prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import os, glob, gc, time, yaml, shutil, random import addict import argparse from collections import defaultdict from tqdm import tqdm import numpy as np import pandas as pd from sklearn.metrics import accuracy_score, roc_auc_score from sklearn.preprocessing import StandardScaler, LabelEncoder, QuantileTransformer, KBinsDiscretizer from datasets import (Features, transform_joint, normalize_npnan, NormalizeFeats, get_feat_cols, get_folds, split2folds_user_viral, save_preprocessed ) from catboost import CatBoostClassifier, Pool import warnings warnings.filterwarnings('ignore') pd.set_option("display.max_colwidth", 100) pd.set_option("display.max_rows", 20) np.set_printoptions(precision=4) osj = os.path.join; osl = os.listdir def read_yaml(config_path='./config.yaml'): with open(config_path) as f: config = yaml.safe_load(f) return config def parse_args(): parser = argparse.ArgumentParser() #parser.add_argument('--kernel_type', type=str, required=True) parser.add_argument('--debug', type=str, default="False") parser.add_argument('--seed', type=int, default=24) args, _ = parser.parse_known_args() return args def gettime(t0): """return a string of time passed since t0 in min. Ensure no spaces inside (for using as the name in files and dirs""" hours = int((time.time() - t0) / 60 // 60) mins = int((time.time() - t0) / 60 % 60) return f"{hours:d}h{mins:d}min" def logprint(log_str, add_new_line=True): # os.makedirs(out_dir, exist_ok=True) if add_new_line: log_str += '\n' print(log_str) with open(os.path.join(out_dir, f'log.txt'), 'a') as appender: appender.write(log_str + '\n') def copy_code(out_dir: str, src_dir='./'): code_dir = os.path.join(out_dir, 'code') os.makedirs(code_dir, exist_ok=False) py_fns = glob.glob(os.path.join(src_dir, '*.py')) py_fns += glob.glob(os.path.join(src_dir, '*.yaml')) for fn in py_fns: shutil.copy(fn, code_dir) def seed_everything(seed): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True # for faster training, but not deterministic def compare_data(test, compare_path='/home/isakev/challenges/viral_tweets/data/processed/test_data_lgb_NoImpute_NoOhe_jun23.csv'): print(f"preprocessed path:\n{compare_path}") # print("cfg.test_preprocessed_path\n:", cfg.test_preprocessed_path) # assert os.path.basename(compare_path) == os.path.basename(cfg.test_preprocessed_path) test_compare = pd.read_csv(compare_path) cols_here_not_in_preproc = set(test.columns).difference(set(test_compare.columns)) cols_preproc_not_in_here = set(test_compare.columns).difference(set(test.columns)) print(f"cols_preproc_not_in_here:\n{cols_preproc_not_in_here}") print(f"cols_here_not_in_preproc:\n{cols_here_not_in_preproc}") print(f"test.isnull().sum().sort_values().tail():\n{test.isnull().sum().sort_values().tail()}") print(f"\ntest_compare.isnull().sum().sort_values().tail():\n{test_compare.isnull().sum().sort_values().tail()}") # print() minus_ones_compare, minus_ones_here = [], [] for col in test_compare.columns: minus_ones_compare.append((test_compare[col] == -1).sum()) minus_ones_here.append((test_compare[col] == -1).sum()) print(f"minus_ones_compare:{sum(minus_ones_compare)}") print(f"minus_ones_here:{sum(minus_ones_here)}") assert len(cols_preproc_not_in_here) == 0 assert len(cols_preproc_not_in_here) == 0 if len(test) > 5000: assert len(test) == len(test_compare), f"len test = {len(test)} , len test_compare = {len(test_compare)}" assert sum(minus_ones_compare) == sum(minus_ones_here) min_len = min(len(test), len(test_compare)) test = test.iloc[:min_len].reset_index(drop=True) test_compare = test_compare[:min_len] unequals = test.compare(test_compare) print(f"test.compare(test_compare).shape[1] = {unequals.shape[1]}") print(f"test.compare(test_compare).columns: {unequals.columns}") diffs_ls = [] for col0 in unequals.columns.get_level_values(0): diffs = unequals[(col0, 'self')] - unequals[(col0, 'other')] diffs_ls.append(np.sum(diffs) / len(diffs)) argsorted_cols = unequals.columns.get_level_values(0)[np.argsort(diffs_ls)] print(f"np.sum(diffs_ls = {np.sum(diffs_ls)}") cols_diff_ = [(col, diff_) for (col, diff_) in zip(argsorted_cols[-10:], np.sort(diffs_ls)[-10:])] print(f"some diffs_ls[-10:]:\n{cols_diff_}") # assert test.compare(test_compare).shape[1] == 0, "test.compare(test_compare).shape[1] == 0" def create_out_dir(experiment_name, model_arch_name, n_folds, folds_to_train, debug): # datetime_str = time.strftime("%d_%m_time_%H_%M", time.localtime()) # folds_str = '_'.join([str(fold) for fold in folds_to_train]) # out_dir = '../../submissions/{}_m_{}_ep{}_bs{}_nf{}_t_{}'.format( # experiment_name, model_arch_name, cfg.n_epochs, cfg.batch_size, n_folds, datetime_str) # bs, weight_decay, , folds_str, # if debug: # out_dir = osj(os.path.dirname(out_dir), 'debug_' + os.path.basename(out_dir)) out_dir = cfg.out_dir models_outdir = osj(out_dir, 'models') os.makedirs(out_dir) os.makedirs(models_outdir) return out_dir, models_outdir def save_model(path, model, epoch, best_score, save_weights_only=False): if save_weights_only: state_dict = { 'model': model.state_dict(), 'epoch': epoch, 'best_score': best_score, } else: scheduler_state = scheduler.state_dict() if scheduler else None state_dict = { 'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'scheduler': scheduler_state, 'epoch': epoch, 'best_score': best_score, } torch.save(state_dict, path) def rename_outdir_w_metric(out_dir, ave_metric, ave_epoch): # renames out_dir - prefix_ = f"cv{ave_metric_str}_" # after cross-validation: # rename out_dir adding ave_epoch_cv(metric) to the name if ave_metric < 1: ave_metric_str = f"{ave_metric:.6f}"[2:] elif ave_metric < 1000: ave_metric_str = f"{ave_metric:.5f}".replace('.', '_') else: ave_metric_str = f"{int(ave_metric)}" if ave_epoch: ave_epoch = int(ave_epoch) prefix_ = f"cv{ave_metric_str}_" suffix_ = f"_e{ave_epoch}_cv{ave_metric_str}" new_base_name = prefix_ + os.path.basename(out_dir) + suffix_ out_dir_new_name = osj(os.path.dirname(out_dir), new_base_name) # os.rename(out_dir, out_dir_new_name) assert not os.path.exists(out_dir_new_name), f"\nCan't rename: the path exists ({out_dir_new_name}" print(f"new out_dir directory name:\n{os.path.basename(out_dir_new_name)}") shutil.move(out_dir, out_dir_new_name) return out_dir_new_name def get_cols2normalize(feat_cols): cols2normalize = [col for col in feat_cols if (not col.startswith('img_feature_')) and (not col.startswith('feature_')) and (not col.startswith('user_des_feature_')) and (not col.startswith('user_img_feature_')) ] return cols2normalize def drop_duplicates_func(train, feat_cols): n = train.shape[0] train.drop_duplicates(subset=feat_cols, inplace=True) train.reset_index(drop=True, inplace=True) # [~train.duplicated(subset=feat_cols)].reset_index(drop=True) print(f"Dropped {n - train.shape[0]} duplicated rows from train. train.shape = {train.shape}") return train def run(fold, train, test, feats, categorical_columns): # cat_idxs): def feats2list(df, feats, categorical_columns): # separate categorical and non-categorical features into lists and concatenate # pass new categorical indices noncat_cols = [col for col in feats if col not in categorical_columns] X_cat_list = df[categorical_columns].values.tolist() X_noncat_list = df[noncat_cols].values.tolist() X_list = [cat+noncat for (cat,noncat) in zip(X_cat_list,X_noncat_list)] cat_new_idxs = np.array(range(len(X_cat_list[0]))) return X_list, cat_new_idxs t_start_fold = time.time() train_fold = train[train['fold'] != fold].copy() val_fold = train[train['fold'] == fold] # test_fold = test.copy() if isinstance(cfg.adversarial_drop_thresh, float) and cfg.adversarial_valid_path: # drop adversarial_valid samples from train # all fold 0(of 5) train set = 23662 thresh = cfg.adversarial_drop_thresh # 0.23= = =cv68.1013 # 0.24=23489=0.68425=cv68.1554 # 0.25=23177=0.6830=cv67.9593 # 0.27=21342=0.68636=cv68.0463 adv_preds = pd.read_csv(cfg.adversarial_valid_path) drop_ids = adv_preds.loc[(adv_preds['is_test'] == 0) & (adv_preds['preds'] < thresh), 'tweet_id'].values print(f"Before adversarial cutoff, train_fold.shape = {train_fold.shape}") train_fold = train_fold[~train_fold['tweet_id'].isin(drop_ids)] # X_train = train_fold[feats].values # X_valid = val_fold[feats].values y_train = train_fold['virality'].values y_valid = val_fold['virality'].values # X_test = test[feats].copy().values X_train_list, cat_new_idxs = feats2list(train_fold, feats, categorical_columns) X_valid_list, _ = feats2list(val_fold, feats, categorical_columns) X_test_list, _ = feats2list(test, feats, categorical_columns) del train_fold, val_fold, test; _ = gc.collect() # baseline_value = y_train_first.mean() # train_baseline = np.array([baseline_value] * y_train_second.shape[0]) # test_baseline = np.array([baseline_value] * y_test.shape[0]) train_pool = Pool(X_train_list, y_train, cat_features=cat_new_idxs) valid_pool = Pool(X_valid_list, y_valid, cat_features=cat_new_idxs) test_pool = Pool(X_test_list, cat_features=cat_new_idxs) logprint(f"Train set n = {len(y_train)}, Valid set n = {len(y_valid)}, Num feats = {len(X_train_list[0])}") logprint(f"{time.ctime()} ===== Fold {fold} starting ======") del X_train_list, X_valid_list, X_test_list; _ = gc.collect() model_file = os.path.join(osj(models_outdir, f'model_best_fold{fold}.cbm')) stats = {} model = CatBoostClassifier(**cfg.catboost_params, cat_features=cat_new_idxs, train_dir=out_dir) params_from_model = model._init_params model.fit(train_pool, eval_set=valid_pool, use_best_model=True) params_from_model = model.get_all_params() params_from_model = {k: v for (k, v) in params_from_model.items() if k not in ['cat_features']} # print(f"params from model:\n{params_from_model}") if fold == cfg.folds_to_train[0]: print(f"model params: {model}") print(f'Best Iteration: {model.best_iteration_}') # print(f"evals_result:\n{evals_result}") stats['best_iter'] = model.best_iteration_ evals_res_df = pd.DataFrame({'train_accuracy': model.evals_result_['learn']['Accuracy'][::100], 'valid_accuracy': model.evals_result_['validation']['Accuracy'][::100]}) evals_res_df.to_csv(osj(out_dir, f"evals_result_fold{fold}.csv"), index=False) # train score preds_train_fold = model.predict(train_pool) # train_rmse = np.sqrt(mean_squared_error(y_train, preds_train_fold)) #acc_train = accuracy_score(y_train, np.argmax(preds_train_fold, axis=1)) acc_train = accuracy_score(y_train, np.argmax(preds_train_fold, axis=1)) # validation score preds_val_fold = model.predict_proba(valid_pool) acc_valid = accuracy_score(y_valid, np.argmax(preds_val_fold, axis=1)) # y_pred_valid = rankdata(y_pred_valid) / len(y_pred_valid) # save model model.save_model(model_file, format="cbm") # "json" # predict test preds_test_fold = model.predict_proba(test_pool) stats['acc_train'] = acc_train stats['acc_valid'] = acc_valid stats['fold'] = fold content = f'lr:{model.learning_rate_}, accuracy train: {acc_train:.5f}, accucary valid: {acc_valid:.5f}' print(content) print(f"From model.best_score_: {model.best_score_}") print(f"ACCURACY: {acc_valid: .5f} \tFold train duration = {gettime(t_start_fold)}\n\n {'-' * 30}") feature_imp_fold_df = pd.DataFrame({'feature': model.feature_names_, f'fold_{fold}': model.feature_importances_}) return preds_val_fold, preds_test_fold, stats, feature_imp_fold_df def main(out_dir, cfg): t_get_data = time.time() if cfg.load_train_test: print(f"Loading preprocessed train and test...Path train:\n{cfg.train_preprocessed_path}") train = pd.read_csv(cfg.train_preprocessed_path, nrows=n_samples) test = pd.read_csv(cfg.test_preprocessed_path, nrows=n_samples) if not cfg.add_user_virality: del train['user_virality'], test['user_virality'] _ = gc.collect() (feat_cols, media_img_feat_cols, text_feat_cols, user_des_feat_cols, user_img_feat_cols, feats_some) = get_feat_cols(train) # train = drop_duplicates_func(train, feat_cols) else: # preprocess raw data # assert not os.path.exists(cfg.train_preprocessed_path), f"file exists: {cfg.train_preprocessed_path}" # assert not os.path.exists(cfg.test_preprocessed_path), f"file exists: {cfg.test_preprocessed_path}" features = Features() t_get_data = time.time() traintest = features.get_data_stage1(cfg, base_dir, n_samples=n_samples) train, test = features.get_data_stage2(cfg, traintest) (feat_cols, media_img_feat_cols, text_feat_cols, user_des_feat_cols, user_img_feat_cols, feats_some) = get_feat_cols(train) train = drop_duplicates_func(train, feat_cols) if cfg.save_then_load: # saving and loading preprocessed data in order to reproduce the score # if cfg.save_train_test: # and (not cfg.debug): # "../../data/preprocessed/" save_preprocessed(cfg, train, test, path_train=cfg.train_preprocessed_path, path_test=cfg.test_preprocessed_path) train = pd.read_csv(cfg.train_preprocessed_path, nrows=n_samples) test = pd.read_csv(cfg.test_preprocessed_path, nrows=n_samples) # os.remove(cfg.train_preprocessed_path) # os.remove(cfg.train_preprocessed_path) # if cfg.save_train_test: # and (not cfg.debug): # "../../data/preprocessed/" # save_preprocessed(cfg, train, test, path_train=cfg.train_preprocessed_path, # path_test=cfg.test_preprocessed_path) # print(f"Saved train and test after initial preprocess at:\n{cfg.train_preprocessed_path}") train = get_folds(cfg, train) (feat_cols, media_img_feat_cols, text_feat_cols, user_des_feat_cols, user_img_feat_cols, feats_some) = get_feat_cols(train) if cfg.drop_tweet_user_id: train.drop('tweet_user_id', 1, inplace=True) test.drop('tweet_user_id', 1, inplace=True) # compare_data(test) # drop low feat_imps features if cfg.n_drop_feat_imps_cols and cfg.n_drop_feat_imps_cols > 0: feat_imps = pd.read_csv(cfg.feat_imps_path).sort_values(by='importance_mean', ascending=False).reset_index(drop=False) feat_imps_drops = feat_imps['feature'].iloc[-cfg.n_drop_feat_imps_cols:].values cols_drop_fi = [col for col in feat_cols if col in feat_imps_drops if col not in ['tweet_user_id']] train.drop(cols_drop_fi, axis=1, inplace=True) test.drop(cols_drop_fi, axis=1, inplace=True) print(f"Dropped {len(cols_drop_fi)} features on feature importance and add'l criteria") (feat_cols, media_img_feat_cols, text_feat_cols, user_des_feat_cols, user_img_feat_cols, feats_some) = get_feat_cols(train) # print(f"Some features list: {train[feats_some].columns}\n") cols2quantile_tfm = [col for col in train.columns if col in media_img_feat_cols+text_feat_cols +user_img_feat_cols+user_des_feat_cols] if cfg.quantile_transform: train, test = transform_joint(train, test, cols2quantile_tfm, tfm=QuantileTransformer(n_quantiles=cfg.n_quantiles, random_state=cfg.seed_other, )) if cfg.impute_nulls: train = train.fillna(cfg.impute_value) test = test.fillna(cfg.impute_value) print(f"Imputed Nulls in train.py with {cfg.impute_value}") # standardize feats (feat_cols, media_img_feat_cols, text_feat_cols, user_des_feat_cols, user_img_feat_cols, feats_some) = get_feat_cols(train) categorical_columns_initial = [col for col in feat_cols if col.startswith('topic_id') # or col.startswith('tweets_in_') or col.startswith('tweet_language_id') or col.startswith('tweet_attachment_class') or col.startswith('ohe_') or col in ['user_has_location', 'tweet_has_attachment', 'tweet_has_media', 'tweet_id_hthan1_binary','user_verified', 'user_has_url'] ] print("Normalizing feats ....") if cfg.normalize_jointtraintest: cols2normalize = [col for col in feat_cols if col not in categorical_columns_initial] # get_cols2normalize(feat_cols) if cfg.quantile_transform: cols2normalize = [col for col in cols2normalize if col not in cols2quantile_tfm] is_nulls = (train[cols2normalize].isnull().sum().sum()>0).astype(bool) if is_nulls: train, test = normalize_npnan(train, test, cols2normalize) else: train, test = transform_joint(train, test, cols2normalize, tfm=StandardScaler()) del cols2normalize if cfg.kbins_discretizer: cols2discretize_tfm = [col for col in train.columns if col in media_img_feat_cols + text_feat_cols + user_img_feat_cols + user_des_feat_cols] train.loc[:,cols2discretize_tfm] = train.loc[:,cols2discretize_tfm].fillna(cfg.impute_value) test.loc[:, cols2discretize_tfm] = test.loc[:, cols2discretize_tfm].fillna(cfg.impute_value) train, test = transform_joint(train, test, cols2discretize_tfm, tfm=KBinsDiscretizer(n_bins=cfg.kbins_n_bins, strategy=cfg.kbins_strategy, # {'uniform', 'quantile', 'kmeans'} encode='ordinal')) print(f"KBinsDiscretize {len(cols2discretize_tfm)} cols, e.g. nunique 1 col of train: {train[cols2discretize_tfm[0]].nunique()}") del cols2discretize_tfm; _ = gc.collect() # cat columns for TABNET categorical_columns = [] categorical_dims = {} len_train = len(train) train = pd.concat([train, test]) for col in categorical_columns_initial: # print(col, train[col].nunique()) l_enc = LabelEncoder() if cfg.model_arch_name=='tabnet': train[col] = train[col].fillna("VV_likely") # after normalize unlikely else: pass # train[col] = train[col].fillna(cfg.impute_value) train[col] = l_enc.fit_transform(train[col].values) categorical_columns.append(col) categorical_dims[col] = len(l_enc.classes_) test = train.iloc[len_train:] train = train.iloc[:len_train] cat_idxs = [i for i, f in enumerate(feat_cols) if f in categorical_columns] cat_dims = [categorical_dims[f] for i, f in enumerate(feat_cols) if f in categorical_columns] if cfg.extracted_feats_path and (cfg.extracted_feats_path.lower()!='none'): extracted_feats =
pd.read_csv(cfg.extracted_feats_path)
pandas.read_csv
#author zhanghan ''' This is the trading calendar of Stock in China, in this version We only consider the day level data ''' import pandas as pd import pytz from datetime import datetime from dateutil import rrule from functools import partial start = pd.Timestamp('1990-01-01', tz='UTC') end_base = pd.Timestamp('today', tz='UTC') # Give an aggressive buffer for logic that needs to use the next trading # day or minute. end = end_base + pd.Timedelta(days=365) def canonicalize_datetime(dt): # Strip out any HHMMSS or timezone info in the user's datetime, so that # all the datetimes we return will be 00:00:00 UTC. return datetime(dt.year, dt.month, dt.day, tzinfo=pytz.utc) def get_non_trading_days(start, end): non_trading_rules = [] start = canonicalize_datetime(start) end = canonicalize_datetime(end) #this is the rule of saturday and sunday weekends = rrule.rrule( rrule.YEARLY, byweekday=(rrule.SA, rrule.SU), cache=True, dtstart=start, until=end ) non_trading_rules.append(weekends) #first day of the year new_years = rrule.rrule( rrule.MONTHLY, byyearday=1, cache=True, dtstart=start, until=end ) non_trading_rules.append(new_years) # 5.1 may_1st = rrule.rrule( rrule.MONTHLY, bymonth=5, bymonthday=1, cache=True, dtstart=start, until=end ) non_trading_rules.append(may_1st) #10.1,2,3 oct_1st=rrule.rrule( rrule.MONTHLY, bymonth=10, bymonthday=1, cache=True, dtstart=start, until=end ) non_trading_rules.append(oct_1st) oct_2nd=rrule.rrule( rrule.MONTHLY, bymonth=10, bymonthday=2, cache=True, dtstart=start, until=end ) non_trading_rules.append(oct_2nd) oct_3rd=rrule.rrule( rrule.MONTHLY, bymonth=10, bymonthday=3, cache=True, dtstart=start, until=end ) non_trading_rules.append(oct_3rd) non_trading_ruleset = rrule.rruleset() for rule in non_trading_rules: non_trading_ruleset.rrule(rule) non_trading_days = non_trading_ruleset.between(start, end, inc=True) non_trading_days.append(datetime(1991, 1, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1991, 2, 15, tzinfo=pytz.utc)) non_trading_days.append(datetime(1991, 2, 18, tzinfo=pytz.utc)) non_trading_days.append(datetime(1991, 5, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1991, 10, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1991, 10, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(1992, 1, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1992, 2, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(1992, 2, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(1992, 2, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(1992, 5, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1992, 10, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1992, 10, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(1993, 1, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1993, 1, 25, tzinfo=pytz.utc)) non_trading_days.append(datetime(1993, 1, 26, tzinfo=pytz.utc)) non_trading_days.append(datetime(1993, 10, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1994, 2, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(1994, 2, 8, tzinfo=pytz.utc)) non_trading_days.append(datetime(1994, 2, 9, tzinfo=pytz.utc)) non_trading_days.append(datetime(1994, 2, 10, tzinfo=pytz.utc)) non_trading_days.append(datetime(1994, 2, 11, tzinfo=pytz.utc)) non_trading_days.append(datetime(1994, 5, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(1994, 10, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(1994, 10, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(1995, 1, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(1995, 1, 30, tzinfo=pytz.utc)) non_trading_days.append(datetime(1995, 1, 31, tzinfo=pytz.utc)) non_trading_days.append(datetime(1995, 2, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1995, 2, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(1995, 2, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(1995, 5, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1995, 10, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(1995, 10, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(1996, 1, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1996, 2, 19, tzinfo=pytz.utc)) non_trading_days.append(datetime(1996, 2, 20, tzinfo=pytz.utc)) non_trading_days.append(datetime(1996, 2, 21, tzinfo=pytz.utc)) non_trading_days.append(datetime(1996, 2, 22, tzinfo=pytz.utc)) non_trading_days.append(datetime(1996, 2, 23, tzinfo=pytz.utc)) non_trading_days.append(datetime(1996, 2, 26, tzinfo=pytz.utc)) non_trading_days.append(datetime(1996, 2, 27, tzinfo=pytz.utc)) non_trading_days.append(datetime(1996, 2, 28, tzinfo=pytz.utc)) non_trading_days.append(datetime(1996, 2, 29, tzinfo=pytz.utc)) non_trading_days.append(datetime(1996, 3, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1996, 5, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1996, 9, 30, tzinfo=pytz.utc)) non_trading_days.append(datetime(1996, 10, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1996, 10, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(1997, 1, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1997, 2, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(1997, 2, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(1997, 2, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(1997, 2, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(1997, 2, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(1997, 2, 10, tzinfo=pytz.utc)) non_trading_days.append(datetime(1997, 2, 11, tzinfo=pytz.utc)) non_trading_days.append(datetime(1997, 2, 12, tzinfo=pytz.utc)) non_trading_days.append(datetime(1997, 2, 13, tzinfo=pytz.utc)) non_trading_days.append(datetime(1997, 2, 14, tzinfo=pytz.utc)) non_trading_days.append(datetime(1997, 5, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1997, 5, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(1997, 6, 30, tzinfo=pytz.utc)) non_trading_days.append(datetime(1997, 7, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1997, 10, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1997, 10, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(1997, 10, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(1998, 1, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1998, 1, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(1998, 1, 26, tzinfo=pytz.utc)) non_trading_days.append(datetime(1998, 1, 27, tzinfo=pytz.utc)) non_trading_days.append(datetime(1998, 1, 28, tzinfo=pytz.utc)) non_trading_days.append(datetime(1998, 1, 29, tzinfo=pytz.utc)) non_trading_days.append(datetime(1998, 1, 30, tzinfo=pytz.utc)) non_trading_days.append(datetime(1998, 2, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(1998, 2, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(1998, 2, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(1998, 2, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(1998, 2, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(1998, 5, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1998, 10, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1998, 10, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(1999, 1, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1999, 2, 10, tzinfo=pytz.utc)) non_trading_days.append(datetime(1999, 2, 11, tzinfo=pytz.utc)) non_trading_days.append(datetime(1999, 2, 12, tzinfo=pytz.utc)) non_trading_days.append(datetime(1999, 2, 15, tzinfo=pytz.utc)) non_trading_days.append(datetime(1999, 2, 16, tzinfo=pytz.utc)) non_trading_days.append(datetime(1999, 2, 17, tzinfo=pytz.utc)) non_trading_days.append(datetime(1999, 2, 18, tzinfo=pytz.utc)) non_trading_days.append(datetime(1999, 2, 19, tzinfo=pytz.utc)) non_trading_days.append(datetime(1999, 2, 22, tzinfo=pytz.utc)) non_trading_days.append(datetime(1999, 2, 23, tzinfo=pytz.utc)) non_trading_days.append(datetime(1999, 2, 24, tzinfo=pytz.utc)) non_trading_days.append(datetime(1999, 2, 25, tzinfo=pytz.utc)) non_trading_days.append(datetime(1999, 2, 26, tzinfo=pytz.utc)) non_trading_days.append(datetime(1999, 5, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(1999, 10, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(1999, 10, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(1999, 10, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(1999, 10, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(1999, 10, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(1999, 12, 20, tzinfo=pytz.utc)) non_trading_days.append(datetime(1999, 12, 31, tzinfo=pytz.utc)) non_trading_days.append(datetime(2000, 1, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2000, 1, 31, tzinfo=pytz.utc)) non_trading_days.append(datetime(2000, 2, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2000, 2, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2000, 2, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2000, 2, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2000, 2, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(2000, 2, 8, tzinfo=pytz.utc)) non_trading_days.append(datetime(2000, 2, 9, tzinfo=pytz.utc)) non_trading_days.append(datetime(2000, 2, 10, tzinfo=pytz.utc)) non_trading_days.append(datetime(2000, 2, 11, tzinfo=pytz.utc)) non_trading_days.append(datetime(2000, 5, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2000, 5, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2000, 5, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2000, 5, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2000, 5, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2000, 10, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2000, 10, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2000, 10, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2000, 10, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2000, 10, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(2001, 1, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2001, 1, 22, tzinfo=pytz.utc)) non_trading_days.append(datetime(2001, 1, 23, tzinfo=pytz.utc)) non_trading_days.append(datetime(2001, 1, 24, tzinfo=pytz.utc)) non_trading_days.append(datetime(2001, 1, 25, tzinfo=pytz.utc)) non_trading_days.append(datetime(2001, 1, 26, tzinfo=pytz.utc)) non_trading_days.append(datetime(2001, 1, 29, tzinfo=pytz.utc)) non_trading_days.append(datetime(2001, 1, 30, tzinfo=pytz.utc)) non_trading_days.append(datetime(2001, 1, 31, tzinfo=pytz.utc)) non_trading_days.append(datetime(2001, 2, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2001, 2, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2001, 5, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2001, 5, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2001, 5, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2001, 5, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2001, 5, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(2001, 10, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2001, 10, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2001, 10, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2001, 10, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2001, 10, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 1, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 1, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 1, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 2, 11, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 2, 12, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 2, 13, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 2, 14, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 2, 15, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 2, 18, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 2, 19, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 2, 20, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 2, 21, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 2, 22, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 5, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 5, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 5, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 5, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 5, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 9, 30, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 10, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 10, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 10, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 10, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2002, 10, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(2003, 1, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2003, 1, 30, tzinfo=pytz.utc)) non_trading_days.append(datetime(2003, 1, 31, tzinfo=pytz.utc)) non_trading_days.append(datetime(2003, 2, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2003, 2, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2003, 2, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2003, 2, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(2003, 2, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(2003, 5, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2003, 5, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2003, 5, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2003, 5, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(2003, 5, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(2003, 5, 8, tzinfo=pytz.utc)) non_trading_days.append(datetime(2003, 5, 9, tzinfo=pytz.utc)) non_trading_days.append(datetime(2003, 10, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2003, 10, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2003, 10, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2003, 10, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(2003, 10, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(2004, 1, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2004, 1, 19, tzinfo=pytz.utc)) non_trading_days.append(datetime(2004, 1, 20, tzinfo=pytz.utc)) non_trading_days.append(datetime(2004, 1, 21, tzinfo=pytz.utc)) non_trading_days.append(datetime(2004, 1, 22, tzinfo=pytz.utc)) non_trading_days.append(datetime(2004, 1, 23, tzinfo=pytz.utc)) non_trading_days.append(datetime(2004, 1, 26, tzinfo=pytz.utc)) non_trading_days.append(datetime(2004, 1, 27, tzinfo=pytz.utc)) non_trading_days.append(datetime(2004, 1, 28, tzinfo=pytz.utc)) non_trading_days.append(datetime(2004, 5, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2004, 5, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2004, 5, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2004, 5, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(2004, 5, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(2004, 10, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2004, 10, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2004, 10, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2004, 10, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(2004, 10, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(2005, 1, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2005, 2, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(2005, 2, 8, tzinfo=pytz.utc)) non_trading_days.append(datetime(2005, 2, 9, tzinfo=pytz.utc)) non_trading_days.append(datetime(2005, 2, 10, tzinfo=pytz.utc)) non_trading_days.append(datetime(2005, 2, 11, tzinfo=pytz.utc)) non_trading_days.append(datetime(2005, 2, 14, tzinfo=pytz.utc)) non_trading_days.append(datetime(2005, 2, 15, tzinfo=pytz.utc)) non_trading_days.append(datetime(2005, 5, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2005, 5, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2005, 5, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2005, 5, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2005, 5, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(2005, 10, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2005, 10, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2005, 10, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2005, 10, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(2005, 10, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(2006, 1, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2006, 1, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2006, 1, 26, tzinfo=pytz.utc)) non_trading_days.append(datetime(2006, 1, 27, tzinfo=pytz.utc)) non_trading_days.append(datetime(2006, 1, 30, tzinfo=pytz.utc)) non_trading_days.append(datetime(2006, 1, 31, tzinfo=pytz.utc)) non_trading_days.append(datetime(2006, 2, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2006, 2, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2006, 2, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2006, 5, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2006, 5, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2006, 5, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2006, 5, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2006, 5, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2006, 10, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2006, 10, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2006, 10, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2006, 10, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2006, 10, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(2007, 1, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2007, 1, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2007, 1, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2007, 2, 19, tzinfo=pytz.utc)) non_trading_days.append(datetime(2007, 2, 20, tzinfo=pytz.utc)) non_trading_days.append(datetime(2007, 2, 21, tzinfo=pytz.utc)) non_trading_days.append(datetime(2007, 2, 22, tzinfo=pytz.utc)) non_trading_days.append(datetime(2007, 2, 23, tzinfo=pytz.utc)) non_trading_days.append(datetime(2007, 5, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2007, 5, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2007, 5, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2007, 5, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2007, 5, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(2007, 10, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2007, 10, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2007, 10, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2007, 10, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2007, 10, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2007, 12, 31, tzinfo=pytz.utc)) non_trading_days.append(datetime(2008, 1, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2008, 2, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(2008, 2, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(2008, 2, 8, tzinfo=pytz.utc)) non_trading_days.append(datetime(2008, 2, 11, tzinfo=pytz.utc)) non_trading_days.append(datetime(2008, 2, 12, tzinfo=pytz.utc)) non_trading_days.append(datetime(2008, 4, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2008, 5, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2008, 5, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2008, 6, 9, tzinfo=pytz.utc)) non_trading_days.append(datetime(2008, 9, 15, tzinfo=pytz.utc)) non_trading_days.append(datetime(2008, 9, 29, tzinfo=pytz.utc)) non_trading_days.append(datetime(2008, 9, 30, tzinfo=pytz.utc)) non_trading_days.append(datetime(2008, 10, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2008, 10, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2008, 10, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2009, 1, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2009, 1, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2009, 1, 26, tzinfo=pytz.utc)) non_trading_days.append(datetime(2009, 1, 27, tzinfo=pytz.utc)) non_trading_days.append(datetime(2009, 1, 28, tzinfo=pytz.utc)) non_trading_days.append(datetime(2009, 1, 29, tzinfo=pytz.utc)) non_trading_days.append(datetime(2009, 1, 30, tzinfo=pytz.utc)) non_trading_days.append(datetime(2009, 4, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(2009, 5, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2009, 5, 28, tzinfo=pytz.utc)) non_trading_days.append(datetime(2009, 5, 29, tzinfo=pytz.utc)) non_trading_days.append(datetime(2009, 10, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2009, 10, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2009, 10, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2009, 10, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(2009, 10, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(2009, 10, 8, tzinfo=pytz.utc)) non_trading_days.append(datetime(2010, 1, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2010, 2, 15, tzinfo=pytz.utc)) non_trading_days.append(datetime(2010, 2, 16, tzinfo=pytz.utc)) non_trading_days.append(datetime(2010, 2, 17, tzinfo=pytz.utc)) non_trading_days.append(datetime(2010, 2, 18, tzinfo=pytz.utc)) non_trading_days.append(datetime(2010, 2, 19, tzinfo=pytz.utc)) non_trading_days.append(datetime(2010, 4, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2010, 5, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2010, 6, 14, tzinfo=pytz.utc)) non_trading_days.append(datetime(2010, 6, 15, tzinfo=pytz.utc)) non_trading_days.append(datetime(2010, 6, 16, tzinfo=pytz.utc)) non_trading_days.append(datetime(2010, 9, 22, tzinfo=pytz.utc)) non_trading_days.append(datetime(2010, 9, 23, tzinfo=pytz.utc)) non_trading_days.append(datetime(2010, 9, 24, tzinfo=pytz.utc)) non_trading_days.append(datetime(2010, 10, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2010, 10, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2010, 10, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2010, 10, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(2010, 10, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(2011, 1, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2011, 2, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2011, 2, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2011, 2, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2011, 2, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(2011, 2, 8, tzinfo=pytz.utc)) non_trading_days.append(datetime(2011, 4, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2011, 4, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2011, 5, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2011, 6, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(2011, 9, 12, tzinfo=pytz.utc)) non_trading_days.append(datetime(2011, 10, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2011, 10, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2011, 10, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2011, 10, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(2011, 10, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(2012, 1, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2012, 1, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2012, 1, 23, tzinfo=pytz.utc)) non_trading_days.append(datetime(2012, 1, 24, tzinfo=pytz.utc)) non_trading_days.append(datetime(2012, 1, 25, tzinfo=pytz.utc)) non_trading_days.append(datetime(2012, 1, 26, tzinfo=pytz.utc)) non_trading_days.append(datetime(2012, 1, 27, tzinfo=pytz.utc)) non_trading_days.append(datetime(2012, 4, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2012, 4, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2012, 4, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2012, 4, 30, tzinfo=pytz.utc)) non_trading_days.append(datetime(2012, 5, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2012, 6, 22, tzinfo=pytz.utc)) non_trading_days.append(datetime(2012, 10, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2012, 10, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2012, 10, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2012, 10, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2012, 10, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 1, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 1, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 1, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 2, 11, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 2, 12, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 2, 13, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 2, 14, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 2, 15, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 4, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 4, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 4, 29, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 4, 30, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 5, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 6, 10, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 6, 11, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 6, 12, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 9, 19, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 9, 20, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 10, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 10, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 10, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 10, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2013, 10, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(2014, 1, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2014, 1, 31, tzinfo=pytz.utc)) non_trading_days.append(datetime(2014, 2, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2014, 2, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2014, 2, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2014, 2, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(2014, 4, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(2014, 5, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2014, 5, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2014, 6, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2014, 9, 8, tzinfo=pytz.utc)) non_trading_days.append(datetime(2014, 10, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2014, 10, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2014, 10, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2014, 10, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(2014, 10, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(2015, 1, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2015, 1, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2015, 2, 18, tzinfo=pytz.utc)) non_trading_days.append(datetime(2015, 2, 19, tzinfo=pytz.utc)) non_trading_days.append(datetime(2015, 2, 20, tzinfo=pytz.utc)) non_trading_days.append(datetime(2015, 2, 23, tzinfo=pytz.utc)) non_trading_days.append(datetime(2015, 2, 24, tzinfo=pytz.utc)) non_trading_days.append(datetime(2015, 4, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(2015, 5, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2015, 6, 22, tzinfo=pytz.utc)) non_trading_days.append(datetime(2015, 9, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2015, 9, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2015, 10, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2015, 10, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2015, 10, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2015, 10, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(2015, 10, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(2016, 1, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2016, 2, 8, tzinfo=pytz.utc)) non_trading_days.append(datetime(2016, 2, 9, tzinfo=pytz.utc)) non_trading_days.append(datetime(2016, 2, 10, tzinfo=pytz.utc)) non_trading_days.append(datetime(2016, 2, 11, tzinfo=pytz.utc)) non_trading_days.append(datetime(2016, 2, 12, tzinfo=pytz.utc)) non_trading_days.append(datetime(2016, 4, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2016, 5, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2016, 6, 9, tzinfo=pytz.utc)) non_trading_days.append(datetime(2016, 6, 10, tzinfo=pytz.utc)) non_trading_days.append(datetime(2016, 9, 15, tzinfo=pytz.utc)) non_trading_days.append(datetime(2016, 9, 16, tzinfo=pytz.utc)) non_trading_days.append(datetime(2016, 10, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2016, 10, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2016, 10, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2016, 10, 6, tzinfo=pytz.utc)) non_trading_days.append(datetime(2016, 10, 7, tzinfo=pytz.utc)) non_trading_days.append(datetime(2017, 1, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2017, 1, 27, tzinfo=pytz.utc)) non_trading_days.append(datetime(2017, 1, 30, tzinfo=pytz.utc)) non_trading_days.append(datetime(2017, 1, 31, tzinfo=pytz.utc)) non_trading_days.append(datetime(2017, 2, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2017, 2, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2017, 4, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2017, 4, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2017, 5, 1, tzinfo=pytz.utc)) non_trading_days.append(datetime(2017, 5, 29, tzinfo=pytz.utc)) non_trading_days.append(datetime(2017, 5, 30, tzinfo=pytz.utc)) non_trading_days.append(datetime(2017, 10, 2, tzinfo=pytz.utc)) non_trading_days.append(datetime(2017, 10, 3, tzinfo=pytz.utc)) non_trading_days.append(datetime(2017, 10, 4, tzinfo=pytz.utc)) non_trading_days.append(datetime(2017, 10, 5, tzinfo=pytz.utc)) non_trading_days.append(datetime(2017, 10, 6, tzinfo=pytz.utc)) non_trading_days.sort() return pd.DatetimeIndex(non_trading_days) non_trading_days = get_non_trading_days(start, end) trading_day = pd.tseries.offsets.CDay(holidays=non_trading_days) def get_trading_days(start, end, trading_day=trading_day): return pd.date_range(start=start.date(), end=end.date(), freq=trading_day).tz_localize('UTC') trading_days = get_trading_days(start, end) def get_early_closes(start, end): # 1:00 PM close rules based on # http://quant.stackexchange.com/questions/4083/nyse-early-close-rules-july-4th-and-dec-25th # noqa # and verified against http://www.nyse.com/pdfs/closings.pdf # These rules are valid starting in 1993 start = canonicalize_datetime(start) end = canonicalize_datetime(end) start = max(start, datetime(1993, 1, 1, tzinfo=pytz.utc)) end = max(end, datetime(1993, 1, 1, tzinfo=pytz.utc)) # Not included here are early closes prior to 1993 # or unplanned early closes early_close_rules = [] day_after_thanksgiving = rrule.rrule( rrule.MONTHLY, bymonth=11, # 4th Friday isn't correct if month starts on Friday, so restrict to # day range: byweekday=(rrule.FR), bymonthday=range(23, 30), cache=True, dtstart=start, until=end ) early_close_rules.append(day_after_thanksgiving) christmas_eve = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=24, byweekday=(rrule.MO, rrule.TU, rrule.WE, rrule.TH), cache=True, dtstart=start, until=end ) early_close_rules.append(christmas_eve) friday_after_christmas = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=26, byweekday=rrule.FR, cache=True, dtstart=start, # valid 1993-2007 until=min(end, datetime(2007, 12, 31, tzinfo=pytz.utc)) ) early_close_rules.append(friday_after_christmas) day_before_independence_day = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=3, byweekday=(rrule.MO, rrule.TU, rrule.TH), cache=True, dtstart=start, until=end ) early_close_rules.append(day_before_independence_day) day_after_independence_day = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=5, byweekday=rrule.FR, cache=True, dtstart=start, # starting in 2013: wednesday before independence day until=min(end, datetime(2012, 12, 31, tzinfo=pytz.utc)) ) early_close_rules.append(day_after_independence_day) wednesday_before_independence_day = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=3, byweekday=rrule.WE, cache=True, # starting in 2013 dtstart=max(start, datetime(2013, 1, 1, tzinfo=pytz.utc)), until=max(end, datetime(2013, 1, 1, tzinfo=pytz.utc)) ) early_close_rules.append(wednesday_before_independence_day) early_close_ruleset = rrule.rruleset() for rule in early_close_rules: early_close_ruleset.rrule(rule) early_closes = early_close_ruleset.between(start, end, inc=True) # Misc early closings from NYSE listing. # http://www.nyse.com/pdfs/closings.pdf # # New Year's Eve nye_1999 = datetime(1999, 12, 31, tzinfo=pytz.utc) if start <= nye_1999 and nye_1999 <= end: early_closes.append(nye_1999) early_closes.sort() return
pd.DatetimeIndex(early_closes)
pandas.DatetimeIndex
import pandas as pd import yaml import os from . import DATA_FOLDER, SCHEMA, SYNONYM_RULES def run( rule_file: str = SYNONYM_RULES, schema_file: str = SCHEMA, data_folder: str = DATA_FOLDER, ): """Add rules to capture more terms as synonyms during named entity recognition (NER) :param rule_file: YAML file that contains the rules., defaults to SYNONYM_RULES :param schema_file: YAML file that provides schema., defaults to SCHEMA :param data_folder: Data folder where the input termlists are located and the ouput files are saved., defaults to DATA_FOLDER """ with open(rule_file, "r") as rules, open(schema_file, "r") as sf: try: rule_book = yaml.safe_load(rules) schema = yaml.safe_load(sf) prefix_cols = ["id", "text"] rules_cols = schema["classes"]["Rule"]["slots"] prefix_df = pd.DataFrame(columns=prefix_cols) rules_df = pd.DataFrame(columns=rules_cols) terms_cols = [ "cui", "source", "id", "match_term", "preferred_term", "category", ] for key, value in rule_book["prefixes"].items(): row = pd.DataFrame([[value, key]], columns=prefix_cols) prefix_df = pd.concat([prefix_df, row]) for idx, dic in enumerate(rule_book["rules"]): row = pd.DataFrame(columns=rules_cols) for col in row.columns: if col in dic.keys(): row.loc[idx, col] = dic[col] if len(row) > 0: rules_df = pd.concat([rules_df, row]) rules_df = rules_df.reset_index() rules_df.fillna("", inplace=True) rules_exp_branch_df = rules_df.explode("branches") # DEBUG BLOCK ***************************************** # rules_exp_branch_df.to_csv( # os.path.join(data_folder, "rules.tsv"), # sep="\t", # index=None, # ) # ***************************************************** ontologies = list( set([x[0] for x in prefix_df["id"].str.split(":")]) ) print(f"Ontologies that need synonymization: {ontologies}") for ont in ontologies: terms_filename = ont.lower() + "_termlist.tsv" new_terms_filename = ont.lower() + "_syn_termlist.tsv" new_terms_df =
pd.DataFrame(columns=terms_cols)
pandas.DataFrame
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2021, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import unittest import skbio import pandas as pd import pandas.testing as pdt import qiime2 from q2_types.ordination import OrdinationFormat, ProcrustesStatisticsFmt from qiime2.plugin.testing import TestPluginBase class TestTransformers(TestPluginBase): package = 'q2_types.ordination.tests' def test_skbio_ordination_results_to_ordination_format(self): filenames = ('pcoa-results-1x1.txt', 'pcoa-results-2x2.txt', 'pcoa-results-NxN.txt') for filename in filenames: filepath = self.get_data_path(filename) transformer = self.get_transformer(skbio.OrdinationResults, OrdinationFormat) input = skbio.OrdinationResults.read(filepath) obs = transformer(input) self.assertIsInstance(obs, OrdinationFormat) obs = skbio.OrdinationResults.read(str(obs)) self.assertEqual(str(obs), str(input)) def test_ordination_format_to_skbio_ordination_results(self): filenames = ('pcoa-results-1x1.txt', 'pcoa-results-2x2.txt', 'pcoa-results-NxN.txt') for filename in filenames: input, obs = self.transform_format(OrdinationFormat, skbio.OrdinationResults, filename=filename) exp = skbio.OrdinationResults.read(str(input)) self.assertEqual(str(exp), str(obs)) def test_1x1_ordination_format_to_metadata(self): _, obs = self.transform_format(OrdinationFormat, qiime2.Metadata, 'pcoa-results-1x1.txt') index = pd.Index(['s1'], name='Sample ID', dtype=object) exp_df = pd.DataFrame([0.0], index=index, columns=['Axis 1'], dtype=float) exp = qiime2.Metadata(exp_df) self.assertEqual(exp, obs) def test_2x2_ordination_format_to_metadata(self): _, obs = self.transform_format(OrdinationFormat, qiime2.Metadata, 'pcoa-results-2x2.txt') index = pd.Index(['s1', 's2'], name='Sample ID', dtype=object) exp_df = pd.DataFrame([[-20.999999999999996, -0.0], [20.999999999999996, -0.0]], index=index, columns=['Axis 1', 'Axis 2'], dtype=float) exp = qiime2.Metadata(exp_df) self.assertEqual(exp, obs) def test_NxN_ordination_format_to_metadata(self): # Not creating a reference dataframe here because manually populating # that DataFrame is a pain. Specifically we just want to check the # functionality of the dynamic column naming (e.g. Axis N). _, obs = self.transform_format(OrdinationFormat, qiime2.Metadata, 'pcoa-results-NxN.txt') columns = ['Axis %d' % i for i in range(1, 9)] self.assertEqual(columns, list(obs.columns)) def test_df_to_procrustes_m2_stats_fmt(self): input_df = pd.DataFrame({'true M^2 value': [1], 'p-value for true M^2 value': [0.2], 'number of Monte Carlo permutations': [300]}, index=pd.Index(['results'], name='id')) exp = ['id\ttrue M^2 value\tp-value for true M^2 value\t' 'number of Monte Carlo permutations\n', '#q2:types\tnumeric\tnumeric\tnumeric\n', 'results\t1\t0.2\t300\n'] transformer = self.get_transformer(pd.DataFrame, ProcrustesStatisticsFmt) fmt = transformer(input_df) with open(str(fmt), 'r') as fh: obs = fh.readlines() self.assertEqual(exp, obs) def test_procrustes_m2_stats_fmt_to_df(self): filepath = self.get_data_path('m2stats-999-permus.tsv') input_fmt = ProcrustesStatisticsFmt(filepath, mode='r') exp = pd.DataFrame({'true M^2 value': [0.0789623748362618], 'p-value for true M^2 value': [0.001], 'number of Monte Carlo permutations': [999]}, index=pd.Index(['results'], name='id')) transformer = self.get_transformer(ProcrustesStatisticsFmt, pd.DataFrame) obs = transformer(input_fmt) pdt.assert_frame_equal(exp, obs) def test_procrustes_m2_stats_fmt_to_md(self): filepath = self.get_data_path('m2stats-999-permus.tsv') input_fmt = ProcrustesStatisticsFmt(filepath, mode='r') df = pd.DataFrame({'true M^2 value': [0.0789623748362618], 'p-value for true M^2 value': [0.001], 'number of Monte Carlo permutations': [999]}, index=
pd.Index(['results'], name='id')
pandas.Index
import datetime as dt import json import os import time import pandas as pd from sklearn import metrics from sklearn.ensemble import RandomForestClassifier import datetime # Statements with "." allows for relative path importing for WebApp and WebAPI # from .ImportSecurities import * # from .utils.aws_util import * # from .utils.data_util import * # from .utils.indicators import * # Statements without "." should be used when running the app/main function independent of WebApp and WebAPI from ImportSecurities import * from utils.aws_util import * from utils.data_util import * from utils.indicators import * import data_util_test def gather_download_data(sd, ed, download_new_data=False): symbols_config_fp = os.path.join(os.getcwd(), 'config', 'symbols_config.json') with open(symbols_config_fp) as fp: symbols_config = json.load(fp) symbols_array = [] for category, array in symbols_config.items(): symbols_array.append(array) flat_symbols = [item for sublist in symbols_array for item in sublist] if download_new_data: spaces_array = [] for array in symbols_array: spaces = " ".join(array) spaces_array.append(spaces) gather_data(symbols_array, spaces_array, sd=sd, ed=ed) def s3_upload_and_list(): # Set up variables cwd = os.getcwd() data_directory = os.path.join(cwd, 'data') # Read Config aws_config_fp = os.path.join(os.getcwd(), 'config', 'aws_config.json') with open(aws_config_fp) as fp: aws_config = json.load(fp) # Set up Session & Resource session = start_session(aws_config['access_key'], aws_config['secret_access_key']) s3 = get_s3_resource(session) bucket = aws_config['bucket_name'] # List current Buckets & Objects per Bucket print_bucket_objects(s3, bucket) # Upload files to Bucket files = [f for f in os.listdir(data_directory) if f.endswith('.csv')] for file in files: upload_file_to_bucket(s3, bucket, os.path.join(data_directory, file), file) # (Optional) Delete files from Bucket # for file in files: # delete_object(s3, bucket, file) # List Buckets & Objects after Upload print_bucket_objects(s3, bucket) def get_technical_indicators_for_date(symbol, given_date, start_date=dt.datetime(2012, 1, 31), end_date=dt.datetime.today()): stock_data = get_ohlcv(symbol, start_date, end_date, base_dir='trading_assistant_app/data') technical_indicators = get_technical_indicators_for_symbol(stock_data) try: return_dict = { 'Price/SMA5': technical_indicators['Price/SMA5'][given_date], 'Price/SMA10': technical_indicators['Price/SMA10'][given_date], 'Price/SMA20': technical_indicators['Price/SMA20'][given_date], 'Price/SMA50': technical_indicators['Price/SMA50'][given_date], 'Price/SMA200': technical_indicators['Price/SMA200'][given_date], 'BB%10': technical_indicators['BB%10'][given_date], 'BB%20': technical_indicators['BB%20'][given_date], 'BB%50': technical_indicators['BB%50'][given_date], 'RSI5': technical_indicators['RSI5'][given_date], 'RSI10': technical_indicators['RSI10'][given_date], 'MACD9': technical_indicators['MACD9'][given_date], 'MOM5': technical_indicators['MOM5'][given_date], 'VAMA10': technical_indicators['VAMA10'][given_date] } except KeyError as e: print(f'Invalid given_date index/key for {e}') return_dict = { 'Price/SMA5': 0, 'Price/SMA10': 0, 'Price/SMA20': 0, 'Price/SMA50': 0, 'Price/SMA200': 0, 'BB%10': 0, 'BB%20': 0, 'BB%50': 0, 'RSI5': 0, 'RSI10': 0, 'MACD9': 0, 'MOM5': 0, 'VAMA10': 0 } return return_dict def get_wsb_volume_for_date(symbol, given_date): # gather reddit mention counts # This allows for relative path retrieval for WebApp and WebAPI reddit_fp = os.path.join('trading_assistant_app', 'reddit_refined', f'{symbol}_rss_wc.csv') # This should be used when running the app/main function independent of WebApp and WebAPI # reddit_fp = os.path.join(os.getcwd(), 'reddit_data', f'{symbol}_rss_wc.csv') try: df_reddit = pd.read_csv(reddit_fp) except FileNotFoundError as e: return { 'wsb_volume': 0 } df_reddit = df_reddit.set_index('Date') df_reddit.index = pd.to_datetime(df_reddit.index) df_reddit = df_reddit.drop('Ticker', axis=1) try: value = df_reddit['wsb_volume'][given_date].item() return_dict = { 'wsb_volume': value } except KeyError as e: # print(f'Invalid given_date index/key for {e}') return_dict = { 'wsb_volume': 0 } return return_dict def get_technical_indicators_for_symbol(stock_data): price_sma_5_symbol = get_price_sma(stock_data, window=5) price_sma_10_symbol = get_price_sma(stock_data, window=10) price_sma_20_symbol = get_price_sma(stock_data, window=20) price_sma_50_symbol = get_price_sma(stock_data, window=50) price_sma_200_symbol = get_price_sma(stock_data, window=200) bb10_pct_symbol = get_bb_pct(stock_data, window=10) bb20_pct_symbol = get_bb_pct(stock_data, window=20) bb50_pct_symbol = get_bb_pct(stock_data, window=50) rsi5_symbol = get_rsi(stock_data, window=5) rsi10_symbol = get_rsi(stock_data, window=10) macd_symbol = get_macd_signal(stock_data, signal_days=9) mom_symbol = get_momentum(stock_data, window=5) vama_symbol = get_vama(stock_data, window=10) # Compile TA into joined DF & FFILL / BFILL df_indicators = pd.concat([price_sma_5_symbol, price_sma_10_symbol, price_sma_20_symbol, price_sma_50_symbol, price_sma_200_symbol, bb10_pct_symbol, bb20_pct_symbol, bb50_pct_symbol, rsi5_symbol, rsi10_symbol, macd_symbol, mom_symbol, vama_symbol], axis=1) df_indicators.fillna(0, inplace=True) return df_indicators def write_predictions_to_csv(start_date, end_date, percent_gain, path, debug=False): date_range = pd.date_range(start_date, end_date) buy_data = dict() sell_data = dict() for date in date_range: predictions_dictionary = get_list_of_predicted_stocks(percent_gain, date) buy_signal_recognized_list = predictions_dictionary['buy_signal_recognized_list'] buy_signal_recognized_str = '_'.join(buy_signal_recognized_list) sell_signal_recognized_list = predictions_dictionary['sell_signal_recognized_list'] sell_signal_recognized_str = '_'.join(sell_signal_recognized_list) buy_data[date] = buy_signal_recognized_str sell_data[date] = sell_signal_recognized_str df_buy = pd.DataFrame(buy_data.items(), columns=['Date', 'Symbols']) df_buy = df_buy.set_index('Date') df_buy.to_csv(os.path.join(path, f'buy_predictions.csv')) df_sell = pd.DataFrame(sell_data.items(), columns=['Date', 'Symbols']) df_sell = df_sell.set_index('Date') df_sell.to_csv(os.path.join(path, f'sell_predictions.csv')) def read_predictions(given_date, minimum_count=0, buy=True, debug=False): df = pd.read_csv(f'trading_assistant_app/predictions/{"buy_predictions" if buy else "sell_predictions"}.csv') df = df.set_index('Date') try: symbols = df['Symbols'][given_date] except KeyError as e: print(f'Invalid given_date index/key for {e}') symbols = '' if isinstance(symbols, float): if np.isnan(symbols): return [] elif isinstance(symbols, str): predictions_list = symbols.split('_') if buy: filtered = filter(lambda symbol: get_wsb_volume_for_date(symbol, given_date)['wsb_volume'] > minimum_count, predictions_list) filtered_list = list(filtered) else: filtered_list = predictions_list return filtered_list def prepare_data(symbols, start_date, end_date, percent_gain, debug=False): # df_array = list() # initialize dictionary to hold dataframe per symbol df_dict = {} # remove the index from the list of symbols if "SPY" in symbols: symbols.remove("SPY") for symbol in symbols: # get stock data for a given time # This allows for relative path retrieval for WebApp and WebAPI # *** # stock_data = get_ohlcv(symbol, start_date, end_date, base_dir=os.path.join('trading_assistant_app', 'data')) # This should be used when running the app/main function independent of WebApp and WebAPI stock_data = data_util_test.get_ohlcv(symbol, start_date, end_date, base_dir=os.path.join('data')) # Filter out empty OHLCV DF if len(stock_data) == 0: continue # calculate technical indicators df_indicators = get_technical_indicators_for_symbol(stock_data) # gather reddit mention counts # This allows for relative path retrieval for WebApp and WebAPI # *** #reddit_fp = os.path.join('trading_assistant_app', 'reddit_refined', f'{symbol}_rss_wc.csv') reddit_fp = os.path.join('reddit_refined', f'{symbol}_rss_wc.csv') # This should be used when running the app/main function independent of WebApp and WebAPI # reddit_fp = os.path.join(os.getcwd(), 'reddit_data', f'{symbol}_rss.csv') if os.path.isfile('reddit_refined/' + symbol + '_rss_wc.csv'): df_reddit = pd.read_csv(reddit_fp) df_reddit = df_reddit.set_index('Date') df_reddit.index = pd.to_datetime(df_reddit.index) df_reddit = df_reddit.drop('Ticker', axis=1) else: df_reddit = pd.DataFrame(columns=["Date","Ticker","wsb_volume"]) # merge and fill nan data df_merged = pd.merge(df_indicators, df_reddit, how='left', left_index=True, right_index=True) df_merged[['wsb_volume']] = df_merged[['wsb_volume']].fillna(value=0.0) # initialize dataframe to hold indicators and signal df = df_merged.copy(deep=True) # extract closing prices prices = stock_data["close"] # initialize signal signal = prices * 0 # target holding period to realize gain holding_period = 5 # buy signal == 1 when price increases by percent_gain and sell == -1 when it decreases by percent_gain for i in range(prices.shape[0] - holding_period): ret = (prices.iloc[i + 5] / prices.iloc[i]) - 1 if ret > percent_gain: signal.iloc[i] = 1 elif ret < (-1 * percent_gain): signal.iloc[i] = -1 else: signal.iloc[i] = 0 # *** df_signal = pd.DataFrame(signal) df = df.merge(df_signal, how='left', left_index=True, right_index=True) df["signal"] = df["close"].fillna(0) df_dict[symbol] = df if debug: print(stock_data.head(n=20), '\n') print(df_indicators.head(n=20), '\n') print(df_indicators.columns) print(df_indicators.head(n=20), '\n') return df_dict def train_model(df, symbol, debug=False): feature_cols = df.columns[:-1] label_cols = df.columns[-1:] train, test = np.split(df, [int(.6 * len(df))]) X_train, y_train = train[feature_cols], train[label_cols] X_test, y_test = test[feature_cols], test[label_cols] # print('X_train\n', X_train.head(20)) # print('y_train\n', y_train.head(20)) # print('X_test\n', X_test.head(20)) # print('y_test\n', y_test.head(20)) clf = RandomForestClassifier(n_estimators=10, random_state=42) # Workaround to get data with NAN/INF working if np.any(np.isnan(X_train)) == False and \ np.all(np.isfinite(X_train)) == True and \ np.any(np.isnan(y_train.values.ravel())) == False and \ np.all(np.isfinite(y_train.values.ravel())) == True: clf.fit(X_train, y_train.values.ravel()) y_pred = clf.predict(X_test) y_test_ravel = y_test.values.ravel() df_y_pred = pd.DataFrame(y_pred, index=y_test.index, columns=[f'Y_{symbol}']) if debug: print(f'Feature Importances: ' f'{sorted(list(zip(X_train, clf.feature_importances_)), key=lambda tup: tup[1], reverse=True)}') print(f'Mean Absolute Error: {metrics.mean_absolute_error(y_test_ravel, y_pred)}') print(f'Mean Squared Error: {metrics.mean_squared_error(y_test_ravel, y_pred)}') print(f'Root Mean Squared Error: {np.sqrt(metrics.mean_squared_error(y_test_ravel, y_pred))}') else: df_y_pred = pd.DataFrame(np.zeros(len(y_test)), index=y_test.index, columns=[f'Y_{symbol}']) return df_y_pred def get_list_of_predicted_stocks(percent_gain, given_date, debug=False): buy_signal_recognized_list = list() sell_signal_recognized_list = list() empty_df_count = 0 cwd = os.getcwd() # This allows for relative path retrieval for WebApp and WebAPI # *** #data_directory = os.path.join(cwd, 'trading_assistant_app', 'data') # This should be used when running the app/main function independent of WebApp and WebAPI data_directory = os.path.join(cwd, 'data') files = [f for f in os.listdir(data_directory) if f.endswith('.csv')] symbols = [symbol.split('.csv')[0] for symbol in files] start_date = dt.datetime(2012, 1, 31) end_date = dt.date.today() df_dictionary = prepare_data(symbols=symbols, start_date=start_date, end_date=end_date, percent_gain=percent_gain) for symbol, df in df_dictionary.items(): if len(df) == 0: print(f'len(df) == 0!!! for {symbol}') empty_df_count += 1 continue # Train model df_prediction = train_model(df, symbol, debug=debug) try: if df_prediction[f'Y_{symbol}'][given_date] == 1: buy_signal_recognized_list.append(symbol) elif df_prediction[f'Y_{symbol}'][given_date] == -1: sell_signal_recognized_list.append(symbol) except KeyError as e: # print(f'Invalid given_date index/key for {e}') pass return { 'buy_signal_recognized_list': buy_signal_recognized_list, 'len_buy_signal_list': len(buy_signal_recognized_list), 'sell_signal_recognized_list': sell_signal_recognized_list, 'len_sell_signal_list': len(sell_signal_recognized_list), 'len_files': len(files), 'empty_df_count': empty_df_count, 'given_date': given_date } def prepare_data(symbols, start_date, end_date, percent_gain, debug=False): # df_array = list() # initialize dictionary to hold dataframe per symbol df_dict = {} # remove the index from the list of symbols if "SPY" in symbols: symbols.remove("SPY") for symbol in symbols: # get stock data for a given time # This allows for relative path retrieval for WebApp and WebAPI # *** # stock_data = get_ohlcv(symbol, start_date, end_date, base_dir=os.path.join('trading_assistant_app', 'data')) # This should be used when running the app/main function independent of WebApp and WebAPI stock_data = data_util_test.get_ohlcv(symbol, start_date, end_date, base_dir=os.path.join('data')) # Filter out empty OHLCV DF if len(stock_data) == 0: continue # calculate technical indicators df_indicators = get_technical_indicators_for_symbol(stock_data) # gather reddit mention counts # This allows for relative path retrieval for WebApp and WebAPI # *** #reddit_fp = os.path.join('trading_assistant_app', 'reddit_refined', f'{symbol}_rss_wc.csv') reddit_fp = os.path.join('reddit_refined', f'{symbol}_rss_wc.csv') # This should be used when running the app/main function independent of WebApp and WebAPI # reddit_fp = os.path.join(os.getcwd(), 'reddit_data', f'{symbol}_rss.csv') if os.path.isfile('reddit_refined/' + symbol + '_rss_wc.csv'): df_reddit = pd.read_csv(reddit_fp) df_reddit = df_reddit.set_index('Date') df_reddit.index = pd.to_datetime(df_reddit.index) df_reddit = df_reddit.drop('Ticker', axis=1) else: df_reddit = pd.DataFrame(columns=["Date","Ticker","wsb_volume"]) # merge and fill nan data df_merged = pd.merge(df_indicators, df_reddit, how='left', left_index=True, right_index=True) df_merged[['wsb_volume']] = df_merged[['wsb_volume']].fillna(value=0.0) # initialize dataframe to hold indicators and signal df = df_merged.copy(deep=True) # extract closing prices prices = stock_data["close"] # initialize signal signal = prices * 0 # target holding period to realize gain holding_period = 5 # buy signal == 1 when price increases by percent_gain and sell == -1 when it decreases by percent_gain for i in range(prices.shape[0] - holding_period): ret = (prices.iloc[i + 5] / prices.iloc[i]) - 1 if ret > percent_gain: signal.iloc[i] = 1 elif ret < (-1 * percent_gain): signal.iloc[i] = -1 else: signal.iloc[i] = 0 # *** df_signal =
pd.DataFrame(signal)
pandas.DataFrame
# -*- coding: utf-8 -*- from __future__ import print_function import pandas as pd import operator import sys """ python excel.py "file path" "target file path" """ def load_csv(csv_path): data = pd.read_csv(csv_path,encoding="utf_8_sig") return data if __name__ == '__main__': dir_path = sys.argv[1] dst_path = sys.argv[2] pd.set_option('mode.chained_assignment', None) csv = load_csv(dir_path) newcsv = [] last_row = pd.Series(csv.loc[0, :].shape) j = 0 for i in range(csv.shape[0]): row = csv.loc[i, :] row_no_label = row[:3] label = row[3] if j == 0: last_row = row newcsv.append(last_row) else: if all(operator.eq(row_no_label.get_values(), last_row[0:3].get_values())): newcsv[-1].iloc[3] = '精彩配合得分' else: last_row = row newcsv.append(last_row) pass pass j += 1 newcsv =
pd.DataFrame(newcsv)
pandas.DataFrame
#-*-coding=utf-8-*- __author__ = 'ni' import pandas as pd # import os import numpy as np import tushare as ts import time import globalSetting as gs THIS_MODULE = 'ROESatistics' dirfix= gs.g_data_dir + THIS_MODULE + gs.g_dir_separator def get_years_report(start_year, end_year): if(start_year > end_year): tmp = start_year start_year = end_year end_year = tmp for i in range(start_year, end_year + 1): print(i + '\n') df = ts.get_report_data(i, 4) exclefile = str(i) + '-' + 'ROE' + '.xlsx' df.to_excel(exclefile) time.sleep(6) # 1,2,3,4: 1是一季度 2是中报 3是三季度 4是年报 # for j in range(1, 4 + 1): # print(j) # df = ts.get_report_data(i, j) # exclefile = str(i) + '-' + str(j) + '.xlsx' # df.to_excel(exclefile) # time.sleep(60) def merge_report(start_year, end_year): if(start_year > end_year): tmp = start_year start_year = end_year end_year = tmp frames = [] for i in range(start_year, end_year + 1): exclefile = str(i) + '-' + 'ROE' + '.xlsx' print(exclefile + '\n') df = pd.read_excel(exclefile) # data=open("test.txt",'w+') # print(df.duplicated()) df.drop_duplicates(subset=['code'],keep='first',inplace=True) df.set_index("code", drop=True, inplace=True) #print(df) frames.append(df) mergedFrame =
pd.concat(frames, axis=1)
pandas.concat
import matplotlib.pyplot as plt plt.switch_backend('agg') import itertools import pandas as pd import numpy as np from matplotlib import rcParams import seaborn as sns import config def classification_report_df(report): report_data = [] lines = report.split('\n') for line in lines[2:-3]: row = {} row_data = list(filter(None, line.split(' '))) print(row_data) row['class'] = row_data[0] row['precision'] = float(row_data[1]) row['recall'] = float(row_data[2]) row['f1_score'] = float(row_data[3]) row['support'] = float(row_data[4]) report_data.append(row) # avg line str_list = lines[-2].split(' ') row_data = list(filter(None, str_list)) # fastest row = {} row['class'] = row_data[0]+row_data[1]+row_data[2] row['precision'] = float(row_data[3]) row['recall'] = float(row_data[4]) row['f1_score'] = float(row_data[5]) row['support'] = float(row_data[6]) report_data.append(row) # build final df df_report =
pd.DataFrame.from_dict(report_data)
pandas.DataFrame.from_dict
from wordcloud import WordCloud from mastodon import Mastodon from pytz import timezone from os import path import datetime as dt import pandas as pd import MeCab import re PATH = path.dirname(path.abspath(__file__)) if __name__ == "__main__": mastodon = Mastodon( client_id = PATH + "/clientcred.secret", access_token = PATH + "/usercred.secret", api_base_url = "https://gensokyo.town") TODAY = dt.date.today() YESTERDAY = TODAY - dt.timedelta(days=1) def Extract_content(toots): """ tootのリストから使用する日付のものからcontentを集める。 CWが使用されている場合はspoiler_textを集める。 また、使用するtootの数も数える。 """ #1日の終わりの時刻(JST) end = timezone("Asia/Tokyo").localize(dt.datetime(TODAY.year, TODAY.month, TODAY.day, 0, 0, 0, 0)) #1日の始まりの時刻(JST) start = timezone("Asia/Tokyo").localize(dt.datetime(YESTERDAY.year, YESTERDAY.month, YESTERDAY.day, 0, 0, 0, 0)) text = "" num = 0 for toot in toots: #時間内のtootのみcontentを追加する time = toot["created_at"].astimezone(timezone("Asia/Tokyo")) if start <= time and time < end: #CWの呟きの場合隠されている方を追加せず表示されている方を追加する num += 1 if toot["sensitive"] == True: text = text + " " + toot["spoiler_text"] else: text = text + " " + toot["content"] #HTMLタグ, URL, LSEP,RSEP, 絵文字, HTML特殊文字を取り除く text = re.sub(r"<[^>]*?>", "", text) text = re.sub(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+\$,%#]+)", "", text) text = re.sub(r"[

]", "", text) text = re.sub(r"&[a-zA-Z0-9]+;", "", text) return(text, num) def Get_toots(): """ Mastodonから前日1日分のtootを取得し、呟き内容を保存する。 また、前日1日分の取得したtootの数も返す """ #1日の始まりの時刻(JST) start = timezone("Asia/Tokyo").localize(dt.datetime(YESTERDAY.year, YESTERDAY.month, YESTERDAY.day, 0, 0, 0, 0)) #tootの取得 toots = mastodon.timeline(timeline="local", limit=40) while True: #UTCからJSTに変更 time = toots[-1]["created_at"].astimezone(timezone("Asia/Tokyo")) #取得したget_toots全てのtootが0:00より前の場合終了 if time < start: break #追加でtootの取得 toots = toots + mastodon.timeline(timeline = "local", max_id = toots[-1]["id"] - 1, limit = 40) #取得したtootのリストからcontent(CWはspoiler_text)を抜き出す text, num = Extract_content(toots) with open(PATH + "/toots_log/" + str(YESTERDAY) + ".txt", 'w') as f: f.write(text) return(num) def Emoji_lanking(): """ 絵文字の使用回数のランキング """ with open(PATH + "/toots_log/" + str(YESTERDAY) + ".txt", "r") as f: text = f.read() #保存されたtootから絵文字だけ取り出してそれの出現回数のSeriesができる emoji = pd.Series(re.findall(r":[a-zA-Z0-9_-]+:", text)).value_counts() emoji =
pd.DataFrame(emoji)
pandas.DataFrame
import pandas as pd import numpy as np from collections import defaultdict from sklearn.preprocessing import StandardScaler import random import copy anchors = ['anchor1', 'anchor2', 'anchor3', 'anchor4'] channels = ['37','38','39'] polarities = ['V','H'] def iq_processing(data): """ Input: Data Output: Processed Data Processing: Power Scaling, IQ shifting """ cols_real = ['pdda_input_real_{}'.format(x+1) for x in range(5)] cols_imag = ['pdda_input_imag_{}'.format(x+1) for x in range(5)] iq_values = pd.DataFrame(data['pdda_input_real'].tolist(), columns=cols_real, index=data.index) iq_values[cols_imag] = pd.DataFrame(data['pdda_input_imag'].tolist(), columns=cols_imag, index=data.index) phase = pd.DataFrame(np.arctan2(iq_values['pdda_input_imag_1'],iq_values['pdda_input_real_1']), columns=['phase_1']) cos = np.cos(phase).values.ravel() sin = np.sin(phase).values.ravel() out = data.copy() iq_ref = np.abs(iq_values[f'pdda_input_real_1']*cos + iq_values[f'pdda_input_imag_1']*sin) for i in range(1,6): out[f'pdda_input_real_{i}'] = (iq_values[f'pdda_input_real_{i}']*cos + iq_values[f'pdda_input_imag_{i}']*sin) out[f'pdda_input_imag_{i}'] = (-iq_values[f'pdda_input_real_{i}']*sin + iq_values[f'pdda_input_imag_{i}']*cos) iq_ref += iq_values[f'pdda_input_real_{i}']**2 + iq_values[f'pdda_input_imag_{i}']**2 power_norm = StandardScaler().fit_transform((out['reference_power'] + out['relative_power']).values.reshape(-1,1))/10 out.insert(22, 'power', power_norm) out.insert(21, 'iq_ref', iq_ref) out.drop(columns=['pdda_input_imag_1', 'pdda_input_real', 'pdda_input_imag'], inplace=True) return out.iloc[:,-10:] def create_set(data, rooms, points, augmentation=False): """ Input: Data and points for set that we want Output: x and y for set that we want """ x = defaultdict(lambda: defaultdict(lambda: defaultdict(dict))) y = defaultdict(lambda: defaultdict(lambda: defaultdict(dict))) for room in rooms: for anchor in anchors: for channel in channels: util_data = {polarity: points[['point']].merge(data[room][anchor][channel][polarity], on='point') for polarity in polarities} h,v = util_data['H'], util_data['V'] m = h.where(h['relative_power']+h['reference_power'] > v['reference_power']+v['relative_power'], v) x[room][anchor][channel] = iq_processing(m) y[room][anchor][channel] = util_data['H'][['true_phi', 'true_theta']] if augmentation: x_reduced = [reduceAmplitude(x, rooms, scale_util=5) for _ in range(30)] x_aug, y_aug = copy.deepcopy(x), copy.deepcopy(y) for room in rooms: for anchor in anchors: for channel in channels: x_reduced_concat = pd.concat([x_reduced[i][room][anchor][channel] for i in range(30)]) x_aug[room][anchor][channel] = pd.concat([x_aug[room][anchor][channel], x_reduced_concat]) y_reduced_concat = pd.concat([y[room][anchor][channel] for _ in range(30)]) y_aug[room][anchor][channel] = pd.concat([y_aug[room][anchor][channel], y_reduced_concat]) x,y = x_aug, y_aug return x, y def create_iq_images(data): ''' Preprocess input for CNN model ''' powers = [data[anchor][channel]['power'] for channel in channels for anchor in anchors] chanls = [] for channel in channels: iqs = [data[anchor][channel] for anchor in anchors] chanls.append(pd.concat(iqs, axis=1).values.reshape((-1, 4, 10))) iq_images = np.concatenate(chanls, axis=1).reshape((-1, 3, 4, 10)).transpose(0,3,2,1) powers = pd.concat(powers, axis=1) return iq_images, powers def create_set_cnn(data, rooms, points, augmentation=False): """ Input: Data and points for set that we want Output: x -> (IQ Image (10x4x3 : IQs + RSSI x anchors x channels)), y """ x = defaultdict(lambda: defaultdict(lambda: defaultdict(dict))) y = defaultdict(lambda: defaultdict(lambda: defaultdict(dict))) tmp = defaultdict(lambda: defaultdict(lambda: defaultdict(dict))) for room in rooms: for anchor in anchors: for channel in channels: util_data = {polarity: points[['point']].merge(data[room][anchor][channel][polarity], on='point') for polarity in polarities} h,v = util_data['H'], util_data['V'] m = h.where(h['relative_power']+h['reference_power'] > v['reference_power']+v['relative_power'], v) tmp[room][anchor][channel] = iq_processing(m) y[room][anchor][channel] = util_data['H'][['true_phi', 'true_theta']] if not augmentation: x[room]['iq_image'], x[room]['powers'] = create_iq_images(tmp[room]) if augmentation: x_reduced = [reduceAmplitude(tmp, rooms, scale_util=5) for _ in range(30)] x_aug, y_aug = tmp, copy.deepcopy(y) for room in rooms: for anchor in anchors: for channel in channels: x_reduced_concat = pd.concat([x_reduced[i][room][anchor][channel] for i in range(30)]) x_aug[room][anchor][channel] =
pd.concat([x_aug[room][anchor][channel], x_reduced_concat])
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed May 23 11:11:57 2018 @author: kazuki.onodera -d- -> / -x- -> * -p- -> + -m- -> - nohup python -u 000.py 0 > LOG/log_000.py_0.txt & nohup python -u 000.py 1 > LOG/log_000.py_1.txt & nohup python -u 000.py 2 > LOG/log_000.py_2.txt & nohup python -u 000.py 3 > LOG/log_000.py_3.txt & nohup python -u 000.py 4 > LOG/log_000.py_4.txt & nohup python -u 000.py 5 > LOG/log_000.py_5.txt & nohup python -u 000.py 6 > LOG/log_000.py_6.txt & """ import numpy as np import pandas as pd from multiprocessing import Pool, cpu_count NTHREAD = cpu_count() from itertools import combinations from tqdm import tqdm import sys argv = sys.argv import os, utils, gc utils.start(__file__) #============================================================================== folders = [ # '../data', '../feature', '../feature_unused', # '../feature_var0', '../feature_corr1' ] for fol in folders: os.system(f'rm -rf {fol}') os.system(f'mkdir {fol}') col_app_money = ['app_AMT_INCOME_TOTAL', 'app_AMT_CREDIT', 'app_AMT_ANNUITY', 'app_AMT_GOODS_PRICE'] col_app_day = ['app_DAYS_BIRTH', 'app_DAYS_EMPLOYED', 'app_DAYS_REGISTRATION', 'app_DAYS_ID_PUBLISH', 'app_DAYS_LAST_PHONE_CHANGE'] def get_trte(): usecols = ['SK_ID_CURR', 'AMT_INCOME_TOTAL', 'AMT_CREDIT', 'AMT_ANNUITY', 'AMT_GOODS_PRICE'] usecols += ['DAYS_BIRTH', 'DAYS_EMPLOYED', 'DAYS_REGISTRATION', 'DAYS_ID_PUBLISH', 'DAYS_LAST_PHONE_CHANGE'] rename_di = { 'AMT_INCOME_TOTAL': 'app_AMT_INCOME_TOTAL', 'AMT_CREDIT': 'app_AMT_CREDIT', 'AMT_ANNUITY': 'app_AMT_ANNUITY', 'AMT_GOODS_PRICE': 'app_AMT_GOODS_PRICE', 'DAYS_BIRTH': 'app_DAYS_BIRTH', 'DAYS_EMPLOYED': 'app_DAYS_EMPLOYED', 'DAYS_REGISTRATION': 'app_DAYS_REGISTRATION', 'DAYS_ID_PUBLISH': 'app_DAYS_ID_PUBLISH', 'DAYS_LAST_PHONE_CHANGE': 'app_DAYS_LAST_PHONE_CHANGE', } trte = pd.concat([pd.read_csv('../input/application_train.csv.zip', usecols=usecols).rename(columns=rename_di), pd.read_csv('../input/application_test.csv.zip', usecols=usecols).rename(columns=rename_di)], ignore_index=True) return trte def prep_prev(df): df['AMT_APPLICATION'].replace(0, np.nan, inplace=True) df['AMT_CREDIT'].replace(0, np.nan, inplace=True) df['CNT_PAYMENT'].replace(0, np.nan, inplace=True) df['AMT_DOWN_PAYMENT'].replace(np.nan, 0, inplace=True) df.loc[df['NAME_CONTRACT_STATUS']!='Approved', 'AMT_DOWN_PAYMENT'] = np.nan df['RATE_DOWN_PAYMENT'].replace(np.nan, 0, inplace=True) df.loc[df['NAME_CONTRACT_STATUS']!='Approved', 'RATE_DOWN_PAYMENT'] = np.nan # df['xxx'].replace(0, np.nan, inplace=True) # df['xxx'].replace(0, np.nan, inplace=True) return p = int(argv[1]) if True: #def multi(p): if p==0: # ============================================================================= # application # ============================================================================= def f1(df): df['CODE_GENDER'] = 1 - (df['CODE_GENDER']=='F')*1 # 4 'XNA' are converted to 'M' df['FLAG_OWN_CAR'] = (df['FLAG_OWN_CAR']=='Y')*1 df['FLAG_OWN_REALTY'] = (df['FLAG_OWN_REALTY']=='Y')*1 df['EMERGENCYSTATE_MODE'] = (df['EMERGENCYSTATE_MODE']=='Yes')*1 df['AMT_CREDIT-d-AMT_INCOME_TOTAL'] = df['AMT_CREDIT'] / df['AMT_INCOME_TOTAL'] df['AMT_ANNUITY-d-AMT_INCOME_TOTAL'] = df['AMT_ANNUITY'] / df['AMT_INCOME_TOTAL'] df['AMT_GOODS_PRICE-d-AMT_INCOME_TOTAL'] = df['AMT_GOODS_PRICE'] / df['AMT_INCOME_TOTAL'] df['AMT_CREDIT-d-AMT_ANNUITY'] = df['AMT_CREDIT'] / df['AMT_ANNUITY'] # how long should user pay?(month) df['AMT_GOODS_PRICE-d-AMT_ANNUITY'] = df['AMT_GOODS_PRICE'] / df['AMT_ANNUITY']# how long should user pay?(month) df['AMT_GOODS_PRICE-d-AMT_CREDIT'] = df['AMT_GOODS_PRICE'] / df['AMT_CREDIT'] df['AMT_GOODS_PRICE-m-AMT_CREDIT'] = df['AMT_GOODS_PRICE'] - df['AMT_CREDIT'] df['AMT_GOODS_PRICE-m-AMT_CREDIT-d-AMT_INCOME_TOTAL'] = df['AMT_GOODS_PRICE-m-AMT_CREDIT'] / df['AMT_INCOME_TOTAL'] df['age_finish_payment'] = df['DAYS_BIRTH'].abs() + (df['AMT_CREDIT-d-AMT_ANNUITY']*30) # df['age_finish_payment'] = (df['DAYS_BIRTH']/-365) + df['credit-d-annuity'] df.loc[df['DAYS_EMPLOYED']==365243, 'DAYS_EMPLOYED'] = np.nan df['DAYS_EMPLOYED-m-DAYS_BIRTH'] = df['DAYS_EMPLOYED'] - df['DAYS_BIRTH'] df['DAYS_REGISTRATION-m-DAYS_BIRTH'] = df['DAYS_REGISTRATION'] - df['DAYS_BIRTH'] df['DAYS_ID_PUBLISH-m-DAYS_BIRTH'] = df['DAYS_ID_PUBLISH'] - df['DAYS_BIRTH'] df['DAYS_LAST_PHONE_CHANGE-m-DAYS_BIRTH'] = df['DAYS_LAST_PHONE_CHANGE'] - df['DAYS_BIRTH'] df['DAYS_REGISTRATION-m-DAYS_EMPLOYED'] = df['DAYS_REGISTRATION'] - df['DAYS_EMPLOYED'] df['DAYS_ID_PUBLISH-m-DAYS_EMPLOYED'] = df['DAYS_ID_PUBLISH'] - df['DAYS_EMPLOYED'] df['DAYS_LAST_PHONE_CHANGE-m-DAYS_EMPLOYED'] = df['DAYS_LAST_PHONE_CHANGE'] - df['DAYS_EMPLOYED'] df['DAYS_ID_PUBLISH-m-DAYS_REGISTRATION'] = df['DAYS_ID_PUBLISH'] - df['DAYS_REGISTRATION'] df['DAYS_LAST_PHONE_CHANGE-m-DAYS_REGISTRATION'] = df['DAYS_LAST_PHONE_CHANGE'] - df['DAYS_REGISTRATION'] df['DAYS_LAST_PHONE_CHANGE-m-DAYS_ID_PUBLISH'] = df['DAYS_LAST_PHONE_CHANGE'] - df['DAYS_ID_PUBLISH'] col = ['DAYS_EMPLOYED-m-DAYS_BIRTH', 'DAYS_REGISTRATION-m-DAYS_BIRTH', 'DAYS_ID_PUBLISH-m-DAYS_BIRTH', 'DAYS_LAST_PHONE_CHANGE-m-DAYS_BIRTH', 'DAYS_REGISTRATION-m-DAYS_EMPLOYED', 'DAYS_ID_PUBLISH-m-DAYS_EMPLOYED', 'DAYS_LAST_PHONE_CHANGE-m-DAYS_EMPLOYED', 'DAYS_ID_PUBLISH-m-DAYS_REGISTRATION', 'DAYS_LAST_PHONE_CHANGE-m-DAYS_REGISTRATION', 'DAYS_LAST_PHONE_CHANGE-m-DAYS_ID_PUBLISH' ] col_comb = list(combinations(col, 2)) for i,j in col_comb: df[f'{i}-d-{j}'] = df[i] / df[j] df['DAYS_EMPLOYED-d-DAYS_BIRTH'] = df['DAYS_EMPLOYED'] / df['DAYS_BIRTH'] df['DAYS_REGISTRATION-d-DAYS_BIRTH'] = df['DAYS_REGISTRATION'] / df['DAYS_BIRTH'] df['DAYS_ID_PUBLISH-d-DAYS_BIRTH'] = df['DAYS_ID_PUBLISH'] / df['DAYS_BIRTH'] df['DAYS_LAST_PHONE_CHANGE-d-DAYS_BIRTH'] = df['DAYS_LAST_PHONE_CHANGE'] / df['DAYS_BIRTH'] df['DAYS_REGISTRATION-d-DAYS_EMPLOYED'] = df['DAYS_REGISTRATION'] / df['DAYS_EMPLOYED'] df['DAYS_ID_PUBLISH-d-DAYS_EMPLOYED'] = df['DAYS_ID_PUBLISH'] / df['DAYS_EMPLOYED'] df['DAYS_LAST_PHONE_CHANGE-d-DAYS_EMPLOYED'] = df['DAYS_LAST_PHONE_CHANGE'] / df['DAYS_EMPLOYED'] df['DAYS_ID_PUBLISH-d-DAYS_REGISTRATION'] = df['DAYS_ID_PUBLISH'] / df['DAYS_REGISTRATION'] df['DAYS_LAST_PHONE_CHANGE-d-DAYS_REGISTRATION'] = df['DAYS_LAST_PHONE_CHANGE'] / df['DAYS_REGISTRATION'] df['DAYS_LAST_PHONE_CHANGE-d-DAYS_ID_PUBLISH'] = df['DAYS_LAST_PHONE_CHANGE'] / df['DAYS_ID_PUBLISH'] df['OWN_CAR_AGE-d-DAYS_BIRTH'] = (df['OWN_CAR_AGE']*(-365)) / df['DAYS_BIRTH'] df['OWN_CAR_AGE-m-DAYS_BIRTH'] = df['DAYS_BIRTH'] + (df['OWN_CAR_AGE']*365) df['OWN_CAR_AGE-d-DAYS_EMPLOYED'] = df['OWN_CAR_AGE'] / df['DAYS_EMPLOYED'] df['OWN_CAR_AGE-m-DAYS_EMPLOYED'] = df['DAYS_EMPLOYED'] + (df['OWN_CAR_AGE']*365) df['cnt_adults'] = df['CNT_FAM_MEMBERS'] - df['CNT_CHILDREN'] df['CNT_CHILDREN-d-CNT_FAM_MEMBERS'] = df['CNT_CHILDREN'] / df['CNT_FAM_MEMBERS'] df['income_per_adult'] = df['AMT_INCOME_TOTAL'] / df['cnt_adults'] # df.loc[df['CNT_CHILDREN']==0, 'CNT_CHILDREN'] = np.nan df['AMT_INCOME_TOTAL-d-CNT_CHILDREN'] = df['AMT_INCOME_TOTAL'] / (df['CNT_CHILDREN']+0.000001) df['AMT_CREDIT-d-CNT_CHILDREN'] = df['AMT_CREDIT'] / (df['CNT_CHILDREN']+0.000001) df['AMT_ANNUITY-d-CNT_CHILDREN'] = df['AMT_ANNUITY'] / (df['CNT_CHILDREN']+0.000001) df['AMT_GOODS_PRICE-d-CNT_CHILDREN'] = df['AMT_GOODS_PRICE'] / (df['CNT_CHILDREN']+0.000001) df['AMT_INCOME_TOTAL-d-cnt_adults'] = df['AMT_INCOME_TOTAL'] / df['cnt_adults'] df['AMT_CREDIT-d-cnt_adults'] = df['AMT_CREDIT'] / df['cnt_adults'] df['AMT_ANNUITY-d-cnt_adults'] = df['AMT_ANNUITY'] / df['cnt_adults'] df['AMT_GOODS_PRICE-d-cnt_adults'] = df['AMT_GOODS_PRICE'] / df['cnt_adults'] df['AMT_INCOME_TOTAL-d-CNT_FAM_MEMBERS'] = df['AMT_INCOME_TOTAL'] / df['CNT_FAM_MEMBERS'] df['AMT_CREDIT-d-CNT_FAM_MEMBERS'] = df['AMT_CREDIT'] / df['CNT_FAM_MEMBERS'] df['AMT_ANNUITY-d-CNT_FAM_MEMBERS'] = df['AMT_ANNUITY'] / df['CNT_FAM_MEMBERS'] df['AMT_GOODS_PRICE-d-CNT_FAM_MEMBERS'] = df['AMT_GOODS_PRICE'] / df['CNT_FAM_MEMBERS'] # EXT_SOURCE_x df['EXT_SOURCES_prod'] = df['EXT_SOURCE_1'] * df['EXT_SOURCE_2'] * df['EXT_SOURCE_3'] df['EXT_SOURCES_sum'] = df[['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3']].sum(axis=1) df['EXT_SOURCES_sum'] = df['EXT_SOURCES_sum'].fillna(df['EXT_SOURCES_sum'].mean()) df['EXT_SOURCES_mean'] = df[['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3']].mean(axis=1) df['EXT_SOURCES_mean'] = df['EXT_SOURCES_mean'].fillna(df['EXT_SOURCES_mean'].mean()) df['EXT_SOURCES_std'] = df[['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3']].std(axis=1) df['EXT_SOURCES_std'] = df['EXT_SOURCES_std'].fillna(df['EXT_SOURCES_std'].mean()) df['EXT_SOURCES_1-2-3'] = df['EXT_SOURCE_1'] - df['EXT_SOURCE_2'] - df['EXT_SOURCE_3'] df['EXT_SOURCES_2-1-3'] = df['EXT_SOURCE_2'] - df['EXT_SOURCE_1'] - df['EXT_SOURCE_3'] df['EXT_SOURCES_1-2'] = df['EXT_SOURCE_1'] - df['EXT_SOURCE_2'] df['EXT_SOURCES_2-3'] = df['EXT_SOURCE_2'] - df['EXT_SOURCE_3'] df['EXT_SOURCES_1-3'] = df['EXT_SOURCE_1'] - df['EXT_SOURCE_3'] # ========= # https://www.kaggle.com/jsaguiar/updated-0-792-lb-lightgbm-with-simple-features/code # ========= df['DAYS_EMPLOYED_PERC'] = df['DAYS_EMPLOYED'] / df['DAYS_BIRTH'] df['INCOME_PER_PERSON'] = df['AMT_INCOME_TOTAL'] / df['CNT_FAM_MEMBERS'] df['PAYMENT_RATE'] = df['AMT_ANNUITY'] / df['AMT_CREDIT'] # ========= # https://www.kaggle.com/poohtls/fork-of-fork-lightgbm-with-simple-features/code # ========= docs = [_f for _f in df.columns if 'FLAG_DOC' in _f] live = [_f for _f in df.columns if ('FLAG_' in _f) & ('FLAG_DOC' not in _f) & ('_FLAG_' not in _f)] inc_by_org = df[['AMT_INCOME_TOTAL', 'ORGANIZATION_TYPE']].groupby('ORGANIZATION_TYPE').median()['AMT_INCOME_TOTAL'] df['alldocs_kurt'] = df[docs].kurtosis(axis=1) df['alldocs_skew'] = df[docs].skew(axis=1) df['alldocs_mean'] = df[docs].mean(axis=1) df['alldocs_sum'] = df[docs].sum(axis=1) df['alldocs_std'] = df[docs].std(axis=1) df['NEW_LIVE_IND_SUM'] = df[live].sum(axis=1) df['NEW_INC_PER_CHLD'] = df['AMT_INCOME_TOTAL'] / (1 + df['CNT_CHILDREN']) df['NEW_INC_BY_ORG'] = df['ORGANIZATION_TYPE'].map(inc_by_org) df['NEW_ANNUITY_TO_INCOME_RATIO'] = df['AMT_ANNUITY'] / (1 + df['AMT_INCOME_TOTAL']) df['NEW_CAR_TO_BIRTH_RATIO'] = df['OWN_CAR_AGE'] / df['DAYS_BIRTH'] df['NEW_CAR_TO_EMPLOY_RATIO'] = df['OWN_CAR_AGE'] / df['DAYS_EMPLOYED'] df['NEW_PHONE_TO_BIRTH_RATIO'] = df['DAYS_LAST_PHONE_CHANGE'] / df['DAYS_BIRTH'] df['NEW_PHONE_TO_EMPLOYED_RATIO'] = df['DAYS_LAST_PHONE_CHANGE'] / df['DAYS_EMPLOYED'] # ============================================================================= # Maxwell features # ============================================================================= bdg_avg = df.filter(regex='_AVG$').columns bdg_mode = df.filter(regex='_MODE$').columns bdg_medi = df.filter(regex='_MEDI$').columns[:len(bdg_avg)] # ignore FONDKAPREMONT_MODE... df['building_score_avg_mean'] = df[bdg_avg].mean(1) df['building_score_avg_std'] = df[bdg_avg].std(1) df['building_score_avg_sum'] = df[bdg_avg].sum(1) df['building_score_mode_mean'] = df[bdg_mode].mean(1) df['building_score_mode_std'] = df[bdg_mode].std(1) df['building_score_mode_sum'] = df[bdg_mode].sum(1) df['building_score_medi_mean'] = df[bdg_medi].mean(1) df['building_score_medi_std'] = df[bdg_medi].std(1) df['building_score_medi_sum'] = df[bdg_medi].sum(1) df['maxwell_feature_1'] = (df['EXT_SOURCE_1'] * df['EXT_SOURCE_3']) ** (1 / 2) df.replace(np.inf, np.nan, inplace=True) # TODO: any other plan? df.replace(-np.inf, np.nan, inplace=True) return df = pd.read_csv('../input/application_train.csv.zip') f1(df) utils.to_pickles(df, '../data/train', utils.SPLIT_SIZE) utils.to_pickles(df[['TARGET']], '../data/label', utils.SPLIT_SIZE) df = pd.read_csv('../input/application_test.csv.zip') f1(df) utils.to_pickles(df, '../data/test', utils.SPLIT_SIZE) df[['SK_ID_CURR']].to_pickle('../data/sub.p') elif p==1: # ============================================================================= # prev # ============================================================================= """ df = utils.read_pickles('../data/previous_application') """ df = pd.merge(pd.read_csv('../data/prev_new_v4.csv.gz'), get_trte(), on='SK_ID_CURR', how='left') # df = pd.merge(pd.read_csv('../input/previous_application.csv.zip'), # get_trte(), on='SK_ID_CURR', how='left') prep_prev(df) df['FLAG_LAST_APPL_PER_CONTRACT'] = (df['FLAG_LAST_APPL_PER_CONTRACT']=='Y')*1 # day for c in ['DAYS_FIRST_DRAWING', 'DAYS_FIRST_DUE', 'DAYS_LAST_DUE_1ST_VERSION', 'DAYS_LAST_DUE', 'DAYS_TERMINATION']: df.loc[df[c]==365243, c] = np.nan df['days_fdue-m-fdrw'] = df['DAYS_FIRST_DUE'] - df['DAYS_FIRST_DRAWING'] df['days_ldue1-m-fdrw'] = df['DAYS_LAST_DUE_1ST_VERSION'] - df['DAYS_FIRST_DRAWING'] df['days_ldue-m-fdrw'] = df['DAYS_LAST_DUE'] - df['DAYS_FIRST_DRAWING'] # total span df['days_trm-m-fdrw'] = df['DAYS_TERMINATION'] - df['DAYS_FIRST_DRAWING'] df['days_ldue1-m-fdue'] = df['DAYS_LAST_DUE_1ST_VERSION'] - df['DAYS_FIRST_DUE'] df['days_ldue-m-fdue'] = df['DAYS_LAST_DUE'] - df['DAYS_FIRST_DUE'] df['days_trm-m-fdue'] = df['DAYS_TERMINATION'] - df['DAYS_FIRST_DUE'] df['days_ldue-m-ldue1'] = df['DAYS_LAST_DUE'] - df['DAYS_LAST_DUE_1ST_VERSION'] df['days_trm-m-ldue1'] = df['DAYS_TERMINATION'] - df['DAYS_LAST_DUE_1ST_VERSION'] df['days_trm-m-ldue'] = df['DAYS_TERMINATION'] - df['DAYS_LAST_DUE'] # money df['total_debt'] = df['AMT_ANNUITY'] * df['CNT_PAYMENT'] df['AMT_CREDIT-d-total_debt'] = df['AMT_CREDIT'] / df['total_debt'] df['AMT_GOODS_PRICE-d-total_debt'] = df['AMT_GOODS_PRICE'] / df['total_debt'] df['AMT_GOODS_PRICE-d-AMT_CREDIT'] = df['AMT_GOODS_PRICE'] / df['AMT_CREDIT'] # app & money df['AMT_ANNUITY-d-app_AMT_INCOME_TOTAL'] = df['AMT_ANNUITY'] / df['app_AMT_INCOME_TOTAL'] df['AMT_APPLICATION-d-app_AMT_INCOME_TOTAL'] = df['AMT_APPLICATION'] / df['app_AMT_INCOME_TOTAL'] df['AMT_CREDIT-d-app_AMT_INCOME_TOTAL'] = df['AMT_CREDIT'] / df['app_AMT_INCOME_TOTAL'] df['AMT_GOODS_PRICE-d-app_AMT_INCOME_TOTAL'] = df['AMT_GOODS_PRICE'] / df['app_AMT_INCOME_TOTAL'] df['AMT_ANNUITY-m-app_AMT_INCOME_TOTAL'] = df['AMT_ANNUITY'] - df['app_AMT_INCOME_TOTAL'] df['AMT_APPLICATION-m-app_AMT_INCOME_TOTAL'] = df['AMT_APPLICATION'] - df['app_AMT_INCOME_TOTAL'] df['AMT_CREDIT-m-app_AMT_INCOME_TOTAL'] = df['AMT_CREDIT'] - df['app_AMT_INCOME_TOTAL'] df['AMT_GOODS_PRICE-m-app_AMT_INCOME_TOTAL'] = df['AMT_GOODS_PRICE'] - df['app_AMT_INCOME_TOTAL'] df['AMT_ANNUITY-d-app_AMT_CREDIT'] = df['AMT_ANNUITY'] / df['app_AMT_CREDIT'] df['AMT_APPLICATION-d-app_AMT_CREDIT'] = df['AMT_APPLICATION'] / df['app_AMT_CREDIT'] df['AMT_CREDIT-d-app_AMT_CREDIT'] = df['AMT_CREDIT'] / df['app_AMT_CREDIT'] df['AMT_GOODS_PRICE-d-app_AMT_CREDIT'] = df['AMT_GOODS_PRICE'] / df['app_AMT_CREDIT'] df['AMT_ANNUITY-m-app_AMT_CREDIT'] = df['AMT_ANNUITY'] - df['app_AMT_CREDIT'] df['AMT_APPLICATION-m-app_AMT_CREDIT'] = df['AMT_APPLICATION'] - df['app_AMT_CREDIT'] df['AMT_CREDIT-m-app_AMT_CREDIT'] = df['AMT_CREDIT'] - df['app_AMT_CREDIT'] df['AMT_GOODS_PRICE-m-app_AMT_CREDIT'] = df['AMT_GOODS_PRICE'] - df['app_AMT_CREDIT'] df['AMT_ANNUITY-m-app_AMT_CREDIT-d-app_AMT_INCOME_TOTAL'] = (df['AMT_ANNUITY'] - df['app_AMT_CREDIT']) / df['app_AMT_INCOME_TOTAL'] df['AMT_APPLICATION-m-app_AMT_CREDIT-d-app_AMT_INCOME_TOTAL'] = (df['AMT_APPLICATION'] - df['app_AMT_CREDIT']) / df['app_AMT_INCOME_TOTAL'] df['AMT_CREDIT-m-app_AMT_CREDIT-d-app_AMT_INCOME_TOTAL'] = (df['AMT_CREDIT'] - df['app_AMT_CREDIT']) / df['app_AMT_INCOME_TOTAL'] df['AMT_GOODS_PRICE-m-app_AMT_CREDIT-d-app_AMT_INCOME_TOTAL'] = (df['AMT_GOODS_PRICE'] - df['app_AMT_CREDIT']) / df['app_AMT_INCOME_TOTAL'] df['AMT_ANNUITY-d-app_AMT_ANNUITY'] = df['AMT_ANNUITY'] / df['app_AMT_ANNUITY'] df['AMT_APPLICATION-d-app_AMT_ANNUITY'] = df['AMT_APPLICATION'] / df['app_AMT_ANNUITY'] df['AMT_CREDIT-d-app_AMT_ANNUITY'] = df['AMT_CREDIT'] / df['app_AMT_ANNUITY'] df['AMT_GOODS_PRICE-d-app_AMT_ANNUITY'] = df['AMT_GOODS_PRICE'] / df['app_AMT_ANNUITY'] df['AMT_ANNUITY-m-app_AMT_ANNUITY'] = df['AMT_ANNUITY'] - df['app_AMT_ANNUITY'] df['AMT_APPLICATION-m-app_AMT_ANNUITY'] = df['AMT_APPLICATION'] - df['app_AMT_ANNUITY'] df['AMT_CREDIT-m-app_AMT_ANNUITY'] = df['AMT_CREDIT'] - df['app_AMT_ANNUITY'] df['AMT_GOODS_PRICE-m-app_AMT_ANNUITY'] = df['AMT_GOODS_PRICE'] - df['app_AMT_ANNUITY'] df['AMT_ANNUITY-m-app_AMT_ANNUITY-d-app_AMT_INCOME_TOTAL'] = (df['AMT_ANNUITY'] - df['app_AMT_ANNUITY']) / df['app_AMT_INCOME_TOTAL'] df['AMT_APPLICATION-m-app_AMT_ANNUITY-d-app_AMT_INCOME_TOTAL'] = (df['AMT_APPLICATION'] - df['app_AMT_ANNUITY']) / df['app_AMT_INCOME_TOTAL'] df['AMT_CREDIT-m-app_AMT_ANNUITY-d-app_AMT_INCOME_TOTAL'] = (df['AMT_CREDIT'] - df['app_AMT_ANNUITY']) / df['app_AMT_INCOME_TOTAL'] df['AMT_GOODS_PRICE-m-app_AMT_ANNUITY-d-app_AMT_INCOME_TOTAL'] = (df['AMT_GOODS_PRICE'] - df['app_AMT_ANNUITY']) / df['app_AMT_INCOME_TOTAL'] df['AMT_ANNUITY-d-app_AMT_GOODS_PRICE'] = df['AMT_ANNUITY'] / df['app_AMT_GOODS_PRICE'] df['AMT_APPLICATION-d-app_AMT_GOODS_PRICE'] = df['AMT_APPLICATION'] / df['app_AMT_GOODS_PRICE'] df['AMT_CREDIT-d-app_AMT_GOODS_PRICE'] = df['AMT_CREDIT'] / df['app_AMT_GOODS_PRICE'] df['AMT_GOODS_PRICE-d-app_AMT_GOODS_PRICE'] = df['AMT_GOODS_PRICE'] / df['app_AMT_GOODS_PRICE'] df['AMT_ANNUITY-m-app_AMT_GOODS_PRICE'] = df['AMT_ANNUITY'] - df['app_AMT_GOODS_PRICE'] df['AMT_APPLICATION-m-app_AMT_GOODS_PRICE'] = df['AMT_APPLICATION'] - df['app_AMT_GOODS_PRICE'] df['AMT_CREDIT-m-app_AMT_GOODS_PRICE'] = df['AMT_CREDIT'] - df['app_AMT_GOODS_PRICE'] df['AMT_GOODS_PRICE-m-app_AMT_GOODS_PRICE'] = df['AMT_GOODS_PRICE'] - df['app_AMT_GOODS_PRICE'] df['AMT_ANNUITY-m-app_AMT_GOODS_PRICE-d-app_AMT_INCOME_TOTAL'] = (df['AMT_ANNUITY'] - df['app_AMT_GOODS_PRICE']) / df['app_AMT_INCOME_TOTAL'] df['AMT_APPLICATION-m-app_AMT_GOODS_PRICE-d-app_AMT_INCOME_TOTAL'] = (df['AMT_APPLICATION'] - df['app_AMT_GOODS_PRICE']) / df['app_AMT_INCOME_TOTAL'] df['AMT_CREDIT-m-app_AMT_GOODS_PRICE-d-app_AMT_INCOME_TOTAL'] = (df['AMT_CREDIT'] - df['app_AMT_GOODS_PRICE']) / df['app_AMT_INCOME_TOTAL'] df['AMT_GOODS_PRICE-m-app_AMT_GOODS_PRICE-d-app_AMT_INCOME_TOTAL'] = (df['AMT_GOODS_PRICE'] - df['app_AMT_GOODS_PRICE']) / df['app_AMT_INCOME_TOTAL'] # nejumi f_name='nejumi'; init_rate=0.9; n_iter=500 df['AMT_ANNUITY_d_AMT_CREDIT_temp'] = df.AMT_ANNUITY / df.AMT_CREDIT df[f_name] = df['AMT_ANNUITY_d_AMT_CREDIT_temp']*((1 + init_rate)**df.CNT_PAYMENT - 1)/((1 + init_rate)**df.CNT_PAYMENT) for i in range(n_iter): df[f_name] = df['AMT_ANNUITY_d_AMT_CREDIT_temp']*((1 + df[f_name])**df.CNT_PAYMENT - 1)/((1 + df[f_name])**df.CNT_PAYMENT) df.drop(['AMT_ANNUITY_d_AMT_CREDIT_temp'], axis=1, inplace=True) df.sort_values(['SK_ID_CURR', 'DAYS_DECISION'], inplace=True) df.reset_index(drop=True, inplace=True) col = [ 'total_debt', 'AMT_CREDIT-d-total_debt', 'AMT_GOODS_PRICE-d-total_debt', 'AMT_GOODS_PRICE-d-AMT_CREDIT', 'AMT_ANNUITY-d-app_AMT_INCOME_TOTAL', 'AMT_APPLICATION-d-app_AMT_INCOME_TOTAL', 'AMT_CREDIT-d-app_AMT_INCOME_TOTAL', 'AMT_GOODS_PRICE-d-app_AMT_INCOME_TOTAL', 'AMT_ANNUITY-d-app_AMT_CREDIT', 'AMT_APPLICATION-d-app_AMT_CREDIT', 'AMT_CREDIT-d-app_AMT_CREDIT', 'AMT_GOODS_PRICE-d-app_AMT_CREDIT', 'AMT_ANNUITY-d-app_AMT_ANNUITY', 'AMT_APPLICATION-d-app_AMT_ANNUITY', 'AMT_CREDIT-d-app_AMT_ANNUITY', 'AMT_GOODS_PRICE-d-app_AMT_ANNUITY', 'AMT_ANNUITY-d-app_AMT_GOODS_PRICE', 'AMT_APPLICATION-d-app_AMT_GOODS_PRICE', 'AMT_CREDIT-d-app_AMT_GOODS_PRICE', 'AMT_GOODS_PRICE-d-app_AMT_GOODS_PRICE', 'AMT_ANNUITY-m-app_AMT_INCOME_TOTAL', 'AMT_APPLICATION-m-app_AMT_INCOME_TOTAL', 'AMT_CREDIT-m-app_AMT_INCOME_TOTAL', 'AMT_GOODS_PRICE-m-app_AMT_INCOME_TOTAL', 'AMT_ANNUITY-m-app_AMT_CREDIT', 'AMT_APPLICATION-m-app_AMT_CREDIT', 'AMT_CREDIT-m-app_AMT_CREDIT', 'AMT_GOODS_PRICE-m-app_AMT_CREDIT', 'AMT_ANNUITY-m-app_AMT_CREDIT-d-app_AMT_INCOME_TOTAL', 'AMT_APPLICATION-m-app_AMT_CREDIT-d-app_AMT_INCOME_TOTAL', 'AMT_CREDIT-m-app_AMT_CREDIT-d-app_AMT_INCOME_TOTAL', 'AMT_GOODS_PRICE-m-app_AMT_CREDIT-d-app_AMT_INCOME_TOTAL', 'AMT_ANNUITY-m-app_AMT_ANNUITY', 'AMT_APPLICATION-m-app_AMT_ANNUITY', 'AMT_CREDIT-m-app_AMT_ANNUITY', 'AMT_GOODS_PRICE-m-app_AMT_ANNUITY', 'AMT_ANNUITY-m-app_AMT_ANNUITY-d-app_AMT_INCOME_TOTAL', 'AMT_APPLICATION-m-app_AMT_ANNUITY-d-app_AMT_INCOME_TOTAL', 'AMT_CREDIT-m-app_AMT_ANNUITY-d-app_AMT_INCOME_TOTAL', 'AMT_GOODS_PRICE-m-app_AMT_ANNUITY-d-app_AMT_INCOME_TOTAL', 'AMT_ANNUITY-m-app_AMT_GOODS_PRICE', 'AMT_APPLICATION-m-app_AMT_GOODS_PRICE', 'AMT_CREDIT-m-app_AMT_GOODS_PRICE', 'AMT_GOODS_PRICE-m-app_AMT_GOODS_PRICE', 'AMT_ANNUITY-m-app_AMT_GOODS_PRICE-d-app_AMT_INCOME_TOTAL', 'AMT_APPLICATION-m-app_AMT_GOODS_PRICE-d-app_AMT_INCOME_TOTAL', 'AMT_CREDIT-m-app_AMT_GOODS_PRICE-d-app_AMT_INCOME_TOTAL', 'AMT_GOODS_PRICE-m-app_AMT_GOODS_PRICE-d-app_AMT_INCOME_TOTAL', 'nejumi' ] def multi_prev(c): ret_diff = [] ret_pctchng = [] key_bk = x_bk = None for key, x in df[['SK_ID_CURR', c]].values: # for key, x in tqdm(df[['SK_ID_CURR', c]].values, mininterval=30): if key_bk is None: ret_diff.append(None) ret_pctchng.append(None) else: if key_bk == key: ret_diff.append(x - x_bk) ret_pctchng.append( (x_bk-x) / x_bk) else: ret_diff.append(None) ret_pctchng.append(None) key_bk = key x_bk = x ret_diff = pd.Series(ret_diff, name=f'{c}_diff') ret_pctchng = pd.Series(ret_pctchng, name=f'{c}_pctchange') ret = pd.concat([ret_diff, ret_pctchng], axis=1) return ret pool = Pool(len(col)) callback = pd.concat(pool.map(multi_prev, col), axis=1) print('===== PREV ====') print(callback.columns.tolist()) pool.close() df = pd.concat([df, callback], axis=1) # app & day col_prev = ['DAYS_FIRST_DRAWING', 'DAYS_FIRST_DUE', 'DAYS_LAST_DUE_1ST_VERSION', 'DAYS_LAST_DUE', 'DAYS_TERMINATION'] for c1 in col_prev: for c2 in col_app_day: # print(f"'{c1}-m-{c2}',") df[f'{c1}-m-{c2}'] = df[c1] - df[c2] df[f'{c1}-d-{c2}'] = df[c1] / df[c2] df['cnt_paid'] = df.apply(lambda x: min( np.ceil(x['DAYS_FIRST_DUE']/-30), x['CNT_PAYMENT'] ), axis=1) df['cnt_paid_ratio'] = df['cnt_paid'] / df['CNT_PAYMENT'] df['cnt_unpaid'] = df['CNT_PAYMENT'] - df['cnt_paid'] df['amt_paid'] = df['AMT_ANNUITY'] * df['cnt_paid'] # df['amt_paid_ratio'] = df['amt_paid'] / df['total_debt'] # same as cnt_paid_ratio df['amt_unpaid'] = df['total_debt'] - df['amt_paid'] df['active'] = (df['cnt_unpaid']>0)*1 df['completed'] = (df['cnt_unpaid']==0)*1 # future payment df_tmp = pd.DataFrame() print('future payment') rem_max = df['cnt_unpaid'].max() # 80 # rem_max = 1 df['cnt_unpaid_tmp'] = df['cnt_unpaid'] for i in range(int( rem_max )): c = f'future_payment_{i+1}m' df_tmp[c] = df['cnt_unpaid_tmp'].map(lambda x: min(x, 1)) * df['AMT_ANNUITY'] df_tmp.loc[df_tmp[c]==0, c] = np.nan df['cnt_unpaid_tmp'] -= 1 df['cnt_unpaid_tmp'] = df['cnt_unpaid_tmp'].map(lambda x: max(x, 0)) # df['prev_future_payment_max'] = df.filter(regex='^prev_future_payment_').max(1) del df['cnt_unpaid_tmp'] df = pd.concat([df, df_tmp], axis=1) # past payment df_tmp = pd.DataFrame() print('past payment') rem_max = df['cnt_paid'].max() # 72 df['cnt_paid_tmp'] = df['cnt_paid'] for i in range(int( rem_max )): c = f'past_payment_{i+1}m' df_tmp[c] = df['cnt_paid_tmp'].map(lambda x: min(x, 1)) * df['AMT_ANNUITY'] df_tmp.loc[df_tmp[c]==0, c] = np.nan df['cnt_paid_tmp'] -= 1 df['cnt_paid_tmp'] = df['cnt_paid_tmp'].map(lambda x: max(x, 0)) # df['prev_past_payment_max'] = df.filter(regex='^prev_past_payment_').max(1) del df['cnt_paid_tmp'] df = pd.concat([df, df_tmp], axis=1) df['APP_CREDIT_PERC'] = df['AMT_APPLICATION'] / df['AMT_CREDIT'] #df.filter(regex='^amt_future_payment_') df.replace(np.inf, np.nan, inplace=True) # TODO: any other plan? df.replace(-np.inf, np.nan, inplace=True) utils.to_pickles(df, '../data/previous_application', utils.SPLIT_SIZE) elif p==2: # ============================================================================= # POS # ============================================================================= """ df = utils.read_pickles('../data/POS_CASH_balance') """ df = pd.read_csv('../input/POS_CASH_balance.csv.zip') # data cleansing!!! ## drop signed. sample SK_ID_PREV==1769939 df = df[df.NAME_CONTRACT_STATUS!='Signed'] ## Zombie NAME_CONTRACT_STATUS=='Completed' and CNT_INSTALMENT_FUTURE!=0. 1134377 df.loc[(df.NAME_CONTRACT_STATUS=='Completed') & (df.CNT_INSTALMENT_FUTURE!=0), 'NAME_CONTRACT_STATUS'] = 'Active' ## CNT_INSTALMENT_FUTURE=0 and Active. sample SK_ID_PREV==1998905, 2174168 df.loc[(df.CNT_INSTALMENT_FUTURE==0) & (df.NAME_CONTRACT_STATUS=='Active'), 'NAME_CONTRACT_STATUS'] = 'Completed' ## remove duplicated CNT_INSTALMENT_FUTURE=0. sample SK_ID_PREV==2601827 df_0 = df[df['CNT_INSTALMENT_FUTURE']==0] df_1 = df[df['CNT_INSTALMENT_FUTURE']>0] df_0['NAME_CONTRACT_STATUS'] = 'Completed' df_0.sort_values(['SK_ID_PREV', 'MONTHS_BALANCE'], ascending=[True, False], inplace=True) df_0.drop_duplicates('SK_ID_PREV', keep='last', inplace=True) df = pd.concat([df_0, df_1], ignore_index=True) del df_0, df_1; gc.collect() # TODO: end in active. 1002879 # df['CNT_INSTALMENT_FUTURE_min'] = df.groupby('SK_ID_PREV').CNT_INSTALMENT_FUTURE.transform('min') # df['MONTHS_BALANCE_max'] = df.groupby('SK_ID_PREV').MONTHS_BALANCE.transform('max') # df.loc[(df.CNT_INSTALMENT_FUTURE_min!=0) & (df.MONTHS_BALANCE_max!=-1)] df['CNT_INSTALMENT-m-CNT_INSTALMENT_FUTURE'] = df['CNT_INSTALMENT'] - df['CNT_INSTALMENT_FUTURE'] df['CNT_INSTALMENT_FUTURE-d-CNT_INSTALMENT'] = df['CNT_INSTALMENT_FUTURE'] / df['CNT_INSTALMENT'] df.sort_values(['SK_ID_PREV', 'MONTHS_BALANCE'], inplace=True) df.reset_index(drop=True, inplace=True) col = ['CNT_INSTALMENT_FUTURE', 'SK_DPD', 'SK_DPD_DEF'] def multi_pos(c): ret_diff = [] ret_pctchng = [] key_bk = x_bk = None for key, x in df[['SK_ID_PREV', c]].values: # for key, x in tqdm(df[['SK_ID_CURR', c]].values, mininterval=30): if key_bk is None: ret_diff.append(None) ret_pctchng.append(None) else: if key_bk == key: ret_diff.append(x - x_bk) ret_pctchng.append( (x_bk-x) / x_bk) else: ret_diff.append(None) ret_pctchng.append(None) key_bk = key x_bk = x ret_diff = pd.Series(ret_diff, name=f'{c}_diff') ret_pctchng = pd.Series(ret_pctchng, name=f'{c}_pctchange') ret = pd.concat([ret_diff, ret_pctchng], axis=1) return ret pool = Pool(len(col)) callback = pd.concat(pool.map(multi_pos, col), axis=1) print('===== POS ====') print(callback.columns.tolist()) pool.close() df = pd.concat([df, callback], axis=1) df['SK_DPD-m-SK_DPD_DEF'] = df['SK_DPD'] - df['SK_DPD_DEF'] # df['SK_DPD_diff_over0'] = (df['SK_DPD_diff']>0)*1 # df['SK_DPD_diff_over5'] = (df['SK_DPD_diff']>5)*1 # df['SK_DPD_diff_over10'] = (df['SK_DPD_diff']>10)*1 # df['SK_DPD_diff_over15'] = (df['SK_DPD_diff']>15)*1 # df['SK_DPD_diff_over20'] = (df['SK_DPD_diff']>20)*1 # df['SK_DPD_diff_over25'] = (df['SK_DPD_diff']>25)*1 df.replace(np.inf, np.nan, inplace=True) # TODO: any other plan? df.replace(-np.inf, np.nan, inplace=True) utils.to_pickles(df, '../data/POS_CASH_balance', utils.SPLIT_SIZE) elif p==3: # ============================================================================= # ins # ============================================================================= """ df = utils.read_pickles('../data/installments_payments') """ df = pd.read_csv('../input/installments_payments.csv.zip') trte = get_trte() df = pd.merge(df, trte, on='SK_ID_CURR', how='left') prev = pd.read_csv('../input/previous_application.csv.zip', usecols=['SK_ID_PREV', 'CNT_PAYMENT', 'AMT_ANNUITY']) prev['CNT_PAYMENT'].replace(0, np.nan, inplace=True) # prep_prev(prev) df =
pd.merge(df, prev, on='SK_ID_PREV', how='left')
pandas.merge
import sys sys.path.append(".") import time import sys import benchmark.model.model as model_module import pandas from simpy import Environment RESULTS_DIR = "./benchmark/results/" runtime = ( "Casymda@SimPy(PyPy73)" if "PyPy" in sys.version else "Casymda@SimPy(CPython38)" ) # to be changed n_entities = [10, 100, 1000, 10_000, 50_000, 100_000, 200_000] # ~1 min i5 inter_arrival_times = [0, 10] def run_benchmark(): # warmup run? results = [] for n_entity in n_entities: for iat in inter_arrival_times: sequential_proc_time = 10 overall_seq_time = iat + (n_entity / 2) * sequential_proc_time last_time = (n_entity - 1) * iat + sequential_proc_time expected_end = max(last_time, overall_seq_time) t = run( max_entities=n_entity, inter_arrival_time=iat, sequential_proc_time=sequential_proc_time, expected_end=expected_end, ) result = { "runtime": runtime, "n_entities": n_entity, "inter_arrival_time": iat, "time": t, } results.append(result)
pandas.DataFrame(results)
pandas.DataFrame
import pandas as pd import numpy as np import sys import datetime import seaborn as sns from tqdm import tqdm from sklearn import tree from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import GridSearchCV from keras import Sequential from keras.layers import Dense import matplotlib.pyplot as plt from sklearn.utils import resample def get_feature_balance_to_montlhypayment_percentage(loan,test): df_cur_transactions = df_all_transactions_test if test else df_all_transactions df_loan_transactions = df_cur_transactions.loc[df_cur_transactions['account_id'] == loan['account_id']] #get all transactions for the account of the loan year = [] month = [] for index, transaction in df_loan_transactions.iterrows(): #gets year and month for each transaction trans_date = datetime.datetime.strptime(str(transaction['date']), "%y%m%d") year.append(trans_date.year) month.append(trans_date.month) df_loan_transactions['year'] = year df_loan_transactions['month'] = month df_mean_balance_bymonth = df_loan_transactions.groupby(['year','month'])['balance'].mean().reset_index(name='balance') df_mean_balance_allmonth = df_mean_balance_bymonth['balance'].mean() return df_mean_balance_allmonth / loan['payments'] def get_client_district_from_account(account_id): df_disposition = df_dispositions.loc[(df_dispositions['account_id'] == account_id) & (df_dispositions['type'] == 'OWNER')] #get the disposition of the owner of the account df_client = df_clients.loc[df_clients['client_id'] == df_disposition.iloc[0]['client_id']] #get the info of the owner of the account return df_districts.loc[df_districts['code '] == df_client.iloc[0]['district_id']].iloc[0] #get the district info of the owner of the account def get_feature_average_no_crimes_per_100_habitants(loan): district = get_client_district_from_account(loan['account_id']) no_crimes_95 = district['no. of commited crimes \'95 '] no_crimes_96 = district['no. of commited crimes \'96 '] no_crimes_95 = no_crimes_96 if no_crimes_95 == '?' else no_crimes_95 no_crimes_96 = no_crimes_95 if no_crimes_96 == '?' else no_crimes_96 return ((int(no_crimes_95)+int(no_crimes_96))/2)/int(district['no. of inhabitants'])*100 def get_feature_average_unemployment_rate(loan): district = get_client_district_from_account(loan['account_id']) unemploymant_rate_95 = district['unemploymant rate \'95 '] unemploymant_rate_96 = district['unemploymant rate \'96 '] unemploymant_rate_95 = unemploymant_rate_96 if unemploymant_rate_95 == '?' else unemploymant_rate_95 unemploymant_rate_96 = unemploymant_rate_95 if unemploymant_rate_96 == '?' else unemploymant_rate_96 return (float(unemploymant_rate_95)+float(unemploymant_rate_96))/2 def get_feature_proportion_avgsalary_monthlypayments(loan): district = get_client_district_from_account(loan['account_id']) return int(district['average salary '])/int(loan['payments']) def get_feature_account_credit_Card_type(loan,test): df_cur_credit_cards = df_credit_cards_test if test else df_credit_cards df_loan_disposition = df_dispositions.loc[(df_dispositions['account_id'] == loan['account_id'])& (df_dispositions['type'] == 'OWNER')] df_credit_card_disposition = df_cur_credit_cards.loc[df_cur_credit_cards['disp_id'] == df_loan_disposition.iloc[0]['disp_id']] if (len(df_credit_card_disposition.index) == 1): return df_credit_card_disposition.iloc[0]["type"] else: return "no credit card" def get_feature_sex(loan): df_loan_disposition = df_dispositions.loc[df_dispositions['account_id'] == loan['account_id']] df_client_disposition = df_clients.loc[df_clients['client_id'] == df_loan_disposition.iloc[0]['client_id']] trans_date = list(str(df_client_disposition.iloc[0]['birth_number'])) month = int(trans_date[2] + trans_date[3]) #print(month) if (month > 12): return 'F' else: return 'M' def get_feature_age(loan): df_loan_disposition = df_dispositions.loc[df_dispositions['account_id'] == loan['account_id']] df_client_disposition = df_clients.loc[df_clients['client_id'] == df_loan_disposition.iloc[0]['client_id']] trans_date = list(str(df_client_disposition.iloc[0]['birth_number'])) year = int(trans_date[0] + trans_date[1]) age = 97 - year return age df_train = pd.read_csv(r'C:\Users\39327\Desktop\ARTIFICIAL INTELLIGENCE\YEAR 2\SEMESTER 1 (PORTO)\KE & ML\loan_train.csv',sep=';') df_test = pd.read_csv(r'C:\Users\39327\Desktop\ARTIFICIAL INTELLIGENCE\YEAR 2\SEMESTER 1 (PORTO)\KE & ML\loan_test.csv',sep=';') df_dispositions = pd.read_csv(r'C:\Users\39327\Desktop\ARTIFICIAL INTELLIGENCE\YEAR 2\SEMESTER 1 (PORTO)\KE & ML\disp.csv',sep=';') df_clients = pd.read_csv(r'C:\Users\39327\Desktop\ARTIFICIAL INTELLIGENCE\YEAR 2\SEMESTER 1 (PORTO)\KE & ML\client.csv',sep=';') df_districts = pd.read_csv(r'C:\Users\39327\Desktop\ARTIFICIAL INTELLIGENCE\YEAR 2\SEMESTER 1 (PORTO)\KE & ML\district.csv',sep=';') df_all_transactions = pd.read_csv(r'C:\Users\39327\Desktop\ARTIFICIAL INTELLIGENCE\YEAR 2\SEMESTER 1 (PORTO)\KE & ML\trans_train.csv',sep=';') df_all_transactions_test = pd.read_csv(r'C:\Users\39327\Desktop\ARTIFICIAL INTELLIGENCE\YEAR 2\SEMESTER 1 (PORTO)\KE & ML\trans_test.csv',sep=';') df_credit_cards = pd.read_csv(r'C:\Users\39327\Desktop\ARTIFICIAL INTELLIGENCE\YEAR 2\SEMESTER 1 (PORTO)\KE & ML\card_train.csv', sep=';', header=0) df_credit_cards_test = pd.read_csv(r'C:\Users\39327\Desktop\ARTIFICIAL INTELLIGENCE\YEAR 2\SEMESTER 1 (PORTO)\KE & ML\card_test.csv', sep=';', header=0) ''' df_train = pd.read_csv(filepath_or_buffer='../input/to-loan-or-not-to-loan-that-is-the-question-7/public data/loan_train.csv', sep=';', header=0) df_test = pd.read_csv(filepath_or_buffer='../input/to-loan-or-not-to-loan-that-is-the-question-7/public data/loan_test.csv', sep=';', header=0) df_dispositions = pd.read_csv(filepath_or_buffer='../input/to-loan-or-not-to-loan-that-is-the-question-7/public data/disp.csv', sep=';', header=0) df_clients = pd.read_csv(filepath_or_buffer='../input/to-loan-or-not-to-loan-that-is-the-question-7/public data/client.csv', sep=';', header=0) df_districts = pd.read_csv(filepath_or_buffer='../input/to-loan-or-not-to-loan-that-is-the-question-7/public data/district.csv', sep=';', header=0) df_all_transactions = pd.read_csv(filepath_or_buffer='../input/to-loan-or-not-to-loan-that-is-the-question-7/public data/trans_train.csv', sep=';', header=0) df_all_transactions_test = pd.read_csv(filepath_or_buffer='../input/to-loan-or-not-to-loan-that-is-the-question-7/public data/trans_test.csv', sep=';', header=0) df_credit_cards = pd.read_csv(filepath_or_buffer='../input/to-loan-or-not-to-loan-that-is-the-question-7/public data/card_train.csv', sep=';', header=0) df_credit_cards_test = pd.read_csv(filepath_or_buffer='../input/to-loan-or-not-to-loan-that-is-the-question-7/public data/card_test.csv', sep=';', header=0) ''' df_train_processed = pd.DataFrame(columns=['amount', 'duration', 'payments', 'balance_monthlypayment_percentage', 'average_no_crimes_per_100_habitants', 'average_unemployment_rate', 'proportion_avgsalary_monthlypayments','account_credit_Card_type','sex','age', 'status']) df_test_processed = pd.DataFrame(columns=['amount', 'duration', 'payments', 'balance_monthlypayment_percentage', 'average_no_crimes_per_100_habitants', 'average_unemployment_rate', 'proportion_avgsalary_monthlypayments','account_credit_Card_type','sex','age', 'loan_id']) for index_loan, loan in tqdm(df_train.iterrows()): df_train_processed.loc[index_loan] = [loan['amount'], loan['duration'], loan['payments'], get_feature_balance_to_montlhypayment_percentage(loan,False), get_feature_average_no_crimes_per_100_habitants(loan), get_feature_average_unemployment_rate(loan), get_feature_proportion_avgsalary_monthlypayments(loan),get_feature_account_credit_Card_type(loan,False),get_feature_sex(loan),get_feature_age(loan), loan['status']] #print(df_train_processed) for index_loan, loan in tqdm(df_test.iterrows()): df_test_processed.loc[index_loan] = [loan['amount'], loan['duration'], loan['payments'], get_feature_balance_to_montlhypayment_percentage(loan,True), get_feature_average_no_crimes_per_100_habitants(loan), get_feature_average_unemployment_rate(loan), get_feature_proportion_avgsalary_monthlypayments(loan),get_feature_account_credit_Card_type(loan,True),get_feature_sex(loan),get_feature_age(loan), loan['loan_id']] #print(df_test_processed) df_data = pd.get_dummies(df_train_processed.drop(columns=['status']), columns=['account_credit_Card_type','sex']) df_target = df_train_processed[['status']] df_target = df_target.astype(int) df_test_target = pd.get_dummies(df_test_processed.drop(columns=['loan_id']), columns=['account_credit_Card_type','sex']) df_test_id = df_test_processed[['loan_id']] #UP-SAMPLING STEP df_merged = pd.concat([df_data,df_target],axis=1) # Separate majority and minority classes df_merged_majority = df_merged[df_merged.status==1] df_merged_minority = df_merged[df_merged.status==-1] df_minority_upsampled = resample(df_merged_minority, replace=True, # sample with replacement n_samples=282, # to match majority class random_state=123) # reproducible results # Combine majority class with upsampled minority class df_upsampled =
pd.concat([df_merged_majority, df_minority_upsampled])
pandas.concat
#!/usr/bin/env python # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Generates a plot of crossword statistics generated by the crossword crate It expects two positional arguments: 1. The path to a CSV file generated from the crossword crate 2. The output path and filename where the rendered plot should be saved. Both SVG and PNG formats are supported. """ import datetime import numpy as np import seaborn as sns import matplotlib.pyplot as plt import pandas as pd import sys def parse_data(csv_path): """Parse crossword database stored at the given path into a pandas DataFrame. The DataFrame only contains solve data for unaided, solved puzzles and is sorted by the index, the time when each puzzle was solved. Interesting columns in the returned DataFrame: solve_time_secs weekday """ df =
pd.read_csv(csv_path, parse_dates=["date"], index_col="date")
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Thu May 23 13:51:15 2019 @author: Lieke """ import os import numpy as np import pandas as pd import time as tm import rpy2.robjects as robjects import tensorflow as tf import math import scipy.io as sio import optunity as opt from tensorflow.contrib.tensor_forest.python import tensor_forest from tensorflow.python.ops import resources import SparseMatrix as sm def run_LAmbDA(DataPath, LabelsPath, CV_RDataPath, OutputDir, GeneOrderPath = "", NumGenes = 0): ''' run LAmbDA classifier Wrapper script to run LAmbDA on a benchmark dataset with 5-fold cross validation, outputs lists of true and predicted cell labels as csv files, as well as computation time. Parameters ---------- DataPath : Data file path (.csv), cells-genes matrix with cell unique barcodes as row names and gene names as column names. LabelsPath : Cell population annotations file path (.csv). CV_RDataPath : Cross validation RData file path (.RData), obtained from Cross_Validation.R function. OutputDir : Output directory defining the path of the exported file. GeneOrderPath : Gene order file path (.csv) obtained from feature selection, defining the genes order for each cross validation fold, default is NULL. NumGenes : Number of genes used in case of feature selection (integer), default is 0. ''' # read the Rdata file robjects.r['load'](CV_RDataPath) nfolds = np.array(robjects.r['n_folds'], dtype = 'int') tokeep = np.array(robjects.r['Cells_to_Keep'], dtype = 'bool') col = np.array(robjects.r['col_Index'], dtype = 'int') col = col - 1 test_ind = np.array(robjects.r['Test_Idx']) train_ind = np.array(robjects.r['Train_Idx']) # read the data data = sm.importMM(DataPath) labels = pd.read_csv(LabelsPath, header=0,index_col=None, sep=',', usecols = col) labels = labels.iloc[tokeep] data = data.iloc[tokeep] data = data.fillna("0").astype(int) # read the feature file if (NumGenes > 0): features = pd.read_csv(GeneOrderPath,header=0,index_col=None, sep=',') # folder with results os.chdir(OutputDir) tr_time=[] ts_time=[] truelab = np.zeros([len(labels),1],dtype = int) predlab = np.zeros([len(labels),1],dtype = int) for i in range(np.squeeze(nfolds)): global X, Y, Gnp, Dnp, train, test, prt, cv test_ind_i = np.array(test_ind[i], dtype = 'int') - 1 train_ind_i = np.array(train_ind[i], dtype = 'int') - 1 X = np.array(data) if (NumGenes > 0): X = np.log2(X/10+1) feat_to_use = features.iloc[0:NumGenes,i] X = X[:,feat_to_use] else: X = np.log2(np.transpose(select_feats(np.transpose(X),0.5,80))/10+1) uniq = np.unique(labels) Y = np.zeros([len(labels),len(uniq)],int) for j in range(len(uniq)): Y[np.where(labels == uniq[j])[0],j] = 1 Y = np.array(Y) Gnp = np.zeros([len(uniq),len(uniq)],int) np.fill_diagonal(Gnp,1) Gnp = np.array(Gnp) Dnp = np.ones([len(uniq),1],int) Dnp = np.array(Dnp) train_samp = int(np.floor(0.75*len(train_ind_i))) test_samp = len(train_ind_i) - train_samp perm = np.random.permutation(len(train_ind_i)) train = perm[0:train_samp] test = perm[train_samp:test_samp+1] while(np.sum(np.sum(Y[train,:],0)<5)>0): perm = np.random.permutation(X.shape[0]) train = perm[0:train_samp+1] test = perm[train_samp+1:train_samp+test_samp+1] cv = i optunity_it = 0 prt = False opt_params = None start=tm.time() opt_params, _, _ = opt.minimize(run_LAmbDA2,solver_name='sobol', gamma=[0.8,1.2], delta=[0.05,0.95], tau=[10.0,11.0], prc_cut=[20,50], bs_prc=[0.2,0.6], num_trees=[10,200], max_nodes=[100,1000], num_evals=50) tr_time.append(tm.time()-start) print("Finished training!") prt = True train = train_ind_i test = test_ind_i start=tm.time() err = run_LAmbDA2(opt_params['gamma'], opt_params['delta'], opt_params['tau'], opt_params['prc_cut'], opt_params['bs_prc'], opt_params['num_trees'], opt_params['max_nodes']) ts_time.append(tm.time()-start) tf.reset_default_graph(); predfile = 'preds_cv' + str(cv) + '.mat' truefile = 'truth_cv' + str(cv) + '.mat' pred = sio.loadmat(predfile) truth = sio.loadmat(truefile) pred = pred['preds'] truth = truth['labels'] pred_ind = np.argmax(pred,axis=1) truth_ind = np.argmax(truth,axis=1) predlab[test_ind_i,0] = pred_ind truelab[test_ind_i,0] = truth_ind truelab = pd.DataFrame(truelab) predlab = pd.DataFrame(predlab) tr_time =
pd.DataFrame(tr_time)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # **About the Competition:** # # [Avito](https://www.avito.ru/), Russia’s largest classified advertisements website, is hosting its fourth Kaggle competition. The challenge is to predict demand for an online advertisement based on its full description (title, description, images, etc.), its context (geographically where it was posted, similar ads already posted) and historical demand for similar ads in similar contexts. # # **About the Notebook:** # # One more exciting competition ahead and this involves both NLP (text data in Russian) and Image data along with numerical . In this notebook, let us get into the basic data exploration using python. # # Thanks to [Yandex Translate](https://translate.yandex.com/), I was able to get english names for the russian names and used them whenever possible. Most of the plots are in plotly and so please hover over them to see more details. # In[26]: import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import TruncatedSVD from sklearn import preprocessing, model_selection, metrics import lightgbm as lgb color = sns.color_palette() get_ipython().run_line_magic('matplotlib', 'inline') import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.tools as tls pd.options.mode.chained_assignment = None pd.options.display.max_columns = 999 # Now let us look at the input files present in the dataset. # In[2]: from subprocess import check_output print(check_output(["ls", "../input/"]).decode("utf8")) # The description of the data files from the data page: # # * train.csv - Train data. # * test.csv - Test data. Same schema as the train data, minus deal_probability. # * train_active.csv - Supplemental data from ads that were displayed during the same period as train.csv. Same schema as the train data, minus deal_probability. # * test_active.csv - Supplemental data from ads that were displayed during the same period as test.csv. Same schema as the train data, minus deal_probability. # * periods_train.csv - Supplemental data showing the dates when the ads from train_active.csv were activated and when they where displayed. # * periods_test.csv - Supplemental data showing the dates when the ads from test_active.csv were activated and when they where displayed. Same schema as periods_train.csv, except that the item ids map to an ad in test_active.csv. # * train_jpg.zip - Images from the ads in train.csv. # * test_jpg.zip - Images from the ads in test.csv. # * sample_submission.csv - A sample submission in the correct format. # # Let us start with the train file. # In[3]: train_df = pd.read_csv("../input/train.csv", parse_dates=["activation_date"]) test_df = pd.read_csv("../input/test.csv", parse_dates=["activation_date"]) print("Train file rows and columns are : ", train_df.shape) print("Test file rows and columns are : ", test_df.shape) # In[4]: train_df.head() # The train dataset description is as follows: # # * item_id - Ad id. # * user_id - User id. # * region - Ad region. # * city - Ad city. # * parent_category_name - Top level ad category as classified by Avito's ad model. # * category_name - Fine grain ad category as classified by Avito's ad model. # * param_1 - Optional parameter from Avito's ad model. # * param_2 - Optional parameter from Avito's ad model. # * param_3 - Optional parameter from Avito's ad model. # * title - Ad title. # * description - Ad description. # * price - Ad price. # * item_seq_number - Ad sequential number for user. # * activation_date- Date ad was placed. # * user_type - User type. # * image - Id code of image. Ties to a jpg file in train_jpg. Not every ad has an image. # * image_top_1 - Avito's classification code for the image. # * deal_probability - The target variable. This is the likelihood that an ad actually sold something. It's not possible to verify every transaction with certainty, so this column's value can be any float from zero to one. # # So deal probability is our target variable and is a float value between 0 and 1 as per the data page. Let us have a look at it. # In[5]: plt.figure(figsize=(12,8)) sns.distplot(train_df["deal_probability"].values, bins=100, kde=False) plt.xlabel('Deal Probility', fontsize=12) plt.title("Deal Probability Histogram", fontsize=14) plt.show() plt.figure(figsize=(8,6)) plt.scatter(range(train_df.shape[0]), np.sort(train_df['deal_probability'].values)) plt.xlabel('index', fontsize=12) plt.ylabel('deal probability', fontsize=12) plt.title("Deal Probability Distribution", fontsize=14) plt.show() # So almost 100K Ads has 0 probaility (which means it did not sell anything) and few ads have a probability of 1. Rest of the deal probabilities have values in between. # # **Region wise distribution of Ads:** # # Let us look at the region wise distribution of ads. # In[6]: from io import StringIO temp_data = StringIO(""" region,region_en Свердловская область, Sverdlovsk oblast Самарская область, Samara oblast Ростовская область, Rostov oblast Татарстан, Tatarstan Волгоградская область, Volgograd oblast Нижегородская область, Nizhny Novgorod oblast Пермский край, Perm Krai Оренбургская область, Orenburg oblast Ханты-Мансийский АО, Khanty-Mansi Autonomous Okrug Тюменская область, Tyumen oblast Башкортостан, Bashkortostan Краснодарский край, Krasnodar Krai Новосибирская область, Novosibirsk oblast Омская область, Omsk oblast Белгородская область, Belgorod oblast Челябинская область, Chelyabinsk oblast Воронежская область, Voronezh oblast Кемеровская область, Kemerovo oblast Саратовская область, Saratov oblast Владимирская область, Vladimir oblast Калининградская область, Kaliningrad oblast Красноярский край, Krasnoyarsk Krai Ярославская область, Yaroslavl oblast Удмуртия, Udmurtia Алтайский край, Altai Krai Иркутская область, Irkutsk oblast Ставропольский край, Stavropol Krai Тульская область, Tula oblast """) region_df = pd.read_csv(temp_data) train_df = pd.merge(train_df, region_df, how="left", on="region") # In[7]: temp_series = train_df['region_en'].value_counts() labels = (np.array(temp_series.index)) sizes = (np.array((temp_series / temp_series.sum())*100)) trace = go.Pie(labels=labels, values=sizes) layout = go.Layout( title='Region distribution', width=900, height=900, ) data = [trace] fig = go.Figure(data=data, layout=layout) py.iplot(fig, filename="region") # The regions have percentage of ads between 1.71% to 9.41%. So the top regions are: # 1. Krasnodar region - 9.41% # 2. Sverdlovsk region - 6.28% # 3. Rostov region - 5.99% # # In[8]: plt.figure(figsize=(12,8)) sns.boxplot(y="region_en", x="deal_probability", data=train_df) plt.xlabel('Deal probability', fontsize=12) plt.ylabel('Region', fontsize=12) plt.title("Deal probability by region") plt.xticks(rotation='vertical') plt.show() # **City wise distribution of Ads:** # # Now let us have a look at the top 20 cities present in the dataset. # In[9]: cnt_srs = train_df['city'].value_counts().head(20) trace = go.Bar( y=cnt_srs.index[::-1], x=cnt_srs.values[::-1], orientation = 'h', marker=dict( color=cnt_srs.values[::-1], colorscale = 'Blues', reversescale = True ), ) layout = dict( title='City distribution of Ads', ) data = [trace] fig = go.Figure(data=data, layout=layout) py.iplot(fig, filename="CityAds") # So the top cities where the ads are shown are # 1. Krasnodar # 2. Ekaterinburg # 3. Novosibirsk # **Parent Category Name:** # # Now let us look at the distribution of parent cateory names. # In[10]: temp_data = StringIO(""" parent_category_name,parent_category_name_en Личные вещи,Personal belongings Для дома и дачи,For the home and garden Бытовая электроника,Consumer electronics Недвижимость,Real estate Хобби и отдых,Hobbies & leisure Транспорт,Transport Услуги,Services Животные,Animals Для бизнеса,For business """) temp_df =
pd.read_csv(temp_data)
pandas.read_csv
"""Parallelized, single-point launch script to run DSR or GP on a set of benchmarks.""" import os import sys import json import time from datetime import datetime import multiprocessing from copy import deepcopy from functools import partial from pkg_resources import resource_filename import zlib import click import numpy as np import pandas as pd from sympy.parsing.sympy_parser import parse_expr from sympy import srepr from dsr.program import Program from dsr.dataset import Dataset from dsr.baselines import gpsr import warnings warnings.filterwarnings('ignore', category=DeprecationWarning) warnings.filterwarnings('ignore', category=FutureWarning) def train_dsr(name_and_seed, config_dataset, config_controller, config_training): """Trains DSR and returns dict of reward, expression, and traversal""" name, seed = name_and_seed try: import tensorflow as tf from dsr.controller import Controller from dsr.train import learn # Ignore TensorFlow warnings os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) except: pass start = time.time() # Rename the output file config_training["output_file"] = "dsr_{}_{}.csv".format(name, seed) # Define the dataset and library dataset = get_dataset(name, config_dataset) Program.clear_cache() Program.set_training_data(dataset) Program.set_library(dataset.function_set, dataset.n_input_var) tf.reset_default_graph() # Shift actual seed by checksum to ensure it's different across different benchmarks tf.set_random_seed(seed + zlib.adler32(name.encode("utf-8"))) with tf.Session() as sess: # Instantiate the controller controller = Controller(sess, debug=config_training["debug"], summary=config_training["summary"], **config_controller) # Train the controller result = learn(sess, controller, **config_training) # r, base_r, expression, traversal result["name"] = name result["t"] = time.time() - start result["seed"] = seed return result def train_gp(name_and_seed, logdir, config_dataset, config_gp): """Trains GP and returns dict of reward, expression, and program""" name, seed = name_and_seed config_gp["seed"] = seed + zlib.adler32(name.encode("utf-8")) start = time.time() # Load the dataset dataset = get_dataset(name, config_dataset) # Fit the GP gp = gpsr.GP(dataset=dataset, **config_gp) p, logbook = gp.train() # Retrieve results r = base_r = p.fitness.values[0] r_test = base_r_test = gp.eval_test(p)[0] str_p = str(p) nmse = gp.nmse(p) r_noiseless = base_r_noiseless = gp.eval_train_noiseless(p)[0] r_test_noiseless = base_r_test_noiseless = gp.eval_test_noiseless(p)[0] # Many failure cases right now for converting to SymPy expression try: expression = repr(parse_expr(str_p.replace("X", "x").replace("add", "Add").replace("mul", "Mul"))) except: expression = "N/A" # Save run details drop = ["gen", "nevals"] df_fitness = pd.DataFrame(logbook.chapters["fitness"]).drop(drop, axis=1) df_fitness = df_fitness.rename({"avg" : "fit_avg", "min" : "fit_min"}, axis=1) df_fitness["fit_best"] = df_fitness["fit_min"].cummin() df_len = pd.DataFrame(logbook.chapters["size"]).drop(drop, axis=1) df_len = df_len.rename({"avg" : "l_avg"}, axis=1) df = pd.concat([df_fitness, df_len], axis=1, sort=False) df.to_csv(os.path.join(logdir, "gp_{}_{}.csv".format(name, seed)), index=False) result = { "name" : name, "nmse" : nmse, "r" : r, "base_r" : base_r, "r_test" : r_test, "base_r_test" : base_r_test, "r_noiseless" : r_noiseless, "base_r_noiseless" : base_r_noiseless, "r_test_noiseless" : r_test_noiseless, "base_r_test_noiseless" : base_r_test_noiseless, "expression" : expression, "traversal" : str_p, "t" : time.time() - start, "seed" : seed } return result def get_dataset(name, config_dataset): """Creates and returns the dataset""" config_dataset["name"] = name dataset = Dataset(**config_dataset) return dataset @click.command() @click.argument('config_template', default="config.json") @click.option('--method', default="dsr", type=click.Choice(["dsr", "gp"]), help="Symbolic regression method") @click.option('--mc', default=1, type=int, help="Number of Monte Carlo trials for each benchmark") @click.option('--output_filename', default=None, help="Filename to write results") @click.option('--num_cores', default=multiprocessing.cpu_count(), help="Number of cores to use") @click.option('--seed_shift', default=0, type=int, help="Integer to add to each seed (i.e. to combine multiple runs)") @click.option('--benchmark', '--b', '--only', multiple=True, type=str, help="Benchmark or benchmark prefix to include") def main(config_template, method, mc, output_filename, num_cores, seed_shift, benchmark): """Runs DSR or GP on multiple benchmarks using multiprocessing.""" # Load the config file with open(config_template, encoding='utf-8') as f: config = json.load(f) config_dataset = config["dataset"] # Problem specification parameters config_training = config["training"] # Training hyperparameters if "controller" in config: config_controller = config["controller"] # Controller hyperparameters if "gp" in config: config_gp = config["gp"] # GP hyperparameters # Create output directories if output_filename is None: output_filename = "benchmark_{}.csv".format(method) timestamp = datetime.now().strftime("%Y-%m-%d-%H%M%S") config_training["logdir"] += "_" + timestamp logdir = config_training["logdir"] os.makedirs(logdir, exist_ok=True) output_filename = os.path.join(logdir, output_filename) # Load the benchmark names data_path = resource_filename("dsr", "data/") benchmark_path = os.path.join(data_path, config_dataset["file"]) df = pd.read_csv(benchmark_path, encoding="ISO-8859-1") names = df["name"].to_list() # Load raw dataset names # HACK: Exclude "benchmark" names for f in os.listdir(data_path): if f.endswith(".csv") and "benchmarks" not in f and "function_sets" not in f: names.append(f.split('.')[0]) # Load raw dataset from external directory in config if "extra_data_dir" in config_dataset: if not config_dataset["extra_data_dir"] == None: for f in os.listdir(config_dataset["extra_data_dir"]): if f.endswith(".csv"): names.append(f.split('.')[0]) # Filter out expressions expressions = [parse_expr(e) for e in df["sympy"]] if len(benchmark) > 0: keep = [False]*len(names) for included_name in benchmark: if '-' in included_name: keep = [True if included_name == n else k for k,n in zip(keep, names)] else: keep = [True if n.startswith(included_name) else k for k,n in zip(keep, names)] names = [n for k,n in zip(keep, names) if k] unique_names = names.copy() names *= mc # When passed to RNGs, these seeds will actually be added to checksums on the name seeds = (np.arange(mc) + seed_shift).repeat(len(unique_names)).tolist() names_and_seeds = list(zip(names, seeds)) if num_cores > len(names): print("Setting 'num_cores' to {} for batch because there are only {} expressions.".format(len(names), len(names))) num_cores = len(names) if method == "dsr": if config_training["verbose"] and num_cores > 1: print("Setting 'verbose' to False for parallelized run.") config_training["verbose"] = False if config_training["num_cores"] != 1 and num_cores > 1: print("Setting 'num_cores' to 1 for training (i.e. constant optimization) to avoid nested child processes.") config_training["num_cores"] = 1 print("Running {} for n={} on benchmarks {}".format(method, mc, unique_names)) # Write terminal command and config.json into log directory cmd_filename = os.path.join(logdir, "cmd.out") with open(cmd_filename, 'w') as f: print(" ".join(sys.argv), file=f) config_filename = os.path.join(logdir, "config.json") with open(config_filename, 'w') as f: json.dump(config, f, indent=4) # Define the work if method == "dsr": work = partial(train_dsr, config_dataset=config_dataset, config_controller=config_controller, config_training=config_training) elif method == "gp": work = partial(train_gp, logdir=logdir, config_dataset=config_dataset, config_gp=config_gp) # Farm out the work columns = ["name", "nmse", "base_r", "r", "base_r_test", "r_test", "base_r_noiseless", "r_noiseless", "base_r_test_noiseless", "r_test_noiseless", "expression", "traversal", "t", "seed"] pd.DataFrame(columns=columns).to_csv(output_filename, header=True, index=False) if num_cores > 1: pool = multiprocessing.Pool(num_cores) for result in pool.imap_unordered(work, names_and_seeds):
pd.DataFrame(result, columns=columns, index=[0])
pandas.DataFrame
