prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# coding=utf-8 import unittest import numpy as np import pandas as pd from clustermatch.utils.data import merge_sources from .utils import get_data_file class ReadTomateTest(unittest.TestCase): def test_merge_sources_using_ps(self): ## Preparar data_file = get_data_file('ps_2011_2012.csv') ## Correr ps_pro = merge_sources(data_file)[0] ## Validar assert ps_pro is not None assert hasattr(ps_pro, 'shape') assert ps_pro.shape[0] == 10 assert ps_pro.shape[1] == 13 assert ps_pro.notnull().all().all() # arriba izquierda assert ps_pro.round(3).loc['Arom-1', '552'] == 0.000 assert ps_pro.round(3).loc['Arom-1', '553'] == 0.000 assert ps_pro.round(3).loc['Arom-5', '552'] == 0.533 # arriba derecha assert ps_pro.round(3).loc['Arom-1', 'Bigua'] == 0.111 assert ps_pro.round(3).loc['Arom-1', 'Elpida'] == 0.037 assert ps_pro.round(3).loc['Arom-5', 'Elpida'] == 0.296 # abajo derecha assert ps_pro.round(3).loc['Jug-4', 'Bigua'] == 0.172 assert ps_pro.round(3).loc['Jug-4', 'Elpida'] == 0.586 assert ps_pro.round(3).loc['Jug-1', 'Elpida'] == 0.000 # abajo izquierda assert ps_pro.round(3).loc['Jug-4', '553'] == 0.158 assert ps_pro.round(3).loc['Jug-4', '552'] == 0.533 assert ps_pro.round(3).loc['Jug-1', '552'] == 0.000 def test_merge_sources_using_vo(self): ## Preparar data_file = get_data_file('vo_2011_2012.csv') ## Correr vo_pro = merge_sources(data_file)[0] ## Validar assert vo_pro is not None assert hasattr(vo_pro, 'shape') assert vo_pro.shape[0] == 42 assert vo_pro.shape[1] == 11 assert vo_pro.notnull().all().all() # arriba izquierda assert vo_pro.round(3).loc['UNK 43', '552'] == 5.12 assert vo_pro.round(3).loc['UNK 43', '553'] == 4.77 assert vo_pro.round(3).loc['3mBUTANAL', '552'] == 0.000 # arriba derecha assert vo_pro.round(3).loc['UNK 43', 'Bigua'] == 2.43 assert vo_pro.round(3).loc['UNK 43', 'Elpida'] == 3.40 assert vo_pro.round(3).loc['3mBUTANAL', 'Elpida'] == 1.34 # abajo derecha assert vo_pro.round(3).loc['TRANS2HEXENAL', 'Bigua'] == 0.00 assert vo_pro.round(3).loc['TRANS2HEXENAL', 'Elpida'] == 7.11 assert vo_pro.round(3).loc['CIS2HEXENAL', 'Elpida'] == 0.00 # abajo izquierda assert vo_pro.round(3).loc['TRANS2HEXENAL', '553'] == 6.90 assert vo_pro.round(3).loc['TRANS2HEXENAL', '552'] == 5.40 assert vo_pro.round(3).loc['CIS2HEXENAL', '552'] == 0.000 def test_merge_sources_using_me_with_rep_merge_mean(self): ## Preparar data_file = get_data_file('me_2011_2012.csv') ## Correr me_pro = merge_sources(data_file, rep_merge=np.mean)[0] ## Validar assert me_pro is not None assert hasattr(me_pro, 'shape') assert me_pro.shape[0] == 89 assert me_pro.shape[1] == 44 # chequear todos los valores nulos assert pd.isnull(me_pro.loc['NA_2106.37', '3806']) assert pd.isnull(me_pro.loc['NA_1608.87', '3815']) assert pd.isnull(me_pro.loc['NA_2106.37', '4748']) assert pd.isnull(me_pro.loc['Glucoheptonic acid-1.4-lactone', '4748']) assert pd.isnull(me_pro.loc['NA_2106.37', '560']) assert pd.isnull(me_pro.loc['Glucoheptonic acid-1.4-lactone', '560']) # arriba izquierda assert me_pro.round(3).loc['serine', '549'] == 19.905 assert me_pro.round(3).loc['serine', '551'] == 13.735 # arriba derecha assert me_pro.round(3).loc['serine', '4751'] == 38.439 assert me_pro.round(3).loc['Ethanolamine', '4751'] == 1.619 # abajo izquierda assert me_pro.round(3).loc['Sucrose', '549'] == 171.211 assert me_pro.round(3).loc['NA_2627.66', '549'] == 3.853 # abajo derecha assert me_pro.round(3).loc['NA_2627.66', '4751'] == 5.018 assert me_pro.round(3).loc['NA_2627.66', '4750'] == 13.353 def test_merge_sources_using_ag(self): ## Preparar data_file = get_data_file('ag_2011_2012.csv') ## Correr ag_pro = merge_sources(data_file)[0] ## Validar assert ag_pro is not None assert hasattr(ag_pro, 'shape') assert ag_pro.shape[0] == 16 assert ag_pro.shape[1] == 19 # chequear todos los valores nulos # assert pd.isnull(ag_pro.loc['perim', '549']) # arriba izquierda assert ag_pro.round(3).loc['peso', '549'] == 287.247 assert ag_pro.round(3).loc['peso', '550'] == 189.247 assert ag_pro.round(3).loc['perim', '549'] == 280.336 # arriba derecha assert ag_pro.round(3).loc['peso', '572'] == 10.31 assert ag_pro.round(3).loc['firmeza', '572'] == 1.383 # abajo izquierda assert ag_pro.round(3).loc['a_cielab', '549'] == 44.870 assert ag_pro.round(3).loc['b_cielab', '549'] == 61.691 # abajo derecha assert ag_pro.round(3).loc['b_cielab', '572'] == 57.386 assert ag_pro.round(3).loc['b_cielab', '571'] == 61.842 # Casos especiales # todos ceros assert ag_pro.round(3).loc['area_indent', '572'] == 0.000 # valores cercanos a cero assert ag_pro.round(3).loc['area_indent', '571'] == 0.038 def test_merge_sources_using_ap(self): ## Preparar data_file = get_data_file('ap_2011_2012.csv') ## Correr ap_pro = merge_sources(data_file)[0] ## Validar assert ap_pro is not None assert hasattr(ap_pro, 'shape') assert ap_pro.shape[0] == 7 assert ap_pro.shape[1] == 42 # chequear todos los valores nulos # assert pd.isnull(ag_pro.loc['perim', '549']) # arriba izquierda assert ap_pro.round(3).loc['Peso', '549'] == 0.532 assert ap_pro.round(3).loc['Peso', '550'] == 0.620 # arriba derecha assert ap_pro.round(3).loc['Peso', 'elpida'] == 0.540 assert ap_pro.round(3).loc['TEAC HID (meq. Trolox %)', 'elpida'] == 0.351 # abajo izquierda assert ap_pro.round(3).loc['carotenos (mg%)', '549'] == 0.260 assert ap_pro.round(3).loc['LICOP (mg%)', '549'] == 3.969 # abajo derecha assert ap_pro.round(3).loc['carotenos (mg%)', 'elpida'] == 0.511 assert ap_pro.round(3).loc['carotenos (mg%)', 'bigua'] == 0.319 # Casos especiales # un nan en el medio assert ap_pro.round(3).loc['TEAC LIP (meq. Trolox %)', '558'] == 0.029 def test_merge_sources_index_name(self): ## Preparar data_file = get_data_file('ap_2011_2012.csv') ## Correr ap_pro = merge_sources(data_file)[0] ## Validar assert ap_pro is not None assert hasattr(ap_pro, 'index') assert ap_pro.index.name == 'features' def test_merge_source_returning_names_using_ag(self): ## Preparar data_file = get_data_file('ag_2011_2012.csv') ## Correr ag_pro, ag_nom, _ = merge_sources(data_file) ## Validar assert ag_pro is not None assert ag_nom is not None assert len(ag_nom) == 16 assert ag_nom[0] == 'peso' assert ag_nom[1] == 'firmeza' assert ag_nom[7] == 'area_indent' assert ag_nom[14] == 'a_cielab' assert ag_nom[15] == 'b_cielab' def test_merge_source_returning_names_using_ap(self): ## Preparar data_file = get_data_file('ap_2011_2012.csv') ## Correr ap_pro, ap_nom, _ = merge_sources(data_file) ## Validar assert ap_pro is not None assert ap_nom is not None assert len(ap_nom) == 7 assert ap_nom[0] == 'Peso' assert ap_nom[1] == 'TEAC HID (meq. Trolox %)' assert ap_nom[2] == 'TEAC LIP (meq. Trolox %)' assert ap_nom[3] == 'FRAP (meq. Trolox %)' assert ap_nom[4] == 'FOLIN (mg Ac Galico/100g)' assert ap_nom[5] == 'LICOP (mg%)' assert ap_nom[6] == 'carotenos (mg%)' def test_merge_source_returning_names_using_ap_ps(self): ## Preparar data_files = [get_data_file('ap_2011_2012.csv'), get_data_file('ps_2011_2012.csv')] ## Correr pro, nom, _ = merge_sources(data_files) ## Validar assert pro is not None assert nom is not None assert len(nom) == 7 + 10 ap_var_names = ['Peso', 'TEAC HID (meq. Trolox %)', 'TEAC LIP (meq. Trolox %)', 'FRAP (meq. Trolox %)', 'FOLIN (mg Ac Galico/100g)', 'LICOP (mg%)', 'carotenos (mg%)'] if not (ap_var_names == nom[:7] or ap_var_names == nom[-7:]): self.fail('ap variables not found') ps_var_names = ['Arom-1', 'Arom-5', 'Sab-1', 'Sab-5', 'Dulz-1', 'Dulz-5', 'Acid-1', 'Acid-5', 'Jug-1', 'Jug-4'] if not (ps_var_names == nom[:10] or ps_var_names == nom[-10:]): self.fail('ap variables not found') def test_merge_source_returning_sources_using_ap_ps(self): ## Preparar data_files = [get_data_file('ap_2011_2012.csv'), get_data_file('ps_2011_2012.csv')] ## Correr pro, nom, sources = merge_sources(data_files) ## Validar assert pro is not None assert nom is not None assert sources is not None assert len(sources) == 7 + 10 assert len(set(sources)) == 2 # unique source names assert 'ps_2011_2012' in sources assert 'ap_2011_2012' in sources if sources[0] == 'ps_2011_2012': assert len(set(sources[:10])) == 1 assert 'ps_2011_2012' in set(sources[:10]) assert len(set(sources[-7:])) == 1 assert 'ap_2011_2012' in set(sources[-7:]) else: assert len(set(sources[:7])) == 1 assert 'ap_2011_2012' in set(sources[:7]) assert len(set(sources[-10:])) == 1 assert 'ps_2011_2012' in set(sources[-10:]) def test_merge_sources_multiple_using_ps_vo(self): ## Preparar ps_data_file = get_data_file('ps_2011_2012.csv') vo_data_file = get_data_file('vo_2011_2012.csv') fuentes = [ps_data_file, vo_data_file] ## Correr procesado, nombres, _ = merge_sources(fuentes) ## Validar assert procesado is not None assert hasattr(procesado, 'shape') assert procesado.shape[0] == 10 + 42 assert procesado.shape[1] == 13 # columnas totales, se cuenta una sola vez las compartidas # ps assert procesado.round(3).loc['Arom-1', '552'] == 0.00 assert procesado.round(3).loc['Arom-1', '3837'] == 0.00 assert procesado.round(3).loc['Arom-1', '4735'] == 0.063 assert procesado.round(3).loc['Arom-1', '1589'] == 0.231 assert procesado.round(3).loc['Arom-1', 'Bigua'] == 0.111 assert procesado.round(3).loc['Arom-1', 'Elpida'] == 0.037 assert procesado.round(3).loc['Jug-4', '552'] == 0.533 # abajo izquierda assert procesado.round(3).loc['Jug-4', 'Elpida'] == 0.586 # abajo derecha # vo assert procesado.round(3).loc['UNK 43', '552'] == 5.12 assert procesado.round(3).loc['UNK 43', '3837'] == 3.98 assert pd.isnull(procesado.round(3).loc['UNK 43', '4735']) assert pd.isnull(procesado.round(3).loc['UNK 43', '1589']) assert procesado.round(3).loc['UNK 43', 'Bigua'] == 2.430 assert procesado.round(3).loc['UNK 43', 'Elpida'] == 3.400 assert procesado.round(3).loc['TRANS2HEXENAL', '552'] == 5.400 # abajo izquierda assert procesado.round(3).loc['TRANS2HEXENAL', 'Elpida'] == 7.110 # abajo derecha def test_merge_sources_multiple_using_me_ag(self): ## Preparar me_data_file = get_data_file('me_2011_2012.csv') ag_data_file = get_data_file('ag_2011_2012.csv') fuentes = [me_data_file, ag_data_file] ## Correr procesado, nombres, _ = merge_sources(fuentes) ## Validar assert procesado is not None assert hasattr(procesado, 'shape') assert procesado.shape[0] == 89 + 16 assert procesado.shape[1] == 47 # columnas totales, se cuenta una sola vez las compartidas # me ## valores nulos assert pd.isnull(procesado.loc['NA_2106.37', '3806']) assert pd.isnull(procesado.loc['NA_1608.87', '3815']) assert pd.isnull(procesado.loc['NA_2106.37', '4748']) assert pd.isnull(procesado.loc['Glucoheptonic acid-1.4-lactone', '4748']) assert pd.isnull(procesado.loc['NA_2106.37', '560']) assert pd.isnull(procesado.loc['Glucoheptonic acid-1.4-lactone', '560']) ## arriba izquierda assert procesado.round(3).loc['serine', '549'] == 19.905 assert procesado.round(3).loc['serine', '551'] == 13.735 ## arriba derecha assert procesado.round(3).loc['serine', '4751'] == 38.439 assert procesado.round(3).loc['Ethanolamine', '4751'] == 1.619 ## abajo izquierda assert procesado.round(3).loc['Sucrose', '549'] == 171.211 assert procesado.round(3).loc['NA_2627.66', '549'] == 3.853 ## abajo derecha assert procesado.round(3).loc['NA_2627.66', '4751'] == 5.018 assert procesado.round(3).loc['NA_2627.66', '4750'] == 13.353 # ag ## arriba izquierda assert procesado.round(3).loc['peso', '549'] == 287.247 assert procesado.round(3).loc['peso', '550'] == 189.247 assert procesado.round(3).loc['perim', '549'] == 280.336 ## arriba derecha assert procesado.round(3).loc['peso', '572'] == 10.31 assert procesado.round(3).loc['firmeza', '572'] == 1.383 ## abajo izquierda assert procesado.round(3).loc['a_cielab', '549'] == 44.870 assert procesado.round(3).loc['b_cielab', '549'] == 61.691 ## abajo derecha assert procesado.round(3).loc['b_cielab', '572'] == 57.386 assert procesado.round(3).loc['b_cielab', '571'] == 61.842 ## todos ceros assert procesado.round(3).loc['area_indent', '572'] == 0.000 ## valores cercanos a cero assert procesado.round(3).loc['area_indent', '571'] == 0.038 def test_merge_sources_xls_2008_2009(self): ## Correr procesado = merge_sources(get_data_file('2008-2009.xls'))[0] ## Validar assert procesado is not None assert hasattr(procesado, 'shape') assert procesado.shape[0] == 101 + 26 + 29 # assert procesado.shape[1] == 47 # columnas totales, se cuenta una sola vez las compartidas # volátiles ## valores nulos assert pd.isnull(procesado.loc['4-metil-3-hepten-2-ona', '569']) assert pd.isnull(procesado.loc['4-metil-3-hepten-2-ona', '3806']) assert pd.isnull(procesado.loc['1,4-pentadieno', '572']) assert pd.isnull(procesado.loc['1,4-pentadieno', '3842']) assert
pd.isnull(procesado.loc['1,4-pentadieno', '4618'])
pandas.isnull
import base64 import requests import json from google.cloud import pubsub_v1 import pandas as pd from pandas.core.reshape.concat import concat from pandas.core.frame import DataFrame from google.cloud import bigquery from google.cloud import storage bq_project_name = "coredata-trial" bq_dataset_name = "orderbookdataset" bq_table_name = "orderbookcrypto" bq_table_full_path = f"""{bq_project_name}.{bq_dataset_name}.{bq_table_name}""" bq_client = bigquery.Client(bq_project_name) def write_to_bigquery(message: dict): errors = bq_client.insert_rows_json( bq_table_full_path, message, # Must be a list of objects, even if only 1 row. ) for error in errors: print(f"encountered error: {error}") def store_data_in_bucket(df: bytes): # Instantiates a client project_id = "coredata-trial" client = storage.Client(project_id) # Creates a new bucket and uploads an object fname = "orderbook" + pd.to_datetime('now').strftime("%Y-%m-%d-%H-%M")+".json" bucket = client.bucket("coredatastore001") blob = bucket.blob(fname) blob.upload_from_string( data=df, content_type='application/json' ) print(f"Wrote json with pandas with name {blob.name} to the bucket {bucket.name}.") def covert_ob_to_dataframe_binance(obdata: dict, exchange, symbol) -> DataFrame: obframes = {side:
pd.DataFrame(data=obdata[side], columns=['price', 'quantity'], dtype=float)
pandas.DataFrame
import os # basic import numpy as np import pandas as pd from sklearn.utils import class_weight from tqdm import tqdm, trange import time import pprint import datetime import argparse from scipy.stats import gmean import yaml import shutil # keras from keras.optimizers import Adam from keras.models import load_model from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau # DIY import utils_classif from feat_ext import load_audio_file, get_mel_spectrogram, modify_file_variable_length from data import get_label_files, DataGeneratorPatch, PatchGeneratorPerFile from architectures import get_model_crnn_seld_tagger from eval import Evaluator import csv import sys sys.path.append('../') from parameters import get_params from compute_doa_metrics import compute_DOA_metrics from file_utils import write_metadata_result_file, build_result_dict_from_metadata_array, write_output_result_file start = time.time() now = datetime.datetime.now() print("Current date and time:") print(str(now)) # ========================================================================================================= # ========================================================================================================= # ==================================================================== ARGUMENTS parser = argparse.ArgumentParser(description='DCASE2019 Task3') parser.add_argument('-p', '--params_yaml', dest='params_yaml', action='store', required=False, type=str) args = parser.parse_args() print('\nYaml file with parameters defining the experiment: %s\n' % str(args.params_yaml)) # =========================================================================Parameters, paths and variables # =========================================================================Parameters, paths and variables # =========================================================================Parameters, paths and variables # Read parameters file from yaml passed by argument params = yaml.load(open(args.params_yaml)) params_ctrl = params['ctrl'] params_extract = params['extract'] params_learn = params['learn'] params_loss = params['loss'] params_recog = params['recognizer'] params_crnn = params['crnn'] suffix_in = params['suffix'].get('in') suffix_out = params['suffix'].get('out') # determine loss function for stage 1 (or entire training) if params_loss.get('type') == 'CCE': params_loss['type'] = 'categorical_crossentropy' elif params_loss.get('type') == 'MAE': params_loss['type'] = 'mean_absolute_error' params_extract['audio_len_samples'] = int(params_extract.get('fs') * params_extract.get('audio_len_s')) # vip to deploy. for public, put directly params_ctrl.gt('dataset_path') within params_path path_root_data = params_ctrl.get('dataset_path') params_path = {'path_to_features': os.path.join(path_root_data, 'features'), # 'featuredir_dev': 'audio_dev_varup1/', # 'featuredir_eval': 'audio_eval_varup1/', 'featuredir_dev': 'audio_dev_varup2_64mel/', 'featuredir_eval': 'audio_eval_varup2_64mel/', # 'featuredir_dev_param': 'audio_dev_param_varup2_64mel/', # 'featuredir_eval_param': 'audio_eval_param_varup2_64mel/', 'featuredir_dev_param': 'audio_dev_param_Q_varup2_64mel/', 'featuredir_eval_param': 'audio_eval_param_Q_varup2_64mel/', # 'featuredir_dev': 'audio_dev_varup1_64mel/', # 'featuredir_eval': 'audio_eval_varup1_64mel/', 'path_to_dataset': path_root_data, 'audiodir_dev': 'wav/dev/', 'audiodir_eval': 'wav/eval/', # 'audiodir_dev_param': 'wav/dev_param/', # 'audiodir_eval_param': 'wav/eval_param/', 'audiodir_dev_param': 'wav/dev_param_Q/', 'audiodir_eval_param': 'wav/eval_param_Q/', 'audio_shapedir_dev': 'audio_dev_shapes/', 'audio_shapedir_eval': 'audio_eval_shapes/', # 'audio_shapedir_dev_param': 'audio_dev_param_shapes/', # 'audio_shapedir_eval_param': 'audio_eval_param_shapes/', 'audio_shapedir_dev_param': 'audio_dev_param_Q_shapes/', 'audio_shapedir_eval_param': 'audio_eval_param_Q_shapes/', 'gt_files': path_root_data} if params_extract.get('n_mels') == 40: params_path['featuredir_dev'] = 'audio_dev_varup2_40mel/' params_path['featuredir_eval'] = 'audio_eval_varup2_40mel/' # params_path['featuredir_dev_param'] = 'audio_dev_param_varup2_40mel/' # params_path['featuredir_eval_param'] = 'audio_eval_param_varup2_40mel/' params_path['featuredir_dev_param'] = 'audio_dev_param_Q_varup2_40mel/' params_path['featuredir_eval_param'] = 'audio_eval_param_Q_varup2_40mel/' elif params_extract.get('n_mels') == 96: params_path['featuredir_dev'] = 'audio_dev_varup2_96mel/' params_path['featuredir_eval'] = 'audio_eval_varup2_96mel/' # params_path['featuredir_dev_param'] = 'audio_dev_param_varup2_96mel/' # params_path['featuredir_eval_param'] = 'audio_eval_param_varup2_96mel/' params_path['featuredir_dev_param'] = 'audio_dev_param_Q_varup2_96mel/' params_path['featuredir_eval_param'] = 'audio_eval_param_Q_varup2_96mel/' elif params_extract.get('n_mels') == 128: params_path['featuredir_dev'] = 'audio_dev_varup2_128mel/' params_path['featuredir_eval'] = 'audio_eval_varup2_128mel/' # params_path['featuredir_dev_param'] = 'audio_dev_param_varup2_128mel/' # params_path['featuredir_eval_param'] = 'audio_eval_param_varup2_128mel/' params_path['featuredir_dev_param'] = 'audio_dev_param_Q_varup2_128mel/' params_path['featuredir_eval_param'] = 'audio_eval_param_Q_varup2_128mel/' params_path['featurepath_dev'] = os.path.join(params_path.get('path_to_features'), params_path.get('featuredir_dev')) params_path['featurepath_eval'] = os.path.join(params_path.get('path_to_features'), params_path.get('featuredir_eval')) params_path['featurepath_dev_param'] = os.path.join(params_path.get('path_to_features'), params_path.get('featuredir_dev_param')) params_path['featurepath_eval_param'] = os.path.join(params_path.get('path_to_features'), params_path.get('featuredir_eval_param')) params_path['audiopath_dev'] = os.path.join(params_path.get('path_to_dataset'), params_path.get('audiodir_dev')) params_path['audiopath_eval'] = os.path.join(params_path.get('path_to_dataset'), params_path.get('audiodir_eval')) params_path['audiopath_dev_param'] = os.path.join(params_path.get('path_to_dataset'), params_path.get('audiodir_dev_param')) params_path['audiopath_eval_param'] = os.path.join(params_path.get('path_to_dataset'), params_path.get('audiodir_eval_param')) params_path['audio_shapedir_dev'] = os.path.join(params_path.get('path_to_dataset'), params_path.get('audio_shapedir_dev')) params_path['audio_shapedir_eval'] = os.path.join(params_path.get('path_to_dataset'), params_path.get('audio_shapedir_eval')) params_path['audio_shapedir_dev_param'] = os.path.join(params_path.get('path_to_dataset'), params_path.get('audio_shapedir_dev_param')) params_path['audio_shapedir_eval_param'] = os.path.join(params_path.get('path_to_dataset'), params_path.get('audio_shapedir_eval_param')) # ======================================================== SPECIFIC PATHS TO SOME IMPORTANT FILES # ground truth, load model, save model, predictions, results params_files = {'gt_eval': os.path.join(params_path.get('gt_files'), 'gt_eval.csv'), 'gt_dev': os.path.join(params_path.get('gt_files'), 'gt_dev.csv')} path_trained_models = utils_classif.make_sure_isdir('trained_models', params_ctrl.get('output_file')) params_files['save_model'] = os.path.join(path_trained_models, params_ctrl.get('output_file') + '_v' + str(params_ctrl.get('count_trial')) + '.h5') path_predictions = utils_classif.make_sure_isdir('predictions', params_ctrl.get('output_file')) params_files['predictions'] = os.path.join(path_predictions, params_ctrl.get('output_file') + '_v' + str(params_ctrl.get('count_trial')) + '.csv') path_results = utils_classif.make_sure_isdir('logs/results', params_ctrl.get('output_file')) params_files['results'] = os.path.join(path_results, params_ctrl.get('output_file') + '.pickle') # params_files['event_durations'] = os.path.join('logs/pics', params_ctrl.get('output_file') + '_event_durations.pickle') # # ============================================= print all params to keep record in output file print('\nparams_ctrl=') pprint.pprint(params_ctrl, width=1, indent=4) print('params_files=') pprint.pprint(params_files, width=1, indent=4) print('params_extract=') pprint.pprint(params_extract, width=1, indent=4) print('params_learn=') pprint.pprint(params_learn, width=1, indent=4) print('params_loss=') pprint.pprint(params_loss, width=1, indent=4) print('params_recog=') pprint.pprint(params_recog, width=1, indent=4) print('params_crnn=') pprint.pprint(params_crnn, width=1, indent=4) print('\n') # ============================================================== READ TRAIN and TEST DATA # ============================================================== READ TRAIN and TEST DATA # ============================================================== READ TRAIN and TEST DATA # ============================================================== READ TRAIN and TEST DATA # aim: lists with all wav files for dev, which includes train/val/test gt_dev = pd.read_csv(params_files.get('gt_dev')) splitlist_audio_dev = gt_dev.split.values.tolist() filelist_audio_dev = gt_dev.fname.values.tolist() # create dict with ground truth mapping with labels: # -key: path to wav # -value: the ground truth label too file_to_label = {params_path.get('audiopath_dev') + k: v for k, v in zip(gt_dev.fname.values, gt_dev.label.values)} # ========================================================== CREATE VARS FOR DATASET MANAGEMENT # list with unique n_classes labels and aso_ids list_labels = sorted(list(set(gt_dev.label.values))) # create dicts such that key: value is as follows # fixed by DCASE label_to_int = { 'clearthroat': 2, 'cough': 8, 'doorslam': 9, 'drawer': 1, 'keyboard': 6, 'keysDrop': 4, 'knock': 0, 'laughter': 10, 'pageturn': 7, 'phone': 3, 'speech': 5 } int_to_label = {v: k for k, v in label_to_int.items()} # create ground truth mapping with categorical values file_to_label_numeric = {k: label_to_int[v] for k, v in file_to_label.items()} # # ========================================================== FEATURE EXTRACTION # ========================================================== FEATURE EXTRACTION # ========================================================== FEATURE EXTRACTION # compute T_F representation # mel-spectrogram for all files in the dataset and store it var_lens = {item: [] for item in label_to_int.keys()} var_lens['overall'] = [] var_lens_dev_param = {} var_lens_dev_param['overall'] = [] if params_ctrl.get('feat_ext'): if params_ctrl.get('pipeline') == 'T_F': n_extracted_dev = 0; n_extracted_te = 0; n_failed_dev = 0; n_failed_te = 0 n_extracted_dev_param = 0; n_failed_dev_param = 0 # only if features have not been extracted, ie # if folder does not exist, or it exists with less than 80% of the feature files # create folder and extract features nb_files_dev = len(filelist_audio_dev) if not os.path.exists(params_path.get('featurepath_dev')) or \ len(os.listdir(params_path.get('featurepath_dev'))) < nb_files_dev*0.8: if os.path.exists(params_path.get('featurepath_dev')): shutil.rmtree(params_path.get('featurepath_dev')) os.makedirs(params_path.get('featurepath_dev')) print('\nFeature extraction for dev set (prints enabled). Features dumped in {}.........................'. format(params_path.get('featurepath_dev'))) for idx, f_name in enumerate(filelist_audio_dev): f_path = os.path.join(params_path.get('audiopath_dev'), f_name) if os.path.isfile(f_path) and f_name.endswith('.wav'): # load entire audio file and modify variable length, if needed y = load_audio_file(f_path, input_fixed_length=params_extract['audio_len_samples'], params_extract=params_extract) # keep record of the lengths, per class, for insight duration_seconds = len(y)/int(params_extract.get('fs')) var_lens[f_name.split('_')[0]].append(duration_seconds) var_lens['overall'].append(duration_seconds) y = modify_file_variable_length(data=y, input_fixed_length=params_extract['audio_len_samples'], params_extract=params_extract) # print('Considered audio length: %6.3f' % (len(y) / params_extract.get('fs'))) # print('%-22s: [%d/%d] of %s' % ('Extracting tr features', (idx + 1), nb_files_tr, f_path)) # compute log-scaled mel spec. row x col = time x freq mel_spectrogram = get_mel_spectrogram(audio=y, params_extract=params_extract) # save the T_F rep to a binary file (only the considered length) utils_classif.save_tensor(var=mel_spectrogram, out_path=os.path.join(params_path.get('featurepath_dev'), f_name.replace('.wav', '.data')), suffix='_mel') # save also label utils_classif.save_tensor(var=np.array([file_to_label_numeric[f_path]], dtype=float), out_path=os.path.join(params_path.get('featurepath_dev'), f_name.replace('.wav', '.data')), suffix='_label') if os.path.isfile(os.path.join(params_path.get('featurepath_dev'), f_name.replace('.wav', suffix_in + '.data'))): n_extracted_dev += 1 print('%-22s: [%d/%d] of %s' % ('Extracted dev features', (idx + 1), nb_files_dev, f_path)) else: n_failed_dev += 1 print('%-22s: [%d/%d] of %s' % ('FAILING to extract dev features', (idx + 1), nb_files_dev, f_path)) else: print('%-22s: [%d/%d] of %s' % ('this dev audio is in the csv but not in the folder', (idx + 1), nb_files_dev, f_path)) print('n_extracted_dev: {0} / {1}'.format(n_extracted_dev, nb_files_dev)) print('n_failed_dev: {0} / {1}\n'.format(n_failed_dev, nb_files_dev)) else: print('Dev set is already extracted in {}'.format(params_path.get('featurepath_dev'))) # do feature extraction for dev_param (outcome of complete parametric frontend)======================================== # do feature extraction for dev_param (outcome of complete parametric frontend)======================================== audio_files_dev_param = [f for f in os.listdir(params_path.get('audiopath_dev_param')) if not f.startswith('.')] nb_files_dev_param = len(audio_files_dev_param) if not os.path.exists(params_path.get('featurepath_dev_param')) or \ len(os.listdir(params_path.get('featurepath_dev_param'))) < nb_files_dev_param * 0.8: if os.path.exists(params_path.get('featurepath_dev_param')): shutil.rmtree(params_path.get('featurepath_dev_param')) os.makedirs(params_path.get('featurepath_dev_param')) print( '\nFeature extraction for dev set parametric (outcome of parametric frontend). Features dumped in {}.........................'. format(params_path.get('featurepath_dev_param'))) for idx, f_name in enumerate(audio_files_dev_param): f_path = os.path.join(params_path.get('audiopath_dev_param'), f_name) if os.path.isfile(f_path) and f_name.endswith('.wav'): # load entire audio file and modify variable length, if needed y = load_audio_file(f_path, input_fixed_length=params_extract['audio_len_samples'], params_extract=params_extract) # keep record of the lengths, per class, for insight duration_seconds = len(y) / int(params_extract.get('fs')) var_lens_dev_param['overall'].append(duration_seconds) y = modify_file_variable_length(data=y, input_fixed_length=params_extract['audio_len_samples'], params_extract=params_extract) # print('Considered audio length: %6.3f' % (len(y) / params_extract.get('fs'))) # print('%-22s: [%d/%d] of %s' % ('Extracting tr features', (idx + 1), nb_files_tr, f_path)) # compute log-scaled mel spec. row x col = time x freq mel_spectrogram = get_mel_spectrogram(audio=y, params_extract=params_extract) # save the T_F rep to a binary file (only the considered length) utils_classif.save_tensor(var=mel_spectrogram, out_path=os.path.join(params_path.get('featurepath_dev_param'), f_name.replace('.wav', '.data')), suffix='_mel') if os.path.isfile(os.path.join(params_path.get('featurepath_dev_param'), f_name.replace('.wav', suffix_in + '.data'))): n_extracted_dev_param += 1 print('%-22s: [%d/%d] of %s' % ('Extracted dev_param features', (idx + 1), nb_files_dev_param, f_path)) else: n_failed_dev_param += 1 print('%-22s: [%d/%d] of %s' % ( 'FAILING to extract dev_param features', (idx + 1), nb_files_dev_param, f_path)) else: print('%-22s: [%d/%d] of %s' % ( 'this dev_param audio is in the csv but not in the folder', (idx + 1), nb_files_dev_param, f_path)) print('n_extracted_dev_param: {0} / {1}'.format(n_extracted_dev_param, nb_files_dev_param)) print('n_failed_dev_param: {0} / {1}\n'.format(n_failed_dev_param, nb_files_dev_param)) else: print('Dev_param set is already extracted in {}'.format(params_path.get('featurepath_dev_param'))) # select the subset of training data to consider: all, clean, noisy, noisy_small # ===================================================================================================================== # ===================================================================================================================== ff_list_dev = [filelist_audio_dev[i].replace('.wav', suffix_in + '.data') for i in range(len(filelist_audio_dev))] labels_audio_dev = get_label_files(filelist=ff_list_dev, dire=params_path.get('featurepath_dev'), suffix_in=suffix_in, suffix_out=suffix_out ) print('Number of clips considered as dev set: {0}'.format(len(ff_list_dev))) print('Number of labels loaded for dev set: {0}'.format(len(labels_audio_dev))) scalers = [None]*4 # determine the validation setup according to the folds, and perform training / val / test for each fold for kfo in range(1, 5): print('\n=========================================================================================================') print('===Processing fold {} within the x-val setup...'.format(kfo)) print('=========================================================================================================\n') # x-val setup given by DCASE organizers if kfo == 1: splits_tr = [3, 4] splits_val = [2] splits_te = [1] elif kfo == 2: splits_tr = [4, 1] splits_val = [3] splits_te = [2] elif kfo == 3: splits_tr = [1, 2] splits_val = [4] splits_te = [3] elif kfo == 4: splits_tr = [2, 3] splits_val = [1] splits_te = [4] params_ctrl['current_fold'] = kfo tr_files0 = [fname for idx, fname in enumerate(ff_list_dev) if splitlist_audio_dev[idx] == splits_tr[0]] tr_files1 = [fname for idx, fname in enumerate(ff_list_dev) if splitlist_audio_dev[idx] == splits_tr[1]] tr_files = tr_files0 + tr_files1 val_files = [fname for idx, fname in enumerate(ff_list_dev) if splitlist_audio_dev[idx] == splits_val[0]] te_files = [fname for idx, fname in enumerate(ff_list_dev) if splitlist_audio_dev[idx] == splits_te[0]] # SC if len(tr_files) + len(val_files) + len(te_files) != len(ff_list_dev): print('ERROR: You messed up in x-val setup for fold: {0}'.format(len(kfo))) print('{} is not {}'.format(len(tr_files) + len(val_files) + len(te_files), len(ff_list_dev))) # ============================================================BATCH GENERATION # ============================================================BATCH GENERATION tr_gen_patch = DataGeneratorPatch(feature_dir=params_path.get('featurepath_dev'), file_list=tr_files, params_learn=params_learn, params_extract=params_extract, suffix_in='_mel', suffix_out='_label', floatx=np.float32 ) # to predict later on on dev_param clips scalers[kfo-1] = tr_gen_patch.scaler print("Total number of instances *only* for training: %s" % str(tr_gen_patch.nb_inst_total)) print("Batch_size: %s" % str(tr_gen_patch.batch_size)) print("Number of iterations (batches) in the training subset: %s" % str(tr_gen_patch.nb_iterations)) print("\nShape of training subset: %s" % str(tr_gen_patch.features.shape)) print("Shape of labels in training subset: %s" % str(tr_gen_patch.labels.shape)) # compute class_weigths based on the labels generated if params_learn.get('mode_class_weight'): labels_nice = np.reshape(tr_gen_patch.labels, -1) # remove singleton dimension class_weights = class_weight.compute_class_weight('balanced', np.unique(labels_nice), labels_nice) class_weights_dict = dict(enumerate(class_weights)) else: class_weights_dict = None val_gen_patch = DataGeneratorPatch(feature_dir=params_path.get('featurepath_dev'), file_list=val_files, params_learn=params_learn, params_extract=params_extract, suffix_in='_mel', suffix_out='_label', floatx=np.float32, scaler=tr_gen_patch.scaler ) print("\nShape of validation subset: %s" % str(val_gen_patch.features.shape)) print("Shape of labels in validation subset: %s" % str(val_gen_patch.labels.shape)) # ============================================================DEFINE AND FIT A MODEL # ============================================================DEFINE AND FIT A MODEL tr_loss, val_loss = [0] * params_learn.get('n_epochs'), [0] * params_learn.get('n_epochs') # ============================================================ if params_ctrl.get('learn'): if params_learn.get('model') == 'crnn_seld_tagger': model = get_model_crnn_seld_tagger(params_crnn=params_crnn, params_learn=params_learn, params_extract=params_extract) if params_learn.get('stages') == 1: opt = Adam(lr=params_learn.get('lr')) model.compile(optimizer=opt, loss=params_loss.get('type'), metrics=['accuracy']) model.summary() # callbacks if params_learn.get('early_stop') == "val_acc": early_stop = EarlyStopping(monitor='val_acc', patience=params_learn.get('patience'), min_delta=0.001, verbose=1) elif params_learn.get('early_stop') == "val_loss": early_stop = EarlyStopping(monitor='val_loss', patience=params_learn.get('patience'), min_delta=0, verbose=1) # save one best model for every fold, as needed for submission params_files['save_model'] = os.path.join(path_trained_models, params_ctrl.get('output_file') + '_v' + str(params_ctrl.get('count_trial')) + '_f' + str(kfo) + '.h5') checkpoint = ModelCheckpoint(params_files.get('save_model'), monitor='val_acc', verbose=1, save_best_only=True) reduce_lr = ReduceLROnPlateau(monitor='val_acc', factor=0.5, patience=5, verbose=1) callback_list = [checkpoint, early_stop, reduce_lr] hist = model.fit_generator(tr_gen_patch, steps_per_epoch=tr_gen_patch.nb_iterations, epochs=params_learn.get('n_epochs'), validation_data=val_gen_patch, validation_steps=val_gen_patch.nb_iterations, class_weight=class_weights_dict, workers=4, verbose=2, callbacks=callback_list) # ==================================================================================================== PREDICT # ==================================================================================================== PREDICT print('\nCompute predictions on test split, and save them in csv:==============================================\n') # to store prediction probabilites te_preds = np.empty((len(te_files), params_learn.get('n_classes'))) te_gen_patch = PatchGeneratorPerFile(feature_dir=params_path.get('featurepath_dev'), file_list=te_files, params_extract=params_extract, suffix_in='_mel', floatx=np.float32, scaler=tr_gen_patch.scaler ) for i in trange(len(te_files), miniters=int(len(te_files) / 100), ascii=True, desc="Predicting..."): patches_file = te_gen_patch.get_patches_file() preds_patch_list = model.predict(patches_file).tolist() preds_patch = np.array(preds_patch_list) if params_learn.get('predict_agg') == 'amean': preds_file = np.mean(preds_patch, axis=0) elif params_recog.get('aggregate') == 'gmean': preds_file = gmean(preds_patch, axis=0) else: print('unkown aggregation method for prediction') te_preds[i, :] = preds_file list_labels = np.array(list_labels) pred_label_files_int = np.argmax(te_preds, axis=1) pred_labels = [int_to_label[x] for x in pred_label_files_int] te_files_wav = [f.replace(suffix_in + '.data', '.wav') for f in te_files] if not os.path.isfile(params_files.get('predictions')): # fold 1: create the predictions file pred = pd.DataFrame(te_files_wav, columns=['fname']) pred['label'] = pred_labels pred['label_int'] = pred_label_files_int pred.to_csv(params_files.get('predictions'), index=False) del pred else: pred = pd.read_csv(params_files.get('predictions')) old_fname = pred.fname.values.tolist() old_label = pred.label.values.tolist() old_label_int = pred.label_int.values.tolist() new_pred_fname = old_fname + te_files_wav new_pred_label = old_label + pred_labels new_pred_label_int = old_label_int + pred_label_files_int.tolist() del pred pred =
pd.DataFrame(new_pred_fname, columns=['fname'])
pandas.DataFrame
from lxml import etree import numpy as np import pandas as pd import re from sklearn.model_selection import train_test_split import Bio from Bio import SeqIO from pathlib import Path import glob #console from tqdm import tqdm as tqdm import re import os import itertools #jupyter #from tqdm import tqdm_notebook as tqdm #not supported in current tqdm version #from tqdm.autonotebook import tqdm #import logging #logging.getLogger('proteomics_utils').addHandler(logging.NullHandler()) #logger=logging.getLogger('proteomics_utils') #for cd-hit import subprocess from sklearn.metrics import f1_score import hashlib #for mhcii datasets from utils.dataset_utils import split_clusters_single,pick_all_members_from_clusters ####################################################################################################### #Parsing all sorts of protein data ####################################################################################################### def parse_uniprot_xml(filename,max_entries=0,parse_features=[]): '''parse uniprot xml file, which contains the full uniprot information (e.g. ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.xml.gz) using custom low-level https://www.ibm.com/developerworks/xml/library/x-hiperfparse/ c.f. for full format https://www.uniprot.org/docs/uniprot.xsd parse_features: a list of strings specifying the kind of features to be parsed such as "modified residue" for phosphorylation sites etc. (see https://www.uniprot.org/help/mod_res) (see the xsd file for all possible entries) ''' context = etree.iterparse(str(filename), events=["end"], tag="{http://uniprot.org/uniprot}entry") context = iter(context) rows =[] for _, elem in tqdm(context): parse_func_uniprot(elem,rows,parse_features=parse_features) elem.clear() while elem.getprevious() is not None: del elem.getparent()[0] if(max_entries > 0 and len(rows)==max_entries): break df=pd.DataFrame(rows).set_index("ID") df['name'] = df.name.astype(str) df['dataset'] = df.dataset.astype('category') df['organism'] = df.organism.astype('category') df['sequence'] = df.sequence.astype(str) return df def parse_func_uniprot(elem, rows, parse_features=[]): '''extracting a single record from uniprot xml''' seqs = elem.findall("{http://uniprot.org/uniprot}sequence") sequence="" #print(seqs) for s in seqs: sequence=s.text #print("sequence",sequence) if sequence =="" or str(sequence)=="None": continue else: break #Sequence & fragment sequence="" fragment_map = {"single":1, "multiple":2} fragment = 0 seqs = elem.findall("{http://uniprot.org/uniprot}sequence") for s in seqs: if 'fragment' in s.attrib: fragment = fragment_map[s.attrib["fragment"]] sequence=s.text if sequence != "": break #print("sequence:",sequence) #print("fragment:",fragment) #dataset dataset=elem.attrib["dataset"] #accession accession = "" accessions = elem.findall("{http://uniprot.org/uniprot}accession") for a in accessions: accession=a.text if accession !="":#primary accession! https://www.uniprot.org/help/accession_numbers!!! break #print("accession",accession) #protein existence (PE in plain text) proteinexistence_map = {"evidence at protein level":5,"evidence at transcript level":4,"inferred from homology":3,"predicted":2,"uncertain":1} proteinexistence = -1 accessions = elem.findall("{http://uniprot.org/uniprot}proteinExistence") for a in accessions: proteinexistence=proteinexistence_map[a.attrib["type"]] break #print("protein existence",proteinexistence) #name name = "" names = elem.findall("{http://uniprot.org/uniprot}name") for n in names: name=n.text break #print("name",name) #organism organism = "" organisms = elem.findall("{http://uniprot.org/uniprot}organism") for s in organisms: s1=s.findall("{http://uniprot.org/uniprot}name") for s2 in s1: if(s2.attrib["type"]=='scientific'): organism=s2.text break if organism !="": break #print("organism",organism) #dbReference: PMP,GO,Pfam, EC ids = elem.findall("{http://uniprot.org/uniprot}dbReference") pfams = [] gos =[] ecs = [] pdbs =[] for i in ids: #print(i.attrib["id"],i.attrib["type"]) #cf. http://geneontology.org/external2go/uniprotkb_kw2go for Uniprot Keyword<->GO mapping #http://geneontology.org/ontology/go-basic.obo for List of go terms #https://www.uniprot.org/help/keywords_vs_go keywords vs. go if(i.attrib["type"]=="GO"): tmp1 = i.attrib["id"] for i2 in i: if i2.attrib["type"]=="evidence": tmp2= i2.attrib["value"] gos.append([int(tmp1[3:]),int(tmp2[4:])]) #first value is go code, second eco evidence ID (see mapping below) elif(i.attrib["type"]=="Pfam"): pfams.append(i.attrib["id"]) elif(i.attrib["type"]=="EC"): ecs.append(i.attrib["id"]) elif(i.attrib["type"]=="PDB"): pdbs.append(i.attrib["id"]) #print("PMP: ", pmp) #print("GOs:",gos) #print("Pfams:",pfam) #print("ECs:",ecs) #print("PDBs:",pdbs) #keyword keywords = elem.findall("{http://uniprot.org/uniprot}keyword") keywords_lst = [] #print(keywords) for k in keywords: keywords_lst.append(int(k.attrib["id"][-4:]))#remove the KW- #print("keywords: ",keywords_lst) #comments = elem.findall("{http://uniprot.org/uniprot}comment") #comments_lst=[] ##print(comments) #for c in comments: # if(c.attrib["type"]=="function"): # for c1 in c: # comments_lst.append(c1.text) #print("function: ",comments_lst) #ptm etc if len(parse_features)>0: ptms=[] features = elem.findall("{http://uniprot.org/uniprot}feature") for f in features: if(f.attrib["type"] in parse_features):#only add features of the requested type locs=[] for l in f[0]: locs.append(int(l.attrib["position"])) ptms.append([f.attrib["type"],f.attrib["description"] if 'description' in f.attrib else "NaN",locs, f.attrib['evidence'] if 'evidence' in f.attrib else "NaN"]) #print(ptms) data_dict={"ID": accession, "name": name, "dataset":dataset, "proteinexistence":proteinexistence, "fragment":fragment, "organism":organism, "ecs": ecs, "pdbs": pdbs, "pfams" : pfams, "keywords": keywords_lst, "gos": gos, "sequence": sequence} if len(parse_features)>0: data_dict["features"]=ptms #print("all children:") #for c in elem: # print(c) # print(c.tag) # print(c.attrib) rows.append(data_dict) def parse_uniprot_seqio(filename,max_entries=0): '''parse uniprot xml file using the SeqIO parser (smaller functionality e.g. does not extract evidence codes for GO)''' sprot = SeqIO.parse(filename, "uniprot-xml") rows = [] for p in tqdm(sprot): accession = str(p.name) name = str(p.id) dataset = str(p.annotations['dataset']) organism = str(p.annotations['organism']) ecs, pdbs, pfams, gos = [],[],[],[] for ref in p.dbxrefs: k = ref.split(':') if k[0] == 'GO': gos.append(':'.join(k[1:])) elif k[0] == 'Pfam': pfams.append(k[1]) elif k[0] == 'EC': ecs.append(k[1]) elif k[0] == 'PDB': pdbs.append(k[1:]) if 'keywords' in p.annotations.keys(): keywords = p.annotations['keywords'] else: keywords = [] sequence = str(p.seq) row = { 'ID': accession, 'name':name, 'dataset':dataset, 'organism':organism, 'ecs':ecs, 'pdbs':pdbs, 'pfams':pfams, 'keywords':keywords, 'gos':gos, 'sequence':sequence} rows.append(row) if(max_entries>0 and len(rows)==max_entries): break df=pd.DataFrame(rows).set_index("ID") df['name'] = df.name.astype(str) df['dataset'] = df.dataset.astype('category') df['organism'] = df.organism.astype('category') df['sequence'] = df.sequence.astype(str) return df def filter_human_proteome(df_sprot): '''extracts human proteome from swissprot proteines in DataFrame with column organism ''' is_Human = np.char.find(df_sprot.organism.values.astype(str), "Human") !=-1 is_human = np.char.find(df_sprot.organism.values.astype(str), "human") !=-1 is_sapiens = np.char.find(df_sprot.organism.values.astype(str), "sapiens") !=-1 is_Sapiens = np.char.find(df_sprot.organism.values.astype(str), "Sapiens") !=-1 return df_sprot[is_Human|is_human|is_sapiens|is_Sapiens] def filter_aas(df, exclude_aas=["B","J","X","Z"]): '''excludes sequences containing exclude_aas: B = D or N, J = I or L, X = unknown, Z = E or Q''' return df[~df.sequence.apply(lambda x: any([e in x for e in exclude_aas]))] ###################################################################################################### def explode_clusters_df(df_cluster): '''aux. function to convert cluster dataframe from one row per cluster to one row per ID''' df=df_cluster.reset_index(level=0) rows = [] if('repr_accession' in df.columns):#include representative if it exists _ = df.apply(lambda row: [rows.append([nn,row['entry_id'], row['repr_accession']==nn ]) for nn in row.members], axis=1) df_exploded = pd.DataFrame(rows, columns=['ID',"cluster_ID","representative"]).set_index(['ID']) else: _ = df.apply(lambda row: [rows.append([nn,row['entry_id']]) for nn in row.members], axis=1) df_exploded = pd.DataFrame(rows, columns=['ID',"cluster_ID"]).set_index(['ID']) return df_exploded def parse_uniref(filename,max_entries=0,parse_sequence=False, df_selection=None, exploded=True): '''parse uniref (clustered sequences) xml ftp://ftp.ebi.ac.uk/pub/databases/uniprot/uniref/uniref50/uniref50.xml.gz unzipped 100GB file using custom low-level parser https://www.ibm.com/developerworks/xml/library/x-hiperfparse/ max_entries: only return first max_entries entries (0=all) parse_sequences: return also representative sequence df_selection: only include entries with accessions that are present in df_selection.index (None keeps all records) exploded: return one row per ID instead of one row per cluster c.f. for full format ftp://ftp.ebi.ac.uk/pub/databases/uniprot/uniref/uniref50/README ''' #issue with long texts https://stackoverflow.com/questions/30577796/etree-incomplete-child-text #wait for end rather than start tag context = etree.iterparse(str(filename), events=["end"], tag="{http://uniprot.org/uniref}entry") context = iter(context) rows =[] for _, elem in tqdm(context): parse_func_uniref(elem,rows,parse_sequence=parse_sequence, df_selection=df_selection) elem.clear() while elem.getprevious() is not None: del elem.getparent()[0] if(max_entries > 0 and len(rows)==max_entries): break df=pd.DataFrame(rows).set_index("entry_id") df["num_members"]=df.members.apply(len) if(exploded): return explode_clusters_df(df) return df def parse_func_uniref(elem, rows, parse_sequence=False, df_selection=None): '''extract a single uniref entry''' #entry ID entry_id = elem.attrib["id"] #print("cluster id",entry_id) #name name = "" names = elem.findall("{http://uniprot.org/uniref}name") for n in names: name=n.text[9:] break #print("cluster name",name) members=[] #representative member repr_accession = "" repr_sequence ="" repr = elem.findall("{http://uniprot.org/uniref}representativeMember") for r in repr: s1=r.findall("{http://uniprot.org/uniref}dbReference") for s2 in s1: for s3 in s2: if s3.attrib["type"]=="UniProtKB accession": if(repr_accession == ""): repr_accession = s3.attrib["value"]#pick primary accession members.append(s3.attrib["value"]) if parse_sequence is True: s1=r.findall("{http://uniprot.org/uniref}sequence") for s2 in s1: repr_sequence = s2.text if repr_sequence !="": break #print("representative member accession:",repr_accession) #print("representative member sequence:",repr_sequence) #all members repr = elem.findall("{http://uniprot.org/uniref}member") for r in repr: s1=r.findall("{http://uniprot.org/uniref}dbReference") for s2 in s1: for s3 in s2: if s3.attrib["type"]=="UniProtKB accession": members.append(s3.attrib["value"]) #add primary and secondary accessions #print("members", members) if(not(df_selection is None)): #apply selection filter members = [y for y in members if y in df_selection.index] #print("all children") #for c in elem: # print(c) # print(c.tag) # print(c.attrib) if(len(members)>0): data_dict={"entry_id": entry_id, "name": name, "repr_accession":repr_accession, "members":members} if parse_sequence is True: data_dict["repr_sequence"]=repr_sequence rows.append(data_dict) ########################################################################################################################### #proteins and peptides from fasta ########################################################################################################################### def parse_uniprot_fasta(fasta_path, max_entries=0): '''parse uniprot from fasta file (which contains less information than the corresponding xml but is also much smaller e.g. ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.fasta)''' rows=[] dataset_dict={"sp":"Swiss-Prot","tr":"TrEMBL"} for seq_record in tqdm(SeqIO.parse(fasta_path, "fasta")): sid=seq_record.id.split("|") accession = sid[1] dataset = dataset_dict[sid[0]] name = sid[2] description = seq_record.description sequence=str(seq_record.seq) #print(description) m = re.search('PE=\d', description) pe=int(m.group(0).split("=")[1]) m = re.search('OS=.* (?=OX=)', description) organism=m.group(0).split("=")[1].strip() data_dict={"ID": accession, "name": name, "dataset":dataset, "proteinexistence":pe, "organism":organism, "sequence": sequence} rows.append(data_dict) if(max_entries > 0 and len(rows)==max_entries): break df=pd.DataFrame(rows).set_index("ID") df['name'] = df.name.astype(str) df['dataset'] = df.dataset.astype('category') df['organism'] = df.organism.astype('category') df['sequence'] = df.sequence.astype(str) return df def proteins_from_fasta(fasta_path): '''load proteins (as seqrecords) from fasta (just redirects)''' return seqrecords_from_fasta(fasta_path) def seqrecords_from_fasta(fasta_path): '''load seqrecords from fasta file''' seqrecords = list(SeqIO.parse(fasta_path, "fasta")) return seqrecords def seqrecords_to_sequences(seqrecords): '''converts biopythons seqrecords into a plain list of sequences''' return [str(p.seq) for p in seqrecords] def sequences_to_fasta(sequences, fasta_path, sequence_id_prefix="s"): '''save plain list of sequences to fasta''' with open(fasta_path, "w") as output_handle: for i,s in tqdm(enumerate(sequences)): record = Bio.SeqRecord.SeqRecord(Bio.Seq.Seq(s), id=sequence_id_prefix+str(i), description="") SeqIO.write(record, output_handle, "fasta") def df_to_fasta(df, fasta_path): '''Save column "sequence" from pandas DataFrame to fasta file using the index of the DataFrame as ID. Preserves original IDs in contrast to the function sequences_to_fasta()''' with open(fasta_path, "w") as output_handle: for row in df.iterrows(): record = Bio.SeqRecord.SeqRecord(Bio.Seq.Seq(row[1]["sequence"]), id=str(row[0]), description="") SeqIO.write(record, output_handle, "fasta") def sequences_to_df(sequences, sequence_id_prefix="s"): data = {'ID': [(sequence_id_prefix+str(i) if sequence_id_prefix!="" else i) for i in range(len(sequences))], 'sequence': sequences} df=pd.DataFrame.from_dict(data) return df.set_index("ID") def fasta_to_df(fasta_path): seqs=SeqIO.parse(fasta_path, "fasta") res=[] for s in seqs: res.append({"ID":s.id,"sequence":str(s.seq)}) return pd.DataFrame(res) def peptides_from_proteins(protein_seqrecords, miss_cleavage=2,min_length=5,max_length=300): '''extract peptides from proteins seqrecords by trypsin digestion min_length: only return peptides of length min_length or greater (0 for all) max_length: only return peptides of length max_length or smaller (0 for all) ''' peptides = [] for seq in tqdm(protein_seqrecords): peps = trypsin_digest(str(seq.seq), miss_cleavage) peptides.extend(peps) tmp=list(set(peptides)) if(min_length>0 and max_length>0): tmp=[t for t in tmp if (len(t)>=min_length and len(t)<=max_length)] elif(min_length==0 and max_length>0): tmp=[t for t in tmp if len(t)<=max_length] elif(min_length>0 and max_length==0): tmp=[t for t in tmp if len(t)>=min_length] print("Extracted",len(tmp),"unique peptides.") return tmp def trypsin_digest(proseq, miss_cleavage): '''trypsin digestion of protein seqrecords TRYPSIN from https://github.com/yafeng/trypsin/blob/master/trypsin.py''' peptides=[] cut_sites=[0] for i in range(0,len(proseq)-1): if proseq[i]=='K' and proseq[i+1]!='P': cut_sites.append(i+1) elif proseq[i]=='R' and proseq[i+1]!='P': cut_sites.append(i+1) if cut_sites[-1]!=len(proseq): cut_sites.append(len(proseq)) if len(cut_sites)>2: if miss_cleavage==0: for j in range(0,len(cut_sites)-1): peptides.append(proseq[cut_sites[j]:cut_sites[j+1]]) elif miss_cleavage==1: for j in range(0,len(cut_sites)-2): peptides.append(proseq[cut_sites[j]:cut_sites[j+1]]) peptides.append(proseq[cut_sites[j]:cut_sites[j+2]]) peptides.append(proseq[cut_sites[-2]:cut_sites[-1]]) elif miss_cleavage==2: for j in range(0,len(cut_sites)-3): peptides.append(proseq[cut_sites[j]:cut_sites[j+1]]) peptides.append(proseq[cut_sites[j]:cut_sites[j+2]]) peptides.append(proseq[cut_sites[j]:cut_sites[j+3]]) peptides.append(proseq[cut_sites[-3]:cut_sites[-2]]) peptides.append(proseq[cut_sites[-3]:cut_sites[-1]]) peptides.append(proseq[cut_sites[-2]:cut_sites[-1]]) else: #there is no trypsin site in the protein sequence peptides.append(proseq) return list(set(peptides)) ########################################################################### # Processing CD-HIT clusters ########################################################################### def clusters_df_from_sequence_df(df,threshold=[1.0,0.9,0.5],alignment_coverage=[0.0,0.9,0.8],memory=16000, threads=8, exploded=True, verbose=False): '''create clusters df from sequence df (using cd hit) df: dataframe with sequence information threshold: similarity threshold for clustering (pass a list for hierarchical clustering e.g [1.0, 0.9, 0.5]) alignment_coverage: required minimum coverage of the longer sequence (to mimic uniref https://www.uniprot.org/help/uniref) memory: limit available memory threads: limit number of threads exploded: return exploded view of the dataframe (one row for every member vs. one row for every cluster) uses CD-HIT for clustering https://github.com/weizhongli/cdhit/wiki/3.-User's-Guide copy cd-hit into ~/bin TODO: extend to psi-cd-hit for thresholds smaller than 0.4 ''' if verbose: print("Exporting original dataframe as fasta...") fasta_file = "cdhit.fasta" df_original_index = list(df.index) #reindex the dataframe since cdhit can only handle 19 letters df = df.reset_index(drop=True) df_to_fasta(df, fasta_file) if(not(isinstance(threshold, list))): threshold=[threshold] alignment_coverage=[alignment_coverage] assert(len(threshold)==len(alignment_coverage)) fasta_files=[] for i,thr in enumerate(threshold): if(thr< 0.4):#use psi-cd-hit here print("thresholds lower than 0.4 require psi-cd-hit.pl require psi-cd-hit.pl (building on BLAST) which is currently not supported") return pd.DataFrame() elif(thr<0.5): wl = 2 elif(thr<0.6): wl = 3 elif(thr<0.7): wl = 4 else: wl = 5 aL = alignment_coverage[i] #cd-hit -i nr -o nr80 -c 0.8 -n 5 #cd-hit -i nr80 -o nr60 -c 0.6 -n 4 #psi-cd-hit.pl -i nr60 -o nr30 -c 0.3 if verbose: print("Clustering using cd-hit at threshold", thr, "using wordlength", wl, "and alignment coverage", aL, "...") fasta_file_new= "cdhit"+str(int(thr*100))+".fasta" command = "cd-hit -i "+fasta_file+" -o "+fasta_file_new+" -c "+str(thr)+" -n "+str(wl)+" -aL "+str(aL)+" -M "+str(memory)+" -T "+str(threads) if(verbose): print(command) process= subprocess.Popen(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) output, error = process.communicate() if(verbose): print(output) if(error !=""): print(error) fasta_files.append(fasta_file) if(i==len(threshold)-1): fasta_files.append(fasta_file_new) fasta_file= fasta_file_new #join results from all clustering steps if verbose: print("Joining results from different clustering steps...") for i,f in enumerate(reversed(fasta_files[1:])): if verbose: print("Processing",f,"...") if(i==0): df_clusters = parse_cdhit_clstr(f+".clstr",exploded=False) else: df_clusters2 = parse_cdhit_clstr(f+".clstr",exploded=False) for id,row in df_clusters.iterrows(): members = row['members'] new_members = [list(df_clusters2[df_clusters2.repr_accession==y].members)[0] for y in members] new_members = [item for sublist in new_members for item in sublist] #flattened row['members']=new_members df_clusters["members"]=df_clusters["members"].apply(lambda x:[df_original_index[int(y)] for y in x]) df_clusters["repr_accession"]=df_clusters["repr_accession"].apply(lambda x:df_original_index[int(x)]) if(exploded): return explode_clusters_df(df_clusters) return df_clusters def parse_cdhit_clstr(filename, exploded=True): '''Aux. Function (used by clusters_df_from_sequence_df) to parse CD-HITs clstr output file in a similar way as the uniref data for the format see https://github.com/weizhongli/cdhit/wiki/3.-User's-Guide#CDHIT exploded: single row for every ID instead of single for every cluster ''' def save_cluster(rows,members,representative): if(len(members)>0): rows.append({"entry_id":filename[:-6]+"_"+representative, "members":members, "repr_accession":representative}) rows=[] with open(filename, 'r') as f: members=[] representative="" for l in tqdm(f): if(l[0]==">"): save_cluster(rows,members,representative) members=[] representative="" else: member=(l.split(">")[1]).split("...")[0] members.append(member) if "*" in l: representative = member save_cluster(rows,members,representative) df=pd.DataFrame(rows).set_index("entry_id") if(exploded): return explode_clusters_df(df) return df ########################################################################### # MHC DATA ########################################################################### ######### Helper functions ########## def _label_binder(data, threshold=500, measurement_column="meas"): # Drop entries above IC50 > 500nM with inequality < (ambiguous) to_drop = (( (data['inequality']=='<')&(data[measurement_column]>threshold))|((data['inequality']=='>')&(data[measurement_column]<threshold))).mean() if to_drop > 0: print('Dropping {} % because of ambiguous inequality'.format(to_drop)) data = data[~(( (data['inequality']=='<')&(data[measurement_column]>threshold))|((data['inequality']=='>')&(data[measurement_column]<threshold)))] # Labeling data['label'] = (1* data[measurement_column]<=threshold).astype(int) return data def _transform_ic50(data, how="log",max_ic50=50000.0, inequality_offset=True, label_column="meas"): """Transform ic50 measurements how: "log" logarithmic transform, inequality "=" mapped to [0,1], inequality ">" mapped to [2,3], inequality "<" mapped to [4,5] "norm" "cap" """ x = data[label_column] if how=="cap": x = np.minimum(x, 50000) elif how=="norm": x = np.minimum(x, 50000) x = (x - x.mean()) / x.std() elif how=="log": # log transform x = 1 - (np.log(x)/np.log(max_ic50)) x = np.minimum(1.0, np.maximum(0.0,x)) if(inequality_offset): # add offsets for loss offsets = pd.Series(data['inequality']).map({'=': 0, '>': 2, '<': 4,}).values x += offsets return x def _string_index(data): # Add prefix letter "a" to the numerical index (such that it is clearly a string in order to avoid later errors). data["ID"] = data.index data["ID"] = data["ID"].apply(lambda x: "a"+ str(x)) data = data.set_index(["ID"]) return data def _format_alleles(x): if x[:3]=='HLA': return x[:5]+'-'+x[6:8]+x[9:] if x[:4]=='Mamu': return x[:6]+'-'+x[7:] else: return x def _get_allele_ranking(data_dir='.'): ''' Allele ranking should be the same across different datasets (noMS, withMS) to avoid confusion. Thus, the ranking is based on the larger withMS dataset ''' data_dir = Path(data_dir) curated_withMS_path = data_path/'data_curated.20180219'/'curated_training_data.with_mass_spec.csv' df =
pd.read_csv(curated_withMS_path)
pandas.read_csv
""" Module containing the Company Class. Abreviations used in code: dfi = input dataframe dfo = output dataframe """ from typing import Literal import numpy as np import pandas as pd from . import config as c class Company: """ Finance Data Class for listed Brazilian Companies. Attributes ---------- identifier: int or str A unique identifier to filter a company in as fi. Both CVM ID or Fiscal ID can be used. CVM ID (regulator ID) must be an integer. Fiscal ID must be a string in 'XX.XXX.XXX/XXXX-XX' format. """ def __init__( self, identifier: int | str, acc_method: Literal["consolidated", "separate"] = "consolidated", acc_unit: float | str = 1.0, tax_rate: float = 0.34, ): """Initialize main variables. Parameters ---------- identifier: int or str A unique identifier to filter a company in as fi. Both CVM ID or Fiscal ID can be used. CVM ID (regulator ID) must be an integer. Fiscal ID must be a string in 'XX.XXX.XXX/XXXX-XX' format. acc_method : {'consolidated', 'separate'}, default 'consolidated' Accounting method used for registering investments in subsidiaries. acc_unit : float or str, default 1.0 acc_unit is a constant that will divide company account values. The constant can be a number greater than zero or the strings {'thousand', 'million', 'billion'}. tax_rate : float, default 0.34 The 'tax_rate' attribute will be used to calculate some of the company indicators. """ self.set_id(identifier) self.acc_method = acc_method self.acc_unit = acc_unit self.tax_rate = tax_rate def set_id(self, identifier: int | str): """ Set a unique identifier to filter the company in as fi. Parameters ---------- value: int or str A unique identifier to filter a company in as fi. Both CVM ID or Fiscal ID can be used. CVM ID (regulator ID) must be an integer. Fiscal ID must be a string in 'XX.XXX.XXX/XXXX-XX' format. Returns ------- int or str Raises ------ KeyError * If passed ``identifier`` not found in as fi. """ # Create custom data frame for ID selection df = ( c.main_df[["cvm_id", "fiscal_id"]] .drop_duplicates() .astype({"cvm_id": int, "fiscal_id": str}) ) if identifier in df["cvm_id"].values: self._cvm_id = identifier self._fiscal_id = df.loc[df["cvm_id"] == identifier, "fiscal_id"].item() elif identifier in df["fiscal_id"].values: self._fiscal_id = identifier self._cvm_id = df.loc[df["fiscal_id"] == identifier, "cvm_id"].item() else: raise KeyError("Company 'identifier' not found in database") # Only set company data after object identifier validation self._set_main_data() @property def acc_method(self): """ Get or set accounting method used for registering investments in subsidiaries. Parameters ---------- value : {'consolidated', 'separate'}, default 'consolidated' Accounting method used for registering investments in subsidiaries. Returns ------- str Raises ------ ValueError * If passed ``value`` is invalid. """ return self._acc_unit @acc_method.setter def acc_method(self, value: Literal["consolidated", "separate"]): if value in {"consolidated", "separate"}: self._acc_method = value else: raise ValueError("acc_method expects 'consolidated' or 'separate'") @property def acc_unit(self): """ Get or set a constant to divide company account values. Parameters ---------- value : float or str, default 1.0 acc_unit is a constant that will divide company account values. The constant can be a number greater than zero or the strings {'thousand', 'million', 'billion'}. Returns ------- float Raises ------ ValueError * If passed ``value`` is invalid. """ return self._acc_unit @acc_unit.setter def acc_unit(self, value: float | str): if value == "thousand": self._acc_unit = 1_000 elif value == "million": self._acc_unit = 1_000_000 elif value == "billion": self._acc_unit = 1_000_000_000 elif value >= 0: self._acc_unit = value else: raise ValueError("Accounting Unit is invalid") @property def tax_rate(self): """ Get or set company 'tax_rate' attribute. Parameters ---------- value : float, default 0.34 'value' will be passed to 'tax_rate' object attribute if 0 <= value <= 1. Returns ------- float Raises ------ ValueError * If passed ``value`` is invalid. """ return self._tax_rate @tax_rate.setter def tax_rate(self, value: float): if 0 <= value <= 1: self._tax_rate = value else: raise ValueError("Company 'tax_rate' value is invalid") def _set_main_data(self) -> pd.DataFrame: self._COMP_DF = ( c.main_df.query("cvm_id == @self._cvm_id") .astype( { "co_name": str, "cvm_id": np.uint32, "fiscal_id": str, "report_type": str, "report_version": str, "period_reference": "datetime64", "period_begin": "datetime64", "period_end": "datetime64", "period_order": np.int8, "acc_code": str, "acc_name": str, "acc_method": str, "acc_fixed": bool, "acc_value": float, "equity_statement_column": str, } ) .sort_values(by="acc_code", ignore_index=True) ) self._NAME = self._COMP_DF["co_name"].iloc[0] self._FIRST_ANNUAL = self._COMP_DF.query('report_type == "annual"')[ "period_end" ].min() self._LAST_ANNUAL = self._COMP_DF.query('report_type == "annual"')[ "period_end" ].max() self._LAST_QUARTERLY = self._COMP_DF.query('report_type == "quarterly"')[ "period_end" ].max() def info(self) -> pd.DataFrame: """Return dataframe with company info.""" company_info = { "Name": self._NAME, "CVM ID": self._cvm_id, "Fiscal ID (CNPJ)": self._fiscal_id, "Total Accounting Rows": len(self._COMP_DF.index), "Selected Tax Rate": self._tax_rate, "Selected Accounting Method": self._acc_method, "Selected Accounting Unit": self._acc_unit, "First Annual Report": self._FIRST_ANNUAL.strftime("%Y-%m-%d"), "Last Annual Report": self._LAST_ANNUAL.strftime("%Y-%m-%d"), "Last Quarterly Report": self._LAST_QUARTERLY.strftime("%Y-%m-%d"), } df = pd.DataFrame.from_dict(company_info, orient="index", columns=["Values"]) df.index.name = "Company Info" return df def report( self, report_type: str, acc_level: int | None = None, num_years: int = 0, ) -> pd.DataFrame: """ Return a DataFrame with company selected report type. This function generates a report representing one of the financial statements for the company adjusted by the attributes passed and returns a pandas.DataFrame with this report. Parameters ---------- report_type : {'assets', 'liabilities_and_equity', 'liabilities', 'equity', 'income', 'cash_flow'} Report type to be generated. acc_level : {None, 2, 3, 4}, default None Detail level to show for account codes. acc_level = None -> X... (default: show all accounts) acc_level = 2 -> X.YY (show 2 levels) acc_level = 3 -> X.YY.ZZ (show 3 levels) acc_level = 4 -> X.YY.ZZ.WW (show 4 levels) num_years : int, default 0 Select how many last years to show where 0 -> show all years Returns ------ pandas.DataFrame Raises ------ ValueError * If ``report_type`` attribute is invalid * If ``acc_level`` attribute is invalid """ # Check input arguments. if acc_level not in {None, 2, 3, 4}: raise ValueError("acc_level expects None, 2, 3 or 4") df = self._COMP_DF.query("acc_method == @self._acc_method").copy() # Change acc_unit only for accounts different from 3.99 df["acc_value"] = np.where( df["acc_code"].str.startswith("3.99"), df["acc_value"], df["acc_value"] / self._acc_unit, ) # Filter dataframe for selected acc_level if acc_level: acc_code_limit = acc_level * 3 - 2 # noqa df.query("acc_code.str.len() <= @acc_code_limit", inplace=True) """ Filter dataframe for selected report_type (report type) df['acc_code'].str[0].unique() -> [1, 2, 3, 4, 5, 6, 7] The first part of 'acc_code' is the report type Table of reports correspondence: 1 -> Balance Sheet - Assets 2 -> Balance Sheet - Liabilities and Shareholders’ Equity 3 -> Income 4 -> Comprehensive Income 5 -> Changes in Equity 6 -> Cash Flow (Indirect Method) 7 -> Added Value """ report_types = { "assets": ["1"], "cash": ["1.01.01", "1.01.02"], "current_assets": ["1.01"], "non_current_assets": ["1.02"], "liabilities": ["2.01", "2.02"], "debt": ["2.01.04", "2.02.01"], "current_liabilities": ["2.01"], "non_current_liabilities": ["2.02"], "liabilities_and_equity": ["2"], "equity": ["2.03"], "income": ["3"], # "earnings_per_share": ["3.99.01.01", "3.99.02.01"], "earnings_per_share": ["3.99"], "comprehensive_income": ["4"], "changes_in_equity": ["5"], "cash_flow": ["6"], "added_value": ["7"], } acc_codes = report_types[report_type] expression = "" for count, acc_code in enumerate(acc_codes): if count > 0: expression += " or " expression += f'acc_code.str.startswith("{acc_code}")' df.query(expression, inplace=True) # remove earnings per share from income statment if report_type == 'income': df = df[~df['acc_code'].str.startswith("3.99")] if report_type in {"income", "cash_flow"}: df = self._calculate_ttm(df) df.reset_index(drop=True, inplace=True) report_df = self._make_report(df) report_df.set_index(keys="acc_code", drop=True, inplace=True) # Show only selected years if num_years > 0: cols = report_df.columns.to_list() cols = cols[0:2] + cols[-num_years:] report_df = report_df[cols] return report_df def _calculate_ttm(self, dfi: pd.DataFrame) -> pd.DataFrame: if self._LAST_ANNUAL > self._LAST_QUARTERLY: return dfi.query('report_type == "annual"').copy() df1 = dfi.query("period_end == @self._LAST_QUARTERLY").copy() df1.query("period_begin == period_begin.min()", inplace=True) df2 = dfi.query("period_reference == @self._LAST_QUARTERLY").copy() df2.query("period_begin == period_begin.min()", inplace=True) df2["acc_value"] = -df2["acc_value"] df3 = dfi.query("period_end == @self._LAST_ANNUAL").copy() df_ttm = ( pd.concat([df1, df2, df3], ignore_index=True)[["acc_code", "acc_value"]] .groupby(by="acc_code") .sum() .reset_index() ) df1.drop(columns="acc_value", inplace=True) df_ttm = pd.merge(df1, df_ttm) df_ttm["report_type"] = "quarterly" df_ttm["period_begin"] = self._LAST_QUARTERLY - pd.DateOffset(years=1) df_annual = dfi.query('report_type == "annual"').copy() return pd.concat([df_annual, df_ttm], ignore_index=True) def custom_report( self, acc_list: list[str], num_years: int = 0, ) -> pd.DataFrame: """ Return a financial report from custom list of accounting codes Creates DataFrame object with a custom list of accounting codes adjusted by function attributes Parameters ---------- acc_list : list[str] A list of strings containg accounting codes to be used in report num_years : int, default 0 Select how many last years to show where 0 -> show all years Returns ------- pandas.DataFrame """ df_as = self.report("assets") df_le = self.report("liabilities_and_equity") df_is = self.report("income") df_cf = self.report("cash_flow") dfo = pd.concat([df_as, df_le, df_is, df_cf]).query("acc_code == @acc_list") # Show only selected years if num_years > 0: cols = dfo.columns.to_list() cols = cols[0:2] + cols[-num_years:] dfo = dfo[cols] return dfo @staticmethod def _prior_values(s: pd.Series, is_prior: bool) -> pd.Series: """Shift row to the right in order to obtain series previous values""" if is_prior: arr = s.iloc[:-1].values return np.append(np.nan, arr) else: return s def indicators(self, num_years: int = 0, is_prior: bool = True) -> pd.DataFrame: """ Return company main operating indicators. Creates DataFrame object with company operating indicators as described in reference [1] Parameters ---------- num_years : int, default 0 Select how many last years to show where 0 -> show all years is_prior : bool, default True Divide return measurements by book values from the end of the prior year (see Damodaran reference). Returns ------- pandas.Dataframe References ---------- .. [1] <NAME>, "Return on Capital (ROC), Return on Invested Capital (ROIC) and Return on Equity (ROE): Measurement and Implications.", 2007, https://people.stern.nyu.edu/adamodar/pdfoles/papers/returnmeasures.pdf https://people.stern.nyu.edu/adamodar/New_Home_Page/datafile/variable.htm """ df_as = self.report("assets") df_le = self.report("liabilities_and_equity") df_in = self.report("income") df_cf = self.report("cash_flow") df = pd.concat([df_as, df_le, df_in, df_cf]).drop( columns=["acc_fixed", "acc_name"] ) # Calculate indicators series revenues = df.loc["3.01"] gross_profit = df.loc["3.03"] ebit = df.loc["3.05"] ebt = df.loc["3.07"] effective_tax = df.loc["3.08"] depreciation_amortization = df.loc["6.01.01.04"] ebitda = ebit + depreciation_amortization operating_cash_flow = df.loc["6.01"] # capex = df.loc["6.02"] net_income = df.loc["3.11"] total_assets = df.loc["1"] total_assets_p = self._prior_values(total_assets, is_prior) equity = df.loc["2.03"] equity_p = self._prior_values(equity, is_prior) total_cash = df.loc["1.01.01"] + df.loc["1.01.02"] current_assets = df.loc["1.01"] current_liabilities = df.loc["2.01"] working_capital = current_assets - current_liabilities total_debt = df.loc["2.01.04"] + df.loc["2.02.01"] net_debt = total_debt - total_cash invested_capital = total_debt + equity - total_cash invested_capital_p = self._prior_values(invested_capital, is_prior) # Output Dataframe (dfo) dfo = pd.DataFrame(columns=df.columns) dfo.loc["revenues"] = revenues dfo.loc["operating_cash_flow"] = operating_cash_flow # dfo.loc["capex"] = capex dfo.loc["ebitda"] = ebitda dfo.loc["ebit"] = ebit dfo.loc["ebt"] = ebt dfo.loc["effective_tax_rate"] = -1 * effective_tax / ebt dfo.loc["net_income"] = net_income dfo.loc["total_cash"] = total_cash dfo.loc["total_debt"] = total_debt dfo.loc["net_debt"] = net_debt dfo.loc["working_capital"] = working_capital dfo.loc["invested_capital"] = invested_capital dfo.loc["return_on_assets"] = ebit * (1 - self._tax_rate) / total_assets_p dfo.loc["return_on_capital"] = ebit * (1 - self._tax_rate) / invested_capital_p dfo.loc["return_on_equity"] = net_income / equity_p dfo.loc["gross_margin"] = gross_profit / revenues dfo.loc["ebitda_margin"] = ebitda / revenues dfo.loc["pre_tax_operating_margin"] = ebit / revenues dfo.loc["after_tax_operating_margin"] = ebit * (1 - self._tax_rate) / revenues dfo.loc["net_margin"] = net_income / revenues dfo.index.name = "Company Financial Indicators" # Show only the selected number of years if num_years > 0: dfo = dfo[dfo.columns[-num_years:]] # Since all columns are strings representing corporate year, convert them to datetime64 dfo.columns = pd.to_datetime(dfo.columns) return dfo def _make_report(self, dfi: pd.DataFrame) -> pd.DataFrame: # keep only last quarterly fs if self._LAST_ANNUAL > self._LAST_QUARTERLY: df = dfi.query('report_type == "annual"').copy() df.query( "period_order == -1 or \ period_end == @self._LAST_ANNUAL", inplace=True, ) else: df = dfi.query( 'report_type == "annual" or \ period_end == @self._LAST_QUARTERLY' ).copy() df.query( "period_order == -1 or \ period_end == @self._LAST_QUARTERLY or \ period_end == @self._LAST_ANNUAL", inplace=True, ) # Create output dataframe with only the index dfo = df.sort_values(by="period_end", ascending=True)[ ["acc_name", "acc_code", "acc_fixed"] ].drop_duplicates(subset="acc_code", ignore_index=True, keep="last") periods = list(df["period_end"].sort_values().unique()) for period in periods: df_year = df.query("period_end == @period")[ ["acc_value", "acc_code"] ].copy() period_str = str(np.datetime_as_string(period, unit="D")) if period == self._LAST_QUARTERLY: period_str += " (ttm)" df_year.rename(columns={"acc_value": period_str}, inplace=True) dfo =
pd.merge(dfo, df_year, how="left", on=["acc_code"])
pandas.merge
from flask import Flask, render_template,flash,request import os from os import listdir from os.path import isfile, join os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import pandas as pd import numpy as np import json import pickle from sklearn.metrics import mean_squared_error,r2_score from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error import scipy from scipy.stats import iqr from scipy.interpolate import griddata from PIL import Image, ImageDraw from collections import Counter import itertools from datetime import date import matplotlib.pyplot as plt from lib import toimage from keras.models import load_model from keras import backend as K app = Flask(__name__) app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 0 def getting_data(): df = pd.read_csv("data/04_10558.csv", sep='|', engine='python',header=None) df.columns = ['date', 'sensor','flag','pm10','co2','vocs','noise','temp','humi','co','hcho','pm25','n'] df=df.drop(['flag','co2','vocs','co','hcho','n'], axis=1) df=df.dropna() df_corr=df.iloc[:,[2,3,4,5,6]].corr(method ='pearson') df_corr= df_corr.to_dict(orient='records') df_corr = json.dumps(df_corr, indent=2) #scatter data tmpc=pd.Series(['a', 'b', 'c','d']) tmpc=tmpc.repeat(360) tmpc=tmpc[:df.shape[0]] df['sepcolor'] = tmpc.values chart_data = df.to_dict(orient='records') chart_data = json.dumps(chart_data, indent=2) #result_seoul=pd.DataFrame({"pred":["test.png"]}) #data = {'chart_data': chart_data,'records': records.to_dict(orient='records'),'result_seoul': result_seoul.to_dict(orient='records')} #data = {'chart_data': chart_data,'records': records.to_dict(orient='records'),'records_inter': records_inter.to_dict(orient='records')} #numpy corr_np = np.load("data/pmcorr.npy") df_corr =
pd.DataFrame(columns=['x','y','corr'])
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[47]: import requests # Include HTTP Requests module from bs4 import BeautifulSoup # Include BS web scraping module import pandas as pd import numpy as np import matplotlib.pyplot as plt import re # In[48]: gameID = 'loyola-university-chicago/boxscore/4822' url = "https://meangreensports.com/sports/mens-basketball/stats/2020-21/" + gameID r = requests.get(url,verify=False) soup = BeautifulSoup(r.text, "html.parser") prds = soup.find_all('section', attrs = {'id':'play-by-play'}) # In[49]: dfRaw = pd.DataFrame() for i in prds: p = 1 T = '00:20:00' team = '' action = '' plr = '' for prd in i.find_all('div',id=re.compile(r'period')): for pos in prd.find_all('tr')[1:]: t = pos.find('th',attrs={'scope':'row'}).text if re.search(r'\d',t): T = t a = pos.find(lambda tag: tag.name == 'td' and tag.get('class') == ['text-right','hide-on-medium-down']).text.strip() h = pos.find(lambda tag: tag.name == 'td' and tag.get('class') == ['hide-on-medium-down']).text.strip() if len(a)>0: team = 'A' action = a else: team = 'H' action = h try: plr = action.split(' by ')[1] except: print(action) dfRaw = pd.concat([dfRaw, pd.DataFrame([[p,T,team,action,plr]], columns=['Period','Time','Team','ActionRaw','Player']) ]) p += 1 dfRaw['Action'] = dfRaw.ActionRaw.str.extract('([^a-z]{2,})') # In[50]: def cleanAction(x): x = re.sub('^\d+', '', x).lstrip() x = re.sub('\d+$', '', x).rstrip() x = re.sub(' by$', '', x).rstrip() return x def cleanPeriod(x): x = int(''.join(filter(str.isdigit, x))) return x def cleanPlayer(x): x = x.lstrip().rstrip() return x def getStarters(df): nprd = df['Period'].max() periodStart = pd.to_timedelta('00:00:00') periodEnd = pd.to_timedelta('00:40:00') if nprd > 2: n = nprd - 2 while n > 0: periodEnd += pd.to_timedelta('00:05:00') n -= 1 lineups2 = df[df.Action.isin(['SUB IN','SUB OUT']) ][['Player','Action','Time','Period','Team']] linePV = pd.pivot_table(lineups2,index=['Player','Team'],columns='Action',values='Time',aggfunc=np.min).reset_index() linePV['SUB IN'] = linePV['SUB IN'].fillna(periodStart) linePV['SUB OUT'] = linePV['SUB OUT'].fillna(periodEnd) starters = linePV[ ( (linePV['SUB OUT'] < linePV['SUB IN']) ) | ( (linePV['SUB IN'] == '00:00:00') ) ][['Team','Player','SUB OUT','SUB IN']] return list(starters[starters['Team']=='H']['Player']),list(starters[starters['Team']=='A']['Player']) def getStartersByPeriod(df,p): periodStart = pd.to_timedelta('00:00:00') periodEnd = pd.to_timedelta('00:20:00') if p > 2: periodEnd = pd.to_timedelta('00:05:00') lineups2 = df[ df.Action.isin(['SUB IN','SUB OUT']) ][['Player','Action','Time','Period','Team']] lineups2 = lineups2[lineups2['Period']==p] linePV = pd.pivot_table(lineups2,index=['Player','Team'],columns='Action',values='Time',aggfunc=np.min).reset_index() linePV['SUB IN'] = linePV['SUB IN'].fillna(periodStart) linePV['SUB OUT'] = linePV['SUB OUT'].fillna(periodEnd) starters = linePV[ ( (linePV['SUB OUT'] < linePV['SUB IN']) ) | ( (linePV['SUB IN'] == '00:00:00') ) ][['Team','Player','SUB OUT','SUB IN']] return list(starters[starters['Team']=='H']['Player']),list(starters[starters['Team']=='A']['Player']) def extractParens(s): pat = '\(([^)]+)' if re.search(pat,s): s = re.findall(pat, s)[0] else: s = '' return s def removeParens(x): return x.split("(")[0] # In[51]: try: dfRaw['Duration'] = pd.to_datetime(dfRaw['Time'].astype(str)).diff().dt.total_seconds().div(-60) except: dfRaw['Duration'] = 0 # In[52]: actValMap = { 'MISS LAYUP':0 , 'REBOUND DEF':0 , 'GOOD JUMPER':2 , 'MISS 3PTR':0 , 'REBOUND OFF':0 , 'GOOD 3PTR':3 , 'ASSIST':0 , 'FOUL':0 , 'GOOD LAYUP':2 , 'BLOCK':0 , 'TIMEOUT 30SEC':0 , 'SUB OUT':0 , 'SUB IN':0 , 'TURNOVER':0 , 'STEAL':0 , 'MISS JUMPER':0 , 'TIMEOUT MEDIA':0 , 'REBOUND DEADB':0 , 'GOOD FT':1 , 'GOOD DUNK':2 , 'MISS FT':0 } # In[53]: dfRaw['Action'] = dfRaw['Action'].apply(cleanAction) #dfRaw['Period'] = dfRaw['Period'].apply(cleanPeriod)#.apply(int) #dfRaw['Duration'] = df['duration'].apply(int) dfRaw['ActionValue'] = dfRaw['Action'].map(actValMap).map(int,na_action='ignore') dfRaw['Time'] = pd.to_timedelta('00:'+dfRaw['Time']) dfRaw.loc[dfRaw['Period'] <= 2,'Time'] = pd.to_timedelta('00:20:00') - dfRaw.loc[dfRaw['Period'] <= 2,'Time'] dfRaw.loc[dfRaw['Period'] > 2,'Time'] = pd.to_timedelta('00:05:00') - dfRaw.loc[dfRaw['Period'] > 2,'Time'] dfRaw.loc[dfRaw['Period'] == 2,'Time'] += pd.to_timedelta('00:20:00') dfRaw.loc[dfRaw['Period'] == 3,'Time'] += pd.to_timedelta('00:25:00') dfRaw.loc[dfRaw['Period'] == 4,'Time'] += pd.to_timedelta('00:30:00') dfRaw.loc[dfRaw['Period'] == 5,'Time'] += pd.to_timedelta('00:35:00') dfRaw.loc[dfRaw['Period'] == 6,'Time'] += pd.to_timedelta('00:40:00') dfRaw.loc[dfRaw['Period'] == 7,'Time'] += pd.to_timedelta('00:45:00') dfRaw.loc[dfRaw['Period'] == 8,'Time'] += pd.to_timedelta('00:50:00') # In[54]: dfRaw['x'] = dfRaw['Player'].apply(extractParens) dfRaw['Player'] = dfRaw['Player'].apply(removeParens) dfRaw['Player'] = dfRaw['Player'].apply(cleanPlayer) #dfRaw['Duration'] = dfRaw['Duration'].apply(int) dfRaw.loc[dfRaw.Duration.isna(),'Duration'] = pd.to_timedelta(dfRaw.loc[dfRaw.Duration.isna(),'Time']).dt.total_seconds()#.div(-60) # In[55]: dfRaw['seqNo'] = dfRaw['Time'].ne(dfRaw['Time'].shift()).cumsum() # In[56]: conditions = [ (dfRaw['ActionValue'] == 1), (dfRaw['ActionValue'] == 2), (dfRaw['ActionValue'] == 3), (dfRaw['Action'].str.contains('miss') & dfRaw['Action'].str.contains('3')), (dfRaw['Action'].str.contains('miss') & ~dfRaw['Action'].str.contains('3') & ~dfRaw['Action'].str.contains('ft')), (dfRaw['Action'].str.contains('miss') & ~dfRaw['Action'].str.contains('3') & dfRaw['Action'].str.contains('ft')) ] choices = ['FTM', 'FG2', 'FG3','3PA','2PA','FTA'] dfRaw['action_edit1'] = np.select(conditions, choices, default=dfRaw['Action']) dfRaw['playScore'] = dfRaw['Time'].map(dfRaw.groupby("Time")['ActionValue'].sum()) # In[57]: def set_pm(df,rosterH,rosterA,debug=False,isHome=True): HLU,ALU = getStarters(df) lineupDF = df[df.Action.isin(['SUB IN','SUB OUT'])].copy().reindex(columns=['Time' ,'Action' ,'Player' ,'Team' ,'scoreHome' ,'scoreAway' ,'seqNo' ,'Period' ]) lineupDF = lineupDF.reset_index() #rosterH = [p for p in lineupDF[lineupDF['team']=='Home']['player'].unique()] #rosterA = [p for p in lineupDF[lineupDF['team']=='Away']['player'].unique()] seq = lineupDF.loc[0,'seqNo'].copy() time = lineupDF.loc[0,'Time'] hSc = lineupDF.loc[0,'scoreHome'].copy() aSc = lineupDF.loc[0,'scoreAway'].copy() prd = lineupDF.loc[0,'Period'].copy() diff = hSc-aSc away = pd.DataFrame(data={'Lineup':[ALU],'Time':pd.to_timedelta('00:00:00'),'Team':'A','diff':0}).head(1) home = pd.DataFrame(data={'Lineup':[HLU],'Time':pd.to_timedelta('00:00:00'),'Team':'H','diff':0}).head(1) h = home.loc[0,'Lineup'].copy() h.sort() a = away.loc[0,'Lineup'].copy() a.sort() hPlayerPM = {'H':{i:{'curDiff':0, 'pm':0, 'curTime':
pd.to_timedelta('00:00:00')
pandas.to_timedelta
import chesscom as chess import chess_match as cm import pandas as pd import json from datetime import datetime import argparse import os import numpy as np import matplotlib.pyplot as plt DATA_FOLDER = './data' OUTPUTS_FOLDER = './outputs' RESULTS_FOLDER = './results' import re _slugify_strip_re = re.compile(r'[^\w\s-]') _slugify_hyphenate_re = re.compile(r'[-\s]+') def _slugify(value): """ Normalizes string, converts to lowercase, removes non-alpha characters, and converts spaces to hyphens. From Django's "django/template/defaultfilters.py". """ import unicodedata if not isinstance(value, str): value = str(value) value = unicodedata.normalize('NFKD', value).encode('ascii', 'ignore') value = value.decode('utf-8') value = str(_slugify_strip_re.sub('', value).strip().lower()) return _slugify_hyphenate_re.sub('-', value) def main(): parser = argparse.ArgumentParser() parser.add_argument("-id", dest='match_id', type=str, help="Number of match id") parser.add_argument("-url", dest='match_url', type=str, help="URL of the match") parser.add_argument("-N", dest='N_predict', type=int, default=1000, help="Number of trials to predict match resutl") parser.add_argument("-Nb", dest='N_bias', type=int, default=1000, help="Number of trials to predict match biased resutl") parser.add_argument("-bias", dest='bias', type=float, default=0.0, help="ELOs bias for Team A") parser.add_argument("-u", action='store_true', help="Sorce update data from web") parser.add_argument("-plot", action='store_true', default=False, help="Show plots") args = parser.parse_args() # Turn interactive plotting off if not args.plot: plt.ioff() # check folders if not os.path.exists(DATA_FOLDER): os.makedirs(DATA_FOLDER) if not os.path.exists(OUTPUTS_FOLDER): os.makedirs(OUTPUTS_FOLDER) if not os.path.exists(OUTPUTS_FOLDER): os.makedirs(OUTPUTS_FOLDER) # resolve match_id if args.match_id: match_id = int(args.match_id) elif args.match_url: match_id = args.match_url # get data about match data = chess.get_match_data(match_id) #print('\n') match_name = _slugify(chess.get_match_name(match_id)) print('\nMatch info:') print('\tName:\t{}'.format(chess.get_match_name(match_id))) teams_names = chess.get_teams_names(match_id) print('\tTeam A:\t{}'.format(teams_names[0])) print('\tTeam B:\t{}'.format(teams_names[1])) # Get ELOs list into matrix (M) print('\nReading ELOs list') match_stats_filename = DATA_FOLDER+'/'+match_name+'_match_stats.xlsx' if os.path.exists(match_stats_filename) and not args.u: print('\tA backup file was found!') print('\tLoading from file {} ...'.format(match_stats_filename)) match_stats_list_df = pd.read_excel(match_stats_filename) match_stats_list_np = match_stats_list_df.to_numpy() M = np.array([s[2:] for s in match_stats_list_np]).astype(int) print('\tNote: if you want update backup file, use -u argument.') print('\tDone!') else: print('\tLoading from web ...') match_stats_list = chess.get_match_elos_list(data, format='list') print('\tDone!') print('\tSaving backup file{}'.format(match_stats_filename)) match_stats_list_df =
pd.DataFrame.from_dict(match_stats_list['boards_stats'])
pandas.DataFrame.from_dict
# import tabula import pandas as pd import numpy as np # !pip install tabula-py import camelot import os import string import pytz from datetime import datetime, timezone, timedelta from tzlocal import get_localzone from StatusMsg import StatusMsg from tqdm import tqdm from urllib.error import HTTPError import re import tabula from tabulate import tabulate import io # from datetime import datetime,timedelta #programe extracts the tabels from the PDF files. # Need some Preprocessing to convert to RawCSV #Have Done for KA and HR for reference # a=b #declare the path of your file # file_path = r"../INPUT/2021-10-26/KA.pdf" #Convert your file # reads all the tables in the PDF class FileFormatChanged(Exception): pass # def getAPData(file_path,date,StateCode): # table = camelot.read_pdf(file_path,pages='1') # if not os.path.isdir('../INPUT/{}/{}/'.format(date,StateCode)): # os.mkdir('../INPUT/{}/{}/'.format(date,StateCode)) # table.export('../INPUT/{}/{}/foo.csv'.format(date,StateCode), f='csv') # df_districts = pd.read_csv('../INPUT/{}/{}/foo-page-1-table-1.csv'.format(date,StateCode)) # df_districts.columns = df_districts.columns.str.replace("\n","") # col_dict = {"TotalPositives":"Confirmed","TotalRecovered":"Recovered","TotalDeceased":"Deceased"} # df_districts.rename(columns=col_dict,inplace=True) # # df_districts.drop(columns=['S.No','PositivesLast 24 Hrs','TotalActive Cases'],inplace=True) # df_districts = df_districts[df_districts['District']!="Total AP Cases"] # df_summary = df_districts # df_districts = df_districts[:-1] # df_json = pd.read_json("../DistrictMappingMaster.json") # dist_map = df_json['Andhra Pradesh'].to_dict() # df_districts['District'].replace(dist_map,inplace=True) # df_summary = df_summary.iloc[-1,:] # # print(df_districts) # # print(df_summary) # # a=b # return df_summary,df_districts def combine_listItems(list): combined_items = ' '.join([str(item) for item in list]) return combined_items def getAPData(file_path, date, StateCode): try: # print(file_path) file = tabula.read_pdf(file_path,pages=1,stream = True) # print(file) table = tabulate(file) # print(table) df_districts = pd.read_fwf(io.StringIO(table)) # remove junk on top and reset the index df_districts.drop(df_districts.head(4).index, inplace=True) df_districts = df_districts.reset_index() # remove bottom junk df_districts.drop(df_districts.tail(2).index, inplace=True) df_other_cols = df_districts # print(df_districts) # remove unnecessary columns cols = [0, 4, 6] df_districts.drop(df_districts.columns[cols], axis=1, inplace=True) # add column names df_districts.columns = ['S.No','District', 'cumulativeConfirmedNumberForDistrict', 'District_1', 'Cases_2'] df_districts.drop('S.No', axis=1, inplace=True) new_df = df_districts # splitting the dataframe N = 2 splitted_list_df = np.split(df_districts, np.arange(N, len(df_districts.columns), N), axis=1) part_A = splitted_list_df[0] part_B = splitted_list_df[1] # print(type(part_B)) part_B_cols = {"District_1": "District", "Cases_2": "cumulativeConfirmedNumberForDistrict"} part_B.rename(columns=part_B_cols, inplace=True) # concatenate two splitted DF's df_districts = pd.concat([part_A, part_B], ignore_index=True, sort=False) # print(df_districts) # base_csv= '../RAWCSV/2022-04-05/myGov/AP_raw.csv' # base_csv= '../RAWCSV/2022-04-17/myGov/AP_raw.csv' base_csv= '../RAWCSV/2022-04-19/AP_raw.csv' df_base_csv = pd.read_csv(base_csv) # print(df_base_csv) # df_base_csv.drop(df_base_csv.index[[0,7]],inplace=True) # df_base_csv = df_base_csv.reset_index(drop=True) # distri = df_base_csv['District'] # con = df_base_csv['cumulativeConfirmedNumberForDistrict'] # print(con, distri) # base_csv_forState = '../RAWCSV/2022-04-06/myGov/AP_raw.csv' base_csv_forState = '../RAWCSV/2022-04-20/myGov/AP_raw.csv' df_base_csv_forState = pd.read_csv(base_csv_forState) # df_base_csv_forState.drop(df_base_csv_forState.index[[0,7]],inplace=True) # df_base_csv_forState = df_base_csv_forState.reset_index(drop=True) # distri = df_base_csv_forState['District'] # con = df_base_csv_forState['cumulativeConfirmedNumberForDistrict'] # print(con, distri) for index, row in df_districts.iterrows(): # print(index, row) cases_col = row['cumulativeConfirmedNumberForDistrict'].split(' ')[1:] cases_col = list(filter(str.strip, cases_col)) # print(cases_col, len(cases_col)) district_col = row['District'].split(' ')[1:] district_col = list(filter(str.strip, district_col)) # print(district_col,len(district_col)) if len(district_col) == 1: s = '' new_district_col = s.join(district_col) else: new_district_col = combine_listItems(district_col) if len(cases_col) == 1: s = '' new_cases_col = s.join(cases_col) else: new_cases_col = combine_listItems(cases_col) df_districts.loc[index, "District"] = new_district_col # print(type(new_district_col)) df_districts.loc[index, "cumulativeConfirmedNumberForDistrict"] = new_cases_col # dropping rows having Nan df_districts.drop(df_districts.index[[13,14,15,16,30,33]],inplace=True) df_districts = df_districts.reset_index(drop=True) df_districts['cumulativeConfirmedNumberForDistrict'] =df_districts['cumulativeConfirmedNumberForDistrict'].astype(int) # df_summary = df_districts df_districts = df_districts[:-2] # print(df_districts) df_json = pd.read_json("../DistrictMappingMaster.json") dist_map = df_json['Andhra Pradesh'].to_dict() df_districts['District'].replace(dist_map,inplace=True) for index,row in df_districts.iterrows(): filtered_base_df = df_base_csv[df_base_csv['District']==row['District']] # cumulativeConfirmedNumberForDistrict_value = filtered_base_df['cumulativeConfirmedNumberForDistrict'] # print('printing value .....') # print(cumulativeConfirmedNumberForDistrict_value) filtered_base_forState_df= df_base_csv_forState[df_base_csv_forState['District']==row['District']] if len(filtered_base_df) == 1 and len(filtered_base_forState_df) == 1: # if len(filtered_base_df) == 1: # print('printing district names',filtered_district) cumulative_confirmed_forDistrict = filtered_base_df.iloc[0]['cumulativeConfirmedNumberForDistrict'].astype(int) # print('cumulative_confirmed_forDistrict',cumulative_confirmed_forDistrict) df_districts.loc[index, 'cumulativeConfirmedNumberForDistrict'] = cumulative_confirmed_forDistrict+int(row['cumulativeConfirmedNumberForDistrict']) df_districts['cumulativeDeceasedNumberForDistrict'] = '0' df_districts['cumulativeRecoveredNumberForDistrict'] = '0' df_districts['cumulativeTestedNumberForDistrict'] = '0' df_districts['cumulativeConfirmedNumberForState'] = df_districts['cumulativeConfirmedNumberForDistrict'].sum() cumulativeDeceasedNumberForState = filtered_base_forState_df.iloc[0]['cumulativeDeceasedNumberForState'].astype(int) df_districts['cumulativeDeceasedNumberForState'] = cumulativeDeceasedNumberForState cumulativeRecoveredNumberForState = filtered_base_forState_df.iloc[0]['cumulativeRecoveredNumberForState'].astype(int) df_districts['cumulativeRecoveredNumberForState'] = cumulativeRecoveredNumberForState # df_districts['cumulativeTestedNumberForState'] = '33462024' df_summary = df_districts # print('printing df districts.....') # print(df_districts) # df_summary['cumulativeTestedNumberForState'] = '33462024' # df_summary['cumulativeTestedNumberForState'] = '33469666' df_addTest = pd.read_csv("../INPUT/AP_Tested.csv") print(df_addTest) try: df_summary['cumulativeTestedNumberForState'] = df_addTest[df_addTest["Date"] == date]["Cumulative_Tested"].item() # print(df_summary['Tested']) except: print("Please Enter AP Tested values in ../Input/AP_Tested.csv") raise df_summary.to_csv("../RAWCSV/{}/{}_raw.csv".format(date, StateCode)) return df_summary, df_districts except Exception as e: raise # print(e) def getRJData(file_path,date,StateCode): table = camelot.read_pdf(file_path,pages='1,2') if not os.path.isdir('../INPUT/{}/{}/'.format(date,StateCode)): os.mkdir('../INPUT/{}/{}/'.format(date,StateCode)) table.export('../INPUT/{}/{}/foo.csv'.format(date,StateCode), f='csv') df_districts_1 = pd.read_csv('../INPUT/{}/{}/foo-page-1-table-1.csv'.format(date,StateCode),header=0) df_districts_2 = pd.read_csv('../INPUT/{}/{}/foo-page-2-table-1.csv'.format(date,StateCode)) frames = [df_districts_1,df_districts_2] df_districts = pd.concat(frames,ignore_index=True) df_districts.columns = df_districts.columns.str.replace("\n","") print(df_districts.columns) #Cumulative Sample col_dict = {"Unnamed: 2":"Tested", "Cumulative Positive":"Confirmed", "Cumulative Recovered/Discharged":"Recovered","Cumulative Death":"Deceased","CumulativePositive":"Confirmed", "CumulativeDeath":"Deceased","CumulativeRecovered/ Discharged":"Recovered"} df_districts.rename(columns=col_dict,inplace=True) print(df_districts.columns) # df_districts.drop(columns=['S.No','Today\'s Positive','Today\'sDeath','Today\'sRecovered/ Discharged', 'Active Case'],inplace=True) df_districts.dropna(how="all",inplace=True) # print(df_districts) # a=b # df_summary = df_districts # df_districts = df_districts[:-1] # df_districts = df_districts[:-4] # print(df_districts) # a=b df_summary = df_districts print(df_districts) df_districts = df_districts[:-1] # df_districts.drop(labels=[0,1],axis=0,inplace=True) # df = df[] df_districts['District'] = df_districts['District'].str.capitalize() df_json = pd.read_json("../DistrictMappingMaster.json") dist_map = df_json['Rajasthan'].to_dict() df_districts['District'].replace(dist_map,inplace=True) df_summary = df_summary.iloc[-1,:] #testcode needs to be updated later # print(df_summary) # a=b return df_summary,df_districts def getKAData(file_path,date,StateCode): table = camelot.read_pdf(file_path,pages='1,5') if not os.path.isdir('../INPUT/{}/{}/'.format(date,StateCode)): os.mkdir('../INPUT/{}/{}/'.format(date,StateCode)) table.export('../INPUT/{}/{}/foo.csv'.format(date,StateCode), f='csv') # table[5].to_excel('foo.xlsx') df_districts = pd.read_csv('../INPUT/{}/{}/foo-page-5-table-1.csv'.format(date,StateCode),skiprows=3) df_districts.columns = df_districts.columns.str.replace("\n","") df_districts['District Name'] = df_districts['District Name'].str.replace("\n","") df_districts['District Name'] = df_districts['District Name'].str.replace("#","") df_districts['District Name'] = df_districts['District Name'].str.replace("*","") df_districts['District Name'] = df_districts['District Name'].replace(r'\s+', ' ', regex=True) # df_districts = df_districts.replace("nan",np.nan) print(df_districts.columns) # a=b # df_summary = df_districts # df_districts.columns = df_districts.columns.str.replace("\n","") for idx in df_districts.index: print(df_districts["Sl. No"][idx]) if df_districts["Sl. No"][idx] == "21 Mandya": df_districts["Sl. No"][idx] = 21 df_districts["District Name"][idx] = "Mandya" elif df_districts["Sl. No"][idx] == "22 Mysuru": df_districts["Sl. No"][idx] = 22 df_districts["District Name"][idx] = "Mysuru" if "Non-Covid" in df_districts.columns[-1]: col_dict = {"District Name":"District","Total Positives":"Confirmed","Total Discharges":"Recovered","Total Covid Deaths":"Deceased" , df_districts.columns[-1]:"Other"} else: col_dict = {"District Name":"District","Total Positives":"Confirmed","Total Discharges":"Recovered","Total Covid Deaths":"Deceased" , df_districts.columns[-2]:"Other"} df_districts.rename(columns=col_dict,inplace=True) # print(df_districts.columns) # df_districts.drop(columns=['Sl. No','Today’s Positives','Today’s Discharges','Total Active Cases','Today’s Reported Covid Deaths','Death due to Non-Covid reasons#'],inplace=True) df_districts.dropna(how="all",inplace=True) # print(df_districts) # a=b # a=b for col in df_districts.columns: df_districts[col] = df_districts[col].astype(str).str.replace("*","") # df_districts.dropna(inplace=True) # print(df_districts) # a=b df_summary = df_districts[df_districts["Sl. No"] == "Total"].iloc[0] # df_summary = df_districts[df_districts["District"] == "Total"].iloc[0] # print(df_summary) # a=b df_districts = df_districts[
pd.to_numeric(df_districts['Sl. No'], errors='coerce')
pandas.to_numeric
import os from copy import deepcopy from datetime import datetime from dateutil.parser import parse as parse_to_datetime import dateutil import numpy as np import pandas as pd np.seterr(divide='ignore') from sklearn.utils import class_weight from sklearn.cluster import KMeans, MeanShift, DBSCAN from sklearn.multiclass import OneVsRestClassifier from sklearn.preprocessing import MultiLabelBinarizer, StandardScaler from sklearn.metrics import ( classification_report, confusion_matrix, silhouette_score, homogeneity_score, completeness_score, v_measure_score, auc, plot_roc_curve ) from sklearn.model_selection import ( KFold, StratifiedKFold, cross_val_score, GridSearchCV, train_test_split ) from xgboost import XGBClassifier LUCKY_NUMBER = 6969 classifier = XGBClassifier(objective='multi:softprob', n_jobs=11) parameters = { 'max_depth': range (2, 7, 1), 'n_estimators': range(60, 90, 10), 'learning_rate': [0.01, 0.05, 0.1] } HP_searcher = GridSearchCV( estimator=classifier, param_grid=parameters, scoring='f1_macro', cv=10, verbose=True ) def to_datetime(text: str): try: dt_format = str(parse_to_datetime(text)) dt_object = datetime.strptime(dt_format,'%Y-%m-%d %H:%M:%S') except Exception: return None return dt_object def month_to_quarter(month: int) -> int: if 1 <= month <= 3: return 1 elif 4 <= month <= 6: return 2 elif 7 <= month <= 9: return 3 elif 10 <= month <= 12: return 4 else: raise ValueError(f'input must be between 1 and 12') def load_csv(filepath: str) -> pd.DataFrame: if not os.path.isfile(filepath): raise FileNotFoundError(f"Cannot find {filepath}") return pd.read_csv(filepath) def find_best_k_clustering(x: np.array, max_clusters: int=10, max_iterations: int=1000, n_samples: int=169, lucky_number: int=LUCKY_NUMBER, verbose: bool=False): scores = {} for k in range(2, max_clusters-1): if k < 2: continue try: kmeans = KMeans(n_clusters=k, max_iter=max_iterations, random_state=lucky_number).fit(x) except: continue # scores[k] = kmeans.inertia_ try: scores[k] = silhouette_score(x, kmeans.labels_, metric='euclidean', sample_size=n_samples) except ValueError: continue best_k = max(scores, key=scores.get) if verbose: print(f"Best k is {best_k}") return best_k def reorder_cluster(cluster_field_name: str, target_field_name: str, df: pd.DataFrame, ascending: bool=True): new_cluster_field_name = 'new_' + cluster_field_name df_new = df.groupby(cluster_field_name)[target_field_name].mean().reset_index() df_new = df_new.sort_values(by=target_field_name, ascending=ascending).reset_index(drop=True) df_new['index'] = df_new.index df_final = pd.merge(df, df_new[[cluster_field_name, 'index']], on=cluster_field_name) df_final = df_final.drop([cluster_field_name], axis=1) df_final = df_final.rename(columns={"index": cluster_field_name}) df_final[cluster_field_name] = df_final[cluster_field_name] + 1 return df_final def cdf(x): """ Cumulative Density Function (with epsilon) """ x = np.sort(x) u, c = np.unique(x, return_counts=True) n = len(x) y = (np.cumsum(c)-0.5) / n def interpolate_(x_): y_interp = np.interp(x_, u, y, left=0.0, right=1.0) return y_interp return interpolate_ def cumulative_kl(x, y, fraction: float=0.5): """ Cumulative Method to calculate Kullback–Leibler divergence """ dx = np.diff(np.sort(np.unique(x))) dy = np.diff(np.sort(np.unique(y))) ex = np.min(dx) ey = np.min(dy) e = np.min([ex, ey]) * fraction n = len(x) P = cdf(x) Q = cdf(y) divergence = (1./n) * np.sum(np.log((P(x)-P(x-e)) / (Q(x)-Q(x-e)+1e-11))) return np.abs(divergence) def preprocess_for_classifier(df: pd.DataFrame, target_name: str, id_cols: list=[], train_size: float=0.69): # Split to train and validation dset, X, Y = dict(), dict(), dict() # If the minimum number of groups for any class less than 2 try: dset['train'], dset['test'] = train_test_split(df, train_size=train_size, stratify=df[target_name]) for ds_name, ds in dset.items(): Y[ds_name] = ds[target_name] X[ds_name] = ds.copy() X[ds_name].drop(columns=id_cols+[target_name], errors='ignore', inplace=True) except: X['train'] = df.copy() X['train'].drop(columns=id_cols+[target_name], errors='ignore', inplace=True) X['test'] = X['train'].copy() Y['train'] = df[target_name] Y['test'] = Y['train'].copy() # Compute class weights for target target_weights = Y['train'] target_classes = target_weights.unique() class_weights = list( class_weight.compute_class_weight('balanced', target_classes, target_weights) ) target_weights = target_weights.map({clss_i+1: clss_w for clss_i, clss_w in enumerate(class_weights)}) return X, Y, target_weights def visualize_results(classifier, X, Y): results = classifier.evals_result() epochs = len(results['validation_0']['mlogloss']) x_axis = range(0, epochs) viz_df = pd.DataFrame(classifier.feature_importances_, index=X['train'].columns, columns=['feature_importance']) viz_df.sort_values(by=['feature_importance'], inplace=True) # viz_df[viz_df.feature_importance>0.011].plot(kind='barh', alpha=0.75) print('\n\nAccuracy of XGB classifier on training: {:.2f}' .format(classifier.score(X['train'], Y['train']))) y_pred = classifier.predict(X['train']) print(classification_report(Y['train'], y_pred)) print('\n\nAccuracy of XGB classifier on testing: {:.2f}' .format(classifier.score(X['test'], Y['test']))) y_pred = classifier.predict(X['test']) print(classification_report(Y['test'], y_pred)) def filter_opposite_features(df: pd.DataFrame, verbose: bool=False): features_before = list(df.columns) features_after = deepcopy(features_before) feature_id = 0 while feature_id < len(features_after): feature_1 = features_after[feature_id] if verbose: print(f"Checking {feature_1}") feature_id += 1 is_separable = False for op in [' = ', ' - ', ' + ', ' > ', ' < ']: if op in feature_1: is_separable = True break if not is_separable: continue obj_a, obj_b = feature_1.split(op) feature_2 = obj_b + op + obj_a if feature_2 in features_after: if verbose: print(f"Remove {feature_2} because of oppositing {feature_1}") features_after.remove(feature_2) features_removed = list(set(features_before).difference(set(features_after))) if verbose: print(f"\n\n\nFeatures removed:\n\t", features_removed) return features_removed def check_features_diverged(DF_1: pd.DataFrame, DF_2: pd.DataFrame, exclude_columns: list=[], include_nan_divergence: bool=False, threshold: float=0.69, mode: str='min', verbose: bool=False) -> list: len_1, len_2 = len(DF_1), len(DF_2) if len_1 > len_2: DF_1 = DF_1.sample(len_2) elif len_2 > len_1: DF_2 = DF_2.sample(len_1) diverged_features = dict() common_features = set.intersection(set(list(DF_1.columns)), set(list(DF_2.columns))) common_features = [f for f in list(common_features) if f not in exclude_columns] for col in common_features: div_xy = cumulative_kl(DF_1[col], DF_2[col]) div_yx = cumulative_kl(DF_2[col], DF_1[col]) if mode == 'max': div = max(div_xy, div_yx) elif mode == 'min': div = min(div_xy, div_yx) else: div = (div_xy + div_yx) / 2 if verbose: print(f'\n{col}\n\t{div_xy}\n\t{div_yx}\n\t{div}\n') if div > threshold: diverged_features[col] = div if include_nan_divergence and np.isnan(div): diverged_features[col] = div diverged_features_df =
pd.DataFrame.from_dict(diverged_features, orient='index', columns=['KL_divergence'])
pandas.DataFrame.from_dict
import pandas as pd import numpy as np import matplotlib as plt pd.set_option('display.max_columns', None) df=pd.read_csv('train_HK6lq50.csv') def train_data_preprocess(df,train,test): df['trainee_engagement_rating'].fillna(value=1.0,inplace=True) df['isage_null']=0 df.isage_null[df.age.isnull()]=1 df['age'].fillna(value=0,inplace=True) #new cols actual_programs_enrolled and total_test_taken total=train.append(test) unique_trainee=pd.DataFrame(total.trainee_id.value_counts()) unique_trainee['trainee_id']=unique_trainee.index value=[] for i in unique_trainee.trainee_id: value.append(len(total[total.trainee_id==i].program_id.unique())) unique_trainee['actual_programs_enrolled']=value dic1=dict(zip(unique_trainee['trainee_id'],unique_trainee['actual_programs_enrolled'])) df['actual_programs_enrolled']=df['trainee_id'].map(dic1).astype(int) value=[] for i in unique_trainee.trainee_id: value.append(len(total[total.trainee_id==i].test_id.unique())) unique_trainee['total_test_taken']=value dic2=dict(zip(unique_trainee['trainee_id'],unique_trainee['total_test_taken'])) df['total_test_taken']=df['trainee_id'].map(dic2).astype(int) #new col total_trainee_in_each_test unique_test=pd.DataFrame(total.test_id.value_counts()) unique_test['test_id']=unique_test.index value=[] for i in unique_test.test_id: value.append(len(total[total.test_id==i].trainee_id.unique())) unique_test['total_trainee_in_each_test']=value dic3=dict(zip(unique_test['test_id'],unique_test['total_trainee_in_each_test'])) df['total_trainee_in_each_test']=df['test_id'].map(dic3).astype(int) #LABEL ENCODING test_type=sorted(df['test_type'].unique()) test_type_mapping=dict(zip(test_type,range(1,len(test_type)+1))) df['test_type_val']=df['test_type'].map(test_type_mapping).astype(int) df.drop('test_type',axis=1,inplace=True) program_type=sorted(df['program_type'].unique()) program_type_mapping=dict(zip(program_type,range(1,len(program_type)+1))) df['program_type_val']=df['program_type'].map(program_type_mapping).astype(int) df.drop('program_type',axis=1,inplace=True) program_id=sorted(df['program_id'].unique()) program_id_mapping=dict(zip(program_id,range(1,len(program_id)+1))) df['program_id_val']=df['program_id'].map(program_id_mapping).astype(int) #df.drop('program_id',axis=1,inplace=True) difficulty_level=['easy','intermediate','hard','vary hard'] difficulty_level_mapping=dict(zip(difficulty_level,range(1,len(difficulty_level)+1))) df['difficulty_level_val']=df['difficulty_level'].map(difficulty_level_mapping).astype(int) df.drop('difficulty_level',axis=1,inplace=True) education=['No Qualification','High School Diploma','Matriculation','Bachelors','Masters'] educationmapping=dict(zip(education,range(1,len(education)+1))) df['education_val']=df['education'].map(educationmapping).astype(int) df.drop('education',axis=1,inplace=True) is_handicapped=sorted(df['is_handicapped'].unique()) is_handicappedmapping=dict(zip(is_handicapped,range(1,len(is_handicapped)+1))) df['is_handicapped_val']=df['is_handicapped'].map(is_handicappedmapping).astype(int) df.drop('is_handicapped',axis=1,inplace=True) #creating new program_id group based on is_pass percentage df['new_program_id_group']=pd.DataFrame(df['program_id']) df.loc[(df.new_program_id_group=='X_1')|(df.new_program_id_group=='X_3'),'new_program_id_group']=1 df.loc[(df.new_program_id_group=='Y_1')|(df.new_program_id_group=='Y_2')|(df.new_program_id_group=='Y_3')|(df.new_program_id_group=='Y_4')|(df.new_program_id_group=='X_2'),'new_program_id_group']=2 df.loc[(df.new_program_id_group=='Z_1')|(df.new_program_id_group=='Z_2')|(df.new_program_id_group=='Z_3')|(df.new_program_id_group=='T_2')|(df.new_program_id_group=='T_3')|(df.new_program_id_group=='T_4'),'new_program_id_group']=3 df.loc[(df.new_program_id_group=='U_1'),'new_program_id_group']=4 df.loc[(df.new_program_id_group=='V_1')|(df.new_program_id_group=='U_2'),'new_program_id_group']=5 df.loc[(df.new_program_id_group=='V_3')|(df.new_program_id_group=='S_2')|(df.new_program_id_group=='V_4')|(df.new_program_id_group=='V_2'),'new_program_id_group']=6 df.loc[(df.new_program_id_group=='T_1')|(df.new_program_id_group=='S_1'),'new_program_id_group']=7 df.drop('program_id',axis=1,inplace=True) #creating col test_id and rating category together train=pd.read_csv('train_HK6lq50.csv') test=pd.read_csv('test_2nAIblo.csv') total=train.append(test) count=0 total['test_id_and_rating']=0 for a in total.trainee_engagement_rating.unique(): for b in total.test_id.unique(): count+=1 total.loc[(total.trainee_engagement_rating==a)&(total.test_id==b),'test_id_and_rating']=count dic=dict(zip(total['id'],total['test_id_and_rating'])) df['test_id_and_rating']=df['id'].map(dic) count=0 total['test_id_and_education']=0 for a in total.education.unique(): for b in total.test_id.unique(): count+=1 total.loc[(total.education==a)&(total.test_id==b),'test_id_and_education']=count dic=dict(zip(total['id'],total['test_id_and_education'])) df['test_id_and_education']=df['id'].map(dic) count=0 total['program_type_and_rating']=0 for a in total.trainee_engagement_rating.unique(): for b in total.program_type.unique(): count+=1 total.loc[(total.trainee_engagement_rating==a)&(total.program_type==b),'program_type_and_rating']=count dic=dict(zip(total['id'],total['program_type_and_rating'])) df['program_type_and_rating']=df['id'].map(dic) #grouping of test_id_and_rating c=pd.crosstab(df.test_id_and_rating,df.is_pass) c_pct=c.div(c.sum(1).astype(float),axis=0) c_pct.columns = ['fail', 'pass'] c_pct['id_group']=pd.DataFrame(c_pct['pass']) c_pct.loc[(c_pct.id_group>=.20)&(c_pct.id_group<.30),'id_group']=1 c_pct.loc[(c_pct.id_group>=.30)&(c_pct.id_group<.40),'id_group']=2 c_pct.loc[(c_pct.id_group>=.40)&(c_pct.id_group<.50),'id_group']=3 c_pct.loc[(c_pct.id_group>=.50)&(c_pct.id_group<.60),'id_group']=4 c_pct.loc[(c_pct.id_group>=.60)&(c_pct.id_group<.70),'id_group']=5 c_pct.loc[(c_pct.id_group>=.70)&(c_pct.id_group<.80),'id_group']=6 c_pct.loc[(c_pct.id_group>=.80)&(c_pct.id_group<.90),'id_group']=7 c_pct.loc[(c_pct.id_group>=.90)&(c_pct.id_group<1),'id_group']=8 c_pct.id_group=c_pct.id_group.astype(int) c_pct.drop(['fail','pass'],axis=1,inplace=True) dic=c_pct.to_dict() dic4=dic['id_group'] df['test_id_and_rating_group']=df['test_id_and_rating'].map(dic4).astype(int) #grouping of program_type_and_rating c=pd.crosstab(df.program_type_and_rating,df.is_pass) c_pct=c.div(c.sum(1).astype(float),axis=0) c_pct.columns = ['fail', 'pass'] c_pct['id_group']=pd.DataFrame(c_pct['pass']) c_pct.loc[(c_pct.id_group>=.20)&(c_pct.id_group<.30),'id_group']=1 c_pct.loc[(c_pct.id_group>=.30)&(c_pct.id_group<.40),'id_group']=2 c_pct.loc[(c_pct.id_group>=.40)&(c_pct.id_group<.50),'id_group']=3 c_pct.loc[(c_pct.id_group>=.50)&(c_pct.id_group<.60),'id_group']=4 c_pct.loc[(c_pct.id_group>=.60)&(c_pct.id_group<.70),'id_group']=5 c_pct.loc[(c_pct.id_group>=.70)&(c_pct.id_group<.80),'id_group']=6 c_pct.loc[(c_pct.id_group>=.80)&(c_pct.id_group<.90),'id_group']=7 c_pct.loc[(c_pct.id_group>=.90)&(c_pct.id_group<1),'id_group']=8 c_pct.id_group=c_pct.id_group.astype(int) c_pct.drop(['fail','pass'],axis=1,inplace=True) dic=c_pct.to_dict() dic41=dic['id_group'] df['program_type_and_rating_group']=df['program_type_and_rating'].map(dic41).astype(int) #col avg_rating by test_id total=train.append(test) c=pd.crosstab(total.test_id,total.trainee_engagement_rating) #use this for final submission c['avg_rating']=(c[1.0]+2*c[2.0]+3*c[3.0]+4*c[4.0]+5*c[5.0])/(c[1.0]+c[2.0]+c[3.0]+c[4.0]+c[5.0]) c['test_id']=c.index dic5=dict(zip(c['test_id'],c['avg_rating'])) df['avg_rating']=df['test_id'].map(dic5) #rating_diff(count(1.0+2.0)-count(4.0+5.0)) #c=pd.crosstab(total.test_id,total.trainee_engagement_rating) #use this for final submission c=pd.crosstab(df.test_id,df.trainee_engagement_rating) c['rating_diff_test_id']=c[1.0]+c[2.0]-c[4.0]-c[5.0]+c[3.0] c['test_id']=c.index dic6=dict(zip(c['test_id'],c['rating_diff_test_id'])) df['rating_diff_test_id']=df['test_id'].map(dic6) #col avg_rating by trainee_id #c=pd.crosstab(total.test_id,total.trainee_engagement_rating) #use this for final submission c=pd.crosstab(df.trainee_id,df.trainee_engagement_rating) c['avg_rating_trainee_id']=(c[1.0]+2*c[2.0]+3*c[3.0]+4*c[4.0]+5*c[5.0])/(c[1.0]+c[2.0]+c[3.0]+c[4.0]+c[5.0]) c['trainee_id']=c.index dic7=dict(zip(c['trainee_id'],c['avg_rating_trainee_id'])) df['avg_rating_trainee_id']=df['trainee_id'].map(dic7) #is_pass_diff wrt trainee_engagement_rating c=pd.crosstab(df.trainee_engagement_rating,df.is_pass) c['trainee_engagement_rating']=c.index c['pass']=c[1] c['fail']=c[0] c['is_pass_diff_rating']=c['pass']-c['fail'] dic8=dict(zip(c['trainee_engagement_rating'],c['is_pass_diff_rating'])) df['is_pass_diff_rating']=df['trainee_engagement_rating'].map(dic8).astype(int) #is_pass_diff wrt total_programs_enrolled c=
pd.crosstab(df.total_programs_enrolled,df.is_pass)
pandas.crosstab
from __future__ import annotations import pytest from pandas.errors import ParserWarning import pandas.util._test_decorators as td from pandas import ( DataFrame, Series, to_datetime, ) import pandas._testing as tm from pandas.io.xml import read_xml @pytest.fixture(params=[pytest.param("lxml", marks=td.skip_if_no("lxml")), "etree"]) def parser(request): return request.param @pytest.fixture( params=[None, {"book": ["category", "title", "author", "year", "price"]}] ) def iterparse(request): return request.param def read_xml_iterparse(data, **kwargs): with tm.ensure_clean() as path: with open(path, "w") as f: f.write(data) return read_xml(path, **kwargs) xml_types = """\ <?xml version='1.0' encoding='utf-8'?> <data> <row> <shape>square</shape> <degrees>00360</degrees> <sides>4.0</sides> </row> <row> <shape>circle</shape> <degrees>00360</degrees> <sides/> </row> <row> <shape>triangle</shape> <degrees>00180</degrees> <sides>3.0</sides> </row> </data>""" xml_dates = """<?xml version='1.0' encoding='utf-8'?> <data> <row> <shape>square</shape> <degrees>00360</degrees> <sides>4.0</sides> <date>2020-01-01</date> </row> <row> <shape>circle</shape> <degrees>00360</degrees> <sides/> <date>2021-01-01</date> </row> <row> <shape>triangle</shape> <degrees>00180</degrees> <sides>3.0</sides> <date>2022-01-01</date> </row> </data>""" # DTYPE def test_dtype_single_str(parser): df_result = read_xml(xml_types, dtype={"degrees": "str"}, parser=parser) df_iter = read_xml_iterparse( xml_types, parser=parser, dtype={"degrees": "str"}, iterparse={"row": ["shape", "degrees", "sides"]}, ) df_expected = DataFrame( { "shape": ["square", "circle", "triangle"], "degrees": ["00360", "00360", "00180"], "sides": [4.0, float("nan"), 3.0], } ) tm.assert_frame_equal(df_result, df_expected) tm.assert_frame_equal(df_iter, df_expected) def test_dtypes_all_str(parser): df_result = read_xml(xml_dates, dtype="string", parser=parser) df_iter = read_xml_iterparse( xml_dates, parser=parser, dtype="string", iterparse={"row": ["shape", "degrees", "sides", "date"]}, ) df_expected = DataFrame( { "shape": ["square", "circle", "triangle"], "degrees": ["00360", "00360", "00180"], "sides": ["4.0", None, "3.0"], "date": ["2020-01-01", "2021-01-01", "2022-01-01"], }, dtype="string", ) tm.assert_frame_equal(df_result, df_expected) tm.assert_frame_equal(df_iter, df_expected) def test_dtypes_with_names(parser): df_result = read_xml( xml_dates, names=["Col1", "Col2", "Col3", "Col4"], dtype={"Col2": "string", "Col3": "Int64", "Col4": "datetime64"}, parser=parser, ) df_iter = read_xml_iterparse( xml_dates, parser=parser, names=["Col1", "Col2", "Col3", "Col4"], dtype={"Col2": "string", "Col3": "Int64", "Col4": "datetime64"}, iterparse={"row": ["shape", "degrees", "sides", "date"]}, ) df_expected = DataFrame( { "Col1": ["square", "circle", "triangle"], "Col2": Series(["00360", "00360", "00180"]).astype("string"), "Col3": Series([4.0, float("nan"), 3.0]).astype("Int64"), "Col4": to_datetime(["2020-01-01", "2021-01-01", "2022-01-01"]), } ) tm.assert_frame_equal(df_result, df_expected) tm.assert_frame_equal(df_iter, df_expected) def test_dtype_nullable_int(parser): df_result = read_xml(xml_types, dtype={"sides": "Int64"}, parser=parser) df_iter = read_xml_iterparse( xml_types, parser=parser, dtype={"sides": "Int64"}, iterparse={"row": ["shape", "degrees", "sides"]}, ) df_expected = DataFrame( { "shape": ["square", "circle", "triangle"], "degrees": [360, 360, 180], "sides": Series([4.0, float("nan"), 3.0]).astype("Int64"), } ) tm.assert_frame_equal(df_result, df_expected) tm.assert_frame_equal(df_iter, df_expected) def test_dtype_float(parser): df_result =
read_xml(xml_types, dtype={"degrees": "float"}, parser=parser)
pandas.io.xml.read_xml
import pandas as pd def get_produced_wind_power(file_path): df =
pd.read_html(file_path)
pandas.read_html
# -*- coding:utf-8 -*- # !/usr/bin/env python """ Date: 2022/5/18 20:40 Desc: 上海证券交易所-产品-股票期权-期权风险指标 """ import requests import pandas as pd def option_risk_indicator_sse(date: str = "20220516") -> pd.DataFrame: """ 上海证券交易所-产品-股票期权-期权风险指标 http://www.sse.com.cn/assortment/options/risk/ :param date: 日期; 20150209 开始 :type date: str :return: 期权风险指标 :rtype: pandas.DataFrame """ url = "http://query.sse.com.cn/commonQuery.do" params = { "isPagination": "false", "trade_date": date, "sqlId": "SSE_ZQPZ_YSP_GGQQZSXT_YSHQ_QQFXZB_DATE_L", "contractSymbol": "", "_": "1652877575590", } headers = { "Accept": "*/*", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Connection": "keep-alive", "Host": "query.sse.com.cn", "Pragma": "no-cache", "Referer": "http://www.sse.com.cn/", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.67 Safari/537.36", } r = requests.get(url, params=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]) temp_df = temp_df[ [ "TRADE_DATE", "SECURITY_ID", "CONTRACT_ID", "CONTRACT_SYMBOL", "DELTA_VALUE", "THETA_VALUE", "GAMMA_VALUE", "VEGA_VALUE", "RHO_VALUE", "IMPLC_VOLATLTY", ] ] temp_df["TRADE_DATE"] = pd.to_datetime(temp_df["TRADE_DATE"]).dt.date temp_df["DELTA_VALUE"] = pd.to_numeric(temp_df["DELTA_VALUE"]) temp_df["THETA_VALUE"] =
pd.to_numeric(temp_df["THETA_VALUE"])
pandas.to_numeric
import random import numpy as np import pandas as pd from sklearn.pipeline import Pipeline import pickle from bots.epsilonbot import EpsilonBot from bots.gammabot import GammaBot from bots.markovbot import MarkovBot from collections import Counter from utils import emoji_to_text, evaluate, win_rate_fn, log_game from flask import Flask, request, render_template app = Flask(__name__) # capture results for win rates results_easy = [] results_medium = [] results_hard = [] # home page @app.route('/', methods=['GET', 'POST']) def index(): return render_template('index.html') @app.route('/easy', methods=['GET', 'POST']) def easy(): game = {} bot = EpsilonBot() if request.method == 'POST': player_throw = emoji_to_text(request.form['player_throw']) bot_throw = bot.throw(game) result = evaluate(player_throw, bot_throw) results_easy.append(result) win_rate = win_rate_fn(results_easy) game["W"] = Counter(results_easy)["win"] game["L"] = Counter(results_easy)["lose"] game['result'] = result game['player'] = player_throw game['bot'] = bot_throw game["win_rate"] = round(win_rate*100,2) return render_template('easy.html', game=game) @app.route('/medium', methods=['GET', 'POST']) def medium(): game = {} bot = GammaBot() if request.method == 'POST': player_throw = emoji_to_text(request.form['player_throw']) bot_throw = bot.throw(player_throw) result = evaluate(player_throw, bot_throw) results_medium.append(result) win_rate = win_rate_fn(results_medium) game["W"] = Counter(results_medium)["win"] game["L"] = Counter(results_medium)["lose"] game['result'] = result game['player'] = player_throw game['bot'] = bot_throw game["win_rate"] = round(win_rate*100,2) return render_template('medium.html', game=game) # game setup for markovbot # spin up random game 1 options = ['rock', 'paper', 'scissors'] player = np.random.choice(options) bot = np.random.choice(options) game = {'W': 0, 'L': 0, 'result': None, 'player': player, 'bot': bot, 'win_rate': 0} # save the outcomes and play memory = pd.DataFrame({ "outcome": [], "next_play": []}) memory.to_csv('data/memory.csv', index=False) del memory # save the updated transition matrix memory_transition_prob = pd.DataFrame({ 'paperpaper': {'paper': 1/3, 'rock': 1/3,'scissors': 1/3}, 'paperrock': {'paper': 1/3, 'rock': 1/3,'scissors': 1/3}, 'paperscissors': {'paper': 1/3, 'rock': 1/3,'scissors': 1/3}, 'rockpaper': {'paper': 1/3, 'rock': 1/3,'scissors': 1/3}, 'rockrock': {'paper': 1/3, 'rock': 1/3,'scissors': 1/3}, 'rockscissors': {'paper': 1/3, 'rock': 1/3,'scissors': 1/3}, 'scissorspaper': {'paper': 1/3, 'rock': 1/3,'scissors': 1/3}, 'scissorsrock': {'paper': 1/3, 'rock': 1/3,'scissors': 1/3}, 'scissorsscissors': {'paper': 1/3, 'rock': 1/3,'scissors': 1/3}}) memory_transition_prob.to_csv("data/memory_transition_prob.csv",index=False) del memory_transition_prob @app.route('/hard', methods=['GET', 'POST']) def hard(): # do not render first dummy game's html game_count = 0 memory_transition_prob =
pd.read_csv('data/memory_transition_prob.csv')
pandas.read_csv
""" Gather metadata for all assemblies in the dataset and output to assemblies.csv """ import argparse import os import logging import re import numpy as np import pandas as pd logger = logging.getLogger(__name__) def main(): logging.basicConfig(level=logging.INFO, format="%(asctime)s (%(levelname)s) %(message)s") data_path = os.path.join(os.getcwd(), 'data') sequences_path = os.path.join(data_path, 'sequences') ncbi_assembly_summary_path = os.path.join(data_path, 'NCBI_assembly_summary.txt') arc_metadata_path = os.path.join(data_path, 'archaea/DB_Archaea95_update012020.info.txt') bac_metadata_path = os.path.join(data_path, 'bacteria/DB_BACT95_HCLUST0.5/DB_BACT95_HCLUST0.5.info.txt') output_file = os.path.join(data_path, 'assemblies.csv') logger.info('Loading NCBI assembly summary') ncbi_summary_df = pd.read_csv( ncbi_assembly_summary_path, sep='\t', skiprows=1, ).set_index('assembly_accession') logger.info('Loading Archea metadata file') arc_metadata_df = read_metadata_file(arc_metadata_path) logger.info('Loading Bacteria metadata file') bac_metadata_df = read_metadata_file(bac_metadata_path) logger.info('Concatenating metadata files') metadata_df = pd.concat( [arc_metadata_df, bac_metadata_df], ignore_index=True, ).set_index('assembly_accession') logger.info('Merging metadata files') output_df = pd.merge( ncbi_summary_df[[ 'taxid', 'species_taxid', 'organism_name', 'assembly_level', ]], metadata_df[[ 'domain', 'phylum', 'class', 'order', 'family', 'genus', 'species', 'strain', ]], how='inner', on='assembly_accession', ) output_df['taxid'] = pd.to_numeric(output_df['taxid']) output_df['species_taxid'] =
pd.to_numeric(output_df['species_taxid'])
pandas.to_numeric
#!/usr/bin/env python3.7 # -*- coding: utf-8 -*- """ Created on Mon Nov 23 11:46:57 2020 @author: reideej1 :DESCRIPTION: Evaluate coaching data for the last 50 years of college football - the goal is to determine how coaches who struggle in their first 3 years fare over time at the same program :REQUIRES: scrape_sports_reference.py located in: cfbAnalysis\src\data :TODO: """ #============================================================================== # Package Import #============================================================================== import datetime import glob import os import numpy as np import pandas as pd import pathlib import time import tqdm from src.data.scrape_sports_reference import * #============================================================================== # Reference Variable Declaration #============================================================================== #============================================================================== # Function Definitions #============================================================================== def renameSchool(df, name_var): ''' Purpose: Rename a school/university to a standard name as specified in the file `school_abbreviations.csv` Inputs ------ df : Pandas Dataframe DataFrame containing a school-name variable for which the names need to be standardized name_var : string Name of the variable which is to be renamed/standardized Outputs ------- list(row)[0] : string Standardized version of the school's name based on the first value in the row in the file `school_abbreviations.csv` ''' # read in school name information df_school_names = pd.read_csv(r'references\names_pictures_ncaa.csv') # convert the dataframe to a dictionary such that the keys are the # optional spelling of each school and the value is the standardized # name of the school dict_school_names = {} for index, row in df_school_names.iterrows(): # isolate the alternative name columns names = row[[x for x in row.index if 'Name' in x]] # convert the row to a list that doesn't include NaN values list_names = [x for x in names.values.tolist() if str(x) != 'nan'] # add the nickname to the team names as an alternative name nickname = row['Nickname'] list_names_nicknames = list_names.copy() for name in list_names: list_names_nicknames.append(name + ' ' + nickname) # extract the standardized team name name_standardized = row['Team'] # add the standardized name list_names_nicknames.append(name_standardized) # add the nickname to the standardized name list_names_nicknames.append(name_standardized + ' ' + nickname) # for every alternative spelling of the team, set the value to be # the standardized name for name_alternate in list_names_nicknames: dict_school_names[name_alternate] = name_standardized # df[name_var] = df[name_var].apply( # lambda x: dict_school_names[x] if str(x) != 'nan' else '') df[name_var] = df[name_var].apply( lambda x: rename_school_helper(x, dict_school_names)) return df def rename_school_helper(name_school, dict_school_names): try: if str(name_school) != 'nan': return dict_school_names[name_school] else: return '' except: print(f'School not found in school abbreviations .csv file: {name_school} ') return name_school def create_coach_dataframe(df_schools): ''' Purpose: Given historic school data, create a dataframe of coaches and their performance data on a year-by-year basis Inputs ------ df_schools : Pandas DataFrame Contains year-by-year results for each school (with coaches' names) Outputs ------- df_coaches : Pandas DataFrame A dataframe containing all historic season data from a coaching perspective ''' # Create a dictionary that assigns each school to its current conference df_conf = df_schools.groupby(['School', 'Conf']).head(1).groupby('School').head(1).reset_index(drop = True) df_conf = df_conf[['School', 'Conf']] df_conf['Power5'] = df_conf.apply(lambda row: True if row['Conf'] in [ 'SEC', 'Pac-12', 'Big 12', 'ACC', 'Big Ten'] else False, axis = 1) df_conf = df_conf.set_index('School') dict_conf = df_conf.to_dict(orient = 'index') # Create a coaching dataframe by iterating over every year for every school list_coaches = [] for index, row in df_schools.iterrows(): # handle every coach that coached that season for coach in row['Coach(es)'].split(', '): dict_coach_year = {} dict_coach_year['coach'] = coach.split(' (')[0].strip() dict_coach_year['year'] = row['Year'] dict_coach_year['school'] = row['School'] dict_coach_year['ranking_pre'] = row['AP_Pre'] dict_coach_year['ranking_high'] = row['AP_High'] dict_coach_year['ranking_post'] = row['AP_Post'] dict_coach_year['ranked_pre'] = not pd.isna(row['AP_Pre']) dict_coach_year['ranked_post'] = not pd.isna(row['AP_Post']) try: dict_coach_year['ranked_top_10'] = row['AP_Post'] <= 10 except: print(row['AP_Post']) dict_coach_year['ranked_top_5'] = row['AP_Post'] <= 5 # handle bowl games if pd.isna(row['Bowl']): dict_coach_year['bowl'] = False dict_coach_year['bowl_name'] = '' dict_coach_year['bowl_win'] = False else: dict_coach_year['bowl'] = True dict_coach_year['bowl_name'] = row['Bowl'].split('-')[0] if '-' in str(row['Bowl']): try: if row['Bowl'].split('-')[1] == 'W': dict_coach_year['bowl_win'] = True except: print(row['Bowl']) # handle wins and losses if len(coach.split('(')[1].split('-')) > 2: dict_coach_year['W'] = coach.split('(')[1].split('-')[0] dict_coach_year['L'] = coach.split('(')[1].split('-')[1].strip(')') dict_coach_year['T'] = coach.split('(')[1].split('-')[2].strip(')') else: dict_coach_year['W'] = coach.split('(')[1].split('-')[0] dict_coach_year['L'] = coach.split('(')[1].split('-')[1].strip(')') # assign conference information dict_coach_year['conf'] = dict_conf[row['School']]['Conf'] dict_coach_year['power5'] = dict_conf[row['School']]['Power5'] list_coaches.append(dict_coach_year) # Convert list to DataFrame df_coaches = pd.DataFrame(list_coaches) # Convert all Tie Nans to 0 df_coaches['T'] = df_coaches['T'].fillna(0) # Identify all unique coaches in the dataframe list_coaches = list(df_coaches['coach'].unique()) # Cast Win and Loss columns to ints df_coaches['W'] = df_coaches['W'].astype('int') df_coaches['L'] = df_coaches['L'].astype('int') df_coaches['T'] = df_coaches['T'].astype('int') # Add a column for games coached in the season df_coaches['GP'] = df_coaches.apply(lambda row: row['W'] + row['L'] + row['T'], axis = 1) return df_coaches def add_coach_metadata(df_stint): ''' Purpose: Iterate over a coach's historic data and tabulate totals on a year-by-year basis Inputs ------ df_stint : Pandas DataFrame Contains year-by-year results for a coach ** Note: This is continuous years only. Breaks in coaching stints are treated as separate coaching histories ** Outputs ------- df_coach : Pandas DataFrame Coaching data with updated year-by-year totals ''' df_coach = df_stint.copy() # 1. Year # at school df_coach['season'] = list(range(1,len(df_coach)+1)) # 2. Cumulative games coached at school (on a year-by-year basis) df_coach['cum_GP'] = df_coach['GP'].cumsum(axis = 0) # 3. Cumulative wins at school (on a year-by-year basis) df_coach['cum_W'] = df_coach['W'].cumsum(axis = 0) # 4. Cumulative losses at school (on a year-by-year basis) df_coach['cum_L'] = df_coach['L'].cumsum(axis = 0) # 5. Cumulative ties at school (on a year-by-year basis) df_coach['cum_T'] = df_coach['T'].cumsum(axis = 0) # 6. Cumulative Win Pct at school (on a year-by-year basis) if len(df_coach) == 1: if int(df_coach['cum_GP']) == 0: df_coach['cum_win_pct'] = 0 else: df_coach['cum_win_pct'] = df_coach.apply(lambda row: row['cum_W'] / row['cum_GP'] if row['cum_GP'] != 0 else 0, axis = 1) else: df_coach['cum_win_pct'] = df_coach.apply(lambda row: row['cum_W'] / row['cum_GP'] if row['cum_GP'] != 0 else 0, axis = 1) # 7. Total bowl games at school df_coach['total_bowl'] = df_coach['bowl'].sum(axis = 0) # 8. Total bowl wins at school df_coach['total_bowl_win'] = df_coach['bowl_win'].sum(axis = 0) # 9. Total AP Preseason rankings df_coach['total_ranked_pre'] = df_coach['ranked_pre'].sum(axis = 0) # 10. Total AP Postseason rankings df_coach['total_ranked_post'] = df_coach['ranked_post'].sum(axis = 0) # 11. Total Top 10 finishes df_coach['total_top_10'] = df_coach['ranked_top_10'].sum(axis = 0) # 12. Total Top 5 finishes df_coach['total_top_5'] = df_coach['ranked_top_5'].sum(axis = 0) # 13. Total Seasons Coached at School df_coach['total_seasons'] = df_coach.iloc[len(df_coach)-1]['season'] # 14. Total Games Coached at School df_coach['total_games'] = df_coach.iloc[len(df_coach)-1]['cum_GP'] # 15. Total Wins at School df_coach['total_wins'] = df_coach.iloc[len(df_coach)-1]['cum_W'] # 16. Total Losses at School df_coach['total_losses'] = df_coach.iloc[len(df_coach)-1]['cum_L'] # 17. Total Win Pct at School df_coach['total_win_pct'] = df_coach.iloc[len(df_coach)-1]['cum_win_pct'] return df_coach def calculate_year_by_year(df_coaches): ''' Purpose: Given the data for coaches in a historical perspective, iterate through their coaching stints and calculate year-by-year totals in an effor to understand their progress over time Inputs ------ df_coaches : Pandas DataFrame A dataframe containing all historic season data from a coaching perspective Outputs ------- df_yr_by_yr : Pandas DataFrame Coaching data with updated year-by-year totals separated by stints at schools in each coach's career ''' # make an empty dataframe for storing new coach info df_yr_by_yr = pd.DataFrame() # Coach-by-coach --> Year by year, determine the following: gps = df_coaches.groupby(['coach', 'school']) for combo, df_coach in tqdm.tqdm(gps): # sort the dataframe by earliest year to latest df_coach = df_coach.sort_values(by = 'year') # look for gaps in years num_stints = 1 list_stint_end = [] list_years = list(df_coach['year']) for num_ele in list(range(0,len(list_years))): if (num_ele == 0): pass else: if list_years[num_ele] - list_years[num_ele-1] > 1: # print(f"Gap detected for coach: {df_coach.iloc[0]['coach']}") # print(f" -- Gap between {list_years[num_ele]} and {list_years[num_ele-1]}") list_stint_end.append(list_years[num_ele-1]) num_stints = num_stints + 1 # handle coaches with multiple stints if num_stints >= 2: for stint_count in list(range(0,num_stints)): # split the coaches data into stints if stint_count == 0: year_stint_end = list_stint_end[stint_count] df_stint = df_coach[df_coach['year'] <= year_stint_end] elif stint_count < num_stints-1: year_stint_end = list_stint_end[stint_count] year_stint_end_prev = list_stint_end[stint_count-1] df_stint = df_coach[df_coach['year'] <= year_stint_end] df_stint = df_stint[df_stint['year'] > year_stint_end_prev] else: year_stint_end_prev = list_stint_end[stint_count-1] df_stint = df_coach[df_coach['year'] > year_stint_end_prev] # process the data on a year by year basis df_stint = add_coach_metadata(df_stint) # Add coach dataframe to overall dataframe if len(df_yr_by_yr) == 0: df_yr_by_yr = df_stint.copy() else: df_yr_by_yr = df_yr_by_yr.append(df_stint) else: # process the data on a year by year basis df_coach = add_coach_metadata(df_coach) # Add coach dataframe to overall dataframe if len(df_yr_by_yr) == 0: df_yr_by_yr = df_coach.copy() else: df_yr_by_yr = df_yr_by_yr.append(df_coach) # reset dataframe index df_yr_by_yr = df_yr_by_yr.reset_index(drop = True) return df_yr_by_yr def create_week_by_week_dataframe(df_all_games, df_schools, games_sf): ''' Purpose: Combine the week-by-week results for each school with the end-of-year school/coach information to create a week-by-week dataframe detailing who coached each team when. This will facilitate analysis of coaching tenures. Inputs ------ df_all_games : Pandas DataFrame Contains week-by-week results for each school df_schools : Pandas DataFrame Contains year-by-year results for each school (with coaches' names) games_sf : int Scott Frost's current number of games Outputs ------- df_engineered : Pandas DataFrame A dataframe containing all historic week-by-week results infused with coaches' names ''' # standardize team names df_all_games = renameSchool(df_all_games, 'School') df_all_games = renameSchool(df_all_games, 'Opponent') df_schools = renameSchool(df_schools, 'School') # merge data together df_coaches = pd.merge(df_all_games, df_schools[['School', 'Year', 'Conf', 'Conf_W', 'Conf_L', 'Conf_T', 'AP_Pre', 'AP_High', 'AP_Post', 'Coach(es)', 'Bowl']], how = 'left', on = ['School', 'Year']) # rename columns df_coaches = df_coaches.rename(columns = {'Conf_x':'Conf_Opp', 'Conf_y':'Conf'}) # sort dataframe to ensure no issues with groupby df_coaches = df_coaches.sort_values(by = ['School', 'Year', 'G']) # Break out coaches on a week-by-week basis list_coaches = [] table_coaches = pd.DataFrame(columns = ['School', 'Year', 'Coach', 'Games']) for school, grp in tqdm.tqdm(df_coaches.groupby(['School', 'Year'])): dict_coaches = {} # Handle Utah 2003 if school[0] == 'Utah' and school[1] == 2004: dict_coaches['Urban Meyer'] = 12 # Handle Utah St. 2021 elif school[0] == 'Utah St.' and school[1] == 2021: coach_name = '<NAME>' coach_games = grp['G'].count() dict_coaches[coach_name] = coach_games # Handle USC 2021 elif school[0] == 'USC' and school[1] == 2021: dict_coaches['C<NAME>'] = 2 dict_coaches['<NAME>'] = len(grp) - 2 # handle every coach that coached that season for that team else: # for every coach a team has, calculate how many games they coached that season for coach in grp['Coach(es)'].iloc[0].split(', '): coach_name = coach.split(' (')[0] coach_record = coach.split(' (')[1].replace(')','') # first attempt to account for ties in a coaches' record try: coach_games = int(coach_record.split('-')[0]) + int(coach_record.split('-')[1]) + int(coach_record.split('-')[2]) # otherwise assume they only have wins-losses in their record except: coach_games = int(coach_record.split('-')[0]) + int(coach_record.split('-')[1]) dict_coaches[coach_name] = coach_games # add coaches to master list num_games = 0 for coach in dict_coaches.keys(): list_coaches = list_coaches + ([coach] * dict_coaches[coach]) table_coaches = table_coaches.append(pd.DataFrame( [[school[0], school[1], coach, dict_coaches[coach]]], columns = ['School', 'Year', 'Coach', 'Games'])) num_games = dict_coaches[coach] + num_games if num_games != len(grp): print('oops!') break df_coaches['Coach'] = list_coaches # test for any values of "coach" that weren't in the original data for index, row in tqdm.tqdm(df_coaches.iterrows()): if not pd.isna(row['Coach(es)']): if row['Coach'] not in row['Coach(es)']: print(f"{row['Coach']} not found in {row['Coach(es)']}") # add power5 status to dataframe df_school_info = pd.read_csv(r'references\names_pictures_ncaa.csv') df_school_info = df_school_info.rename(columns = {'Team':'School'}) df_coaches = pd.merge(df_coaches, df_school_info[['School', 'Power5']], how = 'left', on = 'School') df_school_info = df_school_info.rename(columns = {'School':'Opponent', 'Power5':'Power5_Opp'}) df_coaches = pd.merge(df_coaches, df_school_info[['Opponent', 'Power5_Opp']], how = 'left', on = 'Opponent') # rename columns df_coaches = df_coaches.rename(columns = {'G':'Week', 'Year':'Season', 'Opp':'Pts_Opp', 'Cum_W':'W_Sn', 'Cum_L':'L_Sn', 'T':'T_Sn'}) # add opponent's record for the year to the table df_team_records = pd.merge(df_coaches[['Season', 'Opponent']], df_schools[['School', 'Year', 'Overall_Pct', 'Conf_Pct']], left_on = ['Season', 'Opponent'], right_on = ['Year', 'School']) df_team_records = df_team_records.drop_duplicates() df_team_records = df_team_records[['Season', 'School', 'Overall_Pct', 'Conf_Pct']] df_team_records = df_team_records.rename(columns = {'Overall_Pct':'Win_Pct_Opp', 'Conf_Pct':'Win_Pct_Conf_Opp', 'School':'Opponent'}) df_coaches = pd.merge(df_coaches, df_team_records, how = 'left', on = ['Season', 'Opponent']) # add flag if opponent's overall record was > .500 df_coaches['Opp_Winning_Record'] = list(df_coaches.apply( lambda row: True if row['Win_Pct_Opp'] > .5 else False, axis = 1)) # add flag if opponent's conference record was > .500 df_coaches['Opp_Conf_Winning_Record'] = list(df_coaches.apply( lambda row: True if row['Win_Pct_Conf_Opp'] > .5 else False, axis = 1)) # reorder columns df_coaches = df_coaches[['Season', 'Week', 'Date', 'Day', 'Rank', 'School', 'Coach', 'Conf', 'Power5', 'Home_Away', 'Rank_Opp', 'Opponent', 'Conf_Opp', 'Power5_Opp', 'Win_Pct_Opp', 'Opp_Winning_Record', 'Win_Pct_Conf_Opp', 'Opp_Conf_Winning_Record', 'Result', 'Pts', 'Pts_Opp', 'W_Sn', 'L_Sn', 'T_Sn', 'AP_Pre', 'AP_High', 'AP_Post', 'Notes', 'Bowl', 'url_boxscore']] # Engineer variables for each coach's stint/tenure at a given school= df_engineered = pd.DataFrame() for index, grp in tqdm.tqdm(df_coaches.groupby(['School', 'Coach'])): if len(df_engineered) == 0: df_engineered = add_tenure_features(grp, games_sf) else: df_engineered = df_engineered.append(add_tenure_features(grp, games_sf)) return df_engineered def add_tenure_features(df_coach, games_sf): ''' Purpose: Manage the engineering of features across a coach's tenure at a a given school (while also accounting for those coaches who have multiple coaching stints/tenures at the same school) Inputs ------ df_coach : Pandas DataFrame Contains data for all seasons a coach has coached at a given school games_sf : int Scott Frost's current number of games Outputs ------- df_coach_eng : Pandas DataFrame Contains input data with newly engineered features that span the whole coaching tenure, not just seasons ''' # Step 1. Identify if the coach's dataframe has multiple stints # (i.e. gaps in years between tenures at the same school) num_stints = 1 list_stint_end = [] list_years = list(df_coach['Season']) for num_ele in list(range(0,len(list_years))): if (num_ele == 0): pass else: if list_years[num_ele] - list_years[num_ele-1] > 1: # print(f"Gap detected for coach: {df_coach.iloc[0]['coach']}") # print(f" -- Gap between {list_years[num_ele]} and {list_years[num_ele-1]}") list_stint_end.append(list_years[num_ele-1]) num_stints = num_stints + 1 # Step 2.A. Handle coaches with multiple stints (i.e. gaps in years) if num_stints >= 2: df_coach_eng = pd.DataFrame() for stint_count in list(range(0,num_stints)): # handle the first coaching stint if stint_count == 0: year_stint_end = list_stint_end[stint_count] df_stint = df_coach[df_coach['Season'] <= year_stint_end].copy() # handle coaching stints 2 through num_stints - 1 elif stint_count < num_stints-1: year_stint_end = list_stint_end[stint_count] year_stint_end_prev = list_stint_end[stint_count-1] df_stint = df_coach[df_coach['Season'] <= year_stint_end].copy() df_stint = df_stint[df_stint['Season'] > year_stint_end_prev].copy() # handle the last coaching stint else: year_stint_end_prev = list_stint_end[stint_count-1] df_stint = df_coach[df_coach['Season'] > year_stint_end_prev].copy() # engineer new features and add to coach's tenure dataframe if len(df_coach_eng) == 0: df_coach_eng = engineer_stint_features(df_stint, games_sf) else: df_coach_eng = df_coach_eng.append(engineer_stint_features(df_stint, games_sf)) # print(f"Coach: {df_stint['Coach'].iloc[0]}, Games: {len(df_stint)}") # Step 2.B. Handle coaches with only a single stint at the respective school else: df_coach_eng = engineer_stint_features(df_coach, games_sf) return df_coach_eng def engineer_stint_features(df_tenure, games_sf): ''' Purpose: Engineer features across a coach's tenure at a given school Inputs ------ df_tenure : Pandas DataFrame Contains data for all seasons in a tenure for a given coach/school combo games_sf : int Scott Frost's current number of games Outputs ------- df_tenure : Pandas DataFrame Contains input data with newly engineered features ''' # df_tenure = df_coaches[(df_coaches['School'] == 'Nebraska') & (df_coaches['Coach'] == '<NAME>')].copy() # df_tenure = df_coaches[(df_coaches['School'] == 'Nebraska') & (df_coaches['Coach'] == '<NAME>')].copy() # df_tenure = df_coaches[(df_coaches['School'] == 'Nebraska') & (df_coaches['Coach'] == '<NAME>')].copy() # 0. Total seasons row_counts = list(df_tenure.Season.value_counts()) list_seasons = [] for idx in range(0,len(row_counts)): list_seasons = list_seasons + ([idx+1] * row_counts[idx]) df_tenure['Sn'] = list_seasons # 1. Total games df_tenure['G'] = list(range(1,len(df_tenure)+1)) # 2. Total wins df_tenure['W'] = df_tenure.Result.eq('W').cumsum() # 3. Total losses df_tenure['L'] = df_tenure.Result.eq('L').cumsum() # 4. Total ties df_tenure['T'] = df_tenure.Result.eq('T').cumsum() df_tenure['T'] = df_tenure['T'].fillna(0) # 5. Win Pct. if (len(df_tenure) == 1) and (int(df_tenure['G']) == 0): df_tenure['Win_Pct'] = 0 else: df_tenure['Win_Pct'] = df_tenure.apply(lambda row: row['W'] / row['G'] if row['G'] != 0 else 0, axis = 1) # 6. Create conference win/loss flag list_conf_flag = [] for index, row in df_tenure.iterrows(): if (row['Result'] == 'W') and (row['Conf'] == row['Conf_Opp']): list_conf_flag.append('W') elif (row['Result'] == 'L') and (row['Conf'] == row['Conf_Opp']): list_conf_flag.append('L') elif (row['Result'] == 'T') and (row['Conf'] == row['Conf_Opp']): list_conf_flag.append('T') else: list_conf_flag.append('') df_tenure['Result_Conf'] = list_conf_flag # 7. Total conference games df_tenure['G_Conf'] = df_tenure.Result_Conf.ne('').cumsum() # 8. Total conference wins df_tenure['W_Conf'] = df_tenure.Result_Conf.eq('W').cumsum() # 9. Total conference losses df_tenure['L_Conf'] = df_tenure.Result_Conf.eq('L').cumsum() # 10. Total conference ties df_tenure['T_Conf'] = df_tenure.Result_Conf.eq('T').cumsum() # 11. Conference Win Pct. df_tenure['Win_Pct_Conf'] = df_tenure.apply( lambda row: row['W_Conf'] / row['G_Conf'] if row['G_Conf'] != 0 else 0, axis = 1) # if (len(df_tenure) == 1) and (int(df_tenure['G_Conf']) == 0): # df_tenure['Win_Pct_Conf'] = 0 # else: # df_tenure['Win_Pct_Conf'] = df_tenure.apply(lambda row: row['W_Conf'] / row['G_Conf'] # if row['G_Conf'] != 0 else 0, axis = 1) # 12. Create top 25 opponent win/loss flag list_top25_results = [] for index, row in df_tenure.iterrows(): if (row['Result'] == 'W') and (~np.isnan(row['Rank_Opp'])): list_top25_results.append('W') elif (row['Result'] == 'L') and (~np.isnan(row['Rank_Opp'])): list_top25_results.append('L') elif (row['Result'] == 'T') and (~np.isnan(row['Rank_Opp'])): list_top25_results.append('T') else: list_top25_results.append('') df_tenure['Result_Top25_Opp'] = list_top25_results # 13. Wins vs. AP Top-25 df_tenure['W_vs_Rank'] = df_tenure.Result_Top25_Opp.eq('W').cumsum() # 14. Losses vs. AP Top-25 df_tenure['L_vs_Rank'] = df_tenure.Result_Top25_Opp.eq('L').cumsum() # 15. Ties vs AP Top-25 df_tenure['T_vs_Rank'] = df_tenure.Result_Top25_Opp.eq('T').cumsum() # 16. Win Pct. vs AP Top-25 df_tenure['Win_Pct_vs_Rank'] = df_tenure.apply( lambda row: row['W_vs_Rank'] / (row['W_vs_Rank'] + row['L_vs_Rank'] + row['T_vs_Rank']) if (row['W_vs_Rank'] + row['L_vs_Rank'] + row['T_vs_Rank']) != 0 else 0, axis = 1) # 17. Total bowl games df_tenure['Bowl_G'] = df_tenure.Notes.str.contains('Bowl').eq(True).cumsum() # 18. Create bowl win/loss flag list_bowl_results = [] for index, row in df_tenure.iterrows(): if (row['Result'] == 'W') and ('Bowl' in str(row['Notes'])): list_bowl_results.append('W') elif (row['Result'] == 'L') and ('Bowl' in str(row['Notes'])): list_bowl_results.append('L') elif (row['Result'] == 'T') and ('Bowl' in str(row['Notes'])): list_bowl_results.append('T') else: list_bowl_results.append('') df_tenure['Result_Bowl'] = list_bowl_results # 19. Bowl Wins df_tenure['Bowl_W'] = df_tenure.Result_Bowl.eq('W').cumsum() # 20. Bowl Losses df_tenure['Bowl_L'] = df_tenure.Result_Bowl.eq('L').cumsum() # 21. Bowl Ties df_tenure['Bowl_T'] = df_tenure.Result_Bowl.eq('T').cumsum() # 22. Bowl Win Pct. df_tenure['Win_Pct_Bowl'] = df_tenure.apply( lambda row: row['Bowl_W'] / (row['Bowl_W'] + row['Bowl_L'] + row['Bowl_T']) if (row['Bowl_W'] + row['Bowl_L'] + row['Bowl_T']) != 0 else 0, axis = 1) # 23. Calculate # of seasons with pre-post season AP Top 25 rankings list_AP_Pre_counts = [] list_AP_Post_25_counts = [] list_AP_Post_10_counts = [] list_AP_Post_5_counts = [] list_game_counts = [] for season, grp in df_tenure.groupby('Season'): list_AP_Pre_counts = list_AP_Pre_counts + [1 if ~np.isnan(grp.AP_Pre.iloc[0]) else 0] list_AP_Post_25_counts = list_AP_Post_25_counts + [1 if grp.AP_Post.iloc[0] <= 25 else 0] list_AP_Post_10_counts = list_AP_Post_10_counts + [1 if grp.AP_Post.iloc[0] <= 10 else 0] list_AP_Post_5_counts = list_AP_Post_5_counts + [1 if grp.AP_Post.iloc[0] <= 5 else 0] list_game_counts = list_game_counts + [len(grp)] series_AP_Pre_counts =
