, 6)) self.assertEqual(idx2.slice_locs(end='a'), (0, 6)) self.assertEqual(idx2.slice_locs('d', 'b'), (0, 4)) self.assertEqual(idx2.slice_locs('c', 'a'), (2, 6)) for dtype in [int, float]: idx = Index(np.array([10, 12, 12, 14], dtype=dtype)) self.assertEqual(idx.slice_locs(12, 12), (1, 3)) self.assertEqual(idx.slice_locs(11, 13), (1, 3)) idx2 = idx[::-1] self.assertEqual(idx2.slice_locs(12, 12), (1, 3)) self.assertEqual(idx2.slice_locs(13, 11), (1, 3)) def test_slice_locs_na(self): idx = Index([np.nan, 1, 2]) self.assertRaises(KeyError, idx.slice_locs, start=1.5) self.assertRaises(KeyError, idx.slice_locs, end=1.5) self.assertEqual(idx.slice_locs(1), (1, 3)) self.assertEqual(idx.slice_locs(np.nan), (0, 3)) idx = Index([np.nan, np.nan, 1, 2]) self.assertRaises(KeyError, idx.slice_locs, np.nan) def test_drop(self): n = len(self.strIndex) dropped = self.strIndex.drop(self.strIndex[lrange(5, 10)]) expected = self.strIndex[lrange(5) + lrange(10, n)] self.assertTrue(dropped.equals(expected)) self.assertRaises(ValueError, self.strIndex.drop, ['foo', 'bar']) dropped = self.strIndex.drop(self.strIndex[0]) expected = self.strIndex[1:] self.assertTrue(dropped.equals(expected)) ser = Index([1, 2, 3]) dropped = ser.drop(1) expected = Index([2, 3]) self.assertTrue(dropped.equals(expected)) def test_tuple_union_bug(self): import pandas import numpy as np aidx1 = np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B')], dtype=[('num', int), ('let', 'a1')]) aidx2 = np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B'), (1, 'C'), (2, 'C')], dtype=[('num', int), ('let', 'a1')]) idx1 = pandas.Index(aidx1) idx2 = pandas.Index(aidx2) # intersection broken? int_idx = idx1.intersection(idx2) # needs to be 1d like idx1 and idx2 expected = idx1[:4] # pandas.Index(sorted(set(idx1) & set(idx2))) self.assertEqual(int_idx.ndim, 1) self.assertTrue(int_idx.equals(expected)) # union broken union_idx = idx1.union(idx2) expected = idx2 self.assertEqual(union_idx.ndim, 1) self.assertTrue(union_idx.equals(expected)) def test_is_monotonic_incomparable(self): index = Index([5, datetime.now(), 7]) self.assertFalse(index.is_monotonic) self.assertFalse(index.is_monotonic_decreasing) def test_get_set_value(self): values = np.random.randn(100) date = self.dateIndex[67] assert_almost_equal(self.dateIndex.get_value(values, date), values[67]) self.dateIndex.set_value(values, date, 10) self.assertEqual(values[67], 10) def test_isin(self): values = ['foo', 'bar', 'quux'] idx = Index(['qux', 'baz', 'foo', 'bar']) result = idx.isin(values) expected = np.array([False, False, True, True]) self.assert_numpy_array_equal(result, expected) # empty, return dtype bool idx = Index([]) result = idx.isin(values) self.assertEqual(len(result), 0) self.assertEqual(result.dtype, np.bool_) def test_isin_nan(self): self.assert_numpy_array_equal( Index(['a', np.nan]).isin([np.nan]), [False, True]) self.assert_numpy_array_equal( Index(['a', pd.NaT]).isin([pd.NaT]), [False, True]) self.assert_numpy_array_equal( Index(['a', np.nan]).isin([float('nan')]), [False, False]) self.assert_numpy_array_equal( Index(['a', np.nan]).isin([pd.NaT]), [False, False]) # Float64Index overrides isin, so must be checked separately self.assert_numpy_array_equal( Float64Index([1.0, np.nan]).isin([np.nan]), [False, True]) self.assert_numpy_array_equal( Float64Index([1.0, np.nan]).isin([float('nan')]), [False, True]) self.assert_numpy_array_equal( Float64Index([1.0, np.nan]).isin([pd.NaT]), [False, True]) def test_isin_level_kwarg(self): def check_idx(idx): values = idx.tolist()[-2:] + ['nonexisting'] expected = np.array([False, False, True, True]) self.assert_numpy_array_equal(expected, idx.isin(values, level=0)) self.assert_numpy_array_equal(expected, idx.isin(values, level=-1)) self.assertRaises(IndexError, idx.isin, values, level=1) self.assertRaises(IndexError, idx.isin, values, level=10) self.assertRaises(IndexError, idx.isin, values, level=-2) self.assertRaises(KeyError, idx.isin, values, level=1.0) self.assertRaises(KeyError, idx.isin, values, level='foobar') idx.name = 'foobar' self.assert_numpy_array_equal(expected, idx.isin(values, level='foobar')) self.assertRaises(KeyError, idx.isin, values, level='xyzzy') self.assertRaises(KeyError, idx.isin, values, level=np.nan) check_idx(Index(['qux', 'baz', 'foo', 'bar'])) # Float64Index overrides isin, so must be checked separately check_idx(Float64Index([1.0, 2.0, 3.0, 4.0])) def test_boolean_cmp(self): values = [1, 2, 3, 4] idx = Index(values) res = (idx == values) self.assert_numpy_array_equal(res,np.array([True,True,True,True],dtype=bool)) def test_get_level_values(self): result = self.strIndex.get_level_values(0) self.assertTrue(result.equals(self.strIndex)) def test_slice_keep_name(self): idx = Index(['a', 'b'], name='asdf') self.assertEqual(idx.name, idx[1:].name) def test_join_self(self): # instance attributes of the form self.<name>Index indices = 'unicode', 'str', 'date', 'int', 'float' kinds = 'outer', 'inner', 'left', 'right' for index_kind in indices: res = getattr(self, '{0}Index'.format(index_kind)) for kind in kinds: joined = res.join(res, how=kind) self.assertIs(res, joined) def test_indexing_doesnt_change_class(self): idx = Index([1, 2, 3, 'a', 'b', 'c']) self.assertTrue(idx[1:3].identical( pd.Index([2, 3], dtype=np.object_))) self.assertTrue(idx[[0,1]].identical( pd.Index([1, 2], dtype=np.object_))) def test_outer_join_sort(self): left_idx = Index(np.random.permutation(15)) right_idx = tm.makeDateIndex(10) with tm.assert_produces_warning(RuntimeWarning): joined = left_idx.join(right_idx, how='outer') # right_idx in this case because DatetimeIndex has join precedence over # Int64Index expected = right_idx.astype(object).union(left_idx.astype(object)) tm.assert_index_equal(joined, expected) def test_nan_first_take_datetime(self): idx = Index([pd.NaT, Timestamp('20130101'), Timestamp('20130102')]) res = idx.take([-1, 0, 1]) exp = Index([idx[-1], idx[0], idx[1]]) tm.assert_index_equal(res, exp) def test_reindex_preserves_name_if_target_is_list_or_ndarray(self): # GH6552 idx = pd.Index([0, 1, 2]) dt_idx = pd.date_range('20130101', periods=3) idx.name = None self.assertEqual(idx.reindex([])[0].name, None) self.assertEqual(idx.reindex(np.array([]))[0].name, None) self.assertEqual(idx.reindex(idx.tolist())[0].name, None) self.assertEqual(idx.reindex(idx.tolist()[:-1])[0].name, None) self.assertEqual(idx.reindex(idx.values)[0].name, None) self.assertEqual(idx.reindex(idx.values[:-1])[0].name, None) # Must preserve name even if dtype changes. self.assertEqual(idx.reindex(dt_idx.values)[0].name, None) self.assertEqual(idx.reindex(dt_idx.tolist())[0].name, None) idx.name = 'foobar' self.assertEqual(idx.reindex([])[0].name, 'foobar') self.assertEqual(idx.reindex(np.array([]))[0].name, 'foobar') self.assertEqual(idx.reindex(idx.tolist())[0].name, 'foobar') self.assertEqual(idx.reindex(idx.tolist()[:-1])[0].name, 'foobar') self.assertEqual(idx.reindex(idx.values)[0].name, 'foobar') self.assertEqual(idx.reindex(idx.values[:-1])[0].name, 'foobar') # Must preserve name even if dtype changes. self.assertEqual(idx.reindex(dt_idx.values)[0].name, 'foobar') self.assertEqual(idx.reindex(dt_idx.tolist())[0].name, 'foobar') def test_reindex_preserves_type_if_target_is_empty_list_or_array(self): # GH7774 idx = pd.Index(list('abc')) def get_reindex_type(target): return idx.reindex(target)[0].dtype.type self.assertEqual(get_reindex_type([]), np.object_) self.assertEqual(get_reindex_type(np.array([])), np.object_) self.assertEqual(get_reindex_type(np.array([], dtype=np.int64)), np.object_) def test_reindex_doesnt_preserve_type_if_target_is_empty_index(self): # GH7774 idx = pd.Index(list('abc')) def get_reindex_type(target): return idx.reindex(target)[0].dtype.type self.assertEqual(get_reindex_type(pd.Int64Index([])), np.int64) self.assertEqual(get_reindex_type(pd.Float64Index([])), np.float64) self.assertEqual(get_reindex_type(pd.DatetimeIndex([])), np.datetime64) reindexed = idx.reindex(pd.MultiIndex([pd.Int64Index([]), pd.Float64Index([])], [[], []]))[0] self.assertEqual(reindexed.levels[0].dtype.type, np.int64) self.assertEqual(reindexed.levels[1].dtype.type, np.float64) class Numeric(Base): def test_numeric_compat(self): idx = self._holder(np.arange(5,dtype='int64')) didx = self._holder(np.arange(5,dtype='int64')**2 ) result = idx * 1 tm.assert_index_equal(result, idx) result = 1 * idx tm.assert_index_equal(result, idx) result = idx * idx tm.assert_index_equal(result, didx) result = idx / 1 tm.assert_index_equal(result, idx) result = idx // 1 tm.assert_index_equal(result, idx) result = idx * np.array(5,dtype='int64') tm.assert_index_equal(result, self._holder(np.arange(5,dtype='int64')*5)) result = idx * np.arange(5,dtype='int64') tm.assert_index_equal(result, didx) result = idx * Series(np.arange(5,dtype='int64')) tm.assert_index_equal(result, didx) result = idx * Series(np.arange(5,dtype='float64')+0.1) tm.assert_index_equal(result, Float64Index(np.arange(5,dtype='float64')*(np.arange(5,dtype='float64')+0.1))) # invalid self.assertRaises(TypeError, lambda : idx * date_range('20130101',periods=5)) self.assertRaises(ValueError, lambda : idx * self._holder(np.arange(3))) self.assertRaises(ValueError, lambda : idx * np.array([1,2])) def test_explicit_conversions(self): # GH 8608 # add/sub are overriden explicity for Float/Int Index idx = self._holder(np.arange(5,dtype='int64')) # float conversions arr = np.arange(5,dtype='int64')*3.2 expected = Float64Index(arr) fidx = idx * 3.2 tm.assert_index_equal(fidx,expected) fidx = 3.2 * idx tm.assert_index_equal(fidx,expected) # interops with numpy arrays expected = Float64Index(arr) a = np.zeros(5,dtype='float64') result = fidx - a tm.assert_index_equal(result,expected) expected = Float64Index(-arr) a = np.zeros(5,dtype='float64') result = a - fidx tm.assert_index_equal(result,expected) def test_ufunc_compat(self): idx = self._holder(np.arange(5,dtype='int64')) result = np.sin(idx) expected = Float64Index(np.sin(np.arange(5,dtype='int64'))) tm.assert_index_equal(result, expected) class TestFloat64Index(Numeric, tm.TestCase): _holder = Float64Index _multiprocess_can_split_ = True def setUp(self): self.mixed = Float64Index([1.5, 2, 3, 4, 5]) self.float = Float64Index(np.arange(5) * 2.5) def create_index(self): return Float64Index(np.arange(5,dtype='float64')) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.float).__name__): hash(self.float) def test_repr_roundtrip(self): for ind in (self.mixed, self.float): tm.assert_index_equal(eval(repr(ind)), ind) def check_is_index(self, i): self.assertIsInstance(i, Index) self.assertNotIsInstance(i, Float64Index) def check_coerce(self, a, b, is_float_index=True): self.assertTrue(a.equals(b)) if is_float_index: self.assertIsInstance(b, Float64Index) else: self.check_is_index(b) def test_constructor(self): # explicit construction index = Float64Index([1,2,3,4,5]) self.assertIsInstance(index, Float64Index) self.assertTrue((index.values == np.array([1,2,3,4,5],dtype='float64')).all()) index = Float64Index(np.array([1,2,3,4,5])) self.assertIsInstance(index, Float64Index) index = Float64Index([1.,2,3,4,5]) self.assertIsInstance(index, Float64Index) index = Float64Index(np.array([1.,2,3,4,5])) self.assertIsInstance(index, Float64Index) self.assertEqual(index.dtype, float) index = Float64Index(np.array([1.,2,3,4,5]),dtype=np.float32) self.assertIsInstance(index, Float64Index) self.assertEqual(index.dtype, np.float64) index = Float64Index(np.array([1,2,3,4,5]),dtype=np.float32) self.assertIsInstance(index, Float64Index) self.assertEqual(index.dtype, np.float64) # nan handling result = Float64Index([np.nan, np.nan]) self.assertTrue(pd.isnull(result.values).all()) result = Float64Index(np.array([np.nan])) self.assertTrue(pd.isnull(result.values).all()) result = Index(np.array([np.nan])) self.assertTrue(pd.isnull(result.values).all()) def test_constructor_invalid(self): # invalid self.assertRaises(TypeError, Float64Index, 0.) self.assertRaises(TypeError, Float64Index, ['a','b',0.]) self.assertRaises(TypeError, Float64Index, [Timestamp('20130101')]) def test_constructor_coerce(self): self.check_coerce(self.mixed,Index([1.5, 2, 3, 4, 5])) self.check_coerce(self.float,Index(np.arange(5) * 2.5)) self.check_coerce(self.float,Index(np.array(np.arange(5) * 2.5, dtype=object))) def test_constructor_explicit(self): # these don't auto convert self.check_coerce(self.float,Index((np.arange(5) * 2.5), dtype=object), is_float_index=False) self.check_coerce(self.mixed,Index([1.5, 2, 3, 4, 5],dtype=object), is_float_index=False) def test_astype(self): result = self.float.astype(object) self.assertTrue(result.equals(self.float)) self.assertTrue(self.float.equals(result)) self.check_is_index(result) i = self.mixed.copy() i.name = 'foo' result = i.astype(object) self.assertTrue(result.equals(i)) self.assertTrue(i.equals(result)) self.check_is_index(result) def test_equals(self): i = Float64Index([1.0,2.0]) self.assertTrue(i.equals(i)) self.assertTrue(i.identical(i)) i2 = Float64Index([1.0,2.0]) self.assertTrue(i.equals(i2)) i = Float64Index([1.0,np.nan]) self.assertTrue(i.equals(i)) self.assertTrue(i.identical(i)) i2 = Float64Index([1.0,np.nan]) self.assertTrue(i.equals(i2)) def test_get_loc_na(self): idx = Float64Index([np.nan, 1, 2]) self.assertEqual(idx.get_loc(1), 1) self.assertEqual(idx.get_loc(np.nan), 0) idx = Float64Index([np.nan, 1, np.nan]) self.assertEqual(idx.get_loc(1), 1) self.assertRaises(KeyError, idx.slice_locs, np.nan) def test_contains_nans(self): i = Float64Index([1.0, 2.0, np.nan]) self.assertTrue(np.nan in i) def test_contains_not_nans(self): i = Float64Index([1.0, 2.0, np.nan]) self.assertTrue(1.0 in i) def test_doesnt_contain_all_the_things(self): i = Float64Index([np.nan]) self.assertFalse(i.isin([0]).item()) self.assertFalse(i.isin([1]).item()) self.assertTrue(i.isin([np.nan]).item()) def test_nan_multiple_containment(self): i = Float64Index([1.0, np.nan]) np.testing.assert_array_equal(i.isin([1.0]), np.array([True, False])) np.testing.assert_array_equal(i.isin([2.0, np.pi]), np.array([False, False])) np.testing.assert_array_equal(i.isin([np.nan]), np.array([False, True])) np.testing.assert_array_equal(i.isin([1.0, np.nan]), np.array([True, True])) i = Float64Index([1.0, 2.0]) np.testing.assert_array_equal(i.isin([np.nan]), np.array([False, False])) def test_astype_from_object(self): index = Index([1.0, np.nan, 0.2], dtype='object') result = index.astype(float) expected = Float64Index([1.0, np.nan, 0.2]) tm.assert_equal(result.dtype, expected.dtype) tm.assert_index_equal(result, expected) class TestInt64Index(Numeric, tm.TestCase): _holder = Int64Index _multiprocess_can_split_ = True def setUp(self): self.index = Int64Index(np.arange(0, 20, 2)) def create_index(self): return Int64Index(np.arange(5,dtype='int64')) def test_too_many_names(self): def testit(): self.index.names = ["roger", "harold"] assertRaisesRegexp(ValueError, "^Length", testit) def test_constructor(self): # pass list, coerce fine index = Int64Index([-5, 0, 1, 2]) expected = np.array([-5, 0, 1, 2], dtype=np.int64) self.assert_numpy_array_equal(index, expected) # from iterable index = Int64Index(iter([-5, 0, 1, 2])) self.assert_numpy_array_equal(index, expected) # scalar raise Exception self.assertRaises(TypeError, Int64Index, 5) # copy arr = self.index.values new_index = Int64Index(arr, copy=True) self.assert_numpy_array_equal(new_index, self.index) val = arr[0] + 3000 # this should not change index arr[0] = val self.assertNotEqual(new_index[0], val) def test_constructor_corner(self): arr = np.array([1, 2, 3, 4], dtype=object) index = Int64Index(arr) self.assertEqual(index.values.dtype, np.int64) self.assertTrue(index.equals(arr)) # preventing casting arr = np.array([1, '2', 3, '4'], dtype=object) with tm.assertRaisesRegexp(TypeError, 'casting'): Int64Index(arr) arr_with_floats = [0, 2, 3, 4, 5, 1.25, 3, -1] with tm.assertRaisesRegexp(TypeError, 'casting'): Int64Index(arr_with_floats) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.index).__name__): hash(self.index) def test_copy(self): i =
Int64Index([], name='Foo')
pandas.core.index.Int64Index
import pandas as pd import numpy as np from sklearn.model_selection import KFold from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier import random from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import LinearDiscriminantAnalysis #Helpful functions for the project #Input: Master DF #Output: Master DF with winner_label column filled in to show who won team one or team twol def set_winners(master_df): id_list = master_df.id.unique() for i in id_list: t1 = ((master_df[master_df['id'] == i]).team_one).iloc[0] t2 = ((master_df[master_df['id'] == i]).team_two).iloc[0] winner = ((master_df[master_df['id'] == i]).winner).iloc[0] mask = master_df['id'] == i if t1 == winner: master_df['winner_label'][mask] = 0 elif t2 == winner: master_df['winner_label'][mask] = 1 return master_df #Very specific helper function #returns a list of the following information: #Returned {team_one_wins, team_one_losses, team_one_total_matches, team_two_wins, team_two_losses, team_two_total_matches} #Takes the master_df and a match ID as the input def get_win_loss_total(wl_df, wl_id): t1 = ((wl_df[wl_df['id'] == wl_id]).team_one).iloc[0] t2 = ((wl_df[wl_df['id'] == wl_id]).team_two).iloc[0] date = ((wl_df[wl_df['id'] == wl_id]).date).iloc[0] #print(f"Team 1: {t1} Team 2: {t2} Date: {date}") teams=[t1, t2] return_info=[] for team in teams: df_partial_season=wl_df[wl_df['date']<date] season_1 = df_partial_season[df_partial_season['team_one'] == team] season_2 = df_partial_season[df_partial_season['team_two'] == team] team_season = season_1.append(season_2) wins = len(team_season[team_season['winner'] == team]) losses = len(team_season[team_season['winner'] != team]) matches = wins+losses #print(f"{team} {len(season_1)} {len(season_2)} {len(team_season)} {wins} ") return_info.append(wins) return_info.append(losses) return_info.append(matches) return(return_info) #This data isn't in the Blizzard information dump so it has to be hardcoded #Input: master_df #output: master_df with last season's results def find_last_season_results(master_df): results_2018 = {'Philadelphia Fusion':6, 'New York Excelsior':1, 'Seoul Dynasty':8, 'Shanghai Dragons':12, 'Toronto Defiant': '', 'Atlanta Reign': '', 'Dallas Fuel': 10, 'Chengdu Hunters': '', 'London Spitfire': 5, 'Washington Justice': '', 'Los Angeles Valiant': 2, 'Vancouver Titans': '', 'Houston Outlaws': 7, 'San Francisco Shock': 9, 'Guangzhou Charge': '', 'Los Angeles Gladiators': 4, 'Hangzhou Spark': '', 'Florida Mayhem': 11, 'Paris Eternal': '', 'Boston Uprising': 3 } results_2019 = { 'Toronto Defiant':17, 'London Spitfire':7, 'Los Angeles Gladiators':5, 'Los Angeles Valiant':13, 'Boston Uprising':19, 'San Francisco Shock':3, 'Florida Mayhem':20, 'Washington Justice':17, 'New York Excelsior':2, 'Paris Eternal':14, 'Guangzhou Charge':9, 'Chengdu Hunters':12, 'Hangzhou Spark':4, 'Seoul Dynasty':8, 'Shanghai Dragons':11, 'Houston Outlaws':16, 'Philadelphia Fusion':10, 'Dallas Fuel':15, 'Vancouver Titans':1, 'Atlanta Reign':6 } years = ['2019', '2020'] for year in years: if year == '2019': min_date = '01/01/2019' max_date = '12/31/2019' elif year == '2020': min_date = '01/01/2020' max_date = '12/31/2020' df_reduced = master_df[master_df['date'] > min_date] df_reduced = df_reduced[df_reduced['date'] < max_date] #print(df_reduced.team_one.unique()) id_list=df_reduced.id.unique() for i in id_list: t1 = ((df_reduced[df_reduced['id'] == i]).team_one).iloc[0] t2 = ((df_reduced[df_reduced['id'] == i]).team_two).iloc[0] mask = master_df['id'] == i if year=='2019': master_df['t1_place_last_season'][mask] = results_2018.get(t1) master_df['t2_place_last_season'][mask] = results_2018.get(t2) if year=='2020': master_df['t1_place_last_season'][mask] = results_2019.get(t1) master_df['t2_place_last_season'][mask] = results_2019.get(t2) return master_df #Input: Master_df #Output: master_df with head-to-head information filled in def find_head_to_head_results(master_df): id_list = master_df.id.unique() for i in id_list: t1 = ((master_df[master_df['id'] == i]).team_one).iloc[0] t2 = ((master_df[master_df['id'] == i]).team_two).iloc[0] date = ((master_df[master_df['id'] == i]).date).iloc[0] #print(f"Team 1: {t1} Team 2: {t2} Date: {date}") df_partial_season=master_df[master_df['date']<date] season_1 = df_partial_season[df_partial_season['team_one'] == t1] season_1 = season_1[season_1['team_two'] == t2] season_2 = df_partial_season[df_partial_season['team_two'] == t1] season_2 = season_2[season_2['team_one'] == t2] team_season = season_1.append(season_2) wins = len(team_season[team_season['winner'] == t1]) losses = len(team_season[team_season['winner'] != t1]) matches = wins+losses mask = master_df['id'] == i master_df['t1_wins_vs_t2'][mask] = wins master_df['t1_losses_vs_t2'][mask] = losses master_df['t1_matches_vs_t2'][mask] = matches #print(f"{t1} vs {t2} on {date} record: {wins} - {losses} ") if matches > 0: master_df['t1_win_percent_vs_t2'][mask] = wins/matches return master_df #input: #master_df, min_date, max_date, type_option(current_season OR all_time) def find_team_match_results(master_df, min_date, max_date, type_option): df_reduced = master_df[master_df['date'] > min_date] df_reduced = df_reduced[df_reduced['date'] < max_date] #We can use this to make an ID list... id_list = df_reduced.id.unique() for i in id_list: win_loss_list = (get_win_loss_total(df_reduced, i)) mask = master_df['id'] == i #calculate the win percentages for each match if win_loss_list[2] == 0: t1_win_percent = 0 else: t1_win_percent = win_loss_list[0] / win_loss_list[2] if win_loss_list[5] == 0: t2_win_percent = 0 else: t2_win_percent = win_loss_list[3] / win_loss_list[5] if type_option=='current_season': master_df['t1_wins_season'][mask] = win_loss_list[0] master_df['t1_losses_season'][mask] = win_loss_list[1] master_df['t1_matches_season'][mask] = win_loss_list[2] master_df['t1_win_percent_season'][mask] = t1_win_percent master_df['t2_wins_season'][mask] = win_loss_list[3] master_df['t2_losses_season'][mask] = win_loss_list[4] master_df['t2_matches_season'][mask] = win_loss_list[5] master_df['t2_win_percent_season'][mask] = t2_win_percent if type_option=='all_time': master_df['t1_wins_alltime'][mask] = win_loss_list[0] master_df['t1_losses_alltime'][mask] = win_loss_list[1] master_df['t1_matches_alltime'][mask] = win_loss_list[2] master_df['t1_win_percent_alltime'][mask] = t1_win_percent master_df['t2_wins_alltime'][mask] = win_loss_list[3] master_df['t2_losses_alltime'][mask] = win_loss_list[4] master_df['t2_matches_alltime'][mask] = win_loss_list[5] master_df['t2_win_percent_alltime'][mask] = t2_win_percent return(master_df) #Input: master_df, number of matches we want to look at #Output: master_df updated with results filled in def find_last_n_results(master_df, n): id_list = master_df.id.unique() for i in id_list: t1 = ((master_df[master_df['id'] == i]).team_one).iloc[0] t2 = ((master_df[master_df['id'] == i]).team_two).iloc[0] date = ((master_df[master_df['id'] == i]).date).iloc[0] teams=[t1, t2] win_loss_list=[] for team in teams: df_partial_season=master_df[master_df['date']<date] season_1 = df_partial_season[df_partial_season['team_one'] == team] season_2 = df_partial_season[df_partial_season['team_two'] == team] #We need to combine season 1 and season 2 and sort by date team_df = pd.concat([season_1, season_2]) #print(f"season_1: {season_1.shape} season_2: {season_2.shape} team_df: {team_df.shape}") team_df.sort_values(by=['date'], inplace=True, ascending=False) #display(team_df.head) top_n_team_df = team_df.head(n) wins = len(top_n_team_df[top_n_team_df['winner'] == team]) losses = len(top_n_team_df[top_n_team_df['winner'] != team]) matches = wins+losses #print(f"{team} {len(season_1)} {len(season_2)} {len(team_season)} {wins} ") if matches >= n: win_loss_list.append(wins) win_loss_list.append(losses) win_loss_list.append(matches) else: win_loss_list.append("") win_loss_list.append("") win_loss_list.append("") #print(return_info) mask = master_df['id'] == i #calculate the win percentages for each match if win_loss_list[2] == 0: t1_win_percent = 0 elif win_loss_list[2] == "": t1_win_percent = "" else: t1_win_percent = win_loss_list[0] / win_loss_list[2] if win_loss_list[5] == 0: t2_win_percent = 0 elif win_loss_list[5] == "": t2_win_percent = "" else: t2_win_percent = win_loss_list[3] / win_loss_list[5] if n == 3: master_df['t1_wins_last_3'][mask] = win_loss_list[0] master_df['t1_losses_last_3'][mask] = win_loss_list[1] master_df['t1_win_percent_last_3'][mask] = t1_win_percent master_df['t2_wins_last_3'][mask] = win_loss_list[3] master_df['t2_losses_last_3'][mask] = win_loss_list[4] master_df['t2_win_percent_last_3'][mask] = t2_win_percent if n == 5: master_df['t1_wins_last_5'][mask] = win_loss_list[0] master_df['t1_losses_last_5'][mask] = win_loss_list[1] master_df['t1_win_percent_last_5'][mask] = t1_win_percent master_df['t2_wins_last_5'][mask] = win_loss_list[3] master_df['t2_losses_last_5'][mask] = win_loss_list[4] master_df['t2_win_percent_last_5'][mask] = t2_win_percent elif n == 10: master_df['t1_wins_last_10'][mask] = win_loss_list[0] master_df['t1_losses_last_10'][mask] = win_loss_list[1] master_df['t1_win_percent_last_10'][mask] = t1_win_percent master_df['t2_wins_last_10'][mask] = win_loss_list[3] master_df['t2_losses_last_10'][mask] = win_loss_list[4] master_df['t2_win_percent_last_10'][mask] = t2_win_percent elif n == 20: master_df['t1_wins_last_20'][mask] = win_loss_list[0] master_df['t1_losses_last_20'][mask] = win_loss_list[1] master_df['t1_win_percent_last_20'][mask] = t1_win_percent master_df['t2_wins_last_20'][mask] = win_loss_list[3] master_df['t2_losses_last_20'][mask] = win_loss_list[4] master_df['t2_win_percent_last_20'][mask] = t2_win_percent return master_df #Input: American Odds, and Probability of a Winning Bet #Output: Bet EV based on a $100 bet def get_bet_ev(odds, prob): if odds>0: return ((odds * prob) - (100 * (1-prob)) ) else: return ((100 / abs(odds))*100*prob - (100 * (1-prob))) #Input: American Odds #Output: Profit on a successful bet def get_bet_return(odds): if odds>0: return odds else: return (100 / abs(odds))*100 #Input DF must have these columns: #t1_odds (American) #t2_odds (American) #t1_prob (0->1) #t2_prob (0->1) #winner (0 or 1) #OUTPUT: Profit per bet (based on bet of $100) def get_ev_from_df(ev_df, print_stats = False, min_ev = 0, get_total = True): num_matches = 0 num_bets = 0 num_wins = 0 num_losses= 0 num_under= 0 num_under_losses = 0 num_under_wins = 0 num_even = 0 num_even_losses = 0 num_even_wins = 0 num_fav = 0 num_fav_wins = 0 num_fav_losses = 0 profit = 0 profit_per_bet = 0 profit_per_match = 0 for index, row in ev_df.iterrows(): num_matches = num_matches+1 t1_bet_ev = get_bet_ev(row['t1_odds'], row['t1_prob']) #print(f"ODDS:{row['t1_odds']} PROB: {row['t1_prob']} EV: {t1_bet_ev}") t2_bet_ev = get_bet_ev(row['t2_odds'], row['t2_prob']) #print(f"ODDS:{row['t2_odds']} PROB: {row['t2_prob']} EV: {t2_bet_ev}") #print() t1_bet_return = get_bet_return(row['t1_odds']) t2_bet_return = get_bet_return(row['t2_odds']) if (t1_bet_ev > min_ev or t2_bet_ev > min_ev): num_bets = num_bets+1 if t1_bet_ev > min_ev: if row['winner'] == 0: num_wins += 1 profit = profit + t1_bet_return #print(t1_bet_return) elif row['winner'] == 1: num_losses += 1 profit = profit - 100 if (t1_bet_return > t2_bet_return): num_under += 1 if row['winner'] == 0: num_under_wins += 1 elif row['winner'] == 1: num_under_losses += 1 elif (t1_bet_return < t2_bet_return): num_fav += 1 if row['winner'] == 0: num_fav_wins += 1 elif row['winner'] == 1: num_fav_losses += 1 else: num_even += 1 if row['winner'] == 0: num_even_wins += 1 elif row['winner'] == 1: num_even_losses += 1 if t2_bet_ev > min_ev: if row['winner'] == 1: num_wins += 1 profit = profit + t2_bet_return elif row['winner'] == 0: num_losses += 1 profit = profit - 100 if (t2_bet_return > t1_bet_return): num_under += 1 if row['winner'] == 1: num_under_wins += 1 elif row['winner'] == 0: num_under_losses += 1 elif (t2_bet_return < t1_bet_return): num_fav += 1 if row['winner'] == 1: num_fav_wins += 1 elif row['winner'] == 0: num_fav_losses += 1 else: num_even += 1 if row['winner'] == 1: num_even_wins += 1 elif row['winner'] == 0: num_even_losses += 1 if num_bets > 0: profit_per_bet = profit / num_bets else: profit_per_bet = 0 if num_matches > 0: profit_per_match = profit / num_matches else: profit_per_match = 0 if print_stats: print(f""" Number of matches: {num_matches} Number of bets: {num_bets} Number of winning bets: {num_wins} Number of losing bets: {num_losses} Number of underdog bets: {num_under} Number of underdog wins: {num_under_wins} Number of underdog losses: {num_under_losses} Number of Favorite bets: {num_fav} Number of favorite wins: {num_fav_wins} Number of favorite losses: {num_fav_losses} Number of even bets: {num_even} Number of even wins: {num_even_wins} Number of even losses: {num_even_losses} Profit: {profit} Profit per bet: {profit_per_bet} Profit per match: {profit_per_match} """) if (get_total): #print(f"# Matches: {num_matches}, # Bets: {num_bets} # Wins: {num_wins}") return(profit) else: return (profit_per_bet) #Input the train df and model and we will return a customer 5x cross validation score based off of expected value #t1_odds and t2_odd MUST be the last 2 columns or this will break. def custom_cv_eval(df, m, labels, odds, min_ev=0, verbose=False, get_total=True): X = np.array(df) y = np.array(labels) odds = np.array(odds) running_total = 0 count=1 kf = KFold(n_splits=5, shuffle=True, random_state=75) for train_index, test_index in kf.split(X): X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] odds_train, odds_test = odds[train_index], odds[test_index] #display(y_train) m.fit(X_train, y_train) probs=m.predict_proba(X_test) #print(probs) #We need to prep the dataframe to evaluate.... #X_odds = X_test[['t1_odds', 't2_odds']] #print(X_test) #print(X_test[:, -1]) #print(X_test[:, -2]) X_odds = list(zip(odds_test[:, -2], odds_test[:, -1], probs[:, 0], probs[:, 1], y_test)) ev_prepped_df = pd.DataFrame(X_odds, columns=['t1_odds', 't2_odds', 't1_prob', 't2_prob', 'winner']) #display(ev_prepped_df) #display(temp_df) #print(f"{count}: {get_ev_from_df(ev_prepped_df, print_stats = False)}") count=count+1 running_total = running_total + get_ev_from_df(ev_prepped_df, print_stats = verbose, min_ev = min_ev, get_total=get_total) #display(ev_prepped_df) return running_total def get_best_features(features, model, df, current_features, scale=False): best_feature = "" winner_labels = df['winner_label'].copy() initial_df = df[current_features] #display(initial_df) #display(winner_labels) best_score = custom_cv_eval(df[current_features], model) best_feature = "" print(f"Current best score is: {best_score}") for f in features: if f not in current_features: new_features = [f] + current_features df_sel=df[new_features] if scale == True: sc = StandardScaler() df_sel = sc.fit_transform(df_sel) new_score = custom_cv_eval(df_sel, model) #print(f"Total score for {f} is: {new_score}") if new_score > best_score: best_score = new_score best_feature = f #print() #Keep running until we don't improve if best_feature != "": print(f"The best feature was {best_feature}. It scored {best_score}") current_features = [best_feature] + current_features return(get_best_features(features, model, df, current_features, scale)) else: print("NO IMPROVEMENT") print(f"FINAL BEST SCORE: {best_score}") return current_features def get_best_features_v2(pos_features, m, df, cur_features, labels, odds, scale=False, min_ev=0): best_feature = '' #If there are no current features... if len(cur_features) == 0: best_score = -100 else: df_sel = df[cur_features] df_sel = df_sel.dropna() df_sel = pd.get_dummies(df_sel) #OK we need to filter the labels and odds based off of the indices labels_sel = labels[labels.index.isin(df_sel.index)] odds_sel = odds[odds.index.isin(df_sel.index)] best_score = custom_cv_eval(df_sel, m, labels_sel, odds_sel, min_ev=min_ev, get_total=True) best_feature = "" print(f"Current best score is: {best_score}") #Go thru every feature and test it... for f in pos_features: #If f is not a current feature if f not in cur_features: new_features = [f] + cur_features df_sel = df[new_features] df_sel = df_sel.dropna() df_sel = pd.get_dummies(df_sel) #display(df_sel) #OK we need to filter the labels and odds based off of the indices labels_sel = labels[labels.index.isin(df_sel.index)] odds_sel = odds[odds.index.isin(df_sel.index)] new_score = custom_cv_eval(df_sel, m, labels_sel, odds_sel, min_ev=min_ev, get_total=True) #print(f"{len(df_sel)} {len(labels_sel)} {len(odds_sel)}") if new_score > best_score: print(f"Feature: {f} Score: {new_score}") best_score = new_score best_feature = f if best_feature != "": print(f"The best feature was {best_feature}. It scored {best_score}") cur_features = [best_feature] + cur_features #Keep running until we don't improve return(get_best_features_v2(pos_features, m, df, cur_features, labels, odds, scale, min_ev=min_ev)) else: print("NO IMPROVEMENT") print(f"FINAL BEST SCORE: {best_score}") return cur_features return [] def get_ev(input_df, input_model, input_features, input_labels, odds_input, min_ev = 0, verbose=False, get_total=True): df_sel = input_df[input_features] df_sel = df_sel.dropna() df_sel = pd.get_dummies(df_sel) labels_sel = input_labels[input_labels.index.isin(df_sel.index)] odds_sel = odds_input[odds_input.index.isin(df_sel.index)] best_score = custom_cv_eval(df_sel, input_model, labels_sel, odds_sel, min_ev = min_ev, verbose=verbose, get_total=get_total) return best_score def tune_LogisticRegression(input_model, input_features, input_df, input_labels, odds_input, min_ev=0): ############################################################################################################### #Parameters we are going to fine-tune: #1. penalty ('l1' or 'l2') #2. tol (original_value, original_value * 1.2, original_value * 0.8, rand(0, 10) #3. random_state = 75 #4. solver = 'newton-cg', 'lbfgs', 'sag', 'saga' ############################################################################################################### print() print() print("Starting New Run for LogisticRegression") print() print() output_model = input_model best_score = get_ev(input_df, input_model, input_features, input_labels, odds_input, min_ev=min_ev) print("Previous Best Score:", best_score) penalty = ['l1', 'l2', 'none'] solver = ['newton-cg', 'lbfgs', 'sag', 'saga'] tol = [input_model.tol, input_model.tol * 1.2, input_model.tol * .8, random.random() * 10 ] for s in solver: score = -10000 for p in penalty: for t in tol: if ((s == 'newton-cg') & (p == 'l1')) |\ ((s == 'lbfgs') & (p == 'l1')) |\ ((s == 'sag') & (p == 'l1')): pass else: test_model = LogisticRegression(solver = s, penalty = p, tol=t, random_state=75, max_iter=50000) score = get_ev(input_df, input_model, input_features, input_labels, odds_input, min_ev=min_ev) if score > best_score: best_score = score output_model = test_model print() print("NEW BEST SCORE") print("solver:", s, "penalty:", p, "tol:", t, "Best Score:", best_score) print() print() else: pass print("solver:", s, "penalty:", p, "tol:", t, "Score:", score) return(output_model) def tune_DecisionTreeClassifier(input_model, input_features, input_df, input_labels, odds_input, min_ev=0): ############################################################################################################### #Parameters we are going to fine-tune: #1. criterion ('gini', 'entropy') #2. splitter ('random', 'best') #3. max_depth ('none', IF A NUMBER EXISTS +1, -1, random, else 2 RANDOM INTS 1->100) #4. min_samples_leaf(n-1, 0, n+1) #5. max_leaf_nodes:('none', n+1, n-1, OR 4 random numbers) ############################################################################################################### print() print() print("Starting New Run for DecisionTree") print() print() output_model = input_model best_score = get_ev(input_df, input_model, input_features, input_labels, odds_input, min_ev=min_ev) print("Previous Best Score:", best_score) criterion = ['gini', 'entropy'] splitter = ['random', 'best'] if input_model.max_depth == None: max_depth = [None, random.randrange(100), random.randrange(100)] else: max_depth = [input_model.max_depth, input_model.max_depth - 1, input_model.max_depth + 1, random.randrange(100)] max_depth = [i for i in max_depth if i > 0] min_samples_leaf = [input_model.min_samples_leaf, input_model.min_samples_leaf - 1, input_model.min_samples_leaf + 1, random.randrange(100)] min_samples_leaf = [i for i in min_samples_leaf if i > 0] if input_model.max_leaf_nodes == None: max_leaf_nodes = [None, random.randrange(1000), random.randrange(1000)] else: max_leaf_nodes = [input_model.max_leaf_nodes, input_model.max_leaf_nodes - 1, input_model.max_leaf_nodes + 1, random.randrange(1000)] max_leaf_nodes = [i for i in max_leaf_nodes if i > 0] for l in max_leaf_nodes: for sam in min_samples_leaf: for m in max_depth: for c in criterion: for s in splitter: test_model = DecisionTreeClassifier(criterion = c, splitter = s, max_depth = m, min_samples_leaf=sam, max_leaf_nodes = l, random_state=75) score = get_ev(input_df, test_model, input_features, input_labels, odds_input, min_ev=min_ev) if score > best_score: best_score = score output_model = test_model print() print("NEW BEST SCORE") print("Criterion:", c, "splitter:", s, "max_depth:", m, "min_samples_leaf:", sam, "max_leaf_nodes:", l, best_score) print() else: pass print("Criterion:", c, "splitter:", s, "max_depth:", m, "min_samples_leaf:", sam, "max_leaf_nodes:", l, score) return output_model def tune_RandomForestClassifier(input_model, input_features, input_df, input_labels, odds_input, min_ev=0): ############################################################################################################### #Parameters we are going to fine-tune: #1. criterion ('gini', 'entropy') #2. max_features ('auto', 'sqrt', 'log2') #3. max_depth ('none', IF A NUMBER EXISTS +2, -2, ELSE 2 RANDOM INTS 1->100) #4. min_samples_leaf(n-2, 0, n+2) #5. max_leaf_nodes:('none', n+2, n-2, OR 2 random numbers) #6. n_estimators: (n, n+2, n-2) ############################################################################################################### print() print() print("Starting New Run for RandomForestClassifier") print() print() output_model = input_model best_score = get_ev(input_df, input_model, input_features, input_labels, odds_input, min_ev=min_ev) print("Previous Best Score:", best_score) #1. criterion ('gini', 'entropy') criterion = ['gini', 'entropy'] #2. max_features ('auto', 'log2') max_features = ['auto', 'log2', None] #3. max_depth ('none', IF A NUMBER EXISTS +2, +4, -2, -4 ELSE 4 RANDOM INTS 1->100) if input_model.max_depth == None: max_depth = [None, random.randrange(100), random.randrange(100)] else: max_depth = [input_model.max_depth, input_model.max_depth - 2, input_model.max_depth + 2, random.randrange(100)] max_depth = [i for i in max_depth if i > 0] #4. min_samples_leaf(n-1, n-2, 0, n+1, n+2) min_samples_leaf = [input_model.min_samples_leaf, input_model.min_samples_leaf - 2, input_model.min_samples_leaf + 2, random.randrange(100)] min_samples_leaf = [i for i in min_samples_leaf if i > 0] #5. max_leaf_nodes:('none', n+1, n+2, n-1, n-2, OR 4 random numbers) if input_model.max_leaf_nodes == None: max_leaf_nodes = [None, random.randrange(1000), random.randrange(1000)] else: max_leaf_nodes = [input_model.max_leaf_nodes, input_model.max_leaf_nodes - 2, input_model.max_leaf_nodes + 2, random.randrange(1000)] max_leaf_nodes = [i for i in max_leaf_nodes if i > 0] n_estimators = [input_model.n_estimators, input_model.n_estimators - 2, input_model.n_estimators + 2, random.randrange(200)] n_estimators = [i for i in n_estimators if i > 0] for n in n_estimators: for ml in max_leaf_nodes: for ms in min_samples_leaf: for md in max_depth: for mf in max_features: for c in criterion: test_model = RandomForestClassifier(n_estimators = n, max_leaf_nodes = ml, min_samples_leaf = ms, max_depth = md, criterion = c, max_features = mf, n_jobs = -1, random_state=75) score = get_ev(input_df, test_model, input_features, input_labels, odds_input, min_ev=min_ev) if score > best_score: best_score = score output_model = test_model print() print("NEW BEST SCORE") print("Criterion:", c, "max_features:", mf, "max_depth:", md, "min_samples_leaf:", ms, "max_leaf_nodes:", ml, "n_estimators", n, best_score) print() print() else: pass print("Criterion:", c, "max_features:", mf, "max_depth:", md, "min_samples_leaf:", ms, "max_leaf_nodes:", ml, "n_estimators", n, score) return output_model def tune_GradientBoostingClassifier(input_model, input_features, input_df, input_labels, odds_input, min_ev=0): ############################################################################################################### #Parameters we are going to fine-tune: #1. criterion ('friedman_mse', 'mse', 'mae') #2. loss ('deviance', 'exponential') #3. n_estimators (n, n+1, n-1) #4. learning_rate (learning_rate, learning_rate *1.1, learning_rate*.9) #5. min_samples_leaf: (n, n-1, n+1) #6. max_depth: (n, n+1, n-1) #7. max_features: (None, 'auto', 'sqrt', 'log2') #8. max_leaf_nodes: (None, n+1, n-1, OR 2 random numbers) #9. tol (n, n*1.1, n*.9) ############################################################################################################### print() print() print("Starting New Run") print() print() output_model = input_model best_score = get_ev(input_df, input_model, input_features, input_labels, odds_input, min_ev=min_ev) print("Previous Best Score:", best_score) #1. criterion ('friedman_mse', 'mse', 'mae') criterion = ['friedman_mse'] #2. loss ('deviance', 'exponential') loss = ['deviance'] #3. n_estimators (n, n+1, n-1) n_estimators = [input_model.n_estimators, input_model.n_estimators - 1, input_model.n_estimators + 1, random.randrange(200)] n_estimators = [i for i in n_estimators if i > 0] #4. learning_rate (learning_rate, learning_rate *1.1, learning_rate*.9) learning_rate = [input_model.learning_rate] #5. min_samples_leaf: (n, n-1, n+1) min_samples_leaf = [input_model.min_samples_leaf, input_model.min_samples_leaf - 1, input_model.min_samples_leaf + 1] min_samples_leaf = [i for i in min_samples_leaf if i > 0] #6. max_depth: (n, n+1, n-1) if input_model.max_depth == None: max_depth = [None, random.randrange(100), random.randrange(100)] else: max_depth = [input_model.max_depth, input_model.max_depth - 1, input_model.max_depth + 1, random.randrange(100)] max_depth = [i for i in max_depth if i > 0] #7. max_features: (None, 'auto', 'sqrt', 'log2') max_features = ['sqrt', 'log2', None] #8. max_leaf_nodes: (None, n+1, n-1, OR 2 random numbers) if input_model.max_leaf_nodes == None: max_leaf_nodes = [None, random.randrange(1000), random.randrange(1000)] else: max_leaf_nodes = [input_model.max_leaf_nodes, input_model.max_leaf_nodes - 1, input_model.max_leaf_nodes + 1, random.randrange(1000)] max_leaf_nodes = [i for i in max_leaf_nodes if i > 0] #9. tol (n, n*1.1, n*.9) tol = [input_model.tol, input_model.tol * 1.2, input_model.tol * .8] print(len(tol) * len(max_leaf_nodes) * len(max_features) * len(max_depth) * len(min_samples_leaf) * len(learning_rate) * len(n_estimators) * len(loss) * len(criterion)) for t in tol: for ml in max_leaf_nodes: for mf in max_features: for md in max_depth: for ms in min_samples_leaf: for lr in learning_rate: for n in n_estimators: for l in loss: for c in criterion: test_model = GradientBoostingClassifier(n_estimators = n, learning_rate = lr, criterion = c, min_samples_leaf = ms, max_depth = md, loss = l, max_features = mf, max_leaf_nodes = ml, tol = t, random_state=75) score = get_ev(input_df, test_model, input_features, input_labels, odds_input, min_ev=min_ev) if score > best_score: best_score = score output_model = test_model print() print("NEW BEST SCORE") print("Criterion:", c, "n_estimators:", n, "Loss:", l, "Learning Rate:", lr, "Min Samples/Leaf:", ms, "Max Depth:", md, "Max Features:", mf, "Max Leaf Nodes:", ml, "tol:", t, "Best Score:", best_score) print() print() else: pass print("Criterion:", c, "n_estimators:", n, "Loss:", l, "Learning Rate:", lr, "Min Samples/Leaf:", ms, "Max Depth:", md, "Max Features:", mf, "Max Leaf Nodes:", ml, "tol:", t, "Score:", score) return(output_model) def tune_GaussianNB(input_model, input_features, input_df, input_labels, odds_input, min_ev=0): ############################################################################################################### #Parameters we are going to fine-tune: #1. var_smoothing (1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6) ############################################################################################################### print() print() print("Starting New Run for GaussianNB") print() print() output_model = input_model best_score = get_ev(input_df, input_model, input_features, input_labels, odds_input, min_ev=min_ev) print("Previous Best Score:", best_score) var_smoothing = [1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6] for v in var_smoothing: test_model = GaussianNB(var_smoothing = v) score = get_ev(input_df, test_model, input_features, input_labels, odds_input, min_ev=min_ev) if score > best_score: best_score = score output_model = test_model print() print("NEW BEST SCORE") print("var_smoothing:", v, "Best Score:", best_score) print() print() else: pass print("var_smoothing:", v, "Score:", score) return output_model def tune_hyperparameters(input_model, input_features, input_df, input_labels, odds_input, min_ev=0): best_model = input_model keep_going = True if isinstance(input_model, LogisticRegression): while(keep_going): pos_model = (tune_LogisticRegression(best_model, input_features, input_df, input_labels, odds_input, min_ev=min_ev)) if str(pos_model) == str(best_model): #Direct comparisons don't seem to work.... keep_going = False output_model = best_model else: best_model = pos_model elif isinstance(input_model, DecisionTreeClassifier): while(keep_going): pos_model = (tune_DecisionTreeClassifier(best_model, input_features, input_df, input_labels, odds_input, min_ev=min_ev)) if str(pos_model) == str(best_model): #Direct comparisons don't seem to work.... keep_going = False output_model = best_model else: best_model = pos_model elif isinstance(input_model, RandomForestClassifier): while(keep_going): pos_model = (tune_RandomForestClassifier(best_model, input_features, input_df, input_labels, odds_input, min_ev=min_ev)) if str(pos_model) == str(best_model): #Direct comparisons don't seem to work.... keep_going = False output_model = best_model else: best_model = pos_model elif isinstance(input_model, GradientBoostingClassifier): print("HI") while(keep_going): pos_model = (tune_GradientBoostingClassifier(best_model, input_features, input_df, input_labels, odds_input, min_ev=min_ev)) if str(pos_model) == str(best_model): #Direct comparisons don't seem to work.... keep_going = False output_model = best_model else: best_model = pos_model elif isinstance(input_model, GaussianNB): while(keep_going): pos_model = (tune_GaussianNB(best_model, input_features, input_df, input_labels, odds_input, min_ev=min_ev)) if str(pos_model) == str(best_model): #Direct comparisons don't seem to work.... keep_going = False output_model = best_model else: best_model = pos_model else: output_model = input_model return(output_model) def tune_ev(input_model, input_features, input_df, input_labels, odds_input, verbose=False): best_ev = 0 best_pos = -1 for temp_ev in range(200): pos_ev = get_ev(input_df, input_model, input_features, input_labels, odds_input, min_ev=temp_ev, verbose=verbose, get_total=True) print(temp_ev, pos_ev) if pos_ev > best_ev: best_ev = pos_ev best_pos = temp_ev return best_pos def remove_to_improve(cur_features, m, df, labels, odds, scale=False, min_ev = 0): #If the list is empty we can just return it without doing anything number_of_features = len(cur_features) df_sel = df[cur_features] df_sel = df_sel.dropna() df_sel = pd.get_dummies(df_sel) labels_sel = labels[labels.index.isin(df_sel.index)] odds_sel = odds[odds.index.isin(df_sel.index)] orig_score = custom_cv_eval(df_sel, m, labels_sel, odds_sel, get_total=True, min_ev = min_ev) #print(orig_score) best_features = cur_features best_score = orig_score print(f"The original score is {orig_score}") if number_of_features == 0: return [] for z in range(number_of_features): temp_features = cur_features.copy() #Remove a feature del temp_features[z] df_sel = df[temp_features] df_sel = df_sel.dropna() df_sel =
pd.get_dummies(df_sel)
pandas.get_dummies
import logging import math import numpy as np import pandas as pd import os import random import sys import unittest from pathlib import Path from logml.core import LogMl, MODEL_TYPE_CLASSIFICATION, MODEL_TYPE_REGRESSION from logml.core.config import Config, CONFIG_CROSS_VALIDATION, CONFIG_DATASET, CONFIG_HYPER_PARAMETER_OPTMIMIZATION, CONFIG_LOGGER, CONFIG_MODEL from logml.core.files import set_plots, MlFiles from logml.core.log import MlLog from logml.core.registry import MlRegistry, DATASET_AUGMENT, DATASET_CREATE, DATASET_INOUT, DATASET_PREPROCESS, DATASET_SPLIT, MODEL_CREATE, MODEL_EVALUATE, MODEL_PREDICT, MODEL_TRAIN from logml.datasets import Datasets, DatasetsDf, DatasetsCv, DatasetsDf from logml.datasets.df.category import CategoricalFieldPreprocessing from logml.feature_importance.data_feature_importance import DataFeatureImportance from logml.feature_importance.pvalue_fdr import LogisticRegressionWilks, MultipleLogisticRegressionWilks, PvalueLinear from logml.models import Model from logml.feature_importance import FeatureImportancePermutation from logml.models.sklearn_model import ModelFactoryRandomForest DEBUG = os.getenv('TEST_UNIT_DEBUG', False) # DEBUG = True def array_equal(a1, a2): a1 = np.array(a1) a2 = np.array(a2) a1_nan_idx = np.isnan(a1) a2_nan_idx = np.isnan(a2) if not np.array_equal(a1_nan_idx, a2_nan_idx): return False return np.array_equal(a1[~a1_nan_idx], a2[~a2_nan_idx]) def is_close(x, y, epsilon=0.000001): return abs(x - y) < epsilon def is_sorted(x): """ Is numpy array 'x' sorted? """ return np.all(x[:-1] <= x[1:]) def rm(file): """ Delete file, if it exists """ if os.path.exists(file): os.remove(file) class TestLogMl(unittest.TestCase): def setUp(self): MlLog().set_log_level(logging.CRITICAL) if DEBUG: MlLog().set_log_level(logging.DEBUG) set_plots(disable=True, show=False, save=False) MlRegistry().reset() def test_class_CategoricalFieldPreprocessing_001(self): """ Test CategoricalFieldPreprocessing: Undefined categories """ xi = pd.Series(['small', 'mid', 'large', 'small', 'mid', 'large', 'small', 'mid', 'large', None]) cfp = CategoricalFieldPreprocessing('test_field', xi, categories=None, one_based=False, scale=False, strict=True, is_output=False, convert_to_missing=None) cfp() codes = cfp.codes.to_numpy() # Check categorical values converted to codes self.assertEqual(-1, codes.min(), f"Min codes: {codes.min()}") self.assertEqual(2, codes.max(), f"Max codes: {codes.max()}") self.assertEqual(np.int8, codes.dtype, f"Codes.dtype: {codes.dtype}") # Check that undefined values are -1 self.assertEqual(-1, cfp.codes[9], f"Missing code: {cfp.codes[9]}") def test_class_CategoricalFieldPreprocessing_002(self): """ Test CategoricalFieldPreprocessing: Set categories """ xi = pd.Series(['small', 'mid', 'large', 'small', 'mid', 'large', 'small', 'mid', 'large', None]) cfp = CategoricalFieldPreprocessing('test_field', xi, categories=['small', 'mid', 'large'], one_based=False, scale=False, strict=True, is_output=False, convert_to_missing=None) cfp() codes = cfp.codes.to_numpy() codes_expected = np.array([0, 1, 2, 0, 1, 2, 0, 1, 2, -1]) # Check categorical values converted to codes: zero-based self.assertEqual(-1, cfp.codes.min(), f"Min codes: {cfp.codes.min()}") self.assertEqual(2, cfp.codes.max(), f"Max codes: {cfp.codes.max()}") self.assertEqual(np.int8, codes.dtype, f"Codes.dtype: {codes.dtype}") self.assertTrue(np.array_equal(codes_expected, codes), f"Codes expected: {codes_expected}\n\tCodes: {codes}") # Check that undefined values are -1 self.assertEqual(-1, cfp.codes[9], f"Missing code: {cfp.codes[9]}") def test_class_CategoricalFieldPreprocessing_003(self): """ Test CategoricalFieldPreprocessing: Set categories, one_based """ xi = pd.Series(['small', 'mid', 'large', 'small', 'mid', 'large', 'small', 'mid', 'large', None]) cfp = CategoricalFieldPreprocessing('test_field', xi, categories=['small', 'mid', 'large'], one_based=True, scale=False, strict=True, is_output=False, convert_to_missing=None) cfp() codes = cfp.codes.to_numpy() # Check categorical values converted to codes: one-based codes_expected = np.array([1, 2, 3, 1, 2, 3, 1, 2, 3, 0]) self.assertEqual(0, cfp.codes.min(), f"Min codes: {cfp.codes.min()}") self.assertEqual(3, cfp.codes.max(), f"Max codes: {cfp.codes.max()}") self.assertTrue(np.array_equal(codes_expected, codes), f"Codes expected: {codes_expected}\n\tCodes: {codes}") self.assertEqual(np.int8, codes.dtype, f"Codes.dtype: {codes.dtype}") # Check that undefined values are 0 self.assertEqual(0, cfp.codes[9], f"Missing code: {cfp.codes[9]}") def test_class_CategoricalFieldPreprocessing_004(self): """ Test CategoricalFieldPreprocessing: Set categories, scale """ xi =
pd.Series(['small', 'mid', 'large', 'small', 'mid', 'large', 'small', 'mid', 'large', None])
pandas.Series
################################################# #created the 27/04/2018 15:32 by <NAME># ################################################# #-*- coding: utf-8 -*- ''' ''' ''' Amรฉliorations possibles: ''' import warnings warnings.filterwarnings('ignore') ################################################# ########### Imports ################# ################################################# import os import sys import numpy as np import pandas as pd ################################################# ########### Global variables #################### ################################################# IRRELEVANT = ['@DATEMODIF','@CLEDIF','DATEHEURE','RATIO','HEURE','@CLEEMI'] ################################################# ########### Important functions ################# ################################################# def updateargs(CHAINE,DATE): ''' Join in diffent ways the date and the channel to match the way files are named ENTRY: take the two arguments pass to the program as strings OUT: return two other strings that are modifications of the entries ''' JOINDATE = "".join(list(DATE.split('-'))) c = list(CHAINE) n = 4-len(c) c = ['0']*n a = "".join(c) CHAINE2 = a+CHAINE return(JOINDATE,CHAINE2) def dfjoin(df,tdf): ''' create a join subset of RTS and PTV on wich we will join the two files IN: take in entrie two subsets of the RTS and PTV files OUT: return a join dataframe in wich with have infos from PTV and RTS ''' for index, row in df.iterrows(): for index2, row2 in tdf.iterrows(): if(int(row2['debut']) < int(row['minutes']%1440) < int(row2['fin'])): df.set_value(index, 'isinprogramme', 1) df.set_value(index, 'fin', row2['fin']) df.set_value(index, 'debut', int(row2['debut'])) df.ix[index,'TITRE']=row2['titre'] if(int(row2['debut']) < int(row['minutes']) < int(row2['fin'])): df.set_value(index, 'isinprogramme', 1) df.set_value(index, 'fin', row2['fin']) df.set_value(index, 'debut', int(row2['debut'])) df.ix[index,'TITRE']=row2['titre'] else: pass df[df['isinprogramme']==0]['titre'] = 'en dehors de programmes' return df def get_features_from_join(df): ''' Extraction of feature based of the merge of the two files RTS and PTV IN: DataFrame of join files OUT: modified dataframe of the two files ''' df['temps depuis debut'] = 0 df['temps avant fin'] = 0 df['pourcentage dรฉjร  vu'] = 0 df['temps depuis debut'] = df[df['isinprogramme'] == 1].apply(lambda row: min(abs(row['minutes'] - row['debut']),abs(row['minutes']%1440 - row['debut'])),axis = 1) df['temps avant fin'] = df[df['isinprogramme'] == 1].apply(lambda row: min(abs(row['fin'] - row['minutes']),abs(row['fin'] - row['minutes']%1440)),axis = 1) df = df.fillna(1) df['pourcentage dรฉjร  vu'] = df['temps depuis debut']/df['DUREE'] return df def processing(X_RTS,X_PTV): ''' Process the two data files to get a join DataFrame with cross infos IN: two DataFrame of RTS and PTV OUT: a DataFrame of all the valuable infos ''' X_RTS['minutes'] = X_RTS['minutes']+180 # Creating temp DataFrame to make the join possible tdf = pd.DataFrame() tdf['debut'] = X_PTV['debut'] tdf['fin'] = tdf['debut']+X_PTV['DUREE'] tdf['titre'] = X_PTV['TITRE'] # creating the final dataframe and fill it with values from both Dataframe df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # Investopedia's S&P 500 Top Performers # <div class="alert alert-block alert-success"> # <b>Note:</b> The next lines of code does link to the webpage in which we will scrape our information. # </div> # <div> # <ul id="journey-nav__sublist_1-0" class="comp journey-nav__sublist .js-animation"> # <li class="journey-nav__sublist-item journey-nav__sublist-item-overview"> # <a href="https://www.investopedia.com/top-stocks-4581225">Overview</a> # </li> # <li class="journey-nav__sublist-item is-active"> # <a href="https://www.investopedia.com/top-communications-stocks-4583180">Top Communications Stocks</a> # </li> # <li class="journey-nav__sublist-item "> # <a href="https://www.investopedia.com/investing/consumer-cyclical-stocks/">Top Consumer Discretionary Stocks</a> # </li> # <li class="journey-nav__sublist-item "> # <a href="https://www.investopedia.com/investing/consumer-defensive-stocks/">Top Consumer Staples Stocks</a> # </li> # <li class="journey-nav__sublist-item "> # <a href="https://www.investopedia.com/top-energy-stocks-4582081">Top Energy Stocks</a> # </li> # <li class="journey-nav__sublist-item "> # <a href="https://www.investopedia.com/top-financial-stocks-4582168">Top Financial Stocks</a> # </li> # <li class="journey-nav__sublist-item "> # <a href="https://www.investopedia.com/investing/top-healthcare-stocks/">Top Healthcare Stocks</a> # </li> # <li class="journey-nav__sublist-item "> # <a href="https://www.investopedia.com/top-industrial-stocks-4582171">Top Industrial Stocks</a> # </li> # <li class="journey-nav__sublist-item "> # <a href="https://www.investopedia.com/top-materials-stocks-4582152">Top Materials Stocks</a> # </li> # <li class="journey-nav__sublist-item "> # <a href="https://www.investopedia.com/top-reits-4582128">Top Real Estate Stocks</a> # </li> # <li class="journey-nav__sublist-item "> # <a href="https://www.investopedia.com/top-tech-stocks-4581295">Top Technology Stocks</a> # </li> # <li class="journey-nav__sublist-item "> # <a href="https://www.investopedia.com/top-utilities-stocks-4582243">Top Utilities Stocks</a> # </li> # </ul> # </div> # # # ## Step 1: Install Python packages import os import pandas as pd import html5lib from bs4 import BeautifulSoup as bs from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.common.exceptions import TimeoutException from selenium.webdriver.common.desired_capabilities import DesiredCapabilities from datetime import date, timedelta, datetime as dt from pymongo import MongoClient # ## Step 2: Preparation # <div class="alert alert-block alert-info"> # <b>Note:</b> The next lines of code is the connection to a mongo databaste which will be seperated into different collections through this document. # </div> # # <div class="alert alert-block alert-warning"> # <b>Note:</b> The next lines of code is the connection to a mongo databaste which will be seperated into different collections through this document. # </div> # <div class="alert alert-block alert-success"> # <b>Note:</b> The next lines of code is the connection to a mongo databaste which will be seperated into different collections through this document. # </div> # Connect to MongoDB client = MongoClient("mongodb://localhost:27017") db = client['investopedia'] # <div class="alert alert-block alert-danger"> # <b>Warning:</b> The next lines of code is only usable for the chrome driver that leads to my user directory. # </div> #4]: # class RemoteDriverStartService(): # options = webdriver.ChromeOptions() # # Set user app data to a new directory # options.add_argument("user-data-dir=C:\\Users\\Donley\\App Data\\Google\\Chrome\\Application\\User Data\\Kit") # options.add_experimental_option("Proxy", "null") # options.add_experimental_option("excludeSwitches", ["ignore-certificate-errors"]) # # Create a download path for external data sources as default: # options.add_experimental_option("prefs", { # "download.default_directory": r"C:\Users\Donley\Documents\GA_TECH\SUBMISSIONS\PROJECT2-CHALLENGE\data\external", # "download.prompt_for_download": False, # "download.directory_upgrade": True, # "safebrowsing.enabled": True # }), # # Add those optional features to capabilities # caps = options.to_capabilities() # def start_driver(self): # return webdriver.Remote(command_executor='http://127.0.0.1:4444', # desired_capabilities=self.caps) # # Set class equal to new capabilities: # DesiredCapabilities = RemoteDriverStartService() #7]: def investopediaScrape(): # Create variables for scraping: investopedia = "https://www.investopedia.com/top-communications-stocks-4583180" # Download data to paths, csv's, json, etc: # for external data sources external = "../data/external/" # for processed data sources with ID's processed = "../data/processed/" # current_path = os.getcwd() # Path = os.path.join(current_path, "geckodriver.exe") driver = webdriver.Firefox(executable_path= "geckodriver.exe") driver.get(investopedia) driver.maximize_window() timeout = 20 # Find an ID on the page and wait before executing anything until found: try: WebDriverWait(driver, timeout).until(EC.visibility_of_element_located((By.ID, "main_1-0"))) except TimeoutException: driver.quit() #10]: # # Locate Driver in system # current_path = os.getcwd() # # save the .exe file under the same directory of the web-scrape python script. # Path = os.path.join(current_path, "chromedriver") # # Initialize Chrome driver and start browser session controlled by automated test software under Kit profile. # caps = webdriver.DesiredCapabilities.CHROME.copy() # caps['acceptInsecureCerts'] = True # # caps = webdriver.DesiredCapabilities.CHROME.copy() # # caps['acceptInsecureCerts'] = True # # driver = webdriver.Chrome(options=options, desired_capabilities=caps) # driver = webdriver.Chrome(executable_path='chromedriver', desired_capabilities=caps) # ## Step 3: Find the IDs of the items we want to scrape for #11]: # Start Grabbing Information from investopedia: # ## Step 4: Techniques to make more human-like web-scrapers #12]: # If the website detects us as a web-scraper, it will cut our connection so we cannot pull more data and have to re-start our scraper. This largely impacts the efficiency of the scraper and involves a lot of manual interference. There are a few techniques we can use to make the scraper more human-like: # (1) Randomize the sleep time # This can be easily implemented as below wherever needed: # #sleep for sometime between 5 and 8 seconds # time.sleep(random.uniform(5,8)) # (2) Randomize the user agent for the web browser # This is also easy and can be added to the browser options as below: # ua = UserAgent() # userAgent = ua.random # Firefox_options = webdriver.FirefoxOptions() # Firefox_options.add_argument(fโ€™user-agent={userAgent}โ€™) # browser = webdriver.Firefox(executable_path = DRIVER_BIN, options=Firefox_options) # (3) Use dynamic proxy/IP # This requires more work than the above two. Usually free proxies are not stable and most of them donโ€™t respond to requests, so we need to first a free proxy that responds to our requests. This website (also named as โ€œurlโ€ in the script below) provides a lot of free proxies which we scrape down for our use. We will use Python BeautifulSoup package to scrape a list of proxies, and use Python requests package to test whether the proxy responds to our requests to the link. # def get_proxy(link): # url = "https://www.sslproxies.org/" # r = requests.get(url) # soup = BeautifulSoup(r.content, 'html5lib') # proxies_list = list(map(lambda x: x[0]+':'+x[1], list(zip(map(lambda x: x.text, soup.findAll('td')[::8]), map(lambda x: x.text, soup.findAll('td')[1::8]))))) # while 1: # try: # selected_ip = choice(proxies_list) # proxy = {'https': selected_ip, 'http': selected_ip} # headers = {'User-Agent': ua.random} # print('Using proxy:{}'.format(proxy)) # r = requests.request('get', link, proxies=proxy, headers=headers, timeout=5) # break # except: # pass # return proxy # We then add the working proxy to the browser option, similar to how we added the fake user agent: # link = "https://www.expedia.com" # proxy = get_proxy(link) # Firefox_options.add_argument('--proxy-server=%s' % proxy) # browser = webdriver.Firefox(executable_path = DRIVER_BIN, options=Firefox_options) #19]: top_sector_stocks = driver.find_element_by_id("journey-nav__sublist_1-0").get_attribute('innerHTML') top_sector_stocks #20]: soup = bs(top_sector_stocks, 'lxml') #25]: top_sector_links = [top_sector_stocks.get('href') for top_sector_stocks in soup.find_all('a')] top_sector_links #26]: top_sectors = ["Top Communications Stocks", "Top Consumer Discretionary Stocks", "Top Consumer Staples Stocks", "Top Energy Stocks", "Top Financial Stocks", "Top Healthcare Stocks", "Top Industrial Stocks", "Top Materials Stocks", "Top Real Estate Stocks", "Top Technology Stocks", "Top Utilities Stocks"] #27]: # Find all links to use driver.get() and pull all tables: top_communications = [links.get_attribute("href") for links in driver.find_elements_by_link_text(top_sectors[0])] top_discretionary = [links.get_attribute("href") for links in driver.find_elements_by_link_text(top_sectors[1])] top_staples = [links.get_attribute("href") for links in driver.find_elements_by_link_text(top_sectors[2])] top_energy = [links.get_attribute("href") for links in driver.find_elements_by_link_text(top_sectors[3])] top_financial = [links.get_attribute("href") for links in driver.find_elements_by_link_text(top_sectors[4])] top_healthcare = [links.get_attribute("href") for links in driver.find_elements_by_link_text(top_sectors[5])] top_industrial = [links.get_attribute("href") for links in driver.find_elements_by_link_text(top_sectors[6])] top_materials = [links.get_attribute("href") for links in driver.find_elements_by_link_text(top_sectors[7])] top_real = [links.get_attribute("href") for links in driver.find_elements_by_link_text(top_sectors[8])] top_technology = [links.get_attribute("href") for links in driver.find_elements_by_link_text(top_sectors[9])] top_utilities = [links.get_attribute("href") for links in driver.find_elements_by_link_text(top_sectors[10])] # ]: # ]: # ## Step 5: The full code that runs the scraper and save the data to .csv files # #28]: driver.get(top_communications[0]) #29]: itable = driver.find_element_by_id("main_1-0").get_attribute('outerHTML') itables = pd.read_html(itable) communications_bv = itables[0] communications_bv.columns = ["Communictaions Best Value", "Price", "Market Cap", "12-Month Trailing P/E Ratio"] communications_bv # Locate column containing ticker symbols: communications_bv_df = communications_bv.iloc[1:] # Only keep tick information within parentheses: communications_bv_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in communications_bv_df["Communictaions Best Value"]] communications_bv_ticks #30]: communications_fg = itables[1] communications_fg.columns = ["Communications Fastest Growing", "Price", "Market Cap", "12-Month Trailing Total Return (%)"] communications_fg_df = communications_fg.iloc[1:] communications_fg_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in communications_fg_df["Communications Fastest Growing"]] communications_fg_ticks #31]: communications_mm = itables[2] communications_mm.columns = ["Communications Most Momentum", "Price", "Market Cap", "12-Month Trailing Total Return (%)"] communications_mm_df = communications_mm.iloc[1:] communications_mm_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in communications_mm_df["Communications Most Momentum"]] del communications_mm_ticks[-2:] communications_mm_ticks #32]: driver.get(top_discretionary[0]) #33]: dtable = driver.find_element_by_id("main_1-0").get_attribute('outerHTML') dtables = pd.read_html(dtable) discretionary_bv = dtables[0] discretionary_bv.columns = ["tick", "Price", "Market Cap", "12-Month Trailing P/E Ratio"] discretionary_bv # Locate column containing ticker symbols: discretionary_bv_df = discretionary_bv.iloc[1:] # Only keep tick information within parentheses: discretionary_bv_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in discretionary_bv_df["tick"]] discretionary_bv_ticks #34]: discretionary_fg = dtables[1] discretionary_fg.columns = ["stock", "Price", "Market Cap", "12-Month Trailing Total Return (%)"] discretionary_fg_df = discretionary_fg.iloc[1:] discretionary_fg_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in discretionary_fg_df["stock"]] discretionary_fg_ticks #35]: discretionary_mm = itables[2] discretionary_mm.columns = ["Communications Most Momentum", "Price", "Market Cap", "12-Month Trailing Total Return (%)"] discretionary_mm_df = discretionary_mm.iloc[1:] discretionary_mm_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in discretionary_mm_df["Communications Most Momentum"]] del discretionary_mm_ticks[-2:] discretionary_mm_ticks #36]: driver.get(top_staples[0]) #37]: stable = driver.find_element_by_id("main_1-0").get_attribute('outerHTML') stables = pd.read_html(stable) staples_bv = stables[0] staples_bv.columns = ["tick", "Price", "Market Cap", "12-Month Trailing P/E Ratio"] staples_bv # Locate column containing ticker symbols: staples_bv_df = staples_bv.iloc[1:] # Only keep tick information within parentheses: staples_bv_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in staples_bv_df["tick"]] staples_bv_ticks #38]: staples_fg = stables[1] staples_fg.columns = ["stock", "Price", "Market Cap", "12-Month Trailing Total Return (%)"] staples_fg_df = staples_fg.iloc[1:] staples_fg_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in staples_fg_df["stock"]] staples_fg_ticks #39]: staples_mm = stables[2] staples_mm.columns = ["Communications Most Momentum", "Price", "Market Cap", "12-Month Trailing Total Return (%)"] staples_mm_df = staples_mm.iloc[1:] staples_mm_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in staples_mm_df["Communications Most Momentum"]] del staples_mm_ticks[-2:] staples_mm_ticks #40]: driver.get(top_energy[0]) #41]: etable = driver.find_element_by_id("main_1-0").get_attribute('outerHTML') etables = pd.read_html(etable) energy_bv = etables[0] energy_bv.columns = ["tick", "Price", "Market Cap", "12-Month Trailing P/E Ratio"] energy_bv # Locate column containing ticker symbols: energy_bv_df = energy_bv.iloc[1:] # Only keep tick information within parentheses: energy_bv_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in energy_bv_df["tick"]] energy_bv_ticks #42]: energy_fg = etables[1] energy_fg.columns = ["stock", "Price", "Market Cap", "12-Month Trailing Total Return (%)"] energy_fg_df = energy_fg.iloc[1:] energy_fg_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in energy_fg_df["stock"]] energy_fg_ticks #43]: energy_mm = etables[2] energy_mm.columns = ["Communications Most Momentum", "Price", "Market Cap", "12-Month Trailing Total Return (%)"] energy_mm_df = energy_mm.iloc[1:] energy_mm_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in energy_mm_df["Communications Most Momentum"]] del energy_mm_ticks[-2:] energy_mm_ticks #44]: driver.get(top_financial[0]) #45]: ftable = driver.find_element_by_id("main_1-0").get_attribute('outerHTML') ftables = pd.read_html(ftable) financial_bv = ftables[0] financial_bv.columns = ["tick", "Price", "Market Cap", "12-Month Trailing P/E Ratio"] financial_bv # Locate column containing ticker symbols: financial_bv_df = financial_bv.iloc[1:] # Only keep tick information within parentheses: financial_bv_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in financial_bv_df["tick"]] financial_bv_ticks #46]: financial_fg = ftables[1] financial_fg.columns = ["stock", "Price", "Market Cap", "12-Month Trailing Total Return (%)"] financial_fg_df = financial_fg.iloc[1:] financial_fg_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in financial_fg_df["stock"]] financial_fg_ticks #47]: financial_mm = itables[2] financial_mm.columns = ["Communications Most Momentum", "Price", "Market Cap", "12-Month Trailing Total Return (%)"] financial_mm_df = financial_mm.iloc[1:] financial_mm_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in financial_mm_df["Communications Most Momentum"]] del financial_mm_ticks[-2:] financial_mm_ticks #48]: driver.get(top_healthcare[0]) #49]: htable = driver.find_element_by_id("main_1-0").get_attribute('outerHTML') htables = pd.read_html(htable) healthcare_bv = htables[0] healthcare_bv.columns = ["tick", "Price", "Market Cap", "12-Month Trailing P/E Ratio"] healthcare_bv # Locate column containing ticker symbols: healthcare_bv_df = healthcare_bv.iloc[1:] # Only keep tick information within parentheses: healthcare_bv_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in healthcare_bv_df["tick"]] healthcare_bv_ticks #50]: healthcare_fg = htables[1] healthcare_fg.columns = ["stock", "Price", "Market Cap", "12-Month Trailing Total Return (%)"] healthcare_fg_df = healthcare_fg.iloc[1:] healthcare_fg_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in healthcare_fg_df["stock"]] healthcare_fg_ticks #51]: healthcare_mm = htables[2] healthcare_mm.columns = ["Communications Most Momentum", "Price", "Market Cap", "12-Month Trailing Total Return (%)"] healthcare_mm_df = healthcare_mm.iloc[1:] healthcare_mm_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in healthcare_mm_df["Communications Most Momentum"]] del healthcare_mm_ticks[-2:] healthcare_mm_ticks #52]: driver.get(top_industrial[0]) #53]: intable = driver.find_element_by_id("main_1-0").get_attribute('outerHTML') intables = pd.read_html(intable) industrial_bv = intables[0] industrial_bv.columns = ["tick", "Price", "Market Cap", "12-Month Trailing P/E Ratio"] industrial_bv # Locate column containing ticker symbols: industrial_bv_df = industrial_bv.iloc[1:] # Only keep tick information within parentheses: industrial_bv_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in industrial_bv_df["tick"]] industrial_bv_ticks #54]: industrial_fg = intables[1] industrial_fg.columns = ["stock", "Price", "Market Cap", "12-Month Trailing Total Return (%)"] industrial_fg_df = industrial_fg.iloc[1:] industrial_fg_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in industrial_fg_df["stock"]] industrial_fg_ticks #55]: industrial_mm = intables[2] industrial_mm.columns = ["Communications Most Momentum", "Price", "Market Cap", "12-Month Trailing Total Return (%)"] industrial_mm_df = industrial_mm.iloc[1:] industrial_mm_ticks = [tick[tick.find("(")+1:tick.find(")")] for tick in industrial_mm_df["Communications Most Momentum"]] del industrial_mm_ticks[-2:] industrial_mm_ticks #56]: driver.get(top_materials[0]) #57]: motable = driver.find_element_by_id("main_1-0").get_attribute('outerHTML') motables =
pd.read_html(motable)
pandas.read_html
from sstcam_sandbox import get_data, get_checs from CHECLabPy.core.io import HDF5Writer from TargetCalibSB.pedestal import PedestalTargetCalib from TargetCalibSB.stats import OnlineStats, OnlineHist from CHECLabPy.core.io import TIOReader from tqdm import tqdm import re import pandas as pd from glob import glob def process(r0_paths, pedestal_path, output_path): data = [] for ipath, r0_path in enumerate(r0_paths): print(f"Processing: {ipath+1}/{len(r0_paths)}") regex_r0 = re.search(r".+_tc([\d.]+)_tmc([\d.]+).tio", r0_path) temperature_r0_chamber = float(regex_r0.group(1)) temperature_r0_primary = float(regex_r0.group(2)) regex_ped = re.search(r".+_tc([\d.]+)_tmc([\d.]+)_ped.tcal", pedestal_path) temperature_pedestal_chamber = float(regex_ped.group(1)) temperature_pedestal_primary = float(regex_ped.group(2)) reader = TIOReader(r0_path) pedestal = PedestalTargetCalib( reader.n_pixels, reader.n_samples, reader.n_cells ) pedestal.load_tcal(pedestal_path) online_stats = OnlineStats() online_hist = OnlineHist(bins=100, range_=(-10, 10)) # Subtract Pedestals desc = "Subtracting pedestal" for wfs in tqdm(reader, total=reader.n_events, desc=desc): if wfs.missing_packets: continue subtracted_tc = pedestal.subtract_pedestal(wfs, wfs.first_cell_id)[[0]] online_stats.add_to_stats(subtracted_tc) online_hist.add(subtracted_tc) data.append(dict( temperature_r0_chamber=temperature_r0_chamber, temperature_r0_primary=temperature_r0_primary, temperature_pedestal_chamber=temperature_pedestal_chamber, temperature_pedestal_primary=temperature_pedestal_primary, mean=online_stats.mean, std=online_stats.std, hist=online_hist.hist, edges=online_hist.edges, )) with HDF5Writer(output_path) as writer: writer.write(data=
pd.DataFrame(data)
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import operator from itertools import product, starmap from numpy import nan, inf import numpy as np import pandas as pd from pandas import (Index, Series, DataFrame, isnull, bdate_range, NaT, date_range, timedelta_range, _np_version_under1p8) from pandas.tseries.index import Timestamp from pandas.tseries.tdi import Timedelta import pandas.core.nanops as nanops from pandas.compat import range, zip from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from .common import TestData class TestSeriesOperators(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) with np.errstate(invalid='ignore'): expected = (left > right).astype('O') expected[:3] = np.nan assert_almost_equal(result, expected) s = Series(['a', 'b', 'c']) s2 = Series([False, True, False]) # it works! exp = Series([False, False, False]) tm.assert_series_equal(s == s2, exp) tm.assert_series_equal(s2 == s, exp) def test_op_method(self): def check(series, other, check_reverse=False): simple_ops = ['add', 'sub', 'mul', 'floordiv', 'truediv', 'pow'] if not compat.PY3: simple_ops.append('div') for opname in simple_ops: op = getattr(Series, opname) if op == 'div': alt = operator.truediv else: alt = getattr(operator, opname) result = op(series, other) expected = alt(series, other) tm.assert_almost_equal(result, expected) if check_reverse: rop = getattr(Series, "r" + opname) result = rop(series, other) expected = alt(other, series) tm.assert_almost_equal(result, expected) check(self.ts, self.ts * 2) check(self.ts, self.ts[::2]) check(self.ts, 5, check_reverse=True) check(tm.makeFloatSeries(), tm.makeFloatSeries(), check_reverse=True) def test_neg(self): assert_series_equal(-self.series, -1 * self.series) def test_invert(self): assert_series_equal(-(self.series < 0), ~(self.series < 0)) def test_div(self): with np.errstate(all='ignore'): # no longer do integer div for any ops, but deal with the 0's p = DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = p['first'] / p['second'] expected = Series( p['first'].values.astype(float) / p['second'].values, dtype='float64') expected.iloc[0:3] = np.inf assert_series_equal(result, expected) result = p['first'] / 0 expected = Series(np.inf, index=p.index, name='first') assert_series_equal(result, expected) p = p.astype('float64') result = p['first'] / p['second'] expected = Series(p['first'].values / p['second'].values) assert_series_equal(result, expected) p = DataFrame({'first': [3, 4, 5, 8], 'second': [1, 1, 1, 1]}) result = p['first'] / p['second'] assert_series_equal(result, p['first'].astype('float64'), check_names=False) self.assertTrue(result.name is None) self.assertFalse(np.array_equal(result, p['second'] / p['first'])) # inf signing s = Series([np.nan, 1., -1.]) result = s / 0 expected = Series([np.nan, np.inf, -np.inf]) assert_series_equal(result, expected) # float/integer issue # GH 7785 p = DataFrame({'first': (1, 0), 'second': (-0.01, -0.02)}) expected = Series([-0.01, -np.inf]) result = p['second'].div(p['first']) assert_series_equal(result, expected, check_names=False) result = p['second'] / p['first'] assert_series_equal(result, expected) # GH 9144 s = Series([-1, 0, 1]) result = 0 / s expected = Series([0.0, nan, 0.0]) assert_series_equal(result, expected) result = s / 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) result = s // 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) def test_operators(self): def _check_op(series, other, op, pos_only=False, check_dtype=True): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_series_equal(cython_or_numpy, python, check_dtype=check_dtype) def check(series, other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'mod'] for opname in simple_ops: _check_op(series, other, getattr(operator, opname)) _check_op(series, other, operator.pow, pos_only=True) _check_op(series, other, lambda x, y: operator.add(y, x)) _check_op(series, other, lambda x, y: operator.sub(y, x)) _check_op(series, other, lambda x, y: operator.truediv(y, x)) _check_op(series, other, lambda x, y: operator.floordiv(y, x)) _check_op(series, other, lambda x, y: operator.mul(y, x)) _check_op(series, other, lambda x, y: operator.pow(y, x), pos_only=True) _check_op(series, other, lambda x, y: operator.mod(y, x)) check(self.ts, self.ts * 2) check(self.ts, self.ts * 0) check(self.ts, self.ts[::2]) check(self.ts, 5) def check_comparators(series, other, check_dtype=True): _check_op(series, other, operator.gt, check_dtype=check_dtype) _check_op(series, other, operator.ge, check_dtype=check_dtype) _check_op(series, other, operator.eq, check_dtype=check_dtype) _check_op(series, other, operator.lt, check_dtype=check_dtype) _check_op(series, other, operator.le, check_dtype=check_dtype) check_comparators(self.ts, 5) check_comparators(self.ts, self.ts + 1, check_dtype=False) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x': 0.}) tm.assert_series_equal(s1 * s2, Series([np.nan], index=['x'])) def test_operators_timedelta64(self): # invalid ops self.assertRaises(Exception, self.objSeries.__add__, 1) self.assertRaises(Exception, self.objSeries.__add__, np.array(1, dtype=np.int64)) self.assertRaises(Exception, self.objSeries.__sub__, 1) self.assertRaises(Exception, self.objSeries.__sub__, np.array(1, dtype=np.int64)) # seriese ops v1 = date_range('2012-1-1', periods=3, freq='D') v2 = date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') assert_series_equal(rs, xp) self.assertEqual(rs.dtype, 'timedelta64[ns]') df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) self.assertEqual(td.dtype, 'timedelta64[ns]') # series on the rhs result = df['A'] - df['A'].shift() self.assertEqual(result.dtype, 'timedelta64[ns]') result = df['A'] + td self.assertEqual(result.dtype, 'M8[ns]') # scalar Timestamp on rhs maxa = df['A'].max() tm.assertIsInstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() self.assertEqual(resultb.dtype, 'timedelta64[ns]') # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') assert_series_equal(result, expected) self.assertEqual(result.dtype, 'm8[ns]') d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d self.assertEqual(resulta.dtype, 'm8[ns]') # roundtrip resultb = resulta + d assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td assert_series_equal(resultb, df['A']) self.assertEqual(resultb.dtype, 'M8[ns]') # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td assert_series_equal(df['A'], resultb) self.assertEqual(resultb.dtype, 'M8[ns]') # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) self.assertEqual(rs[2], value) def test_operator_series_comparison_zerorank(self): # GH 13006 result = np.float64(0) > pd.Series([1, 2, 3]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) result = pd.Series([1, 2, 3]) < np.float64(0) expected = pd.Series([1, 2, 3]) < 0.0 self.assert_series_equal(result, expected) result = np.array([0, 1, 2])[0] > pd.Series([0, 1, 2]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) def test_timedeltas_with_DateOffset(self): # GH 4532 # operate with pd.offsets s = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) result = s + pd.offsets.Second(5) result2 = pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:01:05'), Timestamp( '20130101 9:02:05')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s - pd.offsets.Second(5) result2 = -pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:00:55'), Timestamp( '20130101 9:01:55')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series([Timestamp('20130101 9:06:00.005'), Timestamp( '20130101 9:07:00.005')]) assert_series_equal(result, expected) # operate with np.timedelta64 correctly result = s + np.timedelta64(1, 's') result2 = np.timedelta64(1, 's') + s expected = Series([Timestamp('20130101 9:01:01'), Timestamp( '20130101 9:02:01')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + np.timedelta64(5, 'ms') result2 = np.timedelta64(5, 'ms') + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) s + op(5) op(5) + s def test_timedelta_series_ops(self): # GH11925 s = Series(timedelta_range('1 day', periods=3)) ts = Timestamp('2012-01-01') expected = Series(date_range('2012-01-02', periods=3)) assert_series_equal(ts + s, expected) assert_series_equal(s + ts, expected) expected2 = Series(date_range('2011-12-31', periods=3, freq='-1D')) assert_series_equal(ts - s, expected2) assert_series_equal(ts + (-s), expected2) def test_timedelta64_operations_with_DateOffset(self): # GH 10699 td = Series([timedelta(minutes=5, seconds=3)] * 3) result = td + pd.offsets.Minute(1) expected = Series([timedelta(minutes=6, seconds=3)] * 3) assert_series_equal(result, expected) result = td - pd.offsets.Minute(1) expected = Series([timedelta(minutes=4, seconds=3)] * 3) assert_series_equal(result, expected) result = td + Series([pd.offsets.Minute(1), pd.offsets.Second(3), pd.offsets.Hour(2)]) expected = Series([timedelta(minutes=6, seconds=3), timedelta( minutes=5, seconds=6), timedelta(hours=2, minutes=5, seconds=3)]) assert_series_equal(result, expected) result = td + pd.offsets.Minute(1) + pd.offsets.Second(12) expected = Series([timedelta(minutes=6, seconds=15)] * 3) assert_series_equal(result, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) td + op(5) op(5) + td td - op(5) op(5) - td def test_timedelta64_operations_with_timedeltas(self): # td operate with td td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td2 = timedelta(minutes=5, seconds=4) result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) # Now again, using pd.to_timedelta, which should build # a Series or a scalar, depending on input. td1 = Series(pd.to_timedelta(['00:05:03'] * 3)) td2 = pd.to_timedelta('00:05:04') result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) def test_timedelta64_operations_with_integers(self): # GH 4521 # divide/multiply by integers startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan s2 = Series([2, 3, 4]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2
assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
""" Created on Mon Feb 22 15:52:51 2021 @author: <NAME> """ import pandas as pd import numpy as np import os import pickle import calendar import time import warnings from pyproj import Transformer import networkx as nx import matplotlib as mpl import matplotlib.pyplot as plt from requests import get import dataframe_key def compile_chicago_stations(): """ Reads data files containing information about docking stations in Chicago and compiles the data into a dataframe. The dataframe is then saved as a pickle for further use. The relevant files can be found at: https://divvy-tripdata.s3.amazonaws.com/index.html https://data.cityofchicago.org/Transportation/Divvy-Bicycle-Stations-All-Map/bk89-9dk7 Raises ------ FileNotFoundError Raised if no data files containing station data are found. Returns ------- stat_df : pandas DataFrame Dataframe of all docking station information. """ try: with open('./python_variables/Chicago_stations.pickle', 'rb') as file: stat_df = pickle.load(file) except FileNotFoundError as exc: print('No pickle found. Creating pickle...') stat_files = [file for file in os.listdir('data') if 'Divvy_Stations' in file] col_list = ['id', 'name', 'latitude', 'longitude'] key = {'ID':'id', 'Station Name':'name', 'Latitude':'latitude','Longitude':'longitude'} try: stat_df = pd.read_csv( 'data/Divvy_Bicycle_Stations_-_All_-_Map.csv').rename(columns = key) stat_df = stat_df[col_list] except FileNotFoundError: stat_df = pd.DataFrame(columns = col_list) for file in stat_files: df = pd.read_csv(f'./data/{file}')[col_list] stat_df = pd.concat([stat_df, df], sort = False) if stat_df.size == 0: raise FileNotFoundError( 'No data files containing station data found. Please read the docstring for more information.') from exc stat_df.drop_duplicates(subset = 'name', inplace = True) with open('./python_variables/Chicago_stations.pickle', 'wb') as file: pickle.dump(stat_df, file) print('Pickle loaded') return stat_df def get_JC_blacklist(): """ Constructs/updates a blacklist of stations in Jersey City area. The blacklist is created using historical biketrip datasets for the area. Use only if you know what you are doing. The relevant files can be found at: https://www.citibikenyc.com/system-data Raises ------ FileNotFoundError Raised if no Jersey City dataset is found. Returns ------- blacklist : list List of IDs of the Jersey City docking stations. """ try: with open('./python_variables/JC_blacklist', 'rb') as file: blacklist = pickle.load(file) except FileNotFoundError: print('No previous blacklist found. Creating blacklist...') blacklist = set() JC_files = [file for file in os.listdir('data') if 'JC' in file] if len(JC_files) == 0: raise FileNotFoundError( 'No JC files found. Please have a JC file in the data directory to create/update blacklist.') for file in JC_files: df = pd.read_csv('data/' + file) df = df.rename(columns = dataframe_key.get_key('nyc')) JC_start_stat_indices = df.loc[df['start_stat_long'] < 74.02] JC_end_stat_indices = df.loc[df['end_stat_long'] < 74.02] stat_IDs = set( df['start_stat_id'][JC_start_stat_indices]) | set(df['end_stat_id'][JC_end_stat_indices]) blacklist = blacklist | stat_IDs with open('./python_variables/JC_blacklist', 'wb') as file: pickle.dump(blacklist, file) print('Blacklist updated') return blacklist def days_index(df): """ Find indices of daily trips. Parameters ---------- df : pandas DataFrame Dataframe containing bikeshare trip data with columns that have been renamed to the common key. Returns ------- d_i : dict Contains the indices of the first trip per day. """ days = df['start_dt'].dt.day d_i = [(days == i).idxmax() for i in range(1, max(days)+1)] return dict(zip(range(1, max(days)+1), d_i)) def pickle_data(df, city, year, month): """ Generate pickle of days' starting indices. Parameters ---------- df : pandas DataFrame bikeshare trip data with columns that have been renamed to the common key. city : str The identification of the city. For a list of supported cities, see the documentation for the Data class. year : int The year of interest in YYYY format. month : int The month of interest in MM format. Returns ------- d : dict Contains the indices of the first trip per day. """ d = days_index(df) with open(f'./python_variables/day_index_{city}{year:d}{month:02d}.pickle', 'wb') as file: pickle.dump(d, file) return d def get_data(city, year, month, blacklist=None): """ Read data from csv files. Parameters ---------- city : str The identification of the city. For a list of supported cities, see the documentation for the Data class. year : int The year of interest in YYYY format. month : int The month of interest in MM format. blacklist : list, optional List of IDs of stations to remove. Default is None. Returns ------- df : pandas DataFrame Dataframe containing bikeshare trip data. days : dict Contains the indices of the first trip per day. """ supported_cities = ['nyc', 'sfran', 'sjose', 'washDC', 'chic', 'london', 'oslo', 'edinburgh', 'bergen', 'buenos_aires', 'madrid', 'mexico', 'taipei'] # Remember to update this list if city not in supported_cities: raise ValueError("This city is not currently supported. Supported cities are {}".format(supported_cities)) # Make folder for dataframes if not found if not os.path.exists('python_variables/big_data'): os.makedirs('python_variables/big_data') try: with open(f'./python_variables/big_data/{city}{year:d}{month:02d}_dataframe_blcklst={blacklist}.pickle', 'rb') as file: df = pickle.load(file) print('Pickle loaded') except FileNotFoundError: print('No dataframe pickle found. Pickling dataframe...') if city == "nyc": try: df = pd.read_csv(f'./data/{year:d}{month:02d}-citibike-tripdata.csv') except FileNotFoundError as exc: raise FileNotFoundError('No trip data found. All relevant files can be found at https://www.citibikenyc.com/system-data') from exc df = df.rename(columns = dataframe_key.get_key(city)) try: with open('./python_variables/JC_blacklist', 'rb') as file: JC_blacklist = pickle.load(file) df = df[~df['start_stat_id'].isin(JC_blacklist)] df = df[~df['end_stat_id'].isin(JC_blacklist)] except FileNotFoundError: print('No JC blacklist found. Continuing...') df.dropna(inplace=True) df.reset_index(inplace = True, drop = True) df['start_dt'] = pd.to_datetime(df['start_t']) df['end_dt'] = pd.to_datetime(df['end_t']) elif city == "washDC": try: df = pd.read_csv(f'./data/{year:d}{month:02d}-capitalbikeshare-tripdata.csv') except FileNotFoundError as exc: raise FileNotFoundError('No trip data found. All relevant files can be found at https://www.capitalbikeshare.com/system-data') from exc df = df.rename(columns = dataframe_key.get_key(city)) df['start_stat_lat'] = '' df['start_stat_long'] = '' df['end_stat_lat'] = '' df['end_stat_long'] = '' stat_df = pd.read_csv('data/Capital_Bike_Share_Locations.csv') for _ , stat in stat_df.iterrows(): start_matches = np.where(df['start_stat_id'] == stat['TERMINAL_NUMBER']) end_matches = np.where(df['end_stat_id'] == stat['TERMINAL_NUMBER']) df.at[start_matches[0], 'start_stat_lat'] = stat['LATITUDE'] df.at[start_matches[0], 'start_stat_long'] = stat['LONGITUDE'] df.at[end_matches[0], 'end_stat_lat'] = stat['LATITUDE'] df.at[end_matches[0], 'end_stat_long'] = stat['LONGITUDE'] df.replace('', np.nan, inplace = True) df.dropna(inplace=True) max_lat = 38.961029 min_lat = 38.792686 max_long= -76.909415 min_long= -77.139396 df = df.iloc[np.where( (df['start_stat_lat'] < max_lat) & (df['start_stat_lat'] > min_lat) & (df['start_stat_long'] < max_long) & (df['start_stat_long'] > min_long))] df = df.iloc[np.where( (df['end_stat_lat'] < max_lat) & (df['end_stat_lat'] > min_lat) & (df['end_stat_long'] < max_long) & (df['end_stat_long'] > min_long))] df.reset_index(inplace = True, drop = True) df['start_dt'] = pd.to_datetime(df['start_t']) df['end_dt'] = pd.to_datetime(df['end_t']) elif city == "chic": q = int(np.ceil(month/3)) try: df = pd.read_csv(f'./data/Divvy_Trips_{year:d}_Q{q}.csv') except FileNotFoundError as exc: raise FileNotFoundError('No trip data found. All relevant files can be found at https://www.divvybikes.com/system-data') from exc df = df.rename(columns = dataframe_key.get_key(city)) n_days = calendar.monthrange(year, month)[1] df = df.iloc[np.where(df['start_t'] > f'{year:d}-{month:02d}-01 00:00:00')] df = df.iloc[np.where(df['start_t'] < f'{year:d}-{month:02d}-{n_days} 23:59:59')] df.reset_index(inplace = True, drop = True) df['start_stat_lat'] = '' df['start_stat_long'] = '' df['end_stat_lat'] = '' df['end_stat_long'] = '' try: with open('./python_variables/Chicago_stations.pickle', 'rb') as file: stat_df = pickle.load(file) except FileNotFoundError as exc: compile_chicago_stations() with open('./python_variables/Chicago_stations.pickle', 'rb') as file: stat_df = pickle.load(file) for _, stat in stat_df.iterrows(): start_matches = np.where(df['start_stat_name'] == stat['name']) end_matches = np.where(df['end_stat_name'] == stat['name']) df.at[start_matches[0], 'start_stat_lat'] = stat['latitude'] df.at[start_matches[0], 'start_stat_long'] = stat['longitude'] df.at[end_matches[0], 'end_stat_lat'] = stat['latitude'] df.at[end_matches[0], 'end_stat_long'] = stat['longitude'] df.replace('', np.nan, inplace = True) df.dropna(subset = ['start_stat_lat', 'start_stat_long', 'end_stat_lat', 'end_stat_long'], inplace = True) df.reset_index(inplace = True, drop = True) df['start_dt'] = pd.to_datetime(df['start_t']) df['end_dt'] = pd.to_datetime(df['end_t']) df['duration'] = df['duration'].str.replace(',', '').astype(float) elif city == "sfran": try: df = pd.read_csv(f'./data/{year:d}{month:02d}-baywheels-tripdata.csv') except FileNotFoundError as exc: raise FileNotFoundError('No trip data found. All relevant files can be found at https://www.lyft.com/bikes/bay-wheels/system-data') from exc df = df.rename(columns = dataframe_key.get_key(city)) df.dropna(inplace=True) df = df.iloc[np.where(df['start_stat_lat'] > 37.593220)] df = df.iloc[np.where(df['end_stat_lat'] > 37.593220)] df.sort_values(by = 'start_t', inplace = True) df.reset_index(inplace = True, drop = True) df['start_dt'] = pd.to_datetime(df['start_t']) df['end_dt'] = pd.to_datetime(df['end_t']) elif city == "sjose": try: df = pd.read_csv(f'./data/{year:d}{month:02d}-baywheels-tripdata.csv') except FileNotFoundError as exc: raise FileNotFoundError('No trip data found. All relevant files can be found at https://www.lyft.com/bikes/bay-wheels/system-data') from exc df = df.rename(columns = dataframe_key.get_key(city)) df.dropna(inplace=True) df = df.iloc[np.where(df['start_stat_lat'] < 37.593220)] df = df.iloc[np.where(df['end_stat_lat'] < 37.593220)] df.sort_values(by = 'start_t', inplace = True) df.reset_index(inplace = True, drop = True) df['start_dt'] = pd.to_datetime(df['start_t']) df['end_dt'] = pd.to_datetime(df['end_t']) elif city == "london": month_dict = {1:'Jan', 2:'Feb', 3:'Mar', 4:'Apr', 5:'May', 6:'Jun', 7:'Jul', 8:'Aug', 9:'Sep', 10:'Oct', 11:'Nov', 12:'Dec'} data_files = [file for file in os.listdir('data') if 'JourneyDataExtract' in file] data_files = [file for file in data_files if '{}'.format(year) and '{}'.format(month_dict[month]) in file] if len(data_files) == 0: raise FileNotFoundError('No London data for {}. {} found. All relevant files can be found at https://cycling.data.tfl.gov.uk/.'.format(month_dict[month], year)) if isinstance(data_files, str): warnings.warn('Only one data file found. Please check that you have all available data.') df = pd.read_csv('./data/' + data_files[0]) for file in data_files[1:]: df_temp = pd.read_csv('./data/' + file) df = pd.concat([df, df_temp], sort = False) df.rename(columns = dataframe_key.get_key(city), inplace = True) n_days = calendar.monthrange(year, month)[1] df = df.iloc[np.where(df['start_t'] >= f'01/{month:02d}/{year} 00:00')] df = df.iloc[np.where(df['start_t'] <= f'{n_days}/{month:02d}/{year} 23:59')] df.sort_values(by = 'start_t', inplace = True) df.reset_index(inplace = True) df['start_t'] = pd.to_datetime(df['start_t'], format = '%d/%m/%Y %H:%M').astype(str) df['end_t'] = pd.to_datetime(df['end_t'], format = '%d/%m/%Y %H:%M').astype(str) stat_df = pd.read_csv('./data/london_stations.csv') stat_df.at[np.where(stat_df['station_id'] == 502)[0][0], 'latitude'] = 51.53341 df['start_stat_lat'] = '' df['start_stat_long'] = '' df['end_stat_lat'] = '' df['end_stat_long'] = '' for _ , stat in stat_df.iterrows(): start_matches = np.where(df['start_stat_name'] == stat['station_name']) end_matches = np.where(df['end_stat_name'] == stat['station_name']) df.at[start_matches[0], 'start_stat_lat'] = stat['latitude'] df.at[start_matches[0], 'start_stat_long'] = stat['longitude'] df.at[end_matches[0], 'end_stat_lat'] = stat['latitude'] df.at[end_matches[0], 'end_stat_long'] = stat['longitude'] df.replace('', np.nan, inplace = True) df.dropna(inplace = True) df.reset_index(inplace = True, drop = True) df['start_dt'] = pd.to_datetime(df['start_t']) df['end_dt'] = pd.to_datetime(df['end_t']) df = df[df.start_dt.dt.month == month] df.reset_index(inplace = True, drop = True) elif city == "oslo": try: df = pd.read_csv(f'./data/{year:d}{month:02d}-oslo.csv') except FileNotFoundError as exc: raise FileNotFoundError('No trip data found. All relevant files can be found at https://oslobysykkel.no/en/open-data/historical') from exc df = df.rename(columns = dataframe_key.get_key(city)) df.dropna(inplace=True) df.reset_index(inplace = True, drop = True) df['start_dt'] = pd.to_datetime(df['start_t']) df['end_dt'] = pd.to_datetime(df['end_t']) elif city == "edinburgh": try: df = pd.read_csv(f'./data/{year:d}{month:02d}-edinburgh.csv') except FileNotFoundError as exc: raise FileNotFoundError('No trip data found. All relevant files can be found at https://edinburghcyclehire.com/open-data/historical') from exc df = df.rename(columns = dataframe_key.get_key(city)) df.dropna(inplace=True) df.reset_index(inplace = True, drop = True) df['start_dt'] = pd.to_datetime(df['start_t']) df['end_dt'] = pd.to_datetime(df['end_t']) elif city == "bergen": try: df = pd.read_csv(f'./data/{year:d}{month:02d}-bergen.csv') except FileNotFoundError as exc: raise FileNotFoundError('No trip data found. All relevant files can be found at https://bergenbysykkel.no/en/open-data/historical') from exc df = df.rename(columns = dataframe_key.get_key(city)) df.dropna(inplace=True) df.reset_index(inplace = True, drop = True) df['start_dt'] = pd.to_datetime(df['start_t']) df['end_dt'] = pd.to_datetime(df['end_t']) elif city == "buenos_aires": try: df_year =
pd.read_csv(f"./data/recorridos-realizados-{year:d}.csv")
pandas.read_csv
# -*- coding: utf-8 -*- """5-token_classification-่ฏ_็ฌฆๅท_token็บงๅˆซๅˆ†็ฑปไปปๅŠก.ipynb ๅœจ่ฟ่กŒๅ•ๅ…ƒๆ ผไน‹ๅ‰๏ผŒๅปบ่ฎฎๆ‚จๆŒ‰็…ง้กน็›ฎreadmeไธญๆ็คบ๏ผŒๅปบ็ซ‹ไธ€ไธชไธ“้—จ็š„python็Žฏๅขƒ็”จไบŽๅญฆไน ๏ผŒ็„ถๅŽๅฎ‰่ฃ…ไพ่ต–ๅบ“ใ€‚ """ # ! pip install datasets transformers seqeval """ๅฆ‚ๆžœๆ‚จๆญฃๅœจๆœฌๅœฐๆ‰“ๅผ€่ฟ™ไธชnotebook๏ผŒ่ฏท็กฎไฟๆ‚จ่ฎค็œŸ้˜…่ฏปๅนถๅฎ‰่ฃ…ไบ†transformer-quick-start-zh็š„readmeๆ–‡ไปถไธญ็š„ๆ‰€ๆœ‰ไพ่ต–ๅบ“ใ€‚ๆ‚จไนŸๅฏไปฅๅœจ[่ฟ™้‡Œ](https://github.com/huggingface/transformers/tree/master/examples/token-classification)ๆ‰พๅˆฐๆœฌnotebook็š„ๅคšGPUๅˆ†ๅธƒๅผ่ฎญ็ปƒ็‰ˆๆœฌใ€‚ # Fine-tuningๅพฎ่ฐƒtransformerๆจกๅž‹็”จไบŽtoken็บง็š„ๅˆ†็ฑปไปปๅŠก๏ผˆๆฏ”ๅฆ‚NERไปปๅŠก๏ผ‰ ๅœจ่ฟ™ไธชnotebookไธญ๏ผŒๆˆ‘ไปฌๅฐ†ๅฑ•็คบๅฆ‚ไฝ•ไฝฟ็”จ[๐Ÿค— Transformers](https://github.com/huggingface/transformers)ไธญ็š„ๆจกๅž‹ๅŽปๅštoken็บงๅˆซ็š„ๅˆ†็ฑป้—ฎ้ข˜ใ€‚token็บงๅˆซ็š„ๅˆ†็ฑปไปปๅŠก้€šๅธธๆŒ‡็š„ๆ˜ฏไธบไธบๆ–‡ๆœฌไธญ็š„ๆฏไธ€ไธชtoken้ข„ๆต‹ไธ€ไธชๆ ‡็ญพ็ป“ๆžœใ€‚ไธ‹ๅ›พๅฑ•็คบ็š„ๆ˜ฏไธ€ไธชNERๅฎžไฝ“ๅ่ฏ่ฏ†ๅˆซไปปๅŠกใ€‚ ![Widget inference representing the NER task](https://github.com/huggingface/notebooks/blob/master/examples/images/token_classification.png?raw=1) ๆœ€ๅธธ่ง็š„token็บงๅˆซๅˆ†็ฑปไปปๅŠก: - NER (Named-entity recognition ๅ่ฏ-ๅฎžไฝ“่ฏ†ๅˆซ) ๅˆ†่พจๅ‡บๆ–‡ๆœฌไธญ็š„ๅ่ฏๅ’Œๅฎžไฝ“ (personไบบๅ, organization็ป„็ป‡ๆœบๆž„ๅ, locationๅœฐ็‚นๅ...). - POS (Part-of-speech tagging่ฏๆ€งๆ ‡ๆณจ) ๆ นๆฎ่ฏญๆณ•ๅฏนtoken่ฟ›่กŒ่ฏๆ€งๆ ‡ๆณจ (nounๅ่ฏ, verbๅŠจ่ฏ, adjectiveๅฝขๅฎน่ฏ...) - Chunk (Chunking็Ÿญ่ฏญ็ป„ๅ—) ๅฐ†ๅŒไธ€ไธช็Ÿญ่ฏญ็š„tokens็ป„ๅ—ๆ”พๅœจไธ€่ตทใ€‚ ๅฏนไบŽไปฅไธŠไปปๅŠก๏ผŒๆˆ‘ไปฌๅฐ†ๅฑ•็คบๅฆ‚ไฝ•ไฝฟ็”จ็ฎ€ๅ•็š„ๅŠ ่ฝฝๆ•ฐๆฎ้›†๏ผŒๅŒๆ—ถ้’ˆๅฏน็›ธๅบ”็š„ไปๆ— ไฝฟ็”จtransformerไธญ็š„`Trainer`ๆŽฅๅฃๅฏนๆจกๅž‹่ฟ›่กŒๅพฎ่ฐƒใ€‚ ๅช่ฆ้ข„่ฎญ็ปƒ็š„transformerๆจกๅž‹ๆœ€้กถๅฑ‚ๆœ‰ไธ€ไธชtokenๅˆ†็ฑป็š„็ฅž็ป็ฝ‘็ปœๅฑ‚๏ผˆ็”ฑไบŽtransformer็š„tokenizerๆ–ฐ็‰นๆ€ง๏ผŒ่ฟ˜้œ€่ฆๅฏนๅบ”็š„้ข„่ฎญ็ปƒๆจกๅž‹ๆœ‰fast tokenizer๏ผŒๅ‚่€ƒ[่ฟ™ไธช่กจ](https://huggingface.co/transformers/index.html#bigtable)๏ผ‰๏ผŒ้‚ฃไนˆๆœฌnotebook็†่ฎบไธŠๅฏไปฅไฝฟ็”จๅ„็งๅ„ๆ ท็š„transformerๆจกๅž‹๏ผˆ[ๆจกๅž‹้ขๆฟ](https://huggingface.co/models)๏ผ‰๏ผŒ่งฃๅ†ณไปปไฝ•token็บงๅˆซ็š„ๅˆ†็ฑปไปปๅŠกใ€‚ ๅฆ‚ๆžœๆ‚จๆ‰€ๅค„็†็š„ไปปๅŠกๆœ‰ๆ‰€ไธๅŒ๏ผŒๅคงๆฆ‚็އๅช้œ€่ฆๅพˆๅฐ็š„ๆ”นๅŠจไพฟๅฏไปฅไฝฟ็”จๆœฌnotebook่ฟ›่กŒๅค„็†ใ€‚ๅŒๆ—ถ๏ผŒๆ‚จๅบ”่ฏฅๆ นๆฎๆ‚จ็š„GPUๆ˜พๅญ˜ๆฅ่ฐƒๆ•ดๅพฎ่ฐƒ่ฎญ็ปƒๆ‰€้œ€่ฆ็š„btach sizeๅคงๅฐ๏ผŒ้ฟๅ…ๆ˜พๅญ˜ๆบขๅ‡บใ€‚ """ task = "ner" # ้œ€่ฆๆ˜ฏ"ner", "pos" ๆˆ–่€… "chunk" model_checkpoint = "distilbert-base-uncased" batch_size = 16 """## ๅŠ ่ฝฝๆ•ฐๆฎ ๆˆ‘ไปฌๅฐ†ไผšไฝฟ็”จ[๐Ÿค— datasets](https://github.com/huggingface/datasets)ๅบ“ๆฅๅŠ ่ฝฝๆ•ฐๆฎๅ’Œๅฏนๅบ”็š„่ฏ„ๆต‹ๆ–นๅผใ€‚ๆ•ฐๆฎๅŠ ่ฝฝๅ’Œ่ฏ„ๆต‹ๆ–นๅผๅŠ ่ฝฝๅช้œ€่ฆ็ฎ€ๅ•ไฝฟ็”จ`load_dataset`ๅ’Œ`load_metric`ๅณๅฏใ€‚ """ from datasets import load_dataset, load_metric """ๆœฌnotebookไธญ็š„ไพ‹ๅญไฝฟ็”จ็š„ๆ˜ฏ[CONLL 2003 dataset](https://www.aclweb.org/anthology/W03-0419.pdf)ๆ•ฐๆฎ้›†ใ€‚่ฟ™ไธชnotebookๅบ”่ฏฅๅฏไปฅๅค„็†๐Ÿค— Datasetsๅบ“ไธญ็š„ไปปไฝ•tokenๅˆ†็ฑปไปปๅŠกใ€‚ๅฆ‚ๆžœๆ‚จไฝฟ็”จ็š„ๆ˜ฏๆ‚จ่‡ชๅฎšไน‰็š„json/csvๆ–‡ไปถๆ•ฐๆฎ้›†๏ผŒๆ‚จ้œ€่ฆๆŸฅ็œ‹[ๆ•ฐๆฎ้›†ๆ–‡ๆกฃ](https://huggingface.co/docs/datasets/loading_datasets.html#from-local-files)ๆฅๅญฆไน ๅฆ‚ไฝ•ๅŠ ่ฝฝใ€‚่‡ชๅฎšไน‰ๆ•ฐๆฎ้›†ๅฏ่ƒฝ้œ€่ฆๅœจๅŠ ่ฝฝๅฑžๆ€งๅๅญ—ไธŠๅšไธ€ไบ›่ฐƒๆ•ดใ€‚""" datasets = load_dataset("conll2003") """่ฟ™ไธช`datasets`ๅฏน่ฑกๆœฌ่บซๆ˜ฏไธ€็ง[`DatasetDict`](https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasetdict)ๆ•ฐๆฎ็ป“ๆž„. ๅฏนไบŽ่ฎญ็ปƒ้›†ใ€้ชŒ่ฏ้›†ๅ’Œๆต‹่ฏ•้›†๏ผŒๅช้œ€่ฆไฝฟ็”จๅฏนๅบ”็š„key๏ผˆtrain๏ผŒvalidation๏ผŒtest๏ผ‰ๅณๅฏๅพ—ๅˆฐ็›ธๅบ”็š„ๆ•ฐๆฎใ€‚""" datasets """ๆ— ่ฎบๆ˜ฏๅœจ่ฎญ็ปƒ้›†ใ€้ชŒ่ฏๆœบ่ฟ˜ๆ˜ฏๆต‹่ฏ•้›†ไธญ๏ผŒdatasets้ƒฝๅŒ…ๅซไบ†ไธ€ไธชๅไธบtokens็š„ๅˆ—๏ผˆไธ€่ˆฌๆฅ่ฏดๆ˜ฏๅฐ†ๆ–‡ๆœฌๅˆ‡ๅˆ†ๆˆไบ†ๅพˆๅคš่ฏ๏ผ‰๏ผŒ่ฟ˜ๅŒ…ๅซไธ€ไธชๅไธบlabel็š„ๅˆ—๏ผŒ่ฟ™ไธ€ๅˆ—ๅฏนๅบ”่ฟ™tokens็š„ๆ ‡ๆณจใ€‚ ็ป™ๅฎšไธ€ไธชๆ•ฐๆฎๅˆ‡ๅˆ†็š„key๏ผˆtrainใ€validationๆˆ–่€…test๏ผ‰ๅ’Œไธ‹ๆ ‡ๅณๅฏๆŸฅ็œ‹ๆ•ฐๆฎใ€‚ """ datasets["train"][0] """ๆ‰€ๆœ‰็š„ๆ•ฐๆฎๆ ‡็ญพlabels้ƒฝๅทฒ็ป่ขซ็ผ–็ ๆˆไบ†ๆ•ดๆ•ฐ๏ผŒๅฏไปฅ็›ดๆŽฅ่ขซ้ข„่ฎญ็ปƒtransformerๆจกๅž‹ไฝฟ็”จใ€‚่ฟ™ไบ›ๆ•ดๆ•ฐ็š„็ผ–็ ๆ‰€ๅฏนๅบ”็š„ๅฎž้™…็ฑปๅˆซๅ‚จๅญ˜ๅœจ`features`ไธญใ€‚""" datasets["train"].features[f"ner_tags"] """ๆ‰€ไปฅไปฅNERไธบไพ‹๏ผŒ0ๅฏนๅบ”็š„ๆ ‡็ญพ็ฑปๅˆซๆ˜ฏโ€Oโ€œ๏ผŒ 1ๅฏนๅบ”็š„ๆ˜ฏโ€B-PERโ€œ็ญ‰็ญ‰ใ€‚โ€Oโ€œ็š„ๆ„ๆ€ๆ˜ฏๆฒกๆœ‰็‰นๅˆซๅฎžไฝ“๏ผˆno special entity๏ผ‰ใ€‚ๆœฌไพ‹ๅŒ…ๅซ4็งๅฎžไฝ“็ฑปๅˆซๅˆ†ๅˆซๆ˜ฏ๏ผˆPERใ€ORGใ€LOC๏ผŒMISC๏ผ‰๏ผŒๆฏไธ€็งๅฎžไฝ“็ฑปๅˆซๅˆๅˆ†ๅˆซๆœ‰B-๏ผˆๅฎžไฝ“ๅผ€ๅง‹็š„token๏ผ‰ๅ‰็ผ€ๅ’ŒI-๏ผˆๅฎžไฝ“ไธญ้—ด็š„token๏ผ‰ๅ‰็ผ€ใ€‚ - 'PER' for person - 'ORG' for organization - 'LOC' for location - 'MISC' for miscellaneous Since the labels are lists of `ClassLabel`, the actual names of the labels are nested in the `feature` attribute of the object above: """ label_list = datasets["train"].features[f"{task}_tags"].feature.names label_list """ไธบไบ†่ƒฝๅคŸ่ฟ›ไธ€ๆญฅ็†่งฃๆ•ฐๆฎ้•ฟไป€ไนˆๆ ทๅญ๏ผŒไธ‹้ข็š„ๅ‡ฝๆ•ฐๅฐ†ไปŽๆ•ฐๆฎ้›†้‡Œ้šๆœบ้€‰ๆ‹ฉๅ‡ ไธชไพ‹ๅญ่ฟ›่กŒๅฑ•็คบใ€‚""" from datasets import ClassLabel, Sequence import random import pandas as pd from IPython.display import display, HTML def show_random_elements(dataset, num_examples=10): assert num_examples <= len(dataset), "Can't pick more elements than there are in the dataset." picks = [] for _ in range(num_examples): pick = random.randint(0, len(dataset) - 1) while pick in picks: pick = random.randint(0, len(dataset) - 1) picks.append(pick) df =
pd.DataFrame(dataset[picks])
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_separator_date_conflict(self): # Regression test for issue #4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(StringIO(data), sep=';', thousands='-', parse_dates={'Date': [0, 1]}, header=None) tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) tm.assertIsInstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # GH 8217 # series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) self.assertFalse(result._is_view) def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,Inf d,-Inf e,INF f,-INF g,INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_multiple_date_col(self): # Can use multiple date parsers data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def func(*date_cols): return lib.try_parse_dates(parsers._concat_date_cols(date_cols)) df = self.read_csv(StringIO(data), header=None, date_parser=func, prefix='X', parse_dates={'nominal': [1, 2], 'actual': [1, 3]}) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'nominal'], d) df = self.read_csv(StringIO(data), header=None, date_parser=func, parse_dates={'nominal': [1, 2], 'actual': [1, 3]}, keep_date_col=True) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ df = read_csv(StringIO(data), header=None, prefix='X', parse_dates=[[1, 2], [1, 3]]) self.assertIn('X1_X2', df) self.assertIn('X1_X3', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'X1_X2'], d) df = read_csv(StringIO(data), header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True) self.assertIn('1_2', df) self.assertIn('1_3', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = '''\ KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 ''' df = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[1], index_col=1) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.index[0], d) def test_multiple_date_cols_int_cast(self): data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" "KORD,19990127, 23:00:00, 22:56:00, -0.5900") date_spec = {'nominal': [1, 2], 'actual': [1, 3]} import pandas.io.date_converters as conv # it works! df = self.read_csv(StringIO(data), header=None, parse_dates=date_spec, date_parser=conv.parse_date_time) self.assertIn('nominal', df) def test_multiple_date_col_timestamp_parse(self): data = """05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25 05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25""" result = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[[0, 1]], date_parser=Timestamp) ex_val = Timestamp('05/31/2012 15:30:00.029') self.assertEqual(result['0_1'][0], ex_val) def test_single_line(self): # GH 6607 # Test currently only valid with python engine because sep=None and # delim_whitespace=False. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'sep=None with delim_whitespace=False'): # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_multiple_date_cols_with_header(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) self.assertNotIsInstance(df.nominal[0], compat.string_types) ts_data = """\ ID,date,nominalTime,actualTime,A,B,C,D,E KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def test_multiple_date_col_name_collision(self): self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), parse_dates={'ID': [1, 2]}) data = """\ date_NominalTime,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" # noqa self.assertRaises(ValueError, self.read_csv, StringIO(data), parse_dates=[[1, 2]]) def test_index_col_named(self): no_header = """\ KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" h = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n" data = h + no_header rs = self.read_csv(StringIO(data), index_col='ID') xp = self.read_csv(StringIO(data), header=0).set_index('ID') tm.assert_frame_equal(rs, xp) self.assertRaises(ValueError, self.read_csv, StringIO(no_header), index_col='ID') data = """\ 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo """ names = ['a', 'b', 'c', 'd', 'message'] xp = DataFrame({'a': [1, 5, 9], 'b': [2, 6, 10], 'c': [3, 7, 11], 'd': [4, 8, 12]}, index=Index(['hello', 'world', 'foo'], name='message')) rs = self.read_csv(StringIO(data), names=names, index_col=['message']) tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) rs = self.read_csv(StringIO(data), names=names, index_col='message') tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) def test_usecols_index_col_False(self): # Issue 9082 s = "a,b,c,d\n1,2,3,4\n5,6,7,8" s_malformed = "a,b,c,d\n1,2,3,4,\n5,6,7,8," cols = ['a', 'c', 'd'] expected = DataFrame({'a': [1, 5], 'c': [3, 7], 'd': [4, 8]}) df = self.read_csv(StringIO(s), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(s_malformed), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) def test_index_col_is_True(self): # Issue 9798 self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), index_col=True) def test_converter_index_col_bug(self): # 1835 data = "A;B\n1;2\n3;4" rs = self.read_csv(StringIO(data), sep=';', index_col='A', converters={'A': lambda x: x}) xp = DataFrame({'B': [2, 4]}, index=Index([1, 3], name='A')) tm.assert_frame_equal(rs, xp) self.assertEqual(rs.index.name, xp.index.name) def test_date_parser_int_bug(self): # #3071 log_file = StringIO( 'posix_timestamp,elapsed,sys,user,queries,query_time,rows,' 'accountid,userid,contactid,level,silo,method\n' '1343103150,0.062353,0,4,6,0.01690,3,' '12345,1,-1,3,invoice_InvoiceResource,search\n' ) def f(posix_string): return datetime.utcfromtimestamp(int(posix_string)) # it works! read_csv(log_file, index_col=0, parse_dates=0, date_parser=f) def test_multiple_skts_example(self): data = "year, month, a, b\n 2001, 01, 0.0, 10.\n 2001, 02, 1.1, 11." pass def test_malformed(self): # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: try: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): # XXX df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_passing_dtype(self): # GH 6607 # Passing dtype is currently only supported by the C engine. # Temporarily copied to TestCParser*. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): # empty frame # GH12048 self.read_csv(StringIO('A,B'), dtype=str) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" self.assertRaises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') self.assertEqual(len(df), 3) def test_non_string_na_values(self): # GH3611, na_values that are not a string are an issue with tm.ensure_clean('__non_string_na_values__.csv') as path: df = DataFrame({'A': [-999, 2, 3], 'B': [1.2, -999, 4.5]}) df.to_csv(path, sep=' ', index=False) result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result2, result3) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, result3) tm.assert_frame_equal(result5, result3) tm.assert_frame_equal(result6, result3) tm.assert_frame_equal(result7, result3) good_compare = result3 # with an odd float format, so we can't match the string 999.0 # exactly, but need float matching df.to_csv(path, sep=' ', index=False, float_format='%.3f') result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, good_compare) tm.assert_frame_equal(result2, good_compare) tm.assert_frame_equal(result3, good_compare) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, good_compare) tm.assert_frame_equal(result5, good_compare) tm.assert_frame_equal(result6, good_compare) tm.assert_frame_equal(result7, good_compare) def test_default_na_values(self): _NA_VALUES = set(['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', 'nan', '-NaN', '-nan', '#N/A N/A', '']) self.assertEqual(_NA_VALUES, parsers._NA_VALUES) nv = len(_NA_VALUES) def f(i, v): if i == 0: buf = '' elif i > 0: buf = ''.join([','] * i) buf = "{0}{1}".format(buf, v) if i < nv - 1: buf = "{0}{1}".format(buf, ''.join([','] * (nv - i - 1))) return buf data = StringIO('\n'.join([f(i, v) for i, v in enumerate(_NA_VALUES)])) expected = DataFrame(np.nan, columns=range(nv), index=range(nv)) df = self.read_csv(data, header=None) tm.assert_frame_equal(df, expected) def test_custom_na_values(self): data = """A,B,C ignore,this,row 1,NA,3 -1.#IND,5,baz 7,8,NaN """ expected = [[1., nan, 3], [nan, 5, nan], [7, 8, nan]] df = self.read_csv(StringIO(data), na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df.values, expected) df2 = self.read_table(StringIO(data), sep=',', na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df2.values, expected) df3 = self.read_table(StringIO(data), sep=',', na_values='baz', skiprows=[1]) tm.assert_almost_equal(df3.values, expected) def test_nat_parse(self): # GH 3062 df = DataFrame(dict({ 'A': np.asarray(lrange(10), dtype='float64'), 'B': pd.Timestamp('20010101')})) df.iloc[3:6, :] = np.nan with tm.ensure_clean('__nat_parse_.csv') as path: df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) expected = Series(dict(A='float64', B='datetime64[ns]')) tm.assert_series_equal(expected, result.dtypes) # test with NaT for the nan_rep # we don't have a method to specif the Datetime na_rep (it defaults # to '') df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) def test_skiprows_bug(self): # GH #505 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=lrange(6), header=None, index_col=0, parse_dates=True) data2 = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) tm.assert_frame_equal(data, data2) def test_deep_skiprows(self): # GH #4382 text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in range(10)]) condensed_text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in [0, 1, 2, 3, 4, 6, 8, 9]]) data = self.read_csv(StringIO(text), skiprows=[6, 8]) condensed_data = self.read_csv(StringIO(condensed_text)) tm.assert_frame_equal(data, condensed_data) def test_skiprows_blank(self): # GH 9832 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) def test_detect_string_na(self): data = """A,B foo,bar NA,baz NaN,nan """ expected = [['foo', 'bar'], [nan, 'baz'], [nan, nan]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4']) def test_string_nas(self): data = """A,B,C a,b,c d,,f ,g,h """ result = self.read_csv(StringIO(data)) expected = DataFrame([['a', 'b', 'c'], ['d', np.nan, 'f'], [np.nan, 'g', 'h']], columns=['A', 'B', 'C']) tm.assert_frame_equal(result, expected) def test_duplicate_columns(self): for engine in ['python', 'c']: data = """A,A,B,B,B 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ # check default beahviour df = self.read_table(StringIO(data), sep=',', engine=engine) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=False) self.assertEqual(list(df.columns), ['A', 'A', 'B', 'B', 'B']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=True) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ df = self.read_csv(StringIO(data)) # TODO def test_csv_custom_parser(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ f = lambda x: datetime.strptime(x, '%Y%m%d') df = self.read_csv(StringIO(data), date_parser=f) expected = self.read_csv(StringIO(data), parse_dates=True) tm.assert_frame_equal(df, expected) def test_parse_dates_implicit_first_col(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ df = self.read_csv(StringIO(data), parse_dates=True) expected = self.read_csv(StringIO(data), index_col=0, parse_dates=True) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) tm.assert_frame_equal(df, expected) def test_parse_dates_string(self): data = """date,A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ rs = self.read_csv( StringIO(data), index_col='date', parse_dates='date') idx = date_range('1/1/2009', periods=3) idx.name = 'date' xp = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}, idx) tm.assert_frame_equal(rs, xp) def test_yy_format(self): data = """date,time,B,C 090131,0010,1,2 090228,1020,3,4 090331,0830,5,6 """ rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[['date', 'time']]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[[0, 1]]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) def test_parse_dates_column_list(self): from pandas.core.datetools import to_datetime data = '''date;destination;ventilationcode;unitcode;units;aux_date 01/01/2010;P;P;50;1;12/1/2011 01/01/2010;P;R;50;1;13/1/2011 15/01/2010;P;P;50;1;14/1/2011 01/05/2010;P;P;50;1;15/1/2011''' expected = self.read_csv(StringIO(data), sep=";", index_col=lrange(4)) lev = expected.index.levels[0] levels = list(expected.index.levels) levels[0] = lev.to_datetime(dayfirst=True) # hack to get this to work - remove for final test levels[0].name = lev.name expected.index.set_levels(levels, inplace=True) expected['aux_date'] = to_datetime(expected['aux_date'], dayfirst=True) expected['aux_date'] = lmap(Timestamp, expected['aux_date']) tm.assertIsInstance(expected['aux_date'][0], datetime) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=[0, 5], dayfirst=True) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=['date', 'aux_date'], dayfirst=True) tm.assert_frame_equal(df, expected) def test_no_header(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df = self.read_table(StringIO(data), sep=',', header=None) df_pref = self.read_table(StringIO(data), sep=',', prefix='X', header=None) names = ['foo', 'bar', 'baz', 'quux', 'panda'] df2 = self.read_table(StringIO(data), sep=',', names=names) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df.values, expected) tm.assert_almost_equal(df.values, df2.values) self.assert_numpy_array_equal(df_pref.columns, ['X0', 'X1', 'X2', 'X3', 'X4']) self.assert_numpy_array_equal(df.columns, lrange(5)) self.assert_numpy_array_equal(df2.columns, names) def test_no_header_prefix(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df_pref = self.read_table(StringIO(data), sep=',', prefix='Field', header=None) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df_pref.values, expected) self.assert_numpy_array_equal(df_pref.columns, ['Field0', 'Field1', 'Field2', 'Field3', 'Field4']) def test_header_with_index_col(self): data = """foo,1,2,3 bar,4,5,6 baz,7,8,9 """ names = ['A', 'B', 'C'] df = self.read_csv(StringIO(data), names=names) self.assertEqual(names, ['A', 'B', 'C']) values = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] expected = DataFrame(values, index=['foo', 'bar', 'baz'], columns=['A', 'B', 'C']) tm.assert_frame_equal(df, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D']) self.assertEqual(df.index.name, 'index') self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D', 'E']) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.ix[:, ['A', 'B', 'C', 'D'] ].values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_infer_compression(self): # GH 9770 expected = self.read_csv(self.csv1, index_col=0, parse_dates=True) inputs = [self.csv1, self.csv1 + '.gz', self.csv1 + '.bz2', open(self.csv1)] for f in inputs: df = self.read_csv(f, index_col=0, parse_dates=True, compression='infer') tm.assert_frame_equal(expected, df) inputs[3].close() def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = read_table(fin, sep=";", encoding="utf-8", header=None) tm.assertIsInstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ self.assertRaises(Exception, self.read_csv, StringIO(data)) def test_read_table_duplicate_index(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index('index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_table_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # it works! result = self.read_csv(StringIO(data)) def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.float64) self.assertEqual(data['B'].dtype, np.int64) def test_infer_index_col(self): data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ data = self.read_csv(StringIO(data)) self.assertTrue(data.index.equals(Index(['foo', 'bar', 'baz']))) def test_read_nrows(self): df = self.read_csv(StringIO(self.data1), nrows=3) expected = self.read_csv(StringIO(self.data1))[:3] tm.assert_frame_equal(df, expected) def test_read_chunksize(self): reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_read_chunksize_named(self): reader = self.read_csv( StringIO(self.data1), index_col='index', chunksize=2) df = self.read_csv(StringIO(self.data1), index_col='index') chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_get_chunk_passed_chunksize(self): data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" result = self.read_csv(StringIO(data), chunksize=2) piece = result.get_chunk() self.assertEqual(len(piece), 2) def test_read_text_list(self): data = """A,B,C\nfoo,1,2,3\nbar,4,5,6""" as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'], ['bar', '4', '5', '6']] df = self.read_csv(StringIO(data), index_col=0) parser = TextParser(as_list, index_col=0, chunksize=2) chunk = parser.read(None) tm.assert_frame_equal(chunk, df) def test_iterator(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) # test bad parameter (skip_footer) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skip_footer=True) self.assertRaises(ValueError, reader.read, 3) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) tm.assertIsInstance(treader, TextFileReader) # stopping