import math import itertools import numpy as np import pandas as pd import plotly.express as px import plotly.graph_objects as go import scipy.stats as ss import scikit_posthocs as sp from dash_table.Format import Format, Scheme from Bio import Phylo from ete3 import Tree from plotly.subplots import make_subplots # ------------------------------------------------------------------------------------- # --------------------------------------- Classes ------------------------------------- class DrawTree(): def __init__(self, newicktree, template, topology, color_map, branch_len, font_family): self.newicktree = Phylo.read(newicktree, "newick") self.template = template self.topology = topology self.color_map = color_map self.branch_len = branch_len self.font_family = font_family def create_square_tree(self): def get_x_coordinates(tree): """Associates to each clade an x-coord. returns dict {clade: x-coord} """ if self.branch_len: xcoords = tree.depths(unit_branch_lengths=True) else: xcoords = tree.depths() # tree.depth() maps tree clades to depths (by branch length). # returns a dict {clade: depth} where clade runs over all Clade instances of the tree, and depth is the distance from root to clade # If there are no branch lengths, assign unit branch lengths if not max(xcoords.values()): xcoords = tree.depths(unit_branch_lengths=True) return xcoords def get_y_coordinates(tree, dist=1.3): """ returns dict {clade: y-coord} The y-coordinates are (float) multiple of integers (i*dist below) dist depends on the number of tree leafs """ maxheight = tree.count_terminals() # Counts the number of tree leafs. # Rows are defined by the tips/leafs ycoords = dict( (leaf, maxheight - i * dist) for i, leaf in enumerate(reversed(tree.get_terminals())) ) def calc_row(clade): for subclade in clade: if subclade not in ycoords: calc_row(subclade) # This is intermediate placement of internal nodes ycoords[clade] = (ycoords[clade.clades[0]] + ycoords[clade.clades[-1]]) / 2 if tree.root.clades: calc_row(tree.root) return ycoords def get_clade_lines( orientation="horizontal", y_curr=0, x_start=0, x_curr=0, y_bot=0, y_top=0, line_color="white", line_width=2, root_clade = False ): """define a shape of type 'line', for branch """ branch_line = dict( type="line", layer="below", line=dict(color=line_color, width=line_width) ) if root_clade: branch_line.update(x0=-0.01, y0=y_curr, x1=-0.01, y1=y_curr) return branch_line elif orientation == "horizontal": branch_line.update(x0=x_start, y0=y_curr, x1=x_curr, y1=y_curr) elif orientation == "vertical": branch_line.update(x0=x_curr, y0=y_bot, x1=x_curr, y1=y_top) else: raise ValueError("Line type can be 'horizontal' or 'vertical'") return branch_line def draw_clade( clade, x_start, line_shapes, line_color="white", line_width=2, x_coords=0, y_coords=0, init_clade=False, ): """Recursively draw the tree branches, down from the given clade""" x_curr = x_coords[clade] y_curr = y_coords[clade] # Draw a horizontal line from start to here if init_clade: branch_line = get_clade_lines( orientation="horizontal", y_curr=y_curr, x_start=x_start, x_curr=x_curr, line_color=line_color, line_width=line_width, root_clade=True, ) else: branch_line = get_clade_lines( orientation="horizontal", y_curr=y_curr, x_start=x_start, x_curr=x_curr, line_color=line_color, line_width=line_width, root_clade=False, ) line_shapes.append(branch_line) if clade.clades: # Draw a vertical line connecting all children y_top = y_coords[clade.clades[0]] y_bot = y_coords[clade.clades[-1]] line_shapes.append( get_clade_lines( orientation="vertical", x_curr=x_curr, y_bot=y_bot, y_top=y_top, line_color=line_color, line_width=line_width, ) ) # Draw descendants for child in clade: draw_clade(child, x_curr, line_shapes, x_coords=x_coords, y_coords=y_coords, line_color=line_color) if 'dark' in self.template: text_color = 'white' else: text_color = 'black' line_color = self.color_map[self.topology] tree = self.newicktree tree.ladderize() x_coords = get_x_coordinates(tree) y_coords = get_y_coordinates(tree) line_shapes = [] draw_clade( tree.root, 0, line_shapes, line_color=line_color, line_width=2, x_coords=x_coords, y_coords=y_coords, init_clade=True, ) my_tree_clades = x_coords.keys() X = [] Y = [] text = [] for cl in my_tree_clades: X.append(x_coords[cl]) Y.append(y_coords[cl]) # Add confidence values if internal node if not cl.name: if not cl.name: text.append(" ") else: text.append(cl.name) else: text.append(cl.name) axis = dict( showline=False, visible=False, zeroline=False, showgrid=False, showticklabels=False, title="", # y title ) label_legend = ["Tree_1"] nodes = [] for elt in label_legend: node = dict( type="scatter", x=X, y=Y, mode="markers+text", marker=dict(color=text_color, size=5), text=text, # vignet information of each node textposition='middle right', textfont=dict(color=text_color, size=12), showlegend=False, name=elt, ) nodes.append(node) # Set graph x-range if self.branch_len: x_range = [-0.5, (max(x_coords.values())+2)] show_xaxis = False elif max(x_coords.values()) < 0.1: x_range = [0, (max(x_coords.values())+(max(x_coords.values())*1.25))] show_xaxis = True elif max(x_coords.values()) < 0.5: x_range = [0, 0.5] show_xaxis = True elif max(x_coords.values()) < 1: x_range = [0, 1] show_xaxis = True elif max(x_coords.values()) == 1: x_range = [0, max(x_coords.values())+2] show_xaxis = False else: x_range = [0, max(x_coords.values())+2] show_xaxis = False layout = dict( autosize=True, showlegend=False, template=self.template, dragmode="pan", margin=dict(t=20, b=10, r=20, l=10), xaxis=dict( showline=True, zeroline=False, visible=show_xaxis, showgrid=False, showticklabels=True, range=x_range, ), yaxis=axis, hovermode="closest", shapes=line_shapes, font=dict(family=self.font_family,size=14), ) fig = go.Figure(data=nodes, layout=layout) return fig def create_angular_tree(self): def get_x_coordinates(tree): """Associates to each clade an x-coord. returns dict {clade: x-coord} """ # xcoords = tree.depths(unit_branch_lengths=True) # print("===========================") # nodes = [n for n in tree.find_clades()] # nodes = tree.get_terminals() + tree.get_nonterminals() # print(tree.root.clades) # root_xcoord = {tree.root.clades[1]:0} terminal_nodes = tree.get_terminals() internal_nodes = tree.get_nonterminals() terminal_xcoords = dict((leaf, i) for i, leaf in enumerate(terminal_nodes)) internal_xcoords = dict( (leaf, i+0.5) for leaf, i in zip(internal_nodes, range(1, len(internal_nodes))) ) xcoords = {**terminal_xcoords, **internal_xcoords} # print(xcoords) # print("===========================") # tree.depth() maps tree clades to depths (by branch length). # returns a dict {clade: depth} where clade runs over all Clade instances of the tree, and depth # is the distance from root to clade # If there are no branch lengths, assign unit branch lengths if not max(xcoords.values()): xcoords = tree.depths(unit_branch_lengths=True) return xcoords def get_y_coordinates(tree, dist=1): """ returns dict {clade: y-coord} The y-coordinates are (float) multiple of integers (i*dist below) dist depends on the number of tree leafs """ maxheight = tree.count_terminals() # Counts the number of tree leafs. # Rows are defined by the tips/leafs # root_ycoord = {tree.root:maxheight} terminal_nodes = tree.get_terminals() internal_nodes = tree.get_nonterminals() terminal_ycoords = dict((leaf, 1) for _, leaf in enumerate(terminal_nodes)) internal_ycoords = dict( (leaf, i) for leaf, i in zip(internal_nodes, reversed(range(1, len(internal_nodes)))) ) ycoords = {**terminal_ycoords, **internal_ycoords} def calc_row(clade): for subclade in clade: if subclade not in ycoords: calc_row(subclade) ycoords[clade] = (ycoords[clade.clades[0]] + ycoords[clade.clades[-1]]) / 2 if tree.root.clades: calc_row(tree.root) return ycoords def get_clade_lines( orientation="horizontal", y_curr=0, last_y_curr=0, x_start=0, x_curr=0, y_bot=0, y_top=0, line_color="rgb(25,25,25)", line_width=0.5, init_flag=False, ): """define a shape of type 'line', for branch """ branch_line = dict( type="line", layer="below", line=dict(color=line_color, width=line_width) ) if orientation == "horizontal": if init_flag: branch_line.update(x0=x_start, y0=y_curr, x1=x_curr, y1=y_curr) else: branch_line.update( x0=x_start, y0=last_y_curr, x1=x_curr, y1=y_curr) elif orientation == "vertical": branch_line.update(x0=x_curr, y0=y_bot, x1=x_curr, y1=y_top) else: raise ValueError("Line type can be 'horizontal' or 'vertical'") return branch_line def draw_clade( clade, x_start, line_shapes, line_color="rgb(15,15,15)", line_width=1, x_coords=0, y_coords=0, last_clade_y_coord=0, init_flag=True ): """Recursively draw the tree branches, down from the given clade""" x_curr = x_coords[clade] y_curr = y_coords[clade] # Draw a horizontal line from start to here branch_line = get_clade_lines( orientation="horizontal", y_curr=y_curr, last_y_curr=last_clade_y_coord, x_start=x_start, x_curr=x_curr, line_color=line_color, line_width=line_width, init_flag=init_flag, ) line_shapes.append(branch_line) if clade.clades: # Draw descendants for child in clade: draw_clade(child, x_curr, line_shapes, x_coords=x_coords, y_coords=y_coords, last_clade_y_coord=y_coords[clade], init_flag=False, line_color=line_color) if 'dark' in self.template: text_color = 'white' else: text_color = 'black' line_color = self.color_map[self.topology] # Load in Tree object and ladderize tree = self.newicktree tree.ladderize() # Get coordinates + put into dictionary # dict(keys=clade_names, values=) x_coords = get_x_coordinates(tree) y_coords = get_y_coordinates(tree) line_shapes = [] draw_clade( tree.root, 0, line_shapes, line_color=line_color, line_width=2, x_coords=x_coords, y_coords=y_coords, ) # my_tree_clades = x_coords.keys() X = [] Y = [] text = [] for cl in my_tree_clades: X.append(x_coords[cl]) Y.append(y_coords[cl]) # Add confidence values if internal node if not cl.name: text.append(cl.confidence) else: text.append(cl.name) axis = dict( showline=False, zeroline=False, showgrid=False, visible=False, showticklabels=False, ) label_legend = ["Tree_1"] nodes = [] for elt in label_legend: node = dict( type="scatter", x=X, y=Y, mode="markers+text", marker=dict(color=text_color, size=5), text=text, # vignet information of each node textposition='right', textfont=dict(color=text_color, size=25), showlegend=False, name=elt, ) nodes.append(node) layout = dict( template=self.template, dragmode="select", autosize=True, showlegend=True, xaxis=dict( showline=True, zeroline=False, visible=False, showgrid=False, showticklabels=True, range=[0, (max(x_coords.values())+2)] ), yaxis=axis, hovermode="closest", shapes=line_shapes, legend={"x": 0, "y": 1}, font=dict(family="Open Sans"), ) fig = dict(data=nodes, layout=layout) return fig def create_circular_tree(self): def get_circular_tree_data(tree, order='level', dist=1, start_angle=0, end_angle=360, start_leaf='first'): """Define data needed to get the Plotly plot of a circular tree Source code found at: https://chart-studio.plotly.com/~empet/14834.embed """ # tree: an instance of Bio.Phylo.Newick.Tree or Bio.Phylo.PhyloXML.Phylogeny # order: tree traversal method to associate polar coordinates to its nodes # dist: the vertical distance between two consecutive leafs in the associated rectangular tree layout # start_angle: angle in degrees representing the angle of the first leaf mapped to a circle # end_angle: angle in degrees representing the angle of the last leaf # the list of leafs mapped in anticlockwise direction onto circles can be tree.get_terminals() # or its reversed version tree.get_terminals()[::-1]. # start leaf: is a keyword with two possible values" # 'first': to map the leafs in the list tree.get_terminals() onto a circle, # in the counter-clockwise direction # 'last': to map the leafs in the list, tree.get_terminals()[::-1] start_angle *= np.pi/180 # conversion to radians end_angle *= np.pi/180 def get_radius(tree): """ Associates to each clade root its radius, equal to the distance from that clade to the tree root returns dict {clade: node_radius} """ if self.branch_len: node_radius = tree.depths(unit_branch_lengths=True) else: node_radius = tree.depths() # If the tree did not record the branch lengths assign the unit branch length # (ex: the case of a newick tree "(A, (B, C), (D, E))") if not np.count_nonzero(node_radius.values()): node_radius = tree.depths(unit_branch_lengths=True) return node_radius def get_vertical_position(tree): """ returns a dict {clade: ycoord}, where y-coord is the cartesian y-coordinate of a clade root in a rectangular phylogram """ n_leafs = tree.count_terminals() # Counts the number of tree leafs. # Assign y-coordinates to the tree leafs if start_leaf == 'first': node_ycoord = dict((leaf, k) for k, leaf in enumerate(tree.get_terminals())) elif start_leaf == 'last': node_ycoord = dict((leaf, k) for k, leaf in enumerate(reversed(tree.get_terminals()))) else: raise ValueError("start leaf can be only 'first' or 'last'") def assign_ycoord(clade):#compute the y-coord for the root of this clade for subclade in clade: if subclade not in node_ycoord: # if the subclade root hasn't a y-coord yet assign_ycoord(subclade) node_ycoord[clade] = 0.5 * (node_ycoord[clade.clades[0]] + node_ycoord[clade.clades[-1]]) if tree.root.clades: assign_ycoord(tree.root) return node_ycoord node_radius = get_radius(tree) node_ycoord = get_vertical_position(tree) y_vals = node_ycoord.values() ymin, ymax = min(y_vals), max(y_vals) ymin -= dist # this dist subtraction is necessary to avoid coincidence of the first and last leaf angle # when the interval [ymin, ymax] is mapped onto [0, 2pi], def ycoord2theta(y): # maps an y in the interval [ymin-dist, ymax] to the interval [radian(start_angle), radian(end_angle)] return start_angle + (end_angle - start_angle) * (y-ymin) / float(ymax-ymin) def get_points_on_lines(linetype='radial', x_left=0, x_right=0, y_right=0, y_bot=0, y_top=0): """ - define the points that generate a radial branch and the circular arcs, perpendicular to that branch - a circular arc (angular linetype) is defined by 10 points on the segment of ends (x_bot, y_bot), (x_top, y_top) in the rectangular layout, mapped by the polar transformation into 10 points that are spline interpolated - returns for each linetype the lists X, Y, containing the x-coords, resp y-coords of the line representative points """ if linetype == 'radial': theta = ycoord2theta(y_right) X = [x_left*np.cos(theta), x_right*np.cos(theta), None] Y = [x_left*np.sin(theta), x_right*np.sin(theta), None] elif linetype == 'angular': theta_b = ycoord2theta(y_bot) theta_t = ycoord2theta(y_top) t = np.linspace(0,1, 10)# 10 points that span the circular arc theta = (1-t) * theta_b + t * theta_t X = list(x_right * np.cos(theta)) + [None] Y = list(x_right * np.sin(theta)) + [None] else: raise ValueError("linetype can be only 'radial' or 'angular'") return X,Y def get_line_lists(clade, x_left, xlines, ylines, xarc, yarc): """Recursively compute the lists of points that span the tree branches""" # xlines, ylines - the lists of x-coords, resp y-coords of radial edge ends # xarc, yarc - the lists of points generating arc segments for tree branches x_right = node_radius[clade] y_right = node_ycoord[clade] X,Y = get_points_on_lines(linetype='radial', x_left=x_left, x_right=x_right, y_right=y_right) xlines.extend(X) ylines.extend(Y) if clade.clades: y_top = node_ycoord[clade.clades[0]] y_bot = node_ycoord[clade.clades[-1]] X,Y = get_points_on_lines(linetype='angular', x_right=x_right, y_bot=y_bot, y_top=y_top) xarc.extend(X) yarc.extend(Y) # get and append the lists of points representing the branches of the descedants for child in clade: get_line_lists(child, x_right, xlines, ylines, xarc, yarc) xlines = [] ylines = [] xarc = [] yarc = [] get_line_lists(tree.root, 0, xlines, ylines, xarc, yarc) xnodes = [] ynodes = [] for clade in tree.find_clades(order='preorder'): #it was 'level' theta = ycoord2theta(node_ycoord[clade]) xnodes.append(node_radius[clade]*np.cos(theta)) ynodes.append(node_radius[clade]*np.sin(theta)) return xnodes, ynodes, xlines, ylines, xarc, yarc if 'dark' in self.template: text_color = 'white' else: text_color = 'black' line_color = self.color_map[self.topology] tree = self.newicktree tree.ladderize() traverse_order = 'preorder' all_clades=list(tree.find_clades(order=traverse_order)) for k in range(len((all_clades))): all_clades[k].id=k xnodes, ynodes, xlines, ylines, xarc, yarc = get_circular_tree_data(tree, order=traverse_order, start_leaf='last') tooltip=[] clade_names=[] color=[] for clade in tree.find_clades(order=traverse_order): if self.branch_len: branch_length = 1 else: branch_length = clade.branch_length if clade.name and clade.confidence and clade.branch_length: tooltip.append(f"name: {clade.name}<br>branch-length: {branch_length}\ <br>confidence: {int(clade.confidence)}") color.append[clade.confidence.value] clade_names.append(clade.name) elif clade.name is None and clade.branch_length is not None and clade.confidence is not None: color.append(clade.confidence) clade_names.append(clade.name) tooltip.append(f"branch-length: {branch_length}\ <br>confidence: {int(clade.confidence)}") elif clade.name and clade.branch_length and clade.confidence is None: tooltip.append(f"name: {clade.name}<br>branch-length: {branch_length}") color.append(-1) clade_names.append(clade.name) else: tooltip.append('') color.append(-1) clade_names.append(clade.name) trace_nodes=dict(type='scatter', x=xnodes, y= ynodes, mode='markers+text', marker=dict(color=text_color, size=8), text=clade_names, textposition='top center', textfont=dict(color=text_color, size=12), hoverinfo='text', hovertemplate=tooltip, ) trace_radial_lines=dict(type='scatter', x=xlines, y=ylines, mode='lines', line=dict(color=line_color, width=1), hoverinfo='none', ) trace_arcs=dict(type='scatter', x=xarc, y=yarc, mode='lines', line=dict(color=line_color, width=1, shape='spline'), hoverinfo='none', ) layout=dict( font=dict(family=self.font_family,size=14), autosize=True, showlegend=False, template=self.template, xaxis=dict(visible=False), yaxis=dict(visible=False), hovermode='closest', margin=dict(t=20, b=10, r=20, l=10, pad=20), ) fig = go.Figure(data=[trace_radial_lines, trace_arcs, trace_nodes], layout=layout) return fig class RFDistance(): def __init__(self, t1, t2): self.t1 = Tree(t1) self.t2 = Tree(t2) self.compare = self.t1.compare(self.t2) def NormRF(self): return self.compare['norm_rf'] def RF(self): return self.compare['rf'] def MaxRF(self): return self.compare['max_rf'] # ------------------------------------------------------------------------------------- # ------------------------------ Alt Data Graph Functions ----------------------------- def make_alt_data_str_figure( alt_data_to_graph, chromosome_df, color_mapping, topology_df, window_size, template, dataRange, axis_line_width, xaxis_gridlines, yaxis_gridlines, font_family, whole_genome, ): # sort dataframe topology_df.sort_values(by=["Window"], inplace=True) topology_df.fillna("NULL", inplace=True) # Build graph if whole_genome: fig = px.histogram( topology_df, x="Window", y=[1]*len(topology_df), category_orders={"Chromosome": chromosome_df['Chromosome']}, color=alt_data_to_graph, color_discrete_sequence=list(color_mapping.values()), nbins=int(chromosome_df["End"].max()/window_size), facet_row="Chromosome", ) fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1])) fig.update_layout( template=template, margin=dict( l=60, r=50, b=40, t=40, ), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0 ), title={ 'text': str(alt_data_to_graph), 'x':0.5, 'xanchor': 'center', 'yanchor': 'top', }, hovermode="x unified", font=dict(family=font_family,), height=100*len(topology_df["Chromosome"].unique()) ) else: fig = px.histogram( topology_df, x="Window", y=[1]*len(topology_df), color=alt_data_to_graph, color_discrete_sequence=list(color_mapping.values()), nbins=int(chromosome_df["End"].max()/window_size), ) fig.update_layout( template=template, margin=dict( l=60, r=50, b=40, t=40, ), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0 ), title={ 'text': str(alt_data_to_graph), 'x':0.5, 'xanchor': 'center', 'yanchor': 'top', }, hovermode="x unified", font=dict(family=font_family,), ) if dataRange: fig.update_xaxes( title="Position", range=dataRange, showline=True, showgrid=xaxis_gridlines, linewidth=axis_line_width, ) else: fig.update_xaxes( title="Position", showline=True, showgrid=xaxis_gridlines, linewidth=axis_line_width, ) fig.update_yaxes( title="y-axis", range=[0, 1], nticks=1, showline=True, showgrid=yaxis_gridlines, linewidth=axis_line_width, ) return fig def make_alt_data_int_figure( alt_data_to_graph, color_mapping, topology_df, chromosome_df, template, dataRange, y_max, axis_line_width, xaxis_gridlines, yaxis_gridlines, font_family, whole_genome, ): # sort dataframe topology_df = topology_df.sort_values(by=["Window"]) y_range = [0, (y_max*1.1)] # Build graph if whole_genome: fig = px.line( topology_df, x="Window", y=alt_data_to_graph, category_orders={"Chromosome": chromosome_df['Chromosome']}, color_discrete_sequence=list(color_mapping.values()), facet_row="Chromosome", ) fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1])) fig.update_layout( template=template, margin=dict( l=60, r=50, b=40, t=40, ), title={ 'text': str(alt_data_to_graph), 'x':0.5, 'xanchor': 'center', 'yanchor': 'top', }, hovermode="x unified", font=dict(family=font_family,), height=100*len(topology_df["Chromosome"].unique()), ) else: fig = px.line( topology_df, x="Window", y=alt_data_to_graph, color_discrete_sequence=list(color_mapping.values()), ) fig.update_layout( template=template, margin=dict( l=60, r=50, b=40, t=40, ), title={ 'text': str(alt_data_to_graph), 'x':0.5, 'xanchor': 'center', 'yanchor': 'top', }, hovermode="x unified", font=dict(family=font_family,), ) # Update X-axis if dataRange: fig.update_xaxes( title="Position", range=dataRange, showline=True, showgrid=xaxis_gridlines, linewidth=axis_line_width, ) else: fig.update_xaxes( title="Position", showline=True, showgrid=xaxis_gridlines, linewidth=axis_line_width, ) if y_max < 0.1: fig.update_yaxes( fixedrange=True, linewidth=axis_line_width, range=y_range, showgrid=yaxis_gridlines, showline=True, title="Edit me", showexponent = 'all', exponentformat = 'e', ) else: fig.update_yaxes( fixedrange=True, linewidth=axis_line_width, range=y_range, showgrid=yaxis_gridlines, showline=True, title="Edit me", ) return fig # ---------------------------------------------------------------------------------------- # -------------------------- Single Chromosome Graph Functions --------------------------- def build_histogram_with_rug_plot( topology_df, chromosome, chromosome_df, template, current_topologies, window_size, color_mapping, dataRange, topoOrder, axis_line_width, xaxis_gridlines, yaxis_gridlines, font_family, ): # --- Set up topology data --- # Extract current topology data if (type(current_topologies) == str) or (type(current_topologies) == int): wanted_rows = topology_df[topology_df["TopologyID"] == current_topologies] elif type(current_topologies) == list: wanted_rows = topology_df[topology_df["TopologyID"].isin(current_topologies)] # Add in psuedodata for missing current_topologies (fixes issue where topology is dropped from legend) if len(wanted_rows['TopologyID'].unique()) < len(current_topologies): missing_topologies = [t for t in current_topologies if t not in wanted_rows['TopologyID'].unique()] for mt in missing_topologies: missing_row_data = [chromosome, 0, 'NA', mt] + ['NULL']*(len(wanted_rows.columns)-4) missing_row = pd.DataFrame(data={i:j for i,j in zip(wanted_rows.columns, missing_row_data)}, index=[0]) wanted_rows = pd.concat([wanted_rows, missing_row]) # Group data by topology ID grouped_topology_df = wanted_rows.sort_values(['TopologyID'],ascending=False).groupby(by='TopologyID') # Set row heights based on number of current_topologies being shown if len(current_topologies) <= 6: subplot_row_heights = [1, 1] elif len(current_topologies) <= 8: subplot_row_heights = [4, 2] else: subplot_row_heights = [8, 2] # Build figure # fig = make_subplots(rows=2, cols=1, row_heights=subplot_row_heights, vertical_spacing=0.05, shared_xaxes=True) fig = make_subplots(rows=2, cols=1, vertical_spacing=0.05, shared_xaxes=True) for topology, data in grouped_topology_df: fig.add_trace( go.Scatter( x=data['Window'], y=data['TopologyID'], name=topology, legendgroup=topology, mode='markers', marker_symbol='line-ns-open', marker_line_width=1, marker_color=[color_mapping[topology]]*len(data), ), # go.Box( # x=data['Window'], # y=data['TopologyID'], # boxpoints='all', # jitter=0, # legendgroup=topology, # marker_symbol='line-ns-open', # marker_color=color_mapping[topology], # name=topology, # ), row=1, col=1, ) fig.add_trace( go.Bar( x=data['Window'], y=[1]*len(data), name=topology, legendgroup=topology, showlegend=False, marker_color=color_mapping[topology], marker_line_width=0, ), row=2, col=1 ) # Update layout + axes fig.update_layout( template=template, legend_title_text='Topology', margin=dict( l=60, r=50, b=40, t=40, ), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0, itemsizing='constant' ), hovermode="x unified", font=dict(family=font_family,), ) fig.update_xaxes( rangemode="tozero", range=dataRange, linewidth=axis_line_width, showgrid=xaxis_gridlines, row=1, col=1 ) fig.update_xaxes( rangemode="tozero", range=dataRange, linewidth=axis_line_width, title='Position', showgrid=xaxis_gridlines, row=2, col=1, ) fig.update_yaxes( rangemode="tozero", categoryarray=topoOrder, linewidth=axis_line_width, showgrid=yaxis_gridlines, showticklabels=False, fixedrange=True, ticklen=0, title="", type='category', row=1, col=1, ) fig.update_yaxes( rangemode="tozero", fixedrange=True, linewidth=axis_line_width, nticks=1, showgrid=yaxis_gridlines, showticklabels=False, ticklen=0, title="", row=2, col=1, ) return fig def build_rug_plot( topology_df, chromosome, template, current_topologies, color_mapping, dataRange, topoOrder, axis_line_width, xaxis_gridlines, yaxis_gridlines, font_family, ): # --- Group wanted data --- if (type(current_topologies) == str) or (type(current_topologies) == int): wanted_rows = topology_df[topology_df["TopologyID"] == current_topologies] elif type(current_topologies) == list: wanted_rows = topology_df[topology_df["TopologyID"].isin(current_topologies)] # Add in psuedodata for missing current_topologies (fixes issue where topology is dropped from legend) if len(wanted_rows['TopologyID'].unique()) < len(current_topologies): missing_topologies = [t for t in current_topologies if t not in wanted_rows['TopologyID'].unique()] for mt in missing_topologies: missing_row_data = [chromosome, 0, 'NA', mt] + ['NULL']*(len(wanted_rows.columns)-4) missing_row = pd.DataFrame(data={i:j for i,j in zip(wanted_rows.columns, missing_row_data)}, index=[0]) wanted_rows = pd.concat([wanted_rows, missing_row]) else: pass # --- Group data by topology ID grouped_topology_df = wanted_rows.groupby(by='TopologyID') # --- Build figure --- fig = go.Figure() for topology, data in grouped_topology_df: fig.add_trace(go.Scatter( x=data['Window'], y=data['TopologyID'], name=topology, legendgroup=topology, mode='markers', marker_symbol='line-ns-open', marker_size=int(100/len(grouped_topology_df)), marker_line_width=1, marker_color=[color_mapping[topology]]*len(data), )) # Update figure layout + axes fig.update_layout( template=template, legend_title_text='Topology', xaxis_title_text='Position', margin=dict( l=60, r=60, b=40, t=40, ), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0, traceorder='normal', ), hovermode="x unified", font=dict(family=font_family,), ) fig.update_xaxes( rangemode="tozero", range=dataRange, linewidth=axis_line_width, showgrid=xaxis_gridlines, showline=True, ) fig.update_yaxes( fixedrange=True, title="", showline=True, showgrid=yaxis_gridlines, linewidth=axis_line_width, showticklabels=False, type='category', categoryarray=topoOrder, ) fig.for_each_annotation(lambda a: a.update(text="")) return fig def build_tile_plot( topology_df_filtered, chromosome_df, template, current_topologies, color_mapping, dataRange, window_size, axis_line_width, xaxis_gridlines, yaxis_gridlines, font_family, ): # Extract current topology data if (type(current_topologies) == str) or (type(current_topologies) == int): wanted_rows = topology_df_filtered[topology_df_filtered["TopologyID"] == current_topologies] elif type(current_topologies) == list: wanted_rows = topology_df_filtered[topology_df_filtered["TopologyID"].isin(current_topologies)] # fig = px.histogram( # wanted_rows, # x="Window", # y=[1]*len(wanted_rows), # color="TopologyID", # color_discrete_map=color_mapping, # nbins=int(chromosome_df["End"].max()/window_size) # ) grouped_topology_df = wanted_rows.groupby(by='TopologyID') # Build figure fig = go.Figure() for topology, data in grouped_topology_df: fig.add_trace( go.Scatter( x=data['Window'], y=[1]*len(data), name=topology, legendgroup=topology, mode='markers', marker_symbol='line-ns-open', marker_size=225, # marker_line_width=2, marker_color=[color_mapping[topology]]*len(data), # showlegend = False ), ) # Update layout + axes fig.update_layout( template=template, legend_title_text='Topology', margin=dict( l=60, r=50, b=40, t=40, ), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0, traceorder='normal', ), hovermode="x unified", font=dict(family=font_family,), ) fig.update_xaxes( linewidth=axis_line_width, rangemode="tozero", range=dataRange, showgrid=xaxis_gridlines, ) fig.update_yaxes( fixedrange=True, linewidth=axis_line_width, # range=[0, 1], showline=False, showgrid=yaxis_gridlines, showticklabels=False, ticklen=0, title="", ) return fig def build_alt_data_graph( alt_data_to_graph, chromosome_df, color_mapping, topology_df, window_size, template, dataRange, y_max, axis_line_width, xaxis_gridlines, yaxis_gridlines, font_family, ): # Check input type and graph accordingly try: input_type = type(topology_df[alt_data_to_graph].dropna().to_list()[0]) except IndexError: return no_data_graph(template) if input_type == str: alt_data_graph_data = make_alt_data_str_figure( alt_data_to_graph, chromosome_df, color_mapping, topology_df, window_size, template, dataRange, axis_line_width, xaxis_gridlines, yaxis_gridlines, font_family, False, ) else: alt_data_graph_data = make_alt_data_int_figure( alt_data_to_graph, color_mapping, topology_df, chromosome_df, template, dataRange, y_max, axis_line_width, xaxis_gridlines, yaxis_gridlines, font_family, False, ) return alt_data_graph_data def build_whole_genome_alt_data_graph( alt_data_to_graph, chromosome_df, color_mapping, topology_df, window_size, template, y_max, axis_line_width, xaxis_gridlines, yaxis_gridlines, font_family, ): # Check input type and graph accordingly try: input_type = type(topology_df[alt_data_to_graph].dropna().to_list()[0]) except IndexError: return no_data_graph(template) if input_type == str: alt_data_graph_data = make_alt_data_str_figure( alt_data_to_graph, chromosome_df, color_mapping, topology_df, window_size, template, None, axis_line_width, xaxis_gridlines, yaxis_gridlines, font_family, True, ) else: alt_data_graph_data = make_alt_data_int_figure( alt_data_to_graph, color_mapping, topology_df, chromosome_df, template, None, y_max, axis_line_width, xaxis_gridlines, yaxis_gridlines, font_family, True, ) return alt_data_graph_data def build_gff_figure( data, dataRange, template, axis_line_width, xaxis_gridlines, yaxis_gridlines, font_family, ): regionStart, regionEnd = dataRange # Show gene names if showing less than 1Mb of data # if abs(regionEnd - regionStart) <= 10000000: if abs(regionEnd - regionStart) <= 10000000: show_gene_names = True else: show_gene_names = False # Separate # group data by feature and gene name attr_group = data.groupby(by=['feature', 'attribute', 'strand']) positive_text_pos = "top center" negative_text_pos = "top center" features_graphed = list() fig = go.Figure() y_idx = 1 curr_feature = dict() for fg, gene_data in attr_group: feature, gene, strand = fg feature_strand = f"{feature} ({strand})" x_values = sorted(gene_data['start'].to_list() + gene_data['end'].to_list()) # Update y-axis value if new feature if not curr_feature: curr_feature[feature_strand] = y_idx y_idx += 1 elif feature_strand in curr_feature.keys(): pass else: curr_feature[feature_strand] = y_idx y_idx += 1 # Set legend show if feature in list already if feature_strand in features_graphed: show_legend = False else: show_legend = True features_graphed.append(feature_strand) # Set color, y-values, and arrow direction if strand == '+': colorValue = 'red' y_values = [curr_feature[feature_strand]]*len(x_values) markerSymbol = ['square']*(len(x_values)-1) + ['triangle-right'] text_pos = positive_text_pos text_val = [gene] + ['']*(len(x_values)-1) if positive_text_pos == "top center": positive_text_pos = "bottom center" elif positive_text_pos == "bottom center": positive_text_pos = "top center" else: colorValue = '#009BFF' y_values = [curr_feature[feature_strand]]*len(x_values) markerSymbol = ['triangle-left'] + ['square']*(len(x_values)-1) text_pos = negative_text_pos text_val = ['']*(len(x_values)-1) + [gene] if negative_text_pos == "top center": negative_text_pos = "bottom center" elif negative_text_pos == "bottom center": negative_text_pos = "top center" if show_gene_names: fig.add_trace(go.Scatter( x=x_values, y=y_values, name=feature_strand, legendgroup=feature_strand, mode='markers+lines+text', marker_symbol=markerSymbol, marker_size=8, marker_color=colorValue, text=text_val, textposition=text_pos, textfont=dict( size=10, ), hovertemplate=None, showlegend=show_legend, )) else: fig.add_trace(go.Scatter( x=x_values, y=y_values, name=feature_strand, legendgroup=feature_strand, mode='markers+lines', marker_symbol=markerSymbol, marker_size=8, marker_color=colorValue, # hoverinfo=['all'], hovertemplate=None, showlegend=show_legend, )) fig.update_layout( hovermode="x unified", showlegend=True, legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0, traceorder='normal', ), template=template, title='', margin=dict( l=62, r=50, b=20, t=20, ), height=150*len(features_graphed), font=dict(family=font_family,), ) fig.update_xaxes( range=dataRange, title='Position', matches="x", rangemode="tozero", linewidth=axis_line_width, showgrid=xaxis_gridlines, ) fig.update_yaxes( range=[0, len(features_graphed)+1], fixedrange=True, showticklabels=False, showgrid=yaxis_gridlines, title='', linewidth=axis_line_width, ) return fig # ---------------------------------------------------------------------------------------- # ------------------------------- Quantile Graph Functions ------------------------------- def get_quantile_coordinates( chromLengths, QUANTILES, WINDOWSIZE, ): quantileCoordinates = pd.DataFrame(columns=chromLengths["Chromosome"], index=range(1, QUANTILES+1)) for row in chromLengths.itertuples(index=False): chrom, _, end = row chunkSize = end // QUANTILES for i in range(QUANTILES): q = i + 1 if q == 1: quantileCoordinates.at[q, chrom] = [0, chunkSize] else: quantileCoordinates.at[q, chrom] = [chunkSize*(q-1) + WINDOWSIZE, chunkSize*q] return quantileCoordinates def calculateFrequencies( quantileCoordinates, input_df, chromLengths, QUANTILES, ): quantileFrequencies = pd.DataFrame(columns=chromLengths["Chromosome"], index=range(1, QUANTILES+1)) topos = input_df["TopologyID"].unique() for chrom in quantileCoordinates.columns: for q, quantile in enumerate(quantileCoordinates[chrom], 1): quantileData = input_df[(input_df['Window'] >= quantile[0]) & (input_df['Window'] <= quantile[1]) & (input_df['Chromosome'] == chrom)] topoQD = quantileData['TopologyID'].value_counts().to_dict() # Add missing topologies as count=0 for i in topos: if i not in topoQD.keys(): topoQD[i] = 0 quantileFrequencies.at[q, chrom] = topoQD continue return quantileFrequencies def plot_frequencies( quantileFrequencies, n_quantiles, template, color_mapping, axis_line_width, xaxis_gridlines, yaxis_gridlines, ): def reorganizeDF(df): new_df = pd.DataFrame(columns=['Chr', 'Quantile', 'TopologyID', 'Frequency']) nidx = 0 for c in df.columns: for idx in df.index: chromTotal = sum([v for v in df.at[idx, c].values()]) for topo, freq in zip(df.at[idx, c].keys(), df.at[idx, c].values()): new_df.at[nidx, 'TopologyID'] = topo new_df.at[nidx, 'Chr'] = c new_df.at[nidx, 'Quantile'] = idx try: new_df.at[nidx, 'Frequency'] = int(freq)/chromTotal except ZeroDivisionError: new_df.at[nidx, 'Frequency'] = 0.0 nidx += 1 return new_df # Organize DataFrame organizedDF= reorganizeDF(quantileFrequencies) # Create line graph fig = px.line( organizedDF, x='Quantile', y='Frequency', color='TopologyID', facet_col='Chr', facet_col_wrap=1, facet_row_spacing=0.01, color_discrete_map=color_mapping, ) fig.update_traces(texttemplate='%{text:.3}', textposition='top center') if len(organizedDF["Chr"].unique()) == 1: fig.update_layout( uniformtext_minsize=12, template=template, legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0, traceorder='normal', ), height=300, ) else: fig.update_layout( uniformtext_minsize=12, template=template, legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0, traceorder='normal', ), height=100*len(organizedDF["Chr"].unique()), ) fig.update_xaxes( range=[1, n_quantiles], rangemode="tozero", linewidth=axis_line_width, showgrid=xaxis_gridlines, ) fig.update_yaxes( range=[0, 1], fixedrange=True, showgrid=yaxis_gridlines, linewidth=axis_line_width, ) fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1])) return fig def calculate_topo_quantile_frequencies(df, current_topologies, additional_data, n_quantiles): final_df = pd.DataFrame(columns=["TopologyID", "Frequency", "Quantile"]) for topology in current_topologies: topo_df = pd.DataFrame(columns=["TopologyID", "Frequency", "Quantile"]) tidx = 0 df = df.sort_values(by=additional_data) df = df.assign(Quantile = pd.qcut(df[additional_data].rank(method='first'), q=n_quantiles, labels=False)) df['Quantile'] = df['Quantile'].apply(lambda x: x+1) df_group = df.groupby(by="Quantile") for rank, data in df_group: counts = data["TopologyID"].value_counts() for t, f in zip(counts.index, counts): if t == topology: topo_df.at[tidx, "TopologyID"] = t topo_df.at[tidx, "Frequency"] = f/len(df) topo_df.at[tidx, "Quantile"] = rank tidx += 1 break else: continue # -- Concat dfs -- final_df = pd.concat([final_df, topo_df]) return final_df def plot_frequencies_topo_quantile( final_df, template, color_mapping, axis_line_width, xaxis_gridlines, yaxis_gridlines, graph_title, additional_data ): fig = px.line( final_df, x="Quantile", y="Frequency", color="TopologyID", color_discrete_map=color_mapping, markers=True, ) fig.update_layout( template=template, title=graph_title, title_x=0.5, margin=dict( t=80 ), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0, # itemsizing='constant' ), ) fig.update_xaxes( title=f"{additional_data} Quantiles", linewidth=axis_line_width, showgrid=xaxis_gridlines, tick0=0, dtick=1, ) fig.update_yaxes( rangemode="tozero", linewidth=axis_line_width, showgrid=yaxis_gridlines, title='% Windows Observed', ) return fig # --------------------------------------------------------------------------------- # -------------------------------- Whole Genome Graph Functions ------------------------------- def build_topology_frequency_pie_chart( df, template, color_mapping, font_family, ): """Returns pie graph for whole genome topology frequencies""" fig = px.pie( df, values='Frequency', names='TopologyID', color="TopologyID", color_discrete_map=color_mapping, template=template, title='Whole Genome Topology Frequencies', ) fig.update_traces(textposition='inside') fig.update_layout( margin=dict(l=120, r=20, t=40, b=10), uniformtext_minsize=12, uniformtext_mode='hide', legend=dict(itemclick=False, itemdoubleclick=False), title_x=0.5, font=dict(family=font_family,), ) return fig def build_rf_graph( df, ref_topo, template, color_mapping, axis_line_width, font_family, ): fig = px.bar( df, x="TopologyID", y="normRF-Distance", color="TopologyID", color_discrete_map=color_mapping, text='normRF-Distance') fig.update_traces(texttemplate='%{text:.2f}', textposition='inside') fig.update_layout( title=f"Normalized RF-Distance from {ref_topo}", title_x=0.5, template=template, font=dict(family=font_family,), ) fig.update_xaxes(linewidth=axis_line_width) fig.update_yaxes(linewidth=axis_line_width, range=[0, 1]) return fig def build_whole_genome_rug_plot( df, chrom_df, chromGroup, template, color_mapping, currTopologies, topoOrder, window_size, axis_line_width, xaxis_gridlines, yaxis_gridlines, wg_squish_expand, font_family, ): df = df[(df['TopologyID'].isin(currTopologies)) & (df['Chromosome'].isin(chromGroup))] grouped_topology_df = df.groupby(by='TopologyID') num_chroms = len(df['Chromosome'].unique()) chrom_row_dict = {chrom:i for chrom, i in zip(sorted(df['Chromosome'].unique()), range(1, len(df['Chromosome'].unique())+1, 1))} chrom_shapes = [] row_height = [2]*num_chroms # --- Build figure --- # If chromosome name longer than 5 characters, use subplot titles # instead of row ittles if df.Chromosome.map(len).max() > 5: fig = make_subplots( rows=num_chroms, subplot_titles=chrom_row_dict.keys(), shared_xaxes=True, cols=1, row_heights=row_height, ) else: fig = make_subplots( rows=num_chroms, row_titles=[c for c in chrom_row_dict.keys()], shared_xaxes=True, cols=1, row_heights=row_height, ) for topology, data in grouped_topology_df: add_legend = True for chrom in chrom_row_dict.keys(): chrom_data = data[data["Chromosome"] == chrom] chrom_length_data = chrom_df[chrom_df['Chromosome'] == chrom] chrom_length = chrom_length_data['End'].max() if len(chrom_data) == 0: fig.add_trace( go.Scatter( x=[0], y=[topology], name=topology, legendgroup=topology, mode='markers', marker_symbol='line-ns-open', marker_color=[color_mapping[topology]]*len(chrom_data), showlegend = False, ), row=chrom_row_dict[chrom], col=1, ) elif add_legend: fig.add_trace( go.Scatter( x=chrom_data['Window'], y=chrom_data['TopologyID'], name=topology, legendgroup=topology, mode='markers', # marker_size=int(25/len(grouped_topology_df)), marker_symbol='line-ns-open', marker_color=[color_mapping[topology]]*len(chrom_data), ), # go.Box( # x=chrom_data['Window'], # y=chrom_data['TopologyID'], # boxpoints='all', # jitter=0, # legendgroup=topology, # marker_symbol='line-ns-open', # marker_color=color_mapping[topology], # name=topology, # ), row=chrom_row_dict[chrom], col=1, ) chrom_shapes.append(dict(type="line", xref="x", yref="y", x0=chrom_length, x1=chrom_length, y0=-1, y1=len(currTopologies), line_width=2)) add_legend = False else: fig.add_trace( go.Scatter( x=chrom_data['Window'], y=chrom_data['TopologyID'], name=topology, legendgroup=topology, mode='markers', # marker_size=int(25/len(grouped_topology_df)), marker_symbol='line-ns-open', marker_color=[color_mapping[topology]]*len(chrom_data), showlegend = False, ), # go.Box( # x=chrom_data['Window'], # y=chrom_data['TopologyID'], # boxpoints='all', # jitter=0, # marker_symbol='line-ns-open', # marker_color=color_mapping[topology], # legendgroup=topology, # showlegend = False, # name=topology, # ), row=chrom_row_dict[chrom], col=1, ) chrom_ref = chrom_row_dict[chrom] chrom_shapes.append(dict(type="rect", xref=f"x{chrom_ref}", yref=f"y{chrom_ref}", x0=chrom_length, x1=chrom_length, y0=-1, y1=len(currTopologies), line_width=2)) # Update layout + axes fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1])) fig.update_xaxes( rangemode="tozero", range=[0, (chrom_df['End'].max()+(2*window_size))], fixedrange=True, linewidth=axis_line_width, ticklen=0, matches="x", showgrid=xaxis_gridlines, ) fig.update_yaxes( fixedrange=True, title="", showgrid=yaxis_gridlines, showticklabels=False, linewidth=axis_line_width, categoryarray=topoOrder, ) if wg_squish_expand == 'expand': if num_chroms < 5: fig.update_layout( template=template, legend_title_text='Topology', legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0, traceorder='normal', itemsizing='constant', ), height=160*num_chroms, shapes=chrom_shapes, title_x=0.5, font=dict(family=font_family,), ) else: fig.update_layout( template=template, legend_title_text='Topology', legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0, traceorder='normal', itemsizing='constant', ), height=100*num_chroms, shapes=chrom_shapes, title_x=0.5, font=dict(family=font_family,), ) elif wg_squish_expand == 'squish': if num_chroms < 5: fig.update_layout( template=template, legend_title_text='Topology', legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0, traceorder='normal', itemsizing='constant', ), height=125*num_chroms, shapes=chrom_shapes, title_x=0.5, font=dict(family=font_family,), ) else: fig.update_layout( template=template, legend_title_text='Topology', legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0, traceorder='normal', itemsizing='constant', ), height=50*num_chroms, shapes=chrom_shapes, title_x=0.5, font=dict(family=font_family,), ) else: if num_chroms < 5: fig.update_layout( template=template, legend_title_text='Topology', legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0, traceorder='normal', itemsizing='constant', ), height=105*num_chroms, shapes=chrom_shapes, title_x=0.5, font=dict(family=font_family,), ) else: fig.update_layout( template=template, legend_title_text='Topology', legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0, traceorder='normal', itemsizing='constant', ), height=20*num_chroms, shapes=chrom_shapes, title_x=0.5, margin=dict( t=10, b=30, ), font=dict(family=font_family,), ) # Rotate chromosome names to 0-degrees for annotation in fig['layout']['annotations']: annotation['textangle']=0 annotation['align']="center" return fig def build_whole_genome_tile_plot( df, chrom_df, template, color_mapping, currTopologies, topoOrder, window_size, axis_line_width, chromGroup, xaxis_gridlines, yaxis_gridlines, wg_squish_expand, font_family, ): """ Max chromosomes per graph if # current_topologies <= 3: 20 Max chromosomes per graph if # current_topologies > 3: 20/2 Returns: List of figures to display """ df = df[df['TopologyID'].isin(currTopologies)] df = df[df['Chromosome'].isin(chromGroup)] grouped_topology_df = df.groupby(by='TopologyID') num_chroms = len(df['Chromosome'].unique()) chrom_row_dict = {chrom:i for chrom, i in zip(sorted(df['Chromosome'].unique()), range(1, len(df['Chromosome'].unique())+1, 1))} chrom_shapes = [] # --- Build figure --- # If longest chromosome name longer # than 5 characters, use subplot titles # instead of row titles if df.Chromosome.map(len).max() > 5: fig = make_subplots( rows=num_chroms, cols=1, shared_xaxes=True, subplot_titles=chrom_row_dict.keys(), vertical_spacing=0.03, ) else: fig = make_subplots( rows=num_chroms, cols=1, shared_xaxes=True, row_titles=[c for c in chrom_row_dict.keys()], vertical_spacing=0.001, ) for topology, data in grouped_topology_df: add_legend = True for chrom in chrom_row_dict.keys(): chrom_data = data[data["Chromosome"] == chrom] chrom_length_data = chrom_df[chrom_df['Chromosome'] == chrom] chrom_length = chrom_length_data['End'].max() if add_legend: fig.add_trace( go.Histogram( x=chrom_data['Window'], y=[1]*len(chrom_data), nbinsx=int(chrom_length/window_size), name=topology, legendgroup=topology, marker_line_width=0, marker_color=color_mapping[topology], ), row=chrom_row_dict[chrom], col=1, ) chrom_shapes.append(dict(type="line", xref="x", yref="y", x0=chrom_length, x1=chrom_length, y0=0, y1=1, line_width=2)) add_legend = False else: fig.add_trace( go.Histogram( x=chrom_data['Window'], y=[1]*len(chrom_data), nbinsx=int(chrom_length/window_size), name=topology, legendgroup=topology, marker_line_width=0, marker_color=color_mapping[topology], showlegend = False ), row=chrom_row_dict[chrom], col=1, ) chrom_ref = chrom_row_dict[chrom] chrom_shapes.append(dict(type="rect", xref=f"x{chrom_ref}", yref=f"y{chrom_ref}", x0=chrom_length, x1=chrom_length, y0=0, y1=1, line_width=2)) # Update layout + axes if wg_squish_expand == 'expand': if num_chroms < 5: fig.update_layout( barmode="relative", template=template, legend_title_text='Topology', margin=dict( l=60, r=50, b=40, t=40, ), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0, traceorder='normal', itemsizing='constant', ), hovermode="x unified", height=130*num_chroms, shapes=chrom_shapes, title_x=0.5, font=dict(family=font_family,), ) else: fig.update_layout( barmode="relative", template=template, legend_title_text='Topology', margin=dict( l=60, r=50, b=40, t=40, ), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0, traceorder='normal', itemsizing='constant', ), hovermode="x unified", height=100*num_chroms, shapes=chrom_shapes, title_x=0.5, font=dict(family=font_family,), ) elif wg_squish_expand == 'squish': if num_chroms < 5: fig.update_layout( barmode="relative", template=template, legend_title_text='Topology', margin=dict( l=60, r=50, b=40, t=40, ), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0, traceorder='normal', itemsizing='constant', ), hovermode="x unified", height=80*num_chroms, shapes=chrom_shapes, title_x=0.5, font=dict(family=font_family,), ) else: fig.update_layout( barmode="relative", template=template, legend_title_text='Topology', margin=dict( l=60, r=50, b=40, t=40, ), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0, traceorder='normal', itemsizing='constant', ), hovermode="x unified", height=50*num_chroms, shapes=chrom_shapes, title_x=0.5, font=dict(family=font_family,), ) else: if num_chroms < 5: fig.update_layout( barmode="relative", template=template, legend_title_text='Topology', margin=dict( l=60, r=50, b=40, t=40, ), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0, traceorder='normal', itemsizing='constant', ), hovermode="x unified", height=55*num_chroms, shapes=chrom_shapes, title_x=0.5, font=dict(family=font_family,), ) else: fig.update_layout( barmode="relative", template=template, legend_title_text='Topology', margin=dict( l=60, r=50, b=40, t=40, ), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0, traceorder='normal', itemsizing='constant', ), hovermode="x unified", height=20*num_chroms, shapes=chrom_shapes, title_x=0.5, font=dict(family=font_family,), ) fig.update_xaxes( linewidth=axis_line_width, fixedrange=True, rangemode="tozero", range=[0, chrom_df['End'].max()], ticklen=0, showgrid=xaxis_gridlines, ) fig.update_yaxes( # categoryarray=topoOrder, range=[0, 1], fixedrange=True, linewidth=axis_line_width, showgrid=yaxis_gridlines, showticklabels=False, title="", ticklen=0, ) # Rotate chromosome names to 0-degrees for annotation in fig['layout']['annotations']: annotation['textangle']=0 annotation['align']="center" return fig def build_whole_genome_bar_plot( df, template, color_mapping, currTopologies, axis_line_width, chromGroup, xaxis_gridlines, yaxis_gridlines, font_family, ): # Filter df to chromosomes in group df = df[df['Chromosome'].isin(chromGroup)] df = df[df['TopologyID'].isin(currTopologies)] number_of_chrom_rows = len(df["Chromosome"].unique()) // 3 fig = px.bar( df, x='TopologyID', y='Frequency', facet_col='Chromosome', facet_col_wrap=3, facet_row_spacing=0.05, color='TopologyID', template=template, color_discrete_map=color_mapping, text='Frequency', height=int(500*number_of_chrom_rows), ) fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1])) fig.update_traces(texttemplate='%{text:.2}', textposition='outside') # Remove y-axis labels for axis in fig.layout: if type(fig.layout[axis]) == go.layout.YAxis: fig.layout[axis].title.text = '' fig.update_layout( uniformtext_minsize=12, legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0, traceorder='normal', ), margin=dict(l=10, r=10, t=10, b=10), title="", annotations = list(fig.layout.annotations) + [go.layout.Annotation( x=-0.07, y=0.5, font=dict( size=12, # color='white', ), showarrow=False, text="Frequency", textangle=-90, xref="paper", yref="paper" ) ], title_x=0.5, font=dict(family=font_family,), ) fig.update_xaxes( title="", linewidth=axis_line_width, showgrid=xaxis_gridlines, ) fig.update_yaxes( range=[0, 1.1], matches='y', linewidth=axis_line_width, showgrid=yaxis_gridlines, ) return fig def build_whole_genome_pie_charts( df, template, color_mapping, chromGroup, font_family, ): # Filter df to chromosomes in group df = df[df['Chromosome'].isin(chromGroup)] number_of_chrom_rows = (len(df["Chromosome"].unique()) // 3)+(math.ceil(len(df["Chromosome"].unique()) % 3)) specs = [[{'type':'domain'}, {'type':'domain'}, {'type':'domain'}] for _ in range(number_of_chrom_rows)] fig = make_subplots( rows=number_of_chrom_rows, cols=3, specs=specs, vertical_spacing=0.03, horizontal_spacing=0.001, subplot_titles=sorted(df["Chromosome"].unique()), column_widths=[2]*3, ) col_pos = 1 row_num = 1 for c in sorted(df['Chromosome'].unique()): chrom_df = df[df["Chromosome"] == c] fig.add_trace(go.Pie(labels=chrom_df["TopologyID"], values=chrom_df['Frequency'], marker_colors=list(color_mapping.values())), row=row_num, col=col_pos) if col_pos == 3: col_pos = 1 row_num += 1 else: col_pos += 1 fig.update_traces(textposition='inside') fig.update_layout( uniformtext_minsize=12, showlegend=True, template=template, height=int(200*number_of_chrom_rows), font=dict(family=font_family,), ) return fig # --------------------------------------------------------------------------------- # --------------------------- Stats DataFrame Generators -------------------------- def _get_valid_cols(topology_df): valid_cols = list() for i in topology_df.columns[4:]: data = topology_df[i].unique() flag = None for j in data: if type(j) == str: flag = False break else: flag = True if flag: valid_cols.append(i) else: continue return valid_cols def basic_stats_dfs(topology_df): """Generate dataframes of basic statistics :param topology_df: Current View Tree Viewer input file dataframe :type topology_df: Object """ # Calculate current view topologies topo_freq_df = pd.DataFrame(topology_df["TopologyID"].value_counts()/len(topology_df)) if len(topo_freq_df) > 25: # If more than 25 topologies loaded, just show top 25 topo_freq_df = topo_freq_df.head(25) remainder_freq = 1.0 - sum(topo_freq_df['TopologyID']) topo_freq_df.at["Other", "TopologyID"] = remainder_freq topo_names = [i for i in topo_freq_df.index] topo_freqs = [round(i, 4) for i in topo_freq_df["TopologyID"]] # Calculate median + average of additional data if len(topology_df.columns) > 4: valid_cols = _get_valid_cols(topology_df) additional_dt_names = [i for i in valid_cols] additional_dt_avg = [topology_df[i].mean() for i in valid_cols] additional_dt_std = [topology_df[i].std() for i in valid_cols] topo_freq_df = pd.DataFrame( { "TopologyID": topo_names, "Frequency": topo_freqs, } ) additional_data_df = pd.DataFrame( { "Additional Data": additional_dt_names, "Average": additional_dt_avg, "Std Dev": additional_dt_std, } ) return topo_freq_df, additional_data_df else: # No additional data types present in file topo_freq_df = pd.DataFrame( { "TopologyID": topo_names, "Frequency": topo_freqs, } ) return topo_freq_df, pd.DataFrame() def current_view_topo_freq_chart(basic_stats_topo_freqs, template, color_mapping): """Return pie chart figure object for local topology frequencies :param basic_stats_topo_freqs: Dataframe of topology frequencies :type basic_stats_topo_freqs: DataFrame :return: Plotly express pie chart :rtype: Figure object """ if "Other" in basic_stats_topo_freqs["TopologyID"].to_list(): fig = px.bar( basic_stats_topo_freqs, x='TopologyID', y="Frequency", color="TopologyID", color_discrete_map=color_mapping, text="Frequency", ) fig.update_layout( template=template, uniformtext_minsize=12, uniformtext_mode='hide', ) fig.update_traces(textposition='outside') return fig else: fig = px.pie( basic_stats_topo_freqs, values="Frequency", names="TopologyID", color="TopologyID", color_discrete_map=color_mapping, template=template, title="Current View Topology Frequencies", ) fig.update_layout( legend=dict(itemclick=False, itemdoubleclick=False), margin=dict(l=120, r=20, t=40, b=10), uniformtext_minsize=12, uniformtext_mode='hide', title_x=0.5, ) fig.update_traces(textposition='inside') return fig def whole_genome_datatable(tv_df): valid_cols = _get_valid_cols(tv_df[4:]) for i in tv_df.columns.to_list()[4:]: if i in valid_cols: continue else: tv_df.drop(labels=i, axis=1, inplace=True) df_group = tv_df.groupby(by="TopologyID") out_df = pd.DataFrame(columns=["TopologyID", "Additional Data", "Num. Windows", "Average", "Std Dev"]) idx = 0 for topology, data in df_group: additional_datatypes = [i for i in data.columns[4:]] for datatype in additional_datatypes: dt_data = data[datatype] mean = dt_data.mean() stdev = dt_data.std() out_df.at[idx, "TopologyID"] = topology out_df.at[idx, "Additional Data"] = datatype out_df.at[idx, "Num. Windows"] = len(dt_data) out_df.at[idx, "Average"] = mean out_df.at[idx, "Std Dev"] = stdev idx += 1 continue columns = [{'id': c, 'name': ["Per-Topology Whole Genome Comparison", c], 'type': 'numeric', 'format': Format(precision=4, scheme=Scheme.decimal)} for c in out_df.columns] data = out_df.to_dict('records') return data, columns # --- post-hoc tests --- def mann_whitney_posthoc(tv_df, additional_data_type, pval_adjustment): return sp.posthoc_mannwhitney(tv_df, val_col=additional_data_type, group_col='TopologyID', p_adjust=pval_adjustment) def dunns_test_posthoc(tv_df, additional_data_type, pval_adjustment): return sp.posthoc_dunn(tv_df, val_col=additional_data_type, group_col='TopologyID', p_adjust=pval_adjustment) def tukeyHSD_posthoc(tv_df, additional_data_type, pval_adjustment, alpha): return sp.posthoc_tukey_hsd(tv_df[additional_data_type], tv_df["TopologyID"], alpha=alpha) # --- Significance tests --- def kruskal_wallis_H_test(tv_df, additional_data_type, posthoc_type, pval_adjustment, alpha): """Return dataframe with Kruskal-Wallis H test information for each topology """ d = [tv_df.loc[ids, additional_data_type].values for ids in tv_df.groupby('TopologyID').groups.values()] H, p = ss.kruskal(*d, nan_policy='omit') if posthoc_type == "Mann-Whitney rank test": posthoc = mann_whitney_posthoc(tv_df, additional_data_type, pval_adjustment) posthoc_df = pd.DataFrame(columns=[posthoc_type, "p-value"]) idx = 0 for c1 in posthoc.columns: for c2, pval in zip(posthoc.index, posthoc[c1]): if c1 == c2: # Remove self-self comparisons continue posthoc_df.at[idx, posthoc_type] = f"{c1} vs {c2}" posthoc_df.at[idx, "p-value"] = float(pval) idx += 1 data = posthoc_df.to_dict('records') columns = [ {'id': posthoc_type, 'name': posthoc_type}, {'id': 'p-value', 'name': 'p-value', 'type': 'numeric', 'format': Format(precision=4, scheme=Scheme.decimal_or_exponent)}, ] elif posthoc_type == "Dunn's test": posthoc = dunns_test_posthoc(tv_df, additional_data_type, pval_adjustment) posthoc_df = pd.DataFrame(columns=[posthoc_type, "p-value"]) idx = 0 for c1 in posthoc.columns: for c2, pval in zip(posthoc.index, posthoc[c1]): if c1 == c2: # Remove self-self comparisons continue posthoc_df.at[idx, posthoc_type] = f"{c1} vs {c2}" posthoc_df.at[idx, "p-value"] = float(pval) idx += 1 data = posthoc_df.to_dict('records') columns = [ {'id': posthoc_type, 'name': posthoc_type}, {'id': 'p-value', 'name': 'p-value', 'type': 'numeric', 'format': Format(precision=4, scheme=Scheme.decimal_or_exponent)}, ] elif posthoc_type == "TukeyHSD": posthoc = tukeyHSD_posthoc(tv_df, additional_data_type, pval_adjustment, alpha) posthoc_df = pd.DataFrame(columns=[posthoc_type, "p-value"]) idx = 0 for c1 in posthoc.columns: for c2, pval in zip(posthoc.index, posthoc[c1]): if c1 == c2: # Remove self-self comparisons continue posthoc_df.at[idx, posthoc_type] = f"{c1} vs {c2}" posthoc_df.at[idx, "p-value"] = float(pval) idx += 1 data = posthoc_df.to_dict('records') columns = [ {'id': posthoc_type, 'name': posthoc_type}, {'id': 'p-value', 'name': 'p-value', 'type': 'numeric', 'format': Format(precision=4, scheme=Scheme.decimal_or_exponent)}, ] else: pass return posthoc, data, columns, H, p def one_way_anova(tv_df, additional_data_type, posthoc_type, pval_adjustment, alpha): d = [tv_df.loc[ids, additional_data_type].values for ids in tv_df.groupby('TopologyID').groups.values()] F, p = ss.f_oneway(*d) if posthoc_type == "Mann-Whitney rank test": posthoc = mann_whitney_posthoc(tv_df, additional_data_type, pval_adjustment) posthoc_df = pd.DataFrame(columns=[posthoc_type, "p-value"]) idx = 0 for c1 in posthoc.columns: for c2, pval in zip(posthoc.index, posthoc[c1]): posthoc_df.at[idx, posthoc_type] = f"{c1} vs {c2}" posthoc_df.at[idx, "p-value"] = float(pval) idx += 1 data = posthoc_df.to_dict('records') columns = [ {'id': posthoc_type, 'name': posthoc_type}, {'id': 'p-value', 'name': 'p-value', 'type': 'numeric', 'format': Format(precision=4, scheme=Scheme.decimal_or_exponent)}, ] elif posthoc_type == "Dunn's test": posthoc = dunns_test_posthoc(tv_df, additional_data_type, pval_adjustment) posthoc_df = pd.DataFrame(columns=[posthoc_type, "p-value"]) idx = 0 for c1 in posthoc.columns: for c2, pval in zip(posthoc.index, posthoc[c1]): posthoc_df.at[idx, posthoc_type] = f"{c1} vs {c2}" posthoc_df.at[idx, "p-value"] = float(pval) idx += 1 data = posthoc_df.to_dict('records') columns = [ {'id': posthoc_type, 'name': posthoc_type}, {'id': 'p-value', 'name': 'p-value', 'type': 'numeric', 'format': Format(precision=4, scheme=Scheme.decimal_or_exponent)}, ] elif posthoc_type == "TukeyHSD": posthoc = tukeyHSD_posthoc(tv_df, additional_data_type, pval_adjustment, alpha) posthoc_df = pd.DataFrame(columns=[posthoc_type, "p-value"]) idx = 0 for c1 in posthoc.columns: for c2, pval in zip(posthoc.index, posthoc[c1]): posthoc_df.at[idx, posthoc_type] = f"{c1} vs {c2}" posthoc_df.at[idx, "p-value"] = float(pval) idx += 1 data = posthoc_df.to_dict('records') columns = [ {'id': posthoc_type, 'name': posthoc_type}, {'id': 'p-value', 'name': 'p-value', 'type': 'numeric', 'format': Format(precision=4, scheme=Scheme.decimal_or_exponent)}, ] else: pass return posthoc, data, columns, F, p def stats_test_heatmap(posthoc, template): fig = go.Figure(data=go.Heatmap( z=posthoc.values, x=posthoc.columns, y=posthoc.index, zmin=0, zmax=1, colorscale='Viridis', colorbar=dict(title='p-value'), hovertemplate = 'p-value: %{z}<extra></extra>', )) fig.update_layout( template=template, coloraxis_colorbar=dict(title="log(p-value)"), margin=dict( t=60, ), ) return fig def frequency_distribution(data, name, template): """Return frequency density distribution""" fig = px.histogram(data, x=name, histnorm='density') fig.update_layout(template=template, margin=dict(t=20, pad=30)) return fig def mean_frequency_of_alt_data_per_topology(tv_df, topologies, additional_data_type): out_df = pd.DataFrame(columns=["TopologyID", "Total Windows", f"Mean ({additional_data_type})"]) idx = 1 for i in topologies: topo_df = tv_df[tv_df["TopologyID"] == i] additional_data_mean = topo_df[f"{additional_data_type}"].mean() out_df.at[idx, "TopologyID"] = i out_df.at[idx, "Total Windows"] = len(topo_df) out_df.at[idx, f"Mean ({additional_data_type})"] = additional_data_mean idx += 1 continue return out_df.to_dict('records') # --------------------------------------------------------------------------------- # ------------------------- Graph Customization Functions ------------------------- def set_topology_colors(data, color): df =
pd.read_json(data)
pandas.read_json
import pandas as pd import plotly from path import Path from jinja2 import Environment, FileSystemLoader # html template engine from flask import url_for import visualize as bv def generate_voc_html(feature: str, values: list, results: dict, template_name: str='voc.html'): # express plots in html and JS mutation_diversity = '' # config = dict({'displaylogo': False}) config = {'displaylogo': False, 'scrollZoom': False, 'modeBarButtonsToAdd':['drawline', 'drawopenpath', 'drawrect', 'eraseshape' ], 'modeBarButtonsToRemove': ['toggleSpikelines','hoverCompareCartesian','lasso2d']} # config = {'displayModeBar': False} if results.get('mutation_diversity', None): mutation_diversity = plotly.offline.plot(results['mutation_diversity'], include_plotlyjs=False, output_type='div', config=config) sampling_img = plotly.offline.plot(results['sampling_fig'], include_plotlyjs=False, output_type='div', config=config) world_time = plotly.offline.plot(results['world_time'], include_plotlyjs=False, output_type='div', config=config) us_time = plotly.offline.plot(results['us_time'], include_plotlyjs=False, output_type='div', config=config) ca_time = plotly.offline.plot(results['ca_time'], include_plotlyjs=False, output_type='div', config=config) world_rtime = plotly.offline.plot(results['world_rtime'], include_plotlyjs=False, output_type='div', config=config) us_rtime = plotly.offline.plot(results['us_rtime'], include_plotlyjs=False, output_type='div', config=config) ca_rtime = plotly.offline.plot(results['ca_rtime'], include_plotlyjs=False, output_type='div', config=config) world_map = plotly.offline.plot(results['world_map'], include_plotlyjs=False, output_type='div', config=config) state_map = plotly.offline.plot(results['state_map'], include_plotlyjs=False, output_type='div', config=config) county_map = plotly.offline.plot(results['county_map'], include_plotlyjs=False, output_type='div', config=config) # genetic_distance_plot = plotly.offline.plot(results['genetic_distance_plot'], include_plotlyjs=False, output_type='div') strain_distance_plot = plotly.offline.plot(results['strain_distance_plot'], include_plotlyjs=False, output_type='div', config=config) # aa_distance_plot = plotly.offline.plot(results['aa_distance_plot'], include_plotlyjs=False, output_type='div') # s_aa_distance_plot = plotly.offline.plot(results['s_aa_distance_plot'], include_plotlyjs=False, output_type='div') # generate output messages #TODO: expt_name, first_detected date = results['date'] strain = results['strain'] total_num = results['total_num'] num_countries = results['num_countries'] us_num = results['us_num'] num_states = results['num_states'] ca_num = results['ca_num'] num_lineages = results.get('num_lineages', '') mutations = results.get('mutations', '') # dir containing our template file_loader = FileSystemLoader('templates') # load the environment env = Environment(loader=file_loader) # load the template template = env.get_template(template_name) # render data in our template format html_output = template.render(feature=feature, values=values, total_num=total_num, num_countries=num_countries, us_num=us_num, num_states=num_states, ca_num=ca_num, num_lineages=num_lineages, strain=strain, mutations=mutations, date=date, world_time=world_time, us_time=us_time, ca_time=ca_time, world_rtime=world_rtime, ca_rtime=ca_rtime, us_rtime=us_rtime, world_map=world_map, state_map=state_map, county_map=county_map, # genetic_distance_plot=genetic_distance_plot, strain_distance_plot=strain_distance_plot, # aa_distance_plot=aa_distance_plot, # s_aa_distance_plot=s_aa_distance_plot, first_detected=results['first_detected'], sampling_img=sampling_img, mutation_diversity=mutation_diversity) print(f"Results for {values} embedded in HTML report") return html_output def generate_voc_data(feature, values, input_params): results = pd.DataFrame() res = pd.DataFrame() if feature == 'mutation': print(f"Loading variant data...") gisaid_data = pd.read_csv(input_params['gisaid_data_fp'], compression='gzip') if len(values) > 1: res = (gisaid_data.groupby(['date', 'country', 'division', 'purpose_of_sequencing', 'location', 'pangolin_lineage', 'strain']) .agg(mutations=('mutation', 'unique')).reset_index()) res['is_vui'] = res['mutations'].apply(bv.is_vui, args=(set(values),)) else: print(f"Loading metadata...") gisaid_data =
pd.read_csv(input_params['gisaid_meta_fp'], sep='\t', compression='gzip')
pandas.read_csv
import pandas as pd import os, requests, logging import sys # from bs4 import BeautifulSoup as bs from .utils import * class EdgarBase(object): def __init__(self, dir_edgar=None): # self.dir_edgar = # self.__dir_download = None # self.__dir_data = None self.__dir_output = None self.ulr_sec = 'https://www.sec.gov/Archives/' self.__dir_config = None self.dir_curr = os.path.abspath(os.path.dirname(__file__)) self.dir_config = os.path.join(self.dir_curr, 'config') self.today = pd.datetime.today() self.__fact_mapping = None self.__dir_edgar = dir_edgar self.__cache_file = {} @property def dir_edgar(self): if self.__dir_edgar is None: logger.error('please set output data directory ') if 'DIR_EDGAR' not in os.environ: logger.error('please set environment variable DIR_EDGAR') logger.error("os.environ['DIR_EDGAR']=/path/to/dir'") import tempfile self.__dir_edgar = tempfile.gettempdir() else: self.__dir_edgar = os.environ['DIR_EDGAR'] return self.__dir_edgar def set_dir_edgar(self, dir_edgar): if not os.path.exists(dir_edgar): os.makedirs(dir_edgar) self.__dir_edgar = dir_edgar return self @property def _dir_download(self): # dir_download = os.path.join(self.dir_edgar, 'download') # if not os.path.isdir(dir_download): # os.makedirs(dir_download) return self.dir_edgar def set_dir_config(self, dir_input): logger.info('setting dir_config={f}'.format(f=dir_input)) self.dir_curr = dir_input @property def fact_mapping(self): if self.__fact_mapping is None: path_fact_mapping = os.path.join(self.dir_config, 'fact_mapping.csv') logger.info('reading fact_mapping from {f}'.format(f=path_fact_mapping)) fm = pd.read_csv(path_fact_mapping).set_index('item') self.__fact_mapping = fm else: fm = self.__fact_mapping return fm def get_cik(self, ticker): return ticker2cik(ticker) def get_filing_path(self, ticker, filing_type=None, start_date=None, end_date=None): """ :param ticker: :param filing_type: '10-K', '10-Q', etc... :param start_date: str or datetime :param end_date: str or datetime :return: data frame columns=ticker|cik|filing_type|date|filepath """ pass def parse_filing(self, filepath, section): pass def reindex_master(self, start_date=None, end_date=None): pass class EdgarDownloader(EdgarBase): def __init__(self, dir_edgar): super(EdgarDownloader, self).__init__(dir_edgar) self.__conn_master_db = None self.valid_form_type = ['10-Q', '10-K', '8-K'] def __exit__(self): self._close_master_db() @property def _dir_master(self): dir_master = os.path.join(self.dir_edgar, 'master') if not os.path.isdir(dir_master): os.makedirs(dir_master) return dir_master @property def conn_master_db(self): file_master_db = os.path.join(self.dir_edgar, 'master_idx.db') if self.__conn_master_db is None: import sqlite3 if not os.path.exists(file_master_db): conn = sqlite3.connect(file_master_db) pd.DataFrame().to_sql('master_idx', conn) else: conn = sqlite3.connect(file_master_db) self.__conn_master_db = conn return self.__conn_master_db def _close_master_db(self): conn = self.__conn_master_db conn.close() self.__conn_master_db = None def load_master_db(self, start_date, end_date=None, force_reload=False): #start_date = pd.to_datetime(str(start_date)) #end_date = pd.datetime.today() if end_date is None else pd.to_datetime(str(end_date)) list_yyyyqq = self._yyyyqq_between(start_date, end_date) "edgar/full-index/{yyyy}/QTR{q}/master.idx" list_file_master = ["edgar/full-index/{y}/QTR{q}/master.idx".format(y=yq.split('Q')[0], q=yq.split('Q')[1]) for yq in list_yyyyqq] #list_file_download = [f for f in list_file_master if not os.path.exists(f) or force_reload] list_file_downloaded = download_list(list_file_master, self.dir_edgar, force_download=force_reload) self._update_master_db(list_file_downloaded) def _update_master_db(self, list_files): conn = self.conn_master_db col_names = ['cik', 'company_name', 'form_type', 'date_filed', 'filename'] dfs = dd.read_csv(list_files, sep='|', skiprows=11, header=None) dfs.columns = col_names df_load = dfs[dfs['form_type'].isin(self.valid_form_type)].compute() sql_all = 'select * from master_idx' df_all = pd.read_sql_query(sql_all, conn) logger.info('read master_idx db, n={s}'.format(s=df_all.shape[0])) df_all = pd.concat([df_all, df_load], sort=False).drop_duplicates() df_all.to_sql('master_idx', conn, if_exists='replace', index=False) logger.info('write master_idx db, n={s}'.format(s=df_all.shape[0])) return 0 # def _refresh_master_idx(self, yyyy, q, force=False): # # yyyy, q = self._year_quarter(date) # file_master = os.path.join(self._dir_master, "{y}_QTR{q}_master.csv".format(y=yyyy, q=q)) # if not os.path.exists(file_master) or force: # url_master = self._url_master_idx(yyyy, q) # logger.info('downloading {f}'.format(f=url_master)) # resp = req.get(url_master) # if resp.status_code != 200: # logger.error('error downloading {f}'.format(f=url_master)) # else: # write_data = '\n'.join(resp.content.decode('latin1').split('\n')[11:]) # logger.info('saving {f}'.format(f=file_master)) # with open(file_master, 'w+', encoding='utf-8') as f: # f.write("cik|company|form_type|file_date|file_name\n") # f.write(write_data) # self._update_master_db([file_master]) # else: # logger.info('use existing file. {f}'.format(f=file_master)) # return file_master def filings_between(self, symbol, start_date, end_date=None, form_type='10-K', download=True): #list_year_quarter = self._yyyyqq_between(start_date, end_date) #list_master_file = [self._refresh_master_idx(t.split('Q')) for t in list_year_quarter] # dfs = dd.read_csv(list_master_file, sep='|') cik = int(ticker2cik(symbol)) # df_res = dfs[(dfs.cik == cik) & (dfs.form_type == form_type)].compute() sql_filings = "select * from master_idx where cik=={cik} and form_type=='{f}' " \ "and date_filed>='{t0}' ".format(cik=cik, f=form_type, t0=pd.to_datetime(start_date).date()) if end_date: sql_filings += "and file_date<'{t1}'".format(t1=pd.to_datetime(end_date).date()) df_res = pd.read_sql_query(sql_filings, self.conn_master_db) list_filename = df_res['filename'].tolist() if download: list_filename = download_list(list_filename, self._dir_download, force_download=True) return list_filename # @staticmethod # def _url_master_idx(yyyy, q): # url = "https://www.sec.gov/Archives/edgar/full-index/{yyyy}/QTR{q}/master.idx".format(yyyy=yyyy, q=q) # return url # @staticmethod # def _year_quarter(date=pd.datetime.today()): # t = pd.to_datetime(date).date() # return t.year, (t.month - 1) // 3 + 1 @staticmethod def _yyyyqq(date): yq = pd.Period(pd.to_datetime(str(date)), freq='Q') return str(yq) def _yyyyqq_between(self, start_date, end_date=None): end_date = pd.datetime.today() if end_date is None else pd.to_datetime(end_date) end_date += pd.tseries.offsets.QuarterEnd() start_date = pd.to_datetime(str(start_date)) logger.info('using quarters between {t0} to {t1}'.format(t0=start_date, t1=end_date)) list_year_quarter = list(set(self._yyyyqq(t) for t in
pd.date_range(start_date, end_date, freq='M')
pandas.date_range
from flask import Flask, render_template import pandas as pd from pandas.tseries.offsets import DateOffset import requests import numpy as np import tensorflow.keras.models as tf import pickle app = Flask(__name__) def weekly_cases(select, column_name): cases = [0, 0, 0, 0, 0, 0] for x in range(6, len(select)): weekly_avg = (select.loc[x, column_name] + select.loc[x-1, column_name] + select.loc[x-2, column_name] + select.loc[x-3, column_name] + select.loc[x-4, column_name] + select.loc[x-5, column_name] + select.loc[x-6, column_name]) cases.append(weekly_avg) return cases def weekly_ratio(select, column_name): ratio = [0.0]*13 for x in range(13, len(select)): if select.loc[x-7, column_name] == 0: ratio.append(ratio[-1]) else: avg_ratio = (select.loc[x, column_name])/select.loc[x-7, column_name] ratio.append(avg_ratio) return ratio def data_extract(): api_path = 'https://covidsitrep.moh.gov.sg/_dash-layout' moh = requests.get(api_path).json() date = moh['props']['children'][1]['props']['children'][2]['props']['children'][0]['props']['figure']['data'][1]['x'] comm_cases = moh['props']['children'][1]['props']['children'][2]['props']['children'][0]['props']['figure']['data'][1]['y'] dorm_cases = moh['props']['children'][1]['props']['children'][2]['props']['children'][0]['props']['figure']['data'][3]['y'] import_cases = moh['props']['children'][1]['props']['children'][2]['props']['children'][0]['props']['figure']['data'][5]['y'] d = {"date": date, "comm_cases": comm_cases,"dorm_cases": dorm_cases, "import_cases": import_cases} df = pd.DataFrame(data=d) df["comm_weekly_cases"] = weekly_cases(df, "comm_cases") df["comm_weekly_ratio"] = weekly_ratio(df, "comm_weekly_cases") df["dorm_weekly_cases"] = weekly_cases(df, "dorm_cases") df["dorm_weekly_ratio"] = weekly_ratio(df, "dorm_weekly_cases") df["import_weekly_cases"] = weekly_cases(df, "import_cases") df["import_weekly_ratio"] = weekly_ratio(df, "import_weekly_cases") return df[-14:] def predicting(df, n_days_for_prediction): covid_model = tf.load_model('covid_model') cols = list(df)[4:10] print(cols) df_input = df[cols].astype(float) with open('scaler.pkl', 'rb') as handle: scaler = pickle.load(handle) df_scaled = scaler.transform(df_input) last_days = np.array(df_scaled) last_days = np.asarray(last_days).reshape(1, 14, 6) for x in range(n_days_for_prediction): days_14 = np.asarray(last_days[-1][-14:]).reshape(1, 14, 6) last_days = np.concatenate([last_days[0], covid_model.predict(days_14)]) last_days = np.asarray(last_days).reshape(1, last_days.shape[0], last_days.shape[1]) prediction = scaler.inverse_transform(last_days[-1]) future = prediction[-n_days_for_prediction-1:] return future[:, 1].tolist(), future[:, 3].tolist(),future[:, 5].tolist() @app.route('/') def home(): df = data_extract() p_comm, p_dorm, p_import = predicting(df, 7) p_comm2 = [0.0 if i < 0.0 else i for i in p_comm] p_dorm2 = [0.0 if i < 0.0 else i for i in p_dorm] p_import2 = [0.0 if i < 0.0 else i for i in p_import] labels = df["date"].tolist() df['date'] = pd.to_datetime(df['date']) df.set_index('date', inplace=True) dates = [df.index[-1] +
DateOffset(days=x+1)
pandas.tseries.offsets.DateOffset
''' episodestats.py implements statistic that are used in producing employment statistics for the lifecycle model ''' import h5py import numpy as np import numpy_financial as npf import matplotlib.pyplot as plt import matplotlib as mpl import seaborn as sns from scipy.stats import norm #import locale from tabulate import tabulate import pandas as pd import scipy.optimize from tqdm import tqdm_notebook as tqdm from . empstats import Empstats from scipy.stats import gaussian_kde #locale.setlocale(locale.LC_ALL, 'fi_FI') def modify_offsettext(ax,text): ''' For y axis ''' x_pos = 0.0 y_pos = 1.0 horizontalalignment='left' verticalalignment='bottom' offset = ax.yaxis.get_offset_text() #value=offset.get_text() # value=float(value) # if value>=1e12: # text='biljoonaa' # elif value>1e9: # text=str(value/1e9)+' miljardia' # elif value==1e9: # text=' miljardia' # elif value>1e6: # text=str(value/1e6)+' miljoonaa' # elif value==1e6: # text='miljoonaa' # elif value>1e3: # text=str(value/1e3)+' tuhatta' # elif value==1e3: # text='tuhatta' offset.set_visible(False) ax.text(x_pos, y_pos, text, transform=ax.transAxes, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment) class Labels(): def get_labels(self,language='English'): labels={} if language=='English': labels['osuus tilassa x']='Proportion in state {} [%]' labels['age']='Age [y]' labels['ratio']='Proportion [%]' labels['unemp duration']='Length of unemployment [y]' labels['scaled freq']='Scaled frequency' labels['probability']='probability' labels['telp']='Employee pension premium' labels['sairausvakuutus']='Health insurance' labels['työttömyysvakuutusmaksu']='Unemployment insurance' labels['puolison verot']='Partners taxes' labels['taxes']='Taxes' labels['asumistuki']='Housing benefit' labels['toimeentulotuki']='Supplementary benefit' labels['tyottomyysturva']='Unemployment benefit' labels['paivahoito']='Daycare' labels['elake']='Pension' labels['tyollisyysaste']='Employment rate' labels['tyottomien osuus']='Proportion of unemployed' labels['havainto']='Observation' labels['tyottomyysaste']='Unemployment rate [%]' labels['tyottomien osuus']='Proportion of unemployed [%]' labels['tyollisyysaste %']='Employment rate [%]' labels['ero osuuksissa']='Difference in proportions [%]' labels['osuus']='proportion' labels['havainto, naiset']='data, women' labels['havainto, miehet']='data, men' labels['palkkasumma']='Palkkasumma [euroa]' labels['Verokiila %']='Verokiila [%]' labels['Työnteko [hlö/htv]']='Työnteko [hlö/htv]' labels['Työnteko [htv]']='Työnteko [htv]' labels['Työnteko [hlö]']='Työnteko [hlö]' labels['Työnteko [miljoonaa hlö/htv]']='Työnteko [miljoonaa hlö/htv]' labels['Työnteko [miljoonaa htv]']='Työnteko [miljoonaa htv]' labels['Työnteko [miljoonaa hlö]']='Työnteko [miljoonaa hlö]' labels['Osatyönteko [%-yks]']='Osa-aikatyössä [%-yks]' labels['Muut tulot [euroa]']='Muut tulot [euroa]' labels['Henkilöitä']='Henkilöitä' labels['Verot [euroa]']='Verot [euroa]' labels['Verot [[miljardia euroa]']='Verot [[miljardia euroa]' labels['Verokertymä [euroa]']='Verokertymä [euroa]' labels['Verokertymä [miljardia euroa]']='Verokertymä [miljardia euroa]' labels['Muut tarvittavat tulot [euroa]']='Muut tarvittavat tulot [euroa]' labels['Muut tarvittavat tulot [miljardia euroa]']='Muut tarvittavat tulot [miljardia euroa]' labels['malli']='Life cycle model' else: labels['osuus tilassa x']='Osuus tilassa {} [%]' labels['age']='Ikä [v]' labels['ratio']='Osuus tilassa [%]' labels['unemp duration']='työttömyysjakson pituus [v]' labels['scaled freq']='skaalattu taajuus' labels['probability']='todennäköisyys' labels['telp']='TEL-P' labels['sairausvakuutus']='Sairausvakuutus' labels['työttömyysvakuutusmaksu']='Työttömyysvakuutusmaksu' labels['puolison verot']='puolison verot' labels['taxes']='Verot' labels['asumistuki']='Asumistuki' labels['toimeentulotuki']='Toimeentulotuki' labels['tyottomyysturva']='Työttömyysturva' labels['paivahoito']='Päivähoito' labels['elake']='Eläke' labels['tyollisyysaste']='työllisyysaste' labels['tyottomien osuus']='työttömien osuus' labels['havainto']='havainto' labels['tyottomyysaste']='Työttömyysaste [%]' labels['tyottomien osuus']='Työttömien osuus väestöstö [%]' labels['tyollisyysaste %']='Työllisyysaste [%]' labels['ero osuuksissa']='Ero osuuksissa [%]' labels['osuus']='Osuus' labels['havainto, naiset']='havainto, naiset' labels['havainto, miehet']='havainto, miehet' labels['palkkasumma']='Palkkasumma [euroa]' labels['Verokiila %']='Verokiila [%]' labels['Työnteko [hlö/htv]']='Työnteko [hlö/htv]' labels['Työnteko [htv]']='Työnteko [htv]' labels['Työnteko [hlö]']='Työnteko [hlö]' labels['Työnteko [miljoonaa hlö/htv]']='Työnteko [miljoonaa hlö/htv]' labels['Työnteko [miljoonaa htv]']='Työnteko [miljoonaa htv]' labels['Työnteko [miljoonaa hlö]']='Työnteko [miljoonaa hlö]' labels['Osatyönteko [%-yks]']='Osa-aikatyössä [%-yks]' labels['Muut tulot [euroa]']='Muut tulot [euroa]' labels['Henkilöitä']='Henkilöitä' labels['Verot [euroa]']='Verot [euroa]' labels['Verot [[miljardia euroa]']='Verot [[miljardia euroa]' labels['Verokertymä [euroa]']='Verokertymä [euroa]' labels['Verokertymä [miljardia euroa]']='Verokertymä [miljardia euroa]' labels['Muut tarvittavat tulot [euroa]']='Muut tarvittavat tulot [euroa]' labels['Muut tarvittavat tulot [miljardia euroa]']='Muut tarvittavat tulot [miljardia euroa]' labels['malli']='elinkaarimalli' return labels class EpisodeStats(): def __init__(self,timestep,n_time,n_emps,n_pop,env,minimal,min_age,max_age,min_retirementage,year=2018,version=3,params=None,gamma=0.92,lang='English'): self.version=version self.gamma=gamma self.params=params self.lab=Labels() self.reset(timestep,n_time,n_emps,n_pop,env,minimal,min_age,max_age,min_retirementage,year,params=params,lang=lang) print('version',version) def reset(self,timestep,n_time,n_emps,n_pop,env,minimal,min_age,max_age,min_retirementage,year,version=None,params=None,lang=None,dynprog=False): self.min_age=min_age self.max_age=max_age self.min_retirementage=min_retirementage self.minimal=minimal if params is not None: self.params=params if lang is None: self.language='English' else: self.language=lang if version is not None: self.version=version self.setup_labels() self.n_employment=n_emps self.n_time=n_time self.timestep=timestep # 0.25 = 3kk askel self.inv_timestep=int(np.round(1/self.timestep)) # pitää olla kokonaisluku self.n_pop=n_pop self.year=year self.env=env self.reaalinen_palkkojenkasvu=0.016 self.palkkakerroin=(0.8*1+0.2*1.0/(1+self.reaalinen_palkkojenkasvu))**self.timestep self.elakeindeksi=(0.2*1+0.8*1.0/(1+self.reaalinen_palkkojenkasvu))**self.timestep self.dynprog=dynprog if self.minimal: self.version=0 if self.version in set([0,101]): self.n_groups=1 else: self.n_groups=6 self.empstats=Empstats(year=self.year,max_age=self.max_age,n_groups=self.n_groups,timestep=self.timestep,n_time=self.n_time, min_age=self.min_age) self.init_variables() def init_variables(self): n_emps=self.n_employment self.empstate=np.zeros((self.n_time,n_emps)) self.gempstate=np.zeros((self.n_time,n_emps,self.n_groups)) self.deceiced=np.zeros((self.n_time,1)) self.alive=np.zeros((self.n_time,1)) self.galive=np.zeros((self.n_time,self.n_groups)) self.rewstate=np.zeros((self.n_time,n_emps)) self.poprewstate=np.zeros((self.n_time,self.n_pop)) self.salaries_emp=np.zeros((self.n_time,n_emps)) #self.salaries=np.zeros((self.n_time,self.n_pop)) self.actions=np.zeros((self.n_time,self.n_pop)) self.popempstate=np.zeros((self.n_time,self.n_pop)) self.popunemprightleft=np.zeros((self.n_time,self.n_pop)) self.popunemprightused=np.zeros((self.n_time,self.n_pop)) self.tyoll_distrib_bu=np.zeros((self.n_time,self.n_pop)) self.unemp_distrib_bu=np.zeros((self.n_time,self.n_pop)) self.siirtyneet=np.zeros((self.n_time,n_emps)) self.siirtyneet_det=np.zeros((self.n_time,n_emps,n_emps)) self.pysyneet=np.zeros((self.n_time,n_emps)) self.aveV=np.zeros((self.n_time,self.n_pop)) self.time_in_state=np.zeros((self.n_time,n_emps)) self.stat_tyoura=np.zeros((self.n_time,n_emps)) self.stat_toe=np.zeros((self.n_time,n_emps)) self.stat_pension=np.zeros((self.n_time,n_emps)) self.stat_paidpension=np.zeros((self.n_time,n_emps)) self.out_of_work=np.zeros((self.n_time,n_emps)) self.stat_unemp_len=np.zeros((self.n_time,self.n_pop)) self.stat_wage_reduction=np.zeros((self.n_time,n_emps)) self.stat_wage_reduction_g=np.zeros((self.n_time,n_emps,self.n_groups)) self.infostats_group=np.zeros((self.n_pop,1)) self.infostats_taxes=np.zeros((self.n_time,1)) self.infostats_wagetaxes=np.zeros((self.n_time,1)) self.infostats_taxes_distrib=np.zeros((self.n_time,n_emps)) self.infostats_etuustulo=np.zeros((self.n_time,1)) self.infostats_etuustulo_group=np.zeros((self.n_time,self.n_groups)) self.infostats_perustulo=np.zeros((self.n_time,1)) self.infostats_palkkatulo=np.zeros((self.n_time,1)) self.infostats_palkkatulo_eielakkeella=np.zeros((self.n_time,1)) self.infostats_palkkatulo_group=np.zeros((self.n_time,self.n_groups)) self.infostats_palkkatulo_eielakkeella_group=np.zeros((self.n_time,1)) self.infostats_ansiopvraha=np.zeros((self.n_time,1)) self.infostats_ansiopvraha_group=np.zeros((self.n_time,self.n_groups)) self.infostats_asumistuki=np.zeros((self.n_time,1)) self.infostats_asumistuki_group=np.zeros((self.n_time,self.n_groups)) self.infostats_valtionvero=np.zeros((self.n_time,1)) self.infostats_valtionvero_group=np.zeros((self.n_time,self.n_groups)) self.infostats_kunnallisvero=np.zeros((self.n_time,1)) self.infostats_kunnallisvero_group=np.zeros((self.n_time,self.n_groups)) self.infostats_valtionvero_distrib=np.zeros((self.n_time,n_emps)) self.infostats_kunnallisvero_distrib=np.zeros((self.n_time,n_emps)) self.infostats_ptel=np.zeros((self.n_time,1)) self.infostats_tyotvakmaksu=np.zeros((self.n_time,1)) self.infostats_tyoelake=np.zeros((self.n_time,1)) self.infostats_kokoelake=np.zeros((self.n_time,1)) self.infostats_opintotuki=np.zeros((self.n_time,1)) self.infostats_isyyspaivaraha=np.zeros((self.n_time,1)) self.infostats_aitiyspaivaraha=np.zeros((self.n_time,1)) self.infostats_kotihoidontuki=np.zeros((self.n_time,1)) self.infostats_sairauspaivaraha=np.zeros((self.n_time,1)) self.infostats_toimeentulotuki=np.zeros((self.n_time,1)) self.infostats_tulot_netto=np.zeros((self.n_time,1)) self.infostats_pinkslip=np.zeros((self.n_time,n_emps)) self.infostats_pop_pinkslip=np.zeros((self.n_time,self.n_pop)) self.infostats_chilren18_emp=np.zeros((self.n_time,n_emps)) self.infostats_chilren7_emp=np.zeros((self.n_time,n_emps)) self.infostats_chilren18=np.zeros((self.n_time,1)) self.infostats_chilren7=np.zeros((self.n_time,1)) self.infostats_tyelpremium=np.zeros((self.n_time,self.n_pop)) self.infostats_paid_tyel_pension=np.zeros((self.n_time,self.n_pop)) self.infostats_sairausvakuutus=np.zeros((self.n_time)) self.infostats_pvhoitomaksu=np.zeros((self.n_time,self.n_pop)) self.infostats_ylevero=np.zeros((self.n_time,1)) self.infostats_ylevero_distrib=np.zeros((self.n_time,n_emps)) self.infostats_irr=np.zeros((self.n_pop,1)) self.infostats_npv0=np.zeros((self.n_pop,1)) self.infostats_mother_in_workforce=np.zeros((self.n_time,1)) self.infostats_children_under3=np.zeros((self.n_time,self.n_pop)) self.infostats_children_under7=np.zeros((self.n_time,self.n_pop)) self.infostats_unempwagebasis=np.zeros((self.n_time,self.n_pop)) self.infostats_unempwagebasis_acc=np.zeros((self.n_time,self.n_pop)) self.infostats_toe=np.zeros((self.n_time,self.n_pop)) self.infostats_ove=np.zeros((self.n_time,n_emps)) self.infostats_kassanjasen=np.zeros((self.n_time)) self.infostats_poptulot_netto=np.zeros((self.n_time,self.n_pop)) self.infostats_pop_wage=np.zeros((self.n_time,self.n_pop)) self.infostats_pop_pension=np.zeros((self.n_time,self.n_pop)) self.infostats_equivalent_income=np.zeros(self.n_time) self.infostats_alv=np.zeros(self.n_time) self.infostats_puoliso=np.zeros(self.n_time) self.pop_predrew=np.zeros((self.n_time,self.n_pop)) if self.version==101: self.infostats_savings=np.zeros((self.n_time,self.n_pop)) self.sav_actions=np.zeros((self.n_time,self.n_pop)) def add(self,n,act,r,state,newstate,q=None,debug=False,plot=False,aveV=None,pred_r=None): if self.version==0: emp,_,_,a,_,_=self.env.state_decode(state) # current employment state newemp,newpen,newsal,a2,tis,next_wage=self.env.state_decode(newstate) g=0 bu=0 ove=0 jasen=0 puoliso=0 elif self.version==1: # v1 emp,_,_,_,a,_,_,_,_,_,_,_,_,_=self.env.state_decode(state) # current employment state newemp,g,newpen,newsal,a2,tis,paidpens,pink,toe,ura,oof,bu,wr,p=self.env.state_decode(newstate) ove=0 jasen=0 puoliso=0 elif self.version==2: # v2 emp,_,_,_,a,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_=self.env.state_decode(state) # current employment state newemp,g,newpen,newsal,a2,tis,paidpens,pink,toe,ura,bu,wr,upr,uw,uwr,pr,c3,c7,c18,unemp_left,aa,toe58=self.env.state_decode(newstate) ove=0 jasen=0 puoliso=0 elif self.version==3: # v3 emp,_,_,_,a,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_=self.env.state_decode(state) # current employment state newemp,g,newpen,newsal,a2,tis,paidpens,pink,toe,toek,ura,bu,wr,upr,uw,uwr,pr,c3,c7,c18,unemp_left,aa,toe58,ove,jasen=self.env.state_decode(newstate) puoliso=0 elif self.version==4: # v3 emp,_,_,_,a,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_=self.env.state_decode(state) # current employment state newemp,g,newpen,newsal,a2,tis,paidpens,pink,toe,toek,ura,bu,wr,upr,uw,uwr,pr,\ c3,c7,c18,unemp_left,aa,toe58,ove,jasen,puoliso,puoliso_tyossa,puoliso_palkka=self.env.state_decode(newstate) elif self.version==101: emp,_,_,a,_,_,_=self.env.state_decode(state) # current employment state newemp,newpen,newsal,a2,tis,next_wage,savings=self.env.state_decode(newstate) g=0 bu=0 ove=0 jasen=0 t=int(np.round((a2-self.min_age)*self.inv_timestep))#-1 if a2>a and newemp>=0: # new state is not reset (age2>age) if a2>self.min_retirementage and newemp==3 and self.version in set([1,2,3,4]): newemp=2 if self.version in set([1,2,3,4]): self.empstate[t,newemp]+=1 self.alive[t]+=1 self.rewstate[t,newemp]+=r self.poprewstate[t,n]=r self.actions[t,n]=act self.popempstate[t,n]=newemp #self.salaries[t,n]=newsal self.salaries_emp[t,newemp]+=newsal self.time_in_state[t,newemp]+=tis if tis<=0.25 and newemp==5: self.infostats_mother_in_workforce[t]+=1 self.infostats_pinkslip[t,newemp]+=pink self.infostats_pop_pinkslip[t,n]=pink self.gempstate[t,newemp,g]+=1 self.stat_wage_reduction[t,newemp]+=wr self.stat_wage_reduction_g[t,newemp,g]+=wr self.galive[t,g]+=1 self.stat_tyoura[t,newemp]+=ura self.stat_toe[t,newemp]+=toe self.stat_pension[t,newemp]+=newpen self.stat_paidpension[t,newemp]+=paidpens self.stat_unemp_len[t,n]=tis self.popunemprightleft[t,n]=-self.env.unempright_left(newemp,tis,bu,a2,ura) self.popunemprightused[t,n]=bu self.infostats_group[n]=int(g) self.infostats_unempwagebasis[t,n]=uw self.infostats_unempwagebasis_acc[t,n]=uwr self.infostats_toe[t,n]=toe self.infostats_ove[t,newemp]+=ove self.infostats_kassanjasen[t]+=jasen self.infostats_pop_wage[t,n]=newsal self.infostats_pop_pension[t,n]=newpen self.infostats_puoliso[t]+=puoliso if q is not None: #print(newsal,q['palkkatulot']) self.infostats_taxes[t]+=q['verot']*self.timestep*12 self.infostats_wagetaxes[t]+=q['verot_ilman_etuuksia']*self.timestep*12 self.infostats_taxes_distrib[t,newemp]+=q['verot']*self.timestep*12 self.infostats_etuustulo[t]+=q['etuustulo_brutto']*self.timestep*12 self.infostats_etuustulo_group[t,g]+=q['etuustulo_brutto']*self.timestep*12 self.infostats_perustulo[t]+=q['perustulo']*self.timestep*12 self.infostats_palkkatulo[t]+=q['palkkatulot']*self.timestep*12 self.infostats_palkkatulo_eielakkeella[t]+=q['palkkatulot_eielakkeella']*self.timestep*12 self.infostats_ansiopvraha[t]+=q['ansiopvraha']*self.timestep*12 self.infostats_asumistuki[t]+=q['asumistuki']*self.timestep*12 self.infostats_valtionvero[t]+=q['valtionvero']*self.timestep*12 self.infostats_valtionvero_distrib[t,newemp]+=q['valtionvero']*self.timestep*12 self.infostats_kunnallisvero[t]+=q['kunnallisvero']*self.timestep*12 self.infostats_kunnallisvero_distrib[t,newemp]+=q['kunnallisvero']*self.timestep*12 self.infostats_ptel[t]+=q['ptel']*self.timestep*12 self.infostats_tyotvakmaksu[t]+=q['tyotvakmaksu']*self.timestep*12 self.infostats_tyoelake[t]+=q['elake_maksussa']*self.timestep*12 self.infostats_kokoelake[t]+=q['kokoelake']*self.timestep*12 self.infostats_opintotuki[t]+=q['opintotuki']*self.timestep*12 self.infostats_isyyspaivaraha[t]+=q['isyyspaivaraha']*self.timestep*12 self.infostats_aitiyspaivaraha[t]+=q['aitiyspaivaraha']*self.timestep*12 self.infostats_kotihoidontuki[t]+=q['kotihoidontuki']*self.timestep*12 self.infostats_sairauspaivaraha[t]+=q['sairauspaivaraha']*self.timestep*12 self.infostats_toimeentulotuki[t]+=q['toimtuki']*self.timestep*12 self.infostats_tulot_netto[t]+=q['kateen']*self.timestep*12 self.infostats_tyelpremium[t,n]=q['tyel_kokomaksu']*self.timestep*12 self.infostats_paid_tyel_pension[t,n]=q['puhdas_tyoelake']*self.timestep*12 self.infostats_sairausvakuutus[t]+=q['sairausvakuutus']*self.timestep*12 self.infostats_pvhoitomaksu[t,n]=q['pvhoito']*self.timestep*12 self.infostats_ylevero[t]+=q['ylevero']*self.timestep*12 self.infostats_ylevero_distrib[t,newemp]=q['ylevero']*self.timestep*12 self.infostats_poptulot_netto[t,n]=q['kateen']*self.timestep*12 self.infostats_children_under3[t,n]=c3 self.infostats_children_under7[t,n]=c7 self.infostats_npv0[n]=q['multiplier'] self.infostats_equivalent_income[t]+=q['eq'] if 'alv' in q: self.infostats_alv[t]+=q['alv'] #self.infostats_kassanjasen[t]+=1 elif self.version in set([0,101]): self.empstate[t,newemp]+=1 self.alive[t]+=1 self.rewstate[t,newemp]+=r self.infostats_tulot_netto[t]+=q['netto'] # already at annual level self.infostats_poptulot_netto[t,n]=q['netto'] self.poprewstate[t,n]=r self.popempstate[t,n]=newemp #self.salaries[t,n]=newsal self.salaries_emp[t,newemp]+=newsal self.time_in_state[t,newemp]+=tis self.infostats_equivalent_income[t]+=q['eq'] self.infostats_pop_wage[t,n]=newsal self.infostats_pop_pension[t,n]=newpen if self.dynprog and pred_r is not None: self.pop_predrew[t,n]=pred_r if self.version==101: self.infostats_savings[t,n]=savings self.actions[t,n]=act[0] self.sav_actions[t,n]=act[1] else: self.actions[t,n]=act # if self.version in set([1,2,3]): # self.gempstate[t,newemp,g]+=1 # self.stat_wage_reduction[t,newemp]+=wr # self.galive[t,g]+=1 # self.stat_tyoura[t,newemp]+=ura # self.stat_toe[t,newemp]+=toe # self.stat_pension[t,newemp]+=newpen # self.stat_paidpension[t,newemp]+=paidpens # self.stat_unemp_len[t,n]=tis # self.popunemprightleft[t,n]=0 # self.popunemprightused[t,n]=0 if aveV is not None: self.aveV[t,n]=aveV if not emp==newemp: self.siirtyneet[t,emp]+=1 self.siirtyneet_det[t,emp,newemp]+=1 else: self.pysyneet[t,emp]+=1 elif newemp<0: self.deceiced[t]+=1 def scale_error(self,x,target=None,averaged=False): return (target-self.comp_scaled_consumption(x,averaged=averaged)) def comp_employed_ratio_by_age(self,emp=None,grouped=False,g=0): if emp is None: if grouped: emp=np.squeeze(self.gempstate[:,:,g]) else: emp=self.empstate nn=np.sum(emp,1) if self.minimal: tyoll_osuus=(emp[:,1]+emp[:,3])/nn htv_osuus=(emp[:,1]+0.5*emp[:,3])/nn tyoll_osuus=np.reshape(tyoll_osuus,(tyoll_osuus.shape[0],1)) htv_osuus=np.reshape(htv_osuus,(htv_osuus.shape[0],1)) else: # työllisiksi lasketaan kokoaikatyössä olevat, osa-aikaiset, ve+työ, ve+osatyö # isyysvapaalla olevat jötetty pois, vaikka vapaa kestöö alle 3kk tyoll_osuus=(emp[:,1]+emp[:,8]+emp[:,9]+emp[:,10]) htv_osuus=(emp[:,1]+0.5*emp[:,8]+emp[:,9]+0.5*emp[:,10]) tyoll_osuus=np.reshape(tyoll_osuus,(tyoll_osuus.shape[0],1)) htv_osuus=np.reshape(htv_osuus,(htv_osuus.shape[0],1)) return tyoll_osuus,htv_osuus def comp_employed_aggregate(self,emp=None,start=20,end=63.5,grouped=False,g=0): if emp is None: if grouped: emp=self.gempstate[:,:,g] else: emp=self.empstate nn=np.sum(emp,1) if self.minimal: tyoll_osuus=(emp[:,1]+emp[:,3])/nn htv_osuus=(emp[:,1]+0.5*emp[:,3])/nn else: # työllisiksi lasketaan kokoaikatyössä olevat, osa-aikaiset, ve+työ, ve+osatyö # isyysvapaalla olevat jötetty pois, vaikka vapaa kestöö alle 3kk tyoll_osuus=(emp[:,1]+emp[:,8]+emp[:,9]+emp[:,10])/nn htv_osuus=(emp[:,1]+0.5*emp[:,8]+emp[:,9]+0.5*emp[:,10])/nn htv_osuus=self.comp_state_stats(htv_osuus,start=start,end=end,ratio=True) tyoll_osuus=self.comp_state_stats(tyoll_osuus,start=start,end=end,ratio=True) return tyoll_osuus,htv_osuus def comp_group_ps(self): return self.comp_palkkasumma(grouped=True) def comp_palkkasumma(self,start=19,end=68,grouped=False,scale_time=True): demog2=self.empstats.get_demog() if scale_time: scale=self.timestep else: scale=1.0 min_cage=self.map_age(start) max_cage=self.map_age(end)+1 if grouped: scalex=demog2/self.n_pop*self.timestep ps=np.zeros((self.n_time,6)) ps_norw=np.zeros((self.n_time,6)) a_ps=np.zeros(6) a_ps_norw=np.zeros(6) for k in range(self.n_pop): g=int(self.infostats_group[k,0]) for t in range(min_cage,max_cage): e=int(self.popempstate[t,k]) if e in set([1,10]): ps[t,g]+=self.infostats_pop_wage[t,k] ps_norw[t,g]+=self.infostats_pop_wage[t,k] elif e in set([8,9]): ps[t,g]+=self.infostats_pop_wage[t,k]*self.timestep for g in range(6): a_ps[g]=np.sum(scalex[min_cage:max_cage]*ps[min_cage:max_cage,g]) a_ps_norw[g]=np.sum(scalex[min_cage:max_cage]*ps_norw[min_cage:max_cage,g]) else: scalex=demog2/self.n_pop*self.timestep ps=np.zeros((self.n_time,1)) ps_norw=np.zeros((self.n_time,1)) for k in range(self.n_pop): for t in range(min_cage,max_cage): e=int(self.popempstate[t,k]) if e in set([1,10]): ps[t,0]+=self.infostats_pop_wage[t,k] ps_norw[t,0]+=self.infostats_pop_wage[t,k] elif e in set([8,9]): ps[t,0]+=self.infostats_pop_wage[t,k] a_ps=np.sum(scalex[min_cage:max_cage]*ps[min_cage:max_cage]) a_ps_norw=np.sum(scalex[min_cage:max_cage]*ps_norw[min_cage:max_cage]) return a_ps,a_ps_norw def comp_stats_agegroup(self,border=[19,35,50]): n_groups=len(border) low=border.copy() high=border.copy() high[0:n_groups-1]=border[1:n_groups] high[-1]=65 employed=np.zeros(n_groups) unemployed=np.zeros(n_groups) ahtv=np.zeros(n_groups) parttimeratio=np.zeros(n_groups) unempratio=np.zeros(n_groups) empratio=np.zeros(n_groups) i_ps=np.zeros(n_groups) i_ps_norw=np.zeros(n_groups) for n in range(n_groups): l=low[n] h=high[n] htv,tyollvaikutus,tyollaste,tyotosuus,tyottomat,osatyollaste=\ self.comp_tyollisyys_stats(self.empstate,scale_time=True,start=l,end=h,agegroups=True) ps,ps_norw=self.comp_palkkasumma(start=l,end=h) print(f'l {l} h {h}\nhtv {htv}\ntyollaste {tyollaste}\ntyotosuus {tyotosuus}\ntyottomat {tyottomat}\nosatyollaste {osatyollaste}\nps {ps}') employed[n]=tyollvaikutus ahtv[n]=htv unemployed[n]=tyottomat unempratio[n]=tyotosuus empratio[n]=tyollaste parttimeratio[n]=osatyollaste i_ps[n]=ps i_ps_norw[n]=ps_norw return employed,ahtv,unemployed,parttimeratio,i_ps,i_ps_norw,unempratio,empratio def comp_unemployed_ratio_by_age(self,emp=None,grouped=False,g=0): if emp is None: if grouped: emp=self.gempstate[:,:,g] else: emp=self.empstate nn=np.sum(emp,1) if self.minimal: tyot_osuus=emp[:,0]/nn tyot_osuus=np.reshape(tyot_osuus,(tyot_osuus.shape[0],1)) else: # työllisiksi lasketaan kokoaikatyössä olevat, osa-aikaiset, ve+työ, ve+osatyö # isyysvapaalla olevat jötetty pois, vaikka vapaa kestöö alle 3kk tyot_osuus=(emp[:,0]+emp[:,4]+emp[:,13])[:,None] #tyot_osuus=np.reshape(tyot_osuus,(tyot_osuus.shape[0],1)) return tyot_osuus def comp_unemployed_aggregate(self,emp=None,start=20,end=63.5,scale_time=True,grouped=False,g=0): if emp is None: if grouped: emp=self.gempstate[:,:,g] else: emp=self.empstate nn=np.sum(emp,1) if self.minimal: tyot_osuus=emp[:,0]/nn else: tyot_osuus=(emp[:,0]+emp[:,4]+emp[:,13])/nn #print(f'tyot_osuus {tyot_osuus}') unemp=self.comp_state_stats(tyot_osuus,start=start,end=end,ratio=True) return unemp def comp_parttime_aggregate(self,emp=None,start=20,end=63.5,scale_time=True,grouped=False,g=0): ''' Lukumäärätiedot (EI HTV!) ''' if emp is None: if grouped: emp=self.gempstate[:,:,g] else: emp=self.empstate nn=np.sum(emp,1) if not self.minimal: tyossa=(emp[:,1]+emp[:,10]+emp[:,8]+emp[:,9])/nn osatyossa=(emp[:,10]+emp[:,8])/nn else: tyossa=emp[:,1]/nn osatyossa=0*tyossa osatyo_osuus=osatyossa/tyossa osatyo_osuus=self.comp_state_stats(osatyo_osuus,start=start,end=end,ratio=True) kokotyo_osuus=1-osatyo_osuus return kokotyo_osuus,osatyo_osuus def comp_parttime_ratio_by_age(self,emp=None,grouped=False,g=0): if emp is None: if grouped: emp=self.gempstate[:,:,g] else: emp=self.empstate nn=np.sum(emp,1) if self.minimal: kokotyo_osuus=(emp[:,1])/nn osatyo_osuus=(emp[:,3])/nn else: if grouped: for g in range(6): kokotyo_osuus=(emp[:,1,g]+emp[:,9,g])/nn osatyo_osuus=(emp[:,8,g]+emp[:,10,g])/nn else: kokotyo_osuus=(emp[:,1]+emp[:,9])/nn osatyo_osuus=(emp[:,8]+emp[:,10])/nn osatyo_osuus=np.reshape(osatyo_osuus,(osatyo_osuus.shape[0],1)) kokotyo_osuus=np.reshape(kokotyo_osuus,(osatyo_osuus.shape[0],1)) return kokotyo_osuus,osatyo_osuus def comp_employed_ratio(self,emp): tyoll_osuus,htv_osuus=self.comp_employed_ratio_by_age(emp) tyot_osuus=self.comp_unemployed_ratio_by_age(emp) kokotyo_osuus,osatyo_osuus=self.comp_parttime_ratio_by_age(emp) return tyoll_osuus,htv_osuus,tyot_osuus,kokotyo_osuus,osatyo_osuus def comp_unemployed_detailed(self,emp): if self.minimal: ansiosid_osuus=emp[:,0]/np.sum(emp,1) tm_osuus=ansiosid_osuus*0 else: # työllisiksi lasketaan kokoaikatyössä olevat, osa-aikaiset, ve+työ, ve+osatyö # isyysvapaalla olevat jötetty pois, vaikka vapaa kestöö alle 3kk ansiosid_osuus=(emp[:,0]+emp[:,4])/np.sum(emp,1) tm_osuus=(emp[:,13])/np.sum(emp,1) return ansiosid_osuus,tm_osuus def comp_tyollisyys_stats(self,emp,scale_time=True,start=19,end=68,full=False,tyot_stats=False,agg=False,shapes=False,only_groups=False,g=0,agegroups=False): demog2=self.empstats.get_demog() if scale_time: scale=self.timestep else: scale=1.0 min_cage=self.map_age(start) max_cage=self.map_age(end)+1 scalex=demog2[min_cage:max_cage]/self.n_pop*scale if only_groups: tyollosuus,htvosuus,tyot_osuus,kokotyo_osuus,osatyo_osuus=self.comp_employed_ratio(emp) else: tyollosuus,htvosuus,tyot_osuus,kokotyo_osuus,osatyo_osuus=self.comp_employed_ratio(emp) htv=np.sum(scalex*htvosuus[min_cage:max_cage]) tyollvaikutus=np.sum(scalex*tyollosuus[min_cage:max_cage]) tyottomat=np.sum(scalex*tyot_osuus[min_cage:max_cage]) osatyollvaikutus=np.sum(scalex*osatyo_osuus[min_cage:max_cage]) kokotyollvaikutus=np.sum(scalex*kokotyo_osuus[min_cage:max_cage]) haj=np.mean(np.std(tyollosuus[min_cage:max_cage])) tyollaste=tyollvaikutus/(np.sum(scalex)*self.n_pop) osatyollaste=osatyollvaikutus/(kokotyollvaikutus+osatyollvaikutus) kokotyollaste=kokotyollvaikutus/(kokotyollvaikutus+osatyollvaikutus) if tyot_stats: if agg: #d2=np.squeeze(demog2) tyolliset_osuus=np.squeeze(tyollosuus) tyottomat_osuus=np.squeeze(tyot_osuus) return tyolliset_ika,tyottomat_ika,htv_ika,tyolliset_osuus,tyottomat_osuus else: d2=np.squeeze(demog2) tyolliset_ika=np.squeeze(scale*d2*np.squeeze(htvosuus)) tyottomat_ika=np.squeeze(scale*d2*np.squeeze(tyot_osuus)) htv_ika=np.squeeze(scale*d2*np.squeeze(htvosuus)) tyolliset_osuus=np.squeeze(tyollosuus) tyottomat_osuus=np.squeeze(tyot_osuus) return tyolliset_ika,tyottomat_ika,htv_ika,tyolliset_osuus,tyottomat_osuus elif full: return htv,tyollvaikutus,haj,tyollaste,tyollosuus,osatyollvaikutus,kokotyollvaikutus,osatyollaste,kokotyollaste elif agegroups: tyot_osuus=self.comp_unemployed_aggregate(start=start,end=end) return htv,tyollvaikutus,tyollaste,tyot_osuus,tyottomat,osatyollaste else: return htv,tyollvaikutus,haj,tyollaste,tyollosuus def comp_employment_stats(self,scale_time=True,returns=False): demog2=self.empstats.get_demog() if scale_time: scale=self.timestep else: scale=1.0 min_cage=self.map_age(self.min_age) max_cage=self.map_age(self.max_age)+1 scalex=np.squeeze(demog2/self.n_pop*self.timestep) d=np.squeeze(demog2[min_cage:max_cage]) self.ratiostates=self.empstate/self.alive self.demogstates=(self.empstate.T*scalex).T if self.minimal>0: self.stats_employed=self.demogstates[:,0]+self.demogstates[:,3] self.stats_parttime=self.demogstates[:,3] self.stats_unemployed=self.demogstates[:,0] self.stats_all=np.sum(self.demogstates,1) else: self.stats_employed=self.demogstates[:,0]+self.demogstates[:,10]+self.demogstates[:,8]+self.demogstates[:,9] self.stats_parttime=self.demogstates[:,10]+self.demogstates[:,8] self.stats_unemployed=self.demogstates[:,0]+self.demogstates[:,4]+self.demogstates[:,13] self.stats_all=np.sum(self.demogstates,1) if returns: return self.stats_employed,self.stats_parttime,self.stats_unemployed # def test_emp(self): # g_emp=0 # g_htv=0 # g_10=0 # g_1=0 # g_8=0 # g_9=0 # g_x=0 # scalex=1 # # demog2=self.empstats.get_demog() # scalex=np.squeeze(demog2/self.n_pop*self.timestep) # # # for g in range(6): # q=self.comp_participants(grouped=True,g=g) # #g_1+=np.sum(self.gempstate[:,1,g]) # #g_10+=np.sum(self.gempstate[:,10,g]) # #g_8+=np.sum(self.gempstate[:,8,g]) # #g_9+=np.sum(self.gempstate[:,9,g]) # g_emp+=q['palkansaajia'] # g_htv+=q['htv'] # g_x+=np.sum((self.gempstate[:,1,g]+self.gempstate[:,10,g])*scalex) # # q=self.comp_participants() # s_1=np.sum(self.empstate[:,1]) # s_10=np.sum(self.empstate[:,10]) # s_8=np.sum(self.empstate[:,8]) # s_9=np.sum(self.empstate[:,9]) # s_x=np.sum((self.empstate[:,1]+self.empstate[:,10])*scalex) # emp=q['palkansaajia'] # htv=q['htv'] # # print(f'htv {htv} vs g_htv {g_htv}') # print(f'emp {emp} vs g_emp {g_emp}') # print(f's_x {s_x} vs g_x {g_x}') # #print(f's_1 {s_1} vs g_1 {g_1}') # #print(f's_10 {s_10} vs g_10 {g_10}') # #print(f's_8 {s_8} vs g_8 {g_8}') # #print(f's_9 {s_9} vs g_9 {g_9}') def comp_participants(self,scale=True,include_retwork=True,grouped=False,g=0): ''' <NAME> lkm scalex olettaa, että naisia & miehiä yhtä paljon. Tämän voisi tarkentaa. ''' demog2=self.empstats.get_demog() scalex=np.squeeze(demog2/self.n_pop*self.timestep) #print('version',self.version) q={} if self.version in set([1,2,3,4]): if grouped: #print('group=',g) emp=np.squeeze(self.gempstate[:,:,g]) q['yhteensä']=np.sum(np.sum(emp,axis=1)*scalex) if include_retwork: q['palkansaajia']=np.sum((emp[:,1]+emp[:,10]+emp[:,8]+emp[:,9])*scalex) q['htv']=np.sum((emp[:,1]+0.5*emp[:,10]+0.5*emp[:,8]+emp[:,9])*scalex) else: q['palkansaajia']=np.sum((emp[:,1]+emp[:,10])*scalex) q['htv']=np.sum((emp[:,1]+0.5*emp[:,10])*scalex) q['ansiosidonnaisella']=np.sum((emp[:,0]+emp[:,4])*scalex) q['tmtuella']=np.sum(emp[:,13]*scalex) q['isyysvapaalla']=np.sum(emp[:,6]*scalex) q['kotihoidontuella']=np.sum(emp[:,7]*scalex) q['vanhempainvapaalla']=np.sum(emp[:,5]*scalex) else: q['yhteensä']=np.sum(np.sum(self.empstate[:,:],axis=1)*scalex) if include_retwork: q['palkansaajia']=np.sum((self.empstate[:,1]+self.empstate[:,10]+self.empstate[:,8]+self.empstate[:,9])*scalex) q['htv']=np.sum((self.empstate[:,1]+0.5*self.empstate[:,10]+0.5*self.empstate[:,8]+self.empstate[:,9])*scalex) else: q['palkansaajia']=np.sum((self.empstate[:,1]+self.empstate[:,10])*scalex) q['htv']=np.sum((self.empstate[:,1]+0.5*self.empstate[:,10])*scalex) q['ansiosidonnaisella']=np.sum((self.empstate[:,0]+self.empstate[:,4])*scalex) q['tmtuella']=np.sum(self.empstate[:,13]*scalex) q['isyysvapaalla']=np.sum(self.empstate[:,6]*scalex) q['kotihoidontuella']=np.sum(self.empstate[:,7]*scalex) q['vanhempainvapaalla']=np.sum(self.empstate[:,5]*scalex) else: q['yhteensä']=np.sum(np.sum(self.empstate[:,:],1)*scalex) q['palkansaajia']=np.sum((self.empstate[:,1])*scalex) q['htv']=np.sum((self.empstate[:,1])*scalex) q['ansiosidonnaisella']=np.sum((self.empstate[:,0])*scalex) q['tmtuella']=np.sum(self.empstate[:,1]*0) q['isyysvapaalla']=np.sum(self.empstate[:,1]*0) q['kotihoidontuella']=np.sum(self.empstate[:,1]*0) q['vanhempainvapaalla']=np.sum(self.empstate[:,1]*0) return q def comp_employment_groupstats(self,scale_time=True,g=0,include_retwork=True,grouped=True): demog2=self.empstats.get_demog() if scale_time: scale=self.timestep else: scale=1.0 #min_cage=self.map_age(self.min_age) #max_cage=self.map_age(self.max_age)+1 scalex=np.squeeze(demog2/self.n_pop*scale) #d=np.squeeze(demog2[min_cage:max_cage]) if grouped: ratiostates=np.squeeze(self.gempstate[:,:,g])/self.alive demogstates=np.squeeze(self.gempstate[:,:,g]) else: ratiostates=self.empstate[:,:]/self.alive demogstates=self.empstate[:,:] if self.version in set([1,2,3,4]): if include_retwork: stats_employed=np.sum((demogstates[:,1]+demogstates[:,9])*scalex) stats_parttime=np.sum((demogstates[:,10]+demogstates[:,8])*scalex) else: stats_employed=np.sum((demogstates[:,1])*scalex) stats_parttime=np.sum((demogstates[:,10])*scalex) stats_unemployed=np.sum((demogstates[:,0]+demogstates[:,4]+demogstates[:,13])*scalex) else: stats_employed=np.sum((demogstates[:,0]+demogstates[:,3])*scalex) stats_parttime=np.sum((demogstates[:,3])*scalex) stats_unemployed=np.sum((demogstates[:,0])*scalex) #stats_all=np.sum(demogstates,1) return stats_employed,stats_parttime,stats_unemployed def comp_state_stats(self,state,scale_time=True,start=20,end=63.5,ratio=False): demog2=np.squeeze(self.empstats.get_demog()) #if scale_time: # scale=self.timestep #else: # scale=1.0 min_cage=self.map_age(start) max_cage=self.map_age(end)+1 #vaikutus=np.round(scale*np.sum(demog2[min_cage:max_cage]*state[min_cage:max_cage]))/np.sum(demog2[min_cage:max_cage]) vaikutus=np.sum(demog2[min_cage:max_cage]*state[min_cage:max_cage])/np.sum(demog2[min_cage:max_cage]) x=np.sum(demog2[min_cage:max_cage]*state[min_cage:max_cage]) y=np.sum(demog2[min_cage:max_cage]) #print(f'vaikutus {vaikutus} x {x} y {y}\n s {state[min_cage:max_cage]} mean {np.mean(state[min_cage:max_cage])}\n d {demog2[min_cage:max_cage]}') return vaikutus def get_vanhempainvapaat(self): ''' Laskee vanhempainvapaalla olevien määrän outsider-mallia (Excel) varten, tila 6 ''' alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,0:3],1) ulkopuolella_m=np.sum(self.gempstate[:,7,0:3],axis=1)[:,None]/alive alive[:,0]=np.sum(self.galive[:,3:6],1) nn=np.sum(self.gempstate[:,5,3:6]+self.gempstate[:,7,3:6],axis=1)[:,None]-self.infostats_mother_in_workforce ulkopuolella_n=nn/alive return ulkopuolella_m[::4],ulkopuolella_n[::4] def get_vanhempainvapaat_md(self): ''' Laskee vanhempainvapaalla olevien määrän outsider-mallia (Excel) varten, tila 7 ''' alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,0:3],1) ulkopuolella_m=np.sum(self.gempstate[:,6,0:3],axis=1)[:,None]/alive alive[:,0]=np.sum(self.galive[:,3:6],1) nn=self.infostats_mother_in_workforce ulkopuolella_n=nn/alive return ulkopuolella_m[::4],ulkopuolella_n[::4] def comp_L2error(self): tyollisyysaste_m,osatyoaste_m,tyottomyysaste_m,ka_tyottomyysaste=self.comp_gempratios(gender='men',unempratio=False) tyollisyysaste_w,osatyoaste_w,tyottomyysaste_w,ka_tyottomyysaste=self.comp_gempratios(gender='women',unempratio=False) emp_statsratio_m=self.empstats.emp_stats(g=1)[:-1]*100 emp_statsratio_w=self.empstats.emp_stats(g=2)[:-1]*100 unemp_statsratio_m=self.empstats.unemp_stats(g=1)[:-1]*100 unemp_statsratio_w=self.empstats.unemp_stats(g=2)[:-1]*100 w1=1.0 w2=3.0 L2= w1*np.sum(np.abs(emp_statsratio_m-tyollisyysaste_m[:-1])**2)+\ w1*np.sum(np.abs(emp_statsratio_w-tyollisyysaste_w[:-1])**2)+\ w2*np.sum(np.abs(unemp_statsratio_m-tyottomyysaste_m[:-1])**2)+\ w2*np.sum(np.abs(unemp_statsratio_w-tyottomyysaste_w[:-1])**2) L2=L2/self.n_pop #print(L1,emp_statsratio_m,tyollisyysaste_m,tyollisyysaste_w,unemp_statsratio_m,tyottomyysaste_m,tyottomyysaste_w) print('L2 error {}'.format(L2)) return L2 def comp_budgetL2error(self,ref_muut,scale=1): q=self.comp_budget() muut=q['muut tulot'] L2=-((ref_muut-muut)/scale)**2 print(f'L2 error {L2} (muut {muut} muut_ref {ref_muut})') return L2 def optimize_scale(self,target,averaged=scale_error): opt=scipy.optimize.least_squares(self.scale_error,0.20,bounds=(-1,1),kwargs={'target':target,'averaged':averaged}) #print(opt) return opt['x'] def optimize_logutil(self,target,source): ''' analytical compensated consumption does not implement final reward, hence duration 110 y ''' n_time=110 gy=np.empty(n_time) g=1 gx=np.empty(n_time) for t in range(0,n_time): gx[t]=g g*=self.gamma for t in range(1,n_time): gy[t]=np.sum(gx[0:t]) gf=np.mean(gy[1:])/10 lx=(target-source) opt=np.exp(lx/gf)-1.0 print(opt) def min_max(self): min_wage=np.min(self.infostats_pop_wage) max_wage=np.max(self.infostats_pop_wage) max_pension=np.max(self.infostats_pop_pension) min_pension=np.min(self.infostats_pop_pension) print(f'min wage {min_wage} max wage {max_wage}') print(f'min pension {min_pension} max pension {max_pension}') def setup_labels(self): self.labels=self.lab.get_labels(self.language) def map_age(self,age,start_zero=False): if start_zero: return int((age)*self.inv_timestep) else: return int((age-self.min_age)*self.inv_timestep) def map_t_to_age(self,t): return self.min_age+t/self.inv_timestep def episodestats_exit(self): plt.close(self.episode_fig) def comp_gini(self): ''' <NAME>-kerroin populaatiolle ''' income=np.sort(self.infostats_tulot_netto,axis=None) n=len(income) L=np.arange(n,0,-1) A=np.sum(L*income)/np.sum(income) G=(n+1-2*A)/2 return G def comp_annual_irr(self,npv,premium,pension,empstate,doprint=False): k=0 max_npv=int(np.ceil(npv)) cashflow=-premium+pension x=np.zeros(cashflow.shape[0]+max_npv) eind=np.zeros(max_npv+1) el=1 for k in range(max_npv+1): eind[k]=el el=el*self.elakeindeksi x[:cashflow.shape[0]]=cashflow if npv>0: x[cashflow.shape[0]-1:]=cashflow[-2]*eind[:max_npv+1] y=np.zeros(int(np.ceil(x.shape[0]/4))) for k in range(y.shape[0]): y[k]=np.sum(x[4*k:4*k+4]) irri=npf.irr(y)*100 #if np.isnan(irri): # if np.sum(pension)<0.1 and np.sum(empstate[0:self.map_age(63)]==15)>0: # vain maksuja, joista ei saa tuottoja, joten tappio 100% # irri=-100 if irri<0.01 and doprint: print('---------\nirri {}\nnpv {}\nx {}\ny {}\nprem {}\npens {}\nemps {}\n---------\n'.format(irri,npv,x,y,premium,pension,empstate)) if irri>100 and doprint: print('---------\nirri {}\nnpv {}\nx {}\ny {}\nprem {}\npens {}\nemps {}\n---------\n'.format(irri,npv,x,y,premium,pension,empstate)) if np.isnan(irri) and doprint: print('---------\nirri {}\nnpv {}\nx {}\ny {}\nprem {}\npens {}\nemps {}\n---------\n'.format(irri,npv,x,y,premium,np.sum(pension),empstate)) #print('---------\nirri {}\nnpv {}\n\ny {}\nprem {}\npens {}\nemps {}\n---------\n'.format(irri,npv,x,y,premium,np.sum(pension),np.sum(empstate==15))) if irri<-50 and doprint: print('---------\nirri {}\nnpv {}\nx {}\ny {}\nprem {}\npens {}\nemps {}\n---------\n'.format(irri,npv,x,y,premium,pension,empstate)) return irri def comp_irr(self): ''' Laskee sisäisen tuottoasteen (IRR) Indeksointi puuttuu npv:n osalta Tuloksiin lisättävä inflaatio+palkkojen reaalikasvu = palkkojen nimellinen kasvu ''' for k in range(self.n_pop): self.infostats_irr[k]=self.reaalinen_palkkojenkasvu*100+self.comp_annual_irr(self.infostats_npv0[k,0],self.infostats_tyelpremium[:,k],self.infostats_paid_tyel_pension[:,k],self.popempstate[:,k]) def comp_aggirr(self): ''' Laskee aggregoidun sisäisen tuottoasteen (IRR) Indeksointi puuttuu npv:n osalta Tuloksiin lisättävä inflaatio+palkkojen reaalikasvu = palkkojen nimellinen kasvu ''' maxnpv=np.max(self.infostats_npv0) agg_premium=np.sum(self.infostats_tyelpremium,axis=1) agg_pensions=np.sum(self.infostats_paid_tyel_pension,axis=1) agg_irr=self.reaalinen_palkkojenkasvu*100+self.comp_annual_irr(maxnpv,agg_premium,agg_pensions,self.popempstate[:,0]) x=np.zeros(self.infostats_paid_tyel_pension.shape[0]+int(np.ceil(maxnpv))) max_npv=int(max(np.ceil(self.infostats_npv0[:,0]))) eind=np.zeros(max_npv) el=1 for k in range(max_npv): eind[k]=el el=el*self.elakeindeksi cfn=self.infostats_tyelpremium.shape[0] for k in range(self.n_pop): if np.sum(self.popempstate[0:self.map_age(63),k]==15)<1: # ilman kuolleita n=int(np.ceil(self.infostats_npv0[k,0])) cashflow=-self.infostats_tyelpremium[:,k]+self.infostats_paid_tyel_pension[:,k] # indeksointi puuttuu x[:cfn]+=cashflow if n>0: x[cfn-1:cfn+n-1]+=cashflow[-2]*eind[:n] # ei indeksoida, pitäisi huomioida takuueläkekin y=np.zeros(int(np.ceil(x.shape[0]/4))) for k in range(y.shape[0]): y[k]=np.sum(x[4*k:4*k+101]) irri=npf.irr(y)*100 print('aggregate irr {}'.format(agg_irr)) def comp_unemp_durations(self,popempstate=None,popunemprightused=None,putki=True,\ tmtuki=False,laaja=False,outsider=False,ansiosid=True,tyott=False,kaikki=False,\ return_q=True,max_age=100): ''' Poikkileikkaushetken työttömyyskestot ''' unempset=[] if tmtuki: unempset.append(13) if outsider: unempset.append(11) if putki: unempset.append(4) if ansiosid: unempset.append(0) if tyott: unempset=[0,4,13] if laaja: unempset=[0,4,11,13] if kaikki: unempset=[0,2,3,4,5,6,7,8,9,11,12,13,14] unempset=set(unempset) if popempstate is None: popempstate=self.popempstate if popunemprightused is None: popunemprightused=self.popunemprightused keskikesto=np.zeros((5,5)) # 20-29, 30-39, 40-49, 50-59, 60-69, vastaa TYJin tilastoa n=np.zeros(5) for k in range(self.n_pop): for t in range(1,self.n_time): age=self.min_age+t*self.timestep if age<=max_age: if popempstate[t,k] in unempset: if age<29: l=0 elif age<39: l=1 elif age<49: l=2 elif age<59: l=3 else: l=4 n[l]+=1 if self.popunemprightused[t,k]<=0.51: keskikesto[l,0]+=1 elif self.popunemprightused[t,k]<=1.01: keskikesto[l,1]+=1 elif self.popunemprightused[t,k]<=1.51: keskikesto[l,2]+=1 elif self.popunemprightused[t,k]<=2.01: keskikesto[l,3]+=1 else: keskikesto[l,4]+=1 for k in range(5): keskikesto[k,:] /= n[k] if return_q: return self.empdur_to_dict(keskikesto) else: return keskikesto def empdur_to_dict(self,empdur): q={} q['20-29']=empdur[0,:] q['30-39']=empdur[1,:] q['40-49']=empdur[2,:] q['50-59']=empdur[3,:] q['60-65']=empdur[4,:] return q def comp_unemp_durations_v2(self,popempstate=None,putki=True,tmtuki=False,laaja=False,\ outsider=False,ansiosid=True,tyott=False,kaikki=False,\ return_q=True,max_age=100): ''' Poikkileikkaushetken työttömyyskestot Tässä lasketaan tulos tiladatasta, jolloin kyse on viimeisimmän jakson kestosta ''' unempset=[] if tmtuki: unempset.append(13) if outsider: unempset.append(11) if putki: unempset.append(4) if ansiosid: unempset.append(0) if tyott: unempset=[0,4,13] if laaja: unempset=[0,4,11,13] if kaikki: unempset=[0,2,3,4,5,6,7,8,9,11,12,13,14] unempset=set(unempset) if popempstate is None: popempstate=self.popempstate keskikesto=np.zeros((5,5)) # 20-29, 30-39, 40-49, 50-59, 60-69, vastaa TYJin tilastoa n=np.zeros(5) for k in range(self.n_pop): prev_state=popempstate[0,k] prev_trans=0 for t in range(1,self.n_time): age=self.min_age+t*self.timestep if age<=max_age: if popempstate[t,k]!=prev_state: if prev_state in unempset and popempstate[t,k] not in unempset: prev_state=popempstate[t,k] duration=(t-prev_trans)*self.timestep prev_trans=t if age<29: l=0 elif age<39: l=1 elif age<49: l=2 elif age<59: l=3 else: l=4 n[l]+=1 if duration<=0.51: keskikesto[l,0]+=1 elif duration<=1.01: keskikesto[l,1]+=1 elif duration<=1.51: keskikesto[l,2]+=1 elif duration<=2.01: keskikesto[l,3]+=1 else: keskikesto[l,4]+=1 elif prev_state not in unempset and popempstate[t,k] in unempset: prev_trans=t prev_state=popempstate[t,k] else: # some other state prev_state=popempstate[t,k] prev_trans=t for k in range(5): keskikesto[k,:] /= n[k] if return_q: return self.empdur_to_dict(keskikesto) else: return keskikesto def comp_virrat(self,popempstate=None,putki=True,tmtuki=True,laaja=False,outsider=False,ansiosid=True,tyott=False,kaikki=False,max_age=100): tyoll_virta=np.zeros((self.n_time,1)) tyot_virta=np.zeros((self.n_time,1)) unempset=[] empset=[] if tmtuki: unempset.append(13) if outsider: unempset.append(11) if putki: unempset.append(4) if ansiosid: unempset.append(0) if tyott: unempset=[0,4,13] if laaja: unempset=[0,4,11,13] if kaikki: unempset=[0,2,3,4,5,6,7,8,9,11,12,13,14] empset=set([1,10]) unempset=set(unempset) if popempstate is None: popempstate=self.popempstate for k in range(self.n_pop): prev_state=popempstate[0,k] prev_trans=0 for t in range(1,self.n_time): age=self.min_age+t*self.timestep if age<=max_age: if popempstate[t,k]!=prev_state: if prev_state in unempset and popempstate[t,k] in empset: tyoll_virta[t]+=1 prev_state=popempstate[t,k] elif prev_state in empset and popempstate[t,k] in unempset: tyot_virta[t]+=1 prev_state=popempstate[t,k] else: # some other state prev_state=popempstate[t,k] return tyoll_virta,tyot_virta def comp_tyollistymisdistribs(self,popempstate=None,popunemprightleft=None,putki=True,tmtuki=True,laaja=False,outsider=False,ansiosid=True,tyott=False,max_age=100): tyoll_distrib=[] tyoll_distrib_bu=[] unempset=[] if tmtuki: unempset.append(13) if outsider: unempset.append(11) if putki: unempset.append(4) if ansiosid: unempset.append(0) if tyott: unempset=[0,4,13] if laaja: unempset=[0,4,11,13] empset=set([1,10]) unempset=set(unempset) if popempstate is None or popunemprightleft is None: popempstate=self.popempstate popunemprightleft=self.popunemprightleft for k in range(self.n_pop): prev_state=popempstate[0,k] prev_trans=0 for t in range(1,self.n_time): age=self.min_age+t*self.timestep if age<=max_age: if popempstate[t,k]!=prev_state: if prev_state in unempset and popempstate[t,k] in empset: tyoll_distrib.append((t-prev_trans)*self.timestep) tyoll_distrib_bu.append(popunemprightleft[t,k]) prev_state=popempstate[t,k] prev_trans=t else: # some other state prev_state=popempstate[t,k] prev_trans=t return tyoll_distrib,tyoll_distrib_bu def comp_empdistribs(self,popempstate=None,popunemprightleft=None,putki=True,tmtuki=True,laaja=False,outsider=False,ansiosid=True,tyott=False,max_age=100): unemp_distrib=[] unemp_distrib_bu=[] emp_distrib=[] unempset=[] if tmtuki: unempset.append(13) if outsider: unempset.append(11) if putki: unempset.append(4) if ansiosid: unempset.append(0) if tyott: unempset=[0,4,13] if laaja: unempset=[0,4,11,13] if popempstate is None or popunemprightleft is None: popempstate=self.popempstate popunemprightleft=self.popunemprightleft empset=set([1,10]) unempset=set(unempset) for k in range(self.n_pop): prev_state=popempstate[0,k] prev_trans=0 for t in range(1,self.n_time): age=self.min_age+t*self.timestep if age<=max_age: if self.popempstate[t,k]!=prev_state: if prev_state in unempset and popempstate[t,k] not in unempset: unemp_distrib.append((t-prev_trans)*self.timestep) unemp_distrib_bu.append(popunemprightleft[t,k]) prev_state=popempstate[t,k] prev_trans=t elif prev_state in empset and popempstate[t,k] not in unempset: emp_distrib.append((t-prev_trans)*self.timestep) prev_state=popempstate[t,k] prev_trans=t else: # some other state prev_state=popempstate[t,k] prev_trans=t return unemp_distrib,emp_distrib,unemp_distrib_bu def empdist_stat(self): ratio=np.array([1,0.287024901703801,0.115508955875928,0.0681083442551332,0.0339886413280909,0.0339886413280909,0.0114460463084316,0.0114460463084316,0.0114460463084316,0.00419397116644823,0.00419397116644823,0.00419397116644823,0.00419397116644823,0.00419397116644823,0.00419397116644823,0.00419397116644823,0.00419397116644823,0.00166011358671909,0.00166011358671909,0.00166011358671909,0.00166011358671909,0.00166011358671909,0.00166011358671909,0.00166011358671909,0.00166011358671909,0.00104849279161206,0.00104849279161206,0.00104849279161206,0.00104849279161206,0.00104849279161206,0.00104849279161206,0.00104849279161206,0.00104849279161206]) return ratio def comp_gempratios(self,unempratio=True,gender='men'): if gender=='men': # men gempstate=np.sum(self.gempstate[:,:,0:3],axis=2) alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,0:3],1) mother_in_workforce=0 else: # women gempstate=np.sum(self.gempstate[:,:,3:6],axis=2) alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,3:6],1) mother_in_workforce=self.infostats_mother_in_workforce tyollisyysaste,osatyoaste,tyottomyysaste,ka_tyottomyysaste=self.comp_empratios(gempstate,alive,unempratio=unempratio,mother_in_workforce=mother_in_workforce) return tyollisyysaste,osatyoaste,tyottomyysaste,ka_tyottomyysaste def comp_empratios(self,emp,alive,unempratio=True,mother_in_workforce=0): employed=emp[:,1] retired=emp[:,2] unemployed=emp[:,0] if self.version in set([1,2,3,4]): disabled=emp[:,3] piped=emp[:,4] mother=emp[:,5] dad=emp[:,6] kotihoidontuki=emp[:,7] vetyo=emp[:,9] veosatyo=emp[:,8] osatyo=emp[:,10] outsider=emp[:,11] student=emp[:,12] tyomarkkinatuki=emp[:,13] tyollisyysaste=100*(employed+osatyo+veosatyo+vetyo+dad+mother_in_workforce)/alive[:,0] osatyoaste=100*(osatyo+veosatyo)/(employed+osatyo+veosatyo+vetyo) if unempratio: tyottomyysaste=100*(unemployed+piped+tyomarkkinatuki)/(tyomarkkinatuki+unemployed+employed+piped+osatyo+veosatyo+vetyo) ka_tyottomyysaste=100*np.sum(unemployed+tyomarkkinatuki+piped)/np.sum(tyomarkkinatuki+unemployed+employed+piped+osatyo+veosatyo+vetyo) else: tyottomyysaste=100*(unemployed+piped+tyomarkkinatuki)/alive[:,0] ka_tyottomyysaste=100*np.sum(unemployed+tyomarkkinatuki+piped)/np.sum(alive[:,0]) elif self.version in set([0,101]): if False: osatyo=emp[:,3] else: osatyo=0 tyollisyysaste=100*(employed+osatyo)/alive[:,0] #osatyoaste=np.zeros(employed.shape) osatyoaste=100*(osatyo)/(employed+osatyo) if unempratio: tyottomyysaste=100*(unemployed)/(unemployed+employed+osatyo) ka_tyottomyysaste=100*np.sum(unemployed)/np.sum(unemployed+employed+osatyo) else: tyottomyysaste=100*(unemployed)/alive[:,0] ka_tyottomyysaste=100*np.sum(unemployed)/np.sum(alive[:,0]) return tyollisyysaste,osatyoaste,tyottomyysaste,ka_tyottomyysaste def plot_ratiostats(self,t): ''' Tee kuvia tuloksista ''' x=np.linspace(self.min_age,self.max_age,self.n_time) fig,ax=plt.subplots() ax.set_xlabel('palkat') ax.set_ylabel('freq') ax.hist(self.infostats_pop_wage[t,:]) plt.show() fig,ax=plt.subplots() ax.set_xlabel('aika') ax.set_ylabel('palkat') meansal=np.mean(self.infostats_pop_wage,axis=1) stdsal=np.std(self.infostats_pop_wage,axis=1) ax.plot(x,meansal) ax.plot(x,meansal+stdsal) ax.plot(x,meansal-stdsal) plt.show() def plot_empdistribs(self,emp_distrib): fig,ax=plt.subplots() ax.set_xlabel('työsuhteen pituus [v]') ax.set_ylabel('freq') ax.set_yscale('log') max_time=50 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(0,max_time,nn_time) scaled,x2=np.histogram(emp_distrib,x) scaled=scaled/np.sum(emp_distrib) #ax.hist(emp_distrib) ax.bar(x2[1:-1],scaled[1:],align='center') plt.show() def plot_compare_empdistribs(self,emp_distrib,emp_distrib2,label2='vaihtoehto',label1=''): fig,ax=plt.subplots() ax.set_xlabel('työsuhteen pituus [v]') ax.set_ylabel(self.labels['probability']) ax.set_yscale('log') max_time=50 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(0,max_time,nn_time) scaled,x2=np.histogram(emp_distrib,x) scaled=scaled/np.sum(emp_distrib) x=np.linspace(0,max_time,nn_time) scaled3,x3=np.histogram(emp_distrib2,x) scaled3=scaled3/np.sum(emp_distrib2) ax.plot(x3[:-1],scaled3,label=label1) ax.plot(x2[:-1],scaled,label=label2) ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.show() def plot_vlines_unemp(self,point=0): axvcolor='gray' lstyle='--' plt.axvline(x=300/(12*21.5),ls=lstyle,color=axvcolor) plt.text(310/(12*21.5),point,'300',rotation=90) plt.axvline(x=400/(12*21.5),ls=lstyle,color=axvcolor) plt.text(410/(12*21.5),point,'400',rotation=90) plt.axvline(x=500/(12*21.5),ls=lstyle,color=axvcolor) plt.text(510/(12*21.5),point,'500',rotation=90) def plot_tyolldistribs(self,emp_distrib,tyoll_distrib,tyollistyneet=True,max=10,figname=None): max_time=55 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(0,max_time,nn_time) scaled0,x0=np.histogram(emp_distrib,x) if not tyollistyneet: scaled=scaled0 x2=x0 else: scaled,x2=np.histogram(tyoll_distrib,x) jaljella=np.cumsum(scaled0[::-1])[::-1] # jäljellä olevien kumulatiivinen summa scaled=scaled/jaljella fig,ax=plt.subplots() ax.set_xlabel('työttömyysjakson pituus [v]') if tyollistyneet: ax.set_ylabel('työllistyneiden osuus') point=0.5 else: ax.set_ylabel('pois siirtyneiden osuus') point=0.9 self.plot_vlines_unemp(point) ax.plot(x2[1:-1],scaled[1:]) #ax.bar(x2[1:-1],scaled[1:],align='center',width=self.timestep) plt.xlim(0,max) if figname is not None: plt.savefig(figname+'tyollistyneetdistrib.eps', format='eps') plt.show() def plot_tyolldistribs_both(self,emp_distrib,tyoll_distrib,max=10,figname=None): max_time=50 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(0,max_time,nn_time) scaled0,x0=np.histogram(emp_distrib,x) scaled=scaled0 scaled_tyoll,x2=np.histogram(tyoll_distrib,x) jaljella=np.cumsum(scaled0[::-1])[::-1] # jäljellä olevien summa scaled=scaled/jaljella jaljella_tyoll=np.cumsum(scaled0[::-1])[::-1] # jäljellä olevien summa scaled_tyoll=scaled_tyoll/jaljella_tyoll fig,ax=plt.subplots() ax.set_xlabel('työttömyysjakson pituus [v]') point=0.6 self.plot_vlines_unemp(point) ax.plot(x2[1:-1],scaled[1:],label='pois siirtyneiden osuus') ax.plot(x2[1:-1],scaled_tyoll[1:],label='työllistyneiden osuus') #ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.legend() ax.set_ylabel('pois siirtyneiden osuus') plt.xlim(0,max) plt.ylim(0,0.8) if figname is not None: plt.savefig(figname+'tyolldistribs.eps', format='eps') plt.show() def plot_tyolldistribs_both_bu(self,emp_distrib,tyoll_distrib,max=2): max_time=4 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(-max_time,0,nn_time) scaled0,x0=np.histogram(emp_distrib,x) scaled=scaled0 scaled_tyoll,x2=np.histogram(tyoll_distrib,x) jaljella=np.cumsum(scaled0[::-1])[::-1] # jäljellä olevien summa #jaljella=np.cumsum(scaled0) scaled=scaled/jaljella jaljella_tyoll=np.cumsum(scaled0[::-1])[::-1] # jäljellä olevien summa #jaljella_tyoll=np.cumsum(scaled0) scaled_tyoll=scaled_tyoll/jaljella_tyoll fig,ax=plt.subplots() ax.set_xlabel('aika ennen ansiopäivärahaoikeuden loppua [v]') point=0.6 #self.plot_vlines_unemp(point) ax.plot(x2[1:-1],scaled[1:],label='pois siirtyneiden osuus') ax.plot(x2[1:-1],scaled_tyoll[1:],label='työllistyneiden osuus') ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.set_ylabel('pois siirtyneiden osuus') plt.xlim(-max,0) #plt.ylim(0,0.8) plt.show() def plot_compare_tyolldistribs(self,emp_distrib1,tyoll_distrib1,emp_distrib2, tyoll_distrib2,tyollistyneet=True,max=4,label1='perus',label2='vaihtoehto', figname=None): max_time=50 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(0,max_time,nn_time) # data1 scaled01,x0=np.histogram(emp_distrib1,x) if not tyollistyneet: scaled1=scaled01 x1=x0 else: scaled1,x1=np.histogram(tyoll_distrib1,x) jaljella1=np.cumsum(scaled01[::-1])[::-1] # jäljellä olevien summa scaled1=scaled1/jaljella1 # data2 scaled02,x0=np.histogram(emp_distrib2,x) if not tyollistyneet: scaled2=scaled02 x2=x0 else: scaled2,x2=np.histogram(tyoll_distrib2,x) jaljella2=np.cumsum(scaled02[::-1])[::-1] # jäljellä olevien summa scaled2=scaled2/jaljella2 fig,ax=plt.subplots() ax.set_xlabel('työttömyysjakson pituus [v]') if tyollistyneet: ax.set_ylabel('työllistyneiden osuus') else: ax.set_ylabel('pois siirtyneiden osuus') self.plot_vlines_unemp() ax.plot(x2[1:-1],scaled2[1:],label=label2) ax.plot(x1[1:-1],scaled1[1:],label=label1) #ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.legend() plt.xlim(0,max) if figname is not None: plt.savefig(figname+'comp_tyollistyneetdistrib.eps', format='eps') plt.show() def plot_unempdistribs(self,unemp_distrib,max=4,figname=None,miny=None,maxy=None): #fig,ax=plt.subplots() max_time=50 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(0,max_time,nn_time) scaled,x2=np.histogram(unemp_distrib,x) scaled=scaled/np.sum(unemp_distrib) fig,ax=plt.subplots() self.plot_vlines_unemp(0.6) ax.set_xlabel(self.labels['unemp duration']) ax.set_ylabel(self.labels['probability']) ax.plot(x[:-1],scaled) ax.set_yscale('log') plt.xlim(0,max) if miny is not None: plt.ylim(miny,maxy) if figname is not None: plt.savefig(figname+'unempdistribs.eps', format='eps') plt.show() def plot_saldist(self,t=0,sum=False,all=False,n=10,bins=30): if all: fig,ax=plt.subplots() for t in range(1,self.n_time-1,5): scaled,x=np.histogram(self.infostats_pop_wage[t,:],bins=bins) x2=0.5*(x[1:]+x[0:-1]) ax.plot(x2,scaled,label=t) plt.legend() plt.show() else: if sum: scaled,x=np.histogram(np.sum(self.infostats_pop_wage,axis=0),bins=bins) x2=0.5*(x[1:]+x[0:-1]) plt.plot(x2,scaled) else: fig,ax=plt.subplots() for t1 in range(t,t+n,1): scaled,x=np.histogram(self.infostats_pop_wage[t1,:],bins=bins) x2=0.5*(x[1:]+x[0:-1]) ax.plot(x2,scaled,label=t1) plt.legend() plt.show() def test_salaries(self): n=self.n_pop palkat_ika_miehet=12.5*np.array([2339.01,2489.09,2571.40,2632.58,2718.03,2774.21,2884.89,2987.55,3072.40,3198.48,3283.81,3336.51,3437.30,3483.45,3576.67,3623.00,3731.27,3809.58,3853.66,3995.90,4006.16,4028.60,4104.72,4181.51,4134.13,4157.54,4217.15,4165.21,4141.23,4172.14,4121.26,4127.43,4134.00,4093.10,4065.53,4063.17,4085.31,4071.25,4026.50,4031.17,4047.32,4026.96,4028.39,4163.14,4266.42,4488.40,4201.40,4252.15,4443.96,3316.92,3536.03,3536.03]) palkat_ika_naiset=12.5*np.array([2223.96,2257.10,2284.57,2365.57,2443.64,2548.35,2648.06,2712.89,2768.83,2831.99,2896.76,2946.37,2963.84,2993.79,3040.83,3090.43,3142.91,3159.91,3226.95,3272.29,3270.97,3297.32,3333.42,3362.99,3381.84,3342.78,3345.25,3360.21,3324.67,3322.28,3326.72,3326.06,3314.82,3303.73,3302.65,3246.03,3244.65,3248.04,3223.94,3211.96,3167.00,3156.29,3175.23,3228.67,3388.39,3457.17,3400.23,3293.52,2967.68,2702.05,2528.84,2528.84]) g_r=[0.77,1.0,1.23] data_range=np.arange(20,72) sal20=np.zeros((n,1)) sal25=np.zeros((n,1)) sal30=np.zeros((n,1)) sal40=np.zeros((n,1)) sal50=np.zeros((n,1)) sal60=np.zeros((n,1)) sal=np.zeros((n,72)) p=np.arange(700,17500,100)*12.5 palkka20=np.array([10.3,5.6,4.5,14.2,7.1,9.1,22.8,22.1,68.9,160.3,421.6,445.9,501.5,592.2,564.5,531.9,534.4,431.2,373.8,320.3,214.3,151.4,82.3,138.0,55.6,61.5,45.2,19.4,32.9,13.1,9.6,7.4,12.3,12.5,11.5,5.3,2.4,1.6,1.2,1.2,14.1,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) palkka25=np.array([12.4,11.3,30.2,4.3,28.5,20.3,22.5,23.7,83.3,193.0,407.9,535.0,926.5,1177.1,1540.9,1526.4,1670.2,1898.3,1538.8,1431.5,1267.9,1194.8,1096.3,872.6,701.3,619.0,557.2,465.8,284.3,291.4,197.1,194.4,145.0,116.7,88.7,114.0,56.9,57.3,55.0,25.2,24.4,20.1,25.2,37.3,41.4,22.6,14.1,9.4,6.3,7.5,8.1,9.0,4.0,3.4,5.4,4.1,5.2,1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) palkka30=np.array([1.0,2.0,3.0,8.5,12.1,22.9,15.8,21.8,52.3,98.2,295.3,392.8,646.7,951.4,1240.5,1364.5,1486.1,1965.2,1908.9,1729.5,1584.8,1460.6,1391.6,1551.9,1287.6,1379.0,1205.6,1003.6,1051.6,769.9,680.5,601.2,552.0,548.3,404.5,371.0,332.7,250.0,278.2,202.2,204.4,149.8,176.7,149.0,119.6,76.8,71.4,56.3,75.9,76.8,58.2,50.2,46.8,48.9,30.1,32.2,28.8,31.1,45.5,41.2,36.5,18.1,11.6,8.5,10.2,4.3,13.5,12.3,4.9,13.9,5.4,5.9,7.4,14.1,9.6,8.4,11.5,0.0,3.3,9.0,5.2,5.0,3.1,7.4,2.0,4.0,4.1,14.0,2.0,3.0,1.0,0.0,6.2,2.0,1.2,2.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) palkka50=np.array([2.0,3.1,2.4,3.9,1.0,1.0,11.4,30.1,29.3,34.3,231.9,341.9,514.4,724.0,1076.8,1345.2,1703.0,1545.8,1704.0,1856.1,1805.4,1608.1,1450.0,1391.4,1338.5,1173.2,1186.3,1024.8,1105.6,963.0,953.0,893.7,899.8,879.5,857.0,681.5,650.5,579.2,676.8,498.0,477.5,444.3,409.1,429.0,340.5,297.2,243.1,322.5,297.5,254.1,213.1,249.3,212.1,212.8,164.4,149.3,158.6,157.4,154.1,112.7,93.4,108.4,87.3,86.7,82.0,115.9,66.9,84.2,61.4,43.7,58.1,40.9,73.9,50.0,51.6,25.7,43.2,48.2,43.0,32.6,21.6,22.4,36.3,28.3,19.4,21.1,21.9,21.5,19.2,15.8,22.6,9.3,14.0,22.4,14.0,13.0,11.9,18.7,7.3,21.6,9.5,11.2,12.0,18.2,12.9,2.2,10.7,6.1,11.7,7.6,1.0,4.7,8.5,6.4,3.3,4.6,1.2,3.7,5.8,1.0,1.0,1.0,1.0,3.2,1.2,3.1,2.2,2.3,2.1,1.1,2.0,2.1,2.2,4.6,2.2,1.0,1.0,1.0,0.0,3.0,1.2,0.0,8.2,3.0,1.0,1.0,2.1,1.2,3.2,1.0,5.2,1.1,5.2,1.0,1.2,2.3,1.0,3.1,1.0,1.0,1.1,1.6,1.1,1.1,1.0,1.0,1.0,1.0]) m20=0 m25=0 m30=0 m40=0 m50=0 m60=0 salx=np.zeros((self.n_time+2,1)) saln=np.zeros((self.n_time+2,1)) salx_m=np.zeros((self.n_time+2,1)) saln_m=np.zeros((self.n_time+2,1)) salx_f=np.zeros((self.n_time+2,1)) saln_f=np.zeros((self.n_time+2,1)) for k in range(self.n_pop): for t in range(self.n_time-2): if self.popempstate[t,k] in set([1,10,8,9]): salx[t]=salx[t]+self.infostats_pop_wage[t,k] saln[t]=saln[t]+1 if self.infostats_group[k]>2: salx_f[t]=salx_f[t]+self.infostats_pop_wage[t,k] saln_f[t]=saln_f[t]+1 else: salx_m[t]=salx_m[t]+self.infostats_pop_wage[t,k] saln_m[t]=saln_m[t]+1 if self.popempstate[self.map_age(20),k] in set([1,10]): sal20[m20]=self.infostats_pop_wage[self.map_age(20),k] m20=m20+1 if self.popempstate[self.map_age(25),k] in set([1,10]): sal25[m25]=self.infostats_pop_wage[self.map_age(25),k] m25=m25+1 if self.popempstate[self.map_age(30),k] in set([1,10]): sal30[m30]=self.infostats_pop_wage[self.map_age(30),k] m30=m30+1 if self.popempstate[self.map_age(40),k] in set([1,10]): sal40[m40]=self.infostats_pop_wage[self.map_age(40),k] m40=m40+1 if self.popempstate[self.map_age(50),k] in set([1,10]): sal50[m50]=self.infostats_pop_wage[self.map_age(50),k] m50=m50+1 if self.popempstate[self.map_age(60),k] in set([1,10]): sal60[m60]=self.infostats_pop_wage[self.map_age(60),k] m60=m60+1 salx=salx/np.maximum(1,saln) salx_f=salx_f/np.maximum(1,saln_f) salx_m=salx_m/np.maximum(1,saln_m) #print(sal25,self.infostats_pop_wage) def kuva(sal,ika,m,p,palkka): plt.hist(sal[:m],bins=50,density=True) ave=np.mean(sal[:m])/12 palave=np.sum(palkka*p)/12/np.sum(palkka) plt.title('{}: ave {} vs {}'.format(ika,ave,palave)) plt.plot(p,palkka/sum(palkka)/2000) plt.show() def kuva2(sal,ika,m): plt.hist(sal[:m],bins=50,density=True) ave=np.mean(sal[:m])/12 plt.title('{}: ave {}'.format(ika,ave)) plt.show() kuva(sal20,20,m20,p,palkka20) kuva(sal25,25,m25,p,palkka25) kuva(sal30,30,m30,p,palkka30) kuva2(sal40,40,m40) kuva(sal50,50,m50,p,palkka50) kuva2(sal60,60,m60) data_range=np.arange(21,72) plt.plot(data_range,np.mean(self.infostats_pop_wage[::4],axis=1),label='malli kaikki') plt.plot(data_range,salx[::4],label='malli töissä') data_range=np.arange(20,72) plt.plot(data_range,0.5*palkat_ika_miehet+0.5*palkat_ika_naiset,label='data') plt.legend() plt.show() data_range=np.arange(21,72) plt.plot(data_range,salx_m[::4],label='malli töissä miehet') plt.plot(data_range,salx_f[::4],label='malli töissä naiset') data_range=np.arange(20,72) plt.plot(data_range,palkat_ika_miehet,label='data miehet') plt.plot(data_range,palkat_ika_naiset,label='data naiset') plt.legend() plt.show() def plot_rewdist(self,t=0,sum=False,all=False): if all: fig,ax=plt.subplots() for t in range(1,self.n_time-1,5): scaled,x=np.histogram(self.poprewstate[t,:]) x2=0.5*(x[1:]+x[0:-1]) ax.plot(x2,scaled,label=t) plt.legend() plt.show() else: if sum: scaled,x=np.histogram(np.sum(self.poprewstate,axis=0)) x2=0.5*(x[1:]+x[0:-1]) plt.plot(x2,scaled) else: fig,ax=plt.subplots() for t in range(t,t+10,1): scaled,x=np.histogram(self.poprewstate[t,:]) x2=0.5*(x[1:]+x[0:-1]) ax.plot(x2,scaled,label=t) plt.legend() plt.show() def plot_unempdistribs_bu(self,unemp_distrib,max=2): #fig,ax=plt.subplots() max_time=50 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(-max_time,0,nn_time) scaled,x2=np.histogram(unemp_distrib,x) scaled=scaled/np.abs(np.sum(unemp_distrib)) fig,ax=plt.subplots() #self.plot_vlines_unemp(0.6) ax.set_xlabel(self.labels['unemp duration']) ax.set_ylabel(self.labels['probability']) #x3=np.flip(x[:-1]) #ax.plot(x3,scaled) ax.plot(x[:-1],scaled) #ax.set_yscale('log') plt.xlim(-max,0) plt.show() def plot_compare_unempdistribs(self,unemp_distrib1,unemp_distrib2,max=4, label2='none',label1='none',logy=True,diff=False,figname=None): #fig,ax=plt.subplots() max_time=50 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(self.timestep,max_time,nn_time) scaled1,x1=np.histogram(unemp_distrib1,x) print('{} keskikesto {} v {} keskikesto {} v'.format(label1,np.mean(unemp_distrib1),label2,np.mean(unemp_distrib2))) print('Skaalaamaton {} lkm {} v {} lkm {} v'.format(label1,len(unemp_distrib1),label2,len(unemp_distrib2))) print('Skaalaamaton {} työtpäiviä yht {} v {} työtpäiviä yht {} v'.format(label1,np.sum(unemp_distrib1),label2,np.sum(unemp_distrib2))) #scaled=scaled/np.sum(unemp_distrib) scaled1=scaled1/np.sum(scaled1) scaled2,x1=np.histogram(unemp_distrib2,x) scaled2=scaled2/np.sum(scaled2) fig,ax=plt.subplots() if not diff: self.plot_vlines_unemp(0.5) ax.set_xlabel(self.labels['unemp duration']) ax.set_ylabel(self.labels['osuus']) if diff: ax.plot(x[:-1],scaled1-scaled2,label=label1+'-'+label2) else: ax.plot(x[:-1],scaled2,label=label2) ax.plot(x[:-1],scaled1,label=label1) if logy and not diff: ax.set_yscale('log') if not diff: plt.ylim(1e-4,1.0) #ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.legend() plt.xlim(0,max) if figname is not None: plt.savefig(figname+'comp_unempdistrib.eps', format='eps') plt.show() def plot_compare_virrat(self,virta1,virta2,min_time=25,max_time=65,label1='perus',label2='vaihtoehto',virta_label='työllisyys',ymin=None,ymax=None): x=np.linspace(self.min_age,self.max_age,self.n_time) demog2=self.empstats.get_demog() scaled1=virta1*demog2/self.n_pop #/self.alive scaled2=virta2*demog2/self.n_pop #/self.alive fig,ax=plt.subplots() plt.xlim(min_time,max_time) ax.set_xlabel(self.labels['age']) ax.set_ylabel(virta_label+'virta') ax.plot(x,scaled1,label=label1) ax.plot(x,scaled2,label=label2) ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) if ymin is not None and ymax is not None: plt.ylim(ymin,ymax) plt.show() def plot_outsider(self,printtaa=True): x=np.linspace(self.min_age,self.max_age,self.n_time) fig,ax=plt.subplots() ax.plot(x,100*(self.empstate[:,11]+self.empstate[:,5]+self.empstate[:,7])/self.alive[:,0],label='työvoiman ulkopuolella, ei opiskelija, sis. vanh.vapaat') emp_statsratio=100*self.empstats.outsider_stats() ax.plot(x,emp_statsratio,label='havainto') ax.set_xlabel(self.labels['age']) ax.set_ylabel(self.labels['ratio']) ax.legend() plt.show() x=np.linspace(self.min_age,self.max_age,self.n_time) fig,ax=plt.subplots() ax.plot(x,100*np.sum(self.gempstate[:,11,3:5]+self.gempstate[:,5,3:5]+self.gempstate[:,7,3:5],1,keepdims=True)/np.sum(self.galive[:,3:5],1,keepdims=True),label='työvoiman ulkopuolella, naiset') ax.plot(x,100*np.sum(self.gempstate[:,11,0:2]+self.gempstate[:,5,0:2]+self.gempstate[:,7,0:2],1,keepdims=True)/np.sum(self.galive[:,3:5],1,keepdims=True),label='työvoiman ulkopuolella, miehet') emp_statsratio=100*self.empstats.outsider_stats(g=1) ax.plot(x,emp_statsratio,label=self.labels['havainto, naiset']) emp_statsratio=100*self.empstats.outsider_stats(g=2) ax.plot(x,emp_statsratio,label=self.labels['havainto, miehet']) ax.set_xlabel(self.labels['age']) ax.set_ylabel(self.labels['ratio']) ax.legend() plt.show() if printtaa: #print('yht',100*(self.empstate[:,11]+self.empstate[:,5]+self.empstate[:,6]+self.empstate[:,7])/self.alive[:,0]) nn=np.sum(self.galive[:,3:5],1,keepdims=True) n=np.sum(100*(self.gempstate[:,5,3:5]+self.gempstate[:,6,3:5]+self.gempstate[:,7,3:5]),1,keepdims=True)/nn mn=np.sum(self.galive[:,0:2],1,keepdims=True) m=np.sum(100*(self.gempstate[:,5,0:2]+self.gempstate[:,6,0:2]+self.gempstate[:,7,0:2]),1,keepdims=True)/mn #print('naiset vv',n[1::4,0]) #print('miehet vv',m[1::4,0]) def plot_pinkslip(self): x=np.linspace(self.min_age,self.max_age,self.n_time) fig,ax=plt.subplots() ax.plot(x,100*self.infostats_pinkslip[:,0]/self.empstate[:,0],label='ansiosidonnaisella') ax.plot(x,100*self.infostats_pinkslip[:,4]/self.empstate[:,4],label='putkessa') ax.plot(x,100*self.infostats_pinkslip[:,13]/self.empstate[:,13],label='työmarkkinatuella') ax.set_xlabel(self.labels['age']) ax.set_ylabel('Irtisanottujen osuus tilassa [%]') ax.legend() plt.show() def plot_student(self): x=np.linspace(self.min_age,self.max_age,self.n_time) fig,ax=plt.subplots() ax.plot(x+self.timestep,100*self.empstate[:,12]/self.alive[:,0],label='opiskelija tai armeijassa') emp_statsratio=100*self.empstats.student_stats() ax.plot(x,emp_statsratio,label='havainto') ax.set_xlabel(self.labels['age']) ax.set_ylabel(self.labels['ratio']) ax.legend() plt.show() def plot_kassanjasen(self): x=np.linspace(self.min_age,self.max_age,self.n_time) fig,ax=plt.subplots() ax.plot(x+self.timestep,100*self.infostats_kassanjasen[:]/self.alive[:,0],label='työttömyyskassan jäsenien osuus kaikista') ax.set_xlabel(self.labels['age']) ax.set_ylabel(self.labels['ratio']) ax.legend() plt.show() mini=np.nanmin(100*self.infostats_kassanjasen[:]/self.alive[:,0]) maxi=np.nanmax(100*self.infostats_kassanjasen[:]/self.alive[:,0]) print('Kassanjäseniä min {} % max {} %'.format(mini,maxi)) def plot_group_student(self): fig,ax=plt.subplots() for gender in range(2): if gender==0: leg='Opiskelijat+Armeija Miehet' opiskelijat=np.sum(self.gempstate[:,12,0:3],axis=1) alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,0:3],1) else: leg='Opiskelijat+Armeija Naiset' opiskelijat=np.sum(self.gempstate[:,12,3:6],axis=1) alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,3:6],1) opiskelijat=np.reshape(opiskelijat,(self.galive.shape[0],1)) osuus=100*opiskelijat/alive x=np.linspace(self.min_age,self.max_age,self.n_time) ax.plot(x,osuus,label=leg) emp_statsratio=100*self.empstats.student_stats(g=1) ax.plot(x,emp_statsratio,label=self.labels['havainto, naiset']) emp_statsratio=100*self.empstats.student_stats(g=2) ax.plot(x,emp_statsratio,label=self.labels['havainto, miehet']) ax.set_xlabel(self.labels['age']) ax.set_ylabel(self.labels['ratio']) ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.show() def plot_group_disab(self): fig,ax=plt.subplots() for gender in range(2): if gender==0: leg='TK Miehet' opiskelijat=np.sum(self.gempstate[:,3,0:3],axis=1) alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,0:3],1) else: leg='TK Naiset' opiskelijat=np.sum(self.gempstate[:,3,3:6],axis=1) alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,3:6],1) opiskelijat=np.reshape(opiskelijat,(self.galive.shape[0],1)) osuus=100*opiskelijat/alive x=np.linspace(self.min_age,self.max_age,self.n_time) ax.plot(x,osuus,label=leg) emp_statsratio=100*self.empstats.disab_stat(g=1) ax.plot(x,emp_statsratio,label=self.labels['havainto, naiset']) emp_statsratio=100*self.empstats.disab_stat(g=2) ax.plot(x,emp_statsratio,label=self.labels['havainto, miehet']) ax.set_xlabel(self.labels['age']) ax.set_ylabel(self.labels['ratio']) ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.show() def plot_taxes(self,figname=None): valtionvero_ratio=100*self.infostats_valtionvero_distrib/np.reshape(np.sum(self.infostats_valtionvero_distrib,1),(-1,1)) kunnallisvero_ratio=100*self.infostats_kunnallisvero_distrib/np.reshape(np.sum(self.infostats_kunnallisvero_distrib,1),(-1,1)) vero_ratio=100*(self.infostats_kunnallisvero_distrib+self.infostats_valtionvero_distrib)/(np.reshape(np.sum(self.infostats_valtionvero_distrib,1),(-1,1))+np.reshape(np.sum(self.infostats_kunnallisvero_distrib,1),(-1,1))) if figname is not None: self.plot_states(vero_ratio,ylabel='Valtioneronmaksajien osuus tilassa [%]',stack=True,figname=figname+'_stack') else: self.plot_states(vero_ratio,ylabel='Valtioneronmaksajien osuus tilassa [%]',stack=True) if figname is not None: self.plot_states(valtionvero_ratio,ylabel='Veronmaksajien osuus tilassa [%]',stack=True,figname=figname+'_stack') else: self.plot_states(valtionvero_ratio,ylabel='Veronmaksajien osuus tilassa [%]',stack=True) if figname is not None: self.plot_states(kunnallisvero_ratio,ylabel='Kunnallisveron maksajien osuus tilassa [%]',stack=True,figname=figname+'_stack') else: self.plot_states(kunnallisvero_ratio,ylabel='Kunnallisveron maksajien osuus tilassa [%]',stack=True) valtionvero_osuus,kunnallisvero_osuus,vero_osuus=self.comp_taxratios() print('Valtionveron maksajien osuus\n{}'.format(self.v2_groupstates(valtionvero_osuus))) print('Kunnallisveron maksajien osuus\n{}'.format(self.v2_groupstates(kunnallisvero_osuus))) print('Veronmaksajien osuus\n{}'.format(self.v2_groupstates(vero_osuus))) def group_taxes(self,ratios): if len(ratios.shape)>1: vv_osuus=np.zeros((ratios.shape[0],5)) vv_osuus[:,0]=ratios[:,0]+ratios[:,4]+ratios[:,5]+ratios[:,6]+\ ratios[:,7]+ratios[:,8]+ratios[:,9]+ratios[:,11]+\ ratios[:,12]+ratios[:,13] vv_osuus[:,1]=ratios[:,1]+ratios[:,10] vv_osuus[:,2]=ratios[:,2]+ratios[:,3]+ratios[:,8]+ratios[:,9] vv_osuus[:,3]=ratios[:,1]+ratios[:,10]+ratios[:,8]+ratios[:,9] else: vv_osuus=np.zeros((4)) vv_osuus[0]=ratios[0]+ratios[4]+ratios[5]+ratios[6]+\ ratios[7]+ratios[8]+ratios[9]+ratios[11]+\ ratios[12]+ratios[13] vv_osuus[1]=ratios[1]+ratios[10] vv_osuus[2]=ratios[2]+ratios[3]+ratios[8]+ratios[9] vv_osuus[3]=ratios[1]+ratios[10]+ratios[8]+ratios[9] return vv_osuus def comp_taxratios(self,grouped=False): valtionvero_osuus=100*np.sum(self.infostats_valtionvero_distrib,0)/np.sum(self.infostats_valtionvero_distrib) kunnallisvero_osuus=100*np.sum(self.infostats_kunnallisvero_distrib,0)/np.sum(self.infostats_kunnallisvero_distrib) vero_osuus=100*(np.sum(self.infostats_kunnallisvero_distrib,0)+np.sum(self.infostats_valtionvero_distrib,0))/(np.sum(self.infostats_kunnallisvero_distrib)+np.sum(self.infostats_valtionvero_distrib)) if grouped: vv_osuus=self.group_taxes(valtionvero_osuus) kv_osuus=self.group_taxes(kunnallisvero_osuus) v_osuus=self.group_taxes(vero_osuus) else: vv_osuus=valtionvero_osuus kv_osuus=kunnallisvero_osuus v_osuus=vero_osuus return vv_osuus,kv_osuus,v_osuus def comp_verokiila(self,include_retwork=True,debug=False): ''' Computes the tax effect as in Lundberg 2017 However, this applies the formulas for averages ''' if debug: print('comp_verokiila') demog2=self.empstats.get_demog() scalex=demog2/self.n_pop valtionvero_osuus=np.sum(self.infostats_valtionvero_distrib*scalex,0) kunnallisvero_osuus=np.sum(self.infostats_kunnallisvero_distrib*scalex,0) taxes_distrib=np.sum(self.infostats_taxes_distrib*scalex,0) taxes=self.group_taxes(taxes_distrib) q=self.comp_budget() q2=self.comp_participants(scale=True,include_retwork=include_retwork) #htv=q2['palkansaajia'] #muut_tulot=q['muut tulot'] # kulutuksen verotus tC=0.24*max(0,q['tyotulosumma']-taxes[3]) # (työssäolevien verot + ta-maksut + kulutusvero)/(työtulosumma + ta-maksut) kiila=(taxes[3]+q['ta_maksut']+tC)/(q['tyotulosumma']+q['ta_maksut']) qq={} qq['tI']=taxes[3]/q['tyotulosumma'] qq['tC']=tC/q['tyotulosumma'] qq['tP']=q['ta_maksut']/q['tyotulosumma'] if debug: print('qq',qq,'kiila',kiila) return kiila,qq def comp_verokiila_kaikki_ansiot(self): demog2=self.empstats.get_demog() scalex=demog2/self.n_pop valtionvero_osuus=np.sum(self.infostats_valtionvero_distrib*scalex,0) kunnallisvero_osuus=np.sum(self.infostats_kunnallisvero_distrib*scalex,0) taxes_distrib=np.sum(self.infostats_taxes_distrib*scalex,0) taxes=self.group_taxes(taxes_distrib) q=self.comp_budget() q2=self.comp_participants(scale=True) htv=q2['palkansaajia'] muut_tulot=q['muut tulot'] # kulutuksen verotus tC=0.2*max(0,q['tyotulosumma']-taxes[3]) # (työssäolevien verot + ta-maksut + kulutusvero)/(työtulosumma + ta-maksut) kiila=(taxes[0]+q['ta_maksut']+tC)/(q['tyotulosumma']+q['verotettava etuusmeno']+q['ta_maksut']) qq={} qq['tI']=taxes[0]/q['tyotulosumma'] qq['tC']=tC/q['tyotulosumma'] qq['tP']=q['ta_maksut']/q['tyotulosumma'] #print(qq) return kiila,qq def v2_states(self,x): return 'Ansiosidonnaisella {:.2f}\nKokoaikatyössä {:.2f}\nVanhuuseläkeläiset {:.2f}\nTyökyvyttömyyseläkeläiset {:.2f}\n'.format(x[0],x[1],x[2],x[3])+\ 'Putkessa {:.2f}\nÄitiysvapaalla {:.2f}\nIsyysvapaalla {:.2f}\nKotihoidontuella {:.2f}\n'.format(x[4],x[5],x[6],x[7])+\ 'VE+OA {:.2f}\nVE+kokoaika {:.2f}\nOsa-aikatyö {:.2f}\nTyövoiman ulkopuolella {:.2f}\n'.format(x[8],x[9],x[10],x[11])+\ 'Opiskelija/Armeija {:.2f}\nTM-tuki {:.2f}\n'.format(x[12],x[13]) def v2_groupstates(self,xx): x=self.group_taxes(xx) return 'Etuudella olevat {:.2f}\nTyössä {:.2f}\nEläkkeellä {:.2f}\n'.format(x[0],x[1],x[2]) def plot_emp(self,figname=None): tyollisyysaste,osatyoaste,tyottomyysaste,ka_tyottomyysaste=self.comp_empratios(self.empstate,self.alive,unempratio=False) age_label=self.labels['age'] ratio_label=self.labels['osuus'] x=np.linspace(self.min_age,self.max_age,self.n_time) fig,ax=plt.subplots() ax.plot(x,tyollisyysaste,label=self.labels['malli']) #ax.plot(x,tyottomyysaste,label=self.labels['tyottomien osuus']) emp_statsratio=100*self.empstats.emp_stats() ax.plot(x,emp_statsratio,ls='--',label=self.labels['havainto']) ax.set_xlabel(age_label) ax.set_ylabel(self.labels['tyollisyysaste %']) ax.legend() if figname is not None: plt.savefig(figname+'tyollisyysaste.eps', format='eps') plt.show() #if self.version in set([1,2,3]): fig,ax=plt.subplots() ax.stackplot(x,osatyoaste,100-osatyoaste, labels=('osatyössä','kokoaikaisessa työssä')) #, colors=pal) pal=sns.color_palette("hls", self.n_employment) # hls, husl, cubehelix ax.legend() plt.show() empstate_ratio=100*self.empstate/self.alive if figname is not None: self.plot_states(empstate_ratio,ylabel=ratio_label,stack=True,figname=figname+'_stack') else: self.plot_states(empstate_ratio,ylabel=ratio_label,stack=True) if self.version in set([1,2,3,4]): self.plot_states(empstate_ratio,ylabel=ratio_label,ylimit=20,stack=False) self.plot_states(empstate_ratio,ylabel=ratio_label,parent=True,stack=False) self.plot_parents_in_work() self.plot_states(empstate_ratio,ylabel=ratio_label,unemp=True,stack=False) if figname is not None: self.plot_states(empstate_ratio,ylabel=ratio_label,start_from=60,stack=True,figname=figname+'_stack60') else: self.plot_states(empstate_ratio,ylabel=ratio_label,start_from=60,stack=True) def plot_savings(self): savings_0=np.zeros(self.n_time) savings_1=np.zeros(self.n_time) savings_2=np.zeros(self.n_time) act_savings_0=np.zeros(self.n_time) act_savings_1=np.zeros(self.n_time) act_savings_2=np.zeros(self.n_time) for t in range(self.n_time): state_0=np.argwhere(self.popempstate[t,:]==0) savings_0[t]=np.mean(self.infostats_savings[t,state_0[:]]) act_savings_0[t]=np.mean(self.sav_actions[t,state_0[:]]) state_1=np.argwhere(self.popempstate[t,:]==1) savings_1[t]=np.mean(self.infostats_savings[t,state_1[:]]) act_savings_1[t]=np.mean(self.sav_actions[t,state_1[:]]) state_2=np.argwhere(self.popempstate[t,:]==2) savings_2[t]=np.mean(self.infostats_savings[t,state_2[:]]) act_savings_2[t]=np.mean(self.sav_actions[t,state_2[:]]) fig,ax=plt.subplots() x=np.linspace(self.min_age,self.max_age,self.n_time) savings=np.mean(self.infostats_savings,axis=1) ax.plot(x,savings,label='savings all') ax.legend() plt.title('Savings all') plt.show() fig,ax=plt.subplots() x=np.linspace(self.min_age,self.max_age,self.n_time) savings=np.mean(self.infostats_savings,axis=1) ax.plot(x,savings_0,label='unemp') ax.plot(x,savings_1,label='emp') ax.plot(x,savings_2,label='retired') plt.title('Savings by emp state') ax.legend() plt.show() fig,ax=plt.subplots() x=np.linspace(self.min_age,self.max_age,self.n_time) savings=np.mean(self.sav_actions-20,axis=1) ax.plot(x[1:],savings[1:],label='savings action') ax.legend() plt.title('Saving action') plt.show() fig,ax=plt.subplots() x=np.linspace(self.min_age,self.max_age,self.n_time) savings=np.mean(self.infostats_savings,axis=1) ax.plot(x[1:],act_savings_0[1:]-20,label='unemp') ax.plot(x[1:],act_savings_1[1:]-20,label='emp') ax.plot(x[1:],act_savings_2[1:]-20,label='retired') plt.title('Saving action by emp state') ax.legend() plt.show() def plot_emp_by_gender(self,figname=None): x=np.linspace(self.min_age,self.max_age,self.n_time) for gender in range(2): if gender<1: empstate_ratio=100*np.sum(self.gempstate[:,:,0:3],axis=2)/(np.sum(self.galive[:,0:3],axis=1)[:,None]) genderlabel='miehet' else: empstate_ratio=100*np.sum(self.gempstate[:,:,3:6],axis=2)/(np.sum(self.galive[:,3:6],axis=1)[:,None]) genderlabel='naiset' if figname is not None: self.plot_states(empstate_ratio,ylabel=self.labels['osuus tilassa x'].format(genderlabel),stack=True,figname=figname+'_stack') else: self.plot_states(empstate_ratio,ylabel=self.labels['osuus tilassa x'].format(genderlabel),stack=True) if self.version in set([1,2,3,4]): self.plot_states(empstate_ratio,ylabel=self.labels['osuus tilassa x'].format(genderlabel),ylimit=20,stack=False) self.plot_states(empstate_ratio,ylabel=self.labels['osuus tilassa x'].format(genderlabel),parent=True,stack=False) self.plot_states(empstate_ratio,ylabel=self.labels['osuus tilassa x'].format(genderlabel),unemp=True,stack=False) if figname is not None: self.plot_states(empstate_ratio,ylabel=self.labels['osuus tilassa x'].format(genderlabel),start_from=60,stack=True,figname=figname+'_stack60') else: self.plot_states(empstate_ratio,ylabel=self.labels['osuus tilassa x'].format(genderlabel),start_from=60,stack=True) def plot_parents_in_work(self): empstate_ratio=100*self.empstate/self.alive ml=100*self.infostats_mother_in_workforce/self.alive x=np.linspace(self.min_age,self.max_age,self.n_time) fig,ax=plt.subplots() ax.plot(x,ml,label='äitiysvapaa') ax.plot(x,empstate_ratio[:,6],label='isyysvapaa') ax.legend() plt.show() def plot_spouse(self,figname=None): x=np.linspace(self.min_age,self.max_age,self.n_time) fig,ax=plt.subplots() ax.set_xlabel(self.labels['age']) spouseratio=self.infostats_puoliso/self.alive[:,0] ax.set_ylabel('spouses') ax.plot(x,spouseratio) if figname is not None: plt.savefig(figname+'spouses.eps', format='eps') plt.show() def plot_unemp(self,unempratio=True,figname=None,grayscale=False): ''' Plottaa työttömyysaste (unempratio=True) tai työttömien osuus väestöstö (False) ''' x=np.linspace(self.min_age,self.max_age,self.n_time) if unempratio: tyollisyysaste,osatyoaste,tyottomyysaste,ka_tyottomyysaste=self.comp_empratios(self.empstate,self.alive,unempratio=True) unempratio_stat=100*self.empstats.unempratio_stats() if self.language=='Finnish': labeli='keskimääräinen työttömyysaste '+str(ka_tyottomyysaste) ylabeli=self.labels['tyottomyysaste'] labeli2='työttömyysaste' else: labeli='average unemployment rate '+str(ka_tyottomyysaste) ylabeli=self.labels['tyottomyysaste'] labeli2='Unemployment rate' else: tyollisyysaste,osatyoaste,tyottomyysaste,ka_tyottomyysaste=self.comp_empratios(self.empstate,self.alive,unempratio=False) unempratio_stat=100*self.empstats.unemp_stats() if self.language=='Finnish': labeli='keskimääräinen työttömien osuus väestöstö '+str(ka_tyottomyysaste) ylabeli='Työttömien osuus väestöstö [%]' labeli2='työttömien osuus väestöstö' else: labeli='proportion of unemployed'+str(ka_tyottomyysaste) ylabeli='Proportion of unemployed [%]' labeli2='proportion of unemployed' fig,ax=plt.subplots() ax.set_xlabel(self.labels['age']) ax.set_ylabel(ylabeli) ax.plot(x,tyottomyysaste,label=self.labels['malli']) ax.plot(x,unempratio_stat,ls='--',label=self.labels['havainto']) ax.legend() if figname is not None: plt.savefig(figname+'tyottomyysaste.eps', format='eps') plt.show() fig,ax=plt.subplots() ax.set_xlabel(self.labels['age']) ax.set_ylabel(ylabeli) ax.plot(x,unempratio_stat,label=self.labels['havainto']) ax.legend() if grayscale: pal=sns.light_palette("black", 8, reverse=True) else: pal=sns.color_palette("hls", self.n_employment) # hls, husl, cubehelix ax.stackplot(x,tyottomyysaste,colors=pal) #,label=self.labels['malli']) #ax.plot(x,tyottomyysaste) plt.show() fig,ax=plt.subplots() for gender in range(2): if gender==0: leg='Miehet' gempstate=np.sum(self.gempstate[:,:,0:3],axis=2) alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,0:3],1) color='darkgray' else: gempstate=np.sum(self.gempstate[:,:,3:6],axis=2) alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,3:6],1) leg='Naiset' color='black' tyollisyysaste,osatyoaste,tyottomyysaste,ka_tyottomyysaste=self.comp_empratios(gempstate,alive,unempratio=unempratio) ax.plot(x,tyottomyysaste,color=color,label='{} {}'.format(labeli2,leg)) if grayscale: lstyle='--' else: lstyle='--' if self.version in set([1,2,3,4]): if unempratio: ax.plot(x,100*self.empstats.unempratio_stats(g=1),ls=lstyle,label=self.labels['havainto, naiset']) ax.plot(x,100*self.empstats.unempratio_stats(g=2),ls=lstyle,label=self.labels['havainto, miehet']) labeli='keskimääräinen työttömyysaste '+str(ka_tyottomyysaste) ylabeli=self.labels['tyottomyysaste'] else: ax.plot(x,100*self.empstats.unemp_stats(g=1),ls=lstyle,label=self.labels['havainto, naiset']) ax.plot(x,100*self.empstats.unemp_stats(g=2),ls=lstyle,label=self.labels['havainto, miehet']) labeli='keskimääräinen työttömien osuus väestöstö '+str(ka_tyottomyysaste) ylabeli=self.labels['tyottomien osuus'] ax.set_xlabel(self.labels['age']) ax.set_ylabel(ylabeli) if False: ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) else: ax.legend() if figname is not None: plt.savefig(figname+'tyottomyysaste_spk.eps', format='eps') plt.show() def plot_parttime_ratio(self,grayscale=True,figname=None): ''' Plottaa osatyötä tekevien osuus väestöstö ''' x=np.linspace(self.min_age,self.max_age,self.n_time) labeli2='Osatyötä tekevien osuus' fig,ax=plt.subplots() for gender in range(2): if gender==0: leg='Miehet' g='men' pstyle='-' else: g='women' leg='Naiset' pstyle='' tyollisyysaste,osatyoaste,tyottomyysaste,ka_tyottomyysaste=self.comp_gempratios(gender=g,unempratio=False) ax.plot(x,osatyoaste,'{}'.format(pstyle),label='{} {}'.format(labeli2,leg)) o_x=np.array([20,30,40,50,60,70]) f_osatyo=np.array([55,21,16,12,18,71]) m_osatyo=np.array([32,8,5,4,9,65]) if grayscale: ax.plot(o_x,f_osatyo,ls='--',label=self.labels['havainto, naiset']) ax.plot(o_x,m_osatyo,ls='--',label=self.labels['havainto, miehet']) else: ax.plot(o_x,f_osatyo,label=self.labels['havainto, naiset']) ax.plot(o_x,m_osatyo,label=self.labels['havainto, miehet']) labeli='osatyöaste '#+str(ka_tyottomyysaste) ylabeli='Osatyön osuus työnteosta [%]' ax.set_xlabel(self.labels['age']) ax.set_ylabel(ylabeli) if False: ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) else: ax.legend() if figname is not None: plt.savefig(figname+'osatyoaste_spk.eps', format='eps') plt.show() def plot_unemp_shares(self): empstate_ratio=100*self.empstate/self.alive self.plot_states(empstate_ratio,ylabel='Osuus tilassa [%]',onlyunemp=True,stack=True) def plot_group_emp(self,grayscale=False,figname=None): fig,ax=plt.subplots() if grayscale: lstyle='--' else: lstyle='--' for gender in range(2): if gender==0: leg='Miehet' gempstate=np.sum(self.gempstate[:,:,0:3],axis=2) alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,0:3],1) color='darkgray' else: gempstate=np.sum(self.gempstate[:,:,3:6],axis=2) alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,3:6],1) leg='Naiset' color='black' tyollisyysaste,osatyoaste,tyottomyysaste,ka_tyottomyysaste=self.comp_empratios(gempstate,alive) x=np.linspace(self.min_age,self.max_age,self.n_time) ax.plot(x,tyollisyysaste,color=color,label='työllisyysaste {}'.format(leg)) #ax.plot(x,tyottomyysaste,label='työttömyys {}'.format(leg)) emp_statsratio=100*self.empstats.emp_stats(g=2) ax.plot(x,emp_statsratio,ls=lstyle,color='darkgray',label=self.labels['havainto, miehet']) emp_statsratio=100*self.empstats.emp_stats(g=1) ax.plot(x,emp_statsratio,ls=lstyle,color='black',label=self.labels['havainto, naiset']) ax.set_xlabel(self.labels['age']) ax.set_ylabel(self.labels['ratio']) if False: ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) else: ax.legend() if figname is not None: plt.savefig(figname+'tyollisyysaste_spk.eps', format='eps') plt.show() def plot_pensions(self): if self.version in set([1,2,3,4]): self.plot_ratiostates(self.stat_pension,ylabel='Tuleva eläke [e/v]',stack=False) def plot_career(self): if self.version in set([1,2,3,4]): self.plot_ratiostates(self.stat_tyoura,ylabel='Työuran pituus [v]',stack=False) def plot_ratiostates(self,statistic,ylabel='',ylimit=None, show_legend=True, parent=False,\ unemp=False,start_from=None,stack=False,no_ve=False,figname=None,emp=False,oa_unemp=False): self.plot_states(statistic/self.empstate,ylabel=ylabel,ylimit=ylimit,no_ve=no_ve,\ show_legend=show_legend,parent=parent,unemp=unemp,start_from=start_from,\ stack=stack,figname=figname,emp=emp,oa_unemp=oa_unemp) def count_putki(self,emps=None): if emps is None: piped=np.reshape(self.empstate[:,4],(self.empstate[:,4].shape[0],1)) demog2=self.empstats.get_demog() putkessa=self.timestep*np.nansum(piped[1:]/self.alive[1:]*demog2[1:]) return putkessa else: piped=np.reshape(emps[:,4],(emps[:,4].shape[0],1)) demog2=self.empstats.get_demog() alive=np.sum(emps,axis=1,keepdims=True) putkessa=self.timestep*np.nansum(piped[1:]/alive[1:]*demog2[1:]) return putkessa def plot_states(self,statistic,ylabel='',ylimit=None,show_legend=True,parent=False,unemp=False,no_ve=False, start_from=None,stack=True,figname=None,yminlim=None,ymaxlim=None, onlyunemp=False,reverse=False,grayscale=False,emp=False,oa_unemp=False): if start_from is None: x=np.linspace(self.min_age,self.max_age,self.n_time) else: x_n = self.max_age-60+1 x_t = int(np.round((x_n-1)*self.inv_timestep))+2 x=np.linspace(start_from,self.max_age,x_t) #x=np.linspace(start_from,self.max_age,self.n_time) statistic=statistic[self.map_age(start_from):] ura_emp=statistic[:,1] ura_ret=statistic[:,2] ura_unemp=statistic[:,0] if self.version in set([1,2,3,4]): ura_disab=statistic[:,3] ura_pipe=statistic[:,4] ura_mother=statistic[:,5] ura_dad=statistic[:,6] ura_kht=statistic[:,7] ura_vetyo=statistic[:,9] ura_veosatyo=statistic[:,8] ura_osatyo=statistic[:,10] ura_outsider=statistic[:,11] ura_student=statistic[:,12] ura_tyomarkkinatuki=statistic[:,13] ura_army=statistic[:,14] else: ura_osatyo=0 #statistic[:,3] if no_ve: ura_ret[-2:-1]=None fig,ax=plt.subplots() if stack: if grayscale: pal=sns.light_palette("black", 8, reverse=True) else: pal=sns.color_palette("hls", self.n_employment) # hls, husl, cubehelix reverse=True if parent: if self.version in set([1,2,3,4]): ax.stackplot(x,ura_mother,ura_dad,ura_kht, labels=('äitiysvapaa','isyysvapaa','khtuki'), colors=pal) elif unemp: if self.version in set([1,2,3,4]): ax.stackplot(x,ura_unemp,ura_pipe,ura_student,ura_outsider,ura_tyomarkkinatuki, labels=('tyött','putki','opiskelija','ulkona','tm-tuki'), colors=pal) else: ax.stackplot(x,ura_unemp,labels=('tyött'), colors=pal) elif onlyunemp: if self.version in set([1,2,3,4]): #urasum=np.nansum(statistic[:,[0,4,11,13]],axis=1)/100 urasum=np.nansum(statistic[:,[0,4,13]],axis=1)/100 osuus=(1.0-np.array([0.84,0.68,0.62,0.58,0.57,0.55,0.53,0.50,0.29]))*100 xx=np.array([22.5,27.5,32.5,37.5,42.5,47.5,52.5,57.5,62.5]) #ax.stackplot(x,ura_unemp/urasum,ura_pipe/urasum,ura_outsider/urasum,ura_tyomarkkinatuki/urasum, # labels=('ansiosidonnainen','lisäpäivät','työvoiman ulkopuolella','tm-tuki'), colors=pal) ax.stackplot(x,ura_unemp/urasum,ura_pipe/urasum,ura_tyomarkkinatuki/urasum, labels=('ansiosidonnainen','lisäpäivät','tm-tuki'), colors=pal) ax.plot(xx,osuus,color='k') else: ax.stackplot(x,ura_unemp,labels=('tyött'), colors=pal) else: if self.version in set([1,2,3,4]): #ax.stackplot(x,ura_emp,ura_osatyo,ura_vetyo,ura_veosatyo,ura_unemp,ura_tyomarkkinatuki,ura_pipe,ura_disab,ura_mother,ura_dad,ura_kht,ura_ret,ura_student,ura_outsider,ura_army, # labels=('työssä','osatyö','ve+työ','ve+osatyö','työtön','tm-tuki','työttömyysputki','tk-eläke','äitiysvapaa','isyysvapaa','kh-tuki','vanhuuseläke','opiskelija','työvoiman ulkop.','armeijassa'), # colors=pal) ax.stackplot(x,ura_emp,ura_osatyo,ura_vetyo,ura_veosatyo,ura_unemp,ura_tyomarkkinatuki,ura_pipe,ura_ret,ura_disab,ura_mother,ura_dad,ura_kht,ura_student,ura_outsider,ura_army, labels=('työssä','osatyö','ve+työ','ve+osatyö','työtön','tm-tuki','työttömyysputki','vanhuuseläke','tk-eläke','äitiysvapaa','isyysvapaa','kh-tuki','opiskelija','työvoiman ulkop.','armeijassa'), colors=pal) else: #ax.stackplot(x,ura_emp,ura_osatyo,ura_unemp,ura_ret, # labels=('työssä','osa-aikatyö','työtön','vanhuuseläke'), colors=pal) ax.stackplot(x,ura_emp,ura_unemp,ura_ret, labels=('työssä','työtön','vanhuuseläke'), colors=pal) if start_from is None: ax.set_xlim(self.min_age,self.max_age) else: ax.set_xlim(60,self.max_age) if ymaxlim is None: ax.set_ylim(0, 100) else: ax.set_ylim(yminlim,ymaxlim) else: if parent: if self.version in set([1,2,3,4]): ax.plot(x,ura_mother,label='äitiysvapaa') ax.plot(x,ura_dad,label='isyysvapaa') ax.plot(x,ura_kht,label='khtuki') elif unemp: ax.plot(x,ura_unemp,label='tyött') if self.version in set([1,2,3,4]): ax.plot(x,ura_tyomarkkinatuki,label='tm-tuki') ax.plot(x,ura_student,label='student') ax.plot(x,ura_outsider,label='outsider') ax.plot(x,ura_pipe,label='putki') elif oa_unemp: ax.plot(x,ura_unemp,label='tyött') if self.version in set([1,2,3,4]): ax.plot(x,ura_tyomarkkinatuki,label='tm-tuki') ax.plot(x,ura_student,label='student') ax.plot(x,ura_outsider,label='outsider') ax.plot(x,ura_pipe,label='putki') ax.plot(x,ura_osatyo,label='osa-aika') elif emp: ax.plot(x,ura_emp,label='työssä') #if self.version in set([1,2,3,4]): ax.plot(x,ura_osatyo,label='osatyö') else: ax.plot(x,ura_unemp,label='tyött') ax.plot(x,ura_ret,label='eläke') ax.plot(x,ura_emp,label='työ') if self.version in set([1,2,3,4]): ax.plot(x,ura_osatyo,label='osatyö') ax.plot(x,ura_disab,label='tk') ax.plot(x,ura_pipe,label='putki') ax.plot(x,ura_tyomarkkinatuki,label='tm-tuki') ax.plot(x,ura_mother,label='äitiysvapaa') ax.plot(x,ura_dad,label='isyysvapaa') ax.plot(x,ura_kht,label='khtuki') ax.plot(x,ura_vetyo,label='ve+työ') ax.plot(x,ura_veosatyo,label='ve+osatyö') ax.plot(x,ura_student,label='student') ax.plot(x,ura_outsider,label='outsider') ax.plot(x,ura_army,label='armeijassa') ax.set_xlabel(self.labels['age']) ax.set_ylabel(ylabel) if show_legend: if not reverse: lgd=ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) else: handles, labels = ax.get_legend_handles_labels() lgd=ax.legend(handles[::-1], labels[::-1], bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) if ylimit is not None: ax.set_ylim([0,ylimit]) #fig.tight_layout() if figname is not None: if show_legend: plt.savefig(figname,bbox_inches='tight',bbox_extra_artists=(lgd,), format='eps') else: plt.savefig(figname,bbox_inches='tight', format='eps') plt.show() def plot_toe(self): if self.version in set([1,2,3,4]): self.plot_ratiostates(self.stat_toe,'työssäolo-ehdon pituus 28 kk aikana [v]',stack=False) def plot_sal(self): self.plot_ratiostates(self.salaries_emp,'Keskipalkka [e/v]',stack=False) def plot_moved(self): siirtyneet_ratio=self.siirtyneet/self.alive*100 self.plot_states(siirtyneet_ratio,ylabel='Siirtyneet tilasta',stack=True, yminlim=0,ymaxlim=min(100,1.1*np.nanmax(np.cumsum(siirtyneet_ratio,1)))) pysyneet_ratio=self.pysyneet/self.alive*100 self.plot_states(pysyneet_ratio,ylabel='Pysyneet tilassa',stack=True, yminlim=0,ymaxlim=min(100,1.1*np.nanmax(np.cumsum(pysyneet_ratio,1)))) siirtyneet_ratio=self.siirtyneet_det[:,:,1]/self.alive*100 self.plot_states(siirtyneet_ratio,ylabel='Siirtyneet työhön tilasta',stack=True, yminlim=0,ymaxlim=min(100,1.1*np.nanmax(np.cumsum(siirtyneet_ratio,1)))) siirtyneet_ratio=self.siirtyneet_det[:,:,4]/self.alive*100 self.plot_states(siirtyneet_ratio,ylabel='Siirtyneet putkeen tilasta',stack=True, yminlim=0,ymaxlim=min(100,1.1*np.nanmax(np.cumsum(siirtyneet_ratio,1)))) siirtyneet_ratio=self.siirtyneet_det[:,:,0]/self.alive*100 self.plot_states(siirtyneet_ratio,ylabel='Siirtyneet työttömäksi tilasta',stack=True, yminlim=0,ymaxlim=min(100,1.1*np.nanmax(np.cumsum(siirtyneet_ratio,1)))) siirtyneet_ratio=self.siirtyneet_det[:,:,13]/self.alive*100 self.plot_states(siirtyneet_ratio,ylabel='Siirtyneet tm-tuelle tilasta',stack=True, yminlim=0,ymaxlim=min(100,1.1*np.nanmax(np.cumsum(siirtyneet_ratio,1)))) siirtyneet_ratio=self.siirtyneet_det[:,:,10]/self.alive*100 self.plot_states(siirtyneet_ratio,ylabel='Siirtyneet osa-aikatyöhön tilasta',stack=True, yminlim=0,ymaxlim=min(100,1.1*np.nanmax(np.cumsum(siirtyneet_ratio,1)))) # def plot_army(self): # x=np.linspace(self.min_age,self.max_age,self.n_time) # fig,ax=plt.subplots() # ax.plot(x,100*self.empstate[:,14]/self.alive[:,0],label='armeijassa ja siviilipalveluksessa olevat') # emp_statsratio=100*self.army_stats() # ax.plot(x,emp_statsratio,label='havainto') # ax.set_xlabel(self.labels['age']) # ax.set_ylabel(self.labels['ratio']) # ax.legend() # plt.show() # # def plot_group_army(self): # fig,ax=plt.subplots() # for gender in range(2): # if gender==0: # leg='Armeija Miehet' # opiskelijat=np.sum(self.gempstate[:,14,0:3],axis=1) # alive=np.zeros((self.galive.shape[0],1)) # alive[:,0]=np.sum(self.galive[:,0:3],1) # else: # leg='Armeija Naiset' # opiskelijat=np.sum(self.gempstate[:,14,3:6],axis=1) # alive=np.zeros((self.galive.shape[0],1)) # alive[:,0]=np.sum(self.galive[:,3:6],1) # # opiskelijat=np.reshape(opiskelijat,(self.galive.shape[0],1)) # osuus=100*opiskelijat/alive # x=np.linspace(self.min_age,self.max_age,self.n_time) # ax.plot(x,osuus,label=leg) # # emp_statsratio=100*self.army_stats(g=1) # ax.plot(x,emp_statsratio,label=self.labels['havainto, naiset']) # emp_statsratio=100*self.army_stats(g=2) # ax.plot(x,emp_statsratio,label=self.labels['havainto, miehet']) # ax.set_xlabel(self.labels['age']) # ax.set_ylabel(self.labels['ratio']) # ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) # plt.show() # def plot_ave_stay(self): self.plot_ratiostates(self.time_in_state,ylabel='Ka kesto tilassa',stack=False) fig,ax=plt.subplots() x=np.linspace(self.min_age,self.max_age,self.n_time) plt.plot(x,self.time_in_state[:,1]/self.empstate[:,1]) ax.set_xlabel('Aika') ax.set_ylabel('Ka kesto työssä') plt.show() fig,ax=plt.subplots() ax.set_xlabel('Aika') ax.set_ylabel('ka kesto työttömänä') plt.plot(x,self.time_in_state[:,0]/self.empstate[:,0]) plt.show() def plot_ove(self): self.plot_ratiostates(self.infostats_ove,ylabel='Ove',stack=False) def plot_reward(self): self.plot_ratiostates(self.rewstate,ylabel='Keskireward tilassa',stack=False) self.plot_ratiostates(self.rewstate,ylabel='Keskireward tilassa',stack=False,no_ve=True) self.plot_ratiostates(self.rewstate,ylabel='Keskireward tilassa',stack=False,oa_unemp=True) x=np.linspace(self.min_age,self.max_age,self.n_time) total_reward=np.sum(self.rewstate,axis=1) fig,ax=plt.subplots() ax.plot(x,total_reward) ax.set_xlabel('Aika') ax.set_ylabel('Koko reward tilassa') ax.legend() plt.show() def vector_to_array(self,x): return x[:,None] def comp_scaled_consumption(self,x0,averaged=False,t0=1): ''' Computes discounted actual reward at each time point with a given scaling x averaged determines whether the value is averaged over time or not ''' x=x0[0] u=np.zeros(self.n_time) for k in range(self.n_pop): #g=self.infostats_group[k] for t in range(1,self.n_time-1): age=t+self.min_age income=self.infostats_poptulot_netto[t,k] employment_state=self.popempstate[t,k] v,_=self.env.log_utility((1+x)*income,employment_state,age) if np.isnan(v): print('NaN',v,income,employment_state,age) v=0 u[t]+=v #print(age,v) t=self.n_time-1 age=t+self.min_age income=self.infostats_poptulot_netto[t,k] employment_state=self.popempstate[t,k] v0,_=self.env.log_utility(income,employment_state,age) factor=self.poprewstate[t,k]/v0 # life expectancy v,_=self.env.log_utility((1+x)*income,employment_state,age) if np.isnan(v): print('NaN',v,income,employment_state,age) if np.isnan(factor): print('NaN',factor,v0) #print(age,v*factor,factor) u[t]+=v*factor if np.isnan(u[t]): print('NaN',age,v,v*factor,factor,u[t],income,employment_state) u=u/self.n_pop w=np.zeros(self.n_time) w[-1]=u[-1] for t in range(self.n_time-2,0,-1): w[t]=u[t]+self.gamma*w[t+1] if averaged: ret=np.mean(w[t0:]) else: ret=w[t0] if np.isnan(ret): print(u,w) u=np.zeros(self.n_time) for k in range(self.n_pop): #g=self.infostats_group[k] for t in range(1,self.n_time-1): age=t+self.min_age income=self.infostats_poptulot_netto[t,k] employment_state=self.popempstate[t,k] v,_=self.env.log_utility((1+x)*income,employment_state,age) #,g=g,pinkslip=pinkslip) #print(t,k,v,income) u[t]+=v t=self.n_time-1 age=t-1+self.min_age income=self.infostats_poptulot_netto[t,k] employment_state=self.popempstate[t,k] v0,_=self.env.log_utility(income,employment_state,age) #,g=g,pinkslip=pinkslip) factor=self.poprewstate[t,k]/v0 # life expectancy v,_=self.env.log_utility((1+x)*income,employment_state,age) #,g=g,pinkslip=pinkslip) #print(t,k,v,income) u[t]+=v*factor #print(x,ret) return ret def comp_presentvalue(self): ''' Computes discounted actual reward at each time point with a given scaling x averaged determines whether the value is averaged over time or not ''' u=np.zeros((self.n_time,self.n_pop)) u[self.n_time-1,:]=self.poprewstate[self.n_time-1,:] for t in range(self.n_time-2,-1,-1): u[t,:]=self.poprewstate[t,:]+self.gamma*u[t+1,:] return u def comp_realoptimrew(self,discountfactor=None): ''' Computes discounted actual reward at each time point ''' if discountfactor is None: discountfactor=self.gamma realrew=np.zeros(self.n_time) for k in range(self.n_pop): prew=np.zeros(self.n_time) prew[-1]=self.poprewstate[-1,k] for t in range(self.n_time-2,0,-1): prew[t]=discountfactor*prew[t+1]+self.poprewstate[t,k] realrew+=prew realrew/=self.n_pop realrew=np.mean(realrew[1:]) return realrew def get_reward(self,discounted=False): return self.comp_total_reward(output=False,discounted=discounted) #np.sum(self.rewstate)/self.n_pop def comp_total_reward(self,output=False,discounted=False,discountfactor=None): if not discounted: total_reward=np.sum(self.rewstate) rr=total_reward/self.n_pop disco='undiscounted' else: #discount=discountfactor**np.arange(0,self.n_time*self.timestep,self.timestep)[:,None] #total_reward=np.sum(self.poprewstate*discount) rr=self.comp_realoptimrew(discountfactor) #total_reward/self.n_pop disco='discounted' #print('total rew1 {} rew2 {}'.format(total_reward,np.sum(self.poprewstate))) #print('ave rew1 {} rew2 {}'.format(rr,np.mean(np.sum(self.poprewstate,axis=0)))) #print('shape rew2 {} pop {} alive {}'.format(self.poprewstate.shape,self.n_pop,self.alive[0])) if output: print(f'Ave {disco} reward {rr}') return rr def comp_total_netincome(self,output=True): rr=np.sum(self.infostats_tulot_netto)/self.n_pop/(self.n_time+21.0) # 21 approximates the time in pension eq=np.sum(self.infostats_equivalent_income)/self.n_pop/(self.n_time+21.0) # 21 approximates the time in pension if output: print('Ave net income {} Ave equivalent net income {}'.format(rr,eq)) return rr,eq def plot_wage_reduction(self): self.plot_ratiostates(self.stat_wage_reduction,ylabel='wage-reduction tilassa',stack=False) self.plot_ratiostates(self.stat_wage_reduction,ylabel='wage-reduction tilassa',stack=False,unemp=True) self.plot_ratiostates(self.stat_wage_reduction,ylabel='wage-reduction tilassa',stack=False,emp=True) #self.plot_ratiostates(np.log(1.0+self.stat_wage_reduction),ylabel='log 5wage-reduction tilassa',stack=False) self.plot_ratiostates(np.sum(self.stat_wage_reduction_g[:,:,0:3],axis=2),ylabel='wage-reduction tilassa naiset',stack=False) self.plot_ratiostates(np.sum(self.stat_wage_reduction_g[:,:,3:6],axis=2),ylabel='wage-reduction tilassa miehet',stack=False) self.plot_ratiostates(np.sum(self.stat_wage_reduction_g[:,:,0:3],axis=2),ylabel='wage-reduction tilassa, naiset',stack=False,unemp=True) self.plot_ratiostates(np.sum(self.stat_wage_reduction_g[:,:,3:6],axis=2),ylabel='wage-reduction tilassa, miehet',stack=False,unemp=True) self.plot_ratiostates(np.sum(self.stat_wage_reduction_g[:,:,0:3],axis=2),ylabel='wage-reduction tilassa, naiset',stack=False,emp=True) self.plot_ratiostates(np.sum(self.stat_wage_reduction_g[:,:,3:6],axis=2),ylabel='wage-reduction tilassa, miehet',stack=False,emp=True) def plot_distrib(self,label='',plot_emp=False,plot_bu=False,ansiosid=False,tmtuki=False,putki=False,outsider=False,max_age=500,laaja=False,max=4,figname=None): unemp_distrib,emp_distrib,unemp_distrib_bu=self.comp_empdistribs(ansiosid=ansiosid,tmtuki=tmtuki,putki=putki,outsider=outsider,max_age=max_age,laaja=laaja) tyoll_distrib,tyoll_distrib_bu=self.comp_tyollistymisdistribs(ansiosid=ansiosid,tmtuki=tmtuki,putki=putki,outsider=outsider,max_age=max_age,laaja=laaja) if plot_emp: self.plot_empdistribs(emp_distrib) if plot_bu: self.plot_unempdistribs_bu(unemp_distrib_bu) else: self.plot_unempdistribs(unemp_distrib,figname=figname) #self.plot_tyolldistribs(unemp_distrib,tyoll_distrib,tyollistyneet=False) if plot_bu: self.plot_tyolldistribs_both_bu(unemp_distrib_bu,tyoll_distrib_bu,max=max) else: self.plot_tyolldistribs_both(unemp_distrib,tyoll_distrib,max=max,figname=figname) def plot_irr(self,figname=''): self.comp_aggirr() self.comp_irr() self.plot_irrdistrib(self.infostats_irr,figname=figname) def plot_irrdistrib(self,irr_distrib,grayscale=True,figname=''): if grayscale: plt.style.use('grayscale') plt.rcParams['figure.facecolor'] = 'white' # Or any suitable colour... print('Nans {} out of {}'.format(np.sum(np.isnan(irr_distrib)),irr_distrib.shape[0])) fig,ax=plt.subplots() ax.set_xlabel('Sisäinen tuottoaste [%]') lbl=ax.set_ylabel('Taajuus') #ax.set_yscale('log') #max_time=50 #nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(-5,5,100) scaled,x2=np.histogram(irr_distrib,x) #scaled=scaled/np.nansum(np.abs(irr_distrib)) ax.bar(x2[1:-1],scaled[1:],align='center') if figname is not None: plt.savefig(figname+'irrdistrib.eps', bbox_inches='tight', format='eps') plt.show() fig,ax=plt.subplots() ax.hist(irr_distrib,bins=40) plt.show() print('Keskimääräinen irr {:.3f} %'.format(np.nanmean(irr_distrib))) print('Mediaani irr {:.3f} %'.format(np.nanmedian(irr_distrib))) count = (irr_distrib < 0).sum(axis=0) percent = np.true_divide(count,irr_distrib.shape[0]) print('Osuus irr<0 {} %:lla'.format(100*percent)) count = (irr_distrib <=-50).sum(axis=0) percent = np.true_divide(count,irr_distrib.shape[0]) print('Osuus irr<-50 {} %:lla'.format(100*percent)) count = (np.sum(self.infostats_paid_tyel_pension,axis=0)<0.1).sum() percent = np.true_divide(count,irr_distrib.shape[0]) print('Osuus eläke ei maksussa {} %:lla'.format(100*percent)) count1 = np.sum(self.popempstate[0:self.map_age(63),:]==15) count = (np.sum(self.infostats_paid_tyel_pension,axis=0)<0.1).sum()-count1 percent = np.true_divide(count,irr_distrib.shape[0]) print('Osuus eläke ei maksussa, ei kuollut {} %:lla'.format(100*percent)) count = np.sum(self.popempstate==15) percent = np.true_divide(count,irr_distrib.shape[0]) print('Osuus kuolleet {} %:lla'.format(100*percent)) def get_initial_reward(self,startage=None): real=self.comp_presentvalue() if startage is None: startage=self.min_age age=max(1,startage-self.min_age) realage=max(self.min_age+1,startage) print('Initial discounted reward at age {}: {}'.format(realage,np.mean(real[age,:]))) return np.mean(real[age,:]) def plot_stats(self,grayscale=False,figname=None): if grayscale: plt.style.use('grayscale') plt.rcParams['figure.facecolor'] = 'white' # Or any suitable colour... self.comp_total_reward() self.comp_total_reward(discounted=True) self.comp_total_netincome() #self.plot_rewdist() #self.plot_emp(figname=figname) if self.version in set([1,2,3,4]): q=self.comp_budget(scale=True) q_stat=self.stat_budget() df1 = pd.DataFrame.from_dict(q,orient='index',columns=['e/v']) df2 = pd.DataFrame.from_dict(q_stat,orient='index',columns=['toteuma']) df=df1.copy() df['toteuma']=df2['toteuma'] df['ero']=df1['e/v']-df2['toteuma'] print('Rahavirrat skaalattuna väestötasolle') print(tabulate(df, headers='keys', tablefmt='psql', floatfmt=",.2f")) q=self.comp_participants(scale=True) q_stat=self.stat_participants_2018() q_days=self.stat_days_2018() df1 = pd.DataFrame.from_dict(q,orient='index',columns=['arvio (htv)']) df2 = pd.DataFrame.from_dict(q_stat,orient='index',columns=['toteuma']) df3 = pd.DataFrame.from_dict(q_days,orient='index',columns=['htv_tot']) df=df1.copy() df['toteuma (kpl)']=df2['toteuma'] df['toteuma (htv)']=df3['htv_tot'] df['ero (htv)']=df['arvio (htv)']-df['toteuma (htv)'] print('Henkilöitä tiloissa skaalattuna väestötasolle') print(tabulate(df, headers='keys', tablefmt='psql', floatfmt=",.0f")) else: q=self.comp_participants(scale=True) q_stat=self.stat_participants_2018() q_days=self.stat_days_2018() df1 =