pd.Series(list_AP_Pre_counts)
pandas.Series
import numpy as np import pandas as pd import plotly.graph_objects as go import streamlit as st from sklearn.ensemble import RandomForestRegressor class Predicoes: def __init__(self, options): self.month_names_missing = ['July', 'August', 'September', 'October', 'November', 'December'] self.month_names = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'] self.y = options self.range_dates = [f'{mes + 1:0>2}/{2017 + ano}' for ano in range(5) for mes in range(12)] self.start_date, self.end_date = st.sidebar.select_slider('Intervalo de datas', options=self.range_dates, value=('01/2020', '03/2021')) self.qtds = st.sidebar.selectbox('Quantidade', options=self.y, index=1) def filter_dates(self, df): start_year = int(self.start_date[3:]) start_month = int(self.start_date[:2]) end_year = int(self.end_date[3:]) end_month = int(self.end_date[:2]) years = list() for y in range(end_year - start_year + 1): years.append(f'{start_year + y}') months = list() qtd_months = (len(years) * 12) - (start_month - 1) - (12 - end_month) for m in range(qtd_months): months.append(f'{self.month_names[(start_month + m - 1) % 12]}') return self.__calc_intervalo_meses_ano(df, months, years) def __calc_intervalo_meses_ano(self, df, months, years): months_ = months list_months = ['Hi!'] * len(years) cont = 0 i = 0 for y in years: months_ = months_[cont:] cont = 0 for m in months_: cont += 1 if m == 'December': break list_months[i] = months_[0:cont] i += 1 i = 0 df_ = df[(df['Ano'].isin([years[i]])) & (df['Mês'].isin(list_months[i]))] if len(years) > 1: for y in years[1:]: i += 1 df_1 = df[(df['Ano'].isin([y])) & (df['Mês'].isin(list_months[i]))] frames = [df_, df_1] df_ = pd.concat(frames) return df_ def sort(self, df): sorter_index = dict(zip(self.month_names, range(len(self.month_names)))) df['mes_rank'] = df['Mês'].map(sorter_index) df = df.sort_values(['Ano', 'mes_rank']) return df.drop(columns=['mes_rank']) def create_plot(self, df, by, title): fig = go.Figure() for faixa in df[by].unique(): data = df[df[by] == faixa] meses = [f'{t[0][:3]} {t[1]}' for t in zip(data['Mês'].values, data['Ano'].values)] fig.add_trace(go.Scatter(x=meses, y=data[self.qtds].values, mode='lines+markers', name=faixa)) fig.update_layout(title_text=title) return fig def predict(self, df, df_new, X_train, X_test): Y_train = df[self.y] regressor = RandomForestRegressor() regressor.fit(X_train, Y_train) previsoes = regressor.predict(X_test) previsoes = pd.DataFrame(previsoes) previsoes.columns = self.y for c in previsoes.columns: previsoes[c] = previsoes[c].astype(int) previsoes = pd.concat([df_new, previsoes], axis=1) return pd.concat([df, previsoes]) class PredicoesPessoasIdade(Predicoes): def __init__(self, dfPessoas, options): super().__init__(options) self.x = ['Mês', 'Ano', 'Faixa Etária'] dfPessoas['data_inversa'] = pd.to_datetime(dfPessoas['data_inversa']) self.df = dfPessoas.copy() self.__agg_data(dfPessoas) self.__agg_new_data() def __agg_data(self, dfPessoas): self.df.loc[dfPessoas['idade'] >= 0, 'idade'] = 'Criança' self.df.loc[dfPessoas['idade'] >= 13, 'idade'] = 'Jovem' self.df.loc[dfPessoas['idade'] >= 25, 'idade'] = 'Adulto' self.df.loc[dfPessoas['idade'] >= 60, 'idade'] = 'Idoso' self.df = self.df.groupby([self.df['data_inversa'].dt.strftime('%B'), self.df['data_inversa'].dt.strftime('%Y'), 'idade']) self.df = self.df.agg({'id': 'nunique', 'pesid': 'count', 'ilesos': 'sum', 'feridos_leves': 'sum', 'feridos_graves': 'sum', 'mortos': 'sum'}) self.df.index.names = self.x self.df.columns = self.y self.df = self.df.reset_index() def __agg_new_data(self): faixa_etaria_unique = self.df['Faixa Etária'].unique().tolist() mesh = np.array(np.meshgrid(self.month_names_missing, ['2020'], faixa_etaria_unique)).T.reshape(-1, 3) df_new2020 = pd.DataFrame(mesh, columns=['Mês', 'Ano', 'Faixa Etária']) mesh = np.array(np.meshgrid(self.month_names, ['2021'], faixa_etaria_unique)).T.reshape(-1, 3) df_new2021 =
pd.DataFrame(mesh, columns=['Mês', 'Ano', 'Faixa Etária'])
pandas.DataFrame
import scipy.io.wavfile as wav from python_speech_features import mfcc import numpy as np import os import pandas as pd CLASSICAL_DIR = "C:\\Users\\<NAME>\\Music\\Classical\\" METAL_DIR = "C:\\Users\\<NAME>\\Music\\Metal\\" JAZZ_DIR = "C:\\Users\\<NAME>\\Music\\Jazz\\" POP_DIR = "C:\\Users\\<NAME>\\Music\\Pop\\" PATH = "E:\\git\\python_speech_features\\covariance\\" x = [CLASSICAL_DIR, METAL_DIR, JAZZ_DIR, POP_DIR] t = 100 columns = ['Feature1', 'Feature2', 'Feature3', 'Feature4', 'Feature5', 'Feature6', 'Feature7', 'Feature8', 'Feature9', 'Feature10', 'Feature11', 'Feature12', 'Feature13'] dataset = [] genre = [] for i in x: if i == CLASSICAL_DIR: for index in range(0, t): genre.append(0) file_name = "classical.000"+str(index).zfill(2) file = file_name+".wav" (rate, signal) = wav.read(CLASSICAL_DIR+file) mfcc_feat = mfcc(signal, rate) cov = np.cov(mfcc_feat, rowvar=0) mean = np.mean(mfcc_feat, axis=0) # if not os.path.exists(PATH+file_name): # os.makedirs(PATH+file_name) pd.DataFrame(cov).to_csv(PATH+"classical"+str(index)+'.csv', index=False, header=False) dataset.append(mean) elif i == METAL_DIR: for index in range(0, t): genre.append(1) file_name = "metal.000" + str(index).zfill(2) file = file_name + ".wav" (rate, signal) = wav.read(METAL_DIR + file) mfcc_feat = mfcc(signal, rate) cov = np.cov(mfcc_feat, rowvar=0) mean = np.mean(mfcc_feat, axis=0) # if not os.path.exists(PATH+file_name): # os.makedirs(PATH+file_name)
pd.DataFrame(cov)
pandas.DataFrame
import sys import configparser import time import re import pandas as pd from pandas import Series,DataFrame #统计可能含日期的口令(连续数字位数大于等于4的) def countProbPasswd(passwdList): df = [] for i in range(len(passwdList)): passwd = str(passwdList[i]) struc = "" for ch in passwd: if ch.isdigit(): struc += 'D' elif ch.isalpha(): struc += 'L' else: struc += 'S' char = struc[0] c = 1 stri = struc[1:] res = '' for j in stri: if j == char: c += 1 else: res += char res += str(c) char = j c = 1 res += char res += str(c) #r'D[4-9]|D\d{2}' if re.search(r'D[4-9]|D\d{2}', res): df.append(passwd) return df #统计含数字日期的口令-Yahoo # 筛选出的符合条件的密码在 date_passwd/Yahoo 路径下 def analysisDate_Yahoo(data): lis1 = [] lis2 = [] lis3 = [] lis4 = [] lis5 = [] lis6 = [] lis7 = [] lis8 = [] lis9 = [] datePasswd = {'yyyy':0,'yyyymm':0,'yyyymmdd':0,'mmddyyyy':0,'ddmmyyyy':0,'yymmdd':0,'mmddyy':0,'ddmmyy':0,'mmdd':0} for i in data: # 密码判断条件由长到短,符合多种条件的密码只归类于先进行判断的条件 # 例如19800205,归类于yyyy-mm-dd而不是yyyy #yyyy-mm-dd if re.search(r'(19\d{2}|20\d{2})(0[1-9]|1[0-2])(0[1-9]|[1-2][0-9]|3[0-1])',i): datePasswd['yyyymmdd'] += 1 lis3.append(i) continue #mm-dd-yyyy if re.search(r'(0[1-9]|1[0-2])(0[1-9]|[1-2][0-9]|3[0-1])(19\d{2}|20\d{2})',i): datePasswd['mmddyyyy'] += 1 lis4.append(i) continue #dd-mm-yyyy if re.search(r'(0[1-9]|[1-2][0-9]|3[0-1])(0[1-9]|1[0-2])(19\d{2}|20\d{2})',i): datePasswd['ddmmyyyy'] += 1 lis5.append(i) continue #yy-mm-dd if re.search(r'[0-9][0-9](0[1-9]|1[0-2])(0[1-9]|[1-2][0-9]|3[0-1])',i): datePasswd['yymmdd'] += 1 lis6.append(i) continue #mm-dd-yy if re.search(r'(0[1-9]|1[0-2])(0[1-9]|[1-2][0-9]|3[0-1])[0-9][0-9]',i): datePasswd['mmddyy'] += 1 lis7.append(i) continue #dd-mm-yy if re.search(r'(0[1-9]|[1-2][0-9]|3[0-1])(0[1-9]|1[0-2])[0-9][0-9]',i): datePasswd['ddmmyy'] += 1 lis8.append(i) continue #yyyy-mm if re.search(r'(19\d{2}|20\d{2})(0[1-9]|1[0-2])',i): datePasswd['yyyymm'] += 1 lis2.append(i) continue #yyyy 1900-2100 if re.search(r'19\d{2}|20\d{2}',i): datePasswd['yyyy'] += 1 lis1.append(i) continue #mm-dd if re.search(r'(0[1-9]|1[0-2])(0[1-9]|[1-2][0-9]|3[0-1])',i): datePasswd['mmdd'] += 1 lis9.append(i) continue pd.Series(lis1).to_csv('date_passwd/Yahoo/yyyy.csv') pd.Series(lis2).to_csv('date_passwd/Yahoo/yyyymm.csv') pd.Series(lis3).to_csv('date_passwd/Yahoo/yyyymmdd.csv') pd.Series(lis4).to_csv('date_passwd/Yahoo/mmddyyyy.csv') pd.Series(lis5).to_csv('date_passwd/Yahoo/ddmmyyyy.csv') pd.Series(lis6).to_csv('date_passwd/Yahoo/yymmdd.csv') pd.Series(lis7).to_csv('date_passwd/Yahoo/mmddyy.csv') pd.Series(lis8).to_csv('date_passwd/Yahoo/ddmmyy.csv')
pd.Series(lis9)
pandas.Series
# Copyright (c) 2018-2022, NVIDIA CORPORATION. import numpy as np import pandas as pd import pytest from pandas.api import types as ptypes import cudf from cudf.api import types as types @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, True), (pd.CategoricalDtype, True), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), True), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, True), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), True), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), True), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), # TODO: Currently creating an empty Series of list type ignores the # provided type and instead makes a float64 Series. (cudf.Series([[1, 2], [3, 4, 5]]), False), # TODO: Currently creating an empty Series of struct type fails because # it uses a numpy utility that doesn't understand StructDtype. (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_categorical_dtype(obj, expect): assert types.is_categorical_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, True), (int, True), (float, True), (complex, True), (str, False), (object, False), # NumPy types. (np.bool_, True), (np.int_, True), (np.float64, True), (np.complex128, True), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), True), (np.int_(), True), (np.float64(), True), (np.complex128(), True), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), True), (np.dtype("int"), True), (np.dtype("float"), True), (np.dtype("complex"), True), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), True), (np.array([], dtype=np.int_), True), (np.array([], dtype=np.float64), True), (np.array([], dtype=np.complex128), True), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), True), (pd.Series(dtype="int"), True), (pd.Series(dtype="float"), True), (pd.Series(dtype="complex"), True), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, True), (cudf.Decimal64Dtype, True), (cudf.Decimal32Dtype, True), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), True), (cudf.Decimal64Dtype(5, 2), True), (cudf.Decimal32Dtype(5, 2), True), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), True), (cudf.Series(dtype="int"), True), (cudf.Series(dtype="float"), True), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), True), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), True), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), True), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_numeric_dtype(obj, expect): assert types.is_numeric_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, True), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, True), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), True), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), True), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), True), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), True), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), True), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_integer_dtype(obj, expect): assert types.is_integer_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), True), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), True), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_integer(obj, expect): assert types.is_integer(obj) == expect # TODO: Temporarily ignoring all cases of "object" until we decide what to do. @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, True), # (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, True), (np.unicode_, True), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), True), (np.unicode_(), True), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), True), (np.dtype("unicode"), True), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), # (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), True), (np.array([], dtype=np.unicode_), True), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), # (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), True), (pd.Series(dtype="unicode"), True), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), # (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), True), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_string_dtype(obj, expect): assert types.is_string_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, True), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), True), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), True), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), True), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (
pd.Series(dtype="datetime64[s]")
pandas.Series
# Rent share of income by population density import pandas as pd import numpy as np import array file =
pd.read_csv('county_rent_mort_inc_units_1yr.csv')
pandas.read_csv
import pandas as pd from metacash.account import Account from metacash.transactions import Transactions class TimestampSampler: def __init__(self, ts_index): self.index = ts_index def add_noise_uniform(self, d): # sample from [0,s] uniformly return self def add_noise_normal(self, d): # sample from [0,s] uniformly return self @classmethod def date_range(cls, *args, **kwargs): # https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.date_range.html return cls(pd.date_range(*args, **kwargs).round("D")) def sample(self): return self.index.copy() class AmountSampler: def __init__(self, amount, noise=None): self.amount = amount self.noise = noise def sample(self): # normal distrib mu=0 stddev=1/2: 95% values within -1,1 if self.noise is not None: noise_sample = self.noise(self.amount) else: noise_sample = 0 return self.amount + noise_sample class TransactionsSampler: def __init__(self, ts_sampler, amount_sampler, description): self.ts_sampler = ts_sampler self.amount_sampler = amount_sampler self.description = description def sample(self): index = self.ts_sampler.sample() df =
pd.DataFrame(columns=Transactions.columns)
pandas.DataFrame
import pytest import numpy as np import pandas as pd EXP_IDX = pd.MultiIndex(levels=[['model_a'], ['scen_a', 'scen_b']], codes=[[0, 0], [0, 1]], names=['model', 'scenario']) def test_set_meta_no_name(test_df): idx = pd.MultiIndex(levels=[['a_scenario'], ['a_model'], ['some_region']], codes=[[0], [0], [0]], names=['scenario', 'model', 'region']) s = pd.Series(data=[0.3], index=idx) pytest.raises(ValueError, test_df.set_meta, s) def test_set_meta_as_named_series(test_df): idx = pd.MultiIndex(levels=[['scen_a'], ['model_a'], ['some_region']], codes=[[0], [0], [0]], names=['scenario', 'model', 'region']) s = pd.Series(data=[0.3], index=idx, name='meta_values') test_df.set_meta(s) exp = pd.Series(data=[0.3, np.nan], index=EXP_IDX, name='meta_values') pd.testing.assert_series_equal(test_df['meta_values'], exp) def test_set_meta_as_unnamed_series(test_df): idx = pd.MultiIndex(levels=[['scen_a'], ['model_a'], ['some_region']], codes=[[0], [0], [0]], names=['scenario', 'model', 'region']) s = pd.Series(data=[0.3], index=idx) test_df.set_meta(s, name='meta_values') exp = pd.Series(data=[0.3, np.nan], index=EXP_IDX, name='meta_values') pd.testing.assert_series_equal(test_df['meta_values'], exp) def test_set_meta_non_unique_index_fail(test_df): idx = pd.MultiIndex(levels=[['model_a'], ['scen_a'], ['reg_a', 'reg_b']], codes=[[0, 0], [0, 0], [0, 1]], names=['model', 'scenario', 'region']) s = pd.Series([0.4, 0.5], idx) pytest.raises(ValueError, test_df.set_meta, s) def test_set_meta_non_existing_index_fail(test_df): idx = pd.MultiIndex(levels=[['model_a', 'fail_model'], ['scen_a', 'fail_scenario']], codes=[[0, 1], [0, 1]], names=['model', 'scenario']) s = pd.Series([0.4, 0.5], idx) pytest.raises(ValueError, test_df.set_meta, s) def test_set_meta_by_df(test_df): df = pd.DataFrame([ ['model_a', 'scen_a', 'some_region', 1], ], columns=['model', 'scenario', 'region', 'col']) test_df.set_meta(meta=0.3, name='meta_values', index=df) exp = pd.Series(data=[0.3, np.nan], index=EXP_IDX, name='meta_values') pd.testing.assert_series_equal(test_df['meta_values'], exp) def test_set_meta_as_series(test_df): s = pd.Series([0.3, 0.4]) test_df.set_meta(s, 'meta_series') exp = pd.Series(data=[0.3, 0.4], index=EXP_IDX, name='meta_series') pd.testing.assert_series_equal(test_df['meta_series'], exp) def test_set_meta_as_int(test_df): test_df.set_meta(3.2, 'meta_int') exp = pd.Series(data=[3.2, 3.2], index=EXP_IDX, name='meta_int') obs = test_df['meta_int'] pd.testing.assert_series_equal(obs, exp) def test_set_meta_as_str(test_df): test_df.set_meta('testing', name='meta_str') exp = pd.Series(data=['testing'] * 2, index=EXP_IDX, name='meta_str') pd.testing.assert_series_equal(test_df['meta_str'], exp) def test_set_meta_as_str_list(test_df): test_df.set_meta(['testing', 'testing2'], name='category') obs = test_df.filter(category='testing') assert obs['scenario'].unique() == 'scen_a' def test_set_meta_as_str_by_index(test_df): idx = pd.MultiIndex(levels=[['model_a'], ['scen_a']], codes=[[0], [0]], names=['model', 'scenario']) test_df.set_meta('foo', 'meta_str', idx) exp = pd.Series(data=['foo', None], index=EXP_IDX, name='meta_str') pd.testing.assert_series_equal(test_df['meta_str'], exp) def test_set_meta_from_data(test_df): test_df.set_meta_from_data('pe_2005', variable='Primary Energy', year=2005) exp = pd.Series(data=[1., 2.], index=EXP_IDX, name='pe_2005') pd.testing.assert_series_equal(test_df['pe_2005'], exp) def test_set_meta_from_data_max(test_df): test_df.set_meta_from_data('pe_max_yr', variable='Primary Energy', method=np.max) exp = pd.Series(data=[6., 7.], index=EXP_IDX, name='pe_max_yr')
pd.testing.assert_series_equal(test_df['pe_max_yr'], exp)
pandas.testing.assert_series_equal
""" Process results This script process results for the final report of SCOOP """ # ============================================================================== # Imports # ============================================================================== import pandas as pd from matplotlib import pyplot as plt from matplotlib import rc rc("font", **{"family": "serif", "serif": ["Times"]}) rc("text", usetex=True) from glob import glob import re # ============================================================================== # Constants # ============================================================================== ddir_lst = ["data/eu4dpfmix_mpr0.csv", "data/eu4dpfmix.csv"] # ============================================================================== # Functions # ============================================================================== def column_generator(data_frame): """ Create supplementary columns """ str_splt = data_frame["Cycle"].split("-") veh_id = int(str_splt[0]) mpr = float(str_splt[2].split("_")[0]) flow = float(str_splt[3].split("_")[0]) distance = int(str_splt[4].split(".dri")[0]) return pd.Series([veh_id, mpr, flow, distance]) def create_columns(data_frame, function): """ Apply function to dataframe """ fields = ["veh_id", "mpr", "flow", "distance"] data_frame[fields] = data_frame.apply(function, axis=1) return data_frame def refer_to_mpr(data_frame, field, new_field): """ Refer to MPR 0 % """ # Create reference data_frame reference = data_frame[data_frame["mpr"].eq(0)] reference = pd.concat([reference] * 5).reset_index() reference = reference.drop("index", axis=1) # Compute difference diff_df = reference[field] - data_frame[field] # diff_df = diff_df.reset_index() data_frame[new_field] = (diff_df.divide(reference[field])) * 100 # Round for results data_frame = data_frame.round(3) return data_frame def plot_var( data_frame, x_var="flow", y_var="CO_TP", label_var="mpr", pivot="distance", x_label="Flow [veh/m]", y_label="CO2 %", t_label="Distance [m]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, x_size=5, y_size=7.5, transpose=False, ): """ Plot variables """ pivoter = data_frame[pivot].unique() N = len(pivoter) if transpose: n, m = 1, N else: m, n = 1, N fig, axes = plt.subplots(m, n, figsize=(x_size * N, y_size), sharey=True) for pvt, ax in zip(pivoter, axes): flt = data_frame[pivot].eq(pvt) df = data_frame[flt] df.pivot_table( index=x_var, columns=label_var, values=y_var, aggfunc="mean" ).plot(kind="bar", ax=ax, grid=True) ax.set_xlabel(x_label, fontdict=fnt_size) ax.set_ylabel(y_label, fontdict=fnt_size) ax.set_title(t_label + str(pvt), fontdict=fnt_size) ax.legend(legends) return fig, axes def plot_co2perc(data_frame): """ Create Dataframe CO2 % Data vs flow """ figco2, axco2 = plot_var( data_frame=data_frame, x_var="flow", y_var="CO2 %", label_var="mpr", pivot="distance", x_label="Flow [veh/m]", y_label=r"Change in CO$_2$ [\%]", t_label="Distance [m]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figco2, axco2 def plot_co2(data_frame): """ Create Dataframe CO2 consumption vs flow """ figco2, axco2 = plot_var( data_frame=data_frame, x_var="flow", y_var="CO2_TP", label_var="mpr", pivot="distance", x_label="Flow [veh/m]", y_label="CO$_2$ [g/km]", t_label="Distance [m]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) for ax in axco2: ax.set(ylim=(120, 160)) return figco2, axco2 def plot_ttt(data_frame): """ Plot absolute Total Travel Time vs flow """ figtt, axtt = plot_var( data_frame=data_frame, x_var="flow", y_var="totalTT", label_var="mpr", pivot="distance", x_label="Flow [veh/m]", y_label="Total Travel Time [s]", t_label="Distance [m]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_tttprc(data_frame): """ Plot Change Total Travel Time % vs flow """ figtt, axtt = plot_var( data_frame=data_frame, x_var="flow", y_var="totTT %", label_var="mpr", pivot="distance", x_label="Flow [veh/m]", y_label=r"Change in Total TT [\%]", t_label="Distance [m]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_tttd(data_frame): """ Plot Absolute Total Travel Time vs distance """ figtt, axtt = plot_var( data_frame=data_frame, x_var="distance", y_var="totalTT", label_var="mpr", pivot="flow", x_label="Distance [m]", y_label="Total Travel Time [s]", t_label="Flow [veh/h]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_tttdprc(data_frame): """ Plot Change Total Travel Time % vs distance """ figtt, axtt = plot_var( data_frame=data_frame, x_var="distance", y_var="totTT %", label_var="mpr", pivot="flow", x_label="Distance [m]", y_label=r"Change in Total TT [\%]", t_label="Flow [veh/h]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_mtt(data_frame): """ Plot absolute Avg Travel Time vs flow """ figtt, axtt = plot_var( data_frame=data_frame, x_var="flow", y_var="meanTT", label_var="mpr", pivot="distance", x_label="Flow [veh/m]", y_label="Avg. Travel Time [s]", t_label="Distance [m]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_mttperc(data_frame): """ Plot Change Avg Travel Time % vs flow """ figtt, axtt = plot_var( data_frame=data_frame, x_var="flow", y_var="avgTT %", label_var="mpr", pivot="distance", x_label="Flow [veh/m]", y_label=r"Change in Avg. TT [\%]", t_label="Distance [m]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_mttd(data_frame): """ Plot Absolute Total Travel Time vs distance """ figtt, axtt = plot_var( data_frame=data_frame, x_var="distance", y_var="meanTT", label_var="mpr", pivot="flow", x_label="Distance [m]", y_label="Average Travel Time [s]", t_label="Flow [veh/h]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_mttdprc(data_frame): """ Plot Change Total Travel Time % vs distance """ figtt, axtt = plot_var( data_frame=data_frame, x_var="distance", y_var="avgTT %", label_var="mpr", pivot="flow", x_label="Distance [m]", y_label=r"Change in Avg. TT [\%]", t_label="Flow [veh/h]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_ttc(data_frame): """ Plot time to Colission vs flow """ figtt, axtt = plot_var( data_frame=data_frame, x_var="flow", y_var="timetC", label_var="mpr", pivot="distance", x_label="Flow [veh/m]", y_label="Time To Collision [s]", t_label="Distance [m]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_ttcprc(data_frame): """ Plot Change Total Travel Time % vs flow """ figtt, axtt = plot_var( data_frame=data_frame, x_var="flow", y_var="timeTC %", label_var="mpr", pivot="distance", x_label="Flow [veh/m]", y_label=r"Change in Time to Collision [\%]", t_label="Distance [m]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_ttcd(data_frame): """ Plot Absolute Total Travel Time vs distance """ figtt, axtt = plot_var( data_frame=data_frame, x_var="distance", y_var="timetC", label_var="mpr", pivot="flow", x_label="Distance [m]", y_label="Time To Collision [s]", t_label="Flow [veh/h]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_ttcdprc(data_frame): """ Plot Change Total Travel Time % vs distance """ figtt, axtt = plot_var( data_frame=data_frame, x_var="distance", y_var="timeTC %", label_var="mpr", pivot="flow", x_label="Distance [m]", y_label=r"Change in Time to Collision [\%]", t_label="Flow [veh/h]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_hwy(data_frame): """ Plot spacing vs time """ fighwy, axhwy = plot_var( data_frame=data_frame, x_var="time", y_var="hwy", label_var="mpr", pivot="flow", x_label=" Time [hh:mm]", y_label="Headway space [m]", t_label="Flow [veh/h]", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, x_size=7.5, transpose=True, ) return fighwy, axhwy # ============================================================================== # Processing # ============================================================================== # CO2 # ============================================================================== # Import csv files dflst = [
pd.read_csv(file)
pandas.read_csv
import os, sys, fnmatch, random, json, logging, argparse import pandas as pd import numpy as np from collections import OrderedDict import datetime from datetime import datetime from dateutil import parser from IPython.display import display, Markdown, HTML, clear_output, display_html from operator import itemgetter from jinja2 import Template from urllib.parse import urlparse from urllib.request import urlopen import scipy.stats as stats from scipy.stats import ttest_ind, ttest_rel, ttest_1samp from scipy.stats import chi2, chi2_contingency import statsmodels.api as sm from statsmodels.formula.api import ols from statsmodels.graphics.gofplots import qqplot from scipy.stats import boxcox, shapiro, gaussian_kde import sqlalchemy from sqlalchemy import create_engine, Column, Integer, String, Enum import matplotlib import matplotlib.pyplot as plt from termcolor import colored import seaborn as sns sns.set_context('talk') sns.set_style('white') import hvplot import hvplot.pandas import holoviews as hv from holoviews import opts import panel as pn pn.extension() from io import StringIO from bokeh.io import show, curdoc from bokeh.plotting import figure from bokeh.transform import factor_cmap from bokeh.models.filters import CustomJSFilter from bokeh.layouts import column, row, WidgetBox, gridplot from bokeh.palettes import Category10_10, Category20_16, Category20_20, Category20 from bokeh.models import Column, CDSView, CustomJS, CategoricalColorMapper, ColumnDataSource, HoverTool, Panel, MultiSelect from bokeh.models.widgets import CheckboxGroup, CheckboxButtonGroup, Slider, RangeSlider, Tabs, TableColumn, DataTable import warnings warnings.filterwarnings("ignore") warnings.filterwarnings("ignore", category=DeprecationWarning) warnings.simplefilter("ignore") from src.Config import Config from src.analysis.feature_engineer import Feature_Engineer from src.analysis.statistical_analysis import Statistic_Analysis class Logger(object): info = print warning = print error = print critical = print class JSON_Datetime_Encoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, (datetime.date, datetime.datetime)): return obj.isoformat() else: return json.JSONEncoder.default(self, obj) class Analysis(Feature_Engineer, Statistic_Analysis): data = {} json = JSON_Datetime_Encoder() def __init__(self, customer_id=["*"], suffix="", logger=Logger()): self.customer_id = customer_id self.suffix = suffix self.logger = logger @staticmethod def style(p): # # Title p.title.align = "center" p.title.text_font_size = "16pt" p.title.text_font = "serif" # # Axis Titles p.xaxis.axis_label_text_font_size = "12pt" p.xaxis.axis_label_text_font_style = "bold" p.yaxis.axis_label_text_font_size = "12t" p.yaxis.axis_label_text_font_style = "bold" # # Tick Labels p.xaxis.major_label_text_font_size = "10pt" p.yaxis.major_label_text_font_size = "10pt" return p @staticmethod def get_template(path): if bool(urlparse(path).netloc): from urllib.request import urlopen return urlopen(path).read().decode('utf8') return open(path).read() @staticmethod def vars(types=[], wc_vars=[], qreturn_dict=False): """ Return list of variable names Acquire the right features from dataframe to be input into model. Featurs will be acquired based the value "predictive" in the VARS dictionary. Parameters ---------- types : str VARS name on type of features Returns ------- Features with predictive == True in self.VARS """ if types==None: types = [V for V in Config.VARS] selected_vars = [] for t in types: for d in Config.VARS[t]: if not d.get('predictive'): continue if len(wc_vars) != 0: matched_vars = fnmatch.filter(wc_vars, d['var']) if qreturn_dict: for v in matched_vars: dd = d.copy() dd['var'] = v if not dd in selected_vars: selected_vars.append(dd) else: for v in matched_vars: if not v in selected_vars: selected_vars.append(v) else: if qreturn_dict and not d in selected_vars: selected_vars.append(d) else: if not d['var'] in selected_vars: selected_vars.append(d['var']) return selected_vars def dump_json(self, obj): return json.dumps(obj, cls=JSON_Datetime_Encoder) def read_file(self, fname, source_type=Config.ANALYSIS_CONFIG["FILE_TYPE"]): """Read in files, focusing on csv files. Parameters ---------- fname : [type] [description] source_type : str, optional [description], by default "single" Returns ------- [type] [description] """ if source_type == "single": try: fname = "{}.csv".format(os.path.join(self.FILES["DATA_LOCAL"], fname)) data = pd.read_csv(fname, error_bad_lines=False) if data.size == 0: self.logger.warning("no data found in file {}".format(fname)) if self.logger.warning == print: exit() except FileNotFoundError: self.logger.critical("file {} is not found ...".format(fname)) if self.logger.critical == print: exit() elif source_type == "multiple": csv_ext = [".csv"] data = pd.DataFrame() for root, dirs, files in os.walk(os.path.join(self.FILES["DATA_LOCAL"])): for filename in files: if filename.endswith(tuple(csv_ext)): df_temp = pd.read_csv(os.path.join(root, filename)) data = pd.concat([data, df_temp], axis=0, sort=True) else: self.logger.error("Please select only 'single' or 'multiple' ...") return data def get_data(self): self.logger.info("Reading in data ...") self.logger.info(" Loading order dataframe ...") self.data["order_df"] = self.read_file(fname="orders", source_type="single") self.logger.info(" Loading order prior dataframe ...") self.data["order_prior_df"] = self.read_file(fname="order_products__prior", source_type="single") self.logger.info(" Loading products dataframe ...") self.data["products_df"] = self.read_file(fname="products", source_type="single") self.logger.info(" Loading departments dataframe ...") self.data["departments_df"] = self.read_file(fname="departments", source_type="single") self.logger.info(" Loading aisles dataframe ...") self.data["aisles_df"] = self.read_file(fname="aisles", source_type="single") self.logger.info(" Merging dataframe ...") self.logger.info(" on Orders-Prior & Orders:") self.data["customer_data"] = pd.merge(self.data["order_prior_df"], self.data["order_df"], on=["order_id"], how="left") self.logger.info(" on Customer Orders & Products:") self.data["customer_data"] = pd.merge(self.data["customer_data"], self.data["products_df"], on=["product_id"], how="left") self.logger.info(" on Customer Orders & Aisle:") self.data["customer_data"] = pd.merge(self.data["customer_data"], self.data["aisles_df"], on=["aisle_id"], how="left") self.logger.info(" on Customer Orders & Departments:") self.data["customer_data"] = pd.merge(self.data["customer_data"], self.data["departments_df"], on=["department_id"], how="left") self.logger.info(" Data Processing ...") self.logger.info(" renaming columns ...") self.data["customer_data"] = self.data["customer_data"].rename(columns=self.COLUMN_RENAME["CUSTOMER"]) self.data["customer_data"]["user_id"] = self.data["customer_data"]["user_id"].astype(str) # # Randomly select 20 customer from the ID for analysis, as bokeh palettes only allow maximum 20 subset self.available_group = list(self.data["customer_data"]['user_id'].unique()) self.available_group = random.sample(self.available_group, k=20) # # Data correlation self.logger.info(" Generating data correlation dataframe for feature dependency ...") self.data["data_correlation_df"] = self.data["customer_data"][self.vars(["Customer"], self.data["customer_data"].columns)] if self.QDEBUG: fname = os.path.join(self.FILES["OUTPUT_PATH"], "{}{}.csv".format(self.FILES["DATA_CORRELATION"], self.suffix)) self.data["data_correlation_df"].to_csv(fname) fname = os.path.join(self.FILES["OUTPUT_PATH"], "{}{}.csv".format(self.FILES["CUSTOMER_DATA"], self.suffix)) self.data["customer_data"].to_csv(fname) self.logger.info("done.") def feature_engineering(self): self.logger.info("Creating new feature ...") self.logger.info(" Creating number of products ordered across each days ...") self.data['day_peak_df'] = self.data['customer_data'].groupby(['order_id', 'order_day_of_week'])['order_number'].count().reset_index().rename(columns={'order_number': 'count'}) self.data["day_peak_df"]["peak_day"] = np.where(self.data['day_peak_df']['order_day_of_week'] <= 1, 1, 0) self.logger.info(" Creating number of products ordered across each hours ...") self.data['time_peak_df'] = self.data['customer_data'].groupby(['order_id', 'order_hour_of_day'])['order_number'].count().reset_index().rename(columns={'order_number': 'count'}) self.data["time_peak_df"]["peak_time"] = np.where((self.data["time_peak_df"]['order_hour_of_day'] >= self.ANALYSIS_CONFIG["PEAK_DAY_FROM"]) & (self.data["time_peak_df"]['order_hour_of_day'] <= self.ANALYSIS_CONFIG["PEAK_DAY_TO"]), 1, 0) # # RFM features self.logger.info(" Creating number of products ordered in each order ...") num_products = self.data["customer_data"].groupby(['order_id'])['product_id'].count().reset_index().rename(columns={'product_id':'num_products'}) self.data["customer_data"] = pd.merge(self.data["customer_data"], num_products, on='order_id', how='left') self.logger.info(" Creating peak day categorical feature ...") self.data["customer_data"]['peak_day'] = np.where(self.data["customer_data"]['order_day_of_week'] <= 1, 1, 0) self.logger.info(" Creating peak time categorical feature (from 10 - 16) ...") self.data["customer_data"]['peak_time'] = np.where((self.data["customer_data"]['order_hour_of_day'] >= self.ANALYSIS_CONFIG["PEAK_DAY_FROM"]) & (self.data["customer_data"]['order_hour_of_day'] <= self.ANALYSIS_CONFIG["PEAK_DAY_TO"]), 1, 0) self.logger.info(" Creating number of orders per customer, peak day rate, median hour, peak time rate, mean lag days since last order, mean number of products ...") num_orders = self.data["customer_data"].groupby(['user_id'])['order_number'].max() peakday_rate = round(self.data["customer_data"].groupby(["user_id"])['peak_day'].mean(), 2) med_hour = round(self.data["customer_data"].groupby('user_id')['order_hour_of_day'].median(), 0) peaktime_rate = round(self.data["customer_data"].groupby(['user_id'])['peak_time'].mean(), 2) mean_lag_days = round(self.data["customer_data"].groupby(['user_id'])['days_since_last_order'].mean(), 0) mean_num_products = round(self.data["customer_data"].groupby('user_id')['num_products'].mean(), 0) self.data['features'] = pd.concat([num_orders, peakday_rate, med_hour, peaktime_rate, mean_lag_days, mean_num_products], axis=1) self.data['features'].columns = self.ANALYSIS_CONFIG["FEATURES_COL"] self.data['features'] = self.data['features'].reset_index() self.data["customer_data"] =
pd.merge(self.data["customer_data"], self.data['features'], on='user_id', how='left')
pandas.merge
"""arbin res-type data files""" import os import sys import tempfile import shutil import logging import platform import warnings import time import numpy as np import pandas as pd from cellpy.readers.core import ( FileID, Cell, check64bit, humanize_bytes, xldate_as_datetime, ) from cellpy.parameters.internal_settings import HeaderDict, get_headers_normal from cellpy.readers.instruments.mixin import Loader, MINIMUM_SELECTION from cellpy import prms DEBUG_MODE = prms.Reader.diagnostics ALLOW_MULTI_TEST_FILE = False # Select odbc module ODBC = prms._odbc SEARCH_FOR_ODBC_DRIVERS = prms._search_for_odbc_driver use_subprocess = prms.Instruments.Arbin.use_subprocess detect_subprocess_need = prms.Instruments.Arbin.detect_subprocess_need # Finding out some stuff about the platform (TODO: refactor to mixin) is_posix = False is_macos = False if os.name == "posix": is_posix = True current_platform = platform.system() if current_platform == "Darwin": is_macos = True if DEBUG_MODE: logging.debug("DEBUG_MODE") logging.debug(f"ODBC: {ODBC}") logging.debug(f"SEARCH_FOR_ODBC_DRIVERS: {SEARCH_FOR_ODBC_DRIVERS}") logging.debug(f"use_subprocess: {use_subprocess}") logging.debug(f"detect_subprocess_need: {detect_subprocess_need}") logging.debug(f"current_platform: {current_platform}") # TODO: refactor to mixin if detect_subprocess_need: logging.debug("detect_subprocess_need is True: checking versions") python_version, os_version = platform.architecture() if python_version == "64bit" and prms.Instruments.Arbin.office_version == "32bit": logging.debug( "python 64bit and office 32bit -> " "setting use_subprocess to True" ) use_subprocess = True if use_subprocess and not is_posix: # The windows users most likely have a strange custom path to mdbtools etc. logging.debug( "using subprocess (most lilkely mdbtools) " "on non-posix (most likely windows)" ) if not prms.Instruments.Arbin.sub_process_path: sub_process_path = str(prms._sub_process_path) else: sub_process_path = str(prms.Instruments.Arbin.sub_process_path) if is_posix: sub_process_path = "mdb-export" try: driver_dll = prms.Instruments.Arbin.odbc_driver except AttributeError: driver_dll = None # TODO: deprecate ado use_ado = False if ODBC == "ado": use_ado = True logging.debug("Trying to use adodbapi as ado loader") try: import adodbapi as dbloader # http://adodbapi.sourceforge.net/ except ImportError: use_ado = False if not use_ado: if ODBC == "pyodbc": try: import pyodbc as dbloader except ImportError: warnings.warn("COULD NOT LOAD DBLOADER!", ImportWarning) dbloader = None elif ODBC == "pypyodbc": try: import pypyodbc as dbloader except ImportError: warnings.warn("COULD NOT LOAD DBLOADER!", ImportWarning) dbloader = None if DEBUG_MODE: logging.debug(f"dbloader: {dbloader}") # Names of the tables in the .res db that is used by cellpy TABLE_NAMES = { "normal": "Channel_Normal_Table", "global": "Global_Table", "statistic": "Channel_Statistic_Table", "aux_global": "Aux_Global_Data_Table", "aux": "Auxiliary_Table", } summary_headers_renaming_dict = { "test_id_txt": "Test_ID", "data_point_txt": "Data_Point", "vmax_on_cycle_txt": "Vmax_On_Cycle", "charge_time_txt": "Charge_Time", "discharge_time_txt": "Discharge_Time", } normal_headers_renaming_dict = { "aci_phase_angle_txt": "ACI_Phase_Angle", "ref_aci_phase_angle_txt": "Reference_ACI_Phase_Angle", "ac_impedance_txt": "AC_Impedance", "ref_ac_impedance_txt": "Reference_AC_Impedance", "charge_capacity_txt": "Charge_Capacity", "charge_energy_txt": "Charge_Energy", "current_txt": "Current", "cycle_index_txt": "Cycle_Index", "data_point_txt": "Data_Point", "datetime_txt": "DateTime", "discharge_capacity_txt": "Discharge_Capacity", "discharge_energy_txt": "Discharge_Energy", "internal_resistance_txt": "Internal_Resistance", "is_fc_data_txt": "Is_FC_Data", "step_index_txt": "Step_Index", "sub_step_index_txt": "Sub_Step_Index", # new "step_time_txt": "Step_Time", "sub_step_time_txt": "Sub_Step_Time", # new "test_id_txt": "Test_ID", "test_time_txt": "Test_Time", "voltage_txt": "Voltage", "ref_voltage_txt": "Reference_Voltage", # new "dv_dt_txt": "dV/dt", "frequency_txt": "Frequency", # new "amplitude_txt": "Amplitude", # new } class ArbinLoader(Loader): """ Class for loading arbin-data from res-files. Implemented Cellpy params (prms.Instruments.Arbin): max_res_filesize chunk_size max_chunks use_subprocess detect_subprocess_need sub_process_path office_version SQL_server """ def __init__(self): """initiates the ArbinLoader class""" # could use __init__(self, cellpydata_object) and # set self.logger = cellpydata_object.logger etc. # then remember to include that as prm in "out of class" functions # self.prms = prms self.logger = logging.getLogger(__name__) # use the following prm to limit to loading only # one cycle or from cycle>x to cycle<x+n # prms.Reader["limit_loaded_cycles"] = [cycle from, cycle to] self.arbin_headers_normal = ( self.get_headers_normal() ) # the column headers defined by Arbin self.cellpy_headers_normal = ( get_headers_normal() ) # the column headers defined by cellpy self.arbin_headers_global = self.get_headers_global() self.arbin_headers_aux_global = self.get_headers_aux_global() self.arbin_headers_aux = self.get_headers_aux() self.current_chunk = 0 # use this to set chunks to load @staticmethod def get_raw_units(): raw_units = dict() raw_units["current"] = 1.0 # A raw_units["charge"] = 1.0 # Ah raw_units["mass"] = 0.001 # g return raw_units @staticmethod def get_headers_normal(): """Defines the so-called normal column headings for Arbin .res-files""" headers = HeaderDict() # - normal (raw-data) column headings (specific for Arbin) headers["aci_phase_angle_txt"] = "ACI_Phase_Angle" headers["ref_aci_phase_angle_txt"] = "Reference_ACI_Phase_Angle" headers["ac_impedance_txt"] = "AC_Impedance" headers["ref_ac_impedance_txt"] = "Reference_AC_Impedance" # new headers["charge_capacity_txt"] = "Charge_Capacity" headers["charge_energy_txt"] = "Charge_Energy" headers["current_txt"] = "Current" headers["cycle_index_txt"] = "Cycle_Index" headers["data_point_txt"] = "Data_Point" headers["datetime_txt"] = "DateTime" headers["discharge_capacity_txt"] = "Discharge_Capacity" headers["discharge_energy_txt"] = "Discharge_Energy" headers["internal_resistance_txt"] = "Internal_Resistance" headers["is_fc_data_txt"] = "Is_FC_Data" headers["step_index_txt"] = "Step_Index" headers["sub_step_index_txt"] = "Sub_Step_Index" # new headers["step_time_txt"] = "Step_Time" headers["sub_step_time_txt"] = "Sub_Step_Time" # new headers["test_id_txt"] = "Test_ID" headers["test_time_txt"] = "Test_Time" headers["voltage_txt"] = "Voltage" headers["ref_voltage_txt"] = "Reference_Voltage" # new headers["dv_dt_txt"] = "dV/dt" headers["frequency_txt"] = "Frequency" # new headers["amplitude_txt"] = "Amplitude" # new return headers @staticmethod def get_headers_aux(): """Defines the so-called auxiliary table column headings for Arbin .res-files""" headers = HeaderDict() # - aux column headings (specific for Arbin) headers["test_id_txt"] = "Test_ID" headers["data_point_txt"] = "Data_Point" headers["aux_index_txt"] = "Auxiliary_Index" headers["data_type_txt"] = "Data_Type" headers["x_value_txt"] = "X" headers["x_dt_value"] = "dX_dt" return headers @staticmethod def get_headers_aux_global(): """Defines the so-called auxiliary global column headings for Arbin .res-files""" headers = HeaderDict() # - aux global column headings (specific for Arbin) headers["channel_index_txt"] = "Channel_Index" headers["aux_index_txt"] = "Auxiliary_Index" headers["data_type_txt"] = "Data_Type" headers["aux_name_txt"] = "Nickname" headers["aux_unit_txt"] = "Unit" return headers @staticmethod def get_headers_global(): """Defines the so-called global column headings for Arbin .res-files""" headers = HeaderDict() # - global column headings (specific for Arbin) headers["applications_path_txt"] = "Applications_Path" headers["channel_index_txt"] = "Channel_Index" headers["channel_number_txt"] = "Channel_Number" headers["channel_type_txt"] = "Channel_Type" headers["comments_txt"] = "Comments" headers["creator_txt"] = "Creator" headers["daq_index_txt"] = "DAQ_Index" headers["item_id_txt"] = "Item_ID" headers["log_aux_data_flag_txt"] = "Log_Aux_Data_Flag" headers["log_chanstat_data_flag_txt"] = "Log_ChanStat_Data_Flag" headers["log_event_data_flag_txt"] = "Log_Event_Data_Flag" headers["log_smart_battery_data_flag_txt"] = "Log_Smart_Battery_Data_Flag" headers["mapped_aux_conc_cnumber_txt"] = "Mapped_Aux_Conc_CNumber" headers["mapped_aux_di_cnumber_txt"] = "Mapped_Aux_DI_CNumber" headers["mapped_aux_do_cnumber_txt"] = "Mapped_Aux_DO_CNumber" headers["mapped_aux_flow_rate_cnumber_txt"] = "Mapped_Aux_Flow_Rate_CNumber" headers["mapped_aux_ph_number_txt"] = "Mapped_Aux_PH_Number" headers["mapped_aux_pressure_number_txt"] = "Mapped_Aux_Pressure_Number" headers["mapped_aux_temperature_number_txt"] = "Mapped_Aux_Temperature_Number" headers["mapped_aux_voltage_number_txt"] = "Mapped_Aux_Voltage_Number" headers[ "schedule_file_name_txt" ] = "Schedule_File_Name" # KEEP FOR CELLPY FILE FORMAT headers["start_datetime_txt"] = "Start_DateTime" headers["test_id_txt"] = "Test_ID" # KEEP FOR CELLPY FILE FORMAT headers["test_name_txt"] = "Test_Name" # KEEP FOR CELLPY FILE FORMAT return headers @staticmethod def get_raw_limits(): raw_limits = dict() raw_limits["current_hard"] = 0.000_000_000_000_1 raw_limits["current_soft"] = 0.000_01 raw_limits["stable_current_hard"] = 2.0 raw_limits["stable_current_soft"] = 4.0 raw_limits["stable_voltage_hard"] = 2.0 raw_limits["stable_voltage_soft"] = 4.0 raw_limits["stable_charge_hard"] = 0.001 raw_limits["stable_charge_soft"] = 5.0 raw_limits["ir_change"] = 0.00001 return raw_limits def _get_res_connector(self, temp_filename): if use_ado: is64bit_python = check64bit(current_system="python") if is64bit_python: constr = ( "Provider=Microsoft.ACE.OLEDB.12.0; Data Source=%s" % temp_filename ) else: constr = ( "Provider=Microsoft.Jet.OLEDB.4.0; Data Source=%s" % temp_filename ) return constr if SEARCH_FOR_ODBC_DRIVERS: logging.debug("Searching for odbc drivers") try: drivers = [ driver for driver in dbloader.drivers() if "Microsoft Access Driver" in driver ] logging.debug(f"Found these: {drivers}") driver = drivers[0] except IndexError as e: logging.debug( "Unfortunately, it seems the " "list of drivers is emtpy." ) logging.debug("Use driver-name from config (if existing).") driver = driver_dll if is_macos: driver = "/usr/local/lib/libmdbodbc.dylib" else: if not driver: print( "\nCould not find any odbc-drivers suitable " "for .res-type files. " "Check out the homepage of pydobc for info on " "installing drivers" ) print( "One solution that might work is downloading " "the Microsoft Access database engine (in correct" " bytes (32 or 64)) " "from:\n" "https://www.microsoft.com/en-us/download/" "details.aspx?id=13255" ) print( "Or install mdbtools and set it up " "(check the cellpy docs for help)" ) print("\n") else: logging.debug("Using driver dll from config file") logging.debug(f"driver dll: {driver}") self.logger.debug(f"odbc constr: {driver}") else: is64bit_python = check64bit(current_system="python") if is64bit_python: driver = "{Microsoft Access Driver (*.mdb, *.accdb)}" else: driver = "Microsoft Access Driver (*.mdb)" self.logger.debug("odbc constr: {}".format(driver)) constr = "Driver=%s;Dbq=%s" % (driver, temp_filename) logging.debug(f"constr: {constr}") return constr def _clean_up_loadres(self, cur, conn, filename): if cur is not None: cur.close() # adodbapi if conn is not None: conn.close() # adodbapi if os.path.isfile(filename): try: os.remove(filename) except WindowsError as e: self.logger.warning("could not remove tmp-file\n%s %s" % (filename, e)) def _post_process(self, data): fix_datetime = True set_index = True rename_headers = True # TODO: insert post-processing and div tests here # - check dtypes # Remark that we also set index during saving the file to hdf5 if # it is not set. if rename_headers: columns = {} for key in self.arbin_headers_normal: old_header = normal_headers_renaming_dict[key] new_header = self.cellpy_headers_normal[key] columns[old_header] = new_header data.raw.rename(index=str, columns=columns, inplace=True) try: # TODO: check if summary df is existing (to only check if it is # empty will give an error later!) columns = {} for key, old_header in summary_headers_renaming_dict.items(): try: columns[old_header] = self.cellpy_headers_normal[key] except KeyError: columns[old_header] = old_header.lower() data.summary.rename(index=str, columns=columns, inplace=True) except Exception as e: logging.debug(f"Could not rename summary df ::\n{e}") if fix_datetime: h_datetime = self.cellpy_headers_normal.datetime_txt logging.debug("converting to datetime format") # print(data.raw.columns) data.raw[h_datetime] = data.raw[h_datetime].apply( xldate_as_datetime, option="to_datetime" ) h_datetime = h_datetime if h_datetime in data.summary: data.summary[h_datetime] = data.summary[h_datetime].apply( xldate_as_datetime, option="to_datetime" ) if set_index: hdr_data_point = self.cellpy_headers_normal.data_point_txt if data.raw.index.name != hdr_data_point: data.raw = data.raw.set_index(hdr_data_point, drop=False) return data def _inspect(self, run_data): """Inspect the file -> reports to log (debug)""" if not any([DEBUG_MODE]): return run_data if DEBUG_MODE: checked_rundata = [] for data in run_data: new_cols = data.raw.columns for col in self.arbin_headers_normal: if col not in new_cols: logging.debug(f"Missing col: {col}") # data.raw[col] = np.nan checked_rundata.append(data) return checked_rundata def _iterdump(self, file_name, headers=None): """ Function for dumping values from a file. Should only be used by developers. Args: file_name: name of the file headers: list of headers to pick default: ["Discharge_Capacity", "Charge_Capacity"] Returns: pandas.DataFrame """ if headers is None: headers = ["Discharge_Capacity", "Charge_Capacity"] step_txt = self.arbin_headers_normal.step_index_txt point_txt = self.arbin_headers_normal.data_point_txt cycle_txt = self.arbin_headers_normal.cycle_index_txt self.logger.debug("iterating through file: %s" % file_name) if not os.path.isfile(file_name): print("Missing file_\n %s" % file_name) filesize = os.path.getsize(file_name) hfilesize = humanize_bytes(filesize) txt = "Filesize: %i (%s)" % (filesize, hfilesize) self.logger.info(txt) table_name_global = TABLE_NAMES["global"] table_name_stats = TABLE_NAMES["statistic"] table_name_normal = TABLE_NAMES["normal"] # creating temporary file and connection temp_dir = tempfile.gettempdir() temp_filename = os.path.join(temp_dir, os.path.basename(file_name)) shutil.copy2(file_name, temp_dir) constr = self._get_res_connector(temp_filename) if use_ado: conn = dbloader.connect(constr) else: conn = dbloader.connect(constr, autocommit=True) self.logger.debug("tmp file: %s" % temp_filename) self.logger.debug("constr str: %s" % constr) # --------- read global-data ------------------------------------ self.logger.debug("reading global data table") sql = "select * from %s" % table_name_global global_data_df = pd.read_sql_query(sql, conn) # col_names = list(global_data_df.columns.values) self.logger.debug("sql statement: %s" % sql) tests = global_data_df[self.arbin_headers_normal.test_id_txt] number_of_sets = len(tests) self.logger.debug("number of datasets: %i" % number_of_sets) self.logger.debug("only selecting first test") test_no = 0 self.logger.debug("setting data for test number %i" % test_no) loaded_from = file_name # fid = FileID(file_name) start_datetime = global_data_df[ self.arbin_headers_global["start_datetime_txt"] ][test_no] test_ID = int( global_data_df[self.arbin_headers_normal.test_id_txt][test_no] ) # OBS test_name = global_data_df[self.arbin_headers_global["test_name_txt"]][test_no] # --------- read raw-data (normal-data) ------------------------- self.logger.debug("reading raw-data") columns = ["Data_Point", "Step_Index", "Cycle_Index"] columns.extend(headers) columns_txt = ", ".join(["%s"] * len(columns)) % tuple(columns) sql_1 = "select %s " % columns_txt sql_2 = "from %s " % table_name_normal sql_3 = "where %s=%s " % (self.arbin_headers_normal.test_id_txt, test_ID) sql_5 = "order by %s" % self.arbin_headers_normal.data_point_txt import time info_list = [] info_header = ["cycle", "row_count", "start_point", "end_point"] info_header.extend(headers) self.logger.info(" ".join(info_header)) self.logger.info("-------------------------------------------------") for cycle_number in range(1, 2000): t1 = time.time() self.logger.debug("picking cycle %i" % cycle_number) sql_4 = "AND %s=%i " % (cycle_txt, cycle_number) sql = sql_1 + sql_2 + sql_3 + sql_4 + sql_5 self.logger.debug("sql statement: %s" % sql) normal_df = pd.read_sql_query(sql, conn) t2 = time.time() dt = t2 - t1 self.logger.debug("time: %f" % dt) if normal_df.empty: self.logger.debug("reached the end") break row_count, _ = normal_df.shape start_point = normal_df[point_txt].min() end_point = normal_df[point_txt].max() last = normal_df.iloc[-1, :] step_list = [cycle_number, row_count, start_point, end_point] step_list.extend([last[x] for x in headers]) info_list.append(step_list) self._clean_up_loadres(None, conn, temp_filename) info_dict = pd.DataFrame(info_list, columns=info_header) return info_dict def investigate(self, file_name): """Investigate a .res file. Args: file_name: name of the file Returns: dictionary with div. stats and info. """ step_txt = self.arbin_headers_normal.step_index_txt point_txt = self.arbin_headers_normal.data_point_txt cycle_txt = self.arbin_headers_normal.cycle_index_txt self.logger.debug("investigating file: %s" % file_name) if not os.path.isfile(file_name): print("Missing file_\n %s" % file_name) filesize = os.path.getsize(file_name) hfilesize = humanize_bytes(filesize) txt = "Filesize: %i (%s)" % (filesize, hfilesize) self.logger.info(txt) table_name_global = TABLE_NAMES["global"] table_name_stats = TABLE_NAMES["statistic"] table_name_normal = TABLE_NAMES["normal"] # creating temporary file and connection temp_dir = tempfile.gettempdir() temp_filename = os.path.join(temp_dir, os.path.basename(file_name)) shutil.copy2(file_name, temp_dir) constr = self._get_res_connector(temp_filename) if use_ado: conn = dbloader.connect(constr) else: conn = dbloader.connect(constr, autocommit=True) self.logger.debug("tmp file: %s" % temp_filename) self.logger.debug("constr str: %s" % constr) # --------- read global-data ------------------------------------ self.logger.debug("reading global data table") sql = "select * from %s" % table_name_global global_data_df = pd.read_sql_query(sql, conn) # col_names = list(global_data_df.columns.values) self.logger.debug("sql statement: %s" % sql) tests = global_data_df[self.arbin_headers_normal.test_id_txt] number_of_sets = len(tests) self.logger.debug("number of datasets: %i" % number_of_sets) self.logger.debug("only selecting first test") test_no = 0 self.logger.debug("setting data for test number %i" % test_no) loaded_from = file_name # fid = FileID(file_name) start_datetime = global_data_df[ self.arbin_headers_global["start_datetime_txt"] ][test_no] test_ID = int( global_data_df[self.arbin_headers_normal.test_id_txt][test_no] ) # OBS test_name = global_data_df[self.arbin_headers_global["test_name_txt"]][test_no] # --------- read raw-data (normal-data) ------------------------- self.logger.debug("reading raw-data") columns = ["Data_Point", "Step_Index", "Cycle_Index"] columns_txt = ", ".join(["%s"] * len(columns)) % tuple(columns) sql_1 = "select %s " % columns_txt sql_2 = "from %s " % table_name_normal sql_3 = "where %s=%s " % (self.arbin_headers_normal.test_id_txt, test_ID) sql_5 = "order by %s" % self.arbin_headers_normal.data_point_txt import time info_list = [] info_header = ["cycle", "step", "row_count", "start_point", "end_point"] self.logger.info(" ".join(info_header)) self.logger.info("-------------------------------------------------") for cycle_number in range(1, 2000): t1 = time.time() self.logger.debug("picking cycle %i" % cycle_number) sql_4 = "AND %s=%i " % (cycle_txt, cycle_number) sql = sql_1 + sql_2 + sql_3 + sql_4 + sql_5 self.logger.debug("sql statement: %s" % sql) normal_df = pd.read_sql_query(sql, conn) t2 = time.time() dt = t2 - t1 self.logger.debug("time: %f" % dt) if normal_df.empty: self.logger.debug("reached the end") break row_count, _ = normal_df.shape steps = normal_df[self.arbin_headers_normal.step_index_txt].unique() txt = "cycle %i: %i [" % (cycle_number, row_count) for step in steps: self.logger.debug(" step: %i" % step) step_df = normal_df.loc[normal_df[step_txt] == step] step_row_count, _ = step_df.shape start_point = step_df[point_txt].min() end_point = step_df[point_txt].max() txt += " %i-(%i)" % (step, step_row_count) step_list = [cycle_number, step, step_row_count, start_point, end_point] info_list.append(step_list) txt += "]" self.logger.info(txt) self._clean_up_loadres(None, conn, temp_filename) info_dict = pd.DataFrame(info_list, columns=info_header) return info_dict def repair(self, file_name): """try to repair a broken/corrupted file""" raise NotImplemented def dump(self, file_name, path): """Dumps the raw file to an intermediate hdf5 file. This method can be used if the raw file is too difficult to load and it is likely that it is more efficient to convert it to an hdf5 format and then load it using the `from_intermediate_file` function. Args: file_name: name of the raw file path: path to where to store the intermediate hdf5 file (optional) Returns: full path to stored intermediate hdf5 file information about the raw file (needed by the `from_intermediate_file` function) """ # information = None # contains information needed by the from_ # intermediate_file reader # full_path = None # return full_path, information raise NotImplemented def _query_table(self, table_name, conn, sql=None): self.logger.debug(f"reading {table_name}") if sql is None: sql = f"select * from {table_name}" self.logger.debug(f"sql statement: {sql}") df = pd.read_sql_query(sql, conn) return df def _make_name_from_frame(self, df, aux_index, data_type, dx_dt=False): df_names = df.loc[ (df[self.arbin_headers_aux_global.aux_index_txt] == aux_index) & (df[self.arbin_headers_aux_global.data_type_txt] == data_type), :, ] unit = df_names[self.arbin_headers_aux_global.aux_unit_txt].values[0] nick = ( df_names[self.arbin_headers_aux_global.aux_name_txt].values[0] or aux_index ) if dx_dt: name = f"aux_d_{nick}_dt_u_d{unit}_dt" else: name = f"aux_{nick}_u_{unit}" return name def _loader_win( self, file_name, temp_filename, *args, bad_steps=None, dataset_number=None, data_points=None, **kwargs, ): new_tests = [] conn = None table_name_global = TABLE_NAMES["global"] table_name_aux_global = TABLE_NAMES["aux_global"] table_name_aux = TABLE_NAMES["aux"] table_name_stats = TABLE_NAMES["statistic"] table_name_normal = TABLE_NAMES["normal"] if DEBUG_MODE: time_0 = time.time() constr = self._get_res_connector(temp_filename) if use_ado: conn = dbloader.connect(constr) else: conn = dbloader.connect(constr, autocommit=True) self.logger.debug("reading global data table") self.logger.debug(f"constr str: {constr}") global_data_df = self._query_table(table_name=table_name_global, conn=conn) tests = global_data_df[self.arbin_headers_normal.test_id_txt] number_of_sets = len(tests) self.logger.debug(f"number of datasets: {number_of_sets}") if dataset_number is not None: self.logger.info(f"Dataset number given: {dataset_number}") self.logger.info(f"Available dataset numbers: {tests}") test_nos = [dataset_number] else: test_nos = range(number_of_sets) for counter, test_no in enumerate(test_nos): if counter > 0: self.logger.warning("** WARNING ** MULTI-TEST-FILE (not recommended)") if not ALLOW_MULTI_TEST_FILE: break data = self._init_data(file_name, global_data_df, test_no) test_id = data.test_ID self.logger.debug("reading raw-data") # --------- read raw-data (normal-data) ------------------------ length_of_test, normal_df = self._load_res_normal_table( conn, test_id, bad_steps, data_points ) # --------- read auxiliary data (aux-data) --------------------- normal_df = self._load_win_res_auxiliary_table( conn, normal_df, table_name_aux, table_name_aux_global, test_id ) # --------- read stats-data (summary-data) --------------------- sql = "select * from %s where %s=%s order by %s" % ( table_name_stats, self.arbin_headers_normal.test_id_txt, data.test_ID, self.arbin_headers_normal.data_point_txt, ) summary_df = pd.read_sql_query(sql, conn) if summary_df.empty and prms.Reader.use_cellpy_stat_file: txt = "\nCould not find any summary (stats-file)!" txt += "\n -> issue make_summary(use_cellpy_stat_file=False)" logging.debug(txt) # TODO: Enforce creating a summary df or modify renaming summary df (post process part) # normal_df = normal_df.set_index("Data_Point") data.summary = summary_df if DEBUG_MODE: mem_usage = normal_df.memory_usage() logging.debug( f"memory usage for " f"loaded data: \n{mem_usage}" f"\ntotal: {humanize_bytes(mem_usage.sum())}" ) logging.debug(f"time used: {(time.time() - time_0):2.4f} s") data.raw = normal_df data.raw_data_files_length.append(length_of_test) data = self._post_process(data) data = self.identify_last_data_point(data) new_tests.append(data) return new_tests def _load_win_res_auxiliary_table( self, conn, normal_df, table_name_aux, table_name_aux_global, test_id ): aux_global_data_df = self._query_table(table_name_aux_global, conn) if not aux_global_data_df.empty: aux_df = self._get_aux_df(conn, test_id, table_name_aux) aux_df, aux_global_data_df = self._aux_to_wide(aux_df, aux_global_data_df) aux_df = self._rename_aux_cols(aux_df, aux_global_data_df) if not aux_df.empty: normal_df = self._join_aux_to_normal(aux_df, normal_df) return normal_df def _load_posix_res_auxiliary_table(self, aux_global_data_df, aux_df, normal_df): if not aux_global_data_df.empty: aux_df, aux_global_data_df = self._aux_to_wide(aux_df, aux_global_data_df) aux_df = self._rename_aux_cols(aux_df, aux_global_data_df) if not aux_df.empty: normal_df = self._join_aux_to_normal(aux_df, normal_df) return normal_df def _join_aux_to_normal(self, aux_df, normal_df): # TODO: clean up setting index (Data_Point). This is currently done in _post_process after # the column names are changed to cellpy-column names ("data_point"). # It also keeps a copy of the "data_point" # column. And is that really necessary. normal_df.set_index(self.arbin_headers_normal.data_point_txt, inplace=True) normal_df = normal_df.join(aux_df, how="left", ) normal_df.reset_index(inplace=True) return normal_df def _rename_aux_cols(self, aux_df, aux_global_data_df): aux_dfs = [] if self.arbin_headers_aux.x_value_txt in aux_df.columns: aux_df_x = aux_df[self.arbin_headers_aux.x_value_txt].copy() aux_df_x.columns = [ self._make_name_from_frame(aux_global_data_df, z[1], z[0]) for z in aux_df_x.columns ] aux_dfs.append(aux_df_x) if self.arbin_headers_aux.x_dt_value in aux_df.columns: aux_df_dx_dt = aux_df[self.arbin_headers_aux.x_dt_value].copy() aux_df_dx_dt.columns = [ self._make_name_from_frame(aux_global_data_df, z[1], z[0], True) for z in aux_df_dx_dt.columns ] aux_dfs.append(aux_df_dx_dt) aux_df = pd.concat(aux_dfs, axis=1) return aux_df def _aux_to_wide(self, aux_df, aux_global_data_df): aux_df = aux_df.drop(self.arbin_headers_aux.test_id_txt, axis=1) keys = [ self.arbin_headers_aux.data_point_txt, self.arbin_headers_aux.aux_index_txt, self.arbin_headers_aux.data_type_txt, ] aux_df = aux_df.set_index(keys=keys) aux_df = aux_df.unstack(2).unstack(1).dropna(axis=1) aux_global_data_df = aux_global_data_df.fillna(0) return aux_df, aux_global_data_df def _get_aux_df(self, conn, test_id, table_name_aux): columns_txt = "*" sql_1 = "select %s " % columns_txt sql_2 = "from %s " % table_name_aux sql_3 = "where %s=%s " % (self.arbin_headers_aux.test_id_txt, test_id,) sql_4 = "" sql_aux = sql_1 + sql_2 + sql_3 + sql_4 aux_df = self._query_table(table_name_aux, conn, sql=sql_aux) return aux_df def _loader_posix( self, file_name, temp_filename, temp_dir, *args, bad_steps=None, dataset_number=None, data_points=None, **kwargs, ): # TODO: auxiliary channels (table) table_name_global = TABLE_NAMES["global"] table_name_stats = TABLE_NAMES["statistic"] table_name_normal = TABLE_NAMES["normal"] table_name_aux_global = TABLE_NAMES["aux_global"] table_name_aux = TABLE_NAMES["aux"] new_tests = [] if is_posix: if is_macos: self.logger.debug("\nMAC OSX USING MDBTOOLS") else: self.logger.debug("\nPOSIX USING MDBTOOLS") else: self.logger.debug("\nWINDOWS USING MDBTOOLS-WIN") if DEBUG_MODE: time_0 = time.time() ( tmp_name_global, tmp_name_raw, tmp_name_stats, tmp_name_aux_global, tmp_name_aux, ) = self._create_tmp_files( table_name_global, table_name_normal, table_name_stats, table_name_aux_global, table_name_aux, temp_dir, temp_filename, ) # use pandas to load in the data global_data_df = pd.read_csv(tmp_name_global) tests = global_data_df[self.arbin_headers_normal.test_id_txt] number_of_sets = len(tests) self.logger.debug("number of datasets: %i" % number_of_sets) if dataset_number is not None: self.logger.info(f"Dataset number given: {dataset_number}") self.logger.info(f"Available dataset numbers: {tests}") test_nos = [dataset_number] else: test_nos = range(number_of_sets) for counter, test_no in enumerate(test_nos): if counter > 0: self.logger.warning("** WARNING ** MULTI-TEST-FILE (not recommended)") if not ALLOW_MULTI_TEST_FILE: break data = self._init_data(file_name, global_data_df, test_no) self.logger.debug("reading raw-data") ( length_of_test, normal_df, summary_df, aux_global_data_df, aux_df, ) = self._load_from_tmp_files( data, tmp_name_global, tmp_name_raw, tmp_name_stats, tmp_name_aux_global, tmp_name_aux, temp_filename, bad_steps, data_points, ) # --------- read auxiliary data (aux-data) --------------------- normal_df = self._load_posix_res_auxiliary_table( aux_global_data_df, aux_df, normal_df ) if summary_df.empty and prms.Reader.use_cellpy_stat_file: txt = "\nCould not find any summary (stats-file)!" txt += "\n -> issue make_summary(use_cellpy_stat_file=False)" logging.debug(txt) # normal_df = normal_df.set_index("Data_Point") data.summary = summary_df if DEBUG_MODE: mem_usage = normal_df.memory_usage() logging.debug( f"memory usage for " f"loaded data: \n{mem_usage}" f"\ntotal: {humanize_bytes(mem_usage.sum())}" ) logging.debug(f"time used: {(time.time() - time_0):2.4f} s") data.raw = normal_df data.raw_data_files_length.append(length_of_test) data = self._post_process(data) data = self.identify_last_data_point(data) new_tests.append(data) return new_tests def loader( self, file_name, *args, bad_steps=None, dataset_number=None, data_points=None, **kwargs, ): """Loads data from arbin .res files. Args: file_name (str): path to .res file. bad_steps (list of tuples): (c, s) tuples of steps s (in cycle c) to skip loading. dataset_number (int): the data set number to select if you are dealing with arbin files with more than one data-set. data_points (tuple of ints): load only data from data_point[0] to data_point[1] (use None for infinite). Returns: new_tests (list of data objects) """ # TODO: @jepe - insert kwargs - current chunk, only normal data, etc if not os.path.isfile(file_name): self.logger.info("Missing file_\n %s" % file_name) return None self.logger.debug("in loader") self.logger.debug("filename: %s" % file_name) filesize = os.path.getsize(file_name) hfilesize = humanize_bytes(filesize) txt = "Filesize: %i (%s)" % (filesize, hfilesize) self.logger.debug(txt) if ( filesize > prms.Instruments.Arbin.max_res_filesize and not prms.Reader.load_only_summary ): error_message = "\nERROR (loader):\n" error_message += "%s > %s - File is too big!\n" % ( hfilesize, humanize_bytes(prms.Instruments.Arbin.max_res_filesize), ) error_message += "(edit prms.Instruments.Arbin ['max_res_filesize'])\n" print(error_message) return None temp_dir = tempfile.gettempdir() temp_filename = os.path.join(temp_dir, os.path.basename(file_name)) shutil.copy2(file_name, temp_dir) self.logger.debug("tmp file: %s" % temp_filename) use_mdbtools = False if use_subprocess: use_mdbtools = True if is_posix: use_mdbtools = True if use_mdbtools: new_tests = self._loader_posix( file_name, temp_filename, temp_dir, *args, bad_steps=bad_steps, dataset_number=dataset_number, data_points=data_points, **kwargs, ) else: new_tests = self._loader_win( file_name, temp_filename, *args, bad_steps=bad_steps, dataset_number=dataset_number, data_points=data_points, **kwargs, ) new_tests = self._inspect(new_tests) return new_tests def _create_tmp_files( self, table_name_global, table_name_normal, table_name_stats, table_name_aux_global, table_name_aux, temp_dir, temp_filename, ): import subprocess # creating tmp-filenames temp_csv_filename_global = os.path.join(temp_dir, "global_tmp.csv") temp_csv_filename_normal = os.path.join(temp_dir, "normal_tmp.csv") temp_csv_filename_stats = os.path.join(temp_dir, "stats_tmp.csv") temp_csv_filename_aux_global = os.path.join(temp_dir, "aux_global_tmp.csv") temp_csv_filename_aux = os.path.join(temp_dir, "aux_tmp.csv") # making the cmds mdb_prms = [ (table_name_global, temp_csv_filename_global), (table_name_normal, temp_csv_filename_normal), (table_name_stats, temp_csv_filename_stats), (table_name_aux_global, temp_csv_filename_aux_global), (table_name_aux, temp_csv_filename_aux), ] # executing cmds for table_name, tmp_file in mdb_prms: with open(tmp_file, "w") as f: subprocess.call([sub_process_path, temp_filename, table_name], stdout=f) self.logger.debug(f"ran mdb-export {str(f)} {table_name}") return ( temp_csv_filename_global, temp_csv_filename_normal, temp_csv_filename_stats, temp_csv_filename_aux_global, temp_csv_filename_aux, ) def _load_from_tmp_files( self, data, temp_csv_filename_global, temp_csv_filename_normal, temp_csv_filename_stats, temp_csv_filename_aux_global, temp_csv_filename_aux, temp_filename, bad_steps, data_points, ): """ if bad_steps is not None: if not isinstance(bad_steps, (list, tuple)): bad_steps = [bad_steps] for bad_cycle, bad_step in bad_steps: self.logger.debug(f"bad_step def: [c={bad_cycle}, s={bad_step}]") sql_4 += "AND NOT (%s=%i " % ( self.headers_normal.cycle_index_txt, bad_cycle, ) sql_4 += "AND %s=%i) " % (self.headers_normal.step_index_txt, bad_step) """ # should include a more efficient to load the csv (maybe a loop where # we load only chuncks and only keep the parts that fullfill the # filters (e.g. bad_steps, data_points,...) normal_df = pd.read_csv(temp_csv_filename_normal) # filter on test ID normal_df = normal_df[ normal_df[self.arbin_headers_normal.test_id_txt] == data.test_ID ] # sort on data point if prms._sort_if_subprocess: normal_df = normal_df.sort_values(self.arbin_headers_normal.data_point_txt) if bad_steps is not None: logging.debug("removing bad steps") if not isinstance(bad_steps, (list, tuple)): bad_steps = [bad_steps] if not isinstance(bad_steps[0], (list, tuple)): bad_steps = [bad_steps] for bad_cycle, bad_step in bad_steps: self.logger.debug(f"bad_step def: [c={bad_cycle}, s={bad_step}]") selector = ( normal_df[self.arbin_headers_normal.cycle_index_txt] == bad_cycle ) & (normal_df[self.arbin_headers_normal.step_index_txt] == bad_step) normal_df = normal_df.loc[~selector, :] if prms.Reader["limit_loaded_cycles"]: logging.debug("Not yet tested for aux data") if len(prms.Reader["limit_loaded_cycles"]) > 1: c1, c2 = prms.Reader["limit_loaded_cycles"] selector = ( normal_df[self.arbin_headers_normal.cycle_index_txt] > c1 ) & (normal_df[self.arbin_headers_normal.cycle_index_txt] < c2) else: c1 = prms.Reader["limit_loaded_cycles"][0] selector = normal_df[self.arbin_headers_normal.cycle_index_txt] == c1 normal_df = normal_df.loc[selector, :] if data_points is not None: logging.debug("selecting data-point range") logging.debug("Not yet tested for aux data") d1, d2 = data_points if d1 is not None: selector = normal_df[self.arbin_headers_normal.data_point_txt] >= d1 normal_df = normal_df.loc[selector, :] if d2 is not None: selector = normal_df[self.arbin_headers_normal.data_point_txt] <= d2 normal_df = normal_df.loc[selector, :] length_of_test = normal_df.shape[0] summary_df =
pd.read_csv(temp_csv_filename_stats)
pandas.read_csv
import logging import sys import threading import time from collections import deque import pandas as pd from datetime import datetime # --- from win10toast import ToastNotifier import pandas as pd import numpy as np import pickle import os import asyncio import datetime from datetime import datetime from datetime import timedelta, timezone from typing import Optional from dotenv import load_dotenv from operator import itemgetter load_dotenv() PWD = os.getenv("PWD") db_name = PWD + "\\database" + "\\RVNUSDT.db" import sys sys.path.insert(1, PWD + "\\modules") from alg_modules.alg_handler import AlgHandler from plot_modules.candle_plot import CandlePlot from collections import deque from paper_trade import PaperTrader import time import logging DEBUG = __debug__ LOG_FILE_NAME = "log_file_name.log" format = "%(asctime)s [%(levelname)s]: %(message)s" logger = logging.basicConfig( filename=LOG_FILE_NAME if not DEBUG else None, format=format, encoding="utf-8", level=logging.INFO, ) if not DEBUG: logging.getLogger(logger).addHandler(logging.StreamHandler()) from stop_loss import StopLoss from trade_strategy import TradeStrategy from wss_thread import WssThread from api_modules.open_binance_api import OpenBinanceApi import pytz tzdata = pytz.timezone('Europe/Moscow') # --- class Trader(object): '''docstring for Trader''' def __init__(self, ): super().__init__() self.is_stopped = None self._thread = threading.Thread(target=self.between_callback, args=()) # self._thread = threading.Thread(target=asyncio.run, args=()) self._lock = threading.Lock() def between_callback(self): self.loop = asyncio.new_event_loop() asyncio.set_event_loop(self.loop) self.loop.run_until_complete(self.thread_function(self)) self.loop.close() async def thread_function(self, *args, **kwargs): # ==== def compute_timedelta(dt: datetime): if dt.tzinfo is None: dt = dt.astimezone() now = datetime.now(timezone.utc) return max((dt - now).total_seconds(), 0) async def sleep_until(when: datetime, result = None): """|coro| Sleep until a specified time. If the time supplied is in the past this function will yield instantly. .. versionadded:: 1.3 Parameters ----------- when: :class:`datetime.datetime` The timestamp in which to sleep until. If the datetime is naive then it is assumed to be local time. result: Any If provided is returned to the caller when the coroutine completes. """ delta = compute_timedelta(when) return await asyncio.sleep(delta, result) # ==== server_time = datetime.fromtimestamp(OpenBinanceApi.server_time()/1000) local_time = datetime.now() delay = server_time - local_time # ==== # notifications toast = ToastNotifier() static_notification_settings = dict( title="Algo traid BOT", duration = 20, icon_path = "python.ico", threaded = 1, ) notify = lambda msg: toast.show_toast( msg=msg, **static_notification_settings, ) msg="Watch out for notifications from here" async def notification(msg): if not notify(msg): await asyncio.sleep(20) notify(msg) await notification(msg) # ==== DATA_AWAIT_TIME = 1 # seconds SERVER_DELAY = 10 # seconds INTERVAL_SECONDS = 60 # seconds # request that data from api w = WssThread( url='wss://stream.binance.com:9443/ws/rvnusdt@ticker', maxlen=10, ) w.start() STOP_LOSS_ENABLED=True STOP_LOSS_THRESHOLD=-1.3 DEQUE_MAX_LENGTH = 200 INTERVAL = '1m' df = OpenBinanceApi.get_df( pair = 'RVNUSDT', interval = INTERVAL, limit = 1000, ) # drop last row TODO make assert to not dublicate last row from cycle df = df[:-1] stop_loss_trade_flag = False MA_list = (2, 7, 25, 100) window = deque(maxlen=200) for i, row in df.iterrows(): window.append(dict(row.squeeze())) #initial currency resources p_trdr = PaperTrader( main_currency_label='RVN', secondary_currency_label='USD', main_currency_amount=100, secondary_currency_amount=0, fee=0.1, ) trade_data = pd.DataFrame( columns = p_trdr.get_df(timestamp=df.iloc[-1]['Date']).columns.values ) stop_loss = StopLoss( STOP_LOSS_THRESHOLD=STOP_LOSS_THRESHOLD, ) # init alg alg = AlgHandler( df=pd.DataFrame([]), MA_list=MA_list, ) while not self._stopped: logging.info('===get new data===') new_df = OpenBinanceApi.get_df( pair = 'RVNUSDT', interval = INTERVAL, limit = 2, ) dt = datetime.fromtimestamp(int(new_df.Real_Date[-1:])/1000) server_time = datetime.fromtimestamp(OpenBinanceApi.server_time()/1000) logging.debug(f'server time: {server_time} {server_time.minute=}, {dt.minute=}') # extract function? if server_time.minute == dt.minute: logging.debug('+++===success===+++') window.append(dict(new_df[-2:-1].squeeze())) df_ =
pd.DataFrame(window)
pandas.DataFrame
import os from pathlib import Path from typing import List, Tuple, Optional, Sequence, Any, Union, Generator import numpy as np import pandas as pd import matplotlib.pyplot as plt import penguins as pg from penguins import dataset as ds # for type annotations class Experiment: """ Generic interface for experiments. """ default_margin = (0.5, 0.02) # applicable for 13C experiments # This is overridden in subclasses. # use (0.02, 0.02) for 1H experiments # use (0.4, 0.05) for 15N experiments def __init__(self, peaks: List[Tuple[float, float]], margin: Optional[Tuple[float, float]] = None, ): self.peaks = peaks self.margin = margin or self.default_margin def integrate(self, dataset: ds.Dataset2D, ) -> np.ndarray: # Get absolute peak intensities for a given dataset. return np.array([dataset.integrate(peak=peak, margin=self.margin, mode="max") for peak in self.peaks]) def show_peaks(self, ax=None, **kwargs) -> None: """ Draw red crosses corresponding to each peak on an existing Axes instance. Useful for checking whether the peaks actually line up with the spectrum. If 'ax' is not provided, defaults to currently active Axes. Other kwargs are passed to ax.scatter(). """ if ax is None: ax = plt.gca() scatter_kwargs = {"color": pg.color_palette("bright")[3], "marker": "+", "zorder": 2} scatter_kwargs.update(kwargs) ax.scatter([p[1] for p in self.peaks], [p[0] for p in self.peaks], **scatter_kwargs) @property def df(self) -> pd.DataFrame: """ Return a pandas DataFrame containing all the peaks. This DF has columns "f1" and "f2". """ return pd.DataFrame.from_records(self.peaks, columns=("f1", "f2")) def rel_ints_df(self, dataset: ds.Dataset2D, ref_dataset: ds.Dataset2D, label: str = "", ) -> pd.DataFrame: """ Construct a dataframe of relative intensities vs a reference dataset. This DataFrame will have columns "f1", "f2", "expt", and "int". """ df =
pd.DataFrame()
pandas.DataFrame
def meanOrderFrequency(path_to_dataset): """ Displays the mean order frequency by utilizing the orders table. :param path_to_dataset: this path should have all the .csv files for the dataset :type path_to_dataset: str """ assert isinstance(path_to_dataset, str) import pandas as pd order_file_path = path_to_dataset + '/orders.csv' orders = pd.read_csv(order_file_path) print('On an average, people order once every ', orders['days_since_prior_order'].mean(), 'days') def numOrdersVsDays(path_to_dataset): """ Displays the number of orders and how this number varies with change in days since last order. :param path_to_dataset: this path should have all the .csv files for the dataset :type path_to_dataset: str """ assert isinstance(path_to_dataset, str) import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib order_file_path = path_to_dataset + '/orders.csv' orders = pd.read_csv(order_file_path) order_by_date = orders.groupby(by='days_since_prior_order').count() fig = plt.figure(figsize = [15, 7.5]) ax = fig.add_subplot() order_by_date['order_id'].plot.bar(color = '0.75') ax.set_xticklabels(ax.get_xticklabels(), fontsize= 15) plt.yticks(fontsize=16) ax.get_xaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x)))) ax.get_yaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x/1000)))) ax.set_xlabel('Days since previous order', fontsize=16) ax.set_ylabel('Number of orders / 1000', fontsize=16) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.get_children()[7].set_color('0.1') ax.get_children()[14].set_color('0.1') ax.get_children()[21].set_color('0.1') ax.get_children()[30].set_color('0.1') my_yticks = ax.get_yticks() plt.yticks([my_yticks[-2]], visible=True) plt.xticks(rotation = 'horizontal'); def numOrderDaysSizeBubble(path_to_dataset): """ Plots a bubble plot in which: x: Days since Previous Order y: Number of orders/1000 size: Average Size of order given it was placed on x :param path_to_dataset: this path should have all the .csv files for the dataset :type path_to_dataset: str """ import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt import seaborn as sns assert isinstance(path_to_dataset, str) order_file_path = path_to_dataset + '/orders.csv' order_product_prior_file_path = path_to_dataset + '/order_products__prior.csv' orders = pd.read_csv(order_file_path) order_products_prior = pd.read_csv(order_product_prior_file_path) order_id_count_products = order_products_prior.groupby(by='order_id').count() orders_with_count = order_id_count_products.merge(orders, on='order_id') order_by_date = orders.groupby(by='days_since_prior_order').count() # take above table and group by days_since_prior_order df_mean_order_size = orders_with_count.groupby(by='days_since_prior_order').mean()['product_id'] df_mean_order_renamed = df_mean_order_size.rename('average_order_size') bubble_plot_dataframe = pd.concat([order_by_date['order_id'], df_mean_order_renamed], axis=1) bubble_plot_dataframe['average_order_size'].index.to_numpy() fig = plt.figure(figsize=[15,7.5]) ax = fig.add_subplot() plt.scatter(bubble_plot_dataframe['average_order_size'].index.to_numpy(), bubble_plot_dataframe['order_id'].values, s=((bubble_plot_dataframe['average_order_size'].values/bubble_plot_dataframe['average_order_size'].values.mean())*10)**3.1, alpha=0.5, c = '0.5') plt.xticks(np.arange(0, 31, 1.0)); ax.xaxis.grid(True) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.set_xlabel('Days since previous order', fontsize=16) ax.set_ylabel('Number of orders / 1000', fontsize=16) ax.get_xaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x)))) ax.get_yaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x/1000)))) my_yticks = ax.get_yticks() plt.yticks([my_yticks[-2], my_yticks[0]], visible=True); fig = plt.figure(figsize=[10,9]) ax = fig.add_subplot() plt.scatter(bubble_plot_dataframe['average_order_size'].index.to_numpy()[:8], bubble_plot_dataframe['order_id'].values[:8], s=((bubble_plot_dataframe['average_order_size'].values[:8]/bubble_plot_dataframe['average_order_size'].values.mean())*10)**3.1, alpha=0.5, c = '0.5') plt.xticks(np.arange(0, 8, 1.0)); ax.xaxis.grid(True) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.set_xlabel('Days since previous order', fontsize=16) ax.set_ylabel('Number of orders / 1000', fontsize=16) ax.get_xaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x)))) ax.get_yaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x/1000)))) my_yticks = ax.get_yticks() plt.yticks([my_yticks[-2], my_yticks[0]], visible=True); def orderTimeHeatMaps(path_to_dataset): """ Plots the distribution of order with respect to hour of day and day of the week. :param path_to_dataset: this path should have all the .csv files for the dataset :type path_to_dataset: str """ assert isinstance(path_to_dataset, str) import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np order_file_path = path_to_dataset + '/orders.csv' orders = pd.read_csv(order_file_path) grouped_data = orders.groupby(["order_dow", "order_hour_of_day"])["order_number"].aggregate("count").reset_index() grouped_data = grouped_data.pivot('order_dow', 'order_hour_of_day', 'order_number') grouped_data.index = pd.CategoricalIndex(grouped_data.index, categories=[0,1,2,3,4,5,6]) grouped_data.sort_index(level=0, inplace=True) plt.figure(figsize=(12,6)) hour_of_day = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14','15','16', '17', '18', '19','20', '21', '22', '23'] dow = [ 'SUN', 'MON', 'TUES', 'WED', 'THUR','FRI','SAT'] ax = sns.heatmap(grouped_data, xticklabels=hour_of_day,yticklabels=dow,cbar_kws={'label': 'Number Of Orders Made/1000'}) cbar = ax.collections[0].colorbar cbar.set_ticks([0, 10000, 20000, 30000, 40000, 50000]) cbar.set_ticklabels(['0','10.0','20.0','30.0','40.0','50.0']) ax.figure.axes[-1].yaxis.label.set_size(15) ax.figure.axes[0].yaxis.label.set_size(15) ax.figure.axes[0].xaxis.label.set_size(15) ax.set(xlabel='Hour of Day', ylabel= "Day of the Week") ax.set_title("Number of orders made by Day of the Week vs Hour of Day", fontsize=15) plt.show() grouped_data = orders.groupby(["order_dow", "order_hour_of_day"])["order_number"].aggregate("count").reset_index() grouped_data = grouped_data.pivot('order_dow', 'order_hour_of_day', 'order_number') grouped_data.index = pd.CategoricalIndex(grouped_data.index, categories=[0,1,2,3,4,5,6]) grouped_data.sort_index(level=0, inplace=True) plt.figure(figsize=(12,6)) hour_of_day = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14','15','16', '17', '18', '19','20', '21', '22', '23'] dow = [ 'SUN', 'MON', 'TUES', 'WED', 'THUR','FRI','SAT'] ax = sns.heatmap(np.log(grouped_data), xticklabels=hour_of_day,yticklabels=dow,cbar=False) cbar = ax.collections[0].colorbar ax.figure.axes[-1].yaxis.label.set_size(15) ax.figure.axes[0].yaxis.label.set_size(15) ax.figure.axes[0].xaxis.label.set_size(15) ax.set(xlabel='Hour of Day', ylabel= "Day of the Week") ax.set_title("Number of orders made by Day of the Week vs Hour of Day (Log Scale)", fontsize=15) plt.show() def generateWordCloud(path_to_dataset): """ Generates word cloud. :param path_to_dataset: path to dataset :type path_to_dataset: str """ assert isinstance(path_to_dataset, str) from wordcloud import WordCloud import pandas as pd import matplotlib.pyplot as plt product_path = path_to_dataset + "/products.csv" aisles_path = path_to_dataset + "/aisles.csv" departments_path = path_to_dataset + "/departments.csv" order_product_prior_path = path_to_dataset + "/order_products__prior.csv" df_products = pd.read_csv(product_path) df_aisles = pd.read_csv(aisles_path) df_departments = pd.read_csv(departments_path) df_order_products_prior = pd.read_csv(order_product_prior_path) # Merge Prior orders, Product, Aisle and Department df_order_products_prior_merged = pd.merge( pd.merge(pd.merge(df_order_products_prior, df_products, on="product_id", how="left"), df_aisles, on="aisle_id", how="left"), df_departments, on="department_id", how="left") # Top N products by frequency top_products = df_order_products_prior_merged["product_name"].value_counts() d = top_products.to_dict() wordcloud = WordCloud(background_color='white') wordcloud.generate_from_frequencies(frequencies=d) plt.figure(figsize = (8,8)) plt.imshow(wordcloud, interpolation="bilinear") plt.axis("off") plt.show() def no_of_orders(path_to_data = './instacart-market-basket-analysis'): """ pass path to orders.csv """ bins = 10 path = path_to_data + '/orders.csv' import numpy as np # linear algebra import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.mlab as mlab import seaborn as sns from scipy.optimize import curve_fit from IPython.display import display, HTML orders = pd.read_csv(path) sns.set_style('dark') customer_no = orders.groupby("user_id", as_index = False)["order_number"].max() n, bins, patches = plt.hist(customer_no["order_number"] , bins, color='blue', alpha=0.5) plt.xlabel("No. of Orders") plt.ylabel("Count") plt.title("Number of Orders per Customer") def freq_product(path1 = "./instacart-market-basket-analysis/order_products__train.csv",path2 = "./instacart-market-basket-analysis/order_products__prior.csv" , path3 = "./instacart-market-basket-analysis/products.csv"): import numpy as np # linear algebra import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.mlab as mlab import seaborn as sns from scipy.optimize import curve_fit from IPython.display import display, HTML order_products_train =
pd.read_csv(path1)
pandas.read_csv
#-------------------------------------------------------------- # By <NAME> # Painted Harmony Group, Inc # June 22, 2017 # Please See LICENSE.txt #-------------------------------------------------------------- import pandas as pd import dateparser import datetime class TrumpTweetUtilities(): def count_rows_group_by_date(self, dataframe, date_col): #df = pd.DataFrame(dataframe[date_col].astype("datetime64")) counts = dataframe.groupby(dataframe[date_col].dt.date).count() dateArray = [] countArray = [] for index, row in counts.iterrows(): dateArray.append(index) countArray.append(row[-1]) newdf =
pd.DataFrame(index=dateArray, data=countArray)
pandas.DataFrame
from flask import Blueprint, jsonify, render_template from requests import get import pandas as pd # Create a blueprint for the REST API rest_bp = Blueprint( 'api', __name__, template_folder="templates", static_folder="static", ) """ API endpoints for world data """ # All available data, for all countries world_summary = get("https://api.covid19api.com/summary").json() # Route for API docs page @rest_bp.route('/api/docs') def api_docs(): return render_template("apidocs.html", title="API Documentation") @rest_bp.route('/api/world/summary/', methods=["GET"]) def world_api_summary(): df = pd.DataFrame(world_summary['Countries']).drop(["Premium"], axis=1) # Show totals for all columns total = df.sum(axis=0) # Convert the DataFrame to a dictionary df_dict = df.to_dict(orient='records') return jsonify(df_dict) # Get historic data for a country @rest_bp.route('/api/world/<string:country>/') def country_api_history(country): # Define API endpoint, and fetch data endpoint = get(f'https://api.covid19api.com/total/country/{country}') data = endpoint.json() df = pd.DataFrame(data).sort_values(by="Date", ascending=False) df_dict = df.to_dict(orient="records") return jsonify(df_dict) @rest_bp.route('/api/world/percentages/') def world_api_percentages(): df = pd.DataFrame(world_summary["Countries"]) names = df["Country"] cases_percentages = round(df['TotalConfirmed'].div( world_summary['Global']['TotalConfirmed']), 2) deaths_percentages = round(df['TotalDeaths'].div( world_summary['Global']['TotalDeaths']), 2) recoveries_percentages = round(df['TotalRecovered'].div( world_summary['Global']['TotalRecovered']), 2) new_cases = round(df['NewConfirmed'].div( world_summary['Global']['NewConfirmed']), 2) new_deaths = round(df['NewDeaths'].div( world_summary['Global']['NewDeaths']), 2) new_recoveries = round(df['NewRecovered'].div( world_summary['Global']['NewRecovered']), 2) df_list = [names, cases_percentages, deaths_percentages, recoveries_percentages, new_cases, new_deaths, new_recoveries] merged_df = pd.concat(df_list, axis=1) merged_df_dict = merged_df.to_dict(orient='records') return jsonify(merged_df_dict) @rest_bp.route('/api/world/demographic/') def world_api_demographic(): data = get("https://covid.ourworldindata.org/data/owid-covid-data.json").json() df =
pd.DataFrame(data)
pandas.DataFrame
import numpy as np import pandas as pd import glob import os import re import pickle from tqdm import tqdm from sklearn.metrics import r2_score from numba_functions import * # Data loaders def load_trade_by_id(stock_id): parquet_path = glob.glob(f'./dataset/trade_train.parquet/stock_id={stock_id}/*')[0] df = pd.read_parquet(parquet_path) return df def load_book_by_id(stock_id): parquet_path = glob.glob(f'./dataset/book_train.parquet/stock_id={stock_id}/*')[0] df = pd.read_parquet(parquet_path) return df def load_train_by_id(stock_id): df = pd.read_csv(f'./dataset/train_/stock_id_{stock_id}.csv') return df def get_path_by_id(type, stock_id): if type in ['book', 'trade']: return glob.glob(f'./dataset/{type}_train.parquet/stock_id={stock_id}/*')[0] else: print(f'Invalid type: {type}') return None def load_trade(): df_train = pd.read_csv('./dataset/train.csv') stock_ids = df_train.stock_id.unique().tolist() df_list = [] for stock_id in tqdm(stock_ids): parquet_path = glob.glob(f'./dataset/trade_train.parquet/stock_id={stock_id}/*')[0] df = pd.read_parquet(parquet_path) df['stock_id'] = stock_id df_list.append(df) df_trade = pd.concat(df_list, ignore_index=True) return df_trade def load_book(): df_book =
pd.read_csv('./dataset/train.csv')
pandas.read_csv
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn import math from sklearn import metrics from collections import Iterable from sklearn.cluster import KMeans from scipy import optimize as sco import datetime as dt import vnpy.analyze.data.data_prepare as dp try: from data_provider.nestlib.progress_bar import ProgressBar is_online = True def progress_map(func, iterator): bar = ProgressBar(max_value=len(iterator)) bar.start() wrapped_iterator = map(func, iterator) results = [] for i, _ in enumerate(wrapped_iterator): results.append(_) bar.update(i + 1) return results except ImportError: is_online = False from tqdm import tqdm def progress_map(func, iterator, desc=None): with tqdm(iterator, desc=desc, ncols=100) as bar: results = [] for i in bar: bar.set_postfix_str(str(i)) results.append(func(i)) return results class StraightLine(): def __init__(self, x1=None, y1=None, x2=None, y2=None, slope=None): if slope is not None: self.slope = slope else: if x1 == x2: self.slope = np.nan else: self.slope = (y2 - y1) / (x2 - x1) self.intercept = y1 - self.slope * x1 def point_distance(self, x0, y0): return abs(self.slope * x0 - y0 + self.intercept) / math.sqrt(self.slope ** 2 + 1) def is_point_above_line(self, x0, y0): pred_y = x0 * self.slope + self.intercept if pred_y == y0: print('直线 y = {self.slope}x + {self.intercept} 穿过点({x0}, {y0})') import ipdb; ipdb.set_trace() return y0 > pred_y def predict(self, x_list, limit=None): if not isinstance(x_list, Iterable): x_list = [x_list] results = [self.slope * _ + self.intercept for _ in x_list] if len(results) == 1: return results[0] if limit is not None: results = [ _ if _ > min(limit) and _ < max(limit) else np.nan for _ in results ] return results def clustering_kmeans(num_list, thresh=0.03): # 阻力位或者支撑位序列从1-序列个数开始聚类 k_rng = range(1, len(num_list) + 1) est_arr = [ KMeans(n_clusters=k).fit([[num] for num in num_list]) for k in k_rng ] # 各个分类器的距离和 sum_squares = [e.inertia_ for e in est_arr] # 相对于1个类的分类器的距离和的比例 diff_squares = [squares / sum_squares[0] for squares in sum_squares] diff_squares_pd = pd.Series(diff_squares) # 根据阈值设置选择分类器 thresh_pd = diff_squares_pd[diff_squares_pd < thresh] if len(thresh_pd) > 0: select_k = thresh_pd.index[0] + 1 else: # 没有符合的,就用最多的分类器 select_k = k_rng[-1] est = est_arr[select_k - 1] results = est.predict([[num] for num in num_list]) return results class SupportResistanceLine(): def __init__(self, data, kind='support'): if not isinstance(data, pd.Series): raise TypeError('data必须为pd.Series格式') self.y = data.copy() self.x = np.arange(0, len(data)) df = pd.DataFrame(columns=['x', 'y']) df.x = self.x df.y = self.y df.set_index(['x'], inplace=True) df.index.name = None # 去掉索引列名 self.df = df self.kind = kind self.dot_color = 'g' if kind == 'support' else 'r' def find_best_poly(self, poly_min=1, poly_max=100, show=False): """ 寻找最佳拟合次数 :param poly_min: 最小拟合次数 :param poly_max: 最大拟合次数 :param show: 是否展示 :return: """ df = self.df rolling_window = int(len(self.y) / 30) df['y_roll_mean'] = df['y'].rolling(rolling_window, min_periods=1).mean() # 度量原始y值和均线y_roll_mean的距离distance_mean distance_mean = np.sqrt(metrics.mean_squared_error(df.y, df.y_roll_mean)) poly = poly_min while poly < poly_max: # 迭代计算1-100poly次regress_xy_polynomial的拟合曲线y_fit p = np.polynomial.Chebyshev.fit(self.x, self.y, poly) y_fit = p(self.x) distance_fit = np.sqrt(metrics.mean_squared_error(df.y, y_fit)) # 使用metrics_func方法度量原始y值和拟合回归的趋势曲线y_fit的距离distance_fit if distance_fit <= distance_mean * 0.6: # 如果distance_fit <= distance_mean* 0.6即代表拟合曲线可以比较完美的代表原始曲线y的走势,停止迭代 df[f'poly_{poly}'] = y_fit break poly += 1 self.best_poly = poly self.p = p self.df['best_poly'] = y_fit if show: fig, ax = plt.subplots(1, figsize=(16, 9)) df.plot(ax=ax, figsize=(16, 9), colormap='coolwarm') plt.show() def find_extreme_pos(self, show=False): """寻找极值点""" p = self.p # 求导函数的根 extreme_pos = [int(round(_.real)) for _ in p.deriv().roots()] extreme_pos = [_ for _ in extreme_pos if _ > 0 and _ < len(self.df)] # 通过二阶导数分拣极大值和极小值 second_deriv = p.deriv(2) min_extreme_pos = [] max_extreme_pos = [] for pos in extreme_pos: if second_deriv(pos) > 0: min_extreme_pos.append(pos) elif second_deriv(pos) < 0: max_extreme_pos.append(pos) self.min_extreme_pos = min_extreme_pos self.max_extreme_pos = max_extreme_pos if show: fig, ax = plt.subplots(1, figsize=(16, 9)) self.df.plot(ax=ax) ax.scatter(self.min_extreme_pos, [p(_) for _ in self.min_extreme_pos], s=50, c='g') ax.scatter(self.max_extreme_pos, [p(_) for _ in self.max_extreme_pos], s=50, c='r') plt.show() # 拟合极值点附近的真实极值 def find_real_extreme_points(self, show=False): # 寻找一个支撑点两边最近的压力点,或反之 def find_left_and_right_pos(pos, refer_pos): refer_sr = pd.Series(refer_pos) left_pos = refer_sr[refer_sr < pos].iloc[-1] if len(refer_sr[refer_sr < pos]) > 0 else 0 right_pos = refer_sr[refer_sr > pos].iloc[0] if len(refer_sr[refer_sr > pos]) > 0 else len(self.df) return left_pos, right_pos # 寻找一个拟合极值点附近的真实极值 def extreme_around(left_pos, right_pos): if self.kind == 'support': extreme_around_pos = self.y.iloc[left_pos:right_pos].idxmin() elif self.kind == 'resistance': extreme_around_pos = self.y.iloc[left_pos:right_pos].idxmax() # 如果附近的小值在边缘上,该点附近区间单调性较强,属于假极值,抛弃 if extreme_around_pos in (left_pos, right_pos): return 0 return extreme_around_pos extreme_pos = self.min_extreme_pos refer_pos = self.max_extreme_pos if self.kind == 'resistance': extreme_pos, refer_pos = refer_pos, extreme_pos support_resistance_pos = [] for index, pos in enumerate(extreme_pos): if pos in [0, len(self.df)]: continue left_pos, right_pos = find_left_and_right_pos(pos, refer_pos) support_resistance_pos.append( extreme_around(left_pos, right_pos) ) if 0 in support_resistance_pos: support_resistance_pos.remove(0) # 去重 support_resistance_pos = list(set(support_resistance_pos)) support_resistance_sr = pd.Series( self.df.y.loc[support_resistance_pos], index=support_resistance_pos ).sort_index() support_resistance_sr.index.name = 'x' support_resistance_df = support_resistance_sr.reset_index() self.support_resistance_df = support_resistance_df if show: self.show_line(support_resistance_df) return self.support_resistance_df def cluster_nearest_support_resistance_pos(self, show=False, inplace=True): def clustering_nearest(num_list, thresh=len(self.df) / 80): sr = pd.Series(num_list).sort_values().reset_index(drop=True) while sr.diff().min() < thresh: index1 = sr.diff().idxmin() index2 = index1 - 1 num1 = sr[index1] num2 = sr[index2] y1 = self.df['y'].iloc[num1] y2 = self.df['y'].iloc[num2] smaller_y_index = index1 if y1 < y2 else index2 bigger_y_index = index1 if y1 > y2 else index2 sr = sr.drop(bigger_y_index if self.kind == 'support' else smaller_y_index).reset_index(drop=True) return sr.tolist() clustered_pos = clustering_nearest(self.support_resistance_df['x'].tolist()) support_resistance_df = self.support_resistance_df[self.support_resistance_df['x'].isin(clustered_pos)].copy() if show: self.show_line(support_resistance_df) if inplace: self.support_resistance_df = support_resistance_df return support_resistance_df def cluster_kmeans_support_resistance_pos(self, show=False, inplace=True): # 聚类 support_resistance_df = self.support_resistance_df.copy() support_resistance_df['cluster'] = clustering_kmeans(support_resistance_df.x, 0.001) print( f"共{len(support_resistance_df)}个极值点,聚类为{support_resistance_df['cluster'].max() + 1}个类" ) def extreme_in_cluster(cluster_df): if self.kind == 'support': cluster_df['is_extreme'] = cluster_df['y'] == cluster_df['y'].min() else: cluster_df['is_extreme'] = cluster_df['y'] == cluster_df['y'].max() return cluster_df # 只保留每个类的最小值 support_resistance_df = support_resistance_df.groupby('cluster').apply(extreme_in_cluster) support_resistance_df = support_resistance_df[support_resistance_df['is_extreme']].drop('is_extreme', axis=1) if show: self.show_line(support_resistance_df) if inplace: self.support_resistance_df = support_resistance_df return support_resistance_df def score_lines_from_a_point(self, last_support_resistance_pos): # 只考虑该点之前的点 support_resistance_df = self.support_resistance_df[ (self.support_resistance_df['x'] <= last_support_resistance_pos['x']) # & (self.support_resistance_df['x'] >= len(self.df) * 0.25) ].copy() if len(support_resistance_df) <= 2: return
pd.DataFrame()
pandas.DataFrame
import os from os.path import join import time import pandas as pd import numpy as np import pickle import warnings # from matplotlib import pyplot as plt import argparse import logging import csv import sys import ujson as ujson from bs4 import BeautifulSoup import re from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer import nltk.data from gensim.models import Word2Vec, KeyedVectors, LdaMulticore from sklearn.cluster import KMeans from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import CountVectorizer import scipy.spatial.distance as dist warnings.simplefilter("ignore") output_dir = 'output' save_dir = 'TC_saveFolder' input_file = '' load = True save = True verbose = False np.random.seed(0) # Word2Vec Parameters remove_stopwords = True stemming = True pretrained = False num_features = 300 # Word vector dimensionality min_word_count = 50 # Minimum word count num_workers = 4 # Number of threads to run in parallel context = 5 # Context window size downsampling = 1e-4 # Downsample setting for frequent words # LDA Parameters num_topics = 100 workers = 3 # KMeans Parameters n_clusters = 100 n_init = 10 # Relevancy Parameters rel_threshold = 1 def parse_arguments(): parser = argparse.ArgumentParser(description="Parameters specify where/how files are saved. \n" "This program takes as input a csv,tsv, or json file and outputs stuff.") parser.add_argument('input_file', type=str, default=input_file) parser.add_argument('output_dir', type=str, default=output_dir) parser.add_argument('--save', '-s', action='store_true', default=True, help='saves intermediary files to save_dir') parser.add_argument('--load', '-l', action='store_true', default=True, help='loads intermediary files automatically if available') parser.add_argument('--fresh', '-f', action='store_true', default=False, help='sets loading and saving to false, overwriting existing files') parser.add_argument('--verbose', '-v', action='store_true', default=False, help='prints program progress') parser.add_argument('--save_dir', type=str, default=join(output_dir, save_dir)) args = parser.parse_args() if args.fresh: args.save = False args.load = False return args def mkdir(dirPath): if not os.path.exists(dirPath): os.makedirs(dirPath) else: print("WARNING: Directory {} already exists. Data may be overwritten if 'load' option is disabled.".format( dirPath), flush=True) if not load: print("You have 3 seconds to terminate program...", flush=True) time.sleep(3) def text_to_wordlist(text, remove_stopwords=remove_stopwords, stemming=stemming): # Function to convert a document to a sequence of words, # optionally removing stop words. Returns a list of words. # # 1. Remove HTML review_text = BeautifulSoup(text).get_text() # # 2. Remove non-letters review_text = re.sub("[^a-zA-Z]", " ", review_text) # # 3. Convert words to lower case and split them words = review_text.lower().split() # # 4. Optionally remove stop words (false by default) if remove_stopwords: stops = set(stopwords.words("english")) words = [w for w in words if not w in stops] # # 5. Optionally stem topically similar words if stemming: p_stemmer = PorterStemmer() for i in range(len(words)): try: words[i] = p_stemmer.stem(words[i]) except: pass return [words] def text_to_sentences(text, tokenizer, remove_stopwords=remove_stopwords, stemming=stemming): # Function to split a review into parsed sentences. Returns a # list of sentences, where each sentence is a list of words # # 1. Use the NLTK tokenizer to split the paragraph into sentences # raw_sentences = tokenizer.tokenize(review.decode('utf-8').strip()) raw_sentences = tokenizer.tokenize(str(text).strip()) # # 2. Loop over each sentence sentences = [] for raw_sentence in raw_sentences: # If a sentence is empty, skip it if len(raw_sentence) > 0: # Otherwise, call review_to_wordlist to get a list of words sentences += text_to_wordlist(raw_sentence, remove_stopwords=remove_stopwords, stemming=stemming) # # Return the list of sentences (each sentence is a list of words, # so this returns a list of lists return sentences def wordlists_to_words(wordlists, saveAs='', stemming=stemming): if load: if os.path.exists(saveAs): if verbose: newprint("Loaded corpus.") # return pickle.load(open(saveAs, 'rb')) words = [] for wordlist in wordlists: for word in wordlist: words.append(word) words = set(words) if stemming: p_stemmer = PorterStemmer() for i in range(len(words)): try: words[i] = p_stemmer.stem(words[i]) except: pass words = set(words) if saveAs != '': pickle.dump(words, open(saveAs, 'wb')) return words def newprint(string): print(string, flush=True) sys.stdout.flush() def train_Word2Vec(sentences, saveAs=''): model = Word2Vec(sentences, workers=num_workers, \ size=num_features, min_count=min_word_count, \ window=context, sample=downsampling, seed=1, iter=10) # If you don't plan to train the model any further, calling # init_sims will make the model much more memory-efficient. model.init_sims(replace=True) # It can be helpful to create a meaningful model name and # save the model for later use. You can load it later using Word2Vec.load() if save: model.save(join(output_dir, save_dir, 'w2v_Model.w2v')) dictionary = KeyedVector_to_Dict(model.wv, saveAs=saveAs) return dictionary def KeyedVector_to_Dict(kv, saveAs=''): words = set(kv.index2word) dict = {} for word in words: dict[word] = kv[word] if saveAs != '' and save: pickle.dump(dict, open(saveAs, 'wb')) return dict def load_GoogleWords(words, saveAs=''): firstStart = time.time() if verbose: newprint("Loading Google Word2Vec...") start = time.time() model = KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin', binary=True) if verbose: newprint("Finished loading in {} seconds. Generating Dictionary...".format(time.time() - start)) start = time.time() dictionary = {} missing_words = 0 for word in words: try: dictionary[word] = model[word] except KeyError: missing_words += 1 # print("Word {} not in Google's Word2Vec dictionary.".format(word)) if verbose: newprint( "Finished generating dict in {} seconds.\n {} words were not found in Word2Vec dictionary. This usually includes people names and typos.".format( time.time() - start, missing_words)) if saveAs != '' and save: if verbose: newprint("Saving Model...") pickle.dump(dictionary, open(saveAs, 'wb')) if verbose: newprint("Finished loading words from Google Word2Vec in {} seconds.".format(time.time() - firstStart)) return dictionary def Dict_to_Matrix(dict, saveAs=''): items = sorted(dict.items()) N = len(items) M = len(items[0][1]) matrix = np.zeros((N, M)) for i in range(N): matrix[i, :] = items[i][1] if saveAs != '': pickle.dump(matrix, open(saveAs, 'wb')) return matrix def sort_clusters(clusters, wv, centroids): sorted_clusters = [] for i in range(len(clusters)): distances = [] for word in clusters[i]: distances += [dist.euclidean(wv[word], centroids[i])] sorted_clusters.append([words for (dists, words) in sorted(zip(distances, clusters[i]))]) return sorted_clusters def save_Cluster(cluster_list, saveAs): with open(saveAs, 'w') as f: writer = csv.writer(f) writer.writerows(cluster_list) def get_bagOfCentroids(reviews, word_centroid_map): num_reviews = len(reviews) num_centroids = max(word_centroid_map.values()) + 1 bag_matrix = np.zeros((num_reviews, num_centroids), dtype='float32') for i in range(num_reviews): for word in reviews[i]: if word in word_centroid_map: index = word_centroid_map[word] bag_matrix[i, index] += 1 return bag_matrix def load_file(filePath): # file = pd.read_csv() fileType = filePath.split(".")[-1] # TWITTER if fileType == 'csv': data = pd.read_csv(filePath, header=0, delimiter=",", quoting=3) dictionary = dict(zip(data['id'], data['review'])) return dictionary def load_file2(filePath): # file = pd.read_csv() fname, ext = os.path.splitext(filePath) dictionary = {} if ext == '.json': data = ujson.loads(open(filePath).read()) for d1 in data: sid = d1.get('SubmissionID') dictionary[sid] = d1.get('SubmissionTitle') com = d1.get("Comments") for d2 in com: cid = d2.get("CommentID") dictionary[cid] = d2.get('CommentText') elif ext == '.csv' or ext == '.tsv': data = pd.read_csv(filePath, header=0, delimiter=",", quoting=3, encoding='latin1') for row in data.itertuples(): if (not (pd.isnull(row.id) or
pd.isnull(row.text)
pandas.isnull
# Based on https://www.kaggle.com/tunguz/logistic-regression-with-words-and-char-n-grams/ import os import sys import pprint import logging from collections import defaultdict from datetime import datetime from unidecode import unidecode import numpy as np from numpy.random import RandomState import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression import joblib import common import base logger = logging.getLogger(__name__) class NGram(base.BaseModel): def main(self): t_start = datetime.now() logger.info(' {} / {} '.format(self.name, self.random_seed).center(62, '=')) logger.info('Hyperparameters:\n{}'.format(pprint.pformat(self.params))) if os.path.isfile(os.path.join(self.output_dir, 'test.csv')): logger.info('Output already exists - skipping') return # Initialize the random number generator self.random_state = RandomState(self.random_seed) np.random.seed(int.from_bytes(self.random_state.bytes(4), byteorder=sys.byteorder)) train_df = common.load_data('train') train_df['comment_text'] = train_df['comment_text'].apply(unidecode) test_df = common.load_data('test') test_df['comment_text'] = test_df['comment_text'].apply(unidecode) vectorizer = self.build_vectorizer(train_df, test_df) folds = common.stratified_kfold(train_df, random_seed=self.random_seed) for fold_num, train_ids, val_ids in folds: logger.info(f'Fold #{fold_num}') fold_train_df = train_df[train_df['id'].isin(train_ids)] fold_val_df = train_df[train_df['id'].isin(val_ids)] models = self.train(fold_num, vectorizer, fold_train_df, fold_val_df) logger.info('Generating the out-of-fold predictions') path = os.path.join(self.output_dir, f'fold{fold_num}_validation.csv') self.predict(models, vectorizer, fold_val_df, path) logger.info('Generating the test predictions') path = os.path.join(self.output_dir, f'fold{fold_num}_test.csv') self.predict(models, vectorizer, test_df, path) logger.info('Combining the out-of-fold predictions') df_parts = [] for fold_num in range(1, 11): path = os.path.join(self.output_dir, f'fold{fold_num}_validation.csv') df_part = pd.read_csv(path, usecols=['id'] + common.LABELS) df_parts.append(df_part) train_pred = pd.concat(df_parts) path = os.path.join(self.output_dir, 'train.csv') train_pred.to_csv(path, index=False) logger.info('Averaging the test predictions') df_parts = [] for fold_num in range(1, 11): path = os.path.join(self.output_dir, f'fold{fold_num}_test.csv') df_part =
pd.read_csv(path, usecols=['id'] + common.LABELS)
pandas.read_csv
import pytest import pytz import dateutil import numpy as np from datetime import datetime from dateutil.tz import tzlocal import pandas as pd import pandas.util.testing as tm from pandas import (DatetimeIndex, date_range, Series, NaT, Index, Timestamp, Int64Index, Period) class TestDatetimeIndex(object): def test_astype(self): # GH 13149, GH 13209 idx = DatetimeIndex(['2016-05-16', 'NaT', NaT, np.NaN]) result = idx.astype(object) expected = Index([Timestamp('2016-05-16')] + [NaT] * 3, dtype=object) tm.assert_index_equal(result, expected) result = idx.astype(int) expected = Int64Index([1463356800000000000] + [-9223372036854775808] * 3, dtype=np.int64) tm.assert_index_equal(result, expected) rng = date_range('1/1/2000', periods=10) result = rng.astype('i8') tm.assert_index_equal(result, Index(rng.asi8)) tm.assert_numpy_array_equal(result.values, rng.asi8) def test_astype_with_tz(self): # with tz rng = date_range('1/1/2000', periods=10, tz='US/Eastern') result = rng.astype('datetime64[ns]') expected = (date_range('1/1/2000', periods=10, tz='US/Eastern') .tz_convert('UTC').tz_localize(None)) tm.assert_index_equal(result, expected) # BUG#10442 : testing astype(str) is correct for Series/DatetimeIndex result = pd.Series(pd.date_range('2012-01-01', periods=3)).astype(str) expected = pd.Series( ['2012-01-01', '2012-01-02', '2012-01-03'], dtype=object) tm.assert_series_equal(result, expected) result = Series(pd.date_range('2012-01-01', periods=3, tz='US/Eastern')).astype(str) expected = Series(['2012-01-01 00:00:00-05:00', '2012-01-02 00:00:00-05:00', '2012-01-03 00:00:00-05:00'], dtype=object)
tm.assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
import numpy as np import matplotlib.pyplot as plt import pandas as pd #For User 1 User_1 = pd.read_csv('acceleration_labelled_data.csv') User_1 = pd.DataFrame(User_1.iloc[:, 1:6].values) User_1.columns = ["Activity", "Timeframe", "X axis", "Y axis", "Z axis"] User_1["Timeframe"] = User_1["Timeframe"] - 0.017856 """Export_csv = User_1.to_csv(r'/Users/talhajamal/Documents/Year 3/Individual Project/Files for project/User_1.csv') """ #For User 2 User_2 = pd.read_csv('acceleration.csv') User_2 = pd.DataFrame(User_2.iloc[:, 0:4].values) User_2.columns = ["Timeframe", "X axis", "Y axis", "Z axis"] User_2.insert(0, "Activity", "", True) User_2_annotations = pd.read_csv('annotations_0.csv') #adding timedifference column User_2.insert(5, "Timedifference", "", True) User_2 = User_2.to_numpy() for i in range(1, 33442): User_2[i][5] = User_2[i][1] - User_2[i-1][1] User_2 = pd.DataFrame(User_2) User_2.columns = ["Activity","Timeframe", "X axis", "Y axis", "Z axis", "Timedifference"] User_2 = User_2.to_numpy() User_2_annotations = User_2_annotations.to_numpy() for i in range(0, 337): for j in range(0, 33442): if (User_2[j][1] > User_2_annotations[i][0]) and (User_2[j][1] < User_2_annotations[i][1]): User_2[j][0] = User_2_annotations[i][2] User_2 = pd.DataFrame(User_2) User_2.columns = ["Activity","Timeframe", "X axis", "Y axis", "Z axis", "Timedifference"] #dropping empty dataframes at start and end User_2 = User_2.iloc[446:32897,] #exporting file Export_User2_csv = User_2.to_csv(r'/Users/talhajamal/Documents/Year 3/Individual Project/Files for project/User_2.csv') #For User 3 User_3 = pd.read_csv('acceleration.csv') User_3 = pd.DataFrame(User_3.iloc[:, 0:4].values) User_3.columns = ["Timeframe", "X axis", "Y axis", "Z axis"] User_3.insert(0, "Activity", "", True) User_3_annotations = pd.read_csv('annotations_0.csv') #adding timedifference column User_3.insert(5, "Timedifference", "", True) User_3 = User_3.to_numpy() for i in range(1, len(User_3)): User_3[i][5] = User_3[i][1] - User_3[i-1][1] User_3 = pd.DataFrame(User_3) User_3.columns = ["Activity","Timeframe", "X axis", "Y axis", "Z axis", "Timedifference"] User_3 = User_3.to_numpy() User_3_annotations = User_3_annotations.to_numpy() for i in range(0, len(User_3_annotations)): for j in range(0, len(User_3)): if (User_3[j][1] > User_3_annotations[i][0]) and (User_3[j][1] < User_3_annotations[i][1]): User_3[j][0] = User_3_annotations[i][2] User_3 = pd.DataFrame(User_3) User_3.columns = ["Activity","Timeframe", "X axis", "Y axis", "Z axis", "Timedifference"] User_3_annotations = pd.DataFrame(User_3_annotations) User_3_annotations.columns = ["Start", "End", "Activity", "Type"] #dropping empty dataframes at start and end User_3 = User_3.iloc[1604:31228,] #exporting file Export_User3_csv = User_3.to_csv(r'/Users/talhajamal/Documents/Year 3/Individual Project/Files for project/Final Training Dataset/User_3.csv') #For User 4 User_4 = pd.read_csv('acceleration.csv') User_4 = pd.DataFrame(User_4.iloc[:, 0:4].values) User_4.columns = ["Timeframe", "X axis", "Y axis", "Z axis"] User_4.insert(0, "Activity", "", True) User_4_annotations = pd.read_csv('annotations_0.csv') #adding timedifference column User_4.insert(5, "Timedifference", "", True) User_4 = User_4.to_numpy() for i in range(1, len(User_4)): User_4[i][5] = User_4[i][1] - User_4[i-1][1] User_4 = pd.DataFrame(User_4) User_4.columns = ["Activity","Timeframe", "X axis", "Y axis", "Z axis", "Timedifference"] User_4 = User_4.to_numpy() User_4_annotations = User_4_annotations.to_numpy() for i in range(0, len(User_4_annotations)): for j in range(0, len(User_4)): if (User_4[j][1] > User_4_annotations[i][0]) and (User_4[j][1] < User_4_annotations[i][1]): User_4[j][0] = User_4_annotations[i][2] User_4 = pd.DataFrame(User_4) User_4.columns = ["Activity","Timeframe", "X axis", "Y axis", "Z axis", "Timedifference"] User_4_annotations = pd.DataFrame(User_4_annotations) User_4_annotations.columns = ["Start", "End", "Activity", "index"] #dropping empty dataframes at start and end User_4 = User_4.iloc[562:30679,] #exporting file Export_User4_csv = User_4.to_csv(r'/Users/talhajamal/Documents/Year 3/Individual Project/Files for project/Final Training Dataset/User_4.csv') #For User 5 User_5 = pd.read_csv('acceleration.csv') User_5 = pd.DataFrame(User_5.iloc[:, 0:4].values) User_5.columns = ["Timeframe", "X axis", "Y axis", "Z axis"] User_5.insert(0, "Activity", "", True) User_5_annotations = pd.read_csv('annotations_0.csv') #adding timedifference column User_5.insert(5, "Timedifference", "", True) User_5 = User_5.to_numpy() for i in range(1, len(User_5)): User_5[i][5] = User_5[i][1] - User_5[i-1][1] User_5 = pd.DataFrame(User_5) User_5.columns = ["Activity","Timeframe", "X axis", "Y axis", "Z axis", "Timedifference"] User_5 = User_5.to_numpy() User_5_annotations = User_5_annotations.to_numpy() for i in range(0, len(User_5_annotations)): for j in range(0, len(User_5)): if (User_5[j][1] > User_5_annotations[i][0]) and (User_5[j][1] < User_5_annotations[i][1]): User_5[j][0] = User_5_annotations[i][2] User_5 = pd.DataFrame(User_5) User_5.columns = ["Activity","Timeframe", "X axis", "Y axis", "Z axis", "Timedifference"] User_5_annotations = pd.DataFrame(User_5_annotations) User_5_annotations.columns = ["Start", "End", "Activity", "index"] #dropping empty dataframes at start and end User_5 = User_5.iloc[950:30633,] #exporting file Export_User5_csv = User_5.to_csv(r'/Users/talhajamal/Documents/Year 3/Individual Project/Files for project/Final Training Dataset/User_5.csv') #For User 6 User_6 = pd.read_csv('acceleration.csv') User_6 = pd.DataFrame(User_6.iloc[:, 0:4].values) User_6.columns = ["Timeframe", "X axis", "Y axis", "Z axis"] User_6.insert(0, "Activity", "", True) User_6_annotations = pd.read_csv('annotations_0.csv') #adding timedifference column User_6.insert(5, "Timedifference", "", True) User_6 = User_6.to_numpy() for i in range(1, len(User_6)): User_6[i][5] = User_6[i][1] - User_6[i-1][1] User_6 = pd.DataFrame(User_6) User_6.columns = ["Activity","Timeframe", "X axis", "Y axis", "Z axis", "Timedifference"] User_6 = User_6.to_numpy() User_6_annotations = User_6_annotations.to_numpy() for i in range(0, len(User_6_annotations)): for j in range(0, len(User_6)): if (User_6[j][1] > User_6_annotations[i][0]) and (User_6[j][1] < User_6_annotations[i][1]): User_6[j][0] = User_6_annotations[i][2] User_6 = pd.DataFrame(User_6) User_6.columns = ["Activity","Timeframe", "X axis", "Y axis", "Z axis", "Timedifference"] User_6_annotations = pd.DataFrame(User_6_annotations) User_6_annotations.columns = ["Start", "End", "Activity", "index"] #dropping empty dataframes at start and end User_6 = User_6.iloc[717:17329,] #exporting file Export_User6_csv = User_6.to_csv(r'/Users/talhajamal/Documents/Year 3/Individual Project/Files for project/Final Training Dataset/User_6.csv') #For User 7 User_7 =
pd.read_csv('acceleration.csv')
pandas.read_csv
# %% import os import pandas as pd import numpy as np import datetime # %% CARGA DATOS 217065 MB1 = pd.read_excel(r'D:\Basededatos\Origen\BBDD AUTOMÓVILES 9 MILLONES\BBDD AUTOMÓVILES MERCEDES BENZ Y B.M.W. 1.xlsx', engine='openpyxl') # 99955 MB2 = pd.read_excel(r'D:\Basededatos\Origen\BBDD AUTOMÓVILES 9 MILLONES\BBDD AUTOMÓVILES MERCEDES BENZ Y B.M.W. 2.xlsx', engine='openpyxl') # 13024 MB3 = pd.read_excel(r'D:\Basededatos\Origen\BBDD AUTOMÓVILES 9 MILLONES\BBDD AUTOMÓVILES MERCEDES BENZ Y B.M.W. 3.xlsx', engine='openpyxl') # 13248 MB4 = pd.read_excel(r'D:\Basededatos\Origen\BBDD AUTOMÓVILES 9 MILLONES\BBDD AUTOMÓVILES MERCEDES BENZ Y B.M.W. 4.xlsx', engine='openpyxl') # 13248 MB5 =
pd.read_excel(r'D:\Basededatos\Origen\BBDD AUTOMÓVILES 9 MILLONES\BBDD AUTOMÓVILES MERCEDES BENZ Y B.M.W. 5.xlsx', engine='openpyxl')
pandas.read_excel
################################################################################ # The contents of this file are Teradata Public Content and have been released # to the Public Domain. # <NAME> & <NAME> - April 2020 - v.1.1 # Copyright (c) 2020 by Teradata # Licensed under BSD; see "license.txt" file in the bundle root folder. # ################################################################################ # R and Python TechBytes Demo - Part 5: Python in-nodes with SCRIPT # ------------------------------------------------------------------------------ # File: stoRFScoreMM.py # ------------------------------------------------------------------------------ # The R and Python TechBytes Demo comprises of 5 parts: # Part 1 consists of only a Powerpoint overview of R and Python in Vantage # Part 2 demonstrates the Teradata R package tdplyr for clients # Part 3 demonstrates the Teradata Python package teradataml for clients # Part 4 demonstrates using R in-nodes with the SCRIPT and ExecR Table Operators # Part 5 demonstrates using Python in-nodes with the SCRIPT Table Operator ################################################################################ # # This TechBytes demo utilizes a use case to predict the propensity of a # financial services customer base to open a credit card account. # # The present file is the Python scoring script to be used with the SCRIPT # table operator, as described in the following use case 2 of the present demo # Part 5: # # 2) Fitting and scoring multiple models # # We utilize the statecode variable as a partition to built a Random # Forest model for every state. This is done by using SCRIPT Table Operator # to run a model fitting script with a PARTITION BY statecode in the query. # This creates a model for each of the CA, NY, TX, IL, AZ, OH and Other # state codes, and perists the model in the database via CREATE TABLE AS # statement. # Then we run a scoring script via the SCRIPT Table Operator against # these persisted Random Forest models to score the entire data set. # # For this use case, we build an analytic data set nearly identical to the # one in the teradataml demo (Part 3), with one change as indicated by item # (d) below. This is so we can demonstrate the in-database capability of # simultaneously building many models. # 60% of the analytic data set rows are sampled to create a training # subset. The remaining 40% is used to create a testing/scoring dataset. # The train and test/score datasets are used in the SCRIPT operations. ################################################################################ # File Changelog # v.1.0 2019-10-29 First release # v.1.1 2020-04-02 Added change log; no code changes in present file ################################################################################ import sys import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier import pickle import base64 ### ### Read input ### delimiter = '\t' inputData = [] try: line = input() if line == '': # Exit if user provides blank line pass else: allArgs = line.split(delimiter) inputData.append(allArgs[0:-2]) modelSerB64 = allArgs[-1] except (EOFError): # Exit if reached EOF or CTRL-D pass while 1: try: line = input() if line == '': # Exit if user provides blank line break else: allArgs = line.split(delimiter) inputData.append(allArgs[0:-2]) except (EOFError): # Exit if reached EOF or CTRL-D break #for line in sys.stdin.read().splitlines(): # line = line.split(delimiter) # inputData.append(line) ### ### If no data received, gracefully exit rather than producing an error later. ### if not inputData: sys.exit() ## In the input information, all rows have the same number of column elements ## except for the first row. The latter also contains the model info in its ## last column. Isolate the serialized model from the end of first row. #modelSerB64 = inputData[0][-1] ### ### Set up input DataFrame according to input schema ### # Know your data: You must know in advance the number and data types of the # incoming columns from the database! # For numeric columns, the database sends in floats in scientific format with a # blank space when the exponential is positive; e.g., 1.0 is sent as 1.000E 000. # The following input data read deals with any such blank spaces in numbers. columns = ['cust_id', 'tot_income', 'tot_age', 'tot_cust_years', 'tot_children', 'female_ind', 'single_ind', 'married_ind', 'separated_ind', 'statecode', 'ck_acct_ind', 'sv_acct_ind', 'cc_acct_ind', 'ck_avg_bal', 'sv_avg_bal', 'cc_avg_bal', 'ck_avg_tran_amt', 'sv_avg_tran_amt', 'cc_avg_tran_amt', 'q1_trans_cnt', 'q2_trans_cnt', 'q3_trans_cnt', 'q4_trans_cnt', 'SAMPLE_ID'] df = pd.DataFrame(inputData, columns=columns) #df = pd.DataFrame.from_records(inputData, exclude=['nRow', 'model'], columns=columns) del inputData df['cust_id'] = pd.to_numeric(df['cust_id']) df['tot_income'] = df['tot_income'].apply(lambda x: "".join(x.split())) df['tot_income'] = pd.to_numeric(df['tot_income']) df['tot_age'] = pd.to_numeric(df['tot_age']) df['tot_cust_years'] = pd.to_numeric(df['tot_cust_years']) df['tot_children'] = pd.to_numeric(df['tot_children']) df['female_ind'] = pd.to_numeric(df['female_ind']) df['single_ind'] = pd.to_numeric(df['single_ind']) df['married_ind'] = pd.to_numeric(df['married_ind']) df['separated_ind'] = pd.to_numeric(df['separated_ind']) df['statecode'] = df['statecode'].apply(lambda x: x.replace('"', '')) df['ck_acct_ind'] = pd.to_numeric(df['ck_acct_ind']) df['sv_acct_ind'] = pd.to_numeric(df['sv_acct_ind']) df['cc_acct_ind'] = pd.to_numeric(df['cc_acct_ind']) df['sv_acct_ind'] = pd.to_numeric(df['sv_acct_ind']) df['cc_acct_ind'] = pd.to_numeric(df['cc_acct_ind']) df['ck_avg_bal'] = df['ck_avg_bal'].apply(lambda x: "".join(x.split())) df['ck_avg_bal'] = pd.to_numeric(df['ck_avg_bal']) df['sv_avg_bal'] = df['sv_avg_bal'].apply(lambda x: "".join(x.split())) df['sv_avg_bal'] = pd.to_numeric(df['sv_avg_bal']) df['cc_avg_bal'] = df['cc_avg_bal'].apply(lambda x: "".join(x.split())) df['cc_avg_bal'] = pd.to_numeric(df['cc_avg_bal']) df['ck_avg_tran_amt'] = df['ck_avg_tran_amt'].apply(lambda x: "".join(x.split())) df['ck_avg_tran_amt'] = pd.to_numeric(df['ck_avg_tran_amt']) df['sv_avg_tran_amt'] = df['sv_avg_tran_amt'].apply(lambda x: "".join(x.split())) df['sv_avg_tran_amt'] =
pd.to_numeric(df['sv_avg_tran_amt'])
pandas.to_numeric
# EIA_MECS.py (flowsa) # !/usr/bin/env python3 # coding=utf-8 import pandas as pd import numpy as np import io from flowsa.common import * from flowsa.flowbyfunctions import assign_fips_location_system import yaml """ MANUFACTURING ENERGY CONSUMPTION SURVEY (MECS) https://www.eia.gov/consumption/manufacturing/data/2014/ Last updated: 8 Sept. 2020 """ def eia_mecs_URL_helper(build_url, config, args): """ Takes the build url and performs substitutions based on the EIA MECS year and data tables of interest. Returns the finished url. """ # initiate url list urls = [] # for all tables listed in the source config file... for table in config['tables']: # start with build url url = build_url # replace '__year__' in build url url = url.replace('__year__', args['year']) # 2014 files are in .xlsx format; 2010 files are in .xls format if(args['year'] == '2010'): url = url[:-1] # replace '__table__' in build url url = url.replace('__table__', table) # add to list of urls urls.append(url) return urls def eia_mecs_land_call(url, cbesc_response, args): # Convert response to dataframe df_raw_data = pd.io.excel.read_excel(io.BytesIO(cbesc_response.content), sheet_name='Table 9.1') df_raw_rse = pd.io.excel.read_excel(io.BytesIO(cbesc_response.content), sheet_name='RSE 9.1') if (args["year"] == "2014"): df_rse = pd.DataFrame(df_raw_rse.loc[12:93]).reindex() df_data = pd.DataFrame(df_raw_data.loc[16:97]).reindex() df_description = pd.DataFrame(df_raw_data.loc[16:97]).reindex() # skip rows and remove extra rows at end of dataframe df_description.columns = ["NAICS Code(a)", "Subsector and Industry", "Approximate Enclosed Floorspace of All Buildings Onsite (million sq ft)", "Establishments(b) (counts)", "Average Enclosed Floorspace per Establishment (sq ft)", "Approximate Number of All Buildings Onsite (counts)", "Average Number of Buildings Onsite per Establishment (counts)", "n8", "n9", "n10", "n11", "n12"] df_data.columns = ["NAICS Code(a)", "Subsector and Industry", "Approximate Enclosed Floorspace of All Buildings Onsite (million sq ft)", "Establishments(b) (counts)", "Average Enclosed Floorspace per Establishment (sq ft)", "Approximate Number of All Buildings Onsite (counts)", "Average Number of Buildings Onsite per Establishment (counts)", "n8", "n9", "n10", "n11", "n12"] df_rse.columns = ["NAICS Code(a)", "Subsector and Industry", "Approximate Enclosed Floorspace of All Buildings Onsite (million sq ft)", "Establishments(b) (counts)", "Average Enclosed Floorspace per Establishment (sq ft)", "Approximate Number of All Buildings Onsite (counts)", "Average Number of Buildings Onsite per Establishment (counts)", "n8", "n9", "n10", "n11", "n12"] #Drop unused columns df_description = df_description.drop(columns=["Approximate Enclosed Floorspace of All Buildings Onsite (million sq ft)", "Establishments(b) (counts)", "Average Enclosed Floorspace per Establishment (sq ft)", "Approximate Number of All Buildings Onsite (counts)", "Average Number of Buildings Onsite per Establishment (counts)", "n8", "n9", "n10", "n11", "n12"]) df_data = df_data.drop(columns=["Subsector and Industry", "n8", "n9", "n10", "n11", "n12"]) df_rse = df_rse.drop(columns=["Subsector and Industry", "n8", "n9", "n10", "n11", "n12"]) else: df_rse = pd.DataFrame(df_raw_rse.loc[14:97]).reindex() df_data = pd.DataFrame(df_raw_data.loc[16:99]).reindex() df_description = pd.DataFrame(df_raw_data.loc[16:99]).reindex() df_description.columns = ["NAICS Code(a)", "Subsector and Industry", "Approximate Enclosed Floorspace of All Buildings Onsite (million sq ft)", "Establishments(b) (counts)", "Average Enclosed Floorspace per Establishment (sq ft)", "Approximate Number of All Buildings Onsite (counts)", "Average Number of Buildings Onsite per Establishment (counts)"] df_data.columns = ["NAICS Code(a)", "Subsector and Industry", "Approximate Enclosed Floorspace of All Buildings Onsite (million sq ft)", "Establishments(b) (counts)", "Average Enclosed Floorspace per Establishment (sq ft)", "Approximate Number of All Buildings Onsite (counts)", "Average Number of Buildings Onsite per Establishment (counts)"] df_rse.columns = ["NAICS Code(a)", "Subsector and Industry", "Approximate Enclosed Floorspace of All Buildings Onsite (million sq ft)", "Establishments(b) (counts)", "Average Enclosed Floorspace per Establishment (sq ft)", "Approximate Number of All Buildings Onsite (counts)", "Average Number of Buildings Onsite per Establishment (counts)"] # Drop unused columns df_description = df_description.drop( columns=["Approximate Enclosed Floorspace of All Buildings Onsite (million sq ft)", "Establishments(b) (counts)", "Average Enclosed Floorspace per Establishment (sq ft)", "Approximate Number of All Buildings Onsite (counts)", "Average Number of Buildings Onsite per Establishment (counts)"]) df_data = df_data.drop(columns=["Subsector and Industry"]) df_rse = df_rse.drop(columns=["Subsector and Industry"]) df_data = df_data.melt(id_vars=["NAICS Code(a)"], var_name="FlowName", value_name="FlowAmount") df_rse = df_rse.melt(id_vars=["NAICS Code(a)"], var_name="FlowName", value_name="Spread") df = pd.merge(df_data, df_rse) df =
pd.merge(df, df_description)
pandas.merge
import pandas as pd import glob import eyed3 import ctypes import numpy as np from datetime import datetime from utils.get_bpm import beats_per_minute from utils.top_level_locator import top_level_path from pathlib import Path from collections import Counter from pathlib import Path from pydub import AudioSegment class MusicDatabase: objects = [] def __init__(self): self.database_path = Path(top_level_path() / 'data' / 'music_database.json') self.rating = 75 self.sophisticated = 50 MusicDatabase.objects.append(self) self.db = self.load_database(self.database_path) def load_database(self, database_path): return pd.read_json(database_path) def save_database(self, mdb): mdb.to_json(self.database_path) def save_playlist_database(self, mdb, playlist_name): filepath = self.database_path.parent / f'playlists/{playlist_name + ".json"}' if filepath.is_file(): return False else: mdb.to_json(filepath) return True def update_value(self, col, old_val, new_val): # self.Mbox('Messagebox', 'Song already in database.', 0) print(10) if isinstance(old_val, int) and isinstance(new_val, int): return new_val if not isinstance(new_val, int) and isinstance(old_val, int): self.Mbox('Messagebox', f'In column: {col}, trying to replace old int value: {old_val}, with new string value: {new_val}', 0) if not isinstance(old_val, int) and isinstance(new_val, int): self.Mbox('Messagebox', f'In column: {col}, trying to replace old str value: {old_val}, with new int value: {new_val}', 0) print(11) if isinstance(old_val, str) and isinstance(new_val, str): return new_val print(12) if isinstance(old_val, str) and isinstance(new_val, list): if old_val not in new_val: return new_val.append(old_val) print(13) if isinstance(old_val, list) and isinstance(new_val, str): if new_val not in old_val: return old_val.append(new_val) print(15) if isinstance(old_val, list) and isinstance(new_val, list): if col == 'artist': print(16) return new_val return list(set().union(old_val, new_val)) print(17) def raw_to_formatted_metadata(self, meta): filename = meta['title'] meta['title'] = meta['title'].lower() # process [] () in title edges = [('[',']'), ('(',')')] annotations = ["Single", "EP", "Cover", "Remix", "Mashup"] feats = [' feat. ', ' feat ', ' ft. ', ' ft '] # process feat - END in title feat_ends = [' - ', ' | ', '!'] feat_seps = [' & ', ' + ', ' en '] artists = [] loops = 0 song_type = 'Single' featuring = None # PROCESS ALL EDGES TO MAKE TITLE EASIER TO PARSE for edge in edges: if Counter(meta['title'])[edge[0]] == Counter(meta['title'])[edge[1]]: loops += Counter(meta['title'])[edge[0]] for _ in range(max(1, loops)): if edge[0] in meta['title'] and edge[1] in meta['title']: i1 = meta['title'].find(edge[0]) i2 = meta['title'].find(edge[1]) + 1 before = meta['title'][:i1].strip() between = meta['title'][i1:i2] after = meta['title'][i2:] for anno in annotations: if anno in between: song_annotation = between song_type = anno print(song_type) for feat in feats: if feat in between: artist_annotation = between # TODO handle individual artists when feat found inside of edges meta['title'] = before + after # CHECK IF ANY FEATURINGS IN EDGES AND PROCESS ARTISTS HERE if any(feat in f' {between[1:len(between)-1]} ' for feat in feats): featuring = f' {between[1:len(between)-1]} ' for end in feat_ends: if meta['title'][:len(end)] == end: meta['title'] = meta['title'][len(end):] if meta['title'][len(end):] == end: meta['title'] = meta['title'][:len(end)] for feat in feats: if feat in meta['title']: i1 = meta['title'].find(feat) i1_feat = i1 + len(feat) for end in feat_ends: if end in meta['title'][i1_feat:]: i2 = meta['title'][i1_feat:].find(end) i2_end = i2 + len(end) if end == ' - ': i2_end = i2 break else: i2 = len(meta['title']) i2_end = len(meta['title']) between = meta['title'][i1_feat:i1_feat + i2] before = meta['title'][:i1].strip() after = meta['title'][i1_feat:][i2_end:len(meta['title'])] for sep in feat_seps: if sep in between: for artist in between.split(sep): artists.append(artist.strip()) if not any([sep in between for sep in feat_seps]): artists.append(between) meta['title'] = before + after if featuring != None and feat in featuring: i1 = featuring.find(feat) i1_feat = i1 + len(feat) i2_end = len(featuring) between = featuring[i1_feat:i1_feat + i2] # NOTE here go for sep in seps loop if sep found with feat inside () [] - i.e. multiple artists inside edge with seps artists.append(between.strip().title()) seps = [' - ', ' – ', ': ', ' & ', ' x ', ' by '] for sep in seps: if sep in meta['title']: artist = meta['title'].split(sep)[0] for sep2 in seps: if sep2 in artist: artists.append(artist.split(sep2)[1]) artist = artist.split(sep2)[0] try: artist += ' ' + artist_annotation except NameError: pass artists.insert(0, artist) # insert main artist to artists on first pos song = meta['title'].split(sep)[1] break else: if not any(sep in meta['title'] for sep in seps): artist = meta['title'] try: artist += ' ' + artist_annotation except NameError: pass artists.insert(0, artist) song = meta['title'] break artists_titles = [] for artist in artists: artists_titles.append(artist.title()) try: if song.startswith('"') and song.endswith('"'): song = song[1:len(song)-1] song += ' ' + song_annotation song_annotation = '' except NameError: pass print('filename:', filename) print('original:', filename.title()) print('Parsed title:', meta['title'].title()) print('song:', song.title()) print('artist(s):', *artists_titles, sep = ", ") print('\n') pre_dl_meta = { 'type': song_type, 'rating': 75, 'sophisticated': 50, 'vocal': None, 'language': None, 'instrument': None, 'genre': None, 'emotion': None, 'bpm': None, 'rationale': None} new_meta = { 'title': meta['title'], 'song': song.title(), 'artist': artists_titles, 'filepath': meta['filepath'], 'duration': meta['duration'], 'album': meta['album'], 'year_added': int(f'{datetime.today().year}0{datetime.today().month}{datetime.today().day}') if len(str(datetime.today().month)) == 1 else int(f'{datetime.today().year}{datetime.today().month}{datetime.today().day}'), 'release_year': int(meta['upload_date'][0:4]), 'youtube_url': meta['webpage_url'], 'tree_iid': meta['tree_iid'], **pre_dl_meta} return new_meta def metadata_to_database(self, meta, json): # url is better unique ID then filename or filepath (music/youtubeID.mp3, because what if youtube makes a change) url = meta['youtube_url'] dropped = False db = json # check if song in database if url in list(db['youtube_url']): # row_index = list(db['youtube_url']).index(url) # DEPRECATE row_index = db.youtube_url[db.youtube_url == url].index[0] for col in db.columns: old_value = db.at[row_index, col] # DEVNOTE: SET COLNAME FOR TESTING PURPOSES colname = 'rating' if col == colname: # TODO remove only this line after testing print('col:', col, '- row:', row_index, '- old_value:', old_value, '- new_value:', meta[col]) try: if not
pd.isna(old_value)
pandas.isna
# -*- coding: utf-8 -*- """Export Biomappings as SSSOM.""" import pathlib import bioregistry import click import yaml from biomappings import load_mappings, load_predictions from biomappings.utils import DATA, MiriamValidator DIRECTORY = pathlib.Path(DATA).joinpath("sssom") DIRECTORY.mkdir(exist_ok=True, parents=True) PATH = DIRECTORY.joinpath("biomappings.sssom.tsv") META_PATH = DIRECTORY.joinpath("biomappings.sssom.yml") META = { "license": "https://creativecommons.org/publicdomain/zero/1.0/", "mapping_provider": "https://github.com/biomappings/biomappings", "mapping_set_group": "biomappings", "mapping_set_id": "biomappings", "mapping_set_title": "Biomappings", } validator = MiriamValidator() def get_sssom_df(): """Get an SSSOM dataframe.""" import pandas as pd rows = [] prefixes = set() columns = [ "subject_id", "predicate_id", "object_id", "subject_label", "object_label", "match_type", "creator_id", "confidence", "mapping_tool", ] for mapping in load_mappings(): prefixes.add(mapping["source prefix"]) prefixes.add(mapping["target prefix"]) rows.append( ( validator.get_curie(mapping["source prefix"], mapping["source identifier"]), f'{mapping["relation"]}', validator.get_curie(mapping["target prefix"], mapping["target identifier"]), mapping["source name"], mapping["target name"], "HumanCurated", # match type mapping["source"], # curator CURIE None, # no confidence necessary None, # mapping tool: none necessary for manually curated ) ) for mapping in load_predictions(): prefixes.add(mapping["source prefix"]) prefixes.add(mapping["target prefix"]) rows.append( ( validator.get_curie(mapping["source prefix"], mapping["source identifier"]), f'{mapping["relation"]}', validator.get_curie(mapping["target prefix"], mapping["target identifier"]), mapping["source name"], mapping["target name"], "LexicalEquivalenceMatch", # match type None, # no curator CURIE mapping["confidence"], mapping["source"], # mapping tool: source script ) ) df =
pd.DataFrame(rows, columns=columns)
pandas.DataFrame
import json import logging import os import sys import time import datetime from multiprocessing import Process, Queue from workers.worker_git_integration import WorkerGitInterfaceable import joblib import numpy as np import pandas as pd import requests import sqlalchemy as s from sklearn.metrics import (confusion_matrix, f1_score, precision_score, recall_score) from sklearn.preprocessing import LabelEncoder, MinMaxScaler from xgboost import XGBClassifier from workers.message_insights_worker.message_sentiment import get_senti_score from workers.worker_base import Worker from augur import ROOT_AUGUR_DIRECTORY from augur.config import AugurConfig class PullRequestAnalysisWorker(WorkerGitInterfaceable): def __init__(self, config={}): # Define the worker's type, which will be used for self identification. worker_type = "pull_request_analysis_worker" # Define what this worker can be given and know how to interpret given = [['github_url']] # The name the housekeeper/broker use to distinguish the data model this worker can fill models = ['pull_request_analysis'] # Define the tables needed to insert, update, or delete on data_tables = ['message', 'repo', 'pull_request_analysis'] operations_tables = ['worker_history', 'worker_job'] # Run the general worker initialization super().__init__(worker_type, config, given, models, data_tables, operations_tables) # Do any additional configuration after the general initialization has been run self.config.update(config) # Define data collection info self.tool_source = 'Pull Request Analysis Worker' self.tool_version = '0.0.0' self.data_source = 'Non-existent API' self.insight_days = 200 # self.config['insight_days'] augur_config = AugurConfig(ROOT_AUGUR_DIRECTORY) self.senti_models_dir = os.path.join(ROOT_AUGUR_DIRECTORY,"workers", "message_insights_worker",augur_config.get_section("Workers")["message_insights_worker"]["models_dir"]) self.logger.info(f'Sentiment model dir located - {self.senti_models_dir}') def pull_request_analysis_model(self, task, repo_id): # Any initial database instructions, like finding the last tuple inserted or generate the next ID value # Collection and insertion of data happens here begin_date = datetime.datetime.now() - datetime.timedelta(days=self.insight_days) self.logger.info(f'Fetching open PRs of repo: {repo_id}') # Fetch open PRs of repo and associated commits pr_SQL = s.sql.text(""" select pull_requests.pull_request_id, pr_created_at, pr_src_state, pr_closed_at, pr_merged_at, pull_request_commits.pr_cmt_id, pr_augur_contributor_id, pr_src_author_association from augur_data.pull_requests INNER JOIN augur_data.pull_request_commits on pull_requests.pull_request_id = pull_request_commits.pull_request_id where pr_created_at > :begin_date and repo_id = :repo_id and pr_src_state like 'open' """) df_pr = pd.read_sql_query(pr_SQL, self.db, params={'begin_date': begin_date, 'repo_id': repo_id}) self.logger.info(f'PR Dataframe dim: {df_pr.shape}\n') # DEBUG: # df_pr.to_csv(f'PRA.csv',index=False) if df_pr.empty: self.logger.warning('No new open PRs in tables to analyze!\n') self.register_task_completion(task, repo_id, 'pull_request_analysis') return self.logger.info(f'Getting count of commits associated with every PR') # Get count of commits associated with every PR df_pr['commit_counts'] = df_pr.groupby(['pull_request_id'])['pr_cmt_id'].transform('count') df_pr = df_pr.drop(['pr_cmt_id'], axis=1) # Find length of PR in days upto now df_pr['pr_length'] = (datetime.datetime.now() - df_pr['pr_created_at']).dt.days self.logger.info(f'Fetching messages relating to PR') # Get sentiment score of all messages relating to the PR messages_SQL = s.sql.text(""" select message.msg_id, msg_timestamp, msg_text, message.cntrb_id from augur_data.message left outer join augur_data.pull_request_message_ref on message.msg_id = pull_request_message_ref.msg_id left outer join augur_data.pull_requests on pull_request_message_ref.pull_request_id = pull_requests.pull_request_id where repo_id = :repo_id UNION select message.msg_id, msg_timestamp, msg_text, message.cntrb_id from augur_data.message left outer join augur_data.issue_message_ref on message.msg_id = issue_message_ref.msg_id left outer join augur_data.issues on issue_message_ref.issue_id = issues.issue_id where repo_id = :repo_id""") df_message = pd.read_sql_query(messages_SQL, self.db, params={'repo_id': repo_id}) self.logger.info(f'Mapping messages to PR, find comment & participants counts') # Map PR to its corresponding messages pr_ref_sql = s.sql.text("select * from augur_data.pull_request_message_ref") df_pr_ref = pd.read_sql_query(pr_ref_sql, self.db) df_merge = pd.merge(df_pr, df_pr_ref, on='pull_request_id',how='left') df_merge = pd.merge(df_merge, df_message, on='msg_id', how='left') df_merge = df_merge.dropna(subset=['msg_id'], axis = 0) if df_merge.empty: self.logger.warning('Not enough data to analyze!\n') self.register_task_completion(task, repo_id, 'pull_request_analysis') return self.logger.info(f'cols: {df_merge.columns}') df_merge['senti_score'] = get_senti_score(df_merge,'msg_text', self.senti_models_dir,label=False, logger=self.logger) self.logger.info(f'Calculated sentiment scores!') # Get count of associated comments df_merge['comment_counts'] = df_merge.groupby(['pull_request_id'])['msg_id'].transform('count') # Get participants count participants = pd.DataFrame(df_merge.groupby(['pull_request_id'])['cntrb_id'].nunique()) participants = participants.reset_index() participants = participants.rename(columns={"cntrb_id": "usr_counts"}) df_merge = pd.merge(df_merge, participants, on='pull_request_id',how='left') df_fin = df_merge[['pull_request_id','pr_created_at','pr_closed_at','pr_merged_at','commit_counts','comment_counts','pr_length','senti_score', 'pr_augur_contributor_id', 'pr_src_author_association', 'usr_counts']] # Find the mean of sentiment scores df_fin['comment_senti_score'] = df_fin.groupby(['pull_request_id'])['senti_score'].transform('mean') df_fin = df_fin.drop(['senti_score'], axis=1) df_fin = df_fin.drop_duplicates() ''' # Get cntrb info from API cntrb_sql = 'SELECT cntrb_id, gh_login FROM augur_data.contributors' df_ctrb = pd.read_sql_query(cntrb_SQL, self.db) df_fin1 = pd.merge(df_fin,df_ctrb,left_on='pr_augur_contributor_id', right_on='cntrb_id', how='left') df_fin1 = df_fin1.drop(['cntrb_id'],axis=1) # Dict for persisting user data & fast lookups user_info = {} df_fin1['usr_past_pr_accept'] = df_fin1['gh_login'].apply(self.fetch_user_info) df_fin = df_fin1 ''' self.logger.info(f'Fetching repo statistics') # Get repo info repo_sql = s.sql.text(""" SELECT repo_id, pull_requests_merged, pull_request_count,watchers_count, last_updated FROM augur_data.repo_info where repo_id = :repo_id """) df_repo = pd.read_sql_query(repo_sql, self.db, params = {'repo_id': repo_id}) df_repo = df_repo.loc[df_repo.groupby('repo_id').last_updated.idxmax(),:] df_repo = df_repo.drop(['last_updated'],axis=1) # Calculate acceptance ration of repo df_repo['pr_accept_ratio'] = df_repo['pull_requests_merged']/df_repo['pull_request_count'] df_repo = df_repo.drop(['pull_requests_merged','pull_request_count'],axis=1) df =