iteration when on chunksize is specified, GH 3967 data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) self.assertEqual(len(result), 3) tm.assert_frame_equal(pd.concat(result), expected) def test_header_not_first_line(self): data = """got,to,ignore,this,line got,to,ignore,this,line index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ data2 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ df = self.read_csv(StringIO(data), header=2, index_col=0) expected = self.read_csv(StringIO(data2), header=0, index_col=0) tm.assert_frame_equal(df, expected) def test_header_multi_index(self): expected = tm.makeCustomDataframe( 5, 3, r_idx_nlevels=2, c_idx_nlevels=4) data = """\ C0,,C_l0_g0,C_l0_g1,C_l0_g2 C1,,C_l1_g0,C_l1_g1,C_l1_g2 C2,,C_l2_g0,C_l2_g1,C_l2_g2 C3,,C_l3_g0,C_l3_g1,C_l3_g2 R0,R1,,, R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2 R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2 R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2 R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2 R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2 """ df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) # skipping lines in the header df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) #### invalid options #### # no as_recarray self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], as_recarray=True, tupleize_cols=False) # names self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], names=['foo', 'bar'], tupleize_cols=False) # usecols self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], usecols=['foo', 'bar'], tupleize_cols=False) # non-numeric index_col self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=['foo', 'bar'], tupleize_cols=False) def test_header_multiindex_common_format(self): df = DataFrame([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], index=['one', 'two'], columns=MultiIndex.from_tuples([('a', 'q'), ('a', 'r'), ('a', 's'), ('b', 't'), ('c', 'u'), ('c', 'v')])) # to_csv data = """,a,a,a,b,c,c ,q,r,s,t,u,v ,,,,,, one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common data = """,a,a,a,b,c,c ,q,r,s,t,u,v one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common, no index_col data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=None) tm.assert_frame_equal(df.reset_index(drop=True), result) # malformed case 1 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[u('a'), u('q')])) data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # malformed case 2 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # mi on columns and index (malformed) expected = DataFrame(np.array([[3, 4, 5, 6], [9, 10, 11, 12]], dtype='int64'), index=MultiIndex(levels=[[1, 7], [2, 8]], labels=[[0, 1], [0, 1]]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('s'), u('t'), u('u'), u('v')]], labels=[[0, 1, 2, 2], [0, 1, 2, 3]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1]) tm.assert_frame_equal(expected, result) def test_pass_names_with_index(self): lines = self.data1.split('\n') no_header = '\n'.join(lines[1:]) # regular index names = ['index', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=0, names=names) expected = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(df, expected) # multi index data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['index1', 'index2', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), index_col=['index1', 'index2']) tm.assert_frame_equal(df, expected) def test_multi_index_no_level_names(self): data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ data2 = """A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], header=None, names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected, check_names=False) # 2 implicit first cols df2 = self.read_csv(StringIO(data2)) tm.assert_frame_equal(df2, df) # reverse order of index df = self.read_csv(StringIO(no_header), index_col=[1, 0], names=names, header=None) expected = self.read_csv(StringIO(data), index_col=[1, 0]) tm.assert_frame_equal(df, expected, check_names=False) def test_multi_index_parse_dates(self): data = """index1,index2,A,B,C 20090101,one,a,1,2 20090101,two,b,3,4 20090101,three,c,4,5 20090102,one,a,1,2 20090102,two,b,3,4 20090102,three,c,4,5 20090103,one,a,1,2 20090103,two,b,3,4 20090103,three,c,4,5 """ df = self.read_csv(StringIO(data), index_col=[0, 1], parse_dates=True) self.assertIsInstance(df.index.levels[0][0], (datetime, np.datetime64, Timestamp)) # specify columns out of order! df2 = self.read_csv(StringIO(data), index_col=[1, 0], parse_dates=True) self.assertIsInstance(df2.index.levels[1][0], (datetime, np.datetime64, Timestamp)) def test_skip_footer(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): data = """A,B,C 1,2,3 4,5,6 7,8,9 want to skip this also also skip this """ result = self.read_csv(StringIO(data), skip_footer=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), nrows=3) tm.assert_frame_equal(result, expected) # skipfooter alias result = read_csv(StringIO(data), skipfooter=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) def test_no_unnamed_index(self): data = """ id c0 c1 c2 0 1 0 a b 1 2 0 c d 2 2 2 e f """ df = self.read_table(StringIO(data), sep=' ') self.assertIsNone(df.index.name) def test_converters(self): data = """A,B,C,D a,1,2,01/01/2009 b,3,4,01/02/2009 c,4,5,01/03/2009 """ from pandas.compat import parse_date result = self.read_csv(StringIO(data), converters={'D': parse_date}) result2 = self.read_csv(StringIO(data), converters={3: parse_date}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(parse_date) tm.assertIsInstance(result['D'][0], (datetime, Timestamp)) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # produce integer converter = lambda x: int(x.split('/')[2]) result = self.read_csv(StringIO(data), converters={'D': converter}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(converter) tm.assert_frame_equal(result, expected) def test_converters_no_implicit_conv(self): # GH2184 data = """000102,1.2,A\n001245,2,B""" f = lambda x: x.strip() converter = {0: f} df = self.read_csv(StringIO(data), header=None, converters=converter) self.assertEqual(df[0].dtype, object) def test_converters_euro_decimal_format(self): data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) self.assertEqual(df2['Number2'].dtype, float) self.assertEqual(df2['Number3'].dtype, float) def test_converter_return_string_bug(self): # GH #583 data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) def test_read_table_buglet_4x_multiindex(self): # GH 6607 # Parsing multi-level index currently causes an error in the C parser. # Temporarily copied to TestPythonParser. # Here test that CParserError is raised: with tm.assertRaises(pandas.parser.CParserError): text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" # it works! df = self.read_table(StringIO(text), sep='\s+') self.assertEqual(df.index.names, ('one', 'two', 'three', 'four')) def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) def test_comment_skiprows(self): data = """# empty random line # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # this should ignore the first four lines (including comments) df = self.read_csv(StringIO(data), comment='#', skiprows=4) tm.assert_almost_equal(df.values, expected) def test_comment_header(self): data = """# empty # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # header should begin at the second non-comment line df = self.read_csv(StringIO(data), comment='#', header=1) tm.assert_almost_equal(df.values, expected) def test_comment_skiprows_header(self): data = """# empty # second empty line # third empty line X,Y,Z 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # skiprows should skip the first 4 lines (including comments), while # header should start from the second non-commented line starting # with line 5 df = self.read_csv(StringIO(data), comment='#', skiprows=4, header=1) tm.assert_almost_equal(df.values, expected) def test_read_csv_parse_simple_list(self): text = """foo bar baz qux foo foo bar""" df = read_csv(StringIO(text), header=None) expected = DataFrame({0: ['foo', 'bar baz', 'qux foo', 'foo', 'bar']}) tm.assert_frame_equal(df, expected) def test_parse_dates_custom_euroformat(self): text = """foo,bar,baz 31/01/2010,1,2 01/02/2010,1,NA 02/02/2010,1,2 """ parser = lambda d: parse_date(d, dayfirst=True) df = self.read_csv(StringIO(text), names=['time', 'Q', 'NTU'], header=0, index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) exp_index = Index([datetime(2010, 1, 31), datetime(2010, 2, 1), datetime(2010, 2, 2)], name='time') expected = DataFrame({'Q': [1, 1, 1], 'NTU': [2, np.nan, 2]}, index=exp_index, columns=['Q', 'NTU']) tm.assert_frame_equal(df, expected) parser = lambda d: parse_date(d, day_first=True) self.assertRaises(Exception, self.read_csv, StringIO(text), skiprows=[0], names=['time', 'Q', 'NTU'], index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) def test_na_value_dict(self): data = """A,B,C foo,bar,NA bar,foo,foo foo,bar,NA bar,foo,foo""" df = self.read_csv(StringIO(data), na_values={'A': ['foo'], 'B': ['bar']}) expected = DataFrame({'A': [np.nan, 'bar', np.nan, 'bar'], 'B': [np.nan, 'foo', np.nan, 'foo'], 'C': [np.nan, 'foo', np.nan, 'foo']}) tm.assert_frame_equal(df, expected) data = """\ a,b,c,d 0,NA,1,5 """ xp = DataFrame({'b': [np.nan], 'c': [1], 'd': [5]}, index=[0]) xp.index.name = 'a' df = self.read_csv(StringIO(data), na_values={}, index_col=0) tm.assert_frame_equal(df, xp) xp = DataFrame({'b': [np.nan], 'd': [5]}, MultiIndex.from_tuples([(0, 1)])) xp.index.names = ['a', 'c'] df = self.read_csv(StringIO(data), na_values={}, index_col=[0, 2]) tm.assert_frame_equal(df, xp) xp = DataFrame({'b': [np.nan], 'd': [5]}, MultiIndex.from_tuples([(0, 1)])) xp.index.names = ['a', 'c'] df = self.read_csv(StringIO(data), na_values={}, index_col=['a', 'c']) tm.assert_frame_equal(df, xp) @tm.network def test_url(self): # HTTP(S) url = ('https://raw.github.com/pydata/pandas/master/' 'pandas/io/tests/data/salary.table') url_table = self.read_table(url) dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salary.table') local_table = self.read_table(localtable) tm.assert_frame_equal(url_table, local_table) # TODO: ftp testing @slow def test_file(self): # FILE if sys.version_info[:2] < (2, 6): raise nose.SkipTest("file:// not supported with Python < 2.6") dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salary.table') local_table = self.read_table(localtable) try: url_table = self.read_table('file://localhost/' + localtable) except URLError: # fails on some systems raise nose.SkipTest("failing on %s" % ' '.join(platform.uname()).strip()) tm.assert_frame_equal(url_table, local_table) def test_parse_tz_aware(self): import pytz # #1693 data = StringIO("Date,x\n2012-06-13T01:39:00Z,0.5") # it works result = read_csv(data, index_col=0, parse_dates=True) stamp = result.index[0] self.assertEqual(stamp.minute, 39) try: self.assertIs(result.index.tz, pytz.utc) except AssertionError: # hello Yaroslav arr = result.index.to_pydatetime() result = tools.to_datetime(arr, utc=True)[0] self.assertEqual(stamp.minute, result.minute) self.assertEqual(stamp.hour, result.hour) self.assertEqual(stamp.day, result.day) def test_multiple_date_cols_index(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" xp = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}, index_col='nominal') tm.assert_frame_equal(xp.set_index('nominal'), df) df2 = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}, index_col=0) tm.assert_frame_equal(df2, df) df3 = self.read_csv(StringIO(data), parse_dates=[[1, 2]], index_col=0) tm.assert_frame_equal(df3, df, check_names=False) def test_multiple_date_cols_chunked(self): df = self.read_csv(StringIO(self.ts_data), parse_dates={ 'nominal': [1, 2]}, index_col='nominal') reader = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col='nominal', chunksize=2) chunks = list(reader) self.assertNotIn('nominalTime', df) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_multiple_date_col_named_components(self): xp = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col='nominal') colspec = {'nominal': ['date', 'nominalTime']} df = self.read_csv(StringIO(self.ts_data), parse_dates=colspec, index_col='nominal') tm.assert_frame_equal(df, xp) def test_multiple_date_col_multiple_index(self): df = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col=['nominal', 'ID']) xp = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}) tm.assert_frame_equal(xp.set_index(['nominal', 'ID']), df) def test_comment(self): data = """A,B,C 1,2.,4.#hello world 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) df = self.read_table(StringIO(data), sep=',', comment='#', na_values=['NaN']) tm.assert_almost_equal(df.values, expected) def test_bool_na_values(self): data = """A,B,C True,False,True NA,True,False False,NA,True""" result = self.read_csv(StringIO(data)) expected = DataFrame({'A': np.array([True, nan, False], dtype=object), 'B': np.array([False, True, nan], dtype=object), 'C': [True, False, True]}) tm.assert_frame_equal(result, expected) def test_nonexistent_path(self): # don't segfault pls #2428 path = '%s.csv' % tm.rands(10) self.assertRaises(Exception, self.read_csv, path) def test_missing_trailing_delimiters(self): data = """A,B,C,D 1,2,3,4 1,3,3, 1,4,5""" result = self.read_csv(StringIO(data)) self.assertTrue(result['D'].isnull()[1:].all()) def test_skipinitialspace(self): s = ('"09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, ' '1.00361, 1.12551, 330.65659, 0355626618.16711, 73.48821, ' '314.11625, 1917.09447, 179.71425, 80.000, 240.000, -350, ' '70.06056, 344.98370, 1, 1, -0.689265, -0.692787, ' '0.212036, 14.7674, 41.605, -9999.0, -9999.0, ' '-9999.0, -9999.0, -9999.0, -9999.0, 000, 012, 128') sfile = StringIO(s) # it's 33 columns result = self.read_csv(sfile, names=lrange(33), na_values=['-9999.0'], header=None, skipinitialspace=True) self.assertTrue(pd.isnull(result.ix[0, 29])) def test_utf16_bom_skiprows(self): # #2298 data = u("""skip this skip this too A\tB\tC 1\t2\t3 4\t5\t6""") data2 = u("""skip this skip this too A,B,C 1,2,3 4,5,6""") path = '__%s__.csv' % tm.rands(10) with tm.ensure_clean(path) as path: for sep, dat in [('\t', data), (',', data2)]: for enc in ['utf-16', 'utf-16le', 'utf-16be']: bytes = dat.encode(enc) with open(path, 'wb') as f: f.write(bytes) s = BytesIO(dat.encode('utf-8')) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') result = self.read_csv(path, encoding=enc, skiprows=2, sep=sep) expected = self.read_csv(s, encoding='utf-8', skiprows=2, sep=sep) tm.assert_frame_equal(result, expected) def test_utf16_example(self): path = tm.get_data_path('utf16_ex.txt') # it works! and is the right length result = self.read_table(path, encoding='utf-16') self.assertEqual(len(result), 50) if not compat.PY3: buf = BytesIO(open(path, 'rb').read()) result = self.read_table(buf, encoding='utf-16') self.assertEqual(len(result), 50) def test_converters_corner_with_nas(self): # skip aberration observed on Win64 Python 3.2.2 if hash(np.int64(-1)) != -2: raise nose.SkipTest("skipping because of windows hash on Python" " 3.2.2") csv = """id,score,days 1,2,12 2,2-5, 3,,14+ 4,6-12,2""" def convert_days(x): x = x.strip() if not x: return np.nan is_plus = x.endswith('+') if is_plus: x = int(x[:-1]) + 1 else: x = int(x) return x def convert_days_sentinel(x): x = x.strip() if not x: return np.nan is_plus = x.endswith('+') if is_plus: x = int(x[:-1]) + 1 else: x = int(x) return x def convert_score(x): x = x.strip() if not x: return np.nan if x.find('-') > 0: valmin, valmax = lmap(int, x.split('-')) val = 0.5 * (valmin + valmax) else: val = float(x) return val fh = StringIO(csv) result = self.read_csv(fh, converters={'score': convert_score, 'days': convert_days}, na_values=['', None]) self.assertTrue(pd.isnull(result['days'][1])) fh = StringIO(csv) result2 = self.read_csv(fh, converters={'score': convert_score, 'days': convert_days_sentinel}, na_values=['', None]) tm.assert_frame_equal(result, result2) def test_unicode_encoding(self): pth = tm.get_data_path('unicode_series.csv') result = self.read_csv(pth, header=None, encoding='latin-1') result = result.set_index(0) got = result[1][1632] expected = u('\xc1 k\xf6ldum klaka (Cold Fever) (1994)') self.assertEqual(got, expected) def test_trailing_delimiters(self): # #2442. grumble grumble data = """A,B,C 1,2,3, 4,5,6, 7,8,9,""" result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame({'A': [1, 4, 7], 'B': [2, 5, 8], 'C': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_escapechar(self): # http://stackoverflow.com/questions/13824840/feature-request-for- # pandas-read-csv data = '''SEARCH_TERM,ACTUAL_URL "bra tv bord","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "tv p\xc3\xa5 hjul","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "SLAGBORD, \\"Bergslagen\\", IKEA:s 1700-tals serie","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord"''' result = self.read_csv(StringIO(data), escapechar='\\', quotechar='"', encoding='utf-8') self.assertEqual(result['SEARCH_TERM'][2], 'SLAGBORD, "Bergslagen", IKEA:s 1700-tals serie') self.assertTrue(np.array_equal(result.columns, ['SEARCH_TERM', 'ACTUAL_URL'])) def test_header_names_backward_compat(self): # #2539 data = '1,2,3\n4,5,6' result = self.read_csv(StringIO(data), names=['a', 'b', 'c']) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) tm.assert_frame_equal(result, expected) data2 = 'foo,bar,baz\n' + data result = self.read_csv(StringIO(data2), names=['a', 'b', 'c'], header=0) tm.assert_frame_equal(result, expected) def test_int64_min_issues(self): # #2599 data = 'A,B\n0,0\n0,' result = self.read_csv(StringIO(data)) expected = DataFrame({'A': [0, 0], 'B': [0, np.nan]}) tm.assert_frame_equal(result, expected) def test_parse_integers_above_fp_precision(self): data = """Numbers 17007000002000191 17007000002000191 17007000002000191 17007000002000191 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000194""" result = self.read_csv(StringIO(data)) expected = DataFrame({'Numbers': [17007000002000191, 17007000002000191, 17007000002000191, 17007000002000191, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000194]}) self.assertTrue(np.array_equal(result['Numbers'], expected['Numbers'])) def test_usecols_index_col_conflict(self): # Issue 4201 Test that index_col as integer reflects usecols data = """SecId,Time,Price,P2,P3 10000,2013-5-11,100,10,1 500,2013-5-12,101,11,1 """ expected = DataFrame({'Price': [100, 101]}, index=[ datetime(2013, 5, 11), datetime(2013, 5, 12)]) expected.index.name = 'Time' df = self.read_csv(StringIO(data), usecols=[ 'Time', 'Price'], parse_dates=True, index_col=0) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 'Time', 'Price'], parse_dates=True, index_col='Time') tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 1, 2], parse_dates=True, index_col='Time') tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 1, 2], parse_dates=True, index_col=0) tm.assert_frame_equal(expected, df) expected = DataFrame( {'P3': [1, 1], 'Price': (100, 101), 'P2': (10, 11)}) expected = expected.set_index(['Price', 'P2']) df = self.read_csv(StringIO(data), usecols=[ 'Price', 'P2', 'P3'], parse_dates=True, index_col=['Price', 'P2']) tm.assert_frame_equal(expected, df) def test_chunks_have_consistent_numerical_type(self): integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ["1.0", "2.0"] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) # Assert that types were coerced. self.assertTrue(type(df.a[0]) is np.float64) self.assertEqual(df.a.dtype, np.float) def test_warn_if_chunks_have_mismatched_type(self): # See test in TestCParserLowMemory. integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ['a', 'b'] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) self.assertEqual(df.a.dtype, np.object) def test_usecols(self): data = """\ a,b,c 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), usecols=(1, 2)) result2 = self.read_csv(StringIO(data), usecols=('b', 'c')) exp = self.read_csv(StringIO(data)) self.assertEqual(len(result.columns), 2) self.assertTrue((result['b'] == exp['b']).all()) self.assertTrue((result['c'] == exp['c']).all()) tm.assert_frame_equal(result, result2) result = self.read_csv(StringIO(data), usecols=[1, 2], header=0, names=['foo', 'bar']) expected = self.read_csv(StringIO(data), usecols=[1, 2]) expected.columns = ['foo', 'bar'] tm.assert_frame_equal(result, expected) data = """\ 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), names=['b', 'c'], header=None, usecols=[1, 2]) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) expected = expected[['b', 'c']] tm.assert_frame_equal(result, expected) result2 = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None, usecols=['b', 'c']) tm.assert_frame_equal(result2, result) # 5766 result = self.read_csv(StringIO(data), names=['a', 'b'], header=None, usecols=[0, 1]) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) expected = expected[['a', 'b']] tm.assert_frame_equal(result, expected) # length conflict, passed names and usecols disagree self.assertRaises(ValueError, self.read_csv, StringIO(data), names=['a', 'b'], usecols=[1], header=None) def test_integer_overflow_bug(self): # #2601 data = "65248E10 11\n55555E55 22\n" result = self.read_csv(StringIO(data), header=None, sep=' ') self.assertTrue(result[0].dtype == np.float64) result = self.read_csv(StringIO(data), header=None, sep='\s+') self.assertTrue(result[0].dtype == np.float64) def test_catch_too_many_names(self): # Issue 5156 data = """\ 1,2,3 4,,6 7,8,9 10,11,12\n""" tm.assertRaises(Exception, read_csv, StringIO(data), header=0, names=['a', 'b', 'c', 'd']) def test_ignore_leading_whitespace(self): # GH 6607, GH 3374 data = ' a b c\n 1 2 3\n 4 5 6\n 7 8 9' result = self.read_table(StringIO(data), sep='\s+') expected = DataFrame({'a': [1, 4, 7], 'b': [2, 5, 8], 'c': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_nrows_and_chunksize_raises_notimplemented(self): data = 'a b c' self.assertRaises(NotImplementedError, self.read_csv, StringIO(data), nrows=10, chunksize=5) def test_single_char_leading_whitespace(self): # GH 9710 data = """\ MyColumn a b a b\n""" expected = DataFrame({'MyColumn': list('abab')}) result = self.read_csv(StringIO(data), skipinitialspace=True) tm.assert_frame_equal(result, expected) def test_chunk_begins_with_newline_whitespace(self): # GH 10022 data = '\n hello\nworld\n' result = self.read_csv(StringIO(data), header=None) self.assertEqual(len(result), 2) # GH 9735 chunk1 = 'a' * (1024 * 256 - 2) + '\na' chunk2 = '\n a' result = pd.read_csv(StringIO(chunk1 + chunk2), header=None) expected = pd.DataFrame(['a' * (1024 * 256 - 2), 'a', ' a']) tm.assert_frame_equal(result, expected) def test_empty_with_index(self): # GH 10184 data = 'x,y' result = self.read_csv(StringIO(data), index_col=0) expected = DataFrame([], columns=['y'], index=Index([], name='x')) tm.assert_frame_equal(result, expected) def test_emtpy_with_multiindex(self): # GH 10467 data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=['x', 'y']) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_reversed_multiindex(self): data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=[1, 0]) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_index_col_scenarios(self): data = 'x,y,z' # None, no index index_col, expected = None, DataFrame([], columns=list('xyz')), tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # False, no index index_col, expected = False, DataFrame([], columns=list('xyz')), tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # int, first column index_col, expected = 0, DataFrame( [], columns=['y', 'z'], index=Index([], name='x')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # int, not first column index_col, expected = 1, DataFrame( [], columns=['x', 'z'], index=Index([], name='y')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # str, first column index_col, expected = 'x', DataFrame( [], columns=['y', 'z'], index=Index([], name='x')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # str, not the first column index_col, expected = 'y', DataFrame( [], columns=['x', 'z'], index=Index([], name='y')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # list of int index_col, expected = [0, 1], DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of str index_col = ['x', 'y'] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of int, reversed sequence index_col = [1, 0] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of str, reversed sequence index_col = ['y', 'x'] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) def test_empty_with_index_col_false(self): # GH 10413 data = 'x,y' result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame([], columns=['x', 'y']) tm.assert_frame_equal(result, expected) def test_float_parser(self): # GH 9565 data = '45e-1,4.5,45.,inf,-inf' result = self.read_csv(StringIO(data), header=None) expected = pd.DataFrame([[float(s) for s in data.split(',')]]) tm.assert_frame_equal(result, expected) def test_int64_overflow(self): data = """ID 00013007854817840016671868 00013007854817840016749251 00013007854817840016754630 00013007854817840016781876 00013007854817840017028824 00013007854817840017963235 00013007854817840018860166""" result = self.read_csv(StringIO(data)) self.assertTrue(result['ID'].dtype == object) self.assertRaises((OverflowError, pandas.parser.OverflowError), self.read_csv, StringIO(data), converters={'ID': np.int64}) # Just inside int64 range: parse as integer i_max = np.iinfo(np.int64).max i_min = np.iinfo(np.int64).min for x in [i_max, i_min]: result = pd.read_csv(StringIO(str(x)), header=None) expected = pd.DataFrame([x]) tm.assert_frame_equal(result, expected) # Just outside int64 range: parse as string too_big = i_max + 1 too_small = i_min - 1 for x in [too_big, too_small]: result = pd.read_csv(StringIO(str(x)), header=None) expected = pd.DataFrame([str(x)]) tm.assert_frame_equal(result, expected) def test_empty_with_nrows_chunksize(self): # GH 9535 expected = pd.DataFrame([], columns=['foo', 'bar']) result = self.read_csv(StringIO('foo,bar\n'), nrows=10) tm.assert_frame_equal(result, expected) result = next(iter(pd.read_csv(StringIO('foo,bar\n'), chunksize=10))) tm.assert_frame_equal(result, expected) result = pd.read_csv(StringIO('foo,bar\n'), nrows=10, as_recarray=True) result = pd.DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(pd.DataFrame.from_records( result), expected, check_index_type=False) result = next( iter(pd.read_csv(StringIO('foo,bar\n'), chunksize=10, as_recarray=True))) result = pd.DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(pd.DataFrame.from_records( result), expected, check_index_type=False) def test_eof_states(self): # GH 10728 and 10548 # With skip_blank_lines = True expected = pd.DataFrame([[4, 5, 6]], columns=['a', 'b', 'c']) # GH 10728 # WHITESPACE_LINE data = 'a,b,c\n4,5,6\n ' result = self.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) # GH 10548 # EAT_LINE_COMMENT data = 'a,b,c\n4,5,6\n#comment' result = self.read_csv(StringIO(data), comment='#') tm.assert_frame_equal(result, expected) # EAT_CRNL_NOP data = 'a,b,c\n4,5,6\n\r' result = self.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) # EAT_COMMENT data = 'a,b,c\n4,5,6#comment' result = self.read_csv(StringIO(data), comment='#') tm.assert_frame_equal(result, expected) # SKIP_LINE data = 'a,b,c\n4,5,6\nskipme' result = self.read_csv(StringIO(data), skiprows=[2]) tm.assert_frame_equal(result, expected) # With skip_blank_lines = False # EAT_LINE_COMMENT data = 'a,b,c\n4,5,6\n#comment' result = self.read_csv( StringIO(data), comment='#', skip_blank_lines=False) expected = pd.DataFrame([[4, 5, 6]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # IN_FIELD data = 'a,b,c\n4,5,6\n ' result = self.read_csv(StringIO(data), skip_blank_lines=False) expected = pd.DataFrame( [['4', 5, 6], [' ', None, None]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # EAT_CRNL data = 'a,b,c\n4,5,6\n\r' result = self.read_csv(StringIO(data), skip_blank_lines=False) expected = pd.DataFrame( [[4, 5, 6], [None, None, None]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # Should produce exceptions # ESCAPED_CHAR data = "a,b,c\n4,5,6\n\\" self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') # ESCAPE_IN_QUOTED_FIELD data = 'a,b,c\n4,5,6\n"\\' self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') # IN_QUOTED_FIELD data = 'a,b,c\n4,5,6\n"' self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') class TestPythonParser(ParserTests, tm.TestCase): def test_negative_skipfooter_raises(self): text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ with tm.assertRaisesRegexp(ValueError, 'skip footer cannot be negative'): df = self.read_csv(StringIO(text), skipfooter=-1) def read_csv(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'python' return read_csv(*args, **kwds) def read_table(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'python' return read_table(*args, **kwds) def test_sniff_delimiter(self): text = """index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """ data = self.read_csv(StringIO(text), index_col=0, sep=None) self.assertTrue(data.index.equals(Index(['foo', 'bar', 'baz']))) data2 = self.read_csv(StringIO(text), index_col=0, delimiter='|') tm.assert_frame_equal(data, data2) text = """ignore this ignore this too index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """ data3 = self.read_csv(StringIO(text), index_col=0, sep=None, skiprows=2) tm.assert_frame_equal(data, data3) text = u("""ignore this ignore this too index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """).encode('utf-8') s = BytesIO(text) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') data4 = self.read_csv(s, index_col=0, sep=None, skiprows=2, encoding='utf-8') tm.assert_frame_equal(data, data4) def test_regex_separator(self): data = """ A B C D a 1 2 3 4 b 1 2 3 4 c 1 2 3 4 """ df = self.read_table(StringIO(data), sep='\s+') expected = self.read_csv(StringIO(re.sub('[ ]+', ',', data)), index_col=0) self.assertIsNone(expected.index.name) tm.assert_frame_equal(df, expected) def test_1000_fwf(self): data = """ 1 2,334.0 5 10 13 10. """ expected = [[1, 2334., 5], [10, 13, 10]] df = read_fwf(StringIO(data), colspecs=[(0, 3), (3, 11), (12, 16)], thousands=',') tm.assert_almost_equal(df.values, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_comment_fwf(self): data = """ 1 2. 4 #hello world 5 NaN 10.0 """ expected = [[1, 2., 4], [5, np.nan, 10.]] df = read_fwf(StringIO(data), colspecs=[(0, 3), (4, 9), (9, 25)], comment='#') tm.assert_almost_equal(df.values, expected) def test_fwf(self): data_expected = """\ 2011,58,360.242940,149.910199,11950.7 2011,59,444.953632,166.985655,11788.4 2011,60,364.136849,183.628767,11806.2 2011,61,413.836124,184.375703,11916.8 2011,62,502.953953,173.237159,12468.3 """ expected = self.read_csv(StringIO(data_expected), header=None) data1 = """\ 201158 360.242940 149.910199 11950.7 201159 444.953632 166.985655 11788.4 201160 364.136849 183.628767 11806.2 201161 413.836124 184.375703 11916.8 201162 502.953953 173.237159 12468.3 """ colspecs = [(0, 4), (4, 8), (8, 20), (21, 33), (34, 43)] df = read_fwf(StringIO(data1), colspecs=colspecs, header=None) tm.assert_frame_equal(df, expected) data2 = """\ 2011 58 360.242940 149.910199 11950.7 2011 59 444.953632 166.985655 11788.4 2011 60 364.136849 183.628767 11806.2 2011 61 413.836124 184.375703 11916.8 2011 62 502.953953 173.237159 12468.3 """ df = read_fwf(StringIO(data2), widths=[5, 5, 13, 13, 7], header=None) tm.assert_frame_equal(df, expected) # From <NAME>: apparently some non-space filler characters can # be seen, this is supported by specifying the 'delimiter' character: # http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.wbit.612.help.config.doc/topics/rfixwidth.html data3 = """\ 201158~~~~360.242940~~~149.910199~~~11950.7 201159~~~~444.953632~~~166.985655~~~11788.4 201160~~~~364.136849~~~183.628767~~~11806.2 201161~~~~413.836124~~~184.375703~~~11916.8 201162~~~~502.953953~~~173.237159~~~12468.3 """ df = read_fwf( StringIO(data3), colspecs=colspecs, delimiter='~', header=None) tm.assert_frame_equal(df, expected) with tm.assertRaisesRegexp(ValueError, "must specify only one of"): read_fwf(StringIO(data3), colspecs=colspecs, widths=[6, 10, 10, 7]) with tm.assertRaisesRegexp(ValueError, "Must specify either"): read_fwf(StringIO(data3), colspecs=None, widths=None) def test_fwf_colspecs_is_list_or_tuple(self): with tm.assertRaisesRegexp(TypeError, 'column specifications must be a list or ' 'tuple.+'): pd.io.parsers.FixedWidthReader(StringIO(self.data1), {'a': 1}, ',', '#') def test_fwf_colspecs_is_list_or_tuple_of_two_element_tuples(self): with tm.assertRaisesRegexp(TypeError, 'Each column specification must be.+'): read_fwf(StringIO(self.data1), [('a', 1)]) def test_fwf_colspecs_None(self): # GH 7079 data = """\ 123456 456789 """ colspecs = [(0, 3), (3, None)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123, 456], [456, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(None, 3), (3, 6)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123, 456], [456, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(0, None), (3, None)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123456, 456], [456789, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(None, None), (3, 6)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123456, 456], [456789, 789]]) tm.assert_frame_equal(result, expected) def test_fwf_regression(self): # GH 3594 # turns out 'T060' is parsable as a datetime slice! tzlist = [1, 10, 20, 30, 60, 80, 100] ntz = len(tzlist) tcolspecs = [16] + [8] * ntz tcolnames = ['SST'] + ["T%03d" % z for z in tzlist[1:]] data = """ 2009164202000 9.5403 9.4105 8.6571 7.8372 6.0612 5.8843 5.5192 2009164203000 9.5435 9.2010 8.6167 7.8176 6.0804 5.8728 5.4869 2009164204000 9.5873 9.1326 8.4694 7.5889 6.0422 5.8526 5.4657 2009164205000 9.5810 9.0896 8.4009 7.4652 6.0322 5.8189 5.4379 2009164210000 9.6034 9.0897 8.3822 7.4905 6.0908 5.7904 5.4039 """ df = read_fwf(StringIO(data), index_col=0, header=None, names=tcolnames, widths=tcolspecs, parse_dates=True, date_parser=lambda s: datetime.strptime(s, '%Y%j%H%M%S')) for c in df.columns: res = df.loc[:, c] self.assertTrue(len(res)) def test_fwf_for_uint8(self): data = """1421302965.213420 PRI=3 PGN=0xef00 DST=0x17 SRC=0x28 04 154 00 00 00 00 00 127 1421302964.226776 PRI=6 PGN=0xf002 SRC=0x47 243 00 00 255 247 00 00 71""" df = read_fwf(StringIO(data), colspecs=[(0, 17), (25, 26), (33, 37), (49, 51), (58, 62), (63, 1000)], names=['time', 'pri', 'pgn', 'dst', 'src', 'data'], converters={ 'pgn': lambda x: int(x, 16), 'src': lambda x: int(x, 16), 'dst': lambda x: int(x, 16), 'data': lambda x: len(x.split(' '))}) expected = DataFrame([[1421302965.213420, 3, 61184, 23, 40, 8], [1421302964.226776, 6, 61442, None, 71, 8]], columns=["time", "pri", "pgn", "dst", "src", "data"]) expected["dst"] = expected["dst"].astype(object) tm.assert_frame_equal(df, expected) def test_fwf_compression(self): try: import gzip import bz2 except ImportError: raise nose.SkipTest("Need gzip and bz2 to run this test") data = """1111111111 2222222222 3333333333""".strip() widths = [5, 5] names = ['one', 'two'] expected = read_fwf(StringIO(data), widths=widths, names=names) if compat.PY3: data = bytes(data, encoding='utf-8') comps = [('gzip', gzip.GzipFile), ('bz2', bz2.BZ2File)] for comp_name, compresser in comps: with tm.ensure_clean() as path: tmp = compresser(path, mode='wb') tmp.write(data) tmp.close() result = read_fwf(path, widths=widths, names=names, compression=comp_name) tm.assert_frame_equal(result, expected) def test_BytesIO_input(self): if not compat.PY3: raise nose.SkipTest( "Bytes-related test - only needs to work on Python 3") result = pd.read_fwf(BytesIO("ืฉืœื•ื\nืฉืœื•ื".encode('utf8')), widths=[ 2, 2], encoding='utf8') expected = pd.DataFrame([["ืฉืœ", "ื•ื"]], columns=["ืฉืœ", "ื•ื"]) tm.assert_frame_equal(result, expected) data = BytesIO("ืฉืœื•ื::1234\n562::123".encode('cp1255')) result = pd.read_table(data, sep="::", engine='python', encoding='cp1255') expected = pd.DataFrame([[562, 123]], columns=["ืฉืœื•ื", "1234"]) tm.assert_frame_equal(result, expected) def test_verbose_import(self): text = """a,b,c,d one,1,2,3 one,1,2,3 ,1,2,3 one,1,2,3 ,1,2,3 ,1,2,3 one,1,2,3 two,1,2,3""" buf = StringIO() sys.stdout = buf try: # it works! df = self.read_csv(StringIO(text), verbose=True) self.assertEqual( buf.getvalue(), 'Filled 3 NA values in column a\n') finally: sys.stdout = sys.__stdout__ buf = StringIO() sys.stdout = buf text = """a,b,c,d one,1,2,3 two,1,2,3 three,1,2,3 four,1,2,3 five,1,2,3 ,1,2,3 seven,1,2,3 eight,1,2,3""" try: # it works! df = self.read_csv(StringIO(text), verbose=True, index_col=0) self.assertEqual( buf.getvalue(), 'Filled 1 NA values in column a\n') finally: sys.stdout = sys.__stdout__ def test_float_precision_specified(self): # Should raise an error if float_precision (C parser option) is # specified with tm.assertRaisesRegexp(ValueError, "The 'float_precision' option " "is not supported with the 'python' engine"): self.read_csv(StringIO('a,b,c\n1,2,3'), float_precision='high') def test_iteration_open_handle(self): if PY3: raise nose.SkipTest( "won't work in Python 3 {0}".format(sys.version_info)) with tm.ensure_clean() as path: with open(path, 'wb') as f: f.write('AAA\nBBB\nCCC\nDDD\nEEE\nFFF\nGGG') with open(path, 'rb') as f: for line in f: if 'CCC' in line: break try: read_table(f, squeeze=True, header=None, engine='c') except Exception: pass else: raise ValueError('this should not happen') result = read_table(f, squeeze=True, header=None, engine='python') expected = Series(['DDD', 'EEE', 'FFF', 'GGG'], name=0) tm.assert_series_equal(result, expected) def test_iterator(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) # test bad parameter (skip_footer) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skip_footer=True) self.assertRaises(ValueError, reader.read, 3) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) tm.assertIsInstance(treader, TextFileReader) # stopping iteration when on chunksize is specified, GH 3967 data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) self.assertEqual(len(result), 3) tm.assert_frame_equal(pd.concat(result), expected) def test_single_line(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_malformed(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_skip_footer(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed data = """A,B,C 1,2,3 4,5,6 7,8,9 want to skip this also also skip this """ result = self.read_csv(StringIO(data), skip_footer=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), nrows=3) tm.assert_frame_equal(result, expected) # skipfooter alias result = self.read_csv(StringIO(data), skipfooter=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) def test_decompression_regex_sep(self): # GH 6607 # This is a copy which should eventually be moved to ParserTests # when the issue with the C parser is fixed try: import gzip import bz2 except ImportError: raise nose.SkipTest('need gzip and bz2 to run') data = open(self.csv1, 'rb').read() data = data.replace(b',', b'::') expected = self.read_csv(self.csv1) with tm.ensure_clean() as path: tmp = gzip.GzipFile(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, sep='::', compression='gzip') tm.assert_frame_equal(result, expected) with tm.ensure_clean() as path: tmp = bz2.BZ2File(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, sep='::', compression='bz2') tm.assert_frame_equal(result, expected) self.assertRaises(ValueError, self.read_csv, path, compression='bz3') def test_read_table_buglet_4x_multiindex(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with multi-level index is fixed in the C parser. text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" # it works! df = self.read_table(StringIO(text), sep='\s+') self.assertEqual(df.index.names, ('one', 'two', 'three', 'four')) # GH 6893 data = ' A B C\na b c\n1 3 7 0 3 6\n3 1 4 1 5 9' expected = DataFrame.from_records([(1, 3, 7, 0, 3, 6), (3, 1, 4, 1, 5, 9)], columns=list('abcABC'), index=list('abc')) actual = self.read_table(StringIO(data), sep='\s+') tm.assert_frame_equal(actual, expected) def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) def test_empty_lines(self): data = """\ A,B,C 1,2.,4. 5.,NaN,10.0 -70,.4,1 """ expected = [[1., 2., 4.], [5., np.nan, 10.], [-70., .4, 1.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) df = self.read_csv(StringIO(data.replace(',', ' ')), sep='\s+') tm.assert_almost_equal(df.values, expected) expected = [[1., 2., 4.], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [5., np.nan, 10.], [np.nan, np.nan, np.nan], [-70., .4, 1.]] df = self.read_csv(StringIO(data), skip_blank_lines=False) tm.assert_almost_equal(list(df.values), list(expected)) def test_whitespace_lines(self): data = """ \t \t\t \t A,B,C \t 1,2.,4. 5.,NaN,10.0 """ expected = [[1, 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) class TestFwfColspaceSniffing(tm.TestCase): def test_full_file(self): # File with all values test = '''index A B C 2000-01-03T00:00:00 0.980268513777 3 foo 2000-01-04T00:00:00 1.04791624281 -4 bar 2000-01-05T00:00:00 0.498580885705 73 baz 2000-01-06T00:00:00 1.12020151869 1 foo 2000-01-07T00:00:00 0.487094399463 0 bar 2000-01-10T00:00:00 0.836648671666 2 baz 2000-01-11T00:00:00 0.157160753327 34 foo''' colspecs = ((0, 19), (21, 35), (38, 40), (42, 45)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_full_file_with_missing(self): # File with missing values test = '''index A B C 2000-01-03T00:00:00 0.980268513777 3 foo 2000-01-04T00:00:00 1.04791624281 -4 bar 0.498580885705 73 baz 2000-01-06T00:00:00 1.12020151869 1 foo 2000-01-07T00:00:00 0 bar 2000-01-10T00:00:00 0.836648671666 2 baz 34''' colspecs = ((0, 19), (21, 35), (38, 40), (42, 45)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_full_file_with_spaces(self): # File with spaces in columns test = ''' Account Name Balance CreditLimit AccountCreated 101 <NAME> 9315.45 10000.00 1/17/1998 312 <NAME> 90.00 1000.00 8/6/2003 868 <NAME> 0 17000.00 5/25/1985 761 Jada Pinkett-Smith 49654.87 100000.00 12/5/2006 317 <NAME> 789.65 5000.00 2/5/2007 '''.strip('\r\n') colspecs = ((0, 7), (8, 28), (30, 38), (42, 53), (56, 70)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_full_file_with_spaces_and_missing(self): # File with spaces and missing values in columsn test = ''' Account Name Balance CreditLimit AccountCreated 101 10000.00 1/17/1998 312 <NAME> 90.00 1000.00 8/6/2003 868 5/25/1985 761 <NAME>-Smith 49654.87 100000.00 12/5/2006 317 <NAME> 789.65 '''.strip('\r\n') colspecs = ((0, 7), (8, 28), (30, 38), (42, 53), (56, 70)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_messed_up_data(self): # Completely messed up file test = ''' Account Name Balance Credit Limit Account Created 101 10000.00 1/17/1998 312 <NAME> 90.00 1000.00 761 <NAME> 49654.87 100000.00 12/5/2006 317 <NAME> 789.65 '''.strip('\r\n') colspecs = ((2, 10), (15, 33), (37, 45), (49, 61), (64, 79)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_multiple_delimiters(self): test = r''' col1~~~~~col2 col3++++++++++++++++++col4 ~~22.....11.0+++foo~~~~~~~~~~<NAME> 33+++122.33\\\bar.........<NAME> ++44~~~~12.01 baz~~<NAME> ~~55 11+++foo++++<NAME>-Smith ..66++++++.03~~~bar <NAME> '''.strip('\r\n') colspecs = ((0, 4), (7, 13), (15, 19), (21, 41)) expected = read_fwf(