pd.DataFrame.from_dict(q,orient='index',columns=['arvio (htv)'])
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- """ Created on Mon Jun 19 11:16:04 2017 @author: <NAME> (<EMAIL>) @brief: MSTD is a generic and efficient method to identify multi-scale topological domains (MSTD) from symmetric Hi-C and other high resolution asymmetric promoter capture Hi-C datasets @version 0.0.2 """ import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from colormap import Color, Colormap #Data=matrix_data; distance=MDHD; win_n=5 def _domain_only_diagonal(Data,win_n,distance): Dsize=Data.shape[0] #step1.1 pdensity=np.zeros(Dsize) DEN_Dict={} for ip in range(Dsize): begin_i=ip-win_n+1 end_i=ip+win_n-1 if (begin_i<=0) | (end_i>=Dsize-1): if begin_i<0: begin_i=0 if end_i>Dsize-1: end_i=Dsize-1 pdensity[ip]=np.mean(Data[begin_i:ip+1,:][:,ip:end_i+1]) DEN_Dict[ip]=pdensity[ip] else: pdensity[ip]= pdensity[ip-1] + (-np.sum(Data[begin_i-1:ip,ip-1])-np.sum(Data[begin_i-1,ip:end_i]) +np.sum(Data[ip,ip:end_i+1])+ np.sum(Data[begin_i:ip,end_i]))/(win_n*win_n) DEN_Dict[ip]=pdensity[ip]+np.random.random(1)/1000 #step1.2 Max_step=100 NDP_Dict={} ASS_Dict={} for ip in np.arange(0,Dsize): for step in np.arange(0,max(ip,Dsize-ip)): if ip-step>=0: up_point=pdensity[ip-step] if up_point>pdensity[ip]: ASS_Dict[ip]=ip-step break if ip+step<=Dsize-1: down_point=pdensity[ip+step] if down_point>pdensity[ip]: ASS_Dict[ip]=ip+step break if step>Max_step: ASS_Dict[ip]=ip break NDP_Dict[ip]=step #boundaries DF start={} end={} center={} Thr_den=np.percentile(pdensity,20) point_assign={} for temp in DEN_Dict: point_assign[temp]=0 #class_num=1 join_num=0 #centers=[] for item in DEN_Dict: den=DEN_Dict[item] dist=NDP_Dict[item] if ((den>Thr_den) & (dist>distance)): join_num=join_num+1 point_assign[item]=join_num #class_num=class_num+1 start[join_num]=item end[join_num]=item center[join_num]=item #centers.append(item) ASS_Dict[item]=item clures=pd.DataFrame({'Start':start,'End':end,'Cen':center}, columns=['Start','End','Cen']) old_join_num=0 new_join_num=join_num while old_join_num!=new_join_num: old_join_num=join_num for item in DEN_Dict: if ((NDP_Dict[item]<=distance)): if ASS_Dict[item]==item: continue fclass=point_assign[ASS_Dict[item]] if fclass !=0: mclass= point_assign[item] if mclass == 0: temp=center[fclass] if (DEN_Dict[item]>DEN_Dict[temp]/5): #判断此点是否在类别范围 item_class= clures[(item>clures['Start']) & (clures['End']>item)].values if len(item_class)!=0: point_assign[item]=point_assign[ASS_Dict[item_class[0][2]]] else: #print item point_assign[item]=point_assign[ASS_Dict[item]] if item < clures.ix[point_assign[item],'Start']: clures.ix[ point_assign[item],'Start']=item else: clures.ix[ point_assign[item], 'End']=item join_num=join_num+1 new_join_num=join_num step=3 for clu in clures.index[:-1:1]: left=clures.loc[clu,'End'] right=clures.loc[clu+1,'Start'] if (left-step>=0) & (right+step<=Dsize-1): if left==right-1: loca=np.argmin(pdensity[left-step:right+step]) newbound=left-step+loca clures.loc[clu,'End']=newbound clures.loc[clu+1,'Start']=newbound return clures #Data=matrix_data def _generate_density_con(Data,win,thr,MDHD): Dsize=Data.shape M_density=np.zeros(Dsize) DEN_Dict={} if Dsize[0]==Dsize[1]: for i in range(Dsize[0]): for j in range(Dsize[1]): if i-j>MDHD*4: begin_i=i-win[0] begin_j=j-win[1] end_i=i+win[0] end_j=j+win[1] if (begin_i<0)| (begin_j<0)| (end_i>Dsize[0]-1)|(end_j>Dsize[1]-1): if begin_i<0: begin_i=0 if begin_j<0: begin_j=0 if end_i>Dsize[0]-1: end_i=Dsize[0]-1 if end_j>Dsize[1]-1: end_j=Dsize[1]-1 M_density[i,j]=np.mean(Data[begin_i:end_i,begin_j:end_j])+np.random.random(1)/1000.0 else: M_density[i,j]=M_density[i,j-1]+ (-np.sum(Data[begin_i:end_i,begin_j-1]) +np.sum(Data[begin_i:end_i,end_j-1]))/(4*win[0]*win[1]) if Data[i,j]>thr: DEN_Dict[(i,j)]=M_density[i,j] else: for i in range(Dsize[0]): for j in range(Dsize[1]): begin_i=i-win[0] begin_j=j-win[1] end_i=i+win[0] end_j=j+win[1] if (begin_i<0)| (begin_j<0)| (end_i>Dsize[0]-1)|(end_j>Dsize[1]-1): if begin_i<0: begin_i=0 if begin_j<0: begin_j=0 if end_i>Dsize[0]-1: end_i=Dsize[0]-1 if end_j>Dsize[1]-1: end_j=Dsize[1]-1 M_density[i,j]=np.mean(Data[begin_i:end_i,begin_j:end_j])+np.random.random(1)/1000.0 else: M_density[i,j]=M_density[i,j-1]+ (-np.sum(Data[begin_i:end_i,begin_j-1]) +np.sum(Data[begin_i:end_i,end_j-1]))/(4*win[0]*win[1]) if Data[i,j]>thr: DEN_Dict[(i,j)]=M_density[i,j] return M_density, DEN_Dict def _find_highpoints_v2(DEN_Dict,ratio=1): Dis=50 NDP_Dict={} ASS_Dict={} for item in DEN_Dict: #item=ASS_Dict[item]; item NDP_Dict[item]=np.linalg.norm((Dis,Dis*ratio)) ASS_Dict[item]=item for step in np.arange(1,Dis+1,1): step_point=[(item[0]+st,item[1]+ra) for st in np.arange(-step,step+1) for ra in np.arange(-step*ratio,step*ratio+1) if (abs(st)==step or ratio*(step-1)<abs(ra)<=ratio*step)] step_point=[point for point in step_point if point in DEN_Dict] distance_index=[(np.linalg.norm(((item[0]-temp[0])*ratio,item[1]-temp[1])),temp) for temp in step_point if DEN_Dict[temp]>DEN_Dict[item]] distance_index.sort() for ind in distance_index: if DEN_Dict[ind[1]]>DEN_Dict[item]: NDP_Dict[item]=ind[0] ASS_Dict[item]=ind[1] break if len(distance_index)>0: break return NDP_Dict, ASS_Dict def _assign_class(DEN_Dict,NDP_Dict,ASS_Dict,Thr_den,Thr_dis,reso=3): locs=['upper','bottom','left','right','cen_x','cen_y'] point_assign={} for temp in DEN_Dict: point_assign[temp]=0 #class_num=1 join_num=0 boundaries=pd.DataFrame() center=dict() for item in DEN_Dict: den=DEN_Dict[item] dist=NDP_Dict[item] #value=den*dist bound=list() if (den>=Thr_den) and (dist>=Thr_dis): join_num=join_num+1 point_assign[item]=join_num center[join_num]=item #class_num=class_num+1 bound.append(item[0]) bound.append(item[0]+1) bound.append(item[1]) bound.append(item[1]+1) bound.append(item[0]) bound.append(item[1]) #for k in range(len(locs)): # if (k<2) | (k==4): # bound.append(item[0]) # else: # bound.append(item[1]) ASS_Dict[item]=item bound=pd.DataFrame(bound) boundaries=pd.concat([boundaries,bound.T],axis=0) boundaries.columns=locs boundaries.index=np.arange(1,len(boundaries)+1) Thr_den1=np.percentile(
pd.Series(DEN_Dict)
pandas.Series
import pytest import pandas as pd from pandas.testing import assert_frame_equal import pypipegraph as ppg from pathlib import Path from mbf_genomics import DelayedDataFrame from mbf_genomics.annotator import Annotator def DummyAnnotatable(name): return DelayedDataFrame( name, lambda: pd.DataFrame( { "a": ["a", "b", "c", "d"], "b": [1, 2, 3, 4], "c": [200.1, 100.2, 400.3, 300.4], } ), ) def force_load(ddf): ppg.JobGeneratingJob("shu", lambda: 55).depends_on(ddf.annotate()) class SequenceAnnotator(Annotator): columns = ["sequence"] def calc(self, df): return pd.DataFrame({self.columns[0]: range(0, len(df))}) class SequenceAnnotatorDuo(Annotator): columns = ["sequenceDuo", "rev_sequenceDuo"] def calc(self, df): return pd.DataFrame( {self.columns[0]: range(0, len(df)), self.columns[1]: range(len(df), 0, -1)} ) class SequenceAnnotatorDuoCollision(Annotator): columns = ["shu", "rev_sequenceDuo"] def calc(self, df): return pd.DataFrame( {self.columns[0]: range(0, len(df)), self.columns[1]: range(len(df), 0, -1)} ) class FixedAnnotator(Annotator): def __init__(self, column_name, values): self.columns = [column_name] self.values = values def deps(self, ddf): return ppg.ParameterInvariant( ddf.name + "_" + self.columns[0], str(self.values) ) def calc(self, df): op = open("dummy.txt", "ab") op.write(b"A") op.close() return pd.DataFrame({self.columns[0]: self.values[: len(df)]}) class FixedAnnotator2(Annotator): # used for conflict of annotator class tests def __init__(self, column_name, values): self.columns = [column_name] self.values = values def deps(self, ddf): return ppg.ParameterInvariant( ddf.name + "_" + self.column_name, str(self.values) ) def annotate(self, annotat): op = open("dummy.txt", "ab") op.write(b"A") op.close() return pd.DataFrame({self.columns[0]: self.values[: len(annotat)]}) class BrokenAnnoDoesntCallAnnotatorInit(Annotator): columns = ["shu"] def calc(self, df): return pd.DataFrame({self.column_name: range(0, len(df))}) class FakeAnnotator(object): columns = ["shu"] def calc(self, df): return pd.DataFrame({self.columns[0]: range(0, len(df))}) @pytest.mark.usefixtures("new_pipegraph") class Test_FromOldGenomics: def test_add_annotator_takes_only_annotators(self): a = DummyAnnotatable("A") with pytest.raises(TypeError): a += 123 def test_non_anno_raises(self): a = DummyAnnotatable("A") with pytest.raises(TypeError): a += FakeAnnotator() def test_one_column_annotator(self): a = DummyAnnotatable("A") anno = SequenceAnnotator() a.add_annotator(anno) force_load(a) ppg.run_pipegraph() assert (a.df["sequence"] == [0, 1, 2, 3]).all() def test_two_column_annotator(self): a = DummyAnnotatable("A") anno = SequenceAnnotatorDuo() a.add_annotator(anno) force_load(a) ppg.run_pipegraph() assert (a.df["sequenceDuo"] == [0, 1, 2, 3]).all() assert (a.df["rev_sequenceDuo"] == [4, 3, 2, 1]).all() def test_two_differenct_annotators_with_identical_column_names_raise_on_adding( self ): a = DummyAnnotatable("A") anno = SequenceAnnotatorDuo() a.add_annotator(anno) anno2 = SequenceAnnotatorDuoCollision() a.add_annotator(anno2) force_load(a) with pytest.raises(ppg.RuntimeError): ppg.run_pipegraph() def test_annotator_copying_on_filter(self): a = DummyAnnotatable("A") anno = SequenceAnnotator() a.add_annotator(anno) even = a.filter("event", lambda df: df["b"] % 2 == 0) force_load(even) force_load(even) ppg.run_pipegraph() assert (even.df["b"] == [2, 4]).all() assert (even.df["sequence"] == [1, 3]).all() def test_annotator_copying_on_filter_two_deep(self): a = DummyAnnotatable("A") anno = SequenceAnnotator() even = a.filter("event", lambda df: df["b"] % 2 == 0) force_load(even) second = even.filter("event2", lambda df: df["b"] == 4) a.add_annotator(anno) force_load(second) ppg.run_pipegraph() assert (second.df["b"] == [4]).all() assert (second.df["sequence"] == [3]).all() def test_annotator_copying_on_filter_with_anno(self): a = DummyAnnotatable("A") anno = SequenceAnnotator() even = a.filter("event", lambda df: df["sequence"] % 2 == 0, annotators=[anno]) force_load(even) force_load(even) ppg.run_pipegraph() assert (even.df["b"] == [1, 3]).all() assert (even.df["sequence"] == [0, 2]).all() def test_no_anno_data_copying_if_no_annotate_dependency(self): a = DummyAnnotatable("A") anno = SequenceAnnotator() a.add_annotator(anno) even = a.filter("event", lambda df: df["b"] % 2 == 0) def write(): op = open("dummy.txt", "wb") op.write(b"SHU") op.close() ppg.FileGeneratingJob("dummy.txt", write).depends_on(even.load()) ppg.run_pipegraph() assert (even.df["b"] == [2, 4]).all() assert "sequence" not in even.df.columns def test_anno_data_copying_if_add_annotator_dependency(self): a = DummyAnnotatable("A") anno = SequenceAnnotator() a.add_annotator(anno) even = a.filter("event", lambda df: df["b"] % 2 == 0) def wf(): op = open("dummy.txt", "wb") op.write(b"SHU") op.close() fg = ppg.FileGeneratingJob("dummy.txt", wf) even.add_annotator(anno) fg.depends_on(even.add_annotator(anno)) ppg.run_pipegraph() assert (even.df["b"] == [2, 4]).all() assert (even.df["sequence"] == [1, 3]).all() def test_annotator_copying_on_sort_and_top(self): a = DummyAnnotatable("A") anno = SequenceAnnotator() a.add_annotator(anno) even = a.filter( "event", lambda df: df.sort_values("b", ascending=False)[:2].index ) force_load(even) ppg.run_pipegraph() assert (even.df["b"] == [4, 3]).all() assert (even.df["sequence"] == [3, 2]).all() def test_annotator_just_added_to_child(self): a = DummyAnnotatable("A") even = a.filter("event", lambda df: df["b"] % 2 == 0) anno = SequenceAnnotator() even.add_annotator(anno) force_load(even) ppg.run_pipegraph() assert (even.df["b"] == [2, 4]).all() # after all, we add it anew. assert (even.df["sequence"] == [0, 1]).all() assert "sequence" not in a.df.columns def test_annotator_first_added_to_parent_then_to_child(self): a = DummyAnnotatable("A") anno = SequenceAnnotator() a.add_annotator(anno) even = a.filter("event", lambda df: df["b"] % 2 == 0) even.add_annotator(anno) force_load(even) ppg.run_pipegraph() assert (even.df["b"] == [2, 4]).all() assert (even.df["sequence"] == [1, 3]).all() assert (a.df["sequence"] == [0, 1, 2, 3]).all() def test_annotator_first_added_to_parent_then_to_second_child(self): a = DummyAnnotatable("A") anno = SequenceAnnotator() a.add_annotator(anno) even = a.filter("event", lambda df: df["b"] % 2 == 0).filter( "shu", lambda df: df["b"] == 2 ) even.add_annotator(anno) force_load(even) ppg.run_pipegraph() assert (even.df["b"] == [2]).all() assert (even.df["sequence"] == [1]).all() assert (a.df["sequence"] == [0, 1, 2, 3]).all() def test_annotator_first_added_to_child_then_to_parent(self): a = DummyAnnotatable("A") anno = SequenceAnnotator() even = a.filter("event", lambda df: df["b"] % 2 == 0) even.add_annotator(anno) force_load(even) a.add_annotator(anno) force_load(a) ppg.run_pipegraph() assert "sequence" in even.df assert "sequence" in a.df def test_annotator_added_after_filtering(self): a = DummyAnnotatable("A") anno = SequenceAnnotator() even = a.filter("event", lambda df: df["b"] % 2 == 0) a.add_annotator(anno) force_load(even) ppg.run_pipegraph() assert (even.df["b"] == [2, 4]).all() assert (even.df["sequence"] == [1, 3]).all() assert (a.df["sequence"] == [0, 1, 2, 3]).all() def test_non_hashable_init__args(self): a = FixedAnnotator("shu", ["h", "i", "j", "k"]) b = FixedAnnotator("shu", ["h", "i", "j", "k"]) assert a is b def test_annotator_copying_parent_changed(self, new_pipegraph): # first run a = DummyAnnotatable("A") anno = FixedAnnotator("shu", ("h", "i", "j", "k")) a.add_annotator(anno) even = a.filter("event", lambda df: df["b"] % 2 == 0) force_load(even) ppg.run_pipegraph() assert (even.df["shu"] == ["i", "k"]).all() assert Path("dummy.txt").read_text() == "A" # so it ran once... new_pipegraph.new_pipegraph() a = DummyAnnotatable("A") anno = FixedAnnotator("shu", ("h", "i", "j", "k")) a.add_annotator(anno) even = a.filter("event", lambda df: df["b"] % 2 == 0) force_load(even) ppg.run_pipegraph() assert (even.df["shu"] == ["i", "k"]).all() assert Path("dummy.txt").read_text() == "A" # so it was not rerun new_pipegraph.new_pipegraph() a = DummyAnnotatable("A") anno = FixedAnnotator("shu", ("h", "i", "j", "z")) a.add_annotator(anno) even = a.filter("event", lambda df: df["b"] % 2 == 0) force_load(even) ppg.run_pipegraph() assert (even.df["shu"] == ["i", "z"]).all() assert Path("dummy.txt").read_text() == "AA" # so it was rerun def test_filter_annotator_copy_nested(self): # first run a = DummyAnnotatable("A") a.write() anno = FixedAnnotator("shu", ("h", "i", "j", "k")) anno2 = FixedAnnotator("shaw", ("a1", "b2", "c3", "d4")) a.add_annotator(anno) first = a.filter("first", lambda df: (df["a"] == "b") | (df["a"] == "d")) second = first.filter("second", lambda df: ([True, True])) third = second.filter("third", lambda df: (df["shu"] == "i"), annotators=[anno]) fourth = first.filter("fourth", lambda df: ([False, True])) second.write() fn_4 = fourth.write()[1] a.add_annotator(anno2) fourth.add_annotator(anno2) force_load(first) force_load(second) force_load(third) force_load(fourth) ppg.run_pipegraph() assert (first.df["shu"] == ["i", "k"]).all() assert (first.df["parent_row"] == [1, 3]).all() assert (first.df["shaw"] == ["b2", "d4"]).all() assert (second.df["shu"] == ["i", "k"]).all() assert (second.df["parent_row"] == [1, 3]).all() assert (second.df["shaw"] == ["b2", "d4"]).all() assert (third.df["shu"] == ["i"]).all() assert (third.df["shaw"] == ["b2"]).all() assert (third.df["parent_row"] == [1]).all() assert (fourth.df["shu"] == ["k"]).all() assert (fourth.df["parent_row"] == [3]).all() assert (fourth.df["shaw"] == ["d4"]).all() df = pd.read_csv(fn_4, sep="\t") print(df) assert (df["shaw"] == ["d4"]).all() assert_frame_equal(df, fourth.df.reset_index(drop=True), check_less_precise=2) def test_changing_anno_that_filtering_doesnt_care_about_does_not_retrigger_child_rebuild( self, new_pipegraph ): def count(): op = open("dummyZZ.txt", "ab") op.write(b"A") op.close() fg = ppg.FileGeneratingJob("dummyZZ.txt", count) a = DummyAnnotatable("A") anno = FixedAnnotator("shu", ("h", "i", "j", "k")) a.add_annotator(anno) even = a.filter("event", lambda df: df["b"] % 2 == 0) fg.depends_on(even.load()) ppg.run_pipegraph() Path("dummyZZ.txt").read_text() == "A" # so it ran once... new_pipegraph.new_pipegraph() fg = ppg.FileGeneratingJob("dummyZZ.txt", count) a = DummyAnnotatable("A") anno = FixedAnnotator("shu", ("h", "i", "j", "z")) a.add_annotator(anno) even = a.filter("event", lambda df: df["b"] % 2 == 0) fg.depends_on(even.load()) ppg.run_pipegraph() Path("dummyZZ.txt").read_text() == "A" # so it was not rerun! pass def test_same_annotor_call_returns_same_object(self): anno = FixedAnnotator("shu", ("h", "i", "j", "k")) anno2 = FixedAnnotator("shu", ("h", "i", "j", "k")) assert anno is anno2 def test_new_pipeline_invalidates_annotor_cache(self, new_pipegraph): anno = FixedAnnotator("shu", ("h", "i", "j", "k")) new_pipegraph.new_pipegraph() anno2 = FixedAnnotator("shu", ("h", "i", "j", "k")) assert anno is not anno2 def test_raises_on_same_column_name_differing_parameters(self): a = DummyAnnotatable("A") a += FixedAnnotator("shu", ("h", "i", "j", "k")) with pytest.raises(ValueError): a += FixedAnnotator("shu", ("h", "i", "j", "h")) def test_raises_on_same_column_name_different_annotators(self): a = DummyAnnotatable("A") a += FixedAnnotator("shu", ("h", "i", "j", "k")) with pytest.raises(ValueError): a += FixedAnnotator2("shu", ("h", "i", "j", "k")) def test_write(self): a = DummyAnnotatable("A") anno = FixedAnnotator("shu", ("h", "i", "j", "z")) a.add_annotator(anno) a.write(Path("shu.xls").absolute()) ppg.run_pipegraph() df = pd.read_excel("shu.xls") assert_frame_equal(df, a.df, check_less_precise=2, check_dtype=False) @pytest.mark.usefixtures("new_pipegraph") class TestDynamicAnnotators: def test_basic(self): class DA(Annotator): @property def columns(self): return ["DA1-A"] def deps(self, annotatable): return ppg.ParameterInvariant(self.columns[0], "hello") def calc(self, df): ll = len(df) return pd.DataFrame({"DA1-A": [0] * ll}) a = DummyAnnotatable("A") anno = DA() a.add_annotator(anno) force_load(a) ppg.run_pipegraph() print(a.df) assert "DA1-A" in a.df.columns assert (a.df["DA1-A"] == 0).all() def test_multiple_columns(self): class DA(Annotator): @property def columns(self): return ["DA2-A", "DA2-B"] def deps(self, annotatable): return ppg.ParameterInvariant(self.columns[0], "hello") def calc(self, df): ll = len(df) return pd.DataFrame({"DA2-A": [0] * ll, "DA2-B": [1] * ll}) a = DummyAnnotatable("A") anno = DA() a.add_annotator(anno) force_load(a) ppg.run_pipegraph() assert "DA2-A" in a.df.columns assert (a.df["DA2-A"] == 0).all() assert "DA2-B" in a.df.columns assert (a.df["DA2-B"] == 1).all() assert "DA2-C" not in a.df.columns def test_two_differenct_annotators_with_identical_column_names_raise_on_creation( self ): a = DummyAnnotatable("A") columns_called = [False] class DA(Annotator): def __init__(self, prefix): self.prefix = prefix self.cache_name = prefix @property def columns(self): raise ValueError() columns_called[0] = True return ["%s-A" % self.prefix] def calc(self, df): ll = len(df) return
pd.DataFrame({"DA1-A": [0] * ll})
pandas.DataFrame
from datetime import datetime import operator import numpy as np import pytest from pandas import DataFrame, Index, Series, bdate_range import pandas._testing as tm from pandas.core import ops class TestSeriesLogicalOps: @pytest.mark.parametrize("bool_op", [operator.and_, operator.or_, operator.xor]) def test_bool_operators_with_nas(self, bool_op): # boolean &, |, ^ should work with object arrays and propagate NAs ser = Series(bdate_range("1/1/2000", periods=10), dtype=object) ser[::2] = np.nan mask = ser.isna() filled = ser.fillna(ser[0]) result = bool_op(ser < ser[9], ser > ser[3]) expected = bool_op(filled < filled[9], filled > filled[3]) expected[mask] = False tm.assert_series_equal(result, expected) def test_logical_operators_bool_dtype_with_empty(self): # GH#9016: support bitwise op for integer types index = list("bca") s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) s_empty = Series([], dtype=object) res = s_tft & s_empty expected = s_fff tm.assert_series_equal(res, expected) res = s_tft | s_empty expected = s_tft tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_int_dtype(self): # GH#9016: support bitwise op for integer types # TODO: unused # s_0101 = Series([0, 1, 0, 1]) s_0123 = Series(range(4), dtype="int64") s_3333 = Series([3] * 4) s_4444 = Series([4] * 4) res = s_0123 & s_3333 expected = Series(range(4), dtype="int64") tm.assert_series_equal(res, expected) res = s_0123 | s_4444 expected = Series(range(4, 8), dtype="int64") tm.assert_series_equal(res, expected) s_1111 = Series([1] * 4, dtype="int8") res = s_0123 & s_1111 expected = Series([0, 1, 0, 1], dtype="int64") tm.assert_series_equal(res, expected) res = s_0123.astype(np.int16) | s_1111.astype(np.int32) expected = Series([1, 1, 3, 3], dtype="int32") tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_int_scalar(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") res = s_0123 & 0 expected = Series([0] * 4) tm.assert_series_equal(res, expected) res = s_0123 & 1 expected = Series([0, 1, 0, 1]) tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_float(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") msg = "Cannot perform.+with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s_0123 & np.NaN with pytest.raises(TypeError, match=msg): s_0123 & 3.14 msg = "unsupported operand type.+for &:" with pytest.raises(TypeError, match=msg): s_0123 & [0.1, 4, 3.14, 2] with pytest.raises(TypeError, match=msg): s_0123 & np.array([0.1, 4, 3.14, 2]) with pytest.raises(TypeError, match=msg): s_0123 & Series([0.1, 4, -3.14, 2]) def test_logical_operators_int_dtype_with_str(self): s_1111 = Series([1] * 4, dtype="int8") msg = "Cannot perform 'and_' with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s_1111 & "a" with pytest.raises(TypeError, match="unsupported operand.+for &"): s_1111 & ["a", "b", "c", "d"] def test_logical_operators_int_dtype_with_bool(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") expected = Series([False] * 4) result = s_0123 & False tm.assert_series_equal(result, expected) result = s_0123 & [False] tm.assert_series_equal(result, expected) result = s_0123 & (False,)
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
import datetime import pandas as pd from airflow.models import Variable from airflow.operators.bash import BashOperator from airflow.operators.python_operator import PythonOperator from minio import Minio from airflow import DAG DEFAULT_ARGS = { "owner": "Airflow", "depends_on_past": False, "start_date": datetime.datetime(2021, 1, 13), } dag = DAG( "etl_mean_work_last_3_months_att", default_args=DEFAULT_ARGS, schedule_interval="@once", ) data_lake_server = Variable.get("data_lake_server") data_lake_login = Variable.get("data_lake_login") data_lake_password = Variable.get("data_lake_password") client = Minio( data_lake_server, access_key=data_lake_login, secret_key=data_lake_password, secure=False, ) def extract(): # cria a estrutura para o dataframe temporário. df_working_hours = pd.DataFrame( data=None, columns=["emp_id", "data", "hora"] ) # list objects objects = client.list_objects( "landing", prefix="working-hours", recursive=True ) for obj in objects: print("Downloading file...") print(obj.bucket_name, obj.object_name.encode("utf-8")) obj = client.get_object( obj.bucket_name, obj.object_name.encode("utf-8"), ) data = obj.read() df_ =
pd.read_excel(data)
pandas.read_excel
from typing import Iterable import pandas as pd from numpy import nan from pandas._libs.tslibs.timestamps import Timestamp from pandas._testing import assert_frame_equal from datacode.portfolio.cumret import cumulate_buy_and_hold_portfolios from tests.test_data import DataFrameTest class PortfolioTest(DataFrameTest): id_var: str = "PERMNO" date_var: str = "Date" ret_var: str = "RET" port_var: str = "Portfolio" port_date_var: str = "Portfolio Date" weight_var: str = "Weight" cum_days: Iterable[int] = (0, 1, 5) hourly_cum_days: Iterable[float] = (0, 1 / 24, 5 / 24) daily_port_df = pd.DataFrame( [ (10516, "1/1/2000", 0.01, 1, "1/1/2000", 2), (10516, "1/2/2000", 0.02, 1, "1/1/2000", 2), (10516, "1/3/2000", 0.03, 1, "1/1/2000", 2), (10516, "1/4/2000", 0.04, 1, "1/1/2000", 2), (10516, "1/5/2000", 0.01, 2, "1/5/2000", 2), (10516, "1/6/2000", 0.02, 2, "1/5/2000", 2), (10516, "1/7/2000", 0.03, 2, "1/5/2000", 2), (10516, "1/8/2000", 0.04, 2, "1/5/2000", 2), (10517, "1/1/2000", 0.05, 2, "1/1/2000", 2), (10517, "1/2/2000", 0.06, 2, "1/1/2000", 2), (10517, "1/3/2000", 0.07, 2, "1/1/2000", 2), (10517, "1/4/2000", 0.08, 2, "1/1/2000", 2), (10517, "1/5/2000", 0.05, 1, "1/5/2000", 2), (10517, "1/6/2000", 0.06, 1, "1/5/2000", 2), (10517, "1/7/2000", 0.07, 1, "1/5/2000", 2), (10517, "1/8/2000", 0.08, 1, "1/5/2000", 2), (10518, "1/1/2000", 0.11, 1, "1/1/2000", 1), (10518, "1/2/2000", 0.12, 1, "1/1/2000", 1), (10518, "1/3/2000", 0.13, 1, "1/1/2000", 1), (10518, "1/4/2000", 0.14, 1, "1/1/2000", 1), (10518, "1/5/2000", 0.11, 2, "1/5/2000", 1), (10518, "1/6/2000", 0.12, 2, "1/5/2000", 1), (10518, "1/7/2000", 0.13, 2, "1/5/2000", 1), (10518, "1/8/2000", 0.14, 2, "1/5/2000", 1), (10519, "1/1/2000", 0.15, 2, "1/1/2000", 1), (10519, "1/2/2000", 0.16, 2, "1/1/2000", 1), (10519, "1/3/2000", 0.17, 2, "1/1/2000", 1), (10519, "1/4/2000", 0.18, 2, "1/1/2000", 1), (10519, "1/5/2000", 0.15, 1, "1/5/2000", 1), (10519, "1/6/2000", 0.16, 1, "1/5/2000", 1), (10519, "1/7/2000", 0.17, 1, "1/5/2000", 1), (10519, "1/8/2000", 0.18, 1, "1/5/2000", 1), ], columns=[id_var, date_var, ret_var, port_var, port_date_var, weight_var], ) daily_port_df[date_var] = pd.to_datetime(daily_port_df[date_var]) daily_port_df[port_date_var] = pd.to_datetime(daily_port_df[port_date_var]) hourly_port_df = pd.DataFrame( [ (10516, "1/1/2000 01:00:00", 0.01, 1, "1/1/2000 01:00:00", 2), (10516, "1/1/2000 02:00:00", 0.02, 1, "1/1/2000 01:00:00", 2), (10516, "1/1/2000 03:00:00", 0.03, 1, "1/1/2000 01:00:00", 2), (10516, "1/1/2000 04:00:00", 0.04, 1, "1/1/2000 01:00:00", 2), (10516, "1/1/2000 05:00:00", 0.01, 2, "1/1/2000 05:00:00", 2), (10516, "1/1/2000 06:00:00", 0.02, 2, "1/1/2000 05:00:00", 2), (10516, "1/1/2000 07:00:00", 0.03, 2, "1/1/2000 05:00:00", 2), (10516, "1/1/2000 08:00:00", 0.04, 2, "1/1/2000 05:00:00", 2), (10517, "1/1/2000 01:00:00", 0.05, 2, "1/1/2000 01:00:00", 2), (10517, "1/1/2000 02:00:00", 0.06, 2, "1/1/2000 01:00:00", 2), (10517, "1/1/2000 03:00:00", 0.07, 2, "1/1/2000 01:00:00", 2), (10517, "1/1/2000 04:00:00", 0.08, 2, "1/1/2000 01:00:00", 2), (10517, "1/1/2000 05:00:00", 0.05, 1, "1/1/2000 05:00:00", 2), (10517, "1/1/2000 06:00:00", 0.06, 1, "1/1/2000 05:00:00", 2), (10517, "1/1/2000 07:00:00", 0.07, 1, "1/1/2000 05:00:00", 2), (10517, "1/1/2000 08:00:00", 0.08, 1, "1/1/2000 05:00:00", 2), (10518, "1/1/2000 01:00:00", 0.11, 1, "1/1/2000 01:00:00", 1), (10518, "1/1/2000 02:00:00", 0.12, 1, "1/1/2000 01:00:00", 1), (10518, "1/1/2000 03:00:00", 0.13, 1, "1/1/2000 01:00:00", 1), (10518, "1/1/2000 04:00:00", 0.14, 1, "1/1/2000 01:00:00", 1), (10518, "1/1/2000 05:00:00", 0.11, 2, "1/1/2000 05:00:00", 1), (10518, "1/1/2000 06:00:00", 0.12, 2, "1/1/2000 05:00:00", 1), (10518, "1/1/2000 07:00:00", 0.13, 2, "1/1/2000 05:00:00", 1), (10518, "1/1/2000 08:00:00", 0.14, 2, "1/1/2000 05:00:00", 1), (10519, "1/1/2000 01:00:00", 0.15, 2, "1/1/2000 01:00:00", 1), (10519, "1/1/2000 02:00:00", 0.16, 2, "1/1/2000 01:00:00", 1), (10519, "1/1/2000 03:00:00", 0.17, 2, "1/1/2000 01:00:00", 1), (10519, "1/1/2000 04:00:00", 0.18, 2, "1/1/2000 01:00:00", 1), (10519, "1/1/2000 05:00:00", 0.15, 1, "1/1/2000 05:00:00", 1), (10519, "1/1/2000 06:00:00", 0.16, 1, "1/1/2000 05:00:00", 1), (10519, "1/1/2000 07:00:00", 0.17, 1, "1/1/2000 05:00:00", 1), (10519, "1/1/2000 08:00:00", 0.18, 1, "1/1/2000 05:00:00", 1), ], columns=[id_var, date_var, ret_var, port_var, port_date_var, weight_var], ) hourly_port_df[date_var] = pd.to_datetime(hourly_port_df[date_var]) hourly_port_df[port_date_var] = pd.to_datetime(hourly_port_df[port_date_var]) @classmethod def col_sort_key(cls, col: str) -> int: col_type_order = { 'EW': 0, 'VW': 1, 'Stderr': 2, 'Count': 3, } if col == cls.port_var: return 0 if col == cls.port_date_var: return 1 col_parts = col.split() cum_period = int(col_parts[-1]) sort_key = (cum_period + 1) * 10 col_type = col_parts[0] sort_key += col_type_order[col_type] return sort_key def ew_ret_name(self, cum_period: int) -> str: return f"EW {self.ret_var} {cum_period}" def vw_ret_name(self, cum_period: int) -> str: return f"VW {self.ret_var} {cum_period}" def stderr_name(self, cum_period: int) -> str: return f"Stderr {cum_period}" def count_name(self, cum_period: int) -> str: return f"Count {cum_period}" def expect_cum_df(self, freq: str = 'd', weighted: bool = True, include_stderr: bool = False, include_count: bool = False) -> pd.DataFrame: if freq == 'd': early_ts = Timestamp("2000-01-01 00:00:00") late_ts = Timestamp("2000-01-05 00:00:00") elif freq == 'h': early_ts = Timestamp("2000-01-01 01:00:00") late_ts = Timestamp("2000-01-01 05:00:00") else: raise ValueError(f'unsupported freq {freq}') df = pd.DataFrame( data=[ ( 1, early_ts, 0.06000000000000005, 0.04333333333333337, 0.07, 0.0533333333333333, 0.35252024000000026, 0.2695302400000002, ), ( 1, late_ts, 0.09999999999999998, 0.08333333333333333, 0.11, 0.09333333333333334, nan, nan, ), ( 2, early_ts, 0.09999999999999998, 0.08333333333333333, 0.11, 0.09333333333333334, 0.5639515999999999, 0.47136200000000006, ), ( 2, late_ts, 0.06000000000000005, 0.04333333333333337, 0.07, 0.0533333333333333, nan, nan, ), ], columns=[ self.port_var, self.port_date_var, self.ew_ret_name(0), self.vw_ret_name(0), self.ew_ret_name(1), self.vw_ret_name(1), self.ew_ret_name(5), self.vw_ret_name(5), ], ) if not weighted: weight_cols = [col for col in df.columns if 'VW' in col] df.drop(weight_cols, axis=1, inplace=True) if include_stderr: df_len = len(df) df[self.stderr_name(0)] = pd.Series([0.035355] * df_len) df[self.stderr_name(1)] =
pd.Series([0.01450574598794102] * df_len)
pandas.Series
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author: <NAME> # @Date: 2015-09-16 11:45:16 # @Email: <EMAIL> # @Last modified by: etrott # @Last Modified time: 2016-01-19 13:30:40 import os import sys import re from string import ascii_uppercase import gspread import pandas as pd import numpy as np from .utils import get_credentials from .gfiles import get_file_id, get_worksheet # FIXME: clarify scopes SCOPES = ('https://www.googleapis.com/auth/drive.metadata.readonly ' 'https://www.googleapis.com/auth/drive ' 'https://spreadsheets.google.com/feeds ' 'https://docs.google.com/feeds') def download(gfile, wks_name=None, col_names=False, row_names=False, credentials=None, start_cell = 'A1'): """ Download Google Spreadsheet and convert it to Pandas DataFrame :param gfile: path to Google Spreadsheet or gspread ID :param wks_name: worksheet name :param col_names: assing top row to column names for Pandas DataFrame :param row_names: assing left column to row names for Pandas DataFrame :param credentials: provide own credentials :param start_cell: specify where to start capturing of the DataFrame; default is A1 :type gfile: str :type wks_name: str :type col_names: bool :type row_names: bool :type credentials: class 'oauth2client.client.OAuth2Credentials' :type start_cell: str :returns: Pandas DataFrame :rtype: class 'pandas.core.frame.DataFrame' :Example: >>> from df2gspread import gspread2df as g2d >>> df = g2d.download(gfile="1U-kSDyeD-...", col_names=True, row_names=True) >>> df col1 col2 field1 1 2 field2 3 4 """ # access credentials credentials = get_credentials(credentials) # auth for gspread gc = gspread.authorize(credentials) try: # if gfile is file_id gc.open_by_key(gfile).__repr__() gfile_id = gfile except: # else look for file_id in drive gfile_id = get_file_id(credentials, gfile) if gfile_id is None: raise RuntimeError( "Trying to open non-existent or inaccessible spreadsheet") wks = get_worksheet(gc, gfile_id, wks_name) if wks is None: raise RuntimeError( "Trying to open non-existent or inaccessible worksheet") raw_data = wks.get_all_values() if not raw_data: sys.exit() start_row_int, start_col_int = gspread.utils.a1_to_rowcol(start_cell) rows, cols = np.shape(raw_data) if start_col_int > cols or (row_names and start_col_int + 1 > cols): raise RuntimeError( "Start col (%s) out of the table columns(%s)" % (start_col_int + row_names, cols)) if start_row_int > rows or (col_names and start_row_int + 1 > rows): raise RuntimeError( "Start row (%s) out of the table rows(%s)" % (start_row_int + col_names, rows)) raw_data = [row[start_col_int-1:] for row in raw_data[start_row_int-1:]] if row_names and col_names: row_names = [row[0] for row in raw_data[1:]] col_names = raw_data[0][1:] raw_data = [row[1:] for row in raw_data[1:]] elif row_names: row_names = [row[0] for row in raw_data] col_names = np.arange(len(raw_data[0]) - 1) raw_data = [row[1:] for row in raw_data] elif col_names: row_names = np.arange(len(raw_data) - 1) col_names = raw_data[0] raw_data = raw_data[1:] else: row_names = np.arange(len(raw_data)) col_names = np.arange(len(raw_data[0])) df = pd.DataFrame([
pd.Series(row)
pandas.Series
import numpy as np import pandas as pd import pytest from evalml.data_checks import ( DataCheckAction, DataCheckActionCode, DataCheckMessageCode, DataCheckWarning, HighlyNullDataCheck, ) highly_null_data_check_name = HighlyNullDataCheck.name def get_dataframe(): return pd.DataFrame( { "lots_of_null": [None, None, None, None, 5], "all_null": [None, None, None, None, None], "no_null": [1, 2, 3, 4, 5], } ) @pytest.fixture def highly_null_dataframe(): return get_dataframe() @pytest.fixture def highly_null_dataframe_nullable_types(highly_null_dataframe): df = get_dataframe() df.ww.init( logical_types={"lots_of_null": "IntegerNullable", "all_null": "IntegerNullable"} ) return df class SeriesWrap: def __init__(self, series): self.series = series def __eq__(self, series_2): return all(self.series.eq(series_2.series)) def test_highly_null_data_check_init(): highly_null_check = HighlyNullDataCheck() assert highly_null_check.pct_null_col_threshold == 0.95 assert highly_null_check.pct_null_row_threshold == 0.95 highly_null_check = HighlyNullDataCheck(pct_null_col_threshold=0.0) assert highly_null_check.pct_null_col_threshold == 0 assert highly_null_check.pct_null_row_threshold == 0.95 highly_null_check = HighlyNullDataCheck(pct_null_row_threshold=0.5) assert highly_null_check.pct_null_col_threshold == 0.95 assert highly_null_check.pct_null_row_threshold == 0.5 highly_null_check = HighlyNullDataCheck( pct_null_col_threshold=1.0, pct_null_row_threshold=1.0 ) assert highly_null_check.pct_null_col_threshold == 1.0 assert highly_null_check.pct_null_row_threshold == 1.0 with pytest.raises( ValueError, match="pct null column threshold must be a float between 0 and 1, inclusive.", ): HighlyNullDataCheck(pct_null_col_threshold=-0.1) with pytest.raises( ValueError, match="pct null column threshold must be a float between 0 and 1, inclusive.", ): HighlyNullDataCheck(pct_null_col_threshold=1.1) with pytest.raises( ValueError, match="pct null row threshold must be a float between 0 and 1, inclusive.", ): HighlyNullDataCheck(pct_null_row_threshold=-0.5) with pytest.raises( ValueError, match="pct null row threshold must be a float between 0 and 1, inclusive.", ): HighlyNullDataCheck(pct_null_row_threshold=2.1) @pytest.mark.parametrize("nullable_type", [True, False]) def test_highly_null_data_check_warnings( nullable_type, highly_null_dataframe_nullable_types, highly_null_dataframe ): # Test the data check with nullable types being used. if nullable_type: df = highly_null_dataframe_nullable_types else: df = highly_null_dataframe no_null_check = HighlyNullDataCheck( pct_null_col_threshold=0.0, pct_null_row_threshold=0.0 ) highly_null_rows = SeriesWrap(pd.Series([2 / 3, 2 / 3, 2 / 3, 2 / 3, 1 / 3])) validate_results = no_null_check.validate(df) validate_results["warnings"][0]["details"]["pct_null_cols"] = SeriesWrap( validate_results["warnings"][0]["details"]["pct_null_cols"] ) assert validate_results == { "warnings": [ DataCheckWarning( message="5 out of 5 rows are 0.0% or more null", data_check_name=highly_null_data_check_name, message_code=DataCheckMessageCode.HIGHLY_NULL_ROWS, details={ "pct_null_cols": highly_null_rows, "rows": highly_null_rows.series.index.tolist(), }, ).to_dict(), DataCheckWarning( message="Columns 'lots_of_null', 'all_null' are 0.0% or more null", data_check_name=highly_null_data_check_name, message_code=DataCheckMessageCode.HIGHLY_NULL_COLS, details={ "columns": ["lots_of_null", "all_null"], "pct_null_rows": {"all_null": 1.0, "lots_of_null": 0.8}, }, ).to_dict(), ], "errors": [], "actions": [ DataCheckAction( DataCheckActionCode.DROP_ROWS, data_check_name=highly_null_data_check_name, metadata={"rows": [0, 1, 2, 3, 4]}, ).to_dict(), DataCheckAction( DataCheckActionCode.DROP_COL, data_check_name=highly_null_data_check_name, metadata={"columns": ["lots_of_null", "all_null"]}, ).to_dict(), ], } some_null_check = HighlyNullDataCheck( pct_null_col_threshold=0.5, pct_null_row_threshold=0.5 ) highly_null_rows = SeriesWrap(pd.Series([2 / 3, 2 / 3, 2 / 3, 2 / 3])) validate_results = some_null_check.validate(df) validate_results["warnings"][0]["details"]["pct_null_cols"] = SeriesWrap( validate_results["warnings"][0]["details"]["pct_null_cols"] ) assert validate_results == { "warnings": [ DataCheckWarning( message="4 out of 5 rows are 50.0% or more null", data_check_name=highly_null_data_check_name, message_code=DataCheckMessageCode.HIGHLY_NULL_ROWS, details={"pct_null_cols": highly_null_rows, "rows": [0, 1, 2, 3]}, ).to_dict(), DataCheckWarning( message="Columns 'lots_of_null', 'all_null' are 50.0% or more null", data_check_name=highly_null_data_check_name, message_code=DataCheckMessageCode.HIGHLY_NULL_COLS, details={ "columns": ["lots_of_null", "all_null"], "pct_null_rows": {"all_null": 1.0, "lots_of_null": 0.8}, }, ).to_dict(), ], "errors": [], "actions": [ DataCheckAction( DataCheckActionCode.DROP_ROWS, data_check_name=highly_null_data_check_name, metadata={"rows": [0, 1, 2, 3]}, ).to_dict(), DataCheckAction( DataCheckActionCode.DROP_COL, data_check_name=highly_null_data_check_name, metadata={"columns": ["lots_of_null", "all_null"]}, ).to_dict(), ], } all_null_check = HighlyNullDataCheck( pct_null_col_threshold=1.0, pct_null_row_threshold=1.0 ) assert all_null_check.validate(df) == { "warnings": [ DataCheckWarning( message="Columns 'all_null' are 100.0% or more null", data_check_name=highly_null_data_check_name, message_code=DataCheckMessageCode.HIGHLY_NULL_COLS, details={ "columns": ["all_null"], "pct_null_rows": {"all_null": 1.0}, }, ).to_dict() ], "errors": [], "actions": [ DataCheckAction( DataCheckActionCode.DROP_COL, data_check_name=highly_null_data_check_name, metadata={"columns": ["all_null"]}, ).to_dict() ], } def test_highly_null_data_check_separate_rows_cols(highly_null_dataframe): row_null_check = HighlyNullDataCheck( pct_null_col_threshold=0.9, pct_null_row_threshold=0.0 ) highly_null_rows = SeriesWrap(pd.Series([2 / 3, 2 / 3, 2 / 3, 2 / 3, 1 / 3])) validate_results = row_null_check.validate(highly_null_dataframe) validate_results["warnings"][0]["details"]["pct_null_cols"] = SeriesWrap( validate_results["warnings"][0]["details"]["pct_null_cols"] ) assert validate_results == { "warnings": [ DataCheckWarning( message="5 out of 5 rows are 0.0% or more null", data_check_name=highly_null_data_check_name, message_code=DataCheckMessageCode.HIGHLY_NULL_ROWS, details={"pct_null_cols": highly_null_rows, "rows": [0, 1, 2, 3, 4]}, ).to_dict(), DataCheckWarning( message="Columns 'all_null' are 90.0% or more null", data_check_name=highly_null_data_check_name, message_code=DataCheckMessageCode.HIGHLY_NULL_COLS, details={ "columns": ["all_null"], "pct_null_rows": {"all_null": 1.0}, }, ).to_dict(), ], "errors": [], "actions": [ DataCheckAction( DataCheckActionCode.DROP_ROWS, data_check_name=highly_null_data_check_name, metadata={"rows": [0, 1, 2, 3, 4]}, ).to_dict(), DataCheckAction( DataCheckActionCode.DROP_COL, data_check_name=highly_null_data_check_name, metadata={"columns": ["all_null"]}, ).to_dict(), ], } col_null_check = HighlyNullDataCheck( pct_null_col_threshold=0.0, pct_null_row_threshold=0.9 ) validate_results = col_null_check.validate(highly_null_dataframe) assert validate_results == { "warnings": [ DataCheckWarning( message="Columns 'lots_of_null', 'all_null' are 0.0% or more null", data_check_name=highly_null_data_check_name, message_code=DataCheckMessageCode.HIGHLY_NULL_COLS, details={ "columns": ["lots_of_null", "all_null"], "pct_null_rows": {"lots_of_null": 0.8, "all_null": 1.0}, }, ).to_dict(), ], "errors": [], "actions": [ DataCheckAction( DataCheckActionCode.DROP_COL, data_check_name=highly_null_data_check_name, metadata={"columns": ["lots_of_null", "all_null"]}, ).to_dict(), ], } def test_highly_null_data_check_input_formats(): highly_null_check = HighlyNullDataCheck( pct_null_col_threshold=0.8, pct_null_row_threshold=0.8 ) # test empty pd.DataFrame assert highly_null_check.validate(
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd from scipy.interpolate import interp1d from scipy.spatial import distance from scipy.optimize import differential_evolution class IntracellAnalysisV2: # IA constants FC_UPPER_VOLTAGE = 4.20 FC_LOWER_VOLTAGE = 2.70 NE_UPPER_VOLTAGE = 0.01 NE_LOWER_VOLTAGE = 1.50 PE_UPPER_VOLTAGE = 4.30 PE_LOWER_VOLTAGE = 2.86 THRESHOLD = 4.84 * 0.0 def __init__(self, pe_pristine_file, ne_pristine_file, cycle_type='rpt_0.2C', step_type=0, error_type='V-Q', ne_2pos_file=None, ne_2neg_file=None ): """ Invokes the cell electrode analysis class. This is a class designed to fit the cell and electrode parameters in order to determine changes of electrodes within the full cell from only full cell cycling data. Args: pe_pristine_file (str): file name for the half cell data of the pristine (uncycled) positive electrode ne_pristine_file (str): file name for the half cell data of the pristine (uncycled) negative electrode cycle_type (str): type of diagnostic cycle for the fitting step_type (int): charge or discharge (0 for charge, 1 for discharge) error_type (str): defines which error metric is to be used ne_2neg_file (str): file name of the data for the negative component of the anode ne_2pos_file (str): file name of the data for the positive component of the anode """ self.pe_pristine = pd.read_csv(pe_pristine_file, usecols=['SOC_aligned', 'Voltage_aligned']) self.ne_1_pristine = pd.read_csv(ne_pristine_file, usecols=['SOC_aligned', 'Voltage_aligned']) if ne_2neg_file and ne_2pos_file: self.ne_2_pristine_pos = pd.read_csv(ne_2pos_file) self.ne_2_pristine_neg = pd.read_csv(ne_2neg_file) else: self.ne_2_pristine_pos = pd.DataFrame() self.ne_2_pristine_neg = pd.DataFrame() if step_type == 0: self.capacity_col = 'charge_capacity' else: self.capacity_col = 'discharge_capacity' self.cycle_type = cycle_type self.step_type = step_type self.error_type = error_type def process_beep_cycle_data_for_candidate_halfcell_analysis_ah(self, cell_struct, cycle_index): """ Ingests BEEP structured cycling data and cycle_index and returns a Dataframe of evenly spaced capacity with corresponding voltage. Inputs: cell_struct (MaccorDatapath): BEEP structured cycling data cycle_index (int): cycle number at which to evaluate Outputs: real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned """ # filter the data down to the diagnostic type of interest diag_type_cycles = cell_struct.diagnostic_data.loc[cell_struct.diagnostic_data['cycle_type'] == self.cycle_type] real_cell_candidate_charge_profile = diag_type_cycles.loc[ (diag_type_cycles.cycle_index == cycle_index) & (diag_type_cycles.step_type == 0) # step_type = 0 is charge, 1 is discharge & (diag_type_cycles.voltage < self.FC_UPPER_VOLTAGE) & (diag_type_cycles[self.capacity_col] > 0)][['voltage', 'charge_capacity']] # renaming capacity,voltage column real_cell_candidate_charge_profile['Q'] = real_cell_candidate_charge_profile['charge_capacity'] real_cell_candidate_charge_profile['Voltage'] = real_cell_candidate_charge_profile['voltage'] real_cell_candidate_charge_profile.drop('voltage', axis=1, inplace=True) # interpolate voltage along evenly spaced capacity axis q_vec = np.linspace(0, np.max(real_cell_candidate_charge_profile['Q']), 1001) real_cell_candidate_charge_profile_aligned = pd.DataFrame() real_cell_candidate_charge_profile_interper = interp1d(real_cell_candidate_charge_profile['Q'], real_cell_candidate_charge_profile['Voltage'], bounds_error=False, fill_value=( self.FC_LOWER_VOLTAGE, self.FC_UPPER_VOLTAGE)) real_cell_candidate_charge_profile_aligned['Voltage_aligned'] = real_cell_candidate_charge_profile_interper( q_vec) real_cell_candidate_charge_profile_aligned['Q_aligned'] = q_vec return real_cell_candidate_charge_profile_aligned def _impose_electrode_scale(self, pe_pristine=pd.DataFrame(), ne_1_pristine=pd.DataFrame(), ne_2_pristine_pos=pd.DataFrame(), ne_2_pristine_neg=pd.DataFrame(), lli=0.0, q_pe=0.0, q_ne=0.0, x_ne_2=0.0): """ Scales the reference electrodes according to specified capacities and offsets their capacities according to lli. Blends negative electrode materials. Inputs: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode lli (float): Loss of Lithium Inventory - capacity of the misalignment between cathode and anode zero-capacity q_pe (float): capacity of the positive electrode (cathode) q_ne (float): capacity of the negative electrode (anode) x_ne_2 (float): fraction of ne_2_pristine_pos or ne_2_pristine_neg (positive or negative value, respectively) to ne_1_pristine Outputs: pe_degraded (Dataframe): positive electrode with imposed capacity scale to emulate degradation ne_degraded (Dataframe): negative electrode with imposed capacity scale and capacity offset to emulate degradation """ # Blend negative electrodes ne_pristine = blend_electrodes(ne_1_pristine, ne_2_pristine_pos, ne_2_pristine_neg, x_ne_2) # rescaling pristine electrodes to q_pe and q_ne pe_q_scaled = pe_pristine.copy() pe_q_scaled['Q_aligned'] = (pe_q_scaled['SOC_aligned'] / 100) * q_pe ne_q_scaled = ne_pristine.copy() ne_q_scaled['Q_aligned'] = (ne_q_scaled['SOC_aligned'] / 100) * q_ne # translate pristine ne electrode with lli ne_q_scaled['Q_aligned'] = ne_q_scaled['Q_aligned'] + lli # Re-interpolate to align dataframes for differencing lower_q = np.min((np.min(pe_q_scaled['Q_aligned']), np.min(ne_q_scaled['Q_aligned']))) upper_q = np.max((np.max(pe_q_scaled['Q_aligned']), np.max(ne_q_scaled['Q_aligned']))) q_vec = np.linspace(lower_q, upper_q, 1001) # Actually aligning the electrode Q's pe_pristine_interper = interp1d(pe_q_scaled['Q_aligned'], pe_q_scaled['Voltage_aligned'], bounds_error=False) pe_degraded = pe_q_scaled.copy() pe_degraded['Q_aligned'] = q_vec pe_degraded['Voltage_aligned'] = pe_pristine_interper(q_vec) ne_pristine_interper = interp1d(ne_q_scaled['Q_aligned'], ne_q_scaled['Voltage_aligned'], bounds_error=False) ne_degraded = ne_q_scaled.copy() ne_degraded['Q_aligned'] = q_vec ne_degraded['Voltage_aligned'] = ne_pristine_interper(q_vec) # Returning pe and ne degraded on an Ah basis return pe_degraded, ne_degraded def halfcell_degradation_matching_ah(self, x, *params): """ Calls underlying functions to impose degradation through electrode capacity scale and alignment through LLI. Modifies emulated full cell data to be within full cell voltage range and calibrates (zeros) capacity at the lowest permissible voltage. Interpolates real and emulated data onto a common capacity axis. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: pe_out_zeroed (Dataframe): cathode capacity and voltage columns scaled, offset, and aligned along capacity ne_out_zeroed (Dataframe): anode capacity and voltage columns scaled, offset, and aligned along capacity df_real_aligned (Dataframe): capacity and voltage interpolated evenly across capacity for the real cell data emulated_full_cell_aligned (Dataframe): capacity and voltage interpolated evenly across capacity for the emulated cell data """ lli = x[0] q_pe = x[1] q_ne = x[2] x_ne_2 = x[3] (pe_pristine, ne_1_pristine, ne_2_pristine_pos, ne_2_pristine_neg, real_cell_candidate_charge_profile_aligned) = params # output degraded ne and pe (on a AH basis, with electrode alignment # (NaNs for voltage, when no capacity actually at the corresponding capacity index)) pe_out, ne_out = self._impose_electrode_scale(pe_pristine, ne_1_pristine, ne_2_pristine_pos, ne_2_pristine_neg, lli, q_pe, q_ne, x_ne_2) # PE - NE = full cell voltage emulated_full_cell_with_degradation = pd.DataFrame() emulated_full_cell_with_degradation['Q_aligned'] = pe_out['Q_aligned'].copy() emulated_full_cell_with_degradation['Voltage_aligned'] = pe_out['Voltage_aligned'] - ne_out['Voltage_aligned'] # Replace emulated full cell values outside of voltage range with NaN emulated_full_cell_with_degradation['Voltage_aligned'].loc[ emulated_full_cell_with_degradation['Voltage_aligned'] < self.FC_LOWER_VOLTAGE] = np.nan emulated_full_cell_with_degradation['Voltage_aligned'].loc[ emulated_full_cell_with_degradation['Voltage_aligned'] > self.FC_UPPER_VOLTAGE] = np.nan # Center the emulated full cell and half cell curves onto the same Q at which the real (degraded) # capacity measurement started (self.FC_LOWER_VOLTAGE) emulated_full_cell_with_degradation_zeroed = pd.DataFrame() emulated_full_cell_with_degradation_zeroed['Voltage_aligned'] = emulated_full_cell_with_degradation[ 'Voltage_aligned'].copy() zeroing_value = emulated_full_cell_with_degradation['Q_aligned'].loc[ np.nanargmin(emulated_full_cell_with_degradation['Voltage_aligned']) ] emulated_full_cell_with_degradation_zeroed['Q_aligned'] = \ (emulated_full_cell_with_degradation['Q_aligned'].copy() - zeroing_value) pe_out_zeroed = pe_out.copy() pe_out_zeroed['Q_aligned'] = pe_out['Q_aligned'] - zeroing_value ne_out_zeroed = ne_out.copy() ne_out_zeroed['Q_aligned'] = ne_out['Q_aligned'] - zeroing_value # Interpolate full cell profiles across same Q range min_q = np.min( real_cell_candidate_charge_profile_aligned['Q_aligned'].loc[ ~real_cell_candidate_charge_profile_aligned['Voltage_aligned'].isna()]) max_q = np.max( real_cell_candidate_charge_profile_aligned['Q_aligned'].loc[ ~real_cell_candidate_charge_profile_aligned['Voltage_aligned'].isna()]) emulated_interper = interp1d(emulated_full_cell_with_degradation_zeroed['Q_aligned'].loc[ ~emulated_full_cell_with_degradation_zeroed['Voltage_aligned'].isna()], emulated_full_cell_with_degradation_zeroed['Voltage_aligned'].loc[ ~emulated_full_cell_with_degradation_zeroed['Voltage_aligned'].isna()], bounds_error=False) real_interper = interp1d( real_cell_candidate_charge_profile_aligned['Q_aligned'].loc[ ~real_cell_candidate_charge_profile_aligned['Voltage_aligned'].isna()], real_cell_candidate_charge_profile_aligned['Voltage_aligned'].loc[ ~real_cell_candidate_charge_profile_aligned['Voltage_aligned'].isna()], bounds_error=False) q_vec = np.linspace(min_q, max_q, 1001) emulated_aligned = pd.DataFrame() emulated_aligned['Q_aligned'] = q_vec emulated_aligned['Voltage_aligned'] = emulated_interper(q_vec) real_aligned = pd.DataFrame() real_aligned['Q_aligned'] = q_vec real_aligned['Voltage_aligned'] = real_interper(q_vec) return pe_out_zeroed, ne_out_zeroed, real_aligned, emulated_aligned def get_dqdv_over_v_from_degradation_matching_ah(self, x, *params): """ This function imposes degradation scaling ,then outputs the dqdv representation of the emulated cell data. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: pe_out_zeroed (Dataframe): cathode capacity and voltage columns scaled, offset, and aligned along capacity ne_out_zeroed (Dataframe): anode capacity and voltage columns scaled, offset, and aligned along capacity dq_dv_over_v_real (Dataframe): dqdv across voltage for the real cell data dq_dv_over_v_emulated (Dataframe): dqdv across voltage for the emulated cell data df_real_interped (Dataframe): capacity and voltage interpolated evenly across capacity for the real cell data emulated_full_cell_interped (Dataframe): capacity and voltage interpolated evenly across capacity for the emulated cell data """ pe_out_zeroed, ne_out_zeroed, df_real_interped, emulated_full_cell_interped = \ self.halfcell_degradation_matching_ah(x, *params) # Calculate dqdv from full cell profiles dq_dv_real = pd.DataFrame(np.gradient(df_real_interped['Q_aligned'], df_real_interped['Voltage_aligned']), columns=['dQdV']).ewm(0.1).mean() dq_dv_emulated = pd.DataFrame( np.gradient(emulated_full_cell_interped['Q_aligned'], emulated_full_cell_interped['Voltage_aligned']), columns=['dQdV']).ewm(0.1).mean() # Include original data dq_dv_real['Q_aligned'] = df_real_interped['Q_aligned'] dq_dv_real['Voltage_aligned'] = df_real_interped['Voltage_aligned'] dq_dv_emulated['Q_aligned'] = emulated_full_cell_interped['Q_aligned'] dq_dv_emulated['Voltage_aligned'] = emulated_full_cell_interped['Voltage_aligned'] # Interpolate dQdV and Q over V, aligns real and emulated over V voltage_vec = np.linspace(self.FC_LOWER_VOLTAGE, self.FC_UPPER_VOLTAGE, 1001) v_dq_dv_interper_real = interp1d(dq_dv_real['Voltage_aligned'].loc[~dq_dv_real['Voltage_aligned'].isna()], dq_dv_real['dQdV'].loc[~dq_dv_real['Voltage_aligned'].isna()], bounds_error=False, fill_value=0) v_q_interper_real = interp1d(dq_dv_real['Voltage_aligned'].loc[~dq_dv_real['Voltage_aligned'].isna()], dq_dv_real['Q_aligned'].loc[~dq_dv_real['Voltage_aligned'].isna()], bounds_error=False, fill_value=(0, np.max(df_real_interped['Q_aligned']))) v_dq_dv_interper_emulated = interp1d(dq_dv_emulated['Voltage_aligned'].loc[ ~dq_dv_emulated['Voltage_aligned'].isna()], dq_dv_emulated['dQdV'].loc[~dq_dv_emulated['Voltage_aligned'].isna()], bounds_error=False, fill_value=0) v_q_interper_emulated = interp1d(dq_dv_emulated['Voltage_aligned'].loc[ ~dq_dv_emulated['Voltage_aligned'].isna()], dq_dv_emulated['Q_aligned'].loc[~dq_dv_emulated['Voltage_aligned'].isna()], bounds_error=False, fill_value=(0, np.max(df_real_interped['Q_aligned']))) dq_dv_over_v_real = pd.DataFrame(v_dq_dv_interper_real(voltage_vec), columns=['dQdV']).fillna(0) dq_dv_over_v_real['Q_aligned'] = v_q_interper_real(voltage_vec) dq_dv_over_v_real['Voltage_aligned'] = voltage_vec dq_dv_over_v_emulated = pd.DataFrame(v_dq_dv_interper_emulated(voltage_vec), columns=['dQdV']).fillna(0) dq_dv_over_v_emulated['Q_aligned'] = v_q_interper_emulated(voltage_vec) dq_dv_over_v_emulated['Voltage_aligned'] = voltage_vec return (pe_out_zeroed, ne_out_zeroed, dq_dv_over_v_real, dq_dv_over_v_emulated, df_real_interped, emulated_full_cell_interped) def get_dvdq_over_q_from_degradation_matching_ah(self, x, *params): """ This function imposes degradation scaling ,then outputs the dVdQ representation of the emulated cell data. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: pe_out_zeroed (Dataframe): cathode capacity and voltage columns scaled, offset, and aligned along capacity ne_out_zeroed (Dataframe): anode capacity and voltage columns scaled, offset, and aligned along capacity dv_dq_real (Dataframe): dVdQ across capacity for the real cell data dv_dq_emulated (Dataframe): dVdQ across capacity for the emulated cell data df_real_interped (Dataframe): capacity and voltage interpolated evenly across capacity for the real cell data emulated_full_cell_interped (Dataframe): capacity and voltage interpolated evenly across capacity for the emulated cell data """ pe_out_zeroed, ne_out_zeroed, df_real_interped, emulated_full_cell_interped = \ self.halfcell_degradation_matching_ah(x, *params) # Calculate dQdV from full cell profiles dv_dq_real = pd.DataFrame(np.gradient(df_real_interped['Voltage_aligned'], df_real_interped['Q_aligned']), columns=['dVdQ']).ewm(0.1).mean() dv_dq_emulated = pd.DataFrame( np.gradient(emulated_full_cell_interped['Voltage_aligned'], emulated_full_cell_interped['Q_aligned']), columns=['dVdQ']).ewm(0.1).mean() # Include original data dv_dq_real['Q_aligned'] = df_real_interped['Q_aligned'] dv_dq_real['Voltage_aligned'] = df_real_interped['Voltage_aligned'] dv_dq_emulated['Q_aligned'] = emulated_full_cell_interped['Q_aligned'] dv_dq_emulated['Voltage_aligned'] = emulated_full_cell_interped['Voltage_aligned'] # Q interpolation not needed, as interpolated over Q by default return (pe_out_zeroed, ne_out_zeroed, dv_dq_real, dv_dq_emulated, df_real_interped, emulated_full_cell_interped) def get_v_over_q_from_degradation_matching_ah(self, x, *params): """ This function imposes degradation scaling ,then outputs the V-Q representation of the emulated cell data. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: pe_out_zeroed (Dataframe): cathode capacity and voltage columns scaled, offset, and aligned along capacity ne_out_zeroed (Dataframe): anode capacity and voltage columns scaled, offset, and aligned along capacity df_real_interped (Dataframe): capacity and voltage interpolated evenly across capacity for the real cell data emulated_full_cell_interped (Dataframe): capacity and voltage interpolated evenly across capacity for the emulated cell data """ (pe_out_zeroed, ne_out_zeroed, real_aligned, emulated_aligned) = \ self.halfcell_degradation_matching_ah(x, *params) min_soc_full_cell = np.min(real_aligned.loc[~real_aligned.Voltage_aligned.isna()].Q_aligned) max_soc_full_cell = np.max(real_aligned.loc[~real_aligned.Voltage_aligned.isna()].Q_aligned) soc_vec_full_cell = np.linspace(min_soc_full_cell, max_soc_full_cell, 1001) emulated_full_cell_interper = interp1d( emulated_aligned.Q_aligned.loc[~real_aligned.Voltage_aligned.isna()], emulated_aligned.Voltage_aligned.loc[~real_aligned.Voltage_aligned.isna()], bounds_error=False) real_full_cell_interper = interp1d(real_aligned.Q_aligned.loc[~real_aligned.Voltage_aligned.isna()], real_aligned.Voltage_aligned.loc[~real_aligned.Voltage_aligned.isna()], bounds_error=False) # Interpolate the emulated full-cell profile emulated_full_cell_interped = pd.DataFrame() emulated_full_cell_interped['Q_aligned'] = soc_vec_full_cell emulated_full_cell_interped['Voltage_aligned'] = emulated_full_cell_interper(soc_vec_full_cell) # Interpolate the true full-cell profile df_real_interped = emulated_full_cell_interped.copy() df_real_interped['Q_aligned'] = soc_vec_full_cell df_real_interped['Voltage_aligned'] = real_full_cell_interper(soc_vec_full_cell) return pe_out_zeroed, ne_out_zeroed, df_real_interped, emulated_full_cell_interped def get_v_over_q_from_degradation_matching_ah_no_real(self, x, *params): """ This function imposes degradation scaling ,then outputs the V-Q representation of the emulated cell data, in the absence of real cell data. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: pe_out_zeroed (Dataframe): cathode capacity and voltage columns scaled, offset, and aligned along capacity ne_out_zeroed (Dataframe): anode capacity and voltage columns scaled, offset, and aligned along capacity emulated_full_cell_interped (Dataframe): capacity and voltage interpolated evenly across capacity for the emulated cell data """ (pe_out_zeroed, ne_out_zeroed, emulated_aligned) = \ self.halfcell_degradation_matching_ah_no_real(x, *params) min_q_full_cell = np.min(emulated_aligned.loc[~emulated_aligned.Voltage_aligned.isna()].Q_aligned) max_q_full_cell = np.max(emulated_aligned.loc[~emulated_aligned.Voltage_aligned.isna()].Q_aligned) q_vec_full_cell = np.linspace(min_q_full_cell, max_q_full_cell, 1001) emulated_full_cell_interper = interp1d( emulated_aligned.Q_aligned.loc[~emulated_aligned.Voltage_aligned.isna()], emulated_aligned.Voltage_aligned.loc[~emulated_aligned.Voltage_aligned.isna()], bounds_error=False) # Interpolate the emulated full-cell profile emulated_full_cell_interped = pd.DataFrame() emulated_full_cell_interped['Q_aligned'] = q_vec_full_cell emulated_full_cell_interped['Voltage_aligned'] = emulated_full_cell_interper(q_vec_full_cell) return pe_out_zeroed, ne_out_zeroed, emulated_full_cell_interped def halfcell_degradation_matching_ah_no_real(self, x, *params): """ Calls underlying functions to impose degradation through electrode capacity scale and alignment through LLI. Modifies emulated full cell data to be within full cell voltage range and calibrates (zeros) capacity at the lowest permissible voltage. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: pe_out_zeroed (Dataframe): cathode capacity and voltage columns scaled, offset, and aligned along capacity ne_out_zeroed (Dataframe): anode capacity and voltage columns scaled, offset, and aligned along capacity emulated_aligned (Dataframe): full cell data corresponding to the imposed degradation """ lli = x[0] q_pe = x[1] q_ne = x[2] x_ne_2 = x[3] pe_pristine, ne_1_pristine, ne_2_pristine_pos, ne_2_pristine_neg = params pe_out, ne_out = self._impose_electrode_scale(pe_pristine, ne_1_pristine, ne_2_pristine_pos, ne_2_pristine_neg, lli, q_pe, q_ne, x_ne_2) # outputs degraded ne and pe (on a AH basis, with electrode alignment (NaNs for voltage, when no overlap)) emulated_full_cell_with_degradation = pd.DataFrame() emulated_full_cell_with_degradation['Q_aligned'] = pe_out['Q_aligned'].copy() emulated_full_cell_with_degradation['Voltage_aligned'] = pe_out['Voltage_aligned'] - ne_out['Voltage_aligned'] # Replace emulated full cell values outside of voltage range with NaN emulated_full_cell_with_degradation['Voltage_aligned'].loc[ emulated_full_cell_with_degradation['Voltage_aligned'] < self.FC_LOWER_VOLTAGE] = np.nan emulated_full_cell_with_degradation['Voltage_aligned'].loc[ emulated_full_cell_with_degradation['Voltage_aligned'] > self.FC_UPPER_VOLTAGE] = np.nan # Center the emulated full cell and half cell curves onto the same Q at which the real (degraded) # capacity measurement started (self.FC_LOWER_VOLTAGE) emulated_full_cell_with_degradation_zeroed = pd.DataFrame() emulated_full_cell_with_degradation_zeroed['Voltage_aligned'] = emulated_full_cell_with_degradation[ 'Voltage_aligned'] zeroing_value = emulated_full_cell_with_degradation['Q_aligned'].loc[ np.nanargmin(emulated_full_cell_with_degradation['Voltage_aligned']) ] emulated_full_cell_with_degradation_zeroed['Q_aligned'] = \ (emulated_full_cell_with_degradation['Q_aligned'] - zeroing_value) pe_out_zeroed = pe_out.copy() pe_out_zeroed['Q_aligned'] = pe_out['Q_aligned'] - zeroing_value ne_out_zeroed = ne_out.copy() ne_out_zeroed['Q_aligned'] = ne_out['Q_aligned'] - zeroing_value # Interpolate full profiles across same Q range min_q = np.min( emulated_full_cell_with_degradation_zeroed['Q_aligned'].loc[ ~emulated_full_cell_with_degradation_zeroed['Voltage_aligned'].isna()]) max_q = np.max( emulated_full_cell_with_degradation_zeroed['Q_aligned'].loc[ ~emulated_full_cell_with_degradation_zeroed['Voltage_aligned'].isna()]) emulated_interper = interp1d(emulated_full_cell_with_degradation_zeroed['Q_aligned'].loc[ ~emulated_full_cell_with_degradation_zeroed['Voltage_aligned'].isna()], emulated_full_cell_with_degradation_zeroed['Voltage_aligned'].loc[ ~emulated_full_cell_with_degradation_zeroed['Voltage_aligned'].isna()], bounds_error=False) q_vec = np.linspace(min_q, max_q, 1001) emulated_aligned = pd.DataFrame() emulated_aligned['Q_aligned'] = q_vec emulated_aligned['Voltage_aligned'] = emulated_interper(q_vec) return pe_out_zeroed, ne_out_zeroed, emulated_aligned def _get_error_from_degradation_matching_ah(self, x, *params): """ Wrapper function which selects the correct error sub routine and returns its error value. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: error value (float) - output of the specified error sub function """ error_type = self.error_type if error_type == 'V-Q': return self._get_error_from_degradation_matching_v_q(x, *params)[0] elif error_type == 'dVdQ': return self._get_error_from_degradation_matching_dvdq(x, *params)[0] elif error_type == 'dQdV': return self._get_error_from_degradation_matching_dqdv(x, *params)[0] else: return self._get_error_from_degradation_matching_v_q(x, *params)[0] def _get_error_from_degradation_matching_v_q(self, x, *params): """ Error function returning the mean standardized Euclidean distance of each point of the real curve to the closest value on the emulated curve in the V-Q representation. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: error (float): output of the specified error sub function error_vector (array): vector containingEuclidean distance of each point of the real curve to the closest value on the emulated curve in the V-Q representation xa (Dataframe): real full cell data used for error analysis xb (Dataframe): emulated full cell data used for error analysis """ try: (pe_out_zeroed, ne_out_zeroed, real_aligned, emulated_aligned ) = self.get_v_over_q_from_degradation_matching_ah(x, *params) xa = real_aligned.dropna() xb = emulated_aligned.dropna() error_matrix = distance.cdist(xa, xb, 'seuclidean') error_vector = error_matrix.min(axis=1) error = error_vector.mean() except ValueError: error = 100 return error, None, None, None return error, error_vector, xa, xb # Pairwise euclidean from premade dQdV def _get_error_from_degradation_matching_dqdv(self, x, *params): """ Error function returning the mean standardized Euclidean distance of each point of the real curve to the closest value on the emulated curve in the dQdV representation. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: error (float): output of the specified error sub function error_vector (array): vector containing Euclidean distance of each point of the real curve to the closest value on the emulated curve in the dQdV representation xa (Dataframe): real full cell data used for error analysis xb (Dataframe): emulated full cell data used for error analysis """ try: # Call dQdV generating function (pe_out_zeroed, ne_out_zeroed, dqdv_over_v_real, dqdv_over_v_emulated, df_real_interped, emulated_full_cell_interped) = self.get_dqdv_over_v_from_degradation_matching_ah(x, *params) xa = dqdv_over_v_real[['Voltage_aligned', 'dQdV']].dropna() xb = dqdv_over_v_emulated[['Voltage_aligned', 'dQdV']].dropna() error_matrix = distance.cdist(xa, xb, 'seuclidean') error_vector = error_matrix.min(axis=1) error = error_vector.mean() except ValueError: error = 100 return error, None, None, None return error, error_vector, xa, xb def _get_error_from_degradation_matching_dvdq(self, x, *params): """ Error function returning the mean standardized Euclidean distance of each point of the real curve to the closest value on the emulated curve in the dVdQ representation. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: error (float): output of the specified error sub function error_vector (array): vector containing Euclidean distance of each point of the real curve to the closest value on the emulated curve in the dVdQ representation xa (Dataframe): real full cell data used for error analysis xb (Dataframe): emulated full cell data used for error analysis """ try: (pe_out_zeroed, ne_out_zeroed, dvdq_over_q_real, dvdq_over_q_emulated, df_real_interped, emulated_full_cell_interped) = self.get_dvdq_over_q_from_degradation_matching_ah(x, *params) xa = dvdq_over_q_real[['Q_aligned', 'dVdQ']].dropna() xb = dvdq_over_q_emulated[['Q_aligned', 'dVdQ']].dropna() # down-select to values with capacity more than 0.5 Ahr to eliminate high-slope region of dVdQ xa = xa.loc[(xa.Q_aligned > 0.5)] xb = xb.loc[(xb.Q_aligned > 0.5)] error_matrix = distance.cdist(xa, xb, 'seuclidean') error_vector = error_matrix.min(axis=1) error = error_vector.mean() except ValueError: error = 100 return error, None, None, None return error, error_vector, xa, xb def _get_error_from_synthetic_fitting_ah(self, x, *params): """ Wrapper function which selects the correct error sub routine and returns its error value. This function is specific to fitting synthetic data rather than real cycling data. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: error value (float) - output of the specified error sub function """ error_type = self.error_type try: if error_type == 'V-Q': return self._get_error_from_degradation_matching_v_q(x, *params)[0] elif error_type == 'dVdQ': return self._get_error_from_degradation_matching_dvdq(x, *params)[0] elif error_type == 'dQdV': return self._get_error_from_degradation_matching_dvdq(x, *params)[0] else: return self._get_error_from_degradation_matching_v_q(x, *params)[0] except RuntimeError: print("Can't return error") return 100 def intracell_values_wrapper_ah(self, cycle_index, cell_struct, degradation_bounds=None ): """ Wrapper function to solve capacity sizing and offset of reference electrodes to real full cell cycle data. Inputs: cycle_index (int): the index of the cycle of interest of the structured real cycling data cell_struct (MaccorDatapath): BEEP structured cycling data Outputs: loss_dict (dict): dictionary with key of cycle index and entry of a list of error, lli_opt, q_pe_opt, q_ne_opt, x_ne_2, Q_li profiles_dict (dict): dictionary with key of cycle index and entry of a dictionary containing various key/entry pairs of resulting from the fitting """ if degradation_bounds is None: degradation_bounds = ((0, 3), # LLI (2.5, 6.5), # q_pe (2.5, 6.5), # q_ne (1, 1), # (-1,1) x_ne_2 ) real_cell_candidate_charge_profile_aligned = self.process_beep_cycle_data_for_candidate_halfcell_analysis_ah( cell_struct, cycle_index) degradation_optimization_result = differential_evolution(self._get_error_from_degradation_matching_ah, degradation_bounds, args=(self.pe_pristine, self.ne_1_pristine, self.ne_2_pristine_pos, self.ne_2_pristine_neg, real_cell_candidate_charge_profile_aligned ), strategy='best1bin', maxiter=100000, popsize=15, tol=0.001, mutation=0.5, recombination=0.7, seed=1, callback=None, disp=False, polish=True, init='latinhypercube', atol=0, updating='deferred', workers=-1, constraints=() ) # print(degradation_optimization_result.x) #BVV (pe_out_zeroed, ne_out_zeroed, dqdv_over_v_real, dqdv_over_v_emulated, df_real_interped, emulated_full_cell_interped) = self.get_dqdv_over_v_from_degradation_matching_ah( degradation_optimization_result.x, self.pe_pristine, self.ne_1_pristine, self.ne_2_pristine_pos, self.ne_2_pristine_neg, real_cell_candidate_charge_profile_aligned) # electrode_info_df = get_electrode_info_ah(pe_out_zeroed, ne_out_zeroed) # error = degradation_optimization_result.fun lli_opt = degradation_optimization_result.x[0] q_pe_opt = degradation_optimization_result.x[1] q_ne_opt = degradation_optimization_result.x[2] x_ne_2 = degradation_optimization_result.x[3] loss_dict = {cycle_index: np.append([error, lli_opt, q_pe_opt, q_ne_opt, x_ne_2], electrode_info_df.iloc[-1].values) } profiles_per_cycle_dict = { 'NE_zeroed': ne_out_zeroed, 'PE_zeroed': pe_out_zeroed, 'dQdV_over_v_real': dqdv_over_v_real, 'dQdV_over_v_emulated': dqdv_over_v_emulated, 'df_real_interped': df_real_interped, 'emulated_full_cell_interped': emulated_full_cell_interped, 'real_cell_candidate_charge_profile_aligned': real_cell_candidate_charge_profile_aligned } profiles_dict = {cycle_index: profiles_per_cycle_dict} return loss_dict, profiles_dict def solve_emulated_degradation(self, forward_simulated_profile, degradation_bounds=None ): """ """ if degradation_bounds is None: degradation_bounds = ((0, 3), # LLI (2.5, 6.5), # q_pe (2.5, 6.5), # q_ne (1, 1), # (-1,1) x_ne_2 ) degradation_optimization_result = differential_evolution(self._get_error_from_synthetic_fitting_ah, degradation_bounds, args=(self.pe_pristine, self.ne_1_pristine, self.ne_2_pristine_pos, self.ne_2_pristine_neg, forward_simulated_profile, ), strategy='best1bin', maxiter=100000, popsize=15, tol=0.001, mutation=0.5, recombination=0.7, seed=1, callback=None, disp=False, polish=True, init='latinhypercube', atol=0, updating='deferred', workers=-1, constraints=() ) return degradation_optimization_result # TODO revisit this function def blend_electrodes(electrode_1, electrode_2_pos, electrode_2_neg, x_2): """ Blends two electrode materials from their SOC-V profiles to form a blended electrode. Inputs: electrode_1: Primary material in electrode, typically Gr. DataFrame supplied with SOC evenly spaced and voltage. electrode_2: Secondary material in electrode, typically Si. DataFrame supplied with SOC evenly spaced and voltage as an additional column. x_2: Fraction of electrode_2 material's capacity (not mass). Supplied as scalar value. Outputs: df_blended_soc_mod (Dataframe): blended electrode with SOC_aligned and Voltage_aligned columns """ if electrode_2_pos.empty: df_blended = electrode_1 return df_blended if electrode_2_neg.empty: electrode_2 = electrode_2_pos x_2 = np.abs(x_2) elif x_2 > 0: electrode_2 = electrode_2_pos else: electrode_2 = electrode_2_neg x_2 = np.abs(x_2) electrode_1_interper = interp1d(electrode_1['Voltage_aligned'], electrode_1['SOC_aligned'], bounds_error=False, fill_value='extrapolate') electrode_2_interper = interp1d(electrode_2['Voltage_aligned'], electrode_2['SOC_aligned'], bounds_error=False, fill_value='extrapolate') voltage_vec = np.linspace(np.min((np.min(electrode_1['Voltage_aligned']), np.min(electrode_2['Voltage_aligned']))), np.max((np.max(electrode_1['Voltage_aligned']), np.max(electrode_2['Voltage_aligned']))), 1001) electrode_1_voltage_aligned = pd.DataFrame(electrode_1_interper(voltage_vec), columns=['SOC']) electrode_2_voltage_aligned = pd.DataFrame(electrode_2_interper(voltage_vec), columns=['SOC']) electrode_1_voltage_aligned['Voltage'] = voltage_vec electrode_2_voltage_aligned['Voltage'] = voltage_vec df_blend_voltage_aligned = pd.DataFrame( (1 - x_2) * electrode_1_voltage_aligned['SOC'] + x_2 * electrode_2_voltage_aligned['SOC'], columns=['SOC']) df_blend_voltage_aligned['Voltage'] = electrode_1_voltage_aligned.merge(electrode_2_voltage_aligned, on='Voltage')['Voltage'] df_blended_interper = interp1d(df_blend_voltage_aligned['SOC'], df_blend_voltage_aligned['Voltage'], bounds_error=False) soc_vec = np.linspace(0, 100, 1001) df_blended = pd.DataFrame(df_blended_interper(soc_vec), columns=['Voltage_aligned']) df_blended['SOC_aligned'] = soc_vec # Modify NE to fully span 100% SOC within its valid voltage window df_blended_soc_mod_interper = interp1d(df_blended['SOC_aligned'].loc[~df_blended['Voltage_aligned'].isna()], df_blended['Voltage_aligned'].loc[~df_blended['Voltage_aligned'].isna()], bounds_error=False) soc_vec = np.linspace(np.min(df_blended['SOC_aligned'].loc[~df_blended['Voltage_aligned'].isna()]), np.max(df_blended['SOC_aligned'].loc[~df_blended['Voltage_aligned'].isna()]), 1001) df_blended_soc_mod = pd.DataFrame(df_blended_soc_mod_interper(soc_vec), columns=['Voltage_aligned']) df_blended_soc_mod['SOC_aligned'] = soc_vec / np.max(soc_vec) * 100 return df_blended_soc_mod def get_electrode_info_ah(pe_out_zeroed, ne_out_zeroed): """ Calculates a variety of half-cell metrics at various positions in the full-cell profile. Inputs: pe_out_zeroed (Dataframe): cathode capacity and voltage columns scaled, offset, and aligned along capacity ne_out_zeroed (Dataframe): anode capacity and voltage columns scaled, offset, and aligned along capacity Outputs: electrode_info_df (Dataframe): dataframe containing a variety of half-cell metrics at various positions in the emulated full-cell profile. pe_voltage_FC4p2V: voltage of the positive electrode (catahode) corresponding to the full cell at 4.2V ... pe_voltage_FC2p7V: voltage of the positive electrode (catahode) corresponding to the full cell at 2.7V pe_soc_FC4p2V: state of charge of the positive electrode corresponding to the full cell at 4.2V ... pe_soc_FC2p7V: state of charge of the positive electrode corresponding to the full cell at 2.7V ne_voltage_FC4p2V: voltage of the negative electrode (anode) corresponding to the full cell at 4.2V ... ne_voltage_FC2p7V: voltage of the negative electrode (anode) corresponding to the full cell at 2.7V ne_soc_FC4p2V: state of charge of the anode electrode corresponding to the full cell at 4.2V ... ne_soc_FC2p7V: state of charge of the anode electrode corresponding to the full cell at 2.7V Q_fc: capacity of the full cecll within the full cell voltage limits q_pe: capacity of the cathode q_ne: capacity of the anode [Ahr] Q_li """ pe_minus_ne_zeroed = pd.DataFrame(pe_out_zeroed['Voltage_aligned'] - ne_out_zeroed['Voltage_aligned'], columns=['Voltage_aligned']) pe_minus_ne_zeroed['Q_aligned'] = pe_out_zeroed['Q_aligned'] electrode_info_df =
pd.DataFrame(index=[0])
pandas.DataFrame
from datetime import datetime, timedelta from importlib import reload import string import sys import numpy as np import pytest from pandas._libs.tslibs import iNaT from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, Series, Timedelta, Timestamp, date_range, ) import pandas._testing as tm class TestSeriesDtypes: def test_dt64_series_astype_object(self): dt64ser = Series(date_range("20130101", periods=3)) result = dt64ser.astype(object) assert isinstance(result.iloc[0], datetime) assert result.dtype == np.object_ def test_td64_series_astype_object(self): tdser = Series(["59 Days", "59 Days", "NaT"], dtype="timedelta64[ns]") result = tdser.astype(object) assert isinstance(result.iloc[0], timedelta) assert result.dtype == np.object_ @pytest.mark.parametrize("dtype", ["float32", "float64", "int64", "int32"]) def test_astype(self, dtype): s = Series(np.random.randn(5), name="foo") as_typed = s.astype(dtype) assert as_typed.dtype == dtype assert as_typed.name == s.name def test_dtype(self, datetime_series): assert datetime_series.dtype == np.dtype("float64") assert datetime_series.dtypes == np.dtype("float64") @pytest.mark.parametrize("value", [np.nan, np.inf]) @pytest.mark.parametrize("dtype", [np.int32, np.int64]) def test_astype_cast_nan_inf_int(self, dtype, value): # gh-14265: check NaN and inf raise error when converting to int msg = "Cannot convert non-finite values \\(NA or inf\\) to integer" s = Series([value]) with pytest.raises(ValueError, match=msg): s.astype(dtype) @pytest.mark.parametrize("dtype", [int, np.int8, np.int64]) def test_astype_cast_object_int_fail(self, dtype): arr = Series(["car", "house", "tree", "1"]) msg = r"invalid literal for int\(\) with base 10: 'car'" with pytest.raises(ValueError, match=msg): arr.astype(dtype) def test_astype_cast_object_int(self): arr = Series(["1", "2", "3", "4"], dtype=object) result = arr.astype(int) tm.assert_series_equal(result, Series(np.arange(1, 5))) def test_astype_datetime(self): s = Series(iNaT, dtype="M8[ns]", index=range(5)) s = s.astype("O") assert s.dtype == np.object_ s = Series([datetime(2001, 1, 2, 0, 0)]) s = s.astype("O") assert s.dtype == np.object_ s = Series([datetime(2001, 1, 2, 0, 0) for i in range(3)]) s[1] = np.nan assert s.dtype == "M8[ns]" s = s.astype("O") assert s.dtype == np.object_ def test_astype_datetime64tz(self): s = Series(date_range("20130101", periods=3, tz="US/Eastern")) # astype result = s.astype(object) expected = Series(s.astype(object), dtype=object) tm.assert_series_equal(result, expected) result = Series(s.values).dt.tz_localize("UTC").dt.tz_convert(s.dt.tz) tm.assert_series_equal(result, s) # astype - object, preserves on construction result = Series(s.astype(object)) expected = s.astype(object) tm.assert_series_equal(result, expected) # astype - datetime64[ns, tz] result = Series(s.values).astype("datetime64[ns, US/Eastern]") tm.assert_series_equal(result, s) result = Series(s.values).astype(s.dtype) tm.assert_series_equal(result, s) result = s.astype("datetime64[ns, CET]") expected = Series(date_range("20130101 06:00:00", periods=3, tz="CET")) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", [str, np.str_]) @pytest.mark.parametrize( "series", [ Series([string.digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]), Series([string.digits * 10, tm.rands(63), tm.rands(64), np.nan, 1.0]), ], ) def test_astype_str_map(self, dtype, series): # see gh-4405 result = series.astype(dtype) expected = series.map(str) tm.assert_series_equal(result, expected) def test_astype_str_cast_dt64(self): # see gh-9757 ts = Series([Timestamp("2010-01-04 00:00:00")]) s = ts.astype(str) expected = Series([str("2010-01-04")]) tm.assert_series_equal(s, expected) ts = Series([Timestamp("2010-01-04 00:00:00", tz="US/Eastern")]) s = ts.astype(str) expected = Series([str("2010-01-04 00:00:00-05:00")]) tm.assert_series_equal(s, expected) def test_astype_str_cast_td64(self): # see gh-9757 td = Series([Timedelta(1, unit="d")]) ser = td.astype(str) expected = Series([str("1 days")]) tm.assert_series_equal(ser, expected) def test_astype_unicode(self): # see gh-7758: A bit of magic is required to set # default encoding to utf-8 digits = string.digits test_series = [ Series([digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]), Series(["データーサイエンス、お前はもう死んでいる"]), ] former_encoding = None if sys.getdefaultencoding() == "utf-8": test_series.append(Series(["野菜食べないとやばい".encode("utf-8")])) for s in test_series: res = s.astype("unicode") expec = s.map(str) tm.assert_series_equal(res, expec) # Restore the former encoding if former_encoding is not None and former_encoding != "utf-8": reload(sys) sys.setdefaultencoding(former_encoding) @pytest.mark.parametrize("dtype_class", [dict, Series]) def test_astype_dict_like(self, dtype_class): # see gh-7271 s = Series(range(0, 10, 2), name="abc") dt1 = dtype_class({"abc": str}) result = s.astype(dt1) expected = Series(["0", "2", "4", "6", "8"], name="abc")
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import timedelta from numpy import nan import numpy as np import pandas as pd from pandas import (Series, isnull, date_range, MultiIndex, Index) from pandas.tseries.index import Timestamp from pandas.compat import range from pandas.util.testing import assert_series_equal import pandas.util.testing as tm from .common import TestData def _skip_if_no_pchip(): try: from scipy.interpolate import pchip_interpolate # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.pchip missing') def _skip_if_no_akima(): try: from scipy.interpolate import Akima1DInterpolator # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.Akima1DInterpolator missing') class TestSeriesMissingData(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_timedelta_fillna(self): # GH 3371 s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp( '20130102'), Timestamp('20130103 9:01:01')]) td = s.diff() # reg fillna result = td.fillna(0) expected = Series([timedelta(0), timedelta(0), timedelta(1), timedelta( days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) # interprested as seconds result = td.fillna(1) expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) result = td.fillna(timedelta(days=1, seconds=1)) expected = Series([timedelta(days=1, seconds=1), timedelta( 0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) result = td.fillna(np.timedelta64(int(1e9))) expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) from pandas import tslib result = td.fillna(tslib.NaT) expected = Series([tslib.NaT, timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)], dtype='m8[ns]') assert_series_equal(result, expected) # ffill td[2] = np.nan result = td.ffill() expected = td.fillna(0) expected[0] = np.nan assert_series_equal(result, expected) # bfill td[2] = np.nan result = td.bfill() expected = td.fillna(0) expected[2] = timedelta(days=1, seconds=9 * 3600 + 60 + 1) assert_series_equal(result, expected) def test_datetime64_fillna(self): s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp( '20130102'), Timestamp('20130103 9:01:01')]) s[2] = np.nan # reg fillna result = s.fillna(Timestamp('20130104')) expected = Series([Timestamp('20130101'), Timestamp( '20130101'), Timestamp('20130104'), Timestamp('20130103 9:01:01')]) assert_series_equal(result, expected) from pandas import tslib result = s.fillna(tslib.NaT) expected = s assert_series_equal(result, expected) # ffill result = s.ffill() expected = Series([Timestamp('20130101'), Timestamp( '20130101'), Timestamp('20130101'), Timestamp('20130103 9:01:01')]) assert_series_equal(result, expected) # bfill result = s.bfill() expected = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp('20130103 9:01:01'), Timestamp( '20130103 9:01:01')]) assert_series_equal(result, expected) # GH 6587 # make sure that we are treating as integer when filling # this also tests inference of a datetime-like with NaT's s = Series([pd.NaT, pd.NaT, '2013-08-05 15:30:00.000001']) expected = Series( ['2013-08-05 15:30:00.000001', '2013-08-05 15:30:00.000001', '2013-08-05 15:30:00.000001'], dtype='M8[ns]') result = s.fillna(method='backfill') assert_series_equal(result, expected) def test_datetime64_tz_fillna(self): for tz in ['US/Eastern', 'Asia/Tokyo']: # DatetimeBlock s = Series([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp( '2011-01-03 10:00'), pd.NaT]) result = s.fillna(pd.Timestamp('2011-01-02 10:00')) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00'), Timestamp('2011-01-03 10:00'), Timestamp( '2011-01-02 10:00')]) self.assert_series_equal(expected, result) result = s.fillna(pd.Timestamp('2011-01-02 10:00', tz=tz)) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00', tz=tz), Timestamp('2011-01-03 10:00'), Timestamp('2011-01-02 10:00', tz=tz)]) self.assert_series_equal(expected, result) result = s.fillna('AAA') expected = Series([Timestamp('2011-01-01 10:00'), 'AAA', Timestamp('2011-01-03 10:00'), 'AAA'], dtype=object) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz), 3: pd.Timestamp('2011-01-04 10:00')}) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00', tz=tz), Timestamp('2011-01-03 10:00'), Timestamp('2011-01-04 10:00')]) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00'), 3: pd.Timestamp('2011-01-04 10:00')}) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00'), Timestamp('2011-01-03 10:00'), Timestamp( '2011-01-04 10:00')]) self.assert_series_equal(expected, result) # DatetimeBlockTZ idx = pd.DatetimeIndex(['2011-01-01 10:00', pd.NaT, '2011-01-03 10:00', pd.NaT], tz=tz) s = pd.Series(idx) result = s.fillna(pd.Timestamp('2011-01-02 10:00')) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp( '2011-01-02 10:00'), Timestamp('2011-01-03 10:00', tz=tz), Timestamp('2011-01-02 10:00')]) self.assert_series_equal(expected, result) result = s.fillna(
pd.Timestamp('2011-01-02 10:00', tz=tz)
pandas.Timestamp
import operator import re import warnings import numpy as np import pytest from pandas._libs.sparse import IntIndex import pandas.util._test_decorators as td import pandas as pd from pandas import isna from pandas.core.sparse.api import SparseArray, SparseDtype, SparseSeries import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal @pytest.fixture(params=["integer", "block"]) def kind(request): return request.param class TestSparseArray: def setup_method(self, method): self.arr_data = np.array([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6]) self.arr = SparseArray(self.arr_data) self.zarr = SparseArray([0, 0, 1, 2, 3, 0, 4, 5, 0, 6], fill_value=0) def test_constructor_dtype(self): arr = SparseArray([np.nan, 1, 2, np.nan]) assert arr.dtype == SparseDtype(np.float64, np.nan) assert arr.dtype.subtype == np.float64 assert np.isnan(arr.fill_value) arr = SparseArray([np.nan, 1, 2, np.nan], fill_value=0) assert arr.dtype == SparseDtype(np.float64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], dtype=np.float64) assert arr.dtype == SparseDtype(np.float64, np.nan) assert np.isnan(arr.fill_value) arr = SparseArray([0, 1, 2, 4], dtype=np.int64) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=np.int64) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], dtype=None) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=None) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 def test_constructor_dtype_str(self): result = SparseArray([1, 2, 3], dtype='int') expected = SparseArray([1, 2, 3], dtype=int) tm.assert_sp_array_equal(result, expected) def test_constructor_sparse_dtype(self): result = SparseArray([1, 0, 0, 1], dtype=SparseDtype('int64', -1)) expected = SparseArray([1, 0, 0, 1], fill_value=-1, dtype=np.int64) tm.assert_sp_array_equal(result, expected) assert result.sp_values.dtype == np.dtype('int64') def test_constructor_sparse_dtype_str(self): result = SparseArray([1, 0, 0, 1], dtype='Sparse[int32]') expected = SparseArray([1, 0, 0, 1], dtype=np.int32) tm.assert_sp_array_equal(result, expected) assert result.sp_values.dtype == np.dtype('int32') def test_constructor_object_dtype(self): # GH 11856 arr = SparseArray(['A', 'A', np.nan, 'B'], dtype=np.object) assert arr.dtype == SparseDtype(np.object) assert np.isnan(arr.fill_value) arr = SparseArray(['A', 'A', np.nan, 'B'], dtype=np.object, fill_value='A') assert arr.dtype == SparseDtype(np.object, 'A') assert arr.fill_value == 'A' # GH 17574 data = [False, 0, 100.0, 0.0] arr = SparseArray(data, dtype=np.object, fill_value=False) assert arr.dtype == SparseDtype(np.object, False) assert arr.fill_value is False arr_expected = np.array(data, dtype=np.object) it = (type(x) == type(y) and x == y for x, y in zip(arr, arr_expected)) assert np.fromiter(it, dtype=np.bool).all() @pytest.mark.parametrize("dtype", [SparseDtype(int, 0), int]) def test_constructor_na_dtype(self, dtype): with pytest.raises(ValueError, match="Cannot convert"): SparseArray([0, 1, np.nan], dtype=dtype) def test_constructor_spindex_dtype(self): arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2])) # XXX: Behavior change: specifying SparseIndex no longer changes the # fill_value expected = SparseArray([0, 1, 2, 0], kind='integer') tm.assert_sp_array_equal(arr, expected) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2, 3], sparse_index=IntIndex(4, [1, 2, 3]), dtype=np.int64, fill_value=0) exp = SparseArray([0, 1, 2, 3], dtype=np.int64, fill_value=0) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=np.int64) exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=np.int64) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2, 3], sparse_index=IntIndex(4, [1, 2, 3]), dtype=None, fill_value=0) exp = SparseArray([0, 1, 2, 3], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 @pytest.mark.parametrize("sparse_index", [ None, IntIndex(1, [0]), ]) def test_constructor_spindex_dtype_scalar(self, sparse_index): # scalar input arr = SparseArray(data=1, sparse_index=sparse_index, dtype=None) exp = SparseArray([1], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=1, sparse_index=IntIndex(1, [0]), dtype=None) exp = SparseArray([1], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 def test_constructor_spindex_dtype_scalar_broadcasts(self): arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=None) exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 @pytest.mark.parametrize('data, fill_value', [ (np.array([1, 2]), 0), (np.array([1.0, 2.0]), np.nan), ([True, False], False), ([pd.Timestamp('2017-01-01')], pd.NaT), ]) def test_constructor_inferred_fill_value(self, data, fill_value): result = SparseArray(data).fill_value if pd.isna(fill_value): assert pd.isna(result) else: assert result == fill_value @pytest.mark.parametrize('format', ['coo', 'csc', 'csr']) @pytest.mark.parametrize('size', [ pytest.param(0, marks=td.skip_if_np_lt("1.16", reason='NumPy-11383')), 10 ]) @td.skip_if_no_scipy def test_from_spmatrix(self, size, format): import scipy.sparse mat = scipy.sparse.random(size, 1, density=0.5, format=format) result = SparseArray.from_spmatrix(mat) result = np.asarray(result) expected = mat.toarray().ravel() tm.assert_numpy_array_equal(result, expected) @td.skip_if_no_scipy def test_from_spmatrix_raises(self): import scipy.sparse mat = scipy.sparse.eye(5, 4, format='csc') with pytest.raises(ValueError, match="not '4'"): SparseArray.from_spmatrix(mat) @pytest.mark.parametrize('scalar,dtype', [ (False, SparseDtype(bool, False)), (0.0, SparseDtype('float64', 0)), (1, SparseDtype('int64', 1)), ('z', SparseDtype('object', 'z'))]) def test_scalar_with_index_infer_dtype(self, scalar, dtype): # GH 19163 arr = SparseArray(scalar, index=[1, 2, 3], fill_value=scalar) exp = SparseArray([scalar, scalar, scalar], fill_value=scalar) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == dtype assert exp.dtype == dtype @pytest.mark.parametrize("fill", [1, np.nan, 0]) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") def test_sparse_series_round_trip(self, kind, fill): # see gh-13999 arr = SparseArray([np.nan, 1, np.nan, 2, 3], kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) arr = SparseArray([0, 0, 0, 1, 1, 2], dtype=np.int64, kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr), dtype=np.int64) tm.assert_sp_array_equal(arr, res) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) @pytest.mark.parametrize("fill", [True, False, np.nan]) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") def test_sparse_series_round_trip2(self, kind, fill): # see gh-13999 arr = SparseArray([True, False, True, True], dtype=np.bool, kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) def test_get_item(self): assert np.isnan(self.arr[1]) assert self.arr[2] == 1 assert self.arr[7] == 5 assert self.zarr[0] == 0 assert self.zarr[2] == 1 assert self.zarr[7] == 5 errmsg = re.compile("bounds") with pytest.raises(IndexError, match=errmsg): self.arr[11] with pytest.raises(IndexError, match=errmsg): self.arr[-11] assert self.arr[-1] == self.arr[len(self.arr) - 1] def test_take_scalar_raises(self): msg = "'indices' must be an array, not a scalar '2'." with pytest.raises(ValueError, match=msg): self.arr.take(2) def test_take(self): exp = SparseArray(np.take(self.arr_data, [2, 3])) tm.assert_sp_array_equal(self.arr.take([2, 3]), exp) exp = SparseArray(np.take(self.arr_data, [0, 1, 2])) tm.assert_sp_array_equal(self.arr.take([0, 1, 2]), exp) def test_take_fill_value(self): data = np.array([1, np.nan, 0, 3, 0]) sparse = SparseArray(data, fill_value=0) exp = SparseArray(np.take(data, [0]), fill_value=0) tm.assert_sp_array_equal(sparse.take([0]), exp) exp = SparseArray(np.take(data, [1, 3, 4]), fill_value=0) tm.assert_sp_array_equal(sparse.take([1, 3, 4]), exp) def test_take_negative(self): exp = SparseArray(np.take(self.arr_data, [-1])) tm.assert_sp_array_equal(self.arr.take([-1]), exp) exp = SparseArray(np.take(self.arr_data, [-4, -3, -2])) tm.assert_sp_array_equal(self.arr.take([-4, -3, -2]), exp) @pytest.mark.parametrize('fill_value', [0, None, np.nan]) def test_shift_fill_value(self, fill_value): # GH #24128 sparse = SparseArray(np.array([1, 0, 0, 3, 0]), fill_value=8.0) res = sparse.shift(1, fill_value=fill_value) if isna(fill_value): fill_value = res.dtype.na_value exp = SparseArray(np.array([fill_value, 1, 0, 0, 3]), fill_value=8.0) tm.assert_sp_array_equal(res, exp) def test_bad_take(self): with pytest.raises(IndexError, match="bounds"): self.arr.take([11]) def test_take_filling(self): # similar tests as GH 12631 sparse = SparseArray([np.nan, np.nan, 1, np.nan, 4]) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) # XXX: test change: fill_value=True -> allow_fill=True result = sparse.take(np.array([1, 0, -1]), allow_fill=True) expected = SparseArray([np.nan, np.nan, np.nan]) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) msg = "Invalid value in 'indices'" with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), allow_fill=True) def test_take_filling_fill_value(self): # same tests as GH 12631 sparse = SparseArray([np.nan, 0, 1, 0, 4], fill_value=0) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([0, np.nan, 4], fill_value=0) tm.assert_sp_array_equal(result, expected) # fill_value result = sparse.take(np.array([1, 0, -1]), allow_fill=True) # XXX: behavior change. # the old way of filling self.fill_value doesn't follow EA rules. # It's supposed to be self.dtype.na_value (nan in this case) expected = SparseArray([0, np.nan, np.nan], fill_value=0) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([0, np.nan, 4], fill_value=0) tm.assert_sp_array_equal(result, expected) msg = ("Invalid value in 'indices'.") with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), fill_value=True) def test_take_filling_all_nan(self): sparse = SparseArray([np.nan, np.nan, np.nan, np.nan, np.nan]) # XXX: did the default kind from take change? result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, np.nan], kind='block') tm.assert_sp_array_equal(result, expected) result = sparse.take(np.array([1, 0, -1]), fill_value=True) expected = SparseArray([np.nan, np.nan, np.nan], kind='block') tm.assert_sp_array_equal(result, expected) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), fill_value=True) def test_set_item(self): def setitem(): self.arr[5] = 3 def setslice(): self.arr[1:5] = 2 with pytest.raises(TypeError, match="assignment via setitem"): setitem() with pytest.raises(TypeError, match="assignment via setitem"): setslice() def test_constructor_from_too_large_array(self): with pytest.raises(TypeError, match="expected dimension <= 1 data"): SparseArray(np.arange(10).reshape((2, 5))) def test_constructor_from_sparse(self): res = SparseArray(self.zarr) assert res.fill_value == 0 assert_almost_equal(res.sp_values, self.zarr.sp_values) def test_constructor_copy(self): cp = SparseArray(self.arr, copy=True) cp.sp_values[:3] = 0 assert not (self.arr.sp_values[:3] == 0).any() not_copy = SparseArray(self.arr) not_copy.sp_values[:3] = 0 assert (self.arr.sp_values[:3] == 0).all() def test_constructor_bool(self): # GH 10648 data = np.array([False, False, True, True, False, False]) arr = SparseArray(data, fill_value=False, dtype=bool) assert arr.dtype == SparseDtype(bool) tm.assert_numpy_array_equal(arr.sp_values, np.array([True, True])) # Behavior change: np.asarray densifies. # tm.assert_numpy_array_equal(arr.sp_values, np.asarray(arr)) tm.assert_numpy_array_equal(arr.sp_index.indices, np.array([2, 3], np.int32)) dense = arr.to_dense() assert dense.dtype == bool tm.assert_numpy_array_equal(dense, data) def test_constructor_bool_fill_value(self): arr = SparseArray([True, False, True], dtype=None) assert arr.dtype == SparseDtype(np.bool) assert not arr.fill_value arr = SparseArray([True, False, True], dtype=np.bool) assert arr.dtype == SparseDtype(np.bool) assert not arr.fill_value arr = SparseArray([True, False, True], dtype=np.bool, fill_value=True) assert arr.dtype == SparseDtype(np.bool, True) assert arr.fill_value def test_constructor_float32(self): # GH 10648 data = np.array([1., np.nan, 3], dtype=np.float32) arr = SparseArray(data, dtype=np.float32) assert arr.dtype == SparseDtype(np.float32) tm.assert_numpy_array_equal(arr.sp_values, np.array([1, 3], dtype=np.float32)) # Behavior change: np.asarray densifies. # tm.assert_numpy_array_equal(arr.sp_values, np.asarray(arr)) tm.assert_numpy_array_equal(arr.sp_index.indices, np.array([0, 2], dtype=np.int32)) dense = arr.to_dense() assert dense.dtype == np.float32 tm.assert_numpy_array_equal(dense, data) def test_astype(self): # float -> float arr = SparseArray([None, None, 0, 2]) result = arr.astype("Sparse[float32]") expected = SparseArray([None, None, 0, 2], dtype=np.dtype('float32')) tm.assert_sp_array_equal(result, expected) dtype = SparseDtype("float64", fill_value=0) result = arr.astype(dtype) expected = SparseArray._simple_new(np.array([0., 2.], dtype=dtype.subtype), IntIndex(4, [2, 3]), dtype) tm.assert_sp_array_equal(result, expected) dtype = SparseDtype("int64", 0) result = arr.astype(dtype) expected = SparseArray._simple_new(np.array([0, 2], dtype=np.int64), IntIndex(4, [2, 3]), dtype) tm.assert_sp_array_equal(result, expected) arr = SparseArray([0, np.nan, 0, 1], fill_value=0) with pytest.raises(ValueError, match='NA'): arr.astype('Sparse[i8]') def test_astype_bool(self): a = pd.SparseArray([1, 0, 0, 1], dtype=SparseDtype(int, 0)) result = a.astype(bool) expected = SparseArray([True, 0, 0, True], dtype=SparseDtype(bool, 0)) tm.assert_sp_array_equal(result, expected) # update fill value result = a.astype(SparseDtype(bool, False)) expected = SparseArray([True, False, False, True], dtype=SparseDtype(bool, False))
tm.assert_sp_array_equal(result, expected)
pandas.util.testing.assert_sp_array_equal
#!/usr/bin/env python __author__ = "<NAME>, <NAME>, <NAME>" __license__ = "Apache-2.0 License" # Import libraries import numpy as np import pandas as pd import scipy from scipy.stats import norm, lognorm import matplotlib.pyplot as plt def calculate_cumulative_conf(areaP90: float=1., areaP10: float=10., pdP90: float=10., pdP10: float=24): """Calculate cumulative confidence level for expected development size in MW Args: areaP90 (float): pessimistic area in sqkm areaP10 (float): optimistic area in sqkm pdP90 (float): pessimistic power density in MWe/sqkm pdP10 (float): optimistic power density in MWe/sqkm Returns: prob_df (pandas Dataframe): cumulative confidence curve in Reservoir Size """ # calculate area > 250 °C area_mu = ((np.log(areaP90)+np.log(areaP10))/2) area_sigma = (np.log(areaP10)-np.log(areaP90))/((norm.ppf(0.9)-(norm.ppf(0.1)))) # calculate powerdensity mean and standard dev powerdens_mu = ((np.log(pdP90)+np.log(pdP10))/2) powerdens_sigma = (np.log(pdP10)-np.log(pdP90))/((norm.ppf(0.9)-(norm.ppf(0.1)))) capacity_mu = area_mu + powerdens_mu capacity_sigma = ((area_sigma**2)+(powerdens_sigma**2))**0.5 eds = [lognorm.ppf(x/100, capacity_sigma, loc=0, scale=np.exp(capacity_mu)) for x in range(0,100)] indx = list(np.arange(1,101)[::-1]) edsepc_tups = list(zip(indx,eds)) prob_df =
pd.DataFrame(edsepc_tups, columns = ['Cumulative confidence (%)', 'expected development size (MW)'])
pandas.DataFrame
import logging import boto3 import os import pandas as pd import argparse from datetime import datetime from dataactcore.models.domainModels import DUNS from dataactcore.utils.parentDuns import sam_config_is_valid from dataactcore.utils.duns import load_duns_by_row from dataactvalidator.scripts.loader_utils import clean_data from dataactvalidator.health_check import create_app from dataactcore.interfaces.db import GlobalDB from dataactcore.logging import configure_logging from dataactcore.config import CONFIG_BROKER import dataactcore.utils.parentDuns logger = logging.getLogger(__name__) # CSV column header name in DUNS file column_headers = [ "awardee_or_recipient_uniqu", # DUNS Field "registration_date", # Registration_Date "expiration_date", # Expiration_Date "last_sam_mod_date", # Last_Update_Date "activation_date", # Activation_Date "legal_business_name" # Legal_Business_Name ] props_columns = { 'address_line_1': None, 'address_line_2': None, 'city': None, 'state': None, 'zip': None, 'zip4': None, 'country_code': None, 'congressional_district': None, 'business_types_codes': [] } column_mappings = {x: x for x in column_headers + list(props_columns.keys())} def remove_existing_duns(data, sess): """ Remove rows from file that already have a entry in broker database. We should only update missing DUNS Args: data: dataframe representing a list of duns sess: the database session Returns: a new dataframe with the DUNS removed that already exist in the database """ duns_in_file = ",".join(list(data['awardee_or_recipient_uniqu'].unique())) sql_query = "SELECT awardee_or_recipient_uniqu " +\ "FROM duns where awardee_or_recipient_uniqu = ANY('{" + \ duns_in_file +\ "}')" db_duns = pd.read_sql(sql_query, sess.bind) missing_duns = data[~data['awardee_or_recipient_uniqu'].isin(db_duns['awardee_or_recipient_uniqu'])] return missing_duns def clean_duns_csv_data(data): """ Simple wrapper around clean_data applied just for duns Args: data: dataframe representing the data to be cleaned Returns: a dataframe cleaned and to be imported to the database """ return clean_data(data, DUNS, column_mappings, {}) def batch(iterable, n=1): """ Simple function to create batches from a list Args: iterable: the list to be batched n: the size of the batches Yields: the same list (iterable) in batches depending on the size of N """ l = len(iterable) for ndx in range(0, l, n): yield iterable[ndx:min(ndx + n, l)] def update_duns_props(df, client): """ Returns same dataframe with address data updated" Args: df: the dataframe containing the duns data client: the connection to the SAM service Returns: a merged dataframe with the duns updated with location info from SAM """ all_duns = df['awardee_or_recipient_uniqu'].tolist() columns = ['awardee_or_recipient_uniqu'] + list(props_columns.keys()) duns_props_df = pd.DataFrame(columns=columns) # SAM service only takes in batches of 100 for duns_list in batch(all_duns, 100): duns_props_batch = dataactcore.utils.parentDuns.get_location_business_from_sam(client, duns_list) # Adding in blank rows for DUNS where location data was not found added_duns_list = [] if not duns_props_batch.empty: added_duns_list = [str(duns) for duns in duns_props_batch['awardee_or_recipient_uniqu'].tolist()] empty_duns_rows = [] for duns in (set(added_duns_list) ^ set(duns_list)): empty_duns_row = props_columns.copy() empty_duns_row['awardee_or_recipient_uniqu'] = duns empty_duns_rows.append(empty_duns_row) duns_props_batch = duns_props_batch.append(
pd.DataFrame(empty_duns_rows)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # MFRpred # # This is the MFRpred code runnning as a jupyter notebook, about the prediction of flux rope magnetic fields # # Authors: <NAME>, <NAME>, M. Reiss Space Research Institute IWF Graz, Austria # Last update: July 2020 # # How to predict the rest of the MFR if first 10, 20, 30, 40, 50% are seen? # Everything should be automatically with a deep learning method or ML fit methods # # --- # MIT LICENSE # # Copyright 2020, <NAME>, <NAME>, <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # In[2]: import matplotlib.pyplot as plt import matplotlib.dates as mdates from matplotlib import cm from scipy import stats import scipy.io import sunpy.time import numpy as np import time import pickle import seaborn as sns import pandas as pd import os import sys from sunpy.time import parse_time from sklearn.model_selection import cross_val_score from sklearn.model_selection import train_test_split from sklearn.metrics import mean_absolute_error, mean_squared_error, median_absolute_error, r2_score from sklearn.feature_selection import SelectKBest, SelectPercentile, f_classif from sklearn.linear_model import LinearRegression from sklearn.linear_model import Lasso from sklearn.linear_model import Ridge from sklearn.linear_model import ElasticNet from sklearn.linear_model import HuberRegressor from sklearn.linear_model import Lars from sklearn.linear_model import LassoLars from sklearn.linear_model import PassiveAggressiveRegressor from sklearn.linear_model import RANSACRegressor from sklearn.linear_model import SGDRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from pandas.plotting import scatter_matrix import warnings warnings.filterwarnings('ignore') #get all variables from the input.py file: from input import feature_hours #make new directory if it not exists mfrdir='mfr_predict' if os.path.isdir(mfrdir) == False: os.mkdir(mfrdir) plotdir='plots' if os.path.isdir(plotdir) == False: os.mkdir(plotdir) os.system('jupyter nbconvert --to script mfrpred.ipynb') # # 1 feature selection # # # In[5]: # sns.set_context("talk") # sns.set_style("darkgrid") sns.set_context("notebook", font_scale=0.4, rc={"lines.linewidth": 2.5}) #usage of script: python mfr_featureSelection.py wind_features.p sta_features.p stb_features.p --features # if --features is set, then code will produce pickle-file with features and labels # if --features is not set, then code will read from already existing pickle-file # you only have to set features at the first run of the code, or if you changed something in the corresponding parts of the code # then --features if features need to be determined again # and --mfr if there are shall be no sheath features determined features = True if features: print("get features") mfr = False if mfr: print("only mfr") # first three arguments need to be file names to save features into - argv0='wind_features.p' argv1='sta_features.p' argv2='stb_features.p' # ####################### functions ############################################### def get_feature(sc_time, start_time, end_time, sc_ind, sc_feature, feature_hours, *VarArgs): feature_mean = np.zeros(np.size(sc_ind)) feature_max = np.zeros(np.size(sc_ind)) feature_std = np.zeros(np.size(sc_ind)) for Arg in VarArgs: if Arg == 'mean': for p in np.arange(0, np.size(sc_ind)): # extract values from MFR data feature_temp = sc_feature[np.where(np.logical_and(sc_time > start_time[sc_ind[p]], sc_time < end_time[sc_ind[p]] + feature_hours / 24.0))] # print(feature_temp) feature_mean[p] = np.nanmean(feature_temp) # print('mean') elif Arg == 'std': for p in np.arange(0, np.size(sc_ind)): # extract values from MFR data feature_temp = sc_feature[np.where(np.logical_and(sc_time > start_time[sc_ind[p]], sc_time < end_time[sc_ind[p]] + feature_hours / 24.0))] # print(feature_temp) feature_std[p] = np.nanstd(feature_temp) elif Arg == 'max': for p in np.arange(0, np.size(sc_ind)): # extract values from MFR data feature_temp = sc_feature[np.where(np.logical_and(sc_time > start_time[sc_ind[p]], sc_time < end_time[sc_ind[p]] + feature_hours / 24.0))] # print(feature_temp) feature_temp = feature_temp[np.isfinite(feature_temp)] try: feature_max[p] = np.max(feature_temp) except ValueError: # raised if `y` is empty. pass # print('max') if np.any(feature_mean) and np.any(feature_max) and np.any(feature_std): # print('mean and std and max') return feature_mean, feature_max, feature_std elif np.any(feature_mean) and np.any(feature_max) and (not np.any(feature_std)): # print('mean and max') return feature_mean, feature_max elif np.any(feature_mean) and (not np.any(feature_max)) and (not np.any(feature_std)): # print('only mean') return feature_mean elif (not np.any(feature_mean)) and np.any(feature_max) and np.any(feature_std): # print('max and std') return feature_max, feature_std elif (not np.any(feature_mean)) and (not np.any(feature_max)) and np.any(feature_std): # print('only std') return feature_std elif (not np.any(feature_mean)) and np.any(feature_max) and (not np.any(feature_std)): # print('only max') return feature_max elif np.any(feature_mean) and (not np.any(feature_max)) and np.any(feature_std): # print('mean and std') return feature_mean, feature_std def get_label(sc_time, start_time, end_time, sc_ind, sc_label, feature_hours, *VarArgs): label_mean = np.zeros(np.size(sc_ind)) label_max = np.zeros(np.size(sc_ind)) for Arg in VarArgs: if Arg == 'mean': for p in np.arange(0, np.size(sc_ind)): label_temp = sc_label[np.where(np.logical_and(sc_time > start_time[sc_ind[p]] + feature_hours / 24.0, sc_time < end_time[sc_ind[p]]))] label_mean[p] = np.nanmean(label_temp) elif Arg == 'max': for p in np.arange(0, np.size(sc_ind)): label_temp = sc_label[np.where(np.logical_and(sc_time > start_time[sc_ind[p]] + feature_hours / 24.0, sc_time < end_time[sc_ind[p]]))] label_max[p] = np.nanmax(label_temp) if np.any(label_mean) and (not np.any(label_max)): # print('only mean') return label_mean elif (not np.any(label_mean)) and np.any(label_max): # print('only mean') return label_max # In[6]: # ------------------------ READ ICMECAT filename_icmecat = 'data/HELCATS_ICMECAT_v20_pandas.p' [ic,header,parameters] = pickle.load(open(filename_icmecat, "rb" )) print() print() print('load icmecat') #ic is the pandas dataframe with the ICMECAT #print(ic.keys()) # ------------------------ get all parameters from ICMECAT for easier handling # id for each event iid = ic.loc[:,'icmecat_id'] # observing spacecraft isc = ic.loc[:,'sc_insitu'] icme_start_time = ic.loc[:,'icme_start_time'] icme_start_time_num = parse_time(icme_start_time).plot_date mo_start_time = ic.loc[:,'mo_start_time'] mo_start_time_num = parse_time(mo_start_time).plot_date mo_end_time = ic.loc[:,'mo_end_time'] mo_end_time_num = parse_time(mo_end_time).plot_date sc_heliodistance = ic.loc[:,'mo_sc_heliodistance'] sc_long_heeq = ic.loc[:,'mo_sc_long_heeq'] sc_lat_heeq = ic.loc[:,'mo_sc_long_heeq'] mo_bmax = ic.loc[:,'mo_bmax'] mo_bmean = ic.loc[:,'mo_bmean'] mo_bstd = ic.loc[:,'mo_bstd'] mo_duration = ic.loc[:,'mo_duration'] # get indices of events by different spacecraft istaind = np.where(isc == 'STEREO-A')[0] istbind = np.where(isc == 'STEREO-B')[0] iwinind = np.where(isc == 'Wind')[0] # ############################# load spacecraft data ################################ print('load Wind data') [win,winheader] = pickle.load(open("data/wind_2007_2019_heeq_ndarray.p", "rb")) print('load STEREO-A data') [sta,att, staheader] = pickle.load(open("data/stereoa_2007_2019_sceq_ndarray.p", "rb")) print('load STEREO-B data') [stb,att, stbheader] = pickle.load(open("data/stereob_2007_2014_sceq_ndarray.p", "rb")) # ### Version (1.1) - prediction of scalar labels with a linear model, start with Btot # In[ ]: # ################################# spacecraft ##################################### # wind data: win.time win['bx'] win['by'] ... win['vt'] win.vy etc. # sheath time: icme_start_time_num[iwinind] mo_start_time[iwinind] # mfr time: mo_start_time[iwinind] mo_end_time[iwinind] # Stereo-A data: sta.time sta['bx'] sta.by ... sta['vt'] sta.vy etc. # sheath time: icme_start_time_num[istaind] mo_start_time[istaind] # mfr time: mo_start_time[istaind] mo_end_time[istaind] # Stereo-B data: stb.time stb['bx'] stb['by'] ... stb['vt'] stb.vy etc. # sheath time: icme_start_time_num[istbind] mo_start_time[istbind] # mfr time: mo_start_time[istbind] mo_end_time[istbind] # use some hours of MFR for feature # only sheath for features: feature_hours = 0 # only take events where there is a sheath, so where the start of the ICME is NOT equal to the start of the flux rope n_iwinind = np.where(icme_start_time_num[iwinind] != mo_start_time_num[iwinind])[0] n_istaind = np.where(icme_start_time_num[istaind] != mo_start_time_num[istaind])[0] n_istbind = np.where(icme_start_time_num[istbind] != mo_start_time_num[istbind])[0] if features: # List of features - go through each ICME and extract values characterising them # only features of the sheath # syntax: get_features(spacecraft time, start time of intervall for values, end time of intervall for values, event index of spacecraft, value to be extracted, "mean", "std", "max") ################################ WIND ############################# feature_bzmean, feature_bzstd = get_feature(win['time'], icme_start_time_num, mo_start_time_num, n_iwinind, win['bz'], feature_hours, "mean", "std") feature_bymean, feature_bystd = get_feature(win['time'], icme_start_time_num, mo_start_time_num, n_iwinind, win['by'], feature_hours, "mean", "std") feature_bxmean, feature_bxstd = get_feature(win['time'], icme_start_time_num, mo_start_time_num, n_iwinind, win['bx'], feature_hours, "mean", "std") feature_btotmean, feature_btotstd = get_feature(win['time'], icme_start_time_num, mo_start_time_num, n_iwinind, win['bt'], feature_hours, "mean", "std") feature_btotmean, feature_btotmax, feature_btotstd = get_feature(win['time'], icme_start_time_num, mo_start_time_num, n_iwinind, win['bt'], feature_hours, "mean", "max", "std") feature_vtotmean, feature_vtotmax, feature_vtotstd = get_feature(win['time'], icme_start_time_num, mo_start_time_num, n_iwinind, win['vt'], feature_hours, "mean", "std", "max") if mfr: feature_bzmean, feature_bzstd = get_feature(win['time'], mo_start_time_num, mo_start_time_num, n_iwinind, win['bz'], feature_hours, "mean", "std") feature_bymean, feature_bystd = get_feature(win['time'], mo_start_time_num, mo_start_time_num, n_iwinind, win['by'], feature_hours, "mean", "std") feature_bxmean, feature_bxstd = get_feature(win['time'], mo_start_time_num, mo_start_time_num, n_iwinind, win['bx'], feature_hours, "mean", "std") feature_btotmean, feature_btotstd = get_feature(win['time'], mo_start_time_num, mo_start_time_num, n_iwinind, win['bt'], feature_hours, "mean", "std") feature_btotmean, feature_btotmax, feature_btotstd = get_feature(win['time'], mo_start_time_num, mo_start_time_num, n_iwinind, win['bt'], feature_hours, "mean", "max", "std") feature_vtotmean, feature_vtotmax, feature_vtotstd = get_feature(win['time'], mo_start_time_num, mo_start_time_num, n_iwinind, win['vt'], feature_hours, "mean", "std", "max") # ------------------ # label label_btotmean = get_label(win['time'], mo_start_time_num, mo_end_time_num, n_iwinind, win['bt'], feature_hours, "mean") # ------------------ dwin = {'$<B_{tot}>$': feature_btotmean, 'btot_std': feature_btotstd, '$max(B_{tot})$': feature_btotmax, '$<B_{x}>$': feature_bxmean, 'bx_std': feature_bxstd, '$<B_{y}>$': feature_bymean, 'by_std': feature_bystd, '$<B_{z}>$': feature_bzmean, 'bz_std': feature_bzstd, '$<v_{tot}>$': feature_vtotmean, '$max(v_{tot})$': feature_vtotmax, 'vtot_std': feature_vtotstd, '<B> label': label_btotmean} dfwin =
pd.DataFrame(data=dwin)
pandas.DataFrame
import os import pickle import numpy as np import pandas as pd import torch import torch.utils.data import torch.nn as nn from multiprocessing import Process from subprocess import call DIR_FLOW_LOG = 'flow_creation_logs' DIR_FLOW_PROCESS = 'flow_process_semaphores' DIR_CSV = 'csv' DIR_MODELS = 'models' DIR_CLASSIFIED_FLOWS = os.path.join(DIR_CSV, 'classified_flows') DIR_CLASSIFIED_FLOWS_RFC = os.path.join(DIR_CLASSIFIED_FLOWS, 'rfc') DIR_CLASSIFIED_FLOWS_DNN = os.path.join(DIR_CLASSIFIED_FLOWS, 'dnn') DIR_UNCLASSIFIED_FLOWS = os.path.join(DIR_CSV, 'unclassified_flows') def rfc_classification(data, pcap_file_name): """ Args: data: pd.DataFrame """ print('Binning data for Random Forest Classifier...') bins = 5 # binning columns for feature in data.columns[7:]: data[feature] =
pd.cut(data[feature], bins, labels=False)
pandas.cut
import os import sys import argparse import pandas as pd import numpy as np import ast import logging.config # .. other safe imports try: # z test from statsmodels.stats.proportion import proportions_ztest # bayesian bootstrap and vis import matplotlib.pyplot as plt import seaborn as sns import bayesian_bootstrap.bootstrap as bb from astropy.utils import NumpyRNGContext # progress bar from tqdm import tqdm # are these needed? from scipy import stats from collections import Counter except ImportError: logging.error("Missing niche library") sys.exit() logging.debug("other modules loaded") # instantiate progress bar goodness tqdm.pandas() # cols for related links A/B tests REQUIRED_COLUMNS = ["Occurrences", "ABVariant", "Page_Event_List", "Page_List", "Event_cat_act_agg" ] def is_a_b(variant, variant_dict): """ Is the value of the variant either 'A' or 'B'? Filters out junk data :param variant: :return: True or False """ return any([variant == x for x in list(variant_dict.values())]) def get_number_of_events_rl(event): """Counts events with category 'relatedLinkClicked' and action'Related content'.""" if event[0][0] == 'relatedLinkClicked' and 'Related content' in event[0][1]: return event[1] return 0 def sum_related_click_events(event_list): return sum([get_number_of_events_rl(event) for event in event_list]) def is_related(x): """Compute whether a journey includes at least one related link click.""" return x > 0 def is_nav_event(event): """ Determine whether an event is navigation related. """ return any( ['breadcrumbClicked' in event, 'homeLinkClicked' in event, all(cond in event for cond in [ 'relatedLinkClicked', 'Explore the topic'])]) def count_nav_events(page_event_list): """ Counts the number of nav events from a content page in a Page Event List. Helper function dependent on thing_page_paths instantiated in analyse_sampled_processed_journey. """ content_page_nav_events = 0 for pair in page_event_list: if is_nav_event(pair[1]): if pair[0] in thing_page_paths: content_page_nav_events += 1 return content_page_nav_events def count_search_from_content(page_list): """ Counts the number of GOV.UK searches from a content page, as specified by the list of content pages, `thing_page_paths`. Helper function dependent on thing_page_paths instantiated in analyse_sampled_processed_journey. """ search_from_content = 0 for i, page in enumerate(page_list): if i > 0: if '/search?q=' in page: if page_list[i-1] in thing_page_paths: search_from_content += 1 return search_from_content def count_total_searches(df, group): searches = df[df.ABVariant == group].groupby( 'Content_Nav_or_Search_Count').sum().iloc[:, 0].reset_index(0) total_searches = searches['Content_Nav_or_Search_Count']*searches['Occurrences'] return sum(total_searches) def compare_total_searches(df, variant_dict): control = count_total_searches(df, variant_dict['CONTROL_GROUP']) intervention = count_total_searches(df, variant_dict['INTERVENTION_GROUP']) print("total searches in control group = {}".format(control)) print("total searches in intervention group = {}".format(intervention)) percent_diff = abs((intervention - control)/(control + intervention))*100 if control>intervention: print("intervention has {} fewer navigation or searches than control;".format(control-intervention)) if intervention>control: print("intervention has {} more navigation or searches than control;".format(intervention-control)) print("a {0:.2f}% overall difference".format(percent_diff)) print("The relative change was {0:.2f}% from control to intervention".format( ((intervention - control)/control)*100 )) def z_prop(df, col_name, variant_dict): """ Conduct z_prop test and generate confidence interval. Using Bernoulli trial terminology where X (or x) is number of successes and n is number of trials total occurrences, we compare ABVariant A and B. p is x/n. We use a z proportion test between variants. """ # A & B n = df.Occurrences.sum() # prop of journeys with at least one related link, occurrences summed for those rows gives X p = df[df[col_name] == 1].Occurrences.sum() / n assert (p >= 0), "Prop less than zero!" assert (p <= 1), "Prop greater than one!" # A # number of trials for page A n_a = df[df.ABVariant == variant_dict['CONTROL_GROUP']].Occurrences.sum() # number of successes (oc currences), for page A and at least one related link clicked journeys x_a = df[(df['ABVariant'] == variant_dict['CONTROL_GROUP']) & (df[col_name] == 1)].Occurrences.sum() # prop of journeys where one related link was clicked, on A p_a = x_a / n_a # B # number of trials for page B n_b = df[df.ABVariant == variant_dict['INTERVENTION_GROUP']].Occurrences.sum() # number of successes for page B, at least one related link clicked x_b = df[(df['ABVariant'] == variant_dict['INTERVENTION_GROUP']) & (df[col_name] == 1)].Occurrences.sum() # prop of journeys where one related link was clicked, on B p_b = x_b / n_b assert (n == n_a + n_b), "Error in filtering by ABVariant!" # validate assumptions # The formula of z-statistic is valid only when sample size (n) is large enough. # nAp, nAq, nBp and nBq should be ≥ 5. # where p is probability of success (we can use current baseline) # q = 1 - p # tried a helper function here but it didn't work hence not DRY assert (n_a * p) >= 5, "Assumptions for z prop test invalid!" assert (n_a * (1 - p)) >= 5, "Assumptions for z prop test invalid!" assert (n_b * p) >= 5, "Assumptions for z prop test invalid!" assert (n_b * (1 - p)) >= 5, "Assumptions for z prop test invalid!" # using statsmodels # successes count = np.array([x_a, x_b]) # number of trials nobs = np.array([n_a, n_b]) # z prop test z, p_value = proportions_ztest(count, nobs, value=0, alternative='two-sided') # print(' z-stat = {z} \n p-value = {p_value}'.format(z=z,p_value=p_value)) statsdict = {'metric_name': col_name, 'stats_method': 'z_prop_test', 'x_ab': x_a + x_b, 'n_ab': n, 'p': p, 'x_a': x_a, 'n_a': n_a, 'p_a': p_a, 'x_b': x_b, 'n_b': n_b, 'p_b': p_b, 'test_statistic': z, 'p-value': p_value} return statsdict def compute_standard_error_prop_two_samples(x_a, n_a, x_b, n_b): """ The standard error of the difference between two proportions is given by the square root of the sum of the variances. The variance of the difference between two independent proportions is equal to the sum of the variances of the proportions of each sample, because each sample contributes to sampling error in the distribution of differences. var(A-B) = var(A) + ((-1)^2)*var(B) """ p1 = x_a / n_a p2 = x_b / n_b se = p1 * (1 - p1) / n_a + p2 * (1 - p2) / n_b return np.sqrt(se) def zconf_interval_two_samples(x_a, n_a, x_b, n_b, alpha=0.05): """ Gives two points, the lower and upper bound of a (1-alpha)% confidence interval. To calculate the confidence interval we need to know the standard error of the difference between two proportions. The standard error of the difference between two proportions is the combination of the standard error of two independent distributions, ES (p_a) and (p_b). If the CI includes one then we accept the null hypothesis at the defined alpha. """ p1 = x_a / n_a p2 = x_b / n_b se = compute_standard_error_prop_two_samples(x_a, n_a, x_b, n_b) z_critical = stats.norm.ppf(1 - 0.5 * alpha) return p2 - p1 - z_critical * se, p2 - p1 + z_critical * se def mean_bb(counter_X_keys, counter_X_vals, n_replications): """Simulate the posterior distribution of the mean. Parameter X: The observed data (array like) Parameter n_replications: The number of bootstrap replications to perform (positive integer) Returns: Samples from the posterior """ samples = [] weights = np.random.dirichlet(counter_X_vals, n_replications) for w in weights: samples.append(np.dot(counter_X_keys, w)) return samples def bayesian_bootstrap_analysis(df, col_name=None, boot_reps=10000, seed=1337, variant_dict=None): """Run bayesian bootstrap on the mean of a variable of interest between Page Variants. Args: df: A rl_sampled_processed pandas Datframe. col_name: A string of the column of interest. boot_reps: An int of number of resamples with replacement. seed: A int random seed for reproducibility. variant_dict:dictionary containing letter codes for CONTROL_GROUP and INTERVENTION_GROUP Returns: a_bootstrap: a vector of boot_reps n resampled means from A. b_bootstrap: a vector of boot_reps n resampled means from B. """ if variant_dict is None: variant_dict = { 'CONTROL_GROUP':'B', 'INTERVENTION_GROUP':'C' } logging.info('assigning defaults for variants: control group = "A" and intervention = "B"') with NumpyRNGContext(seed): A_grouped_by_length = df[df.ABVariant == variant_dict['CONTROL_GROUP']].groupby( col_name).sum().reset_index() B_grouped_by_length = df[df.ABVariant == variant_dict['INTERVENTION_GROUP']].groupby( col_name).sum().reset_index() a_bootstrap = mean_bb(A_grouped_by_length[col_name], A_grouped_by_length['Occurrences'], boot_reps) b_bootstrap = mean_bb(B_grouped_by_length[col_name], B_grouped_by_length['Occurrences'], boot_reps) return a_bootstrap, b_bootstrap def bb_hdi(a_bootstrap, b_bootstrap, alpha=0.05): """Calculate a 1-alpha high density interval Args: a_bootstrap: a list of resampled means from page A journeys. b_bootstrap: a list of resampled means from page B journeys. alpha: false positive rate. Returns: a_ci_low: the lower point of the 1-alpha% highest density interval for A. a_ci_hi: the higher point of the 1-alpha% highest density interval for A. b_ci_low: the lower point of the 1-alpha% highest density interval for B. b_ci_hi: the higher point of the 1-alpha% highest density interval for B. ypa_diff_mean: the mean difference for the posterior between A's and B's distributions. ypa_diff_ci_low: lower hdi for posterior of the difference. ypa_diff_ci_hi: upper hdi for posterior of the difference. prob_b_>_a: number of values greater than 0 divided by num of obs for mean diff posterior. Or the probability that B's mean metric was greater than A's mean metric. """ # Calculate a 95% HDI a_ci_low, a_ci_hi = bb.highest_density_interval(a_bootstrap, alpha=alpha) # Calculate a 95% HDI b_ci_low, b_ci_hi = bb.highest_density_interval(b_bootstrap, alpha=alpha) # calculate the posterior for the difference between A's and B's mean of resampled means # ypa prefix is vestigial from blog post ypa_diff = np.array(b_bootstrap) - np.array(a_bootstrap) ypa_diff_mean = ypa_diff.mean() # get the hdi ypa_diff_ci_low, ypa_diff_ci_hi = bb.highest_density_interval(ypa_diff, alpha=alpha) # We count the number of values greater than 0 and divide by the total number # of observations # which returns us the the proportion of values in the distribution that are # greater than 0 p_value = (ypa_diff > 0).sum() / ypa_diff.shape[0] return {'a_ci_low': a_ci_low, 'a_ci_hi': a_ci_hi, 'b_ci_low': b_ci_low, 'b_ci_hi': b_ci_hi, 'diff_mean': ypa_diff_mean, 'diff_ci_low': ypa_diff_ci_low, 'diff_ci_hi': ypa_diff_ci_hi, 'prob_b_>_a': p_value} # main def analyse_sampled_processed_journey(data_dir, filename, alpha, boot_reps, variants): """ Conducts various A/B tests on one sampled processed journey file. This function is dependent on document_types.csv.gz existing in data/metadata dir. As this takes some time to run ~ 1 hour, we output an additional dataframe as .csv.gz to the rl_sampled_processed dir as a side effect. This can allow the user to revisit the metrics at a later date without having to rerun the analysis. Parameters: data_dir: The directory processed_journey and sampled_journey can be found in. filename (str): The filename of the sampled processed journey, please include any .csv.gz etc extensions. alpha: The corrected false positive rate. boot_reps: int of number of statistics generated from resampling to create distribution. variants: list containing two str elements defining the control and intervention group labels Returns: pandas.core.frame.DataFrame: A data frame containing statistics of the A/B tests on various metrics. """ variant_dict = { 'CONTROL_GROUP': variants[0], 'INTERVENTION_GROUP': variants[1] } logger.info(f"Analysing {filename} - calculating A/B test statistics...") in_path = os.path.join(data_dir, "sampled_journey", filename) logger.info("Reading in file...") df = pd.read_csv(in_path, sep='\t', usecols=REQUIRED_COLUMNS) logger.debug(f'{filename} DataFrame shape {df.shape}') logger.info("Finished reading, defensively removing any non A or B variants," " in-case the user did not sample...") # filter out any weird values like Object object df.query("ABVariant in @variants", inplace=True) logger.debug(f'Cleaned DataFrame shape {df.shape}') logger.info('Preparing variables / cols for analysis...') logger.debug('Convert three variables from str to list...') df['Event_cat_act_agg'] = df['Event_cat_act_agg'].progress_apply(ast.literal_eval) df['Page_Event_List'] = df['Page_Event_List'].progress_apply(ast.literal_eval) df['Page_List'] = df['Page_List'].progress_apply(ast.literal_eval) logger.debug('Create Page_Length_List col...') df['Page_List_Length'] = df['Page_List'].progress_apply(len) logger.info('Related link preparation...') logger.debug('Get the number of related links clicks per Sequence') df['Related Links Clicks per seq'] = df['Event_cat_act_agg'].progress_map(sum_related_click_events) logger.debug('Calculate number of related links per experimental unit.') df["Has_Related"] = df["Related Links Clicks per seq"].progress_map(is_related) df['Related Links Clicks row total'] = df['Related Links Clicks per seq'] * df['Occurrences'] # needs finding_thing_df read in from document_types.csv.gz logger.info('Navigation events preparation...') df['Content_Page_Nav_Event_Count'] = df['Page_Event_List'].progress_map(count_nav_events) logger.info('Search events preparation...') df['Content_Search_Event_Count'] = df['Page_List'].progress_map(count_search_from_content) logger.debug('Summing Nav and Search Events') df['Content_Nav_or_Search_Count'] = df['Content_Page_Nav_Event_Count'] + df['Content_Search_Event_Count'] logger.debug('Sum content page nav event and search events, then multiply by occurrences for row total.') df['Content_Nav_Search_Event_Sum_row_total'] = df['Content_Nav_or_Search_Count'] * df['Occurrences'] logger.debug('Calculating the ratio of clicks on navigation elements vs. clicks on related links') # avoid NaN with +1 df['Ratio_Nav_Search_to_Rel'] = (df['Content_Nav_Search_Event_Sum_row_total'] + 1) / \ (df['Related Links Clicks row total'] + 1) # if (Content_Nav_Search_Event_Sum == 0) that's our success # Has_No_Nav_Or_Search will equal 1, that's our success, works with z_prop function df['Has_No_Nav_Or_Search'] = df['Content_Nav_Search_Event_Sum_row_total'] == 0 logger.info('All necessary variables derived for pending statistical tests...') logger.debug('Performing z_prop test on prop with at least one related link.') rl_stats = z_prop(df, 'Has_Related', variant_dict) # as it's one row needs to be a Series df_ab = pd.Series(rl_stats).to_frame().T logger.debug(df_ab) ci_low, ci_upp = zconf_interval_two_samples(rl_stats['x_a'], rl_stats['n_a'], rl_stats['x_b'], rl_stats['n_b'], alpha=alpha) logger.debug(' 95% Confidence Interval = ( {0:.2f}% , {1:.2f}% )' .format(100 * ci_low, 100 * ci_upp)) df_ab['ci_low'] = ci_low df_ab['ci_upp'] = ci_upp logger.debug('Performing z_prop test on prop with content page nav event.') nav_stats = z_prop(df, 'Has_No_Nav_Or_Search', variant_dict) # concat rows df_ab_nav = pd.Series(nav_stats).to_frame().T logger.debug(df_ab_nav) ci_low, ci_upp = zconf_interval_two_samples(nav_stats['x_a'], nav_stats['n_a'], nav_stats['x_b'], nav_stats['n_b'], alpha=alpha) logger.debug(' 1-alpha % Confidence Interval = ( {0:.2f}% , {1:.2f}% )' .format(100 * ci_low, 100 * ci_upp)) # assign a dict to row of dataframe df_ab_nav['ci_low'] = ci_low df_ab_nav['ci_upp'] = ci_upp logger.debug('Joining z_prop dataframes.') df_ab = pd.concat([df_ab, df_ab_nav]) logger.info('Saving df with related links derived variables to rl_sampled_processed_journey dir') out_path = os.path.join(DATA_DIR, "rl_sampled_processed_journey", ("zprop_" + f"{filename}")) logger.info(f"Saving to {out_path}") df_ab.to_csv(out_path, compression="gzip", index=False) logger.info('Performing Bayesian bootstrap on count of nav or search.') a_bootstrap, b_bootstrap = bayesian_bootstrap_analysis(df, col_name='Content_Nav_or_Search_Count', boot_reps=boot_reps, variant_dict=variant_dict) # high density interval of page variants and difference posteriors # ratio is vestigial name ratio_nav_stats = bb_hdi(a_bootstrap, b_bootstrap, alpha=alpha) df_ab_ratio = pd.Series(ratio_nav_stats).to_frame().T logger.debug(df_ab_ratio) logger.info('Performing Bayesian bootstrap on Page_List_Length') a_bootstrap, b_bootstrap = bayesian_bootstrap_analysis(df, col_name='Page_List_Length', boot_reps=boot_reps) # high density interval of page variants and difference posteriors length_stats = bb_hdi(a_bootstrap, b_bootstrap, alpha=alpha) df_ab_length = pd.Series(length_stats).to_frame().T logger.debug(df_ab_length) logger.debug('Joining bayesian boot dataframes.') df_bayes =