pd.concat([df_fin,df_repo], axis=1)
pandas.concat
import os import time import logging import argparse import sys sys.path.append("libs") import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras import backend as K from data import ContentVaeDataGenerator from data import CollaborativeVAEDataGenerator from pretrain_vae import get_content_vae from train_vae import get_collabo_vae, infer from evaluate import EvaluateModel from evaluate import EvaluateCold from evaluate import Recall_at_k, NDCG_at_k def predict_and_evaluate(): ### Parse the console arguments. parser = argparse.ArgumentParser() parser.add_argument("--dataset", type=str, help="specify the dataset for experiment") parser.add_argument("--split", type=int, help="specify the split of the dataset") parser.add_argument("--batch_size", type=int, default=128, help="specify the batch size prediction") parser.add_argument("--device" , type=str, default="0", help="specify the visible GPU device") parser.add_argument("--lambda_V", default=None, type=int, help="specify the value of lambda_V for regularization") parser.add_argument("--num_cold", default=None, type=int, help="specify the number of cold start items") args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = args.device ### Set up the tensorflow session. config = tf.ConfigProto() config.gpu_options.allow_growth=True sess = tf.Session(config=config) K.set_session(sess) ### Fix the random seeds. np.random.seed(98765) tf.set_random_seed(98765) ### Get the train, val data generator for content vae if args.lambda_V is not None: model_root = os.path.join("models", args.dataset, str(args.split), str(args.lambda_V)) else: model_root = os.path.join("models", args.dataset, str(args.split)) if args.num_cold is not None: data_root = os.path.join("data", args.dataset, str(args.split), str(args.num_cold)) model_root = os.path.join("models", args.dataset, str(args.split), "num_cold", str(args.num_cold)) else: data_root = os.path.join("data", args.dataset, str(args.split)) model_root = os.path.join("models", args.dataset, str(args.split)) dataset = "movielen-10" if "movielen-10" in args.dataset else args.dataset tstep_cold_gen = ContentVaeDataGenerator( data_root = data_root, joint=True, batch_size = args.batch_size, use_cold=True, ) bstep_test_gen = CollaborativeVAEDataGenerator( data_root = data_root, phase = "test", batch_size = args.batch_size, shuffle=False ) bstep_cold_gen = CollaborativeVAEDataGenerator( data_root = data_root, phase="test", batch_size = args.batch_size*8, use_cold=True, ) ### Build test model and load trained weights collabo_vae = get_collabo_vae(dataset, bstep_test_gen.num_items) collabo_vae.load_weights(os.path.join(model_root, "best_bstep.model")) content_vae = get_content_vae(dataset, tstep_cold_gen.feature_dim) content_vae.load_weights(os.path.join(model_root, "best_tstep.model")) vae_infer_tstep = content_vae.build_vae_infer_tstep() vae_eval = collabo_vae.build_vae_eval() vae_eval_cold = collabo_vae.update_vae_coldstart(infer(vae_infer_tstep, tstep_cold_gen.features.A)) ### Evaluate and save the results k4recalls = [10, 20, 25, 30, 35, 40, 45, 50] k4ndcgs = [25, 50, 100] recalls, NDCGs = [], [] recalls_cold, NDCGs_cold = [], [] for k in k4recalls: recalls.append("{:.4f}".format(EvaluateModel(vae_eval, bstep_test_gen, Recall_at_k, k=k))) recalls_cold.append("{:.4f}".format(EvaluateCold(vae_eval_cold, bstep_cold_gen, Recall_at_k, k=k))) for k in k4ndcgs: NDCGs.append("{:.4f}".format(EvaluateModel(vae_eval, bstep_test_gen, NDCG_at_k, k=k))) NDCGs_cold.append("{:.4f}".format(EvaluateCold(vae_eval_cold, bstep_cold_gen, NDCG_at_k, k=k))) recall_table =
pd.DataFrame({"k":k4recalls, "recalls":recalls}, columns=["k", "recalls"])
pandas.DataFrame
import numpy as np import pandas as pd from .pandas_vb_common import setup # noqa class FillNa(object): goal_time = 0.2 params = [True, False] param_names = ['inplace'] def setup(self, inplace): N = 10**6 rng = pd.date_range('1/1/2000', periods=N, freq='min') data = np.random.randn(N) data[::2] = np.nan self.ts =
pd.Series(data, index=rng)
pandas.Series
import numpy as np import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.generic import ABCIndexClass import pandas as pd import pandas._testing as tm from pandas.api.types import is_float, is_float_dtype, is_integer, is_scalar from pandas.core.arrays import IntegerArray, integer_array from pandas.core.arrays.integer import ( Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype, UInt16Dtype, UInt32Dtype, UInt64Dtype, ) from pandas.tests.extension.base import BaseOpsUtil def make_data(): return list(range(8)) + [np.nan] + list(range(10, 98)) + [np.nan] + [99, 100] @pytest.fixture( params=[ Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype, UInt16Dtype, UInt32Dtype, UInt64Dtype, ] ) def dtype(request): return request.param() @pytest.fixture def data(dtype): return integer_array(make_data(), dtype=dtype) @pytest.fixture def data_missing(dtype): return integer_array([np.nan, 1], dtype=dtype) @pytest.fixture(params=["data", "data_missing"]) def all_data(request, data, data_missing): """Parametrized fixture giving 'data' and 'data_missing'""" if request.param == "data": return data elif request.param == "data_missing": return data_missing def test_dtypes(dtype): # smoke tests on auto dtype construction if dtype.is_signed_integer: assert np.dtype(dtype.type).kind == "i" else: assert np.dtype(dtype.type).kind == "u" assert dtype.name is not None @pytest.mark.parametrize( "dtype, expected", [ (Int8Dtype(), "Int8Dtype()"), (Int16Dtype(), "Int16Dtype()"), (Int32Dtype(), "Int32Dtype()"), (Int64Dtype(), "Int64Dtype()"), (UInt8Dtype(), "UInt8Dtype()"), (UInt16Dtype(), "UInt16Dtype()"), (UInt32Dtype(), "UInt32Dtype()"), (UInt64Dtype(), "UInt64Dtype()"), ], ) def test_repr_dtype(dtype, expected): assert repr(dtype) == expected def test_repr_array(): result = repr(integer_array([1, None, 3])) expected = "<IntegerArray>\n[1, <NA>, 3]\nLength: 3, dtype: Int64" assert result == expected def test_repr_array_long(): data = integer_array([1, 2, None] * 1000) expected = ( "<IntegerArray>\n" "[ 1, 2, <NA>, 1, 2, <NA>, 1, 2, <NA>, 1,\n" " ...\n" " <NA>, 1, 2, <NA>, 1, 2, <NA>, 1, 2, <NA>]\n" "Length: 3000, dtype: Int64" ) result = repr(data) assert result == expected class TestConstructors: def test_uses_pandas_na(self): a = pd.array([1, None], dtype=pd.Int64Dtype()) assert a[1] is pd.NA def test_from_dtype_from_float(self, data): # construct from our dtype & string dtype dtype = data.dtype # from float expected = pd.Series(data) result = pd.Series( data.to_numpy(na_value=np.nan, dtype="float"), dtype=str(dtype) ) tm.assert_series_equal(result, expected) # from int / list expected = pd.Series(data) result = pd.Series(np.array(data).tolist(), dtype=str(dtype)) tm.assert_series_equal(result, expected) # from int / array expected = pd.Series(data).dropna().reset_index(drop=True) dropped = np.array(data.dropna()).astype(np.dtype((dtype.type))) result = pd.Series(dropped, dtype=str(dtype)) tm.assert_series_equal(result, expected) class TestArithmeticOps(BaseOpsUtil): def _check_divmod_op(self, s, op, other, exc=None): super()._check_divmod_op(s, op, other, None) def _check_op(self, s, op_name, other, exc=None): op = self.get_op_from_name(op_name) result = op(s, other) # compute expected mask = s.isna() # if s is a DataFrame, squeeze to a Series # for comparison if isinstance(s, pd.DataFrame): result = result.squeeze() s = s.squeeze() mask = mask.squeeze() # other array is an Integer if isinstance(other, IntegerArray): omask = getattr(other, "mask", None) mask = getattr(other, "data", other) if omask is not None: mask |= omask # 1 ** na is na, so need to unmask those if op_name == "__pow__": mask = np.where(~s.isna() & (s == 1), False, mask) elif op_name == "__rpow__": other_is_one = other == 1 if isinstance(other_is_one, pd.Series): other_is_one = other_is_one.fillna(False) mask = np.where(other_is_one, False, mask) # float result type or float op if ( is_float_dtype(other) or is_float(other) or op_name in ["__rtruediv__", "__truediv__", "__rdiv__", "__div__"] ): rs = s.astype("float") expected = op(rs, other) self._check_op_float(result, expected, mask, s, op_name, other) # integer result type else: rs = pd.Series(s.values._data, name=s.name) expected = op(rs, other) self._check_op_integer(result, expected, mask, s, op_name, other) def _check_op_float(self, result, expected, mask, s, op_name, other): # check comparisons that are resulting in float dtypes expected[mask] = np.nan if "floordiv" in op_name: # Series op sets 1//0 to np.inf, which IntegerArray does not do (yet) mask2 = np.isinf(expected) & np.isnan(result) expected[mask2] = np.nan tm.assert_series_equal(result, expected) def _check_op_integer(self, result, expected, mask, s, op_name, other): # check comparisons that are resulting in integer dtypes # to compare properly, we convert the expected # to float, mask to nans and convert infs # if we have uints then we process as uints # then convert to float # and we ultimately want to create a IntArray # for comparisons fill_value = 0 # mod/rmod turn floating 0 into NaN while # integer works as expected (no nan) if op_name in ["__mod__", "__rmod__"]: if is_scalar(other): if other == 0: expected[s.values == 0] = 0 else: expected = expected.fillna(0) else: expected[ (s.values == 0).fillna(False) & ((expected == 0).fillna(False) | expected.isna()) ] = 0 try: expected[ ((expected == np.inf) | (expected == -np.inf)).fillna(False) ] = fill_value original = expected expected = expected.astype(s.dtype) except ValueError: expected = expected.astype(float) expected[ ((expected == np.inf) | (expected == -np.inf)).fillna(False) ] = fill_value original = expected expected = expected.astype(s.dtype) expected[mask] = pd.NA # assert that the expected astype is ok # (skip for unsigned as they have wrap around) if not s.dtype.is_unsigned_integer: original = pd.Series(original) # we need to fill with 0's to emulate what an astype('int') does # (truncation) for certain ops if op_name in ["__rtruediv__", "__rdiv__"]: mask |= original.isna() original = original.fillna(0).astype("int") original = original.astype("float") original[mask] = np.nan tm.assert_series_equal(original, expected.astype("float")) # assert our expected result tm.assert_series_equal(result, expected) def test_arith_integer_array(self, data, all_arithmetic_operators): # we operate with a rhs of an integer array op = all_arithmetic_operators s = pd.Series(data) rhs = pd.Series([1] * len(data), dtype=data.dtype) rhs.iloc[-1] = np.nan self._check_op(s, op, rhs) def test_arith_series_with_scalar(self, data, all_arithmetic_operators): # scalar op = all_arithmetic_operators s = pd.Series(data) self._check_op(s, op, 1, exc=TypeError) def test_arith_frame_with_scalar(self, data, all_arithmetic_operators): # frame & scalar op = all_arithmetic_operators df = pd.DataFrame({"A": data}) self._check_op(df, op, 1, exc=TypeError) def test_arith_series_with_array(self, data, all_arithmetic_operators): # ndarray & other series op = all_arithmetic_operators s = pd.Series(data) other = np.ones(len(s), dtype=s.dtype.type) self._check_op(s, op, other, exc=TypeError) def test_arith_coerce_scalar(self, data, all_arithmetic_operators): op = all_arithmetic_operators s = pd.Series(data) other = 0.01 self._check_op(s, op, other) @pytest.mark.parametrize("other", [1.0, np.array(1.0)]) def test_arithmetic_conversion(self, all_arithmetic_operators, other): # if we have a float operand we should have a float result # if that is equal to an integer op = self.get_op_from_name(all_arithmetic_operators) s = pd.Series([1, 2, 3], dtype="Int64") result = op(s, other) assert result.dtype is np.dtype("float") def test_arith_len_mismatch(self, all_arithmetic_operators): # operating with a list-like with non-matching length raises op = self.get_op_from_name(all_arithmetic_operators) other = np.array([1.0]) s = pd.Series([1, 2, 3], dtype="Int64") with pytest.raises(ValueError, match="Lengths must match"): op(s, other) @pytest.mark.parametrize("other", [0, 0.5]) def test_arith_zero_dim_ndarray(self, other): arr = integer_array([1, None, 2]) result = arr + np.array(other) expected = arr + other tm.assert_equal(result, expected) def test_error(self, data, all_arithmetic_operators): # invalid ops op = all_arithmetic_operators s = pd.Series(data) ops = getattr(s, op) opa = getattr(data, op) # invalid scalars msg = ( r"(:?can only perform ops with numeric values)" r"|(:?IntegerArray cannot perform the operation mod)" ) with pytest.raises(TypeError, match=msg): ops("foo") with pytest.raises(TypeError, match=msg): ops(pd.Timestamp("20180101")) # invalid array-likes with pytest.raises(TypeError, match=msg): ops(pd.Series("foo", index=s.index)) if op != "__rpow__": # TODO(extension) # rpow with a datetimelike coerces the integer array incorrectly msg = ( "can only perform ops with numeric values|" "cannot perform .* with this index type: DatetimeArray|" "Addition/subtraction of integers and integer-arrays " "with DatetimeArray is no longer supported. *" ) with pytest.raises(TypeError, match=msg): ops(pd.Series(pd.date_range("20180101", periods=len(s)))) # 2d result = opa(pd.DataFrame({"A": s})) assert result is NotImplemented msg = r"can only perform ops with 1-d structures" with pytest.raises(NotImplementedError, match=msg): opa(np.arange(len(s)).reshape(-1, len(s))) @pytest.mark.parametrize("zero, negative", [(0, False), (0.0, False), (-0.0, True)]) def test_divide_by_zero(self, zero, negative): # https://github.com/pandas-dev/pandas/issues/27398 a = pd.array([0, 1, -1, None], dtype="Int64") result = a / zero expected = np.array([np.nan, np.inf, -np.inf, np.nan]) if negative: expected *= -1 tm.assert_numpy_array_equal(result, expected) def test_pow_scalar(self): a = pd.array([-1, 0, 1, None, 2], dtype="Int64") result = a ** 0 expected = pd.array([1, 1, 1, 1, 1], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a ** 1 expected = pd.array([-1, 0, 1, None, 2], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a ** pd.NA expected = pd.array([None, None, 1, None, None], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a ** np.nan expected = np.array([np.nan, np.nan, 1, np.nan, np.nan], dtype="float64") tm.assert_numpy_array_equal(result, expected) # reversed a = a[1:] # Can't raise integers to negative powers. result = 0 ** a expected = pd.array([1, 0, None, 0], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = 1 ** a expected = pd.array([1, 1, 1, 1], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = pd.NA ** a expected = pd.array([1, None, None, None], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = np.nan ** a expected = np.array([1, np.nan, np.nan, np.nan], dtype="float64") tm.assert_numpy_array_equal(result, expected) def test_pow_array(self): a = integer_array([0, 0, 0, 1, 1, 1, None, None, None]) b = integer_array([0, 1, None, 0, 1, None, 0, 1, None]) result = a ** b expected = integer_array([1, 0, None, 1, 1, 1, 1, None, None]) tm.assert_extension_array_equal(result, expected) def test_rpow_one_to_na(self): # https://github.com/pandas-dev/pandas/issues/22022 # https://github.com/pandas-dev/pandas/issues/29997 arr = integer_array([np.nan, np.nan]) result = np.array([1.0, 2.0]) ** arr expected = np.array([1.0, np.nan]) tm.assert_numpy_array_equal(result, expected) class TestComparisonOps(BaseOpsUtil): def _compare_other(self, data, op_name, other): op = self.get_op_from_name(op_name) # array result = pd.Series(op(data, other)) expected = pd.Series(op(data._data, other), dtype="boolean") # fill the nan locations expected[data._mask] = pd.NA tm.assert_series_equal(result, expected) # series s = pd.Series(data) result = op(s, other) expected = op(pd.Series(data._data), other) # fill the nan locations expected[data._mask] = pd.NA expected = expected.astype("boolean") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("other", [True, False, pd.NA, -1, 0, 1]) def test_scalar(self, other, all_compare_operators): op = self.get_op_from_name(all_compare_operators) a = pd.array([1, 0, None], dtype="Int64") result = op(a, other) if other is pd.NA: expected = pd.array([None, None, None], dtype="boolean") else: values = op(a._data, other) expected = pd.arrays.BooleanArray(values, a._mask, copy=True) tm.assert_extension_array_equal(result, expected) # ensure we haven't mutated anything inplace result[0] = pd.NA tm.assert_extension_array_equal(a, pd.array([1, 0, None], dtype="Int64")) def test_array(self, all_compare_operators): op = self.get_op_from_name(all_compare_operators) a = pd.array([0, 1, 2, None, None, None], dtype="Int64") b = pd.array([0, 1, None, 0, 1, None], dtype="Int64") result = op(a, b) values = op(a._data, b._data) mask = a._mask | b._mask expected = pd.arrays.BooleanArray(values, mask) tm.assert_extension_array_equal(result, expected) # ensure we haven't mutated anything inplace result[0] = pd.NA tm.assert_extension_array_equal( a, pd.array([0, 1, 2, None, None, None], dtype="Int64") ) tm.assert_extension_array_equal( b, pd.array([0, 1, None, 0, 1, None], dtype="Int64") ) def test_compare_with_booleanarray(self, all_compare_operators): op = self.get_op_from_name(all_compare_operators) a = pd.array([True, False, None] * 3, dtype="boolean") b = pd.array([0] * 3 + [1] * 3 + [None] * 3, dtype="Int64") other = pd.array([False] * 3 + [True] * 3 + [None] * 3, dtype="boolean") expected = op(a, other) result = op(a, b) tm.assert_extension_array_equal(result, expected) def test_no_shared_mask(self, data): result = data + 1 assert np.shares_memory(result._mask, data._mask) is False def test_compare_to_string(self, any_nullable_int_dtype): # GH 28930 s = pd.Series([1, None], dtype=any_nullable_int_dtype) result = s == "a" expected = pd.Series([False, pd.NA], dtype="boolean") self.assert_series_equal(result, expected) def test_compare_to_int(self, any_nullable_int_dtype, all_compare_operators): # GH 28930 s1 = pd.Series([1, None, 3], dtype=any_nullable_int_dtype) s2 = pd.Series([1, None, 3], dtype="float") method = getattr(s1, all_compare_operators) result = method(2) method = getattr(s2, all_compare_operators) expected = method(2).astype("boolean") expected[s2.isna()] = pd.NA self.assert_series_equal(result, expected) class TestCasting: @pytest.mark.parametrize("dropna", [True, False]) def test_construct_index(self, all_data, dropna): # ensure that we do not coerce to Float64Index, rather # keep as Index all_data = all_data[:10] if dropna: other = np.array(all_data[~all_data.isna()]) else: other = all_data result = pd.Index(integer_array(other, dtype=all_data.dtype)) expected = pd.Index(other, dtype=object) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("dropna", [True, False]) def test_astype_index(self, all_data, dropna): # as an int/uint index to Index all_data = all_data[:10] if dropna: other = all_data[~all_data.isna()] else: other = all_data dtype = all_data.dtype idx = pd.Index(np.array(other)) assert isinstance(idx, ABCIndexClass) result = idx.astype(dtype) expected = idx.astype(object).astype(dtype) tm.assert_index_equal(result, expected) def test_astype(self, all_data): all_data = all_data[:10] ints = all_data[~all_data.isna()] mixed = all_data dtype = Int8Dtype() # coerce to same type - ints s = pd.Series(ints) result = s.astype(all_data.dtype) expected = pd.Series(ints) tm.assert_series_equal(result, expected) # coerce to same other - ints s = pd.Series(ints) result = s.astype(dtype) expected = pd.Series(ints, dtype=dtype) tm.assert_series_equal(result, expected) # coerce to same numpy_dtype - ints s = pd.Series(ints) result = s.astype(all_data.dtype.numpy_dtype) expected = pd.Series(ints._data.astype(all_data.dtype.numpy_dtype)) tm.assert_series_equal(result, expected) # coerce to same type - mixed s = pd.Series(mixed) result = s.astype(all_data.dtype) expected = pd.Series(mixed) tm.assert_series_equal(result, expected) # coerce to same other - mixed s = pd.Series(mixed) result = s.astype(dtype) expected = pd.Series(mixed, dtype=dtype) tm.assert_series_equal(result, expected) # coerce to same numpy_dtype - mixed s = pd.Series(mixed) msg = r"cannot convert to .*-dtype NumPy array with missing values.*" with pytest.raises(ValueError, match=msg): s.astype(all_data.dtype.numpy_dtype) # coerce to object s = pd.Series(mixed) result = s.astype("object") expected = pd.Series(np.asarray(mixed)) tm.assert_series_equal(result, expected) def test_astype_to_larger_numpy(self): a = pd.array([1, 2], dtype="Int32") result = a.astype("int64") expected = np.array([1, 2], dtype="int64") tm.assert_numpy_array_equal(result, expected) a = pd.array([1, 2], dtype="UInt32") result = a.astype("uint64") expected = np.array([1, 2], dtype="uint64") tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [Int8Dtype(), "Int8", UInt32Dtype(), "UInt32"]) def test_astype_specific_casting(self, dtype): s = pd.Series([1, 2, 3], dtype="Int64") result = s.astype(dtype) expected = pd.Series([1, 2, 3], dtype=dtype) tm.assert_series_equal(result, expected) s = pd.Series([1, 2, 3, None], dtype="Int64") result = s.astype(dtype) expected = pd.Series([1, 2, 3, None], dtype=dtype) tm.assert_series_equal(result, expected) def test_construct_cast_invalid(self, dtype): msg = "cannot safely" arr = [1.2, 2.3, 3.7] with pytest.raises(TypeError, match=msg): integer_array(arr, dtype=dtype) with pytest.raises(TypeError, match=msg): pd.Series(arr).astype(dtype) arr = [1.2, 2.3, 3.7, np.nan] with pytest.raises(TypeError, match=msg): integer_array(arr, dtype=dtype) with pytest.raises(TypeError, match=msg): pd.Series(arr).astype(dtype) @pytest.mark.parametrize("in_series", [True, False]) def test_to_numpy_na_nan(self, in_series): a = pd.array([0, 1, None], dtype="Int64") if in_series: a = pd.Series(a) result = a.to_numpy(dtype="float64", na_value=np.nan) expected = np.array([0.0, 1.0, np.nan], dtype="float64") tm.assert_numpy_array_equal(result, expected) result = a.to_numpy(dtype="int64", na_value=-1) expected = np.array([0, 1, -1], dtype="int64") tm.assert_numpy_array_equal(result, expected) result = a.to_numpy(dtype="bool", na_value=False) expected = np.array([False, True, False], dtype="bool") tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("in_series", [True, False]) @pytest.mark.parametrize("dtype", ["int32", "int64", "bool"]) def test_to_numpy_dtype(self, dtype, in_series): a = pd.array([0, 1], dtype="Int64") if in_series: a = pd.Series(a) result = a.to_numpy(dtype=dtype) expected = np.array([0, 1], dtype=dtype) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", ["float64", "int64", "bool"]) def test_to_numpy_na_raises(self, dtype): a = pd.array([0, 1, None], dtype="Int64") with pytest.raises(ValueError, match=dtype): a.to_numpy(dtype=dtype) def test_astype_str(self): a = pd.array([1, 2, None], dtype="Int64") expected = np.array(["1", "2", "<NA>"], dtype=object) tm.assert_numpy_array_equal(a.astype(str), expected) tm.assert_numpy_array_equal(a.astype("str"), expected) def test_astype_boolean(self): # https://github.com/pandas-dev/pandas/issues/31102 a = pd.array([1, 0, -1, 2, None], dtype="Int64") result = a.astype("boolean") expected = pd.array([True, False, True, True, None], dtype="boolean") tm.assert_extension_array_equal(result, expected) def test_frame_repr(data_missing): df = pd.DataFrame({"A": data_missing}) result = repr(df) expected = " A\n0 <NA>\n1 1" assert result == expected def test_conversions(data_missing): # astype to object series df = pd.DataFrame({"A": data_missing}) result = df["A"].astype("object") expected = pd.Series(np.array([np.nan, 1], dtype=object), name="A") tm.assert_series_equal(result, expected) # convert to object ndarray # we assert that we are exactly equal # including type conversions of scalars result = df["A"].astype("object").values expected = np.array([pd.NA, 1], dtype=object) tm.assert_numpy_array_equal(result, expected) for r, e in zip(result, expected): if pd.isnull(r): assert pd.isnull(e) elif is_integer(r): assert r == e assert is_integer(e) else: assert r == e assert type(r) == type(e) def test_integer_array_constructor(): values = np.array([1, 2, 3, 4], dtype="int64") mask = np.array([False, False, False, True], dtype="bool") result = IntegerArray(values, mask) expected = integer_array([1, 2, 3, np.nan], dtype="int64") tm.assert_extension_array_equal(result, expected) msg = r".* should be .* numpy array. Use the 'integer_array' function instead" with pytest.raises(TypeError, match=msg): IntegerArray(values.tolist(), mask) with pytest.raises(TypeError, match=msg): IntegerArray(values, mask.tolist()) with pytest.raises(TypeError, match=msg): IntegerArray(values.astype(float), mask) msg = r"__init__\(\) missing 1 required positional argument: 'mask'" with pytest.raises(TypeError, match=msg): IntegerArray(values) @pytest.mark.parametrize( "a, b", [ ([1, None], [1, np.nan]), ([None], [np.nan]), ([None, np.nan], [np.nan, np.nan]), ([np.nan, np.nan], [np.nan, np.nan]), ], ) def test_integer_array_constructor_none_is_nan(a, b): result = integer_array(a) expected = integer_array(b) tm.assert_extension_array_equal(result, expected) def test_integer_array_constructor_copy(): values = np.array([1, 2, 3, 4], dtype="int64") mask = np.array([False, False, False, True], dtype="bool") result = IntegerArray(values, mask) assert result._data is values assert result._mask is mask result = IntegerArray(values, mask, copy=True) assert result._data is not values assert result._mask is not mask @pytest.mark.parametrize( "values", [ ["foo", "bar"], ["1", "2"], "foo", 1, 1.0, pd.date_range("20130101", periods=2), np.array(["foo"]), [[1, 2], [3, 4]], [np.nan, {"a": 1}], ], ) def test_to_integer_array_error(values): # error in converting existing arrays to IntegerArrays msg = ( r"(:?.* cannot be converted to an IntegerDtype)" r"|(:?values must be a 1D list-like)" ) with pytest.raises(TypeError, match=msg): integer_array(values) def test_to_integer_array_inferred_dtype(): # if values has dtype -> respect it result = integer_array(np.array([1, 2], dtype="int8")) assert result.dtype == Int8Dtype() result = integer_array(np.array([1, 2], dtype="int32")) assert result.dtype == Int32Dtype() # if values have no dtype -> always int64 result = integer_array([1, 2]) assert result.dtype == Int64Dtype() def test_to_integer_array_dtype_keyword(): result = integer_array([1, 2], dtype="int8") assert result.dtype == Int8Dtype() # if values has dtype -> override it result = integer_array(np.array([1, 2], dtype="int8"), dtype="int32") assert result.dtype == Int32Dtype() def test_to_integer_array_float(): result = integer_array([1.0, 2.0]) expected = integer_array([1, 2]) tm.assert_extension_array_equal(result, expected) with pytest.raises(TypeError, match="cannot safely cast non-equivalent"): integer_array([1.5, 2.0]) # for float dtypes, the itemsize is not preserved result = integer_array(np.array([1.0, 2.0], dtype="float32")) assert result.dtype == Int64Dtype() @pytest.mark.parametrize( "bool_values, int_values, target_dtype, expected_dtype", [ ([False, True], [0, 1], Int64Dtype(), Int64Dtype()), ([False, True], [0, 1], "Int64", Int64Dtype()), ([False, True, np.nan], [0, 1, np.nan], Int64Dtype(), Int64Dtype()), ], ) def test_to_integer_array_bool(bool_values, int_values, target_dtype, expected_dtype): result = integer_array(bool_values, dtype=target_dtype) assert result.dtype == expected_dtype expected = integer_array(int_values, dtype=target_dtype) tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize( "values, to_dtype, result_dtype", [ (np.array([1], dtype="int64"), None, Int64Dtype), (np.array([1, np.nan]), None, Int64Dtype), (np.array([1, np.nan]), "int8", Int8Dtype), ], ) def test_to_integer_array(values, to_dtype, result_dtype): # convert existing arrays to IntegerArrays result = integer_array(values, dtype=to_dtype) assert result.dtype == result_dtype() expected = integer_array(values, dtype=result_dtype()) tm.assert_extension_array_equal(result, expected) def test_cross_type_arithmetic(): df = pd.DataFrame( { "A": pd.Series([1, 2, np.nan], dtype="Int64"), "B": pd.Series([1, np.nan, 3], dtype="UInt8"), "C": [1, 2, 3], } ) result = df.A + df.C expected = pd.Series([2, 4, np.nan], dtype="Int64") tm.assert_series_equal(result, expected) result = (df.A + df.C) * 3 == 12 expected = pd.Series([False, True, None], dtype="boolean") tm.assert_series_equal(result, expected) result = df.A + df.B expected = pd.Series([2, np.nan, np.nan], dtype="Int64") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("op", ["sum", "min", "max", "prod"]) def test_preserve_dtypes(op): # TODO(#22346): preserve Int64 dtype # for ops that enable (mean would actually work here # but generally it is a float return value) df = pd.DataFrame( { "A": ["a", "b", "b"], "B": [1, None, 3], "C": integer_array([1, None, 3], dtype="Int64"), } ) # op result = getattr(df.C, op)() assert isinstance(result, int) # groupby result = getattr(df.groupby("A"), op)() expected = pd.DataFrame( {"B": np.array([1.0, 3.0]), "C": integer_array([1, 3], dtype="Int64")}, index=pd.Index(["a", "b"], name="A"), ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("op", ["mean"]) def test_reduce_to_float(op): # some reduce ops always return float, even if the result # is a rounded number df = pd.DataFrame( { "A": ["a", "b", "b"], "B": [1, None, 3], "C": integer_array([1, None, 3], dtype="Int64"), } ) # op result = getattr(df.C, op)() assert isinstance(result, float) # groupby result = getattr(df.groupby("A"), op)() expected = pd.DataFrame( {"B": np.array([1.0, 3.0]), "C": integer_array([1, 3], dtype="Int64")}, index=pd.Index(["a", "b"], name="A"), ) tm.assert_frame_equal(result, expected) def test_astype_nansafe(): # see gh-22343 arr = integer_array([np.nan, 1, 2], dtype="Int8") msg = "cannot convert to 'uint32'-dtype NumPy array with missing values." with pytest.raises(ValueError, match=msg): arr.astype("uint32") @pytest.mark.parametrize("ufunc", [np.abs, np.sign]) # np.sign emits a warning with nans, <https://github.com/numpy/numpy/issues/15127> @pytest.mark.filterwarnings("ignore:invalid value encountered in sign") def test_ufuncs_single_int(ufunc): a = integer_array([1, 2, -3, np.nan]) result = ufunc(a) expected = integer_array(ufunc(a.astype(float))) tm.assert_extension_array_equal(result, expected) s = pd.Series(a) result = ufunc(s) expected = pd.Series(integer_array(ufunc(a.astype(float)))) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("ufunc", [np.log, np.exp, np.sin, np.cos, np.sqrt]) def test_ufuncs_single_float(ufunc): a = integer_array([1, 2, -3, np.nan]) with np.errstate(invalid="ignore"): result = ufunc(a) expected = ufunc(a.astype(float)) tm.assert_numpy_array_equal(result, expected) s = pd.Series(a) with np.errstate(invalid="ignore"): result = ufunc(s) expected = ufunc(s.astype(float)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("ufunc", [np.add, np.subtract]) def test_ufuncs_binary_int(ufunc): # two IntegerArrays a = integer_array([1, 2, -3, np.nan]) result = ufunc(a, a) expected = integer_array(ufunc(a.astype(float), a.astype(float))) tm.assert_extension_array_equal(result, expected) # IntegerArray with numpy array arr = np.array([1, 2, 3, 4]) result = ufunc(a, arr) expected = integer_array(ufunc(a.astype(float), arr)) tm.assert_extension_array_equal(result, expected) result = ufunc(arr, a) expected = integer_array(ufunc(arr, a.astype(float))) tm.assert_extension_array_equal(result, expected) # IntegerArray with scalar result = ufunc(a, 1) expected = integer_array(ufunc(a.astype(float), 1)) tm.assert_extension_array_equal(result, expected) result = ufunc(1, a) expected = integer_array(ufunc(1, a.astype(float))) tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize("values", [[0, 1], [0, None]]) def test_ufunc_reduce_raises(values): a = integer_array(values) msg = r"The 'reduce' method is not supported." with pytest.raises(NotImplementedError, match=msg): np.add.reduce(a) @td.skip_if_no("pyarrow", min_version="0.15.0") def test_arrow_array(data): # protocol added in 0.15.0 import pyarrow as pa arr = pa.array(data) expected = np.array(data, dtype=object) expected[data.isna()] = None expected = pa.array(expected, type=data.dtype.name.lower(), from_pandas=True) assert arr.equals(expected) @td.skip_if_no("pyarrow", min_version="0.16.0") def test_arrow_roundtrip(data): # roundtrip possible from arrow 0.16.0 import pyarrow as pa df =
pd.DataFrame({"a": data})
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Nov 6 22:15:42 2018 @author: katezeng This module is for Predictive Analysis - Hypothesis Testing - This component contains both the traditional statistical hypothesis testing, and the beginning of machine learning predictive analytics. Here you will write three (3) hypotheses and see whether or not they are supported by your data. You must use all of the methods listed below (at least once) on your data. - You do not need to try all the methods for each hypothesis. For example, you might use ANOVA for one of your hypotheses, and you might use a t-test and linear regression for another, etc. It will be the case, that some of the hypotheses will not be well supported. - When trying methods like a decision tree, you should use cross-validation and show your ROC curve and a confusion matrix. For each method, explain the method in one paragraph. - Explain how and why you will apply your selected method(s) to each hypothesis, and discuss the results. - Therefore, you will have at least three (3) hypothesis tests and will apply all seven (7) of the following methods to one or more of your hypotheses. - Required methods: - t-test or Anova (choose one) - Linear Regression or Logistical Regression (multivariate or multinomial) (choose one) - Decision tree - A Lazy Learner Method (such as kNN) - Naïve Bayes - SVM - Random Forest """ ##################################################### # # # Import Libraries # # # ##################################################### import pandas as pd import numpy as np from scipy import stats from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, roc_curve, auc, confusion_matrix, classification_report from sklearn import svm from sklearn.preprocessing import Normalizer from sklearn.model_selection import cross_val_predict from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import label_binarize from imblearn.over_sampling import SMOTE from sklearn.tree import DecisionTreeClassifier from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import seaborn as sns sns.set(color_codes=True) ######################################################## # # # List of Functions # # # ######################################################## # function for arranging columns def arrangeCol(data): cols = list(data) cols.insert(len(cols), cols.pop(cols.index('price'))) data = data.loc[:, cols] return data # function for linear regression with absolute error plot def linearRegression1(data): X = data[['hotel_meanprice']] y = data[['price']] X_train, X_test , y_train , y_test = train_test_split(X,y,test_size=0.25,random_state=0) model = LinearRegression() model.fit(X_train, y_train) predictions = model.predict(X_test) plt.figure(figsize=(15,8)) ax = sns.distplot(y_test-predictions) ax.set(ylabel='Density', xlabel='Error', title='Error distribution of test sets by Linear Regrssion model') plt.savefig("./plots/LRresults.png") # function for linear regression with absolute error vs actual value def linearRegression2(data): X = data[['hotel_meanprice']] y = data[['price']] X_train, X_test , y_train , y_test = train_test_split(X,y,test_size=0.25,random_state=0) model = LinearRegression() model.fit(X_train, y_train) predictions = model.predict(X_test) plt.figure(figsize=(15,8)) ax = sns.distplot(abs(y_test-predictions)/y_test) ax.set(ylabel='Percentage', xlabel='Mean Squared Error', title='Error distribution of test sets by Linear Regrssion model') plt.savefig("./plots/LR_absolute_diff.png") # find relationship between hotel average price and airbnb average price def hotel_airbnb(data): output1 = data.groupby(['zipcode'])['price'].mean().reset_index() output1.columns = ['zipcode', 'averagePrice'] output2 = data.groupby(['zipcode'])['hotel_meanprice'].mean().reset_index() output =
pd.merge(output1, output2, on='zipcode')
pandas.merge
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.7.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import datasets import statsmodels.api as sm import seaborn as sns from sklearn.cluster import KMeans from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn import metrics from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score, roc_auc_score, roc_curve from sklearn import tree from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression from sklearn.metrics import mean_squared_error from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn import svm data1 = pd.read_csv('[Track1_데이터3] samp_cst_feat.csv',encoding = 'euc-kr') data2 = pd.read_csv('[Track1_데이터2] samp_train.csv',encoding = 'euc-kr') data1["MRC_ID_DI"] = data2["MRC_ID_DI"] data1["MRC_ID_DI"] = data2["MRC_ID_DI"] categories = ['VAR007','VAR015','VAR018','VAR026','VAR059', 'VAR066','VAR067','VAR070','VAR077','VAR078', 'VAR094','VAR096','VAR097','VAR098','VAR107', 'VAR111','VAR124','VAR127','VAR143','VAR144', 'VAR145','VAR148','VAR165','VAR177','VAR179', 'VAR199','VAR208',"MRC_ID_DI"] data1[categories] = data1[categories].astype("int64") data1.groupby(["MRC_ID_DI"]).size() # #### 온라인 마켓 사용, 미사용으로 분류 data1["MRC_ID_DI"] = data1["MRC_ID_DI"].replace(range(1,11),1) data1 = data1.drop(['cst_id_di'],axis = 1) samsung = sm.add_constant(data1, has_constant = 'add') samsung.head() feature_columns = list(samsung.columns.difference(["MRC_ID_DI"])) X = samsung[feature_columns] y = samsung["MRC_ID_DI"] print(y) x_train, x_test, y_train, y_test = train_test_split(X, y, train_size = 0.7, test_size = 0.3, random_state = 100) #set_seed print("x_train.shape = {}, x_test.shape = {}, y_train.shape = {}, y_test.shape = {}".format(x_train.shape, x_test.shape, y_train.shape, y_test.shape)) model = sm.Logit(y_train, x_train) results = model.fit(method = "newton") results.summary() results.params np.exp(results.params) results.aic y_pred = results.predict(x_test) y_pred # + def PRED(y, threshold): Y = y.copy() Y[Y > threshold] = 1 Y[Y <= threshold] = 0 return(Y.astype(int)) Y_pred = PRED(y_pred,0.5) Y_pred # - # ### 오분류표 cfmat = confusion_matrix(y_test, Y_pred) def acc(cfmat) : acc = round((cfmat[0,0]+cfmat[1,1])/np.sum(cfmat),3) return(acc) acc(cfmat) # accuracy == 0.863 pca = PCA(n_components = 10) pca.fit(X) PCscore = pca.transform(X) PCscore[:,0:5] eigens_vector = pca.components_.transpose() eigens_vector # + mX = np.matrix(X) (mX * eigens_vector)[:, 0:5] # - print(PCscore) plt.scatter(PCscore[:, 0], PCscore[:, 1], c = y) print(PCscore[:,0]) plt.show() # + distortions = [] for i in range(1, 11) : km = KMeans(n_clusters = i, random_state = 102) km.fit(X) distortions.append(km.inertia_) plt.plot(range(1, 11), distortions, marker = 'o') plt.xlabel("# of clusters") plt.ylabel("Distortion") plt.show() # + lr_clf = LogisticRegression(max_iter = 10000) lr_clf.fit(x_train, y_train) pred_lr = lr_clf.predict(x_test) print(accuracy_score(y_test, pred_lr)) print(mean_squared_error(y_test, pred_lr)) # - bag_clf = BaggingClassifier(base_estimator = lr_clf, n_estimators = 5, verbose = 1) lr_clf_bag = bag_clf.fit(x_train, y_train) pred_lr_bag = lr_clf_bag.predict(x_test) pred_lr_bag print(accuracy_score(y_test, pred_lr_bag)) print(mean_squared_error(y_test, pred_lr_bag)) # + from sklearn.tree import DecisionTreeClassifier dt_clf = DecisionTreeClassifier() dt_clf.fit(x_train, y_train) pred_dt = dt_clf.predict(x_test) print(accuracy_score(y_test, pred_dt)) print(mean_squared_error(y_test, pred_dt)) # - rf_clf = RandomForestClassifier(n_estimators = 5, max_depth = 3, random_state = 103, verbose = 1) rf_clf.fit(x_train, y_train) pred = rf_clf.predict(x_test) print(accuracy_score(y_test, pred)) rf_clf = RandomForestClassifier(n_estimators = 500, max_depth = 3, random_state = 103, verbose = 1) rf_clf.fit(x_train, y_train) pred = rf_clf.predict(x_test) print(accuracy_score(y_test, pred)) rf_clf = RandomForestClassifier(n_estimators = 500, max_depth = 10, random_state = 103, verbose = 1) rf_clf.fit(x_train, y_train) pred = rf_clf.predict(x_test) print(accuracy_score(y_test, pred)) rf_clf4 = RandomForestClassifier() # + params = { 'n_estimators' : [10, 100, 500, 1000], 'max_depth' : [3, 5, 10, 15]} rf_clf4 = RandomForestClassifier(random_state = 103, n_jobs = -1, verbose = 1) grid_cv = GridSearchCV(rf_clf4, param_grid = params, n_jobs = -1, verbose = 1) grid_cv.fit(x_train, y_train) print('최적 하이퍼 파라미터: ', grid_cv.best_params_) print('최고 예측 정확도: {:.4f}'.format(grid_cv.best_score_)) # + test_acc = [] for n in range(1, 11): clf = KNeighborsClassifier(n_neighbors = n) clf.fit(x_train, y_train) y_pred = clf.predict(x_test) test_acc.append(accuracy_score(y_test, y_pred)) print("k : {}, 정확도 : {}".format(n, accuracy_score(y_test, y_pred))) # - test_acc plt.figure() plt.plot(range(1, 11), test_acc, label = 'test') plt.xlabel("n_neighbors") plt.ylabel("accuracy") plt.xticks(np.arange(0, 11, step = 1)) plt.legend() plt.show() # + clf_lin = svm.LinearSVC() clf_lin.fit(x_train, y_train) y_pred_lin = clf_lin.predict(x_test) print(confusion_matrix(y_test, y_pred_lin)) print(accuracy_score(y_test, y_pred_lin)) # - # #### 0(미사용), 1,6,8 Group shaping group0, group1 = data1[data1["MRC_ID_DI"]==0], data1[data1["MRC_ID_DI"]==1] group6, group8 = data1[data1["MRC_ID_DI"]==6], data1[data1["MRC_ID_DI"]==8] print("group0.shape = {}, group1.shape = {}, group6.shape = {}, group8.shape = {}".format(group0.shape, group1.shape, group6.shape, group8.shape)) group0, group1, group6, group8 =
pd.get_dummies(group0)
pandas.get_dummies
############################################################################################################### #################### Modelo de predicción de terremotos con Machine Learning y red neuronal ################### ############################################################################################################### # Python 3.8.7 # Librerías requeridas: Numpy 1.19.5, Pandas 1.2.0, Sklearn 0.0, Keras 2.4.3, Tensorflow 2.4.0, Datetime 4.3 # Dashboard en Power BI con información de Terremotos # https://app.powerbi.com/view?r=eyJrIjoiMDQzMTI5MWItMzAyZi00MzRkLTkxMDEtYjUwMzRjZmEyODY3IiwidCI6IjNhY2M3NWRiLTNhOTQtNDFmOS04N2M3LWIwNjE3MGRlZjEwYiJ9&pageName=ReportSectione26908533edc15cb8d45 # Referencias # Earthquakes magnitude predication using artificial neural network in northern Red Sea area # https://www.sciencedirect.com/science/article/pii/S1018364711000280 # Fuente de datos de terremotos: # De 1900 a 1969 | Tableau Resources - https://public.tableau.com/en-us/s/resources # De 1970 a 2019 | Incorporated Research Institutions for Seismology (IRIS) - https://www.iris.edu/hq/ # Última fecha de actualización: 21/01/2021 # Github: https://github.com/digiteos/earthquakes ############################################################################################################## # 1) Importando librerías de Python (Numpy y Pandas) import numpy as np import pandas as pd # 2) Cargando y leyendo el set de datos históricos (el archivo csv tiene ; como separador) data = pd.read_csv("EarthQuakes-Data-1970-2019.csv", sep=';') data.columns # 3) Visualizando encabezado de tabla, cantidad de registros y tipos de datos print(data.head()) print(data.shape) print(data.dtypes) # 4) Convirtiendo la fecha/hora a formato Unix (solo admite datos a partir de 1970) para que pueda ser procesada por la red neuronal y visualizando el nuevo dataset import datetime import time timestamp = [] for d, t in zip(data['Date'], data['Time']): try: ts = datetime.datetime.strptime(d+' '+t, '%d/%m/%Y %H:%M:%S') timestamp.append(time.mktime(ts.timetuple())) except ValueError: # print('ValueError') timestamp.append('ValueError') timeStamp =
pd.Series(timestamp)
pandas.Series
""" Interface for the self-driving car sensors dataset. Description of the data: "times" : seconds from start "fiber_accel" : m/s**2 "fiber_compass" : this is a concatenation of x_y_z below "fiber_compass_x" : magnetic north (we are not sure actually ;)) "fiber_compass_y" : orthogonal to magnetic north in car plane "fiber_compass_z" : orthogonal to x and y "fiber_gyro" : deg/s - roll, pitch, yaw in car-centric frame "gps_1_pos" : ECEF coordinates "gps_1_vel" : ECEF velocity "gps_2_pos" : ECEF coordinates (another GPS sensor) "gps_2_vel" : ECEF velocity (another GPS sensor) "imu_compass" : same as compass above "imu_gyro" : deg/s - roll, pitch, yaw in car-centric frame "speed" : m/s "speed_abs" : m/s "steering_angle" : deg/m "velodyne_gps" : ECEF "velodyne_imu" : deg/s "left_lanes" : 4 + 4 coefficients of the cubic polynomials (x and y) "right_lanes" : 4 + 4 coefficients of the cubic polynomials (x and y) "radar_leads" : x-y (front-left) coordinates of a detected vehicle About the self-driving car: http://www.bloomberg.com/features/2015-george-hotz-self-driving-car/ """ import os import sys import h5py import numpy as np import pandas as pd def load_data(start=0., stop=100., t_step=1, set_name='full', ins=['gps_1_vel', 'fiber_gyro'], outs=['speed'], gps_to_enu=False, pts_per_lane=7, verbose=1): """Load the car sensors data. Arguments: ---------- t_step : uint Take data points t_step apart from each other in time. start : float in [0., 100.) stop : float in (0., 100.] ins : list of str Names of the fields to use as inputs. outs : list of str Names of the fields to use as outputs. verbose : uint (default: 1) """ if 'DATA_PATH' not in os.environ: raise Exception("Cannot find DATA_PATH variable in the environment. " "DATA_PATH should be the folder that contains " "`self-driving/` directory with car sensors data. " "Please export DATA_PATH before loading the data.") datadir = os.path.join(os.environ['DATA_PATH'], 'self-driving') dataset_name = 'car_sensors{}.h5'.format( '_{}'.format(set_name) if set_name != 'full' else '') dataset_path = os.path.join(datadir, dataset_name) if not os.path.exists(dataset_path): raise Exception("Cannot find data: %s" % dataset_path) if verbose: print('Loading data from %s...' % os.path.basename(dataset_path)) sys.stdout.flush() f = h5py.File(dataset_path, 'r') # Compute the data slice N = len(f['times'][:]) start_t = int((start/100.) * N) stop_t = int((stop/100.) * N) idx = slice(start_t, stop_t, t_step) # Read & preprocess inputs input_nnz, input_vars = None, [] for name in ins: X = f[name][idx] if gps_to_enu and name.startswith('gps'): assert X.shape[1] == 3 x0, y0, z0 = X[0, 0], X[0, 1], X[0, 2] x, y, z = X[:, 0], X[:, 1], X[:, 2] X = ecef2enu(x, y, z, x0, y0, z0) if name.endswith('lanes'): if verbose: print('...constructing %s' % name) sys.stdout.flush() X, nnz = construct_lanes(X, pts_per_lane) input_nnz = nnz if input_nnz is None \ else np.logical_and(input_nnz, nnz) if name == 'radar_leads': X[X[:, 0] < 0] = np.nan X_df = pd.DataFrame(X).fillna(method='ffill') X = X_df.values # X[X[:, 0] < 0., 0], X[X[:, 1] < 0., 1] = 200., 0. if len(X.shape) == 1: input_vars.append(X[:, None]) else: assert len(X.shape) == 2 input_vars.append(X) # Read & preprocess targets target_nnz, target_vars = None, [] for name in outs: Y = f[name][idx] if gps_to_enu and name.startswith('gps'): assert Y.shape[1] == 3 x0, y0, z0 = Y[0, :] x, y, z = Y[:, 0], Y[:, 1], Y[:, 2] Y = ecef2enu(x, y, z, x0, y0, z0) if name.endswith('lanes'): if verbose: print('...constructing %s' % name) sys.stdout.flush() Y, nnz = construct_lanes(Y, pts_per_lane) target_nnz = nnz if target_nnz is None \ else np.logical_and(target_nnz, nnz) if name == 'radar_leads': Y[Y[:, 0] < 0] = np.nan Y_df =
pd.DataFrame(Y)
pandas.DataFrame
from __future__ import print_function # this is a class to deal with aqs data from builtins import zip from builtins import range from builtins import object import os from datetime import datetime from zipfile import ZipFile import pandas as pd from numpy import array, arange import inspect import requests class AQS(object): def __init__(self): # self.baseurl = 'https://aqs.epa.gov/aqsweb/airdata/' self.objtype = 'AQS' self.daily = False self.baseurl = 'https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/' self.dates = [datetime.strptime('2014-06-06 12:00:00', '%Y-%m-%d %H:%M:%S'), datetime.strptime('2014-06-06 13:00:00', '%Y-%m-%d %H:%M:%S')] self.renamedhcols = ['datetime_local', 'datetime', 'State_Code', 'County_Code', 'Site_Num', 'Parameter_Code', 'POC', 'Latitude', 'Longitude', 'Datum', 'Parameter_Name', 'Obs', 'Units', 'MDL', 'Uncertainty', 'Qualifier', 'Method_type', 'Method_Code', 'Method_Name', 'State_Name', 'County_Name', 'Date_of_Last_Change'] self.renameddcols = ['datetime_local', 'State_Code', 'County_Code', 'Site_Num', 'Parameter_Code', 'POC', 'Latitude', 'Longitude', 'Datum', 'Parameter_Name', 'Sample_Duration', 'Pollutant_Standard', 'Units', 'Event_Type', 'Observation_Count', 'Observation_Percent', 'Obs', '1st_Max_Value', '1st_Max Hour', 'AQI', 'Method_Code', 'Method_Name', 'Local_Site_Name', 'Address', 'State_Name', 'County_Name', 'City_Name', 'MSA_Name', 'Date_of_Last_Change'] self.savecols = ['datetime_local', 'datetime', 'SCS', 'Latitude', 'Longitude', 'Obs', 'Units', 'Species'] self.se_states = array( ['Alabama', 'Florida', 'Georgia', 'Mississippi', 'North Carolina', 'South Carolina', 'Tennessee', 'Virginia', 'West Virginia'], dtype='|S14') self.se_states_abv = array( ['AL', 'FL', 'GA', 'MS', 'NC', 'SC', 'TN', 'VA', 'WV'], dtype='|S14') self.ne_states = array(['Connecticut', 'Delaware', 'District Of Columbia', 'Maine', 'Maryland', 'Massachusetts', 'New Hampshire', 'New Jersey', 'New York', 'Pennsylvania', 'Rhode Island', 'Vermont'], dtype='|S20') self.ne_states_abv = array(['CT', 'DE', 'DC', 'ME', 'MD', 'MA', 'NH', 'NJ', 'NY', 'PA', 'RI', 'VT'], dtype='|S20') self.nc_states = array( ['Illinois', 'Indiana', 'Iowa', 'Kentucky', 'Michigan', 'Minnesota', 'Missouri', 'Ohio', 'Wisconsin'], dtype='|S9') self.nc_states_abv = array(['IL', 'IN', 'IA', 'KY', 'MI', 'MN', 'MO', 'OH', 'WI'], dtype='|S9') self.sc_states = array( ['Arkansas', 'Louisiana', 'Oklahoma', 'Texas'], dtype='|S9') self.sc_states_abv = array(['AR', 'LA', 'OK', 'TX'], dtype='|S9') self.r_states = array(['Arizona', 'Colorado', 'Idaho', 'Kansas', 'Montana', 'Nebraska', 'Nevada', 'New Mexico', 'North Dakota', 'South Dakota', 'Utah', 'Wyoming'], dtype='|S12') self.r_states_abv = array(['AZ', 'CO', 'ID', 'KS', 'MT', 'NE', 'NV', 'NM', 'ND', 'SD', 'UT', 'WY'], dtype='|S12') self.p_states = array( ['California', 'Oregon', 'Washington'], dtype='|S10') self.p_states_abv = array(['CA', 'OR', 'WA'], dtype='|S10') self.datadir = '.' self.cwd = os.getcwd() self.df = None # hourly dataframe self.monitor_file = inspect.getfile( self.__class__)[:-13] + '/data/monitoring_site_locations.dat' self.monitor_df = None self.d_df = None # daily dataframe def check_file_size(self, url): test = requests.head(url).headers if int(test['Content-Length']) > 1000: return True else: return False def retrieve_aqs_hourly_pm25_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url1 = self.baseurl + 'hourly_88101_' + year + '.zip' if self.check_file_size(url1): print('Downloading Hourly PM25 FRM: ' + url1) filename = wget.download(url1) print('') print('Unpacking: ' + url1) dffrm = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) dffrm.columns = self.renamedhcols dffrm['SCS'] = array( dffrm['State_Code'].values * 1.E7 + dffrm['County_Code'].values * 1.E4 + dffrm['Site_Num'].values, dtype='int32') else: dffrm = pd.DataFrame(columns=self.renamedhcols) url2 = self.baseurl + 'hourly_88502_' + year + '.zip' if self.check_file_size(url2): print('Downloading Hourly PM25 NON-FRM: ' + url2) filename = wget.download(url2) print('') print('Unpacking: ' + url2) dfnfrm = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) dfnfrm.columns = self.renamedhcols dfnfrm['SCS'] = array( dfnfrm['State_Code'].values * 1.E7 + dfnfrm['County_Code'].values * 1.E4 + dfnfrm['Site_Num'].values, dtype='int32') else: dfnfrm = pd.DataFrame(columns=self.renamedhcols) if self.check_file_size(url1) | self.check_file_size(url2): df = pd.concat([dfnfrm, dffrm], ignore_index=True) df.loc[:, 'State_Code'] = pd.to_numeric( df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') # df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df) # df = self.get_region(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) df['Species'] = 'PM2.5' print('Saving file to: ' + self.datadir + '/' + \ 'AQS_HOURLY_PM_25_88101_' + year + '.hdf') df.to_hdf('AQS_HOURLY_PM_25_88101_' + year + '.hdf', 'df', format='table') else: df = pd.DataFrame(columns=self.renamedhcols) return df def retrieve_aqs_hourly_ozone_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url = self.baseurl + 'hourly_44201_' + year + '.zip' print('Downloading Hourly Ozone: ' + url) filename = wget.download(url) print('') print('Unpacking: ' + url) df = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) df.columns = self.renamedhcols df.loc[:, 'State_Code'] = pd.to_numeric(df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) print('Saving file to: ' + self.datadir + '/' + \ 'AQS_HOURLY_OZONE_44201_' + year + '.hdf') df.to_hdf('AQS_HOURLY_OZONE_44201_' + year + '.hdf', 'df', format='table') return df def retrieve_aqs_hourly_pm10_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url = self.baseurl + 'hourly_81102_' + year + '.zip' print('Downloading Hourly PM10: ' + url) filename = wget.download(url) print('') print('Unpacking: ' + url) df = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) df.columns = self.renamedhcols df.loc[:, 'State_Code'] = pd.to_numeric(df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df) # df = self.get_region(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) print('Saving file to: ' + self.datadir + '/' + \ 'AQS_HOURLY_PM_10_81102_' + year + '.hdf') df.to_hdf('AQS_HOURLY_PM_10_81102_' + year + '.hdf', 'df', format='table') return df def retrieve_aqs_hourly_so2_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url = self.baseurl + 'hourly_42401_' + year + '.zip' print('Downloading Hourly SO2: ' + url) filename = wget.download(url) print('') print('Unpacking: ' + url) df = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) df.columns = self.renamedhcols df.loc[:, 'State_Code'] = pd.to_numeric(df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df) # df = self.get_region(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) print('Saving file to: ' + self.datadir + '/' + \ 'AQS_HOURLY_SO2_42401_' + year + '.hdf') df.to_hdf('AQS_HOURLY_SO2_42401_' + year + '.hdf', 'df', format='table') return df def retrieve_aqs_hourly_no2_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url = self.baseurl + 'hourly_42602_' + year + '.zip' print('Downloading Hourly NO2: ' + url) filename = wget.download(url) print('') print('Unpacking: ' + url) df = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) df.columns = self.renamedhcols df.loc[:, 'State_Code'] = pd.to_numeric(df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df) # df = self.get_region(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) print('Saving file to: ' + self.datadir + '/' + \ 'AQS_HOURLY_NO2_42602_' + year + '.hdf') df.to_hdf('AQS_HOURLY_NO2_42602_' + year + '.hdf', 'df', format='table') return df def retrieve_aqs_hourly_co_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url = self.baseurl + 'hourly_42101_' + year + '.zip' print('Downloading Hourly CO: ' + url) filename = wget.download(url) print('') print('Unpacking: ' + url) df = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) df.columns = self.renamedhcols df.loc[:, 'State_Code'] = pd.to_numeric(df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df) # df = self.get_region(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) print('Saving file to: ' + self.datadir + \ '/' + 'AQS_HOURLY_CO_42101_' + year + '.hdf') df.to_hdf('AQS_HOURLY_CO_42101_' + year + '.hdf', 'df', format='table') return df def retrieve_aqs_hourly_nonoxnoy_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url = self.baseurl + 'hourly_NONOxNOy_' + year + '.zip' print('Downloading Hourly NO NOx NOy: ' + url) filename = wget.download(url) print('') print('Unpacking: ' + url) df = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) df.columns = self.renamedhcols df.loc[:, 'State_Code'] = pd.to_numeric(df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df) # df = self.get_region(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) print('Saving file to: ' + self.datadir + \ '/' + 'AQS_HOURLY_NONOXNOY_' + year + '.hdf') df.to_hdf('AQS_HOURLY_NONOXNOY_' + year + '.hdf', 'df', format='table') return df def retrieve_aqs_hourly_voc_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url = self.baseurl + 'hourly_VOCS_' + year + '.zip' print('Downloading Hourly VOCs: ' + url) filename = wget.download(url) print('') print('Unpacking: ' + url) df = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) df.columns = self.renamedhcols df.loc[:, 'State_Code'] = pd.to_numeric(df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df, voc=True) # df = self.get_region(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) print('Saving file to: ' + self.datadir + \ '/' + 'AQS_HOURLY_VOC_' + year + '.hdf') df.to_hdf('AQS_HOURLY_VOC_' + year + '.hdf', 'df', format='table') return df def retrieve_aqs_hourly_spec_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url = self.baseurl + 'hourly_SPEC_' + year + '.zip' if self.check_file_size(url): print('Downloading PM Speciation: ' + url) filename = wget.download(url) print('') print('Unpacking: ' + url) df = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) df.columns = self.renamedhcols df.loc[:, 'State_Code'] = pd.to_numeric( df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) print('Saving file to: ' + self.datadir + \ '/' + 'AQS_HOURLY_SPEC_' + year + '.hdf') df.to_hdf('AQS_HOURLY_SPEC_' + year + '.hdf', 'df', format='table') return df else: return pd.DataFrame(columns=self.renamedhcols) def retrieve_aqs_hourly_wind_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url = self.baseurl + 'hourly_WIND_' + year + '.zip' print('Downloading AQS WIND: ' + url) filename = wget.download(url) print('') print('Unpacking: ' + url) df = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) df.columns = self.renamedhcols df.loc[:, 'State_Code'] = pd.to_numeric(df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df) # df = self.get_region(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) print('Saving file to: ' + self.datadir + \ '/' + 'AQS_HOURLY_WIND_' + year + '.hdf') df.to_hdf('AQS_HOURLY_WIND_' + year + '.hdf', 'df', format='table') return df def retrieve_aqs_hourly_temp_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url = self.baseurl + 'hourly_TEMP_' + year + '.zip' print('Downloading AQS TEMP: ' + url) filename = wget.download(url) print('') print('Unpacking: ' + url) df = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) df.columns = self.renamedhcols df.loc[:, 'State_Code'] = pd.to_numeric(df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df) # df = self.get_region(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) print('Saving file to: ' + self.datadir + \ '/' + 'AQS_HOURLY_TEMP_' + year + '.hdf') df.to_hdf('AQS_HOURLY_TEMP_' + year + '.hdf', 'df', format='table') return df def retrieve_aqs_hourly_rhdp_data(self, dates): import wget i = dates[0] year = i.strftime('%Y') url = self.baseurl + 'hourly_RH_DP_' + year + '.zip' print('Downloading AQS RH and DP: ' + url) filename = wget.download(url) print('') print('Unpacking: ' + url) df = pd.read_csv(filename, parse_dates={'datetime': ['Date GMT', 'Time GMT'], 'datetime_local': ["Date Local", "Time Local"]}, infer_datetime_format=True) df.columns = self.renamedhcols df.loc[:, 'State_Code'] = pd.to_numeric(df.State_Code, errors='coerce') df.loc[:, 'Site_Num'] = pd.to_numeric(df.Site_Num, errors='coerce') df.loc[:, 'County_Code'] = pd.to_numeric( df.County_Code, errors='coerce') df['SCS'] = array(df['State_Code'].values * 1.E7 + df['County_Code'].values * 1.E4 + df['Site_Num'].values, dtype='int32') df.drop('Qualifier', axis=1, inplace=True) df = self.get_species(df) df = df.copy()[self.savecols] df = self.add_metro_metadata2(df) print('Saving file to: ' + self.datadir + \ '/' + 'AQS_HOURLY_RHDP_' + year + '.hdf') df.to_hdf('AQS_HOURLY_RHDP_' + year + '.hdf', 'df', format='table') return df def load_aqs_pm25_data(self, dates): year = dates[0].strftime('%Y') fname = 'AQS_HOURLY_PM_25_88101_' + year + '.hdf' if os.path.isfile(fname): print("File Found, Loading: " + fname) aqs = pd.read_hdf(fname) else: aqs = self.retrieve_aqs_hourly_pm25_data(dates) if aqs.empty: return aqs else: con = (aqs.datetime >= dates[0]) & (aqs.datetime <= dates[-1]) aqs = aqs[con] aqs.index = arange(aqs.index.shape[0]) return aqs def load_aqs_voc_data(self, dates): year = dates[0].strftime('%Y') fname = 'AQS_HOURLY_VOC_' + year + '.hdf' if os.path.isfile(fname): print("File Found, Loading: " + fname) aqs = pd.read_hdf(fname) else: aqs = self.retrieve_aqs_hourly_voc_data(dates) con = (aqs.datetime >= dates[0]) & (aqs.datetime <= dates[-1]) aqs = aqs[con] aqs.index = arange(aqs.index.shape[0]) return aqs def load_aqs_ozone_data(self, dates): year = dates[0].strftime('%Y') fname = 'AQS_HOURLY_OZONE_44201_' + year + '.hdf' if os.path.isfile(fname): print("File Found, Loading: " + fname) aqs = pd.read_hdf(fname) else: aqs = self.retrieve_aqs_hourly_ozone_data(dates) con = (aqs.datetime >= dates[0]) & (aqs.datetime <= dates[-1]) aqs = aqs[con] aqs.Units = 'ppb' aqs.Obs = aqs.Obs.values * 1000. aqs.index = arange(aqs.index.shape[0]) return aqs def load_aqs_pm10_data(self, dates): year = dates[0].strftime('%Y') fname = 'AQS_HOURLY_PM_10_81102_' + year + '.hdf' if os.path.isfile(fname): print("File Found, Loading: " + fname) aqs = pd.read_hdf(fname) else: aqs = self.retrieve_aqs_hourly_pm10_data(dates) con = (aqs.datetime >= dates[0]) & (aqs.datetime <= dates[-1]) aqs = aqs[con] aqs.index = arange(aqs.index.shape[0]) return aqs def load_aqs_so2_data(self, dates): year = dates[0].strftime('%Y') fname = 'AQS_HOURLY_SO2_42401_' + year + '.hdf' if os.path.isfile(fname): print("File Found, Loading: " + fname) aqs = pd.read_hdf(fname) else: aqs = self.retrieve_aqs_hourly_so2_data(dates) con = (aqs.datetime >= dates[0]) & (aqs.datetime <= dates[-1]) aqs = aqs[con] aqs.index = arange(aqs.index.shape[0]) return aqs def load_aqs_no2_data(self, dates): year = dates[0].strftime('%Y') fname = 'AQS_HOURLY_NO2_42602_' + year + '.hdf' if os.path.isfile(fname): print("File Found, Loading: " + fname) aqs = pd.read_hdf(fname) else: aqs = self.retrieve_aqs_hourly_no2_data(dates) con = (aqs.datetime >= dates[0]) & (aqs.datetime <= dates[-1]) aqs = aqs[con] aqs.index = arange(aqs.index.shape[0]) return aqs def load_aqs_co_data(self, dates): year = dates[0].strftime('%Y') fname = 'AQS_HOURLY_CO_42101_' + year + '.hdf' if os.path.isfile(fname): print("File Found, Loading: " + fname) aqs = pd.read_hdf(fname) else: aqs = self.retrieve_aqs_hourly_co_data(dates) con = (aqs.datetime >= dates[0]) & (aqs.datetime <= dates[-1]) aqs = aqs[con] aqs.index = arange(aqs.index.shape[0]) return aqs def load_aqs_spec_data(self, dates): year = dates[0].strftime('%Y') fname = 'AQS_HOURLY_SPEC_' + year + '.hdf' if os.path.isfile(fname): print("File Found, Loading: " + fname) aqs = pd.read_hdf(fname) else: print('Retrieving Data') aqs = self.retrieve_aqs_hourly_spec_data(dates) if aqs.empty: return pd.DataFrame(columns=self.renamedhcols) else: con = (aqs.datetime >= dates[0]) & (aqs.datetime <= dates[-1]) aqs = aqs[con] aqs.index = arange(aqs.index.shape[0]) return aqs def load_aqs_wind_data(self, dates): year = dates[0].strftime('%Y') fname = 'AQS_HOURLY_WIND_' + year + '.hdf' if os.path.isfile(fname): print("File Found, Loading: " + fname) aqs = pd.read_hdf(fname) else: aqs = self.retrieve_aqs_hourly_wind_data(dates) con = (aqs.datetime >= dates[0]) & (aqs.datetime <= dates[-1]) aqs = aqs[con] aqs.index = arange(aqs.index.shape[0]) return aqs def load_aqs_temp_data(self, dates): year = dates[0].strftime('%Y') fname = 'AQS_HOURLY_TEMP_' + year + '.hdf' if os.path.isfile(fname): print("File Found, Loading: " + fname) aqs = pd.read_hdf(fname) else: aqs = self.retrieve_aqs_hourly_temp_data(dates) con = (aqs.datetime >= dates[0]) & (aqs.datetime <= dates[-1]) aqs = aqs[con] aqs.index = arange(aqs.index.shape[0]) return aqs def load_aqs_rhdp_data(self, dates): year = dates[0].strftime('%Y') fname = 'AQS_HOURLY_RHDP_' + year + '.hdf' if os.path.isfile(fname): print("File Found, Loading: " + fname) aqs = pd.read_hdf(fname) else: aqs = self.retrieve_aqs_hourly_rhdp_data(dates) con = (aqs.datetime >= dates[0]) & (aqs.datetime <= dates[-1]) aqs = aqs[con] aqs.index = arange(aqs.index.shape[0]) return aqs def load_aqs_nonoxnoy_data(self, dates): year = dates[0].strftime('%Y') fname = 'AQS_HOURLY_NONOXNOY_' + year + '.hdf' if os.path.isfile(fname): print("File Found, Loading: " + fname) aqs = pd.read_hdf(fname) else: aqs = self.retrieve_aqs_hourly_nonoxnoy_data(dates) con = (aqs.datetime >= dates[0]) & (aqs.datetime <= dates[-1]) aqs = aqs[con] aqs.index = arange(aqs.index.shape[0]) return aqs def load_data(self, param, dates): if param == 'PM2.5': df = self.load_aqs_pm25_data(dates) elif param == 'PM10': df = self.load_aqs_pm10_data(dates) elif param == 'SPEC': df = self.load_aqs_spec_data(dates) elif param == 'CO': df = self.load_aqs_co_data(dates) elif param == 'OZONE': df = self.load_aqs_ozone_data(dates) elif param == 'SO2': df = self.load_aqs_so2_data(dates) elif param == 'VOC': df = self.load_aqs_voc_data(dates) elif param == 'NONOXNOY': df = self.load_aqs_nonoxnoy_data(dates) elif param == 'WIND': df = self.load_aqs_wind_data(dates) elif param == 'TEMP': df = self.load_aqs_temp_data(dates) elif param == 'RHDP': df = self.load_aqs_rhdp_data(dates) return df def load_daily_data(self, param, dates): if param == 'PM2.5': df = self.load_aqs_daily_pm25_data(dates) elif param == 'PM10': df = self.load_aqs_daily_pm10_data(dates) elif param == 'SPEC': df = self.load_aqs_daily_spec_data(dates) elif param == 'CO': df = self.load_aqs_daily_co_data(dates) elif param == 'OZONE': df = self.load_aqs_daily_no2_data(dates) elif param == 'SO2': df = self.load_aqs_daily_so2_data(dates) elif param == 'VOC': df = self.load_aqs_daily_voc_data(dates) elif param == 'NONOXNOY': df = self.load_aqs_daily_nonoxnoy_data(dates) elif param == 'WIND': df = self.load_aqs_daily_wind_data(dates) elif param == 'TEMP': df = self.load_aqs_daily_temp_data(dates) elif param == 'RHDP': df = self.load_aqs_daily_rhdp_data(dates) return df def load_all_hourly_data2(self, dates, datasets='all'): import dask import dask.dataframe as dd os.chdir(self.datadir) params = ['SPEC', 'PM10', 'PM2.5', 'CO', 'OZONE', 'SO2', 'VOC', 'NONOXNOY', 'WIND', 'TEMP', 'RHDP'] dfs = [dask.delayed(self.load_data)(i, dates) for i in params] dff = dd.from_delayed(dfs) # dff = dff.drop_duplicates() self.df = dff.compute() self.df = self.change_units(self.df) # self.df = pd.concat(dfs, ignore_index=True) # self.df = self.change_units(self.df).drop_duplicates(subset=['datetime','SCS','Species','Obs']).dropna(subset=['Obs']) os.chdir(self.cwd) def load_all_daily_data(self, dates, datasets='all'): import dask import dask.dataframe as dd from dask.diagnostics import ProgressBar os.chdir(self.datadir) pbar = ProgressBar() pbar.register() params = ['SPEC', 'PM10', 'PM2.5', 'CO', 'OZONE', 'SO2', 'VOC', 'NONOXNOY', 'WIND', 'TEMP', 'RHDP'] # dfs = [dask.delayed(self.load_daily_data)(i,dates) for i in params] # print dfs # dff = dd.from_delayed(dfs) # self.d_df = dff.compute() dfs = [self.load_daily_data(i, dates) for i in params] self.d_df = pd.concat(dfs, ignore_index=True) self.d_df = self.change_units(self.d_df) os.chdir(self.cwd) def get_all_hourly_data(self, dates): os.chdir(self.datadir) dfs = [self.load_aqs_co_data(dates), self.load_aqs_pm10_data(dates), self.load_aqs_ozone_data(dates), self.load_aqs_pm25_data(dates), self.load_aqs_spec_data( dates), self.load_aqs_no2_data(dates), self.load_aqs_so2_data(dates), self.load_aqs_voc_data( dates), self.load_aqs_nonoxnoy_data(dates), self.load_aqs_wind_data(dates), self.load_aqs_temp_data(dates), self.load_aqs_rhdp_data(dates)] os.chdir(self.cwd) def load_all_hourly_data(self, dates, datasets='all'): os.chdir(self.datadir) if datasets.upper() == 'PM': dfs = [self.load_aqs_pm10_data(dates), self.load_aqs_pm25_data( dates), self.load_aqs_spec_data(dates)] else: dfs = [self.load_aqs_co_data(dates), self.load_aqs_pm10_data(dates), self.load_aqs_ozone_data(dates), self.load_aqs_pm25_data(dates), self.load_aqs_spec_data( dates), self.load_aqs_no2_data(dates), self.load_aqs_so2_data(dates), self.load_aqs_voc_data( dates), self.load_aqs_nonoxnoy_data(dates), self.load_aqs_wind_data( dates), self.load_aqs_temp_data(dates), self.load_aqs_rhdp_data(dates)] # ,self.load_aqs_daily_spec_data(dates)] self.df = pd.concat(dfs, ignore_index=True) self.df = self.change_units(self.df).drop_duplicates() os.chdir(self.cwd) def load_aqs_daily_pm25_data(self, dates): from datetime import timedelta year = dates[0].strftime('%Y') fname = self.datadir + '/' + 'AQS_DAILY_PM25_' + year + '.hdf' if os.path.isfile(fname): aqs =
pd.read_hdf(fname)
pandas.read_hdf
import importlib from hydroDL.master import basins from hydroDL.app import waterQuality from hydroDL import kPath from hydroDL.model import trainTS from hydroDL.data import gageII, usgs from hydroDL.post import axplot, figplot import torch import os import json import pandas as pd import numpy as np import matplotlib.pyplot as plt import time wqData = waterQuality.DataModelWQ('sbWT') siteNoLst = wqData.info['siteNo'].unique().tolist() # trainSetLst = ['Y1', 'Y2'] trainSet = 'Y1' dfCorrLst = [pd.DataFrame(index=siteNoLst, columns=usgs.varC) for x in range(2)] dfRmseLst = [pd.DataFrame(index=siteNoLst, columns=usgs.varC) for x in range(2)] t0 = time.time() for kk, siteNo in enumerate(siteNoLst): print('{}/{} {:.2f}'.format( kk, len(siteNoLst), time.time()-t0)) outFolder = os.path.join(kPath.dirWQ, 'modelStat', 'WRTDS-F') saveFile = os.path.join(outFolder, trainSet, siteNo) dfP = pd.read_csv(saveFile, index_col=None).set_index('date') dfP.index =
pd.to_datetime(dfP.index)
pandas.to_datetime
# -*- coding: utf-8 -*- import re import warnings from datetime import timedelta from itertools import product import pytest import numpy as np import pandas as pd from pandas import (CategoricalIndex, DataFrame, Index, MultiIndex, compat, date_range, period_range) from pandas.compat import PY3, long, lrange, lzip, range, u, PYPY from pandas.errors import PerformanceWarning, UnsortedIndexError from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.indexes.base import InvalidIndexError from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas._libs.tslib import Timestamp import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal, assert_copy from .common import Base class TestMultiIndex(Base): _holder = MultiIndex _compat_props = ['shape', 'ndim', 'size'] def setup_method(self, method): major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) self.index_names = ['first', 'second'] self.indices = dict(index=MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels ], names=self.index_names, verify_integrity=False)) self.setup_indices() def create_index(self): return self.index def test_can_hold_identifiers(self): idx = self.create_index() key = idx[0] assert idx._can_hold_identifiers_and_holds_name(key) is True def test_boolean_context_compat2(self): # boolean context compat # GH7897 i1 = MultiIndex.from_tuples([('A', 1), ('A', 2)]) i2 = MultiIndex.from_tuples([('A', 1), ('A', 3)]) common = i1.intersection(i2) def f(): if common: pass tm.assert_raises_regex(ValueError, 'The truth value of a', f) def test_labels_dtypes(self): # GH 8456 i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) assert i.labels[0].dtype == 'int8' assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(40)]) assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(400)]) assert i.labels[1].dtype == 'int16' i = MultiIndex.from_product([['a'], range(40000)]) assert i.labels[1].dtype == 'int32' i = pd.MultiIndex.from_product([['a'], range(1000)]) assert (i.labels[0] >= 0).all() assert (i.labels[1] >= 0).all() def test_where(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) def f(): i.where(True) pytest.raises(NotImplementedError, f) def test_where_array_like(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) klasses = [list, tuple, np.array, pd.Series] cond = [False, True] for klass in klasses: def f(): return i.where(klass(cond)) pytest.raises(NotImplementedError, f) def test_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(m.repeat(reps), expected) with tm.assert_produces_warning(FutureWarning): result = m.repeat(n=reps) tm.assert_index_equal(result, expected) def test_numpy_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(np.repeat(m, reps), expected) msg = "the 'axis' parameter is not supported" tm.assert_raises_regex( ValueError, msg, np.repeat, m, reps, axis=1) def test_set_name_methods(self): # so long as these are synonyms, we don't need to test set_names assert self.index.rename == self.index.set_names new_names = [name + "SUFFIX" for name in self.index_names] ind = self.index.set_names(new_names) assert self.index.names == self.index_names assert ind.names == new_names with tm.assert_raises_regex(ValueError, "^Length"): ind.set_names(new_names + new_names) new_names2 = [name + "SUFFIX2" for name in new_names] res = ind.set_names(new_names2, inplace=True) assert res is None assert ind.names == new_names2 # set names for specific level (# GH7792) ind = self.index.set_names(new_names[0], level=0) assert self.index.names == self.index_names assert ind.names == [new_names[0], self.index_names[1]] res = ind.set_names(new_names2[0], level=0, inplace=True) assert res is None assert ind.names == [new_names2[0], self.index_names[1]] # set names for multiple levels ind = self.index.set_names(new_names, level=[0, 1]) assert self.index.names == self.index_names assert ind.names == new_names res = ind.set_names(new_names2, level=[0, 1], inplace=True) assert res is None assert ind.names == new_names2 @pytest.mark.parametrize('inplace', [True, False]) def test_set_names_with_nlevel_1(self, inplace): # GH 21149 # Ensure that .set_names for MultiIndex with # nlevels == 1 does not raise any errors expected = pd.MultiIndex(levels=[[0, 1]], labels=[[0, 1]], names=['first']) m = pd.MultiIndex.from_product([[0, 1]]) result = m.set_names('first', level=0, inplace=inplace) if inplace: result = m tm.assert_index_equal(result, expected) def test_set_levels_labels_directly(self): # setting levels/labels directly raises AttributeError levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] with pytest.raises(AttributeError): self.index.levels = new_levels with pytest.raises(AttributeError): self.index.labels = new_labels def test_set_levels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] def assert_matching(actual, expected, check_dtype=False): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) tm.assert_numpy_array_equal(act, exp, check_dtype=check_dtype) # level changing [w/o mutation] ind2 = self.index.set_levels(new_levels) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) # level changing specific level [w/o mutation] ind2 = self.index.set_levels(new_levels[0], level=0) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.set_levels(new_levels[1], level=1) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/o mutation] ind2 = self.index.set_levels(new_levels, level=[0, 1]) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # illegal level changing should not change levels # GH 13754 original_index = self.index.copy() for inplace in [True, False]: with tm.assert_raises_regex(ValueError, "^On"): self.index.set_levels(['c'], level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(ValueError, "^On"): self.index.set_labels([0, 1, 2, 3, 4, 5], level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Levels"): self.index.set_levels('c', level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Labels"): self.index.set_labels(1, level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) def test_set_labels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp, dtype=np.int8) tm.assert_numpy_array_equal(act, exp) # label changing [w/o mutation] ind2 = self.index.set_labels(new_labels) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) # label changing specific level [w/o mutation] ind2 = self.index.set_labels(new_labels[0], level=0) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.set_labels(new_labels[1], level=1) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/o mutation] ind2 = self.index.set_labels(new_labels, level=[0, 1]) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing for levels of different magnitude of categories ind = pd.MultiIndex.from_tuples([(0, i) for i in range(130)]) new_labels = range(129, -1, -1) expected = pd.MultiIndex.from_tuples( [(0, i) for i in new_labels]) # [w/o mutation] result = ind.set_labels(labels=new_labels, level=1) assert result.equals(expected) # [w/ mutation] result = ind.copy() result.set_labels(labels=new_labels, level=1, inplace=True) assert result.equals(expected) def test_set_levels_labels_names_bad_input(self): levels, labels = self.index.levels, self.index.labels names = self.index.names with tm.assert_raises_regex(ValueError, 'Length of levels'): self.index.set_levels([levels[0]]) with tm.assert_raises_regex(ValueError, 'Length of labels'): self.index.set_labels([labels[0]]) with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names([names[0]]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_names(names[0]) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_levels(levels, level=0) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_labels(labels, level=0) # should have equal lengths with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names(names[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'string'): self.index.set_names(names, level=0) def test_set_levels_categorical(self): # GH13854 index = MultiIndex.from_arrays([list("xyzx"), [0, 1, 2, 3]]) for ordered in [False, True]: cidx = CategoricalIndex(list("bac"), ordered=ordered) result = index.set_levels(cidx, 0) expected = MultiIndex(levels=[cidx, [0, 1, 2, 3]], labels=index.labels) tm.assert_index_equal(result, expected) result_lvl = result.get_level_values(0) expected_lvl = CategoricalIndex(list("bacb"), categories=cidx.categories, ordered=cidx.ordered) tm.assert_index_equal(result_lvl, expected_lvl) def test_metadata_immutable(self): levels, labels = self.index.levels, self.index.labels # shouldn't be able to set at either the top level or base level mutable_regex = re.compile('does not support mutable operations') with tm.assert_raises_regex(TypeError, mutable_regex): levels[0] = levels[0] with tm.assert_raises_regex(TypeError, mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with tm.assert_raises_regex(TypeError, mutable_regex): labels[0] = labels[0] with tm.assert_raises_regex(TypeError, mutable_regex): labels[0][0] = labels[0][0] # and for names names = self.index.names with tm.assert_raises_regex(TypeError, mutable_regex): names[0] = names[0] def test_inplace_mutation_resets_values(self): levels = [['a', 'b', 'c'], [4]] levels2 = [[1, 2, 3], ['a']] labels = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, labels=labels) mi2 = MultiIndex(levels=levels2, labels=labels) vals = mi1.values.copy() vals2 = mi2.values.copy() assert mi1._tuples is not None # Make sure level setting works new_vals = mi1.set_levels(levels2).values tm.assert_almost_equal(vals2, new_vals) # Non-inplace doesn't kill _tuples [implementation detail] tm.assert_almost_equal(mi1._tuples, vals) # ...and values is still same too tm.assert_almost_equal(mi1.values, vals) # Inplace should kill _tuples mi1.set_levels(levels2, inplace=True) tm.assert_almost_equal(mi1.values, vals2) # Make sure label setting works too labels2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.empty((6,), dtype=object) exp_values[:] = [(long(1), 'a')] * 6 # Must be 1d array of tuples assert exp_values.shape == (6,) new_values = mi2.set_labels(labels2).values # Not inplace shouldn't change tm.assert_almost_equal(mi2._tuples, vals2) # Should have correct values tm.assert_almost_equal(exp_values, new_values) # ...and again setting inplace should kill _tuples, etc mi2.set_labels(labels2, inplace=True) tm.assert_almost_equal(mi2.values, new_values) def test_copy_in_constructor(self): levels = np.array(["a", "b", "c"]) labels = np.array([1, 1, 2, 0, 0, 1, 1]) val = labels[0] mi = MultiIndex(levels=[levels, levels], labels=[labels, labels], copy=True) assert mi.labels[0][0] == val labels[0] = 15 assert mi.labels[0][0] == val val = levels[0] levels[0] = "PANDA" assert mi.levels[0][0] == val def test_set_value_keeps_names(self): # motivating example from #3742 lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe'] lev2 = ['1', '2', '3'] * 2 idx = pd.MultiIndex.from_arrays([lev1, lev2], names=['Name', 'Number']) df = pd.DataFrame( np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=idx) df = df.sort_index() assert df._is_copy is None assert df.index.names == ('Name', 'Number') df.at[('grethe', '4'), 'one'] = 99.34 assert df._is_copy is None assert df.index.names == ('Name', 'Number') def test_copy_names(self): # Check that adding a "names" parameter to the copy is honored # GH14302 multi_idx = pd.Index([(1, 2), (3, 4)], names=['MyName1', 'MyName2']) multi_idx1 = multi_idx.copy() assert multi_idx.equals(multi_idx1) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx1.names == ['MyName1', 'MyName2'] multi_idx2 = multi_idx.copy(names=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx2) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx2.names == ['NewName1', 'NewName2'] multi_idx3 = multi_idx.copy(name=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx3) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx3.names == ['NewName1', 'NewName2'] def test_names(self): # names are assigned in setup names = self.index_names level_names = [level.name for level in self.index.levels] assert names == level_names # setting bad names on existing index = self.index tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", list(index.names) + ["third"]) tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", []) # initializing with bad names (should always be equivalent) major_axis, minor_axis = self.index.levels major_labels, minor_labels = self.index.labels tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first']) tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first', 'second', 'third']) # names are assigned index.names = ["a", "b"] ind_names = list(index.names) level_names = [level.name for level in index.levels] assert ind_names == level_names def test_astype(self): expected = self.index.copy() actual = self.index.astype('O') assert_copy(actual.levels, expected.levels) assert_copy(actual.labels, expected.labels) self.check_level_names(actual, expected.names) with tm.assert_raises_regex(TypeError, "^Setting.*dtype.*object"): self.index.astype(np.dtype(int)) @pytest.mark.parametrize('ordered', [True, False]) def test_astype_category(self, ordered): # GH 18630 msg = '> 1 ndim Categorical are not supported at this time' with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype(CategoricalDtype(ordered=ordered)) if ordered is False: # dtype='category' defaults to ordered=False, so only test once with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype('category') def test_constructor_single_level(self): result = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) assert isinstance(result, MultiIndex) expected = Index(['foo', 'bar', 'baz', 'qux'], name='first') tm.assert_index_equal(result.levels[0], expected) assert result.names == ['first'] def test_constructor_no_levels(self): tm.assert_raises_regex(ValueError, "non-zero number " "of levels/labels", MultiIndex, levels=[], labels=[]) both_re = re.compile('Must pass both levels and labels') with tm.assert_raises_regex(TypeError, both_re): MultiIndex(levels=[]) with tm.assert_raises_regex(TypeError, both_re): MultiIndex(labels=[]) def test_constructor_mismatched_label_levels(self): labels = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] tm.assert_raises_regex(ValueError, "Length of levels and labels " "must be the same", MultiIndex, levels=levels, labels=labels) length_error = re.compile('>= length of level') label_error = re.compile(r'Unequal label lengths: \[4, 2\]') # important to check that it's looking at the right thing. with tm.assert_raises_regex(ValueError, length_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 1, 2, 3], [0, 3, 4, 1]]) with tm.assert_raises_regex(ValueError, label_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 0, 0, 0], [0, 0]]) # external API with tm.assert_raises_regex(ValueError, length_error): self.index.copy().set_levels([['a'], ['b']]) with tm.assert_raises_regex(ValueError, label_error): self.index.copy().set_labels([[0, 0, 0, 0], [0, 0]]) def test_constructor_nonhashable_names(self): # GH 20527 levels = [[1, 2], [u'one', u'two']] labels = [[0, 0, 1, 1], [0, 1, 0, 1]] names = ((['foo'], ['bar'])) message = "MultiIndex.name must be a hashable type" tm.assert_raises_regex(TypeError, message, MultiIndex, levels=levels, labels=labels, names=names) # With .rename() mi = MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=('foo', 'bar')) renamed = [['foor'], ['barr']] tm.assert_raises_regex(TypeError, message, mi.rename, names=renamed) # With .set_names() tm.assert_raises_regex(TypeError, message, mi.set_names, names=renamed) @pytest.mark.parametrize('names', [['a', 'b', 'a'], ['1', '1', '2'], ['1', 'a', '1']]) def test_duplicate_level_names(self, names): # GH18872 pytest.raises(ValueError, pd.MultiIndex.from_product, [[0, 1]] * 3, names=names) # With .rename() mi = pd.MultiIndex.from_product([[0, 1]] * 3) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names) # With .rename(., level=) mi.rename(names[0], level=1, inplace=True) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names[:2], level=[0, 2]) def assert_multiindex_copied(self, copy, original): # Levels should be (at least, shallow copied) tm.assert_copy(copy.levels, original.levels) tm.assert_almost_equal(copy.labels, original.labels) # Labels doesn't matter which way copied tm.assert_almost_equal(copy.labels, original.labels) assert copy.labels is not original.labels # Names doesn't matter which way copied assert copy.names == original.names assert copy.names is not original.names # Sort order should be copied assert copy.sortorder == original.sortorder def test_copy(self): i_copy = self.index.copy() self.assert_multiindex_copied(i_copy, self.index) def test_shallow_copy(self): i_copy = self.index._shallow_copy() self.assert_multiindex_copied(i_copy, self.index) def test_view(self): i_view = self.index.view() self.assert_multiindex_copied(i_view, self.index) def check_level_names(self, index, names): assert [level.name for level in index.levels] == list(names) def test_changing_names(self): # names should be applied to levels level_names = [level.name for level in self.index.levels] self.check_level_names(self.index, self.index.names) view = self.index.view() copy = self.index.copy() shallow_copy = self.index._shallow_copy() # changing names should change level names on object new_names = [name + "a" for name in self.index.names] self.index.names = new_names self.check_level_names(self.index, new_names) # but not on copies self.check_level_names(view, level_names) self.check_level_names(copy, level_names) self.check_level_names(shallow_copy, level_names) # and copies shouldn't change original shallow_copy.names = [name + "c" for name in shallow_copy.names] self.check_level_names(self.index, new_names) def test_get_level_number_integer(self): self.index.names = [1, 0] assert self.index._get_level_number(1) == 0 assert self.index._get_level_number(0) == 1 pytest.raises(IndexError, self.index._get_level_number, 2) tm.assert_raises_regex(KeyError, 'Level fourth not found', self.index._get_level_number, 'fourth') def test_from_arrays(self): arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # list of arrays as input result = MultiIndex.from_arrays(arrays, names=self.index.names) tm.assert_index_equal(result, self.index) # infer correctly result = MultiIndex.from_arrays([[pd.NaT, Timestamp('20130101')], ['a', 'b']]) assert result.levels[0].equals(Index([Timestamp('20130101')])) assert result.levels[1].equals(Index(['a', 'b'])) def test_from_arrays_iterator(self): # GH 18434 arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # iterator as input result = MultiIndex.from_arrays(iter(arrays), names=self.index.names) tm.assert_index_equal(result, self.index) # invalid iterator input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of array-likes."): MultiIndex.from_arrays(0) def test_from_arrays_index_series_datetimetz(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3, tz='Asia/Tokyo') result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_timedelta(self): idx1 = pd.timedelta_range('1 days', freq='D', periods=3) idx2 = pd.timedelta_range('2 hours', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_period(self): idx1 = pd.period_range('2011-01-01', freq='D', periods=3) idx2 = pd.period_range('2015-01-01', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_datetimelike_mixed(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3) idx3 = pd.timedelta_range('1 days', freq='D', periods=3) idx4 = pd.period_range('2011-01-01', freq='D', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2, idx3, idx4]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) tm.assert_index_equal(result.get_level_values(2), idx3) tm.assert_index_equal(result.get_level_values(3), idx4) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2), pd.Series(idx3), pd.Series(idx4)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result2.get_level_values(2), idx3) tm.assert_index_equal(result2.get_level_values(3), idx4) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_categorical(self): # GH13743 idx1 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=False) idx2 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=True) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) result3 = pd.MultiIndex.from_arrays([idx1.values, idx2.values]) tm.assert_index_equal(result3.get_level_values(0), idx1) tm.assert_index_equal(result3.get_level_values(1), idx2) def test_from_arrays_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_arrays(arrays=[]) # 1 level result = MultiIndex.from_arrays(arrays=[[]], names=['A']) assert isinstance(result, MultiIndex) expected = Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # N levels for N in [2, 3]: arrays = [[]] * N names = list('ABC')[:N] result = MultiIndex.from_arrays(arrays=arrays, names=names) expected = MultiIndex(levels=[[]] * N, labels=[[]] * N, names=names) tm.assert_index_equal(result, expected) def test_from_arrays_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_arrays, arrays=i) def test_from_arrays_different_lengths(self): # see gh-13599 idx1 = [1, 2, 3] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [1, 2, 3] idx2 = [] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) def test_from_product(self): first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] result = MultiIndex.from_product([first, second], names=names) tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) tm.assert_index_equal(result, expected) def test_from_product_iterator(self): # GH 18434 first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) # iterator as input result = MultiIndex.from_product(iter([first, second]), names=names) tm.assert_index_equal(result, expected) # Invalid non-iterable input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of iterables."): MultiIndex.from_product(0) def test_from_product_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_product([]) # 1 level result = MultiIndex.from_product([[]], names=['A']) expected = pd.Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # 2 levels l1 = [[], ['foo', 'bar', 'baz'], []] l2 = [[], [], ['a', 'b', 'c']] names = ['A', 'B'] for first, second in zip(l1, l2): result = MultiIndex.from_product([first, second], names=names) expected = MultiIndex(levels=[first, second], labels=[[], []], names=names) tm.assert_index_equal(result, expected) # GH12258 names = ['A', 'B', 'C'] for N in range(4): lvl2 = lrange(N) result = MultiIndex.from_product([[], lvl2, []], names=names) expected = MultiIndex(levels=[[], lvl2, []], labels=[[], [], []], names=names) tm.assert_index_equal(result, expected) def test_from_product_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_product, iterables=i) def test_from_product_datetimeindex(self): dt_index = date_range('2000-01-01', periods=2) mi = pd.MultiIndex.from_product([[1, 2], dt_index]) etalon = construct_1d_object_array_from_listlike([(1, pd.Timestamp( '2000-01-01')), (1, pd.Timestamp('2000-01-02')), (2, pd.Timestamp( '2000-01-01')), (2, pd.Timestamp('2000-01-02'))]) tm.assert_numpy_array_equal(mi.values, etalon) def test_from_product_index_series_categorical(self): # GH13743 first = ['foo', 'bar'] for ordered in [False, True]: idx = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=ordered) expected = pd.CategoricalIndex(list("abcaab") + list("abcaab"), categories=list("bac"), ordered=ordered) for arr in [idx, pd.Series(idx), idx.values]: result = pd.MultiIndex.from_product([first, arr]) tm.assert_index_equal(result.get_level_values(1), expected) def test_values_boxed(self): tuples = [(1, pd.Timestamp('2000-01-01')), (2, pd.NaT), (3, pd.Timestamp('2000-01-03')), (1, pd.Timestamp('2000-01-04')), (2, pd.Timestamp('2000-01-02')), (3, pd.Timestamp('2000-01-03'))] result = pd.MultiIndex.from_tuples(tuples) expected = construct_1d_object_array_from_listlike(tuples) tm.assert_numpy_array_equal(result.values, expected) # Check that code branches for boxed values produce identical results tm.assert_numpy_array_equal(result.values[:4], result[:4].values) def test_values_multiindex_datetimeindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(10 ** 18, 10 ** 18 + 5) naive = pd.DatetimeIndex(ints) aware = pd.DatetimeIndex(ints, tz='US/Central') idx = pd.MultiIndex.from_arrays([naive, aware]) result = idx.values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware) # n_lev > n_lab result = idx[:2].values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive[:2]) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware[:2]) def test_values_multiindex_periodindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(2007, 2012) pidx = pd.PeriodIndex(ints, freq='D') idx = pd.MultiIndex.from_arrays([ints, pidx]) result = idx.values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints)) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx) # n_lev > n_lab result = idx[:2].values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints[:2])) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx[:2]) def test_append(self): result = self.index[:3].append(self.index[3:]) assert result.equals(self.index) foos = [self.index[:1], self.index[1:3], self.index[3:]] result = foos[0].append(foos[1:]) assert result.equals(self.index) # empty result = self.index.append([]) assert result.equals(self.index) def test_append_mixed_dtypes(self): # GH 13660 dti = date_range('2011-01-01', freq='M', periods=3, ) dti_tz = date_range('2011-01-01', freq='M', periods=3, tz='US/Eastern') pi = period_range('2011-01', freq='M', periods=3) mi = MultiIndex.from_arrays([[1, 2, 3], [1.1, np.nan, 3.3], ['a', 'b', 'c'], dti, dti_tz, pi]) assert mi.nlevels == 6 res = mi.append(mi) exp = MultiIndex.from_arrays([[1, 2, 3, 1, 2, 3], [1.1, np.nan, 3.3, 1.1, np.nan, 3.3], ['a', 'b', 'c', 'a', 'b', 'c'], dti.append(dti), dti_tz.append(dti_tz), pi.append(pi)]) tm.assert_index_equal(res, exp) other = MultiIndex.from_arrays([['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z']]) res = mi.append(other) exp = MultiIndex.from_arrays([[1, 2, 3, 'x', 'y', 'z'], [1.1, np.nan, 3.3, 'x', 'y', 'z'], ['a', 'b', 'c', 'x', 'y', 'z'], dti.append(pd.Index(['x', 'y', 'z'])), dti_tz.append(pd.Index(['x', 'y', 'z'])), pi.append(pd.Index(['x', 'y', 'z']))]) tm.assert_index_equal(res, exp) def test_get_level_values(self): result = self.index.get_level_values(0) expected = Index(['foo', 'foo', 'bar', 'baz', 'qux', 'qux'], name='first') tm.assert_index_equal(result, expected) assert result.name == 'first' result = self.index.get_level_values('first') expected = self.index.get_level_values(0) tm.assert_index_equal(result, expected) # GH 10460 index = MultiIndex( levels=[CategoricalIndex(['A', 'B']), CategoricalIndex([1, 2, 3])], labels=[np.array([0, 0, 0, 1, 1, 1]), np.array([0, 1, 2, 0, 1, 2])]) exp = CategoricalIndex(['A', 'A', 'A', 'B', 'B', 'B']) tm.assert_index_equal(index.get_level_values(0), exp) exp = CategoricalIndex([1, 2, 3, 1, 2, 3]) tm.assert_index_equal(index.get_level_values(1), exp) def test_get_level_values_int_with_na(self): # GH 17924 arrays = [['a', 'b', 'b'], [1, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([1, np.nan, 2]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], [np.nan, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([np.nan, np.nan, 2]) tm.assert_index_equal(result, expected) def test_get_level_values_na(self): arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan]) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], pd.DatetimeIndex([0, 1, pd.NaT])] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = pd.DatetimeIndex([0, 1, pd.NaT]) tm.assert_index_equal(result, expected) arrays = [[], []] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([], dtype=object) tm.assert_index_equal(result, expected) def test_get_level_values_all_na(self): # GH 17924 when level entirely consists of nan arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan], dtype=np.float64) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1], dtype=object) tm.assert_index_equal(result, expected) def test_reorder_levels(self): # this blows up tm.assert_raises_regex(IndexError, '^Too many levels', self.index.reorder_levels, [2, 1, 0]) def test_nlevels(self): assert self.index.nlevels == 2 def test_iter(self): result = list(self.index) expected = [('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')] assert result == expected def test_legacy_pickle(self): if PY3: pytest.skip("testing for legacy pickles not " "support on py3") path = tm.get_data_path('multiindex_v1.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_legacy_v2_unpickle(self): # 0.7.3 -> 0.8.0 format manage path = tm.get_data_path('mindex_073.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_roundtrip_pickle_with_tz(self): # GH 8367 # round-trip of timezone index = MultiIndex.from_product( [[1, 2], ['a', 'b'], date_range('20130101', periods=3, tz='US/Eastern') ], names=['one', 'two', 'three']) unpickled = tm.round_trip_pickle(index) assert index.equal_levels(unpickled) def test_from_tuples_index_values(self): result = MultiIndex.from_tuples(self.index) assert (result.values == self.index.values).all() def test_contains(self): assert ('foo', 'two') in self.index assert ('bar', 'two') not in self.index assert None not in self.index def test_contains_top_level(self): midx = MultiIndex.from_product([['A', 'B'], [1, 2]]) assert 'A' in midx assert 'A' not in midx._engine def test_contains_with_nat(self): # MI with a NaT mi = MultiIndex(levels=[['C'], pd.date_range('2012-01-01', periods=5)], labels=[[0, 0, 0, 0, 0, 0], [-1, 0, 1, 2, 3, 4]], names=[None, 'B']) assert ('C', pd.Timestamp('2012-01-01')) in mi for val in mi.values: assert val in mi def test_is_all_dates(self): assert not self.index.is_all_dates def test_is_numeric(self): # MultiIndex is never numeric assert not self.index.is_numeric() def test_getitem(self): # scalar assert self.index[2] == ('bar', 'one') # slice result = self.index[2:5] expected = self.index[[2, 3, 4]] assert result.equals(expected) # boolean result = self.index[[True, False, True, False, True, True]] result2 = self.index[np.array([True, False, True, False, True, True])] expected = self.index[[0, 2, 4, 5]] assert result.equals(expected) assert result2.equals(expected) def test_getitem_group_select(self): sorted_idx, _ = self.index.sortlevel(0) assert sorted_idx.get_loc('baz') == slice(3, 4) assert sorted_idx.get_loc('foo') == slice(0, 2) def test_get_loc(self): assert self.index.get_loc(('foo', 'two')) == 1 assert self.index.get_loc(('baz', 'two')) == 3 pytest.raises(KeyError, self.index.get_loc, ('bar', 'two')) pytest.raises(KeyError, self.index.get_loc, 'quux') pytest.raises(NotImplementedError, self.index.get_loc, 'foo', method='nearest') # 3 levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) pytest.raises(KeyError, index.get_loc, (1, 1)) assert index.get_loc((2, 0)) == slice(3, 5) def test_get_loc_duplicates(self): index = Index([2, 2, 2, 2]) result = index.get_loc(2) expected = slice(0, 4) assert result == expected # pytest.raises(Exception, index.get_loc, 2) index = Index(['c', 'a', 'a', 'b', 'b']) rs = index.get_loc('c') xp = 0 assert rs == xp def test_get_value_duplicates(self): index = MultiIndex(levels=[['D', 'B', 'C'], [0, 26, 27, 37, 57, 67, 75, 82]], labels=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], names=['tag', 'day']) assert index.get_loc('D') == slice(0, 3) with pytest.raises(KeyError): index._engine.get_value(np.array([]), 'D') def test_get_loc_level(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) loc, new_index = index.get_loc_level((0, 1)) expected = slice(1, 2) exp_index = index[expected].droplevel(0).droplevel(0) assert loc == expected assert new_index.equals(exp_index) loc, new_index = index.get_loc_level((0, 1, 0)) expected = 1 assert loc == expected assert new_index is None pytest.raises(KeyError, index.get_loc_level, (2, 2)) index = MultiIndex(levels=[[2000], lrange(4)], labels=[np.array( [0, 0, 0, 0]), np.array([0, 1, 2, 3])]) result, new_index = index.get_loc_level((2000, slice(None, None))) expected = slice(None, None) assert result == expected assert new_index.equals(index.droplevel(0)) @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('null_val', [np.nan, pd.NaT, None]) def test_get_loc_nan(self, level, null_val): # GH 18485 : NaN in MultiIndex levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] levels[level] = np.array([0, null_val], dtype=type(null_val)) key[level] = null_val idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_missing_nan(self): # GH 8569 idx = MultiIndex.from_arrays([[1.0, 2.0], [3.0, 4.0]]) assert isinstance(idx.get_loc(1), slice) pytest.raises(KeyError, idx.get_loc, 3) pytest.raises(KeyError, idx.get_loc, np.nan) pytest.raises(KeyError, idx.get_loc, [np.nan]) @pytest.mark.parametrize('dtype1', [int, float, bool, str]) @pytest.mark.parametrize('dtype2', [int, float, bool, str]) def test_get_loc_multiple_dtypes(self, dtype1, dtype2): # GH 18520 levels = [np.array([0, 1]).astype(dtype1), np.array([0, 1]).astype(dtype2)] idx = pd.MultiIndex.from_product(levels) assert idx.get_loc(idx[2]) == 2 @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('dtypes', [[int, float], [float, int]]) def test_get_loc_implicit_cast(self, level, dtypes): # GH 18818, GH 15994 : as flat index, cast int to float and vice-versa levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] lev_dtype, key_dtype = dtypes levels[level] = np.array([0, 1], dtype=lev_dtype) key[level] = key_dtype(1) idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_cast_bool(self): # GH 19086 : int is casted to bool, but not vice-versa levels = [[False, True], np.arange(2, dtype='int64')] idx = MultiIndex.from_product(levels) assert idx.get_loc((0, 1)) == 1 assert idx.get_loc((1, 0)) == 2 pytest.raises(KeyError, idx.get_loc, (False, True)) pytest.raises(KeyError, idx.get_loc, (True, False)) def test_slice_locs(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index slob = slice(*idx.slice_locs(df.index[5], df.index[15])) sliced = stacked[slob] expected = df[5:16].stack() tm.assert_almost_equal(sliced.values, expected.values) slob = slice(*idx.slice_locs(df.index[5] + timedelta(seconds=30), df.index[15] - timedelta(seconds=30))) sliced = stacked[slob] expected = df[6:15].stack() tm.assert_almost_equal(sliced.values, expected.values) def test_slice_locs_with_type_mismatch(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, (1, 3)) tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, df.index[5] + timedelta( seconds=30), (5, 2)) df = tm.makeCustomDataframe(5, 5) stacked = df.stack() idx = stacked.index with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(timedelta(seconds=30)) # TODO: Try creating a UnicodeDecodeError in exception message with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(df.index[1], (16, "a")) def test_slice_locs_not_sorted(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) tm.assert_raises_regex(KeyError, "[Kk]ey length.*greater than " "MultiIndex lexsort depth", index.slice_locs, (1, 0, 1), (2, 1, 0)) # works sorted_index, _ = index.sortlevel(0) # should there be a test case here??? sorted_index.slice_locs((1, 0, 1), (2, 1, 0)) def test_slice_locs_partial(self): sorted_idx, _ = self.index.sortlevel(0) result = sorted_idx.slice_locs(('foo', 'two'), ('qux', 'one')) assert result == (1, 5) result = sorted_idx.slice_locs(None, ('qux', 'one')) assert result == (0, 5) result = sorted_idx.slice_locs(('foo', 'two'), None) assert result == (1, len(sorted_idx)) result = sorted_idx.slice_locs('bar', 'baz') assert result == (2, 4) def test_slice_locs_not_contained(self): # some searchsorted action index = MultiIndex(levels=[[0, 2, 4, 6], [0, 2, 4]], labels=[[0, 0, 0, 1, 1, 2, 3, 3, 3], [0, 1, 2, 1, 2, 2, 0, 1, 2]], sortorder=0) result = index.slice_locs((1, 0), (5, 2)) assert result == (3, 6) result = index.slice_locs(1, 5) assert result == (3, 6) result = index.slice_locs((2, 2), (5, 2)) assert result == (3, 6) result = index.slice_locs(2, 5) assert result == (3, 6) result = index.slice_locs((1, 0), (6, 3)) assert result == (3, 8) result = index.slice_locs(-1, 10) assert result == (0, len(index)) def test_consistency(self): # need to construct an overflow major_axis = lrange(70000) minor_axis = lrange(10) major_labels = np.arange(70000) minor_labels = np.repeat(lrange(10), 7000) # the fact that is works means it's consistent index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) # inconsistent major_labels = np.array([0, 0, 1, 1, 1, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not index.is_unique def test_truncate(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) result = index.truncate(before=1) assert 'foo' not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(after=1) assert 2 not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(before=1, after=2) assert len(result.levels[0]) == 2 # after < before pytest.raises(ValueError, index.truncate, 3, 1) def test_get_indexer(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3, 3], dtype=np.intp) minor_labels = np.array([0, 1, 0, 0, 1, 0, 1], dtype=np.intp) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) idx1 = index[:5] idx2 = index[[1, 3, 5]] r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, np.array([1, 3, -1], dtype=np.intp)) r1 = idx2.get_indexer(idx1, method='pad') e1 = np.array([-1, 0, 0, 1, 1], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='pad') assert_almost_equal(r2, e1[::-1]) rffill1 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method='backfill') e1 = np.array([0, 0, 1, 1, 2], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='backfill') assert_almost_equal(r2, e1[::-1]) rbfill1 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) # pass non-MultiIndex r1 = idx1.get_indexer(idx2.values) rexp1 = idx1.get_indexer(idx2) assert_almost_equal(r1, rexp1) r1 = idx1.get_indexer([1, 2, 3]) assert (r1 == [-1, -1, -1]).all() # create index with duplicates idx1 = Index(lrange(10) + lrange(10)) idx2 = Index(lrange(20)) msg = "Reindexing only valid with uniquely valued Index objects" with tm.assert_raises_regex(InvalidIndexError, msg): idx1.get_indexer(idx2) def test_get_indexer_nearest(self): midx = MultiIndex.from_tuples([('a', 1), ('b', 2)]) with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='nearest') with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='pad', tolerance=2) def test_hash_collisions(self): # non-smoke test that we don't get hash collisions index = MultiIndex.from_product([np.arange(1000), np.arange(1000)], names=['one', 'two']) result = index.get_indexer(index.values) tm.assert_numpy_array_equal(result, np.arange( len(index), dtype='intp')) for i in [0, 1, len(index) - 2, len(index) - 1]: result = index.get_loc(index[i]) assert result == i def test_format(self): self.index.format() self.index[:0].format() def test_format_integer_names(self): index = MultiIndex(levels=[[0, 1], [0, 1]], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[0, 1]) index.format(names=True) def test_format_sparse_display(self): index = MultiIndex(levels=[[0, 1], [0, 1], [0, 1], [0]], labels=[[0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0]]) result = index.format() assert result[3] == '1 0 0 0' def test_format_sparse_config(self): warn_filters = warnings.filters warnings.filterwarnings('ignore', category=FutureWarning, module=".*format") # GH1538 pd.set_option('display.multi_sparse', False) result = self.index.format() assert result[1] == 'foo two' tm.reset_display_options() warnings.filters = warn_filters def test_to_frame(self): tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples) result = index.to_frame(index=False) expected = DataFrame(tuples) tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples, names=['first', 'second']) result = index.to_frame(index=False) expected = DataFrame(tuples) expected.columns = ['first', 'second'] tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame(index=False) expected = DataFrame( {0: np.repeat(np.arange(5, dtype='int64'), 3), 1: np.tile(pd.date_range('20130101', periods=3), 5)}) tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) def test_to_hierarchical(self): index = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two')]) result = index.to_hierarchical(3) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # K > 1 result = index.to_hierarchical(3, 2) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # non-sorted index = MultiIndex.from_tuples([(2, 'c'), (1, 'b'), (2, 'a'), (2, 'b')], names=['N1', 'N2']) result = index.to_hierarchical(2) expected = MultiIndex.from_tuples([(2, 'c'), (2, 'c'), (1, 'b'), (1, 'b'), (2, 'a'), (2, 'a'), (2, 'b'), (2, 'b')], names=['N1', 'N2']) tm.assert_index_equal(result, expected) assert result.names == index.names def test_bounds(self): self.index._bounds def test_equals_multi(self): assert self.index.equals(self.index) assert not self.index.equals(self.index.values) assert self.index.equals(Index(self.index.values)) assert self.index.equal_levels(self.index) assert not self.index.equals(self.index[:-1]) assert not self.index.equals(self.index[-1]) # different number of levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) index2 = MultiIndex(levels=index.levels[:-1], labels=index.labels[:-1]) assert not index.equals(index2) assert not index.equal_levels(index2) # levels are different major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3]) minor_labels = np.array([0, 1, 0, 0, 1, 0]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) assert not self.index.equal_levels(index) # some of the labels are different major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) def test_equals_missing_values(self): # make sure take is not using -1 i = pd.MultiIndex.from_tuples([(0, pd.NaT), (0, pd.Timestamp('20130101'))]) result = i[0:1].equals(i[0]) assert not result result = i[1:2].equals(i[1]) assert not result def test_identical(self): mi = self.index.copy() mi2 = self.index.copy() assert mi.identical(mi2) mi = mi.set_names(['new1', 'new2']) assert mi.equals(mi2) assert not mi.identical(mi2) mi2 = mi2.set_names(['new1', 'new2']) assert mi.identical(mi2) mi3 = Index(mi.tolist(), names=mi.names) mi4 = Index(mi.tolist(), names=mi.names, tupleize_cols=False) assert mi.identical(mi3) assert not mi.identical(mi4) assert mi.equals(mi4) def test_is_(self): mi = MultiIndex.from_tuples(lzip(range(10), range(10))) assert mi.is_(mi) assert mi.is_(mi.view()) assert mi.is_(mi.view().view().view().view()) mi2 = mi.view() # names are metadata, they don't change id mi2.names = ["A", "B"] assert mi2.is_(mi) assert mi.is_(mi2) assert mi.is_(mi.set_names(["C", "D"])) mi2 = mi.view() mi2.set_names(["E", "F"], inplace=True) assert mi.is_(mi2) # levels are inherent properties, they change identity mi3 = mi2.set_levels([lrange(10), lrange(10)]) assert not mi3.is_(mi2) # shouldn't change assert mi2.is_(mi) mi4 = mi3.view() # GH 17464 - Remove duplicate MultiIndex levels mi4.set_levels([lrange(10), lrange(10)], inplace=True) assert not mi4.is_(mi3) mi5 = mi.view() mi5.set_levels(mi5.levels, inplace=True) assert not mi5.is_(mi) def test_union(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_union = piece1 | piece2 tups = sorted(self.index.values) expected = MultiIndex.from_tuples(tups) assert the_union.equals(expected) # corner case, pass self or empty thing: the_union = self.index.union(self.index) assert the_union is self.index the_union = self.index.union(self.index[:0]) assert the_union is self.index # won't work in python 3 # tuples = self.index.values # result = self.index[:4] | tuples[4:] # assert result.equals(tuples) # not valid for python 3 # def test_union_with_regular_index(self): # other = Index(['A', 'B', 'C']) # result = other.union(self.index) # assert ('foo', 'one') in result # assert 'B' in result # result2 = self.index.union(other) # assert result.equals(result2) def test_intersection(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_int = piece1 & piece2 tups = sorted(self.index[3:5].values) expected = MultiIndex.from_tuples(tups) assert the_int.equals(expected) # corner case, pass self the_int = self.index.intersection(self.index) assert the_int is self.index # empty intersection: disjoint empty = self.index[:2] & self.index[2:] expected = self.index[:0] assert empty.equals(expected) # can't do in python 3 # tuples = self.index.values # result = self.index & tuples # assert result.equals(tuples) def test_sub(self): first = self.index # - now raises (previously was set op difference) with pytest.raises(TypeError): first - self.index[-3:] with pytest.raises(TypeError): self.index[-3:] - first with pytest.raises(TypeError): self.index[-3:] - first.tolist() with pytest.raises(TypeError): first.tolist() - self.index[-3:] def test_difference(self): first = self.index result = first.difference(self.index[-3:]) expected = MultiIndex.from_tuples(sorted(self.index[:-3].values), sortorder=0, names=self.index.names) assert isinstance(result, MultiIndex) assert result.equals(expected) assert result.names == self.index.names # empty difference: reflexive result = self.index.difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # empty difference: superset result = self.index[-3:].difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # empty difference: degenerate result = self.index[:0].difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # names not the same chunklet = self.index[-3:] chunklet.names = ['foo', 'baz'] result = first.difference(chunklet) assert result.names == (None, None) # empty, but non-equal result = self.index.difference(self.index.sortlevel(1)[0]) assert len(result) == 0 # raise Exception called with non-MultiIndex result = first.difference(first.values) assert result.equals(first[:0]) # name from empty array result = first.difference([]) assert first.equals(result) assert first.names == result.names # name from non-empty array result = first.difference([('foo', 'one')]) expected = pd.MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ( 'foo', 'two'), ('qux', 'one'), ('qux', 'two')]) expected.names = first.names assert first.names == result.names tm.assert_raises_regex(TypeError, "other must be a MultiIndex " "or a list of tuples", first.difference, [1, 2, 3, 4, 5]) def test_from_tuples(self): tm.assert_raises_regex(TypeError, 'Cannot infer number of levels ' 'from empty list', MultiIndex.from_tuples, []) expected = MultiIndex(levels=[[1, 3], [2, 4]], labels=[[0, 1], [0, 1]], names=['a', 'b']) # input tuples result = MultiIndex.from_tuples(((1, 2), (3, 4)), names=['a', 'b']) tm.assert_index_equal(result, expected) def test_from_tuples_iterator(self): # GH 18434 # input iterator for tuples expected = MultiIndex(levels=[[1, 3], [2, 4]], labels=[[0, 1], [0, 1]], names=['a', 'b']) result = MultiIndex.from_tuples(zip([1, 3], [2, 4]), names=['a', 'b']) tm.assert_index_equal(result, expected) # input non-iterables with tm.assert_raises_regex( TypeError, 'Input must be a list / sequence of tuple-likes.'): MultiIndex.from_tuples(0) def test_from_tuples_empty(self): # GH 16777 result = MultiIndex.from_tuples([], names=['a', 'b']) expected = MultiIndex.from_arrays(arrays=[[], []], names=['a', 'b']) tm.assert_index_equal(result, expected) def test_argsort(self): result = self.index.argsort() expected = self.index.values.argsort() tm.assert_numpy_array_equal(result, expected) def test_sortlevel(self): import random tuples = list(self.index) random.shuffle(tuples) index = MultiIndex.from_tuples(tuples) sorted_idx, _ = index.sortlevel(0) expected = MultiIndex.from_tuples(sorted(tuples)) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(0, ascending=False) assert sorted_idx.equals(expected[::-1]) sorted_idx, _ = index.sortlevel(1) by1 = sorted(tuples, key=lambda x: (x[1], x[0])) expected = MultiIndex.from_tuples(by1) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(1, ascending=False) assert sorted_idx.equals(expected[::-1]) def test_sortlevel_not_sort_remaining(self): mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list('ABC')) sorted_idx, _ = mi.sortlevel('A', sort_remaining=False) assert sorted_idx.equals(mi) def test_sortlevel_deterministic(self): tuples = [('bar', 'one'), ('foo', 'two'), ('qux', 'two'), ('foo', 'one'), ('baz', 'two'), ('qux', 'one')] index = MultiIndex.from_tuples(tuples) sorted_idx, _ = index.sortlevel(0) expected = MultiIndex.from_tuples(sorted(tuples)) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(0, ascending=False) assert sorted_idx.equals(expected[::-1]) sorted_idx, _ = index.sortlevel(1) by1 = sorted(tuples, key=lambda x: (x[1], x[0])) expected = MultiIndex.from_tuples(by1) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(1, ascending=False) assert sorted_idx.equals(expected[::-1]) def test_dims(self): pass def test_drop(self): dropped = self.index.drop([('foo', 'two'), ('qux', 'one')]) index = MultiIndex.from_tuples([('foo', 'two'), ('qux', 'one')]) dropped2 = self.index.drop(index) expected = self.index[[0, 2, 3, 5]] tm.assert_index_equal(dropped, expected) tm.assert_index_equal(dropped2, expected) dropped = self.index.drop(['bar']) expected = self.index[[0, 1, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop('foo') expected = self.index[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) index = MultiIndex.from_tuples([('bar', 'two')]) pytest.raises(KeyError, self.index.drop, [('bar', 'two')]) pytest.raises(KeyError, self.index.drop, index) pytest.raises(KeyError, self.index.drop, ['foo', 'two']) # partially correct argument mixed_index = MultiIndex.from_tuples([('qux', 'one'), ('bar', 'two')]) pytest.raises(KeyError, self.index.drop, mixed_index) # error='ignore' dropped = self.index.drop(index, errors='ignore') expected = self.index[[0, 1, 2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop(mixed_index, errors='ignore') expected = self.index[[0, 1, 2, 3, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop(['foo', 'two'], errors='ignore') expected = self.index[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) # mixed partial / full drop dropped = self.index.drop(['foo', ('qux', 'one')]) expected = self.index[[2, 3, 5]] tm.assert_index_equal(dropped, expected) # mixed partial / full drop / error='ignore' mixed_index = ['foo', ('qux', 'one'), 'two'] pytest.raises(KeyError, self.index.drop, mixed_index) dropped = self.index.drop(mixed_index, errors='ignore') expected = self.index[[2, 3, 5]] tm.assert_index_equal(dropped, expected) def test_droplevel_with_names(self): index = self.index[self.index.get_loc('foo')] dropped = index.droplevel(0) assert dropped.name == 'second' index = MultiIndex( levels=[Index(lrange(4)), Index(lrange(4)), Index(lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])], names=['one', 'two', 'three']) dropped = index.droplevel(0) assert dropped.names == ('two', 'three') dropped = index.droplevel('two') expected = index.droplevel(1) assert dropped.equals(expected) def test_droplevel_list(self): index = MultiIndex( levels=[Index(lrange(4)), Index(lrange(4)), Index(lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])], names=['one', 'two', 'three']) dropped = index[:2].droplevel(['three', 'one']) expected = index[:2].droplevel(2).droplevel(0) assert dropped.equals(expected) dropped = index[:2].droplevel([]) expected = index[:2] assert dropped.equals(expected) with pytest.raises(ValueError): index[:2].droplevel(['one', 'two', 'three']) with pytest.raises(KeyError): index[:2].droplevel(['one', 'four']) def test_drop_not_lexsorted(self): # GH 12078 # define the lexsorted version of the multi-index tuples = [('a', ''), ('b1', 'c1'), ('b2', 'c2')] lexsorted_mi = MultiIndex.from_tuples(tuples, names=['b', 'c']) assert lexsorted_mi.is_lexsorted() # and the not-lexsorted version df = pd.DataFrame(columns=['a', 'b', 'c', 'd'], data=[[1, 'b1', 'c1', 3], [1, 'b2', 'c2', 4]]) df = df.pivot_table(index='a', columns=['b', 'c'], values='d') df = df.reset_index() not_lexsorted_mi = df.columns assert not not_lexsorted_mi.is_lexsorted() # compare the results tm.assert_index_equal(lexsorted_mi, not_lexsorted_mi) with tm.assert_produces_warning(PerformanceWarning): tm.assert_index_equal(lexsorted_mi.drop('a'), not_lexsorted_mi.drop('a')) def test_insert(self): # key contained in all levels new_index = self.index.insert(0, ('bar', 'two')) assert new_index.equal_levels(self.index) assert new_index[0] == ('bar', 'two') # key not contained in all levels new_index = self.index.insert(0, ('abc', 'three')) exp0 = Index(list(self.index.levels[0]) + ['abc'], name='first') tm.assert_index_equal(new_index.levels[0], exp0) exp1 = Index(list(self.index.levels[1]) + ['three'], name='second') tm.assert_index_equal(new_index.levels[1], exp1) assert new_index[0] == ('abc', 'three') # key wrong length msg = "Item must have length equal to number of levels" with tm.assert_raises_regex(ValueError, msg): self.index.insert(0, ('foo2',)) left = pd.DataFrame([['a', 'b', 0], ['b', 'd', 1]], columns=['1st', '2nd', '3rd']) left.set_index(['1st', '2nd'], inplace=True) ts = left['3rd'].copy(deep=True) left.loc[('b', 'x'), '3rd'] = 2 left.loc[('b', 'a'), '3rd'] = -1 left.loc[('b', 'b'), '3rd'] = 3 left.loc[('a', 'x'), '3rd'] = 4 left.loc[('a', 'w'), '3rd'] = 5 left.loc[('a', 'a'), '3rd'] = 6 ts.loc[('b', 'x')] = 2 ts.loc['b', 'a'] = -1 ts.loc[('b', 'b')] = 3 ts.loc['a', 'x'] = 4 ts.loc[('a', 'w')] = 5 ts.loc['a', 'a'] = 6 right = pd.DataFrame([['a', 'b', 0], ['b', 'd', 1], ['b', 'x', 2], ['b', 'a', -1], ['b', 'b', 3], ['a', 'x', 4], ['a', 'w', 5], ['a', 'a', 6]], columns=['1st', '2nd', '3rd']) right.set_index(['1st', '2nd'], inplace=True) # FIXME data types changes to float because # of intermediate nan insertion; tm.assert_frame_equal(left, right, check_dtype=False) tm.assert_series_equal(ts, right['3rd']) # GH9250 idx = [('test1', i) for i in range(5)] + \ [('test2', i) for i in range(6)] + \ [('test', 17), ('test', 18)] left = pd.Series(np.linspace(0, 10, 11), pd.MultiIndex.from_tuples(idx[:-2])) left.loc[('test', 17)] = 11 left.loc[('test', 18)] = 12 right = pd.Series(np.linspace(0, 12, 13), pd.MultiIndex.from_tuples(idx)) tm.assert_series_equal(left, right) def test_take_preserve_name(self): taken = self.index.take([3, 0, 1]) assert taken.names == self.index.names def test_take_fill_value(self): # GH 12631 vals = [['A', 'B'], [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')]] idx = pd.MultiIndex.from_product(vals, names=['str', 'dt']) result = idx.take(np.array([1, 0, -1])) exp_vals = [('A', pd.Timestamp('2011-01-02')), ('A', pd.Timestamp('2011-01-01')), ('B', pd.Timestamp('2011-01-02'))] expected = pd.MultiIndex.from_tuples(exp_vals, names=['str', 'dt']) tm.assert_index_equal(result, expected) # fill_value result = idx.take(np.array([1, 0, -1]), fill_value=True) exp_vals = [('A', pd.Timestamp('2011-01-02')), ('A', pd.Timestamp('2011-01-01')), (np.nan, pd.NaT)] expected = pd.MultiIndex.from_tuples(exp_vals, names=['str', 'dt']) tm.assert_index_equal(result, expected) # allow_fill=False result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) exp_vals = [('A', pd.Timestamp('2011-01-02')), ('A', pd.Timestamp('2011-01-01')), ('B', pd.Timestamp('2011-01-02'))] expected = pd.MultiIndex.from_tuples(exp_vals, names=['str', 'dt']) tm.assert_index_equal(result, expected) msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') with tm.assert_raises_regex(ValueError, msg): idx.take(np.array([1, 0, -2]), fill_value=True) with tm.assert_raises_regex(ValueError, msg): idx.take(np.array([1, 0, -5]), fill_value=True) with pytest.raises(IndexError): idx.take(np.array([1, -5])) def take_invalid_kwargs(self): vals = [['A', 'B'], [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')]] idx = pd.MultiIndex.from_product(vals, names=['str', 'dt']) indices = [1, 2] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assert_raises_regex(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assert_raises_regex(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assert_raises_regex(ValueError, msg, idx.take, indices, mode='clip') @pytest.mark.parametrize('other', [Index(['three', 'one', 'two']), Index(['one']), Index(['one', 'three'])]) def test_join_level(self, other, join_type): join_index, lidx, ridx = other.join(self.index, how=join_type, level='second', return_indexers=True) exp_level = other.join(self.index.levels[1], how=join_type) assert join_index.levels[0].equals(self.index.levels[0]) assert join_index.levels[1].equals(exp_level) # pare down levels mask = np.array( [x[1] in exp_level for x in self.index], dtype=bool) exp_values = self.index.values[mask] tm.assert_numpy_array_equal(join_index.values, exp_values) if join_type in ('outer', 'inner'): join_index2, ridx2, lidx2 = \ self.index.join(other, how=join_type, level='second', return_indexers=True) assert join_index.equals(join_index2) tm.assert_numpy_array_equal(lidx, lidx2) tm.assert_numpy_array_equal(ridx, ridx2) tm.assert_numpy_array_equal(join_index2.values, exp_values) def test_join_level_corner_case(self): # some corner cases idx = Index(['three', 'one', 'two']) result = idx.join(self.index, level='second') assert isinstance(result, MultiIndex) tm.assert_raises_regex(TypeError, "Join.*MultiIndex.*ambiguous", self.index.join, self.index, level=1) def test_join_self(self, join_type): res = self.index joined = res.join(res, how=join_type) assert res is joined def test_join_multi(self): # GH 10665 midx = pd.MultiIndex.from_product( [np.arange(4), np.arange(4)], names=['a', 'b']) idx = pd.Index([1, 2, 5], name='b') # inner jidx, lidx, ridx = midx.join(idx, how='inner', return_indexers=True) exp_idx = pd.MultiIndex.from_product( [np.arange(4), [1, 2]], names=['a', 'b']) exp_lidx = np.array([1, 2, 5, 6, 9, 10, 13, 14], dtype=np.intp) exp_ridx = np.array([0, 1, 0, 1, 0, 1, 0, 1], dtype=np.intp) tm.assert_index_equal(jidx, exp_idx) tm.assert_numpy_array_equal(lidx, exp_lidx) tm.assert_numpy_array_equal(ridx, exp_ridx) # flip jidx, ridx, lidx = idx.join(midx, how='inner', return_indexers=True) tm.assert_index_equal(jidx, exp_idx) tm.assert_numpy_array_equal(lidx, exp_lidx) tm.assert_numpy_array_equal(ridx, exp_ridx) # keep MultiIndex jidx, lidx, ridx = midx.join(idx, how='left', return_indexers=True) exp_ridx = np.array([-1, 0, 1, -1, -1, 0, 1, -1, -1, 0, 1, -1, -1, 0, 1, -1], dtype=np.intp) tm.assert_index_equal(jidx, midx) assert lidx is None tm.assert_numpy_array_equal(ridx, exp_ridx) # flip jidx, ridx, lidx = idx.join(midx, how='right', return_indexers=True) tm.assert_index_equal(jidx, midx) assert lidx is None tm.assert_numpy_array_equal(ridx, exp_ridx) def test_reindex(self): result, indexer = self.index.reindex(list(self.index[:4])) assert isinstance(result, MultiIndex) self.check_level_names(result, self.index[:4].names) result, indexer = self.index.reindex(list(self.index)) assert isinstance(result, MultiIndex) assert indexer is None self.check_level_names(result, self.index.names) def test_reindex_level(self): idx = Index(['one']) target, indexer = self.index.reindex(idx, level='second') target2, indexer2 = idx.reindex(self.index, level='second') exp_index = self.index.join(idx, level='second', how='right') exp_index2 = self.index.join(idx, level='second', how='left') assert target.equals(exp_index) exp_indexer = np.array([0, 2, 4]) tm.assert_numpy_array_equal(indexer, exp_indexer, check_dtype=False) assert target2.equals(exp_index2) exp_indexer2 = np.array([0, -1, 0, -1, 0, -1]) tm.assert_numpy_array_equal(indexer2, exp_indexer2, check_dtype=False) tm.assert_raises_regex(TypeError, "Fill method not supported", self.index.reindex, self.index, method='pad', level='second') tm.assert_raises_regex(TypeError, "Fill method not supported", idx.reindex, idx, method='bfill', level='first') def test_duplicates(self): assert not self.index.has_duplicates assert self.index.append(self.index).has_duplicates index = MultiIndex(levels=[[0, 1], [0, 1, 2]], labels=[ [0, 0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 0, 1, 2]]) assert index.has_duplicates # GH 9075 t = [(u('x'), u('out'), u('z'), 5, u('y'), u('in'), u('z'), 169), (u('x'), u('out'), u('z'), 7, u('y'), u('in'), u('z'), 119), (u('x'), u('out'), u('z'), 9, u('y'), u('in'), u('z'), 135), (u('x'), u('out'), u('z'), 13, u('y'), u('in'), u('z'), 145), (u('x'), u('out'), u('z'), 14, u('y'), u('in'), u('z'), 158), (u('x'), u('out'), u('z'), 16, u('y'), u('in'), u('z'), 122), (u('x'), u('out'), u('z'), 17, u('y'), u('in'), u('z'), 160), (u('x'), u('out'), u('z'), 18, u('y'), u('in'), u('z'), 180), (u('x'), u('out'), u('z'), 20, u('y'), u('in'), u('z'), 143), (u('x'), u('out'), u('z'), 21, u('y'), u('in'), u('z'), 128), (u('x'), u('out'), u('z'), 22, u('y'), u('in'), u('z'), 129), (u('x'), u('out'), u('z'), 25, u('y'), u('in'), u('z'), 111), (u('x'), u('out'), u('z'), 28, u('y'), u('in'), u('z'), 114), (u('x'), u('out'), u('z'), 29, u('y'), u('in'), u('z'), 121), (u('x'), u('out'), u('z'), 31, u('y'), u('in'), u('z'), 126), (u('x'), u('out'), u('z'), 32, u('y'), u('in'), u('z'), 155), (u('x'), u('out'), u('z'), 33, u('y'), u('in'), u('z'), 123), (u('x'), u('out'), u('z'), 12, u('y'), u('in'), u('z'), 144)] index = pd.MultiIndex.from_tuples(t) assert not index.has_duplicates # handle int64 overflow if possible def check(nlevels, with_nulls): labels = np.tile(np.arange(500), 2) level = np.arange(500) if with_nulls: # inject some null values labels[500] = -1 # common nan value labels = [labels.copy() for i in range(nlevels)] for i in range(nlevels): labels[i][500 + i - nlevels // 2] = -1 labels += [np.array([-1, 1]).repeat(500)] else: labels = [labels] * nlevels + [np.arange(2).repeat(500)] levels = [level] * nlevels + [[0, 1]] # no dups index = MultiIndex(levels=levels, labels=labels) assert not index.has_duplicates # with a dup if with_nulls: def f(a): return np.insert(a, 1000, a[0]) labels = list(map(f, labels)) index = MultiIndex(levels=levels, labels=labels) else: values = index.values.tolist() index = MultiIndex.from_tuples(values + [values[0]]) assert index.has_duplicates # no overflow check(4, False) check(4, True) # overflow possible check(8, False) check(8, True) # GH 9125 n, k = 200, 5000 levels = [np.arange(n), tm.makeStringIndex(n), 1000 + np.arange(n)] labels = [np.random.choice(n, k * n) for lev in levels] mi = MultiIndex(levels=levels, labels=labels) for keep in ['first', 'last', False]: left = mi.duplicated(keep=keep) right = pd._libs.hashtable.duplicated_object(mi.values, keep=keep) tm.assert_numpy_array_equal(left, right) # GH5873 for a in [101, 102]: mi = MultiIndex.from_arrays([[101, a], [3.5, np.nan]]) assert not mi.has_duplicates with warnings.catch_warnings(record=True): # Deprecated - see GH20239 assert mi.get_duplicates().equals(MultiIndex.from_arrays( [[], []])) tm.assert_numpy_array_equal(mi.duplicated(), np.zeros( 2, dtype='bool')) for n in range(1, 6): # 1st level shape for m in range(1, 5): # 2nd level shape # all possible unique combinations, including nan lab = product(range(-1, n), range(-1, m)) mi = MultiIndex(levels=[list('abcde')[:n], list('WXYZ')[:m]], labels=np.random.permutation(list(lab)).T) assert len(mi) == (n + 1) * (m + 1) assert not mi.has_duplicates with warnings.catch_warnings(record=True): # Deprecated - see GH20239 assert mi.get_duplicates().equals(MultiIndex.from_arrays( [[], []])) tm.assert_numpy_array_equal(mi.duplicated(), np.zeros( len(mi), dtype='bool')) def test_duplicate_meta_data(self): # GH 10115 index = MultiIndex( levels=[[0, 1], [0, 1, 2]], labels=[[0, 0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 0, 1, 2]]) for idx in [index, index.set_names([None, None]), index.set_names([None, 'Num']), index.set_names(['Upper', 'Num']), ]: assert idx.has_duplicates assert idx.drop_duplicates().names == idx.names def test_get_unique_index(self): idx = self.index[[0, 1, 0, 1, 1, 0, 0]] expected = self.index._shallow_copy(idx[[0, 1]]) for dropna in [False, True]: result = idx._get_unique_index(dropna=dropna) assert result.unique tm.assert_index_equal(result, expected) @pytest.mark.parametrize('names', [None, ['first', 'second']]) def test_unique(self, names): mi = pd.MultiIndex.from_arrays([[1, 2, 1, 2], [1, 1, 1, 2]], names=names) res = mi.unique() exp = pd.MultiIndex.from_arrays([[1, 2, 2], [1, 1, 2]], names=mi.names) tm.assert_index_equal(res, exp) mi = pd.MultiIndex.from_arrays([list('aaaa'), list('abab')], names=names) res = mi.unique() exp = pd.MultiIndex.from_arrays([list('aa'), list('ab')], names=mi.names) tm.assert_index_equal(res, exp) mi = pd.MultiIndex.from_arrays([list('aaaa'), list('aaaa')], names=names) res = mi.unique() exp = pd.MultiIndex.from_arrays([['a'], ['a']], names=mi.names) tm.assert_index_equal(res, exp) # GH #20568 - empty MI mi = pd.MultiIndex.from_arrays([[], []], names=names) res = mi.unique() tm.assert_index_equal(mi, res) @pytest.mark.parametrize('level', [0, 'first', 1, 'second']) def test_unique_level(self, level): # GH #17896 - with level= argument result = self.index.unique(level=level) expected = self.index.get_level_values(level).unique() tm.assert_index_equal(result, expected) # With already unique level mi = pd.MultiIndex.from_arrays([[1, 3, 2, 4], [1, 3, 2, 5]], names=['first', 'second']) result = mi.unique(level=level) expected = mi.get_level_values(level) tm.assert_index_equal(result, expected) # With empty MI mi = pd.MultiIndex.from_arrays([[], []], names=['first', 'second']) result = mi.unique(level=level) expected = mi.get_level_values(level) def test_unique_datetimelike(self): idx1 = pd.DatetimeIndex(['2015-01-01', '2015-01-01', '2015-01-01', '2015-01-01', 'NaT', 'NaT']) idx2 = pd.DatetimeIndex(['2015-01-01', '2015-01-01', '2015-01-02', '2015-01-02', 'NaT', '2015-01-01'], tz='Asia/Tokyo') result = pd.MultiIndex.from_arrays([idx1, idx2]).unique() eidx1 = pd.DatetimeIndex(['2015-01-01', '2015-01-01', 'NaT', 'NaT']) eidx2 = pd.DatetimeIndex(['2015-01-01', '2015-01-02', 'NaT', '2015-01-01'], tz='Asia/Tokyo') exp = pd.MultiIndex.from_arrays([eidx1, eidx2]) tm.assert_index_equal(result, exp) def test_tolist(self): result = self.index.tolist() exp = list(self.index.values) assert result == exp def test_repr_with_unicode_data(self): with pd.core.config.option_context("display.encoding", 'UTF-8'): d = {"a": [u("\u05d0"), 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]} index = pd.DataFrame(d).set_index(["a", "b"]).index assert "\\u" not in repr(index) # we don't want unicode-escaped def test_repr_roundtrip(self): mi = MultiIndex.from_product([list('ab'), range(3)], names=['first', 'second']) str(mi) if PY3: tm.assert_index_equal(eval(repr(mi)), mi, exact=True) else: result = eval(repr(mi)) # string coerces to unicode tm.assert_index_equal(result, mi, exact=False) assert mi.get_level_values('first').inferred_type == 'string' assert result.get_level_values('first').inferred_type == 'unicode' mi_u = MultiIndex.from_product( [list(u'ab'), range(3)], names=['first', 'second']) result = eval(repr(mi_u)) tm.assert_index_equal(result, mi_u, exact=True) # formatting if PY3: str(mi) else: compat.text_type(mi) # long format mi = MultiIndex.from_product([list('abcdefg'), range(10)], names=['first', 'second']) if PY3: tm.assert_index_equal(eval(repr(mi)), mi, exact=True) else: result = eval(repr(mi)) # string coerces to unicode tm.assert_index_equal(result, mi, exact=False) assert mi.get_level_values('first').inferred_type == 'string' assert result.get_level_values('first').inferred_type == 'unicode' result = eval(repr(mi_u)) tm.assert_index_equal(result, mi_u, exact=True) def test_str(self): # tested elsewhere pass def test_unicode_string_with_unicode(self): d = {"a": [u("\u05d0"), 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]} idx = pd.DataFrame(d).set_index(["a", "b"]).index if PY3: str(idx) else: compat.text_type(idx) def test_bytestring_with_unicode(self): d = {"a": [u("\u05d0"), 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]} idx = pd.DataFrame(d).set_index(["a", "b"]).index if PY3: bytes(idx) else: str(idx) def test_slice_keep_name(self): x = MultiIndex.from_tuples([('a', 'b'), (1, 2), ('c', 'd')], names=['x', 'y']) assert x[1:].names == x.names def test_isna_behavior(self): # should not segfault GH5123 # NOTE: if MI representation changes, may make sense to allow # isna(MI) with pytest.raises(NotImplementedError): pd.isna(self.index) def test_level_setting_resets_attributes(self): ind = pd.MultiIndex.from_arrays([ ['A', 'A', 'B', 'B', 'B'], [1, 2, 1, 2, 3] ]) assert ind.is_monotonic ind.set_levels([['A', 'B'], [1, 3, 2]], inplace=True) # if this fails, probably didn't reset the cache correctly. assert not ind.is_monotonic def test_is_monotonic_increasing(self): i = MultiIndex.from_product([np.arange(10), np.arange(10)], names=['one', 'two']) assert i.is_monotonic assert i._is_strictly_monotonic_increasing assert Index(i.values).is_monotonic assert i._is_strictly_monotonic_increasing i = MultiIndex.from_product([np.arange(10, 0, -1), np.arange(10)], names=['one', 'two']) assert not i.is_monotonic assert not i._is_strictly_monotonic_increasing assert not Index(i.values).is_monotonic assert not Index(i.values)._is_strictly_monotonic_increasing i = MultiIndex.from_product([np.arange(10), np.arange(10, 0, -1)], names=['one', 'two']) assert not i.is_monotonic assert not i._is_strictly_monotonic_increasing assert not Index(i.values).is_monotonic assert not Index(i.values)._is_strictly_monotonic_increasing i = MultiIndex.from_product([[1.0, np.nan, 2.0], ['a', 'b', 'c']]) assert not i.is_monotonic assert not i._is_strictly_monotonic_increasing assert not Index(i.values).is_monotonic assert not Index(i.values)._is_strictly_monotonic_increasing # string ordering i = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) assert not i.is_monotonic assert not Index(i.values).is_monotonic assert not i._is_strictly_monotonic_increasing assert not Index(i.values)._is_strictly_monotonic_increasing i = MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['mom', 'next', 'zenith']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) assert i.is_monotonic assert Index(i.values).is_monotonic assert i._is_strictly_monotonic_increasing assert Index(i.values)._is_strictly_monotonic_increasing # mixed levels, hits the TypeError i = MultiIndex( levels=[[1, 2, 3, 4], ['gb00b03mlx29', 'lu0197800237', 'nl0000289783', 'nl0000289965', 'nl0000301109']], labels=[[0, 1, 1, 2, 2, 2, 3], [4, 2, 0, 0, 1, 3, -1]], names=['household_id', 'asset_id']) assert not i.is_monotonic assert not i._is_strictly_monotonic_increasing # empty i = MultiIndex.from_arrays([[], []]) assert i.is_monotonic assert Index(i.values).is_monotonic assert i._is_strictly_monotonic_increasing assert Index(i.values)._is_strictly_monotonic_increasing def test_is_monotonic_decreasing(self): i = MultiIndex.from_product([np.arange(9, -1, -1), np.arange(9, -1, -1)], names=['one', 'two']) assert i.is_monotonic_decreasing assert i._is_strictly_monotonic_decreasing assert Index(i.values).is_monotonic_decreasing assert i._is_strictly_monotonic_decreasing i = MultiIndex.from_product([np.arange(10), np.arange(10, 0, -1)], names=['one', 'two']) assert not i.is_monotonic_decreasing assert not i._is_strictly_monotonic_decreasing assert not Index(i.values).is_monotonic_decreasing assert not Index(i.values)._is_strictly_monotonic_decreasing i = MultiIndex.from_product([np.arange(10, 0, -1), np.arange(10)], names=['one', 'two']) assert not i.is_monotonic_decreasing assert not i._is_strictly_monotonic_decreasing assert not Index(i.values).is_monotonic_decreasing assert not Index(i.values)._is_strictly_monotonic_decreasing i = MultiIndex.from_product([[2.0, np.nan, 1.0], ['c', 'b', 'a']]) assert not i.is_monotonic_decreasing assert not i._is_strictly_monotonic_decreasing assert not Index(i.values).is_monotonic_decreasing assert not Index(i.values)._is_strictly_monotonic_decreasing # string ordering i = MultiIndex(levels=[['qux', 'foo', 'baz', 'bar'], ['three', 'two', 'one']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) assert not i.is_monotonic_decreasing assert not Index(i.values).is_monotonic_decreasing assert not i._is_strictly_monotonic_decreasing assert not Index(i.values)._is_strictly_monotonic_decreasing i = MultiIndex(levels=[['qux', 'foo', 'baz', 'bar'], ['zenith', 'next', 'mom']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) assert i.is_monotonic_decreasing assert Index(i.values).is_monotonic_decreasing assert i._is_strictly_monotonic_decreasing assert Index(i.values)._is_strictly_monotonic_decreasing # mixed levels, hits the TypeError i = MultiIndex( levels=[[4, 3, 2, 1], ['nl0000301109', 'nl0000289965', 'nl0000289783', 'lu0197800237', 'gb00b03mlx29']], labels=[[0, 1, 1, 2, 2, 2, 3], [4, 2, 0, 0, 1, 3, -1]], names=['household_id', 'asset_id']) assert not i.is_monotonic_decreasing assert not i._is_strictly_monotonic_decreasing # empty i = MultiIndex.from_arrays([[], []]) assert i.is_monotonic_decreasing assert Index(i.values).is_monotonic_decreasing assert i._is_strictly_monotonic_decreasing assert Index(i.values)._is_strictly_monotonic_decreasing def test_is_strictly_monotonic_increasing(self): idx = pd.MultiIndex(levels=[['bar', 'baz'], ['mom', 'next']], labels=[[0, 0, 1, 1], [0, 0, 0, 1]]) assert idx.is_monotonic_increasing assert not idx._is_strictly_monotonic_increasing def test_is_strictly_monotonic_decreasing(self): idx = pd.MultiIndex(levels=[['baz', 'bar'], ['next', 'mom']], labels=[[0, 0, 1, 1], [0, 0, 0, 1]]) assert idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing def test_reconstruct_sort(self): # starts off lexsorted & monotonic mi = MultiIndex.from_arrays([ ['A', 'A', 'B', 'B', 'B'], [1, 2, 1, 2, 3] ]) assert mi.is_lexsorted() assert mi.is_monotonic recons = mi._sort_levels_monotonic() assert recons.is_lexsorted() assert recons.is_monotonic assert mi is recons assert mi.equals(recons) assert Index(mi.values).equals(Index(recons.values)) # cannot convert to lexsorted mi = pd.MultiIndex.from_tuples([('z', 'a'), ('x', 'a'), ('y', 'b'), ('x', 'b'), ('y', 'a'), ('z', 'b')], names=['one', 'two']) assert not mi.is_lexsorted() assert not mi.is_monotonic recons = mi._sort_levels_monotonic() assert not recons.is_lexsorted() assert not recons.is_monotonic assert mi.equals(recons) assert Index(mi.values).equals(
Index(recons.values)
pandas.Index
#!/usr/bin/env python # coding: utf-8 import numpy as np import pandas as pd from sklearn.impute import SimpleImputer from sklearn.preprocessing import OneHotEncoder from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import LogisticRegression from sklearn.compose import make_column_transformer from sklearn.pipeline import make_pipeline from sklearn.preprocessing import LabelEncoder, LabelBinarizer from sklearn.base import BaseEstimator, TransformerMixin #gives fit_transform method for free import pdb from sklearn.base import TransformerMixin from collections import defaultdict #################################################################################################### class My_LabelEncoder(BaseEstimator, TransformerMixin): """ ################################################################################################ ###### The My_LabelEncoder class was developed by <NAME> for AutoViML ######### ###### The My_LabelEncoder class works just like sklearn's Label Encoder but better! ####### ##### It label encodes any cat var in your dataset. It also handles NaN's in your dataset! #### ## The beauty of this function is that it takes care of NaN's and unknown (future) values.##### ##################### This is the BEST working version - don't mess with it!! ################## ################################################################################################ Usage: le = My_LabelEncoder() le.fit_transform(train[column]) ## this will give your transformed values as an array le.transform(test[column]) ### this will give your transformed values as an array Usage in Column Transformers and Pipelines: No. It cannot be used in pipelines since it need to produce two columns for the next stage in pipeline. See my other module called My_LabelEncoder_Pipe() to see how it can be used in Pipelines. """ def __init__(self): self.transformer = defaultdict(str) self.inverse_transformer = defaultdict(str) self.max_val = 0 def fit(self,testx, y=None): if isinstance(testx, pd.Series): pass elif isinstance(testx, np.ndarray): testx =