StringIO(test)
pandas.compat.StringIO
import PyPDF2 import csv from pathlib import Path import io import pandas import numpy from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.converter import TextConverter from pdfminer.layout import LAParams from pdfminer.pdfpage import PDFPage # def Cpk(usl, lsl, avg, sigma , cf, sigma_cf): # cpu = (usl - avg - (cf*sigma)) / (sigma_cf*sigma) # cpl = (avg - lsl - (cf*sigma)) / (sigma_cf*sigma) # cpk = numpy.min([cpu, cpl]) # return cpl,cpu,cpk def convert_pdf_to_txt(path): rsrcmgr = PDFResourceManager() retstr = io.BytesIO() codec = 'utf-8' laparams = LAParams() device = TextConverter(rsrcmgr, retstr, codec=codec, laparams=laparams) fp = open(path, 'rb') interpreter = PDFPageInterpreter(rsrcmgr, device) password = "" maxpages = 0 caching = True pagenos = set() for page in PDFPage.get_pages(fp, pagenos, maxpages=maxpages, password=password, caching=caching, check_extractable=True): interpreter.process_page(page) text = retstr.getvalue() fp.close() device.close() retstr.close() return text def filename_extraction(inp_filename): raw = inp_filename.split('_') dev = raw[1] volt = raw[2] temp = raw[3] condition = raw[4]+raw[5]+raw[6]+raw[7] return dev,volt,temp,condition ############################### User inputs ############################################### path_of_files = r'C:\Users\vind\OneDrive - Cypress Semiconductor\documents\python_codes\EYE_DIAG_ANALYZER\pdf_ccg3pa2_tt' pathlist = Path(path_of_files).glob('**/*.pdf') output_filename = 'out' automated_data_collection = 'yes' #'no' ################################# Program Begins ######################################### if automated_data_collection == 'no': with open(output_filename +'raw'+ '.csv', 'a', newline='') as csvfile: mywriter1 = csv.DictWriter(csvfile, dialect='excel', fieldnames=['rise_time_average', 'rise_time_minimum', 'rise_time_maximum', 'fall_time_average', 'fall_time_minimum', 'fall_time_maximum', 'bit_rate_average', 'bit_rate_minimum', 'bit_rate_maximum', 'voltage_swing_average', 'voltage_swing_minimum', 'voltage_swing_maximum', 'filename']) mywriter1.writeheader() for files in pathlist: ###################### extracting only measurement page of the pdf file ########################################## print(files.name) pdfFileObj = open(files,'rb') pdfReader = PyPDF2.PdfFileReader(pdfFileObj) pdfWriter = PyPDF2.PdfFileWriter() pdfReader.getNumPages() pageNum = 3 pageObj = pdfReader.getPage(pageNum) pdfWriter.addPage(pageObj) pdfOutput = open('temp.pdf', 'wb') pdfWriter.write(pdfOutput) pdfOutput.close() ######################### pdf to text conversion ################################ x= convert_pdf_to_txt('temp.pdf') text_extracted = x.split() counter_list = list(enumerate(text_extracted, 1)) rise_time_average = (counter_list[91])[1] fall_time_average = (counter_list[93])[1] bit_rate_average = (counter_list[97])[1] rise_time_minimum = (counter_list[145])[1] fall_time_minimum = (counter_list[147])[1] bit_rate_minimum = (counter_list[151])[1] rise_time_maximum = (counter_list[156])[1] fall_time_maximum = (counter_list[158])[1] bit_rate_maximum = (counter_list[162])[1] voltage_swing_average = (counter_list[131])[1] voltage_swing_minimum = (counter_list[170])[1] voltage_swing_maximum = (counter_list[174])[1] data_raw = [float(rise_time_average), float(rise_time_minimum), float(rise_time_maximum), float(fall_time_average), float(fall_time_minimum), float(fall_time_maximum), float(bit_rate_average), float(bit_rate_minimum), float(bit_rate_maximum), float(voltage_swing_average), float(voltage_swing_minimum), float(voltage_swing_maximum), files.name] print(data_raw) mywriter2 = csv.writer(csvfile, delimiter=',', dialect = 'excel') mywriter2.writerow(data_raw) ################## Analysis begins ########################################## pandas.set_option('display.expand_frame_repr', False) data = pandas.DataFrame.from_csv(output_filename + 'raw' +'.csv',index_col=None) data_grouped = data.agg([numpy.min, numpy.mean, numpy.max, numpy.std]) print(data_grouped) writer = pandas.ExcelWriter(output_filename + '.xlsx') data_grouped.to_excel(writer, 'Sheet1') writer.save() if automated_data_collection == 'yes': with open(output_filename +'raw'+ '.csv', 'a', newline='') as csvfile: mywriter1 = csv.DictWriter(csvfile, dialect='excel', fieldnames=['rise_time_average', 'rise_time_minimum', 'rise_time_maximum', 'fall_time_average', 'fall_time_minimum', 'fall_time_maximum', 'bit_rate_average', 'bit_rate_minimum', 'bit_rate_maximum', 'voltage_swing_average', 'voltage_swing_minimum', 'voltage_swing_maximum', 'Device','Voltage','Temperature','Condition']) mywriter1.writeheader() for files in pathlist: ###################### extracting only measurement page of the pdf file ########################################## print(files.name) dev_no,v,t,cond = filename_extraction(files.name) pdfFileObj = open(files,'rb') pdfReader = PyPDF2.PdfFileReader(pdfFileObj) pdfWriter = PyPDF2.PdfFileWriter() pdfReader.getNumPages() pageNum = 3 pageObj = pdfReader.getPage(pageNum) pdfWriter.addPage(pageObj) pdfOutput = open('temp.pdf', 'wb') pdfWriter.write(pdfOutput) pdfOutput.close() ######################### pdf to text conversion ################################ x= convert_pdf_to_txt('temp.pdf') text_extracted = x.split() counter_list = list(enumerate(text_extracted, 1)) rise_time_average = (counter_list[91])[1] fall_time_average = (counter_list[93])[1] bit_rate_average = (counter_list[97])[1] rise_time_minimum = (counter_list[145])[1] fall_time_minimum = (counter_list[147])[1] bit_rate_minimum = (counter_list[151])[1] rise_time_maximum = (counter_list[156])[1] fall_time_maximum = (counter_list[158])[1] bit_rate_maximum = (counter_list[162])[1] voltage_swing_average = (counter_list[131])[1] voltage_swing_minimum = (counter_list[170])[1] voltage_swing_maximum = (counter_list[174])[1] data_raw = [float(rise_time_average), float(rise_time_minimum), float(rise_time_maximum), float(fall_time_average), float(fall_time_minimum), float(fall_time_maximum), float(bit_rate_average), float(bit_rate_minimum), float(bit_rate_maximum), float(voltage_swing_average), float(voltage_swing_minimum), float(voltage_swing_maximum), dev_no, v,t,cond] print(data_raw) mywriter2 = csv.writer(csvfile, delimiter=',', dialect = 'excel') mywriter2.writerow(data_raw) ################## Analysis begins ########################################## pandas.set_option('display.expand_frame_repr', False) data = pandas.DataFrame.from_csv(output_filename + 'raw' +'.csv',index_col=None) data1 = data.groupby(['Voltage','Temperature','Condition']) data_grouped = data1.agg([numpy.min, numpy.mean, numpy.max, numpy.std]) print(data_grouped) writer =
pandas.ExcelWriter(output_filename + '.xlsx')
pandas.ExcelWriter
""" Generic data algorithms. This module is experimental at the moment and not intended for public consumption """ from __future__ import annotations import operator from textwrap import dedent from typing import ( TYPE_CHECKING, Literal, Union, cast, final, ) from warnings import warn import numpy as np from pandas._libs import ( algos, hashtable as htable, iNaT, lib, ) from pandas._typing import ( AnyArrayLike, ArrayLike, DtypeObj, Scalar, TakeIndexer, npt, ) from pandas.util._decorators import doc from pandas.core.dtypes.cast import ( construct_1d_object_array_from_listlike, infer_dtype_from_array, sanitize_to_nanoseconds, ) from pandas.core.dtypes.common import ( ensure_float64, ensure_object, ensure_platform_int, is_array_like, is_bool_dtype, is_categorical_dtype, is_complex_dtype, is_datetime64_dtype, is_extension_array_dtype, is_float_dtype, is_integer, is_integer_dtype, is_list_like, is_numeric_dtype, is_object_dtype, is_scalar, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import PandasDtype from pandas.core.dtypes.generic import ( ABCDatetimeArray, ABCExtensionArray, ABCIndex, ABCMultiIndex, ABCRangeIndex, ABCSeries, ABCTimedeltaArray, ) from pandas.core.dtypes.missing import ( isna, na_value_for_dtype, ) from pandas.core.array_algos.take import take_nd from pandas.core.construction import ( array as pd_array, ensure_wrapped_if_datetimelike, extract_array, ) from pandas.core.indexers import validate_indices if TYPE_CHECKING: from pandas._typing import ( NumpySorter, NumpyValueArrayLike, ) from pandas import ( Categorical, DataFrame, Index, Series, ) from pandas.core.arrays import ( DatetimeArray, ExtensionArray, TimedeltaArray, ) _shared_docs: dict[str, str] = {} # --------------- # # dtype access # # --------------- # def _ensure_data(values: ArrayLike) -> np.ndarray: """ routine to ensure that our data is of the correct input dtype for lower-level routines This will coerce: - ints -> int64 - uint -> uint64 - bool -> uint64 (TODO this should be uint8) - datetimelike -> i8 - datetime64tz -> i8 (in local tz) - categorical -> codes Parameters ---------- values : np.ndarray or ExtensionArray Returns ------- np.ndarray """ if not isinstance(values, ABCMultiIndex): # extract_array would raise values = extract_array(values, extract_numpy=True) # we check some simple dtypes first if is_object_dtype(values.dtype): return ensure_object(np.asarray(values)) elif is_bool_dtype(values.dtype): if isinstance(values, np.ndarray): # i.e. actually dtype == np.dtype("bool") return np.asarray(values).view("uint8") else: # i.e. all-bool Categorical, BooleanArray try: return np.asarray(values).astype("uint8", copy=False) except TypeError: # GH#42107 we have pd.NAs present return np.asarray(values) elif is_integer_dtype(values.dtype): return np.asarray(values) elif is_float_dtype(values.dtype): # Note: checking `values.dtype == "float128"` raises on Windows and 32bit # error: Item "ExtensionDtype" of "Union[Any, ExtensionDtype, dtype[Any]]" # has no attribute "itemsize" if values.dtype.itemsize in [2, 12, 16]: # type: ignore[union-attr] # we dont (yet) have float128 hashtable support return ensure_float64(values) return np.asarray(values) elif is_complex_dtype(values.dtype): # Incompatible return value type (got "Tuple[Union[Any, ExtensionArray, # ndarray[Any, Any]], Union[Any, ExtensionDtype]]", expected # "Tuple[ndarray[Any, Any], Union[dtype[Any], ExtensionDtype]]") return values # type: ignore[return-value] # datetimelike elif needs_i8_conversion(values.dtype): if isinstance(values, np.ndarray): values = sanitize_to_nanoseconds(values) npvalues = values.view("i8") npvalues = cast(np.ndarray, npvalues) return npvalues elif is_categorical_dtype(values.dtype): values = cast("Categorical", values) values = values.codes return values # we have failed, return object values = np.asarray(values, dtype=object) return ensure_object(values) def _reconstruct_data( values: ArrayLike, dtype: DtypeObj, original: AnyArrayLike ) -> ArrayLike: """ reverse of _ensure_data Parameters ---------- values : np.ndarray or ExtensionArray dtype : np.dtype or ExtensionDtype original : AnyArrayLike Returns ------- ExtensionArray or np.ndarray """ if isinstance(values, ABCExtensionArray) and values.dtype == dtype: # Catch DatetimeArray/TimedeltaArray return values if not isinstance(dtype, np.dtype): # i.e. ExtensionDtype cls = dtype.construct_array_type() if isinstance(values, cls) and values.dtype == dtype: return values values = cls._from_sequence(values) elif is_bool_dtype(dtype): values = values.astype(dtype, copy=False) # we only support object dtypes bool Index if isinstance(original, ABCIndex): values = values.astype(object, copy=False) elif dtype is not None: if is_datetime64_dtype(dtype): dtype = np.dtype("datetime64[ns]") elif is_timedelta64_dtype(dtype): dtype = np.dtype("timedelta64[ns]") values = values.astype(dtype, copy=False) return values def _ensure_arraylike(values) -> ArrayLike: """ ensure that we are arraylike if not already """ if not is_array_like(values): inferred = lib.infer_dtype(values, skipna=False) if inferred in ["mixed", "string", "mixed-integer"]: # "mixed-integer" to ensure we do not cast ["ss", 42] to str GH#22160 if isinstance(values, tuple): values = list(values) values = construct_1d_object_array_from_listlike(values) else: values = np.asarray(values) return values _hashtables = { "complex128": htable.Complex128HashTable, "complex64": htable.Complex64HashTable, "float64": htable.Float64HashTable, "float32": htable.Float32HashTable, "uint64": htable.UInt64HashTable, "uint32": htable.UInt32HashTable, "uint16": htable.UInt16HashTable, "uint8": htable.UInt8HashTable, "int64": htable.Int64HashTable, "int32": htable.Int32HashTable, "int16": htable.Int16HashTable, "int8": htable.Int8HashTable, "string": htable.StringHashTable, "object": htable.PyObjectHashTable, } def _get_hashtable_algo(values: np.ndarray): """ Parameters ---------- values : np.ndarray Returns ------- htable : HashTable subclass values : ndarray """ values = _ensure_data(values) ndtype = _check_object_for_strings(values) htable = _hashtables[ndtype] return htable, values def _get_values_for_rank(values: ArrayLike) -> np.ndarray: if is_categorical_dtype(values): values = cast("Categorical", values)._values_for_rank() values = _ensure_data(values) if values.dtype.kind in ["i", "u", "f"]: # rank_t includes only object, int64, uint64, float64 dtype = values.dtype.kind + "8" values = values.astype(dtype, copy=False) return values def get_data_algo(values: ArrayLike): values = _get_values_for_rank(values) ndtype = _check_object_for_strings(values) htable = _hashtables.get(ndtype, _hashtables["object"]) return htable, values def _check_object_for_strings(values: np.ndarray) -> str: """ Check if we can use string hashtable instead of object hashtable. Parameters ---------- values : ndarray Returns ------- str """ ndtype = values.dtype.name if ndtype == "object": # it's cheaper to use a String Hash Table than Object; we infer # including nulls because that is the only difference between # StringHashTable and ObjectHashtable if lib.infer_dtype(values, skipna=False) in ["string"]: ndtype = "string" return ndtype # --------------- # # top-level algos # # --------------- # def unique(values): """ Hash table-based unique. Uniques are returned in order of appearance. This does NOT sort. Significantly faster than numpy.unique for long enough sequences. Includes NA values. Parameters ---------- values : 1d array-like Returns ------- numpy.ndarray or ExtensionArray The return can be: * Index : when the input is an Index * Categorical : when the input is a Categorical dtype * ndarray : when the input is a Series/ndarray Return numpy.ndarray or ExtensionArray. See Also -------- Index.unique : Return unique values from an Index. Series.unique : Return unique values of Series object. Examples -------- >>> pd.unique(pd.Series([2, 1, 3, 3])) array([2, 1, 3]) >>> pd.unique(pd.Series([2] + [1] * 5)) array([2, 1]) >>> pd.unique(pd.Series([pd.Timestamp("20160101"), pd.Timestamp("20160101")])) array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') >>> pd.unique( ... pd.Series( ... [ ... pd.Timestamp("20160101", tz="US/Eastern"), ... pd.Timestamp("20160101", tz="US/Eastern"), ... ] ... ) ... ) <DatetimeArray> ['2016-01-01 00:00:00-05:00'] Length: 1, dtype: datetime64[ns, US/Eastern] >>> pd.unique( ... pd.Index( ... [ ... pd.Timestamp("20160101", tz="US/Eastern"), ... pd.Timestamp("20160101", tz="US/Eastern"), ... ] ... ) ... ) DatetimeIndex(['2016-01-01 00:00:00-05:00'], dtype='datetime64[ns, US/Eastern]', freq=None) >>> pd.unique(list("baabc")) array(['b', 'a', 'c'], dtype=object) An unordered Categorical will return categories in the order of appearance. >>> pd.unique(pd.Series(pd.Categorical(list("baabc")))) ['b', 'a', 'c'] Categories (3, object): ['a', 'b', 'c'] >>> pd.unique(pd.Series(pd.Categorical(list("baabc"), categories=list("abc")))) ['b', 'a', 'c'] Categories (3, object): ['a', 'b', 'c'] An ordered Categorical preserves the category ordering. >>> pd.unique( ... pd.Series( ... pd.Categorical(list("baabc"), categories=list("abc"), ordered=True) ... ) ... ) ['b', 'a', 'c'] Categories (3, object): ['a' < 'b' < 'c'] An array of tuples >>> pd.unique([("a", "b"), ("b", "a"), ("a", "c"), ("b", "a")]) array([('a', 'b'), ('b', 'a'), ('a', 'c')], dtype=object) """ values = _ensure_arraylike(values) if is_extension_array_dtype(values.dtype): # Dispatch to extension dtype's unique. return values.unique() original = values htable, values = _get_hashtable_algo(values) table = htable(len(values)) uniques = table.unique(values) uniques = _reconstruct_data(uniques, original.dtype, original) return uniques unique1d = unique def isin(comps: AnyArrayLike, values: AnyArrayLike) -> npt.NDArray[np.bool_]: """ Compute the isin boolean array. Parameters ---------- comps : array-like values : array-like Returns ------- ndarray[bool] Same length as `comps`. """ if not is_list_like(comps): raise TypeError( "only list-like objects are allowed to be passed " f"to isin(), you passed a [{type(comps).__name__}]" ) if not is_list_like(values): raise TypeError( "only list-like objects are allowed to be passed " f"to isin(), you passed a [{type(values).__name__}]" ) if not isinstance(values, (ABCIndex, ABCSeries, ABCExtensionArray, np.ndarray)): values = _ensure_arraylike(list(values)) elif isinstance(values, ABCMultiIndex): # Avoid raising in extract_array values = np.array(values) else: values = extract_array(values, extract_numpy=True, extract_range=True) comps = _ensure_arraylike(comps) comps = extract_array(comps, extract_numpy=True) if not isinstance(comps, np.ndarray): # i.e. Extension Array return comps.isin(values) elif needs_i8_conversion(comps.dtype): # Dispatch to DatetimeLikeArrayMixin.isin return pd_array(comps).isin(values) elif needs_i8_conversion(values.dtype) and not is_object_dtype(comps.dtype): # e.g. comps are integers and values are datetime64s return np.zeros(comps.shape, dtype=bool) # TODO: not quite right ... Sparse/Categorical elif needs_i8_conversion(values.dtype): return isin(comps, values.astype(object)) elif is_extension_array_dtype(values.dtype): return isin(np.asarray(comps), np.asarray(values)) # GH16012 # Ensure np.in1d doesn't get object types or it *may* throw an exception # Albeit hashmap has O(1) look-up (vs. O(logn) in sorted array), # in1d is faster for small sizes if len(comps) > 1_000_000 and len(values) <= 26 and not is_object_dtype(comps): # If the values include nan we need to check for nan explicitly # since np.nan it not equal to np.nan if isna(values).any(): def f(c, v): return np.logical_or(np.in1d(c, v), np.isnan(c)) else: f = np.in1d else: # error: List item 0 has incompatible type "Union[Any, dtype[Any], # ExtensionDtype]"; expected "Union[dtype[Any], None, type, _SupportsDType, str, # Tuple[Any, Union[int, Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, # Any]]" # error: List item 1 has incompatible type "Union[Any, ExtensionDtype]"; # expected "Union[dtype[Any], None, type, _SupportsDType, str, Tuple[Any, # Union[int, Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, Any]]" # error: List item 1 has incompatible type "Union[dtype[Any], ExtensionDtype]"; # expected "Union[dtype[Any], None, type, _SupportsDType, str, Tuple[Any, # Union[int, Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, Any]]" common = np.find_common_type( [values.dtype, comps.dtype], [] # type: ignore[list-item] ) values = values.astype(common, copy=False) comps = comps.astype(common, copy=False) f = htable.ismember return f(comps, values) def factorize_array( values: np.ndarray, na_sentinel: int = -1, size_hint: int | None = None, na_value=None, mask: np.ndarray | None = None, ) -> tuple[npt.NDArray[np.intp], np.ndarray]: """ Factorize a numpy array to codes and uniques. This doesn't do any coercion of types or unboxing before factorization. Parameters ---------- values : ndarray na_sentinel : int, default -1 size_hint : int, optional Passed through to the hashtable's 'get_labels' method na_value : object, optional A value in `values` to consider missing. Note: only use this parameter when you know that you don't have any values pandas would consider missing in the array (NaN for float data, iNaT for datetimes, etc.). mask : ndarray[bool], optional If not None, the mask is used as indicator for missing values (True = missing, False = valid) instead of `na_value` or condition "val != val". Returns ------- codes : ndarray[np.intp] uniques : ndarray """ hash_klass, values = get_data_algo(values) table = hash_klass(size_hint or len(values)) uniques, codes = table.factorize( values, na_sentinel=na_sentinel, na_value=na_value, mask=mask ) codes = ensure_platform_int(codes) return codes, uniques @doc( values=dedent( """\ values : sequence A 1-D sequence. Sequences that aren't pandas objects are coerced to ndarrays before factorization. """ ), sort=dedent( """\ sort : bool, default False Sort `uniques` and shuffle `codes` to maintain the relationship. """ ), size_hint=dedent( """\ size_hint : int, optional Hint to the hashtable sizer. """ ), ) def factorize( values, sort: bool = False, na_sentinel: int | None = -1, size_hint: int | None = None, ) -> tuple[np.ndarray, np.ndarray | Index]: """ Encode the object as an enumerated type or categorical variable. This method is useful for obtaining a numeric representation of an array when all that matters is identifying distinct values. `factorize` is available as both a top-level function :func:`pandas.factorize`, and as a method :meth:`Series.factorize` and :meth:`Index.factorize`. Parameters ---------- {values}{sort} na_sentinel : int or None, default -1 Value to mark "not found". If None, will not drop the NaN from the uniques of the values. .. versionchanged:: 1.1.2 {size_hint}\ Returns ------- codes : ndarray An integer ndarray that's an indexer into `uniques`. ``uniques.take(codes)`` will have the same values as `values`. uniques : ndarray, Index, or Categorical The unique valid values. When `values` is Categorical, `uniques` is a Categorical. When `values` is some other pandas object, an `Index` is returned. Otherwise, a 1-D ndarray is returned. .. note :: Even if there's a missing value in `values`, `uniques` will *not* contain an entry for it. See Also -------- cut : Discretize continuous-valued array. unique : Find the unique value in an array. Examples -------- These examples all show factorize as a top-level method like ``pd.factorize(values)``. The results are identical for methods like :meth:`Series.factorize`. >>> codes, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b']) >>> codes array([0, 0, 1, 2, 0]...) >>> uniques array(['b', 'a', 'c'], dtype=object) With ``sort=True``, the `uniques` will be sorted, and `codes` will be shuffled so that the relationship is the maintained. >>> codes, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b'], sort=True) >>> codes array([1, 1, 0, 2, 1]...) >>> uniques array(['a', 'b', 'c'], dtype=object) Missing values are indicated in `codes` with `na_sentinel` (``-1`` by default). Note that missing values are never included in `uniques`. >>> codes, uniques = pd.factorize(['b', None, 'a', 'c', 'b']) >>> codes array([ 0, -1, 1, 2, 0]...) >>> uniques array(['b', 'a', 'c'], dtype=object) Thus far, we've only factorized lists (which are internally coerced to NumPy arrays). When factorizing pandas objects, the type of `uniques` will differ. For Categoricals, a `Categorical` is returned. >>> cat = pd.Categorical(['a', 'a', 'c'], categories=['a', 'b', 'c']) >>> codes, uniques = pd.factorize(cat) >>> codes array([0, 0, 1]...) >>> uniques ['a', 'c'] Categories (3, object): ['a', 'b', 'c'] Notice that ``'b'`` is in ``uniques.categories``, despite not being present in ``cat.values``. For all other pandas objects, an Index of the appropriate type is returned. >>> cat = pd.Series(['a', 'a', 'c']) >>> codes, uniques = pd.factorize(cat) >>> codes array([0, 0, 1]...) >>> uniques Index(['a', 'c'], dtype='object') If NaN is in the values, and we want to include NaN in the uniques of the values, it can be achieved by setting ``na_sentinel=None``. >>> values = np.array([1, 2, 1, np.nan]) >>> codes, uniques = pd.factorize(values) # default: na_sentinel=-1 >>> codes array([ 0, 1, 0, -1]) >>> uniques array([1., 2.]) >>> codes, uniques = pd.factorize(values, na_sentinel=None) >>> codes array([0, 1, 0, 2]) >>> uniques array([ 1., 2., nan]) """ # Implementation notes: This method is responsible for 3 things # 1.) coercing data to array-like (ndarray, Index, extension array) # 2.) factorizing codes and uniques # 3.) Maybe boxing the uniques in an Index # # Step 2 is dispatched to extension types (like Categorical). They are # responsible only for factorization. All data coercion, sorting and boxing # should happen here. if isinstance(values, ABCRangeIndex): return values.factorize(sort=sort) values = _ensure_arraylike(values) original = values if not isinstance(values, ABCMultiIndex): values = extract_array(values, extract_numpy=True) # GH35667, if na_sentinel=None, we will not dropna NaNs from the uniques # of values, assign na_sentinel=-1 to replace code value for NaN. dropna = True if na_sentinel is None: na_sentinel = -1 dropna = False if ( isinstance(values, (ABCDatetimeArray, ABCTimedeltaArray)) and values.freq is not None ): codes, uniques = values.factorize(sort=sort) if isinstance(original, ABCIndex): uniques = original._shallow_copy(uniques, name=None) elif isinstance(original, ABCSeries): from pandas import Index uniques = Index(uniques) return codes, uniques if not isinstance(values.dtype, np.dtype): # i.e. ExtensionDtype codes, uniques = values.factorize(na_sentinel=na_sentinel) dtype = original.dtype else: dtype = values.dtype values = _ensure_data(values) na_value: Scalar if original.dtype.kind in ["m", "M"]: # Note: factorize_array will cast NaT bc it has a __int__ # method, but will not cast the more-correct dtype.type("nat") na_value = iNaT else: na_value = None codes, uniques = factorize_array( values, na_sentinel=na_sentinel, size_hint=size_hint, na_value=na_value ) if sort and len(uniques) > 0: uniques, codes = safe_sort( uniques, codes, na_sentinel=na_sentinel, assume_unique=True, verify=False ) code_is_na = codes == na_sentinel if not dropna and code_is_na.any(): # na_value is set based on the dtype of uniques, and compat set to False is # because we do not want na_value to be 0 for integers na_value = na_value_for_dtype(uniques.dtype, compat=False) uniques = np.append(uniques, [na_value]) codes = np.where(code_is_na, len(uniques) - 1, codes) uniques = _reconstruct_data(uniques, dtype, original) # return original tenor if isinstance(original, ABCIndex): if original.dtype.kind in ["m", "M"] and isinstance(uniques, np.ndarray): original._data = cast( "Union[DatetimeArray, TimedeltaArray]", original._data ) uniques = type(original._data)._simple_new(uniques, dtype=original.dtype) uniques = original._shallow_copy(uniques, name=None) elif isinstance(original, ABCSeries): from pandas import Index uniques = Index(uniques) return codes, uniques def value_counts( values, sort: bool = True, ascending: bool = False, normalize: bool = False, bins=None, dropna: bool = True, ) -> Series: """ Compute a histogram of the counts of non-null values. Parameters ---------- values : ndarray (1-d) sort : bool, default True Sort by values ascending : bool, default False Sort in ascending order normalize: bool, default False If True then compute a relative histogram bins : integer, optional Rather than count values, group them into half-open bins, convenience for pd.cut, only works with numeric data dropna : bool, default True Don't include counts of NaN Returns ------- Series """ from pandas.core.series import Series name = getattr(values, "name", None) if bins is not None: from pandas.core.reshape.tile import cut values = Series(values) try: ii = cut(values, bins, include_lowest=True) except TypeError as err: raise TypeError("bins argument only works with numeric data.") from err # count, remove nulls (from the index), and but the bins result = ii.value_counts(dropna=dropna) result = result[result.index.notna()] result.index = result.index.astype("interval") result = result.sort_index() # if we are dropna and we have NO values if dropna and (result._values == 0).all(): result = result.iloc[0:0] # normalizing is by len of all (regardless of dropna) counts = np.array([len(ii)]) else: if is_extension_array_dtype(values): # handle Categorical and sparse, result = Series(values)._values.value_counts(dropna=dropna) result.name = name counts = result._values else: keys, counts = value_counts_arraylike(values, dropna) result = Series(counts, index=keys, name=name) if sort: result = result.sort_values(ascending=ascending) if normalize: result = result / counts.sum() return result # Called once from SparseArray, otherwise could be private def value_counts_arraylike(values, dropna: bool): """ Parameters ---------- values : arraylike dropna : bool Returns ------- uniques : np.ndarray or ExtensionArray counts : np.ndarray """ values = _ensure_arraylike(values) original = values values = _ensure_data(values) # TODO: handle uint8 keys, counts = htable.value_count(values, dropna) if needs_i8_conversion(original.dtype): # datetime, timedelta, or period if dropna: msk = keys != iNaT keys, counts = keys[msk], counts[msk] res_keys = _reconstruct_data(keys, original.dtype, original) return res_keys, counts def duplicated( values: ArrayLike, keep: Literal["first", "last", False] = "first" ) -> npt.NDArray[np.bool_]: """ Return boolean ndarray denoting duplicate values. Parameters ---------- values : nd.array, ExtensionArray or Series Array over which to check for duplicate values. keep : {'first', 'last', False}, default 'first' - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. Returns ------- duplicated : ndarray[bool] """ values = _ensure_data(values) return htable.duplicated(values, keep=keep) def mode(values, dropna: bool = True) -> Series: """ Returns the mode(s) of an array. Parameters ---------- values : array-like Array over which to check for duplicate values. dropna : bool, default True Don't consider counts of NaN/NaT. Returns ------- mode : Series """ from pandas import Series from pandas.core.indexes.api import default_index values = _ensure_arraylike(values) original = values # categorical is a fast-path if is_categorical_dtype(values): if isinstance(values, Series): # TODO: should we be passing `name` below? return Series(values._values.mode(dropna=dropna), name=values.name) return values.mode(dropna=dropna) if dropna and needs_i8_conversion(values.dtype): mask = values.isnull() values = values[~mask] values = _ensure_data(values) npresult = htable.mode(values, dropna=dropna) try: npresult = np.sort(npresult) except TypeError as err: warn(f"Unable to sort modes: {err}") result = _reconstruct_data(npresult, original.dtype, original) # Ensure index is type stable (should always use int index) return Series(result, index=default_index(len(result))) def rank( values: ArrayLike, axis: int = 0, method: str = "average", na_option: str = "keep", ascending: bool = True, pct: bool = False, ) -> np.ndarray: """ Rank the values along a given axis. Parameters ---------- values : array-like Array whose values will be ranked. The number of dimensions in this array must not exceed 2. axis : int, default 0 Axis over which to perform rankings. method : {'average', 'min', 'max', 'first', 'dense'}, default 'average' The method by which tiebreaks are broken during the ranking. na_option : {'keep', 'top'}, default 'keep' The method by which NaNs are placed in the ranking. - ``keep``: rank each NaN value with a NaN ranking - ``top``: replace each NaN with either +/- inf so that they there are ranked at the top ascending : bool, default True Whether or not the elements should be ranked in ascending order. pct : bool, default False Whether or not to the display the returned rankings in integer form (e.g. 1, 2, 3) or in percentile form (e.g. 0.333..., 0.666..., 1). """ is_datetimelike = needs_i8_conversion(values.dtype) values = _get_values_for_rank(values) if values.ndim == 1: ranks = algos.rank_1d( values, is_datetimelike=is_datetimelike, ties_method=method, ascending=ascending, na_option=na_option, pct=pct, ) elif values.ndim == 2: ranks = algos.rank_2d( values, axis=axis, is_datetimelike=is_datetimelike, ties_method=method, ascending=ascending, na_option=na_option, pct=pct, ) else: raise TypeError("Array with ndim > 2 are not supported.") return ranks def checked_add_with_arr( arr: np.ndarray, b, arr_mask: npt.NDArray[np.bool_] | None = None, b_mask: npt.NDArray[np.bool_] | None = None, ) -> np.ndarray: """ Perform array addition that checks for underflow and overflow. Performs the addition of an int64 array and an int64 integer (or array) but checks that they do not result in overflow first. For elements that are indicated to be NaN, whether or not there is overflow for that element is automatically ignored. Parameters ---------- arr : array addend. b : array or scalar addend. arr_mask : np.ndarray[bool] or None, default None array indicating which elements to exclude from checking b_mask : np.ndarray[bool] or None, default None array or scalar indicating which element(s) to exclude from checking Returns ------- sum : An array for elements x + b for each element x in arr if b is a scalar or an array for elements x + y for each element pair (x, y) in (arr, b). Raises ------ OverflowError if any x + y exceeds the maximum or minimum int64 value. """ # For performance reasons, we broadcast 'b' to the new array 'b2' # so that it has the same size as 'arr'. b2 = np.broadcast_to(b, arr.shape) if b_mask is not None: # We do the same broadcasting for b_mask as well. b2_mask = np.broadcast_to(b_mask, arr.shape) else: b2_mask = None # For elements that are NaN, regardless of their value, we should # ignore whether they overflow or not when doing the checked add. if arr_mask is not None and b2_mask is not None: not_nan = np.logical_not(arr_mask | b2_mask) elif arr_mask is not None: not_nan = np.logical_not(arr_mask) elif b_mask is not None: not_nan = np.logical_not(b2_mask) else: not_nan = np.empty(arr.shape, dtype=bool) not_nan.fill(True) # gh-14324: For each element in 'arr' and its corresponding element # in 'b2', we check the sign of the element in 'b2'. If it is positive, # we then check whether its sum with the element in 'arr' exceeds # np.iinfo(np.int64).max. If so, we have an overflow error. If it # it is negative, we then check whether its sum with the element in # 'arr' exceeds np.iinfo(np.int64).min. If so, we have an overflow # error as well. i8max = lib.i8max i8min = iNaT mask1 = b2 > 0 mask2 = b2 < 0 if not mask1.any(): to_raise = ((i8min - b2 > arr) & not_nan).any() elif not mask2.any(): to_raise = ((i8max - b2 < arr) & not_nan).any() else: to_raise = ((i8max - b2[mask1] < arr[mask1]) & not_nan[mask1]).any() or ( (i8min - b2[mask2] > arr[mask2]) & not_nan[mask2] ).any() if to_raise: raise OverflowError("Overflow in int64 addition") return arr + b def quantile(x, q, interpolation_method="fraction"): """ Compute sample quantile or quantiles of the input array. For example, q=0.5 computes the median. The `interpolation_method` parameter supports three values, namely `fraction` (default), `lower` and `higher`. Interpolation is done only, if the desired quantile lies between two data points `i` and `j`. For `fraction`, the result is an interpolated value between `i` and `j`; for `lower`, the result is `i`, for `higher` the result is `j`. Parameters ---------- x : ndarray Values from which to extract score. q : scalar or array Percentile at which to extract score. interpolation_method : {'fraction', 'lower', 'higher'}, optional This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: - fraction: `i + (j - i)*fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. -lower: `i`. - higher: `j`. Returns ------- score : float Score at percentile. Examples -------- >>> from scipy import stats >>> a = np.arange(100) >>> stats.scoreatpercentile(a, 50) 49.5 """ x = np.asarray(x) mask = isna(x) x = x[~mask] values = np.sort(x) def _interpolate(a, b, fraction): """ Returns the point at the given fraction between a and b, where 'fraction' must be between 0 and 1. """ return a + (b - a) * fraction def _get_score(at): if len(values) == 0: return np.nan idx = at * (len(values) - 1) if idx % 1 == 0: score = values[int(idx)] else: if interpolation_method == "fraction": score = _interpolate(values[int(idx)], values[int(idx) + 1], idx % 1) elif interpolation_method == "lower": score = values[np.floor(idx)] elif interpolation_method == "higher": score = values[np.ceil(idx)] else: raise ValueError( "interpolation_method can only be 'fraction' " ", 'lower' or 'higher'" ) return score if is_scalar(q): return _get_score(q) q = np.asarray(q, np.float64) result = [_get_score(x) for x in q] return np.array(result, dtype=np.float64) # --------------- # # select n # # --------------- # class SelectN: def __init__(self, obj, n: int, keep: str): self.obj = obj self.n = n self.keep = keep if self.keep not in ("first", "last", "all"): raise ValueError('keep must be either "first", "last" or "all"') def compute(self, method: str) -> DataFrame | Series: raise NotImplementedError @final def nlargest(self): return self.compute("nlargest") @final def nsmallest(self): return self.compute("nsmallest") @final @staticmethod def is_valid_dtype_n_method(dtype: DtypeObj) -> bool: """ Helper function to determine if dtype is valid for nsmallest/nlargest methods """ return ( is_numeric_dtype(dtype) and not
is_complex_dtype(dtype)
pandas.core.dtypes.common.is_complex_dtype