pd.concat([df_ab_ratio, df_ab_length])
pandas.concat
import honeycomb_io import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import dash_table from flask_caching import Cache import pandas as pd import datetime import dateutil import uuid import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) app = dash.Dash(__name__) cache = Cache(app.server, config={ 'CACHE_TYPE': 'redis', # Note that filesystem cache doesn't work on systems with ephemeral # filesystems like Heroku. 'CACHE_TYPE': 'filesystem', 'CACHE_DIR': 'cache-directory', # should be equal to maximum number of users on the app at a single time # higher numbers will store more data in the filesystem / redis cache 'CACHE_THRESHOLD': 200 }) def serve_layout(): session_id = str(uuid.uuid4()) return html.Div([ html.Div(session_id, id='session-id', style={'display': 'none'}), html.Div([ html.Div( [ html.H4('Date range'), dcc.DatePickerRange( id='my-date-picker-range', min_date_allowed=datetime.date(2020, 8, 1), max_date_allowed=datetime.date(2021, 7, 31), initial_visible_month=datetime.date.today() ) ], style={'width': '32%', 'display': 'inline-block'} ), html.Div( [ html.H4('Students'), dcc.Dropdown( id='students-dropdown', # options=[ # {'label': 'Alpha', 'value': 'a'}, # {'label': 'Beta', 'value': 'b'}, # {'label': 'Gamma', 'value': 'c'} # ], # value=['a', 'c'], multi=True ) ], style={'width': '32%', 'display': 'inline-block'} ), html.Div( [ html.H4('Materials'), dcc.Dropdown( id='materials-dropdown', # options=[ # {'label': 'One', 'value': '1'}, # {'label': 'Two', 'value': '2'}, # {'label': 'Three', 'value': '3'} # ], # value=[1], multi=True ) ], style={'width': '32%', 'display': 'inline-block'} ) ]), html.Div( dash_table.DataTable( id='table', columns=[ {"name": 'Student', "id": 'Student'}, {"name": 'Material', "id": 'Material'}, {"name": 'Day', "id": 'Day'}, {"name": 'Start', "id": 'Start'}, {"name": 'End', "id": 'End'} ], # filter_action='native', # filter_query='{Material} contains Bells && {Student} contains Flower Arranging', # fill_width=False, fixed_rows={'headers': True}, page_action='none', style_table={'height': '500px', 'overflowY': 'auto'}, style_as_list_view=True, style_data_conditional=[ { 'if': {'row_index': 'odd'}, 'backgroundColor': 'rgb(248, 248, 248)' } ], style_header={ 'backgroundColor': 'rgb(230, 230, 230)', 'fontWeight': 'bold' }, style_cell={ 'whiteSpace': 'normal', 'height': 'auto', 'textAlign': 'left' } ) ) ]) app.layout = serve_layout @app.callback( Output('table', "data"), Output('students-dropdown', "options"), Output('materials-dropdown', "options"), Input('session-id', "children"), Input('my-date-picker-range', "start_date"), Input('my-date-picker-range', "end_date"), Input('students-dropdown', "value"), Input('materials-dropdown', "value") ) def update_data( session_id, start_date_string, end_date_string, selected_students, selected_materials ): if pd.isnull(start_date_string) or pd.isnull(end_date_string): return [], [], [] material_interactions_display_df = fetch_dataframe( session_id, start_date_string, end_date_string ) student_options = [ {'label': option, 'value': option} for option in list(material_interactions_display_df['Student'].unique()) ] material_options = [ {'label': option, 'value': option} for option in list(material_interactions_display_df['Material'].unique()) ] logger.info('Selected students: \'{}\''.format(selected_students)) logger.info('Selected materials: \'{}\''.format(selected_materials)) if selected_students is not None and len(selected_students) > 0: material_interactions_display_df = material_interactions_display_df.loc[ material_interactions_display_df['Student'].isin(selected_students) ] if selected_materials is not None and len(selected_materials) > 0: material_interactions_display_df = material_interactions_display_df.loc[ material_interactions_display_df['Material'].isin(selected_materials) ] table_data = material_interactions_display_df.to_dict('records') return table_data, student_options, material_options def fetch_dataframe( session_id, start_date_string, end_date_string ): @cache.memoize() def fetch_and_serialize_data( session_id, start_date_string, end_date_string ): logger.info('Fetching new data from Honeycomb for start date {} and end date {}'.format( start_date_string, end_date_string )) if pd.isnull(start_date_string) or pd.isnull(end_date_string): return pd.DataFrame() start_date =
pd.to_datetime(start_date_string)
pandas.to_datetime
import click import pysam import pandas as pd from os import environ from plotnine import * from .svs import ( tabulate_split_read_signatures, ) from .api import ( download_genomes, download_kraken2, make_index, search_reads, condense_alignment, make_report, kraken2_search_reads, ) @click.group() def covid(): pass @covid.group('sv') def cli_sv(): pass @cli_sv.command('split-reads') @click.option('-g', '--min-gap', default=100) @click.option('-p/-a', '--primary/--all', default=False) @click.option('-o', '--outfile', default='-', type=click.File('w')) @click.argument('bams', nargs=-1) def cli_split_reads(min_gap, primary, outfile, bams): tbls = [] for bam in bams: click.echo(bam, err=True) samfile = pysam.AlignmentFile(bam, "rb") tbl = tabulate_split_read_signatures(samfile, min_gap=min_gap, primary_only=primary) tbl['sample_name'] = bam.split('/')[-1].split('.')[0] tbls.append(tbl) tbl = pd.concat(tbls) click.echo(tbl.shape, err=True) tbl.to_csv(outfile) @cli_sv.command('plot-split') @click.option('-o', '--outfile', default='-', type=click.File('wb')) @click.argument('tbl') def cli_split_reads(outfile, tbl): tbl = pd.read_csv(tbl, index_col=0) # tbl = tbl.groupby('sample_name').apply(lambda t: t.sample(min(1000, t.shape[0]))) plot = ( ggplot(tbl, aes(x='position', y='split_position', color='strand')) + geom_point(size=2, alpha=1) + geom_density_2d() + ylab('Position') + xlab('Split Position') + ggtitle('Split Signature') + scale_color_brewer(type='qualitative', palette=6) + labs(color='Strand') + theme( text=element_text(size=20), legend_position='right', figure_size=(8, 8), panel_border=element_rect(colour="black", fill='none', size=1), ) ) plot.save(outfile) @cli_sv.command('plot-split-2') @click.option('-o', '--outfile', default='-', type=click.File('wb')) @click.argument('tbl') def cli_split_reads(outfile, tbl): tbl =
pd.read_csv(tbl, index_col=0)
pandas.read_csv
import string from functools import reduce from typing import List, Dict import pandas as pd from pandas import DataFrame def alphabets() -> List[str]: return list(string.ascii_lowercase) def positional_alphabet_columns(word_length: int = 5) -> List[str]: return [f'{letter}_{position}' for letter in alphabets() for position in range(1, word_length + 1)] def letter_positions_in_word(word: str) -> List[str]: return [f'{letter}_{position + 1}' for position, letter in enumerate(word)] def word_position_count_as_row(word: str) -> Dict[str, int]: letter_positions = letter_positions_in_word(word) return { column_name: 1 if column_name in letter_positions else 0 for column_name in positional_alphabet_columns(len(word)) } def word_frame(word: str) -> DataFrame: return pd.DataFrame(word_position_count_as_row(word), index=[word]) def words_frame(word_frames: List[DataFrame]) -> DataFrame: return
pd.concat(word_frames)
pandas.concat
import urllib.request as request import re import os import pandas as pd import pkg_resources from urllib.error import URLError from ._logging import _logger from .exceptions import DownloadNotAllowedError def get_noaa_isd_lite_file(wmo_index:int, year:int, *, output_dir:str = None, allow_downloads:bool = False) -> str: """ Given a WMO index and a year, retrieve the corresponding NOAA ISD Lite AMY file :param wmo_index: :param year: :param output_dir: Optional output directory - if not specified, the file will be saved to a package directory. If the directory already contains a NOAA ISD Lite file matching the requested WMO Index and year, then a new file will not be downloaded from NOAA and that file's path will be returned :param allow_downloads: Pass True to permit NOAA ISD Lite files and related information to be downloaded from ncdc.noaa.gov if they are not already present in output_dir. :return: The path to the NOAA ISD Lite file """ if output_dir is None: # pragma: no cover output_dir = pkg_resources.resource_filename('diyepw', 'data/noaa_isd_lite_files') _logger.info(f"get_noaa_isd_lite_file() - output_dir was not defined, will use {output_dir}") if not os.path.exists(output_dir): # pragma: no cover os.mkdir(output_dir) _logger.info(f"get_noaa_isd_lite_file() - {output_dir} did not exist, so has been created") # On the NOAA website, the ISD Lite files are named with a third number between WMO and year, but # since we don't use that third number for anything and it complicates identifying a file for a # WMO/Year combination, we simplify the name to only contain the values we care about file_name = f"{wmo_index}-{year}.gz" file_path = os.path.join(output_dir, file_name) # Download the ISD Lite file if it's not already in the output directory if not os.path.exists(file_path): url = _get_noaa_isd_lite_file_url(year, wmo_index, allow_downloads) if not allow_downloads: raise DownloadNotAllowedError( f"The ISD Lite file {file_path} is not present. Pass allow_downloads=True to allow the " f"missing data to be automatically downloaded from {url}" ) try: with request.urlopen(url) as response: with open(file_path, 'wb') as downloaded_file: downloaded_file.write(response.read()) except URLError as e: # pragma: no cover raise Exception(f'Failed to download {url} - are you connected to the internet?') except Exception as e: # pragma: no cover raise Exception(f"Error downloading from {url}: {e}") return file_path def _get_noaa_isd_lite_file_url(year:int, wmo_index:int, allow_downloads:bool) -> str: catalog = _get_noaa_isd_lite_file_catalog(year, allow_downloads=allow_downloads) wmo_index_row = catalog.loc[catalog['wmo_index'] == wmo_index] if len(wmo_index_row) == 0: raise Exception(f"Invalid WMO Inex: The NOAA ISD Lite catalog does not contain an entry for WMO Index {wmo_index}") file_name = wmo_index_row['file_name'].iloc[0] return f"https://www1.ncdc.noaa.gov/pub/data/noaa/isd-lite/{year}/{file_name}" def _get_noaa_isd_lite_file_catalog(year:int, *, catalog_dir=None, allow_downloads:bool = False) -> pd.DataFrame: """ Retrieve the list of all NOAA ISD Lite files for North America (WMO indices starting with 7) for a given year. If the file is not already present, one will be downloaded. Files are named after the year whose files they describe. :param year: :param catalog_dir: The directory in which to look for the file, and into which the file will be written if downloaded :param allow_downloads: Pass True to permit the catalog of available NOAA ISD Lite files for North America to be downloaded if it is not already present in catalog_dir :return: A Pandas Dataframe containing a set of file names. The file names can be appended to the URL https://www1.ncdc.noaa.gov/pub/data/noaa/isd-lite/{year}/ to download the files from NOAA """ if catalog_dir is None: catalog_dir = pkg_resources.resource_filename('diyepw', 'data/noaa_isd_lite_catalogs') _logger.info(f"catalog_dir was not defined, using {catalog_dir}") if not os.path.exists(catalog_dir): # pragma: no cover raise Exception(f"Directory {catalog_dir} does not exist") file_path = os.path.join(catalog_dir, str(year)) # If the catalog file already exists, we'll read it. If it doesn't, we'll download it, import it into a # dataframe, and then save that so that it exists the next time we need it. if os.path.exists(file_path): _logger.info(f"Catalog file exists at {file_path}, using it instead of downloading it from NOAA") catalog =
pd.read_csv(file_path)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import numpy as np import xgboost as xgb from sklearn.preprocessing import LabelEncoder import lightgbm as lgb from catboost import CatBoostClassifier from sklearn.model_selection import train_test_split #导入数据集 def read_data(base_info_path, annual_report_info_path, tax_info_path, change_info_path, news_info_path, other_info_path, entprise_info_path, ): base_info = pd.read_csv(base_info_path) # 企业基本信息 annual_report_info = pd.read_csv(annual_report_info_path) tax_info = pd.read_csv(annual_report_info_path) change_info = pd.read_csv(change_info_path) news_info = pd.read_csv(news_info_path) other_info = pd.read_csv(other_info_path) entprise_info = pd.read_csv(entprise_info_path) pd.to_datetime(tax_info['START_DATE'], format="%Y-%m-%d") return base_info, annual_report_info, tax_info, change_info, news_info, other_info, entprise_info df_x = pd.DataFrame(entprise_info['id']) df_y = pd.DataFrame(entprise_info['label']) x_train, x_test, y_train, y_test = train_test_split(df_x, df_y, test_size = 0.3, random_state = 2021) data = pd.concat([x_train, x_test]).reset_index(drop=True) def get_base_info_feature(df, base_info): off_data = base_info.copy() off_data_isnull_rate=off_data.isnull().sum()/len(off_data) big_null_name=off_data_isnull_rate[off_data_isnull_rate.values>=0.95].index base_info.drop(big_null_name,axis=1,inplace=True) base_info.fillna(-1, downcast = 'infer', inplace = True) #对时间的处理 base_info['opfrom']=pd.to_datetime(base_info['opfrom'],format="%Y-%m-%d") #把数据转换为时间类型 base_info['pre_opfrom']=base_info['opfrom'].map(lambda x:x.timestamp() if x!=-1 else 0) #将时间类型转换为时间戳 base_info['opto']=pd.to_datetime(base_info['opto'],format='%Y-%m-%d') base_info['pre_opto']=base_info['opto'].map(lambda x:x.timestamp() if x!=-1 else 0) le=LabelEncoder() base_info['industryphy']=le.fit_transform(base_info['industryphy'].map(str)) base_info['opscope']=le.fit_transform(base_info['opscope'].map(str)) base_info['opform']=le.fit_transform(base_info['opform'].map(str)) data = df.copy() data=pd.merge(data, base_info, on='id', how='left') # 行业类别基本特征 key=['industryphy'] prefixs = ''.join(key) + '_' #该行业有多少企业经营 pivot=pd.pivot_table(data,index=key,values='id',aggfunc=lambda x:len(set(x))) pivot=pd.DataFrame(pivot).rename(columns={'id': prefixs+'different_id'}).reset_index() data = pd.merge(data, pivot, on=key, how='left') data.fillna(-1, downcast = 'infer', inplace = True) #行业广告经营特征 key=['industryco','adbusign'] #该行业有多少广告和不广告平均注册金 pivot=pd.pivot_table(data,index=key,values='regcap',aggfunc=np.mean) pivot=pd.DataFrame(pivot).rename(columns={'regcap': prefixs+'mean_regcap'}).reset_index() data = pd.merge(data, pivot, on=key, how='left') data.fillna(-1, downcast = 'infer', inplace = True) #细类行业特征 key=['industryco'] prefixs = ''.join(key) + '_' #该行业有多少企业经营 pivot=pd.pivot_table(data,index=key,values='id',aggfunc=lambda x:len(set(x))) pivot=pd.DataFrame(pivot).rename(columns={'id': prefixs+'different_id'}).reset_index() data = pd.merge(data, pivot, on=key, how='left') data.fillna(-1, downcast = 'infer', inplace = True) #行业从业平均人数 pivot=pd.pivot_table(data,index=key,values='empnum',aggfunc=np.mean) pivot=pd.DataFrame(pivot).rename(columns={'empnum': prefixs+'mean_empnum'}).reset_index() data = pd.merge(data, pivot, on=key, how='left') data.fillna(-1, downcast = 'infer', inplace = True) #行业从业人数最大 pivot=pd.pivot_table(data,index=key,values='empnum',aggfunc=np.max) pivot=pd.DataFrame(pivot).rename(columns={'empnum': prefixs+'max_empnum'}).reset_index() data = pd.merge(data, pivot, on=key, how='left') data.fillna(-1, downcast = 'infer', inplace = True) #企业所有人数 data['all_people']=list(map(lambda x,y,z : x+y+z ,data['exenum'],data['empnum'],data['parnum'])) #企业实缴金额占注册多少 data['rec/reg']=list(map(lambda x,y : x/y if y!=0 else 0,data['reccap'],data['regcap'])) data.fillna(-1, downcast = 'infer', inplace = True) #企业没人共交多少 data['mean_hand']=list(map(lambda x,y : x/y if y!=0 else 0,data['regcap'],data['all_people'])) data.fillna(-1, downcast = 'infer', inplace = True) #经营范围(运动,材料) key=['opscope'] prefixs = ''.join(key) + '_' #同样经营范围有那些企业 pivot=pd.pivot_table(data,index=key,values='id',aggfunc=lambda x: len(set(x))) pivot=pd.DataFrame(pivot).rename(columns={'id': prefixs+'many_id'}).reset_index() data = pd.merge(data, pivot, on=key, how='left') data.fillna(-1, downcast = 'infer', inplace = True) #这种类型一个企业有多少从业人数 pivot=pd.pivot_table(data,index=key,values='empnum',aggfunc=np.mean) pivot=pd.DataFrame(pivot).rename(columns={'empnum': prefixs+'mean_empnum'}).reset_index() data = pd.merge(data, pivot, on=key, how='left') data.fillna(-1, downcast = 'infer', inplace = True) # 这种类型共企业有多少合伙人 pivot=pd.pivot_table(data,index=key,values='parnum',aggfunc=np.sum) pivot=pd.DataFrame(pivot).rename(columns={'parnum': prefixs+'sum_parnum'}).reset_index() data = pd.merge(data, pivot, on=key, how='left') data.fillna(-1, downcast = 'infer', inplace = True) #这种类型一个企业有多少合伙人 pivot=pd.pivot_table(data,index=key,values='parnum',aggfunc=np.mean) pivot=pd.DataFrame(pivot).rename(columns={'parnum': prefixs+'mean_parnum'}).reset_index() data = pd.merge(data, pivot, on=key, how='left') data.fillna(-1, downcast = 'infer', inplace = True) #这种范围平均注册金 pivot=pd.pivot_table(data[data['regcap'].map(lambda x : x!=-1)],index=key,values='regcap',aggfunc=np.mean) pivot=pd.DataFrame(pivot).rename(columns={'regcap': prefixs+'mean_ragcap'}).reset_index() data = pd.merge(data, pivot, on=key, how='left') data.fillna(-1, downcast = 'infer', inplace = True) #这种范围最大和最小注册金 pivot=pd.pivot_table(data[data['regcap'].map(lambda x : x!=-1)],index=key,values='regcap',aggfunc=np.max) pivot=pd.DataFrame(pivot).rename(columns={'regcap': prefixs+'max_ragcap'}).reset_index() data = pd.merge(data, pivot, on=key, how='left') data.fillna(-1, downcast = 'infer', inplace = True) #这种范围平均实缴金 pivot=pd.pivot_table(data[data['reccap'].map(lambda x : x!=-1)],index=key,values='reccap',aggfunc=np.mean) pivot=pd.DataFrame(pivot).rename(columns={'reccap': prefixs+'mean_raccap'}).reset_index() data = pd.merge(data, pivot, on=key, how='left') data.fillna(-1, downcast = 'infer', inplace = True) #这种范围最大和最小实缴金 pivot=pd.pivot_table(data[data['reccap'].map(lambda x : x!=-1)],index=key,values='reccap',aggfunc=np.max) pivot=pd.DataFrame(pivot).rename(columns={'reccap':prefixs+'max_raccap'}).reset_index() data = pd.merge(data, pivot, on=key, how='left') data.fillna(-1, downcast = 'infer', inplace = True) #企业类型 key=['enttype'] prefixs = ''.join(key) + '_' #企业类型有几个小类 pivot=pd.pivot_table(data,index=key,values='enttypeitem',aggfunc=lambda x:len(set(x))) pivot=pd.DataFrame(pivot).rename(columns={'enttypeitem': prefixs+'different_item'}).reset_index() data = pd.merge(data, pivot, on=key, how='left') data.fillna(-1, downcast = 'infer', inplace = True) #排序特征 key=['sort'] prefixs = ''.join(key) + '_' #行业类别注册金正反序 data[prefixs+'industryphy_regcap_postive']=data.groupby('industryphy')['regcap'].rank(ascending=True) data[prefixs+'industryphy_regcap_nagative']=data.groupby('industryphy')['regcap'].rank(ascending=False) #行业类别投资金金正反序 data[prefixs+'industryphy_reccap_postive']=data.groupby('industryphy')['reccap'].rank(ascending=True) data[prefixs+'industryphy_reccap_nagative']=data.groupby('industryphy')['reccap'].rank(ascending=False) #企业类型业注册金正反序 data[prefixs+'enttype_regcap_postive']=data.groupby('enttype')['regcap'].rank(ascending=True) data[prefixs+'enttype_regcap_nagative']=data.groupby('enttype')['regcap'].rank(ascending=False) #企业类型投资金金正反序 data[prefixs+'enttype_reccap_postive']=data.groupby('enttype')['reccap'].rank(ascending=True) data[prefixs+'enttype_reccap_nagative']=data.groupby('enttype')['reccap'].rank(ascending=False) #经营限期注册金正反序 data[prefixs+'opfrom_regcap_postive']=data.groupby('pre_opfrom')['regcap'].rank(ascending=True) data[prefixs+'opfrom_regcap_negative']=data.groupby('pre_opfrom')['regcap'].rank(ascending=False) #经营限起投资金金正反序 data[prefixs+'opfrom_recap_postive']=data.groupby('pre_opfrom')['reccap'].rank(ascending=True) data[prefixs+'opfrom_reccap_negative']=data.groupby('pre_opfrom')['reccap'].rank(ascending=False) #经营限期☞注册金正反序 data[prefixs+'opto_regcap_postive']=data.groupby('pre_opto')['regcap'].rank(ascending=True) data[prefixs+'opto_regcap_negative']=data.groupby('pre_opto')['regcap'].rank(ascending=False) # #经营限止投资金金正反序 # data[prefixs+'opto_recap_postive']=data.groupby('pre_opto')['reccap'].rank(ascending=True) data[prefixs+'opto_reccap_negative']=data.groupby('pre_opto')['reccap'].rank(ascending=False) #enttypegb注册金正反序 data[prefixs+'enttypegb_regcap_postive']=data.groupby('enttypegb')['regcap'].rank(ascending=True) data[prefixs+'enttypegb_regcap_negative']=data.groupby('enttypegb')['regcap'].rank(ascending=False) #enttypegb投资金金正反序 data[prefixs+'enttypegb_recap_postive']=data.groupby('enttypegb')['reccap'].rank(ascending=True) data[prefixs+'enttypegb_reccap_negative']=data.groupby('enttypegb')['reccap'].rank(ascending=False) # #sdbusign注册金正反序 # data[prefixs+'adbusign_regcap_postive']=data.groupby('adbusign')['regcap'].rank(ascending=True) # data[prefixs+'adbusign_regcap_negative']=data.groupby('adbusign')['regcap'].rank(ascending=False) # #enttypegb投资金金正反序 data[prefixs+'adbusign_recap_postive']=data.groupby('adbusign')['reccap'].rank(ascending=True) # data[prefixs+'adbusign_reccap_negative']=data.groupby('adbusign')['reccap'].rank(ascending=False) return data data = get_base_info_feature(data, base_info) # x_train = get_base_info_feature(x_train, base_info) # x_test = get_base_info_feature(x_test, base_info) # In[13]: def get_annual_report_info_feature(df, feat): off_data=feat.copy() off_data_isnull_rate=off_data.isnull().sum()/len(off_data) big_null_name=off_data_isnull_rate[off_data_isnull_rate.values>=0.9].index feat.drop(big_null_name,axis=1,inplace=True) feat.fillna(-1,downcast = 'infer', inplace = True) #企业年报特征 #企业 data = df.copy() key=['id'] prefixs = ''.join(key) + '_' #企业在几年内是否变更状态 pivot=pd.pivot_table(feat,index=key,values='STATE',aggfunc=lambda x:len(set(x))) pivot=pd.DataFrame(pivot).rename(columns={'STATE':prefixs+'many_STATE'}).reset_index() data=pd.merge(data, pivot, on=key, how='left') data.fillna(-1,downcast = 'infer', inplace = True) #企业资金总额 pivot=pd.pivot_table(feat,index=key,values='FUNDAM',aggfunc=np.sum) pivot=pd.DataFrame(pivot).rename(columns={'FUNDAM':prefixs+'sum_FUNDAM'}).reset_index() data=pd.merge(data, pivot, on=key, how='left') data.fillna(-1,downcast = 'infer', inplace = True) #企业从业人数 pivot=pd.pivot_table(feat,index=key,values='EMPNUM',aggfunc=np.sum) pivot=pd.DataFrame(pivot).rename(columns={'EMPNUM':prefixs+'sum_EMPNUM'}).reset_index() data=pd.merge(data, pivot, on=key, how='left') data.fillna(-1,downcast = 'infer', inplace = True) #企业有几年公布了从业人数 pivot=pd.pivot_table(feat[feat['EMPNUMSIGN'].map(lambda x: x==1)],index=key,values='EMPNUM',aggfunc=len) pivot=pd.DataFrame(pivot).rename(columns={'EMPNUM':prefixs+'gongshi_many_EMPNUM '}).reset_index() data=pd.merge(data, pivot, on=key, how='left') data.fillna(-1,downcast = 'infer', inplace = True) #企业有几年是开业 pivot=pd.pivot_table(feat[feat['BUSSTNAME'].map(lambda x: x=='开业')],index=key,values='BUSSTNAME',aggfunc=len) pivot=pd.DataFrame(pivot).rename(columns={'BUSSTNAME':prefixs+'开业_many_year '}).reset_index() data=pd.merge(data, pivot, on=key, how='left') data.fillna(-1,downcast = 'infer', inplace = True) return data data = get_annual_report_info_feature(data, annual_report_info) train = data[:x_train.shape[0]].reset_index(drop=True) test = data[x_train.shape[0]:].reset_index(drop=True) def get_model(train_x,train_y,valid_x,valid_y, my_type='lgb'): if my_type == 'lgb': params = { 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'binary_error', 'num_leaves': 64, 'max_depth':7, 'learning_rate': 0.02, 'feature_fraction': 0.85, 'feature_fraction_seed':2021, 'bagging_fraction': 0.85, 'bagging_freq': 5, 'bagging_seed':2021, 'min_data_in_leaf': 20, 'lambda_l1': 0.5, 'lambda_l2': 1.2, 'verbose': -1 } dtrain = lgb.Dataset(train_x, label=train_y) dvalid = lgb.Dataset(valid_x, label=valid_y) model = lgb.train( params, train_set = dtrain, num_boost_round=10000, valid_sets = [dtrain, dvalid], verbose_eval=100, early_stopping_rounds=600, # categorical_feature=cat_cols, ) elif my_type == 'xgb': params = {'booster':'gbtree', #线性模型效果不如树模型 'objective':'binary:logistic', 'eval_metric':'auc', 'silent':1, #取0时会输出一大堆信息 'eta':0.01, #学习率典型值为0.01-0.2 'max_depth':7, #树最大深度,典型值为3-10,用来避免过拟合 'min_child_weight':5, #默认取1,用于避免过拟合,参数过大会导致欠拟合 'gamma':0.2, #默认取0,该参数指定了节点分裂所需的小损失函数下降值 'lambda':1, #默认取1.权重的L2正则化项 'colsample_bylevel':0.7, 'colsample_bytree':0.8, #默认取1,典型值0.5-1,用来控制每棵树随机采样的比例 'subsample':0.8, #默认取1,典型值0.5-1,用来控制对于每棵树,随机采样的比例 'scale_pos_weight':1 #在各类样本十分不平衡时,设定该参数为一个正值,可使算法更快收敛 } dtrain = xgb.DMatrix(train_x, label = train_y) # watchlist = [(dtrain,'train')] #列出每次迭代的结果 model = xgb.train(params,dtrain,num_boost_round = 1200) elif my_type == 'cat': model = CatBoostClassifier( iterations=5000, max_depth=10, learning_rate=0.07, l2_leaf_reg=9, random_seed=2018, fold_len_multiplier=1.1, early_stopping_rounds=100, use_best_model=True, loss_function='Logloss', eval_metric='AUC', verbose=100) model.fit(train_x,train_y,eval_set=[(train_x, train_y),(valid_x, valid_y)], plot=True) return model from sklearn.model_selection import StratifiedKFold from sklearn.metrics import f1_score, fbeta_score, precision_score, recall_score, roc_auc_score result = pd.DataFrame() model_type = ['cat', 'lgb', 'xgb'] for my_type in model_type: KF = StratifiedKFold(n_splits=5, random_state=2020, shuffle=True) features = [i for i in train.columns if i not in ['id','dom', 'opfrom', 'opto', 'oploc']] oof = np.zeros(len(train)) predictions = np.zeros((len(test))) # 特征重要性 feat_imp_df =
pd.DataFrame({'feat': features, 'imp': 0})
pandas.DataFrame
""" Helper functions for get_module_progress.py *** All Canvas LMS REST API calls made using canvasapi python API wrapper: https://github.com/ucfopen/canvasapi *** @authors: <NAME>, <NAME>, <NAME> """ from ast import literal_eval import datetime import re import os import shutil from tqdm import tqdm import pandas as pd import settings from pathlib import Path def create_dict_from_object(theobj, list_of_attributes): """given an object and list of attributes return a dictionary Args: theobj (a Canvas object) list_of_attributes (list of strings) Returns: mydict """ def get_attribute_if_available(theobj, attrname): if hasattr(theobj, attrname): return {attrname: getattr(theobj, attrname)} else: return {attrname: None} mydict = {} for i in list_of_attributes: mydict.update(get_attribute_if_available(theobj, i)) return mydict def get_modules(course): """Returns all modules from specified course Makes a call to the CanvasAPI through Python API wrapper. Calls make_modules_dataframe() to convert response to properly formatted Pandas dataframe. Returns it. Args: course (canvasapi.course.Course): The course obj. from Canvas Python API wrapper Returns: DataFrame: Table with modules info for specified course Raises: KeyError: if request through canvasapi is unsuccessful or if dataframe creation and handling results in errors """ try: modules = course.get_modules(include=["items"], per_page=50) attrs = [ "id", "name", "position", "unlock_at", "require_sequential_progress", "another item", "publish_final_grade", "prerequisite_module_ids", "published", "items_count", "items_url", "items", "course_id", ] modules_dict = [create_dict_from_object(m, attrs) for m in modules] modules_df = pd.DataFrame(modules_dict) modules_df = modules_df.rename( columns={ "id": "module_id", "name": "module_name", "position": "module_position", } ) except Exception: raise KeyError("Unable to get modules for course: " + course.name) else: return modules_df def get_items(modules_df, cname): """Returns expanded modules data Given a modules dataframe, expand table data so that fields with a list get broken up into indiviaul rows per list item & dictionaries are broken up into separate columns. Args: module_df (DataFrame): modules DataFrame Returns: DataFrame: Table with all module info, a single row per item and all item dict. attributes in a single column Raises: KeyError: if there is any issue expanding modules table or if module does not have items """ try: expanded_items = _list_to_df( modules_df[["module_id", "module_name", "course_id", "items"]], "items" ) items_df = _dict_to_cols(expanded_items, "items", "items_") items_df = _dict_to_cols( items_df.reset_index(drop=True), "items_completion_requirement", "items_completion_req_", ) except KeyError: raise KeyError( f'Unable to expand module items for "{cname}." Please ensure all modules have items' ) else: return items_df def get_student_module_status(course): """Returns DataFrame with students' module progress Given a course object, gets students registered in that course (API Request) For each student, gets module info pertaining to that student (API Request) Returns info in Pandas DataFrame table format. Args: course (canvasapi.course.Course): The course obj. from Canvas Python API wrapper Returns: DataFrame: Table containing module progress data for each student. Each student has a single entry per module in specified course. EX. row 0: student0, module0 row 1: student0, module1 row 2: student1, module0 row 3: student1, module1 """ students_df = _get_students(course) print("Getting student module info for " + course.name) student_module_status = pd.DataFrame() num_rows = len(list(students_df.iterrows())) with tqdm(total=num_rows) as pbar: for i, row in students_df.iterrows(): pbar.update(1) sid = row["id"] student_data = course.get_modules( student_id=sid, include=["items"], per_page=50 ) attrs = [ "id", "name", "position", "unlock_at", "require_sequential_progress", "publish_final_grade", "prerequisite_module_ids", "state", "completed_at", "items_count", "items_url", "items", "course_id", ] # make student data into dictionary student_rows_dict = [ create_dict_from_object(m, attrs) for m in student_data ] # make dictionary into df student_rows = pd.DataFrame(student_rows_dict) student_rows["student_id"] = str(sid) student_rows["student_name"] = row["name"] student_rows["sortable_student_name"] = row["sortable_name"] student_module_status = student_module_status.append( student_rows, ignore_index=True, sort=False ) # note, kept getting sort error future warning # might want to check this in future that Sort should be false student_module_status = student_module_status.rename( columns={ "id": "module_id", "name": "module_name", "position": "module_position", } ) return student_module_status def get_student_items_status(course, module_status): """Returns expanded student module status data table Args: course (canvasapi.course.Course): The course obj. from Canvas Python API wrapper. module_status (DataFrame): student module status DataFrame Returns: DataFrame: Expanded table with same information as module_status DF. Items list exapanded -> single row per item Items dict. expanded -> single col per attribute """ try: expanded_items = _list_to_df(module_status, "items") except KeyError as e: raise KeyError("Corse has no items completd by students") expanded_items = _dict_to_cols(expanded_items, "items", "items_") student_items_status = _dict_to_cols( expanded_items, "items_completion_requirement", "item_cp_req_" ).reset_index(drop=True) student_items_status["course_id"] = course.id student_items_status["course_name"] = course.name # pull out completed_at column as list items_status_list = student_items_status["completed_at"].values.tolist() # clean/format the datetime string (to be more interpretable in Tableau) cleaned = map(__clean_datetime_value, items_status_list) # put cleaned values back into dataframe student_items_status["completed_at"] = list(cleaned) student_items_status = student_items_status[ [ "completed_at", "course_id", "module_id", "items_count", "module_name", "module_position", "state", "unlock_at", "student_id", "student_name", "items_id", "items_title", "items_position", "items_indent", "items_type", "items_module_id", "item_cp_req_type", "item_cp_req_completed", "course_name", ] ] return student_items_status def __clean_datetime_value(datetime_string): """Given""" if datetime_string is None: return datetime_string if isinstance(datetime_string, str): x = datetime_string.replace("T", " ") return x.replace("Z", "") raise TypeError("Expected datetime_string to be of type string (or None)") def write_data_directory(dataframes, cid): """Writes dataframes to directory titled by value of cid and items dataframe to tableau directory Iterates through dataframes dictionary and writes each one to disk (<key>.csv) Makes *Course output* directory in data folder named <cid> (or writes to existing if one already exists with that name) Makes *Tableau* output directory called "Tableau" where all student_items dataframes will be put for ease of import and union in tableau Args: dataframes (dictionary): dictionary of DataFrames Format -> { name, DataFrame,... } dir_name (string): directory name """ course_path = _make_output_dir(cid) for name, dataframe in dataframes.items(): path = Path(f"{course_path}/{name}.csv") dataframe.to_csv(path, index=False) def clear_data_directory(): """ Clears entire data directory except for Tableau folder Directory path : module_progress/data """ root = os.path.dirname(os.path.abspath(__file__))[:-4] data_path = Path(f"{root}/data") for subdir in os.listdir(data_path): path = data_path / subdir if subdir != "Tableau" and subdir != ".gitkeep" and subdir != ".DS_Store": shutil.rmtree(path, ignore_errors=False, onerror=None) def write_tableau_directory(list_of_dfs): """Creates a directory titled Tableau containing 3 items: course_entitlements.csv --> permissions table for Tableau server module_data.csv --> unioned data for Tableau status.csv --> details the success of the most recent run Also creates a .zip with the contents of the Tableau folder in the 'archive' directory """ tableau_path = _make_output_dir("Tableau") union = pd.concat(list_of_dfs, axis=0, ignore_index=True) module_data_output_path = tableau_path / "module_data.csv" union.to_csv(module_data_output_path, index=False) root = os.path.dirname(os.path.abspath(__file__))[:-4] # Copy the course_entitlements.csv into the Tableau folder src = Path(f"{root}/course_entitlements.csv") dst = Path(f"{root}/data/Tableau/course_entitlements.csv") shutil.copyfile(src, dst) current_dt = datetime.datetime.now() dir_name = str(current_dt.strftime("%Y-%m-%d--%H-%M-%S")) src = tableau_path dst = Path(f"{root}/archive/{dir_name}") shutil.make_archive(dst, "zip", src) _output_status_table(tableau_path) def _output_status_table(tableau_path): """ Creates .csv file for log folder that specifies run status for each course. Log is titled by date time and table status info reflects most recent run. """ current_dt = datetime.datetime.now() cols = ["Course Id", "Course Name", "Status", "Message", "Data Updated On"] data = [] for cid, info in settings.status.items(): row = [cid, info["cname"], info["status"], info["message"], current_dt] data.append(row) dataframe = pd.DataFrame(data, columns=cols) file_name = str(current_dt.strftime("%Y-%m-%d--%H-%M-%S")) + ".csv" status_log_path = Path(f"{settings.ROOT_DIR}/status_log/{file_name}") dataframe.to_csv(status_log_path, index=False) status_path = tableau_path / "status.csv" dataframe.to_csv(status_path, index=False) def log_failure(cid, msg): """Adds failure log to global status object Args: cid (Integer): course id who's status has changed - used to create log entry msg (String): description of the failure """ settings.status[str(cid)]["status"] = "Failed" settings.status[str(cid)]["message"] = msg def log_success(cid): """Adds success log to glbal status object Args: cid (Integer): course id who's status has changed - used to create log entry """ settings.status[str(cid)]["status"] = "Success" settings.status[str(cid)][ "message" ] = "Course folder has been created in data directory" def _get_students(course): """Returns DataFrame table with students enrolled in specified course Makes a request to Canvas LMS REST API through Canvas Python API Wrapper Calls make_dataframe to convert response to Pandas DataFrame. Returns DataFrame. Args: course (canvasapi.course.Course): The course obj. from Canvas Python API wrapper Returns: DataFrame: Students table """ # print("Getting student list") students = course.get_users( include=["test_student", "email"], enrollment_type=["student"], per_page=50 ) attrs = [ "id", "name", "created_at", "sortable_name", "short_name", "sis_user_id", "integration_id", "login_id", "pronouns", ] students_data = [create_dict_from_object(s, attrs) for s in students] students_df =
pd.DataFrame(students_data)
pandas.DataFrame
import json import re import numpy as np import pandas as pd from pathlib import Path from fastprogress import progress_bar from src.dataset import NAME2CODE, BIRD_CODE, SCINAME2CODE def create_ground_truth(train: pd.DataFrame): labels = np.zeros((len(train), 264), dtype=int) for i, row in progress_bar(train.iterrows(), total=len(train)): ebird_code = BIRD_CODE[row.ebird_code] labels[i, ebird_code] = 1 secondary_labels = eval(row.secondary_labels) for sl in secondary_labels: if NAME2CODE.get(sl) is not None: second_code = NAME2CODE[sl] labels[i, BIRD_CODE[second_code]] = 1 background = row["background"] if isinstance(background, str): academic_names = re.findall("\((.*>)\)", background) academic_names = list( filter( lambda x: x is not None, map( lambda x: SCINAME2CODE.get(x), academic_names ) ) ) for bl in academic_names: labels[i, BIRD_CODE[bl]] = 1 columns = list(BIRD_CODE.keys()) index = train["filename"].map(lambda x: x.replace(".mp3", ".wav")).values labels_df =
pd.DataFrame(labels, index=index, columns=columns)
pandas.DataFrame
import argparse import glob import math import os import time import matplotlib.pyplot as plt import numpy as np import pandas as pd from numba import jit, prange from sklearn import metrics from utils import * @jit(nopython=True, nogil=True, cache=True, parallel=True, fastmath=True) def compute_tp_tn_fp_fn(y_true, y_pred): tp = 0 tn = 0 fp = 0 fn = 0 for i in prange(y_pred.size): tp += y_true[i] * y_pred[i] tn += (1-y_true[i]) * (1-y_pred[i]) fp += (1-y_true[i]) * y_pred[i] fn += y_true[i] * (1-y_pred[i]) return tp, tn, fp, fn def compute_precision(tp, fp): return tp / (tp + fp) def compute_recall(tp, fn): return tp / (tp + fn) def compute_f1_score(precision, recall): try: return (2*precision*recall) / (precision + recall) except: return 0 def compute_fbeta_score(precision, recall, beta): try: return ((1 + beta**2) * precision * recall) / (beta**2 * precision + recall) except: return 0 def compute_accuracy(tp,tn,fp,fn): return (tp + tn)/(tp + tn + fp + fn) def compute_auc(GT, pred): return metrics.roc_auc_score(GT, pred) def compute_auprc(GT, pred): prec, rec, thresholds = metrics.precision_recall_curve(GT, pred) # print(prec, rec, thresholds) plt.plot(prec, rec) plt.show() # return metrics.auc(prec, rec) def compute_average_precision(GT, pred): ratio = sum(GT)/np.size(GT) return metrics.average_precision_score(GT, pred), ratio def main(args): #====== Numba compilation ====== # The 2 lines are important compute_tp_tn_fp_fn(np.array([0,0,0], dtype=np.uint8), np.array([0,1,0], dtype=np.uint8)) compute_tp_tn_fp_fn(np.array([0,0,0], dtype=np.float32), np.array([0,1,0], dtype=np.float32)) #=============================== out = args.out if not os.path.exists(os.path.dirname(out)): os.makedirs(os.path.dirname(out)) model_name = args.model_name number_epochs = args.epochs batch_size = args.batch_size NumberFilters = args.number_filters lr = args.learning_rate cv_fold = args.cv_fold model_params = ['Number Epochs', 'Batch Size', 'Number Filters', 'Learning Rate', 'Empty col', 'Empty col2', 'Empty col3', 'CV'] param_values = [number_epochs, batch_size, NumberFilters, lr, '', '', '', ''] Params = pd.Series(param_values, index=model_params, name='Params values') metrics_names = ['AUPRC','AUPRC - Baseline','F1_Score','Fbeta_Score','Accuracy','Recall','Precision','CV fold'] Metrics = pd.Series(metrics_names, index=model_params, name='Model\Metrics') if not os.path.exists(out): Folder_Metrics = pd.DataFrame(columns = model_params) Image_Metrics = pd.DataFrame(columns = model_params) else: Metrics_file = pd.ExcelFile(out) Folder_Metrics =
pd.read_excel(Metrics_file, 'Sheet1', index_col=0, header=None)
pandas.read_excel
#!/usr/bin/env python # coding: utf-8 import os import copy import pandas from os.path import join from pandas.core.frame import DataFrame from MyPythonDocx import * def cal_va(df): # df = DataFrame(page[1:], columns=page[0]) severity = ['嚴重', '高', '中', '低', '無'] vas = [] for idx in range(5): mask = df['嚴重程度'] == severity[idx] tmp = df[mask][['弱點名稱', '弱點描述']].values.tolist() vas.append([]) for name in tmp: if name and name not in vas[idx]: vas[idx].append(name) # print(vas) return vas def cal_risk_cnt(page): try: df = DataFrame(page[1:], columns=page[0]) except: df = page severity = ['嚴重', '高', '中', '低', '無'] cnts = [] for idx in range(5): mask = df['嚴重程度'] == severity[idx] cnts.append(df[mask].shape[0]) # total = set(tuple(x) for x in df[mask]['弱點名稱']) # print(len(total)) # print(cnts) return cnts def check_va(data, data2): # IP位址, Service Port, 弱點ID total = ((row[0], row[3], row[4]) for row in data) total2 = ((row[0], row[3], row[4]) for row in data2) set1, set2 = set(total), set(total2) not_repair_va = set1 & set2 new_va = set2 - not_repair_va repaired_va = set1 - not_repair_va elem = ('IP位址', 'Service Port', '弱點ID') new_va.add(elem) repaired_va.add(elem) return list(new_va), list(not_repair_va), list(repaired_va) def va_to_row(va, data): res = [] tmp_va = copy.deepcopy(va) for row in data: for cod in tmp_va: if row[0] == cod[0] and row[3] == cod[1] and row[4] == cod[2]: res.append(row) tmp_va.remove(cod) break return res def doc_va_table(doc, data, idx): title = ['風險等級', '風險名稱', '風險簡述'] severity = ['嚴重', '高', '中', '低', '無'] vas = cal_va(data) tb = doc.tables[idx] for i, row in enumerate(tb.rows): if not i: continue Table.remove_row(tb, row) for i in range(6): if not i: for j in range(3): cell = tb.cell(i, j) cell.text = title[j] Table.set_cell_color(cell, PURPLE) Parag.set_font(cell.paragraphs, size=Pt(12), name=u'標楷體') else: for x in vas[i-1]: row_cells = tb.add_row().cells row_cells[0].text = severity[i-1] Parag.set_font(row_cells[0].paragraphs, size=Pt(12), name=u'標楷體') row_cells[1].text = x[0] row_cells[2].text = x[1] for p in row_cells[2].paragraphs: p.paragraph_format.alignment = 0 # print(x[0], ' finished!') Table.set_content_font(tb, size=Pt(12), name=u'標楷體') Table.col_widths(tb, 1.5, 2.7, 5) def doc_risk_cnt_copare(doc, data, data2): cnts = cal_risk_cnt(data) cnts2 = cal_risk_cnt(data2) # cnts3 = cal_risk_cnt(data_decrease) tbl = doc.tables[2] sums = [0, 0, 0] for i in range(5): tbl.cell(i+1, 1).text = str(cnts[i]) tbl.cell(i+1, 2).text = str(cnts2[i]) sub = cnts[i] - cnts2[i] tbl.cell(i+1, 3).text = str(sub) # res = cnts[i]-cnts2[i] if cnts[i]>cnts2[i] else 0 # tbl.cell(i+1, 3).text = str(res) sums[0] = sums[0] + cnts[i] sums[1] = sums[1] + cnts2[i] sums[2] = sums[2] + sub for i in range(3): tbl.cell(6, i+1).text = str(sums[i]) Table.set_content_font(tbl, size=Pt(12), name=u'標楷體') for p in doc.paragraphs: if 'decrease_risk_cnt' in p.text: p.text = p.text.replace('decrease_risk_cnt', str(sums[2])) def ExcelToWord_second(word, excel, excel2, sheet, sheet2, date, consultant): ip = word.split('/')[-1].replace('.docx','') print(ip) month, day = date.split('/') doc = Document(word) df_excel = pandas.read_excel(excel, sheet_name=None) data = df_excel[sheet] mask = data['IP位址'] == ip new_data = data[mask] if not new_data.empty: df_excel2 = pandas.read_excel(excel2, sheet_name=None) data2 = df_excel2[sheet2] li_data = data.values.tolist() li_data.insert(0, data.columns) li_data2 = data2.values.tolist() li_data2.insert(0, data2.columns) _, not_repair_va, _ = check_va(li_data, li_data2) li_new_data2 = va_to_row(not_repair_va, li_data) df_new_data2 = DataFrame(li_new_data2[1:], columns=li_new_data2[0]) new_data2 = df_new_data2[df_new_data2['IP位址'] == ip] doc_risk_cnt_copare(doc, new_data, new_data2) if new_data2.empty: new_data2 =
DataFrame(columns=('嚴重程度', '弱點名稱', '弱點描述'))
pandas.core.frame.DataFrame
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import itertools import numpy as np import pandas as pd class SubnetOversizeException(Exception): '''An :py:exc:`Exception` to be raised when the sub-nets are too big to be efficiently linked. If you get this then either reduce your search range or increase :py:attr:`Linker.MAX_SUB_NET_SIZE`''' pass class UnknownLinkingError(Exception): pass def points_to_arr(level): """ Convert a list of Points to an ndarray of coordinates """ return np.array([p.pos for p in level]) def points_from_arr(coords, frame_no, extra_data=None): """ Convert an ndarray of coordinates to a list of PointFindLink """ if extra_data is None: return [Point(frame_no, pos) for pos in coords] else: return [Point(frame_no, pos, extra_data={key: extra_data[key][i] for key in extra_data}) for i, pos in enumerate(coords)] def coords_from_df(df, pos_columns, t_column): """A generator that returns ndarrays of coords from a DataFrame. Assumes t_column to be of integer type. Float-typed integers are also accepted. Empty frames will be returned as empty arrays of shape (0, ndim).""" ndim = len(pos_columns) grouped = iter(df.groupby(t_column)) # groupby sorts by default # get the first frame to learn first frame number cur_frame, frame = next(grouped) cur_frame = int(cur_frame) yield cur_frame, frame[pos_columns].values cur_frame += 1 for frame_no, frame in grouped: frame_no = int(frame_no) while cur_frame < frame_no: yield cur_frame, np.empty((0, ndim)) cur_frame += 1 yield cur_frame, frame[pos_columns].values cur_frame += 1 def coords_from_df_iter(df_iter, pos_columns, t_column): """A generator that returns ndarrays of coords from a generator of DataFrames. Also returns the first value of the t_column.""" ndim = len(pos_columns) for df in df_iter: if len(df) == 0: yield None, np.empty((0, ndim)) else: yield df[t_column].iloc[0], df[pos_columns].values def verify_integrity(df): """Verifies that particle labels are unique for each frame, and that every particle is labeled.""" is_labeled = df['particle'] >= 0 if not np.all(is_labeled): frames = df.loc[~is_labeled, 'frame'].unique() raise UnknownLinkingError("Some particles were not labeled " "in frames {}.".format(frames)) grouped = df.groupby('frame')['particle'] try: not_equal = grouped.nunique() != grouped.count() except AttributeError: # for older pandas versions not_equal = grouped.apply(lambda x: len(
pd.unique(x)
pandas.unique
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ### Read data from strip theory reference dataset ### Folder must contain List*.txt and Data*.*.bin files from array import array import pandas as pd import matplotlib.pyplot as mpl import os.path as path # to check either .csv file exists or not on disk Ncfd = 2 # No. of CFD strips; same as the number of modes = 1 or 2 plot_data = True # plot data data = {'nc':[],'md':[],'U':[],'d':[],'m':[],'L':[],'H':[],'Nt':[],'Dt':[],'tf':[],'ymax':[],'time':[],'y/d':[]} # dict object to create dataframe # open List*.txt file ftxt = open("List%d.txt" % Ncfd, "r") line = ftxt.readline() print(line[:-1]) for n in range(1000): line = ftxt.readline() if len(line) == 0: break print(line[:-1]) tmp = line.split() nc = int(tmp[0]) # case number in List file md = int(tmp[1]) # mode number U = float(tmp[2]) # wind/air velocity [m/s] d = float(tmp[3]) # cable diameter [m] m = float(tmp[4]) # cable mass per unit length [kg/m] L = float(tmp[5]) # cable length [m] H = float(tmp[6]) # cable tension [N] Nt = int(tmp[7]) # number of timesteps Dt = float(tmp[8]) # timestep length [s] tf = float(tmp[9]) # total time [s] ymax = float(tmp[10]) # max(y) value [m] filename = tmp[11] # = "Data%d.%d.bin" % (Ncfd, nc) # data file name # open Data*.*.bin file fdat=open(filename,"rb") float_array = array('d') float_array.fromfile(fdat, Nt) time = float_array.tolist() Fx = [[] for ncfd in range(Ncfd)] Fy = [[] for ncfd in range(Ncfd)] y = [[] for ncfd in range(Ncfd)] for ncfd in range(Ncfd): float_array = array('d') float_array.fromfile(fdat, Nt) Fx[ncfd] = float_array.tolist() float_array = array('d') float_array.fromfile(fdat, Nt) Fy[ncfd] = float_array.tolist() float_array = array('d') float_array.fromfile(fdat, Nt) y[ncfd] = float_array.tolist() fdat.close() # plot data if plot_data: fig3, axs = mpl.subplots(1) for ncfd in range(Ncfd): axs.plot(time, [y[ncfd][nt] / d for nt in range(Nt)]) for i,j in zip(time, [y[ncfd][nt] / d for nt in range(Nt)]): # appending required data into dict data['time'].append(i) data['y/d'].append(j) data['nc'].append(tmp[0]) data['md'].append(tmp[1]) data['U'].append(tmp[2]) data['d'].append(tmp[3]) data['m'].append(tmp[4]) data['L'].append(tmp[5]) data['H'].append(tmp[6]) data['Nt'].append(tmp[7]) data['Dt'].append(tmp[8]) data['tf'].append(tmp[9]) data['ymax'].append(tmp[10]) # can plot Fx and Fy in the same way axs.set_xlabel('time [s]') axs.set_ylabel('y / d') axs.set_title('md = %d, H = %gN, U = %gm/s' % (md, H, U)) mpl.show() ftxt.close()
pd.DataFrame(data)
pandas.DataFrame
# # Copyright 2018 Analytics Zoo Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pytest import numpy as np from test.zoo.pipeline.utils.test_utils import ZooTestCase from zoo.automl.feature.time_sequence import TimeSequenceFeatureTransformer import tensorflow as tf import pandas as pd from zoo.zouwu.model.forecast import LSTMForecaster from zoo.zouwu.model.forecast import MTNetForecaster class TestZouwuModelForecast(ZooTestCase): def setup_method(self, method): tf.keras.backend.clear_session() # super(TestZouwuModelForecast, self).setup_method(method) self.ft = TimeSequenceFeatureTransformer() self.create_data() def teardown_method(self, method): pass def create_data(self): def gen_train_sample(data, past_seq_len, future_seq_len): data = pd.DataFrame(data) x, y = self.ft._roll_train(data, past_seq_len=past_seq_len, future_seq_len=future_seq_len ) return x, y def gen_test_sample(data, past_seq_len): test_data = pd.DataFrame(data) x = self.ft._roll_test(test_data, past_seq_len=past_seq_len) return x self.long_num = 6 self.time_step = 2 look_back = (self.long_num + 1) * self.time_step look_forward = 1 self.x_train, self.y_train = gen_train_sample(data=np.random.randn( 64, 4), past_seq_len=look_back, future_seq_len=look_forward) self.x_val, self.y_val = gen_train_sample(data=np.random.randn(16, 4), past_seq_len=look_back, future_seq_len=look_forward) self.x_test = gen_test_sample(data=np.random.randn(16, 4), past_seq_len=look_back) def test_forecast_lstm(self): # TODO hacking to fix a bug model = LSTMForecaster(target_dim=1, feature_dim=self.x_train.shape[-1]) model.fit(self.x_train, self.y_train, validation_data=(self.x_val, self.y_val), batch_size=8, distributed=False) model.evaluate(self.x_val, self.y_val) model.predict(self.x_test) def test_forecast_mtnet(self): # TODO hacking to fix a bug model = MTNetForecaster(target_dim=1, feature_dim=self.x_train.shape[-1], long_series_num=self.long_num, series_length=self.time_step ) x_train_long, x_train_short = model.preprocess_input(self.x_train) x_val_long, x_val_short = model.preprocess_input(self.x_val) x_test_long, x_test_short = model.preprocess_input(self.x_test) model.fit([x_train_long, x_train_short], self.y_train, validation_data=([x_val_long, x_val_short], self.y_val), batch_size=32, distributed=False) model.evaluate([x_val_long, x_val_short], self.y_val) model.predict([x_test_long, x_test_short]) def test_forecast_tcmf(self): from zoo.zouwu.model.forecast import TCMFForecaster import tempfile model = TCMFForecaster(max_y_iterations=1, init_FX_epoch=1, max_FX_epoch=1, max_TCN_epoch=1, alt_iters=2) horizon = np.random.randint(1, 50) # construct data id = np.arange(300) data = np.random.rand(300, 480) input = dict({'data': data}) with self.assertRaises(Exception) as context: model.fit(input) self.assertTrue("key `y` doesn't exist in x" in str(context.exception)) input = dict({'id': id, 'y': data}) with self.assertRaises(Exception) as context: model.is_distributed() self.assertTrue('You should run fit before calling is_distributed()' in str(context.exception)) model.fit(input) assert not model.is_distributed() with self.assertRaises(Exception) as context: model.fit(input) self.assertTrue('This model has already been fully trained' in str(context.exception)) with self.assertRaises(Exception) as context: model.fit(input, incremental=True) self.assertTrue('NotImplementedError' in context.exception.__class__.__name__) with tempfile.TemporaryDirectory() as tempdirname: model.save(tempdirname) loaded_model = TCMFForecaster.load(tempdirname, distributed=False) yhat = model.predict(x=None, horizon=horizon) yhat_loaded = loaded_model.predict(x=None, horizon=horizon) yhat_id = yhat_loaded["id"] assert (yhat_id == id).all() yhat = yhat["prediction"] yhat_loaded = yhat_loaded["prediction"] assert yhat.shape == (300, horizon) assert (yhat == yhat_loaded).all() target_value = np.random.rand(300, horizon) target_value = dict({"y": target_value}) model.evaluate(x=None, target_value=target_value, metric=['mse']) def test_forecast_tcmf_without_id(self): from zoo.zouwu.model.forecast import TCMFForecaster import tempfile model = TCMFForecaster(max_y_iterations=1, init_FX_epoch=1, max_FX_epoch=1, max_TCN_epoch=1, alt_iters=2) horizon = np.random.randint(1, 50) # construct data id = np.arange(200) data = np.random.rand(300, 480) input = dict({'y': "abc"}) with self.assertRaises(Exception) as context: model.fit(input) self.assertTrue("the value of y should be an ndarray" in str(context.exception)) input = dict({'id': id, 'y': data}) with self.assertRaises(Exception) as context: model.fit(input) self.assertTrue("the length of the id array should be equal to the number of" in str(context.exception)) input = dict({'y': data}) model.fit(input) assert not model.is_distributed() with self.assertRaises(Exception) as context: model.fit(input) self.assertTrue('This model has already been fully trained' in str(context.exception)) with tempfile.TemporaryDirectory() as tempdirname: model.save(tempdirname) loaded_model = TCMFForecaster.load(tempdirname, distributed=False) yhat = model.predict(x=None, horizon=horizon) yhat_loaded = loaded_model.predict(x=None, horizon=horizon) assert "id" not in yhat_loaded yhat = yhat["prediction"] yhat_loaded = yhat_loaded["prediction"] assert yhat.shape == (300, horizon) assert (yhat == yhat_loaded).all() target_value = np.random.rand(300, horizon) target_value_fake = dict({"data": target_value}) with self.assertRaises(Exception) as context: model.evaluate(x=None, target_value=target_value_fake, metric=['mse']) self.assertTrue("key y doesn't exist in y" in str(context.exception)) target_value = dict({"y": target_value}) model.evaluate(x=None, target_value=target_value, metric=['mse']) def test_forecast_tcmf_xshards(self): from zoo.zouwu.model.forecast import TCMFForecaster from zoo.orca import OrcaContext import zoo.orca.data.pandas import tempfile OrcaContext.pandas_read_backend = "pandas" def preprocessing(df, id_name, y_name): id = df.index data = df.to_numpy() result = dict({id_name: id, y_name: data}) return result def postprocessing(pred_results, output_dt_col_name): id_arr = pred_results["id"] pred_results = pred_results["prediction"] pred_results = np.concatenate((np.expand_dims(id_arr, axis=1), pred_results), axis=1) final_df =
pd.DataFrame(pred_results, columns=["id"] + output_dt_col_name)
pandas.DataFrame
import numpy as np import pandas as pd from matplotlib import * # .........................Series.......................# x1 = np.array([1, 2, 3, 4]) s = pd.Series(x1, index=[1, 2, 3, 4]) print(s) # .......................DataFrame......................# x2 = np.array([1, 2, 3, 4, 5, 6]) s = pd.DataFrame(x2) print(s) x3 = np.array([['Alex', 10], ['Nishit', 21], ['Aman', 22]]) s = pd.DataFrame(x3, columns=['Name', 'Age']) print(s) data = {'Name': ['Tom', 'Jack', 'Steve', 'Ricky'], 'Age': [28, 34, 29, 42]} df = pd.DataFrame(data, index=['rank1', 'rank2', 'rank3', 'rank4']) print(df) data = [{'a': 1, 'b': 2}, {'a': 3, 'b': 4, 'c': 5}] df = pd.DataFrame(data) print(df) d = {'one': pd.Series([1, 2, 3], index=['a', 'b', 'c']), 'two': pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])} df = pd.DataFrame(d) print(df) # ....Adding New column......# data = {'one': pd.Series([1, 2, 3, 4], index=[1, 2, 3, 4]), 'two': pd.Series([1, 2, 3], index=[1, 2, 3])} df = pd.DataFrame(data) print(df) df['three'] = pd.Series([1, 2], index=[1, 2]) print(df) # ......Deleting a column......# data = {'one': pd.Series([1, 2, 3, 4], index=[1, 2, 3, 4]), 'two': pd.Series([1, 2, 3], index=[1, 2, 3]), 'three': pd.Series([1, 1], index=[1, 2]) } df = pd.DataFrame(data) print(df) del df['one'] print(df) df.pop('two') print(df) # ......Selecting a particular Row............# data = {'one': pd.Series([1, 2, 3, 4], index=[1, 2, 3, 4]), 'two': pd.Series([1, 2, 3], index=[1, 2, 3]), 'three': pd.Series([1, 1], index=[1, 2]) } df = pd.DataFrame(data) print(df.loc[2]) print(df[1:4]) # .........Addition of Row.................# df = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b']) df2 = pd.DataFrame([[5, 6], [7, 8]], columns=['a', 'b']) df = df.append(df2) print(df.head()) # ........Deleting a Row..................# df = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b']) df2 = pd.DataFrame([[5, 6], [7, 8]], columns=['a', 'b']) df = df.append(df2) # Drop rows with label 0 df = df.drop(0) print(df) # ..........................Functions.....................................# d = {'Name': pd.Series(['Tom', 'James', 'Ricky', 'Vin', 'Steve', 'Smith', 'Jack']), 'Age': pd.Series([25, 26, 25, 23, 30, 29, 23]), 'Rating': pd.Series([4.23, 3.24, 3.98, 2.56, 3.20, 4.6, 3.8])} df = pd.DataFrame(d) print("The transpose of the data series is:") print(df.T) print(df.shape) print(df.size) print(df.values) # .........................Statistics.......................................# d = {'Name': pd.Series(['Tom', 'James', 'Ricky', 'Vin', 'Steve', 'Smith', 'Jack', 'Lee', 'David', 'Gasper', 'Betina', 'Andres']), 'Age': pd.Series([25, 26, 25, 23, 30, 29, 23, 34, 40, 30, 51, 46]), 'Rating': pd.Series([4.23, 3.24, 3.98, 2.56, 3.20, 4.6, 3.8, 3.78, 2.98, 4.80, 4.10, 3.65]) } df =
pd.DataFrame(d)
pandas.DataFrame
import pandas as pd import warnings import numpy as np from matplotlib import pyplot as plt warnings.simplefilter("ignore") pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) online = False # if True: download xml files from github URL # be careful: online version will not work if requirements from requirements.txt are not satisfied! if online: url_link_302_19 = 'https://github.com/Hidancloud/risk_management_debt_forecast/' \ 'blob/main/data_folder/302-19.xlsx?raw=true' url_link_01_13_F_Debt_sme_subj = 'https://github.com/Hidancloud/risk_management_debt_forecast/' \ 'blob/main/data_folder/01_13_F_Debt_sme_subj.xlsx?raw=true' url_link_Interpolationexp2 = 'https://github.com/Hidancloud/risk_management_debt_forecast/' \ 'blob/main/data_folder/Interpolationexp2.xlsx?raw=true' def extract_data_before_2019y(): """ Extracts data from the 302-19.xlsx file :return: pandas dataframe with columns 'Дата', 'Задолженность', 'Просроченная задолженность' """ if online: return pd.read_excel(url_link_302_19, usecols=[0, 5, 11], skiprows=list(range(7)), names=['Дата', 'Задолженность', 'Просроченная задолженность']) return pd.read_excel('data_folder/302-19.xlsx', usecols=[0, 5, 11], skiprows=list(range(7)), names=['Дата', 'Задолженность', 'Просроченная задолженность']) def extract_data_after_2018(): """ Extracts data from the 01_13_F_Debt_sme_subj.xlsx file :return: pandas dataframe with columns 'Дата', 'Задолженность', 'Просроченная задолженность' """ # read Задолженность from the page МСП Итого # .T to make rows for entities and columns for properties if online: after_19y_debt = pd.read_excel(url_link_01_13_F_Debt_sme_subj, skiprows=1, nrows=1, sheet_name='МСП Итого ').T else: after_19y_debt = pd.read_excel('data_folder/01_13_F_Debt_sme_subj.xlsx', skiprows=1, nrows=1, sheet_name='МСП Итого ').T after_19y_debt.reset_index(inplace=True) # remove an odd row after transpose after_19y_debt.drop(labels=0, axis=0, inplace=True) after_19y_debt.columns = before_19y.columns[:2] # change types of the columns for convenience after_19y_debt[after_19y_debt.columns[0]] = pd.to_datetime(after_19y_debt[after_19y_debt.columns[0]]) after_19y_debt = after_19y_debt.astype({after_19y_debt.columns[1]: 'int32'}, copy=False) # read Просроченная задолженность from the page МСП в т.ч. просроч. if online: after_19y_prosro4eno = pd.read_excel(url_link_01_13_F_Debt_sme_subj, skiprows=2, nrows=0, sheet_name='МСП в т.ч. просроч.').T else: after_19y_prosro4eno = pd.read_excel('data_folder/01_13_F_Debt_sme_subj.xlsx', skiprows=2, nrows=0, sheet_name='МСП в т.ч. просроч.').T after_19y_prosro4eno.reset_index(inplace=True) # remove an odd row after the transpose after_19y_prosro4eno.drop(labels=0, axis=0, inplace=True) # name the column after_19y_prosro4eno.columns = ['Просроченная задолженность'] # concatenate Задолженность and Просроченная задолженность in one table and return it return pd.concat([after_19y_debt, after_19y_prosro4eno], axis=1) def extract_macro_parameters(): if online: return pd.read_excel(url_link_Interpolationexp2, index_col=0, parse_dates=True) return pd.read_excel('data_folder/Interpolationexp2.xlsx', index_col=0, parse_dates=True) def transform_to_quarters_format(custom_table, date_column_name='Дата', already_3month_correct_step=False): """ Transforms table from month format to quarters taking the last month element for each quarter :param custom_table: Pandas dataframe :param date_column_name: name of a column with dates :param already_3month_correct_step: if the time step between custom_table rows is a 3 month instead of month and correspond to 3, 6, 9, 12 months :return: table in correct quarter format with averaged values in columns """ if not already_3month_correct_step: # quarter of the first month in the data first_quarter = (custom_table[date_column_name].dt.month[0] - 1) // 3 + 1 # creates array [1, 1, 1, 2, 2, 2, 3, 3, 3, ...], so i-th month will be from corresponding quarter # in case when each row corresponds to a month correct_quarters = np.ones((custom_table.shape[0] // 3 + 3, 3), dtype=int).cumsum(axis=0).flatten() # assumption: the data is not missing a single month # then quarters are from correct_quarters continuous part custom_table['Квартал'] = correct_quarters[3*(first_quarter-1): custom_table.shape[0] + 3*(first_quarter-1)] else: # in case when each row corresponds to either 3, 6, 9 or 12 month (file with macro data) debt_table_quarters = custom_table.copy() debt_table_quarters.reset_index(inplace=True) debt_table_quarters['Квартал'] = custom_table.index.month // 3 return debt_table_quarters # take the last value (last month value) inside each quarter and assign those values to the resulting table group = custom_table.groupby('Квартал') debt_table_quaters_features = dict() for feature in custom_table.columns: if feature != date_column_name and feature != 'Квартал': debt_table_quaters_features[feature] = group[feature].nth(2) debt_table_quarters = pd.concat(debt_table_quaters_features, axis=1) debt_table_quarters.reset_index(inplace=True) return debt_table_quarters if __name__ == '__main__': # read the files before_19y = extract_data_before_2019y() after_19y = extract_data_after_2018() new_features = extract_macro_parameters() # concatenates old and new data debt_table_total = pd.concat([before_19y, after_19y]) debt_table_total.reset_index(inplace=True) debt_table_total.drop('index', 1, inplace=True) debt_table_quarters_format = transform_to_quarters_format(debt_table_total, date_column_name='Дата') debt_table_quarters_format['Уровень просроченной задолженности'] = \ debt_table_quarters_format['Просроченная задолженность'] / debt_table_quarters_format['Задолженность'] # plot data before quarters averaging debt_table_total.plot(x='Дата', y=['Задолженность', 'Просроченная задолженность']) plt.show() # ... and after debt_table_quarters_format.plot(x=['Квартал', 'Квартал'], y=['Задолженность', 'Просроченная задолженность'], kind='scatter') plt.show() # add macro features: interpolated_new_features = new_features.interpolate(method='time', limit_direction='both', downcast='infer') interpolated_new_features_quarter_format = \ transform_to_quarters_format(interpolated_new_features, date_column_name='Отчетная дата (по кварталам)', already_3month_correct_step=True) all_features =
pd.concat([debt_table_quarters_format, interpolated_new_features_quarter_format], axis=1)
pandas.concat
# AUTOGENERATED! DO NOT EDIT! File to edit: notebooks/01_data_provider.ipynb (unless otherwise specified). __all__ = ['DataProvider', 'get_efficiently'] # Cell from bs4 import BeautifulSoup as bs import numpy as np import os import pandas as pd from fastcore.foundation import patch # Cell class DataProvider(): def __init__(self, data_folder_path): self.data_folder_path = data_folder_path self.raw = os.path.join(data_folder_path, 'raw') self.external = os.path.join(data_folder_path, 'external') self.interim = os.path.join(data_folder_path, 'interim') self.processed = os.path.join(data_folder_path, 'processed') # Checking if folder paths exist assert os.path.isdir(self.external), "External data folder not found." assert os.path.isdir(self.raw), "Raw data folder not found." assert os.path.isdir(self.interim), "Interim data folder not found." assert os.path.isdir(self.processed), "Processed data folder not found." # Phone screening files self.phonescreening_data_path = os.path.join(self.raw, "phonescreening.csv") self.phone_codebook_path = os.path.join(self.external, "phone_codebook.html") # Basic assessment files self.ba_codebook_path = os.path.join(self.external, "ba_codebook.html") self.ba_data_path = os.path.join(self.raw, "ba.csv") self.b07_participants_path = os.path.join(self.external, "b7_participants.xlsx") # Movisense data self.mov_berlin_path = os.path.join(self.raw, "mov_data_b.csv") self.mov_dresden_path = os.path.join(self.raw, "mov_data_d.csv") self.mov_mannheim_path = os.path.join(self.raw, "mov_data_m.csv") self.mov_berlin_starting_dates_path = os.path.join(self.raw, "starting_dates_b.html") self.mov_dresden_starting_dates_path = os.path.join(self.raw, "starting_dates_d.html") self.mov_mannheim_starting_dates_path = os.path.join(self.raw, "starting_dates_m.html") self.alcohol_per_drink_path = os.path.join(self.external,'alcohol_per_drink.csv') #export def get_efficiently(func): """ This decorator wraps around functions that get data and handles data storage. If the output from the function hasn't been stored yet, it stores it in "[path_to_interim]/[function_name_without_get].parquet" If the output from the function has been stored already, it loads the stored file instead of running the function (unless update is specified as True) """ def w(*args, update = False, columns = None, path = None, **kw): _self = args[0] # Getting self to grab interim path from DataProvider var_name = func.__name__.replace('__get_','').replace('get_','') file_path = os.path.join(_self.interim, "%s.parquet"%var_name) if os.path.exists(file_path) and (update == False): result = pd.read_parquet(file_path, columns = columns) else: print("Preparing %s"%var_name) result = func(_self) result.to_parquet(file_path) return result w.__wrapped__ = func # Specifying the wrapped function for inspection w.__doc__ = func.__doc__ w.__name__ = func.__name__ w.__annotations__ = {'cls':DataProvider, 'as_prop':False} # Adding parameters to make this work with @patch return w # Cell @patch def store_interim(self:DataProvider, df, filename): path = os.path.join(self.interim,"%s.parquet"%filename) df.to_parquet(path) # Cell @patch def load_interim(self:DataProvider, filename): return pd.read_parquet(os.path.join(self.interim,"%s.parquet"%filename)) # Cell @patch @get_efficiently def get_phone_codebook(self:DataProvider): tables = pd.read_html(open(self.phone_codebook_path,'r').read()) df = tables[1] # Note that str.contains fills NaN values with nan, which can lead to strange results during filtering df = df[df.LabelHinweistext.str.contains('Fragebogen:',na=False)==False] df = df.set_index('#') # Parsing variable name df['variable'] = df["Variable / Feldname"].apply(lambda x: x.split(' ')[0]) # Parsing condition under which variable is displayed df['condition'] = df["Variable / Feldname"].apply(lambda x: ' '.join(x.split(' ')[1:]).strip() if len(x.split(' '))>1 else '') df['condition'] = df.condition.apply(lambda x: x.replace('Zeige das Feld nur wenn: ','')) # Parsing labels for numerical data df['labels'] = np.nan labels = tables[2:-1] try: labels = [dict(zip(l[0],l[1])) for l in labels] except: display(table) searchfor = ["radio","dropdown","yesno","checkbox"] with_table = df['Feld Attribute (Feld-Typ, Prüfung, Auswahlen, Verzweigungslogik, Berechnungen, usw.)'].str.contains('|'.join(searchfor)) df.loc[with_table,'labels'] = labels df = df.astype(str) return df # Cell @patch def determine_phone_b07(self:DataProvider, df): # Some initial fixes df.loc[df.center=='d','screen_caller'] = df.loc[df.center=='d','screen_caller'].str.lower().str.strip().replace('leo','<NAME>').replace('<NAME>','<NAME>').replace('<NAME>','<NAME>').replace('<NAME>','<NAME>').replace('dorothee','<NAME>') # Cleaning screener list dd_screeners = df[(df.center=='d')&(df.screen_caller.isna()==False)].screen_caller.unique() def clean_screeners(dd_screeners): dd_screeners = [y for x in dd_screeners for y in x.split('+')] dd_screeners = [y for x in dd_screeners for y in x.split(',')] dd_screeners = [y for x in dd_screeners for y in x.split('und')] dd_screeners = [y.replace('(15.02.21)','') for x in dd_screeners for y in x.split('/')] dd_screeners = [y.replace(')','').strip().lower() for x in dd_screeners for y in x.split('(')] dd_screeners = sorted(list(set(dd_screeners))) return dd_screeners dd_screeners = clean_screeners(dd_screeners) b07_screeners = ['<NAME>','<NAME>','<NAME>','<NAME>','borchardt','<NAME>','<NAME>','<NAME>','<NAME>'] s01_screeners = ['<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', 'alice','<NAME> <NAME>', '<NAME>', '22.10.2021', 'sascha', '03.08.2021', '<NAME>', '<NAME>', '04.08.2021', '<NAME>', 'sacsha', '09.08.2021', 'ml', 'charlotte', '<NAME>', 'shereen', 'test', "<NAME>", 'benedikt'] known_dd_screeners = list(b07_screeners+s01_screeners) dd_screeners = df[(df.center=='d')&(df.screen_caller.isna()==False)].screen_caller.unique() # Checking if all Dresden phone screeners are accounted for assert df[(df.center=='d')&(df.screen_caller)].screen_caller.str.contains('|'.join(known_dd_screeners)).mean()==1, "Unknown Dresden phone screener: %s"%', '.join(set(clean_screeners(dd_screeners))-set(known_dd_screeners)) # In general, if a screener from a project was involved, it was screened for that project df['screened_for_b07'] = (df.center=='d') & (df.screen_caller.str.contains('|'.join(b07_screeners))) df['screened_for_s01'] = (df.center!='d') | (df.screen_caller.str.contains('|'.join(s01_screeners))) # We also exclude participants screened for C02 in Berlin df.loc[(df.screen_purpose == 4) & (df.center=='b'), 'screened_for_s01'] = False # Additionally, we also set it to true if it was specifically set df.loc[df.screen_site_dd == 1, 'screened_for_s01'] = True df.loc[df.screen_site_dd == 3, 'screened_for_s01'] = True df.loc[df.screen_site_dd == 2, 'screened_for_b07'] = True df.loc[df.screen_site_dd == 3, 'screened_for_b07'] = True return df # Cell @patch def check_participant_id(self:DataProvider,x): '''This function checks whether a participant ID is numerical and lower than 20000.''' if str(x) == x: if x.isnumeric(): x = float(x) else: return False if x > 20000: return False return True # Cell @patch def test_check_participant_id(self:DataProvider): failed = dp.check_participant_id('test10') == False # Example of a bad participant ID passed = dp.check_participant_id('100') == True # Example of a good participant ID return failed and passed # Cell @patch def set_dtypes(self:DataProvider, data, codebook): def number_or_nan(x): try: float(x) return x except: return np.nan '''This function automatically adjust data types of redcap data based on the redcap codebooks''' # Parsing type codebook['type'] = codebook["Feld Attribute (Feld-Typ, Prüfung, Auswahlen, Verzweigungslogik, Berechnungen, usw.)"].apply(lambda x: x.split(',')[0]) # Descriptives (not in data) desc_columns = list(codebook[codebook.type.str.contains('descriptive')].variable) # Datetime dt_columns = codebook[(codebook.type.isin(['text (datetime_dmy)','text (date_dmy)']))].variable dt_columns = list(set(data.columns).intersection(dt_columns)) # Numerical num_columns = [] num_columns += list(codebook[codebook.type.str.contains('calc')].variable) num_columns += list(codebook[codebook.type.str.contains('checkbox')].variable) num_columns += list(codebook[codebook.type.str.contains('radio')].variable) num_columns += list(codebook[codebook.type.str.contains('text \(number')].variable) num_columns += list(codebook[codebook.type.str.contains('yesno')].variable) num_columns += list(codebook[codebook.type.str.contains('dropdown')].variable) num_columns += list(codebook[codebook.type.str.contains('slider')].variable) num_columns = list(set(data.columns).intersection(num_columns)) # Text text_columns = [] text_columns += list(codebook[(codebook.type.str.contains('text')) & (~codebook.type.str.contains('date_dmy|datetime_dmy'))].variable) text_columns += list(codebook[(codebook.type.str.contains('notes'))].variable) text_columns += list(codebook[(codebook.type.str.contains('file'))].variable) text_columns = list(set(data.columns).intersection(text_columns)) assert len(set(num_columns).intersection(set(dt_columns)))==0, set(num_columns).intersection(set(dt_columns)) assert len(set(text_columns).intersection(set(dt_columns)))==0, set(text_columns).intersection(set(dt_columns)) for c in num_columns: data[c].replace("A 'MySQL server has gone away' error was detected. It is possible that there was an actual database issue, but it is more likely that REDCap detected this request as a duplicate and killed it.", np.nan, inplace = True) try: data[c] = data[c].astype(float) except: data[c] = data[c].apply(number_or_nan).astype(float) print("Values with wrong dtype in %s"%c) data[text_columns] = data[text_columns].astype(str).replace('nan',np.nan) for c in dt_columns: data[c] = pd.to_datetime(data[c]) return data # Cell @patch @get_efficiently def get_phone_data(self:DataProvider): df = pd.read_csv(self.phonescreening_data_path, na_values = ["A 'MySQL server has gone away' error was detected. It is possible that there was an actual database issue, but it is more likely that REDCap detected this request as a duplicate and killed it."] ) remove = ['050571', '307493', '345678', '715736', 'Ihloff', 'test', 'test002', 'test003', 'test004', 'test005', 'test01', 'test02', 'test03', 'test0722', 'test1', 'test34', 'test999', 'test2020', 'test20201', 'test345345', 'testt', 'test_10', 'test_11_26', 'test_neu', 'xx956','050262', '050335', '050402', '050416', '051005', '294932', '891752080', '898922719', '898922899', '917702419', '01627712983', 'meow', 'test0022', 'test246', 'test5647', 'test22222', 'test41514', 'testtt', 'test_057', 'tets','898923271', 'test001', 'test006', 'test007', 'test008', 'test11', 'test_23_12', 'test_n','50744', 'test0001a', 'test004', 'test03', 'tets'] df = df[~df.participant_id.astype(str).isin(remove)] bad_ids = df[~df.participant_id.apply(self.check_participant_id)].participant_id.unique() assert len(bad_ids)==0, "Bad participant IDs (should be added to remove): %s"%', '.join(["'%s'"%b for b in bad_ids]) self.get_phone_codebook() df = self.set_dtypes(df, self.get_phone_codebook()) df['participant_id'] = df.participant_id.astype(int) df['center'] = df.screen_site.replace({1:'b',2:'d',3:'m'}) df['screen_date'] = pd.to_datetime(df['screen_date'], errors = 'coerce') #display(df[df.screen_caller.isna()]) df = self.determine_phone_b07(df) return df # Cell @patch @get_efficiently def get_ba_codebook(self:DataProvider): tables = pd.read_html(open(self.ba_codebook_path,"r").read()) df = tables[1] # Note that str.contains fills NaN values with nan, which can lead to strange results during filtering df = df[df.LabelHinweistext.str.contains('Fragebogen:',na=False)==False] df = df.set_index('#') # Parsing variable name df['variable'] = df["Variable / Feldname"].apply(lambda x: x.split(' ')[0]) # Parsing condition under which variable is displayed df['condition'] = df["Variable / Feldname"].apply(lambda x: ' '.join(x.split(' ')[1:]).strip() if len(x.split(' '))>1 else '') df['condition'] = df.condition.apply(lambda x: x.replace('Zeige das Feld nur wenn: ','')) # Parsing labels for numerical data df['labels'] = np.nan labels = tables[2:-1] try: labels = [dict(zip(l[0],l[1])) for l in labels] except: display(table) searchfor = ["radio","dropdown","yesno","checkbox"] with_table = df['Feld Attribute (Feld-Typ, Prüfung, Auswahlen, Verzweigungslogik, Berechnungen, usw.)'].str.contains('|'.join(searchfor)) df.loc[with_table,'labels'] = labels df = df.astype(str) return df # Cell @patch @get_efficiently def get_ba_data(self:DataProvider): '''This function reads in baseline data from redcap, filters out pilot data, and creates movisens IDs.''' df = pd.read_csv(self.ba_data_path) df['center'] = df.groupby('participant_id').bx_center.transform(lambda x: x.ffill().bfill()) df['center'] = df.center.replace({1:'b',2:'d',3:'m'}) # Creating new movisense IDs (adding center prefix to movisense IDs) for old_id in ['bx_movisens','bx_movisens_old','bx_movisens_old_2']: new_id = old_id.replace('bx_','').replace('movisens','mov_id') df[new_id] = df.groupby('participant_id')[old_id].transform(lambda x: x.ffill().bfill()) df[new_id] = df.center + df[new_id].astype('str').str.strip('0').str.strip('.').apply(lambda x: x.zfill(3)) df[new_id].fillna('nan',inplace = True) df.loc[df[new_id].str.contains('nan'),new_id] = np.nan # Removing test participants remove = ['050744', 'hdfghadgfh', 'LindaEngel', 'test', 'Test001', 'Test001a', 'test0011', 'test0012', 'test0013', 'test0014', 'test0015', 'test002', 'test00229', 'test007', 'test01', 'test012', 'test013', 'test1', 'test2', 'test4', 'test12', 'test999', 'test2021', 'test345345', 'testneu', 'testtest', 'test_0720', 'test_10', 'test_GA', 'Test_JH','test0016','891752080', 'pipingTest', 'test0001', 'test00012', 'test0012a', 'test0015a', 'test0017', 'test10', 'test20212', 'testJohn01', 'test_00213', 'test_00233', 'test_00271', 'test_003', 'test_004', 'test_11_26', 'Test_MS','898922899', 'tesst', 'test0002', 'test0908', 'test092384750398475', 'test43', 'test123', 'test1233', 'test3425', 'test123456', 'test1234567', 'testfu3', 'test_888', 'test_999', 'test_98375983745', 'Test_Übung','050335', 'test003', 'test02', 'test111', 'test1111', 'test1234','test0000', 'test_CH','50744', 'test0001a', 'test004', 'test03', 'tets'] df = df[~df.participant_id.astype(str).isin(remove)] # Checking participant ids (to find new test participants) bad_ids = df[~df.participant_id.apply(self.check_participant_id)].participant_id.unique() assert len(bad_ids)==0, "Bad participant IDs (should be added to remove): %s"%', '.join(["'%s'"%b for b in bad_ids]) # labeling B07 participant b07_pps = pd.read_excel(self.b07_participants_path)['Participant ID'].astype(str) df['is_b07'] = False df.loc[df.participant_id.isin(b07_pps),'is_b07'] = True # Setting dtypes based on codebook df = self.set_dtypes(df, self.get_ba_codebook()) # Creating convenience variables df['is_female'] = df.screen_gender.replace({1:0,2:1,3:np.nan}) # Filling in missings from baseline df['is_female'].fillna(df.bx_sozio_gender.replace({1:0,2:1,3:np.nan}), inplace = True) df['is_female'] = df.groupby('participant_id')['is_female'].transform(lambda x: x.ffill().bfill()) df['is_female'] = df['is_female'].astype(float) return df # Cell @patch def get_baseline_drinking_data(self:DataProvider): # Getting relevant data ba = self.get_ba_data(columns = ['participant_id','redcap_event_name','mov_id','bx_qf_alc_01','bx_qf_alc_02','bx_qf1_sum']).query("redcap_event_name=='erhebungszeitpunkt_arm_1'") # Correct one variable for one participant. This participant reported drinking per three months but the data as logged as drinking per week ba.loc[(ba.participant_id=='11303') & (ba.bx_qf_alc_02==2),'bx_qf_alc_02'] = 1 ba['drinking_days_last_three_month'] = ba['bx_qf_alc_01'].astype(float) * ba['bx_qf_alc_02'].replace({2:12}) ba['drinks_per_drinking_day_last_three_month'] = ba['bx_qf1_sum'] ba['drinks_per_day_last_three_month'] = (ba['drinking_days_last_three_month'] * ba['bx_qf1_sum'])/90 standard_last_three = ba[~ba.drinks_per_day_last_three_month.isnull()][['mov_id','drinks_per_day_last_three_month','drinks_per_drinking_day_last_three_month','drinking_days_last_three_month']] standard_last_three.columns = ['participant','last_three_month','drinks_per_drinking_day_last_three_month','drinking_days_last_three_month'] standard_last_three = standard_last_three.groupby('participant').first() return standard_last_three # Cell @patch def get_duplicate_mov_ids(self:DataProvider): '''This function creates a dictionary mapping old to new movisens IDs.''' df = self.get_ba_data() replace_dict_1 = dict(zip(df.mov_id_old, df.mov_id)) replace_dict_2 = dict(zip(df.mov_id_old_2, df.mov_id)) replace_dict = {**replace_dict_1, **replace_dict_2} try: del replace_dict[np.nan] except: pass del replace_dict[None] replace_dict['d033'] = 'd092' # This participant's data is currently missing in redcap, but they did change ID from 33 to 92 return replace_dict # Cell @patch @get_efficiently def get_mov_data(self:DataProvider): """ This function gets Movisense data 1) We create unique participnat IDs (e.g. "b001"; this is necessary as sites use overapping IDs) 2) We merge double IDs, so participants with two IDs only have one (for this duplicate_ids.csv has to be updated) 3) We remove pilot participants 4) We get starting dates (from the participant overviews in movisense; downloaded as html) 5) We calculate sampling days and end dates based on the starting dates """ # Loading raw data mov_berlin = pd.read_csv(self.mov_berlin_path, sep = ';') mov_dresden = pd.read_csv(self.mov_dresden_path, sep = ';') mov_mannheim = pd.read_csv(self.mov_mannheim_path, sep = ';') # Merging (participant numbers repeat so we add the first letter of location) mov_berlin['location'] = 'berlin' mov_dresden['location'] = 'dresden' mov_mannheim['location'] = 'mannheim' df = pd.concat([mov_berlin,mov_dresden,mov_mannheim]) df['participant'] = df['location'].str[0] + df.Participant.apply(lambda x: '%03d'%int(x)) df.drop(columns = 'Participant', inplace = True) # Dropping old participant column to avoid mistakes df['trigger_date'] = pd.to_datetime(df.Trigger_date + ' ' + df.Trigger_time) # Merging double IDs (for participants with several movisense IDs) df['participant'] = df.participant.replace(self.get_duplicate_mov_ids()) # Removing pilot participants df = df[~df.participant.astype(str).str.contains('test')] df = df[~df.participant.isin(['m157', 'b010', 'b006', 'd001', 'd002', 'd042', 'm024', 'm028', 'm071', 'm079', 'm107'])] # Adding starting dates to get sampling days def get_starting_dates(path, pp_prefix = ''): soup = bs(open(path).read()) ids = [int(x.text) for x in soup.find_all("td", class_ = 'simpleId')] c_dates = [x.find_all("span")[0]['title'] for x in soup.find_all("td", class_ = 'coupleDate')] s_dates = [x['value'] for x in soup.find_all("input", class_ = 'dp startDate')] df = pd.DataFrame({'participant':ids,'coupling_date':c_dates,'starting_date':s_dates}) df['coupling_date'] =
pd.to_datetime(df.coupling_date)
pandas.to_datetime
import itertools from sklearn.model_selection import train_test_split from challenge.agoda_cancellation_estimator import AgodaCancellationEstimator import matplotlib.pyplot as plt from sklearn import metrics import numpy as np import pandas as pd import re PATTERN = re.compile(r"((?P<days1>[1-9]\d*)D(?P<amount1>[1-9]\d*[NP])_)?((?P<days2>[1-9]\d*)D(?P<amount2>[1-9]\d*[NP])_)?(?P<noshow>[1-9]\d*[NP])?") def cancel_parser(policy: str, nights_num): if nights_num <= 0: nights_num = 1 match = PATTERN.match(policy) if match is None: return policy else: noshow = match.group("noshow") noshow = 1 if noshow is None else int(noshow[:-1])/100 if noshow[-1] == 'P' else int(noshow[:-1]) / nights_num days1 = match.group("days1") if days1 is None: days1 = 0 amount1 = noshow else: days1 = int(days1) amount1 = match.group("amount1") amount1 = int(amount1[:-1])/100 if amount1[-1] == 'P' else int(amount1[:-1])/nights_num days2 = match.group("days2") if days2 is None: days2 = 0 amount2 = amount1 else: days2 = int(days2) amount2 = match.group("amount2") amount2 = int(amount2[:-1])/100 if amount2[-1] == 'P' else int(amount2[:-1])/nights_num return days1, amount1, days2, amount2, noshow def agoda_preprocessor(full_data: np.ndarray): # fill cancellation datetime which doesn't exist as 0 full_data.loc[full_data["cancellation_datetime"].isnull(), "cancellation_datetime"] = full_data["checkin_date"] full_data['cancellation_datetime'] = pd.to_datetime(full_data["cancellation_datetime"]) features = data_preprocessor(full_data) full_data["cancel_warning_days"] = (full_data['checkin_date'] - full_data['cancellation_datetime']).dt.days full_data["days_cancelled_after_booking"] = (full_data["cancellation_datetime"] - full_data["booking_datetime"]).dt.days labels = (7 <= full_data["days_cancelled_after_booking"]) & (full_data["days_cancelled_after_booking"] <= 43) return features, np.asarray(labels).astype(int) def load_agoda_dataset(): """ Load Agoda booking cancellation dataset Returns ------- Design matrix and response vector in the following format: - Tuple of ndarray of shape (n_samples, n_features) and ndarray of shape (n_samples,) """ # clean data for unrealistic shit full_data = pd.read_csv("../datasets/agoda_cancellation_train.csv").drop_duplicates() features, labels = agoda_preprocessor(full_data) return features, labels def data_preprocessor(full_data): # starting with the numerical and boolean columns features = full_data[["hotel_star_rating", "guest_is_not_the_customer", "original_selling_amount", "is_user_logged_in", "is_first_booking", "cancellation_policy_code", ]].fillna(0) # how much the customer cares about his order, sums all it's requests features["num_requests"] = (full_data["request_nonesmoke"].fillna(0) + full_data["request_latecheckin"].fillna(0) + full_data["request_highfloor"].fillna(0) + full_data["request_largebed"].fillna(0) + full_data["request_twinbeds"].fillna(0) + full_data["request_airport"].fillna(0) + full_data["request_earlycheckin"].fillna(0)) features["charge_option"] = full_data["charge_option"].apply(lambda x: 1 if x == "Pay Later" else 0) # accom = {"":} # features["accommadation_type_name"] = full_data["accommadation_type_name"].apply(lambda x: accom[x]) full_data['booking_datetime'] = pd.to_datetime(full_data['booking_datetime']) full_data['checkin_date'] = pd.to_datetime(full_data['checkin_date']) full_data['checkout_date'] = pd.to_datetime(full_data['checkout_date']) # add date connected numerical columns features["days_to_checkin"] = (full_data["checkin_date"] - full_data["booking_datetime"]).dt.days features["num_nights"] = (full_data['checkout_date'] - full_data['checkin_date']).dt.days - 1 # deal with cancellation policy code features['parsed_cancellation'] = features.apply(lambda x: cancel_parser(x['cancellation_policy_code'], x['num_nights']), axis=1) features[['cd1', 'cp1', 'cd2', 'cp2', 'ns']] = pd.DataFrame(features['parsed_cancellation'].tolist(), index=features.index) del features["cancellation_policy_code"] del features['parsed_cancellation'] return features def cross_validate(estimator, X: np.ndarray, y: np.ndarray, cv): """ Evaluate metric by cross-validation for given estimator Parameters ---------- estimator: BaseEstimator Initialized estimator to use for fitting the data X: ndarray of shape (n_samples, n_features) Input data to fit y: ndarray of shape (n_samples, ) Responses of input data to fit to cv: int Specify the number of folds. Returns ------- validation_score: float Average validation score over folds """ validation_scores = [] split_X, split_y = np.array_split(X, cv), np.array_split(y, cv) for i in range(cv): # create S\Si & Si train_x, train_y = np.concatenate(np.delete(split_X, i, axis=0)), np.concatenate(np.delete(split_y, i, axis=0)) test_x, test_y = split_X[i], split_y[i] # fit the estimator to the current folds A = estimator.fit(train_x, train_y) # predict over the validation fold and over the hole train set validation_scores.append(metrics.f1_score(A.predict(test_x), test_y, average='macro')) return np.array(validation_scores).mean() def training_playground(X, y): """ Evaluate current model performances over previous weeks datasets. Parameters ---------- X: the previous weeks unite dataset y: the previous weeks unite labels """ # f1_scores = [] # for true, false in itertools.product(list(np.arange(0.6, 1, 0.05)), list(np.arange(0.03, 0.1, 0.01))): # print(true, false) # estimator = AgodaCancellationEstimator(true, false) # f1_scores.append(cross_validate(estimator, X, y, cv=6)) # # print(f1_scores) # define train & test sets. train_X, test_X, train_y, test_y = train_test_split(X.to_numpy(), y.to_numpy(), test_size=1/6) # Fit model over data prev_estimator = AgodaCancellationEstimator(0.6, 0.07).fit(train_X, train_y) # Predict for test_X y_pred = pd.DataFrame(prev_estimator.predict(test_X), columns=["predicted_values"]) # confusion matrix cm = metrics.ConfusionMatrixDisplay(metrics.confusion_matrix(test_y, y_pred)) cm.plot() plt.show() # Performances: print("Area Under Curve: ", metrics.roc_auc_score(test_y, y_pred)) print("Accuracy: ", metrics.accuracy_score(test_y, y_pred)) print("Recall: ", metrics.recall_score(test_y, y_pred)) print("Precision: ", metrics.precision_score(test_y, y_pred)) print("F1 Macro Score: ", metrics.f1_score(test_y, y_pred, average='macro')) def evaluate_and_export(X, y, test_csv_filename): """ Export to specified file the prediction results of given estimator on given testset. File saved is in csv format with a single column named 'predicted_values' and n_samples rows containing predicted values. Parameters ---------- X: the previous weeks unite dataset y: the previous weeks unite labels test_csv_filename: path to the current week test-set csv file """ f1_scores = [] range_of_weights = list(itertools.product(list(np.arange(0.6, 1, 0.05)), list(np.arange(0.03, 0.1, 0.01)))) for true, false in range_of_weights: estimator = AgodaCancellationEstimator(true, false) f1_scores.append(cross_validate(estimator, X, y, cv=6)) print(np.max(f1_scores)) true_weight, false_weight = range_of_weights[np.argmax(f1_scores)] # Fit model over data prev_estimator = AgodaCancellationEstimator(true_weight, false_weight).fit(X, y) # Store model predictions over test set test_set = pd.read_csv(test_csv_filename).drop_duplicates() # predict over current-week test-set X = data_preprocessor(test_set) y_pred = pd.DataFrame(prev_estimator.predict(X), columns=["predicted_values"]) # export the current-week predicted labels pd.DataFrame(y_pred, columns=["predicted_values"]).to_csv("342473642_206200552_316457340.csv", index=False) def load_previous(): """ Load Previous-weeks test-sets and labels Returns ------- Design matrix and response vector in the following format: - Tuple of ndarray of shape (n_samples, n_features) and ndarray of shape (n_samples,) """ data_set =
pd.read_csv(f'testsets//t1.csv')
pandas.read_csv
import requests from bs4 import BeautifulSoup import pandas as pd import re def main(): URL = "https://en.wikipedia.org/wiki/{}_Copa_Am%C3%A9rica" # Format [year, number of teams, normal page] years = [[1993, 12, True], [1995, 12, True], [1997, 12, True], [1999, 12, True], [2001, 12, True], [2004, 12, True], [2007, 12, True], [2011, 12, False], [2015, 12, False], [2016, 16, True]] for year in years: print("Parsing year: {}".format(year[0])) r = requests.get(URL.format(year[0])) r.encoding = 'utf-8' soup = BeautifulSoup(r.text, "html.parser") # Get group data games = soup.find_all("div", {"class": "footballbox"}) if year[2]: # Some pages differ from others and are harder to parse num_of_group_games = year[1] * 6 / 4 else: num_of_group_games = 0 data = [] for i, game in enumerate(games): if i < num_of_group_games: stage = "Group" elif i < num_of_group_games + 4: stage = "Quarter-finals" elif i < num_of_group_games + 4 + 2: stage = "Semi-finals" elif i < num_of_group_games + 4 + 2 + 1: stage = "Match for third place" else: stage = "Final" home_team = game.find('th', {'class': 'fhome'}).findNext('a').get_text() away_team = game.find('th', {'class': 'faway'}).findNext('a').get_text() goals = game.find('th', {'class': 'fscore'}).get_text().split('–') home_team_goals = re.findall('\d+', goals[0])[0] away_team_goals = re.findall('\d+', goals[1])[0] ftr = "D" if home_team_goals == away_team_goals else ("H" if home_team_goals > away_team_goals else "A") data.append([stage, home_team, away_team, home_team_goals, away_team_goals, ftr]) # Save current year df =
pd.DataFrame(data, columns = ["Stage","HomeTeam","AwayTeam","FTHG","FTAG","FTR"])
pandas.DataFrame
from flask import Flask, render_template, request, redirect, url_for, session import pandas as pd import pymysql import os import io #from werkzeug.utils import secure_filename from pulp import * import numpy as np import pymysql import pymysql.cursors from pandas.io import sql #from sqlalchemy import create_engine import pandas as pd import numpy as np #import io import statsmodels.formula.api as smf import statsmodels.api as sm import scipy.optimize as optimize import matplotlib.mlab as mlab import matplotlib.pyplot as plt #from flask import Flask, render_template, request, redirect, url_for, session, g from sklearn.linear_model import LogisticRegression from math import sin, cos, sqrt, atan2, radians from statsmodels.tsa.arima_model import ARIMA #from sqlalchemy import create_engine from collections import defaultdict from sklearn import linear_model import statsmodels.api as sm import scipy.stats as st import pandas as pd import numpy as np from pulp import * import pymysql import math app = Flask(__name__) app.secret_key = os.urandom(24) localaddress="D:\\home\\site\\wwwroot" localpath=localaddress os.chdir(localaddress) @app.route('/') def index(): return redirect(url_for('home')) @app.route('/home') def home(): return render_template('home.html') @app.route('/demandplanning') def demandplanning(): return render_template("Demand_Planning.html") @app.route("/elasticopt",methods = ['GET','POST']) def elasticopt(): if request.method== 'POST': start_date =request.form['from'] end_date=request.form['to'] prdct_name=request.form['typedf'] # connection = pymysql.connect(host='localhost', # user='user', # password='', # db='test', # charset='utf8mb4', # cursorclass=pymysql.cursors.DictCursor) # # x=connection.cursor() # x.execute("select * from `transcdata`") # connection.commit() # datass=pd.DataFrame(x.fetchall()) datass = pd.read_csv("C:\\Users\\1026819\\Downloads\\optimizdata.csv") # datas = datass[(datass['Week']>=start_date) & (datass['Week']<=end_date )] datas=datass df = datas[datas['Product'] == prdct_name] df=datass changeData=pd.concat([df['Product_Price'],df['Product_Qty']],axis=1) changep=[] changed=[] for i in range(0,len(changeData)-1): changep.append(changeData['Product_Price'].iloc[i]-changeData['Product_Price'].iloc[i+1]) changed.append(changeData['Product_Qty'].iloc[1]-changeData['Product_Qty'].iloc[i+1]) cpd=pd.concat([pd.DataFrame(changep),pd.DataFrame(changed)],axis=1) cpd.columns=['Product_Price','Product_Qty'] sortedpricedata=df.sort_values(['Product_Price'], ascending=[True]) spq=pd.concat([sortedpricedata['Product_Price'],sortedpricedata['Product_Qty']],axis=1).reset_index(drop=True) pint=[] dint=[] x = spq['Product_Price'] num_bins = 5 # n, pint, patches = plt.hist(x, num_bins, facecolor='blue', alpha=0.5) y = spq['Product_Qty'] num_bins = 5 # n, dint, patches = plt.hist(y, num_bins, facecolor='blue', alpha=0.5) arr= np.zeros(shape=(len(pint),len(dint))) count=0 for i in range(0, len(pint)): lbp=pint[i] if i==len(pint)-1: ubp=pint[i]+1 else: ubp=pint[i+1] for j in range(0, len(dint)): lbd=dint[j] if j==len(dint)-1: ubd=dint[j]+1 else: ubd=dint[j+1] print(lbd,ubd) for k in range(0, len(spq)): if (spq['Product_Price'].iloc[k]>=lbp\ and spq['Product_Price'].iloc[k]<ubp): if(spq['Product_Qty'].iloc[k]>=lbd\ and spq['Product_Qty'].iloc[k]<ubd): count+=1 arr[i][j]+=1 price_range=np.zeros(shape=(len(pint),2)) for j in range(0,len(pint)): lbp=pint[j] price_range[j][0]=lbp if j==len(pint)-1: ubp=pint[j]+1 price_range[j][1]=ubp else: ubp=pint[j+1] price_range[j][1]=ubp demand_range=np.zeros(shape=(len(dint),2)) for j in range(0,len(dint)): lbd=dint[j] demand_range[j][0]=lbd if j==len(dint)-1: ubd=dint[j]+1 demand_range[j][1]=ubd else: ubd=dint[j+1] demand_range[j][1]=ubd pr=pd.DataFrame(price_range) pr.columns=['Price','Demand'] dr=pd.DataFrame(demand_range) dr.columns=['Price','Demand'] priceranges=pr.Price.astype(str).str.cat(pr.Demand.astype(str), sep='-') demandranges=dr.Price.astype(str).str.cat(dr.Demand.astype(str), sep='-') price=pd.DataFrame(arr) price.columns=demandranges price.index=priceranges pp=price.reset_index() global data data=pd.concat([df['Week'],df['Product_Qty'],df['Product_Price'],df['Comp_Prod_Price'],df['Promo1'],df['Promo2'],df['overallsale']],axis=1) return render_template('dataview.html',cpd=cpd.values,pp=pp.to_html(index=False),data=data.to_html(index=False),graphdata=data.values,ss=1) return render_template('dataview.html') @app.route('/priceelasticity',methods = ['GET','POST']) def priceelasticity(): return render_template('Optimisation_heatmap_revenue.html') @app.route("/elasticity",methods = ['GET','POST']) def elasticity(): if request.method== 'POST': Price=0 Average_Price=0 Promotions=0 Promotionss=0 if request.form.get('Price'): Price=1 if request.form.get('Average_Price'): Average_Price=1 if request.form.get('Promotion_1'): Promotions=1 if request.form.get('Promotion_2'): Promotionss=1 Modeldata=pd.DataFrame() Modeldata['Product_Qty']=data.Product_Qty lst=[] for row in data.index: lst.append(row+1) Modeldata['Week']=np.log(lst) if Price == 1: Modeldata['Product_Price']=data['Product_Price'] if Price == 0: Modeldata['Product_Price']=0 if Average_Price==1: Modeldata['Comp_Prod_Price']=data['Comp_Prod_Price'] if Average_Price==0: Modeldata['Comp_Prod_Price']=0 if Promotions==1: Modeldata['Promo1']=data['Promo1'] if Promotions==0: Modeldata['Promo1']=0 if Promotionss==1: Modeldata['Promo2']=data['Promo2'] if Promotionss==0: Modeldata['Promo2']=0 diffpriceprodvscomp= (Modeldata['Product_Price']-Modeldata['Comp_Prod_Price']) promo1=Modeldata.Promo1 promo2=Modeldata.Promo2 week=Modeldata.Week quantityproduct=Modeldata.Product_Qty df=pd.concat([quantityproduct,diffpriceprodvscomp,promo1,promo2,week],axis=1) df.columns=['quantityproduct','diffpriceprodvscomp','promo1','promo2','week'] Model = smf.ols(formula='df.quantityproduct ~ df.diffpriceprodvscomp + df.promo1 + df.promo2 + df.week', data=df) res = Model.fit() global intercept,diffpriceprodvscomp_param,promo1_param,promo2_param,week_param intercept=res.params[0] diffpriceprodvscomp_param=res.params[1] promo1_param=res.params[2] promo2_param=res.params[3] week_param=res.params[4] Product_Price_min=0 maxvalue_of_price=int(Modeldata['Product_Price'].max()) Product_Price_max=int(Modeldata['Product_Price'].max()) if maxvalue_of_price==0: Product_Price_max=1 maxfunction=[] pricev=[] weeks=[] dd=[] ddl=[] for vatr in range(0,len(Modeldata)): weeks.append(lst[vatr]) for Product_Price in range(Product_Price_min,Product_Price_max+1): function=0 function=(intercept+(Modeldata['Promo1'].iloc[vatr]*promo1_param)+(Modeldata['Promo2'].iloc[vatr]*promo2_param) + (diffpriceprodvscomp_param*(Product_Price-Modeldata['Comp_Prod_Price'].iloc[vatr]))+(Modeldata['Week'].iloc[vatr]*lst[vatr])) maxfunction.append(function) dd.append(Product_Price) ddl.append(vatr) for Product_Price in range(Product_Price_min,Product_Price_max+1): pricev.append(Product_Price) df1=pd.DataFrame(maxfunction) df2=pd.DataFrame(dd) df3=pd.DataFrame(ddl) dfo=pd.concat([df3,df2,df1],axis=1) dfo.columns=['weeks','prices','Demandfunctions'] demand=[] for rows in dfo.values: w=int(rows[0]) p=int(rows[1]) d=int(rows[2]) demand.append([w,p,d]) Co_eff=pd.DataFrame(res.params.values)#intercept standard_error=pd.DataFrame(res.bse.values)#standard error p_values=pd.DataFrame(res.pvalues.values) conf_lower =pd.DataFrame(res.conf_int()[0].values) conf_higher =pd.DataFrame(res.conf_int()[1].values) R_square=res.rsquared atr=['Intercept','DeltaPrice','Promo1','Promo2','Week'] atribute=pd.DataFrame(atr) SummaryTable=pd.concat([atribute,Co_eff,standard_error,p_values,conf_lower,conf_higher],axis=1) SummaryTable.columns=['Atributes','Co_eff','Standard_error','P_values','conf_lower','conf_higher'] reshapedf=df1.values.reshape(len(Modeldata),(-Product_Price_min+(Product_Price_max+1))) dataofmas=pd.DataFrame(reshapedf) maxv=dataofmas.apply( max, axis=1 ) minv=dataofmas.apply(min,axis=1) avgv=dataofmas.sum(axis=1)/(-Product_Price_min+(Product_Price_max+1)) wks=pd.DataFrame(weeks) ddofs=pd.concat([wks,minv,avgv,maxv],axis=1) dataofmas=pd.DataFrame(reshapedf) kk=pd.DataFrame() sums=0 for i in range(0,len(dataofmas.columns)): sums=sums+i vv=i*dataofmas[[i]] kk=pd.concat([kk,vv],axis=1) dfr=pd.DataFrame(kk) mrevenue=dfr.apply( max, axis=1 ) prices=dfr.idxmax(axis=1) wks=pd.DataFrame(weeks) revenuedf=pd.concat([wks,mrevenue,prices],axis=1) return render_template('Optimisation_heatmap_revenue.html',revenuedf=revenuedf.values,ddofs=ddofs.values,SummaryTable=SummaryTable.to_html(index=False),ss=1,weeks=weeks,demand=demand,pricev=pricev,R_square=R_square) @app.route('/inputtomaxm',methods=["GET","POST"]) def inputtomaxm(): return render_template("Optimize.html") @app.route("/maxm",methods=["GET","POST"]) def maxm(): if request.method=="POST": week=request.form['TimePeriod'] price_low=request.form['Price_Lower'] price_max=request.form['Price_Upper'] promofirst=request.form['Promotion_1'] promosecond=request.form['Promotion_2'] # week=24 # price_low=6 # price_max=20 # promofirst=1 # promosecond=0 # # time_period=24 # # global a # a=243.226225 # global b # b=-9.699634 # global d # d=1.671505 # global pr1 # pr1=21.866260 # global pr2 # pr2=-0.511606 # global cm # cm=-14.559594 # global s_0 # s_0= 2000 # promo1=1 # promo2=0 time_period=int(week) global a a=intercept global b b=diffpriceprodvscomp_param global d d=week_param global pr1 pr1=promo1_param global pr2 pr2=promo2_param global s_0 s_0= 2000 promo1=int(promofirst) promo2=int(promosecond) global comp comp=np.random.randint(7,15,time_period) def demand(p, a=a, b=b, d=d, promo1=promo1,promo2_param=promo2,comp=comp, t=np.linspace(1,time_period,time_period)): """ Return demand given an array of prices p for times t (see equation 5 above)""" return a+(b*(p-comp))+(d*t)+(promo1*pr1)+(promo2*pr2) def objective(p_t, a, b, d,promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): return -1.0 * np.sum( p_t * demand(p_t, a, b, d,promo1,promo2, comp, t) ) def constraint_1(p_t, s_0, a, b, d, promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): """ Inventory constraint. s_0 - np.sum(x_t) >= 0. This is an inequality constraint. See more below. """ return s_0 - np.sum(demand(p_t, a, b, d,promo1,promo2, comp, t)) def constraint_2(p_t): #""" Positive demand. Another inequality constraint x_t >= 0 """ return p_t t = np.linspace(1,time_period,time_period) # Starting values : b_min=int(price_low) p_start = b_min * np.ones(len(t)) # bounds on the values : bmax=int(price_max) bounds = tuple((0,bmax) for x in p_start) import scipy.optimize as optimize # Constraints : constraints = ({'type': 'ineq', 'fun': lambda x, s_0=s_0: constraint_1(x,s_0, a, b, d,promo1,promo2, comp, t=t)}, {'type': 'ineq', 'fun': lambda x: constraint_2(x)} ) opt_results = optimize.minimize(objective, p_start, args=(a, b, d,promo1,promo2, comp, t), method='SLSQP', bounds=bounds, constraints=constraints) np.sum(opt_results['x']) opt_price=opt_results['x'] opt_demand=demand(opt_results['x'], a, b, d, promo1,promo2_param, comp, t=t) weeks=[] for row in range(1,len(opt_price)+1): weeks.append(row) d=pd.DataFrame(weeks).astype(int) dd=pd.DataFrame(opt_price) optimumumprice_perweek=pd.concat([d,dd,pd.DataFrame(opt_demand).astype(int)],axis=1) optimumumprice_perweek.columns=['Week','Price','Demand'] dataval=optimumumprice_perweek diff=[] diffs=[] for i in range(0,len(opt_demand)-1): valss=opt_demand[i]-opt_demand[i+1] diff.append(valss) diffs.append(i+1) differenceofdemand_df=pd.concat([pd.DataFrame(diffs),pd.DataFrame(diff)],axis=1) MP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmin()],1) minimumprice=pd.DataFrame(MP).T MaxP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmax()],1) maximumprice=pd.DataFrame(MaxP).T averageprice=round((optimumumprice_perweek['Price'].sum()/len(optimumumprice_perweek)),2) MD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmin()],0) minimumDemand=pd.DataFrame(MD).T MaxD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmax()],0) maximumDemand=pd.DataFrame(MaxD).T averageDemand=round((optimumumprice_perweek['Demand'].sum()/len(optimumumprice_perweek)),0) totaldemand=round(optimumumprice_perweek['Demand'].sum(),0) return render_template("Optimize.html",totaldemand=totaldemand,averageDemand=averageDemand,maximumDemand=maximumDemand.values,minimumDemand=minimumDemand.values,averageprice=averageprice,maximumprice=maximumprice.values,minimumprice=minimumprice.values,dataval=dataval.values,differenceofdemand_df=differenceofdemand_df.values,optimumumprice_perweek=optimumumprice_perweek.to_html(index=False),ll=1) @app.route("/Inventorymanagment",methods=["GET","POST"]) def Inventorymanagment(): return render_template("Inventory_Management.html") @app.route("/DISTRIBUTION_NETWORK_OPT",methods=["GET","POST"]) def DISTRIBUTION_NETWORK_OPT(): return render_template("DISTRIBUTION_NETWORK_OPTIMIZATION.html") @app.route("/Procurement_Plan",methods=["GET","POST"]) def Procurement_Plan(): return render_template("Procurement_Planning.html") #<NAME> @app.route("/fleetallocation") def fleetallocation(): return render_template('fleetallocation.html') @app.route("/reset") def reset(): conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM `input`") cur.execute("DELETE FROM `output`") cur.execute("DELETE FROM `Scenario`") conn.commit() conn.close() open(localaddress+'\\static\\demodata.txt', 'w').close() return render_template('fleetallocation.html') @app.route("/dalink",methods = ['GET','POST']) def dalink(): sql = "INSERT INTO `input` (`Route`,`SLoc`,`Ship-to Abb`,`Primary Equipment`,`Batch`,`Prod Dt`,`SW`,`Met Held`,`Heat No`,`Delivery Qty`,`Width`,`Length`,`Test Cut`,`Customer Priority`) VALUES( %s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() if request.method == 'POST': typ = request.form.get('type') frm = request.form.get('from') to = request.form.get('to') if typ and frm and to: conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("SELECT * FROM `inventory_data` WHERE `Primary Equipment` = '" + typ + "' AND `Prod Dt` BETWEEN '" + frm + "' AND '" + to + "'") res = cur.fetchall() if len(res)==0: conn.close() return render_template('fleetallocation.html',alert='No data available') sfile = pd.DataFrame(res) df1 = pd.DataFrame(sfile) df1['Prod Dt'] =df1['Prod Dt'].astype(object) for index, i in df1.iterrows(): data = (i['Route'],i['SLoc'],i['Ship-to Abb'],i['Primary Equipment'],i['Batch'],i['Prod Dt'],i['SW'],i['Met Held'],i['Heat No'],i['Delivery Qty'],i['Width'],i['Length'],i['Test Cut'],i['Customer Priority']) curr.execute(sql,data) conn.commit() conn.close() return render_template('fleetallocation.html',typ=" Equipment type: "+typ,frm="From: "+frm,to=" To:"+to,data = sfile.to_html(index=False)) else: return render_template('fleetallocation.html',alert ='All input fields are required') return render_template('fleetallocation.html') @app.route('/optimise', methods=['GET', 'POST']) def optimise(): open(localaddress+'\\static\\demodata.txt', 'w').close() conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("DELETE FROM `output`") conn.commit() os.system('python optimising.py') sa=1 cur.execute("SELECT * FROM `output`") result = cur.fetchall() if len(result)==0: say=0 else: say=1 curr.execute("SELECT * FROM `input`") sfile = curr.fetchall() if len(sfile)==0: conn.close() return render_template('fleetallocation.html',say=say,sa=sa,alert='No data available') sfile = pd.DataFrame(sfile) conn.close() with open(localaddress+"\\static\\demodata.txt", "r") as f: content = f.read() return render_template('fleetallocation.html',say=say,sa=sa,data = sfile.to_html(index=False),content=content) @app.route("/scenario") def scenario(): return render_template('scenario.html') @app.route("/scenario_insert", methods=['GET','POST']) def scenario_insert(): if request.method == 'POST': scenario = request.form.getlist("scenario[]") customer_priority = request.form.getlist("customer_priority[]") oldest_sw = request.form.getlist("oldest_sw[]") production_date = request.form.getlist("production_date[]") met_held_group = request.form.getlist("met_held_group[]") test_cut_group = request.form.getlist("test_cut_group[]") sub_grouping_rules = request.form.getlist("sub_grouping_rules[]") load_lower_bounds = request.form.getlist("load_lower_bounds[]") load_upper_bounds = request.form.getlist("load_upper_bounds[]") width_bounds = request.form.getlist("width_bounds[]") length_bounds = request.form.getlist("length_bounds[]") description = request.form.getlist("description[]") conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() lngth = len(scenario) curr.execute("DELETE FROM `scenario`") if scenario and customer_priority and oldest_sw and production_date and met_held_group and test_cut_group and sub_grouping_rules and load_lower_bounds and load_upper_bounds and width_bounds and length_bounds and description: say=0 for i in range(lngth): scenario_clean = scenario[i] customer_priority_clean = customer_priority[i] oldest_sw_clean = oldest_sw[i] production_date_clean = production_date[i] met_held_group_clean = met_held_group[i] test_cut_group_clean = test_cut_group[i] sub_grouping_rules_clean = sub_grouping_rules[i] load_lower_bounds_clean = load_lower_bounds[i] load_upper_bounds_clean = load_upper_bounds[i] width_bounds_clean = width_bounds[i] length_bounds_clean = length_bounds[i] description_clean = description[i] if scenario_clean and customer_priority_clean and oldest_sw_clean and production_date_clean and met_held_group_clean and test_cut_group_clean and sub_grouping_rules_clean and load_lower_bounds_clean and load_upper_bounds_clean and width_bounds_clean and length_bounds_clean: cur.execute("INSERT INTO `scenario`(scenario, customer_priority, oldest_sw, production_date, met_held_group, test_cut_group, sub_grouping_rules, load_lower_bounds, load_upper_bounds, width_bounds, length_bounds, description) VALUES('"+scenario_clean+"' ,'"+customer_priority_clean+"','"+oldest_sw_clean+"','"+production_date_clean+"','"+met_held_group_clean+"','"+test_cut_group_clean+"', '"+sub_grouping_rules_clean+"','"+load_lower_bounds_clean+"', '"+load_upper_bounds_clean+"','"+width_bounds_clean+"','"+length_bounds_clean+"','"+description_clean+"')") else: say = 1 conn.commit() if(say==0): alert='All Scenarios inserted' else: alert='Some scenarios were not inserted' return (alert) conn.close() return ('All fields are required!') return ('Failed!!!') @app.route("/fetch", methods=['GET','POST']) def fetch(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("SELECT * FROM scenario") result = cur.fetchall() if len(result)==0: conn.close() return render_template('scenario.html',alert1='No scenarios Available') result1 = pd.DataFrame(result) result1 = result1.drop('Sub-grouping rules', axis=1) conn.close() return render_template('scenario.html',sdata = result1.to_html(index=False)) return ("Error") @app.route("/delete", methods=['GET','POST']) def delete(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM scenario") conn.commit() conn.close() return render_template('scenario.html',alert1="All the scenerios were dropped!") return ("Error") @app.route('/papadashboard', methods=['GET', 'POST']) def papadashboard(): sql1 = "SELECT `Scenario`, MAX(`Wagon-No`) AS 'Wagon Used', COUNT(`Batch`) AS 'Products Allocated', SUM(`Delivery Qty`) AS 'Total Product Allocated', SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', SUM(`Width`)/(MAX(`Wagon-No`)) AS 'Average Width Used' FROM `output` WHERE `Wagon-No`>0 GROUP BY `Scenario`" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curs = conn.cursor() curs.execute("SELECT `scenario` FROM `scenario`") sdata = curs.fetchall() if len(sdata)==0: conn.close() return render_template('warning.html',alert='No data available') cur1 = conn.cursor() cur1.execute(sql1) data1 = cur1.fetchall() if len(data1)==0: conn.close() return render_template('warning.html',alert='Infeasible to due Insufficient Load') cu = conn.cursor() cu.execute("SELECT `length_bounds`,`width_bounds`,`load_lower_bounds`,`load_upper_bounds` FROM `scenario`") sdaa = cu.fetchall() sdaa = pd.DataFrame(sdaa) asa=list() for index, i in sdaa.iterrows(): hover = "Length Bound:"+str(i['length_bounds'])+", Width Bound:"+str(i['width_bounds'])+", Load Upper Bound:"+str(i['load_upper_bounds'])+", Load Lower Bound:"+str(i['load_lower_bounds']) asa.append(hover) asa=pd.DataFrame(asa) asa.columns=['Details'] data1 = pd.DataFrame(data1) data1['Average Width Used'] = data1['Average Width Used'].astype(int) data1['Total Product Allocated'] = data1['Total Product Allocated'].astype(int) data1['Average Load Carried'] = data1['Average Load Carried'].astype(float) data1['Average Load Carried'] = round(data1['Average Load Carried'],2) data1['Average Load Carried'] = data1['Average Load Carried'].astype(str) fdata = pd.DataFrame(columns=['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used','Details']) fdata[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] = data1[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] fdata['Details'] = asa['Details'] fdata = fdata.values sql11 = "SELECT `Scenario`, SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', COUNT(`Batch`) AS 'Allocated', SUM(`Delivery Qty`) AS 'Load Allocated' FROM `output`WHERE `Wagon-No`>0 GROUP BY `Scenario`" sql21 = "SELECT COUNT(`Batch`) AS 'Total Allocated' FROM `output` GROUP BY `Scenario`" sql31 = "SELECT `load_upper_bounds` FROM `scenario`" conn1 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur11 = conn1.cursor() cur21 = conn1.cursor() cur31 = conn1.cursor() cur11.execute(sql11) data11 = cur11.fetchall() data11 = pd.DataFrame(data11) cur21.execute(sql21) data21 = cur21.fetchall() data21 = pd.DataFrame(data21) cur31.execute(sql31) data31 = cur31.fetchall() data31 = pd.DataFrame(data31) data11['Average Load Carried']=data11['Average Load Carried'].astype(float) fdata1 = pd.DataFrame(columns=['Scenario','Utilisation Percent','Allocation Percent','Total Load Allocated']) fdata1['Utilisation Percent'] = round(100*(data11['Average Load Carried']/data31['load_upper_bounds']),2) data11['Load Allocated']=data11['Load Allocated'].astype(int) fdata1[['Scenario','Total Load Allocated']]=data11[['Scenario','Load Allocated']] data11['Allocated']=data11['Allocated'].astype(float) data21['Total Allocated']=data21['Total Allocated'].astype(float) fdata1['Allocation Percent'] = round(100*(data11['Allocated']/data21['Total Allocated']),2) fdata1['Allocation Percent'] = fdata1['Allocation Percent'].astype(str) fdat1 = fdata1.values conn1.close() if request.method == 'POST': conn2 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn2.cursor() ata = request.form['name'] cur.execute("SELECT * FROM `output` WHERE `Scenario` = '"+ata+"' ") ssdata = cur.fetchall() datasss = pd.DataFrame(ssdata) data=datasss.replace("Not Allocated", 0) df=data[['Delivery Qty','Wagon-No','Width','Group-Number']] df['Wagon-No']=df['Wagon-No'].astype(int) a=df['Wagon-No'].max() ##bar1 result_array = np.array([]) for i in range (a): data_i = df[df['Wagon-No'] == i+1] del_sum_i = data_i['Delivery Qty'].sum() per_i=[((del_sum_i)/(205000)*100)] result_array = np.append(result_array, per_i) result_array1 = np.array([]) for j in range (a): data_j = df[df['Wagon-No'] == j+1] del_sum_j = data_j['Width'].sum() per_util_j=[((del_sum_j)/(370)*100)] result_array1 = np.append(result_array1, per_util_j) ##pie1 df112 = df[df['Wagon-No'] == 0] pie1 = df112 ['Width'].sum() df221 = df[df['Wagon-No'] > 0] pie11 = df221['Width'].sum() df1=data[['SW','Group-Number']] dff1 = df1[data['Wagon-No'] == 0] da1 =dff1.groupby(['SW']).count() re11 = np.array([]) res12 = np.append(re11,da1) da1['SW'] = da1.index r1 = np.array([]) r12 = np.append(r1, da1['SW']) df0=data[['Group-Number','Route','SLoc','Ship-to Abb','Wagon-No','Primary Equipment']] df1=df0.replace("Not Allocated", 0) f2 = pd.DataFrame(df1) f2['Wagon-No']=f2['Wagon-No'].astype(int) ####Not-Allocated f2['Group']=data['Group-Number'] df=f2[['Group','Wagon-No']] dee = df[df['Wagon-No'] == 0] deer =dee.groupby(['Group']).count()##Not Allocated deer['Group'] = deer.index ##Total-Data f2['Group1']=data['Group-Number'] dfc=f2[['Group1','Wagon-No']] dfa=pd.DataFrame(dfc) der = dfa[dfa['Wagon-No'] >= 0] dear =der.groupby(['Group1']).count()##Wagons >1 dear['Group1'] = dear.index dear.rename(columns={'Wagon-No': 'Allocated'}, inplace=True) result = pd.concat([deer, dear], axis=1, join_axes=[dear.index]) resu=result[['Group1','Wagon-No','Allocated']] result1=resu.fillna(00) r5 = np.array([]) r6 = np.append(r5, result1['Wagon-No']) r66=r6[0:73]###Not Allocated r7 = np.append(r5, result1['Allocated']) r77=r7[0:73]####total r8 = np.append(r5, result1['Group1']) r88=r8[0:73]###group conn2.close() return render_template('papadashboard.html',say=1,data=fdata,data1=fdat1,ata=ata,bar1=result_array,bar11=result_array1,pie11=pie1,pie111=pie11,x=r12,y=res12,xname=r88, bar7=r77,bar8=r66) conn.close() return render_template('papadashboard.html',data=fdata,data1=fdat1) @app.route('/facilityallocation') def facilityallocation(): return render_template('facilityhome.html') @app.route('/dataimport') def dataimport(): return render_template('facilityimport.html') @app.route('/dataimport1') def dataimport1(): return redirect(url_for('dataimport')) @app.route('/facility_location') def facility_location(): return render_template('facility_location.html') @app.route('/facility') def facility(): return redirect(url_for('facilityallocation')) @app.route("/imprt", methods=['GET','POST']) def imprt(): global customerdata global factorydata global Facyy global Custo customerfile = request.files['CustomerData'].read() factoryfile = request.files['FactoryData'].read() if len(customerfile)==0 or len(factoryfile)==0: return render_template('facilityhome.html',warning='Data Invalid') cdat=pd.read_csv(io.StringIO(customerfile.decode('utf-8'))) customerdata=pd.DataFrame(cdat) fdat=pd.read_csv(io.StringIO(factoryfile.decode('utf-8'))) factorydata=pd.DataFrame(fdat) Custo=customerdata.drop(['Lat','Long'],axis=1) Facyy=factorydata.drop(['Lat','Long'],axis=1) return render_template('facilityimport1.html',loc1=factorydata.values,loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False)) @app.route("/gmap") def gmap(): custdata=customerdata Factorydata=factorydata price=1 #to get distance beetween customer and factory #first get the Dimension #get no of factories Numberoffact=len(Factorydata) #get Number of Customer Numberofcust=len(custdata) #Get The dist/unit cost cost=price #def function for distance calculation # approximate radius of earth in km def dist(lati1,long1,lati2,long2,cost): R = 6373.0 lat1 = radians(lati1) lon1 = radians(long1) lat2 = radians(lati2) lon2 = radians(long2) dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2 c = 2 * atan2(sqrt(a), sqrt(1 - a)) distance =round(R * c,2) return distance*cost #Create a list for customer and factory def costtable(custdata,Factorydata): distance=list() for lat1,long1 in zip(custdata.Lat, custdata.Long): for lat2,long2 in zip(Factorydata.Lat, Factorydata.Long): distance.append(dist(lat1,long1,lat2,long2,cost)) distable=np.reshape(distance, (Numberofcust,Numberoffact)).T tab=pd.DataFrame(distable,index=[Factorydata.Factory],columns=[custdata.Customer]) return tab DelCost=costtable(custdata,Factorydata)#return cost table of the customer and factoery #creating Demand Table demand=np.array(custdata.Demand) col1=np.array(custdata.Customer) Demand=pd.DataFrame(demand,col1).T cols=sorted(col1) #Creating capacity table fact=np.array(Factorydata.Capacity) col2=np.array(Factorydata.Factory) Capacity=pd.DataFrame(fact,index=col2).T colo=sorted(col2) #creating Fixed cost table fixed_c=np.array(Factorydata.FixedCost) col3=np.array(Factorydata.Factory) FixedCost= pd.DataFrame(fixed_c,index=col3) # Create the 'prob' variable to contain the problem data model = LpProblem("Min Cost Facility Location problem",LpMinimize) production = pulp.LpVariable.dicts("Production", ((factory, cust) for factory in Capacity for cust in Demand), lowBound=0, cat='Integer') factory_status =pulp.LpVariable.dicts("factory_status", (factory for factory in Capacity), cat='Binary') cap_slack =pulp.LpVariable.dicts("capslack", (cust for cust in Demand), lowBound=0, cat='Integer') model += pulp.lpSum( [DelCost.loc[factory, cust] * production[factory, cust] for factory in Capacity for cust in Demand] + [FixedCost.loc[factory] * factory_status[factory] for factory in Capacity] + 5000000*cap_slack[cust] for cust in Demand) for cust in Demand: model += pulp.lpSum(production[factory, cust] for factory in Capacity)+cap_slack[cust] == Demand[cust] for factory in Capacity: model += pulp.lpSum(production[factory, cust] for cust in Demand) <= Capacity[factory]*factory_status[factory] model.solve() print("Status:", LpStatus[model.status]) for v in model.variables(): print(v.name, "=", v.varValue) print("Total Cost of Ingredients per can = ", value(model.objective)) # Getting the table for the Factorywise Allocation def factoryalloc(model,Numberoffact,Numberofcust,listoffac,listofcus): listj=list() listk=list() listcaps=list() for v in model.variables(): listj.append(v.varValue) customer=listj[(len(listj)-Numberofcust-Numberoffact):(len(listj)-Numberoffact)] del listj[(len(listj)-Numberoffact-Numberofcust):len(listj)] for row in listj: if row==0: listk.append(0) else: listk.append(1) x=np.reshape(listj,(Numberoffact,Numberofcust)) y=np.reshape(listk,(Numberoffact,Numberofcust)) FactoryAlloc_table=pd.DataFrame(x,index=listoffac,columns=listofcus) Factorystatus=pd.DataFrame(y,index=listoffac,columns=listofcus) return FactoryAlloc_table,Factorystatus,customer Alltable,FactorystatusTable,ded=factoryalloc(model,Numberoffact,Numberofcust,colo,cols) Allstatus=list() dede=pd.DataFrame(ded,columns=['UnSatisfied']) finaldede=dede[dede.UnSatisfied != 0] colss=pd.DataFrame(cols,columns=['CustomerLocation']) fina=pd.concat([colss,finaldede],axis=1, join='inner') print(fina) for i in range(len(Alltable)): for j in range(len(Alltable.columns)): if (Alltable.loc[Alltable.index[i], Alltable.columns[j]]>0): all=[Alltable.index[i], Alltable.columns[j], Alltable.loc[Alltable.index[i], Alltable.columns[j]]] Allstatus.append(all) Status=pd.DataFrame(Allstatus,columns=['Factory','Customer','Allocation']).astype(str) #To get the Factory Data con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) #Making Connection to the Database cur = con.cursor() engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Status.to_sql(con=engine, name='facilityallocation',index=False, if_exists='replace') cur = con.cursor() cur1 = con.cursor() cur.execute("SELECT * FROM `facilityallocation`") file=cur.fetchall() dat=pd.DataFrame(file) lst=dat[['Factory','Customer']] mlst=[] names=lst['Factory'].unique().tolist() for name in names: lsty=lst.loc[lst.Factory==name] mlst.append(lsty.values) data=dat[['Factory','Customer','Allocation']] sql="SELECT SUM(`Allocation`) AS 'UseCapacity', `Factory` FROM `facilityallocation` GROUP BY `Factory`" cur1.execute(sql) file2=cur1.fetchall() udata=pd.DataFrame(file2) bdata=factorydata.sort_values(by=['Factory']) adata=bdata['Capacity'] con.close() infdata=dat[['Customer','Factory','Allocation']] infodata=infdata.sort_values(by=['Customer']) namess=infodata.Customer.unique() lstyy=[] for nam in namess: bb=infodata[infodata.Customer==nam] comment=bb['Factory']+":"+bb['Allocation'] prin=[nam,str(comment.values).strip('[]')] lstyy.append(prin) return render_template('facilityoptimise.html',say=1,lstyy=lstyy,x1=adata.values,x2=udata.values,dat=mlst,loc1=factorydata.values, loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False),summary=data.to_html(index=False)) #Demand Forecast @app.route('/demandforecast') def demandforecast(): return render_template('demandforecast.html') @app.route("/demandforecastdataimport",methods = ['GET','POST']) def demandforecastdataimport(): if request.method== 'POST': global actualforecastdata flat=request.files['flat'].read() if len(flat)==0: return('No Data Selected') cdat=pd.read_csv(io.StringIO(flat.decode('utf-8'))) actualforecastdata=pd.DataFrame(cdat) return render_template('demandforecast.html',data=actualforecastdata.to_html(index=False)) @app.route('/demandforecastinput', methods = ['GET', 'POST']) def demandforecastinput(): if request.method=='POST': global demandforecastfrm global demandforecasttoo global demandforecastinputdata demandforecastfrm=request.form['from'] demandforecasttoo=request.form['to'] value=request.form['typedf'] demandforecastinputdata=actualforecastdata[(actualforecastdata['Date'] >= demandforecastfrm) & (actualforecastdata['Date'] <= demandforecasttoo)] if value=='monthly': ##monthly engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) demandforecastinputdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('monthlyforecast')) if value=='quarterly': ##quarterly global Quaterdata dated2 = demandforecastinputdata['Date'] nlst=[] for var in dated2: var1 = int(var[5:7]) if var1 >=1 and var1 <4: varr=var[:4]+'-01-01' elif var1 >=4 and var1 <7: varr=var[:4]+'-04-01' elif var1 >=7 and var1 <10: varr=var[:4]+'-07-01' else: varr=var[:4]+'-10-01' nlst.append(varr) nwlst=pd.DataFrame(nlst,columns=['Newyear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=nwlst['Newyear'] Quaterdata=demandforecastinputdata.groupby(['Date']).sum() Quaterdata=Quaterdata.reset_index() Quaterdata=Quaterdata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Quaterdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('quarterlyforecast')) if value=='yearly': ##yearly global Yeardata #copydata=demandforecastinputdata dated1 = demandforecastinputdata['Date'] lst=[] for var in dated1: var1 = var[:4]+'-01-01' lst.append(var1) newlst=pd.DataFrame(lst,columns=['NewYear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=newlst['NewYear'] Yeardata=demandforecastinputdata.groupby(['Date']).sum() Yeardata=Yeardata.reset_index() Yeardata=Yeardata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Yeardata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('yearlyforecast')) #if value=='weakly': ##weakly # return redirect(url_for('output4')) return render_template('demandforecast.html') @app.route("/monthlyforecast",methods = ['GET','POST']) def monthlyforecast(): data = pd.DataFrame(demandforecastinputdata) # container1 a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True]) # container2 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True]) # container3 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True]) # container4 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True]) # container1 df=a1[['GDP']] re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']] vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutput`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutput`") con.commit() sql = "INSERT INTO `forecastoutput` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutput',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutput`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('monthly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Monthly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('monthly.html',sayy=1,smt='Monthly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) ##quarterly @app.route("/quarterlyforecast",methods = ['GET','POST']) def quarterlyforecast(): data = pd.DataFrame(Quaterdata) a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True])# container1 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True])# container2 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True])# container3 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True])# container4 # container1 df=a1[['GDP']]/3 re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']]/3 vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutputq`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutputq`") con.commit() sql = "INSERT INTO `forecastoutputq` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='3M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='3M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='3M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='3M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='3M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='3M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutputq',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutputq`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('quarterly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Quarterly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('quarterly.html',sayy=1,smt='Quarterly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) ##yearly @app.route("/yearlyforecast",methods = ['GET','POST']) def yearlyforecast(): data = pd.DataFrame(Yeardata) a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True])# container1 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True])# container2 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True])# container3 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True])# container4 # container1 df=a1[['GDP']]/12 re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'] vari=[] for var in tdf: vari.append(var[:4]) tres11 = vari tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']]/12 vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutputy`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutputy`") con.commit() sql = "INSERT INTO `forecastoutputy` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma dindex=(tdfs.index).strftime("20%y") tdfs['Date']=(dindex) tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='A') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='A', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='A') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='A', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='A') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='A', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutputy',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutputy`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('yearly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Yearly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('yearly.html',sayy=1,smt='Yearly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) #############################Dashboard####################################### #yearly @app.route('/youtgraph', methods = ['GET','POST']) def youtgraph(): con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("SELECT `Model` FROM `forecastoutputy` GROUP BY `Model`") sfile=cur.fetchall() global yqst qlist=pd.DataFrame(sfile) qlst=qlist['Model'].astype(str) yqst=qlst.values con.close() return render_template('ydashboard.html',qulist=yqst) @app.route('/youtgraph1', methods = ['GET', 'POST']) def youtgraph1(): if request.method=='POST': value=request.form['item'] qconn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) qcur = qconn.cursor() qcur.execute("SELECT * FROM `demandforecastinputdata") qsdata = qcur.fetchall() qdata = pd.DataFrame(qsdata) #graph1 adata=qdata['TotalDemand'] x_axis=qdata['Date'].astype(str) #predictedgraph1 pcur = qconn.cursor() pcur.execute("SELECT * FROM `forecastoutputy` WHERE `Model`='"+value+"'") psdata = pcur.fetchall() edata = pd.DataFrame(psdata) eedata=edata['TotalDemand'].astype(float) ldata=eedata.values nur = qconn.cursor() nur.execute("SELECT MIN(`Date`) AS 'MIN' FROM `forecastoutputy` WHERE `Model`='"+value+"'") MIN=nur.fetchone() pdata=[] i=0 k=0 a="null" while(x_axis[i]<MIN['MIN']): pdata.append(a) i=i+1 k=k+1 ata=np.concatenate((pdata,ldata),axis=0) #x axis fcur = qconn.cursor() fcur.execute("SELECT `Date` FROM `demandforecastinputdata` WHERE `Date`<'"+MIN['MIN']+"'") fsdata = fcur.fetchall() indx = pd.DataFrame(fsdata) indx=indx['Date'] index=np.concatenate((indx,edata['Date'].values),axis=0) yindx=[] for var in index: var1 = var[:4] yindx.append(var1) #bargraph bcur = qconn.cursor() bcur.execute("SELECT * FROM `forecastoutputy` WHERE `Model`='"+value+"'") bsdata = bcur.fetchall() bdata = pd.DataFrame(bsdata) btdf=bdata['Date'].astype(str) btre11 = np.array([]) btres11 = np.append(btre11,btdf) b1tdf1=bdata[['Spain']] #spain b1tr1 = np.array([]) b1tr11 = np.append(b1tr1, b1tdf1) b2tdf1=bdata[['Austria']] #austria b2tr1 = np.array([]) b2tr11 = np.append(b2tr1, b2tdf1) b3tdf1=bdata[['Japan']] #japan b3tr1 = np.array([]) b3tr11 = np.append(b3tr1, b3tdf1) b4tdf1=bdata[['Hungary']] #hungry b4tr1 = np.array([]) b4tr11 = np.append(b4tr1, b4tdf1) b5tdf1=bdata[['Germany']] #germany b5tr1 = np.array([]) b5tr11 = np.append(b5tr1, b5tdf1) b6tdf1=bdata[['TotalDemand']] #total b6tr1 = np.array([]) b6tr11 = np.append(b6tr1, b6tdf1) #comparisonbar ccur = qconn.cursor() ccur.execute("SELECT * FROM `forecastoutputy` WHERE `Model`='"+value+"'") csdata = ccur.fetchall() cdata = pd.DataFrame(csdata) ctdf=cdata['Date'].astype(str) ctre11 = np.array([]) ctres11 = np.append(ctre11,ctdf) c1tdf1=cdata[['RatioIncrease']] #ratioincrease c1tr1 = np.array([]) c1tr11 = np.append(c1tr1, c1tdf1) qcur.execute("SELECT * FROM `summaryerror`") sdata = qcur.fetchall() mape = pd.DataFrame(sdata) qconn.close() return render_template('ydashboard.html',mon=value,qulist=yqst,mape=mape.to_html(index=False),say=1,pdata=ata,adata=adata.values,x_axis=yindx,frm=len(qdata)-1,to=k,x13=btres11,x14=ctres11,y13=b1tr11,y14=b2tr11,y15=b3tr11,y16=b4tr11,y17=b5tr11,y18=b6tr11,y19=c1tr11) #monthly @app.route('/moutgraph', methods = ['GET','POST']) def moutgraph(): con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("SELECT `Model` FROM `forecastoutput` GROUP BY `Model`") sfile=cur.fetchall() global mqst qlist=pd.DataFrame(sfile) qlst=qlist['Model'].astype(str) mqst=qlst.values con.close() return render_template('mdashboard.html',qulist=mqst) @app.route('/moutgraph1', methods = ['GET', 'POST']) def moutgraph1(): if request.method=='POST': value=request.form['item'] qconn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) qcur = qconn.cursor() qcur.execute("SELECT * FROM `demandforecastinputdata") qsdata = qcur.fetchall() qdata = pd.DataFrame(qsdata) #graph1 adata=qdata['TotalDemand'] x_axis=qdata['Date'].astype(str) #predictedgraph1 pcur = qconn.cursor() pcur.execute("SELECT * FROM `forecastoutput` WHERE `Model`='"+value+"'") psdata = pcur.fetchall() edata = pd.DataFrame(psdata) eedata=edata['TotalDemand'].astype(float) ldata=eedata.values nur = qconn.cursor() nur.execute("SELECT MIN(`Date`) AS 'MIN' FROM `forecastoutput` WHERE `Model`='"+value+"'") MIN=nur.fetchone() pdata=[] i=0 k=0 a="null" while(x_axis[i]<MIN['MIN']): pdata.append(a) i=i+1 k=k+1 ata=np.concatenate((pdata,ldata),axis=0) #x axis fcur = qconn.cursor() fcur.execute("SELECT `Date` FROM `demandforecastinputdata` WHERE `Date`<'"+MIN['MIN']+"'") fsdata = fcur.fetchall() indx = pd.DataFrame(fsdata) indx=indx['Date'].astype(str).values index=np.concatenate((indx,edata['Date'].values),axis=0) #bargraph bcur = qconn.cursor() bcur.execute("SELECT * FROM `forecastoutput` WHERE `Model`='"+value+"'") bsdata = bcur.fetchall() bdata = pd.DataFrame(bsdata) btdf=bdata['Date'].astype(str) btre11 = np.array([]) btres11 = np.append(btre11,btdf) b1tdf1=bdata[['Spain']] #spain b1tr1 = np.array([]) b1tr11 = np.append(b1tr1, b1tdf1) b2tdf1=bdata[['Austria']] #austria b2tr1 = np.array([]) b2tr11 = np.append(b2tr1, b2tdf1) b3tdf1=bdata[['Japan']] #japan b3tr1 = np.array([]) b3tr11 = np.append(b3tr1, b3tdf1) b4tdf1=bdata[['Hungary']] #hungry b4tr1 = np.array([]) b4tr11 = np.append(b4tr1, b4tdf1) b5tdf1=bdata[['Germany']] #germany b5tr1 = np.array([]) b5tr11 = np.append(b5tr1, b5tdf1) b6tdf1=bdata[['TotalDemand']] #total b6tr1 = np.array([]) b6tr11 = np.append(b6tr1, b6tdf1) #comparisonbar ccur = qconn.cursor() ccur.execute("SELECT * FROM `forecastoutput` WHERE `Model`='"+value+"'") csdata = ccur.fetchall() cdata = pd.DataFrame(csdata) ctdf=cdata['Date'].astype(str) ctre11 = np.array([]) ctres11 = np.append(ctre11,ctdf) c1tdf1=cdata[['RatioIncrease']] #ratioincrease c1tr1 = np.array([]) c1tr11 = np.append(c1tr1, c1tdf1) qcur.execute("SELECT * FROM `summaryerror`") sdata = qcur.fetchall() mape = pd.DataFrame(sdata) qconn.close() return render_template('mdashboard.html',mon=value,qulist=mqst,mape=mape.to_html(index=False),say=1,pdata=ata,adata=adata.values,x_axis=index,frm=len(qdata)-1,to=k,x13=btres11,x14=ctres11,y13=b1tr11,y14=b2tr11,y15=b3tr11,y16=b4tr11,y17=b5tr11,y18=b6tr11,y19=c1tr11) #quarterly @app.route('/qoutgraph', methods = ['GET','POST']) def qoutgraph(): con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("SELECT `Model` FROM `forecastoutputq` GROUP BY `Model`") sfile=cur.fetchall() global qst qlist=pd.DataFrame(sfile) qlst=qlist['Model'].astype(str) qst=qlst.values con.close() return render_template('qdashboard.html',qulist=qst) @app.route('/qoutgraph1', methods = ['GET', 'POST']) def qoutgraph1(): if request.method=='POST': value=request.form['item'] qconn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) qcur = qconn.cursor() qcur.execute("SELECT * FROM `demandforecastinputdata") qsdata = qcur.fetchall() qdata = pd.DataFrame(qsdata) #graph1 adata=qdata['TotalDemand'] x_axis=qdata['Date'].astype(str) #predictedgraph1 pcur = qconn.cursor() pcur.execute("SELECT * FROM `forecastoutputq` WHERE `Model`='"+value+"'") psdata = pcur.fetchall() edata = pd.DataFrame(psdata) eedata=edata['TotalDemand'].astype(float) ldata=eedata.values nur = qconn.cursor() nur.execute("SELECT MIN(`Date`) AS 'MIN' FROM `forecastoutputq` WHERE `Model`='"+value+"'") MIN=nur.fetchone() pdata=[] i=0 k=0 a="null" while(x_axis[i]<MIN['MIN']): pdata.append(a) i=i+1 k=k+1 ata=np.concatenate((pdata,ldata),axis=0) #x axis fcur = qconn.cursor() fcur.execute("SELECT `Date` FROM `demandforecastinputdata` WHERE `Date`<'"+MIN['MIN']+"'") fsdata = fcur.fetchall() indx = pd.DataFrame(fsdata) indx=indx['Date'].astype(str).values index=np.concatenate((indx,edata['Date'].values),axis=0) #bargraph bcur = qconn.cursor() bcur.execute("SELECT * FROM `forecastoutputq` WHERE `Model`='"+value+"'") bsdata = bcur.fetchall() bdata = pd.DataFrame(bsdata) btdf=bdata['Date'].astype(str) btre11 = np.array([]) btres11 = np.append(btre11,btdf) b1tdf1=bdata[['Spain']] #spain b1tr1 = np.array([]) b1tr11 = np.append(b1tr1, b1tdf1) b2tdf1=bdata[['Austria']] #austria b2tr1 = np.array([]) b2tr11 = np.append(b2tr1, b2tdf1) b3tdf1=bdata[['Japan']] #japan b3tr1 = np.array([]) b3tr11 = np.append(b3tr1, b3tdf1) b4tdf1=bdata[['Hungary']] #hungry b4tr1 = np.array([]) b4tr11 = np.append(b4tr1, b4tdf1) b5tdf1=bdata[['Germany']] #germany b5tr1 = np.array([]) b5tr11 = np.append(b5tr1, b5tdf1) b6tdf1=bdata[['TotalDemand']] #total b6tr1 = np.array([]) b6tr11 = np.append(b6tr1, b6tdf1) #comparisonbar ccur = qconn.cursor() ccur.execute("SELECT * FROM `forecastoutputq` WHERE `Model`='"+value+"'") csdata = ccur.fetchall() cdata = pd.DataFrame(csdata) ctdf=cdata['Date'].astype(str) ctre11 = np.array([]) ctres11 = np.append(ctre11,ctdf) c1tdf1=cdata[['RatioIncrease']] #ratioincrease c1tr1 = np.array([]) c1tr11 = np.append(c1tr1, c1tdf1) qcur.execute("SELECT * FROM `summaryerror`") sdata = qcur.fetchall() mape = pd.DataFrame(sdata) qconn.close() return render_template('qdashboard.html',mon=value,qulist=qst,mape=mape.to_html(index=False),say=1,pdata=ata,adata=adata.values,x_axis=index,frm=len(qdata)-1,to=k,x13=btres11,x14=ctres11,y13=b1tr11,y14=b2tr11,y15=b3tr11,y16=b4tr11,y17=b5tr11,y18=b6tr11,y19=c1tr11) @app.route("/yearlysimulation",methods = ['GET','POST']) def yearlysimulation(): if request.method == 'POST': gdp=0 pi=0 ms=0 adv=0 gdp_dis=request.form.get('gdp_dis') pi_dis=request.form.get('pi_dis') ms_dis=request.form.get('ms_dis') adv_dis=request.form.get('adv_dis') min=request.form.get('min') max=request.form.get('max') mue=request.form.get('mue') sig=request.form.get('sig') cval=request.form.get('cval') min1=request.form.get('min1') max1=request.form.get('max1') mue1=request.form.get('mue1') sig1=request.form.get('sig1') cval1=request.form.get('cval1') min2=request.form.get('min2') max2=request.form.get('max2') mue2=request.form.get('mue2') sig2=request.form.get('sig2') cval2=request.form.get('cval2') min3=request.form.get('min3') max3=request.form.get('max3') mue3=request.form.get('mue3') sig3=request.form.get('sig3') cval3=request.form.get('cval3') itr= int(request.form.get('itr')) frm = request.form.get('from') sfrm=int(frm[:4]) to = request.form.get('to') sto=int(to[:4]) kwargs={} atrtable=[] if request.form.get('gdp'): gdp=1 atrtable.append('Gdp') if gdp_dis == 'gdp_dis1': min=request.form.get('min') max=request.form.get('max') kwargs['Gdp_dis']='Uniform' kwargs['gdpvalues']=[min,max] if gdp_dis == 'gdp_dis2': mue=request.form.get('mue') sig=request.form.get('sig') kwargs['Gdp_dis']='Normal' kwargs['gdpvalues']=[mue,sig] if gdp_dis == 'gdp_dis3': kwargs['Gdp_dis']='Random' pass if gdp_dis == 'gdp_dis4': cval=request.form.get('cval') kwargs['Gdp_dis']='Constant' kwargs['gdpvalues']=[cval] if request.form.get('pi'): pi=1 atrtable.append('Pi') if pi_dis == 'pi_dis1': min1=request.form.get('min1') max1=request.form.get('max1') kwargs['Pi_dis']='Uniform' kwargs['pivalues']=[min1,max1] if pi_dis == 'pi_dis2': mue1=request.form.get('mue1') sig1=request.form.get('sig1') kwargs['Pi_dis']='Normal' kwargs['pivalues']=[mue1,sig1] if pi_dis == 'pi_dis3': kwargs['Pi_dis']='Random' pass if pi_dis == 'pi_dis4': cval1=request.form.get('cval1') kwargs['Pi_dis']='Constant' kwargs['pivalues']=[cval1] if request.form.get('ms'): ms=1 atrtable.append('Ms') if ms_dis == 'ms_dis1': min=request.form.get('min2') max=request.form.get('max2') kwargs['Ms_dis']='Uniform' kwargs['msvalues']=[min2,max2] if ms_dis == 'ms_dis2': mue=request.form.get('mue2') sig=request.form.get('sig2') kwargs['Ms_dis']='Normal' kwargs['msvalues']=[mue2,sig2] if ms_dis == 'ms_dis3': kwargs['Ms_dis']='Random' pass if ms_dis == 'ms_dis4': cval=request.form.get('cval2') kwargs['Ms_dis']='Constant' kwargs['msvalues']=[cval2] if request.form.get('adv'): adv=1 atrtable.append('Adv') if adv_dis == 'adv_dis1': min=request.form.get('min3') max=request.form.get('max3') kwargs['Adv_dis']='Uniform' kwargs['advvalues']=[min3,max3] if adv_dis == 'adv_dis2': mue=request.form.get('mue3') sig=request.form.get('sig3') kwargs['Adv_dis']='Normal' kwargs['advvalues']=[mue3,sig3] if adv_dis == 'adv_dis3': kwargs['Adv_dis']='Random' pass if adv_dis == 'adv_dis4': cval=request.form.get('cval3') kwargs['Adv_dis']='Constant' kwargs['advvalues']=[cval3] #print(kwargs) #print(atrtable) con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `stech` (`gdp` VARCHAR(1),`pi` VARCHAR(1), `ms` VARCHAR(1),`adv` VARCHAR(1),`itr` VARCHAR(5),`sfrm` VARCHAR(10),`sto` VARCHAR(10))") cur.execute("DELETE FROM `stech`") con.commit() cur.execute("INSERT INTO `stech` VALUES('"+str(gdp)+"','"+str(pi)+"','"+str(ms)+"','"+str(adv)+"','"+str(itr)+"','"+str(sfrm)+"','"+str(sto)+"')") con.commit() data = pd.DataFrame(Yeardata) #print(data) data.columns xvar=pd.concat([data['GDP'],data['Pi_Exports'],data['Market_Share'],data['Advertisement_Expense']],axis=1) yvar=pd.DataFrame(data['TotalDemand']) regr = linear_model.LinearRegression() regr.fit(xvar,yvar) # predict=regr.predict(xvar) #Error Measures def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 def sim(iteration,data,startyear,endyear,atrtable,Gdp_dis=None,gdpvalues=None,Adv_dis=None,advvalues=None,Ms_dis=None,msvalues=None,Pi_dis=None,pivalues=None): preddata=pd.DataFrame() simdata=pd.DataFrame() #Errordf=pd.DataFrame() Errormsr=pd.DataFrame() date=pd.date_range(start=pd.datetime(startyear, 1, 1), end=pd.datetime(endyear+1, 1, 1),freq='A') date=pd.DataFrame(date.strftime("%Y")) #Fetching The Orignal Data Of Available Years of the Orignal Data That We Have Actually m=len(date) Arrayofdates=data['Date'] vari=[] for var in Arrayofdates: vari.append(var[:4]) Arrayofdates=pd.DataFrame(vari) dates=[] Fetchdata=[] for i in range(0,m): years=date.loc[i] for j in range(0,len(Arrayofdates)): if int(Arrayofdates.loc[j])==int(years): da=data['TotalDemand'].loc[j] Fetchdata.append(da) #Gives Data In the Given Range That we have actually dates.extend(years) #Gives Years that we have data for i in range(0,iteration): df=pd.DataFrame() #for The Gdp S='flag' for row in atrtable: if row=='Gdp': S='Gdp' if S=='Gdp': for row in Gdp_dis: if row=='Normal': gdpdf=pd.DataFrame(np.random.normal(gdpvalues[0],gdpvalues[1],m)) elif row=='Uniform': gdpdf=pd.DataFrame(np.random.normal(gdpvalues[0],gdpvalues[1],m)) elif row=='Constant': gdpdf=pd.DataFrame(np.random.choice([gdpvalues[0]],m)) else: gdpdf=pd.DataFrame(np.random.uniform(-4,4,m)) else: gdpdf=pd.DataFrame(np.random.uniform(0,0,m)) # for the pi dataframe O='flag' for row in atrtable: if row=='Pi': O='Pi' if O=='Pi': for row in Pi_dis: if row=='Normal': pidf=pd.DataFrame(np.random.normal(pivalues[0],pivalues[1],m)) elif row=='Uniform': pidf=pd.DataFrame(np.random.normal(pivalues[0],pivalues[1],m)) elif row=='Constant': pidf=pd.DataFrame(np.random.choice([pivalues[0]],m)) else: pidf=pd.DataFrame(np.random.random_integers(80,120,m)) else: pidf=pd.DataFrame(np.random.uniform(0,0,m)) #for the Adv Dataframe N='flag' for row in atrtable: if row=='Adv': N='Adv' if N=='Adv': for row in Adv_dis: if row=='Normal': advdf=pd.DataFrame(np.random.normal(advvalues[0],advvalues[1],m)) elif row=='Uniform': advdf=pd.DataFrame(np.random.normal(advvalues[0],advvalues[1],m)) elif row=='Constant': advdf=pd.DataFrame(np.random.choice([advvalues[0]],m)) else: advdf=pd.DataFrame(np.random.random_integers(500000,1000000,m)) else: advdf=pd.DataFrame(np.random.uniform(0,0,m)) #for the Ms dataframe U='flag' for row in atrtable: if row=='Ms': U='Ms' if U=='Ms': for row in Ms_dis: if row=='Normal': msdf=pd.DataFrame(np.random.normal(msvalues[0],msvalues[1],m)) elif row=='Uniform': msdf=pd.DataFrame(np.random.normal(msvalues[0],msvalues[1],m)) elif row=='Constant': msdf=pd.DataFrame(np.random.choice([msvalues[0]],m)) else: msdf=pd.DataFrame(np.random.uniform(0.1,0.5,m)) else: msdf=pd.DataFrame(np.random.uniform(0,0,m)) #Concatenating All the dataframes for Simulation Data df=pd.concat([gdpdf,pidf,msdf,advdf],axis=1) simid=pd.DataFrame(np.random.choice([i+1],m)) dd=pd.concat([simid,gdpdf,pidf,advdf,msdf],axis=1) dd.columns=['Year','Gdp','Pi','Adv','Ms'] simdata=pd.concat([simdata,dd],axis=0) #Predicting the Data And store in pred data through onhand Regression Method dfs=pd.DataFrame(regr.predict(df)) datatable=pd.concat([simid,date,dfs],axis=1) datatable.columns=['simid','Year','Total_Demand(Tonnes)'] preddata=pd.concat([datatable,preddata],axis=0) datas=list() #Geting Data With Respective Dates # print(datatable) for row in dates: # print(dates) datas.extend(datatable.loc[datatable['Year'] ==row, 'Total_Demand(Tonnes)']) kkk=pd.DataFrame(datas) me=ME(Fetchdata,kkk) mae=MAE(Fetchdata,kkk) mape=MAPE(Fetchdata,kkk) dfe=pd.DataFrame([me,mae,mape],index=['ME','MAE','MAPE']).T Errormsr=pd.concat([Errormsr,dfe],axis=0).reset_index(drop=True) return preddata,simdata,Errormsr