pd.Series(testx)
pandas.Series
from DataStreamerCpp import dsStream #custom module that wraps the cpp file api. import numpy as np import pandas as pd import collections import time import config ## TODO decide whether to use this or not, or to provide some sort of different option for these variables. import matplotlib.pyplot as plt ## Purpose of this class file is to provide an easy to read python class for quick intergration into a python project. ## rather then having to examine the c++ code and output, you can just use this wrapper. ## additionally configuration args can be added in here without the need to expose them to the main file. class DataStreamer(object): def __init__(self, *args, **kwargs): self.cppProcessor = dsStream() return super().__init__(*args, **kwargs) #initalize the stream #vRate: the variable rate of how many data points to arrive per step default 100milliseconds #stepRate: the step rate in miliseconds. default is 100, aka 1/10 of a second. #readerCount: TODO, number of readers to use a threads for incoming datapoints. #randomRate: random noise to apply to the rate per step. default is 0 #randomStep: TODO #loadMethod: TODO set which load method to use, default, no load balancer engaged. def initialize(self, vR, stepRate = 10, randomRate = 0, randomStep = 0): vRate = vR if isinstance(vRate,(collections.Sequence, np.ndarray, pd.DataFrame)): #vRate is a sequence, follow the sequence step by step print("sequence") if isinstance(vRate,np.ndarray): vRate = vRate.tolist() if isinstance(vRate,pd.DataFrame): #TODO, check how the interaction between dataframes and the list works for this. vRate = vRate.values.tolist() if len(vRate) > 0: self.cppProcessor.setVRate(vRate) else: raise ValueError('Variable rates in Initialize must not be empty, consider using a scalar.') else: #vRate is a scalar self.cppProcessor.setVRateScalar(vRate) return 0 def process(self, X_train, y_train, X_test): output = self.cppProcessor.initReaders(X_train, y_train, X_test) return output def checkComplete(self): output = self.cppProcessor.checkComplete() return output def checkException(self): output = self.cppProcessor.checkForThreadException() return output def getResultsCount(self): output = self.cppProcessor.getResultsCount() return output def getResults(self): output = self.cppProcessor.getResults() return output #pause the processor, will not be immediate, but will stop next item from being processed. time recorders also paused. If already paused no effect. def pause(self): #TODO #output = self.cppProcessor.pause() return 0 #resume the processor after pause has been called. If not paused, no effect. def resume(self): #TODO #output = self.cppProcessor.resume() return 0 ##### ##### Metric Calculation Section ##### def caclulateErr(results, Print=False): df =pd.DataFrame() df["result"] = results["predicted"].str.strip("[]") df["truth"] = results["Label"] df['result'] = df['result'].astype(np.float64) df['truth'] = df['truth'].astype(np.float64) res =df.loc[~(df['result'] == df['truth'])] output ="error rate: {}%".format(len(res)/len(results)*100) if Print: print(output) return output def caclulateLatency(results, vRate=None, Print=False): df =pd.DataFrame() df['latency'] = results['latency'].astype(np.float64) #if isinstance(le_list,(,)): #df['vRate'] = vRate res =df.loc[~(df['latency'] >= config.LATENCYBOUND)] output ="exceed rate: {}%".format(len(res)/len(results)*100) if Print: print(output) vFig =plt.figure() vAx = vFig.add_subplot(1,1,1) vYRate = np.arange(0,len(vRate),config.READERINTERVAL) vAx.plot(vRate,vYRate) return output def expandVRate(vRate, data): valSum=0; newVRate =
pd.DataFrame()
pandas.DataFrame
import sys import os SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.dirname(SCRIPT_DIR)) import numpy as np import pandas as pd from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import Models from Models.Models import away_features, home_features, features, build_DT_classifier, build_RF_classifier, build_XGBoostClassifier import Helper import Models.moving_average_dataset import Models.backtesting as backtesting import Models.elo_model as elo_model import dicts_and_lists as dal import logging, coloredlogs pd.set_option('display.max_rows', 1000) # ------------ Hyperparameters ------------ # leave_out = '2020' margin = 0 betting_limiter = True betting_limit = 0.125 prob_threshold = 0.65 prob_2x_bet = 0.99 offset = 0.0 # Added probability average_N = 3 skip_n = 0 # ------ Logger ------- # logger = logging.getLogger('test_models.py') coloredlogs.install(level='INFO', logger=logger) def extract_and_predict(next_game): # Extract away_team Name and home_team Name from last_N_games_away and last_N_games_home away_team = next_game['Team_away'].values[0] home_team = next_game['Team_home'].values[0] # Before predicting a game, check that it has not yet been predicted. # This is the case where e.g., TeamHome's next game at home against TeamAway has been evaluated ... # by both next home game and next away game. They are the same game, which are therefore predicted twice. if next_game.index[0] not in evaluated_indexes: # Track the inserted game based on its index evaluated_indexes.append(next_game.index[0]) # Extract indexes for last N games next_games_away_indexes = df.loc[df['Team_away'] == away_team].index next_games_home_indexes = df.loc[df['Team_home'] == home_team].index next_away_indexes_reduced = [x for x in next_games_away_indexes if x < next_game.index[0]][-average_N:] next_home_indexes_reduced = [x for x in next_games_home_indexes if x < next_game.index[0]][-average_N:] # Extract last N games based on indexes last_N_games_away = df.iloc[next_away_indexes_reduced] last_N_games_home = df.iloc[next_home_indexes_reduced] # Concatenate the two teams with their average stats to_predict = pd.concat( [ last_N_games_away[away_features].mean(), last_N_games_home[home_features].mean() ], axis=0)[features] # Standardize the input to_predict = scaler.transform(to_predict.values.reshape(1,-1)) pred = int(clf.predict(to_predict)) true_value = next_game['Winner'].values[0] predictions.append(pred) winners.append(true_value) prob = clf.predict_proba(to_predict) model_prob.append(max(prob[0])) model_odds.append(1/max(prob[0])) odds_away.append(next_game['OddsAway'].values[0]) odds_home.append(next_game['OddsHome'].values[0]) dates_list.append(next_game['Date'].values[0]) home_teams_list.append(home_team) away_teams_list.append(away_team) # Only the most significant features will be considered away_features = away_features home_features = home_features # Create the df containing stats per single game on every row train_df = pd.read_csv('past_data/average_seasons/average_N_4Seasons.csv') # Standardize the DataFrame std_df, scaler = Helper.standardize_DataFrame(train_df) ### Test the Classification model based on the mean of the last average_N games ### logger.info('\nSelect the type of model you want to backtest:\n\ [1]: Decision Tree + Elo Model\n\ [2]: Random Forest + Elo Model\n\ [3]: Random Forest + Elo Model + Build Moving Average Dataset\n\ [4]: XGBoost + Elo Model' ) inp = input() if inp == '1': logger.info('Building a Decision Tree Classifier...') clf = build_DT_classifier(std_df) elif inp == '2': logger.info('Building a Random Forest Classifier...') clf = build_RF_classifier(std_df) elif inp == '3': Models.moving_average_dataset.build_moving_average_dataset(average_N, skip_n, leave_out=leave_out) train_df = pd.read_csv('past_data/average_seasons/average_N_4Seasons.csv') # Standardize the DataFrame std_df, scaler = Helper.standardize_DataFrame(train_df) logger.info('Building a Random Forest Classifier...') clf = build_RF_classifier(std_df) elif inp == '4': clf = build_XGBoostClassifier(std_df) # To evaluate accuracy dates_list = [] predictions = [] winners = [] model_prob = [] model_odds = [] odds_away = [] odds_home = [] home_teams_list = [] away_teams_list = [] evaluated_indexes = [] # Backtest on the 2020/2021 Season df =
pd.read_csv('past_data/2020_2021/split_stats_per_game.csv')
pandas.read_csv
import settings import const import pandas as pd import numpy as np import matplotlib from matplotlib import rcParams rcParams.update({'figure.autolayout': True}) # to prevent labels going out of plot! matplotlib.use('TkAgg') import seaborn as sns import matplotlib.pyplot as plt from src.preprocess import reform from src import util config = settings.config[const.DEFAULT] feature_dir = config[const.FEATURE_DIR] suffix = '_12_3_7_24_8_6_12_1_7_24_hybrid_tests.csv' paths = { 'BJ': { # 'PM2.5': feature_dir + const.BJ_PM25 + suffix, # 'PM10': feature_dir + const.BJ_PM10 + suffix, # 'O3': feature_dir + const.BJ_O3 + suffix, }, 'LD': { 'PM2.5': feature_dir + const.LD_PM25 + suffix, # 'PM10': feature_dir + const.LD_PM10 + suffix, } } smape_columns = ['city', const.ID, const.LONG, const.LAT, 'pollutant', 'SMAPE', 'count'] smapes = pd.DataFrame(columns=smape_columns) for city in paths: station_path = config[const.BJ_STATIONS] if city == 'BJ' else config[const.LD_STATIONS] stations =
pd.read_csv(station_path, sep=";", low_memory=False)
pandas.read_csv
# run_xlm_inf.py """ Execution file for inference for xlm model. (The baseline provided in the competition.) """ from transformers import AutoTokenizer, AutoConfig, AutoModelForSequenceClassification, Trainer, TrainingArguments from torch.utils.data import DataLoader from solution.data.load_data import * import pandas as pd import torch import torch.nn.functional as F import numpy as np import argparse from tqdm import tqdm from solution.utils import IDX2LABEL def inference(model, tokenized_sent, device): """ test dataset을 DataLoader로 만들어 준 후, batch_size로 나눠 model이 예측 합니다. """ dataloader = DataLoader(tokenized_sent, batch_size=64, shuffle=False) model.eval() output_pred = [] output_prob = [] for i, data in enumerate(tqdm(dataloader)): with torch.no_grad(): outputs = model( input_ids=data['input_ids'].to(device), attention_mask=data['attention_mask'].to(device), #token_type_ids=data['token_type_ids'].to(device) ) logits = outputs[0] prob = F.softmax(logits, dim=-1).detach().cpu().numpy() logits = logits.detach().cpu().numpy() result = np.argmax(logits, axis=-1) output_pred.append(result) output_prob.append(prob) return np.concatenate(output_pred).tolist(), np.concatenate(output_prob, axis=0).tolist() def load_test_dataset(dataset_dir, tokenizer): """ test dataset을 불러온 후, tokenizing 합니다. """ test_dataset = load_data(dataset_dir) test_label = list(map(int,test_dataset['label'].values)) # tokenizing dataset tokenized_test = tokenized_dataset(test_dataset, tokenizer) return test_dataset['id'], tokenized_test, test_label def main(args): """ 주어진 dataset csv 파일과 같은 형태일 경우 inference 가능한 코드입니다. """ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # load tokenizer Tokenizer_NAME = "xlm-roberta-large" tokenizer = AutoTokenizer.from_pretrained(Tokenizer_NAME) ## load my model MODEL_NAME = args.model_dir # model dir. model = AutoModelForSequenceClassification.from_pretrained(args.model_dir) model.parameters model.to(device) ## load test datset test_dataset_dir = "../../dataset/test/test_data.csv" test_id, test_dataset, test_label = load_test_dataset(test_dataset_dir, tokenizer) Re_test_dataset = RE_Dataset(test_dataset ,test_label) ## predict answer pred_answer, output_prob = inference(model, Re_test_dataset, device) # model에서 class 추론 pred_answer = IDX2LABEL[pred_answer] # 숫자로 된 class를 원래 문자열 라벨로 변환. ## make csv file with predicted answer ######################################################### # 아래 directory와 columns의 형태는 지켜주시기 바랍니다. output =
pd.DataFrame({'id':test_id,'pred_label':pred_answer,'probs':output_prob,})
pandas.DataFrame
import pandas as pd import numpy as np import pytest from kgextension.caching_helper import freeze_unhashable, unfreeze_unhashable class TestFreezeUnfreezeUnhashable: def test1_arg_series(self): @freeze_unhashable(freeze_by="argument", freeze_argument="the_arg") def test_fun(a, b, c=12, the_arg=[]): the_arg = unfreeze_unhashable(the_arg, frozen_type="series") if a == 10 and b == 11 and c == 12: return the_arg else: return None df = pd.DataFrame({"a": [1,2,3,np.nan], "b": ["x", "y", "z", np.nan]}) s = df["a"] s_unfrozen = test_fun(10, 11, the_arg=s) pd.testing.assert_series_equal(s, s_unfrozen) def test2_arg_series_kwargs(self): @freeze_unhashable(freeze_by="argument", freeze_argument="the_arg") def test_fun(a, b, c=12, the_arg=[]): the_arg = unfreeze_unhashable(the_arg, frozen_type="series") if a == 10 and b == 11 and c == 12: return the_arg else: return None df = pd.DataFrame({"a": [1,2,3,np.nan], "b": ["x", "y", "z", np.nan]}) s = df["a"] s_unfrozen = test_fun(a=10, b=11, the_arg=s) pd.testing.assert_series_equal(s, s_unfrozen) def test3_arg_series_kwargs_noatttrib(self): @freeze_unhashable(freeze_by="argument", freeze_argument="the_arg") def test_fun(a=10, b=11, c=12, the_arg=[]): the_arg = unfreeze_unhashable(the_arg, frozen_type="series") if a == 10 and b == 11 and c == 12: return the_arg else: return None s_unfrozen = test_fun(a=10, b=11) assert s_unfrozen == [] def test4_arg_dict(self): @freeze_unhashable(freeze_by="argument", freeze_argument="the_arg") def test_fun(a, b, c=12, the_arg=[]): the_arg = unfreeze_unhashable(the_arg, frozen_type="dict") if a == 10 and b == 11 and c == 12: return the_arg else: return None dict_attr = {"a": np.nan, "b": 2, "c": "hi"} dict_unfrozen = test_fun(a=10, b=11, the_arg=dict_attr) assert dict_attr == dict_unfrozen def test5_index_series(self): @freeze_unhashable(freeze_by="index", freeze_index=0) def test_fun(the_arg, a, b, c=12): the_arg = unfreeze_unhashable(the_arg, frozen_type="series") if a == 10 and b == 11 and c == 12: return the_arg else: return None df = pd.DataFrame({"a": [1,2,3,np.nan], "b": ["x", "y", "z", np.nan]}) s = df["a"] s_unfrozen = test_fun(s, 10, 11)
pd.testing.assert_series_equal(s, s_unfrozen)
pandas.testing.assert_series_equal
# text_association.py - calculates the similarity between the text and the influencers import pandas as pd from .text_cleaner import * import re from collections import Counter import numpy as np import pickle from scipy.special import softmax import tensorflow as tf class TextProcessor(object): def __init__(self): # Load the required files with open("text_processing/finetuned_s90_10_word_trait_array.pickle", "rb") as f: self.word_df = pickle.load(f) # Generate word map from AGDS self.word_map = self.word_df.columns.tolist() # Read archetype list and clean it up self.arch_df = pd.read_csv("text_processing/archetypes_pl_new.csv", header=0, index_col=0) self.arch_df = self.arch_df.fillna(2) self.arch_df = self.arch_df[~self.arch_df.index.duplicated(keep='first')] # Generate trait list self.trait_list = self.arch_df.columns.tolist() # Load LSTM model self.test_model = tf.keras.models.load_model("text_processing/nn_model") def extract_hashtags(self, post_text): HASH_RE = re.compile(r"\#\w+") out_list = re.findall(HASH_RE, post_text) return out_list def get_trait_dot_product(self, post_text: str) -> list: # Filter out the text filtered_post = remove_stopwords(clean_up_text(post_text)) filtered_post += self.extract_hashtags(post_text) # Create a vector for dot product vector post_vector = [0] * len(self.word_map) # Calculate word occurrences word_ctr = Counter(filtered_post) for word, freq in word_ctr.items(): if word in self.word_map: post_vector[self.word_map.index(word)] = freq # Calculate dot product for a given text word_dot = self.word_df.dot(post_vector) out_vec = pd.Series() for trait in self.trait_list: out_vec = out_vec.append(pd.Series([np.argmax(softmax(word_dot.loc[trait]))], index=[trait])) return out_vec # Trait accuracy - round the results def natural_round(x: float) -> int: out = int(x // 1) return out + 1 if (x - out) >= 0.5 else out def accuracy_per_trait(input_vector: pd.Series, annotated_vector: pd.Series) -> np.array: out_array = np.array([0] * 37, dtype=np.int) for i in range(len(out_array)): if input_vector[i] == annotated_vector[i]: out_array[i] = 1 return out_array # Method for calculating the similarity def calculate_similarity(self, post_text: str) -> (pd.Series, pd.Series): # Calculate word-trait dot product post_result = self.get_trait_dot_product(post_text) # Generate new dataframe - one row per influencer inf_df = pd.Series(index=self.arch_df.index) # Replace all data in temporary df with calculated post result for idx in inf_df.index: inf_df.loc[idx] = np.linalg.norm(self.arch_df.loc[idx] - post_result) sorted_infs = inf_df.sort_values() return post_result, sorted_infs def clean_post(self, src_text: str) -> str: # Extract posts and hashtags extracted_text = remove_stopwords(clean_up_text(src_text)) extracted_hashtags = self.extract_hashtags(src_text) return extracted_text + extracted_hashtags def predict_nn(self, post_text): # Preprocess the text user_text = " ".join(self.clean_post(post_text)) # Make a prediction prediction = self.test_model.predict([user_text]) # Process the predictions predicted_classes = [] for trait in prediction: predicted_classes.append(int(np.argmax(trait))) predicted_dict = {trait: pred for trait, pred in zip(self.trait_list, predicted_classes)} series_pred =
pd.Series(predicted_dict)
pandas.Series
''' May 2020 by <NAME> <EMAIL> https://www.github.com/sebbarb/ ''' import feather import pandas as pd import numpy as np from hyperparameters import Hyperparameters from pdb import set_trace as bp def main(): hp = Hyperparameters() # Load data #df = feather.read_dataframe(hp.data_dir + 'Py_VARIANZ_2012_v3-1.feather') df =
pd.read_feather(hp.data_dir + 'Py_VARIANZ_2012_v3-1.feather')
pandas.read_feather
#Plot import matplotlib.pyplot as plt import seaborn as sns from bleu import file_bleu #Data Packages import math import pandas as pd import numpy as np #Progress bar from tqdm import tqdm #Counter from collections import Counter #Operation import operator #Natural Language Processing Packages import re import nltk ## Download Resources nltk.download("vader_lexicon") nltk.download("stopwords") nltk.download("averaged_perceptron_tagger") nltk.download("wordnet") from nltk.sentiment import SentimentAnalyzer from nltk.sentiment.vader import SentimentIntensityAnalyzer from nltk.sentiment.util import * from nltk import tokenize from nltk.corpus import stopwords from nltk.tag import PerceptronTagger from nltk.data import find sns.set(rc={'figure.figsize':(5,3.5)}) # CHANGE FLIEPATH before running this locally # Use vader to evaluated sentiment of reviews def evalSentences(sentences, to_df=False, columns=[]): # Instantiate an instance to access SentimentIntensityAnalyzer class sid = SentimentIntensityAnalyzer() pdlist = [] if to_df: for sentence in tqdm(sentences): ss = sid.polarity_scores(sentence) pdlist.append([sentence] + [ss['compound']]) reviewDf = pd.DataFrame(pdlist) reviewDf.columns = columns return reviewDf else: for sentence in tqdm(sentences): print(sentence) ss = sid.polarity_scores(sentence) for k in sorted(ss): print('{0}: {1}, '.format(k, ss[k]), end='') print() def getHistogram(df, measure, title, hue=None, figsize=(5, 3)): if hue: sns_plot = sns.kdeplot(data=df, x=measure, hue=hue) # sns_plot = sns.histplot(data=df, x=measure, hue=hue) else: sns_plot = sns.histplot(data=df, x=measure) # sns_plot.set_title(title) sns_plot.set_xlabel("Value") sns_plot.set_ylabel("Density") plt.tight_layout() sns_plot.figure.savefig("{}.png".format(title)) def calculate_vader_ALE(filename=None): print("Evaluate ALE") if filename: file_path = "./{}.txt".format(filename) else: file_path ="./outputext_step1_eps5.txt" file_path_neg ="../../data/yelp/sentiment.test.0" file_path_pos ="../../data/yelp/sentiment.test.1" review_file = open(file_path, "r") reviews = review_file.readlines() review_file.close() reviewDF = evalSentences(reviews, to_df=True, columns=['review','vader']) # sanity check assert(reviewDF.shape[0]==1000) neg_2_pos = (reviewDF[:500]['vader']>=0).sum() pos_2_neg = (reviewDF[500:]['vader']<=0).sum() acc = (neg_2_pos+pos_2_neg)/1000 print("accuracy of changed sentences is {}".format(acc)) print("accuracy of pos_to_neg sentences is {}".format(pos_2_neg/500)) print("accuracy of neg_to_pos sentences is {}".format(neg_2_pos/500)) review_file_neg = open(file_path_neg, "r") review_file_pos = open(file_path_pos, "r") reviews_neg = review_file_neg.readlines() reviews_pos = review_file_pos.readlines() review_file_neg.close() review_file_pos.close() reviewDF_neg = evalSentences(reviews_neg, to_df=True, columns=['review','vader']) reviewDF_pos = evalSentences(reviews_pos, to_df=True, columns=['review','vader']) # sanity check assert(reviewDF_neg.shape[0]==500) assert (reviewDF_pos.shape[0] == 500) pos_acc = (reviewDF_pos['vader']>=0).sum() neg_acc = (reviewDF_neg['vader']<=0).sum() org_acc = (pos_acc+neg_acc)/1000 print("accuracy of original sentences is {}".format(org_acc)) print("accuracy of original positive sentences is {}".format(pos_acc/500)) print("accuracy of original negative sentences is {}".format(neg_acc/500)) return reviewDF, reviewDF_pos, reviewDF_neg def calculate_style_trans(): print("Evaluate Style Transformer") file_path ="./style_transformer.txt" review_file = open(file_path, "r") reviews_raw = review_file.readlines() review_file.close() reviews_pos_to_neg = [] # changed sentence reviews_neg_to_pos = [] # changed sentence reviews_pos = [] #original pos reviews_neg = [] #original neg pos_example = False neg_example = False for sent in reviews_raw: if sent.startswith("[raw 0.0]"): reviews_neg.append(sent[11:]) neg_example = True pos_example = False elif sent.startswith("[raw 1.0]"): reviews_pos.append(sent[11:]) neg_example = False pos_example = True elif sent.startswith("[rev 0.0]") and pos_example: reviews_pos_to_neg.append(sent[11:]) pos_example = False neg_example = False elif sent.startswith("[rev 1.0]") and neg_example: reviews_neg_to_pos.append(sent[11:]) pos_example = False neg_example = False assert (len(reviews_pos_to_neg) == 500) assert (len(reviews_neg_to_pos) == 500) assert (len(reviews_pos) == 500) assert (len(reviews_neg) == 500) reviewDF_pos_to_neg = evalSentences(reviews_pos_to_neg, to_df=True, columns=['review','vader']) reviewDF_neg_to_pos = evalSentences(reviews_neg_to_pos, to_df=True, columns=['review','vader']) neg_2_pos = (reviewDF_neg_to_pos['vader']>=0).sum() pos_2_neg = (reviewDF_pos_to_neg['vader']<=0).sum() acc = (neg_2_pos+pos_2_neg)/1000 print("accuracy of changed sentences is {}".format(acc)) print("accuracy of pos_to_neg sentences is {}".format(pos_2_neg/500)) print("accuracy of neg_to_pos sentences is {}".format(neg_2_pos/500)) reviewDF_neg = evalSentences(reviews_neg, to_df=True, columns=['review','vader']) reviewDF_pos = evalSentences(reviews_pos, to_df=True, columns=['review','vader']) # sanity check assert(reviewDF_neg.shape[0]==500) assert (reviewDF_pos.shape[0] == 500) pos_acc = (reviewDF_pos['vader']>=0).sum() neg_acc = (reviewDF_neg['vader']<=0).sum() org_acc = (pos_acc+neg_acc)/1000 print("accuracy of original sentences is {}".format(org_acc)) print("accuracy of original positive sentences is {}".format(pos_acc/500)) print("accuracy of original negative sentences is {}".format(neg_acc/500)) return reviewDF_pos_to_neg, reviewDF_neg_to_pos, reviewDF_pos, reviewDF_neg def graph_ALE(reviewDF_ALE, reviewDF_pos_ALE, reviewDF_neg_ALE, color1, color2): reviewDF_pos_ALE['label'] = "POS" reviewDF_neg_ALE['label'] = "NEG" reviewDF_org = pd.concat((reviewDF_neg_ALE, reviewDF_pos_ALE), 0).reset_index(drop=True) assert (reviewDF_org['review']==reviewDF_ALE['review']).any() # there are definitely unchanged sentence, otherwise the ordering is wrong reviewDF_org = reviewDF_org.rename(columns={"vader":"vader_original"}) reviewDF_ALE_all = pd.concat([reviewDF_ALE, reviewDF_org], axis=1, join="inner") reviewDF_ALE_all = reviewDF_ALE_all.loc[:,~reviewDF_ALE_all.columns.duplicated()] reviewDF_ALE_all['change in vader'] = reviewDF_ALE_all['vader'] - reviewDF_ALE_all['vader_original'] # getHistogram(reviewDF_ALE_all, 'change in vader', 'ALE change in vader score', hue="label") pal = dict(POS=color2, NEG=color1) sns_plot = sns.kdeplot(data=reviewDF_ALE_all, x='change in vader', hue="label", palette=pal) # sns_plot = sns.kdeplot(data=reviewDF_ALE_all, x='change in vader', color=color1) return sns_plot def draw_transition_graph(): palette = sns.color_palette("coolwarm", n_colors=10) i=0 for filename in ["outputext_step1_eps0.5", "outputext_step1_eps2", "outputext_step1_eps3", "outputext_step1_eps4", "outputext_step1_eps5"]: color1 = palette[4-i] color2 = palette[i+5] i+=1 reviewDF_ALE, reviewDF_pos_ALE, reviewDF_neg_ALE = calculate_vader_ALE(filename) plot = graph_ALE(reviewDF_ALE, reviewDF_pos_ALE, reviewDF_neg_ALE, color1, color2) plot.figure.savefig("ALE transition") def graph_ALE_vader(): reviewDF_ALE, reviewDF_pos_ALE, reviewDF_neg_ALE = calculate_vader_ALE() reviewDF_pos_ALE['label'] = "POS → NEG" reviewDF_neg_ALE['label'] = "NEG → POS" reviewDF_org = pd.concat((reviewDF_neg_ALE, reviewDF_pos_ALE), 0).reset_index(drop=True) assert (reviewDF_org['review']==reviewDF_ALE['review']).any() # there are definitely unchanged sentence, otherwise the ordering is wrong reviewDF_org = reviewDF_org.rename(columns={"vader":"vader_original"}) reviewDF_ALE_all = pd.concat([reviewDF_ALE, reviewDF_org], axis=1, join="inner") reviewDF_ALE_all = reviewDF_ALE_all.loc[:,~reviewDF_ALE_all.columns.duplicated()] reviewDF_ALE_all['change in vader'] = reviewDF_ALE_all['vader'] - reviewDF_ALE_all['vader_original'] getHistogram(reviewDF_ALE_all, 'change in vader', 'change in vader score (ALE)', hue="label") def graph_ST_vader(): reviewDF_pos_to_neg, reviewDF_neg_to_pos, reviewDF_pos, reviewDF_neg = calculate_style_trans() reviewDF_pos['label'] = "POS → NEG" reviewDF_neg['label'] = "NEG → POS" reviewDF_org =
pd.concat((reviewDF_neg, reviewDF_pos), 0)
pandas.concat
# -*- coding: utf-8 -*- """ Created on Wed Mar 3 12:51:57 2021 @author: Administrator """ import pandas as pd import numpy as np from pandas import DataFrame, Series def apply(decorator): def decorate(cls): for attr in cls.__dict__: if callable(getattr(cls, attr)): setattr(cls, attr, decorator(getattr(cls, attr))) return cls return decorate class TA: __version__ = "1.2" @classmethod def SMA(cls, ohlc: DataFrame, period: int = 41, column: str = "close") -> Series: """ Simple moving average - rolling mean in pandas lingo. Also known as 'MA'. The simple moving average (SMA) is the most basic of the moving averages used for trading. """ return pd.Series( ohlc[column].rolling(window=period).mean(), name="{0} period SMA".format(period), ) @classmethod def SMM(cls, ohlc: DataFrame, period: int = 9, column: str = "close") -> Series: """ Simple moving median, an alternative to moving average. SMA, when used to estimate the underlying trend in a time series, is susceptible to rare events such as rapid shocks or other anomalies. A more robust estimate of the trend is the simple moving median over n time periods. """ return pd.Series( ohlc[column].rolling(window=period).median(), name="{0} period SMM".format(period), ) @classmethod def SSMA( cls, ohlc: DataFrame, period: int = 9, column: str = "close", adjust: bool = True, ) -> Series: """ Smoothed simple moving average. :param ohlc: data :param period: range :param column: open/close/high/low column of the DataFrame :return: result Series """ return pd.Series( ohlc[column] .ewm(ignore_na=False, alpha=1.0 / period, min_periods=0, adjust=adjust) .mean(), name="{0} period SSMA".format(period), ) @classmethod def EMA( cls, ohlc: DataFrame, period: int = 9, column: str = "close", adjust: bool = True, ) -> Series: """ Exponential Weighted Moving Average - Like all moving average indicators, they are much better suited for trending markets. When the market is in a strong and sustained uptrend, the EMA indicator line will also show an uptrend and vice-versa for a down trend. EMAs are commonly used in conjunction with other indicators to confirm significant market moves and to gauge their validity. """ return pd.Series( ohlc[column].ewm(span=period, adjust=adjust).mean(), name="{0} period EMA".format(period), ) @classmethod def DEMA( cls, ohlc: DataFrame, period: int = 9, column: str = "close", adjust: bool = True, ) -> Series: """ Double Exponential Moving Average - attempts to remove the inherent lag associated to Moving Averages by placing more weight on recent values. The name suggests this is achieved by applying a double exponential smoothing which is not the case. The name double comes from the fact that the value of an EMA (Exponential Moving Average) is doubled. To keep it in line with the actual data and to remove the lag the value 'EMA of EMA' is subtracted from the previously doubled EMA. Because EMA(EMA) is used in the calculation, DEMA needs 2 * period -1 samples to start producing values in contrast to the period samples needed by a regular EMA """ DEMA = ( 2 * cls.EMA(ohlc, period) - cls.EMA(ohlc, period).ewm(span=period, adjust=adjust).mean() ) return pd.Series(DEMA, name="{0} period DEMA".format(period)) @classmethod def TEMA(cls, ohlc: DataFrame, period: int = 9, adjust: bool = True) -> Series: """ Triple exponential moving average - attempts to remove the inherent lag associated to Moving Averages by placing more weight on recent values. The name suggests this is achieved by applying a triple exponential smoothing which is not the case. The name triple comes from the fact that the value of an EMA (Exponential Moving Average) is triple. To keep it in line with the actual data and to remove the lag the value 'EMA of EMA' is subtracted 3 times from the previously tripled EMA. Finally 'EMA of EMA of EMA' is added. Because EMA(EMA(EMA)) is used in the calculation, TEMA needs 3 * period - 2 samples to start producing values in contrast to the period samples needed by a regular EMA. """ triple_ema = 3 * cls.EMA(ohlc, period) ema_ema_ema = ( cls.EMA(ohlc, period) .ewm(ignore_na=False, span=period, adjust=adjust) .mean() .ewm(ignore_na=False, span=period, adjust=adjust) .mean() ) TEMA = ( triple_ema - 3 * cls.EMA(ohlc, period).ewm(span=period, adjust=adjust).mean() + ema_ema_ema ) return pd.Series(TEMA, name="{0} period TEMA".format(period)) @classmethod def TRIMA(cls, ohlc: DataFrame, period: int = 18) -> Series: """ The Triangular Moving Average (TRIMA) [also known as TMA] represents an average of prices, but places weight on the middle prices of the time period. The calculations double-smooth the data using a window width that is one-half the length of the series. source: https://www.thebalance.com/triangular-moving-average-tma-description-and-uses-1031203 """ SMA = cls.SMA(ohlc, period).rolling(window=period).sum() return pd.Series(SMA / period, name="{0} period TRIMA".format(period)) @classmethod def TRIX( cls, ohlc: DataFrame, period: int = 20, column: str = "close", adjust: bool = True, ) -> Series: """ The TRIX indicator calculates the rate of change of a triple exponential moving average. The values oscillate around zero. Buy/sell signals are generated when the TRIX crosses above/below zero. A (typically) 9 period exponential moving average of the TRIX can be used as a signal line. A buy/sell signals are generated when the TRIX crosses above/below the signal line and is also above/below zero. The TRIX was developed by <NAME>, publisher of Technical Analysis of Stocks & Commodities magazine, and was introduced in Volume 1, Number 5 of that magazine. """ data = ohlc[column] def _ema(data, period, adjust): return pd.Series(data.ewm(span=period, adjust=adjust).mean()) m = _ema(_ema(_ema(data, period, adjust), period, adjust), period, adjust) return pd.Series(100 * (m.diff() / m), name="{0} period TRIX".format(period)) @classmethod def LWMA(cls, ohlc: DataFrame, period: int, column: str = "close") -> Series: """ Linear Weighted Moving Average """ raise NotImplementedError @classmethod def VAMA(cls, ohlcv: DataFrame, period: int = 8, column: str = "close") -> Series: """ Volume Adjusted Moving Average """ vp = ohlcv["volume"] * ohlcv[column] volsum = ohlcv["volume"].rolling(window=period).mean() volRatio = pd.Series(vp / volsum, name="VAMA") cumSum = (volRatio * ohlcv[column]).rolling(window=period).sum() cumDiv = volRatio.rolling(window=period).sum() return pd.Series(cumSum / cumDiv, name="{0} period VAMA".format(period)) @classmethod def VIDYA( cls, ohlcv: DataFrame, period: int = 9, smoothing_period: int = 12, column: str = "close", ) -> Series: """ Vidya (variable index dynamic average) indicator is a modification of the traditional Exponential Moving Average (EMA) indicator. The main difference between EMA and Vidya is in the way the smoothing factor F is calculated. In EMA the smoothing factor is a constant value F=2/(period+1); in Vidya the smoothing factor is variable and depends on bar-to-bar price movements.""" raise NotImplementedError @classmethod def ER(cls, ohlc: DataFrame, period: int = 10, column: str = "close") -> Series: """The Kaufman Efficiency indicator is an oscillator indicator that oscillates between +100 and -100, where zero is the center point. +100 is upward forex trending market and -100 is downwards trending markets.""" change = ohlc[column].diff(period).abs() volatility = ohlc[column].diff().abs().rolling(window=period).sum() return pd.Series(change / volatility, name="{0} period ER".format(period)) @classmethod def KAMA( cls, ohlc: DataFrame, er: int = 10, ema_fast: int = 2, ema_slow: int = 30, period: int = 20, column: str = "close", ) -> Series: """Developed by <NAME>, Kaufman's Adaptive Moving Average (KAMA) is a moving average designed to account for market noise or volatility. Its main advantage is that it takes into consideration not just the direction, but the market volatility as well.""" er = cls.ER(ohlc, er) fast_alpha = 2 / (ema_fast + 1) slow_alpha = 2 / (ema_slow + 1) sc = pd.Series( (er * (fast_alpha - slow_alpha) + slow_alpha) ** 2, name="smoothing_constant", ) ## smoothing constant sma = pd.Series( ohlc[column].rolling(period).mean(), name="SMA" ) ## first KAMA is SMA kama = [] # Current KAMA = Prior KAMA + smoothing_constant * (Price - Prior KAMA) for s, ma, price in zip( sc.iteritems(), sma.shift().iteritems(), ohlc[column].iteritems() ): try: kama.append(kama[-1] + s[1] * (price[1] - kama[-1])) except (IndexError, TypeError): if pd.notnull(ma[1]): kama.append(ma[1] + s[1] * (price[1] - ma[1])) else: kama.append(None) sma["KAMA"] = pd.Series( kama, index=sma.index, name="{0} period KAMA.".format(period) ) ## apply the kama list to existing index return sma["KAMA"] @classmethod def ZLEMA( cls, ohlc: DataFrame, period: int = 26, adjust: bool = True, column: str = "close", ) -> Series: """ZLEMA is an abbreviation of Zero Lag Exponential Moving Average. It was developed by <NAME> and <NAME>. ZLEMA is a kind of Exponential moving average but its main idea is to eliminate the lag arising from the very nature of the moving averages and other trend following indicators. As it follows price closer, it also provides better price averaging and responds better to price swings.""" lag = (period - 1) / 2 ema = pd.Series( (ohlc[column] + (ohlc[column].diff(lag))), name="{0} period ZLEMA.".format(period), ) zlema = pd.Series( ema.ewm(span=period, adjust=adjust).mean(), name="{0} period ZLEMA".format(period), ) return zlema @classmethod def WMA(cls, ohlc: DataFrame, period: int = 9, column: str = "close") -> Series: """ WMA stands for weighted moving average. It helps to smooth the price curve for better trend identification. It places even greater importance on recent data than the EMA does. :period: Specifies the number of Periods used for WMA calculation """ d = (period * (period + 1)) / 2 # denominator weights = np.arange(1, period + 1) def linear(w): def _compute(x): return (w * x).sum() / d return _compute _close = ohlc[column].rolling(period, min_periods=period) wma = _close.apply(linear(weights), raw=True) return pd.Series(wma, name="{0} period WMA.".format(period)) @classmethod def HMA(cls, ohlc: DataFrame, period: int = 16) -> Series: """ HMA indicator is a common abbreviation of Hull Moving Average. The average was developed by <NAME> and is used mainly to identify the current market trend. Unlike SMA (simple moving average) the curve of Hull moving average is considerably smoother. Moreover, because its aim is to minimize the lag between HMA and price it does follow the price activity much closer. It is used especially for middle-term and long-term trading. :period: Specifies the number of Periods used for WMA calculation """ import math half_length = int(period / 2) sqrt_length = int(math.sqrt(period)) wmaf = cls.WMA(ohlc, period=half_length) wmas = cls.WMA(ohlc, period=period) ohlc["deltawma"] = 2 * wmaf - wmas hma = cls.WMA(ohlc, column="deltawma", period=sqrt_length) return pd.Series(hma, name="{0} period HMA.".format(period)) @classmethod def EVWMA(cls, ohlcv: DataFrame, period: int = 20) -> Series: """ The eVWMA can be looked at as an approximation to the average price paid per share in the last n periods. :period: Specifies the number of Periods used for eVWMA calculation """ vol_sum = ( ohlcv["volume"].rolling(window=period).sum() ) # floating shares in last N periods x = (vol_sum - ohlcv["volume"]) / vol_sum y = (ohlcv["volume"] * ohlcv["close"]) / vol_sum evwma = [0] # evwma = (evma[-1] * (vol_sum - volume)/vol_sum) + (volume * price / vol_sum) for x, y in zip(x.fillna(0).iteritems(), y.iteritems()): if x[1] == 0 or y[1] == 0: evwma.append(0) else: evwma.append(evwma[-1] * x[1] + y[1]) return pd.Series( evwma[1:], index=ohlcv.index, name="{0} period EVWMA.".format(period), ) @classmethod def VWAP(cls, ohlcv: DataFrame) -> Series: """ The volume weighted average price (VWAP) is a trading benchmark used especially in pension plans. VWAP is calculated by adding up the dollars traded for every transaction (price multiplied by number of shares traded) and then dividing by the total shares traded for the day. """ return pd.Series( ((ohlcv["volume"] * cls.TP(ohlcv)).cumsum()) / ohlcv["volume"].cumsum(), name="VWAP.", ) @classmethod def SMMA( cls, ohlc: DataFrame, period: int = 42, column: str = "close", adjust: bool = True, ) -> Series: """The SMMA (Smoothed Moving Average) gives recent prices an equal weighting to historic prices.""" return pd.Series( ohlc[column].ewm(alpha=1 / period, adjust=adjust).mean(), name="SMMA" ) @classmethod def ALMA( cls, ohlc: DataFrame, period: int = 9, sigma: int = 6, offset: int = 0.85 ) -> Series: """Arnaud Legoux Moving Average.""" """dataWindow = _.last(data, period) size = _.size(dataWindow) m = offset * (size - 1) s = size / sigma sum = 0 norm = 0 for i in [size-1..0] by -1 coeff = Math.exp(-1 * (i - m) * (i - m) / 2 * s * s) sum = sum + dataWindow[i] * coeff norm = norm + coeff return sum / norm""" raise NotImplementedError @classmethod def MAMA(cls, ohlc: DataFrame, period: int = 16) -> Series: """MESA Adaptive Moving Average""" raise NotImplementedError @classmethod def FRAMA(cls, ohlc: DataFrame, period: int = 16, batch: int=10) -> Series: """Fractal Adaptive Moving Average Source: http://www.stockspotter.com/Files/frama.pdf Adopted from: https://www.quantopian.com/posts/frama-fractal-adaptive-moving-average-in-python :period: Specifies the number of periods used for FRANA calculation :batch: Specifies the size of batches used for FRAMA calculation """ assert period % 2 == 0, print("FRAMA period must be even") c = ohlc.close.copy() window = batch * 2 hh = c.rolling(batch).max() ll = c.rolling(batch).min() n1 = (hh - ll) / batch n2 = n1.shift(batch) hh2 = c.rolling(window).max() ll2 = c.rolling(window).min() n3 = (hh2 - ll2) / window # calculate fractal dimension D = (np.log(n1 + n2) - np.log(n3)) / np.log(2) alp = np.exp(-4.6 * (D - 1)) alp = np.clip(alp, .01, 1).values filt = c.values for i, x in enumerate(alp): cl = c.values[i] if i < window: continue filt[i] = cl * x + (1 - x) * filt[i - 1] return pd.Series(filt, index=ohlc.index, name="{0} period FRAMA.".format(period)) @classmethod def MACD( cls, ohlc: DataFrame, period_fast: int = 12, period_slow: int = 26, signal: int = 9, column: str = "close", adjust: bool = True, ) -> DataFrame: """ MACD, MACD Signal and MACD difference. The MACD Line oscillates above and below the zero line, which is also known as the centerline. These crossovers signal that the 12-day EMA has crossed the 26-day EMA. The direction, of course, depends on the direction of the moving average cross. Positive MACD indicates that the 12-day EMA is above the 26-day EMA. Positive values increase as the shorter EMA diverges further from the longer EMA. This means upside momentum is increasing. Negative MACD values indicates that the 12-day EMA is below the 26-day EMA. Negative values increase as the shorter EMA diverges further below the longer EMA. This means downside momentum is increasing. Signal line crossovers are the most common MACD signals. The signal line is a 9-day EMA of the MACD Line. As a moving average of the indicator, it trails the MACD and makes it easier to spot MACD turns. A bullish crossover occurs when the MACD turns up and crosses above the signal line. A bearish crossover occurs when the MACD turns down and crosses below the signal line. """ EMA_fast = pd.Series( ohlc[column].ewm(ignore_na=False, span=period_fast, adjust=adjust).mean(), name="EMA_fast", ) EMA_slow = pd.Series( ohlc[column].ewm(ignore_na=False, span=period_slow, adjust=adjust).mean(), name="EMA_slow", ) MACD = pd.Series(EMA_fast - EMA_slow, name="MACD") MACD_signal = pd.Series( MACD.ewm(ignore_na=False, span=signal, adjust=adjust).mean(), name="SIGNAL" ) return pd.concat([MACD, MACD_signal], axis=1) @classmethod def PPO( cls, ohlc: DataFrame, period_fast: int = 12, period_slow: int = 26, signal: int = 9, column: str = "close", adjust: bool = True, ) -> DataFrame: """ Percentage Price Oscillator PPO, PPO Signal and PPO difference. As with MACD, the PPO reflects the convergence and divergence of two moving averages. While MACD measures the absolute difference between two moving averages, PPO makes this a relative value by dividing the difference by the slower moving average """ EMA_fast = pd.Series( ohlc[column].ewm(ignore_na=False, span=period_fast, adjust=adjust).mean(), name="EMA_fast", ) EMA_slow = pd.Series( ohlc[column].ewm(ignore_na=False, span=period_slow, adjust=adjust).mean(), name="EMA_slow", ) PPO = pd.Series(((EMA_fast - EMA_slow) / EMA_slow) * 100, name="PPO") PPO_signal = pd.Series( PPO.ewm(ignore_na=False, span=signal, adjust=adjust).mean(), name="SIGNAL" ) PPO_histo = pd.Series(PPO - PPO_signal, name="HISTO") return pd.concat([PPO, PPO_signal, PPO_histo], axis=1) @classmethod def VW_MACD( cls, ohlcv: DataFrame, period_fast: int = 12, period_slow: int = 26, signal: int = 9, column: str = "close", adjust: bool = True, ) -> DataFrame: """"Volume-Weighted MACD" is an indicator that shows how a volume-weighted moving average can be used to calculate moving average convergence/divergence (MACD). This technique was first used by <NAME>, CMT, and has been written about since at least 2002.""" vp = ohlcv["volume"] * ohlcv[column] _fast = pd.Series( (vp.ewm(ignore_na=False, span=period_fast, adjust=adjust).mean()) / ( ohlcv["volume"] .ewm(ignore_na=False, span=period_fast, adjust=adjust) .mean() ), name="_fast", ) _slow = pd.Series( (vp.ewm(ignore_na=False, span=period_slow, adjust=adjust).mean()) / ( ohlcv["volume"] .ewm(ignore_na=False, span=period_slow, adjust=adjust) .mean() ), name="_slow", ) MACD = pd.Series(_fast - _slow, name="MACD") MACD_signal = pd.Series( MACD.ewm(ignore_na=False, span=signal, adjust=adjust).mean(), name="SIGNAL" ) return pd.concat([MACD, MACD_signal], axis=1) @classmethod def EV_MACD( cls, ohlcv: DataFrame, period_fast: int = 20, period_slow: int = 40, signal: int = 9, adjust: bool = True, ) -> DataFrame: """ Elastic Volume Weighted MACD is a variation of standard MACD, calculated using two EVWMA's. :period_slow: Specifies the number of Periods used for the slow EVWMA calculation :period_fast: Specifies the number of Periods used for the fast EVWMA calculation :signal: Specifies the number of Periods used for the signal calculation """ evwma_slow = cls.EVWMA(ohlcv, period_slow) evwma_fast = cls.EVWMA(ohlcv, period_fast) MACD = pd.Series(evwma_fast - evwma_slow, name="MACD") MACD_signal = pd.Series( MACD.ewm(ignore_na=False, span=signal, adjust=adjust).mean(), name="SIGNAL" ) return
pd.concat([MACD, MACD_signal], axis=1)
pandas.concat
#!/usr/bin/env python3 # coding: utf-8 # ## 1. Multi-Class Classification: # For the multiclass classification problem, there were six different datasets. Some of the datasets contain missing values. For example, TrainData1, TestData1 and TrainData3 contain some missing values (1.00000000000000e+99). Therefore, the first approach needs to handle the missing values for selecting the features. Then compare the accuracy on train dataset to find out which classifier gives best result for each dataset with cross validation to verify the accuracy based on test dataset. # <center><div style='width:50%; height:50%'><img src='../images/Q1_table.jpeg'></div></center> # # Hint: # * Missing Value Estimation # - (KNN method for imputation of the missing values) # * Dimensionality Reduction # * Use Several Classifiers/ Ensemble Method # - Logistic Regression (with different c values) # - Random Forest (with different estimator values) # - SVM (with different kernels) # - KNN (with k = 1,2,5,10,20) # - K (3,5,10) Fold Cross Validation # * Performance Comparison # - Classification Accuracy, Precision, Recall, Sensitivity, Specificity # - AUC, ROC Curve # In[517]: import os import re import sys import gc from sklearn.svm import SVC from pydotplus import * from IPython.display import Image from six import StringIO from sklearn.tree import export_graphviz from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LogisticRegression from impyute.imputation.cs import fast_knn from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import * from sklearn.decomposition import PCA from sklearn.multiclass import OneVsRestClassifier from sklearn.metrics import confusion_matrix, classification_report, roc_curve, roc_auc_score, accuracy_score from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.preprocessing import * import statistics as stat import seaborn as sns from matplotlib import offsetbox import matplotlib.pyplot as plt import pandas as pd import numpy as np from time import strptime, mktime import warnings warnings.filterwarnings('ignore') # Modeling settings plt.rc("font", size=14) sns.set(style="white") sns.set(style="whitegrid", color_codes=True) # In[353]: def optimizeK(X_train, y_train, X_test, y_test): neighbors = np.arange(1, 20) train_accuracy = np.empty(len(neighbors)) test_accuracy = np.empty(len(neighbors)) for i, k in enumerate(neighbors): knn = KNeighborsClassifier(n_neighbors=k) knn.fit(X_train, y_train) train_accuracy[i] = knn.score(X_train, y_train) test_accuracy[i] = knn.score(X_test, y_test2) return neighbors, test_accuracy, train_accuracy # In[361]: def plotK(neighbors, test_accuracy, train_accuracy): plt.plot(neighbors, test_accuracy, label='Testing Accuracy') plt.plot(neighbors, train_accuracy, label='Training Accuracy') plt.legend() plt.xlabel('Number of Neighbors') plt.xticks(np.arange(0, neighbors[-1], step=1)) plt.ylabel('Accuracy') plt.title('KNN Varying Number of Neighbors') plt.show() # In[317]: X_train2 = pd.read_csv('../data/1/TrainData2.txt', delimiter='\s+', header=None) X_train3 = pd.read_csv('../data/1/TrainData3.txt', delimiter='\s+', header=None) X_train4 = pd.read_csv('../data/1/TrainData4.txt', delimiter='\s+', header=None) # In[318]: y_train2 = pd.read_csv('../data/1/TrainLabel2.txt', delimiter='\n', header=None) y_train3 = pd.read_csv('../data/1/TrainLabel3.txt', delimiter='\n', header=None) y_train4 = pd.read_csv('../data/1/TrainLabel4.txt', delimiter='\n', header=None) # In[319]: X_test2 = pd.read_csv('../data/1/TestData2.txt', delimiter='\s+', header=None) X_test3 = pd.read_csv('../data/1/TestData3.txt', delimiter=',', header=None) X_test4 = pd.read_csv('../data/1/TestData4.txt', delimiter='\s+', header=None) # In[320]: X_training = [X_train2, X_train3, X_train4] y_training = [y_train2, y_train3, y_train4] X_testing = [X_test2, X_test3, X_test4] # In[321]: for i, x in enumerate(X_training): print(f'X_TrainData{i+1} Shape: {x.shape}') # In[322]: for i, y in enumerate(y_training): print(f'y_TrainData{i+1} Shape: {y.shape}') # In[323]: for j, y in enumerate(X_testing): print(f'TestData{j+1} Shape: {y.shape}') # # _Dataset 2_ # ### PCA for DS2 # In[324]: X_train2.shape # In[325]: y_train2.shape # In[326]: X_test2.shape # In[327]: xTrain2PCA = PCA(n_components=74) X_train2_pca = xTrain2PCA.fit_transform(X_train2) # In[330]: # 100 principle components can explain 99% of the data X_train2_pca_var = xTrain2PCA.fit(X_train2) print(sum(X_train2_pca_var.explained_variance_ratio_)) print(X_train2_pca.shape) # In[332]: # 74 principle components can explain 99% of the data xTest2PCA = PCA(n_components=74) X_test2_pca = xTest2PCA.fit_transform(X_test2) # In[333]: X_test2_pca_var = X_test_pca.fit(X_test2) print(sum(X_test2_pca_var.explained_variance_ratio_)) print(X_test2_pca.shape) # In[334]: X_train2_components = pd.DataFrame(X_train2_pca) X_train2_components.head(10) # In[335]: X_test2_components =
pd.DataFrame(X_test2_pca)
pandas.DataFrame
from src.lib.DownloadData import DownloadData import pandas as pd class CDLData(DownloadData): def get_data(self): df = self.pro.daily(trade_date='20180810') daily_limit_df = df[df['pct_chg'] >= 9.9] daily_limit_company_info = pd.DataFrame( columns=['ts_code', 'main_business', 'reg_capital', 'setup_date', 'province']) szse_exhange_company_info_df = self.pro.stock_company( exchange='SZSE', fields='ts_code,main_business,reg_capital,setup_date,province') sse_exhange_company_info_df = self.pro.stock_company( exchange='SSE', fields='ts_code,main_business,reg_capital,setup_date,province') for ts_code in daily_limit_df['ts_code'].tolist(): szse_company_info_df = szse_exhange_company_info_df[szse_exhange_company_info_df['ts_code'] == ts_code] sse_company_info_df = sse_exhange_company_info_df[sse_exhange_company_info_df['ts_code'] == ts_code] if szse_company_info_df.shape[0] > 0: daily_limit_company_info = pd.concat([daily_limit_company_info,szse_company_info_df], ignore_index=True) else: daily_limit_company_info =
pd.concat([daily_limit_company_info,sse_company_info_df], ignore_index=True)
pandas.concat
from __future__ import division # brings in Python 3.0 mixed type calculation rules import datetime import inspect import numpy as np import numpy.testing as npt import os.path import pandas as pd import sys from tabulate import tabulate import unittest print("Python version: " + sys.version) print("Numpy version: " + np.__version__) from ..ted_exe import Ted test = {} class TestTed(unittest.TestCase): """ Unit tests for TED model. """ print("ted unittests conducted at " + str(datetime.datetime.today())) def setUp(self): """ Setup routine for ted unit tests. :return: """ pass def tearDown(self): """ Teardown routine for ted unit tests. :return: """ pass # teardown called after each test # e.g. maybe write test results to some text file def create_ted_object(self): # create empty pandas dataframes to create empty object for testing df_empty = pd.DataFrame() # create an empty ted object ted_empty = Ted(df_empty, df_empty) return ted_empty def test_daily_app_flag(self): """ :description generates a daily flag to denote whether a pesticide is applied that day or not (1 - applied, 0 - anot applied) :param num_apps; number of applications :param app_interval; number of days between applications :NOTE in TED model there are two application scenarios per simulation (one for a min/max exposure scenario) (this is why the parameters are passed in) :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='bool') result = pd.Series([[]], dtype='bool') expected_results = [[True, False, False, True, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False], [True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False], [True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]] try: # internal model constants ted_empty.num_simulation_days = 366 # input varialbles that change per simulation ted_empty.num_apps_min = pd.Series([3, 5, 1]) ted_empty.app_interval_min = pd.Series([3, 7, 1]) for i in range (3): result[i] = ted_empty.daily_app_flag(ted_empty.num_apps_min[i], ted_empty.app_interval_min[i]) np.array_equal(result[i],expected_results[i]) finally: for i in range(3): tab = [result[i], expected_results[i]] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_set_drift_parameters(self): """ :description provides parmaeter values to use when calculating distances from edge of application source area to concentration of interest :param app_method; application method (aerial/ground/airblast) :param boom_hgt; height of boom (low/high) - 'NA' if not ground application :param drop_size; droplet spectrum for application (see list below for aerial/ground - 'NA' if airblast) :param param_a (result[i][0]; parameter a for spray drift distance calculation :param param_b (result[i][1]; parameter b for spray drift distance calculation :param param_c (result[i][2]; parameter c for spray drift distance calculation :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series(9*[[0.,0.,0.]], dtype='float') expected_results = [[0.0292,0.822,0.6539],[0.043,1.03,0.5],[0.0721,1.0977,0.4999],[0.1014,1.1344,0.4999], [1.0063,0.9998,1.0193],[5.5513,0.8523,1.0079],[0.1913,1.2366,1.0552], [2.4154,0.9077,1.0128],[0.0351,2.4586,0.4763]] try: # input variable that change per simulation ted_empty.app_method_min = pd.Series(['aerial','aerial','aerial','aerial','ground','ground','ground','ground','airblast']) ted_empty.boom_hgt_min = pd.Series(['','','','','low','low','high','high','']) ted_empty.droplet_spec_min = pd.Series(['very_fine_to_fine','fine_to_medium','medium_to_coarse','coarse_to_very_coarse', 'very_fine_to_fine','fine_to_medium-coarse','very_fine_to_fine','fine_to_medium-coarse','']) for i in range (9): # test that the nine combinations are accessed result[i][0], result[i][1], result[i][2] = ted_empty.set_drift_parameters(ted_empty.app_method_min[i], ted_empty.boom_hgt_min[i], ted_empty.droplet_spec_min[i]) npt.assert_allclose(result[i],expected_results[i],rtol=1e-4, atol=0, err_msg='', verbose=True) finally: for i in range (9): tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_drift_distance_calc(self): """ :description provides parmaeter values to use when calculating distances from edge of application source area to concentration of interest :param app_rate_frac; fraction of active ingredient application rate equivalent to the health threshold of concern :param param_a; parameter a for spray drift distance calculation :param param_b; parameter b for spray drift distance calculation :param param_c; parameter c for spray drift distance calculation :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [302.050738, 11.484378, 0.0] try: # internal model constants ted_empty.max_distance_from_source = 1000. # input variable that is internally specified from among options param_a = pd.Series([0.0292, 0.1913, 0.0351], dtype='float') param_b = pd.Series([0.822, 1.2366, 2.4586], dtype='float') param_c = pd.Series([0.6539, 1.0522, 0.4763], dtype='float') # internally calculated variables app_rate_frac = pd.Series([0.1,0.25,0.88], dtype='float') for i in range(3): result[i] = ted_empty.drift_distance_calc(app_rate_frac[i], param_a[i], param_b[i], param_c[i], ted_empty.max_distance_from_source) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_timestep(self): """ :description unittest for function conc_timestep: :param conc_ini; initial concentration for day (actually previous day concentration) :param half_life; halflife of pesiticde representing either foliar dissipation halflife or aerobic soil metabolism halflife (days) :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [9.803896e-4, 0.106066, 1.220703e-3] try: # input variable that is internally specified from among options half_life = pd.Series([35., 2., .1]) # internally calculated variables conc_ini = pd.Series([1.e-3, 0.15, 1.25]) result = ted_empty.conc_timestep(conc_ini, half_life) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_initial_canopy_air(self): """ :description calculates initial (1st application day) air concentration of pesticide within plant canopy (ug/mL) :param application rate; active ingredient application rate (lbs a.i./acre) :param mass_pest; mass of pesticide on treated field (mg) :param volume_air; volume of air in 1 hectare to a height equal to the height of the crop canopy :param biotransfer_factor; the volume_based biotransfer factor; function of Henry's las constant and Log Kow NOTE: this represents Eq 24 (and supporting eqs 25,26,27) of Attachment 1-7 of 'Biological Evaluation Chapters for Diazinon ESA Assessment' :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [1.152526e-7, 1.281910e-5, 7.925148e-8] try: # internal model constants ted_empty.hectare_to_acre = 2.47105 ted_empty.gms_to_mg = 1000. ted_empty.lbs_to_gms = 453.592 ted_empty.crop_hgt = 1. #m ted_empty.hectare_area = 10000. #m2 ted_empty.m3_to_liters = 1000. ted_empty.mass_plant = 25000. # kg/hectare ted_empty.density_plant = 0.77 #kg/L # input variables that change per simulation ted_empty.log_kow = pd.Series([2., 4., 6.], dtype='float') ted_empty.log_unitless_hlc = pd.Series([-5., -3., -4.], dtype='float') ted_empty.app_rate_min = pd.Series([1.e-3, 0.15, 1.25]) # lbs a.i./acre for i in range(3): #let's do 3 iterations result[i] = ted_empty.conc_initial_canopy_air(i, ted_empty.app_rate_min[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_initial_soil_h2o(self): """ :description calculates initial (1st application day) concentration in soil pore water or surface puddles(ug/L) :param application rate; active ingredient application rate (lbs a.i./acre) :param soil_depth :param soil_bulk_density; kg/L :param porosity; soil porosity :param frac_org_cont_soil; fraction organic carbon in soil :param app_rate_conv; conversion factor used to convert units of application rate (lbs a.i./acre) to (ug a.i./mL) :NOTE this represents Eq 3 of Attachment 1-7 of 'Biological Evaluation Chapters for Diazinon ESA Assessment' (the depth of water in this equation is assumed to be 0.0 and therefore not included here) :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [5.067739e-3, 1.828522, 6.13194634] try: # internal model constants ted_empty.app_rate_conv1 = 11.2 ted_empty.soil_depth = 2.6 # cm ted_empty.soil_porosity = 0.35 ted_empty.soil_bulk_density = 1.5 # kg/L ted_empty.soil_foc = 0.015 ted_empty.h2o_depth_soil = 0.0 ted_empty.h2o_depth_puddles = 1.3 # internally specified variable ted_empty.water_type = pd.Series(["puddles", "pore_water", "puddles"]) # input variables that change per simulation ted_empty.koc = pd.Series([1.e-3, 0.15, 1.25]) ted_empty.app_rate_min = pd.Series([1.e-3, 0.15, 1.25]) # lbs a.i./acre for i in range(3): #let's do 3 iterations result[i] = ted_empty.conc_initial_soil_h2o(i, ted_empty.app_rate_min[i], ted_empty.water_type[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_initial_plant(self): """ :description calculates initial (1st application day) dietary based EEC (residue concentration) from pesticide application (mg/kg-diet for food items including short/tall grass, broadleaf plants, seeds/fruit/pods, and above ground arthropods) :param application rate; active ingredient application rate (lbs a.i./acre) :param food_multiplier; factor by which application rate of active ingredient is multiplied to estimate dietary based EECs :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [1.5e-2, 22.5, 300.] try: # input variables that change per simulation ted_empty.food_multiplier = pd.Series([15., 150., 240.]) ted_empty.app_rate_min = pd.Series([1.e-3, 0.15, 1.25]) # lbs a.i./acre result = ted_empty.conc_initial_plant(ted_empty.app_rate_min, ted_empty.food_multiplier) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_animal_dietary_intake(self): """ :description generates pesticide intake via consumption of diet containing pesticide for animals (mammals, birds, amphibians, reptiles) :param a1; coefficient of allometric expression :param b1; exponent of allometric expression :param body_wgt; body weight of species (g) :param frac_h2o; fraction of water in food item # this represents Eqs 6 of Attachment 1-7 of 'Biological Evaluation Chapters for Diazinon ESA Assessment' :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [8.050355, 3.507997, 64.92055] try: # internally specified parameters a1 = pd.Series([.398, .013, .621], dtype='float') b1 = pd.Series([.850, .773, .564], dtype='float') # variables from external database body_wgt = pd.Series([10., 120., 450.], dtype='float') frac_h2o = pd.Series([0.65, 0.85, 0.7], dtype='float') result = ted_empty.animal_dietary_intake(a1, b1, body_wgt, frac_h2o) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_animal_dietary_dose(self): """ :description generates pesticide dietary-based dose for animals (mammals, birds, amphibians, reptiles) :param body_wgt; body weight of species (g) :param frac_h2o; fraction of water in food item :param food_intake_rate; ingestion rate of food item (g/day-ww) :param food_pest_conc; pesticide concentration in food item (mg a.i./kg) # this represents Eqs 5 of Attachment 1-7 of 'Biological Evaluation Chapters for Diazinon ESA Assessment' :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [3.e-4, 3.45e-2, 4.5] try: # variables from external database body_wgt = pd.Series([10., 120., 450.], dtype='float') # internally calculated variables food_intake_rate = pd.Series([3., 12., 45.], dtype='float') food_pest_conc = pd.Series([1.e-3, 3.45e-1, 4.50e+1], dtype='float') result = ted_empty.animal_dietary_dose(body_wgt, food_intake_rate, food_pest_conc) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_daily_plant_timeseries(self): """ :description generates annual timeseries of daily pesticide residue concentration (EECs) for a food item :param i; simulation number/index :param application rate; active ingredient application rate (lbs a.i./acre) :param food_multiplier; factor by which application rate of active ingredient is multiplied to estimate dietary based EECs :param daily_flag; daily flag denoting if pesticide is applied (0 - not applied, 1 - applied) :Notes # calculations are performed daily from day of first application (assumed day 0) through the last day of a year # note: day numbers are synchronized with 0-based array indexing; thus the year does not have a calendar specific # assoication, rather it is one year from the day of 1st pesticide application #expected results generated by running OPP spreadsheet with appropriate inputs :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [[2.700000E+00,2.578072E+00,2.461651E+00,5.050487E+00,4.822415E+00,4.604642E+00,7.096704E+00, 6.776228E+00,6.470225E+00,6.178040E+00,5.899049E+00,5.632658E+00,5.378296E+00,5.135421E+00, 4.903513E+00,4.682078E+00,4.470643E+00,4.268756E+00,4.075986E+00,3.891921E+00,3.716168E+00, 3.548352E+00,3.388114E+00,3.235112E+00,3.089020E+00,2.949525E+00,2.816329E+00,2.689148E+00, 2.567710E+00,2.451757E+00,2.341039E+00,2.235322E+00,2.134378E+00,2.037993E+00,1.945961E+00, 1.858084E+00,1.774176E+00,1.694057E+00,1.617556E+00,1.544510E+00,1.474762E+00,1.408164E+00, 1.344574E+00,1.283855E+00,1.225878E+00,1.170520E+00,1.117661E+00,1.067189E+00,1.018997E+00, 9.729803E-01,9.290420E-01,8.870880E-01,8.470285E-01,8.087781E-01,7.722549E-01,7.373812E-01, 7.040822E-01,6.722870E-01,6.419276E-01,6.129392E-01,5.852598E-01,5.588304E-01,5.335945E-01, 5.094983E-01,4.864901E-01,4.645210E-01,4.435440E-01,4.235143E-01,4.043890E-01,3.861275E-01, 3.686906E-01,3.520411E-01,3.361435E-01,3.209638E-01,3.064696E-01,2.926299E-01,2.794152E-01, 2.667973E-01,2.547491E-01,2.432451E-01,2.322605E-01,2.217720E-01,2.117571E-01,2.021945E-01, 1.930637E-01,1.843453E-01,1.760206E-01,1.680717E-01,1.604819E-01,1.532348E-01,1.463150E-01, 1.397076E-01,1.333986E-01,1.273746E-01,1.216225E-01,1.161303E-01,1.108860E-01,1.058786E-01, 1.010973E-01,9.653187E-02,9.217264E-02,8.801028E-02,8.403587E-02,8.024095E-02,7.661739E-02, 7.315748E-02,6.985380E-02,6.669932E-02,6.368728E-02,6.081127E-02,5.806513E-02,5.544300E-02, 5.293928E-02,5.054863E-02,4.826593E-02,4.608632E-02,4.400514E-02,4.201794E-02,4.012047E-02, 3.830870E-02,3.657874E-02,3.492690E-02,3.334966E-02,3.184364E-02,3.040563E-02,2.903256E-02, 2.772150E-02,2.646964E-02,2.527431E-02,2.413297E-02,2.304316E-02,2.200257E-02,2.100897E-02, 2.006024E-02,1.915435E-02,1.828937E-02,1.746345E-02,1.667483E-02,1.592182E-02,1.520282E-02, 1.451628E-02,1.386075E-02,1.323482E-02,1.263716E-02,1.206648E-02,1.152158E-02,1.100128E-02, 1.050448E-02,1.003012E-02,9.577174E-03,9.144684E-03,8.731725E-03,8.337415E-03,7.960910E-03, 7.601408E-03,7.258141E-03,6.930375E-03,6.617410E-03,6.318579E-03,6.033242E-03,5.760790E-03, 5.500642E-03,5.252242E-03,5.015059E-03,4.788587E-03,4.572342E-03,4.365863E-03,4.168707E-03, 3.980455E-03,3.800704E-03,3.629070E-03,3.465187E-03,3.308705E-03,3.159289E-03,3.016621E-03, 2.880395E-03,2.750321E-03,2.626121E-03,2.507530E-03,2.394294E-03,2.286171E-03,2.182931E-03, 2.084354E-03,1.990228E-03,1.900352E-03,1.814535E-03,1.732594E-03,1.654353E-03,1.579645E-03, 1.508310E-03,1.440198E-03,1.375161E-03,1.313061E-03,1.253765E-03,1.197147E-03,1.143086E-03, 1.091466E-03,1.042177E-03,9.951138E-04,9.501760E-04,9.072676E-04,8.662969E-04,8.271763E-04, 7.898223E-04,7.541552E-04,7.200988E-04,6.875803E-04,6.565303E-04,6.268824E-04,5.985734E-04, 5.715428E-04,5.457328E-04,5.210884E-04,4.975569E-04,4.750880E-04,4.536338E-04,4.331484E-04, 4.135881E-04,3.949112E-04,3.770776E-04,3.600494E-04,3.437901E-04,3.282651E-04,3.134412E-04, 2.992867E-04,2.857714E-04,2.728664E-04,2.605442E-04,2.487784E-04,2.375440E-04,2.268169E-04, 2.165742E-04,2.067941E-04,1.974556E-04,1.885388E-04,1.800247E-04,1.718951E-04,1.641326E-04, 1.567206E-04,1.496433E-04,1.428857E-04,1.364332E-04,1.302721E-04,1.243892E-04,1.187720E-04, 1.134085E-04,1.082871E-04,1.033970E-04,9.872779E-05,9.426940E-05,9.001235E-05,8.594753E-05, 8.206628E-05,7.836030E-05,7.482167E-05,7.144285E-05,6.821660E-05,6.513605E-05,6.219461E-05, 5.938600E-05,5.670423E-05,5.414355E-05,5.169852E-05,4.936390E-05,4.713470E-05,4.500617E-05, 4.297377E-05,4.103314E-05,3.918015E-05,3.741084E-05,3.572142E-05,3.410830E-05,3.256803E-05, 3.109731E-05,2.969300E-05,2.835211E-05,2.707178E-05,2.584926E-05,2.468195E-05,2.356735E-05, 2.250309E-05,2.148688E-05,2.051657E-05,1.959007E-05,1.870542E-05,1.786071E-05,1.705415E-05, 1.628401E-05,1.554865E-05,1.484650E-05,1.417606E-05,1.353589E-05,1.292463E-05,1.234097E-05, 1.178368E-05,1.125154E-05,1.074344E-05,1.025829E-05,9.795037E-06,9.352709E-06,8.930356E-06, 8.527075E-06,8.142006E-06,7.774326E-06,7.423250E-06,7.088028E-06,6.767944E-06,6.462315E-06, 6.170487E-06,5.891838E-06,5.625772E-06,5.371721E-06,5.129143E-06,4.897519E-06,4.676355E-06, 4.465178E-06,4.263538E-06,4.071003E-06,3.887163E-06,3.711625E-06,3.544014E-06,3.383972E-06, 3.231157E-06,3.085243E-06,2.945919E-06,2.812886E-06,2.685860E-06,2.564571E-06,2.448759E-06, 2.338177E-06,2.232589E-06,2.131769E-06,2.035502E-06,1.943582E-06,1.855813E-06,1.772007E-06, 1.691986E-06,1.615579E-06,1.542622E-06,1.472959E-06,1.406443E-06,1.342930E-06,1.282286E-06, 1.224380E-06,1.169089E-06,1.116294E-06,1.065884E-06,1.017751E-06,9.717908E-07,9.279063E-07, 8.860035E-07,8.459930E-07,8.077893E-07,7.713109E-07,7.364797E-07,7.032215E-07,6.714651E-07, 6.411428E-07,6.121898E-07,5.845443E-07,5.581472E-07,5.329422E-07,5.088754E-07,4.858954E-07, 4.639531E-07,4.430018E-07], [5.500000E+01,5.349602E+01,5.203317E+01,5.061032E+01,4.922638E+01,4.788028E+01,4.657099E+01, 1.002975E+02,9.755487E+01,9.488722E+01,9.229253E+01,8.976878E+01,8.731405E+01,8.492644E+01, 1.376041E+02,1.338413E+02,1.301814E+02,1.266216E+02,1.231591E+02,1.197913E+02,1.165156E+02, 1.683295E+02,1.637265E+02,1.592494E+02,1.548947E+02,1.506591E+02,1.465394E+02,1.425322E+02, 1.936347E+02,1.883397E+02,1.831896E+02,1.781802E+02,1.733079E+02,1.685688E+02,1.639593E+02, 1.594758E+02,1.551149E+02,1.508733E+02,1.467476E+02,1.427348E+02,1.388317E+02,1.350354E+02, 1.313428E+02,1.277512E+02,1.242579E+02,1.208600E+02,1.175551E+02,1.143406E+02,1.112139E+02, 1.081728E+02,1.052148E+02,1.023377E+02,9.953925E+01,9.681734E+01,9.416987E+01,9.159479E+01, 8.909012E+01,8.665395E+01,8.428439E+01,8.197963E+01,7.973789E+01,7.755746E+01,7.543664E+01, 7.337382E+01,7.136741E+01,6.941587E+01,6.751769E+01,6.567141E+01,6.387562E+01,6.212894E+01, 6.043002E+01,5.877756E+01,5.717028E+01,5.560696E+01,5.408638E+01,5.260739E+01,5.116884E+01, 4.976962E+01,4.840867E+01,4.708493E+01,4.579739E+01,4.454506E+01,4.332697E+01,4.214220E+01, 4.098981E+01,3.986895E+01,3.877873E+01,3.771832E+01,3.668691E+01,3.568371E+01,3.470793E+01, 3.375884E+01,3.283571E+01,3.193781E+01,3.106447E+01,3.021501E+01,2.938878E+01,2.858514E+01, 2.780348E+01,2.704319E+01,2.630369E+01,2.558442E+01,2.488481E+01,2.420434E+01,2.354247E+01, 2.289870E+01,2.227253E+01,2.166349E+01,2.107110E+01,2.049491E+01,1.993447E+01,1.938936E+01, 1.885916E+01,1.834346E+01,1.784185E+01,1.735397E+01,1.687942E+01,1.641785E+01,1.596891E+01, 1.553224E+01,1.510751E+01,1.469439E+01,1.429257E+01,1.390174E+01,1.352160E+01,1.315185E+01, 1.279221E+01,1.244241E+01,1.210217E+01,1.177123E+01,1.144935E+01,1.113627E+01,1.083174E+01, 1.053555E+01,1.024745E+01,9.967237E+00,9.694682E+00,9.429580E+00,9.171728E+00,8.920927E+00, 8.676983E+00,8.439711E+00,8.208926E+00,7.984453E+00,7.766118E+00,7.553753E+00,7.347195E+00, 7.146286E+00,6.950870E+00,6.760798E+00,6.575924E+00,6.396105E+00,6.221203E+00,6.051084E+00, 5.885617E+00,5.724674E+00,5.568133E+00,5.415872E+00,5.267774E+00,5.123727E+00,4.983618E+00, 4.847341E+00,4.714790E+00,4.585864E+00,4.460463E+00,4.338492E+00,4.219855E+00,4.104463E+00, 3.992226E+00,3.883059E+00,3.776876E+00,3.673597E+00,3.573143E+00,3.475435E+00,3.380399E+00, 3.287962E+00,3.198052E+00,3.110601E+00,3.025542E+00,2.942808E+00,2.862337E+00,2.784066E+00, 2.707936E+00,2.633887E+00,2.561863E+00,2.491809E+00,2.423670E+00,2.357395E+00,2.292932E+00, 2.230232E+00,2.169246E+00,2.109928E+00,2.052232E+00,1.996113E+00,1.941529E+00,1.888438E+00, 1.836799E+00,1.786571E+00,1.737718E+00,1.690200E+00,1.643981E+00,1.599026E+00,1.555301E+00, 1.512771E+00,1.471404E+00,1.431169E+00,1.392033E+00,1.353968E+00,1.316944E+00,1.280932E+00, 1.245905E+00,1.211835E+00,1.178698E+00,1.146466E+00,1.115116E+00,1.084623E+00,1.054964E+00, 1.026116E+00,9.980566E-01,9.707647E-01,9.442191E-01,9.183994E-01,8.932857E-01,8.688588E-01, 8.450998E-01,8.219905E-01,7.995131E-01,7.776504E-01,7.563855E-01,7.357021E-01,7.155843E-01, 6.960166E-01,6.769840E-01,6.584718E-01,6.404659E-01,6.229523E-01,6.059176E-01,5.893488E-01, 5.732330E-01,5.575579E-01,5.423115E-01,5.274819E-01,5.130579E-01,4.990283E-01,4.853824E-01, 4.721095E-01,4.591997E-01,4.466428E-01,4.344294E-01,4.225499E-01,4.109952E-01,3.997565E-01, 3.888252E-01,3.781927E-01,3.678510E-01,3.577921E-01,3.480083E-01,3.384920E-01,3.292359E-01, 3.202329E-01,3.114761E-01,3.029588E-01,2.946744E-01,2.866165E-01,2.787790E-01,2.711557E-01, 2.637410E-01,2.565290E-01,2.495142E-01,2.426912E-01,2.360548E-01,2.295998E-01,2.233214E-01, 2.172147E-01,2.112749E-01,2.054976E-01,1.998783E-01,1.944126E-01,1.890964E-01,1.839255E-01, 1.788961E-01,1.740041E-01,1.692460E-01,1.646180E-01,1.601165E-01,1.557381E-01,1.514794E-01, 1.473372E-01,1.433082E-01,1.393895E-01,1.355779E-01,1.318705E-01,1.282645E-01,1.247571E-01, 1.213456E-01,1.180274E-01,1.147999E-01,1.116607E-01,1.086073E-01,1.056375E-01,1.027488E-01, 9.993914E-02,9.720630E-02,9.454818E-02,9.196276E-02,8.944803E-02,8.700207E-02,8.462300E-02, 8.230898E-02,8.005823E-02,7.786904E-02,7.573970E-02,7.366860E-02,7.165412E-02,6.969474E-02, 6.778893E-02,6.593524E-02,6.413224E-02,6.237854E-02,6.067279E-02,5.901369E-02,5.739996E-02, 5.583036E-02,5.430367E-02,5.281874E-02,5.137440E-02,4.996957E-02,4.860315E-02,4.727409E-02, 4.598138E-02,4.472402E-02,4.350104E-02,4.231150E-02,4.115449E-02,4.002912E-02,3.893452E-02, 3.786985E-02,3.683430E-02,3.582706E-02,3.484737E-02,3.389447E-02,3.296762E-02,3.206612E-02, 3.118927E-02,3.033640E-02,2.950685E-02,2.869998E-02,2.791518E-02,2.715184E-02,2.640937E-02, 2.568720E-02,2.498478E-02,2.430157E-02,2.363705E-02,2.299069E-02,2.236201E-02,2.175052E-02, 2.115575E-02,2.057724E-02,2.001456E-02,1.946726E-02,1.893493E-02,1.841715E-02,1.791353E-02, 1.742368E-02,1.694723E-02], [3.000000E+02,2.941172E+02,2.883497E+02,2.826954E+02,2.771519E+02,2.717171E+02,2.663889E+02, 2.611652E+02,2.560439E+02,2.510230E+02,2.461006E+02,2.412747E+02,2.365435E+02,2.319050E+02, 2.273575E+02,2.228991E+02,2.185282E+02,2.142430E+02,2.100418E+02,2.059231E+02,2.018850E+02, 1.979262E+02,1.940450E+02,1.902399E+02,1.865094E+02,1.828520E+02,1.792664E+02,1.757511E+02, 1.723048E+02,1.689260E+02,1.656134E+02,1.623658E+02,1.591820E+02,1.560605E+02,1.530002E+02, 1.500000E+02,1.470586E+02,1.441749E+02,1.413477E+02,1.385759E+02,1.358585E+02,1.331944E+02, 1.305826E+02,1.280219E+02,1.255115E+02,1.230503E+02,1.206374E+02,1.182717E+02,1.159525E+02, 1.136787E+02,1.114496E+02,1.092641E+02,1.071215E+02,1.050209E+02,1.029615E+02,1.009425E+02, 9.896309E+01,9.702249E+01,9.511994E+01,9.325469E+01,9.142602E+01,8.963322E+01,8.787556E+01, 8.615238E+01,8.446298E+01,8.280671E+01,8.118292E+01,7.959098E+01,7.803025E+01,7.650012E+01, 7.500000E+01,7.352930E+01,7.208743E+01,7.067384E+01,6.928797E+01,6.792927E+01,6.659722E+01, 6.529129E+01,6.401097E+01,6.275575E+01,6.152515E+01,6.031868E+01,5.913587E+01,5.797625E+01, 5.683937E+01,5.572479E+01,5.463206E+01,5.356076E+01,5.251046E+01,5.148076E+01,5.047126E+01, 4.948155E+01,4.851124E+01,4.755997E+01,4.662735E+01,4.571301E+01,4.481661E+01,4.393778E+01, 4.307619E+01,4.223149E+01,4.140336E+01,4.059146E+01,3.979549E+01,3.901512E+01,3.825006E+01, 3.750000E+01,3.676465E+01,3.604372E+01,3.533692E+01,3.464398E+01,3.396464E+01,3.329861E+01, 3.264565E+01,3.200548E+01,3.137788E+01,3.076258E+01,3.015934E+01,2.956793E+01,2.898813E+01, 2.841969E+01,2.786239E+01,2.731603E+01,2.678038E+01,2.625523E+01,2.574038E+01,2.523563E+01, 2.474077E+01,2.425562E+01,2.377998E+01,2.331367E+01,2.285651E+01,2.240830E+01,2.196889E+01, 2.153809E+01,2.111575E+01,2.070168E+01,2.029573E+01,1.989774E+01,1.950756E+01,1.912503E+01, 1.875000E+01,1.838232E+01,1.802186E+01,1.766846E+01,1.732199E+01,1.698232E+01,1.664931E+01, 1.632282E+01,1.600274E+01,1.568894E+01,1.538129E+01,1.507967E+01,1.478397E+01,1.449406E+01, 1.420984E+01,1.393120E+01,1.365801E+01,1.339019E+01,1.312762E+01,1.287019E+01,1.261781E+01, 1.237039E+01,1.212781E+01,1.188999E+01,1.165684E+01,1.142825E+01,1.120415E+01,1.098445E+01, 1.076905E+01,1.055787E+01,1.035084E+01,1.014787E+01,9.948872E+00,9.753781E+00,9.562515E+00, 9.375000E+00,9.191162E+00,9.010929E+00,8.834230E+00,8.660996E+00,8.491159E+00,8.324653E+00, 8.161412E+00,8.001371E+00,7.844469E+00,7.690644E+00,7.539835E+00,7.391984E+00,7.247031E+00, 7.104921E+00,6.965598E+00,6.829007E+00,6.695094E+00,6.563808E+00,6.435095E+00,6.308907E+00, 6.185193E+00,6.063905E+00,5.944996E+00,5.828418E+00,5.714127E+00,5.602076E+00,5.492223E+00, 5.384524E+00,5.278936E+00,5.175420E+00,5.073933E+00,4.974436E+00,4.876890E+00,4.781258E+00, 4.687500E+00,4.595581E+00,4.505464E+00,4.417115E+00,4.330498E+00,4.245580E+00,4.162326E+00, 4.080706E+00,4.000686E+00,3.922235E+00,3.845322E+00,3.769918E+00,3.695992E+00,3.623516E+00, 3.552461E+00,3.482799E+00,3.414504E+00,3.347547E+00,3.281904E+00,3.217548E+00,3.154454E+00, 3.092597E+00,3.031953E+00,2.972498E+00,2.914209E+00,2.857063E+00,2.801038E+00,2.746111E+00, 2.692262E+00,2.639468E+00,2.587710E+00,2.536966E+00,2.487218E+00,2.438445E+00,2.390629E+00, 2.343750E+00,2.297790E+00,2.252732E+00,2.208558E+00,2.165249E+00,2.122790E+00,2.081163E+00, 2.040353E+00,2.000343E+00,1.961117E+00,1.922661E+00,1.884959E+00,1.847996E+00,1.811758E+00, 1.776230E+00,1.741400E+00,1.707252E+00,1.673774E+00,1.640952E+00,1.608774E+00,1.577227E+00, 1.546298E+00,1.515976E+00,1.486249E+00,1.457105E+00,1.428532E+00,1.400519E+00,1.373056E+00, 1.346131E+00,1.319734E+00,1.293855E+00,1.268483E+00,1.243609E+00,1.219223E+00,1.195314E+00, 1.171875E+00,1.148895E+00,1.126366E+00,1.104279E+00,1.082625E+00,1.061395E+00,1.040582E+00, 1.020176E+00,1.000171E+00,9.805587E-01,9.613305E-01,9.424794E-01,9.239979E-01,9.058789E-01, 8.881152E-01,8.706998E-01,8.536259E-01,8.368868E-01,8.204760E-01,8.043869E-01,7.886134E-01, 7.731492E-01,7.579882E-01,7.431245E-01,7.285523E-01,7.142658E-01,7.002595E-01,6.865278E-01, 6.730654E-01,6.598670E-01,6.469274E-01,6.342416E-01,6.218045E-01,6.096113E-01,5.976572E-01, 5.859375E-01,5.744476E-01,5.631831E-01,5.521394E-01,5.413123E-01,5.306975E-01,5.202908E-01, 5.100882E-01,5.000857E-01,4.902793E-01,4.806652E-01,4.712397E-01,4.619990E-01,4.529395E-01, 4.440576E-01,4.353499E-01,4.268129E-01,4.184434E-01,4.102380E-01,4.021935E-01,3.943067E-01, 3.865746E-01,3.789941E-01,3.715622E-01,3.642761E-01,3.571329E-01,3.501297E-01,3.432639E-01, 3.365327E-01,3.299335E-01,3.234637E-01,3.171208E-01,3.109023E-01,3.048056E-01,2.988286E-01, 2.929687E-01,2.872238E-01,2.815915E-01,2.760697E-01,2.706561E-01,2.653487E-01,2.601454E-01, 2.550441E-01,2.500429E-01,2.451397E-01,2.403326E-01,2.356198E-01,2.309995E-01,2.264697E-01, 2.220288E-01,2.176749E-01]] try: # internal model constants ted_empty.num_simulation_days = 366 # internally specified variable (from internal database) food_multiplier = pd.Series([15., 110., 240.]) # input variables that change per simulation ted_empty.foliar_diss_hlife = pd.Series([15., 25., 35.]) ted_empty.app_rate_min = pd.Series([0.18, 0.5, 1.25]) # lbs a.i./acre # application scenarios generated from 'daily_app_flag' tests and reused here daily_flag = pd.Series([[True, False, False, True, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False], [True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False], [True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]], dtype='bool') for i in range(3): result[i] = ted_empty.daily_plant_timeseries(i, ted_empty.app_rate_min[i], food_multiplier[i], daily_flag[i]) npt.assert_allclose(result[i],expected_results[i],rtol=1e-4, atol=0, err_msg='', verbose=True) finally: for i in range(3): tab = [result[i], expected_results[i]] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_daily_soil_h2o_timeseries(self): """ :description generates annual timeseries of daily pesticide concentrations in soil pore water and surface puddles :param i; simulation number/index :param application rate; active ingredient application rate (lbs a.i./acre) :param food_multiplier; factor by which application rate of active ingredient is multiplied to estimate dietary based EECs :param daily_flag; daily flag denoting if pesticide is applied (0 - not applied, 1 - applied) :param water_type; type of water (pore water or surface puddles) :Notes # calculations are performed daily from day of first application (assumed day 0) through the last day of a year # note: day numbers are synchronized with 0-based array indexing; thus the year does not have a calendar specific # assoication, rather it is one year from the day of 1st pesticide application :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [[2.235571E-02,2.134616E-02,2.038220E-02,4.181749E-02,3.992908E-02,3.812594E-02, 5.875995E-02,5.610644E-02,5.357277E-02,5.115350E-02,4.884349E-02,4.663780E-02, 4.453171E-02,4.252073E-02,4.060056E-02,3.876711E-02,3.701645E-02,3.534484E-02, 3.374873E-02,3.222469E-02,3.076947E-02,2.937997E-02,2.805322E-02,2.678638E-02, 2.557675E-02,2.442175E-02,2.331890E-02,2.226586E-02,2.126037E-02,2.030028E-02, 1.938355E-02,1.850822E-02,1.767242E-02,1.687436E-02,1.611234E-02,1.538474E-02, 1.468999E-02,1.402661E-02,1.339319E-02,1.278838E-02,1.221087E-02,1.165945E-02, 1.113293E-02,1.063018E-02,1.015014E-02,9.691777E-03,9.254112E-03,8.836211E-03, 8.437182E-03,8.056172E-03,7.692368E-03,7.344993E-03,7.013305E-03,6.696596E-03, 6.394188E-03,6.105437E-03,5.829725E-03,5.566464E-03,5.315091E-03,5.075070E-03, 4.845888E-03,4.627056E-03,4.418105E-03,4.218591E-03,4.028086E-03,3.846184E-03, 3.672497E-03,3.506653E-03,3.348298E-03,3.197094E-03,3.052718E-03,2.914863E-03, 2.783232E-03,2.657546E-03,2.537535E-03,2.422944E-03,2.313528E-03,2.209053E-03, 2.109295E-03,2.014043E-03,1.923092E-03,1.836248E-03,1.753326E-03,1.674149E-03, 1.598547E-03,1.526359E-03,1.457431E-03,1.391616E-03,1.328773E-03,1.268768E-03, 1.211472E-03,1.156764E-03,1.104526E-03,1.054648E-03,1.007022E-03,9.615460E-04, 9.181242E-04,8.766632E-04,8.370745E-04,7.992735E-04,7.631796E-04,7.287156E-04, 6.958080E-04,6.643864E-04,6.343838E-04,6.057361E-04,5.783820E-04,5.522632E-04, 5.273239E-04,5.035108E-04,4.807730E-04,4.590621E-04,4.383316E-04,4.185372E-04, 3.996368E-04,3.815898E-04,3.643578E-04,3.479040E-04,3.321932E-04,3.171919E-04, 3.028680E-04,2.891910E-04,2.761316E-04,2.636619E-04,2.517554E-04,2.403865E-04, 2.295310E-04,2.191658E-04,2.092686E-04,1.998184E-04,1.907949E-04,1.821789E-04, 1.739520E-04,1.660966E-04,1.585960E-04,1.514340E-04,1.445955E-04,1.380658E-04, 1.318310E-04,1.258777E-04,1.201933E-04,1.147655E-04,1.095829E-04,1.046343E-04, 9.990919E-05,9.539745E-05,9.108945E-05,8.697600E-05,8.304830E-05,7.929798E-05, 7.571701E-05,7.229775E-05,6.903290E-05,6.591548E-05,6.293885E-05,6.009663E-05, 5.738276E-05,5.479145E-05,5.231715E-05,4.995459E-05,4.769873E-05,4.554473E-05, 4.348800E-05,4.152415E-05,3.964899E-05,3.785850E-05,3.614887E-05,3.451645E-05, 3.295774E-05,3.146942E-05,3.004831E-05,2.869138E-05,2.739572E-05,2.615858E-05, 2.497730E-05,2.384936E-05,2.277236E-05,2.174400E-05,2.076208E-05,1.982449E-05, 1.892925E-05,1.807444E-05,1.725822E-05,1.647887E-05,1.573471E-05,1.502416E-05, 1.434569E-05,1.369786E-05,1.307929E-05,1.248865E-05,1.192468E-05,1.138618E-05, 1.087200E-05,1.038104E-05,9.912247E-06,9.464626E-06,9.037219E-06,8.629112E-06, 8.239435E-06,7.867356E-06,7.512079E-06,7.172845E-06,6.848931E-06,6.539644E-06, 6.244324E-06,5.962341E-06,5.693091E-06,5.436000E-06,5.190519E-06,4.956124E-06, 4.732313E-06,4.518609E-06,4.314556E-06,4.119718E-06,3.933678E-06,3.756039E-06, 3.586423E-06,3.424465E-06,3.269822E-06,3.122162E-06,2.981170E-06,2.846545E-06, 2.718000E-06,2.595260E-06,2.478062E-06,2.366156E-06,2.259305E-06,2.157278E-06, 2.059859E-06,1.966839E-06,1.878020E-06,1.793211E-06,1.712233E-06,1.634911E-06, 1.561081E-06,1.490585E-06,1.423273E-06,1.359000E-06,1.297630E-06,1.239031E-06, 1.183078E-06,1.129652E-06,1.078639E-06,1.029929E-06,9.834195E-07,9.390098E-07, 8.966056E-07,8.561164E-07,8.174555E-07,7.805405E-07,7.452926E-07,7.116364E-07, 6.795000E-07,6.488149E-07,6.195154E-07,5.915391E-07,5.648262E-07,5.393195E-07, 5.149647E-07,4.917097E-07,4.695049E-07,4.483028E-07,4.280582E-07,4.087278E-07, 3.902703E-07,3.726463E-07,3.558182E-07,3.397500E-07,3.244074E-07,3.097577E-07, 2.957696E-07,2.824131E-07,2.696598E-07,2.574824E-07,2.458549E-07,2.347525E-07, 2.241514E-07,2.140291E-07,2.043639E-07,1.951351E-07,1.863231E-07,1.779091E-07, 1.698750E-07,1.622037E-07,1.548789E-07,1.478848E-07,1.412065E-07,1.348299E-07, 1.287412E-07,1.229274E-07,1.173762E-07,1.120757E-07,1.070145E-07,1.021819E-07, 9.756757E-08,9.316157E-08,8.895455E-08,8.493750E-08,8.110186E-08,7.743943E-08, 7.394239E-08,7.060327E-08,6.741494E-08,6.437059E-08,6.146372E-08,5.868811E-08, 5.603785E-08,5.350727E-08,5.109097E-08,4.878378E-08,4.658079E-08,4.447727E-08, 4.246875E-08,4.055093E-08,3.871971E-08,3.697119E-08,3.530163E-08,3.370747E-08, 3.218529E-08,3.073186E-08,2.934406E-08,2.801893E-08,2.675364E-08,2.554549E-08, 2.439189E-08,2.329039E-08,2.223864E-08,2.123438E-08,2.027546E-08,1.935986E-08, 1.848560E-08,1.765082E-08,1.685373E-08,1.609265E-08,1.536593E-08,1.467203E-08, 1.400946E-08,1.337682E-08,1.277274E-08,1.219595E-08,1.164520E-08,1.111932E-08, 1.061719E-08,1.013773E-08,9.679929E-09,9.242799E-09,8.825409E-09,8.426867E-09, 8.046324E-09,7.682965E-09,7.336014E-09,7.004732E-09,6.688409E-09,6.386371E-09, 6.097973E-09,5.822598E-09,5.559659E-09,5.308594E-09,5.068866E-09,4.839964E-09, 4.621399E-09,4.412704E-09,4.213434E-09,4.023162E-09,3.841482E-09,3.668007E-09], [9.391514E-02,8.762592E-02,8.175787E-02,7.628279E-02,7.117436E-02,6.640803E-02, 6.196088E-02,1.517267E-01,1.415660E-01,1.320858E-01,1.232404E-01,1.149873E-01, 1.072870E-01,1.001023E-01,1.873139E-01,1.747700E-01,1.630662E-01,1.521461E-01, 1.419574E-01,1.324509E-01,1.235811E-01,2.092203E-01,1.952095E-01,1.821369E-01, 1.699397E-01,1.585594E-01,1.479411E-01,1.380340E-01,2.227054E-01,2.077915E-01, 1.938763E-01,1.808930E-01,1.687791E-01,1.574765E-01,1.469307E-01,1.370912E-01, 1.279106E-01,1.193449E-01,1.113527E-01,1.038957E-01,9.693814E-02,9.044648E-02, 8.438955E-02,7.873824E-02,7.346537E-02,6.854562E-02,6.395532E-02,5.967242E-02, 5.567634E-02,5.194786E-02,4.846907E-02,4.522324E-02,4.219478E-02,3.936912E-02, 3.673269E-02,3.427281E-02,3.197766E-02,2.983621E-02,2.783817E-02,2.597393E-02, 2.423454E-02,2.261162E-02,2.109739E-02,1.968456E-02,1.836634E-02,1.713640E-02, 1.598883E-02,1.491811E-02,1.391909E-02,1.298697E-02,1.211727E-02,1.130581E-02, 1.054869E-02,9.842280E-03,9.183172E-03,8.568202E-03,7.994415E-03,7.459053E-03, 6.959543E-03,6.493483E-03,6.058634E-03,5.652905E-03,5.274347E-03,4.921140E-03, 4.591586E-03,4.284101E-03,3.997208E-03,3.729527E-03,3.479771E-03,3.246741E-03, 3.029317E-03,2.826453E-03,2.637174E-03,2.460570E-03,2.295793E-03,2.142051E-03, 1.998604E-03,1.864763E-03,1.739886E-03,1.623371E-03,1.514658E-03,1.413226E-03, 1.318587E-03,1.230285E-03,1.147896E-03,1.071025E-03,9.993019E-04,9.323816E-04, 8.699428E-04,8.116854E-04,7.573292E-04,7.066131E-04,6.592934E-04,6.151425E-04, 5.739482E-04,5.355126E-04,4.996509E-04,4.661908E-04,4.349714E-04,4.058427E-04, 3.786646E-04,3.533066E-04,3.296467E-04,3.075712E-04,2.869741E-04,2.677563E-04, 2.498255E-04,2.330954E-04,2.174857E-04,2.029213E-04,1.893323E-04,1.766533E-04, 1.648233E-04,1.537856E-04,1.434871E-04,1.338782E-04,1.249127E-04,1.165477E-04, 1.087429E-04,1.014607E-04,9.466615E-05,8.832664E-05,8.241167E-05,7.689281E-05, 7.174353E-05,6.693908E-05,6.245637E-05,5.827385E-05,5.437143E-05,5.073034E-05, 4.733308E-05,4.416332E-05,4.120584E-05,3.844640E-05,3.587176E-05,3.346954E-05, 3.122818E-05,2.913693E-05,2.718571E-05,2.536517E-05,2.366654E-05,2.208166E-05, 2.060292E-05,1.922320E-05,1.793588E-05,1.673477E-05,1.561409E-05,1.456846E-05, 1.359286E-05,1.268258E-05,1.183327E-05,1.104083E-05,1.030146E-05,9.611601E-06, 8.967941E-06,8.367385E-06,7.807046E-06,7.284232E-06,6.796428E-06,6.341292E-06, 5.916635E-06,5.520415E-06,5.150730E-06,4.805801E-06,4.483971E-06,4.183692E-06, 3.903523E-06,3.642116E-06,3.398214E-06,3.170646E-06,2.958317E-06,2.760208E-06, 2.575365E-06,2.402900E-06,2.241985E-06,2.091846E-06,1.951762E-06,1.821058E-06, 1.699107E-06,1.585323E-06,1.479159E-06,1.380104E-06,1.287682E-06,1.201450E-06, 1.120993E-06,1.045923E-06,9.758808E-07,9.105289E-07,8.495535E-07,7.926615E-07, 7.395793E-07,6.900519E-07,6.438412E-07,6.007251E-07,5.604963E-07,5.229616E-07, 4.879404E-07,4.552645E-07,4.247768E-07,3.963307E-07,3.697897E-07,3.450260E-07, 3.219206E-07,3.003625E-07,2.802482E-07,2.614808E-07,2.439702E-07,2.276322E-07, 2.123884E-07,1.981654E-07,1.848948E-07,1.725130E-07,1.609603E-07,1.501813E-07, 1.401241E-07,1.307404E-07,1.219851E-07,1.138161E-07,1.061942E-07,9.908269E-08, 9.244741E-08,8.625649E-08,8.048015E-08,7.509063E-08,7.006204E-08,6.537019E-08, 6.099255E-08,5.690806E-08,5.309710E-08,4.954134E-08,4.622371E-08,4.312824E-08, 4.024007E-08,3.754532E-08,3.503102E-08,3.268510E-08,3.049627E-08,2.845403E-08, 2.654855E-08,2.477067E-08,2.311185E-08,2.156412E-08,2.012004E-08,1.877266E-08, 1.751551E-08,1.634255E-08,1.524814E-08,1.422702E-08,1.327427E-08,1.238534E-08, 1.155593E-08,1.078206E-08,1.006002E-08,9.386329E-09,8.757755E-09,8.171274E-09, 7.624068E-09,7.113507E-09,6.637137E-09,6.192668E-09,5.777963E-09,5.391030E-09, 5.030009E-09,4.693165E-09,4.378877E-09,4.085637E-09,3.812034E-09,3.556754E-09, 3.318569E-09,3.096334E-09,2.888982E-09,2.695515E-09,2.515005E-09,2.346582E-09, 2.189439E-09,2.042819E-09,1.906017E-09,1.778377E-09,1.659284E-09,1.548167E-09, 1.444491E-09,1.347758E-09,1.257502E-09,1.173291E-09,1.094719E-09,1.021409E-09, 9.530086E-10,8.891884E-10,8.296421E-10,7.740835E-10,7.222454E-10,6.738788E-10, 6.287512E-10,5.866456E-10,5.473597E-10,5.107046E-10,4.765043E-10,4.445942E-10, 4.148211E-10,3.870417E-10,3.611227E-10,3.369394E-10,3.143756E-10,2.933228E-10, 2.736798E-10,2.553523E-10,2.382521E-10,2.222971E-10,2.074105E-10,1.935209E-10, 1.805614E-10,1.684697E-10,1.571878E-10,1.466614E-10,1.368399E-10,1.276762E-10, 1.191261E-10,1.111486E-10,1.037053E-10,9.676043E-11,9.028068E-11,8.423485E-11, 7.859390E-11,7.333070E-11,6.841996E-11,6.383808E-11,5.956303E-11,5.557428E-11, 5.185263E-11,4.838022E-11,4.514034E-11,4.211743E-11,3.929695E-11,3.666535E-11, 3.420998E-11,3.191904E-11,2.978152E-11,2.778714E-11,2.592632E-11,2.419011E-11, 2.257017E-11,2.105871E-11,1.964847E-11,1.833267E-11,1.710499E-11,1.595952E-11], [1.172251E-01,1.132320E-01,1.093749E-01,1.056492E-01,1.020504E-01,9.857420E-02, 9.521640E-02,9.197298E-02,8.884005E-02,8.581383E-02,8.289069E-02,8.006713E-02, 7.733975E-02,7.470528E-02,7.216054E-02,6.970249E-02,6.732817E-02,6.503472E-02, 6.281940E-02,6.067954E-02,5.861257E-02,5.661601E-02,5.468746E-02,5.282461E-02, 5.102521E-02,4.928710E-02,4.760820E-02,4.598649E-02,4.442002E-02,4.290691E-02, 4.144535E-02,4.003357E-02,3.866988E-02,3.735264E-02,3.608027E-02,3.485124E-02, 3.366408E-02,3.251736E-02,3.140970E-02,3.033977E-02,2.930629E-02,2.830801E-02, 2.734373E-02,2.641230E-02,2.551260E-02,2.464355E-02,2.380410E-02,2.299325E-02, 2.221001E-02,2.145346E-02,2.072267E-02,2.001678E-02,1.933494E-02,1.867632E-02, 1.804014E-02,1.742562E-02,1.683204E-02,1.625868E-02,1.570485E-02,1.516989E-02, 1.465314E-02,1.415400E-02,1.367187E-02,1.320615E-02,1.275630E-02,1.232178E-02, 1.190205E-02,1.149662E-02,1.110501E-02,1.072673E-02,1.036134E-02,1.000839E-02, 9.667469E-03,9.338160E-03,9.020068E-03,8.712811E-03,8.416021E-03,8.129340E-03, 7.852425E-03,7.584943E-03,7.326572E-03,7.077002E-03,6.835933E-03,6.603076E-03, 6.378151E-03,6.160888E-03,5.951025E-03,5.748312E-03,5.552503E-03,5.363364E-03, 5.180668E-03,5.004196E-03,4.833735E-03,4.669080E-03,4.510034E-03,4.356406E-03, 4.208010E-03,4.064670E-03,3.926212E-03,3.792471E-03,3.663286E-03,3.538501E-03, 3.417966E-03,3.301538E-03,3.189075E-03,3.080444E-03,2.975513E-03,2.874156E-03, 2.776251E-03,2.681682E-03,2.590334E-03,2.502098E-03,2.416867E-03,2.334540E-03, 2.255017E-03,2.178203E-03,2.104005E-03,2.032335E-03,1.963106E-03,1.896236E-03, 1.831643E-03,1.769250E-03,1.708983E-03,1.650769E-03,1.594538E-03,1.540222E-03, 1.487756E-03,1.437078E-03,1.388126E-03,1.340841E-03,1.295167E-03,1.251049E-03, 1.208434E-03,1.167270E-03,1.127508E-03,1.089101E-03,1.052003E-03,1.016168E-03, 9.815531E-04,9.481178E-04,9.158214E-04,8.846252E-04,8.544916E-04,8.253845E-04, 7.972689E-04,7.701110E-04,7.438782E-04,7.185389E-04,6.940629E-04,6.704205E-04, 6.475836E-04,6.255245E-04,6.042168E-04,5.836350E-04,5.637542E-04,5.445507E-04, 5.260013E-04,5.080838E-04,4.907766E-04,4.740589E-04,4.579107E-04,4.423126E-04, 4.272458E-04,4.126923E-04,3.986344E-04,3.850555E-04,3.719391E-04,3.592695E-04, 3.470314E-04,3.352103E-04,3.237918E-04,3.127622E-04,3.021084E-04,2.918175E-04, 2.818771E-04,2.722753E-04,2.630006E-04,2.540419E-04,2.453883E-04,2.370295E-04, 2.289554E-04,2.211563E-04,2.136229E-04,2.063461E-04,1.993172E-04,1.925277E-04, 1.859695E-04,1.796347E-04,1.735157E-04,1.676051E-04,1.618959E-04,1.563811E-04, 1.510542E-04,1.459087E-04,1.409386E-04,1.361377E-04,1.315003E-04,1.270209E-04, 1.226941E-04,1.185147E-04,1.144777E-04,1.105782E-04,1.068115E-04,1.031731E-04, 9.965861E-05,9.626387E-05,9.298477E-05,8.981737E-05,8.675786E-05,8.380257E-05, 8.094794E-05,7.819056E-05,7.552710E-05,7.295437E-05,7.046928E-05,6.806884E-05, 6.575016E-05,6.351047E-05,6.134707E-05,5.925736E-05,5.723884E-05,5.528908E-05, 5.340573E-05,5.158653E-05,4.982930E-05,4.813194E-05,4.649239E-05,4.490868E-05, 4.337893E-05,4.190128E-05,4.047397E-05,3.909528E-05,3.776355E-05,3.647719E-05, 3.523464E-05,3.403442E-05,3.287508E-05,3.175523E-05,3.067354E-05,2.962868E-05, 2.861942E-05,2.764454E-05,2.670286E-05,2.579327E-05,2.491465E-05,2.406597E-05, 2.324619E-05,2.245434E-05,2.168946E-05,2.095064E-05,2.023699E-05,1.954764E-05, 1.888178E-05,1.823859E-05,1.761732E-05,1.701721E-05,1.643754E-05,1.587762E-05, 1.533677E-05,1.481434E-05,1.430971E-05,1.382227E-05,1.335143E-05,1.289663E-05, 1.245733E-05,1.203298E-05,1.162310E-05,1.122717E-05,1.084473E-05,1.047532E-05, 1.011849E-05,9.773820E-06,9.440888E-06,9.119297E-06,8.808660E-06,8.508605E-06, 8.218770E-06,7.938809E-06,7.668384E-06,7.407170E-06,7.154855E-06,6.911134E-06, 6.675716E-06,6.448316E-06,6.228663E-06,6.016492E-06,5.811548E-06,5.613585E-06, 5.422366E-06,5.237660E-06,5.059247E-06,4.886910E-06,4.720444E-06,4.559648E-06, 4.404330E-06,4.254302E-06,4.109385E-06,3.969404E-06,3.834192E-06,3.703585E-06, 3.577428E-06,3.455567E-06,3.337858E-06,3.224158E-06,3.114332E-06,3.008246E-06, 2.905774E-06,2.806793E-06,2.711183E-06,2.618830E-06,2.529623E-06,2.443455E-06, 2.360222E-06,2.279824E-06,2.202165E-06,2.127151E-06,2.054693E-06,1.984702E-06, 1.917096E-06,1.851793E-06,1.788714E-06,1.727784E-06,1.668929E-06,1.612079E-06, 1.557166E-06,1.504123E-06,1.452887E-06,1.403396E-06,1.355592E-06,1.309415E-06, 1.264812E-06,1.221728E-06,1.180111E-06,1.139912E-06,1.101082E-06,1.063576E-06, 1.027346E-06,9.923511E-07,9.585480E-07,9.258963E-07,8.943569E-07,8.638918E-07, 8.344645E-07,8.060396E-07,7.785829E-07,7.520615E-07,7.264435E-07,7.016982E-07, 6.777958E-07,6.547076E-07,6.324058E-07,6.108638E-07,5.900555E-07,5.699560E-07, 5.505412E-07,5.317878E-07,5.136731E-07,4.961755E-07,4.792740E-07,4.629482E-07, 4.471784E-07,4.319459E-07,4.172322E-07,4.030198E-07,3.892914E-07,3.760307E-07]] try: # internal model constants ted_empty.num_simulation_days = 366 ted_empty.app_rate_conv1 = 11.2 ted_empty.h2o_depth_puddles = 1.3 ted_empty.soil_depth = 2.6 ted_empty.soil_porosity = 0.4339623 ted_empty.soil_bulk_density = 1.5 ted_empty.h2o_depth_soil = 0.0 ted_empty.soil_foc = 0.015 # internally specified variable water_type = ['puddles', 'pore_water', 'puddles'] # input variables that change per simulation ted_empty.aerobic_soil_meta_hlife = pd.Series([15., 10., 20.], dtype='float') ted_empty.koc = pd.Series([1500., 1000., 2000.], dtype='float') ted_empty.app_rate_min = pd.Series([0.18, 0.5, 1.25]) # lbs a.i./acre # application scenarios generated from 'daily_app_flag' tests and reused here daily_flag = pd.Series([[True, False, False, True, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False], [True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False], [True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]], dtype='bool') for i in range(3): result[i] = ted_empty.daily_soil_h2o_timeseries(i, ted_empty.app_rate_min[i], daily_flag[i], water_type[i]) npt.assert_allclose(result[i],expected_results[i],rtol=1e-4, atol=0, err_msg='', verbose=True) finally: for i in range(3): tab = [result[i], expected_results[i]] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_daily_plant_dew_timeseries(self): """ :description generates annual timeseries of daily pesticide concentrations in dew that resides on broad leaf plants :param i; simulation number/index :param blp_conc; daily values of pesticide concentration in broad leaf plant dew :Notes # calculations are performed daily from day of first application (assumed day 0) through the last day of a year # note: day numbers are synchronized with 0-based array indexing; thus the year does not have a calendar specific # assoication, rather it is one year from the day of 1st pesticide application #this represents Eq 11 of Attachment 1-7 of 'Biological Evaluation Chapters for Diazinon ESA Assessment' :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([[]], dtype='float') expected_results = [[6.201749E+00,6.080137E+00,5.960909E+00,5.844019E+00,5.729422E+00,5.617071E+00, 5.506924E+00,1.160069E+01,1.137320E+01,1.115018E+01,1.093153E+01,1.071717E+01, 1.050702E+01,1.030098E+01,1.630073E+01,1.598109E+01,1.566771E+01,1.536047E+01, 1.505926E+01,1.476396E+01,1.447445E+01,2.039236E+01,1.999248E+01,1.960044E+01, 1.921609E+01,1.883927E+01,1.846984E+01,1.810766E+01,2.395433E+01,2.348460E+01, 2.302408E+01,2.257259E+01,2.212996E+01,2.169600E+01,2.127056E+01,2.085346E+01, 2.044453E+01,2.004363E+01,1.965059E+01,1.926525E+01,1.888747E+01,1.851710E+01, 1.815399E+01,1.779800E+01,1.744899E+01,1.710683E+01,1.677137E+01,1.644250E+01, 1.612007E+01,1.580396E+01,1.549406E+01,1.519023E+01,1.489236E+01,1.460033E+01, 1.431403E+01,1.403334E+01,1.375815E+01,1.348836E+01,1.322386E+01,1.296455E+01, 1.271032E+01,1.246108E+01,1.221673E+01,1.197717E+01,1.174230E+01,1.151204E+01, 1.128630E+01,1.106498E+01,1.084800E+01,1.063528E+01,1.042673E+01,1.022227E+01, 1.002181E+01,9.825293E+00,9.632625E+00,9.443735E+00,9.258549E+00,9.076994E+00, 8.899000E+00,8.724496E+00,8.553414E+00,8.385687E+00,8.221249E+00,8.060035E+00, 7.901982E+00,7.747029E+00,7.595115E+00,7.446179E+00,7.300164E+00,7.157013E+00, 7.016668E+00,6.879075E+00,6.744181E+00,6.611932E+00,6.482276E+00,6.355162E+00, 6.230541E+00,6.108364E+00,5.988583E+00,5.871150E+00,5.756021E+00,5.643149E+00, 5.532490E+00,5.424001E+00,5.317640E+00,5.213364E+00,5.111133E+00,5.010907E+00, 4.912646E+00,4.816312E+00,4.721867E+00,4.629274E+00,4.538497E+00,4.449500E+00, 4.362248E+00,4.276707E+00,4.192843E+00,4.110624E+00,4.030017E+00,3.950991E+00, 3.873515E+00,3.797557E+00,3.723090E+00,3.650082E+00,3.578506E+00,3.508334E+00, 3.439538E+00,3.372090E+00,3.305966E+00,3.241138E+00,3.177581E+00,3.115271E+00, 3.054182E+00,2.994291E+00,2.935575E+00,2.878010E+00,2.821574E+00,2.766245E+00, 2.712001E+00,2.658820E+00,2.606682E+00,2.555567E+00,2.505454E+00,2.456323E+00, 2.408156E+00,2.360934E+00,2.314637E+00,2.269249E+00,2.224750E+00,2.181124E+00, 2.138353E+00,2.096422E+00,2.055312E+00,2.015009E+00,1.975496E+00,1.936757E+00, 1.898779E+00,1.861545E+00,1.825041E+00,1.789253E+00,1.754167E+00,1.719769E+00, 1.686045E+00,1.652983E+00,1.620569E+00,1.588791E+00,1.557635E+00,1.527091E+00, 1.497146E+00,1.467788E+00,1.439005E+00,1.410787E+00,1.383122E+00,1.356000E+00, 1.329410E+00,1.303341E+00,1.277783E+00,1.252727E+00,1.228162E+00,1.204078E+00, 1.180467E+00,1.157319E+00,1.134624E+00,1.112375E+00,1.090562E+00,1.069177E+00, 1.048211E+00,1.027656E+00,1.007504E+00,9.877478E-01,9.683787E-01,9.493894E-01, 9.307724E-01,9.125205E-01,8.946266E-01,8.770835E-01,8.598844E-01,8.430226E-01, 8.264914E-01,8.102845E-01,7.943953E-01,7.788177E-01,7.635455E-01,7.485729E-01, 7.338938E-01,7.195026E-01,7.053936E-01,6.915612E-01,6.780002E-01,6.647050E-01, 6.516705E-01,6.388917E-01,6.263634E-01,6.140808E-01,6.020390E-01,5.902334E-01, 5.786593E-01,5.673121E-01,5.561875E-01,5.452810E-01,5.345884E-01,5.241054E-01, 5.138280E-01,5.037522E-01,4.938739E-01,4.841893E-01,4.746947E-01,4.653862E-01, 4.562603E-01,4.473133E-01,4.385417E-01,4.299422E-01,4.215113E-01,4.132457E-01, 4.051422E-01,3.971976E-01,3.894088E-01,3.817728E-01,3.742864E-01,3.669469E-01, 3.597513E-01,3.526968E-01,3.457806E-01,3.390001E-01,3.323525E-01,3.258353E-01, 3.194458E-01,3.131817E-01,3.070404E-01,3.010195E-01,2.951167E-01,2.893296E-01, 2.836561E-01,2.780937E-01,2.726405E-01,2.672942E-01,2.620527E-01,2.569140E-01, 2.518761E-01,2.469370E-01,2.420947E-01,2.373473E-01,2.326931E-01,2.281301E-01, 2.236566E-01,2.192709E-01,2.149711E-01,2.107557E-01,2.066229E-01,2.025711E-01, 1.985988E-01,1.947044E-01,1.908864E-01,1.871432E-01,1.834735E-01,1.798756E-01, 1.763484E-01,1.728903E-01,1.695000E-01,1.661762E-01,1.629176E-01,1.597229E-01, 1.565908E-01,1.535202E-01,1.505098E-01,1.475584E-01,1.446648E-01,1.418280E-01, 1.390469E-01,1.363202E-01,1.336471E-01,1.310264E-01,1.284570E-01,1.259380E-01, 1.234685E-01,1.210473E-01,1.186737E-01,1.163466E-01,1.140651E-01,1.118283E-01, 1.096354E-01,1.074856E-01,1.053778E-01,1.033114E-01,1.012856E-01,9.929941E-02, 9.735221E-02,9.544319E-02,9.357161E-02,9.173673E-02,8.993782E-02,8.817420E-02, 8.644516E-02,8.475002E-02,8.308812E-02,8.145882E-02,7.986146E-02,7.829542E-02, 7.676010E-02,7.525488E-02,7.377918E-02,7.233241E-02,7.091402E-02,6.952344E-02, 6.816012E-02,6.682355E-02,6.551318E-02,6.422850E-02,6.296902E-02,6.173424E-02, 6.052367E-02,5.933684E-02,5.817328E-02,5.703253E-02,5.591416E-02,5.481772E-02, 5.374278E-02,5.268891E-02,5.165572E-02,5.064278E-02,4.964970E-02,4.867610E-02, 4.772160E-02,4.678580E-02,4.586836E-02,4.496891E-02,4.408710E-02,4.322258E-02, 4.237501E-02,4.154406E-02,4.072941E-02,3.993073E-02,3.914771E-02,3.838005E-02, 3.762744E-02,3.688959E-02,3.616621E-02,3.545701E-02,3.476172E-02,3.408006E-02, 3.341177E-02,3.275659E-02,3.211425E-02,3.148451E-02,3.086712E-02,3.026183E-02], [3.487500E-01,3.419112E-01,3.352066E-01,3.286334E-01,3.221891E-01,3.158711E-01, 3.096771E-01,6.523545E-01,6.395622E-01,6.270208E-01,6.147253E-01,6.026709E-01, 5.908529E-01,5.792667E-01,9.166576E-01,8.986825E-01,8.810599E-01,8.637828E-01, 8.468446E-01,8.302385E-01,8.139580E-01,1.000000E+00,1.000000E+00,1.000000E+00, 1.000000E+00,1.000000E+00,1.000000E+00,1.000000E+00,1.000000E+00,1.000000E+00, 1.000000E+00,1.000000E+00,1.000000E+00,1.000000E+00,1.000000E+00,1.000000E+00, 1.000000E+00,1.000000E+00,1.000000E+00,1.000000E+00,1.000000E+00,1.000000E+00, 1.000000E+00,1.000000E+00,9.812289E-01,9.619876E-01,9.431236E-01,9.246296E-01, 9.064981E-01,8.887223E-01,8.712950E-01,8.542094E-01,8.374589E-01,8.210368E-01, 8.049368E-01,7.891525E-01,7.736777E-01,7.585063E-01,7.436325E-01,7.290503E-01, 7.147541E-01,7.007382E-01,6.869971E-01,6.735255E-01,6.603181E-01,6.473697E-01, 6.346751E-01,6.222295E-01,6.100280E-01,5.980657E-01,5.863380E-01,5.748403E-01, 5.635680E-01,5.525168E-01,5.416823E-01,5.310602E-01,5.206465E-01,5.104369E-01, 5.004275E-01,4.906145E-01,4.809938E-01,4.715618E-01,4.623148E-01,4.532491E-01, 4.443611E-01,4.356475E-01,4.271047E-01,4.187294E-01,4.105184E-01,4.024684E-01, 3.945762E-01,3.868388E-01,3.792532E-01,3.718162E-01,3.645251E-01,3.573770E-01, 3.503691E-01,3.434986E-01,3.367628E-01,3.301591E-01,3.236848E-01,3.173376E-01, 3.111148E-01,3.050140E-01,2.990329E-01,2.931690E-01,2.874201E-01,2.817840E-01, 2.762584E-01,2.708411E-01,2.655301E-01,2.603232E-01,2.552184E-01,2.502138E-01, 2.453072E-01,2.404969E-01,2.357809E-01,2.311574E-01,2.266245E-01,2.221806E-01, 2.178237E-01,2.135523E-01,2.093647E-01,2.052592E-01,2.012342E-01,1.972881E-01, 1.934194E-01,1.896266E-01,1.859081E-01,1.822626E-01,1.786885E-01,1.751845E-01, 1.717493E-01,1.683814E-01,1.650795E-01,1.618424E-01,1.586688E-01,1.555574E-01, 1.525070E-01,1.495164E-01,1.465845E-01,1.437101E-01,1.408920E-01,1.381292E-01, 1.354206E-01,1.327651E-01,1.301616E-01,1.276092E-01,1.251069E-01,1.226536E-01, 1.202485E-01,1.178905E-01,1.155787E-01,1.133123E-01,1.110903E-01,1.089119E-01, 1.067762E-01,1.046824E-01,1.026296E-01,1.006171E-01,9.864406E-02,9.670971E-02, 9.481329E-02,9.295406E-02,9.113129E-02,8.934426E-02,8.759227E-02,8.587464E-02, 8.419069E-02,8.253976E-02,8.092121E-02,7.933439E-02,7.777869E-02,7.625350E-02, 7.475822E-02,7.329225E-02,7.185504E-02,7.044600E-02,6.906460E-02,6.771029E-02, 6.638253E-02,6.508081E-02,6.380461E-02,6.255344E-02,6.132681E-02,6.012423E-02, 5.894523E-02,5.778935E-02,5.665613E-02,5.554514E-02,5.445593E-02,5.338809E-02, 5.234118E-02,5.131480E-02,5.030855E-02,4.932203E-02,4.835485E-02,4.740664E-02, 4.647703E-02,4.556564E-02,4.467213E-02,4.379614E-02,4.293732E-02,4.209535E-02, 4.126988E-02,4.046060E-02,3.966720E-02,3.888935E-02,3.812675E-02,3.737911E-02, 3.664613E-02,3.592752E-02,3.522300E-02,3.453230E-02,3.385514E-02,3.319126E-02, 3.254040E-02,3.190231E-02,3.127672E-02,3.066340E-02,3.006211E-02,2.947261E-02, 2.889467E-02,2.832807E-02,2.777257E-02,2.722797E-02,2.669404E-02,2.617059E-02, 2.565740E-02,2.515427E-02,2.466101E-02,2.417743E-02,2.370332E-02,2.323851E-02, 2.278282E-02,2.233606E-02,2.189807E-02,2.146866E-02,2.104767E-02,2.063494E-02, 2.023030E-02,1.983360E-02,1.944467E-02,1.906338E-02,1.868955E-02,1.832306E-02, 1.796376E-02,1.761150E-02,1.726615E-02,1.692757E-02,1.659563E-02,1.627020E-02, 1.595115E-02,1.563836E-02,1.533170E-02,1.503106E-02,1.473631E-02,1.444734E-02, 1.416403E-02,1.388629E-02,1.361398E-02,1.334702E-02,1.308529E-02,1.282870E-02, 1.257714E-02,1.233051E-02,1.208871E-02,1.185166E-02,1.161926E-02,1.139141E-02, 1.116803E-02,1.094903E-02,1.073433E-02,1.052384E-02,1.031747E-02,1.011515E-02, 9.916799E-03,9.722337E-03,9.531688E-03,9.344777E-03,9.161532E-03,8.981880E-03, 8.805750E-03,8.633075E-03,8.463786E-03,8.297816E-03,8.135101E-03,7.975577E-03, 7.819180E-03,7.665851E-03,7.515528E-03,7.368153E-03,7.223668E-03,7.082017E-03, 6.943143E-03,6.806992E-03,6.673511E-03,6.542647E-03,6.414350E-03,6.288569E-03, 6.165254E-03,6.044357E-03,5.925831E-03,5.809629E-03,5.695705E-03,5.584016E-03, 5.474517E-03,5.367165E-03,5.261918E-03,5.158735E-03,5.057576E-03,4.958400E-03, 4.861168E-03,4.765844E-03,4.672389E-03,4.580766E-03,4.490940E-03,4.402875E-03, 4.316538E-03,4.231893E-03,4.148908E-03,4.067550E-03,3.987788E-03,3.909590E-03, 3.832926E-03,3.757764E-03,3.684077E-03,3.611834E-03,3.541008E-03,3.471571E-03, 3.403496E-03,3.336755E-03,3.271324E-03,3.207175E-03,3.144284E-03,3.082627E-03, 3.022178E-03,2.962915E-03,2.904814E-03,2.847853E-03,2.792008E-03,2.737258E-03, 2.683583E-03,2.630959E-03,2.579368E-03,2.528788E-03,2.479200E-03,2.430584E-03, 2.382922E-03,2.336194E-03,2.290383E-03,2.245470E-03,2.201438E-03,2.158269E-03, 2.115946E-03,2.074454E-03,2.033775E-03,1.993894E-03,1.954795E-03,1.916463E-03, 1.878882E-03,1.842038E-03,1.805917E-03,1.770504E-03,1.735786E-03,1.701748E-03], [8.718750E-02,8.547781E-02,8.380164E-02,8.215834E-02,8.054726E-02,7.896778E-02, 7.741927E-02,1.630886E-01,1.598906E-01,1.567552E-01,1.536813E-01,1.506677E-01, 1.477132E-01,1.448167E-01,2.291644E-01,2.246706E-01,2.202650E-01,2.159457E-01, 2.117111E-01,2.075596E-01,2.034895E-01,2.866867E-01,2.810649E-01,2.755534E-01, 2.701500E-01,2.648525E-01,2.596589E-01,2.545672E-01,3.367628E-01,3.301591E-01, 3.236848E-01,3.173376E-01,3.111148E-01,3.050140E-01,2.990329E-01,3.803565E-01, 3.728980E-01,3.655857E-01,3.584167E-01,3.513884E-01,3.444979E-01,3.377425E-01, 4.183071E-01,4.101043E-01,4.020624E-01,3.941782E-01,3.864486E-01,3.788706E-01, 3.714412E-01,3.641575E-01,3.570166E-01,3.500157E-01,3.431521E-01,3.364231E-01, 3.298260E-01,3.233583E-01,3.170175E-01,3.108010E-01,3.047063E-01,2.987312E-01, 2.928733E-01,2.871302E-01,2.814998E-01,2.759797E-01,2.705680E-01,2.652623E-01, 2.600606E-01,2.549610E-01,2.499614E-01,2.450598E-01,2.402543E-01,2.355431E-01, 2.309242E-01,2.263959E-01,2.219565E-01,2.176040E-01,2.133369E-01,2.091535E-01, 2.050522E-01,2.010312E-01,1.970891E-01,1.932243E-01,1.894353E-01,1.857206E-01, 1.820787E-01,1.785083E-01,1.750078E-01,1.715760E-01,1.682115E-01,1.649130E-01, 1.616792E-01,1.585087E-01,1.554005E-01,1.523532E-01,1.493656E-01,1.464367E-01, 1.435651E-01,1.407499E-01,1.379899E-01,1.352840E-01,1.326311E-01,1.300303E-01, 1.274805E-01,1.249807E-01,1.225299E-01,1.201272E-01,1.177715E-01,1.154621E-01, 1.131980E-01,1.109782E-01,1.088020E-01,1.066685E-01,1.045768E-01,1.025261E-01, 1.005156E-01,9.854456E-02,9.661216E-02,9.471765E-02,9.286030E-02,9.103937E-02, 8.925414E-02,8.750392E-02,8.578802E-02,8.410577E-02,8.245651E-02,8.083959E-02, 7.925437E-02,7.770024E-02,7.617659E-02,7.468281E-02,7.321833E-02,7.178256E-02, 7.037495E-02,6.899494E-02,6.764199E-02,6.631557E-02,6.501516E-02,6.374025E-02, 6.249035E-02,6.126495E-02,6.006358E-02,5.888577E-02,5.773106E-02,5.659899E-02, 5.548911E-02,5.440101E-02,5.333424E-02,5.228838E-02,5.126304E-02,5.025780E-02, 4.927228E-02,4.830608E-02,4.735883E-02,4.643015E-02,4.551968E-02,4.462707E-02, 4.375196E-02,4.289401E-02,4.205289E-02,4.122825E-02,4.041979E-02,3.962719E-02, 3.885012E-02,3.808829E-02,3.734141E-02,3.660916E-02,3.589128E-02,3.518747E-02, 3.449747E-02,3.382099E-02,3.315779E-02,3.250758E-02,3.187013E-02,3.124517E-02, 3.063247E-02,3.003179E-02,2.944289E-02,2.886553E-02,2.829949E-02,2.774456E-02, 2.720050E-02,2.666712E-02,2.614419E-02,2.563152E-02,2.512890E-02,2.463614E-02, 2.415304E-02,2.367941E-02,2.321507E-02,2.275984E-02,2.231353E-02,2.187598E-02, 2.144701E-02,2.102644E-02,2.061413E-02,2.020990E-02,1.981359E-02,1.942506E-02, 1.904415E-02,1.867070E-02,1.830458E-02,1.794564E-02,1.759374E-02,1.724873E-02, 1.691050E-02,1.657889E-02,1.625379E-02,1.593506E-02,1.562259E-02,1.531624E-02, 1.501590E-02,1.472144E-02,1.443276E-02,1.414975E-02,1.387228E-02,1.360025E-02, 1.333356E-02,1.307210E-02,1.281576E-02,1.256445E-02,1.231807E-02,1.207652E-02, 1.183971E-02,1.160754E-02,1.137992E-02,1.115677E-02,1.093799E-02,1.072350E-02, 1.051322E-02,1.030706E-02,1.010495E-02,9.906796E-03,9.712530E-03,9.522073E-03, 9.335351E-03,9.152291E-03,8.972820E-03,8.796868E-03,8.624367E-03,8.455249E-03, 8.289446E-03,8.126895E-03,7.967532E-03,7.811293E-03,7.658119E-03,7.507948E-03, 7.360721E-03,7.216382E-03,7.074873E-03,6.936139E-03,6.800126E-03,6.666780E-03, 6.536048E-03,6.407880E-03,6.282226E-03,6.159035E-03,6.038260E-03,5.919853E-03, 5.803769E-03,5.689960E-03,5.578384E-03,5.468995E-03,5.361751E-03,5.256611E-03, 5.153532E-03,5.052474E-03,4.953398E-03,4.856265E-03,4.761037E-03,4.667676E-03, 4.576145E-03,4.486410E-03,4.398434E-03,4.312184E-03,4.227624E-03,4.144723E-03, 4.063448E-03,3.983766E-03,3.905647E-03,3.829059E-03,3.753974E-03,3.680361E-03, 3.608191E-03,3.537437E-03,3.468070E-03,3.400063E-03,3.333390E-03,3.268024E-03, 3.203940E-03,3.141113E-03,3.079517E-03,3.019130E-03,2.959927E-03,2.901884E-03, 2.844980E-03,2.789192E-03,2.734497E-03,2.680876E-03,2.628305E-03,2.576766E-03, 2.526237E-03,2.476699E-03,2.428133E-03,2.380518E-03,2.333838E-03,2.288073E-03, 2.243205E-03,2.199217E-03,2.156092E-03,2.113812E-03,2.072362E-03,2.031724E-03, 1.991883E-03,1.952823E-03,1.914530E-03,1.876987E-03,1.840180E-03,1.804096E-03, 1.768718E-03,1.734035E-03,1.700031E-03,1.666695E-03,1.634012E-03,1.601970E-03, 1.570556E-03,1.539759E-03,1.509565E-03,1.479963E-03,1.450942E-03,1.422490E-03, 1.394596E-03,1.367249E-03,1.340438E-03,1.314153E-03,1.288383E-03,1.263119E-03, 1.238350E-03,1.214066E-03,1.190259E-03,1.166919E-03,1.144036E-03,1.121602E-03, 1.099609E-03,1.078046E-03,1.056906E-03,1.036181E-03,1.015862E-03,9.959415E-04, 9.764117E-04,9.572648E-04,9.384935E-04,9.200902E-04,9.020478E-04,8.843592E-04, 8.670174E-04,8.500157E-04,8.333474E-04,8.170060E-04,8.009850E-04,7.852782E-04, 7.698794E-04,7.547825E-04,7.399817E-04,7.254711E-04,7.112450E-04,6.972980E-04]] try: # internal model constants ted_empty.num_simulation_days = 366 ted_empty.frac_pest_on_surface = 0.62 ted_empty.density_h2o = 1.0 ted_empty.mass_wax = 0.012 # input variables that change per simulation ted_empty.solubility = pd.Series([145., 1., 20.], dtype='float') ted_empty.log_kow = pd.Series([2.75, 4., 5.], dtype='float') # internally calculated variables blp_conc = pd.Series([[6.750000E+01,6.617637E+01,6.487869E+01,6.360646E+01,6.235917E+01,6.113635E+01,5.993750E+01, 1.262622E+02,1.237862E+02,1.213589E+02,1.189791E+02,1.166460E+02,1.143586E+02,1.121161E+02, 1.774176E+02,1.739385E+02,1.705277E+02,1.671838E+02,1.639054E+02,1.606913E+02,1.575403E+02, 2.219510E+02,2.175987E+02,2.133317E+02,2.091484E+02,2.050471E+02,2.010263E+02,1.970843E+02, 2.607196E+02,2.556070E+02,2.505947E+02,2.456807E+02,2.408631E+02,2.361399E+02,2.315093E+02, 2.269696E+02,2.225188E+02,2.181554E+02,2.138775E+02,2.096835E+02,2.055717E+02,2.015406E+02, 1.975885E+02,1.937139E+02,1.899153E+02,1.861912E+02,1.825401E+02,1.789606E+02,1.754513E+02, 1.720108E+02,1.686377E+02,1.653309E+02,1.620888E+02,1.589104E+02,1.557942E+02,1.527392E+02, 1.497441E+02,1.468077E+02,1.439289E+02,1.411065E+02,1.383395E+02,1.356267E+02,1.329672E+02, 1.303598E+02,1.278035E+02,1.252974E+02,1.228404E+02,1.204315E+02,1.180699E+02,1.157547E+02, 1.134848E+02,1.112594E+02,1.090777E+02,1.069387E+02,1.048417E+02,1.027859E+02,1.007703E+02, 9.879424E+01,9.685694E+01,9.495764E+01,9.309558E+01,9.127003E+01,8.948028E+01,8.772563E+01, 8.600538E+01,8.431887E+01,8.266543E+01,8.104441E+01,7.945518E+01,7.789711E+01,7.636959E+01, 7.487203E+01,7.340384E+01,7.196443E+01,7.055325E+01,6.916975E+01,6.781337E+01,6.648359E+01, 6.517989E+01,6.390175E+01,6.264868E+01,6.142018E+01,6.021576E+01,5.903497E+01,5.787733E+01, 5.674239E+01,5.562971E+01,5.453884E+01,5.346937E+01,5.242087E+01,5.139293E+01,5.038514E+01, 4.939712E+01,4.842847E+01,4.747882E+01,4.654779E+01,4.563501E+01,4.474014E+01,4.386281E+01, 4.300269E+01,4.215943E+01,4.133271E+01,4.052220E+01,3.972759E+01,3.894855E+01,3.818480E+01, 3.743602E+01,3.670192E+01,3.598222E+01,3.527663E+01,3.458487E+01,3.390669E+01,3.324180E+01, 3.258994E+01,3.195088E+01,3.132434E+01,3.071009E+01,3.010788E+01,2.951748E+01,2.893866E+01, 2.837119E+01,2.781485E+01,2.726942E+01,2.673468E+01,2.621043E+01,2.569646E+01,2.519257E+01, 2.469856E+01,2.421424E+01,2.373941E+01,2.327389E+01,2.281751E+01,2.237007E+01,2.193141E+01, 2.150135E+01,2.107972E+01,2.066636E+01,2.026110E+01,1.986379E+01,1.947428E+01,1.909240E+01, 1.871801E+01,1.835096E+01,1.799111E+01,1.763831E+01,1.729244E+01,1.695334E+01,1.662090E+01, 1.629497E+01,1.597544E+01,1.566217E+01,1.535504E+01,1.505394E+01,1.475874E+01,1.446933E+01, 1.418560E+01,1.390743E+01,1.363471E+01,1.336734E+01,1.310522E+01,1.284823E+01,1.259629E+01, 1.234928E+01,1.210712E+01,1.186970E+01,1.163695E+01,1.140875E+01,1.118503E+01,1.096570E+01, 1.075067E+01,1.053986E+01,1.033318E+01,1.013055E+01,9.931897E+00,9.737138E+00,9.546199E+00, 9.359004E+00,9.175480E+00,8.995554E+00,8.819157E+00,8.646218E+00,8.476671E+00,8.310449E+00, 8.147486E+00,7.987719E+00,7.831085E+00,7.677522E+00,7.526970E+00,7.379371E+00,7.234666E+00, 7.092799E+00,6.953713E+00,6.817355E+00,6.683671E+00,6.552608E+00,6.424116E+00,6.298143E+00, 6.174640E+00,6.053559E+00,5.934852E+00,5.818474E+00,5.704377E+00,5.592517E+00,5.482852E+00, 5.375336E+00,5.269929E+00,5.166589E+00,5.065275E+00,4.965948E+00,4.868569E+00,4.773100E+00, 4.679502E+00,4.587740E+00,4.497777E+00,4.409578E+00,4.323109E+00,4.238336E+00,4.155225E+00, 4.073743E+00,3.993859E+00,3.915542E+00,3.838761E+00,3.763485E+00,3.689686E+00,3.617333E+00, 3.546399E+00,3.476857E+00,3.408678E+00,3.341835E+00,3.276304E+00,3.212058E+00,3.149071E+00, 3.087320E+00,3.026779E+00,2.967426E+00,2.909237E+00,2.852188E+00,2.796259E+00,2.741426E+00, 2.687668E+00,2.634965E+00,2.583295E+00,2.532638E+00,2.482974E+00,2.434285E+00,2.386550E+00, 2.339751E+00,2.293870E+00,2.248889E+00,2.204789E+00,2.161555E+00,2.119168E+00,2.077612E+00, 2.036872E+00,1.996930E+00,1.957771E+00,1.919380E+00,1.881743E+00,1.844843E+00,1.808667E+00, 1.773200E+00,1.738428E+00,1.704339E+00,1.670918E+00,1.638152E+00,1.606029E+00,1.574536E+00, 1.543660E+00,1.513390E+00,1.483713E+00,1.454618E+00,1.426094E+00,1.398129E+00,1.370713E+00, 1.343834E+00,1.317482E+00,1.291647E+00,1.266319E+00,1.241487E+00,1.217142E+00,1.193275E+00, 1.169876E+00,1.146935E+00,1.124444E+00,1.102395E+00,1.080777E+00,1.059584E+00,1.038806E+00, 1.018436E+00,9.984649E-01,9.788856E-01,9.596902E-01,9.408713E-01,9.224214E-01,9.043333E-01, 8.865998E-01,8.692142E-01,8.521694E-01,8.354589E-01,8.190760E-01,8.030145E-01,7.872678E-01, 7.718300E-01,7.566949E-01,7.418565E-01,7.273092E-01,7.130471E-01,6.990647E-01,6.853565E-01, 6.719170E-01,6.587411E-01,6.458236E-01,6.331594E-01,6.207436E-01,6.085712E-01,5.966374E-01, 5.849378E-01,5.734675E-01,5.622221E-01,5.511973E-01,5.403887E-01,5.297920E-01,5.194031E-01, 5.092179E-01,4.992324E-01,4.894428E-01,4.798451E-01,4.704356E-01,4.612107E-01,4.521666E-01, 4.432999E-01,4.346071E-01,4.260847E-01,4.177294E-01,4.095380E-01,4.015072E-01,3.936339E-01, 3.859150E-01,3.783474E-01,3.709283E-01,3.636546E-01,3.565236E-01,3.495323E-01,3.426782E-01, 3.359585E-01,3.293706E-01], [6.750000E+01,6.617637E+01,6.487869E+01,6.360646E+01,6.235917E+01,6.113635E+01,5.993750E+01, 1.262622E+02,1.237862E+02,1.213589E+02,1.189791E+02,1.166460E+02,1.143586E+02,1.121161E+02, 1.774176E+02,1.739385E+02,1.705277E+02,1.671838E+02,1.639054E+02,1.606913E+02,1.575403E+02, 2.219510E+02,2.175987E+02,2.133317E+02,2.091484E+02,2.050471E+02,2.010263E+02,1.970843E+02, 2.607196E+02,2.556070E+02,2.505947E+02,2.456807E+02,2.408631E+02,2.361399E+02,2.315093E+02, 2.269696E+02,2.225188E+02,2.181554E+02,2.138775E+02,2.096835E+02,2.055717E+02,2.015406E+02, 1.975885E+02,1.937139E+02,1.899153E+02,1.861912E+02,1.825401E+02,1.789606E+02,1.754513E+02, 1.720108E+02,1.686377E+02,1.653309E+02,1.620888E+02,1.589104E+02,1.557942E+02,1.527392E+02, 1.497441E+02,1.468077E+02,1.439289E+02,1.411065E+02,1.383395E+02,1.356267E+02,1.329672E+02, 1.303598E+02,1.278035E+02,1.252974E+02,1.228404E+02,1.204315E+02,1.180699E+02,1.157547E+02, 1.134848E+02,1.112594E+02,1.090777E+02,1.069387E+02,1.048417E+02,1.027859E+02,1.007703E+02, 9.879424E+01,9.685694E+01,9.495764E+01,9.309558E+01,9.127003E+01,8.948028E+01,8.772563E+01, 8.600538E+01,8.431887E+01,8.266543E+01,8.104441E+01,7.945518E+01,7.789711E+01,7.636959E+01, 7.487203E+01,7.340384E+01,7.196443E+01,7.055325E+01,6.916975E+01,6.781337E+01,6.648359E+01, 6.517989E+01,6.390175E+01,6.264868E+01,6.142018E+01,6.021576E+01,5.903497E+01,5.787733E+01, 5.674239E+01,5.562971E+01,5.453884E+01,5.346937E+01,5.242087E+01,5.139293E+01,5.038514E+01, 4.939712E+01,4.842847E+01,4.747882E+01,4.654779E+01,4.563501E+01,4.474014E+01,4.386281E+01, 4.300269E+01,4.215943E+01,4.133271E+01,4.052220E+01,3.972759E+01,3.894855E+01,3.818480E+01, 3.743602E+01,3.670192E+01,3.598222E+01,3.527663E+01,3.458487E+01,3.390669E+01,3.324180E+01, 3.258994E+01,3.195088E+01,3.132434E+01,3.071009E+01,3.010788E+01,2.951748E+01,2.893866E+01, 2.837119E+01,2.781485E+01,2.726942E+01,2.673468E+01,2.621043E+01,2.569646E+01,2.519257E+01, 2.469856E+01,2.421424E+01,2.373941E+01,2.327389E+01,2.281751E+01,2.237007E+01,2.193141E+01, 2.150135E+01,2.107972E+01,2.066636E+01,2.026110E+01,1.986379E+01,1.947428E+01,1.909240E+01, 1.871801E+01,1.835096E+01,1.799111E+01,1.763831E+01,1.729244E+01,1.695334E+01,1.662090E+01, 1.629497E+01,1.597544E+01,1.566217E+01,1.535504E+01,1.505394E+01,1.475874E+01,1.446933E+01, 1.418560E+01,1.390743E+01,1.363471E+01,1.336734E+01,1.310522E+01,1.284823E+01,1.259629E+01, 1.234928E+01,1.210712E+01,1.186970E+01,1.163695E+01,1.140875E+01,1.118503E+01,1.096570E+01, 1.075067E+01,1.053986E+01,1.033318E+01,1.013055E+01,9.931897E+00,9.737138E+00,9.546199E+00, 9.359004E+00,9.175480E+00,8.995554E+00,8.819157E+00,8.646218E+00,8.476671E+00,8.310449E+00, 8.147486E+00,7.987719E+00,7.831085E+00,7.677522E+00,7.526970E+00,7.379371E+00,7.234666E+00, 7.092799E+00,6.953713E+00,6.817355E+00,6.683671E+00,6.552608E+00,6.424116E+00,6.298143E+00, 6.174640E+00,6.053559E+00,5.934852E+00,5.818474E+00,5.704377E+00,5.592517E+00,5.482852E+00, 5.375336E+00,5.269929E+00,5.166589E+00,5.065275E+00,4.965948E+00,4.868569E+00,4.773100E+00, 4.679502E+00,4.587740E+00,4.497777E+00,4.409578E+00,4.323109E+00,4.238336E+00,4.155225E+00, 4.073743E+00,3.993859E+00,3.915542E+00,3.838761E+00,3.763485E+00,3.689686E+00,3.617333E+00, 3.546399E+00,3.476857E+00,3.408678E+00,3.341835E+00,3.276304E+00,3.212058E+00,3.149071E+00, 3.087320E+00,3.026779E+00,2.967426E+00,2.909237E+00,2.852188E+00,2.796259E+00,2.741426E+00, 2.687668E+00,2.634965E+00,2.583295E+00,2.532638E+00,2.482974E+00,2.434285E+00,2.386550E+00, 2.339751E+00,2.293870E+00,2.248889E+00,2.204789E+00,2.161555E+00,2.119168E+00,2.077612E+00, 2.036872E+00,1.996930E+00,1.957771E+00,1.919380E+00,1.881743E+00,1.844843E+00,1.808667E+00, 1.773200E+00,1.738428E+00,1.704339E+00,1.670918E+00,1.638152E+00,1.606029E+00,1.574536E+00, 1.543660E+00,1.513390E+00,1.483713E+00,1.454618E+00,1.426094E+00,1.398129E+00,1.370713E+00, 1.343834E+00,1.317482E+00,1.291647E+00,1.266319E+00,1.241487E+00,1.217142E+00,1.193275E+00, 1.169876E+00,1.146935E+00,1.124444E+00,1.102395E+00,1.080777E+00,1.059584E+00,1.038806E+00, 1.018436E+00,9.984649E-01,9.788856E-01,9.596902E-01,9.408713E-01,9.224214E-01,9.043333E-01, 8.865998E-01,8.692142E-01,8.521694E-01,8.354589E-01,8.190760E-01,8.030145E-01,7.872678E-01, 7.718300E-01,7.566949E-01,7.418565E-01,7.273092E-01,7.130471E-01,6.990647E-01,6.853565E-01, 6.719170E-01,6.587411E-01,6.458236E-01,6.331594E-01,6.207436E-01,6.085712E-01,5.966374E-01, 5.849378E-01,5.734675E-01,5.622221E-01,5.511973E-01,5.403887E-01,5.297920E-01,5.194031E-01, 5.092179E-01,4.992324E-01,4.894428E-01,4.798451E-01,4.704356E-01,4.612107E-01,4.521666E-01, 4.432999E-01,4.346071E-01,4.260847E-01,4.177294E-01,4.095380E-01,4.015072E-01,3.936339E-01, 3.859150E-01,3.783474E-01,3.709283E-01,3.636546E-01,3.565236E-01,3.495323E-01,3.426782E-01, 3.359585E-01,3.293706E-01], [1.687500E+02,1.654409E+02,1.621967E+02,1.590161E+02,1.558979E+02,1.528409E+02,1.498438E+02, 3.156554E+02,3.094656E+02,3.033972E+02,2.974477E+02,2.916150E+02,2.858966E+02,2.802903E+02, 4.435440E+02,4.348464E+02,4.263193E+02,4.179594E+02,4.097635E+02,4.017283E+02,3.938506E+02, 5.548775E+02,5.439967E+02,5.333292E+02,5.228710E+02,5.126178E+02,5.025657E+02,4.927107E+02, 6.517989E+02,6.390175E+02,6.264868E+02,6.142018E+02,6.021576E+02,5.903497E+02,5.787733E+02, 7.361739E+02,7.217380E+02,7.075851E+02,6.937098E+02,6.801066E+02,6.667701E+02,6.536952E+02, 8.096266E+02,7.937503E+02,7.781854E+02,7.629256E+02,7.479651E+02,7.332980E+02,7.189184E+02, 7.048209E+02,6.909998E+02,6.774497E+02,6.641653E+02,6.511414E+02,6.383730E+02,6.258549E+02, 6.135822E+02,6.015503E+02,5.897542E+02,5.781895E+02,5.668516E+02,5.557359E+02,5.448383E+02, 5.341544E+02,5.236799E+02,5.134109E+02,5.033432E+02,4.934729E+02,4.837962E+02,4.743093E+02, 4.650084E+02,4.558898E+02,4.469501E+02,4.381857E+02,4.295931E+02,4.211691E+02,4.129102E+02, 4.048133E+02,3.968752E+02,3.890927E+02,3.814628E+02,3.739826E+02,3.666490E+02,3.594592E+02, 3.524104E+02,3.454999E+02,3.387249E+02,3.320827E+02,3.255707E+02,3.191865E+02,3.129274E+02, 3.067911E+02,3.007751E+02,2.948771E+02,2.890947E+02,2.834258E+02,2.778680E+02,2.724191E+02, 2.670772E+02,2.618400E+02,2.567054E+02,2.516716E+02,2.467365E+02,2.418981E+02,2.371546E+02, 2.325042E+02,2.279449E+02,2.234751E+02,2.190929E+02,2.147966E+02,2.105845E+02,2.064551E+02, 2.024067E+02,1.984376E+02,1.945463E+02,1.907314E+02,1.869913E+02,1.833245E+02,1.797296E+02, 1.762052E+02,1.727499E+02,1.693624E+02,1.660413E+02,1.627854E+02,1.595932E+02,1.564637E+02, 1.533956E+02,1.503876E+02,1.474386E+02,1.445474E+02,1.417129E+02,1.389340E+02,1.362096E+02, 1.335386E+02,1.309200E+02,1.283527E+02,1.258358E+02,1.233682E+02,1.209491E+02,1.185773E+02, 1.162521E+02,1.139725E+02,1.117375E+02,1.095464E+02,1.073983E+02,1.052923E+02,1.032276E+02, 1.012033E+02,9.921879E+01,9.727317E+01,9.536570E+01,9.349564E+01,9.166225E+01,8.986481E+01, 8.810261E+01,8.637497E+01,8.468121E+01,8.302067E+01,8.139268E+01,7.979662E+01,7.823186E+01, 7.669778E+01,7.519378E+01,7.371928E+01,7.227369E+01,7.085644E+01,6.946699E+01,6.810479E+01, 6.676929E+01,6.545999E+01,6.417636E+01,6.291790E+01,6.168412E+01,6.047453E+01,5.928866E+01, 5.812605E+01,5.698623E+01,5.586876E+01,5.477321E+01,5.369914E+01,5.264614E+01,5.161378E+01, 5.060166E+01,4.960939E+01,4.863658E+01,4.768285E+01,4.674782E+01,4.583112E+01,4.493240E+01, 4.405131E+01,4.318749E+01,4.234061E+01,4.151033E+01,4.069634E+01,3.989831E+01,3.911593E+01, 3.834889E+01,3.759689E+01,3.685964E+01,3.613684E+01,3.542822E+01,3.473350E+01,3.405239E+01, 3.338465E+01,3.272999E+01,3.208818E+01,3.145895E+01,3.084206E+01,3.023726E+01,2.964433E+01, 2.906302E+01,2.849312E+01,2.793438E+01,2.738661E+01,2.684957E+01,2.632307E+01,2.580689E+01, 2.530083E+01,2.480470E+01,2.431829E+01,2.384143E+01,2.337391E+01,2.291556E+01,2.246620E+01, 2.202565E+01,2.159374E+01,2.117030E+01,2.075517E+01,2.034817E+01,1.994916E+01,1.955796E+01, 1.917444E+01,1.879845E+01,1.842982E+01,1.806842E+01,1.771411E+01,1.736675E+01,1.702620E+01, 1.669232E+01,1.636500E+01,1.604409E+01,1.572947E+01,1.542103E+01,1.511863E+01,1.482217E+01, 1.453151E+01,1.424656E+01,1.396719E+01,1.369330E+01,1.342479E+01,1.316153E+01,1.290344E+01, 1.265042E+01,1.240235E+01,1.215915E+01,1.192071E+01,1.168695E+01,1.145778E+01,1.123310E+01, 1.101283E+01,1.079687E+01,1.058515E+01,1.037758E+01,1.017409E+01,9.974578E+00,9.778982E+00, 9.587222E+00,9.399223E+00,9.214910E+00,9.034211E+00,8.857056E+00,8.683374E+00,8.513098E+00, 8.346162E+00,8.182499E+00,8.022045E+00,7.864737E+00,7.710515E+00,7.559316E+00,7.411083E+00, 7.265756E+00,7.123279E+00,6.983596E+00,6.846652E+00,6.712393E+00,6.580767E+00,6.451722E+00, 6.325208E+00,6.201174E+00,6.079573E+00,5.960356E+00,5.843477E+00,5.728890E+00,5.616550E+00, 5.506413E+00,5.398436E+00,5.292576E+00,5.188792E+00,5.087043E+00,4.987289E+00,4.889491E+00, 4.793611E+00,4.699611E+00,4.607455E+00,4.517105E+00,4.428528E+00,4.341687E+00,4.256549E+00, 4.173081E+00,4.091249E+00,4.011022E+00,3.932369E+00,3.855257E+00,3.779658E+00,3.705541E+00, 3.632878E+00,3.561639E+00,3.491798E+00,3.423326E+00,3.356196E+00,3.290383E+00,3.225861E+00, 3.162604E+00,3.100587E+00,3.039787E+00,2.980178E+00,2.921739E+00,2.864445E+00,2.808275E+00, 2.753207E+00,2.699218E+00,2.646288E+00,2.594396E+00,2.543521E+00,2.493644E+00,2.444746E+00, 2.396806E+00,2.349806E+00,2.303727E+00,2.258553E+00,2.214264E+00,2.170844E+00,2.128275E+00, 2.086540E+00,2.045625E+00,2.005511E+00,1.966184E+00,1.927629E+00,1.889829E+00,1.852771E+00, 1.816439E+00,1.780820E+00,1.745899E+00,1.711663E+00,1.678098E+00,1.645192E+00,1.612931E+00, 1.581302E+00,1.550294E+00,1.519893E+00,1.490089E+00,1.460869E+00,1.432223E+00,1.404138E+00, 1.376603E+00,1.349609E+00]], dtype='float') for i in range(3): result[i] = ted_empty.daily_plant_dew_timeseries(i, blp_conc[i]) npt.assert_allclose(result[i],expected_results[i],rtol=1e-4, atol=0, err_msg='', verbose=True) finally: for i in range(3): tab = [result[i], expected_results[i]] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_daily_soil_timeseries(self): """ :description generates annual timeseries of daily pesticide concentrations in soil :param i; simulation number/index :param pore_h2o_conc; daily values of pesticide concentration in soil pore water :Notes # calculations are performed daily from day of first application (assumed day 0) through the last day of a year # note: day numbers are synchronized with 0-based array indexing; thus the year does not have a calendar specific # assoication, rather it is one year from the day of 1st pesticide application :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([[]], dtype='float') expected_results = [[3.521818E+00,3.285972E+00,3.065920E+00,2.860605E+00,2.669039E+00,2.490301E+00,2.323533E+00, 5.689751E+00,5.308725E+00,4.953216E+00,4.621514E+00,4.312025E+00,4.023261E+00,3.753835E+00, 7.024270E+00,6.553876E+00,6.114982E+00,5.705480E+00,5.323401E+00,4.966909E+00,4.634290E+00, 7.845763E+00,7.320356E+00,6.830133E+00,6.372740E+00,5.945976E+00,5.547792E+00,5.176273E+00, 8.351451E+00,7.792179E+00,7.270360E+00,6.783486E+00,6.329216E+00,5.905368E+00,5.509903E+00, 8.662739E+00,8.082621E+00,7.541352E+00,7.036330E+00,6.565128E+00,6.125481E+00,5.715276E+00, 8.854359E+00,8.261409E+00,7.708167E+00,7.191974E+00,6.710349E+00,6.260977E+00,5.841698E+00, 5.450497E+00,5.085494E+00,4.744933E+00,4.427179E+00,4.130704E+00,3.854083E+00,3.595987E+00, 3.355175E+00,3.130489E+00,2.920849E+00,2.725249E+00,2.542747E+00,2.372467E+00,2.213590E+00, 2.065352E+00,1.927042E+00,1.797994E+00,1.677587E+00,1.565244E+00,1.460425E+00,1.362624E+00, 1.271373E+00,1.186233E+00,1.106795E+00,1.032676E+00,9.635209E-01,8.989968E-01,8.387936E-01, 7.826221E-01,7.302123E-01,6.813121E-01,6.356867E-01,5.931167E-01,5.533974E-01,5.163381E-01, 4.817604E-01,4.494984E-01,4.193968E-01,3.913111E-01,3.651061E-01,3.406561E-01,3.178434E-01, 2.965583E-01,2.766987E-01,2.581690E-01,2.408802E-01,2.247492E-01,2.096984E-01,1.956555E-01, 1.825531E-01,1.703280E-01,1.589217E-01,1.482792E-01,1.383494E-01,1.290845E-01,1.204401E-01, 1.123746E-01,1.048492E-01,9.782777E-02,9.127653E-02,8.516402E-02,7.946084E-02,7.413958E-02, 6.917468E-02,6.454226E-02,6.022005E-02,5.618730E-02,5.242460E-02,4.891388E-02,4.563827E-02, 4.258201E-02,3.973042E-02,3.706979E-02,3.458734E-02,3.227113E-02,3.011003E-02,2.809365E-02, 2.621230E-02,2.445694E-02,2.281913E-02,2.129100E-02,1.986521E-02,1.853490E-02,1.729367E-02, 1.613556E-02,1.505501E-02,1.404682E-02,1.310615E-02,1.222847E-02,1.140957E-02,1.064550E-02, 9.932605E-03,9.267448E-03,8.646835E-03,8.067782E-03,7.527507E-03,7.023412E-03,6.553075E-03, 6.114235E-03,5.704783E-03,5.322751E-03,4.966302E-03,4.633724E-03,4.323417E-03,4.033891E-03, 3.763753E-03,3.511706E-03,3.276538E-03,3.057118E-03,2.852392E-03,2.661376E-03,2.483151E-03, 2.316862E-03,2.161709E-03,2.016946E-03,1.881877E-03,1.755853E-03,1.638269E-03,1.528559E-03, 1.426196E-03,1.330688E-03,1.241576E-03,1.158431E-03,1.080854E-03,1.008473E-03,9.409384E-04, 8.779265E-04,8.191344E-04,7.642794E-04,7.130979E-04,6.653439E-04,6.207878E-04,5.792155E-04, 5.404272E-04,5.042364E-04,4.704692E-04,4.389633E-04,4.095672E-04,3.821397E-04,3.565490E-04, 3.326719E-04,3.103939E-04,2.896077E-04,2.702136E-04,2.521182E-04,2.352346E-04,2.194816E-04, 2.047836E-04,1.910699E-04,1.782745E-04,1.663360E-04,1.551970E-04,1.448039E-04,1.351068E-04, 1.260591E-04,1.176173E-04,1.097408E-04,1.023918E-04,9.553493E-05,8.913724E-05,8.316799E-05, 7.759848E-05,7.240194E-05,6.755340E-05,6.302955E-05,5.880865E-05,5.487041E-05,5.119590E-05, 4.776746E-05,4.456862E-05,4.158399E-05,3.879924E-05,3.620097E-05,3.377670E-05,3.151477E-05, 2.940432E-05,2.743520E-05,2.559795E-05,2.388373E-05,2.228431E-05,2.079200E-05,1.939962E-05, 1.810048E-05,1.688835E-05,1.575739E-05,1.470216E-05,1.371760E-05,1.279898E-05,1.194187E-05, 1.114216E-05,1.039600E-05,9.699809E-06,9.050242E-06,8.444175E-06,7.878693E-06,7.351081E-06, 6.858801E-06,6.399488E-06,5.970933E-06,5.571078E-06,5.197999E-06,4.849905E-06,4.525121E-06, 4.222087E-06,3.939347E-06,3.675540E-06,3.429400E-06,3.199744E-06,2.985467E-06,2.785539E-06, 2.599000E-06,2.424952E-06,2.262561E-06,2.111044E-06,1.969673E-06,1.837770E-06,1.714700E-06, 1.599872E-06,1.492733E-06,1.392769E-06,1.299500E-06,1.212476E-06,1.131280E-06,1.055522E-06, 9.848367E-07,9.188851E-07,8.573501E-07,7.999360E-07,7.463666E-07,6.963847E-07,6.497499E-07, 6.062381E-07,5.656401E-07,5.277609E-07,4.924183E-07,4.594426E-07,4.286751E-07,3.999680E-07, 3.731833E-07,3.481923E-07,3.248749E-07,3.031190E-07,2.828201E-07,2.638805E-07,2.462092E-07, 2.297213E-07,2.143375E-07,1.999840E-07,1.865917E-07,1.740962E-07,1.624375E-07,1.515595E-07, 1.414100E-07,1.319402E-07,1.231046E-07,1.148606E-07,1.071688E-07,9.999199E-08,9.329583E-08, 8.704809E-08,8.121874E-08,7.577976E-08,7.070502E-08,6.597011E-08,6.155229E-08,5.743032E-08, 5.358438E-08,4.999600E-08,4.664791E-08,4.352404E-08,4.060937E-08,3.788988E-08,3.535251E-08, 3.298506E-08,3.077615E-08,2.871516E-08,2.679219E-08,2.499800E-08,2.332396E-08,2.176202E-08, 2.030468E-08,1.894494E-08,1.767625E-08,1.649253E-08,1.538807E-08,1.435758E-08,1.339610E-08, 1.249900E-08,1.166198E-08,1.088101E-08,1.015234E-08,9.472470E-09,8.838127E-09,8.246264E-09, 7.694037E-09,7.178790E-09,6.698048E-09,6.249500E-09,5.830989E-09,5.440505E-09,5.076171E-09, 4.736235E-09,4.419064E-09,4.123132E-09,3.847018E-09,3.589395E-09,3.349024E-09,3.124750E-09, 2.915495E-09,2.720253E-09,2.538086E-09,2.368118E-09,2.209532E-09,2.061566E-09,1.923509E-09, 1.794697E-09,1.674512E-09], [3.544172E+00,3.306830E+00,3.085381E+00,2.878762E+00,2.685980E+00,2.506108E+00,2.338282E+00, 5.725866E+00,5.342422E+00,4.984656E+00,4.650848E+00,4.339395E+00,4.048799E+00,3.777663E+00, 7.068856E+00,6.595476E+00,6.153797E+00,5.741695E+00,5.357191E+00,4.998436E+00,4.663706E+00, 7.895563E+00,7.366821E+00,6.873487E+00,6.413190E+00,5.983718E+00,5.583006E+00,5.209129E+00, 8.404462E+00,7.841640E+00,7.316509E+00,6.826544E+00,6.369391E+00,5.942852E+00,5.544877E+00, 8.717725E+00,8.133925E+00,7.589220E+00,7.080993E+00,6.606800E+00,6.164363E+00,5.751554E+00, 8.910561E+00,8.313848E+00,7.757094E+00,7.237625E+00,6.752943E+00,6.300718E+00,5.878778E+00, 5.485094E+00,5.117774E+00,4.775052E+00,4.455281E+00,4.156924E+00,3.878547E+00,3.618812E+00, 3.376471E+00,3.150359E+00,2.939389E+00,2.742547E+00,2.558887E+00,2.387526E+00,2.227640E+00, 2.078462E+00,1.939274E+00,1.809406E+00,1.688236E+00,1.575180E+00,1.469695E+00,1.371273E+00, 1.279443E+00,1.193763E+00,1.113820E+00,1.039231E+00,9.696368E-01,9.047031E-01,8.441178E-01, 7.875898E-01,7.348473E-01,6.856367E-01,6.397217E-01,5.968815E-01,5.569101E-01,5.196155E-01, 4.848184E-01,4.523516E-01,4.220589E-01,3.937949E-01,3.674236E-01,3.428184E-01,3.198608E-01, 2.984407E-01,2.784550E-01,2.598077E-01,2.424092E-01,2.261758E-01,2.110295E-01,1.968974E-01, 1.837118E-01,1.714092E-01,1.599304E-01,1.492204E-01,1.392275E-01,1.299039E-01,1.212046E-01, 1.130879E-01,1.055147E-01,9.844872E-02,9.185591E-02,8.570459E-02,7.996521E-02,7.461018E-02, 6.961376E-02,6.495194E-02,6.060230E-02,5.654394E-02,5.275737E-02,4.922436E-02,4.592795E-02, 4.285230E-02,3.998261E-02,3.730509E-02,3.480688E-02,3.247597E-02,3.030115E-02,2.827197E-02, 2.637868E-02,2.461218E-02,2.296398E-02,2.142615E-02,1.999130E-02,1.865255E-02,1.740344E-02, 1.623798E-02,1.515057E-02,1.413599E-02,1.318934E-02,1.230609E-02,1.148199E-02,1.071307E-02, 9.995652E-03,9.326273E-03,8.701720E-03,8.118992E-03,7.575287E-03,7.067993E-03,6.594671E-03, 6.153045E-03,5.740994E-03,5.356537E-03,4.997826E-03,4.663136E-03,4.350860E-03,4.059496E-03, 3.787644E-03,3.533997E-03,3.297335E-03,3.076523E-03,2.870497E-03,2.678269E-03,2.498913E-03, 2.331568E-03,2.175430E-03,2.029748E-03,1.893822E-03,1.766998E-03,1.648668E-03,1.538261E-03, 1.435249E-03,1.339134E-03,1.249456E-03,1.165784E-03,1.087715E-03,1.014874E-03,9.469109E-04, 8.834991E-04,8.243338E-04,7.691307E-04,7.176243E-04,6.695671E-04,6.247282E-04,5.828920E-04, 5.438575E-04,5.074370E-04,4.734555E-04,4.417496E-04,4.121669E-04,3.845653E-04,3.588121E-04, 3.347836E-04,3.123641E-04,2.914460E-04,2.719288E-04,2.537185E-04,2.367277E-04,2.208748E-04, 2.060835E-04,1.922827E-04,1.794061E-04,1.673918E-04,1.561821E-04,1.457230E-04,1.359644E-04, 1.268592E-04,1.183639E-04,1.104374E-04,1.030417E-04,9.614133E-05,8.970304E-05,8.369589E-05, 7.809103E-05,7.286151E-05,6.798219E-05,6.342962E-05,5.918193E-05,5.521870E-05,5.152086E-05, 4.807067E-05,4.485152E-05,4.184795E-05,3.904551E-05,3.643075E-05,3.399109E-05,3.171481E-05, 2.959097E-05,2.760935E-05,2.576043E-05,2.403533E-05,2.242576E-05,2.092397E-05,1.952276E-05, 1.821538E-05,1.699555E-05,1.585741E-05,1.479548E-05,1.380467E-05,1.288022E-05,1.201767E-05, 1.121288E-05,1.046199E-05,9.761378E-06,9.107688E-06,8.497774E-06,7.928703E-06,7.397742E-06, 6.902337E-06,6.440108E-06,6.008833E-06,5.606440E-06,5.230993E-06,4.880689E-06,4.553844E-06, 4.248887E-06,3.964352E-06,3.698871E-06,3.451168E-06,3.220054E-06,3.004417E-06,2.803220E-06, 2.615497E-06,2.440345E-06,2.276922E-06,2.124443E-06,1.982176E-06,1.849435E-06,1.725584E-06, 1.610027E-06,1.502208E-06,1.401610E-06,1.307748E-06,1.220172E-06,1.138461E-06,1.062222E-06, 9.910879E-07,9.247177E-07,8.627921E-07,8.050135E-07,7.511042E-07,7.008050E-07,6.538742E-07, 6.100862E-07,5.692305E-07,5.311108E-07,4.955439E-07,4.623588E-07,4.313961E-07,4.025068E-07, 3.755521E-07,3.504025E-07,3.269371E-07,3.050431E-07,2.846153E-07,2.655554E-07,2.477720E-07, 2.311794E-07,2.156980E-07,2.012534E-07,1.877760E-07,1.752012E-07,1.634685E-07,1.525215E-07, 1.423076E-07,1.327777E-07,1.238860E-07,1.155897E-07,1.078490E-07,1.006267E-07,9.388802E-08, 8.760062E-08,8.173427E-08,7.626077E-08,7.115381E-08,6.638886E-08,6.194299E-08,5.779486E-08, 5.392451E-08,5.031334E-08,4.694401E-08,4.380031E-08,4.086713E-08,3.813038E-08,3.557691E-08, 3.319443E-08,3.097150E-08,2.889743E-08,2.696225E-08,2.515667E-08,2.347201E-08,2.190016E-08, 2.043357E-08,1.906519E-08,1.778845E-08,1.659721E-08,1.548575E-08,1.444871E-08,1.348113E-08, 1.257834E-08,1.173600E-08,1.095008E-08,1.021678E-08,9.532596E-09,8.894227E-09,8.298607E-09, 7.742874E-09,7.224357E-09,6.740563E-09,6.289168E-09,5.868001E-09,5.475039E-09,5.108392E-09, 4.766298E-09,4.447113E-09,4.149303E-09,3.871437E-09,3.612178E-09,3.370282E-09,3.144584E-09, 2.934001E-09,2.737519E-09,2.554196E-09,2.383149E-09,2.223557E-09,2.074652E-09,1.935719E-09, 1.806089E-09,1.685141E-09], [3.555456E+00,3.317358E+00,3.095204E+00,2.887928E+00,2.694532E+00,2.514087E+00,2.345726E+00, 5.744096E+00,5.359431E+00,5.000526E+00,4.665656E+00,4.353211E+00,4.061689E+00,3.789690E+00, 7.091362E+00,6.616475E+00,6.173389E+00,5.759976E+00,5.374248E+00,5.014350E+00,4.678554E+00, 7.920702E+00,7.390276E+00,6.895371E+00,6.433609E+00,6.002769E+00,5.600782E+00,5.225714E+00, 8.431220E+00,7.866606E+00,7.339803E+00,6.848279E+00,6.389670E+00,5.961773E+00,5.562531E+00, 8.745481E+00,8.159822E+00,7.613383E+00,7.103538E+00,6.627835E+00,6.183989E+00,5.769866E+00, 8.938931E+00,8.340318E+00,7.781792E+00,7.260668E+00,6.774443E+00,6.320779E+00,5.897495E+00, 5.502558E+00,5.134068E+00,4.790255E+00,4.469466E+00,4.170159E+00,3.890896E+00,3.630334E+00, 3.387221E+00,3.160389E+00,2.948748E+00,2.751279E+00,2.567034E+00,2.395127E+00,2.234733E+00, 2.085079E+00,1.945448E+00,1.815167E+00,1.693611E+00,1.580195E+00,1.474374E+00,1.375639E+00, 1.283517E+00,1.197564E+00,1.117366E+00,1.042540E+00,9.727239E-01,9.075835E-01,8.468054E-01, 7.900974E-01,7.371869E-01,6.878197E-01,6.417585E-01,5.987818E-01,5.586832E-01,5.212699E-01, 4.863620E-01,4.537918E-01,4.234027E-01,3.950487E-01,3.685934E-01,3.439098E-01,3.208792E-01, 2.993909E-01,2.793416E-01,2.606349E-01,2.431810E-01,2.268959E-01,2.117013E-01,1.975243E-01, 1.842967E-01,1.719549E-01,1.604396E-01,1.496955E-01,1.396708E-01,1.303175E-01,1.215905E-01, 1.134479E-01,1.058507E-01,9.876217E-02,9.214836E-02,8.597746E-02,8.021981E-02,7.484773E-02, 6.983540E-02,6.515873E-02,6.079525E-02,5.672397E-02,5.292534E-02,4.938108E-02,4.607418E-02, 4.298873E-02,4.010990E-02,3.742386E-02,3.491770E-02,3.257937E-02,3.039762E-02,2.836199E-02, 2.646267E-02,2.469054E-02,2.303709E-02,2.149437E-02,2.005495E-02,1.871193E-02,1.745885E-02, 1.628968E-02,1.519881E-02,1.418099E-02,1.323133E-02,1.234527E-02,1.151855E-02,1.074718E-02, 1.002748E-02,9.355966E-03,8.729425E-03,8.144841E-03,7.599406E-03,7.090496E-03,6.615667E-03, 6.172636E-03,5.759273E-03,5.373591E-03,5.013738E-03,4.677983E-03,4.364712E-03,4.072421E-03, 3.799703E-03,3.545248E-03,3.307833E-03,3.086318E-03,2.879636E-03,2.686796E-03,2.506869E-03, 2.338991E-03,2.182356E-03,2.036210E-03,1.899851E-03,1.772624E-03,1.653917E-03,1.543159E-03, 1.439818E-03,1.343398E-03,1.253435E-03,1.169496E-03,1.091178E-03,1.018105E-03,9.499257E-04, 8.863120E-04,8.269584E-04,7.715794E-04,7.199091E-04,6.716989E-04,6.267173E-04,5.847479E-04, 5.455891E-04,5.090526E-04,4.749629E-04,4.431560E-04,4.134792E-04,3.857897E-04,3.599545E-04, 3.358495E-04,3.133586E-04,2.923739E-04,2.727945E-04,2.545263E-04,2.374814E-04,2.215780E-04, 2.067396E-04,1.928949E-04,1.799773E-04,1.679247E-04,1.566793E-04,1.461870E-04,1.363973E-04, 1.272631E-04,1.187407E-04,1.107890E-04,1.033698E-04,9.644743E-05,8.998863E-05,8.396236E-05, 7.833966E-05,7.309348E-05,6.819863E-05,6.363157E-05,5.937036E-05,5.539450E-05,5.168490E-05, 4.822372E-05,4.499432E-05,4.198118E-05,3.916983E-05,3.654674E-05,3.409932E-05,3.181579E-05, 2.968518E-05,2.769725E-05,2.584245E-05,2.411186E-05,2.249716E-05,2.099059E-05,1.958491E-05, 1.827337E-05,1.704966E-05,1.590789E-05,1.484259E-05,1.384863E-05,1.292122E-05,1.205593E-05, 1.124858E-05,1.049530E-05,9.792457E-06,9.136686E-06,8.524829E-06,7.953947E-06,7.421295E-06, 6.924313E-06,6.460612E-06,6.027964E-06,5.624290E-06,5.247648E-06,4.896229E-06,4.568343E-06, 4.262415E-06,3.976973E-06,3.710647E-06,3.462156E-06,3.230306E-06,3.013982E-06,2.812145E-06, 2.623824E-06,2.448114E-06,2.284171E-06,2.131207E-06,1.988487E-06,1.855324E-06,1.731078E-06, 1.615153E-06,1.506991E-06,1.406072E-06,1.311912E-06,1.224057E-06,1.142086E-06,1.065604E-06, 9.942433E-07,9.276618E-07,8.655391E-07,8.075765E-07,7.534956E-07,7.030362E-07,6.559560E-07, 6.120286E-07,5.710428E-07,5.328018E-07,4.971217E-07,4.638309E-07,4.327695E-07,4.037883E-07, 3.767478E-07,3.515181E-07,3.279780E-07,3.060143E-07,2.855214E-07,2.664009E-07,2.485608E-07, 2.319155E-07,2.163848E-07,2.018941E-07,1.883739E-07,1.757591E-07,1.639890E-07,1.530071E-07, 1.427607E-07,1.332005E-07,1.242804E-07,1.159577E-07,1.081924E-07,1.009471E-07,9.418694E-08, 8.787953E-08,8.199450E-08,7.650357E-08,7.138036E-08,6.660023E-08,6.214021E-08,5.797886E-08, 5.409619E-08,5.047353E-08,4.709347E-08,4.393976E-08,4.099725E-08,3.825179E-08,3.569018E-08, 3.330011E-08,3.107010E-08,2.898943E-08,2.704810E-08,2.523677E-08,2.354674E-08,2.196988E-08, 2.049862E-08,1.912589E-08,1.784509E-08,1.665006E-08,1.553505E-08,1.449472E-08,1.352405E-08, 1.261838E-08,1.177337E-08,1.098494E-08,1.024931E-08,9.562946E-09,8.922544E-09,8.325028E-09, 7.767526E-09,7.247358E-09,6.762024E-09,6.309192E-09,5.886684E-09,5.492470E-09,5.124656E-09, 4.781473E-09,4.461272E-09,4.162514E-09,3.883763E-09,3.623679E-09,3.381012E-09,3.154596E-09, 2.943342E-09,2.746235E-09,2.562328E-09,2.390737E-09,2.230636E-09,2.081257E-09,1.941882E-09, 1.811840E-09,1.690506E-09]] try: # internal model constants ted_empty.num_simulation_days = 366 ted_empty.soil_foc = 0.015 # input variables that change per simulation ted_empty.koc = pd.Series([1000., 1500., 2000.], dtype='float') # internally calculated variables pore_h2o_conc = pd.Series([[2.347878E-01,2.190648E-01,2.043947E-01,1.907070E-01,1.779359E-01,1.660201E-01, 1.549022E-01,3.793167E-01,3.539150E-01,3.302144E-01,3.081009E-01,2.874683E-01, 2.682174E-01,2.502557E-01,4.682847E-01,4.369250E-01,4.076655E-01,3.803653E-01, 3.548934E-01,3.311273E-01,3.089527E-01,5.230509E-01,4.880237E-01,4.553422E-01, 4.248493E-01,3.963984E-01,3.698528E-01,3.450849E-01,5.567634E-01,5.194786E-01, 4.846907E-01,4.522324E-01,4.219478E-01,3.936912E-01,3.673269E-01,5.775159E-01, 5.388414E-01,5.027568E-01,4.690887E-01,4.376752E-01,4.083654E-01,3.810184E-01, 5.902906E-01,5.507606E-01,5.138778E-01,4.794649E-01,4.473566E-01,4.173985E-01, 3.894465E-01,3.633665E-01,3.390329E-01,3.163289E-01,2.951453E-01,2.753803E-01, 2.569389E-01,2.397325E-01,2.236783E-01,2.086992E-01,1.947233E-01,1.816832E-01, 1.695165E-01,1.581644E-01,1.475726E-01,1.376901E-01,1.284694E-01,1.198662E-01, 1.118392E-01,1.043496E-01,9.736164E-02,9.084162E-02,8.475823E-02,7.908222E-02, 7.378632E-02,6.884507E-02,6.423472E-02,5.993312E-02,5.591958E-02,5.217481E-02, 4.868082E-02,4.542081E-02,4.237911E-02,3.954111E-02,3.689316E-02,3.442254E-02, 3.211736E-02,2.996656E-02,2.795979E-02,2.608740E-02,2.434041E-02,2.271040E-02, 2.118956E-02,1.977056E-02,1.844658E-02,1.721127E-02,1.605868E-02,1.498328E-02, 1.397989E-02,1.304370E-02,1.217020E-02,1.135520E-02,1.059478E-02,9.885278E-03, 9.223290E-03,8.605634E-03,8.029341E-03,7.491640E-03,6.989947E-03,6.521851E-03, 6.085102E-03,5.677601E-03,5.297389E-03,4.942639E-03,4.611645E-03,4.302817E-03, 4.014670E-03,3.745820E-03,3.494973E-03,3.260926E-03,3.042551E-03,2.838801E-03, 2.648695E-03,2.471319E-03,2.305823E-03,2.151409E-03,2.007335E-03,1.872910E-03, 1.747487E-03,1.630463E-03,1.521276E-03,1.419400E-03,1.324347E-03,1.235660E-03, 1.152911E-03,1.075704E-03,1.003668E-03,9.364550E-04,8.737434E-04,8.152314E-04, 7.606378E-04,7.097001E-04,6.621737E-04,6.178299E-04,5.764556E-04,5.378521E-04, 5.018338E-04,4.682275E-04,4.368717E-04,4.076157E-04,3.803189E-04,3.548501E-04, 3.310868E-04,3.089149E-04,2.882278E-04,2.689261E-04,2.509169E-04,2.341137E-04, 2.184358E-04,2.038078E-04,1.901594E-04,1.774250E-04,1.655434E-04,1.544575E-04, 1.441139E-04,1.344630E-04,1.254584E-04,1.170569E-04,1.092179E-04,1.019039E-04, 9.507972E-05,8.871252E-05,8.277171E-05,7.722873E-05,7.205696E-05,6.723152E-05, 6.272922E-05,5.852844E-05,5.460896E-05,5.095196E-05,4.753986E-05,4.435626E-05, 4.138585E-05,3.861437E-05,3.602848E-05,3.361576E-05,3.136461E-05,2.926422E-05, 2.730448E-05,2.547598E-05,2.376993E-05,2.217813E-05,2.069293E-05,1.930718E-05, 1.801424E-05,1.680788E-05,1.568231E-05,1.463211E-05,1.365224E-05,1.273799E-05, 1.188497E-05,1.108906E-05,1.034646E-05,9.653592E-06,9.007119E-06,8.403940E-06, 7.841153E-06,7.316054E-06,6.826120E-06,6.368995E-06,5.942483E-06,5.544532E-06, 5.173232E-06,4.826796E-06,4.503560E-06,4.201970E-06,3.920576E-06,3.658027E-06, 3.413060E-06,3.184498E-06,2.971241E-06,2.772266E-06,2.586616E-06,2.413398E-06, 2.251780E-06,2.100985E-06,1.960288E-06,1.829014E-06,1.706530E-06,1.592249E-06, 1.485621E-06,1.386133E-06,1.293308E-06,1.206699E-06,1.125890E-06,1.050492E-06, 9.801441E-07,9.145068E-07,8.532650E-07,7.961244E-07,7.428103E-07,6.930666E-07, 6.466540E-07,6.033495E-07,5.629450E-07,5.252462E-07,4.900721E-07,4.572534E-07, 4.266325E-07,3.980622E-07,3.714052E-07,3.465333E-07,3.233270E-07,3.016747E-07, 2.814725E-07,2.626231E-07,2.450360E-07,2.286267E-07,2.133163E-07,1.990311E-07, 1.857026E-07,1.732666E-07,1.616635E-07,1.508374E-07,1.407362E-07,1.313116E-07, 1.225180E-07,1.143133E-07,1.066581E-07,9.951555E-08,9.285129E-08,8.663332E-08, 8.083174E-08,7.541868E-08,7.036812E-08,6.565578E-08,6.125901E-08,5.715667E-08, 5.332906E-08,4.975778E-08,4.642565E-08,4.331666E-08,4.041587E-08,3.770934E-08, 3.518406E-08,3.282789E-08,3.062950E-08,2.857834E-08,2.666453E-08,2.487889E-08, 2.321282E-08,2.165833E-08,2.020794E-08,1.885467E-08,1.759203E-08,1.641394E-08, 1.531475E-08,1.428917E-08,1.333227E-08,1.243944E-08,1.160641E-08,1.082916E-08, 1.010397E-08,9.427336E-09,8.796015E-09,8.206972E-09,7.657376E-09,7.144584E-09, 6.666133E-09,6.219722E-09,5.803206E-09,5.414582E-09,5.051984E-09,4.713668E-09, 4.398008E-09,4.103486E-09,3.828688E-09,3.572292E-09,3.333066E-09,3.109861E-09, 2.901603E-09,2.707291E-09,2.525992E-09,2.356834E-09,2.199004E-09,2.051743E-09, 1.914344E-09,1.786146E-09,1.666533E-09,1.554930E-09,1.450801E-09,1.353646E-09, 1.262996E-09,1.178417E-09,1.099502E-09,1.025872E-09,9.571720E-10,8.930730E-10, 8.332666E-10,7.774652E-10,7.254007E-10,6.768228E-10,6.314980E-10,5.892085E-10, 5.497509E-10,5.129358E-10,4.785860E-10,4.465365E-10,4.166333E-10,3.887326E-10, 3.627004E-10,3.384114E-10,3.157490E-10,2.946042E-10,2.748755E-10,2.564679E-10, 2.392930E-10,2.232683E-10,2.083167E-10,1.943663E-10,1.813502E-10,1.692057E-10, 1.578745E-10,1.473021E-10,1.374377E-10,1.282339E-10,1.196465E-10,1.116341E-10], [1.575188E-01,1.469702E-01,1.371280E-01,1.279450E-01,1.193769E-01,1.113826E-01, 1.039236E-01,2.544829E-01,2.374410E-01,2.215403E-01,2.067044E-01,1.928620E-01, 1.799466E-01,1.678961E-01,3.141714E-01,2.931323E-01,2.735021E-01,2.551865E-01, 2.380974E-01,2.221527E-01,2.072758E-01,3.509139E-01,3.274143E-01,3.054883E-01, 2.850307E-01,2.659430E-01,2.481336E-01,2.315169E-01,3.735316E-01,3.485173E-01, 3.251782E-01,3.034020E-01,2.830840E-01,2.641267E-01,2.464390E-01,3.874544E-01, 3.615078E-01,3.372987E-01,3.147108E-01,2.936356E-01,2.739717E-01,2.556246E-01, 3.960250E-01,3.695043E-01,3.447597E-01,3.216722E-01,3.001308E-01,2.800319E-01, 2.612790E-01,2.437820E-01,2.274566E-01,2.122245E-01,1.980125E-01,1.847522E-01, 1.723799E-01,1.608361E-01,1.500654E-01,1.400160E-01,1.306395E-01,1.218910E-01, 1.137283E-01,1.061123E-01,9.900624E-02,9.237609E-02,8.618994E-02,8.041805E-02, 7.503270E-02,7.000798E-02,6.531976E-02,6.094549E-02,5.686415E-02,5.305613E-02, 4.950312E-02,4.618804E-02,4.309497E-02,4.020903E-02,3.751635E-02,3.500399E-02, 3.265988E-02,3.047274E-02,2.843208E-02,2.652806E-02,2.475156E-02,2.309402E-02, 2.154748E-02,2.010451E-02,1.875817E-02,1.750200E-02,1.632994E-02,1.523637E-02, 1.421604E-02,1.326403E-02,1.237578E-02,1.154701E-02,1.077374E-02,1.005226E-02, 9.379087E-03,8.750998E-03,8.164970E-03,7.618186E-03,7.108019E-03,6.632016E-03, 6.187890E-03,5.773505E-03,5.386871E-03,5.026128E-03,4.689544E-03,4.375499E-03, 4.082485E-03,3.809093E-03,3.554009E-03,3.316008E-03,3.093945E-03,2.886753E-03, 2.693435E-03,2.513064E-03,2.344772E-03,2.187749E-03,2.041242E-03,1.904547E-03, 1.777005E-03,1.658004E-03,1.546972E-03,1.443376E-03,1.346718E-03,1.256532E-03, 1.172386E-03,1.093875E-03,1.020621E-03,9.522733E-04,8.885024E-04,8.290020E-04, 7.734862E-04,7.216882E-04,6.733589E-04,6.282660E-04,5.861929E-04,5.469374E-04, 5.103106E-04,4.761366E-04,4.442512E-04,4.145010E-04,3.867431E-04,3.608441E-04, 3.366794E-04,3.141330E-04,2.930965E-04,2.734687E-04,2.551553E-04,2.380683E-04, 2.221256E-04,2.072505E-04,1.933716E-04,1.804220E-04,1.683397E-04,1.570665E-04, 1.465482E-04,1.367343E-04,1.275777E-04,1.190342E-04,1.110628E-04,1.036253E-04, 9.668578E-05,9.021102E-05,8.416986E-05,7.853326E-05,7.327412E-05,6.836717E-05, 6.378883E-05,5.951708E-05,5.553140E-05,5.181263E-05,4.834289E-05,4.510551E-05, 4.208493E-05,3.926663E-05,3.663706E-05,3.418358E-05,3.189441E-05,2.975854E-05, 2.776570E-05,2.590631E-05,2.417144E-05,2.255276E-05,2.104246E-05,1.963331E-05, 1.831853E-05,1.709179E-05,1.594721E-05,1.487927E-05,1.388285E-05,1.295316E-05, 1.208572E-05,1.127638E-05,1.052123E-05,9.816657E-06,9.159265E-06,8.545896E-06, 7.973603E-06,7.439635E-06,6.941425E-06,6.476578E-06,6.042861E-06,5.638189E-06, 5.260616E-06,4.908328E-06,4.579632E-06,4.272948E-06,3.986802E-06,3.719817E-06, 3.470712E-06,3.238289E-06,3.021431E-06,2.819094E-06,2.630308E-06,2.454164E-06, 2.289816E-06,2.136474E-06,1.993401E-06,1.859909E-06,1.735356E-06,1.619145E-06, 