"""Next Gen Loaders contains a class of functions that loads a next gen data set, returning the data in a consistent, well structured format. Data is read as it is and is not cleaned in anyway in this class (if cleaning is required see preparation.cleaners). """ import os import pandas import numpy import pickle class NextGenData: """This classes is responsible for loading and managing next gen data sets provided by Reposit The data provided can be read and converted measurement data. Data is read and stored as an intermediate step in a folder "Data", each measurement type has its own sub folder (loads, batteries, node, solar) and is aggregated per node. To handle huge amounts of data, it is read in batches. Each file is labeled with the type, node id and batch number (measurement_type_nodeID_batchnumber). Batches can be concatenated and stored per node. The data is stored as dataframes """ def __init__(self, data_name: str, source: str, batteries: str = None, solar: str = None, node: str = None, loads: str = None, results: str = None, stats: str = None, number_of_batches: int = 30, files_per_batch: int = 30, concat_batches_start: int = 0, concat_batches_end: int = 1): """Creates a Data object for measurement data. It sets up the folder structure for later use. Paths can be adjusted to user needs or used with defaults. If any of the destination folders are not provided a default will be create at ./data/FOLDERNAME Batches can be used to separate data into smaller units. The user can choose which batches they wish to concatenate after cleaning later on. Args: data_name (str): Human readable short hand name of data set. source (str): Path to data source (if not provided FileNotFoundError. batteries (str, None): Path to where batteries data is stored (destination). solar (str, None): Path to where solar data is stored (destination). node (str, None): Path to where node data is stored (destination). loads (str, None): Path to where loads data is stored (destination). results (str, None): Path to where concatenated and cleaned data is stored (destination). stats (str, None): Path to where statitsics are stored (destination). number_of_batches (int, 30): Integer with the number of batches that should be used. files_per_batch (int, 30): The number of files in each batch. concat_batches_start (int, 0): Integer that determines with which batch concatenation starts. concat_batches_end (int, 1): Integer that determines with which batch concatenation ends. """ self.batch_info = {} self.data_dir = {} if source is None or not os.path.isdir(source): raise FileNotFoundError if batteries is None: batteries = "data/batteries" if solar is None: solar = "data/solar" if loads is None: loads = "data/loads" if node is None: node = "data/node" if results is None: results = "data/results" if stats is None: stats = "data/stats" self.data_dir["source"] = source self.data_dir["batteries"] = batteries self.data_dir["solar"] = solar self.data_dir["loads"] = loads self.data_dir["node"] = node self.data_dir["results"] = results self.data_dir["stats"] = stats for key in self.data_dir.keys(): if key != "source": try: os.makedirs(self.data_dir[key]) except OSError: print("Creation of the directories failed (folders already there?)", self.data_dir[key]) self.data_name = data_name self.data_files = os.listdir(self.data_dir["source"]) self.data_files = sorted([f for f in self.data_files if f.endswith('.csv')]) if len(self.data_files) < files_per_batch: print("Warning: not enough files for batching, set to appropriate values") files_per_batch = 1 concat_batches_start = 0 concat_batches_end = 1 self.batch_info["number_of_batches"] = number_of_batches self.batch_info["concat_batches_start"] = concat_batches_start self.batch_info["concat_batches_end"] = concat_batches_end self.batch_info["files_per_batch"] = files_per_batch self.node_measurement_dict = {} if data_name == 'NextGen': batches = numpy.arange(self.batch_info["number_of_batches"]) for batch in batches: self.load_nextgen_processing(batch) def load_nextgen_processing(self, batch: int = 0): """Loads NextGen data provided by Reposit. The function can only read CSV-Files in a specific format. Dataframes are created and stored to disk, sorted via node_id. All measurements are saved as separate data files per batch so that they can be processed and filtered later on according to user requirements. All Data is stored to a "data" folder which needs to contain sub folders (batteries, solar, node and loads) for each measurement type. Each file is identified by a batch number. Note: timestamps refer to the start of measurement period in UTC. Note: Data is generally in kW, kVA etc. See Readme.md for details. Args: batch (integer, 0): Batchnumber that processing is working on """ batch_start = batch * self.batch_info["files_per_batch"] batch_end = (batch + 1) * self.batch_info["files_per_batch"] data_files = self.data_files[batch_start:batch_end] raw_df = pandas.concat([pandas.read_csv(os.path.join(self.data_dir["source"], f)) for f in data_files]) raw_df = raw_df.rename(columns={'major': 'utc'}) raw_df = raw_df.set_index('utc') # Note the time intervals of the raw data, even though it's 1. info_df = pandas.read_json(os.path.join(self.data_dir["source"], "deployment_info.json")) info_df = info_df.set_index('id') info_df.to_pickle(self.data_dir["results"] + "/node_info.npy") node_names = sorted(raw_df.identifier.unique()) for id_name in node_names: node_df = raw_df.loc[raw_df['identifier'] == id_name] # create measurement data for loads power = pandas.DataFrame(-node_df['solarPower'] - node_df['batteryPower'] + node_df['meterPower']) reactive_power = pandas.DataFrame(node_df['meterReactivePower'] - node_df['batteryReactivePower']) loads_df = pandas.DataFrame(pandas.concat([power, reactive_power], axis=1)) loads_df.set_index(node_df.index) # create measurements for solar solar_df = pandas.DataFrame(node_df['solarPower']) solar_df.set_index(node_df.index) # create a measurements for battery batt_p_q_c = pandas.concat([node_df['batteryPower'], node_df['batteryReactivePower'], node_df['remainingCharge'].apply(lambda x: x / 1000)], axis=1) batt_p_q_c.set_index(node_df.index) v_f = node_df[['meterVoltage', 'meterFrequency']] # save data to different folder so it can be read seperatly if needed batt_p_q_c.to_pickle(self.data_dir["batteries"] + "/measurement_batteries_" + str(id_name) + "_" + str(batch) + '.npy') solar_df.to_pickle(self.data_dir["solar"] + "/measurement_solar_" + str(id_name) + "_" + str(batch) + '.npy') loads_df.to_pickle(self.data_dir["loads"] + "/measurement_loads_" + str(id_name) + "_" + str(batch) + '.npy') v_f.to_pickle(self.data_dir["node"] + "/measurement_node_" + str(id_name) + "_" + str(batch) + '.npy') def create_node_list(self, meas_type="batteries") -> list: """ Creates a list of node_ids for a given type of measurement. Args: meas_type (str, "batteries"): The measurement type. Acceptable values are batteries, solar, loads, node, results. Returns node_ids (list): list of IDs (empty if no nodes are found). """ nodes = os.listdir(self.data_dir[meas_type]) nodes = sorted([f for f in nodes if f.endswith('.npy')]) node_ids = [] for node in nodes: parts = node.split('_') if len(parts) > 3: node_id = node.split('_')[2] if node_id not in node_ids: node_ids.append(node_id) return node_ids def concat_data(self, meas_type: str = "batteries", concat_batches_start: int = 0, concat_batches_end: int = 1): """Concatenates batches to one dataset per node. A start and an end for the concatenation can be choosen by using the batch_info at init. Concatenated data is saved to a file per node and labeled with the node id. Args: meas_type (str, "batteries"): The type of measurement to be concatenated. Acceptable values are batteries, solar, loads, node. concat_batches_start (int, 0): The batch number to start the concat at. concat_batches_end (int, 1): The batch number to end the concat at. TODO: Test to make sure this works. Currently untested for node data. """ batches = numpy.arange(concat_batches_start, concat_batches_end) if meas_type == "loads": path = self.data_dir["loads"] + "/measurement_loads_" elif meas_type == "batteries": path = self.data_dir["batteries"] + "/measurement_batteries_" elif meas_type == "solar": path = self.data_dir["solar"] + "/measurement_solar_" elif meas_type == "node": path = self.data_dir["node"] + "/measurement_node_" node_ids = self.create_node_list(meas_type) for node in node_ids: first_run = True measurement_df = pandas.DataFrame() for batch in batches: try: print("working on batch: ", batch, "node Id: ", node, "path: ", path + str(node) + '_' + str(batch) + '.npy') measurement_df_tmp = pandas.read_pickle(path + str(node) + '_' + str(batch) + '.npy') os.remove(path + str(node) + '_' + str(batch) + '.npy') if first_run is True: measurement_df = pandas.DataFrame(measurement_df_tmp) else: measurement_df = pandas.concat([measurement_df, measurement_df_tmp], axis=0) first_run = False except FileNotFoundError: print("FILE NOT FOUND. Data may have been empty. Move on to next file") if not measurement_df.empty: measurement_df.to_pickle(path + str(node) + "_node" + '.npy') else: print("measurement data for node ", node, "is empty, no file create") def to_measurement_full_dataset(self): """Collects data to build a measuring dictionary. The data is saved to a node file with one measurement per node. Returns: node_network_dict: A network without any topology but with measurements. """ node_ids = self.create_node_list(meas_type="batteries") node_ids_solar = self.create_node_list(meas_type="solar") node_ids_loads = self.create_node_list(meas_type="loads") node_ids.extend(x for x in node_ids_solar if x not in node_ids) node_ids.extend(x for x in node_ids_loads if x not in node_ids) full_dict = {} for node_id in node_ids: meas_dict = {} try: measurement_df_loads_temp = pandas.read_pickle(self.data_dir["results"] + "/measurement_loads_" + str(node_id) + "_node" + '.npy') measurement_df_loads_temp.columns = ["PLG", "QLG"] measurement_df_solar_temp = pandas.read_pickle(self.data_dir["results"] + "/measurement_solar_" + str(node_id) + "_node" + '.npy') measurement_df_solar_temp.columns = ["PLG"] measurement_df_batteries_temp = pandas.read_pickle(self.data_dir["results"] + "/measurement_batteries_type" + str(node_id) + "_node" + '.npy') measurement_df_batteries_temp.columns = ["PLG", "QLG", "RC"] meas_dict = {"loads_" + node_id: measurement_df_loads_temp, "solar_" + node_id: measurement_df_solar_temp, "battery_" + node_id: measurement_df_batteries_temp} with open(self.data_dir["results"] + "/node_" + str(node_id), 'wb') as handle: pickle.dump(meas_dict, handle, protocol=pickle.HIGHEST_PROTOCOL) full_dict[node_id] = meas_dict except FileNotFoundError: print("node ", node_id, " has insufficient data .. No data added to dictionary") return full_dict def read_clean_data(self, loads=False, solar=False, batteries=False): full_dict = {} node_ids = self.create_node_list(meas_type="results") for node in node_ids: try: measurement_df_loads_temp = pandas.DataFrame() measurement_df_solar_temp = pandas.DataFrame() measurement_df_batteries_temp = pandas.DataFrame() if loads == True: measurement_df_loads_temp = pandas.read_pickle(self.data_dir["results"] + "/measurement_loads_" + str(node) + "_node" + '.npy') measurement_df_loads_temp.columns = ["PLG", "QLG"] measurement_df_loads_temp.index =
pandas.to_datetime(measurement_df_loads_temp.index, unit='s')
pandas.to_datetime
# -*- coding: utf-8 -*- """Test evaluator.""" import numpy as np import pandas as pd from sklearn.metrics import accuracy_score from sktime.benchmarking.evaluation import Evaluator from sktime.benchmarking.metrics import PairwiseMetric from sktime.benchmarking.results import RAMResults from sktime.series_as_features.model_selection import PresplitFilesCV def dummy_results(): """Results that are dummy.""" results = RAMResults() results.cv = PresplitFilesCV() results.save_predictions( strategy_name="alg1", dataset_name="dataset1", index=np.array([1, 2, 3, 4]), y_true=np.array([1, 1, 1, 1]), y_pred=np.array([1, 1, 1, 1]), y_proba=None, cv_fold=0, train_or_test="test", fit_estimator_start_time=pd.to_datetime(1605268800, unit="ms"), fit_estimator_end_time=pd.to_datetime(1605268801, unit="ms"), predict_estimator_start_time=pd.to_datetime(1605268800, unit="ms"), predict_estimator_end_time=pd.to_datetime(1605268801, unit="ms"), ) results.save_predictions( strategy_name="alg1", dataset_name="dataset2", index=np.array([1, 2, 3, 4]), y_true=np.array([0, 0, 0, 0]), y_pred=np.array([0, 0, 0, 0]), y_proba=None, cv_fold=0, train_or_test="test", fit_estimator_start_time=pd.to_datetime(1605268800, unit="ms"), fit_estimator_end_time=pd.to_datetime(1605268801, unit="ms"), predict_estimator_start_time=pd.to_datetime(1605268800, unit="ms"), predict_estimator_end_time=pd.to_datetime(1605268801, unit="ms"), ) results.save_predictions( strategy_name="alg2", dataset_name="dataset1", index=np.array([1, 2, 3, 4]), y_true=np.array([1, 1, 1, 1]), y_pred=np.array([0, 0, 0, 0]), y_proba=None, cv_fold=0, train_or_test="test", fit_estimator_start_time=pd.to_datetime(1605268800, unit="ms"), fit_estimator_end_time=pd.to_datetime(1605268801, unit="ms"), predict_estimator_start_time=pd.to_datetime(1605268800, unit="ms"), predict_estimator_end_time=pd.to_datetime(1605268801, unit="ms"), ) results.save_predictions( strategy_name="alg2", dataset_name="dataset2", index=np.array([1, 2, 3, 4]), y_true=np.array([0, 0, 0, 0]), y_pred=np.array([1, 1, 1, 1]), y_proba=None, cv_fold=0, train_or_test="test", fit_estimator_start_time=
pd.to_datetime(1605268800, unit="ms")
pandas.to_datetime
# -*- coding: utf-8 -*- """ .. module:: skimpy :platform: Unix, Windows :synopsis: Simple Kinetic Models in Python .. moduleauthor:: SKiMPy team [---------] Copyright 2020 Laboratory of Computational Systems Biotechnology (LCSB), Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from pytfa.io.json import load_json_model import numpy as np import pandas as pd from skimpy.core.modifiers import * from skimpy.io.yaml import load_yaml_model from skimpy.core.reactor import Reactor from skimpy.analysis.oracle.load_pytfa_solution import load_concentrations, load_fluxes from skimpy.viz.plotting import timetrace_plot from pytfa.io.json import load_json_model from skimpy.io.yaml import load_yaml_model from skimpy.analysis.oracle.load_pytfa_solution import load_concentrations from skimpy.core.parameters import load_parameter_population from skimpy.simulations.reactor import make_batch_reactor from skimpy.core.solution import ODESolutionPopulation from skimpy.utils.namespace import * from skimpy.viz.escher import animate_fluxes, plot_fluxes import numpy as np import pandas as pd WITH_ANIMATION = False # This can take some time """ Set up batch reactor """ reactor = make_batch_reactor('single_species.yaml') reactor.compile_ode(add_dilution=False) """ """ path_to_kmodel = './../../models/kin_varma.yml' path_to_tmodel = './../../models/tfa_varma.json' # load models tmodel = load_json_model(path_to_tmodel) kmodel = load_yaml_model(path_to_kmodel) reference_solutions =
pd.read_csv('./../../data/tfa_reference_strains.csv', index_col=0)
pandas.read_csv
from re import X import pandas as pd import numpy as np from scipy.linalg import norm, eigh class PCA(): """ Get principal components and loadings from a matrix X, such as count matrix. Get/Set Attributes: k (int): The number of components to return. Defaults to 10. norm_docs (bool): Whether to apply L2 normalization or not. Defaults to True. center_by_mean (bool): Whether to center term vectors by mean. Defaults to True. center_by_variance (bool): Whether to center term vectors by standard deviation. Defaults to False. Generated Attributes: LOADINGS (pd.DataFrame): A DataFrame of features by principal components. OCM (pd.DataFrame): A DataFrame of observations by principal components. COMPS (pd.DataFrame): A DataFrame of information about each component. """ k:int=10 norm_rows:bool=True center_by_mean:bool=False center_by_variance:bool=False method:str='standard' # 'svd' n_top_terms:int=5 def __init__(self, X:pd.DataFrame) -> None: self.X = X if self.X.isna().sum().sum(): self.X = self.X.fillna(0) def compute_pca(self): self._generate_covariance_matrix() if self.method == 'standard': self._compute_by_eigendecomposition() elif self.method == 'svd': self._compute_by_svd() else: raise ValueError(f"Unknown method {self.method}. Try 'standard' or 'svd'.") self._get_top_terms() def _generate_covariance_matrix(self): """ Get the covariance matrix of features from the input matrix X. Apply norming and centering if wanted. Note that PCA as LSA does not apply centering by mean or variance. """ if self.norm_rows: self.X = self.X.apply(lambda x: x / norm(x), 1).fillna(0) if self.center_by_mean: self.X = self.X - self.X.mean() if self.center_by_variance: self.X = self.X / self.X.std() self.COV = self.X.cov() def _compute_by_svd(self): """ Use SVD to compute objects. """ u, d, vt = np.linalg.svd(self.X) self.OCM =
pd.DataFrame(u[:,:self.k], index=self.X.index)
pandas.DataFrame
"""Base class for working with mapped arrays. This class takes the mapped array and the corresponding column and (optionally) index arrays, and offers features to directly process the mapped array without converting it to pandas; for example, to compute various statistics by column, such as standard deviation. ## Reducing Using `MappedArray`, you can then reduce by column as follows: * Use already provided reducers such as `MappedArray.mean`: ```python-repl >>> import numpy as np >>> import pandas as pd >>> from numba import njit >>> import vectorbt as vbt >>> a = np.array([10., 11., 12., 13., 14., 15., 16., 17., 18.]) >>> col_arr = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> idx_arr = np.array([0, 1, 2, 0, 1, 2, 0, 1, 2]) >>> wrapper = vbt.ArrayWrapper(index=['x', 'y', 'z'], ... columns=['a', 'b', 'c'], ndim=2, freq='1 day') >>> ma = vbt.MappedArray(wrapper, a, col_arr, idx_arr=idx_arr) >>> ma.mean() a 11.0 b 14.0 c 17.0 dtype: float64 ``` * Use `MappedArray.to_pd` to map to pandas and then reduce manually (expensive): ```python-repl >>> ma.to_pd().mean() a 11.0 b 14.0 c 17.0 dtype: float64 ``` * Use `MappedArray.reduce` to reduce using a custom function: ```python-repl >>> @njit ... def pow_mean_reduce_nb(col, a, pow): ... return np.mean(a ** pow) >>> ma.reduce(pow_mean_reduce_nb, 2) a 121.666667 b 196.666667 c 289.666667 dtype: float64 >>> @njit ... def min_max_reduce_nb(col, a): ... return np.array([np.min(a), np.max(a)]) >>> ma.reduce(min_max_reduce_nb, to_array=True, index=['min', 'max']) a b c min 10.0 13.0 16.0 max 12.0 15.0 18.0 >>> @njit ... def idxmin_idxmax_reduce_nb(col, a): ... return np.array([np.argmin(a), np.argmax(a)]) >>> ma.reduce(idxmin_idxmax_reduce_nb, to_array=True, ... to_idx=True, index=['idxmin', 'idxmax']) a b c idxmin x x x idxmax z z z ``` ## Conversion You can expand any `MappedArray` instance to pandas: * Given `idx_arr` was provided: ```python-repl >>> ma.to_pd() a b c x 10.0 13.0 16.0 y 11.0 14.0 17.0 z 12.0 15.0 18.0 ``` !!! note Will raise an error if there are multiple values pointing to the same position. * In case `group_by` was provided, index can be ignored, or there are position conflicts: ```python-repl >>> ma.to_pd(group_by=np.array(['first', 'first', 'second']), ignore_index=True) first second 0 10.0 16.0 1 11.0 17.0 2 12.0 18.0 3 13.0 NaN 4 14.0 NaN 5 15.0 NaN ``` ## Filtering Use `MappedArray.filter_by_mask` to filter elements per column/group: ```python-repl >>> mask = [True, False, True, False, True, False, True, False, True] >>> filtered_ma = ma.filter_by_mask(mask) >>> filtered_ma.count() a 2 b 1 c 2 dtype: int64 >>> filtered_ma.id_arr array([0, 2, 4, 6, 8]) ``` ## Plotting You can build histograms and boxplots of `MappedArray` directly: ```python-repl >>> ma.boxplot() ``` ![](/vectorbt/docs/img/mapped_boxplot.svg) To use scatterplots or any other plots that require index, convert to pandas first: ```python-repl >>> ma.to_pd().vbt.plot() ``` ![](/vectorbt/docs/img/mapped_to_pd_plot.svg) ## Grouping One of the key features of `MappedArray` is that you can perform reducing operations on a group of columns as if they were a single column. Groups can be specified by `group_by`, which can be anything from positions or names of column levels, to a NumPy array with actual groups. There are multiple ways of define grouping: * When creating `MappedArray`, pass `group_by` to `vectorbt.base.array_wrapper.ArrayWrapper`: ```python-repl >>> group_by = np.array(['first', 'first', 'second']) >>> grouped_wrapper = wrapper.copy(group_by=group_by) >>> grouped_ma = vbt.MappedArray(grouped_wrapper, a, col_arr, idx_arr=idx_arr) >>> grouped_ma.mean() first 12.5 second 17.0 dtype: float64 ``` * Regroup an existing `MappedArray`: ```python-repl >>> ma.regroup(group_by).mean() first 12.5 second 17.0 dtype: float64 ``` * Pass `group_by` directly to the reducing method: ```python-repl >>> ma.mean(group_by=group_by) first 12.5 second 17.0 dtype: float64 ``` By the same way you can disable or modify any existing grouping: ```python-repl >>> grouped_ma.mean(group_by=False) a 11.0 b 14.0 c 17.0 dtype: float64 ``` !!! note Grouping applies only to reducing operations, there is no change to the arrays. ## Operators `MappedArray` implements arithmetic, comparison and logical operators. You can perform basic operations (such as addition) on mapped arrays as if they were NumPy arrays. ```python-repl >>> ma ** 2 <vectorbt.records.mapped_array.MappedArray at 0x7f97bfc49358> >>> ma * np.array([1, 2, 3, 4, 5, 6]) <vectorbt.records.mapped_array.MappedArray at 0x7f97bfc65e80> >>> ma + ma <vectorbt.records.mapped_array.MappedArray at 0x7fd638004d30> ``` !!! note You should ensure that your `MappedArray` operand is on the left if the other operand is an array. If two `MappedArray` operands have different metadata, will copy metadata from the first one, but at least their `id_arr` and `col_arr` must match. ## Indexing Like any other class subclassing `vectorbt.base.array_wrapper.Wrapping`, we can do pandas indexing on a `MappedArray` instance, which forwards indexing operation to each object with columns: ```python-repl >>> ma['a'].values array([10., 11., 12.]) >>> grouped_ma['first'].values array([10., 11., 12., 13., 14., 15.]) ``` !!! note Changing index (time axis) is not supported. The object should be treated as a Series rather than a DataFrame; for example, use `some_field.iloc[0]` instead of `some_field.iloc[:, 0]`. Indexing behavior depends solely upon `vectorbt.base.array_wrapper.ArrayWrapper`. For example, if `group_select` is enabled indexing will be performed on groups, otherwise on single columns. ## Caching `MappedArray` supports caching. If a method or a property requires heavy computation, it's wrapped with `vectorbt.utils.decorators.cached_method` and `vectorbt.utils.decorators.cached_property` respectively. Caching can be disabled globally via `caching` in `vectorbt._settings.settings`. !!! note Because of caching, class is meant to be immutable and all properties are read-only. To change any attribute, use the `copy` method and pass the attribute as keyword argument. ## Saving and loading Like any other class subclassing `vectorbt.utils.config.Pickleable`, we can save a `MappedArray` instance to the disk with `MappedArray.save` and load it with `MappedArray.load`. """ import numpy as np import pandas as pd from vectorbt import _typing as tp from vectorbt.utils import checks from vectorbt.utils.decorators import cached_method from vectorbt.utils.enum import enum_to_value_map from vectorbt.utils.config import merge_dicts from vectorbt.base.reshape_fns import to_1d from vectorbt.base.class_helpers import ( add_binary_magic_methods, add_unary_magic_methods, binary_magic_methods, unary_magic_methods ) from vectorbt.base.array_wrapper import ArrayWrapper, Wrapping from vectorbt.generic import nb as generic_nb from vectorbt.records import nb from vectorbt.records.col_mapper import ColumnMapper MappedArrayT = tp.TypeVar("MappedArrayT", bound="MappedArray") IndexingMetaT = tp.Tuple[ ArrayWrapper, tp.Array1d, tp.Array1d, tp.Array1d, tp.Optional[tp.Array1d], tp.MaybeArray, tp.Array1d ] def combine_mapped_with_other(self: MappedArrayT, other: tp.Union["MappedArray", tp.ArrayLike], np_func: tp.Callable[[tp.ArrayLike, tp.ArrayLike], tp.Array1d]) -> MappedArrayT: """Combine `MappedArray` with other compatible object. If other object is also `MappedArray`, their `id_arr` and `col_arr` must match.""" if isinstance(other, MappedArray): checks.assert_array_equal(self.id_arr, other.id_arr) checks.assert_array_equal(self.col_arr, other.col_arr) other = other.values return self.copy(mapped_arr=np_func(self.values, other)) @add_binary_magic_methods( binary_magic_methods, combine_mapped_with_other ) @add_unary_magic_methods( unary_magic_methods, lambda self, np_func: self.copy(mapped_arr=np_func(self.values)) ) class MappedArray(Wrapping): """Exposes methods for reducing, converting, and plotting arrays mapped by `vectorbt.records.base.Records` class. Args: wrapper (ArrayWrapper): Array wrapper. See `vectorbt.base.array_wrapper.ArrayWrapper`. mapped_arr (array_like): A one-dimensional array of mapped record values. col_arr (array_like): A one-dimensional column array. Must be of the same size as `mapped_arr`. id_arr (array_like): A one-dimensional id array. Defaults to simple range. Must be of the same size as `mapped_arr`. idx_arr (array_like): A one-dimensional index array. Optional. Must be of the same size as `mapped_arr`. value_map (namedtuple, dict or callable): Value map. **kwargs: Custom keyword arguments passed to the config. Useful if any subclass wants to extend the config. """ def __init__(self, wrapper: ArrayWrapper, mapped_arr: tp.ArrayLike, col_arr: tp.ArrayLike, id_arr: tp.Optional[tp.ArrayLike] = None, idx_arr: tp.Optional[tp.ArrayLike] = None, value_map: tp.Optional[tp.ValueMapLike] = None, **kwargs) -> None: Wrapping.__init__( self, wrapper, mapped_arr=mapped_arr, col_arr=col_arr, id_arr=id_arr, idx_arr=idx_arr, value_map=value_map, **kwargs ) mapped_arr = np.asarray(mapped_arr) col_arr = np.asarray(col_arr) checks.assert_shape_equal(mapped_arr, col_arr, axis=0) if id_arr is None: id_arr = np.arange(len(mapped_arr)) else: id_arr = np.asarray(id_arr) if idx_arr is not None: idx_arr = np.asarray(idx_arr) checks.assert_shape_equal(mapped_arr, idx_arr, axis=0) if value_map is not None: if checks.is_namedtuple(value_map): value_map = enum_to_value_map(value_map) self._mapped_arr = mapped_arr self._id_arr = id_arr self._col_arr = col_arr self._idx_arr = idx_arr self._value_map = value_map self._col_mapper = ColumnMapper(wrapper, col_arr) def indexing_func_meta(self, pd_indexing_func: tp.PandasIndexingFunc, **kwargs) -> IndexingMetaT: """Perform indexing on `MappedArray` and return metadata.""" new_wrapper, _, group_idxs, col_idxs = \ self.wrapper.indexing_func_meta(pd_indexing_func, column_only_select=True, **kwargs) new_indices, new_col_arr = self.col_mapper._col_idxs_meta(col_idxs) new_mapped_arr = self.values[new_indices] new_id_arr = self.id_arr[new_indices] if self.idx_arr is not None: new_idx_arr = self.idx_arr[new_indices] else: new_idx_arr = None return new_wrapper, new_mapped_arr, new_col_arr, new_id_arr, new_idx_arr, group_idxs, col_idxs def indexing_func(self: MappedArrayT, pd_indexing_func: tp.PandasIndexingFunc, **kwargs) -> MappedArrayT: """Perform indexing on `MappedArray`.""" new_wrapper, new_mapped_arr, new_col_arr, new_id_arr, new_idx_arr, _, _ = \ self.indexing_func_meta(pd_indexing_func, **kwargs) return self.copy( wrapper=new_wrapper, mapped_arr=new_mapped_arr, col_arr=new_col_arr, id_arr=new_id_arr, idx_arr=new_idx_arr ) @property def mapped_arr(self) -> tp.Array1d: """Mapped array.""" return self._mapped_arr @property def values(self) -> tp.Array1d: """Mapped array.""" return self.mapped_arr def __len__(self) -> int: return len(self.values) @property def col_arr(self) -> tp.Array1d: """Column array.""" return self._col_arr @property def col_mapper(self) -> ColumnMapper: """Column mapper. See `vectorbt.records.col_mapper.ColumnMapper`.""" return self._col_mapper @property def id_arr(self) -> tp.Array1d: """Id array.""" return self._id_arr @property def idx_arr(self) -> tp.Optional[tp.Array1d]: """Index array.""" return self._idx_arr @property def value_map(self) -> tp.Optional[tp.ValueMap]: """Value map.""" return self._value_map @cached_method def is_sorted(self, incl_id: bool = False) -> bool: """Check whether mapped array is sorted.""" if incl_id: return nb.is_col_idx_sorted_nb(self.col_arr, self.id_arr) return nb.is_col_sorted_nb(self.col_arr) def sort(self: MappedArrayT, incl_id: bool = False, idx_arr: tp.Optional[tp.Array1d] = None, group_by: tp.GroupByLike = None, **kwargs) -> MappedArrayT: """Sort mapped array by column array (primary) and id array (secondary, optional).""" if idx_arr is None: idx_arr = self.idx_arr if self.is_sorted(incl_id=incl_id): return self.copy(idx_arr=idx_arr, **kwargs).regroup(group_by) if incl_id: ind = np.lexsort((self.id_arr, self.col_arr)) # expensive! else: ind = np.argsort(self.col_arr) return self.copy( mapped_arr=self.values[ind], col_arr=self.col_arr[ind], id_arr=self.id_arr[ind], idx_arr=idx_arr[ind] if idx_arr is not None else None, **kwargs ).regroup(group_by) def filter_by_mask(self: MappedArrayT, mask: tp.Array1d, idx_arr: tp.Optional[tp.Array1d] = None, group_by: tp.GroupByLike = None, **kwargs) -> MappedArrayT: """Return a new class instance, filtered by mask.""" if idx_arr is None: idx_arr = self.idx_arr return self.copy( mapped_arr=self.values[mask], col_arr=self.col_arr[mask], id_arr=self.id_arr[mask], idx_arr=idx_arr[mask] if idx_arr is not None else None, **kwargs ).regroup(group_by) def map_to_mask(self, inout_map_func_nb: tp.MaskInOutMapFunc, *args, group_by: tp.GroupByLike = None) -> tp.Array1d: """Map mapped array to a mask. See `vectorbt.records.nb.mapped_to_mask_nb`.""" col_map = self.col_mapper.get_col_map(group_by=group_by) return nb.mapped_to_mask_nb(self.values, col_map, inout_map_func_nb, *args) @cached_method def top_n_mask(self, n: int, **kwargs) -> tp.Array1d: """Return mask of top N elements in each column.""" return self.map_to_mask(nb.top_n_inout_map_nb, n, **kwargs) @cached_method def bottom_n_mask(self, n: int, **kwargs) -> tp.Array1d: """Return mask of bottom N elements in each column.""" return self.map_to_mask(nb.bottom_n_inout_map_nb, n, **kwargs) @cached_method def top_n(self: MappedArrayT, n: int, **kwargs) -> MappedArrayT: """Filter top N elements from each column.""" return self.filter_by_mask(self.top_n_mask(n), **kwargs) @cached_method def bottom_n(self: MappedArrayT, n: int, **kwargs) -> MappedArrayT: """Filter bottom N elements from each column.""" return self.filter_by_mask(self.bottom_n_mask(n), **kwargs) @cached_method def is_expandable(self, idx_arr: tp.Optional[tp.Array1d] = None, group_by: tp.GroupByLike = None) -> bool: """See `vectorbt.records.nb.is_mapped_expandable_nb`.""" if idx_arr is None: if self.idx_arr is None: raise ValueError("Must pass idx_arr") idx_arr = self.idx_arr col_arr = self.col_mapper.get_col_arr(group_by=group_by) target_shape = self.wrapper.get_shape_2d(group_by=group_by) return nb.is_mapped_expandable_nb(col_arr, idx_arr, target_shape) def to_pd(self, idx_arr: tp.Optional[tp.Array1d] = None, ignore_index: bool = False, default_val: float = np.nan, group_by: tp.GroupByLike = None, wrap_kwargs: tp.KwargsLike = None) -> tp.SeriesFrame: """Expand mapped array to a Series/DataFrame. If `ignore_index`, will ignore the index and stack data points on top of each other in every column (see `vectorbt.records.nb.stack_expand_mapped_nb`). Otherwise, see `vectorbt.records.nb.expand_mapped_nb`. !!! note Will raise an error if there are multiple values pointing to the same position. Set `ignore_index` to True in this case. !!! warning Mapped arrays represent information in the most memory-friendly format. Mapping back to pandas may occupy lots of memory if records are sparse.""" if ignore_index: if self.wrapper.ndim == 1: return self.wrapper.wrap( self.values, index=np.arange(len(self.values)), group_by=group_by, **merge_dicts({}, wrap_kwargs) ) col_map = self.col_mapper.get_col_map(group_by=group_by) out = nb.stack_expand_mapped_nb(self.values, col_map, default_val) return self.wrapper.wrap( out, index=np.arange(out.shape[0]), group_by=group_by, **merge_dicts({}, wrap_kwargs)) if idx_arr is None: if self.idx_arr is None: raise ValueError("Must pass idx_arr") idx_arr = self.idx_arr if not self.is_expandable(idx_arr=idx_arr, group_by=group_by): raise ValueError("Multiple values are pointing to the same position. Use ignore_index.") col_arr = self.col_mapper.get_col_arr(group_by=group_by) target_shape = self.wrapper.get_shape_2d(group_by=group_by) out = nb.expand_mapped_nb(self.values, col_arr, idx_arr, target_shape, default_val) return self.wrapper.wrap(out, group_by=group_by, **merge_dicts({}, wrap_kwargs)) def reduce(self, reduce_func_nb: tp.ReduceFunc, *args, idx_arr: tp.Optional[tp.Array1d] = None, to_array: bool = False, to_idx: bool = False, idx_labeled: bool = True, default_val: float = np.nan, group_by: tp.GroupByLike = None, wrap_kwargs: tp.KwargsLike = None) -> tp.MaybeSeriesFrame: """Reduce mapped array by column. If `to_array` is False and `to_idx` is False, see `vectorbt.records.nb.reduce_mapped_nb`. If `to_array` is False and `to_idx` is True, see `vectorbt.records.nb.reduce_mapped_to_idx_nb`. If `to_array` is True and `to_idx` is False, see `vectorbt.records.nb.reduce_mapped_to_array_nb`. If `to_array` is True and `to_idx` is True, see `vectorbt.records.nb.reduce_mapped_to_idx_array_nb`. If `to_idx` is True, must pass `idx_arr`. Set `idx_labeled` to False to return raw positions instead of labels. Use `default_val` to set the default value. Set `group_by` to False to disable grouping. """ # Perform checks checks.assert_numba_func(reduce_func_nb) if idx_arr is None: if self.idx_arr is None: if to_idx: raise ValueError("Must pass idx_arr") idx_arr = self.idx_arr # Perform main computation col_map = self.col_mapper.get_col_map(group_by=group_by) if not to_array: if not to_idx: out = nb.reduce_mapped_nb( self.values, col_map, default_val, reduce_func_nb, *args ) else: out = nb.reduce_mapped_to_idx_nb( self.values, col_map, idx_arr, default_val, reduce_func_nb, *args ) else: if not to_idx: out = nb.reduce_mapped_to_array_nb( self.values, col_map, default_val, reduce_func_nb, *args ) else: out = nb.reduce_mapped_to_idx_array_nb( self.values, col_map, idx_arr, default_val, reduce_func_nb, *args ) # Perform post-processing if to_idx: nan_mask = np.isnan(out) if idx_labeled: out = out.astype(object) out[~nan_mask] = self.wrapper.index[out[~nan_mask].astype(np.int_)] else: out[nan_mask] = -1 out = out.astype(np.int_) wrap_kwargs = merge_dicts(dict(name_or_index='reduce' if not to_array else None), wrap_kwargs) return self.wrapper.wrap_reduced(out, group_by=group_by, **wrap_kwargs) @cached_method def nst(self, n: int, **kwargs) -> tp.MaybeSeries: """Return nst element of each column.""" kwargs = merge_dicts(dict(wrap_kwargs=dict(name_or_index='nst')), kwargs) return self.reduce(generic_nb.nst_reduce_nb, n, to_array=False, to_idx=False, **kwargs) @cached_method def min(self, **kwargs) -> tp.MaybeSeries: """Return min by column.""" kwargs = merge_dicts(dict(wrap_kwargs=dict(name_or_index='min')), kwargs) return self.reduce(generic_nb.min_reduce_nb, to_array=False, to_idx=False, **kwargs) @cached_method def max(self, **kwargs) -> tp.MaybeSeries: """Return max by column.""" kwargs = merge_dicts(dict(wrap_kwargs=dict(name_or_index='max')), kwargs) return self.reduce(generic_nb.max_reduce_nb, to_array=False, to_idx=False, **kwargs) @cached_method def mean(self, **kwargs) -> tp.MaybeSeries: """Return mean by column.""" kwargs = merge_dicts(dict(wrap_kwargs=dict(name_or_index='mean')), kwargs) return self.reduce(generic_nb.mean_reduce_nb, to_array=False, to_idx=False, **kwargs) @cached_method def median(self, **kwargs) -> tp.MaybeSeries: """Return median by column.""" kwargs = merge_dicts(dict(wrap_kwargs=dict(name_or_index='median')), kwargs) return self.reduce(generic_nb.median_reduce_nb, to_array=False, to_idx=False, **kwargs) @cached_method def std(self, ddof: int = 1, **kwargs) -> tp.MaybeSeries: """Return std by column.""" kwargs = merge_dicts(dict(wrap_kwargs=dict(name_or_index='std')), kwargs) return self.reduce(generic_nb.std_reduce_nb, ddof, to_array=False, to_idx=False, **kwargs) @cached_method def sum(self, default_val: float = 0., **kwargs) -> tp.MaybeSeries: """Return sum by column.""" kwargs = merge_dicts(dict(wrap_kwargs=dict(name_or_index='sum')), kwargs) return self.reduce( generic_nb.sum_reduce_nb, to_array=False, to_idx=False, default_val=default_val, **kwargs ) @cached_method def idxmin(self, **kwargs) -> tp.MaybeSeries: """Return index of min by column.""" kwargs = merge_dicts(dict(wrap_kwargs=dict(name_or_index='idxmin')), kwargs) return self.reduce(generic_nb.argmin_reduce_nb, to_array=False, to_idx=True, **kwargs) @cached_method def idxmax(self, **kwargs) -> tp.MaybeSeries: """Return index of max by column.""" kwargs = merge_dicts(dict(wrap_kwargs=dict(name_or_index='idxmax')), kwargs) return self.reduce(generic_nb.argmax_reduce_nb, to_array=False, to_idx=True, **kwargs) @cached_method def describe(self, percentiles: tp.Optional[tp.ArrayLike] = None, ddof: int = 1, **kwargs) -> tp.SeriesFrame: """Return statistics by column.""" if percentiles is not None: percentiles = to_1d(percentiles, raw=True) else: percentiles = np.array([0.25, 0.5, 0.75]) percentiles = percentiles.tolist() if 0.5 not in percentiles: percentiles.append(0.5) percentiles = np.unique(percentiles) perc_formatted = pd.io.formats.format.format_percentiles(percentiles) index = pd.Index(['count', 'mean', 'std', 'min', *perc_formatted, 'max']) kwargs = merge_dicts(dict(wrap_kwargs=dict(name_or_index=index)), kwargs) out = self.reduce( generic_nb.describe_reduce_nb, percentiles, ddof, to_array=True, to_idx=False, **kwargs ) if isinstance(out, pd.DataFrame): out.loc['count'].fillna(0., inplace=True) else: if np.isnan(out.loc['count']): out.loc['count'] = 0. return out @cached_method def count(self, group_by: tp.GroupByLike = None, wrap_kwargs: tp.KwargsLike = None) -> tp.MaybeSeries: """Return count by column.""" wrap_kwargs = merge_dicts(dict(name_or_index='count'), wrap_kwargs) return self.wrapper.wrap_reduced( self.col_mapper.get_col_map(group_by=group_by)[1], group_by=group_by, **wrap_kwargs) @cached_method def value_counts(self, group_by: tp.GroupByLike = None, value_map: tp.Optional[tp.ValueMapLike] = None, wrap_kwargs: tp.KwargsLike = None) -> tp.SeriesFrame: """Return a pandas object containing counts of unique values.""" mapped_codes, mapped_uniques =
pd.factorize(self.values)
pandas.factorize