preddata,simdata,Errormsr=sim(itr,data,sfrm,sto,atrtable,**kwargs) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) preddata.to_sql(con=engine, name='predicteddata',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) simdata.to_sql(con=engine2, name='simulationdata',index=False, if_exists='replace') con.commit() engine3 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Errormsr.to_sql(con=engine3, name='simerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `simerror`") sdata = cnr.fetchall() simerror = pd.DataFrame(sdata) con.close() return render_template('ysimulation.html',sayy=1,simerror=simerror.to_html(index=False)) return render_template('ysimulation.html') ##PROCURMENT PLANNING @app.route('/procurementplanning') def procurementplanning(): return render_template('vendorselection_criterianumberask.html') @app.route("/criteriagenerate", methods=['GET','POST']) def criteriagenerate(): if request.method == 'POST': global cnmbr global vnmbr cnmbr = int(request.form['cnmbr']) vnmbr = int(request.form['vnmbr']) if cnmbr == 0 or vnmbr==0: return render_template('criterianumberask.html',warning='Data Invalid') cmainlist=[] global cnames cnames = [] for i in range (1,cnmbr+1): lst=[] name='cname'+str(i) lst.append(i) lst.append(name) cmainlist.append(lst) cnames.append(name) vmainlist=[] global vnames vnames = [] for i in range (1,vnmbr+1): lst=[] name='vname'+str(i) lst.append(i) lst.append(name) vmainlist.append(lst) vnames.append(name) return render_template('vendorselection_criteriagenerate.html',cmainlist=cmainlist,vmainlist=vmainlist) return render_template('vendorselection_criterianumberask.html') @app.route("/criteriagenerated", methods=['GET','POST']) def criteriagenerated(): if request.method == 'POST': global criterianames criterianames=[] for name in cnames: criterianame = request.form[name] criterianames.append(criterianame) global vendornames vendornames=[] for name in vnames: vendorname = request.form[name] vendornames.append(vendorname) mcrlst=[] cn=len(criterianames) k=1 global maincriteriaoption maincriteriaoption=[] global maincritriacri maincritriacri=[] for i in range(cn-1): for j in range (i+1,cn): cri='criteriaorder'+str(k) opt='coption'+str(k) crlst=[k,cri,criterianames[i],criterianames[j],opt] mcrlst.append(crlst) k=k+1 maincriteriaoption.append(opt) maincritriacri.append(cri) mvrlst=[] vn=len(vendornames) k=1 global mainvendoroption mainvendoroption=[] global mainvendorcri mainvendorcri=[] for z in criterianames: mvrlst1=[] vcri=[] vopt=[] for i in range(vn-1): for j in range (i+1,vn): cri='vendororder'+z+str(k) opt='voption'+z+str(k) vrlst=[k,cri,vendornames[i],vendornames[j],opt] mvrlst1.append(vrlst) k=k+1 vcri.append(cri) vopt.append(opt) mvrlst.append(mvrlst1) mainvendorcri.append(vcri) mainvendoroption.append(vopt) return render_template('vendorselection_maincriteria.html',mcrlst=mcrlst,mvrlst=mvrlst) return render_template('vendorselection_criteriagenerated.html') def tablecreator(imp,val,crit): n=len(imp) for i in range(n): if imp[i]==1: val[i]=float(1/val[i]) fdata=pd.DataFrame(columns=[crit],index=[crit]) i=0 k=0 for index in fdata.index: j=0 for columns in fdata.columns: if i==j: fdata[index][columns]=1 if i<j: fdata[index][columns]=round((float(val[k])),2) fdata[columns][index]=round((1/val[k]),2) k=k+1 j=j+1 i=i+1 return fdata @app.route("/criteriaread", methods=['GET','POST']) def criteriaread(): if request.method == 'POST': importances = [] values = [] for name1 in maincritriacri: imp = int(request.form[name1]) importances.append(imp) for name2 in maincriteriaoption: val = int(request.form[name2]) values.append(val) #global maincriteriadata maincriteriadata=tablecreator(importances,values,criterianames) mainimportances=[] for crioption in mainvendorcri: importance=[] for option1 in crioption: impc = int(request.form[option1]) importance.append(impc) mainimportances.append(importance) mainvalues=[] for vendoroption in mainvendoroption: vvalues=[] for option2 in vendoroption: valuev = int(request.form[option2]) vvalues.append(valuev) mainvalues.append(vvalues) maindf=[] for z in range(len(criterianames)): df=tablecreator(mainimportances[z],mainvalues[z],vendornames) maindf.append(df) dictmain={'crit':maincriteriadata} names=criterianames dfs=maindf dictionary=dict((n,d) for (n,d) in zip(names,dfs)) def ahpmain(dictmain): global wt_Crit wt_Crit=[] key=[] key=list(dictmain.keys()) for i in key: Crit=np.dot(dictmain[i],dictmain[i]) row_sum=[] for j in range(len(Crit)): row_sum.append(sum(Crit[j])) wt_Crit.append([s/sum(row_sum) for s in row_sum]) Crit=[] return wt_Crit def ahp(dictmain,dictionary): global output main= ahpmain(dictmain) submain= ahpmain(dictionary) dd=pd.DataFrame(submain).T df=pd.DataFrame(main).T output=np.dot(dd,df) return output,dd yaxis,dd=ahp(dictmain,dictionary) yax=pd.DataFrame(yaxis,index=vendornames,columns=['Score']).sort_values('Score',ascending=False).T ynames=yax.columns yval=yax.T.values dd.index=vendornames dd.columns=names dd=dd.T opq23=[] for column in dd.columns: opq21=[] opq22=[] opq21.append(column) for val in dd[column]: opq22.append(val) opq21.append(opq22) opq23.append(opq21) return render_template('vendorselection_ahp_final_output.html',ynames=ynames,yval=yval,dd=opq23,names=names) return render_template('vendorselection_criteriagenerated.html') #DETERMINISTIC STARTS @app.route("/spt") def spt(): return render_template('SinglePeriod.html') @app.route("/ppbreak") def ppbreak(): return render_template('pbreak.html') @app.route('/pbrk', methods=['GET','POST']) def pbrk(): return render_template('pbrk.html') @app.route('/eoq', methods=['GET','POST']) def eoq(): ##setUpCost::setting up cost prior(>>setUpCost;<<moving rate) AnnulaUnitsDemand=100##purchase demand of product per year FixedCost=500 ##cost fixed for the product AnnHoldingcost=0.25 ##remaining goods cost UnitCost=445 ##purchasing cost LeadTime=10 ##time b/w initiation and completion of a production process. SafetyStock=100##extra stock if request.method == 'POST': AnnulaUnitsDemand= request.form['AnnulaUnitsDemand'] FixedCost=request.form['FixedCost'] AnnHoldingcost=request.form['AnnHoldingcost'] UnitCost=request.form['UnitCost'] LeadTime=request.form['LeadTime'] SafetyStock=request.form['SafetyStock'] AnnulaUnitsDemand=float(AnnulaUnitsDemand) FixedCost=float(FixedCost) AnnHoldingcost=float(AnnHoldingcost) UnitCost=float(UnitCost) LeadTime=float(LeadTime) SafetyStock=float(SafetyStock) sgap=1 pgap=1 HoldingCost=AnnHoldingcost*UnitCost EOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost*pgap))*sgap),2) REOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost*pgap))*sgap),0) totOrderCost=round((FixedCost*AnnulaUnitsDemand/EOQ),2) totHoldCost=round(((HoldingCost*EOQ*pgap)/2),2) TotalCost=round((totOrderCost+totHoldCost),2) NumOrders=round((AnnulaUnitsDemand/EOQ),2) OrderTime=round((365/NumOrders),2) ReorderPoint=round((((AnnulaUnitsDemand/365)*LeadTime)+SafetyStock),0) count=round((EOQ*.75),0) qtylist1=[] hclist=[] sclist=[] mtlist=[] tclist=[] while (count < EOQ): qtylist1.append(count) hclist.append(round((count/2*HoldingCost),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) tclist.append(round((count/2*HoldingCost+AnnulaUnitsDemand/count*FixedCost),2)) count +=2 qtylist1.append(EOQ) hclist.append(totHoldCost) sclist.append(totOrderCost) tclist.append(totHoldCost+totOrderCost) while (count < (EOQ*2)): qtylist1.append(count) hclist.append(round((count/2*HoldingCost),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) tclist.append(round((count/2*HoldingCost+AnnulaUnitsDemand/count*FixedCost),2)) count +=2 val=0 for i in range(len(tclist)): if(EOQ==qtylist1[i]): val=i # sstock=int(math.sqrt((LeadTime^2)+(int(ReorderPoint)^2))) return render_template('eoq.html',NumOrders=NumOrders,OrderTime=OrderTime, ReorderPoint=ReorderPoint,HoldCost=totHoldCost,TotalCost=TotalCost, EOQ=EOQ,REOQ=REOQ, sclist=sclist,hclist=hclist,tclist=tclist,val=val,qtylist1=qtylist1, AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,LeadTime=LeadTime, SafetyStock=SafetyStock) ########################EEEEppppppppppQQQQQQ############ ########################EEEEppppppppppQQQQQQ############ @app.route('/eproduction', methods=['GET','POST']) def eproduction(): AnnulaUnitsDemand=100 Prodrate=125 FixedCost=500 AnnHoldingcost=0.1 UnitCost=25000 LeadTime=10 SafetyStock=100 if request.method == 'POST': AnnulaUnitsDemand= request.form['AnnulaUnitsDemand'] Prodrate=request.form['Prodrate'] FixedCost=request.form['FixedCost'] AnnHoldingcost=request.form['AnnHoldingcost'] UnitCost=request.form['UnitCost'] LeadTime=request.form['LeadTime'] SafetyStock=request.form['SafetyStock'] AnnulaUnitsDemand=int(AnnulaUnitsDemand) Prodrate=int(Prodrate) FixedCost=int(FixedCost) AnnHoldingcost=float(AnnHoldingcost) UnitCost=int(UnitCost) LeadTime=int(LeadTime) SafetyStock=int(SafetyStock) if(Prodrate<=AnnulaUnitsDemand): return render_template('eproduction.html',warning='Production date should not be least than Annual Demand', AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,Prodrate=Prodrate, LeadTime=LeadTime,SafetyStock=SafetyStock ) pgap=round((1-(AnnulaUnitsDemand/Prodrate)),2) HoldingCost=float(AnnHoldingcost*UnitCost) EOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost*pgap))),2) REOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost*pgap))),0) totOrderCost=round((FixedCost*AnnulaUnitsDemand/EOQ),2) totHoldCost=round(((HoldingCost*EOQ*pgap)/2),2) TotalCost=round((totOrderCost+totHoldCost),2) NumOrders=round((AnnulaUnitsDemand/EOQ),2) OrderTime=round((365/NumOrders),2) ReorderPoint=round((((AnnulaUnitsDemand/365)*LeadTime)+SafetyStock),0) count=EOQ*.75 qtylist1=[] hclist=[] sclist=[] mtlist=[] tclist=[] while (count < EOQ): qtylist1.append(int(count)) hclist.append(round((count/2*HoldingCost*pgap),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) tclist.append(round(((count/2*HoldingCost*pgap+AnnulaUnitsDemand/count*FixedCost)),2)) count +=2 qtylist1.append(EOQ) hclist.append(totHoldCost) sclist.append(totOrderCost) tclist.append(totOrderCost+totHoldCost) while (count < (EOQ*1.7)): qtylist1.append(int(count)) hclist.append(round((count/2*HoldingCost*pgap),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) tclist.append(round(((count/2*HoldingCost*pgap+AnnulaUnitsDemand/count*FixedCost)),2)) count +=2 val=0 for i in range(len(tclist)): if(EOQ==qtylist1[i]): val=i return render_template('eproduction.html',NumOrders=NumOrders,OrderTime=OrderTime, ReorderPoint=ReorderPoint,HoldCost=totHoldCost,TotalCost=TotalCost, EOQ=EOQ,REOQ=REOQ, sclist=sclist,hclist=hclist,tclist=tclist,val=val,qtylist1=qtylist1, AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,Prodrate=Prodrate, LeadTime=LeadTime,SafetyStock=SafetyStock ) ######################EEEEppppppppppQQQQQQ############ ######################EEEEppppppppppQQQQQQ############ @app.route('/eoq_backorders', methods=['GET','POST']) def eoq_backorders(): AnnulaUnitsDemand=12000 shortcost=1.1 FixedCost=8000 AnnHoldingcost=0.3 UnitCost=1 LeadTime=10 SafetyStock=100 if request.method == 'POST': AnnulaUnitsDemand= request.form['AnnulaUnitsDemand'] shortcost=request.form['shortcost'] FixedCost=request.form['FixedCost'] AnnHoldingcost=request.form['AnnHoldingcost'] UnitCost=request.form['UnitCost'] LeadTime=request.form['LeadTime'] SafetyStock=request.form['SafetyStock'] AnnulaUnitsDemand=int(AnnulaUnitsDemand) shortcost=int(shortcost) FixedCost=int(FixedCost) AnnHoldingcost=float(AnnHoldingcost) UnitCost=int(UnitCost) LeadTime=int(LeadTime) SafetyStock=int(SafetyStock) HoldingCost=float(AnnHoldingcost*UnitCost) sgap=(shortcost+HoldingCost)/shortcost EOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/HoldingCost))*(math.sqrt(sgap)),2) REOQ=round(math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost)*sgap),0) totbackorder=EOQ*(HoldingCost/(shortcost+HoldingCost)) totOrderCost=round(((FixedCost*AnnulaUnitsDemand)/EOQ),2) totHoldCost=round(((HoldingCost*((EOQ-totbackorder)**2))/(2*EOQ)),2) totshortcost=round((shortcost*(totbackorder**2)/(2*EOQ)),2) TotalCost=round((totOrderCost+totHoldCost+totshortcost),2) NumOrders=round((AnnulaUnitsDemand/EOQ),2) OrderTime=round((365/NumOrders),2) ReorderPoint=round((((AnnulaUnitsDemand/365)*LeadTime)+SafetyStock),0) count= EOQ*.75 qtylist1=[] hclist=[] sclist=[] mtlist=[] shlist=[] tclist=[] while (count < EOQ): qtylist1.append(int((count))) hclist.append(round(((HoldingCost*((count-totbackorder)**2))/(2*count)),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) shlist.append(round((shortcost*((totbackorder)**2)/(2*count)),2)) tclist.append(round(((((HoldingCost*((count-totbackorder)**2))/(2*count))+AnnulaUnitsDemand/count*FixedCost)+shortcost*((totbackorder)**2)/(2*count)),2)) count +=2 qtylist1.append(EOQ) hclist.append(totHoldCost) sclist.append(totOrderCost) shlist.append(totshortcost) tclist.append(totOrderCost+totshortcost+totHoldCost) while (count < (EOQ*1.7)): qtylist1.append(int((count))) hclist.append(round(((HoldingCost*((count-totbackorder)**2))/(2*count)),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) shlist.append(round((shortcost*((totbackorder)**2)/(2*count)),2)) tclist.append(round(((((HoldingCost*((count-totbackorder)**2))/(2*count))+AnnulaUnitsDemand/count*FixedCost)+shortcost*((totbackorder)**2)/(2*count)),2)) count +=2 val=0 for i in range(len(tclist)): if(EOQ==qtylist1[i]): val=i return render_template('eoq_backorders.html',NumOrders=NumOrders,OrderTime=OrderTime, ReorderPoint=ReorderPoint,HoldCost=totHoldCost,TotalCost=TotalCost, EOQ=EOQ,REOQ=REOQ, shlist=shlist,sclist=sclist,hclist=hclist,tclist=tclist,val=val,qtylist1=qtylist1, AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,shortcost=shortcost, LeadTime=LeadTime,SafetyStock=SafetyStock) #################pbreak###################### @app.route("/pbreak_insert", methods=['GET','POST']) def pbreak_insert(): if request.method == 'POST': quantity = request.form.getlist("quantity[]") price = request.form.getlist("price[]") conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_classification',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curr = conn.cursor() curr.execute("CREATE TABLE IF NOT EXISTS `pbreaktable` (quantity int(8),price int(8))") curr.execute("DELETE FROM `pbreaktable`") conn.commit() say=1 for i in range(len(quantity)): quantity_clean = quantity[i] price_clean = price[i] if quantity_clean and price_clean: curr.execute("INSERT INTO `pbreaktable`(`quantity`,`price`) VALUES('"+quantity_clean+"','"+price_clean+"')") conn.commit() else: say=0 if say==0: message="Some values were not inserted!" else: message="All values were inserted!" return(message) @app.route('/view', methods=['GET','POST']) def view(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_classification',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curr = conn.cursor() curr.execute("SELECT * FROM `pbreaktable`") res = curr.fetchall() ress=pd.DataFrame(res) return render_template('pbrk.html',username=username,ress =ress.to_html()) @app.route('/pbreakcalculate', methods=['GET','POST']) def pbreakcalculate(): AnnulaUnitsDemand=10 FixedCost=1 AnnHoldingcost=0.1 UnitCost=445 LeadTime=10 SafetyStock=100 if request.method == 'POST': if request.form['AnnulaUnitsDemand']: AnnulaUnitsDemand= request.form['AnnulaUnitsDemand'] AnnulaUnitsDemand=float(AnnulaUnitsDemand) if request.form['FixedCost']: FixedCost=request.form['FixedCost'] FixedCost=float(FixedCost) if request.form['AnnHoldingcost']: AnnHoldingcost=request.form['AnnHoldingcost'] AnnHoldingcost=float(AnnHoldingcost) conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_classification',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curr = conn.cursor() curr.execute("SELECT * FROM `pbreaktable`") res = curr.fetchall() ress=pd.DataFrame(res) conn.close() datatable=pd.DataFrame(columns=['Quantity','Price','EOQ','TotalCost']) mainlist=[] Qu=ress['quantity'] Qm=0 for index, i in ress.iterrows(): tcl=[] quantity = i['quantity'] price = i['price'] HoldingCost1=AnnHoldingcost*price eoq1=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost1))),2) REOQ=round(eoq1,0) totOrderCost1=round((FixedCost*AnnulaUnitsDemand/eoq1),2) totHoldCost1=round(((HoldingCost1*eoq1)/2),2) totalcost1=float(round((totOrderCost1+totHoldCost1),2)) lst=[quantity,price,eoq1,totalcost1] a=pd.DataFrame(lst).T a.columns=['Quantity','Price','EOQ','TotalCost'] datatable=pd.concat([datatable,a],ignore_index=True) name='TotalCost (Price='+str(a['Price'][0])+')' tcl.append(name) Qmin=1 Qmax=Qu[Qm] qtylist2=[] tclist1=[] while (Qmin < Qmax): qtylist2.append(Qmin) tclist1.append(round((Qmin/2*totHoldCost1+AnnulaUnitsDemand/Qmin*FixedCost),2)) Qmin +=2 Qmin=Qmax+1 qtylist2.append(eoq1) tclist1.append(totalcost1) tcl.append(tclist1) mainlist.append(tcl) Eu=datatable['EOQ'] Qu=datatable['Quantity'] Tu=datatable['TotalCost'] minlst=[] for i in range(len(Eu)): if i ==0: if Eu[i]<=Qu[i]: minlst.append(i) else: if Eu[i]<=Qu[i] and Eu[i]>Qu[i-1]: minlst.append(i) if len(minlst)==0: minnval='Solution not feasible' else: minval=Tu[minlst[0]] minnval=Eu[minlst[0]] for j in minlst: if Tu[j]<minval: minval=Tu[j] minnval=Eu[j] val1=0 for i in range(len(tclist1)): if (round(minnval))==qtylist2[i]: val1=i minival=round(minval) minnival=round(minnval) NumOrders=round((AnnulaUnitsDemand/minnval),2) OrderTime=round((365/NumOrders),2) ReorderPoint=round((((AnnulaUnitsDemand/365)*LeadTime)+SafetyStock),0) return render_template('pbreak.html', NumOrders=NumOrders,OrderTime=OrderTime,REOQ=REOQ,ReorderPoint=ReorderPoint, AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,LeadTime=LeadTime, SafetyStock=SafetyStock,minnval=minnval,minval=minval,minival=minival,minnival=minnival, datatable=datatable.to_html(index=False),mainlist=mainlist, val1=val1,tclist1=tclist1,qtylist2=qtylist2) #################Demand problalstic###################### @app.route('/demand', methods=['GET', 'POST']) def demand(): cost=10 price=12 salvage=2 if request.method == 'POST': cost=request.form['cost'] price=request.form['price'] salvage=request.form['salvage'] cost=int(cost) price=int(price) salvage=int(salvage) data=pd.read_csv(localpath+"\\Demand.csv") data = pd.DataFrame(data) cdf=[] sum=0 for row in data['Prob']: sum=sum+row cdf.append(sum) cumm_freq=(pd.DataFrame(cdf)).values##y-axis overcost=cost-salvage undercost=price-cost CSl=undercost/(undercost+overcost) k=[row>CSl for row in cumm_freq] count=1 for row in k: if row==False: count=count+1 demand=(data['Demand']).values w=data['Demand'].loc[count]##line across x-axis val=0 for i in range(len(cumm_freq)): if(w==demand[i]): val=i return render_template('demand.html',cost=cost,price=price,salvage=salvage, cumm_freq=cumm_freq,demand=demand,val=val) @app.route('/normal', methods=['GET', 'POST']) def normal(): cost=10 price=12 salvage=9 sd=2 if request.method == 'POST': cost=request.form['cost'] price=request.form['price'] salvage=request.form['salvage'] cost=int(cost) price=int(price) salvage=int(salvage) data=pd.read_csv(localpath+"\\Demand.csv") data = pd.DataFrame(data) overcost1=cost-salvage undercost1=price-cost CSl=undercost1/(undercost1+overcost1) zz=st.norm.ppf(CSl)##x-line z=float(format(zz, '.2f')) # Expecteddemand=round(mea+(z*sd)) mean = 0; sd = 1; variance = np.square(sd) x = np.arange(-4,4,.01)##x-axis f =(np.exp(-np.square(x-mean)/2*variance)/(np.sqrt(2*np.pi*variance)))##y-axis val=0 for i in range(len(f)): if(z==round((x[i]),2)): val=i return render_template('normal.html',x=x,f=f,val=val,cost=cost,price=price,salvage=salvage) @app.route('/utype', methods=['GET','POST']) def utype(): cost=10 price=12 salvage=2 mini=1 maxi=10 if request.method == 'POST': cost=request.form['cost'] price=request.form['price'] salvage=request.form['salvage'] mini=request.form['mini'] maxi=request.form['maxi'] cost=int(cost) price=int(price) salvage=int(salvage) mini=int(mini) maxi=int(maxi) data=pd.read_csv(localpath+"\\Demand.csv") data = pd.DataFrame(data) overcost=cost-salvage undercost=price-cost CSl=undercost/(undercost+overcost) expdemand1=round(mini+((maxi-mini)*CSl)) # a=[mini,0] # b=[mini,100] # c=[maxi,0] # d=[maxi,100] # width = c[0] - b[0] # height = d[1] - a[1] lims = np.arange(0,maxi,1) val=0 for i in range(len(lims)): if(expdemand1==lims[i]): val=i return render_template('utype.html',x=lims,f=lims,val=val,cost=cost,price=price,salvage=salvage,mini=mini,maxi=maxi) @app.route('/outputx', methods=['GET', 'POST']) def outputx(): conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_classification',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("SELECT * FROM `abc`") all_data = cur.fetchall() all_data = pd.DataFrame(all_data) A_ccat=.8 B_ccat=.95 A_ucat=.1 B_ucat=.25 tot_cost=all_data['Cost'].sum() tot_usage=all_data['Annual Usage'].sum() all_data['perc_cost']=all_data['Cost']/tot_cost all_data['perc_usage']=all_data['Annual Usage']/tot_usage all_data.sort_values(by=['perc_cost'], inplace=True, ascending=False) sort_data=all_data.reset_index() sort_data['cum_cperc']=np.nan sort_data['cum_uperc']=np.nan sort_data['Class']='' for i in range(len(sort_data)): if(i==0): sort_data.set_value(i, 'cum_cperc', sort_data['perc_cost'][i]) sort_data.set_value(i, 'cum_uperc', sort_data['perc_usage'][i]) # cperc_data.append(all_data['perc_cost'][i]) sort_data.set_value(i,'Class','A') else: sort_data.set_value(i, 'cum_cperc', sort_data['perc_cost'][i]+sort_data['cum_cperc'][i-1]) sort_data.set_value(i, 'cum_uperc', sort_data['perc_usage'][i]+sort_data['cum_uperc'][i-1]) if(sort_data['cum_cperc'][i]<=A_ccat and sort_data['cum_uperc'][i]<=A_ucat): sort_data.set_value(i,'Class','A') elif(sort_data['cum_cperc'][i]<=B_ccat and sort_data['cum_uperc'][i]<=B_ucat): sort_data.set_value(i,'Class','B') else: sort_data.set_value(i,'Class','C') x7=sort_data[['cum_cperc']] x1=x7*100 x3=np.round(x1) x2=np.array([]) x5 = np.append(x2,x3) y7= sort_data[['cum_uperc']] y1=y7*100 y3=np.round(y1) y2=np.array([]) y5 = np.append(y2,y3) ###############% of Total cost// a= sort_data[(sort_data['Class']=='A')][['perc_cost']] j=a.sum() k=j*100 pd.DataFrame(k) kf=k[0] b= sort_data[(sort_data['Class']=='B')][['perc_cost']] n=b.sum() m=n*100 pd.DataFrame(m) mf=m[0] c= sort_data[(sort_data['Class']=='C')][['perc_cost']] o=c.sum() p=o*100 pd.DataFrame(p) pf=p[0] tes=k,m,p t2 = np.array([]) te2 = np.append(t2,tes) ###################Items // Annual Usage # z=sort_data[['Product number']] # z1=z.sum() f= sort_data[(sort_data['Class']=='A')][['Product number']] v=f.sum() pd.DataFrame(v) vif=v[0] f1= sort_data[(sort_data['Class']=='B')][['Product number']] u=f1.sum() pd.DataFrame(u) uif=u[0] f2= sort_data[(sort_data['Class']=='C')][['Product number']] vf=f2.sum() pd.DataFrame(vf) kif=vf[0] #################% of Total units // Annual Usage t= sort_data[(sort_data['Class']=='A')][['perc_usage']] i=t.sum() p1=i*100 pd.DataFrame(p1) nf=p1[0] l= sort_data[(sort_data['Class']=='B')][['perc_usage']] t=l.sum() q1=t*100 pd.DataFrame(q1) qf=q1[0] u= sort_data[(sort_data['Class']=='C')][['perc_usage']] w=u.sum() s1=w*100 pd.DataFrame(s1) sf=s1[0] test=p1,q1,s1 tt2 = np.array([]) tte2 = np.append(tt2,test) #############values//Cost*Annual Usage sort_data['Value'] = sort_data['Cost'] * sort_data['Annual Usage'] fz= sort_data[(sort_data['Class']=='A')][['Value']] vz=fz.sum() pd.DataFrame(vz) vzz=vz[0] fz1= sort_data[(sort_data['Class']=='B')][['Value']] uz=fz1.sum() pd.DataFrame(uz) uzf=uz[0] fz2= sort_data[(sort_data['Class']=='C')][['Value']] vzf=fz2.sum() pd.DataFrame(vzf) kzf=vzf[0] h=[{'Scenario':'A','Values':vzz,'product number':vif,'perc_usage':nf,'perc_cost ':kf}, {'Scenario':'B','Values':uzf,'product number':uif,'perc_usage':qf,'perc_cost ':mf}, {'Scenario':'C','Values':kzf,'product number':kif,'perc_usage':sf,'perc_cost ':pf}] df = pd.DataFrame(h) lo=sort_data[['Product Description','Product number','Cost','Annual Usage','Class']] cur = conn.cursor() cur.execute("SELECT * FROM `abc1`") all_data4 = cur.fetchall() all_data4 = pd.DataFrame(all_data4) lolz=all_data4[['Product number','Product Description','Cost','Annual Usage','Average Stay','Average Consumption','Criticality']] ######################FFFFFFFFSSSSSSSSSNNNNNNNNNNNN######################### ######################FFFFFFFFSSSSSSSSSNNNNNNNNNNNN######################### ######################FFFFFFFFSSSSSSSSSNNNNNNNNNNNN######################### curr = conn.cursor() curr.execute("SELECT * FROM `fsn`") all_data1 = curr.fetchall() all_data1 = pd.DataFrame(all_data1) F_cat=.2 S_cat=.5 tot_stay=all_data1['Average Stay'].sum() tot_consupt=all_data1['Average Consumption'].sum() all_data1['perc_stay']=all_data1['Average Stay']/tot_stay all_data1['perc_cons']=all_data1['Average Consumption']/tot_consupt all_data1.sort_values(by=['perc_stay'], inplace=True, ascending=True) sort_data1=all_data1.reset_index() sort_data1['cum_stay']=np.nan sort_data1['cum_cons']=np.nan sort_data1['Class']='' for i in range(len(sort_data1)): if(i==0): sort_data1.set_value(i, 'cum_stay', sort_data1['perc_stay'][i]) sort_data1.set_value(i, 'cum_cons', sort_data1['perc_cons'][i]) sort_data1.set_value(i,'Class','F') else: sort_data1.set_value(i, 'cum_stay', sort_data1['perc_stay'][i]+sort_data1['cum_stay'][i-1]) sort_data1.set_value(i, 'cum_cons', sort_data1['perc_cons'][i]+sort_data1['cum_cons'][i-1]) if(sort_data1['cum_stay'][i]<=F_cat) : sort_data1.set_value(i,'Class','F') elif(sort_data1['cum_stay'][i]<=S_cat): sort_data1.set_value(i,'Class','S') else: sort_data1.set_value(i,'Class','N') x71=sort_data1[['cum_stay']] x11=x71*100 x31=np.round(x11) x21=np.array([]) x51 = np.append(x21,x31) y71= sort_data1[['cum_cons']] y11=y71*100 y31=np.round(y11) y21=np.array([]) y51 = np.append(y21,y31) ###############% of Total cost// a1= sort_data1[(sort_data1['Class']=='F')][['perc_stay']] j1=a1.sum() k1=j1*100 pd.DataFrame(k1) kf1=k1[0] b1= sort_data1[(sort_data1['Class']=='S')][['perc_stay']] n1=b1.sum() m1=n1*100 pd.DataFrame(m1) mf1=m1[0] c1= sort_data1[(sort_data1['Class']=='N')][['perc_stay']] o1=c1.sum() p1=o1*100 pd.DataFrame(p1) pf1=p1[0] tes1=k1,m1,p1 t21 = np.array([]) te21 = np.append(t21,tes1) ###################Items // Annual Usage # z=sort_data[['Product number']] # z1=z.sum() f1= sort_data1[(sort_data1['Class']=='F')][['Product number']] v1=f1.sum() pd.DataFrame(v1) vif1=v1[0] f11= sort_data1[(sort_data1['Class']=='S')][['Product number']] u1=f11.sum() pd.DataFrame(u1) uif1=u1[0] f21= sort_data1[(sort_data1['Class']=='N')][['Product number']] vf1=f21.sum() pd.DataFrame(vf1) kif1=vf1[0] #################% of Total units // Annual Usage t1= sort_data1[(sort_data1['Class']=='F')][['perc_cons']] i1=t1.sum() p11=i1*100 pd.DataFrame(p11) nf1=p11[0] l1= sort_data1[(sort_data1['Class']=='S')][['perc_cons']] t1=l1.sum() q11=t1*100 pd.DataFrame(q11) qf1=q11[0] u1= sort_data1[(sort_data1['Class']=='N')][['perc_cons']] w1=u1.sum() s11=w1*100 pd.DataFrame(s11) sf1=s11[0] test1=p11,q11,s11 tt21 = np.array([]) tte21 = np.append(tt21,test1) #############values//Cost*Annual Usage sort_data1['Value'] = sort_data1['Average Stay'] * sort_data1['Average Consumption'] fz1= sort_data1[(sort_data1['Class']=='F')][['Value']] vz1=fz1.sum() pd.DataFrame(vz1) vzz1=vz1[0] fz11= sort_data1[(sort_data1['Class']=='S')][['Value']] uz1=fz11.sum() pd.DataFrame(uz1) uzf1=uz1[0] fz21= sort_data1[(sort_data1['Class']=='N')][['Value']] vzf1=fz21.sum() pd.DataFrame(vzf1) kzf1=vzf1[0] h1=[{'Scenario':'F','Values':vzz1,'product number':vif1,'perc_cons':nf1,'perc_stay ':kf1}, {'Scenario':'S','Values':uzf1,'product number':uif1,'perc_cons':qf1,'perc_stay ':mf1}, {'Scenario':'N','Values':kzf1,'product number':kif1,'perc_cons':sf1,'perc_stay ':pf1}] df1 = pd.DataFrame(h1) lo1=sort_data1[['Product Description','Product number','perc_stay','perc_cons','Class']] ##############VVVVVVVVVEEEEEEEEEEEEDDDDDDDDD######### ##############VVVVVVVVVEEEEEEEEEEEEDDDDDDDDD######### cur1 = conn.cursor() cur1.execute("SELECT * FROM `ved`") all_data2 = cur1.fetchall() all_data2 = pd.DataFrame(all_data2) all_data2['values']=all_data2['Class'] + all_data2["Criticality"] AV= all_data2[(all_data2['values']=='AV')] AV=AV.index.max() AE= all_data2[(all_data2['values']=='AE')] AE= AE.index.max() AE=np.nan_to_num(AE) AD= all_data2[(all_data2['values']=='AD')] AD=AD.index.max() AD=np.nan_to_num(AD) BV=all_data2[(all_data2['values']=='BV')] BV=BV.index.max() BE=all_data2[(all_data2['values']=='BE')] BE=BE.index.max() BD=all_data2[(all_data2['values']=='BD')] BD=BD.index.max() BD=np.nan_to_num(BD) CV=all_data2[(all_data2['values']=='CV')] CV=CV.index.max() CV=np.nan_to_num(CV) CE=all_data2[(all_data2['values']=='CE')] CE=CE.index.max() CD=all_data2[(all_data2['values']=='CD')] CD=CD.index.max() ############################################### xx71=all_data2[['cum_cperc']] xx71=xx71.astype(float) xx11=xx71*100 xx31=xx11.round() xx21=np.array([]) xx51 = np.append(xx21,xx31) yy71= all_data2[['cum_uperc']] yy71=yy71.astype(float) yy11=yy71*100 yy31=yy11.round(0) yy21=np.array([]) yy51 = np.append(yy21,yy31) ###############% of Total cost// aa= all_data2[(all_data2['Criticality']=='V')][['perc_cost']] jj=aa.sum() kk=jj*100 #k=pd.DataFrame(k) kkf=kk[0] bb= all_data2[(all_data2['Criticality']=='E')][['perc_cost']] nn=bb.sum() mm=nn*100 # m=pd.DataFrame(m) mmf=mm[0] cc= all_data2[(all_data2['Criticality']=='D')][['perc_cost']] oo=cc.sum() pp=oo*100 # p=pd.DataFrame(p) ppf=pp[0] ttes=[kk,mm,pp] ttes=pd.concat(ttes) th2 = np.array([]) the2 = np.append(th2,ttes) ###################Items // Annual Usage # z=sort_data[['Product number']] # z1=z.sum() ff= all_data2[(all_data2['Criticality']=='V')][['Product number']] vv=ff.sum() pd.DataFrame(vv) vvif=vv[0] ff1= all_data2[(all_data2['Criticality']=='E')][['Product number']] uu=ff1.sum() pd.DataFrame(uu) uuif=uu[0] ff2= all_data2[(all_data2['Criticality']=='D')][['Product number']] vvf=ff2.sum() pd.DataFrame(vvf) kkif=vvf[0] #################% of Total units // Annual Usage tt= all_data2[(all_data2['Criticality']=='V')][['perc_usage']] ii=tt.sum() pp1=ii*100 pd.DataFrame(pp1) nnf=pp1[0] ll= all_data2[(all_data2['Criticality']=='E')][['perc_usage']] tq=ll.sum() qq1=tq*100 pd.DataFrame(qq1) qqf=qq1[0] uw= all_data2[(all_data2['Criticality']=='D')][['perc_usage']] wu=uw.sum() sc1=wu*100 pd.DataFrame(sc1) ssf=sc1[0] testt=[pp1,qq1,sc1] testt=pd.concat(testt) ttt2 = np.array([]) ttte2 = np.append(ttt2,testt) #############values//Cost*Annual Usage all_data2['Value'] = all_data2['Cost'] * all_data2['Annual Usage'] fzz= all_data2[(all_data2['Criticality']=='V')][['Value']] vzz=fzz.sum() pd.DataFrame(vzz) vzzz=vzz[0] fzz1= all_data2[(all_data2['Criticality']=='E')][['Value']] uzz=fzz1.sum() pd.DataFrame(uzz) uzzf=uzz[0] fzz2= all_data2[(all_data2['Criticality']=='D')][['Value']] vzzf=fzz2.sum() pd.DataFrame(vzzf) kzzf=vzzf[0] hh=[{'Scenario':'V','Values':vzzz,'product number':vvif,'perc_usage':nnf,'perc_cost ':kkf}, {'Scenario':'E','Values':uzzf,'product number':uuif,'perc_usage':qqf,'perc_cost ':mmf}, {'Scenario':'D','Values':kzzf,'product number':kkif,'perc_usage':ssf,'perc_cost ':ppf}] dff = pd.DataFrame(hh) return render_template('inventoryclassification.html', x=y5,y=x5, barcost=te2 ,barusage=tte21, s=df.to_html(index=False), sam=lo.to_html(index=False), tale=lolz.to_html(index=False), x1=x51,y1=y51, bar1=te21 ,bar2=tte2, s1=df1.to_html(index=False), sam1=lo1.to_html(index=False), xx1=AV,xx2=AE,xx3=AD, yy1=BV,yy2=BE,yy3=BD, zz1=CV,zz2=CE,zz3=CD, bb1=the2 ,bb2=ttte2, zone1=yy51,zone2=xx51, sammy=dff.to_html(index=False)) @app.route('/vendormanagement') def vendormanagement(): return render_template('vendormanagement.html') @app.route('/vendormanagementimport',methods=['POST','GET']) def vendormanagementimport(): global vendordata global vendordataview db = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) vendordata = pd.read_sql("SELECT * from vendor_management", con=db) db.close() vendordata['POdate']=pd.to_datetime(vendordata['POdate']) vendordata['POdate_year']=vendordata['POdate'].dt.year vendordataview=vendordata.head(50) return render_template('vendormanagementview.html',vendordataview=vendordataview.to_html(index=False)) @app.route('/vendormanagementview',methods=['POST','GET']) def vendormanagementview(): return render_template('vendormanagementview.html',vendordataview=vendordataview.to_html(index=False)) @app.route('/vndrmngmnt1',methods=['POST','GET']) def vndrmngmnt1(): VENDORID=sorted(vendordata['Vendorid'].unique()) if request.method=='POST': vendorin=request.form['name1'] def Vendor(VendorId): datasetcomb34=vendordata[['Vendorid','Vendor_name','Vendor_address','Vendormin_order']][vendordata['Vendorid']== VendorId] return datasetcomb34.iloc[0,:] snglvw=Vendor(vendorin) singleview=pd.DataFrame(snglvw).T return render_template('vendormanagement1.html',say=1,vendorin=vendorin,VENDORID=VENDORID,singleview=singleview.to_html(index=False)) return render_template('vendormanagement1.html',VENDORID=VENDORID) @app.route('/vndrmngmnt2',methods=['POST','GET']) def vndrmngmnt2(): pouyear=sorted(vendordata['POdate_year'].unique()) if request.method == 'POST': SelectedYear = int(request.form['name1']) SelectedTop = int(request.form['name2']) def top10vendorspend(year,top_value): x=[] y=[] gg1=vendordata[(vendordata['POdate_year']==year)].groupby(['POdate_year','Vendorid'])['PO_Value'].sum() x=gg1.nlargest(top_value).index.get_level_values(1) y=gg1.nlargest(top_value).values df=pd.DataFrame({'VendorID':x,'Total':y}) return df vndrvspnd=top10vendorspend(SelectedYear,SelectedTop) def top10vendoravgspend(top): gg3=vendordata.groupby(['POdate_year','Vendorid'])['PO_Value'].mean() xxx=gg3.nlargest(top).index.get_level_values(1) yyy=round(gg3.nlargest(top),2).values df=pd.DataFrame({'VendorID':xxx,'Mean':yyy}) return df vndrvavgspnd=top10vendoravgspend(SelectedTop) return render_template('vendormanagement2.html',say=1,SelectedYear=SelectedYear,pouyear=pouyear,vndrval=vndrvspnd.values,vndrvavg=vndrvavgspnd.values) return render_template('vendormanagement2.html',pouyear=pouyear) @app.route('/vndrmngmnt3',methods=['POST','GET']) def vndrmngmnt3(): pouyear=sorted(vendordata['POdate_year'].unique()) if request.method == 'POST': SelectedYear = int(request.form['name1']) SelectedTop = int(request.form['name2']) def top10POvendorvalue(year,top_value): x=[] y=[] gg1=vendordata[(vendordata['POdate_year']==year)].groupby(['POdate_year','Vendorid'])['Inventoryreplenished'].sum() x=gg1.nlargest(top_value).index.get_level_values(1) y=gg1.nlargest(top_value).values df=pd.DataFrame({'VendorId':x,'Total':y}) return df vndrval=top10POvendorvalue(SelectedYear,SelectedTop) def top10POvendoravg(top): gg3=vendordata.groupby(['POdate_year','Vendorid'])['Inventoryreplenished'].mean() xxx=gg3.nlargest(top).index.get_level_values(1) yyy=round(gg3.nlargest(top),2).values df=pd.DataFrame({'VendorID':xxx,'Mean':yyy}) return df vndrvavg=top10POvendoravg(SelectedTop) return render_template('vendormanagement3.html',say=1,SelectedYear=SelectedYear,pouyear=pouyear,vndrval=vndrval.values,vndrvavg=vndrvavg.values) return render_template('vendormanagement3.html',pouyear=pouyear) @app.route('/vndrmngmnt4',methods=['POST','GET']) def vndrmngmnt4(): pouyear=sorted(vendordata['POdate_year'].unique()) if request.method == 'POST': SelectedYear = int(request.form['name1']) SelectedTop = int(request.form['name2']) def top10vendorPOcnt(year,top): x=[] y=[] gg1=vendordata[(vendordata['POdate_year']==year)].groupby(['POdate_year','Vendorid'])['POdate_year'].count() x=gg1.nlargest(top).index.get_level_values(1) y=gg1.nlargest(top).values df=pd.DataFrame({'MatID':x,'Total_count':y}) return df vndrvavgpoacnt=top10vendorPOcnt(SelectedYear,SelectedTop) def top10vendorPOavg(top): g=vendordata.groupby('Vendorid')['POdate_year'].size() xx=g.nlargest(top).index.get_level_values(0) yy=g.nlargest(top).values dfexp7=pd.DataFrame({'VendorID':xx,'Average_count':yy}) return dfexp7 vndrvavgpoavg=top10vendorPOavg(SelectedTop) return render_template('vendormanagement4.html',say=1,SelectedYear=SelectedYear,pouyear=pouyear,vndrval=vndrvavgpoacnt.values,vndrvavg=vndrvavgpoavg.values) return render_template('vendormanagement4.html',pouyear=pouyear) @app.route('/vendorperformanceanalysis') def vendorperformanceanalysis(): return render_template('vendorperformanceanalysis.html',say=0) @app.route('/vendorperformanceanalysisdata',methods=['POST','GET']) def vendorperformanceanalysisdata(): if request.method=='POST': global wdata global wtdata file1 = request.files['file1'].read() file2 = request.files['file2'].read() if len(file1)==0 or len(file2)==0: return render_template('vendorperformanceanalysis.html',say=0,warning='Data Invalid') data1=pd.read_csv(io.StringIO(file1.decode('utf-8'))) wdata=pd.DataFrame(data1) data2=pd.read_csv(io.StringIO(file2.decode('utf-8'))) wtdata=pd.DataFrame(data2) return render_template('vendorperformanceanalysis.html',say=1,data1=data1.to_html(index=False),data2=data2.to_html(index=False)) @app.route('/vendorperformanceanalys',methods=['POST','GET']) def vendorperformanceanalys(): wt=[] for ds in wtdata['Weight']: wt.append(round((float(ds)),2)) treatment=[] for ds in wtdata['Positive Attribute']: if ds=='Yes': treatment.append('+') else: treatment.append('-') def normalize(df,alpha,treatment): y=df.iloc[:,1:len(list(df))] for i, j in zip(list(y),treatment): if j== '-': y[i]=y[i].min()/y[i] elif j== '+': y[i]=y[i]/y[i].max() for i, t in zip(list(y),wt): y[i]=y[i]*t df['Score'] = y.sum(axis=1) df=df.sort_values('Score', ascending=False) df['Rank']=df['Score'].rank(ascending=False) df['Rank']=df['Rank'].astype(int) return df[['Rank','Vendor']] dff=normalize(wdata,wt,treatment) return render_template('vendorperformanceanalysisview.html',say=1,data=dff.to_html(index=False)) @app.route('/purchaseorderallocation') def purchaseorderallocation(): return render_template('purchaseorderallocation.html') @app.route('/purchaseorderallocationimport',methods=['POST','GET']) def purchaseorderallocationimport(): global ddemand1 global dsupply1 global maxy1 global miny1 global Vcost1 global Vrisk1 db = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) ddemand1 = pd.read_sql("SELECT * from opt_demand", con=db) dsupply1 = pd.read_sql("SELECT * from opt_supply", con=db) maxy1 = pd.read_sql("SELECT * from opt_maxcapacity", con=db) miny1 = pd.read_sql("SELECT * from opt_mincapacity", con=db) Vcost1 = pd.read_sql("SELECT * from opt_vcost", con=db) Vrisk1 = pd.read_sql("SELECT * from opt_vrisk", con=db) db.close() return render_template('purchaseorderallocationimport.html',ddemand=ddemand1.to_html(index=False),dsupply=dsupply1.to_html(index=False), maxy=maxy1.to_html(index=False),miny=miny1.to_html(index=False),Vcost=Vcost1.to_html(index=False),Vrisk=Vrisk1.to_html(index=False)) @app.route('/purchaseorderallocationanalyse',methods=['POST','GET']) def purchaseorderallocationanalyse(): ddemand=ddemand1.set_index("Product") dsupply=dsupply1.set_index("Vendor") maxy=maxy1.set_index("Vendors\Product List") miny=miny1.set_index("Vendors\Product List") Vcost =Vcost1.set_index("Vendors\Product List") Vrisk = Vrisk1.set_index("Vendors\Product List") demand=dict(zip(list(ddemand.index),ddemand.iloc[:,0].values)) supply=dict(zip(list(dsupply.index),dsupply.iloc[:,0].values)) max1=maxy.to_dict() min1=miny.to_dict() Vendors=list(dsupply.index) Products=list(ddemand.index) VcostNorm = Vcost.copy() VriskNorm = Vrisk.copy() if request.method=='POST': CostWeight=float(request.form['CostWeight']) RiskWeight=float(request.form['RiskWeight']) Total=[] for i in list(list(VcostNorm)): Tot = VcostNorm[i].sum() Total.append(Tot) for i, j in zip(list(VcostNorm),Total): VcostNorm[i]=VcostNorm[i]/j Total=[] for i in list(list(VriskNorm)): Tot = VriskNorm[i].sum() Total.append(Tot) for i, j in zip(list(VriskNorm),Total): VriskNorm[i]=VriskNorm[i]/j risk=VriskNorm.to_dict() cost=VcostNorm.to_dict() Total_cost=defaultdict(dict) Total_Risk=defaultdict(dict) Total_Cost=pd.DataFrame(CostWeight*pd.DataFrame(cost)) Total_Risk=pd.DataFrame(RiskWeight*pd.DataFrame(risk)) Decision_var=(Total_Cost+Total_Risk).to_dict() prob = pulp.LpProblem("Optimization", pulp.LpMinimize) routes = [(w,b) for w in Products for b in Vendors] x = LpVariable.dicts("route", (Products, Vendors), cat = 'LpInteger') prob += lpSum([x[w][b] * Decision_var[w][b] for (w,b) in routes]),"Objective function" for w in Products: prob += lpSum([x[w][b] for b in Vendors]) == demand[w] for b in Vendors: prob += lpSum([x[w][b] for w in Products]) <= supply[b] for w in Products: for b in Vendors: prob += x[w][b] <= max1[w][b] for w in Products: for b in Vendors: prob += x[w][b] >= min1[w][b] prob.writeLP("SO.lp") prob.solve() opt_status=pulp.LpStatus[prob.status] if opt_status=='Optimal': #print (pulp.value(prob.objective)) re=[] res=[] ress=[] i=0 for variable in prob.variables(): re.append(variable.varValue) res.append(variable.varValue) i=i+1 if (i==len(Total_Cost)): i=0 ress.append(re) re=[] Optimal_quantity1=pd.DataFrame(ress,columns=Vendors,index=Products).astype(int) opq13=[] for column in Optimal_quantity1.columns: opq11=[] opq12=[] opq11.append(column) for val in Optimal_quantity1[column]: opq12.append(val) opq11.append(opq12) opq13.append(opq11) Optimal_quantity2=Optimal_quantity1.T opq23=[] for column in Optimal_quantity2.columns: opq21=[] opq22=[] opq21.append(column) for val in Optimal_quantity2[column]: opq22.append(val) opq21.append(opq22) opq23.append(opq21) VCran=[] for column in Vcost.columns: for val in Vcost[column].values: VCran.append(val) VRran=[] for column in Vrisk.columns: for val in Vrisk[column].values: VRran.append(val) Costproduct=[i*j for (i,j) in zip(res,VCran)] sumCostproduct=sum(Costproduct) Riskproduct=[i*j for (i,j) in zip(res,VRran)] optrisk=sum(Riskproduct)/sum(res) return render_template('purchaseorderallocationoutput.html',username=username,say=1,optrisk=optrisk,sumCostproduct=sumCostproduct,Optimal_quantity1=opq13, Optimal_quantity2=opq23,grpi1=Optimal_quantity1.index,grpi2=Optimal_quantity2.index,warning2="The obtained solution was "+opt_status) return render_template('purchaseorderallocationoutput.html',warning1="The obtained solution was "+opt_status) return render_template('purchaseorderallocationoutput.html') @app.route('/purchaseordermanagement') def purchaseordermanagement(): return render_template('purchaseordermanagement.html') @app.route('/poimport',methods=['POST','GET']) def poimport(): global podata global podatahead db = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) podata = pd.read_sql("SELECT * from po_management", con=db) db.close() podata['POdate']=pd.to_datetime(podata['POdate']) podata['PO_year']=podata['POdate'].dt.year podata['Orderreceiveddate']=pd.to_datetime(podata['Orderreceiveddate']) podata['Orderreceivedyear']=podata['Orderreceiveddate'].dt.year podatahead=podata.head(50) return render_template('purchaseordermanagementview.html',podatahead=podatahead.to_html(index=False)) @app.route('/purchaseordermanagementview') def purchaseordermanagementview(): return render_template('purchaseordermanagementview.html',podatahead=podatahead.to_html(index=False)) @app.route('/pomtype1',methods=['POST','GET']) def pomtype1(): PONO=sorted(podata['POno'].unique()) if request.method=='POST': SelectedPOno=int(request.form['name1']) def POSingle(POno): podat=podata[['POno','POammendmentdate','POdate','POverificationdate','PO_Value']][podata['POno']== POno] return podat.iloc[0,:] snglvw=POSingle(SelectedPOno) svpodata=pd.DataFrame(snglvw).T return render_template('purchaseordermanagement1.html',say=1,sayy=1,PONO=PONO,svpodata=svpodata.to_html(index=False),SelectedPOno=SelectedPOno) return render_template('purchaseordermanagement1.html',say=1,PONO=PONO) @app.route('/pomtype2',methods=['POST','GET']) def pomtype2(): uyear=sorted(podata['PO_year'].unique()) if request.method=='POST': SelectedYear=int(request.form['name1']) podata.loc[(podata.PO_Value >= 0) & (podata.PO_Value < 10000), 'PO_Group'] = '0-10K' podata.loc[(podata.PO_Value >= 10000) & (podata.PO_Value < 50000), 'PO_Group'] = '10K-50K' podata.loc[(podata.PO_Value >= 50000) & (podata.PO_Value < 100000), 'PO_Group'] = '50K-100K' podata.loc[(podata.PO_Value >= 100000) & (podata.PO_Value < 500000), 'PO_Group'] = '100K-500K' podata.loc[(podata.PO_Value >= 500000) & (podata.PO_Value < 1000000), 'PO_Group'] = '500K-1M' podata.loc[podata.PO_Value >= 1000000, 'PO_Group'] = '>1M' podata.loc[podata.PO_Group == '0-10K', 'PO_GroupNo'] = 1 podata.loc[podata.PO_Group == '10K-50K', 'PO_GroupNo'] = 2 podata.loc[podata.PO_Group == '50K-100K', 'PO_GroupNo'] = 3 podata.loc[podata.PO_Group == '100K-500K', 'PO_GroupNo'] = 4 podata.loc[podata.PO_Group == '500K-1M', 'PO_GroupNo'] = 5 podata.loc[podata.PO_Group == '>1M', 'PO_GroupNo'] = 6 def top10POyrcount(year): x=[] y=[] gg1=podata[(podata['PO_year']==year)].groupby(['PO_year','PO_GroupNo','PO_Group'])['PO_year'].size() x=gg1.index.get_level_values(2) z=gg1.index.get_level_values(1) y=gg1.values df=pd.DataFrame({'z':z, 'PO Value':x,'Total Count':y}) df=df.sort_values('z') df=df.drop('z',axis=1) return df df=top10POyrcount(SelectedYear) return render_template('purchaseordermanagement2.html',say=1,sayy=1,uyear=uyear,data=df.values,SelectedYear=SelectedYear) return render_template('purchaseordermanagement2.html',say=1,uyear=uyear) @app.route('/pomtype3',methods=['POST','GET']) def pomtype3(): uyear=sorted(podata['PO_year'].unique()) if request.method=='POST': SelectedYear=int(request.form['name1']) podata.loc[(podata.Inventoryreplenished >= 0) & (podata.Inventoryreplenished < 100), 'Inventory_Group'] = '0-100' podata.loc[(podata.Inventoryreplenished >= 100) & (podata.Inventoryreplenished < 200), 'Inventory_Group'] = '100-200' podata.loc[(podata.Inventoryreplenished >= 200) & (podata.Inventoryreplenished < 300), 'Inventory_Group'] = '200-300' podata.loc[(podata.Inventoryreplenished >= 300) & (podata.Inventoryreplenished < 400), 'Inventory_Group'] = '300-400' podata.loc[(podata.Inventoryreplenished >= 400) & (podata.Inventoryreplenished < 500), 'Inventory_Group'] = '400-500' podata.loc[podata.Inventoryreplenished >= 500,'Inventory_Group'] = '>500' def top10poinvyrcount(year): x=[] y=[] gg1=podata[(podata['PO_year']==year)].groupby(['PO_year','Inventory_Group'])['Inventory_Group'].size() x=gg1.index.get_level_values(1) y=gg1.values df=pd.DataFrame({'Inventory Value':x,'Total Count':y}) df=df.sort_values('Inventory Value') return df df=top10poinvyrcount(SelectedYear) return render_template('purchaseordermanagement3.html',say=1,sayy=1,uyear=uyear,data=df.values,SelectedYear=SelectedYear) return render_template('purchaseordermanagement3.html',say=1,uyear=uyear) @app.route('/pomtype5',methods=['POST','GET']) def pomtype5(): uyear=sorted(podata['PO_year'].unique()) if request.method=='POST': SelectedYear=int(request.form['name1']) podata['date_diff']=podata['Orderreceiveddate']-podata['POdate'] podata.loc[(podata.date_diff >= '15 days') & (podata.date_diff < '18 days'), 'date_diff_Group'] = '15-18' podata.loc[(podata.date_diff >= '18 days') & (podata.date_diff < '21 days'), 'date_diff_Group'] = '18-20' podata.loc[(podata.date_diff >= '21 days') & (podata.date_diff <= '23 days'), 'date_diff_Group'] = '20-23' def topleadyear(year): x=[] y=[] gg1=podata[(podata['PO_year']==year)].groupby(['PO_year','date_diff_Group'])['date_diff_Group'].size() x=gg1.index.get_level_values(1) y=gg1.values df=pd.DataFrame({'Lead_Time':x,'Total Count':y}) return df df=topleadyear(SelectedYear) return render_template('purchaseordermanagement5.html',say=1,sayy=1,uyear=uyear,data=df.values,SelectedYear=SelectedYear) return render_template('purchaseordermanagement5.html',say=1,uyear=uyear) @app.route('/pomtype4',methods=['POST','GET']) def pomtype4(): pocdata=podata.groupby('PO_year')['PO_year'].size() year=pocdata.index.get_level_values(0) count=pocdata.values.astype(int) df=pd.DataFrame({'Year':year,'PO_Count':count}) return render_template('purchaseordermanagement4.html',data=df.values) #Aggregate Planning @app.route("/aggregate",methods = ['GET','POST']) def aggregate(): if request.method== 'POST': from_date=request.form['from'] to_date=request.form['to'] factory=request.form['typedf'] connection = pymysql.connect(host='localhost', user='user', password='', db='test', charset='utf8mb4', cursorclass=pymysql.cursors.DictCursor) x=connection.cursor() x.execute("select * from `agggendata`") connection.commit() data=pd.DataFrame(x.fetchall()) fromdifftodata= data[(data['Month'] > from_date) & (data['Month'] < to_date )] datas=fromdifftodata[fromdifftodata['Factory']==factory] global forecastedplaniingdata forecastedplaniingdata=pd.concat([datas['Month'],datas['Demand_Forecast']],axis=1) dataforecast=pd.concat([datas['Month'],datas['Factory'],datas['Demand_Forecast']],axis=1) return render_template('aggregatedataview.html',datafile=dataforecast.to_html(index=False),graphdata=datas.values) return render_template('aggregate.html') @app.route('/optimize',methods=["GET","POST"]) def optimize(): if request.method=="POST": formDate_val=request.form['formDate'] ToDate_val=request.form['ToDate'] InitialWorkforce_val =request.form['InitialWorkforce'] InitialInventory_val=request.form['InitialInventory'] InitialStockouts_val=request.form['InitialStockouts'] LaborHours_val=request.form['LaborHours'] MaterialCost_val=request.form['MaterialCost'] InventoryHoldingCost_val=request.form['InventoryHoldingCost'] MarginalCostStockOut_val=request.form['MarginalCostStockOut'] HTCost_val=request.form['HTCost'] LayoffCost_val=request.form['LayoffCost'] RegularTimeCost_val=request.form['RegularTimeCost'] OverTimeCost_val=request.form['OverTimeCost'] CostSubcontracting_val=request.form['CostSubcontracting'] # ============================================================================= # #Wr = workforce size for Month t, t = 1, ... , 6 # #Rt = number of employees hired at the beginning of Month t, t = 1, ... , 6 # #Lr =number of employees laid off at the beginning of Month t, t = 1, ... , 6 # #Pt = number of units produced in Month t, t = 1, ... , 6 # #It = inventory at the end of Month t, t = 1, ... , 6 # #St = number of units stocked out/backlogged at the end of Month t, t = 1, ... , 6 # #Ct = number of units subcontracted for Month t, t = 1, ... , 6 # #Ot =number of overtime hours worked in Month t, t = 1, ... , 6 # ============================================================================= # Assign spreadsheet filename to `file` forcast = forecastedplaniingdata[(forecastedplaniingdata['Month']>formDate_val) & (forecastedplaniingdata['Month']<ToDate_val )] datas=pd.concat([forcast['Month'],forcast['Demand_Forecast']],axis=1).reset_index(drop=True) dat=datas['Month'].astype(str) dta=pd.concat([dat,datas['Demand_Forecast']],axis=1) # Print the sheet names Dem_forecast=dta period = [] for x in range(len(dta)): period.append(x) Ini_Workforce=int(InitialWorkforce_val) Ini_Inventory=int(InitialInventory_val) Ini_Stock_Out=int(InitialStockouts_val) #Regular-time labor cost # RC=Parameters['Cost'][5] RC=int(RegularTimeCost_val) #Overtime labor cost OC=int(OverTimeCost_val) #Cost of hiring and layoffs # HR=Parameters['Cost'][3] HR=int(HTCost_val) # LC=Parameters['Cost'][4] LC=int(LayoffCost_val) #Cost of holding inventory # HC=Parameters['Cost'][1] HC=int(InventoryHoldingCost_val) #Cost of stocking out # SC=Parameters['Cost'][2] SC=int(MarginalCostStockOut_val) #Cost of subcontracting # SCC=Parameters['Cost'][7] SCC=int(CostSubcontracting_val) #Material cost # MC=Parameters['Cost'][0] MC=int(MaterialCost_val) #Production Rate kk=int(LaborHours_val) PR=(1/kk) # Create the 'prob' variable to contain the problem data model = LpProblem("Min Cost Aggregate Planning problem",LpMinimize) Workforce= pulp.LpVariable.dict("Workforce",(time for time in period),lowBound=0,cat='Integer') Hired = pulp.LpVariable.dict("Hired",(time for time in period),lowBound=0,cat='Integer') Laid_off = pulp.LpVariable.dict("Laid_off",(time for time in period),lowBound=0,cat='Integer') Production = pulp.LpVariable.dict("Production",(time for time in period),lowBound=0,cat='Integer') Inventory = pulp.LpVariable.dict("Inventory",(time for time in period),lowBound=0,cat='Integer') Stock_Out = pulp.LpVariable.dict("Stock_Out",(time for time in period),lowBound=0,cat='Integer') Subcontract = pulp.LpVariable.dict("Subcontract",(time for time in period),lowBound=0,cat='Integer') Overtime_Hrs = pulp.LpVariable.dict("Overtime_Hrs",(time for time in period),lowBound=0,cat='Integer') model += pulp.lpSum( [RC * Workforce[time] for time in period] + [HR * Hired[time] for time in period] + [LC * Laid_off[time] for time in period] + [MC * Production[time] for time in period] + [HC * Inventory[time] for time in period] + [SC * Stock_Out[time] for time in period] + [SCC * Subcontract[time] for time in period] + [OC * Overtime_Hrs[time] for time in period] ) for time in period: if(time==0): model += pulp.lpSum(Workforce[time]-Ini_Workforce-Hired[time]+Laid_off[time])==0 model += pulp.lpSum(Ini_Inventory+Production[time]+Subcontract[time]\ -Dem_forecast['Demand_Forecast'][time]-Ini_Stock_Out-Inventory[time]+Stock_Out[time])==0 else: model += pulp.lpSum(Workforce[time]-Workforce[time-1]-Hired[time]+Laid_off[time])==0 model += pulp.lpSum(Inventory[time-1]+Production[time]+Subcontract[time]\ -Dem_forecast['Demand_Forecast'][time]-Stock_Out[time-1]-Inventory[time]+Stock_Out[time])==0 model += pulp.lpSum(Production[time]-40*Workforce[time]+(Overtime_Hrs[time]*PR))<=0 model += pulp.lpSum(Overtime_Hrs[time]-10*Workforce[time])<=0 model.solve() print("Status:", LpStatus[model.status]) for v in model.variables(): print(v.name, "=", v.varValue) print("Total Cost of Ingredients per can = ", value(model.objective)) #Storing Name and Values Name=[] values=[] for v in model.variables(): Name.append(v.name) values.append(v.varValue) #counting no of hired count=0 for k in range(0,len(Name)): val=Name[k] if val[0:5]=='Hired': count=count+1 Name_df=pd.DataFrame(Name) valdf=pd.DataFrame(values) Namearray=pd.DataFrame(Name_df.values.reshape(count, int(len(Name)/count), order='F')) Valuesarray=pd.DataFrame(valdf.values.reshape(count, int(len(Name)/count), order='F')) kk=pd.DataFrame(Namearray.iloc[0]) kk.columns=['val'] Namesofcol = kk['val'].map(lambda x: x.lstrip('+-').rstrip('_0')) Valuesarray.columns = [Namesofcol] opt = pd.DataFrame(Valuesarray) datasor = pd.concat([opt['Inventory'],opt['Stock_Out'],opt['Subcontract'],opt['Production'],opt['Hired'],opt['Laid_off'],opt['Workforce'],opt['Overtime_Hrs']],axis=1) dd = pd.DataFrame(Dem_forecast) dfss =
pd.concat([dd,datasor],axis=1)
pandas.concat
#!/usr/bin/python print('process_financials_q - initiating.') import os import pandas as pd cwd = os.getcwd() input_folder = "0_input" temp_folder = "temp" financials_temp = "financials_q" from pathlib import Path paths = Path(os.path.join(cwd,input_folder,temp_folder,financials_temp)).glob('**/*.csv') financials_table = [] for path in paths: path_in_str = str(path) try: fundamentals_parse = pd.read_csv(path,low_memory=False) if not fundamentals_parse.empty: financials_table.append(fundamentals_parse) print(path_in_str) else: pass except: pass # export financials_table =
pd.concat(financials_table)
pandas.concat
import os import zipfile import requests import numpy as np import pandas as pd from pathlib import Path from tqdm import tqdm def download_file(url, filename): r = requests.get(url, stream=True) total_size = int(r.headers.get("content-length", 0)) block_size = 1024 # 1 Kibibyte t = tqdm(total=total_size, unit="iB", unit_scale=True) with open(filename, "wb") as f: for data in r.iter_content(block_size): t.update(len(data)) f.write(data) t.close() def load_VSN_data(): data_dir = Path("./data") / "vehicle_sensor" if not data_dir.exists(): data_dir.mkdir(parents=True) subdirs = [f for f in data_dir.iterdir() if f.is_file()] if not subdirs: url = "http://www.ecs.umass.edu/~mduarte/images/event.zip" zip_file = data_dir / "original_data.zip" download_file(url, zip_file) with zipfile.ZipFile(zip_file, "r") as zip_ref: zip_ref.extractall(data_dir) data_dir = data_dir / "events" / "runs" x = [] y = [] task_index = [] for root, dir, file_names in os.walk(data_dir): if "acoustic" not in root and "seismic" not in root: x_tmp = [] for file_name in file_names: if "feat" in file_name: dt_tmp = pd.read_csv( os.path.join(root, file_name), sep=" ", skipinitialspace=True, header=None, ).values[:, :50] x_tmp.append(dt_tmp) if len(x_tmp) == 2: x_tmp = np.concatenate(x_tmp, axis=1) x.append(x_tmp) task_index.append( int(os.path.basename(root)[1:]) * np.ones(x_tmp.shape[0]) ) y.append( int("aav" in os.path.basename(os.path.dirname(root))) * np.ones(x_tmp.shape[0]) ) x = np.concatenate(x) y = np.concatenate(y) task_index = np.concatenate(task_index) argsort = np.argsort(task_index) x = x[argsort] y = y[argsort] task_index = task_index[argsort] split_index = np.where(np.roll(task_index, 1) != task_index)[0][1:] x = np.split(x, split_index) y = np.split(y, split_index) df = pd.DataFrame() feature_cols = [] for i, (p_x, p_y) in enumerate(zip(x, y)): p_df = pd.DataFrame(p_x) feature_cols = p_df.columns.astype(str) p_df["vehicle"] = str(i) p_df["y"] = p_y df =
pd.concat([df, p_df], axis=0)
pandas.concat
from c0101_retrieve_ref import retrieve_ref from c0102_timestamp import timestamp_source from c0103_trim_record_to_max import trim_record_to_max from c0104_plot_timestamp import plot_timestamp from c0105_find_records import find_records from c0106_record_to_summary import record_to_summary from c0107_decide_inclusion import decide_inclusion from c0108_save_meta import save_meta from c0109_retrieve_meta import retrieve_meta from c0110_find_temp_end import find_temp_end from c0111_retrieve_analyzed import retrieve_analyzed from c0112_plot_truncate import plot_truncate from c0113_plot_acc import plot_acc from c0202_machineLearningBasic import machineLearningBasic import os import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import statistics def statisticSegments(): """ Calculate and save statistics from each record """ print("begin statistical calculation") study_list = retrieve_ref('study_list') sensor_list = retrieve_ref('sensor_list') segment_list = retrieve_ref('segment_list') analysis_type = 'truncate' for study in study_list: df_meta = retrieve_meta(study) source_path = list(df_meta['source_path']) dfStatistics = pd.DataFrame() statistics_types = ['mean', 'median', 'pVariance', 'stdev' 'quan'] quan_types = [10, 20, 30, 40, 50, 60, 70, 80, 90] for record in source_path: dfStatistics['source_path'] = source_path for sensor in sensor_list: for segment in segment_list: for statis in statistics_types: colName = str(sensor + '_' + segment + '_' + statis ) if statis == 'quan': for quanNum in quan_types: colName = str(sensor + '_' + segment + '_' + statis + '_' + str(quanNum) ) dfStatistics[colName] = [None] * len(source_path) analyzed_path = os.path.join(study, 'analyzed') if not os.path.isdir(analyzed_path): os.mkdir(analyzed_path) analyzed_path = os.path.join(study, 'analyzed', 'statistics') if not os.path.isdir(analyzed_path): os.mkdir(analyzed_path) analyzed_file = os.path.join(analyzed_path, 'statisticsSegments.csv') print('analyzed_file = ' + str(analyzed_file)) dfStatistics.to_csv(analyzed_file) # retrieve statistics file df =
pd.read_csv(analyzed_file)
pandas.read_csv
import os, sys import argparse import pandas as pd import numpy as np from models import AVAILABLE_MODELS from server import cpapi from sklearn.metrics import mean_squared_error, r2_score from sklearn.model_selection import train_test_split from tqdm import tqdm def get_data(repo_url, repo_data_directory, data_format='tgz', dataset_id=None): clone_dir = '/tmp/emission_data' print(f'Cloning repo {repo_url} to directory {clone_dir}...') os.system(f'git clone {repo_url} {clone_dir}/') if (data_format=='tgz'): print(f'Unzipping with tar...') os.system(f'for i in {clone_dir}/{repo_data_directory}/*.tgz; do tar -zxvf "$i" -C {clone_dir}/ ;done') elif (data_format=='csv'): os.system(f'for i in {clone_dir}/{repo_data_directory}/*.csv; do cp "$i" {clone_dir}/ ;done') else: raise ValueError('Source data format not recognized. Only tgz and csv supported.') # Remove known garbage file in textile source data v. 1.0.0 garbage_file = f'{clone_dir}/._textile-v1.0.0-5.csv' if (os.path.isfile(garbage_file)): print(f'Removing garbage file {garbage_file}') os.system(f'rm {garbage_file}') content = sorted(filter(lambda x: x.endswith('.csv'), os.listdir(clone_dir))) return pd.concat((pd.read_csv(f'{clone_dir}/{f}') for f in tqdm(content, desc="Reading csv"))) def get_data_from_dir(local_data_dir=None, dataset_id=None): print(f'Using source data from local dir {local_data_dir}') content = sorted(filter(lambda x: x.endswith('.csv'), os.listdir(local_data_dir))) return pd.concat((pd.read_csv(f'{local_data_dir}/{f}') for f in tqdm(content, desc="Reading csv"))) def prepare_data(local_data=False, local_data_dir=None, repo_url=None, repo_data_directory=None, data_format='tgz', dataset_id=None, random_state=42): X = None print("Loading csv files, this may take a while...") if (local_data): X = get_data_from_dir(local_data_dir,dataset_id) else: X = get_data(repo_url, repo_data_directory, data_format, dataset_id) X = X[~X['co2_total'].isna()] y = X['co2_total'].copy() X = X.drop('co2_total', axis=1) print('Split to training and testing data') return train_test_split(X, y, test_size=0.2, random_state=random_state) def do_train(model_name, base_dir=None, local_data=False, local_data_dir=None, repo_url='https://github.com/Compensate-Operations/emission-sample-data.git', repo_data_directory='datasets/textile-v1.0.0', data_format='tgz', dataset_id=None, random_state=42, save_test=False): if (base_dir == None): base_dir = os.environ.get('MODEL_DIR', './') X_train, X_test, y_train, y_test = prepare_data(local_data, local_data_dir, repo_url, repo_data_directory, data_format, dataset_id, random_state) print('Data preparation complete. Starting training of model.') model = AVAILABLE_MODELS[model_name]() model.train(X_train, X_test, y_train, y_test, base_dir) def do_eval(model_name, local_data=False, local_data_dir=None, repo_url='https://github.com/Compensate-Operations/emission-sample-data.git', repo_data_directory='datasets/textile-v1.0.0', data_format='tgz', dataset_id=None, random_state=42, save_test=False): X_train, X_test, y_train, y_test = prepare_data(local_data, local_data_dir, repo_url, repo_data_directory, data_format, dataset_id, random_state) preds = {} print('Data preparation complete. Starting training and evaluation of model.') model = AVAILABLE_MODELS[model_name]() model.train(X_train, X_test, y_train, y_test, base_dir) r2_score, rmse_score, y_pred = model.eval(X_test, y_test) preds[model_name]=y_pred if save_test: pd.concat([X_test.reset_index(drop=True), y_test.reset_index(drop=True),
pd.DataFrame(preds)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import pandas as pd import numpy as np import argparse import time import sys kinetics_filename=sys.argv[1] time_lag_file=sys.argv[2] output_filename=sys.argv[3] final_output_filename=sys.argv[4] # print(final_output_filename) df=pd.read_csv(kinetics_filename) #dropping null values df=df.dropna() df['co_cited_year']=df['co_cited_year'].astype(int) df['frequency']=df['frequency'].astype(int) y_df=pd.read_csv(time_lag_file) y_df=y_df[['cited_1','cited_2','cited_1_year','cited_2_year','first_co_cited_year']] # print(df.head()) zero_df=pd.merge(df,y_df,on=['cited_1','cited_2'],how='inner') #Faulty co-cited data should be eliminated here zero_df=zero_df[zero_df['co_cited_year']>=zero_df['first_co_cited_year']] zero_df['pfcy']=zero_df[['cited_1_year','cited_2_year']].max(axis=1) zero_df=zero_df.drop(columns=['cited_1_year','cited_2_year']) print('printing zero df') print(zero_df) #First write code to generate 0 rows of data #Get all data where pfcy #temp_df=zero_df.groupby(by=['cited_1','cited_2'],as_index=False)['first_co_cited_year','pfcy'].min() temp_df=zero_df.groupby(by=['cited_1','cited_2'],as_index=False)['first_co_cited_year','co_cited_year','pfcy'].min() # print(temp_df.head()) #print(temp_df[(temp_df['cited_1']==14949207) & (temp_df['cited_2']==17184389)]) #temp_df=temp_df[temp_df['pfcy'] < temp_df['first_co_cited_year']] temp_df=temp_df[temp_df['pfcy'] < temp_df['co_cited_year']] print('debug prints') print(temp_df) #temp_df.columns=['cited_1','cited_2','first_co_cited_year','pfcy'] print('debug prints') print(temp_df) temp_df['diff']=temp_df['co_cited_year']-temp_df['pfcy'] temp_df['cited_1']=temp_df['cited_1'].astype(int) temp_df=temp_df.loc[temp_df.index.repeat(temp_df['diff'])] temp_df['rank']=temp_df.groupby(by=['cited_1','cited_2'])['pfcy'].rank(method='first') temp_df['rank']=temp_df['rank'].astype(int) temp_df['rank']=temp_df['rank']-1 temp_df['co_cited_year']=temp_df['pfcy']+temp_df['rank'] temp_df['frequency']=0 temp_df=temp_df[['cited_1','cited_2','co_cited_year','frequency','first_co_cited_year']] print('printing temp df') print(temp_df) # print(df[(df['cited_1']==4532) & (df['cited_2']==10882054)][['cited_1','cited_2','co_cited_year','frequency','first_co_cited_year']]) # tt=tt[['cited_1','cited_2','first_co_cited_year','','']] #Merge df with y_df so that it gets first_co_cited_year column print('length of original df',len(df)) df=pd.merge(df,y_df[['cited_1','cited_2','first_co_cited_year']],on=['cited_1','cited_2'],how='inner') print(df.head()) print('length of original df',len(df)) #Faulty co-cited data should be eliminated here as well print('lenght before eliminating wrong data',len(df)) df=df[df['co_cited_year']>=df['first_co_cited_year']] print('lenght after eliminating wrong data',len(df)) print('Total data points',len(df)) final_df=df.append(temp_df).sort_values(by=['cited_1','cited_2','co_cited_year']) print('Total data points',len(final_df)) # print(final_df[(final_df['cited_1']==4532) & (final_df['cited_2']==10882054)]) final_df=final_df.copy() final_df.reset_index(inplace=True,drop=True) # print(final_df[(final_df['cited_1']==4532) & (final_df['cited_2']==10882054)]) final_df['cited_1']=final_df['cited_1'].astype(int) final_df['co_cited_year']=final_df['co_cited_year'].astype(int) #Now generating peak_frequency,first_peak_year,min_frequency temp_df=final_df.groupby(by=['cited_1','cited_2'],as_index=False)['frequency'].max() print(temp_df.head()) temp_df=pd.merge(final_df,temp_df,on=['cited_1','cited_2','frequency'],how='inner') temp_df=temp_df.groupby(by=['cited_1','cited_2'],as_index=False)['frequency','co_cited_year'].min() print(temp_df.head()) temp_df.columns=['cited_1','cited_2','peak_frequency','first_peak_year'] print(temp_df.head()) final_df=pd.merge(final_df,temp_df,on=['cited_1','cited_2'],how='inner') print('Size',len(final_df)) # final_df=pd.merge(final_df,temp_df,on=['cited_1','cited_2'],how='inner') # print('Size',len(final_df)) final_df=final_df[final_df['co_cited_year'] <= final_df['first_peak_year']] # expected size for bin 221381 print('Size after filtering from peak year',len(final_df)) final_df['co_cited_year_ranks']=final_df.groupby(by=['cited_1','cited_2'])['co_cited_year'].rank(method='first') temp_df=final_df[final_df['co_cited_year_ranks']==1][['cited_1','cited_2','frequency']] temp_df.columns=['cited_1','cited_2','min_frequency'] temp_df=temp_df.drop_duplicates() final_df=final_df.drop(columns=['co_cited_year_ranks']) print('Adding min frequency') final_df=
pd.merge(final_df,temp_df,on=['cited_1','cited_2'],how='inner')
pandas.merge
import numpy as np import pandas as pd #importing datetime libarary import datetime from datetime import date, timedelta # from collections import defaultdict df = pd.read_excel('googling_filtered.xlsx') df['Date'] = [datetime.datetime.strptime(x ,'%b %d, %Y') for x in df['Date']] df['Date'] = [x.to_pydatetime().date() for x in df['Date']] #searching datas within 30 days end_date = date.today() start_date = end_date - datetime.timedelta(days=30) def risk_cal(df = df, startdate = start_date, enddate = end_date): # Search the data recorded within 30days in a speicific country mask = (df['Date'] >= startdate) & (df['Date'] <= enddate) df = df[mask] #make an empty dictionary factor_dict = defaultdict(list) for time in df['Date'].unique(): frequency_factor = len(df[df['Date'] == time]) time_factor = enddate - time time_factor = time_factor / timedelta (days=1) time_factor = 1 / ( time_factor + 1 ) factor_dict['Date'].append(time) factor_dict['factor'].append(frequency_factor * time_factor) factor_frame = pd.DataFrame(factor_dict) if factor_frame.empty: return None risk = factor_frame['factor'].sum() * 100 return risk Risk_Score = defaultdict(list) while start_date <= end_date: dates = start_date #.strftime("%Y-%m-%d") print(dates , risk_cal(df = df, startdate = start_date, enddate = end_date)) Risk_Score['Date'].append(dates) Risk_Score['Risk_Score'].append(risk_cal(df = df, enddate = dates)) start_date += datetime.timedelta(days=1) Risk_Score =
pd.DataFrame(Risk_Score)
pandas.DataFrame
import gzip import pickle from os import path from time import time import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from openTSNE import nearest_neighbors from openTSNE import utils with utils.Timer("Loading data...", verbose=True): with gzip.open(path.join("data", "macosko_2015.pkl.gz"), "rb") as f: data = pickle.load(f) x = data["pca_50"] y, cluster_ids = data["CellType1"], data["CellType2"] results = [] n_reps = 5 for sample_size in range(1000, 8_001, 1000): print("Sample size:", sample_size) indices = np.random.choice(range(x.shape[0]), size=sample_size) sample = x[indices] for i in range(n_reps): start = time() nn = nearest_neighbors.BallTree(metric="euclidean", n_jobs=1) nn.build(sample, k=15) results.append(("Ball Tree (1 core)", sample_size, time() - start)) for i in range(n_reps): start = time() nn = nearest_neighbors.Annoy(metric="euclidean", n_jobs=1) nn.build(sample, k=15) results.append(("Annoy (1 core)", sample_size, time() - start)) for i in range(n_reps): start = time() nn = nearest_neighbors.BallTree(metric="euclidean", n_jobs=4) nn.build(sample, k=15) results.append(("Ball Tree (4 cores)", sample_size, time() - start)) for i in range(n_reps): start = time() nn = nearest_neighbors.Annoy(metric="euclidean", n_jobs=4) nn.build(sample, k=15) results.append(("Annoy (4 cores)", sample_size, time() - start)) df =
pd.DataFrame(results, columns=["method", "size", "time"])
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[47]: from keras.callbacks import ModelCheckpoint from keras import backend as K from keras import optimizers from keras.layers import Dense from keras.layers import Dense, Dropout from keras.models import Sequential from keras.wrappers.scikit_learn import KerasClassifier from pandas import ExcelFile from pandas import ExcelWriter from scipy import ndimage from scipy.stats import randint as sp_randint from sklearn.base import BaseEstimator from sklearn.base import TransformerMixin from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import SelectFromModel from sklearn import datasets from sklearn import metrics from sklearn import pipeline from sklearn.metrics import roc_auc_score, roc_curve from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.model_selection import PredefinedSplit from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import ShuffleSplit from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import FunctionTransformer from sklearn.preprocessing import Imputer from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler from sklearn.utils import resample from tensorflow.python.framework import ops import keras import matplotlib.pyplot as plt import numpy as np import openpyxl import pandas as pd import scipy import tensorflow as tf import xlsxwriter import numpy as np from keras import layers from keras.layers import Input, Add, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D from keras.models import Model, load_model from keras.preprocessing import image from keras.utils import layer_utils from keras.utils.data_utils import get_file from keras.applications.imagenet_utils import preprocess_input from keras.utils.vis_utils import model_to_dot from keras.utils import plot_model import tensorflow as tf from keras.initializers import glorot_uniform import scipy.misc from matplotlib.pyplot import imshow import keras.backend as K from keras.preprocessing.text import one_hot from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Dense from keras.layers import Flatten from keras.layers.embeddings import Embedding import tensorflow as tf import keras from keras import backend as K import rdkit from rdkit import Chem from rdkit.Chem import AllChem import pandas as pd import numpy as np import os from matplotlib import pyplot as plt import keras from sklearn.utils import shuffle from keras.models import Sequential, Model from keras.layers import Conv2D, MaxPooling2D, Input, GlobalMaxPooling2D from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.optimizers import Adam from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import ReduceLROnPlateau from sklearn.utils import shuffle from multiprocessing import freeze_support from sklearn import preprocessing from rdkit import Chem from mordred import Calculator, descriptors from padelpy import from_smiles from padelpy import padeldescriptor # In[2]: from padelpy import from_smiles # In[48]: train_data = pd.read_csv('train.csv') # In[49]: test_data = pd.read_csv('test.csv') # In[50]: X_train_smiles=np.array(train_data ['smiles']) # In[51]: X_test_smiles=np.array(test_data ['smiles']) # In[52]: print(X_train_smiles.shape) print(X_test_smiles.shape) # In[53]: print(X_train_smiles.shape[0]) # In[54]: Y_train=np.array(train_data ['ACTIVITY']) # In[55]: Y_test=np.array(test_data ['ACTIVITY']) # In[56]: #full_data = pd.read_csv('data.csv') # In[57]: charset = set("".join(list(train_data.smiles))+"!E") char_to_int = dict((c,i) for i,c in enumerate(charset)) int_to_char = dict((i,c) for i,c in enumerate(charset)) embed = max([len(smile) for smile in train_data.smiles]) + 5 print (str(charset)) print(len(charset), embed) # In[58]: char_to_int # In[59]: def vectorize(smiles): one_hot = np.zeros((smiles.shape[0], embed , len(charset)),dtype=np.int8) for i,smile in enumerate(smiles): #encode the startchar one_hot[i,0,char_to_int["!"]] = 1 #encode the rest of the chars for j,c in enumerate(smile): one_hot[i,j+1,char_to_int[c]] = 1 #Encode endchar one_hot[i,len(smile)+1:,char_to_int["E"]] = 1 #Return two, one for input and the other for output return one_hot[:,0:-1,:], one_hot[:,1:,:] # In[60]: X_train, _ = vectorize(X_train_smiles) X_test, _ = vectorize(X_test_smiles) # In[61]: X_train[8].shape # In[62]: vocab_size=len(charset) # In[ ]: # In[ ]: # In[63]: from keras.preprocessing.text import one_hot from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Dense from keras.layers import Flatten from keras.layers.embeddings import Embedding # In[64]: print(np.shape(np.argmax(X_train, axis=2))) # In[65]: print(np.shape(X_train)) # In[66]: print(np.shape(X_test)) # In[67]: dataX_train=np.argmax(X_train, axis=2) dataX_test=np.argmax(X_test, axis=2) dataY_train=Y_train dataY_test=Y_test # In[68]: print('dataX_test Shape: '+str(np.shape(dataX_test))) print('dataY_test Shape: '+str(np.shape(dataY_test))) # In[69]: print('dataX_train Shape: '+str(np.shape(dataX_train))) print('dataY_train Shape: '+str(np.shape(dataY_train))) # In[70]: data_y_train = (np.array(dataY_train, dtype=np.float32)).reshape(dataY_train.shape[0],1) # In[71]: print('data_y_train Shape: '+str(np.shape(data_y_train))) # In[72]: data_y_test = (np.array(dataY_test, dtype=np.float32)).reshape(dataY_test.shape[0],1) # In[73]: print('data_y_test Shape: '+str(np.shape(data_y_test))) # In[74]: data_x_test=dataX_test # In[75]: data_x_train=dataX_train # In[76]: print(np.shape(data_x_train)) # In[77]: Max_len=data_x_train.shape[1] # In[78]: X = tf.placeholder(tf.float32, [None, Max_len]) Y = tf.placeholder(tf.float64, [None, 1]) # In[79]: py_x =keras.layers.Embedding(1025, 400, input_length=Max_len)(X) # In[80]: py_x=keras.layers.Conv1D(192,10,activation='relu')(py_x) py_x=keras.layers.BatchNormalization()(py_x) py_x=keras.layers.Conv1D(192,5,activation='relu')(py_x) py_x=keras.layers.Conv1D(192,3,activation='relu')(py_x) py_x=keras.layers.Flatten()(py_x) # In[81]: py_x1_keras = keras.layers.Dense(100, activation='relu')(py_x) py_x1_keras = keras.layers.Dropout(0.7)(py_x1_keras) # In[82]: py_x1 = keras.layers.Dense(1, activation='linear')(py_x1_keras) # In[83]: cost1 = tf.losses.mean_squared_error(labels=Y, predictions=py_x1) # In[84]: train_op1 = tf.train.AdamOptimizer(learning_rate = 5e-6).minimize(cost1) # In[85]: prediction_error1 = tf.sqrt(cost1) # In[86]: import tensorflow as tf # In[ ]: # In[87]: batch_size = 32 # In[88]: from sklearn.metrics import r2_score from sklearn.metrics import mean_absolute_error SAVER_DIR = "model_ld50" saver = tf.train.Saver() ckpt_path = os.path.join(SAVER_DIR, "model_ld50") ckpt = tf.train.get_checkpoint_state(SAVER_DIR) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) best_rmse = 10 best_idx = 0 LD50_R2_train = [] #LD50_R2_valid = [] LD50_R2_test = [] LD50_RMSE_train = [] #LD50_RMSE_valid = [] LD50_RMSE_test = [] LD50_MAE_train = [] #LD50_MAE_valid = [] LD50_MAE_test = [] steps=[] for i in range(5000): steps.append(i) training_batch = zip(range(0, len(data_x_train), batch_size), range(batch_size, len(data_x_train)+1, batch_size)) #for start, end in tqdm.tqdm(training_batch): for start, end in training_batch: sess.run(train_op1, feed_dict={X: data_x_train[start:end], Y: data_y_train[start:end]}) merr_train_1 = sess.run(prediction_error1, feed_dict={X: data_x_train, Y: data_y_train}) print('Epoch Number: '+str(i)) print('RMSE_Train: '+str(merr_train_1)) LD50_RMSE_train.append(merr_train_1) train_preds1 = sess.run(py_x1, feed_dict={X: data_x_train}) train_r1 = r2_score(data_y_train, train_preds1) train_mae = mean_absolute_error(data_y_train, train_preds1) print('R^2_Train: '+str(train_r1)) LD50_R2_train.append(train_r1) print('MAE_Train: '+str(train_mae)) LD50_MAE_train.append(train_mae) print(" ") merr_test_1 = sess.run(prediction_error1, feed_dict={X: data_x_test, Y: data_y_test}) print('Epoch Number: '+str(i)) print('RMSE_test: '+str(merr_test_1)) LD50_RMSE_test.append(merr_test_1) test_preds1 = sess.run(py_x1, feed_dict={X: data_x_test}) test_r1 = r2_score(data_y_test, test_preds1) test_mae = mean_absolute_error(data_y_test, test_preds1) print('R^2_test: '+str(test_r1)) LD50_R2_test.append(test_r1) print('MAE_test: '+str(test_mae)) LD50_MAE_test.append(test_mae) print(" ") if best_rmse > merr_test_1: best_idx = i best_rmse = merr_test_1 save_path = saver.save(sess, ckpt_path) print('model saved!') print("###########################################################################") # In[89]: #################################################################### #=========================== test part ============================# #################################################################### saver = tf.train.Saver() ckpt_path = os.path.join(SAVER_DIR, "model") ckpt = tf.train.get_checkpoint_state(SAVER_DIR) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver.restore(sess, ckpt.model_checkpoint_path) print("model loaded successfully!") test_rmse = sess.run(prediction_error1, feed_dict={X: data_x_test, Y: data_y_test}) print('RMSE of the test after loading the best model: '+str(test_rmse)) test_preds = sess.run(py_x1, feed_dict={X: data_x_test}) test_r = r2_score(data_y_test, test_preds1) test_mae = mean_absolute_error(data_y_test, test_preds1) print('R^2_test after loading the best model: '+str(test_r)) print('MAE_test after loading the best model: '+str(test_mae)) print(test_preds) test_preds = pd.DataFrame(test_preds) print(test_preds) test_preds.columns = ['C1DS_out'] writer =
pd.ExcelWriter('test_preds_C1DS.xlsx',engine='xlsxwriter')
pandas.ExcelWriter
import os, sys import numpy as np import pandas as pd import subprocess import glob import json import csv import pickle from Bio.Seq import Seq from itertools import product #-------------------------------------------------------------------------------------------- def codon_translationrates_indprofiles(data_scikit, data_mm, codon_seq): """ extracts distributions of codon translation rates from scikit ribo data scikit_data: dictionary of scikit_data per gene with profiles of each experiment codon_sequence: dictionary of mRNA sequence in codons """ trim = 20 # omit first and last 20 codons codon_duplets = [(x+y) for x in codons_nonstop for y in codons_nonstop] ALL_TR = [] ALL2_TR = [] TR_df = pd.DataFrame(columns=codons_nonstop) TR2_df = pd.DataFrame(columns=codon_duplets) TR2_raw_df = pd.DataFrame(columns=['codonpair', 'class', 'RD']) codon_counts = np.zeros(( 20, len(codons_nonstop) )) codon_duplet_counts = np.zeros(( 20, len(codon_duplets) )) list_orfs = list( data_scikit.keys() ) counter_cp = 0 coverage = np.zeros(( 20 )) for experiment in range( 20 ): codon_TR = [[] for i in range( len(codons_nonstop) )] codon2_TR = [[] for i in range( len(codon_duplets) )] coverage = [] print("Analyzing experiment", experiment) for ix, orf in enumerate(list_orfs): current_data = data_scikit[orf] current_mm = data_mm[orf] current_seq = np.array( codon_seq[orf] ) print( np.sum( current_data[:,current_mm], 1)/np.shape(current_data[:,current_mm])[1] ) #print( np.mean(current_data[current_mm]) ) if current_data.shape[1] == len(current_mm): for pos in range(trim, len(current_seq) - (trim+2) ): if current_mm[pos]: current_codon = current_seq[pos] current_codon_idx = codons_nonstop.index(current_codon) current_TR = current_data[experiment,pos] codon_TR[current_codon_idx].append(current_TR) codon_counts[experiment, current_codon_idx] += 1 if current_mm[pos] and current_mm[pos+1]: current_codon_pair = current_seq[pos] + current_seq[pos+1] current_codon_pair_idx = codon_duplets.index(current_codon_pair) current_pair_TR = (float(current_data[experiment, pos]) + float(current_data[experiment, pos+1]) )/2. codon2_TR[current_codon_pair_idx].append(current_pair_TR) codon_duplet_counts[experiment, current_codon_pair_idx] += 1 if current_codon_pair in good_inhibitory: TR2_raw_df.loc[len(TR2_raw_df)] = (current_codon_pair, 'ind', current_pair_TR) else: counter_cp += 1 if counter_cp % 10 == 0: # thin out 1 in 10 to reduce file size -> thin out more for faster run time! TR2_raw_df.loc[len(TR2_raw_df)] = ('non', 'ind', current_pair_TR) TR_mean = [ np.around( np.mean(np.array(codon_TR[x])), 5) for x in range( len(codons_nonstop) ) ] TR_median = [ np.around( np.median(np.array(codon_TR[x])), 5) for x in range( len(codons_nonstop) ) ] TR_df.loc[experiment] = TR_mean TR2_mean = [ np.around( np.mean(np.array(codon2_TR[x])), 3) for x in range( len(codon_duplets) ) ] TR2_df.loc[experiment] = TR2_mean TR_df.to_csv("../data/figures/figure2/codon_rates.txt", header=True, index=False, sep='\t') TR2_df.to_csv("../data/figures/figure2/codon_duplets_rates.txt", header=True, index=False, sep='\t') TR2_raw_df.to_csv("../data/figures/figure2/codonpair_rates_raw10_ind.txt", header=True, index=False, sep='\t') np.savetxt("../data/figures/figure2/codon_counts.txt", codon_counts, fmt='%i') np.savetxt("../data/figures/figure2/codon_duplet_counts.txt", codon_duplet_counts, fmt='%i') return TR_df #-------------------------------------------------------------------------------------------- def codon_translationrates_consensus(data_consensus, data_mean, data_mm, codon_seq): """ extracts distributions of codon translation rates from scikit ribo data scikit_data: dictionary of scikit_data per gene with profiles of each experiment codon_sequence: dictionary of mRNA sequence in codons """ trim = 20 # omit first and last 20 codons list_orfs = list( data_consensus.keys() ) codon_TR = [[] for i in range( len(codons_nonstop) )] codon_TR_naive = [[] for i in range( len(codons_nonstop) )] codon_duplets = [(x+y) for x in codons_nonstop for y in codons_nonstop] codon2_TR = [[] for i in range( len(codon_duplets) )] codon2_TR_naive = [[] for i in range( len(codon_duplets) )] TR2_cons_df =
pd.DataFrame(columns=['codonpair', 'class', 'RD'])
pandas.DataFrame
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import array as arr import datetime import io import operator import random import re import string import textwrap from copy import copy import cupy import numpy as np import pandas as pd import pyarrow as pa import pytest from numba import cuda import cudf from cudf.core._compat import PANDAS_GE_110, PANDAS_GE_120 from cudf.core.column import column from cudf.tests import utils from cudf.tests.utils import ( ALL_TYPES, DATETIME_TYPES, NUMERIC_TYPES, assert_eq, assert_exceptions_equal, does_not_raise, gen_rand, ) def test_init_via_list_of_tuples(): data = [ (5, "cats", "jump", np.nan), (2, "dogs", "dig", 7.5), (3, "cows", "moo", -2.1, "occasionally"), ] pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def _dataframe_na_data(): return [ pd.DataFrame( { "a": [0, 1, 2, np.nan, 4, None, 6], "b": [np.nan, None, "u", "h", "d", "a", "m"], }, index=["q", "w", "e", "r", "t", "y", "u"], ), pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": ["a", "b", "u", "h", "d"]}), pd.DataFrame( { "a": [None, None, np.nan, None], "b": [np.nan, None, np.nan, None], } ), pd.DataFrame({"a": []}), pd.DataFrame({"a": [np.nan], "b": [None]}), pd.DataFrame({"a": ["a", "b", "c", None, "e"]}), pd.DataFrame({"a": ["a", "b", "c", "d", "e"]}), ] @pytest.mark.parametrize("rows", [0, 1, 2, 100]) def test_init_via_list_of_empty_tuples(rows): data = [()] * rows pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq( pdf, gdf, check_like=True, check_column_type=False, check_index_type=False, ) @pytest.mark.parametrize( "dict_of_series", [ {"a": pd.Series([1.0, 2.0, 3.0])}, {"a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 4.0], index=[1, 2, 3]), }, {"a": [1, 2, 3], "b": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "b": pd.Series([1.0, 2.0, 4.0], index=["c", "d", "e"]), }, { "a": pd.Series( ["a", "b", "c"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), "b": pd.Series( ["a", " b", "d"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), }, ], ) def test_init_from_series_align(dict_of_series): pdf = pd.DataFrame(dict_of_series) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) for key in dict_of_series: if isinstance(dict_of_series[key], pd.Series): dict_of_series[key] = cudf.Series(dict_of_series[key]) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) @pytest.mark.parametrize( ("dict_of_series", "expectation"), [ ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 5, 6]), }, pytest.raises( ValueError, match="Cannot align indices with non-unique values" ), ), ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 4, 5]), }, does_not_raise(), ), ], ) def test_init_from_series_align_nonunique(dict_of_series, expectation): with expectation: gdf = cudf.DataFrame(dict_of_series) if expectation == does_not_raise(): pdf = pd.DataFrame(dict_of_series) assert_eq(pdf, gdf) def test_init_unaligned_with_index(): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) gdf = cudf.DataFrame( { "a": cudf.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": cudf.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) assert_eq(pdf, gdf, check_dtype=False) def test_series_basic(): # Make series from buffer a1 = np.arange(10, dtype=np.float64) series = cudf.Series(a1) assert len(series) == 10 np.testing.assert_equal(series.to_array(), np.hstack([a1])) def test_series_from_cupy_scalars(): data = [0.1, 0.2, 0.3] data_np = np.array(data) data_cp = cupy.array(data) s_np = cudf.Series([data_np[0], data_np[2]]) s_cp = cudf.Series([data_cp[0], data_cp[2]]) assert_eq(s_np, s_cp) @pytest.mark.parametrize("a", [[1, 2, 3], [1, 10, 30]]) @pytest.mark.parametrize("b", [[4, 5, 6], [-11, -100, 30]]) def test_append_index(a, b): df = pd.DataFrame() df["a"] = a df["b"] = b gdf = cudf.DataFrame() gdf["a"] = a gdf["b"] = b # Check the default index after appending two columns(Series) expected = df.a.append(df.b) actual = gdf.a.append(gdf.b) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) expected = df.a.append(df.b, ignore_index=True) actual = gdf.a.append(gdf.b, ignore_index=True) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) def test_series_init_none(): # test for creating empty series # 1: without initializing sr1 = cudf.Series() got = sr1.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() # 2: Using `None` as an initializer sr2 = cudf.Series(None) got = sr2.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_basic(): np.random.seed(0) df = cudf.DataFrame() # Populate with cuda memory df["keys"] = np.arange(10, dtype=np.float64) np.testing.assert_equal(df["keys"].to_array(), np.arange(10)) assert len(df) == 10 # Populate with numpy array rnd_vals = np.random.random(10) df["vals"] = rnd_vals np.testing.assert_equal(df["vals"].to_array(), rnd_vals) assert len(df) == 10 assert tuple(df.columns) == ("keys", "vals") # Make another dataframe df2 = cudf.DataFrame() df2["keys"] = np.array([123], dtype=np.float64) df2["vals"] = np.array([321], dtype=np.float64) # Concat df = cudf.concat([df, df2]) assert len(df) == 11 hkeys = np.asarray(np.arange(10, dtype=np.float64).tolist() + [123]) hvals = np.asarray(rnd_vals.tolist() + [321]) np.testing.assert_equal(df["keys"].to_array(), hkeys) np.testing.assert_equal(df["vals"].to_array(), hvals) # As matrix mat = df.as_matrix() expect = np.vstack([hkeys, hvals]).T np.testing.assert_equal(mat, expect) # test dataframe with tuple name df_tup = cudf.DataFrame() data = np.arange(10) df_tup[(1, "foobar")] = data np.testing.assert_equal(data, df_tup[(1, "foobar")].to_array()) df = cudf.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) pdf = pd.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) assert_eq(df, pdf) gdf = cudf.DataFrame({"id": [0, 1], "val": [None, None]}) gdf["val"] = gdf["val"].astype("int") assert gdf["val"].isnull().all() @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "columns", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_columns(pdf, columns, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(columns=columns, inplace=inplace) actual = gdf.drop(columns=columns, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_0(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=0, inplace=inplace) actual = gdf.drop(labels=labels, axis=0, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "index", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_index(pdf, index, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace) actual = gdf.drop(index=index, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5}, index=pd.MultiIndex( levels=[ ["lama", "cow", "falcon"], ["speed", "weight", "length"], ], codes=[ [0, 0, 0, 1, 1, 1, 2, 2, 2, 1], [0, 1, 2, 0, 1, 2, 0, 1, 2, 1], ], ), ) ], ) @pytest.mark.parametrize( "index,level", [ ("cow", 0), ("lama", 0), ("falcon", 0), ("speed", 1), ("weight", 1), ("length", 1), pytest.param( "cow", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "lama", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "falcon", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_multiindex(pdf, index, level, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace, level=level) actual = gdf.drop(index=index, inplace=inplace, level=level) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_1(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=1, inplace=inplace) actual = gdf.drop(labels=labels, axis=1, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) def test_dataframe_drop_error(): df = cudf.DataFrame({"a": [1], "b": [2], "c": [3]}) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "d"}), rfunc_args_and_kwargs=([], {"columns": "d"}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), rfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), rfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), expected_error_message="Cannot specify both", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"axis": 1}), rfunc_args_and_kwargs=([], {"axis": 1}), expected_error_message="Need to specify at least", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([[2, 0]],), rfunc_args_and_kwargs=([[2, 0]],), expected_error_message="One or more values not found in axis", ) def test_dataframe_drop_raises(): df = cudf.DataFrame( {"a": [1, 2, 3], "c": [10, 20, 30]}, index=["x", "y", "z"] ) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["p"],), rfunc_args_and_kwargs=(["p"],), expected_error_message="One or more values not found in axis", ) # label dtype mismatch assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([3],), rfunc_args_and_kwargs=([3],), expected_error_message="One or more values not found in axis", ) expect = pdf.drop("p", errors="ignore") actual = df.drop("p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "p"}), rfunc_args_and_kwargs=([], {"columns": "p"}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(columns="p", errors="ignore") actual = df.drop(columns="p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), rfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(labels="p", axis=1, errors="ignore") actual = df.drop(labels="p", axis=1, errors="ignore") assert_eq(actual, expect) def test_dataframe_column_add_drop_via_setitem(): df = cudf.DataFrame() data = np.asarray(range(10)) df["a"] = data df["b"] = data assert tuple(df.columns) == ("a", "b") del df["a"] assert tuple(df.columns) == ("b",) df["c"] = data assert tuple(df.columns) == ("b", "c") df["a"] = data assert tuple(df.columns) == ("b", "c", "a") def test_dataframe_column_set_via_attr(): data_0 = np.asarray([0, 2, 4, 5]) data_1 = np.asarray([1, 4, 2, 3]) data_2 = np.asarray([2, 0, 3, 0]) df = cudf.DataFrame({"a": data_0, "b": data_1, "c": data_2}) for i in range(10): df.c = df.a assert assert_eq(df.c, df.a, check_names=False) assert tuple(df.columns) == ("a", "b", "c") df.c = df.b assert assert_eq(df.c, df.b, check_names=False) assert tuple(df.columns) == ("a", "b", "c") def test_dataframe_column_drop_via_attr(): df = cudf.DataFrame({"a": []}) with pytest.raises(AttributeError): del df.a assert tuple(df.columns) == tuple("a") @pytest.mark.parametrize("axis", [0, "index"]) def test_dataframe_index_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper={1: 5, 2: 6}, axis=axis) got = gdf.rename(mapper={1: 5, 2: 6}, axis=axis) assert_eq(expect, got) expect = pdf.rename(index={1: 5, 2: 6}) got = gdf.rename(index={1: 5, 2: 6}) assert_eq(expect, got) expect = pdf.rename({1: 5, 2: 6}) got = gdf.rename({1: 5, 2: 6}) assert_eq(expect, got) # `pandas` can support indexes with mixed values. We throw a # `NotImplementedError`. with pytest.raises(NotImplementedError): gdf.rename(mapper={1: "x", 2: "y"}, axis=axis) def test_dataframe_MI_rename(): gdf = cudf.DataFrame( {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)} ) gdg = gdf.groupby(["a", "b"]).count() pdg = gdg.to_pandas() expect = pdg.rename(mapper={1: 5, 2: 6}, axis=0) got = gdg.rename(mapper={1: 5, 2: 6}, axis=0) assert_eq(expect, got) @pytest.mark.parametrize("axis", [1, "columns"]) def test_dataframe_column_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper=lambda name: 2 * name, axis=axis) got = gdf.rename(mapper=lambda name: 2 * name, axis=axis) assert_eq(expect, got) expect = pdf.rename(columns=lambda name: 2 * name) got = gdf.rename(columns=lambda name: 2 * name) assert_eq(expect, got) rename_mapper = {"a": "z", "b": "y", "c": "x"} expect = pdf.rename(columns=rename_mapper) got = gdf.rename(columns=rename_mapper) assert_eq(expect, got) def test_dataframe_pop(): pdf = pd.DataFrame( {"a": [1, 2, 3], "b": ["x", "y", "z"], "c": [7.0, 8.0, 9.0]} ) gdf = cudf.DataFrame.from_pandas(pdf) # Test non-existing column error with pytest.raises(KeyError) as raises: gdf.pop("fake_colname") raises.match("fake_colname") # check pop numeric column pdf_pop = pdf.pop("a") gdf_pop = gdf.pop("a") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check string column pdf_pop = pdf.pop("b") gdf_pop = gdf.pop("b") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check float column and empty dataframe pdf_pop = pdf.pop("c") gdf_pop = gdf.pop("c") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check empty dataframe edge case empty_pdf = pd.DataFrame(columns=["a", "b"]) empty_gdf = cudf.DataFrame(columns=["a", "b"]) pb = empty_pdf.pop("b") gb = empty_gdf.pop("b") assert len(pb) == len(gb) assert empty_pdf.empty and empty_gdf.empty @pytest.mark.parametrize("nelem", [0, 3, 100, 1000]) def test_dataframe_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df["a"].dtype is np.dtype(np.int32) df["b"] = df["a"].astype(np.float32) assert df["b"].dtype is np.dtype(np.float32) np.testing.assert_equal(df["a"].to_array(), df["b"].to_array()) @pytest.mark.parametrize("nelem", [0, 100]) def test_index_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df.index.dtype is np.dtype(np.int64) df.index = df.index.astype(np.float32) assert df.index.dtype is np.dtype(np.float32) df["a"] = df["a"].astype(np.float32) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) df["b"] = df["a"] df = df.set_index("b") df["a"] = df["a"].astype(np.int16) df.index = df.index.astype(np.int16) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) def test_dataframe_to_string(): pd.options.display.max_rows = 5 pd.options.display.max_columns = 8 # Test basic df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) string = str(df) assert string.splitlines()[-1] == "[6 rows x 2 columns]" # Test skipped columns df = cudf.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16], "c": [11, 12, 13, 14, 15, 16], "d": [11, 12, 13, 14, 15, 16], } ) string = df.to_string() assert string.splitlines()[-1] == "[6 rows x 4 columns]" # Test masked df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) data = np.arange(6) mask = np.zeros(1, dtype=cudf.utils.utils.mask_dtype) mask[0] = 0b00101101 masked = cudf.Series.from_masked_array(data, mask) assert masked.null_count == 2 df["c"] = masked # check data values = masked.copy() validids = [0, 2, 3, 5] densearray = masked.to_array() np.testing.assert_equal(data[validids], densearray) # valid position is corret for i in validids: assert data[i] == values[i] # null position is correct for i in range(len(values)): if i not in validids: assert values[i] is cudf.NA pd.options.display.max_rows = 10 got = df.to_string() expect = """ a b c 0 1 11 0 1 2 12 <NA> 2 3 13 2 3 4 14 3 4 5 15 <NA> 5 6 16 5 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_to_string_wide(monkeypatch): monkeypatch.setenv("COLUMNS", "79") # Test basic df = cudf.DataFrame() for i in range(100): df["a{}".format(i)] = list(range(3)) pd.options.display.max_columns = 0 got = df.to_string() expect = """ a0 a1 a2 a3 a4 a5 a6 a7 ... a92 a93 a94 a95 a96 a97 a98 a99 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2 [3 rows x 100 columns] """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_empty_to_string(): # Test for printing empty dataframe df = cudf.DataFrame() got = df.to_string() expect = "Empty DataFrame\nColumns: []\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_emptycolumns_to_string(): # Test for printing dataframe having empty columns df = cudf.DataFrame() df["a"] = [] df["b"] = [] got = df.to_string() expect = "Empty DataFrame\nColumns: [a, b]\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy(): # Test for copying the dataframe using python copy pkg df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = copy(df) df2["b"] = [4, 5, 6] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy_shallow(): # Test for copy dataframe using class method df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = df.copy() df2["b"] = [4, 2, 3] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_dtypes(): dtypes = pd.Series( [np.int32, np.float32, np.float64], index=["c", "a", "b"] ) df = cudf.DataFrame( {k: np.ones(10, dtype=v) for k, v in dtypes.iteritems()} ) assert df.dtypes.equals(dtypes) def test_dataframe_add_col_to_object_dataframe(): # Test for adding column to an empty object dataframe cols = ["a", "b", "c"] df = pd.DataFrame(columns=cols, dtype="str") data = {k: v for (k, v) in zip(cols, [["a"] for _ in cols])} gdf = cudf.DataFrame(data) gdf = gdf[:0] assert gdf.dtypes.equals(df.dtypes) gdf["a"] = [1] df["a"] = [10] assert gdf.dtypes.equals(df.dtypes) gdf["b"] = [1.0] df["b"] = [10.0] assert gdf.dtypes.equals(df.dtypes) def test_dataframe_dir_and_getattr(): df = cudf.DataFrame( { "a": np.ones(10), "b": np.ones(10), "not an id": np.ones(10), "oop$": np.ones(10), } ) o = dir(df) assert {"a", "b"}.issubset(o) assert "not an id" not in o assert "oop$" not in o # Getattr works assert df.a.equals(df["a"]) assert df.b.equals(df["b"]) with pytest.raises(AttributeError): df.not_a_column @pytest.mark.parametrize("order", ["C", "F"]) def test_empty_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() # Check fully empty dataframe. mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 0) df = cudf.DataFrame() nelem = 123 for k in "abc": df[k] = np.random.random(nelem) # Check all columns in empty dataframe. mat = df.head(0).as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 3) @pytest.mark.parametrize("order", ["C", "F"]) def test_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() nelem = 123 for k in "abcd": df[k] = np.random.random(nelem) # Check all columns mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (nelem, 4) for i, k in enumerate(df.columns): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) # Check column subset mat = df.as_gpu_matrix(order=order, columns=["a", "c"]).copy_to_host() assert mat.shape == (nelem, 2) for i, k in enumerate("ac"): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) def test_dataframe_as_gpu_matrix_null_values(): df = cudf.DataFrame() nelem = 123 na = -10000 refvalues = {} for k in "abcd": df[k] = data = np.random.random(nelem) bitmask = utils.random_bitmask(nelem) df[k] = df[k].set_mask(bitmask) boolmask = np.asarray( utils.expand_bits_to_bytes(bitmask)[:nelem], dtype=np.bool_ ) data[~boolmask] = na refvalues[k] = data # Check null value causes error with pytest.raises(ValueError) as raises: df.as_gpu_matrix() raises.match("column 'a' has null values") for k in df.columns: df[k] = df[k].fillna(na) mat = df.as_gpu_matrix().copy_to_host() for i, k in enumerate(df.columns): np.testing.assert_array_equal(refvalues[k], mat[:, i]) def test_dataframe_append_empty(): pdf = pd.DataFrame( { "key": [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], } ) gdf = cudf.DataFrame.from_pandas(pdf) gdf["newcol"] = 100 pdf["newcol"] = 100 assert len(gdf["newcol"]) == len(pdf) assert len(pdf["newcol"]) == len(pdf) assert_eq(gdf, pdf) def test_dataframe_setitem_from_masked_object(): ary = np.random.randn(100) mask = np.zeros(100, dtype=bool) mask[:20] = True np.random.shuffle(mask) ary[mask] = np.nan test1_null = cudf.Series(ary, nan_as_null=True) assert test1_null.nullable assert test1_null.null_count == 20 test1_nan = cudf.Series(ary, nan_as_null=False) assert test1_nan.null_count == 0 test2_null = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=True ) assert test2_null["a"].nullable assert test2_null["a"].null_count == 20 test2_nan = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=False ) assert test2_nan["a"].null_count == 0 gpu_ary = cupy.asarray(ary) test3_null = cudf.Series(gpu_ary, nan_as_null=True) assert test3_null.nullable assert test3_null.null_count == 20 test3_nan = cudf.Series(gpu_ary, nan_as_null=False) assert test3_nan.null_count == 0 test4 = cudf.DataFrame() lst = [1, 2, None, 4, 5, 6, None, 8, 9] test4["lst"] = lst assert test4["lst"].nullable assert test4["lst"].null_count == 2 def test_dataframe_append_to_empty(): pdf = pd.DataFrame() pdf["a"] = [] pdf["b"] = [1, 2, 3] gdf = cudf.DataFrame() gdf["a"] = [] gdf["b"] = [1, 2, 3] assert_eq(gdf, pdf) def test_dataframe_setitem_index_len1(): gdf = cudf.DataFrame() gdf["a"] = [1] gdf["b"] = gdf.index._values np.testing.assert_equal(gdf.b.to_array(), [0]) def test_empty_dataframe_setitem_df(): gdf1 = cudf.DataFrame() gdf2 = cudf.DataFrame({"a": [1, 2, 3, 4, 5]}) gdf1["a"] = gdf2["a"] assert_eq(gdf1, gdf2) def test_assign(): gdf = cudf.DataFrame({"x": [1, 2, 3]}) gdf2 = gdf.assign(y=gdf.x + 1) assert list(gdf.columns) == ["x"] assert list(gdf2.columns) == ["x", "y"] np.testing.assert_equal(gdf2.y.to_array(), [2, 3, 4]) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000]) def test_dataframe_hash_columns(nrows): gdf = cudf.DataFrame() data = np.asarray(range(nrows)) data[0] = data[-1] # make first and last the same gdf["a"] = data gdf["b"] = gdf.a + 100 out = gdf.hash_columns(["a", "b"]) assert isinstance(out, cupy.ndarray) assert len(out) == nrows assert out.dtype == np.int32 # Check default out_all = gdf.hash_columns() np.testing.assert_array_equal(cupy.asnumpy(out), cupy.asnumpy(out_all)) # Check single column out_one = cupy.asnumpy(gdf.hash_columns(["a"])) # First matches last assert out_one[0] == out_one[-1] # Equivalent to the cudf.Series.hash_values() np.testing.assert_array_equal(cupy.asnumpy(gdf.a.hash_values()), out_one) @pytest.mark.parametrize("nrows", [3, 10, 100, 1000]) @pytest.mark.parametrize("nparts", [1, 2, 8, 13]) @pytest.mark.parametrize("nkeys", [1, 2]) def test_dataframe_hash_partition(nrows, nparts, nkeys): np.random.seed(123) gdf = cudf.DataFrame() keycols = [] for i in range(nkeys): keyname = "key{}".format(i) gdf[keyname] = np.random.randint(0, 7 - i, nrows) keycols.append(keyname) gdf["val1"] = np.random.randint(0, nrows * 2, nrows) got = gdf.partition_by_hash(keycols, nparts=nparts) # Must return a list assert isinstance(got, list) # Must have correct number of partitions assert len(got) == nparts # All partitions must be DataFrame type assert all(isinstance(p, cudf.DataFrame) for p in got) # Check that all partitions have unique keys part_unique_keys = set() for p in got: if len(p): # Take rows of the keycolumns and build a set of the key-values unique_keys = set(map(tuple, p.as_matrix(columns=keycols))) # Ensure that none of the key-values have occurred in other groups assert not (unique_keys & part_unique_keys) part_unique_keys |= unique_keys assert len(part_unique_keys) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_value(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["val"] = gdf["val"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.key]) expected_value = row.key + 100 if valid else np.nan got_value = row.val assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_keys(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["key"] = gdf["key"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3, keep_index=False) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.val - 100]) # val is key + 100 expected_value = row.val - 100 if valid else np.nan got_value = row.key assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("keep_index", [True, False]) def test_dataframe_hash_partition_keep_index(keep_index): gdf = cudf.DataFrame( {"val": [1, 2, 3, 4], "key": [3, 2, 1, 4]}, index=[4, 3, 2, 1] ) expected_df1 = cudf.DataFrame( {"val": [1], "key": [3]}, index=[4] if keep_index else None ) expected_df2 = cudf.DataFrame( {"val": [2, 3, 4], "key": [2, 1, 4]}, index=[3, 2, 1] if keep_index else range(1, 4), ) expected = [expected_df1, expected_df2] parts = gdf.partition_by_hash(["key"], nparts=2, keep_index=keep_index) for exp, got in zip(expected, parts): assert_eq(exp, got) def test_dataframe_hash_partition_empty(): gdf = cudf.DataFrame({"val": [1, 2], "key": [3, 2]}, index=["a", "b"]) parts = gdf.iloc[:0].partition_by_hash(["key"], nparts=3) assert len(parts) == 3 for part in parts: assert_eq(gdf.iloc[:0], part) @pytest.mark.parametrize("dtype1", utils.supported_numpy_dtypes) @pytest.mark.parametrize("dtype2", utils.supported_numpy_dtypes) def test_dataframe_concat_different_numerical_columns(dtype1, dtype2): df1 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype1))) df2 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype2))) if dtype1 != dtype2 and "datetime" in dtype1 or "datetime" in dtype2: with pytest.raises(TypeError): cudf.concat([df1, df2]) else: pres = pd.concat([df1, df2]) gres = cudf.concat([cudf.from_pandas(df1), cudf.from_pandas(df2)]) assert_eq(cudf.from_pandas(pres), gres) def test_dataframe_concat_different_column_types(): df1 = cudf.Series([42], dtype=np.float64) df2 = cudf.Series(["a"], dtype="category") with pytest.raises(ValueError): cudf.concat([df1, df2]) df2 = cudf.Series(["a string"]) with pytest.raises(TypeError): cudf.concat([df1, df2]) @pytest.mark.parametrize( "df_1", [cudf.DataFrame({"a": [1, 2], "b": [1, 3]}), cudf.DataFrame({})] ) @pytest.mark.parametrize( "df_2", [cudf.DataFrame({"a": [], "b": []}), cudf.DataFrame({})] ) def test_concat_empty_dataframe(df_1, df_2): got = cudf.concat([df_1, df_2]) expect = pd.concat([df_1.to_pandas(), df_2.to_pandas()], sort=False) # ignoring dtypes as pandas upcasts int to float # on concatenation with empty dataframes assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "df1_d", [ {"a": [1, 2], "b": [1, 2], "c": ["s1", "s2"], "d": [1.0, 2.0]}, {"b": [1.9, 10.9], "c": ["s1", "s2"]}, {"c": ["s1"], "b": [None], "a": [False]}, ], ) @pytest.mark.parametrize( "df2_d", [ {"a": [1, 2, 3]}, {"a": [1, None, 3], "b": [True, True, False], "c": ["s3", None, "s4"]}, {"a": [], "b": []}, {}, ], ) def test_concat_different_column_dataframe(df1_d, df2_d): got = cudf.concat( [cudf.DataFrame(df1_d), cudf.DataFrame(df2_d), cudf.DataFrame(df1_d)], sort=False, ) expect = pd.concat( [pd.DataFrame(df1_d), pd.DataFrame(df2_d), pd.DataFrame(df1_d)], sort=False, ) # numerical columns are upcasted to float in cudf.DataFrame.to_pandas() # casts nan to 0 in non-float numerical columns numeric_cols = got.dtypes[got.dtypes != "object"].index for col in numeric_cols: got[col] = got[col].astype(np.float64).fillna(np.nan) assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "ser_1", [pd.Series([1, 2, 3]), pd.Series([], dtype="float64")] ) @pytest.mark.parametrize("ser_2", [pd.Series([], dtype="float64")]) def test_concat_empty_series(ser_1, ser_2): got = cudf.concat([cudf.Series(ser_1), cudf.Series(ser_2)]) expect = pd.concat([ser_1, ser_2]) assert_eq(got, expect) def test_concat_with_axis(): df1 = pd.DataFrame(dict(x=np.arange(5), y=np.arange(5))) df2 = pd.DataFrame(dict(a=np.arange(5), b=np.arange(5))) concat_df = pd.concat([df1, df2], axis=1) cdf1 = cudf.from_pandas(df1) cdf2 = cudf.from_pandas(df2) # concat only dataframes concat_cdf = cudf.concat([cdf1, cdf2], axis=1) assert_eq(concat_cdf, concat_df) # concat only series concat_s = pd.concat([df1.x, df1.y], axis=1) cs1 = cudf.Series.from_pandas(df1.x) cs2 = cudf.Series.from_pandas(df1.y) concat_cdf_s = cudf.concat([cs1, cs2], axis=1) assert_eq(concat_cdf_s, concat_s) # concat series and dataframes s3 = pd.Series(np.random.random(5)) cs3 = cudf.Series.from_pandas(s3) concat_cdf_all = cudf.concat([cdf1, cs3, cdf2], axis=1) concat_df_all = pd.concat([df1, s3, df2], axis=1) assert_eq(concat_cdf_all, concat_df_all) # concat manual multi index midf1 = cudf.from_pandas(df1) midf1.index = cudf.MultiIndex( levels=[[0, 1, 2, 3], [0, 1]], codes=[[0, 1, 2, 3, 2], [0, 1, 0, 1, 0]] ) midf2 = midf1[2:] midf2.index = cudf.MultiIndex( levels=[[3, 4, 5], [2, 0]], codes=[[0, 1, 2], [1, 0, 1]] ) mipdf1 = midf1.to_pandas() mipdf2 = midf2.to_pandas() assert_eq(cudf.concat([midf1, midf2]), pd.concat([mipdf1, mipdf2])) assert_eq(cudf.concat([midf2, midf1]), pd.concat([mipdf2, mipdf1])) assert_eq( cudf.concat([midf1, midf2, midf1]), pd.concat([mipdf1, mipdf2, mipdf1]) ) # concat groupby multi index gdf1 = cudf.DataFrame( { "x": np.random.randint(0, 10, 10), "y": np.random.randint(0, 10, 10), "z": np.random.randint(0, 10, 10), "v": np.random.randint(0, 10, 10), } ) gdf2 = gdf1[5:] gdg1 = gdf1.groupby(["x", "y"]).min() gdg2 = gdf2.groupby(["x", "y"]).min() pdg1 = gdg1.to_pandas() pdg2 = gdg2.to_pandas() assert_eq(cudf.concat([gdg1, gdg2]), pd.concat([pdg1, pdg2])) assert_eq(cudf.concat([gdg2, gdg1]), pd.concat([pdg2, pdg1])) # series multi index concat gdgz1 = gdg1.z gdgz2 = gdg2.z pdgz1 = gdgz1.to_pandas() pdgz2 = gdgz2.to_pandas() assert_eq(cudf.concat([gdgz1, gdgz2]), pd.concat([pdgz1, pdgz2])) assert_eq(cudf.concat([gdgz2, gdgz1]), pd.concat([pdgz2, pdgz1])) @pytest.mark.parametrize("nrows", [0, 3, 10, 100, 1000]) def test_nonmatching_index_setitem(nrows): np.random.seed(0) gdf = cudf.DataFrame() gdf["a"] = np.random.randint(2147483647, size=nrows) gdf["b"] = np.random.randint(2147483647, size=nrows) gdf = gdf.set_index("b") test_values = np.random.randint(2147483647, size=nrows) gdf["c"] = test_values assert len(test_values) == len(gdf["c"]) assert ( gdf["c"] .to_pandas() .equals(cudf.Series(test_values).set_index(gdf._index).to_pandas()) ) def test_from_pandas(): df = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) gdf = cudf.DataFrame.from_pandas(df) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = df.x gs = cudf.Series.from_pandas(s) assert isinstance(gs, cudf.Series) assert_eq(s, gs) @pytest.mark.parametrize("dtypes", [int, float]) def test_from_records(dtypes): h_ary = np.ndarray(shape=(10, 4), dtype=dtypes) rec_ary = h_ary.view(np.recarray) gdf = cudf.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) df = pd.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame.from_records(rec_ary) df = pd.DataFrame.from_records(rec_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) @pytest.mark.parametrize("columns", [None, ["first", "second", "third"]]) @pytest.mark.parametrize( "index", [ None, ["first", "second"], "name", "age", "weight", [10, 11], ["abc", "xyz"], ], ) def test_from_records_index(columns, index): rec_ary = np.array( [("Rex", 9, 81.0), ("Fido", 3, 27.0)], dtype=[("name", "U10"), ("age", "i4"), ("weight", "f4")], ) gdf = cudf.DataFrame.from_records(rec_ary, columns=columns, index=index) df = pd.DataFrame.from_records(rec_ary, columns=columns, index=index) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_construction_from_cupy_arrays(): h_ary = np.array([[1, 2, 3], [4, 5, 6]], np.int32) d_ary = cupy.asarray(h_ary) gdf = cudf.DataFrame(d_ary, columns=["a", "b", "c"]) df = pd.DataFrame(h_ary, columns=["a", "b", "c"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) df = pd.DataFrame(h_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary, index=["a", "b"]) df = pd.DataFrame(h_ary, index=["a", "b"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=0, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=0, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=1, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=1, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_cupy_wrong_dimensions(): d_ary = cupy.empty((2, 3, 4), dtype=np.int32) with pytest.raises( ValueError, match="records dimension expected 1 or 2 but found: 3" ): cudf.DataFrame(d_ary) def test_dataframe_cupy_array_wrong_index(): d_ary = cupy.empty((2, 3), dtype=np.int32) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index=["a"]) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index="a") def test_index_in_dataframe_constructor(): a = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) b = cudf.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) assert_eq(a, b) assert_eq(a.loc[4:], b.loc[4:]) dtypes = NUMERIC_TYPES + DATETIME_TYPES + ["bool"] @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) padf = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) gdf = cudf.DataFrame.from_arrow(padf) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = pa.Array.from_pandas(df.a) gs = cudf.Series.from_arrow(s) assert isinstance(gs, cudf.Series) # For some reason PyArrow to_pandas() converts to numpy array and has # better type compatibility np.testing.assert_array_equal(s.to_pandas(), gs.to_array()) @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_to_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) pa_i = pa.Array.from_pandas(df.index) pa_gi = gdf.index.to_arrow() assert isinstance(pa_gi, pa.Array) assert pa.Array.equals(pa_i, pa_gi) @pytest.mark.parametrize("data_type", dtypes) def test_to_from_arrow_nulls(data_type): if data_type == "longlong": data_type = "int64" if data_type == "bool": s1 = pa.array([True, None, False, None, True], type=data_type) else: dtype = np.dtype(data_type) if dtype.type == np.datetime64: time_unit, _ = np.datetime_data(dtype) data_type = pa.timestamp(unit=time_unit) s1 = pa.array([1, None, 3, None, 5], type=data_type) gs1 = cudf.Series.from_arrow(s1) assert isinstance(gs1, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s1.buffers()[0]).view("u1")[0], gs1._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s1, gs1.to_arrow()) s2 = pa.array([None, None, None, None, None], type=data_type) gs2 = cudf.Series.from_arrow(s2) assert isinstance(gs2, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s2.buffers()[0]).view("u1")[0], gs2._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s2, gs2.to_arrow()) def test_to_arrow_categorical(): df = pd.DataFrame() df["a"] = pd.Series(["a", "b", "c"], dtype="category") gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) def test_from_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert_eq( pd.Series(pa_cat.to_pandas()), # PyArrow returns a pd.Categorical gd_cat.to_pandas(), ) def test_to_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert pa.Array.equals(pa_cat, gd_cat.to_arrow()) @pytest.mark.parametrize("data_type", dtypes) def test_from_scalar_typing(data_type): if data_type == "datetime64[ms]": scalar = ( np.dtype("int64") .type(np.random.randint(0, 5)) .astype("datetime64[ms]") ) elif data_type.startswith("datetime64"): scalar = np.datetime64(datetime.date.today()).astype("datetime64[ms]") data_type = "datetime64[ms]" else: scalar = np.dtype(data_type).type(np.random.randint(0, 5)) gdf = cudf.DataFrame() gdf["a"] = [1, 2, 3, 4, 5] gdf["b"] = scalar assert gdf["b"].dtype == np.dtype(data_type) assert len(gdf["b"]) == len(gdf["a"]) @pytest.mark.parametrize("data_type", NUMERIC_TYPES) def test_from_python_array(data_type): np_arr = np.random.randint(0, 100, 10).astype(data_type) data = memoryview(np_arr) data = arr.array(data.format, data) gs = cudf.Series(data) np.testing.assert_equal(gs.to_array(), np_arr) def test_series_shape(): ps = pd.Series([1, 2, 3, 4]) cs = cudf.Series([1, 2, 3, 4]) assert ps.shape == cs.shape def test_series_shape_empty(): ps = pd.Series(dtype="float64") cs = cudf.Series([]) assert ps.shape == cs.shape def test_dataframe_shape(): pdf = pd.DataFrame({"a": [0, 1, 2, 3], "b": [0.1, 0.2, None, 0.3]}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.shape == gdf.shape def test_dataframe_shape_empty(): pdf = pd.DataFrame() gdf = cudf.DataFrame() assert pdf.shape == gdf.shape @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) @pytest.mark.parametrize("dtype", dtypes) @pytest.mark.parametrize("nulls", ["none", "some", "all"]) def test_dataframe_transpose(nulls, num_cols, num_rows, dtype): pdf = pd.DataFrame() null_rep = np.nan if dtype in ["float32", "float64"] else None for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(np.random.randint(0, 26, num_rows).astype(dtype)) if nulls == "some": idx = np.random.choice( num_rows, size=int(num_rows / 2), replace=False ) data[idx] = null_rep elif nulls == "all": data[:] = null_rep pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function) assert_eq(expect, got_property) @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) def test_dataframe_transpose_category(num_cols, num_rows): pdf = pd.DataFrame() for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(list(string.ascii_lowercase), dtype="category") data = data.sample(num_rows, replace=True).reset_index(drop=True) pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function.to_pandas()) assert_eq(expect, got_property.to_pandas()) def test_generated_column(): gdf = cudf.DataFrame({"a": (i for i in range(5))}) assert len(gdf) == 5 @pytest.fixture def pdf(): return pd.DataFrame({"x": range(10), "y": range(10)}) @pytest.fixture def gdf(pdf): return cudf.DataFrame.from_pandas(pdf) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize( "func", [ lambda df, **kwargs: df.min(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.product(**kwargs), lambda df, **kwargs: df.cummin(**kwargs), lambda df, **kwargs: df.cummax(**kwargs), lambda df, **kwargs: df.cumsum(**kwargs), lambda df, **kwargs: df.cumprod(**kwargs), lambda df, **kwargs: df.mean(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.std(ddof=1, **kwargs), lambda df, **kwargs: df.var(ddof=1, **kwargs), lambda df, **kwargs: df.std(ddof=2, **kwargs), lambda df, **kwargs: df.var(ddof=2, **kwargs), lambda df, **kwargs: df.kurt(**kwargs), lambda df, **kwargs: df.skew(**kwargs), lambda df, **kwargs: df.all(**kwargs), lambda df, **kwargs: df.any(**kwargs), ], ) @pytest.mark.parametrize("skipna", [True, False, None]) def test_dataframe_reductions(data, func, skipna): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf, skipna=skipna), func(gdf, skipna=skipna)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("func", [lambda df: df.count()]) def test_dataframe_count_reduction(data, func): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf), func(gdf)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("ops", ["sum", "product", "prod"]) @pytest.mark.parametrize("skipna", [True, False, None]) @pytest.mark.parametrize("min_count", [-10, -1, 0, 1, 2, 3, 10]) def test_dataframe_min_count_ops(data, ops, skipna, min_count): psr = pd.DataFrame(data) gsr = cudf.DataFrame(data) if PANDAS_GE_120 and psr.shape[0] * psr.shape[1] < min_count: pytest.xfail("https://github.com/pandas-dev/pandas/issues/39738") assert_eq( getattr(psr, ops)(skipna=skipna, min_count=min_count), getattr(gsr, ops)(skipna=skipna, min_count=min_count), check_dtype=False, ) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_df(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf, pdf) g = binop(gdf, gdf) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_df(pdf, gdf, binop): d = binop(pdf, pdf + 1) g = binop(gdf, gdf + 1) assert_eq(d, g) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_series(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf.x, pdf.y) g = binop(gdf.x, gdf.y) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_series(pdf, gdf, binop): d = binop(pdf.x, pdf.y + 1) g = binop(gdf.x, gdf.y + 1) assert_eq(d, g) @pytest.mark.parametrize("unaryop", [operator.neg, operator.inv, operator.abs]) def test_unaryops_df(pdf, gdf, unaryop): d = unaryop(pdf - 5) g = unaryop(gdf - 5) assert_eq(d, g) @pytest.mark.parametrize( "func", [ lambda df: df.empty, lambda df: df.x.empty, lambda df: df.x.fillna(123, limit=None, method=None, axis=None), lambda df: df.drop("x", axis=1, errors="raise"), ], ) def test_unary_operators(func, pdf, gdf): p = func(pdf) g = func(gdf) assert_eq(p, g) def test_is_monotonic(gdf): pdf = pd.DataFrame({"x": [1, 2, 3]}, index=[3, 1, 2]) gdf = cudf.DataFrame.from_pandas(pdf) assert not gdf.index.is_monotonic assert not gdf.index.is_monotonic_increasing assert not gdf.index.is_monotonic_decreasing def test_iter(pdf, gdf): assert list(pdf) == list(gdf) def test_iteritems(gdf): for k, v in gdf.iteritems(): assert k in gdf.columns assert isinstance(v, cudf.Series) assert_eq(v, gdf[k]) @pytest.mark.parametrize("q", [0.5, 1, 0.001, [0.5], [], [0.005, 0.5, 1]]) @pytest.mark.parametrize("numeric_only", [True, False]) def test_quantile(q, numeric_only): ts = pd.date_range("2018-08-24", periods=5, freq="D") td = pd.to_timedelta(np.arange(5), unit="h") pdf = pd.DataFrame( {"date": ts, "delta": td, "val": np.random.randn(len(ts))} ) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf["date"].quantile(q), gdf["date"].quantile(q)) assert_eq(pdf["delta"].quantile(q), gdf["delta"].quantile(q)) assert_eq(pdf["val"].quantile(q), gdf["val"].quantile(q)) if numeric_only: assert_eq(pdf.quantile(q), gdf.quantile(q)) else: q = q if isinstance(q, list) else [q] assert_eq( pdf.quantile( q if isinstance(q, list) else [q], numeric_only=False ), gdf.quantile(q, numeric_only=False), ) def test_empty_quantile(): pdf = pd.DataFrame({"x": []}) df = cudf.DataFrame({"x": []}) actual = df.quantile() expected = pdf.quantile() assert_eq(actual, expected) def test_from_pandas_function(pdf): gdf = cudf.from_pandas(pdf) assert isinstance(gdf, cudf.DataFrame) assert_eq(pdf, gdf) gdf = cudf.from_pandas(pdf.x) assert isinstance(gdf, cudf.Series) assert_eq(pdf.x, gdf) with pytest.raises(TypeError): cudf.from_pandas(123) @pytest.mark.parametrize("preserve_index", [True, False]) def test_arrow_pandas_compat(pdf, gdf, preserve_index): pdf["z"] = range(10) pdf = pdf.set_index("z") gdf["z"] = range(10) gdf = gdf.set_index("z") pdf_arrow_table = pa.Table.from_pandas(pdf, preserve_index=preserve_index) gdf_arrow_table = gdf.to_arrow(preserve_index=preserve_index) assert pa.Table.equals(pdf_arrow_table, gdf_arrow_table) gdf2 = cudf.DataFrame.from_arrow(pdf_arrow_table) pdf2 = pdf_arrow_table.to_pandas() assert_eq(pdf2, gdf2) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000, 100000]) def test_series_hash_encode(nrows): data = np.asarray(range(nrows)) # Python hash returns different value which sometimes # results in enc_with_name_arr and enc_arr to be same. # And there is no other better way to make hash return same value. # So using an integer name to get constant value back from hash. s = cudf.Series(data, name=1) num_features = 1000 encoded_series = s.hash_encode(num_features) assert isinstance(encoded_series, cudf.Series) enc_arr = encoded_series.to_array() assert np.all(enc_arr >= 0) assert np.max(enc_arr) < num_features enc_with_name_arr = s.hash_encode(num_features, use_name=True).to_array() assert enc_with_name_arr[0] != enc_arr[0] @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) def test_cuda_array_interface(dtype): np_data = np.arange(10).astype(dtype) cupy_data = cupy.array(np_data) pd_data = pd.Series(np_data) cudf_data = cudf.Series(cupy_data) assert_eq(pd_data, cudf_data) gdf = cudf.DataFrame() gdf["test"] = cupy_data pd_data.name = "test" assert_eq(pd_data, gdf["test"]) @pytest.mark.parametrize("nelem", [0, 2, 3, 100]) @pytest.mark.parametrize("nchunks", [1, 2, 5, 10]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow_chunked_arrays(nelem, nchunks, data_type): np_list_data = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array = pa.chunked_array(np_list_data) expect = pd.Series(pa_chunk_array.to_pandas()) got = cudf.Series(pa_chunk_array) assert_eq(expect, got) np_list_data2 = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array2 = pa.chunked_array(np_list_data2) pa_table = pa.Table.from_arrays( [pa_chunk_array, pa_chunk_array2], names=["a", "b"] ) expect = pa_table.to_pandas() got = cudf.DataFrame.from_arrow(pa_table) assert_eq(expect, got) @pytest.mark.skip(reason="Test was designed to be run in isolation") def test_gpu_memory_usage_with_boolmask(): ctx = cuda.current_context() def query_GPU_memory(note=""): memInfo = ctx.get_memory_info() usedMemoryGB = (memInfo.total - memInfo.free) / 1e9 return usedMemoryGB cuda.current_context().deallocations.clear() nRows = int(1e8) nCols = 2 dataNumpy = np.asfortranarray(np.random.rand(nRows, nCols)) colNames = ["col" + str(iCol) for iCol in range(nCols)] pandasDF = pd.DataFrame(data=dataNumpy, columns=colNames, dtype=np.float32) cudaDF = cudf.core.DataFrame.from_pandas(pandasDF) boolmask = cudf.Series(np.random.randint(1, 2, len(cudaDF)).astype("bool")) memory_used = query_GPU_memory() cudaDF = cudaDF[boolmask] assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col0"].index._values.data_array_view.device_ctypes_pointer ) assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col1"].index._values.data_array_view.device_ctypes_pointer ) assert memory_used == query_GPU_memory() def test_boolmask(pdf, gdf): boolmask = np.random.randint(0, 2, len(pdf)) > 0 gdf = gdf[boolmask] pdf = pdf[boolmask] assert_eq(pdf, gdf) @pytest.mark.parametrize( "mask_shape", [ (2, "ab"), (2, "abc"), (3, "ab"), (3, "abc"), (3, "abcd"), (4, "abc"), (4, "abcd"), ], ) def test_dataframe_boolmask(mask_shape): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.random.randint(0, 10, 3) pdf_mask = pd.DataFrame() for col in mask_shape[1]: pdf_mask[col] = np.random.randint(0, 2, mask_shape[0]) > 0 gdf = cudf.DataFrame.from_pandas(pdf) gdf_mask = cudf.DataFrame.from_pandas(pdf_mask) gdf = gdf[gdf_mask] pdf = pdf[pdf_mask] assert np.array_equal(gdf.columns, pdf.columns) for col in gdf.columns: assert np.array_equal( gdf[col].fillna(-1).to_pandas().values, pdf[col].fillna(-1).values ) @pytest.mark.parametrize( "mask", [ [True, False, True], pytest.param( cudf.Series([True, False, True]), marks=pytest.mark.xfail( reason="Pandas can't index a multiindex with a Series" ), ), ], ) def test_dataframe_multiindex_boolmask(mask): gdf = cudf.DataFrame( {"w": [3, 2, 1], "x": [1, 2, 3], "y": [0, 1, 0], "z": [1, 1, 1]} ) gdg = gdf.groupby(["w", "x"]).count() pdg = gdg.to_pandas() assert_eq(gdg[mask], pdg[mask]) def test_dataframe_assignment(): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.array([0, 1, 1, -2, 10]) gdf = cudf.DataFrame.from_pandas(pdf) gdf[gdf < 0] = 999 pdf[pdf < 0] = 999 assert_eq(gdf, pdf) def test_1row_arrow_table(): data = [pa.array([0]), pa.array([1])] batch = pa.RecordBatch.from_arrays(data, ["f0", "f1"]) table = pa.Table.from_batches([batch]) expect = table.to_pandas() got = cudf.DataFrame.from_arrow(table) assert_eq(expect, got) def test_arrow_handle_no_index_name(pdf, gdf): gdf_arrow = gdf.to_arrow() pdf_arrow = pa.Table.from_pandas(pdf) assert pa.Table.equals(pdf_arrow, gdf_arrow) got = cudf.DataFrame.from_arrow(gdf_arrow) expect = pdf_arrow.to_pandas() assert_eq(expect, got) @pytest.mark.parametrize("num_rows", [1, 3, 10, 100]) @pytest.mark.parametrize("num_bins", [1, 2, 4, 20]) @pytest.mark.parametrize("right", [True, False]) @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) @pytest.mark.parametrize("series_bins", [True, False]) def test_series_digitize(num_rows, num_bins, right, dtype, series_bins): data = np.random.randint(0, 100, num_rows).astype(dtype) bins = np.unique(np.sort(np.random.randint(2, 95, num_bins).astype(dtype))) s = cudf.Series(data) if series_bins: s_bins = cudf.Series(bins) indices = s.digitize(s_bins, right) else: indices = s.digitize(bins, right) np.testing.assert_array_equal( np.digitize(data, bins, right), indices.to_array() ) def test_series_digitize_invalid_bins(): s = cudf.Series(np.random.randint(0, 30, 80), dtype="int32") bins = cudf.Series([2, None, None, 50, 90], dtype="int32") with pytest.raises( ValueError, match="`bins` cannot contain null entries." ): _ = s.digitize(bins) def test_pandas_non_contiguious(): arr1 = np.random.sample([5000, 10]) assert arr1.flags["C_CONTIGUOUS"] is True df = pd.DataFrame(arr1) for col in df.columns: assert df[col].values.flags["C_CONTIGUOUS"] is False gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.to_pandas(), df) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) @pytest.mark.parametrize("null_type", [np.nan, None, "mixed"]) def test_series_all_null(num_elements, null_type): if null_type == "mixed": data = [] data1 = [np.nan] * int(num_elements / 2) data2 = [None] * int(num_elements / 2) for idx in range(len(data1)): data.append(data1[idx]) data.append(data2[idx]) else: data = [null_type] * num_elements # Typecast Pandas because None will return `object` dtype expect = pd.Series(data, dtype="float64") got = cudf.Series(data) assert_eq(expect, got) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) def test_series_all_valid_nan(num_elements): data = [np.nan] * num_elements sr = cudf.Series(data, nan_as_null=False) np.testing.assert_equal(sr.null_count, 0) def test_series_rename(): pds = pd.Series([1, 2, 3], name="asdf") gds = cudf.Series([1, 2, 3], name="asdf") expect = pds.rename("new_name") got = gds.rename("new_name") assert_eq(expect, got) pds = pd.Series(expect) gds = cudf.Series(got) assert_eq(pds, gds) pds = pd.Series(expect, name="name name") gds = cudf.Series(got, name="name name") assert_eq(pds, gds) @pytest.mark.parametrize("data_type", dtypes) @pytest.mark.parametrize("nelem", [0, 100]) def test_head_tail(nelem, data_type): def check_index_equality(left, right): assert left.index.equals(right.index) def check_values_equality(left, right): if len(left) == 0 and len(right) == 0: return None np.testing.assert_array_equal(left.to_pandas(), right.to_pandas()) def check_frame_series_equality(left, right): check_index_equality(left, right) check_values_equality(left, right) gdf = cudf.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) check_frame_series_equality(gdf.head(), gdf[:5]) check_frame_series_equality(gdf.head(3), gdf[:3]) check_frame_series_equality(gdf.head(-2), gdf[:-2]) check_frame_series_equality(gdf.head(0), gdf[0:0]) check_frame_series_equality(gdf["a"].head(), gdf["a"][:5]) check_frame_series_equality(gdf["a"].head(3), gdf["a"][:3]) check_frame_series_equality(gdf["a"].head(-2), gdf["a"][:-2]) check_frame_series_equality(gdf.tail(), gdf[-5:]) check_frame_series_equality(gdf.tail(3), gdf[-3:]) check_frame_series_equality(gdf.tail(-2), gdf[2:]) check_frame_series_equality(gdf.tail(0), gdf[0:0]) check_frame_series_equality(gdf["a"].tail(), gdf["a"][-5:]) check_frame_series_equality(gdf["a"].tail(3), gdf["a"][-3:]) check_frame_series_equality(gdf["a"].tail(-2), gdf["a"][2:]) def test_tail_for_string(): gdf = cudf.DataFrame() gdf["id"] = cudf.Series(["a", "b"], dtype=np.object_) gdf["v"] = cudf.Series([1, 2]) assert_eq(gdf.tail(3), gdf.to_pandas().tail(3)) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index(pdf, gdf, drop): assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_named_index(pdf, gdf, drop): pdf.index.name = "cudf" gdf.index.name = "cudf" assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index_inplace(pdf, gdf, drop): pdf.reset_index(drop=drop, inplace=True) gdf.reset_index(drop=drop, inplace=True) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ { "a": [1, 2, 3, 4, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize( "index", [ "a", ["a", "b"], pd.CategoricalIndex(["I", "II", "III", "IV", "V"]), pd.Series(["h", "i", "k", "l", "m"]), ["b", pd.Index(["I", "II", "III", "IV", "V"])], ["c", [11, 12, 13, 14, 15]], pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), # corner case [pd.Series(["h", "i", "k", "l", "m"]), pd.RangeIndex(0, 5)], [ pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), ], ], ) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) def test_set_index(data, index, drop, append, inplace): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() expected = pdf.set_index(index, inplace=inplace, drop=drop, append=append) actual = gdf.set_index(index, inplace=inplace, drop=drop, append=append) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "data", [ { "a": [1, 1, 2, 2, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize("index", ["a", pd.Index([1, 1, 2, 2, 3])]) @pytest.mark.parametrize("verify_integrity", [True]) @pytest.mark.xfail def test_set_index_verify_integrity(data, index, verify_integrity): gdf = cudf.DataFrame(data) gdf.set_index(index, verify_integrity=verify_integrity) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("nelem", [10, 200, 1333]) def test_set_index_multi(drop, nelem): np.random.seed(0) a = np.arange(nelem) np.random.shuffle(a) df = pd.DataFrame( { "a": a, "b": np.random.randint(0, 4, size=nelem), "c": np.random.uniform(low=0, high=4, size=nelem), "d": np.random.choice(["green", "black", "white"], nelem), } ) df["e"] = df["d"].astype("category") gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.set_index("a", drop=drop), gdf.set_index(["a"], drop=drop)) assert_eq( df.set_index(["b", "c"], drop=drop), gdf.set_index(["b", "c"], drop=drop), ) assert_eq( df.set_index(["d", "b"], drop=drop), gdf.set_index(["d", "b"], drop=drop), ) assert_eq( df.set_index(["b", "d", "e"], drop=drop), gdf.set_index(["b", "d", "e"], drop=drop), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_0(copy): # TODO (ptaylor): pandas changes `int` dtype to `float64` # when reindexing and filling new label indices with NaN gdf = cudf.datasets.randomdata( nrows=6, dtypes={ "a": "category", # 'b': int, "c": float, "d": str, }, ) pdf = gdf.to_pandas() # Validate reindex returns a copy unmodified assert_eq(pdf.reindex(copy=True), gdf.reindex(copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_1(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis defaults to 0 assert_eq(pdf.reindex(index, copy=True), gdf.reindex(index, copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_2(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(index, axis=0, copy=True), gdf.reindex(index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_3(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=0 assert_eq( pdf.reindex(columns, axis=1, copy=True), gdf.reindex(columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_4(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(labels=index, axis=0, copy=True), gdf.reindex(labels=index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_5(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=1 assert_eq( pdf.reindex(labels=columns, axis=1, copy=True), gdf.reindex(labels=columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_6(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis='index' assert_eq( pdf.reindex(labels=index, axis="index", copy=True), gdf.reindex(labels=index, axis="index", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_7(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis='columns' assert_eq( pdf.reindex(labels=columns, axis="columns", copy=True), gdf.reindex(labels=columns, axis="columns", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_8(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes labels when index=labels assert_eq( pdf.reindex(index=index, copy=True), gdf.reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_9(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes column names when columns=labels assert_eq( pdf.reindex(columns=columns, copy=True), gdf.reindex(columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_10(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_change_dtype(copy): if PANDAS_GE_110: kwargs = {"check_freq": False} else: kwargs = {} index = pd.date_range("12/29/2009", periods=10, freq="D") columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), **kwargs, ) @pytest.mark.parametrize("copy", [True, False]) def test_series_categorical_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"a": "category"}) pdf = gdf.to_pandas() assert_eq(pdf["a"].reindex(copy=True), gdf["a"].reindex(copy=copy)) assert_eq( pdf["a"].reindex(index, copy=True), gdf["a"].reindex(index, copy=copy) ) assert_eq( pdf["a"].reindex(index=index, copy=True), gdf["a"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_float_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"c": float}) pdf = gdf.to_pandas() assert_eq(pdf["c"].reindex(copy=True), gdf["c"].reindex(copy=copy)) assert_eq( pdf["c"].reindex(index, copy=True), gdf["c"].reindex(index, copy=copy) ) assert_eq( pdf["c"].reindex(index=index, copy=True), gdf["c"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_string_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"d": str}) pdf = gdf.to_pandas() assert_eq(pdf["d"].reindex(copy=True), gdf["d"].reindex(copy=copy)) assert_eq( pdf["d"].reindex(index, copy=True), gdf["d"].reindex(index, copy=copy) ) assert_eq( pdf["d"].reindex(index=index, copy=True), gdf["d"].reindex(index=index, copy=copy), ) def test_to_frame(pdf, gdf): assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = "foo" gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = False gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(gdf_new_name, pdf_new_name) assert gdf_new_name.columns[0] is name def test_dataframe_empty_sort_index(): pdf = pd.DataFrame({"x": []}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.sort_index() got = gdf.sort_index() assert_eq(expect, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_sort_index( axis, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( {"b": [1, 3, 2], "a": [1, 4, 3], "c": [4, 1, 5]}, index=[3.0, 1.0, np.nan], ) gdf = cudf.DataFrame.from_pandas(pdf) expected = pdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) got = gdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: assert_eq(pdf, gdf) else: assert_eq(expected, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize( "level", [ 0, "b", 1, ["b"], "a", ["a", "b"], ["b", "a"], [0, 1], [1, 0], [0, 2], None, ], ) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_mulitindex_sort_index( axis, level, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( { "b": [1.0, 3.0, np.nan], "a": [1, 4, 3], 1: ["a", "b", "c"], "e": [3, 1, 4], "d": [1, 2, 8], } ).set_index(["b", "a", 1]) gdf = cudf.DataFrame.from_pandas(pdf) # ignore_index is supported in v.1.0 expected = pdf.sort_index( axis=axis, level=level, ascending=ascending, inplace=inplace, na_position=na_position, ) if ignore_index is True: expected = expected got = gdf.sort_index( axis=axis, level=level, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: if ignore_index is True: pdf = pdf.reset_index(drop=True) assert_eq(pdf, gdf) else: if ignore_index is True: expected = expected.reset_index(drop=True) assert_eq(expected, got) @pytest.mark.parametrize("dtype", dtypes + ["category"]) def test_dataframe_0_row_dtype(dtype): if dtype == "category": data = pd.Series(["a", "b", "c", "d", "e"], dtype="category") else: data = np.array([1, 2, 3, 4, 5], dtype=dtype) expect = cudf.DataFrame() expect["x"] = data expect["y"] = data got = expect.head(0) for col_name in got.columns: assert expect[col_name].dtype == got[col_name].dtype expect = cudf.Series(data) got = expect.head(0) assert expect.dtype == got.dtype @pytest.mark.parametrize("nan_as_null", [True, False]) def test_series_list_nanasnull(nan_as_null): data = [1.0, 2.0, 3.0, np.nan, None] expect = pa.array(data, from_pandas=nan_as_null) got = cudf.Series(data, nan_as_null=nan_as_null).to_arrow() # Bug in Arrow 0.14.1 where NaNs aren't handled expect = expect.cast("int64", safe=False) got = got.cast("int64", safe=False) assert pa.Array.equals(expect, got) def test_column_assignment(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float} ) new_cols = ["q", "r", "s"] gdf.columns = new_cols assert list(gdf.columns) == new_cols def test_select_dtype(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float, "d": str} ) pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("float64"), gdf.select_dtypes("float64")) assert_eq(pdf.select_dtypes(np.float64), gdf.select_dtypes(np.float64)) assert_eq( pdf.select_dtypes(include=["float64"]), gdf.select_dtypes(include=["float64"]), ) assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["int64", "float64"]), gdf.select_dtypes(include=["int64", "float64"]), ) assert_eq( pdf.select_dtypes(include=np.number), gdf.select_dtypes(include=np.number), ) assert_eq( pdf.select_dtypes(include=[np.int64, np.float64]), gdf.select_dtypes(include=[np.int64, np.float64]), ) assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(exclude=np.number), gdf.select_dtypes(exclude=np.number), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=([], {"includes": ["Foo"]}), rfunc_args_and_kwargs=([], {"includes": ["Foo"]}), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), rfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), ) gdf = cudf.DataFrame( {"A": [3, 4, 5], "C": [1, 2, 3], "D": ["a", "b", "c"]} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["object"], exclude=["category"]), gdf.select_dtypes(include=["object"], exclude=["category"]), ) gdf = cudf.DataFrame({"a": range(10), "b": range(10, 20)}) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(include=["float"]), gdf.select_dtypes(include=["float"]), ) assert_eq( pdf.select_dtypes(include=["object"]), gdf.select_dtypes(include=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"]), gdf.select_dtypes(include=["int"]) ) assert_eq( pdf.select_dtypes(exclude=["float"]), gdf.select_dtypes(exclude=["float"]), ) assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, ) gdf = cudf.DataFrame( {"a": cudf.Series([], dtype="int"), "b": cudf.Series([], dtype="str")} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) def test_select_dtype_datetime(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("datetime64"), gdf.select_dtypes("datetime64")) assert_eq( pdf.select_dtypes(np.dtype("datetime64")), gdf.select_dtypes(np.dtype("datetime64")), ) assert_eq( pdf.select_dtypes(include="datetime64"), gdf.select_dtypes(include="datetime64"), ) def test_select_dtype_datetime_with_frequency(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_exceptions_equal( pdf.select_dtypes, gdf.select_dtypes, (["datetime64[ms]"],), (["datetime64[ms]"],), ) def test_array_ufunc(): gdf = cudf.DataFrame({"x": [2, 3, 4.0], "y": [9.0, 2.5, 1.1]}) pdf = gdf.to_pandas() assert_eq(np.sqrt(gdf), np.sqrt(pdf)) assert_eq(np.sqrt(gdf.x), np.sqrt(pdf.x)) @pytest.mark.parametrize("nan_value", [-5, -5.0, 0, 5, 5.0, None, "pandas"]) def test_series_to_gpu_array(nan_value): s = cudf.Series([0, 1, None, 3]) np.testing.assert_array_equal( s.to_array(nan_value), s.to_gpu_array(nan_value).copy_to_host() ) def test_dataframe_describe_exclude(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(exclude=["float"]) pdf_results = pdf.describe(exclude=["float"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_include(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(include=["int"]) pdf_results = pdf.describe(include=["int"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_default(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe() pdf_results = pdf.describe() assert_eq(pdf_results, gdf_results) def test_series_describe_include_all(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) df["animal"] = np.random.choice(["dog", "cat", "bird"], data_length) pdf = df.to_pandas() gdf_results = df.describe(include="all") pdf_results = pdf.describe(include="all") assert_eq(gdf_results[["x", "y"]], pdf_results[["x", "y"]]) assert_eq(gdf_results.index, pdf_results.index) assert_eq(gdf_results.columns, pdf_results.columns) assert_eq( gdf_results[["animal"]].fillna(-1).astype("str"), pdf_results[["animal"]].fillna(-1).astype("str"), ) def test_dataframe_describe_percentiles(): np.random.seed(12) data_length = 10000 sample_percentiles = [0.0, 0.1, 0.33, 0.84, 0.4, 0.99] df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(percentiles=sample_percentiles) pdf_results = pdf.describe(percentiles=sample_percentiles) assert_eq(pdf_results, gdf_results) def test_get_numeric_data(): pdf = pd.DataFrame( {"x": [1, 2, 3], "y": [1.0, 2.0, 3.0], "z": ["a", "b", "c"]} ) gdf = cudf.from_pandas(pdf) assert_eq(pdf._get_numeric_data(), gdf._get_numeric_data()) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_shift(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) shifted_outcome = gdf.a.shift(period).fillna(0) expected_outcome = pdf.a.shift(period).fillna(0).astype(dtype) if data_empty: assert_eq(shifted_outcome, expected_outcome, check_index_type=False) else: assert_eq(shifted_outcome, expected_outcome) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_diff(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) expected_outcome = pdf.a.diff(period) diffed_outcome = gdf.a.diff(period).astype(expected_outcome.dtype) if data_empty: assert_eq(diffed_outcome, expected_outcome, check_index_type=False) else: assert_eq(diffed_outcome, expected_outcome) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_isnull_isna(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.isnull(), gdf.isnull()) assert_eq(df.isna(), gdf.isna()) # Test individual columns for col in df: assert_eq(df[col].isnull(), gdf[col].isnull()) assert_eq(df[col].isna(), gdf[col].isna()) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_notna_notnull(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.notnull(), gdf.notnull()) assert_eq(df.notna(), gdf.notna()) # Test individual columns for col in df: assert_eq(df[col].notnull(), gdf[col].notnull()) assert_eq(df[col].notna(), gdf[col].notna()) def test_ndim(): pdf = pd.DataFrame({"x": range(5), "y": range(5, 10)}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.ndim == gdf.ndim assert pdf.x.ndim == gdf.x.ndim s = pd.Series(dtype="float64") gs = cudf.Series() assert s.ndim == gs.ndim @pytest.mark.parametrize( "decimals", [ -3, 0, 5, pd.Series([1, 4, 3, -6], index=["w", "x", "y", "z"]), cudf.Series([-4, -2, 12], index=["x", "y", "z"]), {"w": -1, "x": 15, "y": 2}, ], ) def test_dataframe_round(decimals): pdf = pd.DataFrame( { "w": np.arange(0.5, 10.5, 1), "x": np.random.normal(-100, 100, 10), "y": np.array( [ 14.123, 2.343, np.nan, 0.0, -8.302, np.nan, 94.313, -112.236, -8.029, np.nan, ] ), "z": np.repeat([-0.6459412758761901], 10), } ) gdf = cudf.DataFrame.from_pandas(pdf) if isinstance(decimals, cudf.Series): pdecimals = decimals.to_pandas() else: pdecimals = decimals result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) # with nulls, maintaining existing null mask for c in pdf.columns: arr = pdf[c].to_numpy().astype("float64") # for pandas nulls arr.ravel()[np.random.choice(10, 5, replace=False)] = np.nan pdf[c] = gdf[c] = arr result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) for c in gdf.columns: np.array_equal(gdf[c].nullmask.to_array(), result[c].to_array()) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: all does not " "support columns of object dtype." ) ], ), ], ) def test_all(data): # Pandas treats `None` in object type columns as True for some reason, so # replacing with `False` if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data).replace( [None], False ) gdata = cudf.Series.from_pandas(pdata) else: pdata = pd.DataFrame(data, columns=["a", "b"]).replace([None], False) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.all(bool_only=True) expected = pdata.all(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.all(bool_only=False) with pytest.raises(NotImplementedError): gdata.all(level="a") got = gdata.all() expected = pdata.all() assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [0, 0, 0, 0, 0], [0, 0, None, 0], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: any does not " "support columns of object dtype." ) ], ), ], ) @pytest.mark.parametrize("axis", [0, 1]) def test_any(data, axis): if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data) gdata = cudf.Series.from_pandas(pdata) if axis == 1: with pytest.raises(NotImplementedError): gdata.any(axis=axis) else: got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) else: pdata = pd.DataFrame(data, columns=["a", "b"]) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.any(bool_only=True) expected = pdata.any(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.any(bool_only=False) with pytest.raises(NotImplementedError): gdata.any(level="a") got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) @pytest.mark.parametrize("axis", [0, 1]) def test_empty_dataframe_any(axis): pdf = pd.DataFrame({}, columns=["a", "b"]) gdf = cudf.DataFrame.from_pandas(pdf) got = gdf.any(axis=axis) expected = pdf.any(axis=axis) assert_eq(got, expected, check_index_type=False) @pytest.mark.parametrize("indexed", [False, True]) def test_dataframe_sizeof(indexed): rows = int(1e6) index = list(i for i in range(rows)) if indexed else None gdf = cudf.DataFrame({"A": [8] * rows, "B": [32] * rows}, index=index) for c in gdf._data.columns: assert gdf._index.__sizeof__() == gdf._index.__sizeof__() cols_sizeof = sum(c.__sizeof__() for c in gdf._data.columns) assert gdf.__sizeof__() == (gdf._index.