1.510715E-06,1.409547E-06,1.315154E-06,1.227082E-06,1.144908E-06,1.068237E-06, 9.967004E-07,9.299543E-07,8.676781E-07,8.095723E-07,7.553576E-07,7.047736E-07, 6.575770E-07,6.135411E-07,5.724540E-07,5.341185E-07,4.983502E-07,4.649772E-07, 4.338390E-07,4.047861E-07,3.776788E-07,3.523868E-07,3.287885E-07,3.067705E-07, 2.862270E-07,2.670593E-07,2.491751E-07,2.324886E-07,2.169195E-07,2.023931E-07, 1.888394E-07,1.761934E-07,1.643943E-07,1.533853E-07,1.431135E-07,1.335296E-07, 1.245875E-07,1.162443E-07,1.084598E-07,1.011965E-07,9.441971E-08,8.809670E-08, 8.219713E-08,7.669263E-08,7.155676E-08,6.676481E-08,6.229377E-08,5.812215E-08, 5.422988E-08,5.059827E-08,4.720985E-08,4.404835E-08,4.109856E-08,3.834632E-08, 3.577838E-08,3.338241E-08,3.114689E-08,2.906107E-08,2.711494E-08,2.529913E-08, 2.360493E-08,2.202418E-08,2.054928E-08,1.917316E-08,1.788919E-08,1.669120E-08, 1.557344E-08,1.453054E-08,1.355747E-08,1.264957E-08,1.180246E-08,1.101209E-08, 1.027464E-08,9.586579E-09,8.944595E-09,8.345602E-09,7.786722E-09,7.265268E-09, 6.778735E-09,6.324783E-09,5.901232E-09,5.506044E-09,5.137321E-09,4.793290E-09, 4.472297E-09,4.172801E-09,3.893361E-09,3.632634E-09,3.389368E-09,3.162392E-09, 2.950616E-09,2.753022E-09,2.568660E-09,2.396645E-09,2.236149E-09,2.086400E-09, 1.946680E-09,1.816317E-09,1.694684E-09,1.581196E-09,1.475308E-09,1.376511E-09, 1.284330E-09,1.198322E-09,1.118074E-09,1.043200E-09,9.733402E-10,9.081585E-10, 8.473419E-10,7.905979E-10,7.376540E-10,6.882555E-10,6.421651E-10,5.991612E-10, 5.590372E-10,5.216001E-10,4.866701E-10,4.540793E-10,4.236709E-10,3.952990E-10, 3.688270E-10,3.441277E-10,3.210825E-10,2.995806E-10,2.795186E-10,2.608001E-10, 2.433351E-10,2.270396E-10,2.118355E-10,1.976495E-10,1.844135E-10,1.720639E-10, 1.605413E-10,1.497903E-10,1.397593E-10,1.304000E-10,1.216675E-10,1.135198E-10, 1.059177E-10,9.882474E-11,9.220674E-11,8.603193E-11,8.027063E-11,7.489515E-11], [1.185152E-01,1.105786E-01,1.031735E-01,9.626426E-02,8.981773E-02,8.380291E-02, 7.819088E-02,1.914699E-01,1.786477E-01,1.666842E-01,1.555219E-01,1.451070E-01, 1.353896E-01,1.263230E-01,2.363787E-01,2.205492E-01,2.057796E-01,1.919992E-01, 1.791416E-01,1.671450E-01,1.559518E-01,2.640234E-01,2.463425E-01,2.298457E-01, 2.144536E-01,2.000923E-01,1.866927E-01,1.741905E-01,2.810407E-01,2.622202E-01, 2.446601E-01,2.282760E-01,2.129890E-01,1.987258E-01,1.854177E-01,2.915160E-01, 2.719941E-01,2.537794E-01,2.367846E-01,2.209278E-01,2.061330E-01,1.923289E-01, 2.979644E-01,2.780106E-01,2.593931E-01,2.420223E-01,2.258148E-01,2.106926E-01, 1.965832E-01,1.834186E-01,1.711356E-01,1.596752E-01,1.489822E-01,1.390053E-01, 1.296965E-01,1.210111E-01,1.129074E-01,1.053463E-01,9.829159E-02,9.170929E-02, 8.556780E-02,7.983758E-02,7.449109E-02,6.950265E-02,6.484826E-02,6.050557E-02, 5.645369E-02,5.267316E-02,4.914579E-02,4.585465E-02,4.278390E-02,3.991879E-02, 3.724555E-02,3.475132E-02,3.242413E-02,3.025278E-02,2.822685E-02,2.633658E-02, 2.457290E-02,2.292732E-02,2.139195E-02,1.995939E-02,1.862277E-02,1.737566E-02, 1.621207E-02,1.512639E-02,1.411342E-02,1.316829E-02,1.228645E-02,1.146366E-02, 1.069597E-02,9.979697E-03,9.311387E-03,8.687831E-03,8.106033E-03,7.563196E-03, 7.056711E-03,6.584145E-03,6.143224E-03,5.731831E-03,5.347987E-03,4.989849E-03, 4.655693E-03,4.343915E-03,4.053016E-03,3.781598E-03,3.528356E-03,3.292072E-03, 3.071612E-03,2.865915E-03,2.673994E-03,2.494924E-03,2.327847E-03,2.171958E-03, 2.026508E-03,1.890799E-03,1.764178E-03,1.646036E-03,1.535806E-03,1.432958E-03, 1.336997E-03,1.247462E-03,1.163923E-03,1.085979E-03,1.013254E-03,9.453995E-04, 8.820889E-04,8.230181E-04,7.679030E-04,7.164788E-04,6.684984E-04,6.237311E-04, 5.819617E-04,5.429894E-04,5.066271E-04,4.726998E-04,4.410445E-04,4.115090E-04, 3.839515E-04,3.582394E-04,3.342492E-04,3.118655E-04,2.909808E-04,2.714947E-04, 2.533135E-04,2.363499E-04,2.205222E-04,2.057545E-04,1.919758E-04,1.791197E-04, 1.671246E-04,1.559328E-04,1.454904E-04,1.357474E-04,1.266568E-04,1.181749E-04, 1.102611E-04,1.028773E-04,9.598788E-05,8.955986E-05,8.356230E-05,7.796638E-05, 7.274521E-05,6.787368E-05,6.332838E-05,5.908747E-05,5.513056E-05,5.143863E-05, 4.799394E-05,4.477993E-05,4.178115E-05,3.898319E-05,3.637260E-05,3.393684E-05, 3.166419E-05,2.954373E-05,2.756528E-05,2.571931E-05,2.399697E-05,2.238996E-05, 2.089058E-05,1.949160E-05,1.818630E-05,1.696842E-05,1.583210E-05,1.477187E-05, 1.378264E-05,1.285966E-05,1.199848E-05,1.119498E-05,1.044529E-05,9.745798E-06, 9.093151E-06,8.484210E-06,7.916048E-06,7.385934E-06,6.891320E-06,6.429829E-06, 5.999242E-06,5.597491E-06,5.222644E-06,4.872899E-06,4.546575E-06,4.242105E-06, 3.958024E-06,3.692967E-06,3.445660E-06,3.214914E-06,2.999621E-06,2.798745E-06, 2.611322E-06,2.436449E-06,2.273288E-06,2.121052E-06,1.979012E-06,1.846483E-06, 1.722830E-06,1.607457E-06,1.499811E-06,1.399373E-06,1.305661E-06,1.218225E-06, 1.136644E-06,1.060526E-06,9.895060E-07,9.232417E-07,8.614150E-07,8.037286E-07, 7.499053E-07,6.996864E-07,6.528305E-07,6.091124E-07,5.683219E-07,5.302631E-07, 4.947530E-07,4.616209E-07,4.307075E-07,4.018643E-07,3.749526E-07,3.498432E-07, 3.264152E-07,3.045562E-07,2.841610E-07,2.651316E-07,2.473765E-07,2.308104E-07, 2.153537E-07,2.009321E-07,1.874763E-07,1.749216E-07,1.632076E-07,1.522781E-07, 1.420805E-07,1.325658E-07,1.236882E-07,1.154052E-07,1.076769E-07,1.004661E-07, 9.373816E-08,8.746080E-08,8.160381E-08,7.613905E-08,7.104024E-08,6.628289E-08, 6.184412E-08,5.770261E-08,5.383844E-08,5.023304E-08,4.686908E-08,4.373040E-08, 4.080190E-08,3.806952E-08,3.552012E-08,3.314144E-08,3.092206E-08,2.885130E-08, 2.691922E-08,2.511652E-08,2.343454E-08,2.186520E-08,2.040095E-08,1.903476E-08, 1.776006E-08,1.657072E-08,1.546103E-08,1.442565E-08,1.345961E-08,1.255826E-08, 1.171727E-08,1.093260E-08,1.020048E-08,9.517381E-09,8.880030E-09,8.285361E-09, 7.730515E-09,7.212826E-09,6.729804E-09,6.279130E-09,5.858635E-09,5.466300E-09, 5.100238E-09,4.758690E-09,4.440015E-09,4.142681E-09,3.865258E-09,3.606413E-09, 3.364902E-09,3.139565E-09,2.929318E-09,2.733150E-09,2.550119E-09,2.379345E-09, 2.220008E-09,2.071340E-09,1.932629E-09,1.803206E-09,1.682451E-09,1.569782E-09, 1.464659E-09,1.366575E-09,1.275060E-09,1.189673E-09,1.110004E-09,1.035670E-09, 9.663144E-10,9.016032E-10,8.412256E-10,7.848912E-10,7.323294E-10,6.832875E-10, 6.375298E-10,5.948363E-10,5.550019E-10,5.178351E-10,4.831572E-10,4.508016E-10, 4.206128E-10,3.924456E-10,3.661647E-10,3.416437E-10,3.187649E-10,2.974181E-10, 2.775009E-10,2.589175E-10,2.415786E-10,2.254008E-10,2.103064E-10,1.962228E-10, 1.830823E-10,1.708219E-10,1.593824E-10,1.487091E-10,1.387505E-10,1.294588E-10, 1.207893E-10,1.127004E-10,1.051532E-10,9.811140E-11,9.154117E-11,8.541093E-11, 7.969122E-11,7.435454E-11,6.937524E-11,6.472938E-11,6.039465E-11,5.635020E-11]], dtype='float') for i in range(3): result[i] = ted_empty.daily_soil_timeseries(i, pore_h2o_conc[i]) npt.assert_allclose(result[i],expected_results[i],rtol=1e-4, atol=0, err_msg='', verbose=True) finally: for i in range(3): tab = [result[i], expected_results[i]] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_daily_soil_inv_timeseries(self): """ :description generates annual timeseries of daily pesticide concentrations in soil invertebrates (earthworms) :param i; simulation number/index :param pore_h2o_conc; daily values of pesticide concentration in soil pore water :Notes # calculations are performed daily from day of first application (assumed day 0) through the last day of a year # note: day numbers are synchronized with 0-based array indexing; thus the year does not have a calendar specific # assoication, rather it is one year from the day of 1st pesticide application # this represents Eq 2 of Attachment 1-7 of 'Biological Evaluation Chapters for Diazinon ESA Assessment' :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([[]], dtype='float') expected_results = [[2.347878E+02,2.190648E+02,2.043947E+02,1.907070E+02,1.779359E+02,1.660201E+02, 1.549022E+02,3.793167E+02,3.539150E+02,3.302144E+02,3.081009E+02,2.874683E+02, 2.682174E+02,2.502557E+02,4.682847E+02,4.369250E+02,4.076655E+02,3.803653E+02, 3.548934E+02,3.311273E+02,3.089527E+02,5.230509E+02,4.880237E+02,4.553422E+02, 4.248493E+02,3.963984E+02,3.698528E+02,3.450849E+02,5.567634E+02,5.194786E+02, 4.846907E+02,4.522324E+02,4.219478E+02,3.936912E+02,3.673269E+02,5.775159E+02, 5.388414E+02,5.027568E+02,4.690887E+02,4.376752E+02,4.083654E+02,3.810184E+02, 5.902906E+02,5.507606E+02,5.138778E+02,4.794649E+02,4.473566E+02,4.173985E+02, 3.894465E+02,3.633665E+02,3.390329E+02,3.163289E+02,2.951453E+02,2.753803E+02, 2.569389E+02,2.397325E+02,2.236783E+02,2.086992E+02,1.947233E+02,1.816832E+02, 1.695165E+02,1.581644E+02,1.475726E+02,1.376901E+02,1.284694E+02,1.198662E+02, 1.118392E+02,1.043496E+02,9.736164E+01,9.084162E+01,8.475823E+01,7.908222E+01, 7.378632E+01,6.884507E+01,6.423472E+01,5.993312E+01,5.591958E+01,5.217481E+01, 4.868082E+01,4.542081E+01,4.237911E+01,3.954111E+01,3.689316E+01,3.442254E+01, 3.211736E+01,2.996656E+01,2.795979E+01,2.608740E+01,2.434041E+01,2.271040E+01, 2.118956E+01,1.977056E+01,1.844658E+01,1.721127E+01,1.605868E+01,1.498328E+01, 1.397989E+01,1.304370E+01,1.217020E+01,1.135520E+01,1.059478E+01,9.885278E+00, 9.223290E+00,8.605634E+00,8.029341E+00,7.491640E+00,6.989947E+00,6.521851E+00, 6.085102E+00,5.677601E+00,5.297389E+00,4.942639E+00,4.611645E+00,4.302817E+00, 4.014670E+00,3.745820E+00,3.494973E+00,3.260926E+00,3.042551E+00,2.838801E+00, 2.648695E+00,2.471319E+00,2.305823E+00,2.151409E+00,2.007335E+00,1.872910E+00, 1.747487E+00,1.630463E+00,1.521276E+00,1.419400E+00,1.324347E+00,1.235660E+00, 1.152911E+00,1.075704E+00,1.003668E+00,9.364550E-01,8.737434E-01,8.152314E-01, 7.606378E-01,7.097001E-01,6.621737E-01,6.178299E-01,5.764556E-01,5.378521E-01, 5.018338E-01,4.682275E-01,4.368717E-01,4.076157E-01,3.803189E-01,3.548501E-01, 3.310868E-01,3.089149E-01,2.882278E-01,2.689261E-01,2.509169E-01,2.341137E-01, 2.184358E-01,2.038078E-01,1.901594E-01,1.774250E-01,1.655434E-01,1.544575E-01, 1.441139E-01,1.344630E-01,1.254584E-01,1.170569E-01,1.092179E-01,1.019039E-01, 9.507972E-02,8.871252E-02,8.277171E-02,7.722873E-02,7.205696E-02,6.723152E-02, 6.272922E-02,5.852844E-02,5.460896E-02,5.095196E-02,4.753986E-02,4.435626E-02, 4.138585E-02,3.861437E-02,3.602848E-02,3.361576E-02,3.136461E-02,2.926422E-02, 2.730448E-02,2.547598E-02,2.376993E-02,2.217813E-02,2.069293E-02,1.930718E-02, 1.801424E-02,1.680788E-02,1.568231E-02,1.463211E-02,1.365224E-02,1.273799E-02, 1.188497E-02,1.108906E-02,1.034646E-02,9.653592E-03,9.007119E-03,8.403940E-03, 7.841153E-03,7.316054E-03,6.826120E-03,6.368995E-03,5.942483E-03,5.544532E-03, 5.173232E-03,4.826796E-03,4.503560E-03,4.201970E-03,3.920576E-03,3.658027E-03, 3.413060E-03,3.184498E-03,2.971241E-03,2.772266E-03,2.586616E-03,2.413398E-03, 2.251780E-03,2.100985E-03,1.960288E-03,1.829014E-03,1.706530E-03,1.592249E-03, 1.485621E-03,1.386133E-03,1.293308E-03,1.206699E-03,1.125890E-03,1.050492E-03, 9.801441E-04,9.145068E-04,8.532650E-04,7.961244E-04,7.428103E-04,6.930666E-04, 6.466540E-04,6.033495E-04,5.629450E-04,5.252462E-04,4.900721E-04,4.572534E-04, 4.266325E-04,3.980622E-04,3.714052E-04,3.465333E-04,3.233270E-04,3.016747E-04, 2.814725E-04,2.626231E-04,2.450360E-04,2.286267E-04,2.133163E-04,1.990311E-04, 1.857026E-04,1.732666E-04,1.616635E-04,1.508374E-04,1.407362E-04,1.313116E-04, 1.225180E-04,1.143133E-04,1.066581E-04,9.951555E-05,9.285129E-05,8.663332E-05, 8.083174E-05,7.541868E-05,7.036812E-05,6.565578E-05,6.125901E-05,5.715667E-05, 5.332906E-05,4.975778E-05,4.642565E-05,4.331666E-05,4.041587E-05,3.770934E-05, 3.518406E-05,3.282789E-05,3.062950E-05,2.857834E-05,2.666453E-05,2.487889E-05, 2.321282E-05,2.165833E-05,2.020794E-05,1.885467E-05,1.759203E-05,1.641394E-05, 1.531475E-05,1.428917E-05,1.333227E-05,1.243944E-05,1.160641E-05,1.082916E-05, 1.010397E-05,9.427336E-06,8.796015E-06,8.206972E-06,7.657376E-06,7.144584E-06, 6.666133E-06,6.219722E-06,5.803206E-06,5.414582E-06,5.051984E-06,4.713668E-06, 4.398008E-06,4.103486E-06,3.828688E-06,3.572292E-06,3.333066E-06,3.109861E-06, 2.901603E-06,2.707291E-06,2.525992E-06,2.356834E-06,2.199004E-06,2.051743E-06, 1.914344E-06,1.786146E-06,1.666533E-06,1.554930E-06,1.450801E-06,1.353646E-06, 1.262996E-06,1.178417E-06,1.099502E-06,1.025872E-06,9.571720E-07,8.930730E-07, 8.332666E-07,7.774652E-07,7.254007E-07,6.768228E-07,6.314980E-07,5.892085E-07, 5.497509E-07,5.129358E-07,4.785860E-07,4.465365E-07,4.166333E-07,3.887326E-07, 3.627004E-07,3.384114E-07,3.157490E-07,2.946042E-07,2.748755E-07,2.564679E-07, 2.392930E-07,2.232683E-07,2.083167E-07,1.943663E-07,1.813502E-07,1.692057E-07, 1.578745E-07,1.473021E-07,1.374377E-07,1.282339E-07,1.196465E-07,1.116341E-07], [2.347878E+01,2.190648E+01,2.043947E+01,1.907070E+01,1.779359E+01,1.660201E+01, 1.549022E+01,3.793167E+01,3.539150E+01,3.302144E+01,3.081009E+01,2.874683E+01, 2.682174E+01,2.502557E+01,4.682847E+01,4.369250E+01,4.076655E+01,3.803653E+01, 3.548934E+01,3.311273E+01,3.089527E+01,5.230509E+01,4.880237E+01,4.553422E+01, 4.248493E+01,3.963984E+01,3.698528E+01,3.450849E+01,5.567634E+01,5.194786E+01, 4.846907E+01,4.522324E+01,4.219478E+01,3.936912E+01,3.673269E+01,5.775159E+01, 5.388414E+01,5.027568E+01,4.690887E+01,4.376752E+01,4.083654E+01,3.810184E+01, 5.902906E+01,5.507606E+01,5.138778E+01,4.794649E+01,4.473566E+01,4.173985E+01, 3.894465E+01,3.633665E+01,3.390329E+01,3.163289E+01,2.951453E+01,2.753803E+01, 2.569389E+01,2.397325E+01,2.236783E+01,2.086992E+01,1.947233E+01,1.816832E+01, 1.695165E+01,1.581644E+01,1.475726E+01,1.376901E+01,1.284694E+01,1.198662E+01, 1.118392E+01,1.043496E+01,9.736164E+00,9.084162E+00,8.475823E+00,7.908222E+00, 7.378632E+00,6.884507E+00,6.423472E+00,5.993312E+00,5.591958E+00,5.217481E+00, 4.868082E+00,4.542081E+00,4.237911E+00,3.954111E+00,3.689316E+00,3.442254E+00, 3.211736E+00,2.996656E+00,2.795979E+00,2.608740E+00,2.434041E+00,2.271040E+00, 2.118956E+00,1.977056E+00,1.844658E+00,1.721127E+00,1.605868E+00,1.498328E+00, 1.397989E+00,1.304370E+00,1.217020E+00,1.135520E+00,1.059478E+00,9.885278E-01, 9.223290E-01,8.605634E-01,8.029341E-01,7.491640E-01,6.989947E-01,6.521851E-01, 6.085102E-01,5.677601E-01,5.297389E-01,4.942639E-01,4.611645E-01,4.302817E-01, 4.014670E-01,3.745820E-01,3.494973E-01,3.260926E-01,3.042551E-01,2.838801E-01, 2.648695E-01,2.471319E-01,2.305823E-01,2.151409E-01,2.007335E-01,1.872910E-01, 1.747487E-01,1.630463E-01,1.521276E-01,1.419400E-01,1.324347E-01,1.235660E-01, 1.152911E-01,1.075704E-01,1.003668E-01,9.364550E-02,8.737434E-02,8.152314E-02, 7.606378E-02,7.097001E-02,6.621737E-02,6.178299E-02,5.764556E-02,5.378521E-02, 5.018338E-02,4.682275E-02,4.368717E-02,4.076157E-02,3.803189E-02,3.548501E-02, 3.310868E-02,3.089149E-02,2.882278E-02,2.689261E-02,2.509169E-02,2.341137E-02, 2.184358E-02,2.038078E-02,1.901594E-02,1.774250E-02,1.655434E-02,1.544575E-02, 1.441139E-02,1.344630E-02,1.254584E-02,1.170569E-02,1.092179E-02,1.019039E-02, 9.507972E-03,8.871252E-03,8.277171E-03,7.722873E-03,7.205696E-03,6.723152E-03, 6.272922E-03,5.852844E-03,5.460896E-03,5.095196E-03,4.753986E-03,4.435626E-03, 4.138585E-03,3.861437E-03,3.602848E-03,3.361576E-03,3.136461E-03,2.926422E-03, 2.730448E-03,2.547598E-03,2.376993E-03,2.217813E-03,2.069293E-03,1.930718E-03, 1.801424E-03,1.680788E-03,1.568231E-03,1.463211E-03,1.365224E-03,1.273799E-03, 1.188497E-03,1.108906E-03,1.034646E-03,9.653592E-04,9.007119E-04,8.403940E-04, 7.841153E-04,7.316054E-04,6.826120E-04,6.368995E-04,5.942483E-04,5.544532E-04, 5.173232E-04,4.826796E-04,4.503560E-04,4.201970E-04,3.920576E-04,3.658027E-04, 3.413060E-04,3.184498E-04,2.971241E-04,2.772266E-04,2.586616E-04,2.413398E-04, 2.251780E-04,2.100985E-04,1.960288E-04,1.829014E-04,1.706530E-04,1.592249E-04, 1.485621E-04,1.386133E-04,1.293308E-04,1.206699E-04,1.125890E-04,1.050492E-04, 9.801441E-05,9.145068E-05,8.532650E-05,7.961244E-05,7.428103E-05,6.930666E-05, 6.466540E-05,6.033495E-05,5.629450E-05,5.252462E-05,4.900721E-05,4.572534E-05, 4.266325E-05,3.980622E-05,3.714052E-05,3.465333E-05,3.233270E-05,3.016747E-05, 2.814725E-05,2.626231E-05,2.450360E-05,2.286267E-05,2.133163E-05,1.990311E-05, 1.857026E-05,1.732666E-05,1.616635E-05,1.508374E-05,1.407362E-05,1.313116E-05, 1.225180E-05,1.143133E-05,1.066581E-05,9.951555E-06,9.285129E-06,8.663332E-06, 8.083174E-06,7.541868E-06,7.036812E-06,6.565578E-06,6.125901E-06,5.715667E-06, 5.332906E-06,4.975778E-06,4.642565E-06,4.331666E-06,4.041587E-06,3.770934E-06, 3.518406E-06,3.282789E-06,3.062950E-06,2.857834E-06,2.666453E-06,2.487889E-06, 2.321282E-06,2.165833E-06,2.020794E-06,1.885467E-06,1.759203E-06,1.641394E-06, 1.531475E-06,1.428917E-06,1.333227E-06,1.243944E-06,1.160641E-06,1.082916E-06, 1.010397E-06,9.427336E-07,8.796015E-07,8.206972E-07,7.657376E-07,7.144584E-07, 6.666133E-07,6.219722E-07,5.803206E-07,5.414582E-07,5.051984E-07,4.713668E-07, 4.398008E-07,4.103486E-07,3.828688E-07,3.572292E-07,3.333066E-07,3.109861E-07, 2.901603E-07,2.707291E-07,2.525992E-07,2.356834E-07,2.199004E-07,2.051743E-07, 1.914344E-07,1.786146E-07,1.666533E-07,1.554930E-07,1.450801E-07,1.353646E-07, 1.262996E-07,1.178417E-07,1.099502E-07,1.025872E-07,9.571720E-08,8.930730E-08, 8.332666E-08,7.774652E-08,7.254007E-08,6.768228E-08,6.314980E-08,5.892085E-08, 5.497509E-08,5.129358E-08,4.785860E-08,4.465365E-08,4.166333E-08,3.887326E-08, 3.627004E-08,3.384114E-08,3.157490E-08,2.946042E-08,2.748755E-08,2.564679E-08, 2.392930E-08,2.232683E-08,2.083167E-08,1.943663E-08,1.813502E-08,1.692057E-08, 1.578745E-08,1.473021E-08,1.374377E-08,1.282339E-08,1.196465E-08,1.116341E-08], [6.664600E-01,6.218291E-01,5.801871E-01,5.413337E-01,5.050822E-01,4.712584E-01, 4.396996E-01,1.076714E+00,1.004610E+00,9.373342E-01,8.745637E-01,8.159968E-01, 7.613519E-01,7.103665E-01,1.329255E+00,1.240239E+00,1.157184E+00,1.079691E+00, 1.007387E+00,9.399255E-01,8.769815E-01,1.484713E+00,1.385286E+00,1.292517E+00, 1.205961E+00,1.125202E+00,1.049850E+00,9.795450E-01,1.580408E+00,1.474573E+00, 1.375825E+00,1.283690E+00,1.197725E+00,1.117517E+00,1.042680E+00,1.639315E+00, 1.529535E+00,1.427107E+00,1.331538E+00,1.242369E+00,1.159171E+00,1.081545E+00, 1.675577E+00,1.563368E+00,1.458674E+00,1.360991E+00,1.269850E+00,1.184812E+00, 1.105468E+00,1.031439E+00,9.623662E-01,8.979194E-01,8.377884E-01,7.816842E-01, 7.293372E-01,6.804956E-01,6.349249E-01,5.924059E-01,5.527342E-01,5.157193E-01, 4.811831E-01,4.489597E-01,4.188942E-01,3.908421E-01,3.646686E-01,3.402478E-01, 3.174624E-01,2.962029E-01,2.763671E-01,2.578596E-01,2.405915E-01,2.244798E-01, 2.094471E-01,1.954211E-01,1.823343E-01,1.701239E-01,1.587312E-01,1.481015E-01, 1.381836E-01,1.289298E-01,1.202958E-01,1.122399E-01,1.047235E-01,9.771053E-02, 9.116714E-02,8.506195E-02,7.936561E-02,7.405073E-02,6.909178E-02,6.446491E-02, 6.014788E-02,5.611996E-02,5.236177E-02,4.885526E-02,4.558357E-02,4.253098E-02, 3.968280E-02,3.702537E-02,3.454589E-02,3.223245E-02,3.007394E-02,2.805998E-02, 2.618089E-02,2.442763E-02,2.279179E-02,2.126549E-02,1.984140E-02,1.851268E-02, 1.727294E-02,1.611623E-02,1.503697E-02,1.402999E-02,1.309044E-02,1.221382E-02, 1.139589E-02,1.063274E-02,9.920701E-03,9.256341E-03,8.636472E-03,8.058113E-03, 7.518486E-03,7.014995E-03,6.545222E-03,6.106908E-03,5.697947E-03,5.316372E-03, 4.960351E-03,4.628171E-03,4.318236E-03,4.029057E-03,3.759243E-03,3.507498E-03, 3.272611E-03,3.053454E-03,2.848973E-03,2.658186E-03,2.480175E-03,2.314085E-03, 2.159118E-03,2.014528E-03,1.879621E-03,1.753749E-03,1.636305E-03,1.526727E-03, 1.424487E-03,1.329093E-03,1.240088E-03,1.157043E-03,1.079559E-03,1.007264E-03, 9.398107E-04,8.768744E-04,8.181527E-04,7.633635E-04,7.122433E-04,6.645465E-04, 6.200438E-04,5.785213E-04,5.397795E-04,5.036321E-04,4.699053E-04,4.384372E-04, 4.090764E-04,3.816817E-04,3.561217E-04,3.322733E-04,3.100219E-04,2.892607E-04, 2.698897E-04,2.518160E-04,2.349527E-04,2.192186E-04,2.045382E-04,1.908409E-04, 1.780608E-04,1.661366E-04,1.550110E-04,1.446303E-04,1.349449E-04,1.259080E-04, 1.174763E-04,1.096093E-04,1.022691E-04,9.542044E-05,8.903041E-05,8.306831E-05, 7.750548E-05,7.231517E-05,6.747244E-05,6.295401E-05,5.873817E-05,5.480465E-05, 5.113455E-05,4.771022E-05,4.451521E-05,4.153416E-05,3.875274E-05,3.615758E-05, 3.373622E-05,3.147701E-05,2.936908E-05,2.740232E-05,2.556727E-05,2.385511E-05, 2.225760E-05,2.076708E-05,1.937637E-05,1.807879E-05,1.686811E-05,1.573850E-05, 1.468454E-05,1.370116E-05,1.278364E-05,1.192755E-05,1.112880E-05,1.038354E-05, 9.688185E-06,9.039396E-06,8.434055E-06,7.869251E-06,7.342271E-06,6.850581E-06, 6.391818E-06,5.963777E-06,5.564401E-06,5.191770E-06,4.844092E-06,4.519698E-06, 4.217027E-06,3.934626E-06,3.671136E-06,3.425291E-06,3.195909E-06,2.981889E-06, 2.782200E-06,2.595885E-06,2.422046E-06,2.259849E-06,2.108514E-06,1.967313E-06, 1.835568E-06,1.712645E-06,1.597955E-06,1.490944E-06,1.391100E-06,1.297942E-06, 1.211023E-06,1.129924E-06,1.054257E-06,9.836564E-07,9.177839E-07,8.563226E-07, 7.989773E-07,7.454722E-07,6.955501E-07,6.489712E-07,6.055115E-07,5.649622E-07, 5.271284E-07,4.918282E-07,4.588919E-07,4.281613E-07,3.994886E-07,3.727361E-07, 3.477751E-07,3.244856E-07,3.027558E-07,2.824811E-07,2.635642E-07,2.459141E-07, 2.294460E-07,2.140807E-07,1.997443E-07,1.863680E-07,1.738875E-07,1.622428E-07, 1.513779E-07,1.412406E-07,1.317821E-07,1.229571E-07,1.147230E-07,1.070403E-07, 9.987216E-08,9.318402E-08,8.694376E-08,8.112140E-08,7.568894E-08,7.062028E-08, 6.589105E-08,6.147853E-08,5.736149E-08,5.352016E-08,4.993608E-08,4.659201E-08, 4.347188E-08,4.056070E-08,3.784447E-08,3.531014E-08,3.294553E-08,3.073926E-08, 2.868075E-08,2.676008E-08,2.496804E-08,2.329600E-08,2.173594E-08,2.028035E-08, 1.892224E-08,1.765507E-08,1.647276E-08,1.536963E-08,1.434037E-08,1.338004E-08, 1.248402E-08,1.164800E-08,1.086797E-08,1.014018E-08,9.461118E-09,8.827535E-09, 8.236382E-09,7.684816E-09,7.170187E-09,6.690021E-09,6.242010E-09,5.824001E-09, 5.433985E-09,5.070088E-09,4.730559E-09,4.413768E-09,4.118191E-09,3.842408E-09, 3.585093E-09,3.345010E-09,3.121005E-09,2.912001E-09,2.716993E-09,2.535044E-09, 2.365279E-09,2.206884E-09,2.059095E-09,1.921204E-09,1.792547E-09,1.672505E-09, 1.560502E-09,1.456000E-09,1.358496E-09,1.267522E-09,1.182640E-09,1.103442E-09, 1.029548E-09,9.606020E-10,8.962733E-10,8.362526E-10,7.802512E-10,7.280002E-10, 6.792482E-10,6.337609E-10,5.913199E-10,5.517209E-10,5.147738E-10,4.803010E-10, 4.481367E-10,4.181263E-10,3.901256E-10,3.640001E-10,3.396241E-10,3.168805E-10]] try: # internal model constants ted_empty.num_simulation_days = 366 ted_empty.lipid_earthworm = 0.01 ted_empty.density_earthworm = 1.0 # input variables that change per simulation ted_empty.log_kow = pd.Series([5.0, 4.0, 2.75], dtype='float') # internally calculated variables pore_h2o_conc = pd.Series([[2.347878E-01,2.190648E-01,2.043947E-01,1.907070E-01,1.779359E-01,1.660201E-01, 1.549022E-01,3.793167E-01,3.539150E-01,3.302144E-01,3.081009E-01,2.874683E-01, 2.682174E-01,2.502557E-01,4.682847E-01,4.369250E-01,4.076655E-01,3.803653E-01, 3.548934E-01,3.311273E-01,3.089527E-01,5.230509E-01,4.880237E-01,4.553422E-01, 4.248493E-01,3.963984E-01,3.698528E-01,3.450849E-01,5.567634E-01,5.194786E-01, 4.846907E-01,4.522324E-01,4.219478E-01,3.936912E-01,3.673269E-01,5.775159E-01, 5.388414E-01,5.027568E-01,4.690887E-01,4.376752E-01,4.083654E-01,3.810184E-01, 5.902906E-01,5.507606E-01,5.138778E-01,4.794649E-01,4.473566E-01,4.173985E-01, 3.894465E-01,3.633665E-01,3.390329E-01,3.163289E-01,2.951453E-01,2.753803E-01, 2.569389E-01,2.397325E-01,2.236783E-01,2.086992E-01,1.947233E-01,1.816832E-01, 1.695165E-01,1.581644E-01,1.475726E-01,1.376901E-01,1.284694E-01,1.198662E-01, 1.118392E-01,1.043496E-01,9.736164E-02,9.084162E-02,8.475823E-02,7.908222E-02, 7.378632E-02,6.884507E-02,6.423472E-02,5.993312E-02,5.591958E-02,5.217481E-02, 4.868082E-02,4.542081E-02,4.237911E-02,3.954111E-02,3.689316E-02,3.442254E-02, 3.211736E-02,2.996656E-02,2.795979E-02,2.608740E-02,2.434041E-02,2.271040E-02, 2.118956E-02,1.977056E-02,1.844658E-02,1.721127E-02,1.605868E-02,1.498328E-02, 1.397989E-02,1.304370E-02,1.217020E-02,1.135520E-02,1.059478E-02,9.885278E-03, 9.223290E-03,8.605634E-03,8.029341E-03,7.491640E-03,6.989947E-03,6.521851E-03, 6.085102E-03,5.677601E-03,5.297389E-03,4.942639E-03,4.611645E-03,4.302817E-03, 4.014670E-03,3.745820E-03,3.494973E-03,3.260926E-03,3.042551E-03,2.838801E-03, 2.648695E-03,2.471319E-03,2.305823E-03,2.151409E-03,2.007335E-03,1.872910E-03, 1.747487E-03,1.630463E-03,1.521276E-03,1.419400E-03,1.324347E-03,1.235660E-03, 1.152911E-03,1.075704E-03,1.003668E-03,9.364550E-04,8.737434E-04,8.152314E-04, 7.606378E-04,7.097001E-04,6.621737E-04,6.178299E-04,5.764556E-04,5.378521E-04, 5.018338E-04,4.682275E-04,4.368717E-04,4.076157E-04,3.803189E-04,3.548501E-04, 3.310868E-04,3.089149E-04,2.882278E-04,2.689261E-04,2.509169E-04,2.341137E-04, 2.184358E-04,2.038078E-04,1.901594E-04,1.774250E-04,1.655434E-04,1.544575E-04, 1.441139E-04,1.344630E-04,1.254584E-04,1.170569E-04,1.092179E-04,1.019039E-04, 9.507972E-05,8.871252E-05,8.277171E-05,7.722873E-05,7.205696E-05,6.723152E-05, 6.272922E-05,5.852844E-05,5.460896E-05,5.095196E-05,4.753986E-05,4.435626E-05, 4.138585E-05,3.861437E-05,3.602848E-05,3.361576E-05,3.136461E-05,2.926422E-05, 2.730448E-05,2.547598E-05,2.376993E-05,2.217813E-05,2.069293E-05,1.930718E-05, 1.801424E-05,1.680788E-05,1.568231E-05,1.463211E-05,1.365224E-05,1.273799E-05, 1.188497E-05,1.108906E-05,1.034646E-05,9.653592E-06,9.007119E-06,8.403940E-06, 7.841153E-06,7.316054E-06,6.826120E-06,6.368995E-06,5.942483E-06,5.544532E-06, 5.173232E-06,4.826796E-06,4.503560E-06,4.201970E-06,3.920576E-06,3.658027E-06, 3.413060E-06,3.184498E-06,2.971241E-06,2.772266E-06,2.586616E-06,2.413398E-06, 2.251780E-06,2.100985E-06,1.960288E-06,1.829014E-06,1.706530E-06,1.592249E-06, 1.485621E-06,1.386133E-06,1.293308E-06,1.206699E-06,1.125890E-06,1.050492E-06, 9.801441E-07,9.145068E-07,8.532650E-07,7.961244E-07,7.428103E-07,6.930666E-07, 6.466540E-07,6.033495E-07,5.629450E-07,5.252462E-07,4.900721E-07,4.572534E-07, 4.266325E-07,3.980622E-07,3.714052E-07,3.465333E-07,3.233270E-07,3.016747E-07, 2.814725E-07,2.626231E-07,2.450360E-07,2.286267E-07,2.133163E-07,1.990311E-07, 1.857026E-07,1.732666E-07,1.616635E-07,1.508374E-07,1.407362E-07,1.313116E-07, 1.225180E-07,1.143133E-07,1.066581E-07,9.951555E-08,9.285129E-08,8.663332E-08, 8.083174E-08,7.541868E-08,7.036812E-08,6.565578E-08,6.125901E-08,5.715667E-08, 5.332906E-08,4.975778E-08,4.642565E-08,4.331666E-08,4.041587E-08,3.770934E-08, 3.518406E-08,3.282789E-08,3.062950E-08,2.857834E-08,2.666453E-08,2.487889E-08, 2.321282E-08,2.165833E-08,2.020794E-08,1.885467E-08,1.759203E-08,1.641394E-08, 1.531475E-08,1.428917E-08,1.333227E-08,1.243944E-08,1.160641E-08,1.082916E-08, 1.010397E-08,9.427336E-09,8.796015E-09,8.206972E-09,7.657376E-09,7.144584E-09, 6.666133E-09,6.219722E-09,5.803206E-09,5.414582E-09,5.051984E-09,4.713668E-09, 4.398008E-09,4.103486E-09,3.828688E-09,3.572292E-09,3.333066E-09,3.109861E-09, 2.901603E-09,2.707291E-09,2.525992E-09,2.356834E-09,2.199004E-09,2.051743E-09, 1.914344E-09,1.786146E-09,1.666533E-09,1.554930E-09,1.450801E-09,1.353646E-09, 1.262996E-09,1.178417E-09,1.099502E-09,1.025872E-09,9.571720E-10,8.930730E-10, 8.332666E-10,7.774652E-10,7.254007E-10,6.768228E-10,6.314980E-10,5.892085E-10, 5.497509E-10,5.129358E-10,4.785860E-10,4.465365E-10,4.166333E-10,3.887326E-10, 3.627004E-10,3.384114E-10,3.157490E-10,2.946042E-10,2.748755E-10,2.564679E-10, 2.392930E-10,2.232683E-10,2.083167E-10,1.943663E-10,1.813502E-10,1.692057E-10, 1.578745E-10,1.473021E-10,1.374377E-10,1.282339E-10,1.196465E-10,1.116341E-10], [2.347878E-01,2.190648E-01,2.043947E-01,1.907070E-01,1.779359E-01,1.660201E-01, 1.549022E-01,3.793167E-01,3.539150E-01,3.302144E-01,3.081009E-01,2.874683E-01, 2.682174E-01,2.502557E-01,4.682847E-01,4.369250E-01,4.076655E-01,3.803653E-01, 3.548934E-01,3.311273E-01,3.089527E-01,5.230509E-01,4.880237E-01,4.553422E-01, 4.248493E-01,3.963984E-01,3.698528E-01,3.450849E-01,5.567634E-01,5.194786E-01, 4.846907E-01,4.522324E-01,4.219478E-01,3.936912E-01,3.673269E-01,5.775159E-01, 5.388414E-01,5.027568E-01,4.690887E-01,4.376752E-01,4.083654E-01,3.810184E-01, 5.902906E-01,5.507606E-01,5.138778E-01,4.794649E-01,4.473566E-01,4.173985E-01, 3.894465E-01,3.633665E-01,3.390329E-01,3.163289E-01,2.951453E-01,2.753803E-01, 2.569389E-01,2.397325E-01,2.236783E-01,2.086992E-01,1.947233E-01,1.816832E-01, 1.695165E-01,1.581644E-01,1.475726E-01,1.376901E-01,1.284694E-01,1.198662E-01, 1.118392E-01,1.043496E-01,9.736164E-02,9.084162E-02,8.475823E-02,7.908222E-02, 7.378632E-02,6.884507E-02,6.423472E-02,5.993312E-02,5.591958E-02,5.217481E-02, 4.868082E-02,4.542081E-02,4.237911E-02,3.954111E-02,3.689316E-02,3.442254E-02, 3.211736E-02,2.996656E-02,2.795979E-02,2.608740E-02,2.434041E-02,2.271040E-02, 2.118956E-02,1.977056E-02,1.844658E-02,1.721127E-02,1.605868E-02,1.498328E-02, 1.397989E-02,1.304370E-02,1.217020E-02,1.135520E-02,1.059478E-02,9.885278E-03, 9.223290E-03,8.605634E-03,8.029341E-03,7.491640E-03,6.989947E-03,6.521851E-03, 6.085102E-03,5.677601E-03,5.297389E-03,4.942639E-03,4.611645E-03,4.302817E-03, 4.014670E-03,3.745820E-03,3.494973E-03,3.260926E-03,3.042551E-03,2.838801E-03, 2.648695E-03,2.471319E-03,2.305823E-03,2.151409E-03,2.007335E-03,1.872910E-03, 1.747487E-03,1.630463E-03,1.521276E-03,1.419400E-03,1.324347E-03,1.235660E-03, 1.152911E-03,1.075704E-03,1.003668E-03,9.364550E-04,8.737434E-04,8.152314E-04, 7.606378E-04,7.097001E-04,6.621737E-04,6.178299E-04,5.764556E-04,5.378521E-04, 5.018338E-04,4.682275E-04,4.368717E-04,4.076157E-04,3.803189E-04,3.548501E-04, 3.310868E-04,3.089149E-04,2.882278E-04,2.689261E-04,2.509169E-04,2.341137E-04, 2.184358E-04,2.038078E-04,1.901594E-04,1.774250E-04,1.655434E-04,1.544575E-04, 1.441139E-04,1.344630E-04,1.254584E-04,1.170569E-04,1.092179E-04,1.019039E-04, 9.507972E-05,8.871252E-05,8.277171E-05,7.722873E-05,7.205696E-05,6.723152E-05, 6.272922E-05,5.852844E-05,5.460896E-05,5.095196E-05,4.753986E-05,4.435626E-05, 4.138585E-05,3.861437E-05,3.602848E-05,3.361576E-05,3.136461E-05,2.926422E-05, 2.730448E-05,2.547598E-05,2.376993E-05,2.217813E-05,2.069293E-05,1.930718E-05, 1.801424E-05,1.680788E-05,1.568231E-05,1.463211E-05,1.365224E-05,1.273799E-05, 1.188497E-05,1.108906E-05,1.034646E-05,9.653592E-06,9.007119E-06,8.403940E-06, 7.841153E-06,7.316054E-06,6.826120E-06,6.368995E-06,5.942483E-06,5.544532E-06, 5.173232E-06,4.826796E-06,4.503560E-06,4.201970E-06,3.920576E-06,3.658027E-06, 3.413060E-06,3.184498E-06,2.971241E-06,2.772266E-06,2.586616E-06,2.413398E-06, 2.251780E-06,2.100985E-06,1.960288E-06,1.829014E-06,1.706530E-06,1.592249E-06, 1.485621E-06,1.386133E-06,1.293308E-06,1.206699E-06,1.125890E-06,1.050492E-06, 9.801441E-07,9.145068E-07,8.532650E-07,7.961244E-07,7.428103E-07,6.930666E-07, 6.466540E-07,6.033495E-07,5.629450E-07,5.252462E-07,4.900721E-07,4.572534E-07, 4.266325E-07,3.980622E-07,3.714052E-07,3.465333E-07,3.233270E-07,3.016747E-07, 2.814725E-07,2.626231E-07,2.450360E-07,2.286267E-07,2.133163E-07,1.990311E-07, 1.857026E-07,1.732666E-07,1.616635E-07,1.508374E-07,1.407362E-07,1.313116E-07, 1.225180E-07,1.143133E-07,1.066581E-07,9.951555E-08,9.285129E-08,8.663332E-08, 8.083174E-08,7.541868E-08,7.036812E-08,6.565578E-08,6.125901E-08,5.715667E-08, 5.332906E-08,4.975778E-08,4.642565E-08,4.331666E-08,4.041587E-08,3.770934E-08, 3.518406E-08,3.282789E-08,3.062950E-08,2.857834E-08,2.666453E-08,2.487889E-08, 2.321282E-08,2.165833E-08,2.020794E-08,1.885467E-08,1.759203E-08,1.641394E-08, 1.531475E-08,1.428917E-08,1.333227E-08,1.243944E-08,1.160641E-08,1.082916E-08, 1.010397E-08,9.427336E-09,8.796015E-09,8.206972E-09,7.657376E-09,7.144584E-09, 6.666133E-09,6.219722E-09,5.803206E-09,5.414582E-09,5.051984E-09,4.713668E-09, 4.398008E-09,4.103486E-09,3.828688E-09,3.572292E-09,3.333066E-09,3.109861E-09, 2.901603E-09,2.707291E-09,2.525992E-09,2.356834E-09,2.199004E-09,2.051743E-09, 1.914344E-09,1.786146E-09,1.666533E-09,1.554930E-09,1.450801E-09,1.353646E-09, 1.262996E-09,1.178417E-09,1.099502E-09,1.025872E-09,9.571720E-10,8.930730E-10, 8.332666E-10,7.774652E-10,7.254007E-10,6.768228E-10,6.314980E-10,5.892085E-10, 5.497509E-10,5.129358E-10,4.785860E-10,4.465365E-10,4.166333E-10,3.887326E-10, 3.627004E-10,3.384114E-10,3.157490E-10,2.946042E-10,2.748755E-10,2.564679E-10, 2.392930E-10,2.232683E-10,2.083167E-10,1.943663E-10,1.813502E-10,1.692057E-10, 1.578745E-10,1.473021E-10,1.374377E-10,1.282339E-10,1.196465E-10,1.116341E-10], [1.185152E-01,1.105786E-01,1.031735E-01,9.626426E-02,8.981773E-02,8.380291E-02, 7.819088E-02,1.914699E-01,1.786477E-01,1.666842E-01,1.555219E-01,1.451070E-01, 1.353896E-01,1.263230E-01,2.363787E-01,2.205492E-01,2.057796E-01,1.919992E-01, 1.791416E-01,1.671450E-01,1.559518E-01,2.640234E-01,2.463425E-01,2.298457E-01, 2.144536E-01,2.000923E-01,1.866927E-01,1.741905E-01,2.810407E-01,2.622202E-01, 2.446601E-01,2.282760E-01,2.129890E-01,1.987258E-01,1.854177E-01,2.915160E-01, 2.719941E-01,2.537794E-01,2.367846E-01,2.209278E-01,2.061330E-01,1.923289E-01, 2.979644E-01,2.780106E-01,2.593931E-01,2.420223E-01,2.258148E-01,2.106926E-01, 1.965832E-01,1.834186E-01,1.711356E-01,1.596752E-01,1.489822E-01,1.390053E-01, 1.296965E-01,1.210111E-01,1.129074E-01,1.053463E-01,9.829159E-02,9.170929E-02, 8.556780E-02,7.983758E-02,7.449109E-02,6.950265E-02,6.484826E-02,6.050557E-02, 5.645369E-02,5.267316E-02,4.914579E-02,4.585465E-02,4.278390E-02,3.991879E-02, 3.724555E-02,3.475132E-02,3.242413E-02,3.025278E-02,2.822685E-02,2.633658E-02, 2.457290E-02,2.292732E-02,2.139195E-02,1.995939E-02,1.862277E-02,1.737566E-02, 1.621207E-02,1.512639E-02,1.411342E-02,1.316829E-02,1.228645E-02,1.146366E-02, 1.069597E-02,9.979697E-03,9.311387E-03,8.687831E-03,8.106033E-03,7.563196E-03, 7.056711E-03,6.584145E-03,6.143224E-03,5.731831E-03,5.347987E-03,4.989849E-03, 4.655693E-03,4.343915E-03,4.053016E-03,3.781598E-03,3.528356E-03,3.292072E-03, 3.071612E-03,2.865915E-03,2.673994E-03,2.494924E-03,2.327847E-03,2.171958E-03, 2.026508E-03,1.890799E-03,1.764178E-03,1.646036E-03,1.535806E-03,1.432958E-03, 1.336997E-03,1.247462E-03,1.163923E-03,1.085979E-03,1.013254E-03,9.453995E-04, 8.820889E-04,8.230181E-04,7.679030E-04,7.164788E-04,6.684984E-04,6.237311E-04, 5.819617E-04,5.429894E-04,5.066271E-04,4.726998E-04,4.410445E-04,4.115090E-04, 3.839515E-04,3.582394E-04,3.342492E-04,3.118655E-04,2.909808E-04,2.714947E-04, 2.533135E-04,2.363499E-04,2.205222E-04,2.057545E-04,1.919758E-04,1.791197E-04, 1.671246E-04,1.559328E-04,1.454904E-04,1.357474E-04,1.266568E-04,1.181749E-04, 1.102611E-04,1.028773E-04,9.598788E-05,8.955986E-05,8.356230E-05,7.796638E-05, 7.274521E-05,6.787368E-05,6.332838E-05,5.908747E-05,5.513056E-05,5.143863E-05, 4.799394E-05,4.477993E-05,4.178115E-05,3.898319E-05,3.637260E-05,3.393684E-05, 3.166419E-05,2.954373E-05,2.756528E-05,2.571931E-05,2.399697E-05,2.238996E-05, 2.089058E-05,1.949160E-05,1.818630E-05,1.696842E-05,1.583210E-05,1.477187E-05, 1.378264E-05,1.285966E-05,1.199848E-05,1.119498E-05,1.044529E-05,9.745798E-06, 9.093151E-06,8.484210E-06,7.916048E-06,7.385934E-06,6.891320E-06,6.429829E-06, 5.999242E-06,5.597491E-06,5.222644E-06,4.872899E-06,4.546575E-06,4.242105E-06, 3.958024E-06,3.692967E-06,3.445660E-06,3.214914E-06,2.999621E-06,2.798745E-06, 2.611322E-06,2.436449E-06,2.273288E-06,2.121052E-06,1.979012E-06,1.846483E-06, 1.722830E-06,1.607457E-06,1.499811E-06,1.399373E-06,1.305661E-06,1.218225E-06, 1.136644E-06,1.060526E-06,9.895060E-07,9.232417E-07,8.614150E-07,8.037286E-07, 7.499053E-07,6.996864E-07,6.528305E-07,6.091124E-07,5.683219E-07,5.302631E-07, 4.947530E-07,4.616209E-07,4.307075E-07,4.018643E-07,3.749526E-07,3.498432E-07, 3.264152E-07,3.045562E-07,2.841610E-07,2.651316E-07,2.473765E-07,2.308104E-07, 2.153537E-07,2.009321E-07,1.874763E-07,1.749216E-07,1.632076E-07,1.522781E-07, 1.420805E-07,1.325658E-07,1.236882E-07,1.154052E-07,1.076769E-07,1.004661E-07, 9.373816E-08,8.746080E-08,8.160381E-08,7.613905E-08,7.104024E-08,6.628289E-08, 6.184412E-08,5.770261E-08,5.383844E-08,5.023304E-08,4.686908E-08,4.373040E-08, 4.080190E-08,3.806952E-08,3.552012E-08,3.314144E-08,3.092206E-08,2.885130E-08, 2.691922E-08,2.511652E-08,2.343454E-08,2.186520E-08,2.040095E-08,1.903476E-08, 1.776006E-08,1.657072E-08,1.546103E-08,1.442565E-08,1.345961E-08,1.255826E-08, 1.171727E-08,1.093260E-08,1.020048E-08,9.517381E-09,8.880030E-09,8.285361E-09, 7.730515E-09,7.212826E-09,6.729804E-09,6.279130E-09,5.858635E-09,5.466300E-09, 5.100238E-09,4.758690E-09,4.440015E-09,4.142681E-09,3.865258E-09,3.606413E-09, 3.364902E-09,3.139565E-09,2.929318E-09,2.733150E-09,2.550119E-09,2.379345E-09, 2.220008E-09,2.071340E-09,1.932629E-09,1.803206E-09,1.682451E-09,1.569782E-09, 1.464659E-09,1.366575E-09,1.275060E-09,1.189673E-09,1.110004E-09,1.035670E-09, 9.663144E-10,9.016032E-10,8.412256E-10,7.848912E-10,7.323294E-10,6.832875E-10, 6.375298E-10,5.948363E-10,5.550019E-10,5.178351E-10,4.831572E-10,4.508016E-10, 4.206128E-10,3.924456E-10,3.661647E-10,3.416437E-10,3.187649E-10,2.974181E-10, 2.775009E-10,2.589175E-10,2.415786E-10,2.254008E-10,2.103064E-10,1.962228E-10, 1.830823E-10,1.708219E-10,1.593824E-10,1.487091E-10,1.387505E-10,1.294588E-10, 1.207893E-10,1.127004E-10,1.051532E-10,9.811140E-11,9.154117E-11,8.541093E-11, 7.969122E-11,7.435454E-11,6.937524E-11,6.472938E-11,6.039465E-11,5.635020E-11]], dtype='float') for i in range(3): result[i] = ted_empty.daily_soil_inv_timeseries(i, pore_h2o_conc[i]) npt.assert_allclose(result[i],expected_results[i],rtol=1e-4, atol=0, err_msg='', verbose=True) finally: for i in range(3): tab = [result[i], expected_results[i]] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_daily_animal_dose_timeseries(self): """ :description generates annual timeseries of daily pesticide concentrations in animals (mammals, birds, amphibians, reptiles) :param a1; coefficient of allometric expression :param b1; exponent of allometrice expression :param body_wgt; body weight of species (g) :param frac_h2o; fraction of water in food item :param intake_food_conc; pesticide concentration in food item (daily mg a.i./kg) :param frac_retained; fraction of ingested food retained by animal (mammals, birds, reptiles/amphibians) :Notes # calculations are performed daily from day of first application (assumed day 0) through the last day of a year # note: day numbers are synchronized with 0-based array indexing; thus the year does not have a calendar specific # assoication, rather it is one year from the day of 1st pesticide application # this represents Eqs 5&6 of Attachment 1-7 of 'Biological Evaluation Chapters for Diazinon ESA Assessment' :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([[]], dtype='float') expected_results = [[2.860270E+02,3.090209E+02,3.058215E+02,3.001105E+02,2.942541E+02,2.884869E+02,2.828301E+02, 5.633110E+02,5.808675E+02,5.723374E+02,5.614002E+02,5.504201E+02,5.396295E+02,5.290480E+02, 8.047008E+02,8.175238E+02,8.043529E+02,7.888661E+02,7.734255E+02,7.582619E+02,7.433932E+02, 1.014843E+03,1.023545E+03,1.006334E+03,9.868866E+02,9.675630E+02,9.485925E+02,9.299915E+02, 1.197782E+03,1.202897E+03,1.182169E+03,1.159274E+03,1.136569E+03,1.114285E+03,1.092435E+03, 1.357040E+03,1.359032E+03,1.335242E+03,1.309345E+03,1.283698E+03,1.258528E+03,1.233850E+03, 1.495682E+03,1.494955E+03,1.468500E+03,1.439990E+03,1.411781E+03,1.384100E+03,1.356959E+03, 1.330350E+03,1.304262E+03,1.278687E+03,1.253612E+03,1.229030E+03,1.204929E+03,1.181301E+03, 1.158137E+03,1.135426E+03,1.113161E+03,1.091333E+03,1.069932E+03,1.048952E+03,1.028382E+03, 1.008217E+03,9.884460E+02,9.690632E+02,9.500604E+02,9.314303E+02,9.131655E+02,8.952589E+02, 8.777034E+02,8.604922E+02,8.436185E+02,8.270756E+02,8.108572E+02,7.949568E+02,7.793682E+02, 7.640852E+02,7.491020E+02,7.344125E+02,7.200112E+02,7.058922E+02,6.920501E+02,6.784794E+02, 6.651748E+02,6.521312E+02,6.393433E+02,6.268061E+02,6.145148E+02,6.024646E+02,5.906506E+02, 5.790683E+02,5.677131E+02,5.565806E+02,5.456664E+02,5.349662E+02,5.244759E+02,5.141912E+02, 5.041083E+02,4.942230E+02,4.845316E+02,4.750302E+02,4.657152E+02,4.565828E+02,4.476295E+02, 4.388517E+02,4.302461E+02,4.218092E+02,4.135378E+02,4.054286E+02,3.974784E+02,3.896841E+02, 3.820426E+02,3.745510E+02,3.672063E+02,3.600056E+02,3.529461E+02,3.460250E+02,3.392397E+02, 3.325874E+02,3.260656E+02,3.196716E+02,3.134031E+02,3.072574E+02,3.012323E+02,2.953253E+02, 2.895342E+02,2.838566E+02,2.782903E+02,2.728332E+02,2.674831E+02,2.622379E+02,2.570956E+02, 2.520541E+02,2.471115E+02,2.422658E+02,2.375151E+02,2.328576E+02,2.282914E+02,2.238147E+02, 2.194259E+02,2.151231E+02,2.109046E+02,2.067689E+02,2.027143E+02,1.987392E+02,1.948420E+02, 1.910213E+02,1.872755E+02,1.836031E+02,1.800028E+02,1.764730E+02,1.730125E+02,1.696198E+02, 1.662937E+02,1.630328E+02,1.598358E+02,1.567015E+02,1.536287E+02,1.506161E+02,1.476627E+02, 1.447671E+02,1.419283E+02,1.391452E+02,1.364166E+02,1.337416E+02,1.311190E+02,1.285478E+02, 1.260271E+02,1.235557E+02,1.211329E+02,1.187576E+02,1.164288E+02,1.141457E+02,1.119074E+02, 1.097129E+02,1.075615E+02,1.054523E+02,1.033845E+02,1.013571E+02,9.936960E+01,9.742102E+01, 9.551065E+01,9.363775E+01,9.180157E+01,9.000140E+01,8.823652E+01,8.650626E+01,8.480992E+01, 8.314685E+01,8.151639E+01,7.991791E+01,7.835077E+01,7.681436E+01,7.530807E+01,7.383133E+01, 7.238354E+01,7.096414E+01,6.957258E+01,6.820830E+01,6.687078E+01,6.555948E+01,6.427390E+01, 6.301353E+01,6.177787E+01,6.056645E+01,5.937878E+01,5.821440E+01,5.707285E+01,5.595368E+01, 5.485647E+01,5.378076E+01,5.272616E+01,5.169223E+01,5.067857E+01,4.968480E+01,4.871051E+01, 4.775533E+01,4.681887E+01,4.590078E+01,4.500070E+01,4.411826E+01,4.325313E+01,4.240496E+01, 4.157343E+01,4.075820E+01,3.995895E+01,3.917538E+01,3.840718E+01,3.765404E+01,3.691566E+01, 3.619177E+01,3.548207E+01,3.478629E+01,3.410415E+01,3.343539E+01,3.277974E+01,3.213695E+01, 3.150677E+01,3.088894E+01,3.028322E+01,2.968939E+01,2.910720E+01,2.853642E+01,2.797684E+01, 2.742823E+01,2.689038E+01,2.636308E+01,2.584611E+01,2.533929E+01,2.484240E+01,2.435526E+01, 2.387766E+01,2.340944E+01,2.295039E+01,2.250035E+01,2.205913E+01,2.162656E+01,2.120248E+01, 2.078671E+01,2.037910E+01,1.997948E+01,1.958769E+01,1.920359E+01,1.882702E+01,1.845783E+01, 1.809588E+01,1.774104E+01,1.739314E+01,1.705208E+01,1.671770E+01,1.638987E+01,1.606848E+01, 1.575338E+01,1.544447E+01,1.514161E+01,1.484469E+01,1.455360E+01,1.426821E+01,1.398842E+01, 1.371412E+01,1.344519E+01,1.318154E+01,1.292306E+01,1.266964E+01,1.242120E+01,1.217763E+01, 1.193883E+01,1.170472E+01,1.147520E+01,1.125017E+01,1.102957E+01,1.081328E+01,1.060124E+01, 1.039336E+01,1.018955E+01,9.989738E+00,9.793846E+00,9.601794E+00,9.413509E+00,9.228916E+00, 9.047942E+00,8.870518E+00,8.696572E+00,8.526038E+00,8.358848E+00,8.194936E+00,8.034238E+00, 7.876691E+00,7.722234E+00,7.570806E+00,7.422347E+00,7.276799E+00,7.134106E+00,6.994210E+00, 6.857058E+00,6.722595E+00,6.590769E+00,6.461528E+00,6.334822E+00,6.210600E+00,6.088814E+00, 5.969416E+00,5.852359E+00,5.737598E+00,5.625087E+00,5.514783E+00,5.406641E+00,5.300620E+00, 5.196678E+00,5.094775E+00,4.994869E+00,4.896923E+00,4.800897E+00,4.706755E+00,4.614458E+00, 4.523971E+00,4.435259E+00,4.348286E+00,4.263019E+00,4.179424E+00,4.097468E+00,4.017119E+00, 3.938346E+00,3.861117E+00,3.785403E+00,3.711174E+00,3.638400E+00,3.567053E+00,3.497105E+00, 3.428529E+00,3.361298E+00,3.295385E+00,3.230764E+00,3.167411E+00,3.105300E+00,3.044407E+00, 2.984708E+00,2.926180E+00,2.868799E+00,2.812544E+00,2.757391E+00,2.703321E+00,2.650310E+00, 2.598339E+00,2.547387E+00], [4.583348E+01,4.951806E+01,4.900538E+01,4.809025E+01,4.715181E+01,4.622765E+01,4.532120E+01, 9.026597E+01,9.307926E+01,9.171236E+01,8.995977E+01,8.820030E+01,8.647120E+01,8.477560E+01, 1.289467E+02,1.310015E+02,1.288910E+02,1.264093E+02,1.239351E+02,1.215053E+02,1.191227E+02, 1.626202E+02,1.640147E+02,1.612568E+02,1.581405E+02,1.550440E+02,1.520042E+02,1.490235E+02, 1.919347E+02,1.927544E+02,1.894329E+02,1.857641E+02,1.821259E+02,1.785550E+02,1.750537E+02, 2.174545E+02,2.177737E+02,2.139616E+02,2.098118E+02,2.057021E+02,2.016689E+02,1.977143E+02, 2.396707E+02,2.395543E+02,2.353151E+02,2.307466E+02,2.262263E+02,2.217906E+02,2.174415E+02, 2.131776E+02,2.089973E+02,2.048990E+02,2.008811E+02,1.969419E+02,1.930800E+02,1.892938E+02, 1.855819E+02,1.819427E+02,1.783750E+02,1.748771E+02,1.714479E+02,1.680859E+02,1.647898E+02, 1.615584E+02,1.583904E+02,1.552844E+02,1.522394E+02,1.492541E+02,1.463273E+02,1.434579E+02, 1.406448E+02,1.378868E+02,1.351829E+02,1.325321E+02,1.299332E+02,1.273853E+02,1.248873E+02, 1.224384E+02,1.200374E+02,1.176836E+02,1.153759E+02,1.131134E+02,1.108953E+02,1.087208E+02, 1.065888E+02,1.044987E+02,1.024495E+02,1.004405E+02,9.847096E+01,9.654000E+01,9.464691E+01, 9.279094E+01,9.097137E+01,8.918748E+01,8.743857E+01,8.572395E+01,8.404295E+01,8.239492E+01, 8.077921E+01,7.919518E+01,7.764221E+01,7.611969E+01,7.462703E+01,7.316364E+01,7.172895E+01, 7.032239E+01,6.894341E+01,6.759147E+01,6.626604E+01,6.496660E+01,6.369265E+01,6.244367E+01, 6.121919E+01,6.001872E+01,5.884179E+01,5.768794E+01,5.655671E+01,5.544767E+01,5.436038E+01, 5.329440E+01,5.224933E+01,5.122475E+01,5.022027E+01,4.923548E+01,4.827000E+01,4.732346E+01, 4.639547E+01,4.548569E+01,4.459374E+01,4.371928E+01,4.286197E+01,4.202148E+01,4.119746E+01, 4.038960E+01,3.959759E+01,3.882110E+01,3.805985E+01,3.731352E+01,3.658182E+01,3.586447E+01, 3.516119E+01,3.447170E+01,3.379573E+01,3.313302E+01,3.248330E+01,3.184632E+01,3.122184E+01, 3.060960E+01,3.000936E+01,2.942090E+01,2.884397E+01,2.827836E+01,2.772384E+01,2.718019E+01, 2.664720E+01,2.612467E+01,2.561238E+01,2.511013E+01,2.461774E+01,2.413500E+01,2.366173E+01, 2.319774E+01,2.274284E+01,2.229687E+01,2.185964E+01,2.143099E+01,2.101074E+01,2.059873E+01, 2.019480E+01,1.979879E+01,1.941055E+01,1.902992E+01,1.865676E+01,1.829091E+01,1.793224E+01, 1.758060E+01,1.723585E+01,1.689787E+01,1.656651E+01,1.624165E+01,1.592316E+01,1.561092E+01, 1.530480E+01,1.500468E+01,1.471045E+01,1.442198E+01,1.413918E+01,1.386192E+01,1.359009E+01, 1.332360E+01,1.306233E+01,1.280619E+01,1.255507E+01,1.230887E+01,1.206750E+01,1.183086E+01, 1.159887E+01,1.137142E+01,1.114843E+01,1.092982E+01,1.071549E+01,1.050537E+01,1.029937E+01, 1.009740E+01,9.899397E+00,9.705276E+00,9.514962E+00,9.328379E+00,9.145455E+00,8.966118E+00, 8.790298E+00,8.617926E+00,8.448934E+00,8.283255E+00,8.120826E+00,7.961581E+00,7.805459E+00, 7.652399E+00,7.502340E+00,7.355224E+00,7.210992E+00,7.069589E+00,6.930959E+00,6.795047E+00, 6.661800E+00,6.531166E+00,6.403094E+00,6.277533E+00,6.154435E+00,6.033750E+00,5.915432E+00, 5.799434E+00,5.685711E+00,5.574217E+00,5.464910E+00,5.357747E+00,5.252685E+00,5.149683E+00, 5.048701E+00,4.949699E+00,4.852638E+00,4.757481E+00,4.664189E+00,4.572728E+00,4.483059E+00, 4.395149E+00,4.308963E+00,4.224467E+00,4.141628E+00,4.060413E+00,3.980791E+00,3.902730E+00, 3.826200E+00,3.751170E+00,3.677612E+00,3.605496E+00,3.534795E+00,3.465479E+00,3.397524E+00, 3.330900E+00,3.265583E+00,3.201547E+00,3.138767E+00,3.077217E+00,3.016875E+00,2.957716E+00, 2.899717E+00,2.842855E+00,2.787109E+00,2.732455E+00,2.678873E+00,2.626342E+00,2.574841E+00, 2.524350E+00,2.474849E+00,2.426319E+00,2.378740E+00,2.332095E+00,2.286364E+00,2.241530E+00, 2.197575E+00,2.154481E+00,2.112233E+00,2.070814E+00,2.030206E+00,1.990395E+00,1.951365E+00, 1.913100E+00,1.875585E+00,1.838806E+00,1.802748E+00,1.767397E+00,1.732740E+00,1.698762E+00, 1.665450E+00,1.632792E+00,1.600774E+00,1.569383E+00,1.538609E+00,1.508438E+00,1.478858E+00, 1.449859E+00,1.421428E+00,1.393554E+00,1.366228E+00,1.339437E+00,1.313171E+00,1.287421E+00, 1.262175E+00,1.237425E+00,1.213160E+00,1.189370E+00,1.166047E+00,1.143182E+00,1.120765E+00, 1.098787E+00,1.077241E+00,1.056117E+00,1.035407E+00,1.015103E+00,9.951976E-01,9.756824E-01, 9.565499E-01,9.377925E-01,9.194030E-01,9.013741E-01,8.836987E-01,8.663699E-01,8.493809E-01, 8.327250E-01,8.163958E-01,8.003868E-01,7.846917E-01,7.693044E-01,7.542188E-01,7.394290E-01, 7.249293E-01,7.107138E-01,6.967772E-01,6.831138E-01,6.697183E-01,6.565856E-01,6.437103E-01, 6.310876E-01,6.187123E-01,6.065798E-01,5.946851E-01,5.830237E-01,5.715909E-01,5.603824E-01, 5.493936E-01,5.386204E-01,5.280583E-01,5.177034E-01,5.075516E-01,4.975988E-01,4.878412E-01, 4.782749E-01,4.688963E-01,4.597015E-01,4.506870E-01,4.418493E-01,4.331849E-01,4.246904E-01, 4.163625E-01,4.081979E-01], [1.338207E+02,1.378876E+02,1.355183E+02,1.328776E+02,1.302728E+02,1.277182E+02,1.252138E+02, 2.565791E+02,2.582388E+02,2.535095E+02,2.485550E+02,2.436818E+02,2.389034E+02,2.342187E+02, 3.634465E+02,3.630106E+02,3.562267E+02,3.492581E+02,3.424102E+02,3.356958E+02,3.291130E+02, 4.564800E+02,4.542198E+02,4.456473E+02,4.369252E+02,4.283582E+02,4.199584E+02,4.117233E+02, 5.374704E+02,5.336219E+02,5.234925E+02,5.132438E+02,5.031803E+02,4.933133E+02,4.836397E+02, 6.079765E+02,6.027455E+02,5.912606E+02,5.796831E+02,5.683167E+02,5.571724E+02,5.462466E+02, 6.693557E+02,6.629211E+02,6.502562E+02,6.375218E+02,6.250212E+02,6.127650E+02,6.007490E+02, 5.889687E+02,5.774194E+02,5.660965E+02,5.549957E+02,5.441126E+02,5.334429E+02,5.229824E+02, 5.127270E+02,5.026728E+02,4.928157E+02,4.831519E+02,4.736775E+02,4.643890E+02,4.552826E+02, 4.463548E+02,4.376021E+02,4.290210E+02,4.206081E+02,4.123602E+02,4.042741E+02,3.963465E+02, 3.885744E+02,3.809547E+02,3.734844E+02,3.661606E+02,3.589804E+02,3.519411E+02,3.450397E+02, 3.382737E+02,3.316404E+02,3.251371E+02,3.187613E+02,3.125106E+02,3.063825E+02,3.003745E+02, 2.944844E+02,2.887097E+02,2.830483E+02,2.774979E+02,2.720563E+02,2.667214E+02,2.614912E+02, 2.563635E+02,2.513364E+02,2.464078E+02,2.415759E+02,2.368388E+02,2.321945E+02,2.276413E+02, 2.231774E+02,2.188010E+02,2.145105E+02,2.103041E+02,2.061801E+02,2.021371E+02,1.981733E+02, 1.942872E+02,1.904774E+02,1.867422E+02,1.830803E+02,1.794902E+02,1.759705E+02,1.725199E+02, 1.691368E+02,1.658202E+02,1.625685E+02,1.593807E+02,1.562553E+02,1.531912E+02,1.501873E+02, 1.472422E+02,1.443548E+02,1.415241E+02,1.387489E+02,1.360282E+02,1.333607E+02,1.307456E+02, 1.281818E+02,1.256682E+02,1.232039E+02,1.207880E+02,1.184194E+02,1.160973E+02,1.138207E+02, 1.115887E+02,1.094005E+02,1.072552E+02,1.051520E+02,1.030901E+02,1.010685E+02,9.908664E+01, 9.714361E+01,9.523868E+01,9.337111E+01,9.154016E+01,8.974511E+01,8.798527E+01,8.625993E+01, 8.456842E+01,8.291009E+01,8.128427E+01,7.969034E+01,7.812766E+01,7.659562E+01,7.509363E+01, 7.362109E+01,7.217742E+01,7.076207E+01,6.937447E+01,6.801408E+01,6.668036E+01,6.537280E+01, 6.409088E+01,6.283410E+01,6.160196E+01,6.039398E+01,5.920969E+01,5.804863E+01,5.691033E+01, 5.579435E+01,5.470026E+01,5.362762E+01,5.257601E+01,5.154503E+01,5.053426E+01,4.954332E+01, 4.857180E+01,4.761934E+01,4.668555E+01,4.577008E+01,4.487256E+01,4.399263E+01,4.312996E+01, 4.228421E+01,4.145504E+01,4.064214E+01,3.984517E+01,3.906383E+01,3.829781E+01,3.754681E+01, 3.681054E+01,3.608871E+01,3.538103E+01,3.468723E+01,3.400704E+01,3.334018E+01,3.268640E+01, 3.204544E+01,3.141705E+01,3.080098E+01,3.019699E+01,2.960485E+01,2.902431E+01,2.845516E+01, 2.789718E+01,2.735013E+01,2.681381E+01,2.628801E+01,2.577252E+01,2.526713E+01,2.477166E+01, 2.428590E+01,2.380967E+01,2.334278E+01,2.288504E+01,2.243628E+01,2.199632E+01,2.156498E+01, 2.114211E+01,2.072752E+01,2.032107E+01,1.992258E+01,1.953191E+01,1.914891E+01,1.877341E+01, 1.840527E+01,1.804436E+01,1.769052E+01,1.734362E+01,1.700352E+01,1.667009E+01,1.634320E+01, 1.602272E+01,1.570852E+01,1.540049E+01,1.509850E+01,1.480242E+01,1.451216E+01,1.422758E+01, 1.394859E+01,1.367506E+01,1.340690E+01,1.314400E+01,1.288626E+01,1.263357E+01,1.238583E+01, 1.214295E+01,1.190484E+01,1.167139E+01,1.144252E+01,1.121814E+01,1.099816E+01,1.078249E+01, 1.057105E+01,1.036376E+01,1.016053E+01,9.961292E+00,9.765957E+00,9.574453E+00,9.386704E+00, 9.202636E+00,9.022178E+00,8.845259E+00,8.671808E+00,8.501760E+00,8.335045E+00,8.171600E+00, 8.011360E+00,7.854262E+00,7.700245E+00,7.549248E+00,7.401212E+00,7.256078E+00,7.113791E+00, 6.974294E+00,6.837532E+00,6.703452E+00,6.572002E+00,6.443129E+00,6.316783E+00,6.192915E+00, 6.071476E+00,5.952418E+00,5.835694E+00,5.721260E+00,5.609069E+00,5.499079E+00,5.391245E+00, 5.285526E+00,5.181880E+00,5.080267E+00,4.980646E+00,4.882979E+00,4.787226E+00,4.693352E+00, 4.601318E+00,4.511089E+00,4.422629E+00,4.335904E+00,4.250880E+00,4.167523E+00,4.085800E+00, 4.005680E+00,3.927131E+00,3.850122E+00,3.774624E+00,3.700606E+00,3.628039E+00,3.556896E+00, 3.487147E+00,3.418766E+00,3.351726E+00,3.286001E+00,3.221564E+00,3.158392E+00,3.096457E+00, 3.035738E+00,2.976209E+00,2.917847E+00,2.860630E+00,2.804535E+00,2.749540E+00,2.695623E+00, 2.642763E+00,2.590940E+00,2.540133E+00,2.490323E+00,2.441489E+00,2.393613E+00,2.346676E+00, 2.300659E+00,2.255544E+00,2.211315E+00,2.167952E+00,2.125440E+00,2.083761E+00,2.042900E+00, 2.002840E+00,1.963566E+00,1.925061E+00,1.887312E+00,1.850303E+00,1.814020E+00,1.778448E+00, 1.743573E+00,1.709383E+00,1.675863E+00,1.643000E+00,1.610782E+00,1.579196E+00,1.548229E+00, 1.517869E+00,1.488104E+00,1.458924E+00,1.430315E+00,1.402267E+00,1.374770E+00,1.347811E+00, 1.321382E+00,1.295470E+00,1.270067E+00,1.245162E+00,1.220745E+00,1.196807E+00,1.173338E+00, 1.150330E+00,1.127772E+00]] try: # internal model constants ted_empty.num_simulation_days = 366 # internally specified variables a1 = pd.Series([.621, .621, .648], dtype='float') b1 = pd.Series([.564, .564, .651], dtype='float') # internally specified variables from external database body_wgt = pd.Series([15., 1000., 20.], dtype='float') frac_h2o = pd.Series([0.8, 0.8, 0.8], dtype='float') # input variables that change per simulation ted_empty.frac_retained_mamm = pd.Series([0.1, 0.1, 0.05], dtype='float') # internally calculated variables intake_food_conc = pd.Series([[3.000000E+02,2.941172E+02,2.883497E+02,2.826954E+02,2.771519E+02, 2.717171E+02,2.663889E+02,5.611652E+02,5.501611E+02,5.393727E+02, 5.287960E+02,5.184266E+02,5.082606E+02,4.982939E+02,7.885227E+02, 7.730602E+02,7.579010E+02,7.430390E+02,7.284684E+02,7.141836E+02, 7.001789E+02,9.864488E+02,9.671052E+02,9.481408E+02,9.295484E+02, 9.113205E+02,8.934501E+02,8.759300E+02,1.158754E+03,1.136031E+03, 1.113754E+03,1.091914E+03,1.070502E+03,1.049511E+03,1.028930E+03, 1.308754E+03,1.283090E+03,1.257929E+03,1.233262E+03,1.209078E+03, 1.185369E+03,1.162125E+03,1.439336E+03,1.411112E+03,1.383441E+03, 1.356312E+03,1.329716E+03,1.303641E+03,1.278077E+03,1.253015E+03, 1.228444E+03,1.204355E+03,1.180738E+03,1.157585E+03,1.134885E+03, 1.112631E+03,1.090813E+03,1.069423E+03,1.048452E+03,1.027892E+03, 1.007736E+03,9.879750E+02,9.686014E+02,9.496077E+02,9.309865E+02, 9.127304E+02,8.948323E+02,8.772852E+02,8.600822E+02,8.432165E+02, 8.266816E+02,8.104708E+02,7.945780E+02,7.789968E+02,7.637211E+02, 7.487450E+02,7.340626E+02,7.196681E+02,7.055558E+02,6.917203E+02, 6.781561E+02,6.648579E+02,6.518204E+02,6.390386E+02,6.265075E+02, 6.142220E+02,6.021775E+02,5.903692E+02,5.787924E+02,5.674426E+02, 5.563154E+02,5.454064E+02,5.347113E+02,5.242260E+02,5.139462E+02, 5.038680E+02,4.939875E+02,4.843007E+02,4.748039E+02,4.654933E+02, 4.563652E+02,4.474162E+02,4.386426E+02,4.300411E+02,4.216083E+02, 4.133408E+02,4.052354E+02,3.972890E+02,3.894984E+02,3.818606E+02, 3.743725E+02,3.670313E+02,3.598340E+02,3.527779E+02,3.458602E+02, 3.390781E+02,3.324289E+02,3.259102E+02,3.195193E+02,3.132537E+02, 3.071110E+02,3.010888E+02,2.951846E+02,2.893962E+02,2.837213E+02, 2.781577E+02,2.727032E+02,2.673557E+02,2.621130E+02,2.569731E+02, 2.519340E+02,2.469938E+02,2.421504E+02,2.374019E+02,2.327466E+02, 2.281826E+02,2.237081E+02,2.193213E+02,2.150205E+02,2.108041E+02, 2.066704E+02,2.026177E+02,1.986445E+02,1.947492E+02,1.909303E+02, 1.871863E+02,1.835157E+02,1.799170E+02,1.763890E+02,1.729301E+02, 1.695390E+02,1.662145E+02,1.629551E+02,1.597597E+02,1.566269E+02, 1.535555E+02,1.505444E+02,1.475923E+02,1.446981E+02,1.418607E+02, 1.390789E+02,1.363516E+02,1.336778E+02,1.310565E+02,1.284866E+02, 1.259670E+02,1.234969E+02,1.210752E+02,1.187010E+02,1.163733E+02, 1.140913E+02,1.118540E+02,1.096607E+02,1.075103E+02,1.054021E+02, 1.033352E+02,1.013089E+02,9.932225E+01,9.737460E+01,9.546514E+01, 9.359313E+01,9.175783E+01,8.995851E+01,8.819448E+01,8.646504E+01, 8.476951E+01,8.310723E+01,8.147755E+01,7.987983E+01,7.831343E+01, 7.677775E+01,7.527219E+01,7.379615E+01,7.234905E+01,7.093033E+01, 6.953943E+01,6.817580E+01,6.683892E+01,6.552825E+01,6.424328E+01, 6.298351E+01,6.174844E+01,6.053759E+01,5.935048E+01,5.818666E+01, 5.704565E+01,5.592702E+01,5.483033E+01,5.375514E+01,5.270103E+01, 5.166760E+01,5.065443E+01,4.966112E+01,4.868730E+01,4.773257E+01, 4.679657E+01,4.587891E+01,4.497926E+01,4.409724E+01,4.323252E+01, 4.238476E+01,4.155362E+01,4.073878E+01,3.993991E+01,3.915672E+01, 3.838888E+01,3.763609E+01,3.689807E+01,3.617452E+01,3.546516E+01, 3.476971E+01,3.408790E+01,3.341946E+01,3.276412E+01,3.212164E+01, 3.149175E+01,3.087422E+01,3.026879E+01,2.967524E+01,2.909333E+01, 2.852283E+01,2.796351E+01,2.741516E+01,2.687757E+01,2.635052E+01, 2.583380E+01,2.532721E+01,2.483056E+01,2.434365E+01,2.386629E+01, 2.339828E+01,2.293946E+01,2.248963E+01,2.204862E+01,2.161626E+01, 2.119238E+01,2.077681E+01,2.036939E+01,1.996996E+01,1.957836E+01, 1.919444E+01,1.881805E+01,1.844904E+01,1.808726E+01,1.773258E+01, 1.738486E+01,1.704395E+01,1.670973E+01,1.638206E+01,1.606082E+01, 1.574588E+01,1.543711E+01,1.513440E+01,1.483762E+01,1.454666E+01, 1.426141E+01,1.398176E+01,1.370758E+01,1.343878E+01,1.317526E+01, 1.291690E+01,1.266361E+01,1.241528E+01,1.217183E+01,1.193314E+01, 1.169914E+01,1.146973E+01,1.124481E+01,1.102431E+01,1.080813E+01, 1.059619E+01,1.038840E+01,1.018469E+01,9.984978E+00,9.789179E+00, 9.597219E+00,9.409024E+00,9.224518E+00,9.043631E+00,8.866291E+00, 8.692429E+00,8.521975E+00,8.354865E+00,8.191031E+00,8.030410E+00, 7.872938E+00,7.718555E+00,7.567199E+00,7.418810E+00,7.273332E+00, 7.130706E+00,6.990878E+00,6.853791E+00,6.719392E+00,6.587629E+00, 6.458450E+00,6.331803E+00,6.207641E+00,6.085913E+00,5.966571E+00, 5.849571E+00,5.734864E+00,5.622407E+00,5.512155E+00,5.404065E+00, 5.298095E+00,5.194202E+00,5.092347E+00,4.992489E+00,4.894590E+00, 4.798610E+00,4.704512E+00,4.612259E+00,4.521816E+00,4.433146E+00, 4.346214E+00,4.260988E+00,4.177432E+00,4.095515E+00,4.015205E+00, 3.936469E+00,3.859277E+00,3.783599E+00,3.709405E+00,3.636666E+00, 3.565353E+00,3.495439E+00,3.426895E+00,3.359696E+00,3.293814E+00, 3.229225E+00,3.165902E+00,3.103820E+00,3.042956E+00,2.983286E+00, 2.924785E+00,2.867432E+00,2.811203E+00,2.756077E+00,2.702032E+00, 2.649047E+00,2.597101E+00,2.546174E+00,2.496245E+00,2.447295E+00, 2.399305E+00], [3.000000E+02,2.941172E+02,2.883497E+02,2.826954E+02,2.771519E+02, 2.717171E+02,2.663889E+02,5.611652E+02,5.501611E+02,5.393727E+02, 5.287960E+02,5.184266E+02,5.082606E+02,4.982939E+02,7.885227E+02, 7.730602E+02,7.579010E+02,7.430390E+02,7.284684E+02,7.141836E+02, 7.001789E+02,9.864488E+02,9.671052E+02,9.481408E+02,9.295484E+02, 9.113205E+02,8.934501E+02,8.759300E+02,1.158754E+03,1.136031E+03, 1.113754E+03,1.091914E+03,1.070502E+03,1.049511E+03,1.028930E+03, 1.308754E+03,1.283090E+03,1.257929E+03,1.233262E+03,1.209078E+03, 1.185369E+03,1.162125E+03,1.439336E+03,1.411112E+03,1.383441E+03, 1.356312E+03,1.329716E+03,1.303641E+03,1.278077E+03,1.253015E+03, 1.228444E+03,1.204355E+03,1.180738E+03,1.157585E+03,1.134885E+03, 1.112631E+03,1.090813E+03,1.069423E+03,1.048452E+03,1.027892E+03, 1.007736E+03,9.879750E+02,9.686014E+02,9.496077E+02,9.309865E+02, 9.127304E+02,8.948323E+02,8.772852E+02,8.600822E+02,8.432165E+02, 8.266816E+02,8.104708E+02,7.945780E+02,7.789968E+02,7.637211E+02, 7.487450E+02,7.340626E+02,7.196681E+02,7.055558E+02,6.917203E+02, 6.781561E+02,6.648579E+02,6.518204E+02,6.390386E+02,6.265075E+02, 6.142220E+02,6.021775E+02,5.903692E+02,5.787924E+02,5.674426E+02, 5.563154E+02,5.454064E+02,5.347113E+02,5.242260E+02,5.139462E+02, 5.038680E+02,4.939875E+02,4.843007E+02,4.748039E+02,4.654933E+02, 4.563652E+02,4.474162E+02,4.386426E+02,4.300411E+02,4.216083E+02, 4.133408E+02,4.052354E+02,3.972890E+02,3.894984E+02,3.818606E+02, 3.743725E+02,3.670313E+02,3.598340E+02,3.527779E+02,3.458602E+02, 3.390781E+02,3.324289E+02,3.259102E+02,3.195193E+02,3.132537E+02, 3.071110E+02,3.010888E+02,2.951846E+02,2.893962E+02,2.837213E+02, 2.781577E+02,2.727032E+02,2.673557E+02,2.621130E+02,2.569731E+02, 2.519340E+02,2.469938E+02,2.421504E+02,2.374019E+02,2.327466E+02, 2.281826E+02,2.237081E+02,2.193213E+02,2.150205E+02,2.108041E+02, 2.066704E+02,2.026177E+02,1.986445E+02,1.947492E+02,1.909303E+02, 1.871863E+02,1.835157E+02,1.799170E+02,1.763890E+02,1.729301E+02, 1.695390E+02,1.662145E+02,1.629551E+02,1.597597E+02,1.566269E+02, 1.535555E+02,1.505444E+02,1.475923E+02,1.446981E+02,1.418607E+02, 1.390789E+02,1.363516E+02,1.336778E+02,1.310565E+02,1.284866E+02, 1.259670E+02,1.234969E+02,1.210752E+02,1.187010E+02,1.163733E+02, 1.140913E+02,1.118540E+02,1.096607E+02,1.075103E+02,1.054021E+02, 1.033352E+02,1.013089E+02,9.932225E+01,9.737460E+01,9.546514E+01, 9.359313E+01,9.175783E+01,8.995851E+01,8.819448E+01,8.646504E+01, 8.476951E+01,8.310723E+01,8.147755E+01,7.987983E+01,7.831343E+01, 7.677775E+01,7.527219E+01,7.379615E+01,7.234905E+01,7.093033E+01, 6.953943E+01,6.817580E+01,6.683892E+01,6.552825E+01,6.424328E+01, 6.298351E+01,6.174844E+01,6.053759E+01,5.935048E+01,5.818666E+01, 5.704565E+01,5.592702E+01,5.483033E+01,5.375514E+01,5.270103E+01, 5.166760E+01,5.065443E+01,4.966112E+01,4.868730E+01,4.773257E+01, 4.679657E+01,4.587891E+01,4.497926E+01,4.409724E+01,4.323252E+01, 4.238476E+01,4.155362E+01,4.073878E+01,3.993991E+01,3.915672E+01, 3.838888E+01,3.763609E+01,3.689807E+01,3.617452E+01,3.546516E+01, 3.476971E+01,3.408790E+01,3.341946E+01,3.276412E+01,3.212164E+01, 3.149175E+01,3.087422E+01,3.026879E+01,2.967524E+01,2.909333E+01, 2.852283E+01,2.796351E+01,2.741516E+01,2.687757E+01,2.635052E+01, 2.583380E+01,2.532721E+01,2.483056E+01,2.434365E+01,2.386629E+01, 2.339828E+01,2.293946E+01,2.248963E+01,2.204862E+01,2.161626E+01, 2.119238E+01,2.077681E+01,2.036939E+01,1.996996E+01,1.957836E+01, 1.919444E+01,1.881805E+01,1.844904E+01,1.808726E+01,1.773258E+01, 1.738486E+01,1.704395E+01,1.670973E+01,1.638206E+01,1.606082E+01, 1.574588E+01,1.543711E+01,1.513440E+01,1.483762E+01,1.454666E+01, 1.426141E+01,1.398176E+01,1.370758E+01,1.343878E+01,1.317526E+01, 1.291690E+01,1.266361E+01,1.241528E+01,1.217183E+01,1.193314E+01, 1.169914E+01,1.146973E+01,1.124481E+01,1.102431E+01,1.080813E+01, 1.059619E+01,1.038840E+01,1.018469E+01,9.984978E+00,9.789179E+00, 9.597219E+00,9.409024E+00,9.224518E+00,9.043631E+00,8.866291E+00, 8.692429E+00,8.521975E+00,8.354865E+00,8.191031E+00,8.030410E+00, 7.872938E+00,7.718555E+00,7.567199E+00,7.418810E+00,7.273332E+00, 7.130706E+00,6.990878E+00,6.853791E+00,6.719392E+00,6.587629E+00, 6.458450E+00,6.331803E+00,6.207641E+00,6.085913E+00,5.966571E+00, 5.849571E+00,5.734864E+00,5.622407E+00,5.512155E+00,5.404065E+00, 5.298095E+00,5.194202E+00,5.092347E+00,4.992489E+00,4.894590E+00, 4.798610E+00,4.704512E+00,4.612259E+00,4.521816E+00,4.433146E+00, 4.346214E+00,4.260988E+00,4.177432E+00,4.095515E+00,4.015205E+00, 3.936469E+00,3.859277E+00,3.783599E+00,3.709405E+00,3.636666E+00, 3.565353E+00,3.495439E+00,3.426895E+00,3.359696E+00,3.293814E+00, 3.229225E+00,3.165902E+00,3.103820E+00,3.042956E+00,2.983286E+00, 2.924785E+00,2.867432E+00,2.811203E+00,2.756077E+00,2.702032E+00, 2.649047E+00,2.597101E+00,2.546174E+00,2.496245E+00,2.447295E+00, 2.399305E+00], [1.175000E+02,1.151959E+02,1.129370E+02,1.107224E+02, 1.085512E+02,1.064225E+02,1.043356E+02,2.197897E+02,2.154797E+02, 2.112543E+02,2.071118E+02,2.030504E+02,1.990687E+02,1.951651E+02, 3.088380E+02,3.027819E+02,2.968445E+02,2.910236E+02,2.853168E+02, 2.797219E+02,2.742367E+02,3.863591E+02,3.787829E+02,3.713552E+02, 3.640731E+02,3.569339E+02,3.499346E+02,3.430726E+02,4.538452E+02, 4.449455E+02,4.362204E+02,4.276664E+02,4.192801E+02,4.110583E+02, 4.029977E+02,5.125952E+02,5.025435E+02,4.926889E+02,4.830276E+02, 4.735557E+02,4.642696E+02,4.551655E+02,5.637400E+02,5.526854E+02, 5.418476E+02,5.312223E+02,5.208053E+02,5.105927E+02,5.005803E+02, 4.907642E+02,4.811406E+02,4.717057E+02,4.624559E+02,4.533874E+02, 4.444967E+02,4.357804E+02,4.272350E+02,4.188572E+02,4.106437E+02, 4.025912E+02,3.946966E+02,3.869569E+02,3.793689E+02,3.719297E+02, 3.646364E+02,3.574861E+02,3.504760E+02,3.436034E+02,3.368655E+02, 3.302598E+02,3.237836E+02,3.174344E+02,3.112097E+02,3.051071E+02, 2.991241E+02,2.932585E+02,2.875079E+02,2.818700E+02,2.763427E+02, 2.709238E+02,2.656111E+02,2.604027E+02,2.552963E+02,2.502901E+02, 2.453821E+02,2.405703E+02,2.358529E+02,2.312279E+02,2.266937E+02, 2.222484E+02,2.178902E+02,2.136175E+02,2.094286E+02,2.053218E+02, 2.012956E+02,1.973483E+02,1.934784E+02,1.896844E+02,1.859648E+02, 1.823182E+02,1.787430E+02,1.752380E+02,1.718017E+02,1.684328E+02, 1.651299E+02,1.618918E+02,1.587172E+02,1.556049E+02,1.525535E+02, 1.495621E+02,1.466292E+02,1.437539E+02,1.409350E+02,1.381714E+02, 1.354619E+02,1.328056E+02,1.302013E+02,1.276482E+02,1.251451E+02, 1.226910E+02,1.202851E+02,1.179264E+02,1.156140E+02,1.133468E+02, 1.111242E+02,1.089451E+02,1.068088E+02,1.047143E+02,1.026609E+02, 1.006478E+02,9.867416E+01,9.673922E+01,9.484222E+01,9.298242E+01, 9.115910E+01,8.937152E+01,8.761900E+01,8.590085E+01,8.421638E+01, 8.256495E+01,8.094590E+01,7.935860E+01,7.780243E+01,7.627677E+01, 7.478103E+01,7.331462E+01,7.187696E+01,7.046750E+01,6.908568E+01, 6.773095E+01,6.640279E+01,6.510067E+01,6.382408E+01,6.257253E+01, 6.134552E+01,6.014257E+01,5.896321E+01,5.780698E+01,5.667342E+01, 5.556209E+01,5.447255E+01,5.340438E+01,5.235715E+01,5.133046E+01, 5.032390E+01,4.933708E+01,4.836961E+01,4.742111E+01,4.649121E+01, 4.557955E+01,4.468576E+01,4.380950E+01,4.295042E+01,4.210819E+01, 4.128248E+01,4.047295E+01,3.967930E+01,3.890121E+01,3.813839E+01, 3.739051E+01,3.665731E+01,3.593848E+01,3.523375E+01,3.454284E+01, 3.386547E+01,3.320139E+01,3.255033E+01,3.191204E+01,3.128627E+01, 3.067276E+01,3.007129E+01,2.948161E+01,2.890349E+01,2.833671E+01, 2.778105E+01,2.723628E+01,2.670219E+01,2.617858E+01,2.566523E+01, 2.516195E+01,2.466854E+01,2.418480E+01,2.371056E+01,2.324561E+01, 2.278977E+01,2.234288E+01,2.190475E+01,2.147521E+01,2.105410E+01, 2.064124E+01,2.023648E+01,1.983965E+01,1.945061E+01,1.906919E+01, 1.869526E+01,1.832865E+01,1.796924E+01,1.761688E+01,1.727142E+01, 1.693274E+01,1.660070E+01,1.627517E+01,1.595602E+01,1.564313E+01, 1.533638E+01,1.503564E+01,1.474080E+01,1.445175E+01,1.416836E+01, 1.389052E+01,1.361814E+01,1.335109E+01,1.308929E+01,1.283261E+01, 1.258098E+01,1.233427E+01,1.209240E+01,1.185528E+01,1.162280E+01, 1.139489E+01,1.117144E+01,1.095238E+01,1.073761E+01,1.052705E+01, 1.032062E+01,1.011824E+01,9.919825E+00,9.725304E+00,9.534596E+00, 9.347629E+00,9.164327E+00,8.984620E+00,8.808438E+00,8.635709E+00, 8.466368E+00,8.300348E+00,8.137583E+00,7.978010E+00,7.821566E+00, 7.668190E+00,7.517822E+00,7.370402E+00,7.225873E+00,7.084178E+00, 6.945261E+00,6.809069E+00,6.675547E+00,6.544644E+00,6.416307E+00, 6.290488E+00,6.167135E+00,6.046201E+00,5.927639E+00,5.811402E+00, 5.697443E+00,5.585720E+00,5.476188E+00,5.368803E+00,5.263524E+00, 5.160309E+00,5.059119E+00,4.959913E+00,4.862652E+00,4.767298E+00, 4.673814E+00,4.582164E+00,4.492310E+00,4.404219E+00,4.317855E+00, 4.233184E+00,4.150174E+00,4.068792E+00,3.989005E+00,3.910783E+00, 3.834095E+00,3.758911E+00,3.685201E+00,3.612936E+00,3.542089E+00, 3.472631E+00,3.404535E+00,3.337774E+00,3.272322E+00,3.208154E+00, 3.145244E+00,3.083567E+00,3.023101E+00,2.963819E+00,2.905701E+00, 2.848722E+00,2.792860E+00,2.738094E+00,2.684401E+00,2.631762E+00, 2.580155E+00,2.529559E+00,2.479956E+00,2.431326E+00,2.383649E+00, 2.336907E+00,2.291082E+00,2.246155E+00,2.202109E+00,2.158927E+00, 2.116592E+00,2.075087E+00,2.034396E+00,1.994503E+00,1.955392E+00, 1.917048E+00,1.879455E+00,1.842600E+00,1.806468E+00,1.771044E+00, 1.736315E+00,1.702267E+00,1.668887E+00,1.636161E+00,1.604077E+00, 1.572622E+00,1.541784E+00,1.511550E+00,1.481910E+00,1.452850E+00, 1.424361E+00,1.396430E+00,1.369047E+00,1.342201E+00,1.315881E+00, 1.290077E+00,1.264780E+00,1.239978E+00,1.215663E+00,1.191825E+00, 1.168454E+00,1.145541E+00,1.123078E+00,1.101055E+00,1.079464E+00, 1.058296E+00,1.037544E+00,1.017198E+00,9.972513E-01,9.776958E-01, 9.585238E-01,9.397277E-01]], dtype='float') for i in range(3): result[i] = ted_empty.daily_animal_dose_timeseries(a1[i], b1[i], body_wgt[i], frac_h2o[i], intake_food_conc[i], ted_empty.frac_retained_mamm[i]) npt.assert_allclose(result[i],expected_results[i],rtol=1e-4, atol=0, err_msg='', verbose=True) finally: for i in range(3): tab = [result[i], expected_results[i]] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_daily_canopy_air_timeseries(self): """ :description generates annual timeseries of daily pesticide concentrations in soil pore water and surface puddles :param i; simulation number/index :param application rate; active ingredient application rate (lbs a.i./acre) :param food_multiplier; factor by which application rate of active ingredient is multiplied to estimate dietary based EECs :param daily_flag; daily flag denoting if pesticide is applied (0 - not applied, 1 - applied) :param water_type; type of water (pore water or surface puddles) :Notes # calculations are performed daily from day of first application (assumed day 0) through the last day of a year # note: day numbers are synchronized with 0-based array indexing; thus the year does not have a calendar specific # assoication, rather it is one year from the day of 1st pesticide application :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [[2.697542E-06,2.575726E-06,2.459410E-06,5.045889E-06,4.818025E-06,4.600451E-06, 7.090244E-06,6.770060E-06,6.464335E-06,6.172416E-06,5.893680E-06,5.627531E-06, 5.373400E-06,5.130746E-06,4.899050E-06,4.677817E-06,4.466574E-06,4.264871E-06, 4.072276E-06,3.888378E-06,3.712786E-06,3.545122E-06,3.385030E-06,3.232168E-06, 3.086208E-06,2.946840E-06,2.813765E-06,2.686700E-06,2.565373E-06,2.449525E-06, 2.338908E-06,2.233287E-06,2.132435E-06,2.036138E-06,1.944189E-06,1.856393E-06, 1.772561E-06,1.692515E-06,1.616084E-06,1.543104E-06,1.473420E-06,1.406883E-06, 1.343350E-06,1.282687E-06,1.224762E-06,1.169454E-06,1.116643E-06,1.066218E-06, 1.018069E-06,9.720946E-07,9.281964E-07,8.862805E-07,8.462575E-07,8.080419E-07, 7.715520E-07,7.367100E-07,7.034413E-07,6.716750E-07,6.413433E-07,6.123812E-07, 5.847271E-07,5.583217E-07,5.331088E-07,5.090345E-07,4.860473E-07,4.640982E-07, 4.431403E-07,4.231288E-07,4.040209E-07,3.857760E-07,3.683550E-07,3.517207E-07, 3.358375E-07,3.206716E-07,3.061906E-07,2.923635E-07,2.791609E-07,2.665544E-07, 2.545172E-07,2.430237E-07,2.320491E-07,2.215701E-07,2.115644E-07,2.020105E-07, 1.928880E-07,1.841775E-07,1.758603E-07,1.679188E-07,1.603358E-07,1.530953E-07, 1.461818E-07,1.395804E-07,1.332772E-07,1.272586E-07,1.215118E-07,1.160245E-07, 1.107851E-07,1.057822E-07,1.010052E-07,9.644400E-08,9.208875E-08,8.793017E-08, 8.395938E-08,8.016791E-08,7.654765E-08,7.309089E-08,6.979022E-08,6.663860E-08, 6.362931E-08,6.075591E-08,5.801227E-08,5.539253E-08,5.289110E-08,5.050262E-08, 4.822200E-08,4.604437E-08,4.396508E-08,4.197969E-08,4.008395E-08,3.827383E-08, 3.654544E-08,3.489511E-08,3.331930E-08,3.181466E-08,3.037796E-08,2.900614E-08, 2.769627E-08,2.644555E-08,2.525131E-08,2.411100E-08,2.302219E-08,2.198254E-08, 2.098985E-08,2.004198E-08,1.913691E-08,1.827272E-08,1.744755E-08,1.665965E-08, 1.590733E-08,1.518898E-08,1.450307E-08,1.384813E-08,1.322277E-08,1.262565E-08, 1.205550E-08,1.151109E-08,1.099127E-08,1.049492E-08,1.002099E-08,9.568457E-09, 9.136361E-09,8.723777E-09,8.329826E-09,7.953664E-09,7.594489E-09,7.251534E-09, 6.924067E-09,6.611387E-09,6.312827E-09,6.027750E-09,5.755547E-09,5.495635E-09, 5.247461E-09,5.010494E-09,4.784228E-09,4.568180E-09,4.361889E-09,4.164913E-09, 3.976832E-09,3.797245E-09,3.625767E-09,3.462033E-09,3.305693E-09,3.156414E-09, 3.013875E-09,2.877773E-09,2.747818E-09,2.623731E-09,2.505247E-09,2.392114E-09, 2.284090E-09,2.180944E-09,2.082456E-09,1.988416E-09,1.898622E-09,1.812884E-09, 1.731017E-09,1.652847E-09,1.578207E-09,1.506938E-09,1.438887E-09,1.373909E-09, 1.311865E-09,1.252624E-09,1.196057E-09,1.142045E-09,1.090472E-09,1.041228E-09, 9.942080E-10,9.493112E-10,9.064418E-10,8.655083E-10,8.264234E-10,7.891034E-10, 7.534688E-10,7.194433E-10,6.869544E-10,6.559327E-10,6.263118E-10,5.980286E-10, 5.710225E-10,5.452361E-10,5.206141E-10,4.971040E-10,4.746556E-10,4.532209E-10, 4.327542E-10,4.132117E-10,3.945517E-10,3.767344E-10,3.597217E-10,3.434772E-10, 3.279663E-10,3.131559E-10,2.990143E-10,2.855113E-10,2.726180E-10,2.603070E-10, 2.485520E-10,2.373278E-10,2.266104E-10,2.163771E-10,2.066058E-10,1.972759E-10, 1.883672E-10,1.798608E-10,1.717386E-10,1.639832E-10,1.565779E-10,1.495071E-10, 1.427556E-10,1.363090E-10,1.301535E-10,1.242760E-10,1.186639E-10,1.133052E-10, 1.081885E-10,1.033029E-10,9.863793E-11,9.418360E-11,8.993042E-11,8.586930E-11, 8.199158E-11,7.828897E-11,7.475357E-11,7.137782E-11,6.815451E-11,6.507676E-11, 6.213800E-11,5.933195E-11,5.665261E-11,5.409427E-11,5.165146E-11,4.931896E-11, 4.709180E-11,4.496521E-11,4.293465E-11,4.099579E-11,3.914449E-11,3.737678E-11, 3.568891E-11,3.407726E-11,3.253838E-11,3.106900E-11,2.966597E-11,2.832631E-11, 2.704714E-11,2.582573E-11,2.465948E-11,2.354590E-11,2.248260E-11,2.146733E-11, 2.049790E-11,1.957224E-11,1.868839E-11,1.784445E-11,1.703863E-11,1.626919E-11, 1.553450E-11,1.483299E-11,1.416315E-11,1.352357E-11,1.291287E-11,1.232974E-11, 1.177295E-11,1.124130E-11,1.073366E-11,1.024895E-11,9.786122E-12,9.344196E-12, 8.922227E-12,8.519314E-12,8.134595E-12,7.767250E-12,7.416493E-12,7.081576E-12, 6.761784E-12,6.456433E-12,6.164870E-12,5.886475E-12,5.620651E-12,5.366831E-12, 5.124474E-12,4.893061E-12,4.672098E-12,4.461114E-12,4.259657E-12,4.067298E-12, 3.883625E-12,3.708247E-12,3.540788E-12,3.380892E-12,3.228216E-12,3.082435E-12, 2.943237E-12,2.810325E-12,2.683416E-12,2.562237E-12,2.446530E-12,2.336049E-12, 2.230557E-12,2.129828E-12,2.033649E-12,1.941812E-12,1.854123E-12,1.770394E-12, 1.690446E-12,1.614108E-12,1.541218E-12,1.471619E-12,1.405163E-12,1.341708E-12, 1.281118E-12,1.223265E-12,1.168025E-12,1.115278E-12,1.064914E-12,1.016824E-12, 9.709062E-13,9.270617E-13,8.851971E-13,8.452230E-13,8.070541E-13,7.706088E-13, 7.358093E-13,7.025814E-13,6.708539E-13,6.405592E-13,6.116326E-13,5.840123E-13, 5.576392E-13,5.324571E-13,5.084122E-13,4.854531E-13,4.635308E-13,4.425985E-13], [1.747062E-05,1.699289E-05,1.652822E-05,1.607625E-05,1.563665E-05,1.520906E-05, 1.479317E-05,3.185927E-05,3.098808E-05,3.014071E-05,2.931651E-05,2.851485E-05, 2.773511E-05,2.697669E-05,4.370963E-05,4.251439E-05,4.135183E-05,4.022106E-05, 3.912122E-05,3.805144E-05,3.701093E-05,5.346948E-05,5.200736E-05,5.058521E-05, 4.920196E-05,4.785653E-05,4.654789E-05,4.527503E-05,6.150761E-05,5.982568E-05, 5.818974E-05,5.659854E-05,5.505085E-05,5.354548E-05,5.208128E-05,5.065711E-05, 4.927189E-05,4.792455E-05,4.661405E-05,4.533939E-05,4.409958E-05,4.289367E-05, 4.172074E-05,4.057989E-05,3.947023E-05,3.839091E-05,3.734111E-05,3.632002E-05, 3.532684E-05,3.436083E-05,3.342123E-05,3.250733E-05,3.161841E-05,3.075380E-05, 2.991284E-05,2.909487E-05,2.829927E-05,2.752543E-05,2.677274E-05,2.604064E-05, 2.532856E-05,2.463595E-05,2.396227E-05,2.330703E-05,2.266969E-05,2.204979E-05, 2.144684E-05,2.086037E-05,2.028994E-05,1.973511E-05,1.919546E-05,1.867056E-05, 1.816001E-05,1.766342E-05,1.718041E-05,1.671062E-05,1.625366E-05,1.580921E-05, 1.537690E-05,1.495642E-05,1.454744E-05,1.414964E-05,1.376271E-05,1.338637E-05, 1.302032E-05,1.266428E-05,1.231797E-05,1.198114E-05,1.165351E-05,1.133485E-05, 1.102489E-05,1.072342E-05,1.043019E-05,1.014497E-05,9.867557E-06,9.597728E-06, 9.335278E-06,9.080004E-06,8.831711E-06,8.590207E-06,8.355308E-06,8.126831E-06, 7.904603E-06,7.688451E-06,7.478210E-06,7.273718E-06,7.074818E-06,6.881356E-06, 6.693185E-06,6.510160E-06,6.332139E-06,6.158987E-06,5.990569E-06,5.826756E-06, 5.667423E-06,5.512447E-06,5.361709E-06,5.215093E-06,5.072486E-06,4.933779E-06, 4.798864E-06,4.667639E-06,4.540002E-06,4.415856E-06,4.295104E-06,4.177654E-06, 4.063416E-06,3.952301E-06,3.844226E-06,3.739105E-06,3.636859E-06,3.537409E-06, 3.440678E-06,3.346593E-06,3.255080E-06,3.166070E-06,3.079493E-06,2.995284E-06, 2.913378E-06,2.833712E-06,2.756224E-06,2.680855E-06,2.607546E-06,2.536243E-06, 2.466889E-06,2.399432E-06,2.333819E-06,2.270001E-06,2.207928E-06,2.147552E-06, 2.088827E-06,2.031708E-06,1.976151E-06,1.922113E-06,1.869552E-06,1.818429E-06, 1.768704E-06,1.720339E-06,1.673296E-06,1.627540E-06,1.583035E-06,1.539747E-06, 1.497642E-06,1.456689E-06,1.416856E-06,1.378112E-06,1.340427E-06,1.303773E-06, 1.268121E-06,1.233445E-06,1.199716E-06,1.166910E-06,1.135001E-06,1.103964E-06, 1.073776E-06,1.044413E-06,1.015854E-06,9.880754E-07,9.610564E-07,9.347762E-07, 9.092147E-07,8.843522E-07,8.601696E-07,8.366482E-07,8.137700E-07,7.915174E-07, 7.698733E-07,7.488211E-07,7.283445E-07,7.084279E-07,6.890559E-07,6.702136E-07, 6.518866E-07,6.340607E-07,6.167223E-07,5.998580E-07,5.834549E-07,5.675003E-07, 5.519819E-07,5.368880E-07,5.222067E-07,5.079270E-07,4.940377E-07,4.805282E-07, 4.673881E-07,4.546074E-07,4.421761E-07,4.300848E-07,4.183241E-07,4.068850E-07, 3.957587E-07,3.849367E-07,3.744105E-07,3.641723E-07,3.542140E-07,3.445280E-07, 3.351068E-07,3.259433E-07,3.170304E-07,3.083612E-07,2.999290E-07,2.917274E-07, 2.837501E-07,2.759910E-07,2.684440E-07,2.611034E-07,2.539635E-07,2.470188E-07, 2.402641E-07,2.336941E-07,2.273037E-07,2.210881E-07,2.150424E-07,2.091620E-07, 2.034425E-07,1.978794E-07,1.924683E-07,1.872053E-07,1.820861E-07,1.771070E-07, 1.722640E-07,1.675534E-07,1.629717E-07,1.585152E-07,1.541806E-07,1.499645E-07, 1.458637E-07,1.418751E-07,1.379955E-07,1.342220E-07,1.305517E-07,1.269817E-07, 1.235094E-07,1.201320E-07,1.168470E-07,1.136518E-07,1.105440E-07,1.075212E-07, 1.045810E-07,1.017212E-07,9.893968E-08,9.623416E-08,9.360264E-08,9.104307E-08, 8.855349E-08,8.613199E-08,8.377671E-08,8.148583E-08,7.925759E-08,7.709029E-08, 7.498225E-08,7.293186E-08,7.093753E-08,6.899774E-08,6.711100E-08,6.527584E-08, 6.349087E-08,6.175471E-08,6.006602E-08,5.842352E-08,5.682592E-08,5.527201E-08, 5.376060E-08,5.229051E-08,5.086062E-08,4.946984E-08,4.811708E-08,4.680132E-08, 4.552153E-08,4.427674E-08,4.306599E-08,4.188835E-08,4.074291E-08,3.962880E-08, 3.854515E-08,3.749113E-08,3.646593E-08,3.546877E-08,3.449887E-08,3.355550E-08, 3.263792E-08,3.174544E-08,3.087735E-08,3.003301E-08,2.921176E-08,2.841296E-08, 2.763601E-08,2.688030E-08,2.614526E-08,2.543031E-08,2.473492E-08,2.405854E-08, 2.340066E-08,2.276077E-08,2.213837E-08,2.153300E-08,2.094418E-08,2.037146E-08, 1.981440E-08,1.927257E-08,1.874556E-08,1.823296E-08,1.773438E-08,1.724944E-08, 1.677775E-08,1.631896E-08,1.587272E-08,1.543868E-08,1.501651E-08,1.460588E-08, 1.420648E-08,1.381800E-08,1.344015E-08,1.307263E-08,1.271516E-08,1.236746E-08, 1.202927E-08,1.170033E-08,1.138038E-08,1.106919E-08,1.076650E-08,1.047209E-08, 1.018573E-08,9.907199E-09,9.636286E-09,9.372782E-09,9.116482E-09,8.867192E-09, 8.624718E-09,8.388874E-09,8.159480E-09,7.936359E-09,7.719339E-09,7.508253E-09, 7.302939E-09,7.103240E-09,6.909002E-09,6.720075E-09,6.536314E-09,6.357578E-09, 6.183730E-09,6.014635E-09,5.850165E-09,5.690192E-09,5.534593E-09,5.383249E-09], [1.133578E-07,1.111350E-07,1.089557E-07,1.068191E-07,1.047245E-07,1.026709E-07, 1.006576E-07,9.868374E-08,9.674861E-08,9.485143E-08,9.299145E-08,9.116795E-08, 8.938020E-08,8.762751E-08,8.590918E-08,8.422456E-08,8.257297E-08,8.095376E-08, 7.936631E-08,7.780998E-08,7.628418E-08,7.478829E-08,7.332174E-08,7.188394E-08, 7.047434E-08,6.909238E-08,6.773752E-08,6.640923E-08,6.510699E-08,6.383028E-08, 6.257861E-08,6.135148E-08,6.014841E-08,5.896894E-08,5.781259E-08,5.667892E-08, 5.556749E-08,5.447784E-08,5.340956E-08,5.236223E-08,5.133544E-08,5.032879E-08, 4.934187E-08,4.837431E-08,4.742571E-08,4.649573E-08,4.558397E-08,4.469010E-08, 4.381375E-08,4.295459E-08,4.211228E-08,4.128648E-08,4.047688E-08,3.968315E-08, 3.890499E-08,3.814209E-08,3.739414E-08,3.666087E-08,3.594197E-08,3.523717E-08, 3.454619E-08,3.386876E-08,3.320462E-08,3.255349E-08,3.191514E-08,3.128930E-08, 3.067574E-08,3.007421E-08,2.948447E-08,2.890630E-08,2.833946E-08,2.778374E-08, 2.723892E-08,2.670478E-08,2.618112E-08,2.566772E-08,2.516439E-08,2.467093E-08, 2.418715E-08,2.371286E-08,2.324786E-08,2.279199E-08,2.234505E-08,2.190688E-08, 2.147730E-08,2.105614E-08,2.064324E-08,2.023844E-08,1.984158E-08,1.945250E-08, 1.907104E-08,1.869707E-08,1.833043E-08,1.797099E-08,1.761859E-08,1.727310E-08, 1.693438E-08,1.660231E-08,1.627675E-08,1.595757E-08,1.564465E-08,1.533787E-08, 1.503710E-08,1.474223E-08,1.445315E-08,1.416973E-08,1.389187E-08,1.361946E-08, 1.335239E-08,1.309056E-08,1.283386E-08,1.258220E-08,1.233547E-08,1.209358E-08, 1.185643E-08,1.162393E-08,1.139599E-08,1.117252E-08,1.095344E-08,1.073865E-08, 1.052807E-08,1.032162E-08,1.011922E-08,9.920788E-09,9.726248E-09,9.535522E-09, 9.348536E-09,9.165217E-09,8.985493E-09,8.809293E-09,8.636548E-09,8.467190E-09, 8.301154E-09,8.138373E-09,7.978785E-09,7.822326E-09,7.668935E-09,7.518552E-09, 7.371117E-09,7.226574E-09,7.084866E-09,6.945936E-09,6.809730E-09,6.676195E-09, 6.545279E-09,6.416930E-09,6.291098E-09,6.167734E-09,6.046788E-09,5.928214E-09, 5.811966E-09,5.697997E-09,5.586262E-09,5.476719E-09,5.369324E-09,5.264035E-09, 5.160810E-09,5.059610E-09,4.960394E-09,4.863124E-09,4.767761E-09,4.674268E-09, 4.582609E-09,4.492746E-09,4.404646E-09,4.318274E-09,4.233595E-09,4.150577E-09, 4.069187E-09,3.989392E-09,3.911163E-09,3.834467E-09,3.759276E-09,3.685559E-09, 3.613287E-09,3.542433E-09,3.472968E-09,3.404865E-09,3.338098E-09,3.272640E-09, 3.208465E-09,3.145549E-09,3.083867E-09,3.023394E-09,2.964107E-09,2.905983E-09, 2.848998E-09,2.793131E-09,2.738360E-09,2.684662E-09,2.632017E-09,2.580405E-09, 2.529805E-09,2.480197E-09,2.431562E-09,2.383880E-09,2.337134E-09,2.291304E-09, 2.246373E-09,2.202323E-09,2.159137E-09,2.116798E-09,2.075288E-09,2.034593E-09, 1.994696E-09,1.955581E-09,1.917234E-09,1.879638E-09,1.842779E-09,1.806644E-09, 1.771216E-09,1.736484E-09,1.702433E-09,1.669049E-09,1.636320E-09,1.604233E-09, 1.572775E-09,1.541933E-09,1.511697E-09,1.482054E-09,1.452991E-09,1.424499E-09, 1.396566E-09,1.369180E-09,1.342331E-09,1.316009E-09,1.290203E-09,1.264903E-09, 1.240099E-09,1.215781E-09,1.191940E-09,1.168567E-09,1.145652E-09,1.123187E-09, 1.101162E-09,1.079568E-09,1.058399E-09,1.037644E-09,1.017297E-09,9.973481E-10, 9.777907E-10,9.586168E-10,9.398189E-10,9.213897E-10,9.033218E-10,8.856082E-10, 8.682420E-10,8.512163E-10,8.345244E-10,8.181599E-10,8.021163E-10,7.863873E-10, 7.709667E-10,7.558485E-10,7.410268E-10,7.264957E-10,7.122496E-10,6.982828E-10, 6.845899E-10,6.711655E-10,6.580044E-10,6.451013E-10,6.324513E-10,6.200493E-10, 6.078905E-10,5.959701E-10,5.842835E-10,5.728261E-10,5.615933E-10,5.505808E-10, 5.397842E-10,5.291994E-10,5.188221E-10,5.086483E-10,4.986741E-10,4.888954E-10, 4.793084E-10,4.699095E-10,4.606948E-10,4.516609E-10,4.428041E-10,4.341210E-10, 4.256081E-10,4.172622E-10,4.090800E-10,4.010581E-10,3.931936E-10,3.854834E-10, 3.779243E-10,3.705134E-10,3.632479E-10,3.561248E-10,3.491414E-10,3.422949E-10, 3.355828E-10,3.290022E-10,3.225506E-10,3.162256E-10,3.100246E-10,3.039452E-10, 2.979851E-10,2.921418E-10,2.864130E-10,2.807966E-10,2.752904E-10,2.698921E-10, 2.645997E-10,2.594111E-10,2.543242E-10,2.493370E-10,2.444477E-10,2.396542E-10, 2.349547E-10,2.303474E-10,2.258304E-10,2.214020E-10,2.170605E-10,2.128041E-10, 2.086311E-10,2.045400E-10,2.005291E-10,1.965968E-10,1.927417E-10,1.889621E-10, 1.852567E-10,1.816239E-10,1.780624E-10,1.745707E-10,1.711475E-10,1.677914E-10, 1.645011E-10,1.612753E-10,1.581128E-10,1.550123E-10,1.519726E-10,1.489925E-10, 1.460709E-10,1.432065E-10,1.403983E-10,1.376452E-10,1.349461E-10,1.322999E-10, 1.297055E-10,1.271621E-10,1.246685E-10,1.222238E-10,1.198271E-10,1.174774E-10, 1.151737E-10,1.129152E-10,1.107010E-10,1.085302E-10,1.064020E-10,1.043156E-10, 1.022700E-10,1.002645E-10,9.829841E-11,9.637084E-11,9.448107E-11,9.262835E-11, 9.081196E-11,8.903120E-11,8.728535E-11,8.557374E-11,8.389569E-11,8.225054E-11]] try: # internal model constants ted_empty.num_simulation_days = 366 ted_empty.hectare_to_acre = 2.47105 ted_empty.gms_to_mg = 1000. ted_empty.lbs_to_gms = 453.592 ted_empty.crop_hgt = 1. # m ted_empty.hectare_area = 10000. # m2 ted_empty.m3_to_liters = 1000. ted_empty.mass_plant = 25000. # kg/hectare ted_empty.density_plant = 0.77 # kg/L # internally calculated variable (hlc in atm-m3/mol are 2.0e-7, 1.0e-5, 3.5e-6) ted_empty.log_unitless_hlc = pd.Series([-5.087265, -3.388295, -3.844227], dtype='float') # input variables that change per simulation ted_empty.log_kow = pd.Series([2.75, 4., 6.], dtype='float') ted_empty.foliar_diss_hlife =
pd.Series([15., 25., 35.])
pandas.Series
import numpy as np from scipy.stats import norm, lognorm import pandas as pd class prospect_confidence(object): """ :param verbose: If “verbose” is True, prints information for debugging. If verbose = False your code does not generate ANY output. """ # constructor def __init__(self, verbose = False): """ Constructor method """ self.verbose = verbose def calculate_cumulative_conf(self, areaP90: float=1., areaP10: float=10., pdP90: float=10., pdP10: float=24): """Calculate cumulative confidence level for expected development size in MW Args: areaP90 (float): pessimistic area in sqkm areaP10 (float): optimistic area in sqkm pdP90 (float): pessimistic power density in MWe/sqkm pdP10 (float): optimistic power density in MWe/sqkm Returns: prob_df (pandas Dataframe): cumulative confidence curve in Reservoir Size """ assert isinstance(areaP90, float), "areaP90 variable data type expected to be float" assert isinstance(areaP10, float), "areaP10 variable data type expected to be float" assert isinstance(pdP90, float), "pdP90 variable data type expected to be float" assert isinstance(pdP10, float), "pdP10 variable data type expected to be float" if self.verbose: print("areaP90: " , areaP90 ) print("areaP10: " , areaP10 ) print("pdP90: " , pdP90 ) print("pdP10: " , pdP10 ) # calculate area > 250 °C area_mu = ((np.log(areaP90)+np.log(areaP10))/2) area_sigma = (np.log(areaP10)-np.log(areaP90))/((norm.ppf(0.9)-(norm.ppf(0.1)))) # calculate powerdensity mean and standard dev powerdens_mu = ((np.log(pdP90)+np.log(pdP10))/2) powerdens_sigma = (np.log(pdP10)-np.log(pdP90))/((norm.ppf(0.9)-(norm.ppf(0.1)))) capacity_mu = area_mu + powerdens_mu capacity_sigma = ((area_sigma**2)+(powerdens_sigma**2))**0.5 eds = [lognorm.ppf(x/100, capacity_sigma, loc=0, scale=np.exp(capacity_mu)) for x in range(0,100)] indx = list(np.arange(0,100)[::-1]) edsepc_tups = list(zip(indx,eds)) prob_df =
pd.DataFrame(edsepc_tups, columns = ['Cumulative confidence (%)', 'expected development size (MW)'])
pandas.DataFrame
# Copyright 2018 <NAME> <EMAIL> # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import numpy as np import os import warnings import datetime from .dataset import Dataset from .dataframe_tools import * from .exceptions import FailedReindexWarning, PublicationEmbargoWarning, ReindexMapError class Pdac(Dataset): def __init__(self, version="latest", no_internet=False): """Load all of the dataframes as values in the self._data dict variable, with names as keys, and format them properly. Parameters: version (str, optional): The version number to load, or the string "latest" to just load the latest building. Default is "latest". no_internet (bool, optional): Whether to skip the index update step because it requires an internet connection. This will be skipped automatically if there is no internet at all, but you may want to manually skip it if you have a spotty internet connection. Default is False. """ # Set some needed variables, and pass them to the parent Dataset class __init__ function # This keeps a record of all versions that the code is equipped to handle. That way, if there's a new data release but they didn't update their package, it won't try to parse the new data version it isn't equipped to handle. valid_versions = ["1.0"] data_files = { "1.0": [ "clinical_table_140.tsv.gz", "microRNA_TPM_log2_Normal.cct.gz", "microRNA_TPM_log2_Tumor.cct.gz", "meta_table_140.tsv.gz", "mRNA_RSEM_UQ_log2_Normal.cct.gz", "mRNA_RSEM_UQ_log2_Tumor.cct.gz", "PDAC_mutation.maf.gz", "phosphoproteomics_site_level_MD_abundance_normal.cct.gz", "phosphoproteomics_site_level_MD_abundance_tumor.cct.gz", "proteomics_gene_level_MD_abundance_normal.cct.gz", "proteomics_gene_level_MD_abundance_tumor.cct.gz", "RNA_fusion_unfiltered_normal.tsv.gz", "RNA_fusion_unfiltered_tumor.tsv.gz", "SCNA_log2_gene_level.cct.gz"], } # Call the parent class __init__ function super().__init__(cancer_type="pdac", version=version, valid_versions=valid_versions, data_files=data_files, no_internet=no_internet) # Load the data into dataframes in the self._data dict loading_msg = f"Loading {self.get_cancer_type()} v{self.version()}" for file_path in self._data_files_paths: # Loops through files variable # Print a loading message. We add a dot every time, so the user knows it's not frozen. loading_msg = loading_msg + "." print(loading_msg, end='\r') path_elements = file_path.split(os.sep) # Get a list of the levels of the path file_name = path_elements[-1] # The last element will be the name of the file. We'll use this to identify files for parsing in the if/elif statements below mark_normal = lambda s: s + ".N" remove_type_tag = lambda s: s[:-2] # remove _T and similar tags from end of string if file_name == "clinical_table_140.tsv.gz": # Note that we use the "file_name" variable to identify files. That way we don't have to use the whole path. df = pd.read_csv(file_path, sep='\t', index_col=0) df = df.rename_axis("Patient_ID", axis="index") df = df.sort_index() df.columns.name = "Name" df["Sample_Tumor_Normal"] = "Tumor" self._data["clinical"] = df elif file_name == "meta_table_140.tsv.gz": df = pd.read_csv(file_path, sep='\t', index_col=0) df = df.sort_index() df.index.name = "Patient_ID" df.columns.name = "Name" self._data["derived_molecular"] = df elif file_name == "microRNA_TPM_log2_Normal.cct.gz": df_normal = pd.read_csv(file_path, sep='\t', index_col=0) df_normal = df_normal.sort_index() df_normal = df_normal.transpose() df_normal = df_normal.rename(index=mark_normal) # merge tumor and normal if tumor data has already been read if "miRNA" in self._data: df_tumor = self._data["miRNA"] df_combined = pd.concat([df_normal, df_tumor]) df_combined.index.name = "Patient_ID" df_combined.columns.name = "Name" self._data["miRNA"] = df_combined else: self._data["miRNA"] = df_normal elif file_name == "microRNA_TPM_log2_Tumor.cct.gz": df_tumor = pd.read_csv(file_path, sep='\t', index_col=0) df_tumor = df_tumor.sort_index() df_tumor = df_tumor.transpose() # merge tumor and normal if normal data has already been read if "miRNA" in self._data: df_normal = self._data["miRNA"] df_combined = pd.concat([df_normal, df_tumor]) df_combined.index.name = "Patient_ID" df_combined.columns.name = "Name" self._data["miRNA"] = df_combined else: self._data["miRNA"] = df_tumor elif file_name == "mRNA_RSEM_UQ_log2_Normal.cct.gz": # create df for normal data df_normal = pd.read_csv(file_path, sep='\t', index_col=0) df_normal = df_normal.sort_index() df_normal = df_normal.transpose() df_normal = df_normal.rename(index=mark_normal) # merge tumor and normal if tumor data has already been read if "transcriptomics" in self._data: df_tumor = self._data["transcriptomics"] df_combined =
pd.concat([df_normal, df_tumor])
pandas.concat
import pandas as pd import numpy as np df = pd.read_csv("https://github.com/chris1610/pbpython/blob/master/data/sales_data_types.csv?raw=True", dtype={'Customer Number':'int'}, converters={'2016': lambda x: float(x.replace('$','').replace(',','')), '2017': lambda x: float(x.replace('$','').replace(',','')), 'Percent Growth': lambda x: float(x.replace('%', '')) / 100, 'Jan Units': lambda x: pd.to_numeric(x , errors='coerce'), 'Active': lambda x: np.where( x == 'Y', True, False) }) df['Start_Date'] =
pd.to_datetime(df[['Month','Day','Year']])
pandas.to_datetime
# %load ../../src/models/model_utils.py # %%writefile ../../src/models/model_utils.py """ Author: <NAME> Created in the scope of my PhD """ import pandas as pd import numpy as np import sklearn as sk import math import itertools from scipy import stats from sklearn.model_selection import KFold from sklearn.model_selection import GridSearchCV from sklearn.linear_model import LinearRegression, Ridge, Lasso, HuberRegressor from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.kernel_ridge import KernelRidge from sklearn.svm import SVC, SVR from sklearn.preprocessing import PolynomialFeatures def CreateRankedLabels(a): pw = list(itertools.combinations(a,2)) labels = [1 if item[0]>item[1] else -1 for item in pw] return labels def GetParameterSet(parLabel, parRange): """Retrieve a set of parameter values used for training of a model in sklearn. Parameters ----------- parLabel : 1-dimensional numpy array (str) numpy array holding a set of parameter labels. Valid labels include: [alpha, gamma, C, coef0, epsilon, max_depth, min_samples, max_features] parRange : 1-dimensional numpy array (int) numpy array with the amount of parameters returned for every parameter label. parLabel and parRange must be of the same dimension. Returns -------- parSet : Dictionary Dictionary containing a set of parameters for every label """ if parLabel[0] in ['max_depth','min_samples_split', 'max_features']: parameters = [np.zeros(parRange[u],dtype=np.int) for u in range(len(parRange))] else: parameters = [np.zeros(parRange[u]) for u in range(len(parRange))] for i in range(len(parLabel)): if parLabel[i] == "alpha": parameters[i][:] = [math.pow(10,(u - np.around(parRange[i]/2))) for u in range(parRange[i])] elif parLabel[i] == "gamma": parameters[i][:] = [math.pow(10,(u - np.around(parRange[i]/2))) for u in range(parRange[i])] elif parLabel[i] == "C": parameters[i][:] = [math.pow(10,(u - np.around(parRange[i]/2))) for u in range(parRange[i])] elif parLabel[i] == "coef0": parameters[i][:] = [math.pow(10,(u - np.around(parRange[i]/2))) for u in range(parRange[i])] elif parLabel[i] == "epsilon": parameters[i][:] = [0+2/parRange[i]*u for u in range(parRange[i])] elif parLabel[i] == "max_depth": parameters[i][:] = [int(u+1) for u in range(parRange[i])] elif parLabel[i] == 'min_samples_split': parameters[i][:] = [int(u+2) for u in range(parRange[i])] elif parLabel[i] == 'max_features': parameters[i][:] = [int(u+2) for u in range(parRange[i])] else: return print("Not a valid parameter") parSet = {parLabel[u]:parameters[u] for u in range(len(parLabel))} return parSet def EvaluateParameterSet(X_train, X_test, y_train, y_test, parModel, parSet): """Evaluate the scores of a set of parameters for a given model. Parameters ----------- X_train: Training dataset features X_test: Test dataset features y_train Training dataset labels y_test Test dataset labels parModel: Dictionary parSet : Dictionary Dictionary holding the parameter label and values over which the model has to be evaluated. This can be created through the function GetParameterSet. Accepted keys are: [alpha, gamma, C, coef0, epsilon, max_depth, min_samples, max_features] Returns -------- scores: 1-dimensional numpy array: int Fitted scores of the model with each of the parametersSets optimalPar: int Optimal parameter value for a given parameter label """ scores = [] for i in range(len(parSet[parLabel])): parSetIt = {parLabel:parSet[parLabel][i]} model = SelectModel(**parModel,**parEvalIt) model.fit(X_train,y_train) scores = np.append(model.score(X_test,y_test)) optimalPar = parSet[parLabel][np.argmax(scores)] return scores, optimalPar def EvaluateScore(X_train, X_test, y_train, y_test, parModel, scoring='default', pw=False): """Evaluates the score of a model given for a given test and training data Parameters ----------- X_train, X_test: DataFrame Test and training data of the features y_train, y_test: 1-dimensional numpy array Test and training data of the labels parModel: dictionary Parameters indicating the model and some of its features Returns -------- score: int Score of the test data on the model y_pred: 1-dimensional array An array giving the predicted labels for a given test set """ model = SelectModel(**parModel) model.fit(X_train,y_train) y_pred = model.predict(X_test) if scoring == 'default': score = model.score(X_test,y_test) elif scoring == 'kt': if pw is True: score = KendallTau(y_pred, y_test) if pw is False: y_pred_pw = CreateRankedLabels(y_pred) y_test_pw = CreateRankedLabels(y_test) score = KendallTau(y_pred_pw, y_test_pw) elif scoring == 'spearman': score = stats.spearmanr(y_test, y_pred)[0] else: raise("Scoring type not defined. Possible options are: 'default', 'kt', and 'spearman'") return score, y_pred def KendallTau(y_pred, y_true): a = np.array(y_pred) b = np.array(y_true) n = len(y_pred) score = (np.sum(a==b)-np.sum(a!=b))/n return score def LearningCurveInSample(dfDataset, featureBox, y ,parModel, scoring='default', k=5, pw=False, step=1): """Calculates the learning curve of a dataset for a given model Parameters ----------- dfDataset: Dataframe Dataframe holding sequences, featureBox: Dataframe Test dataset features y: 1-dimensional numpy array parModel: Dictionary k: int pw: Boolean step: int Returns -------- scores: 1-dimensional numpy array: int Fitted scores of the model with each of the parametersSets optimalPar: int Optimal parameter value for a given parameter label """ X = featureBox.values if pw is True: temp = np.unique(dfDataset[['ID_1', 'ID_2']].values) dfId = pd.Series(temp[:-(len(temp)%k)]) else: dfId = dfDataset['ID'][:-(len(dfDataset)%k)] lenId = len(dfId) Id = dfId.values indexId = np.array(range(lenId)) scores = np.array([]) it=0 for i in range(k): boolTest = np.logical_and(indexId>=i*lenId/k,indexId<(i+1)*lenId/k) test = Id[boolTest] train = Id[np.invert(boolTest)] if pw is True: indexTest = (dfDataset['ID_1'].isin(test) | dfDataset['ID_2'].isin(test)).values else: indexTest = dfDataset['ID'].isin(test).values dfDatasetTrain = dfDataset[np.invert(indexTest)] X_train, y_train = featureBox[np.invert(indexTest)], y[np.invert(indexTest)] X_test, y_test = featureBox[indexTest], y[indexTest] for j in range((len(train)-5)//step): print("\rProgress {:2.1%}".format(it/k+(j/len(train)/k*step)), end='') trainInner = train[:(j*step)+5] if pw is True: indexTrainInner = (dfDatasetTrain['ID_1'].isin(trainInner) & dfDatasetTrain['ID_2'].isin(trainInner)).values else: indexTrainInner = (dfDatasetTrain['ID'].isin(trainInner)).values X_trainInner, y_trainInner = X_train[indexTrainInner], y_train[indexTrainInner] score, y_pred = EvaluateScore(X_trainInner, X_test, y_trainInner, y_test, {**parModel}, scoring, pw) scores = np.append(scores,score) it+=1 scores = scores.reshape((k,-1)) return scores def LearningCurveInSampleEnriched(dfDataset, featureBox, enrichBox, y, y_enrich ,parModel, scoring='default', k=5, pw=True, step=1): """Calculates the learning curve of an enriched dataset for a given model Parameters ----------- dfDataset: Dataframe Dataframe holding sequences, featureBox: Dataframe Test dataset features y: 1-dimensional numpy array parModel: Dictionary k: int pw: Boolean step: int Returns -------- scores: 1-dimensional numpy array: int Fitted scores of the model with each of the parametersSets optimalPar: int Optimal parameter value for a given parameter label """ if pw is True: temp = np.unique(dfDataset[['ID_1', 'ID_2']].values) dfId = pd.Series(temp[:-(len(temp)%k)]) else: dfId = dfDataset['ID'][:-(len(dfDataset)%k)] lenId = len(dfId) Id = dfId.values indexId = np.array(range(lenId)) scores = np.array([]) it=0 for i in range(k): boolTest = np.logical_and(indexId>=i*lenId/k,indexId<(i+1)*lenId/k) test = Id[boolTest] train = Id[np.invert(boolTest)] if pw is True: indexTest = (dfDataset['ID_1'].isin(test) | dfDataset['ID_2'].isin(test)).values else: indexTest = dfDataset['ID'].isin(test).values dfDatasetTrain = dfDataset[np.invert(indexTest)] X_train = featureBox[np.invert(indexTest)] y_train = y[np.invert(indexTest)] X_test, y_test = featureBox[indexTest], y[indexTest] for j in range((len(train))//step): print("\rProgress {:2.1%}".format(it/k+(j/len(train)/k*step)), end='') trainInner = train[:(j*step)] if pw is True: indexTrainInner = (dfDatasetTrain['ID_1'].isin(trainInner) & dfDatasetTrain['ID_2'].isin(trainInner)).values else: indexTrainInner = (dfDatasetTrain['ID'].isin(trainInner)).values X_trainInner = np.vstack((enrichBox,X_train[indexTrainInner])) y_trainInner = np.append(y_enrich, y_train[indexTrainInner]) score, y_pred = EvaluateScore(X_trainInner, X_test, y_trainInner, y_test, {**parModel}, scoring, pw) scores = np.append(scores,score) it+=1 scores = scores.reshape((k,-1)) return scores def LearningCurveOutOfSample(dfDataset, featureBox, y , dataList, parModel, scoring='default', pw=False, step=1): """Calculates the learning curve of a dataset for a given model Parameters ----------- dfDataset: Dataframe Dataframe holding sequences, featureBox: Dataframe Test dataset features y: 1-dimensional numpy array parModel: Dictionary k: int pw: Boolean step: int Returns -------- scores: 1-dimensional numpy array: int Fitted scores of the model with each of the parametersSets optimalPar: int Optimal parameter value for a given parameter label """ if pw is True: temp = np.unique(dfDataset[['ID_1', 'ID_2']].values) dfId = pd.Series(temp) else: dfId = dfDataset['ID'] lenId = len(dfId) Id = dfId.values indexId = np.array(range(lenId)) scores = np.zeros(shape=(len(dataList),(lenId-5)//step)) for i in range((lenId-5)//step): print("\rProgress {:2.1%}".format(i/lenId*step), end='') train = Id[:((i*step)+5)] if pw is True: indexTrain = (dfDataset['ID_1'].isin(train) & dfDataset['ID_2'].isin(train)).values else: indexTrain = dfDataset['ID'].isin(train).values X_train, y_train = featureBox[indexTrain], y[indexTrain] for j in range(len(dataList)): score, y_pred = EvaluateScore(X_train, dataList[j][1].values, y_train, dataList[j][2], {**parModel}, scoring, pw) scores[j,i] = score return scores def LearningCurveOutOfSampleEnriched(dfDataset, featureBox, enrichBox, y, y_enrich, dataOutList, parModel, scoring='default', pw=True, step=1): if pw is True: temp = np.unique(dfDataset[['ID_1', 'ID_2']].values) dfId =
pd.Series(temp)
pandas.Series
import os import gc import sys print(sys.path) import pickle import warnings import numpy as np import pandas as pd import datetime as dt from diamond import helpers as helper from diamond import utilities as util from copy import deepcopy from sklearn.preprocessing import StandardScaler CONFIG = util.load_config() class diamond(object): """ Class for handling relationships between normalized tables pulled from API Standardizing adding starting pitchers, lineups (expected and/or actual) Adding pitcher rolling stats Adding batter rolling stats """ def __init__(self, seasonKey, min_date_gte=None, max_date_lte=None, upcoming_start_gte=None): self.seasonKey = seasonKey self.league = 'mlb' self.min_date_gte = min_date_gte self.max_date_lte = max_date_lte self.upcoming_start_gte = upcoming_start_gte # Pitching Stats attributes self.pitching_roll_windows = [1, 3, 5, 10] self.pitching_stats = ['fip', 'bb_per9', 'hr_fb_ratio', 'k_per9', 'gbpct'] self.pitching_roll_stats = [ '{}_roll{}'.format(s, w) for s in self.pitching_stats for w in self.pitching_roll_windows ] # Batting Stats Attributes self.batting_roll_windows = [1, 3, 5, 10] self.batting_stats = ['obp', 'slg', 'woba', 'iso'] self.batting_roll_stats = [ '{}_roll{}'.format(s, w) for s in self.batting_stats for w in self.batting_roll_windows ] self.batting_static_stats = ['atBats'] # Check args assert not ( seasonKey and (min_date_gte != None) and (max_date_lte != None) ) # Determine time period if self.seasonKey: self.min_date_gte = CONFIG.get(self.league)\ .get('seasons')\ .get(self.seasonKey)\ .get('seasonStart') self.max_date_lte = CONFIG.get(self.league)\ .get('seasons')\ .get(self.seasonKey)\ .get('seasonEnd') # Read in from daily game path = CONFIG.get(self.league)\ .get('paths')\ .get('normalized').format( f='daily_games' ) paths = [ path+fname for fname in os.listdir(path) if ( (fname[:8] >= self.min_date_gte) & (fname[:8] <= self.max_date_lte) ) ] self.summary = pd.concat( objs=[pd.read_parquet(p) for p in paths], axis=0 ) self.summary.drop_duplicates(subset=['gameId'], inplace=True) self.summary.loc[:, 'gameStartDate'] = \ pd.to_datetime(self.summary['startTime'].str[:10]) def add_starting_pitchers(self, dispositions=['home', 'away']): """ ADDS DIMENSIONS TO SUMMARY """ helper.progress("Adding Starting Pitchers Attribute") # Paths atbats_path = CONFIG.get(self.league)\ .get('paths')\ .get('normalized').format( f='game_atbats' ) atbats_paths = [atbats_path+d+"/" for d in os.listdir(atbats_path) if ( (d >= self.min_date_gte) & (d <= self.max_date_lte) )] atbats_paths_full = [] for abp in atbats_paths: atbats_paths_full.extend([abp+fname for fname in os.listdir(abp)]) # Get atbats df_ab = pd.concat( objs=[pd.read_parquet(p) for p in atbats_paths_full], axis=0 ) df_ab.loc[:, 'gameStartTime'] = df_ab['gameStartTime'].str[:10] df_ab.loc[:, 'gameStartTime'] = pd.to_datetime(df_ab['gameStartTime']) # Save upcoming to use lineup approach with later if self.upcoming_start_gte: df_upc = df_ab.loc[df_ab['gameStartTime'] >= self.upcoming_start_gte, :] df_ab = df_ab.loc[df_ab['gameStartTime'] < self.upcoming_start_gte, :] else: df_upc = df_ab.loc[df_ab['gameStartTime'] >= dt.datetime.now(), :] df_ab = df_ab.loc[df_ab['gameStartTime'] < dt.datetime.now(), :] # ------------------------- # ------------------------- # Filter to games in the past and use atbats to get starter (in case lineup wrong) # Get Home Starters df_top1 = df_ab.loc[( (df_ab['inning']==1) & (df_ab['inningHalf']=='TOP') & (df_ab['outCount']==0) ), :] df_home_starters = df_top1.loc[:, ['gameId', 'pitcherId']]\ .drop_duplicates(subset=['gameId']) df_home_starters.rename( columns={'pitcherId': 'homeStartingPitcherId'}, inplace=True ) # Get Away Starters df_bot1 = df_ab.loc[( (df_ab['inning']==1) & (df_ab['inningHalf']=='BOTTOM') & (df_ab['outCount']==0) ), :] df_away_starters = df_bot1.loc[:, ['gameId', 'pitcherId']]\ .drop_duplicates(subset=['gameId']) df_away_starters.rename( columns={'pitcherId': 'awayStartingPitcherId'}, inplace=True ) # Assemble starters df_hist_starters = pd.merge( df_home_starters, df_away_starters, how='outer', on=['gameId'], validate='1:1' ) # ------------------------- # ------------------------- # Filter to games in the current/future and use # lineups to get starter (in case lineup wrong) if not hasattr(self, 'lineups'): self.add_lineups() df_lup_home = self.lineups.loc[ self.lineups['batterDisposition'].str.lower() == 'home', :] df_lup_away = self.lineups.loc[ self.lineups['batterDisposition'].str.lower() == 'away', :] # Filter down df_lup_home = df_lup_home.loc[( (df_lup_home['playerPositionGeneral'] == 'P') & (df_lup_home['gameId'].isin(list(df_upc.gameId))) ), :] df_lup_away = df_lup_away.loc[( (df_lup_away['playerPositionGeneral'] == 'P') & (df_lup_away['gameId'].isin(list(df_upc.gameId))) ), :] # Isolate df_lup_home.rename(columns={'playerId': 'homeStartingPitcherId'}, inplace=True) df_lup_home = df_lup_home.loc[:, ['gameId', 'homeStartingPitcherId']]\ .drop_duplicates(subset=['gameId'], inplace=False) df_lup_away.rename(columns={'playerId': 'awayStartingPitcherId'}, inplace=True) df_lup_away = df_lup_away.loc[:, ['gameId', 'awayStartingPitcherId']]\ .drop_duplicates(subset=['gameId'], inplace=False) # Combine to one game per row df_upc_starters = pd.merge( df_lup_home, df_lup_away, how='left', on=['gameId'], validate='1:1' ) # Concat hist and upc vertically to merge back to summary attrib df_starters = pd.concat( objs=[df_hist_starters, df_upc_starters], axis=0 ) # Merge to summary attribute self.summary = pd.merge( self.summary, df_starters, how='left', on=['gameId'], validate='1:1' ) def add_bullpen_summary(self, dispositions=['home', 'away']): """ ADDS ATTRIBUTE "bullpens_summary" """ helper.progress("Adding Bullpen Summary Attribute") # Get atbats, filter to where not equal to starters if not all( s in self.summary.columns for s in \ ['{}StartingPitcherId'.format(d) for d in dispositions] ): self.add_starting_pitchers() # Get atbats # Paths atbats_path = CONFIG.get(self.league)\ .get('paths')\ .get('normalized').format( f='game_atbats' ) atbats_paths = [atbats_path+d+"/" for d in os.listdir(atbats_path) if ( (d >= self.min_date_gte) & (d <= self.max_date_lte) )] atbats_paths_full = [] for abp in atbats_paths: atbats_paths_full.extend([abp+fname for fname in os.listdir(abp)]) # Get atbats and sort by inning / outCount df_ab = pd.concat( objs=[pd.read_parquet(p) for p in atbats_paths_full], axis=0 ) df_ab = df_ab.loc[:, ['gameId', 'gameStartTime', 'pitcherId', 'homeTeamId', 'awayTeamId', 'inning', 'inningHalf', 'outCount']] # Select home, sort, dd, remove starter, and rerank bullpen_summary = [] sides = {'TOP': 'home', 'BOTTOM': 'away'} for half_, disp in sides.items(): # Set up starter map for later mask startingPitcherMap = self.summary.set_index('gameId')\ ['{}StartingPitcherId'.format(disp)].to_dict() df_ab_h = df_ab.loc[df_ab['inningHalf']==half_, :] # Sort df_ab_h = df_ab_h.sort_values( by=['gameId', 'gameStartTime', 'inning', 'outCount'], ascending=True, inplace=False ) # Drop labels df_ab_h = df_ab_h.drop(labels=['inning', 'outCount'], axis=1, inplace=False) # Remove pitcher who was already identified as starter # (self.summary['homeStartingPitcherId'].iloc[0]? df_ab_h.loc[:, '{}StartingPitcherId'.format(disp)] = \ df_ab_h['gameId'].map(startingPitcherMap) df_ab_h = df_ab_h.loc[ df_ab_h['pitcherId'] != df_ab_h['{}StartingPitcherId'.format(disp)], :] # Handle ordering df_ab_h['pitcherAppearOrder'] = df_ab_h\ .groupby(by=['gameId'])['pitcherId'].rank(method='first') df_ab_h = df_ab_h.groupby( by=['gameId', 'gameStartTime', '{}TeamId'.format(disp), 'pitcherId'], as_index=False).agg({'pitcherAppearOrder': 'min'}) df_ab_h['pitcherAppearOrder'] = df_ab_h\ .groupby(by=['gameId'])['pitcherId'].rank(method='first') df_ab_h['pitcherAppearOrderMax'] = df_ab_h\ .groupby('gameId')['pitcherAppearOrder'].transform('max') # Label middle pitchers relief role and last pitcher closer` role msk = (df_ab_h['pitcherAppearOrder']==df_ab_h['pitcherAppearOrderMax']) df_ab_h.loc[msk, 'pitcherRoleType'] = 'closer' df_ab_h.loc[~msk, 'pitcherRoleType'] = 'reliever' # Subset (TODO add first inning appeared) df_ab_h = df_ab_h.loc[:, ['gameId', 'gameStartTime', 'pitcherId', 'pitcherRoleType', '{}TeamId'.format(disp), 'pitcherAppearOrder']] df_ab_h.rename(columns={'{}TeamId'.format(disp): 'teamId'}, inplace=True) df_ab_h['bullpenDisposition'] = disp bullpen_summary.append(df_ab_h) bullpen_summary = pd.concat(objs=bullpen_summary, axis=0) self.bullpen_reliever_summary = bullpen_summary.loc[ bullpen_summary['pitcherRoleType'] == 'reliever', :] self.bullpen_closer_summary = bullpen_summary.loc[ bullpen_summary['pitcherRoleType'] == 'closer', :] def add_pitcher_rolling_stats( self, dispositions=['home', 'away'], pitcher_roll_types=['starter', 'reliever', 'closer'], shift_back=True ): """ """ helper.progress("Adding Pitcher Rolling Stats to pitching-related attributes") # Path ptch_roll_path = CONFIG.get(self.league)\ .get('paths')\ .get('rolling_stats').format('pitching')+"player/" # Read in ptch_roll = pd.concat( objs=[pd.read_parquet(ptch_roll_path+fname) for fname in os.listdir(ptch_roll_path) if ((fname.replace(".parquet", "") >= self.min_date_gte) & (fname.replace(".parquet", "") <= self.max_date_lte))], axis=0 ) # Create rolling metrics cols = ['gameId', 'gameStartDate', 'playerId'] +\ self.pitching_roll_stats # Subset ptch_roll = ptch_roll.loc[:, ['gameId', 'gameStartDate', 'playerId'] + self.pitching_roll_stats ] # Sort ptch_roll.sort_values(by=['gameStartDate'], ascending=True, inplace=True) # Shift back if interested in rolling stats leading up to game if shift_back: for col in self.pitching_roll_stats: msk = (ptch_roll['playerId'].shift(1)==ptch_roll['playerId']) ptch_roll.loc[msk, col] = ptch_roll[col].shift(1) # Handle Infs for col in self.pitching_roll_stats: ptch_roll = ptch_roll.loc[~ptch_roll[col].isin([np.inf, -np.inf]), :] # Check if starter / all designation if 'starter' in pitcher_roll_types: print(" Adding stats for starters") # Check that summary attribute has starting pitchers if not any('StartingPitcherId' in col for col in self.summary.columns): self.add_starting_pitchers(dispositions=dispositions) # Merge back to starters (one at a time) pitcher_cols = ['{}StartingPitcherId'.format(d) for d in dispositions] # Prep self.starting_pitcher_stats p = [] for pc in pitcher_cols: df = self.summary.loc[:, ['gameId', pc]] df = df.loc[df[pc].notnull(), :] df.rename(columns={pc: 'pitcherId'}, inplace=True) df.loc[:, 'pitcherDisposition'] = pc[:4].lower() p.append(df) # concatenate to form attribute self.starting_pitcher_summary = \ pd.concat(objs=p, axis=0) self.starting_pitcher_summary = pd.merge( self.starting_pitcher_summary, ptch_roll, how='left', left_on=['gameId', 'pitcherId'], right_on=['gameId', 'playerId'], validate='1:1' ) self.starting_pitcher_summary.drop( labels=['playerId'], axis=1, inplace=True ) # Check if reliever / all designation if 'reliever' in pitcher_roll_types: print(" Adding stats for relievers") # Check attribute (try / except cheaper but less readable) if not hasattr(self, 'bullpen_reliever_summary'): self.add_bullpen_summary(dispositions=dispositions) # Merge back to relievers in bullpen summary msk = (self.bullpen_reliever_summary['pitcherRoleType'].str.lower() == 'reliever') bullpen = self.bullpen_reliever_summary.loc[msk, :] if bullpen.shape[0] == 0: warnings.warn(" No relief pitchers found in bullpen_summary attribute") if not all(d in dispositions for d in ['home', 'away']): assert len(dispositions) == 1 and dispositions[0] in ['home', 'away'] bullpen_reconstruct = [] for disp in dispositions: bullpen_disp = bullpen.loc[bullpen['bullpenDisposition'] == disp, :] bullpen_disp = bullpen_disp.loc[:, ['gameId', 'pitcherId']] bullpen_disp = pd.merge( bullpen_disp, ptch_roll, how='left', left_on=['gameId', 'pitcherId'], right_on=['gameId', 'playerId'], validate='1:1' ) bullpen_disp.drop(labels=['playerId'], axis=1, inplace=True) bullpen_reconstruct.append(bullpen_disp) bullpen_reconstruct = pd.concat(objs=bullpen_reconstruct, axis=0) # Add back to summary / detail self.bullpen_reliever_summary = pd.merge( self.bullpen_reliever_summary, bullpen_reconstruct, how='left', on=['gameId', 'pitcherId'], validate='1:1' ) # Set # TODO Standard Deviation might not be best here aggDict = {stat: ['mean', 'max', 'min'] for stat in [ x for x in self.bullpen_reliever_summary.columns if any(y in x for y in self.pitching_stats) ]} df = self.bullpen_reliever_summary.groupby( by=['gameId', 'gameStartTime', 'teamId', 'bullpenDisposition'], as_index=False ).agg(aggDict) df.columns = [ x[0] if x[1] == '' else x[0]+"~"+x[1] for x in df.columns ] self.bullpen_reliever_summary = df # TODO FIX CLOSER MERGE _x _y if 'closer' in pitcher_roll_types: print(" Adding stats for closers") # Check if closer / all designation if not hasattr(self, 'bullpen_closer_summary'): self.add_bullpen_summary(dispositions=dispositions) # Merge back to closers in bullpen summary msk = (self.bullpen_closer_summary['pitcherRoleType'].str.lower() == 'closer') bullpen = self.bullpen_closer_summary.loc[msk, :] if bullpen.shape[0] == 0: warnings.warn(" No closing pitchers found in bullpen_summary attribute") if not all(d in dispositions for d in ['home', 'away']): assert len(dispositions) == 1 and dispositions[0] in ['home', 'away'] bullpen_reconstruct = [] for disp in dispositions: bullpen_disp = bullpen.loc[bullpen['bullpenDisposition'] == disp, :] bullpen_disp = bullpen_disp.loc[:, ['gameId', 'pitcherId']] bullpen_disp = pd.merge( bullpen_disp, ptch_roll, how='left', left_on=['gameId', 'pitcherId'], right_on=['gameId', 'playerId'], validate='1:1' ) bullpen_disp.drop(labels=['playerId'], axis=1, inplace=True) bullpen_reconstruct.append(bullpen_disp) bullpen_reconstruct = pd.concat(objs=bullpen_reconstruct, axis=0) # Add back to summary / detail self.bullpen_closer_summary = pd.merge( self.bullpen_closer_summary, bullpen_reconstruct, how='left', on=['gameId', 'pitcherId'], validate='1:1' ) # Set # TODO Standard Deviation might not be best here aggDict = {stat: ['mean', 'max', 'min'] for stat in [ x for x in self.bullpen_closer_summary.columns if any(y in x for y in self.pitching_stats) ]} df = self.bullpen_closer_summary.groupby( by=['gameId', 'gameStartTime', 'teamId', 'bullpenDisposition'], as_index=False ).agg(aggDict) df.columns = [ x[0] if x[1] == '' else x[0]+"~"+x[1] for x in df.columns ] self.bullpen_closer_summary = df def add_lineups(self, status='auto'): """ status: 'auto' - expected/actual """ helper.progress("Adding Lineups Attribute") # Add lineups # add expected for upcoming game # add actual for completed games lineups_path = CONFIG.get(self.league)\ .get('paths')\ .get('normalized')\ .format(f='game_lineup') df_lineup = pd.concat( objs=[
pd.read_parquet(lineups_path+fname)
pandas.read_parquet
#!/usr/bin/python3 # -*- coding: utf-8 -*- # *****************************************************************************/ # * Authors: <NAME> # *****************************************************************************/ """transformCSV.py This module contains the basic functions for creating the content of a configuration file from CSV. Args: --inFile: Path for the configuration file where the time series data values CSV --outFile: Path for the configuration file where the time series data values INI --debug: Boolean flag to activate verbose printing for debug use Example: Default usage: $ python transformCSV.py Specific usage: $ python transformCSV.py --inFile C:\raad\src\software\time-series.csv --outFile C:\raad\src\software\time-series.ini --debug True """ import sys import datetime import optparse import traceback import pandas import numpy import os import pprint import csv if sys.version_info.major > 2: import configparser as cF else: import ConfigParser as cF class TransformMetaData(object): debug = False fileName = None fileLocation = None columnsList = None analysisFrameFormat = None uniqueLists = None analysisFrame = None def __init__(self, inputFileName=None, debug=False, transform=False, sectionName=None, outFolder=None, outFile='time-series-madness.ini'): if isinstance(debug, bool): self.debug = debug if inputFileName is None: return elif os.path.exists(os.path.abspath(inputFileName)): self.fileName = inputFileName self.fileLocation = os.path.exists(os.path.abspath(inputFileName)) (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) = self.CSVtoFrame( inputFileName=self.fileName) self.analysisFrame = analysisFrame self.columnsList = columnNamesList self.analysisFrameFormat = analysisFrameFormat self.uniqueLists = uniqueLists if transform: passWrite = self.frameToINI(analysisFrame=analysisFrame, sectionName=sectionName, outFolder=outFolder, outFile=outFile) print(f"Pass Status is : {passWrite}") return def getColumnList(self): return self.columnsList def getAnalysisFrameFormat(self): return self.analysisFrameFormat def getuniqueLists(self): return self.uniqueLists def getAnalysisFrame(self): return self.analysisFrame @staticmethod def getDateParser(formatString="%Y-%m-%d %H:%M:%S.%f"): return (lambda x: pandas.datetime.strptime(x, formatString)) # 2020-06-09 19:14:00.000 def getHeaderFromFile(self, headerFilePath=None, method=1): if headerFilePath is None: return (None, None) if method == 1: fieldnames = pandas.read_csv(headerFilePath, index_col=0, nrows=0).columns.tolist() elif method == 2: with open(headerFilePath, 'r') as infile: reader = csv.DictReader(infile) fieldnames = list(reader.fieldnames) elif method == 3: fieldnames = list(pandas.read_csv(headerFilePath, nrows=1).columns) else: fieldnames = None fieldDict = {} for indexName, valueName in enumerate(fieldnames): fieldDict[valueName] = pandas.StringDtype() return (fieldnames, fieldDict) def CSVtoFrame(self, inputFileName=None): if inputFileName is None: return (None, None) # Load File print("Processing File: {0}...\n".format(inputFileName)) self.fileLocation = inputFileName # Create data frame analysisFrame = pandas.DataFrame() analysisFrameFormat = self._getDataFormat() inputDataFrame = pandas.read_csv(filepath_or_buffer=inputFileName, sep='\t', names=self._getDataFormat(), # dtype=self._getDataFormat() # header=None # float_precision='round_trip' # engine='c', # parse_dates=['date_column'], # date_parser=True, # na_values=['NULL'] ) if self.debug: # Preview data. print(inputDataFrame.head(5)) # analysisFrame.astype(dtype=analysisFrameFormat) # Cleanup data analysisFrame = inputDataFrame.copy(deep=True) analysisFrame.apply(pandas.to_numeric, errors='coerce') # Fill in bad data with Not-a-Number (NaN) # Create lists of unique strings uniqueLists = [] columnNamesList = [] for columnName in analysisFrame.columns: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', analysisFrame[columnName].values) if isinstance(analysisFrame[columnName].dtypes, str): columnUniqueList = analysisFrame[columnName].unique().tolist() else: columnUniqueList = None columnNamesList.append(columnName) uniqueLists.append([columnName, columnUniqueList]) if self.debug: # Preview data. print(analysisFrame.head(5)) return (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) def frameToINI(self, analysisFrame=None, sectionName='Unknown', outFolder=None, outFile='nil.ini'): if analysisFrame is None: return False try: if outFolder is None: outFolder = os.getcwd() configFilePath = os.path.join(outFolder, outFile) configINI = cF.ConfigParser() configINI.add_section(sectionName) for (columnName, columnData) in analysisFrame: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', columnData.values) print("Column Contents Length:", len(columnData.values)) print("Column Contents Type", type(columnData.values)) writeList = "[" for colIndex, colValue in enumerate(columnData): writeList = f"{writeList}'{colValue}'" if colIndex < len(columnData) - 1: writeList = f"{writeList}, " writeList = f"{writeList}]" configINI.set(sectionName, columnName, writeList) if not os.path.exists(configFilePath) or os.stat(configFilePath).st_size == 0: with open(configFilePath, 'w') as configWritingFile: configINI.write(configWritingFile) noErrors = True except ValueError as e: errorString = ("ERROR in {__file__} @{framePrintNo} with {ErrorFound}".format(__file__=str(__file__), framePrintNo=str( sys._getframe().f_lineno), ErrorFound=e)) print(errorString) noErrors = False return noErrors @staticmethod def _validNumericalFloat(inValue): """ Determines if the value is a valid numerical object. Args: inValue: floating-point value Returns: Value in floating-point or Not-A-Number. """ try: return numpy.float128(inValue) except ValueError: return numpy.nan @staticmethod def _calculateMean(x): """ Calculates the mean in a multiplication method since division produces an infinity or NaN Args: x: Input data set. We use a data frame. Returns: Calculated mean for a vector data frame. """ try: mean = numpy.float128(numpy.average(x, weights=numpy.ones_like(numpy.float128(x)) / numpy.float128(x.size))) except ValueError: mean = 0 pass return mean def _calculateStd(self, data): """ Calculates the standard deviation in a multiplication method since division produces a infinity or NaN Args: data: Input data set. We use a data frame. Returns: Calculated standard deviation for a vector data frame. """ sd = 0 try: n = numpy.float128(data.size) if n <= 1: return numpy.float128(0.0) # Use multiplication version of mean since numpy bug causes infinity. mean = self._calculateMean(data) sd = numpy.float128(mean) # Calculate standard deviation for el in data: diff = numpy.float128(el) - numpy.float128(mean) sd += (diff) ** 2 points = numpy.float128(n - 1) sd = numpy.float128(numpy.sqrt(numpy.float128(sd) / numpy.float128(points))) except ValueError: pass return sd def _determineQuickStats(self, dataAnalysisFrame, columnName=None, multiplierSigma=3.0): """ Determines stats based on a vector to get the data shape. Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. multiplierSigma: Sigma range for the stats. Returns: Set of stats. """ meanValue = 0 sigmaValue = 0 sigmaRangeValue = 0 topValue = 0 try: # Clean out anomoly due to random invalid inputs. if (columnName is not None): meanValue = self._calculateMean(dataAnalysisFrame[columnName]) if meanValue == numpy.nan: meanValue = numpy.float128(1) sigmaValue = self._calculateStd(dataAnalysisFrame[columnName]) if float(sigmaValue) is float(numpy.nan): sigmaValue = numpy.float128(1) multiplier = numpy.float128(multiplierSigma) # Stats: 1 sigma = 68%, 2 sigma = 95%, 3 sigma = 99.7 sigmaRangeValue = (sigmaValue * multiplier) if float(sigmaRangeValue) is float(numpy.nan): sigmaRangeValue = numpy.float128(1) topValue = numpy.float128(meanValue + sigmaRangeValue) print("Name:{} Mean= {}, Sigma= {}, {}*Sigma= {}".format(columnName, meanValue, sigmaValue, multiplier, sigmaRangeValue)) except ValueError: pass return (meanValue, sigmaValue, sigmaRangeValue, topValue) def _cleanZerosForColumnInFrame(self, dataAnalysisFrame, columnName='cycles'): """ Cleans the data frame with data values that are invalid. I.E. inf, NaN Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. Returns: Cleaned dataframe. """ dataAnalysisCleaned = None try: # Clean out anomoly due to random invalid inputs. (meanValue, sigmaValue, sigmaRangeValue, topValue) = self._determineQuickStats( dataAnalysisFrame=dataAnalysisFrame, columnName=columnName) # dataAnalysisCleaned = dataAnalysisFrame[dataAnalysisFrame[columnName] != 0] # When the cycles are negative or zero we missed cleaning up a row. # logicVector = (dataAnalysisFrame[columnName] != 0) # dataAnalysisCleaned = dataAnalysisFrame[logicVector] logicVector = (dataAnalysisCleaned[columnName] >= 1) dataAnalysisCleaned = dataAnalysisCleaned[logicVector] # These timed out mean + 2 * sd logicVector = (dataAnalysisCleaned[columnName] < topValue) # Data range dataAnalysisCleaned = dataAnalysisCleaned[logicVector] except ValueError: pass return dataAnalysisCleaned def _cleanFrame(self, dataAnalysisTemp, cleanColumn=False, columnName='cycles'): """ Args: dataAnalysisTemp: Dataframe to do analysis on. cleanColumn: Flag to clean the data frame. columnName: Column name of the data frame. Returns: cleaned dataframe """ try: replacementList = [pandas.NaT, numpy.Infinity, numpy.NINF, 'NaN', 'inf', '-inf', 'NULL'] if cleanColumn is True: dataAnalysisTemp = self._cleanZerosForColumnInFrame(dataAnalysisTemp, columnName=columnName) dataAnalysisTemp = dataAnalysisTemp.replace(to_replace=replacementList, value=numpy.nan) dataAnalysisTemp = dataAnalysisTemp.dropna() except ValueError: pass return dataAnalysisTemp @staticmethod def _getDataFormat(): """ Return the dataframe setup for the CSV file generated from server. Returns: dictionary data format for pandas. """ dataFormat = { "Serial_Number": pandas.StringDtype(), "LogTime0": pandas.StringDtype(), # @todo force rename "Id0": pandas.StringDtype(), # @todo force rename "DriveId": pandas.StringDtype(), "JobRunId": pandas.StringDtype(), "LogTime1": pandas.StringDtype(), # @todo force rename "Comment0": pandas.StringDtype(), # @todo force rename "CriticalWarning": pandas.StringDtype(), "Temperature": pandas.StringDtype(), "AvailableSpare": pandas.StringDtype(), "AvailableSpareThreshold": pandas.StringDtype(), "PercentageUsed": pandas.StringDtype(), "DataUnitsReadL": pandas.StringDtype(), "DataUnitsReadU": pandas.StringDtype(), "DataUnitsWrittenL": pandas.StringDtype(), "DataUnitsWrittenU": pandas.StringDtype(), "HostReadCommandsL": pandas.StringDtype(), "HostReadCommandsU": pandas.StringDtype(), "HostWriteCommandsL": pandas.StringDtype(), "HostWriteCommandsU": pandas.StringDtype(), "ControllerBusyTimeL": pandas.StringDtype(), "ControllerBusyTimeU": pandas.StringDtype(), "PowerCyclesL": pandas.StringDtype(), "PowerCyclesU": pandas.StringDtype(), "PowerOnHoursL": pandas.StringDtype(), "PowerOnHoursU": pandas.StringDtype(), "UnsafeShutdownsL": pandas.StringDtype(), "UnsafeShutdownsU": pandas.StringDtype(), "MediaErrorsL": pandas.StringDtype(), "MediaErrorsU": pandas.StringDtype(), "NumErrorInfoLogsL": pandas.StringDtype(), "NumErrorInfoLogsU": pandas.StringDtype(), "ProgramFailCountN": pandas.StringDtype(), "ProgramFailCountR": pandas.StringDtype(), "EraseFailCountN": pandas.StringDtype(), "EraseFailCountR": pandas.StringDtype(), "WearLevelingCountN": pandas.StringDtype(), "WearLevelingCountR": pandas.StringDtype(), "E2EErrorDetectCountN": pandas.StringDtype(), "E2EErrorDetectCountR": pandas.StringDtype(), "CRCErrorCountN": pandas.StringDtype(), "CRCErrorCountR": pandas.StringDtype(), "MediaWearPercentageN": pandas.StringDtype(), "MediaWearPercentageR": pandas.StringDtype(), "HostReadsN": pandas.StringDtype(), "HostReadsR": pandas.StringDtype(), "TimedWorkloadN": pandas.StringDtype(), "TimedWorkloadR": pandas.StringDtype(), "ThermalThrottleStatusN": pandas.StringDtype(), "ThermalThrottleStatusR": pandas.StringDtype(), "RetryBuffOverflowCountN": pandas.StringDtype(), "RetryBuffOverflowCountR": pandas.StringDtype(), "PLLLockLossCounterN": pandas.StringDtype(), "PLLLockLossCounterR": pandas.StringDtype(), "NandBytesWrittenN": pandas.StringDtype(), "NandBytesWrittenR": pandas.StringDtype(), "HostBytesWrittenN": pandas.StringDtype(), "HostBytesWrittenR": pandas.StringDtype(), "SystemAreaLifeRemainingN": pandas.StringDtype(), "SystemAreaLifeRemainingR": pandas.StringDtype(), "RelocatableSectorCountN": pandas.StringDtype(), "RelocatableSectorCountR": pandas.StringDtype(), "SoftECCErrorRateN": pandas.StringDtype(), "SoftECCErrorRateR": pandas.StringDtype(), "UnexpectedPowerLossN": pandas.StringDtype(), "UnexpectedPowerLossR": pandas.StringDtype(), "MediaErrorCountN": pandas.StringDtype(), "MediaErrorCountR": pandas.StringDtype(), "NandBytesReadN": pandas.StringDtype(), "NandBytesReadR": pandas.StringDtype(), "WarningCompTempTime": pandas.StringDtype(), "CriticalCompTempTime": pandas.StringDtype(), "TempSensor1": pandas.StringDtype(), "TempSensor2": pandas.StringDtype(), "TempSensor3": pandas.StringDtype(), "TempSensor4": pandas.StringDtype(), "TempSensor5": pandas.StringDtype(), "TempSensor6": pandas.StringDtype(), "TempSensor7": pandas.StringDtype(), "TempSensor8": pandas.StringDtype(), "ThermalManagementTemp1TransitionCount": pandas.StringDtype(), "ThermalManagementTemp2TransitionCount": pandas.StringDtype(), "TotalTimeForThermalManagementTemp1": pandas.StringDtype(), "TotalTimeForThermalManagementTemp2": pandas.StringDtype(), "Core_Num": pandas.StringDtype(), "Id1": pandas.StringDtype(), # @todo force rename "Job_Run_Id": pandas.StringDtype(), "Stats_Time": pandas.StringDtype(), "HostReads": pandas.StringDtype(), "HostWrites": pandas.StringDtype(), "NandReads": pandas.StringDtype(), "NandWrites": pandas.StringDtype(), "ProgramErrors": pandas.StringDtype(), "EraseErrors": pandas.StringDtype(), "ErrorCount": pandas.StringDtype(), "BitErrorsHost1": pandas.StringDtype(), "BitErrorsHost2": pandas.StringDtype(), "BitErrorsHost3": pandas.StringDtype(), "BitErrorsHost4": pandas.StringDtype(), "BitErrorsHost5": pandas.StringDtype(), "BitErrorsHost6": pandas.StringDtype(), "BitErrorsHost7": pandas.StringDtype(), "BitErrorsHost8": pandas.StringDtype(), "BitErrorsHost9": pandas.StringDtype(), "BitErrorsHost10": pandas.StringDtype(), "BitErrorsHost11": pandas.StringDtype(), "BitErrorsHost12": pandas.StringDtype(), "BitErrorsHost13": pandas.StringDtype(), "BitErrorsHost14": pandas.StringDtype(), "BitErrorsHost15": pandas.StringDtype(), "ECCFail": pandas.StringDtype(), "GrownDefects": pandas.StringDtype(), "FreeMemory": pandas.StringDtype(), "WriteAllowance": pandas.StringDtype(), "ModelString": pandas.StringDtype(), "ValidBlocks": pandas.StringDtype(), "TokenBlocks": pandas.StringDtype(), "SpuriousPFCount": pandas.StringDtype(), "SpuriousPFLocations1": pandas.StringDtype(), "SpuriousPFLocations2": pandas.StringDtype(), "SpuriousPFLocations3": pandas.StringDtype(), "SpuriousPFLocations4": pandas.StringDtype(), "SpuriousPFLocations5": pandas.StringDtype(), "SpuriousPFLocations6": pandas.StringDtype(), "SpuriousPFLocations7": pandas.StringDtype(), "SpuriousPFLocations8": pandas.StringDtype(), "BitErrorsNonHost1": pandas.StringDtype(), "BitErrorsNonHost2": pandas.StringDtype(), "BitErrorsNonHost3": pandas.StringDtype(), "BitErrorsNonHost4": pandas.StringDtype(), "BitErrorsNonHost5": pandas.StringDtype(), "BitErrorsNonHost6": pandas.StringDtype(), "BitErrorsNonHost7": pandas.StringDtype(), "BitErrorsNonHost8": pandas.StringDtype(), "BitErrorsNonHost9": pandas.StringDtype(), "BitErrorsNonHost10": pandas.StringDtype(), "BitErrorsNonHost11": pandas.StringDtype(), "BitErrorsNonHost12": pandas.StringDtype(), "BitErrorsNonHost13": pandas.StringDtype(), "BitErrorsNonHost14": pandas.StringDtype(), "BitErrorsNonHost15": pandas.StringDtype(), "ECCFailNonHost": pandas.StringDtype(), "NSversion": pandas.StringDtype(), "numBands": pandas.StringDtype(), "minErase": pandas.StringDtype(), "maxErase": pandas.StringDtype(), "avgErase": pandas.StringDtype(), "minMVolt": pandas.StringDtype(), "maxMVolt": pandas.StringDtype(), "avgMVolt": pandas.StringDtype(), "minMAmp": pandas.StringDtype(), "maxMAmp": pandas.StringDtype(), "avgMAmp": pandas.StringDtype(), "comment1": pandas.StringDtype(), # @todo force rename "minMVolt12v": pandas.StringDtype(), "maxMVolt12v": pandas.StringDtype(), "avgMVolt12v": pandas.StringDtype(), "minMAmp12v": pandas.StringDtype(), "maxMAmp12v": pandas.StringDtype(), "avgMAmp12v": pandas.StringDtype(), "nearMissSector": pandas.StringDtype(), "nearMissDefect": pandas.StringDtype(), "nearMissOverflow": pandas.StringDtype(), "replayUNC": pandas.StringDtype(), "Drive_Id": pandas.StringDtype(), "indirectionMisses": pandas.StringDtype(), "BitErrorsHost16": pandas.StringDtype(), "BitErrorsHost17": pandas.StringDtype(), "BitErrorsHost18": pandas.StringDtype(), "BitErrorsHost19": pandas.StringDtype(), "BitErrorsHost20": pandas.StringDtype(), "BitErrorsHost21": pandas.StringDtype(), "BitErrorsHost22": pandas.StringDtype(), "BitErrorsHost23": pandas.StringDtype(), "BitErrorsHost24": pandas.StringDtype(), "BitErrorsHost25": pandas.StringDtype(), "BitErrorsHost26": pandas.StringDtype(), "BitErrorsHost27": pandas.StringDtype(), "BitErrorsHost28": pandas.StringDtype(), "BitErrorsHost29": pandas.StringDtype(), "BitErrorsHost30": pandas.StringDtype(), "BitErrorsHost31": pandas.StringDtype(), "BitErrorsHost32": pandas.StringDtype(), "BitErrorsHost33": pandas.StringDtype(), "BitErrorsHost34": pandas.StringDtype(), "BitErrorsHost35": pandas.StringDtype(), "BitErrorsHost36": pandas.StringDtype(), "BitErrorsHost37": pandas.StringDtype(), "BitErrorsHost38": pandas.StringDtype(), "BitErrorsHost39": pandas.StringDtype(), "BitErrorsHost40": pandas.StringDtype(), "XORRebuildSuccess": pandas.StringDtype(), "XORRebuildFail": pandas.StringDtype(), "BandReloForError": pandas.StringDtype(), "mrrSuccess": pandas.StringDtype(), "mrrFail": pandas.StringDtype(), "mrrNudgeSuccess": pandas.StringDtype(), "mrrNudgeHarmless": pandas.StringDtype(), "mrrNudgeFail": pandas.StringDtype(), "totalErases": pandas.StringDtype(), "dieOfflineCount": pandas.StringDtype(), "curtemp": pandas.StringDtype(), "mintemp": pandas.StringDtype(), "maxtemp": pandas.StringDtype(), "oventemp": pandas.StringDtype(), "allZeroSectors": pandas.StringDtype(), "ctxRecoveryEvents": pandas.StringDtype(), "ctxRecoveryErases": pandas.StringDtype(), "NSversionMinor": pandas.StringDtype(), "lifeMinTemp": pandas.StringDtype(), "lifeMaxTemp": pandas.StringDtype(), "powerCycles": pandas.StringDtype(), "systemReads": pandas.StringDtype(), "systemWrites": pandas.StringDtype(), "readRetryOverflow": pandas.StringDtype(), "unplannedPowerCycles": pandas.StringDtype(), "unsafeShutdowns": pandas.StringDtype(), "defragForcedReloCount": pandas.StringDtype(), "bandReloForBDR": pandas.StringDtype(), "bandReloForDieOffline": pandas.StringDtype(), "bandReloForPFail": pandas.StringDtype(), "bandReloForWL": pandas.StringDtype(), "provisionalDefects": pandas.StringDtype(), "uncorrectableProgErrors": pandas.StringDtype(), "powerOnSeconds": pandas.StringDtype(), "bandReloForChannelTimeout": pandas.StringDtype(), "fwDowngradeCount": pandas.StringDtype(), "dramCorrectablesTotal": pandas.StringDtype(), "hb_id": pandas.StringDtype(), "dramCorrectables1to1": pandas.StringDtype(), "dramCorrectables4to1": pandas.StringDtype(), "dramCorrectablesSram": pandas.StringDtype(), "dramCorrectablesUnknown": pandas.StringDtype(), "pliCapTestInterval": pandas.StringDtype(), "pliCapTestCount": pandas.StringDtype(), "pliCapTestResult": pandas.StringDtype(), "pliCapTestTimeStamp": pandas.StringDtype(), "channelHangSuccess": pandas.StringDtype(), "channelHangFail": pandas.StringDtype(), "BitErrorsHost41": pandas.StringDtype(), "BitErrorsHost42": pandas.StringDtype(), "BitErrorsHost43": pandas.StringDtype(), "BitErrorsHost44": pandas.StringDtype(), "BitErrorsHost45": pandas.StringDtype(), "BitErrorsHost46": pandas.StringDtype(), "BitErrorsHost47": pandas.StringDtype(), "BitErrorsHost48": pandas.StringDtype(), "BitErrorsHost49": pandas.StringDtype(), "BitErrorsHost50": pandas.StringDtype(), "BitErrorsHost51": pandas.StringDtype(), "BitErrorsHost52": pandas.StringDtype(), "BitErrorsHost53": pandas.StringDtype(), "BitErrorsHost54": pandas.StringDtype(), "BitErrorsHost55": pandas.StringDtype(), "BitErrorsHost56": pandas.StringDtype(), "mrrNearMiss": pandas.StringDtype(), "mrrRereadAvg": pandas.StringDtype(), "readDisturbEvictions": pandas.StringDtype(), "L1L2ParityError": pandas.StringDtype(), "pageDefects": pandas.StringDtype(), "pageProvisionalTotal": pandas.StringDtype(), "ASICTemp": pandas.StringDtype(), "PMICTemp": pandas.StringDtype(), "size": pandas.StringDtype(), "lastWrite": pandas.StringDtype(), "timesWritten": pandas.StringDtype(), "maxNumContextBands": pandas.StringDtype(), "blankCount": pandas.StringDtype(), "cleanBands": pandas.StringDtype(), "avgTprog": pandas.StringDtype(), "avgEraseCount": pandas.StringDtype(), "edtcHandledBandCnt": pandas.StringDtype(), "bandReloForNLBA": pandas.StringDtype(), "bandCrossingDuringPliCount": pandas.StringDtype(), "bitErrBucketNum": pandas.StringDtype(), "sramCorrectablesTotal": pandas.StringDtype(), "l1SramCorrErrCnt": pandas.StringDtype(), "l2SramCorrErrCnt": pandas.StringDtype(), "parityErrorValue": pandas.StringDtype(), "parityErrorType": pandas.StringDtype(), "mrr_LutValidDataSize": pandas.StringDtype(), "pageProvisionalDefects": pandas.StringDtype(), "plisWithErasesInProgress": pandas.StringDtype(), "lastReplayDebug": pandas.StringDtype(), "externalPreReadFatals": pandas.StringDtype(), "hostReadCmd": pandas.StringDtype(), "hostWriteCmd": pandas.StringDtype(), "trimmedSectors": pandas.StringDtype(), "trimTokens": pandas.StringDtype(), "mrrEventsInCodewords": pandas.StringDtype(), "mrrEventsInSectors": pandas.StringDtype(), "powerOnMicroseconds": pandas.StringDtype(), "mrrInXorRecEvents": pandas.StringDtype(), "mrrFailInXorRecEvents": pandas.StringDtype(), "mrrUpperpageEvents": pandas.StringDtype(), "mrrLowerpageEvents": pandas.StringDtype(), "mrrSlcpageEvents": pandas.StringDtype(), "mrrReReadTotal": pandas.StringDtype(), "powerOnResets": pandas.StringDtype(), "powerOnMinutes": pandas.StringDtype(), "throttleOnMilliseconds": pandas.StringDtype(), "ctxTailMagic": pandas.StringDtype(), "contextDropCount": pandas.StringDtype(), "lastCtxSequenceId": pandas.StringDtype(), "currCtxSequenceId": pandas.StringDtype(), "mbliEraseCount": pandas.StringDtype(), "pageAverageProgramCount": pandas.StringDtype(), "bandAverageEraseCount": pandas.StringDtype(), "bandTotalEraseCount": pandas.StringDtype(), "bandReloForXorRebuildFail": pandas.StringDtype(), "defragSpeculativeMiss": pandas.StringDtype(), "uncorrectableBackgroundScan": pandas.StringDtype(), "BitErrorsHost57": pandas.StringDtype(), "BitErrorsHost58": pandas.StringDtype(), "BitErrorsHost59": pandas.StringDtype(), "BitErrorsHost60": pandas.StringDtype(), "BitErrorsHost61": pandas.StringDtype(), "BitErrorsHost62": pandas.StringDtype(), "BitErrorsHost63": pandas.StringDtype(), "BitErrorsHost64": pandas.StringDtype(), "BitErrorsHost65": pandas.StringDtype(), "BitErrorsHost66": pandas.StringDtype(), "BitErrorsHost67": pandas.StringDtype(), "BitErrorsHost68": pandas.StringDtype(), "BitErrorsHost69": pandas.StringDtype(), "BitErrorsHost70": pandas.StringDtype(), "BitErrorsHost71": pandas.StringDtype(), "BitErrorsHost72": pandas.StringDtype(), "BitErrorsHost73": pandas.StringDtype(), "BitErrorsHost74": pandas.StringDtype(), "BitErrorsHost75": pandas.StringDtype(), "BitErrorsHost76": pandas.StringDtype(), "BitErrorsHost77": pandas.StringDtype(), "BitErrorsHost78": pandas.StringDtype(), "BitErrorsHost79": pandas.StringDtype(), "BitErrorsHost80": pandas.StringDtype(), "bitErrBucketArray1": pandas.StringDtype(), "bitErrBucketArray2": pandas.StringDtype(), "bitErrBucketArray3": pandas.StringDtype(), "bitErrBucketArray4": pandas.StringDtype(), "bitErrBucketArray5": pandas.StringDtype(), "bitErrBucketArray6": pandas.StringDtype(), "bitErrBucketArray7": pandas.StringDtype(), "bitErrBucketArray8": pandas.StringDtype(), "bitErrBucketArray9": pandas.StringDtype(), "bitErrBucketArray10": pandas.StringDtype(), "bitErrBucketArray11": pandas.StringDtype(), "bitErrBucketArray12": pandas.StringDtype(), "bitErrBucketArray13": pandas.StringDtype(), "bitErrBucketArray14": pandas.StringDtype(), "bitErrBucketArray15": pandas.StringDtype(), "bitErrBucketArray16": pandas.StringDtype(), "bitErrBucketArray17": pandas.StringDtype(), "bitErrBucketArray18": pandas.StringDtype(), "bitErrBucketArray19": pandas.StringDtype(), "bitErrBucketArray20": pandas.StringDtype(), "bitErrBucketArray21": pandas.StringDtype(), "bitErrBucketArray22": pandas.StringDtype(), "bitErrBucketArray23": pandas.StringDtype(), "bitErrBucketArray24": pandas.StringDtype(), "bitErrBucketArray25": pandas.StringDtype(), "bitErrBucketArray26": pandas.StringDtype(), "bitErrBucketArray27": pandas.StringDtype(), "bitErrBucketArray28": pandas.StringDtype(), "bitErrBucketArray29": pandas.StringDtype(), "bitErrBucketArray30": pandas.StringDtype(), "bitErrBucketArray31": pandas.StringDtype(), "bitErrBucketArray32": pandas.StringDtype(), "bitErrBucketArray33": pandas.StringDtype(), "bitErrBucketArray34": pandas.StringDtype(), "bitErrBucketArray35": pandas.StringDtype(), "bitErrBucketArray36": pandas.StringDtype(), "bitErrBucketArray37": pandas.StringDtype(), "bitErrBucketArray38": pandas.StringDtype(), "bitErrBucketArray39": pandas.StringDtype(), "bitErrBucketArray40": pandas.StringDtype(), "bitErrBucketArray41": pandas.StringDtype(), "bitErrBucketArray42": pandas.StringDtype(), "bitErrBucketArray43": pandas.StringDtype(), "bitErrBucketArray44": pandas.StringDtype(), "bitErrBucketArray45": pandas.StringDtype(), "bitErrBucketArray46": pandas.StringDtype(), "bitErrBucketArray47": pandas.StringDtype(), "bitErrBucketArray48": pandas.StringDtype(), "bitErrBucketArray49": pandas.StringDtype(), "bitErrBucketArray50": pandas.StringDtype(), "bitErrBucketArray51": pandas.StringDtype(), "bitErrBucketArray52": pandas.StringDtype(), "bitErrBucketArray53": pandas.StringDtype(), "bitErrBucketArray54": pandas.StringDtype(), "bitErrBucketArray55": pandas.StringDtype(), "bitErrBucketArray56": pandas.StringDtype(), "bitErrBucketArray57": pandas.StringDtype(), "bitErrBucketArray58": pandas.StringDtype(), "bitErrBucketArray59": pandas.StringDtype(), "bitErrBucketArray60": pandas.StringDtype(), "bitErrBucketArray61": pandas.StringDtype(), "bitErrBucketArray62": pandas.StringDtype(), "bitErrBucketArray63": pandas.StringDtype(), "bitErrBucketArray64": pandas.StringDtype(), "bitErrBucketArray65": pandas.StringDtype(), "bitErrBucketArray66": pandas.StringDtype(), "bitErrBucketArray67": pandas.StringDtype(), "bitErrBucketArray68": pandas.StringDtype(), "bitErrBucketArray69": pandas.StringDtype(), "bitErrBucketArray70": pandas.StringDtype(), "bitErrBucketArray71": pandas.StringDtype(), "bitErrBucketArray72": pandas.StringDtype(), "bitErrBucketArray73": pandas.StringDtype(), "bitErrBucketArray74": pandas.StringDtype(), "bitErrBucketArray75": pandas.StringDtype(), "bitErrBucketArray76": pandas.StringDtype(), "bitErrBucketArray77": pandas.StringDtype(), "bitErrBucketArray78": pandas.StringDtype(), "bitErrBucketArray79": pandas.StringDtype(), "bitErrBucketArray80": pandas.StringDtype(), "mrr_successDistribution1": pandas.StringDtype(), "mrr_successDistribution2": pandas.StringDtype(), "mrr_successDistribution3": pandas.StringDtype(), "mrr_successDistribution4": pandas.StringDtype(), "mrr_successDistribution5": pandas.StringDtype(), "mrr_successDistribution6": pandas.StringDtype(), "mrr_successDistribution7": pandas.StringDtype(), "mrr_successDistribution8": pandas.StringDtype(), "mrr_successDistribution9": pandas.StringDtype(), "mrr_successDistribution10": pandas.StringDtype(), "mrr_successDistribution11": pandas.StringDtype(), "mrr_successDistribution12": pandas.StringDtype(), "mrr_successDistribution13": pandas.StringDtype(), "mrr_successDistribution14": pandas.StringDtype(), "mrr_successDistribution15": pandas.StringDtype(), "mrr_successDistribution16": pandas.StringDtype(), "mrr_successDistribution17": pandas.StringDtype(), "mrr_successDistribution18": pandas.StringDtype(), "mrr_successDistribution19": pandas.StringDtype(), "mrr_successDistribution20": pandas.StringDtype(), "mrr_successDistribution21": pandas.StringDtype(), "mrr_successDistribution22": pandas.StringDtype(), "mrr_successDistribution23": pandas.StringDtype(), "mrr_successDistribution24": pandas.StringDtype(), "mrr_successDistribution25": pandas.StringDtype(), "mrr_successDistribution26": pandas.StringDtype(), "mrr_successDistribution27": pandas.StringDtype(), "mrr_successDistribution28": pandas.StringDtype(), "mrr_successDistribution29": pandas.StringDtype(), "mrr_successDistribution30": pandas.StringDtype(), "mrr_successDistribution31": pandas.StringDtype(), "mrr_successDistribution32": pandas.StringDtype(), "mrr_successDistribution33": pandas.StringDtype(), "mrr_successDistribution34": pandas.StringDtype(), "mrr_successDistribution35": pandas.StringDtype(), "mrr_successDistribution36": pandas.StringDtype(), "mrr_successDistribution37": pandas.StringDtype(), "mrr_successDistribution38": pandas.StringDtype(), "mrr_successDistribution39": pandas.StringDtype(), "mrr_successDistribution40": pandas.StringDtype(), "mrr_successDistribution41": pandas.StringDtype(), "mrr_successDistribution42": pandas.StringDtype(), "mrr_successDistribution43": pandas.StringDtype(), "mrr_successDistribution44": pandas.StringDtype(), "mrr_successDistribution45": pandas.StringDtype(), "mrr_successDistribution46": pandas.StringDtype(), "mrr_successDistribution47": pandas.StringDtype(), "mrr_successDistribution48": pandas.StringDtype(), "mrr_successDistribution49": pandas.StringDtype(), "mrr_successDistribution50": pandas.StringDtype(), "mrr_successDistribution51": pandas.StringDtype(), "mrr_successDistribution52": pandas.StringDtype(), "mrr_successDistribution53": pandas.StringDtype(), "mrr_successDistribution54": pandas.StringDtype(), "mrr_successDistribution55": pandas.StringDtype(), "mrr_successDistribution56": pandas.StringDtype(), "mrr_successDistribution57": pandas.StringDtype(), "mrr_successDistribution58": pandas.StringDtype(), "mrr_successDistribution59": pandas.StringDtype(), "mrr_successDistribution60": pandas.StringDtype(), "mrr_successDistribution61": pandas.StringDtype(), "mrr_successDistribution62": pandas.StringDtype(), "mrr_successDistribution63": pandas.StringDtype(), "mrr_successDistribution64": pandas.StringDtype(), "blDowngradeCount": pandas.StringDtype(), "snapReads": pandas.StringDtype(), "pliCapTestTime": pandas.StringDtype(), "currentTimeToFreeSpaceRecovery": pandas.StringDtype(), "worstTimeToFreeSpaceRecovery": pandas.StringDtype(), "rspnandReads": pandas.StringDtype(), "cachednandReads": pandas.StringDtype(), "spnandReads": pandas.StringDtype(), "dpnandReads": pandas.StringDtype(), "qpnandReads": pandas.StringDtype(), "verifynandReads": pandas.StringDtype(), "softnandReads": pandas.StringDtype(), "spnandWrites": pandas.StringDtype(), "dpnandWrites": pandas.StringDtype(), "qpnandWrites": pandas.StringDtype(), "opnandWrites": pandas.StringDtype(), "xpnandWrites": pandas.StringDtype(), "unalignedHostWriteCmd": pandas.StringDtype(), "randomReadCmd": pandas.StringDtype(), "randomWriteCmd": pandas.StringDtype(), "secVenCmdCount": pandas.StringDtype(), "secVenCmdCountFails": pandas.StringDtype(), "mrrFailOnSlcOtfPages": pandas.StringDtype(), "mrrFailOnSlcOtfPageMarkedAsMBPD": pandas.StringDtype(), "lcorParitySeedErrors": pandas.StringDtype(), "fwDownloadFails": pandas.StringDtype(), "fwAuthenticationFails": pandas.StringDtype(), "fwSecurityRev": pandas.StringDtype(), "isCapacitorHealthly": pandas.StringDtype(), "fwWRCounter": pandas.StringDtype(), "sysAreaEraseFailCount": pandas.StringDtype(), "iusDefragRelocated4DataRetention": pandas.StringDtype(), "I2CTemp": pandas.StringDtype(), "lbaMismatchOnNandReads": pandas.StringDtype(), "currentWriteStreamsCount": pandas.StringDtype(), "nandWritesPerStream1": pandas.StringDtype(), "nandWritesPerStream2": pandas.StringDtype(), "nandWritesPerStream3": pandas.StringDtype(), "nandWritesPerStream4": pandas.StringDtype(), "nandWritesPerStream5": pandas.StringDtype(), "nandWritesPerStream6": pandas.StringDtype(), "nandWritesPerStream7": pandas.StringDtype(), "nandWritesPerStream8": pandas.StringDtype(), "nandWritesPerStream9": pandas.StringDtype(), "nandWritesPerStream10": pandas.StringDtype(), "nandWritesPerStream11": pandas.StringDtype(), "nandWritesPerStream12": pandas.StringDtype(), "nandWritesPerStream13": pandas.StringDtype(), "nandWritesPerStream14": pandas.StringDtype(), "nandWritesPerStream15": pandas.StringDtype(), "nandWritesPerStream16": pandas.StringDtype(), "nandWritesPerStream17": pandas.StringDtype(), "nandWritesPerStream18": pandas.StringDtype(), "nandWritesPerStream19": pandas.StringDtype(), "nandWritesPerStream20": pandas.StringDtype(), "nandWritesPerStream21": pandas.StringDtype(), "nandWritesPerStream22": pandas.StringDtype(), "nandWritesPerStream23": pandas.StringDtype(), "nandWritesPerStream24": pandas.StringDtype(), "nandWritesPerStream25": pandas.StringDtype(), "nandWritesPerStream26": pandas.StringDtype(), "nandWritesPerStream27": pandas.StringDtype(), "nandWritesPerStream28": pandas.StringDtype(), "nandWritesPerStream29": pandas.StringDtype(), "nandWritesPerStream30": pandas.StringDtype(), "nandWritesPerStream31": pandas.StringDtype(), "nandWritesPerStream32": pandas.StringDtype(), "hostSoftReadSuccess": pandas.StringDtype(), "xorInvokedCount": pandas.StringDtype(), "comresets": pandas.StringDtype(), "syncEscapes": pandas.StringDtype(), "rErrHost": pandas.StringDtype(), "rErrDevice": pandas.StringDtype(), "iCrcs": pandas.StringDtype(), "linkSpeedDrops": pandas.StringDtype(), "mrrXtrapageEvents": pandas.StringDtype(), "mrrToppageEvents": pandas.StringDtype(), "hostXorSuccessCount": pandas.StringDtype(), "hostXorFailCount": pandas.StringDtype(), "nandWritesWithPreReadPerStream1": pandas.StringDtype(), "nandWritesWithPreReadPerStream2": pandas.StringDtype(), "nandWritesWithPreReadPerStream3": pandas.StringDtype(), "nandWritesWithPreReadPerStream4": pandas.StringDtype(), "nandWritesWithPreReadPerStream5": pandas.StringDtype(), "nandWritesWithPreReadPerStream6": pandas.StringDtype(), "nandWritesWithPreReadPerStream7": pandas.StringDtype(), "nandWritesWithPreReadPerStream8": pandas.StringDtype(), "nandWritesWithPreReadPerStream9": pandas.StringDtype(), "nandWritesWithPreReadPerStream10": pandas.StringDtype(), "nandWritesWithPreReadPerStream11": pandas.StringDtype(), "nandWritesWithPreReadPerStream12": pandas.StringDtype(), "nandWritesWithPreReadPerStream13": pandas.StringDtype(), "nandWritesWithPreReadPerStream14": pandas.StringDtype(), "nandWritesWithPreReadPerStream15": pandas.StringDtype(), "nandWritesWithPreReadPerStream16": pandas.StringDtype(), "nandWritesWithPreReadPerStream17": pandas.StringDtype(), "nandWritesWithPreReadPerStream18": pandas.StringDtype(), "nandWritesWithPreReadPerStream19": pandas.StringDtype(), "nandWritesWithPreReadPerStream20": pandas.StringDtype(), "nandWritesWithPreReadPerStream21": pandas.StringDtype(), "nandWritesWithPreReadPerStream22": pandas.StringDtype(), "nandWritesWithPreReadPerStream23": pandas.StringDtype(), "nandWritesWithPreReadPerStream24": pandas.StringDtype(), "nandWritesWithPreReadPerStream25": pandas.StringDtype(), "nandWritesWithPreReadPerStream26": pandas.StringDtype(), "nandWritesWithPreReadPerStream27": pandas.StringDtype(), "nandWritesWithPreReadPerStream28": pandas.StringDtype(), "nandWritesWithPreReadPerStream29": pandas.StringDtype(), "nandWritesWithPreReadPerStream30": pandas.StringDtype(), "nandWritesWithPreReadPerStream31": pandas.StringDtype(), "nandWritesWithPreReadPerStream32": pandas.StringDtype(), "dramCorrectables8to1": pandas.StringDtype(), "driveRecoveryCount": pandas.StringDtype(), "mprLiteReads": pandas.StringDtype(), "eccErrOnMprLiteReads": pandas.StringDtype(), "readForwardingXpPreReadCount": pandas.StringDtype(), "readForwardingUpPreReadCount": pandas.StringDtype(), "readForwardingLpPreReadCount": pandas.StringDtype(), "pweDefectCompensationCredit": pandas.StringDtype(), "planarXorRebuildFailure": pandas.StringDtype(), "itgXorRebuildFailure": pandas.StringDtype(), "planarXorRebuildSuccess": pandas.StringDtype(), "itgXorRebuildSuccess": pandas.StringDtype(), "xorLoggingSkippedSIcBand": pandas.StringDtype(), "xorLoggingSkippedDieOffline": pandas.StringDtype(), "xorLoggingSkippedDieAbsent": pandas.StringDtype(), "xorLoggingSkippedBandErased": pandas.StringDtype(), "xorLoggingSkippedNoEntry": pandas.StringDtype(), "xorAuditSuccess": pandas.StringDtype(), "maxSuspendCount": pandas.StringDtype(), "suspendLimitPerPrgm": pandas.StringDtype(), "psrCountStats": pandas.StringDtype(), "readNandBuffCount": pandas.StringDtype(), "readNandBufferRspErrorCount": pandas.StringDtype(), "ddpNandWrites": pandas.StringDtype(), "totalDeallocatedSectorsInCore": pandas.StringDtype(), "prefetchHostReads": pandas.StringDtype(), "hostReadtoDSMDCount": pandas.StringDtype(), "hostWritetoDSMDCount": pandas.StringDtype(), "snapReads4k": pandas.StringDtype(), "snapReads8k": pandas.StringDtype(), "snapReads16k": pandas.StringDtype(), "xorLoggingTriggered": pandas.StringDtype(), "xorLoggingAborted": pandas.StringDtype(), "xorLoggingSkippedHistory": pandas.StringDtype(), "deckDisturbRelocationUD": pandas.StringDtype(), "deckDisturbRelocationMD": pandas.StringDtype(), "deckDisturbRelocationLD": pandas.StringDtype(), "bbdProactiveReadRetry": pandas.StringDtype(), "statsRestoreRequired": pandas.StringDtype(), "statsAESCount": pandas.StringDtype(), "statsHESCount": pandas.StringDtype(), "psrCountStats1": pandas.StringDtype(), "psrCountStats2": pandas.StringDtype(), "psrCountStats3": pandas.StringDtype(), "psrCountStats4": pandas.StringDtype(), "psrCountStats5": pandas.StringDtype(), "psrCountStats6": pandas.StringDtype(), "psrCountStats7": pandas.StringDtype(), "psrCountStats8": pandas.StringDtype(), "psrCountStats9": pandas.StringDtype(), "psrCountStats10": pandas.StringDtype(), "psrCountStats11": pandas.StringDtype(), "psrCountStats12": pandas.StringDtype(), "psrCountStats13": pandas.StringDtype(), "psrCountStats14": pandas.StringDtype(), "psrCountStats15": pandas.StringDtype(), "psrCountStats16": pandas.StringDtype(), "psrCountStats17": pandas.StringDtype(), "psrCountStats18": pandas.StringDtype(), "psrCountStats19": pandas.StringDtype(), "psrCountStats20": pandas.StringDtype(), "psrCountStats21": pandas.StringDtype(), "psrCountStats22": pandas.StringDtype(), "psrCountStats23": pandas.StringDtype(), "psrCountStats24": pandas.StringDtype(), "psrCountStats25": pandas.StringDtype(), "psrCountStats26": pandas.StringDtype(), "psrCountStats27": pandas.StringDtype(), "psrCountStats28": pandas.StringDtype(), "psrCountStats29": pandas.StringDtype(), "psrCountStats30": pandas.StringDtype(), "psrCountStats31": pandas.StringDtype(), "psrCountStats32": pandas.StringDtype(), "psrCountStats33": pandas.StringDtype(), "psrCountStats34": pandas.StringDtype(), "psrCountStats35": pandas.StringDtype(), "psrCountStats36": pandas.StringDtype(), "psrCountStats37": pandas.StringDtype(), "psrCountStats38": pandas.StringDtype(), "psrCountStats39": pandas.StringDtype(), "psrCountStats40": pandas.StringDtype(), "psrCountStats41": pandas.StringDtype(), "psrCountStats42": pandas.StringDtype(), "psrCountStats43": pandas.StringDtype(), "psrCountStats44": pandas.StringDtype(), "psrCountStats45": pandas.StringDtype(), "psrCountStats46": pandas.StringDtype(), "psrCountStatsHigh1": pandas.StringDtype(), "psrCountStatsHigh2": pandas.StringDtype(), "psrCountStatsHigh3": pandas.StringDtype(), "psrCountStatsHigh4": pandas.StringDtype(), "psrCountStatsHigh5": pandas.StringDtype(), "psrCountStatsHigh6": pandas.StringDtype(), "psrCountStatsHigh7": pandas.StringDtype(), "psrCountStatsHigh8": pandas.StringDtype(), "psrCountStatsHigh9": pandas.StringDtype(), "psrCountStatsHigh10": pandas.StringDtype(), "psrCountStatsHigh11": pandas.StringDtype(), "psrCountStatsHigh12": pandas.StringDtype(), "psrCountStatsHigh13": pandas.StringDtype(), "psrCountStatsHigh14": pandas.StringDtype(), "vssSwitchCount": pandas.StringDtype(), "openBandReadCount": pandas.StringDtype(), "closedBandReadCount": pandas.StringDtype(), "minEraseSLC": pandas.StringDtype(), "maxEraseSLC": pandas.StringDtype(), "avgEraseSLC": pandas.StringDtype(), "totalErasesSLC": pandas.StringDtype(), "unexpectedPsrStateCount": pandas.StringDtype(), "lowPrioritySqReadCmds":