# Copyright (C) 2014-2017 <NAME>, <NAME>, <NAME>, <NAME> (in alphabetic order) # # This file is part of OpenModal. # # OpenModal is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, version 3 of the License. # # OpenModal is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with OpenModal. If not, see <http://www.gnu.org/licenses/>. ''' Created on 20. maj 2014 TODO: That mnums in the beginning of every function, thats bad! TODO: Alot of refactoring. TODO: Put tables in a dictionary, that way you have a nice overview of what is inside and also is much better :) @author: Matjaz ''' import time import os import itertools from datetime import datetime import pandas as pd from pandas import ExcelWriter from OpenModal.anim_tools import zyx_euler_to_rotation_matrix import numpy as np import pyuff import OpenModal.utils as ut # import _transformations as tr # Uff fields definitions (human-readable). types = dict() types[15] = 'Geometry' types[82] = 'Lines' types[151] = 'Header' types[2411] = 'Geometry' types[164] = 'Units' types[58] = 'Measurement' types[55] = 'Analysis' types[2420] = 'Coor. sys.' types[18] = 'Coor. sys.' # Function type definition. FUNCTION_TYPE = dict() FUNCTION_TYPE['General'] = 0 # also: unknown FUNCTION_TYPE['Time Response'] = 1 FUNCTION_TYPE['Auto Spectrum'] = 2 FUNCTION_TYPE['Cross Spectrum'] = 3 FUNCTION_TYPE['Frequency Response Function'] = 4 FUNCTION_TYPE['Transmissibility'] = 5 FUNCTION_TYPE['Coherence'] = 6 FUNCTION_TYPE['Auto Correlation'] = 7 FUNCTION_TYPE['Cross Correlation'] = 8 FUNCTION_TYPE['Power Spectral Density (PSD)'] = 9 FUNCTION_TYPE['Energy Spectral Density (ESD)'] = 10 FUNCTION_TYPE['Probability Density Function'] = 11 FUNCTION_TYPE['Spectrum'] = 12 FUNCTION_TYPE['Cumulative Frequency Distribution'] = 13 FUNCTION_TYPE['Peaks Valley'] = 14 FUNCTION_TYPE['Stress/Cycles'] = 15 FUNCTION_TYPE['Strain/Cycles'] = 16 FUNCTION_TYPE['Orbit'] = 17 FUNCTION_TYPE['Mode Indicator Function'] = 18 FUNCTION_TYPE['Force Pattern'] = 19 FUNCTION_TYPE['Partial Power'] = 20 FUNCTION_TYPE['Partial Coherence'] = 21 FUNCTION_TYPE['Eigenvalue'] = 22 FUNCTION_TYPE['Eigenvector'] = 23 FUNCTION_TYPE['Shock Response Spectrum'] = 24 FUNCTION_TYPE['Finite Impulse Response Filter'] = 25 FUNCTION_TYPE['Multiple Coherence'] = 26 FUNCTION_TYPE['Order Function'] = 27 FUNCTION_TYPE['Phase Compensation'] = 28 # Specific data type for abscisa/ordinate SPECIFIC_DATA_TYPE = dict() SPECIFIC_DATA_TYPE['unknown'] = 0 SPECIFIC_DATA_TYPE['general'] = 1 SPECIFIC_DATA_TYPE['stress'] = 2 SPECIFIC_DATA_TYPE['strain'] = 3 SPECIFIC_DATA_TYPE['temperature'] = 5 SPECIFIC_DATA_TYPE['heat flux'] = 6 SPECIFIC_DATA_TYPE['displacement'] = 8 SPECIFIC_DATA_TYPE['reaction force'] = 9 SPECIFIC_DATA_TYPE['velocity'] = 11 SPECIFIC_DATA_TYPE['acceleration'] = 12 SPECIFIC_DATA_TYPE['excitation force'] = 13 SPECIFIC_DATA_TYPE['pressure'] = 15 SPECIFIC_DATA_TYPE['mass'] = 16 SPECIFIC_DATA_TYPE['time'] = 17 SPECIFIC_DATA_TYPE['frequency'] = 18 SPECIFIC_DATA_TYPE['rpm'] = 19 SPECIFIC_DATA_TYPE['order'] = 20 SPECIFIC_DATA_TYPE['sound pressure'] = 21 SPECIFIC_DATA_TYPE['sound intensity'] = 22 SPECIFIC_DATA_TYPE['sound power'] = 23 # TODO: Fast get and set. Check setting with enlargement. class ModalData(object): """The data object holds all measurement, results and geometry data """ def __init__(self): """ Constructor """ self.create_empty() def create_empty(self): """Create an empty data container.""" # Tables self.tables = dict() # Holds the tables, populated by importing a uff file. # TODO: This is temporary? Maybe, maybe not, might be # a good idea to have some reference of imported data! self.uff_import_tables = dict() self.create_info_table() self.create_geometry_table() self.create_measurement_table() self.create_analysis_table() self.create_lines_table() self.create_elements_table() # Set model id self.model_id = 0 def create_info_table(self): """Creates an empty info table.""" self.tables['info'] = pd.DataFrame(columns=['model_id', 'model_name', 'description', 'units_code', 'length', 'force', 'temp', 'temp_offset']) # self.tables['info'] = pd.DataFrame(columns=['model_id', 'uffid', 'value']) def create_geometry_table(self): """Creates an empty geometry table.""" self.tables['geometry'] = pd.DataFrame(columns=['model_id', 'uffid', 'node_nums', 'x', 'y', 'z', 'thx', 'thy', 'thz', 'disp_cs', 'def_cs', 'color','clr_r','clr_g','clr_b','clr_a', 'r','phi','cyl_thz']) def create_measurement_table(self): """Creates an empty measurement table.""" self.tables['measurement_index'] = pd.DataFrame(columns=['model_id', 'measurement_id', 'uffid', 'field_type', 'excitation_type', 'func_type', 'rsp_node', 'rsp_dir', 'ref_node', 'ref_dir', 'abscissa_spec_data_type', 'ordinate_spec_data_type', 'orddenom_spec_data_type', 'zero_padding'], dtype=int) self.tables['measurement_values'] = pd.DataFrame(columns=['model_id', 'measurement_id', 'frq', 'amp']) self.tables['measurement_values'].amp = self.tables['measurement_values'].amp.astype('complex') self.tables['measurement_values_td'] = pd.DataFrame(columns=['model_id', 'measurement_id', 'n_avg', 'x_axis', 'excitation', 'response']) def create_analysis_table(self): """Creates an empty analysis table.""" self.tables['analysis_index'] = pd.DataFrame(columns=['model_id', 'analysis_id', 'analysis_method', 'uffid', 'field_type', 'analysis_type', 'data_ch', 'spec_data_type', 'load_case', 'mode_n', 'eig', 'freq', 'freq_step_n', 'node_nums', 'rsp_node', 'rsp_dir', 'ref_node', 'ref_dir', 'data_type', 'ref_node', 'ref_dir', 'data_type', 'eig_real','eig_xi', 'spots']) self.tables['analysis_values'] = pd.DataFrame(columns=['model_id', 'analysis_id', 'analysis_method', 'mode_n', 'node_nums', 'r1', 'r2', 'r3', 'r4', 'r5', 'r6']) self.tables['analysis_settings'] = pd.DataFrame(columns=['model_id', 'analysis_id', 'analysis_method', 'f_min','f_max', 'nmax', 'err_fn', 'err_xi', ]) self.tables['analysis_stabilisation'] = pd.DataFrame(columns=['model_id', 'analysis_id', 'analysis_method', 'pos', 'size', 'pen_color', 'pen_width', 'symbol', 'brush', 'damp']) self.tables['analysis_index'].eig = self.tables['analysis_index'].eig.astype('complex') self.tables['analysis_values'].r1 = self.tables['analysis_values'].r1.astype('complex') self.tables['analysis_values'].r2 = self.tables['analysis_values'].r2.astype('complex') self.tables['analysis_values'].r3 = self.tables['analysis_values'].r3.astype('complex') self.tables['analysis_values'].r4 = self.tables['analysis_values'].r4.astype('complex') self.tables['analysis_values'].r5 = self.tables['analysis_values'].r5.astype('complex') self.tables['analysis_values'].r6 = self.tables['analysis_values'].r6.astype('complex') def create_lines_table(self): """Creates an empty lines table.""" self.tables['lines'] = pd.DataFrame(['model_id', 'uffid', 'id', 'field_type', 'trace_num', 'color', 'n_nodes', 'trace_id', 'pos', 'node']) def create_elements_table(self): """Creates an empty elements table.""" # TODO: Missing 'physical property table number' and 'material property ...' # TODO: Missing 'fe descriptor id', chosen from a list of 232(!) types!!? # TODO: Missing beam support. self.tables['elements_index'] = pd.DataFrame(columns=['model_id', 'element_id', 'element_descriptor', 'color', 'nr_of_nodes','clr_r','clr_g','clr_b','clr_a']) self.tables['elements_values'] = pd.DataFrame(columns=['model_id', 'element_id', 'node_id', 'node_pos']) def new_model(self, model_id=-1, entries=dict()): """Set new model id. Values can be set through entries dictionary, for each value left unset, default will be used.""" if model_id == -1: # Create a new model_id. First check if table is empty. current_models = self.tables['info'].model_id if current_models.size == 0: model_id = 0 else: model_id = current_models.max() + 1 fields = {'db_app': 'ModalData', 'time_db_created': time.strftime("%d-%b-%y %H:%M:%S"), 'time_db_saved': time.strftime("%d-%b-%y %H:%M:%S"), 'program': 'OpenModal', 'model_name': 'DefaultName', 'description': 'DefaultDecription', 'units_code': 9, 'temp': 1, 'temp_mode': 1, 'temp_offset': 1, 'length': 1, 'force': 1, 'units_description': 'User unit system'} for key in entries: fields[key] = entries[key] # TODO: Check if model_id already exists. input = [model_id, fields['model_name'], fields['description'], fields['units_code'], fields['length'], fields['force'], fields['temp'], fields['temp_offset']] new_model = pd.DataFrame([input], columns=['model_id', 'model_name', 'description', 'units_code', 'length', 'force', 'temp', 'temp_offset']) self.tables['info'] = pd.concat([self.tables['info'], new_model], ignore_index=True) return model_id def new_measurement(self, model_id, excitation_type, frequency, h, reference=[0, 0], response=[0, 0], function_type='Frequency Response Function', abscissa='frequency', ordinate='acceleration', denominator='excitation force', zero_padding=0, td_x_axis=np.array([]), td_excitation=None, td_response=None): """Add a new measurement.""" # Check if model id exists. if self.tables['info'].model_id.size == 0: raise ValueError elif not any(self.tables['info'].model_id == model_id): raise ValueError # Prepare a new measurement_id. if self.tables['measurement_index'].measurement_id.size == 0: measurement_id = 0 else: measurement_id = self.tables['measurement_index'].measurement_id.max() + 1 newentry_idx = pd.DataFrame([[model_id, measurement_id, excitation_type, FUNCTION_TYPE[function_type], response[0], response[1], reference[0], reference[1], SPECIFIC_DATA_TYPE[abscissa], SPECIFIC_DATA_TYPE[ordinate], SPECIFIC_DATA_TYPE[denominator], zero_padding]], columns=['model_id', 'measurement_id', 'excitation_type', 'func_type', 'rsp_node', 'rsp_dir', 'ref_node', 'ref_dir', 'abscissa_spec_data_type', 'ordinate_spec_data_type', 'orddenom_spec_data_type', 'zero_padding']) self.tables['measurement_index'] = pd.concat([ self.tables['measurement_index'], newentry_idx], ignore_index=True) # Add entry with measured frf. newentry_val = pd.DataFrame(columns=['model_id', 'measurement_id', 'frq', 'amp']) newentry_val['frq'] = frequency newentry_val['amp'] = h newentry_val['model_id'] = model_id newentry_val['measurement_id'] = measurement_id self.tables['measurement_values'] = pd.concat([self.tables['measurement_values'], newentry_val], ignore_index=True) # if td_x_axis.size > 0: # # TODO: Create it with size you already know. Should be faster? # newentry_val_td = pd.DataFrame(columns=['model_id', 'measurement_id', 'x_axis', 'excitation', 'response']) # newentry_val_td['x_axis'] = td_x_axis # newentry_val_td['excitation'] = td_excitation # newentry_val_td['response'] = td_response # newentry_val_td['model_id'] = model_id # newentry_val_td['measurement_id'] = measurement_id # # self.tables['measurement_values_td'] = pd.concat([self.tables['measurement_values_td'], newentry_val_td], # ignore_index=True) if td_x_axis.size > 0: n_averages = len(td_response) i = 0 # TODO: Optimize here. for td_excitation_i, td_response_i in zip(td_excitation, td_response): # TODO: Create it with size you already know. Should be faster? newentry_val_td = pd.DataFrame(columns=['model_id', 'measurement_id', 'n_avg', 'x_axis', 'excitation', 'response']) newentry_val_td['x_axis'] = td_x_axis newentry_val_td['excitation'] = td_excitation_i newentry_val_td['response'] = td_response_i newentry_val_td['model_id'] = model_id newentry_val_td['measurement_id'] = measurement_id newentry_val_td['n_avg'] = i i += 1 self.tables['measurement_values_td'] = pd.concat([self.tables['measurement_values_td'], newentry_val_td], ignore_index=True) def remove_model(self, model_id): """Remove all data connected to the supplied model id.""" try: el_idx = self.tables['elements_index'] el_vals = self.tables['elements_values'] elements_id = el_idx[el_idx.model_id == model_id].element_id self.tables['elements_values'] = self.tables['elements_values'][~el_vals.element_id.isin(elements_id)] self.tables['elements_index'] = self.tables['elements_index'][el_idx.model_id != model_id] except AttributeError: print('There is no element data to delete.') try: lines = self.tables['lines'] self.tables['lines'] = self.tables['lines'][lines.model_id != model_id] except AttributeError: print('There is no line data to delete.') try: an_idx = self.tables['analysis_index'] an_vals = self.tables['analysis_values'] analysis_id = an_idx[an_idx.model_id == model_id].analysis_id self.tables['analysis_values'] = self.tables['analysis_values'][~an_vals.element_id.isin(analysis_id)] self.tables['analysis_index'] = self.tables['analysis_index'][an_idx.model_id != model_id] except AttributeError: print('There is no analysis data to delete.') try: me_idx = self.tables['measurement_index'] me_vals = self.tables['measurement_values'] me_vals_td = self.tables['measurement_values_td'] measurement_id = me_idx[me_idx.model_id == model_id].measurement_id self.tables['measurement_values_td'] = self.tables['measurement_values_td'][~me_vals_td.measurement_id.isin(measurement_id)] self.tables['measurement_values'] = self.tables['measurement_values'][~me_vals.measurement_id.isin(measurement_id)] self.tables['measurement_index'] = self.tables['measurement_index'][me_idx.model_id != model_id] except AttributeError: print('There is no measurement data to delete.') try: geometry = self.tables['geometry'] self.tables['geometry'] = self.tables['geometry'][geometry.model_id != model_id] except AttributeError: print('There is no geometry data to delete.') try: info = self.tables['info'] self.tables['info'] = self.tables['info'][info.model_id != model_id] except AttributeError: print('There is no info data to delete.') def import_uff(self, fname): """Pull data from uff.""" # Make sure you start with new model ids at the appropriate index. if self.tables['info'].model_id.size > 0: base_key = self.tables['info'].model_id.max() + 1 else: base_key=0 uffdata = ModalDataUff(fname, base_key=base_key) for key in self.tables.keys(): if key in uffdata.tables: # uffdata.tables[key].model_id += 100 self.tables[key] = pd.concat([self.tables[key], uffdata.tables[key]], ignore_index=True) self.uff_import_tables[key] = '' self.file_structure = uffdata.file_structure def export_to_uff(self, fname, model_ids=[], data_types=[], separate_files_flag=False): """Export data to uff.""" model_ids = self.tables['info'].model_id.unique() if len(model_ids) == 0: model_ids = self.tables['info'].model_id.unique() if len(data_types) == 0: data_types = ['nodes', 'lines', 'elements', 'measurements', 'analyses'] if len(model_ids) == 0: print('Warning: Empty tables. (No model_ids found).') return False t = datetime.now() folder_timestamp = 'OpenModal Export UFF -- {:%Y %d-%m %H-%M-%S}'.format(t) export_folder = os.path.join(fname, folder_timestamp) try: os.mkdir(export_folder) except: print('Warning: File exists. Try again later ...') return False for model_id in model_ids: # -- Write info. dfi = self.tables['info'] dfi = dfi[dfi.model_id == model_id] # TODO: Do not overwrite this dfi model_name = dfi.model_name.values[0] if not separate_files_flag: uffwrite=pyuff.UFF(os.path.join(export_folder, '{0}_{1:.0f}.uff'.format(model_name, model_id))) if len(dfi) != 0: dset_info = {'db_app': 'modaldata v1', 'model_name': dfi.model_name.values[0], 'description': dfi.description.values[0], 'program': 'Open Modal'} dset_units = {'units_code': dfi.units_code.values[0], # TODO: Maybe implement other data. # 'units_description': dfi.units_description, # 'temp_mode': dfi.temp_mode, 'length': dfi.length.values[0], 'force': dfi.force.values[0], 'temp': dfi.temp.values[0], 'temp_offset': dfi.temp_offset.values[0]} # for key in dset_info.keys(): # dset_info[key] = dset_info[key].value.values[0] dset_info['type'] = 151 # for key in dset_units.keys(): # dset_units[key] = dset_units[key].value.values[0] dset_units['type'] = 164 if separate_files_flag: uffwrite=pyuff.UFF(os.path.join(export_folder, '{0}_{1:.0f}_info.uff'.format(model_name, model_id))) uffwrite._write_set(dset_info, mode='add') uffwrite._write_set(dset_units, mode='add') # -- Write Geometry. if 'nodes' in data_types: dfg = self.tables['geometry'] #dfg = dfg[dfg.model_id==model_id] #drop nan lines defined in geometry model_id_mask=dfg.model_id==model_id nan_mask = dfg[['node_nums','x', 'y', 'z','thz', 'thy', 'thx' , 'model_id']].notnull().all(axis=1) comb_mask = model_id_mask & nan_mask dfg = dfg[comb_mask] if len(dfg) != 0: # .. First the coordinate systems. Mind the order of angles (ZYX) size = len(dfg) local_cs = np.zeros((size * 4, 3), dtype=float) th_angles = dfg[['thz', 'thy', 'thx']].values for i in range(size): #local_cs[i*4:i*4+3, :] = ut.zyx_euler_to_rotation_matrix(th_angles[i, :]) local_cs[i*4:i*4+3, :] = zyx_euler_to_rotation_matrix(th_angles[i, :]*np.pi/180.) local_cs[i*4+3, :] = 0.0 dset_cs = {'local_cs': local_cs, 'nodes': dfg[['node_nums']].values, 'type': 2420} uffwrite._write_set(dset_cs, mode='add') # .. Then points. dset_geometry = {'grid_global': dfg[['node_nums', 'x', 'y', 'z']].values, 'export_cs_number': 0, 'cs_color': 8, 'type': 2411} if separate_files_flag: uffwrite=pyuff.UFF(os.path.join(export_folder, '{0}_{1:.0f}_nodes.uff'.format(model_name, model_id))) uffwrite._write_set(dset_geometry, mode='add') # -- Write Measurements. if 'measurements' in data_types: dfi = self.tables['measurement_index'] dfi = dfi[dfi.model_id == model_id] dfi.field_type = 58 if len(dfi) != 0: dfv = self.tables['measurement_values'] dfv = dfv[dfv.model_id == model_id] for id, measurement in dfi.iterrows(): data = dfv[dfv.measurement_id == measurement.measurement_id] dsets={'type': measurement['field_type'], 'func_type': measurement['func_type'], 'data': data['amp'].values.astype('complex'), 'x': data['frq'].values, 'rsp_node': measurement['rsp_node'], 'rsp_dir': measurement['rsp_dir'], 'ref_node': measurement['ref_node'], 'ref_dir': measurement['ref_dir'], 'rsp_ent_name':model_name, 'ref_ent_name':model_name} # TODO: Make rsp_ent_name and ref_ent_name fields in measurement_index table. if pd.isnull(measurement['abscissa_spec_data_type']): dsets['abscissa_spec_data_type'] = 0 else: dsets['abscissa_spec_data_type'] = measurement['abscissa_spec_data_type'] if pd.isnull(measurement['ordinate_spec_data_type']): dsets['ordinate_spec_data_type'] = 0 else: dsets['ordinate_spec_data_type'] = measurement['ordinate_spec_data_type'] if pd.isnull(measurement['orddenom_spec_data_type']): dsets['orddenom_spec_data_type'] = 0 else: dsets['orddenom_spec_data_type'] = measurement['orddenom_spec_data_type'] if separate_files_flag: uffwrite=pyuff.UFF(os.path.join(export_folder, '{0}_{1:.0f}_measurements.uff'.format(model_name, model_id))) uffwrite._write_set(dsets, mode='add') def export_to_csv(self, fname, model_ids=[], data_types=[]): """Export data to uff.""" if len(model_ids) == 0: model_ids = self.tables['info'].model_id.unique() if len(data_types) == 0: data_types = ['nodes', 'lines', 'elements', 'measurements', 'analyses'] if len(model_ids) == 0: print('Warning: Empty tables. (No model_ids found).') return False t = datetime.now() folder_timestamp = 'OpenModal Export CSV -- {:%Y %d-%m %H-%M-%S}'.format(t) export_folder = os.path.join(fname, folder_timestamp) try: os.mkdir(export_folder) except: print('Warning: File exists. Try again later ...') return False for model_id in model_ids: # -- Write info. dfi = self.tables['info'] dfi = dfi[dfi.model_id == model_id] model_name = '{0}_{1:.0f}'.format(dfi.model_name.values[0], model_id) model_dir = os.path.join(export_folder, model_name) os.mkdir(model_dir) df_ = self.tables['info'] df_[df_.model_id == model_id].to_csv(os.path.join(model_dir, 'info.csv')) if 'nodes' in data_types: df_ = self.tables['geometry'] df_[df_.model_id == model_id].to_csv(os.path.join(model_dir, 'geometry.csv')) # -- Special treatment for measurements if 'measurements' in data_types: measurements_dir = os.path.join(model_dir, 'measurements') os.mkdir(measurements_dir) df_ = self.tables['measurement_index'] df_[df_.model_id == model_id].to_csv(os.path.join(measurements_dir, 'measurements_index.csv')) df_ = self.tables['measurement_values'] grouped_measurements = df_[df_.model_id == model_id].groupby('measurement_id') for id, measurement in grouped_measurements: measurement['amp_real'] = measurement.amp.real measurement['amp_imag'] = measurement.amp.imag measurement[['frq', 'amp_real', 'amp_imag']].to_csv(os.path.join(measurements_dir, 'measurement_{0:.0f}.csv'.format(id)), index=False) class ModalDataUff(object): ''' Reads the uff file and populates the following pandas tables: -- ModalData.measurement_index : index of all measurements from field 58 -- ModalData.geometry : index of all points with CS from fields 2411 and 15 -- ModalData.info : info about measurements Based on the position of field in the uff file, uffid is assigned to each field in the following maner: first field, uffid = 0, second field, uffid = 1 and so on. Columns are named based on keys from the UFF class if possible. Fields uffid and field_type (type of field, eg. 58) are added. Geometry table combines nodes and their respective CSs, column names are altered. ''' def __init__(self, fname='../../unvread/data/shield.uff', base_key=0): ''' Constructor ''' self.uff_object = pyuff.UFF(fname) # Start above base_key. self.base_key = base_key self.uff_types = self.uff_object.get_set_types() # print(self.uff_types) # Models self.models = dict() # Tables self.tables = dict() # Coordinate-system tables self.localcs = pd.DataFrame(columns=['model_id', 'uffidcs', 'node_nums', 'x1', 'x2', 'x3', 'y1', 'y2', 'y3', 'z1', 'z2', 'z3']) self.localeul = pd.DataFrame(columns=['model_id', 'uffidcs', 'node_nums', 'thx', 'thy', 'thz']) # File structure. self.file_structure = ['%5d %-10s' % (field, types[field]) for field in self.uff_types] self.create_model() def create_model(self): """Scans the uff file and creates a model from geometries and data, which is then populated. The models are grouped based on the field 151!""" # -- Scan geometries, each geometry is one model. mnums = list(np.nonzero(self.uff_types==151)[0]) if len(mnums) == 0: mnums = list(np.nonzero(self.uff_types==164)[0]) # -- What if there is no geometry? Only one model then I guess ... if len(mnums) == 0: print('Warning: There is no INFO or UNITS field!') self.models[0] = range(len(self.uff_types)) # .. TODO: You have to pass this warning on. else: # .. Define intervals, by sequential order, for each model. for model_id, num in enumerate(mnums): if model_id == (len(mnums)-1): self.models[model_id] = range(num, len(self.uff_types)) else: # .. Last model has special treatment ([x:] instead of [x:y]) self.models[model_id] = range(num, mnums[model_id+1]) for model_id, model in self.models.items(): self.populate_model(model_id+self.base_key, model) # print(self.models) # print(self.uff_types) def populate_model(self, model_id, model): """Read all data for each model.""" model = list(model) self.gen_measurement_table(model_id, model) self.gen_geometry_table(model_id, model) self.gen_analysis_table(model_id, model) self.gen_lines_table(model_id, model) self.gen_info_table(model_id, model) # .. TODO: Here is the place to check for connections between # fields, other than by sequential order. Check if LMS # writes anything. (It does not!) def gen_measurement_table(self, model_id, model): """Read measurements.""" mnums = np.nonzero(self.uff_types[model] == 58)[0] mnums += model[0] if len(mnums) == 0: return False mlist = [] #dlist = pd.DataFrame() # .. Create field list. sdata = self.uff_object.read_sets(mnums[0]) fields = ['model_id', 'measurement_id', 'uffid', 'field_type'] fields.extend([key for key in sdata.keys() if not ('x' in key or 'data' in key)]) concat_list = [] for mnum in list(mnums): dlist_ = pd.DataFrame() sdata = self.uff_object.read_sets(mnum) # .. Setup a new line in measurement index table. line = [model_id, mnum, mnum, 58] line.extend([sdata[key] for key in fields if not ('uffid' in key or 'field_type' in key or 'model_id' in key or 'measurement_id' in key)]) mlist.append(line) # TODO: Uredi podporo za kompleksne vrednosti tukaj. NE ลกtima ลกe ฤist! dlist_['frq'] = sdata['x'] dlist_['amp'] = sdata['data'] dlist_['amp'] = dlist_['amp'].astype('complex') dlist_['amp'] = sdata['data'] dlist_['uffid'] = mnum dlist_['measurement_id'] = mnum dlist_['model_id'] = model_id concat_list.append(dlist_) dlist = pd.concat(concat_list, ignore_index=True) concat_list = [] if 'measurement_index' in self.tables: self.tables['measurement_index'] = pd.concat([self.tables['measurement_index'], pd.DataFrame(mlist, columns=fields)], ignore_index=True) self.tables['measurement_values'] = pd.concat([self.tables['measurement_values'], dlist], ignore_index=True) else: self.tables['measurement_index'] =
pd.DataFrame(mlist, columns=fields)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed Mar 23 10:36:23 2022 @author: lawashburn """ import os import csv import pandas as pd import numpy as np from datetime import datetime now = datetime.now() spectra_import = input('Enter path to .txt extract file from step 1: ') working_directory = input('Enter path to working directory: ') data_type = input('Enter tissue type') trial = input('Enter trial number') error_marg = input('Enter MS1 ppm error cutoff: ') intensity = input('Enter intensity cutoff: ') scan_cut = input('Enter minimum scan # cutoff: ') #spectra_import = r"C:\Users\lawashburn\Documents\HyPep1.0\HyPep_Simple_ASMS_Results\Raw_Files\Formatted_MS2\PO_3_ms2_output_list.txt"#path to spectra after RawConverter #working_directory = r"C:\Users\lawashburn\Documents\Nhu_Prescursor_Matching\filtered_lists" #data_type = 'PO_' #trial = '3_' #error_marg = 10 #+/- ppm trial = str(trial) #formats spectra import values spectra_import = pd.read_csv(spectra_import, sep=" ",skiprows=[0], names= ["m/z", "resolution", "charge", "intensity","MS2",'scan_number','empty']) #spectra_import.columns = ["m/z", "resolution", "charge", "intensity","MS2",'scan_number','empty'] spectra_import = spectra_import.apply(pd.to_numeric) spectra_value =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable-msg=W0612,E1101 import itertools import warnings from warnings import catch_warnings from datetime import datetime from pandas.types.common import (is_integer_dtype, is_float_dtype, is_scalar) from pandas.compat import range, lrange, lzip, StringIO, lmap from pandas.tslib import NaT from numpy import nan from numpy.random import randn import numpy as np import pandas as pd from pandas import option_context from pandas.core.indexing import _non_reducing_slice, _maybe_numeric_slice from pandas.core.api import (DataFrame, Index, Series, Panel, isnull, MultiIndex, Timestamp, Timedelta, UInt64Index) from pandas.formats.printing import pprint_thing from pandas import concat from pandas.core.common import PerformanceWarning from pandas.tests.indexing.common import _mklbl import pandas.util.testing as tm from pandas import date_range _verbose = False # ------------------------------------------------------------------------ # Indexing test cases def _generate_indices(f, values=False): """ generate the indicies if values is True , use the axis values is False, use the range """ axes = f.axes if values: axes = [lrange(len(a)) for a in axes] return itertools.product(*axes) def _get_value(f, i, values=False): """ return the value for the location i """ # check agains values if values: return f.values[i] # this is equiv of f[col][row]..... # v = f # for a in reversed(i): # v = v.__getitem__(a) # return v with catch_warnings(record=True): return f.ix[i] def _get_result(obj, method, key, axis): """ return the result for this obj with this key and this axis """ if isinstance(key, dict): key = key[axis] # use an artifical conversion to map the key as integers to the labels # so ix can work for comparisions if method == 'indexer': method = 'ix' key = obj._get_axis(axis)[key] # in case we actually want 0 index slicing try: xp = getattr(obj, method).__getitem__(_axify(obj, key, axis)) except: xp = getattr(obj, method).__getitem__(key) return xp def _axify(obj, key, axis): # create a tuple accessor axes = [slice(None)] * obj.ndim axes[axis] = key return tuple(axes) class TestIndexing(tm.TestCase): _objs = set(['series', 'frame', 'panel']) _typs = set(['ints', 'uints', 'labels', 'mixed', 'ts', 'floats', 'empty', 'ts_rev']) def setUp(self): self.series_ints = Series(np.random.rand(4), index=lrange(0, 8, 2)) self.frame_ints = DataFrame(np.random.randn(4, 4), index=lrange(0, 8, 2), columns=lrange(0, 12, 3)) self.panel_ints = Panel(np.random.rand(4, 4, 4), items=lrange(0, 8, 2), major_axis=lrange(0, 12, 3), minor_axis=lrange(0, 16, 4)) self.series_uints = Series(np.random.rand(4), index=UInt64Index(lrange(0, 8, 2))) self.frame_uints = DataFrame(np.random.randn(4, 4), index=UInt64Index(lrange(0, 8, 2)), columns=UInt64Index(lrange(0, 12, 3))) self.panel_uints = Panel(np.random.rand(4, 4, 4), items=UInt64Index(lrange(0, 8, 2)), major_axis=UInt64Index(lrange(0, 12, 3)), minor_axis=UInt64Index(lrange(0, 16, 4))) self.series_labels = Series(np.random.randn(4), index=list('abcd')) self.frame_labels = DataFrame(np.random.randn(4, 4), index=list('abcd'), columns=list('ABCD')) self.panel_labels = Panel(np.random.randn(4, 4, 4), items=list('abcd'), major_axis=list('ABCD'), minor_axis=list('ZYXW')) self.series_mixed = Series(np.random.randn(4), index=[2, 4, 'null', 8]) self.frame_mixed = DataFrame(np.random.randn(4, 4), index=[2, 4, 'null', 8]) self.panel_mixed = Panel(np.random.randn(4, 4, 4), items=[2, 4, 'null', 8]) self.series_ts = Series(np.random.randn(4), index=date_range('20130101', periods=4)) self.frame_ts = DataFrame(np.random.randn(4, 4), index=date_range('20130101', periods=4)) self.panel_ts = Panel(np.random.randn(4, 4, 4), items=date_range('20130101', periods=4)) dates_rev = (date_range('20130101', periods=4) .sort_values(ascending=False)) self.series_ts_rev = Series(np.random.randn(4), index=dates_rev) self.frame_ts_rev = DataFrame(np.random.randn(4, 4), index=dates_rev) self.panel_ts_rev = Panel(np.random.randn(4, 4, 4), items=dates_rev) self.frame_empty = DataFrame({}) self.series_empty = Series({}) self.panel_empty = Panel({}) # form agglomerates for o in self._objs: d = dict() for t in self._typs: d[t] = getattr(self, '%s_%s' % (o, t), None) setattr(self, o, d) def check_values(self, f, func, values=False): if f is None: return axes = f.axes indicies = itertools.product(*axes) for i in indicies: result = getattr(f, func)[i] # check agains values if values: expected = f.values[i] else: expected = f for a in reversed(i): expected = expected.__getitem__(a) tm.assert_almost_equal(result, expected) def check_result(self, name, method1, key1, method2, key2, typs=None, objs=None, axes=None, fails=None): def _eq(t, o, a, obj, k1, k2): """ compare equal for these 2 keys """ if a is not None and a > obj.ndim - 1: return def _print(result, error=None): if error is not None: error = str(error) v = ("%-16.16s [%-16.16s]: [typ->%-8.8s,obj->%-8.8s," "key1->(%-4.4s),key2->(%-4.4s),axis->%s] %s" % (name, result, t, o, method1, method2, a, error or '')) if _verbose: pprint_thing(v) try: rs = getattr(obj, method1).__getitem__(_axify(obj, k1, a)) try: xp = _get_result(obj, method2, k2, a) except: result = 'no comp' _print(result) return detail = None try: if is_scalar(rs) and is_scalar(xp): self.assertEqual(rs, xp) elif xp.ndim == 1: tm.assert_series_equal(rs, xp) elif xp.ndim == 2: tm.assert_frame_equal(rs, xp) elif xp.ndim == 3: tm.assert_panel_equal(rs, xp) result = 'ok' except AssertionError as e: detail = str(e) result = 'fail' # reverse the checks if fails is True: if result == 'fail': result = 'ok (fail)' _print(result) if not result.startswith('ok'): raise AssertionError(detail) except AssertionError: raise except Exception as detail: # if we are in fails, the ok, otherwise raise it if fails is not None: if isinstance(detail, fails): result = 'ok (%s)' % type(detail).__name__ _print(result) return result = type(detail).__name__ raise AssertionError(_print(result, error=detail)) if typs is None: typs = self._typs if objs is None: objs = self._objs if axes is not None: if not isinstance(axes, (tuple, list)): axes = [axes] else: axes = list(axes) else: axes = [0, 1, 2] # check for o in objs: if o not in self._objs: continue d = getattr(self, o) for a in axes: for t in typs: if t not in self._typs: continue obj = d[t] if obj is not None: obj = obj.copy() k2 = key2 _eq(t, o, a, obj, key1, k2) def test_ix_deprecation(self): # GH 15114 df = DataFrame({'A': [1, 2, 3]}) with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): df.ix[1, 'A'] def test_indexer_caching(self): # GH5727 # make sure that indexers are in the _internal_names_set n = 1000001 arrays = [lrange(n), lrange(n)] index = MultiIndex.from_tuples(lzip(*arrays)) s = Series(np.zeros(n), index=index) str(s) # setitem expected = Series(np.ones(n), index=index) s = Series(np.zeros(n), index=index) s[s == 0] = 1 tm.assert_series_equal(s, expected) def test_at_and_iat_get(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: result = getattr(f, func)[i] expected = _get_value(f, i, values) tm.assert_almost_equal(result, expected) for o in self._objs: d = getattr(self, o) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, self.check_values, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_and_iat_set(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: getattr(f, func)[i] = 1 expected = _get_value(f, i, values) tm.assert_almost_equal(expected, 1) for t in self._objs: d = getattr(self, t) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, _check, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_iat_coercion(self): # as timestamp is not a tuple! dates = date_range('1/1/2000', periods=8) df = DataFrame(randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) s = df['A'] result = s.at[dates[5]] xp = s.values[5] self.assertEqual(result, xp) # GH 7729 # make sure we are boxing the returns s = Series(['2014-01-01', '2014-02-02'], dtype='datetime64[ns]') expected = Timestamp('2014-02-02') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) s = Series(['1 days', '2 days'], dtype='timedelta64[ns]') expected = Timedelta('2 days') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) def test_iat_invalid_args(self): pass def test_imethods_with_dups(self): # GH6493 # iat/iloc with dups s = Series(range(5), index=[1, 1, 2, 2, 3], dtype='int64') result = s.iloc[2] self.assertEqual(result, 2) result = s.iat[2] self.assertEqual(result, 2) self.assertRaises(IndexError, lambda: s.iat[10]) self.assertRaises(IndexError, lambda: s.iat[-10]) result = s.iloc[[2, 3]] expected = Series([2, 3], [2, 2], dtype='int64') tm.assert_series_equal(result, expected) df = s.to_frame() result = df.iloc[2] expected = Series(2, index=[0], name=2) tm.assert_series_equal(result, expected) result = df.iat[2, 0] expected = 2 self.assertEqual(result, 2) def test_repeated_getitem_dups(self): # GH 5678 # repeated gettitems on a dup index returing a ndarray df = DataFrame( np.random.random_sample((20, 5)), index=['ABCDE' [x % 5] for x in range(20)]) expected = df.loc['A', 0] result = df.loc[:, 0].loc['A'] tm.assert_series_equal(result, expected) def test_iloc_exceeds_bounds(self): # GH6296 # iloc should allow indexers that exceed the bounds df = DataFrame(np.random.random_sample((20, 5)), columns=list('ABCDE')) expected = df # lists of positions should raise IndexErrror! with tm.assertRaisesRegexp(IndexError, 'positional indexers are out-of-bounds'): df.iloc[:, [0, 1, 2, 3, 4, 5]] self.assertRaises(IndexError, lambda: df.iloc[[1, 30]]) self.assertRaises(IndexError, lambda: df.iloc[[1, -30]]) self.assertRaises(IndexError, lambda: df.iloc[[100]]) s = df['A'] self.assertRaises(IndexError, lambda: s.iloc[[100]]) self.assertRaises(IndexError, lambda: s.iloc[[-100]]) # still raise on a single indexer msg = 'single positional indexer is out-of-bounds' with tm.assertRaisesRegexp(IndexError, msg): df.iloc[30] self.assertRaises(IndexError, lambda: df.iloc[-30]) # GH10779 # single positive/negative indexer exceeding Series bounds should raise # an IndexError with tm.assertRaisesRegexp(IndexError, msg): s.iloc[30] self.assertRaises(IndexError, lambda: s.iloc[-30]) # slices are ok result = df.iloc[:, 4:10] # 0 < start < len < stop expected = df.iloc[:, 4:] tm.assert_frame_equal(result, expected) result = df.iloc[:, -4:-10] # stop < 0 < start < len expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4:-1] # 0 < stop < len < start (down) expected = df.iloc[:, :4:-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, 4:-10:-1] # stop < 0 < start < len (down) expected = df.iloc[:, 4::-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:4] # start < 0 < stop < len expected = df.iloc[:, :4] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4] # 0 < stop < len < start expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:-11:-1] # stop < start < 0 < len (down) expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:11] # 0 < len < start < stop expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) # slice bounds exceeding is ok result = s.iloc[18:30] expected = s.iloc[18:] tm.assert_series_equal(result, expected) result = s.iloc[30:] expected = s.iloc[:0] tm.assert_series_equal(result, expected) result = s.iloc[30::-1] expected = s.iloc[::-1] tm.assert_series_equal(result, expected) # doc example def check(result, expected): str(result) result.dtypes tm.assert_frame_equal(result, expected) dfl = DataFrame(np.random.randn(5, 2), columns=list('AB')) check(dfl.iloc[:, 2:3], DataFrame(index=dfl.index)) check(dfl.iloc[:, 1:3], dfl.iloc[:, [1]]) check(dfl.iloc[4:6], dfl.iloc[[4]]) self.assertRaises(IndexError, lambda: dfl.iloc[[4, 5, 6]]) self.assertRaises(IndexError, lambda: dfl.iloc[:, 4]) def test_iloc_getitem_int(self): # integer self.check_result('integer', 'iloc', 2, 'ix', {0: 4, 1: 6, 2: 8}, typs=['ints', 'uints']) self.check_result('integer', 'iloc', 2, 'indexer', 2, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int(self): # neg integer self.check_result('neg int', 'iloc', -1, 'ix', {0: 6, 1: 9, 2: 12}, typs=['ints', 'uints']) self.check_result('neg int', 'iloc', -1, 'indexer', -1, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_list_int(self): # list of ints self.check_result('list int', 'iloc', [0, 1, 2], 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [2], 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [0, 1, 2], 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) # array of ints (GH5006), make sure that a single indexer is returning # the correct type self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([2]), 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int_can_reach_first_index(self): # GH10547 and GH10779 # negative integers should be able to reach index 0 df = DataFrame({'A': [2, 3, 5], 'B': [7, 11, 13]}) s = df['A'] expected = df.iloc[0] result = df.iloc[-3] tm.assert_series_equal(result, expected) expected = df.iloc[[0]] result = df.iloc[[-3]] tm.assert_frame_equal(result, expected) expected = s.iloc[0] result = s.iloc[-3] self.assertEqual(result, expected) expected = s.iloc[[0]] result = s.iloc[[-3]] tm.assert_series_equal(result, expected) # check the length 1 Series case highlighted in GH10547 expected = pd.Series(['a'], index=['A']) result = expected.iloc[[-1]] tm.assert_series_equal(result, expected) def test_iloc_getitem_dups(self): # no dups in panel (bug?) self.check_result('list int (dups)', 'iloc', [0, 1, 1, 3], 'ix', {0: [0, 2, 2, 6], 1: [0, 3, 3, 9]}, objs=['series', 'frame'], typs=['ints', 'uints']) # GH 6766 df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) # cross-sectional indexing result = df.iloc[0, 0] self.assertTrue(isnull(result)) result = df.iloc[0, :] expected = Series([np.nan, 1, 3, 3], index=['A', 'B', 'A', 'B'], name=0) tm.assert_series_equal(result, expected) def test_iloc_getitem_array(self): # array like s = Series(index=lrange(1, 4)) self.check_result('array like', 'iloc', s.index, 'ix', {0: [2, 4, 6], 1: [3, 6, 9], 2: [4, 8, 12]}, typs=['ints', 'uints']) def test_iloc_getitem_bool(self): # boolean indexers b = [True, False, True, False, ] self.check_result('bool', 'iloc', b, 'ix', b, typs=['ints', 'uints']) self.check_result('bool', 'iloc', b, 'ix', b, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice(self): # slices self.check_result('slice', 'iloc', slice(1, 3), 'ix', {0: [2, 4], 1: [3, 6], 2: [4, 8]}, typs=['ints', 'uints']) self.check_result('slice', 'iloc', slice(1, 3), 'indexer', slice(1, 3), typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice_dups(self): df1 = DataFrame(np.random.randn(10, 4), columns=['A', 'A', 'B', 'B']) df2 = DataFrame(np.random.randint(0, 10, size=20).reshape(10, 2), columns=['A', 'C']) # axis=1 df = concat([df1, df2], axis=1) tm.assert_frame_equal(df.iloc[:, :4], df1) tm.assert_frame_equal(df.iloc[:, 4:], df2) df = concat([df2, df1], axis=1) tm.assert_frame_equal(df.iloc[:, :2], df2) tm.assert_frame_equal(df.iloc[:, 2:], df1) exp = concat([df2, df1.iloc[:, [0]]], axis=1) tm.assert_frame_equal(df.iloc[:, 0:3], exp) # axis=0 df = concat([df, df], axis=0) tm.assert_frame_equal(df.iloc[0:10, :2], df2) tm.assert_frame_equal(df.iloc[0:10, 2:], df1) tm.assert_frame_equal(df.iloc[10:, :2], df2) tm.assert_frame_equal(df.iloc[10:, 2:], df1) def test_iloc_setitem(self): df = self.frame_ints df.iloc[1, 1] = 1 result = df.iloc[1, 1] self.assertEqual(result, 1) df.iloc[:, 2:3] = 0 expected = df.iloc[:, 2:3] result = df.iloc[:, 2:3] tm.assert_frame_equal(result, expected) # GH5771 s = Series(0, index=[4, 5, 6]) s.iloc[1:2] += 1 expected = Series([0, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) def test_loc_setitem_slice(self): # GH10503 # assigning the same type should not change the type df1 = DataFrame({'a': [0, 1, 1], 'b': Series([100, 200, 300], dtype='uint32')}) ix = df1['a'] == 1 newb1 = df1.loc[ix, 'b'] + 1 df1.loc[ix, 'b'] = newb1 expected = DataFrame({'a': [0, 1, 1], 'b': Series([100, 201, 301], dtype='uint32')}) tm.assert_frame_equal(df1, expected) # assigning a new type should get the inferred type df2 = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') ix = df1['a'] == 1 newb2 = df2.loc[ix, 'b'] df1.loc[ix, 'b'] = newb2 expected = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') tm.assert_frame_equal(df2, expected) def test_ix_loc_setitem_consistency(self): # GH 5771 # loc with slice and series s = Series(0, index=[4, 5, 6]) s.loc[4:5] += 1 expected = Series([1, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) # GH 5928 # chained indexing assignment df = DataFrame({'a': [0, 1, 2]}) expected = df.copy() with catch_warnings(record=True): expected.ix[[0, 1, 2], 'a'] = -expected.ix[[0, 1, 2], 'a'] with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]] tm.assert_frame_equal(df, expected) df = DataFrame({'a': [0, 1, 2], 'b': [0, 1, 2]}) with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]].astype( 'float64') + 0.5 expected = DataFrame({'a': [0.5, -0.5, -1.5], 'b': [0, 1, 2]}) tm.assert_frame_equal(df, expected) # GH 8607 # ix setitem consistency df = DataFrame({'timestamp': [1413840976, 1413842580, 1413760580], 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) expected = DataFrame({'timestamp': pd.to_datetime( [1413840976, 1413842580, 1413760580], unit='s'), 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) df2 = df.copy() df2['timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() df2.loc[:, 'timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() with catch_warnings(record=True): df2.ix[:, 2] = pd.to_datetime(df['timestamp'], unit='s')
tm.assert_frame_equal(df2, expected)
pandas.util.testing.assert_frame_equal
import pytest import unittest from unittest import mock from ops.tasks.anomalyDetection import anomalyService from anomaly.models import Anomaly from pandas import Timestamp from decimal import Decimal from mixer.backend.django import mixer import pandas as pd @pytest.mark.django_db(transaction=True) def test_createAnomalyService(client, mocker): fakedata = [{'ds':
Timestamp('2021-06-01 00:00:00+0000', tz='UTC')
pandas.Timestamp
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np from datetime import datetime, timedelta from scipy.special import gamma,gammainc,gammaincc from scipy.stats import norm from scipy.optimize import minimize,root_scalar import networkx as nx from operator import itemgetter ep = 1e-80 #For preventing overflow errors in norm.cdf tref = pd.to_datetime('2020-01-01') #Reference time for converting dates to numbers ################# FORMATTING ######################## def format_JH(url,drop_list,columns): data = pd.read_csv(url) if len(columns) == 2: data[columns[1]] = data[columns[1]].fillna(value='NaN') data = data.T.drop(drop_list).T.set_index(columns).T data.index = pd.to_datetime(data.index,format='%m/%d/%y') return data def format_kaggle(folder,metric): data_full = pd.read_csv(folder+'train.csv') data = data_full.pivot_table(index='Date',columns=['Country_Region','Province_State'],values=metric) data.index = pd.to_datetime(data.index,format='%Y-%m-%d') return data def format_predictions(path): pred = pd.read_csv(path).fillna(value='NaN').set_index(['Country/Region','Province/State']) for item in ['Nmax','Nmax_low','Nmax_high','sigma','sigma_low','sigma_high']: pred[item] = pd.to_numeric(pred[item]) for item in ['th','th_low','th_high']: pred[item] = pd.to_datetime(pred[item],format='%Y-%m-%d') return pred def load_sim(path): data = pd.read_csv(path,index_col=0,header=[0,1]) data.index =