__sizeof__() + cols_sizeof) @pytest.mark.parametrize("a", [[], ["123"]]) @pytest.mark.parametrize("b", ["123", ["123"]]) @pytest.mark.parametrize( "misc_data", ["123", ["123"] * 20, 123, [1, 2, 0.8, 0.9] * 50, 0.9, 0.00001], ) @pytest.mark.parametrize("non_list_data", [123, "abc", "zyx", "rapids", 0.8]) def test_create_dataframe_cols_empty_data(a, b, misc_data, non_list_data): expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = b actual["b"] = b assert_eq(actual, expected) expected = pd.DataFrame({"a": []}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = misc_data actual["b"] = misc_data assert_eq(actual, expected) expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = non_list_data actual["b"] = non_list_data assert_eq(actual, expected) def test_empty_dataframe_describe(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) expected = pdf.describe() actual = gdf.describe() assert_eq(expected, actual) def test_as_column_types(): col = column.as_column(cudf.Series([])) assert_eq(col.dtype, np.dtype("float64")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float64")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="float32") assert_eq(col.dtype, np.dtype("float32")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float32")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="str") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="str")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="object") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="object")) assert_eq(pds, gds) pds = pd.Series(np.array([1, 2, 3]), dtype="float32") gds = cudf.Series(column.as_column(np.array([1, 2, 3]), dtype="float32")) assert_eq(pds, gds) pds = pd.Series([1, 2, 3], dtype="float32") gds = cudf.Series([1, 2, 3], dtype="float32") assert_eq(pds, gds) pds = pd.Series([], dtype="float64") gds = cudf.Series(column.as_column(pds)) assert_eq(pds, gds) pds = pd.Series([1, 2, 4], dtype="int64") gds = cudf.Series(column.as_column(cudf.Series([1, 2, 4]), dtype="int64")) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="float32") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="float32") ) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="str") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="str") ) assert_eq(pds, gds) pds = pd.Series(pd.Index(["1", "18", "9"]), dtype="int") gds = cudf.Series( cudf.core.index.StringIndex(["1", "18", "9"]), dtype="int" ) assert_eq(pds, gds) def test_one_row_head(): gdf = cudf.DataFrame({"name": ["carl"], "score": [100]}, index=[123]) pdf = gdf.to_pandas() head_gdf = gdf.head() head_pdf = pdf.head() assert_eq(head_pdf, head_gdf) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric(dtype, as_dtype): psr = pd.Series([1, 2, 4, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric_nulls(dtype, as_dtype): data = [1, 2, None, 3] sr = cudf.Series(data, dtype=dtype) got = sr.astype(as_dtype) expect = cudf.Series([1, 2, None, 3], dtype=as_dtype) assert_eq(expect, got) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "as_dtype", [ "str", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_numeric_to_other(dtype, as_dtype): psr = pd.Series([1, 2, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "str", "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05"] else: data = ["1", "2", "3"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_datetime_to_other(as_dtype): data = ["2001-01-01", "2002-02-02", "2001-01-05"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "inp", [ ("datetime64[ns]", "2011-01-01 00:00:00.000000000"), ("datetime64[us]", "2011-01-01 00:00:00.000000"), ("datetime64[ms]", "2011-01-01 00:00:00.000"), ("datetime64[s]", "2011-01-01 00:00:00"), ], ) def test_series_astype_datetime_to_string(inp): dtype, expect = inp base_date = "2011-01-01" sr = cudf.Series([base_date], dtype=dtype) got = sr.astype(str)[0] assert expect == got @pytest.mark.parametrize( "as_dtype", [ "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_series_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") gsr = cudf.from_pandas(psr) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( psr.astype("int32").astype(ordered_dtype_pd).astype("int32"), gsr.astype("int32").astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_cat_ordered_to_unordered(ordered): pd_dtype = pd.CategoricalDtype(categories=[1, 2, 3], ordered=ordered) pd_to_dtype = pd.CategoricalDtype( categories=[1, 2, 3], ordered=not ordered ) gd_dtype = cudf.CategoricalDtype.from_pandas(pd_dtype) gd_to_dtype = cudf.CategoricalDtype.from_pandas(pd_to_dtype) psr = pd.Series([1, 2, 3], dtype=pd_dtype) gsr = cudf.Series([1, 2, 3], dtype=gd_dtype) expect = psr.astype(pd_to_dtype) got = gsr.astype(gd_to_dtype) assert_eq(expect, got) def test_series_astype_null_cases(): data = [1, 2, None, 3] # numerical to other assert_eq(cudf.Series(data, dtype="str"), cudf.Series(data).astype("str")) assert_eq( cudf.Series(data, dtype="category"), cudf.Series(data).astype("category"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="int32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="uint32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data).astype("datetime64[ms]"), ) # categorical to other assert_eq( cudf.Series(data, dtype="str"), cudf.Series(data, dtype="category").astype("str"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="category").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data, dtype="category").astype("datetime64[ms]"), ) # string to other assert_eq( cudf.Series([1, 2, None, 3], dtype="int32"), cudf.Series(["1", "2", None, "3"]).astype("int32"), ) assert_eq( cudf.Series( ["2001-01-01", "2001-02-01", None, "2001-03-01"], dtype="datetime64[ms]", ), cudf.Series(["2001-01-01", "2001-02-01", None, "2001-03-01"]).astype( "datetime64[ms]" ), ) assert_eq( cudf.Series(["a", "b", "c", None], dtype="category").to_pandas(), cudf.Series(["a", "b", "c", None]).astype("category").to_pandas(), ) # datetime to other data = [ "2001-01-01 00:00:00.000000", "2001-02-01 00:00:00.000000", None, "2001-03-01 00:00:00.000000", ] assert_eq( cudf.Series(data), cudf.Series(data, dtype="datetime64[us]").astype("str"), ) assert_eq( pd.Series(data, dtype="datetime64[ns]").astype("category"), cudf.from_pandas(pd.Series(data, dtype="datetime64[ns]")).astype( "category" ), ) def test_series_astype_null_categorical(): sr = cudf.Series([None, None, None], dtype="category") expect = cudf.Series([None, None, None], dtype="int32") got = sr.astype("int32") assert_eq(expect, got) @pytest.mark.parametrize( "data", [ ( pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ), [ pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ], ], ) def test_create_dataframe_from_list_like(data): pdf = pd.DataFrame(data, index=["count", "mean", "std", "min"]) gdf = cudf.DataFrame(data, index=["count", "mean", "std", "min"]) assert_eq(pdf, gdf) pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def test_create_dataframe_column(): pdf = pd.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) gdf = cudf.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) assert_eq(pdf, gdf) pdf = pd.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) gdf = cudf.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pd.Categorical(["a", "b", "c"]), ["m", "a", "d", "v"], ], ) def test_series_values_host_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) np.testing.assert_array_equal(pds.values, gds.values_host) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pytest.param( pd.Categorical(["a", "b", "c"]), marks=pytest.mark.xfail(raises=NotImplementedError), ), pytest.param( ["m", "a", "d", "v"], marks=pytest.mark.xfail(raises=NotImplementedError), ), ], ) def test_series_values_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) gds_vals = gds.values assert isinstance(gds_vals, cupy.ndarray) np.testing.assert_array_equal(gds_vals.get(), pds.values) @pytest.mark.parametrize( "data", [ {"A": [1, 2, 3], "B": [4, 5, 6]}, {"A": [1.0, 2.0, 3.0], "B": [4.0, 5.0, 6.0]}, {"A": [1, 2, 3], "B": [1.0, 2.0, 3.0]}, {"A": np.float32(np.arange(3)), "B": np.float64(np.arange(3))}, pytest.param( {"A": [1, None, 3], "B": [1, 2, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [None, None, None], "B": [None, None, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [], "B": []}, marks=pytest.mark.xfail(reason="Requires at least 1 row"), ), pytest.param( {"A": [1, 2, 3], "B": ["a", "b", "c"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), pytest.param( {"A": pd.Categorical(["a", "b", "c"]), "B": ["d", "e", "f"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), ], ) def test_df_values_property(data): pdf = pd.DataFrame.from_dict(data) gdf = cudf.DataFrame.from_pandas(pdf) pmtr = pdf.values gmtr = gdf.values.get() np.testing.assert_array_equal(pmtr, gmtr) def test_value_counts(): pdf = pd.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) gdf = cudf.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) assert_eq( pdf.numeric.value_counts().sort_index(), gdf.numeric.value_counts().sort_index(), check_dtype=False, ) assert_eq( pdf.alpha.value_counts().sort_index(), gdf.alpha.value_counts().sort_index(), check_dtype=False, ) @pytest.mark.parametrize( "data", [ [], [0, 12, 14], [0, 14, 12, 12, 3, 10, 12, 14], np.random.randint(-100, 100, 200), pd.Series([0.0, 1.0, None, 10.0]), [None, None, None, None], [np.nan, None, -1, 2, 3], ], ) @pytest.mark.parametrize( "values", [ np.random.randint(-100, 100, 10), [], [np.nan, None, -1, 2, 3], [1.0, 12.0, None, None, 120], [0, 14, 12, 12, 3, 10, 12, 14, None], [None, None, None], ["0", "12", "14"], ["0", "12", "14", "a"], ], ) def test_isin_numeric(data, values): index = np.random.randint(0, 100, len(data)) psr = cudf.utils.utils._create_pandas_series(data=data, index=index) gsr = cudf.Series.from_pandas(psr, nan_as_null=False) expected = psr.isin(values) got = gsr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["2018-01-01", "2019-04-03", None, "2019-12-30"], dtype="datetime64[ns]", ), pd.Series( [ "2018-01-01", "2019-04-03", None, "2019-12-30", "2018-01-01", "2018-01-01", ], dtype="datetime64[ns]", ), ], ) @pytest.mark.parametrize( "values", [ [], [1514764800000000000, 1577664000000000000], [ 1514764800000000000, 1577664000000000000, 1577664000000000000, 1577664000000000000, 1514764800000000000, ], ["2019-04-03", "2019-12-30", "2012-01-01"], [ "2012-01-01", "2012-01-01", "2012-01-01", "2019-04-03", "2019-12-30", "2012-01-01", ], ], ) def test_isin_datetime(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["this", "is", None, "a", "test"]), pd.Series(["test", "this", "test", "is", None, "test", "a", "test"]), pd.Series(["0", "12", "14"]), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [None, None, None], ["12", "14", "19"], pytest.param( [12, 14, 19], marks=pytest.mark.xfail( not PANDAS_GE_120, reason="pandas's failure here seems like a bug(in < 1.2) " "given the reverse succeeds", ), ), ["is", "this", "is", "this", "is"], ], ) def test_isin_string(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["a", "b", "c", "c", "c", "d", "e"], dtype="category"), pd.Series(["a", "b", None, "c", "d", "e"], dtype="category"), pd.Series([0, 3, 10, 12], dtype="category"), pd.Series([0, 3, 10, 12, 0, 10, 3, 0, 0, 3, 3], dtype="category"), ], ) @pytest.mark.parametrize( "values", [ [], ["a", "b", None, "f", "words"], ["0", "12", None, "14"], [0, 10, 12, None, 39, 40, 1000], [0, 0, 0, 0, 3, 3, 3, None, 1, 2, 3], ], ) def test_isin_categorical(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["this", "is", None, "a", "test"], index=["a", "b", "c", "d", "e"] ), pd.Series([0, 15, 10], index=[0, None, 9]), pd.Series( range(25), index=pd.date_range( start="2019-01-01", end="2019-01-02", freq="H" ), ), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [0, 19, 13], ["2019-01-01 04:00:00", "2019-01-01 06:00:00", "2018-03-02"], ], ) def test_isin_index(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.index.isin(values) expected = psr.index.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color") ), pd.MultiIndex.from_arrays([[], []], names=("number", "color")), pd.MultiIndex.from_arrays( [[1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"]], names=("number", "color"), ), ], ) @pytest.mark.parametrize( "values,level,err", [ (["red", "orange", "yellow"], "color", None), (["red", "white", "yellow"], "color", None), ([0, 1, 2, 10, 11, 15], "number", None), ([0, 1, 2, 10, 11, 15], None, TypeError), (pd.Series([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 8, 11, 15]), "number", None), (pd.Index(["red", "white", "yellow"]), "color", None), ([(1, "red"), (3, "red")], None, None), (((1, "red"), (3, "red")), None, None), ( pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color"), ), None, None, ), ( pd.MultiIndex.from_arrays([[], []], names=("number", "color")), None, None, ), ( pd.MultiIndex.from_arrays( [ [1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"], ], names=("number", "color"), ), None, None, ), ], ) def test_isin_multiindex(data, values, level, err): pmdx = data gmdx = cudf.from_pandas(data) if err is None: expected = pmdx.isin(values, level=level) if isinstance(values, pd.MultiIndex): values = cudf.from_pandas(values) got = gmdx.isin(values, level=level) assert_eq(got, expected) else: assert_exceptions_equal( lfunc=pmdx.isin, rfunc=gmdx.isin, lfunc_args_and_kwargs=([values], {"level": level}), rfunc_args_and_kwargs=([values], {"level": level}), check_exception_type=False, expected_error_message=re.escape( "values need to be a Multi-Index or set/list-like tuple " "squences when `level=None`." ), ) @pytest.mark.parametrize( "data", [ pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [8, 2, 1, 0, 2, 4, 5], "num_wings": [2, 0, 2, 1, 2, 4, -1], } ), ], ) @pytest.mark.parametrize( "values", [ [0, 2], {"num_wings": [0, 3]}, pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), ["sparrow", "pigeon"], pd.Series(["sparrow", "pigeon"], dtype="category"), pd.Series([1, 2, 3, 4, 5]), "abc", 123, ], ) def test_isin_dataframe(data, values): pdf = data gdf = cudf.from_pandas(pdf) if cudf.utils.dtypes.is_scalar(values): assert_exceptions_equal( lfunc=pdf.isin, rfunc=gdf.isin, lfunc_args_and_kwargs=([values],), rfunc_args_and_kwargs=([values],), ) else: try: expected = pdf.isin(values) except ValueError as e: if str(e) == "Lengths must match.": pytest.xfail( not PANDAS_GE_110, "https://github.com/pandas-dev/pandas/issues/34256", ) if isinstance(values, (pd.DataFrame, pd.Series)): values = cudf.from_pandas(values) got = gdf.isin(values) assert_eq(got, expected) def test_constructor_properties(): df = cudf.DataFrame() key1 = "a" key2 = "b" val1 = np.array([123], dtype=np.float64) val2 = np.array([321], dtype=np.float64) df[key1] = val1 df[key2] = val2 # Correct use of _constructor (for DataFrame) assert_eq(df, df._constructor({key1: val1, key2: val2})) # Correct use of _constructor (for cudf.Series) assert_eq(df[key1], df[key2]._constructor(val1, name=key1)) # Correct use of _constructor_sliced (for DataFrame) assert_eq(df[key1], df._constructor_sliced(val1, name=key1)) # Correct use of _constructor_expanddim (for cudf.Series) assert_eq(df, df[key2]._constructor_expanddim({key1: val1, key2: val2})) # Incorrect use of _constructor_sliced (Raises for cudf.Series) with pytest.raises(NotImplementedError): df[key1]._constructor_sliced # Incorrect use of _constructor_expanddim (Raises for DataFrame) with pytest.raises(NotImplementedError): df._constructor_expanddim @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", ALL_TYPES) def test_df_astype_numeric_to_all(dtype, as_dtype): if "uint" in dtype: data = [1, 2, None, 4, 7] elif "int" in dtype or "longlong" in dtype: data = [1, 2, None, 4, -7] elif "float" in dtype: data = [1.0, 2.0, None, 4.0, np.nan, -7.0] gdf = cudf.DataFrame() gdf["foo"] = cudf.Series(data, dtype=dtype) gdf["bar"] = cudf.Series(data, dtype=dtype) insert_data = cudf.Series(data, dtype=dtype) expect = cudf.DataFrame() expect["foo"] = insert_data.astype(as_dtype) expect["bar"] = insert_data.astype(as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_df_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: # change None to "NaT" after this issue is fixed: # https://github.com/rapidsai/cudf/issues/5117 data = ["2001-01-01", "2002-02-02", "2000-01-05", None] elif as_dtype == "int32": data = [1, 2, 3] elif as_dtype == "category": data = ["1", "2", "3", None] elif "float" in as_dtype: data = [1.0, 2.0, 3.0, np.nan] insert_data = cudf.Series.from_pandas(pd.Series(data, dtype="str")) expect_data = cudf.Series(data, dtype=as_dtype) gdf = cudf.DataFrame() expect = cudf.DataFrame() gdf["foo"] = insert_data gdf["bar"] = insert_data expect["foo"] = expect_data expect["bar"] = expect_data got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int64", "datetime64[s]", "datetime64[us]", "datetime64[ns]", "str", "category", ], ) def test_df_astype_datetime_to_other(as_dtype): data = [ "1991-11-20 00:00:00.000", "2004-12-04 00:00:00.000", "2016-09-13 00:00:00.000", None, ] gdf = cudf.DataFrame() expect = cudf.DataFrame() gdf["foo"] = cudf.Series(data, dtype="datetime64[ms]") gdf["bar"] = cudf.Series(data, dtype="datetime64[ms]") if as_dtype == "int64": expect["foo"] = cudf.Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) expect["bar"] = cudf.Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) elif as_dtype == "str": expect["foo"] = cudf.Series(data, dtype="str") expect["bar"] = cudf.Series(data, dtype="str") elif as_dtype == "category": expect["foo"] = cudf.Series(gdf["foo"], dtype="category") expect["bar"] = cudf.Series(gdf["bar"], dtype="category") else: expect["foo"] = cudf.Series(data, dtype=as_dtype) expect["bar"] = cudf.Series(data, dtype=as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_df_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf.astype(as_dtype), gdf.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_df_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = cudf.DataFrame.from_pandas(pdf) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( pdf.astype(ordered_dtype_pd).astype("int32"), gdf.astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize( "dtype,args", [(dtype, {}) for dtype in ALL_TYPES] + [("category", {"ordered": True}), ("category", {"ordered": False})], ) def test_empty_df_astype(dtype, args): df = cudf.DataFrame() kwargs = {} kwargs.update(args) assert_eq(df, df.astype(dtype=dtype, **kwargs)) @pytest.mark.parametrize( "errors", [ pytest.param( "raise", marks=pytest.mark.xfail(reason="should raise error here") ), pytest.param("other", marks=pytest.mark.xfail(raises=ValueError)), "ignore", pytest.param( "warn", marks=pytest.mark.filterwarnings("ignore:Traceback") ), ], ) def test_series_astype_error_handling(errors): sr = cudf.Series(["random", "words"]) got = sr.astype("datetime64", errors=errors) assert_eq(sr, got) @pytest.mark.parametrize("dtype", ALL_TYPES) def test_df_constructor_dtype(dtype): if "datetime" in dtype: data = ["1991-11-20", "2004-12-04", "2016-09-13", None] elif dtype == "str": data = ["a", "b", "c", None] elif "float" in dtype: data = [1.0, 0.5, -1.1, np.nan, None] elif "bool" in dtype: data = [True, False, None] else: data = [1, 2, 3, None] sr = cudf.Series(data, dtype=dtype) expect = cudf.DataFrame() expect["foo"] = sr expect["bar"] = sr got = cudf.DataFrame({"foo": data, "bar": data}, dtype=dtype) assert_eq(expect, got) @pytest.mark.parametrize( "data", [ cudf.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": int} ), cudf.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": str} ), cudf.datasets.randomdata( nrows=10, dtypes={"a": bool, "b": int, "c": float, "d": str} ), cudf.DataFrame(), cudf.DataFrame({"a": [0, 1, 2], "b": [1, None, 3]}), cudf.DataFrame( { "a": [1, 2, 3, 4], "b": [7, np.NaN, 9, 10], "c": [np.NaN, np.NaN, np.NaN, np.NaN], "d": cudf.Series([None, None, None, None], dtype="int64"), "e": [100, None, 200, None], "f": cudf.Series([10, None, np.NaN, 11], nan_as_null=False), } ), cudf.DataFrame( { "a": [10, 11, 12, 13, 14, 15], "b": cudf.Series( [10, None, np.NaN, 2234, None, np.NaN], nan_as_null=False ), } ), ], ) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) @pytest.mark.parametrize("skipna", [True, False]) def test_rowwise_ops(data, op, skipna): gdf = data pdf = gdf.to_pandas() if op in ("var", "std"): expected = getattr(pdf, op)(axis=1, ddof=0, skipna=skipna) got = getattr(gdf, op)(axis=1, ddof=0, skipna=skipna) else: expected = getattr(pdf, op)(axis=1, skipna=skipna) got = getattr(gdf, op)(axis=1, skipna=skipna) assert_eq(expected, got, check_exact=False) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) def test_rowwise_ops_nullable_dtypes_all_null(op): gdf = cudf.DataFrame( { "a": [1, 2, 3, 4], "b": [7, np.NaN, 9, 10], "c": [np.NaN, np.NaN, np.NaN, np.NaN], "d": cudf.Series([None, None, None, None], dtype="int64"), "e": [100, None, 200, None], "f": cudf.Series([10, None, np.NaN, 11], nan_as_null=False), } ) expected = cudf.Series([None, None, None, None], dtype="float64") if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "op,expected", [ ( "max", cudf.Series( [10.0, None, np.NaN, 2234.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "min", cudf.Series( [10.0, None, np.NaN, 13.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "sum", cudf.Series( [20.0, None, np.NaN, 2247.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "product", cudf.Series( [100.0, None, np.NaN, 29042.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "mean", cudf.Series( [10.0, None, np.NaN, 1123.5, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "var", cudf.Series( [0.0, None, np.NaN, 1233210.25, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "std", cudf.Series( [0.0, None, np.NaN, 1110.5, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ], ) def test_rowwise_ops_nullable_dtypes_partial_null(op, expected): gdf = cudf.DataFrame( { "a": [10, 11, 12, 13, 14, 15], "b": cudf.Series( [10, None, np.NaN, 2234, None, np.NaN], nan_as_null=False, ), } ) if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "op,expected", [ ( "max", cudf.Series([10, None, None, 2234, None, 453], dtype="int64",), ), ("min", cudf.Series([10, None, None, 13, None, 15], dtype="int64",),), ( "sum", cudf.Series([20, None, None, 2247, None, 468], dtype="int64",), ), ( "product", cudf.Series([100, None, None, 29042, None, 6795], dtype="int64",), ), ( "mean", cudf.Series( [10.0, None, None, 1123.5, None, 234.0], dtype="float32", ), ), ( "var", cudf.Series( [0.0, None, None, 1233210.25, None, 47961.0], dtype="float32", ), ), ( "std", cudf.Series( [0.0, None, None, 1110.5, None, 219.0], dtype="float32", ), ), ], ) def test_rowwise_ops_nullable_int_dtypes(op, expected): gdf = cudf.DataFrame( { "a": [10, 11, None, 13, None, 15], "b": cudf.Series( [10, None, 323, 2234, None, 453], nan_as_null=False, ), } ) if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ms]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ns]" ), "t3": cudf.Series( ["1960-08-31 06:00:00", "2030-08-02 10:00:00"], dtype="<M8[s]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[us]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series(["1940-08-31 06:00:00", None], dtype="<M8[ms]"), "i1": cudf.Series([1001, 2002], dtype="int64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), "f1": cudf.Series([-100.001, 123.456], dtype="float64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), "f1": cudf.Series([-100.001, 123.456], dtype="float64"), "b1": cudf.Series([True, False], dtype="bool"), }, ], ) @pytest.mark.parametrize("op", ["max", "min"]) @pytest.mark.parametrize("skipna", [True, False]) def test_rowwise_ops_datetime_dtypes(data, op, skipna): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() got = getattr(gdf, op)(axis=1, skipna=skipna) expected = getattr(pdf, op)(axis=1, skipna=skipna) assert_eq(got, expected) @pytest.mark.parametrize( "data,op,skipna", [ ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "max", True, ), ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "min", False, ), ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "min", True, ), ], ) def test_rowwise_ops_datetime_dtypes_2(data, op, skipna): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() got = getattr(gdf, op)(axis=1, skipna=skipna) expected = getattr(pdf, op)(axis=1, skipna=skipna) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ ( { "t1": pd.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ns]", ), "t2": pd.Series( ["1940-08-31 06:00:00", pd.NaT], dtype="<M8[ns]" ), } ) ], ) def test_rowwise_ops_datetime_dtypes_pdbug(data): pdf = pd.DataFrame(data) gdf = cudf.from_pandas(pdf) expected = pdf.max(axis=1, skipna=False) got = gdf.max(axis=1, skipna=False) if PANDAS_GE_120: assert_eq(got, expected) else: # PANDAS BUG: https://github.com/pandas-dev/pandas/issues/36907 with pytest.raises(AssertionError, match="numpy array are different"): assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [5.0, 6.0, 7.0], "single value", np.array(1, dtype="int64"), np.array(0.6273643, dtype="float64"), ], ) def test_insert(data): pdf = pd.DataFrame.from_dict({"A": [1, 2, 3], "B": ["a", "b", "c"]}) gdf = cudf.DataFrame.from_pandas(pdf) # insertion by index pdf.insert(0, "foo", data) gdf.insert(0, "foo", data) assert_eq(pdf, gdf) pdf.insert(3, "bar", data) gdf.insert(3, "bar", data) assert_eq(pdf, gdf) pdf.insert(1, "baz", data) gdf.insert(1, "baz", data) assert_eq(pdf, gdf) # pandas insert doesn't support negative indexing pdf.insert(len(pdf.columns), "qux", data) gdf.insert(-1, "qux", data) assert_eq(pdf, gdf) def test_cov(): gdf = cudf.datasets.randomdata(10) pdf = gdf.to_pandas() assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.xfail(reason="cupy-based cov does not support nulls") def test_cov_nans(): pdf = pd.DataFrame() pdf["a"] = [None, None, None, 2.00758632, None] pdf["b"] = [0.36403686, None, None, None, None] pdf["c"] = [None, None, None, 0.64882227, None] pdf["d"] = [None, -1.46863125, None, 1.22477948, -0.06031689] gdf = cudf.from_pandas(pdf) assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.parametrize( "gsr", [ cudf.Series([4, 2, 3]), cudf.Series([4, 2, 3], index=["a", "b", "c"]), cudf.Series([4, 2, 3], index=["a", "b", "d"]), cudf.Series([4, 2], index=["a", "b"]), cudf.Series([4, 2, 3], index=cudf.core.index.RangeIndex(0, 3)), pytest.param( cudf.Series([4, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"]), marks=pytest.mark.xfail, ), ], ) @pytest.mark.parametrize("colnames", [["a", "b", "c"], [0, 1, 2]]) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_df_sr_binop(gsr, colnames, op): data = [[3.0, 2.0, 5.0], [3.0, None, 5.0], [6.0, 7.0, np.nan]] data = dict(zip(colnames, data)) gsr = gsr.astype("float64") gdf = cudf.DataFrame(data) pdf = gdf.to_pandas(nullable=True) psr = gsr.to_pandas(nullable=True) expect = op(pdf, psr) got = op(gdf, gsr).to_pandas(nullable=True) assert_eq(expect, got, check_dtype=False) expect = op(psr, pdf) got = op(gsr, gdf).to_pandas(nullable=True) assert_eq(expect, got, check_dtype=False) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, # comparison ops will temporarily XFAIL # see PR https://github.com/rapidsai/cudf/pull/7491 pytest.param(operator.eq, marks=pytest.mark.xfail()), pytest.param(operator.lt, marks=pytest.mark.xfail()), pytest.param(operator.le, marks=pytest.mark.xfail()), pytest.param(operator.gt, marks=pytest.mark.xfail()), pytest.param(operator.ge, marks=pytest.mark.xfail()), pytest.param(operator.ne, marks=pytest.mark.xfail()), ], ) @pytest.mark.parametrize( "gsr", [cudf.Series([1, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"])] ) def test_df_sr_binop_col_order(gsr, op): colnames = [0, 1, 2] data = [[0, 2, 5], [3, None, 5], [6, 7, np.nan]] data = dict(zip(colnames, data)) gdf = cudf.DataFrame(data) pdf = pd.DataFrame.from_dict(data) psr = gsr.to_pandas() expect = op(pdf, psr).astype("float") out = op(gdf, gsr).astype("float") got = out[expect.columns] assert_eq(expect, got) @pytest.mark.parametrize("set_index", [None, "A", "C", "D"]) @pytest.mark.parametrize("index", [True, False]) @pytest.mark.parametrize("deep", [True, False]) def test_memory_usage(deep, index, set_index): # Testing numerical/datetime by comparing with pandas # (string and categorical columns will be different) rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int64"), "B": np.arange(rows, dtype="int32"), "C": np.arange(rows, dtype="float64"), } ) df["D"] = pd.to_datetime(df.A) if set_index: df = df.set_index(set_index) gdf = cudf.from_pandas(df) if index and set_index is None: # Special Case: Assume RangeIndex size == 0 assert gdf.index.memory_usage(deep=deep) == 0 else: # Check for Series only assert df["B"].memory_usage(index=index, deep=deep) == gdf[ "B" ].memory_usage(index=index, deep=deep) # Check for entire DataFrame assert_eq( df.memory_usage(index=index, deep=deep).sort_index(), gdf.memory_usage(index=index, deep=deep).sort_index(), ) @pytest.mark.xfail def test_memory_usage_string(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) gdf = cudf.from_pandas(df) # Check deep=False (should match pandas) assert gdf.B.memory_usage(deep=False, index=False) == df.B.memory_usage( deep=False, index=False ) # Check string column assert gdf.B.memory_usage(deep=True, index=False) == df.B.memory_usage( deep=True, index=False ) # Check string index assert gdf.set_index("B").index.memory_usage( deep=True ) == df.B.memory_usage(deep=True, index=False) def test_memory_usage_cat(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) df["B"] = df.B.astype("category") gdf = cudf.from_pandas(df) expected = ( gdf.B._column.cat().categories.__sizeof__() + gdf.B._column.cat().codes.__sizeof__() ) # Check cat column assert gdf.B.memory_usage(deep=True, index=False) == expected # Check cat index assert gdf.set_index("B").index.memory_usage(deep=True) == expected def test_memory_usage_list(): df = cudf.DataFrame({"A": [[0, 1, 2, 3], [4, 5, 6], [7, 8], [9]]}) expected = ( df.A._column.offsets._memory_usage() + df.A._column.elements._memory_usage() ) assert expected == df.A.memory_usage() @pytest.mark.xfail def test_memory_usage_multi(): rows = int(100) deep = True df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(np.arange(3, dtype="int64"), rows), "C": np.random.choice(np.arange(3, dtype="float64"), rows), } ).set_index(["B", "C"]) gdf = cudf.from_pandas(df) # Assume MultiIndex memory footprint is just that # of the underlying columns, levels, and codes expect = rows * 16 # Source Columns expect += rows * 16 # Codes expect += 3 * 8 # Level 0 expect += 3 * 8 # Level 1 assert expect == gdf.index.memory_usage(deep=deep) @pytest.mark.parametrize( "list_input", [ pytest.param([1, 2, 3, 4], id="smaller"), pytest.param([1, 2, 3, 4, 5, 6], id="larger"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_list(list_input, key): gdf = cudf.datasets.randomdata(5) with pytest.raises( ValueError, match=("All columns must be of equal length") ): gdf[key] = list_input @pytest.mark.parametrize( "series_input", [ pytest.param(cudf.Series([1, 2, 3, 4]), id="smaller_cudf"), pytest.param(cudf.Series([1, 2, 3, 4, 5, 6]), id="larger_cudf"), pytest.param(cudf.Series([1, 2, 3], index=[4, 5, 6]), id="index_cudf"), pytest.param(pd.Series([1, 2, 3, 4]), id="smaller_pandas"), pytest.param(pd.Series([1, 2, 3, 4, 5, 6]), id="larger_pandas"), pytest.param(pd.Series([1, 2, 3], index=[4, 5, 6]), id="index_pandas"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_series(series_input, key): gdf = cudf.datasets.randomdata(5) pdf = gdf.to_pandas() pandas_input = series_input if isinstance(pandas_input, cudf.Series): pandas_input = pandas_input.to_pandas() expect = pdf expect[key] = pandas_input got = gdf got[key] = series_input # Pandas uses NaN and typecasts to float64 if there's missing values on # alignment, so need to typecast to float64 for equality comparison expect = expect.astype("float64") got = got.astype("float64") assert_eq(expect, got) def test_tupleize_cols_False_set(): pdf = pd.DataFrame() gdf = cudf.DataFrame() pdf[("a", "b")] = [1] gdf[("a", "b")] = [1] assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_init_multiindex_from_dict(): pdf = pd.DataFrame({("a", "b"): [1]}) gdf = cudf.DataFrame({("a", "b"): [1]}) assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_change_column_dtype_in_empty(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) assert_eq(pdf, gdf) pdf["b"] = pdf["b"].astype("int64") gdf["b"] = gdf["b"].astype("int64") assert_eq(pdf, gdf) def test_dataframe_from_table_empty_index(): df = cudf.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) odict = df._data tbl = cudf._lib.table.Table(odict) result = cudf.DataFrame._from_table(tbl) # noqa: F841 @pytest.mark.parametrize("dtype", ["int64", "str"]) def test_dataframe_from_dictionary_series_same_name_index(dtype): pd_idx1 = pd.Index([1, 2, 0], name="test_index").astype(dtype) pd_idx2 = pd.Index([2, 0, 1], name="test_index").astype(dtype) pd_series1 = pd.Series([1, 2, 3], index=pd_idx1) pd_series2 = pd.Series([1, 2, 3], index=pd_idx2) gd_idx1 = cudf.from_pandas(pd_idx1) gd_idx2 = cudf.from_pandas(pd_idx2) gd_series1 = cudf.Series([1, 2, 3], index=gd_idx1) gd_series2 = cudf.Series([1, 2, 3], index=gd_idx2) expect = pd.DataFrame({"a": pd_series1, "b": pd_series2}) got = cudf.DataFrame({"a": gd_series1, "b": gd_series2}) if dtype == "str": # Pandas actually loses its index name erroneously here... expect.index.name = "test_index" assert_eq(expect, got) assert expect.index.names == got.index.names @pytest.mark.parametrize( "arg", [slice(2, 8, 3), slice(1, 20, 4), slice(-2, -6, -2)] ) def test_dataframe_strided_slice(arg): mul = pd.DataFrame( { "Index": [1, 2, 3, 4, 5, 6, 7, 8, 9], "AlphaIndex": ["a", "b", "c", "d", "e", "f", "g", "h", "i"], } ) pdf = pd.DataFrame( {"Val": [10, 9, 8, 7, 6, 5, 4, 3, 2]}, index=pd.MultiIndex.from_frame(mul), ) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf[arg] got = gdf[arg] assert_eq(expect, got) @pytest.mark.parametrize( "data,condition,other,error", [ (pd.Series(range(5)), pd.Series(range(5)) > 0, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, 10, None), ( pd.Series(range(5)), pd.Series(range(5)) > 1, pd.Series(range(5, 10)), None, ), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]) % 3 ) == 0, -pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), None, ), ( pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}), pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}) == 4, None, None, ), ( pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}), pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}) != 4, None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [True, True, True], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [True, True, True, False], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True, True, False], [True, True, True, False]], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True], [False, True], [True, False], [False, True]], None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), cuda.to_device( np.array( [[True, True], [False, True], [True, False], [False, True]] ) ), None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), cupy.array( [[True, True], [False, True], [True, False], [False, True]] ), 17, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True], [False, True], [True, False], [False, True]], 17, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [ [True, True, False, True], [True, True, False, True], [True, True, False, True], [True, True, False, True], ], None, ValueError, ), ( pd.Series([1, 2, np.nan]), pd.Series([1, 2, np.nan]) == 4, None, None, ), ( pd.Series([1, 2, np.nan]), pd.Series([1, 2, np.nan]) != 4, None, None, ), ( pd.Series([4, np.nan, 6]), pd.Series([4, np.nan, 6]) == 4, None, None, ), ( pd.Series([4, np.nan, 6]), pd.Series([4, np.nan, 6]) != 4, None, None, ), ( pd.Series([4, np.nan, 6], dtype="category"), pd.Series([4, np.nan, 6], dtype="category") != 4, None, None, ), ( pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category"), pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category") == "b", None, None, ), ( pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category"), pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category") == "b", "s", None, ), ( pd.Series([1, 2, 3, 2, 5]), pd.Series([1, 2, 3, 2, 5]) == 2, pd.DataFrame( { "a": pd.Series([1, 2, 3, 2, 5]), "b": pd.Series([1, 2, 3, 2, 5]), } ), NotImplementedError, ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_df_sr_mask_where(data, condition, other, error, inplace): ps_where = data gs_where = cudf.from_pandas(data) ps_mask = ps_where.copy(deep=True) gs_mask = gs_where.copy(deep=True) if hasattr(condition, "__cuda_array_interface__"): if type(condition).__module__.split(".")[0] == "cupy": ps_condition = cupy.asnumpy(condition) else: ps_condition = np.array(condition).astype("bool") else: ps_condition = condition if type(condition).__module__.split(".")[0] == "pandas": gs_condition = cudf.from_pandas(condition) else: gs_condition = condition ps_other = other if type(other).__module__.split(".")[0] == "pandas": gs_other = cudf.from_pandas(other) else: gs_other = other if error is None: expect_where = ps_where.where( ps_condition, other=ps_other, inplace=inplace ) got_where = gs_where.where( gs_condition, other=gs_other, inplace=inplace ) expect_mask = ps_mask.mask( ps_condition, other=ps_other, inplace=inplace ) got_mask = gs_mask.mask(gs_condition, other=gs_other, inplace=inplace) if inplace: expect_where = ps_where got_where = gs_where expect_mask = ps_mask got_mask = gs_mask if pd.api.types.is_categorical_dtype(expect_where): np.testing.assert_array_equal( expect_where.cat.codes, got_where.cat.codes.astype(expect_where.cat.codes.dtype) .fillna(-1) .to_array(), ) assert_eq(expect_where.cat.categories, got_where.cat.categories) np.testing.assert_array_equal( expect_mask.cat.codes, got_mask.cat.codes.astype(expect_mask.cat.codes.dtype) .fillna(-1) .to_array(), ) assert_eq(expect_mask.cat.categories, got_mask.cat.categories) else: assert_eq( expect_where.fillna(-1), got_where.fillna(-1), check_dtype=False, ) assert_eq( expect_mask.fillna(-1), got_mask.fillna(-1), check_dtype=False ) else: assert_exceptions_equal( lfunc=ps_where.where, rfunc=gs_where.where, lfunc_args_and_kwargs=( [ps_condition], {"other": ps_other, "inplace": inplace}, ), rfunc_args_and_kwargs=( [gs_condition], {"other": gs_other, "inplace": inplace}, ), compare_error_message=False if error is NotImplementedError else True, ) assert_exceptions_equal( lfunc=ps_mask.mask, rfunc=gs_mask.mask, lfunc_args_and_kwargs=( [ps_condition], {"other": ps_other, "inplace": inplace}, ), rfunc_args_and_kwargs=( [gs_condition], {"other": gs_other, "inplace": inplace}, ), compare_error_message=False, ) @pytest.mark.parametrize( "data,condition,other,has_cat", [ ( pd.DataFrame( { "a": pd.Series(["a", "a", "b", "c", "a", "d", "d", "a"]), "b": pd.Series(["o", "p", "q", "e", "p", "p", "a", "a"]), } ), pd.DataFrame( { "a": pd.Series(["a", "a", "b", "c", "a", "d", "d", "a"]), "b": pd.Series(["o", "p", "q", "e", "p", "p", "a", "a"]), } ) != "a", None, None, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) != "a", None, True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) == "a", None, True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) != "a", "a", True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) == "a", "a", True, ), ], ) def test_df_string_cat_types_mask_where(data, condition, other, has_cat): ps = data gs = cudf.from_pandas(data) ps_condition = condition if type(condition).__module__.split(".")[0] == "pandas": gs_condition = cudf.from_pandas(condition) else: gs_condition = condition ps_other = other if type(other).__module__.split(".")[0] == "pandas": gs_other = cudf.from_pandas(other) else: gs_other = other expect_where = ps.where(ps_condition, other=ps_other) got_where = gs.where(gs_condition, other=gs_other) expect_mask = ps.mask(ps_condition, other=ps_other) got_mask = gs.mask(gs_condition, other=gs_other) if has_cat is None: assert_eq( expect_where.fillna(-1).astype("str"), got_where.fillna(-1), check_dtype=False, ) assert_eq( expect_mask.fillna(-1).astype("str"), got_mask.fillna(-1), check_dtype=False, ) else: assert_eq(expect_where, got_where, check_dtype=False) assert_eq(expect_mask, got_mask, check_dtype=False) @pytest.mark.parametrize( "data,expected_upcast_type,error", [ ( pd.Series([random.random() for _ in range(10)], dtype="float32"), np.dtype("float32"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float16"), np.dtype("float32"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float64"), np.dtype("float64"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float128"), None, NotImplementedError, ), ], ) def test_from_pandas_unsupported_types(data, expected_upcast_type, error): pdf = pd.DataFrame({"one_col": data}) if error == NotImplementedError: with pytest.raises(error): cudf.from_pandas(data) with pytest.raises(error): cudf.Series(data) with pytest.raises(error): cudf.from_pandas(pdf) with pytest.raises(error): cudf.DataFrame(pdf) else: df = cudf.from_pandas(data) assert_eq(data, df, check_dtype=False) assert df.dtype == expected_upcast_type df = cudf.Series(data) assert_eq(data, df, check_dtype=False) assert df.dtype == expected_upcast_type df = cudf.from_pandas(pdf) assert_eq(pdf, df, check_dtype=False) assert df["one_col"].dtype == expected_upcast_type df = cudf.DataFrame(pdf) assert_eq(pdf, df, check_dtype=False) assert df["one_col"].dtype == expected_upcast_type @pytest.mark.parametrize("nan_as_null", [True, False]) @pytest.mark.parametrize("index", [None, "a", ["a", "b"]]) def test_from_pandas_nan_as_null(nan_as_null, index): data = [np.nan, 2.0, 3.0] if index is None: pdf = pd.DataFrame({"a": data, "b": data}) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) else: pdf = pd.DataFrame({"a": data, "b": data}).set_index(index) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) expected = expected.set_index(index) got = cudf.from_pandas(pdf, nan_as_null=nan_as_null) assert_eq(expected, got) @pytest.mark.parametrize("nan_as_null", [True, False]) def test_from_pandas_for_series_nan_as_null(nan_as_null): data = [np.nan, 2.0, 3.0] psr = pd.Series(data) expected = cudf.Series(column.as_column(data, nan_as_null=nan_as_null)) got = cudf.from_pandas(psr, nan_as_null=nan_as_null) assert_eq(expected, got) @pytest.mark.parametrize("copy", [True, False]) def test_df_series_dataframe_astype_copy(copy): gdf = cudf.DataFrame({"col1": [1, 2], "col2": [3, 4]}) pdf = gdf.to_pandas() assert_eq( gdf.astype(dtype="float", copy=copy), pdf.astype(dtype="float", copy=copy), ) assert_eq(gdf, pdf) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() assert_eq( gsr.astype(dtype="float", copy=copy), psr.astype(dtype="float", copy=copy), ) assert_eq(gsr, psr) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() actual = gsr.astype(dtype="int64", copy=copy) expected = psr.astype(dtype="int64", copy=copy) assert_eq(expected, actual) assert_eq(gsr, psr) actual[0] = 3 expected[0] = 3 assert_eq(gsr, psr) @pytest.mark.parametrize("copy", [True, False]) def test_df_series_dataframe_astype_dtype_dict(copy): gdf = cudf.DataFrame({"col1": [1, 2], "col2": [3, 4]}) pdf = gdf.to_pandas() assert_eq( gdf.astype(dtype={"col1": "float"}, copy=copy), pdf.astype(dtype={"col1": "float"}, copy=copy), ) assert_eq(gdf, pdf) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() assert_eq( gsr.astype(dtype={None: "float"}, copy=copy), psr.astype(dtype={None: "float"}, copy=copy), ) assert_eq(gsr, psr) assert_exceptions_equal( lfunc=psr.astype, rfunc=gsr.astype, lfunc_args_and_kwargs=([], {"dtype": {"a": "float"}, "copy": copy}), rfunc_args_and_kwargs=([], {"dtype": {"a": "float"}, "copy": copy}), ) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() actual = gsr.astype({None: "int64"}, copy=copy) expected = psr.astype({None: "int64"}, copy=copy) assert_eq(expected, actual) assert_eq(gsr, psr) actual[0] = 3 expected[0] = 3 assert_eq(gsr, psr) @pytest.mark.parametrize( "data,columns", [ ([1, 2, 3, 100, 112, 35464], ["a"]), (range(100), None), ([], None), ((-10, 21, 32, 32, 1, 2, 3), ["p"]), ((), None), ([[1, 2, 3], [1, 2, 3]], ["col1", "col2", "col3"]), ([range(100), range(100)], ["range" + str(i) for i in range(100)]), (((1, 2, 3), (1, 2, 3)), ["tuple0", "tuple1", "tuple2"]), ([[1, 2, 3]], ["list col1", "list col2", "list col3"]), ([range(100)], ["range" + str(i) for i in range(100)]), (((1, 2, 3),), ["k1", "k2", "k3"]), ], ) def test_dataframe_init_1d_list(data, columns): expect = pd.DataFrame(data, columns=columns) actual = cudf.DataFrame(data, columns=columns) assert_eq( expect, actual, check_index_type=False if len(data) == 0 else True ) expect = pd.DataFrame(data, columns=None) actual = cudf.DataFrame(data, columns=None) assert_eq( expect, actual, check_index_type=False if len(data) == 0 else True ) @pytest.mark.parametrize( "data,cols,index", [ ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], ["a", "b", "c", "d"], ), ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], [0, 20, 30, 10], ), ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], [0, 1, 2, 3], ), (np.array([11, 123, -2342, 232]), ["a"], [1, 2, 11, 12]), (np.array([11, 123, -2342, 232]), ["a"], ["khsdjk", "a", "z", "kk"]), ( cupy.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "z"], ["a", "z", "a", "z"], ), (cupy.array([11, 123, -2342, 232]), ["z"], [0, 1, 1, 0]), (cupy.array([11, 123, -2342, 232]), ["z"], [1, 2, 3, 4]), (cupy.array([11, 123, -2342, 232]), ["z"], ["a", "z", "d", "e"]), (np.random.randn(2, 4), ["a", "b", "c", "d"], ["a", "b"]), (np.random.randn(2, 4), ["a", "b", "c", "d"], [1, 0]), (cupy.random.randn(2, 4), ["a", "b", "c", "d"], ["a", "b"]), (cupy.random.randn(2, 4), ["a", "b", "c", "d"], [1, 0]), ], ) def test_dataframe_init_from_arrays_cols(data, cols, index): gd_data = data if isinstance(data, cupy.core.ndarray): # pandas can't handle cupy arrays in general pd_data = data.get() # additional test for building DataFrame with gpu array whose # cuda array interface has no `descr` attribute numba_data = cuda.as_cuda_array(data) else: pd_data = data numba_data = None # verify with columns & index pdf = pd.DataFrame(pd_data, columns=cols, index=index) gdf = cudf.DataFrame(gd_data, columns=cols, index=index) assert_eq(pdf, gdf, check_dtype=False) # verify with columns pdf = pd.DataFrame(pd_data, columns=cols) gdf = cudf.DataFrame(gd_data, columns=cols) assert_eq(pdf, gdf, check_dtype=False) pdf = pd.DataFrame(pd_data) gdf = cudf.DataFrame(gd_data) assert_eq(pdf, gdf, check_dtype=False) if numba_data is not None: gdf = cudf.DataFrame(numba_data) assert_eq(pdf, gdf, check_dtype=False) @pytest.mark.parametrize( "col_data", [ range(5), ["a", "b", "x", "y", "z"], [1.0, 0.213, 0.34332], ["a"], [1], [0.2323], [], ], ) @pytest.mark.parametrize( "assign_val", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) def test_dataframe_assign_scalar(col_data, assign_val): pdf = pd.DataFrame({"a": col_data}) gdf = cudf.DataFrame({"a": col_data}) pdf["b"] = ( cupy.asnumpy(assign_val) if isinstance(assign_val, cupy.ndarray) else assign_val ) gdf["b"] = assign_val assert_eq(pdf, gdf) @pytest.mark.parametrize( "col_data", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) @pytest.mark.parametrize( "assign_val", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) def test_dataframe_assign_scalar_with_scalar_cols(col_data, assign_val): pdf = pd.DataFrame( { "a": cupy.asnumpy(col_data) if isinstance(col_data, cupy.ndarray) else col_data }, index=["dummy_mandatory_index"], ) gdf = cudf.DataFrame({"a": col_data}, index=["dummy_mandatory_index"]) pdf["b"] = ( cupy.asnumpy(assign_val) if isinstance(assign_val, cupy.ndarray) else assign_val ) gdf["b"] = assign_val assert_eq(pdf, gdf) def test_dataframe_info_basic(): buffer = io.StringIO() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> StringIndex: 10 entries, a to 1111 Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 0 10 non-null float64 1 1 10 non-null float64 2 2 10 non-null float64 3 3 10 non-null float64 4 4 10 non-null float64 5 5 10 non-null float64 6 6 10 non-null float64 7 7 10 non-null float64 8 8 10 non-null float64 9 9 10 non-null float64 dtypes: float64(10) memory usage: 859.0+ bytes """ ) df = pd.DataFrame( np.random.randn(10, 10), index=["a", "2", "3", "4", "5", "6", "7", "8", "100", "1111"], ) cudf.from_pandas(df).info(buf=buffer, verbose=True) s = buffer.getvalue() assert str_cmp == s def test_dataframe_info_verbose_mem_usage(): buffer = io.StringIO() df = pd.DataFrame({"a": [1, 2, 3], "b": ["safdas", "assa", "asdasd"]}) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 3 entries, 0 to 2 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 3 non-null int64 1 b 3 non-null object dtypes: int64(1), object(1) memory usage: 56.0+ bytes """ ) cudf.from_pandas(df).info(buf=buffer, verbose=True) s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 3 entries, 0 to 2 Columns: 2 entries, a to b dtypes: int64(1), object(1) memory usage: 56.0+ bytes """ ) cudf.from_pandas(df).info(buf=buffer, verbose=False) s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) df = pd.DataFrame( {"a": [1, 2, 3], "b": ["safdas", "assa", "asdasd"]}, index=["sdfdsf", "sdfsdfds", "dsfdf"], ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> StringIndex: 3 entries, sdfdsf to dsfdf Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 3 non-null int64 1 b 3 non-null object dtypes: int64(1), object(1) memory usage: 91.0 bytes """ ) cudf.from_pandas(df).info(buf=buffer, verbose=True, memory_usage="deep") s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) int_values = [1, 2, 3, 4, 5] text_values = ["alpha", "beta", "gamma", "delta", "epsilon"] float_values = [0.0, 0.25, 0.5, 0.75, 1.0] df = cudf.DataFrame( { "int_col": int_values, "text_col": text_values, "float_col": float_values, } ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 int_col 5 non-null int64 1 text_col 5 non-null object 2 float_col 5 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 130.0 bytes """ ) df.info(buf=buffer, verbose=True, memory_usage="deep") actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) def test_dataframe_info_null_counts(): int_values = [1, 2, 3, 4, 5] text_values = ["alpha", "beta", "gamma", "delta", "epsilon"] float_values = [0.0, 0.25, 0.5, 0.75, 1.0] df = cudf.DataFrame( { "int_col": int_values, "text_col": text_values, "float_col": float_values, } ) buffer = io.StringIO() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Dtype --- ------ ----- 0 int_col int64 1 text_col object 2 float_col float64 dtypes: float64(1), int64(1), object(1) memory usage: 130.0+ bytes """ ) df.info(buf=buffer, verbose=True, null_counts=False) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df.info(buf=buffer, verbose=True, max_cols=0) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df = cudf.DataFrame() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 0 entries Empty DataFrame""" ) df.info(buf=buffer, verbose=True) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df = cudf.DataFrame( { "a": [1, 2, 3, None, 10, 11, 12, None], "b": ["a", "b", "c", "sd", "sdf", "sd", None, None], } ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 8 entries, 0 to 7 Data columns (total 2 columns): # Column Dtype --- ------ ----- 0 a int64 1 b object dtypes: int64(1), object(1) memory usage: 238.0+ bytes """ ) pd.options.display.max_info_rows = 2 df.info(buf=buffer, max_cols=2, null_counts=None) pd.reset_option("display.max_info_rows") actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 8 entries, 0 to 7 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 6 non-null int64 1 b 6 non-null object dtypes: int64(1), object(1) memory usage: 238.0+ bytes """ ) df.info(buf=buffer, max_cols=2, null_counts=None) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df.info(buf=buffer, null_counts=True) actual_string = buffer.getvalue() assert str_cmp == actual_string @pytest.mark.parametrize( "data1", [ [1, 2, 3, 4, 5, 6, 7], [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], [ 1.9876543, 2.9876654, 3.9876543, 4.1234587, 5.23, 6.88918237, 7.00001, ], [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, -0.1221, -2.1221, -0.112121, 21.1212, ], ], ) @pytest.mark.parametrize( "data2", [ [1, 2, 3, 4, 5, 6, 7], [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], [ 1.9876543, 2.9876654, 3.9876543, 4.1234587, 5.23, 6.88918237, 7.00001, ], [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, -0.1221, -2.1221, -0.112121, 21.1212, ], ], ) @pytest.mark.parametrize("rtol", [0, 0.01, 1e-05, 1e-08, 5e-1, 50.12]) @pytest.mark.parametrize("atol", [0, 0.01, 1e-05, 1e-08, 50.12]) def test_cudf_isclose(data1, data2, rtol, atol): array1 = cupy.array(data1) array2 = cupy.array(data2) expected = cudf.Series(cupy.isclose(array1, array2, rtol=rtol, atol=atol)) actual = cudf.isclose( cudf.Series(data1), cudf.Series(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = cudf.isclose(data1, data2, rtol=rtol, atol=atol) assert_eq(expected, actual) actual = cudf.isclose( cupy.array(data1), cupy.array(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = cudf.isclose( np.array(data1), np.array(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = cudf.isclose( pd.Series(data1), pd.Series(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) @pytest.mark.parametrize( "data1", [ [ -1.9876543, -2.9876654, np.nan, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, np.nan, -21.1212, ], ], ) @pytest.mark.parametrize( "data2", [ [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, np.nan, np.nan, np.nan, 21.1212, ], ], ) @pytest.mark.parametrize("equal_nan", [True, False]) def test_cudf_isclose_nulls(data1, data2, equal_nan): array1 = cupy.array(data1) array2 = cupy.array(data2) expected = cudf.Series(cupy.isclose(array1, array2, equal_nan=equal_nan)) actual = cudf.isclose( cudf.Series(data1), cudf.Series(data2), equal_nan=equal_nan ) assert_eq(expected, actual, check_dtype=False) actual = cudf.isclose(data1, data2, equal_nan=equal_nan) assert_eq(expected, actual, check_dtype=False) def test_cudf_isclose_different_index(): s1 = cudf.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[0, 1, 2, 3, 4, 5], ) s2 = cudf.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 5, 3, 4, 2], ) expected = cudf.Series([True] * 6, index=s1.index) assert_eq(expected, cudf.isclose(s1, s2)) s1 = cudf.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[0, 1, 2, 3, 4, 5], ) s2 = cudf.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 5, 10, 4, 2], ) expected = cudf.Series( [True, True, True, False, True, True], index=s1.index ) assert_eq(expected, cudf.isclose(s1, s2)) s1 = cudf.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[100, 1, 2, 3, 4, 5], ) s2 = cudf.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 100, 10, 4, 2], ) expected = cudf.Series( [False, True, True, False, True, False], index=s1.index ) assert_eq(expected, cudf.isclose(s1, s2)) def test_dataframe_to_dict_error(): df = cudf.DataFrame({"a": [1, 2, 3], "b": [9, 5, 3]}) with pytest.raises( TypeError, match=re.escape( r"cuDF does not support conversion to host memory " r"via `to_dict()` method. Consider using " r"`.to_pandas().to_dict()` to construct a Python dictionary." ), ): df.to_dict() with pytest.raises( TypeError, match=re.escape( r"cuDF does not support conversion to host memory " r"via `to_dict()` method. Consider using " r"`.to_pandas().to_dict()` to construct a Python dictionary." ), ): df["a"].to_dict() @pytest.mark.parametrize( "df", [ pd.DataFrame({"a": [1, 2, 3, 4, 5, 10, 11, 12, 33, 55, 19]}), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], } ), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], }, index=[10, 20, 30, 40, 50, 60], ), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], }, index=["a", "b", "c", "d", "e", "f"], ), pd.DataFrame(index=["a", "b", "c", "d", "e", "f"]), pd.DataFrame(columns=["a", "b", "c", "d", "e", "f"]), pd.DataFrame(index=[10, 11, 12]), pd.DataFrame(columns=[10, 11, 12]), pd.DataFrame(), pd.DataFrame({"one": [], "two": []}), pd.DataFrame({2: [], 1: []}), pd.DataFrame( { 0: [1, 2, 3, 4, 5, 10], 1: ["abc", "def", "ghi", "xyz", "pqr", "abc"], 100: ["a", "b", "b", "x", "z", "a"], }, index=[10, 20, 30, 40, 50, 60], ), ], ) def test_dataframe_keys(df): gdf = cudf.from_pandas(df) assert_eq(df.keys(), gdf.keys()) @pytest.mark.parametrize( "ps", [ pd.Series([1, 2, 3, 4, 5, 10, 11, 12, 33, 55, 19]), pd.Series(["abc", "def", "ghi", "xyz", "pqr", "abc"]), pd.Series( [1, 2, 3, 4, 5, 10], index=["abc", "def", "ghi", "xyz", "pqr", "abc"], ), pd.Series( ["abc", "def", "ghi", "xyz", "pqr", "abc"], index=[1, 2, 3, 4, 5, 10], ), pd.Series(index=["a", "b", "c", "d", "e", "f"], dtype="float64"), pd.Series(index=[10, 11, 12], dtype="float64"), pd.Series(dtype="float64"), pd.Series([], dtype="float64"), ], ) def test_series_keys(ps): gds = cudf.from_pandas(ps) if len(ps) == 0 and not isinstance(ps.index, pd.RangeIndex): assert_eq(ps.keys().astype("float64"), gds.keys()) else: assert_eq(ps.keys(), gds.keys()) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[10, 20, 30]), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB")), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[7, 8]), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[7, 20, 11, 9], ), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[100]), pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame( {"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}, index=[100, 200, 300, 400, 500, 0], ), ], ) @pytest.mark.parametrize( "other", [ pd.DataFrame([[5, 6], [7, 8]], columns=list("AB")), pd.DataFrame([[5, 6], [7, 8]], columns=list("BD")), pd.DataFrame([[5, 6], [7, 8]], columns=list("DE")), pd.DataFrame(), pd.DataFrame( {"c": [10, 11, 22, 33, 44, 100]}, index=[7, 8, 9, 10, 11, 20] ), pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[200]), pd.DataFrame([]), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}), pd.DataFrame([], index=[100]), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), ], ) @pytest.mark.parametrize("sort", [False, True]) @pytest.mark.parametrize("ignore_index", [True, False]) def test_dataframe_append_dataframe(df, other, sort, ignore_index): pdf = df other_pd = other gdf = cudf.from_pandas(df) other_gd = cudf.from_pandas(other) expected = pdf.append(other_pd, sort=sort, ignore_index=ignore_index) actual = gdf.append(other_gd, sort=sort, ignore_index=ignore_index) if expected.shape != df.shape: assert_eq(expected.fillna(-1), actual.fillna(-1), check_dtype=False) else: assert_eq( expected, actual, check_index_type=False if gdf.empty else True ) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[10, 20, 30]), pd.DataFrame({12: [], 22: []}), pd.DataFrame([[1, 2], [3, 4]], columns=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=[0, 1], index=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=[1, 0], index=[7, 8]), pd.DataFrame( { 23: [315.3324, 3243.32432, 3232.332, -100.32], 33: [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { 0: [315.3324, 3243.32432, 3232.332, -100.32], 1: [0.3223, 0.32, 0.0000232, 0.32224], }, index=[7, 20, 11, 9], ), ], ) @pytest.mark.parametrize( "other", [ pd.Series([10, 11, 23, 234, 13]), pytest.param( pd.Series([10, 11, 23, 234, 13], index=[11, 12, 13, 44, 33]), marks=pytest.mark.xfail( reason="pandas bug: " "https://github.com/pandas-dev/pandas/issues/35092" ), ), {1: 1}, {0: 10, 1: 100, 2: 102}, ], ) @pytest.mark.parametrize("sort", [False, True]) def test_dataframe_append_series_dict(df, other, sort): pdf = df other_pd = other gdf = cudf.from_pandas(df) if isinstance(other, pd.Series): other_gd = cudf.from_pandas(other) else: other_gd = other expected = pdf.append(other_pd, ignore_index=True, sort=sort) actual = gdf.append(other_gd, ignore_index=True, sort=sort) if expected.shape != df.shape: assert_eq(expected.fillna(-1), actual.fillna(-1), check_dtype=False) else: assert_eq( expected, actual, check_index_type=False if gdf.empty else True ) def test_dataframe_append_series_mixed_index(): df = cudf.DataFrame({"first": [], "d": []}) sr = cudf.Series([1, 2, 3, 4]) with pytest.raises( TypeError, match=re.escape( "cudf does not support mixed types, please type-cast " "the column index of dataframe and index of series " "to same dtypes." ), ): df.append(sr, ignore_index=True) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[10, 20, 30]), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB")), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[7, 8]), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[7, 20, 11, 9], ), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[100]), pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame( {"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}, index=[100, 200, 300, 400, 500, 0], ), ], ) @pytest.mark.parametrize( "other", [ [pd.DataFrame([[5, 6], [7, 8]], columns=list("AB"))], [ pd.DataFrame([[5, 6], [7, 8]], columns=list("AB")), pd.DataFrame([[5, 6], [7, 8]], columns=list("BD")), pd.DataFrame([[5, 6], [7, 8]], columns=list("DE")), ], [pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame()], [ pd.DataFrame( {"c": [10, 11, 22, 33, 44, 100]}, index=[7, 8, 9, 10, 11, 20] ), pd.DataFrame(), pd.DataFrame(), pd.DataFrame([[5, 6], [7, 8]], columns=list("AB")), ], [ pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[200]), ], [pd.DataFrame([]), pd.DataFrame([], index=[100])], [ pd.DataFrame([]), pd.DataFrame([], index=[100]), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}), ], [ pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), ], [ pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), ], [ pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), ], [ pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}), ], ], ) @pytest.mark.parametrize("sort", [False, True]) @pytest.mark.parametrize("ignore_index", [True, False]) def test_dataframe_append_dataframe_lists(df, other, sort, ignore_index): pdf = df other_pd = other gdf = cudf.from_pandas(df) other_gd = [ cudf.from_pandas(o) if isinstance(o, pd.DataFrame) else o for o in other ] expected = pdf.append(other_pd, sort=sort, ignore_index=ignore_index) actual = gdf.append(other_gd, sort=sort, ignore_index=ignore_index) if expected.shape != df.shape: assert_eq(expected.fillna(-1), actual.fillna(-1), check_dtype=False) else: assert_eq( expected, actual, check_index_type=False if gdf.empty else True ) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB")), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[7, 8]), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[7, 20, 11, 9], ),
pd.DataFrame({"l": [10]})
pandas.DataFrame
#################################################################### # EXPLORATORY DATA ANALYSIS & DATA CLEANING of Hepatitis Data # Author: <NAME> (<EMAIL>) # Date: 20th April, 2021 #################################################################### ####################### ## Import Libraries ## ####################### # The iconic trio import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib import rcParams, font_manager # Set plots style plt.style.use('fivethirtyeight') # Import seaborn for style and beauty import seaborn as sns # Set context sns.set_context('paper') # custom from custom import helper # Ignore warnings import warnings warnings.filterwarnings('ignore') ############################## ## Load Dataset ## ############################## raw_data = pd.read_csv("data/hepatitis.data") print('Data Loaded Successfully!') ############################################################# ## Name the Column Heads of the Dataset Appropriately ## ############################################################# column_heads = [ "Class", "AGE", "SEX", "STEROID", "ANTIVIRALS", "FATIGUE", "MALAISE", "ANOREXIA", "LIVER BIG", "LIVER FIRM", "SPLEEN PALPABLE", "SPIDERS", "ASCITES", "VARICES", "BILIRUBIN", "ALK PHOSPHATE", "SGOT", "ALBUMIN", "PROTIME", "HISTOLOGY" ] print(f'Total number of columns: {len(column_heads)}') ## Assign column head names to the dataset raw_data.columns = column_heads ## Convert column head names to snakecase ## raw_data.columns = raw_data.columns.str.lower().str.replace(' ', '_') ## Create a Copy of the Dataset df = raw_data.copy() ## Create Folders to keep figures and tables helper.create_folder('./csv_tables/') helper.create_folder('./figures/') #################################### ## Treat Missing Values ## #################################### ### Missing Attribute Values: (indicated by "`?`") # Replace `?` with `NaNs` df.replace('?', np.nan, inplace=True) # Get missing values missing_values = helper.missing_data(df) missing_values.to_csv("csv_tables/missing_values.csv", index=True) print('Missing Values Info Saved Successfully!') ### Check Total Number of Missing Values total_number_of_misssing_values = missing_values.loc['Total', :].sum() print(f'Total number of missng values: {total_number_of_misssing_values}') ### Get Column Heads with Missing Values columns_with_missing_values = list(missing_values.columns[missing_values.loc['Total', :] > 0]) ### Get the Median Value of Columns with Missing Values median_values = df[columns_with_missing_values].median() ### Replace Missing Values with Median Values df.fillna(value=median_values, inplace=True) print('Missing Values Treated!') ############################################### ## Get Column Names and their Data Types ## ############################################### dataset_columns = pd.DataFrame({'column_names':list(df.columns)}) data_types = [] for column in df.columns: dtype = str(df[column].dtypes) data_types.append(dtype) dataset_columns['data_type'] = data_types dataset_columns.to_csv("csv_tables/column_heads_of_dataset.csv", index=True) ############################################################### ## Treat Datatypes of the Column Heads ## ############################################################### ### Convert Columns with Integer Values to the `int` type # Get all Columns of type `object` object_columns_to_convert_to_ints = df.columns[df.dtypes == 'object'] # Columns to Omit columns_to_omit = ['bilirubin', 'albumin'] #### Drop Columns to omit from the list object_columns_to_convert_to_ints = object_columns_to_convert_to_ints.drop(columns_to_omit) #### Convert Columns with `Integer` Values to the `int` type df[object_columns_to_convert_to_ints] = df[object_columns_to_convert_to_ints].astype(int) #### Convert Columns with `Float` Values to the `float` type object_columns_to_convert_to_floats = ['bilirubin', 'albumin'] df[object_columns_to_convert_to_floats] = df[object_columns_to_convert_to_floats].astype(float) ############################################### ## Check Duplicated Values ## ############################################### print(f'The number of Data Obersvation is: {len(df)}') total_number_of_duplicated_values = df.duplicated().sum() print(f'Total number of duplicated values: {total_number_of_duplicated_values}') ########################################################## ## Create Another copy of the Dataset ## ########################################################## treated_df = df.copy() ####################################################### ## Transform Categorical Columns ## ####################################################### # Convert the "class" column head to object type treated_df['class'].replace( { 1: 'Die', 2: 'Live', }, inplace=True ) # Convert the "sex" column head to object type treated_df['sex'].replace( { 1: 'Male', 2: 'Female', }, inplace=True ) # Columns with binary ("yes" and "no") values yes_no_columns = [ 'steroid', 'antivirals', 'fatigue', 'malaise', 'anorexia', 'liver_big', 'liver_firm', 'spleen_palpable', 'spiders', 'ascites', 'varices', 'histology', ] # Convert binary column heads to object type for column in yes_no_columns: treated_df[column].replace( { 1: 'No', 2: 'Yes', }, inplace=True ) ################################################################### ## Get Statistical Summary of Full Dataset ## ################################################################### data_statistical_summary = df.describe(include='all') data_statistical_summary.to_csv("csv_tables/data_statistical_summary.csv", index=True) #################################################################### ## Statistical Summary of Categorical Features ## #################################################################### statistical_summary_of_categorical_columns = treated_df.describe(include=[object]) statistical_summary_of_categorical_columns.to_csv("csv_tables/statistical_summary_of_categorical_columns.csv", index=True) ################################################################## ## Statistical Summary of Numerical Features ## ################################################################## statistical_summary_of_numerical_columns = treated_df.describe(include=[np.number]) statistical_summary_of_numerical_columns.to_csv("csv_tables/statistical_summary_of_numerical_columns.csv", index=True) #################################################################### ## Summary of Individual Categorical Columns ## #################################################################### categorical_columns = treated_df.select_dtypes(np.object).columns.values.tolist() print('Saving column(s) summary') for column in categorical_columns: summary_df = treated_df[column].value_counts().reset_index() summary_df.columns = [column, 'frequency'] percentage = (treated_df[column].value_counts() / treated_df[column].count() * 100).values.tolist() summary_df['percentage'] = percentage total_df = pd.DataFrame(summary_df.sum(axis=0).to_dict(), index=[0]) total_df.loc[0, column] = 'Total' final_summary_df = pd.concat([summary_df, total_df], axis=0, ignore_index=True) final_summary_df.to_csv(f"csv_tables/summary_table_of_{column}.csv", index=False) print('*' * 10) ################################################### ## Statistical Summary Per Gender ## ################################################### satistical_summary_per_gender = treated_df.groupby('sex').describe(include='all') satistical_summary_per_gender = satistical_summary_per_gender.T satistical_summary_per_gender.to_csv("csv_tables/satistical_summary_per_gender.csv", index=True) ################################################################################# ## Statistical Summary of Numerical Features per Gender ## ################################################################################# satistical_summary_of_numerical_columns_per_gender = treated_df.groupby('sex').describe(include=[np.number]) satistical_summary_of_numerical_columns_per_gender = satistical_summary_of_numerical_columns_per_gender.T satistical_summary_of_numerical_columns_per_gender.to_csv("csv_tables/satistical_summary_of_numerical_columns_per_gender.csv", index=True) ################################################################################### ## Statistical Summary of Categorical Features per Gender ## ################################################################################### satistical_summary_of_categorical_columns_per_gender = treated_df.groupby('sex').describe(include=[object]) satistical_summary_of_categorical_columns_per_gender = satistical_summary_of_categorical_columns_per_gender.T satistical_summary_of_categorical_columns_per_gender.to_csv("csv_tables/satistical_summary_of_categorical_columns_per_gender.csv", index=True) print('All Statistical Summary Info has been Saved Successfully!') ################################################################################################# ## Replace `1s` and `2s` in the Categorical Columns with `0s` and `1s` ## ################################################################################################# cols = [ 'class', 'sex', 'steroid', 'antivirals', 'fatigue', 'malaise', 'anorexia', 'liver_big', 'liver_firm', 'spleen_palpable', 'spiders', 'ascites', 'varices', 'histology', ] for col in cols: df[col].replace( { 1:0, 2:1, }, inplace=True ) #################################### ## Check Outlier Info ## #################################### columns_to_check_for_outliers = ['age', 'bilirubin', 'alk_phosphate', 'sgot', 'albumin', 'protime'] outliers = helper.outlier_info(df[columns_to_check_for_outliers]) outliers.to_csv("csv_tables/outlier_info.csv", index=True) ### Check Total Number of Outliers total_number_of_outliers = outliers.loc['Number of Outliers', :].sum() print(f'Total number of outliers is: {total_number_of_outliers}') ######################### ## Detect Outliers ## ######################### for i, column in enumerate(df[columns_to_check_for_outliers]): fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 8), dpi=300, clear=False) df[column].hist(bins=10, ax=ax1) ax = sns.boxplot(x=column, data=df, ax=ax2, color='deepskyblue') ax = sns.stripplot(x=column, data=df, color="maroon", jitter=0.2, size=4.5) ax1.set_title('Distribution of ' + column, fontsize=22) ax2.set_title('Boxplot of ' + column, fontsize=22) plt.setp(ax1.get_xticklabels(), fontsize=15) plt.setp(ax1.get_yticklabels(), fontsize=15) plt.setp(ax2.get_xticklabels(), fontsize=15) ax2.set_xlabel(ax2.get_xlabel(), fontsize=18) plt.grid(b=True, axis='both', color='white', linewidth=0.5) fig.tight_layout() plt.savefig(f"figures/Outlier{i}.png", dpi=600, transparent=True) print('Outlier Info Has Been Saved Successfully!') ################################################## ## Correlation of Dataset Features ## ################################################## # Get Correlation betwwen target variable and data features correlation_with_target_variable = df.select_dtypes(np.number).corr()['class'].sort_values(ascending=False) correlation_with_target_variable =
pd.DataFrame(correlation_with_target_variable)
pandas.DataFrame
import pandas as pd weekdays = {0: 'monday', 1: 'tuesday', 2: 'wednesday', 3: 'thursday', 4: 'friday', 5: 'saturday', 6: 'sunday'} periods = {'days':7, 'hours': 168, 'minutes': 10080} week_indices = {'days': [f'{weekdays[x]}' for x in range(7)], 'hours': [f'{weekdays[x//24]}-{str(x%24).zfill(2)}:00' for x in range(168)], 'minutes': [f'{weekdays[x//1440]}-{str(x//60).zfill(2)}:{str(x%60).zfill(2)}' for x in range(10080)]} def timeseries_to_week_lists(timeseries: pd.Series, resampled_at: str = 'hours'): parsed_periods = periods[resampled_at] if not isinstance(timeseries, pd.Series): raise ValueError('Only functions on a pandas Series object.') if resampled_at not in periods.keys(): raise ValueError('Does not support that ') weeks = [] # Auto-add the first-item to our current week... # so that we avoid any issues with a week starting exactly at sunday-midnight current_week = [timeseries[0]] # Iterate through the remaining periods and add them into our nested lists as appropriate for index_date, signal in timeseries[1:].iteritems(): if index_date.weekday() == 0 and index_date.hour == 0 and index_date.minute == 0: # Found the end of one week make sure it was a complete week while len(current_week) < parsed_periods: current_week.insert(0, None) # add that completed list to our master list-of-lists weeks.append(current_week) # start the new week off current_week = [signal] else: current_week.append(signal) # Make sure we capture anything left of the final week... while len(current_week) < parsed_periods: current_week.append(None) # add that final week into the master weeks.append(current_week) return weeks def split_weeks(timeseries: pd.Series, resampled_at: str = 'hours') -> pd.DataFrame: week_lists = timeseries_to_week_lists(timeseries, resampled_at) final_index = week_indices[resampled_at] return pd.DataFrame({f'week_{x}': row_data for x, row_data in enumerate(week_lists)}, index=final_index) def split_overlapping_weeks(timeseries: pd.Series, additional_periods=12, resampled_at: str = 'hours') -> pd.DataFrame: weeks = timeseries_to_week_lists(timeseries, resampled_at) final_index = week_indices[resampled_at] final_index = [str('-') + x for x in final_index[-additional_periods:]] + final_index + \ [str('+') + x for x in final_index[:additional_periods]] # empty dataframe for the final result result_df =
pd.DataFrame(index=final_index)
pandas.DataFrame
# -*- coding: utf-8 -*- import pandas as pd import numpy as np from sklearn.metrics import roc_auc_score, accuracy_score from sklearn.externals import joblib import os def log_loss(predictions,actual,eps=1e-15): '''take an array of prediction probabilities (clipped to avoid undefined values) and measures accuracy while also factoring for confidence''' #assert (max(predictions)<=1 and min(predictions)>=0), 'Please make sure to use predict_proba' p_clipped = np.clip(predictions,eps,1-eps) loss = -1 * np.mean((actual * np.log(p_clipped)) + ((1-actual) * np.log(1-p_clipped))) return loss def sigmoid(array): sig = 1 / (1 + np.exp(-array)) return sig class BinaryClassifier: def __init__(self,regularization=None): '''initializing the object with the option to select regularization Regularization will be a dict with type (ridge/lasso) and lambda value''' if regularization is None: self.penalty_type = None self.penalty_lambda_ = 0 else: self.penalty_type = list(regularization.keys())[0] self.penalty_lambda_ = regularization.get(self.penalty_type) def _gradient_descent(self, X, y, lr=.1, pandas=False, full_history=False, weights=None, early_stopping=True): if pandas or (isinstance(X,pd.DataFrame) & isinstance(y,pd.DataFrame)): X = X.values y = y.values Xnames = X.columns ynames = y.columns else: X = X y = y Xnames = [i for i in range(X.shape[1])] '''learning rate for gradient descent algorithim''' self.lr = lr m = len(X) n_features = X.shape[1] '''creating the weights, which will typically be all zeros''' if weights is None: self.init_weights = np.zeros(n_features) else: self.init_weights = weights if self.penalty_type is 'lasso': reg_loss = (self.penalty_lambda_/m) reg_gradient = (-2*self.penalty_lambda_/m) elif self.penalty_type is 'ridge': reg_loss = (self.penalty_lambda_/2) reg_gradient = (-2*self.penalty_lambda_/m) else: reg_loss = 0 reg_gradient = 0 weights_list = [] scores_list = [] weights = self.init_weights for i in range(5000): if self.penalty_type is 'ridge': gradient_suffix = reg_gradient * weights loss_suffix = np.sum(reg_loss * np.square(weights)/m) elif self.penalty_type is 'lasso': gradient_suffix = reg_gradient * np.where(weights==0,0,np.where(weights>0,1,-1)) loss_suffix = np.sum(reg_loss * np.abs(weights)/m) else: gradient_suffix = 0 loss_suffix = 0 lr = self.lr '''p = prediction probabilities (0 < p < 1)''' p = sigmoid(np.dot(X, weights)) error = p - y gradient = (np.dot(X.T,error) * lr) /m weights = weights - gradient + gradient_suffix p = sigmoid(np.dot(X, weights)) preds = np.round(p) loss = log_loss(p, y) + loss_suffix auc = roc_auc_score(y, p) acc = accuracy_score(y,preds) weights_list.append([*weights]) scores_list.append([auc,loss,acc]) '''Early Stopping: if AUC does not change more than 0.01%, then break''' if early_stopping: if i >50: if abs((scores_list[i][-3] - scores_list[i-50][-3]) / scores_list[i][-3]) < 0.0001: break scores_df =
pd.DataFrame(scores_list,columns=['auc','loss','acc'])
pandas.DataFrame
import numpy as np import pandas as pd import patsy FILE_PATH_CENSUS80_EXTRACT = "data/QOB.txt" FILE_PATH_FULL_CENSUS7080 = "data/NEW7080.dta" def get_df_census80(): cols = [0, 1, 3, 4, 5, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 23, 24, 26] cols_names = [ "AGE", "AGEQ", "EDUC", "ENOCENT", "ESOCENT", "LWKLYWGE", "MARRIED", "MIDATL", "MT", "NEWENG", "CENSUS", "STATE", "QOB", "RACE", "SMSA", "SOATL", "WNOCENT", "WSOCENT", "YOB", ] df = pd.read_csv(FILE_PATH_CENSUS80_EXTRACT, sep=" ", usecols=cols, names=cols_names) # correct AGEQ df.loc[df["CENSUS"] == 80, "AGEQ"] = df["AGEQ"] - 1900 return df def get_df_census70(): cols = [ "v1", "v2", "v4", "v5", "v6", "v9", "v10", "v11", "v12", "v13", "v16", "v17", "v18", "v19", "v20", "v21", "v24", "v25", "v27", ] cols_names = [ "AGE", "AGEQ", "EDUC", "ENOCENT", "ESOCENT", "LWKLYWGE", "MARRIED", "MIDATL", "MT", "NEWENG", "CENSUS", "STATE", "QOB", "RACE", "SMSA", "SOATL", "WNOCENT", "WSOCENT", "YOB", ] df = pd.read_stata(FILE_PATH_FULL_CENSUS7080, columns=cols) df = df.rename(columns=dict(zip(cols, cols_names))) return df.loc[df["CENSUS"] == 70] def get_df_census70_census_80(): cols = [ "v1", "v2", "v4", "v5", "v6", "v9", "v10", "v11", "v12", "v13", "v16", "v17", "v18", "v19", "v20", "v21", "v24", "v25", "v27", ] cols_names = [ "AGE", "AGEQ", "EDUC", "ENOCENT", "ESOCENT", "LWKLYWGE", "MARRIED", "MIDATL", "MT", "NEWENG", "CENSUS", "STATE", "QOB", "RACE", "SMSA", "SOATL", "WNOCENT", "WSOCENT", "YOB", ] df = pd.read_stata(FILE_PATH_FULL_CENSUS7080, columns=cols) df = df.rename(columns=dict(zip(cols, cols_names))) return df def prepare_census_data( df, const=True, qob=True, yob=True, age=True, state_of_birth=False, qob_x_yob=False, qob_x_state=False, ): if const: df = add_constant(df) if qob or qob_x_yob or qob_x_state: df = add_quarter_of_birth_dummies(df) if yob or qob_x_yob: df = add_year_of_birth_dummies(df) if age: df = add_age_squared(df) if state_of_birth or qob_x_state: df = add_state_of_birth_dummies(df) if qob_x_yob: df = add_qob_yob_interactions(df) if qob_x_state: df = add_qob_state_interactions(df, qob_x_state) return df def add_constant(df): df["CONST"] = 1 df["CONST"] = df["CONST"].astype(np.uint8) return df def get_constant_name(): return ["CONST"] def add_quarter_of_birth_dummies(df): return pd.concat((df, pd.get_dummies(df["QOB"], prefix="DUMMY_QOB")), axis=1) def get_quarter_of_birth_dummy_names(start=1, end=3): return [f"DUMMY_QOB_{j}" for j in range(start, end + 1)] def add_year_of_birth_dummies(df): return pd.concat((df,
pd.get_dummies(df["YOB"] % 10, prefix="DUMMY_YOB")
pandas.get_dummies
import pandas as pd import matplotlib.pyplot as plt import seaborn scaled =
pd.read_csv("scaledParams.txt")
pandas.read_csv
# -*- coding: utf-8 -*- """Runs the link prediction analysis to assess new disease-target associations.""" # Part5 from collections import defaultdict from copy import deepcopy import itertools as itt import logging import multiprocessing as mp import os from time import time from typing import List, Tuple import pandas as pd from guiltytargets.constants import gat2vec_config from guiltytargets.ppi_network_annotation import parse_dge from guiltytargets_phewas.constants import * from guiltytargets_phewas.utils import timed_main_run from guiltytargets_phewas.target_repositioning import generate_heterogeneous_network, predict_links logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) fh = logging.FileHandler('link_prediction2.log') fh.setLevel(logging.DEBUG) # create console handler with a higher log level ch = logging.StreamHandler() ch.setLevel(logging.INFO) ch.setLevel(logging.DEBUG) logger.addHandler(ch) logger.addHandler(fh) assert os.path.isdir(DATA_BASE_DIR), "Update your data_basedir folder for this environment." # Paths snap_path = os.path.join(DATA_BASE_DIR, 'SNAP') chg_file = os.path.join(snap_path, 'ChG-Miner_miner-chem-gene.tsv.gz') dch_path = os.path.join(snap_path, 'DCh-Miner_miner-disease-chemical.tsv.gz') dg_path = os.path.join(snap_path, 'DG-AssocMiner_miner-disease-gene.tsv.gz') ppi_path = os.path.join(DATA_BASE_DIR, 'STRING', 'string_entrez.edgelist') targets_file = os.path.join(DATA_BASE_DIR, 'OpenTargets', 'ad', 'ot_symbol.txt') g2v_path = os.path.join(DATA_BASE_DIR, 'gat2vec_files', 'linkprediction2') phewas_path = os.path.join(DATA_BASE_DIR, 'phewas_catalog', 'phewas_symbol.txt') dge_base_path = os.path.join(DATA_BASE_DIR, 'DGE') def dataset_to_disease_abv(dataset: str) -> str: return dataset if dataset in NON_AD_DGE_DATASETS else 'ad' def dge_file(dge_code: str) -> str: file = 'DifferentialExpression' + ('.csv' if dataset_to_disease_abv(dge_code) == 'ad' else '.tsv') return os.path.join(dge_base_path, dge_code, file) disease_identifiers = { 'ad': 'DOID:10652', 'lc': 'DOID:5082', 'ipf': 'DOID:0050156', 'ms': 'DOID:2377', 'aml': 'DOID:9119', 'hc': 'MESH:D006528', # DOID:0070328, DOID:684 or DOID:5005 } def mp_predict_links( num_walks: int, walk_length: int, dimension: int, window_size: int ) -> List[Tuple[float, float]]: pool = mp.Pool(mp.cpu_count()) results_iter = [ pool.apply( predict_links, args=( g2v_path, num_walks, walk_length, dimension, window_size ) ) for _ in range(10) ] pool.close() pool.join() return results_iter def extract_results(results_dict, lp_results, dataset, param, evaluation): for i, (auc, aps) in enumerate(lp_results): results_dict['tr'].append(i) results_dict['auc'].append(auc) results_dict['aps'].append(aps) results_dict['dge'].append(dataset) results_dict['eval'].append(evaluation) results_dict['param'].append(param) def main(): # natural order: disease <-> target <-> chem # disease - chem is what is desired # disease - target is what is desired # http://www.disgenet.org/static/disgenet_ap1/files/downloads/curated_gene_disease_associations.tsv.gz results_dict = defaultdict(list) h_network1 = generate_heterogeneous_network( ppi_path, dg_path, dch_path, chg_file ) for use_dge, dataset in itt.product([True], AD_DGE_DATASETS + NON_AD_DGE_DATASETS): disease_abv = dataset_to_disease_abv(dataset) do_id = disease_identifiers[disease_abv] dge_params = dge_params_ad if disease_abv == 'ad' else dge_params_dis logger.debug(f'Running for disease {disease_abv}, with the dataset {dataset}, using the id {do_id}') try: gene_list = parse_dge( dge_path=dge_file(dataset), entrez_id_header=dge_params['id'], log2_fold_change_header=dge_params['l2f'], adj_p_header=dge_params['adjp'], entrez_delimiter=split_char, base_mean_header=dge_params['mean'], ) h_network = deepcopy(h_network1) h_network.set_up_network(genes=gene_list) h_network.write_gat2vec_input_files( home_dir=g2v_path, disease_id=do_id, filter_pleiotropic_targets=True ) # num_walks = gat2vec_config.num_walks walk_length = gat2vec_config.walk_length dimension = gat2vec_config.dimension window_size = gat2vec_config.window_size param = 'nw' for num_walks in [6, 10, 20, 40, 80]: start = time() lp_results = mp_predict_links(num_walks, walk_length, dimension, window_size) extract_results(results_dict, lp_results, dataset, param, num_walks) logger.info(f'Runtime for num_walks = {num_walks}: {time() - start}s') # best result from num_walks num_walks = gat2vec_config.num_walks param = 'wl' for walk_length in [20, 40, 80, 120, 160]: start = time() lp_results = mp_predict_links(num_walks, walk_length, dimension, window_size) extract_results(results_dict, lp_results, dataset, param, walk_length) logger.info(f'Runtime for walk_length = {walk_length}: {time() - start}s') # best result from num_walks walk_length = gat2vec_config.walk_length param = 'ws' for window_size in [3, 5, 7, 10, 20, 40]: start = time() lp_results = mp_predict_links(num_walks, walk_length, dimension, window_size) extract_results(results_dict, lp_results, dataset, param, window_size) logger.info(f'Runtime for window_size = {window_size}: {time() - start}s') # best result from num_walks window_size = gat2vec_config.window_size param = 'd' for dimension in [32, 64, 128, 256]: start = time() lp_results = mp_predict_links(num_walks, walk_length, dimension, window_size) extract_results(results_dict, lp_results, dataset, param, dimension) logger.info(f'Runtime for dimension = {dimension}: {time() - start}s') except ValueError: logger.error(f'Dataset {dataset} ({do_id}) not found in the graph.') results =
pd.DataFrame(results_dict)
pandas.DataFrame
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188: pd.Timestamp("2012-11-06 00:00:00"), 189: pd.Timestamp("2012-11-07 00:00:00"), 190: pd.Timestamp("2012-11-08 00:00:00"), 191: pd.Timestamp("2012-11-09 00:00:00"), 192: pd.Timestamp("2012-11-10 00:00:00"), 193: pd.Timestamp("2012-11-11 00:00:00"), 194: pd.Timestamp("2012-11-12 00:00:00"), 195: pd.Timestamp("2012-11-13 00:00:00"), 196: pd.Timestamp("2012-11-14 00:00:00"), 197: pd.Timestamp("2012-11-15 00:00:00"), 198: pd.Timestamp("2012-11-16 00:00:00"), 199: pd.Timestamp("2012-11-17 00:00:00"), 200: pd.Timestamp("2012-11-18 00:00:00"), 201: pd.Timestamp("2012-11-19 00:00:00"), 202: pd.Timestamp("2012-11-20 00:00:00"), 203: pd.Timestamp("2012-11-21 00:00:00"), 204: pd.Timestamp("2012-11-22 00:00:00"), 205: pd.Timestamp("2012-11-23 00:00:00"), 206: pd.Timestamp("2012-11-24 00:00:00"), 207: pd.Timestamp("2012-11-25 00:00:00"), 208: pd.Timestamp("2012-11-26 00:00:00"), 209: pd.Timestamp("2012-11-27 00:00:00"), 210: pd.Timestamp("2012-11-28 00:00:00"), 211: pd.Timestamp("2012-11-29 00:00:00"), 212: pd.Timestamp("2012-11-30 00:00:00"), 213: pd.Timestamp("2012-12-01 00:00:00"), 214: pd.Timestamp("2012-12-02 00:00:00"), 215: pd.Timestamp("2012-12-03 00:00:00"), 216: pd.Timestamp("2012-12-04 00:00:00"), 217: pd.Timestamp("2012-12-05 00:00:00"), 218: pd.Timestamp("2012-12-06 00:00:00"), 219: pd.Timestamp("2012-12-07 00:00:00"), 220: pd.Timestamp("2012-12-08 00:00:00"), 221: pd.Timestamp("2012-12-09 00:00:00"), 222: pd.Timestamp("2012-12-10 00:00:00"), 223: pd.Timestamp("2012-12-11 00:00:00"), 224: pd.Timestamp("2012-12-12 00:00:00"), 225: pd.Timestamp("2012-12-13 00:00:00"), 226: pd.Timestamp("2012-12-14 00:00:00"), 227: pd.Timestamp("2012-12-15 00:00:00"), 228: pd.Timestamp("2012-12-16 00:00:00"), 229: pd.Timestamp("2012-12-17 00:00:00"), 230: pd.Timestamp("2012-12-18 00:00:00"), 231: pd.Timestamp("2012-12-19 00:00:00"), 232: pd.Timestamp("2012-12-20 00:00:00"), 233: pd.Timestamp("2012-12-21 00:00:00"), 234: pd.Timestamp("2012-12-22 00:00:00"), 235: pd.Timestamp("2012-12-23 00:00:00"), 236: pd.Timestamp("2012-12-24 00:00:00"), 237: pd.Timestamp("2012-12-25 00:00:00"), 238: pd.Timestamp("2012-12-26 00:00:00"), 239: pd.Timestamp("2012-12-27 00:00:00"), 240: pd.Timestamp("2012-12-28 00:00:00"), 241: pd.Timestamp("2012-12-29 00:00:00"), 242: pd.Timestamp("2012-12-30 00:00:00"), 243: pd.Timestamp("2012-12-31 00:00:00"), 244: pd.Timestamp("2013-01-01 00:00:00"), 245: pd.Timestamp("2013-01-02 00:00:00"), 246: pd.Timestamp("2013-01-03 00:00:00"), 247: pd.Timestamp("2013-01-04 00:00:00"), 248: pd.Timestamp("2013-01-05 00:00:00"), 249: pd.Timestamp("2013-01-06 00:00:00"), 250: pd.Timestamp("2013-01-07 00:00:00"), 251: pd.Timestamp("2013-01-08 00:00:00"), 252: pd.Timestamp("2013-01-09 00:00:00"), 253: pd.Timestamp("2013-01-10 00:00:00"), 254: pd.Timestamp("2013-01-11 00:00:00"), 255: pd.Timestamp("2013-01-12 00:00:00"), 256: pd.Timestamp("2013-01-13 00:00:00"), 257: pd.Timestamp("2013-01-14 00:00:00"), 258: pd.Timestamp("2013-01-15 00:00:00"), 259: pd.Timestamp("2013-01-16 00:00:00"), 260: pd.Timestamp("2013-01-17 00:00:00"), 261: pd.Timestamp("2013-01-18 00:00:00"), 262: pd.Timestamp("2013-01-19 00:00:00"), 263: pd.Timestamp("2013-01-20 00:00:00"), 264: pd.Timestamp("2013-01-21 00:00:00"), 265: pd.Timestamp("2013-01-22 00:00:00"), 266: pd.Timestamp("2013-01-23 00:00:00"), 267: pd.Timestamp("2013-01-24 00:00:00"), 268: pd.Timestamp("2013-01-25 00:00:00"), 269: pd.Timestamp("2013-01-26 00:00:00"), 270: pd.Timestamp("2013-01-27 00:00:00"), 271: pd.Timestamp("2013-01-28 00:00:00"), 272: pd.Timestamp("2013-01-29 00:00:00"), 273: pd.Timestamp("2013-01-30 00:00:00"), 274: pd.Timestamp("2013-01-31 00:00:00"), 275: pd.Timestamp("2013-02-01 00:00:00"), 276: pd.Timestamp("2013-02-02 00:00:00"), 277: pd.Timestamp("2013-02-03 00:00:00"), 278: pd.Timestamp("2013-02-04 00:00:00"), 279: pd.Timestamp("2013-02-05 00:00:00"), 280: pd.Timestamp("2013-02-06 00:00:00"), 281: pd.Timestamp("2013-02-07 00:00:00"), 282: pd.Timestamp("2013-02-08 00:00:00"), 283: pd.Timestamp("2013-02-09 00:00:00"), 284: pd.Timestamp("2013-02-10 00:00:00"), 285: pd.Timestamp("2013-02-11 00:00:00"), 286: pd.Timestamp("2013-02-12 00:00:00"), 287: pd.Timestamp("2013-02-13 00:00:00"), 288: pd.Timestamp("2013-02-14 00:00:00"), 289: pd.Timestamp("2013-02-15 00:00:00"), 290: pd.Timestamp("2013-02-16 00:00:00"), 291: pd.Timestamp("2013-02-17 00:00:00"), 292: pd.Timestamp("2013-02-18 00:00:00"), 293: pd.Timestamp("2013-02-19 00:00:00"), 294: pd.Timestamp("2013-02-20 00:00:00"), 295: pd.Timestamp("2013-02-21 00:00:00"), 296: pd.Timestamp("2013-02-22 00:00:00"), 297: pd.Timestamp("2013-02-23 00:00:00"), 298: pd.Timestamp("2013-02-24 00:00:00"), 299: pd.Timestamp("2013-02-25 00:00:00"), 300: pd.Timestamp("2013-02-26 00:00:00"), 301: pd.Timestamp("2013-02-27 00:00:00"), 302: pd.Timestamp("2013-02-28 00:00:00"), 303: pd.Timestamp("2013-03-01 00:00:00"), 304: pd.Timestamp("2013-03-02 00:00:00"), 305: pd.Timestamp("2013-03-03 00:00:00"), 306: pd.Timestamp("2013-03-04 00:00:00"), 307: pd.Timestamp("2013-03-05 00:00:00"), 308: pd.Timestamp("2013-03-06 00:00:00"), 309: pd.Timestamp("2013-03-07 00:00:00"), 310: pd.Timestamp("2013-03-08 00:00:00"), 311: pd.Timestamp("2013-03-09 00:00:00"), 312: pd.Timestamp("2013-03-10 00:00:00"), 313: pd.Timestamp("2013-03-11 00:00:00"), 314: pd.Timestamp("2013-03-12 00:00:00"), 315: pd.Timestamp("2013-03-13 00:00:00"), 316: pd.Timestamp("2013-03-14 00:00:00"), 317: pd.Timestamp("2013-03-15 00:00:00"), 318: pd.Timestamp("2013-03-16 00:00:00"), 319: pd.Timestamp("2013-03-17 00:00:00"), 320: pd.Timestamp("2013-03-18 00:00:00"), 321: pd.Timestamp("2013-03-19 00:00:00"), 322: pd.Timestamp("2013-03-20 00:00:00"), 323: pd.Timestamp("2013-03-21 00:00:00"), 324: pd.Timestamp("2013-03-22 00:00:00"), 325: pd.Timestamp("2013-03-23 00:00:00"), 326: pd.Timestamp("2013-03-24 00:00:00"), 327: pd.Timestamp("2013-03-25 00:00:00"), 328: pd.Timestamp("2013-03-26 00:00:00"), 329: pd.Timestamp("2013-03-27 00:00:00"), 330: pd.Timestamp("2013-03-28 00:00:00"), 331: pd.Timestamp("2013-03-29 00:00:00"), 332: pd.Timestamp("2013-03-30 00:00:00"), 333: pd.Timestamp("2013-03-31 00:00:00"), 334: pd.Timestamp("2013-04-01 00:00:00"), 335: pd.Timestamp("2013-04-02 00:00:00"), 336: pd.Timestamp("2013-04-03 00:00:00"), 337: pd.Timestamp("2013-04-04 00:00:00"), 338: pd.Timestamp("2013-04-05 00:00:00"), 339: pd.Timestamp("2013-04-06 00:00:00"), 340: pd.Timestamp("2013-04-07 00:00:00"), 341: pd.Timestamp("2013-04-08 00:00:00"), 342: pd.Timestamp("2013-04-09 00:00:00"), 343: pd.Timestamp("2013-04-10 00:00:00"), 344: pd.Timestamp("2013-04-11 00:00:00"), 345: pd.Timestamp("2013-04-12 00:00:00"), 346: pd.Timestamp("2013-04-13 00:00:00"), 347: pd.Timestamp("2013-04-14 00:00:00"), 348: pd.Timestamp("2013-04-15 00:00:00"), 349: pd.Timestamp("2013-04-16 00:00:00"), 350: pd.Timestamp("2013-04-17 00:00:00"), 351: pd.Timestamp("2013-04-18 00:00:00"), 352: pd.Timestamp("2013-04-19 00:00:00"), 353: pd.Timestamp("2013-04-20 00:00:00"), 354: pd.Timestamp("2013-04-21 00:00:00"), 355: pd.Timestamp("2013-04-22 00:00:00"), 356: pd.Timestamp("2013-04-23 00:00:00"), 357: pd.Timestamp("2013-04-24 00:00:00"), 358: pd.Timestamp("2013-04-25 00:00:00"), 359: pd.Timestamp("2013-04-26 00:00:00"), 360: pd.Timestamp("2013-04-27 00:00:00"), 361: pd.Timestamp("2013-04-28 00:00:00"), 362: pd.Timestamp("2013-04-29 00:00:00"), 363:
pd.Timestamp("2013-04-30 00:00:00")
pandas.Timestamp
from UI_dist.Des_UI import Ui_MainWindow from UI_dist.customize import Ui_Dialog from PySide2.QtGui import * from PySide2.QtWidgets import * from PySide2.QtCore import QSettings import pandas as pd import os, re, math import webbrowser from threading import Thread class MainWindow(Ui_MainWindow, QMainWindow): def __init__(self): super(MainWindow, self).__init__() # 使用ui文件导入定义界面类 # 初始化界面 self.setupUi(self) self.setWindowIcon(QIcon("./icon/work.ico")) self.app_data = QSettings('config.ini', QSettings.IniFormat) self.app_data.setIniCodec('utf-8') # 设置ini文件编码为 UTF-8 self.cwd = self.app_data.value("SETUP/PATH") self.progressBar.setMaximum(100) self.progressBar.setValue(0) self.student_table = {} self.Var_Init() self.Button_Init() # 信号初始化 # 设置表格参数 self.tableWidget.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) # 自适应列宽 self.tableWidget.horizontalHeader().setSectionResizeMode(0, QHeaderView.Interactive) # 仅首列可手动调整 # self.tableWidget.verticalHeader().setVisible(False) # 隐藏行表头 def Var_Init(self): self.format_list = ["学号-姓名-文件名称(默认)", "姓名-学号-文件名称", "文件名称-学号-姓名", "文件名称-姓名-学号", "班级-学号-姓名-文件名称", "自定义(班上有同名者,慎用)"] dir_set = set() if self.app_data.value("SETUP/DIR_PATH") is None else self.app_data.value("SETUP/DIR_PATH") # print("初始化set---",dir_set,type(dir_set)) data_path = self.app_data.value("SETUP/DATA_PATH") number = self.app_data.value("SETUP/FOUR_ID") FileNames = self.app_data.value("SETUP/CHANGE_FIlENAME") ClassName = self.app_data.value("SETUP/CLASSNAME") Char_format = self.app_data.value("SETUP/SIGNAL") Format_list = [] if self.app_data.value("SETUP/FORMAT_LIST") is None else [self.app_data.value( "SETUP/FORMAT_LIST")] if len(Format_list) > len(self.format_list): self.format_list = Format_list self.dir_set = dir_set self.lineEdit_2.setText(data_path) self.number.setText(number) self.charsplit.setText(Char_format) self.ClassName.setText(ClassName) self.FileNames.setText(FileNames) self.data_path = self.lineEdit_2.text() self.comboBox.addItems(self.dir_set) self.comboBox_2.addItems(self.format_list) self.btn_delete.setEnabled(False) self.Download.setEnabled(False) if len(self.dir_set) != 0: self.comboBox.addItem(QIcon("./icon/clear.png"), "清除所有历史记录") def Button_Init(self): # self.radioButton.toggled.connect(lambda: self.Radio_Download(self.radioButton)) self.Change.clicked.connect(self.Change_Name) # begin change self.select1.clicked.connect(self.Get_DataFilename) self.select2.clicked.connect(self.Get_Filename) self.GetData.clicked.connect(self.Read_Data) self.Download.clicked.connect(self.Download_Incompete) self.btn_delete.clicked.connect(self.Delete_options) self.menu.triggered[QAction].connect(self.Other_menu) self.menu_2.triggered[QAction].connect(self.About) self.comboBox.activated[str].connect(self.clear_all) self.comboBox_2.activated[str].connect(self.Customize) self.comboBox_2.highlighted[str].connect(self.Set_Delete_btn) self.Download.setToolTip("导出未交人员名单") self.btn_delete.setToolTip("删除自定义选项") def get_name_list(self, path): data = pd.read_excel(path) data['学号'] = data['学号'].astype('int64') name_list = data[['姓名', '学号']] name_list = dict(name_list.values.tolist()) name_list = dict([str(value), key] for key, value in name_list.items()) return name_list def Get_DataFilename(self): file_choose, filetype = QFileDialog.getOpenFileName(self, "选择学号姓名文件", self.cwd, "Excel files (*.csv *.xlsx *.xls)") self.data_path = file_choose self.app_data.setValue("SETUP/PATH", file_choose) self.cwd = file_choose self.lineEdit_2.setText(file_choose) def Get_Filename(self): dir_choose = QFileDialog.getExistingDirectory(self, "选择修改文件夹", self.cwd) self.app_data.value("SETUP/PATH", dir_choose) self.comboBox.clear() self.dir_set.add(dir_choose) print(type(self.dir_set)) self.comboBox.addItems(self.dir_set) self.comboBox.setCurrentText(dir_choose) if len(self.dir_set) != 0: self.comboBox.addItem(QIcon("./icon/clear.png"), "清除所有历史记录") # def Radio_Download(self, btn): # self.Download.setEnabled(btn.isChecked()) def Read_Data(self): self.tableWidget.clear() self.label.setText("仅展示前50条数据") if self.data_path == "": QMessageBox.critical(self, "错误", "请选择信息文件!", QMessageBox.Yes) else: self.student_table = self.get_name_list(self.data_path) self.tableWidget.setRowCount(50) self.tableWidget.setHorizontalHeaderLabels(['学号', '姓名']) self.Download.setEnabled(False) try: for row, (id, name) in enumerate(self.student_table.items()): self.tableWidget.setItem(row, 0, QTableWidgetItem(str(id))) self.tableWidget.setItem(row, 1, QTableWidgetItem(str(name))) except: QMessageBox.information(self, "说明", "仅展示前50条数据") def Change_Name(self): # print(self.dir_set) # print(type(self.dir_set)) # print(set(self.dir_set)) self.app_data.setValue("SETUP/DIR_PATH", self.dir_set) self.app_data.setValue("SETUP/DATA_PATH", self.data_path) self.app_data.setValue("SETUP/FOUR_ID", self.number.text()) self.app_data.setValue("SETUP/CHANGE_FIlENAME", self.FileNames.text()) self.app_data.setValue("SETUP/CLASSNAME", self.ClassName.text()) self.app_data.setValue("SETUP/FORMAT_LIST", self.format_list) self.app_data.setValue("SETUP/SIGNAL", self.charsplit.text()) if self.number.text() == "": QMessageBox.critical(self, "错误", "请填写学号前4位!") elif self.student_table == {}: QMessageBox.critical(self, "错误", "未读取数据!") elif self.comboBox.currentText() == "": QMessageBox.critical(self, "错误", "未选择修改文件路径!") else: self.to_rename(self.comboBox.currentText(), self.student_table, self.number.text(), self.FileNames.text(), self.ClassName.text(), self.charsplit.text()) def to_rename(self, work_path, name_list, four_num, File_Name, ClassName, format_signal): work_list = os.listdir(work_path) res_error = "此文件学号格式错误或花名册中无此学号(可能此人存在多份文件)!" self.textBrowser.setText("未出现异常错误....") offer = [] for item in work_list: res_name = os.path.splitext(item) filename = res_name[0] filetype = res_name[1] try: st_number = re.findall('(' + four_num + '\d+)', item)[0] # print("找到的学号---",st_number) right_name = self.setName(format_signal, st_number, name_list, ClassName, File_Name) offer.append(st_number) if item != right_name: os.rename(os.path.join(work_path, item), os.path.join(work_path, right_name + filetype)) except: print("大大大大") res_error += "\n" + filename if res_error != "此文件学号格式错误或花名册中无此学号(可能此人存在多份文件)!": self.textBrowser.setText(res_error) if self.radioButton.isChecked(): self.to_check(offer, name_list) else: self.progressBar.setValue(100) # self.textBrowser.setText("未出现异常错误....") QMessageBox.information(self, "完成", "修改完成,请到文件夹中查看") def setName(self, format_signal, st_number, name_list, ClassName, File_Name): right_format = self.comboBox_2.currentText().split("-") format_dict = dict(zip(['学号', '姓名', '文件名称', '文件名称(默认)', '班级'], [st_number, name_list[st_number], File_Name, File_Name, ClassName])) ans = [format_dict[item] for item in right_format] ans = list(filter(None, ans)) if format_signal == "": return "-".join(ans) else: return format_signal.join(ans) def to_check(self, offer_list, name_list): self.tableWidget.clear() olist = [int(i) for i in offer_list] olist.sort() id_list = [int(i) for i in name_list.keys()] total = len(self.student_table) self.no_offer = [i for i in id_list if i not in olist] result = "有" + str(len(self.no_offer)) + "人未交!\n收齐作业进度为 %%%.2f" % ( (total - len(self.no_offer)) / float(total)) + "\n点击表格右上角的↓按钮可以导出未交名单" self.tableWidget.setHorizontalHeaderLabels(['学号', '姓名']) self.tableWidget.clear() for i, item in enumerate(self.no_offer): if i == 49: break self.tableWidget.setItem(i, 0, QTableWidgetItem(str(item))) self.tableWidget.setItem(i, 1, QTableWidgetItem(name_list[str(item)])) self.label.setText("有" + str(len(self.no_offer)) + "人未交!") self.Download.setEnabled(True) pv = (len(name_list) - len(self.no_offer)) / float(len(name_list)) self.progressBar.setValue(math.ceil(pv)) QMessageBox.information(self, "结果", result) def Download_Incompete(self): df =
pd.DataFrame(columns=['学号', '姓名'])
pandas.DataFrame
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/Importing.ipynb (unless otherwise specified). __all__ = ['read_file', 'extract_rawfile_unique_values', 'import_spectronaut_data', 'import_maxquant_data', 'convert_ap_mq_mod', 'import_alphapept_data', 'convert_diann_mq_mod', 'import_diann_data', 'convert_fragpipe_mq_mod', 'import_fragpipe_data', 'import_data'] # Cell import os import pandas as pd def read_file( file: str, column_names: list ) -> pd.DataFrame: """Load a specified columns of the file as a pandas dataframe. Args: file (str): The name of a file. column_names (list): The list of three columns that should be extracted from the file. Raises: NotImplementedError: if a specified file has not a .csv, .txt or .tsv extension. ValueError: if any of the specified columns is not in the file. Returns: pd.DataFrame: A pandas dataframe with all the data stored in the specified columns. """ file_ext = os.path.splitext(file)[-1] if file_ext=='.csv': sep=',' elif file_ext=='.tsv': sep='\t' elif file_ext=='.txt': sep='\t' else: raise NotImplementedError("The selected filetype isn't supported. Please specify a file with a .csv, .txt or .tsv extension.") with open(file) as filelines: i = 0 pos = 0 for l in filelines: i += 1 l = l.split(sep) try: raw = l.index(column_names[0]) prot = l.index(column_names[1]) seq = l.index(column_names[2]) except: raise ValueError('The list of specified column names cannot be extracted from the file.') if i>0: break with open(file) as filelines: raws = [] prots = [] seqs = [] for l in filelines: l = l.split(sep) raws.append(l[raw]) prots.append(l[prot]) seqs.append(l[seq]) res = pd.DataFrame({column_names[0]:raws[1:], column_names[1]:prots[1:], column_names[2]:seqs[1:]}) return res def extract_rawfile_unique_values( file: str ) -> list: """Extract the unique raw file names from "R.FileName" (Spectronaut output), "Raw file" (MaxQuant output), "shortname" (AlphaPept output) or "Run" (DIA-NN output) column or from the "Spectral Count" column from the combined_peptide.tsv file without modifications for the FragPipe. Args: file (str): The name of a file. Raises: ValueError: if a column with the unique raw file names is not in the file. Returns: list: A sorted list of unique raw file names from the file. """ file_ext = os.path.splitext(file)[-1] if file_ext == '.csv': sep = ',' elif file_ext in ['.tsv', '.txt']: sep = '\t' with open(file) as filelines: i = 0 filename_col_index = None filename_data = [] for l in filelines: l = l.split(sep) # just do it for the first line if i == 0: for col in ['R.FileName', 'Raw file', 'Run', 'shortname']: if col in l: filename_col_index = l.index(col) break if not isinstance(filename_col_index, int): # to check the case with the FragPipe peptide.tsv file when we don't have the info about the experiment name if ("Assigned Modifications" in "".join(l)) and ("Protein ID" in "".join(l)) and ("Peptide" in "".join(l)): return [] # to check the case with the FragPipe combined_peptide.tsv file when the experiment name is included in the "Spectral Count" column elif ("Sequence" in "".join(l)) and ("Assigned Modifications" in "".join(l)) and ("Protein ID" in "".join(l)): return sorted(list(set([col.replace('_', '').replace(' Spectral Count', '') for col in l if 'Spectral Count' in col]))) else: raise ValueError('A column with the raw file names is not in the file.') else: filename_data.append(l[filename_col_index]) i += 1 unique_filenames = set(filename_data) sorted_unique_filenames = sorted(list(unique_filenames)) return sorted_unique_filenames # Cell import pandas as pd import re from typing import Union def import_spectronaut_data( file: str, sample: Union[str, list, None] = None ) -> pd.DataFrame: """Import peptide level data from Spectronaut. Args: file (str): The name of a file. sample (Union[str, list, None]): The unique raw file name(s) to filter the original file. Defaults to None. In this case data for all raw files will be extracted. Returns: pd.DataFrame: A pandas dataframe containing information about: all_protein_ids (str), modified_sequence (str), naked_sequence (str) """ spectronaut_columns = ["PEP.AllOccurringProteinAccessions","EG.ModifiedSequence","R.FileName"] data = read_file(file, spectronaut_columns) if sample: if isinstance(sample, list): data_sub = data[data["R.FileName"].isin(sample)] data_sub = data_sub[["PEP.AllOccurringProteinAccessions","EG.ModifiedSequence"]] elif isinstance(sample, str): data_sub = data[data["R.FileName"] == sample] data_sub = data_sub[["PEP.AllOccurringProteinAccessions","EG.ModifiedSequence"]] else: data_sub = data[["PEP.AllOccurringProteinAccessions","EG.ModifiedSequence"]] # get modified sequence mod_seq = data_sub.apply(lambda row: re.sub('_','',row["EG.ModifiedSequence"]), axis=1) data_sub = data_sub.assign(modified_sequence=mod_seq.values) # get naked sequence nak_seq = data_sub.apply(lambda row: re.sub(r'\[.*?\]','',row["modified_sequence"]), axis=1) data_sub = data_sub.assign(naked_sequence=nak_seq.values) data_sub = data_sub.rename(columns={"PEP.AllOccurringProteinAccessions": "all_protein_ids"}) input_data = data_sub[["all_protein_ids","modified_sequence","naked_sequence"]] input_data = input_data.dropna() input_data = input_data.drop_duplicates().reset_index(drop=True) return input_data # Cell import pandas as pd from typing import Union import re def import_maxquant_data( file: str, sample: Union[str, list, None] = None ) -> pd.DataFrame: """Import peptide level data from MaxQuant. Args: file (str): The name of a file. sample (Union[str, list, None]): The unique raw file name(s) to filter the original file. Defaults to None. In this case data for all raw files will be extracted. Returns: pd.DataFrame: A pandas dataframe containing information about: all_protein_ids (str), modified_sequence (str), naked_sequence (str) """ mq_columns = ["Proteins","Modified sequence","Raw file"] data = read_file(file, mq_columns) if sample: if isinstance(sample, list): data_sub = data[data["Raw file"].isin(sample)] data_sub = data_sub[["Proteins","Modified sequence"]] elif isinstance(sample, str): data_sub = data[data["Raw file"] == sample] data_sub = data_sub[["Proteins","Modified sequence"]] else: data_sub = data[["Proteins","Modified sequence"]] # get modified sequence mod_seq = data_sub.apply(lambda row: re.sub('_','',row["Modified sequence"]), axis=1) data_sub = data_sub.assign(modified_sequence=mod_seq.values) # replace outer () with [] mod_seq_replaced = data_sub.apply(lambda row: re.sub(r'\((.*?\(.*?\))\)',r'[\1]',row["modified_sequence"]), axis=1) data_sub = data_sub.assign(modified_sequence=mod_seq_replaced.values) # get naked sequence nak_seq = data_sub.apply(lambda row: re.sub(r'\[.*?\]','',row["modified_sequence"]), axis=1) data_sub = data_sub.assign(naked_sequence=nak_seq.values) data_sub = data_sub.rename(columns={"Proteins": "all_protein_ids"}) input_data = data_sub[["all_protein_ids","modified_sequence","naked_sequence"]] input_data = input_data.dropna() # remove missing values input_data = input_data.drop_duplicates().reset_index(drop=True) return input_data # Cell import re def convert_ap_mq_mod( sequence:str ) -> str: """Convert AlphaPept style modifications into MaxQuant style modifications. Args: sequence (str): The peptide sequence with modification in an AlphaPept style. Returns: str: The peptide sequence with modification in a similar to MaxQuant style. """ # TODO: add more AP modifications modif_convers_dict = { 'ox': '[Oxidation ({})]', 'a': '[Acetyl ({})]', 'am': '[Amidated ({})]', 'deam': '[Deamidation ({})]', 'p': '[Phospho ({})]', 'pg': '[{}->pyro-Glu]', 'c': '[Cys-Cys]' } mods = re.findall('[a-z0-9]+', sequence) if mods: for mod in mods: posit = re.search(mod, sequence) i = posit.start() if i == 0 and mod == 'a': add_aa = 'N-term' elif posit.end() == len(sequence) - 1 and mod == 'am': add_aa = sequence[posit.end()] sequence = sequence.replace(mod + add_aa, add_aa + mod, 1) add_aa = 'C-term' else: add_aa = sequence[posit.end()] sequence = sequence.replace(mod + add_aa, add_aa + mod, 1) if mod == 'ox': if add_aa == 'M': add_aa = 'M' elif add_aa in 'MP': add_aa = 'MP' elif mod == 'deam': if add_aa in 'NQ': add_aa = 'NQ' elif mod == 'p': if add_aa in 'STY': add_aa = 'STY' elif mod == 'pg': if add_aa == 'E': add_aa = 'Glu' elif add_aa == 'Q': add_aa = 'Gln' if mod in modif_convers_dict.keys(): sequence = sequence.replace(mod, modif_convers_dict.get(mod).format(add_aa), 1) return sequence # Cell import pandas as pd from typing import Union def import_alphapept_data( file: str, sample: Union[str, list, None] = None ) -> pd.DataFrame: """Import peptide level data from AlphaPept. Args: file (str): The name of a file. sample (Union[str, list, None]): The unique raw file name(s) to filter the original file. Defaults to None. In this case data for all raw files will be extracted. Returns: pd.DataFrame: A pandas dataframe containing information about: all_protein_ids (str), modified_sequence (str), naked_sequence (str) """ ap_columns = ["protein_group", "sequence", "shortname"] data = pd.read_csv(file, usecols=ap_columns) # TODO: add later the file reading using read_file function. For now it doesn't work for the protein groups that should be split later if sample: if isinstance(sample, list): data_sub = data[data["shortname"].isin(sample)] data_sub = data_sub[["protein_group", "sequence"]] elif isinstance(sample, str): data_sub = data[data["shortname"] == sample] data_sub = data_sub[["protein_group", "sequence"]] else: data_sub = data[["protein_group", "sequence"]] data_sub = data_sub[~data_sub.sequence.str.contains('_decoy')] # get modified sequence modif_seq = data_sub.apply(lambda row: convert_ap_mq_mod(row.sequence), axis=1) data_sub['modified_sequence'] = modif_seq.values # get a list of proteins_id proteins = data_sub.apply(lambda row: ";".join([_.split('|')[1] for _ in row.protein_group.split(',')]), axis=1) data_sub['all_protein_ids'] = proteins.values # get naked sequence nak_seq = data_sub.apply(lambda row: ''.join([_ for _ in row.sequence if _.isupper()]), axis=1) data_sub['naked_sequence'] = nak_seq.values input_data = data_sub[["all_protein_ids", "modified_sequence", "naked_sequence"]] input_data = input_data.dropna() # remove missing values input_data = input_data.drop_duplicates().reset_index(drop=True) return input_data # Cell import re def convert_diann_mq_mod( sequence:str ) -> str: """Convert DIA-NN style modifications into MaxQuant style modifications. Args: sequence (str): The peptide sequence with modification in an AlphaPept style. Returns: str: The peptide sequence with modification in a similar to DIA-NN style. """ modif_convers_dict = { '(UniMod:1)': '[Acetyl ({})]', '(UniMod:2)': '[Amidated ({})]', '(UniMod:4)': '[Carbamidomethyl ({})]', '(UniMod:5)': '[Carbamyl ({})]', '(UniMod:7)': '[Deamidation ({})]', '(UniMod:21)': '[Phospho ({})]', '(UniMod:23)': '[Dehydrated ({})]', '(UniMod:26)': '[Pyro-carbamidomethyl ({})]', '(UniMod:27)': '[Glu->pyro-Glu]', '(UniMod:28)': '[Gln->pyro-Glu]', '(UniMod:30)': '[Cation:Na ({})]', '(UniMod:34)': '[Methyl ({})]', '(UniMod:35)': '[Oxidation ({})]', '(UniMod:36)': '[Dimethyl ({})]', '(UniMod:37)': '[Trimethyl ({})]', '(UniMod:40)': '[Sulfo ({})]', '(UniMod:55)': '[Cys-Cys]', '(UniMod:121)': '[GlyGly ({})]', '(UniMod:254)': '[Delta:H(2)C(2) ({})]', '(UniMod:312)': '[Cysteinyl]', '(UniMod:345)': '[Trioxidation ({})]', '(UniMod:408)': '[Hydroxyproline]', '(UniMod:425)': '[Dioxidation ({})]', '(UniMod:526)': '[Dethiomethyl ({})]', '(UniMod:877)': '[QQTGG ({})]', } mods = re.findall('\(UniMod:\d+\)', sequence) if mods: for mod in mods: posit = re.search('\(UniMod:\d+\)', sequence) i = posit.start() if i == 0: add_aa = 'N-term' elif posit.end() == len(sequence): add_aa = 'C-term' else: add_aa = sequence[i-1] if mod == '(UniMod:7)': if add_aa in 'NQ': add_aa = 'NQ' elif mod == '(UniMod:21)': if add_aa in 'STY': add_aa = 'STY' elif mod == '(UniMod:23)': if add_aa in 'ST': add_aa = 'ST' elif mod == '(UniMod:30)': if add_aa in 'DE': add_aa = 'DE' elif mod == '(UniMod:34)': if add_aa in 'KR': add_aa = 'KR' elif mod == '(UniMod:36)': if add_aa in 'KR': add_aa = 'KR' elif mod == '(UniMod:40)': if add_aa in 'STY': add_aa = 'STY' elif mod == '(UniMod:425)': if add_aa in 'MW': add_aa = 'MW' if mod in modif_convers_dict.keys(): sequence = sequence.replace(mod, modif_convers_dict.get(mod).format(add_aa), 1) return sequence # Cell import pandas as pd from typing import Union def import_diann_data( file: str, sample: Union[str, list, None] = None ) -> pd.DataFrame: """Import peptide level data from DIA-NN. Args: file (str): The name of a file. sample (Union[str, list, None]): The unique raw file name(s) to filter the original file. Defaults to None. In this case data for all raw files will be extracted. Returns: pd.DataFrame: A pandas dataframe containing information about: all_protein_ids (str), modified_sequence (str), naked_sequence (str) """ diann_columns = ["Protein.Ids", "Modified.Sequence", "Run"] data = read_file(file, diann_columns) if sample: if isinstance(sample, list): data_sub = data[data["Run"].isin(sample)] data_sub = data_sub[["Protein.Ids", "Modified.Sequence"]] elif isinstance(sample, str): data_sub = data[data["Run"] == sample] data_sub = data_sub[["Protein.Ids", "Modified.Sequence"]] else: data_sub = data[["Protein.Ids", "Modified.Sequence"]] # get a list of proteins_id data_sub = data_sub.rename(columns={"Protein.Ids": "all_protein_ids"}) # get modified sequence modif_seq = data_sub.apply(lambda row: convert_diann_mq_mod(row["Modified.Sequence"]), axis=1) data_sub['modified_sequence'] = modif_seq.values # get naked sequence nak_seq = data_sub.apply(lambda row: re.sub(r'\[.*?\]', '', row["modified_sequence"]), axis=1) data_sub = data_sub.assign(naked_sequence = nak_seq.values) input_data = data_sub[["all_protein_ids", "modified_sequence", "naked_sequence"]] input_data = input_data.dropna() # remove missing values input_data = input_data.drop_duplicates().reset_index(drop=True) return input_data # Cell import re def convert_fragpipe_mq_mod( sequence:str, assigned_modifications: str ) -> str: """Convert FragPipe style modifications into MaxQuant style modifications. Args: sequence (str): The peptide sequence with modification. assigned_modifications (str): The string of assigned modifications separated by comma. Returns: str: The peptide sequence with modification in a similar to DIA-NN style. """ modif_convers_dict = { 42.0106: '[Acetyl ({})]', -0.9840: '[Amidated ({})]', 57.0215: '[Carbamidomethyl ({})]', 43.0058: '[Carbamyl ({})]', 0.9840: '[Deamidation ({})]', 79.9663: '[Phospho ({})]', -18.0106: ['[Dehydrated ({})]', '[Glu->pyro-Glu]'], 39.9949: '[Pyro-carbamidomethyl ({})]', -17.0265: '[Gln->pyro-Glu]', 21.9819: '[Cation:Na ({})]', 14.0157: '[Methyl ({})]', 15.9949: '[Oxidation ({})]', 28.0313: '[Dimethyl ({})]', 42.047: '[Trimethyl ({})]', 79.9568: '[Sulfo ({})]', 305.0682: '[Cys-Cys]', 114.0429: '[GlyGly ({})]', 26.0157: '[Delta:H(2)C(2) ({})]', 119.0041: '[Cysteinyl]', 47.9847: '[Trioxidation ({})]', 148.0372: '[Hydroxyproline]', 31.9898: '[Dioxidation ({})]', -48.0034: '[Dethiomethyl ({})]', 599.2663: '[QQTGG ({})]', } if assigned_modifications: modifs_posit = [''] * (len(sequence) + 1) for mod in assigned_modifications.split(','): mod = mod.strip() data = mod.replace(')', '').replace('"', '').split('(') mod_pos, mod_mass = data[0], float(data[1]) if mod_pos == 'N-term': posit = 0 add_aa = 'N-term' elif mod_pos == 'C-term': posit = -1 add_aa = 'C-term' else: posit = int(mod_pos[:-1]) add_aa = mod_pos[-1] if mod_mass == 0.9840: if add_aa in 'NQ': add_aa = 'NQ' elif mod_mass == 79.9663: if add_aa in 'STY': add_aa = 'STY' elif mod_mass == 21.9819: if add_aa in 'DE': add_aa = 'DE' elif mod_mass == 14.0157: if add_aa in 'KR': add_aa = 'KR' elif mod_mass == 28.0313: if add_aa in 'KR': add_aa = 'KR' elif mod_mass == 79.9568: if add_aa in 'STY': add_aa = 'STY' elif mod_mass == 31.9898: if add_aa in 'MW': add_aa = 'MW' if mod_mass == -18.0106: if add_aa == 'E': modifs_posit[posit] = modif_convers_dict[mod_mass][1].format(add_aa) else: if add_aa in 'ST': add_aa = 'ST' modifs_posit[posit] = modif_convers_dict[mod_mass][0].format(add_aa) else: modifs_posit[posit] = modif_convers_dict[mod_mass].format(add_aa) modif_sequence = ''.join(["".join(i) for i in zip(' '+ sequence, modifs_posit)]).strip() return modif_sequence else: return sequence # Cell import pandas as pd from typing import Union def import_fragpipe_data( file: str, sample: Union[str, list, None] = None ) -> pd.DataFrame: """Import peptide level data from FragPipe/MSFragger. Args: file (str): The name of a file. sample (Union[str, list, None]): The unique raw file name(s) to filter the original file. Defaults to None. In this case data for all raw files will be extracted. Returns: pd.DataFrame: A pandas dataframe containing information about: all_protein_ids (str), modified_sequence (str), naked_sequence (str) """ file_ext = os.path.splitext(file)[-1] if file_ext=='.csv': sep=',' elif file_ext=='.tsv': sep='\t' elif file_ext=='.txt': sep='\t' if sample: if isinstance(sample, list): column_names = [each + ' Spectral Count' for each in sample] combined_fragpipe_columns = ["Sequence", "Protein ID"] + column_names data = pd.read_csv(file, sep=sep, low_memory=False, usecols=combined_fragpipe_columns) selected_indices = [] for column_name in column_names: selected_indices.extend(data[data[column_name] > 0].index.tolist()) data_sub = data.iloc[list(set(selected_indices))] data_sub = data_sub[["Sequence", "Protein ID"]] elif isinstance(sample, str): column_name = sample + ' Spectral Count' combined_fragpipe_columns = ["Sequence", "Protein ID", column_name] data = pd.read_csv(file, sep=sep, low_memory=False, usecols=combined_fragpipe_columns) selected_indices = data[data[column_name] > 0].index.tolist() data_sub = data.iloc[selected_indices] data_sub = data_sub[["Sequence", "Protein ID"]] # rename columns into all_proteins_id and naked sequence data_sub = data_sub.rename(columns={"Protein ID": "all_protein_ids", "Sequence": "naked_sequence"}) data_sub['modified_sequence'] = data_sub.naked_sequence else: try: combined_fragpipe_columns = ["Sequence", "Protein ID"] data_sub =
pd.read_csv(file, sep=sep, low_memory=False, usecols=combined_fragpipe_columns)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # In[ ]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import xgboost import math from __future__ import division from scipy.stats import pearsonr from sklearn.linear_model import LinearRegression from sklearn import cross_validation, tree, linear_model from sklearn.model_selection import train_test_split from sklearn.metrics import explained_variance_score # # 1. Exploratory Data Analysis # In[ ]: # Read the data into a data frame data = pd.read_csv('../input/kc_house_data.csv') # In[ ]: # Check the number of data points in the data set print(len(data)) # Check the number of features in the data set print(len(data.columns)) # Check the data types print(data.dtypes.unique()) # - Since there are Python objects in the data set, we may have some categorical features. Let's check them. # In[ ]: data.select_dtypes(include=['O']).columns.tolist() # - We only have the date column which is a timestamp that we will ignore. # In[ ]: # Check any number of columns with NaN print(data.isnull().any().sum(), ' / ', len(data.columns)) # Check any number of data points with NaN print(data.isnull().any(axis=1).sum(), ' / ', len(data)) # - The data set is pretty much structured and doesn't have any NaN values. So we can jump into finding correlations between the features and the target variable # # 2. Correlations between features and target # In[ ]: features = data.iloc[:,3:].columns.tolist() target = data.iloc[:,2].name # In[ ]: correlations = {} for f in features: data_temp = data[[f,target]] x1 = data_temp[f].values x2 = data_temp[target].values key = f + ' vs ' + target correlations[key] = pearsonr(x1,x2)[0] # In[ ]: data_correlations =
pd.DataFrame(correlations, index=['Value'])
pandas.DataFrame
import numpy as np import pandas as pd a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] b =
pd.DataFrame(a)
pandas.DataFrame
# -*- coding: utf-8 -*- """House Prices Isabel.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1crlL-Zf_EXl_hSIAIwKw17wb81Bvnqvg """ import pandas as pd import numpy as np from sklearn import neighbors, tree from sklearn.linear_model import LinearRegression from sklearn import datasets, linear_model, svm from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error from sklearn import preprocessing from sklearn.model_selection import train_test_split from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel from sklearn.gaussian_process import GaussianProcessRegressor from scipy import stats from scipy.stats import norm, skew import matplotlib.pyplot as plt import seaborn as sns color = sns.color_palette() sns.set_style('darkgrid') import warnings warnings.filterwarnings("ignore") train = pd.read_csv("train.csv") test = pd.read_csv("test.csv") #Save the 'Id' column train_ID = train['Id'] test_ID = test['Id'] #Now drop the 'Id' colum since it's unnecessary for the prediction process. train.drop("Id", axis = 1, inplace = True) test.drop("Id", axis = 1, inplace = True) train = train.drop(train[(train['GrLivArea']>4000) & (train['SalePrice']<300000)].index) fig, ax = plt.subplots() ax.scatter(train['GrLivArea'], train['SalePrice']) sns.distplot(train['SalePrice'] , fit=norm); # Get the fitted parameters used by the function (mu, sigma) = norm.fit(train['SalePrice']) #We use the numpy fuction log1p which applies log(1+x) to all elements of the column train["SalePrice"] = np.log1p(train["SalePrice"]) #Check the new distribution sns.distplot(train['SalePrice'] , fit=norm); # Get the fitted parameters used by the function (mu, sigma) = norm.fit(train['SalePrice']) ntrain = train.shape[0] ntest = test.shape[0] y_train = train.SalePrice.values all_data = pd.concat((train, test)).reset_index(drop=True) all_data.drop(['SalePrice'], axis=1, inplace=True) print("all_data size is : {}".format(all_data.shape)) all_data_na = (all_data.isnull().sum() / len(all_data)) * 100 all_data_na = all_data_na.drop(all_data_na[all_data_na == 0].index).sort_values(ascending=False)[:30] missing_data = pd.DataFrame({'Missing Ratio' :all_data_na}) #missing_data.head(20) all_data["PoolQC"] = all_data["PoolQC"].fillna("None") all_data["MiscFeature"] = all_data["MiscFeature"].fillna("None") all_data["Alley"] = all_data["Alley"].fillna("None") all_data["Fence"] = all_data["Fence"].fillna("None") all_data["FireplaceQu"] = all_data["FireplaceQu"].fillna("None") #Group by neighborhood and fill in missing value by the median LotFrontage of all the neighborhood all_data["LotFrontage"] = all_data.groupby("Neighborhood")["LotFrontage"].transform(lambda x: x.fillna(x.median())) for col in ('GarageType', 'GarageFinish', 'GarageQual', 'GarageCond'): all_data[col] = all_data[col].fillna('None') for col in ('GarageYrBlt', 'GarageArea', 'GarageCars'): all_data[col] = all_data[col].fillna(0) for col in ('BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF','TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath'): all_data[col] = all_data[col].fillna(0) for col in ('BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2'): all_data[col] = all_data[col].fillna('None') all_data["MasVnrType"] = all_data["MasVnrType"].fillna("None") all_data["MasVnrArea"] = all_data["MasVnrArea"].fillna(0) all_data['MSZoning'] = all_data['MSZoning'].fillna(all_data['MSZoning'].mode()[0]) all_data = all_data.drop(['Utilities'], axis=1) all_data["Functional"] = all_data["Functional"].fillna("Typ") all_data['Electrical'] = all_data['Electrical'].fillna(all_data['Electrical'].mode()[0]) all_data['KitchenQual'] = all_data['KitchenQual'].fillna(all_data['KitchenQual'].mode()[0]) all_data['Exterior1st'] = all_data['Exterior1st'].fillna(all_data['Exterior1st'].mode()[0]) all_data['Exterior2nd'] = all_data['Exterior2nd'].fillna(all_data['Exterior2nd'].mode()[0]) all_data['SaleType'] = all_data['SaleType'].fillna(all_data['SaleType'].mode()[0]) all_data['MSSubClass'] = all_data['MSSubClass'].fillna("None") #Check remaining missing values if any all_data_na = (all_data.isnull().sum() / len(all_data)) * 100 all_data_na = all_data_na.drop(all_data_na[all_data_na == 0].index).sort_values(ascending=False) missing_data = pd.DataFrame({'Missing Ratio' :all_data_na}) missing_data.head() #MSSubClass=The building class all_data['MSSubClass'] = all_data['MSSubClass'].apply(str) #Changing OverallCond into a categorical variable all_data['OverallCond'] = all_data['OverallCond'].astype(str) #Year and month sold are transformed into categorical features. all_data['YrSold'] = all_data['YrSold'].astype(str) all_data['MoSold'] = all_data['MoSold'].astype(str) from sklearn.preprocessing import LabelEncoder cols = ('FireplaceQu', 'BsmtQual', 'BsmtCond', 'GarageQual', 'GarageCond', 'ExterQual', 'ExterCond','HeatingQC', 'PoolQC', 'KitchenQual', 'BsmtFinType1', 'BsmtFinType2', 'Functional', 'Fence', 'BsmtExposure', 'GarageFinish', 'LandSlope', 'LotShape', 'PavedDrive', 'Street', 'Alley', 'CentralAir', 'MSSubClass', 'OverallCond', 'YrSold', 'MoSold') # process columns, apply LabelEncoder to categorical features for c in cols: lbl = LabelEncoder() lbl.fit(list(all_data[c].values)) all_data[c] = lbl.transform(list(all_data[c].values)) # shape print('Shape all_data: {}'.format(all_data.shape)) # Adding total sqfootage feature all_data['TotalSF'] = all_data['TotalBsmtSF'] + all_data['1stFlrSF'] + all_data['2ndFlrSF'] numeric_feats = all_data.dtypes[all_data.dtypes != "object"].index skewed_feats = all_data[numeric_feats].apply(lambda x: skew(x.dropna())).sort_values(ascending=False) print("\nSkew in numerical features: \n") skewness = pd.DataFrame({'Skew' :skewed_feats}) #skewness.head(10) skewness = skewness[abs(skewness) > 0.75] print("There are {} skewed numerical features to Box Cox transform".format(skewness.shape[0])) from scipy.special import boxcox1p skewed_features = skewness.index lam = 0.15 for feat in skewed_features: #all_data[feat] += 1 all_data[feat] = boxcox1p(all_data[feat], lam) #all_data[skewed_features] = np.log1p(all_data[skewed_features]) all_data = pd.get_dummies(all_data) print(all_data.shape) train = all_data[:ntrain] test = all_data[ntrain:] """Dropping Columns""" to_drop = ['Street','Alley', 'BsmtFinSF2'] train = train.drop(to_drop, 1) test = test.drop(to_drop, 1) from sklearn.linear_model import ElasticNet, Lasso, BayesianRidge, LassoLarsIC from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.kernel_ridge import KernelRidge from sklearn.pipeline import make_pipeline from sklearn.preprocessing import RobustScaler from sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin, clone from sklearn.model_selection import KFold, cross_val_score, train_test_split from sklearn.metrics import mean_squared_error import xgboost as xgb import lightgbm as lgb #Validation function n_folds = 5 def rmsle_cv(model): kf = KFold(n_folds, shuffle=True, random_state=42).get_n_splits(train.values) rmse= np.sqrt(-cross_val_score(model, train.values, y_train, scoring="neg_mean_squared_error", cv = kf)) return(rmse) lasso = make_pipeline(RobustScaler(), Lasso(alpha =0.0005, random_state=1)) score = rmsle_cv(lasso) print("\nLasso score: {:.4f} ({:.4f})\n".format(score.mean(), score.std())) GBoost = GradientBoostingRegressor(n_estimators=3000, learning_rate=0.05, max_depth=4, max_features='sqrt', min_samples_leaf=15, min_samples_split=10, loss='huber', random_state =5) ENet = make_pipeline(RobustScaler(), ElasticNet(alpha=0.0005, l1_ratio=.9, random_state=3)) KRR = KernelRidge(alpha=0.6, kernel='polynomial', degree=2, coef0=2.5) class AveragingModels(BaseEstimator, RegressorMixin, TransformerMixin): def __init__(self, models): self.models = models # we define clones of the original models to fit the data in def fit(self, X, y): self.models_ = [clone(x) for x in self.models] # Train cloned base models for model in self.models_: model.fit(X, y) return self #Now we do the predictions for cloned models and average them def predict(self, X): predictions = np.column_stack([ model.predict(X) for model in self.models_ ]) return np.mean(predictions, axis=1) class StackingAveragedModels(BaseEstimator, RegressorMixin, TransformerMixin): def __init__(self, base_models, meta_model, n_folds=5): self.base_models = base_models self.meta_model = meta_model self.n_folds = n_folds # We again fit the data on clones of the original models def fit(self, X, y): self.base_models_ = [list() for x in self.base_models] self.meta_model_ = clone(self.meta_model) kfold = KFold(n_splits=self.n_folds, shuffle=True, random_state=156) # Train cloned base models then create out-of-fold predictions # that are needed to train the cloned meta-model out_of_fold_predictions = np.zeros((X.shape[0], len(self.base_models))) for i, model in enumerate(self.base_models): for train_index, holdout_index in kfold.split(X, y): instance = clone(model) self.base_models_[i].append(instance) instance.fit(X[train_index], y[train_index]) y_pred = instance.predict(X[holdout_index]) out_of_fold_predictions[holdout_index, i] = y_pred # Now train the cloned meta-model using the out-of-fold predictions as new feature self.meta_model_.fit(out_of_fold_predictions, y) return self #Do the predictions of all base models on the test data and use the averaged predictions as #meta-features for the final prediction which is done by the meta-model def predict(self, X): meta_features = np.column_stack([ np.column_stack([model.predict(X) for model in base_models]).mean(axis=1) for base_models in self.base_models_ ]) return self.meta_model_.predict(meta_features) def rmsle(y, y_pred): return np.sqrt(mean_squared_error(y, y_pred)) averaged_models = AveragingModels(models = (ENet, GBoost, KRR, lasso)) stacked_averaged_models = StackingAveragedModels(base_models = (ENet, GBoost, KRR), meta_model = lasso) stacked_averaged_models.fit(train.values, y_train) stacked_train_pred = stacked_averaged_models.predict(train.values) stacked_pred = np.expm1(stacked_averaged_models.predict(test.values)) #ensemble = stacked_pred*0.70 + xgb_pred*0.15 + lgb_pred*0.15 ensemble = stacked_pred sub =
pd.DataFrame()
pandas.DataFrame
""" Functions to import process raw availability data from suncor exports - Not imported by GUI app """ from datetime import datetime as dt from datetime import timedelta as delta from pathlib import Path import pandas as pd import pypika as pk from smseventlog import config as cf from smseventlog import functions as f from smseventlog import getlog from smseventlog.database import db from smseventlog.utils.exchange import combine_email_data log = getlog(__name__) def import_single(p): df =
pd.read_csv(p, header=2)
pandas.read_csv
from nvblox.experiments.timing import get_timings_as_dataframe import os import argparse import glob import numpy as np import pandas as pd import re import matplotlib.pyplot as plt from matplotlib import rcParams rcParams.update({'figure.autolayout': True}) # Get the timings for a single run def get_total_times(filepath: str) -> pd.Series: timings = get_timings_as_dataframe(filepath) return timings["total_time"] def get_platform_timings(timings_dir: str, platform_name: str = None) -> pd.DataFrame: results_files = glob.glob(timings_dir + "/timings_*.txt") results_files.sort() df = pd.DataFrame() for f in results_files: # Extract datasize data_size = int(re.search('timings_(.+?).txt', f).group(1)) # Total times -> timg/byte timings = get_total_times(f) timings /= data_size # Add to timings for each datasize this_df = timings.to_frame(name=str(data_size) + " bytes") if df.empty: df = this_df else: df =
pd.merge(df, this_df, left_index=True, right_index=True)
pandas.merge
from pandas import read_csv from pandas import DataFrame from pandas import concat from datetime import datetime from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import MinMaxScaler # convert series to supervised learning def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): n_vars = 1 if type(data) is list else data.shape[1] df = DataFrame(data) cols, names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)] # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(df.shift(-i)) if i == 0: names += [('var%d(t)' % (j+1)) for j in range(n_vars)] else: names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)] # put it all together agg =
concat(cols, axis=1)
pandas.concat
# LIBRERÍAS import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import scikitplot as skplt import numpy as np from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from scipy import stats from sklearn import metrics from sklearn.preprocessing import scale # machine learning from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC # LEER ARCHIVOS data_train = pd.read_csv('C:/Users/agus_/Downloads/train.csv') data_test = pd.read_csv('C:/Users/agus_/Downloads/test.csv') # Información del dataset completo print(data_train.info()) print("-"*40) print(data_test.info()) print("-"*67) print(data_train.describe()) print("\n") # Features originales del dataset print(data_train.columns.values) print("-"*35) print(data_test.columns.values) print("\n") # ETAPAS DE ANÁLISIS DE DATOS - INGENIERÍA DE FEATURES # Se analizarán aquellos features que consideramos necesarios para incluirlos en nuestro modelo. Para ello, se seguirá # una serie de pasos para luego decidir qué features son relevantes y cuales no. # 1) Correlación de features # En esta etapa, analizaremos los features que creemos que tienen correlación con Survived. Solo haremos esto con aquellas # características que no tengan valores vacíos. En caso de tener una alta correlación, se incluirán en el modelo. print(data_train[['Pclass', 'Survived']].groupby(['Pclass'], as_index=False).mean().sort_values(by='Survived', ascending=False)) print("\n") grid = sns.factorplot(x="Pclass", y="Survived", data=data_train, kind="bar", size=6 , palette="muted") grid.despine(left=True) grid = grid.set_ylabels("survival probability") plt.show() print(data_train[['Sex', 'Survived']].groupby(['Sex'], as_index=False).mean().sort_values(by='Survived', ascending=False)) print("\n") grid = sns.factorplot(x="Sex", y="Survived", data=data_train,kind="bar", size=6 , palette="muted") grid.despine(left=True) grid = grid.set_ylabels("survival probability") plt.show() print(data_train[['SibSp', 'Survived']].groupby(['SibSp'], as_index=False).mean().sort_values(by='Survived', ascending=False)) print("\n") grid = sns.factorplot(x="SibSp", y="Survived", data=data_train, kind="bar", size=6 , palette="muted") grid.despine(left=True) grid = grid.set_ylabels("survival probability") plt.show() print(data_train[['Parch', 'Survived']].groupby(['Parch'], as_index=False).mean().sort_values(by='Survived', ascending=False)) print("\n") grid = sns.factorplot(x="Parch", y="Survived", data=data_train, kind="bar", size=6 , palette="muted") grid.despine(left=True) grid = grid.set_ylabels("survival probability") plt.show() print(data_train[['Embarked', 'Survived']].groupby(['Embarked'], as_index=False).mean().sort_values(by='Survived', ascending=False)) print("\n") grid = sns.factorplot(x="Embarked", y="Survived", data=data_train, size=6, kind="bar", palette="muted") grid.despine(left=True) grid = grid.set_ylabels("survival probability") plt.show() # sns.set(style="darkgrid") grid = sns.FacetGrid(data_train, col='Survived') grid = grid.map(sns.distplot, 'Age', hist=True, hist_kws=dict(edgecolor="w"), color='blue') plt.show() # 2) Corrección de features # En esta etapa, se eliminarán aquellos features que se consideran totalmente irrelevantes para incluirlos en el modelo. # ¿Cómo nos damos cuenta de ello? Simple, se observan aquellos features que son independientes y no aportan información # para saber si la persona sobrevivió o no. En este caso, son PassengerId, Ticket y Cabin. data_train = data_train.drop(['PassengerId', 'Ticket', 'Cabin'], axis=1) data_test = data_test.drop(['Ticket', 'Cabin'], axis=1) print(data_train.columns.values) print(data_train.shape) print("\n") print(data_test.columns.values) print(data_test.shape) print("\n") # 3) Creación de features # En esta etapa, se analizarán aquellos features que por si solos hacen que el modelo sea más complejo, pero agrupando # esas características en una nueva, simplifica el modelo y ayuda a entenderlo aún más. # Se analizará si es conveniente crear una nueva característica a partir de las existentes. dataset = [data_train, data_test] for data in dataset: data['Title'] = data.Name.str.extract('([A-Za-z]+)\.', expand=False) for data in dataset: data['Title'] = data['Title'].replace(['Lady', 'Countess', 'Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Other') data['Title'] = data['Title'].replace('Mlle', 'Miss') data['Title'] = data['Title'].replace('Ms', 'Miss') data['Title'] = data['Title'].replace('Mme', 'Mrs') print(data_train[['Title', 'Survived']].groupby(['Title'], as_index=False).mean().sort_values(by='Survived', ascending=False)) print("\n") grid = sns.factorplot(x="Title", y="Survived", data=data_train, kind="bar") grid = grid.set_xticklabels(["Master","Miss", "Mrs","Mr","Rare"]) grid = grid.set_ylabels("survival probability") plt.show() transformacion_de_titulos = {"Master": 1, "Miss": 2, "Mrs": 3, "Mr": 4, "Other": 5} for data in dataset: data['Title'] = data['Title'].map(transformacion_de_titulos) data['Title'] = data['Title'].fillna(value=0) # fillna() ---> busca todos los valores NaN y los reemplaza por 0 print() data_train = data_train.drop(['Name'], axis=1) data_test = data_test.drop(['Name'], axis=1) dataset = [data_train, data_test] # Sex dummies data_train = pd.get_dummies(data=data_train, columns=['Sex']) data_train = data_train.drop(['Sex_male'], axis=1) data_test = pd.get_dummies(data=data_test, columns=['Sex']) data_test = data_test.drop(['Sex_male'], axis=1) dataset = [data_train, data_test] print(data_train.columns.values) print(data_train.head()) print(data_test.columns.values) print(data_test.head()) print("\n") # print(data_train.info()) print("-"*60) # Completando Age sumaEdadMaster = 0.0 sumaEdadMr = 0.0 sumaEdadMiss = 0.0 sumaEdadMrs = 0.0 sumaEdadOther = 0.0 master = 0 miss = 0 mrs = 0 mr = 0 other = 0 for row in data_train.itertuples(index=True): if getattr(row, 'Title') == 1 and pd.isna(getattr(row, 'Age')) == False: sumaEdadMaster = sumaEdadMaster + getattr(row, 'Age') master += 1 if getattr(row, 'Title') == 2 and pd.isna(getattr(row, 'Age')) == False: sumaEdadMiss = sumaEdadMiss + getattr(row, 'Age') miss += 1 if getattr(row, 'Title') == 3 and pd.isna(getattr(row, 'Age')) == False: sumaEdadMrs = sumaEdadMrs + getattr(row, 'Age') mrs += 1 if getattr(row, 'Title') == 4 and pd.isna(getattr(row, 'Age')) == False: sumaEdadMr = sumaEdadMr + getattr(row, 'Age') mr += 1 if getattr(row, 'Title') == 5 and pd.isna(getattr(row, 'Age')) == False: sumaEdadOther = sumaEdadOther + getattr(row, 'Age') other += 1 # print(getattr(row, 'Title'), getattr(row, 'Age')) for row in data_test.itertuples(index=True): if getattr(row, 'Title') == 1 and pd.isna(getattr(row, 'Age')) == False: sumaEdadMaster = sumaEdadMaster + getattr(row, 'Age') master += 1 if getattr(row, 'Title') == 2 and pd.isna(getattr(row, 'Age')) == False: sumaEdadMiss = sumaEdadMiss + getattr(row, 'Age') miss += 1 if getattr(row, 'Title') == 3 and pd.isna(getattr(row, 'Age')) == False: sumaEdadMrs = sumaEdadMrs + getattr(row, 'Age') mrs += 1 if getattr(row, 'Title') == 4 and pd.isna(getattr(row, 'Age')) == False: sumaEdadMr = sumaEdadMr + getattr(row, 'Age') mr += 1 if getattr(row, 'Title') == 5 and pd.isna(getattr(row, 'Age')) == False: sumaEdadOther = sumaEdadOther + getattr(row, 'Age') other += 1 # print(row[['Title', 'Age']]) print("SUMA:", sumaEdadMaster, "CANT:", master) media_master = sumaEdadMaster/master print("MEDIA Master:", media_master) print("SUMA:", sumaEdadMiss, "CANT:", miss) media_miss = sumaEdadMiss/miss print("MEDIA Miss:", media_miss) print("SUMA", sumaEdadMrs, "CANT:", mrs) media_mrs = sumaEdadMrs/mrs print("MEDIA Mrs:", media_mrs) print("SUMA:", sumaEdadMr, "CANT:", mr) media_mr = sumaEdadMr/mr print("MEDIA Mr:", media_mr) print("SUMA:", sumaEdadOther, "CANT:", other) media_other = sumaEdadOther/other print("MEDIA Other:", media_other) print("TOTAL:", master+miss+mrs+mr+other) print("\n") print(data_train.info()) print("\n") for row in data_train.itertuples(index=True): index, Survived, Pclass, Age, SibSp, Parch, Fare, Embarked, Title, Sex_female = row if getattr(row, 'Title') == 1 and pd.isna(getattr(row, 'Age')) == True: data_train.at[index ,'Age'] = media_master if getattr(row, 'Title') == 2 and pd.isna(getattr(row, 'Age')) == True: data_train.at[index, 'Age'] = media_miss if getattr(row, 'Title') == 3 and pd.isna(getattr(row, 'Age')) == True: data_train.at[index, 'Age'] = media_mrs if getattr(row, 'Title') == 4 and pd.isna(getattr(row, 'Age')) == True: data_train.at[index, 'Age'] = media_mr if getattr(row, 'Title') == 5 and pd.isna(getattr(row, 'Age')) == True: data_train.at[index, 'Age'] = media_other # print(getattr(row, 'Title'), getattr(row, 'Age')) # Convertir todos los valores del feature Age en números enteros. De float a int. data_train['Age'] = data_train['Age'].astype(np.int64) for row in data_test.itertuples(index=True): index, PassengerId, Pclass, Age, SibSp, Parch, Fare, Embarked, Title, Sex_female = row if getattr(row, 'Title') == 1 and pd.isna(getattr(row, 'Age')) == True: data_test.at[index, 'Age'] = media_master if getattr(row, 'Title') == 2 and pd.isna(getattr(row, 'Age')) == True: data_test.at[index, 'Age'] = media_miss if getattr(row, 'Title') == 3 and pd.isna(getattr(row, 'Age')) == True: data_test.at[index, 'Age'] = media_mrs if getattr(row, 'Title') == 4 and pd.isna(getattr(row, 'Age')) == True: data_test.at[index, 'Age'] = media_mr if getattr(row, 'Title') == 5 and pd.isna(getattr(row, 'Age')) == True: data_test.at[index, 'Age'] = media_other # Convertir todos los valores del feature Age en números enteros. De float a int. data_test['Age'] = data_test['Age'].astype(np.int64) print(data_train.info()) print(data_train.head()) print("\n") print(data_test.info()) print(data_test.head()) print("\n") dataset = [data_train, data_test] print(data_train.shape) print(data_test.shape) print("\n") data_train['AgeRange'] =
pd.cut(data_train['Age'], 8)
pandas.cut
import blpapi import datetime import pandas as pd import numpy as np def check_date_time(value): if not isinstance(value, datetime.datetime): raise ValueError('The dates have to be datetime objects') return None def check_overrides(value): if value != None: if type(value) != dict: raise ValueError('The overrides has to be a dictionary') return None def check_other_param(value): if value != None: if type(value) != dict: raise ValueError('The other_param argument has to be a dictionary') return None class BLP(): def __init__(self): self.boo_getIntradayBar = False self.boo_getIntradayTick = False self.boo_getRefData = False self.boo_getHistoData = False self.dictData = {} self.list_df_buffer = [] # Used to store the temporary dataframes self.BAR_DATA = blpapi.Name("barData") self.BAR_TICK_DATA = blpapi.Name("barTickData") self.CATEGORY = blpapi.Name("category") self.CLOSE = blpapi.Name("close") self.FIELD_DATA = blpapi.Name("fieldData") self.FIELD_ID = blpapi.Name("fieldId") self.HIGH = blpapi.Name("high") self.LOW = blpapi.Name("low") self.MESSAGE = blpapi.Name("message") self.NUM_EVENTS = blpapi.Name("numEvents") self.OPEN = blpapi.Name("open") self.RESPONSE_ERROR = blpapi.Name("responseError") self.SECURITY_DATA = blpapi.Name("securityData") self.SECURITY = blpapi.Name("security") self.SESSION_TERMINATED = blpapi.Name("SessionTerminated") self.TIME = blpapi.Name("time") self.VALUE = blpapi.Name("value") self.VOLUME = blpapi.Name("volume") self.TICK_DATA = blpapi.Name("tickData") self.TICK_SIZE = blpapi.Name("size") self.TYPE = blpapi.Name("type") # Create a Session self.session = blpapi.Session() # Start a Session if not self.session.start(): print("Failed to start session.") return None def printErrorInfo(self, leadingStr, errorInfo): print ("%s%s (%s)" % (leadingStr, errorInfo.getElementAsString(self.CATEGORY), errorInfo.getElementAsString(self.MESSAGE))) return None def check_service(self, service): # Open service to get historical data from if not (self.session.openService(service)): print("Failed to open {}".format(service)) return None def set_other_param(self, other_param, request): if other_param != None: for k, v in other_param.items(): request.set(k, v) return request def set_overrides(self, overrides, request): if overrides != None: req_overrides = request.getElement("overrides") list_overrides = [] for fieldId, value in overrides.items(): list_overrides.append(req_overrides.appendElement()) list_overrides[-1].setElement("fieldId", fieldId) list_overrides[-1].setElement("value", value) return request def eventLoop(self, session): done = False while not done: event = session.nextEvent(20) if event.eventType() == blpapi.Event.PARTIAL_RESPONSE: self.processResponseEvent(event) elif event.eventType() == blpapi.Event.RESPONSE: self.processResponseEvent(event) done = True else: for msg in event: if event.eventType() == blpapi.Event.SESSION_STATUS: if msg.messageType() == self.SESSION_TERMINATED: done = True return None def processResponseEvent(self, event): for msg in event: if msg.hasElement(self.RESPONSE_ERROR): self.printErrorInfo("REQUEST FAILED: ", msg.getElement(self.RESPONSE_ERROR)) continue if self.boo_getIntradayBar: self.process_msg_intradaybar(msg) elif self.boo_getIntradayTick: self.process_msg_intradaytick(msg) elif self.boo_getRefData: self.process_msg_refdata(msg) elif self.boo_getHistoData: self.process_msg_histodata(msg) return None def get_intradaybar(self, security, event, start_date, end_date, barInterval, other_param): self.boo_getIntradayBar = True try: self.check_service("//blp/refdata") refDataService = self.session.getService("//blp/refdata") request = refDataService.createRequest("IntradayBarRequest") # Only one security/eventType per request request.set("security", security) request.set("eventType", event) request.set("interval", barInterval) # All times are in GMT request.set("startDateTime", start_date) request.set("endDateTime", end_date) # Append other parameters if there are request = self.set_other_param(other_param, request) self.session.sendRequest(request) self.eventLoop(self.session) # Wait for events from session finally: # Stop the session self.session.stop() df_buffer = pd.DataFrame.from_dict(self.dictData, orient='index', columns=['open', 'high', 'low', 'close', 'volume', 'numEvents', 'value']) df_buffer['ticker'] = security df_buffer = df_buffer.reset_index(level=0).rename(columns={'index': 'time'}).set_index(['time', 'ticker']) return df_buffer.fillna(value=np.nan) def process_msg_intradaybar(self, msg): data = msg.getElement(self.BAR_DATA).getElement(self.BAR_TICK_DATA) for bar in data.values(): time = bar.getElementAsDatetime(self.TIME) open = bar.getElementAsFloat(self.OPEN) high = bar.getElementAsFloat(self.HIGH) low = bar.getElementAsFloat(self.LOW) close = bar.getElementAsFloat(self.CLOSE) numEvents = bar.getElementAsInteger(self.NUM_EVENTS) volume = bar.getElementAsInteger(self.VOLUME) value = bar.getElementAsInteger(self.VALUE) self.dictData[time] = [open, high, low, close, volume, numEvents, value] # Increment rows in a dictionary return None def get_refdata(self, security, fields, overrides, other_param): self.boo_getRefData = True self.fields = fields try: self.check_service("//blp/refdata") refDataService = self.session.getService("//blp/refdata") request = refDataService.createRequest("ReferenceDataRequest") # Append securities to request for ticker in security: request.append("securities", ticker) # Append fields to request for field in fields: request.append("fields", field) # Append other parameters if there are request = self.set_other_param(other_param, request) # Add overrides if there are request = self.set_overrides(overrides, request) self.session.sendRequest(request) self.eventLoop(self.session) # Wait for events from session. finally: self.session.stop() df_buffer = pd.DataFrame.from_dict(self.dictData, orient='index', columns=fields).fillna(value=np.nan) return df_buffer def process_msg_refdata(self, msg): data = msg.getElement(self.SECURITY_DATA) for securityData in data.values(): field_data = securityData.getElement(self.FIELD_DATA) # Element that contains all the fields security_ticker = securityData.getElementAsString(self.SECURITY) # Get Ticker self.dictData[security_ticker] = [] # Create list of fields for my_field in self.fields: if field_data.hasElement(my_field): # Check if the field exists for this particular ticker self.dictData[security_ticker].append(field_data.getElement(my_field).getValue()) else: self.dictData[security_ticker].append(None) return None def get_histodata(self,security, fields, start_date, end_date, overrides, other_param): self.boo_getHistoData = True self.fields = fields try: self.check_service("//blp/refdata") # Obtain previously opened service refDataService = self.session.getService("//blp/refdata") # Create and fill the request for the historical data request = refDataService.createRequest("HistoricalDataRequest") # Append securities to request for ticker in security: request.getElement("securities").appendValue(ticker) # Append fields to request for field in fields: request.getElement("fields").appendValue(field) request.set("startDate", start_date.strftime('%Y%m%d')) request.set("endDate", end_date.strftime('%Y%m%d')) # Append other parameters if there are request = self.set_other_param(other_param, request) # Add overrides if there are request = self.set_overrides(overrides, request) self.session.sendRequest(request) # Send the request self.eventLoop(self.session) # Wait for events from session. finally: # Stop the session self.session.stop() # Returns a pandas dataframe with a Multi-index (date/ticker) df_buffer =