pandas.StringDtype()
pandas.StringDtype
""" MLTrace: A machine learning progress tracker ==================================================== This module provides some basic functionality to track the process of machine learning model development. It sets up a SQLite db-file and stores selected models, graphs, and data (for convenience) and recovers them as requested. ``mltrace`` uses `peewee <http://docs.peewee-orm.com/en/latest/>`_ and `pandas <https://pandas.pydata.org/>`_ for data manipulation. It also has built in capabilities to generate some typical plots and graph in machine learning. """ try: from peewee import * except ModuleNotFoundError: Model = type("Model", (object,), dict(Simple=lambda: 0.0)) SqliteDatabase = lambda x: None from datetime import datetime MLTRACK_DB = SqliteDatabase(None) class np2df(object): """ A class to convert numpy ndarray to a pandas DataFrame. It produces a callable object which returns a `pandas.DataFrame` :param data: `numpy.ndarray` data :param clmns: a list of titles for pandas DataFrame column names. If None, it produces `C{num}` where `num` changes as the index of the ndarray does. """ def __init__(self, data, clmns=None): self.data = data self.N = len(data[0]) if clmns is None: self.Columns = ["C%d" % (_) for _ in range(self.N)] else: self.Columns = clmns def __call__(self, *args, **kwargs): from pandas import DataFrame dct = {} for idx in range(self.N): dct[self.Columns[idx]] = list(self.data[:, idx]) return DataFrame(dct) class Task(Model): """ The class to generate the 'task` table in the SQLite db-file. This table keeps basic information about the task on hand, e.g., the task name, a brief description, target column, and columns to be ignored. """ try: task_id = IntegerField(primary_key=True, unique=True, null=False, default=1) name = CharField(null=True) description = TextField(null=True) target = CharField(null=True) ignore = CharField(null=True) init_date = DateTimeField(default=datetime.now, null=True) last_mod_date = DateTimeField(default=datetime.now, null=True) except: pass class Meta: database = MLTRACK_DB class MLModel(Model): """ The class to generate the 'mlmodel` table in the SQLite db-file. It stores the scikit-learn scheme of the model/pipeline, its parameters, etc. """ try: model_id = IntegerField(primary_key=True, unique=True, null=False) task_id = ForeignKeyField(Task) name = CharField(null=True) model_str = TextField(null=True) model_type = CharField(null=True) parameters = BareField(null=True) date_modified = DateTimeField(default=datetime.now, null=True) except: pass class Meta: database = MLTRACK_DB class Metrics(Model): """ The class to generate the 'metrics` table in the SQLite db-file. This table stores the calculated metrics of each stored model. """ try: metrics_id = IntegerField(primary_key=True, unique=True, null=False) model_id = ForeignKeyField(MLModel) accuracy = FloatField(null=True) auc = FloatField(null=True) precision = FloatField(null=True) recall = FloatField(null=True) f1 = FloatField(null=True) mcc = FloatField(null=True) logloss = FloatField(null=True) variance = FloatField(null=True) max_error = FloatField(null=True) mse = FloatField(null=True) mae = FloatField(null=True) r2 = FloatField(null=True) except: pass class Meta: database = MLTRACK_DB class Saved(Model): """ The class to generate the 'saved` table in the SQLite db-file. It keeps the pickled version of a stored model that can be later recovered. """ try: pickle_id = IntegerField(primary_key=True, unique=True, null=False) model_id = ForeignKeyField(MLModel) pickle = BareField(null=True) init_date = DateTimeField(default=datetime.now, null=True) except: pass class Meta: database = MLTRACK_DB class Plots(Model): """ The class to generate the 'plots` table in the SQLite db-file. This table stores `matplotlib` plots associated to each model. """ try: plot_id = IntegerField(primary_key=True, unique=True, null=False) model_id = ForeignKeyField(MLModel) title = CharField(null=True) plot = BareField(null=True) init_date = DateTimeField(default=datetime.now, null=True) except: pass class Meta: database = MLTRACK_DB class Data(Model): """ The class to generate the 'data` table in the SQLite db-file. This table stores the whole given data for convenience. """ class Meta: database = MLTRACK_DB class Weights(Model): """ The class to generate the 'weights` table in the SQLite db-file. Stores some sensitivity measures, correlations, etc. """ class Meta: database = MLTRACK_DB class mltrack(object): """ This class instantiates an object that tracks the ML activities and store them upon request. :param task: 'str' the task name :param task_is: the id of an existing task, if the name is not provided. :param db_name: a file name for the SQLite database :param cv: the default cross validation method, must be a valid cv based on `sklearn.model_selection`; default: `ShuffleSplit(n_splits=3, test_size=.25)` """ def __init__(self, task, task_id=None, db_name="mltrack.db", cv=None): self.db_name = db_name tables = [Task, MLModel, Metrics, Saved, Plots, Data, Weights] for tbl in tables: tbl._meta.database.init(self.db_name) MLTRACK_DB.create_tables(tables) res = Task.select().where((Task.name == task) | (Task.task_id == task_id)) if len(res) > 0: self.task = res[0].name self.task_id = res[0].task_id self.target = res[0].target else: new_task = Task.create(name=task, description="Initiated automatically") self.task_id = new_task.task_id import sqlite3 self.conn = sqlite3.connect(self.db_name) if cv is None: from sklearn.model_selection import ShuffleSplit self.cv = ShuffleSplit(n_splits=3, test_size=0.25) else: self.cv = cv self.X, self.y = None, None self.Updated, self.Loaded, self.Recovered = [], [], [] def UpdateTask(self, data): """ Updates the current task info. :param data: a dictionary that may include some the followings as its keys: + 'name': the corresponding value will replace the current task name + 'description': the corresponding value will replace the current description + 'ignore': the corresponding value will replace the current ignored columns :return: None """ task = Task.select().where(Task.task_id == self.task_id).get() if "name" in data: task.name = data["name"] if "description" in data: task.description = data["description"] if "ignore" in data: task.ignore = ",".join(data["ignore"]) task.last_mod_date = datetime.now() task.save() def UpdateModel(self, mdl, name): """ Updates an already logged model which has `mltrack_id` set. :param mdl: a scikit-learn compatible estimator/pipeline :param name: an arbitrary string to name the model :return: None """ from pickle import dumps if "mltrack_id" not in mdl.__dict__: return else: mltrack_id = mdl.mltrack_id model = MLModel.select().where(MLModel.model_id == mltrack_id).get() model.name = name model.model_str = str(mdl) model.parameters = dumps(mdl.get_params()) model.date_modified = datetime.now() model.save() if mltrack_id not in self.Updated: self.Updated.append(mltrack_id) def LogModel(self, mdl, name=None): """ Log a machine learning model :param mdl: a scikit-learn compatible estimator/pipeline :param name: an arbitrary string to name the model :return: modified instance of `mdl` which carries a new attribute `mltrack_id` as its id. """ from pickle import dumps if name is not None: mdl.mltrack_name = name else: mdl.mltrack_name = name if name is not None else str(mdl).split("(")[0] if "mltrack_id" not in mdl.__dict__: MLModel.create( task_id=self.task_id, name=mdl.mltrack_name, model_str=str(mdl), model_type=str(type(mdl)).split("'")[1], parameters=dumps(mdl.get_params()), ) mdl.mltrack_id = ( MLModel.select(MLModel.model_id).order_by(MLModel.model_id.desc()).get() ) else: res = MLModel.select().where(MLModel.model_id == mdl.mltrack_id)[0] res.name = mdl.mltrack_name res.model_str = str(mdl) res.parameters = dumps(mdl.get_params()) res.date_modified = datetime.now() res.save() # TBM Tskres = Task.select().where(Task.task_id == self.task_id)[0] Tskres.last_mod_date = datetime.now() Tskres.save() return mdl def RegisterData(self, source_df, target): """ Registers a pandas DataFrame into the SQLite database. Upon a call, it also sets `self.X` and `self.y` which are numpy arrays. :param source_df: the pandas DataFrame to be stored :param target: the name of the target column to be predicted :return: None """ # TBM res = Task.select().where(Task.task_id == self.task_id)[0] res.target = target res.last_mod_date = datetime.now() res.save() self.target = target clmns = list(source_df.columns) if target not in clmns: raise BaseException("`%s` is not a part of data source." % target) source_df.to_sql("data", self.conn, if_exists="replace", index=False) clmns.remove(target) self.X = source_df[clmns].values self.y = source_df[target].values def get_data(self): """ Retrieves data in numpy format :return: numpy arrays X, y """ from pandas import read_sql df = read_sql("SELECT * FROM data", self.conn) clmns = list(df.columns) clmns.remove(self.target) self.X = df[clmns].values self.y = df[self.target].values return self.X, self.y def get_dataframe(self): """ Retrieves data in pandas DataFrame format :return: pandas DataFrame containing all data """ from pandas import read_sql df = read_sql("SELECT * FROM data", self.conn) return df def LogMetrics(self, mdl, cv=None): """ Logs metrics of an already logged model using a cross validation methpd :param mdl: the model to be measured :param cv: cross validation method :return: a dictionary of all measures with their corresponding values for the model """ if cv is not None: self.cv = cv if self.X is None: self.get_data() if "mltrack_id" not in mdl.__dict__: mdl = self.LogModel(mdl) mdl_id = mdl.mltrack_id mdl_type = mdl._estimator_type ####################################################### prds = [] prbs = [] for train_idx, test_idx in self.cv.split(self.X, self.y): X_train, y_train = self.X[train_idx], self.y[train_idx] X_test, y_test = self.X[test_idx], self.y[test_idx] mdl.fit(X_train, y_train) prds.append((mdl.predict(X_test), y_test)) try: prbs.append(mdl.predict_proba(X_test)[:, 1]) except AttributeError: try: prbs.append(mdl.decision_function(X_test)) except AttributeError: pass ####################################################### acc = None f_1 = None prs = None rcl = None aur = None mcc = None lgl = None vrn = None mxe = None mse = None mae = None r2 = None n_ = float(len(prbs)) if mdl_type == "classifier": from sklearn.metrics import ( accuracy_score, f1_score, precision_score, recall_score, roc_curve, auc, log_loss, matthews_corrcoef, ) acc = sum([accuracy_score(y_tst, y_prd) for y_prd, y_tst in prds]) / n_ f_1 = sum([f1_score(y_tst, y_prd) for y_prd, y_tst in prds]) / n_ prs = sum([precision_score(y_tst, y_prd) for y_prd, y_tst in prds]) / n_ rcl = sum([recall_score(y_tst, y_prd) for y_prd, y_tst in prds]) / n_ mcc = sum([matthews_corrcoef(y_tst, y_prd) for y_prd, y_tst in prds]) / n_ lgl = sum([log_loss(y_tst, y_prd) for y_prd, y_tst in prds]) / n_ aur = 0.0 for i in range(int(n_)): fpr, tpr, _ = roc_curve(prds[i][1], prbs[i]) aur += auc(fpr, tpr) aur /= n_ elif mdl_type == "regressor": from sklearn.metrics import ( explained_variance_score, median_absolute_error, mean_squared_error, mean_absolute_error, r2_score, ) vrn = ( sum([explained_variance_score(y_tst, y_prd) for y_prd, y_tst in prds]) / n_ ) mxe = ( sum([median_absolute_error(y_tst, y_prd) for y_prd, y_tst in prds]) / n_ ) mse = sum([mean_squared_error(y_tst, y_prd) for y_prd, y_tst in prds]) / n_ mae = sum([mean_absolute_error(y_tst, y_prd) for y_prd, y_tst in prds]) / n_ r2 = sum([r2_score(y_tst, y_prd) for y_prd, y_tst in prds]) / n_ Metrics.create( model_id=mdl_id, accuracy=acc, auc=aur, precision=prs, f1=f_1, recall=rcl, mcc=mcc, logloss=lgl, variance=vrn, max_error=mxe, mse=mse, mae=mae, r2=r2, ) # TBM res = Task.select().where(Task.task_id == self.task_id)[0] res.last_mod_date = datetime.now() res.save() return dict( accuracy=acc, auc=aur, precision=prs, f1=f_1, recall=rcl, mcc=mcc, logloss=lgl, variance=vrn, max_error=mxe, mse=mse, mae=mae, r2=r2, ) def LoadModel(self, mid): """ Loads a model corresponding to an id :param mid: the model id :return: an unfitted model """ from importlib import import_module from pickle import loads res = MLModel.select().where(MLModel.model_id == mid) if len(res) == 0: raise BaseException("No model with id '%d' were found" % (mid)) detail = res[0].model_type.split(".") module_str = ".".join(detail[:-1]) clss = detail[-1] module = import_module(module_str) params = loads(res[0].parameters) mdl = module.__getattribute__(clss)() mdl.set_params(**params) mdl.mltrack_id = mid if mid not in self.Loaded: self.Loaded.append(mid) return mdl @staticmethod def getBest(metric): """ Finds the model with the best metric. :param metric: the metric to find the best stored model for :return: the model wiith the best `metric` """ res = ( Metrics.select() .order_by(Metrics.__dict__[metric].__dict__["field"].desc()) .dicts() ) return res[0] def allTasks(self): """ Lists all tasks as a pandas DataFrame :return: a pandas DataFrame """ from pandas import read_sql return read_sql("SELECT * FROM task", self.conn) def allModels(self): """ Lists all logged models as a pandas DataFrame :return: a pandas DataFrame """ from pandas import read_sql return read_sql( "SELECT model_id, task_id, name, model_str, model_type, date_modified FROM mlmodel WHERE task_id=%d" % (self.task_id), self.conn, ) def allPreserved(self): """ Lists all pickled models as a pandas DataFrame :return: a pandas DataFrame """ from pandas import read_sql return read_sql("SELECT pickle_id, model_id, init_date FROM saved", self.conn) def PreserveModel(self, mdl): """ Pickles and preserves an already logged model :param mdl: a logged model :return: None """ from sklearn.externals import joblib if "mltrack_id" not in mdl.__dict__: mdl = self.LogModel(mdl) mdl_id = mdl.mltrack_id file = open("track_ml_tmp_mdl.joblib", "wb") joblib.dump(mdl, file) file.close() file = open("track_ml_tmp_mdl.joblib", "rb") str_cntnt = file.read() Saved.create(model_id=mdl_id, pickle=str_cntnt) file.close() import os os.remove("track_ml_tmp_mdl.joblib") def RecoverModel(self, mdl_id): """ Recovers a pickled model :param mdl_id: a valid `mltrack_id` :return: a fitted model """ from sklearn.externals import joblib res = ( Saved.select() .where(Saved.model_id == mdl_id) .order_by(Saved.init_date.desc()) .dicts() ) file = open("track_ml_tmp_mdl.joblib", "wb") file.write(res[0]["pickle"]) file.close() file = open("track_ml_tmp_mdl.joblib", "rb") mdl = joblib.load(file) file.close() import os os.remove("track_ml_tmp_mdl.joblib") if mdl_id not in self.Recovered: self.Recovered.append(mdl_id) return mdl def allPlots(self, mdl_id): """ Lists all stored plots for a model with `mdl_id` as a pandas DataFrame :param mdl_id: a valid `mltrack_id` :return: a pandas DataFrame """ from pandas import read_sql return read_sql( "SELECT plot_id, model_id, title, init_date FROM plots WHERE model_id=%d" % (mdl_id), self.conn, ) @staticmethod def LoadPlot(pid): """ Loads a `matplotlib` plot :param pid: the id of the plot :return: a `matplotlib` figure """ from pickle import loads # ax = plt.subplot(111) res = Plots.select().where(Plots.plot_id == pid).dicts() fig = loads(res[0]["plot"]) return fig def plot_learning_curve( self, mdl, title, ylim=None, cv=None, n_jobs=1, train_sizes=None, **kwargs ): """ Generate a simple plot of the test and training learning curve. :param mdl: object type that implements the "fit" and "predict" methods; An object of that type which is cloned for each validation. :param title: string; Title for the chart. :param measure: string, a performance measure; must be one of hte followings: `accuracy`, `f1`, `precision`, `recall`, `roc_auc` :param ylim: tuple, shape (ymin, ymax), optional; Defines minimum and maximum yvalues plotted. :param cv: int, cross-validation generator or an iterable, optional; Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used. If the mdl is not a classifier or if ``y`` is neither binary nor multiclass, :class:`KFold` is used. :param n_jobs: integer, optional; Number of jobs to run in parallel (default 1). :return: a `matplotlib` plot """ import matplotlib.pyplot as plt import numpy as np from sklearn.model_selection import learning_curve if cv is not None: self.cv = cv if self.X is None: self.get_data() if "mltrack_id" not in mdl.__dict__: mdl = self.LogModel(mdl) mdl_id = mdl.mltrack_id meas = kwargs.get("measure", "accuracy") if meas not in ["accuracy", "f1", "precision", "recall", "roc_auc"]: meas = "accuracy" if train_sizes is None: train_sizes = np.linspace(0.1, 1.0, 5) plt.subplot(111) fig = plt.figure() plt.title(title) if ylim is None: ylim = (-0.05, 1.05) plt.ylim(*ylim) plt.xlabel("Training size") plt.ylabel("Score (%s)" % (meas)) train_sizes, train_scores, test_scores = learning_curve( mdl, self.X, self.y, cv=self.cv, n_jobs=n_jobs, train_sizes=train_sizes, scoring=meas, ) xlbls = np.array( [str(round(_ * 100, 1)) + " %" for _ in train_sizes / len(self.y)] ) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between( xlbls, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r", ) plt.fill_between( xlbls, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g", ) plt.plot(xlbls, train_scores_mean, "o-", color="r", label="Training score") plt.plot( xlbls, test_scores_mean, "o-", color="g", label="Cross-validation score" ) plt.legend(loc="best") from pickle import dumps pckl = dumps(fig) Plots.create(model_id=mdl_id, title=meas, plot=pckl) return plt def split_train(self, mdl): from sklearn.model_selection import train_test_split if "mltrack_id" not in mdl.__dict__: mdl = self.LogModel(mdl) mdl_id = mdl.mltrack_id if self.X is None: self.get_data() X_train, X_test, y_train, y_test = train_test_split( self.X, self.y, train_size=0.75 ) from sklearn.exceptions import NotFittedError x_ = X_test[0] try: mdl.predict([x_]) except NotFittedError as _: mdl.fit(X_train, y_train) return mdl, mdl_id, X_train, X_test, y_train, y_test def plot_calibration_curve(self, mdl, name, fig_index=1, bins=10): """ Plots calibration curves. :param mdl: object type that implements the "fit" and "predict" methods; An object of that type which is cloned for each validation. :param name: string; Title for the chart. :param bins: number of bins to partition samples :return: a `matplotlib` plot """ import matplotlib.pyplot as plt from sklearn.calibration import calibration_curve fig = plt.figure(fig_index, figsize=(10, 10)) ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2) ax2 = plt.subplot2grid((3, 1), (2, 0)) ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated") mdl, mdl_id, _, X_test, _, y_test = self.split_train(mdl) if hasattr(mdl, "predict_proba"): prob_pos = mdl.predict_proba(X_test)[:, 1] else: # use decision function prob_pos = mdl.decision_function(X_test) prob_pos = (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) fraction_of_positives, mean_predicted_value = calibration_curve( y_test, prob_pos, n_bins=bins ) ax1.plot(mean_predicted_value, fraction_of_positives, "s-", label="%s" % (name)) ax2.hist(prob_pos, range=(0, 1), bins=bins, label=name, histtype="step", lw=2) ax1.set_ylabel("Fraction of positives") ax1.set_ylim([-0.05, 1.05]) ax1.legend(loc="lower right") ax1.set_title("Calibration plots (reliability curve)") ax2.set_xlabel("Mean predicted value") ax2.set_ylabel("Count") ax2.legend(loc="upper center", ncol=2) plt.tight_layout() from pickle import dumps pckl = dumps(fig) Plots.create(model_id=mdl_id, title="calibration", plot=pckl) return plt def plot_roc_curve(self, mdl, label=None): """ The ROC curve, modified from Hands-On Machine learning with Scikit-Learn. :param mdl: object type that implements the "fit" and "predict" methods; An object of that type which is cloned for each validation. :param label: string; label for the chart. :return: a `matplotlib` plot """ import matplotlib.pyplot as plt from numpy import arange from sklearn.metrics import roc_curve mdl, mdl_id, _, X_test, _, y_test = self.split_train(mdl) _ = plt.subplot(111) fig = plt.figure(figsize=(8, 8)) plt.title("ROC Curve") try: y_score = mdl.predict_proba(X_test)[:, 1] except: y_score_ = mdl.decision_function(X_test) y_score = (y_score_ - y_score_.min()) / (y_score_.max() - y_score_.min()) fpr, tpr, _ = roc_curve(y_test, y_score) plt.plot(fpr, tpr, linewidth=2, label=label) plt.plot([0, 1], [0, 1], "k--") plt.axis([-0.005, 1, 0, 1.005]) plt.xticks(arange(0, 1, 0.05), rotation=90) plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate (Recall)") plt.legend(loc="best") from pickle import dumps pckl = dumps(fig) Plots.create(model_id=mdl_id, title="roc curve", plot=pckl) return plt def plot_cumulative_gain( self, mdl, title="Cumulative Gains Curve", figsize=None, title_fontsize="large", text_fontsize="medium", ): """ Generates the Cumulative Gains Plot from labels and scores/probabilities The cumulative gains chart is used to determine the effectiveness of a binary classifier. A detailed explanation can be found at `http://mlwiki.org/index.php/Cumulative_Gain_Chart <http://mlwiki.org/index.php/Cumulative_Gain_Chart>`_. The implementation here works only for binary classification. :param mdl: object type that implements the "fit" and "predict" methods; An object of that type which is cloned for each validation. :param title: (string, optional): Title of the generated plot. Defaults to "Cumulative Gains Curve". :param figsize: (2-tuple, optional): Tuple denoting figure size of the plot e.g. (6, 6). Defaults to ``None``. :param title_fontsize: (string or int, optional): Matplotlib-style fontsizes. Use e.g., "small", "medium", "large" or integer-values. Defaults to "large". :param text_fontsize: (string or int, optional): Matplotlib-style fontsizes. Use e.g. "small", "medium", "large" or integer-values. Defaults to "medium". :return: ax (:class:`matplotlib.axes.Axes`): The axes on which the plot was drawn. """ from numpy import array, unique import matplotlib.pyplot as plt mdl, mdl_id, _, X_test, _, y_test = self.split_train(mdl) y_true = array(y_test) try: y_probas = mdl.predict_proba(X_test) y_probas = array(y_probas) prob_pos0 = y_probas[:, 0] prob_pos1 = y_probas[:, 1] except: prob_pos = mdl.decision_function(X_test) prob_pos1 = (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) prob_pos0 = (prob_pos.max() - prob_pos) / (prob_pos.max() - prob_pos.min()) classes = unique(y_true) if len(classes) != 2: raise ValueError( "Cannot calculate Cumulative Gains for data with " "{} category/ies".format(len(classes)) ) # Compute Cumulative Gain Curves percentages, gains1 = self.cumulative_gain_curve(y_true, prob_pos0, classes[0]) percentages, gains2 = self.cumulative_gain_curve(y_true, prob_pos1, classes[1]) fig, ax = plt.subplots(1, 1, figsize=figsize) ax.set_title(title, fontsize=title_fontsize) ax.plot(percentages, gains1, lw=3, label="Class {}".format(classes[0])) ax.plot(percentages, gains2, lw=3, label="Class {}".format(classes[1])) ax.set_xlim([0.0, 1.0]) ax.set_ylim([0.0, 1.0]) ax.plot([0, 1], [0, 1], "k--", lw=2, label="Baseline") ax.set_xlabel("Percentage of sample", fontsize=text_fontsize) ax.set_ylabel("Gain", fontsize=text_fontsize) ax.tick_params(labelsize=text_fontsize) ax.grid(True) ax.legend(loc="lower right", fontsize=text_fontsize) from pickle import dumps pckl = dumps(fig) Plots.create(model_id=mdl_id, title="cumulative gain", plot=pckl) return ax @staticmethod def cumulative_gain_curve(y_true, y_score, pos_label=None): """ This function generates the points necessary to plot the Cumulative Gain Note: This implementation is restricted to the binary classification task. :param y_true: (array-like, shape (n_samples)): True labels of the data. :param y_score: (array-like, shape (n_samples)): Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by decision_function on some classifiers). :param pos_label: (int or str, default=None): Label considered as positive and others are considered negative :return: percentages (numpy.ndarray): An array containing the X-axis values for plotting the Cumulative Gains chart. gains (numpy.ndarray): An array containing the Y-axis values for one curve of the Cumulative Gains chart. :raise: ValueError: If `y_true` is not composed of 2 classes. The Cumulative Gain Chart is only relevant in binary classification. """ from numpy import asarray, array_equal, cumsum, arange, insert, unique, argsort y_true, y_score = asarray(y_true), asarray(y_score) # ensure binary classification if pos_label is not specified classes = unique(y_true) if pos_label is None and not ( array_equal(classes, [0, 1]) or array_equal(classes, [-1, 1]) or array_equal(classes, [0]) or array_equal(classes, [-1]) or array_equal(classes, [1]) ): raise ValueError("Data is not binary and pos_label is not specified") elif pos_label is None: pos_label = 1.0 # make y_true a boolean vector y_true = y_true == pos_label sorted_indices = argsort(y_score)[::-1] y_true = y_true[sorted_indices] gains = cumsum(y_true) percentages = arange(start=1, stop=len(y_true) + 1) gains = gains / float(sum(y_true)) percentages = percentages / float(len(y_true)) gains = insert(gains, 0, [0]) percentages = insert(percentages, 0, [0]) return percentages, gains def plot_lift_curve( self, mdl, title="Lift Curve", figsize=None, title_fontsize="large", text_fontsize="medium", ): """ Generates the Lift Curve from labels and scores/probabilities The lift curve is used to determine the effectiveness of a binary classifier. A detailed explanation can be found at `http://www2.cs.uregina.ca/~dbd/cs831/notes/lift_chart/lift_chart.html <http://www2.cs.uregina.ca/~dbd/cs831/notes/lift_chart/lift_chart.html>`_. The implementation here works only for binary classification. :param mdl: object type that implements the "fit" and "predict" methods; An object of that type which is cloned for each validation. :param title: (string, optional): Title of the generated plot. Defaults to "Lift Curve". :param figsize: (2-tuple, optional): Tuple denoting figure size of the plot e.g. (6, 6). Defaults to ``None``. :param title_fontsize: (string or int, optional): Matplotlib-style fontsizes. Use e.g. "small", "medium", "large" or integer-values. Defaults to "large". :param text_fontsize: (string or int, optional): Matplotlib-style fontsizes. Use e.g. "small", "medium", "large" or integer-values. Defaults to "medium". :return: ax (:class:`matplotlib.axes.Axes`): The axes on which the plot was drawn. """ import matplotlib.pyplot as plt from numpy import array, unique mdl, mdl_id, _, X_test, _, y_test = self.split_train(mdl) y_true = array(y_test) try: y_probas = mdl.predict_proba(X_test) y_probas = array(y_probas) prob_pos0 = y_probas[:, 0] prob_pos1 = y_probas[:, 1] except: prob_pos = mdl.decision_function(X_test) prob_pos1 = (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) prob_pos0 = (prob_pos.max() - prob_pos) / (prob_pos.max() - prob_pos.min()) classes = unique(y_true) if len(classes) != 2: raise ValueError( "Cannot calculate Lift Curve for data with " "{} category/ies".format(len(classes)) ) # Compute Cumulative Gain Curves percentages, gains1 = self.cumulative_gain_curve(y_true, prob_pos0, classes[0]) percentages, gains2 = self.cumulative_gain_curve(y_true, prob_pos1, classes[1]) percentages = percentages[1:] gains1 = gains1[1:] gains2 = gains2[1:] gains1 = gains1 / percentages gains2 = gains2 / percentages fig, ax = plt.subplots(1, 1, figsize=figsize) ax.set_title(title, fontsize=title_fontsize) ax.plot(percentages, gains1, lw=3, label="Class {}".format(classes[0])) ax.plot(percentages, gains2, lw=3, label="Class {}".format(classes[1])) ax.plot([0, 1], [1, 1], "k--", lw=2, label="Baseline") ax.set_xlabel("Percentage of sample", fontsize=text_fontsize) ax.set_ylabel("Lift", fontsize=text_fontsize) ax.tick_params(labelsize=text_fontsize) ax.grid(True) ax.legend(loc="lower right", fontsize=text_fontsize) from pickle import dumps pckl = dumps(fig) Plots.create(model_id=mdl_id, title="lift curve", plot=pckl) return ax def heatmap( self, corr_df=None, sort_by=None, ascending=False, font_size=3, cmap="gnuplot2", idx_col="feature", ignore=(), ): """ Plots a heatmap from the values of the dataframe `corr_df` :param corr_df: value container :param idx_col: the column whose values will be used as index :param sort_by: dataframe will be sorted descending by values of this column. If None, the first column is used :param font_size: font size, defalut 3 :param cmap: color mapping. Must be one of the followings 'viridis', 'plasma', 'inferno', 'magma', 'cividis', 'Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds', 'YlOrBr', 'YlOrRd', 'OrRd', 'PuRd', 'RdPu', 'BuPu', 'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 'YlGn', 'binary', 'gist_yarg', 'gist_gray', 'gray', 'bone', 'pink', 'spring', 'summer', 'autumn', 'winter', 'cool', 'Wistia', 'hot', 'afmhot', 'gist_heat', 'copper', 'PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu', 'RdYlBu', 'RdYlGn', 'Spectral', 'coolwarm', 'bwr', 'seismic', 'twilight', 'twilight_shifted', 'hsv', 'Pastel1', 'Pastel2', 'Paired', 'Accent', 'Dark2', 'Set1', 'Set2', 'Set3', 'tab10', 'tab20', 'tab20b', 'tab20c', 'flag', 'prism', 'ocean', 'gist_earth', 'terrain', 'gist_stern', 'gnuplot', 'gnuplot2', 'CMRmap', 'cubehelix', 'brg', 'gist_rainbow', 'rainbow', 'jet', 'nipy_spectral', 'gist_ncar' :return: matplotlib pyplot instance """ import matplotlib.pyplot as plt from numpy import arange, amin, amax from pandas import read_sql ax = plt.gca() idx_col = idx_col if corr_df is None: df = read_sql("SELECT * FROM weights", self.conn) clmns = list(df.columns) df = df.sort_values( by=clmns[0] if sort_by is None else sort_by, ascending=ascending ) if idx_col is None: idx_col = clmns[0] clmns.remove(idx_col) else: df = corr_df clmns = list(df.columns) # df = df.sort_values(by=clmns[0] if sort_by is None else sort_by, ascending=ascending) if idx_col is not None: # idx_col = clmns[0] clmns.remove(idx_col) for itm in ignore: clmns.remove(itm) data = df[clmns].values mn, mx = amin(data), amax(data) im = ax.imshow(data, cmap=cmap, interpolation="bilinear") # ax.set_adjustable(adjustable='box', share=False) ax.autoscale(False) cbar_kw = { "fraction": 0.2, "ticks": [mn, 0.0, (mn + mx) / 2.0, mx], "drawedges": False, } cbar = ax.figure.colorbar(im, ax=ax, aspect=max(20, len(df)), **cbar_kw) cbarlabel = "" cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom") cbar.ax.tick_params(labelsize=font_size + 1) ax.set_xticks(arange(data.shape[1])) ax.set_yticks(arange(data.shape[0])) ax.set_xticklabels(clmns, fontdict={"fontsize": font_size}) if idx_col is not None: ax.set_yticklabels(list(df[idx_col]), fontdict={"fontsize": font_size}) else: ax.set_yticklabels(list(df.index), fontdict={"fontsize": font_size}) # Let the horizontal axes labeling appear on top. ax.tick_params(top=True, bottom=False, labeltop=True, labelbottom=False) # Rotate the tick labels and set their alignment. plt.setp( ax.get_xticklabels(), rotation=-305, ha="left", va="top", rotation_mode="anchor", ) # Turn spines off and create white grid. for _, spine in ax.spines.items(): spine.set_visible(False) ax.set_xticks(arange(data.shape[1] + 1) - 0.5, minor=True) ax.set_yticks(arange(data.shape[0] + 1) - 0.5, minor=True) ax.grid(which="minor", color="w", linestyle="-", linewidth=0) ax.tick_params(which="minor", bottom=False, left=False) return plt def FeatureWeights(self, weights=("pearson", "variance"), **kwargs): """ Calculates the requested weights and log them :param weights: a list of weights, a subset of {'pearson', 'variance', 'relieff', 'surf', 'sobol', 'morris', 'delta_mmnt', 'info-gain'} :param kwargs: all input acceptable by ``skrebate.ReliefF``, ``skrebate.surf``, ``sensapprx.SensAprx`` :return: None """ from pandas import DataFrame, read_sql self.data = read_sql("SELECT * FROM data", self.conn) features = list(self.data.columns) features.remove(self.target) weights_df = read_sql("SELECT * FROM weights", self.conn) if len(weights_df) == 0: weights_df = DataFrame({"feature": features}) X = self.data[features].values y = self.data[self.target].values n_features = kwargs.get("n_features", int(len(features) / 2)) domain = None probs = None regressor = kwargs.get("regressor", None) reduce = kwargs.get("reduce", True) num_smpl = kwargs.get("num_smpl", 700) W = {"feature": features} for factor in weights: if factor == "pearson": Res = dict(self.data.corr(method="pearson").fillna(0)[self.target]) W["pearson"] = [Res[v] for v in features] elif factor == "variance": Res = dict(self.data.var()) W["variance"] = [Res[v] for v in features] elif factor == "relieff": from skrebate import ReliefF n_neighbors = kwargs.get("n_neighbors", 80) RF = ReliefF(n_features_to_select=n_features, n_neighbors=n_neighbors) RF.fit(X, y) W["relieff"] = [ RF.feature_importances_[features.index(v)] for v in features ] elif factor == "surf": from skrebate import SURF RF = SURF(n_features_to_select=n_features) RF.fit(X, y) W["surf"] = [ RF.feature_importances_[features.index(v)] for v in features ] elif factor == "sobol": from .sensapprx import SensAprx SF = SensAprx( method="sobol", domain=domain, probs=probs, regressor=regressor, reduce=reduce, num_smpl=num_smpl, ) SF.fit(X, y) domain = SF.domain probs = SF.probs W["sobol"] = [SF.weights_[features.index(v)] for v in features] elif factor == "morris": from .sensapprx import SensAprx SF = SensAprx( method="morris", domain=domain, probs=probs, regressor=regressor, reduce=reduce, num_smpl=num_smpl, ) SF.fit(X, y) domain = SF.domain probs = SF.probs W["morris"] = [SF.weights_[features.index(v)] for v in features] elif factor == "delta-mmnt": from .sensapprx import SensAprx SF = SensAprx( method="delta-mmnt", domain=domain, probs=probs, regressor=regressor, reduce=reduce, num_smpl=num_smpl, ) SF.fit(X, y) domain = SF.domain probs = SF.probs W["delta_mmnt"] = [SF.weights_[features.index(v)] for v in features] elif factor == "info-gain": from sklearn.feature_selection import mutual_info_classif Res = mutual_info_classif(X, y, discrete_features=True) W["info_gain"] = [Res[features.index(v)] for v in features] new_w_df =
DataFrame(W)
pandas.DataFrame
from dataclasses import replace import datetime as dt from functools import partial import inspect from pathlib import Path import re import types import uuid import pandas as pd from pandas.testing import assert_frame_equal import pytest from solarforecastarbiter import datamodel from solarforecastarbiter.io import api, nwp, utils from solarforecastarbiter.reference_forecasts import main, models from solarforecastarbiter.conftest import default_forecast, default_observation BASE_PATH = Path(nwp.__file__).resolve().parents[0] / 'tests/data' @pytest.mark.parametrize('model', [ models.gfs_quarter_deg_hourly_to_hourly_mean, models.gfs_quarter_deg_to_hourly_mean, models.hrrr_subhourly_to_hourly_mean, models.hrrr_subhourly_to_subhourly_instantaneous, models.nam_12km_cloud_cover_to_hourly_mean, models.nam_12km_hourly_to_hourly_instantaneous, models.rap_cloud_cover_to_hourly_mean, models.gefs_half_deg_to_hourly_mean ]) def test_run_nwp(model, site_powerplant_site_type, mocker): """ to later patch the return value of load forecast, do something like def load(*args, **kwargs): return load_forecast_return_value mocker.patch.object(inspect.unwrap(model), '__defaults__', (partial(load),)) """ mocker.patch.object(inspect.unwrap(model), '__defaults__', (partial(nwp.load_forecast, base_path=BASE_PATH),)) mocker.patch( 'solarforecastarbiter.reference_forecasts.utils.get_init_time', return_value=pd.Timestamp('20190515T0000Z')) site, site_type = site_powerplant_site_type fx = datamodel.Forecast('Test', dt.time(5), pd.Timedelta('1h'), pd.Timedelta('1h'), pd.Timedelta('6h'), 'beginning', 'interval_mean', 'ghi', site) run_time = pd.Timestamp('20190515T1100Z') issue_time = pd.Timestamp('20190515T1100Z') out = main.run_nwp(fx, model, run_time, issue_time) for var in ('ghi', 'dni', 'dhi', 'air_temperature', 'wind_speed', 'ac_power'): if site_type == 'site' and var == 'ac_power': assert out.ac_power is None else: ser = getattr(out, var) assert len(ser) >= 6 assert isinstance(ser, (pd.Series, pd.DataFrame)) assert ser.index[0] == pd.Timestamp('20190515T1200Z') assert ser.index[-1] < pd.Timestamp('20190515T1800Z') @pytest.fixture def obs_5min_begin(site_metadata): observation = default_observation( site_metadata, interval_length=pd.Timedelta('5min'), interval_label='beginning') return observation @pytest.fixture def observation_values_text(): """JSON text representation of test data""" tz = 'UTC' data_index = pd.date_range( start='20190101', end='20190112', freq='5min', tz=tz, closed='left') # each element of data is equal to the hour value of its label data = pd.DataFrame({'value': data_index.hour, 'quality_flag': 0}, index=data_index) text = utils.observation_df_to_json_payload(data) return text.encode() @pytest.fixture def session(requests_mock, observation_values_text): session = api.APISession('') matcher = re.compile(f'{session.base_url}/observations/.*/values') requests_mock.register_uri('GET', matcher, content=observation_values_text) return session @pytest.mark.parametrize('interval_label', ['beginning', 'ending']) def test_run_persistence_scalar(session, site_metadata, obs_5min_begin, interval_label, mocker): run_time = pd.Timestamp('20190101T1945Z') # intraday, index=False forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('1h'), interval_label=interval_label) issue_time = pd.Timestamp('20190101T2300Z') mocker.spy(main.persistence, 'persistence_scalar') out = main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time) assert isinstance(out, pd.Series) assert len(out) == 1 assert main.persistence.persistence_scalar.call_count == 1 @pytest.mark.parametrize('interval_label', ['beginning', 'ending']) def test_run_persistence_scalar_index(session, site_metadata, obs_5min_begin, interval_label, mocker): run_time = pd.Timestamp('20190101T1945Z') forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('1h'), interval_label=interval_label) issue_time = pd.Timestamp('20190101T2300Z') # intraday, index=True mocker.spy(main.persistence, 'persistence_scalar_index') out = main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time, index=True) assert isinstance(out, pd.Series) assert len(out) == 1 assert main.persistence.persistence_scalar_index.call_count == 1 def test_run_persistence_interval(session, site_metadata, obs_5min_begin, mocker): run_time = pd.Timestamp('20190102T1945Z') # day ahead, index = False forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('24h'), interval_label='beginning') issue_time = pd.Timestamp('20190102T2300Z') mocker.spy(main.persistence, 'persistence_interval') out = main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time) assert isinstance(out, pd.Series) assert len(out) == 24 assert main.persistence.persistence_interval.call_count == 1 def test_run_persistence_weekahead(session, site_metadata, mocker): variable = 'net_load' observation = default_observation( site_metadata, variable=variable, interval_length=pd.Timedelta('5min'), interval_label='beginning') run_time = pd.Timestamp('20190110T1945Z') forecast = default_forecast( site_metadata, variable=variable, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('1d'), interval_label='beginning') issue_time = pd.Timestamp('20190111T2300Z') mocker.spy(main.persistence, 'persistence_interval') out = main.run_persistence(session, observation, forecast, run_time, issue_time) assert isinstance(out, pd.Series) assert len(out) == 24 assert main.persistence.persistence_interval.call_count == 1 def test_run_persistence_interval_index(session, site_metadata, obs_5min_begin): # index=True not supported for day ahead forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('24h'), interval_label='beginning') issue_time = pd.Timestamp('20190423T2300Z') run_time = pd.Timestamp('20190422T1945Z') with pytest.raises(ValueError) as excinfo: main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time, index=True) assert 'index=True not supported' in str(excinfo.value) def test_run_persistence_interval_too_long(session, site_metadata, obs_5min_begin): forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('48h'), # too long interval_label='beginning') issue_time = pd.Timestamp('20190423T2300Z') run_time = pd.Timestamp('20190422T1945Z') with pytest.raises(ValueError) as excinfo: main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time) assert 'midnight to midnight' in str(excinfo.value) def test_run_persistence_interval_not_midnight_to_midnight(session, site_metadata, obs_5min_begin): # not midnight to midnight forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=22), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('24h'), interval_label='beginning') issue_time = pd.Timestamp('20190423T2200Z') run_time = pd.Timestamp('20190422T1945Z') with pytest.raises(ValueError) as excinfo: main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time) assert 'midnight to midnight' in str(excinfo.value) def test_run_persistence_incompatible_issue(session, site_metadata, obs_5min_begin): forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('1h'), interval_label='beginning') issue_time = pd.Timestamp('20190423T2330Z') run_time = pd.Timestamp('20190422T1945Z') with pytest.raises(ValueError) as excinfo: main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time) assert 'incompatible' in str(excinfo.value).lower() def test_run_persistence_fx_too_short(session, site_metadata, obs_5min_begin): forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1min'), run_length=pd.Timedelta('3min'), interval_label='beginning') issue_time = pd.Timestamp('20190423T2300Z') run_time = pd.Timestamp('20190422T1945Z') with pytest.raises(ValueError) as excinfo: main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time) assert 'requires observation.interval_length' in str(excinfo.value) def test_run_persistence_incompatible_instant_fx(session, site_metadata, obs_5min_begin): forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('1h'), interval_label='instantaneous') issue_time = pd.Timestamp('20190423T2300Z') run_time = pd.Timestamp('20190422T1945Z') with pytest.raises(ValueError) as excinfo: main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time) assert 'instantaneous forecast' in str(excinfo.value).lower() def test_run_persistence_incompatible_instant_interval(session, site_metadata, obs_5min_begin): forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('1h'), interval_label='instantaneous') obs = obs_5min_begin.replace(interval_label='instantaneous', interval_length=pd.Timedelta('10min')) issue_time = pd.Timestamp('20190423T2300Z') run_time = pd.Timestamp('20190422T1945Z') with pytest.raises(ValueError) as excinfo: main.run_persistence(session, obs, forecast, run_time, issue_time) assert 'identical interval length' in str(excinfo.value) def test_verify_nwp_forecasts_compatible(ac_power_forecast_metadata): fx0 = ac_power_forecast_metadata fx1 = replace(fx0, run_length=pd.Timedelta('10h'), interval_label='ending') df = pd.DataFrame({'forecast': [fx0, fx1], 'model': ['a', 'b']}) errs = main._verify_nwp_forecasts_compatible(df) assert set(errs) == {'model', 'run_length', 'interval_label'} @pytest.mark.parametrize('string,expected', [ ('{"is_reference_forecast": true}', True), ('{"is_reference_persistence_forecast": true}', False), ('{"is_reference_forecast": "True"}', True), ('{"is_reference_forecast":"True"}', True), ('is_reference_forecast" : "True"}', True), ('{"is_reference_forecast" : true, "otherkey": badjson, 9}', True), ('reference_forecast": true', False), ('{"is_reference_forecast": false}', False), ("is_reference_forecast", False) ]) def test_is_reference_forecast(string, expected): assert main._is_reference_forecast(string) == expected def test_find_reference_nwp_forecasts_json_err(ac_power_forecast_metadata, mocker): logger = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.logger') extra_params = '{"model": "themodel", "is_reference_forecast": true}' fxs = [replace(ac_power_forecast_metadata, extra_parameters=extra_params), replace(ac_power_forecast_metadata, extra_parameters='{"model": "yes"}'), replace(ac_power_forecast_metadata, extra_parameters='{"is_reference_forecast": true'), # NOQA replace(ac_power_forecast_metadata, extra_parameters='')] out = main.find_reference_nwp_forecasts(fxs) assert logger.warning.called assert len(out) == 1 def test_find_reference_nwp_forecasts_no_model(ac_power_forecast_metadata, mocker): logger = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.logger') fxs = [replace(ac_power_forecast_metadata, extra_parameters='{}', forecast_id='0'), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "0", "is_reference_forecast": true}', # NOQA forecast_id='1')] out = main.find_reference_nwp_forecasts(fxs) assert len(out) == 0 assert logger.debug.called assert logger.error.called def test_find_reference_nwp_forecasts_no_init(ac_power_forecast_metadata): fxs = [replace(ac_power_forecast_metadata, extra_parameters='{"model": "am", "is_reference_forecast": true}', # NOQA forecast_id='0'), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "0", "model": "am", "is_reference_forecast": true}', # NOQA forecast_id='1')] out = main.find_reference_nwp_forecasts(fxs) assert len(out) == 2 assert out.next_issue_time.unique() == [None] assert out.piggyback_on.unique() == ['0'] def test_find_reference_nwp_forecasts(ac_power_forecast_metadata): fxs = [replace(ac_power_forecast_metadata, extra_parameters='{"model": "am", "is_reference_forecast": true}', # NOQA forecast_id='0'), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "0", "model": "am", "is_reference_forecast": true}', # NOQA forecast_id='1')] out = main.find_reference_nwp_forecasts( fxs, pd.Timestamp('20190501T0000Z')) assert len(out) == 2 assert out.next_issue_time.unique()[0] == pd.Timestamp('20190501T0500Z') assert out.piggyback_on.unique() == ['0'] @pytest.fixture() def forecast_list(ac_power_forecast_metadata): model = 'nam_12km_cloud_cover_to_hourly_mean' prob_dict = ac_power_forecast_metadata.to_dict() prob_dict['constant_values'] = (0, 50, 100) prob_dict['axis'] = 'y' prob_dict['extra_parameters'] = '{"model": "gefs_half_deg_to_hourly_mean", "is_reference_forecast": true}' # NOQA return [replace(ac_power_forecast_metadata, extra_parameters=( '{"model": "%s", "is_reference_forecast": true}' % model), forecast_id='0'), replace(ac_power_forecast_metadata, extra_parameters='{"model": "gfs_quarter_deg_hourly_to_hourly_mean", "is_reference_forecast": true}', # NOQA forecast_id='1'), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "0", "model": "%s", "is_reference_forecast": true}' % model, # NOQA forecast_id='2', variable='ghi'), datamodel.ProbabilisticForecast.from_dict(prob_dict), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "0", "model": "%s", "is_reference_forecast": true}' % model, # NOQA forecast_id='3', variable='dni', provider='Organization 2' ), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "0", "model": "badmodel", "is_reference_forecast": true}', # NOQA forecast_id='4'), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "6", "model": "%s", "is_reference_forecast": true}' % model, # NOQA forecast_id='5', variable='ghi'), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "0", "model": "%s", "is_reference_forecast": false}' % model, # NOQA forecast_id='7', variable='ghi'), ] def test_process_nwp_forecast_groups(mocker, forecast_list): api = mocker.MagicMock() run_nwp = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.run_nwp') post_vals = mocker.patch( 'solarforecastarbiter.reference_forecasts.main._post_forecast_values') class res: ac_power = [0] ghi = [0] run_nwp.return_value = res fxs = main.find_reference_nwp_forecasts(forecast_list[:-4]) logger = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.logger') main.process_nwp_forecast_groups(api, pd.Timestamp('20190501T0000Z'), fxs) assert not logger.error.called assert not logger.warning.called assert post_vals.call_count == 4 @pytest.mark.parametrize('run_time', [None, pd.Timestamp('20190501T0000Z')]) def test_process_nwp_forecast_groups_issue_time(mocker, forecast_list, run_time): api = mocker.MagicMock() run_nwp = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.run_nwp') post_vals = mocker.patch( 'solarforecastarbiter.reference_forecasts.main._post_forecast_values') class res: ac_power = [0] ghi = [0] run_nwp.return_value = res fxs = main.find_reference_nwp_forecasts(forecast_list[:-4], run_time) main.process_nwp_forecast_groups(api, pd.Timestamp('20190501T0000Z'), fxs) assert post_vals.call_count == 4 run_nwp.assert_called_with(mocker.ANY, mocker.ANY, mocker.ANY, pd.Timestamp('20190501T0500Z')) def test_process_nwp_forecast_groups_missing_var(mocker, forecast_list): api = mocker.MagicMock() run_nwp = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.run_nwp') post_vals = mocker.patch( 'solarforecastarbiter.reference_forecasts.main._post_forecast_values') class res: ac_power = [0] ghi = [0] dni = None run_nwp.return_value = res fxs = main.find_reference_nwp_forecasts(forecast_list[:-3]) logger = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.logger') main.process_nwp_forecast_groups(api, pd.Timestamp('20190501T0000Z'), fxs) assert not logger.error.called assert logger.warning.called assert post_vals.call_count == 4 def test_process_nwp_forecast_groups_bad_model(mocker, forecast_list): api = mocker.MagicMock() run_nwp = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.run_nwp') post_vals = mocker.patch( 'solarforecastarbiter.reference_forecasts.main._post_forecast_values') class res: ac_power = [0] ghi = [0] dni = None run_nwp.return_value = res fxs = main.find_reference_nwp_forecasts(forecast_list[4:-1]) logger = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.logger') main.process_nwp_forecast_groups(api, pd.Timestamp('20190501T0000Z'), fxs) assert logger.error.called assert not logger.warning.called assert post_vals.call_count == 0 def test_process_nwp_forecast_groups_missing_runfor(mocker, forecast_list): api = mocker.MagicMock() run_nwp = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.run_nwp') class res: ac_power = [0] ghi = [0] dni = None run_nwp.return_value = res fxs = main.find_reference_nwp_forecasts(forecast_list[-2:]) logger = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.logger') main.process_nwp_forecast_groups(api, pd.Timestamp('20190501T0000Z'), fxs) assert logger.error.called assert not logger.warning.called assert api.post_forecast_values.call_count == 0 @pytest.mark.parametrize('ind', [0, 1, 2]) def test__post_forecast_values_regular(mocker, forecast_list, ind): api = mocker.MagicMock() fx = forecast_list[ind] main._post_forecast_values(api, fx, [0], 'whatever') assert api.post_forecast_values.call_count == 1 def test__post_forecast_values_cdf(mocker, forecast_list): api = mocker.MagicMock() fx = forecast_list[3] ser = pd.Series([0, 1]) vals = pd.DataFrame({i: ser for i in range(21)}) main._post_forecast_values(api, fx, vals, 'gefs') assert api.post_probabilistic_forecast_constant_value_values.call_count == 3 # NOQA def test__post_forecast_values_cdf_not_gefs(mocker, forecast_list): api = mocker.MagicMock() fx = forecast_list[3] ser = pd.Series([0, 1]) vals = pd.DataFrame({i: ser for i in range(21)}) with pytest.raises(ValueError): main._post_forecast_values(api, fx, vals, 'gfs') def test__post_forecast_values_cdf_less_cols(mocker, forecast_list): api = mocker.MagicMock() fx = forecast_list[3] ser = pd.Series([0, 1]) vals = pd.DataFrame({i: ser for i in range(10)}) with pytest.raises(TypeError): main._post_forecast_values(api, fx, vals, 'gefs') def test__post_forecast_values_cdf_not_df(mocker, forecast_list): api = mocker.MagicMock() fx = forecast_list[3] ser = pd.Series([0, 1]) with pytest.raises(TypeError): main._post_forecast_values(api, fx, ser, 'gefs') def test__post_forecast_values_cdf_no_cv_match(mocker, forecast_list): api = mocker.MagicMock() fx = replace(forecast_list[3], constant_values=( replace(forecast_list[3].constant_values[0], constant_value=3.0 ),)) ser = pd.Series([0, 1]) vals = pd.DataFrame({i: ser for i in range(21)}) with pytest.raises(KeyError): main._post_forecast_values(api, fx, vals, 'gefs') @pytest.mark.parametrize('issue_buffer,empty', [ (pd.Timedelta('10h'), False), (pd.Timedelta('1h'), True), (pd.Timedelta('5h'), False) ]) def test_make_latest_nwp_forecasts(forecast_list, mocker, issue_buffer, empty): session = mocker.patch('solarforecastarbiter.io.api.APISession') session.return_value.get_user_info.return_value = {'organization': ''} session.return_value.list_forecasts.return_value = forecast_list[:-3] session.return_value.list_probabilistic_forecasts.return_value = [] run_time = pd.Timestamp('20190501T0000Z') # last fx has different org fxdf = main.find_reference_nwp_forecasts(forecast_list[:-4], run_time) process = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.process_nwp_forecast_groups') # NOQA main.make_latest_nwp_forecasts('', run_time, issue_buffer) if empty: process.assert_not_called() else: assert_frame_equal(process.call_args[0][-1], fxdf) @pytest.mark.parametrize('string,expected', [ ('{"is_reference_forecast": true}', False), ('{"is_reference_persistence_forecast": true}', True), ('{"is_reference_persistence_forecast": "True"}', True), ('{"is_reference_persistence_forecast":"True"}', True), ('is_reference_persistence_forecast" : "True"}', True), ('{"is_reference_persistence_forecast" : true, "otherkey": badjson, 9}', True), ('reference_persistence_forecast": true', False), ('{"is_reference_persistence_forecast": false}', False), ("is_reference_persistence_forecast", False) ]) def test_is_reference_persistence_forecast(string, expected): assert main._is_reference_persistence_forecast(string) == expected @pytest.fixture def perst_fx_obs(mocker, ac_power_observation_metadata, ac_power_forecast_metadata): observations = [ ac_power_observation_metadata.replace( observation_id=str(uuid.uuid1()) ), ac_power_observation_metadata.replace( observation_id=str(uuid.uuid1()) ), ac_power_observation_metadata.replace( observation_id=str(uuid.uuid1()) ) ] def make_extra(obs): extra = ( '{"is_reference_persistence_forecast": true,' f'"observation_id": "{obs.observation_id}"' '}' ) return extra forecasts = [ ac_power_forecast_metadata.replace( name='FX0', extra_parameters=make_extra(observations[0]), run_length=pd.Timedelta('1h'), forecast_id=str(uuid.uuid1()) ), ac_power_forecast_metadata.replace( name='FX no persist', run_length=pd.Timedelta('1h'), forecast_id=str(uuid.uuid1()) ), ac_power_forecast_metadata.replace( name='FX bad js', extra_parameters='is_reference_persistence_forecast": true other', run_length=pd.Timedelta('1h'), forecast_id=str(uuid.uuid1()) ) ] return forecasts, observations def test_generate_reference_persistence_forecast_parameters( mocker, perst_fx_obs): forecasts, observations = perst_fx_obs session = mocker.MagicMock() session.get_user_info.return_value = {'organization': ''} session.get_observation_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T15:33Z')) session.get_forecast_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T14:00Z')) max_run_time = pd.Timestamp('2020-05-20T16:00Z') # one hour ahead forecast, so 14Z was made at 13Z # enough data to do 14Z and 15Z issue times but not 16Z param_gen = main.generate_reference_persistence_forecast_parameters( session, forecasts, observations, max_run_time ) assert isinstance(param_gen, types.GeneratorType) param_list = list(param_gen) assert len(param_list) == 2 assert param_list[0] == ( forecasts[0], observations[0], pd.Timestamp('2020-05-20T14:00Z'), False ) assert param_list[1] == ( forecasts[0], observations[0], pd.Timestamp('2020-05-20T15:00Z'), False ) def test_generate_reference_persistence_forecast_parameters_no_forecast_yet( mocker, perst_fx_obs): forecasts, observations = perst_fx_obs session = mocker.MagicMock() session.get_user_info.return_value = {'organization': ''} session.get_observation_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T15:33Z')) session.get_forecast_time_range.return_value = ( pd.NaT, pd.NaT) max_run_time = pd.Timestamp('2020-05-20T16:00Z') param_gen = main.generate_reference_persistence_forecast_parameters( session, forecasts, observations, max_run_time ) assert isinstance(param_gen, types.GeneratorType) param_list = list(param_gen) assert len(param_list) == 1 assert param_list[0] == ( forecasts[0], observations[0], pd.Timestamp('2020-05-20T15:00Z'), False ) def test_generate_reference_persistence_forecast_parameters_no_data( mocker, perst_fx_obs): forecasts, observations = perst_fx_obs session = mocker.MagicMock() session.get_user_info.return_value = {'organization': ''} session.get_observation_time_range.return_value = ( pd.NaT, pd.NaT) session.get_forecast_time_range.return_value = ( pd.NaT, pd.NaT) max_run_time = pd.Timestamp('2020-05-20T16:00Z') param_gen = main.generate_reference_persistence_forecast_parameters( session, forecasts, observations, max_run_time ) assert isinstance(param_gen, types.GeneratorType) param_list = list(param_gen) assert len(param_list) == 0 def test_generate_reference_persistence_forecast_parameters_diff_org( mocker, perst_fx_obs): forecasts, observations = perst_fx_obs session = mocker.MagicMock() session.get_user_info.return_value = {'organization': 'a new one'} session.get_observation_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T15:33Z')) session.get_forecast_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T14:00Z')) max_run_time = pd.Timestamp('2020-05-20T16:00Z') param_gen = main.generate_reference_persistence_forecast_parameters( session, forecasts, observations, max_run_time ) assert isinstance(param_gen, types.GeneratorType) param_list = list(param_gen) assert len(param_list) == 0 def test_generate_reference_persistence_forecast_parameters_not_reference_fx( mocker, perst_fx_obs): forecasts, observations = perst_fx_obs forecasts = [fx.replace(extra_parameters='') for fx in forecasts] session = mocker.MagicMock() session.get_user_info.return_value = {'organization': ''} session.get_observation_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'),
pd.Timestamp('2020-05-20T15:33Z')
pandas.Timestamp
# -*- coding: utf-8 -*- from datetime import timedelta import operator from string import ascii_lowercase import warnings import numpy as np import pytest from pandas.compat import lrange import pandas.util._test_decorators as td import pandas as pd from pandas import ( Categorical, DataFrame, MultiIndex, Series, Timestamp, date_range, isna, notna, to_datetime, to_timedelta) import pandas.core.algorithms as algorithms import pandas.core.nanops as nanops import pandas.util.testing as tm def assert_stat_op_calc(opname, alternative, frame, has_skipna=True, check_dtype=True, check_dates=False, check_less_precise=False, skipna_alternative=None): """ Check that operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" check_dtype : bool, default True Whether the dtypes of the result of "frame.opname()" and "alternative(frame)" should be checked. check_dates : bool, default false Whether opname should be tested on a Datetime Series check_less_precise : bool, default False Whether results should only be compared approximately; passed on to tm.assert_series_equal skipna_alternative : function, default None NaN-safe version of alternative """ f = getattr(frame, opname) if check_dates: df = DataFrame({'b': date_range('1/1/2001', periods=2)}) result = getattr(df, opname)() assert isinstance(result, Series) df['a'] = lrange(len(df)) result = getattr(df, opname)() assert isinstance(result, Series) assert len(result) if has_skipna: def wrapper(x): return alternative(x.values) skipna_wrapper = tm._make_skipna_wrapper(alternative, skipna_alternative) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper), check_dtype=check_dtype, check_less_precise=check_less_precise) # HACK: win32 tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), check_dtype=False, check_less_precise=check_less_precise) else: skipna_wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper), check_dtype=check_dtype, check_less_precise=check_less_precise) if opname in ['sum', 'prod']: expected = frame.apply(skipna_wrapper, axis=1) tm.assert_series_equal(result1, expected, check_dtype=False, check_less_precise=check_less_precise) # check dtypes if check_dtype: lcd_dtype = frame.values.dtype assert lcd_dtype == result0.dtype assert lcd_dtype == result1.dtype # bad axis with pytest.raises(ValueError, match='No axis named 2'): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname in ['sum', 'prod']: unit = 1 if opname == 'prod' else 0 # result for empty sum/prod expected = pd.Series(unit, index=r0.index, dtype=r0.dtype) tm.assert_series_equal(r0, expected) expected = pd.Series(unit, index=r1.index, dtype=r1.dtype) tm.assert_series_equal(r1, expected) def assert_stat_op_api(opname, float_frame, float_string_frame, has_numeric_only=False): """ Check that API for operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_numeric_only : bool, default False Whether the method "opname" has the kwarg "numeric_only" """ # make sure works on mixed-type frame getattr(float_string_frame, opname)(axis=0) getattr(float_string_frame, opname)(axis=1) if has_numeric_only: getattr(float_string_frame, opname)(axis=0, numeric_only=True) getattr(float_string_frame, opname)(axis=1, numeric_only=True) getattr(float_frame, opname)(axis=0, numeric_only=False) getattr(float_frame, opname)(axis=1, numeric_only=False) def assert_bool_op_calc(opname, alternative, frame, has_skipna=True): """ Check that bool operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" """ f = getattr(frame, opname) if has_skipna: def skipna_wrapper(x): nona = x.dropna().values return alternative(nona) def wrapper(x): return alternative(x.values) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper)) tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), check_dtype=False) # HACK: win32 else: skipna_wrapper = alternative wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper)) tm.assert_series_equal(result1, frame.apply(skipna_wrapper, axis=1), check_dtype=False) # bad axis with pytest.raises(ValueError, match='No axis named 2'): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname == 'any': assert not r0.any() assert not r1.any() else: assert r0.all() assert r1.all() def assert_bool_op_api(opname, bool_frame_with_na, float_string_frame, has_bool_only=False): """ Check that API for boolean operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_bool_only : bool, default False Whether the method "opname" has the kwarg "bool_only" """ # make sure op works on mixed-type frame mixed = float_string_frame mixed['_bool_'] = np.random.randn(len(mixed)) > 0.5 getattr(mixed, opname)(axis=0) getattr(mixed, opname)(axis=1) if has_bool_only: getattr(mixed, opname)(axis=0, bool_only=True) getattr(mixed, opname)(axis=1, bool_only=True) getattr(bool_frame_with_na, opname)(axis=0, bool_only=False) getattr(bool_frame_with_na, opname)(axis=1, bool_only=False) class TestDataFrameAnalytics(object): # --------------------------------------------------------------------- # Correlation and covariance @td.skip_if_no_scipy def test_corr_pearson(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'pearson') @td.skip_if_no_scipy def test_corr_kendall(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'kendall') @td.skip_if_no_scipy def test_corr_spearman(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'spearman') def _check_method(self, frame, method='pearson'): correls = frame.corr(method=method) expected = frame['A'].corr(frame['C'], method=method) tm.assert_almost_equal(correls['A']['C'], expected) @td.skip_if_no_scipy def test_corr_non_numeric(self, float_frame, float_string_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan # exclude non-numeric types result = float_string_frame.corr() expected = float_string_frame.loc[:, ['A', 'B', 'C', 'D']].corr() tm.assert_frame_equal(result, expected) @td.skip_if_no_scipy @pytest.mark.parametrize('meth', ['pearson', 'kendall', 'spearman']) def test_corr_nooverlap(self, meth): # nothing in common df = DataFrame({'A': [1, 1.5, 1, np.nan, np.nan, np.nan], 'B': [np.nan, np.nan, np.nan, 1, 1.5, 1], 'C': [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]}) rs = df.corr(meth) assert isna(rs.loc['A', 'B']) assert isna(rs.loc['B', 'A']) assert rs.loc['A', 'A'] == 1 assert rs.loc['B', 'B'] == 1 assert isna(rs.loc['C', 'C']) @td.skip_if_no_scipy @pytest.mark.parametrize('meth', ['pearson', 'spearman']) def test_corr_constant(self, meth): # constant --> all NA df = DataFrame({'A': [1, 1, 1, np.nan, np.nan, np.nan], 'B': [np.nan, np.nan, np.nan, 1, 1, 1]}) rs = df.corr(meth) assert isna(rs.values).all() def test_corr_int(self): # dtypes other than float64 #1761 df3 = DataFrame({"a": [1, 2, 3, 4], "b": [1, 2, 3, 4]}) df3.cov() df3.corr() @td.skip_if_no_scipy def test_corr_int_and_boolean(self): # when dtypes of pandas series are different # then ndarray will have dtype=object, # so it need to be properly handled df = DataFrame({"a": [True, False], "b": [1, 0]}) expected = DataFrame(np.ones((2, 2)), index=[ 'a', 'b'], columns=['a', 'b']) for meth in ['pearson', 'kendall', 'spearman']: with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", RuntimeWarning) result = df.corr(meth) tm.assert_frame_equal(result, expected) def test_corr_cov_independent_index_column(self): # GH 14617 df = pd.DataFrame(np.random.randn(4 * 10).reshape(10, 4), columns=list("abcd")) for method in ['cov', 'corr']: result = getattr(df, method)() assert result.index is not result.columns assert result.index.equals(result.columns) def test_corr_invalid_method(self): # GH 22298 df = pd.DataFrame(np.random.normal(size=(10, 2))) msg = ("method must be either 'pearson', " "'spearman', 'kendall', or a callable, ") with pytest.raises(ValueError, match=msg): df.corr(method="____") def test_cov(self, float_frame, float_string_frame): # min_periods no NAs (corner case) expected = float_frame.cov() result = float_frame.cov(min_periods=len(float_frame)) tm.assert_frame_equal(expected, result) result = float_frame.cov(min_periods=len(float_frame) + 1) assert isna(result.values).all() # with NAs frame = float_frame.copy() frame['A'][:5] = np.nan frame['B'][5:10] = np.nan result = float_frame.cov(min_periods=len(float_frame) - 8) expected = float_frame.cov() expected.loc['A', 'B'] = np.nan expected.loc['B', 'A'] = np.nan # regular float_frame['A'][:5] = np.nan float_frame['B'][:10] = np.nan cov = float_frame.cov() tm.assert_almost_equal(cov['A']['C'], float_frame['A'].cov(float_frame['C'])) # exclude non-numeric types result = float_string_frame.cov() expected = float_string_frame.loc[:, ['A', 'B', 'C', 'D']].cov() tm.assert_frame_equal(result, expected) # Single column frame df = DataFrame(np.linspace(0.0, 1.0, 10)) result = df.cov() expected = DataFrame(np.cov(df.values.T).reshape((1, 1)), index=df.columns, columns=df.columns) tm.assert_frame_equal(result, expected) df.loc[0] = np.nan result = df.cov() expected = DataFrame(np.cov(df.values[1:].T).reshape((1, 1)), index=df.columns, columns=df.columns) tm.assert_frame_equal(result, expected) def test_corrwith(self, datetime_frame): a = datetime_frame noise = Series(np.random.randn(len(a)), index=a.index) b = datetime_frame.add(noise, axis=0) # make sure order does not matter b = b.reindex(columns=b.columns[::-1], index=b.index[::-1][10:]) del b['B'] colcorr = a.corrwith(b, axis=0) tm.assert_almost_equal(colcorr['A'], a['A'].corr(b['A'])) rowcorr = a.corrwith(b, axis=1) tm.assert_series_equal(rowcorr, a.T.corrwith(b.T, axis=0)) dropped = a.corrwith(b, axis=0, drop=True) tm.assert_almost_equal(dropped['A'], a['A'].corr(b['A'])) assert 'B' not in dropped dropped = a.corrwith(b, axis=1, drop=True) assert a.index[-1] not in dropped.index # non time-series data index = ['a', 'b', 'c', 'd', 'e'] columns = ['one', 'two', 'three', 'four'] df1 = DataFrame(np.random.randn(5, 4), index=index, columns=columns) df2 = DataFrame(np.random.randn(4, 4), index=index[:4], columns=columns) correls = df1.corrwith(df2, axis=1) for row in index[:4]: tm.assert_almost_equal(correls[row], df1.loc[row].corr(df2.loc[row])) def test_corrwith_with_objects(self): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame() cols = ['A', 'B', 'C', 'D'] df1['obj'] = 'foo' df2['obj'] = 'bar' result = df1.corrwith(df2) expected = df1.loc[:, cols].corrwith(df2.loc[:, cols]) tm.assert_series_equal(result, expected) result = df1.corrwith(df2, axis=1) expected = df1.loc[:, cols].corrwith(df2.loc[:, cols], axis=1) tm.assert_series_equal(result, expected) def test_corrwith_series(self, datetime_frame): result = datetime_frame.corrwith(datetime_frame['A']) expected = datetime_frame.apply(datetime_frame['A'].corr) tm.assert_series_equal(result, expected) def test_corrwith_matches_corrcoef(self): df1 = DataFrame(np.arange(10000), columns=['a']) df2 = DataFrame(np.arange(10000) ** 2, columns=['a']) c1 = df1.corrwith(df2)['a'] c2 = np.corrcoef(df1['a'], df2['a'])[0][1] tm.assert_almost_equal(c1, c2) assert c1 < 1 def test_corrwith_mixed_dtypes(self): # GH 18570 df = pd.DataFrame({'a': [1, 4, 3, 2], 'b': [4, 6, 7, 3], 'c': ['a', 'b', 'c', 'd']}) s = pd.Series([0, 6, 7, 3]) result = df.corrwith(s) corrs = [df['a'].corr(s), df['b'].corr(s)] expected = pd.Series(data=corrs, index=['a', 'b']) tm.assert_series_equal(result, expected) def test_corrwith_index_intersection(self): df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"]) result = df1.corrwith(df2, drop=True).index.sort_values() expected = df1.columns.intersection(df2.columns).sort_values() tm.assert_index_equal(result, expected) def test_corrwith_index_union(self): df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"]) result = df1.corrwith(df2, drop=False).index.sort_values() expected = df1.columns.union(df2.columns).sort_values() tm.assert_index_equal(result, expected) def test_corrwith_dup_cols(self): # GH 21925 df1 = pd.DataFrame(np.vstack([np.arange(10)] * 3).T) df2 = df1.copy() df2 = pd.concat((df2, df2[0]), axis=1) result = df1.corrwith(df2) expected = pd.Series(np.ones(4), index=[0, 0, 1, 2]) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_corrwith_spearman(self): # GH 21925 df = pd.DataFrame(np.random.random(size=(100, 3))) result = df.corrwith(df**2, method="spearman") expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_corrwith_kendall(self): # GH 21925 df = pd.DataFrame(np.random.random(size=(100, 3))) result = df.corrwith(df**2, method="kendall") expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) # --------------------------------------------------------------------- # Describe def test_bool_describe_in_mixed_frame(self): df = DataFrame({ 'string_data': ['a', 'b', 'c', 'd', 'e'], 'bool_data': [True, True, False, False, False], 'int_data': [10, 20, 30, 40, 50], }) # Integer data are included in .describe() output, # Boolean and string data are not. result = df.describe() expected = DataFrame({'int_data': [5, 30, df.int_data.std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) # Top value is a boolean value that is False result = df.describe(include=['bool']) expected = DataFrame({'bool_data': [5, 2, False, 3]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) def test_describe_bool_frame(self): # GH 13891 df = pd.DataFrame({ 'bool_data_1': [False, False, True, True], 'bool_data_2': [False, True, True, True] }) result = df.describe() expected = DataFrame({'bool_data_1': [4, 2, True, 2], 'bool_data_2': [4, 2, True, 3]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) df = pd.DataFrame({ 'bool_data': [False, False, True, True, False], 'int_data': [0, 1, 2, 3, 4] }) result = df.describe() expected = DataFrame({'int_data': [5, 2, df.int_data.std(), 0, 1, 2, 3, 4]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) df = pd.DataFrame({ 'bool_data': [False, False, True, True], 'str_data': ['a', 'b', 'c', 'a'] }) result = df.describe() expected = DataFrame({'bool_data': [4, 2, True, 2], 'str_data': [4, 3, 'a', 2]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) def test_describe_categorical(self): df = DataFrame({'value': np.random.randint(0, 10000, 100)}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] cat_labels = Categorical(labels, labels) df = df.sort_values(by=['value'], ascending=True) df['value_group'] = pd.cut(df.value, range(0, 10500, 500), right=False, labels=cat_labels) cat = df # Categoricals should not show up together with numerical columns result = cat.describe() assert len(result.columns) == 1 # In a frame, describe() for the cat should be the same as for string # arrays (count, unique, top, freq) cat = Categorical(["a", "b", "b", "b"], categories=['a', 'b', 'c'], ordered=True) s = Series(cat) result = s.describe() expected = Series([4, 2, "b", 3], index=['count', 'unique', 'top', 'freq']) tm.assert_series_equal(result, expected) cat = Series(Categorical(["a", "b", "c", "c"])) df3 = DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]}) result = df3.describe() tm.assert_numpy_array_equal(result["cat"].values, result["s"].values) def test_describe_categorical_columns(self): # GH 11558 columns = pd.CategoricalIndex(['int1', 'int2', 'obj'], ordered=True, name='XXX') df = DataFrame({'int1': [10, 20, 30, 40, 50], 'int2': [10, 20, 30, 40, 50], 'obj': ['A', 0, None, 'X', 1]}, columns=columns) result = df.describe() exp_columns = pd.CategoricalIndex(['int1', 'int2'], categories=['int1', 'int2', 'obj'], ordered=True, name='XXX') expected = DataFrame({'int1': [5, 30, df.int1.std(), 10, 20, 30, 40, 50], 'int2': [5, 30, df.int2.std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'], columns=exp_columns) tm.assert_frame_equal(result, expected) tm.assert_categorical_equal(result.columns.values, expected.columns.values) def test_describe_datetime_columns(self): columns = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01'], freq='MS', tz='US/Eastern', name='XXX') df = DataFrame({0: [10, 20, 30, 40, 50], 1: [10, 20, 30, 40, 50], 2: ['A', 0, None, 'X', 1]}) df.columns = columns result = df.describe() exp_columns = pd.DatetimeIndex(['2011-01-01', '2011-02-01'], freq='MS', tz='US/Eastern', name='XXX') expected = DataFrame({0: [5, 30, df.iloc[:, 0].std(), 10, 20, 30, 40, 50], 1: [5, 30, df.iloc[:, 1].std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) expected.columns = exp_columns tm.assert_frame_equal(result, expected) assert result.columns.freq == 'MS' assert result.columns.tz == expected.columns.tz def test_describe_timedelta_values(self): # GH 6145 t1 = pd.timedelta_range('1 days', freq='D', periods=5) t2 = pd.timedelta_range('1 hours', freq='H', periods=5) df = pd.DataFrame({'t1': t1, 't2': t2}) expected = DataFrame({'t1': [5, pd.Timedelta('3 days'), df.iloc[:, 0].std(), pd.Timedelta('1 days'), pd.Timedelta('2 days'), pd.Timedelta('3 days'), pd.Timedelta('4 days'), pd.Timedelta('5 days')], 't2': [5, pd.Timedelta('3 hours'), df.iloc[:, 1].std(), pd.Timedelta('1 hours'), pd.Timedelta('2 hours'), pd.Timedelta('3 hours'), pd.Timedelta('4 hours'), pd.Timedelta('5 hours')]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) result = df.describe() tm.assert_frame_equal(result, expected) exp_repr = (" t1 t2\n" "count 5 5\n" "mean 3 days 00:00:00 0 days 03:00:00\n" "std 1 days 13:56:50.394919 0 days 01:34:52.099788\n" "min 1 days 00:00:00 0 days 01:00:00\n" "25% 2 days 00:00:00 0 days 02:00:00\n" "50% 3 days 00:00:00 0 days 03:00:00\n" "75% 4 days 00:00:00 0 days 04:00:00\n" "max 5 days 00:00:00 0 days 05:00:00") assert repr(result) == exp_repr def test_describe_tz_values(self, tz_naive_fixture): # GH 21332 tz = tz_naive_fixture s1 = Series(range(5)) start = Timestamp(2018, 1, 1) end = Timestamp(2018, 1, 5) s2 = Series(date_range(start, end, tz=tz)) df = pd.DataFrame({'s1': s1, 's2': s2}) expected = DataFrame({'s1': [5, np.nan, np.nan, np.nan, np.nan, np.nan, 2, 1.581139, 0, 1, 2, 3, 4], 's2': [5, 5, s2.value_counts().index[0], 1, start.tz_localize(tz), end.tz_localize(tz), np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]}, index=['count', 'unique', 'top', 'freq', 'first', 'last', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'] ) result = df.describe(include='all') tm.assert_frame_equal(result, expected) # --------------------------------------------------------------------- # Reductions def test_stat_op_api(self, float_frame, float_string_frame): assert_stat_op_api('count', float_frame, float_string_frame, has_numeric_only=True) assert_stat_op_api('sum', float_frame, float_string_frame, has_numeric_only=True) assert_stat_op_api('nunique', float_frame, float_string_frame) assert_stat_op_api('mean', float_frame, float_string_frame) assert_stat_op_api('product', float_frame, float_string_frame) assert_stat_op_api('median', float_frame, float_string_frame) assert_stat_op_api('min', float_frame, float_string_frame) assert_stat_op_api('max', float_frame, float_string_frame) assert_stat_op_api('mad', float_frame, float_string_frame) assert_stat_op_api('var', float_frame, float_string_frame) assert_stat_op_api('std', float_frame, float_string_frame) assert_stat_op_api('sem', float_frame, float_string_frame) assert_stat_op_api('median', float_frame, float_string_frame) try: from scipy.stats import skew, kurtosis # noqa:F401 assert_stat_op_api('skew', float_frame, float_string_frame) assert_stat_op_api('kurt', float_frame, float_string_frame) except ImportError: pass def test_stat_op_calc(self, float_frame_with_na, mixed_float_frame): def count(s): return notna(s).sum() def nunique(s): return len(algorithms.unique1d(s.dropna())) def mad(x): return np.abs(x - x.mean()).mean() def var(x): return np.var(x, ddof=1) def std(x): return np.std(x, ddof=1) def sem(x): return np.std(x, ddof=1) / np.sqrt(len(x)) def skewness(x): from scipy.stats import skew # noqa:F811 if len(x) < 3: return np.nan return skew(x, bias=False) def kurt(x): from scipy.stats import kurtosis # noqa:F811 if len(x) < 4: return np.nan return kurtosis(x, bias=False) assert_stat_op_calc('nunique', nunique, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True) # mixed types (with upcasting happening) assert_stat_op_calc('sum', np.sum, mixed_float_frame.astype('float32'), check_dtype=False, check_less_precise=True) assert_stat_op_calc('sum', np.sum, float_frame_with_na, skipna_alternative=np.nansum) assert_stat_op_calc('mean', np.mean, float_frame_with_na, check_dates=True) assert_stat_op_calc('product', np.prod, float_frame_with_na) assert_stat_op_calc('mad', mad, float_frame_with_na) assert_stat_op_calc('var', var, float_frame_with_na) assert_stat_op_calc('std', std, float_frame_with_na) assert_stat_op_calc('sem', sem, float_frame_with_na) assert_stat_op_calc('count', count, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True) try: from scipy import skew, kurtosis # noqa:F401 assert_stat_op_calc('skew', skewness, float_frame_with_na) assert_stat_op_calc('kurt', kurt, float_frame_with_na) except ImportError: pass # TODO: Ensure warning isn't emitted in the first place @pytest.mark.filterwarnings("ignore:All-NaN:RuntimeWarning") def test_median(self, float_frame_with_na, int_frame): def wrapper(x): if isna(x).any(): return np.nan return np.median(x) assert_stat_op_calc('median', wrapper, float_frame_with_na, check_dates=True) assert_stat_op_calc('median', wrapper, int_frame, check_dtype=False, check_dates=True) @pytest.mark.parametrize('method', ['sum', 'mean', 'prod', 'var', 'std', 'skew', 'min', 'max']) def test_stat_operators_attempt_obj_array(self, method): # GH#676 data = { 'a': [-0.00049987540199591344, -0.0016467257772919831, 0.00067695870775883013], 'b': [-0, -0, 0.0], 'c': [0.00031111847529610595, 0.0014902627951905339, -0.00094099200035979691] } df1 = DataFrame(data, index=['foo', 'bar', 'baz'], dtype='O') df2 = DataFrame({0: [np.nan, 2], 1: [np.nan, 3], 2: [np.nan, 4]}, dtype=object) for df in [df1, df2]: assert df.values.dtype == np.object_ result = getattr(df, method)(1) expected = getattr(df.astype('f8'), method)(1) if method in ['sum', 'prod']: tm.assert_series_equal(result, expected) @pytest.mark.parametrize('op', ['mean', 'std', 'var', 'skew', 'kurt', 'sem']) def test_mixed_ops(self, op): # GH#16116 df = DataFrame({'int': [1, 2, 3, 4], 'float': [1., 2., 3., 4.], 'str': ['a', 'b', 'c', 'd']}) result = getattr(df, op)() assert len(result) == 2 with pd.option_context('use_bottleneck', False): result = getattr(df, op)() assert len(result) == 2 def test_reduce_mixed_frame(self): # GH 6806 df = DataFrame({ 'bool_data': [True, True, False, False, False], 'int_data': [10, 20, 30, 40, 50], 'string_data': ['a', 'b', 'c', 'd', 'e'], }) df.reindex(columns=['bool_data', 'int_data', 'string_data']) test = df.sum(axis=0) tm.assert_numpy_array_equal(test.values, np.array([2, 150, 'abcde'], dtype=object)) tm.assert_series_equal(test, df.T.sum(axis=1)) def test_nunique(self): df = DataFrame({'A': [1, 1, 1], 'B': [1, 2, 3], 'C': [1, np.nan, 3]}) tm.assert_series_equal(df.nunique(), Series({'A': 1, 'B': 3, 'C': 2})) tm.assert_series_equal(df.nunique(dropna=False), Series({'A': 1, 'B': 3, 'C': 3})) tm.assert_series_equal(df.nunique(axis=1), Series({0: 1, 1: 2, 2: 2})) tm.assert_series_equal(df.nunique(axis=1, dropna=False), Series({0: 1, 1: 3, 2: 2})) @pytest.mark.parametrize('tz', [None, 'UTC']) def test_mean_mixed_datetime_numeric(self, tz): # https://github.com/pandas-dev/pandas/issues/24752 df = pd.DataFrame({"A": [1, 1], "B": [pd.Timestamp('2000', tz=tz)] * 2}) result = df.mean() expected = pd.Series([1.0], index=['A']) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('tz', [None, 'UTC']) def test_mean_excludeds_datetimes(self, tz): # https://github.com/pandas-dev/pandas/issues/24752 # Our long-term desired behavior is unclear, but the behavior in # 0.24.0rc1 was buggy. df = pd.DataFrame({"A": [pd.Timestamp('2000', tz=tz)] * 2}) result = df.mean() expected = pd.Series() tm.assert_series_equal(result, expected) def test_var_std(self, datetime_frame): result = datetime_frame.std(ddof=4) expected = datetime_frame.apply(lambda x: x.std(ddof=4)) tm.assert_almost_equal(result, expected) result = datetime_frame.var(ddof=4) expected = datetime_frame.apply(lambda x: x.var(ddof=4)) tm.assert_almost_equal(result, expected) arr = np.repeat(np.random.random((1, 1000)), 1000, 0) result = nanops.nanvar(arr, axis=0) assert not (result < 0).any() with pd.option_context('use_bottleneck', False): result = nanops.nanvar(arr, axis=0) assert not (result < 0).any() @pytest.mark.parametrize( "meth", ['sem', 'var', 'std']) def test_numeric_only_flag(self, meth): # GH 9201 df1 = DataFrame(np.random.randn(5, 3), columns=['foo', 'bar', 'baz']) # set one entry to a number in str format df1.loc[0, 'foo'] = '100' df2 = DataFrame(np.random.randn(5, 3), columns=['foo', 'bar', 'baz']) # set one entry to a non-number str df2.loc[0, 'foo'] = 'a' result = getattr(df1, meth)(axis=1, numeric_only=True) expected = getattr(df1[['bar', 'baz']], meth)(axis=1) tm.assert_series_equal(expected, result) result = getattr(df2, meth)(axis=1, numeric_only=True) expected = getattr(df2[['bar', 'baz']], meth)(axis=1) tm.assert_series_equal(expected, result) # df1 has all numbers, df2 has a letter inside msg = r"unsupported operand type\(s\) for -: 'float' and 'str'" with pytest.raises(TypeError, match=msg): getattr(df1, meth)(axis=1, numeric_only=False) msg = "could not convert string to float: 'a'" with pytest.raises(TypeError, match=msg): getattr(df2, meth)(axis=1, numeric_only=False) def test_sem(self, datetime_frame): result = datetime_frame.sem(ddof=4) expected = datetime_frame.apply( lambda x: x.std(ddof=4) / np.sqrt(len(x))) tm.assert_almost_equal(result, expected) arr = np.repeat(np.random.random((1, 1000)), 1000, 0) result = nanops.nansem(arr, axis=0) assert not (result < 0).any() with pd.option_context('use_bottleneck', False): result = nanops.nansem(arr, axis=0) assert not (result < 0).any() @td.skip_if_no_scipy def test_kurt(self): index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]], codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]]) df = DataFrame(np.random.randn(6, 3), index=index) kurt = df.kurt() kurt2 = df.kurt(level=0).xs('bar') tm.assert_series_equal(kurt, kurt2, check_names=False) assert kurt.name is None assert kurt2.name == 'bar' @pytest.mark.parametrize("dropna, expected", [ (True, {'A': [12], 'B': [10.0], 'C': [1.0], 'D': ['a'], 'E': Categorical(['a'], categories=['a']), 'F': to_datetime(['2000-1-2']), 'G': to_timedelta(['1 days'])}), (False, {'A': [12], 'B': [10.0], 'C': [np.nan], 'D': np.array([np.nan], dtype=object), 'E': Categorical([np.nan], categories=['a']), 'F': [pd.NaT], 'G': to_timedelta([pd.NaT])}), (True, {'H': [8, 9, np.nan, np.nan], 'I': [8, 9, np.nan, np.nan], 'J': [1, np.nan, np.nan, np.nan], 'K': Categorical(['a', np.nan, np.nan, np.nan], categories=['a']), 'L': to_datetime(['2000-1-2', 'NaT', 'NaT', 'NaT']), 'M': to_timedelta(['1 days', 'nan', 'nan', 'nan']), 'N': [0, 1, 2, 3]}), (False, {'H': [8, 9, np.nan, np.nan], 'I': [8, 9, np.nan, np.nan], 'J': [1, np.nan, np.nan, np.nan], 'K': Categorical([np.nan, 'a', np.nan, np.nan], categories=['a']), 'L': to_datetime(['NaT', '2000-1-2', 'NaT', 'NaT']), 'M': to_timedelta(['nan', '1 days', 'nan', 'nan']), 'N': [0, 1, 2, 3]}) ]) def test_mode_dropna(self, dropna, expected): df = DataFrame({"A": [12, 12, 19, 11], "B": [10, 10, np.nan, 3], "C": [1, np.nan, np.nan, np.nan], "D": [np.nan, np.nan, 'a', np.nan], "E": Categorical([np.nan, np.nan, 'a', np.nan]), "F": to_datetime(['NaT', '2000-1-2', 'NaT', 'NaT']), "G": to_timedelta(['1 days', 'nan', 'nan', 'nan']), "H": [8, 8, 9, 9], "I": [9, 9, 8, 8], "J": [1, 1, np.nan, np.nan], "K": Categorical(['a', np.nan, 'a', np.nan]), "L": to_datetime(['2000-1-2', '2000-1-2', 'NaT', 'NaT']), "M": to_timedelta(['1 days', 'nan', '1 days', 'nan']), "N": np.arange(4, dtype='int64')}) result = df[sorted(list(expected.keys()))].mode(dropna=dropna) expected = DataFrame(expected) tm.assert_frame_equal(result, expected) def test_mode_sortwarning(self): # Check for the warning that is raised when the mode # results cannot be sorted df = DataFrame({"A": [np.nan, np.nan, 'a', 'a']}) expected = DataFrame({'A': ['a', np.nan]}) with tm.assert_produces_warning(UserWarning, check_stacklevel=False): result = df.mode(dropna=False) result = result.sort_values(by='A').reset_index(drop=True) tm.assert_frame_equal(result, expected) def test_operators_timedelta64(self): df = DataFrame(dict(A=date_range('2012-1-1', periods=3, freq='D'), B=date_range('2012-1-2', periods=3, freq='D'), C=Timestamp('20120101') - timedelta(minutes=5, seconds=5))) diffs = DataFrame(dict(A=df['A'] - df['C'], B=df['A'] - df['B'])) # min result = diffs.min() assert result[0] == diffs.loc[0, 'A'] assert result[1] == diffs.loc[0, 'B'] result = diffs.min(axis=1) assert (result == diffs.loc[0, 'B']).all() # max result = diffs.max() assert result[0] == diffs.loc[2, 'A'] assert result[1] == diffs.loc[2, 'B'] result = diffs.max(axis=1) assert (result == diffs['A']).all() # abs result = diffs.abs() result2 = abs(diffs) expected = DataFrame(dict(A=df['A'] - df['C'], B=df['B'] - df['A'])) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # mixed frame mixed = diffs.copy() mixed['C'] = 'foo' mixed['D'] = 1 mixed['E'] = 1. mixed['F'] = Timestamp('20130101') # results in an object array result = mixed.min() expected = Series([pd.Timedelta(timedelta(seconds=5 * 60 + 5)), pd.Timedelta(timedelta(days=-1)), 'foo', 1, 1.0, Timestamp('20130101')], index=mixed.columns) tm.assert_series_equal(result, expected) # excludes numeric result = mixed.min(axis=1) expected = Series([1, 1, 1.], index=[0, 1, 2]) tm.assert_series_equal(result, expected) # works when only those columns are selected result = mixed[['A', 'B']].min(1) expected = Series([timedelta(days=-1)] * 3) tm.assert_series_equal(result, expected) result = mixed[['A', 'B']].min() expected = Series([timedelta(seconds=5 * 60 + 5), timedelta(days=-1)], index=['A', 'B']) tm.assert_series_equal(result, expected) # GH 3106 df = DataFrame({'time': date_range('20130102', periods=5), 'time2': date_range('20130105', periods=5)}) df['off1'] = df['time2'] - df['time'] assert df['off1'].dtype == 'timedelta64[ns]' df['off2'] = df['time'] - df['time2'] df._consolidate_inplace() assert df['off1'].dtype == 'timedelta64[ns]' assert df['off2'].dtype == 'timedelta64[ns]' def test_sum_corner(self): empty_frame = DataFrame() axis0 = empty_frame.sum(0) axis1 = empty_frame.sum(1) assert isinstance(axis0, Series) assert isinstance(axis1, Series) assert len(axis0) == 0 assert len(axis1) == 0 @pytest.mark.parametrize('method, unit', [ ('sum', 0), ('prod', 1), ]) def test_sum_prod_nanops(self, method, unit): idx = ['a', 'b', 'c'] df = pd.DataFrame({"a": [unit, unit], "b": [unit, np.nan], "c": [np.nan, np.nan]}) # The default result = getattr(df, method) expected = pd.Series([unit, unit, unit], index=idx, dtype='float64') # min_count=1 result = getattr(df, method)(min_count=1) expected = pd.Series([unit, unit, np.nan], index=idx) tm.assert_series_equal(result, expected) # min_count=0 result = getattr(df, method)(min_count=0) expected = pd.Series([unit, unit, unit], index=idx, dtype='float64') tm.assert_series_equal(result, expected) result = getattr(df.iloc[1:], method)(min_count=1) expected = pd.Series([unit, np.nan, np.nan], index=idx) tm.assert_series_equal(result, expected) # min_count > 1 df = pd.DataFrame({"A": [unit] * 10, "B": [unit] * 5 + [np.nan] * 5}) result = getattr(df, method)(min_count=5) expected = pd.Series(result, index=['A', 'B']) tm.assert_series_equal(result, expected) result = getattr(df, method)(min_count=6) expected = pd.Series(result, index=['A', 'B']) tm.assert_series_equal(result, expected) def test_sum_nanops_timedelta(self): # prod isn't defined on timedeltas idx = ['a', 'b', 'c'] df = pd.DataFrame({"a": [0, 0], "b": [0, np.nan], "c": [np.nan, np.nan]}) df2 = df.apply(pd.to_timedelta) # 0 by default result = df2.sum() expected = pd.Series([0, 0, 0], dtype='m8[ns]', index=idx) tm.assert_series_equal(result, expected) # min_count=0 result = df2.sum(min_count=0) tm.assert_series_equal(result, expected) # min_count=1 result = df2.sum(min_count=1) expected = pd.Series([0, 0, np.nan], dtype='m8[ns]', index=idx) tm.assert_series_equal(result, expected) def test_sum_object(self, float_frame): values = float_frame.values.astype(int) frame = DataFrame(values, index=float_frame.index, columns=float_frame.columns) deltas = frame * timedelta(1) deltas.sum() def test_sum_bool(self, float_frame): # ensure this works, bug report bools = np.isnan(float_frame) bools.sum(1) bools.sum(0) def test_mean_corner(self, float_frame, float_string_frame): # unit test when have object data the_mean = float_string_frame.mean(axis=0) the_sum = float_string_frame.sum(axis=0, numeric_only=True) tm.assert_index_equal(the_sum.index, the_mean.index) assert len(the_mean.index) < len(float_string_frame.columns) # xs sum mixed type, just want to know it works... the_mean = float_string_frame.mean(axis=1) the_sum = float_string_frame.sum(axis=1, numeric_only=True) tm.assert_index_equal(the_sum.index, the_mean.index) # take mean of boolean column float_frame['bool'] = float_frame['A'] > 0 means = float_frame.mean(0) assert means['bool'] == float_frame['bool'].values.mean() def test_stats_mixed_type(self, float_string_frame): # don't blow up float_string_frame.std(1) float_string_frame.var(1) float_string_frame.mean(1) float_string_frame.skew(1) def test_sum_bools(self): df = DataFrame(index=lrange(1), columns=lrange(10)) bools = isna(df) assert bools.sum(axis=1)[0] == 10 # --------------------------------------------------------------------- # Cumulative Reductions - cumsum, cummax, ... def test_cumsum_corner(self): dm = DataFrame(np.arange(20).reshape(4, 5), index=lrange(4), columns=lrange(5)) # ?(wesm) result = dm.cumsum() # noqa def test_cumsum(self, datetime_frame): datetime_frame.loc[5:10, 0] = np.nan datetime_frame.loc[10:15, 1] = np.nan datetime_frame.loc[15:, 2] = np.nan # axis = 0 cumsum = datetime_frame.cumsum() expected = datetime_frame.apply(Series.cumsum) tm.assert_frame_equal(cumsum, expected) # axis = 1 cumsum = datetime_frame.cumsum(axis=1) expected = datetime_frame.apply(Series.cumsum, axis=1) tm.assert_frame_equal(cumsum, expected) # works df = DataFrame({'A': np.arange(20)}, index=np.arange(20)) result = df.cumsum() # noqa # fix issue cumsum_xs = datetime_frame.cumsum(axis=1) assert np.shape(cumsum_xs) == np.shape(datetime_frame) def test_cumprod(self, datetime_frame): datetime_frame.loc[5:10, 0] = np.nan datetime_frame.loc[10:15, 1] = np.nan datetime_frame.loc[15:, 2] = np.nan # axis = 0 cumprod = datetime_frame.cumprod() expected = datetime_frame.apply(Series.cumprod) tm.assert_frame_equal(cumprod, expected) # axis = 1 cumprod = datetime_frame.cumprod(axis=1) expected = datetime_frame.apply(Series.cumprod, axis=1) tm.assert_frame_equal(cumprod, expected) # fix issue cumprod_xs = datetime_frame.cumprod(axis=1) assert np.shape(cumprod_xs) == np.shape(datetime_frame) # ints df = datetime_frame.fillna(0).astype(int) df.cumprod(0) df.cumprod(1) # ints32 df = datetime_frame.fillna(0).astype(np.int32) df.cumprod(0) df.cumprod(1) def test_cummin(self, datetime_frame): datetime_frame.loc[5:10, 0] = np.nan datetime_frame.loc[10:15, 1] = np.nan datetime_frame.loc[15:, 2] = np.nan # axis = 0 cummin = datetime_frame.cummin() expected = datetime_frame.apply(Series.cummin) tm.assert_frame_equal(cummin, expected) # axis = 1 cummin = datetime_frame.cummin(axis=1) expected = datetime_frame.apply(Series.cummin, axis=1) tm.assert_frame_equal(cummin, expected) # it works df = DataFrame({'A': np.arange(20)}, index=np.arange(20)) result = df.cummin() # noqa # fix issue cummin_xs = datetime_frame.cummin(axis=1) assert np.shape(cummin_xs) == np.shape(datetime_frame) def test_cummax(self, datetime_frame): datetime_frame.loc[5:10, 0] = np.nan datetime_frame.loc[10:15, 1] = np.nan datetime_frame.loc[15:, 2] = np.nan # axis = 0 cummax = datetime_frame.cummax() expected = datetime_frame.apply(Series.cummax) tm.assert_frame_equal(cummax, expected) # axis = 1 cummax = datetime_frame.cummax(axis=1) expected = datetime_frame.apply(Series.cummax, axis=1) tm.assert_frame_equal(cummax, expected) # it works df = DataFrame({'A': np.arange(20)}, index=np.arange(20)) result = df.cummax() # noqa # fix issue cummax_xs = datetime_frame.cummax(axis=1) assert np.shape(cummax_xs) == np.shape(datetime_frame) # --------------------------------------------------------------------- # Miscellanea def test_count(self): # corner case frame = DataFrame() ct1 = frame.count(1) assert isinstance(ct1, Series) ct2 = frame.count(0) assert isinstance(ct2, Series) # GH#423 df = DataFrame(index=lrange(10)) result = df.count(1) expected = Series(0, index=df.index) tm.assert_series_equal(result, expected) df = DataFrame(columns=lrange(10)) result = df.count(0) expected = Series(0, index=df.columns) tm.assert_series_equal(result, expected) df = DataFrame() result = df.count() expected = Series(0, index=[]) tm.assert_series_equal(result, expected) def test_count_objects(self, float_string_frame): dm = DataFrame(float_string_frame._series) df = DataFrame(float_string_frame._series) tm.assert_series_equal(dm.count(), df.count()) tm.assert_series_equal(dm.count(1), df.count(1)) def test_pct_change(self): # GH#11150 pnl = DataFrame([np.arange(0, 40, 10), np.arange(0, 40, 10), np.arange(0, 40, 10)]).astype(np.float64) pnl.iat[1, 0] = np.nan pnl.iat[1, 1] = np.nan pnl.iat[2, 3] = 60 for axis in range(2): expected = pnl.ffill(axis=axis) / pnl.ffill(axis=axis).shift( axis=axis) - 1 result = pnl.pct_change(axis=axis, fill_method='pad') tm.assert_frame_equal(result, expected) # ---------------------------------------------------------------------- # Index of max / min def test_idxmin(self, float_frame, int_frame): frame = float_frame frame.loc[5:10] = np.nan frame.loc[15:20, -2:] = np.nan for skipna in [True, False]: for axis in [0, 1]: for df in [frame, int_frame]: result = df.idxmin(axis=axis, skipna=skipna) expected = df.apply(Series.idxmin, axis=axis, skipna=skipna) tm.assert_series_equal(result, expected) msg = ("No axis named 2 for object type" " <class 'pandas.core.frame.DataFrame'>") with pytest.raises(ValueError, match=msg): frame.idxmin(axis=2) def test_idxmax(self, float_frame, int_frame): frame = float_frame frame.loc[5:10] = np.nan frame.loc[15:20, -2:] = np.nan for skipna in [True, False]: for axis in [0, 1]: for df in [frame, int_frame]: result = df.idxmax(axis=axis, skipna=skipna) expected = df.apply(Series.idxmax, axis=axis, skipna=skipna) tm.assert_series_equal(result, expected) msg = ("No axis named 2 for object type" " <class 'pandas.core.frame.DataFrame'>") with pytest.raises(ValueError, match=msg): frame.idxmax(axis=2) # ---------------------------------------------------------------------- # Logical reductions @pytest.mark.parametrize('opname', ['any', 'all']) def test_any_all(self, opname, bool_frame_with_na, float_string_frame): assert_bool_op_calc(opname, getattr(np, opname), bool_frame_with_na, has_skipna=True) assert_bool_op_api(opname, bool_frame_with_na, float_string_frame, has_bool_only=True) def test_any_all_extra(self): df = DataFrame({ 'A': [True, False, False], 'B': [True, True, False], 'C': [True, True, True], }, index=['a', 'b', 'c']) result = df[['A', 'B']].any(1) expected = Series([True, True, False], index=['a', 'b', 'c']) tm.assert_series_equal(result, expected) result = df[['A', 'B']].any(1, bool_only=True) tm.assert_series_equal(result, expected) result = df.all(1) expected = Series([True, False, False], index=['a', 'b', 'c']) tm.assert_series_equal(result, expected) result = df.all(1, bool_only=True) tm.assert_series_equal(result, expected) # Axis is None result = df.all(axis=None).item() assert result is False result = df.any(axis=None).item() assert result is True result = df[['C']].all(axis=None).item() assert result is True def test_any_datetime(self): # GH 23070 float_data = [1, np.nan, 3, np.nan] datetime_data = [pd.Timestamp('1960-02-15'), pd.Timestamp('1960-02-16'), pd.NaT, pd.NaT] df = DataFrame({ "A": float_data, "B": datetime_data }) result = df.any(1) expected = Series([True, True, True, False]) tm.assert_series_equal(result, expected) def test_any_all_bool_only(self): # GH 25101 df = DataFrame({"col1": [1, 2, 3], "col2": [4, 5, 6], "col3": [None, None, None]}) result = df.all(bool_only=True) expected = Series(dtype=np.bool) tm.assert_series_equal(result, expected) df = DataFrame({"col1": [1, 2, 3], "col2": [4, 5, 6], "col3": [None, None, None], "col4": [False, False, True]}) result = df.all(bool_only=True) expected = Series({"col4": False}) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('func, data, expected', [ (np.any, {}, False), (np.all, {}, True), (np.any, {'A': []}, False), (np.all, {'A': []}, True), (np.any, {'A': [False, False]}, False), (np.all, {'A': [False, False]}, False), (np.any, {'A': [True, False]}, True), (np.all, {'A': [True, False]}, False), (np.any, {'A': [True, True]}, True), (np.all, {'A': [True, True]}, True), (np.any, {'A': [False], 'B': [False]}, False), (np.all, {'A': [False], 'B': [False]}, False), (np.any, {'A': [False, False], 'B': [False, True]}, True), (np.all, {'A': [False, False], 'B': [False, True]}, False), # other types (np.all, {'A': pd.Series([0.0, 1.0], dtype='float')}, False), (np.any, {'A': pd.Series([0.0, 1.0], dtype='float')}, True), (np.all, {'A': pd.Series([0, 1], dtype=int)}, False), (np.any, {'A': pd.Series([0, 1], dtype=int)}, True), pytest.param(np.all, {'A': pd.Series([0, 1], dtype='M8[ns]')}, False, marks=[td.skip_if_np_lt_115]), pytest.param(np.any, {'A': pd.Series([0, 1], dtype='M8[ns]')}, True, marks=[td.skip_if_np_lt_115]), pytest.param(np.all, {'A': pd.Series([1, 2], dtype='M8[ns]')}, True, marks=[td.skip_if_np_lt_115]), pytest.param(np.any, {'A':
pd.Series([1, 2], dtype='M8[ns]')
pandas.Series
import os import math from pathlib import Path from datetime import datetime import matplotlib.pyplot as plt import matplotlib.ticker as ticker import numpy as np from matplotlib import gridspec import pandas as pd import seaborn as sns from matplotlib.ticker import (MultipleLocator) from pymongo import MongoClient from main import Util from main import StatisticalTests np.warnings.filterwarnings('ignore') sns.set_context("paper") sns.set_style("whitegrid") # sns.despine() CUSTOM_SIZE_Y_AXES_VALUES = "large" CUSTOM_SIZE_X_AXES_VALUES = 10 SHOW_FIGURE = False df_RQ = "" # columnsToLatex = ['NTSSTPE', 'NTSCE', 'NTSNIE', 'NTS', 'NTSSTPE/NTS', 'NTSCE/NTS', 'NTSNIE/NTS', 'NCTSSTPE', # 'NCTSCE', 'NCTNIE', 'NCTS', 'NCTSSTPE/NCTS', 'NCTNIE/NCTS', 'NCTSCE/NCTS', 'NCTSCE/NTSCE', 'NCTSSTPE/NTSSTPE', 'NCTSSTPE/NTSSTPE_REAL'] columnsToLatex = ['NCTS', 'NTS', 'NCTS/NTS', 'tagCoverage'] #columnsToLatex = ['NCTSCE', 'NTSCE', 'NCTSCE/NTSCE', 'NCTSSTPE', 'NTSSTPE', 'NCTSSTPE/NTSSTPE'] RQ_NUMBER = "RQ3_RQ4" OUTPUT_PATH = "RQS/" + RQ_NUMBER OUTPUT_FIGURES_PATH = Util.create_new_dirs(OUTPUT_PATH + "/figures/") fileName = "res_"+RQ_NUMBER+".txt" f = open(Path(OUTPUT_PATH) / fileName, "w+") ############################## TABLE GENERATION ############################## def generateDataSet(): global df_RQ dataSet = [] for doc in Util.mongo_collection.find(): if doc['tagCoverageWithProblems'] is True or doc['tagCoverage'] is None or doc['tagCoverage'] == 0.0: #if doc['tagCoverage'] is None or doc['tagCoverage'] == 0.0: continue project = doc["projectName"] tagCreatedOn = datetime.strptime(doc["tagCreatedAt"], '%d/%m/%Y %H:%M:%S').year tagCoverage = doc['tagCoverage']/100 projectCreatedOn = datetime.strptime(doc["projectDetails"]["createdAt"], '%d/%m/%Y %H:%M:%S').year platform = doc['projectDetails']["platform"] domain = Util.adjust_domain_name(doc['projectDetails']["domain"]) stars = doc['projectDetails']["stars"] contributors = doc['projectDetails']["contributors"] NTSSTPE = doc["statistics"]['totalNumberOfThrowStatementsStandardOrThirdPartyExceptions'] NTSCE = doc["statistics"]['totalNumberOfThrowStatementCustomExceptions'] NTSNIE = doc["statistics"]['totalNumberOfThrowStatementNotIdentifiedExceptions'] NTS = doc["statistics"]['totalNumberOfThrowStatements'] NTSSTPE_NTS = round(np.float64(NTSSTPE) / NTS, 4) NTSCE_NTS = round(np.float64(NTSCE) / NTS, 4) NTSNIE_NTS = round(np.float64(NTSNIE) / NTS, 4) NEBTM = doc["statistics"]['totalNumberOfExceptionalBehaviorTestMethods'] NTM = doc["statistics"]['totalNumberOfTestMethods'] NEBTM_NTM = round(np.float64(NEBTM) / np.float64(NTM), 4) #Tested and Used Exceptions NDTE = doc["statistics"]['totalNumberOfDistinctTestedExceptions'] # distinct used and tested exceptions NDUE = doc["statistics"]['totalNumberOfDistinctUsedExceptions'] # distinct used exceptions NDTE_NDUE = round(np.float64(NDTE) / np.float64(NDUE), 4) # Only covered exceptions NCTSSTPE = doc["statistics"]['totalNumberOfCoveredThrowStatementsStandardOrThirdPartyExceptions'] NCTSCE = doc["statistics"]['totalNumberOfCoveredThrowStatementCustomExceptions'] NCTNIE = doc["statistics"]['totalNumberOfCoveredThrowStatementNotIdentifiedExceptions'] NCTS = doc["statistics"]['totalNumberOfCoveredThrowStatements'] NCTSSTPE_NCTS = round(np.float64(NCTSSTPE) / NCTS, 4) NCTSCE_NCTS = round(np.float64(NCTSCE) / NCTS, 4) NCTNIE_NCTS = round(np.float64(NCTNIE) / NCTS, 4) NCTS_NTS = round(np.float64(NCTS) / NTS, 4) NCTSCE_NTSCE = round(np.float64(NCTSCE) / NTSCE, 4) if np.isnan(NCTSCE_NTSCE): NCTSSTPE_NTSSTPE = float("NaN") else: NCTSSTPE_NTSSTPE = round(np.float64(NCTSSTPE) / NTSSTPE, 4) NCTSSTPE_NTSSTPE_REAL = round(np.float64(NCTSSTPE) / NTSSTPE, 4) dataSetRQ3 = [project, tagCreatedOn, tagCoverage, projectCreatedOn, platform, domain, stars, contributors, NEBTM_NTM, NTSSTPE, NTSCE, NTSNIE, NTS, NTSSTPE_NTS, NTSCE_NTS, NTSNIE_NTS, NCTSSTPE, NCTSCE, NCTNIE, NCTS, NCTSSTPE_NCTS, NCTSCE_NCTS, NCTNIE_NCTS, NCTS_NTS, NCTSCE_NTSCE, NCTSSTPE_NTSSTPE, NCTSSTPE_NTSSTPE_REAL, NDTE_NDUE] dataSet.append(dataSetRQ3) df_RQ = pd.DataFrame(dataSet, columns=['project', 'tagCreatedOn', 'tagCoverage', 'projectCreatedOn', 'platform', 'domain', 'stars', 'contributors','NEBTM/NTM', 'NTSSTPE', 'NTSCE', 'NTSNIE', 'NTS', 'NTSSTPE/NTS', 'NTSCE/NTS', 'NTSNIE/NTS', 'NCTSSTPE', 'NCTSCE', 'NCTNIE', 'NCTS', 'NCTSSTPE/NCTS', 'NCTNIE/NCTS', 'NCTSCE/NCTS', 'NCTS/NTS', 'NCTSCE/NTSCE', 'NCTSSTPE/NTSSTPE', 'NCTSSTPE/NTSSTPE_REAL', 'NDTE/NDUE']) Util.format_to_csv(df_RQ, "RQs/" + RQ_NUMBER + "/", "table" + RQ_NUMBER, RQ_NUMBER, columnsToLatex) ############################## RQ3 - PART 1 ############################## def barPlotNumberOfProjects(): platformList = df_RQ["platform"].unique() domainList = df_RQ["domain"].unique() df_aux = [] totalDfSize = len(df_RQ) f.write(f'Number of projects with coverage data: {totalDfSize}\n') for platform in platformList: df_platform = df_RQ[(df_RQ['platform'] == platform)] totalPlatformDfSize = len(df_platform) ratioAux = round(totalPlatformDfSize/totalDfSize, 4) f.write(f'{platform}_Number of projects with coverage data: {totalPlatformDfSize} out of {totalDfSize}({ratioAux})\n') for domain in domainList: df_domain = df_platform[(df_platform["domain"] == domain)] totalDomainDfSize = len(df_domain) df_aux.append([platform, domain, totalDomainDfSize]) ratioAux = round(totalDomainDfSize / totalDfSize, 4) f.write(f'{platform}_{domain}_Number of projects with coverage data: {totalDomainDfSize} out of {totalDfSize}({ratioAux})\n') df_counter = pd.DataFrame(df_aux, columns=["platform", "domain", "count"]) # g = sns.catplot(x="domain", y="count", col="platform", data=df_counter, kind="bar", # palette=Util.COLOR_DEGRADE, legend=False, legend_out=False, col_order=Util.FIGURE_ORDER) g = sns.catplot(x="domain", y="count", col="platform", data=df_counter, kind="bar", legend=False, legend_out=False, col_order=Util.FIGURE_ORDER, color="#1b69af") g.fig.subplots_adjust(wspace=.05, hspace=.05) g.fig.set_figheight(3) g.fig.set_figwidth(6) for ax in g.axes.flat: # ax.get_yaxis().set_tick_params(labelsize='x-large', which="major") # labels ao redor dos graficos # ax.set_xlabel(ax.get_xlabel(), fontsize='20') ax.set_xlabel("", fontsize=Util.SIZE_AXES_LABELS, rotation=30) ax.set_ylabel(ax.get_ylabel(), fontsize=Util.SIZE_AXES_LABELS) # títulos em cima dos graficos if ax.get_title(): ax.set_title(ax.get_title().split('=')[1], fontsize=Util.SIZE_AXES_TITLE) # Valores em cima das barras for p in ax.patches: height = p.get_height() ax.text(p.get_x() + p.get_width() / 2., height + 0.1, int(height), ha="center", fontsize=Util.SIZE_BAR_VALUES) ax.yaxis.grid(True, linewidth=1, which="major") ax.get_yaxis().set_tick_params(labelsize=Util.SIZE_AXES_TITLE, which="major") ax.get_xaxis().set_tick_params(direction='out', labelsize=Util.SIZE_AXES_TITLE, rotation=20) ax_aux = g.axes[0, 0] ax_aux.set_xlabel('', fontsize=Util.SIZE_AXES_LABELS) ax_aux.set_ylabel('Number of Projects', fontsize=Util.SIZE_AXES_LABELS) # Show graphic plt.tight_layout() plt.savefig(OUTPUT_FIGURES_PATH / 'RQ3_numberOfProjectsWithCoverageData_bar.pdf', bbox_inches="tight") plt.savefig(OUTPUT_FIGURES_PATH / 'RQ3_numberOfProjectsWithCoverageData_bar.png', bbox_inches="tight") if (SHOW_FIGURE): plt.show() plt.clf() def violinPlotTagCoverage(): fig = plt.subplots(figsize=(6, 2)) gs = gridspec.GridSpec(1, 2, width_ratios=[3, 1.5], wspace=.02, hspace=.05) ax0 = plt.subplot(gs[0]) ax1 = plt.subplot(gs[1]) df_coverageAboveSixty = df_RQ[(df_RQ['tagCoverage'] >= 0.6)] f.write(f'Number of projects with coverage greater or equal to 60%: {len(df_coverageAboveSixty)}\n') df_withoutNaN = df_RQ.dropna(subset=['tagCoverage']) sns.violinplot(x="domain", y="tagCoverage", data=df_RQ, cut=0, inner="box", hue="platform", hue_order=Util.FIGURE_ORDER, scale="width", palette=Util.COLOR_PALETTE, linewidth=1.5, ax=ax0, saturation=1) sns.violinplot(x="platform", y="tagCoverage", data=df_RQ, cut=0, inner="box", scale="width", order=Util.FIGURE_ORDER, palette=Util.COLOR_PALETTE, linewidth=1.5, ax=ax1, saturation=1) ax0.set(xlabel='', ylabel='', title='', yticks=[0, 0.2, 0.4, 0.6, 0.8, 1]) ax0.set_ylabel(ax0.get_ylabel(), fontsize=Util.SIZE_AXES_LABELS) # ax0.set_ylim(0, 0.4) # ax0.legend(title="", loc="upper center") ax0.legend(title="", loc="upper center", bbox_to_anchor=(0.75, 1.20), ncol=3, frameon=False) ax0.yaxis.grid(True, linewidth=1, which="major") plt.setp(ax0.get_legend().get_texts(), fontsize=Util.SIZE_LEGEND_TEXT) # for legend text plt.setp(ax0.get_legend().get_title(), fontsize=Util.SIZE_LEGEND_TITLE) # for legend title ax0.get_yaxis().set_tick_params(labelsize=Util.SIZE_AXES_VALUES, which="major") ax0.get_xaxis().set_tick_params(direction='out', labelsize=Util.SIZE_AXES_VALUES) ax0.xaxis.set_ticks_position('bottom') ax0.yaxis.set_major_formatter(ticker.PercentFormatter(xmax=1, decimals=0)) ax1.set(xlabel='', ylabel='', title='', xticks=[1], yticks=[0, 0.2, 0.4, 0.6, 0.8, 1]) # ax1.set_xticks(5) ax1.set_xticklabels(['All']) ax1.yaxis.grid(True, linewidth=1, which="major") ax1.get_yaxis().set_tick_params(labelsize=Util.SIZE_AXES_VALUES, which="major") ax1.get_xaxis().set_tick_params(direction='out', labelsize=Util.SIZE_AXES_VALUES) ax1.xaxis.set_ticks_position('bottom') ax1.yaxis.set_major_formatter(ticker.PercentFormatter(xmax=1, decimals=0)) ax1.set_yticklabels([]) # ax1.set_ylim(0, 0.4) # Show graphic plt.tight_layout() plt.savefig(OUTPUT_FIGURES_PATH / 'RQ3_Description_TagCoverage.pdf', bbox_inches="tight") plt.savefig(OUTPUT_FIGURES_PATH / 'RQ3_Description_TagCoverage.png', bbox_inches="tight") if (SHOW_FIGURE): plt.show() plt.clf() def violinPlotRatio_NCTS_NTS(): platformList = df_RQ["platform"].unique() domainList = df_RQ["domain"].unique() Util.count_number_of_projects_lte_to_ratio(df_RQ, "tagCoverage", 0.6, f) Util.count_number_of_projects_lte_to_ratio(df_RQ, "NCTS/NTS", 0.6, f) Util.count_number_of_projects_gte_to_ratio(df_RQ, "tagCoverage", 0.6, f) Util.count_number_of_projects_gte_to_ratio(df_RQ, "NCTS/NTS", 0.6, f) Util.count_number_of_projects_gte_to_ratio(df_RQ, "tagCoverage", 0.8, f) Util.count_number_of_projects_gte_to_ratio(df_RQ, "NCTS/NTS", 0.8, f) Util.count_number_of_projects_gte_to_ratio(df_RQ, "tagCoverage", 0.9, f) Util.count_number_of_projects_gte_to_ratio(df_RQ, "NCTS/NTS", 0.9, f) fig = plt.subplots(figsize=(6, 2)) gs = gridspec.GridSpec(1, 2, width_ratios=[3, 1.5], wspace=.02, hspace=.05) ax0 = plt.subplot(gs[0]) ax1 = plt.subplot(gs[1]) df_withoutNaN = df_RQ.dropna(subset=['NCTS/NTS']) sns.violinplot(x="domain", y="NCTS/NTS", data=df_RQ, cut=0, inner="box", hue="platform", hue_order=Util.FIGURE_ORDER, scale="width", palette=Util.COLOR_PALETTE, linewidth=1.5, ax=ax0, saturation=1) sns.violinplot(x="platform", y="NCTS/NTS", data=df_RQ, cut=0, inner="box", scale="width", order=Util.FIGURE_ORDER, palette=Util.COLOR_PALETTE, linewidth=1.5, ax=ax1, saturation=1) ax0.set(xlabel='', ylabel='', title='', yticks=[0, 0.2, 0.4, 0.6, 0.8, 1]) ax0.set_ylabel(ax0.get_ylabel(), fontsize=Util.SIZE_AXES_LABELS) # ax0.set_ylim(0, 0.4) # ax0.legend(title="", loc="upper center") ax0.legend(title="", loc="upper center", bbox_to_anchor=(0.75, 1.20), ncol=3, frameon=False) ax0.yaxis.grid(True, linewidth=1, which="major") plt.setp(ax0.get_legend().get_texts(), fontsize=Util.SIZE_LEGEND_TEXT) # for legend text plt.setp(ax0.get_legend().get_title(), fontsize=Util.SIZE_LEGEND_TITLE) # for legend title ax0.get_yaxis().set_tick_params(labelsize=Util.SIZE_AXES_VALUES, which="major") ax0.get_xaxis().set_tick_params(direction='out', labelsize=Util.SIZE_AXES_VALUES) ax0.xaxis.set_ticks_position('bottom') ax0.yaxis.set_major_formatter(ticker.PercentFormatter(xmax=1, decimals=0)) ax1.set(xlabel='', ylabel='', title='', xticks=[1], yticks=[0, 0.2, 0.4, 0.6, 0.8, 1]) # ax1.set_xticks(5) ax1.set_xticklabels(['All']) ax1.yaxis.grid(True, linewidth=1, which="major") ax1.get_yaxis().set_tick_params(labelsize=Util.SIZE_AXES_VALUES, which="major") ax1.get_xaxis().set_tick_params(direction='out', labelsize=Util.SIZE_AXES_VALUES) ax1.xaxis.set_ticks_position('bottom') ax1.yaxis.set_major_formatter(ticker.PercentFormatter(xmax=1, decimals=0)) ax1.set_yticklabels([]) # ax1.set_ylim(0, 0.4) # Show graphic plt.tight_layout() plt.savefig(OUTPUT_FIGURES_PATH / 'RQ3_NCTS_NTS_platform.pdf', bbox_inches="tight") plt.savefig(OUTPUT_FIGURES_PATH / 'RQ3_NCTS_NTS_platform.png', bbox_inches="tight") if (SHOW_FIGURE): plt.show() plt.clf() def violinPlotRatio_Overall_NCTS_NTS(): ax = sns.violinplot(y="NCTS/NTS", data=df_RQ, cut=0, inner="box", linewidth=1.5, saturation=1) ax.set(xlabel='', ylabel='', title='', yticks=[0, 0.2, 0.4, 0.6, 0.8, 1]) ax.set_ylabel(ax.get_ylabel(), fontsize=Util.SIZE_AXES_LABELS) # ax0.set_ylim(0, 0.4) # ax0.legend(title="", loc="upper center") #ax.legend(title="", loc="upper center", bbox_to_anchor=(0.75, 1.20), ncol=3, frameon=False) ax.yaxis.grid(True, linewidth=1, which="major") plt.setp(ax.get_legend().get_texts(), fontsize=Util.SIZE_LEGEND_TEXT) # for legend text plt.setp(ax.get_legend().get_title(), fontsize=Util.SIZE_LEGEND_TITLE) # for legend title ax.get_yaxis().set_tick_params(labelsize=Util.SIZE_AXES_VALUES, which="major") ax.get_xaxis().set_tick_params(direction='out', labelsize=Util.SIZE_AXES_VALUES) ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_major_formatter(ticker.PercentFormatter(xmax=1, decimals=0)) # Show graphic plt.tight_layout() plt.savefig(OUTPUT_FIGURES_PATH / 'RQ3_NCTS_NTS_overall.pdf', bbox_inches="tight") plt.savefig(OUTPUT_FIGURES_PATH / 'RQ3_NCTS_NTS_overall.png', bbox_inches="tight") if (SHOW_FIGURE): plt.show() plt.clf() def pairPlotCoverages(): g = sns.lmplot(data=df_RQ, x='NCTS/NTS', y='tagCoverage', hue="platform", fit_reg=False, palette=Util.COLOR_PALETTE_COLORFUL, legend=False, hue_order=Util.FIGURE_ORDER) #plt.tight_layout() ax_aux = g.axes[0, 0] ax_aux.legend(title="", loc="upper center", bbox_to_anchor=(0.5, 1.1), ncol=3, frameon=False) ax_aux.set_xlabel('NCTS/NTS', fontsize=Util.SIZE_AXES_LABELS) ax_aux.set_ylabel('Line Coverage', fontsize=Util.SIZE_AXES_LABELS) ax_aux.xaxis.set_major_formatter(ticker.PercentFormatter(xmax=1, decimals=0)) ax_aux.yaxis.set_major_formatter(ticker.PercentFormatter(xmax=1, decimals=0)) plt.setp(ax_aux.get_legend().get_texts(), fontsize=Util.SIZE_LEGEND_TEXT) # for legend text plt.setp(ax_aux.get_legend().get_title(), fontsize=Util.SIZE_LEGEND_TITLE) # for legend title plt.savefig(OUTPUT_FIGURES_PATH / 'RQ3_pairPlot.pdf', bbox_inches="tight") plt.savefig(OUTPUT_FIGURES_PATH / 'RQ3_pairPlot.png', bbox_inches="tight") if (SHOW_FIGURE): plt.show() plt.clf() def pairPlotRatioOfMethodsxCoverage(): g = sns.lmplot(data=df_RQ, x='NEBTM/NTM', y='NCTS/NTS', hue="platform", fit_reg=False, palette=Util.COLOR_PALETTE_COLORFUL, legend=False, markers=["o", "x", "+"], hue_order=Util.FIGURE_ORDER) #col="platform" #plt.tight_layout() ax_aux = g.axes[0, 0] ax_aux.legend(title="", loc="upper center", bbox_to_anchor=(0.5, 1.1), ncol=3, frameon=False) ax_aux.set_xlabel('NEBTM/NTM', fontsize=Util.SIZE_AXES_LABELS) ax_aux.set_ylabel('Throw Statement Line Coverage', fontsize=Util.SIZE_AXES_LABELS) ax_aux.xaxis.set_major_formatter(ticker.PercentFormatter(xmax=1, decimals=0)) ax_aux.yaxis.set_major_formatter(ticker.PercentFormatter(xmax=1, decimals=0)) plt.setp(ax_aux.get_legend().get_texts(), fontsize=Util.SIZE_LEGEND_TEXT) # for legend text plt.setp(ax_aux.get_legend().get_title(), fontsize=Util.SIZE_LEGEND_TITLE) # for legend title plt.savefig(OUTPUT_FIGURES_PATH / 'RQ3_pairPlotTestMethodsCoverage.pdf', bbox_inches="tight") plt.savefig(OUTPUT_FIGURES_PATH / 'RQ3_pairPlotTestMethodsCoverage.png', bbox_inches="tight") if (SHOW_FIGURE): plt.show() plt.clf() def pairPlotTestedExceptionsxCoverage(): g = sns.lmplot(data=df_RQ, x='NDTE/NDUE', y='NCTS/NTS', hue="platform", fit_reg=False, palette=Util.COLOR_PALETTE_COLORFUL, legend=False, markers=["o", "x", "+"], hue_order=Util.FIGURE_ORDER) #col="platform" #plt.tight_layout() ax_aux = g.axes[0, 0] ax_aux.legend(title="", loc="upper center", bbox_to_anchor=(0.5, 1.1), ncol=3, frameon=False) ax_aux.set_xlabel('NDTE/NDUE', fontsize=Util.SIZE_AXES_LABELS) ax_aux.set_ylabel('Throw Statement Line Coverage', fontsize=Util.SIZE_AXES_LABELS) ax_aux.xaxis.set_major_formatter(ticker.PercentFormatter(xmax=1, decimals=0)) ax_aux.yaxis.set_major_formatter(ticker.PercentFormatter(xmax=1, decimals=0)) plt.setp(ax_aux.get_legend().get_texts(), fontsize=Util.SIZE_LEGEND_TEXT) # for legend text plt.setp(ax_aux.get_legend().get_title(), fontsize=Util.SIZE_LEGEND_TITLE) # for legend title plt.savefig(OUTPUT_FIGURES_PATH / 'RQ3_pairPlotTestedExceptionsxCoverage.pdf', bbox_inches="tight") plt.savefig(OUTPUT_FIGURES_PATH / 'RQ3_pairPlotTestedExceptionsxCoverage.png', bbox_inches="tight") if (SHOW_FIGURE): plt.show() plt.clf() def barPlotCoverages(): f, ax = plt.subplots(figsize=(5, 10)) df_sorted = df_RQ.sort_values("tagCoverage", ascending=False) #sns.set_color_codes("muted") sns.barplot(data=df_sorted, x='tagCoverage', y='project', color='#494848', label='Line Coverage') #sns.set_color_codes("pastel") kwargs = {'alpha': 0.7} sns.barplot(data=df_sorted, x='NCTS/NTS', y='project', color='#D4D4D4', **kwargs, label='Throw Statement Line Coverage') ax.legend(title="", loc="upper center", bbox_to_anchor=(0.5, 1.03), ncol=2, frameon=False) #ax.set_xlabel('NCTS/NTS', fontsize=Util.SIZE_AXES_LABELS) ax.set_xlabel('', fontsize=Util.SIZE_AXES_LABELS) ax.set_ylabel('', fontsize=Util.SIZE_AXES_LABELS) #ax.set_ylabel('Line Coverage', fontsize=Util.SIZE_AXES_LABELS) ax.get_xaxis().set_tick_params(direction='out', labelsize=Util.SIZE_AXES_VALUES, gridOn=True) ax.xaxis.set_ticks_position('bottom') ax.xaxis.set_major_formatter(ticker.PercentFormatter(xmax=1, decimals=0)) ytickslabels = [] for p in ax.get_yticklabels(): flag = '' platformAux = df_RQ.loc[df_RQ['project'] == p.get_text(), ['platform']].values[0][0] if platformAux == 'Desktop/Server': flag = '*' elif platformAux == 'Mobile': flag = '**' elif platformAux == 'Multi-platform': flag = '***' else: flag = '???' ytickslabels.append(p.get_text() + flag) ax.set_yticklabels(ytickslabels) #ax.text(0.73, 45.3, '* Desktop/Server\n** Mobile\n***Multi-platform', style='italic', fontsize=Util.SIZE_AXES_VALUES, ax.text(0.73, 45.45, '* Desktop/Server\n** Mobile\n***Multi-platform', style='italic', fontsize=Util.SIZE_AXES_VALUES, bbox={'facecolor': 'gray', 'alpha': 0.2, 'pad': 10}) plt.setp(ax.get_legend().get_texts(), fontsize=Util.SIZE_LEGEND_TEXT) # for legend text plt.setp(ax.get_legend().get_title(), fontsize=Util.SIZE_LEGEND_TITLE) # for legend title #sns.despine(left=False, right=True) plt.savefig(OUTPUT_FIGURES_PATH / 'RQ3_barPlotCoverageRatios.pdf', bbox_inches="tight") plt.savefig(OUTPUT_FIGURES_PATH / 'RQ3_barPlotCoverageRatios.png', bbox_inches="tight") if (SHOW_FIGURE): plt.show() plt.clf() def barPlotCoveragesSideBySide(): f, ax = plt.subplots(figsize=(5, 10)) df_sorted = df_RQ.sort_values('tagCoverage', ascending=False) #df_aux = df_sorted[['project', 'tagCoverage', 'NCTS/NTS']].set_index('project') df_sorted.rename(columns={'tagCoverage': 'Line Coverage', 'NCTS/NTS': 'Throw Statement Line Coverage'}, inplace=True) df_aux = df_sorted.melt(id_vars='project', value_vars=['Line Coverage', 'Throw Statement Line Coverage']) sns.barplot(data=df_aux, x='value', y='project', hue='variable', palette=['#494848', '#B4B4B4']) # #sns.set_color_codes("muted") # sns.barplot(data=df_sorted, # x='tagCoverage', y='project', color='#494848', label='Line Coverage') # # #sns.set_color_codes("pastel") # kwargs = {'alpha': 0.7} # sns.barplot(data=df_sorted, # x='NCTS/NTS', y='project', color='#D4D4D4', **kwargs, label='Throw Statements Line Coverage') ax.legend(title="", loc="upper center", bbox_to_anchor=(0.5, 1.03), ncol=2, frameon=False) ax.set_xlabel('', fontsize=Util.SIZE_AXES_LABELS) ax.set_ylabel('', fontsize=Util.SIZE_AXES_LABELS) #ax.set_ylabel('Line Coverage', fontsize=Util.SIZE_AXES_LABELS) ax.get_xaxis().set_tick_params(direction='out', labelsize=Util.SIZE_AXES_VALUES, gridOn=True) ax.xaxis.set_ticks_position('bottom') ax.xaxis.set_major_formatter(ticker.PercentFormatter(xmax=1, decimals=0)) ytickslabels = [] for p in ax.get_yticklabels(): flag = '' platformAux = df_RQ.loc[df_RQ['project'] == p.get_text(), ['platform']].values[0][0] if platformAux == 'Desktop/Server': flag = '*' elif platformAux == 'Mobile': flag = '**' elif platformAux == 'Multi-platform': flag = '***' else: flag = '???' ytickslabels.append(p.get_text() + flag) ax.set_yticklabels(ytickslabels) #ax.text(0.73, 45.3, '* Desktop/Server\n** Mobile\n***Multi-platform', style='italic', fontsize=Util.SIZE_AXES_VALUES, ax.text(0.73, 37.65, '* Desktop/Server\n** Mobile\n***Multi-platform', style='italic', fontsize=Util.SIZE_AXES_VALUES, bbox={'facecolor': 'gray', 'alpha': 0.2, 'pad': 10}) ax.get_legend plt.setp(ax.get_legend().get_texts(), fontsize=Util.SIZE_LEGEND_TEXT) # for legend text plt.setp(ax.get_legend().get_title(), fontsize=Util.SIZE_LEGEND_TITLE) # for legend title #sns.despine(left=False, right=True) plt.savefig(OUTPUT_FIGURES_PATH / 'RQ3_barPlotCoverageRatios_sideBySide.pdf', bbox_inches="tight") plt.savefig(OUTPUT_FIGURES_PATH / 'RQ3_barPlotCoverageRatios_sideBySide.png', bbox_inches="tight") if (SHOW_FIGURE): plt.show() plt.clf() def barPlotCoverages(): f, ax = plt.subplots(figsize=(5, 10)) df_sorted = df_RQ.sort_values("tagCoverage", ascending=False) #sns.set_color_codes("muted") sns.barplot(data=df_sorted, x='tagCoverage', y='project', color='#494848', label='Line Coverage') #sns.set_color_codes("pastel") kwargs = {'alpha': 0.7} sns.barplot(data=df_sorted, x='NCTS/NTS', y='project', color='#D4D4D4', **kwargs, label='Throw Statement Line Coverage') ax.legend(title="", loc="upper center", bbox_to_anchor=(0.5, 1.03), ncol=2, frameon=False) #ax.set_xlabel('NCTS/NTS', fontsize=Util.SIZE_AXES_LABELS) ax.set_xlabel('', fontsize=Util.SIZE_AXES_LABELS) ax.set_ylabel('', fontsize=Util.SIZE_AXES_LABELS) #ax.set_ylabel('Line Coverage', fontsize=Util.SIZE_AXES_LABELS) ax.get_xaxis().set_tick_params(direction='out', labelsize=Util.SIZE_AXES_VALUES, gridOn=True) ax.xaxis.set_ticks_position('bottom') ax.xaxis.set_major_formatter(ticker.PercentFormatter(xmax=1, decimals=0)) ytickslabels = [] for p in ax.get_yticklabels(): flag = '' platformAux = df_RQ.loc[df_RQ['project'] == p.get_text(), ['platform']].values[0][0] if platformAux == 'Desktop/Server': flag = '*' elif platformAux == 'Mobile': flag = '**' elif platformAux == 'Multi-platform': flag = '***' else: flag = '???' ytickslabels.append(p.get_text() + flag) ax.set_yticklabels(ytickslabels) #ax.text(0.73, 45.3, '* Desktop/Server\n** Mobile\n***Multi-platform', style='italic', fontsize=Util.SIZE_AXES_VALUES, ax.text(0.73, 45.45, '* Desktop/Server\n** Mobile\n***Multi-platform', style='italic', fontsize=Util.SIZE_AXES_VALUES, bbox={'facecolor': 'gray', 'alpha': 0.2, 'pad': 10}) plt.setp(ax.get_legend().get_texts(), fontsize=Util.SIZE_LEGEND_TEXT) # for legend text plt.setp(ax.get_legend().get_title(), fontsize=Util.SIZE_LEGEND_TITLE) # for legend title #sns.despine(left=False, right=True) plt.savefig(OUTPUT_FIGURES_PATH / 'RQ3_barPlotCoverageRatios.pdf', bbox_inches="tight") plt.savefig(OUTPUT_FIGURES_PATH / 'RQ3_barPlotCoverageRatios.png', bbox_inches="tight") if (SHOW_FIGURE): plt.show() plt.clf() def coveredThrowStatementsRatio_histogram(): bins = np.arange(0, 1, 0.2) g = sns.FacetGrid(df_RQ, sharex=False) g = (g.map(sns.distplot, "NCTS/NTS", kde=False, rug=True, bins=bins, color="#494848")).set(xticks=[0.0, 0.2, 0.4, 0.6, 0.8, 1]) for ax in g.axes.flat: # ax.get_yaxis().set_tick_params(labelsize='x-large', which="major") # labels ao redor dos graficos # ax.set_xlabel(ax.get_xlabel(), fontsize='20') ax.set_xlabel('Throw Statement Line Coverage', fontsize=Util.SIZE_AXES_LABELS) ax.set_ylabel(ax.get_ylabel(), fontsize=Util.SIZE_AXES_LABELS) # títulos em cima dos graficos if ax.get_title(): ax.set_title(ax.get_title().split('=')[1], fontsize=Util.SIZE_AXES_TITLE) ax.yaxis.grid(True, linewidth=1, which="major") ax.get_yaxis().set_tick_params(labelsize=Util.SIZE_AXES_TITLE, which="major") ax.get_xaxis().set_tick_params(direction='out', labelsize=Util.SIZE_AXES_TITLE) ax.xaxis.set_major_formatter(ticker.PercentFormatter(xmax=1, decimals=0)) plt.tight_layout() plt.savefig(OUTPUT_FIGURES_PATH / 'RQ3_coveredThrowStatementsRatio_histogram.png', bbox_inches="tight") plt.savefig(OUTPUT_FIGURES_PATH / 'RQ3_coveredThrowStatementsRatio_histogram.pdf', bbox_inches="tight") if (SHOW_FIGURE): plt.show() plt.clf() ############ RQ4 #################### def violinPlotRatio_NTSCE_NTS(): f.write("\n\n ############## RQ4 - PART 1 ##############\n") fig = plt.subplots(figsize=(6, 2)) gs = gridspec.GridSpec(1, 2, width_ratios=[3, 1.5], wspace=.02, hspace=.05) ax0 = plt.subplot(gs[0]) ax1 = plt.subplot(gs[1]) sns.violinplot(x="domain", y="NTSCE/NTS", data=df_RQ, cut=0, inner="box", hue="platform", hue_order=Util.FIGURE_ORDER, scale="width", palette=Util.COLOR_PALETTE, linewidth=1.5, ax=ax0, saturation=1) sns.violinplot(x="platform", y="NTSCE/NTS", data=df_RQ, cut=0, inner="box", scale="width", order=Util.FIGURE_ORDER, palette=Util.COLOR_PALETTE, linewidth=1.5, ax=ax1, saturation=1) ax0.set(xlabel='', ylabel='', title='', yticks=[0, 0.2, 0.4, 0.6, 0.8, 1]) ax0.set_ylabel(ax0.get_ylabel(), fontsize=Util.SIZE_AXES_LABELS) ax0.legend(title="", loc="upper center", bbox_to_anchor=(0.75, 1.20), ncol=3, frameon=False) ax0.yaxis.grid(True, linewidth=1, which="major") plt.setp(ax0.get_legend().get_texts(), fontsize=Util.SIZE_LEGEND_TEXT) # for legend text plt.setp(ax0.get_legend().get_title(), fontsize=Util.SIZE_LEGEND_TITLE) # for legend title ax0.get_yaxis().set_tick_params(labelsize=Util.SIZE_AXES_VALUES, which="major") ax0.get_xaxis().set_tick_params(direction='out', labelsize=Util.SIZE_AXES_VALUES) ax0.xaxis.set_ticks_position('bottom') ax0.yaxis.set_major_formatter(ticker.PercentFormatter(xmax=1, decimals=0)) ax1.set(xlabel='', ylabel='', title='', xticks=[1], yticks=[0, 0.2, 0.4, 0.6, 0.8, 1]) ax1.set_xticklabels(['All']) ax1.yaxis.grid(True, linewidth=1, which="major") ax1.get_yaxis().set_tick_params(labelsize=Util.SIZE_AXES_VALUES, which="major") ax1.get_xaxis().set_tick_params(direction='out', labelsize=Util.SIZE_AXES_VALUES) ax1.xaxis.set_ticks_position('bottom') ax1.yaxis.set_major_formatter(ticker.PercentFormatter(xmax=1, decimals=0)) ax1.set_yticklabels([]) # Show graphic plt.tight_layout() plt.savefig(OUTPUT_FIGURES_PATH / 'RQ4_NTSCE_NTS_platform.pdf', bbox_inches="tight") plt.savefig(OUTPUT_FIGURES_PATH / 'RQ4_NTSCE_NTS_platform.png', bbox_inches="tight") if (SHOW_FIGURE): plt.show() plt.clf() def violinPlotRatio_NTSSTPE_NTS(): platformList = df_RQ["platform"].unique() domainList = df_RQ["domain"].unique() # df_aux = [] # for platform in platformList: # ratio = 0.2 # df_platform_total = df_RQ[(df_RQ['platform'] == platform)] # df_platform_belowTo20 = df_RQ[ # (df_RQ['platform'] == platform) & (df_RQ['NEBTM/NTM'] <= ratio)] # f.write("NEBTM_NTM <= 20% | " + platform + ":" + str(len(df_platform_belowTo20)) + " out of " + str( # len(df_platform_total)) + str("({:.2%})").format(len(df_platform_belowTo20) / len(df_platform_total))\n) # for domain in domainList: # df_domain_total = df_RQ[(df_RQ["domain"] == domain) & (df_RQ['platform'] == platform)] # df_belowTo20 = df_RQ[ # (df_RQ["domain"] == domain) & (df_RQ['platform'] == platform) & (df_RQ['NEBTM/NTM'] <= ratio)] # f.write("NEBTM_NTM <= 20% | " + platform + "/" + domain + ":" + str(len(df_belowTo20)) + " out of " + str( # len(df_domain_total)) + str("({:.2%})").format(len(df_belowTo20) / len(df_domain_total))\n) fig = plt.subplots(figsize=(6, 2)) gs = gridspec.GridSpec(1, 2, width_ratios=[3, 1.5], wspace=.02, hspace=.05) ax0 = plt.subplot(gs[0]) ax1 = plt.subplot(gs[1]) df_withoutNaN = df_RQ.dropna(subset=['NTSCE/NTS']) sns.violinplot(x="domain", y="NTSSTPE/NTS", data=df_RQ, cut=0, inner="box", hue="platform", hue_order=Util.FIGURE_ORDER, scale="width", palette=Util.COLOR_PALETTE, linewidth=1.5, ax=ax0, saturation=1) sns.violinplot(x="platform", y="NTSSTPE/NTS", data=df_RQ, cut=0, inner="box", scale="width", order=Util.FIGURE_ORDER, palette=Util.COLOR_PALETTE, linewidth=1.5, ax=ax1, saturation=1) ax0.set(xlabel='', ylabel='', title='', yticks=[0, 0.2, 0.4, 0.6, 0.8, 1]) ax0.set_ylabel(ax0.get_ylabel(), fontsize=Util.SIZE_AXES_LABELS) # ax0.set_ylim(0, 0.4) # ax0.legend(title="", loc="upper center") ax0.legend(title="", loc="upper center", bbox_to_anchor=(0.75, 1.20), ncol=3, frameon=False) ax0.yaxis.grid(True, linewidth=1, which="major") plt.setp(ax0.get_legend().get_texts(), fontsize=Util.SIZE_LEGEND_TEXT) # for legend text plt.setp(ax0.get_legend().get_title(), fontsize=Util.SIZE_LEGEND_TITLE) # for legend title ax0.get_yaxis().set_tick_params(labelsize=Util.SIZE_AXES_VALUES, which="major") ax0.get_xaxis().set_tick_params(direction='out', labelsize=Util.SIZE_AXES_VALUES) ax0.xaxis.set_ticks_position('bottom') ax0.yaxis.set_major_formatter(ticker.PercentFormatter(xmax=1, decimals=0)) ax1.set(xlabel='', ylabel='', title='', xticks=[1], yticks=[0, 0.2, 0.4, 0.6, 0.8, 1]) # ax1.set_xticks(5) ax1.set_xticklabels(['All']) ax1.yaxis.grid(True, linewidth=1, which="major") ax1.get_yaxis().set_tick_params(labelsize=Util.SIZE_AXES_VALUES, which="major") ax1.get_xaxis().set_tick_params(direction='out', labelsize=Util.SIZE_AXES_VALUES) ax1.xaxis.set_ticks_position('bottom') ax1.yaxis.set_major_formatter(ticker.PercentFormatter(xmax=1, decimals=0)) ax1.set_yticklabels([]) # ax1.set_ylim(0, 0.4) # Show graphic plt.tight_layout() plt.savefig(OUTPUT_FIGURES_PATH / 'RQ4_NTSSTPE_NTS_platform.pdf', bbox_inches="tight") plt.savefig(OUTPUT_FIGURES_PATH / 'RQ4_NTSSTPE_NTS_platform.png', bbox_inches="tight") if (SHOW_FIGURE): plt.show() plt.clf() def countProjectsWhere_NTSCE_RATIO_isBigger(df_aux): df_clean = df_aux[(df_aux['NTSCE/NTS'] > df_aux['NTSSTPE/NTS'])] f.write(f'Number of projects where NTSCE/NTS > NTSSTPE/NTS = {len(df_clean)} : {df_clean["project"].values.tolist()}\n') def violinPlotRatio_NTSCE_NTS_NTSSTPE_NTS_MELTED(): fig, ax = plt.subplots(figsize=(6, 2)) countProjectsWhere_NTSCE_RATIO_isBigger(df_RQ.dropna(subset=['project', 'NTSCE/NTS', 'NTSSTPE/NTS'])) df_withoutNaN = df_RQ.dropna(subset=['NTSCE/NTS', 'NTSSTPE/NTS']) df_melted =
pd.melt(df_withoutNaN, id_vars=["project", "platform"], value_vars=['NTSCE/NTS', 'NTSSTPE/NTS'])
pandas.melt
import numpy as np import pandas as pd import re class TweetAnalyzer(): """ Analyzing and categorizing content from tweets. """ def clean_tweet(self, tweet): return ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)", " ", tweet).split()) def tweets_to_data_frame1(self, tweets): df = pd.DataFrame(data=[tweet.text for tweet in tweets], columns=['tweets']) df['id'] = np.array([tweet.id for tweet in tweets]) df['len'] = np.array([len(tweet.text) for tweet in tweets]) df['date'] = np.array([tweet.created_at for tweet in tweets]) df['source'] = np.array([tweet.source for tweet in tweets]) df['likes'] = np.array([tweet.favorite_count for tweet in tweets]) df['retweets'] = np.array([tweet.retweet_count for tweet in tweets]) #df['tweets'] = np.array([api.u for tweet in tweets]) return df def tweets_to_data_frame2(self, tweets): df =
pd.DataFrame(data=[tweet.text for tweet in tweets], columns=['tweets'])
pandas.DataFrame
from collections import OrderedDict from datetime import timedelta import numpy as np import pytest from pandas.core.dtypes.dtypes import CategoricalDtype, DatetimeTZDtype import pandas as pd from pandas import ( Categorical, DataFrame, Series, Timedelta, Timestamp, _np_version_under1p14, concat, date_range, option_context, ) from pandas.core.arrays import integer_array import pandas.util.testing as tm def _check_cast(df, v): """ Check if all dtypes of df are equal to v """ assert all(s.dtype.name == v for _, s in df.items()) class TestDataFrameDataTypes: def test_concat_empty_dataframe_dtypes(self): df = DataFrame(columns=list("abc")) df["a"] = df["a"].astype(np.bool_) df["b"] = df["b"].astype(np.int32) df["c"] = df["c"].astype(np.float64) result = pd.concat([df, df]) assert result["a"].dtype == np.bool_ assert result["b"].dtype == np.int32 assert result["c"].dtype == np.float64 result = pd.concat([df, df.astype(np.float64)]) assert result["a"].dtype == np.object_ assert result["b"].dtype == np.float64 assert result["c"].dtype == np.float64 def test_empty_frame_dtypes_ftypes(self): empty_df = pd.DataFrame() tm.assert_series_equal(empty_df.dtypes, pd.Series(dtype=np.object)) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(empty_df.ftypes, pd.Series(dtype=np.object)) nocols_df = pd.DataFrame(index=[1, 2, 3]) tm.assert_series_equal(nocols_df.dtypes, pd.Series(dtype=np.object)) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(nocols_df.ftypes, pd.Series(dtype=np.object)) norows_df = pd.DataFrame(columns=list("abc")) tm.assert_series_equal( norows_df.dtypes, pd.Series(np.object, index=list("abc")) ) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal( norows_df.ftypes, pd.Series("object:dense", index=list("abc")) ) norows_int_df = pd.DataFrame(columns=list("abc")).astype(np.int32) tm.assert_series_equal( norows_int_df.dtypes, pd.Series(np.dtype("int32"), index=list("abc")) ) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal( norows_int_df.ftypes, pd.Series("int32:dense", index=list("abc")) ) odict = OrderedDict df = pd.DataFrame(odict([("a", 1), ("b", True), ("c", 1.0)]), index=[1, 2, 3]) ex_dtypes = pd.Series( odict([("a", np.int64), ("b", np.bool), ("c", np.float64)]) ) ex_ftypes = pd.Series( odict([("a", "int64:dense"), ("b", "bool:dense"), ("c", "float64:dense")]) ) tm.assert_series_equal(df.dtypes, ex_dtypes) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(df.ftypes, ex_ftypes) # same but for empty slice of df tm.assert_series_equal(df[:0].dtypes, ex_dtypes) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(df[:0].ftypes, ex_ftypes) def test_datetime_with_tz_dtypes(self): tzframe = DataFrame( { "A": date_range("20130101", periods=3), "B": date_range("20130101", periods=3, tz="US/Eastern"), "C": date_range("20130101", periods=3, tz="CET"), } ) tzframe.iloc[1, 1] = pd.NaT tzframe.iloc[1, 2] = pd.NaT result = tzframe.dtypes.sort_index() expected = Series( [ np.dtype("datetime64[ns]"), DatetimeTZDtype("ns", "US/Eastern"), DatetimeTZDtype("ns", "CET"), ], ["A", "B", "C"], ) tm.assert_series_equal(result, expected) def test_dtypes_are_correct_after_column_slice(self): # GH6525 df = pd.DataFrame(index=range(5), columns=list("abc"), dtype=np.float_) odict = OrderedDict tm.assert_series_equal( df.dtypes, pd.Series(odict([("a", np.float_), ("b", np.float_), ("c", np.float_)])), ) tm.assert_series_equal( df.iloc[:, 2:].dtypes, pd.Series(odict([("c", np.float_)])) ) tm.assert_series_equal( df.dtypes, pd.Series(odict([("a", np.float_), ("b", np.float_), ("c", np.float_)])), ) def test_select_dtypes_include_using_list_like(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(include=[np.number]) ei = df[["b", "c", "d", "k"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=[np.number], exclude=["timedelta"]) ei = df[["b", "c", "d"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=[np.number, "category"], exclude=["timedelta"]) ei = df[["b", "c", "d", "f"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=["datetime"]) ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=["datetime64"]) ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=["datetimetz"]) ei = df[["h", "i"]] tm.assert_frame_equal(ri, ei) with pytest.raises(NotImplementedError, match=r"^$"): df.select_dtypes(include=["period"]) def test_select_dtypes_exclude_using_list_like(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], } ) re = df.select_dtypes(exclude=[np.number]) ee = df[["a", "e"]] tm.assert_frame_equal(re, ee) def test_select_dtypes_exclude_include_using_list_like(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("now", periods=3).values, } ) exclude = (np.datetime64,) include = np.bool_, "integer" r = df.select_dtypes(include=include, exclude=exclude) e = df[["b", "c", "e"]] tm.assert_frame_equal(r, e) exclude = ("datetime",) include = "bool", "int64", "int32" r = df.select_dtypes(include=include, exclude=exclude) e = df[["b", "e"]] tm.assert_frame_equal(r, e) def test_select_dtypes_include_using_scalars(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g":
pd.date_range("20130101", periods=3)
pandas.date_range