pd.to_datetime(data.index,format='%Y-%m-%d')
pandas.to_datetime
######################################################### ### DNA variant annotation tool ### Version 1.0.0 ### By <NAME> ### <EMAIL> ######################################################### import pandas as pd import numpy as np import allel import argparse import subprocess import sys import os.path import pickle import requests import json def extract_most_deleterious_anno(row, num_ann_max): ann_order = pd.read_csv(anno_order_file, sep=' ') alt = row[:num_ann_max] anno = row[num_ann_max:] alt.index = range(0, len(alt)) anno.index = range(0, len(anno)) ann_all_alt = pd.DataFrame() alt_unique = alt.unique() for unique_alt in alt_unique: if unique_alt != '': anno_all = anno[alt == unique_alt] ann_order_all = pd.DataFrame() for ann_any in anno_all: if sum(ann_any == ann_order.Anno) > 0: ann_any_order = ann_order[ann_order.Anno == ann_any] else: ann_any_order = ann_order.iloc[ann_order.shape[0]-1] ann_order_all = ann_order_all.append(ann_any_order) small_ann = ann_order_all.sort_index(ascending=True).Anno.iloc[0] ann_unique_alt = [unique_alt, small_ann] ann_all_alt = ann_all_alt.append(ann_unique_alt) ann_all_alt.index = range(0, ann_all_alt.shape[0]) return ann_all_alt.T def run_snpeff(temp_out_name): snpeff_command = ['java', '-Xmx4g', '-jar', snpeff_path, \ '-ud', '0', \ # '-v', \ '-canon', '-noStats', \ ref_genome, vcf_file] temp_output = open(temp_out_name, 'w') subprocess.run(snpeff_command, stdout=temp_output) temp_output.close() def get_max_num_ann(temp_out_name): num_ann_guess = 500 callset = allel.vcf_to_dataframe(temp_out_name, fields='ANN', numbers={'ANN': num_ann_guess}) num_ann = callset.apply(lambda x: sum(x != ''), axis=1) num_ann_max = num_ann.max() # num_ann_max = 175 return num_ann_max def get_ann_from_output_snpeff(temp_out_name): callset = allel.read_vcf(temp_out_name, fields='ANN', transformers=allel.ANNTransformer(), \ numbers={'ANN': num_ann_max}) df1 = pd.DataFrame(data=callset['variants/ANN_Allele']) df2 = pd.DataFrame(data=callset['variants/ANN_Annotation']) df3 = pd.concat((df1, df2), axis=1) df3.columns = range(0, df3.shape[1]) return df3 def get_anno_total(anno_from_snpeff): anno_total = pd.DataFrame() pickle_dump = 'pickle_dump.temp' if not os.path.isfile(pickle_dump): print('Extracting most deleterious annotations generated by SnpEff') for index, row in anno_from_snpeff.iterrows(): anno_row = extract_most_deleterious_anno(row, num_ann_max) anno_total = anno_total.append(anno_row) print('done') dump_file = open(pickle_dump, 'wb') pickle.dump(anno_total, dump_file, pickle.HIGHEST_PROTOCOL) dump_file.close() dump_file = open(pickle_dump, 'rb') anno_total = pickle.load(dump_file) a = ['Alt_' + str(i) for i in range(1, num_alt + 1)] b = ['Anno_' + str(i) for i in range(1, num_alt + 1)] c = list(range(0, num_alt * 2)) c[::2] = a c[1::2] = b anno_total.columns = c anno_total.replace(np.nan, -1, inplace=True) anno_total.index = range(0, anno_total.shape[0]) return anno_total def get_num_alternate(vcf_file): num_alt = allel.read_vcf(vcf_file, fields='numalt')['variants/numalt'].max() return num_alt def get_dp_ro_ao(temp_out_name): callset_dp_ro_ao = allel.vcf_to_dataframe(temp_out_name, fields=['DP', 'RO', 'AO'], alt_number=num_alt) callset_dp_ro_ao.index = range(0, callset_dp_ro_ao.shape[0]) return callset_dp_ro_ao def get_alt_ref_ratio(callset_dp_ro_ao): callset_ratio = pd.DataFrame() for i in range(0, num_alt): # print('run ratio: ', i) callset_ratio[i] = callset_dp_ro_ao.apply(lambda x: x[i + 2] / x[1], axis=1) # print('run ratio: ', i, ' done') # print('callset_ratio is done') callset_ratio.columns = ['RatioAR_Alt_' + str(i) for i in range(1, num_alt + 1)] callset_ratio.index = range(0, callset_ratio.shape[0]) return callset_ratio def combine_anno_and_callset(anno_total, callset_dp_ro_ao, callset_ratio, ExAC_variant_af, ExAC_variant_ordered_csqs): anno_and_callset = pd.concat([anno_total, callset_dp_ro_ao, callset_ratio, ExAC_variant_af, ExAC_variant_ordered_csqs], axis=1) return anno_and_callset def combine_with_comma(row): a = [] for i in range(0, len(row)): if row.iloc[i][0] != '-': a.append(True) else: a.append(False) b = ",".join(row[a]) return b def get_anno_good(anno_and_callset): anno_columns = pd.DataFrame() for i in range(1, num_alt + 1): Alt_i = 'Alt_' + str(i) Anno_i = 'Anno_' + str(i) AO_i = 'AO_' + str(i) RatioAR_Alt_i = 'RatioAR_Alt_' + str(i) exac_var_af = 'exac_' + search_af + "_" + str(i) exac_ordered_csqs = 'exac_' + search_ordered_csqs + '_' + str(i) column_i = anno_and_callset[[Alt_i, Anno_i, 'DP', 'RO', AO_i, RatioAR_Alt_i, exac_var_af, exac_ordered_csqs]].apply(lambda x: '|'.join(x.map(str)), axis=1) anno_columns = pd.concat([anno_columns, column_i], axis=1) anno_one_column = anno_columns.apply(combine_with_comma, axis=1) anno_good = ["ANN="] * len(anno_one_column) + anno_one_column return anno_good def get_num_lines_header(contents): lines_header = 0 for i in range(0, len(contents)): if contents[i][0] == '#' and contents[i + 1][0] != '#': # print(contents[i]) # print(i) lines_header = i # lines_header 142 return lines_header def generate_output_vcf(vcf_file, anno_good): input_vcf = pd.read_csv(vcf_file, sep='\t', skiprows=lines_header) anno_good_all = input_vcf.INFO + ';' + anno_good input_vcf.INFO = anno_good_all output_vcf = input_vcf.copy() return output_vcf def generate_header(contents): header = contents[0:lines_header] header_add1 = """##SimpleAnnotation Version="0.0.1" By <NAME> <EMAIL> \n""" header_add2 = """##SimpleAnnotation Cmd="python3 SimpleAnnotation.py -input {} -snpeff {} -genome {} "\n""".format(vcf_file, snpeff_path, ref_genome) header_add3 = """##INFO=<ID=ANN,Number=.,Type=String, Description="Simple annotations: 'Alternate allele | Type of variation most deleterious | Sequence depth at the site of variation | Number of reads of reference | Number of reads of alternate | Ratio of read counts of alt vs ref | ExAC variant Allele Frequency | ExAC variant consequence most deleterious' ">\n""" header.append(header_add1) header.append(header_add2) header.append(header_add3) return header def search_REST_ExAC(row, search_type): row_var = [-1] * len(row) url_1 = 'http://exac.hms.harvard.edu/rest/variant/{}/'.format(search_type) for i in range(0, len(row)): if row.iloc[i][-1] != '-': url = url_1 + row.iloc[i] my_response = requests.get(url) if my_response.ok: j_data = json.loads(my_response.content) if search_type == search_af: if 'allele_freq' in j_data.keys(): row_var[i] = j_data['allele_freq'] else: row_var[i] = 'Not_found' elif search_type == search_ordered_csqs: if j_data != None and len(j_data) > 1: row_var[i] = j_data[1] else: row_var[i] = 'Not_found' else: row_var[i] = 'Not_found' return row_var def ExAC_search_variant(var_all, search_type): exac = pd.DataFrame() counter = 0 print('There are {} variants that need to be searched. This will take a while.'.format(var_all.shape[0])) for index, row in var_all.iterrows(): af_row = search_REST_ExAC(row, search_type) exac = pd.concat([exac, pd.DataFrame(af_row)], axis=1) counter += 1 if counter%500 == 0: print(counter) exac = exac.T exac.index = range(0, exac.shape[0]) exac.columns = ['exac_' + search_type + '_' + str(i) for i in range(1, num_alt + 1)] return exac def generate_var_id_for_exac(vcf_file): callset = allel.vcf_to_dataframe(vcf_file, fields=['CHROM', 'POS', 'REF', 'ALT'], alt_number=num_alt) var_all = pd.DataFrame() for i in range(1, num_alt+1): ALT_i = 'ALT_' + str(i) var_i = callset[['CHROM', 'POS', 'REF', ALT_i]].apply(lambda x: "-".join(x.map(str)), axis=1) var_all =
pd.concat([var_all, var_i], axis=1)
pandas.concat
''' manipulation (:mod:`calour.manipulation`) ========================================= .. currentmodule:: calour.manipulation Functions ^^^^^^^^^ .. autosummary:: :toctree: generated join_metadata_fields join_experiments join_experiments_featurewise aggregate_by_metadata ''' # ---------------------------------------------------------------------------- # Copyright (c) 2016--, Calour development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- from copy import deepcopy from logging import getLogger from collections import defaultdict import pandas as pd import numpy as np from .experiment import Experiment from .util import join_fields logger = getLogger(__name__) def chain(exp: Experiment, steps=[], inplace=False, **kwargs) -> Experiment: '''Perform multiple operations sequentially. Parameters ---------- steps : list of callables Each callable is a class method that has a boolean parameter of ``inplace``, and returns an :class:`.Experiment` object. inplace : bool, default=False change occurs in place or not. kwargs : dict keyword arguments to pass to each class method. The dict key should be in the form of "<method_name>__<param_name>". For example, "exp.chain(steps=[filter_samples, log_n], log_n__n=3)" will call :func:`filter_samples` first and then :func:`log_n` while setting its parameter `n=3`. Returns ------- Experiment ''' exp = exp if inplace else deepcopy(exp) params = defaultdict(dict) for k, v in kwargs.items(): transformer, param_name = k.split('__') if param_name == 'inplace': raise ValueError( 'You can not set `inplace` for individual transformation.') params[transformer][param_name] = v for step in steps: step(exp, inplace=True, **params[step.__name__]) return exp def join_metadata_fields(exp: Experiment, field1, field2, new_field=None, axis='s', inplace=True, **kwargs) -> Experiment: '''Join 2 fields in sample or feature metadata into 1. Parameters ---------- field1 : str Name of the first field to join. The value in this column can be any data type. field2 : str Name of the field to join. The value in this column can be any data type. new_field : str, default=None name of the new (joined) field. Default to name it as field1 + sep + field2 sep : str, optional The separator between the values of the two fields when joining kwargs : dict Other parameters passing to :func:`join_fields`. Returns ------- Experiment See Also -------- join_fields ''' if not inplace: exp = deepcopy(exp) if axis == 0: md = exp.sample_metadata else: md = exp.feature_metadata join_fields(md, field1, field2, new_field, **kwargs) return exp def aggregate_by_metadata(exp: Experiment, field, agg='mean', axis=0, inplace=False) -> Experiment: '''Aggregate all samples or features of the same group. Group the samples (axis=0) or features (axis=1) that have the same value in the column of given field and then aggregate the data table of each group with the given method. The number of samples/features in each group and their IDs are stored in new metadata columns '_calour_merge_number' and '_calour_merge_ids', respectively. For other metadata, the first one in the metadata table in each group is kept in the final returned experiment object. .. warning:: It will convert the ``Experiment.data`` from the sparse matrix to dense array. Parameters ---------- field : str The sample/feature metadata field to group samples/features agg : str, optional aggregate method. Choice includes: * 'mean' : the mean of the group * 'median' : the median of the group * 'sum' : the sum of of the group axis : 0, 1, 's', or 'f', optional 0 or 's' (default) to aggregate samples; 1 or 'f' to aggregate features inplace : bool, optional False (default) to create new Experiment, True to perform inplace Returns ------- Experiment ''' logger.debug('Merge data using field %s, agg %s' % (field, agg)) if not inplace: exp = deepcopy(exp) if axis == 0: col = exp.sample_metadata[field] else: col = exp.feature_metadata[field] # convert to dense for efficient slicing exp.sparse = False uniq = col.unique() n = len(uniq) keep_pos = np.empty(n, dtype=np.uint32) merge_number = np.empty(n, dtype=np.uint32) # use object as dtype for string merge_ids = np.empty(n, dtype=object) for i, val in enumerate(uniq): if
pd.isnull(val)
pandas.isnull
#!/usr/bin/env python import multiprocessing import pandas as pd import sys import os from io import StringIO import re import Bio from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord from Bio import SeqIO file = sys.argv[1] threads=int(sys.argv[2]) def clean_pep(val): regex = re.compile('[^a-zA-Z]') rval = regex.sub('', val) return rval def process_res(val): r = val r = r.split('\n') header = r[0] exclude =[ '# No solutions found.', '# too few peaks...' , '# Could not process spectrum...'] if header != '': cols = r[1] if cols not in exclude: t = StringIO('\n'.join(r[1:])) table =
pd.read_csv(t, sep='\t')
pandas.read_csv
# author: <NAME>, <NAME>, <NAME>, <NAME> # date: 2020-06-12 '''This script read ministries' comments data from interim directory and predicted labels of question 1 from interim directory, joins both databases, and saves it in specified directory. There are 2 parameters Input and Output Path where you want to write this data. Usage: merge_ministry_pred.py --input_dir=<input_dir_path> --output_dir=<destination_dir_path> Example: python src/data/merge_ministry_pred.py --input_dir=data/ --output_dir=data/interim/ Options: --input_dir=<input_dir_path> Location of data Directory --output_dir=<destination_dir_path> Directory for saving ministries files ''' import numpy as np import pandas as pd import os from docopt import docopt opt = docopt(__doc__) def main(input_dir, output_dir): assert os.path.exists(input_dir), "The path entered for input_dir does not exist. Make sure to enter correct path \n" assert os.path.exists(output_dir), "The path entered for output_dir does not exist. Make sure to enter correct path \n" print("\n--- START: merge_ministry_pred.py ---") ### Question 1 - Predictions on 2015 dataset ### # Ministries data print("Loading Q1 ministries' data and predictions into memory.") # QUAN 2015 ministries_q1 = pd.read_excel(input_dir + "/interim/question1_models/advance/ministries_Q1.xlsx") ministries_2015 = pd.read_excel(input_dir + "/interim/question1_models/advance/ministries_2015.xlsx") pred_2015 = np.load(input_dir + "/output/theme_predictions/theme_question1_2015.npy") assert len(ministries_q1) > 0, 'no records in ministries_q1.xlsx' assert len(ministries_2015) > 0, 'no records in ministries_2015.xlsx' columns_basic = ['Telkey', 'Comment', 'Year', 'Ministry', 'Ministry_id'] columns_labels = ['CPD', 'CB', 'EWC', 'Exec', 'FEW', 'SP', 'RE', 'Sup', 'SW', 'TEPE', 'VMG', 'OTH'] columns_order = columns_basic + columns_labels pred_2015 =
pd.DataFrame(pred_2015, columns=columns_labels)
pandas.DataFrame
import config as cf import pandas as pd import os import sys import networkx as nx from models import models_game_elasticity assert cf import argparse parser = argparse.ArgumentParser(description='Network simulations.') parser.add_argument('--network_type', type=str, default='scale_free', help='Network type for loadind and storing...') parser.add_argument('--network_name', type=str, default='scale_free_1000', help='Network name for loading and storing...') parser.add_argument('--game_strategy', type=str, default='defect', help='Fixed strategy..') parser.add_argument('--fixed_fraction', type=float, default=0.3, help='Fixed fraction..') parser.add_argument('--num_nodes', type=int, default=1000, help='Number of nodes for specific network...') parser.add_argument('--type_sim', default='global',type=str, help='For running local or global simulation') parser.add_argument('--n_iters', default=20,type=int, help='Number of iterations') parser.add_argument('--max_time', default=150,type=int, help='Number of days of simulation') args = parser.parse_args() main_path = os.path.split(os.getcwd())[0] + '/Epidemiology_behavior_dynamics' config_path = main_path + '/config.csv' config_data = pd.read_csv(config_path, sep=',', header=None, index_col=0) networks_path = config_data.loc['networks_dir'][1] results_path = os.path.join(config_data.loc['results_dir'][1], 'elasticity_test') awareness_path = config_data.loc['sigma_search_dir'][1] infection_prob_path = config_data.loc['beta_search_dir'][1] num_nodes = args.num_nodes sigma_search = pd.read_csv(awareness_path, dtype={'key':str, 'value':float}) beta_search = pd.read_csv(infection_prob_path, dtype={'key':str, 'value':float}) G = nx.read_gpickle( os.path.join(main_path, networks_path, str(num_nodes), args.network_name) ) df = pd.concat([sigma_search, beta_search], axis=1) df_param_run =
pd.DataFrame(columns=['beta_key', 'sigma_key', 'beta_val', 'sigma_val'])
pandas.DataFrame
import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import ( Index, Interval, IntervalIndex, Timedelta, Timestamp, date_range, timedelta_range, ) import pandas._testing as tm from pandas.core.arrays import IntervalArray @pytest.fixture( params=[ (Index([0, 2, 4]), Index([1, 3, 5])), (Index([0.0, 1.0, 2.0]), Index([1.0, 2.0, 3.0])), (timedelta_range("0 days", periods=3), timedelta_range("1 day", periods=3)), (date_range("20170101", periods=3), date_range("20170102", periods=3)), ( date_range("20170101", periods=3, tz="US/Eastern"), date_range("20170102", periods=3, tz="US/Eastern"), ), ], ids=lambda x: str(x[0].dtype), ) def left_right_dtypes(request): """ Fixture for building an IntervalArray from various dtypes """ return request.param class TestAttributes: @pytest.mark.parametrize( "left, right", [ (0, 1), (Timedelta("0 days"), Timedelta("1 day")), (Timestamp("2018-01-01"), Timestamp("2018-01-02")), ( Timestamp("2018-01-01", tz="US/Eastern"), Timestamp("2018-01-02", tz="US/Eastern"), ), ], ) @pytest.mark.parametrize("constructor", [IntervalArray, IntervalIndex]) def test_is_empty(self, constructor, left, right, closed): # GH27219 tuples = [(left, left), (left, right), np.nan] expected = np.array([closed != "both", False, False]) result = constructor.from_tuples(tuples, closed=closed).is_empty tm.assert_numpy_array_equal(result, expected) class TestMethods: @pytest.mark.parametrize("new_closed", ["left", "right", "both", "neither"]) def test_set_closed(self, closed, new_closed): # GH 21670 array = IntervalArray.from_breaks(range(10), closed=closed) result = array.set_closed(new_closed) expected = IntervalArray.from_breaks(range(10), closed=new_closed) tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize( "other", [ Interval(0, 1, closed="right"), IntervalArray.from_breaks([1, 2, 3, 4], closed="right"), ], ) def test_where_raises(self, other): ser = pd.Series(IntervalArray.from_breaks([1, 2, 3, 4], closed="left")) match = "'value.closed' is 'right', expected 'left'." with pytest.raises(ValueError, match=match): ser.where([True, False, True], other=other) def test_shift(self): # https://github.com/pandas-dev/pandas/issues/31495 a = IntervalArray.from_breaks([1, 2, 3]) result = a.shift() # int -> float expected = IntervalArray.from_tuples([(np.nan, np.nan), (1.0, 2.0)]) tm.assert_interval_array_equal(result, expected) def test_shift_datetime(self): a = IntervalArray.from_breaks(date_range("2000", periods=4)) result = a.shift(2) expected = a.take([-1, -1, 0], allow_fill=True) tm.assert_interval_array_equal(result, expected) result = a.shift(-1) expected = a.take([1, 2, -1], allow_fill=True) tm.assert_interval_array_equal(result, expected) class TestSetitem: def test_set_na(self, left_right_dtypes): left, right = left_right_dtypes result = IntervalArray.from_arrays(left, right) if result.dtype.subtype.kind not in ["m", "M"]: msg = "'value' should be an interval type, got <.*NaTType'> instead." with pytest.raises(TypeError, match=msg): result[0] = pd.NaT if result.dtype.subtype.kind in ["i", "u"]: msg = "Cannot set float NaN to integer-backed IntervalArray" with pytest.raises(ValueError, match=msg): result[0] = np.NaN return result[0] = np.nan expected_left = Index([left._na_value] + list(left[1:])) expected_right = Index([right._na_value] + list(right[1:])) expected = IntervalArray.from_arrays(expected_left, expected_right) tm.assert_extension_array_equal(result, expected) def test_setitem_mismatched_closed(self): arr = IntervalArray.from_breaks(range(4)) orig = arr.copy() other = arr.set_closed("both") msg = "'value.closed' is 'both', expected 'right'" with pytest.raises(ValueError, match=msg): arr[0] = other[0] with pytest.raises(ValueError, match=msg): arr[:1] = other[:1] with pytest.raises(ValueError, match=msg): arr[:0] = other[:0] with pytest.raises(ValueError, match=msg): arr[:] = other[::-1] with pytest.raises(ValueError, match=msg): arr[:] = list(other[::-1]) with pytest.raises(ValueError, match=msg): arr[:] = other[::-1].astype(object) with pytest.raises(ValueError, match=msg): arr[:] = other[::-1].astype("category") # empty list should be no-op arr[:0] = [] tm.assert_interval_array_equal(arr, orig) def test_repr(): # GH 25022 arr = IntervalArray.from_tuples([(0, 1), (1, 2)]) result = repr(arr) expected = ( "<IntervalArray>\n" "[(0, 1], (1, 2]]\n" "Length: 2, dtype: interval[int64, right]" ) assert result == expected # ---------------------------------------------------------------------------- # Arrow interaction pyarrow_skip = td.skip_if_no("pyarrow", min_version="0.16.0") @pyarrow_skip def test_arrow_extension_type(): import pyarrow as pa from pandas.core.arrays._arrow_utils import ArrowIntervalType p1 = ArrowIntervalType(pa.int64(), "left") p2 = ArrowIntervalType(pa.int64(), "left") p3 = ArrowIntervalType(pa.int64(), "right") assert p1.closed == "left" assert p1 == p2 assert not p1 == p3 assert hash(p1) == hash(p2) assert not hash(p1) == hash(p3) @pyarrow_skip def test_arrow_array(): import pyarrow as pa from pandas.core.arrays._arrow_utils import ArrowIntervalType intervals = pd.interval_range(1, 5, freq=1).array result = pa.array(intervals) assert isinstance(result.type, ArrowIntervalType) assert result.type.closed == intervals.closed assert result.type.subtype == pa.int64() assert result.storage.field("left").equals(pa.array([1, 2, 3, 4], type="int64")) assert result.storage.field("right").equals(pa.array([2, 3, 4, 5], type="int64")) expected = pa.array([{"left": i, "right": i + 1} for i in range(1, 5)]) assert result.storage.equals(expected) # convert to its storage type result = pa.array(intervals, type=expected.type) assert result.equals(expected) # unsupported conversions with pytest.raises(TypeError, match="Not supported to convert IntervalArray"): pa.array(intervals, type="float64") with pytest.raises(TypeError, match="different 'subtype'"): pa.array(intervals, type=ArrowIntervalType(pa.float64(), "left")) @pyarrow_skip def test_arrow_array_missing(): import pyarrow as pa from pandas.core.arrays._arrow_utils import ArrowIntervalType arr = IntervalArray.from_breaks([0.0, 1.0, 2.0, 3.0]) arr[1] = None result = pa.array(arr) assert isinstance(result.type, ArrowIntervalType) assert result.type.closed == arr.closed assert result.type.subtype == pa.float64() # fields have missing values (not NaN) left = pa.array([0.0, None, 2.0], type="float64") right = pa.array([1.0, None, 3.0], type="float64") assert result.storage.field("left").equals(left) assert result.storage.field("right").equals(right) # structarray itself also has missing values on the array level vals = [ {"left": 0.0, "right": 1.0}, {"left": None, "right": None}, {"left": 2.0, "right": 3.0}, ] expected = pa.StructArray.from_pandas(vals, mask=np.array([False, True, False])) assert result.storage.equals(expected) @pyarrow_skip @pytest.mark.parametrize( "breaks", [[0.0, 1.0, 2.0, 3.0],
date_range("2017", periods=4, freq="D")
pandas.date_range
import os import cv2 import pandas as pd import torch import data_loader as dl from models.model_zoo import get_model from train import get_empty_scores_dict from transformations import transforms as trfs from utils.utilities import parse_args, parse_yaml def predict_data_set( model, data_loader, device, cpu_device, output_path ): # Don't need to keep track of gradients with torch.no_grad(): if model.training: # Set to evaluation mode (BatchNorm and Dropout works differently) model.eval() # Validation loop for ii, (images, targets, image_ids) in enumerate(data_loader): # Tensors to device images = list(image.to(device) for image in images) outputs = model(images) outputs = [ { k: v.to(cpu_device).numpy() for k, v in t.items() } for t in outputs ] # TODO: Add NMS for idx, (image, image_id) in enumerate(zip(images, image_ids)): preds = outputs[idx]['boxes'] image_vis = cv2.imread(os.path.join(os.getcwd(), 'datasets', 'train', 'Positive', image_id)) for row in preds: c1 = int(row[0]), int(row[1]) c2 = int(row[2]), int(row[3]) cv2.rectangle(image_vis, c1, c2, (0, 0, 255), 3) cv2.imwrite(os.path.join(output_path, image_id), image_vis) def predict_model( valid_data_loader, model, path_save_model, output_path ): """ """ scores_dict_valid = get_empty_scores_dict(valid_data_loader) if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') cpu_device = torch.device('cpu') model.to(device) model.load_state_dict(torch.load(path_save_model, map_location=torch.device('cpu'))) predict_data_set( model, valid_data_loader, device, cpu_device, output_path ) df_scores_valid =
pd.DataFrame(scores_dict_valid)
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import operator from itertools import product, starmap from numpy import nan, inf import numpy as np import pandas as pd from pandas import (Index, Series, DataFrame, isnull, bdate_range, NaT, date_range, timedelta_range, _np_version_under1p8) from pandas.tseries.index import Timestamp from pandas.tseries.tdi import Timedelta import pandas.core.nanops as nanops from pandas.compat import range, zip from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from .common import TestData class TestSeriesOperators(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) with np.errstate(invalid='ignore'): expected = (left > right).astype('O') expected[:3] = np.nan assert_almost_equal(result, expected) s = Series(['a', 'b', 'c']) s2 = Series([False, True, False]) # it works! exp = Series([False, False, False]) tm.assert_series_equal(s == s2, exp) tm.assert_series_equal(s2 == s, exp) def test_op_method(self): def check(series, other, check_reverse=False): simple_ops = ['add', 'sub', 'mul', 'floordiv', 'truediv', 'pow'] if not compat.PY3: simple_ops.append('div') for opname in simple_ops: op = getattr(Series, opname) if op == 'div': alt = operator.truediv else: alt = getattr(operator, opname) result = op(series, other) expected = alt(series, other) tm.assert_almost_equal(result, expected) if check_reverse: rop = getattr(Series, "r" + opname) result = rop(series, other) expected = alt(other, series) tm.assert_almost_equal(result, expected) check(self.ts, self.ts * 2) check(self.ts, self.ts[::2]) check(self.ts, 5, check_reverse=True) check(tm.makeFloatSeries(), tm.makeFloatSeries(), check_reverse=True) def test_neg(self): assert_series_equal(-self.series, -1 * self.series) def test_invert(self): assert_series_equal(-(self.series < 0), ~(self.series < 0)) def test_div(self): with np.errstate(all='ignore'): # no longer do integer div for any ops, but deal with the 0's p = DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = p['first'] / p['second'] expected = Series( p['first'].values.astype(float) / p['second'].values, dtype='float64') expected.iloc[0:3] = np.inf assert_series_equal(result, expected) result = p['first'] / 0 expected = Series(np.inf, index=p.index, name='first') assert_series_equal(result, expected) p = p.astype('float64') result = p['first'] / p['second'] expected = Series(p['first'].values / p['second'].values) assert_series_equal(result, expected) p = DataFrame({'first': [3, 4, 5, 8], 'second': [1, 1, 1, 1]}) result = p['first'] / p['second'] assert_series_equal(result, p['first'].astype('float64'), check_names=False) self.assertTrue(result.name is None) self.assertFalse(np.array_equal(result, p['second'] / p['first'])) # inf signing s = Series([np.nan, 1., -1.]) result = s / 0 expected = Series([np.nan, np.inf, -np.inf]) assert_series_equal(result, expected) # float/integer issue # GH 7785 p = DataFrame({'first': (1, 0), 'second': (-0.01, -0.02)}) expected = Series([-0.01, -np.inf]) result = p['second'].div(p['first']) assert_series_equal(result, expected, check_names=False) result = p['second'] / p['first'] assert_series_equal(result, expected) # GH 9144 s = Series([-1, 0, 1]) result = 0 / s expected = Series([0.0, nan, 0.0]) assert_series_equal(result, expected) result = s / 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) result = s // 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) def test_operators(self): def _check_op(series, other, op, pos_only=False, check_dtype=True): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_series_equal(cython_or_numpy, python, check_dtype=check_dtype) def check(series, other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'mod'] for opname in simple_ops: _check_op(series, other, getattr(operator, opname)) _check_op(series, other, operator.pow, pos_only=True) _check_op(series, other, lambda x, y: operator.add(y, x)) _check_op(series, other, lambda x, y: operator.sub(y, x)) _check_op(series, other, lambda x, y: operator.truediv(y, x)) _check_op(series, other, lambda x, y: operator.floordiv(y, x)) _check_op(series, other, lambda x, y: operator.mul(y, x)) _check_op(series, other, lambda x, y: operator.pow(y, x), pos_only=True) _check_op(series, other, lambda x, y: operator.mod(y, x)) check(self.ts, self.ts * 2) check(self.ts, self.ts * 0) check(self.ts, self.ts[::2]) check(self.ts, 5) def check_comparators(series, other, check_dtype=True): _check_op(series, other, operator.gt, check_dtype=check_dtype) _check_op(series, other, operator.ge, check_dtype=check_dtype) _check_op(series, other, operator.eq, check_dtype=check_dtype) _check_op(series, other, operator.lt, check_dtype=check_dtype) _check_op(series, other, operator.le, check_dtype=check_dtype) check_comparators(self.ts, 5) check_comparators(self.ts, self.ts + 1, check_dtype=False) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x': 0.}) tm.assert_series_equal(s1 * s2, Series([np.nan], index=['x'])) def test_operators_timedelta64(self): # invalid ops self.assertRaises(Exception, self.objSeries.__add__, 1) self.assertRaises(Exception, self.objSeries.__add__, np.array(1, dtype=np.int64)) self.assertRaises(Exception, self.objSeries.__sub__, 1) self.assertRaises(Exception, self.objSeries.__sub__, np.array(1, dtype=np.int64)) # seriese ops v1 = date_range('2012-1-1', periods=3, freq='D') v2 = date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') assert_series_equal(rs, xp) self.assertEqual(rs.dtype, 'timedelta64[ns]') df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) self.assertEqual(td.dtype, 'timedelta64[ns]') # series on the rhs result = df['A'] - df['A'].shift() self.assertEqual(result.dtype, 'timedelta64[ns]') result = df['A'] + td self.assertEqual(result.dtype, 'M8[ns]') # scalar Timestamp on rhs maxa = df['A'].max() tm.assertIsInstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() self.assertEqual(resultb.dtype, 'timedelta64[ns]') # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') assert_series_equal(result, expected) self.assertEqual(result.dtype, 'm8[ns]') d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d self.assertEqual(resulta.dtype, 'm8[ns]') # roundtrip resultb = resulta + d assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td assert_series_equal(resultb, df['A']) self.assertEqual(resultb.dtype, 'M8[ns]') # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td assert_series_equal(df['A'], resultb) self.assertEqual(resultb.dtype, 'M8[ns]') # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) self.assertEqual(rs[2], value) def test_operator_series_comparison_zerorank(self): # GH 13006 result = np.float64(0) > pd.Series([1, 2, 3]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) result = pd.Series([1, 2, 3]) < np.float64(0) expected = pd.Series([1, 2, 3]) < 0.0 self.assert_series_equal(result, expected) result = np.array([0, 1, 2])[0] > pd.Series([0, 1, 2]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) def test_timedeltas_with_DateOffset(self): # GH 4532 # operate with pd.offsets s = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) result = s + pd.offsets.Second(5) result2 = pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:01:05'), Timestamp( '20130101 9:02:05')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s - pd.offsets.Second(5) result2 = -pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:00:55'), Timestamp( '20130101 9:01:55')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series([Timestamp('20130101 9:06:00.005'), Timestamp( '20130101 9:07:00.005')]) assert_series_equal(result, expected) # operate with np.timedelta64 correctly result = s + np.timedelta64(1, 's') result2 = np.timedelta64(1, 's') + s expected = Series([Timestamp('20130101 9:01:01'), Timestamp( '20130101 9:02:01')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + np.timedelta64(5, 'ms') result2 = np.timedelta64(5, 'ms') + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) s + op(5) op(5) + s def test_timedelta_series_ops(self): # GH11925 s = Series(timedelta_range('1 day', periods=3)) ts = Timestamp('2012-01-01') expected = Series(date_range('2012-01-02', periods=3)) assert_series_equal(ts + s, expected) assert_series_equal(s + ts, expected) expected2 = Series(date_range('2011-12-31', periods=3, freq='-1D')) assert_series_equal(ts - s, expected2) assert_series_equal(ts + (-s), expected2) def test_timedelta64_operations_with_DateOffset(self): # GH 10699 td = Series([timedelta(minutes=5, seconds=3)] * 3) result = td + pd.offsets.Minute(1) expected = Series([timedelta(minutes=6, seconds=3)] * 3) assert_series_equal(result, expected) result = td - pd.offsets.Minute(1) expected = Series([timedelta(minutes=4, seconds=3)] * 3) assert_series_equal(result, expected) result = td + Series([pd.offsets.Minute(1), pd.offsets.Second(3), pd.offsets.Hour(2)]) expected = Series([timedelta(minutes=6, seconds=3), timedelta( minutes=5, seconds=6), timedelta(hours=2, minutes=5, seconds=3)]) assert_series_equal(result, expected) result = td + pd.offsets.Minute(1) + pd.offsets.Second(12) expected = Series([timedelta(minutes=6, seconds=15)] * 3) assert_series_equal(result, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) td + op(5) op(5) + td td - op(5) op(5) - td def test_timedelta64_operations_with_timedeltas(self): # td operate with td td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td2 = timedelta(minutes=5, seconds=4) result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) # Now again, using pd.to_timedelta, which should build # a Series or a scalar, depending on input. td1 = Series(pd.to_timedelta(['00:05:03'] * 3)) td2 = pd.to_timedelta('00:05:04') result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) def test_timedelta64_operations_with_integers(self): # GH 4521 # divide/multiply by integers startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan s2 = Series([2, 3, 4]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) result = s1 / 2 expected = Series(s1.values.astype(np.int64) / 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) * s2, dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result, expected) for dtype in ['int32', 'int16', 'uint32', 'uint64', 'uint32', 'uint16', 'uint8']: s2 = Series([20, 30, 40], dtype=dtype) expected = Series( s1.values.astype(np.int64) * s2.astype(np.int64), dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result, expected) result = s1 * 2 expected = Series(s1.values.astype(np.int64) * 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) result = s1 * -1 expected = Series(s1.values.astype(np.int64) * -1, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) # invalid ops assert_series_equal(s1 / s2.astype(float), Series([Timedelta('2 days 22:48:00'), Timedelta( '1 days 23:12:00'), Timedelta('NaT')])) assert_series_equal(s1 / 2.0, Series([Timedelta('29 days 12:00:00'), Timedelta( '29 days 12:00:00'), Timedelta('NaT')])) for op in ['__add__', '__sub__']: sop = getattr(s1, op, None) if sop is not None: self.assertRaises(TypeError, sop, 1) self.assertRaises(TypeError, sop, s2.values) def test_timedelta64_conversions(self): startdate = Series(
date_range('2013-01-01', '2013-01-03')
pandas.date_range
import argparse import gc from tqdm import tqdm import numpy as np import os import pandas as pd from pathlib import Path import pickle import random from scipy import stats from sklearn.metrics import accuracy_score from gefs.learning import LearnSPN from gefs.trees import Tree, RandomForest from prep import get_data, learncats, get_stats, normalize_data, standardize_data from knn_imputer import KNNImputer from simple_imputer import SimpleImputer from miss_forest import MissForest # Auxiliary functions def str2bool(v): """ Converts a string to a boolean value. """ if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') if __name__ == '__main__': # Hyperparameters parser = argparse.ArgumentParser() parser.add_argument( '--dataset', '-d', type=str, default='wine', ) parser.add_argument( '--runs', '-r', nargs='+', type=int, default=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], ) parser.add_argument( '--n_folds', '-f', type=int, default=5, ) parser.add_argument( '--n_estimators', '-e', type=int, default=100, ) parser.add_argument( '--msl', '-m', nargs='+', type=int, default=[1], ) parser.add_argument( '--lspn', '-l', type=str2bool, default='false', ) FLAGS, unparsed = parser.parse_known_args() data, ncat = get_data(FLAGS.dataset) # min_sample_leaf is the minimum number of samples at leaves # Define which values of min_sample_leaf to test min_sample_leaves = FLAGS.msl min_sample_leaves = [msl for msl in min_sample_leaves if msl < data.shape[0]/10] meanspath = os.path.join('missing', FLAGS.dataset + '_mf_means.csv') cispath = os.path.join('missing', FLAGS.dataset + '_mf_cis.csv') Path('missing').mkdir(parents=True, exist_ok=True) if FLAGS.lspn: methods = ['Friedman', 'Mean', 'Surr', 'KNN', 'MissForest', 'GeFp', 'GeF', 'GeFp(LSPN)', 'GeF(LSPN)'] else: methods = ['Friedman', 'Mean', 'Surr', 'KNN', 'MissForest', 'GeFp', 'GeF'] df_all = pd.DataFrame() np.seterr(invalid='raise') completed_runs = 0 for run in FLAGS.runs: print('####### DATASET: ', FLAGS.dataset, " with shape ", data.shape) print('####### RUN: ', run) print('####### ', FLAGS.n_folds, ' folds') np.random.seed(run) # Easy way to reproduce the folds folds = np.zeros(data.shape[0]) for c in np.unique(data[ :, -1]): nn = np.sum(data[ :, -1] == c) ind = np.tile(np.arange(FLAGS.n_folds), int(np.ceil(nn/FLAGS.n_folds)))[:nn] folds[data[:, -1] == c] = np.random.choice(ind, nn, replace=False) for min_samples_leaf in min_sample_leaves: print(' min samples: ', min_samples_leaf) for fold in range(FLAGS.n_folds): print('####### Fold: ', fold) train_data = data[np.where(folds!=fold)[0], :] test_data = data[np.where(folds==fold)[0], :] # Standardize train data only _, maxv, minv, mean, std = get_stats(train_data, ncat) train_data = standardize_data(train_data, mean, std) test_data = standardize_data(test_data, mean, std) X_train, X_test = train_data[:, :-1], test_data[:, :-1] y_train, y_test = train_data[:, -1], test_data[:, -1] imputer = SimpleImputer(ncat=ncat[:-1], method='mean').fit(X_train) knn_imputer = KNNImputer(ncat=ncat[:-1], n_neighbors=7).fit(X_train) cat_vars = np.where(ncat[:-1]>1)[0] if len(cat_vars) == 0: cat_vars = None forest_imputer = MissForest(random_state=run).fit(X_train, cat_vars=cat_vars) np.random.seed(run) print(' Training') rf = RandomForest(n_estimators=FLAGS.n_estimators, ncat=ncat, min_samples_leaf=min_samples_leaf, surrogate=True, random_state=run) rf.fit(X_train, y_train) print(' Converting to GeF') gef = rf.topc() gef.maxv, gef.minv = maxv, minv if FLAGS.lspn: print(' Converting to GeF(LSPN)') gef_lspn = rf.topc(learnspn=30) # 30 is the number of samples required to fit LearnSPN gef_lspn.maxv, gef_lspn.minv = maxv, minv print(" Inference") for i in tqdm(np.arange(0, 1., 0.1)): df =
pd.DataFrame()
pandas.DataFrame
import sys import os import math import pandas as pd import numpy as np import camoco as co from collections import OrderedDict from camoco.Tools import log class simulateGWAS(object): def __init__(self,cob=None,go=None): # GWAS Simulations needs a COB and an Gene Ontology self.cob = cob self.go = go self.method = 'density' # Give a place to store the results self.results =
pd.DataFrame()
pandas.DataFrame
# content-based filtering # ๊ธฐ์‚ฌ ๋‚ด์šฉ์„ ํ† ๋Œ€๋กœ ํ•˜์—ฌ ์œ ์‚ฌํ•œ ๊ธฐ์‚ฌ ์ถ”์ฒœ(์‚ฌ์šฉ์ž์— ๋Œ€ํ•œ ์ •๋ณด๊ฐ€ ์–ผ๋งˆ ์—†์„ ๋•Œ๋Š” ์ด ๋ฐฉ์‹์œผ๋กœ ๋‰ด์Šค๋ฅผ ๋ˆ„๋ฅด๋ฉด ์ถ”์ฒœ์ด ๋œจ๋„๋ก ํ•œ๋‹ค.) import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import linear_kernel df = pd.read_csv('../output/Article_economy_201701_201804.csv', header=None, names=['publish_year', 'catagory', 'publish', 'title', 'content', 'url']) index_list = list(range(0, 500, 1)) df =
pd.DataFrame(df[:500], index=index_list)
pandas.DataFrame