pd.concat(self.list_df_buffer)
pandas.concat
from random import randint from typing import Optional, List, Dict, Union, Tuple import numpy as np import pandas as pd import scipy.stats from matplotlib import pyplot as plt from .common.helpers import Frame, Rebalance, Float, Date from .common.make_asset_list import ListMaker from .common.validators import validate_real from .settings import _MONTHS_PER_YEAR class Portfolio(ListMaker): """ Implementation of investment portfolio. Investments portfolio is a type of financial asset. Arguments are similar to AssetList (weights are added), but different behavior. Works with monthly end of day historical rate of return data. The rebalancing is the action of bringing the portfolio that has deviated away from original target asset allocation back into line. After rebalancing the portfolio assets have weights set with Portfolio(weights=[...]). Different rebalancing periods are allowed for portfolio: 'month' (default), 'year' or 'none'. Parameters ---------- rebalancing_period : {"month", "year", "none"}, default "month" Portfolio rebalancing periods. 'none' is for not rebalanced portfolio. # TODO: Finish description. """ def __init__( self, assets: Optional[List[str]] = None, *, first_date: Optional[str] = None, last_date: Optional[str] = None, ccy: str = "USD", inflation: bool = True, weights: Optional[List[float]] = None, rebalancing_period: str = "month", symbol: str = None, ): super().__init__( assets, first_date=first_date, last_date=last_date, ccy=ccy, inflation=inflation, ) self._weights = None self.weights = weights self.assets_weights = dict(zip(self.symbols, self.weights)) self._rebalancing_period = None self.rebalancing_period = rebalancing_period self._symbol = symbol or f'portfolio_{randint(1000, 9999)}.PF' def __repr__(self): dic = { "symbol": self.symbol, "assets": self.symbols, "weights": self.weights, "rebalancing_period": self.rebalancing_period, "currency": self.currency, "inflation": self.inflation if hasattr(self, "inflation") else "None", "first_date": self.first_date.strftime("%Y-%m"), "last_date": self.last_date.strftime("%Y-%m"), "period_length": self._pl_txt, } return repr(pd.Series(dic)) def _add_inflation(self): if hasattr(self, "inflation"): return pd.concat( [self.ror, self.inflation_ts], axis=1, join="inner", copy="false" ) else: return self.ror @property def weights(self) -> Union[list, tuple]: """ Get or set assets weights in portfolio. If not defined equal weights are used for each asset. Weights must be a list (or tuple) of float values. Returns ------- Values for the weights of assets in portfolio. Examples -------- >>> x = ok.Portfolio(['SPY.US', 'BND.US']) >>> x.weights [0.5, 0.5] """ return self._weights @weights.setter def weights(self, weights: Optional[List[float]]): if weights is None: # Equally weighted portfolio n = len(self.symbols) # number of assets weights = list(np.repeat(1 / n, n)) else: [validate_real("weight", weight) for weight in weights] Frame.weights_sum_is_one(weights) if len(weights) != len(self.symbols): raise ValueError( f"Number of tickers ({len(self.symbols)}) should be equal " f"to the weights number ({len(weights)})" ) self._weights = weights @property def weights_ts(self) -> pd.DataFrame: """ Calculate assets weights time series. Returns ------- DataFrame Weights of assets time series. Examples -------- >>> pf = ok.Portfolio(['SPY.US', 'AGG.US'], weights=[0.5, 0.5], rebalancing_period='none') >>> pf.weights [0.5, 0.5] >>> pf.weights_ts SPY.US AGG.US Date 2003-10 0.515361 0.484639 2003-11 0.517245 0.482755 2003-12 0.527056 0.472944 ... ... 2021-02 0.731292 0.268708 2021-03 0.742147 0.257853 2021-04 0.750528 0.249472 [211 rows x 2 columns] """ if self.rebalancing_period != 'month': return Rebalance.assets_weights_ts(ror=self.assets_ror, period=self.rebalancing_period, weights=self.weights) values = np.tile(self.weights, (self.ror.shape[0], 1)) return pd.DataFrame(values, index=self.ror.index, columns=self.symbols) @property def rebalancing_period(self) -> str: """ Return rebalancing period of the portfolio. Rebalancing is the process by which an investor restores their portfolio to its target allocation by selling and buying assets. After rebalancing all the assets have original weights. Rebalancing period (rebalancing frequency) is predetermined time intervals when the investor rebalances the portfolio. Returns ------- str Portfolio rebalancing period. """ return self._rebalancing_period @rebalancing_period.setter def rebalancing_period(self, rebalancing_period: str): if rebalancing_period in {'none', 'month', 'year'}: self._rebalancing_period = rebalancing_period else: raise ValueError('rebalancing_period must be "year", "month" or "none"') @property def symbol(self) -> str: """ Return a text symbol of portfolio. Symbols are similar to tickers but have a namespace information: * SPY.US is a symbol * SPY is a ticker Portfolios have '.PF' as a namespace. Returns ------- str Text symbol of the portfolio. """ return self._symbol @symbol.setter def symbol(self, text_symbol: str): if isinstance(text_symbol, str) and '.' in text_symbol: if " " in text_symbol: raise ValueError('portfolio text symbol should not have whitespace characters.') namespace = text_symbol.split(".", 1)[-1] if namespace == 'PF': self._symbol = text_symbol else: raise ValueError('portfolio symbol must end with ".PF"') else: raise ValueError('portfolio symbol must be a string ending with ".PF" namespace.') @property def name(self) -> str: """ Return text name of portfolio. For portfolio name is equal to symbol. Returns ------- str Text name of the portfolio. """ return self.symbol @property def ror(self) -> pd.Series: """ Calculate rate of return time series for portfolio. Returns ------- Series Rate of return time series for portfolio. """ if self.rebalancing_period == 'month': s = Frame.get_portfolio_return_ts(self.weights, self.assets_ror) else: s = Rebalance.return_ts( self.weights, self.assets_ror, period=self.rebalancing_period ) return s.rename(self.symbol, inplace=True) @property def wealth_index(self) -> pd.DataFrame: """ Calculate wealth index time series for the portfolio and accumulated inflation. Wealth index (Cumulative Wealth Index) is a time series that presents the value of portfolio over historical time period. Accumulated inflation time series is added if `inflation=True` in the Portfolio. Wealth index is obtained from the accumulated return multiplicated by the initial investments. That is: 1000 * (Acc_Return + 1) Initial investments are taken as 1000 units of the Portfolio base currency. Returns ------- Time series of wealth index values for portfolio and accumulated inflation. Examples -------- >>> x = ok.Portfolio(['SPY.US', 'BND.US']) >>> x.wealth_index portfolio USD.INFL 2007-05 1000.000000 1000.000000 2007-06 1004.034950 1008.011590 2007-07 992.940364 1007.709187 2007-08 1006.642941 1005.895310 ... ... 2020-12 2561.882476 1260.242835 2021-01 2537.800781 1265.661880 2021-02 2553.408256 1272.623020 2021-03 2595.156481 1281.658643 [167 rows x 2 columns] """ df = self._add_inflation() df = Frame.get_wealth_indexes(df) df = self._make_df_if_series(df) return df def _make_df_if_series(self, ts): if isinstance(ts, pd.Series): # should always return a DataFrame ts = ts.to_frame() ts.rename({1: self.symbol}, axis="columns", inplace=True) return ts @property def wealth_index_with_assets(self) -> pd.DataFrame: """ Calculate wealth index time series for the portfolio, all assets and accumulated inflation. Wealth index (Cumulative Wealth Index) is a time series that presents the value of portfolio over historical time period. Accumulated inflation time series is added if `inflation=True` in the Portfolio. Wealth index is obtained from the accumulated return multiplicated by the initial investments. That is: 1000 * (Acc_Return + 1) Initial investments are taken as 1000 units of the Portfolio base currency. Returns ------- DataFrame Time series of wealth index values for portfolio, each asset and accumulated inflation. Examples -------- >>> pf = ok.Portfolio(['VOO.US', 'GLD.US'], weights=[0.8, 0.2]) >>> pf.wealth_index_with_assets portfolio VOO.US GLD.US USD.INFL 2010-10 1000.000000 1000.000000 1000.000000 1000.000000 2010-11 1041.065584 1036.658420 1058.676480 1001.600480 2010-12 1103.779375 1108.395183 1084.508186 1003.303201 2011-01 1109.298272 1133.001556 1015.316564 1008.119056 ... ... ... ... 2020-12 3381.729677 4043.276231 1394.513920 1192.576493 2021-01 3332.356424 4002.034813 1349.610572 1197.704572 2021-02 3364.480340 4112.891178 1265.124950 1204.291947 2021-03 3480.083884 4301.261594 1250.702526 1212.842420 """ if hasattr(self, "inflation"): df = pd.concat( [self.ror, self.assets_ror, self.inflation_ts], axis=1, join="inner", copy="false", ) else: df = pd.concat( [self.ror, self.assets_ror], axis=1, join="inner", copy="false" ) return Frame.get_wealth_indexes(df) @property def mean_return_monthly(self) -> float: """ Calculate monthly mean return (arithmetic mean) for the portfolio rate of return time series. Mean return calculated for the full history period. Returns ------- Float Mean return value. Examples -------- >>> pf = ok.Portfolio(['ISF.LSE', 'XGLE.LSE'], weights=[0.6, 0.4], ccy='GBP') >>> pf 0.0001803312727272665 """ return Frame.get_portfolio_mean_return(self.weights, self.assets_ror) @property def mean_return_annual(self) -> float: """ Calculate annualized mean return (arithmetic mean) for the portfolio rate of return time series. Mean return calculated for the full history period. Returns ------- Float Mean return value. Examples -------- >>> pf = ok.Portfolio(['XCS6.XETR', 'PHAU.LSE'], weights=[0.85, 0.15], ccy='USD') >>> pf.names {'XCS6.XETR': 'Xtrackers MSCI China UCITS ETF 1C', 'PHAU.LSE': 'WisdomTree Physical Gold'} >>> pf.mean_return_annual 0.09005826844072184 """ return Float.annualize_return(self.mean_return_monthly) @property def annual_return_ts(self) -> pd.Series: """ Calculate annual rate of return time series for portfolio. Rate of return is calculated for each calendar year. Returns ------- DataFrame Calendar annual rate of return time series. Examples -------- >>> pf = ok.Portfolio(['VOO.US', 'AGG.US'], weights=[0.4, 0.6]) >>> pf.annual_return_ts Date 2010 0.034299 2011 0.056599 2012 0.086613 2013 0.107111 2014 0.090420 2015 0.010381 2016 0.063620 2017 0.105450 2018 -0.013262 2019 0.174182 2020 0.124668 2021 0.030430 Freq: A-DEC, Name: portfolio_5364.PF, dtype: float64 """ return Frame.get_annual_return_ts_from_monthly(self.ror) def get_cagr(self, period: Optional[int] = None, real: bool = False) -> pd.Series: """ Calculate portfolio Compound Annual Growth Rate (CAGR) for a given trailing period. Compound annual growth rate (CAGR) is the rate of return that would be required for an investment to grow from its initial to its final value, assuming all incomes were reinvested. Inflation adjusted annualized returns (real CAGR) are shown with `real=True` option. Annual inflation value is calculated for the same period if inflation=True in the AssetList. Parameters ---------- period: int, optional CAGR trailing period in years. None for the full time CAGR. real: bool, default False CAGR is adjusted for inflation (real CAGR) if True. Portfolio should be initiated with Inflation=True for real CAGR. Returns ------- Series Portfolio CAGR value and annualized inflation (optional). Notes ----- CAGR is not defined for periods less than 1 year (NaN values are returned). Examples -------- >>> pf = ok.Portfolio(['XCS6.XETR', 'PHAU.LSE'], weights=[0.85, 0.15], ccy='USD') >>> pf.names {'XCS6.XETR': 'Xtrackers MSCI China UCITS ETF 1C', 'PHAU.LSE': 'WisdomTree Physical Gold'} To get inflation adjusted return (real annualized return) add `real=True` option: >>> pf.get_cagr(period=5, real=True) portfolio_5625.PF 0.121265 dtype: float64 """ ts = self._add_inflation() df = self._make_df_if_series(ts) dt0 = self.last_date if period is None: dt = self.first_date else: self._validate_period(period) dt = Date.subtract_years(dt0, period) cagr = Frame.get_cagr(df[dt:]) if real: if not hasattr(self, "inflation"): raise ValueError( "Real CAGR is not defined. Set inflation=True in Portfolio to calculate it." ) mean_inflation = Frame.get_cagr(self.inflation_ts[dt:]) cagr = (1. + cagr) / (1. + mean_inflation) - 1. cagr.drop(self.inflation, inplace=True) return cagr def get_rolling_cagr(self, window: int = 12, real: bool = False) -> pd.DataFrame: """ Calculate rolling CAGR (Compound Annual Growth Rate) for the portfolio. Parameters ---------- window : int, default 12 Size of the moving window in months. Window size should be at least 12 months for CAGR. real: bool, default False CAGR is adjusted for inflation (real CAGR) if True. Portfolio should be initiated with Inflation=True for real CAGR. Returns ------- DataFrame Time series of rolling CAGR and mean inflation (optionaly). Notes ----- CAGR is not defined for periods less than 1 year (NaN values are returned). Examples -------- Get inflation adjusted rolling CAGR (real annualized return) win 5 years window: >>> x = ok.Portfolio(['DXET.XETR', 'DBXN.XETR'], ccy='EUR', inflation=True) >>> x.get_rolling_cagr(window=5*12, real=True) portfolio_7645.PF 2013-09 0.029914 2013-10 0.052435 2013-11 0.055651 2013-12 0.045180 2014-01 0.063153 ... 2021-01 0.032734 2021-02 0.037779 2021-03 0.043811 2021-04 0.043729 2021-05 0.042704 """ df = self._add_inflation() if real: df = self._make_real_return_time_series(df) return Frame.get_rolling_fn(df, window=window, fn=Frame.get_cagr) def get_cumulative_return(self, period: Union[str, int, None] = None, real: bool = False) -> pd.Series: """ Calculate cumulative return over a given trailing period for the portfolio. The cumulative return is the total change in the portfolio price during the investment period. Inflation adjusted cumulative returns (real cumulative returns) are shown with `real=True` option. Annual inflation data is calculated for the same period if `inflation=True` in the AssetList. Parameters ---------- period: str, int or None, default None Trailing period in years. None - full time cumulative return. 'YTD' - (Year To Date) period of time beginning the first day of the calendar year up to the last month. real: bool, default False Cumulative return is adjusted for inflation (real cumulative return) if True. Portfolio should be initiated with `Inflation=True` for real cumulative return. Returns ------- Series Cumulative rate of return values for portfolio and cumulative inflation (if inflation=True in Portfolio). Examples -------- >>> pf = ok.Portfolio(['BTC-USD.CC', 'LTC-USD.CC'], weights=[.8, .2], last_date='2021-03') >>> pf.get_cumulative_return(period=2) portfolio_6232.PF 9.920432 USD.INFL 0.042121 dtype: float64 To get inflation adjusted return (real annualized return) add `real=True` option: >>> pf.get_cumulative_return(period=2, real=True) portfolio_6232.PF 9.39381 dtype: float64 """ ts = self._add_inflation() df = self._make_df_if_series(ts) dt0 = self.last_date if period is None: dt = self.first_date elif str(period).lower() == "ytd": year = dt0.year dt = str(year) else: self._validate_period(period) dt = Date.subtract_years(dt0, period) cr = Frame.get_cumulative_return(df[dt:]) if real: if not hasattr(self, "inflation"): raise ValueError( "Real cumulative return is not defined (no inflation information is available)." "Set inflation=True in Portfolio to calculate it." ) cumulative_inflation = Frame.get_cumulative_return(self.inflation_ts[dt:]) cr = (1. + cr) / (1. + cumulative_inflation) - 1. cr.drop(self.inflation, inplace=True) return cr def get_rolling_cumulative_return(self, window: int = 12, real: bool = False) -> pd.DataFrame: """ Calculate rolling cumulative return. The cumulative return is the total change in the portfolio price. Parameters ---------- window : int, default 12 Size of the moving window in months. real: bool, default False Cumulative return is adjusted for inflation (real cumulative return) if True. Portfolio should be initiated with `Inflation=True` for real cumulative return. Returns ------- DataFrame Time series of rolling cumulative return and inflation (optional). """ ts = self._add_inflation() if real: ts = self._make_real_return_time_series(ts) df = self._make_df_if_series(ts) return Frame.get_rolling_fn( df, window=window, fn=Frame.get_cumulative_return, window_below_year=True, ) @property def assets_close_monthly(self) -> pd.DataFrame: """ Show assets monthly close time series adjusted to the base currency. Returns ------- DataFrame Assets monthly close time series adjusted to the base currency. """ assets_close_monthly = pd.DataFrame(dtype=float) for i, x in enumerate(self.asset_obj_dict.values()): if i == 0: # required to use pd.concat below (df should not be empty). assets_close_monthly = x.close_monthly if x.currency == self.currency else self._adjust_price_to_currency_monthly(x.close_monthly, x.currency) assets_close_monthly.rename(x.symbol, inplace=True) else: new = x.close_monthly if x.currency == self.currency else self._adjust_price_to_currency_monthly(x.close_monthly, x.currency) new.rename(x.symbol, inplace=True) assets_close_monthly = pd.concat([assets_close_monthly, new], axis=1, join="inner", copy="false") if isinstance(assets_close_monthly, pd.Series): assets_close_monthly = assets_close_monthly.to_frame() assets_close_monthly = assets_close_monthly[self.first_date: self.last_date] return assets_close_monthly @property def close_monthly(self) -> pd.Series: """ Portfolio size monthly time series. Portfolio size is shown in base currency units. It is similar to the close value of an asset. Initial portfolio value is equal to 1000 units of base currency. Returns ------- pd.Series Monthly portfolio size time series. """ return self.wealth_index.iloc[:, 0] @property def number_of_securities(self) -> pd.DataFrame: """ Calculate the number of securities monthly time series for the portfolio assets. Number of securities is changing over time as the dividends are reinvested. Portfolio rebalancing also affects the number of securities. Initial number of securities depends on the portfolio size in base currency (1000 units). Returns ------- DataFrame Number of securities monthly time series for the portfolio assets. """ return self.weights_ts.mul(self.wealth_index.iloc[:, 0], axis=0).div(self.assets_close_monthly, axis=0) @property def dividends(self) -> pd.Series: """ Calculate portfolio dividends monthly time series. Portfolio dividends are obtained by summing asset dividends adjusted to the base currency. Dividends size depends on the portfolio value and number of securities. Returns ------- Series Portfolio dividends monthly time series. """ s = (self._get_assets_dividends() * self.number_of_securities).sum(axis=1) s.rename(self.symbol, inplace=True) return s @property def dividend_yield(self) -> pd.Series: """ Calculate last twelve months (LTM) dividend yield time series for the portfolio. Time series has monthly values. Portfolio dividend yield is a weighted sum of the assets dividend yields (adjusted to the portfolio base currency). For an asset LTM dividend yield is the sum trailing twelve months of common dividends per share divided by the current price per share. Returns ------- Series Portfolio LTM dividend yield monthly time series. Examples -------- >>> pf = ok.Portfolio(['T.US', 'XOM.US'], weights=[0.8, 0.2], first_date='2010-01', last_date='2021-01', ccy='USD') >>> pf.dividend_yield 2010-01 0.013249 2010-02 0.014835 2010-03 0.014257 ... 2020-11 0.076132 2020-12 0.074743 2021-01 0.073643 Freq: M, Name: portfolio_8836.PF, Length: 133, dtype: float64 """ df = self.assets_dividend_yield @ self.weights_ts.T div_yield_series = pd.Series(np.diag(df), index=df.index) div_yield_series.rename(self.symbol, inplace=True) return div_yield_series @property def real_mean_return(self) -> float: """ Calculate annualized real mean return (arithmetic mean) for the rate of return time series. Real rate of return is adjusted for inflation. Real return is defined if there is an `inflation=True` option in Portfolio. Returns ------- float Annualized value of the mean for the real rate of return time series. Examples -------- >>> pf = ok.Portfolio(['MSFT.US', 'AAPL.US']) >>> pf.real_mean_return 0.3088967455111862 """ if not hasattr(self, "inflation"): raise ValueError( "Real Return is not defined. Set inflation=True to calculate." ) infl_mean = Float.annualize_return(self.inflation_ts.mean()) ror_mean = Float.annualize_return(self.ror.mean()) return (1.0 + ror_mean) / (1.0 + infl_mean) - 1.0 @property def risk_monthly(self) -> float: """ Calculate monthly risk (standard deviation of return) for Portfolio. Monthly risk of portfolio is a standard deviation of the rate of return time series. Standard deviation (sigma σ) is normalized by N-1. Returns ------- float Standard deviation value of the monthly return time series. See Also -------- risk_annual : Calculate annualized risks. semideviation_monthly : Calculate semideviation monthly values. semideviation_annual : Calculate semideviation annualized values. get_var_historic : Calculate historic Value at Risk (VaR). get_cvar_historic : Calculate historic Conditional Value at Risk (CVaR). drawdowns : Calculate drawdowns. Examples -------- >>> pf = ok.Portfolio(['MSFT.US', 'AAPL.US']) >>> pf.risk_monthly 0.09415483565833212 """ return self.ror.std() @property def risk_annual(self) -> float: """ Calculate annualized risk (return standard deviation) for portfolio. Returns ------- float Annualized standard deviation value of the monthly return time series. Examples -------- >>> pf = ok.Portfolio(['MSFT.US', 'AAPL.US']) >>> pf.risk_annual 0.4374591902169046 """ return Float.annualize_risk(self.risk_monthly, self.mean_return_monthly) @property def semideviation_monthly(self) -> float: """ Calculate semi-deviation monthly value for portfolio rate of return time series. Semi-deviation (Downside risk) is the risk of the return being below the expected return. Returns ------- float Semi-deviation monthly value for portfolio rate of return time series. Examples -------- >>> pf = ok.Portfolio(['MSFT.US', 'AAPL.US']) >>> pf.semideviation_monthly 0.05601433676604449 """ return Frame.get_semideviation(self.ror) @property def semideviation_annual(self) -> float: """ Return semideviation annualized value for portfolio rate of return time series. Semi-deviation (Downside risk) is the risk of the return being below the expected return. Returns ------- float Annualized semi-deviation monthly value for portfolio rate of return time series. Examples -------- >>> pf = ok.Portfolio(['MSFT.US', 'AAPL.US']) >>> pf.semideviation_annual 0.1940393544621248 """ return Frame.get_semideviation(self.ror) * 12 ** 0.5 def get_var_historic(self, time_frame: int = 12, level=1) -> float: """ Calculate historic Value at Risk (VaR) for the portfolio. The VaR calculates the potential loss of an investment with a given time frame and confidence level. Loss is a positive number (expressed in cumulative return). If VaR is negative there are expected gains at this confidence level. Parameters ---------- time_frame : int, default 12 Time frame for VAR. Default is 12 months. level : int, default 1 Confidence level in percents. Default value is 1%. Returns ------- Float Historic Value at Risk (VaR) value for the portfolio. Examples -------- >>> x = ok.Portfolio(['SP500TR.INDX', 'SP500BDT.INDX'], last_date='2021-01') >>> x.get_var_historic(time_frame=12, level=1) 0.24030006476701732 """ # remove inflation column from rolling return df = self.get_rolling_cumulative_return(window=time_frame).loc[:, [self.symbol]] return Frame.get_var_historic(df, level).iloc[0] def get_cvar_historic(self, time_frame: int = 12, level=1) -> float: """ Calculate historic Conditional Value at Risk (CVAR, expected shortfall) for the portfolio. CVaR is the average loss over a specified time period of unlikely scenarios beyond the confidence level. Loss is a positive number (expressed in cumulative return). If CVaR is negative there are expected gains at this confidence level. Parameters ---------- time_frame : int, default 12 (12 months) level : int, default 1 (1% quantile) Returns ------- Float Historic Conditional Value at Risk (CVAR, expected shortfall) value for the portfolio. Examples -------- >>> x = ok.Portfolio(['USDEUR.FX', 'BTC-USD.CC'], last_date='2021-01') >>> x.get_cvar_historic(time_frame=2, level=1) 0.3566909250442616 """ # remove inflation column form rolling return df = self.get_rolling_cumulative_return(window=time_frame).loc[:, [self.symbol]] return Frame.get_cvar_historic(df, level).iloc[0] @property def drawdowns(self) -> pd.Series: """ Calculate drawdowns time series for the portfolio. The drawdown is the percent decline from a previous peak in wealth index. Returns ------- Series Drawdowns time series for the portfolio """ return Frame.get_drawdowns(self.ror) @property def recovery_period(self) -> int: """ Calculate the longest recovery period for the portfolio assets value. The recovery period (drawdown duration) is the number of months to reach the value of the last maximum. Returns ------- Integer Max recovery period for the protfolio assets value in months. Notes ----- If the last maximum value is not recovered NaN is returned. The largest recovery period does not necessary correspond to the max drawdown. Examples -------- >>> pf = ok.Portfolio(['SPY.US', 'AGG.US'], weights=[0.5, 0.5]) >>> pf.recovery_period 35 See Also -------- drawdowns : Calculate drawdowns time series. """ if hasattr(self, "inflation"): w_index = self.wealth_index.drop(columns=[self.inflation]) else: w_index = self.wealth_index if isinstance(w_index, pd.DataFrame): # time series should be a Series to use groupby w_index = w_index.squeeze() cummax = w_index.cummax() s = cummax.pct_change()[1:] s1 = s.where(s == 0).notnull().astype(int) s1_1 = s.where(s == 0).isnull().astype(int).cumsum() s2 = s1.groupby(s1_1).cumsum() # Max recovery period date should not be in the border (means it's not recovered) max_period = s2.max() if s2.idxmax().to_timestamp() != self.last_date else np.NAN return max_period def describe(self, years: Tuple[int] = (1, 5, 10)) -> pd.DataFrame: """ Generate descriptive statistics for the portfolio. Statistics includes: - YTD (Year To date) compound return - CAGR for a given list of periods - LTM Dividend yield - last twelve months dividend yield Risk metrics (full available period): - risk (standard deviation) - CVAR - max drawdowns (and dates) Parameters ---------- years : tuple of (int,), default (1, 5, 10) List of periods for CAGR. Returns ------- DataFrame Table of descriptive statistics for the portfolio. See Also -------- get_cumulative_return : Calculate cumulative return. get_cagr : Calculate assets Compound Annual Growth Rate (CAGR). dividend_yield : Calculate dividend yield (LTM). risk_annual : Return annualized risks (standard deviation). get_cvar : Calculate historic Conditional Value at Risk (CVAR, expected shortfall). drawdowns : Calculate drawdowns. """ description = pd.DataFrame() dt0 = self.last_date df = self._add_inflation() # YTD return ytd_return = self.get_cumulative_return(period="YTD") row = ytd_return.to_dict() row.update(period="YTD", property="compound return") description = description.append(row, ignore_index=True) # CAGR for a list of periods if self.pl.years >= 1: for i in years: dt = Date.subtract_years(dt0, i) if dt >= self.first_date: row = self.get_cagr(period=i).to_dict() else: row = ( {x: None for x in df.columns} if hasattr(self, "inflation") else {self.symbol: None} ) row.update(period=f"{i} years", property="CAGR") description = description.append(row, ignore_index=True) # CAGR for full period row = self.get_cagr(period=None).to_dict() row.update(period=self._pl_txt, property="CAGR",) description = description.append(row, ignore_index=True) # Dividend Yield value = self.dividend_yield.iloc[-1] row = {self.symbol: value} row.update(period="LTM", property=f"Dividend yield",) description = description.append(row, ignore_index=True) # risk (standard deviation) row = {self.symbol: self.risk_annual} row.update( period=self._pl_txt, property="Risk" ) description = description.append(row, ignore_index=True) # CVAR if self.pl.years >= 1: row = {self.symbol: self.get_cvar_historic()} row.update( period=self._pl_txt, property="CVAR", ) description = description.append(row, ignore_index=True) # max drawdowns row = {self.symbol: self.drawdowns.min()} row.update( period=self._pl_txt, property="Max drawdown", ) description = description.append(row, ignore_index=True) # max drawdowns dates row = {self.symbol: self.drawdowns.idxmin()} row.update( period=self._pl_txt, property="Max drawdown date", ) description = description.append(row, ignore_index=True) if hasattr(self, "inflation"): description.rename(columns={self.inflation: "inflation"}, inplace=True) description = Frame.change_columns_order( description, ["property", "period", self.symbol] ) return description @property def table(self) -> pd.DataFrame: """ Return security name - ticker - weight table. Returns ------- DataFrame Security name - ticker - weight table. Examples -------- >>> pf = ok.Portfolio(['MSFT.US', 'AAPL.US']) >>> pf.table asset name ticker weights 0 Microsoft Corporation MSFT.US 0.5 1 Apple Inc AAPL.US 0.5 """ x = pd.DataFrame( data={ "asset name": list(self.names.values()), "ticker": list(self.names.keys()), } ) x["weights"] = self.weights return x # Forecasting def _test_forecast_period(self, years): max_period_years = round(self.period_length / 2) if max_period_years < 1: raise ValueError( f"Time series does not have enough history to forecast. " f"Period length is {self.period_length:.2f} years. At least 2 years are required." ) if not isinstance(years, int) or years == 0: raise ValueError("years must be an integer number (not equal to zero).") if years > max_period_years: raise ValueError( f"Forecast period {years} years is not credible. " f"It should not exceed 1/2 of portfolio history period length {self.period_length / 2} years" ) def percentile_inverse( self, distr: str = "norm", years: int = 1, score: float = 0, n: Optional[int] = None, ) -> float: """ Compute the percentile rank of a score (CAGR value) in a given time frame. If percentile_inverse of, for example, 0% (CAGR value) is equal to 8% for 1 year time frame it means that 8% of the CAGR values in the distribution are negative in 1 year periods. Or in other words the probability of getting negative result after 1 year of investments is 8%. Args: distr: norm, lognorm, hist - distribution type (normal or lognormal) or hist for CAGR array from history years: period length when CAGR is calculated score: score that is compared to the elements in CAGR array. n: number of random time series (for 'norm' or 'lognorm' only) Returns: Percentile-position of score (0-100) relative to distr. """ if distr == "hist": cagr_distr = self.get_rolling_cagr(years) elif distr in ["norm", "lognorm"]: if not n: n = 1000 cagr_distr = self._get_monte_carlo_cagr_distribution( distr=distr, years=years, n=n ) else: raise ValueError('distr should be one of "norm", "lognorm", "hist".') return scipy.stats.percentileofscore(cagr_distr, score, kind="rank") def percentile_from_history( self, years: int, percentiles: List[int] = [10, 50, 90] ) -> pd.DataFrame: """ Calculate given percentiles for portfolio CAGR (annualized rolling returns) distribution from the historical data. Each percentile is calculated for a period range from 1 year to 'years'. years - max window size for rolling CAGR (limited with half history of period length). percentiles - list of percentiles to be calculated """ self._test_forecast_period(years) period_range = range(1, years + 1) returns_dict = {} for percentile in percentiles: percentile_returns_list = [ self.get_rolling_cagr(years * 12).loc[:, self.symbol].quantile(percentile / 100) for years in period_range ] returns_dict.update({percentile: percentile_returns_list}) df = pd.DataFrame(returns_dict, index=list(period_range)) df.index.rename("years", inplace=True) return df def forecast_wealth_history( self, years: int = 1, percentiles: List[int] = [10, 50, 90] ) -> pd.DataFrame: """ Compute accumulated wealth for each CAGR derived by 'percentile_from_history' method. CAGRs are taken from the historical data. Initial portfolio wealth is adjusted to the last known historical value (from wealth_index). It is useful for a chart with historical wealth index and forecasted values. Args: years: percentiles: Returns: Dataframe of percentiles for period range from 1 to 'years' """ first_value = self.wealth_index[self.symbol].values[-1] percentile_returns = self.percentile_from_history( years=years, percentiles=percentiles ) return first_value * (percentile_returns + 1.0).pow( percentile_returns.index.values, axis=0 ) def _forecast_preparation(self, years: int): self._test_forecast_period(years) period_months = years * _MONTHS_PER_YEAR # make periods index where the shape is max_period start_period = self.last_date.to_period("M") end_period = self.last_date.to_period("M") + period_months - 1 ts_index = pd.period_range(start_period, end_period, freq="M") return period_months, ts_index def forecast_monte_carlo_returns( self, distr: str = "norm", years: int = 1, n: int = 100 ) -> pd.DataFrame: """ Generates N random monthly returns time series with normal or lognormal distributions. Forecast period should not exceed 1/2 of portfolio history period length. """ period_months, ts_index = self._forecast_preparation(years) # random returns if distr == "norm": random_returns = np.random.normal( self.mean_return_monthly, self.risk_monthly, (period_months, n) ) elif distr == "lognorm": std, loc, scale = scipy.stats.lognorm.fit(self.ror) random_returns = scipy.stats.lognorm(std, loc=loc, scale=scale).rvs( size=[period_months, n] ) else: raise ValueError('distr should be "norm" (default) or "lognorm".') return
pd.DataFrame(data=random_returns, index=ts_index)
pandas.DataFrame
import time import numpy as np import pandas as pd from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score from performance_anomaly_detection.training import utils def prepare_data_for_training_last_n_fold(X_train, X_test, y_train, y_test, original_y, original_y_test, exog_train=None, exog_test=None): if exog_train is not None and exog_test is not None: return (X_train, X_test), (y_train, y_test), (exog_train, exog_test), (original_y, original_y_test) return (X_train, X_test), (y_train, y_test), (original_y, original_y_test) def train_scikit(data, columns, model, scalers, test_steps=1, save_results=False, results_output="out/", label_data=None): start = time.time() global_scores, test_scores, train_rsq, test_rsq, predictions, real_ys = [], [], [], [], [], [] scaler = None for ((X_train, X_test), (y_train, y_test), (original_y, original_y_test)), col, i in zip(data, columns, range(0, len(columns))): if scalers is not None: scaler = scalers[i] print("Training for ", col) step = int(len(X_test) / test_steps) y_hat_test = [] for s in range(test_steps): X_train_s = get_next_step_data(X_train, s, step) y_train_s = get_next_step_data(y_train, s, step) X_test_s = X_test[s * step: (s + 1) * step] if s < (test_steps - 1) else X_test[s * step:] model.fit(X_train_s, y_train_s) end = time.time() print("Execution time ", end - start) if s == 0: y_hat_train = model.predict(X_train_s) test_predictions = model.predict(X_test_s) y_hat_test.append(np.array(test_predictions).reshape(len(test_predictions), 1)) y_hat_test = np.concatenate(y_hat_test) y_hat = np.concatenate((np.array(y_hat_train).reshape(len(y_hat_train), 1), y_hat_test)) if scaler is not None: y_hat = scaler.inverse_transform(y_hat) y_hat_test = scaler.inverse_transform(y_hat_test) global_scores.append(mean_squared_error(original_y, y_hat)) test_scores.append(mean_squared_error(original_y_test, y_hat_test)) train_rsq.append(r2_score(original_y, y_hat)) test_rsq.append(r2_score(original_y_test, y_hat_test)) if save_results: predictions.append(pd.Series(y_hat, name=col)) real_ys.append(pd.Series(original_y, name=col)) #utils.plot_results(y=original_y, y_hat=y_hat) rmse_scores = utils.calculate_rmse(global_scores, test_scores) r2_scores = utils.calculate_r2(train_rsq, test_rsq) print(rmse_scores) print(r2_scores) if save_results: utils.save_results(predictions=predictions, real_ys=real_ys, results_output=results_output, label_data=label_data) return rmse_scores, r2_scores def train_nn(data, columns, callbacks, dev_size, scalers, optimizer, batch_size, model, epochs=5, test_steps=1, verbose=False, loss="mean_squared_error", save_results=False, results_output="out/", use_exog=True, label_data=None): start = time.time() scaler = None global_scores, test_scores, train_rsq, test_rsq, predictions, real_ys = [], [], [], [], [], [] model.compile(loss=loss, optimizer=optimizer) for values_to_unpack, col, i in zip(data, columns, range(0, len(columns))): if scalers is not None: scaler = scalers[i] if use_exog: (X_train, X_test), (y_train, y_test), (exog_train, exog_test), ( original_y, original_y_test) = values_to_unpack else: (X_train, X_test), (y_train, y_test), (original_y, original_y_test) = values_to_unpack print("Training for ", col) step = int(len(X_test) / test_steps) y_hat_test = [] for s in range(test_steps): X_train_s = get_next_step_data(X_train, s, step) y_train_s = get_next_step_data(y_train, s, step) X_test_s = X_test[s * step: (s + 1) * step] if s < (test_steps - 1) else X_test[s * step:] if use_exog: exog_train_s = get_next_step_data(exog_train, s, step) exog_test_s = exog_test[s * step: (s + 1) * step] if s < (test_steps - 1) else exog_test[s * step:] train_inputs = [X_train_s, exog_train_s] if use_exog else [X_train_s] test_inputs = [X_test_s, exog_test_s] if use_exog else [X_test_s] history = model.fit(train_inputs, y_train_s, validation_split=dev_size, epochs=epochs, batch_size=batch_size, verbose=verbose, callbacks=callbacks) end = time.time() print("Execution time ", end - start) if s == 0: y_hat_train = model.predict(train_inputs) test_predictions = model.predict(test_inputs) y_hat_test.append(np.array(test_predictions).reshape(len(test_predictions), 1)) y_hat_test = np.concatenate(y_hat_test) y_hat = np.concatenate((np.array(y_hat_train).reshape(len(y_hat_train), 1), y_hat_test), axis=0) if scaler is not None: y_hat = scaler.inverse_transform(y_hat) if scaler is not None: y_hat_test = scaler.inverse_transform(y_hat_test) global_scores.append(mean_squared_error(original_y, y_hat)) test_scores.append(mean_squared_error(original_y_test, y_hat_test)) train_rsq.append(r2_score(original_y, y_hat)) test_rsq.append(r2_score(original_y_test, y_hat_test)) if save_results: predictions.append(pd.Series(y_hat, name=col)) real_ys.append(
pd.Series(original_y, name=col)
pandas.Series
# coding: utf-8 # # Digit Recognition # # ## 1. Introduction # # In this analysis, the handwritten digits are identified using support vector machines and radial basis functions. # # ### 1.1 Libraries # # The essential libraries used here are numpy, matplotlib, and scikit-learn. For convenience, pandas and IPython.display are used for displaying tables, and tqdm is used for progress bars. # In[1]: import numpy as np import matplotlib.pyplot as plt import pandas as pd from itertools import product from sklearn.svm import SVC from sklearn.model_selection import cross_val_score, cross_val_predict, ShuffleSplit, KFold from tqdm import tqdm from IPython.display import display, Math, Latex, HTML get_ipython().magic('matplotlib inline') np.set_printoptions(precision=4,threshold=200) tqdm_bar_fmt='{percentage:3.0f}%|{bar}|' # ### 1.2 Dataset # # The US Postal Service Zip Code dataset is used, which contains handwritten digits zero to nine. The data has been preprocessed, whereby features of intensity and symmetry are extracted. # In[2]: def download_data(): train_url = "http://www.amlbook.com/data/zip/features.train" test_url = "http://www.amlbook.com/data/zip/features.test" column_names = ['digit','intensity','symmetry'] train = pd.read_table(train_url,names=column_names,header=None,delim_whitespace=True) test = pd.read_table(test_url,names=column_names,header=None,delim_whitespace=True) train.digit = train.digit.astype(int) test.digit = test.digit.astype(int) return train,test def process_data(train,test): X_train = train.iloc[:,1:].values y_train = train.iloc[:,0].values X_test = test.iloc[:,1:].values y_test = test.iloc[:,0].values return X_train,y_train,X_test,y_test # In[3]: train,test = download_data() X_train,y_train,X_test,y_test = process_data(train,test) # ## 2. Support Vector Machines for Digit Recognition # ### 2.1 Polynomial Kernels # # We wish to implement the following polynomial kernel for our support vector machine: # # $$K\left(\mathbf{x_n,x_m}\right) = \left(1+\mathbf{x_n^Tx_m}\right)^Q$$ # # This is implemented in scikit-learn in the subroutine [sklearn.svm.SVC](http://scikit-learn.org/stable/modules/svm.html), where the kernel function takes the form: # # $$\left(\gamma \langle x,x' \rangle + r\right)^d$$ # # where $d$ is specified by the keyword `degree`, and $r$ by `coef0`. # ### 2.1.1 One vs Rest Classification # In the following subroutine, the data is split into "one-vs-rest", where $y=1$ corresponds to a match to the digit, and $y=0$ corresponds to all the other digits. The training step is implemented in the call to `clf.fit()`. # In[4]: def get_misclassification_ovr(X_train,y_train,X_test,y_test,digit, Q=2,r=1.0,C=0.01,kernel='poly',verbose=False): clf = SVC(C=C, kernel=kernel, degree=Q, coef0 = r, gamma = 1.0, decision_function_shape='ovr', verbose=False) y_in = (y_train==digit).astype(int) y_out = (y_test==digit).astype(int) model = clf.fit(X_train,y_in) # print(model) E_in = np.mean(y_in != clf.predict(X_train)) E_out = np.mean(y_out != clf.predict(X_test)) n_support_vectors = len(clf.support_vectors_) if verbose is True: print() print("Q = {}, C = {}: Support vectors: {}".format(Q, C, n_support_vectors)) print("{} vs all: E_in = {}".format(digit,E_in)) print("{} vs all: E_out = {}".format(digit,E_out)) return E_in,E_out,n_support_vectors # The following code trains on the data for the cases: 0 vs all, 1 vs all, ..., 9 vs all. For each of the digits, 0 to 9, the errors $E_{in}, E_{out}$ and the number of support vectors are recorded and stored in a pandas dataframe. # In[5]: results = pd.DataFrame() i=0 for digit in tqdm(range(10),bar_format=tqdm_bar_fmt): ei, eo, n = get_misclassification_ovr(X_train,y_train,X_test,y_test,digit) df = pd.DataFrame({'digit': digit, 'E_in': ei, 'E_out': eo, 'n': n}, index=[i]) results = results.append(df) i += 1 # In[6]: display(HTML(results[['digit','E_in','E_out','n']].iloc[::2].to_html(index=False))) # In[7]: display(HTML(results[['digit','E_in','E_out','n']].iloc[1::2].to_html(index=False))) # In[8]: from tabulate import tabulate print(tabulate(results, headers='keys', tablefmt='simple')) # ### 2.1.2 One vs One Classification # # One vs one classification makes better use of the data, but is more computatationally expensive. The following subroutine splits the data so that $y=0$ for the first digit, and $y=1$ for the second digit. The rows of data corresponding to all other digits are removed. # In[9]: def get_misclassification_ovo(X_train,y_train,X_test,y_test,digit1,digit2, Q=2,r=1.0,C=0.01,kernel='poly'): clf = SVC(C=C, kernel=kernel, degree=Q, coef0 = r, gamma = 1.0, decision_function_shape='ovo', verbose=False) select_in = np.logical_or(y_train==digit1,y_train==digit2) y_in = (y_train[select_in]==digit1).astype(int) X_in = X_train[select_in] select_out = np.logical_or(y_test==digit1,y_test==digit2) y_out = (y_test[select_out]==digit1).astype(int) X_out = X_test[select_out] model = clf.fit(X_in,y_in) E_in = np.mean(y_in != clf.predict(X_in)) E_out = np.mean(y_out != clf.predict(X_out)) n_support_vectors = len(clf.support_vectors_) return E_in,E_out,n_support_vectors # In the following code, a 1-vs-5 classifier is tested for $Q=2,5$ and $C=0.001,0.01,0.1,1$. # In[10]: C_arr = [0.0001, 0.001, 0.01, 1] Q_arr = [2, 5] CQ_arr = list(product(C_arr,Q_arr)) results = pd.DataFrame() i=0 for C, Q in tqdm(CQ_arr,bar_format=tqdm_bar_fmt): ei, eo, n = get_misclassification_ovo(X_train,y_train,X_test,y_test, digit1=1,digit2=5,Q=Q,r=1.0,C=C) df =
pd.DataFrame({'C': C, 'Q': Q, 'E_in': ei, 'E_out': eo, 'n': n}, index=[i])
pandas.DataFrame
# coding: utf-8 import pymysql import numpy as np import pandas as pd import csv import xgboost as xgb from numpy import loadtxt from xgboost import XGBClassifier from xgboost import plot_importance from xgboost import plot_tree # 필요한 다른 python 파일 import feature ###################### DB connect db = pymysql.connect(host="", port=3306, user="", passwd="",db="") ### train_set - 뼈대 def make_train_set(): SQL = "SELECT order_id, user_id, order_dow, order_hour_of_day FROM orders" orders_df = pd.read_sql(SQL, db) SQL = "SELECT order_id FROM order_products__train" train_df = pd.read_sql(SQL, db) print("make train set - basic start") # ------------------ train id에 맞는 유저를 찾은 뒤 그 유저가 최근에 샀던 상품 확인 # order_id 중복 제거 >> 갯수 세는 것 같지만 중복 제거 train_df= train_df.groupby("order_id").aggregate("count").reset_index() # order_id에 맞는 user_id를 찾아서 merge train_df = pd.merge(train_df, orders_df, how="inner", on="order_id") # prior과 merge # 유저와 order_id 에 맞는 상품 목록 train_df = pd.merge(train_df, feature.latest_order(), how="inner", on="user_id") # product table에서 id, 소분류, 대분류만 가져와서 merge # products_df = pd.read_csv( "products.csv", usecols=["product_id", "aisle_id", "department_id"]) SQL = "SELECT product_id, aisle_id, department_id FROM products" products_df = pd.read_sql(SQL, db) train_df = pd.merge(train_df, products_df, how="inner", on="product_id") del products_df, orders_df, SQL print("make train set - basic finish") return train_df ''' 새로 만든 feature를 붙이는 부분 만들어진 것은 많지만 제일 정확성이 높은 것만 활용 ''' def train_result(): train_x = make_train_set() train_x = pd.merge(train_x, feature.order_ratio_bychance(), how="left", on = ["user_id, product_id"]) return train_x ### train answer : train_y def make_answer(train_x): SQL = "SELECT order_id, user_id FROM orders" orders_df = pd.read_sql(SQL, db) SQL = "SELECT order_id, product_id, reordered FROM order_products__train" train_df = pd.read_sql(SQL, db) print ("train_y start") answer = pd.merge(train_df, orders_df, how="inner", on="order_id") del orders_df, train_df #order_id 제거 answer = answer[["user_id", "product_id", "reordered"]] # train과 그 외 정보를 merge >>>> train_result() 를 train_x로 파라미터 받아올까? train_df = pd.merge(train_x, answer, how="left", on=["user_id", "product_id"]) del answer # reordered 값이 nan 인것들은 0으로 변경 train_df["reordered"].fillna(0, inplace=True) train_y = train_df.reordered.values print("train_y finish") return train_y ### TEST BASIC - test 뼈대 def make_test_set(): SQL = "SELECT order_id FROM submission" test_df =
pd.read_sql(SQL, db)
pandas.read_sql
#!/usr/bin/env python import numpy as np import os import pandas as pd import sys from glob import glob from natsort import natsorted from scipy.signal import savgol_filter from scipy.special import gamma def tripower_volatility(x): """ Realized tripower volatility (e.g. Barndorff-Nielsen, Shephard, and Winkel (2006)) """ x = pd.Series(x) xi = 0.5 * (gamma(5 / 6) / gamma(1 / 2)) ** -3 z = (x.abs() ** (2 / 3) * x.shift(1).abs() ** (2 / 3) * x.shift(-1).abs() ** (2 / 3)).bfill().ffill() return xi * z.sum() def shortest_half(x): """ Shortest-half scale estimator (Rousseeuw and Leroy, 1998) """ xs = np.sort(x) l = x.size h = int(np.floor(l / 2) + 1) if l % 2 == 0: sh = 0.7413 * np.min(xs[h - 1:] - xs[:h - 1]) else: sh = 0.7413 * np.min(xs[h - 1:] - xs[:h]) return sh def time_to_ssm(x): """ Transforms a datetime index into the numerical date (YYYMMDD) and the seconds since midnight. """ x = pd.DataFrame(x) date = x.index.map(lambda d: d.year * 10000 + d.month * 100 + d.day).values ssm = x.index.map(lambda t: t.hour * 3600 + t.minute * 60 + t.second + t.microsecond / 1e6).values x.insert(0, "Date", date) x.insert(1, "SSM", ssm) x.reset_index(drop=True) return x def resample_prices(intensity, data, n_trades): T = intensity.size # Trading seconds per day eps = 0.000001 if T == 86400 else 0 # Ensure that the days do not overlap if intensity.isnull().any(): intensity.interpolate(method="pchip", inplace=True, limit_direction="both", limit=T) intensity[intensity < 0] = 0 # interpolated values could be negative Q = intensity.cumsum() / intensity.sum() * T Q_inv = pd.Series(np.concatenate((np.array([0]), np.interp(np.arange(1, T), xp=Q.values, fp=Q.index), np.array([T-eps]))), index=range(T+1)) idx = data.index[0] + pd.to_timedelta(Q_inv, unit="s") reindexed_data = data.reindex(idx, method="ffill") resampled_data = reindexed_data.iloc[np.linspace(0, reindexed_data.size - 1, num=n_trades).round()] return Q, resampled_data def process_data(asset, avg_dur, path): # region Set some variables T = 86400 if asset in ["EURGBP", "EURUSD"] else 23400 n_trades = int(np.ceil(T / avg_dur)) + 1 file_list = natsorted(glob(path + asset + "/" + "h5" + "/**")) dt = pd.to_datetime([os.path.basename(f).replace(".h5", "") for f in file_list]) total_trades_per_second = pd.Series(0, index=range(1, T + 1)) # Empty pd.Series for the resampled prices cts = pd.Series() tts =
pd.Series()
pandas.Series
# -*- coding: utf-8 -*- """ This module is EXPERIMENTAL, that means that tests are missing. The reason is that the coastdat2 dataset is deprecated and will be replaced by the OpenFred dataset from Helmholtz-Zentrum Geesthacht. It should work though. This module is designed for the use with the coastdat2 weather data set of the Helmholtz-Zentrum Geesthacht. A description of the coastdat2 data set can be found here: https://www.earth-syst-sci-data.net/6/147/2014/ SPDX-FileCopyrightText: 2016-2019 <NAME> <<EMAIL>> SPDX-License-Identifier: MIT """ __copyright__ = "<NAME> <<EMAIL>>" __license__ = "MIT" # Python libraries import os import datetime import logging from collections import namedtuple import calendar # External libraries import requests import pandas as pd import pvlib from shapely.geometry import Point from windpowerlib.wind_turbine import WindTurbine # Internal modules from reegis import tools from reegis import feedin from reegis import config as cfg from reegis import powerplants as powerplants from reegis import geometries from reegis import bmwi def download_coastdat_data(filename=None, year=None, url=None, test_only=False, overwrite=True): """ Download coastdat data set from internet source. Parameters ---------- filename : str Full path with the filename, where the downloaded file will be stored. year : int or None Year of the weather data set. If a url is passed this value will be ignored because it is used to create the default url. url : str or None Own url can be used if the default url does not work an one found an alternative valid url. test_only : bool If True the the url is tested but the file will not be downloaded (default: False). overwrite : bool If True the file will be downloaded even if it already exist. (default: True) Returns ------- str or None : If the url is valid the filename is returned otherwise None. Examples -------- >>> download_coastdat_data(year=2014, test_only=True) 'coastDat2_de_2014.h5' >>> print(download_coastdat_data(url='https://osf.io/url', test_only=True)) None >>> download_coastdat_data(filename='w14.hd5', year=2014) # doctest: +SKIP """ if url is None: url_ids = cfg.get_dict("coastdat_url_id") url_id = url_ids.get(str(year), None) if url_id is not None: url = cfg.get("coastdat", "basic_url").format(url_id=url_id) if url is not None and not test_only: response = requests.get(url, stream=True) if response.status_code == 200: msg = "Downloading the coastdat2 file of {0} from {1} ..." logging.info(msg.format(year, url)) if filename is None: headers = response.headers["Content-Disposition"] filename = ( headers.split("; ")[1].split("=")[1].replace('"', "") ) tools.download_file(filename, url, overwrite=overwrite) return filename else: raise ValueError("URL not valid: {0}".format(url)) elif url is not None and test_only: response = requests.get(url, stream=True) if response.status_code == 200: headers = response.headers["Content-Disposition"] filename = headers.split("; ")[1].split("=")[1].replace('"', "") else: filename = None return filename else: raise ValueError("No URL found for {0}".format(year)) def fetch_id_by_coordinates(latitude, longitude): """ Get nearest weather data set to a given location. Parameters ---------- latitude : float longitude : float Returns ------- int : coastdat id Examples -------- >>> fetch_id_by_coordinates(53.655119, 11.181475) 1132101 """ coastdat_polygons = geometries.load( cfg.get("paths", "geometry"), cfg.get("coastdat", "coastdatgrid_polygon"), ) location = Point(longitude, latitude) cid = coastdat_polygons[coastdat_polygons.contains(location)].index if len(cid) == 0: msg = "No id found for latitude {0} and longitude {1}." logging.warning(msg.format(latitude, longitude)) return None elif len(cid) == 1: return cid[0] def fetch_data_coordinates_by_id(coastdat_id): """ Returns the coordinates of the weather data set. Parameters ---------- coastdat_id : int or str ID of the coastdat weather data set Returns ------- namedtuple : Fields are latitude and longitude Examples -------- >>> location=fetch_data_coordinates_by_id(1132101) >>> round(location.latitude, 3) 53.692 >>> round(location.longitude, 3) 11.351 """ coord = namedtuple("weather_location", "latitude, longitude") coastdat_polygons = geometries.load( cfg.get("paths", "geometry"), cfg.get("coastdat", "coastdatgrid_polygon"), ) c = coastdat_polygons.loc[int(coastdat_id)].geometry.centroid return coord(latitude=c.y, longitude=c.x) def fetch_coastdat_weather(year, coastdat_id): """ Fetch weather one coastdat weather data set. Parameters ---------- year : int Year of the weather data set coastdat_id : numeric ID of the coastdat data set. Returns ------- pd.DataFrame : Weather data set. Examples -------- >>> coastdat_id=fetch_id_by_coordinates(53.655119, 11.181475) >>> fetch_coastdat_weather(2014, coastdat_id)['v_wind'].mean().round(2) 4.39 """ weather_file_name = os.path.join( cfg.get("paths", "coastdat"), cfg.get("coastdat", "file_pattern").format(year=year), ) if not os.path.isfile(weather_file_name): download_coastdat_data(filename=weather_file_name, year=year) key = "/A{0}".format(int(coastdat_id)) return pd.DataFrame(pd.read_hdf(weather_file_name, key)) def adapt_coastdat_weather_to_pvlib(weather, loc): """ Adapt the coastdat weather data sets to the needs of the pvlib. Parameters ---------- weather : pandas.DataFrame Coastdat2 weather data set. loc : pvlib.location.Location The coordinates of the weather data point. Returns ------- pandas.DataFrame : Adapted weather data set. Examples -------- >>> cd_id=1132101 >>> cd_weather=fetch_coastdat_weather(2014, cd_id) >>> c=fetch_data_coordinates_by_id(cd_id) >>> location=pvlib.location.Location(**getattr(c, '_asdict')()) >>> pv_weather=adapt_coastdat_weather_to_pvlib(cd_weather, location) >>> 'ghi' in cd_weather.columns False >>> 'ghi' in pv_weather.columns True """ w = pd.DataFrame(weather.copy()) w["temp_air"] = w.temp_air - 273.15 w["ghi"] = w.dirhi + w.dhi clearskydni = loc.get_clearsky(w.index).dni w["dni"] = pvlib.irradiance.dni( w["ghi"], w["dhi"], pvlib.solarposition.get_solarposition( w.index, loc.latitude, loc.longitude ).zenith, clearsky_dni=clearskydni, ) return w def adapt_coastdat_weather_to_windpowerlib(weather, data_height): """ Adapt the coastdat weather data sets to the needs of the pvlib. Parameters ---------- weather : pandas.DataFrame Coastdat2 weather data set. data_height : dict The data height for each weather data column. Returns ------- pandas.DataFrame : Adapted weather data set. Examples -------- >>> cd_id=1132101 >>> cd_weather=fetch_coastdat_weather(2014, cd_id) >>> data_height=cfg.get_dict('coastdat_data_height') >>> wind_weather=adapt_coastdat_weather_to_windpowerlib( ... cd_weather, data_height) >>> cd_weather.columns.nlevels 1 >>> wind_weather.columns.nlevels 2 """ weather = pd.DataFrame(weather.copy()) cols = { "v_wind": "wind_speed", "z0": "roughness_length", "temp_air": "temperature", } weather.rename(columns=cols, inplace=True) dh = [(key, data_height[key]) for key in weather.columns] weather.columns = pd.MultiIndex.from_tuples(dh) return weather def normalised_feedin_for_each_data_set( year, wind=True, solar=True, overwrite=False ): """ Loop over all weather data sets (regions) and calculate a normalised time series for each data set with the given parameters of the power plants. This file could be more elegant and shorter but it will be rewritten soon with the new feedinlib features. year : int The year of the weather data set to use. wind : boolean Set to True if you want to create wind feed-in time series. solar : boolean Set to True if you want to create solar feed-in time series. Returns ------- """ # Get coordinates of the coastdat data points. data_points = pd.read_csv( os.path.join( cfg.get("paths", "geometry"), cfg.get("coastdat", "coastdatgrid_centroid"), ), index_col="gid", ) pv_sets = None wind_sets = None # Open coastdat-weather data hdf5 file for the given year or try to # download it if the file is not found. weather_file_name = os.path.join( cfg.get("paths", "coastdat"), cfg.get("coastdat", "file_pattern").format(year=year), ) if not os.path.isfile(weather_file_name): download_coastdat_data(year=year, filename=weather_file_name) weather = pd.HDFStore(weather_file_name, mode="r") # Fetch coastdat data heights from ini file. data_height = cfg.get_dict("coastdat_data_height") # Create basic file and path pattern for the resulting files coastdat_path = os.path.join(cfg.get("paths_pattern", "coastdat")) feedin_file = os.path.join( coastdat_path, cfg.get("feedin", "file_pattern") ) # Fetch coastdat region-keys from weather file. key_file_path = coastdat_path.format(year="", type="")[:-2] key_file = os.path.join(key_file_path, "coastdat_keys.csv") if not os.path.isfile(key_file): coastdat_keys = weather.keys() if not os.path.isdir(key_file_path): os.makedirs(key_file_path) pd.Series(coastdat_keys).to_csv(key_file) else: coastdat_keys = pd.read_csv( key_file, index_col=[0], squeeze=True, header=None ) txt_create = "Creating normalised {0} feedin time series for {1}." hdf = {"wind": {}, "solar": {}} if solar: logging.info(txt_create.format("solar", year)) # Add directory if not present os.makedirs( coastdat_path.format(year=year, type="solar"), exist_ok=True ) # Create the pv-sets defined in the solar.ini pv_sets = feedin.create_pvlib_sets() # Open a file for each main set (subsets are stored in columns) for pv_key, pv_set in pv_sets.items(): filename = feedin_file.format( type="solar", year=year, set_name=pv_key ) if not os.path.isfile(filename) or overwrite: hdf["solar"][pv_key] = pd.HDFStore(filename, mode="w") if wind: logging.info(txt_create.format("wind", year)) # Add directory if not present os.makedirs( coastdat_path.format(year=year, type="wind"), exist_ok=True ) # Create the pv-sets defined in the wind.ini wind_sets = feedin.create_windpowerlib_sets() # Open a file for each main set (subsets are stored in columns) for wind_key, wind_set in wind_sets.items(): for subset_key, subset in wind_set.items(): wind_sets[wind_key][subset_key] = WindTurbine(**subset) filename = feedin_file.format( type="wind", year=year, set_name=wind_key ) if not os.path.isfile(filename) or overwrite: hdf["wind"][wind_key] = pd.HDFStore(filename, mode="w") # Define basic variables for time logging remain = len(coastdat_keys) done = 0 start = datetime.datetime.now() # Loop over all regions for coastdat_key in coastdat_keys: # Get weather data set for one location local_weather = weather[coastdat_key] # Adapt the coastdat weather format to the needs of pvlib. # The expression "len(list(hdf['solar'].keys()))" returns the number # of open hdf5 files. If no file is open, there is nothing to do. if solar and len(list(hdf["solar"].keys())) > 0: # Get coordinates for the weather location local_point = data_points.loc[int(coastdat_key[2:])] # Create a pvlib Location object location = pvlib.location.Location( latitude=local_point["lat"], longitude=local_point["lon"] ) # Adapt weather data to the needs of the pvlib local_weather_pv = adapt_coastdat_weather_to_pvlib( local_weather, location ) # Create one DataFrame for each pv-set and store into the file for pv_key, pv_set in pv_sets.items(): if pv_key in hdf["solar"]: hdf["solar"][pv_key][coastdat_key] = feedin.feedin_pv_sets( local_weather_pv, location, pv_set ) # Create one DataFrame for each wind-set and store into the file if wind and len(list(hdf["wind"].keys())) > 0: local_weather_wind = adapt_coastdat_weather_to_windpowerlib( local_weather, data_height ) for wind_key, wind_set in wind_sets.items(): if wind_key in hdf["wind"]: hdf["wind"][wind_key][ coastdat_key ] = feedin.feedin_wind_sets(local_weather_wind, wind_set) # Start- time logging ******* remain -= 1 done += 1 if divmod(remain, 10)[1] == 0: elapsed_time = (datetime.datetime.now() - start).seconds remain_time = elapsed_time / done * remain end_time = datetime.datetime.now() + datetime.timedelta( seconds=remain_time ) msg = "Actual time: {:%H:%M}, estimated end time: {:%H:%M}, " msg += "done: {0}, remain: {1}".format(done, remain) logging.info(msg.format(datetime.datetime.now(), end_time)) # End - time logging ******** for k1 in hdf.keys(): for k2 in hdf[k1].keys(): hdf[k1][k2].close() weather.close() logging.info( "All feedin time series for {0} are stored in {1}".format( year, coastdat_path.format(year=year, type="") ) ) def store_average_weather( data_type, weather_path=None, years=None, keys=None, out_file_pattern="average_data_{data_type}.csv", ): """ Get average wind speed over all years for each weather region. This can be used to select the appropriate wind turbine for each region (strong/low wind turbines). Parameters ---------- data_type : str The data_type of the coastdat weather data: 'dhi', 'dirhi', 'pressure', 'temp_air', 'v_wind', 'z0'. keys : list or None List of coastdat keys. If None all available keys will be used. years : list or None List of one or more years to calculate the average data from. You have to make sure that the weather data files for the given years exist in the weather path. weather_path : str Path to folder that contains all needed files. If None the default path defined in the config file will be used. out_file_pattern : str or None Name of the results file with a placeholder for the data type e.g. ``average_data_{data_type}.csv``). If None no file will be written. Examples -------- >>> store_average_weather('temp_air', years=[2014, 2013]) # doctest: +SKIP >>> v=store_average_weather('v_wind', years=[2014], ... out_file_pattern=None, keys=[1132101]) >>> float(v.loc[1132101].round(2)) 4.39 """ logging.info("Calculating the average wind speed...") weather_pattern = cfg.get("coastdat", "file_pattern") if weather_path is None: weather_path = cfg.get("paths", "coastdat") # Finding existing weather files. data_files = os.listdir(weather_path) # Possible time range for coastdat data set (reegis: 1998-2014). check = True if years is None: years = range(1948, 2017) check = False used_years = [] for year in years: if weather_pattern.format(year=year) in data_files: used_years.append(year) elif check is True: msg = "File not found".format(weather_pattern.format(year=year)) raise FileNotFoundError(msg) # Loading coastdat-grid as shapely geometries. coastdat_polygons = pd.DataFrame( geometries.load( cfg.get("paths", "geometry"), cfg.get("coastdat", "coastdatgrid_polygon"), ) ) coastdat_polygons.drop("geometry", axis=1, inplace=True) # Opening all weather files weather = dict() # open hdf files for year in used_years: weather[year] = pd.HDFStore( os.path.join(weather_path, weather_pattern.format(year=year)), mode="r", ) if keys is None: keys = coastdat_polygons.index n = len(list(keys)) logging.info("Remaining: {0}".format(n)) for key in keys: data_type_avg = pd.Series() n -= 1 if n % 100 == 0: logging.info("Remaining: {0}".format(n)) hdf_id = "/A{0}".format(key) for year in used_years: ws = weather[year][hdf_id][data_type] data_type_avg = data_type_avg.append(ws, verify_integrity=True) # calculate the average wind speed for one grid item coastdat_polygons.loc[ key, "{0}_avg".format(data_type) ] = data_type_avg.mean() # Close hdf files for year in used_years: weather[year].close() if keys is not None: coastdat_polygons.dropna(inplace=True) # write results to csv file if out_file_pattern is not None: filename = out_file_pattern.format(data_type=data_type) fn = os.path.join(weather_path, filename) logging.info("Average temperature saved to {0}".format(fn)) coastdat_polygons.to_csv(fn) return coastdat_polygons def spatial_average_weather( year, geo, parameter, name, outpath=None, outfile=None ): """ Calculate the mean value of a parameter over all data sets within each region for one year. Parameters ---------- year : int Select the year you want to calculate the average temperature for. geo : geometries.Geometry object Polygons to calculate the average parameter for. outpath : str Place to store the outputfile. outfile : str Set your own name for the outputfile. parameter : str Name of the item (temperature, wind speed,... of the weather data set. name : str Name of the regions table to be used as a column name. Returns ------- str : Full file name of the created file. Example ------- >>> germany_geo=geometries.load( ... cfg.get('paths', 'geometry'), ... cfg.get('geometry', 'germany_polygon')) >>> fn=spatial_average_weather(2012, germany_geo, 'temp_air', 'deTemp', ... outpath=os.path.expanduser('~') ... )# doctest: +SKIP >>> temp=pd.read_csv(fn, index_col=[0], parse_dates=True, squeeze=True ... )# doctest: +SKIP >>> round(temp.mean() - 273.15, 2)# doctest: +SKIP 8.28 >>> os.remove(fn)# doctest: +SKIP """ logging.info( "Getting average {0} for {1} in {2} from coastdat2.".format( parameter, name, year ) ) name = name.replace(" ", "_") # Create a Geometry object for the coastdat centroids. coastdat_geo = geometries.load( cfg.get("paths", "geometry"), cfg.get("coastdat", "coastdatgrid_polygon"), ) coastdat_geo["geometry"] = coastdat_geo.centroid # Join the tables to create a list of coastdat id's for each region. coastdat_geo = geometries.spatial_join_with_buffer( coastdat_geo, geo, name=name, limit=0 ) # Fix regions with no matches (no matches if a region ist too small). fix = {} for reg in set(geo.index) - set(coastdat_geo[name].unique()): reg_point = geo.representative_point().loc[reg] coastdat_poly = geometries.load( cfg.get("paths", "geometry"), cfg.get("coastdat", "coastdatgrid_polygon"), ) fix[reg] = coastdat_poly.loc[ coastdat_poly.intersects(reg_point) ].index[0] # Open the weather file weather_file = os.path.join( cfg.get("paths", "coastdat"), cfg.get("coastdat", "file_pattern").format(year=year), ) if not os.path.isfile(weather_file): download_coastdat_data(year=year, filename=weather_file) weather = pd.HDFStore(weather_file, mode="r") # Calculate the average temperature for each region with more than one id. avg_value =
pd.DataFrame()
pandas.DataFrame
from pathlib import Path import pandas as pd NUM_TEST = 40 TEST_ID = [x for x in range(1, NUM_TEST + 1)] DATA_DIR = 'data' ANALYZE_DIR = 'analyze' STATISTICS_CSV = Path(ANALYZE_DIR).joinpath('statistics.csv') def analyze(): # read data with open('title.txt', 'r', encoding='utf-8') as f: plan_name = f.read() data =
pd.DataFrame()
pandas.DataFrame
import csv import re import string import math import warnings import pandas as pd import numpy as np import ipywidgets as wg import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import matplotlib.ticker as mtick from itertools import product from scipy.optimize import curve_fit from IPython.display import display from platemapping import plate_map as pm # define custom errors class DataError(Exception): pass class PlateSizeError(Exception): pass class DataTypeError(Exception): pass # define well plate dimensions plate_dim = {96:(8, 12), 384:(16, 24)} # define header names for platemapping module pm.header_names = {'Well ID': {'dtype':str, 'long':True, 'short_row': False, 'short_col':False}, 'Type': {'dtype':str, 'long':True, 'short_row': True, 'short_col':True}, 'Contents': {'dtype':str, 'long':True, 'short_row': True, 'short_col':True}, 'Protein Name': {'dtype':str, 'long':True, 'short_row': True, 'short_col':True}, 'Protein Concentration': {'dtype':float, 'long':True, 'short_row': True, 'short_col':True}, 'Tracer Name': {'dtype':str, 'long':True, 'short_row': True, 'short_col':True}, 'Tracer Concentration': {'dtype':float, 'long':True, 'short_row': True, 'short_col':True}, 'Competitor Name': {'dtype':str, 'long':True, 'short_row': True, 'short_col':True}, 'Competitor Concentration': {'dtype':float, 'long':True, 'short_row': True, 'short_col':True}, 'Concentration Units':{'dtype':str, 'long':True, 'short_row': True, 'short_col':True}, } class FA: """Class used for the analysis of fluorescence anisotropy data. :param data_dict: A dictionary contaning data frames with pre-processed data and metadata :type data_dict: dict :param g_factor: A value of g-factor :type g_factor: float :param plate_map: A data frame with platemap containing information about each well :type plate_map: pandas df""" def __init__(self, data_dict, g_factor, plate_map): self.data_dict = data_dict self.g_factor = g_factor self.plate_map = plate_map # create list of all p and s data frames to run some stats frames = [] for repeat in self.data_dict.values(): metadata, data = repeat.values() p_channel, s_channel = data.values() frames.append(p_channel) frames.append(s_channel) new = pd.concat(frames, axis=1) # join all p and s data frames into one df nan = new.size - new.describe().loc['count'].sum() # find sum of 'nan' cells # create a data frame to store the final fitting parameters col_names = ['rmin', 'rmin error', 'rmax', 'rmax error', 'lambda', 'Kd', 'Kd error'] p_names = self.plate_map['Protein Name'].dropna().unique() # get list of all protein names t_names = self.plate_map['Tracer Name'].dropna().unique() # get list of all tracer names c_names = self.plate_map['Competitor Name'].dropna().unique() # get list of all competitor names if len(c_names) == 0: # if there are no comeptitors, replace nan with a string c_names = ['-'] c_names_print = 'None' else: c_names_print = c_names final_fit = pd.DataFrame(index=pd.MultiIndex.from_product([p_names, t_names, c_names]), columns=col_names) final_fit["lambda"] = 1 # set the default lambda value as 1 self.final_fit = final_fit print("Data was uploaded!\n") print(f"Number of repeats: {len(self.data_dict)} \nValue of g-factor: {self.g_factor} \nOverall number of empty cells is {int(nan)} in {len(frames)} data frames.\nProteins: {p_names}\nTracers: {t_names}\nCompetitors: {c_names_print}\n") @classmethod def read_in_envision(cls, data_csv, platemap_csv, data_type='plate', size=384): """Reads in the raw data from csv file along with a platemap and constructs the FA class boject. :param data_csv: File path of the raw data file in .csv format. :type data_csv: str :param platemap_csv: File path of the platemap file in .csv format. :type platemap_csv: str :param data_type: Format in which the raw data was exported (plate or list), defaults to plate. :type data_type: str :param size: Size of the well plate (384 or 96), defaults to 384. :type size: int :return: A dictionary contaning data frames with pre-processed data, g-factor and data frame containing platemap. :rtype: dict, float, pandas df """ # ensure the plate size is either 384 or 96 if size not in plate_dim: raise PlateSizeError('Invalid size of the well plate, should be 384 or 96.') # try to read in data in plate format if data_type == 'plate': try: data_dict, g_factor = FA._read_in_plate(data_csv, size) # get data dictionary and g factor plate_map_df = pm.plate_map(platemap_csv, size) # get platemap using the platemapping module return cls(data_dict, g_factor, plate_map_df) except (UnboundLocalError, IndexError, ValueError): raise DataError(f"Error occured during data read in. Check your file contains data in the 'plate' format and plate size is {size}.") # try to read in data in list format if data_type == 'list': try: data_dict, g_factor = FA._read_in_list(data_csv, size) # get data dictionary and g factor plate_map_df = pm.plate_map(platemap_csv, size) # get platemap using the platemapping module return cls(data_dict, g_factor, plate_map_df) except (UnboundLocalError, IndexError): raise DataError("Error occured during data read in. Check your file contains data in the 'list' format.") else: raise DataTypeError(f"'{data_type}' is not one of the two valid data types: plate or list.") def _read_in_plate(csv_file, size): """Reads the raw data file and finds the information needed to extract data. Passes those parameters to pre_process_plate function and executes it. Returns a tuple of two elemnts: dictionary of data frames and g-factor. :param csv_file: File path of the raw data file in .csv format :type csv_file: str :param well_ids: A list of well IDs for the pre-processed data frames :type well_ids: list :return: A tuple of dictionary of data frames and the g-factor :rtype: pandas df, float """ with open(csv_file) as file: all_data_lines = list(csv.reader(file, delimiter=',')) # read the csv file and cast it into a list containing all lines blank_indexes = list(index for index, item in enumerate(all_data_lines) if item == []) # list containing indices of all blank rows if blank_indexes == []: # case for the raw data file having commas instead of blank spaces blank_indexes = list(index for index, item in enumerate(all_data_lines) if set(item) == {''}) # treats a line filled only with commas (empty strings) as balnk blanks = np.array(blank_indexes) # convert the list of blank indices to a numpy array read_in_info = [] # list to store the tuples with parameters needed for pandas to read in the csv file for index, item in enumerate(all_data_lines): # iterate over list with all lines in the csv file if item != [] and re.findall(r"Plate information", item[0]) == ['Plate information'] and re.search(r'Results for', all_data_lines[index + 9][0]) == None and re.findall(r"Formula", all_data_lines[index+1][10]) != ['Formula']: skiprows = index + 9 # Set the skiprows parameter for raw data table skiprows_meta = index + 1 # Set the skiprows parameter for metadata table end_of_data = blanks[blanks > skiprows].min() # Calculate the end of data table by finding the smallest blank index after the beginning of data table read_in_info.append((skiprows, end_of_data - skiprows + 1, skiprows_meta)) # add the skiprows, caculated number of data lines and skiprows for metadata parameters to the list as a tuple data_format = 'plate1' if item != [] and re.findall(r"Plate information", item[0]) == ['Plate information'] and re.search(r'Results for', all_data_lines[index + 9][0]) != None: skiprows = index + 10 # Set the skiprows parameter for raw data table skiprows_meta = index + 1 # Set the skiprows parameter for metadata table end_of_data = blanks[blanks > skiprows].min() # Calculate the end of data table by finding the smallest blank index after the beginning of data table read_in_info.append((skiprows, end_of_data - skiprows - 1, skiprows_meta)) # add the skiprows, caculated number of data lines and skiprows for metadata parameters to data_format = 'plate2' if item != [] and len(item) > 1 and re.fullmatch(r"G-factor", item[0]): g_factor = float(item[4]) return FA._pre_process_plate(csv_file, read_in_info, data_format, size), g_factor def _pre_process_plate(csv_file, read_in_info, data_format, size): """Extracts the data and metadata from the csv file, processes it and returns a nested dictionary containing data and metadata for each repeat and channel. :param csv_file: File path of the raw data file in .csv format :type csv_file: str :param read_in_info: Tuples with read in parameters for each channel. :type read_in_info: list :param data_format: Plate type (plate1 or plate2) :type data_format: str :param well_ids: A list of well IDs for the pre-processed data frames :type well_ids: list :return: A dictionary containing data and metadata :rtype: dict """ data_frames = {} # dictionary to store data frames counter = 1 # counter incremented by 0.5 to enable alternating labelling of data frames as 'p' or 's' row_letters = list(string.ascii_uppercase)[0: plate_dim[size][0]] # list of letters for well IDs col_numbers = list(np.arange(1, plate_dim[size][1] + 1).astype(str)) # list of numbers for well IDs well_ids = ['%s%s' % (item[0], item[1]) for item in product(row_letters, col_numbers)] # list of well IDs for the pre-processed data frames for index, item in enumerate(read_in_info): # iterate over all tuples in the list, each tuple contains skiprows, nrows and skiprows_meta for one channel if data_format == 'plate1': # raw data table does not have row and column names so 'names' parameter passed to omit the last column raw_data = pd.read_csv(csv_file, sep=',', names=col_numbers, index_col=False, engine='python', skiprows=item[0], nrows=item[1], encoding='utf-8') if data_format == 'plate2': # raw data table has row and column names, so index_col=0 to set the first column as row labels raw_data = pd.read_csv(csv_file, sep=',', index_col=0, engine='python', skiprows=item[0], nrows=item[1], encoding='utf-8') if len(raw_data.columns) in [13, 25]: raw_data.drop(raw_data.columns[-1], axis=1, inplace=True) # delete the last column because it is empty # generate df for metadata (number of rows is always 1) and convert measurement time into datetime object metadata = pd.read_csv(csv_file, sep=',', engine='python', skiprows=item[2], nrows=1, encoding='utf-8').astype({'Measurement date': 'datetime64[ns]'}) # convert and reshape data frame into 1D array data_as_array = np.reshape(raw_data.to_numpy(), (int(size), 1)) if counter % 1 == 0: new_data = pd.DataFrame(data=data_as_array, index=well_ids, columns=['p']) # generate new 384 (or 96) by 1 data frame with p channel data data_frames[f'repeat_{int(counter)}'] = {'metadata':metadata, 'data': {'p': new_data, 's':''}} # add p channel data and metadata dfs to dictionary if counter % 1 != 0: new_data = pd.DataFrame(data=data_as_array, index=well_ids, columns=['s']) # generate new 384 (or 96) by 1 data frame with s channel data data_frames[f'repeat_{int(counter-0.5)}']['data']['s'] = new_data # add s channel data to dictionary counter = counter + 0.5 return data_frames def _read_in_list(csv_file, size): """Reads the raw data file and extracts the data and metadata. Passes the raw data to pre_process_list function and executes it. Returns a tuple of two elemnts: dictionary of data frames and g-factor. :param csv_file: File path of the raw data file in .csv format :type csv_file: str :param well_ids: A list of well IDs for the pre-processed data frames :type well_ids: list :return: A tuple of dictionary of data frames and the g-factor :rtype: tuple """ with open(csv_file) as file: all_data_lines = list(csv.reader(file, delimiter=',')) # read the csv file and cast it into a list containing all lines blank_indexes = list(index for index, item in enumerate(all_data_lines) if item == []) # list containing indexes of all blank rows if blank_indexes == []: # case for the raw data file having commas instead of blank spaces blank_indexes = list(index for index, item in enumerate(all_data_lines) if set(item) == {''}) # treats a line filled only with commas (empty strings) as balnk blanks = np.array(blank_indexes) # convert the list of blank indexes to a numpy array # iterate over all lines to find beggining of the data table ('skiprows') and determine the format of data (list A, B, or C) for index, item in enumerate(all_data_lines): if item != [] and len(item) == 1 and re.findall(r"Plate information", item[0]) == ["Plate information"]: skiprows_meta = index + 1 end_of_metadata = blanks[blanks > skiprows_meta].min() # find the end of metadata by finding the smallest blank index after the beginning of metadata if item != [] and len(item) >= 2 and re.findall(r"PlateNumber", item[0]) == ['PlateNumber'] and re.findall(r"PlateRepeat", item[1]) == ['PlateRepeat']: # find line number with the beggining of the data skiprows = index - 1 data_format = 'listA' end_of_data = blanks[blanks > skiprows].min() if item != [] and len(item) >= 2 and re.findall(r"Plate", item[0]) == ['Plate'] and re.findall(r"Barcode", item[1]) == ['Barcode']: # find line number with the beggining of the data skiprows = index data_format = 'listB' end_of_data = blanks[blanks > skiprows].min() if item != [] and len(item) >= 2 and re.findall(r"Plate", item[0]) == ['Plate'] and re.findall(r"Well", item[1]) == ['Well']: skiprows = index data_format = 'listC' end_of_data = blanks[blanks > skiprows].min() if item != [] and re.fullmatch(r"G-factor", item[0]): # find the g factor g_factor = float(item[4]) nrows = end_of_data - skiprows - 1 # calculate the length of data table nrows_meta = end_of_metadata - skiprows_meta - 1 # calucalte the length of metadata table (number of rows depends on the number of repeats) raw_data = pd.read_csv(csv_file, sep=',', engine='python', skiprows=skiprows, nrows=nrows, encoding='utf-8') raw_metadata = pd.read_csv(csv_file, sep=',', engine='python', skiprows=skiprows_meta, nrows=nrows_meta, encoding='utf-8') return FA._pre_process_list(raw_data, raw_metadata, data_format, size), g_factor def _pre_process_list(raw_data, raw_metadata, data_format, size): """Extracts the data and metadata for each channel and repeat from the raw data and raw metadata and returns a nested dictionary containing data and metadata for each repeat and channel. :param raw_data: Data frame containing raw data :type raw_data: pandas data frame :param raw_metadata: Data frame containing raw metadata :type raw_metadata: pandas data frame :param data_format: Type of list (listA, listB, or listC) :type data_format: str :param well_ids: A list of well IDs for the pre-processed data frames :type well_ids: list :return: A dictionary containing data and metadata :rtype: dict""" # remove the '0' from middle position of well numbers (A01 -> A1), done by reassigning the 'Well' column to a Series containing modified well numbers raw_data['Well'] = raw_data['Well'].apply(lambda x: x[0] + x[2] if x[1] == '0' else x) data_frames = {} # dictionary to store data frames repeats = list(raw_metadata['Repeat'].to_numpy()) # generate a list with repeats based on the metadata table, e.g. for 3 repeats -> [1,2,3] row_letters = list(string.ascii_uppercase)[0: plate_dim[size][0]] # list of letters for well IDs col_numbers = list(np.arange(1, plate_dim[size][1] + 1).astype(str)) # list of numbers for well IDs well_ids = ['%s%s' % (item[0], item[1]) for item in product(row_letters, col_numbers)] # list of well IDs for the pre-processed data frames for index, repeat in enumerate(repeats): # iterate over the number of repeats if data_format == 'listA': groupped_data = raw_data.groupby(raw_data.PlateRepeat).get_group(repeat) # group and extract the data by the plate repeat column, i.e. in each iteration get data only for the current repeat p_groupped = groupped_data.iloc[::3, :] # extract data only for the p channel, i.e. each third row starting from the first row s_groupped = groupped_data.iloc[1::3, :] # extract data only for the s channel, i.e. each third row starting from the second row p_raw_data = p_groupped[['Well', 'Signal']] # extract only the two relevant columns s_raw_data = s_groupped[['Well', 'Signal']] # for each channel if data_format in ['listB', 'listC']: # the column naming is different for the first repeat ('Signal'), then it's 'Signal.1', 'Signal.2', etc. if repeat == 1: p_raw_data = raw_data[['Well', 'Signal']] s_raw_data = raw_data[['Well', f'Signal.{repeat}']] else: p_raw_data = raw_data[['Well', f'Signal.{repeat + index - 1}']] # the column cotntaining data to be extracted is calculated in each iteration s_raw_data = raw_data[['Well', f'Signal.{repeat + index}']] # create an empty df with no columns and indexes matching the plate size indexes = pd.DataFrame(well_ids, columns=['Wells']) empty_frame = indexes.set_index('Wells') p_raw_data.set_index('Well', inplace=True) # set the row indexes as the well numbers p_raw_data.set_axis(['p'], axis=1, inplace=True) # rename the 'Signal' column to 'p' p_data = empty_frame.join(p_raw_data) # join the raw data df to an empty frame based on the indexes, assigns 'NaN' to indexes not present in the raw data table s_raw_data.set_index('Well', inplace=True) s_raw_data.set_axis(['s'], axis=1, inplace=True) s_data = empty_frame.join(s_raw_data) metadata = raw_metadata.iloc[[repeat-1]].astype({'Measurement date': 'datetime64[ns]'}) # extract the row with metadata relevant for each repeat and covert date and time into a datetime object data_frames[f'repeat_{repeat}'] = {'metadata': metadata, 'data': {'p': p_data, 's': s_data}} # add data frames to the dictionary return data_frames def visualise(self, labelby='Type', colorby='Type', title="", cmap='rainbow', blank_yellow=True, scale='lin', dpi=250, export=False): """Returns a visual representation of the plate map. The label and colour for each well can be customised to be a platemap variable, for example 'Type', 'Protein Name', 'Protein Concentration', etc. It can also be the p or s channel value, calculated anisotropy or intensity, however in such cases the 'colorby' or 'labelby' parameters must be passed as tuple of two strings specifying the repeat number and variable to display, for example ('repeat_2', 'p_corrected'). :param labelby: Variable to display on the wells, for example 'Type', 'Protein Name', ('repeat_1', 's_corrected'), defaults to 'Type'. :type labelby: str or tuple of str :param colorby: Variable to color code by, for example 'Type', 'Contents', 'Protein Concentration', ('repeat_2', 'p'), for non-categorical data the well coulour represnets the magnitude of the number, defaults to 'Type'. :type colorby: str or tuple of str :param title: Sets the title of the figure, defaults to None. :type title: str :param cmap: Sets the colormap for the color-coding, defaults to 'rainbow'. :type cmap: str :param blank_yellow: Sets the colour-coding of blank wells as yellow, defaults to True. :type blank_yellow: bool :param scale: Determines whether data for colour-coding of non-categorical data (e.g. 'p_chanel', 'r_corrected') is scaled linearly ('lin') or logarithmically ('log', works only if data does not contain values less than or equal 0), wdefaults to 'lin'. :type scale: str :param dpi: Resolution of the exported figure in points per inches, defaults to 250. :type dpi: int :param export: If True, save the figure as .png file, defaults to False. :type export: bool :return: Visual representation of the plate map. :rtype: figure """ plate_map = self.plate_map # default platemap size = plate_map.shape[0] str_format, str_len = None, None # default string format and lengh (used for categorical types, e.g. 'Type', 'Protein Name', etc.) noncat_vars = ['p','s','p_corrected','s_corrected','r_raw','r_corrected','i_raw','i_corrected','i_percent'] # list of non-categorical data scinot_vars = noncat_vars[:-1] + ['Protein Concentration', 'Tracer Concentration', 'Competitor Concentration'] # types that may have to be formatted in scinot (all non-categorical types except of i_percent) if type(labelby) == tuple: # option for labelling by the a variable and its repeat number plate_map = self.plate_map.join(self.data_dict[labelby[0]]['data'][labelby[1]]) # data frame containing variable from specified repeat is added to the platemap labelby = labelby[1] # reassign labelby as the variable name if labelby == 'i_percent': str_format = 'percent' # display the values to 1 decimal place str_len = 3 # determine the length of string to avoid issues with incorrect font scaling if type(colorby) == tuple: # option for colouring by the a variable and its repeat number plate_map = self.plate_map.join(self.data_dict[colorby[0]]['data'][colorby[1]]) # data frame containing variable from specified repeat is added to the platemap colorby = colorby[1] # reassign colorby as the variable name if labelby in scinot_vars: # check if the data needs to be displyed in scientific notation if sum((plate_map[labelby] > 1000) | (plate_map[labelby] < 0)) > 0: # format in sci notation if the number is greater than 1000 or less than 0 str_format = 'scinot' str_len = 8 # determine the length of string to avoid issues with incorrect font scaling if colorby in noncat_vars: categorical = False # colours for colour-coding are generated based on normalised data from colorby column else: categorical = True # colurs for colour-coding are generated based on an array of uniformally spaced numbers representing each category return pm.visualise(plate_map, title, size, export, cmap, colorby, labelby, dpi, str_format=str_format, str_len=str_len, blank_yellow=blank_yellow, scale=scale, categorical=categorical) def invalidate(self, valid=False, **kwargs): """Invalidates wells, entire columns and/or rows. Any of the following keyword arguments, or their combination, can be passed: wells, rows, columns. For example, to invalidate well A1, rows C and D and columns 7 and 8 execute the following: invalidate(wells='A1', rows=['C','D'], columns=[7,8]). To validate previously invalidated wells, rows and/or columns, pass the additional 'valid' argument as True. :param valid: Sets the stipulated well, row or column invalid ('False') or valid ('True'), defaults to False. :type valid: bool :param wells: Wells to be invalidated passed as a string or list of strings. :type wells: str or list of str :param rows: Rows to be invalidated passed as a string or list of strings. :type rows: str or list of str :param columns: Columns to be invalidated passed as an integer or list of integers. :type columns: int or list of int """ # execute the corresponding invalidate functon from the platemapping package if 'wells' in kwargs: pm.invalidate_wells(platemap=self.plate_map, wells=kwargs['wells'], valid=valid) if 'rows' in kwargs: rows = tuple(kwargs['rows']) # convert the rows to tuple because invalidate_rows cannot take in a list pm.invalidate_rows(platemap=self.plate_map, rows=rows, valid=valid) if 'columns' in kwargs: pm.invalidate_cols(platemap=self.plate_map, cols=kwargs['columns'], valid=valid) if len(kwargs) == 0: # return error if neither of the keyword arguments is passed raise TypeError('No arguments were passed. Specify the wells, rows and/or columns to be invalidated!') def background_correct(self): """Calculates background corrected values for p and s channel in all repeats. The backgorund correction is done by subtracting the mean value of blank p (or s) channel intensity for a given protein, tracer or competitor concentration from each non-blank value of the p (or s) channel intensity for that concentration. """ for key, value in self.data_dict.items(): metadata, data = value.values() # calculate p and s corrected data frame using _background_correct func and add it to data dictionary self.data_dict[key]['data']['p_corrected'] = FA._background_correct(data['p'], self.plate_map) self.data_dict[key]['data']['s_corrected'] = FA._background_correct(data['s'], self.plate_map) print('Background correction was successfully performed!') def _background_correct(data, platemap): """Calculates background corrected p or s channel values for protein/titration or competition experiment. :param data: Data frame with raw p or s channel values :type data: pandas df :param platemap: Data frame with platemap :type platemap: pandas df :return: Data frame with background corrected values :rtype: pandas df """ df = platemap.join(data) # join p or s channel data to platemap df[df.columns[-1]] = df[df.columns[-1]][df['Valid'] == True] # replace 'p' or 's' values with NaN if the well is invalidated col_name = df.columns[-1] + '_corrected' no_index = df.reset_index() # move the 'well id' index to df column columns = ['Type','Protein Name','Protein Concentration','Tracer Name','Tracer Concentration','Competitor Name','Competitor Concentration'] # create a multindex df to which blank df will be joined mindex = pd.MultiIndex.from_frame(no_index[columns]) # create multiindex reindexed = no_index.set_index(mindex).drop(columns, axis=1) # add multiindex to df and drop the columns from which multiindex was created mean = no_index.groupby(columns, dropna=False).mean().drop('Valid', axis=1).drop('empty', axis=0) # calculate mean for each group of three wells and remove 'Valid' column mean.rename(columns={mean.columns[-1]: 'Mean'}, inplace=True) # rename the last column to 'Mean' to avoid errors during joining blank = mean.xs('blank', level=0, drop_level=True) # take a group with only blank wells reset_idx = blank.reset_index() # move multiindex to df nans = [col for col in reset_idx.columns if reset_idx[col].dropna().empty] # list of all columns containing only 'nan' values d = reset_idx.drop(labels=nans, axis=1) # delete all columns containing only 'nan' values blank2 = d.set_index(pd.MultiIndex.from_frame(d.loc[:,d.columns[:-1]])).drop(d.columns[:-1], axis=1) # multi index to the remaining columns joined = reindexed.join(blank2, on=list(blank2.index.names)) # join the blank mean data on the indexes only from blank df joined[col_name] = joined[joined.columns[-2]] - joined[joined.columns[-1]] # calculate background corrected values jindexed = joined.set_index('index', append=True).reset_index(level=[0,1,2,3,4,5,6]).rename_axis(None) # set index to 'well id' and move multiindex to df columns return jindexed[[col_name]] # extract and return df with corrected values def calc_r_i(self, correct=True, plot_i=True, thr=80): """Calculates anisotropy and fluorescence intensity for each well in all repeats using the raw and background corrected p and s channel data. The fluorescence intensity (I) and anisotropy (r) are calculated using the follwing formulas: I = s + (2*g*p) for intensity and r = (s - (g*p)) / I for anisotropy. Results are stored in the following data frames: i_raw and r_raw (calculated using the uncorrected p and s channel values) and i_corrected and r_corrected (calculated using the background corrected p and s channel values). The function also calculates the percentage intesity of the non blank wells as comapred to the blank corrected wells using the formula: (raw intensity - corrected intensity) / raw intensity * 100%. If 'plot_i=True', the graph of percentage intenstiy against the well ids for all repeats is displayed along with a summary of wells above the threshold (defaults to 80%). :param correct: Calculate the anisotropy and intensity using the background corrected values of p and s channel data, defaults to True. :type correct: bool :param plot_i: Display plots of the percentage intensity against well ids for all repeats, defaults to True. :type plot_i: bool :param thr: Percentage intensity above which the wells are included in the summary if plot_i=True, defaults to 80. :type thr: int """ FA.th = thr # assign the threshold value to the class variable so that it can be accessed by functions that are not class methods for key, value in self.data_dict.items(): # iterate over all repeats metadata, data = value.values() # calculate raw intensity and anisotropy using _calc_r_i function and add them to data dictionary i, r = FA._calc_r_i(data['p'], data['s'], self.g_factor, 'raw') self.data_dict[key]['data']['i_raw'] = i self.data_dict[key]['data']['r_raw'] = r if correct: # calculate intensity and anisotropy using background corrected values of p and s if 'p_corrected' and 's_corrected' not in data: # check if background subtraction has been performed raise AttributeError('The corrected anisotropy and intensity can only be calculated after background correction of the raw p and s channel data.') i_c, r_c = FA._calc_r_i(data['p_corrected'], data['s_corrected'], self.g_factor, 'corrected') self.data_dict[key]['data']['i_corrected'] = i_c self.data_dict[key]['data']['r_corrected'] = r_c # calculate intensity percentage data and add it to data dict self.data_dict[key]['data']['i_percent'] = FA._calc_i_percent(i, i_c, self.plate_map) if plot_i: # plot the percentage intensity against the well ids for all repeats FA._plot_i_percent(self.data_dict, self.plate_map) else: print('The fluorescence intensity and anisotropy were successfully calculated!\n') def _calc_r_i(p, s, g, col_suffix): """Calculates either anisotropy or intensity and labels the resulting dfs according to the col_suffix parameter :param p: Data frame with p channel data (can be either raw or background corrected) :type p: pandas df :param s: Data frame with s channel data (can be either raw or background corrected) :type s: pandas df :param g: G-factor :type g: float :param col_suffix: Suffix to add to column name of the resulting intensity or anisotropy data frame, e.g. 'raw', 'corrected' :type col_suffix: str :return: Two data frames with calculated anisotropy and intensity values :rtype: tuple of pandas df""" p_rn = p.rename(columns={p.columns[0]: s.columns[0]}) # rename the col name in p data frame so that both p and s dfs have the same col names to enable calculation on dfs i = s + (2 * g * p_rn) # calculate intensity r = (s - (g * p_rn)) / i # and anisotropy i_rn = i.rename(columns={i.columns[0]: 'i_' + col_suffix}) # rename the col name using the column suffix argument r_rn = r.rename(columns={r.columns[0]: 'r_' + col_suffix}) return i_rn, r_rn def _calc_i_percent(ir, ic, platemap): """Calculates the percentage intensity of blank wells compared to non-blank wells. :param ir: Data frame with corrected intensity :type ir: pandas df :param ic: Data frame with raw intensity :type ic: pandas df :param platemap: Platemap :type platemap: pandas df :return: Data frame with percentage intensity data :rtype: pandas df""" ir_rn = ir.rename(columns={ir.columns[0]:ic.columns[0]}) # rename the col name in raw intensity df so that it's the same as in corrected intensity df percent = (ir_rn - ic) / ir_rn * 100 percent.rename(columns={'i_corrected': 'i_percent'}, inplace=True) return percent def _plot_i_percent(data_d, platemap): """Plots the percentage intensity data against the well ids with a horizontal threshold bar and prints a summary of wells above the threshold for all non-blank and non-empty cells in all repeats. A single figure with multiple subplots for each repeat is created. :param data_d: Data dictionary :type data_d: dict :param platemap: Platemap needed to subset only the non-blank and non-empty cells :type platemap: pandas df""" summary = '' # empty string to which lists of wells to be printed are appended after checking data from each repeat fig = plt.figure(figsize=(8*int((len(data_d) + 2 - abs(len(data_d) - 2))/2), 4*int( math.ceil((len(data_d))/2)) ), tight_layout=True) # plot a figure with variable size depending on the number subplots (i.e. repeats) for key, value in data_d.items(): # iterate over all repeats metadata, data = value.values() df = platemap.join(data['i_percent']) df_per = df[(df['Type'] != 'blank') & (df['Type'] != 'empty')] # subset only the non-blank and non-empty cells plt.subplot(int( math.ceil((len(data_d))/2) ), int( (len(data_d) + 2 - abs(len(data_d) - 2))/2 ), int(key[-1])) plt.bar(df_per.index, df_per['i_percent']) # plot a bar plot with intensity percentage data plt.axhline(FA.th, color='red') # plot horizontal line representing the threshold on the bar plot ax = plt.gca() # get the axis object ax.set_ylabel('') ax.set_xlabel('wells') ax.set_title(f'Repeat {key[-1]}') ax.yaxis.set_major_formatter(mtick.PercentFormatter()) # set formatting of the y axis as percentage xlabels = [i if len(i) == 2 and i[1] == '1' else '' for i in list(df_per.index)] # create a list of xtics and xticklabels consiting only of the first wells from a each row ax.set_xticks(xlabels) ax.set_xticklabels(xlabels) wells = list(df_per[df_per['i_percent'] > FA.th].index) # get a list of well ids above the threshold for this repeat if wells != []: # append wells above the threshold and the repective repeat number to the string with appropriate formatting summary = summary + f'\tRepeat {key[-1]}: {str(wells)}\n' plt.show() # ensure the figure is displayed before printing the summary message if summary != '': # display the summary of wells above the threshold print(f'In the following wells the percentage intensity value was above the {FA.th}% threshold:') print(summary) else: print(f'None of the wells has the percentage intensity value above the {FA.th}% threshold.') def plot_i_percent(self): """Disply the graph of percentage intesity of the non blank wells as comapred to the blank corrected wells against well ids for all repeats.""" return FA._plot_i_percent(self.data_dict, self.plate_map) def calc_mean_r_i(self): """Calculates the mean anisotropy and intensity over the number of replicates for each specific protein, tracer or competitor concentration along with standard deviation and standard error. This data is required for fitting a logistic curve to anisotropy and intensity plots. """ for key, value in self.data_dict.items(): metadata, data = value.values() # create dictionaries 'r_mean'and 'i_mean' containing mean anisotropy and intensity data frames for each protein-tracer-competitor data['r_mean'] = FA._calc_mean_r_i(data['r_corrected'], self.plate_map) data['i_mean'] = FA._calc_mean_r_i(data['i_corrected'], self.plate_map) # create data frame for storing the fitting params and set lambda value to 1 cols = ['rmin','rmin error', 'rmax', f'rmax error', 'r_EC50', 'r_EC50 error', 'r_hill', 'r_hill error', 'Ifree', 'Ifree error', 'Ibound', 'Ibound error', 'I_EC50', 'I_EC50 error', 'I_hill', 'I_hill error', 'lambda'] data['fit_params'] =
pd.DataFrame(index=self.final_fit.index, columns=cols)
pandas.DataFrame
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # You can run this test by first running `nPython.exe` (with mono or otherwise): # $ ./nPython.exe ReportChartTests.py import numpy as np import pandas as pd from datetime import datetime from ReportCharts import ReportCharts charts = ReportCharts() ## Test GetReturnsPerTrade backtest = list(np.random.normal(0, 1, 1000)) live = list(np.random.normal(0.5, 1, 400)) result = charts.GetReturnsPerTrade([], []) result = charts.GetReturnsPerTrade(backtest, []) result = charts.GetReturnsPerTrade(backtest, live) ## Test GetCumulativeReturnsPlot time = [pd.Timestamp(x).to_pydatetime() for x in pd.date_range('2012-10-01T00:00:00', periods=365)] strategy = np.linspace(1, 25, 365) benchmark = np.linspace(2, 26, 365) backtest = [time, strategy, time, benchmark] time = [
pd.Timestamp(x)
pandas.Timestamp
import unittest import backtest_pkg as bt import pandas as pd import numpy as np from math import sqrt, log from pandas.util.testing import assert_frame_equal def cal_std(data): if len(data)<=1: return np.nan data_mean = sum(data)/len(data) data_var = sum((i-data_mean)**2 for i in data)/(len(data)-1) return sqrt(data_var) def cal_mean(data): return sum(data)/len(data) class TestMarketSingleAsset(unittest.TestCase): def setUp(self): def construct_market(data): ticker = ['Test Ticker'] index = pd.date_range('2020-01-01', periods=len(data), freq='D') data_dict = dict( adj_close_price = pd.DataFrame(data, index=index, columns=ticker), open_price = pd.DataFrame(data, index=index, columns=ticker), high_price = pd.DataFrame([i*1.1 for i in data], index=index, columns=ticker), low_price = pd.DataFrame([i*0.9 for i in data], index=index, columns=ticker), close_price = pd.DataFrame(data, index=index, columns=ticker), ) return bt.market(**data_dict) data_trend = [1, 2, 3, 4, 5] self.index = pd.date_range('2020-01-01', periods=len(data_trend), freq='D') self.ticker = ['Test Ticker'] self.market = construct_market(data_trend) self.market_down = construct_market(data_trend[::-1]) data_sin = [3, 5, 3, 1, 3] data_convex = [3, 2, 1, 2, 3] data_concave = [1, 2, 3, 2, 1] self.market_sin = construct_market(data_sin) self.market_convex = construct_market(data_convex) self.market_concave = construct_market(data_concave) # Daily return: np.log([np.nan, 2/1, 3/2, 4/3, 5/4]) def test_market_daily_ret(self): expect = pd.DataFrame(log(5/4), index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market.daily_ret(), expect) def test_market_daily_ret_given_date(self): date_str = '2020-01-03' date = pd.to_datetime(date_str) expect = pd.DataFrame(log(3/2), index=[date], columns=self.ticker) assert_frame_equal(self.market.daily_ret(date=date), expect) assert_frame_equal(self.market.daily_ret(date=date_str), expect) def test_market_daily_ret_given_lag(self): lag = 1 expect = pd.DataFrame(log(4/3), index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market.daily_ret(lag=lag), expect) def test_market_daily_ret_given_date_lag(self): date = pd.to_datetime('2020-01-03') lag = 1 expect = pd.DataFrame(log(2/1), index=[date], columns=self.ticker) assert_frame_equal(self.market.daily_ret(date=date, lag=lag), expect) def test_market_daily_ret_out_range_date(self): late_date = pd.to_datetime('2020-01-20') early_date = pd.to_datetime('2019-01-01') with self.assertRaises(AssertionError): self.market.daily_ret(date=early_date) with self.assertRaises(AssertionError): self.market.daily_ret(date=late_date) def test_market_daily_ret_large_lag(self): lag = 100 expect = pd.DataFrame(np.nan, index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market.daily_ret(lag=lag), expect) def test_market_daily_ret_negative_lag(self): lag = -1 with self.assertRaises(AssertionError): self.market.daily_ret(lag=lag) def test_market_total_ret(self): expect = pd.DataFrame(log(5), index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market.total_ret(), expect) def test_market_total_ret_given_date(self): date_str = '2020-01-03' date = pd.to_datetime(date_str) expect = pd.DataFrame(log(3), index=[date], columns=self.ticker) assert_frame_equal(self.market.total_ret(date=date), expect) assert_frame_equal(self.market.total_ret(date=date_str), expect) def test_market_total_ret_given_period(self): expect = pd.DataFrame(log(5/3), index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market.total_ret(period=2), expect) def test_market_total_ret_given_date_period(self): date_str = '2020-01-04' date = pd.to_datetime(date_str) expect = pd.DataFrame(log(4/2), index=[date], columns=self.ticker) assert_frame_equal(self.market.total_ret(date = date, period=2), expect) def test_market_total_ret_out_range_date(self): late_date = pd.to_datetime('2020-01-20') early_date = pd.to_datetime('2019-01-01') with self.assertRaises(AssertionError): self.market.total_ret(date=early_date) with self.assertRaises(AssertionError): self.market.total_ret(date=late_date) def test_market_total_ret_large_period(self): with self.assertRaises(AssertionError): self.market.total_ret(period=100) def test_market_total_ret_negative_period(self): with self.assertRaises(AssertionError): self.market.total_ret(period=0) with self.assertRaises(AssertionError): self.market.total_ret(period=-1) def test_market_vol(self): data = [log(i) for i in [2/1, 3/2, 4/3, 5/4]] expect = pd.DataFrame(cal_std(data), index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market.volatility(), expect) def test_market_vol_given_date(self): date_str = '2020-01-03' date = pd.to_datetime(date_str) data = [log(i) for i in [2/1, 3/2]] expect = pd.DataFrame(cal_std(data), index=[date], columns=self.ticker) assert_frame_equal(self.market.volatility(date=date), expect) assert_frame_equal(self.market.volatility(date=date_str), expect) def test_market_vol_given_period(self): data = [log(i) for i in [4/3, 5/4]] expect = pd.DataFrame(cal_std(data), index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market.volatility(period=2), expect) def test_market_vol_given_date_period(self): date_str = '2020-01-04' date = pd.to_datetime(date_str) data = [log(i) for i in [3/2, 4/3]] expect = pd.DataFrame(cal_std(data), index=[date], columns=self.ticker) assert_frame_equal(self.market.volatility(date=date, period=2), expect) def test_market_vol_period_1(self): expect = pd.DataFrame(np.nan, index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market.volatility(period=1), expect) def test_market_vol_out_range_period(self): with self.assertRaises(AssertionError): self.market.volatility(period=10) def test_market_bollinger(self): data_std = cal_std(list(range(1, 6))) expect = pd.DataFrame((5-3)/data_std, index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market.bollinger(), expect) def test_market_bollinger_given_date(self): date_str = '2020-01-03' date =
pd.to_datetime(date_str)
pandas.to_datetime
from numpy import dtype def estado_civil_dummy(): dic_estado={"Separado(a) o divorciado(a)":0, "Soltero(a)":0,"Casado":1,"En unión libre":1, "Viudo(a)":0,1.0:1,2.0:1,3.0:0,4.0:0,5.0:0} return dic_estado def dic_etnia(): import numpy as np dic_etnia={"Mestizo":1,'Ninguno de los anteriores':0,"Blanco":1,"Indígena":0,"Negro, mulato (afro descendiente)":1, "Palenquero":1,np.NaN:0,1.0:1,2.0:1,3.0:1,4.0:1,5.0:1,6.0:1,7.0:1,8.0:0} return dic_etnia def cols_names(): names_cols={"actividad_ppal":"employment","sexo":"sex","edad":"age","estado_civil":"couple", "hijos":"sons","etnia":"ethnicity","Discapacidad":"Disability","educ_años":"educ_years", "embarazo_hoy":"w_pregnant","lee_escribe":"read_write","estudia":"student", "n_internet":"internet","Urbano":"Urban"} return names_cols def creador_id(data): try: data.insert(0,"id",data["DIRECTORIO"]+data["SECUENCIA_P"]+data["ORDEN"]+data["HOGAR"]) data.insert(1,"id_hogar",data["DIRECTORIO"]+data["SECUENCIA_P"]) except: data.insert(0,"id_hogar",data["DIRECTORIO"]+data["SECUENCIA_P"]) def dic_dtypes(): dtype={"DIRECTORIO":"str", "SECUENCIA_P":"str", "ORDEN":"str", "HOGAR":"str"} return dtype def variables_modelo(): variables=["id","id_hogar","ocupado","desocupado","P6020","P6040","ESC","P6080","P6070","P6170","P4030S1A1","P5210S16","P5210S3","P6081","P6083","DPTO_x"] return variables def procces_data_month(mes,variables): import pandas as pd dtype=dic_dtypes() Ac=pd.read_csv(f"sets_model/{mes}/Acaracteristicas.csv",sep=";",dtype=dtype) Ao=pd.read_csv(f"sets_model/{mes}/Aocupados.csv",sep=";",dtype=dtype) Ad=
pd.read_csv(f"sets_model/{mes}/Adesocupados.csv",sep=";",dtype=dtype)
pandas.read_csv
import natsort import numpy as np import pandas as pd import plotly.io as pio import plotly.express as px import plotly.graph_objects as go import plotly.figure_factory as ff import re import traceback from io import BytesIO from sklearn.decomposition import PCA from sklearn.metrics import pairwise as pw import json import statistics import matplotlib.pyplot as plt import matplotlib_venn as venn from matplotlib_venn import venn2, venn3, venn3_circles from PIL import Image from upsetplot import from_memberships from upsetplot import plot as upplot import pkg_resources def natsort_index_keys(x): order = natsort.natsorted(np.unique(x.values)) return pd.Index([order.index(el) for el in x], name=x.name) def natsort_list_keys(x): order = natsort.natsorted(np.unique(x)) return [order.index(el) for el in x] class SpatialDataSet: regex = { "imported_columns": "^[Rr]atio H/L (?!normalized|type|is.*|variability|count)[^ ]+|^Ratio H/L variability.... .+|^Ratio H/L count .+|id$|[Mm][Ss].*[cC]ount.+$|[Ll][Ff][Qq].*|.*[nN]ames.*|.*[Pp][rR]otein.[Ii][Dd]s.*|[Pp]otential.[cC]ontaminant|[Oo]nly.[iI]dentified.[bB]y.[sS]ite|[Rr]everse|[Ss]core|[Qq]-[Vv]alue|R.Condition|PG.Genes|PG.ProteinGroups|PG.Cscore|PG.Qvalue|PG.RunEvidenceCount|PG.Quantity|^Proteins$|^Sequence$" } acquisition_set_dict = { "LFQ6 - Spectronaut" : ["LFQ intensity", "MS/MS count"], "LFQ5 - Spectronaut" : ["LFQ intensity", "MS/MS count"], "LFQ5 - MQ" : ["[Ll][Ff][Qq].[Ii]ntensity", "[Mm][Ss]/[Mm][Ss].[cC]ount", "[Ii]ntensity"], "LFQ6 - MQ" : ["[Ll][Ff][Qq].[Ii]ntensity", "[Mm][Ss]/[Mm][Ss].[cC]ount", "[Ii]ntensity"], "SILAC - MQ" : [ "[Rr]atio.[Hh]/[Ll](?!.[Vv]aria|.[Cc]ount)","[Rr]atio.[Hh]/[Ll].[Vv]ariability.\[%\]", "[Rr]atio.[Hh]/[Ll].[cC]ount"], "Custom": ["(?!Protein IDs|Gene names)"] } Spectronaut_columnRenaming = { "R.Condition": "Map", "PG.Genes" : "Gene names", "PG.Qvalue": "Q-value", "PG.Cscore":"C-Score", "PG.ProteinGroups" : "Protein IDs", "PG.RunEvidenceCount" : "MS/MS count", "PG.Quantity" : "LFQ intensity" } css_color = ["#b2df8a", "#6a3d9a", "#e31a1c", "#b15928", "#fdbf6f", "#ff7f00", "#cab2d6", "#fb9a99", "#1f78b4", "#ffff99", "#a6cee3", "#33a02c", "blue", "orange", "goldenrod", "lightcoral", "magenta", "brown", "lightpink", "red", "turquoise", "khaki", "darkgoldenrod","darkturquoise", "darkviolet", "greenyellow", "darksalmon", "hotpink", "indianred", "indigo","darkolivegreen", "coral", "aqua", "beige", "bisque", "black", "blanchedalmond", "blueviolet", "burlywood", "cadetblue", "yellowgreen", "chartreuse", "chocolate", "cornflowerblue", "cornsilk", "darkblue", "darkcyan", "darkgray", "darkgrey", "darkgreen", "darkkhaki", "darkmagenta", "darkorange", "darkorchid", "darkred", "darkseagreen", "darkslateblue", "snow", "springgreen", "darkslategrey", "mediumpurple", "oldlace", "olive", "lightseagreen", "deeppink", "deepskyblue", "dimgray", "dimgrey", "dodgerblue", "firebrick", "floralwhite", "forestgreen", "fuchsia", "gainsboro", "ghostwhite", "gold", "gray", "ivory", "lavenderblush", "lawngreen", "lemonchiffon", "lightblue", "lightcyan", "fuchsia", "gainsboro", "ghostwhite", "gold", "gray", "ivory", "lavenderblush", "lawngreen", "lemonchiffon", "lightblue", "lightcyan", "lightgoldenrodyellow", "lightgray", "lightgrey", "lightgreen", "lightsalmon", "lightskyblue", "lightslategray", "lightslategrey", "lightsteelblue", "lightyellow", "lime", "limegreen", "linen", "maroon", "mediumaquamarine", "mediumblue", "mediumseagreen", "mediumslateblue", "mediumspringgreen", "mediumturquoise", "mediumvioletred", "midnightblue", "mintcream", "mistyrose", "moccasin", "olivedrab", "orangered", "orchid", "palegoldenrod", "palegreen", "paleturquoise", "palevioletred", "papayawhip", "peachpuff", "peru", "pink", "plum", "powderblue", "rosybrown", "royalblue", "saddlebrown", "salmon", "sandybrown", "seagreen", "seashell", "sienna", "silver", "skyblue", "slateblue", "steelblue", "teal", "thistle", "tomato", "violet", "wheat", "white", "whitesmoke", "slategray", "slategrey", "aquamarine", "azure","crimson", "cyan", "darkslategray", "grey","mediumorchid","navajowhite", "navy"] analysed_datasets_dict = {} df_organellarMarkerSet = pd.read_csv(pkg_resources.resource_stream(__name__, 'annotations/organellemarkers/{}.csv'.format("Homo sapiens - Uniprot")), usecols=lambda x: bool(re.match("Gene name|Compartment", x))) df_organellarMarkerSet = df_organellarMarkerSet.rename(columns={"Gene name":"Gene names"}) df_organellarMarkerSet = df_organellarMarkerSet.astype({"Gene names": "str"}) def __init__(self, filename, expname, acquisition, comment, name_pattern="e.g.:.* (?P<cond>.*)_(?P<rep>.*)_(?P<frac>.*)", reannotate_genes=False, **kwargs): self.filename = filename self.expname = expname self.acquisition = acquisition self.name_pattern = name_pattern self.comment = comment self.imported_columns = self.regex["imported_columns"] self.fractions, self.map_names = [], [] self.df_01_stacked, self.df_log_stacked = pd.DataFrame(), pd.DataFrame() if acquisition == "SILAC - MQ": if "RatioHLcount" not in kwargs.keys(): self.RatioHLcount = 2 else: self.RatioHLcount = kwargs["RatioHLcount"] del kwargs["RatioHLcount"] if "RatioVariability" not in kwargs.keys(): self.RatioVariability = 30 else: self.RatioVariability = kwargs["RatioVariability"] del kwargs["RatioVariability"] elif acquisition == "Custom": self.custom_columns = kwargs["custom_columns"] self.custom_normalized = kwargs["custom_normalized"] self.imported_columns = "^"+"$|^".join(["$|^".join(el) if type(el) == list else el for el in self.custom_columns.values() if el not in [[], None, ""]])+"$" #elif acquisition == "LFQ5 - MQ" or acquisition == "LFQ6 - MQ" or acquisition == "LFQ6 - Spectronaut" or acquisition == "LFQ5 - Spectronaut": else: if "summed_MSMS_counts" not in kwargs.keys(): self.summed_MSMS_counts = 2 else: self.summed_MSMS_counts = kwargs["summed_MSMS_counts"] del kwargs["summed_MSMS_counts"] if "consecutiveLFQi" not in kwargs.keys(): self.consecutiveLFQi = 4 else: self.consecutiveLFQi = kwargs["consecutiveLFQi"] del kwargs["consecutiveLFQi"] #self.markerset_or_cluster = False if "markerset_or_cluster" not in kwargs.keys() else kwargs["markerset_or_cluster"] if "organism" not in kwargs.keys(): marker_table = pd.read_csv(pkg_resources.resource_stream(__name__, 'annotations/complexes/{}.csv'.format("Homo sapiens - Uniprot"))) self.markerproteins = {k: v.replace(" ", "").split(",") for k,v in zip(marker_table["Cluster"], marker_table["Members - Gene names"])} else: assert kwargs["organism"]+".csv" in pkg_resources.resource_listdir(__name__, "annotations/complexes") marker_table = pd.read_csv(pkg_resources.resource_stream(__name__, 'annotations/complexes/{}.csv'.format(kwargs["organism"]))) self.markerproteins = {k: v.replace(" ", "").split(",") for k,v in zip(marker_table["Cluster"], marker_table["Members - Gene names"])} self.organism = kwargs["organism"] del kwargs["organism"] self.analysed_datasets_dict = {} self.analysis_summary_dict = {} def data_reading(self, filename=None, content=None): """ Data import. Can read the df_original from a file or buffer. df_original contains all information of the raw file; tab separated file is imported, Args: self: filename: string imported_columns : dictionry; columns that correspond to this regular expression will be imported filename: default None, to use the class attribute. Otherwise overwrites the class attribute upon success. content: default None, to use the filename. Any valid input to pd.read_csv can be provided, e.g. a StringIO buffer. Returns: self.df_orginal: raw, unprocessed dataframe, single level column index """ # use instance attribute if no filename is provided if filename is None: filename = self.filename # if no buffer is provided for the content read straight from the file if content is None: content = filename if filename.endswith("xls") or filename.endswith("txt"): self.df_original = pd.read_csv(content, sep="\t", comment="#", usecols=lambda x: bool(re.match(self.imported_columns, x)), low_memory = True) else: #assuming csv file self.df_original = pd.read_csv(content, sep=",", comment="#", usecols=lambda x: bool(re.match(self.imported_columns, x)), low_memory = True) assert self.df_original.shape[0]>10 and self.df_original.shape[1]>5 self.filename = filename return self.df_original def processingdf(self, name_pattern=None, summed_MSMS_counts=None, consecutiveLFQi=None, RatioHLcount=None, RatioVariability=None, custom_columns=None, custom_normalized=None): """ Analysis of the SILAC/LFQ-MQ/LFQ-Spectronaut data will be performed. The dataframe will be filtered, normalized, and converted into a dataframe, characterized by a flat column index. These tasks is performed by following functions: indexingdf(df_original, acquisition_set_dict, acquisition, fraction_dict, name_pattern) spectronaut_LFQ_indexingdf(df_original, Spectronaut_columnRenaming, acquisition_set_dict, acquisition, fraction_dict, name_pattern) stringency_silac(df_index) normalization_01_silac(df_stringency_mapfracstacked): logarithmization_silac(df_stringency_mapfracstacked): stringency_lfq(df_index): normalization_01_lfq(df_stringency_mapfracstacked): logarithmization_lfq(df_stringency_mapfracstacked): Args: self.acquisition: string, "LFQ6 - Spectronaut", "LFQ5 - Spectronaut", "LFQ5 - MQ", "LFQ6 - MQ", "SILAC - MQ" additional arguments can be used to override the value set by the class init function Returns: self: map_names: list of Map names df_01_stacked: df; 0-1 normalized data with "normalized profile" as column name df_log_stacked: df; log transformed data analysis_summary_dict["0/1 normalized data - mean"] : 0/1 normalized data across all maps by calculating the mean ["changes in shape after filtering"] ["Unique Proteins"] : unique proteins, derived from the first entry of Protein IDs, seperated by a ";" ["Analysis parameters"] : {"acquisition" : ..., "filename" : ..., #SILAC# "Ratio H/L count 1 (>=X)" : ..., "Ratio H/L count 2 (>=Y, var<Z)" : ..., "Ratio variability (<Z, count>=Y)" : ... #LFQ# "consecutive data points" : ..., "summed MS/MS counts" : ... } """ if name_pattern is None: name_pattern = self.name_pattern if self.acquisition == "SILAC - MQ": if RatioHLcount is None: RatioHLcount = self.RatioHLcount if RatioVariability is None: RatioVariability = self.RatioVariability elif self.acquisition == "Custom": if custom_columns is None: custom_columns = self.custom_columns if custom_normalized is None: custom_normalized = self.custom_normalized else: if summed_MSMS_counts is None: summed_MSMS_counts = self.summed_MSMS_counts if consecutiveLFQi is None: consecutiveLFQi = self.consecutiveLFQi shape_dict = {} def indexingdf(): """ For data output from MaxQuant, all columns - except of "MS/MS count" and "LFQ intensity" (LFQ) | "Ratio H/L count", "Ratio H/L variability [%]" (SILAC) - will be set as index. A multiindex will be generated, containing "Set" ("MS/MS count", "LFQ intensity"| "Ratio H/L count", "Ratio H/L variability [%]"), "Fraction" (= defined via "name_pattern") and "Map" (= defined via "name_pattern") as level names, allowing the stacking and unstacking of the dataframe. The dataframe will be filtered by removing matches to the reverse database, matches only identified by site, and potential contaminants. Args: self: df_original: dataframe, columns defined through self.imported_columns acquisition_set_dict: dictionary, all columns will be set as index, except of those that are listed in acquisition_set_dict acquisition: string, one of "LFQ6 - Spectronaut", "LFQ5 - Spectronaut", "LFQ5 - MQ", "LFQ6 - MQ", "SILAC - MQ" fraction_dict: "Fraction" is part of the multiindex; fraction_dict allows the renaming of the fractions e.g. 3K -> 03K name_pattern: regular expression, to identify Map-Fraction-(Replicate) Returns: self: df_index: mutliindex dataframe, which contains 3 level labels: Map, Fraction, Type shape_dict["Original size"] of df_original shape_dict["Shape after categorical filtering"] of df_index fractions: list of fractions e.g. ["01K", "03K", ...] """ df_original = self.df_original.copy() df_original.rename({"Proteins": "Protein IDs"}, axis=1, inplace=True) df_original = df_original.set_index([col for col in df_original.columns if any([re.match(s, col) for s in self.acquisition_set_dict[self.acquisition]]) == False]) # multindex will be generated, by extracting the information about the Map, Fraction and Type from each individual column name multiindex = pd.MultiIndex.from_arrays( arrays=[ [[re.findall(s, col)[0] for s in self.acquisition_set_dict[self.acquisition] if re.match(s,col)][0] for col in df_original.columns], [re.match(self.name_pattern, col).group("rep") for col in df_original.columns] if not "<cond>" in self.name_pattern else ["_".join(re.match(self.name_pattern, col).group("cond", "rep")) for col in df_original.columns], [re.match(self.name_pattern, col).group("frac") for col in df_original.columns], ], names=["Set", "Map", "Fraction"] ) df_original.columns = multiindex df_original.sort_index(1, inplace=True) shape_dict["Original size"] = df_original.shape try: df_index = df_original.xs( np.nan, 0, "Reverse") except: pass try: df_index = df_index.xs( np.nan, 0, "Potential contaminant") except: pass try: df_index = df_index.xs( np.nan, 0, "Only identified by site") except: pass df_index.replace(0, np.nan, inplace=True) shape_dict["Shape after categorical filtering"] = df_index.shape df_index.rename(columns={"MS/MS Count":"MS/MS count"}, inplace=True) fraction_wCyt = list(df_index.columns.get_level_values("Fraction").unique()) ##############Cyt should get only be removed if it is not an NMC split if "Cyt" in fraction_wCyt and len(fraction_wCyt) >= 4: df_index.drop("Cyt", axis=1, level="Fraction", inplace=True) try: if self.acquisition == "LFQ5 - MQ": df_index.drop("01K", axis=1, level="Fraction", inplace=True) except: pass self.fractions = natsort.natsorted(list(df_index.columns.get_level_values("Fraction").unique())) self.df_index = df_index return df_index def custom_indexing_and_normalization(): df_original = self.df_original.copy() df_original.rename({custom_columns["ids"]: "Protein IDs", custom_columns["genes"]: "Gene names"}, axis=1, inplace=True) df_original = df_original.set_index([col for col in df_original.columns if any([re.match(s, col) for s in self.acquisition_set_dict[self.acquisition]]) == False]) # multindex will be generated, by extracting the information about the Map, Fraction and Type from each individual column name multiindex = pd.MultiIndex.from_arrays( arrays=[ ["normalized profile" for col in df_original.columns], [re.match(self.name_pattern, col).group("rep") for col in df_original.columns] if not "<cond>" in self.name_pattern else ["_".join(re.match(self.name_pattern, col).group("cond", "rep")) for col in df_original.columns], [re.match(self.name_pattern, col).group("frac") for col in df_original.columns], ], names=["Set", "Map", "Fraction"] ) df_original.columns = multiindex df_original.sort_index(1, inplace=True) shape_dict["Original size"] = df_original.shape # for custom upload assume full normalization for now. this should be extended to valid value filtering and 0-1 normalization later df_index = df_original.copy() self.fractions = natsort.natsorted(list(df_index.columns.get_level_values("Fraction").unique())) self.df_index = df_index return df_index def spectronaut_LFQ_indexingdf(): """ For data generated from the Spectronaut software, columns will be renamed, such it fits in the scheme of MaxQuant output data. Subsequently, all columns - except of "MS/MS count" and "LFQ intensity" will be set as index. A multiindex will be generated, containing "Set" ("MS/MS count" and "LFQ intensity"), Fraction" and "Map" (= defined via "name_pattern"; both based on the column name R.condition - equivalent to the column name "Map" in df_renamed["Map"]) as level labels. !!! !!!It is very important to define R.Fraction, R.condition already during the setup of Spectronaut!!! !!! Args: self: df_original: dataframe, columns defined through self.imported_columns Spectronaut_columnRenaming acquisition_set_dict: dictionary, all columns will be set as index, except of those that are listed in acquisition_set_dict acquisition: string, "LFQ6 - Spectronaut", "LFQ5 - Spectronaut" fraction_dict: "Fraction" is part of the multiindex; fraction_dict allows the renaming of the fractions e.g. 3K -> 03K name_pattern: regular expression, to identify Map-Fraction-(Replicate) Returns: self: df_index: mutliindex dataframe, which contains 3 level labels: Map, Fraction, Type shape_dict["Original size"] of df_index fractions: list of fractions e.g. ["01K", "03K", ...] """ df_original = self.df_original.copy() df_renamed = df_original.rename(columns=self.Spectronaut_columnRenaming) df_renamed["Fraction"] = [re.match(self.name_pattern, i).group("frac") for i in df_renamed["Map"]] df_renamed["Map"] = [re.match(self.name_pattern, i).group("rep") for i in df_renamed["Map"]] if not "<cond>" in self.name_pattern else ["_".join( re.match(self.name_pattern, i).group("cond", "rep")) for i in df_renamed["Map"]] df_index = df_renamed.set_index([col for col in df_renamed.columns if any([re.match(s, col) for s in self.acquisition_set_dict[self.acquisition]])==False]) df_index.columns.names = ["Set"] # In case fractionated data was used this needs to be catched and aggregated try: df_index = df_index.unstack(["Map", "Fraction"]) except ValueError: df_index = df_index.groupby(by=df_index.index.names).agg(np.nansum, axis=0) df_index = df_index.unstack(["Map", "Fraction"]) df_index.replace(0, np.nan, inplace=True) shape_dict["Original size"]=df_index.shape fraction_wCyt = list(df_index.columns.get_level_values("Fraction").unique()) #Cyt is removed only if it is not an NMC split if "Cyt" in fraction_wCyt and len(fraction_wCyt) >= 4: df_index.drop("Cyt", axis=1, level="Fraction", inplace=True) try: if self.acquisition == "LFQ5 - Spectronaut": df_index.drop("01K", axis=1, level="Fraction", inplace=True) except: pass self.fractions = natsort.natsorted(list(df_index.columns.get_level_values("Fraction").unique())) self.df_index = df_index return df_index def stringency_silac(df_index): """ The multiindex dataframe is subjected to stringency filtering. Only Proteins with complete profiles are considered (a set of f.e. 5 SILAC ratios in case you have 5 fractions / any proteins with missing values were rejected). Proteins were retained with 3 or more quantifications in each subfraction (=count). Furthermore, proteins with only 2 quantification events in one or more subfraction were retained, if their ratio variability for ratios obtained with 2 quantification events was below 30% (=var). SILAC ratios were linearly normalized by division through the fraction median. Subsequently normalization to SILAC loading was performed.Data is annotated based on specified marker set e.g. eLife. Args: df_index: multiindex dataframe, which contains 3 level labels: MAP, Fraction, Type RatioHLcount: int, 2 RatioVariability: int, 30 df_organellarMarkerSet: df, columns: "Gene names", "Compartment", no index fractions: list of fractions e.g. ["01K", "03K", ...] Returns: df_stringency_mapfracstacked: dataframe, in which "MAP" and "Fraction" are stacked; columns "Ratio H/L count", "Ratio H/L variability [%]", and "Ratio H/L" stored as single level indices shape_dict["Shape after Ratio H/L count (>=3)/var (count>=2, var<30) filtering"] of df_countvarfiltered_stacked shape_dict["Shape after filtering for complete profiles"] of df_stringency_mapfracstacked """ # Fraction and Map will be stacked df_stack = df_index.stack(["Fraction", "Map"]) # filtering for sufficient number of quantifications (count in "Ratio H/L count"), taken variability (var in Ratio H/L variability [%]) into account # zip: allows direct comparison of count and var # only if the filtering parameters are fulfilled the data will be introduced into df_countvarfiltered_stacked #default setting: RatioHLcount = 2 ; RatioVariability = 30 df_countvarfiltered_stacked = df_stack.loc[[count>RatioHLcount or (count==RatioHLcount and var<RatioVariability) for var, count in zip(df_stack["Ratio H/L variability [%]"], df_stack["Ratio H/L count"])]] shape_dict["Shape after Ratio H/L count (>=3)/var (count==2, var<30) filtering"] = df_countvarfiltered_stacked.unstack(["Fraction", "Map"]).shape # "Ratio H/L":normalization to SILAC loading, each individual experiment (FractionXMap) will be divided by its median # np.median([...]): only entries, that are not NANs are considered df_normsilac_stacked = df_countvarfiltered_stacked["Ratio H/L"]\ .unstack(["Fraction", "Map"])\ .apply(lambda x: x/np.nanmedian(x), axis=0)\ .stack(["Map", "Fraction"]) df_stringency_mapfracstacked = df_countvarfiltered_stacked[["Ratio H/L count", "Ratio H/L variability [%]"]].join( pd.DataFrame(df_normsilac_stacked, columns=["Ratio H/L"])) # dataframe is grouped (Map, id), that allows the filtering for complete profiles df_stringency_mapfracstacked = df_stringency_mapfracstacked.groupby(["Map", "id"]).filter(lambda x: len(x)>=len(self.fractions)) shape_dict["Shape after filtering for complete profiles"]=df_stringency_mapfracstacked.unstack(["Fraction", "Map"]).shape # Ratio H/L is converted into Ratio L/H df_stringency_mapfracstacked["Ratio H/L"] = df_stringency_mapfracstacked["Ratio H/L"].transform(lambda x: 1/x) #Annotation with marker genes df_organellarMarkerSet = self.df_organellarMarkerSet df_stringency_mapfracstacked.reset_index(inplace=True) df_stringency_mapfracstacked = df_stringency_mapfracstacked.merge(df_organellarMarkerSet, how="left", on="Gene names") df_stringency_mapfracstacked.set_index([c for c in df_stringency_mapfracstacked.columns if c not in ["Ratio H/L count","Ratio H/L variability [%]","Ratio H/L"]], inplace=True) df_stringency_mapfracstacked.rename(index={np.nan:"undefined"}, level="Compartment", inplace=True) return df_stringency_mapfracstacked def normalization_01_silac(df_stringency_mapfracstacked): """ The multiindex dataframe, that was subjected to stringency filtering, is 0-1 normalized ("Ratio H/L"). Args: df_stringency_mapfracstacked: dataframe, in which "Map" and "Fraction" are stacked; columns "Ratio H/L count", "Ratio H/L variability [%]", and "Ratio H/L" stored as single level indices self: fractions: list of fractions e.g. ["01K", "03K", ...] data_completeness: series, for each individual map, as well as combined maps: 1 - (percentage of NANs) Returns: df_01_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "Ratio H/L" is 0-1 normalized and renamed to "normalized profile"; the columns "Ratio H/L count", "Ratio H/L variability [%]", and "normalized profile" stored as single level indices; plotting is possible now self: analysis_summary_dict["Data/Profile Completeness"] : df, with information about Data/Profile Completeness column: "Experiment", "Map", "Data completeness", "Profile completeness" no row index """ df_01norm_unstacked = df_stringency_mapfracstacked["Ratio H/L"].unstack("Fraction") # 0:1 normalization of Ratio L/H df_01norm_unstacked = df_01norm_unstacked.div(df_01norm_unstacked.sum(axis=1), axis=0) df_01_stacked = df_stringency_mapfracstacked[["Ratio H/L count", "Ratio H/L variability [%]"]].join(pd.DataFrame (df_01norm_unstacked.stack("Fraction"),columns=["Ratio H/L"])) # "Ratio H/L" will be renamed to "normalized profile" df_01_stacked.columns = [col if col!="Ratio H/L" else "normalized profile" for col in df_01_stacked.columns] return df_01_stacked def logarithmization_silac(df_stringency_mapfracstacked): """ The multiindex dataframe, that was subjected to stringency filtering, is logarithmized ("Ratio H/L"). Args: df_stringency_mapfracstacked: dataframe, in which "MAP" and "Fraction" are stacked; the columns "Ratio H/L count", "Ratio H/L variability [%]", and "Ratio H/L" stored as single level indices Returns: df_log_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "log profile" originates from logarithmized "Ratio H/L" data; the columns "Ratio H/L count", "Ratio H/L variability [%]" and "log profile" are stored as single level indices; PCA is possible now """ # logarithmizing, basis of 2 df_lognorm_ratio_stacked = df_stringency_mapfracstacked["Ratio H/L"].transform(np.log2) df_log_stacked = df_stringency_mapfracstacked[["Ratio H/L count", "Ratio H/L variability [%]"]].join( pd.DataFrame(df_lognorm_ratio_stacked, columns=["Ratio H/L"])) # "Ratio H/L" will be renamed to "log profile" df_log_stacked.columns = [col if col !="Ratio H/L" else "log profile" for col in df_log_stacked.columns] return df_log_stacked def stringency_lfq(df_index): """ The multiindex dataframe is subjected to stringency filtering. Only Proteins which were identified with at least [4] consecutive data points regarding the "LFQ intensity", and if summed MS/MS counts >= n(fractions)*[2] (LFQ5: min 10 and LFQ6: min 12, respectively; coverage filtering) were included. Data is annotated based on specified marker set e.g. eLife. Args: df_index: multiindex dataframe, which contains 3 level labels: MAP, Fraction, Typ self: df_organellarMarkerSet: df, columns: "Gene names", "Compartment", no index fractions: list of fractions e.g. ["01K", "03K", ...] summed_MSMS_counts: int, 2 consecutiveLFQi: int, 4 Returns: df_stringency_mapfracstacked: dataframe, in which "Map" and "Fraction" is stacked; "LFQ intensity" and "MS/MS count" define a single-level column index self: shape_dict["Shape after MS/MS value filtering"] of df_mscount_mapstacked shape_dict["Shape after consecutive value filtering"] of df_stringency_mapfracstacked """ df_index = df_index.stack("Map") # sorting the level 0, in order to have LFQ intensity - MS/MS count instead of continuous alternation df_index.sort_index(axis=1, level=0, inplace=True) # "MS/MS count"-column: take the sum over the fractions; if the sum is larger than n[fraction]*2, it will be stored in the new dataframe minms = (len(self.fractions) * self.summed_MSMS_counts) if minms > 0: df_mscount_mapstacked = df_index.loc[df_index[("MS/MS count")].apply(np.sum, axis=1) >= minms] shape_dict["Shape after MS/MS value filtering"]=df_mscount_mapstacked.unstack("Map").shape df_stringency_mapfracstacked = df_mscount_mapstacked.copy() else: df_stringency_mapfracstacked = df_index.copy() # series no dataframe is generated; if there are at least i.e. 4 consecutive non-NANs, data will be retained df_stringency_mapfracstacked.sort_index(level="Fraction", axis=1, key=natsort_index_keys, inplace=True) df_stringency_mapfracstacked = df_stringency_mapfracstacked.loc[ df_stringency_mapfracstacked[("LFQ intensity")]\ .apply(lambda x: np.isfinite(x), axis=0)\ .apply(lambda x: sum(x) >= self.consecutiveLFQi and any(x.rolling(window=self.consecutiveLFQi).sum() >= self.consecutiveLFQi), axis=1)] shape_dict["Shape after consecutive value filtering"]=df_stringency_mapfracstacked.unstack("Map").shape df_stringency_mapfracstacked = df_stringency_mapfracstacked.copy().stack("Fraction") #Annotation with marker genes df_organellarMarkerSet = self.df_organellarMarkerSet df_stringency_mapfracstacked.reset_index(inplace=True) df_stringency_mapfracstacked = df_stringency_mapfracstacked.merge(df_organellarMarkerSet, how="left", on="Gene names") df_stringency_mapfracstacked.set_index([c for c in df_stringency_mapfracstacked.columns if c!="MS/MS count" and c!="LFQ intensity"], inplace=True) df_stringency_mapfracstacked.rename(index={np.nan : "undefined"}, level="Compartment", inplace=True) return df_stringency_mapfracstacked def normalization_01_lfq(df_stringency_mapfracstacked): """ The multiindex dataframe, that was subjected to stringency filtering, is 0-1 normalized ("LFQ intensity"). Args: df_stringency_mapfracstacked: dataframe, in which "Map" and "Fraction" is stacked, "LFQ intensity" and "MS/MS count" define a single-level column index self: fractions: list of fractions e.g. ["01K", "03K", ...] Returns: df_01_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "LFQ intensity" is 0-1 normalized and renamed to "normalized profile"; the columns "normalized profile" and "MS/MS count" are stored as single level indices; plotting is possible now """ df_01norm_mapstacked = df_stringency_mapfracstacked["LFQ intensity"].unstack("Fraction") # 0:1 normalization of Ratio L/H df_01norm_unstacked = df_01norm_mapstacked.div(df_01norm_mapstacked.sum(axis=1), axis=0) df_rest = df_stringency_mapfracstacked.drop("LFQ intensity", axis=1) df_01_stacked = df_rest.join(pd.DataFrame(df_01norm_unstacked.stack( "Fraction"),columns=["LFQ intensity"])) # rename columns: "LFQ intensity" into "normalized profile" df_01_stacked.columns = [col if col!="LFQ intensity" else "normalized profile" for col in df_01_stacked.columns] #imputation df_01_stacked = df_01_stacked.unstack("Fraction").replace(np.NaN, 0).stack("Fraction") df_01_stacked = df_01_stacked.sort_index() return df_01_stacked def logarithmization_lfq(df_stringency_mapfracstacked): """The multiindex dataframe, that was subjected to stringency filtering, is logarithmized ("LFQ intensity"). Args: df_stringency_mapfracstacked: dataframe, in which "Map" and "Fraction" is stacked; "LFQ intensity" and "MS/MS count" define a single-level column index Returns: df_log_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "log profile" originates from logarithmized "LFQ intensity"; the columns "log profile" and "MS/MS count" are stored as single level indices; PCA is possible now """ df_lognorm_ratio_stacked = df_stringency_mapfracstacked["LFQ intensity"].transform(np.log2) df_rest = df_stringency_mapfracstacked.drop("LFQ intensity", axis=1) df_log_stacked = df_rest.join(pd.DataFrame(df_lognorm_ratio_stacked, columns=["LFQ intensity"])) # "LFQ intensity" will be renamed to "log profile" df_log_stacked.columns = [col if col!="LFQ intensity" else "log profile" for col in df_log_stacked.columns] return df_log_stacked def split_ids_uniprot(el): """ This finds the primary canoncial protein ID in the protein group. If no canonical ID is present it selects the first isoform ID. """ p1 = el.split(";")[0] if "-" not in p1: return p1 else: p = p1.split("-")[0] if p in el.split(";"): return p else: return p1 if self.acquisition == "SILAC - MQ": # Index data df_index = indexingdf() map_names = df_index.columns.get_level_values("Map").unique() self.map_names = map_names # Run stringency filtering and normalization df_stringency_mapfracstacked = stringency_silac(df_index) self.df_stringencyFiltered = df_stringency_mapfracstacked self.df_01_stacked = normalization_01_silac(df_stringency_mapfracstacked) self.df_log_stacked = logarithmization_silac(df_stringency_mapfracstacked) # format and reduce 0-1 normalized data for comparison with other experiments df_01_comparison = self.df_01_stacked.copy() comp_ids = pd.Series([split_ids_uniprot(el) for el in df_01_comparison.index.get_level_values("Protein IDs")], name="Protein IDs") df_01_comparison.index = df_01_comparison.index.droplevel("Protein IDs") df_01_comparison.set_index(comp_ids, append=True, inplace=True) df_01_comparison.drop(["Ratio H/L count", "Ratio H/L variability [%]"], inplace=True, axis=1) df_01_comparison = df_01_comparison.unstack(["Map", "Fraction"]) df_01_comparison.columns = ["?".join(el) for el in df_01_comparison.columns.values] df_01_comparison = df_01_comparison.copy().reset_index().drop(["C-Score", "Q-value", "Score", "Majority protein IDs", "Protein names", "id"], axis=1, errors="ignore") # poopulate analysis summary dictionary with (meta)data unique_proteins = [split_ids_uniprot(i) for i in set(self.df_01_stacked.index.get_level_values("Protein IDs"))] unique_proteins.sort() self.analysis_summary_dict["0/1 normalized data"] = df_01_comparison.to_json() self.analysis_summary_dict["Unique Proteins"] = unique_proteins self.analysis_summary_dict["changes in shape after filtering"] = shape_dict.copy() analysis_parameters = {"acquisition" : self.acquisition, "filename" : self.filename, "comment" : self.comment, "Ratio H/L count" : self.RatioHLcount, "Ratio variability" : self.RatioVariability, "organism" : self.organism, } self.analysis_summary_dict["Analysis parameters"] = analysis_parameters.copy() # TODO this line needs to be removed. self.analysed_datasets_dict[self.expname] = self.analysis_summary_dict.copy() elif self.acquisition == "LFQ5 - MQ" or self.acquisition == "LFQ6 - MQ" or self.acquisition == "LFQ5 - Spectronaut" or self.acquisition == "LFQ6 - Spectronaut": #if not summed_MS_counts: # summed_MS_counts = self.summed_MS_counts #if not consecutiveLFQi: # consecutiveLFQi = self.consecutiveLFQi if self.acquisition == "LFQ5 - MQ" or self.acquisition == "LFQ6 - MQ": df_index = indexingdf() elif self.acquisition == "LFQ5 - Spectronaut" or self.acquisition == "LFQ6 - Spectronaut": df_index = spectronaut_LFQ_indexingdf() map_names = df_index.columns.get_level_values("Map").unique() self.map_names = map_names df_stringency_mapfracstacked = stringency_lfq(df_index) self.df_stringencyFiltered = df_stringency_mapfracstacked self.df_log_stacked = logarithmization_lfq(df_stringency_mapfracstacked) self.df_01_stacked = normalization_01_lfq(df_stringency_mapfracstacked) df_01_comparison = self.df_01_stacked.copy() comp_ids = pd.Series([split_ids_uniprot(el) for el in df_01_comparison.index.get_level_values("Protein IDs")], name="Protein IDs") df_01_comparison.index = df_01_comparison.index.droplevel("Protein IDs") df_01_comparison.set_index(comp_ids, append=True, inplace=True) df_01_comparison.drop("MS/MS count", inplace=True, axis=1, errors="ignore") df_01_comparison = df_01_comparison.unstack(["Map", "Fraction"]) df_01_comparison.columns = ["?".join(el) for el in df_01_comparison.columns.values] df_01_comparison = df_01_comparison.copy().reset_index().drop(["C-Score", "Q-value", "Score", "Majority protein IDs", "Protein names", "id"], axis=1, errors="ignore") self.analysis_summary_dict["0/1 normalized data"] = df_01_comparison.to_json()#double_precision=4) #.reset_index() unique_proteins = [split_ids_uniprot(i) for i in set(self.df_01_stacked.index.get_level_values("Protein IDs"))] unique_proteins.sort() self.analysis_summary_dict["Unique Proteins"] = unique_proteins self.analysis_summary_dict["changes in shape after filtering"] = shape_dict.copy() analysis_parameters = {"acquisition" : self.acquisition, "filename" : self.filename, "comment" : self.comment, "consecutive data points" : self.consecutiveLFQi, "summed MS/MS counts" : self.summed_MSMS_counts, "organism" : self.organism, } self.analysis_summary_dict["Analysis parameters"] = analysis_parameters.copy() self.analysed_datasets_dict[self.expname] = self.analysis_summary_dict.copy() #return self.df_01_stacked elif self.acquisition == "Custom": df_index = custom_indexing_and_normalization() map_names = df_index.columns.get_level_values("Map").unique() self.map_names = map_names df_01_stacked = df_index.stack(["Map", "Fraction"]) df_01_stacked = df_01_stacked.reset_index().merge(self.df_organellarMarkerSet, how="left", on="Gene names") df_01_stacked.set_index([c for c in df_01_stacked.columns if c not in ["normalized profile"]], inplace=True) df_01_stacked.rename(index={np.nan:"undefined"}, level="Compartment", inplace=True) self.df_01_stacked = df_01_stacked df_01_comparison = self.df_01_stacked.copy() comp_ids = pd.Series([split_ids_uniprot(el) for el in df_01_comparison.index.get_level_values("Protein IDs")], name="Protein IDs") df_01_comparison.index = df_01_comparison.index.droplevel("Protein IDs") df_01_comparison.set_index(comp_ids, append=True, inplace=True) df_01_comparison.drop("MS/MS count", inplace=True, axis=1, errors="ignore") df_01_comparison = df_01_comparison.unstack(["Map", "Fraction"]) df_01_comparison.columns = ["?".join(el) for el in df_01_comparison.columns.values] df_01_comparison = df_01_comparison.copy().reset_index().drop(["C-Score", "Q-value", "Score", "Majority protein IDs", "Protein names", "id"], axis=1, errors="ignore") self.analysis_summary_dict["0/1 normalized data"] = df_01_comparison.to_json()#double_precision=4) #.reset_index() unique_proteins = [split_ids_uniprot(i) for i in set(self.df_01_stacked.index.get_level_values("Protein IDs"))] unique_proteins.sort() self.analysis_summary_dict["Unique Proteins"] = unique_proteins self.analysis_summary_dict["changes in shape after filtering"] = shape_dict.copy() analysis_parameters = {"acquisition" : self.acquisition, "filename" : self.filename, "comment" : self.comment, "organism" : self.organism, } self.analysis_summary_dict["Analysis parameters"] = analysis_parameters.copy() self.analysed_datasets_dict[self.expname] = self.analysis_summary_dict.copy() else: return "I do not know this" def plot_log_data(self): """ Args: self.df_log_stacked Returns: log_histogram: Histogram of log transformed data """ log_histogram = px.histogram(self.df_log_stacked.reset_index().sort_values(["Map", "Fraction"], key=natsort_list_keys), x="log profile", facet_col="Fraction", facet_row="Map", template="simple_white", labels={"log profile": "log tranformed data ({})".format("LFQ intenisty" if self.acquisition != "SILAC - MQ" else "Ratio H/L")} ) log_histogram.for_each_xaxis(lambda axis: axis.update(title={"text":""})) log_histogram.for_each_yaxis(lambda axis: axis.update(title={"text":""})) log_histogram.add_annotation(x=0.5, y=0, yshift=-50, xref="paper",showarrow=False, yref="paper", text="log2(LFQ intensity)") log_histogram.add_annotation(x=0, y=0.5, textangle=270, xref="paper",showarrow=False, yref="paper", xshift=-50, text="count") log_histogram.