from openff.toolkit.typing.engines.smirnoff import ForceField from openff.toolkit.topology import Molecule, Topology from biopandas.pdb import PandasPdb import matplotlib.pyplot as plt from operator import itemgetter from mendeleev import element from simtk.openmm import app from scipy import optimize import subprocess as sp from sys import stdout import pandas as pd import numpy as np import statistics import itertools import parmed import pickle import shutil import simtk import scipy import time import math import sys import ast import re import os BOHRS_PER_ANGSTROM = 0.529 HARTREE_PER_KCAL_MOL = 627.509391 #kcal/mol * A^2 to kJ/mol * nm^2 KCAL_MOL_PER_KJ_MOL = 4.184 ANGSTROMS_PER_NM = 10.0 RADIANS_PER_DEGREE = np.pi / 180.0 method_basis_scale_dict = { "HF STO-3G": 0.817, "HF 3-21G": 0.906, "HF 3-21G*": 0.903, "HF 6-31G": 0.903, "HF 6-31G*": 0.899, "HF 6-31G**": 0.903, "HF 6-31+G**": 0.904, "HF 6-311G*": 0.904, "HF 6-311G**": 0.909, "HF TZVP": 0.909, "HF cc-pVDZ": 0.908, "HF cc-pVTZ": 0.91, "HF cc-pVQZ": 0.908, "HF aug-cc-pVDZ": 0.911, "HF aug-cc-pVTZ": 0.91, "HF aug-cc-pVQZ": 0.909, "HF daug-cc-pVDZ": 0.912, "HF daug-cc-pVTZ": 0.905, "ROHF 3-21G": 0.907, "ROHF 3-21G*": 0.909, "ROHF 6-31G": 0.895, "ROHF 6-31G*": 0.89, "ROHF 6-31G**": 0.855, "ROHF 6-31+G**": 0.856, "ROHF 6-311G*": 0.856, "ROHF 6-311G**": 0.913, "ROHF cc-pVDZ": 0.861, "ROHF cc-pVTZ": 0.901, "LSDA STO-3G": 0.896, "LSDA 3-21G": 0.984, "LSDA 3-21G*": 0.982, "LSDA 6-31G": 0.98, "LSDA 6-31G*": 0.981, "LSDA 6-31G**": 0.981, "LSDA 6-31+G**": 0.985, "LSDA 6-311G*": 0.984, "LSDA 6-311G**": 0.988, "LSDA TZVP": 0.988, "LSDA cc-pVDZ": 0.989, "LSDA cc-pVTZ": 0.989, "LSDA aug-cc-pVDZ": 0.989, "LSDA aug-cc-pVTZ": 0.991, "BLYP STO-3G": 0.925, "BLYP 3-21G": 0.995, "BLYP 3-21G*": 0.994, "BLYP 6-31G": 0.992, "BLYP 6-31G*": 0.992, "BLYP 6-31G**": 0.992, "BLYP 6-31+G**": 0.995, "BLYP 6-311G*": 0.998, "BLYP 6-311G**": 0.996, "BLYP TZVP": 0.998, "BLYP cc-pVDZ": 1.002, "BLYP cc-pVTZ": 0.997, "BLYP aug-cc-pVDZ": 0.998, "BLYP aug-cc-pVTZ": 0.997, "B1B95 STO-3G": 0.883, "B1B95 3-21G": 0.957, "B1B95 3-21G*": 0.955, "B1B95 6-31G": 0.954, "B1B95 6-31G*": 0.949, "B1B95 6-31G**": 0.955, "B1B95 6-31+G**": 0.957, "B1B95 6-311G*": 0.959, "B1B95 6-311G**": 0.96, "B1B95 TZVP": 0.957, "B1B95 cc-pVDZ": 0.961, "B1B95 cc-pVTZ": 0.957, "B1B95 aug-cc-pVDZ": 0.958, "B1B95 aug-cc-pVTZ": 0.959, "B3LYP STO-3G": 0.892, "B3LYP 3-21G": 0.965, "B3LYP 3-21G*": 0.962, "B3LYP 6-31G": 0.962, "B3LYP 6-31G*": 0.96, "B3LYP 6-31G**": 0.961, "B3LYP 6-31+G**": 0.964, "B3LYP 6-311G*": 0.966, "B3LYP 6-311G**": 0.967, "B3LYP TZVP": 0.965, "B3LYP cc-pVDZ": 0.97, "B3LYP cc-pVTZ": 0.967, "B3LYP cc-pVQZ": 0.969, "B3LYP aug-cc-pVDZ": 0.97, "B3LYP aug-cc-pVTZ": 0.968, "B3LYP aug-cc-pVQZ": 0.969, "B3PW91 STO-3G": 0.885, "B3PW91 3-21G": 0.961, "B3PW91 3-21G*": 0.959, "B3PW91 6-31G": 0.958, "B3PW91 6-31G*": 0.957, "B3PW91 6-31G**": 0.958, "B3PW91 6-31+G**": 0.96, "B3PW91 6-311G*": 0.963, "B3PW91 6-311G**": 0.963, "B3PW91 TZVP": 0.964, "B3PW91 cc-pVDZ": 0.965, "B3PW91 cc-pVTZ": 0.962, "B3PW91 aug-cc-pVDZ": 0.965, "B3PW91 aug-cc-pVTZ": 0.965, "mPW1PW91 STO-3G": 0.879, "mPW1PW91 3-21G": 0.955, "mPW1PW91 3-21G*": 0.95, "mPW1PW91 6-31G": 0.947, "mPW1PW91 6-31G*": 0.948, "mPW1PW91 6-31G**": 0.952, "mPW1PW91 6-31+G**": 0.952, "mPW1PW91 6-311G*": 0.954, "mPW1PW91 6-311G**": 0.957, "mPW1PW91 TZVP": 0.954, "mPW1PW91 cc-pVDZ": 0.958, "mPW1PW91 cc-pVTZ": 0.959, "mPW1PW91 aug-cc-pVDZ": 0.958, "mPW1PW91 aug-cc-pVTZ": 0.958, "PBEPBE STO-3G": 0.914, "PBEPBE 3-21G": 0.991, "PBEPBE 3-21G*": 0.954, "PBEPBE 6-31G": 0.986, "PBEPBE 6-31G*": 0.986, "PBEPBE 6-31G**": 0.986, "PBEPBE 6-31+G**": 0.989, "PBEPBE 6-311G*": 0.99, "PBEPBE 6-311G**": 0.991, "PBEPBE TZVP": 0.989, "PBEPBE cc-pVDZ": 0.994, "PBEPBE cc-pVTZ": 0.993, "PBEPBE aug-cc-pVDZ": 0.994, "PBEPBE aug-cc-pVTZ": 0.994, "PBE1PBE STO-3G": 0.882, "PBE1PBE 3-21G": 0.96, "PBE1PBE 3-21G*": 0.96, "PBE1PBE 6-31G": 0.956, "PBE1PBE 6-31G*": 0.95, "PBE1PBE 6-31G**": 0.953, "PBE1PBE 6-31+G**": 0.955, "PBE1PBE 6-311G*": 0.959, "PBE1PBE 6-311G**": 0.959, "PBE1PBE TZVP": 0.96, "PBE1PBE cc-pVDZ": 0.962, "PBE1PBE cc-pVTZ": 0.961, "PBE1PBE aug-cc-pVDZ": 0.962, "PBE1PBE aug-cc-pVTZ": 0.962, "HSEh1PBE STO-3G": 0.883, "HSEh1PBE 3-21G": 0.963, "HSEh1PBE 3-21G*": 0.96, "HSEh1PBE 6-31G": 0.957, "HSEh1PBE 6-31G*": 0.951, "HSEh1PBE 6-31G**": 0.954, "HSEh1PBE 6-31+G**": 0.955, "HSEh1PBE 6-311G*": 0.96, "HSEh1PBE 6-311G**": 0.96, "HSEh1PBE TZVP": 0.96, "HSEh1PBE cc-pVDZ": 0.962, "HSEh1PBE cc-pVTZ": 0.961, "HSEh1PBE aug-cc-pVDZ": 0.962, "HSEh1PBE aug-cc-pVTZ": 0.962, "TPSSh 3-21G": 0.969, "TPSSh 3-21G*": 0.966, "TPSSh 6-31G": 0.962, "TPSSh 6-31G*": 0.959, "TPSSh 6-31G**": 0.959, "TPSSh 6-31+G**": 0.963, "TPSSh 6-311G*": 0.963, "TPSSh TZVP": 0.964, "TPSSh cc-pVDZ": 0.972, "TPSSh cc-pVTZ": 0.968, "TPSSh aug-cc-pVDZ": 0.967, "TPSSh aug-cc-pVTZ": 0.965, "B97D3 3-21G": 0.983, "B97D3 6-31G*": 0.98, "B97D3 6-31+G**": 0.983, "B97D3 6-311G**": 0.986, "B97D3 TZVP": 0.986, "B97D3 cc-pVDZ": 0.992, "B97D3 cc-pVTZ": 0.986, "B97D3 aug-cc-pVTZ": 0.985, "MP2 STO-3G": 0.872, "MP2 3-21G": 0.955, "MP2 3-21G*": 0.951, "MP2 6-31G": 0.957, "MP2 6-31G*": 0.943, "MP2 6-31G**": 0.937, "MP2 6-31+G**": 0.941, "MP2 6-311G*": 0.95, "MP2 6-311G**": 0.95, "MP2 TZVP": 0.948, "MP2 cc-pVDZ": 0.953, "MP2 cc-pVTZ": 0.95, "MP2 cc-pVQZ": 0.948, "MP2 aug-cc-pVDZ": 0.959, "MP2 aug-cc-pVTZ": 0.953, "MP2 aug-cc-pVQZ": 0.95, "MP2=FULL STO-3G": 0.889, "MP2=FULL 3-21G": 0.955, "MP2=FULL 3-21G*": 0.948, "MP2=FULL 6-31G": 0.95, "MP2=FULL 6-31G*": 0.942, "MP2=FULL 6-31G**": 0.934, "MP2=FULL 6-31+G**": 0.939, "MP2=FULL 6-311G*": 0.947, "MP2=FULL 6-311G**": 0.949, "MP2=FULL TZVP": 0.953, "MP2=FULL cc-pVDZ": 0.95, "MP2=FULL cc-pVTZ": 0.949, "MP2=FULL cc-pVQZ": 0.957, "MP2=FULL aug-cc-pVDZ": 0.969, "MP2=FULL aug-cc-pVTZ": 0.951, "MP2=FULL aug-cc-pVQZ": 0.956, "MP3 STO-3G": 0.894, "MP3 3-21G": 0.968, "MP3 3-21G*": 0.965, "MP3 6-31G": 0.966, "MP3 6-31G*": 0.939, "MP3 6-31G**": 0.935, "MP3 6-31+G**": 0.931, "MP3 TZVP": 0.935, "MP3 cc-pVDZ": 0.948, "MP3 cc-pVTZ": 0.945, "MP3=FULL 6-31G*": 0.938, "MP3=FULL 6-31+G**": 0.932, "MP3=FULL TZVP": 0.934, "MP3=FULL cc-pVDZ": 0.94, "MP3=FULL cc-pVTZ": 0.933, "B2PLYP 6-31G*": 0.949, "B2PLYP 6-31+G**": 0.952, "B2PLYP TZVP": 0.954, "B2PLYP cc-pVDZ": 0.958, "B2PLYP cc-pVTZ": 0.959, "B2PLYP cc-pVQZ": 0.957, "B2PLYP aug-cc-pVTZ": 0.961, "B2PLYP=FULL 3-21G": 0.952, "B2PLYP=FULL 6-31G*": 0.948, "B2PLYP=FULL 6-31+G**": 0.951, "B2PLYP=FULL TZVP": 0.954, "B2PLYP=FULL cc-pVDZ": 0.959, "B2PLYP=FULL cc-pVTZ": 0.956, "B2PLYP=FULL aug-cc-pVDZ": 0.962, "B2PLYP=FULL aug-cc-pVTZ": 0.959, "CID 3-21G": 0.932, "CID 3-21G*": 0.931, "CID 6-31G": 0.935, "CID 6-31G*": 0.924, "CID 6-31G**": 0.924, "CID 6-31+G**": 0.924, "CID 6-311G*": 0.929, "CID cc-pVDZ": 0.924, "CID cc-pVTZ": 0.927, "CISD 3-21G": 0.941, "CISD 3-21G*": 0.934, "CISD 6-31G": 0.938, "CISD 6-31G*": 0.926, "CISD 6-31G**": 0.918, "CISD 6-31+G**": 0.922, "CISD 6-311G*": 0.925, "CISD cc-pVDZ": 0.922, "CISD cc-pVTZ": 0.93, "QCISD 3-21G": 0.969, "QCISD 3-21G*": 0.961, "QCISD 6-31G": 0.964, "QCISD 6-31G*": 0.952, "QCISD 6-31G**": 0.941, "QCISD 6-31+G**": 0.945, "QCISD 6-311G*": 0.957, "QCISD 6-311G**": 0.954, "QCISD TZVP": 0.955, "QCISD cc-pVDZ": 0.959, "QCISD cc-pVTZ": 0.956, "QCISD aug-cc-pVDZ": 0.969, "QCISD aug-cc-pVTZ": 0.962, "CCD 3-21G": 0.972, "CCD 3-21G*": 0.957, "CCD 6-31G": 0.96, "CCD 6-31G*": 0.947, "CCD 6-31G**": 0.938, "CCD 6-31+G**": 0.942, "CCD 6-311G*": 0.955, "CCD 6-311G**": 0.955, "CCD TZVP": 0.948, "CCD cc-pVDZ": 0.957, "CCD cc-pVTZ": 0.934, "CCD aug-cc-pVDZ": 0.965, "CCD aug-cc-pVTZ": 0.957, "CCSD 3-21G": 0.943, "CCSD 3-21G*": 0.943, "CCSD 6-31G": 0.943, "CCSD 6-31G*": 0.944, "CCSD 6-31G**": 0.933, "CCSD 6-31+G**": 0.934, "CCSD 6-311G*": 0.954, "CCSD TZVP": 0.954, "CCSD cc-pVDZ": 0.947, "CCSD cc-pVTZ": 0.941, "CCSD cc-pVQZ": 0.951, "CCSD aug-cc-pVDZ": 0.963, "CCSD aug-cc-pVTZ": 0.956, "CCSD aug-cc-pVQZ": 0.953, "CCSD=FULL 6-31G*": 0.95, "CCSD=FULL TZVP": 0.948, "CCSD=FULL cc-pVTZ": 0.948, "CCSD=FULL aug-cc-pVTZ": 0.951, } element_list = [ ["1 ", "H ", "Hydrogen"], ["2 ", "He", "Helium"], ["3 ", "Li", "Lithium"], ["4 ", "Be", "Beryllium"], ["5 ", "B ", "Boron"], ["6 ", "C ", "Carbon"], ["7 ", "N ", "Nitrogen"], ["8 ", "O ", "Oxygen"], ["9 ", "F ", "Fluorine"], ["10", "Ne", "Neon"], ["11", "Na", "Sodium"], ["12", "Mg", "Magnesium"], ["13", "Al", "Aluminum"], ["14", "Si", "Silicon"], ["15", "P ", "Phosphorus"], ["16", "S ", "Sulfur"], ["17", "Cl", "Chlorine"], ["18", "Ar", "Argon"], ["19", "K ", "Potassium"], ["20", "Ca", "Calcium"], ["21", "Sc", "Scandium"], ["22", "Ti", "Titanium"], ["23", "V ", "Vanadium"], ["24", "Cr", "Chromium"], ["25", "Mn", "Manganese"], ["26", "Fe", "Iron"], ["27", "Co", "Cobalt"], ["28", "Ni", "Nickel"], ["29", "Cu", "Copper"], ["30", "Zn", "Zinc"], ["31", "Ga", "Gallium"], ["32", "Ge", "Germanium"], ["33", "As", "Arsenic"], ["34", "Se", "Selenium"], ["35", "Br", "Bromine"], ["36", "Kr", "Krypton"], ["37", "Rb", "Rubidium"], ["38", "Sr", "Strontium"], ["39", "Y ", "Yttrium"], ["40", "Zr", "Zirconium"], ["41", "Nb", "Niobium"], ["42", "Mo", "Molybdenum"], ["43", "Tc", "Technetium"], ["44", "Ru", "Ruthenium"], ["45", "Rh", "Rhodium"], ["46", "Pd", "Palladium"], ["47", "Ag", "Silver"], ["48", "Cd", "Cadmium"], ["49", "In", "Indium"], ["50", "Sn", "Tin"], ["51", "Sb", "Antimony"], ["52", "Te", "Tellurium"], ["53", "I ", "Iodine"], ["54", "Xe", "Xenon"], ["55", "Cs", "Cesium"], ["56", "Ba", "Barium"], ["57", "La", "Lanthanum"], ["58", "Ce", "Cerium"], ["59", "Pr", "Praseodymium"], ["60", "Nd", "Neodymium"], ["61", "Pm", "Promethium"], ["62", "Sm", "Samarium"], ["63", "Eu", "Europium"], ["64", "Gd", "Gadolinium"], ["65", "Tb", "Terbium"], ["66", "Dy", "Dysprosium"], ["67", "Ho", "Holmium"], ["68", "Er", "Erbium"], ["69", "Tm", "Thulium"], ["70", "Yb", "Ytterbium"], ["71", "Lu", "Lutetium"], ["72", "Hf", "Hafnium"], ["73", "Ta", "Tantalum"], ["74", "W ", "Tungsten"], ["75", "Re", "Rhenium"], ["76", "Os", "Osmium"], ["77", "Ir", "Iridium"], ["78", "Pt", "Platinum"], ["79", "Au", "Gold"], ["80", "Hg", "Mercury"], ["81", "Tl", "Thallium"], ["82", "Pb", "Lead"], ["83", "Bi", "Bismuth"], ["84", "Po", "Polonium"], ["85", "At", "Astatine"], ["86", "Rn", "Radon"], ["87", "Fr", "Francium"], ["88", "Ra", "Radium"], ["89", "Ac", "Actinium"], ["90", "Th", "Thorium"], ["91", "Pa", "Protactinium"], ["92", "U ", "Uranium"], ["93", "Np", "Neptunium"], ["94", "Pu", "Plutonium"], ["95", "Am", "Americium"], ["96", "Cm", "Curium"], ["97", "Bk", "Berkelium"], ["98", "Cf", "Californium"], ["99", "Es", "Einsteinium"], ] def get_vibrational_scaling(functional, basis_set): """ Returns vibrational scaling factor given the functional and the basis set for the QM engine. Parameters ---------- functional: str Functional basis_set: str Basis set Returns ------- vib_scale: float Vibrational scaling factor corresponding to the given the basis_set and the functional. Examples -------- >>> get_vibrational_scaling("QCISD", "6-311G*") 0.957 """ vib_scale = method_basis_scale_dict.get(functional + " " + basis_set) return vib_scale def unit_vector_N(u_BC, u_AB): """ Calculates unit normal vector perpendicular to plane ABC. Parameters ---------- u_BC : (.. , 1, 3) array Unit vector from atom B to atom C. u_AB : (..., 1, 3) array Unit vector from atom A to atom B. Returns ------- u_N : (..., 1, 3) array Unit normal vector perpendicular to plane ABC. Examples -------- >>> u_BC = [0.34040355, 0.62192853, 0.27011169] >>> u_AB = [0.28276792, 0.34232697, 0.02370306] >>> unit_vector_N(u_BC, u_AB) array([-0.65161629, 0.5726879 , -0.49741811]) """ cross_product = np.cross(u_BC, u_AB) norm_u_N = np.linalg.norm(cross_product) u_N = cross_product / norm_u_N return u_N def delete_guest_angle_params(guest_qm_params_file="guest_qm_params.txt"): """ """ f_params = open(guest_qm_params_file, "r") lines_params = f_params.readlines() for i in range(len(lines_params)): if "Begin writing the Angle Parameters" in lines_params[i]: to_begin = int(i) if "Finish writing the Angle Parameters" in lines_params[i]: to_end = int(i) lines_selected = lines_params[:to_begin] + lines_params[to_end + 1 :] with open(guest_qm_params_file, "w") as f_: f_.write("".join(lines_selected)) return def remove_bad_angle_params( guest_qm_params_file="guest_qm_params.txt", angle=1.00, k_angle=500): with open(guest_qm_params_file, "r") as f_params: lines_params = f_params.readlines() for i in range(len(lines_params)): if "Begin writing the Angle Parameters" in lines_params[i]: to_begin = int(i) if "Finish writing the Angle Parameters" in lines_params[i]: to_end = int(i) angle_params = lines_params[to_begin + 1 : to_end] lines_to_omit = [] for i in angle_params: if float(re.findall(r"[-+]?\d+[.]?\d*", i)[0]) < float(angle) or float( re.findall(r"[-+]?\d+[.]?\d*", i)[1] ) > float(k_angle): lines_to_omit.append(i) for b in lines_to_omit: lines_params.remove(b) with open(guest_qm_params_file, "w") as file: for j in lines_params: file.write(j) def get_num_host_atoms(host_pdb): """ Reads the host PDB file and returns the total number of atoms. """ ppdb = PandasPdb() ppdb.read_pdb(host_pdb) no_host_atoms = ppdb.df["ATOM"].shape[0] return no_host_atoms def change_names(inpcrd_file, prmtop_file, pdb_file): command = "cp -r " + inpcrd_file + " system_qmmmrebind.inpcrd" os.system(command) command = "cp -r " + prmtop_file + " system_qmmmrebind.prmtop" os.system(command) command = "cp -r " + pdb_file + " system_qmmmrebind.pdb" os.system(command) def copy_file(source, destination): """ Copies a file from a source to the destination. """ shutil.copy(source, destination) def get_openmm_energies(system_pdb, system_xml): """ Returns decomposed OPENMM energies for the system. Parameters ---------- system_pdb : str Input PDB file system_xml : str Forcefield file in XML format """ pdb = simtk.openmm.app.PDBFile(system_pdb) ff_xml_file = open(system_xml, "r") system = simtk.openmm.XmlSerializer.deserialize(ff_xml_file.read()) integrator = simtk.openmm.LangevinIntegrator( 300 * simtk.unit.kelvin, 1 / simtk.unit.picosecond, 0.002 * simtk.unit.picoseconds, ) simulation = simtk.openmm.app.Simulation(pdb.topology, system, integrator) simulation.context.setPositions(pdb.positions) state = simulation.context.getState( getEnergy=True, getParameters=True, getForces=True ) force_group = [] for i, force in enumerate(system.getForces()): force_group.append(force.__class__.__name__) forcegroups = {} for i in range(system.getNumForces()): force = system.getForce(i) force.setForceGroup(i) forcegroups[force] = i energies = {} for f, i in forcegroups.items(): energies[f] = ( simulation.context.getState(getEnergy=True, groups=2 ** i) .getPotentialEnergy() ._value ) decomposed_energy = [] for key, val in energies.items(): decomposed_energy.append(val) df_energy_openmm = pd.DataFrame( list(zip(force_group, decomposed_energy)), columns=["Energy_term", "Energy_openmm_params"], ) energy_values = [ list( df_energy_openmm.loc[ df_energy_openmm["Energy_term"] == "HarmonicBondForce" ].values[0] )[1], list( df_energy_openmm.loc[ df_energy_openmm["Energy_term"] == "HarmonicAngleForce" ].values[0] )[1], list( df_energy_openmm.loc[ df_energy_openmm["Energy_term"] == "PeriodicTorsionForce" ].values[0] )[1], list( df_energy_openmm.loc[ df_energy_openmm["Energy_term"] == "NonbondedForce" ].values[0] )[1], ] energy_group = [ "HarmonicBondForce", "HarmonicAngleForce", "PeriodicTorsionForce", "NonbondedForce", ] df_energy_open_mm = pd.DataFrame( list(zip(energy_group, energy_values)), columns=["Energy_term", "Energy_openmm_params"], ) df_energy_open_mm = df_energy_open_mm.set_index("Energy_term") print(df_energy_open_mm) def u_PA_from_angles(atom_A, atom_B, atom_C, coords): """ Returns the vector in the plane A,B,C and perpendicular to AB. Parameters ---------- atom_A : int Index of atom A (left, starting from 0). atom_B : int Index of atom B (center, starting from 0). atom_C : int Index of atom C (right, starting from 0). coords : (..., N, 3) array An array which contains the coordinates of all the N atoms. """ diff_AB = coords[atom_B, :] - coords[atom_A, :] norm_diff_AB = np.linalg.norm(diff_AB) u_AB = diff_AB / norm_diff_AB diff_CB = coords[atom_B, :] - coords[atom_C, :] norm_diff_CB = np.linalg.norm(diff_CB) u_CB = diff_CB / norm_diff_CB u_N = unit_vector_N(u_CB, u_AB) u_PA = np.cross(u_N, u_AB) norm_PA = np.linalg.norm(u_PA) u_PA = u_PA / norm_PA return u_PA def force_angle_constant( atom_A, atom_B, atom_C, bond_lengths, eigenvalues, eigenvectors, coords, scaling_1, scaling_2, ): """ Calculates force constant according to Equation 14 of Seminario calculation paper; returns angle (in kcal/mol/rad^2) and equilibrium angle (in degrees). Parameters ---------- atom_A : int Index of atom A (left, starting from 0). atom_B : int Index of atom B (center, starting from 0). atom_C : int Index of atom C (right, starting from 0). bond_lengths : (N, N) array An N * N array containing the bond lengths for all the possible pairs of atoms. eigenvalues : (N, N, 3) array A numpy array of shape (N, N, 3) containing eigenvalues of the hessian matrix, where N is the total number of atoms. eigenvectors : (3, 3, N, N) array A numpy array of shape (3, 3, N, N) containing eigenvectors of the hessian matrix. coords : (N, 3) array A numpy array of shape (N, 3) having the X, Y and Z coordinates of all N atoms. scaling_1 : float Factor to scale the projections of eigenvalues for AB. scaling_2 : float Factor to scale the projections of eigenvalues for BC. Returns ------- k_theta : float Force angle constant calculated using modified seminario method. k_0 : float Equilibrium angle between AB and BC. """ # Vectors along bonds calculated diff_AB = coords[atom_B, :] - coords[atom_A, :] norm_diff_AB = np.linalg.norm(diff_AB) u_AB = diff_AB / norm_diff_AB diff_CB = coords[atom_B, :] - coords[atom_C, :] norm_diff_CB = np.linalg.norm(diff_CB) u_CB = diff_CB / norm_diff_CB # Bond lengths and eigenvalues found bond_length_AB = bond_lengths[atom_A, atom_B] eigenvalues_AB = eigenvalues[atom_A, atom_B, :] eigenvectors_AB = eigenvectors[0:3, 0:3, atom_A, atom_B] bond_length_BC = bond_lengths[atom_B, atom_C] eigenvalues_CB = eigenvalues[atom_C, atom_B, :] eigenvectors_CB = eigenvectors[0:3, 0:3, atom_C, atom_B] # Normal vector to angle plane found u_N = unit_vector_N(u_CB, u_AB) u_PA = np.cross(u_N, u_AB) norm_u_PA = np.linalg.norm(u_PA) u_PA = u_PA / norm_u_PA u_PC = np.cross(u_CB, u_N) norm_u_PC = np.linalg.norm(u_PC) u_PC = u_PC / norm_u_PC sum_first = 0 sum_second = 0 # Projections of eigenvalues for i in range(0, 3): eig_AB_i = eigenvectors_AB[:, i] eig_BC_i = eigenvectors_CB[:, i] sum_first = sum_first + ( eigenvalues_AB[i] * abs(dot_product(u_PA, eig_AB_i)) ) sum_second = sum_second + ( eigenvalues_CB[i] * abs(dot_product(u_PC, eig_BC_i)) ) # Scaling due to additional angles - Modified Seminario Part sum_first = sum_first / scaling_1 sum_second = sum_second / scaling_2 # Added as two springs in series k_theta = (1 / ((bond_length_AB ** 2) * sum_first)) + ( 1 / ((bond_length_BC ** 2) * sum_second) ) k_theta = 1 / k_theta k_theta = -k_theta # Change to OPLS form k_theta = abs(k_theta * 0.5) # Change to OPLS form # Equilibrium Angle theta_0 = math.degrees(math.acos(np.dot(u_AB, u_CB))) # If the vectors u_CB and u_AB are linearly dependent u_N cannot be defined. # This case is dealt with here : if abs(sum((u_CB) - (u_AB))) < 0.01 or ( abs(sum((u_CB) - (u_AB))) > 1.99 and abs(sum((u_CB) - (u_AB))) < 2.01 ): scaling_1 = 1 scaling_2 = 1 [k_theta, theta_0] = force_angle_constant_special_case( atom_A, atom_B, atom_C, bond_lengths, eigenvalues, eigenvectors, coords, scaling_1, scaling_2, ) return k_theta, theta_0 def dot_product(u_PA, eig_AB): """ Returns the dot product of two vectors. Parameters ---------- u_PA : (..., 1, 3) array Unit vector perpendicular to AB and in the plane of A, B, C. eig_AB : (..., 3, 3) array Eigenvectors of the hessian matrix for the bond AB. """ x = 0 for i in range(0, 3): x = x + u_PA[i] * eig_AB[i].conjugate() return x def force_angle_constant_special_case( atom_A, atom_B, atom_C, bond_lengths, eigenvalues, eigenvectors, coords, scaling_1, scaling_2, ): """ Calculates force constant according to Equation 14 of Seminario calculation paper when the vectors u_CB and u_AB are linearly dependent and u_N cannot be defined. It instead takes samples of u_N across a unit sphere for the calculation; returns angle (in kcal/mol/rad^2) and equilibrium angle in degrees. Parameters ---------- atom_A : int Index of atom A (left, starting from 0). atom_B : int Index of atom B (center, starting from 0). atom_C : int Index of atom C (right, starting from 0). bond_lengths : (N, N) array An N * N array containing the bond lengths for all the possible pairs of atoms. eigenvalues : (N, N, 3) array A numpy array of shape (N, N, 3) containing eigenvalues of the hessian matrix, where N is the total number of atoms. eigenvectors : (3, 3, N, N) array A numpy array of shape (3, 3, N, N) containing eigenvectors of the hessian matrix. coords : (N, 3) array A numpy array of shape (N, 3) having the X, Y, and Z coordinates of all N atoms. scaling_1 : float Factor to scale the projections of eigenvalues for AB. scaling_2 : float Factor to scale the projections of eigenvalues for BC. Returns ------- k_theta : float Force angle constant calculated using modified seminario method. k_0 : float Equilibrium angle between AB and BC. """ # Vectors along bonds calculated diff_AB = coords[atom_B, :] - coords[atom_A, :] norm_diff_AB = np.linalg.norm(diff_AB) u_AB = diff_AB / norm_diff_AB diff_CB = coords[atom_B, :] - coords[atom_C, :] norm_diff_CB = np.linalg.norm(diff_CB) u_CB = diff_CB / norm_diff_CB # Bond lengths and eigenvalues found bond_length_AB = bond_lengths[atom_A, atom_B] eigenvalues_AB = eigenvalues[atom_A, atom_B, :] eigenvectors_AB = eigenvectors[0:3, 0:3, atom_A, atom_B] bond_length_BC = bond_lengths[atom_B, atom_C] eigenvalues_CB = eigenvalues[atom_C, atom_B, :] eigenvectors_CB = eigenvectors[0:3, 0:3, atom_C, atom_B] k_theta_array = np.zeros((180, 360)) # Find force constant with varying u_N (with vector uniformly # sampled across a sphere) for theta in range(0, 180): for phi in range(0, 360): r = 1 u_N = [ r * math.sin(math.radians(theta)) * math.cos(math.radians(theta)), r * math.sin(math.radians(theta)) * math.sin(math.radians(theta)), r * math.cos(math.radians(theta)), ] u_PA = np.cross(u_N, u_AB) u_PA = u_PA / np.linalg.norm(u_PA) u_PC = np.cross(u_CB, u_N) u_PC = u_PC / np.linalg.norm(u_PC) sum_first = 0 sum_second = 0 # Projections of eigenvalues for i in range(0, 3): eig_AB_i = eigenvectors_AB[:, i] eig_BC_i = eigenvectors_CB[:, i] sum_first = sum_first + ( eigenvalues_AB[i] * abs(dot_product(u_PA, eig_AB_i)) ) sum_second = sum_second + ( eigenvalues_CB[i] * abs(dot_product(u_PC, eig_BC_i)) ) # Added as two springs in series k_theta_ij = (1 / ((bond_length_AB ** 2) * sum_first)) + ( 1 / ((bond_length_BC ** 2) * sum_second) ) k_theta_ij = 1 / k_theta_ij k_theta_ij = -k_theta_ij # Change to OPLS form k_theta_ij = abs(k_theta_ij * 0.5) # Change to OPLS form k_theta_array[theta, phi] = k_theta_ij # Removes cases where u_N was linearly dependent of u_CB or u_AB. # Force constant used is taken as the mean. k_theta = np.mean(np.mean(k_theta_array)) # Equilibrium Angle independent of u_N theta_0 = math.degrees(math.cos(np.dot(u_AB, u_CB))) return k_theta, theta_0 def force_constant_bond(atom_A, atom_B, eigenvalues, eigenvectors, coords): """ Calculates the bond force constant for the bonds in the molecule according to equation 10 of seminario paper, given the bond atoms' indices and the corresponding eigenvalues, eigenvectors and coordinates matrices. Parameters ---------- atom_A : int Index of Atom A. atom_B : int Index of Atom B. eigenvalues : (N, N, 3) array A numpy array of shape (N, N, 3) containing eigenvalues of the hessian matrix, where N is the total number of atoms. eigenvectors : (3, 3, N, N) array A numpy array of shape (3, 3, N, N) containing the eigenvectors of the hessian matrix. coords : (N, 3) array A numpy array of shape (N, 3) having the X, Y, and Z coordinates of all N atoms. Returns -------- k_AB : float Bond Force Constant value for the bond with atoms A and B. """ # Eigenvalues and eigenvectors calculated eigenvalues_AB = eigenvalues[atom_A, atom_B, :] eigenvectors_AB = eigenvectors[:, :, atom_A, atom_B] # Vector along bond diff_AB = np.array(coords[atom_B, :]) - np.array(coords[atom_A, :]) norm_diff_AB = np.linalg.norm(diff_AB) unit_vectors_AB = diff_AB / norm_diff_AB k_AB = 0 # Projections of eigenvalues for i in range(0, 3): dot_product = abs(np.dot(unit_vectors_AB, eigenvectors_AB[:, i])) k_AB = k_AB + (eigenvalues_AB[i] * dot_product) k_AB = -k_AB * 0.5 # Convert to OPLS form return k_AB def u_PA_from_angles(atom_A, atom_B, atom_C, coords): """ Returns the vector in the plane A,B,C and perpendicular to AB. Parameters ---------- atom_A : int Index of atom A (left, starting from 0). atom_B : int Index of atom B (center, starting from 0). atom_C : int Index of atom C (right, starting from 0). coords : (..., N, 3) array An array containing the coordinates of all the N atoms. Returns ------- u_PA : (..., 1, 3) array Unit vector perpendicular to AB and in the plane of A, B, C. """ diff_AB = coords[atom_B, :] - coords[atom_A, :] norm_diff_AB = np.linalg.norm(diff_AB) u_AB = diff_AB / norm_diff_AB diff_CB = coords[atom_B, :] - coords[atom_C, :] norm_diff_CB = np.linalg.norm(diff_CB) u_CB = diff_CB / norm_diff_CB u_N = unit_vector_N(u_CB, u_AB) u_PA = np.cross(u_N, u_AB) norm_PA = np.linalg.norm(u_PA) u_PA = u_PA / norm_PA return u_PA def reverse_list(lst): """ Returns the reversed form of a given list. Parameters ---------- lst : list Input list. Returns ------- reversed_list : list Reversed input list. Examples -------- >>> lst = [5, 4, 7, 2] >>> reverse_list(lst) [2, 7, 4, 5] """ reversed_list = lst[::-1] return reversed_list def uniq(input_): """ Returns a list with only unique elements from a list containing duplicate / repeating elements. Parameters ---------- input_ : list Input list. Returns ------- output : list List with only unique elements. Examples -------- >>> lst = [2, 4, 2, 9, 10, 35, 10] >>> uniq(lst) [2, 4, 9, 10, 35] """ output = [] for x in input_: if x not in output: output.append(x) return output def search_in_file(file: str, word: str) -> list: """ Search for the given string in file and return lines containing that string along with line numbers. Parameters ---------- file : str Input file. word : str Search word. Returns ------- list_of_results : list List of lists with each element representing the line number and the line contents. """ line_number = 0 list_of_results = [] with open(file, "r") as f: for line in f: line_number += 1 if word in line: list_of_results.append((line_number, line.rstrip())) return list_of_results def list_to_dict(lst): """ Converts an input list with mapped characters (every odd entry is the key of the dictionary and every even entry adjacent to the odd entry is its correponding value) to a dictionary. Parameters ---------- lst : list Input list. Returns ------- res_dct : dict A dictionary with every element mapped with its successive element starting from index 0. Examples -------- >>> lst = [5, 9, 3, 6, 2, 7] >>> list_to_dict(lst) {5: 9, 3: 6, 2: 7} """ res_dct = {lst[i]: lst[i + 1] for i in range(0, len(lst), 2)} return res_dct def scale_list(list_): """ Returns a scaled list with the minimum value subtracted from each element of the corresponding list. Parameters ---------- list_ : list Input list. Returns ------- scaled_list : list Scaled list. Examples -------- >>> list_ = [6, 3, 5, 11, 3, 2, 8, 6] >>> scale_list(list_) [4, 1, 3, 9, 1, 0, 6, 4] """ scaled_list = [i - min(list_) for i in list_] return scaled_list def list_kJ_kcal(list_): """ Convert the elements in the list from kiloJoules units to kiloCalories units. Parameters ---------- list_ : list List with elements in units of kJ. Returns ------- converted_list : list List with elements in units of kcal. Examples -------- >>> list_ = [6, 3, 5] >>> list_kJ_kcal(list_) [1.4340344168260037, 0.7170172084130019, 1.1950286806883366] """ converted_list = [i / 4.184 for i in list_] return converted_list def list_hartree_kcal(list_): """ Convert the elements in the list from hartree units to kiloCalories units. Parameters ---------- list_ : list List with elements in units of hartree. Returns ------- converted_list : list List with elements in units of kcal. Examples -------- >>> list_ = [6, 3, 5] >>> list_hartree_kcal(list_) [3765.0564000000004, 1882.5282000000002, 3137.547] """ converted_list = [i * 627.5094 for i in list_] return converted_list def torsiondrive_input_to_xyz(psi_input_file, xyz_file): """ Returns an xyz file from a torsiondrive formatted input file. Parameters ---------- psi_input_file : str Input file for the psi4 QM engine. xyz_file : str XYZ format file to write the coords of the system. """ with open(psi_input_file, "r") as f: lines = f.readlines() for i in range(len(lines)): if "molecule {" in lines[i]: to_begin = int(i) if "set {" in lines[i]: to_end = int(i) xyz_lines = lines[to_begin + 2 : to_end - 1] with open(xyz_file, "w") as f: f.write(str(len(xyz_lines)) + "\n") f.write(xyz_file + "\n") for i in xyz_lines: f.write(i) def xyz_to_pdb(xyz_file, coords_file, template_pdb, system_pdb): """ Converts a XYZ file to a PDB file. Parameters ---------- xyz_file : str XYZ file containing the coordinates of the system. coords_file : str A text file containing the coordinates part of XYZ file. template_pdb : str A pdb file to be used as a template for the required PDB. system_pdb : str Output PDB file with the coordinates updated in the template pdb using XYZ file. """ with open(xyz_file, "r") as f: lines = f.readlines() needed_lines = lines[2:] with open(coords_file, "w") as f: for i in needed_lines: f.write(i) df = pd.read_csv(coords_file, header=None, delimiter=r"\s+") df.columns = ["atom", "x", "y", "z"] ppdb = PandasPdb() ppdb.read_pdb(template_pdb) ppdb.df["ATOM"]["x_coord"] = df["x"] ppdb.df["ATOM"]["y_coord"] = df["y"] ppdb.df["ATOM"]["z_coord"] = df["z"] ppdb.to_pdb(system_pdb) def generate_xml_from_pdb_sdf(system_pdb, system_sdf, system_xml): """ Generates an openforcefield xml file from the pdb file. Parameters ---------- system_pdb : str Input PDB file. system_sdf : str SDF file of the system. system_xml : str XML force field file generated using PDB and SDF files. """ # command = "babel -ipdb " + system_pdb + " -osdf " + system_sdf command = "obabel -ipdb " + system_pdb + " -osdf -O " + system_sdf os.system(command) # off_molecule = openforcefield.topology.Molecule(system_sdf) off_molecule = Molecule(system_sdf) # force_field = openforcefield.typing.engines.smirnoff.ForceField("openff_unconstrained-1.0.0.offxml") force_field = ForceField("openff_unconstrained-1.0.0.offxml") system = force_field.create_openmm_system(off_molecule.to_topology()) pdbfile = simtk.openmm.app.PDBFile(system_pdb) structure = parmed.openmm.load_topology( pdbfile.topology, system, xyz=pdbfile.positions ) with open(system_xml, "w") as f: f.write(simtk.openmm.XmlSerializer.serialize(system)) def generate_xml_from_charged_pdb_sdf( system_pdb, system_init_sdf, system_sdf, num_charge_atoms, index_charge_atom_1, charge_atom_1, system_xml, ): """ Generates an openforcefield xml file from the pdb file via SDF file and openforcefield. Parameters ---------- system_pdb : str Input PDB file. system_init_sdf : str SDF file for the system excluding charge information. system_sdf : str SDF file of the system. num_charge_atoms : int Total number of charged atoms in the PDB. index_charge_atom_1 : int Index of the first charged atom. charge_atom_1 : float Charge on first charged atom. system_xml : str XML force field file generated using PDB and SDF files. """ # command = "babel -ipdb " + system_pdb + " -osdf " + system_init_sdf command = "obabel -ipdb " + system_pdb + " -osdf -O " + system_init_sdf os.system(command) with open(system_init_sdf, "r") as f1: filedata = f1.readlines() filedata = filedata[:-2] with open(system_sdf, "w+") as out: for i in filedata: out.write(i) line_1 = ( "M CHG " + str(num_charge_atoms) + " " + str(index_charge_atom_1) + " " + str(charge_atom_1) + "\n" ) line_2 = "M END" + "\n" line_3 = "$$$$" out.write(line_1) out.write(line_2) out.write(line_3) # off_molecule = openforcefield.topology.Molecule(system_sdf) off_molecule = Molecule(system_sdf) # force_field = openforcefield.typing.engines.smirnoff.ForceField("openff_unconstrained-1.0.0.offxml") force_field = ForceField("openff_unconstrained-1.0.0.offxml") system = force_field.create_openmm_system(off_molecule.to_topology()) pdbfile = simtk.openmm.app.PDBFile(system_pdb) structure = parmed.openmm.load_topology( pdbfile.topology, system, xyz=pdbfile.positions ) with open(system_xml, "w") as f: f.write(simtk.openmm.XmlSerializer.serialize(system)) def get_dihedrals(qm_scan_file): """ Returns dihedrals from the torsiondrive scan file. Parameters ---------- qm_scan_file : str Output scan file containing torsiondrive scans. Returns ------- dihedrals : list List of all the dihedral values from the qm scan file. """ with open(qm_scan_file, "r") as f: lines = f.readlines() energy_dihedral_lines = [] for i in range(len(lines)): if "Dihedral" in lines[i]: energy_dihedral_lines.append(lines[i]) dihedrals = [] for i in energy_dihedral_lines: energy_dihedral = i energy_dihedral = re.findall(r"[-+]?\d+[.]?\d*", energy_dihedral) dihedral = float(energy_dihedral[0]) dihedrals.append(dihedral) return dihedrals def get_qm_energies(qm_scan_file): """ Returns QM optimized energies from the torsiondrive scan file. Parameters ---------- qm_scan_file : str Output scan file containing torsiondrive scans. Returns ------- qm_energies : list List of all the qm optimiseed energies extracted from the torsiondrive scan file. """ with open(qm_scan_file, "r") as f: lines = f.readlines() energy_dihedral_lines = [] for i in range(len(lines)): if "Dihedral" in lines[i]: energy_dihedral_lines.append(lines[i]) qm_energies = [] for i in energy_dihedral_lines: energy_dihedral = i energy_dihedral = re.findall(r"[-+]?\d+[.]?\d*", energy_dihedral) energy = float(energy_dihedral[1]) qm_energies.append(energy) return qm_energies def generate_mm_pdbs(qm_scan_file, template_pdb): """ Generate PDBs from the torsiondrive scan file based on a template PDB. """ with open(qm_scan_file, "r") as f: lines = f.readlines() energy_dihedral_lines = [] for i in range(len(lines)): if "Dihedral" in lines[i]: energy_dihedral_lines.append(lines[i]) dihedrals = [] for i in energy_dihedral_lines: energy_dihedral = i energy_dihedral = re.findall(r"[-+]?\d+[.]?\d*", energy_dihedral) dihedral = float(energy_dihedral[0]) dihedrals.append(dihedral) lines_markers = [] for i in range(len(lines)): if "Dihedral" in lines[i]: lines_markers.append(i) lines_markers.append(len(lines) + 1) for i in range(len(lines_markers) - 1): # pdb_file_to_write = str(dihedrals[i]) + ".pdb" if dihedrals[i] > 0: pdb_file_to_write = "plus_" + str(abs(dihedrals[i])) + ".pdb" if dihedrals[i] < 0: pdb_file_to_write = "minus_" + str(abs(dihedrals[i])) + ".pdb" to_begin = lines_markers[i] to_end = lines_markers[i + 1] lines_to_write = lines[to_begin + 1 : to_end - 1] x_coords = [] y_coords = [] z_coords = [] for i in lines_to_write: coordinates = i coordinates = re.findall(r"[-+]?\d+[.]?\d*", coordinates) x = float(coordinates[0]) y = float(coordinates[1]) z = float(coordinates[2]) x_coords.append(x) y_coords.append(y) z_coords.append(z) ppdb = PandasPdb() ppdb.read_pdb(template_pdb) ppdb.df["ATOM"]["x_coord"] = x_coords ppdb.df["ATOM"]["y_coord"] = y_coords ppdb.df["ATOM"]["z_coord"] = z_coords ppdb.to_pdb(pdb_file_to_write) def remove_mm_files(qm_scan_file): """ Delete all generated PDB files. Parameters ---------- qm_scan_file : str Output scan file containing torsiondrive scans. """ mm_pdb_list = [] for i in get_dihedrals(qm_scan_file): if i > 0: pdb_file = "plus_" + str(abs(i)) + ".pdb" if i < 0: pdb_file = "minus_" + str(abs(i)) + ".pdb" mm_pdb_list.append(pdb_file) for i in mm_pdb_list: command = "rm -rf " + i os.system(command) command = "rm -rf " + i[:-4] + ".inpcrd" os.system(command) command = "rm -rf " + i[:-4] + ".prmtop" os.system(command) def get_non_torsion_mm_energy(system_pdb, load_topology, system_xml): """ Returns sum of all the non-torsional energies (that includes HarmonicBondForce, HarmonicAngleForce and NonBondedForce) of the system from the PDB file given the topology and the forcefield file. Parameters ---------- system_pdb : str System PDB file to load the openmm system topology and coordinates. load_topology : {"openmm", "parmed"} Argument to specify how to load the topology. system_xml : str XML force field file for the openmm system. Returns ------- Sum of all the non-torsional energies of the system. """ system_prmtop = system_pdb[:-4] + ".prmtop" system_inpcrd = system_pdb[:-4] + ".inpcrd" if load_topology == "parmed": openmm_system = parmed.openmm.load_topology( parmed.load_file(system_pdb, structure=True).topology, parmed.load_file(system_xml), ) if load_topology == "openmm": openmm_system = parmed.openmm.load_topology( simtk.openmm.app.PDBFile(system_pdb).topology, parmed.load_file(system_xml), ) openmm_system.save(system_prmtop, overwrite=True) openmm_system.coordinates = parmed.load_file( system_pdb, structure=True ).coordinates openmm_system.save(system_inpcrd, overwrite=True) parm = parmed.load_file(system_prmtop, system_inpcrd) prmtop_energy_decomposition = parmed.openmm.energy_decomposition_system( parm, parm.createSystem() ) # print(prmtop_energy_decomposition) prmtop_energy_decomposition_value_no_torsion = [ list_to_dict( [ item for sublist in [ list(elem) for elem in prmtop_energy_decomposition ] for item in sublist ] ).get("HarmonicBondForce"), list_to_dict( [ item for sublist in [ list(elem) for elem in prmtop_energy_decomposition ] for item in sublist ] ).get("HarmonicAngleForce"), list_to_dict( [ item for sublist in [ list(elem) for elem in prmtop_energy_decomposition ] for item in sublist ] ).get("NonbondedForce"), ] return sum(prmtop_energy_decomposition_value_no_torsion) def get_mm_potential_energies(qm_scan_file, load_topology, system_xml): """ Returns potential energy of the system from the PDB file given the topology and the forcefield file. Parameters ---------- qm_scan_file : str Output scan file containing torsiondrive scans. load_topology : {"openmm", "parmed"} Argument to spcify how to load the topology. system_xml : str XML file to load the openmm system. Returns ------- mm_potential_energies : list List of all the non torsion mm energies for the generated PDB files. """ mm_pdb_list = [] for i in get_dihedrals(qm_scan_file): if i > 0: pdb_file = "plus_" + str(abs(i)) + ".pdb" if i < 0: pdb_file = "minus_" + str(abs(i)) + ".pdb" mm_pdb_list.append(pdb_file) for i in mm_pdb_list: mm_pdb_file = i mm_potential_energies = [] for i in mm_pdb_list: mm_pdb_file = i mm_energy = get_non_torsion_mm_energy( system_pdb=i, load_topology=load_topology, system_xml=system_xml, ) mm_potential_energies.append(mm_energy) return mm_potential_energies def list_diff(list_1, list_2): """ Returns the difference between two lists as a list. Parameters ---------- list_1 : list First list list_2 : list Second list. Returns ------- diff_list : list List containing the diferences between the elements of the two lists. Examples -------- >>> list_1 = [4, 2, 8, 3, 0, 6, 7] >>> list_2 = [5, 3, 1, 5, 6, 0, 4] >>> list_diff(list_1, list_2) [-1, -1, 7, -2, -6, 6, 3] """ diff_list = [] zipped_list = zip(list_1, list_2) for list1_i, list2_i in zipped_list: diff_list.append(list1_i - list2_i) return diff_list def dihedral_energy(x, k1, k2, k3, k4=0): """ Expression for the dihedral energy. """ energy_1 = k1 * (1 + np.cos(1 * x * 0.01745)) energy_2 = k2 * (1 - np.cos(2 * x * 0.01745)) energy_3 = k3 * (1 + np.cos(3 * x * 0.01745)) energy_4 = k4 * (1 - np.cos(4 * x * 0.01745)) dihedral_energy = energy_1 + energy_2 + energy_3 + energy_4 return dihedral_energy def error_function(delta_qm, delta_mm): """ Root Mean Squared Error. """ squared_error = np.square(np.subtract(delta_qm, delta_mm)) mean_squared_error = squared_error.mean() root_mean_squared_error = math.sqrt(mean_squared_error) return root_mean_squared_error def error_function_boltzmann(delta_qm, delta_mm, T): """ Boltzmann Root Mean Squared Error. """ kb = 3.297623483 * 10 ** (-24) # in cal/K delta_qm_boltzmann_weighted = [np.exp(-i / (kb * T)) for i in delta_qm] squared_error = ( np.square(np.subtract(delta_qm, delta_mm)) * delta_qm_boltzmann_weighted ) mean_squared_error = squared_error.mean() root_mean_squared_error = math.sqrt(mean_squared_error) return root_mean_squared_error def gen_init_guess(qm_scan_file, load_topology, system_xml): """ Initial guess for the torsional parameter. Parameters ---------- qm_scan_file : str Output scan file containing torsiondrive scans. load_topology : {"openmm", "parmed"} Argument to speify how to load the topology. system_xml : str XML force field file for the system. Returns ------- k_init_guess : list Initial guess for the torsional parameters. """ x = get_dihedrals(qm_scan_file) y = scale_list( list_=get_mm_potential_energies( qm_scan_file=qm_scan_file, load_topology=load_topology, system_xml=system_xml, ) ) init_vals = [0.0, 0.0, 0.0, 0.0] k_init_guess, covar = scipy.optimize.curve_fit( dihedral_energy, x, y, p0=init_vals ) for i in range(len(k_init_guess)): if k_init_guess[i] < 0: k_init_guess[i] = 0 return k_init_guess def objective_function(k_array, x, delta_qm): """ Objective function for the torsional parameter fitting. """ delta_mm = dihedral_energy( x, k1=k_array[0], k2=k_array[1], k3=k_array[2], k4=k_array[3] ) loss_function = error_function(delta_qm, delta_mm) return loss_function def fit_params(qm_scan_file, load_topology, system_xml, method): """ Optimization of the objective function. """ k_guess = gen_init_guess( qm_scan_file=qm_scan_file, load_topology=load_topology, system_xml=system_xml, ) x_data = np.array(get_dihedrals(qm_scan_file)) delta_qm = np.array( scale_list(list_hartree_kcal(list_=get_qm_energies(qm_scan_file))) ) optimise = scipy.optimize.minimize( objective_function, k_guess, args=(x_data, delta_qm), method=method, bounds=[(0.00, None), (0.00, None), (0.00, None), (0.00, None),], ) return optimise.x def get_tor_params( qm_scan_file, template_pdb, load_topology, system_xml, method ): """ Returns the fitted torsional parameters. """ qm_e = get_qm_energies(qm_scan_file=qm_scan_file) qm_e_kcal = list_hartree_kcal(qm_e) delta_qm = scale_list(qm_e_kcal) generate_mm_pdbs(qm_scan_file=qm_scan_file, template_pdb=template_pdb) mm_pe_no_torsion_kcal = get_mm_potential_energies( qm_scan_file=qm_scan_file, load_topology=load_topology, system_xml=system_xml, ) delta_mm = scale_list(mm_pe_no_torsion_kcal) opt_param = fit_params( qm_scan_file=qm_scan_file, load_topology=load_topology, system_xml=system_xml, method=method, ) return opt_param def get_torsional_lines( template_pdb, system_xml, qm_scan_file, load_topology, method, dihedral_text_file, ): """ Returns the torsional lines for the XML forcefield file. """ opt_param = get_tor_params( qm_scan_file=qm_scan_file, template_pdb=template_pdb, load_topology=load_topology, system_xml=system_xml, method=method, ) dihedral_text = open(dihedral_text_file, "r") dihedral_text_lines = dihedral_text.readlines() atom_numbers = dihedral_text_lines[-1] atom_index_from_1 = [ int(re.findall(r"\d+", atom_numbers)[0]), int(re.findall(r"\d+", atom_numbers)[1]), int(re.findall(r"\d+", atom_numbers)[2]), int(re.findall(r"\d+", atom_numbers)[3]), ] atom_index = [i - 1 for i in atom_index_from_1] atom_index_lines = ( " " + "p1=" + '"' + str(atom_index[0]) + '"' + " " + "p2=" + '"' + str(atom_index[1]) + '"' + " " + "p3=" + '"' + str(atom_index[2]) + '"' + " " + "p4=" + '"' + str(atom_index[3]) + '"' + " " ) tor_lines = [] for i in range(len(opt_param)): line_to_append = ( " " + "<Torsion " + "k=" + '"' + str(round(opt_param[i], 8)) + '"' + atom_index_lines + "periodicity=" + '"' + str(i + 1) + '"' + " " + "phase=" + '"' + "0" + '"' + "/>" ) # print(line_to_append) tor_lines.append(line_to_append) return tor_lines def singular_resid(pdbfile, qmmmrebind_init_file): """ Returns a PDB file with chain ID = A Parameters ---------- pdbfile: str Input PDB file qmmmrebind_init_file: str Output PDB file """ ppdb = PandasPdb().read_pdb(pdbfile) ppdb.df["HETATM"]["chain_id"] = "A" ppdb.df["ATOM"]["chain_id"] = "A" ppdb.to_pdb( path=qmmmrebind_init_file, records=None, gz=False, append_newline=True ) def relax_init_structure( pdbfile, prmtopfile, qmmmrebindpdb, sim_output="output.pdb", sim_steps=100000, ): """ Minimizing the initial PDB file with the given topology file Parameters ---------- pdbfile: str Input PDB file. prmtopfile : str Input prmtop file. qmmmrebind_init_file: str Output PDB file. sim_output: str Simulation output trajectory file. sim_steps: int MD simulation steps. """ prmtop = simtk.openmm.app.AmberPrmtopFile(prmtopfile) pdb = simtk.openmm.app.PDBFile(pdbfile) system = prmtop.createSystem( nonbondedMethod=simtk.openmm.app.PME, nonbondedCutoff=1 * simtk.unit.nanometer, constraints=simtk.openmm.app.HBonds, ) integrator = simtk.openmm.LangevinIntegrator( 300 * simtk.unit.kelvin, 1 / simtk.unit.picosecond, 0.002 * simtk.unit.picoseconds, ) simulation = simtk.openmm.app.Simulation( prmtop.topology, system, integrator ) simulation.context.setPositions(pdb.positions) print(simulation.context.getState(getEnergy=True).getPotentialEnergy()) simulation.minimizeEnergy(maxIterations=10000000) print(simulation.context.getState(getEnergy=True).getPotentialEnergy()) simulation.reporters.append( simtk.openmm.app.PDBReporter(sim_output, int(sim_steps / 10)) ) simulation.reporters.append( simtk.openmm.app.StateDataReporter( stdout, int(sim_steps / 10), step=True, potentialEnergy=True, temperature=True, ) ) simulation.reporters.append( simtk.openmm.app.PDBReporter(qmmmrebindpdb, sim_steps) ) simulation.step(sim_steps) command = "rm -rf " + sim_output os.system(command) def truncate(x): """ Returns a float or an integer with an exact number of characters. Parameters ---------- x: str input value """ if len(str(int(float(x)))) == 1: x = format(x, ".8f") if len(str(int(float(x)))) == 2: x = format(x, ".7f") if len(str(int(float(x)))) == 3: x = format(x, ".6f") if len(str(int(float(x)))) == 4: x = format(x, ".5f") if len(str(x)) > 10: x = round(x, 10) return x def add_vectors_inpcrd(pdbfile, inpcrdfile): """ Adds periodic box dimensions to the inpcrd file Parameters ---------- pdbfile: str PDB file containing the periodic box information. inpcrdfile: str Input coordinate file. """ pdbfilelines = open(pdbfile, "r").readlines() for i in pdbfilelines: if "CRYST" in i: vector_list = re.findall(r"[-+]?\d*\.\d+|\d+", i) vector_list = [float(i) for i in vector_list] vector_list = vector_list[1 : 1 + 6] line_to_add = ( " " + truncate(vector_list[0]) + " " + truncate(vector_list[1]) + " " + truncate(vector_list[2]) + " " + truncate(vector_list[3]) + " " + truncate(vector_list[4]) + " " + truncate(vector_list[5]) ) print(line_to_add) with open(inpcrdfile, "a+") as f: f.write(line_to_add) def add_dim_prmtop(pdbfile, prmtopfile): """ Adds periodic box dimensions flag in the prmtop file. Parameters ---------- prmtopfile: str Input prmtop file. pdbfile: str PDB file containing the periodic box information. """ pdbfilelines = open(pdbfile, "r").readlines() for i in pdbfilelines: if "CRYST" in i: vector_list = re.findall(r"[-+]?\d*\.\d+|\d+", i) vector_list = [float(i) for i in vector_list] vector_list = vector_list[1 : 1 + 6] vector_list = [i / 10 for i in vector_list] vector_list = [truncate(i) for i in vector_list] vector_list = [i + "E+01" for i in vector_list] line3 = ( " " + vector_list[3] + " " + vector_list[0] + " " + vector_list[1] + " " + vector_list[2] ) print(line3) line1 = "%FLAG BOX_DIMENSIONS" line2 = "%FORMAT(5E16.8)" with open(prmtopfile) as f1, open("intermediate.prmtop", "w") as f2: for line in f1: if line.startswith("%FLAG RADIUS_SET"): line = line1 + "\n" + line2 + "\n" + line3 + "\n" + line f2.write(line) command = "rm -rf " + prmtopfile os.system(command) command = "mv intermediate.prmtop " + prmtopfile os.system(command) def add_period_prmtop(parm_file, ifbox): """ Changes the value of IFBOX if needed for the prmtop / parm file. Set to 1 if standard periodic box and 2 when truncated octahedral. """ with open(parm_file) as f: parm_lines = f.readlines() lines_contain = [] for i in range(len(parm_lines)): if parm_lines[i].startswith("%FLAG POINTERS"): lines_contain.append(i + 4) line = parm_lines[lines_contain[0]] line_new = "%8s %6s %6s %6s %6s %6s %6s %6s %6s %6s" % ( re.findall(r"\d+", line)[0], re.findall(r"\d+", line)[1], re.findall(r"\d+", line)[2], re.findall(r"\d+", line)[3], re.findall(r"\d+", line)[4], re.findall(r"\d+", line)[5], re.findall(r"\d+", line)[6], str(ifbox), re.findall(r"\d+", line)[8], re.findall(r"\d+", line)[9], ) parm_lines[lines_contain[0]] = line_new + "\n" with open(parm_file, "w") as f: for i in parm_lines: f.write(i) def add_solvent_pointers_prmtop(non_reparams_file, reparams_file): """ Adds the flag solvent pointers to the topology file. """ f_non_params = open(non_reparams_file, "r") lines_non_params = f_non_params.readlines() for i in range(len(lines_non_params)): if "FLAG SOLVENT_POINTERS" in lines_non_params[i]: to_begin = int(i) solvent_pointers = lines_non_params[to_begin : to_begin + 3] file = open(reparams_file, "a") for i in solvent_pointers: file.write(i) def prmtop_calibration( prmtopfile="system_qmmmrebind.prmtop", inpcrdfile="system_qmmmrebind.inpcrd", ): """ Standardizes the topology files Parameters ---------- prmtopfile: str Input prmtop file. inpcrdfile: str Input coordinate file. """ parm = parmed.load_file(prmtopfile, inpcrdfile) parm_1 = parmed.tools.actions.changeRadii(parm, "mbondi3") parm_1.execute() parm_2 = parmed.tools.actions.setMolecules(parm) parm_2.execute() parm.save(prmtopfile, overwrite=True) def run_openmm_prmtop_inpcrd( pdbfile="system_qmmmrebind.pdb", prmtopfile="system_qmmmrebind.prmtop", inpcrdfile="system_qmmmrebind.inpcrd", sim_output="output.pdb", sim_steps=10000, ): """ Runs OpenMM simulation with inpcrd and prmtop files. Parameters ---------- pdbfile: str Input PDB file. prmtopfile: str Input prmtop file. inpcrdfile: str Input coordinate file. sim_output: str Output trajectory file. sim_steps: int Simulation steps. """ prmtop = simtk.openmm.app.AmberPrmtopFile(prmtopfile) inpcrd = simtk.openmm.app.AmberInpcrdFile(inpcrdfile) system = prmtop.createSystem( nonbondedCutoff=1 * simtk.unit.nanometer, constraints=simtk.openmm.app.HBonds, ) integrator = simtk.openmm.LangevinIntegrator( 300 * simtk.unit.kelvin, 1 / simtk.unit.picosecond, 0.002 * simtk.unit.picoseconds, ) simulation = simtk.openmm.app.Simulation( prmtop.topology, system, integrator ) if inpcrd.boxVectors is None: add_vectors_inpcrd( pdbfile=pdbfile, inpcrdfile=inpcrdfile, ) if inpcrd.boxVectors is not None: simulation.context.setPeriodicBoxVectors(*inpcrd.boxVectors) print(inpcrd.boxVectors) simulation.context.setPositions(inpcrd.positions) print(simulation.context.getState(getEnergy=True).getPotentialEnergy()) simulation.minimizeEnergy(maxIterations=1000000) print(simulation.context.getState(getEnergy=True).getPotentialEnergy()) simulation.reporters.append( simtk.openmm.app.PDBReporter(sim_output, int(sim_steps / 10)) ) simulation.reporters.append( simtk.openmm.app.StateDataReporter( stdout, int(sim_steps / 10), step=True, potentialEnergy=True, temperature=True, ) ) simulation.step(sim_steps) def run_openmm_prmtop_pdb( pdbfile="system_qmmmrebind.pdb", prmtopfile="system_qmmmrebind.prmtop", sim_output="output.pdb", sim_steps=10000, ): """ Runs OpenMM simulation with pdb and prmtop files. Parameters ---------- pdbfile: str Input PDB file. prmtopfile: str Input prmtop file. sim_output: str Output trajectory file. sim_steps: int Simulation steps. """ prmtop = simtk.openmm.app.AmberPrmtopFile(prmtopfile) pdb = simtk.openmm.app.PDBFile(pdbfile) system = prmtop.createSystem( nonbondedCutoff=1 * simtk.unit.nanometer, constraints=simtk.openmm.app.HBonds, ) integrator = simtk.openmm.LangevinIntegrator( 300 * simtk.unit.kelvin, 1 / simtk.unit.picosecond, 0.002 * simtk.unit.picoseconds, ) simulation = simtk.openmm.app.Simulation( prmtop.topology, system, integrator ) simulation.context.setPositions(pdb.positions) print(simulation.context.getState(getEnergy=True).getPotentialEnergy()) simulation.minimizeEnergy(maxIterations=1000000) print(simulation.context.getState(getEnergy=True).getPotentialEnergy()) simulation.reporters.append( simtk.openmm.app.PDBReporter(sim_output, int(sim_steps / 10)) ) simulation.reporters.append( simtk.openmm.app.StateDataReporter( stdout, int(sim_steps / 10), step=True, potentialEnergy=True, temperature=True, ) ) simulation.step(sim_steps) def move_qmmmmrebind_files( prmtopfile="system_qmmmrebind.prmtop", inpcrdfile="system_qmmmrebind.inpcrd", pdbfile="system_qmmmrebind.pdb", ): """ Moves QMMMReBind generated topology and parameter files to a new directory . Parameters ---------- prmtopfile: str QMMMReBind generated prmtop file. inpcrdfile: str QMMMReBind generated inpcrd file. pdbfile: str QMMMReBind generated PDB file. """ current_pwd = os.getcwd() command = "rm -rf reparameterized_files" os.system(command) command = "mkdir reparameterized_files" os.system(command) shutil.copy( current_pwd + "/" + prmtopfile, current_pwd + "/" + "reparameterized_files" + "/" + prmtopfile, ) shutil.copy( current_pwd + "/" + inpcrdfile, current_pwd + "/" + "reparameterized_files" + "/" + inpcrdfile, ) shutil.copy( current_pwd + "/" + pdbfile, current_pwd + "/" + "reparameterized_files" + "/" + pdbfile, ) def move_qm_files(): """ Moves QM engine generated files to a new directory . """ current_pwd = os.getcwd() command = "rm -rf qm_data" os.system(command) command = "mkdir qm_data" os.system(command) command = "cp -r " + "*.com* " + current_pwd + "/" + "qm_data" os.system(command) command = "cp -r " + "*.log* " + current_pwd + "/" + "qm_data" os.system(command) command = "cp -r " + "*.chk* " + current_pwd + "/" + "qm_data" os.system(command) command = "cp -r " + "*.fchk* " + current_pwd + "/" + "qm_data" os.system(command) def move_qmmmrebind_files(): """ Moves all QMMMREBind files to a new directory. """ current_pwd = os.getcwd() command = "rm -rf qmmmrebind_data" os.system(command) command = "mkdir qmmmrebind_data" os.system(command) command = "mv " + "*.sdf* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.txt* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.pdb* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.xml* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.chk* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.fchk* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.com* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.log* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.inpcrd* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.prmtop* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.parm7* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.out* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*run_command* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.dat* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) command = "mv " + "*.xyz* " + current_pwd + "/" + "qmmmrebind_data" os.system(command) class PrepareQMMM: """ A class used to segregate the QM and MM regions. This class contain methods to remove the solvent, ions and all entities that are exclusive of receptor and the ligand. It also defines the Quantum Mechanical (QM) region and the Molecular Mechanical (MM) region based upon the distance of the ligand from the receptor and the chosen number of receptor residues. It is also assumed that the initial PDB file will have the receptor followed by the ligand. ... Attributes ---------- init_pdb : str Initial PDB file containing the receptor-ligand complex with solvent, ions, etc. cleaned_pdb : str Formatted PDB file containing only the receptor and the ligand. guest_init_pdb : str A separate ligand PDB file with atom numbers not beginning from 1. host_pdb : str A separate receptor PDB file with atom numbers beginning from 1. guest_resname : str Three letter residue ID for the ligand. guest_pdb : str, optional Ligand PDB file with atom numbers beginning from 1. guest_xyz : str, optional A text file of the XYZ coordinates of the ligand. distance : float, optional The distance required to define the QM region of the receptor. This is the distance between the atoms of the ligand and the atoms of the receptor. residue_list : str, optional A text file of the residue numbers of the receptor within the proximity (as defined by the distance) from the ligand. host_qm_atoms : str, optional A text file of the atom numbers of the receptors in the QM region. host_mm_atoms : str, optional A text file of the atom numbers of the receptors in the MM region (all atoms except atoms in the QM region) host_qm_pdb : str, optional PDB file for the receptor's QM region. host_mm_pdb : str, optional PDB file for the receptor's MM region. qm_pdb : str, optional PDB file for the QM region (receptor's QM region and the ligand). mm_pdb : str, optional PDB file for the MM region. host_mm_region_I_atoms : str, optional A text file of the atom numbers of the receptors in the MM region preceeding the QM region. host_mm_region_II_atoms : str, optional A text file of the atom numbers of the receptors in the MM region following the QM region. host_mm_region_I_pdb : str, optional PDB file of the receptor in the MM region preceeding the QM region. host_mm_region_II_pdb : str, optional PDB file of the receptor in the MM region following the QM region. num_residues : int, optional Number of residues required in the QM region of the receptor. """ def __init__( self, init_pdb, distance, num_residues, guest_resname, cleaned_pdb="system.pdb", guest_init_pdb="guest_init.pdb", host_pdb="host.pdb", guest_pdb="guest_init_II.pdb", guest_xyz="guest_coord.txt", residue_list="residue_list.txt", host_qm_atoms="host_qm.txt", host_mm_atoms="host_mm.txt", host_qm_pdb="host_qm.pdb", host_mm_pdb="host_mm.pdb", qm_pdb="qm.pdb", mm_pdb="mm.pdb", host_mm_region_I_atoms="host_mm_region_I.txt", host_mm_region_II_atoms="host_mm_region_II.txt", host_mm_region_I_pdb="host_mm_region_I.pdb", host_mm_region_II_pdb="host_mm_region_II.pdb", ): self.init_pdb = init_pdb self.distance = distance self.num_residues = num_residues self.guest_resname = guest_resname self.cleaned_pdb = cleaned_pdb self.guest_init_pdb = guest_init_pdb self.host_pdb = host_pdb self.guest_pdb = guest_pdb self.guest_xyz = guest_xyz self.residue_list = residue_list self.host_qm_atoms = host_qm_atoms self.host_mm_atoms = host_mm_atoms self.host_qm_pdb = host_qm_pdb self.host_mm_pdb = host_mm_pdb self.qm_pdb = qm_pdb self.mm_pdb = mm_pdb self.host_mm_region_I_atoms = host_mm_region_I_atoms self.host_mm_region_II_atoms = host_mm_region_II_atoms self.host_mm_region_I_pdb = host_mm_region_I_pdb self.host_mm_region_II_pdb = host_mm_region_II_pdb def clean_up(self): """ Reads the given PDB file, removes all entities except the receptor and ligand and saves a new pdb file. """ ions = [ "Na+", "Cs+", "K+", "Li+", "Rb+", "Cl-", "Br-", "F-", "I-", "Ca2", ] intermediate_file_1 = self.cleaned_pdb[:-4] + "_intermediate_1.pdb" intermediate_file_2 = self.cleaned_pdb[:-4] + "_intermediate_2.pdb" command = ( "pdb4amber -i " + self.init_pdb + " -o " + intermediate_file_1 + " --noter --dry" ) os.system(command) to_delete = ( intermediate_file_1[:-4] + "_nonprot.pdb", intermediate_file_1[:-4] + "_renum.txt", intermediate_file_1[:-4] + "_sslink", intermediate_file_1[:-4] + "_water.pdb", ) os.system("rm -rf " + " ".join(to_delete)) with open(intermediate_file_1) as f1, open( intermediate_file_2, "w") as f2: for line in f1: if not any(ion in line for ion in ions): f2.write(line) with open(intermediate_file_2, "r") as f1: filedata = f1.read() filedata = filedata.replace("HETATM", "ATOM ") with open(self.cleaned_pdb, "w") as f2: f2.write(filedata) command = "rm -rf " + intermediate_file_1 + " " + intermediate_file_2 os.system(command) def create_host_guest(self): """ Saves separate receptor and ligand PDB files. """ with open(self.cleaned_pdb) as f1, open(self.host_pdb, "w") as f2: for line in f1: if not self.guest_resname in line and not "CRYST1" in line: f2.write(line) with open(self.cleaned_pdb) as f1, open( self.guest_init_pdb, "w" ) as f2: for line in f1: if self.guest_resname in line or "END" in line: f2.write(line) def realign_guest(self): """ Saves a ligand PDB file with atom numbers beginning from 1. """ ppdb = PandasPdb() ppdb.read_pdb(self.guest_init_pdb) to_subtract = min(ppdb.df["ATOM"]["atom_number"]) - 1 ppdb.df["ATOM"]["atom_number"] = ( ppdb.df["ATOM"]["atom_number"] - to_subtract ) intermediate_file_1 = self.guest_pdb[:-4] + "_intermediate_1.pdb" intermediate_file_2 = self.guest_pdb[:-4] + "_intermediate_2.pdb" ppdb.to_pdb(path=intermediate_file_1) command = ( "pdb4amber -i " + intermediate_file_1 + " -o " + intermediate_file_2 ) os.system(command) to_delete = ( intermediate_file_2[:-4] + "_nonprot.pdb", intermediate_file_2[:-4] + "_renum.txt", intermediate_file_2[:-4] + "_sslink", ) os.system("rm -rf " + " ".join(to_delete)) with open(intermediate_file_2, "r") as f1: filedata = f1.read() filedata = filedata.replace("HETATM", "ATOM ") with open(self.guest_pdb, "w") as f2: f2.write(filedata) command = "rm -rf " + intermediate_file_1 + " " + intermediate_file_2 os.system(command) def get_guest_coord(self): """ Saves a text file of the XYZ coordinates of the ligand. """ ppdb = PandasPdb() ppdb.read_pdb(self.guest_pdb) xyz = ppdb.df["ATOM"][["x_coord", "y_coord", "z_coord"]] xyz_to_list = xyz.values.tolist() np.savetxt(self.guest_xyz, xyz_to_list) def get_qm_resids(self): """ Saves a text file of the residue numbers of the receptor within the proximity (as defined by the distance) from the ligand. """ guest_coord_list = np.loadtxt(self.guest_xyz) host_atom_list = [] for i in range(len(guest_coord_list)): reference_point = guest_coord_list[i] # TODO: move reads outside of loop ppdb = PandasPdb() ppdb.read_pdb(self.host_pdb) distances = ppdb.distance(xyz=reference_point, records=("ATOM")) all_within_distance = ppdb.df["ATOM"][ distances < float(self.distance) ] host_df = all_within_distance["atom_number"] host_list = host_df.values.tolist() host_atom_list.append(host_list) host_atom_list = list(itertools.chain(*host_atom_list)) host_atom_list = set(host_atom_list) host_atom_list = list(host_atom_list) host_atom_list.sort() ppdb = PandasPdb() ppdb.read_pdb(self.host_pdb) df = ppdb.df["ATOM"][["atom_number", "residue_number", "residue_name"]] index_list = [] for i in host_atom_list: indices = np.where(df["atom_number"] == i) indices = list(indices)[0] indices = list(indices) index_list.append(indices) index_list = list(itertools.chain.from_iterable(index_list)) df1 = df.iloc[ index_list, ] # TODO: make it write list of integers resid_num = list(df1.residue_number.unique()) np.savetxt(self.residue_list, resid_num, fmt="%i") def get_host_qm_mm_atoms(self): """ Saves a text file of the atom numbers of the receptors in the QM region and MM region separately. """ resid_num = np.loadtxt(self.residue_list) # approximated_res_list = [int(i) for i in resid_num] approximated_res_list = [] # TODO: what is this doing? for i in range( int(statistics.median(resid_num)) - int(int(self.num_residues) / 2), int(statistics.median(resid_num)) + int(int(self.num_residues) / 2), ): approximated_res_list.append(i) ppdb = PandasPdb() ppdb.read_pdb(self.host_pdb) df = ppdb.df["ATOM"][["atom_number", "residue_number", "residue_name"]] host_index_nested_list = [] for i in approximated_res_list: indices = np.where(df["residue_number"] == i) #TODO: the program seems to error when this line is removed, which # makes no sense. indices = list(indices)[0] indices = list(indices) host_index_nested_list.append(indices) host_index_list = list( itertools.chain.from_iterable(host_index_nested_list) ) df_atom = df.iloc[host_index_list] df_atom_number = df_atom["atom_number"] host_atom_list = df_atom_number.values.tolist() selected_atoms = [] selected_atoms.extend(host_atom_list) ppdb = PandasPdb() ppdb.read_pdb(self.host_pdb) len_atoms = [] for i in range(len(ppdb.df["ATOM"])): len_atoms.append(i + 1) non_selected_atoms = list(set(len_atoms).difference(selected_atoms)) assert len(non_selected_atoms) + len(selected_atoms) == len(len_atoms),\ "Sum of the atoms in the selected and non-selected region "\ "does not equal the length of list of total atoms." np.savetxt(self.host_qm_atoms, selected_atoms, fmt="%i") np.savetxt(self.host_mm_atoms, non_selected_atoms, fmt="%i") def save_host_pdbs(self): """ Saves a PDB file for the receptor's QM region and MM region separately. """ selected_atoms = np.loadtxt(self.host_qm_atoms) # TODO: not necessary if savetxt writes in integers selected_atoms = [int(i) for i in selected_atoms] ppdb = PandasPdb() ppdb.read_pdb(self.host_pdb) for i in selected_atoms: ppdb.df["ATOM"] = ppdb.df["ATOM"][ ppdb.df["ATOM"]["atom_number"] != i ] ppdb.to_pdb( path=self.host_mm_pdb, records=None, gz=False, append_newline=True, ) non_selected_atoms = np.loadtxt(self.host_mm_atoms) non_selected_atoms = [int(i) for i in non_selected_atoms] ppdb = PandasPdb() ppdb.read_pdb(self.host_pdb) for i in non_selected_atoms: ppdb.df["ATOM"] = ppdb.df["ATOM"][ ppdb.df["ATOM"]["atom_number"] != i ] ppdb.to_pdb( path=self.host_qm_pdb, records=None, gz=False, append_newline=True, ) def get_host_mm_region_atoms(self): """ Saves a text file for the atoms of the receptor's MM region preceding the QM region and saves another text file for the atoms of the receptor's MM region folllowing the QM region. """ resid_num = np.loadtxt(self.residue_list) approximated_res_list = [] for i in range( int(statistics.median(resid_num)) - int(int(self.num_residues) / 2), int(statistics.median(resid_num)) + int(int(self.num_residues) / 2), ): approximated_res_list.append(i) # print(approximated_res_list) ppdb = PandasPdb() ppdb.read_pdb(self.host_pdb) df = ppdb.df["ATOM"][["residue_number"]] res_list = list(set(df["residue_number"].to_list())) res_mm_list = list(set(res_list).difference(approximated_res_list)) # print(res_mm_list) res_mm_region_I_list = [] # TODO: This can probably be made into a single loop by comparing i # to the maximum value within approximated_res_list for i in res_mm_list: for j in approximated_res_list: if i < j: res_mm_region_I_list.append(i) res_mm_region_I_list = list(set(res_mm_region_I_list)) res_mm_region_II_list = list( set(res_mm_list).difference(res_mm_region_I_list) ) # print(res_mm_region_II_list) ppdb.read_pdb(self.host_mm_pdb) df = ppdb.df["ATOM"][["atom_number", "residue_number", "residue_name"]] mm_region_I_index_nested_list = [] for i in res_mm_region_I_list: indices = np.where(df["residue_number"] == i) # TODO: again, this is strange code indices = list(indices)[0] indices = list(indices) mm_region_I_index_nested_list.append(indices) mm_region_I_index_list = list( itertools.chain.from_iterable(mm_region_I_index_nested_list) ) df_atom = df.iloc[mm_region_I_index_list] df_atom_number = df_atom["atom_number"] mm_region_I_atom_list = df_atom_number.values.tolist() mm_region_I_atoms = [] mm_region_I_atoms.extend(mm_region_I_atom_list) mm_region_II_index_nested_list = [] for i in res_mm_region_II_list: indices = np.where(df["residue_number"] == i) # TODO: again, this is strange code indices = list(indices)[0] indices = list(indices) mm_region_II_index_nested_list.append(indices) mm_region_II_index_list = list( itertools.chain.from_iterable(mm_region_II_index_nested_list) ) df_atom = df.iloc[mm_region_II_index_list] df_atom_number = df_atom["atom_number"] mm_region_II_atom_list = df_atom_number.values.tolist() mm_region_II_atoms = [] mm_region_II_atoms.extend(mm_region_II_atom_list) ppdb.read_pdb(self.host_mm_pdb) len_atoms = [] for i in range(len(ppdb.df["ATOM"])): len_atoms.append(i + 1) assert len(mm_region_I_atoms) + len(mm_region_II_atoms) == len(len_atoms),\ "Sum of the atoms in the selected and non-selected region "\ "does not equal the length of list of total atoms." np.savetxt(self.host_mm_region_I_atoms, mm_region_I_atoms, fmt="%i") np.savetxt(self.host_mm_region_II_atoms, mm_region_II_atoms, fmt="%i") def save_host_mm_regions_pdbs(self): """ Saves a PDB file for the receptor's MM region preceding the QM region and saves another PDB file for the receptor's MM region folllowing the QM region. """ mm_region_I_atoms = np.loadtxt(self.host_mm_region_I_atoms) mm_region_I_atoms = [int(i) for i in mm_region_I_atoms] mm_region_II_atoms = np.loadtxt(self.host_mm_region_II_atoms) mm_region_II_atoms = [int(i) for i in mm_region_II_atoms] # NOTE: this is a slightly confusing way to define the atoms to # write to a PDB - the members that are *not* in a section, rather # than the members that are. ppdb = PandasPdb() ppdb.read_pdb(self.host_mm_pdb) for i in mm_region_II_atoms: ppdb.df["ATOM"] = ppdb.df["ATOM"][ ppdb.df["ATOM"]["atom_number"] != i ] ppdb.to_pdb( path=self.host_mm_region_I_pdb, records=None, gz=False, append_newline=True, ) ppdb = PandasPdb() ppdb.read_pdb(self.host_mm_pdb) for i in mm_region_I_atoms: ppdb.df["ATOM"] = ppdb.df["ATOM"][ ppdb.df["ATOM"]["atom_number"] != i ] ppdb.to_pdb( path=self.host_mm_region_II_pdb, records=None, gz=False, append_newline=True, ) def get_qm_mm_regions(self): """ Saves separate PDB files for the QM and MM regions. QM regions comprise the QM region of the receptor and the entire ligand where the MM region comprise the non-selected QM regions of the receptor. """ with open(self.host_qm_pdb) as f1, open(self.qm_pdb, "w") as f2: for line in f1: if "ATOM" in line: f2.write(line) with open(self.guest_pdb) as f1, open(self.qm_pdb, "a") as f2: for line in f1: if "ATOM" in line: f2.write(line) f2.write("END") with open(self.host_mm_pdb) as f1, open(self.mm_pdb, "w") as f2: for line in f1: if "ATOM" in line: f2.write(line) f2.write("END") class PrepareGaussianGuest: """ A class used to prepare the QM engine input file (Gaussian) for the ligand and run QM calculations with appropriate keywords. This class contain methods to write an input file (.com extension) for the QM engine. It then runs a QM calculation with the given basis set and functional. Checkpoint file is then converted to a formatted checkpoint file. Output files (.log, .chk, and .fhck) will then be used to extract ligand's force field parameters. ... Attributes ---------- charge : int, optional Charge of the ligand. multiplicity: int, optional Spin Multiplicity (2S+1) of the ligand where S represents the total spin of the ligand. guest_pdb: str, optional Ligand PDB file with atom numbers beginning from 1. n_processors : int, optional Number of processors to be used for Gaussian program to run and set in %NProcShared command of Gaussian. memory : int, optional Memory (in GB) to be used set in %Mem command of Gaussian. functional: str, optional Exchange/Correlation or hybrid functional to use in the Gaussian QM calculation. basis_set: str, optional Basis set to use for the Gaussian QM calculation. optimisation: str, optional set to "OPT" to perform a geometry optimization on the ligand specified in the system; else set to an empty string. frequency: str, optional set to "FREQ" for Gaussian to perform a frequency calculation; else set to an empty string. add_keywords_I: str, optional Specifies the integration grid. add_keywords_II: str, optional Specifies the QM engine to select one of the methods for analyzing the electron density of the system. Methods used are based on fitting the molecular electrostatic potential. Methods used are : POP=CHELPG (Charges from Electrostatic Potentials using a Grid based method) and POP=MK (Merz-Singh-Kollman scheme) add_keywords_III: str, optional Used to include the IOp keyword (to set the internal options to specific values) in the Gaussian command. gauss_out_file: str, optional This file contains the output script obtained after running the Gaussian QM calculation. fchk_out_file: str, optional Formatted checkpoint file obtained from the checkpoint file using formchk command. """ def __init__( self, charge=0, multiplicity=1, guest_pdb="guest_init_II.pdb", n_processors=12, memory=50, functional="B3LYP", basis_set="6-31G", optimisation="OPT", frequency="FREQ", add_keywords_I="INTEGRAL=(GRID=ULTRAFINE)", add_keywords_II="POP(MK,READRADII)", add_keywords_III="IOP(6/33=2,6/42=6)", gauss_out_file="guest.out", fchk_out_file="guest_fchk.out", ): self.charge = charge self.multiplicity = multiplicity self.guest_pdb = guest_pdb self.n_processors = n_processors self.memory = memory self.functional = functional self.basis_set = basis_set self.optimisation = optimisation self.frequency = frequency self.gauss_out_file = gauss_out_file self.fchk_out_file = fchk_out_file self.add_keywords_I = add_keywords_I self.add_keywords_II = add_keywords_II self.add_keywords_III = add_keywords_III def write_input(self): """ Writes a Gaussian input file for the ligand. """ command_line_1 = "%Chk = " + self.guest_pdb[:-4] + ".chk" command_line_2 = "%Mem = " + str(self.memory) + "GB" command_line_3 = "%NProcShared = " + str(self.n_processors) command_line_4 = ( "# " + self.functional + " " + self.basis_set + " " + self.optimisation + " " + self.frequency + " " + self.add_keywords_I + " " + self.add_keywords_II + " " + self.add_keywords_III ) command_line_5 = " " command_line_6 = self.guest_pdb[:-4] + " " + "gaussian input file" command_line_7 = " " command_line_8 = str(self.charge) + " " + str(self.multiplicity) ppdb = PandasPdb() ppdb.read_pdb(self.guest_pdb) df = ppdb.df["ATOM"] df_1 = ppdb.df["ATOM"]["element_symbol"] df_1.columns = ["atom"] df_2 = df[["x_coord", "y_coord", "z_coord"]] df_merged = pd.concat([df_1, df_2], axis=1) command_line_9 = df_merged.to_string(header=False, index=False) command_line_10 = " " command = [ command_line_1, command_line_2, command_line_3, command_line_4, command_line_5, command_line_6, command_line_7, command_line_8, command_line_9, command_line_10, ] commands = "\n".join(command) with open(self.guest_pdb[:-4] + ".com", "w") as f: f.write(commands) def run_gaussian(self): """ Runs the Gaussian QM calculation for the ligand locally. """ execute_command = ( "g16" + " < " + self.guest_pdb[:-4] + ".com" + " > " + self.guest_pdb[:-4] + ".log" ) with open(self.gauss_out_file, "w+") as f: sp.run( execute_command, shell=True, stdout=f, stderr=sp.STDOUT, ) def get_fchk(self): """ Converts the Gaussian checkpoint file (.chk) to a formatted checkpoint file (.fchk). """ execute_command = ( "formchk" + " " + self.guest_pdb[:-4] + ".chk" + " " + self.guest_pdb[:-4] + ".fchk" ) with open(self.fchk_out_file, "w+") as f: sp.run( execute_command, shell=True, stdout=f, stderr=sp.STDOUT, ) class PrepareGaussianHostGuest: """ A class used to prepare the QM engine input file (Gaussian) for the receptor - ligand complex and run the QM calculations with the appropriate keywords. This class contain methods to write an input file (.com extension) for the QM engine for the receptor - ligand complex. It then runs a QM calculation with the given basis set and functional. Checkpoint file is then converted to a formatted checkpoint file. Output files (.log, .chk, and .fhck) will then be used to extract charges for the ligand and the receptor. ... Attributes ---------- charge : int, optional Total charge of the receptor - ligand complex. multiplicity : int, optional Spin Multiplicity (2S+1) of the ligand where S represents the total spin of the ligand. guest_pdb : str, optional Ligand PDB file with atom numbers beginning from 1. host_qm_pdb : str, optional PDB file for the receptor's QM region. n_processors : int, optional Number of processors to be used for Gaussian program to run and set in %NProcShared command of Gaussian. memory : int, optional Memory (in GB) to be used set in %Mem command of Gaussian. functional: str, optional Exchange/Correlation or hybrid functional to use in the Gaussian QM calculation. basis_set: str, optional Basis set to use for the Gaussian QM calculation. optimisation: str, optional set to "OPT" to perform a geometry optimization on the ligand specified in the system; else set to an empty string. frequency: str, optional set to "FREQ" for Gaussian to perform a frequency calculation; else set to an empty string. add_keywords_I: str, optional Specifies the integration grid. add_keywords_II: str, optional Specifies the QM engine to select one of the methods for analyzing the electron density of the system. Methods used are based on fitting the molecular electrostatic potential. Methods used are : POP=CHELPG (Charges from Electrostatic Potentials using a Grid based method) and POP=MK (Merz-Singh-Kollman scheme) add_keywords_III: str, optional Used to include the IOp keyword (to set the internal options to specific values) in the Gaussian command. gauss_system_out_file : str, optional This file contains the output script obtained after running the Gaussian QM calculation. fchk_system_out_file : str, optional Formatted checkpoint file obtained from the checkpoint file using formchk command. host_guest_input : str, optional Gaussian input file (.com extension) for the receptor - ligand QM region. qm_guest_charge_parameter_file : str, optional File containing the charges of ligand atoms and their corresponding atoms. Charge obtained are the polarised charged due to the surrounding receptor's region. qm_host_charge_parameter_file : str, optional File containing the charges of the QM region of the receptor. qm_guest_atom_charge_parameter_file : str, optional File containing the charges of ligand atoms. Charge obtained are the polarised charged due to the surrounding receptor's region. """ def __init__( self, charge=0, multiplicity=1, guest_pdb="guest_init_II.pdb", host_qm_pdb="host_qm.pdb", n_processors=12, memory=50, functional="B3LYP", basis_set="6-31G", optimisation="", frequency="", add_keywords_I="INTEGRAL=(GRID=ULTRAFINE)", add_keywords_II="POP(MK,READRADII)", add_keywords_III="IOP(6/33=2,6/42=6) SCRF=PCM", gauss_system_out_file="system_qm.out", fchk_system_out_file="system_qm_fchk.out", host_guest_input="host_guest.com", qm_guest_charge_parameter_file="guest_qm_surround_charges.txt", qm_host_charge_parameter_file="host_qm_surround_charges.txt", qm_guest_atom_charge_parameter_file="guest_qm_atom_surround_charges.txt", ): self.charge = charge self.multiplicity = multiplicity self.guest_pdb = guest_pdb self.host_qm_pdb = host_qm_pdb self.n_processors = n_processors self.memory = memory self.functional = functional self.basis_set = basis_set self.optimisation = optimisation self.frequency = frequency self.add_keywords_I = add_keywords_I self.add_keywords_II = add_keywords_II self.add_keywords_III = add_keywords_III self.gauss_system_out_file = gauss_system_out_file self.fchk_system_out_file = fchk_system_out_file self.host_guest_input = host_guest_input self.qm_guest_charge_parameter_file = qm_guest_charge_parameter_file self.qm_host_charge_parameter_file = qm_host_charge_parameter_file self.qm_guest_atom_charge_parameter_file = ( qm_guest_atom_charge_parameter_file ) def write_input(self): """ Writes a Gaussian input file for the receptor - ligand QM region. """ command_line_1 = "%Chk = " + self.host_guest_input[:-4] + ".chk" command_line_2 = "%Mem = " + str(self.memory) + "GB" command_line_3 = "%NProcShared = " + str(self.n_processors) command_line_4 = ( "# " + self.functional + " " + self.basis_set + " " + self.optimisation + " " + self.frequency + " " + self.add_keywords_I + " " + self.add_keywords_II + " " + self.add_keywords_III ) command_line_5 = " " command_line_6 = "Gaussian Input File" command_line_7 = " " command_line_8 = str(self.charge) + " " + str(self.multiplicity) ppdb = PandasPdb() ppdb.read_pdb(self.guest_pdb) df = ppdb.df["ATOM"] df_1 = ppdb.df["ATOM"]["element_symbol"] df_1.columns = ["atom"] df_3 = df[["x_coord", "y_coord", "z_coord"]] df_2 = pd.Series(["0"] * len(df), name="decide_freeze") df_merged_1 = pd.concat([df_1, df_2, df_3], axis=1) ppdb = PandasPdb() ppdb.read_pdb(self.host_qm_pdb) df = ppdb.df["ATOM"] df_1 = ppdb.df["ATOM"]["element_symbol"] df_1.columns = ["atom"] df_3 = df[["x_coord", "y_coord", "z_coord"]] df_2 = pd.Series(["0"] * len(df), name="decide_freeze") df_merged_2 = pd.concat([df_1, df_2, df_3], axis=1) df_merged = pd.concat([df_merged_1, df_merged_2], axis=0) command_line_9 = df_merged.to_string(header=False, index=False) command_line_10 = " " command = [ command_line_1, command_line_2, command_line_3, command_line_4, command_line_5, command_line_6, command_line_7, command_line_8, command_line_9, command_line_10, ] commands = "\n".join(command) with open(self.host_guest_input, "w") as f: f.write(commands) def run_gaussian(self): """ Runs the Gaussian QM calculation for the ligand - receptor region locally. """ execute_command = ( "g16" + " < " + self.host_guest_input + " > " + self.host_guest_input[:-4] + ".log" ) with open(self.gauss_system_out_file, "w+") as f: sp.run( execute_command, shell=True, stdout=f, stderr=sp.STDOUT, ) def get_fchk(self): """ Converts the Gaussian checkpoint file (.chk) to a formatted checkpoint file (.fchk). """ execute_command = ( "formchk" + " " + self.host_guest_input[:-4] + ".chk" + " " + self.host_guest_input[:-4] + ".fchk" ) with open(self.fchk_system_out_file, "w+") as f: sp.run( execute_command, shell=True, stdout=f, stderr=sp.STDOUT, ) def get_qm_host_guest_charges(self): """ Extract charge information for the receptor - ligand QM region. """ log_file = self.host_guest_input[:-4] + ".log" with open(log_file, "r") as f: lines = f.readlines() for i in range(len(lines)): if "Fitting point charges to electrostatic potential" in lines[i]: to_begin = int(i) if " Sum of ESP charges =" in lines[i]: to_end = int(i) # Why + 4? charges = lines[to_begin + 4 : to_end] charge_list = [] for i in range(len(charges)): charge_list.append(charges[i].strip().split()) charge_list_value = [] atom_list = [] for i in range(len(charge_list)): charge_list_value.append(charge_list[i][2]) atom_list.append(charge_list[i][1]) ppdb = PandasPdb() ppdb.read_pdb(self.guest_pdb) df_guest = ppdb.df["ATOM"] number_guest_atoms = df_guest.shape[0] data_tuples = list(zip(atom_list, charge_list_value)) df_charge = pd.DataFrame(data_tuples, columns=["Atom", "Charge"]) number_host_atoms = df_charge.shape[0] - number_guest_atoms df_charge_guest = df_charge.head(number_guest_atoms) df_charge_host = df_charge.tail(number_host_atoms) df_charge_only_guest = df_charge_guest["Charge"] df_charge_guest.to_csv( self.qm_guest_charge_parameter_file, index=False, header=False, sep=" ", ) df_charge_host.to_csv( self.qm_host_charge_parameter_file, index=False, header=False, sep=" ", ) df_charge_only_guest.to_csv( self.qm_guest_atom_charge_parameter_file, index=False, header=False, sep=" ", ) class ParameterizeGuest: """ A class used to obtain force field parameters for the ligand (bond, angle and charge parameters) from QM calculations. This class contain methods to process the output files of the Gaussian QM output files (.chk, .fchk and .log files). Methods in the class extract the unprocessed hessian matrix from the Gaussian QM calculations, processes it and uses the Modified Seminario Method to ontain the bond and angle parameters. The class also extracts the QM charges from the log file. ... Attributes ---------- xyz_file: str, optional XYZ file for ligand coordinates obtained from its corresponding formatted checkpoint file. coordinate_file: str, optional Text file containing the ligand coordinates (extracted from the formatted checkpoint file). unprocessed_hessian_file: str, optional Unprocessed hessian matrix of the ligand obtained from the formatted checkpoint file. bond_list_file: str, optional Text file containing the bond information of the ligand extracted from the log file. angle_list_file: str, optional Text file containing the angle information of the ligand extracted from the log file. hessian_file: str, optional Processed hessian matrix of the ligand. atom_names_file: str, optional Text file containing the list of atom names from the fchk file. bond_parameter_file: str, optional Text file containing the bond parameters for the ligand obtained using the Modified Seminario method. angle_parameter_file: str, optional Text file containing the angle parameters of the ligand obtained using the Modified Seminario method.. charge_parameter_file: str, optional Text file containing the QM charges of the ligand. guest_pdb: str, optional Ligand PDB file with atom numbers beginning from 1. proper_dihedral_file: str, optional A text file containing proper dihedral angles of the ligand. functional: str, optional Exchange/Correlation or hybrid functional to use in the Gaussian QM calculation. basis_set: str, optional Basis set to use for the Gaussian QM calculation. """ def __init__( self, xyz_file="guest_coords.xyz", coordinate_file="guest_coordinates.txt", unprocessed_hessian_file="guest_unprocessed_hessian.txt", bond_list_file="guest_bond_list.txt", angle_list_file="guest_angle_list.txt", hessian_file="guest_hessian.txt", atom_names_file="guest_atom_names.txt", bond_parameter_file="guest_bonds.txt", angle_parameter_file="guest_angles.txt", charge_parameter_file="guest_qm_surround_charges.txt", guest_pdb="guest_init_II.pdb", proper_dihedral_file="proper_dihedrals.txt", functional="B3LYP", basis_set="6-31G", ): self.xyz_file = xyz_file self.coordinate_file = coordinate_file self.unprocessed_hessian_file = unprocessed_hessian_file self.bond_list_file = bond_list_file self.angle_list_file = angle_list_file self.hessian_file = hessian_file self.atom_names_file = atom_names_file self.bond_parameter_file = bond_parameter_file self.angle_parameter_file = angle_parameter_file self.charge_parameter_file = charge_parameter_file self.guest_pdb = guest_pdb self.proper_dihedral_file = proper_dihedral_file self.functional = functional self.basis_set = basis_set def get_xyz(self): """ Saves XYZ file from the formatted checkpoint file. """ fchk_file = self.guest_pdb[:-4] + ".fchk" with open(fchk_file, "r") as f: lines = f.readlines() for i in range(len(lines)): if "Current cartesian coordinates" in lines[i]: no_coordinates = re.findall(r"\d+|\d+.\d+", lines[i]) no_coordinates = int(no_coordinates[0]) to_begin = int(i) cartesian_coords = lines[ to_begin + 1 : to_begin + 1 + int(math.ceil(no_coordinates / 5)) ] cartesian_list = [] for i in range(len(cartesian_coords)): cartesian_list.append(cartesian_coords[i].strip().split()) coordinates_list = [ item for sublist in cartesian_list for item in sublist ] # Converted from Atomic units (Bohrs) to Angstroms list_coords = [float(x) * BOHRS_PER_ANGSTROM for x in coordinates_list] for i in range(len(lines)): if "Atomic numbers" in lines[i]: to_begin = int(i) if "Nuclear charges" in lines[i]: to_end = int(i) atomic_number_strings = lines[to_begin + 1 : to_end] atom_numbers_nested = [] for i in range(len(atomic_number_strings)): atom_numbers_nested.append(atomic_number_strings[i].strip().split()) numbers = [item for sublist in atom_numbers_nested for item in sublist] N = int(no_coordinates / 3) # Opens the new xyz file with open(self.xyz_file, "w") as file: file.write(str(N) + "\n \n") coords = np.zeros((N, 3)) n = 0 names = [] # Gives name for atomic number for x in range(0, len(numbers)): names.append(element_list[int(numbers[x]) - 1][1]) # Print coordinates to new input_coords.xyz file for i in range(0, N): for j in range(0, 3): coords[i][j] = list_coords[n] n = n + 1 file.write( names[i] + str(round(coords[i][0], 3)) + " " + str(round(coords[i][1], 3)) + " " + str(round(coords[i][2], 3)) + "\n" ) np.savetxt(self.coordinate_file, coords, fmt="%s") def get_unprocessed_hessian(self): """ Saves a text file of the unprocessed hessian matrix from the formatted checkpoint file. """ fchk_file = self.guest_pdb[:-4] + ".fchk" with open(fchk_file, "r") as f: lines = f.readlines() for i in range(len(lines)): if "Cartesian Force Constants" in lines[i]: no_hessian = re.findall(r"\d+|\d+.\d+", lines[i]) no_hessian = int(no_hessian[0]) to_begin = int(i) hessian = lines[ to_begin + 1 : to_begin + 1 + int(math.ceil(no_hessian / 5)) ] hessian_list = [] for i in range(len(hessian)): hessian_list.append(hessian[i].strip().split()) unprocessed_Hessian = [ item for sublist in hessian_list for item in sublist ] np.savetxt( self.unprocessed_hessian_file, unprocessed_Hessian, fmt="%s", ) def get_bond_angles(self): """ Saves a text file containing bonds and angles from the gaussian log file. """ log_file = self.guest_pdb[:-4] + ".log" with open(log_file, "r") as fid: tline = fid.readline() bond_list = [] angle_list = [] tmp = "R" # States if bond or angle # Finds the bond and angles from the .log file while tline: tline = fid.readline() # Line starts at point when bond and angle list occurs if ( len(tline) > 80 and tline[0:81].strip() == "! Name Definition Value Derivative Info. !" ): tline = fid.readline() tline = fid.readline() # Stops when all bond and angles recorded while (tmp[0] == "R") or (tmp[0] == "A"): line = tline.split() tmp = line[1] # Bond or angles listed as string list_terms = line[2][2:-1] # Bond List if tmp[0] == "R": x = list_terms.split(",") # Subtraction due to python array indexing at 0 x = [(int(i) - 1) for i in x] bond_list.append(x) # Angle List if tmp[0] == "A": x = list_terms.split(",") # Subtraction due to python array indexing at 0 x = [(int(i) - 1) for i in x] angle_list.append(x) tline = fid.readline() # Leave loop tline = -1 np.savetxt(self.bond_list_file, bond_list, fmt="%s") np.savetxt(self.angle_list_file, angle_list, fmt="%s") def get_hessian(self): """ Extracts hessian matrix from the unprocessed hessian matrix and saves into a new file. """ unprocessed_Hessian = np.loadtxt(self.unprocessed_hessian_file) fchk_file = self.guest_pdb[:-4] + ".fchk" with open(fchk_file, "r") as f: lines = f.readlines() for i in range(len(lines)): if "Current cartesian coordinates" in lines[i]: no_coordinates = re.findall(r"\d+|\d+.\d+", lines[i]) no_coordinates = int(no_coordinates[0]) N = int(no_coordinates / 3) length_hessian = 3 * N hessian = np.zeros((length_hessian, length_hessian)) m = 0 # Write the hessian in a 2D array format for i in range(0, length_hessian): for j in range(0, (i + 1)): hessian[i][j] = unprocessed_Hessian[m] hessian[j][i] = unprocessed_Hessian[m] m = m + 1 hessian = (hessian * HARTREE_PER_KCAL_MOL) / ( BOHRS_PER_ANGSTROM ** 2 ) # Change from Hartree/bohr to kcal/mol/ang np.savetxt(self.hessian_file, hessian, fmt="%s") def get_atom_names(self): """ Saves a list of atom names from the formatted checkpoint file. """ fchk_file = self.guest_pdb[:-4] + ".fchk" with open(fchk_file, "r") as f: lines = f.readlines() for i in range(len(lines)): if "Atomic numbers" in lines[i]: to_begin = int(i) if "Nuclear charges" in lines[i]: to_end = int(i) atomic_numbers = lines[to_begin + 1 : to_end] atom_numbers = [] for i in range(len(atomic_numbers)): atom_numbers.append(atomic_numbers[i].strip().split()) numbers = [item for sublist in atom_numbers for item in sublist] names = [] # Gives name for atomic number for x in range(0, len(numbers)): names.append(element_list[int(numbers[x]) - 1][1]) atom_names = [] for i in range(0, len(names)): atom_names.append(names[i].strip() + str(i + 1)) np.savetxt(self.atom_names_file, atom_names, fmt="%s") def get_bond_angle_params(self): """ Saves the bond and angle parameter files obtained from the formatted checkpoint file. """ fchk_file = self.guest_pdb[:-4] + ".fchk" with open(fchk_file, "r") as f: lines = f.readlines() for i in range(len(lines)): if "Current cartesian coordinates" in lines[i]: no_coordinates = re.findall(r"\d+|\d+.\d+", lines[i]) no_coordinates = int(no_coordinates[0]) N = int(no_coordinates / 3) coords = np.loadtxt(self.coordinate_file) hessian = np.loadtxt(self.hessian_file) bond_list = np.loadtxt(self.bond_list_file, dtype=int) atom_names = np.loadtxt(self.atom_names_file, dtype=str) # Find bond lengths bond_lengths = np.zeros((N, N)) for i in range(0, N): for j in range(0, N): diff_i_j = np.array(coords[i, :]) - np.array(coords[j, :]) bond_lengths[i][j] = np.linalg.norm(diff_i_j) eigenvectors = np.empty((3, 3, N, N), dtype=complex) eigenvalues = np.empty((N, N, 3), dtype=complex) partial_hessian = np.zeros((3, 3)) for i in range(0, N): for j in range(0, N): partial_hessian = hessian[ (i * 3) : ((i + 1) * 3), (j * 3) : ((j + 1) * 3) ] [a, b] = np.linalg.eig(partial_hessian) eigenvalues[i, j, :] = a eigenvectors[:, :, i, j] = b # Modified Seminario method to find the bond parameters and # print them to file file_bond = open(self.bond_parameter_file, "w") k_b = np.zeros(len(bond_list)) bond_length_list = np.zeros(len(bond_list)) unique_values_bonds = [] # Used to find average values for i in range(0, len(bond_list)): AB = force_constant_bond( bond_list[i][0], bond_list[i][1], eigenvalues, eigenvectors, coords, ) BA = force_constant_bond( bond_list[i][1], bond_list[i][0], eigenvalues, eigenvectors, coords, ) # Order of bonds sometimes causes slight differences, # find the mean k_b[i] = np.real((AB + BA) / 2) # Vibrational_scaling takes into account DFT deficities / # anharmocity vibrational_scaling = get_vibrational_scaling( functional=self.functional, basis_set=self.basis_set ) vibrational_scaling_squared = vibrational_scaling ** 2 k_b[i] = k_b[i] * vibrational_scaling_squared bond_length_list[i] = bond_lengths[bond_list[i][0]][ bond_list[i][1] ] file_bond.write( atom_names[bond_list[i][0]] + "-" + atom_names[bond_list[i][1]] + " " ) file_bond.write( str("%#.5g" % k_b[i]) + " " + str("%#.4g" % bond_length_list[i]) + " " + str(bond_list[i][0] + 1) + " " + str(bond_list[i][1] + 1) ) file_bond.write("\n") unique_values_bonds.append( [ atom_names[bond_list[i][0]], atom_names[bond_list[i][1]], k_b[i], bond_length_list[i], 1, ] ) file_bond.close() angle_list = np.loadtxt(self.angle_list_file, dtype=int) # Modified Seminario method to find the angle parameters # and print them to file file_angle = open(self.angle_parameter_file, "w") k_theta = np.zeros(len(angle_list)) theta_0 = np.zeros(len(angle_list)) unique_values_angles = [] # Used to find average values # Modified Seminario part goes here ... # Connectivity information for Modified Seminario Method central_atoms_angles = [] # A structure is created with the index giving the central # atom of the angle, # an array then lists the angles with that central atom. # i.e. central_atoms_angles{3} contains an array of angles # with central atom 3 for i in range(0, len(coords)): central_atoms_angles.append([]) for j in range(0, len(angle_list)): if i == angle_list[j][1]: # For angle ABC, atoms A C are written to array AC_array = [angle_list[j][0], angle_list[j][2], j] central_atoms_angles[i].append(AC_array) # For angle ABC, atoms C A are written to array CA_array = [angle_list[j][2], angle_list[j][0], j] central_atoms_angles[i].append(CA_array) # Sort rows by atom number for i in range(0, len(coords)): central_atoms_angles[i] = sorted( central_atoms_angles[i], key=itemgetter(0) ) # Find normals u_PA for each angle unit_PA_all_angles = [] for i in range(0, len(central_atoms_angles)): unit_PA_all_angles.append([]) for j in range(0, len(central_atoms_angles[i])): # For the angle at central_atoms_angles[i][j,:] the # corresponding u_PA value # is found for the plane ABC and bond AB, where ABC # corresponds to the order # of the arguements. This is why the reverse order # was also added unit_PA_all_angles[i].append( u_PA_from_angles( central_atoms_angles[i][j][0], i, central_atoms_angles[i][j][1], coords, ) ) # Finds the contributing factors from the other angle terms # scaling_factor_all_angles # = cell(max(max(angle_list))); %This array will contain # scaling factor and angle list position scaling_factor_all_angles = [] for i in range(0, len(central_atoms_angles)): scaling_factor_all_angles.append([]) for j in range(0, len(central_atoms_angles[i])): n = 1 m = 1 angles_around = 0 additional_contributions = 0 scaling_factor_all_angles[i].append([0, 0]) # Position in angle list scaling_factor_all_angles[i][j][1] = central_atoms_angles[i][ j ][2] # Goes through the list of angles with the same central atom # and computes the # term need for the modified Seminario method # Forwards directions, finds the same bonds with the central atom i while ( ((j + n) < len(central_atoms_angles[i])) and central_atoms_angles[i][j][0] == central_atoms_angles[i][j + n][0] ): additional_contributions = ( additional_contributions + ( abs( np.dot( unit_PA_all_angles[i][j][:], unit_PA_all_angles[i][j + n][:], ) ) ) ** 2 ) n = n + 1 angles_around = angles_around + 1 # Backwards direction, finds the same bonds with the central atom i while ((j - m) >= 0) and central_atoms_angles[i][j][ 0 ] == central_atoms_angles[i][j - m][0]: additional_contributions = ( additional_contributions + ( abs( np.dot( unit_PA_all_angles[i][j][:], unit_PA_all_angles[i][j - m][:], ) ) ) ** 2 ) m = m + 1 angles_around = angles_around + 1 if n != 1 or m != 1: # Finds the mean value of the additional contribution to # change to normal # Seminario method comment out + part scaling_factor_all_angles[i][j][0] = 1 + ( additional_contributions / (m + n - 2) ) else: scaling_factor_all_angles[i][j][0] = 1 scaling_factors_angles_list = [] for i in range(0, len(angle_list)): scaling_factors_angles_list.append([]) # Orders the scaling factors according to the angle list for i in range(0, len(central_atoms_angles)): for j in range(0, len(central_atoms_angles[i])): scaling_factors_angles_list[ scaling_factor_all_angles[i][j][1] ].append(scaling_factor_all_angles[i][j][0]) # Finds the angle force constants with the scaling factors # included for each angle for i in range(0, len(angle_list)): # Ensures that there is no difference when the # ordering is changed [AB_k_theta, AB_theta_0] = force_angle_constant( angle_list[i][0], angle_list[i][1], angle_list[i][2], bond_lengths, eigenvalues, eigenvectors, coords, scaling_factors_angles_list[i][0], scaling_factors_angles_list[i][1], ) [BA_k_theta, BA_theta_0] = force_angle_constant( angle_list[i][2], angle_list[i][1], angle_list[i][0], bond_lengths, eigenvalues, eigenvectors, coords, scaling_factors_angles_list[i][1], scaling_factors_angles_list[i][0], ) k_theta[i] = (AB_k_theta + BA_k_theta) / 2 theta_0[i] = (AB_theta_0 + BA_theta_0) / 2 # Vibrational_scaling takes into account DFT # deficities/ anharmonicity k_theta[i] = k_theta[i] * vibrational_scaling_squared file_angle.write( atom_names[angle_list[i][0]] + "-" + atom_names[angle_list[i][1]] + "-" + atom_names[angle_list[i][2]] + " " ) file_angle.write( str("%#.4g" % k_theta[i]) + " " + str("%#.4g" % theta_0[i]) + " " + str(angle_list[i][0] + 1) + " " + str(angle_list[i][1] + 1) + " " + str(angle_list[i][2] + 1) ) file_angle.write("\n") unique_values_angles.append( [ atom_names[angle_list[i][0]], atom_names[angle_list[i][1]], atom_names[angle_list[i][2]], k_theta[i], theta_0[i], 1, ] ) file_angle.close() def get_charges(self): """ Saves the atomic charges in a text file obtained from the Gaussian log file. """ log_file = self.guest_pdb[:-4] + ".log" with open(log_file, "r") as f: lines = f.readlines() for i in range(len(lines)): if "Fitting point charges to electrostatic potential" in lines[i]: to_begin = int(i) if " Sum of ESP charges =" in lines[i]: to_end = int(i) charges = lines[to_begin + 4 : to_end] charge_list = [] for i in range(len(charges)): charge_list.append(charges[i].strip().split()) charge_list_value = [] atom_list = [] for i in range(len(charge_list)): charge_list_value.append(charge_list[i][2]) atom_list.append(charge_list[i][1]) data_tuples = list(zip(atom_list, charge_list_value)) df_charge = pd.DataFrame(data_tuples, columns=["Atom", "Charge"]) df_charge.to_csv( self.charge_parameter_file, index=False, header=False, sep=" ", ) def get_proper_dihedrals(self): """ Saves proper dihedral angles of the ligand in a text file. """ ppdb = PandasPdb() ppdb.read_pdb(self.guest_pdb) no_atoms = len(ppdb.df["ATOM"]) atom_index_list = [] for i in range(no_atoms): atom_index_list.append(i + 1) possible_dihedrals = [] for dihed in itertools.permutations(atom_index_list, 4): possible_dihedrals.append(dihed) df_bonds = pd.read_csv( self.bond_parameter_file, header=None, delimiter=r"\s+" ) df_bonds.columns = [ "bond", "k_bond", "bond_length", "bond_1", "bond_2", ] bond1 = df_bonds["bond_1"].values.tolist() bond2 = df_bonds["bond_2"].values.tolist() bond_list_list = [] for i in range(len(bond1)): args = (bond1[i], bond2[i]) bond_list_list.append(list(args)) reverse_bond_list_list = [] for bonds in bond_list_list: reverse_bond_list_list.append(reverse_list(bonds)) bond_lists = bond_list_list + reverse_bond_list_list proper_dihed_repeated = [] for i in range(len(possible_dihedrals)): dihed_frag = ( [possible_dihedrals[i][0], possible_dihedrals[i][1]], [possible_dihedrals[i][1], possible_dihedrals[i][2]], [possible_dihedrals[i][2], possible_dihedrals[i][3]], ) a = [ dihed_frag[0] in bond_lists, dihed_frag[1] in bond_lists, dihed_frag[2] in bond_lists, ] if a == [True, True, True]: proper_dihed_repeated.append(possible_dihedrals[i]) len_repeated_dihed_list = len(proper_dihed_repeated) proper_dihedrals = proper_dihed_repeated for x in proper_dihedrals: z = x[::-1] if z in proper_dihedrals: proper_dihedrals.remove(z) len_non_repeated_dihed_list = len(proper_dihedrals) # print(len_repeated_dihed_list == len_non_repeated_dihed_list * 2) np.savetxt(self.proper_dihedral_file, proper_dihedrals, fmt="%s") # return(proper_dihedrals) class PrepareGaussianHost: """ A class used to prepare the QM engine input file (Gaussian) for the receptor and run QM calculations with appropriate keywords. This class contain methods to write an input file (.com extension) for the QM engine. It then runs a QM calculation with the given basis set and functional. Checkpoint file is then converted to a formatted checkpoint file. Output files (.log, .chk, and .fhck) will then be used to extract receptors's force field parameters. ... Attributes ---------- charge : int, optional Charge of the receptor. multiplicity: int, optional Spin Multiplicity (2S+1) of the receptor where S represents the total spin of the receptor. host_qm_pdb: str, optional PDB file of the receptor's QM region with atom numbers beginning from 1. n_processors : int, optional Number of processors to be used for Gaussian program to run and set in %NProcShared command of Gaussian. memory : int, optional Memory (in GB) to be used set in %Mem command of Gaussian. functional: str, optional Exchange/Correlation or hybrid functional to use in the Gaussian QM calculation. basis_set: str, optional Basis set to use for the Gaussian QM calculation. optimisation: str, optional set to "OPT" to perform a geometry optimization on the receptor specified in the system; else set to an empty string. frequency: str, optional set to "FREQ" for Gaussian to perform a frequency calculation; else set to an empty string. add_keywords_I: str, optional Specifies the integration grid. add_keywords_II: str, optional Specifies the QM engine to select one of the methods for analyzing the electron density of the system. Methods used are based on fitting the molecular electrostatic potential. Methods used are : POP=CHELPG (Charges from Electrostatic Potentials using a Grid based method) and POP=MK (Merz-Singh-Kollman scheme) add_keywords_III: str, optional Used to include the IOp keyword (to set the internal options to specific values) in the Gaussian command. gauss_out_file: str, optional This file contains the output script obtained after running the Gaussian QM calculation. fchk_out_file: str, optional Formatted checkpoint file obtained from the checkpoint file using formchk command. """ def __init__( self, charge=0, multiplicity=1, host_qm_pdb="host_qm.pdb", n_processors=12, memory=50, functional="B3LYP", basis_set="6-31G", optimisation="OPT", frequency="FREQ", add_keywords_I="INTEGRAL=(GRID=ULTRAFINE) SCF=(maxcycles=4000) SYMMETRY=NONE", add_keywords_II="POP(MK,READRADII)", add_keywords_III="IOP(6/33=2,6/42=6)", gauss_out_file="host_qm.out", fchk_out_file="host_qm_fchk.out", ): self.charge = charge self.multiplicity = multiplicity self.host_qm_pdb = host_qm_pdb self.n_processors = n_processors self.memory = memory self.functional = functional self.basis_set = basis_set self.optimisation = optimisation self.frequency = frequency self.gauss_out_file = gauss_out_file self.fchk_out_file = fchk_out_file self.add_keywords_I = add_keywords_I self.add_keywords_II = add_keywords_II self.add_keywords_III = add_keywords_III def write_input(self): """ Writes a Gaussian input file for the receptor QM region. """ # TODO: create generic function for Gaussian Input file (DRY principle) command_line_1 = "%Chk = " + self.host_qm_pdb[:-4] + ".chk" command_line_2 = "%Mem = " + str(self.memory) + "GB" command_line_3 = "%NProcShared = " + str(self.n_processors) command_line_4 = ( "# " + self.functional + " " + self.basis_set + " " + self.optimisation + " " + self.frequency + " " + self.add_keywords_I + " " + self.add_keywords_II + " " + self.add_keywords_III ) command_line_5 = " " command_line_6 = self.host_qm_pdb[:-4] + " " + "gaussian input file" command_line_7 = " " command_line_8 = str(self.charge) + " " + str(self.multiplicity) ppdb = PandasPdb() ppdb.read_pdb(self.host_qm_pdb) df = ppdb.df["ATOM"] df_1 = ppdb.df["ATOM"]["element_symbol"] df_1.columns = ["atom"] df_2 = df[["x_coord", "y_coord", "z_coord"]] df_merged = pd.concat([df_1, df_2], axis=1) command_line_9 = df_merged.to_string(header=False, index=False) command_line_10 = " " command = [ command_line_1, command_line_2, command_line_3, command_line_4, command_line_5, command_line_6, command_line_7, command_line_8, command_line_9, command_line_10, ] commands = "\n".join(command) with open(self.host_qm_pdb[:-4] + ".com", "w") as f: f.write(commands) def run_gaussian(self): """ Runs the Gaussian QM calculation for the receptor locally. """ execute_command = ( "g16" + " < " + self.host_qm_pdb[:-4] + ".com" + " > " + self.host_qm_pdb[:-4] + ".log" ) with open(self.gauss_out_file, "w+") as f: sp.run( execute_command, shell=True, stdout=f, stderr=sp.STDOUT, ) def get_fchk(self): """ Converts the Gaussian checkpoint file (.chk) to a formatted checkpoint file (.fchk). """ execute_command = ( "formchk" + " " + self.host_qm_pdb[:-4] + ".chk" + " " + self.host_qm_pdb[:-4] + ".fchk" ) with open(self.fchk_out_file, "w+") as f: sp.run( execute_command, shell=True, stdout=f, stderr=sp.STDOUT, ) class ParameterizeHost: """ A class used to obtain force field parameters for the QM region of the receptor (bond, angle and charge parameters) from QM calculations. This class contain methods to process the output files of the Gaussian QM output files (.chk, .fchk and .log files). Methods in the class extract the unprocessed hessian matrix from the Gaussian QM calculations, processes it and uses the Modified Seminario Method to ontain the bond and angle parameters. The class also extracts the QM charges from the log file. ... Attributes ---------- xyz_file: str, optional XYZ file for ligand coordinates obtained from its corresponding formatted checkpoint file. coordinate_file: str, optional Text file containing the receptor coordinates (extracted from the formatted checkpoint file). unprocessed_hessian_file: str, optional Unprocessed hessian matrix of the receptor obtained from the formatted checkpoint file. bond_list_file: str, optional Text file containing the bond information of the receptor extracted from the log file. angle_list_file: str, optional Text file containing the angle information of the receptor extracted from the log file. hessian_file: str, optional Processed hessian matrix of the receptor. atom_names_file: str, optional Text file containing the list of atom names from the fchk file. bond_parameter_file: str, optional Text file containing the bond parameters for the receptor obtained using the Modified Seminario method. angle_parameter_file: str, optional Text file containing the angle parameters of the receptor. charge_parameter_file: str, optional Text file containing the QM charges of the receptor. host_qm_pdb: str, optional PDB file for the receptor's QM region. functional: str, optional Exchange/Correlation or hybrid functional to use in the Gaussian QM calculation. basis_set: str, optional Basis set to use for the Gaussian QM calculation. """ def __init__( self, xyz_file="host_qm_coords.xyz", coordinate_file="host_qm_coordinates.txt", unprocessed_hessian_file="host_qm_unprocessed_hessian.txt", bond_list_file="host_qm_bond_list.txt", angle_list_file="host_qm_angle_list.txt", hessian_file="host_qm_hessian.txt", atom_names_file="host_qm_atom_names.txt", bond_parameter_file="host_qm_bonds.txt", angle_parameter_file="host_qm_angles.txt", charge_parameter_file="host_qm_surround_charges.txt", host_qm_pdb="host_qm.pdb", functional="B3LYP", basis_set="6-31G", ): self.xyz_file = xyz_file self.coordinate_file = coordinate_file self.unprocessed_hessian_file = unprocessed_hessian_file self.bond_list_file = bond_list_file self.angle_list_file = angle_list_file self.hessian_file = hessian_file self.atom_names_file = atom_names_file self.bond_parameter_file = bond_parameter_file self.angle_parameter_file = angle_parameter_file self.charge_parameter_file = charge_parameter_file self.host_qm_pdb = host_qm_pdb self.functional = functional self.basis_set = basis_set def get_xyz(self): """ Saves XYZ file from the formatted checkpoint file. """ fchk_file = self.host_qm_pdb[:-4] + ".fchk" with open(fchk_file, "r") as f: lines = f.readlines() for i in range(len(lines)): if "Current cartesian coordinates" in lines[i]: no_coordinates = re.findall(r"\d+|\d+.\d+", lines[i]) no_coordinates = int(no_coordinates[0]) for i in range(len(lines)): if "Current cartesian coordinates" in lines[i]: to_begin = int(i) cartesian_coords = lines[ to_begin + 1 : to_begin + 1 + int(math.ceil(no_coordinates / 5)) ] cartesian_list = [] for i in range(len(cartesian_coords)): cartesian_list.append(cartesian_coords[i].strip().split()) coordinates_list = [ item for sublist in cartesian_list for item in sublist ] list_coords = [float(x) * float(0.529) for x in coordinates_list] for i in range(len(lines)): if "Atomic numbers" in lines[i]: to_begin = int(i) if "Nuclear charges" in lines[i]: to_end = int(i) atomic_numbers = lines[to_begin + 1 : to_end] atom_numbers = [] for i in range(len(atomic_numbers)): atom_numbers.append(atomic_numbers[i].strip().split()) numbers = [item for sublist in atom_numbers for item in sublist] N = int(no_coordinates / 3) # Opens the new xyz file file = open(self.xyz_file, "w") file.write(str(N) + "\n \n") coords = np.zeros((N, 3)) n = 0 names = [] # Gives name for atomic number for x in range(0, len(numbers)): names.append(element_list[int(numbers[x]) - 1][1]) # Print coordinates to new input_coords.xyz file for i in range(0, N): for j in range(0, 3): coords[i][j] = list_coords[n] n = n + 1 file.write( names[i] + str(round(coords[i][0], 3)) + " " + str(round(coords[i][1], 3)) + " " + str(round(coords[i][2], 3)) + "\n" ) file.close() np.savetxt(self.coordinate_file, coords, fmt="%s") def get_unprocessed_hessian(self): """ Saves a text file of the unprocessed hessian matrix from the formatted checkpoint file. """ fchk_file = self.host_qm_pdb[:-4] + ".fchk" with open(fchk_file, "r") as f: lines = f.readlines() for i in range(len(lines)): if "Cartesian Force Constants" in lines[i]: no_hessian = re.findall(r"\d+|\d+.\d+", lines[i]) no_hessian = int(no_hessian[0]) for i in range(len(lines)): if "Cartesian Force Constants" in lines[i]: to_begin = int(i) hessian = lines[ to_begin + 1 : to_begin + 1 + int(math.ceil(no_hessian / 5)) ] hessian_list = [] for i in range(len(hessian)): hessian_list.append(hessian[i].strip().split()) unprocessed_Hessian = [ item for sublist in hessian_list for item in sublist ] np.savetxt( self.unprocessed_hessian_file, unprocessed_Hessian, fmt="%s", ) def get_bond_angles(self): """ Saves a text file containing bonds and angles from the gaussian log file. """ log_file = self.host_qm_pdb[:-4] + ".log" fid = open(log_file, "r") tline = fid.readline() bond_list = [] angle_list = [] n = 1 n_bond = 1 n_angle = 1 tmp = "R" # States if bond or angle B = [] # Finds the bond and angles from the .log file while tline: tline = fid.readline() # Line starts at point when bond and angle list occurs if ( len(tline) > 80 and tline[0:81].strip() == "! Name Definition Value Derivative Info. !" ): tline = fid.readline() tline = fid.readline() # Stops when all bond and angles recorded while (tmp[0] == "R") or (tmp[0] == "A"): line = tline.split() tmp = line[1] # Bond or angles listed as string list_terms = line[2][2:-1] # Bond List if tmp[0] == "R": x = list_terms.split(",") # Subtraction due to python array indexing at 0 x = [(int(i) - 1) for i in x] bond_list.append(x) # Angle List if tmp[0] == "A": x = list_terms.split(",") # Subtraction due to python array indexing at 0 x = [(int(i) - 1) for i in x] angle_list.append(x) tline = fid.readline() # Leave loop tline = -1 np.savetxt(self.bond_list_file, bond_list, fmt="%s") np.savetxt(self.angle_list_file, angle_list, fmt="%s") def get_hessian(self): """ Extracts hessian matrix from the unprocessed hessian matrix and saves into a new file. """ unprocessed_Hessian = np.loadtxt(self.unprocessed_hessian_file) fchk_file = self.host_qm_pdb[:-4] + ".fchk" with open(fchk_file, "r") as f: lines = f.readlines() for i in range(len(lines)): if "Current cartesian coordinates" in lines[i]: no_coordinates = re.findall(r"\d+|\d+.\d+", lines[i]) no_coordinates = int(no_coordinates[0]) N = int(no_coordinates / 3) length_hessian = 3 * N hessian = np.zeros((length_hessian, length_hessian)) m = 0 # Write the hessian in a 2D array format for i in range(0, (length_hessian)): for j in range(0, (i + 1)): hessian[i][j] = unprocessed_Hessian[m] hessian[j][i] = unprocessed_Hessian[m] m = m + 1 hessian = (hessian * (627.509391)) / ( 0.529 ** 2 ) # Change from Hartree/bohr to kcal/mol/ang np.savetxt(self.hessian_file, hessian, fmt="%s") def get_atom_names(self): """ Saves a list of atom names from the formatted checkpoint file. """ fchk_file = self.host_qm_pdb[:-4] + ".fchk" with open(fchk_file, "r") as f: lines = f.readlines() for i in range(len(lines)): if "Atomic numbers" in lines[i]: to_begin = int(i) if "Nuclear charges" in lines[i]: to_end = int(i) atomic_numbers = lines[to_begin + 1 : to_end] atom_numbers = [] for i in range(len(atomic_numbers)): atom_numbers.append(atomic_numbers[i].strip().split()) numbers = [item for sublist in atom_numbers for item in sublist] names = [] # Gives name for atomic number for x in range(0, len(numbers)): names.append(element_list[int(numbers[x]) - 1][1]) atom_names = [] for i in range(0, len(names)): atom_names.append(names[i].strip() + str(i + 1)) np.savetxt(self.atom_names_file, atom_names, fmt="%s") def get_bond_angle_params(self): """ Saves the bond and angle parameter files obtained from the formatted checkpoint file. """ fchk_file = self.host_qm_pdb[:-4] + ".fchk" with open(fchk_file, "r") as f: lines = f.readlines() for i in range(len(lines)): if "Current cartesian coordinates" in lines[i]: no_coordinates = re.findall(r"\d+|\d+.\d+", lines[i]) no_coordinates = int(no_coordinates[0]) N = int(no_coordinates / 3) coords = np.loadtxt(self.coordinate_file) hessian = np.loadtxt(self.hessian_file) bond_list = np.loadtxt(self.bond_list_file, dtype=int) atom_names = np.loadtxt(self.atom_names_file, dtype=str) # Find bond lengths bond_lengths = np.zeros((N, N)) for i in range(0, N): for j in range(0, N): diff_i_j = np.array(coords[i, :]) - np.array(coords[j, :]) bond_lengths[i][j] = np.linalg.norm(diff_i_j) eigenvectors = np.empty((3, 3, N, N), dtype=complex) eigenvalues = np.empty((N, N, 3), dtype=complex) partial_hessian = np.zeros((3, 3)) for i in range(0, N): for j in range(0, N): partial_hessian = hessian[ (i * 3) : ((i + 1) * 3), (j * 3) : ((j + 1) * 3) ] [a, b] = np.linalg.eig(partial_hessian) eigenvalues[i, j, :] = a eigenvectors[:, :, i, j] = b # Modified Seminario method to find the bond parameters # and print them to file file_bond = open(self.bond_parameter_file, "w") k_b = np.zeros(len(bond_list)) bond_length_list = np.zeros(len(bond_list)) unique_values_bonds = [] # Used to find average values for i in range(0, len(bond_list)): AB = force_constant_bond( bond_list[i][0], bond_list[i][1], eigenvalues, eigenvectors, coords, ) BA = force_constant_bond( bond_list[i][1], bond_list[i][0], eigenvalues, eigenvectors, coords, ) # Order of bonds sometimes causes slight differences, # find the mean k_b[i] = np.real((AB + BA) / 2) # Vibrational_scaling takes into account DFT deficities # / anharmocity vibrational_scaling = get_vibrational_scaling( functional=self.functional, basis_set=self.basis_set ) vibrational_scaling_squared = vibrational_scaling ** 2 k_b[i] = k_b[i] * vibrational_scaling_squared bond_length_list[i] = bond_lengths[bond_list[i][0]][ bond_list[i][1] ] file_bond.write( atom_names[bond_list[i][0]] + "-" + atom_names[bond_list[i][1]] + " " ) file_bond.write( str("%#.5g" % k_b[i]) + " " + str("%#.4g" % bond_length_list[i]) + " " + str(bond_list[i][0] + 1) + " " + str(bond_list[i][1] + 1) ) file_bond.write("\n") unique_values_bonds.append( [ atom_names[bond_list[i][0]], atom_names[bond_list[i][1]], k_b[i], bond_length_list[i], 1, ] ) file_bond.close() angle_list = np.loadtxt(self.angle_list_file, dtype=int) # Modified Seminario method to find the angle parameters # and print them to file file_angle = open(self.angle_parameter_file, "w") k_theta = np.zeros(len(angle_list)) theta_0 = np.zeros(len(angle_list)) unique_values_angles = [] # Used to find average values # Modified Seminario part goes here ... # Connectivity information for Modified Seminario Method central_atoms_angles = [] # A structure is created with the index giving the central # atom of the angle, an array then lists the angles with # that central atom. # i.e. central_atoms_angles{3} contains an array of angles # with central atom 3 for i in range(0, len(coords)): central_atoms_angles.append([]) for j in range(0, len(angle_list)): if i == angle_list[j][1]: # For angle ABC, atoms A C are written to array AC_array = [angle_list[j][0], angle_list[j][2], j] central_atoms_angles[i].append(AC_array) # For angle ABC, atoms C A are written to array CA_array = [angle_list[j][2], angle_list[j][0], j] central_atoms_angles[i].append(CA_array) # Sort rows by atom number for i in range(0, len(coords)): central_atoms_angles[i] = sorted( central_atoms_angles[i], key=itemgetter(0) ) # Find normals u_PA for each angle unit_PA_all_angles = [] for i in range(0, len(central_atoms_angles)): unit_PA_all_angles.append([]) for j in range(0, len(central_atoms_angles[i])): # For the angle at central_atoms_angles[i][j,:] the corresponding # u_PA value is found for the plane ABC and bond AB, # where ABC corresponds to the order of the arguements. # This is why the reverse order was also added unit_PA_all_angles[i].append( u_PA_from_angles( central_atoms_angles[i][j][0], i, central_atoms_angles[i][j][1], coords, ) ) # Finds the contributing factors from the other angle terms # scaling_factor_all_angles = cell(max(max(angle_list))); # This array will contain scaling factor and angle list position scaling_factor_all_angles = [] for i in range(0, len(central_atoms_angles)): scaling_factor_all_angles.append([]) for j in range(0, len(central_atoms_angles[i])): n = 1 m = 1 angles_around = 0 additional_contributions = 0 scaling_factor_all_angles[i].append([0, 0]) # Position in angle list scaling_factor_all_angles[i][j][1] = central_atoms_angles[i][ j ][2] # Goes through the list of angles with the same central # atom and computes the term need for the modified Seminario method # Forwards directions, finds the same bonds with the central atom i while ( ((j + n) < len(central_atoms_angles[i])) and central_atoms_angles[i][j][0] == central_atoms_angles[i][j + n][0] ): additional_contributions = ( additional_contributions + ( abs( np.dot( unit_PA_all_angles[i][j][:], unit_PA_all_angles[i][j + n][:], ) ) ) ** 2 ) n = n + 1 angles_around = angles_around + 1 # Backwards direction, finds the same bonds with the central atom i while ((j - m) >= 0) and central_atoms_angles[i][j][ 0 ] == central_atoms_angles[i][j - m][0]: additional_contributions = ( additional_contributions + ( abs( np.dot( unit_PA_all_angles[i][j][:], unit_PA_all_angles[i][j - m][:], ) ) ) ** 2 ) m = m + 1 angles_around = angles_around + 1 if n != 1 or m != 1: # Finds the mean value of the additional contribution to # change to normal Seminario method comment out + part scaling_factor_all_angles[i][j][0] = 1 + ( additional_contributions / (m + n - 2) ) else: scaling_factor_all_angles[i][j][0] = 1 scaling_factors_angles_list = [] for i in range(0, len(angle_list)): scaling_factors_angles_list.append([]) # Orders the scaling factors according to the angle list for i in range(0, len(central_atoms_angles)): for j in range(0, len(central_atoms_angles[i])): scaling_factors_angles_list[ scaling_factor_all_angles[i][j][1] ].append(scaling_factor_all_angles[i][j][0]) # Finds the angle force constants with the scaling factors # included for each angle for i in range(0, len(angle_list)): # Ensures that there is no difference when the # ordering is changed [AB_k_theta, AB_theta_0] = force_angle_constant( angle_list[i][0], angle_list[i][1], angle_list[i][2], bond_lengths, eigenvalues, eigenvectors, coords, scaling_factors_angles_list[i][0], scaling_factors_angles_list[i][1], ) [BA_k_theta, BA_theta_0] = force_angle_constant( angle_list[i][2], angle_list[i][1], angle_list[i][0], bond_lengths, eigenvalues, eigenvectors, coords, scaling_factors_angles_list[i][1], scaling_factors_angles_list[i][0], ) k_theta[i] = (AB_k_theta + BA_k_theta) / 2 theta_0[i] = (AB_theta_0 + BA_theta_0) / 2 # Vibrational_scaling takes into account DFT # deficities / anharmonicity k_theta[i] = k_theta[i] * vibrational_scaling_squared file_angle.write( atom_names[angle_list[i][0]] + "-" + atom_names[angle_list[i][1]] + "-" + atom_names[angle_list[i][2]] + " " ) file_angle.write( str("%#.4g" % k_theta[i]) + " " + str("%#.4g" % theta_0[i]) + " " + str(angle_list[i][0] + 1) + " " + str(angle_list[i][1] + 1) + " " + str(angle_list[i][2] + 1) ) file_angle.write("\n") unique_values_angles.append( [ atom_names[angle_list[i][0]], atom_names[angle_list[i][1]], atom_names[angle_list[i][2]], k_theta[i], theta_0[i], 1, ] ) file_angle.close() def get_charges(self): """ Saves the atomic charges in a text file obtained from the Gaussian log file. """ log_file = self.host_qm_pdb[:-4] + ".log" with open(log_file, "r") as f: lines = f.readlines() for i in range(len(lines)): if "Fitting point charges to electrostatic potential" in lines[i]: to_begin = int(i) if " Sum of ESP charges =" in lines[i]: to_end = int(i) charges = lines[to_begin + 4 : to_end] charge_list = [] for i in range(len(charges)): charge_list.append(charges[i].strip().split()) charge_list_value = [] atom_list = [] for i in range(len(charge_list)): charge_list_value.append(charge_list[i][2]) atom_list.append(charge_list[i][1]) data_tuples = list(zip(atom_list, charge_list_value)) df_charge = pd.DataFrame(data_tuples, columns=["Atom", "Charge"]) df_charge.to_csv( self.charge_parameter_file, index=False, header=False, sep=" ", ) class GuestAmberXMLAmber: """ A class used to generate a template force field XML file for the ligand in order regenerate the reparameterised forcefield XML file. This class contain methods to generate a template XML force field through openforcefield. XML template generation can be obtained through different file formats such as PDB, SDF, and SMI. Methods support charged ligands as well. Re-parameterized XML force field files are then generated from the template files. Different energy components such as the bond, angle, torsional and non-bonded energies are computed for the non-reparametrized and the reparameterized force fields. Difference between the non-reparameterized and reparameterized force field energies can then be analyzed. ... Attributes ---------- charge : int Charge of the ligand. num_charge_atoms: int, optional Number of charged atoms in the molecule. charge_atom_1: int, optional Charge on the first charged atom. index_charge_atom_1: int, optional Index of the first charged atom. system_pdb: str, optional Ligand PDB file with atom numbers beginning from 1. system_mol2: str, optional Ligand Mol2 file obtained from PDB file. system_in: str, optional Prepi file as required by antechamber. system_frcmod: str, optional FRCMOD file as required by antechamber. prmtop_system : str, optional Topology file obtained from the ligand PDB. inpcrd_system : str, optional Coordinate file obtained from the ligand PDB using the command saveamberparm. system_leap : str, optional Amber generated leap file for generating and saving topology and coordinate files. system_xml: str, optional Serialized XML force field file of the ligand. system_smi: str, optional Ligand SMILES format file. system_sdf: str, optional Ligand SDF (structure-data) format file. system_init_sdf: str, optional Ligand SDF (structure-data) format file. This file will be generated only if the ligand is charged. index_charge_atom_2: int, optional Index of the second charged atom of the ligand. charge_atom_2: int, optional Charge on the second charged atom of the ligand. charge_parameter_file: str, optional File containing the charges of ligand atoms and their corresponding atoms. system_qm_pdb: str, optional Ligand PDB file with atom numbers beginning from 1. bond_parameter_file: str, optional Text file containing the bond parameters for the ligand. angle_parameter_file: str, optional Text file containing the angle parameters of the ligand. system_qm_params_file: str, optional A text file containing the QM obtained parameters for the ligand. reparameterised_intermediate_system_xml_file: str, optional XML foce field file with bond and angle parameter lines replaced by corresponding values obtained from the QM calculations. system_xml_non_bonded_file: str, optional Text file to write the NonBondedForce Charge Parameters from the non-parameterised system XML file. system_xml_non_bonded_reparams_file: str, optional Text file containing the non-bonded parameters parsed from the XML force field file. reparameterised_system_xml_file: str, optional Reparameterized force field XML file obtained using openforcefield. non_reparameterised_system_xml_file: str, optional Non-reparameterized force field XML file obtained using openforcefield. prmtop_system_non_params: str, optional Amber generated topology file saved from the non-reparameterized force field XML file for the ligand. inpcrd_system_non_params: str, optional Amber generated coordinate file saved from the non-reparameterized force field XML file for the ligand. prmtop_system_params: str, optional Amber generated topology file saved from the reparameterized force field XML file for the ligand. inpcrd_system_params: str, optional Amber generated coordinate file saved from the reparameterized force field XML file for the ligand. load_topology: str, optional Argument to specify how to load the topology. Can either be "openmm" or "parmed". """ def __init__( self, charge=0, # TODO: some of these variables are ints, and shouldn't be initialized as strings num_charge_atoms="", charge_atom_1="", index_charge_atom_1="", system_pdb="guest_init_II.pdb", system_mol2="guest.mol2", system_in="guest.in", system_frcmod="guest.frcmod", prmtop_system="guest.prmtop", inpcrd_system="guest.inpcrd", system_leap="guest.leap", system_xml="guest_init.xml", system_smi="guest.smi", system_sdf="guest.sdf", system_init_sdf="guest_init.sdf", index_charge_atom_2=" ", charge_atom_2=" ", charge_parameter_file="guest_qm_surround_charges.txt", system_qm_pdb="guest_init_II.pdb", bond_parameter_file="guest_bonds.txt", angle_parameter_file="guest_angles.txt", system_qm_params_file="guest_qm_params.txt", reparameterised_intermediate_system_xml_file="guest_intermediate_reparameterised.xml", system_xml_non_bonded_file="guest_xml_non_bonded.txt", system_xml_non_bonded_reparams_file="guest_xml_non_bonded_reparams.txt", reparameterised_system_xml_file="guest_reparameterised.xml", non_reparameterised_system_xml_file="guest_init.xml", prmtop_system_non_params="guest_non_params.prmtop", inpcrd_system_non_params="guest_non_params.inpcrd", prmtop_system_params="guest_params.prmtop", inpcrd_system_params="guest_params.inpcrd", load_topology="openmm", ): self.charge = charge self.num_charge_atoms = num_charge_atoms self.charge_atom_1 = charge_atom_1 self.index_charge_atom_1 = index_charge_atom_1 self.system_pdb = system_pdb self.system_mol2 = system_mol2 self.system_in = system_in self.system_frcmod = system_frcmod self.prmtop_system = prmtop_system self.inpcrd_system = inpcrd_system self.system_leap = system_leap self.system_xml = system_xml self.system_smi = system_smi self.system_sdf = system_sdf self.system_init_sdf = system_init_sdf self.index_charge_atom_2 = index_charge_atom_2 self.charge_atom_2 = charge_atom_2 self.charge_parameter_file = charge_parameter_file self.system_qm_pdb = system_qm_pdb self.bond_parameter_file = bond_parameter_file self.angle_parameter_file = angle_parameter_file self.system_qm_params_file = system_qm_params_file self.reparameterised_intermediate_system_xml_file = ( reparameterised_intermediate_system_xml_file ) self.system_xml_non_bonded_file = system_xml_non_bonded_file self.system_xml_non_bonded_reparams_file = ( system_xml_non_bonded_reparams_file ) self.reparameterised_system_xml_file = reparameterised_system_xml_file self.non_reparameterised_system_xml_file = ( non_reparameterised_system_xml_file ) self.prmtop_system_non_params = prmtop_system_non_params self.inpcrd_system_non_params = inpcrd_system_non_params self.prmtop_system_params = prmtop_system_params self.inpcrd_system_params = inpcrd_system_params self.load_topology = load_topology def generate_xml_antechamber(self): """ Generates an XML forcefield file from the PDB file through antechamber. """ command = ( # "babel -ipdb " + self.system_pdb + " -omol2 " + self.system_mol2 "obabel -ipdb " + self.system_pdb + " -omol2 -O " + self.system_mol2 ) os.system(command) command = ( "antechamber -i " + self.system_mol2 + " -fi mol2 -o " + self.system_in + " -fo prepi -c bcc -nc " + str(self.charge) ) os.system(command) command = ( "parmchk2 -i " + self.system_in + " -o " + self.system_frcmod + " -f prepi -a Y" ) os.system(command) os.system( "rm -rf ANTECHAMBER* leap.log sqm* ATOMTYPE.INF PREP.INF NEWPDB.PDB" ) line_1 = "loadamberprep " + self.system_in line_2 = "loadamberparams " + self.system_frcmod line_3 = "pdb = loadpdb " + self.system_pdb line_4 = ( "saveamberparm pdb " + self.prmtop_system + " " + self.inpcrd_system ) line_5 = "quit" with open(self.system_leap, "w") as f: f.write(" " + "\n") f.write(line_1 + "\n") f.write(line_2 + "\n") f.write(line_3 + "\n") f.write(line_4 + "\n") f.write(line_5 + "\n") command = "tleap -f " + self.system_leap os.system(command) parm = parmed.load_file(self.prmtop_system, self.inpcrd_system) system = parm.createSystem() with open(self.system_xml, "w") as f: f.write(simtk.openmm.XmlSerializer.serialize(system)) def generate_xml_from_pdb_smi(self): """ Generates an XML forcefield file from the SMILES file through openforcefield. """ # off_molecule = openforcefield.topology.Molecule(self.system_smi) off_molecule = Molecule(self.system_smi) # force_field = openforcefield.typing.engines.smirnoff.ForceField("openff_unconstrained-1.0.0.offxml") force_field = ForceField("openff_unconstrained-1.0.0.offxml") system = force_field.create_openmm_system(off_molecule.to_topology()) pdbfile = simtk.openmm.app.PDBFile(self.system_pdb) structure = parmed.openmm.load_topology( pdbfile.topology, system, xyz=pdbfile.positions ) with open(self.system_xml, "w") as f: f.write(simtk.openmm.XmlSerializer.serialize(system)) def generate_xml_from_pdb_sdf(self): """ Generates an XML forcefield file from the SDF file through openforcefield. """ command = ( # "babel -ipdb " + self.system_pdb + " -osdf " + self.system_sdf "obabel -ipdb " + self.system_pdb + " -osdf -O " + self.system_sdf ) os.system(command) # off_molecule = openforcefield.topology.Molecule(self.system_sdf) off_molecule = Molecule(self.system_sdf) # force_field = openforcefield.typing.engines.smirnoff.ForceField("openff_unconstrained-1.0.0.offxml") force_field = ForceField("openff_unconstrained-1.0.0.offxml") system = force_field.create_openmm_system(off_molecule.to_topology()) pdbfile = simtk.openmm.app.PDBFile(self.system_pdb) structure = parmed.openmm.load_topology( pdbfile.topology, system, xyz=pdbfile.positions ) with open(self.system_xml, "w") as f: f.write(simtk.openmm.XmlSerializer.serialize(system)) def generate_xml_from_charged_pdb_sdf(self): """ Generates an XML forcefield file for a singly charged ligand molecule from the SDF file through openforcefield. """ command = ( # "babel -ipdb " + self.system_pdb + " -osdf " + self.system_init_sdf "obabel -ipdb " + self.system_pdb + " -osdf -O " + self.system_init_sdf ) os.system(command) with open(self.system_init_sdf, "r") as f1: filedata = f1.readlines() filedata = filedata[:-2] with open(self.system_sdf, "w+") as out: for i in filedata: out.write(i) line_1 = ( "M CHG " + str(self.num_charge_atoms) + " " + str(self.index_charge_atom_1) + " " + str(self.charge_atom_1) + "\n" ) line_2 = "M END" + "\n" line_3 = "$$$$" out.write(line_1) out.write(line_2) out.write(line_3) # off_molecule = openforcefield.topology.Molecule(self.system_sdf) off_molecule = Molecule(self.system_sdf) # force_field = openforcefield.typing.engines.smirnoff.ForceField("openff_unconstrained-1.0.0.offxml") force_field = ForceField("openff_unconstrained-1.0.0.offxml") system = force_field.create_openmm_system(off_molecule.to_topology()) pdbfile = simtk.openmm.app.PDBFile(self.system_pdb) structure = parmed.openmm.load_topology( pdbfile.topology, system, xyz=pdbfile.positions ) with open(self.system_xml, "w") as f: f.write(simtk.openmm.XmlSerializer.serialize(system)) def generate_xml_from_doubly_charged_pdb_sdf(self): """ Generates an XML forcefield file for a singly charged ligand molecule from the SDF file through openforcefield. """ command = ( # "babel -ipdb " + self.system_pdb + " -osdf " + self.system_init_sdf "obabel -ipdb " + self.system_pdb + " -osdf -O " + self.system_init_sdf ) os.system(command) with open(self.system_init_sdf, "r") as f1: filedata = f1.readlines() filedata = filedata[:-2] with open(self.system_sdf, "w+") as out: for i in filedata: out.write(i) line_1 = ( "M CHG " + str(self.num_charge_atoms) + " " + str(self.index_charge_atom_1) + " " + str(self.charge_atom_1) + " " + str(self.index_charge_atom_2) + " " + str(self.charge_atom_2) + "\n" ) line_2 = "M END" + "\n" line_3 = "$$$$" out.write(line_1) out.write(line_2) out.write(line_3) # off_molecule = openforcefield.topology.Molecule(self.system_sdf) off_molecule = Molecule(self.system_sdf) # force_field = openforcefield.typing.engines.smirnoff.ForceField("openff_unconstrained-1.0.0.offxml") force_field = ForceField("openff_unconstrained-1.0.0.offxml") system = force_field.create_openmm_system(off_molecule.to_topology()) pdbfile = simtk.openmm.app.PDBFile(self.system_pdb) structure = parmed.openmm.load_topology( pdbfile.topology, system, xyz=pdbfile.positions ) with open(self.system_xml, "w") as f: f.write(simtk.openmm.XmlSerializer.serialize(system)) def write_system_params(self): """ Saves the parameters obtained from the QM log files in a text file. """ # Charges from QM files df_charges = pd.read_csv( self.charge_parameter_file, header=None, delimiter=r"\s+" ) df_charges.columns = ["atom", "charges"] qm_charges = df_charges["charges"].values.tolist() qm_charges = [round(num, 6) for num in qm_charges] # print(qm_charges) # Bond Parameters from QM files ppdb = PandasPdb() ppdb.read_pdb(self.system_qm_pdb) atom_name_list = ppdb.df["ATOM"]["atom_number"].values.tolist() atom_name_list = [i - 1 for i in atom_name_list] # print(atom_name_list) df = pd.read_csv( self.bond_parameter_file, header=None, delimiter=r"\s+" ) df.columns = [ "bond", "k_bond", "bond_length", "bond_1", "bond_2", ] # print(df.head()) bond_1_list = df["bond_1"].values.tolist() bond_1_list = [x - 1 + min(atom_name_list) for x in bond_1_list] bond_2_list = df["bond_2"].values.tolist() bond_2_list = [x - 1 + min(atom_name_list) for x in bond_2_list] # print(bond_1_list) # print(bond_2_list) k_bond_list = df["k_bond"].values.tolist() #k_bond_list = [ # i * 418.40 for i in k_bond_list #] # kcal/mol * A^2 to kJ/mol * nm^2 k_bond_list = [ i * KCAL_MOL_PER_KJ_MOL * ANGSTROMS_PER_NM**2 for i in k_bond_list ] # kcal/mol * A^2 to kJ/mol * nm^2 k_bond_list = [round(num, 10) for num in k_bond_list] # print(k_bond_list) bond_length_list = df["bond_length"].values.tolist() # TODO: units here? Anstroms per nm? bond_length_list = [i / 10.00 for i in bond_length_list] bond_length_list = [round(num, 6) for num in bond_length_list] # print(bond_length_list) # Angle Parameters from QM files ppdb = PandasPdb() ppdb.read_pdb(self.system_qm_pdb) atom_name_list = ppdb.df["ATOM"]["atom_number"].values.tolist() atom_name_list = [i - 1 for i in atom_name_list] # print(atom_name_list) df = pd.read_csv( self.angle_parameter_file, header=None, delimiter=r"\s+" ) df.columns = [ "angle", "k_angle", "angle_degrees", "angle_1", "angle_2", "angle_3", ] # print(df.head()) angle_1_list = df["angle_1"].values.tolist() angle_1_list = [x - 1 + min(atom_name_list) for x in angle_1_list] # print(angle_1_list) angle_2_list = df["angle_2"].values.tolist() angle_2_list = [x - 1 + min(atom_name_list) for x in angle_2_list] # print(angle_2_list) angle_3_list = df["angle_3"].values.tolist() angle_3_list = [x - 1 + min(atom_name_list) for x in angle_3_list] # print(angle_3_list) k_angle_list = df["k_angle"].values.tolist() k_angle_list = [ i * KCAL_MOL_PER_KJ_MOL for i in k_angle_list ] # kcal/mol * radian^2 to kJ/mol * radian^2 k_angle_list = [round(num, 6) for num in k_angle_list] # print(k_angle_list) angle_list = df["angle_degrees"].values.tolist() angle_list = [i * RADIANS_PER_DEGREE for i in angle_list] angle_list = [round(num, 6) for num in angle_list] # print(angle_list) xml = open(self.system_qm_params_file, "w") xml.write("Begin writing the Bond Parameters" + "\n") # TODO: These should use string formatting to become more concise for i in range(len(k_bond_list)): xml.write( " " + "<Bond" + " " + "d=" + '"' + str(bond_length_list[i]) + '"' + " " + "k=" + '"' + str(k_bond_list[i]) + '"' + " " + "p1=" + '"' + str(bond_1_list[i]) + '"' + " " + "p2=" + '"' + str(bond_2_list[i]) + '"' + "/>" + "\n" ) xml.write("Finish writing the Bond Parameters" + "\n") xml.write("Begin writing the Angle Parameters" + "\n") for i in range(len(k_angle_list)): xml.write( " " + "<Angle" + " " + "a=" + '"' + str(angle_list[i]) + '"' + " " + "k=" + '"' + str(k_angle_list[i]) + '"' + " " + "p1=" + '"' + str(angle_1_list[i]) + '"' + " " + "p2=" + '"' + str(angle_2_list[i]) + '"' + " " + "p3=" + '"' + str(angle_3_list[i]) + '"' + "/>" + "\n" ) xml.write("Finish writing the Angle Parameters" + "\n") xml.write("Begin writing the Charge Parameters" + "\n") for i in range(len(qm_charges)): xml.write( "<Particle" + " " + "q=" + '"' + str(qm_charges[i]) + '"' + " " + "eps=" + '"' + str(0.00) + '"' + " " + "sig=" + '"' + str(0.00) + '"' + " " + "atom=" + '"' + str(atom_name_list[i]) + '"' + "/>" + "\n" ) xml.write("Finish writing the Charge Parameters" + "\n") xml.close() def write_intermediate_reparameterised_system_xml(self): """ Writes a reparameterised XML force field file for ligand but without the QM obtained charges. """ # Bond Parameters f_params = open(self.system_qm_params_file, "r") lines_params = f_params.readlines() # Bond Parameters for i in range(len(lines_params)): if "Begin writing the Bond Parameters" in lines_params[i]: to_begin = int(i) if "Finish writing the Bond Parameters" in lines_params[i]: to_end = int(i) bond_params = lines_params[to_begin + 1 : to_end] index_search_replace_bond = [] for i in bond_params: bond_line_to_replace = i # print(bond_line_to_replace) atom_number_list = [ re.findall("\d*\.?\d+", i)[3], re.findall("\d*\.?\d+", i)[5], ] # print(atom_number_list) comb_1 = ( "p1=" + '"' + atom_number_list[0] + '"' + " " + "p2=" + '"' + atom_number_list[1] + '"' + "/>" ) comb_2 = ( "p1=" + '"' + atom_number_list[1] + '"' + " " + "p2=" + '"' + atom_number_list[0] + '"' + "/>" ) comb_list_bond = [comb_1, comb_2] # print(comb_list_bond) list_search_bond = [ search_in_file(file=self.system_xml, word=comb_1), search_in_file(file=self.system_xml, word=comb_2), ] # print(list_search_bond) for j in range(len(list_search_bond)): if list_search_bond[j] != []: to_add = (list_search_bond[j], i) # print(to_add) index_search_replace_bond.append(to_add) # Angle Parameters for i in range(len(lines_params)): if "Begin writing the Angle Parameters" in lines_params[i]: to_begin = int(i) if "Finish writing the Angle Parameters" in lines_params[i]: to_end = int(i) angle_params = lines_params[to_begin + 1 : to_end] index_search_replace_angle = [] for i in angle_params: angle_line_to_replace = i # print(angle_line_to_replace) index_search_replace_angle = [] for i in angle_params: angle_line_to_replace = i # print(angle_line_to_replace) atom_number_list = [ re.findall("\d*\.?\d+", i)[3], re.findall("\d*\.?\d+", i)[5], re.findall("\d*\.?\d+", i)[7], ] # print(atom_number_list) comb_1 = ( "p1=" + '"' + atom_number_list[0] + '"' + " " + "p2=" + '"' + atom_number_list[1] + '"' + " " + "p3=" + '"' + atom_number_list[2] + '"' + "/>" ) comb_2 = ( "p1=" + '"' + atom_number_list[0] + '"' + " " + "p2=" + '"' + atom_number_list[2] + '"' + " " + "p3=" + '"' + atom_number_list[1] + '"' + "/>" ) comb_3 = ( "p1=" + '"' + atom_number_list[1] + '"' + " " + "p2=" + '"' + atom_number_list[0] + '"' + " " + "p3=" + '"' + atom_number_list[2] + '"' + "/>" ) comb_4 = ( "p1=" + '"' + atom_number_list[1] + '"' + " " + "p2=" + '"' + atom_number_list[2] + '"' + " " + "p3=" + '"' + atom_number_list[0] + '"' + "/>" ) comb_5 = ( "p1=" + '"' + atom_number_list[2] + '"' + " " + "p2=" + '"' + atom_number_list[0] + '"' + " " + "p3=" + '"' + atom_number_list[1] + '"' + "/>" ) comb_6 = ( "p1=" + '"' + atom_number_list[2] + '"' + " " + "p2=" + '"' + atom_number_list[1] + '"' + " " + "p3=" + '"' + atom_number_list[0] + '"' + "/>" ) comb_list_angle = [ comb_1, comb_2, comb_3, comb_4, comb_5, comb_6, ] # print(comb_list_angle) list_search_angle = [ search_in_file(file=self.system_xml, word=comb_1), search_in_file(file=self.system_xml, word=comb_2), search_in_file(file=self.system_xml, word=comb_3), search_in_file(file=self.system_xml, word=comb_4), search_in_file(file=self.system_xml, word=comb_5), search_in_file(file=self.system_xml, word=comb_6), ] # print(list_search_angle) for j in range(len(list_search_angle)): if list_search_angle[j] != []: to_add = (list_search_angle[j], i) # print(to_add) index_search_replace_angle.append(to_add) f_org = open(self.system_xml) lines = f_org.readlines() for i in range(len(index_search_replace_bond)): line_number = index_search_replace_bond[i][0][0][0] - 1 line_to_replace = index_search_replace_bond[i][0][0][1] line_to_replace_with = index_search_replace_bond[i][1] lines[line_number] = line_to_replace_with for i in range(len(index_search_replace_angle)): line_number = index_search_replace_angle[i][0][0][0] - 1 line_to_replace = index_search_replace_angle[i][0][0][1] line_to_replace_with = index_search_replace_angle[i][1] lines[line_number] = line_to_replace_with f_cop = open(self.reparameterised_intermediate_system_xml_file, "w") for i in lines: f_cop.write(i) f_cop.close() def write_reparameterised_system_xml(self): """ Writes a reparameterised XML force field file for the ligand. """ # Bond Parameters f_params = open(self.system_qm_params_file, "r") lines_params = f_params.readlines() # Bond Parameters for i in range(len(lines_params)): if "Begin writing the Bond Parameters" in lines_params[i]: to_begin = int(i) if "Finish writing the Bond Parameters" in lines_params[i]: to_end = int(i) bond_params = lines_params[to_begin + 1 : to_end] index_search_replace_bond = [] # TODO: These should use string formatting to become more concise for i in bond_params: bond_line_to_replace = i # print(bond_line_to_replace) atom_number_list = [ re.findall("\d*\.?\d+", i)[3], re.findall("\d*\.?\d+", i)[5], ] # print(atom_number_list) comb_1 = ( "p1=" + '"' + atom_number_list[0] + '"' + " " + "p2=" + '"' + atom_number_list[1] + '"' + "/>" ) comb_2 = ( "p1=" + '"' + atom_number_list[1] + '"' + " " + "p2=" + '"' + atom_number_list[0] + '"' + "/>" ) comb_list_bond = [comb_1, comb_2] # print(comb_list_bond) list_search_bond = [ search_in_file(file=self.system_xml, word=comb_1), search_in_file(file=self.system_xml, word=comb_2), ] # print(list_search_bond) for j in range(len(list_search_bond)): if list_search_bond[j] != []: to_add = (list_search_bond[j], i) # print(to_add) index_search_replace_bond.append(to_add) # Angle Parameters for i in range(len(lines_params)): if "Begin writing the Angle Parameters" in lines_params[i]: to_begin = int(i) if "Finish writing the Angle Parameters" in lines_params[i]: to_end = int(i) angle_params = lines_params[to_begin + 1 : to_end] index_search_replace_angle = [] for i in angle_params: angle_line_to_replace = i # print(angle_line_to_replace) index_search_replace_angle = [] for i in angle_params: angle_line_to_replace = i # print(angle_line_to_replace) atom_number_list = [ re.findall("\d*\.?\d+", i)[3], re.findall("\d*\.?\d+", i)[5], re.findall("\d*\.?\d+", i)[7], ] # print(atom_number_list) comb_1 = ( "p1=" + '"' + atom_number_list[0] + '"' + " " + "p2=" + '"' + atom_number_list[1] + '"' + " " + "p3=" + '"' + atom_number_list[2] + '"' + "/>" ) comb_2 = ( "p1=" + '"' + atom_number_list[0] + '"' + " " + "p2=" + '"' + atom_number_list[2] + '"' + " " + "p3=" + '"' + atom_number_list[1] + '"' + "/>" ) comb_3 = ( "p1=" + '"' + atom_number_list[1] + '"' + " " + "p2=" + '"' + atom_number_list[0] + '"' + " " + "p3=" + '"' + atom_number_list[2] + '"' + "/>" ) comb_4 = ( "p1=" + '"' + atom_number_list[1] + '"' + " " + "p2=" + '"' + atom_number_list[2] + '"' + " " + "p3=" + '"' + atom_number_list[0] + '"' + "/>" ) comb_5 = ( "p1=" + '"' + atom_number_list[2] + '"' + " " + "p2=" + '"' + atom_number_list[0] + '"' + " " + "p3=" + '"' + atom_number_list[1] + '"' + "/>" ) comb_6 = ( "p1=" + '"' + atom_number_list[2] + '"' + " " + "p2=" + '"' + atom_number_list[1] + '"' + " " + "p3=" + '"' + atom_number_list[0] + '"' + "/>" ) comb_list_angle = [ comb_1, comb_2, comb_3, comb_4, comb_5, comb_6, ] # print(comb_list_angle) list_search_angle = [ search_in_file(file=self.system_xml, word=comb_1), search_in_file(file=self.system_xml, word=comb_2), search_in_file(file=self.system_xml, word=comb_3), search_in_file(file=self.system_xml, word=comb_4), search_in_file(file=self.system_xml, word=comb_5), search_in_file(file=self.system_xml, word=comb_6), ] # print(list_search_angle) for j in range(len(list_search_angle)): if list_search_angle[j] != []: to_add = (list_search_angle[j], i) # print(to_add) index_search_replace_angle.append(to_add) f_org = open(self.system_xml) lines = f_org.readlines() for i in range(len(index_search_replace_bond)): line_number = index_search_replace_bond[i][0][0][0] - 1 line_to_replace = index_search_replace_bond[i][0][0][1] line_to_replace_with = index_search_replace_bond[i][1] lines[line_number] = line_to_replace_with for i in range(len(index_search_replace_angle)): line_number = index_search_replace_angle[i][0][0][0] - 1 line_to_replace = index_search_replace_angle[i][0][0][1] line_to_replace_with = index_search_replace_angle[i][1] lines[line_number] = line_to_replace_with f_cop = open(self.reparameterised_intermediate_system_xml_file, "w") for i in lines: f_cop.write(i) f_cop.close() f_params = open(self.system_qm_params_file) lines_params = f_params.readlines() # Charge Parameters for i in range(len(lines_params)): if "Begin writing the Charge Parameters" in lines_params[i]: to_begin = int(i) if "Finish writing the Charge Parameters" in lines_params[i]: to_end = int(i) charge_params = lines_params[to_begin + 1 : to_end] non_bonded_index = [] for k in charge_params: non_bonded_index.append(int(re.findall("[-+]?\d*\.\d+|\d+", k)[3])) charge_for_index = [] for k in charge_params: charge_for_index.append( float(re.findall("[-+]?\d*\.\d+|\d+", k)[0]) ) xml_off = open(self.system_xml) xml_off_lines = xml_off.readlines() for i in range(len(xml_off_lines)): if "<GlobalParameters/>" in xml_off_lines[i]: to_begin = int(i) if "<Exceptions>" in xml_off_lines[i]: to_end = int(i) nonbond_params = xml_off_lines[to_begin + 4 : to_end - 1] # print(len(nonbond_params)) f_non_bonded = open(self.system_xml_non_bonded_file, "w") for x in nonbond_params: f_non_bonded.write(x) f_non_bonded = open(self.system_xml_non_bonded_file) lines_non_bonded = f_non_bonded.readlines() # print(len(lines_non_bonded)) lines_non_bonded_to_write = [] for i in range(len(non_bonded_index)): line_ = lines_non_bonded[non_bonded_index[i]] # print(line_) eps = float(re.findall("[-+]?\d*\.\d+|\d+", line_)[0]) sig = float(re.findall("[-+]?\d*\.\d+|\d+", line_)[2]) line_to_replace = ( " " + "<Particle " + "eps=" + '"' + str(eps) + '"' + " " + "q=" + '"' + str(charge_for_index[i]) + '"' + " " + "sig=" + '"' + str(sig) + '"' + "/>" ) lines_non_bonded_to_write.append(line_to_replace) data_ = list(zip(non_bonded_index, lines_non_bonded_to_write)) df_non_bonded_params = pd.DataFrame( data_, columns=["line_index", "line"] ) # print(df_non_bonded_params.head()) f_non_bonded_ = open(self.system_xml_non_bonded_file) lines_non_bonded_ = f_non_bonded_.readlines() for i in range(len(lines_non_bonded_)): if i in non_bonded_index: lines_non_bonded_[i] = ( df_non_bonded_params.loc[ df_non_bonded_params.line_index == i, "line" ].values[0] ) + "\n" # print(len(lines_non_bonded_)) f_write_non_bonded_reparams = open( self.system_xml_non_bonded_reparams_file, "w" ) for p in range(len(lines_non_bonded_)): f_write_non_bonded_reparams.write(lines_non_bonded_[p]) f_write_non_bonded_reparams.close() f_ = open(self.system_xml_non_bonded_reparams_file) lines_ = f_.readlines() print(len(lines_) == len(lines_non_bonded)) xml_off = open(self.reparameterised_intermediate_system_xml_file) # TODO: implement function(s) to read certain types of files. DRY principle xml_off_lines = xml_off.readlines() for i in range(len(xml_off_lines)): if "<GlobalParameters/>" in xml_off_lines[i]: to_begin = int(i) if "<Exceptions>" in xml_off_lines[i]: to_end = int(i) lines_before_params = xml_off_lines[: to_begin + 4] f__ = open(self.system_xml_non_bonded_reparams_file) lines_params_non_bonded = f__.readlines() lines_after_params = xml_off_lines[to_end - 1 :] f_reparams_xml = open(self.reparameterised_system_xml_file, "w") for x in lines_before_params: f_reparams_xml.write(x) for x in lines_params_non_bonded: f_reparams_xml.write(x) for x in lines_after_params: f_reparams_xml.write(x) f_reparams_xml.close() def save_amber_params_non_qm_charges(self): """ Saves amber generated topology files for the ligand without the QM charges. """ if self.load_topology == "parmed": openmm_system = parmed.openmm.load_topology( parmed.load_file(self.system_pdb, structure=True).topology, parmed.load_file(self.non_reparameterised_system_xml_file), ) if self.load_topology == "openmm": openmm_system = parmed.openmm.load_topology( simtk.openmm.app.PDBFile(self.system_pdb).topology, parmed.load_file(self.non_reparameterised_system_xml_file), ) openmm_system.save(self.prmtop_system_non_params, overwrite=True) openmm_system.coordinates = parmed.load_file( self.system_pdb, structure=True ).coordinates openmm_system.save(self.inpcrd_system_non_params, overwrite=True) parm = parmed.load_file( self.prmtop_system_non_params, self.inpcrd_system_non_params, ) xml_energy_decomposition = parmed.openmm.energy_decomposition_system( openmm_system, parmed.load_file(self.non_reparameterised_system_xml_file), ) xml_energy_decomposition_value = [ list_to_dict( [ item for sublist in [ list(elem) for elem in xml_energy_decomposition ] for item in sublist ] ).get("HarmonicBondForce"), list_to_dict( [ item for sublist in [ list(elem) for elem in xml_energy_decomposition ] for item in sublist ] ).get("HarmonicAngleForce"), list_to_dict( [ item for sublist in [ list(elem) for elem in xml_energy_decomposition ] for item in sublist ] ).get("PeriodicTorsionForce"), list_to_dict( [ item for sublist in [ list(elem) for elem in xml_energy_decomposition ] for item in sublist ] ).get("NonbondedForce"), ] xml_energy_decomposition_list = [ "HarmonicBondForce", "HarmonicAngleForce", "PeriodicTorsionForce", "NonbondedForce", ] df_energy_xml = pd.DataFrame( list( zip( xml_energy_decomposition_list, xml_energy_decomposition_value, ) ), columns=["Energy_term", "Energy_xml_non_params"], ) df_energy_xml = df_energy_xml.set_index("Energy_term") prmtop_energy_decomposition = parmed.openmm.energy_decomposition_system( parm, parm.createSystem() ) prmtop_energy_decomposition_value = [ list_to_dict( [ item for sublist in [ list(elem) for elem in prmtop_energy_decomposition ] for item in sublist ] ).get("HarmonicBondForce"), list_to_dict( [ item for sublist in [ list(elem) for elem in prmtop_energy_decomposition ] for item in sublist ] ).get("HarmonicAngleForce"), list_to_dict( [ item for sublist in [ list(elem) for elem in prmtop_energy_decomposition ] for item in sublist ] ).get("PeriodicTorsionForce"), list_to_dict( [ item for sublist in [ list(elem) for elem in prmtop_energy_decomposition ] for item in sublist ] ).get("NonbondedForce"), ] prmtop_energy_decomposition_list = [ "HarmonicBondForce", "HarmonicAngleForce", "PeriodicTorsionForce", "NonbondedForce", ] df_energy_prmtop = pd.DataFrame( list( zip( prmtop_energy_decomposition_list, prmtop_energy_decomposition_value, ) ), columns=["Energy_term", "Energy_prmtop_non_params"], ) df_energy_prmtop = df_energy_prmtop.set_index("Energy_term") df_compare = pd.concat([df_energy_xml, df_energy_prmtop], axis=1) print(df_compare) if self.load_topology == "parmed": openmm_system = parmed.openmm.load_topology( parmed.load_file(self.system_pdb, structure=True).topology, parmed.load_file( self.reparameterised_intermediate_system_xml_file ), ) if self.load_topology == "openmm": openmm_system = parmed.openmm.load_topology( simtk.openmm.app.PDBFile(self.system_pdb).topology, parmed.load_file( self.reparameterised_intermediate_system_xml_file ), ) openmm_system.save(self.prmtop_system_params, overwrite=True) openmm_system.coordinates = parmed.load_file( self.system_pdb, structure=True ).coordinates openmm_system.save(self.inpcrd_system_params, overwrite=True) parm = parmed.load_file( self.prmtop_system_params, self.inpcrd_system_params ) xml_energy_decomposition = parmed.openmm.energy_decomposition_system( openmm_system, parmed.load_file( self.reparameterised_intermediate_system_xml_file ), ) xml_energy_decomposition_value = [ list_to_dict( [ item for sublist in [ list(elem) for elem in xml_energy_decomposition ] for item in sublist ] ).get("HarmonicBondForce"), list_to_dict( [ item for sublist in [ list(elem) for elem in xml_energy_decomposition ] for item in sublist ] ).get("HarmonicAngleForce"), list_to_dict( [ item for sublist in [ list(elem) for elem in xml_energy_decomposition ] for item in sublist ] ).get("PeriodicTorsionForce"), list_to_dict( [ item for sublist in [ list(elem) for elem in xml_energy_decomposition ] for item in sublist ] ).get("NonbondedForce"), ] xml_energy_decomposition_list = [ "HarmonicBondForce", "HarmonicAngleForce", "PeriodicTorsionForce", "NonbondedForce", ] df_energy_xml = pd.DataFrame( list( zip( xml_energy_decomposition_list, xml_energy_decomposition_value, ) ), columns=["Energy_term", "Energy_xml_params"], ) df_energy_xml = df_energy_xml.set_index("Energy_term") prmtop_energy_decomposition = parmed.openmm.energy_decomposition_system( parm, parm.createSystem() ) prmtop_energy_decomposition_value = [ list_to_dict( [ item for sublist in [ list(elem) for elem in prmtop_energy_decomposition ] for item in sublist ] ).get("HarmonicBondForce"), list_to_dict( [ item for sublist in [ list(elem) for elem in prmtop_energy_decomposition ] for item in sublist ] ).get("HarmonicAngleForce"), list_to_dict( [ item for sublist in [ list(elem) for elem in prmtop_energy_decomposition ] for item in sublist ] ).get("PeriodicTorsionForce"), list_to_dict( [ item for sublist in [ list(elem) for elem in prmtop_energy_decomposition ] for item in sublist ] ).get("NonbondedForce"), ] prmtop_energy_decomposition_list = [ "HarmonicBondForce", "HarmonicAngleForce", "PeriodicTorsionForce", "NonbondedForce", ] df_energy_prmtop = pd.DataFrame( list( zip( prmtop_energy_decomposition_list, prmtop_energy_decomposition_value, ) ), columns=["Energy_term", "Energy_prmtop_params"], ) df_energy_prmtop = df_energy_prmtop.set_index("Energy_term") df_compare =
pd.concat([df_energy_xml, df_energy_prmtop], axis=1)
pandas.concat
import pandas as pd import auth,query,textscrape,saveplots #Get twitter auth api = auth.main() # Function variables: type, terms, max number elements # Available Query Types: bio, user, tweet # Example query.main('bio','data journalist',1000000) # Saves data as csv in wp3/data folder # Returns filename filename=query.main("bio","data",10000) print ("Data stored in:" + filename) # Read an older file # filename = "379_bio_data_journalist_315K_tweets.csv" # Function variables: query type, terms, users, max number of elements # Query type and terms are read from data filename # Example query.gettweets('bio','data',["guardian","times","bbc"],1000000) # Saves data as csv in wp3/data folder # Returns filename filename2=query.usertweets(filename.replace(".csv","").split("/")[-1].split("_")[0], filename.replace(".csv","").split("/")[-1].split("_")[1],
pd.DataFrame.from_csv("datastories/wp3/data/"+filename)
pandas.DataFrame.from_csv
#! /usr/bin/ python # -*- coding: utf-8 -*- #------------------------------------------------------------------------------ # PROGRAM: worldlines.py #------------------------------------------------------------------------------ # Version 0.11 # 9 July, 2020 # Dr <NAME> # https://patternizer.github.io # patternizer AT gmail DOT com #------------------------------------------------------------------------------ #------------------------------------------------------------------------------ # SETTINGS #------------------------------------------------------------------------------ generate_anyons = True generate_variants = True generate_networkx_edges = True generate_qubits = False generate_erdos_parameter = False generate_erdos_equivalence = False generate_adjacency = False qubit_logic = False plot_branchpoint_table = True plot_networkx_connections = True plot_networkx_non_circular = True plot_networkx_erdos_parameter = False plot_networkx_erdos_equivalence = False plot_networkx_connections_branchpoints = True plot_networkx_connections_dags = True plot_variants = True machine_learning = False write_log = True #------------------------------------------------------------------------------ #------------------------------------------------------------------------------ # IMPORT PYTHON LIBRARIES #------------------------------------------------------------------------------ import numpy as np import pandas as pd import scipy as sp # import math # math.log(N,2) for entropy calculations import random from random import randint from random import randrange # Text Parsing libraries: import re from collections import Counter # Network Graph libraries: import networkx as nx from networkx.algorithms import approximation as aprx # Plotting libraries: import matplotlib import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib import colors as mcol from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() import plotly.express as px import plotly.graph_objects as go import plotly.figure_factory as ff from plotly.subplots import make_subplots from skimage import io import glob from PIL import Image # Silence library version notifications import warnings warnings.filterwarnings("ignore", category=UserWarning) # NLP Libraries # ML Libraries # App Deployment Libraries # import dash # import dash_core_components as dcc # import dash_html_components as html # import dash_bootstrap_components as dbc # from dash.dependencies import Input, Output, State # from flask import Flask # import json # import os #------------------------------------------------------------------------------ #------------------------------------------------------------------------------ # METHODS #------------------------------------------------------------------------------ def word_in_line(word, line): """ Check if word is in line word, line - str returns - True if word in line, False if not """ pattern = r'(^|[^\w]){}([^\w]|$)'.format(word) pattern = re.compile(pattern, re.IGNORECASE) matches = re.search(pattern, text) return bool(matches) def discrete_colorscale(values, colors): """ values - categorical values colors - rgb or hex colorcodes for len(values)-1 eeturn - discrete colorscale, tickvals, ticktext """ if len(values) != len(colors)+1: raise ValueError('len(values) should be = len(colors)+1') values = sorted(values) nvalues = [(v-values[0])/(values[-1]-values[0]) for v in values] #normalized values colorscale = [] for k in range(len(colors)): colorscale.extend([[nvalues[k], colors[k]], [nvalues[k+1], colors[k]]]) tickvals = [((values[k]+values[k+1])/2.0) for k in range(len(values)-1)] ticktext = [f'{int(values[k])}' for k in range(len(values)-1)] return colorscale, tickvals, ticktext def rgb2hex(colorin): """ Convert (r,g,b) to hex """ r = int(colorin.split('(')[1].split(')')[0].split(',')[0]) g = int(colorin.split('(')[1].split(')')[0].split(',')[1]) b = int(colorin.split('(')[1].split(')')[0].split(',')[2]) return "#{:02x}{:02x}{:02x}".format(r,g,b) def parse_poem(input_file): """ Text parsing of poem and construction of branchpoint array """ print('parsing poem ...') # Store lines in a list linelist = [] with open (input_file, 'rt') as f: for line in f: if len(line)>1: # ignore empty lines linelist.append(line.strip()) else: continue # Store text as a single string textstr = '' for i in range(len(linelist)): if i < len(linelist) - 1: textstr = textstr + linelist[i] + ' ' else: textstr = textstr + linelist[i] # extract sentences into list # (ignore last entry which is '' due to final full stop) sentencelist = textstr.split('.')[0:-1] # Clean text and lower case all words str = textstr for char in '-.,\n': str = str.replace(char,' ') str = str.lower() wordlist = str.split() # Store unique words in an array uniquewordlist = [] for word in wordlist: if word not in uniquewordlist: uniquewordlist.append(word) # Word frequencies wordfreq = Counter(wordlist).most_common() # --> wordfreq[0][0] = 'the' and wordfreq[0][1] = '13' # Find branchpoints having word frequency > 1 branchpointlist = [] for word in range(len(wordfreq)-1): if wordfreq[word][1] > 1: branchpointlist.append(wordfreq[word][0]) else: continue # Branchpoint index array maxbranches = wordfreq[0][1] branchpointarray = np.zeros((len(branchpointlist), maxbranches), dtype='int') for k in range(len(branchpointlist)): index = [] for i, j in enumerate(wordlist): if j == branchpointlist[k]: index.append(i) branchpointarray[k,0:len(index)] = index # Filter out multiple branchpoint in single line only occurences # using word indices of branchpoints and line start and end indices lineindices = [] wordcount = 0 for i in range(len(linelist)): linelen = len(linelist[i].split()) lineindices.append([i, wordcount, wordcount+linelen-1]) wordcount += linelen mask = [] branchlinearray = [] for i in range(np.size(branchpointarray, axis=0)): # i.e. nbranchpoints branchpointindices = branchpointarray[i,:][branchpointarray[i,:]>0] linecounter = 0 for j in range(len(linelist)): branchpointcounter = 0 for k in range(len(branchpointindices)): if branchpointindices[k] in np.arange(lineindices[j][1],lineindices[j][2]+1): branchpointcounter += 1 branchlinearray.append([j,i,lineindices[j][1],branchpointindices[k],lineindices[j][2]]) if branchpointcounter > 0: linecounter += 1 if linecounter < 2: mask.append(i) a = np.array(branchpointarray) b = branchpointlist for i in range(len(mask)): a = np.delete(a,mask[i]-i,0) b = np.delete(b,mask[i]-i,0) branchpointarray = a branchpointlist = list(b) db = pd.DataFrame(branchpointarray) db.to_csv('branchpointarray.csv', sep=',', index=False, header=False, encoding='utf-8') return textstr, sentencelist, linelist, wordlist, uniquewordlist, wordfreq, branchpointlist, branchpointarray def generate_branchpoint_colormap(wordfreq, nbranchpoints, nwords, branchpointarray): """ Generate colormap using hexcolors for all branchpoints """ print('generating branchpoint_colormap ...') freq = [ wordfreq[i][1] for i in range(len(wordfreq)) ] nlabels = nbranchpoints cmap = px.colors.diverging.Spectral cmap_idx = np.linspace(0,len(cmap)-1, nlabels, dtype=int) colors = [cmap[i] for i in cmap_idx] hexcolors = [ rgb2hex(colors[i]) for i in range(len(colors)) ] branchpoint_colormap = [] for k in range(nwords): branchpoint_colormap.append('lightgrey') for j in range(np.size(branchpointarray, axis=0)): # i.e. nbranchpoints for i in range(np.size(branchpointarray, axis=1)): # i.e. maxfreq branchpoint_colormap[branchpointarray[j,i]] = hexcolors[j] return branchpoint_colormap, hexcolors def compute_networkx_edges(nwords, wordlist, branchpointarray): print('computing_networkx_edges ...') # Construct edgelist, labellist edgelist = [(i,i+1) for i in range(nwords-1)] labellist = [{i : wordlist[i]} for i in range(nwords)] df = pd.DataFrame() G = nx.Graph() G.add_edges_from(edgelist) for node in G.nodes(): G.nodes[node]['label'] = labellist[node] edge_colormap = [] for k in range(nwords-1): edge_colormap.append('lightgrey') for j in range(np.size(branchpointarray, axis=0)): # i.e. nbranchpoints branchpointedges = [] for i in range(np.size(branchpointarray, axis=1)): # i.e. maxfreq branchpointindices = branchpointarray[j,:] connections = branchpointindices[(branchpointindices != branchpointindices[i]) & (branchpointindices > 0)] for k in range(len(connections)): if branchpointindices[i] > 0: branchpointedges.append([branchpointindices[i], connections[k]]) G.add_edges_from(branchpointedges) # for l in range(int(len(branchpointedges)/2)): # NB 2-driectional edges # edge_colormap.append(hexcolors[j]) nedges = len(G.edges) # Generate non-circular form of the networkx graph N = nx.Graph() N.add_edges_from(edgelist) for j in range(np.size(branchpointarray, axis=0)): # i.e. nbranchpoints branchpointedges = [] for i in range(np.size(branchpointarray, axis=1)): # i.e. maxfreq branchpointindices = branchpointarray[j,:] connections = branchpointindices[(branchpointindices != branchpointindices[i]) & (branchpointindices > 0)] for k in range(len(connections)): if branchpointindices[i] > 0: branchpointedges.append([branchpointindices[i], connections[k]]) N.add_edges_from(branchpointedges) N.remove_edges_from(edgelist) N_degrees = [degree for node,degree in dict(N.degree()).items()] # degree of nodes notbranchpoints = [ node for node,degree in dict(N.degree()).items() if degree == 0 ] # each node in circular graph has 2 neighbours at start return nedges, notbranchpoints, G, N def compute_erdos_parameter(nwords, nedges): """ Compute Erdos-Renyi parameter estimate """ print('computing_erdos_parameter ...') edgelist = [(i,i+1) for i in range(nwords-1)] for connectivity in np.linspace(0,1,1000001): random.seed(42) E = nx.erdos_renyi_graph(nwords, connectivity) erdosedges = len(E.edges) if erdosedges == (nedges-len(edgelist)): # print("{0:.6f}".format(connectivity)) # print("{0:.6f}".format(erdosedges)) nerdosedges = len(E.edges) return nerdosedges, connectivity, E # break nerdosedges = len(E.edges) return nerdosedges, connectivity, E def compute_erdos_equivalence(nwords, nedges, N, notbranchpoints): """ Compute Erdos-Renyi equivalence probability """ print('computing_erdos_equivalence ...') # Compare Erdos-Renyi graph edges in reduced networks (branchpoint network) N.remove_nodes_from(notbranchpoints) mapping = { np.array(N.nodes)[i]:i for i in range(len(N.nodes)) } H = nx.relabel_nodes(N,mapping) maxdiff = len(H.edges) iterations = 100000 for i in range(iterations+1): E = nx.erdos_renyi_graph(len(H.nodes), connectivity) diff = H.edges - E.edges if len(diff) < maxdiff: maxdiff = len(diff) commonedges = H.edges - diff pEquivalence = i/iterations Equivalence = E return commonedges, pEquivalence, Equivalence def compute_anyons(linelist, wordlist, branchpointarray): """ Anyon construction: braiding """ print('generating_anyons ...') # Compute start and end word indices for each line of the poem lineindices = [] wordcount = 0 for i in range(len(linelist)): linelen = len(linelist[i].split()) lineindices.append([i, wordcount, wordcount+linelen-1]) wordcount += linelen # For each branchpoint find line index and word indices of line start, branchpoint and line end # branchlinearray: [line, branchpoint, wordstart, wordbranchpoint, wordend] branchlinearray = [] for i in range(np.size(branchpointarray, axis=0)): # i.e. nbranchpoints branchpointindices = branchpointarray[i,:][branchpointarray[i,:]>0] for j in range(len(linelist)): for k in range(len(branchpointindices)): if branchpointindices[k] in np.arange(lineindices[j][1],lineindices[j][2]+1): branchlinearray.append([j,i,lineindices[j][1],branchpointindices[k],lineindices[j][2]]) # Filter out multiple branchpoint in single line only occurences a = np.array(branchlinearray) mask = [] for i in range(len(branchlinearray)-2): if (a[i,0] == a[i+1,0]) & (a[i,1] == a[i+1,1]) & (a[i+2,1]!=a[i,1]): mask.append(i) mask.append(i+1) for i in range(len(mask)): a = np.delete(a,mask[i]-i,0) branchlinearray = a[a[:,0].argsort()] # Filter out start of line and end of line occurring branchpoints a = np.array(branchlinearray) mask = [] for i in range(len(branchlinearray)): if ((a[i,2] == a[i,3]) | (a[i,3] == a[i,4])): mask.append(i) for i in range(len(mask)): a = np.delete(a,mask[i]-i,0) branchlinearray = a[a[:,0].argsort()] # Anyons anyonarray = [] for i in range(len(linelist)): a = branchlinearray[branchlinearray[:,0]==i] if len(a) == 0: break for j in range(len(a)): anyon_pre = wordlist[a[j,2]:a[j,3]+1] b = branchlinearray[(branchlinearray[:,1]==a[j,1]) & (branchlinearray[:,0]!=a[j,0])] ####################################################### # For > 1 swaps, add additional anyon segment code here # + consider case of forward in 'time' constraint # + consider return to start line occurrence ####################################################### if len(b) == 0: break for k in range(len(b)): anyon_post = wordlist[b[k,3]+1:b[k,4]+1] anyon = anyon_pre + anyon_post anyonarray.append( [i, b[k,0], branchpointlist[a[j,1]], anyon, a[j,2], a[j,3], a[j,4] ]) df = pd.DataFrame(anyonarray) df.to_csv('anyonarray.csv', sep=',', index=False, header=False, encoding='utf-8') return anyonarray def compute_variants(linelist, anyonarray): """ Variant construction """ print('generating_variants ...') # generate variants of the poem df = pd.DataFrame(anyonarray) allpoemsidx = [] allpoems = [] allidx = [] nvariants = 0 for i in range(len(linelist)): a = df[df[0]==i] for j in range(len(a)): poem = [] lineidx = [] lines = np.arange(len(linelist)) while len(lines)>0: print(nvariants,i,j) if len(lines) == len(linelist): linestart = a[0].values[j] lineend = a[1].values[j] branchpoint = a[2].values[j] else: b = df[df[0]==lines[0]] linestart = b[0].values[0] lineend = np.setdiff1d( np.unique(b[1].values), lineidx )[0] branchpoint = df[ (df[0]==linestart) & (df[1]==lineend) ][2].values[0] lineidx.append(linestart) lineidx.append(lineend) branchpointstartpre = df[ (df[0]==linestart) & (df[1]==lineend) & (df[2]==branchpoint) ][4].values[0] branchpointstart = df[ (df[0]==linestart) & (df[1]==lineend) & (df[2]==branchpoint) ][5].values[0] branchpointstartpro = df[ (df[0]==linestart) & (df[1]==lineend) & (df[2]==branchpoint) ][6].values[0] branchpointendpre = df[ (df[0]==lineend) & (df[1]==linestart) & (df[2]==branchpoint) ][4].values[0] branchpointend = df[ (df[0]==lineend) & (df[1]==linestart) & (df[2]==branchpoint) ][5].values[0] branchpointendpro = df[ (df[0]==lineend) & (df[1]==linestart) & (df[2]==branchpoint) ][6].values[0] allidx.append([nvariants, linestart, lineend, branchpoint, branchpointstartpre, branchpointstart, branchpointstartpro]) allidx.append([nvariants, lineend, linestart, branchpoint, branchpointendpre, branchpointend, branchpointendpro]) poem.append(df[ (df[0]==linestart) & (df[1]==lineend) & (df[2]==branchpoint) ][3].values[0]) poem.append(df[ (df[0]==lineend) & (df[1]==linestart) & (df[2]==branchpoint) ][3].values[0]) lines = np.setdiff1d(lines,lineidx) nvariants += 1 poemsorted = [] for k in range(len(lineidx)): poemsorted.append(poem[lineidx.index(k)]) allpoems.append(poemsorted) allpoemsidx.append(lineidx) dp = pd.DataFrame(poemsorted) dp.to_csv('poem'+'_'+"{0:.0f}".format(nvariants-1).zfill(3)+'.csv', sep=',', index=False, header=False, encoding='utf-8') di = pd.DataFrame(allpoemsidx) di.to_csv('poem_allidx.csv', sep=',', index=False, header=False, encoding='utf-8') da = pd.DataFrame(allpoems) da.to_csv('poem_all.csv', sep=',', index=False, header=False, encoding='utf-8') dl = pd.DataFrame(allidx) dl.to_csv('allidx.csv', sep=',', index=False, header=False, encoding='utf-8') return nvariants, allpoemsidx, allpoems, allidx def generate_qubits(): """ Qubit contruction """ print('generating_qubits ...') def qubit_logic(): """ Apply gates to Bell states """ print('applying logic gates ...') def machine_learning(): """ Feature extraction """ print('extracting features ...') #------------------------------------------------------------------------------ #------------------------------------------------------------------------------ # LOAD POEM #------------------------------------------------------------------------------ """ Poem to generate quantum variants from """ #input_file = 'poem.txt' input_file = 'poem-v1.txt' textstr, sentencelist, linelist, wordlist, uniquewordlist, wordfreq, branchpointlist, branchpointarray = parse_poem(input_file) # Counts nsentences = len(sentencelist) # --> 4 nlines = len(linelist) # --> 8 nwords = len(wordlist) # --> 98 nunique = len(uniquewordlist) # --> 59 nbranchpoints = len(branchpointlist) # --> 20 if generate_networkx_edges == True: nedges, notbranchpoints, G, N = compute_networkx_edges(nwords, wordlist, branchpointarray) if generate_anyons == True: anyonarray = compute_anyons(linelist, wordlist, branchpointarray) if generate_variants == True: nvariants, allpoemsidx, allpoems, allidx = compute_variants(linelist, anyonarray) if generate_qubits == True: print('generating_qubits ...') if generate_erdos_parameter == True: nerdosedges, connectivity, E = compute_erdos_parameter(nwords, nedges) if generate_erdos_equivalence == True: commonedges, pEquivalence, Equivalence = compute_erdos_equivalence(nwords, nedges, N, notbranchpoints) if qubit_logic == True: print('applying logic gates ...') if machine_learning == True: print('extracting features ...') # ----------------------------------------------------------------------------- branchpoint_colormap, hexcolors = generate_branchpoint_colormap(wordfreq, nbranchpoints, nwords, branchpointarray) # ----------------------------------------------------------------------------- if plot_branchpoint_table == True: print('plotting_branchpoint_table ...') fig, ax = plt.subplots(figsize=(15,10)) plt.plot(np.arange(0,len(wordlist)), np.zeros(len(wordlist))) for k in range(len(branchpointlist)): plt.plot(np.arange(0,len(wordlist)), np.ones(len(wordlist))*k, color='black') a = branchpointarray[k,:] vals = a[a>0] plt.scatter(vals, np.ones(len(vals))*k, label=branchpointlist[k], s=100, facecolors=hexcolors[k], edgecolors='black') xticks = np.arange(0, len(wordlist)+0, step=10) xlabels = np.array(np.arange(0, len(wordlist), step=10).astype('str')) yticks = np.arange(0, len(branchpointlist), step=1) ylabels = np.array(np.arange(0, len(branchpointlist), step=1).astype('str')) plt.xticks(ticks=xticks, labels=xlabels) # Set label locations plt.yticks(ticks=yticks, labels=ylabels) # Set label locations plt.xticks(fontsize=20) plt.yticks(fontsize=20) plt.xlabel('word n in text', fontsize=20) plt.ylabel('branchpoint k in text (>1 connection)', fontsize=20) plt.title('Branch Analysis Plot', fontsize=20) plt.gca().invert_yaxis() box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=12) plt.savefig('branchplot.png') plt.close(fig) if plot_networkx_connections == True: print('plotting_networkx_connections ...') fig, ax = plt.subplots(figsize=(15,10)) nx.draw_circular(G, node_color=branchpoint_colormap, node_size=300, linewidths=0.5, font_size=12, font_weight='normal', with_labels=True) plt.title('Networkx (circularly connected): N(edges)=' + "{0:.0f}".format(len(G.edges)), fontsize=20) plt.savefig('networkx.png') plt.close(fig) if plot_networkx_non_circular == True: print('plotting_networkx_non_circular ...') fig, ax = plt.subplots(figsize=(15,10)) nx.draw_circular(N, node_color=branchpoint_colormap, node_size=300, linewidths=0.5, font_size=12, font_weight='normal', with_labels=True) plt.title('Networkx (non-circularly connected): N(edges)=' + "{0:.0f}".format(len(N.edges)), fontsize=20) plt.savefig('networkx_non_circular.png') if plot_networkx_erdos_parameter == True: print('plotting_networkx_erdos ...') fig, ax = plt.subplots(figsize=(15,10)) nx.draw_circular(E, node_color=branchpoint_colormap, node_size=300, linewidths=0.5, font_size=12, font_weight='normal', with_labels=True) plt.title('Erdős-Rényi Model: p=' + "{0:.6f}".format(connectivity) + ', N(edges)=' + "{0:.0f}".format(nerdosedges), fontsize=20) plt.savefig('networkx_erdos.png') plt.close(fig) if plot_networkx_erdos_equivalence == True: print('plotting_networkx_erdos_equivalence ...') fig, ax = plt.subplots(figsize=(15,10)) nx.draw_circular(Eequivalence, node_color='lightgrey', node_size=300, linewidths=0.5, font_size=12, font_weight='normal', with_labels=True) plt.title('Erdős-Rényi Model (equivalent): N(common edges)=' + "{0:.0f}".format(len(N.edges)-len(diff)), fontsize=20) plt.savefig('networkx_erdos_equivalence.png') if plot_variants == True: print('plotting_variants ...') di = pd.DataFrame(allpoemsidx) da = pd.DataFrame(allpoems) dl =
pd.DataFrame(allidx)
pandas.DataFrame
# Pymatgen from pymatgen.core import Structure from pymatgen.analysis.local_env import CrystalNN, CutOffDictNN from pymatgen.io.vasp.outputs import Locpot # Misc import math import numpy as np import pandas as pd import warnings # surfaxe from surfaxe.generation import oxidation_states from surfaxe.io import plot_bond_analysis, plot_electrostatic_potential, _instantiate_structure def cart_displacements(start, end, max_disp=0.1, save_txt=True, txt_fname='cart_displacements.txt'): """ Produces a text file with all the magnitude of displacements of atoms in Cartesian space Args: start (`str`): Filename of initial structure file in any format supported by pymatgen or pymatgen structure object. end (`str`): Filename of final structure file in any format supported by pymatgen or pymatgen structure object. max_disp (`float`, optional): The maximum displacement shown. Defaults to 0.1 Å. save_txt (`bool`, optional): Save the displacements to file. Defaults to ``True``. txt_fname (`str`, optional): Filename of the csv file. Defaults to ``'cart_displacement.txt'``. Returns: None (default) or DataFrame of displacements of atoms in Cartesian space """ # Instantiate the structures start_struc = _instantiate_structure(start) end_struc = _instantiate_structure(end) # Add the site labels to the structure els = ''.join([i for i in start_struc.formula if not i.isdigit()]).split(' ') el_dict = {i : 1 for i in els} site_labels = [] for site in start_struc: symbol = site.specie.symbol site_labels.append((symbol,el_dict[symbol])) el_dict[symbol] +=1 start_struc.add_site_property('', site_labels) # Convert to cartesian coordinates start_struc = start_struc.cart_coords end_struc = end_struc.cart_coords # Calculate the displacements disp_list = [] for n, (start_coord, end_coord) in enumerate(zip(start_struc, end_struc)): xdisp = math.pow(start_coord[0] - end_coord[0], 2) ydisp = math.pow(start_coord[1] - end_coord[1], 2) zdisp = math.pow(start_coord[2] - end_coord[2], 2) d = math.sqrt(xdisp + ydisp + zdisp) label = site_labels[n] if d >= max_disp: disp_list.append({ 'site': n+1, 'atom': label, # this makes the displacements round to the same number of # decimal places as max displacement, for presentation 'displacement': round(d, int(format(max_disp, 'E')[-1])) }) # Save as txt file df = pd.DataFrame(disp_list) if save_txt: df.to_csv(txt_fname, header=True, index=False, sep='\t', mode='w') else: return df def bond_analysis(structure, bond, nn_method=CrystalNN(), ox_states=None, save_csv=True, csv_fname='bond_analysis.csv', save_plt=False, plt_fname='bond_analysis.png', **kwargs): """ Parses the structure looking for bonds between atoms. Check the validity of the nearest neighbour method on the bulk structure before using it on slabs. Args: structure (`str`): filename of structure, takes all pymatgen-supported formats, including pmg structure object bond (`list`): Bond to analyse e.g. ``['Y', 'O']`` nn_method (`class`, optional): The coordination number prediction algorithm used. Because the ``nn_method`` is a class, the class needs to be imported from ``pymatgen.analysis.local_env`` before it can be instantiated here. Defaults to ``CrystalNN()``. ox_states (``None``, `list` or `dict`, optional): Add oxidation states to the structure. Different types of oxidation states specified will result in different pymatgen functions used. The options are: * if supplied as ``list``: The oxidation states are added by site e.g. ``[3, 2, 2, 1, -2, -2, -2, -2]`` * if supplied as ``dict``: The oxidation states are added by element e.g. ``{'Fe': 3, 'O':-2}`` * if ``None``: The oxidation states are added by guess. Defaults to ``None``. save_csv (`bool`, optional): Makes a csv file with the c coordinate of the first atom and bond length. Defaults to ``True``. csv_fname (`str`, optional): Filename of the csv file. Defaults to ``'bond_analysis.csv'``. save_plt (`bool`, optional): Make and save the bond analysis plot. Defaults to ``False``. plt_fname (`str`, optional): Filename of the plot. Defaults to ``'bond_analysis.png'``. Returns: DataFrame with the c coordinate of the first atom and bond length """ struc = _instantiate_structure(structure) struc = oxidation_states(structure=struc, ox_states=ox_states) if len(bond) > 2: warnings.warn('Bond with more than two elements supplied. ' 'Only the first two elements will be treated as a bond.') # Iterates through the structure, looking for pairs of bonded atoms. If the # sites match, the bond distance is calculated and passed to a dataframe bonds_info = [] for n, pos in enumerate(struc): if pos.specie.symbol == bond[0]: nearest_neighbours = nn_method.get_nn_info(struc, n) matched_sites = [] for d in nearest_neighbours: if d.get('site').specie.symbol == bond[1]: matched_sites.append(d) bond_distances = [ struc.get_distance(n,x['site_index']) for x in matched_sites ] bonds_info.append({ '{}_index'.format(bond[0]): n+1, '{}_c_coord'.format(bond[0]): pos.c, '{}-{}_bond_distance'.format(bond[0],bond[1]): np.mean(bond_distances) }) df = pd.DataFrame(bonds_info) # Save plot and csv, or return the DataFrame if save_plt: plot_bond_analysis(bond, df=df, plt_fname=plt_fname, **kwargs) if save_csv: if not csv_fname.endswith('.csv'): csv_fname += '.csv' df.to_csv(csv_fname, header=True, index=False) else: return df def electrostatic_potential(locpot='./LOCPOT', lattice_vector=None, save_csv=True, csv_fname='potential.csv', save_plt=True, plt_fname='potential.png', **kwargs): """ Reads LOCPOT to get the planar and optionally macroscopic potential in c direction. Args: locpot (`str`, optional): The path to the LOCPOT file. Defaults to ``'./LOCPOT'`` lattice_vector (`float`, optional): The periodicity of the slab, calculates macroscopic potential with that periodicity save_csv (`bool`, optional): Saves to csv. Defaults to ``True``. csv_fname (`str`, optional): Filename of the csv file. Defaults to ``'potential.csv'``. save_plt (`bool`, optional): Make and save the plot of electrostatic potential. Defaults to ``True``. plt_fname (`str`, optional): Filename of the plot. Defaults to ``'potential.png'``. Returns: DataFrame """ # Read potential and structure data lpt = Locpot.from_file(locpot) struc = Structure.from_file(locpot) # Planar potential planar = lpt.get_average_along_axis(2) df = pd.DataFrame(data=planar, columns=['planar']) # Calculate macroscopic potential if lattice_vector is not None: # Divide lattice parameter by no. of grid points in the direction resolution = struc.lattice.abc[2]/lpt.dim[2] # Get number of points over which the rolling average is evaluated points = int(lattice_vector/resolution) # Need extra points at the start and end of planar potential to evaluate the # macroscopic potential this makes use of the PBC where the end of one unit # cell coincides with start of the next one add_to_start = planar[(len(planar) - points): ] add_to_end = planar[0:points] pfm_data = np.concatenate((add_to_start,planar,add_to_end)) pfm = pd.DataFrame(data=pfm_data, columns=['y']) # Macroscopic potential m_data = pfm.y.rolling(window=points, center=True).mean() macroscopic = m_data.iloc[points:(len(planar)+points)] macroscopic.reset_index(drop=True,inplace=True) df['macroscopic'] = macroscopic # Get gradient of the plot - this is used for convergence testing, to make # sure the potential is actually flat df['gradient'] = np.gradient(df['planar']) # Plot and save the graph, save the csv or return the dataframe if save_plt: plot_electrostatic_potential(df=df, plt_fname=plt_fname, **kwargs) if save_csv: if not csv_fname.endswith('.csv'): csv_fname += '.csv' df.to_csv(csv_fname, header=True, index=False) else: return df def simple_nn(start, end=None, ox_states=None, nn_method=CrystalNN(), save_csv=True, csv_fname='nn_data.csv'): """ Finds the nearest neighbours for simple structures. Before using on slabs make sure the nn_method works with the bulk structure. The ``site_index`` in the produced DataFrame or csv file is one-indexed and represents the atom index in the structure. Args: start (`str`): Filename of structure file in any format supported by pymatgen end (`str`, optional): Filename of structure file in any format supported by pymatgen. Use if comparing initial and final structures. The structures must have same constituent atoms and number of sites. Defaults to ``None``. ox_states (``None``, `list` or `dict`, optional): Add oxidation states to the structure. Different types of oxidation states specified will result in different pymatgen functions used. The options are: * if supplied as ``list``: The oxidation states are added by site e.g. ``[3, 2, 2, 1, -2, -2, -2, -2]`` * if supplied as ``dict``: The oxidation states are added by element e.g. ``{'Fe': 3, 'O':-2}`` * if ``None``: The oxidation states are added by guess. Defaults to ``None``. nn_method (`class`, optional): The coordination number prediction algorithm used. Because the ``nn_method`` is a class, the class needs to be imported from pymatgen.analysis.local_env before it can be instantiated here. Defaults to ``CrystalNN()``. save_csv (`bool`, optional): Save to a csv file. Defaults to ``True``. csv_fname (`str`, optional): Filename of the csv file. Defaults to ``'nn_data.csv'`` Returns None (default) or DataFrame containing coordination data """ # Instantiate start structure object start_struc = _instantiate_structure(start) # Add atom site labels to the structure els = ''.join([i for i in start_struc.formula if not i.isdigit()]).split(' ') el_dict = {i : 1 for i in els} site_labels = [] for site in start_struc: symbol = site.specie.symbol site_labels.append((symbol,el_dict[symbol])) el_dict[symbol] +=1 start_struc.add_site_property('', site_labels) # Add oxidation states and get bonded structure start_struc = oxidation_states(start_struc, ox_states) bonded_start = nn_method.get_bonded_structure(start_struc) if end: end_struc = _instantiate_structure(end) end_struc = oxidation_states(end_struc, ox_states) bonded_end = nn_method.get_bonded_structure(end_struc) # Iterate through structure, evaluate the coordination number and the # nearest neighbours specie for start and end structures, collects the # symbol and index of the site (atom) evaluated and its nearest neighbours df_list = [] for n, site in enumerate(start_struc): cn_start = bonded_start.get_coordination_of_site(n) coord_start = bonded_start.get_connected_sites(n) specie_list = [] for d in coord_start: spc = d.site.specie.symbol specie_list.append(spc) specie_list.sort() site_nn_start = ' '.join(specie_list) label = site_labels[n] if end: cn_end = bonded_end.get_coordination_of_site(n) coord_end = bonded_end.get_connected_sites(n) specie_list = [] for d in coord_end: spc = d.site.specie.symbol specie_list.append(spc) specie_list.sort() site_nn_end = ' '.join(specie_list) df_list.append({'site': n+1, 'atom': label, 'cn_start': cn_start, 'nn_start': site_nn_start, 'cn_end': cn_end, 'nn_end': site_nn_end}) else: df_list.append({'site_index': n+1, 'site': label, 'cn_start': cn_start, 'nn_start': site_nn_start}) # Make a dataframe from df_list df = pd.DataFrame(df_list) # Save the csv file or return as dataframe if save_csv: if not csv_fname.endswith('.csv'): csv_fname += '.csv' df.to_csv(csv_fname, header=True, index=False) else: return df def complex_nn(start, cut_off_dict, end=None, ox_states=None, save_csv=True, csv_fname='nn_data.csv'): """ Finds the nearest neighbours for more complex structures. Uses CutOffDictNN() class as the nearest neighbour method. Check validity on bulk structure before applying to surface slabs. The ``site_index`` in the produced DataFrame or csv file is one-indexed and represents the atom index in the structure. Args: start (`str`): filename of structure, takes all pymatgen-supported formats. cut_off_dict (`dict`): Dictionary of bond lengths. The bonds should be specified with the oxidation states\n e.g. ``{('Bi3+', 'O2-'): 2.46, ('V5+', 'O2-'): 1.73}`` end (`str`, optional): filename of structure to analyse, use if comparing initial and final structures. The structures must have same constituent atoms and number of sites. Defaults to ``None``. ox_states (``None``, `list` or `dict`, optional): Add oxidation states to the structure. Different types of oxidation states specified will result in different pymatgen functions used. The options are: * if supplied as ``list``: The oxidation states are added by site e.g. ``[3, 2, 2, 1, -2, -2, -2, -2]`` * if supplied as ``dict``: The oxidation states are added by element e.g. ``{'Fe': 3, 'O':-2}`` * if ``None``: The oxidation states are added by guess. Defaults to ``None`` save_csv (`bool`, optional): Save to a csv file. Defaults to ``True``. csv_fname (`str`, optional): Filename of the csv file. Defaults to ``'nn_data.csv'`` Returns None (default) or DataFrame containing coordination data. """ # Instantiate start structure object start_struc = Structure.from_file(start) # Add atom site labels to the structure els = ''.join([i for i in start_struc.formula if not i.isdigit()]).split(' ') el_dict = {i : 1 for i in els} site_labels = [] for site in start_struc: symbol = site.specie.symbol site_labels.append((symbol,el_dict[symbol])) el_dict[symbol] +=1 start_struc.add_site_property('', site_labels) # Add oxidation states start_struc = oxidation_states(start_struc, ox_states=ox_states) # Instantiate the nearest neighbour algorithm and get bonded structure codnn = CutOffDictNN(cut_off_dict=cut_off_dict) bonded_start = codnn.get_bonded_structure(start_struc) # Instantiate the end structure if provided if end: end_struc = Structure.from_file(end) end_struc = oxidation_states(end_struc, ox_states=ox_states) bonded_end = codnn.get_bonded_structure(end_struc) # Iterate through structure, evaluate the coordination number and the # nearest neighbours specie for start and end structures, collects the # symbol and index of the site (atom) evaluated and its nearest neighbours df_list = [] for n, site in enumerate(start_struc): cn_start = bonded_start.get_coordination_of_site(n) coord_start = bonded_start.get_connected_sites(n) specie_list = [] for d in coord_start: spc = d.site.specie.symbol specie_list.append(spc) specie_list.sort() site_nn_start = ' '.join(specie_list) label = site_labels[n] if end: cn_end = bonded_end.get_coordination_of_site(n) coord_end = bonded_end.get_connected_sites(n) specie_list = [] for d in coord_end: spc = d.site.specie.symbol specie_list.append(spc) specie_list.sort() site_nn_end = ' '.join(specie_list) df_list.append({'site': n+1, 'atom': label, 'cn start': cn_start, 'nn_start': site_nn_start, 'cn_end': cn_end, 'nn_end': site_nn_end}) else: df_list.append({'site_index': n+1, 'site': label, 'cn_start': cn_start, 'nn_start': site_nn_start}) # Make a dataframe from df_list df =
pd.DataFrame(df_list)
pandas.DataFrame
import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd import pandas._testing as tm from pandas.arrays import SparseArray from pandas.core.arrays.sparse import SparseDtype class TestSparseDataFrameIndexing: def test_getitem_sparse_column(self): # https://github.com/pandas-dev/pandas/issues/23559 data = SparseArray([0, 1]) df = pd.DataFrame({"A": data}) expected = pd.Series(data, name="A") result = df["A"] tm.assert_series_equal(result, expected) result = df.iloc[:, 0]
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
import logging import fundamentus import streamlit as st import numpy as np import pandas as pd from pandas_datareader import data from dmapi import DMAPI @st.cache def get_tickers(): dm = DMAPI(token='<PASSWORD>') dm_json = dm.tickers() df =
pd.DataFrame.from_dict(dm_json)
pandas.DataFrame.from_dict
import pandas as pd import os import subprocess import math from datetime import datetime, timedelta from ShotDetectionInterface import ShotDetectionInterface import secrets class PySceneDetection(ShotDetectionInterface): def __init__(self, no_of_bytes = 32, threshold = 20, output_path = './shot_detection/video_scenes/', video_format = '.mp4'): self.no_of_bytes = no_of_bytes self.modified_split = pd.DataFrame() self.to_add = 0 self.threshold = threshold self.output_path = output_path self.video_name = str() self.video_format = video_format def generate_scenes(self, local_video_path): """Generates csv for detecting important scenes""" command_list = ['scenedetect'] inputs = ['-i', os.path.abspath(local_video_path)] framerate = ['-f', '29.97'] output = ['-o', self.output_path] stats = ['-s', self.video_name + '.stats.csv'] detect_content = ['detect-content', '-t', str(self.threshold)] list_scenes = ['list-scenes'] execute_command = (command_list + inputs + framerate + output + stats + detect_content + list_scenes) subprocess.call(execute_command) def get_random_video_name(self): return secrets.token_urlsafe(self.no_of_bytes) def get_total_minutes(self, row): """Returns total minutes for a video""" length_timecode = row['Length (timecode)'].split(':') hours,minutes = int(length_timecode[0]) ,int(length_timecode[1]) minutes += hours*60 no_of_splits = math.ceil(minutes/5.0) return (minutes, no_of_splits) def append_dataframe(self, values, filename): dict_to_append = {} dict_to_append['Start Timecode'] = [values[0]] dict_to_append['End Timecode'] = [values[1]] dict_to_append['Length (timecode)'] = [values[2]] dict_to_append['filename'] = [filename] self.modified_split = self.modified_split.append(pd.DataFrame(dict_to_append),ignore_index=True) def add_last_frame(self, row): start_time = self.convert_str_to_datetime(list(self.modified_split['Start Timecode'])[-1]) duration = self.convert_str_to_datetime(list(self.modified_split['Length (timecode)'])[-1]) duration += self.convert_str_to_datetime(row['Length (timecode)']) end_time = start_time + duration start_time = list(self.modified_split['Start Timecode'])[-1] return [start_time, str(end_time), str(duration)] def small_frames(self, row): filename = self.get_random_video_name() if len(self.modified_split) != 0: values = self.add_last_frame(row) self.modified_split.drop(self.modified_split.tail(1).index,inplace=True) self.to_add = 0 else: self.to_add = 1 values = [str(row['Start Timecode']), str(row['End Timecode']), str(row['Length (timecode)'])] self.append_dataframe(values, filename) def next_frames(self, no_of_splits, duration, row): for i in range(1,no_of_splits - 1): start_time = self.convert_str_to_datetime(list(self.modified_split['End Timecode'])[-1]) start_time_act = list(self.modified_split['End Timecode'])[-1] values = [start_time_act, str(start_time + duration), str(duration)] filename = self.get_random_video_name() self.append_dataframe(values, filename) start_time = self.convert_str_to_datetime(list(self.modified_split['End Timecode'])[-1]) rem_length = self.convert_str_to_datetime(row['Length (timecode)']) rem_length -= (duration*(no_of_splits-1)) filename = self.get_random_video_name() start_time_act = list(self.modified_split['End Timecode'])[-1] values = [start_time_act, str(start_time + rem_length), str(rem_length)] self.append_dataframe(values, filename) def large_frames(self, row, no_of_splits): filename = self.get_random_video_name() duration = self.convert_str_to_datetime(row['Length (timecode)']) / no_of_splits if self.to_add == 1: start_time = self.convert_str_to_datetime(list(self.modified_split['Start Timecode'])[-1]) new_duration = duration + self.convert_str_to_datetime(list(self.modified_split['Length (timecode)'])[-1]) start_time_act = list(self.modified_split['Start Timecode'])[-1] self.modified_split.drop(self.modified_split.tail(1).index,inplace=True) self.to_add = 0 else: start_time = self.convert_str_to_datetime(row['Start Timecode']) start_time_act = str(start_time) new_duration = duration values = [start_time_act, str(start_time + new_duration), str(new_duration)] self.append_dataframe(values, filename) self.next_frames(no_of_splits, duration, row) def intermediate_frames(self, row): values = [] filename = self.get_random_video_name() if self.to_add == 1: values = self.add_last_frame(row) self.modified_split.drop(self.modified_split.tail(1).index,inplace=True) self.to_add = 0 else: values = [str(row['Start Timecode']), str(row['End Timecode']), str(row['Length (timecode)'])] self.append_dataframe(values, filename) def get_optimal_splits(self, local_file_path): """Combines small splits or breaks large splits of the video""" splits = pd.read_csv(local_file_path,skiprows=1) self.modified_split = pd.DataFrame({'Start Timecode':[],'End Timecode':[],'Length (timecode)':[],'filename':[]}) self.to_add = 0 for index, row in splits.iterrows(): (minutes, no_of_splits) = self.get_total_minutes(row) if minutes > 5: self.large_frames(row,no_of_splits) elif minutes < 1: self.small_frames(row) else: self.intermediate_frames(row) self.modified_split.to_csv(os.path.join(self.output_path, self.video_name + '_split_times.csv'), index=False) def get_video_name_from_filepath(self, local_video_path): return local_video_path.split('/')[-1].split('.')[0] def detect_scenes(self, local_video_path): self.video_name = self.get_video_name_from_filepath(local_video_path) print("Video_name : ", self.video_name) self.generate_scenes(local_video_path) generated_csv = os.path.join(self.output_path, self.video_name + '.stats.csv') df = pd.read_csv(generated_csv,skiprows=1) video_len = df['Timecode'].max().split(':') video_len = int(video_len[0]*60) + int(video_len[1]) self.threshold = self.search_threshold(video_len, generated_csv) self.generate_scenes(local_video_path) self.get_optimal_splits(os.path.join(self.output_path, self.video_name + '-Scenes.csv')) def convert_str_to_datetime(self, str_time): """Converts string to datetime object""" obj = datetime.strptime(str_time, '%H:%M:%S.%f') time_object = timedelta(hours=obj.hour,minutes=obj.minute,seconds=obj.second,milliseconds=obj.microsecond/1e3) return time_object def search_threshold(self, length_of_video, local_file_path): """Returns threshold for generating better splits""" dataframe =
pd.read_csv(local_file_path, skiprows=1)
pandas.read_csv
#%% import sys import os #sys.path.append(os.getcwd() + '/connectome_tools/') os.chdir(os.path.dirname(os.getcwd())) # make directory one step up the current directory os.chdir(os.path.dirname(os.getcwd())) # make directory one step up the current directory sys.path.append('/Users/mwinding/repos/maggot_models') from pymaid_creds import url, name, password, token import pymaid import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd from src.data import load_metagraph from src.visualization import CLASS_COLOR_DICT, adjplot from src.traverse import Cascade, to_transmission_matrix from src.traverse import TraverseDispatcher from src.visualization import matrixplot rm = pymaid.CatmaidInstance(url, token, name, password) import connectome_tools.cascade_analysis as casc import connectome_tools.celltype as ct #mg = load_metagraph("Gad", version="2020-06-10", path = '/Volumes/GoogleDrive/My Drive/python_code/maggot_models/data/processed/') #mg.calculate_degrees(inplace=True) #adj = mg.adj # adjacency matrix from the "mg" object adj_ad = pd.read_csv(f'data/adj/all-neurons_ad.csv', index_col = 0).rename(columns=int) adj = adj_ad.values clusters = pd.read_csv('cascades/data/meta-method=color_iso-d=8-bic_ratio=0.95-min_split=32.csv', index_col = 0, header = 0) order = pd.read_csv('cascades/data/signal_flow_order_lvl7.csv').values # make array from list of lists order_delisted = [] for sublist in order: order_delisted.append(sublist[0]) order = np.array(order_delisted) #%% # pull sensory annotations and then pull associated skids order = ['ORN', 'AN sensories', 'MN sensories', 'photoreceptors', 'thermosensories', 'v\'td', 'A1 ascending noci', 'A1 ascending mechano', 'A1 ascending proprio', 'A1 ascending class II_III'] sens = [ct.Celltype(name, pymaid.get_skids_by_annotation(f'mw {name}')) for name in order] input_skids_list = [x.get_skids() for x in sens] input_skids = [val for sublist in input_skids_list for val in sublist] output_names = pymaid.get_annotated('mw brain outputs').name output_skids_list = list(map(pymaid.get_skids_by_annotation, pymaid.get_annotated('mw brain outputs').name)) output_skids = [val for sublist in output_skids_list for val in sublist] #%% # cascades from each sensory modality p = 0.05 max_hops = 10 n_init = 100 simultaneous = True adj=adj_ad input_hit_hist_list = casc.Cascade_Analyzer.run_cascades_parallel(source_skids_list=input_skids_list, stop_skids=output_skids, adj=adj_ad, p=p, max_hops=max_hops, n_init=n_init, simultaneous=simultaneous) # **** continue here when new clusters are available #%% # grouping cascade indices by cluster type # level 7 clusters lvl7 = clusters.groupby('lvl7_labels') # cluster order and number of neurons per cluster cluster_lvl7 = [] for key in lvl7.groups.keys(): cluster_lvl7.append([key, len(lvl7.groups[key])]) cluster_lvl7 = pd.DataFrame(cluster_lvl7, columns = ['key', 'num_cluster']) # breaking signal cascades into cluster groups input_hit_hist_lvl7 = [] for hit_hist in input_hit_hist_list: sensory_clustered_hist = [] for key in lvl7.groups.keys(): skids = lvl7.groups[key] indices = np.where([x in skids for x in mg.meta.index])[0] cluster_hist = hit_hist[indices] cluster_hist = pd.DataFrame(cluster_hist, index = indices) sensory_clustered_hist.append(cluster_hist) input_hit_hist_lvl7.append(sensory_clustered_hist) # summed signal cascades per cluster group (hops remain intact) summed_hist_lvl7 = [] for input_hit_hist in input_hit_hist_lvl7: sensory_sum_hist = [] for i, cluster in enumerate(input_hit_hist): sum_cluster = cluster.sum(axis = 0)/(len(cluster.index)) # normalize by number of neurons in cluster sensory_sum_hist.append(sum_cluster) sensory_sum_hist = pd.DataFrame(sensory_sum_hist) # column names will be hop number sensory_sum_hist.index = cluster_lvl7.key # uses cluster name for index of each summed cluster row summed_hist_lvl7.append(sensory_sum_hist) # number of neurons per cluster group over threshold (hops remain intact) threshold = 50 num_hist_lvl7 = [] for input_hit_hist in input_hit_hist_lvl7: sensory_num_hist = [] for i, cluster in enumerate(input_hit_hist): num_cluster = (cluster>threshold).sum(axis = 0) sensory_num_hist.append(num_cluster) sensory_num_hist =
pd.DataFrame(sensory_num_hist)
pandas.DataFrame
import biomart import sys import pandas as pd import numpy as np from biomart import BiomartServer #from cStringIO import StringIO # python2 from io import BytesIO as cStringIO from io import StringIO biomart_host="http://www.ensembl.org/biomart" def datasetsBM(host=biomart_host): """ Lists BioMart datasets. :param host: address of the host server, default='http://www.ensembl.org/biomart' :returns: nothing """ stdout_ = sys.stdout #Keep track of the previous value. stream = StringIO() sys.stdout = stream server = BiomartServer(biomart_host) server.show_datasets() sys.stdout = stdout_ # restore the previous stdout. variable = stream.getvalue() v=variable.replace("{"," ") v=v.replace("}"," ") v=v.replace(": ","\t") print(v) def filtersBM(dataset,host=biomart_host): """ Lists BioMart filters for a specific dataset. :param dataset: dataset to list filters of. :param host: address of the host server, default='http://www.ensembl.org/biomart' :returns: nothing """ stdout_ = sys.stdout #Keep track of the previous value. stream = StringIO() sys.stdout = stream server = BiomartServer(host) d=server.datasets[dataset] d.show_filters() sys.stdout = stdout_ # restore the previous stdout. variable = stream.getvalue() v=variable.replace("{"," ") v=v.replace("}"," ") v=v.replace(": ","\t") print(v) def attributesBM(dataset,host=biomart_host): """ Lists BioMart attributes for a specific dataset. :param dataset: dataset to list attributes of. :param host: address of the host server, default='http://www.ensembl.org/biomart' :returns: nothing """ stdout_ = sys.stdout #Keep track of the previous value. stream = StringIO() sys.stdout = stream server = BiomartServer(host) d=server.datasets[dataset] d.show_attributes() sys.stdout = stdout_ # restore the previous stdout. variable = stream.getvalue() v=variable.replace("{"," ") v=v.replace("}"," ") v=v.replace(": ","\t") print(v) def queryBM(query_attributes,query_dataset,query_filter=None,query_items=None,query_dic=None,host=biomart_host): """ Queries BioMart. :param query_attributes: list of attributes to recover from BioMart :param query_dataset: dataset to query :param query_filter: one BioMart filter associated with the items being queried :param query_items: list of items to be queried (must assoiate with given filter) :param query_dic: for complex queries this option should be used instead of 'filters' and 'items' and a dictionary of filters provided here eg. querydic={"filter1":["item1","item2"],"filter2":["item3","item4"]}. If using querydic, don't query more than 350 items at once. :param host: address of the host server, default='http://www.ensembl.org/biomart' :returns: a Pandas dataframe of the queried attributes """ server = BiomartServer(host) d=server.datasets[query_dataset] res=[] if not query_dic: if query_items: chunks=[query_items[x:x+350] for x in xrange(0, len(query_items), 350)] for c in chunks: response=d.search({'filters':{query_filter:c},'attributes':query_attributes}) for line in response.iter_lines(): line = line.decode('utf-8') res.append(line.split("\t")) else: response=d.search({'attributes':query_attributes}) for line in response.iter_lines(): line = line.decode('utf-8') res.append(line.split("\t")) elif query_dic: response=d.search({'filters':query_dic,'attributes':query_attributes}) for line in response.iter_lines(): line = line.decode('utf-8') res.append(line.split("\t")) res=
pd.DataFrame(res)
pandas.DataFrame
import numpy as np import pandas as pd from pandas import Categorical, DataFrame, Series, Timestamp, date_range import pandas._testing as tm class TestDataFrameDescribe: def test_describe_bool_in_mixed_frame(self): df = DataFrame( { "string_data": ["a", "b", "c", "d", "e"], "bool_data": [True, True, False, False, False], "int_data": [10, 20, 30, 40, 50], } ) # Integer data are included in .describe() output, # Boolean and string data are not. result = df.describe() expected = DataFrame( {"int_data": [5, 30, df.int_data.std(), 10, 20, 30, 40, 50]}, index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], ) tm.assert_frame_equal(result, expected) # Top value is a boolean value that is False result = df.describe(include=["bool"]) expected = DataFrame( {"bool_data": [5, 2, False, 3]}, index=["count", "unique", "top", "freq"] ) tm.assert_frame_equal(result, expected) def test_describe_empty_object(self): # GH#27183 df = pd.DataFrame({"A": [None, None]}, dtype=object) result = df.describe() expected = pd.DataFrame( {"A": [0, 0, np.nan, np.nan]}, dtype=object, index=["count", "unique", "top", "freq"], ) tm.assert_frame_equal(result, expected) result = df.iloc[:0].describe() tm.assert_frame_equal(result, expected) def test_describe_bool_frame(self): # GH#13891 df = pd.DataFrame( { "bool_data_1": [False, False, True, True], "bool_data_2": [False, True, True, True], } ) result = df.describe() expected = DataFrame( {"bool_data_1": [4, 2, True, 2], "bool_data_2": [4, 2, True, 3]}, index=["count", "unique", "top", "freq"], ) tm.assert_frame_equal(result, expected) df = pd.DataFrame( { "bool_data": [False, False, True, True, False], "int_data": [0, 1, 2, 3, 4], } ) result = df.describe() expected = DataFrame( {"int_data": [5, 2, df.int_data.std(), 0, 1, 2, 3, 4]}, index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], ) tm.assert_frame_equal(result, expected) df = pd.DataFrame( {"bool_data": [False, False, True, True], "str_data": ["a", "b", "c", "a"]} ) result = df.describe() expected = DataFrame( {"bool_data": [4, 2, True, 2], "str_data": [4, 3, "a", 2]}, index=["count", "unique", "top", "freq"], ) tm.assert_frame_equal(result, expected) def test_describe_categorical(self): df = DataFrame({"value": np.random.randint(0, 10000, 100)}) labels = [f"{i} - {i + 499}" for i in range(0, 10000, 500)] cat_labels = Categorical(labels, labels) df = df.sort_values(by=["value"], ascending=True) df["value_group"] = pd.cut( df.value, range(0, 10500, 500), right=False, labels=cat_labels ) cat = df # Categoricals should not show up together with numerical columns result = cat.describe() assert len(result.columns) == 1 # In a frame, describe() for the cat should be the same as for string # arrays (count, unique, top, freq) cat = Categorical( ["a", "b", "b", "b"], categories=["a", "b", "c"], ordered=True ) s = Series(cat) result = s.describe() expected = Series([4, 2, "b", 3], index=["count", "unique", "top", "freq"]) tm.assert_series_equal(result, expected) cat = Series(Categorical(["a", "b", "c", "c"])) df3 = DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]}) result = df3.describe() tm.assert_numpy_array_equal(result["cat"].values, result["s"].values) def test_describe_empty_categorical_column(self): # GH#26397 # Ensure the index of an an empty categorical DataFrame column # also contains (count, unique, top, freq) df = pd.DataFrame({"empty_col": Categorical([])}) result = df.describe() expected = DataFrame( {"empty_col": [0, 0, np.nan, np.nan]}, index=["count", "unique", "top", "freq"], dtype="object", ) tm.assert_frame_equal(result, expected) # ensure NaN, not None assert np.isnan(result.iloc[2, 0]) assert np.isnan(result.iloc[3, 0]) def test_describe_categorical_columns(self): # GH#11558 columns = pd.CategoricalIndex(["int1", "int2", "obj"], ordered=True, name="XXX") df = DataFrame( { "int1": [10, 20, 30, 40, 50], "int2": [10, 20, 30, 40, 50], "obj": ["A", 0, None, "X", 1], }, columns=columns, ) result = df.describe() exp_columns = pd.CategoricalIndex( ["int1", "int2"], categories=["int1", "int2", "obj"], ordered=True, name="XXX", ) expected = DataFrame( { "int1": [5, 30, df.int1.std(), 10, 20, 30, 40, 50], "int2": [5, 30, df.int2.std(), 10, 20, 30, 40, 50], }, index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], columns=exp_columns, ) tm.assert_frame_equal(result, expected) tm.assert_categorical_equal(result.columns.values, expected.columns.values) def test_describe_datetime_columns(self): columns = pd.DatetimeIndex( ["2011-01-01", "2011-02-01", "2011-03-01"], freq="MS", tz="US/Eastern", name="XXX", ) df = DataFrame( { 0: [10, 20, 30, 40, 50], 1: [10, 20, 30, 40, 50], 2: ["A", 0, None, "X", 1], } ) df.columns = columns result = df.describe() exp_columns = pd.DatetimeIndex( ["2011-01-01", "2011-02-01"], freq="MS", tz="US/Eastern", name="XXX" ) expected = DataFrame( { 0: [5, 30, df.iloc[:, 0].std(), 10, 20, 30, 40, 50], 1: [5, 30, df.iloc[:, 1].std(), 10, 20, 30, 40, 50], }, index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], ) expected.columns = exp_columns tm.assert_frame_equal(result, expected) assert result.columns.freq == "MS" assert result.columns.tz == expected.columns.tz def test_describe_timedelta_values(self): # GH#6145 t1 = pd.timedelta_range("1 days", freq="D", periods=5) t2 = pd.timedelta_range("1 hours", freq="H", periods=5) df = pd.DataFrame({"t1": t1, "t2": t2}) expected = DataFrame( { "t1": [ 5, pd.Timedelta("3 days"), df.iloc[:, 0].std(), pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Timedelta("3 days"), pd.Timedelta("4 days"), pd.Timedelta("5 days"), ], "t2": [ 5, pd.Timedelta("3 hours"), df.iloc[:, 1].std(), pd.Timedelta("1 hours"), pd.Timedelta("2 hours"), pd.Timedelta("3 hours"), pd.Timedelta("4 hours"), pd.Timedelta("5 hours"), ], }, index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], ) result = df.describe() tm.assert_frame_equal(result, expected) exp_repr = ( " t1 t2\n" "count 5 5\n" "mean 3 days 00:00:00 0 days 03:00:00\n" "std 1 days 13:56:50.394919 0 days 01:34:52.099788\n" "min 1 days 00:00:00 0 days 01:00:00\n" "25% 2 days 00:00:00 0 days 02:00:00\n" "50% 3 days 00:00:00 0 days 03:00:00\n" "75% 4 days 00:00:00 0 days 04:00:00\n" "max 5 days 00:00:00 0 days 05:00:00" ) assert repr(result) == exp_repr def test_describe_tz_values(self, tz_naive_fixture): # GH#21332 tz = tz_naive_fixture s1 = Series(range(5)) start = Timestamp(2018, 1, 1) end = Timestamp(2018, 1, 5) s2 = Series(date_range(start, end, tz=tz)) df =
pd.DataFrame({"s1": s1, "s2": s2})
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 import numpy as np import pytest from pandas.compat import lrange, range import pandas as pd from pandas import DataFrame, Index, Series import pandas.util.testing as tm from pandas.util.testing import assert_series_equal def test_get(): # GH 6383 s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54])) result = s.get(25, 0) expected = 0 assert result == expected s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54]), index=pd.Float64Index( [25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, 144.0, 169.0, 196.0, 1225.0, 1296.0, 1369.0, 1444.0, 1521.0, 1600.0, 1681.0, 1764.0, 1849.0, 1936.0], dtype='object')) result = s.get(25, 0) expected = 43 assert result == expected # GH 7407 # with a boolean accessor df = pd.DataFrame({'i': [0] * 3, 'b': [False] * 3}) vc = df.i.value_counts() result = vc.get(99, default='Missing') assert result == 'Missing' vc = df.b.value_counts() result = vc.get(False, default='Missing') assert result == 3 result = vc.get(True, default='Missing') assert result == 'Missing' def test_get_nan(): # GH 8569 s = pd.Float64Index(range(10)).to_series() assert s.get(np.nan) is None assert s.get(np.nan, default='Missing') == 'Missing' def test_get_nan_multiple(): # GH 8569 # ensure that fixing "test_get_nan" above hasn't broken get # with multiple elements s = pd.Float64Index(range(10)).to_series() idx = [2, 30] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert_series_equal(s.get(idx), Series([2, np.nan], index=idx)) idx = [2, np.nan] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert_series_equal(s.get(idx), Series([2, np.nan], index=idx)) # GH 17295 - all missing keys idx = [20, 30] assert(s.get(idx) is None) idx = [np.nan, np.nan] assert(s.get(idx) is None) def test_delitem(): # GH 5542 # should delete the item inplace s = Series(lrange(5)) del s[0] expected = Series(lrange(1, 5), index=
lrange(1, 5)
pandas.compat.lrange
#### # # The MIT License (MIT) # # Copyright 2017, 2018 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is furnished # to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # #### ''' Scripts to run the evaluation protocoll described in the retention order prediction section of the paper. ''' import numpy as np import scipy as sp import pandas as pd import itertools import time import csv import networkx as nx import os import re import copy ## my own classes, e.g. ranksvm, retention graph, etc ... from helper_cls import Timer, join_dicts, sample_perc_from_list, get_statistic_about_concordant_and_discordant_pairs from helper_cls import pairwise, is_sorted from rank_svm_cls import load_data, KernelRankSVC from svr_pairwise_cls import SVRPairwise # load my own kernels from rank_svm_cls import tanimoto_kernel, tanimoto_kernel_mat, minmax_kernel_mat, minmax_kernel # load functions for the pair generation from rank_svm_cls import get_pairs_single_system, get_pairs_multiple_systems # load function for the model selection from model_selection_cls import find_hparan_ranksvm, find_hparam_regression ## scikit-learn methods from sklearn.model_selection import ShuffleSplit, KFold, GroupKFold, GroupShuffleSplit, PredefinedSplit from sklearn.preprocessing import StandardScaler, MinMaxScaler, Normalizer, PolynomialFeatures from sklearn.metrics.pairwise import pairwise_kernels from sklearn.pipeline import Pipeline ## Data structures from pandas import DataFrame from collections import OrderedDict ## Allow the paralellization of the candidate graph construction from joblib import Parallel, delayed def evaluate_on_target_systems ( target_systems, training_systems, predictor, pair_params, kernel_params, opt_params, input_dir, estimator, feature_type, n_jobs = 1, perc_for_training = 100): """ Task: Evaluate rank-correlation, accuracy, etc. by learning an order predictor using the given set of training systems and prediction on the given set of target systems. For the evaluation we use either a repeated random-split of the target systems' data (if less than 75 examples are provided for test) or a cross-validation (else). The hyper-paramters of the order predictor are optimized using a nested cross-validation. The routines for that can be found in the file 'model_selection_cls.py'. If desired (excl_mol_by_struct_only == True), the molecular structures from the test set are removed from the training based on their molecular structure, e.g. by comparison of their InChIs, _even_ if these structures have been measured with another than the target system, i.e., another chromatographic system. See also the paper for details on the evaluation strategy. :param target_systems: list of strings, containing the target systems :param training_systems: list of strings, containing the training systems :param predictor: list of string, containing the predictors / molecular features used for the model construction. :param pair_params: dictionary, containing the paramters used for the creation of the RankSVM learning pairs, e.g. minimum and maximum oder distance. :param kernel_params: dictionary, containing the parameters for the kernels and generally for handling the input features / predictors. See definition of the dictionary in the __main__ of file 'evaluation_scenario_cls.py'. :param opt_params: dictionary, containing the paramters controlling the hyper-paramter optimization, number of cross-validation splits, etc. See definition of the dictionary in the __main__ of file 'evaluation_scenario_cls.py'. :param input_dir: string, directory containing the input data, e.g., fingerprints and retention times. :param estimator: string, order predictor to use: either "ranksvm" or "svr". :param feature_type: string, feature type that is used for the RankSVM. Currently only 'difference' features are supported, i.e., \phi_j - \phi_i is used for the decision. If the estimator is not RankSVM, but e.g. Support Vector Regression, than tis parameter can be set to None and is ignored. :param n_jobs: integer, number of jobs used for the hyper-parameter estimation. The maximum number of used jobs, is the number of inner splits (cross-validation or random split)! :param perc_for_training: scalar, percentage of the target systems data, that is used for the training, e.g., selected by simple random sub-sampling. This value only effects the training process, of the target system is in the set of training systems. :return: tuple of pandas.DataFrame 1) mapped_values: predicted order scores for each target system - corresponds to: w^\phi_i in the RankSVM case - corresponds to: the predicted retention time, in the SVR case 2) correlations: rank correlations of the order scores for each target system 3) accuracies: pairwise prediction accuracies for each target system 4) simple_statistics: number of training and test examples, etc. 5) grid_search_results: hyper-parameter scores for the different grid-parameters 6) grid_search_best_params: hyper-parameter scores for the best grid-parameters NOTE: The returned results (except mapped_values and grid search results) are averages across the different random splits / crossvalidation folds and repetitions. """ # Variables related to the number of random / cv splits, for inner (*_cv) # and outer fold (*_ncv). n_splits_shuffle = opt_params["n_splits_shuffle"] n_splits_nshuffle = opt_params["n_splits_nshuffle"] n_splits_cv = opt_params["n_splits_cv"] n_splits_ncv = opt_params["n_splits_ncv"] n_rep = opt_params["n_rep"] # Should molecules be excluded from the training, if their structure appears # in the test _even if_ they have been measured with another system than the # (current) target system: excl_mol_by_struct_only = opt_params["excl_mol_by_struct_only"] # Currently only 'slack_type == "on_pairs"' is supported. slack_type = opt_params["slack_type"] if slack_type != "on_pairs": raise ValueError ("Invalid slack type: %s" % slack_type) # Should all possible pairs be used for the (inner) test split during the # parameter estimation, regardless of what are the settings for 'd_upper' # and 'd_lower'? all_pairs_for_test = opt_params["all_pairs_for_test"] if not estimator in ["ranksvm", "svr"]: raise ValueError ("Invalid estimator: %s" % estimator) # RankSVM and SVR regularization parameter param_grid = {"C": opt_params["C"]} if estimator == "svr": # error-tube width of the SVR param_grid["epsilon"] = opt_params["epsilon"] # Molecule kernel if kernel_params["kernel"] == "linear": kernel = "linear" elif kernel_params["kernel"] in ["rbf", "gaussian"]: param_grid["gamma"] = kernel_params["gamma"] kernel = "rbf" elif kernel_params["kernel"] == "tanimoto": if estimator in ["ranksvm"]: kernel = tanimoto_kernel elif estimator in ["svr"]: kernel = tanimoto_kernel_mat elif kernel_params["kernel"] == "minmax": if estimator in ["ranksvm"]: kernel = minmax_kernel elif estimator in ["svr"]: kernel = minmax_kernel_mat else: raise ValueError ("Invalid kernel: %s." % kernel_params["kernel"]) if isinstance (target_systems, str): target_systems = [target_systems] if isinstance (training_systems, str): training_systems = [training_systems] all_systems = list (set (target_systems).union (training_systems)) assert isinstance (target_systems, list) and isinstance (training_systems, list) n_target_systems = len (target_systems) n_training_systems = len (training_systems) print ("Target systems (# = %d): %s" % (n_target_systems, ",".join (target_systems))) print ("Training systems (# = %d): %s" % (n_training_systems, ",".join (training_systems))) ## Load the target and training systems into directories using (molecule, system)-keys ## and retention times respectively molecular features as values # If we use molecular descriptors, we need to scale the data, e.g. to [0, 1]. if kernel_params["scaler"] == "noscaling": scaler = None elif kernel_params["scaler"] == "minmax": scaler = MinMaxScaler() elif kernel_params["scaler"] == "std": scaler = StandardScaler() elif kernel_params["scaler"] == "l2norm": scaler = Normalizer() else: raise ValueError ("Invalid scaler for the molecular features: %s" % kernel_params["scaler"]) # Handle counting MACCS fingerprints if predictor[0] == "maccsCount_f2dcf0b3": predictor_c = ["maccs"] predictor_fn = "fps_maccs_count.csv" else: predictor_c = predictor predictor_fn = None d_rts, d_features, d_system_index = OrderedDict(), OrderedDict(), OrderedDict() for k_sys, system in enumerate (all_systems): rts, data = load_data (input_dir, system = system, predictor = predictor_c, pred_fn = predictor_fn) # Use (mol-id, system)-tupel as key keys = list (zip (rts.inchi.values, [system] * rts.shape[0])) # Values: retention time, features rts = rts.rt.values.reshape (-1, 1) data = data.drop ("inchi", axis = 1).values if kernel_params["poly_feature_exp"]: # If we use binary fingerprints, we can include some # interactions, e.g. x_1x_2, ... data = PolynomialFeatures (interaction_only = True, include_bias = False).fit_transform (data) # Make ordered directories d_rts[system], d_features[system] = OrderedDict(), OrderedDict() for i, key in enumerate (keys): d_rts[system][key] = rts[i, 0] d_features[system][key] = data[i, :] # Dictionary containing a unique numeric identifier for each system d_system_index[system] = k_sys if scaler is not None: if getattr (scaler, "partial_fit", None) is not None: # 'partial_fit' allows us to learn the parameters of the scaler # online. (great stuff :)) scaler.partial_fit (data) else: # We have scaler at hand, that does not allow online fitting. # This probably means, that this is a scaler, that performs # the desired scaling for each example independently, e.g. # sklearn.preprocessing.Normalizer. pass for system in target_systems: print ("Target set '%s' contains %d examples." % (system, len (d_rts[system]))) # Collect all the data that is available for training. d_rts_training = join_dicts (d_rts, training_systems) d_features_training = join_dicts (d_features, training_systems) # (mol-id, system)-tuples used in the training set l_keys_training = list (d_features_training.keys()) # Data frames storing the evaluation measures mapped_values = {target_system : DataFrame() for target_system in target_systems} accuracies, correlations, simple_statistics= DataFrame(), DataFrame(), DataFrame() grid_search_results, grid_search_best_params = DataFrame(),
DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- r"""Module to create and manage an ensemble of models. The method of the :mod:`~.ensemble` submodule are designed to generate an ensemble of models. It contains various methods to assist in generating multiple models from existing :class:`~.MassModel`\ s, using flux data or concentration data in :class:`pandas.DataFrame`\ s (e.g. generated from :mod:`~mass.thermo.conc_sampling`). There are also methods to help ensure that models are thermodynamically feasible and can reach steady states with or without perturbations applied. In addition to containing various methods that can be combined into an ensemble generation workflow, the :mod:`~.ensemble` submodule contains the :func:`generate_ensemble_of_models` function, which is optimized for performance when generating a large number of models. The :func:`generate_ensemble_of_models` function also ensures that the user input is valid before generating models to reduce the likelihood of a user error causing the model generation process to stop before completion. However, there is time spent in function's setup, meaining that when generating a smaller number of models, performance gains may not be seen. """ import logging import warnings import numpy as np import pandas as pd from six import iteritems, string_types from mass.core.mass_model import MassModel from mass.exceptions import MassEnsembleError from mass.simulation.simulation import ( STEADY_STATE_SOLVERS, Simulation, _get_sim_values_from_model, ) from mass.util.util import _check_kwargs, _log_msg, _make_logger, ensure_iterable # Set the logger LOGGER = _make_logger(__name__) """logging.Logger: Logger for :mod:`~mass.thermo.ensemble` submodule.""" def create_models_from_flux_data( reference_model, data=None, raise_error=False, **kwargs ): """Generate ensemble of models for a given set of flux data. Parameters ---------- reference_model : iterable, None A :class:`.MassModel` object to treat as the reference model. data : pandas.DataFrame A :class:`pandas.DataFrame` containing the flux data for generation of the models. Each row is a different set of flux values to generate a model for, and each column corresponds to the reaction identifier for the flux value. raise_error : bool Whether to raise an error upon failing to generate a model from a given reference. Default is ``False``. **kwargs verbose : ``bool`` indicating the verbosity of the function. Default is ``False``. suffix : ``str`` representing the suffix to append to generated models. Default is ``'_F'``. Returns ------- new_models : list A ``list`` of successfully generated :class:`.MassModel` objects. Raises ------ MassEnsembleError Raised if generation of a model fails and ``raise_error=True``. """ kwargs = _check_kwargs( { "verbose": False, "suffix": "_F", }, kwargs, ) if not isinstance(reference_model, MassModel): raise TypeError("`reference_model` must be a MassModel") data, id_array = _validate_data_input( reference_model, data, "reactions", kwargs.get("verbose") ) new_models = [] for i, values in enumerate(data.values): # Create new model new_model = reference_model.copy() new_model.id += kwargs.get("suffix") + str(i) try: _log_msg( LOGGER, logging.INFO, kwargs.get("verbose"), "New model '%s' created", new_model.id, ) # Update the model parameters new_model.update_parameters(dict(zip(id_array, values)), verbose=False) _log_msg( LOGGER, logging.INFO, kwargs.get("verbose"), "Updated flux values for '%s'", new_model.id, ) # Add model to the ensemble new_models.append(new_model) except Exception as e: msg = str( "Could not create '{0}' for the ensemble due to the " "following error: {1!r}".format(new_model.id, str(e)) ) if raise_error: raise MassEnsembleError(msg) _log_msg(LOGGER, logging.ERROR, kwargs.get("verbose"), msg) return new_models def create_models_from_concentration_data( reference_model, data=None, raise_error=False, **kwargs ): """Generate ensemble of models for a given set of concentration data. Parameters ---------- reference_model : iterable, None A :class:`.MassModel` object to treat as the reference model. data : pandas.DataFrame A :class:`pandas.DataFrame` containing the concentration data for generation of the models. Each row is a different set of concentration values to generate a model for, and each column corresponds to the metabolite identifier for the concentraiton value. raise_error : bool Whether to raise an error upon failing to generate a model from a given reference. Default is ``False``. **kwargs verbose : ``bool`` indicating the verbosity of the function. Default is ``False``. suffix : ``str`` representing the suffix to append to generated models. Default is ``'_C'``. Returns ------- new_models : list A ``list`` of successfully generated :class:`.MassModel` objects. Raises ------ MassEnsembleError Raised if generation of a model fails and ``raise_error=True``. """ kwargs = _check_kwargs( { "verbose": False, "suffix": "_C", }, kwargs, ) if not isinstance(reference_model, MassModel): raise TypeError("`reference_model` must be a MassModel") data, id_array = _validate_data_input( reference_model, data, "metabolites", kwargs.get("verbose") ) new_models = [] for i, values in enumerate(data.values): # Create new model new_model = reference_model.copy() new_model.id += kwargs.get("suffix") + str(i) try: _log_msg( LOGGER, logging.INFO, kwargs.get("verbose"), "New model '%s' created", new_model.id, ) # Update the model parameters new_model.update_initial_conditions( dict(zip(id_array, values)), verbose=False ) _log_msg( LOGGER, logging.INFO, kwargs.get("verbose"), "Updated initial conditions for '%s'", new_model.id, ) # Add model to the ensemble new_models.append(new_model) except Exception as e: msg = str( "Could not create '{0}' for the ensemble due to the " "following error: {1!r}".format(new_model.id, str(e)) ) if raise_error: raise MassEnsembleError(msg) _log_msg(LOGGER, logging.ERROR, kwargs.get("verbose"), msg) return new_models def ensure_positive_percs( models, reactions=None, raise_error=False, update_values=False, **kwargs ): """Seperate models based on whether all calculated PERCs are positive. Parameters ---------- models : iterable An iterable of :class:`.MassModel` objects to use for PERC calculations. reactions : iterable An iterable of reaction identifiers to calculate the PERCs for. If ``None``, all reactions in the model will be used. raise_error : bool Whether to raise an error upon failing to generate a model from a given reference. Default is ``False``. update_values : bool Whether to update the PERC values for models that generate all positive PERCs. Default is ``False``. **kwargs verbose : ``bool`` indicating the verbosity of the function. Default is ``False``. at_equilibrium_default : ``float`` value to set the pseudo-order rate constant if the reaction is at equilibrium. Default is ``100,000``. Returns ------- tuple (positive, negative) positive : list A ``list`` of :class:`.MassModel` objects whose calculated PERC values were postiive. negative : list A ``list`` of :class:`.MassModel` objects whose calculated PERC values were negative. Raises ------ MassEnsembleError Raised if PERC calculation fails and ``raise_error=True``. """ kwargs = _check_kwargs( { "verbose": False, "at_equilibrium_default": 100000, }, kwargs, ) positive = [] negative = [] models = ensure_iterable(models) if any([not isinstance(model, MassModel) for model in models]): raise TypeError("`models` must be an iterable of MassModels.") for model in models: model, is_positive = _ensure_positive_percs_for_model( model, reactions, kwargs.get("verbose"), raise_error, update_values, kwargs.get("at_equilibrium_default"), ) if is_positive: positive.append(model) else: negative.append(model) _log_msg( LOGGER, logging.INFO, kwargs.get("verbose"), "Finished PERC calculations, returning seperated models.", ) return positive, negative def ensure_steady_state( models, strategy="simulate", perturbations=None, solver_options=None, update_values=False, **kwargs ): """Seperate models based on whether a steady state can be reached. All ``kwargs`` are passed to :meth:`~.Simulation.find_steady_state`. Parameters ---------- models : MassModel, iterable A :class:`.MassModel` or an iterable of :class:`.MassModel` objects to find a steady state for. strategy : str The strategy for finding the steady state. Must be one of the following: * ``'simulate'`` * ``'nleq1'`` * ``'nleq2'`` perturbations : dict A ``dict`` of perturbations to incorporate into the simulation. Models must reach a steady state with the given pertubration to be considered as feasible. See :mod:`~.simulation.simulation` documentation for more information on valid perturbations. solver_options : dict A `dict` of options to pass to the solver utilized in determining a steady state. Solver options should be for the :class:`roadrunner.Integrator` if ``strategy="simulate"``, otherwise options should correspond to the :class:`roadrunner.SteadyStateSolver`. update_values : bool Whether to update the model with the steady state results. Default is ``False``. Only updates models that reached steady state. **kwargs verbose : ``bool`` indicating the verbosity of the method. Default is ``False``. steps : ``int`` indicating number of steps at which the output is sampled where the samples are evenly spaced and ``steps = (number of time points) - 1.`` Steps and number of time points may not both be specified. Only valid for ``strategy='simulate'``. Default is ``None``. tfinal : ``float`` indicating the final time point to use in when simulating to long times to find a steady state. Only valid for ``strategy='simulate'``. Default is ``1e8``. num_attempts : ``int`` indicating the number of attempts the steady state solver should make before determining that a steady state cannot be found. Only valid for ``strategy='nleq1'`` or ``strategy='nleq2'``. Default is ``2``. decimal_precision : ``bool`` indicating whether to apply the :attr:`~.MassBaseConfiguration.decimal_precision` attribute of the :class:`.MassConfiguration` to the solution values. Default is ``False``. Returns ------- tuple (feasible, infeasible) feasible : list A ``list`` of :class:`.MassModel` objects that could successfully reach a steady state. infeasible : list A ``list`` of :class:`.MassModel` objects that could not successfully reach a steady state. """ kwargs = _check_kwargs( { "verbose": False, "steps": None, "tfinal": 1e8, "num_attempts": 2, "decimal_precision": True, }, kwargs, ) models = ensure_iterable(models) if any([not isinstance(model, MassModel) for model in models]): raise TypeError("`models` must be an iterable of MassModels.") # Ensure strategy input is valid if strategy not in STEADY_STATE_SOLVERS and strategy != "simulate": raise ValueError("Invalid steady state strategy: '{0}'".format(strategy)) simulation = _initialize_simulation( models[0], strategy, solver_options, kwargs.get("verbose") ) if len(models) > 1: simulation.add_models(models[1:], verbose=kwargs.get("verbose")) conc_sol_list, flux_sol_list = simulation.find_steady_state( models, strategy, perturbations, update_values, **kwargs ) feasible = [] infeasible = [] for i, model in enumerate(models): if len(models) == 1: conc_sol, flux_sol = conc_sol_list, flux_sol_list else: conc_sol, flux_sol = conc_sol_list[i], flux_sol_list[i] if conc_sol and flux_sol: ics, params = simulation.get_model_simulation_values(model) model.update_initial_conditions(ics) model.update_parameters( { param: value for param, value in params.items() if param in model.reactions.list_attr("flux_symbol_str") } ) feasible.append(model) else: infeasible.append(model) _log_msg( LOGGER, logging.INFO, kwargs.get("verbose"), "Finished finding steady states, returning seperated models.", ) return feasible, infeasible def generate_ensemble_of_models( reference_model, flux_data=None, conc_data=None, ensure_positive_percs=None, strategy=None, perturbations=None, **kwargs ): """Generate an ensemble of models for given data sets. This function is optimized for performance when generating a large ensemble of models when compared to the combination of various individual methods of the :mod:`ensemble` submodule used. However, this function may not provide as much control over the process when compared to utilizing a combination of other methods defined in the :mod:`ensemble` submodule. Notes ----- * Only one data set is required to generate the ensemble, meaning that a flux data set can be given without a concentration data set, and vice versa. * If ``x`` flux data samples and ``y`` concentration data samples are provided, ``x * y`` total models will be generated. * If models deemed ``infeasible`` are to be returned, ensure the ``return_infeasible`` kwarg is set to ``True``. Parameters ---------- reference_model : MassModel The reference model used in generating the ensemble. flux_data : pandas.DataFrame or None A :class:`pandas.DataFrame` containing the flux data for generation of the models. Each row is a different set of flux values to generate a model for, and each column corresponds to the reaction identifier for the flux value. conc_data : pandas.DataFrame or None A :class:`pandas.DataFrame` containing the concentration data for generation of the models. Each row is a different set of concentration values to generate a model for, and each column corresponds to the metabolite identifier for the concentraiton value. ensure_positive_percs : A ``list`` of reactions to calculate PERCs for, ensure they are postive, and update feasible models with the new PERC values. If ``None``, no PERCs will be checked. strategy : str, None The strategy for finding the steady state. Must be one of the following: * ``'simulate'`` * ``'nleq1'`` * ``'nleq2'`` If a ``strategy`` is given, models must reach a steady state to be considered feasible. All feasible models are updated to steady state. If ``None``, no attempts will be made to determine whether a generated model can reach a steady state. perturbations : dict A ``dict`` of perturbations to incorporate into the simulation, or a list of perturbation dictionaries where each ``dict`` is applied to a simulation. Models must reach a steady state with all given pertubration dictionaries to be considered feasible. See :mod:`~.simulation.simulation` documentation for more information on valid perturbations. Ignored if ``strategy=None``. **kwargs solver_options : ``dict`` of options to pass to the solver utilized in determining a steady state. Solver options should be for the :class:`roadrunner.Integrator` if ``strategy="simulate"``, otherwise options should correspond to the :class:`roadrunner.SteadyStateSolver`. Default is ``None``. verbose : ``bool`` indicating the verbosity of the function. Default is ``False``. decimal_precision : ``bool`` indicating whether to apply the :attr:`~.MassBaseConfiguration.decimal_precision` attribute of the :class:`.MassConfiguration` to the solution values. Default is ``False``. flux_suffix : ``str`` representing the suffix to append to generated models indicating the flux data set used. Default is ``'_F'``. conc_suffix : ``str`` representing the suffix to append to generated models indicating the conc data set used. Default is ``'_C'``. at_equilibrium_default : ``float`` value to set the pseudo-order rate constant if the reaction is at equilibrium. Default is ``100,000``. Ignored if ``ensure_positive_percs=None``. return_infeasible : ``bool`` indicating whether to generate and return an :class:`Ensemble` containing the models deemed infeasible. Default is ``False``. Returns ------- feasible : list A ``list`` containing the `MassModel` objects that are deemed `feasible` by sucessfully passing through all PERC and simulation checks in the ensemble building processes. infeasible : list A ``list`` containing the `MassModel` objects that are deemed `infeasible` by failing to passing through one of the PERC or simulation checks in the ensemble building processes. """ # Check all inputs at beginning to ensure that ensemble generation is not # disrupted near the end due to invalid input format kwargs = _check_kwargs( { "verbose": False, "decimal_precision": False, "flux_suffix": "_F", "conc_suffix": "_C", "at_equilibrium_default": 100000, "solver_options": None, "return_infeasible": False, }, kwargs, ) verbose = kwargs.pop("verbose") _log_msg(LOGGER, logging.INFO, verbose, "Validating input") # Validate model input if not isinstance(reference_model, MassModel): raise TypeError("`reference_model` must be a MassModel.") # Validate DataFrame inputs, if any if flux_data is not None: # Validate flux data if provided flux_data, flux_ids = _validate_data_input( reference_model, flux_data, "reactions", verbose ) else: # Set a value to allow for iteration flux_data = pd.DataFrame([0]) flux_ids = np.array([]) if conc_data is not None: # Validate conc data if provided conc_data, conc_ids = _validate_data_input( reference_model, conc_data, "metabolites", verbose ) else: # Set a value to allow for iteration conc_data =
pd.DataFrame([0])
pandas.DataFrame
from itertools import chain from operator import itemgetter from typing import Iterator from typing import Tuple from numpy import nansum from pandas import DataFrame from pandas import Series from pandas import pivot_table from .model import Sales from .model import to_array from .. import create_table from .. import with_change bacon_cuts = ('Derind Belly 7-9#', 'Derind Belly 9-13#', 'Derind Belly 13-17#', 'Derind Belly 17-19#') report_columns = { 'lm_pk610': 'Negotiated', 'lm_pk620': 'Formula' } def fresh_bacon(sales: Sales) -> bool: return sales.description in bacon_cuts def format_column(column: Tuple[str, str]) -> str: value, report = column return f"{report_columns[report]} {value.capitalize()}" def format_columns(table: DataFrame) -> DataFrame: table.columns = map(format_column, table.columns) return table def format_table(weight: Series, value: Series) -> DataFrame: values = pivot_table(create_table(weight, value), index=['date', 'report'], aggfunc=nansum) price = (values.value / values.weight).rename('price') table = create_table(values.weight, price).unstack() return table[sorted(table.columns, key=itemgetter(1, 0))] def bacon_index_report(negotiated: Iterator[Sales], formula: Iterator[Sales]) -> DataFrame: records = to_array(filter(fresh_bacon, chain(negotiated, formula))) columns = ['date', 'report', 'avg_price', 'weight'] bacon =
DataFrame.from_records(records, columns=columns)
pandas.DataFrame.from_records
from __future__ import print_function import six import unittest from unittest import mock import pandas as pd from dataprofiler.profilers import column_profile_compilers as \ col_pro_compilers from dataprofiler.profilers.profiler_options import BaseOption, StructuredOptions class TestBaseProfileCompilerClass(unittest.TestCase): def test_cannot_instantiate(self): """showing we normally can't instantiate an abstract class""" with self.assertRaises(TypeError) as e: col_pro_compilers.BaseCompiler() self.assertEqual( "Can't instantiate abstract class BaseCompiler with " "abstract methods profile", str(e.exception) ) @mock.patch.multiple( col_pro_compilers.BaseCompiler, __abstractmethods__=set(), _profilers=[mock.Mock()], _option_class=mock.Mock(spec=BaseOption)) @mock.patch.multiple( col_pro_compilers.ColumnStatsProfileCompiler, _profilers=[mock.Mock()]) def test_add_profilers(self): compiler1 = col_pro_compilers.BaseCompiler(mock.Mock()) compiler2 = col_pro_compilers.BaseCompiler(mock.Mock()) # test incorrect type with self.assertRaisesRegex(TypeError, '`BaseCompiler` and `int` are ' 'not of the same profile compiler type.'): compiler1 + 3 compiler3 = col_pro_compilers.ColumnStatsProfileCompiler(mock.Mock()) compiler3._profiles = [mock.Mock()] with self.assertRaisesRegex(TypeError, '`BaseCompiler` and ' '`ColumnStatsProfileCompiler` are ' 'not of the same profile compiler type.'): compiler1 + compiler3 # test mismatched names compiler1.name = 'compiler1' compiler2.name = 'compiler2' with self.assertRaisesRegex(ValueError, 'Column profile names are unmatched: ' 'compiler1 != compiler2'): compiler1 + compiler2 # test mismatched profiles due to options compiler2.name = 'compiler1' compiler1._profiles = dict(test1=mock.Mock()) compiler2._profiles = dict(test2=mock.Mock()) with self.assertRaisesRegex(ValueError, 'Column profilers were not setup with the ' 'same options, hence they do not calculate ' 'the same profiles and cannot be added ' 'together.'): compiler1 + compiler2 # test success compiler1._profiles = dict(test=1) compiler2._profiles = dict(test=2) merged_compiler = compiler1 + compiler2 self.assertEqual(3, merged_compiler._profiles['test']) self.assertEqual('compiler1', merged_compiler.name) def test_diff_primitive_compilers(self): # Test different data types data1 = pd.Series(['-2', '-1', '1', '2']) data2 = pd.Series(["YO YO YO", "HELLO"]) compiler1 = col_pro_compilers.ColumnPrimitiveTypeProfileCompiler(data1) compiler2 = col_pro_compilers.ColumnPrimitiveTypeProfileCompiler(data2) expected_diff = { 'data_type_representation': { 'datetime': 'unchanged', 'int': 1.0, 'float': 1.0, 'text': 'unchanged' }, 'data_type': ['int', 'text'] } self.assertDictEqual(expected_diff, compiler1.diff(compiler2)) # Test different data types with datetime specifically data1 = pd.Series(['-2', '-1', '1', '2']) data2 = pd.Series(["01/12/1967", "11/9/2024"]) compiler1 = col_pro_compilers.ColumnPrimitiveTypeProfileCompiler(data1) compiler2 = col_pro_compilers.ColumnPrimitiveTypeProfileCompiler(data2) expected_diff = { 'data_type_representation': { 'datetime': -1.0, 'int': 1.0, 'float': 1.0, 'text': 'unchanged' }, 'data_type': ['int', 'datetime'] } self.assertDictEqual(expected_diff, compiler1.diff(compiler2)) # Test same data types data1 =
pd.Series(['-2', '15', '1', '2'])
pandas.Series
from pathlib import Path import numpy as np import pandas as pd import geopandas as gp import pygeos as pg from analysis.constants import ACRES_PRECISION, M2_ACRES, INPUTS, INPUT_AREA_VALUES from analysis.lib.pygeos_util import intersection, sjoin_geometry, explode chat_dir = Path("data/inputs/indicators/chat") out_dir = Path("data/results/huc12") input_filename = "data/inputs/boundaries/input_areas.feather" def get_chat_input_values(state): return [ e["value"] for e in INPUT_AREA_VALUES if f"{state}chat" in set(e["id"].split(",")) ] def get_analysis_notes(): return """Note: areas are based on the polygon boundary of this area compared to watershed boundaries rather than pixel-level analyses used elsewhere in this report.""" def summarize_by_areas(df, state, rank_only=False): """Calculate acres by value and area-weighted value for each CHAT field in fields. Parameters ---------- df : GeoDataFrame area(s) of interest state : str, one of ['ok', 'tx'] rank_only : bool (default False) if True, will only calculate areas for CHAT Rank Returns ------- DataFrame columns for total_acres, analysis_acrs, chat_acres, and avg (bare) and _x suffixed fields for each field """ if not df.index.name: df.index.name = "index" index_name = df.index.name df = df.reset_index() chat_df = gp.read_feather(chat_dir / f"{state}chat.feather") fields = ["chatrank"] if not rank_only: fields += [e["id"] for e in INPUTS[f"{state}chat"]["indicators"]] print("Intersecting with CHAT...") chat_df = intersection(df, chat_df) chat_df["acres"] = pg.area(chat_df.geometry_right.values.data) * M2_ACRES chat_df = chat_df.loc[chat_df.acres > 0].copy() if not len(chat_df): return None # total_acres = chat_df.groupby(index_name).geometry.first() total_acres = df.loc[df[index_name].isin(chat_df[index_name])].set_index(index_name) total_acres["total_acres"] = pg.area(total_acres.geometry.values.data) * M2_ACRES results = pd.DataFrame( chat_df.groupby(index_name).acres.sum().rename("chat_acres") ).join(total_acres[["total_acres"]], how="left") # intersect edge units with SE input areas to determine areas outside edge_df = explode( df.loc[ df[index_name].isin( results.loc[(results.chat_acres < results.total_acres - 1)].index ) ].copy()[[index_name, "geometry"]] ) print("Intersecting with input areas, this may take a while...") input_df = gp.read_feather(input_filename).reset_index(drop=True) # this is inverted because input_df performs better if prepared (left side) # note: we don't do intersection() here because of topology errors left = pd.Series(input_df.geometry.values.data, index=input_df.index) right =
pd.Series(edge_df.geometry.values.data, index=edge_df.index)
pandas.Series
"""test_algo_api.py module.""" # from datetime import datetime, timedelta import pytest # import sys # from pathlib import Path import numpy as np import pandas as pd # type: ignore import string import math from typing import Any, List, NamedTuple # from typing_extensions import Final from ibapi.tag_value import TagValue # type: ignore from ibapi.contract import ComboLeg # type: ignore from ibapi.contract import DeltaNeutralContract from ibapi.contract import Contract, ContractDetails from scottbrian_algo1.algo_api import AlgoApp, AlreadyConnected, \ DisconnectLockHeld, ConnectTimeout, RequestTimeout, DisconnectDuringRequest from scottbrian_algo1.algo_maps import get_contract_dict, get_contract_obj from scottbrian_algo1.algo_maps import get_contract_details_obj # from scottbrian_utils.diag_msg import diag_msg # from scottbrian_utils.file_catalog import FileCatalog import logging logger = logging.getLogger(__name__) ############################################################################### # TestAlgoAppConnect class ############################################################################### class TestAlgoAppConnect: """TestAlgoAppConnect class.""" def test_mock_connect_to_ib(self, algo_app: "AlgoApp" ) -> None: """Test connecting to IB. Args: algo_app: pytest fixture instance of AlgoApp (see conftest.py) """ verify_algo_app_initialized(algo_app) # we are testing connect_to_ib and the subsequent code that gets # control as a result, such as getting the first requestID and then # starting a separate thread for the run loop. logger.debug("about to connect") algo_app.connect_to_ib("127.0.0.1", algo_app.PORT_FOR_LIVE_TRADING, client_id=0) # verify that algo_app is connected and alive with a valid reqId verify_algo_app_connected(algo_app) algo_app.disconnect_from_ib() verify_algo_app_disconnected(algo_app) def test_mock_connect_to_ib_with_timeout(self, algo_app: "AlgoApp", mock_ib: Any ) -> None: """Test connecting to IB. Args: algo_app: pytest fixture instance of AlgoApp (see conftest.py) mock_ib: pytest fixture of contract_descriptions """ verify_algo_app_initialized(algo_app) # we are testing connect_to_ib with a simulated timeout logger.debug("about to connect") with pytest.raises(ConnectTimeout): algo_app.connect_to_ib("127.0.0.1", mock_ib.PORT_FOR_REQID_TIMEOUT, client_id=0) # verify that algo_app is not connected verify_algo_app_disconnected(algo_app) assert algo_app.request_id == 0 def test_connect_to_ib_already_connected(self, algo_app: "AlgoApp", mock_ib: Any ) -> None: """Test connecting to IB. Args: algo_app: pytest fixture instance of AlgoApp (see conftest.py) mock_ib: pytest fixture of contract_descriptions """ verify_algo_app_initialized(algo_app) # first, connect normally to mock_ib logger.debug("about to connect") algo_app.connect_to_ib("127.0.0.1", algo_app.PORT_FOR_PAPER_TRADING, client_id=0) # verify that algo_app is connected verify_algo_app_connected(algo_app) # try to connect again - should get error with pytest.raises(AlreadyConnected): algo_app.connect_to_ib("127.0.0.1", algo_app.PORT_FOR_PAPER_TRADING, client_id=0) # verify that algo_app is still connected and alive with a valid reqId verify_algo_app_connected(algo_app) algo_app.disconnect_from_ib() verify_algo_app_disconnected(algo_app) def test_connect_to_ib_with_lock_held(self, algo_app: "AlgoApp", mock_ib: Any ) -> None: """Test connecting to IB with disconnect lock held. Args: algo_app: pytest fixture instance of AlgoApp (see conftest.py) mock_ib: pytest fixture of contract_descriptions """ verify_algo_app_initialized(algo_app) # obtain the disconnect lock logger.debug("about to obtain disconnect lock") algo_app.disconnect_lock.acquire() # try to connect - should get error with pytest.raises(DisconnectLockHeld): algo_app.connect_to_ib("127.0.0.1", algo_app.PORT_FOR_LIVE_TRADING, client_id=0) # verify that algo_app is still simply initialized verify_algo_app_initialized(algo_app) # def test_real_connect_to_IB(self) -> None: # """Test connecting to IB. # # Args: # algo_app: instance of AlgoApp from conftest pytest fixture # monkeypatch: pytest fixture # # """ # proj_dir = Path.cwd().resolve().parents[1] # back two directories # test_cat = \ # FileCatalog({'symbols': Path(proj_dir / 't_datasets/symbols.csv') # }) # algo_app = AlgoApp(test_cat) # verify_algo_app_initialized(algo_app) # # # we are testing connect_to_ib and the subsequent code that gets # # control as a result, such as getting the first requestID and then # # starting a separate thread for the run loop. # logger.debug("about to connect") # connect_ans = algo_app.connect_to_ib("127.0.0.1", 7496, client_id=0) # # # verify that algo_app is connected and alive with a valid reqId # assert connect_ans # assert algo_app.run_thread.is_alive() # assert algo_app.isConnected() # assert algo_app.request_id == 1 # # algo_app.disconnect_from_ib() # assert not algo_app.run_thread.is_alive() # assert not algo_app.isConnected() ############################################################################### # connect disconnect verification ############################################################################### def verify_algo_app_initialized(algo_app: "AlgoApp") -> None: """Helper function to verify the also_app instance is initialized. Args: algo_app: instance of AlgoApp that is to be checked """ assert len(algo_app.ds_catalog) > 0 assert algo_app.request_id == 0 assert algo_app.symbols.empty assert algo_app.stock_symbols.empty assert algo_app.response_complete_event.is_set() is False assert algo_app.nextValidId_event.is_set() is False assert algo_app.__repr__() == 'AlgoApp(ds_catalog)' # assert algo_app.run_thread is None def verify_algo_app_connected(algo_app: "AlgoApp") -> None: """Helper function to verify we are connected to ib. Args: algo_app: instance of AlgoApp that is to be checked """ assert algo_app.run_thread.is_alive() assert algo_app.isConnected() assert algo_app.request_id == 1 def verify_algo_app_disconnected(algo_app: "AlgoApp") -> None: """Helper function to verify we are disconnected from ib. Args: algo_app: instance of AlgoApp that is to be checked """ assert not algo_app.run_thread.is_alive() assert not algo_app.isConnected() ############################################################################### ############################################################################### # matching symbols ############################################################################### ############################################################################### class ExpCounts(NamedTuple): """NamedTuple for the expected counts.""" sym_non_recursive: int sym_recursive: int stock_sym_non_recursive: int stock_sym_recursive: int class SymDfs: """Saved sym dfs.""" def __init__(self, mock_sym_df: Any, sym_df: Any, mock_stock_sym_df: Any, stock_sym_df: Any) -> None: """Initialize the SymDfs. Args: mock_sym_df: mock sym DataFrame sym_df: symbol DataFrame mock_stock_sym_df: mock stock symbol DataFrame stock_sym_df: stock symbols dataFrame """ self.mock_sym_df = mock_sym_df self.sym_df = sym_df self.mock_stock_sym_df = mock_stock_sym_df self.stock_sym_df = stock_sym_df class TestAlgoAppMatchingSymbols: """TestAlgoAppMatchingSymbols class.""" def test_request_symbols_all_combos(self, algo_app: "AlgoApp", mock_ib: Any) -> None: """Test request_symbols with all patterns. Args: algo_app: pytest fixture instance of AlgoApp (see conftest.py) mock_ib: pytest fixture of contract_descriptions """ verify_algo_app_initialized(algo_app) logger.debug("about to connect") algo_app.connect_to_ib("127.0.0.1", algo_app.PORT_FOR_LIVE_TRADING, client_id=0) verify_algo_app_connected(algo_app) algo_app.request_throttle_secs = 0.01 try: for idx, search_pattern in enumerate( mock_ib.search_patterns()): exp_counts = get_exp_number(search_pattern, mock_ib) # verify symbol table has zero entries for the symbol logger.info("calling verify_match_symbols req_type 1 " "sym %s num %d", search_pattern, idx) algo_app.symbols = pd.DataFrame() algo_app.stock_symbols = pd.DataFrame() verify_match_symbols(algo_app, mock_ib, search_pattern, exp_counts=exp_counts, req_type=1) logger.info("calling verify_match_symbols req_type 2 " "sym %s num %d", search_pattern, idx) algo_app.symbols = pd.DataFrame() algo_app.stock_symbols = pd.DataFrame() verify_match_symbols(algo_app, mock_ib, search_pattern, exp_counts=exp_counts, req_type=2) finally: logger.debug('disconnecting') algo_app.disconnect_from_ib() logger.debug('verifying disconnected') verify_algo_app_disconnected(algo_app) logger.debug('disconnected - test case returning') def test_request_symbols_zero_result(self, algo_app: "AlgoApp", mock_ib: Any ) -> None: """Test request_symbols with pattern that finds exactly 1 symbol. Args: algo_app: instance of AlgoApp from conftest pytest fixture mock_ib: pytest fixture of contract_descriptions """ verify_algo_app_initialized(algo_app) logger.debug("about to connect") algo_app.connect_to_ib("127.0.0.1", algo_app.PORT_FOR_LIVE_TRADING, client_id=0) verify_algo_app_connected(algo_app) algo_app.request_throttle_secs = 0.01 try: exp_counts = ExpCounts(0, 0, 0, 0) # verify symbol table has zero entries for the symbols for idx, search_pattern in enumerate( mock_ib.no_find_search_patterns()): logger.info("calling verify_match_symbols req_type 1 " "sym %s num %d", search_pattern, idx) verify_match_symbols(algo_app, mock_ib, search_pattern, exp_counts=exp_counts, req_type=1) logger.info("calling verify_match_symbols req_type 2 " "sym %s num %d", search_pattern, idx) verify_match_symbols(algo_app, mock_ib, search_pattern, exp_counts=exp_counts, req_type=2) finally: logger.debug('disconnecting') algo_app.disconnect_from_ib() logger.debug('verifying disconnected') verify_algo_app_disconnected(algo_app) logger.debug('disconnected - test case returning') def test_get_symbols_timeout(self, algo_app: "AlgoApp", mock_ib: Any) -> None: """Test get_symbols gets timeout. Args: algo_app: instance of AlgoApp from conftest pytest fixture mock_ib: pytest fixture of contract_descriptions """ verify_algo_app_initialized(algo_app) try: logger.debug("about to connect") algo_app.connect_to_ib("127.0.0.1", mock_ib.PORT_FOR_SIMULATE_REQUEST_TIMEOUT, client_id=0) verify_algo_app_connected(algo_app) with pytest.raises(RequestTimeout): algo_app.request_symbols('A') finally: logger.debug('disconnecting') algo_app.disconnect_from_ib() logger.debug('verifying disconnected') verify_algo_app_disconnected(algo_app) logger.debug('disconnected - test case returning') def test_get_symbols_disconnect(self, algo_app: "AlgoApp", mock_ib: Any) -> None: """Test get_symbols gets disconnected while waiting. Args: algo_app: instance of AlgoApp from conftest pytest fixture mock_ib: pytest fixture of contract_descriptions """ verify_algo_app_initialized(algo_app) try: logger.debug("about to connect") algo_app.connect_to_ib("127.0.0.1", mock_ib. PORT_FOR_SIMULATE_REQUEST_DISCONNECT, client_id=0) verify_algo_app_connected(algo_app) with pytest.raises(DisconnectDuringRequest): algo_app.request_symbols('A') finally: logger.debug('disconnecting') algo_app.disconnect_from_ib() logger.debug('verifying disconnected') verify_algo_app_disconnected(algo_app) logger.debug('disconnected - test case returning') def test_get_symbols(self, algo_app: "AlgoApp", mock_ib: Any) -> None: """Test get_symbols with pattern that finds no symbols. Args: algo_app: instance of AlgoApp from conftest pytest fixture mock_ib: pytest fixture of contract_descriptions """ verify_algo_app_initialized(algo_app) try: logger.debug("about to connect") algo_app.connect_to_ib("127.0.0.1", algo_app.PORT_FOR_LIVE_TRADING, client_id=0) verify_algo_app_connected(algo_app) algo_app.request_throttle_secs = 0.01 sym_dfs = SymDfs(pd.DataFrame(), pd.DataFrame(), pd.DataFrame(),
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- ################################################################################ # Description: Python script to analyze the results of the asset allocation exp. # Author: <NAME> # Email: <EMAIL> # Date: dom 24 lug 2016 21:31:25 BST ################################################################################ #--------# # Import # #--------# import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.pylab as pylab import matplotlib import errno import ffn # General settings matplotlib.style.use('seaborn-colorblind') params = {'legend.fontsize': 'x-large', 'figure.figsize': (20, 10), 'figure.facecolor': 'white', 'figure.edgecolor': 'black', 'axes.labelsize': 'x-large', 'axes.titlesize': 'x-large', 'xtick.labelsize': 'x-large', 'ytick.labelsize': 'x-large'} pylab.rcParams.update(params) # Colors used colors = ['black', 'dimgrey', 'steelblue', 'lightsteelblue'] #-----------------------# # Algorithms considered # #-----------------------# algorithms = set(['ARAC', 'PGPE', 'NPGPE', 'RSARAC', 'RSPGPE', 'RSNPGPE']) #-------------------# # Utility functions # #-------------------# def createDirectory(dirPath): """ Create directory at a given path (absolute). Args: dirPath (str): absolute path for new directory. """ if not os.path.exists(os.path.expanduser(dirPath)): try: os.makedirs(os.path.expanduser(dirPath)) except OSError as exc: if exc.errno != errno.EEXIST: raise #-----------# # Functions # #-----------# def analyzeConvergence(filesList, algorithmName): """ Aggregate the convergence information of a series of independent experiments of a certain learning algorithms. Args: filesList (list of str): list of the files of convergence information Returns: dfReward (pd.DataFrame): dataframe containing the aggregate average reward dfStddev (pd.DataFrame): datraframe containing the aggregate standard dev dfSharpe (pd.DataFrame): dataframe containing the aggreagate Sharpe ratio """ # Initialize output dataframes temp = pd.read_csv(os.path.expanduser(filesList[0]), index_col=0) dfRewardExp = pd.DataFrame(index=temp.index) dfStddevExp = pd.DataFrame(index=temp.index) dfSharpeExp = pd.DataFrame(index=temp.index) # For all the files for f in filesList: expName = f[::-1].split('/', 1)[0][::-1][:-4] df = pd.read_csv(os.path.expanduser(f), index_col=0) dfRewardExp[expName] = df['average'] dfStddevExp[expName] = df['stdev'] dfSharpeExp[expName] = df['sharpe'] # Compute mean and stddev across experiments c1 = algorithmName c2 = algorithmName + '_delta' dfReward = pd.DataFrame(index=temp.index, columns=[c1, c2]) dfStddev = pd.DataFrame(index=temp.index, columns=[c1, c2]) dfSharpe = pd.DataFrame(index=temp.index, columns=[c1, c2]) dfReward[c1] = dfRewardExp.mean(axis=1) dfReward[c2] = dfRewardExp.std(axis=1) dfStddev[c1] = dfStddevExp.mean(axis=1) dfStddev[c2] = dfStddevExp.std(axis=1) dfSharpe[c1] = dfSharpeExp.mean(axis=1) dfSharpe[c2] = dfSharpeExp.std(axis=1) # Return return dfReward, dfStddev, dfSharpe def compareAlgorithmConvergence(debugDir, imagesDir=None): """ Compare the convergence properties of several learning algorithms. The function produces images and csv summaries of the analysis in the given directories. Args: outputDir (str): output directory. imagesDir (str): images directory. """ dfReward = pd.DataFrame() dfStddev =
pd.DataFrame()
pandas.DataFrame
import pytest import numpy as np import pandas as pd from iguanas.rule_generation import RuleGeneratorOpt from sklearn.metrics import precision_score, recall_score from iguanas.metrics.classification import FScore, Precision from itertools import product import random import math @pytest.fixture def create_data(): def return_random_num(y, fraud_min, fraud_max, nonfraud_min, nonfraud_max, rand_func): data = [rand_func(fraud_min, fraud_max) if i == 1 else rand_func( nonfraud_min, nonfraud_max) for i in y] return data random.seed(0) np.random.seed(0) y = pd.Series(data=[0]*980 + [1]*20, index=list(range(0, 1000))) X = pd.DataFrame(data={ "num_distinct_txn_per_email_1day": [round(max(i, 0)) for i in return_random_num(y, 2, 1, 1, 2, np.random.normal)], "num_distinct_txn_per_email_7day": [round(max(i, 0)) for i in return_random_num(y, 4, 2, 2, 3, np.random.normal)], "ip_country_us": [round(min(i, 1)) for i in [max(i, 0) for i in return_random_num(y, 0.3, 0.4, 0.5, 0.5, np.random.normal)]], "email_kb_distance": [min(i, 1) for i in [max(i, 0) for i in return_random_num(y, 0.2, 0.5, 0.6, 0.4, np.random.normal)]], "email_alpharatio": [min(i, 1) for i in [max(i, 0) for i in return_random_num(y, 0.33, 0.1, 0.5, 0.2, np.random.normal)]], }, index=list(range(0, 1000)) ) columns_int = [ 'num_distinct_txn_per_email_1day', 'num_distinct_txn_per_email_7day', 'ip_country_us'] columns_cat = ['ip_country_us'] columns_num = ['num_distinct_txn_per_email_1day', 'num_distinct_txn_per_email_7day', 'email_kb_distance', 'email_alpharatio'] weights = y.apply(lambda x: 1000 if x == 1 else 1) return [X, y, columns_int, columns_cat, columns_num, weights] @pytest.fixture def create_smaller_data(): random.seed(0) np.random.seed(0) y = pd.Series(data=[0]*5 + [1]*5, index=list(range(0, 10))) X = pd.DataFrame(data={ 'A': [5, 0, 5, 0, 5, 3, 4, 0, 0, 0], 'B': [0, 1, 0, 1, 0, 1, 0.6, 0.7, 0, 0], 'C_US': [1, 1, 1, 1, 1, 1, 0, 0, 1, 1] }, index=list(range(0, 10)) ) columns_int = ['A'] columns_cat = ['C'] columns_num = ['A', 'B'] weights = y.apply(lambda x: 1000 if x == 1 else 1) return [X, y, columns_int, columns_cat, columns_num, weights] @pytest.fixture def fs_instantiated(): f = FScore(0.5) return f.fit @pytest.fixture def rg_instantiated(fs_instantiated): f0dot5 = fs_instantiated params = { 'metric': f0dot5, 'n_total_conditions': 4, 'num_rules_keep': 50, 'n_points': 10, 'ratio_window': 2, 'remove_corr_rules': False, 'verbose': 1 } rg = RuleGeneratorOpt(**params) rg._today = '20200204' return [rg, params] @pytest.fixture def return_dummy_rules(): def _read(weight_is_none=True): if weight_is_none: rule_descriptions = pd.DataFrame( np.array([["(X['B']>=0.5)", 0.6, 0.6, 1, 0.5, 0.6], ["(X['C_US']==True)", 0.375, 0.6, 1, 0.8, 0.4054054054054054], ["(X['A']>=3)", 0.4, 0.4, 1, 0.5, 0.4000000000000001]]), columns=['Logic', 'Precision', 'Recall', 'nConditions', 'PercDataFlagged', 'Metric'], index=['RGO_Rule_20200204_1', 'RGO_Rule_20200204_2', 'RGO_Rule_20200204_0'], ) rule_descriptions = rule_descriptions.astype({'Logic': object, 'Precision': float, 'Recall': float, 'nConditions': int, 'PercDataFlagged': float, 'Metric': float}) rule_descriptions.index.name = 'Rule' else: rule_descriptions = pd.DataFrame( np.array([["(X['B']>=0.5)", 0.9993337774816788, 0.6, 1, 0.5, 0.8819379115710255], ["(X['C_US']==True)", 0.9983361064891847, 0.6, 1, 0.8, 0.8813160987074031], ["(X['A']>=3)", 0.9985022466300549, 0.4, 1, 0.5, 0.7685213648939442]]), columns=['Logic', 'Precision', 'Recall', 'nConditions', 'PercDataFlagged', 'Metric'], index=['RGO_Rule_20200204_1', 'RGO_Rule_20200204_2', 'RGO_Rule_20200204_0'], ) rule_descriptions = rule_descriptions.astype({'Logic': object, 'Precision': float, 'Recall': float, 'nConditions': int, 'PercDataFlagged': float, 'Metric': float}) rule_descriptions.index.name = 'Rule' X_rules = pd.DataFrame( np.array([[0, 1, 1], [1, 1, 0], [0, 1, 1], [1, 1, 0], [0, 1, 1], [1, 1, 1], [1, 0, 1], [1, 0, 0], [0, 1, 0], [0, 1, 0]], dtype=np.int), columns=['RGO_Rule_20200204_1', 'RGO_Rule_20200204_2', 'RGO_Rule_20200204_0'], ) rule_combinations = [(('RGO_Rule_20200204_1', 'RGO_Rule_20200204_2'), ("(X['B']>=0.5)", "(X['C_US']==True)")), (('RGO_Rule_20200204_1', 'RGO_Rule_20200204_0'), ("(X['B']>=0.5)", "(X['A']>=3)")), (('RGO_Rule_20200204_2', 'RGO_Rule_20200204_0'), ("(X['C_US']==True)", "(X['A']>=3)"))] return rule_descriptions, X_rules, rule_combinations return _read @pytest.fixture def return_dummy_pairwise_rules(): rule_descriptions = pd.DataFrame( { 'Rule': ['A', 'B', 'C'], 'Precision': [1, 0.5, 0] } ) rule_descriptions.set_index('Rule', inplace=True) pairwise_descriptions = pd.DataFrame( { 'Rule': ['A&B', 'B&C', 'A&C'], 'Precision': [1, 0.75, 0] } ) pairwise_descriptions.set_index('Rule', inplace=True) X_rules_pairwise = pd.DataFrame({ 'A&B': range(0, 1000), 'B&C': range(0, 1000), 'A&C': range(0, 1000), }) pairwise_to_orig_lookup = { 'A&B': ['A', 'B'], 'A&C': ['A', 'C'], 'B&C': ['B', 'C'], } return pairwise_descriptions, X_rules_pairwise, pairwise_to_orig_lookup, rule_descriptions @pytest.fixture def return_iteration_results(): iteration_ranges = { ('num_distinct_txn_per_email_1day', '>='): (0, 7), ('num_distinct_txn_per_email_1day', '<='): (0, 7), ('num_distinct_txn_per_email_7day', '>='): (6.0, 12), ('num_distinct_txn_per_email_7day', '<='): (0, 6.0), ('email_kb_distance', '>='): (0.5, 1.0), ('email_kb_distance', '<='): (0.0, 0.5), ('email_alpharatio', '>='): (0.5, 1.0), ('email_alpharatio', '<='): (0.0, 0.5) } iteration_arrays = {('num_distinct_txn_per_email_1day', '>='): np.array([0, 1, 2, 3, 4, 5, 6, 7]), ('num_distinct_txn_per_email_1day', '<='): np.array([0, 1, 2, 3, 4, 5, 6, 7]), ('num_distinct_txn_per_email_7day', '>='): np.array([6, 7, 8, 9, 10, 11, 12]), ('num_distinct_txn_per_email_7day', '<='): np.array([0, 1, 2, 3, 4, 5, 6]), ('email_kb_distance', '>='): np.array([0.5, 0.56, 0.61, 0.67, 0.72, 0.78, 0.83, 0.89, 0.94, 1.]), ('email_kb_distance', '<='): np.array([0., 0.056, 0.11, 0.17, 0.22, 0.28, 0.33, 0.39, 0.44, 0.5]), ('email_alpharatio', '>='): np.array([0.5, 0.56, 0.61, 0.67, 0.72, 0.78, 0.83, 0.89, 0.94, 1.]), ('email_alpharatio', '<='): np.array([0., 0.056, 0.11, 0.17, 0.22, 0.28, 0.33, 0.39, 0.44, 0.5])} iteration_ranges_3pts = { ('num_distinct_txn_per_email_1day', '>='): np.array([0., 4., 7.]), ('num_distinct_txn_per_email_1day', '<='): np.array([0., 4., 7.]), ('num_distinct_txn_per_email_7day', '>='): np.array([6., 9., 12.]), ('num_distinct_txn_per_email_7day', '<='): np.array([0., 3., 6.]), ('email_kb_distance', '>='): np.array([0.5, 0.75, 1.]), ('email_kb_distance', '<='): np.array([0., 0.25, 0.5]), ('email_alpharatio', '>='): np.array([0.5, 0.75, 1.]), ('email_alpharatio', '<='): np.array([0., 0.25, 0.5]) } fscore_arrays = {('num_distinct_txn_per_email_1day', '>='): np.array([0.02487562, 0.04244482, 0.05393401, 0.01704545, 0., 0., 0., 0.]), ('num_distinct_txn_per_email_1day', '<='): np.array([0., 0.00608766, 0.02689873, 0.0275634, 0.02590674, 0.02520161, 0.0249004, 0.02487562]), ('num_distinct_txn_per_email_7day', '>='): np.array([0.0304878, 0.04934211, 0., 0., 0., 0., 0.]), ('num_distinct_txn_per_email_7day', '<='): np.array([0., 0.00903614, 0.01322751, 0.01623377, 0.0248139, 0.02395716, 0.02275161]), ('email_kb_distance', '>='): np.array([0.01290878, 0.01420455, 0.01588983, 0.01509662, 0.0136612, 0.01602564, 0.01798561, 0.0210084, 0.0245098, 0.0154321]), ('email_kb_distance', '<='): np.array([0.10670732, 0.08333333, 0.06835938, 0.06410256, 0.06048387, 0.05901288, 0.05474453, 0.04573171, 0.04298942, 0.04079254]), ('email_alpharatio', '>='): np.array([0.00498008, 0.00327225, 0., 0., 0., 0., 0., 0., 0., 0.]), ('email_alpharatio', '<='): np.array([0., 0., 0., 0.02232143, 0.04310345, 0.06161972, 0.06157635, 0.05662021, 0.05712366, 0.04429134])} return iteration_ranges, iteration_arrays, iteration_ranges_3pts, fscore_arrays @pytest.fixture def return_pairwise_info_dict(): pairwise_info_dict = {"(X['B']>=0.5)&(X['C_US']==True)": {'RuleName1': 'RGO_Rule_20200204_1', 'RuleName2': 'RGO_Rule_20200204_2', 'PairwiseRuleName': 'RGO_Rule_20200204_0', 'PairwiseComponents': ['RGO_Rule_20200204_1', 'RGO_Rule_20200204_2']}, "(X['A']>=3)&(X['B']>=0.5)": {'RuleName1': 'RGO_Rule_20200204_1', 'RuleName2': 'RGO_Rule_20200204_0', 'PairwiseRuleName': 'RGO_Rule_20200204_1', 'PairwiseComponents': ['RGO_Rule_20200204_1', 'RGO_Rule_20200204_0']}, "(X['A']>=3)&(X['C_US']==True)": {'RuleName1': 'RGO_Rule_20200204_2', 'RuleName2': 'RGO_Rule_20200204_0', 'PairwiseRuleName': 'RGO_Rule_20200204_2', 'PairwiseComponents': ['RGO_Rule_20200204_2', 'RGO_Rule_20200204_0']}} return pairwise_info_dict def test_repr(rg_instantiated): rg, _ = rg_instantiated exp_repr = "RuleGeneratorOpt(metric=<bound method FScore.fit of FScore with beta=0.5>, n_total_conditions=4, num_rules_keep=50, n_points=10, ratio_window=2, one_cond_rule_opt_metric=<bound method FScore.fit of FScore with beta=1>, remove_corr_rules=False, target_feat_corr_types=None)" assert rg.__repr__() == exp_repr _ = rg.fit(pd.DataFrame({'A': [1, 0, 0]}), pd.Series([1, 0, 0])) assert rg.__repr__() == 'RuleGeneratorOpt object with 1 rules generated' def test_fit(create_data, rg_instantiated): X, y, _, _, _, weights = create_data rg, _ = rg_instantiated exp_results = [ ((1000, 86), 8474), ((1000, 59), 11281) ] for i, w in enumerate([None, weights]): X_rules = rg.fit(X, y, sample_weight=w) assert X_rules.shape == exp_results[i][0] assert X_rules.sum().sum() == exp_results[i][1] assert rg.rule_names == X_rules.columns.tolist() == list( rg.rule_lambdas.keys()) == list(rg.lambda_kwargs.keys()) == list( rg.rules.rule_strings.keys()) def test_fit_target_feat_corr_types_infer(create_data, rg_instantiated, fs_instantiated): X, y, _, _, _, weights = create_data rg, _ = rg_instantiated rg.target_feat_corr_types = 'Infer' exp_results = [ ((1000, 30), 1993), ((1000, 30), 4602) ] for i, w in enumerate([None, weights]): X_rules = rg.fit(X, y, sample_weight=w) assert X_rules.shape == exp_results[i][0] assert X_rules.sum().sum() == exp_results[i][1] assert rg.rule_names == X_rules.columns.tolist() == list( rg.rule_lambdas.keys()) == list(rg.lambda_kwargs.keys()) == list( rg.rules.rule_strings.keys()) assert len( [l for l in list(rg.rule_strings.values()) if "X['email_alpharatio']>" in l]) == 0 assert len( [l for l in list(rg.rule_strings.values()) if "X['email_kb_distance']>" in l]) == 0 assert len( [l for l in list(rg.rule_strings.values()) if "X['ip_country_us']==True" in l]) == 0 assert len([l for l in list(rg.rule_strings.values()) if "X['num_distinct_txn_per_email_1day']<" in l]) == 0 assert len([l for l in list(rg.rule_strings.values()) if "X['num_distinct_txn_per_email_7day']<" in l]) == 0 def test_fit_target_feat_corr_types_provided(create_data, rg_instantiated, fs_instantiated): X, y, _, _, _, weights = create_data rg, _ = rg_instantiated rg.target_feat_corr_types = { 'PositiveCorr': [ 'num_distinct_txn_per_email_1day', 'num_distinct_txn_per_email_7day' ], 'NegativeCorr': [ 'ip_country_us', 'email_kb_distance', 'email_alpharatio'] } exp_results = [ ((1000, 30), 1993), ((1000, 30), 4602) ] for i, w in enumerate([None, weights]): X_rules = rg.fit(X, y, sample_weight=w) assert X_rules.shape == exp_results[i][0] assert X_rules.sum().sum() == exp_results[i][1] assert rg.rule_names == X_rules.columns.tolist() == list( rg.rule_lambdas.keys()) == list(rg.lambda_kwargs.keys()) == list( rg.rules.rule_strings.keys()) assert len( [l for l in list(rg.rule_strings.values()) if "X['email_alpharatio']>" in l]) == 0 assert len( [l for l in list(rg.rule_strings.values()) if "X['email_kb_distance']>" in l]) == 0 assert len( [l for l in list(rg.rule_strings.values()) if "X['ip_country_us']==True" in l]) == 0 assert len([l for l in list(rg.rule_strings.values()) if "X['num_distinct_txn_per_email_1day']<" in l]) == 0 assert len([l for l in list(rg.rule_strings.values()) if "X['num_distinct_txn_per_email_7day']<" in l]) == 0 def test_transform(create_data, rg_instantiated): exp_result = [ (1000, 86), (1000, 59) ] X, y, _, _, _, weights = create_data rg, _ = rg_instantiated for i, w in enumerate([None, weights]): _ = rg.fit(X, y, w) X_rules = rg.transform(X) assert X_rules.shape == exp_result[i] def test_generate_numeric_one_condition_rules(create_data, rg_instantiated, fs_instantiated): exp_rule_strings = [ { 'RGO_Rule_20200204_0': "(X['num_distinct_txn_per_email_1day']>=2)", 'RGO_Rule_20200204_1': "(X['num_distinct_txn_per_email_7day']>=7)", 'RGO_Rule_20200204_2': "(X['email_kb_distance']>=0.94)", 'RGO_Rule_20200204_3': "(X['email_alpharatio']>=0.5)", 'RGO_Rule_20200204_4': "(X['num_distinct_txn_per_email_1day']<=3)", 'RGO_Rule_20200204_5': "(X['num_distinct_txn_per_email_7day']<=4)", 'RGO_Rule_20200204_6': "(X['email_kb_distance']<=0.0)", 'RGO_Rule_20200204_7': "(X['email_alpharatio']<=0.33)" }, { 'RGO_Rule_20200204_8': "(X['num_distinct_txn_per_email_1day']>=1)", 'RGO_Rule_20200204_9': "(X['num_distinct_txn_per_email_7day']>=7)", 'RGO_Rule_20200204_10': "(X['email_kb_distance']>=0.61)", 'RGO_Rule_20200204_11': "(X['email_alpharatio']>=0.5)", 'RGO_Rule_20200204_12': "(X['num_distinct_txn_per_email_1day']<=3)", 'RGO_Rule_20200204_13': "(X['num_distinct_txn_per_email_7day']<=5)", 'RGO_Rule_20200204_14': "(X['email_kb_distance']<=0.5)", 'RGO_Rule_20200204_15': "(X['email_alpharatio']<=0.5)" } ] X, y, columns_int, _, columns_num, weights = create_data rg, _ = rg_instantiated metric = fs_instantiated for i, w in enumerate([None, weights]): rule_strings, X_rules = rg._generate_numeric_one_condition_rules( X, y, columns_num, columns_int, w ) assert X_rules.shape == (1000, 8) assert rule_strings == exp_rule_strings[i] def test_generate_numeric_one_condition_rules_warning(rg_instantiated): X = pd.DataFrame({'A': [0, 0, 0]}) y = pd.Series([0, 1, 0]) rg, _ = rg_instantiated with pytest.warns(UserWarning, match='No numeric one condition rules could be created.'): results = rg._generate_numeric_one_condition_rules( X, y, ['A'], ['A'], None) pd.testing.assert_frame_equal(results[0], pd.DataFrame()) pd.testing.assert_frame_equal(results[1],
pd.DataFrame()
pandas.DataFrame
import warnings warnings.filterwarnings('ignore') from sklearn.model_selection import KFold, StratifiedKFold import pandas as pd import numpy as np class BaggingRegressor(): def __init__(self, regressors, seeds = [2022], n_fold=5): self.regressors = regressors self.n_regressors = 1 if type(self.regressors) != list else len(self.regressors) self.fitted_regressors = [] self.seeds = seeds self.n_seeds = len(self.seeds) self.n_fold = n_fold self.folds = None def fit(self, X, y): for idx, cur_regressor in enumerate(self.regressors): cur_fitted_regressors = [] for seed in self.seeds: self.folds = KFold(n_splits=self.n_fold, shuffle=True, random_state=seed) for fold_n, (train_index, valid_index) in enumerate(self.folds.split(X, y)): clf = cur_regressor.fit(X.loc[train_index], y.loc[train_index], eval_set=[(X.loc[valid_index], y.loc[valid_index])], early_stopping_rounds = 50, verbose = 0) cur_fitted_regressors.append(clf) self.fitted_regressors.append(cur_fitted_regressors) print('Training Done') def predict(self, X, regressor_weights = []): predict_test = pd.DataFrame() if np.sum(regressor_weights) != 1: regressor_weights = np.ones(self.n_regressors) / self.n_regressors for idx, cur_fitted_regressors in enumerate(self.fitted_regressors): for i, cur_fitted_regressor in enumerate(cur_fitted_regressors): if i == 0: pred = cur_fitted_regressor.predict(X) / float(self.n_fold) / float(self.n_seeds) else: pred += cur_fitted_regressor.predict(X) / float(self.n_fold) / float(self.n_seeds) predict_test['model_%d_predict' % (idx)] = pred * regressor_weights[idx] self.result = predict_test.sum(axis = 1) print('Prediction Done') return self.result class BaggingClassifier(): def __init__(self, classifiers, seeds = [2022], n_fold=5): self.classifiers = classifiers self.n_classifiers = 1 if type(self.classifiers) != list else len(self.classifiers) self.fitted_classifiers = [] self.seeds = seeds self.n_seeds = len(self.seeds) self.n_fold = n_fold self.folds = None def fit(self, X, y, custom_metric_list = []): for idx, cur_classifier in enumerate(self.classifiers): cur_fitted_classifiers = [] if idx < len(custom_metric_list): cur_metric = custom_metric_list[idx] else: cur_metric = 'auc' for seed in self.seeds: self.folds = StratifiedKFold(n_splits=self.n_fold, shuffle=True, random_state=seed) for fold_n, (train_index, valid_index) in enumerate(self.folds.split(X, y)): clf = cur_classifier.fit(X.loc[train_index], y.loc[train_index], eval_set=[(X.loc[valid_index], y.loc[valid_index])], eval_metric = cur_metric, early_stopping_rounds = 50, verbose = 0) cur_fitted_classifiers.append(clf) self.fitted_classifiers.append(cur_fitted_classifiers) print('Training Done') def predict_proba(self, X, classifier_weights = []): predict_proba_test = pd.DataFrame() if np.sum(classifier_weights) != 1: classifier_weights = np.ones(len(self.classifiers)) / len(self.classifiers) for idx, cur_fitted_classifiers in enumerate(self.fitted_classifiers): for i, cur_fitted_classifier in enumerate(cur_fitted_classifiers): if i == 0: pred = cur_fitted_classifier.predict_proba(X)[:, 1] / float(self.n_fold) / float(self.n_seeds) else: pred += cur_fitted_classifier.predict_proba(X)[:, 1] / float(self.n_fold) / float(self.n_seeds) predict_proba_test['model_%d_predict_proba' % (idx)] = pred * classifier_weights[idx] self.result = predict_proba_test.sum(axis = 1) print('Prediction Done') return self.result def predict(self, X, classifier_weights = []): predict_proba_test =
pd.DataFrame()
pandas.DataFrame
""" Quick n Simple Image Folder, Tarfile based DataSet Hacked together by / Copyright 2020 <NAME> """ import torch.utils.data as data import os import logging import math import collections import tqdm import cv2 import torch import pandas as pd from glob import glob from PIL import Image from .parsers import create_parser from torchvision import datasets as torch_datasets from torchvision import transforms from torchvision.utils import save_image from torch.utils.data import Dataset from torchvision.utils import make_grid # create logger _logger = logging.getLogger(__name__) # create console handler and set level to debug ch = logging.StreamHandler() # create formatter formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') # add formatter to ch ch.setFormatter(formatter) # add ch to logger _logger.addHandler(ch) _ERROR_RETRY = 50 class ImageDataset(data.Dataset): def __init__( self, root, parser=None, class_map=None, load_bytes=False, transform=None, target_transform=None, ): if parser is None or isinstance(parser, str): parser = create_parser(parser or '', root=root, class_map=class_map) self.parser = parser self.load_bytes = load_bytes self.transform = transform self.target_transform = target_transform self._consecutive_errors = 0 def __getitem__(self, index): img, target = self.parser[index] try: img = img.read() if self.load_bytes else Image.open(img).convert('RGB') except Exception as e: _logger.warning(f'Skipped sample (index {index}, file {self.parser.filename(index)}). {str(e)}') self._consecutive_errors += 1 if self._consecutive_errors < _ERROR_RETRY: return self.__getitem__((index + 1) % len(self.parser)) else: raise e self._consecutive_errors = 0 if self.transform is not None: img = self.transform(img) if target is None: target = -1 elif self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return len(self.parser) def filename(self, index, basename=False, absolute=False): return self.parser.filename(index, basename, absolute) def filenames(self, basename=False, absolute=False): return self.parser.filenames(basename, absolute) class IterableImageDataset(data.IterableDataset): def __init__( self, root, parser=None, split='train', is_training=False, batch_size=None, repeats=0, download=False, transform=None, target_transform=None, ): assert parser is not None if isinstance(parser, str): self.parser = create_parser( parser, root=root, split=split, is_training=is_training, batch_size=batch_size, repeats=repeats, download=download) else: self.parser = parser self.transform = transform self.target_transform = target_transform self._consecutive_errors = 0 def __iter__(self): for img, target in self.parser: if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) yield img, target def __len__(self): if hasattr(self.parser, '__len__'): return len(self.parser) else: return 0 def filename(self, index, basename=False, absolute=False): assert False, 'Filename lookup by index not supported, use filenames().' def filenames(self, basename=False, absolute=False): return self.parser.filenames(basename, absolute) class AugMixDataset(torch.utils.data.Dataset): """Dataset wrapper to perform AugMix or other clean/augmentation mixes""" def __init__(self, dataset, num_splits=2): self.augmentation = None self.normalize = None self.dataset = dataset if self.dataset.transform is not None: self._set_transforms(self.dataset.transform) self.num_splits = num_splits def _set_transforms(self, x): assert isinstance(x, (list, tuple)) and len(x) == 3, 'Expecting a tuple/list of 3 transforms' self.dataset.transform = x[0] self.augmentation = x[1] self.normalize = x[2] @property def transform(self): return self.dataset.transform @transform.setter def transform(self, x): self._set_transforms(x) def _normalize(self, x): return x if self.normalize is None else self.normalize(x) def __getitem__(self, i): x, y = self.dataset[i] # all splits share the same dataset base transform x_list = [self._normalize(x)] # first split only normalizes (this is the 'clean' split) # run the full augmentation on the remaining splits for _ in range(self.num_splits - 1): x_list.append(self._normalize(self.augmentation(x))) return tuple(x_list), y def __len__(self): return len(self.dataset) class EventMNISTDataset(data.Dataset): def __init__(self, root, split='train', transform=None, target_transform=None, number_of_frames=9, img_prefix="img_", sample=False, sample_times=9): self.dataset_root = root self.train_dir = os.path.join(self.dataset_root, "train") self.val_dir = os.path.join(self.dataset_root, "val") self.test_dir = os.path.join(self.dataset_root, "test") self.sample = sample self.sample_times = sample_times self.dir_dict = { "train": self.train_dir, "val": self.val_dir, "valid": self.val_dir, "validation": self.val_dir, "test": self.test_dir, } self.transform = transform self.target_transform = target_transform accepted_frames = [4, 9, 16, 25, 36, 49, 64] if number_of_frames not in accepted_frames: raise Exception("The number of frames should be a value between {}") self.number_of_frames = number_of_frames self.frames_per_row = int(math.sqrt(number_of_frames)) self.frames_per_col = self.frames_per_row self.img_dir = self.dir_dict[split] self.labels_file = os.path.join(self.img_dir, "labels.csv") self.csv_data = {'fname': [], 'label': []} self.raw_data_loader = None self.generated_img_id = 0 if not os.path.exists(self.labels_file): if not os.path.exists(self.img_dir): os.makedirs(self.img_dir) if not os.path.exists(os.path.join(self.dataset_root, "raw")): self.__download_raw_data(split) else: self.__load_raw_data(split) self.__create_summation_training_data(img_prefix) #self.__create_event_training_data(split, img_prefix) #self.__create_no_event_training_data(split, img_prefix) self.__save_annotations() self.img_labels = pd.read_csv(self.labels_file) def __len__(self): return len(self.img_labels) def __getitem__(self, idx): img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0]) image = Image.open(img_path).convert('RGB') image = image.convert('L') # Reading grayscale # image = read_image(img_path, mode=ImageReadMode.GRAY) label = self.img_labels.iloc[idx, 1] if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def __download_raw_data(self, split): transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) if split in ["train"]: dataset1 = torch_datasets.MNIST(f"{os.path.join(self.dataset_root, 'raw')}", train=True, download=True, transform=transform) elif split in ["val", "valid", "validation"]: dataset1 = torch_datasets.MNIST(f"{os.path.join(self.dataset_root, 'raw')}", train=False, download=True, transform=transform) # If true the data loaded for each batch will be sampled multiple times if self.sample: train_kwargs = {'batch_size': self.sample_times*self.number_of_frames} else: train_kwargs = {'batch_size': self.number_of_frames} self.raw_data_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs) def __load_raw_data(self, split): transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) if split in ["train"]: dataset1 = torch_datasets.MNIST(f"{os.path.join(self.dataset_root, 'raw')}", train=True, download=False, transform=transform) elif split in ["val", "valid", "validation"]: dataset1 = torch_datasets.MNIST(f"{os.path.join(self.dataset_root, 'raw')}", train=False, download=False, transform=transform) if self.sample: train_kwargs = {'batch_size': self.sample_times*self.number_of_frames} else: train_kwargs = {'batch_size': self.number_of_frames} self.raw_data_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs) def __create_summation_training_data(self, img_prefix="img_"): """ A function to create an experimental MNist dataset. The dataset is used to test/verify if transformer can compute additions of 9 mnist numbers patched together in an image. That will assume that the mnist ciphers will be distributed differently in the image space. Will the transformers understand that? """ no_cuda = True use_cuda = not no_cuda and torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") for batch_idx, (data, target) in enumerate(tqdm.tqdm(self.raw_data_loader, desc="Creating the event dataset")): data, target = data.to(device), target.to(device) if data.shape[0] != self.number_of_frames: continue data = data.reshape(self.frames_per_row, data.shape[1], data.shape[2] * self.frames_per_row, data.shape[3]) data = data.transpose(2, 3) data = data.reshape(1, data.shape[1], data.shape[2] * self.frames_per_row, data.shape[3]) data = data.transpose(2, 3) image_data = data[0] img_id = f'{self.generated_img_id}'.zfill(9) img_name = f'{img_prefix}{img_id}.png' img_path = os.path.join(self.img_dir, img_name) save_image(image_data, f'{img_path}') self.csv_data["fname"].append(img_name) self.csv_data["label"].append(int(target.sum().cpu().numpy())) self.generated_img_id += 1 def __create_event_training_data(self, split, img_prefix="img_"): no_cuda = True use_cuda = not no_cuda and torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") event = 1 for batch_idx, (data, target) in enumerate(tqdm.tqdm(self.raw_data_loader, desc="Creating the event dataset")): data, target = data.to(device), target.to(device) if data.shape[0] != self.number_of_frames: continue data = data.reshape(self.frames_per_row, data.shape[1], data.shape[2] * self.frames_per_row, data.shape[3]) data = data.transpose(2, 3) data = data.reshape(1, data.shape[1], data.shape[2] * self.frames_per_row, data.shape[3]) data = data.transpose(2, 3) image_data = data[0] img_id = f'{self.generated_img_id}'.zfill(9) img_name = f'{img_prefix}{img_id}.png' img_path = os.path.join(self.img_dir, img_name) save_image(image_data, f'{img_path}') self.csv_data["fname"].append(img_name) self.csv_data["label"].append(event) self.generated_img_id += 1 def __create_no_event_training_data(self, split, img_prefix="img_"): no_cuda = True use_cuda = not no_cuda and torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") event = 0 label_to_tensors = {} for batch_idx, (data, target) in enumerate( tqdm.tqdm(self.raw_data_loader, desc="Creating the no event dataset")): data, target = data.to(device), target.to(device) for sample_idx in range(data.shape[0]): if target[sample_idx].item() not in label_to_tensors: label_to_tensors[target[sample_idx].item()] = [data[sample_idx]] else: label_to_tensors[target[sample_idx].item()].append(data[sample_idx]) for label, value in label_to_tensors.items(): for batch in range(0, len(value), self.number_of_frames): data = value[batch:batch + self.number_of_frames] if len(data) != 9: continue data = torch.stack(data) data = data.reshape(self.frames_per_row, data.shape[1], data.shape[2] * self.frames_per_row, data.shape[3]) data = data.transpose(2, 3) data = data.reshape(1, data.shape[1], data.shape[2] * self.frames_per_row, data.shape[3]) data = data.transpose(2, 3) image_data = data[0] img_id = f'{self.generated_img_id}'.zfill(9) img_name = f'{img_prefix}{img_id}.png' img_path = os.path.join(self.img_dir, img_name) save_image(image_data, f'{img_path}') self.csv_data["fname"].append(img_name) self.csv_data["label"].append(event) self.generated_img_id += 1 def __save_annotations(self): pd.DataFrame(self.csv_data).to_csv(self.labels_file, index=False) class VideoEventDataset(Dataset): def __init__(self, root, input_data, split='train', transform=None, target_transform=None, number_of_frames=9, crop=None, update=False, # If the dataset creation should be re-run img_prefix="img_", video_ext="mp4"): """ The class is used to create the Dataset for detecting events in a sequence of images that are taken in with a sampling rate that can variate from 1 frame per 15 seconds to 1 frame per 5 minutes This class is being created to be able to model relationships between patches of the same image. The inspiration is based on the transformer architecture. Since transformers try to create attention the image on a global scale, by creating queries about the different patches. The idea is that by patching different images in a new one, the temporal dimension will be converted into a spatial dimension. Thus reducing the need to perform 4D convolutional operation. Another inspiration is to understand if transformers/attention will be able to learn features about the """ _logger.info("Creating the VideoEventDataset for {split}") self.dataset_root = root # Video should be stored in the following directory structure # root/event/video.ext, where event is an integer mapping the labeled event for that video self.video_ext = video_ext # Fix automatic validation and training dataset creation self.video_list = glob(f"{input_data}/{split}/*/*.{self.video_ext}") _logger.info(f"The following {split} videos were found in the input directory {self.video_list }") self.train_dir = os.path.join(self.dataset_root, "train") self.val_dir = os.path.join(self.dataset_root, "val") self.test_dir = os.path.join(self.dataset_root, "test") self.dir_dict = { "train": self.train_dir, "val": self.val_dir, "valid": self.val_dir, "validation": self.val_dir, "test": self.test_dir, } self.update = update self.transform = transform self.crop = crop # (y, h, x, w) self.target_transform = target_transform accepted_frames = [4, 9, 16, 25, 36, 49, 64] if number_of_frames not in accepted_frames: raise Exception("The number of frames should be a value between {}") self.number_of_frames = number_of_frames self.frames_per_row = int(math.sqrt(number_of_frames)) self.frames_per_col = self.frames_per_row self.img_dir = self.dir_dict[split] self.labels_file = os.path.join(self.img_dir, "labels.csv") self.csv_data = {'fname': [], 'label': []} self.raw_data_loader = None self.generated_img_id = 0 if not os.path.exists(self.labels_file) or self.update: _logger.info(f"The labels file does not exist. Creating dataset from scratch for the following videos {self.video_list}") if not os.path.exists(self.img_dir): os.makedirs(self.img_dir) self.__create_event_data_split(img_prefix) self.__save_annotations() self.img_labels = pd.read_csv(self.labels_file) def __len__(self): return len(self.img_labels) def __getitem__(self, idx): img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0]) image = Image.open(img_path).convert('RGB') label = self.img_labels.iloc[idx, 1] if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def __create_event_data_split(self, img_prefix): """ @param img_prefix: the prefix to add to the ImageId when saving. """ transform = transforms.ToTensor() for idx, video in enumerate(tqdm.tqdm(self.video_list)): event = video.split("/")[1] vidcap = cv2.VideoCapture(video) video_length = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) success, image = vidcap.read() if success is False: print("Video file could not be read") raise("VideoFormatError") image_buffer = collections.deque(maxlen=self.number_of_frames) with tqdm.tqdm(total=video_length, desc=f"Processing video file {video}") as pbar: while success: success, image = vidcap.read() if success: if self.crop is not None: image = image[self.crop[0]:self.crop[0] + self.crop[1], self.crop[2]:self.crop[2] + self.crop[3]] # Resize the shape of the original image to have it fit inside the frame w, h = int(image.shape[1] / self.frames_per_row), int(image.shape[0] / self.frames_per_col) image = cv2.resize(image, (w, h)) image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) tensor = transform(image) image_buffer.append(tensor) pbar.update(1) if len(image_buffer) != image_buffer.maxlen: continue image_data = make_grid(list(image_buffer), nrow=self.frames_per_row) img_id = f'{self.generated_img_id}'.zfill(9) img_name = f'{img_prefix}{img_id}.png' img_path = os.path.join(self.img_dir, img_name) save_image(image_data, f'{img_path}') self.csv_data["fname"].append(img_name) self.csv_data["label"].append(event) self.generated_img_id += 1 else: break def __save_annotations(self):
pd.DataFrame(self.csv_data)
pandas.DataFrame