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1])) return log_histogram def quantity_profiles_proteinGroups(self): """ Number of profiles, protein groups per experiment, and the data completness of profiles (total quantity, intersection) is calculated. Args: self: acquisition: string, "LFQ6 - Spectronaut", "LFQ5 - Spectronaut", "LFQ5 - MQ", "LFQ6 - MQ", "SILAC - MQ" df_index: multiindex dataframe, which contains 3 level labels: MAP, Fraction, Typ df_01_stacked: df; 0-1 normalized data with "normalized profile" as column name Returns: self: df_quantity_pr_pg: df; no index, columns: "filtering", "type", "npg", "npr", "npr_dc"; containign following information: npg_t: protein groups per experiment total quantity npgf_t = groups with valid profiles per experiment total quanitity npr_t: profiles with any valid values nprf_t = total number of valid profiles npg_i: protein groups per experiment intersection npgf_i = groups with valid profiles per experiment intersection npr_i: profiles with any valid values in the intersection nprf_i = total number of valid profiles in the intersection npr_t_dc: profiles, % values != nan nprf_t_dc = profiles, total, filtered, % values != nan npr_i_dc: profiles, intersection, % values != nan nprf_i_dc = profiles, intersection, filtered, % values != nan df_npg | df_npgf: index: maps e.g. "Map1", "Map2",..., columns: fractions e.g. "03K", "06K", ... npg_f = protein groups, per fraction or npgf_f = protein groups, filtered, per fraction df_npg_dc | df_npgf_dc: index: maps e.g. "Map1", "Map2",..., columns: fractions e.g. "03K", "06K", ... npg_f_dc = protein groups, per fraction, % values != nan or npgf_f_dc = protein groups, filtered, per fraction, % values != nan """ if self.acquisition == "SILAC - MQ": df_index = self.df_index["Ratio H/L"] df_01_stacked = self.df_01_stacked["normalized profile"] elif self.acquisition.startswith("LFQ"): df_index = self.df_index["LFQ intensity"] df_01_stacked = self.df_01_stacked["normalized profile"].replace(0, np.nan) elif self.acquisition == "Custom": df_index = self.df_index["normalized profile"] df_01_stacked = self.df_01_stacked["normalized profile"].replace(0, np.nan) #unfiltered npg_t = df_index.shape[0] df_index_MapStacked = df_index.stack("Map") npr_t = df_index_MapStacked.shape[0]/len(self.map_names) npr_t_dc = 1-df_index_MapStacked.isna().sum().sum()/np.prod(df_index_MapStacked.shape) #filtered npgf_t = df_01_stacked.unstack(["Map", "Fraction"]).shape[0] df_01_MapStacked = df_01_stacked.unstack("Fraction") nprf_t = df_01_MapStacked.shape[0]/len(self.map_names) nprf_t_dc = 1-df_01_MapStacked.isna().sum().sum()/np.prod(df_01_MapStacked.shape) #unfiltered intersection try: df_index_intersection = df_index_MapStacked.groupby(level="Sequence").filter(lambda x : len(x)==len(self.map_names)) except: df_index_intersection = df_index_MapStacked.groupby(level="Protein IDs").filter(lambda x : len(x)==len(self.map_names)) npr_i = df_index_intersection.shape[0]/len(self.map_names) npr_i_dc = 1-df_index_intersection.isna().sum().sum()/np.prod(df_index_intersection.shape) npg_i = df_index_intersection.unstack("Map").shape[0] #filtered intersection try: df_01_intersection = df_01_MapStacked.groupby(level = "Sequence").filter(lambda x : len(x)==len(self.map_names)) except: df_01_intersection = df_01_MapStacked.groupby(level = "Protein IDs").filter(lambda x : len(x)==len(self.map_names)) nprf_i = df_01_intersection.shape[0]/len(self.map_names) nprf_i_dc = 1-df_01_intersection.isna().sum().sum()/np.prod(df_01_intersection.shape) npgf_i = df_01_intersection.unstack("Map").shape[0] # summarize in dataframe and save to attribute df_quantity_pr_pg = pd.DataFrame( { "filtering": pd.Series(["before filtering", "before filtering", "after filtering", "after filtering"], dtype=np.dtype("O")), "type": pd.Series(["total", "intersection", "total", "intersection"], dtype=np.dtype("O")), "number of protein groups": pd.Series([npg_t, npg_i, npgf_t, npgf_i], dtype=np.dtype("float")), "number of profiles": pd.Series([npr_t, npr_i, nprf_t, nprf_i], dtype=np.dtype("float")), "data completeness of profiles": pd.Series([npr_t_dc, npr_i_dc, nprf_t_dc, nprf_i_dc], dtype=np.dtype("float"))}) self.df_quantity_pr_pg = df_quantity_pr_pg.reset_index() self.analysis_summary_dict["quantity: profiles/protein groups"] = self.df_quantity_pr_pg.to_json() #additional depth assessment per fraction dict_npgf = {} dict_npg = {} list_npg_dc = [] list_npgf_dc = [] for df_intersection in [df_index_intersection, df_01_intersection]: for fraction in self.fractions: df_intersection_frac = df_intersection[fraction] npgF_f_dc = 1-df_intersection_frac.isna().sum()/len(df_intersection_frac) npgF_f = df_intersection_frac.unstack("Map").isnull().sum(axis=1).value_counts() if fraction not in dict_npg.keys(): dict_npg[fraction] = npgF_f list_npg_dc.append(npgF_f_dc) else: dict_npgf[fraction] = npgF_f list_npgf_dc.append(npgF_f_dc) df_npg = pd.DataFrame(dict_npg) df_npg.index.name = "Protein Groups present in:" df_npg.rename_axis("Fraction", axis=1, inplace=True) df_npg = df_npg.stack("Fraction").reset_index() df_npg = df_npg.rename({0: "Protein Groups"}, axis=1) df_npg.sort_values(["Fraction", "Protein Groups present in:"], inplace=True, key=natsort_list_keys) df_npgf = pd.DataFrame(dict_npgf) df_npgf.index.name = "Protein Groups present in:" df_npgf.rename_axis("Fraction", axis=1, inplace=True) df_npgf = df_npgf.stack("Fraction").reset_index() df_npgf = df_npgf.rename({0: "Protein Groups"}, axis=1) df_npgf.sort_values(["Fraction", "Protein Groups present in:"], inplace=True, key=natsort_list_keys) max_df_npg = df_npg["Protein Groups present in:"].max() min_df_npg = df_npg["Protein Groups present in:"].min() rename_numOFnans = {} for x, y in zip(range(max_df_npg,min_df_npg-1, -1), range(max_df_npg+1)): if y == 1: rename_numOFnans[x] = "{} Map".format(y) elif y == 0: rename_numOFnans[x] = "PG not identified".format(y) else: rename_numOFnans[x] = "{} Maps".format(y) for keys in rename_numOFnans.keys(): df_npg.loc[df_npg["Protein Groups present in:"] ==keys, "Protein Groups present in:"] = rename_numOFnans[keys] df_npgf.loc[df_npgf["Protein Groups present in:"] ==keys, "Protein Groups present in:"] = rename_numOFnans[keys] # summarize in dataframe and save to attributes self.df_npg_dc = pd.DataFrame( { "Fraction" : pd.Series(self.fractions), "Data completeness before filtering": pd.Series(list_npg_dc), "Data completeness after filtering": pd.Series(list_npgf_dc), }) self.df_npg = df_npg self.df_npgf = df_npgf def plot_quantity_profiles_proteinGroups(self): """ Args: self: df_quantity_pr_pg: df; no index, columns: "filtering", "type", "npg", "npr", "npr_dc"; further information: see above Returns: """ df_quantity_pr_pg = self.df_quantity_pr_pg layout = go.Layout(barmode="overlay", xaxis_tickangle=90, autosize=False, width=300, height=500, xaxis=go.layout.XAxis(linecolor="black", linewidth=1, #title="Map", mirror=True), yaxis=go.layout.YAxis(linecolor="black", linewidth=1, mirror=True), template="simple_white") fig_npg = go.Figure() for t in df_quantity_pr_pg["type"].unique(): plot_df = df_quantity_pr_pg[df_quantity_pr_pg["type"] == t] fig_npg.add_trace(go.Bar( x=plot_df["filtering"], y=plot_df["number of protein groups"], name=t)) fig_npg.update_layout(layout, title="Number of Protein Groups", yaxis=go.layout.YAxis(title="Protein Groups")) fig_npr = go.Figure() for t in df_quantity_pr_pg["type"].unique(): plot_df = df_quantity_pr_pg[df_quantity_pr_pg["type"] == t] fig_npr.add_trace(go.Bar( x=plot_df["filtering"], y=plot_df["number of profiles"], name=t)) fig_npr.update_layout(layout, title="Number of Profiles") df_quantity_pr_pg = df_quantity_pr_pg.sort_values("filtering") fig_npr_dc = go.Figure() for t in df_quantity_pr_pg["filtering"].unique(): plot_df = df_quantity_pr_pg[df_quantity_pr_pg["filtering"] == t] fig_npr_dc.add_trace(go.Bar( x=plot_df["type"], y=plot_df["data completeness of profiles"], name=t)) fig_npr_dc.update_layout(layout, title="Coverage", yaxis=go.layout.YAxis(title="Data completness")) #fig_npr_dc.update_xaxes(tickangle=30) fig_npg_F = px.bar(self.df_npg, x="Fraction", y="Protein Groups", color="Protein Groups present in:", template="simple_white", title = "Protein groups per fraction - before filtering", width=500) fig_npgf_F = px.bar(self.df_npgf, x="Fraction", y="Protein Groups", color="Protein Groups present in:", template="simple_white", title = "Protein groups per fraction - after filtering", width=500) fig_npg_F_dc = go.Figure() for data_type in ["Data completeness after filtering", "Data completeness before filtering"]: fig_npg_F_dc.add_trace(go.Bar( x=self.df_npg_dc["Fraction"], y=self.df_npg_dc[data_type], name=data_type)) fig_npg_F_dc.update_layout(layout, barmode="overlay", title="Data completeness per fraction", yaxis=go.layout.YAxis(title=""), height=450, width=600) return fig_npg, fig_npr, fig_npr_dc, fig_npg_F, fig_npgf_F, fig_npg_F_dc def perform_pca(self): """ PCA will be performed, using logarithmized data. Args: self: markerproteins: dictionary, key: cluster name, value: gene names (e.g. {"Proteasome" : ["PSMA1", "PSMA2",...], ...} "V-type proton ATP df_log_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "log profile" originates from logarithmized "LFQ intensity" and "Ratio H/L", respectively; additionally the columns "MS/MS count" and "Ratio H/L count|Ratio H/L variability [%]" are stored as single level indices df_01_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "LFQ intensity" is 0-1 normalized and renamed to "normalized profile"; the columns "normalized profile"" and "MS/MS count" are stored as single level indices; plotting is possible now Returns: self: df_pca: df, PCA was performed, while keeping the information of the Maps columns: "PC1", "PC2", "PC3" index: "Protein IDs", "Majority protein IDs", "Protein names", "Gene names", "Q-value", "Score", "id", "Map" "Compartment" df_pca_combined: df, PCA was performed across the Maps columns: "PC1", "PC2", "PC3" index: "Protein IDs", "Majority protein IDs", "Protein names", "Gene names", "Q-value", "Score", "id", "Compartment" df_pca_all_marker_cluster_maps: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3", filtered for marker genes, that are consistent throughout all maps / coverage filtering. """ markerproteins = self.markerproteins if self.acquisition == "SILAC - MQ": df_01orlog_fracunstacked = self.df_log_stacked["log profile"].unstack("Fraction").dropna() df_01orlog_MapFracUnstacked = self.df_log_stacked["log profile"].unstack(["Fraction", "Map"]).dropna() elif self.acquisition.startswith("LFQ") or self.acquisition == "Custom": df_01orlog_fracunstacked = self.df_01_stacked["normalized profile"].unstack("Fraction").dropna() df_01orlog_MapFracUnstacked = self.df_01_stacked["normalized profile"].unstack(["Fraction", "Map"]).dropna() pca = PCA(n_components=3) # df_pca: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3" df_pca = pd.DataFrame(pca.fit_transform(df_01orlog_fracunstacked)) df_pca.columns = ["PC1", "PC2", "PC3"] df_pca.index = df_01orlog_fracunstacked.index self.df_pca = df_pca.sort_index(level=["Gene names", "Compartment"]) # df_pca: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3" df_pca_combined = pd.DataFrame(pca.fit_transform(df_01orlog_MapFracUnstacked)) df_pca_combined.columns = ["PC1", "PC2", "PC3"] df_pca_combined.index = df_01orlog_MapFracUnstacked.index self.df_pca_combined = df_pca_combined.sort_index(level=["Gene names", "Compartment"]) map_names = self.map_names df_pca_all_marker_cluster_maps = pd.DataFrame() df_pca_filtered = df_pca.unstack("Map").dropna() for clusters in markerproteins: for marker in markerproteins[clusters]: try: plot_try_pca = df_pca_filtered.xs(marker, level="Gene names", drop_level=False) except KeyError: continue df_pca_all_marker_cluster_maps = df_pca_all_marker_cluster_maps.append( plot_try_pca) if len(df_pca_all_marker_cluster_maps) == 0: df_pca_all_marker_cluster_maps = df_pca_filtered.stack("Map") else: df_pca_all_marker_cluster_maps = df_pca_all_marker_cluster_maps.stack("Map") self.df_pca_all_marker_cluster_maps = df_pca_all_marker_cluster_maps.sort_index(level=["Gene names", "Compartment"]) def plot_global_pca(self, map_of_interest="Map1", cluster_of_interest="Proteasome", x_PCA="PC1", y_PCA="PC3", collapse_maps=False): """" PCA plot will be generated Args: self: df_organellarMarkerSet: df, columns: "Gene names", "Compartment", no index df_pca: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3", index: "Gene names", "Protein IDs", "C-Score", "Q-value", "Map", "Compartment", Returns: pca_figure: global PCA plot """ if collapse_maps == False: df_global_pca = self.df_pca.unstack("Map").swaplevel(0,1, axis=1)[map_of_interest].reset_index() else: df_global_pca = self.df_pca_combined.reset_index() for i in self.markerproteins[cluster_of_interest]: df_global_pca.loc[df_global_pca["Gene names"] == i, "Compartment"] = "Selection" compartments = self.df_organellarMarkerSet["Compartment"].unique() compartment_color = dict(zip(compartments, self.css_color)) compartment_color["Selection"] = "black" compartment_color["undefined"] = "lightgrey" fig_global_pca = px.scatter(data_frame=df_global_pca, x=x_PCA, y=y_PCA, color="Compartment", color_discrete_map=compartment_color, title= "Protein subcellular localization by PCA for {}".format(map_of_interest) if collapse_maps == False else "Protein subcellular localization by PCA of combined maps", hover_data=["Protein IDs", "Gene names", "Compartment"], template="simple_white", opacity=0.9 ) return fig_global_pca def plot_cluster_pca(self, cluster_of_interest="Proteasome"): """ PCA plot will be generated Args: self: markerproteins: dictionary, key: cluster name, value: gene names (e.g. {"Proteasome" : ["PSMA1", "PSMA2",...], ...} df_pca_all_marker_cluster_maps: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3", filtered for marker genes, that are consistent throughout all maps / coverage filtering. Returns: pca_figure: PCA plot, for one protein cluster all maps are plotted """ df_pca_all_marker_cluster_maps = self.df_pca_all_marker_cluster_maps map_names = self.map_names markerproteins = self.markerproteins try: for maps in map_names: df_setofproteins_PCA = pd.DataFrame() for marker in markerproteins[cluster_of_interest]: try: plot_try_pca = df_pca_all_marker_cluster_maps.xs((marker, maps), level=["Gene names", "Map"], drop_level=False) except KeyError: continue df_setofproteins_PCA = df_setofproteins_PCA.append(plot_try_pca) df_setofproteins_PCA.reset_index(inplace=True) if maps == map_names[0]: pca_figure = go.Figure( data=[go.Scatter3d(x=df_setofproteins_PCA.PC1, y=df_setofproteins_PCA.PC2, z=df_setofproteins_PCA.PC3, hovertext=df_setofproteins_PCA["Gene names"], mode="markers", name=maps )]) else: pca_figure.add_trace(go.Scatter3d(x=df_setofproteins_PCA.PC1, y=df_setofproteins_PCA.PC2, z=df_setofproteins_PCA.PC3, hovertext=df_setofproteins_PCA["Gene names"], mode="markers", name=maps )) pca_figure.update_layout(autosize=False, width=500, height=500, title="PCA plot for <br>the protein cluster: {}".format(cluster_of_interest), template="simple_white") return pca_figure except: return "This protein cluster was not quantified" def calc_biological_precision(self): """ This function calculates the biological precision of all quantified protein clusters. It provides access to the data slice for all marker proteins, the distance profiles and the aggregated distances. It repeatedly applies the methods get_marker_proteins_unfiltered and calc_cluster_distances. TODO: integrate optional arguments for calc_cluster_distances: complex_profile, distance_measure. TODO: replace compatibiliy attributes with function return values and adjust attribute usage in downstream plotting functions. Args: self attributes: markerproteins: dict, contains marker protein assignments df_01_stacked: df, contains 0-1 nromalized data, required for execution of get_marker_proteins_unfiltered Returns: df_alldistances_individual_mapfracunstacked: df, distance profiles, fully unstacked df_alldistances_aggregated_mapunstacked: df, profile distances (manhattan distance by default), fully unstacked df_allclusters_01_unfiltered_mapfracunstacked: df, collected marker protein data self attributes: df_distance_noindex: compatibility version of df_alldistances_aggregated_mapunstacked df_allclusters_01_unfiltered_mapfracunstacked df_allclusters_clusterdist_fracunstacked_unfiltered: compatibility version of df_allclusters_01_unfiltered_mapfracunstacked (only used by quantificaiton_overview) df_allclusters_clusterdist_fracunstacked: compatibility version of df_alldistances_individual_mapfracunstacked genenames_sortedout_list = list of gene names with incomplete coverage analysis_summary_dict entries: "Manhattan distances" = df_distance_noindex "Distances to the median profile": df_allclusters_clusterdist_fracunstacked, sorted and melted """ df_alldistances_individual_mapfracunstacked = pd.DataFrame() df_alldistances_aggregated_mapunstacked = pd.DataFrame() df_allclusters_01_unfiltered_mapfracunstacked = pd.DataFrame() for cluster in self.markerproteins.keys(): # collect data irrespective of coverage df_cluster_unfiltered = self.get_marker_proteins_unfiltered(cluster) df_allclusters_01_unfiltered_mapfracunstacked = df_allclusters_01_unfiltered_mapfracunstacked.append(df_cluster_unfiltered) # filter for coverage and calculate distances df_cluster = df_cluster_unfiltered.dropna() if len(df_cluster) == 0: continue df_distances_aggregated, df_distances_individual = self.calc_cluster_distances(df_cluster) df_alldistances_individual_mapfracunstacked = df_alldistances_individual_mapfracunstacked.append(df_distances_individual) df_alldistances_aggregated_mapunstacked = df_alldistances_aggregated_mapunstacked.append(df_distances_aggregated) if len(df_alldistances_individual_mapfracunstacked) == 0: self.df_distance_noindex = pd.DataFrame(columns = ["Gene names", "Map", "Cluster", "distance"]) self.df_allclusters_01_unfiltered_mapfracunstacked = pd.DataFrame(columns = ["Gene names", "Map", "Cluster", "distance"]) self.df_allclusters_clusterdist_fracunstacked_unfiltered = pd.DataFrame(columns = ["Fraction"]) self.df_allclusters_clusterdist_fracunstacked = pd.DataFrame(columns = ["Fraction"]) self.genenames_sortedout_list = "No clusters found" return pd.DataFrame(), pd.DataFrame(), pd.DataFrame() else: df_alldistances_aggregated_mapunstacked.columns.name = "Map" ## Get compatibility with plotting functions, by mimicking assignment of old functions: # old output of distance_calculation self.df_distance_noindex = df_alldistances_aggregated_mapunstacked.stack("Map").reset_index().rename({0: "distance"}, axis=1) self.analysis_summary_dict["Manhattan distances"] = self.df_distance_noindex.to_json() # old output of multiple_iterations # self.df_allclusters_clusterdist_fracunstacked_unfiltered --> this won't exist anymore, replaced by: self.df_allclusters_01_unfiltered_mapfracunstacked = df_allclusters_01_unfiltered_mapfracunstacked # kept for testing of quantification table: self.df_allclusters_clusterdist_fracunstacked_unfiltered = df_allclusters_01_unfiltered_mapfracunstacked.stack("Map") # same as before, but now already abs self.df_allclusters_clusterdist_fracunstacked = df_alldistances_individual_mapfracunstacked.stack("Map") df_dist_to_median = self.df_allclusters_clusterdist_fracunstacked.stack("Fraction") df_dist_to_median.name = "distance" df_dist_to_median = df_dist_to_median.reindex(index=natsort.natsorted(df_dist_to_median.index)) self.analysis_summary_dict["Distances to the median profile"] = df_dist_to_median.reset_index().to_json() self.genenames_sortedout_list = [el for el in df_allclusters_01_unfiltered_mapfracunstacked.index.get_level_values("Gene names") if el not in df_alldistances_individual_mapfracunstacked.index.get_level_values("Gene names")] return df_alldistances_individual_mapfracunstacked, df_alldistances_aggregated_mapunstacked, df_allclusters_01_unfiltered_mapfracunstacked def get_marker_proteins_unfiltered(self, cluster): """ This funciton retrieves the 0-1 normalized data for any given protein cluster, unfiltered for coverage. Args: cluster: str, cluster name, should be one of self.markerproteins.keys() self attributes: df_01_stacked: df, contains the fully stacked 0-1 normalized data markerproteins: dict, contains marker protein assignments Returns: df_cluster_unfiltered: df, unfiltered data for the selected cluster, maps and fractions are unstacked. self attribtues: None """ df_in = self.df_01_stacked["normalized profile"].unstack("Fraction") markers = self.markerproteins[cluster] # retrieve marker proteins df_cluster_unfiltered = pd.DataFrame() for marker in markers: try: df_p = df_in.xs(marker, level="Gene names", axis=0, drop_level=False) except: continue df_cluster_unfiltered = df_cluster_unfiltered.append(df_p) if len(df_cluster_unfiltered) == 0: return df_cluster_unfiltered # Unstack maps and add Cluster to index df_cluster_unfiltered = df_cluster_unfiltered.unstack("Map") df_cluster_unfiltered.set_index(pd.Index(np.repeat(cluster, len(df_cluster_unfiltered)), name="Cluster"), append=True, inplace=True) return df_cluster_unfiltered def calc_cluster_distances(self, df_cluster, complex_profile=np.median, distance_measure="manhattan"): """ Calculates the absolute differences in each fraction and the profile distances relative to the center of a cluster. Per default this is the manhattan distance to the median profile. Args: df_cluster: df, 0-1 normalized profiles of cluster members, should already be filtered for full coverage and be in full wide format. complex_profile: fun, function provided to apply for calculating the reference profile, default: np.median. distance_measure: str, selected distance measure to calculate. Currently only 'manhattan' is supported, everything else raises a ValueError. self attributes: None Returns: df_distances_aggregated: df, proteins x maps, if stacked distance column is currently named 0 but contains manhattan distances. df_distances_individual: df, same shape as df_cluster, but now with absolute differences to the reference. self attribtues: None """ df_distances_aggregated = pd.DataFrame() ref_profile = pd.DataFrame(df_cluster.apply(complex_profile, axis=0, result_type="expand")).T df_distances_individual = df_cluster.apply(lambda x: np.abs(x-ref_profile.iloc[0,:]), axis=1) # loop over maps maps = set(df_cluster.columns.get_level_values("Map")) for m in maps: if distance_measure == "manhattan": d_m = pw.manhattan_distances(df_cluster.xs(m, level="Map", axis=1), ref_profile.xs(m, level="Map", axis=1)) else: raise ValueError(distance_measure) d_m = pd.DataFrame(d_m, columns=[m], index=df_cluster.index) df_distances_aggregated = pd.concat([df_distances_aggregated, d_m], axis=1) df_distances_aggregated.columns.set_names(names="Map", inplace=True) return df_distances_aggregated, df_distances_individual def profiles_plot(self, map_of_interest="Map1", cluster_of_interest="Proteasome"): """ The function allows the plotting of filtered and normalized spatial proteomic data using plotly.express. The median profile is also calculated based on the overlapping proteins. Profiles of proteins that are not quantified in all maps are dashed. Args: map_of_interest: str, must be in self.map_names cluster_of_interest: str, must be in self.markerproteins.keys() self attribtues: df_allclusters_01_unfiltered_mapfracunstacked: df, contains 0-1 normalized profiles for all markerproteins detected in any map Returns: abundance_profiles_and_median_figure: plotly line plot, displaying the relative abundance profiles. """ try: df_setofproteins = self.df_allclusters_01_unfiltered_mapfracunstacked.xs(cluster_of_interest, level="Cluster", axis=0) df_setofproteins_median = df_setofproteins.dropna().xs(map_of_interest, level="Map", axis=1).median(axis=0) # fractions get sorted df_setofproteins = df_setofproteins.xs(map_of_interest, level="Map", axis=1).stack("Fraction") df_setofproteins = df_setofproteins.reindex(index=natsort.natsorted(df_setofproteins.index)) df_setofproteins.name = "normalized profile" # make it available for plotting df_setofproteins = df_setofproteins.reindex(index=natsort.natsorted(df_setofproteins.index)) df_setofproteins = df_setofproteins.reset_index() abundance_profiles_figure = px.line(df_setofproteins, x="Fraction", y="normalized profile", color="Gene names", line_group="Sequence" if "Sequence" in df_setofproteins.columns else "Gene names", template="simple_white", title="Relative abundance profile for {} of <br>the protein cluster: {}".format(map_of_interest, cluster_of_interest) ) df_setofproteins_median.name = "normalized profile" #fractions get sorted df_setofproteins_median = df_setofproteins_median.reindex(index=natsort.natsorted(df_setofproteins_median.index)) # make it available for plotting df_setofproteins_median = df_setofproteins_median.reset_index() df_setofproteins_median.insert(0, "Gene names", np.repeat("Median profile", len(df_setofproteins_median))) abundance_profiles_and_median_figure = abundance_profiles_figure.add_scatter(x=df_setofproteins_median["Fraction"], y=df_setofproteins_median["normalized profile"], name="Median profile" ) # dash lines for proteins that have insufficient coverage across maps abundance_profiles_and_median_figure.for_each_trace(lambda x: x.update(line={"dash":"dash"}), selector=lambda x: x.name in self.genenames_sortedout_list) return abundance_profiles_and_median_figure except: return "This protein cluster was not quantified" def quantification_overview(self, cluster_of_interest="Proteasome"): """ Args: self.df_allclusters_clusterdist_fracunstacked_unfiltered columns: 01K, 03K, 06K, 12K, 24K, 80K index: Gene names, Protein IDs, C-Score, Q-value, Map, Compartment, Cluster Returns: df """ df_quantification_overview = self.df_allclusters_clusterdist_fracunstacked_unfiltered.xs(cluster_of_interest, level="Cluster", axis=0)\ [self.fractions[0]].unstack("Map") if "Sequence" in df_quantification_overview.index.names: df_quantification_overview = df_quantification_overview.droplevel([i for i in df_quantification_overview.index.names if not i in ["Sequence","Gene names"]]) else: df_quantification_overview = df_quantification_overview.droplevel([i for i in df_quantification_overview.index.names if not i=="Gene names"]) df_quantification_overview = df_quantification_overview.notnull().replace({True: "x", False: "-"}) return df_quantification_overview def distance_boxplot(self, cluster_of_interest="Proteasome"): """ A box plot for 1 desired cluster, and across all maps is generated displaying the distribution of the e.g. Manhattan distance. Args: self: df_distance_noindex: stored as attribute (self.df_distance_noindex),index is reset. It contains the column name "distance", in which the e.g. Manhattan distances for each individual protein of the specified clusters (see self.markerproteins) are stored map_names: individual map names are stored as an index Returns: distance_boxplot_figure: boxplot. Along the x-axis the maps, along the y-axis the distances are shown """ map_names = self.map_names df_distance_noindex = self.df_distance_noindex # "Gene names", "Map", "Cluster" and transferred into the index df_distance_map_cluster_gene_in_index = df_distance_noindex.set_index(["Gene names", "Map", "Cluster"]) if "Sequence" in df_distance_map_cluster_gene_in_index.columns: df_distance_map_cluster_gene_in_index.set_index("Sequence", append=True, inplace=True) df_cluster_xmaps_distance_with_index = pd.DataFrame() try: # for each individual map and a defined cluster data will be extracted from the dataframe # "df_distance_map_cluster_gene_in_index" and appended to the new dataframe df_cluster_xmaps_distance_with_index for maps in map_names: plot_try = df_distance_map_cluster_gene_in_index.xs((cluster_of_interest, maps), level=["Cluster", "Map"], drop_level=False) df_cluster_xmaps_distance_with_index = df_cluster_xmaps_distance_with_index.append(plot_try) df_cluster_xmaps_distance_with_index["Combined Maps"] = "Combined Maps" #number of proteins within one cluster self.proteins_quantified_across_all_maps = df_cluster_xmaps_distance_with_index.unstack("Map").shape[0] # index will be reset, required by px.box df_cluster_xmaps_distance = df_cluster_xmaps_distance_with_index.reset_index() distance_boxplot_figure = go.Figure() distance_boxplot_figure.add_trace(go.Box( x=df_cluster_xmaps_distance["Map"], y=df_cluster_xmaps_distance["distance"], boxpoints="all", whiskerwidth=0.2, marker_size=2, hovertext=df_cluster_xmaps_distance["Gene names"] )) distance_boxplot_figure.add_trace(go.Box( x=df_cluster_xmaps_distance["Combined Maps"], y=df_cluster_xmaps_distance["distance"], boxpoints="all", whiskerwidth=0.2, marker_size=2, hovertext=df_cluster_xmaps_distance["Gene names"] )) distance_boxplot_figure.update_layout( title="Manhattan distance distribution for <br>the protein cluster: {}".format(cluster_of_interest), autosize=False, showlegend=False, width=500, height=500, # black box around the graph xaxis=go.layout.XAxis(linecolor="black", linewidth=1, title="Map", mirror=True), yaxis=go.layout.YAxis(linecolor="black", linewidth=1, title="distance", mirror=True), template="simple_white" ) return distance_boxplot_figure except: self.cache_cluster_quantified = False def distance_to_median_boxplot(self, cluster_of_interest="Proteasome"): """ A box plot for 1 desired cluster, across all maps and fractions is generated displaying the distribution of the distance to the median. For each fraction, one box plot will be displayed. Args: self: df_allclusters_clusterdist_fracunstacked, dataframe with single level column, stored as attribute (self.allclusters_clusterdist_fracunstacked), in which "Fraction" is unstacked. It contains only the normalized data of individual protein clusters substracted by the median of the respective protein cluster for each fraction. map_names: individual map names are stored as an index Returns: distance_to_median_boxplot_figure: Box plot. Along the x-axis, the maps are shown, along the y-axis the distances is plotted """ df_boxplot_manymaps = pd.DataFrame() try: # for each individual map and a defined cluster data will be extracted from the dataframe # "df_allclusters_clusterdist_fracunstacked" and appended to the new dataframe df_boxplot_manymaps for maps in self.map_names: plot_try = self.df_allclusters_clusterdist_fracunstacked.xs((cluster_of_interest, maps), level=["Cluster", "Map"], drop_level=False) df_boxplot_manymaps = df_boxplot_manymaps.append(plot_try) self.df_boxplot_manymaps = df_boxplot_manymaps # index will be reset, required by px.violin df_boxplot_manymaps = abs(df_boxplot_manymaps.stack("Fraction")) df_boxplot_manymaps.name = "distance" df_boxplot_manymaps = df_boxplot_manymaps.reindex(index=natsort.natsorted(df_boxplot_manymaps.index)) df_boxplot_manymaps = df_boxplot_manymaps.reset_index() # box plot will be generated, every fraction will be displayed in a single plot distance_to_median_boxplot_figure = px.box(df_boxplot_manymaps, x="Map", y="distance", facet_col="Fraction", facet_col_wrap=2, boxmode="overlay", height=900, width=700, points="all", hover_name="Gene names", template="simple_white", title="Distribution of the distance to the median for <br>the protein cluster: {}".format(cluster_of_interest)) return distance_to_median_boxplot_figure except: return "This protein cluster was not quantified" def dynamic_range(self): """ Dynamic range of each individual protein clusters (of the median profile) across all maps is calculated" Args: self: markerproteins: dictionary, key: cluster name, value: gene names (e.g. {"Proteasome" : ["PSMA1", "PSMA2",...], ...} df_01_stacked: "MAP" and "Fraction" are stacked; the data in the column "normalized profile" is used for plotting. Additionally the columns "MS/MS count" and "Ratio H/L count | Ratio H/L variability [%] | Ratio H/L" are found in LFQ and SILAC data respectively Returns: fig_dynamicRange: Bar plot, displaying the dynamic range for each protein cluster self.df_dynamicRange: df, no index, columns: "Max", "Min", "Dynamic Range", "Cluster" """ df_setofproteins_allMaps = pd.DataFrame() df_dynamicRange = pd.DataFrame() df_01_stacked = self.df_01_stacked for clusters in self.markerproteins: try: df_setofproteins_allMaps = pd.DataFrame() for marker in self.markerproteins[clusters]: try: df_marker_allMaps = df_01_stacked.xs(marker, level="Gene names", drop_level=False) except KeyError: continue df_setofproteins_allMaps = df_setofproteins_allMaps.append(df_marker_allMaps) df_setofproteins_allMaps_median = df_setofproteins_allMaps["normalized profile"].unstack("Fraction").median() df_dynamicRange = df_dynamicRange.append(pd.DataFrame(np.array([[max(df_setofproteins_allMaps_median), min(df_setofproteins_allMaps_median), max(df_setofproteins_allMaps_median)-min(df_setofproteins_allMaps_median), clusters]]), columns=["Max", "Min", "Dynamic Range", "Cluster"]), ignore_index=True) except: continue self.analysis_summary_dict["Dynamic Range"] = df_dynamicRange.to_json() def plot_dynamic_range(self): """ Dynamic range of each individual protein clusters (of the median profile) across all maps is displayed" Args: self: markerproteins: dictionary, key: cluster name, value: gene names (e.g. {"Proteasome" : ["PSMA1", "PSMA2",...], ...} df_01_stacked: "MAP" and "Fraction" are stacked; the data in the column "normalized profile" is used for plotting. Additionally the columns "MS/MS count" and "Ratio H/L count | Ratio H/L variability [%] | Ratio H/L" are found in LFQ and SILAC data respectively Returns: fig_dynamicRange: Bar plot, displaying the dynamic range for each protein cluster self.df_dynamicRange: df, no index, columns: "Max", "Min", "Dynamic Range", "Cluster" """ fig_dynamicRange = px.bar(pd.read_json(self.analysis_summary_dict["Dynamic Range"]), x="Cluster", y="Dynamic Range", base="Min", template="simple_white", width=1000, height=500).update_xaxes(categoryorder="total ascending") return fig_dynamicRange def results_overview_table(self): """ Dataframe will be created, that provides information about "range", "mean" and "standardeviation", given as the column names, based on the data given in df_distance_noindex Args: self: df_distance_noindex: stored as attribute (self.df_distance_noindex),index is reset. It contains the column name "distance", in which the e.g. Manhattan distances for each individual protein of the specified clusters (see self.markerproteins) are stored markerproteins: dictionary, key: cluster name, value: gene names (e.g. {"Proteasome" : ["PSMA1", "PSMA2",...], ...} """ df_distance_noindex = self.df_distance_noindex df_distance_map_cluster_gene_in_index = df_distance_noindex.set_index(["Gene names", "Map", "Cluster"]) map_names = self.map_names df_overview = pd.DataFrame() for clusters in self.markerproteins: #if a certain cluster is not available in the dataset at all try: for maps in map_names: df_dist_map_cluster = df_distance_map_cluster_gene_in_index.xs((clusters, maps), level=["Cluster", "Map"], drop_level=False) statistic_table = {"range": (df_dist_map_cluster["distance"].max(axis=0)) - (df_dist_map_cluster["distance"].min(axis=0)), "median": df_dist_map_cluster["distance"].median(axis=0), "standardeviation": df_dist_map_cluster["distance"].std(axis=0), "Cluster": clusters, "Map": maps } statistic_series = pd.Series(data=statistic_table) df_statistic_table_individual_cluster = pd.DataFrame(statistic_series).T df_overview = df_overview.append(df_statistic_table_individual_cluster) df_dist_cluster = df_distance_map_cluster_gene_in_index.xs(clusters, level="Cluster") statistic_table_combined = { "range": (df_dist_cluster["distance"].max(axis=0)) - (df_dist_cluster["distance"].min(axis=0)), "median": df_dist_cluster["distance"].median(axis=0), "standardeviation": df_dist_cluster["distance"].std(axis=0), "Cluster": clusters, "Map": "combined maps" } statistic_series_combined = pd.Series(data=statistic_table_combined) df_statistic_table_individual_cluster = pd.DataFrame(statistic_series_combined).T df_overview = df_overview.append(df_statistic_table_individual_cluster) except: continue try: df_overview.set_index(["Cluster", "Map"], inplace=True) df_overview.sort_index(axis=0, level=0, inplace=True) except: df_overview = pd.DataFrame() self.analysis_summary_dict["Overview table"] = df_overview.reset_index().to_json() self.analysed_datasets_dict[self.expname] = self.analysis_summary_dict.copy() #self.analysis_summary_dict.clear() return df_overview def reframe_df_01ORlog_for_Perseus(self, df_01ORlog): """" To be available for Perseus df_01_stacked needs to be reframed. Args: df_01ORlog: df_distance_noindex: stored as attribute (self.df_distance_noindex),index is reset. It contains the column name "distance", in which the e.g. Manhattan distances for each individual protein of the specified clusters (see self.markerproteins) are stored map_names: individual map names are stored as an index Returns: df_01ORlog_svm: LFQ: columns: "MS/MS count_Map1_01K", "normalized profile_Map1_01K" index: "Gene names", "Protein IDs", "C-Score", "Q-value", "Compartment" SILAC: columns: e.g. "Ratio H/L count_MAP2_80K", "Ratio H/L variability [%]_MAP1_03K", "normalized profile_MAP5_03K" index: "Q-value", "Score", "Protein IDs", "Majority protein IDs", "Protein names", "Gene names", "id", "Compartment" """ df_01ORlog_svm = df_01ORlog.copy() #df_01_filtered_combined = df_01_filtered_combined.stack(["Experiment", "Map"]).swaplevel(0,1, axis=0).dropna(axis=1) index_ExpMap = df_01ORlog_svm.index.get_level_values("Map")+"_"+df_01ORlog_svm.index.get_level_values("Fraction") index_ExpMap.name = "Map_Frac" df_01ORlog_svm.set_index(index_ExpMap, append=True, inplace=True) df_01ORlog_svm.index = df_01ORlog_svm.index.droplevel(["Map", "Fraction"]) df_01ORlog_svm = df_01ORlog_svm.unstack("Map_Frac") #df_01ORlog_svm = df_01ORlog_svm.dropna(axis=0, subset=df_01ORlog_svm.loc[[], ["normalized profile"]].columns) df_01ORlog_svm.columns = ["_".join(col) for col in df_01ORlog_svm.columns.values] df_01ORlog_svm.rename(index={"undefined" : np.nan}, level="Compartment", inplace=True) return df_01ORlog_svm class SpatialDataSetComparison: analysed_datasets_dict = SpatialDataSet.analysed_datasets_dict css_color = SpatialDataSet.css_color cache_stored_SVM = True def __init__(self, ref_exp="Exp2", **kwargs): #clusters_for_ranking=["Proteasome", "Lysosome"] #self.clusters_for_ranking = clusters_for_ranking self.ref_exp = ref_exp self.json_dict = {} #self.fractions, self.map_names = [], [] #self.df_01_stacked, self.df_log_stacked = pd.DataFrame(), pd.DataFrame() #collapse_maps,collapse_cluster, cluster_of_interest_comparison, multi_choice, multi_choice_venn, x_PCA_comp, y_PCA_comp #if "organism" not in kwargs.keys(): # self.markerproteins = self.markerproteins_set["Human - Swissprot"] #else: # assert kwargs["organism"] in self.markerproteins_set.keys() # self.markerproteins = self.markerproteins_set[kwargs["organism"]] # del kwargs["organism"] #self.unique_proteins_total = unique_proteins_total self.exp_names, self.exp_map_names = [], [] self.df_01_filtered_combined, self.df_distance_comp = pd.DataFrame(), pd.DataFrame() self.df_quantity_pr_pg_combined, self.df_dynamicRange_combined = pd.DataFrame(), pd.DataFrame() def read_jsonFile(self): #, content=None """ Read-out of the JSON-file and currently analysed dataset, stored in "analysed_datasets_dict". It wil create df_distances_combined ("Gene names", "Cluster" are stacked; "Map" and Experiment names (are not stored in an additional level name) are unstacked. Layout will be adjusted for distance-plotting. Args: self.json_dict: contains the dictionary stored in AnalysedDatasets.json {"Experiment name" : { "changes in shape after filtering" : { ##SILAC## "Original size" : tuple, "Shape after categorical filtering" : tuple, "Shape after Ratio H/L count (>= 3)/var (count>=2, var<30) filtering" : tuple, "Shape after filtering for complete profiles" : tuple, ##LFQ/spectronaut## "Original size" : tuple, "Shape after MS/MS value filtering" : tuple, "Shape after consecutive value filtering" : tuple, }, "quantity: profiles/protein groups" : df - number of protein groups | number of profiles | data completeness of profiles "Unique Proteins": list, "Analysis parameters" : { "acquisition" : str, "filename" : str, ##SILAC## "Ratio H/L count 1 (>= X)" : int, "Ratio H/L count 2 (>=Y, var<Z)" : int, "Ratio variability (<Z, count>=Y)" : int, ##LFQ/spectronaut## "consecutive data points" : int, "summed MS/MS counts" : int, }, "0/1 normalized data - mean" : df - mean of all datapoints, "0/1 normalized data" : df - individual cluster, "Distances to the median profile" : df - individual cluster, "Manhattan distances" : df - individual cluster, "Dynamic Range": df - individual cluster, "Overview table" : df - individual cluster, ##if user perform the Misclassification Analysis befor downloading the dictionary AnalysedDatasets.json## {"Misclassification Analysis": { "True: ER" : { "Recall": int, "FDR": int, "Precision": int, "F1": int } "True: NPC" : {...} ... "Summary": { "Total - Recall": int, "Membrane - Recall" : int, "Av per organelle - Recall": int, "Median per organelle - Recall" : int, "Av precision organelles" : int, "Av F1 organelles" : int, "Av F1 all clusters" : int, } } } } Returns: self: df_01_filtered_combined: df, "Fraction" is unstacked; "Experiment", "Gene names", "Map", "Exp_Map" are stacked df_distance_comp: df, no index, column names: "Gene names", "Cluster", "Protein IDs", "Compartment", "Experiment", "Map", "Exp_Map", "distance" "distance": Manhattan distances for each individual protein of the specified clusters (see self.markerproteins) are stored df_quantity_pr_pg_combined: df, no index, column names: "filtering", "type", "number of protein groups", "number of profiles", "data completeness of profiles", "Experiment" df_dynamicRange_combined: df, no index, column names: "Max", "Min", "Dynamic Range", "Cluster", "Experiment" unique_proteins_total: dict, key: Experiment name, value: unique protein (groups) exp_map_names: list of unique Exp_Map - fusions e.g. LFQ_Map1 exp_names: list of unique Experiment names - e.g. LFQ """ json_dict = self.json_dict #add experiments that are not stored in AnalysedDAtasets.json for comparison #try: #if len(SpatialDataSet.analysed_datasets_dict.keys())>=1: # json_dict.update(SpatialDataSet.analysed_datasets_dict) ##except: #else: # pass self.analysis_parameters_total = {} unique_proteins_total = {} df_01_combined = pd.DataFrame() for exp_name in json_dict.keys(): for data_type in json_dict[exp_name].keys(): if data_type == "0/1 normalized data": df_01_toadd = pd.read_json(json_dict[exp_name][data_type]) df_01_toadd.set_index(["Gene names", "Protein IDs", "Compartment"], inplace=True) if "Sequence" in df_01_toadd.columns: df_01_toadd.set_index(["Sequence"], inplace=True, append=True) df_01_toadd.drop([col for col in df_01_toadd.columns if not col.startswith("normalized profile")], inplace=True) df_01_toadd.columns = pd.MultiIndex.from_tuples([el.split("?") for el in df_01_toadd.columns], names=["Set", "Map", "Fraction"]) df_01_toadd.rename(columns = {"normalized profile":exp_name}, inplace=True) df_01_toadd.set_index(pd.Series(["?".join([str(i) for i in el]) for el in df_01_toadd.index.values], name="join"), append=True, inplace=True) if len(df_01_combined) == 0: df_01_combined = df_01_toadd.copy() else: df_01_combined = pd.concat([df_01_combined,df_01_toadd], sort=False, axis=1) elif data_type == "quantity: profiles/protein groups" and exp_name == list(json_dict.keys())[0]: df_quantity_pr_pg_combined = pd.read_json(json_dict[exp_name][data_type]) df_quantity_pr_pg_combined["Experiment"] = exp_name elif data_type == "quantity: profiles/protein groups" and exp_name != list(json_dict.keys())[0]: df_quantity_pr_pg_toadd = pd.read_json(json_dict[exp_name][data_type]) df_quantity_pr_pg_toadd["Experiment"] = exp_name df_quantity_pr_pg_combined = pd.concat([df_quantity_pr_pg_combined, df_quantity_pr_pg_toadd]) elif data_type == "Manhattan distances" and exp_name == list(json_dict.keys())[0]: df_distances_combined = pd.read_json(json_dict[exp_name][data_type]) df_distances_combined = df_distances_combined.set_index(["Map", "Gene names", "Cluster", "Protein IDs", "Compartment"]).copy() if "Sequence" in df_distances_combined.columns: df_distances_combined.set_index(["Sequence"], inplace=True, append=True) df_distances_combined = df_distances_combined[["distance"]].unstack(["Map"]) df_distances_combined.rename(columns = {"distance":exp_name}, inplace=True) elif data_type == "Manhattan distances" and exp_name != list(json_dict.keys())[0]: df_distances_toadd = pd.read_json(json_dict[exp_name][data_type]) df_distances_toadd = df_distances_toadd.set_index(["Map", "Gene names", "Cluster", "Protein IDs", "Compartment"]).copy() if "Sequence" in df_distances_toadd.columns: df_distances_toadd.set_index(["Sequence"], inplace=True, append=True) df_distances_toadd = df_distances_toadd[["distance"]].unstack(["Map"]) df_distances_toadd.rename(columns = {"distance":exp_name}, inplace=True) df_distances_combined = pd.concat([df_distances_combined, df_distances_toadd], axis=1)#, join="inner") elif data_type == "Dynamic Range" and exp_name == list(json_dict.keys())[0]: df_dynamicRange_combined = pd.read_json(json_dict[exp_name][data_type]) df_dynamicRange_combined["Experiment"] = exp_name elif data_type == "Dynamic Range" and exp_name != list(json_dict.keys())[0]: df_dynamicRange_toadd = pd.read_json(json_dict[exp_name][data_type]) df_dynamicRange_toadd["Experiment"] = exp_name df_dynamicRange_combined = pd.concat([df_dynamicRange_combined, df_dynamicRange_toadd]) # if data_type == "Overview table" and exp_name == list(json_dict.keys())[0]: # #convert into dataframe # df_distanceOverview_combined = pd.read_json(json_dict[exp_name][data_type]) # df_distanceOverview_combined["Experiment"] = exp_name # df_distanceOverview_combined = df_distanceOverview_combined.set_index(["Map", "Cluster", "Experiment"]).unstack(["Cluster"]) # # elif data_type == "Overview table" and exp_name != list(json_dict.keys())[0]: # df_distanceOverview_toadd = pd.read_json(json_dict[exp_name][data_type]) # df_distanceOverview_toadd["Experiment"] = exp_name # df_distanceOverview_toadd = df_distanceOverview_toadd.set_index(["Map", "Cluster", "Experiment"]).unstack(["Cluster"]) # #dataframes will be concatenated, only proteins/Profiles that are in both df will be retained # df_distanceOverview_combined = pd.concat([df_distanceOverview_combined, df_distanceOverview_toadd]) elif data_type == "Unique Proteins": unique_proteins_total[exp_name] = json_dict[exp_name][data_type] elif data_type == "Analysis parameters": self.analysis_parameters_total[exp_name] = json_dict[exp_name][data_type] #try: # for paramters in json_dict[exp_name][data_type].keys(): # if paramters=="acquisition": # acquisition_loaded.append(json_dict[exp_name][data_type][paramters]) # #elif parameters=="Non valid profiles": #except: # continue # df_01_combined = df_01_combined.droplevel("join", axis=0) #filter for consistently quantified proteins (they have to be in all fractions and all maps) #df_01_filtered_combined = df_01_mean_combined.dropna() df_01_combined.columns.names = ["Experiment", "Map", "Fraction"] #reframe it to make it ready for PCA df_01_filtered_combined = df_01_combined.stack(["Experiment", "Map"]).dropna(axis=0) #df_01_filtered_combined = df_01_combined.stack(["Experiment"]).dropna(axis=1) df_01_filtered_combined = df_01_filtered_combined.div(df_01_filtered_combined.sum(axis=1), axis=0) #df_01_filtered_combined = df_01_combined.copy() #df_01_filtered_combined.columns.names = ["Experiment", "Fraction", "Map"] ## Replace protein IDs by the unifying protein ID across experiments #comparison_IDs = pd.Series([split_ids_uniprot(el) for el in df_01_filtered_combined.index.get_level_values("Protein IDs")], # name="Protein IDs") #df_01_filtered_combined.index = df_01_filtered_combined.index.droplevel("Protein IDs") #df_01_filtered_combined.set_index(comparison_IDs, append=True, inplace=True) ##reframe it to make it ready for PCA | dropna: to make sure, that you do consider only fractions that are in all experiments #df_01_filtered_combined = df_01_filtered_combined.stack(["Experiment", "Map"]).swaplevel(0,1, axis=0).dropna(axis=1) index_ExpMap = df_01_filtered_combined.index.get_level_values("Experiment")+"_"+df_01_filtered_combined.index.get_level_values("Map") index_ExpMap.name = "Exp_Map" df_01_filtered_combined.set_index(index_ExpMap, append=True, inplace=True) df_distances_combined.columns.names = ["Experiment", "Map"] series = df_distances_combined.stack(["Experiment", "Map"]) series.name = "distance" df_distance_comp = series.to_frame() #fuse Experiment and Map into one column = "Exp_Map" index_dist_ExpMap = df_distance_comp.index.get_level_values("Experiment")+"_"+df_distance_comp.index.get_level_values("Map") index_dist_ExpMap.name = "Exp_Map" df_distance_comp.set_index(index_dist_ExpMap, append=True, inplace=True) #new #self.df_distance_comp2 = df_distance_comp.copy() df_distance_comp.reset_index(level=['Protein IDs'], inplace=True) df_distance_comp["Protein IDs"] = df_distance_comp["Protein IDs"].str.split(";", expand=True)[0] df_distance_comp = df_distance_comp.set_index("Protein IDs", append=True).unstack(["Experiment", "Exp_Map", "Map"]).dropna().stack(["Experiment", "Exp_Map", "Map"]).reset_index() #df_distance_comp.reset_index(inplace=True) self.unique_proteins_total = unique_proteins_total self.exp_names = list(df_01_filtered_combined.index.get_level_values("Experiment").unique()) self.exp_map_names = list(index_dist_ExpMap.unique()) self.df_01_filtered_combined = df_01_filtered_combined #self.df_01_mean_filtered_combined = df_01_mean_filtered_combined self.df_quantity_pr_pg_combined = df_quantity_pr_pg_combined self.df_dynamicRange_combined = df_dynamicRange_combined self.df_distance_comp = df_distance_comp try: organism = json_dict[list(json_dict.keys())[0]]["Analysis parameters"]['organism'] except: organism = "Homo sapiens - Uniprot" marker_table = pd.read_csv(pkg_resources.resource_stream(__name__, 'annotations/complexes/{}.csv'.format(organism))) self.markerproteins = {k: v.replace(" ", "").split(",") for k,v in zip(marker_table["Cluster"], marker_table["Members - Gene names"])} self.clusters_for_ranking = self.markerproteins.keys() def perform_pca_comparison(self): """ PCA will be performed, using logarithmized data. Args: self: df_01_filtered_combined: df, which contains 0/1 normalized data for each map - for all experiments columns: Fractions, e.g. "03K", "06K", "12K", "24K", "80K" index: "Protein IDs", "Gene names", "Compartment", "Experiment", "Map", "Exp_Map" df_01_mean_filtered_combined: df, which contains (global) 0/1 normalized data across all maps (mean) - for all experiments and for all protein IDs, that are consistent throughout all experiments columns: Fractions, e.g. "03K", "06K", "12K", "24K", "80K" index: "Gene names", "Protein IDs", "Compartment", "Experiment" Returns: self: df_pca_for_plotting: PCA processed dataframe index: "Experiment", "Gene names", "Map", "Exp_Map" columns: "PC1", "PC2", "PC3" contains only marker genes, that are consistent throughout all maps / experiments df_global_pca: PCA processed dataframe index: "Gene names", "Protein IDs", "Compartment", "Experiment", columns: "PC1", "PC2", "PC3" contains all protein IDs, that are consistent throughout all experiments """ markerproteins = self.markerproteins.copy() #df_01_filtered_combined = self.df_01_filtered_combined #df_01_filtered_combined = self.df_01_filtered_combined df_mean = pd.DataFrame() for exp in self.exp_names: df_exp = self.df_01_filtered_combined.stack("Fraction").unstack(["Experiment", "Map","Exp_Map"])[exp].mean(axis=1).to_frame(name=exp) df_mean = pd.concat([df_mean, df_exp], axis=1) df_mean = df_mean.rename_axis("Experiment", axis="columns").stack("Experiment").unstack("Fraction") pca = PCA(n_components=3) df_pca = pd.DataFrame(pca.fit_transform(df_mean)) df_pca.columns = ["PC1", "PC2", "PC3"] df_pca.index = df_mean.index try: markerproteins["PSMA subunits"] = [item for sublist in [re.findall("PSMA.*",p) for p in markerproteins["Proteasome"]] for item in sublist] markerproteins["PSMB subunits"] = [item for sublist in [re.findall("PSMB.*",p) for p in markerproteins["Proteasome"]] for item in sublist] del markerproteins["Proteasome"] except: pass ###only one df, make annotation at that time df_cluster = pd.DataFrame([(k, i) for k, l in markerproteins.items() for i in l], columns=["Cluster", "Gene names"]) df_global_pca = df_pca.reset_index().merge(df_cluster, how="left", on="Gene names") df_global_pca.Cluster.replace(np.NaN, "Undefined", inplace=True) self.markerproteins_splitProteasome = markerproteins self.df_pca = df_pca self.df_global_pca = df_global_pca def plot_pca_comparison(self, cluster_of_interest_comparison="Proteasome", multi_choice=["Exp1", "Exp2"]): """ A PCA plot for desired experiments (multi_choice) and 1 desired cluster is generated. Either the maps for every single experiment are displayed individually or in a combined manner Args: self: markerproteins: dictionary, key: cluster name, value: gene names (e.g. {"Proteasome" : ["PSMA1", "PSMA2",...], ...} multi_choice: list of experiment names cluster_of_interest_comparison: string, protein cluster (key in markerproteins, e.g. "Proteasome") df_pca: PCA processed dataframe index: "Experiment", "Gene names", "Map", "Exp_Map" columns: "PC1", "PC2", "PC3" contains only marker genes, that are consistent throughout all maps / experiments Returns: pca_figure: PCA plot for a specified protein cluster. """ df_pca = self.df_pca.copy() markerproteins = self.markerproteins try: df_setofproteins_PCA = pd.DataFrame() for map_or_exp in multi_choice: for marker in markerproteins[cluster_of_interest_comparison]: try: plot_try_pca = df_pca.xs((marker, map_or_exp), level=["Gene names", "Experiment"], drop_level=False) except KeyError: continue df_setofproteins_PCA = df_setofproteins_PCA.append(plot_try_pca) df_setofproteins_PCA.reset_index(inplace=True) df_setofproteins_PCA = df_setofproteins_PCA.assign(Experiment_lexicographic_sort=pd.Categorical(df_setofproteins_PCA["Experiment"], categories=multi_choice, ordered=True)) df_setofproteins_PCA.sort_values("Experiment_lexicographic_sort", inplace=True) pca_figure = px.scatter_3d(df_setofproteins_PCA, x="PC1", y="PC2", z="PC3", color="Experiment", template="simple_white", hover_data=["Gene names"] ) pca_figure.update_layout(autosize=False, width=700, height=500, title="PCA plot for <br>the protein cluster: {}".format(cluster_of_interest_comparison), template="simple_white" ) return pca_figure except: return "This protein cluster was not identified in all experiments" def plot_global_pca_comparison(self, cluster_of_interest_comparison="Proteasome", x_PCA="PC1", y_PCA="PC3", markerset_or_cluster=False, multi_choice=["Exp1", "Exp2"]): """" PCA plot will be generated Args: self: df_organellarMarkerSet: df, columns: "Gene names", "Compartment", no index multi_choice: list of experiment names css_color: list of colors df_global_pca: PCA processed dataframe index: "Gene names", "Protein IDs", "Compartment", "Experiment", columns: "PC1", "PC2", "PC3" contains all protein IDs, that are consistent throughout all experiments Returns: pca_figure: global PCA plot, clusters based on the markerset based (df_organellarMarkerSet) are color coded. """ df_global_pca_exp = self.df_global_pca.loc[self.df_global_pca["Experiment"].isin(multi_choice)] df_global_pca_exp.reset_index(inplace=True) compartments = list(SpatialDataSet.df_organellarMarkerSet["Compartment"].unique()) compartment_color = dict(zip(compartments, self.css_color)) compartment_color["Selection"] = "black" compartment_color["undefined"] = "lightgrey" compartments.insert(0, "undefined") compartments.insert(len(compartments), "Selection") cluster = self.markerproteins_splitProteasome.keys() cluster_color = dict(zip(cluster, self.css_color)) cluster_color["Undefined"] = "lightgrey" if markerset_or_cluster == True: df_global_pca = df_global_pca_exp[df_global_pca_exp.Cluster!="Undefined"].sort_values(by="Cluster") df_global_pca = df_global_pca_exp[df_global_pca_exp.Cluster=="Undefined"].append(df_global_pca) else: for i in self.markerproteins[cluster_of_interest_comparison]: df_global_pca_exp.loc[df_global_pca_exp["Gene names"] == i, "Compartment"] = "Selection" df_global_pca = df_global_pca_exp.assign(Compartment_lexicographic_sort = pd.Categorical(df_global_pca_exp["Compartment"], categories=[x for x in compartments], ordered=True)) df_global_pca.sort_values(["Compartment_lexicographic_sort", "Experiment"], inplace=True) fig_global_pca = px.scatter(data_frame=df_global_pca, x=x_PCA, y=y_PCA, color="Compartment" if markerset_or_cluster == False else "Cluster", color_discrete_map=compartment_color if markerset_or_cluster == False else cluster_color, title="Protein subcellular localization by PCA", hover_data=["Protein IDs", "Gene names", "Compartment"], facet_col="Experiment", facet_col_wrap=2, opacity=0.9, template="simple_white" ) fig_global_pca.update_layout(autosize=False, width=1800 if markerset_or_cluster == False else 1600, height=400*(int(len(multi_choice) / 2) + (len(multi_choice) % 2 > 0)), template="simple_white" ) return fig_global_pca def get_marker_proteins(self, experiments, cluster): df_in = self.df_01_filtered_combined.copy() markers = self.markerproteins[cluster] # retrieve marker proteins df_cluster = pd.DataFrame() for marker in markers: try: df_p = df_in.xs(marker, level="Gene names", axis=0, drop_level=False) except: continue df_cluster = df_cluster.append(df_p) if len(df_cluster) == 0: return df_cluster # filter for all selected experiments df_cluster = df_cluster.droplevel("Exp_Map", axis=0) df_cluster = df_cluster.unstack(["Experiment", "Map"]) if any([el not in df_cluster.columns.get_level_values("Experiment") for el in experiments]): return pd.DataFrame() drop_experiments = [el for el in df_cluster.columns.get_level_values("Experiment") if el not in experiments] if len(drop_experiments) > 0: df_cluster.drop([el for el in df_cluster.columns.get_level_values("Experiment") if el not in experiments], level="Experiment", axis=1, inplace=True) df_cluster.dropna(inplace=True) if len(df_cluster) == 0: return df_cluster df_cluster.set_index(pd.Index(np.repeat(cluster, len(df_cluster)), name="Cluster"), append=True, inplace=True) return df_cluster def calc_cluster_distances(self, df_cluster, complex_profile=np.median, distance_measure="manhattan"): df_distances = pd.DataFrame() # loop over experiments experiments = set(df_cluster.columns.get_level_values("Experiment")) for exp in experiments: df_exp = df_cluster.xs(exp, level="Experiment", axis=1) ref_profile = pd.DataFrame(df_exp.apply(complex_profile, axis=0, result_type="expand")).T # loop over maps maps = set(df_exp.columns.get_level_values("Map")) for m in maps: if distance_measure == "manhattan": d_m = pw.manhattan_distances(df_exp.xs(m, level="Map", axis=1), ref_profile.xs(m, level="Map", axis=1)) else: raise ValueError(distance_measure) d_m = pd.DataFrame(d_m, columns=[(exp, m)], index=df_exp.index) df_distances = pd.concat([df_distances, d_m], axis=1) df_distances.columns = pd.MultiIndex.from_tuples(df_distances.columns, names=["Experiment", "Map"]) return df_distances def calc_biological_precision(self, experiments=None, clusters=None): """ Method to calculate the distance table for assessing biological precision """ df_distances = pd.DataFrame() if experiments is None: experiments = self.exp_names if clusters is None: clusters = self.markerproteins.keys() for cluster in clusters: df_cluster = self.get_marker_proteins(experiments, cluster) if len(df_cluster) == 0: continue dists_cluster = self.calc_cluster_distances(df_cluster) df_distances = df_distances.append(dists_cluster) df_distances = df_distances.stack(["Experiment", "Map"]).reset_index()\ .sort_values(["Experiment","Gene names"]).rename({0: "distance"}, axis=1) df_distances.insert(0, "Exp_Map", ["_".join([e,m]) for e,m in zip(df_distances["Experiment"], df_distances["Map"])]) self.df_distance_comp = df_distances return df_distances def get_complex_coverage(self, min_n=5): full_coverage = {} for complx in self.markerproteins.keys(): df = self.get_marker_proteins(self.exp_names, complx) if len(df) >= min_n: full_coverage[complx] = len(df) partial_coverage = {} for exp in self.exp_names: for complx in self.markerproteins.keys(): if complx in full_coverage.keys(): continue df = self.get_marker_proteins([exp], complx) #print(df) if complx in partial_coverage.keys(): partial_coverage[complx].append(len(df)) else: partial_coverage[complx] = [len(df)] no_coverage = {} for k in partial_coverage.keys(): if all([el < min_n for el in partial_coverage[k]]): no_coverage[k] = partial_coverage[k] for k in no_coverage.keys(): del partial_coverage[k] self.coverage_lists = [full_coverage, partial_coverage, no_coverage] return full_coverage, partial_coverage, no_coverage def distance_boxplot_comparison(self, cluster_of_interest_comparison="Proteasome", collapse_maps=False, multi_choice=["Exp1", "Exp2"]): """ A box plot for desired experiments (multi_choice) and 1 desired cluster is generated displaying the distribution of the e.g. Manhattan distance. Either the maps for every single experiment are displayed individually or in a combined manner. Args: self: multi_choice: list of experiment names collapse_maps: boolean cluster_of_interest_comparison: string, protein cluster (key in markerproteins, e.g. "Proteasome") map_names: individual map names are stored as an index df_distance_comp: df_distance_comp: no index, column names: "Gene names", "Cluster", "Protein IDs", "Compartment", "Experiment", "Map", "Exp_Map", "distance" "distance": Manhattan distances for each individual protein of the specified clusters (see self.markerproteins) are stored Returns: distance_boxplot_figure: boxplot. Along the x-axis the maps, along the y-axis the distances are shown """ #an error massage, if no Experiments are selected, will be displayed already, that is why: return "" if len(multi_choice)>=1: pass else: return ("") df_distance_comp = self.df_distance_comp.copy() #set categroical column, allowing lexicographic sorting df_distance_comp["Experiment_lexicographic_sort"] =
pd.Categorical(df_distance_comp["Experiment"], categories=multi_choice, ordered=True)
pandas.Categorical
""" Python source code to extract listing from mudah.my """ from functools import total_ordering from jobstreet.config import General, Authentication, Location import pandas as pd import requests import webbrowser as web import urllib.parse as urlparse from urllib.parse import urlencode from bs4 import BeautifulSoup from datetime import datetime, timedelta import dateutil.relativedelta as rd import math import mechanicalsoup import logging as logger import os clear = lambda: os.system('cls') #on Windows System # TODO - Advance criteria # For logging purpose logger.basicConfig(level=logger.DEBUG, format='%(asctime)s %(levelname)-8s %(message)s', datefmt='%a, %d %b %Y %H:%M:%S', ) urllib3_logger = logger.getLogger('urllib3') urllib3_logger.setLevel(logger.CRITICAL) class JobStreetExtractor: """ Extractor for getting job dataset from jobstreet malaysia """ __chrome_path__ = General.CHROME_PATH.value __base_url__ = General.JOBSTREET_URL.value # Mapping values to required Jobstreet parameter # https://www.jobstreet.com.my/en/job-search/job-vacancy.php?key=Software&area=2&location=51200&position=3%2C4&job-type=5&experience-min=03&experience-max=-1&salary=6%2C000 # &salary-max=7%2C000&classified=1&salary-option=on&job-posted=0&src=1&ojs=4 # key # area # location # position # job-type : 5,10,16 # experience-min # experience-max # salary # salary-max # classified # salary-option # job-posted # src # ojs # sort # order # pg def __authenticate__(self): login_url = Authentication.JOBSTREET_LOGIN_URL.value browser = mechanicalsoup.StatefulBrowser() browser.open(login_url) browser.select_form('#login') browser['login_id'] = Authentication.JOBSTREET_USERNAME.value browser['password'] = Authentication.JOBSTREET_PASSWORD.value browser.submit_selected() return browser def __scraping__(self, keyword=None, location=None, minSalary=None, maxSalary=None, minExperience=None, maxExperience=None): # login browser = self.__authenticate__(self) headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2228.0 Safari/537.36'} # construct filter criteria filter_criteria = {} if keyword is not None: filter_criteria.update({'key': keyword }) if location is not None: filter_criteria.update({'location' : location.value }) if minSalary is not None: filter_criteria.update({'salary' : minSalary }) if maxSalary is not None: filter_criteria.update({'salary-max' : maxSalary }) if minExperience is not None: filter_criteria.update({'experience-min' : minExperience }) if maxExperience is not None: filter_criteria.update({'experience-max' : maxExperience }) # filter_criteria = { # 'key':'Software', # 'area': '2', # 'location':'51200', # 'position':'3,4', # 'job-type':'5', # 'salary':'6000', # 'salary-max':'7000', # 'classified':'1', # 'salary-option':'on', # 'job-posted':'0', # 'src':'1', # 'ojs':'4', # } page_url = self.__base_url__ url_parts = list(urlparse.urlparse(page_url)) final_df = pd.DataFrame() # test to get number of pages page_criteria = {'pg': str(1)} filter_criteria.update(page_criteria) url_parts[4] = urlencode(filter_criteria) page_url = urlparse.urlunparse(url_parts) response = browser.open(page_url) # get total lists total_list = BeautifulSoup(response.content, "html.parser").find("span", class_="pagination-result-count").string pages = 1 if total_list is not None: logger.info(str(total_list)) total_list = total_list[total_list.find("of")+len("of"):total_list.rfind("jobs")] total_list = total_list.strip().replace(',', '') logger.info("Attempt to parse " + str(total_list) + " jobs at most") pages = math.ceil(int(total_list) / 40) # 40 is item per page # To prevent over-scraping if General.PAGE_THRESHOLD.value != -1 and General.PAGE_THRESHOLD.value < pages : pages = General.PAGE_THRESHOLD.value for page in range(1, pages + 1): job_titles = [] job_urls = [] com_names = [] com_urls = [] locations = [] salaries = [] descriptions = [] page_criteria = {'pg': str(page)} filter_criteria.update(page_criteria) url_parts[4] = urlencode(filter_criteria) page_url = urlparse.urlunparse(url_parts) logger.info("Processing Page " + str(page) + " : " + page_url) response = browser.open(page_url) if response.status_code != 200: raise ConnectionError("Cannot connect to " + page_url) # Get each job card raw_listing = BeautifulSoup(response.content, "html.parser").find_all("div", { 'id' : lambda value: value and value.startswith("job_ad") }) # For each job card, get job informations for element in raw_listing: # Get job general information job_el = element.find("a", {'class' : lambda value: value and value.startswith("position-title-link")}) job_titles.append(job_el.get('data-job-title')) job_urls.append(job_el.get('href')) # Get company information com_el = element.find("a", {'id' : lambda value: value and value.startswith("company_name")}) if com_el is None: com_el = element.find("span", {'id': lambda value: value and value.startswith("company_name")}) com_names.append(com_el.string) com_urls.append(None) else: com_names.append(com_el.find('span').string) com_urls.append(com_el.get('href')) # Get location information loc_el = element.find("li", {'class' : 'job-location'}) locations.append(loc_el.get('title')) sal_el = element.find("li", {'id' : 'job_salary'}) # Get salary information if sal_el: font = sal_el.find("font") if font: salaries.append(sal_el.find("font").string) else: salaries.append(None) # Get job description des_el = element.find("ul", {'id' : lambda value: value and value.startswith("job_desc_detail")}).find("li",recursive=False) if des_el: descriptions.append(des_el.string) else: descriptions.append(None) df = pd.concat([pd.Series(job_titles), pd.Series(job_urls), pd.Series(com_names), pd.Series(com_urls), pd.Series(locations),
pd.Series(salaries)
pandas.Series
""" Written by <NAME>, UC Berkeley/ Lawrence Berkeley National Labs, NSDS Lab <NAME>, UC Berkeley This code is intended to create and implement structure supervised classification of coarsely segmented trial behavior from the ReachMaster experimental system. Functions are designed to work with a classifier of your choice. Operates on a single block. Edited: 9/14/2021 Required Folder 'DataFrames" with all kin and exp datafiles """ import argparse import os import matplotlib.pyplot as plt import sklearn from scipy import ndimage import Classification_Utils as CU import pandas as pd import numpy as np import h5py import random import joblib # for saving sklearn models from imblearn.over_sampling import SMOTE # for adjusting class imbalances from imblearn.under_sampling import RandomUnderSampler from imblearn.over_sampling import RandomOverSampler from imblearn.pipeline import Pipeline as imblearn_Pipeline from collections import Counter # classification from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import RandomizedSearchCV, train_test_split, GridSearchCV, cross_validate, cross_val_score from sklearn.pipeline import make_pipeline, Pipeline # from imblearn.pipeline import Pipeline as imblearnPipeline from sklearn.feature_selection import SelectKBest # feature selection from sklearn.feature_selection import f_classif from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression, RidgeClassifier from sklearn.neural_network import MLPClassifier # set global random seed for reproducibility # random.seed(246810) np.random.seed(246810) # Create folder in CWD to save data and plots # current_directory = os.getcwd() folder_name = 'ClassifyTrials' final_directory = os.path.join(current_directory, folder_name) if not os.path.exists(final_directory): os.makedirs(final_directory) class ReachClassifier: # set random set for reproducibility random.seed(246810) np.random.seed(246810) def __init__(self, model=None): self.model = model self.X = None self.y = None self.X_train = None self.y_train = None self.X_val = None self.y_val = None self.fs = None def set_model(self, data): self.model = data def set_X(self, data): self.X = data def set_y(self, data): self.y = data def set_X_train(self, data): self.X_train = data def set_y_train(self, data): self.y_train = data def set_X_val(self, data): self.X_val = data def set_y_val(self, data): self.y_val = data def set_fs(self, data): self.fs = data def fit(self, X, y): """ Fits model to data. Args: X: features y: labels Returns: None """ self.model.fit(X, y) def predict(self, X): """ Returns trained model predictions. Args: X: features y: labels Returns: preds """ return self.model.predict(X) @staticmethod def partition(X, y): """ Partitions data. Args: X: features y: labels Returns: X_train, X_val, y_train, y_val """ # partition into validation set X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2) return X_train, X_val, y_train, y_val @staticmethod def evaluate(model, X, y): """ Performs 5-fold cross-validation and returns accuracy. Args: model: sklearn model X: features y: labels Returns: avg_train_accuracy, avg_test_accuracy """ print("Cross validation:") cv_results = cross_validate(model, X, y, cv=5, return_train_score=True) train_results = cv_results['train_score'] test_results = cv_results['test_score'] avg_train_accuracy = sum(train_results) / len(train_results) avg_test_accuracy = sum(test_results) / len(test_results) print('averaged train accuracy:', avg_train_accuracy) print('averaged validation accuracy:', avg_test_accuracy) return avg_train_accuracy, avg_test_accuracy @staticmethod def adjust_class_imbalance(X, y): """ Adjusts for class imbalance. Object to over-sample the minority class(es) by picking samples at random with replacement. The dataset is transformed, first by oversampling the minority class, then undersampling the majority class. Returns: new samples References: https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/ """ oversampler = SMOTE(random_state=42) # undersampler = RandomUnderSampler(random_state=42) steps = [('o', oversampler)] # , ('u', undersampler)] pipeline = imblearn_Pipeline(steps=steps) X_res, y_res = pipeline.fit_resample(X, y) return X_res, y_res @staticmethod def hyperparameter_tuning(X_train, X_val, y_train, y_val, model, param_grid, fullGridSearch=False): """ Performs hyperparameter tuning and returns best trained model. Args: model: sklearn param_grid: grid of models and hyperparameters fullGridSearch: True to run exhaustive param search, False runs RandomizedSearchCV Returns: tuned model parameters found through search accuracy of tuned model Reference: https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74 """ # Use the random grid to search for best hyperparameters if fullGridSearch: # Instantiate the grid search model grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=3, n_jobs=-1, verbose=2) else: # Random search of parameters, using 3 fold cross validation, # search across 100 different combinations, and use all available cores grid_search = RandomizedSearchCV(estimator=model, param_distributions=param_grid, n_iter=2, cv=5, random_state=42, verbose=2, n_jobs=-1) # Fit the random search model grid_search.fit(X_train, y_train) base_model = RandomForestClassifier() base_model.fit(X_train, y_train) base_train_accuracy, base_test_accuracy = ReachClassifier.evaluate(base_model, X_val, y_val) best_grid = grid_search best_model = grid_search.best_estimator_ best_train_accuracy, best_test_accuracy = ReachClassifier.evaluate(best_model, X_val, y_val) print('Improvement % of', (100 * (best_test_accuracy - base_test_accuracy) / base_test_accuracy)) return best_model, best_grid.best_params_, best_test_accuracy @staticmethod def mean_df(df): """ Maps np.mean to all cells in df. For generating features. Args: df: (df) Returns: df with mean of each cell as its values """ mean_df = df.applymap(np.mean) return mean_df @staticmethod def do_feature_selection(X, y, k): """ Defines the feature selection and applies the feature selection procedure to the dataset. Fit to data, then transform it. Args: k: top number of features to select Returns: (array shape trials x k features) subset of the selected input features and feature estimator references: https://machinelearningmastery.com/feature-selection-with-numerical-input-data/ """ # configure to select a subset of features fs = SelectKBest(score_func=f_classif, k=k) # learn relationship from training data fs.fit(X, y) # transform train input data X_train_fs = fs.transform(X) return X_train_fs, fs @staticmethod def plot_features(fs, X): """ Plots and saves feature importances. Returns: None """ for i in range(len(fs.scores_)): print('Feature %d: %f' % (i, fs.scores_[i])) # plot the scores # x = [i for i in range(len(fs.scores_))] x = X.columns plt.bar(x, fs.scores_) # rotate x axis to avoid overlap plt.xticks(rotation=45) plt.yticks(rotation=90) plt.title("Input Features vs. Feature Importance") plt.ylabel("Mutual Information Feature Importance") plt.xlabel("Input Features") plt.savefig(f'{folder_name}/feat_importance.png') @staticmethod def pre_classify(X, y, k=10): """ Partitions, adjusts class imbalance, and performs feature selection. Args: X: features y: labels k: (int) number of features to select Returns: data ready for ML classification """ # adjust class imbalance X_res, y_res = ReachClassifier.adjust_class_imbalance(X, y) # feat selection X_selected, fs = ReachClassifier.do_feature_selection(X_res, y_res, k) return X_selected, y_res, fs @staticmethod def train_and_validate(X, y, param_grid, save=True, filename=None): """ Trains and Validates. Args: X: features y: labels param_grid: model and hyperparameters to search over save: (bool) True to save model filename: (str) name of model to save as Returns: trained model, train model's CV score """ # partition X_train, X_val, y_train, y_val = ReachClassifier.partition(X, y) # hyperparameter and model tuning base_model = Pipeline(steps=[('standardscaler', StandardScaler()), ('classifier', RandomForestClassifier())]) best_model, best_params_, best_test_accuracy = ReachClassifier.hyperparameter_tuning( X_train, X_val, y_train, y_val, base_model, param_grid, fullGridSearch=False) # fit and validate best_model.fit(X_train, y_train) _, val_score = ReachClassifier.evaluate(best_model, X_val, y_val) # fit on all training data best_model.fit(X, y) # save model if save: joblib.dump(best_model, f"{filename}.joblib") # print("MODEL SCORE", best_model.score(X_val_selected, y_val)) print("BEST MODEL", best_model) print("CV SCORE", val_score) return best_model, val_score class ClassificationHierarchy: random.seed(246810) np.random.seed(246810) def __init__(self): pass def split(self, preds, X, y, onesGoLeft=True): """ Splits X and y based on predictions. Args: preds: (list of ints) predictions of ones and zeros X: features y: labels onesGoLeft: (bool) True for labels with prediction 1 to be on LHS. Returns: split X, y data """ row_mask = list(map(bool, preds)) # True for 1, False otherwise negate_row_mask = ~np.array(row_mask) # True for 0, False otherwise if onesGoLeft: X_left = X[row_mask] y_left = y[row_mask] X_right = X[negate_row_mask] y_right = y[negate_row_mask] else: X_right = X[row_mask] y_right = y[row_mask] X_left = X[negate_row_mask] y_left = y[negate_row_mask] return X_left, y_left, X_right, y_right def run_hierarchy(self, X, y, param_grid, models, save_models): """ Makes predictions through the whole classification hierarchy. Args: X: features y: labels (Trial Type Num Reaches Which Hand) param_grid: grid models: (list) list of trained models or None save_models: (bool) True to save Returns: """ # load models # model_0, model_1, model_2 = None, None, None # if models: # model_0 = joblib.load(models[0]) # model_1 = joblib.load(models[1]) # model_2 = joblib.load(models[2]) # TRIAL TYPE classifier = ReachClassifier() y_0 = y['Trial Type'].values # 0 for not null y_0 = CU.onehot_nulls(y_0) model_0, val_score_0 = self.fit(classifier, X, y_0, param_grid, save_models, f'{folder_name}/TrialTypeModel') # SPLIT # X_null, y_null, X_NotNull, y_NotNull = self.split(preds_0, X, y, onesGoLeft=True) # 1 if null, 0 if real trial # NUM REACHES y_1 = y['Num Reaches'].values y_1 = CU.onehot_num_reaches(y_1) # 0 if <1, 1 if > 1 reaches classifier = ReachClassifier() model_1, val_score_1 = self.fit(classifier, X, y_1, param_grid, save_models, f'{folder_name}/NumReachesModel') # SPLIT # X_greater, y_greater, X_less, y_less = self.split(preds_1, X_NotNull, y_NotNull, onesGoLeft=True) # 0 if <1, 1 if > 1 reaches # WHICH HAND classifier = ReachClassifier() y_2 = y['Which Hand'].values # # classify 0 as r/l y_2 = CU.hand_type_onehot(y_2) model_2, val_score_2 = self.fit(classifier, X, y_2, param_grid, save_models, f'{folder_name}/WhichHandModel') # X_bi, y_bi, X_rl, y_rl = self.split(preds_2, X_less, y_less, onesGoLeft=True) # classify 0 as r/l, 1 or non r/l return [val_score_0, val_score_1, val_score_2] def fit(self, classifier, X, y, param_grid, save, filename): """ Trains, validates, and/or makes predictions. Args: classifier: ReachClassifier object X: features y: labels param_grid: grid save: (bool) True to save filename: (str) file name to save model as best_model: model doFit: (bool) True to train Returns: model, validation score, predicitons """ # adjust class imbalance, feature selection X_selected, y_res, fs = classifier.pre_classify(X, y) # train and validate assert (y is not None) best_model, val_score = classifier.train_and_validate(X_selected, y_res, param_grid, save=save, filename=filename) return best_model, val_score def run_hierarchy_pretrained(self, X, y, models): """ Makes predictions through the whole classification hierarchy. Args: X: features y: labels (Trial Type Num Reaches Which Hand) models: (list of str) list of trained models Returns: list of validation accuracies """ # load models model_0 = joblib.load(models[0]) model_1 = joblib.load(models[1]) model_2 = joblib.load(models[2]) # TRIAL TYPE classifier = ReachClassifier() y_0 = y['Trial Type'].values # 0 for not null y_0 = CU.onehot_nulls(y_0) val_score_0 = self.predict(X, y_0, model_0) # SPLIT # X_null, y_null, X_NotNull, y_NotNull = self.split(preds_0, X, y, onesGoLeft=True) # 1 if null, 0 if real trial # NUM REACHES y_1 = y['Num Reaches'].values y_1 = CU.onehot_num_reaches(y_1) # 0 if <1, 1 if > 1 reaches classifier = ReachClassifier() val_score_1 = self.predict(X, y_1, model_1) # SPLIT # X_greater, y_greater, X_less, y_less = self.split(preds_1, X_NotNull, y_NotNull, onesGoLeft=True) # 0 if <1, 1 if > 1 reaches # WHICH HAND classifier = ReachClassifier() y_2 = y['Which Hand'].values # # classify 0 as r/l y_2 = CU.hand_type_onehot(y_2) val_score_2 = self.predict(X, y_2, model_2) # X_bi, y_bi, X_rl, y_rl = self.split(preds_2, X_less, y_less, onesGoLeft=True) # classify 0 as r/l, 1 or non r/l return [val_score_0, val_score_1, val_score_2] def predict(self, X, y, model): # let k = 5 X_selected, fs = ReachClassifier.do_feature_selection(X, y, k) _, val_score = ReachClassifier.evaluate(model, X_selected, y) return val_score def trace_datapoint(self, X, arr=[]): """ Q3.2 for a data point from the spam dataset, prints splits and thresholds as it is classified down the tree. """ pass class MakeFeatures: # Operates on a single trial. pos_names = ['Handle', 'Back Handle', 'Nose', 'Left Shoulder', 'Left Forearm', 'Left Wrist', 'Left Palm', 'Left Index Base', 'Left Index Tip', 'Left Middle Base', 'Left Middle Tip', 'Left Third Base', 'Left Third Tip', 'Left Fourth Finger Base', 'Left Fourth Finger Tip', 'Right Shoulder', 'Right Forearm', 'Right Wrist', 'Right Palm', 'Right Index Base', 'Right Index Tip', 'Right Middle Base', 'Right Middle Tip', 'Right Third Base', 'Right Third Tip', 'Right Fourth Finger Base', 'Right Fourth Finger Tip'] def __init__(self, trial_arr): # partition coords and probabilities self.num_bodyparts = 27 self.num_coords = 3 self.split_index = self.num_bodyparts * self.num_coords # 27 bodyparts * 3 XYZ coordinates for each = 81 self.coords = trial_arr[:self.split_index] # all XYZ coords of all bodyparts (81 rows of first half of array) self.prob = trial_arr[self.split_index:] # all probability columns (81 rows of second half of array) # display(coords, prob) def calc_position(self): # calculate position of each bodypart (x+y+z/3) positions = [] # 2D array with rows are bodyparts, cols are frame nums for i in np.arange(0, len(self.coords), self.num_coords): # for every bodypart X = self.coords[i] Y = self.coords[i + 1] Z = self.coords[i + 2] pos = (X + Y + Z) / self.num_coords # 1D array positions.append(pos) assert (len(positions) == self.num_bodyparts) return positions def calc_velocity_speed(self, time): """ Time is sliced from exp block 'time' column """ # calculate velocity for each XYZ bodypart (x1-x0/t0-t1) velocities = [] # 2D array with rows are XYZ bodyparts, cols are frame nums for i in np.arange(0, self.split_index, self.num_coords): # for every bodypart X = self.coords[i] Y = self.coords[i + 1] Z = self.coords[i + 2] for arr in [X, Y, Z]: vel = [] for j in np.arange(len(arr) - 1): x_0 = arr[j] x_1 = arr[j + 1] t_0 = time[j] t_1 = time[j + 1] vel.append(x_1 - x_0 / t_1 - t_0) velocities.append(vel) assert (len(velocities) == self.split_index) # calculate speed of each bodypart (vel_x+vel_y+vel_z/3) speeds = [] # 1D array with rows are bodyparts, cols are frame nums for i in np.arange(0, self.split_index, self.num_coords): x_vel = velocities[i] y_vel = velocities[i + 1] z_vel = velocities[i + 2] x_squared = np.dot(x_vel, x_vel) y_squared = np.dot(y_vel, y_vel) z_squared = np.dot(z_vel, z_vel) speed = (x_squared + y_squared + z_squared) / 3 # int speeds.append(speed) assert (len(speeds) == self.num_bodyparts) return velocities, speeds @staticmethod def calc_all(trial_arr, time): # Calculate f = MakeFeatures(trial_arr) positions = f.calc_position() velocities, speeds = f.calc_velocity_speed(time) # take mean & median of each bodypart for 2D arrays mean_vel = np.mean(velocities, axis=1) # len = 81 median_vel = np.median(velocities, axis=1) mean_pos = np.mean(positions, axis=1) # len = 27 median_pos = np.median(positions, axis=1) # Create df # concat all arrays speeds.extend(mean_pos) speeds.extend(median_pos) speeds.extend(mean_vel) speeds.extend(median_vel) # create col names col_names = [bodypart + ' speed' for bodypart in f.pos_names] col_names.extend([bodypart + ' mean pos' for bodypart in f.pos_names]) col_names.extend([bodypart + ' median pos' for bodypart in f.pos_names]) xzy_pos_names = [bodypart + ' X' for bodypart in f.pos_names] + [bodypart + ' Y' for bodypart in f.pos_names] + [bodypart + ' Z' for bodypart in f.pos_names] col_names.extend([bodypart + ' mean vel' for bodypart in xzy_pos_names]) col_names.extend([bodypart + ' median vel' for bodypart in xzy_pos_names]) # create df df = pd.DataFrame([speeds], columns=col_names) return df @staticmethod def make_block_features(trials, times): df = pd.DataFrame() for i in range(len(trials)): # take trial trial = trials[i] time = times[i] trial_arr = trial.values # convert df to array where rows are frame numbers, cols are bodyparts trial_arr = trial_arr.T # array with rows are XYZ bodyparts, cols are frame nums df = pd.concat([df, MakeFeatures.calc_all(trial_arr, time)]) df.reset_index(drop=True, inplace=True) # rows are trials, cols are features return df @staticmethod def match_labels(df, vec_label): # create mask of labeled trials labeled_trials_mask = [] for i, label in enumerate(vec_label): label_trial_num = int(label[0]) labeled_trials_mask.append(label_trial_num) return df.T[labeled_trials_mask].T @staticmethod def sel_feat_by_keyword(df): """ reference: https://towardsdatascience.com/interesting-ways-to-select-pandas-dataframe-columns-b29b82bbfb33 """ return df.loc[:, [('Palm' in i) or ('Wrist' in i) for i in df.columns]] @staticmethod def randomize_feat(df): return df.sample(n=len(df), replace=False, axis=0, random_state=42) # shuffles rows w.o repl class Preprocessor: def __init__(self): """ Trial-izes data into a ML compatible format. """ self.kin_data = None self.exp_data = None self.label = None # usage: CU.make_vectorized_labels(label) self.kin_block = None self.exp_block = None self.all_exp_blocks = [] self.all_kin_blocks = [] # kin block self.wv = None self.window_length = None self.pre = None # ML dfs self.formatted_kin_block = None # kinematic feature df self.formatted_exp_block = None # robot feature df def set_kin_data(self, data): self.kin_data = data def set_exp_data(self, data): self.exp_data = data def set_kin_block(self, data): self.kin_block = data self.format_kin_block() def set_formatted_kin_block(self, data): self.formatted_kin_block = data def set_exp_block(self, data): self.exp_block = data def set_formatted_exp_block(self, data): self.formatted_exp_block = data def set_label(self, data): self.label = data def set_wv(self, data): self.wv = data def set_window_length(self, data): self.window_length = data def set_pre(self, data): self.pre = data @staticmethod def load_data(filename, file_type='pkl'): """ Loads FILENAME as pandas DataFrame. Args: filename: (str) path to file to load file_type: (str) file type to load Returns: (df) pandas DataFrame """ assert file_type == 'pkl' or file_type == 'h5' or file_type == 'csv', f'{file_type} not a valid file type' if file_type == 'pkl': return pd.read_pickle(filename) elif file_type == 'h5': # get h5 key with h5py.File(filename, "r") as f: key = list(f.keys())[0] return pd.read_hdf(filename, key) elif file_type == 'csv': return pd.read_csv(filename) @staticmethod def save_data(df, filename, file_type='csv'): """ Saves FILENAME. Args: df: (df) to save filename: (str) path to file file_type: (str) file type Returns: None """ assert file_type == 'csv' or file_type == 'pkl' or file_type == 'h5', f'{file_type} not a valid file type' if file_type == 'csv': df.to_csv(filename) if file_type == 'pkl': df.to_pickle(filename) if file_type == 'h5': df.to_hdf(filename, key='df') @staticmethod def get_single_block(df, date, session, rat, save_as=None, format='exp'): """ Returns DataFrame from data with matching rat, date, session. Args: df: (df) DataFrame with all blocks date: (str) date session: (str) session number rat: (str) rat name save_as: (bool) True to save as csv file, else default None format: (str) specifies which type of block to retrieve (kin or exp) Returns: new_df: (df) with specified rat, date, session """ new_df = pd.DataFrame() if format == 'exp': rr = df.loc[df['Date'] == date] rr = rr.loc[rr['S'] == session] new_df = rr.loc[rr['rat'] == rat] elif format == 'kin': # kin case for block in df: if isinstance(block, pd.DataFrame): # handles missing blocks in df index = block.columns[0] if rat == index[0] and session == index[1] and date == index[2]: new_df = pd.DataFrame(block) assert (len(new_df.index) != 0), "block does not exist in data!" if save_as: Preprocessor.save_data(new_df, save_as, file_type='pkl') return new_df @staticmethod def apply_median_filter(df, wv=5): """ Applies a multidimensional median filter to DF columns. Args: df: (df) wv: (int) the wavelet # for the median filter applied to the positional data (default 5) Returns: Filtered df. Has the same shape as input. """ # iterate across columns for (columnName, columnData) in df.iteritems(): # Apply median filter to column array values (bodypart, pos or prob) df[columnName] = ndimage.median_filter(columnData.values, size=wv) return df @staticmethod def stack(df): """ Reshapes DF. Stack the prescribed level(s) from columns to index. Args: df: (df) Returns: stacked df """ df_out = df.stack() df_out.index = df_out.index.map('{0[1]}_{0[0]}'.format) if isinstance(df_out, pd.Series): df_out = df_out.to_frame() return df_out def format_kin_block(self): """ Removes rat ID levels of a block df and applies median filter to column values. Sets formatted_kin_block to (df) two level multi-index df with filtered values. Returns: None """ # rm ID levels index = self.kin_block.columns[0] rm_levels_df = self.kin_block[index[0]][index[1]][index[2]][index[3]] # filter bodypart columns filtered_df = Preprocessor.apply_median_filter(rm_levels_df, wv=self.wv) # update attribute self.set_formatted_kin_block(filtered_df) @staticmethod def split_trial(formatted_kin_block, exp_block, window_length, pre): """ Partitions kinematic data into trials. Args: formatted_kin_block: (df) formatted kin block exp_block: (df) window_length (int): trial splitting window length, the number of frames to load data from (default 250) Set to 4-500. 900 is too long. pre: int, pre cut off before a trial starts, the number of frames to load data from before start time For trial splitting, set to 10. 50 is too long. (default 10) Returns: trials: (list of dfs) of length number of trials with index trial number """ assert (window_length > pre), "invalid slice!" starting_frames = exp_block['r_start'].values[0] trials = [] times = [] # iterate over starting frames for frame_num in starting_frames: start = frame_num - pre # negative indices case if (frame_num - pre) <= 0: start = 0 # slice trials trials.append(formatted_kin_block.loc[start:frame_num + window_length]) times.append( exp_block['time'][0][start:frame_num + window_length + 1]) # plus 1 to adjust size diff with trial size return trials, times @staticmethod def trialize_kin_blocks(formatted_kin_block, times): """ Returns a list of one column dfs, each representing a trial Args: formatted_kin_block: (list of dfs) split trial data times: (list of arrays of ints) sliced time from exp block Returns: ftrials: (list of one column dfs) """ # iterate over trials ftrials = [] for trial in formatted_kin_block: # match bodypart names trial_size = len(trial.index) trial.index = np.arange(trial_size) # reshape df into one column for one trial formatted_trial = Preprocessor.stack(Preprocessor.stack(trial)) ftrials.append(formatted_trial) return ftrials @staticmethod def match_kin_to_label(formatted_kin_block, label): """ Selects labeled trials and matches them to their labels. Args: formatted_kin_block: (list of one column dfs) trialized data label: (list of lists) vectorized labels Returns: labeled_trials: (list of one row dfs) matched to labels Note: If a trial is not labeled, the trial is dropped and unused. Trial numbers are zero-indexed. """ assert (len(label) <= len(formatted_kin_block)), \ f"More labels {len(label)} than trials {len(formatted_kin_block)}!" # iterate over labels and trials labeled_trials = [] for i, label in enumerate(label): label_trial_num = int(label[0]) trialized_df = formatted_kin_block[label_trial_num] # trial nums are 0-indexed # rename column of block df to trial num trialized_df.columns = [label_trial_num] # transpose so each row represents a trial trialized_df = trialized_df.T labeled_trials.append(trialized_df) return labeled_trials @staticmethod def create_kin_feat_df(formatted_kin_block): """ Appends all formatted trials into a single DataFrame. Args: formatted_kin_block: list of formatted dfs Returns: df: (df) where row represents trial num and columns are features. """ df = formatted_kin_block[0] for trial in formatted_kin_block[1:]: df = df.append(trial, ignore_index=True) return df def make_kin_feat_df(self): """ Given a kinematic block df, returns a ML ready feature df Returns: (df) where row represents trial num and columns are features. """ trials, times = Preprocessor.split_trial(self.kin_block, self.exp_block, self.window_length, self.pre) ftrials = Preprocessor.trialize_kin_blocks(trials) labeled_trials = Preprocessor.match_kin_to_label(ftrials, self.label) df = Preprocessor.create_kin_feat_df(labeled_trials) self.set_formatted_kin_block(df) return df def make_kin_psv_feat_df(self, randomize=False): """ Returns: feature df of position, speed, and velocity """ trials, times = Preprocessor.split_trial(self.kin_block, self.exp_block, self.window_length, self.pre) df = MakeFeatures.make_block_features(trials, times) df = MakeFeatures.match_labels(df, self.label) ret_df = MakeFeatures.sel_feat_by_keyword(df) # select just wrist and palms if randomize: return MakeFeatures.randomize_feat(ret_df) return ret_df @staticmethod def match_exp_to_label(exp_feat_df, label): """ Selects labeled trials and matches them to their labels. Args: exp_feat_df: (df) exp df label: (list of lists) vectorized labels Returns: masked_exp_feat_df: (df) exp feature df matched with labels Note: If a trial is not labeled, the trial is dropped and unused. Trial numbers are zero-indexed. """ assert (len(label) <= len(exp_feat_df)), \ f"More labels {len(label)} than trials {len(exp_feat_df)}!" # match to labels labeled_trial_nums = [] for i, label in enumerate(label): labeled_trial_nums.append(int(label[0])) # apply mask masked_exp_feat_df = exp_feat_df.iloc[labeled_trial_nums] return masked_exp_feat_df def make_exp_feat_df(self): """ Given a robot block df, returns a ML ready feature df Returns: (df) where row represents trial num and columns are features. """ # create exp features start_frames = self.exp_block['r_start'].values[0] exp_features = CU.import_experiment_features(self.exp_block, start_frames, self.window_length, self.pre) hot_vector = CU.onehot(self.exp_block) # unused exp_feat_df = CU.import_experiment_features_to_df(exp_features) # match and expand masked_exp_feat_df = Preprocessor.match_exp_to_label(exp_feat_df, self.label) # update attribute self.set_formatted_exp_block(masked_exp_feat_df) return self.formatted_exp_block @staticmethod def concat(dfs, row=True): """ Concats a list of dataframes row or col-wise Args: dfs: (list of dfs) to concat row: (bool) True to concat by row Returns: new df """ assert (len(dfs) >= 2), "Must concat at least 2 dfs!" if row: df_0 = dfs[0] for df in dfs[1:]: assert (df_0.shape[1] == df.shape[1]), f'{df_0.shape} {df.shape} cols must match!' df_0 = pd.concat([df_0, df], axis=0) else: df_0 = dfs[0] for df in dfs[1:]: assert (df_0.shape[0] == df.shape[0]), f'{df_0.shape} {df.shape} rows must match!' df_0 = pd.concat([df_0, df], axis=1) return df_0 def make_ml_feat_labels(self, kin_block, exp_block, label, et, el, window_length=250, pre=10, wv=5): """ Returns ml feature and label arrays. Args: kin_block: (df) exp_block: (df) label: (list of list) et: int, coordinate change variable Will take the positional coordinates and put them into the robot reference frame. el: int, coordinate change variable Will take the positional coordinates and put them into the robot reference frame. window_length (int): trial splitting window length, the number of frames to load data from (default 250) Set to 4-500. 900 is too long. pre: int, pre cut off before a trial starts, the number of frames to load data from before start time For trial splitting, set to 10. 50 is too long. (default 10) wv: (int) the wavelet # for the median filter applied to the positional data Notes: labels and blocks must match! hot_vector: (array) one hot array of robot block data of length num trials exp_features: (list) experimental features with shape (Num trials X Features X pre+window_length) """ # init instance attributes self.set_exp_block(exp_block) self.set_wv(wv) # must be set before kin block self.set_window_length(window_length) self.set_pre(pre) self.set_kin_block(kin_block) # vectorize label vectorized_label, _ = CU.make_vectorized_labels(label) self.set_label(vectorized_label) # create kin features # kin_feat_df = self.make_kin_feat_df() kin_feat_df = self.make_kin_psv_feat_df() # todo randomize=True to change features # create exp features exp_feat_df = self.make_exp_feat_df() return kin_feat_df, exp_feat_df def main_run_all(): # LOAD DATA preprocessor = Preprocessor() # Define data paths tkdf_16 = preprocessor.load_data('DataFrames/tkdf16_f.pkl') tkdf_15 = preprocessor.load_data('DataFrames/3D_positions_RM15_f.pkl') tkdf_14 = preprocessor.load_data('DataFrames/3D_positions_RM14_f.pkl') tkdf_13 = preprocessor.load_data('DataFrames/3D_positions_RM13.pkl') # not _f version tkdf_12 = preprocessor.load_data('DataFrames/3D_positions_RM12.pkl') tkdf_11 = preprocessor.load_data('DataFrames/3D_positions_RM11.pkl') tkdf_10 = preprocessor.load_data('DataFrames/3D_positions_RM10.pkl') tkdf_9 = preprocessor.load_data('DataFrames/3D_positions_RM9.pkl') RM16_expdf = preprocessor.load_data('DataFrames/RM16_expdf.pickle') RM15_expdf = preprocessor.load_data('DataFrames/RM15_expdf.pickle') RM14_expdf = preprocessor.load_data('DataFrames/RM14_expdf.pickle') RM13_expdf = preprocessor.load_data('DataFrames/RM13_expdf.pickle') RM12_expdf = preprocessor.load_data('DataFrames/RM12_expdf.pickle') RM11_expdf = preprocessor.load_data('DataFrames/RM11_expdf.pickle') RM10_expdf = preprocessor.load_data('DataFrames/RM10_expdf.pickle') RM9_expdf = preprocessor.load_data('DataFrames/RM9_expdf.pickle') # GET and SAVE BLOCKS # (df, date, session, rat, save_as=None, format='exp') exp_lst = [ preprocessor.get_single_block(RM16_expdf, '0190917', 'S1', '09172019', format='exp', save_as=f'{folder_name}/exp_rm16_9_17_s1.pkl'), preprocessor.get_single_block(RM16_expdf, '0190918', 'S1', '09182019', format='exp', save_as=f'{folder_name}/exp_rm16_9_18_s1.pkl'), preprocessor.get_single_block(RM16_expdf, '0190917', 'S2', '09172019', format='exp', save_as=f'{folder_name}/exp_rm16_9_17_s2.pkl'), preprocessor.get_single_block(RM16_expdf, '0190920', 'S3', '09202019', format='exp', save_as=f'{folder_name}/exp_rm16_9_20_s3.pkl'), preprocessor.get_single_block(RM16_expdf, '0190919', 'S3', '09192019', format='exp', save_as=f'{folder_name}/exp_rm16_9_19_s3.pkl'), preprocessor.get_single_block(RM15_expdf, '0190925', 'S3', '09252019', format='exp', # date sess rat save_as=f'{folder_name}/exp_rm15_9_25_s3.pkl'), preprocessor.get_single_block(RM15_expdf, '0190917', 'S4', '09172019', format='exp', save_as=f'{folder_name}/exp_rm15_9_17_s4.pkl'), preprocessor.get_single_block(RM14_expdf, '0190920', 'S1', '09202019', format='exp', save_as=f'{folder_name}/exp_rm14_9_20_s1.pkl'), preprocessor.get_single_block(RM14_expdf, '0190918', 'S2', '09182019', format='exp', save_as=f'{folder_name}/exp_rm14_9_18_s2.pkl'), preprocessor.get_single_block(RM13_expdf, '190920_', 'S3', '09202019', format='exp', save_as=f'{folder_name}/exp_rm13_9_20_s3.pkl'), # adjusted date preprocessor.get_single_block(RM12_expdf, '0190919', 'S1', '09192019', format='exp', save_as=f'{folder_name}/exp_rm12_9_19_s1.pkl'), preprocessor.get_single_block(RM11_expdf, '0190918', 'S4', '09182019', format='exp', save_as=f'{folder_name}/exp_rm11_9_18_s4.pkl'), preprocessor.get_single_block(RM10_expdf, '0190917', 'S2', '09172019', format='exp', save_as=f'{folder_name}/exp_rm10_9_17_s2.pkl'), preprocessor.get_single_block(RM9_expdf, '190919_', 'S3', '09192019', format='exp', # adjusted date save_as=f'{folder_name}/exp_rm9_9_19_s3.pkl') ] kin_lst = [ preprocessor.get_single_block(tkdf_16, '0190917', 'S1', '09172019', format='kin', save_as=f'{folder_name}/kin_rm16_9_17_s1.pkl'), preprocessor.get_single_block(tkdf_16, '0190918', 'S1', '09182019', format='kin', save_as=f'{folder_name}/kin_rm16_9_18_s1.pkl'), preprocessor.get_single_block(tkdf_16, '0190917', 'S2', '09172019', format='kin', save_as=f'{folder_name}/kin_rm16_9_17_s2.pkl'), preprocessor.get_single_block(tkdf_16, '0190920', 'S3', '09202019', format='kin', save_as=f'{folder_name}/kin_rm16_9_20_s3.pkl'), preprocessor.get_single_block(tkdf_16, '0190919', 'S3', '09192019', format='kin', save_as=f'{folder_name}/kin_rm16_9_19_s3.pkl'), preprocessor.get_single_block(tkdf_15, '0190925', 'S3', '09252019', format='kin', save_as=f'{folder_name}/kin_rm15_9_25_s3.pkl'), preprocessor.get_single_block(tkdf_15, '0190917', 'S4', '09172019', format='kin', save_as=f'{folder_name}/kin_rm15_9_17_s4.pkl'), preprocessor.get_single_block(tkdf_14, '0190920', 'S1', '09202019', format='kin', save_as=f'{folder_name}/kin_rm14_9_20_s1.pkl'), preprocessor.get_single_block(tkdf_14, '0190918', 'S2', '09182019', format='kin', save_as=f'{folder_name}/kin_rm14_9_18_s2.pkl'), preprocessor.get_single_block(tkdf_13, '190920_', 'S3', '09202019', format='kin', # adjusted date save_as=f'{folder_name}/kin_rm13_9_20_s3.pkl'), preprocessor.get_single_block(tkdf_12, '0190919', 'S1', '09192019', format='kin', save_as=f'{folder_name}/kin_rm12_9_19_s1.pkl'), preprocessor.get_single_block(tkdf_11, '0190918', 'S4', '09182019', format='kin', save_as=f'{folder_name}/kin_rm11_9_18_s4.pkl'), preprocessor.get_single_block(tkdf_10, '0190917', 'S2', '09172019', format='kin', save_as=f'{folder_name}/kin_rm10_9_17_s2.pkl'), preprocessor.get_single_block(tkdf_9, '190919_', 'S3', '09192019', format='kin', # adjusted date save_as=f'{folder_name}/kin_rm9_9_19_s3.pkl') ] """# CREATE FEAT and LABEL DFS kin_dfs = [] exp_dfs = [] label_dfs = [] for i in range(len(kin_lst)): kin_block = kin_lst[i] exp_block = exp_lst[i] label = labels[i] kin_feat_df, exp_feat_df = preprocessor.make_ml_feat_labels(kin_block, exp_block, label, et, el, window_length, pre, wv) # Check for NaNs and replace with zeros if kin_feat_df.isnull().values.any(): print(f"{i}th Kin Block contains Nan!") for column in kin_feat_df: if kin_feat_df[column].isnull().values.any(): print(f"Kin '{kin_feat_df[column]}' contains NaN and replaced with 0!") kin_feat_df.fillna(0) if exp_feat_df.isnull().values.any(): print(f"{i}th Exp Block contains Nan!") for column in kin_feat_df: if exp_feat_df[column].isnull().values.any(): print(f" Exp '{exp_feat_df[column]}' contains NaN and replaced with 0!") exp_feat_df.fillna(0) # append vec_labels, _ = CU.make_vectorized_labels(label) label_df = CU.make_vectorized_labels_to_df(vec_labels) label_dfs.append(label_df) kin_dfs.append(kin_feat_df) exp_dfs.append(exp_feat_df) # concat all_kin_features = Preprocessor.concat(kin_dfs, row=True) all_exp_features = Preprocessor.concat(exp_dfs, row=True) all_label_dfs = Preprocessor.concat(label_dfs, row=True) # save ML dfs Preprocessor.save_data(all_kin_features, f'{folder_name}/kin_feat.pkl', file_type='pkl') Preprocessor.save_data(all_exp_features, f'{folder_name}/exp_feat.pkl', file_type='pkl') Preprocessor.save_data(all_label_dfs, f'{folder_name}/label_dfs.pkl', file_type='pkl') """ def create_features(): # NEWEST # GET SAVED BLOCKS # (df, date, session, rat, save_as=None, format='exp') exp_lst = [ [f'{folder_name}/exp_rm16_9_17_s1.pkl', f'{folder_name}/exp_rm16_9_18_s1.pkl', f'{folder_name}/exp_rm16_9_17_s2.pkl', f'{folder_name}/exp_rm16_9_20_s3.pkl', f'{folder_name}/exp_rm16_9_19_s3.pkl'], [f'{folder_name}/exp_rm15_9_25_s3.pkl', f'{folder_name}/exp_rm15_9_17_s4.pkl'], [f'{folder_name}/exp_rm14_9_20_s1.pkl', f'{folder_name}/exp_rm14_9_18_s2.pkl'], [f'{folder_name}/exp_rm13_9_20_s3.pkl'], [f'{folder_name}/exp_rm12_9_19_s1.pkl'], [f'{folder_name}/exp_rm11_9_18_s4.pkl'], [f'{folder_name}/exp_rm10_9_17_s2.pkl'], [f'{folder_name}/exp_rm9_9_19_s3.pkl'] ] kin_lst = [ [f'{folder_name}/kin_rm16_9_17_s1.pkl', f'{folder_name}/kin_rm16_9_18_s1.pkl', f'{folder_name}/kin_rm16_9_17_s2.pkl', f'{folder_name}/kin_rm16_9_20_s3.pkl', f'{folder_name}/kin_rm16_9_19_s3.pkl'], [f'{folder_name}/kin_rm15_9_25_s3.pkl', f'{folder_name}/kin_rm15_9_17_s4.pkl'], [f'{folder_name}/kin_rm14_9_20_s1.pkl', f'{folder_name}/kin_rm14_9_18_s2.pkl'], [f'{folder_name}/kin_rm13_9_20_s3.pkl'], [f'{folder_name}/kin_rm12_9_19_s1.pkl'], [f'{folder_name}/kin_rm11_9_18_s4.pkl'], [f'{folder_name}/kin_rm10_9_17_s2.pkl'], [f'{folder_name}/kin_rm9_9_19_s3.pkl'] ] #Append paths block_paths = [ [['17', 'S1', 'RM16'], ['18', 'S1', 'RM16'], ['17', 'S2', 'RM16'], ['20', 'S3', 'RM16'], ['19', 'S3', 'RM16']], [['25', 'S3', 'RM15'], ['17', 'S4', 'RM15']], [['20', 'S1', 'RM14'], ['18', 'S2', 'RM14']], [['20', 'S3', 'RM13']], [['19', 'S1', 'RM12']], [['18', 'S4', 'RM11']], [['17', 'S2', 'RM10']], [['19', 'S3', 'RM9']], ] # CREATE FEAT and LABEL DFS feat_dfs = [] for i in range(len(block_paths)): # for each rat for j in range(len(block_paths[i])): # for each trial kin_data = Preprocessor.load_data(kin_lst[i][j]) exp_data = Preprocessor.load_data(exp_lst[i][j]) date, session, rat = block_paths[i][j] # Run ReachUtils R = CU.ReachUtils(rat, date, session, exp_data, kin_data, 's') # init print("saving") data = R.create_and_save_classification_features() print("SAVED block") # append feat_dfs.append(data) # save ML dfs Preprocessor.save_data(pd.DataFrame(feat_dfs), f'{folder_name}/feat_dfs.pkl', file_type='pkl') def create_labels(): # NEWEST # GET SAVED BLOCKS # (df, date, session, rat, save_as=None, format='exp') # Append paths block_paths = [ [['17', 'S1', 'RM16'], ['18', 'S1', 'RM16'], ['17', 'S2', 'RM16'], ['20', 'S3', 'RM16'], ['19', 'S3', 'RM16']], [['25', 'S3', 'RM15'], ['17', 'S4', 'RM15']], [['20', 'S1', 'RM14'], ['18', 'S2', 'RM14']], [['20', 'S3', 'RM13']], [['19', 'S1', 'RM12']], [['18', 'S4', 'RM11']], [['17', 'S2', 'RM10']], [['19', 'S3', 'RM9']], ] # CREATE FEAT and LABEL DFS label_dfs = [] for i in range(len(block_paths)): # for each rat for j in range(len(block_paths[i])): # for each trial label = labels[i][j] # append print(block_paths[i][j]) vec_labels, _ = CU.make_vectorized_labels(label) label_df = CU.make_vectorized_labels_to_df(vec_labels) label_dfs.append(label_df) # save ML dfs Preprocessor.save_data(
pd.DataFrame(label_dfs)
pandas.DataFrame
# -*- coding: utf-8 -*- import pandas import copy _pd2hc_kind = { "bar": "column", "barh": "bar", "area": "area", "line": "line", "pie": "pie" } def pd2hc_kind(kind): if kind not in _pd2hc_kind: raise ValueError("%(kind)s plots are not yet supported" % locals()) return _pd2hc_kind[kind] _pd2hc_linestyle = { "-": "Solid", "--": "Dash", "-.": "DashDot", ":": "Dot" } def pd2hc_linestyle(linestyle): if linestyle not in _pd2hc_linestyle: raise ValueError("%(linestyle)s linestyles are not yet supported" % locals()) return _pd2hc_linestyle[linestyle] def json_encode(obj): return pandas.io.json.dumps(obj) def serialize(df, output_type="javascript", chart_type="default", *args, **kwargs): def serialize_chart(df, output, *args, **kwargs): output["chart"] = {} if 'render_to' in kwargs: output['chart']['renderTo'] = kwargs['render_to'] if "figsize" in kwargs: output["chart"]["width"] = kwargs["figsize"][0] output["chart"]["height"] = kwargs["figsize"][1] if "kind" in kwargs: output["chart"]["type"] = pd2hc_kind(kwargs["kind"]) if kwargs.get('polar'): output['chart']['polar'] = True def serialize_colors(df, output, *args, **kwargs): pass def serialize_credits(df, output, *args, **kwargs): pass def serialize_data(df, output, *args, **kwargs): pass def serialize_drilldown(df, output, *args, **kwargs): pass def serialize_exporting(df, output, *args, **kwargs): pass def serialize_labels(df, output, *args, **kwargs): pass def serialize_legend(df, output, *args, **kwargs): output["legend"] = { "enabled": kwargs.get("legend", True) } def serialize_loading(df, output, *args, **kwargs): pass def serialize_navigation(df, output, *args, **kwargs): pass def serialize_noData(df, output, *args, **kwargs): pass def serialize_pane(df, output, *args, **kwargs): pass def serialize_plotOptions(df, output, *args, **kwargs): pass def serialize_series(df, output, *args, **kwargs): def is_secondary(c, **kwargs): return c in kwargs.get("secondary_y", []) if kwargs.get('sort_columns'): df = df.sort_index() series = df.to_dict('series') output["series"] = [] for name, data in series.items(): if df[name].dtype.kind in "biufc": sec = is_secondary(name, **kwargs) d = { "name": name if not sec or not kwargs.get("mark_right", True) else name + " (right)", "yAxis": int(sec), "data": list(zip(df.index, data.values.tolist())) } if kwargs.get('polar'): d['data'] = [v for k, v in d['data']] if kwargs.get("kind") == "area" and kwargs.get("stacked", True): d["stacking"] = 'normal' if kwargs.get("style"): d["dashStyle"] = pd2hc_linestyle(kwargs["style"].get(name, "-")) output["series"].append(d) output['series'].sort(key=lambda s: s['name']) def serialize_subtitle(df, output, *args, **kwargs): pass def serialize_title(df, output, *args, **kwargs): if "title" in kwargs: output["title"] = {"text": kwargs["title"]} def serialize_tooltip(df, output, *args, **kwargs): if 'tooltip' in kwargs: output['tooltip'] = kwargs['tooltip'] def serialize_xAxis(df, output, *args, **kwargs): output["xAxis"] = {} if df.index.name: output["xAxis"]["title"] = {"text": df.index.name} if df.index.dtype.kind in "M": output["xAxis"]["type"] = "datetime" if df.index.dtype.kind == 'O': output['xAxis']['categories'] = sorted(list(df.index)) if kwargs.get('sort_columns') else list(df.index) if kwargs.get("grid"): output["xAxis"]["gridLineWidth"] = 1 output["xAxis"]["gridLineDashStyle"] = "Dot" if kwargs.get("loglog") or kwargs.get("logx"): output["xAxis"]["type"] = 'logarithmic' if "xlim" in kwargs: output["xAxis"]["min"] = kwargs["xlim"][0] output["xAxis"]["max"] = kwargs["xlim"][1] if "rot" in kwargs: output["xAxis"]["labels"] = {"rotation": kwargs["rot"]} if "fontsize" in kwargs: output["xAxis"].setdefault("labels", {})["style"] = {"fontSize": kwargs["fontsize"]} if "xticks" in kwargs: output["xAxis"]["tickPositions"] = kwargs["xticks"] def serialize_yAxis(df, output, *args, **kwargs): yAxis = {} if kwargs.get("grid"): yAxis["gridLineWidth"] = 1 yAxis["gridLineDashStyle"] = "Dot" if kwargs.get("loglog") or kwargs.get("logy"): yAxis["type"] = 'logarithmic' if "ylim" in kwargs: yAxis["min"] = kwargs["ylim"][0] yAxis["max"] = kwargs["ylim"][1] if "rot" in kwargs: yAxis["labels"] = {"rotation": kwargs["rot"]} if "fontsize" in kwargs: yAxis.setdefault("labels", {})["style"] = {"fontSize": kwargs["fontsize"]} if "yticks" in kwargs: yAxis["tickPositions"] = kwargs["yticks"] output["yAxis"] = [yAxis] if kwargs.get("secondary_y"): yAxis2 = copy.deepcopy(yAxis) yAxis2["opposite"] = True output["yAxis"].append(yAxis2) def serialize_zoom(df, output, *args, **kwargs): if "zoom" in kwargs: if kwargs["zoom"] not in ("x", "y", "xy"): raise ValueError("zoom must be in ('x', 'y', 'xy')") output["chart"]["zoomType"] = kwargs["zoom"] output = {} df_copy = copy.deepcopy(df) if "x" in kwargs: df_copy.index = df_copy.pop(kwargs["x"]) if kwargs.get("use_index", True) is False: df_copy = df_copy.reset_index() if "y" in kwargs: df_copy =
pandas.DataFrame(df_copy, columns=kwargs["y"])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Thu Mar 21 11:33:22 2019 @author: babin """ import os import datetime from Bio import SeqIO from Bio.SeqUtils import GC from Bio import Entrez from Bio.Blast import NCBIWWW from Bio.Blast import NCBIXML from Bio.SeqIO.QualityIO import FastqGeneralIterator from Bio.SeqIO.FastaIO import SimpleFastaParser # low level fast fasta parser from Bio.SeqRecord import SeqRecord from Bio.Seq import Seq import vcf from time import sleep, time import matplotlib.pyplot as plt import seaborn as sns from math import log2 from http.client import IncompleteRead from socket import gaierror from urllib.error import HTTPError import pandas as pd sns.set() def _get_current_time(): time_stamp = datetime.datetime.fromtimestamp( time()).strftime('%Y-%m-%d %H:%M:%S') return time_stamp def _format_time_stamp(time_stamp): days, day_time = time_stamp.split(" ") day_time = day_time.split(":") day_time = "_".join(day_time) time_stamp = days + "_time-" + day_time return time_stamp def _load_from_genbank(f_obj, seq_id, rettype): handle = Entrez.efetch(db="nucleotide", id=seq_id, rettype=rettype, retmode="text") fetched = handle.read() f_obj.write(fetched) def fetch_seq(ids, seq_format="fasta", sep=False): """downloads sequences from nucleotide database by id nums and saves them in genbank format ---------- ids : str or list of str sequence genbank id or list of ids seq_format : str gb - genbank files fasta (by default) - fasta files sep : bool False - download bunch of sequences as one file True - donwload bunch of sequences as separate files """ # your email in here Entrez.email = "" count = 0 if type(ids) == str: with open("downloaded_" + ids + "." + seq_format, "w") as f_obj: _load_from_genbank(f_obj, ids, seq_format) print("a sequence " + ids + " was downloaded") elif type(ids) == list: if sep: for i in ids: with open("downloaded_" + i + "." + seq_format, "w") as f_obj: _load_from_genbank(f_obj, i, seq_format) count += 1 sleep(0.5) print("a total of %s sequences were downloaded" %count) else: time_stamp = _get_current_time() time_stamp = _format_time_stamp(time_stamp) with open("downloaded_bunch_" + time_stamp + "." + seq_format, "w") as f_obj: for i in ids: _load_from_genbank(f_obj, i, seq_format) count += 1 sleep(0.5) print("a total of %s sequences were downloaded" %count) else: print("invalid ids parameter type") def _fetch_blast_results(record, e_thresh, hits): result_handle = NCBIWWW.qblast("blastn", "nt", record.seq, hitlist_size=hits) blast_record = NCBIXML.read(result_handle) blast_results_record = [] for alignt in blast_record.alignments: for hsp in alignt.hsps: if hsp.expect < e_thresh: blast_results_record.append([record.id, alignt.title, str(alignt.length), str(hsp.expect)]) return blast_results_record def blast_fasta(query, e_thresh=0.1, hits=1): """blast records from a fasta file writes results into the tab-delimited txt file Parameters: ----------- query: str path to the input file e_thresh: float e-value blast threshold hits: int a number of hits to return, 1 by default """ fasta = SeqIO.parse(query, "fasta") blast_results_total = [] for record in fasta: try: blast_results_record = _fetch_blast_results(record, e_thresh, hits) for res in blast_results_record: blast_results_total.append(res) time_stamp = _get_current_time() print(record.id, " blasted at: ", time_stamp) except IncompleteRead as e: print("Network problem: ", e, "Second and final attempt is under way...") blast_results_record = _fetch_blast_results(record, e_thresh, hits) for res in blast_results_record: blast_results_total.append(res) time_stamp = _get_current_time() print(record.id, " blasted at: ", time_stamp) except gaierror as e: print("some other problem, 'gaierror': ", e) except HTTPError as e: print("urllib.error.HTTPError: ", e) df = pd.DataFrame(blast_results_total, columns=["record_id", "hit_name", "hit_length", "e_value"]) df.to_csv("blast_results.csv", sep="\t") print("job done. the results are in {0}".format(os.path.abspath("blast_results.csv"))) def _get_id_length_gc(file): ids_len_and_gc = [] records = SeqIO.parse(file, "fasta") num_records = 0 for rec in records: ids_len_and_gc.append((rec.id, len(rec.seq), GC(rec.seq))) num_records += 1 return num_records, ids_len_and_gc def _show_fasta_info(file, num_records, ids_len_and_gc): print("file '{0}' contains {1} sequences".format(file, num_records)) print("", "sequence id", "length", "GC%", sep="\t") for counter, value in enumerate(ids_len_and_gc, 1): print(counter, value[0], value[1], round(value[2], 2), sep="\t") print("------------------------------------") def fasta_info(path_to=False): """prints out information about fasta files: number of sequences in the file, sequence id numbers, lengths of sequences and GC content without arguments takes as an input all fasta files in the current dir Parameters ---------- path_to_fasta : str or list path to input file, or list of paths """ fasta_extensions = ["fa", "fas", "fasta"] if type(path_to) == str: num_records, len_and_gc = _get_id_length_gc(path_to) _show_fasta_info(path_to, num_records, len_and_gc) elif type(path_to) == list: for path in path_to: num_records, len_and_gc = _get_id_length_gc(path) _show_fasta_info(path, num_records, len_and_gc) else: current_dir_content = os.listdir() for f in current_dir_content: if f.rsplit(".", 1)[-1] in fasta_extensions: num_records, ids_len_and_gc = _get_id_length_gc(f) _show_fasta_info(f, num_records, ids_len_and_gc) def _get_fastq_num_records(path_to): with open(path_to) as in_handle: total_reads = 0 reads_ids = [] for title, seq, qual in FastqGeneralIterator(in_handle): total_reads += 1 reads_ids.append(title.split(" ")[0]) num_uniq_reads = len(set(reads_ids)) return total_reads, num_uniq_reads def _show_fastq_info(f, total_reads, num_uniq_reads): print("file {0} contains:".format(f)) print("{0} total reads".format(total_reads)) print("{0} unique reads ids".format(num_uniq_reads)) print("--------------------------") def fastq_info(path_to=False): """prints out information about fastq files: number of sequences in the file, and number of unique ids in the file without arguments takes as an input all fastq files in the current dir Parameters ---------- path_to_fasta : str or list path to input file, or list of paths """ if type(path_to) == str: total_reads, num_uniq_reads = _get_fastq_num_records(path_to) _show_fastq_info(path_to, total_reads, num_uniq_reads) elif type(path_to) == list: for path in path_to: total_reads, num_uniq_reads = _get_fastq_num_records(path) _show_fastq_info(path, total_reads, num_uniq_reads) else: current_dir_content = os.listdir() for f in current_dir_content: if f.rsplit(".", 1)[-1] == "fastq": total_reads, num_uniq_reads = _get_fastq_num_records(f) _show_fastq_info(f, total_reads, num_uniq_reads) def split_fasta(path_to, path_out=False): """splits fasta file containing several sequences into the corresponding number of fasta files. Parameters: ---------- path to : str path to the input file path_out : str path to output dir """ if path_out: if not os.path.exists(path_out): os.mkdir(path_out) for record in SeqIO.parse(path_to, "fasta"): SeqIO.write(record, path_out + record.id + ".fasta", "fasta") print("file {0} was splitted. the results are in the {1}".format(path_to, path_out)) else: for record in SeqIO.parse(path_to, "fasta"): SeqIO.write(record, record.id + ".fasta", "fasta") print("file {0} was splitted. the results are in the {1}".format(path_to, os.getcwd())) def _cat_fasta_records(file): cat_seq = "" for record in SeqIO.parse(file, "fasta"): cat_seq += record return cat_seq def cat_fasta_seq(path_to, fas_name="cat_seq.fasta", fas_id="cat_seq", fas_descr=""): """concatenates sequences from fasta files into one long sequence. takes one multifasta or several fasta files as an input Parameters: ---------- path_to : str or list path to input file or files fas_name : str, optional name of the fasta file fas_id : str, optional id of the concatenated sequence fas_descr : str, optional description of the fasta sequence """ if type(path_to) == str: cat_seq = _cat_fasta_records(path_to) elif type(path_to) == list: cat_seq = "" for file in path_to: cat_seq += _cat_fasta_records(file) cat_seq.id = fas_id cat_seq.description = fas_descr SeqIO.write(cat_seq, fas_name, "fasta") def plot_contigs_cover_gc(path_to): """takes spades assembler output which is fasta file containing contigs, and creates two plots: 1. distribution of GC content in contigs 2. GC content vs log2 coverage depth Parameters: ----------- path_to : str path to input file """ container = [] for seq_record in SeqIO.parse(path_to, "fasta"): entry = (seq_record.id, GC(seq_record.seq)) container.append(entry) gc = [x[1] for x in container] fig = plt.figure() sns.distplot(gc, hist=False, kde_kws={"shade":True}) plt.title("GC_distribution") plt.xlabel("GC content, %") plt.savefig("contigs_GC_distribution.jpeg", format="jpeg") fig.close() coverage = [] for el in container: cov = el[0].split("_")[-1] coverage.append(float(cov)) cov_log2 = [log2(x) for x in coverage] fig1 = plt.figure(figsize=(10, 8)) plt.scatter(gc, cov_log2, s=5) plt.xlabel("GC content, %") plt.ylabel("log2 coverage depth") plt.title("coverage of the contigs vs GC content", fontsize=15) plt.savefig("GC_content_vs_contigs_coverage.jpeg", format="jpeg") fig1.close() def count_indels(vcf_file, min_depth=10, verbose="True"): """counts indels in vcf file ---------------- vcf_file: str input vcf min_depth: int minimum depth in favour of indel, 10 by default verbose: bool True - prints information about the variants False - keeps silent """ vcf_reader = vcf.Reader(open(vcf_file, 'r')) counter = 0 if verbose: for record in vcf_reader: if "INDEL" not in record.INFO.keys(): continue elif record.INFO["DP4"][2] + record.INFO["DP4"][3] < min_depth: continue else: print("chromosome: %s, position: %s, ref: %s, indel variant: %s" \ % (record.CHROM, record.POS, record.REF, record.ALT )) print("depth at position: %s" % record.INFO["DP"]) print("reads supporting reference: %d" %(record.INFO["DP4"][0] + record.INFO["DP4"][1])) print("reads supporting indel variant: %d" %(record.INFO["DP4"][2] + record.INFO["DP4"][3])) print("==========================================================================") counter += 1 else: for record in vcf_reader: if "INDEL" not in record.INFO.keys(): continue elif record.INFO["DP4"][2] + record.INFO["DP4"][3] < min_depth: continue else: counter += 1 print("total number of indels %s" %counter) def count_snps(vcf_file, min_depth=10, verbose="True"): """counts SNPs in vcf file ---------------- vcf_file: str input vcf min_depth: int minimum depth in favour of SNPs, 10 by default verbose: bool True - prints information about the variants False - keeps silent """ vcf_reader = vcf.Reader(open(vcf_file, 'r')) counter = 0 if verbose: for record in vcf_reader: if "INDEL" in record.INFO.keys(): continue elif record.INFO["DP4"][2] + record.INFO["DP4"][3] < min_depth: continue else: print("chromosome: %s, position: %s, ref: %s, snp variant: %s" \ % (record.CHROM, record.POS, record.REF, record.ALT )) print("depth at position: %s" % record.INFO["DP"]) print("reads supporting reference: %d" %(record.INFO["DP4"][0] + record.INFO["DP4"][1])) print("reads supporting snp variant: %d" %(record.INFO["DP4"][2] + record.INFO["DP4"][3])) print("==========================================================================") counter += 1 else: for record in vcf_reader: if "INDEL" in record.INFO.keys(): continue elif record.INFO["DP4"][2] + record.INFO["DP4"][3] < min_depth: continue else: counter += 1 print("total number of SNPs %s" %counter) def vcf_to_df(vcf_file, min_depth=10, var_type="snp"): """creates pandas dataframe from the vcf file data ---------------- vcf_file: str input vcf min_depth: int minimum depth in favour of variant, 10 by default var_type: str snp - prints information about the variants indel - keeps silent """ vcf_reader = vcf.Reader(open(vcf_file, 'r')) vcf_data ={"chrom": [], "pos": [], "ref": [], "var": [], "total_depth": [], "depth_ref": [], "depth_var": []} if var_type == "snp": for record in vcf_reader: if "INDEL" in record.INFO.keys(): continue elif record.INFO["DP4"][2] + record.INFO["DP4"][3] < min_depth: continue else: vcf_data["chrom"].append(record.CHROM) vcf_data["pos"].append(record.POS) vcf_data["ref"].append(record.REF) vcf_data["var"].append(record.ALT) vcf_data["total_depth"].append(record.INFO["DP"]) vcf_data["depth_ref"].append(record.INFO["DP4"][0] + record.INFO["DP4"][1]) vcf_data["depth_var"].append(record.INFO["DP4"][2] + record.INFO["DP4"][3]) elif var_type == "indel": for record in vcf_reader: if "INDEL" not in record.INFO.keys(): continue elif record.INFO["DP4"][2] + record.INFO["DP4"][3] < min_depth: continue else: vcf_data["chrom"].append(record.CHROM) vcf_data["pos"].append(record.POS) vcf_data["ref"].append(record.REF) vcf_data["var"].append(record.ALT) vcf_data["total_depth"].append(record.INFO["DP"]) vcf_data["depth_ref"].append(record.INFO["DP4"][0] + record.INFO["DP4"][1]) vcf_data["depth_var"].append(record.INFO["DP4"][2] + record.INFO["DP4"][3]) else: print("var_type arg not valid") df =
pd.DataFrame.from_dict(vcf_data)
pandas.DataFrame.from_dict
from datetime import datetime import numpy as np import pytest import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, Index, MultiIndex, Series, qcut, ) import pandas._testing as tm def cartesian_product_for_groupers(result, args, names, fill_value=np.NaN): """Reindex to a cartesian production for the groupers, preserving the nature (Categorical) of each grouper """ def f(a): if isinstance(a, (CategoricalIndex, Categorical)): categories = a.categories a = Categorical.from_codes( np.arange(len(categories)), categories=categories, ordered=a.ordered ) return a index = MultiIndex.from_product(map(f, args), names=names) return result.reindex(index, fill_value=fill_value).sort_index() _results_for_groupbys_with_missing_categories = { # This maps the builtin groupby functions to their expected outputs for # missing categories when they are called on a categorical grouper with # observed=False. Some functions are expected to return NaN, some zero. # These expected values can be used across several tests (i.e. they are # the same for SeriesGroupBy and DataFrameGroupBy) but they should only be # hardcoded in one place. "all": np.NaN, "any": np.NaN, "count": 0, "corrwith": np.NaN, "first": np.NaN, "idxmax": np.NaN, "idxmin": np.NaN, "last": np.NaN, "mad": np.NaN, "max": np.NaN, "mean": np.NaN, "median": np.NaN, "min": np.NaN, "nth": np.NaN, "nunique": 0, "prod": np.NaN, "quantile": np.NaN, "sem": np.NaN, "size": 0, "skew": np.NaN, "std": np.NaN, "sum": 0, "var": np.NaN, } def test_apply_use_categorical_name(df): cats = qcut(df.C, 4) def get_stats(group): return { "min": group.min(), "max": group.max(), "count": group.count(), "mean": group.mean(), } result = df.groupby(cats, observed=False).D.apply(get_stats) assert result.index.names[0] == "C" def test_basic(): cats = Categorical( ["a", "a", "a", "b", "b", "b", "c", "c", "c"], categories=["a", "b", "c", "d"], ordered=True, ) data = DataFrame({"a": [1, 1, 1, 2, 2, 2, 3, 4, 5], "b": cats}) exp_index = CategoricalIndex(list("abcd"), name="b", ordered=True) expected = DataFrame({"a": [1, 2, 4, np.nan]}, index=exp_index) result = data.groupby("b", observed=False).mean() tm.assert_frame_equal(result, expected) cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]}) # single grouper gb = df.groupby("A", observed=False) exp_idx = CategoricalIndex(["a", "b", "z"], name="A", ordered=True) expected = DataFrame({"values": Series([3, 7, 0], index=exp_idx)}) result = gb.sum() tm.assert_frame_equal(result, expected) # GH 8623 x = DataFrame( [[1, "<NAME>"], [2, "<NAME>"], [1, "<NAME>"]], columns=["person_id", "person_name"], ) x["person_name"] = Categorical(x.person_name) g = x.groupby(["person_id"], observed=False) result = g.transform(lambda x: x) tm.assert_frame_equal(result, x[["person_name"]]) result = x.drop_duplicates("person_name") expected = x.iloc[[0, 1]] tm.assert_frame_equal(result, expected) def f(x): return x.drop_duplicates("person_name").iloc[0] result = g.apply(f) expected = x.iloc[[0, 1]].copy() expected.index = Index([1, 2], name="person_id") expected["person_name"] = expected["person_name"].astype("object") tm.assert_frame_equal(result, expected) # GH 9921 # Monotonic df = DataFrame({"a": [5, 15, 25]}) c = pd.cut(df.a, bins=[0, 10, 20, 30, 40]) result = df.a.groupby(c, observed=False).transform(sum) tm.assert_series_equal(result, df["a"]) tm.assert_series_equal( df.a.groupby(c, observed=False).transform(lambda xs: np.sum(xs)), df["a"] ) tm.assert_frame_equal(df.groupby(c, observed=False).transform(sum), df[["a"]]) tm.assert_frame_equal( df.groupby(c, observed=False).transform(lambda xs: np.max(xs)), df[["a"]] ) # Filter tm.assert_series_equal(df.a.groupby(c, observed=False).filter(np.all), df["a"]) tm.assert_frame_equal(df.groupby(c, observed=False).filter(np.all), df) # Non-monotonic df = DataFrame({"a": [5, 15, 25, -5]}) c = pd.cut(df.a, bins=[-10, 0, 10, 20, 30, 40]) result = df.a.groupby(c, observed=False).transform(sum) tm.assert_series_equal(result, df["a"]) tm.assert_series_equal( df.a.groupby(c, observed=False).transform(lambda xs: np.sum(xs)), df["a"] ) tm.assert_frame_equal(df.groupby(c, observed=False).transform(sum), df[["a"]]) tm.assert_frame_equal( df.groupby(c, observed=False).transform(lambda xs: np.sum(xs)), df[["a"]] ) # GH 9603 df = DataFrame({"a": [1, 0, 0, 0]}) c = pd.cut(df.a, [0, 1, 2, 3, 4], labels=Categorical(list("abcd"))) result = df.groupby(c, observed=False).apply(len) exp_index = CategoricalIndex(c.values.categories, ordered=c.values.ordered) expected = Series([1, 0, 0, 0], index=exp_index) expected.index.name = "a" tm.assert_series_equal(result, expected) # more basic levels = ["foo", "bar", "baz", "qux"] codes = np.random.randint(0, 4, size=100) cats = Categorical.from_codes(codes, levels, ordered=True) data = DataFrame(np.random.randn(100, 4)) result = data.groupby(cats, observed=False).mean() expected = data.groupby(np.asarray(cats), observed=False).mean() exp_idx = CategoricalIndex(levels, categories=cats.categories, ordered=True) expected = expected.reindex(exp_idx) tm.assert_frame_equal(result, expected) grouped = data.groupby(cats, observed=False) desc_result = grouped.describe() idx = cats.codes.argsort() ord_labels = np.asarray(cats).take(idx) ord_data = data.take(idx) exp_cats = Categorical( ord_labels, ordered=True, categories=["foo", "bar", "baz", "qux"] ) expected = ord_data.groupby(exp_cats, sort=False, observed=False).describe() tm.assert_frame_equal(desc_result, expected) # GH 10460 expc = Categorical.from_codes(np.arange(4).repeat(8), levels, ordered=True) exp = CategoricalIndex(expc) tm.assert_index_equal((desc_result.stack().index.get_level_values(0)), exp) exp = Index(["count", "mean", "std", "min", "25%", "50%", "75%", "max"] * 4) tm.assert_index_equal((desc_result.stack().index.get_level_values(1)), exp) def test_level_get_group(observed): # GH15155 df = DataFrame( data=np.arange(2, 22, 2), index=MultiIndex( levels=[CategoricalIndex(["a", "b"]), range(10)], codes=[[0] * 5 + [1] * 5, range(10)], names=["Index1", "Index2"], ), ) g = df.groupby(level=["Index1"], observed=observed) # expected should equal test.loc[["a"]] # GH15166 expected = DataFrame( data=np.arange(2, 12, 2), index=MultiIndex( levels=[CategoricalIndex(["a", "b"]), range(5)], codes=[[0] * 5, range(5)], names=["Index1", "Index2"], ), ) result = g.get_group("a") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("ordered", [True, False]) def test_apply(ordered): # GH 10138 dense = Categorical(list("abc"), ordered=ordered) # 'b' is in the categories but not in the list missing = Categorical(list("aaa"), categories=["a", "b"], ordered=ordered) values = np.arange(len(dense)) df = DataFrame({"missing": missing, "dense": dense, "values": values}) grouped = df.groupby(["missing", "dense"], observed=True) # missing category 'b' should still exist in the output index idx = MultiIndex.from_arrays([missing, dense], names=["missing", "dense"]) expected = DataFrame([0, 1, 2.0], index=idx, columns=["values"]) # GH#21636 tracking down the xfail, in some builds np.mean(df.loc[[0]]) # is coming back as Series([0., 1., 0.], index=["missing", "dense", "values"]) # when we expect Series(0., index=["values"]) result = grouped.apply(lambda x: np.mean(x)) tm.assert_frame_equal(result, expected) # we coerce back to ints expected = expected.astype("int") result = grouped.mean() tm.assert_frame_equal(result, expected) result = grouped.agg(np.mean) tm.assert_frame_equal(result, expected) # but for transform we should still get back the original index idx = MultiIndex.from_arrays([missing, dense], names=["missing", "dense"]) expected = Series(1, index=idx) result = grouped.apply(lambda x: 1) tm.assert_series_equal(result, expected) def test_observed(observed): # multiple groupers, don't re-expand the output space # of the grouper # gh-14942 (implement) # gh-10132 (back-compat) # gh-8138 (back-compat) # gh-8869 cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]}) df["C"] = ["foo", "bar"] * 2 # multiple groupers with a non-cat gb = df.groupby(["A", "B", "C"], observed=observed) exp_index = MultiIndex.from_arrays( [cat1, cat2, ["foo", "bar"] * 2], names=["A", "B", "C"] ) expected = DataFrame({"values": Series([1, 2, 3, 4], index=exp_index)}).sort_index() result = gb.sum() if not observed: expected = cartesian_product_for_groupers( expected, [cat1, cat2, ["foo", "bar"]], list("ABC"), fill_value=0 ) tm.assert_frame_equal(result, expected) gb = df.groupby(["A", "B"], observed=observed) exp_index = MultiIndex.from_arrays([cat1, cat2], names=["A", "B"]) expected = DataFrame({"values": [1, 2, 3, 4]}, index=exp_index) result = gb.sum() if not observed: expected = cartesian_product_for_groupers( expected, [cat1, cat2], list("AB"), fill_value=0 ) tm.assert_frame_equal(result, expected) # https://github.com/pandas-dev/pandas/issues/8138 d = { "cat": Categorical( ["a", "b", "a", "b"], categories=["a", "b", "c"], ordered=True ), "ints": [1, 1, 2, 2], "val": [10, 20, 30, 40], } df = DataFrame(d) # Grouping on a single column groups_single_key = df.groupby("cat", observed=observed) result = groups_single_key.mean() exp_index = CategoricalIndex( list("ab"), name="cat", categories=list("abc"), ordered=True ) expected = DataFrame({"ints": [1.5, 1.5], "val": [20.0, 30]}, index=exp_index) if not observed: index = CategoricalIndex( list("abc"), name="cat", categories=list("abc"), ordered=True ) expected = expected.reindex(index) tm.assert_frame_equal(result, expected) # Grouping on two columns groups_double_key = df.groupby(["cat", "ints"], observed=observed) result = groups_double_key.agg("mean") expected = DataFrame( { "val": [10, 30, 20, 40], "cat": Categorical( ["a", "a", "b", "b"], categories=["a", "b", "c"], ordered=True ), "ints": [1, 2, 1, 2], } ).set_index(["cat", "ints"]) if not observed: expected = cartesian_product_for_groupers( expected, [df.cat.values, [1, 2]], ["cat", "ints"] ) tm.assert_frame_equal(result, expected) # GH 10132 for key in [("a", 1), ("b", 2), ("b", 1), ("a", 2)]: c, i = key result = groups_double_key.get_group(key) expected = df[(df.cat == c) & (df.ints == i)] tm.assert_frame_equal(result, expected) # gh-8869 # with as_index d = { "foo": [10, 8, 4, 8, 4, 1, 1], "bar": [10, 20, 30, 40, 50, 60, 70], "baz": ["d", "c", "e", "a", "a", "d", "c"], } df = DataFrame(d) cat = pd.cut(df["foo"], np.linspace(0, 10, 3)) df["range"] = cat groups = df.groupby(["range", "baz"], as_index=False, observed=observed) result = groups.agg("mean") groups2 = df.groupby(["range", "baz"], as_index=True, observed=observed) expected = groups2.agg("mean").reset_index() tm.assert_frame_equal(result, expected) def test_observed_codes_remap(observed): d = {"C1": [3, 3, 4, 5], "C2": [1, 2, 3, 4], "C3": [10, 100, 200, 34]} df = DataFrame(d) values = pd.cut(df["C1"], [1, 2, 3, 6]) values.name = "cat" groups_double_key = df.groupby([values, "C2"], observed=observed) idx = MultiIndex.from_arrays([values, [1, 2, 3, 4]], names=["cat", "C2"]) expected = DataFrame({"C1": [3, 3, 4, 5], "C3": [10, 100, 200, 34]}, index=idx) if not observed: expected = cartesian_product_for_groupers( expected, [values.values, [1, 2, 3, 4]], ["cat", "C2"] ) result = groups_double_key.agg("mean") tm.assert_frame_equal(result, expected) def test_observed_perf(): # we create a cartesian product, so this is # non-performant if we don't use observed values # gh-14942 df = DataFrame( { "cat": np.random.randint(0, 255, size=30000), "int_id": np.random.randint(0, 255, size=30000), "other_id": np.random.randint(0, 10000, size=30000), "foo": 0, } ) df["cat"] = df.cat.astype(str).astype("category") grouped = df.groupby(["cat", "int_id", "other_id"], observed=True) result = grouped.count() assert result.index.levels[0].nunique() == df.cat.nunique() assert result.index.levels[1].nunique() == df.int_id.nunique() assert result.index.levels[2].nunique() == df.other_id.nunique() def test_observed_groups(observed): # gh-20583 # test that we have the appropriate groups cat = Categorical(["a", "c", "a"], categories=["a", "b", "c"]) df = DataFrame({"cat": cat, "vals": [1, 2, 3]}) g = df.groupby("cat", observed=observed) result = g.groups if observed: expected = {"a": Index([0, 2], dtype="int64"), "c": Index([1], dtype="int64")} else: expected = { "a": Index([0, 2], dtype="int64"), "b": Index([], dtype="int64"), "c": Index([1], dtype="int64"), } tm.assert_dict_equal(result, expected) def test_observed_groups_with_nan(observed): # GH 24740 df = DataFrame( { "cat": Categorical(["a", np.nan, "a"], categories=["a", "b", "d"]), "vals": [1, 2, 3], } ) g = df.groupby("cat", observed=observed) result = g.groups if observed: expected = {"a": Index([0, 2], dtype="int64")} else: expected = { "a": Index([0, 2], dtype="int64"), "b": Index([], dtype="int64"), "d": Index([], dtype="int64"), } tm.assert_dict_equal(result, expected) def test_observed_nth(): # GH 26385 cat = Categorical(["a", np.nan, np.nan], categories=["a", "b", "c"]) ser = Series([1, 2, 3]) df = DataFrame({"cat": cat, "ser": ser}) result = df.groupby("cat", observed=False)["ser"].nth(0) index = Categorical(["a", "b", "c"], categories=["a", "b", "c"]) expected = Series([1, np.nan, np.nan], index=index, name="ser") expected.index.name = "cat" tm.assert_series_equal(result, expected) def test_dataframe_categorical_with_nan(observed): # GH 21151 s1 = Categorical([np.nan, "a", np.nan, "a"], categories=["a", "b", "c"]) s2 = Series([1, 2, 3, 4]) df = DataFrame({"s1": s1, "s2": s2}) result = df.groupby("s1", observed=observed).first().reset_index() if observed: expected = DataFrame( {"s1": Categorical(["a"], categories=["a", "b", "c"]), "s2": [2]} ) else: expected = DataFrame( { "s1": Categorical(["a", "b", "c"], categories=["a", "b", "c"]), "s2": [2, np.nan, np.nan], } ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("ordered", [True, False]) @pytest.mark.parametrize("observed", [True, False]) @pytest.mark.parametrize("sort", [True, False]) def test_dataframe_categorical_ordered_observed_sort(ordered, observed, sort): # GH 25871: Fix groupby sorting on ordered Categoricals # GH 25167: Groupby with observed=True doesn't sort # Build a dataframe with cat having one unobserved category ('missing'), # and a Series with identical values label = Categorical( ["d", "a", "b", "a", "d", "b"], categories=["a", "b", "missing", "d"], ordered=ordered, ) val = Series(["d", "a", "b", "a", "d", "b"]) df = DataFrame({"label": label, "val": val}) # aggregate on the Categorical result = df.groupby("label", observed=observed, sort=sort)["val"].aggregate("first") # If ordering works, we expect index labels equal to aggregation results, # except for 'observed=False': label 'missing' has aggregation None label = Series(result.index.array, dtype="object") aggr = Series(result.array) if not observed: aggr[aggr.isna()] = "missing" if not all(label == aggr): msg = ( "Labels and aggregation results not consistently sorted\n" f"for (ordered={ordered}, observed={observed}, sort={sort})\n" f"Result:\n{result}" ) assert False, msg def test_datetime(): # GH9049: ensure backward compatibility levels = pd.date_range("2014-01-01", periods=4) codes = np.random.randint(0, 4, size=100) cats = Categorical.from_codes(codes, levels, ordered=True) data = DataFrame(np.random.randn(100, 4)) result = data.groupby(cats, observed=False).mean() expected = data.groupby(np.asarray(cats), observed=False).mean() expected = expected.reindex(levels) expected.index = CategoricalIndex( expected.index, categories=expected.index, ordered=True ) tm.assert_frame_equal(result, expected) grouped = data.groupby(cats, observed=False) desc_result = grouped.describe() idx = cats.codes.argsort() ord_labels = cats.take(idx) ord_data = data.take(idx) expected = ord_data.groupby(ord_labels, observed=False).describe() tm.assert_frame_equal(desc_result, expected) tm.assert_index_equal(desc_result.index, expected.index) tm.assert_index_equal( desc_result.index.get_level_values(0), expected.index.get_level_values(0) ) # GH 10460 expc = Categorical.from_codes(np.arange(4).repeat(8), levels, ordered=True) exp = CategoricalIndex(expc) tm.assert_index_equal((desc_result.stack().index.get_level_values(0)), exp) exp = Index(["count", "mean", "std", "min", "25%", "50%", "75%", "max"] * 4) tm.assert_index_equal((desc_result.stack().index.get_level_values(1)), exp) def test_categorical_index(): s = np.random.RandomState(12345) levels = ["foo", "bar", "baz", "qux"] codes = s.randint(0, 4, size=20) cats = Categorical.from_codes(codes, levels, ordered=True) df = DataFrame(np.repeat(np.arange(20), 4).reshape(-1, 4), columns=list("abcd")) df["cats"] = cats # with a cat index result = df.set_index("cats").groupby(level=0, observed=False).sum() expected = df[list("abcd")].groupby(cats.codes, observed=False).sum() expected.index = CategoricalIndex( Categorical.from_codes([0, 1, 2, 3], levels, ordered=True), name="cats" ) tm.assert_frame_equal(result, expected) # with a cat column, should produce a cat index result = df.groupby("cats", observed=False).sum() expected = df[list("abcd")].groupby(cats.codes, observed=False).sum() expected.index = CategoricalIndex( Categorical.from_codes([0, 1, 2, 3], levels, ordered=True), name="cats" ) tm.assert_frame_equal(result, expected) def test_describe_categorical_columns(): # GH 11558 cats = CategoricalIndex( ["qux", "foo", "baz", "bar"], categories=["foo", "bar", "baz", "qux"], ordered=True, ) df = DataFrame(np.random.randn(20, 4), columns=cats) result = df.groupby([1, 2, 3, 4] * 5).describe() tm.assert_index_equal(result.stack().columns, cats) tm.assert_categorical_equal(result.stack().columns.values, cats.values) def test_unstack_categorical(): # GH11558 (example is taken from the original issue) df = DataFrame( {"a": range(10), "medium": ["A", "B"] * 5, "artist": list("XYXXY") * 2} ) df["medium"] = df["medium"].astype("category") gcat = df.groupby(["artist", "medium"], observed=False)["a"].count().unstack() result = gcat.describe() exp_columns = CategoricalIndex(["A", "B"], ordered=False, name="medium") tm.assert_index_equal(result.columns, exp_columns) tm.assert_categorical_equal(result.columns.values, exp_columns.values) result = gcat["A"] + gcat["B"] expected = Series([6, 4], index=Index(["X", "Y"], name="artist")) tm.assert_series_equal(result, expected) def test_bins_unequal_len(): # GH3011 series = Series([np.nan, np.nan, 1, 1, 2, 2, 3, 3, 4, 4]) bins = pd.cut(series.dropna().values, 4) # len(bins) != len(series) here msg = r"Length of grouper \(8\) and axis \(10\) must be same length" with pytest.raises(ValueError, match=msg): series.groupby(bins).mean() def test_as_index(): # GH13204 df = DataFrame( { "cat": Categorical([1, 2, 2], [1, 2, 3]), "A": [10, 11, 11], "B": [101, 102, 103], } ) result = df.groupby(["cat", "A"], as_index=False, observed=True).sum() expected = DataFrame( { "cat": Categorical([1, 2], categories=df.cat.cat.categories), "A": [10, 11], "B": [101, 205], }, columns=["cat", "A", "B"], ) tm.assert_frame_equal(result, expected) # function grouper f = lambda r: df.loc[r, "A"] result = df.groupby(["cat", f], as_index=False, observed=True).sum() expected = DataFrame( { "cat": Categorical([1, 2], categories=df.cat.cat.categories), "A": [10, 22], "B": [101, 205], }, columns=["cat", "A", "B"], ) tm.assert_frame_equal(result, expected) # another not in-axis grouper (conflicting names in index) s = Series(["a", "b", "b"], name="cat") result = df.groupby(["cat", s], as_index=False, observed=True).sum() tm.assert_frame_equal(result, expected) # is original index dropped? group_columns = ["cat", "A"] expected = DataFrame( { "cat": Categorical([1, 2], categories=df.cat.cat.categories), "A": [10, 11], "B": [101, 205], }, columns=["cat", "A", "B"], ) for name in [None, "X", "B"]: df.index = Index(list("abc"), name=name) result = df.groupby(group_columns, as_index=False, observed=True).sum() tm.assert_frame_equal(result, expected) def test_preserve_categories(): # GH-13179 categories = list("abc") # ordered=True df = DataFrame({"A": Categorical(list("ba"), categories=categories, ordered=True)}) index = CategoricalIndex(categories, categories, ordered=True, name="A") tm.assert_index_equal( df.groupby("A", sort=True, observed=False).first().index, index ) tm.assert_index_equal( df.groupby("A", sort=False, observed=False).first().index, index ) # ordered=False df = DataFrame({"A": Categorical(list("ba"), categories=categories, ordered=False)}) sort_index = CategoricalIndex(categories, categories, ordered=False, name="A") nosort_index = CategoricalIndex(list("bac"), list("bac"), ordered=False, name="A") tm.assert_index_equal( df.groupby("A", sort=True, observed=False).first().index, sort_index ) tm.assert_index_equal( df.groupby("A", sort=False, observed=False).first().index, nosort_index ) def test_preserve_categorical_dtype(): # GH13743, GH13854 df = DataFrame( { "A": [1, 2, 1, 1, 2], "B": [10, 16, 22, 28, 34], "C1": Categorical(list("abaab"), categories=list("bac"), ordered=False), "C2": Categorical(list("abaab"), categories=list("bac"), ordered=True), } ) # single grouper exp_full = DataFrame( { "A": [2.0, 1.0, np.nan], "B": [25.0, 20.0, np.nan], "C1": Categorical(list("bac"), categories=list("bac"), ordered=False), "C2": Categorical(list("bac"), categories=list("bac"), ordered=True), } ) for col in ["C1", "C2"]: result1 = df.groupby(by=col, as_index=False, observed=False).mean() result2 = df.groupby(by=col, as_index=True, observed=False).mean().reset_index() expected = exp_full.reindex(columns=result1.columns) tm.assert_frame_equal(result1, expected) tm.assert_frame_equal(result2, expected) @pytest.mark.parametrize( "func, values", [ ("first", ["second", "first"]), ("last", ["fourth", "third"]), ("min", ["fourth", "first"]), ("max", ["second", "third"]), ], ) def test_preserve_on_ordered_ops(func, values): # gh-18502 # preserve the categoricals on ops c = Categorical(["first", "second", "third", "fourth"], ordered=True) df = DataFrame({"payload": [-1, -2, -1, -2], "col": c}) g = df.groupby("payload") result = getattr(g, func)() expected = DataFrame( {"payload": [-2, -1], "col": Series(values, dtype=c.dtype)} ).set_index("payload") tm.assert_frame_equal(result, expected) def test_categorical_no_compress(): data = Series(np.random.randn(9)) codes = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) cats = Categorical.from_codes(codes, [0, 1, 2], ordered=True) result = data.groupby(cats, observed=False).mean() exp = data.groupby(codes, observed=False).mean() exp.index = CategoricalIndex( exp.index, categories=cats.categories, ordered=cats.ordered ) tm.assert_series_equal(result, exp) codes = np.array([0, 0, 0, 1, 1, 1, 3, 3, 3]) cats = Categorical.from_codes(codes, [0, 1, 2, 3], ordered=True) result = data.groupby(cats, observed=False).mean() exp = data.groupby(codes, observed=False).mean().reindex(cats.categories) exp.index = CategoricalIndex( exp.index, categories=cats.categories, ordered=cats.ordered ) tm.assert_series_equal(result, exp) cats = Categorical( ["a", "a", "a", "b", "b", "b", "c", "c", "c"], categories=["a", "b", "c", "d"], ordered=True, ) data = DataFrame({"a": [1, 1, 1, 2, 2, 2, 3, 4, 5], "b": cats}) result = data.groupby("b", observed=False).mean() result = result["a"].values exp = np.array([1, 2, 4, np.nan]) tm.assert_numpy_array_equal(result, exp) def test_groupby_empty_with_category(): # GH-9614 # test fix for when group by on None resulted in # coercion of dtype categorical -> float df = DataFrame({"A": [None] * 3, "B": Categorical(["train", "train", "test"])}) result = df.groupby("A").first()["B"] expected = Series( Categorical([], categories=["test", "train"]), index=Series([], dtype="object", name="A"), name="B", ) tm.assert_series_equal(result, expected) def test_sort(): # https://stackoverflow.com/questions/23814368/sorting-pandas- # categorical-labels-after-groupby # This should result in a properly sorted Series so that the plot # has a sorted x axis # self.cat.groupby(['value_group'])['value_group'].count().plot(kind='bar') df = DataFrame({"value": np.random.randint(0, 10000, 100)}) labels = [f"{i} - {i+499}" for i in range(0, 10000, 500)] cat_labels = Categorical(labels, labels) df = df.sort_values(by=["value"], ascending=True) df["value_group"] = pd.cut( df.value, range(0, 10500, 500), right=False, labels=cat_labels ) res = df.groupby(["value_group"], observed=False)["value_group"].count() exp = res[sorted(res.index, key=lambda x: float(x.split()[0]))] exp.index = CategoricalIndex(exp.index, name=exp.index.name) tm.assert_series_equal(res, exp) def test_sort2(): # dataframe groupby sort was being ignored # GH 8868 df = DataFrame( [ ["(7.5, 10]", 10, 10], ["(7.5, 10]", 8, 20], ["(2.5, 5]", 5, 30], ["(5, 7.5]", 6, 40], ["(2.5, 5]", 4, 50], ["(0, 2.5]", 1, 60], ["(5, 7.5]", 7, 70], ], columns=["range", "foo", "bar"], ) df["range"] = Categorical(df["range"], ordered=True) index = CategoricalIndex( ["(0, 2.5]", "(2.5, 5]", "(5, 7.5]", "(7.5, 10]"], name="range", ordered=True ) expected_sort = DataFrame( [[1, 60], [5, 30], [6, 40], [10, 10]], columns=["foo", "bar"], index=index ) col = "range" result_sort = df.groupby(col, sort=True, observed=False).first() tm.assert_frame_equal(result_sort, expected_sort) # when categories is ordered, group is ordered by category's order expected_sort = result_sort result_sort = df.groupby(col, sort=False, observed=False).first() tm.assert_frame_equal(result_sort, expected_sort) df["range"] = Categorical(df["range"], ordered=False) index = CategoricalIndex( ["(0, 2.5]", "(2.5, 5]", "(5, 7.5]", "(7.5, 10]"], name="range" ) expected_sort = DataFrame( [[1, 60], [5, 30], [6, 40], [10, 10]], columns=["foo", "bar"], index=index ) index = CategoricalIndex( ["(7.5, 10]", "(2.5, 5]", "(5, 7.5]", "(0, 2.5]"], categories=["(7.5, 10]", "(2.5, 5]", "(5, 7.5]", "(0, 2.5]"], name="range", ) expected_nosort = DataFrame( [[10, 10], [5, 30], [6, 40], [1, 60]], index=index, columns=["foo", "bar"] ) col = "range" # this is an unordered categorical, but we allow this #### result_sort = df.groupby(col, sort=True, observed=False).first() tm.assert_frame_equal(result_sort, expected_sort) result_nosort = df.groupby(col, sort=False, observed=False).first() tm.assert_frame_equal(result_nosort, expected_nosort) def test_sort_datetimelike(): # GH10505 # use same data as test_groupby_sort_categorical, which category is # corresponding to datetime.month df = DataFrame( { "dt": [ datetime(2011, 7, 1), datetime(2011, 7, 1), datetime(2011, 2, 1), datetime(2011, 5, 1), datetime(2011, 2, 1), datetime(2011, 1, 1), datetime(2011, 5, 1), ], "foo": [10, 8, 5, 6, 4, 1, 7], "bar": [10, 20, 30, 40, 50, 60, 70], }, columns=["dt", "foo", "bar"], ) # ordered=True df["dt"] = Categorical(df["dt"], ordered=True) index = [ datetime(2011, 1, 1), datetime(2011, 2, 1), datetime(2011, 5, 1), datetime(2011, 7, 1), ] result_sort = DataFrame( [[1, 60], [5, 30], [6, 40], [10, 10]], columns=["foo", "bar"] ) result_sort.index = CategoricalIndex(index, name="dt", ordered=True) index = [ datetime(2011, 7, 1), datetime(2011, 2, 1), datetime(2011, 5, 1), datetime(2011, 1, 1), ] result_nosort = DataFrame( [[10, 10], [5, 30], [6, 40], [1, 60]], columns=["foo", "bar"] ) result_nosort.index = CategoricalIndex( index, categories=index, name="dt", ordered=True ) col = "dt" tm.assert_frame_equal( result_sort, df.groupby(col, sort=True, observed=False).first() ) # when categories is ordered, group is ordered by category's order tm.assert_frame_equal( result_sort, df.groupby(col, sort=False, observed=False).first() ) # ordered = False df["dt"] = Categorical(df["dt"], ordered=False) index = [ datetime(2011, 1, 1), datetime(2011, 2, 1), datetime(2011, 5, 1), datetime(2011, 7, 1), ] result_sort = DataFrame( [[1, 60], [5, 30], [6, 40], [10, 10]], columns=["foo", "bar"] ) result_sort.index = CategoricalIndex(index, name="dt") index = [ datetime(2011, 7, 1), datetime(2011, 2, 1), datetime(2011, 5, 1), datetime(2011, 1, 1), ] result_nosort = DataFrame( [[10, 10], [5, 30], [6, 40], [1, 60]], columns=["foo", "bar"] ) result_nosort.index = CategoricalIndex(index, categories=index, name="dt") col = "dt" tm.assert_frame_equal( result_sort, df.groupby(col, sort=True, observed=False).first() ) tm.assert_frame_equal( result_nosort, df.groupby(col, sort=False, observed=False).first() ) def test_empty_sum(): # https://github.com/pandas-dev/pandas/issues/18678 df = DataFrame( {"A": Categorical(["a", "a", "b"], categories=["a", "b", "c"]), "B": [1, 2, 1]} ) expected_idx = CategoricalIndex(["a", "b", "c"], name="A") # 0 by default result = df.groupby("A", observed=False).B.sum() expected = Series([3, 1, 0], expected_idx, name="B") tm.assert_series_equal(result, expected) # min_count=0 result = df.groupby("A", observed=False).B.sum(min_count=0) expected =
Series([3, 1, 0], expected_idx, name="B")
pandas.Series